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ABSTRACT 

 

Although remote sensing has been widely used in geological investigations, the lithological 

classification of the area interested, based on medium-spatial and spectral resolution 

satellite data, is often not successful because of the complicated geological situation and 

other factors like inadequate methodology applied and wrong geological models. 

 

The study area of the present thesis is located in southwest of the Prieska sub-basin, 

Transvaal Supergroup, South Africa. This area includes mainly Neoarchean and 

Proterozoic sedimentary rocks partly uncomfortably covered by uppermost Paleozoic and 

lower Mesozoic rocks and Tertiary to recent soils and sands. The Precambrian rocks 

include various formations of volcanic and intrusive rocks, quartzites, shales, platform 

carbonates and Banded Iron Formations (BIF). The younger rocks and soils include dikes 

and shales, glacial sedimentary rocks, coarser siliciclastic rocks, calcretes, aeolian and 

fluvial sands, etc. Prospect activity for mineral deposits necessitates the detailed geological 

map (1:100000) of the area. 
 
In this research, a new rule-based classification system (RBS) was put forward, integrating 

spectral characteristics, textural features and ancillary data, such as general geological map 

(1:250000) and elevation data, in order to improve the lithological classification accuracy 

and the subsequent mapping accuracy in the study area. The proposed technique was 

mainly based on Landsat TM data and ASTER data with medium resolution. As ancillary 

data sets, topographic maps and general geological map were also available. Software like 

ERDAS©, Matlab©, and ArcGIS© supported the procedures of classification and mapping. 

 

The newly developed classification technique was performed by three steps. Firstly, the 

geographic and atmospheric correction was performed on the original TM and ASTER 

data, following the principal component analysis (PCA) and band ratioing, to enhance the 
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images and to obtain data sets like principal components (PCs) and ratio bands. Traditional 

maximum-likelihood supervised classification (MLC) was performed individually on 

enhanced multispectral image and principal components image (PCs-image). For TM data, 

the classification accuracy based on PCs-image was higher than that based on multispectral 

image. For ASTER data, the classification accuracy of PCs- image was close to but lower, 

than that of multispectral image. As one of the encountered Banded Iron Formations, the 

Griquatown Banded Iron Formation (G-BIF) was recognized well in TM-principal 

components image (PCs-image). 

 

In the second step, textural features of different lithological types based on TM data were 

analyzed. Grey level co-occurrence matrix (GLCM) based textural features were computed 

individually from band 5 and the first principal component (PC1) of TM data. 

Geostatistics-based textural features were computed individually from the 6 TM 

multispectral bands and 3 principal components (PC1, PC2 and PC3). These two kinds of 

textural features were individually stacked as extra layers together with the original 6 

multispectral bands and the 6 principal components to form several new data sets. Ratio 

bands were also individually stacked as extra layers with 6 multispectral bands and 6 

principal components, to form other new data sets. In the same way new data sets were 

formed based on ASTER data. Then, all of the new data sets were individually classified 

using a maximum likelihood supervised classification (MLC), to produce several classified 

thematic images. The classification accuracy based on the new data sets are higher than 

that solely based on the spectral characteristics of original TM and ASTER data. It should 

be noticed that for one specific rock type, the class value in all classified images should 

correspond to its identified (ID) value in digital geological map. 

 

The third step was to perform the rule-based system (RBS) classification. In the first part 

of the RBS, two classified images were analyzed and compared. The analysis was based on 

the classification results in the first step, and the elevation data detracted from the 
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topographic map. In comparison, the pixels with high possibility of being classified 

correctly (consistent pixels) and the pixels with high possibility of being misclassified 

(inconsistent pixels) were separately marked. In the second part of the RBS, the class 

values of consistent pixels were kept unchanged, and the class values of inconsistent pixels 

were replaced by their values in digital geological map (1:250000). Compared to the 

results solely based on spectral characteristics of TM data (54.3%) and ASTER data 

(66.41%), the new RBS classification improved the accuracy (83.2%) significantly. Based 

on the classification results, the detailed lithological map (1:100000) of the study area was 

edited. 

 

Photo-lineaments were interpreted from multi data source (MDS), including enhanced 

satellite images, slope images, shaded relief images and drainage maps. The interpreted 

lineaments were compared to those, digitized from general geological map and followed 

by a simple lineament analysis compared to published literatures. The results show the 

individual merits of lineament detection from MDS and general geological map. A final 

lineament map (1:100000) was obtained by integrating all the information.  

 

Ground check field work was carried out in 2009, to verify the classification and mapping, 

and the results were subsequently incorporated into the mapping and the classification 

procedures. Finally, a GIS-based detailed geological map (1:100000) of the study area was 

obtained, compiling the newly gained information from the performed classification and 

lineament analysis, from the field work and from published and available unpublished 

detailed geological maps.  

 

The here developed methods are proposed to be used for generation of new, detailed 

geological maps or updates of existent general geological maps by implementing the latest 

satellite images and all available ancillary data sets. Although final ground check field 

work is irreplaceable by remote sensing, the here presented research demonstrates the great 
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potential and future prospects in lithological classification and geological mapping, for 

mineral exploration.  
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1 Introduction  
South Africa is a country of famous ancient, Precambrian rocks, about 3.5 to 0.5 Ga old. 

These rocks contain an almost complete record of the earth's past, including the fossilized 

remains of earliest life buried when the oldest sediments were formed. Research on these 

old rocks can help to trace ancient atmospheric and environmental conditions. Besides, 

Precambrian rocks supply almost 75% of important mineral resources, such as Fe, Mn, Au, 

Pt and Cr. For example, Precambrian rocks host large amounts of gold bearing 

conglomerate and Banded Iron Formation (BIF). The geological exploration in South 

Africa is significant no matter for scientific research or for economic reason. The study 

area of this thesis is located in Prieska sub-basin of South Africa, where a mount of 

economic minerals, like iron, asbestos, copper and zinc deposit can be found. However, the 

published geological map in this area is at a coarse scale of 1: 250000 (Council for 

Geoscience, 1995), and a more elaborate one with the scale 1:100000 is necessary for 

various further investigations. 

 

1.1. Background 

In decades, remote sensing and satellite image have been effectively used in geology, 

especially, in lithologic classification, geological mapping and mineral deposits detection 

in arid and semi-arid areas. Geological remote sensing is based on differences in physical 

and chemical properties of all rock types. Through these disparities, rock types reflect 

electromagnetic energy in different ways, and show unique spectral characteristics. In 

satellite images different rock types can be identified through their typical spectral 

characteristics. 

 

Landsat TM data are so far the most widely used satellite data sets in geological 

application. But some factors, like moderate spatial resolution of 30 m, low spectral 

resolution in only seven bands, diminish the classification accuracy. The Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has been developed to 

provide satellite images at low costs. Relatively higher spectral resolution in 14 bands from 

visible to thermal infrared and spatial resolution of 15m in visible and near infrared regions 

facilitate its application in geology. 
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For TM data, beside the coarse spatial and spectral resolution, the complicated geological 

situation, such as obliterated lithological boundaries and similar spectral characteristics 

among different rock types, also result in spectral overlap and misclassification. The low 

classification accuracy results in low mapping accuracy and becomes a “bottleneck” in 

geological remote sensing. Many advanced classification approaches have been put 

forward to improve the classification accuracy. Fuzzy classification was used to solve 

“mix-pixel” problem (Okeke and Karnieli, 2006). Object-based classification was 

performed based on the image segments, and the high-resolution images, like aerial 

photographs, were used to automatically identify and delineate suitable segments 

(Geneletti and Gorte, 2003; Gitas et al., 2004). Besides, some other classification 

techniques, like decision tree, artificial neural networks (ANN) and expert classification 

were also used to improve the classification accuracy (Stefanov et al., 2001; Kavzoglu and 

Mather, 2003). 

 

Some spectral analysis approaches, like spectral feature fitting (SFF) and the spectral angle 

mapper (SAM), were put forward to perform lithologic classification primarily on the basis 

of hyperspectral remote sensing data (e.g. AVIRIS, HYMAP) (Kruse et al., 1993; 

Dharmiinder and Gregory, 2003; Chen et al., 2007) and ASTER data (Chen, 2007). In 

these methods, an object is classified based on the comparison between its image spectra 

and lab or field reference spectra. Spectral measurement in the field is highly 

recommended to obtain the reference spectra with high correspondence to the image 

spectra. In the here presented study, the reference spectra were collected in laboratory, not 

in situ, so the traditional maximum likelihood classification (MLC) rather than SFF or 

SAM was performed on investigated ASTER data. 

 

Beside the spectral characteristics, textural features of the rocks in satellite images, 

influenced by e.g. tectonics, weathering, drainage or erosion in general, provide important 

supporting information to distinguish rock types. Mather et al. (1998) combined the 

textural features detracted from SAR images with spectral features of 6 multispectral TM 

bands, to obtain high lithologic classification accuracy. Shaban and Dikshit (2001) 

analyzed the changes in urban area classification accuracy, when the number of textural 

features combined with the spectral features is different. Chen et al. (2004) examined the 
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effect of spatial resolution and texture window size when calculating textural features in 

urban classification. Lloyd et al. (2003) compared two different texture measures, 

co-occurrence matrix measure and geostatistic measure, and choose the optimal one to 

perform land cover classification. These applications show the important role textural 

feature plays in improving the classification. 

 

Lineaments, like faults, dikes or some fractures, are an indispensable part in geological 

maps. The recognition of lineaments is significant in mineral deposit exploration and in the 

study of the structural or tectonic history of an area. The synoptic view of satellite images 

enables the effective application of remote sensing in lineament detection. At first, 

lineaments were visually interpreted from satellite images and digitized to lineament maps. 

Some prior researchers discussed the image enhancement techniques for lineament 

detection (Stephen and Mynar, 1986; Nama, 2004; Kavak and Cetin, 2007). Morelli and 

Piana (2006) applied filter techniques on SPOT and SAR images to perform lineament 

detection. With the development of computer science, some algorithms, such as the Hough 

Transform (HT) (Wang and Howarth, 1990) and the segment tracing algorithm (Koike et 

al., 1995), were put forward for automatic lineament detection, with high efficiency and 

less human intervention. However, the automatic methods are sensitive and easily 

influenced by some linear features other than geological structures, like roads and railway 

trails. The resulting lineament maps are therefore complicated and need to be corrected. 

This procedure costs a lot of time and incorporated human intervention. Besides, the 

shadow or partly shadowed areas resulting from the illumination sometimes hide 

significant lineaments in satellite images. Other ancillary data sets, such as digital elevation 

models (DEM), slope image and the drainage map, were used to overcome the illumination 

problem in satellite images and to assist the lineament identification (Wladis, 1999; 

Hopper et al., 2003; Oguchi et al., 2003; Smith and Clark, 2005; Ganas et al., 2005; Abarca, 

2006). 

 

1.2 Investigated data sets 

The data sets investigated in this research include Landsat 5 TM (Thematic Mapper) data, 

Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) data, level-1A ASTER (Advanced 

Spaceborne Thermal Emission and Reflection Radiometer) data, aerial photographs, digital 
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topographic maps, the 1:250000 geological map (Council for Geoscience, 1995), and two 

detailed geological maps in the areas where field work has been carried out. Detailed 

information for each satellite data set is listed in table 1.1. Parameters of the three sensors, 

TM, ETM+ and ASTER, are shown in table 1.2. The band “Pan” is only contained in 

ETM+ data. Level-1A ASTER data only contain visible-near-infrared (VNIR) bands and 

short wave infrared (SWIR) bands without thermal infrared (TIR) bands. 

 
Data sets 

 
Position Acquisition date 

TM path/row: 173/80 and 173/81 
 

26th, May, 1984 

ETM+ path/row: 173/80 
 

17th, July, 2000 

ASTER Central point: Lat: -29.26°, Lon: 22.17° 
Lat: -29.33°, Lon: 22.17° 

21th, August, 2001 
28th, March, 2006 

 
Table 1.1 Illustration of satellite data sets used in this study. 
 
 

ASTER 
 

TM (ETM+)  
 

Region Band 
No. 

Wavelength 
(µm) 

Spatial 
Resolution. 

(m) 

Grey 
level 

Band 
No. 

Wavelength 
(µm) 

Spatial 
Resolution 

(m) 

Grey 
level 

VNIR  
1 
2 

3N 
3B 

 
0.52-0.60 
0.63-0.69 
0.76-0.86 
0.76-0.86 

 

 
15 

 
 

 
8bits 

1 
2 
3 
4 

(Pan) 

0.45-0.52 
0.52-0.60 
0.63-0.69 
0.76-0.90 
0.52-0.90 

30 
 
 
 

(15 ) 

SWIR 4 
5 
6 
7 
8 
9 

1.60-1.70 
2.145-2.185 
2.185-2.225 
2.235-2.285 
2.295-2.365 
2.36-2.43 

 

30 
 

8bits 5 
7 

1.55-1.75 
2.08-2.35 

 

30 

TIR 10 
11 
12 
13 
14 

8.125-8.475 
8.475-8.825 
8.925-9.275 
10.25-10.95 
10.95-11.65 

90 
 

12bits  
 
 

6 

 
 
 

10.40-12.5 
 

 
 

 
120(60) 

8 bits 

 
Table 1.2 Parameters of the sensors ASTER, TM and ETM+. The parameters in bracket are for ETM+ data. 

For example, “Pan” band is only available for ETM+ data with the spatial resolution of 15m. The spatial 

resolution of ETM+ band 6 is 60m. 

 

Aerial photographs were acquired in 1984, with an altitude of 6200m and the scale of 

1:70000. The digital topographic maps at a scale 1:50000 were published by the Chief 
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Director of Surveys and Mapping, 1988 (Topographic map of Prieska, 1991). The general 

geological map at a scale of 1:250000 was published by the Geological Survey, Council of 

Geoscience, South Africa, in 1995. 

 

Figure 1.1 shows the study area, where the coverage of each data set is marked using 

different polygons. 

 

In the two areas (marked by green and orange polygon in figure 1.1), detailed field 

mapping work has been carried out by the working group around Prof. Altermann (Frei 

and Altermann, 2006) in 1995 and between 1997 and 2005 to perform detailed geological 

mapping (Kiefer, 1995; Frank, 1995; Glas, 2008). Based on these maps, two detailed, 

digitized and GIS-based geological maps at a scale of 1:25000 and 1:10000 were edit by 

Glas (2008) and the enhanced version by Li (2009). The entire map area has been however 

investigated between 1988 and 2009 by Prof. Altermann and his working group. Fieldwork 

for this thesis was carried out by the author in 2009, together with Prof. Altermann and Dr. 

Frei. 
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Figure 1.1 The study area and the coverage of each data set. The location of the study area is shown in the 

upper right figure. The TM image and the general geological map (Council for Geoscience, 1995) cover the 

entire study area. For clarity, only the TM image is shown in this figure. The digital topographic map covers 

the area within the red polygon, ASTER data in the blue polygon, and aerial photographs in purple polygon. 

The small areas in green and orange polygon are areas where detailed field work has been carried out and 

detailed geological maps (1:25000 and 1:10000) were obtained. In this study, the greenish-polygon area was 

taken as a test area to evaluate the classification method (see chapter 5). 

South Africa 

0 90 18045 Kilometers
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1.3 Research method 

Based on Landsat-TM data, ASTER data, the general geological map (Council for 

Geoscience, 1995) and digital topographic map, a rule-based system (RBS) was put 

forward in this study to improve the lithological classification result.  

 

Principal component analysis (PCA) and band rationing were used to enhance the original 

satellite data. Several textural features were calculated from multispectral bands and 

principal components (PCs) based on TM data. Then, textural features and ratio bands 

were stacked as extra layers together with original multispectral bands and PCs, to form 8 

new data sets (see chapter 5.2.3). Traditional maximum likelihood supervised classification 

(MLC) was then performed individually on these 8 data sets to produce 8 classification 

results. Based on diverse analysis (see chapter 5.5.2), two classification results were 

selected out and put into the following RBS. In RBS, two classification results were 

compared and analyzed, and the pixels with high possibility of having been misclassified 

were picked out and reclassified using the criterions extracted from the geological maps 

(see chapter 5.5.3 for details). 

 

The area covered by the green polygon in figure 1.1 was chosen as test area to investigate 

the new remote sensing methods for lithological classification and geological exploration. 

The obtained geological map on a scale of 1:50000 acted as reference for the first 

supervision of the newly invented classification algorithm. During a field campaign the 

preliminary results were verified and the algorithms were refined. 

 

For the lineament detection, visual interpretation was used in this study. TM image and 

ASTER image were enhanced using PCA and spatial filters. Lineament was then detected 

from the enhanced satellite images, DEM, slope image and drainage maps. 

 

1.4 Achievements 

In this research, a new algorithm was put forward based on satellite data, elevation data 

and geological maps. By combining spectral characteristics, textural features, elevation 

values of different rock types and lithological boundaries in digital geological maps, 

lithological classification accuracy was improved and subsequently the mapping accuracy 
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was increased. Significant faults and tiny fractures were detected and mapped as part of the 

final geological map, to assist mineral exploration and tectonic research in the future. 

 

The method used here is expected to contribute to the generation of a new more detailed 

geological map in the area of the Prieska sub-basin, in South Africa. Furthermore, using 

the herein introduced method, geological maps in general can be updated more easily and 

effectively by implementing the latest satellite images, especially under the conditions of 

limited field work possibilities. 
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2. Study Area  
2.1 Geography  

The study area is located in Northern Cape Province in South Africa, with the capital city 

of Kimberley (figure 2.1). The province lies to the south of its most important asset, the 

mighty Orange River, which feeds the agriculture and alluvial diamond industries. With a 

total area of 372889 square kilometres, the Northern Cape takes up 30.5% of South 

Africa’s land area, with a mid-2006 population of 1.1 million people. 

(http://www.southafrica.info/about/people/popprov.htm). 

 

 
Figure 2.1 Location of the study area 

(http://www.south-africa-tours-and-travel.com/map-of-south-africa.html). 

 

The study area is a semi-arid region with little rainfall in summer. The temperature is 

extremely high in summer but in winter night frosts are common while the day 

temperatures reach 25°C. The typical Karoo vegetation cover in this area, with average 

rain fall of less than 200mm per year, differs strongly between the seasons, but is usually 

far below 20%. In a narrow belt along the Orange River, the gallery forest can be very 

dense. Decades of dry periods are followed usually by exceptionally high rainfall years 

Study area

Orange 
River
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causing flooding of the Orange River, which can gain over 12 m in water table and deposit 

extensive fluvial sand sheaths along its normal bed. 

 

2.2 Geological description 

The detailed description of every formation is mainly based on chapter 10 of the book 

“The Geology of South Africa” (Eriksson, et al., 2006). 

 

The study area is located in the southwestern Prieska Sub-basin, Griqualand West Basin, 

Kaapvaal Craton. The main rock units belong to the so called Transvaal Supergroup 

(figure 2.2). 

 

The Kaapvaal Craton has a complex igneous intrusive and volcanic history, commencing 

in the Eoarchaean (>3600 Ma). The igneous activity has been of wide-ranging types, 

including mafic rocks, ultramafic rocks and granitoid rocks, and accompanied by 

greenstone belt sedimentation and tectonism. Between 3000 and 2100 Ma, Dominion 

Group, Witwatersrand Supergroup, Ventersdorp Supergroup and Transvaal 

Supergroup, were deposited in stratigraphically successive basins, separated by major 

unconformities. Laterally most extensive of these groups and supergroups are the 

Ventersdorp and Transvaal Supergroups which are present in the Transvaal basin, 

Griqualand West Basin and the Kanye Basin, while the Dominion Group and the 

Witwatersrand Supergroup are restricted to the central part of the Kaapvaal Craton in the 

Witwatersrand basin. The Dominion Group is a sequence of volcanic and minor clastic 

sedimentary rocks, overlying the granite-greenstone basement terrane. It was overlain by 

the Witwatersrand Supergroup, which contains the major gold mineral deposits of the 

world. The Ventersdorp Supergroup, unconformably overlying the Witwatersrand 

Supergroup and greenstone belts in other areas, provides a unique volcanic-sedimentary 

supracrustal record and contains the largest and most widespread sequence of volcanic 

rocks on the Kaapvaal Craton. The last of these Precambrian basins is represented by the 

Transvaal Supergroup, overlying the Ventersdorp Supergroup. With a huge 

unconformity, the Permo-Carboniferous glacial sedimentation cuts to the Transvaal and 

Ventersdorp Supergroups, and may be partly intruded by Mesozoic dikes and sills of the 

Karoo Supergroup. 



