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Zusammenfassung

In dieser Dissertation werden Stringkompaktifizierungen im Formalismus der Typ IIB String-
theorie mit großem Volumen (engl. “LAGE volume models”) untersucht. Diese Klasse von
Kompaktifizierungen besitzt eine in vielerlei Hinsicht phänomenologisch interessante effek-
tive Niederenergiefeldtheorie. Thema dieser Arbeit ist die Weiterentwicklung dieser Mo-
delle motiviert durch neuere Erkenntnisse im D-Branen-Instantonkalkül der Stringtheorie.

Nach einer kurzen, allgemeinen Einführung in die Stringtheorie und insbesondere in
Typ IIB Orbifolds und deren Konsistenzbedingungen in Kapitel  und  werden in Kapitel 
die Modelle mit großem Volumen ausführlich vorgestellt und die bisherigen Erkenntnisse zu
deren Phänomenologie – wie Skalenhierarchien, Eichkopplungen, Supersymmetriebrech-
ung und kosmologische Fragestellungen – besprochen.

Ein wesentlicher Bestandteil in der Konstruktion der Modelle mit großem Volumen ist das
Stabilisieren von Modulifeldern mit Hilfe von nicht-perturbativen Beiträgen zum Superpo-
tential in der effektiven Niederenergiefeldtheorie, die von D-Branen-Instantonen oder Gau-
ginokondensaten hervorgerufen werden. Mit neueren Erkenntnissen im D-Branen-Instant-
onkalkül wird in Kapitel  gezeigt, dass die Modulistabilisierung mit dem bisher angewen-
deten Mechanismus nicht mit der Existenz von chiralen Fermionen, wie sie im Standard-
modell der Elementarteilchenphysik vorkommen, verträglich ist. Es wird ein modifizierter
Mechanismus vorgeschlagen, bei dem die Modulifelder durch Hinzunahme von D-Termen
stabilisiert werden.

In Kapitel  wird durch sog.
”
Polyinstantonkorrekturen“ zur eichkinetischen Funktion

ein neues Szenario mit großem Volumen konstruiert, bei dem die Stringskala ohne Fein-
abstimmung nicht in einem wie in diesen Modellen üblichen intermediären Bereich von
etwa 1011 GeV liegt, sondern bei 1016 GeV. Somit wird diese Konstruktion auch für große
vereinheitlichte Theorien (GUT-Theorien) mit SU(5)- oder SO(10)-Eichgruppen inter-
essant. Dies wird an expliziten Modellen vorgeführt.

Zuletzt wird in Kapitel  Supersymmetriebrechung in Szenarien mit großem Volumen
behandelt. Durch den neuen Mechanismus zur Modulistabilisierung wird nahegelegt, dass
die Supersymmetriebrechung durch ein von den MSSM-Branen völlig isoliertes D-Branen-
Instanton hervorgerufen wird. Die Beiträge von unterschiedlichen Mediationsmechanismen
zu den Softtermen des MSSM werden detailliert berechnet und verglichen.
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1. Introduction

One might call the twentieth century the century of physics. Never before in the history
of science, the understanding of the fundamental laws of nature grew faster than in the last
decades, and never before such an effort was made to drive our knowledge even further.

The reductionistic approach to describe natural phenomena was tremendously successful:
in a multitude of collider experiments, only a handful of basic building blocks of matter
could be identified, organized in three families of elementary particles, and there are only
four fundamental forces governing their interactions: gravity, electromagnetism, the strong
and the weak force. Their dynamics are described by two theories which constitute the two
pillars of today’s theoretical physics: Einstein’s general theory of relativity, published in ,
which is a classical theory and the standard model of particle physics, formulated in its final
form in the seventies by Glashow, Weinberg and Salam, described within the framework
of quantum field theory. Together they provide a very detailed and accurate description of
nature, including the processes taking place a split second after the Big Bang, the structure
formation in the universe up to the complicated collision events in the detectors of high-
energy experiments.

The concept of unification of existing theories merging in a more fundamental one was
proven to be a fruitful concept to gain new insight into physical processes: Isaac New-
ton realized in his famous work “Philosophiæ Naturalis Principia Mathematica”, published
in , that the motion of celestial bodies and of objects on Earth can be described by the
same physical laws. As a consequence, a unified theory of motion and gravitation could be
derived. In , James Clerk Maxwell merged the at that time completely disconnected
theories of electric and magnetic phenomena into a new theory of electromagnetism. With
the help of its equations, Maxwell conjectured the existence of electromagnetic waves.

In the context of modern particle physics, the term “unification” is used in a more special
sense: quantum field theories (the theoretical framework, the standard model of particle
physics is formulated in) rely on so-called gauge symmetry groups. At lower energies, the
gauge group of the theory which matches experiments is the product group SU(3)c ×
U(1)e.m.. Unification means here that this group structure can be understood as being the
result of a symmetry breaking of a larger group. The weak interaction can be unified with
the electromagnetic force into the electroweak interaction. The resulting theory has the
gauge group SU(3)c×SU(2)L×U(1)Y . Symmetry breaking is believed to be triggered by a
till today hypothetical field— the Higgs field. The detection of the corresponding particle is
perhaps the most urgent task of experimental high-energy physics and hoped to be achieved


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within the next couple of years with help of the Large Hadron Collider (LHC) at CEN in
Geneva.

It is obvious to ask the question if also the two remaining fundamental interactions, i. e.
the strong force and gravity, could be unified in this way with the other two. Concern-
ing the strong interaction, this can be achieved quite easily. The resulting class of theories
go by the name of “grand unified theories” (GUTs). The most popular gauge groups are
SU(5) or SO(10) [,]. As symmetry breaking presumably would occur at energies as high
as 1016 GeV, direct experimental evidence for grand unified theories will not be available in
the near future.

For the case of gravity, the situation is more difficult. Being a classical theory, incorporating
it into the framework of the standard model would require to reformulate it as a quantum
field theory. It turns out that scattering amplitudes involving the graviton contain infinities.
As usual in quantum field theory, these can be absorbed by redefining some parameters of the
theory. However, in each higher order of the perturbation series, more and more infinities
appear requiring more and more parameters— the theory is not renormalizable and thus not
a meaningful quantum field theory.

There is a remarkably wide hierarchy in the relative strength of the four fundamental
interactions. Gravity is by far the weakest of all. Compared to the next strongest one—
the weak interaction— it has a relative strength of 10−25. On the other hand, there is also
discrepancy in their long-distance behavior: the strong and the weak interaction have only
a range comparable to the size of a nucleus. Electromagnetism is in principle infinitely long
ranged, but charged matter organizes itself such that on large scales, the charges cancel and
there is no net electric charge. Thus, the only relevant force on large, i. e. cosmological
scales, is gravity.

Given these facts, it appears that there is a well defined segregation in the scope of appli-
cation between the classical general theory of relativity and the three remaining interactions,
described by a quantum theory. The former describes the large scale dynamics of space
as a whole where the others play no rôle because they are only short ranged, whereas the
latter apply to microscopic processes only, where gravity can be neglected anyway due to its
weakness.

In view of the fact that these two theory frameworks complement one another in such a
successful way and on the other hand seem to be mathematically incompatible, one might
wonder if the dream of a single unified theory of all elementary physical processes, sometimes
exaggeratedly also called a “theory of everything”, is only a wishful thinking and nature is
just such that two coexisting theories are necessary to describe it.

However, there are a couple of hints which point to the existence of such a underlying,
more fundamental theory of quantum gravity and the other interactions. First of all, in
principle there is no upper bound in the energy to which particles can be accelerated to
in colliders (or also by natural processes taking place somewhere in the universe). At an
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energy of roughly 1019 GeV, the Planck scale, the Compton wavelength of a particle becomes
comparable to its Schwarzschild radius and classically should form a black hole. Clearly, a
theory which describes gravity in a quantum mechanical manner is necessary in this situation.
Similar high energies prevailed in the very early universe in the first few Planck times after
the Big Bang.

Moreover, there exists the common belief among the vast majority of high energy physicists
that the standard model, besides the lack of a gravitational sector, is an incomplete theory also
already well below the Planck scale. This is on the one hand due to the fact that a couple
of parameters must be “tuned” throughout a huge number of digits in order to explain
experimentally measured data. Such a fine-tuning is usually regarded as being “unnatural”
and rather considered as an artifact of the lack of an underlying theory. On the other hand,
there exist also a couple of physical phenomena which cannot be described by the standard
model in a satisfactory way at all.

1.1. Problems of the Standard Model

The most pressing problem of the standard model is related to the mass of the Higgs parti-
cle. Experiments and theoretical considerations bound its value between roughly 115GeV
and 180GeV. It turns out that this mass parameter receives loop corrections of the order
of the ultraviolet cutoff scale. Assuming that the standard model is valid up to very high
energies, this scale could be the (reduced) Planck scale mP ≈ 1018 GeV. In order to get a
physical value for the mass within the experimental bounds, the bare mass parameter must
be fine-tuned up to with no less than 30 orders of magnitude. As the need for this high
amount of fine-tuning stems ultimately from the large hierarchy between the weak scale and
the Planck scale, this puzzle goes by the name “hierarchy problem”. Clearly, an extension
of the standard model which resolves this issue in a more natural way would be preferable.

A similar situation can be found in QCD. Unlike in the electroweak sector, CP-symmetry
is unbroken to very high precision. Also here, this turns out to be an example of fine-tuning,
if no further mechanisms beyond the standard model are at work. A CP-violating term in
the QCD Lagrangian is characterized by an angular parameter θ. As such, its natural value
is expected to be in the order of one. This CP-odd term would cause an electric dipole
moment of the neutron, which is however experimentally found to be compatible with
zero. In turn, the upper bound which can be put on the angular parameter θ with help of
this data is as small as θ < 10−9. For this so-called “strong CP-problem” a solution was
proposed in the seventies by Peccei and Quinn: by the introduction of a new scalar particle,
the “axion”, the parameter θ is set to zero dynamically. Interestingly, particles showing up
these properties appear naturally in string theories. Though intensive searches, there is no
experimental evidence for axions yet.

The most distinct example for fine-tuning in physics shows up when coupling the standard
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model Lagrangian to gravity in a canonical way. It turns out that vacuum fluctuations due to
virtual particles create an effective cosmological constant term in the order ofm4

P. The actual
value was measured in  by observing the redshifts of type Ia supernovæ []. Indeed, the
universe undergoes a phase of accelerated expansion at the moment. Quantitatively this
can be described by an effective cosmological constant of approximately 10−120m4

P, a value
which is  orders of magnitude smaller than expected by the theory!

It should be noted that here, in contrast to the first two examples of fine-tuning, the
cosmological constant problem is not a fine-tuning problem of the standard model by itself
as the latter does not contain any gravity related terms. Therefore, the large numerical
discrepancy between the theoretical and the experimental value of the cosmological constant
could be interpreted as a hint for a missing theory of quantum gravity.

Still, the origin of the accelerated expansion of the universe is completely unknown. Clas-
sically in can be modeled by a perfect fluid with negative pressure. As such it constitutes
roughly three-quarter of the total energy density of the universe. Due to its mysterious
nature, this phenomenon has been given the name “dark energy”.

About % of the remaining energy density of the universe consists of an unknown form
of matter, called “dark matter”. This is well supported by observations of the galactic rotation
curves which suggest that about half of the mass of galaxies is concentrated in the dark halo.
Such a mass distribution cannot be explained with ordinary baryonic matter which tends
to clump together and ultimately to form stars. Also theories of structure formation in the
early universe as well as further independent observational data point to a similar amount
of dark matter in space. This form of matter must be composed of very weakly interacting
but massive particles (WIMPs). The standard model does not contain a particle with these
properties.

In summary it can be said that the bigger part of the energy density of the universe cannot
be described by the standard model of particle physics. In addition, it suffers from severe
fine-tuning problems and last but not least, with its nearly  free parameters— some with
hierarchically different numerical values—possesses a high degree of arbitrariness.

Evidently, a more fundamental theory of particle physics and of gravity is likely to exist.

1.2. Supersymmetry

During the last decades there have been various proposals for extensions of the standard
model which solve more or less of the problems mentioned in the last section. The most
prominent extension and the one which is considered to be the most likeliest to be proven
soon at the LHC is “supersymmetry”.¹

The idea is to extend the gauge symmetry algebra of the standard model by a set of anti-

1 In fact, supersymmetry is an export hit of string theory.
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commuting generators with the consequence that the particle content of the theory is dou-
bled: every elementary particle comes with a “superpartner” which is equally charged but
differing in half of a unit in spin.

Though it was not the original motivation, the most convincing strength of supersymmetry
is the fact that it solves the hierarchy problem of the standard model in an elegant way: for
every divergent loop diagram entering the Higgs mass, in supersymmetric models there is
a corresponding diagram involving the respective superpartner. Due to the reversed spin-
statistics, this diagram contributes with the opposite sign compared to the original one and
thus cancels the unwanted quantum correction to the Higgs mass of the standard model.

Supersymmetry implies that the superpartners and the known particles of the standard
model have the same mass. If supersymmetry were an exact symmetry of nature, the su-
perpartners would have been detected a long time ago already. Thus, if it ought to exist,
supersymmetry must be broken spontaneously. This has however two consequences which
are quite welcome: firstly, the lightest supersymmetric particle (LSP) may be stable and can
serve as the so far unknown constituent of dark matter. Secondly, the running of gauge
couplings is altered above the superpartner’s masses in such a way that they meet closer at
1016 GeV than in non-supersymmetric theories. One can say that gauge unification and
supersymmetry go well together.

What appeals about supersymmetry at first glance is embittered though when going into
detail: very general sum-rules can be derived from the supersymmetry algebra which con-
strain the mass of the superpartners to a range where they are excluded experimentally al-
ready. The loophole is to introduce a so-called “hidden sector” of particles which do not
share any gauge interactions with the standard model ones. Supersymmetry is broken there
and “communicated” by a mediation mechanism to the standard model sector. It is not hard
to imagine that this reintroduces a high degree of arbitrariness in all supersymmetric models.

1.3. String Theory

Among the candidates for a quantum theory of gravity, the most promising and the most
highly developed is in all likelihood string theory [–]. In contrast to all usual quantum
theories, its basic entity is not point-like but extended in one dimension, like a string.

Originally it was applied in the sixties for the description of mesons. Being a bound
state of a quark and an anti-quark, the strong force acts like a little spring between the two
constituents, giving rise to a one-dimensionally extended object. With string theory it was
possible to reproduce some of the meson’s behavior, in particular the characteristic linear
relation between energy and spin known as egge trajectories.

However, with the advent of quantum chromodynamics (QCD) in the mid-seventies,
string theory was disfavored as theory of the strong interaction. At the same time it was
realized that the properties of a closed string match with those of a graviton. This suggests
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that string theory should be rather interpreted as a theory of quantum gravity.
The first breakthrough occurred in  when Green and Schwarz showed that type I

string theory is anomaly free and therefore suitable as a quantum theory. Only one year
later, heterotic string theory was discovered. Exhibiting gauge symmetry with gauge group
E8×E8 or SO(32) and containing chiral fermions, it became evident that string theory is not
only a candidate for a theory of quantum gravity but for a unified theory of all interactions.

A lot of remarkable achievements have been made since then which support string theory.
The most celebrated is perhaps the derivation of the Bekenstein–Hawking entropy formula
of black holes SBH = A/4. In classical general relativity, the “no-hair theorem” states that
a black hole in fact does not have any microstates. Hence the concept of entropy does not
apply. In string theory— in contrast to usual quantum field theories— as being a quantum
theory of gravity, black holes can be described in terms of dynamical microscopical objects
and hence it should be possible to regain the Bekenstein–Hawking entropy. Indeed this was
achieved for the first time in  by Strominger and Vafa for a special class of extremal
five-dimensional black holes [].

Another interesting development of string theory started in  when Maldacena pro-
posed a duality of string theory and certain lower dimensional quantum field theories [].
By “duality” usually an equivalence of two theories is understood where a common expan-
sion parameter is inverted. For instance, string theory in an negatively curved space–time
(AdS5 × S5) with string coupling g is dual to a superconformal Yang-Mills theory in four
dimensions with coupling 1/g. This is of special appeal since the equivalence allows to study
the properties of a strongly coupled field theory, which is usually not under computational
control, with the help of a weakly coupled string theory which is controllable. Applica-
tions of this remarkable conjecture are strongly coupled phenomena in QCD such as the
quark–gluon plasma but also even in condensed matter physics such as superconductivity.
The AdS/CFT correspondence has become an important branch of research by itself.

1.4. The Vacuum Problem of String Theory

Quantization of string theory is only consistent in  or  space–time dimensions in the
purely bosonic or the supersymmetric formulation respectively. For obvious reasons, this
is phenomenologically not acceptable. The loophole is not to assume a flat and infinitely
extended space–time but to “compactify” the extra dimensions to small sizes. Surprisingly,
under certain circumstances, the effective four-dimensional theory is still in agreement with
experiments if the typical radius of the extra dimensions is as large as the tenth part of a
millimeter []. Still, the presence of extra dimensions has far-reaching consequences.

A very interesting fact is that the Planck scale in the four-dimensional effective theory is
given by the actual, ten-dimensional Planck scale multiplied by the volume of the compact-
ification space. Given that the latter is rather large, it is quite possible that the fundamental
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scale of quantum gravity is much lower than expected from purely four-dimensional theo-
ries. An interesting scenario using this fact was proposed in [, ]: the question why the
weak scale is so many orders of magnitude smaller than the Planck scale and the resulting
hierarchy problem can be nullified by assuming large extra dimensions such that the TeV
scale is also the fundamental Planck scale. This has also various other appealing phenomeno-
logical implications so that the concept of large extra dimensions has become popular also
among non-string-theorists. If this scenario were true, we would have the exciting prospect
to probe string theory in a direct way at the LHC already. A couple of experimental signals
of this scenario have been worked out in [, ].

Size and shape of the compactification space determine various parameters of the four-
dimensional effective theory such as the particle spectrum and couplings. Though subject to
a multitude of consistency conditions, the geometry of the compactification space is probably
not unique. On the contrary: its size and shape are described by dynamical fields in a hilly
potential, the so-called “landscape”. It is believed that there exists a incredibly large, but
finite number of minima in this potential for the geometrical fields, giving rise to an equal
number of four-dimensional effective field theories. A commonly quoted estimate is in the
order of 10500 [].²

Given the enormous number of vacua, it is likely that there exists not only one four-
dimensional effective theory which resembles the standard model of particle physics but a
large set thereof, possibly all with different behavior at higher energies.³ Critics decry this as
complete loss of predictivity of string theory, disqualifying it as scientific theory. However, at
the fundamental string scale at the latest, specific and model-independent effects will show
up which cannot be explained by a usual quantum field theory. On the other hand, the
high number of minima in the landscape may be an explanation for the arbitrariness of the
parameters of the standard model: in this picture, they do not have a deeper meaning but
are just “environmental” values. It might be possible to gain new insights in this regard by
considering statistical methods []. Fine-tuning of parameters can be explained by invoking
the weak anthropic principle. A prerequisite for this to make sense is to have a large enough
ensemble (here vacua) where the parameter in question is scanned. This line of argument
was firstly proposed in  by Weinberg for the cosmological constant []. The concept
of the landscape bears the correct set-up to implement this idea [].⁴

2 In an earlier work [] even the number of 101500 was proposed.
3 The abundance of standard model like vacua within the landscape was estimated in [] and found to be
less than one in a billion in a toy set-up.
4 The anthropic principle is disfavored by many physicists— though unjustified. Applied in this precise sense,
the AP makes sense very well. The same argumentation can be applied when asking for the reason why the
distance between Earth and Sun is fine-tuned in the way it is.
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1.5. Approaches to Model Building

At this stage, there exists only a perturbative formulation of string theory. It is therefore
impossible to tell whether upon the inclusion of all non-perturbative effects, the vacuum
problem will persist or not. Though this is certainly an interesting and important question,
the most obvious hurdle string theory has to clear is to prove that the standard model of
particle physics (or its supersymmetric extensions) is contained in the landscape at all.

The phenomenological properties of a quantum field theory can be tuned in a relatively
easy way by choosing a couple of parameters. Hence it is not difficult to find the Lagrangian
among the infinitely many which fits the experimental data. In four-dimensional compact-
ifications of string theory however, the parameters of the low-energy effective theory are
encoded in a complicated way in the geometry and topology of the compactification mani-
fold. A tuning in the parameters of the latter may have a large impact on the phenomenology
in four dimension. As a consequence, experimental data cannot be fitted in such a way this
is possible in field theory and this is precisely the reason why there is no candidate for a fully
realistic string theory model till this day.

In principle there are two ways how a realistic vacuum could be obtained in string the-
ory: in the top–down approach, one firstly chooses a compactification manifold and then
determines the phenomenological properties from first principles. As these cannot be “pre-
dicted”, in face of the huge number of vacua within the landscape it is very unlikely to find
the standard model in the foreseeable future in this way.

On the other hand, many physical properties do not depend on the global compactification
geometry but can be locally “engineered”. The four-dimensional effective gauge theories
are realized on D-branes, which are higher dimensional planes on which open strings can
end on. This is usually much easier than constructing a globally consistent model. Once
having an interesting local set-up at hand, the hope is to embed it finally in an appropriate
compactification space, promoting it to a globally consistent model. This kind of bottom–up
like ansatz has attracted attention recently, in particular in the context of “F-theory” [–],
a twelve-dimensional geometrical framework describing a particular (type IIB to be precise)
superstring theory in its non-perturbative regime.

1.6. Moduli Stabilization and the LAGE volume scenario

An example for a recent success of string phenomenology is the solution of the problem of
“moduli stabilization”: the afore mentioned fields encoding size and shape of the compacti-
fication space possess a flat potential at lowest order in perturbation theory and are therefore
called “moduli fields”. As being massless scalars in the four-dimensional effective theory,
they give rise to a fifth, long-ranged force which disagrees with observations. Massive scalar
particles however give rise to short-ranged interactions and are compatible with experiments
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as long as they mass is higher than roughly 10−3 eV []. From cosmological considerations
one can derive a mass bound from even 100TeV as otherwise, these moduli fields may spoil
nucleosynthesis.

Other moduli fields determine the gauge coupling of the four-dimensional gauge the-
ory. Without a minimum in the potential, the resulting large fluctuations of these fields
contradict constant gauge couplings. Clearly, stabilized moduli fields are a prerequisite for
realistic string compactifications and hence this question has become a central issue of string
phenomenology.

During the last years, several mechanisms have been proposed which stabilize various classes
of moduli: higher p-form fluxes, loop and non-perturbative effects generate a potential and
thus freeze the moduli fields. An important milestone was the model of Kachru, Kallosh,
Linde and Trivedi (KKLT) which was the first one with all moduli stabilized and positive
cosmological constant in the minimum of the potential [].

A refinement for a scenario with stabilized scenario was proposed recently by Balasubra-
manian, Berglund, Conlon and Quevedo []. As opposed to the KKLT construction where
only non-perturbative effects cause moduli freezing, here also perturbative contributions to
the moduli potential were taken into account, making this scenario more generic. Under
certain circumstances, the resulting moduli potential is such that the overall volume of the
compactification space is stabilized at exponentially large values. For this reason, this class of
models goes by the name “LAGE volume scenario”.

Further investigations revealed that the LAGE volume scenario has a couple of very inter-
esting phenomenological properties. In particular supersymmetry breaking can be achieved
in a controlled way, giving rise to realistic patterns of moduli and superpartner masses [–].

1.7. Overview over this Thesis

Quite recently, there were new results concerning non-perturbative effects in the moduli
potential: Euclidean D-branes populating the compactification space, known as D-brane
instantons (or D-instantons), may contribute to the potential of the low-energy effective
theory. The number of zero modes of open strings stretching between these instantonic
branes and branes supporting the gauge theory determine the form of these non-perturbative
terms [, ]. An important point is that these instanton effects are necessarily present and
cannot be switched on or off by will.

Subject of this thesis is to investigate the influence of these instanton effects in the context
of the LAGE volume scenario, especially with respect to the new results of [, ] we
mentioned before.

Therefore we start in chapter  with a review of orientifold compactifications of type IIB

string theory, the language in which the LAGE volume scenario is formulated. We put
emphasis on the question of how to extract the four-dimensional effective theory from the
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compactification data and which consistency conditions have to be met in a global model.
We also present the newer results of the D-instanton calculus to the extent we need it for its
application to the LAGE volume scenario.

In chapter , we review the LAGE volume scenario up to the level of knowledge before
the publication of the new results in the D-instanton calculus. We discuss the perturbative
corrections in α′ and the string coupling constant to the low-energy effective action and
show how these lead to the LAGE volume minimum using the well-known example of the
compactification space P4

[1,1,1,6,9][18]. Also some of the particle physical and astrophysical
features such as mass scales, SUSY breaking terms, inflation and the cosmological moduli
problem (CMP) are elaborated.

The remaining four chapters cover the author’s field of research. In chapter  we deal with
the following puzzle: according to the D-brane instanton calculus, the non-perturbative term
which is assumed in the original literature of the LVS has a different form when chiral matter
shall be present in the four-dimensional effective theory. This spoils moduli stabilization.
This conflict must be resolved since both aspects are important for a meaningful model. We
show that this can be achieved with the help of D-terms. This chapter covers the paper [].

D-brane instantons generate corrections for the gauge kinetic function of the four-dimen-
sional effective theory. In chapter , which is based on [], we show how this effect can be
used in order to obtain TeV scale soft terms, coexisting with a string scale at the usual GUT

scale of 1016 GeV in a natural way. This kind of GUT models is not possible in the original
LAGE volume scenario unless significant fine-tuning is accepted. Several mechanisms of
SUSY breaking mediation are studied within this set-up.

Inspired by the nice results of chapter , we investigate SUSY breaking in GUT-like sce-
narios more carefully in chapter , which is based on []. We focus in particular on set-ups
in which the SUSY breaking sector is in some sense “sequestered” from the matter sec-
tor. These are related to models realized on D3-branes at singularities and also to F-theory
models. The soft terms are calculated in detail and we find an interesting suppression of
the contributions induced by gravity mediation and also anomaly mediation therein. This
suggests that gauge mediation might be the dominant mechanism for SUSY breaking in this
set-up. We discuss the phenomenological implications of these findings.

Finally we conclude and discuss the results of this thesis in chapter .



2. Type IIB String Theory and Model Building

In this chapter we introduce all techniques and ingredients we need for building semi-realistic
four-dimensional string compactifications. After a short overview over the ten-dimensional
type IIB superstring theory and its low-energy effective action we describe how to compactify
it to four dimensions. Three-form fluxes provide a mechanism to stabilize phenomenologi-
cally unwanted massless fields, so-called moduli. However, we prove that in pure Calabi–Yau
compactifications it is not possible to have non-trivial flux. An alternative are compactifica-
tions on orientifolds of Calabi–Yau manifolds, which are introduced afterwards. In this kind
of models we may also include D-branes, which can give rise to chiral matter fields in four
dimensions. elated to D-branes are D-brane instantons which furnish a non-perturbative
contribution to the low-energy effective action and provide with it another mechanism to
stabilize moduli fields. We close with the introduction of the so-called KKLT scenario, a
four-dimensional model with all moduli stabilized and positive cosmological constant.

2.1. Ten Dimensional Low-Energy Effective Action

The spectrum of the type II superstring contains a finite number of massless modes as well as
an infinite tower of massive excitations. Many phenomenological questions can be addressed
by using an effective supergravity theory of the massless modes only. Intuitively this is clear:
provided strings are small enough, their “stringy” nature is not visible from larger distances
and thus they appear as point particles at the (low) energies, accessible with todays particle
colliders. Instead of establishing an effective field theory for all modes and then integrating
out the massive ones, a much simpler approach is to write down a field theory for only the
massless modes from the beginning. This is justified as the massive string excitations are
of the order of the string scale ms = `−1

s = 1

2π
√
α′ , which is usually assumed to be of the

order of the Planck scale mP ≈ 1019 GeV. Also in the case of compactifications to lower
dimensions, the Kaluza–Klein modes have masses of the order of the inverse compactification
radii which are typically also of the order of the string scale.¹ Thus if one is interested in the
phenomenology of string theory at energies accessible with particle colliders, it is (and will
be in the near future) completely sufficient to consider only the massless string modes.

We start with the ten-dimensional action for the superstring in order to identify the massless
fields. As type II string theory exhibits N = 2 space–time supersymmetry in ten dimensions,

1 This picture dramatically changes if one considers compactifications with large extra dimensions. Here the
string scale can be as low as a TeV. We will not consider such models in this thesis.


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it is natural to construct a supergravity theory as low-energy effective field theory. Super-
gravity theories are very constrained and the high amount of super- and gauge symmetries
in fact fixes the action as soon as we know the field content of the theory.

A superstring sweeps out a two-dimensional surface in the ten-dimensional target space-
time. This so-called world-sheet can be described by a two-dimensional superconformal
field theory with the embedding coordinates XM , M = 0, . . . , 9 as dynamical fields. For

world-sheet supersymmetry, their fermionic superpartners ΨM = (ψM , ψ̃M)
T

have to be
included. There is an obvious proposal for the action of a world-sheet Σ propagating freely
in flat ten-dimensional space–time. It reads:

S =
1

2πα′

∫
Σ

d2z
(
∂XM ∂̄XM +

α′

2

(
ψM ∂̄ψM + ψ̃M∂ψ̃M

))
. (2.1)

Type II string theory contains closed strings only. The equations of motion reveal that the
world-sheet field can be split up into independent left- and right-moving (chiral and anti-
chiral) sectors: XM = XM

L (z) +XM
R (z̄), ψM = ψM(z), ψ̃M = ψ̃M(z̄).

The boundary conditions allow for two different choices of periodicity of the closed string
world-sheet fermions:

ψM(w + 2π) = +ψM(w) amond sector (),

ψM(w + 2π) = −ψM(w) Neveu–Schwarz sector (NS).
(2.2)

So far, we treated the string world-sheet as a purely classical object. In order to formulate
the world-sheet field theory as a quantum theory, we expand the fields it contains into their
oscillation modes:

XM
L (z) =

xM

2
− i

α′

2
pML ln(z) + i

√
α′

2

∑
n 6=0

αMn
n
z−n,

XM
R (z̄) =

xM

2
− i

α′

2
pMR ln(z̄) + i

√
α′

2

∑
n 6=0

α̃Mn
n
z̄−n,

ψML,(z) =
∑
n∈Z

dMn z
−n−1/2, ψML,NS(z) =

∑
r∈Z+¹⁄₂

bMr z
−r−1/2,

ψ̃MR,(z̄) =
∑
n∈Z

d̃Mn z̄
−n−1/2, ψ̃MR,NS(z̄) =

∑
r∈Z+¹⁄₂

b̃Mr z̄
−r−1/2.

(2.3)

In analogy to the harmonic oscillator, the oscillation modes are subject to the usual canonical
(anti-)commutation relations and the Hilbert space of excitations is constructed by acting
with the raising operators on the vacuum in the respective sector. This is done best in light
cone coordinates and upon imposing the light cone gauge condition, in which negative
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norm states, so-called “ghosts” do not appear. In light cone coordinates, the dynamical
degrees of freedom are given by the transversal directions only, counted by the space–time
indices M = 2, . . . , 9. The ground state in the amond sector is special in that it turns
out to be degenerate: it is described by a real 16-component spinor, transforming in a spin
representation of SO(8).

At this stage, the theory suffers from a severe inconsistency: the ground state in the NS
sector is a tachyon indicating an instability of the vacuum. In the  sector the ground
state is massless, showing that the theory cannot be supersymmetric. Both shortcomings²
can be cured by truncating the spectrum with respect to a projection operator called G-
parity [, ]:

G = (−1)F+1 = (−1)
∑∞

r=1/2 b
M
−rb

M
r +1 (NS),

G = Γ11(−1)
∑∞

n=1 d
M
−nd

M
n (),

(2.4)

where F is the world-sheet fermion number. In the NS sector, only the states with positive
G-parity are kept. As the ground state has fermion number zero it has negative G-parity and
is projected out. In the  sector one has the freedom of choice whether the G-odd oder
-even states are projected out. One is left with either a left- or right-handed Majorana–Weyl
spinor as the  ground state, exhibiting eight real degrees of freedom. This procedure of
truncating the spectrum goes under the name “GSO projection”. It may appear rather ad
hoc at this stage, however the necessity of truncating the spectrum would appear again when
demanding modular invariance of the one- and two-loop partition functions.

For the closed string, the different combinations of amond and Neveu–Schwarz fermions
in the left- and right-moving sectors respectively give rise to four different closed string
sectors. The states in the NS–NS and – sectors are space–time bosons whereas the states
in the NS– and –NS sectors are space–time fermions. The G-parity of the amond
sector can be chosen equal or same for the left- and right-movers. This leads to the two
different consistent superstring theories: type IIA and type IIB.

After the GSO projection, the massless states in type IIB string theory, on which we focus
from now on, are given by:

b̃M−1/2|0〉NS ⊗ bN−1/2|0〉NS,

|α〉 ⊗ |α〉,
b̃M−1/2|0〉NS ⊗ |α〉,
|α〉 ⊗ bM−1/2|0〉NS.

