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Zusammenfassung

Die spezifische Form und Struktur geben biologischen Elementen ihre Funktion, sei es
mikroskopisch innerhalb einer Zelle oder makroskopisch über ganze Zellverbände hinweg.
Die Verknüpfung der Elemente selbst führt dann zur äußeren Form von biologischen Or-
ganismen. Die Ursachen der Formgebung dieser Bausteine des Lebens sind vielfältig. Ei-
nerseits gibt es Gleichgewichtszustände, die durch die Balance von Kräften, zum Beispiel
elastische und/oder entropische, bestimmt werden. Andererseits bilden sich viele Struk-
turen durch andauernde Dissipation von Energie im Nichtgleichgewicht. In biologischen
Systemen kommt es in letzterem Fall insbesondere durch die Rückkopplung verschiedener
Komponenten zu vielfältigen Mustern.
Diese Arbeit beschäftigt sich mit beiden Arten der Formgebung. Gleichgewichtssysteme
werden am Beispiel von semiflexiblen Biopolymeren und Zellverbänden untersucht, Nicht-
gleichgewichtssysteme anhand der Musterbildung des Pflanzenhormons Auxin.

Biopolymere sind wichtig für die Organisation und Funktionalität einer Zelle. Essentiell
sind die DNA als Träger der Erbinformation und die Filamente des Zytoskeletts als Gerüst
der Zelle. Um die Form dieser Biopolymere zu verstehen, betrachtet die Arbeit Polymer-
Konformationen im Kräftegleichgewicht in Abhängigkeit von inneren Faktoren wie Bie-
gesteifigkeit, Topologie und Filamentdurchmesser, sowie unter dem Einfluss von äußeren
Faktoren wie Confinement. Diese Aspekte sind wichtig für viele biologische Prozesse, bilden
aber auch die Grundlage für biomimetische Anwendungen in Nanosystemen. Die Arbeit
untersucht die Form von Polymeren mittels Monte-Carlo-Simulationen, die mit analyti-
schen Argumenten belegt werden und so in direkte Aussagen zum Einfluss betrachteter
Faktoren übersetzt werden. Die Erforschung des Einflusses des Filamentdurchmessers wird
zudem von Experimenten von Guillaume Witz in der Gruppe von Prof. Giovanni Dietler,
EPFL Lausanne, begleitet. So kann gezeigt werden, dass die Topologie eines Ringes im
Wechselspiel zwischen elastischen und entropischen Kräften zu sehr unterschiedlichen For-
men führt. Wenn elastische Kräfte dominieren, wird gezeigt, dass drei-dimensionale Ringe
planar und elliptisch sind. Erst wenn entropische Kräfte die Polymerstruktur beherrschen,
entstehen geknäuelte Zigarrenformen. In sphärischem Confinement der Größenordnung des
Polymers hingegen führt die längliche Ausdehnung elastisch dominierter Polymerringe zu
Euler-Knicken, entropischere Polymere verdrillen sich, wenn ihre Länge beschränkt ist. Ein
größerer Filamentdurchmesser wiederum bewirkt, dass Polymerringe letztendlich sphäri-
scher werden.

Auf der makroskopischen Ebene von Zellverbänden ist Strukturierung ein wichtiger Pro-
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zess in der Entwicklung von Organismen. Zum einen zeigt sich dies in der Anordnung der
Zellen zueinander zum anderen in der Differenzierung einiger Zellen eines Gewebes zu spe-
zialisierteren Aufgaben. Die Entwicklung von Pflanzen wird hierbei durch den Nichtgleich-
gewichtsprozess des gerichteten Transports des Pflanzenhormons Auxin geprägt, welches
die besondere Eigenschaft hat, dass es seine Richtung selbst durch eine Rückkopplung auf
seine Effluxproteine bestimmt. Die Arbeit betrachtet in diesem Zusammenhang die Ader-
bildung in Blättern. Mit einer detaillierten Untersuchung der nichtlinearen Dynamik von
Auxin und seinem Effluxprotein wird der Strukturbildungsmechanismus identifiziert, der
es ermöglicht die Funktion der konstituierenden mikroskopischen Prozesse zu ermitteln.
Analytische Berechnungen ergeben zudem die Abhängigkeit makroskopischer Observablen
von der internen Dynamik. Deren Parameter werden somit messbar, ein wichtiger Aspekt
für viele Strukturbildungsprozesse in Pflanzen.

Die Gesetzmäßigkeiten der geometrischen Struktur von Zellgewebe wird für kleine Zell-
verbände auf lithographischen beschränkten Oberflächen in Zusammenarbeit mit Experi-
menten von Alicia Piera Aberola und Anna-Kristina Marel in der Gruppe von Prof. Joachim
O. Rädler, LMU München, untersucht. Die beobachteten Verteilungen der Zellgeometri-
en für zwei bis vier Zellen eröffnen neue Einblicke in die mechanischen Eigenschaften von
Zellen. So zeigen wir, dass über die adhesiven Kräften zwischen Zellen und den kontrak-
tilen Kräften innerhalb jeder einzelnen Zelle hinaus auch Kräfte, die der Zellanisotropie
engegenwirken, den Gleichgewichtszustand von Zellverbänden bestimmen.

Zusammenfassend zeigt die Arbeit wie aus einfachen physikalischen Kräften und der Rolle
der Rückkopplung Form und Struktur in biologischen Systemen entstehen, sowohl inner-
halb einer Zelle wie auch auf der Ebene von Zellverbänden. Diese Erkenntnisse sollen in
Zukunft angewandt werden, um die Dynamik und Struktur innerhalb von wachsenden
Zellgeweben zu untersuchen. Somit könnte dann von den physikalischen Kräften und der
Rückkopplung auf der Zellebene auf die äußere Form von Geweben, Organen und Orga-
nismen geschlossen werden.

Die vorliegende Arbeit gliedert sich in drei Kapitel. Das erste Kapitel leitet in die Thema-
tik der Arbeit ein und stellt verschiedene Form- und Strukturbildungsprozesse und deren
grundlegende Prinzipien vor. Kapitel zwei befasst sich dann mit der Form von mikrosko-
pischen, biologischen Bausteinen, den Biopolymerringen, unter unterschiedlichen inneren
und äußeren Faktoren. In Kapitel drei werden dann Untersuchungen zur Struktur in Zell-
verbänden vorgestellt. Zum einen wird ergründet welche Prinzipien zur Aderstrukturierung
in Blättern führen, zum anderen welche Gesetzmäßigkeiten die Anordnung von Zellen in
Geweben beschreiben.



Abstract

Specific form and structure provide functionality to biological elements, microscopically
inside single cells as well as macroscopically within cell tissues. The combination of these
elements then results in the outward appearance of biological organisms. The causes for
the shape of these building blocks of life are manifold. On the one hand there are equi-
librium states arising from the balance of for example elastic or/and entropic forces. On
the other hand many structures develop by the continuous dissipation of energy in non-
equilibrium. In the latter case biological systems often increase complexity by a feedback
between constituting components resulting in diverse patterns.
This work is concerned with both types of structuring. Equilibrium states are investigated
in the context of semiflexible biopolymers and cell packing geometries; non-equilibrium
patterning is considered during the shaping of plants by their hormone auxin.

Biopolymers are important for the organization and functionality of cells. Prominent
examples are the DNA as the carrier of the genetic code and the cytoskeletal filaments
building the scaffold of the cell. To investigate the form of these biopolymers, this thesis
investigates equilibrium polymer conformations depending on internal characteristics like
flexibility, topology and filament diameter and external constraints such as confinement.
These aspects are reoccurring themes in biological processes and form the basic principles
for biomimetic applications in nanosystems. This work investigates polymer shape with
Monte Carlo simulations which are substantiated by analytic arguments to transfer the
influence of the considered factors into simple principles. Investigations of the impact of
filament diameter are accompanied by experiments of DNA rings by Guillaume Witz in the
group of Prof. Giovanni Dietler, EPFL Lausanne. Thus, it is shown that the topology of a
ring yields a broad variety of shapes during the competition of elastic and entropic forces
acting on semiflexible polymers. When elastic forces dominate, it is shown that the shape
of three-dimensional polymer rings is in fact planar and elliptic. Only when entropic forces
control polymer configurations, do crumpled, cigar-like conformations in three dimensions
arise. In spherical confinement of the order of polymer size the elongated form of polymer
rings dominated by elastic forces induces Euler buckling. More entropic polymers are found
to writhe in order to store their length in confined spaces. An increasing filament diameter
is shown to effectively stiffen the polymer leading to more spherical polymer shapes.

On the macroscopic level of cell tissues structuring is an important process during the
development of organisms. Structuring proceeds by arranging cells relative to each other
and by cell differentiation to specified functionality. In this aspect the development of



xii Abstract

plants is ruled by the non-equilibrium process of the directed transport of the plant hormone
auxin. This hormone shows the distinct characteristic to not only exhibit but also induce
the direction of its oriented transport by feedback on its efflux proteins. This feedback
governed structuring mechanism is studied in this work concerning vein initiation. A
detailed analysis of the non-linear dynamics of auxin and its efflux protein identifies the
structuring mechanism and thereby enables to characterize the role of each microscopic
process. Analytic calculations predict the dependence of macroscopic observable on the
underlying dynamics. Thus microscopic parameters become measurable, an important
aspect for many developmental processes in plants.
The governing principles of geometric arrangements within cell tissue are studied for small
groups of cells on lithographically patterned surfaces in collaboration with experiments by
Alicia Piera Aberola and Anna-Kristina Marel in the group of Prof. Joachim O. Rädler,
LMU Munich. The observed distributions of cell geometries for two to four cells open new
insights into cell tissue mechanics. Beyond the contractile forces within each single cell and
adhesive forces between cells we find that also forces counteracting cell shape anisotropy
are important in determining the force balance states.

Summarizing, this work shows how simple laws of physics and the role of biological feedback
give rise to form and structure in biological systems, both within individual cells and on
the level of cell tissues. Future investigations based on these insights will concern the
dynamics and structure within growing cell tissues. Such studies might be able to map the
laws of physics and biological feedback mechanisms on the outward form of tissues, organs
and organisms.

The present thesis is organized in three chapters. The first chapter familiarizes the topic of
the thesis and introduces the principles of a range of processes that govern form and pattern
formation. Chapter two then addresses the shape of microscopic biological building blocks,
biopolymer rings, under the influence of different internal and external factors. Chapter
three illustrates studies concerning structure formation in cell tissue. On the one hand
the principles of vein initiation are discussed, on the other hand the governing laws of cell
arrangements are investigated.



1 Shapes and structures

Our world displays a huge diversity of shapes and structures, continuously developing new
ones. Non-living matter keeps surprising us, for instance, with the ordered structures in
crystals and the marvelous variety of snow flakes. In the biological world we find nu-
merous functionally well constructed entities such as proteins and protein assemblies that
constitute whole organisms. Animals and plants again amaze us with their orchestrated
development, their beautifully arranged structures, their sometimes even colorful patterns.
All these phenomena emerge initially from the fundamental laws of physics. Hence, the
conformation of a protein merely depends on electrostatic and entropic forces. By build-
ing covalent and non-covalent bonds a protein folds into its designated form. And still
we discern biological systems from non-living matter. The utter difference between the
shapes and structures in living and non-living matter lies not in how they employ the basic
laws of physics, these are ultimately fixed. The difference is that biological systems re-
produce themselves and evolved over numbers and numbers of generations. Living matter
adapted to its environment and still is constantly optimizing to adapt even better. This
optimization is encoded in the multiple layers of feedback emerging at the utmost level
between chemical signals and the action of proteins. Feedback serves to couple otherwise
unrelated factors and to increase or diminish their effect, thereby regulating even large
scale patterns. Hence, to understand shapes and structures arising in biological systems
two elements are important to study. On the one hand the laws of physics involved in the
structuring processes, on the other hand the role and type of feedback regulating patterns.

As the kinds of shapes and structures and their origin varies largely throughout our world,
there exists a long history of results and conjectures and an even more tremendous amount
of open questions. This introduction may only give a flavor of the multitude of forms
and structures that arise due to the principles of physics and the elaborate feedback rules
present in biological systems.
Most generally we may distinguish shapes and structures as equilibrium states and non-
equilibrium systems that are driven by a continuous dissipation of energy. Equilibrium
governs to large extent the form of the basic entities that build biological matter and its
functionality. As such the shape of a protein or a polymer as a concatenated chain of
proteins is itself an equilibrium property. However, if energy dissipation is added, more
elaborate structures may arise. Cytoskeletal polymers, for example, organize into asters or
vortices if molecular motors drive them [132]. Most more complex biological shapes and
structures arise in non-equilibrium systems organized by a network of feedback interactions.
Their constituting building blocks are often formed by equilibrium properties only.



2 Shapes and structures

Figure 1.1: Shapes representing equilibrium states. (A) Atomic force microscopy scan of plasmid
DNA pBR322 (2000nm length). The molecule� s shapes are governed by its elastic
bending sti�ness and the entropic forces arising due to thermal �uctuations. Cour-
tesy of G. Witz, EPFL Lausanne. (B) Amphiphilic molecules assemble into various
structures solely depending on their molecular geometry and concentration (modi�ed
from Wikipedia).

Equilibrium shapes

In equilibrium the governing forces have elastic, electrostatic or entropic origin. The dom-
inant shape of a system arises from the minimization of the free energy. For example the
microscopic structure of a crystal is determined by the electronic properties of its consti-
tuting atoms and hence the physics of electrostatic forces. Similarly the basic building
blocks of biological matter are governed by electrostatic interactions, which, for example,
lead to the folding of proteins by establishing covalent and non-covalent bonds. Some-
times the free energy landscape of a protein is so rough that thermal �uctuations are too
weak to guide the protein into its absolute minimal free energy in limited time. In such
cases the designated structure of proteins is achieved by help of folding enzymes, so called
chaperons [1].

The queen molecule of living matter, the DesoxyriboNucleic Acid (DNA), has microscopi-
cally a well de�ned free energy ground state. Covalent bonds between bases that are aligned
along a sugar phosphate backbone yield DNA� s double helical structure. This double helix
is in fact a strand-like molecule that is often built to become a very long �lament which
then again may coil up into interesting shapes, see for example Fig. 1.1 (A). At this larger
scale the conformation of the DNA �lament is controlled by entropic forces arising from
thermal �uctuations and elastic forces resulting from the steric hindrance against bending
along the strand. Notable de�ections of the helix occur only on a certain length scale of the



Shapes and structures 3

filament. Elastic forces dominate on short length scales, where the DNA behaves like an
elastic rod. Entropic forces only exceed elastic forces on long length scales turning DNA’s
shape to look similar to a random walk trajectory. The broad length scales in between
these two limits are dominated by an interplay of both forces. This turns the dominant
shape let alone the distribution of conformations inaccessible to straight forward reasoning
albeit its importance for biological processes.

Likewise the undulations of lipid bilayers which establish the numerous membranes within
and around a cell are governed by elastic bending forces and entropic forces [25, 56, 88]. The
building blocks of lipid membranes are amphiphilic molecules consisting of a hydrophilic
polar head group and a hydrophobic non-polar tail. In water, amphiphilic molecules tend to
assemble into structures where only the hydrophilic heads are exposed to water molecules
shielding the hydrophobic tails. The form of the resulting aggregate depends on the molec-
ular geometry of the amphiphile namely the head volume and tail length and volume [94].
The multitude of electrostatic, entropic and steric forces generates micelles, cylinders, vesi-
cles and the prominent bilayers, as shown in Fig. 1.1 (B). Already vesicles, closed surfaces
of bilayers encompassing water solvent, display an almost infinite variety of shapes ranging
from prolate or oblate to dumbbell-like or pear shaped, see Ref. [176] for review. The dif-
ferent states of amphiphilic molecules are of ubiquitous application in in vitro experiments
serving as supporting bilayer [118] or as envelopes to encapsulate molecules [115].

Amphiphiles are also the main molecules for the development of foams. Heuristically
speaking a foam is an aggregation of “inverted” vesicles that enclose air. In a foam the
hydrophobic tails of the amphiphiles are in contact with a droplet of air, while the hy-
drophilic heads of neighboring “inverted vesicles” caress the thin water film between them
building the lamella. The shape of single soap bubbles is dominated by the surface tension
within the liquid film. The surface tension causes the bubble to minimize its surface while
keeping its total volume of air fixed, hence, generating a spherical object [149, 201]. Due
to the gravitationally induced flow of liquid within the lamella the liquid film is thinned
at the top, ultimately leading to the rupture of the bubble. Hence, a foam bubble is only
metastable. It is, however, inspiring to note that the geometry of bubbles in a foam can
solely be described by minimizing the energy composed of surface tension, given the con-
straint of fixed bubble volume. Thus, elastic tension alone characterizes the arrangement
of individual soap bubbles within foams, see examples in Fig. 1.2 (A). Entropic forces only
play a minor role concerning aggregates of this size.

Also the geometric arrangement of cells within epithelial tissue at an instant in develop-
mental time is successfully described as a minimal elastic energy structure. The often two
dimensional epithelial tissues dominate the anatomy of “higher” animals as they typically
build the boundaries of compartments. Furthermore, epithelia are the first specialized tis-
sue forming during the embryogenesis of metazoa, indicating the importance of this tissue
type in development [40]. The models that describe epithelial cell geometry are inspired
by foam structure descriptions, e.g., Fig. 1.2 (A). Foam bubbles may, in fact, organize into
deceivable similar arrangements. However, the mechanics that govern epithelial cells are
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Figure 1.2: Shapes representing equilibrium states. (A) Soap bubble arrangements minimizing
the overall surface area while keeping the total enclosed volume �xed. (B) Very similar
in appearance the cell packing of photoreceptor cells in Drosophila eye, ommatidia.
Cell cortex contractility and cell-cell adhesion explain the observed cell arrangements
in this case [89, 98]. Reprinted by permission from Macmillan Publishers Ltd.: Nature
[85], copyright 2004.

di�erent [85, 89, 98]. In addition to an elastic bulk modulus two opposing forces drive
tissue geometry and topology: The adhesion between cells mediated by cadherin proteins
which favors cell-cell contact and the cell cortex contractility arising from the cytoskeleton
diminishing cell perimeter. These mechanics account for cell packing in Drosophila wing
disk [59]. Furthermore, variations in adhesion by modulated cadherin expression lies at
the origin of the cell geometry of the photoreceptor cells that constitute the Drosophila
eye, the ommatidia [85, 89, 98], reprinted in Fig. 1.2 (B). Additional, alterations in cell
cortex contractility govern germ-band elongation in Drosophila [13, 111, 153]. Hence, in
a tissue of immobile cells with given topology, the geometry or slight changes in topology
can be predicted on the basis of minimizing the elastic energy. However, the true biology
lies in how the tissue grew to this arrangement and how di�erential cell cortex contrac-
tility of adhesion is patterned within the tissue. Patterning and growth itself are truly
non-equilibrium processes that involve the huge network of feedback interactions.

Non-equilibrium shapes and structures

Non-equilibrium processes may generate both purely non-living structures and biological
patterns. For example the marvelous snow �akes grow purely due to physical forces oc-
curring during the solidi�cation of water molecules into ice. A beautiful example is shown
in Fig. 1.3 (A). Starting from a small seed, growth of a snow �ake is entirely governed
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Figure 1.3: Forms and structures arising out of non-equilibrium systems. (A) The snow �ake� s
form is governed by the transport of heat that is generated during the phase tran-
sition from liquid/vapor to ice. Photograph of the late Wilson A. Bentley. (B)
This scanning electron microscope image of Nicotiana alata upper leaf surface shows
the dotted pattern of hairs, trichomes. Protein interaction measurements suggest a
Turing patterning to lie at its origin [93, 145]. Source: Wikipedia.

by external conditions and the structure of water molecules giving rise to the hexagonal
symmetry of snow �akes [107]. During the phase transition from vapor/�uid to solid state
a certain amount of latent heat is generated that has to be dissipated. Dendrites emerge
as an increasing surface enhances heat transport. Experiments on the growth of arti�cial
snow �akes showed that the growth velocity, the shape of the front most tip and the spac-
ing between side branches depends only on the degree of undercooling of the solidifying
medium [108]. Hence, the growth of snow �akes only depends on the local heat dissipation,
there is no rule for emerging shapes and no control mechanism that supervises the growth
of certain forms.

Development, however, relies on reproducible outcomes. Therefore, formation of macroscale
structures and shapes in biology utilizes a whole network of regulatory interactions and
feedbacks [74]. Regulatory interactions between proteins and signaling molecules can take
place in various scenarios, involving di�erent time scales. Long time scales are involved
when a signal induces the up-regulation (activation) or down-regulation (inhibition) of the
expression of a speci�c gene. As a result, a lot more or a lot less molecules of a certain
protein may be synthesized. More directly a signal can also prevent protein folding, block
functional sites of proteins or interfere with further protein activity, for example its mobil-
ity. More indirect signals may also activate or inhibit transmembrane channels and increase
or decrease in this way molecule concentrations. Often, several pathways are employed to
reach a given output for a certain input in order to increase robustness and reliability.
Feedback takes place when a signaling molecule after a cascade of intermediate events
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amplifies (positive feedback) or diminishes (negative feedback) its own concentration. Es-
pecially the multitude of feedbacks increases the robustness of an outcome against fluctu-
ations in molecule concentrations. Feedback also lies at the basis of spatial structuring,
the pattern formation that determines different cell fates for initially almost identical cells
during development.

The seminal work of Turing [196] influenced the investigation of developmental patterns
tremendously. He described a feedback mechanism which is able to predict spatial patterns
of dots and stripes. Extensions of his work account for patterns observed in animal fur
coats [129] and sea shells [122].
The model is based on two interacting substances; an activator molecule and an inhibitor
molecule. The activator auto-activates (positive feedback) its own production and also
increases the amount of the inhibitor. Thus, a site of high activator concentration is also
a site of both activator and inhibitor production. The inhibitor on the other hand reduces
the amount of activator (negative feedback). The key factor now is that the inhibitor
diffuses a lot faster than the activator, which may even be immobile. Thereby, the amount
of activator is reduced only on long ranges, remaining high at the site of local production
and a pattern is generated.
Despite its powerful predictions research could only in a few systems identify activator and
inhibitor molecules generating so-called Turing patterns. One presumable system is the
dotted patterning of hair cells, trichomes, in plant leaves, precisely in the rosette leaves of
the plant model organism Arabidopsis [146]. For reference, a trichome pattern is shown
in Fig. 1.3 (B). Analysis of trichome patterning genes reveals groups of proteins that take
the role of either an activator or an inhibitor in the feedback system. The difficulty in
realizing and identifying Turing patterns lies usually in the requirement of two different
scales of diffusion constants. Trichome patterns may arise due to a Turing mechanism
as the activator is immobile and the inhibitor seems to be mobile [93, 145], alternative
explanations, however, involve the depletion of the activator [48].

In plant development the universal trigger is the differential concentration of the hormone
auxin. From the very beginning of plant development when auxin concentration induces
the shoot-root orientation, auxin is part of almost every developmental process [66, 147].
The circulation of auxin, for example, patterns the helical ordering of leaves around the
stem (phyllotaxis) and vein structures within leaves, see Fig. 1.4. The peculiarity about
auxin is that it is transported throughout plants in a directed manner by help of polarly
distributed proteins from the PIN family. The polar distribution of the PIN proteins
within the cell membrane itself underlies the control of auxin. Hence, auxin induces via
feedback its own orientation of transport. The true nature of this feedback is, however,
under debate [182].

Although research is progressing fast there is still a tremendous amount of shapes and
structures whose origin needs investigation. Especially questioning how shapes arise in
biological systems only started to advance based on the recent discoveries in molecular
biology and developmental biology. The study of shapes and structures requires, first of
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Figure 1.4: Forms and structures arising out of non-equilibrium systems. (A) Helical ordering of
plant organs beautifully shown by romanesco broccoli is initiated by the accumulation
of the plant hormone auxin at their sites of initiation along the plant stem. (B) Vein
patterns in plant leaves represented here are initiated by the directed �ow of the
hormone auxin. Auxin itself feeds back onto its own transport, hence, governing the
direction of its own �ow. Source: Wikipedia.

all, the governing laws of physics and in many biological systems also a deep understanding
of the ruling feedback relations. The present work investigates both aspects in two di�erent
settings as outlined in the following.

The �rst part concerns the shape of small biological building blocks, the conformations of
biopolymers. Their form is an equilibrium state entirely controlled by the laws of physics,
mainly the competition of elastic and entropic forces. We build an intuitive understanding
of polymer shapes by translating observations from Monte Carlo simulations into heuristic
and analytic arguments. The form of a biopolymer is especially multi-faceted as they occur
in various di�erent environments. We re�ect this by investigating biopolymer shape not
only in free three dimensional space but also under spherical con�nement. The e�ect of
changing �lament diameter on polymer con�gurations is studied in the abstract scenario of
two dimensional polymers. A setting which is also amenable to experimental investigation
and therefore enables direct comparison between theoretical predictions and observations.

The second part investigates mechanisms of developmental processes giving rise to mul-
ticellular form and structure. Here, both aspects, physical laws that govern equilibrium
form and biological feedback that structures cellular identity are considered. On the one
hand, we analyze long-term cell geometries in �nite size tissues as equilibrium state, aris-
ing from the balance of elastic forces generated within and between neighboring cells. On
the other hand, we investigate the biological feedback of the plant hormone auxin and its
e� ux protein PIN during the initiation of veins in plant leaves. To fully grasp the auxin
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dynamics we identify the non-linear mechanism behind and the role of each microscopic
process in an analytically tractable model. Both studies concern ever reoccurring prin-
ciples of development; the growth and rearrangement of cells within tissues and how a
feedback mechanism orchestrates their differentiation. Eventually these principles lead to
the elaborate structure of a fully grown, functional multicellular organism.



2 Shape of semiflexible polymer rings

The shape of biopolymers is governed by the laws of physics. On the small length scales
of biopolymers the impact of thermal fluctuations is very strong. Thereby, a multitude
of conformations emerges from the interplay of energy and entropy giving rise to a broad
landscape of shapes, but also internal factors like topology and filament diameter and
external constraints like confinement strongly govern polymer shapes.

As a polymer’s configuration affects its function, investigations of the shape of biopolymers
are relevant for many biological processes. Considering the most prominent examples of
biopolymers, DNA and cytoskeletal filaments, their shape influences, for example, their
mobility in heterogeneous environment such as the cytoplasm and the depletion forces
between larger complexes mediated by such polymers. Concerning the recent developments
of nano-biotechnological devices [19, 157] aiming at a lab on a chip [36] conformations of
biopolymers become of technical importance. Furthermore, DNA as a carrier of the genetic
code is subjected to an immense activity of proteins that regulate the transcription of genes
by attaching to specific binding sites. This binding site search has recently been shown to
be strongly affected by the polymer’s configuration [197] turning DNA’s shape a matter of
gene regulation.

A biopolymer is successfully modeled as a semiflexible polymer by neglecting its micro-
scopic architecture and describing it as a thermally fluctuating elastic rod. The specific
properties of a biopolymer are subsumed in its elastic bending modulus κ. On which length
scales a polymer bends depends on the cost of bending κ versus the energy provided by
the thermal environment kBT . This ratio is termed persistence length lp = κ/kBT . The
total length of a polymer or more specifically the number of persistence lengths the total
polymer encompasses then determines how many bends are on average observed. This
flexibility L/lp is the main lever to determine the shape of a polymer. The smaller the
flexibility the stiffer the polymer. The larger the flexibility the more coiled is a polymer’s
configuration. For polymer rings we discern three different approximate regimes of flexi-
bilities, stiff L/lp < 5, semiflexible 5 < L/lp < 10, flexible L/lp > 10 [2]. Being successfully
described as a thermally fluctuating elastic rod the shape of biopolymers is a truly physical
question of statistics. Then again, even biopolymers are evolutionary optimized biological
structures, ongoing optimization could concern the length of individual filaments regarding
their specific requirements.

We study how the shape of semiflexible polymer rings is governed by inherent factors such
as flexibility L/lp and filament diameter and external constraints like confinement. Es-
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pecially the topological constraint of a ring, ubiquitously occurring in biological systems
as introduced in the following, results in astonishingly rich polymer configurations. It is
the aim of our work to give an intuitive understanding of polymer shapes by rationaliz-
ing conformations observed within Monte Carlo Simulations with straightforward analytic
arguments. Concerning the effect of filament diameter on polymer ring shape our results
are substantiated with experimental data for DNA rings on mica surface from the Dietler
group at the EPFL Lausanne.

2.1 Biopolymers

Filamentous structures are a ubiquitous entity of a functional biological organism. Most
prominent examples of such long thin biopolymers are the carrier of our genetic code, DNA,
and the elastic scaffold of each cell, the cytoskeletal filaments. Apart from the original
definition of a polymer as a concatenated chain of many (πoλυ, poly) identical building
blocks (µερoς, meros) the microscopic structure of biopolymers may be more subtle, see
for illustration Fig. 2.1.

DNA consists of two strands of helically intertwined sugar phosphate backbones each carry-
ing the bases adenine, thymine, guanine and cytosine that encode the genetic information,
Fig. 2.1 (A). The famous base-pairing between those bases binds the two strands into a
stable helix of about d = 2.4nm in diameter [165]. The length scales on which the helical
chain bends, the persistence length, is about lp ≈ 50nm [23].
The main purpose of DNA is to store the genetic information and make it accessible for
readout by enzymes. To fulfill this role the very long DNA of eukaryotes is folded by pack-
ing proteins such as nucleosomes into higher structures. On the other hand, there exists
a huge amount of very short DNA such as viral DNA and plasmids, small supplemental
pieces of genetic information, that may be transferred between individuals. These short
nucleotide strands often occur in the topologically constrained state of a ring, presented
in Fig. 2.2 (A). Especially the short DNA strands often experience confinement in viral or
bacterial envelopes [1] or nanoscale devices that aim to analyze DNA properties [19, 185].
In recent years DNA has been discovered as a building block to generate designed lattices
[204] and compounds [31]. Here the exploration of new bio-nanomaterials is including more
and more physical properties of DNA beyond its base-pairing mechanism.

The cell’s cytoskeleton comprises three different types of biopolymers; actin and interme-
diate filaments as well as microtubules. The most flexible of all are actin filaments, which
are built by intertwined protein chains to a mere thickness of d = 7nm exhibiting a per-
sistence length of lp = 17µm [75, 110], Fig. 2.1 (B). Intermediate filaments are a bundle
of eight protein strands so called protofilaments in total about d = 10nm in diameter
with a persistence length of lp = 2µm [21]. Microtubules on the other hand are hollow
cylinders composed of circularly arranged tubulin protofilaments about d = 25nm wide,
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Figure 2.1: Schematic drawing of the microscopic structure of (A) DNA, (B) an actin filament and
(C) a microtubule. All these biopolymers show bending on different orders of length
scales as their persistence length varies from lp = 50nm for DNA, via lp = 17µm for
actin filaments to about lp = 6mm for microtubules. All filaments occur on broad
filament length L scales, such that the flexibility L/lp changes for each polymer over
orders of magnitude.

Fig. 2.1 (C). Their persistence length is usually cited with lp = 6mm [54, 75] but it is in
fact dependent on the microtubule’s total length decreasing down to lp = 0.1mm for very
short molecules [143].
Together these biopolymers are the main constituents of a cell’s cytoskeleton, which es-
tablishes and maintains the shape of a cell, takes an active part in cell motion and cell
division and also serves as the scaffold for intracellular transport. The prominent state
of the cytoskeletal filaments is one where they are interwoven and connected to build an
active elastic network. Beyond this multi-filament state the role of single cytoskeletal fil-
aments on their own may be very distinguished. For example the conformation of single
microtubules are pronounced in the chromosome sorting during mitosis. Furthermore, in
red blood cells, erythrocytes, of birds and reptiles a single microtubule bundle forms into a
ring [116], see Fig. 2.2 (C). Beyond their role in biological processes cytoskeletal filaments
are often studied in in vitro experiments to learn about their behavior in flow [175] and
their polyelectrolyte nature [192]. Prominently, actin forms rings either due to counter-
ions [171, 193] or with help of cross-linking proteins [33], shown in Fig. 2.2 (B). Therefore,
actin is a versatile polymer which aspires to be a frequent molecule in the study of bio-
nanomaterials and biomimetic devices. Here again the effect of confinement is eminent.
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Figure 2.2: Many biopolymers occur in the topological constrained conformation of a ring. The
shown examples are (A) DNA rings of di�erent total length (80nm and 2000nm) in
an atomic force microscopy image. Courtesy of G. Witz, EPFL Lausanne, and (B)
actin �laments which assembled within an emulsion droplet build of phospholipids by
addition of actin linker proteins. Scale bar 10 µ m. Courtesy of M.M.A.E. Claessens,
University of Twente. (C) The last example shows microtubule bundle rings within
bird erythrocytes [116], reprinted with permission of John Wiley & Sons, Inc., scale
bar 10µ m.

Although all introduced biopolymers di�er fundamentally in their microscopic structure
their conformations on the scale of their persistence length or larger can to large extent be
described by just a single parameter: their �exibility, the ratio of total length to persistence
length. Furthermore, both DNA and cytoskeletal �laments have the capacity to occur on
hugely varying scales of length turning the �exibility to change over broad ranges. As char-
acteristic conformations strongly depend on �exibility the study of polymer con�gurations
is a fascinating endeavor both by theoretical considerations and experimental imaging.