Study Area 

 14

The Transvaal Supergroup is preserved in three structural basins: the Transvaal and 

Griqualand West Basins in South Africa and the Kanye Basin in Botswana. The 

Griqualand West Basin can be further subdivided into the Ghaap Plateau and Prieska 

Sub-basin (figure 2.2). The study area is located in the Prieska Sub-basin. Both basinal 

compartments are thought to be separated by a NW-SE trending fault zone (Griquatown 

Fault Zone) and display similar, but not identical lithological successions of somewhat 

differing ages and have a different mineral potential (Altermann, 1996; Altermann and 

Nelson, 1998). The Transvaal Supergroup encompasses one of the world’s earliest 

carbonate platform successions, with very well preserved and extensive stromatolites. It 

also records the cyanobacterial and bacterial evolution, showing the early history of life on 

the earth. These carbonates are overlain by banded iron-formation (BIF), which contains 

some of the world’s largest iron and asbestos deposits. In the Griqualand West Basin, 

succeeding sedimentary and volcanic rocks are overlain by the world’s largest manganese 

deposit. Also, Mississippi Valley-type base metal and structurally controlled gold deposits 

occur within this Supergroup (Eriksson and Altermann, 1998). For future exploration of 

the potential mineral deposits, a detailed geological map became a necessity. 

 

The general stratigraphic relationship and the lithologies of the formations in Prieska 

Sub-basin are shown in table 2.1 and on the final geological map (1:100000) (see appendix 

II), referencing the general geological map (1:250000) (Council for Geosciences, 1995) 

and chapter 10 (Eriksson et al., 2006) of the book “The Geology of South Africa” (Johnson 

et al., 2006). 



Study Area 

15 

 
 

Figure 2.2 Geological map of the Griqualand West Basin of the Transvaal Supergroup. The study area was 

marked by red rectangular (Hälbich et. al., 1992). 
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The Transvaal Supergroup consists of the older Ghaap Group and the younger 

Postmasburg Group in Griqualand West (table 2.1). The Ghaap Group is subdivided 

into the Schmidtsdrif, Campbell Rand, Asbestos Hills and Koegas Subgroups. The 

Schmidtsdrif Subgroup is similar over the entire Griqualand West Basin, but the 

CampbellRand Subgroup contains different sedimentary facies in the Prieska sub-basin 

and the Ghaap Plateau. The Asbestos Hills Subgroup is also similar in the entire 

Griqualand West Basin, but the Koegas Subgroup is preserved only in the western and 

southwestern part of this basin. The Postmasburg Group overlies the Ghaap Group, 

consisting of the Makganyene Formation, and Ongeluk Formation (Altermann and Hälbich, 

1991). 

 
Age 

(Ma) 

Group Subgroup Formation Lithology 

Ongeluk Andesitic lavas and tuff POSTMASBURG  

Makganyene Diamictite 

Heynskop 

Naragas 

Kameelfontein 

Dorodale 

Koegas 

Subgroup 

Pannetjie 

Dolomite, chert, jaspilite, 

quartzite, shale, siltstone, 

sandstone and mudstone 

Danielskuil BIF 

(Griquatown BIF) 

Asbestos Hills 

Subgroup 

Kuruman BIF 

Banded iron formation 

Naute Shale Shales CampbellRand 

Subgroup Nauga Limestone and dolomite 

Lokamonna 

 
G

H
A

A
P 

 

Schmidtsdrif 

Subgroup Boomplaas 

Shales, carbonates, lava and 

quartzites 

Vryburg Quartzites, shales and lava 

 

 
 

 
 

 

 
2420 

 

 

2500 

 

 
 

2650 
 

2700 
Ventersdorp Supergroup (lava) 

 

Table 2.1. Stratigraphic relationship in Prieska Sub-basin. The table was based on the research of Altermann 

and Hälbich (1991) and chapter 10 (Eriksson et al., 2006) of the book “The Geology of South Africa” 

(Johnson et al., 2006)). Curved lines mean unconformity. 

 

2.2.1 Vryburg Formation 
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The Vryburg Formation overlies the Ventersdorp Supergroup in Griqualand West directly. 

It contains a basal, transgressive conglomerate, with quartzites, shales and subordinate 

stromatolitic carbonates, covered by basaltic to andesitic amygdaloidal lavas dated at 2642 

±3 Ma (Altermann, 1996). A stratigraphic borehole at Kathu (figure 2.2) with the depth of 

230m shows that this formation contains shales, quartzites, and laminated carbonates. 

Figure 2.3 shows an outcrop of Vryburg quartzite. The rocks of this formation show light 

blue colour in the satellite image (Landsat-TM bands 7, 4, 1 as red, green, blue composite) 

because of the high reflectance of quartzite (see chapter 3.3.1 and 5.1). 

 

 
Figure 2.3 View of Vryburg quartzite. 

 

2.2.2 Ghaap Group 

1) Schmidtsdrif Subgroup 

The Schmidtsdrif Subgroup comprises two formations. The Boomplaas Formation above 

the Vryburg Formation originated as the first carbonate platform between 2642 and 2588 

Ma in Griqualand West. It is 100-185 m thick and consists of stromatolitic and oolitic 

platform carbonates. The subsequent transgression results in the deposition of the 

Lokamonna Formation, which is about 50m thick and, contains shales, tuffites and 
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BIF-like chert (Altermann and Hälbich, 1991). Outcrops of this formation distributed in the 

study area (see map) are relatively rare and scattered. 

 

2) CampbellRand Subgroup 

In the Prieska sub-basin, the lower rocks of the CampbellRand Subgroup belong to the 

Nauga Formation, which includes in its entity 600m of carbonates intercalated with rare, 

thin tuffs. The Nauga Formation is overlain by the Naute Shale Formation, comprising 

approximately 150m-thick, finely laminated shale and prominent chert beds, deposited 

between roughly 2520 Ma and 2500 Ma. 

 

Altermann and Nelson (1998) described the rapid facies changes within the lower Nauga 

Formation in the Prieska sub-basin. Vertically, this Formation can be subdivided into five 

informal members. A basal member bears carbonates and some siliciclastic sediments of 

marginal marine origin. The second, peritidal member consists of widespread 

stratiformstromatolites, dated at 2588±6 Ma from the tuff layer. The third, chert member 

contains lagoonal platy dolomicrites, dolarenites and microbial laminites and laterally 

persistent chert marker horizons. The top tuff layer in this member gave the age of 2549±7 

Ma. Then, overlying proto-BIF member mainly consists of carbonates with thin microbial 

mats and three laterally persistent BIF-like cherts (Proto-BIF of Button, 1976a). The 

approximately 150 m thick Nauga shale member covers the carbonates (figure 2.4) These 

finely laminated shales, intercalated with rare thin tuffites and prominent chert beds, 

represent deposition on the shelf, probably below the storm wave-base. 

 

 
Figure 2.4 Overview of Naute Shales and overlying BIF on the right side. 
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Along the Doringberg Fault (figure 2.2), the carbonates show regular NW-SE surface 

texture lineation because of the tectonic overprint (see chapter 5.1). In other areas, where 

tectonic influence is faint, weathering and erosion result in an irregular and cracked texture. 

These textural characteristics are easily observed in satellite image and give important 

clues to tell apart carbonates from other rock types. 

 

3) Asbestos Hills Subgroup 

Most researchers agree that the BIF (Banded Iron Formation) deposition reflects a 

transgression that drowned the Campbell Rand carbonates (Beukes, 1986; Altermann and 

Nelson, 1998). In the Griqualand West Basin, there are two successive BIF units in the 

Asbestos Hills Subgroup: the Kuruman Formation and the Danielskuil (Griquatown) 

Formation (table 2.1.). 

 

The Kuruman Formation preserved the full BIF macrocycles, beginning with a bed of 

stilpnomelane lutite, followed by a whitish chert and then by sideritic and haematitic chert. 

Further upward, this facies becomes more magnetite-rich, until reaching the oxide facies 

rhythmite, in which magnetite is the main Fe-mineral in chert. The macrocycle is 

completed by another whitish, Fe-poor chert, which is covered by a stilpnomelane bed, 

starting another macrocycle. The drill core at the Westerberg/Koegas asbestos deposits 

(Prieska sub-basin) shows that the thickness of the Kuruman BIF in Prieska sub-basin is 

750m, but in the Ghaap Plateau sub-basin, it is maximally 250m thick. Beukes (1980 b) 

thought that the Prieska sub-basin preserved thicker BIF sediments because it has stronger 

subsidence and longer period of time. But Altermann and Hälbich (1990; 1991) argued that 

the larger BIF thickness in the Prieska sub-basin is rather due to the much stronger folding 

and thrust faulting in this area. 

 

The Danielskuil Formation, also called Griquatown Formation, overlying the Kuruman 

BIF, is 200m thick and considered to be another Kuruman-type BIF, reworked by currents 

or waves into a clastic, granular banded iron formation. It is chemically similar to the 

underlying Kuruman BIF but not as finely laminated. The Griquatown Formation is rich in 

BIF intraclasts and displays abundant sedimentary structures. 
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Figure 2.5 shows the appearance of Banded Iron Formation (BIF). In geomorphology and 

colour, these two banded iron formations appear very differently in satellite image (bands 7 

4, 1 as red, green, blue composite) (see chapter 5.1). The younger, softer and granular 

Danielskuil Formation is cracked and appears in distinct red colour because of the high 

content of jaspilite (interbedded jasper and iron oxides). The older, harder and finer 

laminated Kuruman Formation , containing iron stone, haematite, and magnetite, was 

preserved in large units and shows relatively dark colour. 

 

 
Figure 2.5 Overview of Orange River and Banded Iron Formation (BIF) 

 

4) Koegas Subgroup 

In the Prieska sub-basin, the BIF deposits are conformably covered by mixed siliciclastic 

and chemical, iron-rich deposits of the Koegas Subgroup. The Koegas Subgroup 

embraces five formations, ranging from 6m to 360m and consisting of shales, siltstones 

and quartzites with some stromatolitic carbonates and thin jasperoidal iron-formations. The 

50m-thick Pannetjie Formation contains shoreline to deltaic mudstone and is overlain by 

the transgressive iron-formation of the Doradale Formation (6m), followed by the 

80m-thick Kameelfontein Formation and the 360m-thick Naragas Formation, which 

comprises prograding deltaic to tidal flat siliciclastics. The youngest Heynskop Formation 

consists of jaspilite, chert, quartzite and stromatolitic dolomite, with ironstone and 

manganese ore on the top. 

 

2.2.3 Postmasburg Group 
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The Postmasburg Group in the Griqualand West Basin is up to 1.5 km thick. The basal 

diamictites of the Makganyene Formation cut deeply down into the underlying Ghaap 

Group and are of glacial origin (Visser, 1971; Beukes, 1986; Altermann and Hälbich, 

1991). At 2222±13 Ma the Makganyene Formation was disconformably overlain by the 

Ongeluk Formation, which are extrusions of tholeiitic basaltic-andesitic lavas. 

Amygdaloidal andesite and basalt with interbeds of tuff and agglomerate constitute the 

outcrops of Ongeluk Formation in the study area. In satellite image, the distinct 

yellow-orange colour gave important clues to recognize the volcanic rocks of Ongeluk 

Formation (see chapter 5.1). 

 

The Neoproterozoic is not preserved and sedimentary record starts again only with the 

Carboniferous to Permian glacial Dwyka deposits of the Karoo Supergroup (Visser, 

1989). There are also outcrops of Mesozoic intrusions of dolerite dikes in the study area. 

Tertiary to recent sands (aeolian and fluvial), calcretes and scree-alluvial and fluvial 

deposits cover the Precambrian and Paleozoic and Mesozoic rocks. 

 

2.3 Structural history of the study area 

The outcropping Neoarchean and Paleoproterozoic rocks have been extensively deformed 

during several events between >2500 Ma and 1100 Ma (Altermann and Hälbich, 1990; 

1991). The circa NW-SE striking Doringberg Fault (figure 2.2) crosses the investigated 

area and marks the youngest deformation event of ca. 1.1 Ga It is a right lateral strike slip 

fault (zone) with a lateral displacement of more than 100 km. Earlier folding and thrusting 

events encompass up to 6 synsedimentary (BIF) and tectonic, Paleoproterozoic 

deformation episodes. Synsedimentary deformation was directed towards the west, down 

slope and subsequent thrusting in the opposite direction, onto the craton, towards NE, E 

and SE. In the area between Prieska, Westerberg and Griquatown (figure 2.2), stacking of 

thrust packages particularly in the chert rich Banded Iron Formations, affected the 

stratigraphy and thickness of various formations, large and small scale folds and cleavage 

are however, developed in all Precambrian rocks (Altermann and Hälbich, 1990, 1991). 

These severe deformation episodes were followed by episodes of gentle E-W and N-S 

directed compression, resulting in large wave length -- low amplitude, gentle folds 

affecting the Ongeluk Formation lava, that outcrop in large N-S- striking synclines. 
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2.4 Mineral Deposits 

The Kuruman and overlying Griquatown Formation (figure 2.6) of the Asbestos Hills 

Subgroup contain large deposits of iron ore. High-grade iron ore deposit in, e.g. the Nauga 

East Mine, situated approximately 40km north west of Prieska, in the Northern Cape 

province of South Africa and the Uitspanberg area, situated approximately 20 km W of 

Prieska. Both were named after the farms on which they are located, and can be best 

described as a discontinuous rim of hematite ore, developed along the thrust faults in the 

Kuruman Formation and a zoned syenite intrusion (see the map in appendix II) (Altermann, 

pers. com). 

 

South Africa has large deposits of asbestos (white, blue and brown), among which the blue 

asbestos (crocidolite) fields, stretching from south of Prieska to the Botswana border over 

450km, were first discovered in 1805. Within following few decades, crocidolithe was 

mined extensively until its banning from industrial usage in the 1980’s. 

 

In 1968, copper and zinc were discovered in Prieska, and the Prieska Copper Mines owned 

by Anglovaal Mining Ltd was established. Besides, there are also some gypsum, limestone 

and tiger’s eye deposits in study area. 

 

 
Figure 2.6 Banded Iron Formation (BIF). 

 

2.5 Summary 

In the study area, the oldest rocks consist of granitic basement comprising various intrusive 

bodies ranging down to 2.9 Ga. These are covered with an angular unconformity by the 2.7 
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Ga basaltic – andesitic, partly porphyritic lavas of the Ventersdorp Supergroup (table.2.1.). 

The Transvaal Supergroup follows unconformably on the lavas with a startigraphic hiatus 

or gap of at least 50 million years (Eriksson et al. 2006). It commences with quartzites and 

lavas (2.64 Ga, Walraven and Martini, 1995; Altermann, 1996), shales, carbonates and two 

successive Banded Iron Formations (BIF), Kuruman BIF (K-BIF) and Griquatown 

(Danielskuil) BIF (G-BIF), of Neoarchean to Paleoproterozoic age, and without noticeable 

unconformities (Beukes, 1986). The carbonates are intercalated with relatively thin but 

regionally extensive and uniform tuff beds. The Meso- and Neoproterozoic are not 

preserved and sedimentary record starts again only with the upper Paleozoic 

(Permo-Carboniferous) glacial Dwyka deposits (Visser, 1989), followed by Mesozoic 

Karoo rocks. Tertiary to recent sands (aeolian and fluvial), partly extensive calcretes and 

scree-alluvial and fluvial deposits cover the Precambrian and Paleozoic rocks. 

 

Even though large iron ore and asbestos mines have been established here, the mineral 

potential of the southern Prieska Sub-basin has not been yet fully recognised, accounting 

for the necessity of a detailed geological map. 
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3. Fundamentals of Geological Remote Sensing  
To derive information from remotely sensed data, it is necessary to understand the nature 

of electromagnetic radiation (EMR) (Campbell, 1996): how EMR is generated, how it 

interacts with the objects on the earth surface and how it interacts with the atmosphere 

when it propagates. The interaction between EMR and “objects”, resulting in different 

physical processes: reflectance, scattering, transmission and absorption, can change the 

intensity, direction, wavelength and phase of incident EMR. The term “objects” includes 

the objects on the earth surface and different constituents in the atmosphere. The character 

of reflectance and absorption behaviour of earth surface objects depend on their chemical 

content and also physical conditions, such as surface roughness and grain-size (Drury, 

1993). Remotely sensed data received by a sensor are mainly related to these 

characteristics of surface objects, but they are also affected by the atmosphere. 

 

The aim for geologists using remotely sensed data is to extract important geological 

information. By data processing, the signals which reflect the spectral characteristics of 

objects of interest (like minerals and rocks) are enhanced for interpretation, while the 

atmospheric effects, which disturb and falsify the quality of received data, should be 

eliminated or reduced.  

 

3.1 Electromagnetic radiation (EMR) 

The solar electromagnetic radiation (EMR) is commonly described by electromagnetic 

(EM) spectrum in remote sensing, and it can be subdivided into different regions by the 

wavelength location (figure 3.1). For convenience, different regions of the EM spectrum 

are given different names, but there is no clear-cut dividing line between one nominal 

spectral region and the next (Lillisand and Kiefer, 1994). The “visible” portion of EMR is 

an extremely small one, because the spectrum sensitivity of human eyes extends only from 

about 0.4µm to approximately 0.7µm. Most common sensing systems operate in one or 

several parts of the visible, infrared, or microwave portion of the spectrum (figure. 3.1). 

 

3.2 Interaction of EMR with atmosphere 

Before received by a sensor, the EMR must pass the atmosphere. Besides oxygen and 

nitrogen, the atmosphere contains significant amounts of water vapour, ozone and carbon 
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dioxide. All of these are efficient absorbers of solar radiation in specific wavelengths. 

Figure 3.1 (b) shows that approximately 50% of the EM spectrum is lost for remote 

sensing, because none of the corresponding energy can penetrate the atmosphere to the 

surface and back. Those wavebands that pass relatively undiminished through the 

atmosphere are referred to as “atmospheric windows”, where remote sensing data can be 

acquired (Lillesand and Kiefer, 1994). Beside absorption, another interaction between the 

EMR and the atmosphere is scattering, resulting from the diffusion of radiation by matter. 

Scattering will introduce “haze” in the image and reduce image contrast (see chapter 4.1). 

In short wavelength region (like TM band 1-3), scattering effects are more predominant 

than in the longer wavelength part of the spectrum, like TM band 7. Therefore, in short 

wavelength region of spectrum, haze compensation is necessary in image pre-processing 

(see chapter 4.1). 

 

 
 

Figure 3.1 Interrelation between EMR and atmosphere (based on the figure in book “Remote Sensing and 

Image Interpretation”, Lillesand and Kiefer, 1994). Part (a) illustrates the spectral characteristics of energy 

sources. Part (b) shows the spectral regions where optical. Remote sensing data acquisition is possible in 

white, the so-called “atmospheric windows”. Part (c) shows the spectral regions used by different remote 

sensing sensors. The “visible range” coincides both with an atmospheric window and the peak level of solar 

energy. Besides, earth-emitted energy, within the regions 3-5µm and 8-14µm, can be sensed using thermal 

scanners. 

 

(a)

(b)

(c)
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3.3 Interaction of EMR with minerals and rocks 

Rocks are assemblages of minerals and in turn, minerals comprise different molecules and 

elements arranged in 6 possible crystallographic classes. The most common components of 

rocks and minerals are oxygen, silicon and aluminium, together with different proportions 

of iron, magnesium, calcium, sodium and potassium, and smaller amounts of other 

elements. Oxygen, silicon and aluminium atoms have electron shells whose energy levels 

are such that transitions between them have little or no influence on the visible to near-IR 

range. There, the spectra of minerals are dominated by the effects of less-common ions and 

the molecular structures in which they are bonded (Drury, 1993). 

 

Different minerals have spectral reflectance curves of different shape, and this forms the 

basis for identifying the minerals and thus the rocks from remotely sensed data. 

 

3.3.1 Spectral characteristics of several minerals 

The absorption features in the reflectance spectra data are caused by two major types of 

interactions between photons and crystal lattices of minerals, called electronic transition 

and vibrational processes. The electronic transition includes crystal field effects and 

charge-transfer while the vibrational processes embrace overtones and combination tones 

(Drury, 1993). Related to different kinds of interactions, the spectral characteristics of 

several typical iron-bearing (Fe-bearing) minerals, hydroxyl-bearing (OH- bearing) 

minerals and carbonate (CO3
2) minerals are discussed here (figure 3.2, 3.3 and 3.4). Some 

description was cited from the book “Image Interpretation in Geology” (Drury, 1993). The 

reflectance spectral curves were obtained from the USGS Digital Spectral Library (Clark, 

1999). The discussion is focused on the shape of curves and positions of the absorption 

features, rather than the exact reflectance value in vertical axis. The little black triangles 

mark the absorption locations. 