(2.5)

We denoted the amond ground state, which is an eight-component spinor, by |α〉. Ap-

2 Absence of supersymmetry itself is of course not a shortcoming. However the spectrum contains also a
massless gravitino and therefore the interacting theory cannot be consistent without supersymmetry.
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parently in each sector there are 8×8 = 64 degrees of freedom. They decompose as follows:
in the NS–NS sector, there is an antisymmetric rank-two tensor BMN (Kalb–amond field)
with 28 states, a symmetric traceless rank-two tensor gMN (graviton) with 35 states and a
scalar φ (dilaton). In the – sector, one obtains a zero-, a two- and a four-form field with
self-dual field strength (C0, C2 and C4 with 1, 28 and 35 degrees of freedom). The NS–
and –NS sectors contain a spin ³⁄₂ (gravitino with 56 states) and a spin ¹⁄₂ fermion (dilatino
with 8 states) each.

As the number of bosonic and fermionic degrees of freedom agree, it suggests itself that
type IIB string theory is space–time supersymmetric. We omit the proof here and simply
state the fact that it indeed possesses N = 2 supersymmetry in agreement with the fact that
there are two gravitinos in the massless spectrum.

The low-energy effective field theory action for the massless modes can in principle be
constructed by calculating various string scattering amplitudes and finding a field theory
which reproduces the same amplitudes as the string theoretic calculation in the limit α′ → 0.
However, there are only few candidate field theories which come into question as super-
symmetric theories in ten dimensions are highly constrained. equiring gauge invariance
and closure of the supersymmetry algebra, up to the second derivative level, there are basi-
cally only two consistent N = 2 supersymmetric theories including gravity. They are called
type IIA and type IIB supergravity. Indeed, they turn out to be the correct low-energy
effective field theories for type IIA and type IIB string theory.

As we already said, we are interested in a regime where the string length can be neglected
and energy is low compared to the string scale and thus supergravity is a good approximation
for any string theory model we will build. The type IIB supergravity action is well-known.
Its bosonic part reads (in Einstein frame):

SIIB =
1

2κ210

∫
d10x

√
−g
(
R− ∂Mτ ∂

M τ̄

2(Im τ)2
− 1

2

|G3|2

Im τ
− 1

2
|F5|2

)
+

1

8iκ210

∫
1

Im τ
C4 ∧G3 ∧G3,

(2.6)

where we have redefined the fields in the following way: τ = C0 + ie−φ, G3 = F3 − dB2,
F3 = dC2 − C0 ∧ dB2 and F5 = dC4 − 1

2
C2 ∧ dB2 +

1
2
B2 ∧ dC2. The action alone does

not give the full equations of motion. It has to be completed with a self-duality constraint:
F5 = ?10F5. Notably, the action exhibits an SL(2,R) symmetry, i. e. it is invariant under
the transformations:

τ → aτ + b

cτ + d
, G3 →

G3

cτ + d
, (2.7)

where a, b, c, d ∈ R and ad− bc = 1.

There exists an equivalent formulation of the equations of motion stemming from (.), in
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which one introduces the additional – potentials C6 and C8. The additional physical de-
grees of freedom are reduced to the original amount by imposing two additional constraints
on the field strengths: F1 = ?10F9 and F3 = −?10F7. This so-called “democratic formula-
tion” [,] of the amond sector has certain advantages as soon as we discuss D-branes in
section ..

2.2. Compactifications on Calabi–Yau Manifolds

The conformal symmetry of the classical string action is in general broken at the quantum
level. Only in the special case of ten space–time dimensions, this conformal anomaly is
absent. So the consistency of string theory seems to imply a definite dimensionality of
space–time, the strings are propagating in, namely ten.³ However from our experience—and
also from collider experiments, which are more sensitive to the detection of extra dimensions
than the eye— it is clear that there cannot be more than four non-compact space–time
dimensions. Nevertheless this does not rule out string theory. The loophole is to assume
that six of the nine spatial dimensions are not infinitely extended but curled up to small
sizes such that the dynamics of particles in that space appears effectively four-dimensional.
Such an asymmetric ten-dimensional space–time M10 can be understood as a product of a
four-dimensional non-compact space M4 and a compact “internal” space X , for instance:

M10 = M4 ×X . (2.8)

In order to respect homogeneity and isotropy of the known universe, the metric on this ten-
dimensional space–time should be such, that it respects the symmetry group of M4. The
internal space X may be highly anisotropic and curved. The most general metric compatible
with these requirements on the geometry of space–time reads:

ds2 = e2A(y)gµνdxµdxν + e−2A(y)gmndymdyn, (2.9)

where xµ and ym are coordinates for four-dimensional space–time and the internal space
respectively. Notably, a warp factor e2A(y) can be admitted in the four-dimensional part.
However, in many cases the warping is small such that the exponential prefactors can be
neglected.⁴

In order not to destroy the supersymmetry of the ten-dimensional string or low-energy ef-
fective supergravity theory, the internal space has to fulfill certain geometrical requirements.

3 Strictly speaking there is also the possibility to cancel the conformal anomaly with a non-linear dilaton
background, allowing then also a space–time with less than ten dimensions. However, non-linear dilaton
backgrounds are not well understood and we will consider critical string theory only.
4 There is an interesting application of this fact in the so-called andall–Sundrum scenario [] where the
warp factor was used to explain the large hierarchy between the Planck scale and the weak scale.



 . T IIB S T  M B

h(0,0) 1
h(1,0) h(0,1) 0 0

h(2,0) h(1,1) h(0,2) 0 h(1,1) 0
h(3,0) h(2,1) h(1,2) h(0,3)−−−−−−→

CY three-fold
1 h(2,1) h(2,1) 1

h(3,1) h(2,2) h(1,3) 0 h(1,1) 0
h(3,2) h(2,3) 0 0

h(3,3) 1

Table 2.1.: Hodge diamond for a Calabi–Yau three-fold

In particular, the compactification manifold has to admit a covariantly constant spinor. This
constrains the manifold to exhibit strict SU(3) holonomy. Such manifolds are called “Cal-
abi–Yau” manifolds and can alternatively be characterized as being complex Kähler manifolds
which are icci flat or having vanishing first Chern class of the tangent bundle c1(TX ) = 0.
Compactifications on Calabi–Yau manifolds exhibit N = 2 supersymmetry in four dimen-
sions.

The 4d massless spectrum is affected by the compactification space. Indeed, it is deter-
mined by the zero modes of various wave operators on the internal space. We demonstrate
this with the example of a ten-dimensional massless scalar Φ(x, y), where we already dis-
tinguished between coordinates on M4 and X . If we neglect warping for a moment, the
ten-dimensional Laplacian ∆10 can be decomposed in a four-dimensional and an internal
six-dimensional part, i. e. ∆10 = ∆4 +∆6. Thus the ten-dimensional Laplace equation for
the scalar ∆10Φ = 0 can be rewritten like:

∆4Φ +∆6Φ = 0. (2.10)

Clearly a non-zero eigenvalue of Φ with respect to ∆6 will serve as a mass term for the
four-dimensional field and correspondingly, the number zero modes of ∆6, i. e. the number
of harmonic functions on X , determines the number of massless four-dimensional fields
stemming from the ten-dimensional scalar Φ.

The number of zero modes of differential operators on compact manifolds is given by
the topology of the manifold X in question. The number of independent harmonic (p, q)

forms is counted by the dimension of various cohomology groups, the so-called Hodge
numbers h(p,q) = dimH(p,q). Not all of them are independent, but are related due to the
so-called Poincaré duality H(p,q) ∼ H(d−p),(d−q), where d is the complex dimension of X .
For the special case of a Calabi–Yau three-fold, which, due to the vanishing first Chern class,
necessarily has h(1,0) = h(0,1) = 0, the Hodge numbers, taking into account dualities, are
listed in table ..

Thus, there are only two independent Hodge numbers: h(1,1) and h(2,1). In each coho-
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mology class, one can choose a unique harmonic representative. This collection forms a
basis of the different cohomology groups. With ωA we denote the basis of harmonic (1, 1)-
forms (which induce by Poincaré duality also a basis for H(2,2), denoted by ω̃B, such that∫
X ωA ∧ ω̃B = δBA ). Similarly, one can choose a basis of harmonic three-forms (αK , βL) for
H3.

Let us now trace the fate of the massless fields of ten-dimensional supergravity when com-
pactifying to four-dimensions on a Calabi–Yau three-fold. Therefore one has to decompose
all fields in a four-dimensional and an internal part, where the internal part is expanded in
terms of the basis of the appropriate harmonic forms as needed for a massless field in four
dimensions.

We start with the higher p-form fields:

B2 = B2(x) + bA(x)ωA, C2 = C2(x) + cA(x)ωA, A = 1, . . . , h(1,1),

C4 = DA
2 (x) ∧ ωA + V K(x) ∧ αK − UK(x) ∧ βK

+ ρA(x)ω̃
A, K = 0, . . . , h(1,2).

(2.11)

Apparently we find in the four-dimensional spectrum scalars bA(x), cA(x), ρA(x), one-forms
V K(x), UK(x) and two-forms B2(x), C2(x), DA

2 (x).

The metric gMN decomposes into the usual four-dimensional metric gµν and the internal
metric gmn. The off-diagonal entries gµN must vanish as they are one-forms from the internal
point of view and hence do not exist on Calabi–Yau manifolds. The variation of the metric
of the internal space has to respect the icci flatness ofX . Therefore the variations δgmn̄ have
to fulfill a differential equation, the so-called Lichnerowicz equation. Its solutions can be
associated to the h(1,1) harmonic (1, 1)-forms and h(2,1) harmonic (2, 1)-forms on X . The
former describe deformations of the Kähler form J = igmn̄dxm ∧ dxn̄ and are therefore
called Kähler moduli. The latter are associated to deformations of the complex structure and
hence are called complex structure moduli.

Finally, the ten-dimensional scalars φ and C0 also appear as scalars in four dimensions of
course.

As the choice of a Calabi–Yau manifold as compactification space guarantees the preser-
vation of N = 2 supersymmetry, all the bosonic fields we found arrange together with their
superpartners in N = 2 supermultiplets as summarized in table ..

The effective four-dimensional action can be obtained by inserting the expansions (.)
into the ten-dimensional action (.) and integrating over the internal space X . For brevity,
we omit the details here and state that after dualizing the two-forms B2 and C2 to scalars and
applying further simplifications, the action can be expressed in the usual N = 2 supergravity
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type of multiplet mult. fields
gravity 1 (gµν , V

0)
vector h(2,1) (V K , zK)
hyper h(1,1) (vA, bA, cA, ρA)
double-tensor 1 (B2, C2, φ, C0)

Table 2.2.: Type IIB N = 2 supermultiplets in a Calabi–Yau compactification to four dimensions.

form (see [–] for details):

SIIB,4d =

∫
M4

− 1

2
R +

1

4
eMKLF

K ∧ FL +
1

4
ImMKLF

K ∧ ?4FL

−GKL̄dz
K ∧ dz̄L − hpqdq̃p ∧ dq̃q.

(2.12)

The scalars span a moduli space which is a product of a quaternionic manifold MQ and a
special Kähler manifold MSK. The former is spanned by the fields qp and its metric is hpq
(an explicit expression for hpq can be found in [, ]). The latter, MSK, is spanned by the
scalars zK and its metric GKL̄ can be shown to be given by the Kähler potential

Kcs = − ln
(
i

∫
X
Ω ∧ Ω

)
, GKL = ∂zK∂zLKcs. (2.13)

The matrix MKL is given by various products of the basis (αK , βL) of the cohomology
group H(3). Ω is the unique holomorphic three-form of X .

2.3. A No-Go Theorem for Fluxes

In the last section, we learned that in Calabi–Yau compactifications there necessarily appear
geometric moduli in the four-dimensional spectrum, i. e. massless scalars which stem from
geometric deformations of the internal space. They can be divided into two classes: h(1,1)

Kähler moduli, of which there are h(1,1), and complex structure moduli, counted by h(2,1).
Phenomenologically they lead to a long-ranged force in four dimensions, which is not ob-
served. Thus finding a mechanism for giving a mass to the geometric moduli is of utmost
importance in order to construct a realistic string compactification.

One path to achieve this is to switch on appropriate NS–NS and – fluxes in the internal
space. Heuristically it is obvious that this could give a mass to the moduli: any non-trivial
field configuration carries energy–momentum. This implies that the flux will lead to a certain
back-reaction on the geometry. Likewise it will then cost energy to deform the geometry
which is equivalent to saying that the geometric moduli, which describe the fluctuations of
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the internal geometry, become massive.

Unfortunately, for Calabi–Yau compactifications, there exists a strong no-go theorem
which excludes a non-trivial form field flux [–]. We derive now this no-go theorem.

Four-dimensional Poincaré invariance allows for a non-vanishing three-form fluxG3 along
internal directions only and a five-form flux of the form

F5 = (1 + ?)(dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3), (2.14)

where α is an arbitrary function on the compactification space. Now, we consider the trace
reversed ten-dimensional Einstein equation:

RMN = κ210
(
TMN − 1

8
gMNT

)
. (2.15)

With the energy–momentum tensor stemming from the type IIB supergravity action (.),
the four-dimensional components read:

Rµν = −gµν
(
GmnpG

mnp

48 Im τ
+
e−8A

4
∂mα ∂

mα

)
. (2.16)

The ansatz for the metric (.) yields the components of the icci tensor:

Rµν = −ηµνe4A∇̃2A = −1

4
ηµν
(
∇̃2e4A − e−4A∂me

4A ∂me4A
)
. (2.17)

Inserting this in (.) and taking the trace finally gives:

∇̃2e4A = e2A
GmnpG

mnp

12 Im τ
+ e−6A

(
∂mα ∂

mα + ∂me
4A ∂me4A

)
. (2.18)

When integrating eq. (.) over the internal space, which we assume to be a compact
manifold without boundary, the left hand side of the equation vanishes. The right hand side
is obviously positive semi-definite. Consequently the fluxes must vanish and the warp factor
must be constant.

As most no-go theorems, it can be circumvented if the assumptions are changed. If we
allow a further term in the action which describes localized sources, i. e. S = SIIB + Sloc,
then eq. (.) is extended by a new term:

∇̃2e4A = e2A
GmnpG

mnp

12 Im τ
+ e−6A

(
∂mα ∂

mα + ∂me
4A ∂me4A

)
+
κ210
2
e2A
(
Tmm − T µµ

)loc
,

(2.19)
where the energy–momentum tensor of the localized source is obtained as usual by varying
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the corresponding action with respect to the metric:

T loc
MN = − 2√

−g
δSloc

δgMN
. (2.20)

For all localized objects, so-called p-branes, wrapping a (p−3)-cycle Σ of the internal space,
the contribution to the right hand side of (.) can be shown to be:(

Tmm − T µµ
)loc

= (7− p)Tpδ(Σ), (2.21)

where Tp is the tension ob the brane. The new term in the action is justified because in
string theory, there do exist such localized objects: D-branes, which have positive tension,
and orientifold planes with negative tension. In order to cancel the positive definite flux
terms in (.) we hence need orientifold planes in the compactification.

2.4. Compactifications on Orientifolds of Calabi–Yau Manifolds

By “orientifolding” [–] we mean modding out a particular combination of symmetries
of the original theory, in our case type IIB string theory compactified on a Calabi–Yau three-
fold. The symmetry group to be modded out can involve geometrical symmetries of the
target space of the theory, which for the sake of four-dimensional Poincaré invariance can
only be symmetries of the internal space X . We denote such a symmetry by σ. The set of
fixed points of σ is called orientifold plane or On-plane, where n denotes the number of its
space-like dimensions.

Furthermore, symmetries acting on the world-sheet can be admitted. In particular for
orientifolds, the world-sheet parity Ωp operation, which renders the world-sheets unori-
entable must be included. Usually it is dressed by the operator (−1)FL , where FL denotes
the space–time fermion number in the left-moving sector. All operations in question have
to be assembled such that their combined action becomes a symmetry of the theory.

As the two gravitinos of type II string theory stem from the left- and the right-moving
sector respectively, it is clear that by identifying both sectors by Ωp, we loose half of super-
symmetry and thus compactifications on orientifolds of Calabi–Yau spaces exhibit N = 1

supersymmetry at most.⁵
The various fields in type IIB string theory behave like:

Ωp : even: φ, g, C2, odd: C0, B2, C4,

(−1)FL : even: φ, g, B2, odd: C0, C2, C4.
(2.22)

Concerning the symmetry map σ of the target space, it is required that it is an isometric and

5 In general, the inclusion of D-branes can further reduce the amount of supersymmetry.
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holomorphic involution of the internal space X [–]. By definition, an isometry leaves
the metric of the manifold invariant. Since a Calabi–Yau manifold is Kähler, it follows in
particular that the Kähler form J is invariant, i. e. σ∗J = J . Moreover, since σ is holomor-
phic, it respects the Hodge decomposition ofH∗(X ). As a consequence, σ∗H(3,0) ∼ H(3,0).
This is only true for the cohomology group as a whole, not for each class itself. But since σ
is an involution and hence (σ∗)2 = id, there are only two possibilities for how it can act on
the holomorphic three-form Ω ∈ H(3,0):

σ∗Ω = ±Ω. (2.23)

Correspondingly, there are finally two possible combinations of symmetry operations G,
leading to different sets of O-planes in the resulting theory:

G =

{
(−1)FLΩpσ with σ∗Ω = −Ω O3- and/or O7-planes,

Ωpσ with σ∗Ω = +Ω O5- or O9-planes.
(2.24)

The combined actions of Ωp and/or (−1)FL do not leave all fields invariant for themselves.
In view of eq. (.), we get only an invariant spectrum if in addition the fields transform
under σ like:

all cases: σ∗φ = φ, σ∗g = g, σ∗B2 = −B2,

O3/O7: σ∗C0 = C0, σ∗C2 = −C2, σ∗C4 = C4,

O5/O9: σ∗C0 = −C0, σ∗C2 = C2, σ∗C4 = −C4.

(2.25)

In view of the involutive character of σ, i. e. (σ∗)2 = id, all cohomology groups of X can
be split up into a direct sum of two eigenspaces of σ with eigenvalues ±1, also called even
and odd eigenspaces:

H(p,q) = H
(p,q)
+ ⊕H

(p,q)
− . (2.26)

The dimensions of the even and odd eigenspaces are affected by the properties of σ: the
Hodge ?-operator commutes with σ∗ as it preserves the orientation. Thus, Poincaré duality
also holds separately, i. e. h(1,1)± = h

(2,2)
± . The holomorphy of σ leads to h(2,1)± = h

(1,2)
± . For

the holomorphic three-form, there are two possibilities as indicated in eq. (.) and thus,
depending on whether we have O3/O7- or O5/O9-planes, we have:

O3/O7: h
(3,0)
+ = h

(0,3)
+ = 0, h

(3,0)
− = h

(0,3)
− = 1,

O5/O9: h
(3,0)
+ = h

(0,3)
+ = 1, h

(3,0)
− = h

(0,3)
− = 0.

(2.27)

The volume form of X is proportional to Ω∧Ω and is thus invariant under σ∗ in both cases.
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O3/O7 O5/O9
type of multiplet mult. fields mult. fields
gravity 1 gµν 1 gµν

vector h
(2,1)
+ V λ h

(2,1)
− V k

chiral
h
(2,1)
− zk h

(2,1)
+ zλ

h
(1,1)
− (bA, cA) h

(1,1)
+ (vA, cA)

1 (φ, l) — —

chiral/linear
h
(1,1)
+ (vA, ρA) h

(1,1)
− (bA, ρA)

— — 1 (φ,C2)

Table 2.3.: Type IIB N = 1 supermultiplets in orientifold compactifications to four dimensions

Accordingly, h(3,3)+ = h
(0,0)
+ = 1 and h(3,3)− = h

(0,0)
− = 0.

All fields can now be expanded in bases of H(p,q)
± according to their transformation prop-

erties under σ∗, listed in .. It is clear that this leads to a reduced spectrum compared to
the Calabi–Yau case (.). In detail, we have B2 = ba(x)ωa, a = 1, . . . , h

(1,1)
− , where {ωa}

is a basis of H(1,1)
− . Apparently, the four-dimensional two-form is projected out. For the

O3/O7 system, the – forms are expanded as:

C2 = ca(x)ωa, a = 1, . . . , h
(1,1)
− ,

C4 = Dα
2 (x) ∧ ωα + V κ(x) ∧ ακ + Uκ(x) ∧ βκ α = 1, . . . , h

(1,1)
+ ,

+ ρα(x)ω̃
α, κ = 1, . . . , h

(1,2)
+ .

(2.28)

The two-form C2(x) in four dimensions vanishes because C2 is odd under σ∗. This is in
contrast to the axion C0 which remains in the spectrum. In the O5/O9 system, the situation
is vice versa. The expansion of the fields reads:

C2 = C2(x) + cα(x)ωα, α = 1, . . . , h
(1,1)
+ ,

C4 = Da
2(x) ∧ ωa + V k(x) ∧ αk − Uk(x) ∧ βk a = 1, . . . , h

(1,1)
− ,

+ ρa(x)ω̃
a, k = 1, . . . , h

(1,2)
− .

(2.29)

In this case, the axionC0 is projected out, whereas the two-formC2(x) is kept. The complete
spectrum is summarized in table ..

The low-energy effective action is again obtained by inserting the field expansions (.)
or (.) in the ten-dimensional action (.) and integrating over the internal space. As half of
the supersymmetry is broken by performing the orientifold projection, the component fields
of the former N = 2 supermultiplets have to be reassembled into N = 1 multiplets and the
four-dimensional low-energy effective action ought to be recast in the usual N = 1 form,
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which is given by a Kähler potential K, a holomorphic superpotential W and holomorphic
gauge-kinetic functions f :

S = −
∫
M4

1

2
R +Kab̄DM

a ∧ ?4DM
b̄
+

1

2
e fκλ F κ ∧ ?4F λ

+
1

2
Im fκλ F

κ ∧ F λ + V,

(2.30)

with the scalar potential

V = VF + VD = eK
(
Kab̄DaW Db̄W − 3|W |2

)
+

1

2
(e f)−1κλDκDλ. (2.31)

The fields Ma are the complex scalars in the chiral multiplets, Kab̄ = ∂a∂̄b̄K is the Käh-
ler metric associated with the Kähler potential K and the covariant derivative in the scalar
potential is Kähler-covariant, i. e. Da = ∂a + ∂aK.

We do not perform the reduction to N = 1 here explicitly but state only the results. For a
detailed derivation see []. At this stage, i. e. before the inclusion of non-trivial background
fluxes and non-perturbative effects, no scalar potential appears in the low-energy effective
action, hence W = 0, Dα = 0. The gauge kinetic function is given in terms of the gauge
kinetic matrix of the N = 2 action (.):

fκλ = − i
2
Mκλ|zκ=z̄κ=0. (2.32)

The Kähler potential for the complex structure moduli turns out to still have the form (.).
The potential for the dilaton and the Kähler moduli depends on which orientifold projection
we choose. In the case of the O3/O7-system, the complete Kähler potential reads:

K = Kcs +KQ = − ln
(
i

∫
X
Ω ∧ Ω

)
− ln

(
−i(τ − τ̄)

)
− 2 ln

(
volE(X )

)
, (2.33)

where volE(X ) denotes the volume of the internal space in Einstein frame. It should be
noted, that it contains the dilaton in its definition, which in consequence renders the Kähler
metric non-block-diagonal in the Kähler and dilaton sector. The Kähler potential for the
O5/O9-system is given by:

K = Kcs +KQ = − ln
(
i

∫
X
Ω ∧ Ω

)
− ln

(
1
48
καβγ(t+ t̄)α(t+ t̄)β(t+ t̄)γ

)
. (2.34)

Here it is necessary to define new Kähler coordinates tα = e−φvα − icα. The καβγ are the
triple intersection numbers of the internal space, i. e. καβγ =

∫
X ωα ∧ ωβ ∧ ωγ .
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2.5. Compactifications with Non-Trivial Flux

When we compactify on an orientifold of a Calabi–Yau manifold, we are free to allow non-
zero G3-flux in the internal space (five-form flux would have to be supported on non-trivial
five-cycles in the internal space, which do not exist on Calabi–Yau manifolds). In this section
we analyze further conditions on the G3-flux and motivate the superpotential arising in the
presence of flux.

The three-forms F3 and H3 appearing in G3 have to be expanded in terms of a basis of
H3

±(X ) such that they show the correct parity under the orientifold projection as listed in
eq. (.). From the definition of F5 in (.) we see that the Bianchi identity for this field is
modified in the presence of three-form flux:

dF5 = H3 ∧ F3. (2.35)

Upon dimensionally reducing the ten-dimensional action (.) one finds the following
expression stemming from the kinetic term of G3:

SG =
1

4κ210 Im τ

∫
X
G3 ∧ ?6G3. (2.36)

This term can be rewritten by splitting up G3 in imaginary self-dual and anti self-dual parts,
i. e. G3 = G+

3 +G−
3 with G±

3 = 1
2
(G3 ± i?6G3) and ?6G

±
3 = ∓iG±

3 . With this definition,
eq. (.) reads:

SG =
1

2κ210 Im τ

∫
X
G+

3 ∧ ?6G
+

3 − i

4κ210 Im τ

∫
X
G3 ∧G3. (2.37)

The second term is topological, i. e. it is proportional to an integer ∼ µ3Nflux, where µ3

is the D3-brane tension. It contributes to the D3-brane tadpole (.a) and cancels in a
consistent set-up against the contributions from D3-branes and O3-planes. The first term
can be interpreted as part of the N = 1 scalar F-term potential VF in four dimensions.

From now on, we have to distinguish between the O3/O7- and the O5/O9-system in
that we have to expand the three-formG+

3 in the sub-space ofH3(X ) exhibiting the correct
parity under σ.

In the O3/O7-system, according to (.), H3 and F3 are odd forms. Thus, we have to
expand G+

3 in a basis of H3
−(X ). Due to the decomposition in imaginary (anti) self-dual

parts, only the subspace H(3,0)
− (X ) ⊕ H

(1,2)
− (X ) comes into question. As we will see later,

in order to preserve supersymmetry, there are further restrictions on the flux components.
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In the chosen basis of H(3,0)
− (X )⊕H

(2,1)
− (X ), denoted by {Ω, χk}, the expansion reads:

G+
3 = − 1∫

Ω ∧ Ω

(
Ω

∫
X
Ω ∧G3 +Glkχ̄k

∫
X
χl ∧G3

)
, (2.38)

where Gkl is the inverse of the metric in eq. (.). Inserting this expansion in (.) one
obtains the following expression for the scalar potential VF :

VF =
i

2 Im τκ210
∫
X Ω ∧ Ω

(∫
X
Ω∧G3

∫
X
Ω∧G3 +Gkl

∫
X
χk ∧G3

∫
X
χ̄l ∧G3

)
. (2.39)

As we formulate the low-energy effective action in the formalism of N = 1 supergravity,
we have to find a holomorphic superpotential W which reproduces the scalar potential as
in eq. (.). It is not difficult to check that the Gukov–Vafa–Witten superpotential []
indeed reproduces (.):

W =
1

κ210

∫
X
G3 ∧ Ω. (2.40)

The case of the O5/O9-system is different in that the three-form fields F3 and H3 have
different parity under the orientifold projection. Therefore, F3 is an element of H(3)

+ (X ),
whereas H3 ∈ H

(3)
− (X ). Consequently, G3 is expanded in a different set of harmonic three-

forms and the resulting scalar potential reads:

V =
i

2 Im τκ210
∫
X Ω ∧ Ω

(∫
X
Ω ∧ F3

∫
X
Ω ∧ F3 +Gκλ

∫
X
χκ ∧ F3

∫
X
χ̄λ ∧ F3

)
− Im τ

4κ210

[
mk
H(ImM)klm

l
H +

(
eHk − (mH eM)k

)
(ImM)−1 kl(eHl − (mH eM)l

)]
,

(2.41)

where the mH denote the expansion coefficients of the NS–NS three-from H3. It turns
out that only – fluxes generate a superpotential, whereas the NS–NS fluxes generate a
D-term []. Thus the GVW superpotential in the case of O5/O9-planes is obtained by
setting H3 = 0 in (.):

W =
1

κ210

∫
X
F3 ∧ Ω. (2.42)

For unbroken N = 1 supersymmetry, all F-terms have to vanish. This gives further
constraints on which components of G3 are allowed. In particular the F-term conditions for
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the Kähler, dilaton and complex structure moduli imply:

DTAW = (∂TA)K
∫
X
G3 ∧ Ω3 = 0 ⇒ G

(0,3)
3 = 0,

DτW =
1

τ − τ̄

∫
X
G3 ∧ Ω3 = 0 ⇒ G

(3,0)
3 = 0,

DUkW =

∫
X
G3 ∧ χk = 0 ⇒ G

(1,2)
3 = 0.

(2.43)

These are 2h(2,1)− +4 real equations, compared to 2h(2,1)+2 real parameters (τ, Uk) to solve
for. In general, G3-flux will thus not preserve supersymmetry.

The same result can be obtained by analyzing the supersymmetry conditions with fluxes
directly in ten dimensions or by studying the equations of motion. In both cases it turns
out that the three-form flux G3 must be a primitive (2, 1)-form satisfying the imaginary
self-duality condition.⁶

We close this section with an important consideration concerning the moduli fields. The
scalar potential of the low-energy effective action in type IIB flux compactifications with
O3- and O7-planes is given by (.) with Kähler potential (.) and superpotential (.).
The volume of the internal space can be written in terms of four-cycle volumes which are
the correct Kähler variables for the N = 1 low-energy effective action. For the case of one
Kähler modulus, the relation is:

volE(X ) = e (T )3/2. (2.44)

Thus, the corresponding term in the Kähler potential can be rewritten:

K = −2 ln
(
volE(X )

)
= −3 ln(T + T ). (2.45)

It is not difficult to derive that if we perform the sum over all fields in (.), the term with
the Kähler modulus T , i. e. KTTDTWDTW exactly cancels against −3|W |2. We are left
with a positive semi-definite F-term potential of the form

VF = eKKi̄DiW D̄W, (2.46)

where the indices i, ̄ run over all superfields but the Kähler modulus T . The situation remains
unchanged in the more general case of having more than one Kähler modulus. Such models
are well-known in supergravity and go under the name “no-scale models” [, ]. The
associated Lagrangian is said to posses a “no-scale structure” (for the Kähler moduli). The
minimum of (.) is at VF = 0, i. e. it is a supersymmetric minimum since the F-terms

6 On Calabi–Yau manifolds, (2, 1)-forms are always primitive.
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vanish: DiW = 0. At this particular point, the prefactor eK is undetermined and as the only
dependence on T is in the Kähler potential, we conclude that with the help of three-form
fluxes, it is possible to lift the complex structure moduli and the dilaton, as it should be clear
from (.), but not the Kähler moduli.

2.6. D-Branes

Strings are not the only dynamical objects in string theory. When studying their equations
of motion it turns out that it is possible to allow also open strings in the theory, provided
suitable boundary conditions on their endpoints are imposed.

There are two types of boundary conditions which are compatible with the equations of
motion:

∂σX
a(τ, σ)|σ=0,π = 0, Neumann boundary condition,

δXn(τ, σ)|σ=0,π = 0, Dirichlet boundary condition.
(2.47)

When imposing Neumann boundary conditions along the directions Xa, a = 0, . . . , p and
Dirichlet boundary conditions on the remaining Xn, n = p + 1, . . . , 9, the motion of the
string endpoints is confined to a p-dimensional plane, called Dirichlet brane or D-brane.⁷

In [] it was shown that D-branes carry amond–amond charge. They couple in a
canonical way to the – potentials. This tells us that in type IIB there can only exist
stable D(−1)-, D1-, D3-, D5-, D7- and D9-branes as for the even numbered ones, the
corresponding – potentials are absent.

edoing the quantization procedure for an open superstring attached to a single Dp-brane
shows that all excitations with bosonic oscillators are massive. The NS and  sector give rise
to a massless U(1) vector and a Majorana–Weyl spinor in ten dimensions,

AMψ
M
−1/2|0〉NS ⊕ χα|α〉, (2.48)

transforming in the 8V ⊕ 8s of ten-dimensional space–time. The collection of the fields
(AM , χα) form together an N = 1 vector multiplet under ten-dimensional supersymmetry.

The vector AM can be decomposed in components tangential and normal to the brane.
The 9− p transverse components are scalars from the D-brane world-volume point of view
and describe the transversal fluctuations of the brane in space.

This suggests that a D-brane is a dynamical rather than a static and rigid object in space–time.
As such, it has couplings to the bulk closed string fields, described by the Dirac–Born–Infeld
action for the NS–NS fields and the Chern–Simons action for the – fields. In its most

7 Another strong motivation for the existence of D-branes in string theory comes from T-duality [].
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general form, the action for single Dp-brane reads:

S = SDBI + SCS =− µp

∫
W

dp+1ξ e−φ(X)
√

− det
(
gMN(X) +BMN + 2πα′FMN(X)

)
− µp

∫
W

ch(2πα′F ) ∧

√
Â(RT )

Â(RN)
∧
⊕
q

Cq,

(2.49)

where the ξ are coordinates of the p+1-dimensional world-volume W of the brane, F is the
field strength of the U(1) vector field AM and Â(RT,N) is the A-roof-genus of the tangent
and normal bundle respectively.