2.2 Exploring con�gurations of biopolymers

The imaging of biopolymers had its �rst climax with the decryption of DNA� s microscopic
structure by Watson and Crick [200] based on X-ray data by Franklin. Afterwards X-ray
di�raction was further employed to study the conformation of DNA polymers under strong
con�nement in viral capsids [53]. This e�ort was supported by electron microscopy [29,
113], which led to the observation of highly ordered polymer alignment as the nucleotides
approach optimal packing.

The drawback of electron microscopy is, however, that samples have to be dehydrated.
Biological specimen are therefore deprived of their natural condition and ranges of poly-
mer con�gurations arising due to thermal activation cannot be quantitatively imaged. The
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Figure 2.3: Experimental measurements of polymer shapes employing DNA. In both cases the
biopolymer is con�ned to two dimensions such that it may still �uctuate within the
plane and, hence, obey true two dimensional statistics. (A) Long linear DNA on �uid
cationic supported membrane establishing the shape of �exible polymers, reprinted
with permission from [119]. Copyright 2001 American Chemical Society. Scale bar
10µ m. (B) Circular DNA on mica surface, reproduced from [206]. Copyright (2008)
by The American Physical Society. As the DNA rings are prepared to be of di�erent
length the shape along the full regime of �exibilities from sti� to �exible (a-d) can
be studied [51]. Scales (a) 350nm, (b) 2µ m, (c) 3µ m and (d) 2.5µ m.

better alternative is optical imaging, which is limited in resolution but can be improved
by successful image analysis [20] especially since the invention of �uorescent marker GFP
[30, 86, 178]. Optical microscopy has been successfully employed to determine the persis-
tence length of the relatively sti�cytoskeletal actin �laments and microtubules by tracking
polymer con�gurations and comparing them to the semi�exible polymer model wormlike
chain [75]. Avoiding the yet erroneous tracking of �laments persistence length measure-
ment were also performed by observing the �uctuations of the end-to-end distance of a
polymer attached to a wall [110, 143].

A remaining problem is, however, that imaging is only two-dimensional. The shape ob-
served is hence only the two dimensional projection of a three dimensional object [19, 81].
Three dimensional scans are in principle possible but �uctuations take usually place on
timescales faster than scan velocity. Undesirable projections into two dimensions can be
prevented by preparing polymers that are truly �uctuating in a plane as achieved for DNA
on �uid supported bilayers by Maier and R¨adler [118], shown in Fig. 2.3. With this setup
�rst shape measurements were obtained [119] in accordance with theoretical predictions
for �exible polymers [7]. Due to the limit in optical resolution only very long and, hence,
very �exible DNA could be observed.
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Higher resolution of biopolymer configurations is generally possible with atomic force mi-
croscopy scans. In this experimental setup the challenge is to attach the object tightly
to a surface but still allow relaxation dynamics on the plane to observe polymers in two
dimensions. A successful implementation has been achieved for DNA on mica surfaces
[159]. Because of the fine resolution now also short DNA strands could be observed in
their semiflexible regime, enabling the characterization of small DNA rings in two dimen-
sions [206], see Fig. 2.3 (B). In collaboration with Guillaume Witz and Giovanni Dietler
from the EPFL Lausanne we analyzed the shape of small DNA rings both theoretically
and by experiment to find a distortion in shape due to an effective stiffening by the finite
diameter of DNA [51].

For optical microscopy actin filaments are a popular object not only because of their impor-
tant role in cell cytoskeleton. The persistence length of actin filaments is more than three
hundred fold larger than the one of DNA and, hence, semiflexible properties are important
on much larger polymer length turning optical resolution sufficiently high. Here, recent ex-
periments involve single actin polymer conformations in an entangled network established
by fellow actin filaments [161] and actin confined to nano-channels [99]. Especially the
study of actin polymers in confined geometries contributes to the highly active research
field on biomimetic devices. The configuration of actin condensates most prominently into
actin rings [33, 34, 109, 115, 171, 193] is also energetically investigated with respect to the
development of new bio-nanomaterials.

Recent experiments also indicate an important role for polymer shape during genetic pro-
cesses [197]. While a protein tries to locate its specific target along the DNA, it slides
in one-dimensional diffusion along the polymer interspersed by dissociation/association
events into the three dimensional surrounding volume [12]. When dissociated the protein
can diffuse long distances in the three dimensional volume or significantly speed up its
target search by hopping just a short distance along the DNA contour or jumping to a
spatially close, but along the polymer’s contour distant, DNA segment. Especially for
those intrasegmental jumps the study of polymer shapes may give promising insights.

2.3 Semiflexible polymer model

The study of single biopolymers is one of the blessed topics in the field of biological systems
where theoretical models and experimental observations do result in exact matching. An
example shown in this work is the measurement of the shape of small DNA circles on
mica surfaces in collaboration with the Dietler Group at EPFL Lausanne [51]. Surely, also
models for biopolymers employ rigorous abstractions of the real microscopic constituents.
The key is to choose the level of abstraction appropriate for the question to answer.

For flexible biopolymers which are very long with respect to their persistence length the
polymer’s stiffness against bending can be neglected and a simple random walk may ex-
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plain the observed conformations. However, in many biological or in vitro settings this
assumption is not true and a model for semiflexible polymers such as the wormlike chain
model is desired. The wormlike chain model describes a polymer as a infinitely thin slen-
der, elastic rod whose space curve r(s) is parametrized by an arc length s ∈ [0, L]. The
elastic energy of the rod increases proportional to its elastic bending modulus κ with the
total curvature, measured by the derivative of the tangent of the rod t = ∂r(s)/∂s [106].

E =
κ

2

∫ L

0

ds

(
∂t(s)

∂s

)2

. (2.1)

The energy required to fulfill bending is supplied by the thermal environment kBT and
depends on the actual temperature. At zero temperature no bending is possible at all, at
higher temperature, the length scale on which bending becomes possible is just the persis-
tence length defined by lp = κ/kBT . The notion that biopolymers are hardly extensible is
respected by setting the magnitude of the tangent vector equal one |t(s)| = 1.

The wormlike chain model is to some extent amenable to analytic calculations. For open
polymer chains besides the trivial results for the mean radius, higher moments of the end-
to-end distance [170], the pair correlation function [6] and the radial distribution function
[39, 203] are resolved. Analytical results for polymer rings are much more scarce, e.g.,
analytical results for the mean square diameter as a measure of size only exist in the very
flexible limit [209] and the very stiff limit [2].

Dating back to Kratky and Porod [102] the original notation of the wormlike chain model
is in its discrete version, where the curved rod is build of N segments of length `, L = N`.

E = kBT N
lp
L

N∑

i=1

(1− titi+1). (2.2)

This is also the formulation that is exploited in our Monte Carlo simulations where a
semiflexible polymer ring is discretized into a polygon.

On a closer level of abstraction it can also be desirable to consider an elastic rod with
asymmetric bending stiffnesses a1, a2 and torsional stiffness a3. Although more demanding
both in simulations and analytical treatment, such ribbon models might need to be con-
sidered when the helical structure of DNA or actin becomes important. The elastic energy
of a ribbon is analogously defined

E =
kBT

2

∫ L

0

ds
(
a1ω

2
1 + a2ω

2
2 + cω2

3

)
, (2.3)

where ωi, i = 1, 2, 3 denote the respective curvature or helical deformation density as
assigned by the generalized Frenet equations, dt/ds = ω × ti, i = 1, 2, 3. and {t1, t2, t3}
denote the local body coordinate system of the ribbon. Such ribbon models have been
under consideration in earlier work of us [2].
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On an even closer step of abstraction the filament diameter of real polymers is respected
by introducing the notion of excluded volume [63]. While the pure wormlike chain model,
a so called phantom polymer model, allows polymer segments to overlap, the concept of
excluded volume introduces a finite shell around each segment of a polymer whose volume is
impenetrable for any other segment. This excluded volume forces polymer chain segments
to be further apart resulting in an overall swelling of the polymer in size. This work shows
that the growth in size is also accompanied by an anisotropic change in shape [51].

2.4 Quantification of shape

The search for a measure of shape dates back to 1934 when Kuhn [104] realized that
the shape of long flexible polymer coils is overall prolate. Intuition would let us leap to
the conclusion that an object, whose consecutive segment can take any direction with
equal probability, fills a spherically symmetric space. However, this reasoning implies
rotational averaging. And in fact, entropy is maximized for a single trajectory of a polymer
if the number of segments in each direction is inhomogeneous and, hence, not spherically
symmetric.

To capture the inhomogeneity of a polymer’s extent in space initial work was devoted to
measure the average length along each principal axis using simulations [16, 57, 184]. The
spatial dimensions of a single polymer trajectory are measured by the radius of gyration
tensor Q

Qij =
1

L

∫ L

0

ds ri(s)rj(s)−
1

L2

∫ L

0

ds ri(s)

∫ L

0

ds̃ rj(s̃) , (2.4)

whose eigenvalues define the spatial extent. Analytical calculations of shape became pos-
sible when Aronovitz and Nelson [7] and Rudnick and Gaspari [163] defined a measure for
the asymmetric extent in space, the asphericity ∆. This length-independent measure is
defined as the normalized variance of the eigenvalues of the radius of gyration tensor

∆ =
d

d− 1

Tr Q̂2

(TrQ)2
, (2.5)

where Q̂ij = Qij − δijTrQ/d and d denotes the dimension of space. The asphericity takes
values between 0 ≤ ∆ ≤ 1, where ∆ = 0 corresponds to a spherically symmetric object.
For ∆ = 1 the object resembles a rigid rod. Extensive field theoretic renormalization group
methods led to the calculation of the asphericity of open flexible polymers, flexible polymer
rings and flexible star polymers [47, 95, 96]. We employ a perturbation expansion to
extend investigations beyond flexible polymers and determine the asphericity of semiflexible
polymers in [3], see also Appendix A.

In two dimensions a polymer’s form is fully defined by two independent measures; the
intensive quantity asphericity ∆ and the extensive quantity squared radius of gyration R2

g
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as a measure of size. R2
g is defined as the sum of the spatial extent of the principal axes,

R2
g = TrQ. In three dimensions a third intensive quantity is necessary to fully define an

object’s form, the nature of asphericity Σ given by [26]

Σ =
4 Det Q̂

(
2
3
Tr Q̂2

)3/2 . (2.6)

The nature of asphericity specifies the prolateness or oblateness of an object by measuring
the normalized skewness of the eigenvalues of the radius of gyration tensor. Σ is bounded
between −1 ≤ Σ ≤ 1. Σ = −1 is obtained for a fully oblate object such as a disk, while
Σ = 1 is the result for a prolate object as a rigid rod.

In our work we utilize these well-established measures to determine the conformations of
semiflexible biopolymers. The lever that controls such a polymers shape is intrinsically its
flexibility, but also extrinsic factors such as confinement and solvent condition have a huge
impact on biopolymer’s final form.

2.5 Polymer ring conformations

What is the shape of a biopolymer ring? We answer this question by characterizing the
form of polymer rings over the full range of flexibilities from stiff almost rigid ring like
states via semiflexible to flexible conformations. Three different scenarios are considered
to understand the effects of topology, confinement and filament diameter on polymer shape.
First, the conformations of polymers topologically constrained to a ring, fluctuating freely
in three dimensional space, are considered; a work that has been published under the
title “Shapes of semiflexible polymer rings” in Physical Review Letters [3], reprinted in
section 2.7 of this work. Second, we analyze the impact of spherical confinement to the
available states of a ring polymer in the stiff and the semiflexible regime; the results
concerning stiff polymer rings are published under the title “Buckling of stiff polymer rings
in weak spherical confinement” in Physical Review E [140], reprinted in section 2.8, the part
on semiflexible confined polymer rings is published under the title “Confinement induces
conformational transition of semiflexible polymer rings to figure eight form” in Soft Matter
[141], reprinted in section 2.9. At last, we focus on the effect of a finite filament diameter
on ring polymer’s shape by investigating semiflexible polymers on a two-dimensional plane,
published under the title “Excluded volume effects on semiflexible ring polymers” in Nano
Letters [51] and reprinted along with the accompanying supporting information in section
2.10. This last work is accompanied by experimental results of DNA rings on mica surfaces
by the Dietler Group, EPFL Lausanne.
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(A) (B) (C)
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Figure 2.4: Simulation snap shots of polymer ring conformations in the stiff L/lp = 3 (A), semi-
flexible L/lp = 8 (B) and flexible regime L/lp = 13 (C). Starting from a rigid ring
thermal fluctuations first induce a simple bending mode which leads to a planar el-
liptical form. Only at larger flexibilities do polymers crumple up yielding compact,
prolate shapes.

Free polymers

At zero temperature or equivalently zero flexibility defined by L/lp = kBTL/κ = 0 the
conformation of an open polymer is a rigid rod. If one now increases the flexibility by
raising the temperature or the total length of the polymer, a first bending mode can be
excited. The polymer turns into a two dimensional object. Only when higher and higher
bending modes set in the whole polymer crumples up to fill a prolate ellipsoid.

Analogously polymer rings are characterized by their first bending mode in the stiff regime,
which is a planar ellipse. However, the topological constraint of a ring effectively stiffens
the polymer’s behavior relative to the ones of an open polymer chain [2, 171]. Hence,
the planar elliptical shape dominates the polymer’s appearance for large flexibilities until
about L/lp ≈ 5. Only then higher modes set in that finally crumple the polymer up into a
prolate coil-like ellipsoid, considerably later than for linear polymers, which transition at
L/lp ≈ 1. Our detailed study of the polymer’s shape in configuration space substantiates
that in the stiff regime only ellipses are populated whose degree of eccentricities increases
with flexibility. For an illustration of typical polymer configuration observe the simulation
snap shots in Fig. 2.4.

Analyzing the mean asphericity and the mean nature of asphericity the above observations
stemming from density profiles in the configuration space obtained with Monte Carlo sim-
ulations are confirmed by analytical arguments. In the stiff limit the mean amplitude of
the fluctuations 〈a〉 is analytically calculated to grow with the square-root of the flexibil-
ity 〈a〉 ∝ L

√
L/lp [136]. Assuming now an elliptical configuration where the major axis

grows and the minor axis shrinks due to the fluctuations [24, 177] a linear increase of the
mean asphericity and the mean nature of asphericity with flexibility is forecasted. These
predictions are in accordance with our simulation results substantiating the shape of an
ellipse in the extended stiff regime.
While exact results for the mean asphericity of an infinitely flexible polymer ring exist
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Figure 2.5: Simulation snap shots of polymer ring conformations in spherical con�nement in the
sti� L/lp = 3 (A), semi�exible L/lp = 8 (B) and �exible regime L/lp = 13 (C).
The planar ellipse of a free sti� polymer ring cannot be accommodated within the
spherical con�nement. Therefore, the ellipse buckles into the banana-like shape in
(A). In the semi�exible regime the higher bending modes induce a writhing of the
ring to arrange the even more elongated polymer within the con�nement (B). In the
�exible regime the in�uence of the con�nement on polymer con�guration ceases, as
the polymer crumples up in the vicinity of the sphere� s center (C).

[47, 72], we compute that the asphericity of a semi�exible polymer ring approaches its limit
of in�nite �exibility from above by employing a perturbation expansion, see Appendix A.
This result is again in agreement with our numerical data and clari�es numerically limited
previous work [24, 135].
All in all our analytical results con�rm that a polymer ring has the shape of an ellipse for
small �exibilities. As the ellipse� s eccentricity grows with increasing �exibility the polymer
becomes more and more aspherical and prolate until higher modes lead to crumpling which
then decreases the asphericity again slowly.

Spherically con�ned polymers

Con�nement restricts attainable modes of a thermally �uctuating polymer and thereby
alters a polymer� s overall shape. We study polymer rings in weak spherical con�nement
where the radius of the shell is of the same order as the radius of the enclosed polymer ring,
such that an in�nitely sti�rigid ring is just accommodated within the sphere. According
to its �rst bending mode a polymer ring would take an elliptical shape in the sti�regime,
whose major axis would, however, exceed the spatial extension provided by the spherical
con�nement. Therefore, already shallow con�nement induces major changes to the shape
of polymer rings.

Thermal �uctuations excite a sti�polymer ring to bend as much as the provided thermal
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energy versus elastic bending energy permits. Initially, in the competition of entropy
and energy an elliptical shape arises. In the steric confinement of a spherical shell, the
major axis of the ellipse pushes against the rigid walls. The walls compress the ellipse such
that the polymer ellipse buckles into a banana-like shape. The height of the resulting dome
increases as the major axis grows with the square-root of the flexibility until, at high enough
flexibilities, bends on length scales smaller than the curvature of the confining sphere arise,
see Fig. 2.5. The buckling in the stiff limit observed in Monte Carlo Simulations is in
accordance with a scaling argument developed on the basis of an Euler buckling ellipse
[106, 112], where the length of the minor and major axis depend on the flexibility of the
polymer. Taking into account that entropy is maximized if the ellipse’s apices do not lie
on the same equatorial plane our scaling argument explains the observed mean asphericity
and nature of asphericity for all radii of spherical confinement larger or equal to the radius
of the polymer’s corresponding rigid ring.

In the semiflexible regime beyond the stiff range, the lower elastic energy allows bends on
length scales smaller than the radius of the confining sphere. Simultaneously the dominant
elliptical shape has a yet with flexibility increasing major axis. Hence, an even longer object
has to be accommodated within the shell. The semiflexible polymer ring stores this length
by winding up into a figure eight shape, see Fig. 2.5 (B) for a simulation snap shot. This
result follows from the behavior of two observables: The tangent-tangent correlation, which
reflects the relative orientation of polymer segments along the polymer backbone and the
mean winding number, the writhe Wr, which characterizes how much a polymer trajectory
is twined about itself. The mean writhe of confined polymer rings shows a strong increase
in the semiflexible region in comparison to unconfined polymer rings due to additional
polymer configurations centered around a distinct writhe of |Wr| = 0.8. Simultaneously
the tangent-tangent correlation exhibits the characteristics of correlations along a figure
eight. Analysis of the writhe distribution of confined polymer rings at different flexibilities
enables to quantify the percentage of writhed configurations provoked by confinement,
amounting up to over 50%. Only even higher bending modes yield a crumpling of the
whole polymer ring turning the impact of spherical confinement less and less, Fig. 2.5 (C).

Polymers with finite thickness

Up to now polymers have been modeled as infinitely thin space curves. This is a good
approximation as polymer chains almost never get so close in the vast space of three
dimensions that alterations in their conformations occur due to a steric self-hindrance.
However, this space curve approximation fails if polymers are subjected to strong con-
finement or are constrained to two dimensions. Here the finite cross-sectional diameter
d of filaments induces in addition to Flory’s predicted swelling in size [63] an anisotropic
distortion of the polymers shape and an effective stiffening of the polymer. We show this
by comparing a two dimensional phantom polymer ring, where self-crossings are allowed,
to a two dimensional polymer ring with finite diameter. Our simulation results are in
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Figure 2.6: Simulation snap shot of a phantom polymer (A) and a polymer with �nite thickness
(B) on a plane. Phantom polymers bear overlaps and kink-like bending resulting in
smaller more aspherical shapes than polymers with �nite thickness, where e�ective
sti�ening governs the not self-intersecting polymer chain.

good agreement with experimental measurements of circular DNA conformations on mica
surfaces.

Considering a polymer trajectory as a curved tube with cross-sectional diameter d large
de�ections on small length scales are forbidden since self-crossing would result. Hence, the
polymer with �nite diameter is e�ectively sti�er than a phantom polymer. We observe
this e�ective sti�ening by an enhanced correlation in the tangent-tangent correlation and
an extended sti�behavior in the mean size of two dimensional polymer rings.

Due to the �nite diameter polymer segments cannot get as close to each other as for
phantom polymers. Hence, the overall size of a polymer with �nite diameter is larger,
the polymer is swollen. We �nd that this increase in size is asymmetric, the polymer
is distorted in shape due to the increase in cross-sectional diameter. Two dimensional
polymer rings are aspherical, hence, one principal axis is longer than the other much like
in an ellipse. In the apices of the ellipse neighboring segments tend to overlap while in
the convex part segments being separated approximately half the contour length apart are
prone to overlap. The �nite thickness now e�ectively sti�ens the polymer inducing less
bending at the apices and it increases the minor principle axis by pushing segments apart
in the convex region. In total the �nite thickness leads to a more spherical shape.
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2.6 Outlook

Our work builds an intuitive understanding on how internal polymer characteristics such
as flexibility, topology and filament diameter as wells as external confinement constraints
affect the shape of biopolymers. Based on this characterization it is possible to build more
coarse-grained models for more complex biological processes involving several objects. To
investigate for example the depletion forces mediated by polymers in polymer solution
[195, 198] an approximation of polymers by their dominating shape could be a successful
approach. Likewise a coarse-grained description of polymers could be desirable concern-
ing the design of nano-biotechnological devices [19, 157] aiming at a lab on a chip [36].
However, in biomimetic devices polymer properties neglected in our study may become of
dominating importance. As such we neglected the polyelectrolyte character of most poly-
mers in particular DNA. In many biological settings the charges associated with polymers
are screened by positive ions resulting in a neutral state. Net effects of the charges and their
counter ions do, however, occur when electrical fields are applied driving the movement
of a polymer. Additionally, many bio-mimetic devices use pumping of the surrounding
solution to arrange objects by flow turning hydrodynamic forces dominant [22].

In our study of polymer shapes we focused on the equilibrium properties. Besides these
fundamental insights it is desirable to understand the dynamic [78, 82, 110] aspect of
polymer shapes. What is the path taken within the configuration space? Is the polymer
performing a mere random walk or are there certain favored transitions from one state to
another? Concerning the target search problem of proteins along DNA valuable insight
could be obtained from how fast spatial neighbor relations change.
Our scaling arguments in the stiff limit do explain the whole dominant polymer trajectory.
However, beginning from the semiflexible regime onwards the shape parameters mainly
describe the form of an enveloping ellipse. The internal structure is so far merely reflected
in observables such as the writhe and the tangent-tangent correlation. Measures beyond
these would be desirable to understand the internal polymer organization for example by
the surface to bulk ratio of chain segments.
Despite a long tradition polymer science is still rich in challenging question to be answered
to unravel the multitude of processes in biological systems.
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The shape of semiflexible polymer rings is studied over their whole range of flexibility. Investigating
the joint distribution of asphericity and the nature of asphericity as well as their respective averages, we
find two distinct shape regimes depending on the flexibility of the polymer. For a small perimeter to
persistence length the fluctuating rings exhibit only planar, elliptical configurations. At higher flexibilities
three-dimensional, crumpled structures arise. Analytic calculations confirm the qualitative behavior of the
averaged shape parameters and the elliptical shape in the stiff regime.
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It is a well-known fact dating back to 1934 that the shape
of a flexible coil is overall prolate [1]. From the isotropy of
space, the intuitive expectation would be a spherically
symmetric conformation. However, this idea implies rota-
tional averaging and, in fact, entropy is maximized for a
single trajectory of a polymer if the number of segments in
each direction is inhomogeneous.

After a series of theoretical investigations, based on both
analyses [2–4] and simulations [5,6], only with the onset
of single molecule techniques, experiments could prove the
asymmetric shape of a flexible polymer [7,8] and address
the relevance of a polymer’s shape in biology. The overall
shape of a polymer is important for its mobility in hetero-
geneous media such as cytoplasm and the depletion forces
between larger complexes in polymer solution [9,10]. For
the transcription of viral genome or plasmids, the shape of
its DNA might enhance or reduce the accessibility for
enzymes depending on the spatial distance between DNA
segments [11]. DNA as many biopolymers is semiflexible,
behaving like a thermally fluctuating elastic rod on length
scales of the order of its persistence length. Considering the
shape of viral DNA and plasmids, this limit is applicable
and deserves investigation. In fact, most of the short ge-
nomes as well as plasmids are circular, yielding an even
stronger constraint for the polymer’s shape. To obtain a
complete picture for any circular DNA, it is desirable to
understand the shape of semiflexible rings as their flexibil-
ity is varied. A polymer’s shape is well characterized by the
asphericity [2] as the deviation from spherical symmetry.
The degree of prolateness or oblateness is captured by the
independent nature of asphericity [5]. Measurements of
both their mean values give a good indication of how the
average outline looks, but fail to reflect the total ensemble
of configurations that can only be accessed via the shape
parameter’s distribution.

We employ Monte Carlo simulations to study the shape
of semiflexible polymer rings over a large range of flexi-
bility. To give a complete picture of the polymer’s change
of shape as its flexibility increases, the joint distribution of
asphericity and nature of asphericity as well as their re-

spective averages will be presented. We find two different
shape regimes. In the first, the flexibilities are small, re-
sulting in dominantly planar polymer ring configurations.
In the second, at large flexibilities, crumpled three-
dimensional (3D) structures prevail. In both the stiff and
the flexible limit analytic calculations explain the observed
behavior.

Characterizations of the shape of a polymer’s trajectory
fr�s�g, s 2 �0; L�, are based on the radius of gyration,
primarily a measure for the spatial extent. Generalizing
to a radius of gyration tensor Q,

 Qij �
1

L

Z
dsri�s�rj�s� �

1

L2

Z
dsri�s�

Z
d~srj�~s�; (1)

the eigenvalues �i of the tensor describe the spatial extent
along each principal axis. Measuring the variance of the
eigenvalues, the deviation from a fully symmetric object is
obtained, denoted asphericity, �. Furthermore, prolateness
or oblateness of the object is specified by the nature of
asphericity, �, measuring the skewness of the eigenvalues.
Choosing the normalization such that the quantities are
independent of the total length, the asphericity of a poly-
mer is defined by [2]

 � �
3

2

TrQ̂2

�TrQ�2
; (2)

where Q̂ij � Qij � �ijTrQ=3. The nature of asphericity is
given by [5]

 � �
4 detQ̂

�23 TrQ̂2�3=2
: (3)

The asphericity takes values 0 � � � 1, where � � 0
corresponds to a spherically symmetric object. For � �
1, the polymer is fully extended, forming a rigid rod. The
nature of asphericity is bounded between �1 � � � 1.
� � �1 is obtained for a fully oblate object such as a disk,
while � � 1 is the result for a prolate object as a rigid rod.
As the asphericity and the nature of asphericity are inde-
pendent, a joint distribution yields a thorough classification
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of stochastic objects such as thermally fluctuating poly-
mers. For reasons of comparison, we will adopt the pa-
rameters ��2

����
�
p
2�0;2� and �� arccos�=32�0;�=3�

for the joint distribution defined by Cannon et al. [5].
Those parameters are directly connected to the eigen-

values of the radius of gyration tensor by �1 �
���1� � cos����, �2 � ���1� � cos��� 2�=3��, and �3 �
���1� � cos��� 2�=3��, where �1 	 �2 	 �3 and �� de-
notes the mean eigenvalue. Using these relations, the shape
diagram presented in Fig. 1 is constructed. In the region of
both large � and large �, one eigenvalue becomes negative,
excluding these parameter sets for real structures. Along
the solid line separating the excluded conformations from
possible ones, at least one eigenvalue is zero. Hence, the
solid line represents all planar configurations ranging from
the fully oblate geometry of a rigid ring with � � �=3 via
elliptical shapes to the fully prolate structure of a rigid rod
at � � 0. Below the solid line, 3D conformations are
exhibited as all eigenvalues are now greater than zero.
The shape is rather oblate for � > �=6 or comparatively
prolate for � < �=6 as illustrated by the ellipsoids enclos-
ing a polymer’s trajectory. Towards smaller �, the structure
becomes less and less aspherical resulting in a spherically
symmetric conformation for � � 0.

For flexible open polymers the shape distribution is
known to be almost exclusively prolate and highly aspheri-
cal being peaked around � � �=40 and � � 1:55 [5] as
indicated by the diamond in Fig. 1. However, the confor-
mation of a rigid ring lies just at the opposite end of the
shape diagram at � � �=3 and � � 1. As the states of a
highly flexible ring polymer can be assumed to be similar
to those of flexible open polymers, a strong crossover
between a stiff and a flexible regime seems inevitable.

Heuristically, we may argue that the shape of the tight
fluctuating ring in the stiff limit is expected to be domi-
nated by the first modes since higher modes are almost not
thermally excited. Both the first in-plane ‘‘breathing’’
mode and the first transverse bending mode yield an ellip-
tical conformation as can be illustrated by deforming a
strip of paper connected to form a ring. Although the ring
rotates in space when fluctuating, the elliptical shape itself
remains planar, being oblate for small eccentricities and
becoming prolate for large eccentricities of the ellipse.
Towards the flexible limit also higher modes are excited
resulting in a crossover to the flexible regime where the
conformations are three dimensional and crumpled as ex-
pected for a closed random walk.

The METROPOLIS Monte Carlo method was employed to
simulate a discretized semiflexible ring of total length L
and persistence length lp. The ring is described as a poly-
gon composed of N tethers of fixed length a � �L=��

sin��=N� and direction t. The energy assigned to an
individual configuration is given by the elastic energy, E �
NkBT�lp=L�

PN
i�1�1� titi�1�, imposing periodic bound-

ary conditions, tN�1� t1. New conformations are achieved
by pivot moves [12], performing 106 Monte Carlo steps per
segment. Measured expectation values of the mean square
diameter hD2i were in accordance with analytical expres-
sions [13] up to the estimated statistical error. The effect of
self-avoidance is neglected, as its impact on the shape of
even flexible polymers was shown to be only of the order of
1% [2].

The change of shape as the flexibility increases is best
studied when analyzing the shape distribution at different
flexibilities as plotted in Fig. 2. We distinguish between a
stiff regime exemplified by L=lp � 1, 4 and a flexible
regime represented by L=lp � 16, 32. The geometry of a
ring induces an apparent stiffening of the fluctuating poly-
mer to approximately 5 times its unconstrained flexibility
[13]. Therefore, even L=lp � 4 belongs to the stiff limit.
By comparison with the shape diagram in Fig. 1 polymer
ring configurations in the stiff regime are identified to be
almost exclusively planar ranging from totally oblate to
comparatively prolate shapes. In the flexible regime,
crumpled structures that fill 3D space dominate the broader
configuration space. The distribution changes from rimlike
being strongly peaked in the asphericity to lenslike with the
major weight on prolate and highly aspherical conforma-
tions, although less rodlike than observed for open poly-
mers. In agreement with experimental observations [7,8],
the distribution of shapes is very broad, yielding also very
extended conformation close to � � 2.

In between the two asymptotic shape regimes a cross-
over is observed represented by L=lp � 8 in Fig. 2. During
this crossover both crumpled, 3D configurations and planar
structures are almost equally probable, yielding the largest
spread of well-occupied conformations in the configura-
tion space. Beyond the stiff regime in Fig. 2 the mean of

FIG. 1 (color online). The overall shape of polymer configu-
rations depending on the asphericity � and the nature of aspher-
icity �. Along the solid line the structures are planar;
configurations beyond that line are excluded as they do not
correspond to real structures. The diamond indicates the peak
in the distribution of flexible open polymers. The sequences of
circles and triangles denote the mean shapes of open and ring
polymers at integer flexibilities starting from L=lp � 0 at �0; 2�
and at ��=3; 1�, respectively.
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each single shape parameter deviates from the states with
the largest joint probability, showing its limitation in iden-
tifying a polymer’s configurations. Identification of the
conformations and insight into the width and the form of

the density of states are only attainable by the distribution
of the shape parameters, highlighting their importance for
studying polymer shapes.

Investigating the mean asphericity and the mean nature
of asphericity, qualitative arguments can be quantified and
compared to previous results in the limit of infinite flexi-
bility. The change of both shape parameters on increasing
flexibility L=lp is depicted in Fig. 3. For a rigid ring, the
asphericity is given by � � 0:25, being fully oblate: � �
�1. Up to L=lp � 5 both asphericity and the nature of
asphericity grow linearly with the flexibility, obeying
h�istiff � 0:25� 0:01L=lp, h�istiff � �1� 0:3L=lp. This
linear dependence classifying the stiff regime is explained
by the shape of an ellipse whose axes grow and shrink with
the square root of the flexibility, respectively, as will be
discussed in the next paragraph. A similar scaling argu-
ment has been given by Camacho et al. [14] analyzing
planar rings. Beyond this stiff regime a maximum of the
mean asphericity is reached. Increasing the flexibility fur-
ther, higher modes become accessible. These undulations
contract particularly the major axis of the ‘‘ellipse,’’ de-
creasing the variance of the eigenvalues of the radius of
gyration tensor and hence yielding a declining asphericity.
The asphericity approaches the exact value for an infinitely
flexible polymer ring, a closed Gaussian chain, h�ifl;c �
0:2464, derived by Diehl and Eisenriegler [3] in a power
law with exponent � � �1:3. Compared with a flexible
open polymer with h�ifl;o � 0:396�5� [5], a polymer ring is
much more spherical. Analytic calculations based on a
perturbation expansion of a closed Gaussian chain for finite
flexibility forecast a positive correction in first order [15],

FIG. 3 (color online). Monte Carlo simulation data for the
mean asphericity h�i and the mean nature of asphericity h�i
versus increasing flexibility L=lp. Both grow linearly with rais-
ing flexibility for tight rings (solid line). Then, h�i saturates at a
prolate shape, while the asphericity decreases in a power law
(dashed line). Error bars are of the size of the symbols.