Fe2+ Fe3+ 

Figure 3.2 shows the reflectance spectra curves of several iron-bearing minerals. The peaks 

and troughs represent the reflectance and absorption at different wavelengths. Between the 

wavelength 0.6µm and 0.8µm iron bearing minerals have relatively high reflectance value, 

but at the wavelength shorter than 0.55µm, and at between 0.8 and 1.0µm, there are two 

distinct absorption troughs. The latter trough results from the absorption of the energy, 
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which is used to cause the electronic transitions. These features are related to lattice 

distortion in minerals, which is so-called crystal-field effect and charge-transfer. The most 

common charge-transfer happens in the migration of electrons from iron to oxygen, and 

results in the strong absorption at the wavelength shorter than about 0.55µm. The 

charge-transfer is common to all iron-bearing minerals, and responsible for the steep 

decline in reflectance towards the blue end of the spectrum. 

 

 
Figure 3.2 Reflectance spectra curves of several iron-bearing minerals. Iron oxides and hydroxides show 

absorption features due to crystal-field effect (at between 0.8 and 1.0 µm,) and Fe-O charge-transfer (at 

about 0.55µm) (USGS Digital Spectral Library). 
 

In the visible and near-IR portion of the spectrum, the most important spectral features in 

minerals are those associated with hydroxyl (OH-) or water molecules (figure 3.3). Due to 

overtones, the stretching and bending of H-O-H bond result in the absorption features at 

1.9, 1.4, 1.14 and 0.94µm, related to the presence of molecular water in minerals. The 

overtones of water are seen in reflectance spectra of H2O-bearing minerals. The first 

overtones of the OH stretches occur at about 1.4µm and the combinations of the H-O-H 

bend with the OH stretches are found near 1.9µm. It should be noted that a mineral whose 

spectrum has a 1.9µm absorption band contains water, but a spectrum that has a 1.4 µm but 

no 1.9 µm absorption indicates that only hydroxyl is present. When hydroxyl is combined 

Charge-tr
ansfer
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with other elements, the reflectance spectra show different features. For Al-OH and 

Mg-OH, the bond-stretching transitions produce absorption features at about 2.2 and 

2.3µm respectively. Such features are prominent in mica and clay minerals and diagnostic 

of hydroxyl-related minerals (see chapter 3.3.3 and 5.1). 

 

 
 

Figure 3.3 Reflectance spectral curves of several OH-bearing and H2O-bearing minerals. The combinations 

of the H-O-H bend with the OH stretches result in the distinct absorption features at about 1.4 and 1.9µm. 

The bonds of AL-OH and Mg-OH in clay minerals produce absorption features at about 2.2 or 2.3µm (USGS 

Digital Spectral Library). 
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Figure 3.4 Reflectance spectra curves of carbonate minerals. Vibration related to C-O bond in the CO3

2- ion 

result in the absorption features at about 1.9, 2.35 and 2.5µm (USGS Digital Spectral Library). 

 

The spectra of carbonate minerals are also characterised by vibration related features. The 

stretching and bending of the C-O bond in the CO3
2- ion result in absorption features near 

1.9, 2.35 and 2.5µm (figure 3.4). 

 

In the visible and near-IR wavelength quartz reflects the EMR strongly without absorption 

bands. However, it shows distinct spectral characteristics in the region of the mid-infrared 

(Drury, 1987; Clark, 1999). This region is beyond the investigated range of herein 

discussed Landsat-TM data and ASTER data. Therefore, the spectral characteristics of 

quartz were not discussed in detail. 
 
3.3.2 Spectral characteristics of rocks (based on the discussion of Drury, 1993). 

 

The spectra of rocks are composites of those of their constituent minerals, depending on 

their structure and composition. Beside the inner chemical factors, some other factors, such 

as the water content, surface condition and the environment will also influence the spectra 

of rocks. The same rock type may show different spectral characteristics and sometimes, 

different rock types can show similar spectral characteristics. The spectral characteristics 
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of igneous rocks (figure 3.5) and sedimentary rocks (figure 3.6), which are the main rock 

types in study area, are discussed here. The spectral data were acquired originally from JPL 

spectral library. The curves are not smooth but the spectral characteristics, like absorption 

troughs, can be easily observed. 

 

Figure 3.5 shows the reflectance spectra of specific igneous rocks. According to the 

content of SiO2, igneous rocks can be chemically divided into three classes: felsic rocks, 

intermediate rocks, and mafic rocks. Felsic rocks, such as granite, have low content of Fe 

and Mg, and high content of silica, which show high reflectance. The absorption at 0.9µm 

results from Fe2+. The other three absorption bands located at the wavelength 1.4µm, 

1.9µm and 2.2µm are caused by water molecules and OH-. Intermediate (such as diorite) 

and mafic rocks (such as gabbro) are formed under higher pressure and temperature, and 

contain larger amount of Fe and Mg and less silica compared to felsic rocks. The 

absorption bands of water molecule and OH- at 1.9µm and 2.2µm are diminished, but the 

absorption based on Fe2+ content results in features between 0.9 and 1.0µm. 

 

The spectral features of sedimentary rocks (figure 3.6) are strongly influenced by the 

content of water, OH-, CO3
2-, and Fe2+ and other constituents. Most limestones display 

water absorption bands at 1.4 and 1.9µm; some show a broad absorption between 0.8 and 

1.0µm due to ferrous iron. CO3
2- bonds result in the strong absorption at about 2.3 and 

2.55µm, depending on the bonding with e.g. Ca2+ or Mg2+. For sandstone, the presence of 

fluid inclusions and calcareous cement cause absorption bands at 1.4, 1.9, 2.2 and 2.3µm. 

Shales often contain sufficient carbonaceous materials to mask spectral characteristics 

related to OH-bearing minerals, but also show absorption bands at 1.4, 1.9, and 2.2µm (Lei, 

1999). 
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Figure 3.5 Reflectance spectra curves of some igneous rocks. The reflectance spectra value was obtained 

from JPL spectral library. Absorption troughs can be observed clearly even though noise existed within 

visible to near-infrared range.  

 

 
Figure 3.6 Reflectance spectra of some sedimentary rocks. The reflectance spectra value was obtained from 

JPL spectral library. 
 

3.3.3 Measured reflectance spectra of rock samples collected from the study area 
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The reflectance spectra data of the specific rock samples taken from the study area were 

measured in the laboratory using the instrument GER 3700. GER 3700 from the 

Geophysical and Environment Research Corporation (GER) is a high performance 

single-beam field spectroradiometer measuring over the visible, near and shortwave- 

infrared (across 350nm to 2500nm) in 704 channels. 

 

The measured reflectance spectra curves of 6 rock samples are plotted in figure 3.7.  

 

 
Figure 3.7 Reflectance spectral curves of six typical rock samples of the study area: dolomite, quartzite, 

dolerite dike, Banded Iron Formation (BIF), shales and calcrete. 

 

Spectrum 1: Clastic dolomite of Nauga Formation. Water molecules result in the 

absorption at about 1900nm. The absorption at 2300 and 2500nm is the 

typical spectral characteristics for carbonate. 

 

Spectrum 2: Quartzite of Vryburg Formation. Water molecules and OH- result in the 

absorption at 1400 and 1900 nm. The absorption bands at about 2200 and 
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2350nm are due to the content of carbonates. The spectra shows hydroxyl 

absorption features at 1400, 1900, and 2300nm. 

 

Spectrum 4: A rock sample of Griquatown BIF. It shows typical Fe-ion spectral 

characteristics: high reflectance at about 750 and absorption between 800 

and 1000nm, and hydroxyl absorption features at 1900, 2200 and 2300nm, 

as spectrum 2. 

 

Spectrum 5: Shales of Naute Formation. The content of Fe2+ results in the absorption 

between 800 and 1000nm. It also shows H2O and hydroxyl absorption 

features at 1400, 1900 and 2200nm, as spectrum 2. 

 

Spectrum 6: Rock sample of characteristic calcrete. Water molecules are responsible for 

the absorption at 1400 and 1900nm. The content of carbonate minerals 

(CaCO3, MgCO3) result in the absorption at 2350nm. 
 

3.4 Summary 

In summary, three points should be noticed in this chapter: 

 

1) Atmospheric effects modify or interfere with the signal received by the sensor and 

disturb and falsify the quality of produced image, thus such effects should be 

diminished or removed by image processing techniques (see chapter 4.1). 

 

2) Iron-bearing minerals show absorption features shorter than 0.55µm and between 

0.8-1.0µm. Water molecule and hydroxyl bearing minerals show absorption 

features at 1.4, 1.9, 2.2, and 2.3µm. Carbonate minerals show most characteristic 

absorption features at 2.3 and 2.5µm. 
 

3) Rock spectra are composites of those of their constituent minerals. Depending on 

their structure and composition, these minerals can be detected if they are 

sufficiently abundant and their spectral features are sufficiently strong. 
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4. Digital Image Processing  
The aim of image processing is to facilitate the image interpretation. Image processing is 

normally subdivided into two categories: image restoration (preprocessing) and image 

enhancement. Image restoration is used to correct the data for distortion. It mainly includes 

geometric and radiometric correction. By geometric correction, the image was rectified to a 

projection and coordinate system conforming to existent images or maps. Radiometric 

correction procedures account for errors that affect the brightness value of pixels due to 

both system error (e.g. sensor differences, change in solar zenith angle and earth-sun 

distance) and atmospheric effect (e.g. atmospheric scattering) (Lillesand and Kiefer, 1994). 

Image enhancement is used to make the information outstandingly displayed on the image 

and easily interpretable. It involves radiometric enhancement, like contrast stretching, 

spatial enhancement, such as filtering, and spectral enhancement, such as principal 

component analysis (PCA) and band ratioing. 

 

The system error of Landsat TM data has been corrected when the data were delivered, 

thus, only atmospheric correction is necessary. For ASTER level 1A data, the correction of 

system error and atmospheric effects can be accomplished synchronously by converting 

digital numbers (DNs) to top of atmosphere (TOA) reflectance value (Smith, 2009; 

Vermote, et al., 2002; Yüksel and Recep, 2008) (see chapter 4.1.3). 

 

The ETM+ data acquired in 2000 contains record noise, but have been rectified to UTM 

projection and WGS 84 coordinate system. The noise will contaminate the spectral signal 

of the object, therefore ETM+ data were used here only as basis to perform geometric 

correction but not for further spectral investigations. 

 

In this chapter, geometric correction was performed first on TM and ASTER images, in 

order to give them the projection and coordinate system consistent to the georeferenced 

ETM+ image. Subsequently, the atmospheric correction was performed to remove the 

effect of atmosphere scattering on TM band 1, 2 and 3 (see chapter 3.2). Then the 

conversion from DNs to top of atmosphere (TOA) reflectance was performed on ASTER 

data to correct the system error and atmospheric effects. Corrected data sets were enhanced 

using contrast stretching, principal component analysis (PCA) and band ratioing. It should 
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be noticed that all the image processing is based on TM bands 1-5 and band 7, but not TM 

band 6. 

 

For TM data and ASTER data, the geometric correction, atmospheric correction, DNs to 

TOA reflectance conversion and contrast stretching were applied uniformly throughout the 

image, covering the entire study area, but band ratios and PCA were implemented only in 

the test area. 

 

4.1 Preprocessing 

4.1.1 Geometric correction 

Raw digital data can not be used directly because they usually contain significant 

geometric distortions. The sources of the distortions range from the position of the sensor 

platform, to factors such as earth curvature. After the rectification, the distortions are 

compensated and the image will have the geometric consistency with another 

georeferenced image or map. In this research, based on the ETM+ image, the TM image 

and ASTER image were rectified using a second order polynomial model and 14 ground 

control points (GCP) (Leica Geosystems, 2003), resulting in an overall RMS error of less 

than 1 pixel and a check point error less than 0.5 pixels. The RMS error is the distance 

between the desired output coordinate for a GCP and the actual output coordinate for the 

same point, after the point was transformed with the geometric transformation model. The 

scanned geological map (1:250000) was rectified in the same way, but using a first-order 

polynomial nearest-neighbour transformation and then re-projected into the UTM 

projection zone 34 (WGS84). 

 

4.1.2 Atmospheric correction of TM data 

In chapter 3, it was discussed that remotely sensed data acquired by satellite sensor 

systems are largely interfered by atmospheric effects. The intention of atmospheric 

correction is to retrieve the surface reflectance from remotely sensed data by removing the 

atmospheric effects. In the here discussed study, the TM data are only corrected for 

scattering effects. 
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The atmospheric scattering adds an extra scattering radiation (haze) to the signals reflected 

by the surface objects and results in contrast decrease in the visible bands. Scattering 

effects are more predominant in the shorter wavelength part than in the longer wavelength 

part of the spectrum (see chapter 3.2). Among various algorithms to remove atmospheric 

effects, the method “scattergram” described by Frei (1994) was used in this study. The key 

point of this method is to determine the offset in individual visible bands. Scattergrams of 

the DNs in TM band 7, which is considered free of atmospheric scattering (see chapter 3.2), 

against the DNs of a visible band are normally used to determine the offset values which 

should be subtracted from the visible band. 

 

In the satellite image, a “black area” (shadow or deep water), where the DNs are supposed 

to be 0, is selected and the DNs of TM band 1, 2, and 3 in this black area are plotted 

against the DNs of TM band 7 to determine the offset values caused by atmospheric 

scattering, as shown in figure 4.1. The regression line (red lines) should pass the origin if 

there is no scattering. The obtained offset values (intercept values on horizontal axis) are 

individually 42, 12 and 9. The scattergrams are plotted in the feature space using ERDAS 

9.3. 

 

 
 
 

Figure 4.1 Scattergrams to determine the offset caused by haze in TM band 1 (a), band 2 (b) and band 3 (c). 

The intercept values of red regression lines on horizontal axis are the offset values. For TM band 1, 2 and 3, 

the offset values are individually 42, 12 and 9. 

 

4.1.3 Radiometric correction for ASTER data 

To eliminate the effects of sun-elevation, earth-sun distance and atmosphere in ASTER 

data, the DNs were converted to TOA (top of atmosphere) reflectance (Thome and Slater, 

Band 1 Band 2 Band 3 
(a) Haze offset = 42 (b) Haze offset = 12 (c) Haze offset = 9 

Band 7 Band 7 Band 7 
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2001; Vermote et al., 2002; Yüksel and Recep, 2008). The DNs were converted to spectral 

radiance and then the radiance was transferred to TOA. In the first step, the DN values 

measured by the sensor were converted to spectral radiance (Lrad) using the following 

equation: 

 

                       Lrad = (DN-1) * C                              (4.1) 

 

where C is the unit conversion coefficient, which can be obtained from the user guide of 

ASTER (Abrams and Hook, 1998). Subsequently, the spectral radiance detected at the 

sensor was transferred to TOA reflectance (RTOA), using following equation: 

 

                    RTOA= (π * Lrad*d2) / (ESUNi*cos(z))                  (4.2) 

 

where π=3.14159, ESUNi is the mean solar exoatmospheric irradiance of each band, being 

obtained from ASTER user guide, z is the solar zenith angle, (z=90°-solar elevation angle), 

which is found within ASTER header file, and d is the earth-sun distance in astronomical 

units. An astronomical unit (AU) is defined as the mean distance between the earth and the 

sun. The value of d, which is variable because the earth revolution, can be calculated using 

the following equation: 

 

            d = (1-0.01672*COS(RADIANS(0.9856*(Julian Day-4))))         (4.3) 

 

The coefficient values calculated for the conversion of the two ASTER data sets (acquired 

in 2001 and 2006) are listed in table 4.1. 
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Band 

 
C 

 
ESUN 

Image acquired on 
21,08,2001 

Image acquired on 
28,03,2006 

1 
 

1.688 1845.99 

2 
 

1.415 1555.74 

3 
 

0.862 1119.47 

4 
 

0.2174 231.25 

5 
 

0.0696 79.81 

6 
 

0.0625 74.99 

7 
 

0.0597 68.66 

8 
 

0.0417 59.74 

9 0.0318 56.92 

 
d = 1.01168 (AU) 

 
z = 90°-41.190371° 

 
d= 0.9976 (AU) 

 
z= 90°-47.533016° 

 
Table 4.1 Coefficient values for the conversion from DNs to TOA reflectance. The values of C, ESUN and z 

were obtained from the header file of ASTER data. The value “d” was calculated using the equation 4.3. 

 

4.2 Image enhancement 

TM and ASTER data of the test area after geometric and radiometric correction are shown 

in figure 4.2. Band 7, 4 and 1 of TM data are coded in red, green and blue (R, G and B) to 

composite a colour image (figure 4.2 a). Band 7, 3 and 1 of ASTER data are coded in R, G 

and B (figure 4.2 b). This colour-composition was considered to give best overview 

(Kaufmann, 1988; Gain and Abdelsalam, 2006). 

 
Figure 4.2 TM image and ASTER image of test area. In image (a), TM bands 7, 4 and 1 were composed in R, 

G and B. In image (b), ASTER bands 7, 3 and 1 were composed in R, G and B. 

(a) (b) 
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4.2.1 Contrast enhancement 

For 8 bit data sets, the range of grey levels is from 0 to 255, but the raw sensor values 

rarely extend over this entire range. Therefore, a contrast stretch is usually performed, 

which stretches the range of the values to fit the range of the display. There are two types 

of radiometric enhancement methods: linear stretch and non-linear stretching (like 

histogram-equalized stretch and piecewise stretch) (Drury, 1993; Lillesand and Kiefer, 

1994). Linear stretching is a simple way to improve the visible contrast of the entire image. 

The non-linear stretching is used to stretch or compress contrast over a specific grey level 

range. For example, when the contrast of dark areas in the image needed to be stretched or 

the contrast of light areas needed to be compressed, non-linear stretching is optimal. 

 

In this study, the complete scenes of Landsat-TM and ASTER data were investigated.  

Therefore, the simple and standard linear stretching was used to enhance the contrast of the 

images. Linear stretching was applied to each pixel in the image using the algorithm: 

                       DN’=(
MINMAX

MINDN
−
− )*255                        (4.4) 

Where: 

DN’=pixel value in output image 

DN=original value in original image 

MIN=minimum value in input image, to be assigned 0 in the output image 

MAX=maximum value in input image, to be assigned 255 in the output image 

This stretching was carried out using the ‘Modeler’ in ERDAS 9.3. 

 

4.2.2 Band ratioing 

Ratioing is considered as an effective method to reduce the inter-band correlation of 

multispectral image data (Drury, 1993). A ratio image is created by dividing the grey value 

in one band by the corresponding value in another band for each pixel. Owing to the 

compensation of differences in albedo and illumination conditions, the ratio method can 

exaggerate subtle information of spectral differences between two selected bands, which 

may be not interpretable in the original individual band. Any three ratio images can be 

combined to produce a colour image. Prior research showed that the colour variations of a 

a
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ratio colour image express more geological information than a colour image of the original 

data (Sabins, 1999; Rowan et. al., 2005; Gad and Kusky, 2006). 

 

Based on the TM data, several band ratios have been developed to emphasize lithologic 

units (Kaufman, 1988; Drury, 1993; Crippen, 1989; Sabins, 1999; Gad and Kusky, 2006), 

such as band 3/1 can emphasize iron oxide minerals; band 5/7 can highlight hydroxyl- 

minerals; band 5/4 can stress ferrous minerals (figure 4.3 a). 

 

For ASTER data, several ratios were also put forward by prior researchers to detect 

geological units based on their specific spectral characters. The band ratio 2/1 was used to 

highlight iron oxide-rich minerals, and band ratio 4/6 and 4/8 can be used to highlight clay 

and carbonate minerals, respectively (Rowan et. al., 2005; Fu et. al., 2007). Band ratios 4/5, 

5/3 and 4/3 (figure 4.3 b) express the steep slope caused by the effect of ferrous-iron 

absorption in the VNIR wavelength region (Rowan et. al., 2005; Ren and Mohamed, 

2006). 

 

Figure 4.3 shows band ratio images based on TM data (band 5/4) and ASTER data (band 

4/3). Griquatown BIF (G-BIF) with ferrous minerals is highlighted in light grey values. 

 

 
 

Figure 4.3 Band ratio images of the test area. (a) is the ratio image of band 5/4 based on TM data. (b) is the 

ratio image of band 4/3 based on ASTER data. Griquatown BIF (G-BIF) was highlighted in light grey values. 
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4.2.3 Principal component analysis (PCA)  
 
The principal component analysis (PCA) is widely used in geology as an image processing 

approach (Kaufman, 1988; Loughlin, 1991; Tangestani and Moore, 2002). The intent of 

PCA is to create a new set of images that are orthogonal to one another, or, in other words, 

decorrelation. 

 

Based on the 6 TM reflective bands (bands 1-5 and band 7), 6 output principal components 

(PCs) were produced. The first component (PC1) encompasses the brightness information, 

sometimes called albedo, without any spectral characters. The second and subsequent 

principal components (PC 2, 3, 4) encompass divergences in spectral reflectance among 

surface materials which depend on their mineralogical-chemical characteristics and other 

properties, such as surface roughness. The fifth and sixth components (PC5 and 6) contain 

most of the noise in the data. Therefore, PC 2, 3, 4 were chosen for a colour composite 

image. PC 3 image is shown in figure 4.4 (a), where G-BIF is highlighted in high DN 

value. 
 