As we are interested in compactifications to four dimensions which preserve four-dimen-
sional Poincaré invariance, D-branes have to be placed in space–time such that they fill out
all four non-compact directions and wrap a cycle of the compactification manifold⁸, which
in order to preserve supersymmetry is required to be a holomorphic submanifold of the
Calabi–Yau []. Thus we are left with D3-, D5-, D7- and D9-branes at our disposal. If
we compactify on an orientifold, we furthermore have to ensure that for each brane there
is a corresponding “mirror brane” such that the whole configuration is invariant under the
geometric involution σ. Moreover, the parity of the – potentials under the orientifold
projection (.) further restricts the type of D-brane that can appear, depending on the
type of orientifold projection (.). In the O3/O7-system, only D3- and D7-branes are
invariant objects, whereas in the O5/O9-system only D5- and D9-branes are possible.

From the four-dimensional point of view, the 10d vector AM decomposes into a 4d vector
Aµ and six scalarsAi. The 10d Majorana–Weyl spinor χα decomposes as (2, 4)⊕(2̄, 4̄) under
the SO(3, 1)⊗SO(6) space–time symmetry group, thus in summary there are four 4d Weyl
fermions. All fields together form a 4d N = 4 vector multiplet.

If we include more than one D-brane in the compactification, several cases have to be
distinguished: multiple D-branes of the same dimension can be placed on top of each other
forming a what is called stack of branes, they can be parallel to each other or they can
intersect.

In the first case, the D-branes are at the same position in space. The end points of open
strings are endowed with so-called Chan–Paton labels λA, indicating on which of the D-
branes within the stack they end. Instead of an abelian U(1) gauge theory, there now arises
a non-abelian U(N) gauge theory on the world-volume of the stack of the D-branes, where
N is the number of branes lying on top of each other.⁹ Likewise, from the four-dimensional
point of view, the vector Aµ and the spinor χα now transform in the adjoint representation

8 The situation in which D-branes wrap internal cycles only will be considered in section .
9 If the stack of D-branes lies on top of the orientifold plane, the gauge group is instead SO(2N) or SP (2N),
depending on the details of the orientifold projection.
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epresentation Multiplicity
(Na, Nb) Iab
(Na, Nb) Ia′b
Aa

1
2
(Ia′a + 2IO7 a)

Sa
1
2
(Ia′a − 2IO7 a)

Table 2.4.: Chiral spectrum for intersecting D7-branes

of U(N).
If theN D-branes in the stack are shifted away from each other along the normal direction,

we end up with a configuration of N parallel branes. Intuitively it is clear that the open
strings stretching between two different branes are massive and thus are no longer present in
the low-energy effective theory. Only the modes stemming from open string starting and
ending on the same brane remain massless and we end up with a U(1)N gauge theory. The
process of separating a stack of D-branes can be interpreted from the field theory point of
view as giving the transversal scalars a vev, breaking the U(N) gauge symmetry down to
U(1)N .

The most interesting case is the configuration of two intersecting (stacks of) D-branes.
From now on, we restrict ourselves to the case of intersecting (magnetized) D7-branes, as
this is the configuration we will consider in the later chapters. They wrap four-cycles in
the internal space and hence two D7-branes generically intersect over a two-dimensional
subspace within the Calabi–Yau. In addition to the massless modes we encountered in the
case of a single stack, there now appear massless modes stemming from open strings stretching
from one stack to the other along the intersection locus.

To be more concrete, we consider two stacks a and b with Na and Nb branes on top of
each other respectively, wrapping the cycles Da, Db and carrying the gauge fields Va and
Vb. In an orientifold compactification, their image branes under the geometric involution σ
have to be included as well. They wrap the cycles Da′,b′ . Last but not least, the orientifold
cycle is simply denoted by O7. Then we compute the various chiral indices as:

Iab =

∫
Da∩Db

(
c1(Va)− c1(Vb)

)
=

∫
X

(
c1(Va)− c1(Vb)

)
∧ [Da] ∧ [Db], (2.50)

where [Da,b] denote the Poincaré dual two-forms corresponding to the four-cycles Da,b.
The resulting chiral spectrum appearing at the intersection in the internal space is listed in
table ..

Note that for the first time, we encounter chiral fermions in the spectrum—one of the
most outstanding features of the standard model. As we are interested in constructing models
which resemble the standard model as close as possible, intersecting D7-branes will be a
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necessary ingredient in the compactifications we consider.

We discussed already that D-branes carry amond–amond charge. This charge has to be
canceled with corresponding negative contributions, furnished by the charge of the orien-
tifold planes. This is analogous to classical electrostatics: a single positive charge placed on
a compact space without boundary would violate Gauß’s law. Similarly, in string theory,
the correct charge cancellation condition can be obtained if we consider the equations of
motion for the amond–amond potentials, i. e. set to zero the variation of the total action
with respect to Cq.

In the case of the O3/O7-system, the condition for C4 reads (after taking the orientifold
quotient):

ND3 +Nflux −
∑
a

Na

∫
Da

ch2(Va) =
NO3

4
+
∑
a

Na

24

∫
Da

c2(TDa) +
1

12

∫
DO7

c2(TO7).

(2.51a)
Here ND3,O3 denotes the number of D3-branes and point-like (in the internal space) orien-
tifold planes respectively. As anticipated from (.) there is a contribution from the fluxes,
denoted by Nflux. From the Chern–Simons action (.) it is clear that a Dp-brane couples
also to amond–amond potentials of lower rank. Thus we have a contribution also from
D7-branes, wrapping four-cycles Da and carrying gauge bundles Va.

For the same reason, there is a similar condition for C6, even if no D5-branes are present:∑
a

ch1(Va) ∧Da ∧ ωa = 0, (2.51b)

where {ωa} is a basis of H(1,1)
− (X ) and hence, the above condition will automatically be

satisfiyed provided h(1,1)− = 0. In [, ] is was pointed out that this condition plays an
important rôle in the cancellation of various chiral anomalies.

Finally there is a simpler condition for C8:∑
a

NaDa = 4DO7, (2.51c)

where DO7 is the four-cycle of the orientifold plane in the internal space. These three
conditions (.a)–(.c) go by the name “tadpole cancellation conditions”, as non-zero
tadpole diagrams for the moduli fields in the low-energy effective field theory arise if they
are not fulfilled. This indicates an instability.

We conclude this section with some remarks on various anomalies that can occur when
branes are present in a compactification. From (.) it is clear that in order to have chiral
fermions in the spectrum, at least one of the D7-branes has to carry a non-trivialU(N) gauge
bundle. Generically it contains an anomalous U(1) subgroup giving rise to non-abelian,
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mixed abelian–non-abelian, cubic abelian and mixed abelian–gravitational anomalies.

The cubic non-abelian anomaly vanishes if the D7- and D5-tadpole conditions (.b)
and (.c) are fulfilled []. The anomalous diagrams for the mixed abelian–non-abelian,
cubic abelian and mixed abelian–gravitational anomalies are canceled via a generalized Green-
Schwarz mechanism: when reducing the Chern–Simons action, there arise couplings be-
tween the anomalous gauge field F and four-dimensional axions, stemming from the di-
mensional reduction of the amond–amond potential C4, schematically:

SCS ∼
∫
M4×Da

C4 ∧ F ∧ F. (2.52)

From this, such couplings can be generated which precisely cancel the chiral anomalies. In
addition, a Stückelberg mass term four the anomalous gauge symmetry is generated.

Finally, it was shown in [] that another anomaly can appear if there is three-form flux
present: with non-vanishing H3, the Bianchi identity for the diagonal U(1) gauge field
strength F on D-branes is modified:

dF = −H3. (2.53)

By integration over a three-cycle Σ3 we get the condition∫
Σ3

H3 = 0. (2.54)

Its fulfillment guarantees that the so-called Freed–Witten anomaly is absent.

2.7. D-Brane Instantons

Instead of filling out four-dimensional space–time and wrapping a cycle of the compacti-
fication manifold, it is also possible that a D-brane wraps an internal cycle only such that
it is point-like from the four-dimensional point of view. One then speaks of a (Euclidean)
D-brane instanton or E-instanton as it affects the calculation of correlation functions in a
similar fashion as the well-known instantons in field theory. In fact, special configurations
of D-branes and D-brane instantons precisely reproduce in the low-energy limit a four-
dimensional gauge theory including the effects of gauge instantons [].

As in the field theory case, the effects of D-brane instantons come with the typical expo-
nential factor of ∼ exp(−Sinst) and are thus highly suppressed. Only if certain couplings are
absent in perturbation theory, for instance due to non-renormalization theorems, instanton
effects may furnish the leading order contribution. The exponential suppression can poten-
tially be used to explain some of the small and large hierarchies present in the standard model
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and its supersymmetric extensions. Examples include Majorana masses for the right-handed
neutrinos [,,], the MSSM µ-term [,] and top quark Yukawa couplings in SU(5)
GUT theories [, ].

In this work, we will be mainly interested in the generation of mass terms for the so far
massless Kähler moduli. Intuitively it is clear that this should be possible as the instanton
action depends on the volume of the internal cycle it wraps.

As there does not exist a complete second quantized version of string theory yet, the
instanton calculus cannot be derived from first principles. Instead one relies on analogies to
the field theory case. Doing so, we expect a contribution to the four-dimensional effective
action of the form:

Sn.p. =

∫
dM e−S

(0)
E −Sint.

E (M), (2.55)

where M denotes the collection of all instanton zero modes, S(0)
E is the classical instanton

effective action and S int.
E its interaction part. The integral over the fermionic zero modes

vanishes if more than one zero mode is pulled down from the exponent as they are described
by Graßmann variables. Hence only instantons with a very specific fermionic zero mode
structure can contribute to the effective action. We encounter a similar distinction of cases
as with D-branes since various E-instantons can intersect with themselves, D-branes and
orientifold planes, giving rise to different sets of zero modes. In detail, there exist:

Universal zero modes. They arise from strings starting and ending on the same instanton.
There are four bosonic ones xµ parameterizing the (point-like) position of the instanton
in four-dimensional space–time. They can be understood as being the Goldstone bosons
corresponding to the breakdown of the four-dimensional translational invariance. Univer-
sal fermionic zero modes arise from the breakdown of supersymmetries. Here one has to
distinguish several cases: firstly, the instanton can wrap a cycle which is not invariant under
the orientifold projection and thus an image instanton has to be included. In such a config-
uration, there are two chiral Goldstinos θα as well as anti-chiral ones τ̄ α̇. Consequently, a
contribution to an F-term can only arise if the extra τ̄ α̇ are saturated. If the instanton wraps
a cycle already populated by a D-brane, the extra anti-chiral modes are soaked up in a way
reproducing the celebrated ADHM constraints for gauge instantons. Such a configuration is
in fact equivalent to an ordinary gauge instanton in the field theory living on the D-brane
in question. For an SU(Nc) N = 1 supersymmetric QCD with Nf = Nc − 1 flavors engi-
neered on a stack of D-branes it was shown in [–] that indeed the Affleck–Dine–Seiberg
superpotential is generated by an E-instanton. Finally, the D-brane instanton may be on top
of the orientifold plane. A stack of ordinary D-branes on such a cycle can have gauge group
SO(N) or SP (N). For a D-brane instanton on this cycle the gauge group is swapped to
SP (N) or SO(N). In the first case, there are N(N −1)/2 zero modes θα and N(N +1)/2

τ̄ α̇s. In the latter case one gets N(N + 1)/2 θα and N(N − 1)/2 τ̄ α̇ zero modes. Hence
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the case of most interest are O(1) instantons on top of an orientifold plane because we end
up with the right number of two universal zero modes θα. For the case of E3-instantons
wrapping a four-cycle Γ4 in the internal space, which we will mainly consider in the later
chapters, the contribution to the superpotential of the low-energy effective action was al-
ready pioneered in [] and turns out to be of the form:

Winst ∼ e−2πT , (2.56)

where T is the Kähler modulus corresponding to the four-cycle Γ4.

Deformation zero modes. They stem from the transversal modes of open strings starting and
ending on a particular D-brane instanton, describing infinitesimal deformations of the instan-
tonic brane. Each complex valued deformation leads to one complex bosonic zero mode.
One chiral and one anti-chiral Weyl spinor comprise the fermionic zero modes. Whether
a cycle can be deformed or not is a question of topology. The number of deformations is
counted by the Betti numbers b1 and b2 of the cycle in question. They count the Wilson-
line moduli and the transversal deformations respectively. Since these zero modes come in
addition to the universal ones, instantons on cycles with deformations contribute only if the
extra zero modes are soaked up, or lifted by flux [–,–]. The extra modes are absent
if the cycle simply has no deformations, i. e. is rigid.

Charged zero modes appear at the intersection of a D-brane instanton with an ordinary,
space-filling D-brane. They are called “charged” as one end of the open strings at the
intersection locus is attached to the (stack of) D-brane(s) and hence is charged under the
four-dimensional gauge group of it. We specialize now to the case of an O(1) instanton.
The number of charged zero modes is then counted by the intersection number IE,Da ,
defined in (.). They carry the total U(1)a charge Qa(E) = Na(IE,Da − IE,D′

a
). In

order to contribute to the superpotential, the additional charged zero modes λ have to be
soaked up. This works with the help of couplings of the form λE aiΦaibiλbi E appearing in
S int.
E . Hence the saturation of the λ zero modes pulls down charged matter fields Φaibi in the

fermionic integral in such a way that the U(1)a charges are preserved. Consequently there
appear terms in the superpotential of the form

W =
M∏
i=1

Φaibie
−SE . (2.57)

Here, the charge of the product of the matter fields is canceled by the sum of the charges of
the zero modes:

M∑
i=1

Qa(Φaibi) = −Na(IE,Da − IE,D′
a
), (2.58)

such that the whole expression is gauge invariant. The consequences for model building of



 . T IIB S T  M B

a charged superpotential (.) will be discussed in chapter  in detail.
Multi-instanton zero modes. In the same way a D-brane instanton can intersect a D-brane, it

can also intersect another E-instanton. Then zero modes arise at the intersection locus and
are therefore called multi-instanton zero modes. For the case we are interested in, namely
an E3-instanton with gauge group O(1) (hence lying on the orientifold plane), the number
of zero modes is given by the same expression as for D-brane case, given in table ..

2.8. De Sitter Vacua in String Theory

For a completely realistic and full-fledged string vacuum, one has not only to engineer
the particle content and interactions of the standard model. In addition, all moduli have
to be stabilized with a mass of at least 10−3 eV in order not to be in conflict with fifth-
force experiments [] and to have definitive values for the couplings. Moreover, as there
is evidence for a small, but non-zero positive cosmological constant, the four-dimensional
non-compact part of the ten-dimensional space–time should have the geometry of de Sitter
space.

There are no-go theorems showing that de Sitter solutions do not exist in string theory if
one only takes the lowest order terms in the effective supergravity action into account [,].
Fortunately, the inclusion of gs- and α′-corrections improves the situation.

Kachru, Kallosh, Linde and Trivedi (KKLT) first proposed a construction in which both,
stabilization of all moduli and a positive cosmological constant can be obtained []. In a
first step, the complex structure moduli and the dilaton are stabilized with background fluxes
as described in section .. Then, one takes into account non-perturbative effects resulting
either from D-brane instantons or from gaugino condensation in the effective superpotential
in order to break the no-scale structure for the Kähler moduli. As a result, a scalar potential
is generated for them, stabilizing their vacuum expectation value. Finally, one introduces
anti D3-branes in the internal space, which explicitly break supersymmetry and uplift the
vacuum energy to a positive value.

Non-perturbative effects

At the perturbative level, no corrections to the superpotential can appear. The reason is the
following: the string coupling is given by the expectation value of the dilaton: gs = 〈eφ〉. As
the superpotential is by definition a holomorphic function of the superfields, higher powers
of gs can appear in the superpotential only in conjunction with the universal axion, the field
with it is combined into a complex scalar S = e−φ+ iC0. A polynomial dependence on C0

would however break its perturbative shift symmetry.
At the non-perturbative level, there are two sources for corrections to the superpotential.

Euclidean D-brane instantons, wrapping a four-cycle in the internal space generate for the
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case of E3-instanton a new term

W = A(U)e−2πT , (2.59)

where A(U) is a complex structure moduli dependent one-loop determinant and T is the
Kähler modulus corresponding to the four-cycle, the D-brane is wrapping. In section .
we have seen that the generation of such a term highly depends on the zero mode structure
of open string modes stretching between the instanton and other D-branes.

A similar non-perturbative term can arise from gaugino condensates on D7-branes: Con-
sider a stack of Nc coincident D7-branes, wrapping a rigid four-cycle in the internal space.
On their word-volume they support a U(Nc) gauge theory with four-dimensional gauge
coupling

8π2

g2YM
= 2πτ, (2.60)

where τ denotes the volume of the internal four-cycle Γ, i. e. τ = vol(Γ)
`4s

. At low energies,
this is effectively a pure N = 1 supersymmetric gauge theory which undergoes gaugino
condensation. The correction to the effective superpotential reads

W = Λ3 = Ae−
2πT
Nc , (2.61)

where Λ is the dynamical scale of the gauge theory. Thus both effects yield a similar correc-
tion to the superpotential. They lead to a dependence of the superpotential on the Kähler
moduli, breaking the no-scale structure of tree-level flux compactifications, discussed in sec-
tion ..

Supersymmetric anti de Sitter vacua

Now we assume the tree-level no-scale Kähler potential for the Kähler moduli:

K = −3 log(T + T ) (2.62)

and a non-perturbative correction to the superpotential of the form

W =W0 + Ae−aT , (2.63)

where a can be fractional and thus can account for both, instantons and gaugino condensates.
For the moment, we ignore the axion belonging to the complex scalar T . From (.) it
is obvious that there exists a supersymmetric minimum in the scalar potential if DTW =
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Figure 2.1.: Minima in the KKLT construction

∂TW + ∂TKW = 0. One easily finds the solution

W0 = −Ae−aτ0
(
1 +

2

3
aτ0

)
(2.64)

and the vacuum energy turns out to be negative:

V0 = −a
2A2e−2aτ0

6τ0
. (2.65)

Thus we have found a supersymmetry preserving AdS vacuum. A plot of the scalar potential
can be seen in figure .(a). In general, fluxes generate a value of W0 ∼ O(1) in the
superpotential. From (.) it is clear that this implies aτ0 ∼ O(1)which comes into conflict
with the supergravity approximation where τ � 1 is required. If the compactification
manifold supports a large enough number of three-cycles, the discretuum of fluxes becomes
dense enough to allow also for much smaller values of W0 []. Moreover, in chapter 
we will see how so-called racetrack potentials can generate a small value for W0 without
fine-tuning.

Uplifting to de Sitter vacua

In [] it was shown that anti D3-branes contribute positively to the vacuum energy:

δV = 2
a40T3
g4s

1

τ 3
. (2.66)

The inclusion of these objects may uplift the anti de Sitter minimum of the last section
to a minimum with positive vacuum energy. As anti D3-branes preserve a different set of
supersymmetries as the background, supersymmetry will be broken in this construction by
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an amount proportional to the brane tension.
The branes do not introduce new translational moduli as the ISD flux generates a potential

for the world-volume scalars. In fact they are driven to the tip of the Klebanov–Strassler
throat. This is reflected in the value of a0 in (.) which will be exponentially small. Its
value can be tuned discretely by different choices of flux quanta.

In figure .(b) the uplifting of the AdS minimum is illustrated for different values of a0.
Apparently, the position of the minimum for the Kähler modulus is nearly not affected. This
guarantees that we stay in a large volume regime also after the uplift procedure, if this was
the case before.

The plot of the scalar potential shows also that the de Sitter minimum is only metastable.
The lifetime of the minimum before decompactifying to ten-dimensional Minkowski space
should be at least as long as the lifetime of the universe in order to be a sensible model
for the phenomenological description of the current state of accelerated expansion of space.
Computations in the thin-wall approximation as well as the no-wall approximation show
that the lifetime is as long as

tdecay ≈ e10
122

, (2.67)

measured in multiples of the Planck time. Thus, for all practical purposes, the de Sitter
minimum can be considered as stable.





3. The LAGE Volume Scenario

In section . we got to know the KKLT construction as a proposal how to stabilize all
moduli in a string compactification. In particular the Kähler moduli received a mass upon
including non-perturbative effects like those of D-brane instantons or gaugino condensates,
whereas the complex structure moduli, the dilaton and also the transversal D-brane moduli
were frozen by a tree-level effect, namely three-form fluxes.

A shortcoming of the KKLT construction is the fact that an unnaturally small value of the
flux superpotential W0 � 1 is required in order to be in a regime where the supergravity
approximation is valid. However, the three-form flux induces a value forW0 of rather O(1).
In view of the plethora of string vacua there certainly exist compactifications where the flux
superpotential takes a value in the range suitable for KKLT accidentally, but clearly this is not
the generic situation.

Instead of relying on non-perturbative effects only for the stabilization of the Kähler mod-
uli, it suggests itself to revisit if perturbative corrections to the low-energy effective supergrav-
ity action could also do the job. We argued already that due to its holomorphy, corrections
to the superpotential are highly constrained and in fact, due to strong non-renormalization
theorems, there are no perturbative corrections to it. However, we will see in section .
that the Kähler potential— a non-holomorphic quantity— is subject to perturbative correc-
tions in both expansion parameters, gs and α′, which will also break the no-scale structure
of the Kähler moduli []. It will turn out that in particular the α′-correction competes
with the non-perturbative corrections to the superpotential in such a way that under certain
circumstances, the volume of the compactification manifold is driven to exponentially large
values []. Compactifications of this type go under the name “LAGE volume scenario”
(LVS).

Blowing up the compactification manifold usually has the effect that all two- and four-
cycles of the manifold also grow (as on a torus for example). This is however unfavorable
as the size of such a cycle determines the coupling constant of the four-dimensional gauge
theory living on the world-volume of a D-brane filling out the non-compact space and
wrapping the cycle in question in the internal space. Hence, too large internal cycles gives
rise to too weakly coupled gauge theories in four dimensions. We will see in section . that
there exist also Calabi–Yau manifolds on which the four-cycles correspond to “holes” in the
geometry. They can be kept small when growing the rest of the manifold and therefore,
the aforementioned problem does not arise. For obvious reasons, this kind of manifold was
given the name “swiss cheese” manifolds and they are an important ingredient of the LAGE


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volume scenario.

Besides the fact that the LVS does not rely on a small value of the flux-induced superpo-
tential (and is in that respect more generic than the KKLT construction), it has a lot of very
appealing particle physical and also astrophysical properties. These will be explored in detail
in the later sections of this chapter.

3.1. Perturbative Corrections in α′ to the Kähler potential

We start with perturbative α′-corrections to the Kähler potential. These have been ex-
plored in []. The corrections arise upon taking into account higher derivative terms in
the ten-dimensional effective action (.). There is no complete calculation of all higher
order interactions (see [] for an overview), however we are interested only in those giv-
ing corrections to the Kähler moduli space and thus finally to the Kähler potential of the
N = 1 effective action. The relevant additional two terms to the ten-dimensional N = 2

supergravity action were shown to be []:

∆S = − 1

2κ10

∫
d10x e−2φα′3

(
ζ(3)

3 · 211
J0 + (∇2φ)Q

)
, (3.1)

where ζ is the iemann zeta function, J0 is a particular contraction of the iemann–Christoffel
tensor RM

NOP and a generalization of the Euler density, denoted by E8:

J0 = tM1N1...M4N4tM ′
1N

′
1...M

′
4N

′
4
RM ′

1N
′
1
M1N1 . . . R

M ′
4N

′
4
M4N4 +

1

4
E8. (3.2)

The second summand in (.) does not modify the ten-dimensional equations of motion to
order O(α′3) but it is necessary in the derivation of the four-dimensional effective action. It
contains a generalization of the six-dimensional Euler integrand:

∫
X d6x

√
gQ = χ(X ).

The most important point one should bear in mind here is that the higher derivative
terms determine the α′3-corrections to the ten-dimensional effective action. They encode
geometrical information of the compactification manifold in form of the Euler characteristic.

When compactifying the ten-dimensional effective action including the corrections (.)
we get a four-dimensional N = 2 supersymmetric action which has, compared to the orig-
inal case (.), a modified metric of the moduli space of the Kähler deformations. Finally
we are interested again in a compactification on an orientifold of a Calabi–Yau manifold
and thus, the perturbative corrections to the hypermultiplet action have to be translated into
appropriate type IIB variables and truncated to an N = 1 sub-sector.

This procedure is rather involved. A notable consequence is that a constant dilaton in the
internal space is not a solution to the equations of motion anymore. As a consequence, upon
compactifying to four dimensions, where we have to integrate over the internal space, the
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four-dimensional dilaton is corrected. In string frame it now reads:

e−2φ = e−2φ0
(
V + 1

2
ξ
)
, (3.3)

with V denoting the volume of the internal space and ξ = −1
2
χ(X )ζ(3). As we will work

mainly in Einstein frame later, we give here the same relation, transformed to Einstein frame:

e−2φ = e−φ0/2
(
V̂ + 1

2
ξ̂
)
, (3.4)

where we defined V̂ = Ve−3φ0/2 and ξ̂ = ξe−3φ0/2.
Using all redefined variables as well as the modified dilaton solution, one finally can derive

the N = 1 Lagrangian, allowing to read off the corrected Kähler potential. It takes the
form:

K = −2 ln

(
V̂ +

ξ

2

(
−i(τ − τ̄)

2

)3/2
)

− ln
(
−i(τ − τ̄)

)
− ln

(
−i
∫
X
Ω ∧ Ω

)
. (3.5)

Though it would be consequential to derive the perturbative corrections in the string
coupling gs to the Kähler potential at this stage and then continue to analyze the minima of
the resulting scalar potential, we postpone the string loop corrections to section . because
we can understand their effects in a better way, when we know already the stabilization
mechanism of the LVS.

3.2. The Scalar Potential

We consider now a flux compactification on an orientifold of a Calabi–Yau manifold and
include non-perturbative corrections to the superpotential as well as the α′-corrections to
the Kähler potential. The effective N = 1 theory for the closed string sector is thus given
by the Kähler potential (.) and the superpotential

W = WGVW +Wn.p. =

∫
X

G3 ∧ Ω3 +
∑
n

Ane
−anTn . (3.6)

The non-perturbative contribution to the superpotential can either stem from a D3-brane
instanton or from gaugino condensation. Both can be accounted for in the expression (.)
by choosing the factor an to be 2π or 2π/Nc respectively.

The (string frame) volume of the compactification space can be written generically in
terms of two-cycle volumes ti and the triple intersection form κijk:

V =

∫
X
J3 =

1

6
κijkt

itjtk. (3.7)
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There exists a relation to the dual four-cycle volumes:

τi = ∂tiV =
1

2
κijkt

ktk. (3.8)

In the class of compactification spaces we consider, eq. (.) can be inverted and plugged
into (.) so that we can express the volume in (.) directly in terms of four-cycle volumes.
This is advantageous since the four-cycle volumes are the real parts of the Kähler variables
Ti = τi+ibi entering the effective supergravity action, making it easy to calculate the Kähler
metric.

It is clear that α′-corrections in (.) will modify the inverse Kähler metric for the Kähler
moduli KTaT b such that in addition to the non-perturbative corrections to the superpotential
they furnish another source for the breaking of the no-scale structure. The new expression
for the Kähler metric was first derived in []. It can be expressed in terms of the Hessian
matrix of the volume function depending on the four-cycle volumes τi []. In Einstein
frame it reads:

Kτaτb = −2

(
V̂ +

ξ̂

2

)(
∂2V̂
∂τa∂τb

)−1

+ τaτb
4V̂ − ξ̂

V̂ − ξ̂
. (3.9)

We are now in a position to start to derive the scalar F-term potential (.). We assume
that the complex structure moduli and the dilaton are stabilized via the conditions DUW =

DSW = 0 and therefore can be integrated out.¹ Using (.), the following expression for
F-term potential arises:

VF = eK
[
KTiT j

(
aiAiajĀje

−(aiTi+ajT j) − (aiAie
−aiTiW∂T j

K + ajĀje
−ajT jW∂TiK)

)
+ 3ξ

(ξ2 + 7ξV + V2)

(V − ξ)(2V + ξ)2
|W |2

]
=: Vnp1 + Vnp2 + Vα′ ,

(3.10)

where for the sake of legibility, we dropped the “hats” over the symbols V and ξ. All
quantities are understood to be in Einstein frame. Now we argue that there exists a minimum
at exponentially large volume with negative cosmological constant. Therefore we do not
minimize the full scalar potential (.) but expand each of the three terms in the large
V limit and minimize the simplified potential.² One might be tempted to argue that the
non-perturbative terms Vnp1 and Vnp2 are exponentially suppressed and can be neglected
compared to the perturbative α′ term. We assume now that the compactification space

1 In section . we will give a justification for this approach.
2 This procedure can also be cross-checked by numerically minimizing the full potential. Doing so one finds
the same minimum at exponentially large volume.
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is such that the overall volume can grow arbitrarily whereas at least one of the four-cycle
volumes can remain relatively small. Then the non-perturbative terms can compete with
the perturbative α′ term. To simplify matters, we assume that there is just one such small
four-cycle and denote its volume by τs. All other four-cycle volumes are assumed to grow
with the volume, i. e. τi → ∞.

We start with Vnp1 in the large volume limit:

Vnp1 = eKKTiT jaiAiajĀje
−(aiTi+ajT j). (3.11)

It is clear that all terms involving the large four-cycles are exponentially suppressed compared
to the term with the small four-cycle. Hence it is sufficient to keep only the term with
i = j = s:

Vnp1 = eKKTsT sa2s|As|
2e−2asτs . (3.12)

In the large volume limit the Kähler metric (.) simplifies to:

KTsT s = −2V
(

∂2V
∂τs∂τs

)−1

. (3.13)

The volume is a homogeneous function of degree ³⁄₂ of the four-cycle volumes. Thus we
can expect the entry of the Hessian matrix to be of degree ¹⁄₂. Moreover it must be negative
definite such that the whole expression (.) is positive. This is because (.), before
inserting the explicit form of the superpotential, reads KTsT s∂TsW∂T s

W ; it is the length of
the vector ∂TsW in terms of the Kähler metric. Provided we are inside the Kähler cone, this
must be positive definite. We write (.) symbolically as

KTsT s = V
√
τs, (3.14)

having in mind that at this stage we need only the correct scaling behavior in the large volume
limit. Finally we can expand the Kähler potential (.) itself and find the approximation:

eK −−−→
V→∞

eKc.s.

V2
, (3.15)

where Kc.s. = − ln
(
−i(τ − τ̄)

)
− ln

(
−i
∫
X Ω∧Ω

)
. Putting all approximations together we

finally find:

Vnp1 ≈
a2s|As|

2√τse−2asτseKc.s

V
+O

(
e−2asτs

V2

)
. (3.16)

Now we come to Vnp2. Also here we have to keep only the term involving the small
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four-cycle τs:

Vnp2 = −eKKTsT s
(
asAse

−asTsW∂T s
K + asĀse

−asT sW∂TsK
)

= −eKKTsT s
(
asAse

−asτsW∂T s
Keiasτs + c.c.

)
= 2e

(
−eKKTsT sasAse

−asτsW∂T s
Keiasτs

)
.

(3.17)

This expression is the only term where the axion as appears. Thus when we minimize the
F-term potential with respect to as, its value will be set such that Vnp2 is rendered real and
negative. From (.) it is easy to see that symbolically:

∂T s
K = − 2

V + ξ
2

∂V
∂T s

−−−→
V→∞

−
2
√
τs

V
, (3.18)

where we used again the expected scaling behavior of the volume depending on the four-
cycle volumes. We insert now this and also the expression for KTsT s (.) as well as the
approximation (.) in (.) and obtain the following result:

Vnp2 ≈ −asτse
−asτs

V2
|AsW0|eKc.s +O

(
e−asτs

V3

)
, (3.19)

where we used that the flux part dominates the superpotential (.) giving a vev of order
one: W ≈ W0 ∼ O(1) such that the non-perturbative contributions can be neglected here.
We also dropped numerical prefactors.

In the large volume limit, the α′ term in (.) scales like:

Vα′ ≈ ξ

V3
|W0|2eKc.s. +O

(
V−4

)
. (3.20)

The complete F-term potential in the large volume limit is thus given by:

VF =
a2s|As|

2√τse−2asτseKc.s

V
− as|AsW0|τse−asτs

V2
eKc.s +

ξ

V3
|W0|2eKc.s. + . . . (3.21)

Now we choose a particular direction in the Kähler moduli space in which the minimum at
large volume of (.) becomes obvious. This direction is given by:

V → LAGE and asτs = ln(V). (3.22)

If we drop in addition the common prefactor eKc.s. , in this limit the F-term potential (.)
reads:

VF =
a
3/2
s |As|2

√
ln(V)

V3
− |AsW0| ln(V)

V3
+

ξ

V3
|W0|2. (3.23)
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All terms scale with V−3. However the second one has the strongest dependence on V in
the numerator. Thus it will overcome the first and the third term in the limit V → ∞.
Consequently in this limit, the potential approaches zero from below. On the other hand for
small values of V , either the first or the third term will dominate the potential, depending
on the value of τs. In order to guarantee the existence of a minimum we have to require
now that the third term is positive definite. This is the case if ξ > 0 and thus χ(X ) < 0

which is equivalent to the condition h(2,1) > h(1,1). Then it is ensured that at small values
of V the value of the potential is positive.³ The conclusion is that there must be an anti de
Sitter minimum at large values of V . Coming from smaller values of the volume we reach the
minimum as soon as the second term in (.) becomes dominant. This happens for “large”
values of ln(V) which means that we can expect the minimum to be located at exponentially
large volume.