FIG. 2 (color online). The distribution of asphericity � and the
nature of asphericity � at different levels of flexibility. For tight
rings, L=lp < 5, planar conformations dominate, while the con-
figurations become truly 3D beyond L=lp of the order of 10. The
crosses indicate mean and variance of each single shape parame-
ter deviating from the most probable state. Note the change of
the color scaling as the distribution spreads out.
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and, hence, explain why the asphericity approaches its
Gaussian limit from above. Also for two-dimensional poly-
mer rings our analytic arguments predict a linear increase
of the asphericity in the stiff limit and a monotonic de-
crease in the flexible limit explaining the nonmonotonic
behavior of the shape parameter observed in previous
simulations in two dimensions [14,16]. Experiments found
a slight increase of the asphericity versus L=lp in the
flexible regime for linear DNA [7] not to be justified
with our predictions of the shape of semiflexible polymers
discarding for the sake of simplicity additional DNA ef-
fects, such as twist, nicks, or supercoils. Although DNA
rings make up a huge field of biological processes where
shape matters, resolving their 3D shapes is a challenge due
to their small size and rate of change. Ring polymers of
larger persistence length lp such as cytoskeletal filaments
as in [17] or mesoscopic polymer materials are feasible to
measure our results. The nature of asphericity increases
monotonically saturating at a value of h�ifl;c � 0:53 at
L=lp � 15, being less prolate than flexible open polymers
with h�ifl;o � 0:745 [5]. Towards the Gaussian limit the
sequences of averaged shape parameters of ring and open
polymer as depicted in Fig. 1 can neither cross nor depart
from each other. Therefore, both their h�i approach their
limiting value monotonically. Overall, the geometric con-
straint induces a bias towards more spherical and oblate
structures.

The linear growth of h�i and h�i for tight rings is
analytically predictable based on the assumption of a pla-
nar shape. Because of the first bending modes, the ring of
radius Rc becomes an ellipse, where the major and minor
axes are the radius Rc increased and decreased, respec-
tively, by

���������
hr2
?i

q
, the amplitude of the undulations of a

weakly bending rod. In the weakly bending limit fluctua-
tions parallel to the average axis of the contour are second
order to undulations perpendicular, resulting in the ap-
proximate bending energy E � 1

2 kBTlp
R
L
0 dsr

00
?�s�

2, and

yielding
���������
hr2
?i

q
� �R3=2

c l�1=2
p [14,18,19], where � denotes

a numerical constant. Hence, the asphericity and the nature
of asphericity are equated in the limit of small flexibilities
L=lp, where the first modes truly dominate

 �ellipse � 0:25� 2�L=lp �O��L=lp�2�; (4)

 �ellipse � �1� 54�L=lp �O��L=lp�2�: (5)

These analytic results forecast the observed behavior.
In conclusion, we have employed the joint distribution

of asphericity and the nature of asphericity and their re-
spective means as well as analytic arguments to show that
the shape of semiflexible polymer rings exhibits two dis-
tinct regimes depending on their flexibility. Tight rings are
planar ‘‘ellipses,’’ while flexible rings are 3D, crumpled
structures. These two regimes may have implications for a
variety of biological processes such as the flow behavior or
the accessibility of DNA rings to enzymes. As the shape of

stiff, elliptical rings may not be considerably changed by
hydrodynamic forces since they will behave as rigid disks,
rings in the flexible regime may undergo tumbling motion
with alternating collapse and stretching as observed for
flexible open polymers [20]. Similarly, the time it takes an
enzyme to find its assigned binding site on a DNA strand
should be larger if the DNA conformation is planar, as the
enzyme cannot easily travel to DNA segments separated
afar along the backbone by 3D diffusion as in coiled up 3D
structures. In this context of opposed behavior in the two
shape regimes, polymers in the crossover region where
both shapes are equally probable may show striking prop-
erties. Depending on the manner in which a polymer
changes between a planar and a crumpled shape, e.g.,
randomly or following a particular trajectory, and its time
scale, a broad variety of biological functionality can
emerge. The characterization of a semiflexible polymer
by its shape can therefore enable a coarse-grained model-
ing of complex biological processes.
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Buckling of stiff polymer rings in weak spherical confinement
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Confinement is a versatile and well-established tool to study the properties of polymers either to understand
biological processes or to develop new nanobiomaterials. We investigate the conformations of a semiflexible
polymer ring in weak spherical confinement imposed by an impenetrable shell. We develop an analytic argu-
ment for the dominating polymer trajectory depending on polymer flexibility considering elastic and entropic
contributions. Monte Carlo simulations are performed to assess polymer ring conformations in probability
densities and by the shape measures asphericity and nature of asphericity. Comparison of the analytic argument
with the mean asphericity and the mean nature of asphericity confirm our reasoning to explain polymer ring
conformations in the stiff regime, where elastic response prevails.
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I. INTRODUCTION

It is the interplay of elastic energy and entropy that gov-
erns the equilibrium form and the dynamics of semiflexible
biopolymers. Their competition determines the shape and
consequently the function of a biopolymer as a building
block in the cytoskeleton �1,2� or as an accessible storage
medium for genetic information �3�. Experimental quantifi-
cation of the elastic and entropic properties of biopolymers
often employ confinement, may it be by clamping one end of
the polymer �4,5� or confining the whole polymer into a
channel �6–8� or microchamber �9�. In natural conditions the
confinement imposed by cell walls and membranes, cell
nucleus or viral capsids is approximately spherical. This in-
spired to use the rather weak confinement of artificial giant
vesicles as a versatile and well-controllable model system for
the investigation of polymer and polymer bundle character-
istics �10–12�. Especially but not only in these biomimetic
systems, that investigate both biological processes and new
nano-biomaterials, polymer rings become of larger and larger
importance, stirring theoretical studies of semiflexible
polymer rings �13–20�. DNA on the one hand naturally oc-
curs in ring form �21,23� while actin and actin bundles self-
assemble into rings under various conditions
�11,12,22,24,25�. Polymer rings are an ideal object to inves-
tigate entropic and elastic effects as their topology induces
Euler buckling even in weak confinement, where the confin-
ing cavity is just equal or a little larger than the average size
of the polymer, see Fig. 1. Therefore, spherical confinement
serves indeed as an excellent tool to investigate the mechani-
cal properties of semiflexible polymer rings and how they are
affected due to biological processes under well-defined con-
ditions.

Within the wormlike chain model semiflexible polymers
are characterized by their bending elasticity that opposes the
excitation of undulations from thermal fluctuations �26�.
Representing a polymer of bending modulus � as a differen-
tial space curve r�s� of length L parametrized by an arc

length s, its statistical properties are determined by the elas-
tic energy

H =
�

2
�

0

L

ds� �t�s�
�s

�2

, �1�

where t�s�=�r�s� /�s denotes the tangent vector. The compe-
tition of elastic against entropic contributions is reflected in
the material specific persistence length, lp=� /kbT, which is
just the ratio of elastic bending modulus and thermal energy.
Comparing this length scale to the total length of the poly-
mer gives a measure of polymer flexibility L / lp. Polymer
flexibility easily varies; therefore, our present study takes it
as a variable parameter within the region of stiff polymers. It
was shown that polymer rings due to their topology effec-
tively behave about five times stiffer than linear polymers,
i.e., their stiff regime extends up to L / lp�5 �18� rendering
polymer rings advantageous to study elastic responses.

Semiflexible polymers have previously been the subjects
of investigations under conditions of strong confinement
where the confining cavity is much smaller than the equilib-
rium size of the polymer. These conditions arise in viral
capsids and bacterial envelopes and provoked both analytical

2R

h

(A) (B)

2R

FIG. 1. �Color online� Dominant shape of a stiff polymer ring
without �a� and with �b� spherical confinement. �a� Without confine-
ment the first order bending mode excited by thermal fluctuations
induces a planar ellipse that exceeds along its major axis the radius
of the corresponding rigid ring. �b� Enclosed by spherical confine-
ment the otherwise planar ellipse is compressed and Euler buckles
into a bananalike shape.
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�27–31� and simulation studies �32–36�. While most studies
focus on linear polymers viral DNA may indeed be circular
as taken into account for the investigation of knotting prob-
abilities of polymer rings in strong confinement �37�. Moti-
vated by nanotechnological advances to study polymers in
biomimetic systems semiflexible polymers have furthermore
been theoretically investigated in channels �38–42� on
spherical surfaces �43–46� and on two-dimensional �2D�
planes �47,48�. Concerning equilibrium properties it is usu-
ally the most likely polymer conformation that is relevant for
biological processes and nanotechnological applications.

Polymer configuration and form are well accessible by
shape parameters based on the radius of gyration tensor Q,
given by

Qij =
1

L
�

0

L

ds ri�s�r j�s� −
1

L2�
0

L

ds ri�s��
0

L

ds� r j�s�� .

�2�

The eigenvalues �i and the direction of the eigenvectors �i,
i=1,2 ,3, of the radius of gyration tensor determine the spa-
tial extent of a polymer in space. The degree of asymmetry,
denoted asphericity �, is proportional to the normalized vari-
ance of the eigenvalues �i of Q �49�,

� =
3

2

	
i=1

3

��i − �̄�2


	
i=1

3

�i�2 , �3�

where �̄=	i=1
3 �i /3 denotes the mean extent. While a spheri-

cal symmetric object with �i= �̄ is characterized by the mini-
mal value of the asphericity �=0, a spherical asymmetric
rodlike object is represented by its maximal value �=1. To
measure the degree of prolateness or oblateness of an object,
the nature of asphericity � is defined by �50�:

� =
4��1 − �̄���2 − �̄���3 − �̄�


2

3	
i=1

3

��i − �̄�2�3/2 . �4�

The sign of the nature of asphericity is determined by the
product of the deviations of the eigenvalues from their mean
and is negative for oblate objects and positive for prolate
ones. Ranging from �=−1 to �=1 the minimal value of the
nature of asphericity is attributed to a fully oblate object such
as a disk, while the maximal one is assigned to a fully prolate
one such as a rigid rod.

We use these shape measures to investigate the form of
stiff polymer rings in weak spherical confinement imposed
by an impenetrable shell. Employing both Monte Carlo
simulations and analytical calculations we discern elastic and
entropic contributions and faithfully describe the dominant
polymer conformation depending on polymer flexibility. In
Sec. II we develop an analytic argument for the trajectory of
the dominant polymer conformation considering both en-
tropic and elastic effects. In Sec. III we assess polymer con-
figurations in spherical confinement over ranges of flexibili-

ties by simulation generated probability densities. Finally, we
compare asphericity and nature of asphericity calculated
from our analytic argument to their mean values obtained
from simulations in Sec. IV. In the desired stiff regime our
analytic argument explains the observed polymer configura-
tions for any weak spherical confinement. We conclude in
Sec. V.

II. BUCKLING OF AN ELASTIC ELLIPSE

To understand the form of polymer rings in spherical con-
finement it is insightful to have a description of the mean
polymer conformation. As the distribution of stiff polymer
configurations is indeed sharply centered around the mean,
we develop an analytic argument for the space curve of this
dominant polymer configuration depending on the strength
of the confinement and polymer flexibility. Based on this
dominant space curve �DSC� the governing polymer form
can be understood and assessed by calculating its shape pa-
rameters. The successful mapping between DSC and simula-
tion results then also ascertains our fruitful insights into the
whole polymer configuration. The DSC of a fluctuating stiff
polymer ring arises from the interplay of elastic and entropic
forces. We analyze their influence subsequently. To derive
the DSC of a stiff semiflexible polymer ring in weak con-
finement it is instructive to consider first the DSC of an
unconfined polymer ring.

A completely rigid polymer ring of contour radius Rc is
circular. Subjected to thermal fluctuations, it assumes the
shape of a planar ellipse �51�, the conformation induced by
the first bending mode. Increasing flexibility enhances the
eccentricity of the ellipse within the stiff regime. While the
major axis of the ellipse grows, the minor axis decreases
with the square root of the flexibility �L / lp �13–15�. As
spherical symmetry is broken, this change in shape yields an
increase of entropy and, hence, minimizes the free energy.
Thus the DSC of the planar stiff polymer ring can be param-
eterized by

x�s� = Rc
1 − ��L

lp
�sin
 s

Rc
� ,

y�s� = Rc
1 + ��L

lp
�cos
 s

Rc
� ,

z�s� = 0, �5�

where s /Rc� �0,2�� here represents the polar angle of the
trajectory and � denotes a dimensionless parameter that mea-
sures the influence of flexibility. The DSC describes a poly-
mer ring that is deformed from an oblate circle to a more and
more eccentric ellipse as the flexibility increases. During this
growth of eccentricity the total length of the space curve is
not conserved, hence, the model does not predict the overall
size of a polymer. This caveat does, however, not prevent
successful predictions of the shape parameters. As length-
invariant measures the asphericity and the nature of asphe-
ricity are only affected by the aspect ratio of the axes. In
summary, the elliptical form of a free polymer is an entropic
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effect that can, however, be translated into an elastic re-
sponse in confinement.

Confining a stiff polymer ring inside an impenetrable
sphere induces a change in its shape. If the major axis of
length S=2Rc�1+��L / lp� exceeds the diameter of the sphere
2R, no planar ellipse can develop inside a sphere. Instead the
major axis and therefore the whole polymer ring is com-
pressed by the rigid confining walls of the sphere into a
curved bananalike ellipse as shown in Fig. 1. This elastic
response of the stiff polymer ring to the confinement results
in a z component of the DSC. This additional component
generates a bananalike polymer ring that can be computed by
drawing the analogy to the buckling of an elastic rod.

The conformation of a rod of length S pushing against

rigid walls a distance 2R̃ apart is equivalent to the shape of a
rod of length S being compressed by a constant force f at its
hinged ends. As illustrated in Fig. 2, the configuration of a
buckled rod of length S can be parameterized by the angle
��s� between the tangent vector t�s� and the direction r̂ par-
allel to the compressing force, where the arc length s runs
from 0 to the length S of the rod. Note, that the rod can rotate
and move freely perpendicular to the axis of the force. Re-
flecting the mirror symmetry of the conformation, the abso-
lute value of the angles at both ends of the rod is equal:
��0��0=−��S�. Euler-Lagrange theory predicts the opti-
mal shape of a compressed rod as the state of minimal elastic
energy. The compressive force f adds a potential term to the
bending energy of an elastic rod �52�,

H = �
0

S

ds�kbT
lp

2
�d��s�

ds
�2

− f cos���s��� , �6�

where we already replaced the bending modulus by its rela-
tion to the polymer specific persistence length. As shown in
Ref. �53� the minimization of the above elastic energy
Eq. �6� under the given constraints results in a Euler-
Lagrange equation. The minimizing two-dimensional space
curve describing the optimal filament shape is then given by
its component r�s� along the direction of the force and the
component h�s� perpendicular to it, see Fig. 2,

r�s� = − s +
S

2
+

S

K�	�
E�
2s − S

S
�K�	2�,	2� ,

h�s� =
S	

K�	2��1 − cn�
2s − S

S
�K�	2�,	2�� , �7�

where 	 denotes sin��0 /2� and K, E, and cn are the elliptic
integral of the first and second kind and the Jacobi elliptic
function, respectively. When the spatial constraint

r�0�−r�S�=2R̃ is respected and the elliptic integrals are ex-
panded for small opening angles �0, the maximal height
h0= �h�S /2�−h�0�� depends on the distance between the con-

fining walls 2R̃ and the length of the elastic rod S only,

h0�S,R̃� �
2

�
S�2
1 −

2R̃

S
� , �8�

see Fig. 2. Based on this result the z component of the DSC
due to elastic forces can be predicted. Respecting the differ-
ential continuity of a buckled ellipse the height modulation
function is taken to be a squared sine resulting in the follow-
ing z component for the DSC in confinement

z�s� = h0�S,R̃�sin2
 s

Rc
� . �9�

In addition to the elastic response due to compression also
entropic forces contribute to the DSC of a spherically con-
fined polymer ring. For simplicity, we first assume the con-
fining sphere to be of the same radius R=Rc as the contour
radius of the confined polymer ring. In this case any finite
temperature causes the major axis of the ensuing ellipse to
exceed with its apices the spherical confinement and, hence,
forces the polymer to buckle. The elastic bending energy
would be smallest if the ellipse’s apices both rest on an equa-
torial plane. Namely, such a configuration maximizes the dis-
tance between the apices and, hence, minimizes the curvature
of the state. Disregarding rotational symmetry, there is only a
single equatorial plane. However, entropy increases if the
apices may rest on any plane instead of just a single equato-
rial plane. This increase in entropy clearly goes at the ex-
pense of stronger bending. Therefore, the magnitude in de-
viation from the equatorial plane should be related to
polymer flexibility. As a good estimate we take the DSC of a

polymer ring to nestle half its total height h0�S , R̃� below an
equatorial plane and the other half above. Employing
Pythagoras law the total length of the major axis is then
confined to �R2− �h0 /2�2. Hence, the y-component of the
DSC follows as

y�s� = �R2 − �h0/2�2 cos
 s

Rc
� . �10�

Surely, this nestling below the equatorial plane has also an
effect on the buckling height itself, but it is only of second
order and, therefore, neglected in the following.

The above equations for the polymer ring’s DSC already
allow a successful prediction of the mean shape of a polymer
ring when the confining radius equals the contour radius
R=Rc. Next our analysis is extended to larger radii to enable

2R̃

h(s)

r(s)

h(s)

s=0 s=S

0
ϑ

FIG. 2. �Color online� Buckled rod of length S with maximal

height h0. The distance between its hinged ends 2R̃ determines the
rod trajectory parameterized by ��s�, s� �0,S� and the maximal
height h0.
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a full description for any kind of confining radius between
R=Rc and R=
. At small flexibilities the DSC of a polymer
ring is not supposed to be affected by spherical confinement.
As the major axis of the ensuing ellipse does not yet
stretch beyond the confining walls, a planar ellipse forms as
described by Eq. �5�. Intuitively one would guess that
confinement effects become noticeable once the length of the
DSC’s major ellipse equals the radius of the sphere
Rc�1+��L / lp�=R. However, the broadness of the distribu-
tion of states makes confinement affect the DSC even before
the major vertices of the DSC’s planar ellipse encounter the
sphere’s shell. So far our considerations only described the
DSC as the mean space curve irrespective of the broadness
of the distribution of states. However, the fraction of con-
figurations with longer major axis forces the DSC to buckle
at lower flexibilities than expected. This results in an effec-
tively reduced radius of the sphere, which we account for by

choosing R̃=R− �1−���R−Rc�. For the lower limiting case

�=0 the effective confinement R̃=Rc instantaneously affects
the DSC irrespective of the true radius R, while for the upper
limiting case �=1 only the encounter of the DSC major axis

with the real confinement R̃=R causes an elastic response.
Hence, � denotes the percentage of how much below the real
confinement radius R statistically confinement affects the
DSC. � is like � a numerical parameter to be determined
from simulation data.

Together these two entropic effects and the elastic
buckling determine the DSC of a polymer ring of
contour radius Rc in spherical confinement of radius R�Rc.
For small flexibilities a planar ellipse develops described
by Eq. �5�, that is unaffected by the confinement. This
regime extends up to Rc�1+��L / lp�R− �1−���R−Rc�.
For larger flexibilities this inequality topples over
Rc�1+��L / lp��R− �1−���R−Rc� and the DSC is described
by

x�s� = Rc
1 − ��L

lp
�sin
 s

Rc
� ,

y�s� = Rc�R2

Rc
2 −

8

�2
1 + ��L

lp
���
1 −

R

Rc
� + ��L

lp
�

�cos
 s

Rc
� ,

z�s� =
4�2

�
Rc�
1 + ��L

lp
���
1 −

R

Rc
� + ��L

lp
�

�sin2
 s

Rc
� . �11�

Based on this analytic argument for the DSC of a stiff poly-
mer ring the corresponding shape parameters can be calcu-
lated and compared to results from Monte Carlo simulations.
Qualitative accordance with our assumptions for the elastic
and entropic forces is gained from projections of polymer
configurations into two-dimensional planes.

III. 2D PROJECTIONS OF POLYMER CONFIGURATIONS

A discretization of the space curve of the polymer ring
enables Monte Carlo simulations, which open insights into
the governing conformations of polymer rings at different
flexibilities. To simulate a polymer ring of circumference
L the Metropolis Monte Carlo method has been employed.
The polymer ring is modeled as a discrete polygon,
that consists of N segments of fixed length l pointing in the
direction t. The elastic energy of a single conformation de-
pends on the direction between successive segments:
H=NkbT�lp /L�	i=1

N �1− ti · ti+1�, where the closure of the ring
is implemented by periodic boundary conditions t1= tN+1.
The polymer ring moves through phase space by performing
crankshaft moves, restricted by the spherical confinement:
Only configurations, which are located entirely inside the
rigid walls of the sphere, are considered for averaging. To
collect uncorrelated data, only every 105th of those configu-
rations is considered. We sample 105 configurations for each
averaged data point, such that the statistical error lies within
the ranges of the symbols depicted in our graphs.

To illustrate the form of the polymer rings of radius Rc in
spheres with R=Rc at different flexibilities, the probability
density of polymer configurations are shown in Fig. 3. The
position vectors of all samples of polymer configurations are
mapped on two-dimensional planes spanned by two principal
axes of the radius of gyration tensor in Eq. �2�, respectively.
Ordering the principal axes �i, i=1,2 ,3, by the magnitude
of their corresponding eigenvalues the largest axis �1 is
taken as reference axis, and the planes spanned together with
the intermediate �2 and the smallest axis �3 are considered,
respectively, to gain insight into the three-dimensional con-
figuration space. Considering a planar ellipse that buckles
due to confinement as discussed in Sec. II, the plane spanned
by the two largest eigenvalues represents the planar ellipse
and the plane spanned by the smallest and the largest princi-
pal axis corresponds to the height of the buckling polymer
relative to the major axis.

The probability density of polymer configurations in the
plane spanned by the largest and the intermediate principal
axis in Figs. 3�A�–3�C� reveals the elliptical character of the
mean shape of the polymer ring. At small flexibilities, Figs.
3�A� and 3�B�, the polymer trajectories are confined to a
narrow rim close to the spherical shell that broadens with
increasing flexibility. With growing undulations along the
polymer their intermediate axis shortens stronger than the
larger one. Hence, polymer configurations resembling an el-
lipse with higher eccentricity become more probable. Be-
yond the stiff regime at large flexibilities, Fig. 3�C�, the poly-
mer ring exhibits compact configurations and looses the
character of a planar ellipse. In this semiflexible region, the
polymer configurations take a figure-eight shape as indicated
by the two yellow semicircles in Fig. 3�C�. Due to entropic
reasons the eight consists of two circles with different sizes
for each single polymer configuration �54�, therefore, the
density distribution is smoothed out in the overlap region of
the figure-eight. In the flexible regime, the principal axes
shrink further with growing flexibility �data not shown�.
However, their ratio remains asymmetric to maximize en-
tropy �55�.
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Studying the density distribution in the plane spanned by
the largest and the smallest principal axis we observe bone-
shaped probability densities of polymer configurations, see
Figs. 3�D� and 3�E�. In these projections the density peaks
close to the sphere’s rim indicate the position, where the
elliptically shaped polymer configurations encounter the
sphere’s shell relative to the equatorial plane. While the larg-
est and intermediate principal axis of the elliptically shaped
polymer rings in the stiff regime map onto the major and
minor axis of a buckling ellipse, the smallest principal axis
points toward the height of the buckling ellipse. Hence, the
width of the probability density along the �3 axis in Figs.
3�D� and 3�E� indicates the maximal buckling height, which
in the stiff regime is growing with increasing flexibility. An
entirely rigid circular polymer ring would be located in the
equatorial plane. With growing flexibility thermal fluctua-
tions force the ensuing ellipse to arch out of the horizontal
equatorial plane, forming a bend. Thereby, the major axis of
the elliptical polymer ring is clamped below or above the
equatorial plane. The position of the ellipses’ apices, which
pushes against the confining sphere, is marked by the density
peaks in the bone-shaped density distribution. The movement
of apices’ positions away from the equatorial plane with in-

creasing flexibility is an entropic effect taken into account in
our analytic argument in Eq. �11�. Beyond the stiff regime,
undulations contract the polymers to a degree that they are
no longer forced to undergo Euler buckling but form more
and more crumpled configurations also diminishing the poly-
mers’ extent along the smallest principal axis.

The entropic and elastic effects observed in the density
distributions are in agreement with the analytic argument
presented in Sec. II. To substantiate these qualitative obser-
vations, the observed shapes of polymer rings at different
flexibilities in spherical confinement are quantified by the
asphericity and the nature of asphericity.

IV. SHAPES IN SPHERICAL CONFINEMENT

The shape of polymer rings is best captured by the asphe-
ricity and the nature of asphericity as measures of the extent
of asymmetry and the degree of prolateness and oblateness,
respectively. Comparing the mean values of these shape pa-
rameters for free and confined polymer rings displays the
dramatic changes in polymer shape due to weak confine-
ment, as shown in Fig. 4. Based on our analytic description
for the dominant space curve �DSC� the shapes of polymer

(A)

(B)

(C)

(E)

(D)

(F)

L/ lp = 1

L/ lp = 3

L/ lp = 8

Λ1

Λ2

Λ3

Λ1

Λ2

Λ3

FIG. 3. �Color online� Probability density and representative snapshots of polymer rings from Monte Carlo simulation data for the
flexibilities L / lp=1, 3 and 8. As indicated by the cartoons on top, the polymer configurations in the first column �A–C� are projected onto
the plane spanned by the intermediate �2 and the largest principal axis �1. In the second column polymer configurations �D–F� are projected
onto the plane spanned by the smallest �3 and the largest principal axis �1. The gradient in the density of states from high to low is color
coded from bright �yellow� to dark �black�, the absolute scale of the probability density halves starting from 0.0016 onward as the flexibility
increases. The snapshots are chosen such that their asphericity matches the mean configuration of the observed ensemble.
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rings are rationalized, and by calculating exact values for
shape parameters of the DSC we now show that our analytic
argument is in agreement with the corresponding Monte
Carlo data in the stiff limit, see Fig. 5.

Starting from �=0.25 and �=−1 for a rigid ring the mean
asphericity ��� and the mean nature of asphericity ��� of a
free polymer ring first grow linearly with flexibility L / lp in
the stiff regime due to the increase of the eccentricity of the
ensuing planar ellipse �51�, see Fig. 4. In the semiflexible
regime, the free polymer evolves into three-dimensional con-
figurations and undulations lead to crumpling that decreases
the variance in spatial extent. Thereby, the mean asphericity
finally decays to the exact value for an infinitely flexible
closed Gaussian chain of ���=0.2464 �56�. In the course of
this transition the polymer form saturates to a prolate, hence,

cigarlike shape. In contrast, spherical confinement that is
small enough to clamp the largest axis of a polymer ring
provokes the mean asphericity to decline in the stiff regime.
Only beyond the stiff regime the mean asphericity is ob-
served to grow with increasing flexibility slowly approaching
the value of a free polymer ring. Also the linear increase of
the mean nature of asphericity ��� of a free polymer in the
stiff limit is modified by the confinement and results in a
sigmoidal curve progression toward the plateau in the flex-
ible regime.

The decrease in the mean asphericity for confined poly-
mer rings sets in as the ensuing planar ellipse is restricted by
the confining shell and buckles into the third dimension. As
the major axis of the polymer increases with flexibility, the
buckled polymer conformation gains height and, therefore,
looses asphericity. This process progresses up to flexibilities
of L / lp�3. This marks the end of the stiff regime defined by
an elastic buckling. The nature of asphericity displays that in
the stiff regime the cigarlike character of the free polymer
rings is suppressed by the confinement in favor of more ob-
late conformations. The inflection point of the mean nature
of asphericity reflects the minimum of the asphericity. In-
creasing the size of the spherical confinement from
R=1.0Rc to R=1.3Rc reduces the absolute change in asphe-
ricity compared to the free polymer case. With weaker con-
finement the onset of the decline of the asphericity is shifted
to larger values of flexibility, as the ensuing planar ellipse
encounters the shell only at higher flexibilities. As the distri-
bution of polymer extents is broadening with increasing flex-
ibilities this transition is smoothed out more if the buckling
sets in at higher flexibilities. Also the character of the nature
of asphericity changes at the transition, as clearly shown by
the Monte Carlo data in Fig. 5. If the extension of the poly-
mer rings is smaller than the diameter, the nature of asphe-
ricity grows linearly. Its sigmoidal character commences at
the transition to buckling.

Beyond the stiff regime, L / lp�3, undulations start con-
tracting the buckled ellipse inducing crumpling to increas-
ingly compact configurations. Thereby, the polymer configu-
rations become less affected by their confinement and both
shape measures increase toward the value of unconfined
polymer rings. However, over the range of flexibilities ob-
served, even the values in the flexible regime remain distinct.
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FIG. 4. �Color online� Monte Carlo simulation data for the mean
asphericity ��� and the mean nature of asphericity ��� versus flex-
ibility L / lp for polymer rings of contour radius Rc, that are confined
by impenetrable spheres of radii R=1.0Rc to R=
. Relatively weak
confinement already induces dramatic changes in the shape of poly-
mer rings.
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FIG. 5. �Color online� Comparison of the mean asphericity ��� and mean nature of asphericity ��� versus flexibility L / lp calculated from
our analytical description in Eqs. �5� and �11� �light colors� and from Monte Carlo simulation data �dark symbols� for polymer rings of
contour radius Rc inside spheres of radii R=1.0Rc to 1.3Rc �lower red series�. For reference data and analytical predictions for a free polymer
ring are displayed in each diagram as well �upper blue series�.
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Although the majority of polymer conformations is coiled up
within the sphere, very elongated configurations are still dis-
carded and the mean values differ from the unconfined case.

Apart from these qualitative considerations on polymer
shape our analytical predictions for the dominant space curve
�DSC� in Sec. II can be quantitatively assessed by compari-
son to the shape parameters asphericity and nature of asphe-
ricity. Our predictions for the shape parameters depend on
two parameters, � and �, as given by Eqs. �5� and �11�; in
the case of R=Rc only a single parameter � is needed, as
�=0 by definition. The results shown in Fig. 5 are obtained
by fitting the parameters � �57� and � �58� to both observ-
ables for all degrees of confinement. Different values for �
are obtained for the asphericity and the nature of asphericity.
Such as the mean asphericity represents the average shape of
all polymer configurations such does the fitted parameter �
only reflect an average of a whole distribution of parameters.
Now both asphericity and nature of asphericity have differ-
ently shaped, broad and highly skewed distributions. There-
fore, the different results for the fitted � reflect only a range
of possible values. However, the fit to the stronger peaked
asphericity may resemble the average growth with flexibility
sufficiently well. Altogether, the fitted curve for the DSC of
polymer rings in spheres with radius R=1.0Rc and
R=1.3Rc is in good agreement with the simulation results. As
our analytical argument does not capture the distribution of
states, the smooth transition from planar to buckled ellipses
for R�Rc shows deviations. There, our argument exagger-
ates the transition in a kink for R=1.1Rc and R=1.2Rc. Con-
firming the quality of our DSC prediction the analytic argu-
ment for the nature of asphericity even forecasts its
sigmoidal character. In the range between R=1.1Rc and
R=1.3Rc the transition is again not fully captured due to the
broad distribution of states, however, the dominant character
of the nature of asphericity is well reflected. Based on our
fitted parameters the magnitude of all three principal axes of
the DSC can be calculated for all flexibilities up to L / lp=3.
Having two different parameters sets at hand only an esti-
mate of the magnitude is accessible. Recalling that we at-
tribute the fitting results for the stronger peaked asphericity a
better representation of all possible polymer states, we em-
ploy this value of � to predict for example for R=Rc a maxi-
mal buckling height at L / lp=3 of about h0 /Rc�0.7. If one
extends the polymer model to account for further micro-
scopic properties as for instance for torsional stiffness, the
maximal buckling height is expected to be smaller since tor-
sional stiffness increases the elastic energy of out-of-plane
deformations leaving in-plane bending unaffected. Hence,
polymers with noticeable torsional stiffness would form el-
liptical shapes due to in-plane modes as observed for worm-

like chain polymers and thus be compressed by confining
walls, but the resulting buckling would be to less extend.

V. CONCLUSION

In summary, the shape and conformation of stiff polymer
rings of contour radius Rc in any weak spherical confinement
R�Rc imposed by an impenetrable shell has been analyzed
for varying flexibility L / lp. We find that confining a polymer
ring induces buckling due to the polymers elastic properties
for finite flexibilities L / lp�3. We discern elastic and en-
tropic contributions to the form of polymer rings by
simulation-derived probability densities and an analytic argu-
ment for the dominating polymer trajectory. While the elastic
response can be summarized to Euler buckling, the entropic
contribution that broadens the number of accessible states,
induces three main effects in the stiff regime. First, entropy
promotes planar ellipses for any nonzero flexibility, which
increase in eccentricity with growing flexibility. If eventually
the major axis is compressed by the confining cavity the
polymer ring buckles as an elastic response. Here entropy
again takes action as it shifts the plane in which the ring is
compressed from the energetically favorable equatorial plane
to smaller radii. At last, due to the broad distribution of poly-
mer configurations the transition to buckling is premature
and smooth. These four effects are sufficient to explain the
form of polymer rings in weak spherical confinement as
shown by comparison of shape parameters calculated from
our analytic description and averaged simulation data.