Based on 9 input ASTER bands, 9 output PCs were calculated. Additionally, a new 

analysis method is put forward based on the discussion by Poursaleh (2004). In this 

method the 9 original ASTER bands were arranged into 3 groups. The first group contains 

bands 1, 2, 3, 4; the second group includes bands 1, 3, 4, 5; the third group embraces bands 

4, 6, 8, 9. Four PCs were computed individually based on the four input bands for each 

group. The second component (PC2) image from the second group (input bands 1, 3, 4 and 

5) is shown in figure 4.4 (b), highlighting the quartzite. 

 

Any 3 output PCs can be encoded as red, green and blue to create a colour image, but it 

should be noticed that the colour does not have real geological meaning (Lei, 1999), 

nevertheless, it helps to highlight different rock types. 
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Figure 4.4 Principal component images of the test area. (a) shows PC3 image based on 6 input TM bands 

(bands 1-5 and 7). G-BIF was highlighted in high DN values. (b) shows PC 2 image based on 4 ASTER input 

bands (bands 1, 3, 4, and 5). Quartzite was highlighted in high DN values. 

 
In addition, the general geological map (1:250000) (Council for Geoscience, 1995) was 

scanned and digitized, to assist the lithological classification (see chapter 5). Each 

lithological unit is represented by a specific ID value and this ID value will further be used 

to relate the classification results with the geological map. 
 

4.3 Summary 

(1) Georeferenced ETM+ image can be used as basis to geometrically rectify TM and 

ASTER image. The “scattergram” and “DNs to TOA reflectance transition” are 

separately used to perform radiometric correction on TM data and ASTER data. 

 

(2) Contrast-stretching, band ratioing and PCA are effective techniques to enhance the 

TM image and ASTER image, and to highlight different lithological units. After 

data correction and enhancement the following data sets are produced: 

 

Based on TM data: six output PCs based on six input bands (1-5 and 7); ratio bands 

5/7, 5/4, 4/3 and 3/1. 
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Based on ASTER data: nine PCs based on nine input bands (1-9); four PCs based 

on input bands 1, 2, 3 and 4; four PCs based on input bands 1, 3, 4 and 5; four PCs 

based on input bands 4, 6, 8 and 9; ratio bands 4/3, 2/1, 5/3, 4/6 and 4/8. 
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5. Image Interpretation and Lithological Classification 
Geological remote sensing, using multi-spectral satellite data, is based on differences in 

physical and chemical properties of all rock types and their weathering surfaces. Different 

rock types reflect electromagnetic energy in different ways, permitting for the 

identification of unique or typical spectral characteristics of the rock mineralogy, as 

discussed in chapter 3. Therefore, remote sensing data sets have been widely used for 

geological mapping and mineral deposits detection, foremost in arid and semi-arid areas. 

However, the application was limited by some factors. In utilisation of Landsat TM data 

for example; factors like moderate spatial resolution of 30 m and the low spectral 

resolution in only seven bands limit the classification accuracy, when based solely on 

spectral bands. Moreover, lithological boundaries are not necessarily distinct and sharp and 

can be masked by overlying detritus, and different kinds of rocks may show analogous 

spectral characteristics, resulting in spectral overlap and misclassification. The low 

mapping accuracy resulting from low classification accuracy becomes a “bottleneck” in 

geological remote sensing. 

 

Many advanced classification approaches based on Landsat TM/ETM+ data sets have been 

put forward to improve the classification accuracy. For example, textural features were 

used to improve the urban areas and land cover classification (Shaban and Dikshit, 2001; 

Rao et al., 2002; Chen et al., 2004); artificial neural networks (ANN) were efficiently used 

in land cover classification (Kavzoglu and Mather, 2003); “fuzzy classification” was 

introduced to solve the mixed-pixel problem (Shalan et al., 2003), and the 

knowledge-based system (KBS), especially, incorporating GIS, plays an important role 

because it is capable of managing different sources of data (Stefanov et al., 2001; Daniels, 

2006; Lu and Weng, 2006). Unfortunately, these methods did not work well for 

lithological classification procedures, because of the complicated and heterogeneous 

landscapes and surface mineralogy and lithology. 

 

For ASTER data, existing classification methods are mainly based on its relatively high 

spectral resolution (Rowan and Mars, 2003; Rowan et al., 2005; Chen et al., 2007). The 

three VNIR bands are an important source of information about absorption in transition 

metals, such as iron. Carbonate, hydrate and hydroxide minerals show distinct absorption 
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features in six SWIR bands. The important rock-forming minerals, including quartz and 

feldspar, display fundamental absorption in the TIR wavelength region (see chapter 3). 

Beside the traditional maximum likelihood classification (MLC), two spectral analysis 

approaches, spectral feature fitting (SFF) and the spectral angle mapper (SAM) (Kruse et 

al., 1993; Dharmiinder and Gregory, 2003; Rowan et al., 2005; Chen et al., 2007) are 

mostly used to perform lithologic classification. SFF is based on a comparison of the 

image spectra and reference spectra, using least-square estimation. SAM is an algorithm to 

calculate the similarity between image pixel spectra and reference spectra in terms of the 

angle between two n-dimensional vectors, where n is the number of bands of hyperspectral 

data (Chen et al., 2007). In this study, SFF and SAM are not considered as optimal 

methods because of two factors. The first factor lies in the missing of TIR bands in 

investigated ASTER data. Secondly, these two algorithms are sensitive to the measurement 

conditions when collecting the reference spectra, such as the surface coverage, grain size 

and illumination. For accurate comparison and calculation in SFF and SAM, simultaneous 

field measurements are highly recommended to obtain high correspondence between the 

image spectra and reference spectra. But in this research, spectral data were measured in 

the laboratory, not in the field. Therefore, traditional MLC rather than SFF and SAM were 

used here. 

 

To obtain high mapping accuracy in the study area, effective classification methods need to 

be developed based on TM data and ASTER data. 

 

In addition to the spectral characteristics in the satellite images, textural features of the 

rocks, influenced by e.g. tectonics, drainage, erosion or weathering (and thus indirectly 

reflecting physical and chemical properties of the in-situ rocks) provide useful supporting 

information to distinguish rock types. Among many developed texture measurement 

methods, the grey-level co-occurrence matrix (GLCM)-based analysis (Haralick et al., 

1973; 1979; Franklin, et al., 2000) and the geostatistics-based analysis (Lark, 1996; 

Atkinson and Lewis, 2000; Jakomulska and Stawiecka, 2002) are used most commonly. 

Both of the two textural measurement methods were performed based on single input band 

(Haralick, 1973; Lark, 1996). From single band several textural features, like contrast, 

entropy and homogeneity can be obtained using GLCM analysis (Haralick, 1973; Rao et 
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al., 2000), but only one feature (variogram) can be achieved by geostatistic-based analysis 

(Chica-Olmo and Abarca-Hernandez, 2000). TM band 5 and TM PC1 with high standard 

deviation (high albedo) values were optimal data sets to compute the textural features 

because textural information can be presented well by high albedo (Atkinson and Lewis, 

2000; Franklin, et al., 2000). Some researchers compared these two methods and then used 

the optimal one with higher accuracy for classification improvement (Lloyd et al., 2003; 

Zhang et al., 2003), but no research in combining these two methods was carried out.  

 

Relative topographic elevation values of specific rock types can assist the classification. 

For example, BIF and surrounding detritus show very similar spectral characteristics, but 

they can be differentiated by the high elevation of BIF and the lower elevation of 

surrounding detritus. In addition, the lithological boundaries detracted from the geological 

map are important information which can be incorporated to assist the classification.  

 

In this investigation, a new algorithm was developed, based on TM and ASTER data, 

integrating spectral characteristics, textural features, elevation values of different rock 

types and the digital geological map, to improve the lithological classification accuracy 

and subsequently increase the mapping accuracy. The classification method discussed 

below is performed on the data sets covering the test area (figure 4.2 in chapter 4). 

 

5.1 Image interpretation and field work 

Referencing to the geological map (Council for Geoscience, 1995) and the fundamentals 

discussed in chapter 3, geological interpretation was performed based on Landsat TM 

image (bands 7, 4 and 1 as RGB composite). Because of the coarse spatial resolution of 

TM data and the spectral similarity between different rock types (see chapter 3.3.2), 

uncertainty and mistakes occur in image interpretation. Field work was carried out between 

27th July and 7th August, 2009, to investigate the geological situation in the study area. 

Based on the field work and the spectral characteristics of different rocks (chapter 3), the 

lithology and geology of two in detail investigated areas were interpreted below. 

 

Figure 5.1 shows the western investigated area. The older, harder and finer laminated 

Kuruman Banded Iron Formation (K-BIF) is the main unit in this image segment, it has 
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smooth and homogeneous texture and appears in dark brown or green colour. The content 

of magnetite and chert lowers the reflectance spectra value of K-BIF. The younger, softer 

and granular Griquatown Banded Iron Formation (G-BIF) is easily eroded and distributed 

in patchy erosional remnants rather than in big units. The typical spectral characteristics of 

iron-bearing minerals give G-BIF high reflectance values in TM band 1-5 and 7 and low in 

band 4 and 1, accounting for its red colour. Quartzite (Q) (Vryburg Formation) appears in 

light blue colour because quartz reflects EMR strongly in TM bands. The regular NW-SE 

texture (tectonic-related) characterizes the carbonate rocks (C) (Nauga Formation) even 

though it appears in similar spectral characteristics as K-BIF, because of the same high 

quartz contents in the surface layers. Intrusive diabase sills (D) are shown in orange colour 

(see chapter 2). Fluvial sand (sand along the river in red ellipse, figure 5.1) containing SiO2 

and carbonate rocks show very similar spectral characteristics to quartzite and carbonate 

rocks (in blue ellipse, figure 5.1).  

 
Figure 5.1: TM image interpretation in the western investigated area (bands 7, 4 and 1 as R, G and B 

composite). Kuruman BIF (K-BIF) outcrops in large, relatively continuous units appear dark brown or green 

in colour. Quartzite (Q) appears in light blue colour. Griquatown BIF (G-BIF) was cracked and in red 

colour. Carbonate rocks show cyan or green colour, but with regular NW-SE textural features (lineaments). 

Diabase sills (D) appear orange colour. 
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In some parts of the eastern area investigated in detail (figure 5.2), carbonates are partly 

covered by calcrete and tillites. Calcrete is a hardened deposit of calcium carbonate, 

appearing therefore with similar reflectance characteristics as carbonates, but with much 

higher reflectance values (see figure 3.7), probably because the calcrete is a relatively pure 

CaCO3 comparably to the Mg and Fe rich and partly silicified Archean carbonate platform. 

Tillites are Permian glacial deposit (Dwyka Formation) that are widespread is South Africa 

(Visser, 1989). They contain sandstones, mudstones, siltstones often with a carbonate 

cement, and matrix supported mixtites with clasts of carbonate rocks, BIF, basement rocks, 

etc. In satellite image (figure 5.2), carbonates (Car) were in cyan or various pink colours 

but coarse texture. The pink colour may be due to the content of iron-bearing minerals. 

Tillite (T) appears in dark purple colour and calcrete (Cal) in light purple colour with 

smooth texture. 

 

The carbonates covered by tillite (I) show dark purple colour, but smoother texture 

compared to pure carbonates. The area covered by calcrete with some tillite (II) appears in 

smooth texture and lighter colour than (I), without the influence of carbonates. Figure 5.3 

shows a typical surface covered by calcrete and tillite. 
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Figure 5.2: TM image interpretation in the eastern investigated area (bands 7, 4 and 1 as R, G and B 

composite). Carbonate rocks (Car) appear green colour with irregular coarse texture. Tillite (T) appears in 

dark purple colour and calcrete (Cal) in light purple colour with smooth texture. 

 

 
 

Figure 5.3: The outcrop appearance of the surface covered by calcrete and tillite (including clasts of 

carbonates, BIF, etc.). 
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5.2 Lithological classification of the Landsat TM data 

The procedure is illustrated in the following flow chart (figure 5.4). Maximum-likelihood 

supervised classification (MLC) was first performed individually on original multispectral 

TM data (6 bands) and original PCA data (6 principal components). Subsequently, 

GLCM-based textural features were computed individually from TM band 5 and PC1. 

Geostatistics-based textural features were computed individually from the 6 TM bands and 

3 principal components (PC1, PC2 and PC3). These textural features (GLCM-based and 

geostatistic-based) were individually stacked as extra layers together with the original 6 

multispectral bands and the 6 principal components to form four new data sets 

(TM-GLCM, TM-GEO, PCA-GLCM, PCA-GEO) (see chapter 5.2.3). Ratio bands (see 

chapter 4) were also individually stacked as extra layers with 6 multispectral TM bands 

and 6 principal components, to form two new data sets (TM-Ratio and PCA-Ratio data). 

These six new data sets were individually classified using the maximum-likelihood 

supervised classification (MLC) to produce six classified thematic images. In the new 

designed rule-based system (RBS) (see chapter 5.5.1), two classified images were analyzed 

and compared. The analysis was based on the discussion of MLC results (chapter 5.2.1 and 

5.5.3) and elevation data (chapter 5.4). By the comparison in RBS, the pixels with high 

possibility being misclassified were marked and then reclassified according to the 

boundaries extracted from the digital geological map (1:250000). The classification results 

where then used to compile the lithological map of the study area at the scale 1:100000 

(Appendix II). The new classification algorithm was evaluated in the test areas where 

fieldwork has been carried out and a detailed geological map has been obtained. 
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Figure 5.4: The flow chart of the classification and mapping based on TM data. Red lines are related to the 

textural features, original multispectral bands and principal components. Blue lines are related to ratio 

bands, original multispectral bands and principal components. Green lines mean the processing of “layer 

stack”. 

 

5.2.1 Maximum-likelihood supervised classification (MLC) 

Maximum-likelihood supervised classification (MLC) was performed on original 

multispectral data (6 bands) and PCA data (6 PCs). In a supervised classification, training 

areas are specified on the image representing different lithological units characterized by 

their specific signatures. The spectra of the pixel in one training area should be pure and 

uniform to represent the spectral characters of this rock type. 57 training areas including 

1718 pixels were specified on the multispectral image (bands 7, 4 and 1 as R, G and B 

composite) and 52 training areas with 1542 pixels were specified on the PCA image (PC 4, 

3, 2 as R, G, B composite) to represent 14 categories. The classification results are shown 

in figure 5.5 and table 5.1. Misclassification can not be avoided in this procedure. In the 

classified TM image (figure 5.5 a), misclassification happened near the edge of two 

different rock types because of the mask of scree (also called detritus or surface rubble), 

Original multispectral 
bands 

Ratio bands 
GLCM and 

geostatistical-based 
textural features 

Two were selected from six classified images 

Rule-based system 
Criterions detracted from 
elevation data and digital 

geological map 

Classified images 

Lithological map 

Original 6 principal 
components 

TM-GLCM TM-GEO PCA-GLCM PCA-GEO TM-Ratio PCA-Ratio

Maximum-likelihood classification (MLC) 
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for instance, the area between K-BIF and carbonate rocks or between K-BIF and diabase 

dikes. Spectral similarity between different lithologies, such as between the fluvial sand 

(sand along the river) and carbonate rocks (I in figure 5.5 a, pixels of fluvial sand were 

misclassified as carbonate rocks), BIF and carbonate rocks (II in figure 6.2 a, pixels 

representing BIF were misclassified as carbonate rocks), calcrete and surface rubble (scree) 

(III in figure 5.5 a, pixels representing scree were classified as carbonates), or between the 

chemically-mineralogically almost identical K-BIF and G-BIF, can also cause 

misclassification. In the classified PCA image (figure 5.5 b), G-BIF can be distinguished 

well, but misclassification also exists, such as between carbonates and K-BIF (II in figure 

5.5 b), calcrete and surface rubble of the K-BIF (III in figure 5.5 b). 

 

The accuracy of the MLC of the two data sets (multispectral and PCA) were evaluated by 

comparing the results with the detailed geological field map (Glas, 2008; Li, 2009). The 

class values of 256 random points on the classified images were compared to their values 

in the reference map to assess the classification accuracy. The percentage of correctly 

classified points to total reference points in each lithological class was defined as 

“producer’s accuracy” (PA) (ERDAS Field Guide, 2003). The producer accuracy (PA) of 

the MLC based on multispectral TM data (6 bands) and PCA data (6 PCs) is shown in 

table 5.1. It is obvious that Griquatown BIF can be classified with higher accuracy based 

on PCA data (91%) than on multispectral data (63.34%). The overall classification 

accuracy based on multispectral data and PCA data was individually 54.3% and 64.45%. 

The software ERDAS IMAGINE 9.3© supported the MLC and accuracy assessment. 
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Figure 5.5: Thematic image by MLC. (a) shows classified TM image. (b) shows classified PCA image. 

 
 

 

 

(a) 

(b) 
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Lithologic Classes PA based on 

multispectral 

data (%) 

PA based on 

TM-PCA  

data (%) 

Lithologic Classes PA based on 

multispectral 

data (%) 

PA based on 

TM-PCA 

data (%) 

Shadow area 100 100 Scree 34 73.68 

Fluvial sand 85.71 83.33 carbonate 65.22 41 

Kuruman BIF 57.83 62.5 Calcrete 37.5 57.14 

River 100 100 Quartzite 50 50 

Silt and mudstone 50 87 Eolian sand 66.67 64 

Diabase sills 55.56 56 Reddish eolian sand 67 73.33 

Griquatown BIF 63.64 91 Vegetation 100 100 

Overall accuracy: 54.3% (multispectral data); 64.45% (PCA data) 

 

Table 5.1: Producer’s classification accuracy based on multispectral TM data (6 bands) and TM-PCA data 

(6 PCs). 

 

“Recoding” followed to recode the values of each class, according to the ID values from 

the geological map (see chapter 4), to ensure that the same ID value stand for the same 

lithologic class in the two classified images and in the digital geological map (1:250000). 

The pixels covered by shadow areas in images are the exception, because there are no 

corresponding shadow areas in the geological map (Council for Geoscience, 1995). 
 
5.2.2 Textural analysis 

Texture is a combination of the magnitude and frequency of tonal change in an image. It is 

produced by the summative effect of all of the many small features that make up a 

particular area of surface (Drury, 1993) Textural features of the rocks, influenced by e.g. 

tectonics, drainage, erosion or weathering, and the combination thereof, provide useful 

supporting information to distinguish rock types, and can be incorporated to assist the 

classification. For example, carbonates in the test area show coarse NW-SE texture but 

K-BIF shows relatively smooth texture (see chapter 5.1). The two mostly used texture 

measurement methods are discussed below: Grey-level co-occurrence matrix 

(GLCM)-based analysis and geostatistics-based analysis. 

 

(1) Grey-level co-occurrence matrix (GLCM)-based texture analysis 

The grey-level co-occurrence matrix (GLCM) (Haralick, 1979), also known as grey-level 

spatial dependence matrix, is by far the most widely used approach in remote sensing, for 
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computation of second order textural features. The matrix is created by calculating how 

often a pixel with the intensity (grey level) value I, occurs in a specific spatial relationship 

to a pixel with the value j. Each element in the resultant matrix P (I, j) represents the 

“number” of occurrences of the pair of grey-levels I and j, which are spatial apart in 

original image. The spatial relationship can be represented by the parameter “offsets”, 

which contains two factors between the two pixels: angle and distance. By default, the 

offset was defined as two horizontal adjacent pixels (angle=0° and D=1) (figure 5.6). 

However, a matrix with single offset might not be sensitive to texture with other 

orientations. For this reason, multiple GLCMs with different offset values can be created 

from a single input band (Haralick, 1973, 1979; Franklin, et al., 2000; The mathworks, 

2006). 

 
Figure 5.6: The spatial relationship of pixels defined by “offset”. D represents the distance from the pixel of 

interest in specific orientation (The Mathworks, 2006). 

 
Figure 5.7 shows how the GLCM matrix P (i, j) was calculated with the offset: angle=0° 

and D=1. In the output GLCM, element (1, 1) contains the value 1 because there is only 

one instance in the input image where two horizontally adjacent pixels have the value 1 

and 1, respectively. GLCM (1, 2) contains the value 2 because there are two instances 

where two horizontally adjacent pixels have the value 1 and 2. Element (1, 3) has the value 

0 because there are no instance of two horizontally adjacent pixels with the value 1 and 3. 

This calculation continues processing the input image, scanning the image of other pixel 

pairs (i, j) and recording the sums in the corresponding elements of the GLCM. 
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Figure 5.7: Illustration of how to calculate the first three values in a GLCM P (i, j) with the two horizontally 

adjacent pixels (angle = 0° and distance = 1) (The Mathworks, 2006). 