So far, we found a minimum in one particular direction of the moduli space given by
asτs = ln(V). It remains to be shown that this is also a minimum in all other directions
and not a saddle point. This can be seen when looking at the full scalar potential (.)
again: for a fixed value of V , as we decrease the value of other four-cycles, the first term
will start to dominate as it has the lowest power of the volume in the denominator and the
exponential suppression decreases.⁴ Since this is a positive definite term, the value of the
potential grows at the boundary of the Kähler cone and we are driven back to the AdS
minimum at large volume. On the other hand if we increase various four-cycle volumes,
the exponential suppression of the first two terms increases and the positive third term starts
to dominate, resulting in an increase of the value of the scalar potential.

Let us now study a few properties of this newly found minimum at large volume. First of all,
the value of the scalar potential in the minimum is of the order VF ∼ O(V−3). The general
expression for the F-term potential (.) tells us that, since the second term −3eK|W |2

is ∼ O(V−2), consequently DTsW 6= 0 and thus supersymmetry is broken spontaneously.
This is in contrast to the KKLT scenario where the minimum before uplifting to de Sitter is
supersymmetric. Another interesting property of the LVS distinguishing it from the KKLT

scenario is the stability of the gravitino mass: whereas in KKLT the particular relation between
the value of the flux superpotential and the volume (i. e. the Kähler modulus T ) is given
by (.), leading to a direct dependence of the gravitino mass m3/2 = eK/2|W | on the
choice of fluxes, in the LVS the scaling behavior is precisely such that the dependence on

3 For the case ξ < 0, the existence of a minimum at large volume is not excluded. Only the behavior at small
values of V is not obvious and we cannot directly assume that the scalar potential is positive there.
4 In the expression (.) there is only one term of this form because we assumed only one modulus to be
small from the beginning. emember that in principle there is such a term for each modulus which cannot be
neglected anymore if the corresponding four-cycle volume becomes small.
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W0 is canceled. This can easily be seen if we define Ṽ := |As|V
W0

and rewrite (.):

VF ∼
(
A3
s

W0

)[
a2s
√
τse

−2asτs

Ṽ
− asτse

−asτs

Ṽ2
+

ξ

Ṽ3

]
. (3.24)

The minimum of (.) as a function of Ṽ is independent of W0 and we can write:

V ∼ W0

As
f(as,X ) + sub-leading terms, (3.25)

where f is function depending on the geometry of the compactification space X . The
gravitino mass is then:

m3/2 = eK/2|W | ≈ As
f(as,X )

, (3.26)

independent from W0. As the gravitino mass sets the SUSY breaking scale it is an impor-
tant phenomenological parameter. Concerning this point the LVS can be said to be more
predictive than the KKLT scenario.

The anti de Sitter minimum can be uplifted to de Sitter one by the same mechanisms
proposed for the KKLT scenario: anti D3-branes or also magnetic fluxes on D7-branes [].
A possible uplift potential is given by:

Vuplift =
ε

V2
. (3.27)

Notably as it scales with V−2, quite an amount of fine-tuning is required in order not to
destroy the large volume minimum.

3.3. The P4
[1,1,1,6,9][18] example

In this section be briefly check the existence of the large volume minimum on an explicit
example. We consider as compactification space the degree 18 hypersurface in the weighted
projective space P4

[1,1,1,6,9]. Some of its geometric properties were studied in []. It has two
Kähler moduli and 272 complex structure moduli. This meets the requirement of a negative
Euler characteristic χ = 2(h(1,1)−h(2,1)) = −540. The volume given in terms of four-cycle
volumes reads:

V =
1

9
√
2

(
τ
3/2
b − τ 3/2s

)
. (3.28)

One important property of this space is that the overall volume is controlled by one single
modulus: the value of V can be made arbitrarily large by increasing τb while leaving τs
at small values. On the other hand, an increase of the four-cycle volume τs decreases the
overall volume. Its value is bounded from above since the volume cannot be negative. One
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can imagine the geometry as a cheese with holes. The parameter τb controls the size of the
piece of cheese whereas τs describes the size of a hole. Inspired by this example, we call
any manifold with a relation between the overall volume and the four-cycle volumes of the
following form:

V = (ηbτb)
3/2 −

∑
i

(ηiτi)
3/2 (3.29)

a swiss cheese manifold.

Having at hand the explicit expression for the volume (.) it is easy to calculate the Kähler
metric by inserting it into (.) and taking the derivative of the resulting expression twice.
As the four-cycle volumes appear with the power ³⁄₂, in the large volume limit, the (inverse)
Kähler metric has indeed the form we assumed already in (.) and (.). Together with
the superpotential

W = W0 + Ase
−asTs (3.30)

we find indeed a scalar potential of the anticipated form:

VF =
λ
√
τse

−2asτs

V
− µ

V2
τse

−asτs +
ν

V3
(3.31)

with prefactors:

λ = 3
√
2a2s|As|

2, µ =
1

2
as|AsW0|, ν = ξ|W0|2, ξ = 1.31. (3.32)

Unfortunately it is not possible to find the minimum of (.) analytically. One has to apply
further approximations. We start by setting to zero the derivative of VF with respect to V :

∂VF
∂V

= −
λ
√
τse

−2asτs

V2
+

µ

V3
τse

−asτs − ν

V4

!
= 0. (3.33)

This easily can be solved for V :

V =
µ

λ

√
τse

−asτs

(
1±

√
1− 3νλ

µ2τ
3/2
s

)
. (3.34)

From taking the derivative with respect to τs we get the equation:

∂VF
∂τs

=
λVe−asτs

τ
1/2
s

(
1

2
− 2asτs

)
− µ(1− asτs)

!
= 0. (3.35)



 . L V S

Here we insert (.) for the volume and obtain an implicit equation for the small modulus:(
1±

√
1− 3νλ

µ2τ
3/2
s

)(
1

2
− 2asτs

)
= (1− asτs). (3.36)

This equation cannot be solved for τs analytically. Now we require that asτs � 1 in order to
be able to ignore higher instanton corrections. We can use this condition to simplify (.):

1±
√

1− 3νλ

µ2τ
3/2
s

=
1

2
. (3.37)

Now, this can be easily solved for τs. Inserting the resulting expression into (.) gives then
also the solution for the volume:

τs =

(
4νλ

µ2

)2/3

, V =
µ

2λ

(
4νλ

µ2

)2/3

e
as

(
4νλ
µ2

)2/3

. (3.38)

If we restore the prefactors according to (.) we can read off the scaling behavior of the
large volume minimum depending on the parameters of the model:

τs ∼ (4ξ)2/3, V ∼ ξ1/3|W0|
asAs

easτs . (3.39)

We see that the volume scales exponentially with the geometry depending parameter ξ.
Moreover it scales linearly in W0, making the gravitino mass independent of the choice of
flux, as already anticipated in section ..

It is interesting to insert typical values for all parameters. We assume that the non-
perturbative superpotential is generated by D-brane instantons, hence as = 2π. For As = 1,
W0 = 10 and gs = ¹⁄₁₀ one obtains V ≈ 3 · 1010, a gravitino mass of m3/2 ≈ 109 GeV
and a string scale of ms = mPgs/

√
V ≈ 1012 GeV. This is an explicit realization of the in-

termediate string scale scenario without fine-tuning, which has been claimed to have some
phenomenological virtues [, ].

Let us summarize the most important properties of the LAGE volume scenario, especially
in what aspects it is different from the KKLT construction: we have shown that there exists
a minimum of the scalar potential in the limit where the overall volume is exponentially
large, whereas one modulus scales like aτs ≈ lnV . In this limit, the non-perturbative
corrections to the superpotential compete with α′-corrections to the Kähler potential. The
latter were not taken into account in the KKLT construction. The LAGE volume minimum
exists on a quite wide class of compactification manifolds. A necessary condition is that the
overall volume can be blown up independently from at least one four-cycle volume. A
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prototype class of manifolds with this property was introduced and given the name “swiss
cheese manifolds”. A sufficient condition for the existence of the minimum is then a negative
Euler characteristic (h(2,1) > h(1,1) > 1).

As we have an exponentially large volume, this scenario naturally gives rise to a scenario
where the fundamental string scale can be hierarchically smaller than the Planck scale since
ms ∼ mP/

√
V . In the minimum, supersymmetry is broken and the gravitino mass is unaf-

fected by the value of W0, i. e. not dependent of the choice of fluxes. This is in contrast to
KKLT, where the minimum of the potential supersymmetric. SUSY is broken explicitly by
introducing anti D3-branes, which furnish also as uplift mechanism to a de Sitter minimum.
There is no need for fine-tuning any parameters, especially not the flux superpotential W0

which has to be as small as 10−4 in the KKLT construction.

3.4. String Loop Corrections to the Kähler Potential

As the Kähler potential is not protected by non-renormalization theorems like the superpo-
tential and also not constrained by holomorphy, it is natural to ask, whether further perturba-
tive corrections might compete with the α′-corrections. Here we focus on those perturbative
corrections in gs which arise in the presence of sources (D-branes and orientifold planes).
Indeed, the string loop corrections to the Kähler potential scale as O(g2s α

′2) in string frame.
By dimensional analysis we expect therefore that in the V−1 expansion in Einstein frame
they scale as ∆K ∼ (gsV−2/3) as opposed to the α′-corrections which a priory imply a
correction of ∆K ∼ O(g−3/2

s V−1). Hence, naïvely one would await that the gs-corrections
even dominate the α′-corrections at large volume. However it will turn out when calcu-
lating the F-term potential that certain cancellations occur such that we are left with a term
∆Vgs ∼ O(gsV−3), to be compared with the α′-term ∆Vα′ ∼ O(g−1/2

s V−3). Still, if gs

is at not too small values, the loop corrections could compete with the α′-corrections and
significantly modify the form of the potential. Unavoidably we have to study in detail the
influence of these corrections.

Unfortunately the corrections we want to study are not known for the case of a smooth
Calabi–Yau orientifold. They are known however for toroidal orbifolds, as in this case,
explicit string amplitude calculations can be applied []. Assuming a similar scaling behavior
of the corrections, we can carry over the results to the more general case.

String loop corrections stem from Kaluza–Klein (K) modes between D7-branes, O7-
planes, D3-branes or O3-planes. Moreover, winding strings (W) can be exchanged be-
tween intersecting stacks of D7-branes (or between D7-branes and O7-planes) if there are
non-contractible one-cycles within the intersection locus. The Kähler potential capturing
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these effects at lowest order on a toroidal orientifold was shown to be [, ]:

K = −2 ln

(
V + ξ

(
−i(τ − τ̄)

2

)3/2
)

+Kc.s. +
3∑
i=1

gs
E (K)
i (U,U)

4τi
+

3∑
i 6=j 6=k

E (W)
k (U,U)

4τiτj

≈ −2 ln(V)− ξ

V
+

3∑
i=1

gs
E (K)
i (U,U)

4τi
+

3∑
i6=j 6=k

E (W)
k (U,U)

4τiτj
+Kc.s.,

(3.40)

where the prefactors E (K,W) in principle do depend on the complex structure moduli U .
However, the precise functional dependence is not relevant here.

Given the expression (.) it suggests itself that also in the general case of a smooth Cal-
abi–Yau orientifold, there will appear terms which are suppressed by a single Kähler modulus:

∆Kgs ∼ gs
E
τi
. (3.41)

Clearly such terms would dominate the term induced by the α′-correction ξ/V for i 6= b.
However we have to bear in mind that the torus is very special concerning the dependence of
the overall volume on the two- and four-cycle volumes. Indeed the volume can be written
as V ∼ τiti, where no summation over i is understood. This is not compatible with the
swiss cheese form (.). Consequently the authors of [] proposed that the new terms in
the Kähler potential for the case of swiss cheese manifolds do not scale as in (.) but rather
like:

∆Kgs ∼
∑
a

gs
gaK(t, gs)E (K)

a

V
+
∑
q

gqW (t, gs)E (W )
q

V
, (3.42)

accounting for the special form of intersection numbers.⁵ The dependence on the complex
structure moduli cannot be obtained by analogy arguments from the toroidal case. It is
encoded in the unknown functions E(U,U). From (.) it is clear that it depends on the
so far not specified functions gaK(t, gs) and gqW(t, gs), whether or not the gs-corrections will
dominate the α′-corrections. They depend linearly or reciprocally on a linear combination
of the two-cycle volumes t =

∑
i citi respectively. This linear combination can contain the

dual of the large four-cycle τb ∼ V2/3 and this fixes the scaling with respect to V of the terms
in question and ultimately if they dominate or not.

Now we consider again the example of section ., i. e. the P4
[1,1,1,6,9][18] hypersurface.

In [] it was show that the four-cycles Γb and Γs do not intersect. Consequently there will

5 The form of (.) was confirmed in [] by field theoretical reasoning: the requirement that the loop
corrected kinetic terms for a Kähler modulus should be suppressed by a factor of g2 (with g being the coupling
constant for the gauge theory on the branes wrapping the four-cycle in question) fixes the scaling of V and τ
in ∆Kgs .
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no corrections from exchange of winding strings. Also neglecting flux corrections to the
KK mass spectrum, the Kähler and superpotential we have to consider are of the form:

K = −2 ln(V)− ξ

V
+ gs

√
τbE (K)

b

V
+ gs

√
τsE (K)

s

V
+Kc.s.,

W = W0 + Ase
−asTs .

(3.43)

Given these two functions, we can derive the scalar F-term potential in analogy to (.).
At leading order in the V−1 expansion we get:

Vnp1 = eKc.s.
24a2s|As|

2τ
3/2
s e−2asτs

V∆
,

Vnp2 = −eKc.s.gs
2as|AsW0|τse−asτs

V2

(
1 +

6E (K)
s

∆

)
,

Vα′ =
3eKc.s.|W0|2

8V3

(
ξ + g2s

4(E (K)
s )

2√
τs

∆

)
,

(3.44)

where the second term is again rendered negative upon minimizing the axion bs and we
have used the definition

∆ =
√
2g−1

s τs − 3E (K)
s . (3.45)

The range of validity of this expansion is limited to those regions in the moduli space where
the denominator ∆ does not become too small.

It is interesting to note that the loop corrections affect Vnp1 and Vnp2 at leading order in the
V−1 expansion. This is in contrast to the α′-correction, which appears only at order V−3.
At first sight this is surprising as both corrections are equally suppressed with V−1 in the
Kähler potential (.). The reason for this is that the loop correction also explicitly depends
on τs and not on the overall volume only. The terms containing the loop corrections from
the big four-cycle are sub-leading. They show up at order O(V−10/3):

V10/3 = 2g3s
61/3|W0|2eKc.s.

V10/3

(
(E (K)
b )

2
+

3

4
∂αE (K)

b ∂ᾱE (K)
b Kαᾱ

c.s.

)
. (3.46)

The volume dependence of all terms of the F-term potential can be summarized by the
following rule: firstly the common prefactor eK gives an overall suppression of V−2 = τ−3

b .
For a quantum correction proportional to τ−λb , a correction appears in Vα′ at order 1/τλ+3

b

for all values of λ, except for λ = 1. In the latter case, there is a cancellation at leading order
and they appear only at order 1/τ 2+3

b .

The scalar potential (.) now has to be minimized by solving ∂V,τsVF = 0. It is not
instructive to do an algebraic analysis as we did in the last section for the α′-corrections only.
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We consider the results of a numerical minimization procedure done in []. There it was
found that for a range of the parameters g−1

s ∈ [8, 11] and E (K)
s ∈ [20, 40], the minimum of

the F-term potential is described with very good accuracy by

log10 V = 1.720 g−1
s − 0.1208 E (K)

s − 3.437,

τs = 5.000 g−1
s − 0.3581 E (K)

s − 8.638.
(3.47)

The reader should remember from (.) that the terms proportional to g−1
s were already

there without the loop corrections. The new terms are those proportional to E (K)
s only. As

an interesting fact we note that the value of V and τs in the minimum now depend also on
the complex structure moduli through E (K)

s . This is contrast to the original case where they
depend on the parameter ξ̂, and thus scale with the Euler characteristic and gs, only.

We conclude that the influence on the position of the minimum is after all roughly % but
still, as the qualitative behavior of the three terms of the F-term potential does not change,
it is fair to say that the LAGE is robust against string loop corrections. This result has
been derived on the basis of a concrete example for the sake of clearness. However in []
it was shown that this indeed holds whenever the gs-corrections to the Kähler potential
are homogeneous functions of the two-cycle volumes t of degree −2. In the example we
considered, we obtained precisely this form of the corrections by making an educated guess.
The correctness of this ansatz was confirmed also in [] by comparing the so obtained scalar
potential with the Coleman–Weinberg one-loop effective potential.

3.5. Scales and Moduli Masses

Now we come to the phenomenological properties of the LAGE volume scenario. We
start with summarizing the mass scales and list the moduli spectrum. We consider again the
concrete example on the swiss cheese manifold P4

[1,1,1,6,9][18].

In the low-energy effective action we included the lightest fields only. As we consider now
a concrete model, it is possible to check the extent of validity of this approach by studying
the mass scales of the heavy fields, not included in the effective action. We express the masses
in units of the string mass ms =

1
`s
= 1

2π
√
α′ . It is related to the four-dimensional Planck

mass mP by:

ms =
gs√
4πV

mP. (3.48)

The nth stringy excitation then simply has the mass m2
S = n

α′ such that the scale for the
lightest excitation is:

mS ∼ 2πms. (3.49)
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For toroidal backgrounds the Kaluza–Klein and winding modes have a mass squared of:

m2 =
n2

R2
+
w2R2

α′2 , (3.50)

with R = Rs`s the dimensionful Kaluza–Klein radius. In terms of the string scale ms = `−1
s

this is:
mKK ∼ ms

Rs
and mW ∼ (2π)2Rsms. (3.51)

As we are in the supergravity regime where Rs � 1, the relevant modes are the KK modes.
Expressed in terms of four-cycle volumes, their masses for the different cycles scale like
m4

KK ∼ 1/τi. The lightest KK excitation is hence correlated with the “big cycle” τb ∼ V2/3

such that:

mKK ∼ 2π

V1/6
s

ms, (3.52)

where the volume has been dressed with a small ‘s’ in the index, indicating that its string
frame value is understood.

The next lightest fields are the complex structure moduli. In order to calculate their
masses, we consider again the N = 1 supergravity action with the scalar potential (.).
In leading order we can still rely on the no-scale structure such that the potential for the
complex structure moduli with all prefactors restored reads:

V =
g4s m

4
P

8πV2
s

∫
d4x

√
−gEeKc.s.

(
Kab̄DaW Db̄W

)
. (3.53)

For an analytic expression one would need the inverse of the Kähler metric

Kab̄ = ∂a∂b̄ ln
(
−i
∫
X
Ω ∧ Ω

)
(3.54)

which in turn requires the knowledge of all the periods of the Calabi–Yau. However since we
are only interested in orders of magnitude, we simply observe that the Kähler metric (.) is
independent of the dilaton and the Kähler moduli. Hence the inverse of it will not introduce
new factors of gs and V in (.) and we can read off the mass squared as being of the order:

m2
c.s. ∼

g4s N
2m2

P

V2
s

. (3.55)

Here, N counts the number of flux quanta and is of the order ∼ O(
√

χ
24
). Expressed in
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terms of the string scale, this can be rewritten to:

mc.s. ∼
gsN√
Vs
ms. (3.56)

By comparing this with (.) we see than in the LAGE limit, there is a small hierarchy
between the masses of the complex structure moduli and the first Kaluza–Klein excitations.
The latter set the upper bound on the energy scale, where the low-energy effective action
can be trusted.

For the Kähler moduli one has to be more explicit as we can await a large hierarchy
between the modulus controlling the overall volume τb and the small modulus τb. It is
possible to canonically normalize the fields analytically and then taking the derivative of the
scalar potential twice. We do not carry out the calculation but simply give the results, derived
in []:

mτb ∼
g2s W0

√
asτsV3/2

s

mP ∼ 1√
lnV V3/2

mP, mbb ∼ exp(−τb)mP,

mτs ∼ mbs ∼
gsasτ

1/4
s W0

Vs
mP ∼ lnV

V
mP.

(3.57)

The alert reader will have noticed that the mass of the small modulus is comparable to the mass
of the complex structure moduli (.) so the question arises if it was consistent to integrate
out the latter and to minimize only the potential for the Kähler moduli exclusively as we did
in section .. But there is simple argument showing that the minimum we found in this way
must be a minimum also of the full potential including the complex structure moduli. This
can easily be understood by noticing that the latter enter the potential with term DW DW

V2

which vanishes in the minimum but is of the order O(V−2) in principle. The vacuum
energy in the minimum is of the order −O(V−3). Now, if the complex structure moduli
move away from their minimum where DW = 0, they contribute to the vacuum energy
positively with V−2, which cannot be compensated with the Kähler moduli term (.)
only, since they are of order O(V−3) and so this will definitely increase the vacuum energy.
Hence, the minimum we found by integrating out the complex structure moduli must be
minimum also of the full potential.

3.6. Soft SUSY Breaking Terms for Chiral Matter

Having worked out the masses of the moduli fields, we now turn to the phenomenolog-
ically very interesting soft terms for the chiral matter sector, supported on the D7 branes
wrapping the small cycle with volume τs. In particular the mass terms of the superpartners
of the standard model fermions and gauge bosons may be of direct relevance for upcoming
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experiments at the LHC.
A naïve estimate for the mass scale of the superpartners is given by the gravitino mass

m3/2 = eK/2W , here being roughly

m3/2 ∼
W0

V
mP. (3.58)

For a volume of V ∼ 1015, a typical value for the LAGE volume scenario, the mass of the
superpartners are at the phenomenologically interesting TeV scale.

In the LVS, supersymmetry is broken in the Kähler moduli sector. There are several
mediation mechanisms which come in question to induce soft terms in the MSSM sector:
mediation by Planck scale suppressed operators (gravity mediation) and by certain one-loop
diagrams associated to the super-Weyl anomaly (anomaly mediation) are two mechanism
which are always present and it has to be checked, which one dominates. For gauge medi-
ation, a suitable messenger sector with appropriate couplings to the MSSM fields has to be
included. In this sense, this mechanism is not as generic as the two others and we do not
consider it yet, at this stage.

The first step for the computation of the soft terms is to expand the Kähler and superpo-
tential as well as the gauge kinetic function of the matter fields Cα and the Higgs doublets
H1, H2 with respect to the supersymmetry breaking fields, here the moduli denoted by Φ:

W = Ŵ (Φ) + µ(Φ)H1H2 +
1

6
Yαβγ(Φ)C

αCβCγ + . . . ,

K = K̂(Φ,Φ) + K̃αβ(Φ,Φ)C
αC β̄ +

[
Z(Φ,Φ)H1H2 + h.c.

]
+ . . . ,

fa = fa(Φ).

(3.59)

Apparently we need to know the Kähler metric of the chiral matter fields. This metric is
unfortunately only known for simple toroidal models where explicit string scattering com-
putations can be carried out. In [] a technique was developed which allows to figure out
the leading order modular dependence of the matter Kähler metrics in the LVS by simple
scaling arguments. This knowledge suffices to estimate the order of magnitude of the soft
terms.

The modular dependence of the matter metric can be determined in the following way:
starting point are the physical Yukawa couplings Ŷαβγ . They are related to the unnormalized
ones Yαβγ by:⁶

Ŷαβγ = eK/2 Yαβγ

(K̃αK̃βK̃γ)1/2
. (3.60)

From (.) their modular dependence can be extracted by the help of the following two

6 Here we assumed the matter metric to be diagonal: K̃αβ = K̃αδαβ . The result holds however also in the
non-diagonal case.
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arguments: Firstly, under certain circumstances, the modular scaling behavior for the physical
Yukawa couplings is known. Concerning the “big” cycle in the in the LAGE volume
scenario, we can argue that the physical Yukawa couplings should be independent of the
overall volume V ∼ τ

3/2
b . This is because the gauge theory of the MSSM is localized on D7-

branes, wrapping the small four-cycle τs. The swiss cheese structure of the compactification
manifold guarantees that the overall volume can be increased without affecting the volume
of τs. Consequently, the physics on the D7-branes should be untouched, when increasing
the volume. Another way to state this is to say that we consistently decouple gravity by
taking the limit mP/ms → ∞.

Secondly, the unnormalized Yukawa couplings Yαβγ appear in the superpotential W . In
type IIB flux compactifications, the four-cycle volumes τi cannot appear in the tree-level
superpotential. This because the Peccei–Quinn shift symmetry of the axions bi = Im(Ti),
Ti → Ti + iεi is unbroken perturbatively. A dependence on the four-cycle volume τi =
e(Ti) would therefore induce by holomorphy a dependence on the Im(Ti) = bi which
would break this symmetry. Consequently the physical Yukawa couplings cannot depend on
the τi.

Now we expand the matter Kähler metric in a power series in τi:

K̃α = τλi K̃0(U) + τλ−1
i K̃1(U) + . . . (3.61)

It should be noted that τi contains a factor of e−φ = g−1
s and therefore this series can be

also regarded as a loop expansion. We consider at first the leading order dependence on the
volume V = τ

3/2
b by making the ansatz

K̃α = τ−pαb kα(τi, U, φ), (3.62)

where by τi we denote all other four-cycle volumes except τb. Inserting this into (.), we
get:

Ŷαβγ =
xYαβγ(

kαkβkγ(τi, U, φ)
)1/2 τ −3+(pα+pβ+pγ )

2
b , (3.63)

where x is defined by xV = τ
3/2
b (1 + . . .). As argued before, the left hand side must be

independent of τb. This implies that

pα + pβ + pγ = 3. (3.64)

As the chiral matter stems from open strings stretching between different stacks of D7-branes,
which in the simplest model wrap the same four-cycle τs, it is natural to expect that the
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exponents pα are universal and finally:

pα = 1 ∀α. (3.65)

For the modular dependence on the small Kähler modulus one makes a similar ansatz:

K̃α =
τλs
V2/3

kα(U, φ). (3.66)

The difference here is, that the physical Yukawa couplings do scale with the size of τs. In
principle, the Yukawa couplings are given by the overlap integral of normalized wave func-
tions, localized on the intersection locus of the D7-branes supporting the fields in question.
For the case here, where all D7-branes wrap the same four-cycle one can easily show that un-
der a rescaling τs → βτs, the normalized wave functions scale as ψ → ψ√

β
and consequently

also

Ŷαβγ → Ŷ ′
αβγ ∼

∫
Γ4

(βd4y )
(
ψα√
β

)(
ψβ√
β

)(
ψγ√
β

)
=
Ŷαβγ√
β

(3.67)

which can be rephrased as Ŷαβγ → Ŷ ′
αβγ =

Ŷαβγ√
τs

. Now we can insert again (.) into (.)
and as we know now the scaling of the physical Yukawa couplings we can conclude:

K̃α ∼ τ
1/3
s

V2/3
kα(U, φ), (3.68)

with an unknown function of the complex structure moduli and dilaton kα(U, φ), which
will however turn out not to be relevant for the soft terms.

For diagonal matter Kähler metric, the most general potential for the canonically normal-
ized matter fields Ĉα, gauginos λ̂a and Higgs doublets Ĥ1, Ĥ2 with supersymmetry breaking
terms not inducing quadratic divergences for the scalar masses, i. e. the soft supersymmetry
breaking potential of the MSSM is given by:

Vsoft =
1

2

(
Maλ̂

aλ̂a+h.c.
)
−m2

αĈ
αC

ᾱ−
(
1

6
AαβγŶαβγĈ

αĈβĈγ+Bµ̂Ĥ1Ĥ2+h.c.

)
. (3.69)

In the case of gravity mediation, which we consider now at first, the soft termsmα, Aαβγ , B

and µ̂ are induced by the non-zero moduli F-terms Fm = eK̂/2K̂mn̄Dn̄Ŵ , m = τb, τs, . . .

They arise by expanding the N = 1 supergravity scalar potential (.) in terms of the non-
zero F-terms and their Kähler metric K̂m, the matter metric K̃α and superpotential. The
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result was computed in [, ] and reads:

m2
0 =

(
m2

3/2 + V0
)
− F m̄F n∂m̄∂n log K̃α,

Aαβγ = Fm
[
K̂m + ∂m logYαβγ − ∂m log(K̃αK̃βK̃γ)

]
,

B = µ̂−1(K̃H1K̃H2)
−1/2

{
eK̂/2µ

(
Fm
[
K̂m + ∂m logµ− ∂m log(K̃H1K̃H2)

]
−m3/2

)
+
(
2m2

3/2 + V0
)
Z −m3/2F

m̄
∂m̄Z +m3/2F

m
[
∂mZ − Z∂m log(K̃H1K̃H2)

]
− F

m̄
F n
[
∂m̄∂nZ − (∂m̄Z)∂n log(K̃H1K̃H2)

]}
,

µ̂ = (K̃H1K̃H2)
−1/2(

eK̂/2µ+m3/2Z − F
m̄
∂m̄Z

)
(3.70)

and

m1/2 =
1

2
(e fa)

−1Fm∂mfa. (3.71)

Although the formulæ are rather complicated, for the simple scaling behavior of the matter
metric (.) and the assumption that the superpotential Yukawa couplings Yαβγ do not
depend on the Kähler moduli, the result of inserting all expressions in (.) turns out to
yield the surprisingly simple expressions:

m1/2 =
F τs

2τs
,

m2
0 =

1√
3
m1/2,

Aαβγ = −m1/2,

B = −4

3
m1/2.

(3.72)

As an interesting fact it should be noted that though most of the soft terms in (.) scale
with m3/2, the final expressions (.) all scale with F τs

2τs
∼ m3/2/ log(mP/m3/2). This small

hierarchy between the gravitino mass and the soft terms is the result of a cancellation taking
place in (.) whose origin will be studied in detail in chapter .

The suppression of the gravity mediated soft terms with respect to the gravitino mass
raises the question, if anomaly mediation [] could be the dominant mechanism for the
generation of soft terms. In [] a formula for the gaugino masses in anomaly mediation
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was given:

m1/2 = − g2

16π2

[
(3TG − TR)m3/2 − (TG − TR)KiF

i − TR
dR

(ln detK|′′R)iF i

]
. (3.73)

Here, K|′′R denotes the Kähler metric restricted to the matter fields in the representation R.
TR and dr are the corresponding Dynkin index and dimension; TG denotes the Dynkin index
of the respective adjoint representation. For the gauge groups SU(N) they are normalized
to TG = N and TR = ¹⁄₂. With the matter metric as before, the determinant in the last term
for dR matter fields is given by:

detK|′′R =
τ

1
3
dR

s

V 2
3
dR
X(φ), (3.74)

with an unknown function of the complex structure moduli X(φ) which however drops
out when taking the derivative of the logarithm of this expression:

1

dR
(ln detK|′′R)iF i =

F s

6τs
− F b

2τb
. (3.75)

Furthermore there is the important relation:

KiF
i = −3F b

2τb

(
1 +O(V−1)

)
= 3m3/2

(
1 +O(V−1)

)
, (3.76)

where i runs over the Kähler moduli. This is a consequence of the no-scale structure and
will be discussed in much more detail in chapter  again. When putting everything together,
also here cancellations occur and we have again a simple result:

manom.
1/2 =

g2

16π2

1

3

(
F s

2τs

)
=

g2

16π2

1

3
m

grav.
1/2 . (3.77)

We see that the anomaly mediated contribution to the gaugino mass is suppressed with
respect to the gravity mediated one by the usual loop factor g2

16π2 and is thus sub-dominant.
The cancellation can be traced back to the relation (.) and hence considered to be a
consequence of the no-scale structure at leading order. One can await therefore a similar
cancellation for the other soft terms induced by anomaly mediation, too. Their calculation
is quite involved and (see [, ]) we do not carry out an analysis of them here.
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3.7. Moduli Inflation

We have seen in the last section, that the no-scale structure of the Kähler moduli sector—
though broken—can still lead to certain cancellation effects. For instance, the soft terms
are suppressed with respect to their natural value of m3/2 by a factor of log(mP/m3/2).
Heuristically one might say that this is due to the fact that the mechanisms breaking the no-
scale structure are not at tree-level, but at higher lever in the α′-expansion of the effective
field theory or even at the non-perturbative level in gs. Moreover, the exponentially large
volume can create hierarchies which are not expected in the generic case.

Thus, it might be fruitful to seek for other situations where small, fine-tuned values of a
quantity are necessary for whatever reason, but the theory predicts a much larger value for the
generic case.⁷ In the context of cosmology of supergravity theories, the so-called η-problem
is of this kind: the slow-roll parameter η = V ′′

V
must be small in order for slow-roll inflation

to work. However generically, in F-term inflation its value is expected to be of order O(1),
unless a finely tuned cancellation is at work. Indeed the “pseudo no-scale structure” of the
LVS can help here.

The prospect of implementing inflation in the context of the LVS was pioneered in [].
A typical slow-roll potential for a field τ is given by:

Vinfl. = V0
(
1− Ae−τ + . . .