Our analytic description, hence, gives a faithful represen-
tation of stiff polymer ring conformations and the scaling of
the principal polymer axes, especially the scaling of the
buckling height, with polymer flexibility. As our analytic ar-
gument accounts beyond polymer flexibility for different ra-
dii of confinement, the dominant polymer conformation is
now available for active control by these two experimentally
adjustable factors. Employing our results in biomimetic ex-
periments, biological processes, that are strongly dependent
on polymer configuration, can be investigated under well-
defined conditions. Furthermore, the knowledge of full poly-
mer conformations is one of the first steps to build nano-
structures based on biopolymers.
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Confinement induces conformational transition of semiflexible polymer rings to figure
eight form
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Employing Monte Carlo simulations of semiflexible polymer rings in weak spherical confinement a
conformational transition to figure eight shaped, writhed configurations is discovered and quantified.

The conformation of biopolymers is an important as-
pect for their functionality. For DNA, transcription and
replication are governed by specific binding of proteins, a
mechanism strongly connected to polymer configuration
[1, 2]. Furthermore, conformational transitions of cy-
toskeletal filaments represent small engines [3], an idea
that might be transferable to build biomimetic nano-
actuators. Both biological processes and technological
applications of biopolymers are well-studied in in vitro
setups. Inevitably and sometimes also desirably accom-
panied with these experiments is the confinement of poly-
mers, for instance, into channels [4] or micro-chambers
[5]. Confinement is an effect that also arises ubiquitously
in biological systems due to cellular compartments and
bacterial or viral envelopes. Indeed, confinement affects
polymer conformation and induces conformational tran-
sitions as shown by the present work concerning semi-
flexible polymer rings. As an omnipresent form for DNA
[6] and as a new nano-biomaterial building block [7, 8],
semiflexible polymer rings are recently an object of grow-
ing interest. Especially biopolymer’s resistance against
bending on length scales of their persistence length lp,
their semiflexibility, turns them into an interesting ma-
terial, as the degree of overall bending can be tuned by
changing their absolute length L. The internal struc-
ture of polymers can be well characterized by the “self-
crossing number”, the writhe [9, 10] or by correlation
functions along the polymer backbone [11]. Thus, we can
assess conformational transitions due to confinement.

In this work we investigate the internal structure of
semiflexible polymer rings in spherical confinement estab-
lished by an impenetrable shell. Employing Monte Carlo
simulations we compare unconfined polymer rings and
polymer rings restricted by different degrees of spherical
confinement over the full range of flexibilities. A con-
formational transition is observed to arise in the semi-
flexible regime within weak confinement, non-existing in
the stiff regime; the mean absolute writhe exhibits an
sharp growth to up to two and a half times the uncon-
strained value. Evaluation of the writhe distribution for
different flexibilities reveals from the semiflexible regime
onwards a tremendous increase of polymer configura-

∗Authors contributed equally.
†Electronic address: frey@lmu.de

(a) (b) (c)

Wr = 0 Wr = 1Wr    0.5≈

FIG. 1: Writhe of exemplary polymer ring conformations. (a)
When no angular perspective reveals any self-crossings as for
a fully symmetric ring the writhe is zero. (b) Writhing occurs
when for example an ellipse is twined about itself, here to the
degree of Wr ≈ 0.5. (c) A point of self-intersection increases
the writhe by one as in the case of this planar figure eight
shaped trajectory.

tions with writhing numbers specifically centered around
|Wr| = 0.8 within confinement. Finally, the tangent-
tangent correlation discloses the conformational transi-
tion to figure eight shaped polymer rings due to spherical
confinement.

Semiflexible polymers are well described as a con-
catenated chain of N segments, with tangent vector
t, where the range of the angle between successive
bonds is narrowed by the elastic bending energy E =

NkbT (lp/L)
∑N
i=0(1 − titi+1) in the worm-like chain

model [12]. The flexibility L/lp therein determines the
stiffness against bending undulations provoked by ther-
mal energy kBT . A polymer ring is considered stiff, i.e.,
dominated by elastic forces, for flexibilities up to L/lp ≈
5 [8, 13], beyond semiflexible behavior smoothly crosses
over into the entropic, flexible regime for large L/lp.
Polymer conformations are investigated by a Metropolis
Monte Carlo simulation, where successive configurations
of a closed polygon are generated by crankshaft moves.
To collect uncorrelated data only every 105th of succes-
sive configurations is considered. Polymer conformations
that violate the spherical confinement are excluded when
sampling a set of 105 uncorrelated polymer configura-
tions. The statistical error of these ensembles lies within
the ranges of the symbols of all data shown.

The internal structure of polymers can be assessed by
the correlation of two tangent vectors separated a dis-
tance s ∈ [0, L] along the polymer backbone 〈t(s)t(0)〉.
This observable provides details about the relative orien-
tation of the whole contour line of a polymer, however,
it fails to reflect the position of polymer segments with
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regard to each other in space. This aspect is considered
by the writhe Wr [14] , which measures the degree of
coiling of a polymer by counting the number of crossings
of the polymer with its own axis. Projecting a three-
dimensional polymer trajectory into a plane defined by a
normal vector n results in a two-dimensional curve, which
may exhibit crossings. Counting these crossing with ±1
according to their handedness and averaging the number
of crossings over all angular perspectives given by all pos-
sible normal vectors n defines the writhe Wr of the three-
dimensional trajectory. Hence, a two dimensional curve
always exhibits integer writhing numbers, i.e., Wr = 0
for a circle and Wr = 1 for a figure eight shaped trajec-
tory, while three dimensional objects in general are char-
acterized by a real number as shown in Fig. 1. As only
the orientation in which a trajectory is traced decides if
the writhe is positive or negative, any writhe distribu-
tion is symmetric about the origin with the mean writhe
being equal to zero. Insights are therefore gained when
measuring the mean absolute writhe 〈|Wr|〉 of a writhe
distribution. To calculate the writhe of polymer configu-
rations generated by Monte Carlo simulations we follow
Klenin and Langowski [15]. Originally, the writhe has
been employed to characterize the supercoiled state of
nicked DNA [16, 17], recently, it has been extended as a
measure for the increased complexity of random polygons
due to knotting in strong confinement [18]. Our work
considers non-nicked, i.e., zero linking number, polymer
rings in the semiflexible regime, where knotting is pre-
vented by high bending energy cost. In addition, the con-
finement imposed in our study is very weak: The radius
R of the restricting sphere is greater or equal than the
contour radius Rc = L/2π of the polymer’s correspond-
ing rigid ring. Thus, the writhe is expected to reflect
only the increase in undulations by a linear growth with
flexibility L/lp, as predicted for stiff, unconfined polymer
rings [19, 20].

Despite the weak confinement considered, the mean
absolute writhe of semiflexible polymer rings displays
a strong increase proportional to the degree of confine-
ment for flexibilities L/lp > 4 as shown in Fig. 2. The
mean writhe grows roughly linearly for stiff, unconfined
polymer rings[23] in agreement with previous considera-
tions [19, 20]. Irrespective of the degree of confinement
all curves collapse on the unconfined state in the very
stiff regime up to L/lp ≈ 3. From there on the curves
of confined polymer rings start to deviate from the un-
constrained case, with strongest confinement rising first.
The increase in writhe is very sharp and only saturates on
an almost linear growth for higher flexibilities. Towards
even higher flexibility we expect the absolute writhe to
grow with the square root of polymer length

√
L as found

for the flexible limit of random polygons in spherical con-
finement [21]. The deviation in mean absolute writhe
between the different degrees of confinement decreases
slightly with growing flexibility.

To understand the sharp increase in mean absolute
writhe for confined polymer rings we compare the full

 0.0
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FIG. 2: Mean absolute writhe versus flexibility L/lp for un-
confined polymer rings R = ∞ and polymer rings in weak
spherical confinement R = 1.3Rc, . . . , 1.0Rc of the order of the
extent of the polymer’s corresponding rigid ring Rc = L/2π.
From flexibilities of about L/lp ≈ 4 onwards the confinement
induces a sharp increase in absolute writhe proportional to
the degree of confinement.

distribution of the absolute writhe in both extreme cases
considered, unconfined and spherical confinement with
radius R = Rc as shown in Fig. 3. The writhe distribu-
tion of a free semiflexible polymer ring is monotonically
decaying from Wr = 0 continuously spreading out with
increasing flexibility [19].
In contrast, the writhe distribution of a confined polymer
ring displays a very different behavior. While the writhe
distributions decay from Wr = 0 in the stiff limit like
in the unconfined case, the distributions from L/lp ≈ 3
onwards become bimodal exhibiting a second maximum
at |Wr| = 0.8. This maximum gains statistical weight at
the expense of the first at Wr = 0 as flexibility grows. At
sufficiently high flexibilities both maxima have spread out
so much that they overlap to form a plateau that extends
up to the maximum at |Wr| = 0.8 before the writhe dis-
tribution decays for large absolute writhe. These qualita-
tive observations can also be quantified by extracting the
contributing polymer configurations as shown in Fig. 4.
Assuming that free P∞(|Wr|) and confined PRc

(|Wr|)
polymer ensembles show the same decay from Wr = 0,
the contributing configurations from this decay can be
subtracted from the full absolute writhe distribution of
confined polymer rings by PRc

(|Wr|)− PRc (0)
P∞(0) P∞(|Wr|).

This discloses the underlying contributing polymer con-
formations, in particularly a distribution centered around
〈|Wr|〉 = 0.8 that is well approximated by a Gaussian
N (µ, σ2). Table I displays for different flexibilities the
total number of configurations and the variance of the
Gaussian distribution that was fitted to extract this in-
formation from the data. In addition, at lower absolute
writhe Gaussian shaped distributions are observed cen-
tered around 〈|Wr|〉 = 0.17 for L/lp = 3 then shifting
to 〈|Wr|〉 = 0.23 for L/lp = 4 and 〈|Wr|〉 = 0.3 for
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FIG. 3: Distribution of the absolute writhe for an unconfined polymer ring (a) and a polymer ring within weak spherical
confinement of radius R = Rc (b). Displayed are integer flexibilities from L/lp = 1 to L/lp = 10. The writhe distribution is
a monotonically decaying function of the absolute writhe for unconfined semiflexible polymer rings. In contrast, in spherical
confinement polymers becomes bimodal by developing in addition to the maximum at Wr = 0 a well visible local maximum
around |Wr| = 0.8 from L/lp ≈ 3 onwards. For sufficiently high flexibilities the two maxima overlap to form a plateau extending
up to |Wr| = 0.8.

4 < L/lp ≤ 6. Their percentage amounts at most to
20% and decays strongly for progressing flexibility. The
distribution centered around 〈|Wr|〉 = 0.8 is fixed in its
mean only spreading in variance for increasing flexibili-
ties. Moreover, the absolute percentage of polymer con-
formations centered around 〈|Wr|〉 = 0.8 grows up to
over 50% very slowly decaying in the flexible regime for
L/lp > 8. Thus, confinement provokes at flexibilities
larger than L/lp ≈ 3 additional writhed polymer con-
figuration whose portion amounts up to over 50% of all
states.

As a first step towards an understanding of these obser-
vations we consider overall polymer shape. In the limit-

PRc (|Wr |)
PRc (|Wr |) − PRc (0)

P∞(0)P∞(|Wr |)

N (0.8, 0.25)

N (0.3, 0.17)

L/lp=6

PRc (0)
P∞(0)P∞(|Wr |)

 2 0  0.5  1  1.5
|Wr |

P
(|W

r|)

 0.00
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 0.04
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 0.08

 0.10

 0.12

 0.14

FIG. 4: Polymer conformations contribution to the writhe dis-
tribution of a confined polymer ring PRc(|Wr|) exemplarily
shown for L/lp = 6. Subtracting from the confined distribu-
tion the decay in writhe from Wr = 0 as exhibited by the
unconfined writhe distribution P∞(|Wr|) reveals additional
states, which can be attributed to two normal distributions
N (µ, σ2) centered at |Wr| = 0.3 and |Wr| = 0.8.

ing case of zero flexibility a polymer ring is a rigid planar
ring with zero writhe. For slightly higher flexibility the
first bending mode deforms the free polymer ring into a
planar, elliptical shape [13], whose axes grow and shrink,
respectively, with the square root of the flexibility, up to
L/lp ≈ 5. Surely, the writhe of any truly two-dimensional
ellipse is zero as well. However, thermal fluctuations do
excite small deviations out of the plane such that the
actual ensemble of free, stiff polymer rings does exhibit
crossings in a small fraction of angular perspectives and,
hence, displays a small writhing number. As flexibility
grows the writhing number slowly increases.
In contrast, even weakly confined polymer rings cannot
form the desired elliptical configuration of free polymers
as soon as the major axis of the ellipse exceeds the spher-
ical confinement. Instead they buckle into a banana-
like ellipse [22]. Any symmetrically buckled ellipse again
has zero writhe as the mirror plane through the ellipse’s
apices ensures that any crossing observed from a certain
perspective cancels in the summation with a crossing of
the opposite sign from the mirror perspective. Hence,
very stiff, weakly confined polymer rings only show a
small writhe due to undulations about the buckled curve
as in the unconfined case. In both cases the absolute
writhe grows with flexibility as the undulations increase
with L/lp; see Note [23]. Thus, writhe distribution and
mean absolute writhe collapse in the stiff regime.

To understand the structural transition which is pro-
voked by the spherical confinement beyond the stiff

L/lp 3 4 5 6 7 8 9 10

% 3 18 34 47 54 55 50 49

σ2 0.16 0.19 0.21 0.25 0.31 0.35 0.40 0.47

TABLE I: Percentage and variance σ2 of structural distinct
polymer states centered around 〈|Wr|〉 = 0.8. Error of 3% in
percentage and 0.03 in variance.
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FIG. 5: Mean tangent-tangent correlation 〈t(s)t(0)〉 along the whole polymer backbone s ∈ [0, L] for a free (a) and a spherically
confined R = Rc (b) semiflexible polymer ring over flexibilities L/lp = 0, . . . , 10. The correlation of an unconfined polymer ring
smoothly crosses over from the tangent-tangent correlation along an “ellipse” in the stiff regime to an exponential decay with
periodic boundary conditions in the flexible limit. In contrast the correlation of a spherically confined polymer ring displays
the correlation of a “figure eight” shaped trajectory from L/lp > 3 onwards, only slowly saturating for large flexibilities.

regime the tangent-tangent correlation 〈t(s)t(0)〉 along
the polymer backbone s ∈ [0, L], is considered in the
cases R = ∞ and R = Rc, see Fig. 5. The symme-
try of the correlation function about the point of anti-
correlation situated at half the distance along the poly-
mer backbone s = L/2 arises due to the topology of a
ring. For example, the tangent-tangent correlation of a
rigid ring yields 〈t(s)t(0)〉 = cos(2πs/L). In the event
of no confinement the elliptically shaped polymers in the
stiff regime L/lp < 5 display a tangent-tangent corre-
lation that resembles the correlations along an elliptical
trajectory in agreement with analytic calculations [24].
In contrast to the correlations of a real ellipse the anti-
correlations do not reach down to 〈t(L/2)t(0)〉 = −1
due to fluctuations which distort the direction of mir-
ror polymer segments half the backbone distance apart.
At higher flexibilities beyond the stiff regime the ellip-
tical character is lost as higher modes crumple up the
polymer configuration. This fact is also marked by a
change in the initial curvature of the correlation func-
tion from convex to concave. With increasing flexibility
the topological constraint becomes locally less and less
important, thus the correlation function gradually ap-
proaches a symmetric exponential decay similar to an
open semiflexible polymer. Quite strikingly the tangent-
tangent correlations for all flexibilities intersect at s/L =
0.2744 . . . , 0.7744 . . . as calculated from the analytic re-
sult for the correlation function in the stiff regime pre-
sented in Note [24]. This suggests a certain symmetry
in the undulations excited in an unconfined semiflexible
polymer ring, they all seem to be superpositions of those
generated in the stiff limit. This symmetry is, however,
broken for spherically confined polymer rings.
In the very stiff regime up to L/lp ≈ 3 the tangent-
tangent correlation of a polymer ring in spherical con-
finement of R = Rc displays an elliptical character, but
compared to the unrestricted case the anti-correlation is
notably less pronounced. As the confined polymer ring

is forced to extend in three dimensional space due to
buckling, the probability for deviating directions between
mirror segments along the polymer backbone is consid-
erably higher than for an unconstrained planar poly-
mer. Beyond the stiff range the tangent-tangent correla-
tion reveals the internal structure corresponding to the
new polymer configurations induced by confinement. For
L/lp > 3 the correlation function displays decay and in-
crease with twice the frequency as observed for elliptically
shaped polymers. In fact, a figure eight shaped trajectory
exhibits a correlation function of that frequency given
by 〈t(s)t(0)〉 = cos(4πs/L). Indeed an elliptical trajec-
tory that is twined about its longest axis could account
for both the correlation function and a writhing number
around 〈|Wr|〉 = 0.8. The states of smaller writhe are
again hidden in the full distribution due to their small
percentage in number. The figure eight correlation be-
comes most pronounced around L/lp = 7, when the per-
centage of 〈|Wr|〉 = 0.8 is largest. For higher flexibilities
the function smoothes out, as the distribution of states
broadens in accordance with observations from the writhe
distribution.

Altogether our observations confirm that weak spher-
ical confinement imposed by an impenetrable shell in-
duces a conformational transition to polymer rings above
a certain flexibility. Very stiff polymer rings below L/lp ≈
3 exhibit very symmetric conformations whose mean tra-
jectory obeys zero linking number. Only small undu-
lations around this mean trajectory yield a finite mean
writhe increasing identically with flexibility for weakly
confined and unrestricted polymer rings. Differences in
internal structure are only visible by the tangent-tangent
correlation reflecting the planar configuration of uncon-
fined and buckled three-dimensional state of confined
polymers.
Increasing flexibility further beyond this stiff regime in-
duces more and more undulations. For a free polymer
ring these lead to more and more crossings in projec-
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tion planes broadening the writhe distribution. Crum-
pled configurations do not exhibit the symmetry of an
elliptical trajectory any more, which in the stiff limit
provoked cancelations in the sum over crossings, hence
yielding smaller writhing numbers. Thus, beyond the
stiff regime the mean absolute writhe shows a steeper
increase with flexibility. In confinement, however, it is
not only the increase in undulations that raises the mean
writhe with flexibility. In addition, there is a qualitative
change in the writhe distribution. From L/lp ≈ 3 on-
wards the writhe distribution becomes bimodal as poly-
mer configurations with a writhing number distinctly dis-
tributed around 〈|Wr|〉 = 0.8 start to develop. Also
the tangent-tangent correlation shows from this threshold
onwards the characteristics of a figure eight trajectory.
We, therefore, deduce that confinement induces a con-
formational change to figure eight shaped polymers with
〈|Wr|〉 = 0.8. Additional polymer states centered around
〈|Wr|〉 = 0.17, 0.23, 0.3 are few in number and only tran-
siently occur between 3 ≤ L/lp ≤ 6. Configurations cen-
tered around 〈|Wr|〉 = 0.8 grow strongly in percentage
with flexibility and only slowly decay from L/lp > 8 on-
wards. In fact, the first bending mode induces an ellipti-
cal polymer form that has to buckle transversely within
spherical confinement. Thus, it seems plausible that an
increase in flexibility and, hence, in ellipse eccentricity
but also in possible curvature results in a polymer con-
formation, where the free energy to bend a polymer into
a writhed state is equal or less than the free energy of
stronger transverse bending. Therefore, a polymer ring
chooses to intertwine with itself as an alternative way to

fit inside a sphere. This picture is also in agreement with
the subsequent and less pronounced increase in mean ab-
solute writhe for larger cavities. In larger confinement the
energy for buckling becomes comparable to the bending
energy paid for writhing at higher flexibility and also to
less extend. It is, however, quite remarkable that the
structural transition selects specific writhing numbers.
Already the tangent-tangent correlation of free polymer
rings suggests a selection of bending modes, which might
be extended to a selection of “writhing modes” within
confinement. Surely regarding the specific writhing num-
ber the exact geometry and strength of confinement en-
ters.
In summary, our work discloses the occurrence and kind
of conformational transitions in semiflexible polymers
due to an impenetrable shell. The probability curve
and the absolute quantity of the restructured state for
a given flexibility is accessible from the writhe distribu-
tion presented. This turns the conformational transition
due to confinement a predictable event to be employed
in in vitro investigations. Thus, polymer conformations
influence on gene regulation or controlled dynamics of
conformational transitions due to administered changes
in confinement become accessible opening up new per-
spective both concerning the study of biological process
as well as the invention of biomimetic devices.
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periodic boundary conditions then yields, E =
kBT2π2lp/L

∑∞
n=2

{
n2|δϕ2(n)|+ (n2 − 1)|δϑ2(n)|

}
.

Applying the equipartition theorem the cor-
relations of the Euler angles are calculated
〈δϕ(s)δϕ(0)〉, 〈δϕ(s)δϕ(0)〉. Transferring the rea-
soning of Panyukov and Rabin [9] forecasting

〈Wr2〉 =
∑N
n=2 n

2{〈δϕ2(n)〉〈δϑ2(n)〉 − 〈δϕ(n)δϑ(n)〉2},
the second moment of the writhe fluctuations of a stiff
polymer ring are calculated to grow with the square of
the flexibility 〈Wr2〉 = 3

16π4 ( L
lp

)2.

[24] Employing the calculations of Note [23] the corre-
lation functions of the tangent vector 〈t(s)t(0)〉 are

calculated based on its definition in Euler angles
t(s) = (sinϑ(s) sinϕ(s),− sinϑ(s) cosϕ(s), cosϑ(s)). Ex-
panding the tangent product for small angles δϕ and δϑ
and inserting the correlations of the relative Euler an-
gles then yields 〈t(s)t(0)〉 = cos(2πs/L)[1+ 1

2π2
L
lp

(g(s)−
g(0)− f(0))] + 1

2π2
L
lp
f(s) with g(s) = (π − 2πs/L)2/4−

π2/12−cos(2πs/L) and f(s) = 1
4
[2+cos(2πs/L)+2π(2s−

1) sin(2πs/L)]. Perfect agreement with Monte Carlo sim-
ulation data is obtained for flexibilities up to L/lp < 5
thus describing the full stiff limit.
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Two-dimensional semiflexible polymer rings are studied both by imaging circular DNA adsorbed
on a mica surface and by Monte Carlo simulations of phantom polymers as well as of polymers
with finite thickness. Comparison of size and shape of the different models over the full range of
flexibilities shows that excluded volume caused by finite thickness induces an anisotropic increase
of the main axes of the conformations, a change of shape, accomplished by an enhanced correlation
along the contour.

DNA is one of the most versatile building blocks for
the self-assembly of nanoscale structures [1]. The com-
plementary base-pairs enables almost unlimited possibil-
ities in designing highly tailored constructs [2]. But even
without specially designing sequences for specific base-
pairing, biopolymers such as DNA or cytoskeletal fila-
ments self-assemble in their natural environment. DNA
occurs both in linear and circular forms and condenses
into toroidal structures [3, 4]. Actin assembles into fil-
aments and bundles [5] and also builds ring [6–8], and
racket like [9, 10] complexes. From a geometrical per-
spective filaments denote the simplest building blocks.
The next level of complexity is reached when topological
constrained forms as in rings arise. Considering poly-
mer rings as building blocks their size and shape are of
eminent importance. Both size and shape strongly de-
pend on two internal biopolymer properties: the ability
to bend and the effective diameter of the polymer. In-
deed the shape of polymer rings has been investigated
theoretically regarding the influence of the polymers flex-
ibility L/lp, given by the ratio of total polymer length L
and its persistence length lp [11]. However, our experi-
mental observations show that the previously neglected
finite thickness not only regulates the absolute size [12]
of a polymer configuration but also its shape. This ob-
servation is especially important in confined geometries
utilized in the preparation of biopolymer assemblies of
higher order [10].

Coarse grained polymer models rely on phantom
chains, which allow segments to overlap. To describe
real polymers with finite thickness, the excluded volume
of a polymer chain is accurately accounted for by tube
models [13], where the tube imposes a hard core poten-
tial, see Fig. 1. To access the effects of finite thickness
and topology experimentally in a well-defined setup, we
investigate circular DNA adsorbed on a mica surface,
which has previously been shown to obey two dimen-
sional worm-like chain statistics [14, 15]. Our data ver-
ifies Flory’s predicted growth in size due to polymer’s
finite thickness [12], as has also been accomplished ex-
perimentally in different contexts [16–18] and theoreti-

cally by self-consistent and renormalization group theo-
ries [19]. Since DNA can be produced in different lengths,
it serves as a model system to investigate the shape over
the full range of flexibility, which so far has only been
forecasted theoretically for phantom polymers in three
dimensions [11].

Here we study the effects of excluded volume caused by
finite thickness on semiflexible polymer rings by imaging
circular DNA on a mica surface and performing Monte
Carlo simulations of semiflexible phantom polymers and
polymers with finite thickness. Calibrating the polymer’s
diameter d by comparing the tangent-tangent correla-
tion, we obtain good quantitative agreement between ex-
periments and simulations with diameter estimates from
polyelectrolyte theory. The finite thickness leads to an
apparent stiffening and an increase of the principal axes
of the polymers configurations as observed by the mean
square radius of gyration. In contrast to Flory’s pre-
diction, the asphericity as a shape measure proves the
growth to be anisotropic, resulting in a change of shape.

The DNA rings without superhelicity were produced
from nicked plasmids pSH1, pBR322, and pUC19 with
flexibilities of L/lp = 40, 30, and 18.3, respectively. Plas-
mid pUC19 was treated with restriction enzyme RsaI to

p

polymer with �nite thickness

L/l  =18.3

phantom polymer(A) (B)

FIG. 1: Simulation snap-shot of a phantom polymer (A)
and a polymer with finite thickness (B) on a plane. Phan-
tom polymers bear overlaps and kink-like bending resulting
in smaller configurations with more aspherical shapes than
polymers with finite thickness.
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produce three different linear fragments, and using T4
DNA ligase, minicircles of different flexibilities were ob-
tained L/lp = 12.4, 4.6. In order to access the trajec-
tory of the DNA rings by Atomic Force Microscopy, the
sample was deposited on mica, see supplementary ma-
terial for details. Previous analysis of us [15] proofed
the tangent-tangent correlation and the mean square ra-
dius of gyration to obey two dimensional statistics of the
polymer rings.

For the Monte Carlo simulation of a semiflexible poly-
mer rings with persistence length lp, preceding simula-
tion methods were customized to describe two dimen-
sional polymers and extended to incorporate finite thick-
ness as outlined in the supplementary material. In the
simulations with finite thickness configurations including
intersections of tubes of the diameter d around each seg-
ment are rejected. Uncorrelated data sets are obtained
by taking configurations every 106 Monte Carlo steps for
phantom polymers and every 108 steps for simulations
with finite thickness. Large ensembles are sampled such
that the statistical error based on a normal distribution
of the observable is of the size of the symbols in all figures
shown.

Semiflexible polymers are well described by the worm-
like chain model, where the polymer is modeled as an
elastic rod with bending modulus κ [13]. Represent-
ing the polymer by a differential space curve r(s) of
length L parametrized by an arc length s, its statis-
tical properties are determined by the elastic energy

H = κ/2
∫ L
0
ds [∂t(s)/∂s]

2
, where t(s) = ∂r(s)/∂s is

the tangent vector. The persistence length lp as a
measure of the stiffness is defined by the initial decay
of the mean tangent-tangent correlation 〈t(s)t(s′)〉 =
exp(−|s − s′|/lp), given by lp = 2κ

kB T for a polymer em-
bedded in two dimensions.

Size and shape of a polymer are comprised in the radius
of gyration tensor,

Qij =
1

L

∫
ds ri(s)rj(s)−

1

L2

∫
ds ri(s)

∫
ds̃ rj(s̃) , (1)

whose eigenvalues λ1 and λ2 define the spatial extent of
the polymer along its principal axes. The squared radius
of gyration measures the total size of an object and hence
is given by the sum of the two eigenvalues,

R2
g = λ1 + λ2 . (2)

The criterion for the shape of a polymer is the asphericity,
which is given by the normalized variance of λ1 and λ2
[20], yielding in two dimensions,

∆ =
(λ1 − λ2)2

(λ1 + λ2)2
. (3)

The asphericity ranges between 0 and 1; ∆ = 0 for the
most spherical object in two dimensions, the ring, and
∆ = 1 for the most aspherical configuration, a rod.

t(
s)
t(
s
)

|s − s |/ L

L/ lp = 18.3

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

phantom
self-avoiding

finite thickness
pUC19

FIG. 2: Tangent-tangent correlation of a semiflexible polymer
ring for different theoretical models and for DNA (pUC19).
The finite thickness is calibrated to d/lp = 0.13. Incorpo-
rating the same persistence length models with higher self-
exclusion show enhanced correlations.

To model real polymers, two internal parameters are
required, the persistence length lp and the diameter d of
the filament. For the persistence length of DNA we use
the widely accepted value of lp = 50nm. The effective
diameter of DNA, being a polyelectrolyte, changes in a
predictable manner in response to its surrounding ionic
solution, as it has been determined theoretically [21] and
experimentally [22]. For our experimental conditions the
ratio of diameter to persistence length is d/lp = 0.13.
To calibrate the simulation parameters to the experi-
mental data, the tangent-tangent correlation is an ideal
observable reflecting the statistics along the whole con-
tour of the polymer. The agreement between simulation
with finite thickness and experimental data is exempli-
fied for the tangent-tangent correlation for a flexibility
of L/lp = 18.3 considering plasmid pUC19 in Fig. 2.
Included in the graph are also results for a phantom
polymer, where self-intersecting configurations are per-
mitted, and for reasons of comparison the trivial limit
of vanishing thickness d→ 0 denoted self-avoiding poly-
mer. In the latter case, only intersections of the polymer
backbone are rejected. This limit does not describe the
experimental data quantitatively as good as the simu-
lations with a thickness of d/lp = 0.13 (7% increase of
the reduced chi-square). Hence, the diameter estimate
based on polyelectrolyte theory yields good quantitative
agreement.

In the tangent-tangent correlation function of Fig. 2,
two effects are evidenced if comparison is made between
a polymer with finite thickness and a phantom chain of
same persistence length (solid and dashed line in Fig. 2,
respectively), one due to the finite thickness of the poly-
mer and the other to the circular topology. On short
distances, the finite thickness restricts the available con-
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FIG. 3: Squared radius of gyration
〈
R2

g

〉
compared to the size

of the corresponding rigid ring R2
c = (L/2π)2 vs. L/lp. The

influence of finite thickness arises in the semiflexible regime
after an effective stiffening in accordance with analytical pre-
dictions for stiff rings. In the flexible regime, the increase in
size is required to model the experimental data. Error bars
indicate the statistical errors.

formational space, thus increasing the directional correla-
tion. In order to respect the circular topology, the corre-
lation function must become more negative on distances
s ≈ L/2. In summary, the polymer with finite thickness
appears effectively stiffer.

Similarly, this effective stiffening also affects the over-
all size of the polymer as measured by the squared radius
of gyration

〈
R2
g

〉
. In Fig. 3

〈
R2
g

〉
normalized with the ra-

dius of gyration of a rigid circle, namely
〈
R2
g

〉
/R2

c , is
plotted versus the flexibility parameter L/lp for the con-
sidered models together with the data. Three regimes are
discerned; in the stiff regime all simulation data for the
radius of gyration normalized by total polymer length
versus flexibility L/lp follow the predicted linear decay
[23]. The stiff regime extends up to high flexibilities
compared to open chains. For phantom polymers this
effect can be accounted for by an effective stiffening due
to the topological constraint of a ring [23]. For poly-
mers with finite thickness the squared radius of gyration
follows the analytic result for the stiff limit up to even
higher flexibilities of approximately L/lp = 12 indicating
a further effective stiffening due to the polymer’s thick-
ness i.e. as a result of excluded volume. This is in agree-
ment with the observation of enhanced correlations in
the tangent-tangent correlation. The semiflexible regime
is a crossover region, where departing from the analyt-
ically determined stiff limit, phantom polymers show a
linear decay as flexibility increases suggesting an initial
step by step excitation of higher modes. In contrast, for
polymers with finite thickness these initial higher modes
are suppressed, resulting in a direct transition from the
linear decay in the stiff limit to the power law decay in

the flexible regime. Such polymers with finite thickness
deviate from the stiff limit to larger sizes as is also ob-
served for three-dimensional phantom polymer rings [23].
Finally, in the flexible regime both models have substan-
tially different radii of gyration. In contrast to phantom
polymers, polymers with finite thickness show notably
larger sizes recovering Flory’s swelling effect. The scaling
exponent agrees with Flory’s predicted exponent (data
not shown). The segments of phantom polymers overlap
strongly to maximize entropy as flexibility permits. Pre-
cisely those modes are, however, forbidden for polymers
with finite thickness yielding a larger mean squared ra-
dius of gyration. Flory’s argument oversimplifies a semi-
flexible chain of segments to an ideal gas and assumes
that all chain segments overlap with an equal probability
with each other. This results in a growth in size that
is equally large along all principal axes of the polymer.
Hence, Flory’s description predicts an isotropic increase
of the principal axes, which will be tested below when
considering the asphericity. The experimental data in
Fig. 3 are in agreement with the finite thickness polymers,
providing solid evidence that a description of DNA as a
semiflexible polymer with persistence length lp = 50 nm
and effective diameter d/lp = 1.3 is a faithful description
of DNA conformations. Indicated in the graph (Fig. 3)
are only statistical errors of a Gaussian distributed ob-
servable as a lower estimate of the statistical error. Fur-
thermore, systematic errors may arise, first, due to the
limited resolution of the AFM images, and second, due
to the fact that the minicircles are not nicked and may
thus experience a slight distortion.