 
Several textural features can then be derived from this matrix using a moving window. The 

central pixel value in the moving window was replaced by the textural feature value 

derived from the matrix in this moving window. The window was moved pixel by pixel 

until covering the entire image. Previous research showed that small moving window size 

is preferable in analysing the textural features of medium to coarse resolution image (Chen 

et al., 2004; Shaban and Dikshit, 2001). The most popular 7 textural features (Rao et al., 

2002) were calculated based on TM band 5 using moving window of 3*3 pixels. In the 

following formulas, N is the pixel number in moving window, e.g. N is 9 in the 3*3 pixel 

window.  
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Mean is an indicator of the distribution of grey levels. 

 

(b) Standard deviation (st-de) 
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Standard deviation denotes dispersion of the grey levels as defined by the sum of the 

squares. Generally, coarse textured features are associated with higher standard deviations. 

 

(c) Entropy 

Entropy = ∑
−

=

1

0,
)),(log(),(

N

ji
jiPjiP  

Entropy measures the disorder of an image. With the increasing textural variability of the 

image, the GLCM elements values become very low, and the entropy becomes very high. 

 

(d) Contrast 

Contrast= ∑
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Contrast measures the amount of local variances in an image, representing the difference 

between the highest and the lowest values of a contiguous set of pixels. This means that 

high contrast values imply highly coarse texture. 

 

(e) Correlation 

Correlation = ∑
−
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Hereby, µ is the mean and σ is the standard deviation. Correlation is a measure of grey 

tone linear dependencies in the image. High correlation values imply linear relationship 

between the grey levels of pixel pairs. 

 

(f) Energy 

Energy = ∑
−
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Energy, another word “Angular Second Moment” or “Uniformity”, is a measure of textural 

uniformity of an image, i.e., pixel pair repetition. Energy is high when grey level 

distribution has a constant or periodic form. 

 

(g) Homogeneity 
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Homogeneity = ∑
−
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Homogeneity, also dubbed Inverse Difference Moment, assuming larger values for smaller 

grey tone differences in pair elements. 

 

Usually, the calculation of GLCM is based on a single band. In this research, band 5 was 

selected because of its highest standard deviation. In the grey level image of band 5, 

sample areas (20*20 pixels) representing the main five rock types were selected (some 

examples in figure 5.8), then based on these sample areas, GLCM were computed and the 

7 textural features were derived separately when the distance (d) is 1 and 5. For each 

sample, the average value in four directions (N-S, E-W, N45°E, N45°W) was calculated 

and for one specific rock type, the average feature value of all three samples was computed. 

All the textural feature values were normalized between 0 and 1 for comparison (figure 

5.9). 

 

 
 

(a) Texture samples of carbonate rocks 
 

 
 

(b) Texture samples of Griquatown BIF 
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(c) Texture samples of Kuruman BIF 
 

 
 

(d) Texture samples of quartzites 
 

 
 

(e) Texture samples of fluvial sand 
 

Figure 5.8: Textural features of different kinds of rock samples. (a) Texture samples of carbonates show 

clear directivity in NW-SE, where black tone alternates with light tone. Texture of Kuruman BIF in (c) is 

heterogeneous compared to the texture (b) (d) and (e). 

 

It can be observed from figure 5.9 that different textural features show different 

capabilities to differentiate the rock types. A bigger value difference in vertical axis of two 

rock types means higher differentiating-ability of the corresponding texture features in 

horizontal axis. Three texture features, ‘st-de’ and ‘homogeneity’ at d=1 and ‘contrast’ at 

d=5, calculated from TM band 5 were selected as efficient textural features to differentiate 

rock types. 
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Figure 5.9: Capability of discriminating between different rock types when d=1, and d=5. X axis stands for 

different textural features and Y axis is the normal value (between 0 and 1). For one textural feature, large 

difference in normal values between two rock types indicates high possibility to differentiate between them. 

For example, the normal values of river sand and carbonate in “mean” are far away enough, so they can be 

distinguished well by “mean”, but for Griquatown BIF and Kuruman BIF, the normal values in “mean” are 

too close to be differentiated. 

 

To illustrate the role the textural features play in assisting the classification from the view 

of image (compare to the view from statistics in figure 5.9), figure 5.10 shows the 

“contrast” image when d=5. The river sand and carbonate, which show similar spectral 
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characters in a multispectral image (bands 7, 4, 1 as R, G, B composite), can be 

distinguished well. In “contrast” image, the carbonate with coarse texture appears with 

high values (in red ellipse), but the river sand (in blue ellipse) and BIF (in yellow ellipse) 

show relatively low values. 

 
 

Figure 5.10:  Image of the textural feature “contrast”, when d=5. Coarse texture is represented by high 

contrast values. Carbonate, river sand and BIF which appear with similar spectral characters can be 

distinguished well. The carbonate appears with high values (in red ellipse) and the river sand (in blue ellipse) 

and BIF (in yellow ellipse) show relatively low values. 

 
(2) Geostatistics-based texture analysis 

Geostatistical methods are used increasingly in remote sensing, to characterize the spatial 

correlation and to improve classification accuracy (Lark, 1996; Atkinson and Lewis, 2000; 

Jakomulska and Stawiecka, 2002). In this approach, the pixels in the image have two 

characteristics: local variability and spatial regularity. That signifies, the nested pixel 

values are variable on local scale, but show regularity on large spatial scale. As illustrated 

in figure 5.11, there is no fixed regulation of value change from X1 to X1+1, and from 

X1+1 to X1+2, however, regulation can be found when the two changes are compared. The 

“Variogram” is most common used as indicator to combine these two characters. 
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=

+−
)(

1

2))()((
)(2

1 hN

i
ii hXDNXDN

hN
 

0 4 82 Kilometers



Image Interpretation and Lithological Classification 

 68

N (h): the number of pixel pairs with the distance of h 

h: also called “lag interval”, is the distance between nested pixels 

 

 
 
 

Figure 5.11: Local variability and spatial regularity between nested pixels in the indicator “Variogram”. 

 

Because textural analyses are often based on single band and only one geostatistical feature 

can be derived from one band (Chica-Olmo and Abarca-Hernandez, 2000), in this research, 

six geostatistical features were calculated individually from six TM spectral bands (bands 

1-5 and 7), and in addition three geostatistical features from three principle components 

(TM -PC1, PC 2 and PC3). For each calculation, an average value in four directions (N-S, 

E-W, N45°E, N45°W) was calculated to show the textural characteristics (Shaban and 

Dikshit, 2001). 

 

Figure 5.12 is the geostatistic textural image, based on Landsat-TM band 5, when the value 

of h is 3. High values imply very coarse texture. Carbonates with high values (in red ellipse) 

and BIF with low values (in blue ellipse) can be differentiated. 

 
All the textural features were calculated by the software Matlab 7©. The code is listed in 

Appendix I. 

 Xi Xi+h 

h=2 

h=1 

h=3 
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Figure 5.12: Geostatistic textural image based on band 5, when h=3. High grey values (pixels in red ellipse) 

mean coarse texture, and low values (pixels in blue ellipse) mean smooth texture. 

 

5.2.3 MLC combining original TM data, textural features and ratio bands 

As discussed above, based on single band, several GLCM textural features but only one 

geostatistical feature can be detracted. After applying both textural analysis, three GLCM 

textural features calculated from Landsat-TM band 5 and six geostatistical textural features 

calculated from the 6 multispectral TM bands were obtained. In addition, three GLCM 

textural features were calculated from PC1 and three geostatistical textural features were 

calculated individually from PC1, PC2 and PC3. 

 

Table 5.2 shows the combination of original TM multispectral bands and principal 

components with textural features and ratio bands. The three GLCM features from TM 

band 5 were stacked with the six multispectral TM bands to form the TM-GLCM data set 

with nine bands. Also, the three GLCM features from PC1 were stacked with the original 

six TM principal components to form the PCA-GLCM data set with 9 bands. On the other 

hand, six geostatistical features based on the 6 TM bands were stacked with the original 6 

multispectral bands to form the TM-GEO data set with 12 bands, and three geostatistical 

features based on PC1, PC2 and PC3 were stacked with original 6 components to form the 

0 4 82 Kilometers
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PCA-GEO data set with nine bands. In addition, four ratio bands were stacked individually 

with original 6 multispectral bands and 6 principal components, producing the TM-Ratio 

and the PCA-Ratio data with 10 bands. 

 

 3 GLCM 

features from 

TM-band 5 

3 GLCM 

features from 

TM-PC1 

6 Geostatistical 

features from 6 

TM multispectral 

bands 

3 Geostatistical 

features from 

TM-PC1, PC2 

and PC3 

4 ratio bands from 

6 TM multispectral 

bands 

6 

multispectral 

TM bands 

 

TM-GLCM 

(9 bands) 

  

TM-GEO 

(12 bands) 

  

TM-Ratio 

(10 bands) 

6 principal 

components 

(PCs) 

  

PCA-GLCM 

(9 bands) 

  

PCA-GEO 

(9 bands) 

 

PCA-Ratio 

(10 bands) 

 

Table 5.2. Six new data sets obtained by stacking the layers of original TM bands, principal components, 

textural features and ratio bands. 

 

MLC was conducted separately on the above six new data sets (TM-GLCM, PCA-GLCM, 

TM-GEO, PCA-GEO, TM-Ratio, PCA-Ratio). The classification results of TM-GEO data 

was shown in figure 5.13. 

 
Figure 5.13: Classified image based on TM-GEO data. 
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Compared to the classification result solely based on multispectral TM data (figure 5.5a), 

the classification based on TM-GEO data (figure 5.13) avoided some pixels of fluvial sand 

being misclassified into carbonates (I in figure 5.5 (a) and in figure 5.13), and some pixels 

of BIF being misclassified into carbonates (II in figure 5.5 (a) and in figure 5.13). After 

MLC, “recoding” of the classes was performed to make the class values correspondent to 

the ID values in digital geological map.  

 

The classification accuracy of the various classification attempts based on 8 different data 

sets are summarised in table 5.3, showing the overall classification accuracy and Kappa 

coefficient. It can be found that the classifications based on textural feature-stacked data 

sets (results 3-6) results in higher accuracy than that solely based on original multispectral 

data or PCA data (results 1 and 2), showing the important role textural features play in 

improving the classification. 

 

Data sets 

 

Original 

Multispectral 

 

Original 

PCA 

 

PCA- 

GLCM 

PCA- 

GEO 

TM- 

GLCM 

TM- 

GEO 

TM- 

Ratio 

PCA- 

Ratio 

Classified 

results 

(1) (2) (3) (4) (5) (6) (7) (8) 

Accuracy 54.3% 

 

64.45% 66.8% 66.8% 64.5% 64.84% 61.33% 67.97% 

Kappa 

Coefficient 

0.4622 0.5957 0.6499 0.6499 0.6191 0.6338 0.5787 0.6592 

 

Table 5.3: MLC accuracy of different combinations based on Landsat-TM data. 

 

The classification accuracy solely based on the multispectral TM data (result 1), which is 

54.3%, can be significantly improved to 64.5% and 64.84% (results 5 and 6), after using 

the texture features. The accuracy based on the PCA data (result 2) was also improved 

from 64.45% to 66.8% (results 3 and 4), but not as significantly as for the multispectral 

data. The classification accuracy based on TM-Ratio and PCA-Ratio data (results 7 and 8) 

was also higher than that solely based on the multispectral and PCA data sets. The 

classification accuracy of the multispectral TM data was elevated considerably from 54.3% 

II 



Image Interpretation and Lithological Classification 

 72

(1) to 61.33% (7) after incorporating ratio bands, but for the PCA-based classification, the 

accuracy was increased only from 64.45% (2) to 67.97% (8). Summing up, no matter if 

textural features or ratio bands are added to the PC, the classification accuracies based on 

PC-related data sets (results 2, 3, 4, and 8) are higher than those only based on 

multispectral-related data sets (results 1, 5, 6, and 7), showing the great contribution of 

principal component analysis (PCA) in improving lithological classification. 

 

5.3 Classification of ASTER data  

As shown in chapter 4, several data sets were obtained by enhancing the original ASTER 

data. 

 

After visual comparison, nine of them were considered optimal in differentiating the rock 

types: PC2 based on input bands 1, 2, 3, 4; PC2 based on input bands 4, 6, 8, 9; PC1, PC3 

and PC4 based on input bands 1-9; ratio bands 4/3, 2/1, 4/5 and 5/3. These data sets were 

stacked as individual layers to form a new data set PCA-Ratio, with 9 bands (figure 5.14). 

PC2 based on original 9 input bands was not selected because it contains the information 

overlapping with the two “PC2” based on input bands 1, 2, 3, 4 and 4, 6, 8, 9. 

 

 
Figure 5.14: The new data set PCA-Ratio was obtained by stacking the layers of principal components (PCs) 

and ratio bands. 

 

MLC was performed individually based on the original multispectral ASTER data, PCA 

data (9 PCs), and PCA-Ratio data (9 bands). The overall accuracies and Kappa coefficients 

are shown in table 5.4. Figure 5.15 shows the classified image based on the multispectral 

data. Some pixels of carbonate rocks were misclassified as BIF (I), and some parts of 

aeolian sand were misclassified as diabase sills (II). 

PC2 based on input 
bands 1, 2, 3 and 4 

PC2 based on input 
bands 4, 6, 8 and 9 

PC1, PC2 and PC3 
based on 9 input bands

Ratio bands 4/3, 
2/1, 4/5 and 5/3 

PCA-Ratio 
(9 bands) 

Layer stack 
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The classification results of the three data sets are listed in table 5.4. The overall 

classification accuracy of ASTER PCA data (result 10) is lower than that of multispectral 

data (9), unlike the situation of TM data classifications in table 5.4, where the classification 

accuracy of PCA data was much higher than that of multispectral data. The stacking of PCs 

and band ratios (11) did not improve the accuracy significantly compared to results 9 and 

10 (66.8% compared to 66.41% and 64.45%), even though it results in the highest accuracy 

in table 5.4. Compared to the results in table 5.3, the classification accuracy solely based 

on multispectral ASTER data is higher than that solely based on multispectral TM data. 

 
Figure 5.15: Classified multispectral ASTER image. 

 

Classified data sets 
 

Classified results 

Multispectral 
 

 (9) 

PCA  
 

(10) 

PCA-Ratio 
 

 (11) 
 

Accuracy 
 

 
66.41% 

 
64.45% 

 
66.8% 

Kappa Coefficient 
 

0.6464 0.6267 0.6541 

 
Table 5.4: MLC accuracy of different band combinations based on ASTER image. 
 

It should be noticed that some rock types, like granite, could be recognized in the ASTER 

image but not in the TM image. This may be due to the relatively coarse spatial resolution 

0 4 82 Kilometers
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of TM data and the different location of the bands in the sensor TM and ASTER. Probably 

also because of the low and flat topography of granites in the region, and they tend to be 

extensively covered by loose scree sediments and aeolian sands and thus make very patchy 

and small outcrops. In addition, the area named “fluvial sand” in classified TM image 

(figure 5.5) became “vegetation” in classified ASTER image (figure 5.15). Because the 

TM data was acquired in 1984 and the ASTER data was acquired in 2001 and 2006, when 

the surface coverage has changed. Therefore, different categories should be defined when 

the classification was performed based on the data sets with different spatial resolution and 

acquisition date.  

 

5.4 Analysis of elevation and slope data  

A digital elevation model (DEM) (figure 5.16 a) can be built based on the contour lines 

contained in digital topographic map. The slope data can be derived from a DEM, 

represented by degree or percentage, expressing the change in elevation over a certain 

distance. High values suggest steep slopes and low values correspond to flat areas (figure 

5.16 b). The outlines of Kuruman BIF are distinct in the slope image, represented by high 

values resulting from the steep slopes. 

 

 
 

Figure 5.16: DEM image (a) and slope image (b) of the test area. The elevation values are between 900m 

and 1300m. “Slope” is presented in “degree”, ranging from 0° to 87°. 

 

(b) (a)
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Normally there is no direct and fixed relationship between the lithology and its elevation, 

but in specific areas, some regularity can be found. As shown in figure 5.17, along the 

direction (a), from the river bank up to Kuruman BIF further on to the carbonates and 

quartzite, the elevation values change from low to high and then to low again. The highest 

elevation above mean sea level is 1200m, for Kuruman BIF. In the trend (b), from the river 

bank to Griquatown BIF and then to Kuruman BIF, the elevation values become higher 

and higher. Following conditions can be obtained in this specific test area: 

 

(1) The part with elevation values above 1200m above sea level is for sure Kuruman 

BIF. 

(2) Most parts of the Griquatown BIF outcrops are lower than 1060m a.m.s.l. 

(3) The river sand (fluvial sand along the river) is lower than 960m a.m.s.l., but the 

carbonates which appear in similar spectral characteristics as the river sand in 

satellite image (see chapter 5.2.1) are outcropping above 1040m a.m.s.l. 

(4) The edge of the large unit of Kuruman BIF has higher slope values, but the area 

covered by talus material (blue ellipse) appearing with similar spectral 

characteristics as Kuruman BIF has slope values lower than 10°. 

 
The rules expressed by thresholds (see chapter 5.5.3, function 2) resulting from above 

conditions will be input into a rule-based system to assist the classification. 
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Figure 5.17: TM image of the test area (bands 7, 4, 1 as R, G, B composite) was overlapped by elevation 

data. Along the direction (a), from the river bank to Kuruman BIF, then to carbonate and quartzite, the 

elevation values change from low to high and then to low again. The highest elevation is 1200m, in the 

Kuruman BIF. In the trend (b), from the river bank to Griquatown BIF and then to Kuruman BIF, the 

elevation values become higher. 

 

5.5 Rule-Based System (RBS) classification 

The rule-based algorithm designed here is actually a post-classification system. It was used 

to reclassify the pixels with high possibility having been misclassified in foregoing MLC 

classifications, according to some criterions derived from the geological map (1:250000) 

and the from elevation data, to improve the classification accuracy. The algorithm was 

designed in the ‘Spatial Modeller’ of the software ERDAS©. 

 

5.5.1 Fundamentals of RBS 

Disregarding of the mixed pixel problem, the object in the field presented by one pixel in 

the image should be classified into a specified and fixed “lithology” class. Thus, in two 

classified images of the same area, the corresponding pixels in the same position are 

expected to belong to the same class. However, the results did not actually coincide, partly 

because different data sets (like multispectral data and PCA data) highlight different 
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spectral characteristics of the rocks, and also because of the misclassification due to the 

medium spatial and spectral resolution of the Landsat TM data and ASTER data. Such 

mismatching pixels needed to be investigated more in detail for the classification. Some 

corresponding pixels have the same class ID values, and these pixels can be considered to 

be at a low risk of misclassification or of high possibility being classified correctly, here 

called consistent pixels. On the other hand, the corresponding pixels classified into 

different classes with different ID values have a high risk of being misclassified, and are 

called inconsistent pixels. In KBS, the two classified images were compared to mark the 

consistent pixels and inconsistent pixels individually. Then the class values of consistent 

pixels will be kept unchanged, and the class values of inconsistent pixels were replaced by 

their ID value in the digital geological map. To perform the comparison, two classification 

results need to be selected and put into RSB. 

 

5.5.2 Selection of classification results  

As discussed above, two classification results need to be selected and included in the RBS 

for further reclassification. Many factors must be considered when selecting classification 

results based on TM data from table 5.3. First, incorporating texture features can improve 

classification accuracy, so results from 3 to 6 have the priority to be selected. Second, the 

multispectral data and the PCA data highlight different parts of the spectral information of 

the rocks (see chapter 4), and both outputs complement each other to differentiate different 

lithological units. Thus, results 3 and 4 based on the data sets containing PCs and textural 

features belong to one group and 5 and 6 containing multispectral bands and textural 

features belong to another group. Two results need to be selected out from these two 

groups separately. In the second group, result 6 based on TM-GEO data is prioritised due 

to the relatively higher accuracy. In the first group, results 3 and 4 have similar accuracy. 

But the PCA-GEO data contains the same geostatistic textural features as TM-GEO data. 

The “overlap” will diminish the total amount of the information when the two data sets are 

integrated. Therefore, result 3 in the first group based on PCA-GLCM data (contains PCs 

and GLCM textural features) and result 6 based on TM-GEO data (contains multispectral 

bands and geostatistic textural features) were chosen as a group of candidate result images 

to be put into RBS. 
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In table 5.3, it can be found that result 8 based on PCA-Ratio data also has the priority to 

be selected as candidate image because of its highest classification accuracy. To take the 

individual advantages of the multispectral data and PCA data into account, another 

candidate image should be based on multispectral data. Therefore, result 6 based on 

TM-GEO data and result 8 based on PCA-Ratio data were choosen to form another group 

of candidate result images to be input into RBS.  