)
. (3.78)

The scalar potential of the LAGE volume scenario contains such exponentially flat terms
for the small moduli and in fact in can be recasted precisely in the form (.) as we will
show now. Therefore, we consider again the scalar potential (.):

VF =
a2s|As|

2√τse−2asτseKc.s

V
− as|AsW0|τse−asτs

V2
eKc.s +

ξ

V3
|W0|2eKc.s. . (3.79)

For obvious reasons we assume the small modulus τs to be the inflaton field. At the begin of
inflation it can be assumed to have a value far away from its minimum value: asτs � lnV .
In this limit, the first term scaling with e−2asτs can be neglected. The second term, scaling
with e−asτs , as being negative, decreases the potential energy when decreasing the value of
τs. Provided that all other moduli, in particular the overall volume, are fixed, the exponential
flatness in τs can drive inflation.

However, displacing τs from its minimum nullifies its contribution to the scalar potential,
producing a runaway direction for the overall volume. Thus, we need at least one more
small Kähler modulus, which we assume to have fallen already into its minimum, where it
becomes heavy and decouples from inflationary dynamics. This induces a contribution to

7 The most obvious quantity falling in this category is the cosmological constant. As it is well-known, it is
also the most resistant to simple explanations for its tiny value. We will comment on this subject in section ..
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the scalar potential of the order O(V−3), stabilizing the overall volume. We have now:

VF = V0 −
|W0|
V2

4as|As|τse−asτs with V0 ∼
βW 2

0

V3
, (3.80)

which has a similar form like (.). However that is only half the truth. The Kähler metric
for the small modulus Kss = 3λ

8
√
τsV is non-trivial, so τs has to be canonically normalized.

After doing so, the scalar potential looses its simple form and we ought to analyze the slow-
roll parameter:

ε =
m2

P

2

(
V ′

V

)2

, η = m2
P
V ′′

V
, ξ = m4

P
V ′V ′′′

V 2
, (3.81)

where the derivatives have to be taken with respect to the canonically normalized field τ c
s .

One finds:

ε =
32V3

3β2W 2
0

a2sA
2
s

√
τs(1− asτs)

2e−2asτs ,

η = − 4asAsV2

3λ
√
τsβW0

[(
1− 9asτs + 4(asτs)

2)e−asτs],
ξ =

−32(asAs)
2V4

9β2λ2W 2
0 τs

(1− asτs)
(
1 + 11asτs − 30(asτs)

2 + 8(asτs)
3)e−2asτs ,

(3.82)

and we see that the slow-roll conditions ξ � ε and in particular η � 1 are satisfied, as
indeed for large initial values of τs we surely have e−asτs � 1

V2 .

The requirement that that the number of e-foldings Ne =
∫ φ
φend

V
V ′dφ should be in the

range 50 to 60 and the COBE normalization for the density fluctuations δH = 1.92× 10−5

should be matched, eventually fixes several parameters of the model. It turns out that the
influence of the threshold correctionAs and the tree-level superpotential valueW0 are rather
unimportant at this and it is only the overall volume which is constrained in the narrow range

105 ≤ V ≤ 106. (3.83)

This is clearly in tension with the value of V ∼ 1015 − 1016 which is needed for TeV scale
supersymmetry breaking.

3.8. Cosmological Moduli Problem

Inflation is not the only cosmological stage, where moduli can play a rôle. They exhibit
only very weak, gravitational-strength interactions with ordinary matter. Therefore they
may decay in the later history of the universe, bringing up the question, whether they can



 . L V S

spoil nucleosynthesis or overclose the universe [].

In contrast to the section before we assume now again a compactification volume of V ∼
1015, giving rise to TeV scale supersymmetry breaking— the case where the post-inflationary
cosmological development is well-known.

We study now the decay of the Kähler moduli into a pair of photons. The relevant La-
grangian in the vicinity of the moduli minimum τi = 〈τi〉+ δτi is simply given by:

L = Kij∂µ(δτi)∂
µ(δτj)− V0 − (M2)ij(δτi)(δτj)−O(δτ 3)− κ

τα
mP

FµνF
µν , (3.84)

where the gauge kinetic function fU(1) = κτα for the U(1) part of the standard model,
realized on D7-branes wrapping the small cycle α was used. The couplings can be read
off after canonically normalizing the moduli fields in (.) and rewriting the Lagrangian
in terms of the mass eigenstates of (K−1)ij(M

2)jk, in the following denoted by Φ and χ.
Written in terms of the new fields, the Lagrangian is:

L =
1

2
∂µΦ∂

µΦ +
1

2
∂µχ∂

µχ− V0 −
1

2
m2

ΦΦ
2 − 1

2
m2
χχ

2 − 1

4
FµνF

µν

−
(
Φ(vΦ)s + χ(vχ)s

)
4
√
2〈τs〉mP

FµνF
µν

(3.85)

and likewise, in terms of the eigenvectors vΦ and vχ, the couplings λ of the moduli to
photons can be read off. They are:

λΦγγ =
(vΦ)s√
2〈τs〉

, λχγγ =
(vχ)s√
2〈τs〉

. (3.86)

The explicit diagonalization of the respective matrices can be found in the appendix of [].
The mass eigenvalues turn out to be:

m2
Φ ∼ Tr(K−1M2) ∼

(
2m3/2 ln(mP/m3/2)

)2 ∼ ( lnV
V

)2

∼ (1000TeV)2,

m2
χ ∼ det(K−1M2)

Tr(K−1M2)
∼ 1

(lnV)V3
∼ (1MeV)2.

(3.87)

By comparing comparing (.) with (.) we see that the heavy eigenstate Φ is mostly
given by τs and the light one by τb. However, by re-expressing the original fields δτb and
δτs in terms of Φ and χ it is revealed that there is a small mixing between the fields. This
has the interesting consequence that the light field, though mostly aligned with τb has a
coupling to the photons localized on τs, which would not be the case for τb alone. This has
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an apparent effect on the couplings which come out to be:

λχγγ =

√
6

2mP ln(mP/m3/2)
, λΦγγ =

2√
3

〈τb〉3/4

〈τs〉3/4mP
∼

√
V

mP
∼ 1

ms
. (3.88)

The coupling of the light field is suppressed with respect to the naïve expectation of λ ∼
1/mP with a factor of ln(mP/m3/2) suppressing the decay rate with ln(mP/m3/2)

2 ∼ 1000.
Even more striking is the fact that the coupling of the heavy field Φ is suppressed with the
string scale only instead of the Planck scale. Asms � mP, it will decay very rapidly, possibly
imposing phenomenological problems in the early universe as we will see in a moment.

Another decay channel of the moduli is the one into an e+e− pair. The corresponding
couplings can be obtained in a similar way as for the photons upon using the matter Kähler
metric (.). One finds for the couplings:

λχee ∼
(
1 +

1

a〈τs〉

)
me√
6mP

, λΦee ∼
√
Vme

mP
. (3.89)

Finally, moduli may also decay into gravitini. Generically in models with heavy moduli,
one encounters a large branching ratio for this channel of the order O(1) [,]. This is
problematic as an overproduction of gravitini in the early universe may spoil nucleosynthesis
or exceed the observed abundance of dark matter. However, also here the LVS turns out to
be very special: as the gravitino is a bulk field, the decay of the heavy modulus Φ → 2ψ3/2,
as being mostly τs, is suppressed by a factor of (ms/mP)

2 = V−1. Moreover, the dominant
F-term in this model is the one associated with the light modulus τb and not with the small
and heavy modulus τs giving another factor of V . This results in a double suppression of
the Φ → 2ψ3/2 decay mode and so, the branching ratio can estimated by Br(Φ → 2ψ3/2) ∼
V−2 ∼ 10−30.

For cosmology, the lifetimes of the moduli are of interest. For a particular decay mode,
they are basically given by the inverse square of the corresponding couplings: τ =

64πm2
P

λ2m3 .
Inserting the numerical values, we find:

τχ→γγ ∼ 6× 1025s , τχ→e+e− ∼ 1.7× 1024 s,

τΦ→e+e− ∼ 10−17 s,
(3.90)

where we listed only the dominant decay channel for the heavy field Φ.

The small mass in the MeV range of the field χ is a result of the large overall volume and
thus a generic feature of the LVS. It is well-known that light moduli fields can be problematic
for early-universe cosmology: low masses imply long life-times and after inflation they may
thus dominate the energy density of the universe or spoil nucleosynthesis. After inflation, the
light modulus fields starts oscillating around its minimum. As radiation decreases with a−4,
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but the energy in these coherent oscillations only with a−3, it will become the dominant
energy density of the universe. At the temperature TD, the field decays, converting this
energy density back into radiation of the temperature:

TH ∼
(
ρ(TD)

)1/4 ∼ (mP

τ

)1/2

∼
(
m3
φ

mP

)1/2

. (3.91)

A too low reheating temperature of TH . 10MeV causes a too large increase in the entropy
of the universe given by:

∆ =

(
TH

TD

)3

. (3.92)

This washes out any previously generated baryon asymmetry. The bound on the reheating
temperature can be converted into a mass bound: moduli fields with a mass lower than
mφ . 100TeV will spoil nucleosynthesis. This is the so-called cosmological moduli problem.

From (.) we see that the complex structure and dilaton moduli have a mass of approx-
imately ∼ 10TeV and are apparently subject to the CMP a priory. However their lower
suppressed contribution to the scalar potential of V−2 (in contrast to V−3 for the Kähler
moduli) keeps the fields trapped at the minimum, evading the dangerous oscillations.

The heavy modulus field has a mass of ∼ 103 TeV. Its coupling to ordinary matter is
suppressed with the string scale only rather than the Planck scale and thus its lifetime is very
short. We have seen that its branching ratio for Φ → 2ψ3/2 is doubly suppressed with the
volume and thus 30 orders of magnitude smaller than the usual expectation of O(1). In all
it does not suppose any cosmological problems.

However, the light field χ with its mass in the MeV range is clearly subject to the CMP,
raising an inherent problem of the LAGE volume scenario. A possible loophole is the so-
called thermal inflation []. By this one denotes a class of models which after the usual
slow-roll inflation enter again in a short period of low-energy inflation. This can be usefully
applied to the LVS as the overproduced light modulus field can be sufficiently diluted during
this phase.

The mechanism driving thermal inflation works as follows: in supersymmetric theories,
there are many flat directions in field space which are lifted only after supersymmetry break-
ing. For such a field σ usually a vacuum expectation value much larger than its mass is
assumed. In thermal equilibrium with matter, its scalar potential is corrected by finite tem-
perature effects:

V = V0 + (T 2 −m2
σ)σ

2 + . . . (3.93)

At temperatures T > Tc = mσ, the field is trapped at the origin, which is however only a
false vacuum. When the potential energy density V0 begins to dominate as the temperature
falls below T ∼ V

1/4
0 > Tc, a short period of inflation develops which ends at T = Tc when
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the field σ becomes tachyonic at the origin and runs into its zero temperature minimum.
The number of e-foldings during this period can be estimated to be:

N ∼ log
(
V

1/4
0 /TC

)
∼ log(M∗/mσ)

1/2, (3.94)

where M∗ denotes the zero temperature minimum of the potential. easonable values pro-
posed for the so-called “flaton” field σ are mσ ∼ 1TeV and M∗ ∼ 1011 GeV, giving rise to
about ten e-foldings. This is a preferred value as it is just enough to dilute the overproduced
moduli and thus solving the CMP without interfering the density perturbations from the
original slow-roll inflation.

It happens that the two scales M∗ and mσ are automatically present in the examples for
the LVS we considered: these are the string scale ms and the supersymmetry breaking scale
∼ m3/2. Natural candidates for flaton fields in such string compactifications could be for
example open string moduli stemming from the D7-branes supporting the standard model.

The lightness of the moduli field χ may be challenging for the LAGE volume scenario.
However, once having overcome the cosmological moduli problem— for instance with a
phase of thermal inflation— it may also have interesting applications in the later history of
the universe: as being very long lived, it may serve as a dark matter component. We saw
in (.) that the decay channel χ → e+e− is dominant. Being so, these decays could
be responsible for the 511 keV line observed from the galactic center. Observations of the
gamma ray spectrum puts a bound on the positron injection energy of. 3MeV. This indeed
fits nicely to the estimates for the mass of χ of ∼ 1MeV.





4. Moduli Stabilization and Chirality

In the last chapter, we introduced the LAGE volume scenario and pointed out some of its
attractive features. After having stabilized all moduli, it is possible to address cosmological
questions and to calculate the low-energy phenomenological parameters (at least their order
of magnitude) as gauge couplings and particle spectra.

It must be admitted that so far, we have to not been very rigorous concerning the numerous
string theoretical consistency conditions discussed in chapter . In particular we simply
assumed that the standard model or its supersymmetric extension is realized in a consistent
way on a stack of D7-branes wrapping one single small internal four-cycle. Even this alone
is an extreme challenging and to this day still not completely solved problem in the type IIB

context (for progress into this direction in heterotic model building see for instance [,]
and related work).

At the latest now, after having demonstrated that within the LVS it is possible to tackle
a lot of interesting phenomenological questions, it is time to set value on accuracy and to
show that this scenario can really be constructed with all consistency conditions within string
theory.

Along this way, we will encounter a serious problem: an important implicit assumption
made so far was that it is a valid procedure to split the construction of such string models into
two steps. The first one is to fix all moduli by a combination of fluxes and non-perturbative
effects. After that has been achieved, the second step is to introduce the module of the MSSM

on some intersecting respectively magnetized D7-branes. However it will turn out that there
is a fundamental problem when combining a chiral MSSM like module with the moduli
stabilization module: Firstly it leads to the generation of a D-term potential, which appears
at lower order in the 1/V expansion of the scalar potential. Therefore, there is the danger
of destabilizing the large volume minimum. Secondly, as anticipated in section ., on the
intersection of the D7-branes with the E3-brane instantons, extra charged chiral fermionic
zero modes can appear, possibly spoiling the generation of an uncharged superpotential.

As we will show, due to the chirality of the D7-brane sector, in our MSSM case the
D7-branes and the E3-branes should better wrap in some sense “orthogonal” four-cycles.
This means that not all the sizes of the D7-branes are fixable by instanton induced F-terms.
However, it is precisely the sizes of these cycles on which some of the low-energy MSSM

parameters depend. Therefore, by this effect we seem to loose part of the very predictive
power of the models.

However, the combination of both aspects mentioned in the previous paragraph provides a


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natural solution for the problem of fixing all Kähler moduli for an MSSM like model. Non-
perturbative effects fix some of the Kähler moduli except the ones controlling the size of
the MSSM branes. These latter are fixed by the vanishing of the D-term potential. Since it
is a D-term, there could also be charged matter contributions. Again, by requiring not to
break the MSSM gauge symmetry already at the high scale they should better have vanishing
vacuum expectation values.

As we are forced so separate the moduli stabilizing instanton sector from the MSSM sector
on different four-cycles, in order to stick on our intent to be more rigorous, we need to
consider another compactification manifold as the standard example considered so far, the
P[1,1,1,6,9][18], supports only one small four-cycle. This will be done in section ., where
we investigate some of the geometrical and topological aspects of the swiss cheese type
Calabi–Yau manifold defined via the resolution of the singular hypersurface in a weighted
projective space P[1,3,3,3,5][15](3,75). In appendix B, we will also provide the geometric data
for a second new swiss cheese Calabi–Yau, namely the resolution of P[1,1,3,10,15][30](5,251).

4.1. Instantons and Chirality

At first, in this section, we are going to investigate the aforementioned interplay between a
chiral theory realized by intersecting and magnetized D7-branes and the E3-brane instantons.
More specifically, we assume again for the moment that some version of the MSSM can be
described by a configuration of D7-branes wrapping four-cycles in the Calabi–Yau manifold.

To prepare our discussion let us stress the following important points: In order for an
E3-brane instanton to actually generate a superpotential term like in (.), to be precise a
term:

Wn.p. = A(S, U)e−
∑

i aiTi , (4.1)

according to section ., the zero mode structure must be of a special nature.¹ For the case
of the P[1,1,1,6,9][18] example, in the original literature it was argued that such a contribution
must be present as the small divisor τs has an F-theory uplift to a six-dimensional divisor in
the Calabi–Yau fourfold with χ(D,O) = 1. By the zero mode criterion derived in [],
an instanton along such a cycle may contribute to the superpotential. This is however only
a necessary condition. A detailed analysis of the zero mode structure along the lines of
section . must be performed in order to decide whether such a contribution is really
generated or not. We do so in the next section.

1 This and likewise the problems that will follow hold equally for the KKLT construction which relies on a
similar non-perturbative term in the superpotential.
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4.1.1. E3-brane Instantons

We are now going to investigate E3-brane instanton effects in more detail. In particular,
we turn our attention to additional zero modes which can arise from D-branes supporting
chiral matter on the same cycle. These may spoil a generation of the form (.). We will
also comment on the case that we freeze the Kähler moduli by gaugino condensates on a
stack of Nc D7-branes wrapping a four-cycle DG.

Following what we have said in ., in order to contribute in whatever way to the super-
potential, the following points have to be respected:

• A single, isolated instanton must wrap a four-cycle invariant under the orientifold
projection and must carry an O(1) gauge symmetry [, , ]. In the case of
h
(1,1)
− (X ) = 0, this implies that the instanton carries a trivial gauge bundle.

• Next, we have to worry about deformation zero modes of the E3-instanton. These
are clearly absent, if the E3-brane wrapping the four-dimensional divisor D does not
have any further moduli. That is, there are no Wilson lines counted by H1(D,O)

or transverse deformations counted by H2(D,O). If this sufficient condition is not
satisfied, then fluxes or curvature on the moduli space might soak up some of the
zero modes, but a more careful analysis is necessary [, ]. Similarly, for gaugino
condensation many adjoint matter fields counted by H i(DG,O) with i = 1, 2 spoil
asymptotic freedom of the gauge theory on the D7G-branes.

• If, as in our case, there are additional space–time filling D7-branes present, there can
appear extra charged fermionic zero modes from the intersection of the E3-instanton
and the D7-branes []. The chiral index of these fermionic zero modes is

Za = Na

∫
Da∩DE3

c1(La) = Na

∫
X
c1(La) ∧ [Da] ∧ [DE3]. (4.2)

In order to soak up these additional fermionic zero modes, one has to pull down
charged matter fields in the instanton computation. The pure exponential term as
in (.) is then multiplied by products of charged matter superfields Φi as []

Wstring ∼
[∏

i

Φi

]
e−Sinst . (4.3)

emember that such instantons are not gauge instantons and therefore often called
“stringy” or “exotic” instantons.

• For the special case when the E3-instanton lies right on top of the D7-branes², it is

2 Note that in [, ] it was shown that for an instanton on top of a single D-brane also a superpotential of
the form (.) can be generated.
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possible to have non-trivial gauge bundles on the instanton. It can then be regarded as
a gauge instanton from the perspective of the D7-brane gauge theory and additional
bosonic and non-chiral fermionic zero modes arise parameterizing the ADHM instan-
ton super moduli space [, , , ]. The effect of such instantons is of the same
nature as gaugino condensates for the gauge theory on stacks of D7G-branes, so that
we can discuss them together. In order to soak up the ADHM zero modes one needs
extra non-chiral (with respect to the U(NG) gauge group) matter zero modes from
the intersection of the E3-instanton with the other D7-branes [, ]. If we end
up with an SU(Nc) gauge group with effectively Nf flavors, then for Nf < Nc the
contribution to the superpotential is

Wgauge ∼
1

detff ′
[
Φ̃c
fΦcf ′

]e−Sinst . (4.4)

In writing this, it is assumed that we are on the Higgs branch, where the determinant
is non-vanishing and so the flavor gauge group is completely broken. Such a configu-
ration is not part of the MSSM and therefore the instanton respectively the DG branes
should better not have any intersection with the D-branes supporting the MSSM.

4.1.2. Moduli Stabilization for Chiral Models

We will now argue that given the structure and constraints from the previous discussion, for
chiral orientifolds not all Kähler moduli can be frozen by instantons. In particular, some of
the moduli controlling the size of the chiral D7-brane sector are left unfixed by the E3-brane
instantons.

Let us first summarize the possible matter fields which can be present in the configurations
we are considering.

• We assume that the chiral MSSM like matter fields, denoted asΦSM, are part of the chiral
matter spectrum arising on a set of intersecting D7-branes carrying initial gauge group
G =

∏K
a=1 U(Na). Typical examples discussed in the literature are G = U(5)×U(1),

G = U(4)× U(2)× U(2) or G = U(3)× U(2)× U(1)× U(1).

• There can also be additional (chiral) fields, which also arise from the same set of in-
tersecting D7-branes leading to so-called exotic matter fields. There can exist exotic
matter fields transforming in non-trivial representations of the non-abelian part of the
MSSM gauge group. These are denoted as Φexo.

• However, since in D-brane models we genuinely have these extra U(1) gauge factors,
there might be fields which are not charged under the MSSM gauge group SU(3) ×
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SU(2) × U(1)Y but carry non-trivial charges with respect to U(1)s orthogonal to
U(1)Y . These we denote as Φabel.

• In addition there can in principle be further hidden sector matter fields ΦH, whose D-
terms and F-terms however do not mix with the standard model ones. Therefore, we
will not focus on those in the following. However, this sector might be important for
the eventual uplift of the AdS minimum to de Sitter with small cosmological constant.

Consider now an E3-instanton wrapping a four-cycle which gives rise to extra standard
model charged zero modes. These can either be chiral fermionic zero modes coming from
stringy instantons or non-chiral zero modes from gauge instantons. To soak up all these zero
modes, the superpotential coupling must contain products of the standard model matter fields
ΦSM and, since they appear on the same D7-branes, also products of the additional fields Φexo

and Φabel

W ∼
∏
i

Φ
(i)
SM

∏
j

Φ(j)
exo

∏
k

Φ
(k)
abel e

−TE3 . (4.5)

Note that for gauge instantons or gaugino condensates there will be determinants of the
matter fields in the denominator. Furthermore, in the equation above TE3 =

∑
im

iTi
denotes the Kähler modulus corresponding to the instanton on the cycle DE3 =

∑
im

iDi.
The important point is now that, for phenomenological reasons, at this high scale we do

not want to break the MSSM gauge symmetry by giving vevs to these fields. If we allow
for vevs of charged matter fields, the D-term potential (.), which we will consider in
the next section, generates a mass of the generic order mmatter = mP/

√
V = ms for them,

i. e. the matter fields become very heavy. The MSSM gauge symmetry breaking and mass
generation should occur as usual at the low scale in the process of supersymmetry breaking.
Therefore, we are only interested in vacua with 〈ΦSM〉 = 〈Φexo〉 = 0, so that effectively the
contribution of such an instanton to the superpotential vanishes and the F-term potential
VF does not depend explicitly on TE3. What could be possible in principle is to allow vevs
for GUT Higgs fields.

Of course this argumentation is not really satisfying as in a fully realistic moduli stabilization
scenario, we also would like to have these charged matter fields stabilized dynamically. But our
point of view is, that it is very likely that in a given concrete model the four contributions:³

• the soft supersymmetry breaking mass terms Vsoft = m2Φ2
SM,

• the perturbative and instanton induced superpotential contributions of the form W =∏
ΦSM,

• the D-terms and

3 See for instance [, ] for a recent discussion of matter fields moduli stabilization.
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• the generic absence of gauge instantons or gaugino condensates for MSSM fields, i. e.
terms like Wgauge ∼ 1

det(ΦSM)
e−Sinst

suffice to freeze to MSSM matter fields at 〈ΦSM〉 = 〈Φexo〉 = 0. If such a mechanism is
indeed at work, then, since they appear in the same open string sector, also the fields Φabel

are likely to be frozen at vanishing vevs. However, just from phenomenology these vevs
could be non-vanishing, a fact to be kept in mind when we will mainly discuss the case
〈Φabel〉 = 0.

Therefore, if we want to fix the size of the four-cycle the E3-instanton is wrapping, it
should not have any zero modes charged under the standard model gauge symmetry. ecall
that we derived the analogous condition also for moduli freezing via gaugino condensates
on a stack of D7-branes wrapping a four-cycle DG. There too, DG should not have any
charged matter fields from intersections with branes supporting the MSSM.

ecalling then equation (.), we have to satisfy the necessary condition

Na

∫
X
c1(La) ∧ [Da] ∧ [DE3] = 0, (4.6)

for standard model branes wrapping the divisor Da with line bundle L. Furthermore, not
only the chiral instanton zero modes have to be absent but also those which are vector-like.
For determining them one has to compute the cohomology classes

H i
(
Da ∩DE3,La ⊗K

1
2
Da

⊗K
1
2
DE3

)
for i = 0, 1, (4.7)

where KD denotes the canonical line bundle of the divisor D ⊂ X . If these cohomology
classes are non-trivial, extra pairs of instanton zero modes are present and the resulting term
in the superpotential will be of the form (.). However we will mainly be concerned with
chiral zero modes and generically do not explicitly determine the vector-like ones. But one
has to keep in mind that they might be present and one has to worry about soaking them
up.

Coming back to equation (.), we can expand the Poincaré dual of the instanton cycle
[DE3] in a basis {ωi} of two-forms in H1,1(X )

[DE3] =
∑
i

miωi. (4.8)

Then, we define the following matrix

Ma,i =

∫
X
c1(La) ∧ [Da] ∧ ωi, (4.9)

with i = 1, . . . , h(1,1)(X ) and a = 1, . . . , K where K is the number of MSSM supporting
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D7-branes carryingU(N) gauge symmetry. To not over-constrain the system, we can assume
that K ≤ h(1,1) and so the maximal number of linear independent E3-brane instantons NE3

one is allowed to introduce is given by the kernel of the matrix Ma,i.

Since the kernel of the matrix (.) is not equal to h(1,1)(X ) because of the chirality of the
MSSM, it is clear that not all Kähler moduli can be stabilized by E3-brane instantons. Here
we want to stress again that this equally holds for the KKLT model, as soon as a chiral matter
sector is included.

4.1.3. The Chiral D7-brane Sector

The formula for the chiral spectrum between two D7-branes (.) implies that in order to
obtain chirality, it is necessary that at least one of the D7-branes carries a non-trivial U(N)

gauge bundle. For our purposes, it is not crucial to have a complete MSSM sector, but we
will just take one of the main features of the standard model, namely its chirality, and assume
the minimal chiral configuration. We consider K stacks of Na D7-branes wrapping the
cycle Da with vector bundle Va. However, in order to avoid stability issues of higher rank
vector bundles and vector bundle moduli, from now on we just choose line bundles La on
the D7-branes.

For such chiral intersecting D-brane models, it is known that generically they contain
anomalous U(1) gauge symmetries. For D7-branes, these anomalies are canceled by the
four-dimensional axions

ρa =

∫
Da

C4, (4.10)

arising from the dimensional reduction of the – four-form along the four-cycle Da.
Indeed, the Chern–Simons action for a D7-brane on a four-cycle Da contains terms of the
form

SCS ∼
∫
R1,3×Da

C4 ∧ F ∧ F, (4.11)

which give rise to the following Green–Schwarz couplings. First, there is the mass term for
the gauge field obtained by choosing two legs of C4 along Da and F to be the curvature of
the internal line bundle L. Second, the ρ − A2 vertex arises from choosing all four legs of
C4 along Da. Such a gauging of the axionic shift symmetry leads to a Fayet–Iliopoulos term
for a U(1), which in our case turns out to be

ξa =
1

V̂

∫
X
c1(La) ∧ [Da] ∧ Ĵ . (4.12)

Therefore, a chiral D7-brane sector necessarily gives rise to a D-term potential VD of the
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following form

VD =
K∑
a=1

1

e(fa)

(∑
i

Q
(a)
i |φi|2 − ξa

)2

, (4.13)

where mP = 1 and Q(a)
i are the U(1)a charges of the canonically normalized matter fields

φi. Furthermore, e(fa) denotes the real part of the gauge kinetic function for the corre-
sponding D-brane. It is effectively the DBI action of a supersymmetric E3-brane instanton
along the cycle Da and reads

e(fa) = e−φ
1

2

∫
Da

J ∧ J − e−φ
∫
Da

ch2(B + La) = τ̂a − e(S)ca. (4.14)

Here, ca denotes the integrated second Chern character of B + La on the respective D7-
brane and τ̂a is the (Einstein frame) volume of Da.

Note that this D-term is generically only of order V−2 in the volume expansion (.)
so that an additional (natural) D-term supersymmetry breaking destabilizes the large volume
minimum found at order V−3. Therefore, for preserving the large volume minimum we will
require that the D-term vanishes, i. e. VD = 0. The other option is to allow for significant
fine-tuning and use this D-term in a hidden sector for up-lifting the AdS minimum to a
small and positive vacuum energy [, –].

4.1.4. Moduli Stabilization with D-Terms

After having shown that the D-terms stemming from the chiral matter sector do not desta-
bilize the LAGE volume minimum, we now explore their impact on moduli stabilization.
Therefore let us expand the Kähler form J in the basis {ωi} as J =

∑
i t
iωi. ecalling then

equation (.), we find that the Fayet–Iliopoulos parameter can be expressed as

ξa =
1

V̂

∫
X
c1(La) ∧ [Da] ∧ Ĵ =

1

V̂

∑
i

Ma,it̂
i, (4.15)

so that the Kähler moduli will also appear in the D-terms. The vanishing of the D-terms then
provides additional restrictions on the ti. Indeed, the number of moduli fixed through these
equations is given by the rank of the matrix Ma,i, defined in (.), which satisfies rk(M) ≥
Kanom where Kanom denotes the number of anomalous U(1) gauge factors supported on the
MSSM branes. To be more precise, the Kähler moduli counted by the defect of Ma,i are
fixed by the D-term. These are orthogonal to the ones possibly fixed by E3-instantons and
are in the kernel of Ma,i. Since the MSSM matter spectrum is chiral, it is clear from the
definition of Ma,i that there must be at least one anomalous U(1) gauge factor.

To summarize: at most h(1,1)−Kanom Kähler moduli can be fixed by E3-instantons whereas
for the remaining moduli, which control the size of the D7-branes supporting the MSSM
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sector, there appears a D-term potential. For not destabilizing the large volume minimum
due to the 1/V2 factor in front, this D-term has to vanish. Therefore, despite our initial con-
cern, with sufficient rigid instantons being present in a model, we have enough constraints
to fix all Kähler moduli.

For the case that we cannot fix all remaining Kähler moduli via instantons and D-terms,
there still exists the possibility that they are frozen similar to the volume V by perturbative
corrections to the F-term scalar potential.

Clearly, the general arguments presented above need to be investigated more carefully
in every concrete model. As in this section, we focus more on the question of moduli
stabilization rather than the detailed realization of a complete standard model sector with
D7-branes, from now on, though not dynamically proven but at least phenomenologically
motivated, we generally assume

〈ΦSM〉 = 〈Φexo〉 = 〈Φabel〉 = 0, (4.16)

so that the vanishing of the D-terms in the MSSM sector effectively implies the vanishing of
the Fayet–Iliopoulos parameters (.). We will mention at certain points the changes once
vevs of Φabel are non-vanishing, but as we stressed already so far we do not have a complete
theory to dynamically freeze these fields.

4.1.5. F-term Scalar Potential

From the discussion in the previous sections it is clear now that within the framework of the
LVS, just one small four-cycle is not enough to account for both, moduli stabilization and
a chiral matter sector. At least one additional small four-cycle without chiral intersections
with the cycle supporting the matter branes is needed to stabilize the overall volume.

In the original work about the large volume scenario [], only the case with one E3-brane
instanton along one small four-cycle was studied in detail. Later it was argued that similar
results carry over to configurations where more than one four-cycle stays small supporting
instantons []. For our purpose it is useful and illustrative to start again from a general
set-up and perform the steps along the lines of [], including now also the possibility that
the cycles that the instantons and D-branes wrap can be (effective) linear combinations of
the base cycles.

Similarly to section ., we assume that the complex structure moduli U and the axio-
dilaton S have been fixed by fluxes viaDUW = DSW = 0 and the value of the Gukov–Vafa-
Witten superpotential (.) in the minimum will again be denoted by W0. For the stabi-
lization of the Kähler moduli we use the usual α′-corrected Kähler potential (.) and in-
troduce E3-instantons. However, we we allow for instantons wrapping general four-cycles
Dα =M i

αDi where M i
α are the wrapping numbers of the instanton α and {Di} is a basis of
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four-cycles on X . The superpotential then takes the form

W = W0 +
∑
α

Aαe
−2πM i

αTi , (4.17)

where the sum is over all contributing instantons in the large radius limit. Computing the
Kähler metric similarly to [], we can write the scalar F-term potential as

VF = eK

(
−(2π)2

2
(2V̂ + ξ̂)

∑
α,β

vol(Dα ∩Dβ)AαĀβe
−2πM i

αTie−2πMj
βT j

+
(2π)2

4

4V̂ − ξ̂

V̂ − ξ̂

∑
α,β

τ̂ατ̂βAαĀβe
−2πM i

αTie−2πMj
βT j

+
2π

2

4V̂2 + V̂ ξ̂ + 4ξ̂2

(2V̂ + ξ̂)(V̂ − ξ̂)

∑
α

τ̂α

(
Aαe

−2πM i
αTiW + Āαe

−2πM i
αT iW

)
+ 3ξ̂

V̂2 + 7V̂ ξ̂ + ξ̂2

(2V̂ + ξ̂)
2
(V̂ − ξ̂)

|W |2
)
.