In order to test Flory’s prediction, the asphericity 〈∆〉
(Eq. 3) is plotted in Fig. 4 as a function of the flexibil-
ity parameter L/lp and the three regimes appear again.
Starting from a ring configuration with ∆ = 0 for infinite
stiffness L/lp = 0, the asphericity grows linearly for both
models in the stiff region due to the fact that polymers
have an elliptical shape of increasing eccentricity, as it has
been recently predicted by scaling arguments [11]. Self-
exclusion plays no role in these configurations because
the segments are well separated from each other due to
the high bending energy of stiff polymers. The increase in
asphericity is continued in the semiflexible regime until it
starts to decrease slowly for flexible polymers, clarifying
ambiguous simulations [24, 25]. For phantom polymers
the asphericity decreases down to 〈∆〉 = 0.2625 in the
Gaussian limit [26]. The three regimes of the phantom
polymer resemble results for three-dimensional phantom
rings, which, however, show a more pronounced decrease
in asphericity in the flexible regime as the third spatial
dimension enables more compact configurations.

Focussing on the magnitude of the asphericity in the
two dimensional models of phantom polymers and poly-
mers with finite thickness, we find that the curves com-
mence to deviate from each other in the semiflexible
regime, showing fundamentally different values of as-
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FIG. 4: The asphericities of the two models deviate in the
semiflexible regime due to the influence of finite thickness.
Through enhanced correlations between adjacent segments
and prominent growth of the minor principal axis forced by
pushing overlapping segments apart finite thickness makes the
elliptical shape of ring polymers rounder.

phericity in the flexible region. Hence, the ratio of the
principal axes is strikingly different and the growth in size
induced by the polymer’s thickness is anisotropic along
the principal axes yielding more spherical configurations
compared to a phantom polymer. This is opposite to
simulation results for open random walks in three di-
mensions, where self-avoidance has been found to lead to
slightly more aspherical configurations [27, 28]. In fact
in three dimensions, a random walk is rarely intersect-
ing its own trajectory. Then our present work suggests
the remaining governing impact of self-avoidance in three
dimensions to be an effective stiffening. Such a stiffen-
ing yields more aspherical shapes for open semiflexible
polymers in three dimensions.

Confinement, like in the present case of two dimen-
sional ring polymers, on the other hand, forces polymer
segments to overlap much more frequently. Concerning
two dimensional polymer rings, the notion of an aspheri-
cal shape indicates that one principal axis is much longer
than the other like in an ellipse. In the apices of the el-
lipse, the segments are prone to overlap with neighboring
segments on a local level, while segments in the convex
part of the ellipse tend to overlap with segment being
separated approximately half the total length along the
contour. The finite thickness now effectively stiffens the
polymer inducing less bending at the apices and it in-
creases the minor principal axis by pushing segments in
the convex region apart, see Fig. 1. This results in a
more spherical configuration for polymer rings with fi-
nite thickness, as observed in Fig. 4. As the asphericity
distribution is highly skewed our statistical errors un-
derestimate the actual error justifying slight deviations
between our sets of data. Considering two dimensional

polymer rings the good agreement between simulations
and experimental data over the broad range of flexibili-
ties manifests the role of finite thickness and its effects
of effective stiffening and anisotropic change in shape.

In conclusion, we have analyzed the impact of excluded
volume caused by the finite thickness of polymer rings in
two dimensions over the whole range of flexibility, both
by observing DNA rings on mica surface and by com-
puter simulations of phantom and finite thickness poly-
mers. We find that the experimental data can only be
explained by the latter, where each segment of the poly-
mer is represented by an impenetrable tube. From the
comparison of the different models, we determine two
effects of finite thickness. Firstly, tangent-tangent cor-
relation shows an enhanced correlation due to the steric
constraints of the neighboring segments, leading to an
effective stiffening observed in the semiflexible regime of
the mean-square radius of gyration. Secondly, in the
flexible regime Flory’s swelling is recovered. However,
the asphericity discloses an anisotropic change in shape.
Manifesting these properties should enable a new under-
standing of the conformation statistics of biopolymers
such as DNA and F-actin. A basis on which biopolymer
assemblies can be designed to develop new nanomateri-
als.
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Experimental Preparation

Atomic force microscopy was used to image DNA molecules of different lengths. The three longest

chains with with flexibilities L/lp=18.3, 30 and 40 were standard plasmids pUC19 (2686 bp),

pBR322 (4361 bp), and pSH1 (5930 bp). The shorter chains with L/lp=12.4 and 4.6 were gener-

ated by using T4 DNA ligase to circularize DNA fragments (676 bp and 1769 bp) obtained from

the restriction of pUC19 by endonuclease RsaI. The three largest rings were nicked to suppress any

supercoiling σ . The two mini-circles were not nicked but their short size ensures that most of them

are at their elastic energy minimum without supercoiling σ = 0. pUC19 and pBR322 plasmids as
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well as enzymes were purchased from Fermentas, plasmid pSH1 was provided by S.M Lewis. All

DNA preparations were diluted in 1 mM Tris-HCl buffer, pH 7.8, to a final DNA concentration of

1 µg/ml, and MgCl2 was added in the DNA solution to a final concentration of 5 mM. For imaging,

10 µl solution were deposited for 10 minutes on a freshly cleave mica surface, rinsed with 3 ml

deionized water, and dried under air flow. Images were taken with a Nanoscope III (Veeco) oper-

ated in tapping mode (150 to 300 kHz) in air with silicon ultrasharp non-contact tips of a nominal

tip radius of <10 nm (NT-MDT Co., Zelenograd, Moscow, Russia). The images were only flat-

tened using the Nanoscope III program. Finally, the two dimensional coordinates of the molecules

were recorded using the tracing module of Ellipse.1 The tracked positions~ri, i ∈ [1,N], along the

polymer’s contour are then used to calculate size and shape parameters based on the discretized

version of the radius of gyration tensor

Qi j =
1
N

N

∑
i=1

~ri~ri−
1

N2

N

∑
i=1

~r j

N

∑
i=1

~r j. (1)

Simulations

To sample the conformations of two dimensional, semiflexible ring polymers Metropolis Monte

Carlo simulations is employed. The polymer ring of length L and persistence length lp is dis-

cretized as a two dimensional closed polygon of N segments of length a, L = Na, and direction

~ti. The energy associated with each single configuration is given by the discretized version of the

wormlike chain model

H = NkBT
lp

L

N

∑
i=1

(1−~ti~ti+1), (2)

with imposed periodic boundary conditions~tN+1 =~t1. The persistence length lp is chosen to be the

established value for DNA of lp = 50nm.

New configurations are obtained by standard crankshaft move2 as follows: Two arbitrary ver-

tices of the polymer are selected randomly. A pivot axis is drawn between these two vertices and

all segments between them are rotated by 180 degrees around the axis. Finite thickness is imple-

2



mented by discarding conformations in which tubes of diameter d around each segment overlap.

The correlation between subsequent polymer configurations is estimated by using the autocor-

relation function for the polymer’s squared radius of gyration

χ(t) =
1

tmax− t

tmax−t

∑
t ′=0

R2
g(t
′− t)R2

g(t)−
(

1
tmax− t

)2
(

tmax−t

∑
t ′=0

R2
g(t + t ′)

)(
tmax−t

∑
t ′=0

R2
g(t)

)
, (3)

resulting in a correlation time of

τ =
χ(0)

χ(tmax)
. (4)

In our simulations the correlation time has been largely overestimated by values of 106 for phantom

chain simulations and 108 for simulations with finite thickness.
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3 Structuring tissue by mechanics and
signals

It is the intriguing puzzle of the development of higher organisms that a single cell, a
fertilized egg, gives rise to a multicellular structure of different cell types arranged to form
organs of specified shape and function. The whole progress of development is a sequence
of coordinated cell proliferation and differentiation making use of development’s toolbox.
The mechanisms include cell division, cell rearrangement, death and growth as well as
change of individual cell shape and cell differentiation. These processes are controlled
by the differential expression of genes generating a cascade of signals, which control cell
division rates and planes, adhesion to cell neighbors, and cell fate. Hence, on the one hand,
development is the result of an ingenious network of feedback in gene expression including
apparent redundancies and negative feedback to turn the whole progress reliable. On
the other hand, purely mechanical forces govern the execution of cell migration, shape and
arrangement. The interplay of both optimized feedback networks and physical laws behind
the mechanics persists throughout development resulting in specified cell fate and function.

A signaling molecule impressing by its multitude of functions and almost omnipotent struc-
turing during the development of plants is the plant hormone auxin. Sites of auxin ac-
cumulation guide plant development from the initial shoot root polarity in the embryo
towards the final positioning of leaves around the stem, also guiding the pattern of veins
within growing leaves [42, 147]. These patterns of auxin are not stationary distributions of
the molecule, rather, the dynamic, directed auxin flow lies at the origin of these patterns.
The direction of auxin flow arises by the oriented, polar accumulation of efflux facilitator
proteins from the PIN family. Only theses PIN proteins enable the successful transport of
auxin from one cell to the next. Now auxin and its own efflux protein PIN are connected
via positive feedback, thereby, auxin induces the polar accumulation of PIN proteins and
thus orients its own direction of flow.
We investigate the character of the feedback between auxin and PIN proteins during the
initiation of vein structures in leaves. The initiation of veins is a processes that can be
abstracted enough to subject its dynamics to a thorough theoretical analysis by means
of non-linear dynamics and pattern formation. Thereby our work characterizes the role
of contributing dynamics and provides both qualitative and quantitative predictions to
assess the character of auxin and PIN feedback and to determine at least estimates of the
governing kinetic parameters.



50 Structuring tissue by mechanics and signals

Mechanical forces most notably govern the cellular structure of adherent tissue. The prime
example of such a tissue of interconnected cells are the monolayers of epithelia. This tissue
type is ubiquitous in animal kingdom as it forms the boundaries of compartments within
organisms. The mechanical forces that orchestrate tissue structure by determining cell
packing geometry, topology, and individual cell shape can be abstracted to three different
kinds [111, 128]: The bulk elasticity of the cell body resisting deformations, the contrac-
tile force by a cortical meshwork of cytoskeleton contracting the cells perimeter and the
adhesive force between cells increasing their contact. Although all process themselves are
highly dynamic at the microscopic level, together they build a homeostatic state that can
be described by the balance of the contributing forces.
We study how these mechanical forces determine cell packing in a tissue model with well-
defined boundary conditions in collaboration with experiments performed by Alicia Piera
Aberola and Anna-Kristina Marel in the group of Joachim O. Rädler, LMU Munich. The-
oretical analysis of the observed cell packing geometries shows that in addition to the
antagonistic action of cell cortex contractility and cell-cell adhesion, elastic forces against
cell shape anisotropy drive cell organization.

3.1 Plant development

The study of developmental processes in plants is particularly interesting as the by far
largest part of organ development takes place after embryogenesis. Therefore, the plant is
already subjected to environmental conditions and evolves without the maternal guidance
of, e.g., an egg shell. Plants exhibit a robust circuit of hormonal signals that orients the
plant axes and guides the initiation and structuring of most plant organs. The model or-
ganism to investigate these developmental processes is Arabidopsis thaliana (Ackerschmal-
wand), see photograph in Fig. 3.1 (G). This small flowering plant has a fast life cycle and
responses well visible to genetic modifications.

The mechanisms of plant development are more limited in contrast to animals as their
cells possess a rigid cell wall which excludes cell movement, rendering differential cell
division and directed cell elongation especially important. Plant growth starts with a single
fertilized egg, first establishing a shoot (apical) versus root (basal) polarity by oriented cell
division [207], see Fig. 3.1 (A). The basal end then goes through a series of highly conserved
cell divisions generating a heart-like outgrowth, see Fig. 3.1 (B). At the tip of the heart
a so-called root apical meristem forms while a shoot apical meristem is established at
the indent of the heart. These meristems at the opposing ends of a plant are the key to
plant development as they constitute undifferentiated tissue that continuously undergoes
cell divisions. Thereby, the shoot apical meristem gives rise to shoots, stalks, leaves and
flowers while roots are generated by the root apical meristem. Plants are an example
where cell fate is believed to be determined by relative position. All organs display a
radial symmetry of tissue types with epidermal cells outmost, followed by ground tissue
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Figure 3.1: Development of the model organism Arabidopsis thaliana. (A) After the first round of
conserved cell divisions the shoot-root direction is established. (B) At the heart stage
several cell divisions later, shoot and root apical meristem are established, that guide
the development of all future organs. (C) Tissue fate is position dependent, radial
identification of tissue type from outmost epidermal to innermost vascular tissue. (D-
F) Successive leaf outgrowth at the shoot apex in spiral order, phyllotaxis. Adapted
from Wolpert et al. [207]. (G) Photograph of a fully grown plant including roots,
rosette leaves and flowers. Courtesy of Karlheinz Knoch, Botanic Garden Karlsruhe.

that encloses vascular tissue as depicted in Fig. 3.1 (C). Also the decision of whether
cells at the tip of the shoot will contribute to lateral outgrowths like leaves or not is
believed to be position dependent. The onset of lateral organs is first visible by bulges at
the shoot, so-called primordia. These form subsequently along a spiral staircase around
the shoot, as observable in the series of sketches of the shoot apex in Fig. 3.1 (D-F).
This highly conserved pattern, termed phyllotaxis, seems to arise from a local inhibition
between emerging primordia causing a specific distance between neighbors [125]. However,
recent investigations suggest a competition for the growth factor auxin to lie at the heart
of phyllotactic patterns [87, 103, 156].

Leaves develop as a lateral outgrowth from a group of founder cells within the peripheral
zone at the shoot apical meristem [43]. Already in the primordium, the first noticeable
swelling, the axes of a leaf are established. An adaxial-abaxial axis from the upper to
the lower surface and a proximal-distal axis reaching from the leaf base to its tip. The
in cross-section crescent shaped primordium continues to proliferate establishing several
layers of tissue that comprise the leaf from lower to upper epidermis. In the simple leaves
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with entire margin observed in Arabidopsis thaliana the proliferation rate is dominantly
uniform throughout the leaf blade [50]. However, cell division rate is suggested to vary for
the formation of leaflets, lobes and marginal serration. Towards the end of leaf formation
the proliferation phase ceases from leaf tip to base [50, 131] followed by a phase where
the arrested cells increase their cell volume tremendously. Finally, the fully sized leaf is
grown. During the entire development of a leaf the individual growth of all tissue layers
is supposedly highly regulated to prevent buckling and curling but build a planar cell
arrangement.

The differentiation of cells into specific tissue identities occurs parallel to leaf growth.
Already after a fifth of the total time for leaf formation the provascular tissue is formed
that will later give rise to the primary vein which extends from the petiole at the leaf
base through the center of the leaf blade to its tip [173, 174]. Subsequently, the vascular
tissue of the second and higher order veins forms, starting from already grown veins in
a hierarchical manner. Eventually, after the formation of the provascular cells of second
order, also the ground tissue between the upper and lower layer starts to differentiate [174]
building the mesophyll tissue of the inner leaf.

Together, differentiation and tissue mechanics build the developing plant. Both are in-
tertwined and a successful understanding of the full processes can only be reached by
examining both underlying mechanisms, the physical laws of mechanics and the role of
feedback and signals one at a time.

3.2 Tissue mechanics

Mechanical forces arising within tissues are the key to a huge variety of processes. On
the one hand, mechanics govern active restructuring like cell division, growth and death
[92, 180] as well as tissue migration and spreading [65, 138, 151, 194]. On the other hand,
the geometry of cellular arrangement and individual cell shape is the result of the balance
of forces within tissues [111, 128]. The impact of mechanics is especially strong in tissues,
where cells are constantly connected to each other. There are two different implementations
of such cohesive tissues: Epithelial tissues, where cell membranes are interconnected by
adherence junctions, and plant cells, where neighboring cells share a common, rigid cell
wall. The first is often modeled as a viscous body [17, 64, 120], the latter as a plastic
elastic network [35, 44, 83].

Epithelial tissues are monolayers of interconnected cells that dominate the anatomy of
“higher” animals as they typically build the boundaries of compartments. Epithelia are
the first specialized tissue forming during the embryogenesis of metazoa indicating the
importance of this tissue type in development [40]. As usually epithelia tissues derive from
a few number of cells by generations of cell divisions, all cells within a tissue bear almost
identical properties. Epithelia cells are connected by adherence junction that in most cases
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Figure 3.2: Vertex model of a full (A) and part (B) of a tissue. The cells are represented by their
cell junctions (vertices) and cell-cell contact lines (edges). The structure of a tissue
state is given by the force balance state. Contributing forces arise from the cell� s bulk
elasticity, regulating cell area Ai, cell cortex contractility, reducing cell perimeter Pi,
and cell-cell adhesion, favoring long cell-cell contact Li,j .

form by the reinforcing action of both cadherin based adhesion and actin cytoskeleton
reorganization and stabilize into a homeostatic state [28].
This stationary state is the result of the trade-o�of contractile forces from the cell cortex,
the adhesive forces between cells and the elastic forces against deformation of the cell
body. Di�erential changes in these properties drive large scale cell rearrangements during
development. For example di�ering cell adhesion governs cells sorting [14, 186, 187] and the
packing geometries of retinal epithelia cells observed in the individual units, ommatidia,
of Drosophila compound eyes [85, 89, 98]. Restructuring of cell cortex, hence, modifying
its contractility, takes an active part in cell intercalation during germ-band elongation in
Drosophila [13, 111, 153].
All these processes of internal modi�cation happen on long time scales compared to the
relaxation of the mechanical forces. Thus, the geometric structure of the tissue and the
individual cell shape itself can be regarded as equilibrated force balance state. Above the
level of pure topological modeling [73], the polygonal geometry of cell packing states can,
therefore, successfully be described as the minimum of an energy functional [59, 89, 92,
98, 153]. Modeling the epithelial monolayer as two dimensional sheet of individual cells
i = 1, ...,N with area A, perimeter P and cell-cell contact line L, as shown in Fig. 3.2,
the elastic, contractile and adhesive forces can be cast in the following energy functional,

E =
N�

i=1

�
�
��(Ai � A

0)2 + φP 2
i � υ

�

j��(i)
Li,j

}
{
� , (3.1)

where �, φ and υ denote the bulk elastic modulus, the contractility and the adhesion
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strength, respectively. To describe the structure and shape of extended tissues these kind
of energy functionals are employed in computer simulation of vertex models of cells. In a
vertex model the topology and geometry of tissues is abstracted to the positions of cell junc-
tions (vertices) and straight cell-cell contact lines (edges) between them. This approach led
to the quantification of the ensemble average of the governing forces in Drosophila germ-
band [153] and wing disk [59]. In vivo cell structures depend on a variety of factors such as
supporting and surrounding tissue type and their history during development. To under-
stand and individually quantify the cell mechanics that govern multicellular structures it
is, therefore, desirable to study cell packing geometries under well-defined boundary con-
ditions. This approach has been pursued by us in collaboration with the group of Joachim
O. Rädler, LMU Munich.

Plant cells display different mechanical mechanisms as they are surrounded by a cell wall
built of cellulose microfibrils [191]. The cell itself exerts a turgor pressure against the walls,
which builds up due to the osmotic pressure caused by the large concentration of solute
inside the cell. It is assumed that the stress formed by the turgor pressure induces a plastic
elongation of the cell walls [117, 155]. As microfibrils build highly parallel structures the
elastic modulus of the cell walls can be anisotropic favoring certain directions. Therefore,
plant tissues are assumed to behave like a plastic medium that undergoes irreversible
deformations. However, there is evidence that cellulose microfibril deposition is guided
by cortical microtubules [38, 80, 144], which themselves are observed to align to the axis
of main stress in the plant tissue [35, 83]. Hence, plant tissue is not simply an elastic
network, moreover the anisotropy of the elastic modulus is subjected to biological feedback
rules. The feedback regulation supposedly modifies the elastic modulus such that cells
preferentially grow perpendicular to the main stress. The elastic modulus is also affected
by biochemical signals such as expansin or auxin [105] which in their course of action loosen
the cell wall and may therefore locally increase volume growth.

Similarly also animal cells have been found to react to stress by inducing gene expression
[45, 58, 208] or performing tension-sensitive signaling [55, 189]. Thus stress profiles may act
as morphogenetic fields that provide positional information to determine size and shape of
organs in cooperation with biochemical profiles. The most powerful biochemical substance
in plants orchestrating numerous developmental processes is the hormone auxin.

3.3 Auxin dynamics

The plant hormone auxin takes a multifunctional role throughout plant development. This
multiple influence does not arises by pre-patterning the plant with distinct concentration
gradients. But auxin is rather continuously transported and accumulated within plant
tissues. The peculiarity is that this auxin transport is polar, a polarity that is both
induced and expressed by an oriented flow of auxin.
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epidermal tissue

ground tissue

Figure 3.3: Patterns of auxin �ow in plants. (A) A sketch of the overall plant including both
root (lower part) and stem (upper part) and detailed cartoons of the shoot apex (B)
and the leaf primordium (C). The continuous �ow of auxin from leaves and shoot tip
to root tip orients the plants and patterns root initiation sites, leaf position along the
stem, and veins within leaves. In the shoot apex the site of a new leaf is marked by
auxin in�ow into the epidermal layer followed by the initiation of vein formation into
the ground tissue. In leaves auxin accumulates in so called auxin convergence points
in the epidermal layer from which it �ows into the ground meristem tissue triggering
vein initiation.

Early on in plant development an auxin �ow from shoot to root [67] establishes an auxin
maximum which designates and maintains the root apical meristem [166]. Later auxin
produced in the developing organs, for example in leaves, is transported along cell �les
associated with the plant vascular system down the stem in the root apical meristem to
maintain the auxin accumulation [71, 114], see illustration in Fig. 3.3 (A). At the root
the amount of auxin shipped from the leaves induces the growth of lateral roots to ensure
an appropriate root-shoot balance [15]. Auxin is cycled at the root tip upwards into
the epidermis [79], thereby controlling cell elongation and initiation of root hairs [18].
Similarly, at the shoot tip auxin is cycled from the meristem tissue to the epidermis, where
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its accumulation designates sites of leaf initiation [87, 156], see the schematic drawing in
Fig. 3.3 (B). These initiation sites form areas of high auxin production, which subsequently
become the site of auxin outflow towards the existing vascular system in the stem. Thereby,
the development of the vascular system of the developing leaf is induced [173, 174], see
Fig. 3.3 (C). On top of the leading role of auxin in plant construction, auxin is also an
important factor in plant adaptation to light (phototropism) or gravity (gravitropism)
stimuli by locally enhancing growth [68, 190].

Unfortunately auxin can yet only be radioactively labeled. Therefore, our understanding of
auxin triggered processes relies on application of synthetical auxin or on the observation of
the mediator of polar auxin transport, proteins from the PIN family. These PIN proteins
polarly localize within cells with their majority facing the direction of auxin transport
[148, 205]. Hence, imaging of GFP fused PIN proteins gives a valid estimate of the routes
of auxin. The course of auxin is now considered in the particular cases of the leaf initiation
at the the shoot apical meristem and in the developing leaves.

Auxin flow in the shoot apical meristem

Auxin regulated leaf primordia initiation mainly occurs in the epidermal layer of the pe-
ripheral zone of the shoot apical meristem. Auxin flows from the internal tissue layers to
the epidermal layer [8, 156], where it accumulates in maxima at the position of incipient
leaf primordia [11, 87, 183] as depicted in Fig. 3.3 (B). PIN1 proteins are dominantly po-
larized towards the tip of the developing primordia, thereby, depleting the next adjacent
region from auxin. Thus, the region surrounding the primordium is deprived of the growth
hormone auxin and the next primordium forms only a distance away, the cause for phyl-
lotactic patterns.
During the successive growth of the leaf primordium gradually a new PIN1 dependent
auxin flow route builds up from the tip of the bulge towards the inner stem. This des-
ignates the new route of yet to develop vascular tissue that connects the new organ to
the pre-existing vascular network [11, 87]. This scenario is similar to the vein initiation
observed during leaf vascularization.

Auxin flow in the developing leaf

At each step during the hierarchical vascularization of leaves [133] future vascular cell
areas are marked by polar PIN1 distribution indicating auxin flow out of the leaf towards
pre-existing veins [173, 174, 202]. That auxin is a key signal for vascular tissue formation
has been shown by external auxin application [168], disruption of directed auxin transport
[46, 71, 121, 181], auxin signaling [84, 90, 152] and auxin biosynthesis [32].
Vein formation is triggered by the inflow of auxin from auxin accumulation sites in the
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Figure 3.4: Auxin transport and canalization model. (A) Auxin flow (red arrow) is guided by the
polar distribution of PIN proteins (black boxes) within cells. (B) The canalization
model assumes, in addition to basal synthesis sP and degradation dP rates of PIN
molecules on a membrane, a positive feedback of the auxin flow J on an enhanced
synthesis rate gP resulting in a polar distribution of PIN molecules.

epidermal rim of a leaf [5], see illustration in Fig. 3.3 (C). Close examination reveals that
PIN1 proteins polarize first just at the site of auxin inflow. Only at later time steps does
the PIN1 polarization extend up to pre-existing provascular tissue [174]. Hence, although
differentiation of provascular tissue starts at pre-existing veins, vein initiation originates
at the sites of auxin inflow. The vein initiation is a remarkable example of the feedback
between auxin and its efflux facilitator PIN.

Auxin transport and feedback

Auxin, indole-3-acetic acid (IAA), is itself a small weak acid. In the presence of the slightly
acidic extracellular environment (pH 5.5) auxin is protonated and can easily penetrate a
cell’s membrane, as it is an uncharged, small molecule. Inside the cell the more alkaline
environment (pH 7) leads to auxin ionization trapping the now charged molecule [154, 162].
Therefore, auxin accumulates within cells and can only travel to neighboring cells with help
of efflux carriers located in the cell membrane [76, 77].
Membrane bound proteins from the PIN protein family have been identified to play the
role of an auxin efflux mediator [137]. These proteins are polarly distributed within the cell
membrane facilitating a directed transport of auxin along a file of cells, e.g., down the center
of the stem. Moreover, PIN is connected via multiple feedback loops to auxin, as auxin
regulates PIN transcription [199] and most importantly PIN localization [142, 172, 174].
Hence, auxin not only exhibits but also induces its own polar transport via a feedback
mechanism.

Auxin’s feedback on its own efflux carrier has been hypothesized by Sachs [167] long before
the discovery of PIN proteins. To explain venation patterns Sachs proposed that auxin
flow itself enhances its own flow. Thereby, auxin locally activates its flow but on the other
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hand also detracts flow from immediate neighbors and inhibits flow along parallel files of
cells, see Fig. 3.4 (A). This scenario is similar to the flow of water on an eroding bed of
sand giving rise to the name canalization model. Mitchison first formalized this hypothesis
by describing the change of the concentration of auxin efflux carriers Pi(n) at a wall i in
cell n due to basal synthesis sP , degradation dP and enhanced synthesis gP [126, 127],

d

dt
Pi(n) = −dPPi(n) + sP +

{
gPJ

2
i (n) if Ji(n) > 0
0 else

, (3.2)

as sketched in Fig. 3.4 (B). Positive outflow towards the neighboring membrane j of cell
m increases the efflux carrier synthesis rate proportional to the square of the auxin flow,
which is itself proportional to the active efflux carriers: Ji(n) = Pi(n)A(n)− Pj(m)A(m).
Mitchison noted the necessity of a non-linear feedback and chose the square of the auxin
flow. He and numerous other people [61, 69, 70, 100] confirmed in lattice simulations
that these or similar dynamics do generate venation patterns. However, those models did
not predict looped, closed veins. The puzzle of closed veins was attacked in simulations
by introducing additional factors [60], pre-patterned auxin sinks [49] or patterned and/or
moving auxin sources [160, 164].
To model auxin and PIN dynamics during phyllotactic pattern formation a new kind
of feedback term was recently suggested [97, 183], where the auxin concentration in the
neighboring cell increases the number of efflux carriers facing that neighbor. Simulations
of these kind of concentration driven feedback dynamics reproduce phyllotactic patterns
[41, 97, 183] and also show efflux carrier polarization fronts [123]. The debate between the
different feedback mechanisms led to simulations that integrate both mechanisms [9, 52],
simulations showing that pure canalization model produces phyllotactic patterns [188] and
alternative approaches [101].

Common to all these investigations is a very limited knowledge of the model parameters’
physical value. Except for a single very recent work considering the auxin concentration
induced feedback [169] the plausibility of the feedback mechanism and the contributing
terms chosen have only been assessed by computer simulations. Analytic investigations
of the non-linear and pattern formation dynamics, however, offer predictions independent
of the parameter choice. As our work shows, analytic calculations disclose the role and
dominance of each term in the microscopic dynamics. Even quantitative predictions are
possible, which may help to identify the magnitude of the physical parameters.

3.4 Pattern formation

Feedback and internal energy sources which are present in multiple biological and chemical
processes create the basis for a huge variety of pattern formation. Considering a completely
homogeneous medium that is relaxed into its stable, uniform, stationary state two distinct
classes of dynamics can emerge: stable patterns or traveling waves. Which phenomenon
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may occur depends on the characteristics of the medium [37, 124, 211]. If a stationary
state is linearly unstable small fluctuations cause dissipative time-stationary patterns or
sequences of circular waves. If on the other hand a system is linearly stable traveling waves
may propagate without diminution when excited by an external impulse.

Both types of patterns, dissipative time-stationary or traveling waves, have numerous ex-
amples. In a first advance to explain the development of patterns during animal morpho-
genesis Turing [196] laid the foundations to explain various types of stationary spot and
stripe patterns, similar to those observed in animal coats [129] and sea shells [122]. Also
phyllotactic patterns in plants have been modeled as dissipative structures arising due to
mechanical [179] and/or auxin based feedbacks [134].
The most prominent example for traveling waves propagating in so-called excitable media
is nerve conduction. Based on the quantitative description of nerve excitations by Hodgkin
and Huxley [91] more and more simplified and analytical tractable models have been de-
veloped to explain the excitation of a single wave pulse or a wave train [62, 130, 158].
Chemical reactions are a field where theoretical analysis of reaction equations and exper-
imental observations can lead to vast agreement as is observed in the case of the famous
chemical oscillator, the Belousov-Zhabotinsky reaction [10, 210].

In mathematical terms the patterns and waves observed are variations in the concentrations
ci of a set of reactants/hormones/morphogens i = {1, . . . , n}. As a simplification, their
dynamics are homogeneous in space, such that the rate of change of concentration ci(x)
is governed by the same partial differential equation at every point x in space. The most
general form for such a deterministic system of coupled equations is given by,

∂ci
∂t

= fi(∇c, c) +∇(Di∇ci) + Ii(t). (3.3)

The feedback may it be enhancing or antagonistic is subsumed in the nonlinear function
fi(∇c, c). Diffusion in space is reflected by the second term, while an external stimuli
applied to the system is presented by Ii(t). Apart from the generalized set of equations
most systems considered display the following simpler structure,

∂ci
∂t

= fi(c) +Di∇2ci + Ii(t), (3.4)

consisting of a space independent reaction term fi(c), external input Ii(t) and homogeneous
diffusion Di∇2ci only.
The fundamental characteristics of such a system are identified by analyzing the so-called
point system, where any spatial variance is neglected,

∂ci
∂t

= fi(c). (3.5)

A point system can be prepared by carefully mixing all reactants. The roots of the functions
fi(c), i = 1, . . . , n determine the number of uniform stationary states, while the nullclines
mark those lines along which one single reactant is stationary ∂ci/∂t = 0.
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To observe traveling wave phenomena the reaction term has to display one minimum in
at least a single reactant concentration. If this is the case, external excitations above a
certain threshold relax via a deflected path back to the initial state. The exact shape of
such a path is then determined by the system characteristics only and is independent of
the excitation pulse form and duration.
The diffusion term plays an important role both in dissipative patterns and traveling waves.
Diffusion is the cause for a propagating wave in space. By diffusion an excited point in
space can infect its neighbor and excite this point as well. Since excitable media usually
display a refractory period, to replenish substrate for example, waves can once started only
travel in one direction. At the site of ignition, excitation of waves to multiple directions is
however possible. This is a fact that becomes of importance concerning the formation of
looped veins in our work.
While traveling wave systems exhibit linearly stable stationary states, it is just the diffusion
term which may drive a stationary state of a dissipative system to become unstable such
that small fluctuations can build up to form periodic patterns.

Despite the innocent appearance of the governing equations (3.3, 3.4) analytical solutions
are very sparse and turn particularly hard if the number of reactants or the dimensions of
space increases. One successful simplification is to discern fast and slow processes [27, 139].
Thereby, an entire wave pulse can be subdivided into a series of individual phases. In a
phase where the fast variable changes, the slow ones are constant, while in a phase where
the slow variable varies, the fast one can be approximated by its quasi-stationary values.
This is an approach that leads to our success concerning polarization waves during the
initiation of veins.