 

From the results based on ASTER data in table 5.4, result 9 from multispectral data and 11 

from PCA-Ratio data were selected because of the high classification accuracy, to be a pair 

of candidate images for next reclassification in RBS. 

 

5.5.3 RBS classification 

In RBS, two classified images were analyzed and compared. The class values of consistent 

pixels will remain unchanged, and the class values of inconsistent pixels will be replaced 

by their ID values in the digital geological map. But there also exist exceptions: if the 

inconsistent pixels are classified as G-BIF in the TM-PCA image, their class values will 

not be replaced by the ID in the digital geological map. The reason lies in: when 

interpreting the accuracy report resulting from the comparison between classified PCA 

image and the reference map (detailed geological map by Glas, 2008) (table 5.1), the 

G-BIF can be recognized and classified extremely well in the TM-PCA data (see chapter 

5.2.1). Therefore, even if it is characterized as an inconsistent pixel, the class value for 

G-BIF identification was considered reliable and remains unchanged in RBS. 

 

An algorithm was designed based on the two input results to preserve the class values of 

the consistent pixels and simultaneously to pick out the inconsistent pixels. The class 

values of the consistent pixels were kept unchanged in the RBS, ensuring that if the 

proposed method cannot improve the classification accuracy, the accuracy of the 

reclassified image cannot be lower than that from the traditional maximum likelihood 

classification solely.  

 

The RBS algorithm is shown in figure 5.18 exemplarily with the classified images 3 and 6 

as input(see chapter 5.5.2). 
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Figure 5.18: First part of the RBS algorithm to compare two input classified images. The values of consistent 

pixels were kept unchanged and the inconsistent pixels were picked out according to the criterions detracted 

form DEM and slope data. The inconsistent pixels were picked by being marked with the value 1. The 

separated algorithm at right hand is used to define the colour of the different classes. 

 

The details of the algorithm are explained below, the letter “a” represents the class value in 

the classified TM-geo image, and “b” stands for the class value in the classified 

PCA-GLCM image: 

 

(1) Function “$n1_recode”: a-b+25  

In this function, “a” and “b” are individual class values in the classified images based on 

TM-GEO data and PCA-GLCM data, in the range from 1 to 25. The value 25 was added to 

make the results positive. If the corresponding pixels in the two images have the same class 

value (classified into the same class), the result is 25. Otherwise, the pixels will have 

results between 1 and 25. The output image is named “subtract”. 
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(2) Function “CONDITIONAL”: (a=3 and elevation> 1100) 3, (elevation > 1200) 3, (a=3 

and slope> 10) 3, (b=11 and elevation < 1060) 11, (subtract =25 and a=16 and elevation > 

1040) 16, (subtract != 25) 1}  

In this function, a = 3 and a =16 individually stand for the BIF and the carbonates in the 

classified image based on TM-GEO data. b = 11 means the Griquatown BIF in the 

classified image based on PCA- GLCM data. The conditions were defined according to the 

discussion in chapter 5.4. 

 

The inconsistent pixels, the pixels in shadowed areas and the unclassified pixels (class 

value =0) were reclassified simultaneously in the RBS, using the digital geological map of 

1: 250000. 

 

A newly developed algorithm (figure 5.19) was then used to replace the pixels whose 

values are 0 and 1 with their ID values on the digital geological map. 

 

 
 

Figure 5.19: Second part of RBS algorithm. It was used to replace the values of inconsistent pixels, shadow 

covered pixels (value=1) and unclassified pixels with their corresponding ID values in geological map. The 

separated algorithm at right hand is used to define the colour of the different classes. 
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5.5.4 RBS classification results 

As discussed in chapter 5.5.2, three groups of candidate images (classification results) 

based on TM data, (1) and (2); (3) and (6); (8) and (6) (table 5.3), and one group based on 

ASTER data, (9) and (11) (table 5.4) were selected. Besides, two groups, results (8) and (9), 

and results (8) and (11), integrating TM and ASTER data, were also used as candidate 

groups. The comparison and reclassification were performed respectively based on the two 

candidate images in each group. Table 5.5 shows the RBS classification results. 

 

Candidate Groups 
 

(1) and (2) (3) and (6) (8) and (6) (9) and (11) (8) and (9) (8) and (11) 

Classification 
accuracy 

 
72.7% 

 
83.2% 

 
79.69% 

 
77.94% 

 
82.7% 

 
81.64% 

       
Kappa  

coefficient 
 

0.7115 
 

0.7965 
 

0.7514 
 

0.7451 
 

0.7899 
 

0.7770 
 
Table 5.5 RBS classification results based on TM data, ASTER data and their integration. 
 
The RBS classification results in table 5.5 are distinctively higher than those in table 5.3 

and 5.4. The accuracy based on original multispectral TM data and PCA data (1 and 2) is 

72.7%. After incorporating textural features, the integration of data sets TM-GEO and 

PCA-GLCM result in the RBS classification accuracy of 83.2%. The accuracy based on 

multispectral ASTER data (9) and PCA-Ratio data (11) is 77.94%. When integrating the 

results based on ASTER data and TM data (group 8 and 9; 8 and 11), the accuracy is 

81.64% and 82.7% respectively.  

 

Three groups of candidate images, 3 and 6, 8 and 9, 8 and 11 result in relatively higher 

RBS classification accuracy. However, as input images of RBS, the specific advantages of 

each group should be considered. ASTER data acquired in 2001 and 2006 are the relatively 

youngest data and represent the current surface situation best, but the highest classification, 

83.2%, was obtained based on TM data acquired in 1984 (group 3 and 6). The 

classification accuracy based on the groups incorporating ASTER data (8 and 9; 8 and 11) 

is relatively low, individually of 82.7% and 81.6%. This may be due to the fact that 

ASTER has no band in the blue wavelength region (0.45-0.52 µm) where some important 

spectral characteristics of rocks appear (see chapter 3.3.1). Therefore, to investigate current 

surface condition with high classification accuracy, the advantages of TM data and ASTER 

data should be integrated. 
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The RBS-classified image based on the comparison of TM-GEO (result 6) and 

PCA-GLCM (result 3) with highest classification accuracy is shown in figure 5.20 (a). 

 

5.6 Post-classification process 

In a supervised classification, the pixels are clustered only according to their spectral 

characteristics, so deficiency can not be avoided in the final classified image, even though 

the textural feature, elevation values and digital geological map were incorporated. As 

shown in figure 6.16 (a), there are some small clusters of pixels bearing different class 

values with their surrounding pixels, shown as small dots within one thematic class. For 

the convenience of mapping and other applications, these dots should be eliminated. In the 

software ERDAS, the functions “clump”, “sieve” and “eliminate” were used together in a 

post-classification process to improve the quality of the classified image. “Clump” was 

used to identify clumps (contiguous groups of pixels in one thematic class) in the classified 

image and to record the value of the biggest clump in a defined neighbourhood. In the 

clumped image, pixels of a class were clumped together and each clump has its own 

attributes (such as the size of an area). In cases where small clumps are nonsignificant, the 

function “sieve” was used to remove the clumps smaller than the minimum size specified. 

If the small clumps are indispensable, the function “eliminate” can be used to replace the 

values of pixels in these small clumps with the value of nearby larger clumps. In herein 

study, the neighbourhood was defined as 4 pixels in “clump”, and the minimum size in 

“sieve” and “eliminate” was 16 pixels. The image of the test area after these processing is 

shown in figure 5.20 (b). 



Image Interpretation and Lithological Classification 

83 

 
 

  
 

Figure 5.20: RBS classified images of test area. Image (a) is the result from RBS. Image (b) is the result after 

the process “sieve” and “eliminate”. Small dots within a class with different values were removed. 

 

5.7 Lithological mapping 

The “Raster to Vector” function in ERDAS was used to convert the classified thematic 

image with highest classification accuracy to vector layer. In the conversion, the output 

type should be a polygon. “Weed Tolerance” is the parameter representing the minimum 

distance between vertices on the output lines in map units, to generate arcs. If the tolerance 

is low, the output vector is too rough to be edited because of the large amount of short arcs, 

(b)

(a)
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but on the other hand, high tolerance will result in the missing of some arcs shorter than the 

defined distance. Taken the test area as an example, 50 is the arranged weed tolerance 

value. 

 

5.8 Classification and mapping of the entire study area 

Some prior researchers found that, in the area where two objects show similar spectral 

character but are spatially separated, spatial subdivision can be effective in improving the 

classification accuracy (Dean and Smith, 2003; Lloyd et al., 2003). Many factors should be 

taken into account in subdividing the study area. Firstly, different rock types bearing 

similar spectral characteristics should be separated effectively. Secondly, the boundaries 

should delineate homogeneous areas like sand-covered areas, or coincide with distinct 

borders, such as the river, to make sure that the two classified parcels can fit well. As 

shown in figure 5.21, the extensive study area was subdivided into 9 parcels. Parcels 1 to 4 

were covered by both TM and ASTER data. Parcels 5-7 were covered only by TM data. 

Field work has been carried out in area I and II in 1995 and between 2003 and 2005 

(Kiefer, 1995; Frank, 1995; compiled by Glas, 2008). The two obtained detailed geological 

maps were scaled and pulled into the final geological map. The proposed classification 

method was performed individually in parcels 1-7. 

 
 

Figure 5.21: Subdivision of the study area. Both TM and ASTER data are available in parcel 1, 2, 3 and 4. 

Only TM data are available in parcel 5, 6 and 7. I and II are areas where field work has been carried out 

and detailed geological maps are available.  
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According to the situation in every parcel, different ancillary data sets (textural features, 

elevation data and 1:250000 digital geological map) were incorporated into RBS. The 

ancillary data sets incorporated into RBS and the classification results of all parcels are 

illustrated in table 5.6 and figure in 5.22-5.28. The colours of different classes in 7 

classified images are not exactly same, because it is the class value rather colour were 

decisive. 

 

 Data sets for RBS classification 
 

Overall accuracy Kappa coefficient 

Parcel 1 
(Figure 5.22) 
 

TM data , ASTER data , elevation data and 
geological map 

 

89.06% 0.8734 

Parcel 2 
(Figure 5.23) 
 

TM data, ASTER data, textural features, 
elevation data and geological map 

 

89.45% 0.8730 

Parcel 3 
(Figure 5.24) 
 

TM data, ASTER data, textural features, 
elevation data and geological map 

 

80.47% 0.7683 

Parcel 4 
(Figure 5.25) 

TM data, ASTER data, textural features, 
elevation data and geological map 

 

88.28% 0.8622 

Parcel 5 
(Figure 5.26) 

TM data, elevation data and geological map 87.89% 0.8376 

 
Parcel 6 
(Figure 5.27) 
 

 
TM data and digital geological map 

 
85.2% 

 
0.8166 

Parcel 7 
(Figure 5.28) 

TM data, elevation data and geological map 81.25% 0.7644 

 
Table 5.6 RBS classification results of every parcel in the study area. 
 

For example, in parcel 2, 3 and 4, textural features give important information to recognize 

rock types (figure 5.23, 5.24 and 5.25), so the textural features are indispensable in RBS 

classification. But in parcel 1, where the rock types are relatively simple and no distinct 

textural features appear (figure 5.22), only the elevation data and digital geological map 

were incorporated into RBS. In parcel 6, where there is no distinct textural features and no 

big difference in the elevation values of different rock types, only the digital geological 

map was incorporated into RBS as ancillary data set (figure 5.27). According to the 

reference map, image interpretation and expert knowledge of the researcher, the definition 

and boundaries of different lithologies based on the classification results were rectified. 

The vector geological maps of all parcels after rectification were produced. The final 
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geological map (appendix II) of the entire area can be obtained by combining maps of all 

parcels and the existent maps (Kiefer, 1995; Frank, 1995; Glas, 2008) of area I and II. 
 
5.9 Conclusion and discussion 

In the arid test area bordering the southern bank of the Orange River, in Griqualand West, 

South Africa, calculated textural features and ratio bands were stacked as extra layers with 

multispectral TM and ASTER data and with their principal components, to built several 

new data sets, based on which a maximum likelihood classification (MLC) was performed. 

Two classified results were selected and put into the following rule-based system (RBS), 

where the two classified input results were compared based on the MLC results and 

elevation data. The probably misclassified pixels were marked and the reclassified using 

the criterions detracted from the digital geological map. High RBS classification accuracy 

was obtained. 

 

In the area covered by both TM and ASTER data (parcels 1-4), the classification was 

performed based on their combination (TM, ASTER and ancillary data). ASTER images 

were incorporated here to investigate most recent surface situation. Parcels 5-7 are beyond 

the coverage of ASTER images, and the TM image is the sole satellite data source. RBS 

classification in parcels 5-7 was based on TM data and ancillary data sets.  

 

To a large extent, misclassification is decreased when the class values of inconsistent pixel 

in the classified image are replaced by their corresponding ID values in the digital 

geological map (Council for Geoscience, 1995). Besides, unclassified pixels and shadow 

covered pixels in classified images can be given a specific class value according to the 

digital geological map. The results demonstrate that textural features of the rocks are 

important information in assisting the lithological classification, and elevation data and 

digital geological maps are also effective ancillary data to improve the classification 

accuracy.  

 

Important points to be noticed: 

1) In the principal component analysis (PCA) using the software ERDAS, the output 

images should be stretched to unsigned 8 bit, to ensure that the covariance matrix 
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of the signature can be inverted, and the maximum likelihood classification can be 

performed successfully.  

2) The irregular boundaries between different parcels were digitized in vector layer 

and subsequently converted to “area of interest” (AOI), via which the study area 

was subdivided. 

3) Textural features can significantly assist the classification only when they are 

combined with spectral characteristics. A classification solely based on textural 

image can not achieve high accuracy. 

4) The conditions and rules put forward in chapter 5.4 and 5.5.3, based on the 

elevation data, will be different when investigated areas are different. That is to say, 

specific rules are correspondent to specific area. 

 

The designed RBS is actually a post classification system. The final classification accuracy 

depends on the previous classification accuracy (like the MLC in this study) and on the 

rules applied in RBS. Generally speaking, high previous classification accuracy and more 

rules will result in higher RBS classification accuracy. For example in parcel 7, without 

elevation data, misclassification between Banded Iron Formation (BIF) and surrounding 

detritus can not be avoided because of their spectral similarity. 

 

In the maximum likelihood classification (MLC), selected training areas representing the 

spectral characters of carbonates rocks should exclude shadow areas, in order to maintain 

the spectral purity. However, the shadow areas mark the features resulting from tectonics 

or weathering, and mainly form the directional textural features of carbonate rocks (see 

figure 5.1), whose spectral characteristics are similar to that of calcrete, tillite and 

sometimes BIF (see chapter 5.1). That is to say, carbonates can be recognized well in the 

satellite images from visual interpretation based on the textural features but easily being 

misclassified in classification based on spectral characteristic. The misclassification of 

carbonate rocks is severe even though the incorporation of textural features can improve 

the classification accuracy significantly. Therefore, areas with wide carbonate coverage 

usually correspond to relatively lower classification accuracy, like the situation in parcel 3. 
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As shown in table 5.2, when forming new data sets, the number of GLCM-based textural 

features, geostatistics-based textural features and ratio bands stacked with original 

multispectral bands and PCs were individually 3, 6 and 3. The band numbers of new data 

sets, based on which MLC performed, were respectively 9, 10 and 12. If the classification 

accuracy can be further improved when more layers or bands were stacked together? If the 

optimal number of bands can be decided? These questions will be discussed in future 

research. 

 

The method used here contributes to the generation of a detailed lithological map in the 

study area of the Prieska sub-basin, in South Africa, especially under the conditions of 

limited data source and field work possibility, when for example, only TM data and 

general geological map on a large scale are available. Further more, using the herein 

introduced method, geological maps can be updated more easily by implementing the 

information gained from recent satellite data. 

 

In future research, advanced classification methods and more ancillary data, such as 

corresponding geophysical and geochemical data, can be integrated in RBS to improve the 

lithological classification accuracy further. Attempt should also be necessary to investigate 

the relationship between the classification accuracy and the band numbers of data sets 

being about to be classified. 
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Parcel 1 
 

   
 

              
 
 
Figure 5.22: Classification of parcel 1. (a) shows the ASTER image, with bands 7, 3 and 1 as R, G and B 

composite. (b) is the TM image, with bands 7, 4 and 1 as R, G and B composite. (c) is the DEM image and (d) is 

the final classified image. 
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Parcel 2 
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Figure 5.23: Classification of parcel 2. (a) is the ASTER image, with bands 7, 3 and 1 as R, G and B composite. 

(b) is the TM image, with bands 7, 4 and 1 as R, G and B composite, (c) is the DEM image. (d) (e) and (f) are the 

variance, homogeneity and dissimilarity images calculated from TM band 5. Image (g) is the final classified 

image. 
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Part 3 
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Figure 5.24: Classification of parcel 3. (a) is the ASTER image, with bands 7, 3 and 1 as R, G and B composite. 

(b) is the TM image, with bands 7, 4 and 1 as R, G and B composite. (c) (d) (e) and (f) display the variance, 

homogeneity and dissimilarity images respectively, based on TM band 5. (f) is the DEM image and (g) is the 

final classified image. 
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Figure 5.25: Classification of parcel 4. (a) is the ASTER image, with bands 7, 3 and 1 as R, G and B composite. 

(b) displays the TM image, with bands 7, 4 and 1 as R, G and B composite. (c) shows the DEM image. (d) (e) 

and (f) are individually the contrast, homogeneity and dissimilarity images, based on TM band 5. (g) is shows 

the final classified image.  

 

Parcel 5 

 

 
 

(g)

(a) 



Image Interpretation and Lithological Classification 

 96

 
 

    
 

 
Figure 5.26: Classification of parcel 5. (a) shows the TM image, with bands 7, 4 and 1 as R, G and B composite. 

(b) is the DEM image and (c) is the final classified image. 
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Part 6 
 

 

 
 
Figure 5.27:Classification of parcel 6. (a) shows the TM image, with bands 7, 4 and 1 as R, G and B composite 

while (b) shows the final classified image. 
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Part 7 
 

 
 

 
 
 
Figure 5.28 Classification of parcel 7. (a) presents the TM image, with bands 7, 4 and 1 as R, G and B 

composite. (b) is the DEM image. The elevation data were only available in upper part area of parcel 7. (c) 

demonstrates the final classified image. 
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6. Lineament Detection 
6.1 Introduction 

O’Leary (1976) defined the term “lineament” as: “a mappable, simple or composite linear 

feature of a surface, whose parts are aligned in a rectilinear or slightly curvilinear 

relationship and which differs distinctly from the patterns of adjacent features and 

presumably reflects a subsurface phenomenon”. Accordingly, as used in the present work, 

lineaments are faults, fractures, bedding, joints, dykes, foliations, quartz veins or other 

linear structures of geological significance. They are the surficial reflection of subsurface 

structural features. The term “linear features” refers to all the linear structures, including 

the lineaments of geological origin and anthropogenetic structures, such as roads or 

railways or fences. Recognition of lineaments is an important part of geological mapping 

and has been used successfully in the studies of the structural or tectonic history of an area, 

in water resources investigations (Murr et al., 2001) and mineral deposits exploration 

(Won-In and Charusiri, 2003).  

 

The image-interpretation of lineaments is often more reliable than their detection in the 

field because some lineaments may have a weak expression on the ground and may not be 

visible underneath a thin scree cover or vegetation cover, or may build a distinct 

geomorphological feature recognisable only from a distant overview point. Moreover, the 

changes in vegetation and surface texture related to lineaments are difficult to recognise at 

a close range. The synoptic view of satellite images enables widely separated pieces of 

evidences to be linked as sharp or semi-continuous linear features or lineaments. However, 

Mostafa and Zakir (1996) argued that only 15-25% of lineaments observed on an image 

may reflect the subsurface geology. Therefore, before mapping structurally significant 

lineaments, it is necessary to critically analyse the image, in order to identify the linear 

features not caused by the geology. Such features are classified as artificial (e.g. roads, 

railways, power-cables, field-boundaries), or geomorphological (stream valleys, hill spurs, 

vegetation and soil borders). Nevertheless, stream valleys, rivers, hill spurs and soil 

borders or vegetation lines usually have a very clear lithological or structural (tectonic) 

explanation. 
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Lineament identification via satellite image can be achieved using three techniques. First 

of all, the image can be enhanced and a lineament vector map can be produced using 

digitization. Stephen and Mynar (1986) compared five different enhancement techniques 

(mean value of all bands, principal component analysis, band ratioing, histogram 

equalization and high pass filtering) and found that principal component analysis can 

identify most numbers of lineaments. Nama (2004) analyzed the roles of different principal 

components for lineament detection. Kavak and Cetin (2007) used band ratio technique to 

facilitate the lineament identification. Additionally, linear features can be further enhanced 

using directional edge-detection filters prior to visual analysis, manual vector extraction 

and mapping (Süzen and Toprak, 1998). Morelli and Piana (2006), used different filter 

techniques on SPOT and SAR images, to perform lineament detection. Furthermore, 

lineament maps can be produced automatically using some complex algorithms, such as 

the Hough Transform (HT) (Wang and Howarth, 1990) and segment-tracing algorithm 

(STA) (Koike et al., 1995; Masoud and Koike, 2006). Although these automated 

approaches require less human intervention, manifold pitfalls exist. Firstly, the processing 

is sensitive to the conditions used to parameterize the programme (Karnieli et al., 1996; 

Leech et al., 2003). Secondly, the automated processing does not takes into account the 

origin of the linear structures and thus, the output map may be biased and may contain 

some linear features originating from sources other than geological structures. When the 

area is very large and artificial features, like long and straight railways and power-cables 

are rare, an automatic approach may make more sense. 