(4.18)

Here we have used V̂ and τ̂α to respectively denote in Einstein frame the volume of the
Calabi–Yau manifold and the volume of the four-cycle wrapped by the instanton α. Fur-
thermore, to simplify the formulas we used

vol(Dα ∩Dβ) =M i
αM

j
βκijk t̂

k (4.19)

for the volume of the intersection of two four-cycles Dα and Dβ (in Einstein frame) and we
have defined ξ̂ = ξ/g3/2s .

Let us now perform the large volume expansion of VF . Note that in this limit the second
term in (.) is sub-leading. Keeping also only the leading term W0 in the superpotential,
we find up to an overall constant

VF '− (2π)2

V̂

∑
α,β

vol(Dα ∩Dβ)AαĀβe
−2πM i

αTie−2πMj
βT j

+
2π

V̂2

∑
α

τ̂α

(
Aαe

−2πM i
αTiW 0 + Āαe

−2πM i
αT iW0

)
+

3

4

ξ̂

V̂3
|W0|2.

(4.20)

In the one instanton case, the second term in equation (.) was the only place where the
axion corresponding to the instanton appeared. ecalling Ti = τ̂i + iρi, such a term could
be written as Xeiρ + Xe−iρ and upon minimizing the potential with respect to ρ, it was
rendered real and negative [,]. The negativity of this term was crucial for the existence
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of the minimum of the F-term potential at exponentially large volume.

In the general case of more than one instanton, the first term in (.) also depends on
the axions, provided the volume of the intersection locus of the respective instanton cycles
is non-vanishing. In this case, a more careful analysis of VF is needed. We do not consider
this case here but require instead that

vol(Dα ∩Dβ) = 0, (4.21)

for all pairs of instantons with α 6= β. This guarantees that the respective axions are stabilized
in the way described above by the second term in (.).

For the following, we will restrict ourselves to the case of an instanton wrapping a general
four-cycle DE3 in the Calabi–Yau manifold. Employing then the stabilization of the axion
associated to the instanton illustrated above, the F-term potential for one E3-brane instanton
simplifies to

VF '− (2π)2

V̂
vol(DE3 ∩DE3)|AE3|2e−4πτ̂E3

− 4π

V̂2
τ̂E3e

−2πτ̂E3 |AE3W0|+
3

4

ξ̂

V̂3
|W0|2.

(4.22)

This expression is nearly similar to the well-known expression of VF (.) in the original
LAGE volume scenario. The only difference is the first term. If we find that

vol(DE3 ∩DE3) ' −
√
τ̂E3, (4.23)

then as shown in section ., we are guaranteed to find a minimum of VF at exponentially
large values of V and with τE3 ' log(V). However, in general the minima of VF will depend
on the concrete model and on the way the moduli are stabilized.

Let us summarize the results of this section. Performing the LAGE volume expansion of
the scalar F-term potential for a general instanton configuration leads to an expression where
the axions corresponding to the instantons cannot be stabilized easily. We did not attempt to
address this question but restricted us to the case of one instanton along a general four-cycle.

The main question is now whether it is indeed possible to freeze the Kähler moduli con-
trolling the size of the MSSM D7-branes via the D-terms of the U(1) gauge factors supported
on these D7-branes and whether these sizes are of the same order of magnitude as the instan-
tonic four-cycles. Let us collect the formal constraints we have to successfully implement in
a concrete model for this scenario to work:

• Find a Calabi–Yau of swiss cheese type with one large four-cycle controlling the size
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of the manifold and small cycles typically arising from resolutions of singularities.⁴

• Define an orientifold projection of this space leading to O3- and O7-planes and freeze
the complex structure and dilaton moduli by G3-form flux. This latter will contribute
to the D3-brane tadpole.

• Introduce a set of intersecting (magnetized) D7-branes supporting the chiral MSSM

spectrum and a hidden D7-brane sector such that the D7- and D3-brane tadpole can-
cellation conditions are satisfied. Moreover, the D7-branes must be free of Freed–Witten
anomalies [].

• Classify all E3-instantons on this space which from the zero mode structure can con-
tribute to the uncharged superpotential. For this, a sufficient condition is that the
instanton is rigid and has no other chiral or vector-like zero modes from E3–D7
intersections. Furthermore, one also needs to ensure that the instantons are free of
Freed–Witten anomalies [].

• Compute the effective F- and D-term potential and analyze whether the combination
of both freezes all Kähler moduli inside the Kähler cone with the size of the D7-branes
coming out of the same order as the sizes of the instantons τ ' log(V).

Moreover, since in the non-supersymmetric large volume minimum the D-terms vanish, we
still only have F-term supersymmetry breaking and the soft-terms can be computed in the
usual way [].

In the next section, we will explicitly carry out some of the steps mentioned above for a
concrete Calabi–Yau orientifold model. Our simple (toy) model is neither realistic nor can
all conditions mentioned above be met explicitly, but it nevertheless shows how this program
can partly be realized even on a simple Calabi–Yau manifold.

4.2. An Example on the P[1,3,3,3,5][15] Calabi–Yau

From the previous section it is now clear that in the LVS, we need at least three Kähler
moduli to have both, stabilization of all moduli by D-brane instantons and a chiral D7-brane
sector. The exponentially large cycle, controlling the overall size of the manifold, is usually
frozen by the competing effects of the leading order α′-corrections to the Kähler potential
and the E3-instanton contribution. On the small cycles of a swiss cheese type Calabi–Yau,
the instantons and the D7-branes will be distributed.

4 It would be interesting to investigate whether also for instance Calabi–Yaus with a fibration structure can
lead to large volume moduli freezing. For these the volume can usually be brought to the schematic form
V = τ1

√
τ2 −

∑
I τ

3/2
I .
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A well studied class of Calabi–Yau three-folds is given by hypersurfaces in weighted pro-
jective spaces. A candidate which actually is of swiss cheese type and has more than one
small blow-up cycle is the resolution of the P[1,3,3,3,5][15] manifold. It will turn out that
this Calabi–Yau is still not rich enough to allow for complex structure moduli stabilization
by fluxes and a complete MSSM sector, but serves as a simply toy model to give a proof of
principle how the combination of F- and D-term moduli stabilization can work in more
realistic models. We describe now the algebraic geometry of this Calabi–Yau in more detail
in the next subsections.

4.2.1. The Topology of P[1,3,3,3,5][15]

Toric esolution

The P[1,3,3,3,5][15] manifold has a Z3 singularity along the complex line x1 = x5 = 0,
which is met by the hypersurface constraint. The resolution of this A2 orbifold singularity
introduces two intersecting P1s over the line.

This resolution is easily described invoking the methods of toric geometry. Besides the
five divisors v∗1 = (1, 0, 0, 0), v∗2 = (0, 1, 0, 0), v∗3 = (0, 0, 1, 0), v∗4 = (0, 0, 0, 1), v∗5 =

(−3,−3,−3,−5) one introduces the two blowing-up divisors v∗6 = (−2,−2,−2, 3) and
v∗7 = (−1,−1,−1,−1). The unique maximal triangulation is then given by

Triangle =
{
[1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 7], [1, 2, 6, 7], [1, 2, 5, 6], [1, 3, 4, 7],

[1, 3, 6, 7], [1, 3, 5, 6], [2, 3, 4, 7], [2, 3, 6, 7], [2, 3, 5, 6]
}
.

(4.24)

The data of the associated linear sigma model is the following. We have seven complex
coordinates xi with three U(1) symmetries. The corresponding charges are shown in (.).

x1 x2 x3 x4 x5 x6 x7 p

3 3 3 5 1 0 0 15

2 2 2 3 0 1 0 10

1 1 1 1 0 0 1 5

(4.25)

The divisorsDi are defined by the constraints xi = 0 and the resulting Stanley–eisner ideal,
found with the Maple package Schubert, reads:

S = {x4x5, x4x6, x5x7, x1x2x3x6, x1x2x3x7}. (4.26)

The triple intersection numbers in the basis η1 = D5, η2 = D6, η3 = D7 are calculated as

I3 = 9η31 − 40η32 − 40η33 − 15η21η2 + 25η1η
2
2 − 5η22η3 + 15η2η

2
3. (4.27)
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From section . we recall that the volume τi of the divisorDi and the overall volume of the
manifold (in string frame) are expressed in terms of the Kähler form in the following way

τi =
1

2

∫
X
[Di] ∧ J ∧ J, V =

1

6

∫
X
J ∧ J ∧ J. (4.28)

Expanding then the Kähler form in the basis {η1, η2, η3} from above as J =
∑3

i=1 ti[ηi] we
find for the volumes of the divisors D5, D6 and D7

τ5 =
1

2
(3t1 − 5t2)

2,

τ6 =
5

6

[
(3t3 − t2)

2 − (5t2 − 3t1)
2
]
,

τ7 = −5

2
(t2 − 4t3)(t2 − 2t3).

(4.29)

The Kähler Cone

Next, we are going to determine the Kähler cone, which is defined by the condition that
the volumes of all effective curves C are positive. The first step is to compute the cone of all
effective curves, which is called the Mori cone and then deduce from this the Kähler cone
by the condition

∫
C J > 0. The resulting constraints describing the Kähler cone are

t2 − 2t3 > 0, t1 − 2t2 + t3 > 0, −3t1 + 5t2 > 0. (4.30)

These conditions ensure also that the overall volume V is positive, that all volumes of effective
divisors are positive and, by construction, that all volumes of holomorphic curves are positive.

Swiss Cheese Structure

For a large volume compactification we want to make one four-cycle large while keeping
the others small. Let us therefore take a closer look at the volume. Using the Kähler cone
restrictions above, we find that V can be written as

V =

√
2

45

(
(5τ5 + 3τ6 + τ7)

3/2 − 1
3
(5τ5 + 3τ6)

3/2 −
√
5
3
τ
3/2
5

)
. (4.31)

From this expression we see that this model admits a swiss cheese structure. Indeed, we
can make τ7 large so that the total volume V becomes large while keeping the four-cycles
volumes τ5 and τ6 small. On the latter ones the D-branes supporting the MSSM will be
wrapped.

In such a set-up, we are thus not allowed to wrap D-branes supporting the MSSM on
(some combination involving) D7 because then the gauge coupling 1/g2YM ∼ τ7 would
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be too small. Similarly, we ignore instantons along this divisor, because its contribution to
the superpotential is exponentially suppressed. We are then left with the two divisors D5

and D6. Note however that not all combinations of D5 and D6 are allowed. We have to
wrap D-branes and instantons along effective cycles, i. e. positive linear combinations of the
divisors.

igid Cycles

Furthermore, we require the instanton to be rigid in the sense that no extra fermionic
zero modes from the deformations of the cycle or from Wilson lines along one-cycles do
appear. The transverse deformations of a holomorphic four-cycle D are counted by the
global sections of the normal bundleN ofD. By the adjunction formula and Serre duality on
Dwe getH0(D,ND) = H2(D,OD). The Wilson lines are counted by the non-contractable
one-cycles onD, which are counted byH1(D,OD). Therefore, for an instanton to not have
additional deformation zero modes we will require

H0(D,OD) = 1, H i(D,OD) = 0, for i = 1, 2. (4.32)

A necessary criterion for this is that the Euler characteristic of the trivial line bundle over D
is equal to one, i. e.

χ(D,OD) =
2∑
i=0

(−1)iH i(D,OD) = 1. (4.33)

Employing the Koszul sequence

0 → OX [−D] → OX → OD → 0, (4.34)

and the resulting long exact sequence in cohomology, one obtains the relation χ(D,OD) =

χ(X ,O[−D]).
In our concrete example, for a four-cycle D = mη1 + nη2 + lη3 the Euler characteristic

is calculated as

χ(D,OD) =
15
2
nl2 + 25

2
mn2 − 5

2
n2l − 15

2
m2n− 20

3
l3

− 20
3
n3 + 5

3
n+ 5

3
l + 3

2
m3 − 1

2
m.

(4.35)

Looking via a computer search for combinations with χ(D,OD) = 1 and l = 0 we have
found the solutions

(m,n, l) =
{
(1, 0, 0), (1, 1, 0), (2, 1, 0), (2, 2, 0)

}
. (4.36)

In order to compute the precise cohomology classes H i(D,OD), we use the cohomology
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Figure 4.1.: Singular rigid divisors

classes of general line bundles on the toric ambient space shown in appendix A and then run
them through the Koszul sequences for the restrictions on the Calabi–Yau hypersurface and
the divisors D. The result is that the first four divisors in (.) really have H i(D,OD) =

(1, 0, 0), i. e. these are irreducible effective divisors without any Wilson lines or transverse
deformations.

One comment is in order here. Note that the three rigid divisors (1, 1, 0), (2, 1, 0),
(2, 2, 0) are singular. Let us explain this for the first one D5 + D6. The only constraint
one can write down of this degree is Q = x5x6 = 0. This defines two complex divisors
x5 = 0 and x6 = 0 intersecting along the curve x5 = x6 = 0, where the manifold becomes
singular. Since the four-cycle has no deformations, the singularity cannot be smoothed out.
A lower dimensional analogy is shown in figure .. In the following we allow E3-instantons
and D7-branes to also wrap these rigid cycles, though we know that strictly speaking, our
method for the calculation of the Euler characteristic is not valid here. However, in order
to demonstrate our ideas we tacitly ignore this.

Diagonal Basis

In the following it will be more convenient to work in a basis where the volume V as well as
the triple intersection numbers become particularly simple. Guided by (.), we introduce
the new basis of divisors as

Da = 5D5 + 3D6 +D7, Db = 5D5 + 3D6, Dc = D5, (4.37)

for which the triple intersection numbers diagonalize

I3 = 5D3
a + 45D3

b + 9D3
c . (4.38)



.. A E   P[1,3,3,3,5][15] C–Y 

The total volume in terms of the divisor volumes τa, τb and τc reads

V =

√
2

45

(
τ 3/2a − 1

3
τ
3/2
b −

√
5
3
τ 3/2c

)
. (4.39)

Expanding also the Kähler form in this diagonal basis as J = taDa − tbDb − tcDc, we find
that the Kähler cone conditions have the very simple form

1

3
ta > tb > tc > 0. (4.40)

As one can see from the above, the large divisor is now simply Da. For the gauge couplings
not to be unrealistically small, we do not wrap the D7-branes supporting the MSSM along
the large cycle. Moreover, significant E3-instanton contributions only arise from instantons
wrapped on the small four-cycles. Therefore, we can make the general ansatz for the D-brane
and instanton cycles

DD7 = nbDb + ncDc, DE3 = mbDb +mcDc, (4.41)

where now the wrapping numbers n and m need not be integer. They are related to the
wrapping numbers ni in the {ηi} basis by

nb =
1

3
n2, nc = n1 −

5

3
n2, (4.42)

and similarly for (mb,mc).

4.2.2. Moduli Stabilization

Now that we have collected all the topological data, we can develop our model further. It
will turn out that the tadpole cancellation conditions for the present set-up impose strong
restrictions so that we cannot consider a full MSSM set-up but only a chiral toy model. We
will have two stacks of D7-branes wrapping rigid four-cyclesDA andDB where only on the
first one a non-trivial line bundle LA is turned on. We consider the standard model as being
part of theU(NA) gauge group on the first stack of branes (even though in the eventual model
it will not have large enough gauge group). Then we get MSSM matter from the intersections
AA′ and AB where the prime denotes the orientifold image. Connecting to our discussion
in section .., we in general allow the gauge group U(NA) to be larger than just the MSSM

gauge group. Then from the two intersections AA′ and AB we get matter ΦSM which is
part of the standard model. Furthermore, we get other matter Φabel transforming in singlet
representations of the MSSM gauge group, but carrying certain charges under abelian U(1)s
orthogonal to U(1)Y . In addition, in order for satisfying the D7-brane tadpoles we need
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extra hidden sector branes.

Before we give the complete model, let us first elaborate on the D- and F-term constraints.

D-Term Constraints

In section .. we have explained that the D-terms in large volume scenarios should vanish
in order not to spoil the 1/V expansion of the scalar F-term potential and the resulting
minimum. The D-term contains the Fayet–Iliopoulos parameter ξ and the possible matter
fields ΦSM, Φexo and Φabel. However, as argued previously, for the simple reason that the SM
gauge symmetry is unbroken at low energies, at least the vevs of the first two matter fields
have to vanish and for Φabel it is likely to vanish. For the MSSM sector, we are thus left with
the requirement that ξA = ξB = 0. ecalling the precise form of the FI-parameter (.),
the condition ξA = 0 reads

0 =

∫
c1(LA) ∧ [DD7A ] ∧ J. (4.43)

For the second D7-brane the condition ξB = 0 is trivially satisfied because of c1(LB) = 0.
Next, we consider the (chiral) zero mode constraint from the D7–E3 intersections. The
only non-trivial equation comes from D7A and reads

0 =

∫
c1(LA) ∧ [DD7A ] ∧ [DE3]. (4.44)

Using then our ansatz (.) in the diagonal basis, we find that the only suitable solution to
the two equations above is

J = ta[Da]− t[DE3]. (4.45)

Let us note that this solution implies tb = 1
3
mbt and tc = 1

3
mct. Comparing with the

Kähler cone constraint tb > tc > 0 and going back to the basis in {η1, η2, η3}, we see that
only wrapping numbers with 2m2 > m1 >

5
3
m2 are possible. This cannot be solved by any

of the rigid cycles (m1,m2,m3) ∈ {(1, 0, 0), (1, 1, 0), (2, 1, 0), (2, 2, 0)}. However, the
choice (m1,m2,m3) = (2, 1, 0), i. e. DE3 =

1
3
(Db +Dc), is at least on the boundary of the

Kähler cone at tb = tc. Of course, we cannot choose instantons at will but have to take all of
them into account. But we can arrange our set-up in such a way that only an instanton along
the cycle (m1,m2,m3) = (2, 1, 0) contributes to the stabilization of the Kähler moduli. We
will come back to this point after we specified the D-brane configuration in our model.
Note furthermore, by allowing a non-vanishing vev for Φabel, it might be possible to fix tb
and tc on a ray inside the Kähler cone via the instanton above.
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Let us now choose the stacks of D7-branes to wrap the rigid four-cycles

DD7A = D5 +D6 =
1

3
(Db − 2Dc), DD7B = D5 = Dc, (4.46)

with the line bundles

LA =
1

3
(2Db + 5Dc), LB = O. (4.47)

With this choice, as shown above, there are no chiral zero modes on the D7–E3 intersections.
However, similar to [], we expect both vector-like bosonic and fermionic zero modes, be-
cause, as shown in figure ., the rigid E3-instanton actually contains bothDD7A = D5+D6

and DD7B = D5 as a sub-locus. One way to get rid of these zero modes, would be to turn
on discrete Wilson lines or discrete displacement on the D7-brane resp. E3-instanton. It
is beyond the scope of this thesis to analyze mathematically this possibility for these divi-
sors. From now on, we proceed by assuming that such non-chiral zero modes can be made
massive so that indeed the E3-instanton on DE3 = 2D5 +D6 contributes to the uncharged
superpotential.

Before concluding this part, let us note that the vanishing of the D-term gives rise to a
minimum of the scalar D-term potential. Moreover, we have argued that the F-term poten-
tial does not depend on at least one linear combination of Kähler moduli τ̄ which however
appears in the D-term. For moduli stabilization this means that ∂V /∂τ̄ = ∂VD/∂τ̄ = 0 is
solved by the vanishing D-term and thus in our set-up fixes

tb = tc =: t. (4.48)

In the diagonal basis this solution implies that D6 shrinks to zero size but D5 stays finite.
Note first, our standard model branes do both involve D5 and so their volume is always
non-zero. Second, for a non-vanishing vev of Φabel we expect the volume ofD6 to be finite.

F-Term Constraints

Let us now go on and study the F-term potential. Since we only have a single instanton
contributing to the potential, we can refer to equation (.). Using then the concrete data
of our model, we find vol(DE3 ∩DE3) = −5tb − tc and therefore

VF ' (2π)2

V̂
(5t̂b + t̂c)|AE3|2e−4πτ̂E3 − 4π

V̂2
τ̂E3e

−2πτ̂E3 |AE3W0|+
3

4

ξ̂

V̂3
|W0|2. (4.49)

The first term cannot be expressed as a square root of τ̂E3 =
1
6
(45t̂2b+9t̂2c) and so the analysis

of section . for the minimum of VF at large volumes is not applicable. However, employing
equation (.), we find the following relation between the volume of the instanton cycle
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and the volume of its self-intersection

vol(DE3 ∩DE3) = −6t̂ = −2
√
τ̂E3. (4.50)

Note that this volume formally is negative, which simply reflects the fact that the four-cycle
DE3 is exceptional with a self-intersection not corresponding to an effective two-cycle. Using
this relation, the above expression becomes

VF ' 8π2

V̂

√
τ̂E3|AE3|2e−4πτ̂E3 − 4π

V̂2
τ̂E3e

−2πτ̂E3|AE3W0|+
3

4

ξ̂

V̂3
|W0|2. (4.51)

ecalling our discussion in section .., the 1/V̂ expansion of the F-term potential is of the
form which allows for a minimum of VF at large values of V̂ .

We can then treat these variables as fixed and use their relation to the Kähler moduli. We
obtain

tb = tc = t =
1

3

√
τE3, ta =

(
6

5
V0 +

2

5
τ
3/2
E3

)1/3

, (4.52)

where we denoted the value of V in the minimum by V0. Therefore, in this model all Kähler
moduli have been stabilized. To be more precise, we have seen that all coefficients ta in the
expansion of J are fixed and so are the real parts of the Kähler moduli Ti. Furthermore,
through the F-term potential the axion corresponding to the instanton cycle is stabilized and
via the D-term and Green–Schwarz mechanism the axion associated with the matter sector
gets massive.

For the Kähler moduli, we now get three different mass scales. Since the D-term vanishes
in the minimum, the mass of the large volume modulus and the small cycle fixed by the
instanton do not change. Just keeping track of the 1/V0 factor they scale likemτb ' mP/V3/2

0

andmτs ' mP/V0 []. The orthogonal Kähler modulus fixed by the D-term then has mass
mτD ' mP/

√
V0, which being of string scale size is much heavier than the other two.

Numerical Analysis

In order to explicitly check that the LAGE volume minimum of the full scalar potential per-
sists in our model, we have numerically evaluated equation (.). Installing the appropriate
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factors of 2π and gs, and choosing |AE3| = 1, |W0| = 5, we minimized the function⁵

VF+D(V , τb, τc) =
18.6

V
(√

5τb +
√
τc
)
gse

− 4π
3

1
gs
(τb+τc)

− 20.9

V2
(τb + τc)g

2
s e

− 2π
3

1
gs
(τb+τc) +

6.5

V3
g3s

+
13.3

V2

1

τb − 2τc
g3s
(√

5τc −
√
τb
)2
.

(4.53)

Note that we have not yet fixed the value of gs which is determined by the vev of the
dilaton. We have assumed that it is stabilized by fluxes and since we did not perform an
explicit analysis of this mechanism, we choose gs = 1/10 for convenience. However, as noted
in [], the stabilized volume V will depend exponentially on gs through V ∼ ec/gs where c
is some constant. Thus, a more careful analysis of the flux sector is inevitable.

Coming back to the potential above, we observe that the dominant part of (.) is given
by the D-term potential fixing the combination τb = 5τc. On top of that direction, we
found a minimum of the potential in the variables V and τb. In figures . and ., we have
plotted two sections through the parameter space showing the potential in the vicinity of the
minimum. The numerical values (in string units) in the minimum are V ≈ 2.2 ·1016 and the
four-cycle volumes are stabilized at τb ≈ 1.63, τc ≈ 0.33.⁶ For the volume of the standard
model cycles we find τSM ' 0.33 and the value of the scalar potential in the minimum is of
the order Vmin ' −10−54m4

P.

The stabilized four-cycle volumes are in a region where we have to worry whether we
can trust the supergravity approximation. Let us investigate more closely what the numerical
reason is. ecall from section . the approximate formulas for the volume V and the four-
cycle in the minimum

V ' µgs|W0|
2λas|As|

(
4νλξ

µ2

)1/3

e
as
gs

(
4νλξ

µ2

)2/3

, τ '
(
4νλξ

µ2

)2/3

, (4.54)

where we have used the notation from equation (.). Note that λ contains the informa-
tion about the intersection of the instanton cycles and thus depends on the topology of the
manifold and on the cycles suitable for instantons. Furthermore, ξ is proportional to the
Euler characteristic χ and so the above formulas depend strongly on the topology of the
compactification manifold.

For our present model, using the data after D-term fixing but leaving the Euler character-

5 A very similar potential appeared in [], but without the D-term part.
6 If we minimize the potential (.) instead of its large volume expansion (.), we find the minimum at
τc ' 0.53, τb ' 2.64 and V ' 1.1 · 1013 for gs = 1/10. The difference in the value of V can be compensated
by arranging gs = 1/12 so that the minimum is at τc ' 0.53, τb ' 2.64 and V ' 7 · 1015.
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istic χ and the string coupling gs unspecified, we obtain

V ' 6.1 · 10−2gs(−χ)1/3e0.145
1
gs
(−χ)2/3 , τSM ' 1.2 · 10−2(−χ)2/3. (4.55)

Therefore the prefactor of order 10−2 in (.) and the smallness of the Euler characteristic
χ = −144 of our Calabi–Yau manifold are the reasons for the string frame four-cycle volume
τSM to come out so small.

Just as a rough estimate, let us analyze for which values of gs and χ the formulas (.)
give more realistic values of the Kähler moduli. Choosing for instance τSM = 1.2 leads to
χ ' −1000. For the string coupling gs = ³⁄₈ we then get V = 5 · 1015. This points towards
choosing Calabi–Yau manifolds with Euler characteristics just at the limit of presently known
examples for χ.

To conclude we have demonstrated at a specific swiss cheese Calabi–Yau manifold with
h(1,1)(X ) = 3 that a combination of E3-instantons and D7-brane D-terms can fix all three
Kähler moduli in the large volume regime with all small cycles wrapped by D7-branes of
order log(V). In our case, the D-terms (only) fixed the moduli on the boundary of the
Kähler cone, where the four-cycle D6 collapses. Furthermore, we have argued that out of
the rigid divisors (.) only DE3 = 2η1 + η2 contributes to the uncharged superpotential.
However, actually the complete vector-like zero mode spectrum has to be computed for such
overlapping singular divisors and presumably also discrete Wilson lines and displacements
have to be included. We do not perform this complete mathematical investigation for this
specific model here, as our intention was rather to exemplify for a concrete Calabi–Yau that
the F- and D-term freezing scenario has a good chance to be realizable in concrete LAGE

volume type IIB model with a chiral D7-brane sector.





5. GUT Models in the LAGE Volume Scenario

In the last chapter we investigated the robustness of the LAGE volume (and also the KKLT)
scenario upon taking serious the D-brane instanton calculus. We learned that charged zero
modes, which are present if the instanton cycle is also populated by D7-branes supporting
chiral matter, spoil the generation of the usually assumed non-perturbative term in the su-
perpotential (.). As a consequence, the usual mechanism stabilizing the Kähler moduli
with a combination of instanton-generated non-perturbative contribution to the superpo-
tential and α′-corrections to the Kähler potential does not work for all Kähler moduli at the
same time.

ecent work on D-brane instanton calculus revealed that also the gauge kinetic function
receives non-perturbative corrections induced by euclidean D3-branes. We will see that with
the help of those, it is relatively easy to obtain a racetrack-like superpotential, generating
effective parameters W eff

0 and Aeff, i. e.

W = W eff
0 + Aeffe−aT , (5.1)

which can be tuned to exponentially small values without fine-tuning. The strength of this
fact is the following: remember that in the LVS, the two crucial scales ms and m3/2 depend
on the model parameters like this:

ms ∼
mP√
V
, m3/2 ∼

|W0|
V

mP. (5.2)

Up to now it was always assumed that the natural value forW0, generated byG3 flux is of the
order O(1)−O(10). Hence the two scales are controlled by only one parameter, the overall
volume V . If we require for phenomenological reasons TeV scale supersymmetry breaking,
the string scale is already fixed in the intermediate range of ms ∼ 1011 GeV. Though
this scenario may have its virtues, it would be nice if we could also realize a conventional
supersymmetric GUT scenario with ms ∼ mX ∼ 1016 GeV. From (.) it is clear that
therefore an overall volume of V ∼ 105 is required. If we require in addition TeV scale
supersymmetry breaking, a value of W0 as small as ∼ 10−10 is necessary. For a purely flux-
generated W0, although possible, this is probably not natural.

In section . we will see how poly-instanton corrections to the superpotential can induce
exponentially small values of W0 without fine-tuning. We will then explore this kind of
models with the help of three examples in section .. In the first one, the dominating me-


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diation mechanism is gravity mediation. While the gravitino mass is at aboutm3/2 ' 1TeV,
the soft terms come out by far to small. This is the result of a hierarchical suppressions which
occurs when the D7-branes wrap a cycle where gaugino condensates generate a racetrack
superpotential. The second one makes use of precisely this fact. Here, the gravitino and soft
scalar masses are chosen in an intermediate regime while the gaugino masses are found at the
weak scale, dominantly generated by anomaly mediation. This is a dynamical realization of
split supersymmetry []. The third example is a modification of the first one, in which
our original goal of TeV scale soft terms is realized again with gravity mediation only. Finally
we comment on the cosmological constant problem in section ..

5.1. Instanton Corrections and Gaugino Condensates

As usual in the LAGE volume scenario, we assume non-trivial – and NS–NS fluxes,
combined into the three-form G3 = F3+SH3. They give rise to a tree-level superpotential
of the form:

Wflux =

∫
X
G3 ∧ Ω3, (5.3)

which in general stabilizes all complex structure moduli Ui together with the axio-dilaton S
by the supersymmetry conditions DUi

Wflux = DSWflux = 0.

Now, in contrast to the usual LVS set-up (and also to the KKLT scenario), we consider the
special case that the flux-induced value of the superpotential vanishes in the minimum, i. e.

Wflux|min. = 0. (5.4)

Although this condition (.) together with the supersymmetry conditions mentioned above
is an over-constrained system of equations, the set of solutions are not highly suppressed.
Indeed it was suggested in [] that the number of minima fulfilling (.) compared to all
flux minima is roughly given by

#(Wflux|min. = 0)

#(tot)
∼ 1

Ln/2
, (5.5)

with L the upper limit on the flux quanta and n an integer.

Taking this additional assumption as satisfied, we use again the fact that the stabilization of
the complex structure moduli and the axio-dilaton takes places at a higher order in the V−1

expansion of the scalar potential than the Kähler moduli such that it is a valid procedure to
stabilize the two different classes of moduli independently of each other.

For reasons that will become clear in a moment, we require the compactification space to
have three Kähler moduli and the geometry to be of the swiss cheese form such that we can
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write the overall volume as:

V = (ηbτb)
3/2 − (η1τ1)

3/2 − (η2τ2)
3/2. (5.6)

Here, as usual, τb controls the overall volume V and τ(1,2) are small holes in this geometry.
The constants ηb, η1, η2 are determined by a specific choice of a compactification manifold.

As we want to engineer a racetrack superpotential [,,], we need to place gaugino
condensates in the model. The respective gauge theories shall be realized on two stacks
of D7-branes supporting a U(N) and a U(M) gauge theory respectively. They wrap the
four-cycle Γ1 corresponding to the Kähler modulus T1.¹ As it is well-known, this leads to a
racetrack superpotential containing exponentials of the two gauge kinetic functions:

Wnp = Ae−afa +Be−bfb . (5.7)

The constants a = 2π
N

and b = 2π
M

are determined by the ranks N and M of the two gauge
groups on the two D7-branes.

In further developing the D-brane instanton calculus, it has been argued in [, ] that
also the gauge kinetic function receives non-perturbative corrections from euclidean D-
brane instantons. In analogy to the case of D9- and D5-branes, analyzed in [] for the
gauge theory on the D7-branes we make the following ansatz for the instanton generated
non-perturbative correction:

∆npfa = g(U)e2πTE3 , (5.8)

where TE3 denotes the Kähler modulus corresponding to the cycle wrapped by the instanton.

For such an instanton to contribute, it must have a zero mode structure specified by
h(2,0)(ΓE3) = 1 and h(1,0)(ΓE3) = 0. Let us assume that such corrections can indeed arise
from an instanton wrapping the four-cycle Γ2 with Kähler modulus T2. Note that, because
of its zero mode structure, this instanton will not contribute as a single instanton and so the
superpotential, after integrating out the complex structure moduli, reads at leading order
(see also [])

Wnp = Ae−a(T1+C1e−2πT2) −Be−b(T1+C2e−2πT2), (5.9)

with all Kähler moduli in Einstein frame. The exponential of the non-perturbative correc-
tion can be developed into a power series. Only including the leading terms, we obtain:

Wnp ≈
[
Ae−aT1 −Be−bT1

]
−
[
AC1ae

−aT1 −BC2be
−bT1

]
e−2πT2 . (5.10)

From this it is clear that after stabilization of the modulus T1, the superpotential is of the

1 On the type I side, such a set-up can be realized for instance by discrete Wilson lines as it has been shown
in [].
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form (.) where the first term in brackets can play the rôle of an effectiveW eff
0 and the second

term that of Aeff. Because of their exponential dependence on T1 it should be possible to
drive them to very small values without fine-tuning.