3.5 Vein initiation by polarization wave front

We investigate structuring of cell ensembles by feedback governed cell differentiation in
the case of vein initiation by auxin and PIN dynamics. The corresponding manuscript
[4] under the title “Quantitative predictions on auxin-induced polar distribution of PIN
proteins during vein initiation in leaves” is accepted for publication in the special issue on
“Physics of morphogenetic processes in animals and plants” in European Physical Journal
E and reprinted together with its corresponding supplementary information in section 3.8
of this work. During leaf development auxin accumulates in the outer epidermal layer in
so called convergence points. From these points auxin flows into the underlying ground
meristem tissue. There auxin propagates the successive polarization of PIN distributions
in cell membranes, locally initiated from the point of auxin influx [174], see reproductions
in Fig. 3.5. This dominantly one dimensional process along a file of cells is amenable to a
study of the underlying non-linear dynamics and enabling quantitative predictions.

To describe auxin A and PIN P concentration and their dynamics we consider a minimal
canalization model. In addition to the initial description of Mitchison [126, 127] as stated
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Figure 3.5: Patterns of polarly distributed GFP-marked PIN proteins during vein initiation in
leaf primordia observed by light microscopy. During the earliest stage of leaf growth
shown in (A) PIN is polarized towards the leaf tip in the epidermal layer. From
there on PIN proteins are polarized towards the plant stem within the ground tissue.
Successively, PIN� s in the epidermal layer reorganize to polarize towards a point
further down the leaf rim, marked by the yellow box in (B). From this supposed
auxin accumulation site onwards, �gures (C)(zoom in) and (D) display the successive
polarization of the ground tissue cells. Polarization initially starts at the site of
auxin in�ow from the epidermal layer. Scale bar 10 µ m. Reprinted with permission
from [174].

in equation (3.2), we fully model auxin dynamics and discern PIN proteins in bulk and at
the membrane. Except for the positive feedback term gP all terms enter linearly, such as
synthesis sA, sP , degradation dA, dP and transport eA/�.

d

dt
A(n) = sA � dAA(n)� eA

�

�

i

Ji(n), (3.6)

d

dt
Pi(n) = �dPPi(n) + sPPb(n) +

�
gPPb(n)J2

i (n) if Ji(n) > 0
0 else

. (3.7)

An illustration of this model is reprinted in our accompanying manuscript. Since the pro-
duction of proteins such as PIN occurs on large time scales compared to the fast synthesis
of auxin [150], we take the whole amount of PIN per cell to be constant. Thus sP , gP and
dP describe the basal or enhanced attachment of bulk proteins Pb and the detachment of
membrane bound proteins.

The analysis of our model along a one dimensional strand of cells reveals that each single
cell is a bistable excitable medium. At rest a cell is in a non-polar state with no net auxin
transport. However, cells can be excited into a polar constant �ux state. This excitation
is caused by a local auxin in�ow and progresses in a traveling wave front. Depending on
the auxin in�ow gradient, full excitation pulses can also develop, in the course of these
the excited cell relaxes back to its initial rest state. Form and velocity of traveling front
or pulse on the contrary only depend on the underlying dynamic parameters and are
not a�ected by the characteristics of auxin in�ow. This observation is opposite to the
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predictions that emerge from concentration driven feedbacks as such models only exhibit a
single linearly unstable fixed point. Hence, in concentration feedback models auxin inflow
can only transiently polarize PIN distributions. The amount of polarization then also
strongly depends on the characteristics of auxin inflow.

Our analysis of the non-linear dynamics of auxin and PIN allows to identify the role of
each microscopic process during PIN polarization. Heuristically polarization occurs due
to the victory of directed, enhanced attachment over the undirected, basal attachment.
However, the time scale of these attachment dynamics is a lot smaller than the time scale
for the directional cue, which is the transport of auxin from one cell to the next. Hence,
from a polar cell at a polarization front auxin is transported into the first non-polar cell
just next to it. There auxin piles up as in a traffic jam because the cell has yet to become
polarized by enhanced attachment before auxin can be transported onwards. Our rigorous
mathematical results for the traveling pulse or front circumstantiate this heuristic picture.
We give analytic results for the uniform stable states, the auxin amplitude in pulse and
front and their velocity. Thereby, we relate macroscopic observables to the parameters of
the contributing microscopic processes.

Finally, our description offers a simple explanation for the occurrence of bipolar cells, which
represent the indispensable ingredient for the development of closed veins. At the site of
auxin inflow the traveling polarization front can readily propagate in several directions.
Depending on the initial conditions of PIN proteins in each membrane the competition
for the bulk PIN proteins is biased and only a single membrane attains its polar stable
state. But also two membranes could share the amount of PIN composing a bipolar cell.
Experiments also suggest that mechanical cues could favor certain membranes [83].

3.6 Cell packing geometries in small groups of cells

We investigate how mechanical forces determine cellular structure under the condition of
well-defined boundaries for small groups of cells. This work is based on a collaboration with
experiments performed by Alicia Piera Aberola and Anna-Kristina Marel in the group of
Joachim O. Rädler, LMU Munich. The manuscript under the title “Oligocellular arrays: A
novel approach to explore cell tissue mechanics” is submitted for publication and reprinted
with the accompanying supplementary information in this work in section 3.9. We model
tissue mechanics by confining groups of up to four epithelial cells to quadratic adhesion
patches. Cells reproducibly rearrange into distinct cellular structures, the most probable
configurations are sketched in Fig. 3.6. The distribution of observed cell packing states
depends only on the number of cells N per square and can be used to understand and even
quantify mechanical forces within tissues.

The mechanical forces within epithelial tissues can be abstracted to bulk cell elasticity,
resisting cell deformation, cell cortex contractility, driving the constriction to small perime-
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(A) (B) (C)

Figure 3.6: Most probable packing states for N = 2, 3, and 4 cells confined to a square adhesion
patch. (A) In the trivial case of two cells the antagonism between cell cortex con-
tractility and cell-cell adhesion determines the opening angle of the cell-cell contact
line (gray) for two cells. (B) Additional elastic forces counteracting cell anisotropy
then allow to favor the T-shaped arrangement of cells shown over a parallel ordering.
(C) Four cells exhibit as an additional feature the loss of four-cell junctions in favor
of two three-cell junctions a small distance apart.

ters, and cell-cell adhesion, favoring long cell-cell contact. In our experimental setting the
total adhesive area is always distributed equally between all cells on a square, probably
due to a dominating cell-surface interaction. This constrains the individual area of cells
within their cellular organization and, therefore, initially diminishes the impact of cell elas-
ticity. Hence, cell packing state are solely governed by the antagonistic action of cell cortex
contractility and cell-cell adhesion. Minimizing the corresponding energy functional, see
equation (3.1), is employed to model cell packing states for N = 2, 3, and 4 cells.

The congruent cell geometries for two cells on a square adhesion patch only differ in the
angle the cell-cell contact line encloses with the confining square’s edges. A parallel contact
line satisfies minimal perimeter, i.e., dominating cell cortex contractility, while a diago-
nal contact line allows for maximal contact line, i.e., dominating adhesion. Competition
between both results in intermediate angles as force balance state, as observed by us for
epithelia Huh 7 cells. Comparison of the analytic prediction for the angle and experimental
measurements yields the quantification of the ratio of cell cortex contractility to adhesion
strength in the model. The symmetry of the adhesion squares generates eight mutually
equivalent force balance states. Fluctuations of the cells drive transitions between and
deviations around these states. The full distribution of states in ensembles and over time
is in agreement with the models prediction of the statistical weight of cell structures.

Three cells are by the geometry of the adhesion square forced to break the symmetry of
equal area, perimeter and contact line as exhibited by two cells. Two classes of cell packing
states with equally divided area are observed, parallel ordering and a T-shaped arrange-
ment as shown in Fig. 3.6 (B). Based solely on the competition of cell cortex contractility
and cell-cell adhesion parallel ordering of cell is energetically favorable over T-shaped in
contrast to measured probabilities. However, the packing classes also differ fundamen-
tally in cell anisotropy. Introducing an extended model by including an additional elastic
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force counteracting cell shape anisotropy resolves this discrepancy and further consistently
explains the high probability of additional Y-shaped cells.

The case of four cells serves as test case to assess the extended model initially introduced to
explain the observed packing states of three cells. Indeed, the distribution of cell packing
states of four cells on a square adhesion patch is bimodal, a characteristic only predicted
by the extended model. Thus the notion that cell anisotropy is indeed a governing factor
in cell mechanics is further substantiated. Moreover, four cells avoid four-cell junctions by
forming two three cell junctions a small distance apart. This aspect is captured neither by
the classic nor by our extended model. It is, however, intriguing to consider the statistical
weight of states, directly related to their statistical entropy, which would clearly favor two
three-cell junctions over the singular state of a four-cell junction.

Our work shows how a simplified tissue model enables direct evaluation and quantifications
of tissue mechanics even on a single cell level. Observing the entire configuration space of a
model tissue led us to the conclusion that elastic forces counteracting cell shape anisotropy
are an important factor in cell tissue mechanics.

3.7 Outlook

Concerning cellular organization by differentiation our work focusses on the dynamics of
the major regulator of plant development, the hormone auxin. The aim of this work was to
derive both qualitative and quantitative predictions for the full physiologically reasonable
space of parameters. Quantitative predictions are desirable as many of the kinetic processes
involved in auxin dynamics are not accessible directly due to limitations in auxin labeling.
At least estimates of the range of the kinetic parameters involved would be a huge step
forward to assess the quality of theoretical predictions. But already qualitative predictions
are indeed valuable, if they enable to discern between the different models of feedback. We
hope that our predictions help to validate or falsify the kind of feedback governing auxin
and PIN dynamics. Predictions and their validation should act as a precursor to universal
understanding of auxin and PIN interactions. Indeed leaf site initiation at the shoot apex
and vein initiation progressing from the leaf tip bear huge resemblances in their stages
and processes suggesting common auxin and PIN dynamics at their origin. Several recent
attempts targeted this issue [9, 52, 123, 188] but all are yet missing an unequivocal uniform
formulation.

In addition to its role during differentiation, auxin acts as a growth hormone regulating
cell division and volume growth. Thus, differential auxin concentrations can promote
differential growth, which generates stresses in the elastic tissue. To explore the mechanism
of development it is, therefore, mandatory to investigate how stress fields are generated
and how they may orchestrate the growth of tissues into form. A recent initiative of us in
this field is a study on the effect of stress on cell shape.



3.7 Outlook 65

Concerning cell mechanics we took the promising approach to study one specific aspect in a
well designed in vitro setup, where input and control parameter are much more regulated.
Thus, the quantification of cell mechanics in individual cells becomes amenable. A concept
that can be transferred to study the interaction between different cell types, an important
aspect in cell therapy. Also the reduction to a small number of cells bears the advantage
of turning the theoretical analysis a pure analytical or at most numerical investigation.
Our investigation of a finite system reveals principles of cellular organization that should
be transferred to the analysis of larger tissues. Modifying the boundary conditions in in
vitro setups may also provide insight into the interaction between different tissue types.
Following tissue growth over longer periods may clarify how cell mechanics control cell
growth, death and the axis of cell division. An important aspect here seems to be to follow
the generation of stresses and their relaxation.

Ultimately both auxin patterning and mechanics have to be studied in unison to understand
plant development. The origins of the remarkable diversity of leaf shapes can only be
revealed when integrating patterning of growth hormones and the plastic growth of plant
cells. The development of plants offers a magnificent playground to investigate how the
laws of physics and biologically optimized feedback enrich each other to generate form and
structure.
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Abstract. The dynamic patterning of the plant hormone auxin and its efflux facilitator the PIN protein
are the key regulators for the spatial and temporal organization of plant development. In particular auxin
induces the polar localization of its own efflux facilitator. Due to this positive feedback, auxin flow is
directed and patterns of auxin and PIN arise. During the earliest stage of vein initiation in leaves auxin
accumulates in a single cell in a rim of epidermal cells from which it flows into the ground meristem tissue
of the leaf blade. There the localized auxin supply yields the successive polarization of PIN distribution
along a strand of cells. We model the auxin and PIN dynamics within cells with a minimal canalization
model. Solving the model analytically we uncover an excitable polarization front that triggers a polar
distribution of PIN proteins in cells. As polarization fronts may extend to opposing directions from their
initiation site, we suggest a possible resolution to the puzzling occurrence of bipolar cells, thus we offer
an explanation for the development of closed, looped veins. Employing non-linear analysis, we identify the
role of the contributing microscopic processes during polarization. Furthermore, we deduce quantitative
predictions on polarization fronts establishing a route to determine the up to now largely unknown kinetic
rates of auxin and PIN dynamics.

1 Introduction

The polar transport of the plant hormone auxin is the key
regulator of many processes in the spatial and temporal
organization of development and growth of plants. As the
indole-3-acetic acid, in short auxin, induces the polar lo-
calization of its own efflux facilitator, a member of the
family of PIN proteins, a variety of auxin and PIN pat-
terns arise [1]. Those distributions change dynamically as
plants orient in response to environmental stimuli denoted
as tropism [2,3]. During the morphogenesis of plants PIN
and auxin rearrangements lie at the heart of organ posi-
tioning via phyllotaxis [4] and vein patterning in leaves [5].

The notion that auxin is transported in a polar, di-
rected, manner inspired researchers since its discovery by
Went in 1933 [6]. Early works already suggested the partic-
ipation of a polar localized efflux carrier in the transport of
auxin [7–9], well before its discovery in the form of mem-
brane bound PIN proteins a decade ago [10]. Since then
numerous experiments confirmed that PIN proteins facili-
tate the efflux of auxin from cells in plants [11,2,12,13,4],
yeast and mammalian cells, which had been supplied with
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a e-mail: karen.alim@physik.lmu.de

auxin and PIN [14]. A feedback between auxin and its ef-
flux facilitator localization was proposed by Sachs in his
canalization hypothesis [15], later formalized by Mitchi-
son [16,17]. Canalization predicts a feedback of auxin flow
between neighboring cells on the amount of efflux facili-
tators favoring the direction of auxin flow. Experiments
confirmed a definite feedback between auxin and PIN dis-
tribution [18,19], the cause of which is reported to lie in
auxin affecting the clathrin-dependent endocytotic cycling
of PIN [20,21]. Late investigations also identified biochem-
ical processes taking part in the PIN localization in re-
sponse to auxin, see ref. [22] for a review.

A variety of microscopic models for the dynamics of
auxin and PIN proteins have been developed to describe
their patterns during phyllotaxis [23] and leaf vein for-
mation [24], see [25] for a review. Extensive simulations
of these microscopic models describe qualitative aspects
of plant development. However, the role of the underly-
ing biological processes and their kinetic rates still remain
elusive to a large extent. Quantitative predictions based
on analytical solutions of the microscopic equations in a
simple scenario might on the one hand help to estimate
kinetic parameters and on the other hand give insight into
the impact of certain processes. A scenario amenable to
such an investigation is the polarization of the, in this par-
ticular case, PIN1 distribution due to auxin flow in the
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Fig. 1. (Colour on-line) Illustration of the dynamics of auxin and its efflux facilitator PIN. (A) Schematic drawing of vein
initiation in a leaf primordium. Auxin (blue) accumulates at convergence points in the outer epidermal layer (rim), from which
it is transported into the ground meristem. Due to this inflow of auxin, ground meristem cells become polarized in their PIN
distribution (orange). (B) Polarization of PIN distribution in a strand of cell due to auxin inflow from the left, indicating details
of auxin and PIN dynamics. The weak acid auxin accumulates in the interior of a plant cell due to a gradient in pH. In the
inner cell the charged anion is trapped and can only be transported outwards by the help of efflux facilitators in the form of
PIN proteins. The auxin transport from cell to cell has an efficiency eA. Auxin synthesis sA and degradation dA takes place in
the inner cell. PIN proteins cycle between the bulk and the cell membrane by basal attachment sP and detachment rates dP . In
addition, positive auxin net flow is modeled to feed back on these rates increasing the PIN attachment by gP . Along the strand
of cells the color shading indicates relative concentration of auxin and PIN on either membrane.

earliest stage of vein formation [26], see fig. 1. Vein initi-
ation itself takes place in the ground meristem tissue of
leaf primordia. The positions of vein initiation sites are de-
termined by auxin accumulation in “convergence” points,
which lie in a rim of epidermal cells around the ground
meristem tissue [19,27–29]. These single cells with high
auxin concentration polarize towards the ground meris-
tem and locally transport their auxin into a cell in the
ground meristem tissue. This localized inflow triggers the
successive polarization of PIN distributions along a strand
of cells starting from the cell with auxin inflow [19]. The
strand of polarized cells finally extends up to a previously
existing strand of polarized cells, building the pre-pattern
for the vascular network. Starting from the petiole of the
leaf primordium the polarized cells differentiate then into
vascular cells [30]. In particular, second-order veins in Ara-
bidopsis thaliana exhibit PIN polarization in opposite di-
rections starting from a single bipolar cell, which lies in
the ground meristem below the auxin convergence point
in the epidermal layer [19]. This yet unresolved behavior
gives rise to the formation of closed vein loops when both
oppositely polarized strands connect to already formed
veins.

A resolution on the origin of bipolar cells is postu-
lated by examination of a minimal canalization model for
the polarization of PIN distribution due to auxin supply
in a one-dimensional strand of cells. Performing a non-
linear analysis of the model reveals for each single cell
two uniform stable states considering polarization. One
resting state, where efflux facilitators are symmetrically
distributed within the cell, and one polar state character-
ized by a constant net transport of auxin due to a polar
localization of PIN proteins. The model predicts auxin
triggered polarization pulses and fronts as a consequence

of a dynamic rearrangement of PIN efflux facilitators to-
wards the polar state. Cells with continuous auxin supply
can be in a dynamic bipolar state, from which polariza-
tion fronts travel to both ends of a strand of cells. The
role of the underlying kinetic processes becomes explicit
in the course of the non-linear analysis of the polarization.
An analytic solution results in quantitative predictions on
the pulse’s and front’s auxin amplitude depending on the
kinetic parameters, establishing a basis for detailed exper-
imental determination.

2 Model

To describe how auxin polarizes the distribution of PIN
during vein formation, we focus on a one-dimensional
strand of cells, see fig. 1(B), assuming that there is no
net auxin flow perpendicular to the direction of polar-
ization. The strand is subdivided into cells of length �
numbered by n. Every cell is characterized by a single
auxin concentration A(n) and the concentration of mem-
brane bound PIN proteins. We distinguish between PIN
proteins in the bulk of the cell Pb(n) and adsorbed to
the cell membrane either on the right-hand side or on
the left-hand side of the cell, Pr(n), and Pl(n), respec-
tively. The auxin concentration per cell changes due to
synthesis and degradation with rates sA and dA. Further-
more, the amount of auxin changes due to a net flow to
neighboring cells facilitated by PIN proteins embedded in
the cell membranes of the corresponding cell-cell inter-
face. The net flow from cell n to cell n+1 is, hence, given
by J(n) = eA[A(n)Pr(n) − A(n + 1)Pl(n + 1)], where eA

denotes the transport efficiency rate across the cell-cell
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interface. The full auxin dynamics is then described by

d

dt
A(n) = sA − dAA(n) − 1

�
[J(n) − J(n − 1)] . (1)

Stating these dynamics for auxin we assume that auxin
transport is dominantly from one inner cell to the other.
Auxin is known to accumulate in cell interiors [7,31] since
auxin is a lipophilic weak acid which easily enters cells as
undissociated acid, its prevailing form at the pH of 5 in
extracellular space. In the interior of plant cells ion pumps
keep the pH at 7, leading to the ionization of auxin and
building a concentration gradient that accumulates auxin
inside cells. As lipid membranes are impenetrable for the
now charged molecule, auxin is trapped in the cell’s inte-
rior rendering efflux facilitator necessary. Being exported
by PIN proteins, auxin is free to diffuse in the extracellular
space, the apoplast. However, the distance between neigh-
boring cells is so small that almost all auxin molecules
have entered any cell again within one millisecond1. Fur-
thermore, auxin can be assumed to be approximately uni-
formly distributed within typical cells because the diffu-
sion of the small molecule auxin is very large. In aqueous
solutions D = 670μm2/s has been measured [34] which
has been confirmed by indirect measurements of the diffu-
sion constant in auxin transport experiments [35]. Distinct
auxin gradient would therefore only arise for large plant
cells of about 100μm or larger. It is not entirely clear
that this reasoning holds under the condition of highly
effective auxin transport [36], however, the time scale of
auxin transport by mere diffusion through a cell of typical
50μm is 4 s, faster than other process contributing to the
polarization of PIN, substantiating the neglect of auxin
gradients within cells during PIN polarization. Hence, we
can approximate auxin flow to be dominated by cell-to-cell
transport. Synthesis and degradation of auxin are consid-
ered since they take place on fast time scales as the major-
ity of auxin is stored in its conjugated form inside the cell
which is readily hydrolyzed in less than seconds [37]. This
is in contrast to the production and degradation of PIN
proteins, which takes place on much larger time scales of
several minutes. We therefore model the total amount of
PIN proteins Ptot to be constant per cell, yielding the fol-
lowing equality for the number of free PIN proteins in the
bulk Pb(n) = Ptot−Pr(n)−Pl(n). Hence, we only consider
the dynamics of PIN proteins embedded in a cell mem-
brane. Their concentration changes first of all by a basal
adsorption rate sP and a basal desorption rate dP . Addi-

1 The importance of extracellular diffusion of auxin can be
assessed by estimating the residence time of auxin in extracel-
lular space. Assuming an auxin molecule diffuses with diffu-
sion constant D = 67 μm2/s [32] in a typical cell-cell interface
of 0.5 μm. If it comes close to either of the cells the molecule
may re-enter. Taking into account that not all extracellular
auxin molecules are protonated and hence able to penetrate
the membrane, we assume the probability to enter a cell to be
of 10% [31,8]. Considering these assumptions already 97% of
all auxin molecules have re-entered any cell including the one
they were delivered from after a time duration of one millisec-
ond [33].

tionally, the net auxin flow over a cell-cell interface is mod-
eled to feed back onto the amount of PIN proteins favoring
the flow direction. This is cast in an enhanced attachment
or equally a decreased desorption rate: gP J2(n)θ(J(n)) as
proposed by canalization models [15–17,24,38–40,26]. By
imposing the Heaviside step function θ, the feedback re-
acts to positive net flow only. For the following analysis
the feedback is proportional to the square of the net auxin
flow as stated below. In the discussion we explain that any
exponent larger than one yields analogous results. Dif-
ferent feedback mechanisms proposed recently [23,41–43]
are also compared to our approach in the discussion. In-
corporating the positive feedback on auxin flow, the PIN
dynamics are given by

d

dt
Pr(n) = −dP Pr(n) + sP Pb(n)

+gP J2(n)θ(J(n))Pb(n), (2)

d

dt
Pl(n) = −dP Pl(n) + sP Pb(n)

+gP J2(n − 1)θ(−J(n − 1))Pb(n). (3)

Except for the non-linear feedback term, we assumed
throughout the model setup linear relationships as a first-
order expansion to the yet elusive detailed underlying
dynamics. We refer to the discussion for an analysis of
model modifications confirming the robustness of our as-
sumptions. In contrast to many existing canalization mod-
els [16,17,38–40,26] we account for the detailed PIN cy-
cling by endosomes similar to ref. [24], however, we discard
the explicit dynamics of a putative auxin synthesizer used
in that work.

Up to now our model involves six kinetic rates, how-
ever, rescaling the concentration of auxin a = A/Aeq,
where Aeq = sA/dA, and PIN proteins, pr,l = Pr,l/Ptot, as
well as time τ = t dP reveals that only four independent,
dimensionless parameters govern the behavior of auxin
and PIN dynamics, namely δa = dA/dP , σp = sP /dP ,
γp = gP A2

eqP
2
tot/dP , and εa = eAPtot/�dP . Quantitative

knowledge of the kinetic rates is very sparse. Half-life
measurements of auxin yield estimates for its degrada-
tion rate, dA = 2 · 10−4–2 · 10−5 1/s [44], which is how-
ever strongly affected by environmental conditions such
as light, wind, and temperature. Permeability measure-
ments [45,32] of PIN-assisted auxin anion transport are
found to be eAPtot = 1.4μm/s. For the other kinetic rates
no experimental estimates are available to the best of our
knowledge although various rates have been assumed in
simulations. This limited knowledge of the kinetic rates
underlying auxin and PIN dynamics demonstrates how
desired an intuition of their relation and role is, which
can be obtained from mathematical analysis, opening up
new approaches for experimental measurements.

3 Results

3.1 Observations from numerics

During vein formation auxin supplied from the outer epi-
dermis enters a single cell initiating the polarization of a
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Fig. 2. (Colour on-line) Spatial trajectory of polarization pulse
and fronts. Auxin (blue) and PIN concentration on the left-
(green) and right- (orange) hand side of a cell are displayed
along a strand of cells numbered by their distance in cells from
the site of initiation. (A) A short, initial supply of auxin to a
single cell yields a single polarization pulse, while (B) a con-
tinuous, high inflow of auxin from one end (left) yields a po-
larization front. (C) Continuous supply at a center cell results
in two opposite polarization fronts originating from a single
bipolar cell. Trajectories arise from the numerical integration
of our mathematical model for parameters values dA/dP = 0.2,
sP /dP = 0.2, eAPtot/�dP = 2, and gP A2

eqP
2
tot/dP = 8. Initial

and continuous auxin supply of A = 20Aeq.

cell strand [19]. We simulated this scenario by integrating
the microscopic equations (1)-(3) numerically for different
kinds of auxin supply, see fig. 2. Starting from a strand
of cell with evenly distributed PIN proteins and an equi-
librated amount of auxin, we shortly applied auxin by in-
creasing the initial auxin concentration in a single cell.
This triggers a polarization pulse which shortly polarizes
the PIN proteins in each cell before all cells relax back to
their initial non-polar state, fig. 2(A). Subsequent pulses
can only be excited when the cells are almost relaxed back
to their non-polar state, therefore a certain lag time is
required (data not shown). If the auxin is supplied con-

tinuously by keeping the amount of auxin in a single cell
at high level a polarization front forms. The front causes
all cells which it passed to become permanently polarized,
fig. 2(B). If a cell in the center of a strand of cells is contin-
uously supplied with auxin, two fronts arise traveling to
opposite directions along the strand, fig. 2(C). The latter
two observations resemble those from vein formation [19].

As the polarization pulse and front bear a lot of char-
acteristics in common, deriving analytic solutions for the
first gives also quantitative insight into the second. In the
following our non-linear analysis explains the formation of
a polarization pulse and front. Identifying the role of the
underlying kinetic processes by exemplarily solving the
polarization pulse, we derive quantitative results for pulse
and front properties. Observations in fig. 2(A) and (B) in-
dicate that changes in concentration of PIN proteins on
the left, Pl, facing adverse to the direction of transport, are
very small. We therefore assumed in our following analysis
dPl(n)/dt = 0, i.e., considering the stationary state value
Pl(n) = σp(1−Pr(n))/(1+σp) for a polarization traveling
to the right.

3.2 Static state of a single cell

Assuming a uniform state for a whole strand of cells, each
single cell itself has two stable and one unstable equilib-
rium state, as shown in fig. 3(A). The first stable fixed
point at

aRES = 1, (4)

pRES =
σp

1 + 2σp
,

is a resting state, where PIN proteins are evenly dis-
tributed and no net auxin flow occurs. For parameters
beyond γp ≥ 4(1 + 2σp) two further crossings of the null-
clines dA/dt = 0 and dPr/dt = 0 occur in a saddle-node
bifurcation, a pair of one unstable and one stable fixed
point at

aPOL∓ = 1, (5)

pPOL∓(aPOL∓) =
1 + 3σp ∓ (1 + σp)

√
1 − 4(1+2σp)

γp(aPOL∓)2

2(1 + 2σp)
,

respectively. At the second stable fixed point the PIN dis-
tribution is polar as Pr outnumbers Pl by at least Ptot/2,
yielding a constant net flow of auxin to the right. The rest-
ing state originates from synthesis and degradation terms
in eqs. (1)-(3), while the second pair of fixed points arises
due to the feedback. As both the resting and the polar
state are linearly stable, a uniform set of cells decays into
one of them depending on the cells initial state. To the
left of the unstable manifold embedding the unstable fixed
point, depicted as dashed line in fig. 3(A), all cells relax
to the resting state while to the right of this separatrix
all states decay to the polar fixed point. This is true for
a homogeneous set of cells, however, in a spatially inho-
mogeneous system complex scenarios such as waves and
fronts arise [46,47].
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Fig. 3. (Colour on-line) Illustration of the non-linear characteristics of auxin-induced polarization. (A) Trajectory of a polariza-
tion pulse (grey) and front (black) in the nullcline graph obtained from integrating the microscopic equations. Each single cell
has two linearly stable fixed points (solid green circle), a resting state with symmetric PIN distribution (RES) and a polar state
with constant auxin flux (POL). Their areas of attraction are separated by an unstable manifold (green dashed line) embedding
the unstable fixed point (open green circle). Parameters as in fig. 2. (B) Heuristic mapping of the numerical polarization pulse
along a strand of cells. Auxin is piled up in a cell with even distribution of PIN on both cell membranes at the front of the
pulse. Due to the slow attachment rates of PIN proteins gP , sP /dP the cell is still non-polar. Increasing the attachment rates
due to the positive feedback of auxin flow reduces the auxin amplitude. Growing cell-to-cell transport efficiencies eA increase
the auxin amplitude as more auxin reaches the peak per time step.

3.3 Dynamic transition

Due to spatial inhomogeneities passed on along a strand
of cells from a cell with auxin supply, the state of a cell
changes over time as a polarization pulse or front travels
through. The trajectory of states of a single cell in time,
fig. 3(A), maps onto the trajectory of a polarization pulse
over a strand of cells in space, see fig. 3(B), allowing for a
heuristic interpretation of the polarization dynamics. To
investigate these dynamics, we performed the continuum
limit of the microscopic equations (1), (2), see Supplemen-
tary material I for details. This gives rise to a set of partial
differential equations, which describe the change of a and
pr at one point in space over time,

∂

∂τ
a(x, t) = δa (1 − a(x, t))

−εa
1 + 2σp

1 + σp

�∂

∂x

[(
pr(x, t) − pRES

)
a(x, t)

]
, (6)

∂

∂τ
pr(x, t) = −γp

(1 + 2σp)
2

(1 + σp)3
a2(x, t)

(
pr(x, t) − pRES

)

×
(
pr(x, t) − pPOL−(a)

) (
pr(x, t) − pPOL+(a)

)

−γp

σ2
p

(1+σp)3
(pr(x, t)−1)

{
�∂

∂x
[(pr(x, t)−1) a(x, t)]

}2

.

(7)

This time evolution depends on reaction terms, including
only auxin and PIN concentration at the same specific
point in space, and gradient terms which account for the
influence of neighboring sites. The reaction terms cause
the system to relax to its stable fixed points as described
in the previous section. The gradient terms, however, drive
the system along its pulse trajectory.

The following explains the dynamic transition and the
role of reaction and gradient terms in it starting from a

cell in the non-polar resting state (RES). If the gradient
in auxin and PIN to the neighboring cell is large enough
the cell is forced out of its stable resting state to larger
values of auxin entering the domain of attraction of the
polar state (POL). If a neighboring cell has accumulated
more auxin and has a higher amount of PIN facing the
direction of the polarization pulse, pr, it is very effec-
tive in transporting auxin onwards into a cell, raising the
auxin content well above the equilibrium value. As the
now auxin-supplied cell has itself more auxin to transport
onwards, the net flux increases starting off the positive
feedback which results in PIN polarization. The then fully
polarized cell is very efficient in moving its excess auxin
onwards, finally decreasing its auxin content towards the
polar stable state. The neighboring cell that has been po-
lar and transporting onwards auxin for a bit longer has
less auxin, reversing the direction of the auxin gradient.
If this auxin gradient is large enough, it drives the cell
past its polar state into the domain of attraction of the
resting state. Hence, if the amount of auxin in the neigh-
boring cell is very low, the auxin supply breaks down and
with it the onward flux of auxin. The positive feedback is
decreasing and with it polarization towards the non-polar
resting state. Subsequent polarization pulses can only be
triggered if the polarization already saturated down to
almost resting state values, otherwise the remaining po-
larization would just transport the applied auxin onwards
before the positive feedback can build up an enhanced po-
larization of PIN proteins. The phenomenon that a system
has to relax back to its resting state before a new pulse can
be excited is denoted refractory phase in excitable media.

We find that the gradient terms in the auxin and PIN
dynamics have unequal analytic structures that lead to
their different functions. In the PIN dynamics the squared
gradient increases spatial inhomogeneities in PIN distri-
bution by augmenting pr up to saturation. In the auxin
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dynamics the signs of auxin and PIN gradients decide the
direction of change in auxin concentration. In front of an
excitation pulse the gradient induces a growth of auxin
content, while it decreases the amount of auxin at the
rear of the pulse. The magnitude of the auxin gradient
also decides between the formation of a polarization pulse
or front. If the auxin content in the neighboring cell is
only slightly smaller due to continuous or only slowly vary-
ing auxin supply a constant flux of auxin through polar
cells is established, a polarization front forms. If, however,
the auxin gradient is large and the auxin inflow decreases
drastically the feedback breaks down and the cells in the
polarization pulse relax back to their resting state. In sum-
mary the polarization of PIN distribution by auxin flow is
initially a bistable system that behaves like an excitable
medium depending on the amount and continuity of auxin
supply.