 

Another problem exists when detecting lineaments from satellite images. Shadow areas 

cannot be avoided when the solar illumination was shaded by some steep relief. Important 

lineaments may be located in these shaded areas. In this study, other ancillary data sets, 

such as a digital elevation model (DEM), slope image, shaded relief image and drainage 

map, were used to overcome the illumination problem in the satellite image and to assist 

the lineament identification. Evants (1998) defined several parameters extracted from 

digital elevation data to characterize land surface forms. Slope is defined as a plane tangent 

to the surface at a certain elevation point, while curvature is defined as the rate of change 

of this plane. Gradient is the maximum rate of change of altitude. Using these parameters, 

faults and morphological linear features can be mathematically expressed and quantified 
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(Jordan et al., 2005). For example, fault scarps showing abrupt changes in slope gradient 

can be expressed as lineament in slope maps. Wladis (1999) used second derivative filters 

based on DEM to detect lineaments. Besides, shaded relief map derived from DEM has 

been largely used to assist the lineament extraction (Hopper et al., 2003; Oguchi et al., 

2003; Smith and Clark, 2005; Ganas et al., 2005; Abarca, 2006). Based on a user-specified 

position of the sun, areas that would be in sunlight are highlighted and in shadow are 

shaded. Another kind of auxiliary data, drainage maps, also contain important clues for 

geological structures. To some extent, the direction, density and pattern of the drainage are 

influenced and controlled by fractures and structures or lithology. For example, dendritic 

drainage pattern are characteristic of terrain showing structural homogeneity; a parallel 

pattern sometimes indicates the presence of a major fault that cuts across an area of steeply 

folded bedrock; and the rectangular drainage pattern is often found in regions of uniform 

lithology (e.g. sandstone plateaus or granites) that have undergone faulting or extension 

(Drury, 1993). 

 

The current study demonstrates that the combination of satellite data (Landsat TM and 

ASTER data) with topographic data (DEM, derived slope image and shaded relief image, 

and drainage map) is a powerful tool in identifying geologically induced lineaments. By 

visual interpretation, lineaments were digitized based on the combined data sets. The 

obtained lineament map (1:100000) contains more lineaments compared to that identified 

from the published geological map (1:250000) (Council for Geoscience, 1995). This 

suggests that the published geological map may be incomplete and exclude some 

meaningful detailed structural features, which can be recognized by the here proposed 

method. The achieved detailed lineament map (1:100000) was an indispensable part in the 

final geological map. 

 

6.2 Satellite data processing for lineament detection 

6.2.1 Principal component analysis (PCA)  

Using Principal Components Analysis (PCA), the variance of the original data can be 

compressed into a lower-dimensional space. Normally the third output component 

highlights linear features, such as fractures and drainages, as shown in figure 6.1. In the 
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PC3 image based on TM data (figure 6.1), drainage was shown in dark colour (I), beside, 

carbonate rocks show NW-SE linear features (II).  

 
 

Figure 6.1: PC3 image based on the 6 input TM multispectral bands (1-5 and 7). Drainages (I) and the 

directional linear features of carbonate rocks (II) were enhanced distinctly. 

 

6.2.2 Spatial frequency filtering 

In contrast to spectral frequency, spatial frequency means the “roughness” of the tonal 

variations in the image. The grey levels in image areas of high spatial frequency change 

abruptly over a relatively small number of pixels (e.g. across roads, sharp boundaries 

between different lithologies). In image areas with low spatial frequency, grey levels vary 

only gradually over a relatively larger number of pixels (e.g. large agriculture field) (Lilles 

and Kiefer, 1994). 

 

In the satellite image, the boundary, which is an abrupt change from an area of uniform DN 

of one value to a uniform area with another DN, is called edge. The edges may be shadow 

effects giving the information on topographic features, some of which represent rock types 

with different resistances to erosion, or may be zones of tectonic overprint, such as faults 

and joints. Some edges may represent boundaries between rocks with different reflective 

properties, soil derived from different rock types, or vegetation boundaries that have an 

underlying geological control (Drury, 1993). In a digital image, edges and linear features 

I

II

0 4 82 Kilometers
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where grey values change abruptly within a small number of pixels corresponding to the 

high spatial frequency features. On the other hand, edges, which occupy a small area and 

thus high frequency features, represent small-scale geological features, and medium and 

low frequency spatial features, often exhibit the gross geological features of an area (Drury, 

1993). For example, many folds repeat stratigraphic sequences on the scale of kilometres, 

defining medium frequency spatial features. Phenomena such as batholiths, major fault 

blocks, sedimentary basins and orogenic belts control low-frequency features with 

dimensions in tens or hundreds of kilometres (Drury, 1993). 

 

Spatial frequency filtering is a local operation where pixel values in an original image are 

modified on the basis of the grey levels of neighbour pixels. Those, which emphasise high 

frequencies and suppress low frequencies are called high-pass filters. Similarly, there are 

medium and low-pass filters. In spatial domain, the filters can be implemented using 

convolution. An output image is obtained by the convolution matrix being moved over 

every pixel in the image (Drury, 1993; Lillesand and Kiefer, 1994). 

 

High pass filters were performed on the two PCs (PC3 based on TM data and PC 3 based 

on ASTER data) using a 5*5 size convolution matrix to emphasize the detailed high 

frequency features of an image. Low pass filters (3*3) was followed to highlight gross 

geological features. The filtered PC3 images of the test area are shown in figure 6.2. It is 

obviously that the linear features were highlighted more distinctly in filtered TM-PC3 

(figure 6.2 a) than in ASTER-PC3 (figure 6.2 b). That may be because of the relatively 

higher spatial resolution of the ASTER data. The data with high spatial resolution include 

more information but also contain high variance of the pixel values (Shaban and Dikshit, 

2001). Thus the detected results are complicated but some linear feature (like I inTM-PC3 

image) can not be displayed clearly in filtered ASTER-PC3 image. 
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Figure 6.2 Filtered PC3 images based on TM data (TM-PC3) (a) and ASTER data (ASTER-PC3) (b) in test 

area. High-pass filter (5*5) was performed based on the two PC3, and then followed by a low-pass filter 

(3*3). TM-PC3 show more distinct linear features than ASTER-PC3. 

 

6.3 Topographic data processing 

Topographic data (Chief Director of Surveys and Mapping, 1988) of the study area was 

acquired at a scale of 1:50000. Based on the topographic data, digital elevation model 

(DEM), slope image, shaded relief image and drainage map can de detracted as 

supplementary data sets to assist the lineament detection.  

 

Elevation data can be extracted from the contour lines and then used to build DEM (figure 

6.3 a). The slope image can be produced from DEM, expressing the change in elevation 

over a certain distance (see chapter 5.4). Normally, the high values in slope image 

correspond to abrupt changes, which can represent the probable lineaments (figure 6.3 b). 
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Figure 6.3: Digital elevation model (DEM) (a) and slope image (b) of the study area. The slope image was 

built based on the DEM. The high values in slope image correspond to abrupt changes in morphology, which 

can represent lineaments. 

 

Yet another product extracted from the DEM was a shaded relief image, providing an 

illustration of variations in illumination (figure 6.4). Based on user-specified position of 

the sun, areas that would be in sunlight are highlighted and in shadow are shaded. In this 

processing, two parameters need to be noticed. Solar elevation is the sun angle in degrees 

above the horizon. Solar azimuth is the position of the sun in degrees measured clockwise 

from the north. Interpretation of the geological map (1:250000) shows that some 

lineaments in the study area occur in various directions, differing from the main lineament 

trend (NW-SE). Therefore, four solar azimuths: 45°, 135°, 225° and 315° representing the 

four main directions (sunlight illuminates from NE, SE, SW and NW respectively) were 

used to highlight the lineaments in all possible directions. Figure 6.4 (b) shows the shaded 

relief image when the solar elevation is 45° and solar azimuth is 225° (sunlight shines from 

SW). The shadow areas in the southwest of the mountain in TM image (figure 6.4 a) were 

in sunlight and highlighted in shaded relief image (figure 6.4 b). The boundaries of 

different lithologies, which result from the elevation differences, can be observed clearly, 

and it is helpful in lineament detection.  

(b) 
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Figure 6.4: Original TM image (bands 7, 4 and 1 as R, G and B composite) (a), and shaded relief image of 

test area. The shaded relief image was obtained when solar elevation is 45° and solar azimuth is 135°. The 

shadow areas in satellite image were in sunlight and highlighted in shaded relief image. 

 

6.4 Lineament detection 

6.4.1 Lineament detection from satellite image 

To obtain images enhancing the lineaments, following procedures were designed based on 

above discussion on principal component analysis (PCA) and spatial frequency filtering. 

Lineaments were highlighted in red colour in resulting images (figure 6.5). 

 

Step 1. PCA was performed on the original multispectral TM (6 bands) and ASTER data (9 

bands), with the output of 6 and 9 components respectively. The third component (PC3) 

emphasizes linear features, for both TM and ASTER data. 

 

Step 2. High-pass filtering (5*5) was conducted on the two PC’s (TM-PC3 and 

ASTER-PC3), to highlight small scale linear features, and then followed by low-pass 

filtering (3*3), to emphasize gross linear features. 

 

Step 3. The multispectral band with the highest standard deviation was selected after 

statistical analysis (band 5 for TM data and band 4 for ASTER data). 

 

(b) 

The areas 
were in 
sunlight 

(a)

Shadow areas 
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Step 4. The filtered TM-PC3, TM-PC1, and TM band 5 were composed (in R, G, B) 

together to form a new data set, and the resulting image is shown in figure 6.5 a. Filtered 

ASTER-PC3, ASTER-PC1 and ASTER band 4 were composed in R, G, and B to form 

another data set, and the image is shown in figure 6.5 b. 

 

 
 
Figure 6.5: Linear feature enhanced images based on above steps. Image (a) is the image of the data set 

composed by filtered TM-PC3, TM-PC1 and TM band 5 (in R, G, B). (b) is the image of the data set 

composed by filtered ASTER-PC3, ASTER-PC1 and ASTER band 4 (in R, G, B). Linear features were 

distinctly enhanced by red colour. 

 

6.4.2 Lineament detection from ancillary data sets 

Based on the discussion in chapter 6.3, lineaments can be traced in ancillary data sets 

(slope image, shaded relief image and drainage map). In slope images, lineaments can be 

presented as the boundary lines between the low and high slope values, showing the abrupt 

change in elevation. In shaded relief images, lineaments can be drawn along the boundaries 

resulting from the elevation differences. In drainage maps, lineaments probably exist 

where rivers change the flow direction abruptly or when the flow direction is an extremely 

straight line (Drury, 1993). According to above criterions, lineaments can be manually 

digitized by visual interpretation. 

 

Satellite images are often the main source to detect lineaments, and the detection results 

from ancillary data that can be an effective complement in geological interpretation of the 

(a) (b) 
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given area. Detected lineaments in the study area, based on satellite images and ancillary 

data sets, are shown in figure 6.6 (yellow lines). 

 

Another set of lineaments derived from the general geological map (1:250000) (Council 

for Geoscience 1995) were shown in red lines in figure 6.6. Lineaments (faults and other 

direct geological linear features) detected during the field mapping campaigns and 

summarised in the 1: 25000 geological map (Glas, 2008) have mostly a different scale and 

are often too small to be detected on a satellite image scale. Only the larger of these 

lineaments are included in this work. For convenience, the satellite images together with 

different ancillary data sets are called multi data source (MDS). 

 

Comparison and analysis is performed based on these two lineament sets (MDS-derived 

and geological map-derived). 
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Figure 6.6: Lineament map of the study area. Yellow lines are lineaments detected from the satellite images 

and ancillary data sets (MDS), and red lines are digitized lineaments from the general geological map 

(1:250000) (Council for Geoscience, 1995). The lineaments are superimposed on the TM image (bands 7, 4 

and 1 as R, G and B composite). 
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6.5 Statistical analysis 

Lineaments are normally statistically analysed using frequency or length against azimuth 

or rose diagram. The anticlockwise azimuth, away from the horizontal axis (0°) represents 

the strike direction of the lineament, and the radius from the origin stands for the frequency, 

as shown in figure 6.7. For comparison, the lineaments detected from the MDS and the 

lineaments digitized from the geological map are presented separately. In Figure 6.8, the 

direction is represented by X-axis in 1° interval and Y-axis shows the total lineaments 

length within the corresponding direction intervals. A very good agreement in the main 

strike direction but also in the frequency of lineaments detected from both sources is 

evident from these diagrams. 

 

 
 

 
 
Figure 6.7: Rose diagrams of the two lineament sets. Diagram (a) is based on the results detected from MDS. 

(b) is detracted from the 1:250000 digital geological map (Council for Geosciences, 1995). The hemisphere 

is divided by 10°-interval, but is marked by 30°-interval for convenience. Every lineament cluster is 

presented by one blue bar, whose azimuth shows the direction of this cluster and radius stands for the 

number of lineaments in this direction. 

 

(a)

(b)



Lineament Detection 

 112

 

 
 

 
 

Figure 6.8: Plot of the length against the azimuth. Plot (a) is based on the detection from MDS, and plot (b) 

is detracted from 1:250000 digital geological map (Council for Geoscience, 1995). The horizontal axis show 

the azimuth with the interval of 1° (but marked by 10° interval for clarity), and vertical values present the 

length within the corresponding azimuth intervals. For example, the dark bar with the length of 2.800 km at 

degree 1 in plot (b) means that between the azimuth 0° and 1°, the total length of the lineament is 2.8 km. 

 

(a) 

(b) 



Lineament Detection 

113 

Two sets of lineaments, with the total number of 544 and 361, were detected respectively 

from multi-data source (MDS) and the geological map (Council for Geoscience, 1995). 

Comparison between them yields many important observations. In figure 6.7 the highest 

frequency between 120° and 130° shows the most important lineament direction of the two 

lineament sets. The second cluster in MDS-derived lineaments lies between 130° and 140° 

(ca. NW-SE strike), but for map-derived lineaments it is between 110° and 120°. The third 

cluster in MDS detection is between 90°-100° and 110°-120°, but for the geological map, it 

lies in three ranges: 50°-60°, 90°-110°, and 130°-140°. In the length-azimuth plot of 

MDS-derived lineaments (figure 6.8 a), there are two main clusters: one at between 85° 

and 100° and one at between 110° and 140°, with the longest lineament (22km) in the 

direction 137°. In map-derived lineaments (figure 6.8 b), there was only one main cluster 

at between 110° and 140°, with the longest lineament (51km) in the direction 133°. 

 

The above analysis elucidates the advantage of lineament detection based on multi data 

source (MDS). Between the direction 30°-40°, 90°-100° and 130°-140°, more lineaments 

were detected from MDS than from geological map, demonstrating that the geological map 

can easily be improved and complemented with further details, as these unnoticed 

lineaments may represent important subsurface geological structures. Nevertheless, only 

field control can fully explain the origin and structural geological significance of these 

lineaments (Altermann and Hälbich, 1991).  

 

6.6 Structural history of the study area 

The rocks along the southwestern margin of the Kaapvaal Craton were deformed up to 7 

episodes during the Early to Middle Proterozoic (Altermann and Hälbich, 1991). The 

oldest deformation is probably synsedimentary with the BIF deposition and affects only 

these sediments (D0). A severe structural deformation of the Ghaap Group including large 

recumbent, E verging folds and eastward directed stacking of thrusted wedges of the 

CampbelleRand, Asbestos Hills and Koegas Subgroups is recorded in the D1 and D2 

deformation events (>2.24 Ga) on the craton. D1 and D2 are represented by mainly N-S 

but also NE-SW and NW-SE-trending imbricates and recumbent fold zones, ranging in 

size from small scale folds to fold amplitudes of few 100 metres and large tectonic 

decollements in Asbestos BIF and in the Koegas Subgroup. The oldest Postmasburg Group 
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deformation assigned as D3 comprises south-verging folds and thrusts and is probably less 

than 2.07-1.88 Ga. It is not directly recognisable in the here discussed area of 

investigations, but is prominent further to the north and west. The subsequent D4 

compression produced upright to east vergent, N-S-trending folds, deforming all previous 

structures. D4 post-dates the Westerberg dyke and probably reactivates N-S folds of D1 

and D2. Not present or not detected in the area of investigations is the D5 deformation, that 

produced the main NW-trending Namaqua structures. It is only very feebly developed in 

the Kheis terrain and absent from the cratonic areas. In the present area of investigation 

however, E-W to ENE-WSW D6 folds produce culminations and depressions in all 

NW-trending older structures and evidence N-S directed compressional event, most 

probably related to the ca. 1.1 Ga Namaqua Orogeny. During D7, the NW-SE-trending 

Doringberg Lineament, an oblique, left-lateral wrench fault, with over 100 km of lateral 

and several hundreds of metres of vertical displacement and smaller NNW-trending faults 

such as the Westerberg Fault developed. These and similar, but complementary 

right-lateral faults are the latest Namaquan movements along the south-western rim of the 

Kaapvaal craton and occurred around 1.0 Ga. This event has strongly influenced the 

present southwestern rim of the Kaapvaal craton and most of the lineaments visible in this 

analysis belong to this event. 

 

Major faults in the study area, like the NW-SE stricking Doringberg and the NNW-SSE 

stricking Westerberg faults and their complementary faults and related lineaments (see the 

map in appendix II) belong to this latest Namaquan deformation episode, while the E-W 

trending wide and gentle synclines and anticlines belong to D6 deformation event. The 

wide gentle N-S striking anticlines and synclines with Ongeluk volcanics in the syncline 

core, north of the Orange River (see the map in appendix II) were formed during the D4 

E-W compression, belonging to the Kheis-Koranna event 2.07-1.88 Ga. The tight, 

E-vergent to recumbent D1-D2 folds and low angle thrusts, that affect mainly the Asbestos 

Hills Subgroup, are difficult to recognize in the satellite data and must be mapped in the 

field (Altermann and Hälbich, 1991). In the less competent CampbellRand Subgroup 

carbonates however, they produced more open fold structures and less prominent thrusts, at 

a high angle to the bedding (figure 6.9). 



Lineament Detection 

115 

 
 

Figure 6.9: Example of D1-D2 deformation structures in the Campbell Rand Subgroup carbonates. The 

picture displays a synclinal, upright fold structure, overridden by a small but distinct displacement plane 

(high angle thrust). Movement of the upper part (above the white line) to the top (right or E) is indicated by 

the deformation of the hanging beds into a drag fold and by small scale deformation of the foot wall directly 

below the displacement plane.  

 

6.7 Discussion and conclusion 

Landsat TM and ASTER data combined with slope image, shaded relief images and a 

drainage map (MDS) were pooled herein to detect tectonic lineaments in the study area. 

Remote sensing data were used as a time and cost-efficient tool in synoptic geological 

structural study. The satellite images were enhanced, applying the principal component 

analysis (PCA) and filtering, to highlight the linear features. The digital elevation model 

(DEM) was constructed from the contour lines of the topographic map (1:50 000) and 

utilized to produce slope images and shaded relief images. Combining these data sets and 

lineaments recognized visually from the satellite data, values for lineament strike 

directions and lengths were digitized and plotted subsequently, using the software Matlab© 

and Excel©. The statistic results of these two sets of lineaments are displayed in the rose 

diagram and length-azimuth plot, showing good agreement of both data sets. 

 

As one of the most commonly used methods for automatic lineament detection, the Hough 

Transform (HT) was also performed on the enhanced satellite image and slope image, but 

the result were not satisfying. Beside of the influence of parameter arrangement, the noise 



Lineament Detection 

 116

and artificial linear features (such as roads and railway lines) in the image makes the result 

complicated to evaluate. More work is needed to correct the detected lineaments and 

subjective judgement is necessary to decide on the origin and source of detected lineament, 

i.e. whether or not it is due to geological reasons. In this procedure, subjective opinions of 

the analyst are unavoidable. Therefore, in this research, visual interpretation rather than 

automatic detection was used to detect the lineaments. 