Now, we are going to estimate the LAGE volume minimum of this scenario analytically.
We would like to emphasize that the specific models of the following sections have been
analyzed also numerically for the Kähler potential (.) and superpotential (.) without any
approximations. We start from the scalar F-term potential VF = eK

(
|DWnp|2 − 3|Wnp|2

)
with U and S stabilized. Since we are interested in a minimum at large V , we expand this
expression in powers of 1/V and keep only the leading order term in T1:

VF ∼
√
τ1|∂T1Wnp|2

V
+O

(
V−2, e−4πτ2

)
. (5.11)

The minimum of (.) is determined by ∂T1Wnp = ∂T 1
W np = 0 stabilizing T1 at

τ ∗1 ' 1

a− b
ln
(
Aa

Bb

)
, ρ∗1 = 0, (5.12)

where without loss of generality we assumed A > B are real and a > b.

We proceed and study the resulting effective potential for V and T2 with T1 stabilized at
values (.). As for the LAGE volume scenario, we take the limit V � 1 and keep only
the leading term in V at each order of exp(−2πτ2). The resulting potential then reads (in
Einstein frame)

VF ∼8

3

(√
τ ∗1
η1

∣∣γW eff
0

∣∣2 + (2π)2
√
τ2
η1

∣∣Aeff
∣∣2)e−4πτ2

V

− 4
∣∣W eff

0

∣∣∣∣τ ∗1 γW eff
0 + 2πτ2A

eff
∣∣e−2πτ2

V2

+
3ξ̂

4

∣∣W eff
0

∣∣2 1

V3
,

with γ = (aC1 − bC2)
(
1
a
− 1

b

)−1
and the axion ρ2 stabilized such that the second term

in (.) is minimized. The analytical analysis of this potential reveals that V is fixed at

V∗ = P
(
Aeff,W eff

0 , τ
∗
1 , τ

∗
2 , . . .

)
e2πτ

∗
2 , (5.13)

where P is a rather complicated algebraic function of various quantities and τ ∗2 is determined
by an implicit equation. However, using the scaling 2πτ2 ∼ lnV obtained from (.), we
observe that those terms in (.) involving τ ∗1 scale as V−3 and can therefore be absorbed
into ξ̂. The resulting potential is of a form as in the LVS and so we expect to find a non-
supersymmetric AdS minimum for large values of V .
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In order to obtain a positive cosmological constant, eventually the AdS minimum has to be
uplifted. This is achieved for instance by anti D3-branes at the bottom of a Klebanov–Strassler
warped throat [] as usual. The corresponding uplift potential has the form

Vup ∼
a4

V2
m4

P and a = e−
2πK
3gsM (5.14)

is the warp factor at the bottom of the throat with M , K the A- respectively B-cycle flux-
quanta.

5.2. Supersymmetric GUT Scenarios

In the previous section, we described a set-up in which we have exponential control over
the effective parameters W eff

0 and Aeff in the superpotential.
As we will show in the following, by tuning the initial parameters mostly at the order

of %, it is possible to dynamically fix the moduli such that V ∼ 105 and
∣∣W eff

0

∣∣ ∼ 10−10.
As already anticipated in the introduction to this section, these values give rise to a string
scale at the GUT scale ms ' mX ' 1.2 · 1016 GeV and m3/2 in the TeV range. Note that
for the usual LVS, a high degree of tuning is needed to have ms ' mX while keeping the
SUSY breaking scale in the TeV regime.

So war we focused only on the D7-branes supporting the gauge theories undergoing
gaugino condensation. They wrap the small cycle Γ1. Let us now investigate where in such
a scenario the MSSM respectively the Grand Unified Theory might be localized.

• If the D7-branes supporting the MSSM wrap the big four-cycle Γb with Kähler mod-
ulus Tb, the gauge coupling α−1 ' τb ∼ V2/3 is by far too small. This is similar to the
original LVS set-up.

• A second possibility is to place the branes on Γ2 with Kähler modulus T2 giving roughly
with the value of the overall volume we have chosen α−1 ' τ2 ' 1

2π
lnV ' 1.8. This

differs from the GUT gauge coupling α−1
X = 25 by an order of magnitude.

• Last but not least, we can wrap the D7-branes along Γ1 with gauge coupling α−1 '
τ1 ∼ − ln

∣∣W eff
0

∣∣ ∼ 21 which is in the right ballpark.

Unfortunately, the most appealing third possibility clashes with the “chirality problem” de-
scribed in chapter : as the cycle Γ1 is already populated by D-branes supporting gaugino
condensates, further D7-branes with a chiral matter spectrum would spoil the generation of
the superpotential we consider here. In principle, a solution is be to consider a manifold
with a further small Kähler modulus T4 and wrapping the branes along Γ1 + Γ4 with chi-
ral intersection on Γ4. The additional modulus then has to be stabilized by D-terms or, as
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Figure 5.1.: Distribution of m3/2 with τ1 = 25 ± 0.25 and V/√gs ' 1.26 · 105 for a scan over natural

values of a, b, A, B. The statistical mean of this distribution is
〈
log10

(
m3/2/TeV

)〉
= 1.79

and the standard deviation is σ = 0.98.

suggested in [], by string loop effects []. As we do not want to further complicate our
set-up, we ignore the chirality issue from now on, keeping in mind that it can be solved with
the aid of another small four-cycle.

Having identified a suitable choice for the MSSM branes in our set-up, let us now take
a different point of view and fix V/√gs ' 1.26 · 105 together with τ1 ' α−1

X ' 25. By
scanning the parameters a = 2π

N
, b = 2π

M
, A, B in a natural range, M ∈ [2, 12], 0 < N < M

and lnA ∈ [ln 0.1, ln 10], lnB ∈ [ln A
10
, lnA) in equidistant steps, we find the distribution

of resulting values form3/2 shown in figure .. This illustrates that in our set-up with input
ms = mX and α−1 = 25, a gravitino mass in the TeV region is obtained rather naturally.

In the following subsections, we investigate the scalar F-term potential resulting from the
Kähler potential (.) and the superpotential (.) numerically, that is we are searching for
minima at large volume with lnV ∼ 2πτ2. We analyze three different models where for
each one, we calculate the masses scales of the complex structure and Kähler moduli, given
by (see also section .):

mU ∼ mP

V
, mT1 ∼

∣∣W eff
0

∣∣mP,

mT2 ∼
∣∣W eff

0

∣∣
V

mP, mTb ∼
∣∣W eff

0

∣∣
V3/2

mP.

(5.15)

We also compare the gravity and anomaly mediated gaugino masses given by (.) and (.)
respectively in order to identify the dominant mediation mechanism.² For the Kähler metric
of the chiral matter we assume the form (.). The parameter λ therein can take values
between 0 and 1 in principle. We will use the value λ = ¹⁄₃ of the minimal swiss cheese
set-up []. The scalar masses for gravity mediation of supersymmetry breaking are given
in (.) where we set the potential in the minimum V0 is set to zero. Generically, the two-

2 We can safely ignore the effect of the uplifting [] which gives only sub-dominant contributions to the
soft terms.
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loop generated scalar masses for an anomaly mediated scenario are always smaller than the
supergravity mediated masses. Therefore, we do not calculate them here.

5.2.1. Model 1: A Starter

In the following subsections, we investigate the scalar F-term potential resulting from the
Kähler potential (.) and the superpotential (.) numerically, that is we are searching for
minima at large volume with lnV ∼ 2πτ2.

Taking the observations from the beginning of this section into account, we first assume
that the MSSM is localized on D7-branes wrapping the cycle Γ1 associated to the racetrack
modulus T1 with size τ1 ' 25. As easily to be checked by inserting the following val-
ues in (.), a particular set of parameters realizing this set-up without fine-tuning is the
following

A = 1.6, B = 0.2, C1 = 1, C2 = 3, a =
2π

8
, b =

2π

9
,

gs =
2

5
, ηb = 1, η1 =

1

53
, η2 =

1

6
, χ = −136.

(5.16)

For realizing τ1 ∼ 25 we have a great freedom of choice of course. We determined the
parameters by requiring that they are in their natural order of magnitude only and chose
them randomly apart from that. Then we computed the scalar potential using the Kähler
potential (.) and the superpotential (.) without any approximations and employed the
computer program Mathematica to determine the minimum with high numerical precision.
The resulting values are

V∗ = 78559, T ∗
1 = 25.18, T ∗

2 = 2.88, V ∗
F = −1.5 · 10−36m4

P, (5.17)

which is indeed the AdS LAGE volume minimum argued for in the last section. Three
plots showing different sections of the potential in the vicinity of the minimum can be found
in figures ..

(a) VF (V, τ1) (b) VF (V, τ2) (c) VF (τ1, τ2)

Figure 5.2.: F-term potential of the GUT model  in the vicinity of the minimum.
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The various masses are computed using the formulas, mentioned above. Let us however
emphasize that for the gaugino and scalar masses it is crucial to work with very high numerical
precision for T ∗

1 , T ∗
2 and V∗, as there appear certain cancellations. The origin of these will

concern us later.

Fundamental masses Moduli masses Soft masses

ms = 1.2 · 1016 GeV mU = 3.1 · 1013 GeV m
gravity
1/2 = 1.1 · 10−5 GeV

m3/2 = 1.6 · 104 GeV mT1 = 1.2 · 109 GeV m
anomaly
1/2 = 1.2 · 10−3 GeV

mT2 = 1.6 · 104 GeV mgravity
0 = 64GeV

mTb = 56GeV

Let us comment on these scales:

• By construction, the string scale ms coincides with the GUT scale and the gravitino
mass m3/2 is in the TeV regime.

• The closed sector moduli masses are ordered from heavy to light and take acceptable
values except for Tb which is too small. For ms = mX , the lower bound for moduli
masses not to be subject to the cosmological moduli problem is around 1TeV as de-
scribed in section .. Hence this model cannot be convincing when taking serious
cosmology.

• In addition, the gaugino as well as the scalar masses are far too small. The main reason
is that we realized the MSSM on the cycle Γ1 which is related to the racetrack modulus
T1. For this modulus we observe numerical cancellations giving F 1 ' 2 · 10−22mP ∼
10−8m3/2, i. e. supersymmetry breaking on the racetrack cycle is eight orders of mag-
nitude smaller than naïvely expected. The explanation is that the exact racetrack mini-
mum, in leading order given by the globally supersymmetric minimum (.), is almost
supersymmetric. For the gravity mediated gaugino masses we therefore obtain a strong
suppression

m
gravity
1/2 =

1

2τ1
F 1 ∼ 1

2 · 25
2 · 10−22mP ∼ 10−5 GeV. (5.18)

• For the anomaly mediated gaugino masses manomaly
1/2 , we find the expected cancellation

of m3/2 at leading order (see [] for a detailed derivation), however the sub-leading
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order in V dominates over F 1

manomaly
1/2 ∼ αa

4π

(
3TGm3/2

(
1− 1 +O(V−1)

)
+ 2λTR

F 1

2τ1

)
∼ 1

300

(
3 · 3 · 104 GeV · 10−5 + 2λ · 6 · 2 · 10

−22mP

2 · 25

)
∼ 10−3 GeV.

(5.19)

This value is of course still too small but note it is larger than the gravity mediated
term. The gaugino masses are thus dominantly generated via anomaly mediation.

• A similar mechanism is at work for the scalar masses where m2
3/2 is canceled at leading

order and sub-leading corrections in V give the main contribution (see again [] for
a detailed derivation of this expression)

(
mgravity

0

)2 ∼ m2
3/2

(
1− 1 +O(V−1)

)
+ λ

(
F 1

2τ1

)2

∼
(
104 GeV

)2 · 10−5 + λ

(
2 · 10−22mP

2 · 25

)2

∼
(
103/2 GeV

)2
.

(5.20)

In conclusion, although we were able to easily arrange for ms ' mX , α−1 ' α−1
X ' 25

and a gravitino mass in the TeV range, the soft terms are much too small.
In order to obtain realistic soft masses, two options seem viable: either we take the present

set-up and scale the mass parameters by a factor of 106, or we wrap the MSSM branes not
only along Γ1 but on Γ1 + Γ2 giving also a contribution from F 2 to the soft terms. In the
following two subsections, we discuss these two possibilities in more detail.

5.2.2. Model 2: A Mixed Anomaly–Gravity Mediated Model

ecall that the minimum for the racetrack modulus T1 is approximately supersymmetric. To
construct a model with gaugino masses in the TeV range, we use the same set of parame-
ters (.) of the previous set-up but scale A and B to the admittedly more unrealistic values
of

A = 1.6× 8 · 105, B = 0.2× 8 · 105. (5.21)

In view of (.) it is obvious that a common scaling ofA andB does not change the value of
τ1 in the minimum, which determines the gauge coupling of the GUT theory on the matter
branes. On the other hand, the value of the superpotential (.) in minimum is increased by
a factor of 105. This should affect the soft-masses by the same amount as F 1 is proportional
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to W in the minimum. Numerically minimizing the scalar potential with the new set of
parameters gives:

V∗ = 78559, T ∗
1 = 25.18, T ∗

2 = 2.88, V ∗
F = −9.5 · 10−25m4

P. (5.22)

Three plots showing the potential in the vicinity of the minimum can be found in figures .
on page . The mass scales for the new set-up are the following:

Fundamental masses Moduli masses Soft masses

ms = 1.2 · 1016 GeV mU = 3.1 · 1013 GeV mgravity
1/2 = 8.6 GeV

m3/2 = 1.3 · 1010 GeV mT1 = 9.9 · 1014 GeV m
anomaly
1/2 = 962GeV

mT2 = 1.3 · 1010 GeV mgravity
0 = 5.1 · 107 GeV

mTb = 4.5 · 107 GeV

We again comment on these scales:

• Since the value of the volume modulus is not changed compared to the previous set-
up, we similarly obtain ms ' mX . However, as intended, the gravitino mass is in an
intermediate regime due to the change in W eff

0 .

• With the gravitino mass in the intermediate regime, the cosmological moduli problem
has been evaded, as Tb is much heavier then the TeV scale now. We also see that
mT1 > mU , but since we have a well-defined expansion in 1/V we can safely stabilize
U and then study the stabilization of T1.

• Concerning the gravity mediated gaugino mass, the scaling (.) results in a value of
W eff

0 which is 8·105 times larger than in the previous set-up leading to F 1 ∼ 10−16mP.
The gravity mediated gaugino mass mgravity

1/2 is still too small but the anomaly mediated
masses are now in the TeV regime.

• As expected from the first example, the gravity mediated scalar masses are at mgravity
0 ∼

107 GeV and therefore much heavier than the gaugino masses. However, they come
in complete SU(5) multiplets and therefore do not spoil gauge coupling unification.

• With this hierarchy between the gaugino masses and the scalar masses, we have a dy-
namical realization of the split supersymmetry scenario []. The Higgs sector masses,
i. e. the canonically normalized µ̂-term and the soft term µB, are expected to be of
the same order of magnitude as the scalar masses, simply for the reason that here both
F b ∼ m3/2 and F 1 contribute. Therefore, in order to keep these at the weak scale, a
fine-tuning of the supersymmetric µ-term is necessary.
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To summarize, tuning the initial parameters such that α−1 ' α−1
X ' 25 and ms = mX ,

and localizing the MSSM solely on the racetrack cycle Γ1, we find a high suppression of the
gravity mediated gaugino masses due to the quasi-supersymmetry of the racetrack minimum.
Fixing the gaugino masses at the TeV scale leads to an intermediate supersymmetry breaking
scenario with gravitino masses and scalar masses in the intermediate regime. Due to the large
value ofm3/2, this evades the CMP and gives a stringy realization of the split supersymmetry
scenario proposed in [].³

5.2.3. Model 3: An LVS like Supergravity Mediated Model

We now consider the second possibility from the end of section .. which indeed realizes
our initial goal, namely to naturally find large volume minima with the string scale at the
GUT scale, gauge coupling unification and soft masses in the TeV regime. This provides
a concrete moduli stabilization scenario for which the analysis of [] is applicable. There,
the computation of soft masses and running to the weak scale has been studied quite sys-
tematically for moduli dominated supersymmetry breaking in F-theory respectively type IIB

orientifold compactifications realizing the MSSM.

We modify our original set-up such that the soft terms are dominantly generated via T2
similarly to the original LVS. To do so, we place the MSSM D7-branes on the combination
of cycles Γ1 + Γ2. A concrete set of parameters realizing this set-up without fine-tuning is

A = 1.5, B = 0.25, C1 = 1, C2 = 3, a =
2π

8
, b =

2π

9
,

gs =
2

5
, ηb = 1, η1 =

1

40
, η2 =

1

6
, χ = −153.

(5.23)

The minimum of the scalar F-term potential is again determined with the help ofMathematica
giving

V∗ = 92158, T ∗
1 = 21.58, T ∗

2 = 2.91, V ∗
F = −1.4 · 10−34m4

P, (5.24)

so that the gauge coupling of the D7-branes α−1 = τ1 + τ2 = 24.8 is again the unified
gauge coupling at the GUT scale. Three plots showing the potential in the vicinity of the
minimum can be found in figures . on page . The mass scales in this set-up are calculated
as follows:

3 For a local realization of split supersymmetry see [], and a realization by mixed anomaly-D-term medi-
ation has been reported in [].
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Fundamental masses Moduli masses Soft masses

ms = 1.1 · 1016 GeV mU = 2.6 · 1013 GeV m
gravity
1/2 = 819GeV

m3/2 = 168TeV mT1 = 1.5 · 1010 GeV m
anomaly
1/2 = 10GeV

mT2 = 168TeV mgravity
0 = 817GeV

mTb = 553GeV

Let us again comment on the various scales arising in this LAGE volume minimum:

• We arranged the parameters for the present set-up such that ms ' mX together with
the gravitino mass in the TeV range.

• The closed sector moduli masses take (almost) acceptable values with mTb close to the
regime where the cosmological moduli problem may be avoided. (Note that we were
not careful with factors of 2π.)

• The soft masses are dominantly generated via the supersymmetry breaking of T2 spec-
ified by F 2 ∼ 10−14mP. Since T2 is stabilized as in the original LAGE volume
scenario, similar mechanisms generating the soft masses are at work []. In particular,
using the fact that F 1 ∼ 10−20mP � F 2, the common term determining the gaugino
as well as the scalar masses can be expressed as

F 1 + F 2

2(τ1 + τ2)
∼ F 2

2(τ1 + τ2)
∼ τ2
τ1 + τ2

m3/2

ln(mP/m3/2)
. (5.25)

Here we used that F 2 ' 2τ2m3/2/ ln(mP/m3/2) which was obtained in []. For the
gravity mediated gaugino mass we thus find

m
gravity
1/2 =

F 1 + F 2

2(τ1 + τ2)
∼ 3

25

1.7 · 105 GeV
ln(1018 · 10−5)

∼ 700GeV. (5.26)

• For the anomaly mediated gaugino mass we use equation (.) to obtain

manomaly
1/2 ∼ αa

4π

(
3TGm3/2

(
1− 1 +O(V−1)

)
+2λTR

F 1 + F 2

2(τ1 + τ2)

)
∼ 1

300

(
3 · 3 · 105 GeV · 10−6 + 2λ · 6 · 700GeV

)
∼ 10GeV,

(5.27)

with λ = ¹⁄₃ []. Note that again the contribution ofm3/2 is canceled at leading order
but the sub-leading correction m3/2/V is suppressed compared to F 2.
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Furthermore, in this supersymmetry breaking scheme, the anomaly mediated gaug-
ino masses are significantly smaller than the gravity mediated ones. This is contrast
to the so-called mirage mediation scheme arising for instance in the original KKLT

scenario [–], where both are of the same order of magnitude.

• Finally, we consider the gravity mediated scalar masses. eferring to formula (.),
we obtain

(
m

gravity
0

)2 ∼ m2
3/2

(
1− 1 +O(V−1)

)
+ λ

(
F 1 + F 2

2(τ1 + τ2)

)2

∼
(
105 GeV

)2 · 10−6 + λ
(
700GeV

)2
∼
(
102 GeV

)2
.

(5.28)

Note that for the scalar masses, the contribution fromm3/2 is canceled at leading order
but now the sub-leading corrections scale as m3/2/

√
V . Therefore, by accident, the

two terms in the equation above are of the same order which is in contrast to the
relation mgravity

0 = mgravity
1/2 /

√
3 obtained in the original LVS [].

• Assuming that the supersymmetric µ-term vanishes, the canonical normalized Higgs
parameters are also in the TeV regime. This would solve the µ-problem via the Giu-
dice–Masiero mechanism [].

In summary, by wrapping the MSSM supporting D7-branes along Γ1 + Γ2, we obtain
a LAGE volume scenario with supergravity mediated soft masses in the TeV region and
ms = mX . This is different compared to the original LVS where the string scale is usually
at an intermediate scale. It would be interesting to calculate the soft-terms at the weak
scale along the lines of [, ] to see whether distinctive patterns for the supersymmetric
phenomenology to be tested at the LHC can be obtained.

5.3. Comment on the Cosmological Constant

For the GUT set-up discussed in the previous section, the tree-level cosmological constant
is V ∗

F = −1.4 · 10−34m4
P and therefore a high degree of fine-tuning in the uplift poten-

tial (.) is needed to obtain the observed value of Λ ' +10−120m4
P. Note that after such

a fine-tuning has been achieved, a LAGE volume scenario with ms ' mX contains a nat-
ural candidate serving as a quintessence field [, ]: indeed, taking into account also
non-perturbative corrections corresponding to the large four-cycle Γb, the scalar potential
depending on the (canonically normalized) axion σb takes the form

VQ
m4

P
'
(
mPm3/2

m2
X

)
e−

2π
L
τb

(
1− cos

(
2π

L
σb

))
. (5.29)
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For the minimum V∗ ' τ
2/3
b ' 92158 of our model from section .. and L of the order

L = 40, . . . , 50, the prefactor in (.) is of the right order of magnitude.
Although the GUT models from the previous section may contain a quintessence field, let

us now take a different point of view. Since in our scenario we have exponential control
over W eff

0 and Aeff, one might ask whether it is possible to dynamically find a minimum
V ∗
F ' −

∣∣W eff
0

∣∣2V−3 ' −10−120m4
P realized without fine-tuning. Ignoring the weak scale

for a moment, for the string scale we have ms ∼ V−1/2mP > TeV which implies that
V < 1030. To keep the tuning of a, b, A, B moderate, we identify

∣∣W eff
0

∣∣ ∼ 10−15 and thus
V ∼ 1030 as a natural choice to realize V ∗

F ' −10−120m4
P. A set of parameters dynamically

leading to such values is for instance

A = 1, B = 0.1, C1 = 1, C2 = 3, a =
2π

13
, b =

2π

14
,

gs =
1

5
, ηb = 1, η1 =

1

30
, η2 =

1

6
, χ = −452,

(5.30)

and the plots showing the potential in the vicinity of the minimum can be found in figures .
on page . The numerical values specifying the minimum are

V∗ = 6.4 · 1028, T ∗
1 = 68.84, T ∗

2 = 11.53, V ∗
F = −7.8 · 10−121m4

P, (5.31)

and because the AdS minimum is at V ∗
F ∼ −10−120m4

P, the warp factor a = 10−15 in the
uplift potential (.) does not involve any fine-tuning of the flux parameters K and M .

We conclude that there exist vacua of the scalar potential (.) whose tree-level cosmo-
logical constant has the right order of magnitude. However, this clearly does not solve the
cosmological constant problem, as we have not yet identified the standard model and the
origin of the weak scale. Once we try to introduce the MSSM into this set-up, we are
confronted with the usual problems. Let us briefly explain three possibilities:

• Localizing the MSSM on D7-branes wrapping the cycles Γ(1,2) leads to soft masses
below the gravitino mass scale m3/2 ' 10−18 eV which itself is ridiculously small.

• Since ms ∼ TeV, we could break supersymmetry at the string scale and place a non-
supersymmetric anti D3-brane configuration realizing the MSSM at the bottom of a
throat, i. e. on the TeV brane in the S scenario. The uncanceled NS–NS tadpole
of the non-supersymmetric brane configuration would be the red-shifted uplift term.
However, all mass scales in the throat are red-shifted as well [] so that the stringy
excitations such as squarks have masses m0 ' ams ' Λ1/4 = 10−3 eV.

• A third option is to place an explicitly supersymmetry breaking D-brane configuration
in the bulk, i. e. on the Planck brane in the S scenario. Then the superpartners have
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string scale masses in the TeV region, but we get an additional positive contribution
V ∼ O(m4

s ) to the scalar potential.

In conclusion, even though we have exponential control over the effective parametersW eff
0

and Aeff, the cosmological constant problem is not even touched. It can be phrased as the
problem of hiding the TeV scale supersymmetry breaking of the standard model such that it
does not induce a large contribution to the tree-level value Λ0.
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(a) VF (V, τ1) (b) VF (V, τ2) (c) VF (τ1, τ2)

Figure 5.3.: F-term potential of the GUT model  in the vicinity of the minimum.

(a) VF (V, τ1) (b) VF (V, τ2) (c) VF (τ1, τ2)

Figure 5.4.: F-term potential of the GUT model  in the vicinity of the minimum.

(a) VF (V, τ1) (b) VF (V, τ2) (c) VF (τ1, τ2)

Figure 5.5.: F-term potential of the Λ model in the vicinity of the minimum.



6. SUSY Breaking in Local String/F-Theory Models

In the previous chapter we analyzed a modified LAGE volume scenario in which the string
scale is at the GUT scalems ∼ mX ∼ 1016 GeV. In order to get a suitable value for the gauge
coupling in these GUT scenarios, the matter D7-branes had to wrap the same four-cycle in
the internal space as the D7-branes supporting the gaugino condensates, needed for moduli
stabilization.

In the numerical calculation of the soft terms in the visible sector, we found a rather unex-
pected cancellation leading to a hierarchical suppression of the soft masses compared to the
gravitino mass. We credited this with the fact that the minimum of the scalar potential for the
Kähler modulus Γ1 associated to this particular four-cycle was almost supersymmetric, and
correspondingly the F-term F 1 was smaller than expected. Still, under certain circumstances,
gravity mediation was the dominant supersymmetry breaking mediation mechanism.

In this chapter we investigate supersymmetry breaking in these kinds of set-ups more
carefully. As a refinement compared to the models in chapter , we no longer assume that
the branes from the matter sector and the moduli stabilizing sector populate the same four-
cycle in the internal space, accounting for the “chirality problem” described in chapter .
emember, we found that the four-cycles supporting the chiral matter sector cannot be
stabilized directly by the F-term potential induced by non-perturbative effects as usually
done in the LAGE volume or KKLT scenario, but rather by D-terms. Consequently, the
corresponding F-term is zero and gravity mediated soft terms are induced only by F-terms
associated to other Kähler moduli or the dilaton. Hence we await a similar, or even stronger
kind of suppression of the soft terms as in the models in chapter .

Beside the motivation from the chirality problem, such “sequestered” set-ups can also be
found in other contexts: a way of realizing interesting gauge theories is given by D3-branes at
the singular point as discussed in [,]. Various low-energy models were studied on the
first two del Pezzo surfaces dP0 and dP1, allowing for both GUT-like and extended MSSM

scenarios. From the effective field theory point of view, these are quite similar to the models
we studied in chapter . emember that there, the D-term potential was such that Kähler
modulus associated to the chiral matter branes was stabilized at zero size (without taking into
account higher α′-corrections).

Another related scenario was proposed in the context of F-theory []. Model building on
elliptically fibered Calabi–Yau fourfolds has come into vogue recently [–,–]. The
appeal of these constructions is due to the fact that F-theory is genuinely non-perturbative
and as such admits in a relatively easy way to engineer spinor representations of an SO(10)


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or the top quark Yukawa coupling 10 10 5H in SU(5). Both is not possible in perturbative
orientifold constructions. Another advantage is that these F-theory models allow for an
essentially local treatment [] if there exists a limit in which gravity decouples from the
gauge theory on the GUT brane. This is the case if the space transverse to the brane can
become arbitrary large which equivalently means that the four-cycle the branes are wrapping
can shrink to zero size. A class which is often considered for these divisors is given again by
del Pezzo surfaces. If gravity can be decoupled from the GUT sector, usually a suppression
for the gravity induced soft terms of the order ms/mP relative to their general values is
expected, suggesting that gauge mediation is the dominant mechanism for the mediation
of SUSY breaking. This kind of models has a number of interesting phenomenological
properties [, ].

In view of the similarity to the F-theory models, we await a similar suppression of the
gravity mediated soft terms in our LAGE volume set-up. Indeed, after introducing the
geometric framework of local GUTs in section ., we compute the gravity mediated soft
terms in section . and find a cancellation at O(m3/2). Sub-leading contributions to the

soft terms appear at order O
(
m3/2/

√
V
)
= O

(
m

3/2
3/2/m

1/2
P

)
. In certain circumstances these

contributions can also cancel and we give a set of well posed assumptions when this can occur.
In section . we discuss the implications from these soft terms for both gauge mediation
and the cosmological moduli problem.

6.1. Effective Field Theories and Moduli Stabilization

Let us describe in more detail the set-up we are going to investigate in this chapter. We
require a Calabi–Yau three-fold with at least three four-cycles: one large cycle and two small
del Pezzo four-cycles, i. e. the three-fold is of the (strong) swiss cheese type. One of the
del Pezzos supports the SU(5)/MSSM gauge theory while the other supports a D3-brane
instanton. We exclude chiral intersections between the two small four-cycles along the lines
of chapter . Then the D3-brane instanton induces a non-perturbative contribution to
the superpotential of the form (.), such that there exists the non-supersymmetric AdS-
type LAGE volume minimum. Since the GUT brane is localized on a del Pezzo surface
“orthogonal” to the instantonic del Pezzo and the size of the GUT brane is fixed by D-
terms at small values, the previous computations of the gravity induced soft terms should be
modified. The same calculation is also necessary for the case that the GUT cycle is collapsed
at the quiver locus.

Obviously there are two basic regimes where the effective field theory (EFT) for light
modes is reliable:

• The geometric regime, where all of the four-cycles, including the standard model or
GUT cycle are larger than the string scale.



.. E F T  M S 

• The size of the standard model cycle is much smaller than the string scale. It is a
blow-up mode expanded around its vanishing value corresponding to the del Pezzo
singularity. Fortunately string theory is under control at the singularity and the EFT

can be safely defined in an expansion on the blow-up mode.

Since the D-term conditions tend to prefer a small value of the standard model cycle, it
is important to understand the physics in both regimes of validity of EFT. It is clear that
these are two different effective field theories for standard model physics. But, as we will
see, since the standard model cycle does not participate in the breaking of supersymmetry,
the structure of soft breaking terms will be the same in both cases.

Gauge Couplings on the GUT Brane

In orientifold models we can realize a GUT theory on a stack of five D7-branes giving rise
to the Chan–Paton gauge group U(5). This allows for a non-vanishing gauge flux Fa in
the diagonal U(1) ⊂ U(5). We assumed the four-cycles to be del Pezzo surfaces. These are
rigid and do not even contain any discrete Wilson lines. The gauge symmetry is broken to
SU(3)× SU(2)× U(1)Y by a non-trivial U(1)Y gauge flux FY supported on a two-cycle
Ca ∈ H2(Da,Z) which is trivial in H2(X ,Z) [, ]. As explained in [], this way of
breaking the SU(5) gauge group leads to a specific pattern of MSSM gauge couplings at the
unification scale

fi = Ta −
1

2
κiS, i ∈ {1, 2, 3}, (6.1)

with

κ3 =

∫
Da

F2
a , κ2 =

∫
Da

F2
a + F2

Y + 2FaFY ,

κ1 =

∫
Da

F2
a +

3
5

(
F2
Y + 2FaFY

)
.

(6.2)

For concreteness we are using these orientifold relations in the following.
In the limit that the cycle is collapsed to the singularity, the gauge kinetic function takes a

similar form:
fi = δiS + sikTk, (6.3)

where now Tk has to be understood as the blow-up modes that resolve the singularity. For
Zn singularities δi is universal; however for more complicated singularities δi can be non-
universal. For applications to unification, we are interested in singularities where the different
gauge groups have universal couplings at the singularity.

For both classes of local models the GUT unification scale and string scale differ signifi-
cantly by a factor of the bulk radius. More precisely, the GUT unification scale mX is given
by mX = Rms, where R ∼ V1/6 is the bulk radius of the Calabi–Yau in string units. This
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can be seen through the Kaplunovsky–Louis relation between physical and holomorphic
gauge couplings []

g−2
a (Φ, Φ̄, µ) = e

(
fa(Φ)

)
+

(∑
r nrTa(r)− 3Ta(G)

)
8π2

ln
(
mP

µ

)
+
T (G)

8π2
ln g−2

a (Φ, Φ̄, µ)

+

(∑
r nrTa(r)− T (G)

)
16π2

K̂(Φ, Φ̄)−
∑
r

Ta(r)

8π2
ln detZr(Φ, Φ̄, µ).