3.4 Analytical results

Identifying polarization dynamics as an excitable medium
enables us to go beyond numerical integration of the mi-
croscopic equations and analytically compute the auxin
amplitude of a polarization pulse or front. To this end, we
employed singular perturbation theory [49,50] on a polar-
ization pulse. Here we explain the outline of the calcula-
tion, a detailed derivation is provided in Supplementary
material I. The whole polarization pulse can be subdivided
into four regions as shown in fig. 2(A) and fig. 3(A). First
the front and back where the auxin concentration is nearly
constant and only the number of PIN proteins changes sig-
nificantly. Second the excited and the refractory domain
during which the efflux facilitator concentration follows
approximately the nullcline and hence only changes ac-
cording to the nullclines’ variation with the auxin con-
centration while the auxin concentration itself varies pro-
foundly. Therefore, all four regions are governed to good
approximation by just a single non-linear equation, the
one of the PIN protein dynamics or the one of auxin dy-
namics, respectively. Unfortunately, even each single con-
tinuum equation is not analytically solvable. The model
equations (6), (7) are therefore linearized around the sta-
ble nullclines yielding two sets of equations, one left to the
unstable manifold and one right to it. By this lineariza-
tion we overestimated the PIN dynamics close to the un-
stable manifold which leads to smaller auxin amplitudes
than those resulting from the integration of the micro-
scopic equations (1)-(3). An algebraic solution is obtained
by imposing a traveling wave Ansatz A(x−vt), Pr(x−vt)
and solving all four equations under the condition of dif-
ferential continuity at their intersections. The calculation
yields a closed expression for the auxin amplitude which
captures the role of the underlying kinetic parameters:

A2
max

A2
eq

=
ρ

2

(
1 +

√√√√1 +
42

β2

[
1 + sin

(
φ
3

)
− cos

(
φ
3

)
√

3

])
, (8)

where we abbreviated ρ = 4(1+2σp)/γp, β = 16 1
εa

σp

(1+σp) ,
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eAPtot/  dPεa=

sP/dPσp=

gPA2
eqP2

tot/dPγp=

Fig. 4. Results for the auxin amplitude Amax. The auxin am-
plitude Amax varies during a polarization pulse or front with
its independent kinetic parameters (A) transport efficiency of
auxin εa = eAPtot/�dP , (B) basal attachment rate σp = sP /dP

and, (C) enhanced attachment rate γp = gP A2
eqP

2
tot/dP . Shown

are results from the numerical integration of the microscopic
equations and the analytic expression multiplied by an overall
factor of 2.3. We considered σp = sP /dP � 1, such that only
less than a third of all PIN proteins occupy each membrane in
the resting state. εp = eAPtot/�dP > 1 as auxin permeability

eAPtot = 1.4 μm/s [45,32] is roughly larger than endosome cy-
cling by active transport along a cell’s cytoskeleton �sP [48].
We suggest γp = gP A2

eqP
2
tot/dP > 1, as protein and auxin

numbers might be very large. Finally, assuming literature val-
ues of dA [44], endosome cycling, and taking cell length of tens
of μm, we used dA/dP = 0.2 to compare our results. Each
graph shows the variation of a single parameter, while the re-
maining are kept constant at dA/dP = 0.2, eAPtot/�dP = 10,

gP A2
eqP

2
tot/dP = 12, and sP /dP = 0.2.

and φ = tan−1(−3
√

3β2,
√

214 − 33β4). The analytic re-

sult is compared to the numeric integration of the micro-
scopic equations (1)-(3) over a broad range of the kinetic
parameters in fig. 4. Due to the linearization of the equa-
tions, the algebraic amplitudes are too low. Fitting the
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analytic to the numeric results yields an overall factor 2.3.
This constant factor does not depend on the specific pa-
rameter range. Considering the amount of approximations
that entered the calculation, the analytic result captures
very well the dependence on the kinetic parameters over
orders of magnitudes. To obtain insight in how the magni-
tude of the kinetic parameters determines the amplitude,
we simplified eq. (8) further. Following our considerations
on the size of the kinetic parameters in fig. 4, β is smaller
than one. Hence, expanding for small β gives

A2
max ∝ 2ρ

β
∝ eAPtot

�dP

1
gP P 2

totA
2
eq

dP

(1 + sP

dP
)(1 + 2 sP

dP
)

sP

dP

. (9)

As the amplitude arises due to auxin inflow from neigh-
boring cells, Amax increases with the rescaled transport
efficiency eAPtot/�dP . Auxin is accumulated in a cell until
the cell reaches its almost fully polarized state and can
efficiently transport auxin onwards, see fig. 3(B). Hence,
accumulation time and auxin amplitude Amax inversely
depend on the basal PIN cycling rate sP /dP and the
enhanced attachment rate gP P 2

totA
2
eq/dP . Synthesis and

degradation of auxin do not contribute to the amplitude
in this first-order approximation as their impact on the
transport is very small. Note that the amplitude, like all
other pulse and front characteristics, is independent of the
amount of supplied auxin, a general property of excitable
media. Applying the above simplification to the resulting
analytic expressions for the velocity of the auxin pulse, see
supplemental eqs. (S7), (S8), yields

v ∝ eAPtot. (10)

This result reveals that the pulse of front velocity is dom-
inated by membrane permeability of auxin facilitated by
PIN proteins which is just the product of transport effi-
ciency and number of PIN proteins per cell. The prefactor
in eq. (10) v/eAPtot can be estimated from comparison
with numeric integration of the microscopic equations as
shown in fig. 4 to be in the range of 6 · 10−5–6 · 10−4

depending on the remaining kinetic parameters.

4 Discussion

We have shown that some prominent aspects of auxin and
PIN dynamics can be inferred from a simple mathematical
model. Our model predicts the transition of ground meris-
tem cells from a non-polarized stable state to a polarized
stable state of constant auxin flow. This development oc-
curs by a traveling wave front triggered by a continuous
inflow of auxin from the outer epidermal layer, in accor-
dance with experimental observations [19]. Each cell is a
bistable excitable medium. Excitations from one state to
the other can be induced by supply of auxin and crucially
depend on the spatial gradients in auxin and polar PIN
concentrations between cells. The amplitude of auxin in
the wave front and the polarization of the stable states is
cast in analytical expressions concordant with numerical
integration of our microscopic equations.

The microscopic equations underlying our model for
auxin and PIN dynamics are defined such that all rele-
vant biological processes are included while a minimum
of assumptions on their actual kinetics entered. To this
end only linear synthesis, degradation and transport etc.
is considered as a first-order approximation of any kind
of kinetics. However, the model is robust against alter-
ation of the linear relationships, as is illustrated in Sup-
plementary material II. For example, extending the cell-
to-cell auxin transport to account for Michaelis-Menten
kinetics preserves the form of the nullclines and the dy-
namics of the wave. In our model only the feedback of
auxin flow on the attachment of PIN proteins enters
non-linearly. A linear growth of the enhanced attach-
ment rate with the auxin flow cannot lead to a propa-
gating front, as such a model does not exhibit two sta-
ble fixed points. Only auxin flow exponents higher than
one show these properties. However, the exact value of
the exponent does not affect the form and dynamics of
the traveling wave, again confirming the robustness of our
assumptions.

Recently, models for auxin and PIN dynamics were
developed proposing that the auxin concentration in the
neighboring cell feeds back onto an enhanced attachment
rate of PIN proteins [23,41–43] in contrast to canaliza-
tion models, where the net auxin flux governs the feed-
back. These concentration driven models exhibit a static
state of spatially ordered auxin maxima with PIN proteins
polarized towards these auxin maxima [23]. This behav-
ior arises as concentration driven feedback changes the
non-linear character of auxin and PIN dynamics. These
models generally exhibit only a single stable, resting fixed
point [51,52]. The polarization due to auxin supply ob-
served in these models [42] arises due to an evolved relax-
ation into the stable, resting state. Hence, the polarization
is only temporary and, for instance, the amount of polar-
ization and the velocity of the polarization front depend
crucially on the amount of auxin supply. This is in contrast
to our minimal canalization model, where all polarization
characteristics are only governed by the kinetic parame-
ters. The amount of auxin supply in an excitable medium
only regulates if a pulse or front is excited or not. Hence,
these qualitative differences may help to distinguish be-
tween the different models experimentally.

The role of all kinetic processes during the dynamic
rearrangement of PIN and auxin in cells becomes explicit
when examining the very front of the polarization in a mi-
croscopic scenario as illustrated in fig. 3(B). The almost
fully polarized cell at the peak of the front carries a lot of
auxin molecules that are invading the next yet non-polar
cell in the direction of polarization with a rate mainly
governed by the cell-to-cell transport efficiency eA. To suc-
cessfully transfer the accumulating auxin onwards the PIN
proteins in the yet non-polar cell have to rearrange to fa-
cilitate directed transport. However, the endosome cycling
sP , gP by which the membrane bound PIN proteins reach
the cell membrane is very slow. Hence, the attachment
rate of the efflux facilitators forms a bottleneck that piles
up more and more auxin in a cell, that is slowly increasing
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the amount of PIN proteins facing the direction of trans-
port. Heuristically, an auxin pulse forms due to a traffic
jam caused by the slow cycling of the efflux facilitators, as
given by eq. (9). As an equilibrium concentration of PIN
proteins is always embedded in each membrane ready to
transport auxin, the magnitude of the velocity of a po-
larization front or pulse is set by the cell-to-cell transport
efficiency, see eq. (10). The other kinetic parameters only
slightly modulate the velocity. The PIN attachment rates,
gP , sP , and detachment rate, dP , on the other hand, de-
termine the number of PIN proteins accumulated at the
membrane in the polar stable state, see eq. (5). The po-
larization grows with the enhanced attachment rate, the
strength of the feedback, gP . On the contrary, basal PIN
cycling sP /dP intensifies the competition between oppos-
ing membranes decreasing the amount of PIN proteins in
the direction of polarization.

The result of our analytic expressions for the PIN con-
centration in the polar state with constant auxin flux
in eq. (5) and the auxin amplitude at the very head
of the polarization front eq. (8) enable estimates of the
underlying kinetic rates by identifying and measuring
these observables in future experiments. Existing exper-
imental results by Scarpella et al. [19] permit an es-
timate of the polarization front velocity in the range
v = 10−4–10−3 μm/s, in accordance with our estimate for
the velocity v = 8 · 10−5–8 · 10−4 μm/s, resulting from the
fitted pre-factor in eq. (10) and the literature value of
auxin permeability eAPtot [45,32]. An quantitative esti-
mate of PIN polarity from the same existing data is to
best of our knowledge yet unfeasible as a reference for
the protein number is absent. This could be overcome
by new experiments, which could also aim at the auxin
kinetic rates. Unlike PIN which is readily GFP tagged,
auxin is not directly detectable and quantification of its
amount can only occur via indirect methods. Recently,
measurements of deuterated auxin improved [53], making
experiments with exogenously applied auxin conceivable.
In such setups one should, however, keep in mind that ex-
ogenous auxin mixes with endogenous, non-labelled auxin,
decreasing the observed amplitude. The position of the
auxin peak can easily be located as it should be accumu-
lated in front of those cells with the largest amount of
PIN proteins at the corresponding membrane. Measure-
ments of the amount of PIN proteins in polarized cells
via GFP tagging could not only disclose the basal endo-
some cycling rate but also the magnitude of the feedback
between auxin flow and PIN dynamics.

The occurrence of bipolar cells has stimulated pre-
vious theoretical models introducing a hypothetical new
molecule [54] or moving auxin sources [38]. Our model,
however, readily predicts the occurrence of bipolar cells
along a one-dimensional strand of cells at the site of con-
tinuous auxin inflow. These cells show a high concen-
tration of PIN proteins on either membrane, a balanced
outcome of the competition for PIN between both mem-
branes. This state is not a statically stable but dynami-
cally driven by the supply of auxin. Transferring this ob-
servation to the two-dimensional layer of ground meris-

tem cells during vein initiation may explain the bipolar
cells observed experimentally [19,27–29]. In two dimen-
sions several membranes can compete, yielding also triple
polar cells or theoretically higher orders of polarity. How-
ever, in biological cells not all cell membranes may have
the same number of PIN proteins to enter the competi-
tion. Those with fewer initial PIN proteins will become
the site of PIN drain, decreasing the number of successful
polarization fronts. Experiments indicate that mechanical
cues might favor certain membranes [55], paving the way
of a polarization front and hence the position of veins and
vein loops.

In summary we analyzed a canalization model to ex-
plain how auxin and PIN dynamics polarize the distribu-
tion of PIN proteins during early vein initiation in the
ground meristem. Each cell is found to be bistable consid-
ering their PIN distribution in the membrane. Polarization
occurs in a traveling front as auxin is supplied to a single
cell mimicking the auxin inflow from the outer epider-
mal cell layer. The driver in this transition is the spatial
gradient of auxin and polar PIN concentration between
cells. The key idea in this polarization is the positive feed-
back between hormone auxin and its own efflux facilitator
PIN. An idea that might be inspiring in other developmen-
tal processes in animals where tissue is polarized as, for
example, in planar cell polarity [56]. As the polarization
front can travel in opposite directions from its initiation
site, a bipolar cell, the up to now puzzling occurrence of
closed vein loops can be resolved. Furthermore, our non-
linear analysis enables the calculation of exact analytical
expression for the polarization front. Therefore, our new
quantitative predictions for the PIN polarization driven
by auxin flow establishes a basis to determine the kinetic
parameters underlying the transport of auxin and may
therewith have far-reaching impacts on the understand-
ing of the developmental processes and their differences in
plant species, to perceive the fundamental patterns of leaf
veins or phyllotaxis and learn how environmental condi-
tions alter these.
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I. AUXIN AMPLITUDE COMPUTATION

Starting from the microscopic definition of a model for the polarization of PIN distributions

by auxin flow, see Eq. (1), (2) and (3), an exact analytical expression for the auxin amplitude and

the velocity of the polarization pulse is derived. To this end a continuum limit is performed and

singular perturbation theory is employed as described in the following.

Initially, polarization is defined by three equations governing the dynamics of auxin concen-

tration A and the amount of PIN efflux facilitators on the membrane on the right Pr or on the

left Pl hand side of the cell. Assuming the symmetry of the system is broken such that polariza-

tion evolves to the right, the concentration of efflux facilitators on the left hand side membrane of

every cell does not change significantly with time if sP/(dP + 2sP ) � 1, we therefore assume

dPl(n)/dt = 0. As flow proceeds to the right J(n) > 0 ∀n, the amount of PIN proteins on the left

hand side membrane amounts in its stationary state to Pl(n) = sP (1− Pr(n))/(dP + sP ). Substi-

tuting this result in the remaining dynamic equations the system is described by two components

only, A(n) and Pr(n). We derive continuum equations by setting n → x, n + 1 → x + `, and

n − 1 → x − `. When the wavelength as the length scale on which the pulse evolves is consider-

ably larger than the cell length `, a time scale separation occurs which makes higher order terms

negligible small. As observed in the simulations shown in Fig. 2 the wavelength of a single pulse

is of the order of tens of cells justifying a Taylor expansion in x. To describe the characteristics

observed in the microscopic equations with continuous equations only zeroth order terms and a

single second order term in the PIN dynamics are required,

∂
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In these expressions the degree of nonlinearity is still too high to obtain analytical results by

use of singular perturbation theory. Therefore, the continuum equations are further simpli-

fied by approximating them right and left of the nullcline embedding the unstable fixed point,

Pr(x) =
dP+3sP

2(dP+2sP )
− dP+sP

2(dP+2sP )

√
1− 4(dP+2sP )

gPPtotA2(x)
, which to good approximation resembles the sep-

aratrix between the areas of attraction of the stable fixed points.

Left of the nullcline the reaction terms of the continuum equations, those terms without spatial

or temporal derivatives, are expanded around the stable nullcline embedding the stable resting state

(A/Aeq = 1, Pr/Ptot = sP/(dP + 2sP )). The spatial derivative terms are simplified by discarding

the spatial derivative of auxin whose factor Pr(x)/Ptot − sP/(dP + 2sP ) turns the whole term

negligible small close to the stable nullcline, resulting in,
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Right of the nullcline embedding the unstable fixed point the reaction term of the efflux facil-

itator dynamics is expanded around the polar fixed point (A/Aeq = 1, Pr/Ptot = dP+3sP
2(dP+2sP )

+

dP+sP
2(dP+2sP )

√
1− 4(dP+2sP )

gPA2
eqP

2
tot
). Here, the spatial derivative terms contributing to the PIN protein dy-
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namics become negligible small and are therefore discarded, yielding,
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Based on these sets of equations the amplitude and the velocity of a polarization pulse are calcu-

lated employing singular perturbation theory [1, 2]. The singular perturbation approach becomes

applicable to a two component system performing a pulse if the pulse can be separated in different

regions which comply either of the following restrictions. Either to good approximation one com-

ponent is constant while the other changes rapidly. Or if both components change simultaneously

one of the components should follow a nullcline. Then the two coupled nonlinear equations decou-

ple in each region and only one differential equation remains to be solved. Assuming a traveling

wave ansatz z = x− vt, where v defines the velocity of the wave, the partial differential equations

simplify to ordinary differential equations. These differential equations remain to be solved under

the condition of continuity and differential continuity at the nullcline embedding the unstable fixed

point which separates the two cases Eqs. (S3, S4) and Eqs. (S5, S6).

The trajectory of an auxin pulse can be subdivided into four regions, first a wave front and

back, where the auxin concentration is approximately constant Amax, min, while the PIN protein

concentration changes rapidly and second an excited and a refractory region during which the PIN

concentration follows the stable nullclines. Several boundary conditions arise from the requirement

of continuity and differential continuity. Considering the efflux facilitator dynamics continuity

requires that PIN concentrations during pulse front and back governed by Eqs. (S4) and (S6) merge

into the nullclines defining refractory and excited domain Pr,front(z → ∞) = Pr,refrac, Pr,front(z →
−∞) = Pr,excite and Pr,back(z → −∞) = Pr,refrac, Pr,back(z → ∞) = Pr,excite. As the separating

nullcline is crossed during wave front and back additionally continuity and differential continuity

is compulsory for efflux facilitators at the position of the nullcline embedding the unstable fixed

point zsep. The auxin concentration evolving during excited Eq. (S5) and refractory region Eq. (S3)

has to reach the constant auxin concentration of pulse front and back Amax, Amin at distinct points
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in evolution z = zfront and zback, resulting in the boundary conditions Arefrac(zfront) = Amax =

Aexcite(zfront), Arefrac(zback) = Amin = Aexcite(zback), dArefrac(zfront)/dz = dAexcite(zfront)/dz, and

dArefrac(zback)/dz = dAexcite(zback)/dz. Two of those boundary conditions yield equations that

solve for the auxin amplitude Amax and the pulse velocity v. First the condition of differential

continuity of the PIN concentration at the separatrix ∂Pr(zsep)/∂z results in,

v =
4`dP
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1 + sP
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A2
max
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where we abbreviated ρ = 4(dP + 2sP )/gPP
2
tot. Second differential continuity of auxin left and

right of a wave front or back Arefrac(zfront) = Amax = Aexcite(zfront) yields,

v =
eAPtot

4

(
1 +

√
1− ρ

A2
max

)
. (S8)

These two equations together result in a quartic equation for the amplitude of the auxin pulse,

evaluated to the expression given in eq. (8). Reentering this result into one of the defining equations

above yields an analytic result for the velocity of an auxin pulse.

II. COMPARISON TO ALTERNATIVE MICROSCOPIC TRANSPORT MODELS

When defining our microscopic equations Eqs. (1 - 3) we included all contributing processes

but considered a minimum of assumptions on the kinetics. In this spirit all processes are modeled

by linear relations as the first order term of any kind of underlying kinetics. The only exception

is the enhanced attachment of PIN proteins, which is the point where non-linearity enters the

microscopic model triggering the non-linear effect of a traveling pulse or front. Including further

non-linearities renders the microscopic models intractable for analytical calculations. However, the

analysis of our minimal model has revealed the key characteristics for polarization to be two stable

fixed points accompanied by an unstable manifold. Excitations beyond this unstable manifold

then lead to the development of a wave pulse or the relaxation to the polar stable fixed point.

With this knowledge we can assess more evolved microscopic models by comparing their non-

linear characteristics such as the nullclines to the minimal model. As is shown in the following,
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A/
A e

q

space

minimal model
M-M kinetics for auxin
feedback - J3

FIG. S1: Comparing the polarization pulse for different extended models to our minimal model yields no
difference in their characteristics confirming the robustness of our linear approximations. Parameters values
as follows. Minimal model dA/dP = 0.2, sP /dP = 0.2, eAPtot/`dP = 10, and gPA

2
eqP

2
tot/dP = 12.

Michaelis-Menten kinetics for active auxin transport dA/dP = 0.2, sP /dP = 0.2, eAPtot/`dPAeq = 8,
gPP

2
tot/dP = 70, and kA/Aeq = 1.6. Feedback to the power of three dA/dP = 0.2, sP /dP = 0.2,

eAPtot/`dPAeq = 10, and gPP
3
totA

3
eq/dP = 18.

exemplarily changing linear terms of the minimal model into non-linear terms results only in slight

changes of the characteristics confirming the robustness of a first order assumption in the minimal

model. If not explicitly stated otherwise we assumed dPl(n)/dt = 0 to calculate the fixed points.

A. Michaelis-Menten kinetics for active auxin transport

One may assume that a Michaelis-Menten mechanism describes the active transport of a sub-

strate auxin by an enzyme presented by the PIN proteins [3, 4]. Then, in the definition of the

net auxin flow the number of transported auxin molecules is represented by a Hill function with

Michaelis-Menten constant kA. For reasons of completeness we state the full set of microscopic

equations:

d

dt
A(n) = sA − dAA(n)−

eA
`
[J(n)− J(n− 1)] , (S9)

d

dt
Pr(n) = −dPPr(n) + sPPb(n) + gPJ

2(n)θ(J(n))Pb(n), (S10)

d

dt
Pl(n) = −dPPl(n) + sPPb(n) + gPJ

2(n− 1)θ(−J(n− 1))Pb(n), (S11)

J(n) =
A(n)

A(n) + kA
Pr(n)−

A(n+ 1)

A(n+ 1) + kA
Pl(n+ 1). (S12)
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These equations yield in accordance with the minimal model three fixed points, one resting state

at (A/Aeq = 1, Pr/Ptot = sP/(dP + 2sP )) and a pair of stable and unstable constant current fixed

points at (A/Aeq = 1, Pr/Ptot = dP+3sP
2(dP+2sP )

∓ dP+sP
2(dP+2sP )

√
1− (1 + kA)2

4(dP+2sP )

gPP
2
tot

). The model

displays very similar nullclines and the same dynamics as the minimal model as exemplified in

Fig. S1. If the new parameter kA lies outside its range kA ≤ −1 −
√

gPP
2
tot

4(dP+2sP )
and kA ≥ −1 +√

gPP
2
tot

4(dP+2sP )
only a single stable fixed point occurs and no polarization can be observed.

B. Feedback - power of the current

In the minimal model we take the feedback of auxin flow on the enhanced attachment of PIN

proteins to enter with a power of two. In general one could assume any kind of power,

d

dt
A(n) = sA − dAA(n)−

eA
`
[J(n)− J(n− 1)] , (S13)

d

dt
Pr(n) = −dPPr(n) + sPPb(n) + gPJ

k(n)θ(J(n))Pb(n), (S14)

d

dt
Pl(n) = −dPPl(n) + sPPb(n) + gPJ

k(n− 1)θ(−J(n− 1))Pb(n), (S15)

J(n) = A(n)Pr(n)− A(n+ 1)Pl(n+ 1). (S16)

Considering only integer powers for simplicity, we find the following. For k = 1 the above

equations display the resting fixed point at (A/Aeq = 1, Pr/Ptot = Pl/Ptot = sP/(dP + 2sP )) and

a polar fixed point at (A/Aeq = 1, Pl/Ptot = sP/gPAeqPtot, Pr/Ptot = 1 − (sP + dP )/gPAeqPtot).

The resting state is the only fixed point and stable for gPAeqPtot < dP + 2sP , otherwise the polar

fixed point is stable and the resting state turns unstable. No excited polarization can occur in either

case. However, if k > 1 the equations display a set of stable and unstable fixed points in addition

to the resting stable fixed point. For any k > 1 one recovers the dynamics observed for k = 2 in

the minimal model as exemplified in Fig. S1 for the cases k = 3. This observation is in accordance

with results of Ref. [5], which stated vein patterns for any feedback function obeying to first order

a higher power than k = 1. For k = 2 we observed that the pair of a stable and an unstable polar

fixed point occurs only for gPA2
eqP

2
tot/dP ≥ 4(1+2sP/dP ), similar rules apply for k = 3 or higher.
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III. MODEL PARAMETERS

Our model depends on four dimensionless parameters δa = dA/dP , σp = sP/dP ,

γp = gPA
2
eqP

2
tot/dP , and εa = eAPtot/`dP . As quantitative knowledge is very sparse, i.e.,

only dA = 2 · 10−4 − 2 · 10−51/s and eAPtot = 1.4µm/s are experimentally verified, their

values have been varied over large ranges within conceptional limits, see table below. As only

less than a third of all PIN protein can occupy each membrane in the resting state given by

Pr,l/Ptot = σp/(1 + 2σp), σp is limited to values considerably smaller than one. Furthermore, it

is reasonable to assume that eAPtot/`dP > 1 as auxin permeability eAPtot = 1.4µm/s [6, 7] is

roughly larger than endosome cycling by active transport along a cell’s cytoskeleton `sP [8]. In

addition, we suggest gPA2
eqP

2
tot/dP > 1 as protein and auxin numbers might be very large. Finally,

assuming literature values of dA [9], endosome cycling, and taking cell length of tens of µm, we

took dA/dP < 1. The parameter assumed in our simulation presented in Fig. 5 are summarized in

the following.

Parameter δa = dA/dP σp = sP/dP γp = gPA
2
eqP

2
tot/dP εa = eAPtot/`dP

Values 0.1-1 0.05 -1 1-10 1- 100
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Abstract 

The prospect that local cell mechanics underlies the formation of large-scale tissue structures 

has tremendous impact on our understanding of tissue remodeling, developmental 

morphogenesis and tumor growth. Yet quantitative measurements and predictable modeling of 

the homeostatic balance of tensional inter- and intracellular forces are scarce. Here we 

investigate, as basic tissue units, small sets of Huh7 epithelia cells on arrays of micro-fabricated 

square adhesion patches. Beyond single cell and full tissue level, these oligocellular tissues 

enforce well-defined boundary conditions and hence give access to mechanisms governing 

tissue mechanics not revealed previously. We observe cell arrangement into distinct packing 

states, which we categorize according to their geometry and relative abundance. The standard 

mechanical model, previously proposed for extended tissues, fails to fully explain the packing 

states. We propose an extended model including cell shape anisotropy in addition to cell-cortex 

contractility and cell-cell adhesion. This extended model fully captures the statistics of 

oligocellular tissues and allows quantification of tissue mechanics. The reproducibility of cell 

states suggests that these tissues may be used as quantitative cell mechanics assays, in order 

to explore underlying cellular processes
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Introduction 

In recent years, it became increasingly obvious that cell mechanics plays an important role in 

tissue formation during development, growth, wound healing and tumorigenesis. The interplay 

between mechanical forces in epithelial cells has been found to organize tissue sorting1, govern 

the surprisingly regular polygonal packing of cells within tissues2-5, and their rearrangement 

during development6-11. Cell mechanics may also play an important part in cell dynamics such 

as tissue growth12, 13 and tissue spreading14-19. The polygonal arrangement of cells within 

tissues has recently been described with vertex models3, 4, 10, 13, 20. These models explain a 

homeostatic tissue state to be determined by the interplay of cortical actin contractile forces, 

contact favoring adhesion forces and elastic forces. Regulation of these balancing forces 

determines cell packing geometry2, 3, 5 and drives large scale reordering of cells within tissues 

during development6, 9 . First quantitative comparison of Drosophila tissue structures and vertex 

model simulation by Farhadifar et al.4 and Rauzi et al.10 allowed to estimate the force 

parameters. In this context it is very promising to apply a bottom-up approach by designing 

artificial cell arrangements as model tissue with defined boundary conditions. Employing such 

experiments in a hypothesis driven manner can establish and validate mechanical models of 

cell tissue mechanics.  

The emerging field of cell micropatterning techniques allows control of adhesion patches, which 

determine shape, size and location of cultured cells. Micropatterns have been employed in 

precise biophysical single cell studies concerning mechanical forces21, 22 established by cell 

contact points to the extracellular matrix (ECM), and the influence of their geometrical 

distribution on fundamental biological functions23-25and internal organization of cells26. An 

important, and not yet fully appreciated advantage of micropatterning based cell studies, is the 

fact that settings consisting of a small number of cells reduce the degrees of freedom for cell 

arrangements for given cell-contact and intracellular parameters and, hence, give access to cell 

mechanical quantities that are neither empirically observable at the single cell level nor at the 

full tissue level.  
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In this article, we study the packing states for an ensemble of small groups of cells in defined 

micropatterned growth areas. We observe epithelial Huh 7 cells within micron-scale square 

adhesion patches and find that cells relax into distinct cell packing states, depending on the 

number of cells per adhesion patch. These stable cell arrangements cannot be explained within 

the standard mechanical model. A qualitative analysis of the geometry and relative abundance 

of oligocellular packing states provides strong evidence for an additional elastic term beyond the 

competition between cell cortex contractility and cell-cell adhesion. We show that an extended 

mechanical model including a term that counteracts cell anisotropy encompasses all 

oligocellular states in accordance with the experimental data. Following the dynamics of a single 

cell packing state, we also show that transitions occur between energetically equivalent states 

over time. Finally, we outline that oligocellular arrays have great potential as quantitative assays 

for cellular interactions.  
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Results  

Cells living in confinement.  

We describe experiments on Huh 7 cells growing on structured thin PDMS films. Using plasma 

induced hydrophilisation, defined micro-patterns are created, as described in the materials and 

methods section. The hydrophilic squares (side length ) provide preferred adhesion 

areas that artificially constrain a small number of cells to a limited surface area (Figure 1a). 

When cells are seeded onto the micro-structured surface, they are found to distribute and 

spread onto the adhesive square patches (Figure 1b). The number of cells per adhesive area, 

N, depends on the total cell concentration, which in the experiments was chosen such that 

typically between one to four cells are settled per patch. A single cell per patch tends to wet and 

fill the entire square. In the competitive situation with more than one cell per square, cells are 

found to arrange themselves into configurations with the total adhesive area being equally 

shared between cells. These packing states are long lasting compared to the time of cell state 

formation. When with proceeding time cells divide, new packing states of higher cell number 

form by rearrangement of cells, as schematically shown in Figure 1c. This cycle continues until 

the patches become overpopulated and cells are expelled from the adhesion “islands”. This 

occurs at an average number of more than four cells per area. However, now and again, 

squares occupied by up to seven cells are found. If cells are expelled, they are able to migrate 

to neighboring empty adhesive patches crawling over the hydrophobic parts of the surface. 

In the following, we will describe in more detail the characteristic packing states that appear for 

a small number of cells per patch (N<5). These long lasting cell packing states exhibit high 

symmetry as indicated by the tracked cell-cell contact lines in Figure 1b. Note that the 

emergence of relaxed packing states is not synchronized over the entire assay as can be seen 

in Figure 1b. The formation of relaxed stable states is a reproducible hallmark of the cell 

arrangement after cell division. In the following section we classify the stable cell packing states 

into distinct classes and discuss their relative abundance. 
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Stable cell packing states. 

For each number of cells per square patch we observe with high reproducibility a distribution of 

symmetric packing states (see histograms and fluorescent micrographs of the most prominent 

geometries in Figure 2). The packing states are characterized by cells sharing the available 

adhesive area equally, nuclei displacement towards the centre of the structure, and 

circumferential actin stress fibers surrounding the perimeter of the squares. We use the 

symmetry of the packing states to define “classes” for the cell arrangements within square 

adhesion patches. 

There is only one class of packing states for two cells, namely two cells aligned in parallel, 

denoted 2II. Two cells congruently divide the square area, sharing one cell-cell contact line and 

exhibiting the same area and length of circumference. In this class, packing states may vary in 

the angle  that the cell-cell contact line encloses with the boundary, see Figure 2a. The 

ensemble average cell-contact angle of 2II states in the experiment is found to be broadly 

distributed around a mean value of . 

Due to elementary laws of geometry three cells on a square are obliged to break symmetry and 

arrange into states non-congruent in cell-cell contact. We find two classes of stable cell packing 

states, denoted 3II and 3T. The 3II state, in which the three cells are aligned in parallel, does not 

occur as often as the 3T packing state, where cells arrange in a T shape (Figure 2b). Within both 

classes (3II and 3T), the packing states differ in their orientation relative to the adhesion square’s 

edges. The horizontal arrangement within the 3T class is often rearranged into a fork state 3Y. 