 

Even though the satellite images open the possibility to detect the lineaments synoptically, 

the published geological map (with the scale of 1: 250000, Council for Geoscience, 1995) 

and the detailed geological map (with the scale of 1:25000, Glas, 2008) also contain 

information that could not be detected in the satellite data. Some lineaments with the strike 

direction between 50° and 60° shown in the geological maps could not be detected in the 

MDS (see figure 6.7). This may be due to their invisibility in the images or due to their 

obliteration by the image processing procedure. Application of different algorithms and 

filters might enhance such lineaments. On the other hand, they may be only detectable 

through filed work. 

 

The final detailed lineament map in the present work (1:100000) was achieved by 

incorporating the two lineaments sets (MDS-derived and geological map-derived). As an 

indispensable part in a geological map, lineament mapping is especially significant in 

reconstructing the structural tectonic history of the area and assisting mineral deposits 

exploration. 
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7 Conclusions and Discussion 
The study area is located in Northern Cape Province of South Africa, and geologically in 

the south western Prieska sub-basin, Griqualand West Basin, Kaapvaal Craton. In this 

study, a new lithological classification method (RBS) based on satellite data and other 

ancillary data sets were developed in the test area, where detailed field work has been 

carried out. The detailed geological map resulting from this fieldwork and compiled by 

Glas (2008), was used as reference to supervise the proposed RBS classification algorithm. 

Subsequently, the RBS classification was performed over the entire study area. Based on 

the results, a geological map with the scale 1: 100000 was finally obtained. The proposed 

method was proved to be very effective in investigating the geological situation in this arid 

area. Using the proposed method, existent geological maps can also be easily updated if 

remotely sensed data are available.  

 

The rule-based system (RBS) is actually a post classification system, and the final RBS 

classification accuracy depends on the previous classification accuracy (like the MLC in 

this study) and the rules input into RBS. Generally, the higher the previous classification 

accuracy and more input rules will result in higher RBS classification accuracy. In order to 

achieve high previous classification accuracy, textural features calculated from single TM 

band were incorporated into maximum likelihood classification (MLC), to assist the 

differentiation of rocks with similar spectral character (such as carbonate, tillite and BIF). 

Subsequently, some rules were detracted from elevation data and digital geological map 

(Council for Geosciences, 1995). These rules were applied to RBS, which resulted in 

further improvement of the classification accuracy. The final RBS classification accuracy 

is thus significantly higher than the accuracy of MLC solely based on the spectral 

characteristics of satellite data (without textural features, rules and ancillary data sets) 

(chapter 5.5.4). 

 

The entire classification procedure was implemented in three steps. The first step is the 

image processing (chapter 4). After geometric and atmospheric correction, TM data and 

ASTER data were enhanced by principal component analysis (PCA) and band ratioing. 

The second step is the maximum likelihood supervised classification (MLC). Several 

textural features were calculated from original TM bands and principal components (PCs). 
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These textural features were stacked as extra layers with original multispectral bands and 

PCs (based on TM and ASTER data individually) to form several new data sets. 

Meanwhile, ratio bands were also stacked as extra layers with original multispectral bands 

and PCs (based on TM data and ASTER data individually) to form other new data sets. 

Then MLC was performed on these new data sets to produce several classified images. 

Compared to the classification results solely based on multispectral TM data and ASTER 

data, the accuracy was improved considerably (see table 5.3), but misclassification also 

exist, like between BIF and its surrounding detritus, which shows similar spectral 

characteristics. Subsequently, ancillary data sets were used in the third step, to improve the 

classification results further. As discussed in chapter 5.5.2, two MLC classified images 

were selected out and put into the rule- based system (RBS). In RBS they were analyzed 

and compared based on the previous MLC results and elevation data, to mark the 

consistent pixels and inconsistent pixels. Then the class values of consistent pixels were 

kept unchanged and the inconsistent pixels were reclassified using the criterions extracted 

from digital geological map (Council for Geoscience, 1995). 

 

The study area was subdivided into 9 parcels. The proposed classification method was 

performed individually for the parcels 1-7. A geological map of each parcel was obtained 

by converting the classified thematic raster data to vector data. Rectification was necessary 

according to image interpretation and field work. The detailed geological maps (Kiefer, 

1995; Frank, 1995; Glas, 2008) were scaled and pulled into the final geological map. 

 

Lineaments were detected based on the combination of enhanced satellite images, digital 

elevation model, slope image and drainage maps. Based on the results of lithologic 

classification and lineament detection, the final geological map with the scale of 1:100000 

was edited in GIS software. In the herein proposed method, textural features played a 

significant role in assisting lihtological classification. The rule-based system (RBS) also 

shows its high ability in integrating data sets of different sources. 

 

As an important rock type in the study area, carbonates were often misclassified because 

they appear in similar spectral characteristics to calcrete, tillite and sometimes to Banded 

Iron Formation (BIF). The textural features of carbonates, which were distinct in visual 
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interpretation, can not be represented in selected spectral signatures (see chapter 5.9) in 

MLC. For this reason, the areas with extensive carbonate outcrops usually correspond to 

relatively lower classification accuracy. 

 

As discussed above, higher previous classification accuracy can result in higher RBS 

classification accuracy. High previous classification can be obtained using some advanced 

classification algorithms, such as SFF or SAM if hyperspectral data are available. More 

effective rules can also be detracted if geophysical or geochemical data are accessible. 

 

Additionally, in future research, it is necessary to investigate the relationship between the 

classification accuracy and the band numbers of different data sets being about to be 

classified, to get the decision of the optimal band numbers. 

 

The method put forward here, is expected to contribute to the generation of a detailed 

lithological map in arid and semi-arid areas, especially under the conditions of limited field 

work possibility. Implementing recent satellite image, geological maps can be updated 

easily. For future research, advanced algorithms need to be developed to improve the 

classification accuracy, especially in the areas widely covered by carbonates rocks. 

 
The information gained by the sensors only reflects the surface condition of the objects, 

and may often conceal the reality. Thus, even though remote sensing is superior in 

obtaining a fast overview of a large area, detailed fieldwork is indispensable to check the 

ground truth after classification and mapping, especially in areas where the geological 

situation is complicated. 
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APPENDIX I 
 
% compute the textural feature 'contrast' when d=1 

I=imread('image.tif'); % read the image 

A=nlfilter(I,[3 3],@myfun); % process the image by moving window with 3*3 pixels 

function scalar = myfun(x) % define the function 

glcm=graycomatrix(x(:),'offset',[0 1;-1 1;-1 0;-1 -1]); % compute the matrix 

statis=graycoprops(glcm,'contrast'); 

scalar=mean(statis.Contrast); % compute the textural feature 'contrast' 

% compute the textural feature 'homogeneity' when d=1 

I=imread('image.tif'); 

A=nlfilter(I,[3 3],@myfun); 

function scalar = myfun(x) 

glcm=graycomatrix(x(:),'offset',[0 1;-1 1;-1 0;-1 -1]); 

statis=graycoprops(glcm,'homogeneity'); 

scalar=mean(statis.Homogeneity); 

% compute the textural feature 'energy' when d=1 

I=imread('image.tif'); 

A=nlfilter(I,[3 3],@myfun); 

function scalar = myfun(x) 

glcm=graycomatrix(x(:),'offset',[0 1;-1 1;-1 0;-1 -1]); 

statis=graycoprops(glcm,'energy'); 

scalar=mean(statis.Energy); 

% compute the textural feature 'correlation' when d=1 

I=imread('image.tif'); 

A=nlfilter(I,[3 3],@myfun); 

function scalar = myfun(x) 

glcm=graycomatrix(x(:),'offset',[0 1;-1 1;-1 0;-1 -1]); 

statis=graycoprops(glcm,'correlation'); 

scalar=mean(statis.Correlation); 

% compute the textural feature 'st-de' when d=1 

I=imread('image.tif'); 

A=nlfilter(I,[3 3],@myfun); 

function scalar = myfun(x) 

offset1=[0 1;-1 1;-1 0;-1 -1] 

glcm=graycomatrix(x(:),'offset',offset1); 
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scalar=std2(glcm); 

% compute the textural feature 'variogram' when h=3 

I=imread('image.tif'); 

A=nlfilter(I,[3 3],@myfun); 

function scalar=myfun(x) 

a1=0,a2=0,a3=0,a4=0 

for i=1:3 

    for j=1:2 

        a1=a1+(x(i,j)-x(i,j+1))^2; 

    end 

end 

scalar0=a1/12; % horizontal 

for i=1:2 

    for j=1:3 

        a2=a2+(x(i,j)-x(i+1,j))^2; 

    end 

end 

scalar90=a2/12; % vertical 

for i=1:2 

    for j=1:2 

        a3=a3+(x(i,j+1)-x(i+1,j))^2; 

    end 

end 

scalar45=a3/12; % 45° direction 

for i=1:2 

    for j=1:2 

        a4=a4+(x(i,j)-x(i+1,j+1))^2; 

    end 

end 

scalar145=a4/12; % 145° direction 

scalar=(scalar0+scalar90+scalar45+scalar145)/4; % mean value of four directions 
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APPENDIX II 
Geological map of the study area (1:100000) was attached to the back cover. 

 

 



Publications: 
 
1) Li, N., Frei, M. and Altermann, W., 2009. Improvement on lithologic classification of 

remote sensing data using knowledge-Based classifier in Southwestern Prieska sub-basin, 

Transvaal Supergroup, South Africa. Publikationen der Deutschen Gesellschaft für 

Photogrammetrie, Fernerkundung und Geoinformation e. V. Band 18, 191-200. 

2) Li, N., Frei, M. and Altermann, W., 2009. Improvement on Lithologic Classification Using 

Rule-based System. The 20th Annual Meeting of the Geological Remote Sensing Group 

(GRSG), 15-17, December, London, UK. 

3) Li, N., Frei, M. and Altermann, W., 2010. Textural and Knowledge-based Lithological 

Classification of Remote Sensing Data in Southwestern Prieska Sub-basin, Transvaal 

Supergroup, South Africa. (Reviewed by Journal of African Earth Sciences). 

5) LI N., Yang F. J., and Lv J. S., 2007. Spectral Characteristics in the estimation of the 

ecological restoration in mine tailings. Remote Sensing for Land and Resources 2: 75-77. 

(In Chinese). 

6) LI N., Yang F. J., and Zhang C. L., 2006. 3D reconstruction based on single image. Journal 

of Shandong University of Science and Technology (Natural Science), 103(25): 154-156. 

(In Chinese). 

7) LI N. and Lv J. S., 2010. Spectral characters and hyperspectral remote sensing in 

monitoring the vegetation heavy metal pollution. (accepted by the journal Spectroscopy 

and Spectral Analysis, in Chinese) 

8) Lv J. S., Xu D. X., and LI N., 2007. Realization of vehicle routing system based on GIS. 

Journal of Geomatics, 2007, 1: 10-11. (In Chinese). 

 

 

 

 

 

 

 

 

 

 

 

 



Curriculum Vitae 
 
 
Name: Na Li 
Birthday: 20. 09. 1981 
Nationality: Chinese 
 
 
Education: 
 
09.1988-07.1993 Central Elementary School of Caowang, Boxing, Binzhou, Shandong, 

China 

09.1993-07.2000 Shandong Beizhen Middle School, Binzhou, Shandong, China 

09.2000-07.2004 Shandong University of Science and Technology, Tai’an, Shandong, 

China 

09.2004-07.2007 Shandong University of Science and Technology, Qingdao, Shandong, 

China 

09.2007-08.2010 PhD student in Ludwig-Maximilians University of Munich, Munich, 

Germany 

 
 
Degree: 
 
06,2004 Bachelor degree in Survey Engineering, Shandong University of Science 

and Technology 

06,2007 Master degree in Sciences of Photogrammetry and Remote Sensing, 

Shandong University of Science and Technology 

 
 

 

 

 

 
 



F

F

F
F

F

F

M

$

$

$

$

$

$o

o

o

o

o

o

o

o

o

o

o

o
o

o
oo

o

o
o

o
o

o

o

o

o
o

o

o o

o

o
o

o

o
o

o
oo

o

o

o

o
oo

o

oo
o

o

o
o
o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

f
AK

Cu

AK

AK

Pb

Ls

Cu

Cu
AK

AK

AK

AK

AK AK

AK

AK

GTg

GTg

GTg

AK

AK

M

GTg

GTg

AK

AK

Ls

AK

AK

AK

AK

AK

GTg

Gy

AK

AK

AK

AK

U

DA

AK

Fe

Prieska

Westerberg

C-Pd1

Qg

Q-sc

Qg

Vk

Vo

Vk

C-pd1

Q-sc

Vk

Vk

Q-f

Vk

Vo

Q-f

Vk

Qs

Vk

Rz

Vgd

C-pd1

Vgd

C-pd1

Q-f

C-Pd1

Vn

Q-f

Vo

Q-sc

Orange River

Q-f

Vk

Vd

Q-f

Vk

Q-f

Q-sc

Vk

T-Qc

Vgd

C-Pd1

T-Qc

MI

Vgd

Q-f

Q-sc

Rs

Vk

Vk

Vk

Vk

Vk

Vo

Mdi

Vo

Vgd

Vd

Qg

Vk

C-Pd

Qs

T-Qc

Vk

Zmp

C-Pd1

Vgd

Vh

Qg

Vk

Q-sc

Vgd

Q-f

Vd

Q-sc

C-pd

C-pd

Jd

Vk

T-Qc

Vk

C-pd

Vk

Q-f

Vp

Vk

Vgd

Vd

Vm

Vd

Vk

Rz

Vn

Q-f

Vk

Mdi

Vo

Vn

Vgd

Vk

Rz

Vk

C-Pd1

Vgd

C-Pd

Vk

Vk

MI

Vk

Q-f

Vd

Vo

Vd

Vk

Vn

Vd

Qg

Vk

Vka

T-Qc

Q-sc

Vgd

Q-sc

Qs

Vvk

Q-sc

Q-g

Q-f

Vo

vvk

Vvk

Vka

T-Qc

Vd

Vvk

Vn

Vd

Rs

Vn

Q-sc

Vn

C-Pd

Vh

Rs

Vv

Vgd

T-Qc

Vn

Vka

Vgd

Vgd

Q-f

Q-f

Mdi

Vgd

Vk

Vn

Vd

Vn

Vk

C-pd1

Vn

Vvk

Qs

Vd

Vd

Vk

Vv

Vk

Vs

Vk

Jd

Vvk

Mdi

Vk

Vn

C-Pd1

Mdi

Vka

Vv

Vk

C-pd

Q-f

Vd

Vd

Rz

Vgd

Vk

Vk

Q-sc

Vn

Q-f

Vs

Vk

C-pd

Vk

Mdi

Vk

Vs

Vk

Vk

Q-sc

Q-f

Vd

Vd

Vvk

Vvk

Vk

Vk

Vv

T-Qc
Q-f

Vd

Vk

Q-sc

Vgd

Vh

Rs

Q-f

T-Qc

Vgd

Qs

Vgd

Vd

T-Qc

C-pd1

Vn

T-Qc

Qg

Vv

Vk

Vs

Jd

Vn

Vk

Vs

Vk

Vk

Mdi

C-pd

Vd

Vn

Q-sc

Vs

Zmp

Vka

Vka

Vk

Vn

Qs

Vk

Vm

Vvk

Vk

Vk

Rz

Mdi

Vv

Vn

Vp

Vp

T-Qc

Jd

Vo

T-Qc

Vka

Vn

Vn

Vn

Vh

Vp

Rz

Vd

Rs

Zmp

Vo

Vd

Vh

Vk

C-Pd

C-Pd

Vs

Vgd

Vvk

Qs

Vgd

Vk

Vgd

Mdi

C-Pd

Qs

Vs

Q-f

Vvk

Rz

C-Pd

Vk

Mdi

Vh

Rz

Vd

Vgd

Vka

Vo

Vh

Vka

Q-f

C-Pd1

Mdi

Vgd

Rz

Vv

Vk

C-pd1

Q-sc

Vv

Vd

C-Pd

Q-sc

Rs

Vk

Vgd

Vka

Vs

Vka

T-Qc

Vn

Qs

Vk

T-Qc

Vd

C-Pd

T-Qc

C-Pd

Vgd

Vp

C-pd

Vk

Vs

Q-sc

Vs

Vs

Vh

Vv

Rs

Vk
Rs

T-Qc

C-pd1

Vv

C-Pd1

Vs

T-Qc

Vv

Vd

Vgd

Rz

Rs

Vk

Vd

Vk

C-pd

Vp

Vk

Mdi

T-Qc

C-pd

C-Pd1

Vv

Vn

C-Pd

Vvk

Vv

Jd

C-pd

Vvk

Vn
Vk

Vvk

Rz

Qs

Rs

Vs

Vk

Vn

T-Qc

Vvk

Vv

Vk

Vv

MI

Vd

Vgd

Q-sc

Vk

Vs

Qs

T-Qc

Vka

Vk

Zmd

Vvk

Vd
Mdi

Vgd

Vka

Mdi

Vka

Mdi

Vc

Vkb

Vkb

Vkb

Vh

Vvk

Q-sc

Vk

Vk

Q-f

Vk

Vkb

Vvk

Vk

Q-sc

C-Pd

Mk

Vh

Vd

Rs

Vh

Vk

Vvk

Vh

Rs

MI

Vk

Qs

Vn
Vn

Vh

Q-f

C-Pd

Vvk

Zmp

Vv

Vk

MI

Vn

Zmp

Vvk

C-pd

Vn

Vk

Vk

Vs

Vvk

Q-sc

C-Pd

Vvk

Vka

Vk

Vgd

Vvk

Vv

Vvk

Rs

Vk

Vgd

Vd

Vka

Vn

Vka

T-Qc

C-Pd

Vs

C-pd

Vn

Vgd

Vd

Vn

Vvk

Vo

Vh

Vs

T-Qc

Vgd

Vh

Vgd

C-Pd

Vv

Vvk

Vka

Vk

Vn

Vgd

Vn

Vgd

Vvk

Vgd

Vk

Vc

Vd

Vc

Mdi

Vk

Vd

Vk

Vs

Vk

Vgd

Vd

T-Qc

Vk

Rz

Rz

C-Pd

C-pd

Vka

Mdi

Vo

Mdi

MI

Vn

Vk

Vvk

Vc

Vh

Vk

Vk

Vgd

Vh

Q-f

Mdi

Vvk

Vk

Vkb

Zmd

Vvk

Qs

Vgd

Vh

Vvk

Vs

Vh

Vh

Vk

Vc

Mdi

Vk

Vk

Mdi

Vka

Rs

Zmd

Vk

Vk

Vk
MI

Vh

Vd

Vka

Vka

Vh

Vc

Vs

C-Pd

Vgd

MI

Rs

Vvk

Vh

MI

T-Qc

T-Qc

Vk

T-Qc

Vh

Vkb

Vkb

Vn

Vka

Vo1

T-Qc

Nauga

DeDuinen

Windpomp

Geelbeksdam

Geelbeksdam

Klein Windpomp

f

f

f

f

f

f

f

f

f

f

f

f

ff

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

ff

f

f

f

f

f f

f

f

f

f

f

f

98
0

1020

90
0

1060

1300

1100

98
0

980

98
0

102
0

1020

102
0

1020

980

1020

102
0

5

5

9

13

25

60

16

12

46

65

40

50

50
15

16

11

17

16

16
52

25

25

21

72

26

35
25

25

90
70

30

40

10

30

60

50

45 40
90

35
50

60
60

28

50

3020

80

45

40

58
38

46
75

72

60

50 55

50
30

50
25

60

20

60

18

50

75

23°0'0"E

23°0'0"E

22°50'0"E

22°50'0"E

22°40'0"E

22°40'0"E

22°30'0"E

22°30'0"E

22°20'0"E

22°20'0"E

29
°1

0'0
"S

29
°1

0'0
"S

29
°2

0'0
"S

29
°2

0'0
"S

29
°3

0'0
"S

29
°3

0'0
"S

29
°4

0'0
"S

29
°4

0'0
"S

29
°5

0'0
"S

29
°5

0'0
"S

30
°0

'0"
S

Geological Map of Prieska Sub-basin

±
0 10 205 Kilometers

1:100.000

Prieska

Upington

30°0'0"E

30°0'0"E

20°0'0"E

20°0'0"E

20°0'0"S

30°0'0"S 30°0'0"S

0 370 740185 Kilometers±

South Africa

Tectonic
o Strike and dip of bed

Lineament
Fault
Inferred fault

F Anticlinal axis
M Synclinal axis

f
f

City
Prieska
Westerberg

Mineral Deposits
AK Crocidolite
Cu Copper
DA Diamond
Fe Iron
GTg Tiger's eye
Gy Gypsum
Ls Limestone
M Dimension stone
Mn Manganese
Pb Lead
U Uranium
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