In the case of four cells per area, symmetry permits again cells to arrange in congruent packing 

states. Obviously, there are two high symmetry classes, 4II, for parallel, and , for quadratic 

arrangement. However, neither of these classes is found in experiment. While the 4II class is not 

observed at all, the class exists only in a distorted form that avoids the formation of a four-cell 

contact point. In the latter class, which we denote , symmetry is broken, as two cells are in 

contact with only two neighbors while the remaining two cells have three neighboring cells each. 

The length  of the contact line with the additional third neighbor is short compared to the 
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square length. The experiments show indeed a rather sharp distribution of  centered on 

 (see also supplementary Figure S6). The rare arrangements where 

the length  is below the resolution limit and could not be estimated are grouped into a class 

denoted . Packing states within the  symmetry class differ again in their orientation relative 

to the adhesion square’s edges. Since in all geometries cells equally share the available area, 

different cell packing states only vary in cell-cell contact length and individual cell perimeter, 

suggesting mechanical forces to regulate especially cell-cell contact length and cell perimeter. 

 

Internal organization of cells. 

Polarity is an essential property of columnar epithelial cells which is attributed to the spatial 

orientation of the cell-cell and cell-ECM contacts26. The result is a polar positioning of the cell 

nucleus in the vicinity of cell-cell and cell-ECM contacts as depicted in Figure 3a. Recent 

experiments of single cells27 or tissues28, 29 in confining geometries indicate nucleus position 

adverse to high focal adhesion density and close to cell-cell contacts. We investigate the 

internal organization of the cell packing states by labeling actin and cell nuclei, see Figure 2 and 

Figure 3b. Among the dense network of actin fibers throughout individual cells, actin stress 

fibers are pronounced along the edges of the square patches, probably due to the accumulation 

of focal adhesion points at the rim and especially at the corners of adhesion squares27. Also 

cell-cell contact lines show distinct actin density, which can be attributed to the actin cortex that 

establishes the contractile force within cells7. The cell nucleus position, relative to the cell 

centre, and its form evolve with the number of cells per patch. While a roundish nucleus is 

placed almost in the cell centre for a single cell per square, it is off-centered towards cell-cell 

contact lines for several cells per square. Nucleus shape is often observed to be deformed to 

assimilate a form dictated by the contour of cell-cell contact lines, thereby taking an elongated 

shape for N=2 and even a triangular shape for N=4, see Figure 3b and supplementary Figure 

S5. Nucleus position is independent of cell shape. For example in the diagonal oriented state of 

3T class, see Figure 2b, the nucleus is always off-centered towards cell-cell contact, being 
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placed in the corner of a triangular cell in one case and along the edge of a triangular cell in the 

neighboring one. Nucleus position is also independent of the geometry of the adhesive patch, 

e.g., on square, circle or hexagon, nuclei are always off-centered towards cell-cell contact lines, 

often acquiring the shape of these lines (see Supplementary Figure S4). 

 

Mechanical equilibrium model of cell packing states. 

We now analyze the geometry of all observed packing states in a mechanical model to infer the 

governing mechanical forces. We first follow current modeling approaches, which assume that 

cell arrangements are determined by three interactions namely cell-cell adhesion, cell cortex 

contractility and cell elasticity3, 4, 10, 13. In our experiments, however, the adhesion area is fixed by 

the preformed surface micropattern. From this boundary condition and taking into account that 

cell-surface interactions dominate, it follows that cells equally divide the available adhesion area 

 among each other as observed in experiment. Hence, we reduce model and parameters by 

introducing the constraint of equal area per cell, =const. Cell arrangements on the adhesive 

squares are thus ruled by cell cortex contractility and cell-cell adhesion only. Cell contractility 

decreases the perimeter  of a cell , while cell-cell adhesion favors long cell-cell contact lines 

 between neighboring cells , see Figure 4a. Stable arrangements of N cells are then 

described by the minimum of the energy function 

, with      (1) 

where  denotes the cell cortex contractility and  the cell-cell adhesion parameter. Here we 

have neglected cell shape undulations and discuss cell states with straight cell boundaries only; 

fluctuations in cell boundaries are incorporated in  and  as effective parameters. Predictions 

of the energy function are discussed in ascending order for the cases N=2,3, and 4. 

Arrangements of N=2 cells on a square are described by just a single parameter, the angle , 

between the horizontal axis through the squareÕ s centre and the contact line between the two 

cells, as shown in Figure 4b. Minimization of the energy function shows that  is the 
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stable configuration for dominating contractility, which minimizes the perimeter, while 

 is the solution for prevailing cell-cell adhesion, which maximizes the length of the 

contact line. In general the competition between both contributions is given by the ratio  

and the energy minimization leads to a stable configuration with . 

Hence, the characteristic angle in cell packing states is directly related to the ratio of cell-cell 

adhesion and cell cortex contractility strength. Therefore, the experiment presented in Figure 2a 

showing  for the Huh7 cells, yields a ratio of cell-cell adhesion strength versus cell 

cortex contractility of about . 

Since the experiments show a broad distribution of angles , we extend our model by 

introducing a statistical weight  for packing states in analogy to the statistical Boltzmann 

weight . Fitting now the experimental distribution shown in Figure 2a 

using the statistical weight function, we consistently find  and effective 

temperature scale  . The theoretical distribution function shows a mean value of 

 in agreement with experimental data. 

In the case of N=3 cells, cell packings break the symmetry of the adhesion square and cells 

arrange into non-congruent states. We observe two classes of cell packing: parallel, 3II, and,T-

shaped, 3T, as shown in Figure 2b. Using the parameter range identified from the case N=2, the 

parallel ordering 3II exhibits a 10% lower total energy than the T-shaped packing. Indeed, the 

mechanical model in Eq. (1) predicts parallel ordering to be more probable than T-shaped, in 

contrast to observations. Thus our model assumption that cell states are governed by cell-cell 

contact and isotropic contractility is too restrictive to describe the prevalence of 3T states. A 

solution to this puzzling situation arises from the experimental observation that the two classes 

display substantially different aspect ratios for individual cells as 3II cells are very elongated and 

3T cells are rather roundish; see Figure 4c and Figure S3. This suggests that the current 

standard model should be extended to account for cell anisotropy. Defining the size-
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independent anisotropy of an individual cell as the normalized variance of the eigenvalues  

of the second moment of area*, the standard model is extended by an additional term 

proportional to cell anisotropy with elastic constant : 

, with    (2) 

While positive  favors cell isotropy, negative  promotes elongated cell shape. A considerably 

small, positive  renders parallel ordering less probable than T-shaped in agreement with 

experiments. As an independent control, the relatively frequent occurrence of the fork state 3Y, 

described in Figure 2b, compared to the T-shaped 3T state is captured by the extended model, 

substantiating our notion. Within the 3T class itself the extended model predicts the minimal 

energy state to be diagonally oriented as observed with highest probability, see Figure 2b and 

Figure S3. 

Turning to an arrangement of N=4 cells we may now assess the validity of the extended model 

Eq.(2). While the current standard model would predict parallel ordering 4II, the elastic 

anisotropy term in our extended model strongly disfavors it. This is in accordance with the fact 

that 4II states are not observed experimentally. Typically, N=4 cells arrange in a  class, where 

two 3-cell junctions are separated by a small distance , see Figure 4d. These cell packing 

states exhibit a bimodal distribution centered around states with maximal cell-cell contact and 

states with minimal perimeter; see Figure 2c. The current standard model always predicts a 

single stable state; for the measured  this state is characterized by maximal cell-cell 

contact. In contrast, our extended model correctly captures a bimodal distribution as it 

energetically favors both configurations with maximal cell-cell contact and those with minimal 

perimeter due to their lower anisotropy, see Figure S3. Remarkably our experiments reveal a 

strongly peaked distribution of  centered around (see supplementary Figure S6). 

This can neither be explained with the current standard model nor with our extended model, 

which both energetically promote a 4-cell junction instead of the observed two 3-cell junctions. 

This suggests that further factors need to be incorporated. One intriguing hypothesis is to 
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consider the statistical weight of states, directly related to their statistical entropy, which would 

clearly favor two 3-cell junctions over the singular state of a 4-cell junction.  

 

Transitions between equivalent stable cell packings. 

So far we have described the stationary distribution of packing states according to a mechanical 

energy landscape. Experiments show that the cell arrangements are broadly distributed and 

also fluctuate with time. We show a 18h time lapse movie of a two-cell arrangement in Figure 5. 

Due to the rotational symmetry of the adhesion patch, and the mirror symmetry of the two cells, 

the energy function has eight equivalent minima, according to eight degenerate stable packing 

states per patch. As a function of time, we observe transitions between these states, as can be 

seen in the time course of the cell-contact angle in Figure 5b. Tracking the angle of N=2 

packing states over time, we observe fluctuations around the mean and transitions past the 

corners of the adhesion patch. The distribution of angles over time is tracked and exhibits one 

distinct maximum in each quadrant, see Figure 5c, corresponding to the mean angle as 

extracted from the cell packing ensemble in Figure 2a. The probability of states matches the 

prediction from our model (red line in Figure 5c), only states with contact lines extending from 

corner to corner, i.e., , occur more often than predicted. This could be arising as cells 

might take more time to reorder their stress fibers when passing a corner than when moving 

along edges, increasing the time sampling density of corner versus edge configurations. The 

fitted time distribution of angles yields  and  for . It 

is noteworthy that the ratio agrees with the previous considerations. Apparently, however, 

without overstretching the analogy, the effective temperatures in the ensemble and time 

average differ. As both averages cover different scales in time, the difference might well reflect 

distinct stochastic dynamics of the underlying cytoskeletal network. 
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Discussion 

The behavior of a small number of cells on micropatterned substrates is a novel field for 

experiment and theoretical analysis. The finite size of the system allows for the full assessment 

of the entire configuration space. The very observation of distinct classes of highly regular 

homeostatic cell arrangements led us to extend the current model of cell mechanics in tissues. 

In particular we measured and calculated for two, three, and four cells on a square adhesion 

patch a characteristic distribution of cell packing states. The trivial case of two cells is charming 

because it is characterized by the contact angle as the single and easily quantifiable parameter. 

This case is well described by the standard vertex model3, 4, 10, 13, 18. In contrast, the arrangement 

of three cells on a square is more evolved and adopts non-trivial geometries. Here the 

abundance of T-states could not be explained consistently within the standard model. We, 

hence, have generalized the standard model by introducing an elastic anisotropy term, which in 

turn was corroborated by the correct predictions of the three cell fork states and the bimodal 

distribution of four cell states.  

An important aspect of our analysis is that all homeostatic states in the different packing classes 

are subject to considerable fluctuations. We found that a Boltzmann distribution captures the 

experimentally observed distribution of states. This yields an “effective temperature” as a 

measure for the strength of fluctuations. Similar approaches are frequently encountered in the 

physics literature in the context of various driven and active systems far from equilibrium30, 31. In 

the case of living cells the effective temperature can be attributed to stochastic dynamics of the 

cytoskeleton caused by the underlying activity of molecular motors. Our modeling suggests the 

intriguing hypothesis that the stochastic fluctuations are strong enough to counteract the elastic 

forces, thus rendering 4-cell junctions non-existent. However, we cannot exclude that internal 

cell structure determines the distance between 3-cell junctions. Probable candidates are elastic 

forces due to the presence of cell nuclei in the proximity of cell contact lines. 

The oligocellular packing states also exhibit distinct polarization of cells within an adhesion 

patch. Cell nuclei are off-centered towards neighboring cells and often are even deformed to 
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assimilate the shape of the cell-cell contact line. As recently noted by Desai et al.28 and Dupin et 

al.29 cell polarization is induced by asymmetric cell-cell adhesion via cadherins. Furthermore, 

the shape of adhesion sites has an influence on cell polarization as reported by Thery et al.27. 

Remarkably all oligocellular arrangements observed here are indeed oriented from cell-cell 

adhesion sites towards the boundaries of the adhesive patch. This aspect renders oligocellular 

arrays distinct from locally isotropic polygonal tissue structures and possibly allows to study 

epithelia polarization in more detail.  

Oligocellular packing states on micro-patterns may have biotechnological relevance, similar to 

recent advances on single cell studies27. In vivo cell packing is influenced by a variety of factors 

such as supporting cell layers, surrounding tissue type, and its history during tissue 

development. Artificial cell arrays allow to study cell mechanics in ensembles of small groups of 

cells in a well-defined cell-cell contact geometry and chemically biofunctionalized environment. 

In combination with mechanical modeling this opens up novel approaches for quantitative 

analysis. There are many possibilities to extend oligocellular arrays by using various 

geometries27, different surfaces chemistry, or by fine-tuning biological interactions with genetic 

manipulation. Oligocellular tissues could furthermore be applied to study mechanical changes 

during cell differentiation, an important aspect for cell therapy, or differential cell adhesion32. 

From a cell biology perspective, it is desirable to specifically relate structures and processes at 

the intracellular level with the elastic forces governing cell mechanics at a tissue level. In 

particular future studies should reveal how cell anisotropy is regulated and how it facilitates the 

emergence of tissue shape and function. In summary, we believe that given the complexity of 

cellular interactions oligocellular arrays are a promising assay whose simplicity may promote 

our understanding of tissue formation by quantifiable measures. 
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Methods 

Cell culture.   

Huh-7 cells were grown in MEM-F12 medium supplemented with 10% FBS and 5 mM L-

Glutamine at 37°C in a humidified atmosphere, 5% CO2 level. Cells were maintained at 85% 

confluence, trypsinized, washed with PBS, re-suspended in cell medium and counted using a 

Neubauer counting chamber. 

Hydrophilic/hydrophobic patterns.  

We use the patterning technique reported by Hsieh et al.33 with some modifications.  

PDMS (Sylgard 184, Dow Corning, Midland, MI, U.S.A.) was prepared in a 10/1 w/w ratio. The 

mixture was stirred and degassed for ten minutes. This mixture was spin coated on an Ibidi !-

slide (Ibidi-GmbH, München, Germany) at 2000 rpm for 10 s followed by 4000 rpm for 30 s. The 

coated slides were degassed again and the PDMS was cured in the oven overnight at 50°C. 

The copper TEM grids were pre-exposed to water vapour for 30 s, to create a water bridge 

between the grid and the PDMS surface as described by Andruzzi34, and immediately placed 

onto the PDMS surface.  The samples were exposed to low pressure oxygen plasma for 2 min 

(40W 5 cm3/min at 25°C and 2 bar, Femto, Diener) and, afterwards, sonicated 1 min in 80% 

ethanol to remove the copper grids and 3 min in water to clean them. Samples were sterilized in 

80% ethanol, submerged 15 min in sterile Millipore water to remove ethanol residues and used 

immediately. In contrast with the results obtained by Hsieh et al.33, the sample regions that were 

protected from the plasma remained hydrophobic while the rest of the sample became 

hydrophilic, as we expected. 

Cell patterning. 

Cells were re-suspended in MEM-F12 medium supplemented with 10% FBS and 5 mM L-

Glutamine, seeded on the plasma treated surfaces and incubated at 37°C in a humidified 

atmosphere, 5% CO2 level. After 20 min, chambers were rinsed with cell medium in order to 

remove non-attached cells. At this point, patterns formed accordingly to surface wettability were 

already visible. 
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Cell nuclei staining. 

Cells were fixed during 20 min with 10% of formaldheyde in cell culture medium and rinsed 

thrice with PBS buffer. Then, they were incubated 5 min in a 2 !g/ml 4'6-diamidino-2-

phenylindole (DAPI, Sigma) in PBS and rinsed again thrice with PBS buffer.  

Microscopy. 

Images were acquired using a motorized Nikon Eclipse Ti microscope equipped with a 

temperature-controlled mounting frame, 10x and 40x Plan Fluor objectives and a CCD 

CoolSNAP HQ monochrome camera. Acquisitions were controlled through !-Manager open 

source software. Fluorescence illumination was generated using an Intensilight lamp and 

fluorescent signals were detected using the following filter sets: GFP, BP470/40, FT495, 

BP525/50 and DAPI, BP360/40, 400DCLP, BP360/50.  For living cell image acquisition, the 

temperature of the mounting frame temperature was set to 37°C and CO2 independent 

Leibovitz´s L15 cell culture medium, supplemented with 10% FBS and 1 mM extra L-Glutamine, 

was used. The time interval for time lapse acquisition was 10 min. 
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Footnotes 

*The normalization by the mean of the eigenvalues ensures that the anisotropy measure is independent 

of the total cell area. 
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Figures 
 
 

 
 
Figure 1. Cells living in confinement. a. Hydrophilic/Hydrophobic surface patterning is achieved 
through oxygen plasma treatment of PDMS using a TEM grid as a mask. Removing the grid reveals 
patterned squares as shown by water vapor condensation in the inset. b. Cells seeded onto the patterned 
area are confined to the hydrophilic adhesive patches, tend to wet them completely and adopt in majority 
highly symmetric cell packing states. c. Time evolution of a group of cells seeded on an adhesive square. 
Cells arrive to the adhesive patch, spread, relax and are able to divide. After cell division, cells reorganize 
and relax into a new cell arrangement. Relaxed cell packing states divide the available area equally 
among all cells. The geometry of the cell-cell contact lines displays high reproducibility, which enables 
statistical data analysis and model building. Scale bars correspond to 20 !m. 

Piera et al. Figure 1 
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Figure 2. Relative abundance of packing states classified by number of cells and symmetry. Cells 
relax into homeostatic states characterized by symmetric geometry, cell nuclei displacement towards the 
centre and an actin belt at its perimeter. Histograms show the relative abundance of each of the different 
configurations for two, three and four cells on a square. Different states in a class are sorted from minimal 
cell perimeter (pmin), to maximal cell-cell contact (cmax), as indicated by the arrows. a. Two cells divide a 
square in two congruent areas with varying relative orientation of the contact line with respect to the 
square. This class is denoted 2II. Each column encompasses a successive range of nine degrees, from 
horizontal (0°) to diagonal (45°). The full line corresponds to a theoretical fit of the distribution. b. A 
square cannot be divided into three parts having equal area, perimeter and cell-cell contact lines, as 
those marked in light green. Three cells show two classes of cell arrangements denoted 3II and 3T. Within 
the first of the 3T states, we make a distinction between the regular and the rearranged fork state 3Y 
cases as indicated by the dashed lines. c. In the case of four cells, the  symmetry is preferred over 4II 
In general, however, the  symmetry is broken because cells avoid the formation of 4-cell junctions, 
adopting states with two 3-cell junctions ( ) separated by small distance ! instead. Fluorescence 
micrographs show examples of the dominant packing states for two, three and four cells. The GFP-
expressing actin cytoskeleton of modified Huh 7 cells is shown in green, while the DAPI-stained cell 
nuclei are in blue. Scale bars correspond to 20 !m. 

Piera et al. Figure 2 
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Figure 3. Induced cell polarization. a. In a normal polarized epithelial sheet the apical membranes face 
the upper “adhesion-site-free” surface. The nuclei are displaced towards the areas of accumulation of 
cell-ECM adhesion sites. The adhesion belt is located just below the apical membrane, linking the cells, 
and the cortical actin ring encircling each of the interacting cells in the sheet. b-d. Our artificial 
environment introduces an asymmetry in the distribution of adhesion sites, the rims of squares are cell-
cell “adhesion-site-free” surfaces. Just beneath these surfaces, actin stress fibers form a belt surrounding 
the perimeter of the adhesion patch, while cortical actin is observed encircling each cell in the square, as 
can be seen in c. The nuclei appear off-centered towards the cell-cell contact lines and very often they 
are deformed to assimilate the shape of the cell-cell contact line contour, acquiring a triangular shape, as 
can be observed in the phase contrast, d, and fluorescence, c, micrographs. Scale bars correspond to 20 
!m.  

Piera et al. Figure 3 
 
 

 
 
 
Figure 4. Mechanical equilibrium model for cell packing states. a. The geometry of a cell packing is 
described by each cell’s perimeter P and the cell-cell contact line L. Both measure the contributing 
mechanical forces. While cell cortex contractility  promotes small perimeters P the opposing cell-cell 
adhesion  favors large cell-cell contact L. b. In the symmetric cell packing of two cells on a square a 
single angle  classifies the competition between minimal perimeter caused by cell cortex contractility 
and maximal cell-cell contact line favored by cell-cell adhesion. The resulting angle depends on the ratio 
of both contributions only. c. While in the 3II class cells are highly elongated they are rather roundish in 
the 3T class. Only additional elastic forces that counteract cell anisotropy are able to explain the 
dominance of the 3T class consistently. d. Four cells on a square arrange asymmetrically with two 3-cell 
junctions separated a distance  apart, see main text. The graphics for N=3,4 cells depict the maximal 
contact state only. 

Piera et al. Figure 4
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Figure 5. Fluctuations around and transitions between equally stable cell packing states. Over 
the course of time cell arrangements fluctuate around their stable state and also transition to mutually 
equal stable states related by mirror symmetry along the diagonal of the square as shown by the 
timeline of phase contrast micrographs a and by angle tracking in b. The rotational and mirror 
symmetry of two cells on a square allows for in total eight equivalent stable cell packing states. 
Following the timeline of the angle the cell-cell contact line encloses with the horizontal axis enables 
the quantification of angle distributions c. The observed distribution is in agreement with model 
predictions, fit shown in red. Scale bars correspond to 20 !m. 

Piera et al. Figure 5 
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Calculation of cell packing states and corresponding mechanical energy 

Cell packing states for N=2,3,4 cells per square adhesion patch of side length   

 

!  are calculated 

according to the vertex positions given for all geometries in Figures S1/S2. States within a 

packing class vary with respect to the angle  enclosed with the confining patch as depicted for 

each class in Figures S1/S2. Due to the fourfold rotational symmetry of the square only angles 

 

0° "# " 45° denote mutually different states. 

 

Given all 

 

n  vertices 

 

xi,yi{ } of a cell, its corresponding perimeter is given by 

 

P = (xi " xi"1)
2 + (yi " yi"1)

2

i
# , 

 the contact length 

 

L  forms the according subset. The anisotropy  of a cell is based on the 

second moment of area matrix 

 

M =
mxx mxy

mxy myy

" 

# 
$ 

% 

& 
'  of a polygon defined by  

 

mxx = 1
12 (yi

2 + yiyi+1 + yi+1
2 )

i=1

n

" (xiyi+1 # xi+1yi), 



 

mxy = 1
24 (xiyi+1 + 2xiyi + 2xi+1yi+1 + xi+1yi )

i=1

n

" (xiyi+1 # xi+1yi), 

 

myy = 1
12 (xi

2 + xixi+1 + xi+1
2 )

i=1

n

" (xiyi+1 # xi+1yi). 

The cell anisotropy is then given by the normalized mean variance of the eigenvalues 

 

"1,"2 of 

 

M  , i.e. 

 

" =
#1 $ #2
#1 + #2

% 

& 
' 

( 

) 
* 

2

. Here the normalization ensures that the cell anisotropy is independent 

of cell size.  

 

Fitting the current standard model Eq. (1) to our experimental data for the ensemble and time 

distribution of cells in the 2II class we consistently obtain   

 

"
#! = 6.1. Including cell anisotropy in 

our extended model given in Eq. (2) a valid choice of parameters based on the 2II data 

is  

 

"
#! = 5.1 and   

 

"
#! 2 = 2. Given these parameters the extended model predicts a higher energy 

for 3II than for 3T and a bimodal distribution for 

 

4"
#  cells close to 

 

" = 0°,45°. Also the fork state 

3Y consistently exhibits lower energy than the corresponding 3T state. Note that the additional 

term gives only a small but important correction to the previous value of   

 

"
#! = 6.1 considering 

cell cortex contractility and cell-cell adhesion only. 

 

Figure S3 displays for all cell packing states the energy landscape in the current standard 

model, their corresponding cell anisotropy, and the energy landscape in our extended model for 

the parameter choice given above. 



 
 
Figure S1. Calculation of cell packing states for N=2,3. In a square normalized to side length   

 

! =1 the 
formula for the coordinates are indicated next to the corresponding vertex for the packing classes 2II, 3Y, 
3II, and 3T. 
 

Piera et al. Figure S1 
 



 
 
Figure S2. Calculation of cell packing states for N=4. In a square normalized to side length   

 

! =1 the 
formula for the coordinates are indicated next to the corresponding vertex for the packing class 

 

4"
# . 

 
Piera et al. Figure S2 

 



 
Figure S3. Cell anisotropy and energy landscapes of cell packing states in the current standard 
and the extended model. For 2II a, 

 

4"
#  b, 3II c and 3Tclass d the graphs display the energy landscape 

versus angle 

 

"  for the current standard model given in Eq. (1) with measured parameter value   

 

"
#! = 6.1,  

 

E1(" ) , and subsequently the cell anisotropy of the state 

 

"(# )  and the extended model presented in 
Eq. (2) with parameter values   

 

"
#! = 5.1 and   

 

"
#! 2 = 2, 

 

E2(" ) . Note that although the qualitative 
behavior of the anisotropy is similar in all cases, the scale is strongly different. Piera et al. Figure S3



 

 
 
Figure S4. Nuclear position is independent of patch geometry. Fluorescence micrographs show that 
on square a, circle b or hexagon c, nuclei are always off-centered towards cell-cell contact lines. In green 
the actin cytoskeleton of gene modified Huh 7 cells can be seen. The cell nucleus has been stained with 
DAPI (blue). Scale bars correspond to 20 !m.  

Piera et al. Figure S4 
 
 

 
 
Figure S5. Nuclear shape. Phase contrast micrographs showing nuclei deformation following the 
distribution of cell-cell contact lines for two a, three b and four cells c on a square adhesive patch. Scale 
bars correspond to 20 !m. 

Piera et al. Figure S5 
 
 

 
 
Figure S6. Distribution of distances (!!))  between 3-cell junctions.  

Piera et al. Figure S6 



A Perturbation expansion for finite
flexibility

Concerning the asphericity of a semiflexible polymer ring in the flexible regime there exist
ambiguous simulation results on how the asphericity approaches its flexible limit of a
gaussian chain in two dimensions [24, 135]. Our simulation results in three dimensions as
well as in two dimensions showed a clear decay from larger values of asphericity to the
limit. We clarified our simulation outcome by calculating the effect of finite flexibility to
the exact calculation of the gaussian chain asphericity in a perturbation expansion. The
calculation outlined in the following is along the lines of the work of Diehl and Eisenriegler
[47, 95, 96].

Starting from the average shape of a closed Gaussian chain we include bending stiffness as
perturbation from infinite flexibility L/lp in adding a bending term Hbend to the Hamilto-
nian of a discretized, closed Gaussian chain HGC,

H = HGC + Hbend (A.1)

=
d∑

α=1

1

(2l)2

N∑

j=1

(xj,α − xj−1,α)2 +
d∑

α=1

lp
L

2N

(2l)2

N∑

j=1

(xj+1,α − 2xj,α + xj−1,α)2,

where xj,α denote the αth component of the position vector of the jth segment. This
Hamiltonian is used to calculate the expectation value of the asphericity ∆, where we
apply an identity as first addressed in Ref. [3], yielding the following formula,

〈∆d〉H =
d

d− 1

〈
Tr(Q̂2)

(TrQ)2

〉

H

=
d

d− 1

∫ ∞

0

dy y 〈TrQ̂2〉Hy〈e−yTrQ〉Hy , (A.2)

where Hy is defined by:

Hy = H +
N∑

α=1

1

2

y

N2

∑

i,j

(xi,α − xj,α)2. (A.3)

To calculate the expectation value 〈e−yTrQ〉Hy we introduce normal coordinates for the
position vectors with eigenfunctions φν(j) = N−1/2 exp(i2πνj/N), for ν = ±1, . . . ,±(N −
1)/2 and eigenvalues,

εν(y) =
1

l2
sin2

(πν
N

){
1 + 8

lp
L
N sin2

(πν
N

)}
+
y

N
. (A.4)
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Expanding the fraction εν(y)/εν(0) for large number of segments N yields,

εν(y)/εν(0) = 1 +
y〈R2〉
(πν)2

− 8
lp
L

y〈R2〉
N

+O(1/N2), (A.5)

where 〈R2〉 = Nl2 denotes the mean square end to end distance of a truly gaussian chain.
Using result Eq. A.5 the second expectation value in Eq. A.2 is readily calculated in the
limit of N to infinity and l→ 0, while keeping 〈R2〉 = Nl2 fixed.

〈e−yTrQ〉d/2Hy ,RP = lim
N→∞
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1− 16
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)





=
sinh2(

√
y〈R2〉)

y〈R2〉

(
1− 8

lp
L
y〈R2〉

)
. (A.6)

Higher order terms in 1/N2 vanish in this limit. Now we treat the bending term in the
Hamiltonian Eq. A.2 only as a pertubation to the original Gaussian chain, therefore we
assume lp/L� 1 and simplify the result for the second expectation value in Eq. A.2 even
further,

〈e−yTrQ〉Hy =

( √
y〈R2〉

sinh(
√
y〈R2〉)

)d{(
1 + 4d

lp
L
y〈R2〉

)
+O

((
lp
L

)2
)}

. (A.7)

The remaining task to calculate the asphericity is solving for the expectation value of the
trace of the reduced matrix Q̂. Using Wick’s theorem one finds the trace is given by,

〈TrQ̂2〉Hy =
(d− 1)(d+ 2)

4〈R2〉4
∫ 〈R2〉

0

dt dt′ ds ds′〈[xi(t)− xi(t′)] [xj(s)− xj(s′)]〉2Hy
. (A.8)

These two-point functions are themselves related to the propagator G(s, t) by

〈Q̂2〉 =
(d− 1)(d+ 2)

4〈R2〉4
∫ 〈R2〉

0

dt dt′ ds ds′ [G(t, s) +G(t′, s′)−G(t, s′)−G(t′, s)] (A.9)

which is itself defined by

G(t, s) = 〈[xi(t)− xi(0)] [xi(s)− xi(0)]〉. (A.10)



111

The propagator itself can be calculated by solving for the two point correlation functions
in normal coordinates by evaluating,

〈xi(t)xj(s)〉Hy = δt,s
∑

ν

φν(i)φν(j)

2εν(y)
. (A.11)

Evaluating the propagator in the limit of infinite N , we find,

G(t, s) = GG(t, s)− 4
lp
L
〈R2〉, (A.12)

where GG(t, s) denotes the propagator of a truly Gaussian ring polymer.

GG(t, s) =
〈R2〉

2
√
y〈R2〉 sinh(

√
y〈R2〉)

{
cosh

(
2
√
y〈R2〉

(
1

2
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))
+ cosh(

√
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− cosh
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2
√
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(
1

2
− t

〈R2〉

))
− cosh

(
2
√
y〈R2〉

(
1

2
− s

〈R2〉

))}
,(A.13)

Hence, we find the expectation value for the trace 〈TrQ̂2〉Hy ,

〈TrQ̂2〉Hy =
(d+ 2)(d− 1)

16y2 sinh2(
√
y〈R2〉)

{
2y〈R2〉 − 4 sinh2(

√
y〈R2〉)

+2
√
y〈R2〉 sinh(

√
y〈R2〉) cosh(

√
y〈R2〉)

}
. (A.14)

The second factor in the integral defining the asphericity in Eq. A.2 is altered by a factor
due to the finite flexibility, 〈e−yTrQ〉Hy = 〈e−yTrQ〉HGC,y

(1 + 4d lp
L
y〈〈R2〉〉). Then the d-

dimensional asphericity results in,

〈∆d〉 =
d(d+ 2)

4(d+ 1)

(
3 +

2

d
− dFd

)
+
lp
L
d2(d+ 2)

(
Fd+2 +

d− 2

d
Fd

)

= 〈∆d〉G +
lp
L
d2(d+ 2)

(
Fd+2 +

d− 2

d
Fd

)
. (A.15)

with

Fd =

∫ ∞

0

dy yd+1 sinh−d(y) (A.16)

Evaluating this expression for d = 2 and d = 3 yields a positive correction due to finite
flexibility. Hence, the asphericity of a polymer ring approaches its flexible limit from
above.
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[99] S. Köster, J. Kierfeld, and T. Pfohl, “Characterization of single semiflexible filaments
under geometric constraints”, Eur Phys J E, 25, 439 (2008)



120 Bibliography

[100] E. M. Kramer, “PIN and AUX/LAX proteins: Their role in auxin accumulation”,
Trends Plant Sci, 9, 578 (2004)

[101] E. M. Kramer, “Auxin-regulated cell polarity: An inside job?”, Trends Plant Sci,
14, 242 (2009)
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inhibits endocytosis and promotes its own efflux from cells”, Nature, 435, 1251 (2005)

[143] F. Pampaloni, G. Lattanzi, A. Jonás, T. Surrey, E. Frey, et al., “Thermal fluctuations
of grafted microtubules provide evidence of a length-dependent persistence length”,
P Natl Acad Sci USA, 103, 10248 (2006)

[144] A. R. Paredez, C. R. Somerville, and D. W. Ehrhardt, “Visualization of cellulose
synthase demonstrates functional association with microtubules”, Science, 312, 1491
(2006)

[145] M. Pesch and M. Hülskamp, “Creating a two-dimensional pattern de novo during
Arabidopsis trichome and root hair initiation”, Curr Opin Genet Dev, 14, 422 (2004)

[146] M. Pesch and M. Hülskamp, “One, two, three... models for trichome patterning in
Arabidopsis?”, Curr Opin Plant Biol, 12, 587 (2009)
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