(6.4)

Using the IIB Kähler potential K̂ = −2 lnV and the behavior for local models Ẑ = V−2/3

we obtain

g−2
a (µ)− T (G)

8π2
ln g−2

a (µ) = e
(
fa(Φ)

)
+ βa ln

(
(Rms)

2

µ2

)
, (6.5)

giving effective unification at Rms. As described in [, ], at the string level this de-
pendence arises from the presence of tadpoles that are sourced in the local model but are
only canceled globally. This comes from the fact that the U(1)Y flux that breaks the GUT

group is on a two-cycle that is non-trivial in H2(Da,Z) and trivial in H2(X ,Z). Locally
the U(1)Y flux sources an  tadpole, which is in fact absent globally due to the triviality
of the cycle. The finiteness of threshold corrections is tied to the absence of  tadpoles,
but the triviality of Ca requires knowledge of the global geometry, leading to the presence
of the scale Rms.

Moduli Stabilization

We take the zero mode arguments of chapter  serious and assume that the GUT branes wrap
a four-cycle Γa which has no chiral intersection with the instanton cycle in order to avoid
the generation of charged term in the non-perturbative superpotential. As mentioned, in
type IIB orientifolds we allow for an additional gauge flux Fa in the diagonal U(1)a ⊂ U(5)

perturbative Chan–Paton gauge group. Vanishing of the Fayet–Iliopoulos U(1)a D-term
constraint (at order V−2) ∫

Da

J ∧ Fa = 0 (6.6)

implies that that the volume of the cycle Γ is driven to zero, i. e. τa → 0, so that we are at the
quiver locus where α′-corrections cannot be ignored. In the EFT, the condition (.) is es-
sentially that the field dependent FI-term vanishes KTa = 0. Using the Kähler potential (.)
in both the geometric and quiver regimes, this condition show explicitly a dynamical pref-
erence for a collapsed cycle τa → 0 as for a swiss cheese manifold with volume (.) we
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have

KTa =
3

2

η
3/2
a τ

1/2
a

V + ξ̂
2

. (6.7)

The F-term of the field Ta is of the form

Fa = eK/2
(
WTa +WKTa

)
. (6.8)

Since the superpotential W does not depend on the modulus Ta and the D-term condition
impliesKTa = 0, we can see that this field does not break supersymmetry, i. e. Fa = 0. Notice
that this conclusion will not be modified by including perturbative and non-perturbative
corrections to the Kähler potential since these corrections will equally modify the D- and
F-terms.

Now it is instructive to take a look at the Kähler metric derived from (.):

Kab̄ = ±2
(
V + ξ̂

2

) 3

16η
3/2
a

τ 1/2a δab +
4V − ξ̂

V − ξ̂
τaτb,

KaS̄ = −3

2

(
S + S̄

) ξ̂

V − ξ̂
τa,

KSS̄ =

(
S + S̄

)2
4

4V − ξ̂

V − ξ̂
,

(6.9)

where we included this time also the dilaton part. Since τa = 0 it is clear from (.) that also
F a = eK/2Ka̄F̄ = 0. This is a very important conclusion, as it indicates that the standard
model is somehow sequestered from the sources of supersymmetry breaking.

A loophole to this argument is that it implicitly assumes that the standard model fields,
charged under the corresponding U(1), will not get a vev. Otherwise they would contribute
to the D-terms and cancel the contribution from the FI-term. Even though this is desirable
phenomenologically to avoid a large scale breaking of the standard model symmetries, such
as color, it should be the outcome of a calculation. We illustrate in the appendix in a toy
model that this is actually the case as long as the soft scalar masses are not tachyonic.

A direct consequence is that the soft terms on the GUT brane can only be generated at
“sub-leading” order by F b, F s and F S , i. e. by moduli which are sort of sequestered from
the GUT brane.

Including Matter Fields

So far we have concentrated only on the EFT for the moduli fields and their stabilization. In
order to study soft-supersymmetry breaking we need to properly introduce the matter field
dependence in the EFTs in both the geometric and singular cycle regimes. The important
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term to be included is the matter fields’ Kähler potential K̃ = Zαβϕαϕ
∗
β + · · · with Zαβ a

function of the moduli fields.

At this state, only the dependence on τb and τs is relevant, as all the other fields do not
break supersymmetry (to leading order). Z should only depend on τb, S and the Kähler
modulus of the GUT brane τa, so Z = Z(τb, τa, S). We found the leading order expression
for Z in section . to be Z ∼ 1/V2/3. This applies to both chiral matter at magnetized
D7-branes and to the better understood fractional D3-branes at singularities. Since the
α′-corrections to the Kähler potential are crucial to determine the large volume vacuum,
consistency requires that these corrections should also be included in the matter field Kähler
potential. Unfortunately these corrections are not known at present but as in the tree-level
case, we are mostly interested on their overall volume dependence.

Let us parametrize the α′-corrections by a so far unknown function f :

Zα =
kα
τb

(
1 + f

(
e(S)
τb

))
. (6.10)

The dependence of f on the variables can only be in the indicated way in order to have the
right power in gs. Now consider the next-to-leading order correction in α′ to the tree-level
result, which, we claim, must be of the form:

Zα =
kα
τb

(
1− δ

(
e(S)
τb

)n
2

+ · · ·
)
, (6.11)

with n = 1, 2, . . . denoting the (α′)n order of this term. The question now is at which
order in (α′)n the first correction appears. Since we are only interested in the correction
which does not include τa, we can use a scaling argument like in section .. Assuming that
the physical Yukawa couplings do not depend on the overall volume of the space and taking
into account the Kähler potential (.), the leading order correction to the Kähler metrics
were shown to scale as kα

τb
. Then it is expected that also at next-to-leading order the scalings

must match, which means that also the Kähler metrics are corrected at order (α′)3. This
argument shows that n = 3 is the smallest expected correction in (.) and then

Zα =
kα
τb

(
1− δ

(e(S)
τb

)3/2)
. (6.12)

Summary of EFTs

We can finally summarize the expressions for the EFTs we are using for the two relevant
regimes:
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1. In the geometric regime the EFT is determined by:

K = −2 ln
(
V + ξ̂

2

)
− ln

(
S + S̄

)
+KCS + Zϕϕ∗ + · · · , (6.13)

W =W0 + Ae−aTs +Wmatter, (6.14)

fi = Ta −
1

2
κiS, (6.15)

where V = (ηbτb)
3/2 − (ηsτs)

3/2 − (ηaτa)
3/2 and Z = k

(
1− δ

(
e(S)

)3/2
/V
)
/V2/3.

2. In the singular cycle (blow-up) regime there is a slight change in the standard model
cycle dependence of K:

K = −2 ln
(
V + ξ̂

2

)
+ α

τ 2a
V

− ln
(
S + S̄

)
+KCS + Zϕϕ∗ + · · · , (6.16)

W = W0 + Ae−aTs +Wmatter, (6.17)

f = δiS + sikTk, (6.18)

with now V = (ηbτb)
3/2 − (ηsτs)

3/2 and Z =
(
β − δ/V + γτma

)
/V2/3 with m > 0.

Since in both cases the standard model/GUT cycle does not break supersymmetry, the struc-
ture of soft breaking terms will be essentially the same.

6.2. Gravity Mediated Soft Terms

As we have seen, the LAGE volume minimum of the scalar potential breaks supersymmetry,
so that this breaking induces soft supersymmetry breaking terms on the GUT brane. There
are two sources which are relevant here. First, there are of course the gravity mediated soft
terms. However, since the GUT brane is sequestered from the non-supersymmetric bulk one
might expect that anomaly mediation is the leading order contribution. In this section we
compute the gravity mediated soft terms, i. e. the gaugino- and sfermion-masses as well as
the µ-, A- and B-terms. Moreover, we compute the anomaly mediated gaugino masses. Let
us emphasize again that the scenario differs from the usual intermediate scale LAGE volume
scenario in that the string scale is much higher (we assume ms ∼ 1015 GeV for consistency
with unification at mX ∼ 1016 GeV), and that the GUT or MSSM branes are wrapping a
four-cycle completely sequestered from the four-cycles supporting D3-brane instantons.

From the relation between the string scale and the Planck scale (.) we see that forms =

1015 GeV, which implies in our set up the usual unification scale atmX ∼ 1.2 ·1016 GeV, an
internal volume of roughly V = O(106 − 107) is needed (in Einstein frame). This is a value
large enough to trust the V−1 expansion. Moreover, we immediately realize that the LAGE
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volume expansion parameter is directly related to the local GUT expansion parameter, i. e.
V−1/2 ' ms/mP.

6.2.1. Structure of Soft Terms

We are now in a position to compute each of the gravity mediated soft supersymmetry
breaking terms in this class of scenarios.

Gaugino Masses

emember, for gravity mediated supersymmetry breaking, the gaugino masses are calculated
as

m1/2 =
1

2e(fi)
F I∂Ifi, (6.19)

for i = 3, 2, 1, where for the gauge kinetic functions we use (.) with τa ' 0 due to the
D-term constraint.

The distinctive feature of our set-up is the fact that the GUT brane is sequestered from the
bulk, which implies F a = 0. The only contribution to the gaugino masses can come from
the dilaton F-term F S = eK/2KSJ̄ F̄J̄ .

Here, a subtlety arises concerning FS = DSW = ∂SW + W (∂SK): in the LAGE

volume scenario, the Kähler potential depends on the dilaton not only in the usual way via
− ln(S + S̄), but there is also a contribution in the α′-correction in the Kähler moduli part
(see (.)). Thus, ∂SK receives V−1 corrections:

DSW ≈ ∂SW0 −
gs

2
W0 −

3

4

ξ

g
1/2
s

W0

V
+O(V−2). (6.20)

Also as a consequence of the α′-corrections, the minimum of the scalar potential for the
dilaton is shifted away from the supersymmetric locus DSW = 0 at order V−1. In order
to determine the new minimum, one would have to minimize the full potential, before
integrating out the dilaton. However, since we do not have an explicit model with a full
flux sector, in order to capture this effect, we assume that the two leading order terms in (.)
cancel and keep only the next-to-leading order terms in the V−1 expansion. The expression
we get in this way has certainly the correct order in V and we include an order one constant
γ′ in the expression for the F-term, comprising the uncertainty about the true location of
the new minimum:

DSW ≈ −3

4
γ′

ξ

g
1/2
s

W0

V
. (6.21)

In the sum over DIW in the dilaton F-Term F S = eK/2KSJDJW , there are finally two
contributions at order V−2: one from KSbFb and another one from KSSFS . They have
both the same dependence on W0/V2 and ξ/g2s . We combine the former constant γ′ with
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other order one constants into a new variable γ such that we can write the dilaton F-term
as follows:

F S ≈ 3

2
√
2
γ
ξ

g2s

W0

V2
. (6.22)

This can be inserted into the expression for the gravity mediated gaugino masses (.). The
result reads:

m1/2 =
3

4
√
2
γ
ξ

gs

|W0|mP

V2
=

3

4
γ
ξ

g
3/2
s

m3/2

V
. (6.23)

We see that this is independent of the MSSM gauge group factor, as the factor κi in (.)
cancels. Here we have assumed that the D-term fixes the size of the GUT four-cycle at small
volume in string units, so that the leading contribution to e(fi) ' 25 comes from the
gauge flux induced correction ' κi e(S).

Squark/Slepton Masses

For convenience we repeat the formula for the scalar masses in gravity mediation of super-
symmetry breaking:

m2
0 = m2

3/2 + V0 − F IF̄ J̄∂I∂J̄ lnZα. (6.24)

From now on we assume that the potential in the minimum V0 is already uplifted so that
V0 ' 0.

Let us first discuss the tree-level term in Zα as deduced in (.). In this case and with the
assumption V0 ' 0, (.) reduces to

m2
0 = m2

3/2 −
(
F b
)2

4τ 2b
. (6.25)

For the F-term F b we have to perform again a careful analysis, as it will turn out that at
leading order there is a precise cancellation between the gravitino mass squared and the
second term in (.).

For this purpose, we start with the derivation of several approximation formulas, which
we will need later. Consider the scalar potential (.), where we introduce again the usual
prefactors λ = gs

2
8

3η
3/2
s

, µ = 2gs and ν = 3
8
. Upon minimizing it with respect to the two

independent variables τs and V , we get two expressions: first, from the condition ∂VF
∂τs

= 0,
it follows:

e−aτs =
µ

λ

|W0|
aAV

1
√
τs

(1− aτs)(
−2a+ 1

2τs

) . (6.26)

After developing the denominator in powers of 1/(aτs) and inserting the expressions for µ
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and λ we get

e−aτs ≈ 3

4

η
3/2
s

aA

√
τs
W0

V

(
1− 3

4aτs

)
. (6.27)

The second approximation formula arises upon solving ∂VF
∂V = 0 for τ 3/2s and thereby us-

ing (.). The result is

τ 3/2s ≈ ξ̂

2η
3/2
s

(
1 +

1

2aτs

)
. (6.28)

Another useful approximation which we need in the following is given by:

Kab(∂bK) = − 4V2 + V ξ̂ + 4ξ̂2

2
(
V − ξ̂

)(
V + ξ̂

2

)τa ≈ −2τa −
3

2
ξ̂
τa
V
, (6.29)

where the sum runs only over Kähler moduli. The first equality can be derived using the
expressions for the Kähler metric and the derivatives of the Kähler potential with respect to
the moduli in terms of two-cycle volumes ta instead of four-cycle volumes τa (see [, ]
for details).

We are now in a position to calculate F b:

F b = eK/2KbJDJW = eK/2
(
Kbτj(∂τjK)W +Kbs(∂sW ) +KbSDSW

)
. (6.30)

The term involving DSW turns out to be sub-leading in the V−1 expansion with respect
to the other terms and thus can be neglected (see below). The derivative of the superpo-
tential with respect to Ts undergoes a sign-flip due to the minimization with respect to the
corresponding axion as it was already described in section .. We insert now the approxi-
mations (.), (.) and (.) in (.) and we get:

F b = −2τb

√
gs√
2

W0

V
− 3

8
√
2

τb
aτs

(
1 +

3

2aτs

)
W0

V2
+O(V−3). (6.31)

For the later comparison with the other soft-terms, it is instructive to express this result in
terms of the gravitino mass m3/2 = eK/2W ∼

√
gs√
2
W0

V and the gaugino mass (.):

F b = −2τbm3/2 −
τb

2aτs

(
1 +

3

2aτs

)
m1/2 +O(V−3). (6.32)

From (.) we can be estimate that aτs ≈ lnV ≈ 10. Thus, for the sake of shorter formulæ,
we may also neglect the second term in the parenthesis such that:

F b ≈ −2τbm3/2 −
τb

2aτs
m1/2. (6.33)
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We square now (.) and clearly see the cancellation at leading order in the scalar mass
formula (.):

(
F b
)2 ≈ 4τ 2b

[
m2

3/2 +
3

8aτs

ξ

g
3/2
s

(
1 +

3

2aτs

)
m2

3/2

V

]
. (6.34)

We insert this into (.) and finally get for the soft sfermion masses squared

m2
0 = − 3

16aτs

ξ

g
1/2
s

(
1 +

3

2aτs

) |W0|2m2
P

V3

= − 3

8aτs

ξ

g
3/2
s

m2
3/2

V
,

(6.35)

which at this stage come out tachyonic.

Next we need to discuss the higher α′-corrections in (.). The term with the highest
power in 1/V is the one with

(
F b
)2
∂b∂b log · · · . It is straightforward, that for τa/τb � 1

this simplifies to

FmF n∂m∂n log
(
1− δ

(
eS
τb

)n
2

+ · · ·
)

' F b F b δn(n+ 2)(eS)
n
2

4τ
n
2
+2

b

∼ δ

g
n−2
2

s

|W0|2m2
P

V(2+
n
3 )
.

(6.36)
Therefore, if there were corrections of order n = 1, 2, they would dominate over the cor-
rections in (.). It is precisely the third order corrections in α′ which contribute to the
sfermion masses at the same order in 1/V . Including also the other moduli fields in (.),
the overall value of the squared scalar masses will then be proportional to δ − ξ/3:

m2
0 = m2

3/2

(
− 1

4aτs

ξ

g
3/2
s V

+
15(δ − ξ/3)

4g
3/2
s V

)
. (6.37)

Depending on the relative size of these two contributions one can get tachyonic or non-
tachyonic sfermion masses. Moreover, it also shows that for δ = ξ/3 there are further
cancellations taking place at this order. This is precisely the value one expects from the
above mentioned scaling argument of the physical Yukawa couplings.

Later we will give an argument under which quite general assumptions such cancellations
should occur. One of the assumptions will be that really the uplifting sector is correctly taken
into account, which leads to a further dependence of the Kähler metric on a supersymmetry
breaking field. Note that indeed the soft sfermion masses (.) are of the same order as the
AdS vacuum energy V0 ∼ W 2

0 /V3, indicating that in these computations the uplift sector
cannot be neglected.
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µ̂/µ̂B-terms

The formula for the µ̂-term is

µ̂ =
(
eK/2µ+m3/2Z − F̄ Ī∂ĪZ

)(
ZH1ZH2

)−1/2
, (6.38)

where µ denotes the supersymmetric µ-parameter, which we keep for completeness, al-
though it can be argued to vanish under very general assumptions []. We assume again the
Kähler metric (.) for the Higgs fields as well as for Z. Here again, a cancellation of the
second and the third term occurs. Note, if the µ parameter is not equal to zero, it dominates
over the sub-leading terms stemming from F b. Dropping the factors of order one, we are
left with:

µ̂ ≈
√
gs√
2

τb
V
µ−

m1/2

4aτs
. (6.39)

The expression for Bµ̂ is more complicated:

Bµ̂ =(ZH1ZH2)
−1/2

(
eK/2µ

(
F I∂IK + F I∂I logµ− F I∂I log(ZH1ZH2)−m3/2

)
+ (2m2

3/2 + V0)Z −m3/2F̄
Ī∂ĪZ +m3/2F

I
(
∂IZ − Z∂I log(ZH1ZH2)

)
− F ĪF J

(
∂Ī∂JZ − (∂ĪZ)∂J log(ZH1ZH2)

))
.

(6.40)

However, due to the simple Kähler metric and assuming that µ is just an input parameter
without any moduli dependence, after a long but straightforward calculation, the result is
rather simple:

Bµ̂ = −
(√

gs√
2

τb
V
µ+

m3/2

2aτs

)
m1/2, (6.41)

where we have dropped again the order one constants kHi
and z.

A-terms

The A-terms are given by:

Aαβγ = F I(∂IK) + F I∂I logYαβγ − F I∂I logZαZβZγ. (6.42)

The Peccei–Quinn shift symmetry forbids a dependence of the holomorphic superpotential
on the axio-dilaton or Kähler moduli, thus the Yukawa couplings Yαβγ can only depend on
the complex structure moduli and they drop out.

There is a cancellation of F b in the remaining two sums and we are left with

Aαβγ = F s(∂sK) + F S(∂SK). (6.43)
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The first term, F s(∂sK) is suppressed with respect to the second one F S(∂SK) by a factor
of 1/aτs. As we are interested only in orders of magnitude, we keep only the latter term
and get as result:

Aαβγ ≈ F S(∂SK) = − 3

4
√
2

ξ

gs

|W0|
V2

mP = −m1/2. (6.44)

Anomaly Mediated Gaugino Masses

Let us also now estimate the anomaly mediated gaugino mass. It is clear that, for such a se-
questered observable sector, one would have guessed that not gravity mediation but anomaly
mediation induces the leading order soft terms. General formulæ for all the different soft
terms are not available, so that in this section we just compute the anomaly mediated gaugino
masses. emember from eq. (.) that the formula formanom.

1/2 contains terms proportional to
m3/2 such that one would await a gaugino mass of the orderW0/V . However also here, there
is a cancellation at leading order stemming from the F-term F b ≈ −2τbm3/2 − τb

2aτs
m1/2.

The gravitino mass drops out and the final expression for the anomaly mediated gaugino
mass for a SU(N) gauge group is:

manom
1/2 = − g2

16π2

[(
N − 1

2

)
− 1

4aτs

(
3N − 1

2

)]
m1/2. (6.45)

The surprising conclusion is: though the gravity mediated contribution to the gaugino
mass is suppressed with respect to the gravitino mass by a factor of (mX/mP)

2, anomaly
mediation is not the dominating source for the gaugino mass. It is suppressed by the usual
one-loop factor with respect to the gravity mediated contribution. We expect a similar
suppressed behavior for the other soft terms, so that anomaly mediation is sub-leading to
gravity mediation.

6.2.2. Summary of Gravity Mediated Soft Masses

In the above computation of soft terms we have seen that the leading terms cancel and that
we need to include higher order corrections in V−1. Since this scale is directly correlated
with ζ = ms/mP, we can express these gravity mediated soft terms in terms of the scalesm3/2

and ζ = ms/mP. The results are listed in table ., where we have set the supersymmetric
µ parameter to zero and estimated

√
π

3ξ
'

√
400

χ(X )
' 1, and gs ' 1. (6.46)

All soft terms in table . are suppressed by (ms/mP)
2 relative to the naïve expectation
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soft term scale

m1/2
1
4
m3/2ζ

2

m2
0

1
16 log ζm

2
3/2ζ

2

µ̂-term 1
8 log ζm1/2

Bµ̂-term 1
4 log ζm3/2m1/2

A-term −m1/2

Table 6.1.: Classical gravity mediated soft terms for a naïve computation of soft terms. Here the expansion
parameter is ζ = ms/mP. We have assumed the supersymmetric µ-term to vanish [].

mn
3/2 with n = 1, 2 depending on the mass-dimension. This explicitly demonstrates that

gravity effects from the bulk are suppressed on the shrinkable GUT cycles, which is the main
assumption of the local F-theory GUTs.

However, as seen in the text in certain cases there can be more cancellations leading to
even higher suppressions. Indeed so far we have neglected the uplift sector, but have seen
that the sfermion masses are actually of the same order of magnitude as the uplift so that it
should better not be neglected. We now discuss under which well posed assumptions further
cancellations are present.

6.2.3. Uplift and Cancellations

In the last section we have computed the gravity induced soft terms on the GUT brane. As
we have explained, the computation relies on assumptions about the expansions of the matter
metrics at higher orders in α′. While such corrections must surely be present, it is difficult
to know the precise form of these corrections. We have explicitly seen for the sfermion
masses that these corrections contribute at the same order in 1/V as the next-to-leading
order contributions from F b. Indeed, as seen in eq. (.) there can potentially be further
cancellations at this order. We have also computed the soft terms under the assumption of
V0 = 0, but have not taken into account the contribution of the supersymmetry breaking
from the uplifting sector to the soft terms. To consider these possibilities, let us argue in
this section, how one can arrive at quite general statements by making some well posed
assumptions and exploiting the consequences of using the supergravity formalism.

ecall that the physical Yukawas are given by

Ŷαβγ = eK/2 Yαβγ√
ZαZβZγ

. (6.47)
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The shift symmetries of the Kähler moduli imply that they do not appear perturbatively in
the superpotential Yukawa couplings Yαβγ . Let us make the assumption that the physical
Yukawas, being local renormalizable couplings, do not depend on the fields breaking super-
symmetry. This includes the volume and also the hidden sector fields that are responsible for
uplifting and giving vanishing cosmological constant. We also assume pure F-term uplifting.

Such supersymmetry breaking fields appear in the overall Kähler potential, and the con-
straints of holomorphy then imply that in order for the physical Yukawas to be independent
of such fields,

Zα = eK/3. (6.48)

Note that this includes the tree-level behavior of local matter fields, Zα ∼ 1
V2/3 ∼ 1

(Tb+T b)
.

In this case it follows that

m2
0 = V0 +m2

3/2 − FmF̄ n̄∂m∂n̄ lnZα

= V0 +m2
3/2 − FmF̄ n̄Kmn̄

3
=

2

3
V0 = 0,

(6.49)

for the case of vanishing cosmological constant.

The A-terms also vanish under this assumption. In this case the A-terms can be most
intuitively written as

AαβγYαβγ = F I∂I Ŷαβγ, (6.50)

with Ŷαβγ the physical Yukawa couplings. So it immediately follows that if the physical
Yukawa couplings do not depend on the fields breaking supersymmetry, the A-terms all
vanish.

The anomaly mediated contribution for gaugino masses gives

manom
1/2 =

ba
16π2

m3/2 −
(∑

r nrTa(r)− T (G)
)

16π2
Fm∂mK(Φ, Φ̄)

+
∑
r

nrTa(r)

8π2
Fm∂m lnZr(Φ, Φ̄)

=
ba

16π2
m3/2 −

(∑
r nrTa(r)− 3T (G)

)
16π2

Fm∂mK(Φ, Φ̄)

3

=
ba

16π2

(
m3/2 − 1

3
Fm∂mK

)
,

(6.51)

where we have used Z = eK/3. The size of the anomaly mediated contributions to gaugino
masses then depends on the size of m3/2 − 1

3
Fm∂mK. The no-scale cancellation for τb

implies the O(V−1) terms cancel with non-vanishing terms at O(V−2). However (.)
also includes the hidden uplifting sector, which must have Kφφ̄F

φF φ̄ ∼ 1
V3 (in order to

uplift the vacuum energy to Minkowski). At this level we therefore cannot rule out that
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F φ∂φK ∼ V−3/2, giving gaugino masses of order g2

16π2
1

V3/2 .

For the µ-term, we obtain

µ̂ = eK/6µ+
(
m3/2 − 1

3
F I∂IK

)
. (6.52)

For the B-term, we have (assuming no moduli dependence in µ)

(Bµ) = (ZH1ZH2)
−1/2

(
eK/2µ

(
F I∂IK − F I∂I ln(ZH1ZH2)−m3/2

)
+ (2m2

3/2 + V0)Z −m3/2F
Ī∂ĪZ +m3/2F

I
(
∂IZ − Z∂I ln(ZH1ZH2)

)
− F IF J̄

(
∂Ī∂JZ − (∂ĪZ)∂J ln(ZH1ZH2)

))
.

(6.53)

If we take Z = ZH1 = ZH2 = eK/3 then we eventually obtain

Bµ = eK/6µ
(

1
3
F I∂IK −m3/2

)
+
∣∣∣13F I∂IK −m3/2

∣∣∣2. (6.54)

This implies that the µ- and B-terms involve the same expression as appeared in the anomaly
mediated expression (.) and that the µ- and Bµ-term are of the same order as required
for successful electroweak symmetry breaking.

As we do not currently know the form of α′-corrections to the matter metrics, we do not
know whether the form Z = eK/3 is correct. However it is a natural choice in the sense
that it simply says that the physical Yukawa couplings, being local, do not depend on the
value of bulk fields. In the context of the ζ(3)χ(X )α′3-correction that entered the moduli
stabilization, this is equivalent to the statement that physical Yukawa couplings do not alter if
you perform a conifold transition in the bulk (which alters the Calabi–Yau Euler number).

The advantage of phrasing the computation in this way is that we can say that moduli
generate soft scalar masses to the extent to which the physical Yukawa couplings depend on
the moduli. While not straightforward, it is in principle easier to compute the dependence
of physical Yukawa couplings on the moduli. String CFT computations give the directly
physical couplings and therefore one could analyze for certain local models (for example
for a stack of D3-branes at an orbifold singularity in a compact space) whether the physical
couplings do depend on the volume through a direct vertex operator string computation.

We can also use (.) to compute the minimal value of the soft scalar masses. The com-
plete cancellation in (.) arose from the assumption that the physical Yukawa couplings
has no dependence on all fields with non-zero F-terms. However we know this statement is
not true. The dilaton has an irreducible F-term of O(V−2) and enters the physical Yukawas.
This provides a minimal value for the scale of the physical Yukawa couplings.
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6.3. Consequences for Supersymmetry Breaking

In this previous section we have seen that both, gravity and anomaly mediated contributions
to soft terms occur at levels far lower than naïve expectation. This gives novel phenomeno-
logical consequences for various aspects of supersymmetry breaking, which we now discuss.

6.3.1. Gauge Mediated Scenarios

In local F-theory models an interesting proposal was made assuming a model of gauge medi-
ation to dominate supersymmetry breaking in the observable sector. This is very interesting
since it incorporates the positive properties of gauge mediation, such as positive squared scalar
masses and flavor universality and yet address its problems, such as the µ/Bµ problem. This
proposal though requires the following implicit assumptions:

1. The mechanism responsible for moduli stabilization, which was not considered, fixes
moduli at a high mass and decouples from supersymmetry breaking.

2. Introduce a new matter sector that breaks supersymmetry dynamically and a set of
messengers that communicate this breaking to the standard model fields.

3. An anomalous U(1) was proposed to communicate both sectors and address the µ/Bµ
problem of gauge mediation. The anomalous U(1) is naturally as heavy as the string
scale but has low-energy implications after being integrated out.

These conditions look at first sight too strong and unnatural. Achieving moduli stabi-
lization without supersymmetry breaking and small cosmological constant is a very strong
assumption not realized in any of the moduli stabilization scenarios so far. It is known that
a supersymmetric vacuum in supergravity, such as in KKLT before the uplifting, is naturally
anti de Sitter since in that case the vacuum energy is V0 = −3m2

3/2m
2
P, which is very large

unless the superpotential is tuned in such a way that it almost vanishes at the supersymmet-
ric minimum. Also a positive cosmological constant has to be induced after supersymmetry
breaking. If the local supersymmetry breaking is responsible for this lifting then its effect
should not have been neglected for moduli stabilization in the first place. Finally, it is not
consistent to consider the low-energy effects of a very heavy anomalous U(1) without also
including the effects of the moduli fields which are generically much lighter than the string
or compactification scale. In particular the Fayet–Iliopoulos term of the anomalous U(1) is
a function of the moduli.

Nevertheless, our explicit results here show that a scenario similar to this may not be
impossible to realize. The main point is that although moduli are stabilized at a non-
supersymmetric point, the breaking of supersymmetry is suppressed by inverse powers of
the volume or equivalently by powers of ms/mP. This makes the first point above approxi-
mately correct. The second point still has to be assumed as in all models of gauge mediation
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and requires an explicit realization. Here the relevant observation is to compare the strength
of gauge mediation FX/x to the strength of gravity mediation which is usually taken to be
m3/2. However as we have seen the proper comparison is between FX/x with the size of
the gravity mediation soft breaking terms which are much smaller than the gravitino mass.
egarding the third point an explicit analysis should be performed in which both the anoma-
lous U(1) and the moduli are taken into account in the process of moduli stabilization and
supersymmetry breaking.

Very similar to the recently discussed local F-theory models, we may expand our model
assuming that there exists a source for gauge mediation, which is parametrized by the vacuum
expectation values of a scalar field 〈X〉 = x+ θ2FX . This supersymmetry breaking happens
in a sector hidden from the GUT brane and is being mediated by messenger fields, which
are charged under the GUT gauge group. In order not to spoil gauge coupling unification,
this is generically assumed to be a vector-like pair in the 5+ 5̄ representation of SU(5). For
our purposes, we won’t present a viable dynamical stringy realization of this supersymmetry
breaking, but just assume that there exists an extra sector, which stabilizes the new moduli
such that just the field FX develops a non-zero vev without spoiling the LAGE volume
minimum for the bulk moduli. This is clearly a strong assumption, as a dynamical realization
of gauge mediation is known to be challenging [–]. We will comment more on this
towards the end of this section.

The gauge mediated gaugino and sfermion masses are of order

m
gauge
1/2 ∼ m

gauge
0 =

αX
4π

FX
x
, (6.55)

where the αX/4π prefactor is due to the fact that these masses are induced via a one-loop ef-
fect for the gauginos and via a two-loop diagram for the sfermions. Note that these formulæ
use a canonical normalized superfield X .

Now, we would like these gauge mediated soft masses to dominate the gravity mediated
ones. In particular, we want the gauge mediated sfermion masses to dominate over the
gravity mediated ones. To get a first impression of the numerology we get, we also impose
the strong constraint that the supersymmetry breaking FX already uplifts the negative vacuum
energy of the LAGE volume minimum. By inserting the approximation relations found in
section .. into the scalar potential (.) we find the precise value of the vacuum energy
to be:

V0 = − 3

16aτs

ξ

g
3/2
s

W 2
0

V3
≈ −

m2
3/2

16 log
(
mP
ms

)m2
s

m2
P
. (6.56)

We therefore require
F 2
X

m2
P
'

m2
3/2

16 log
(
mP
ms

)m2
s

m2
P
, (6.57)
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leading to the relation

FX ' 1

4
√

log
(
mP
ms

)m3/2ms. (6.58)

emember from table . that mgrav
0 ' m3/2

4

√
log
(

mP
ms

) ms
mP

. equiring now that mgauge
0 >

∣∣mgrav
0

∣∣
leads to the moderate bound

x <
αX
4π

mP ' 1016 GeV. (6.59)

If there is a further suppression, i. e. m0 ' m3/2/V , then this bound becomes even more
relaxed. For solving the hierarchy problem, one also needs FX/x ' 105 GeV. Once one
has specified the favorite values for x and FX , one can use (.) to determine the value of
the gravitino mass, which we would like to stress will be gravity-dominated. Let us discuss
two examples.

• In the local F-theory models, it was argued that the best values are

x ' 1012 GeV, FX ' 1017 GeV2, (6.60)

which lead tom3/2 ' 1TeV, which needs a certain amount of tuning ofW0. However,
the light modulus τb has a mass of the order

mτb ' m3/2
ms

mP
, (6.61)

which in this case givesmτb ' 1GeV. For such a light modulus, we expect to face the
cosmological moduli problem.

• Let us now require that the light modulus avoids the CMP by having a mass mτb '
100TeV. Then according to (.), the gravity mediated gravitino mass has to be of
the order m3/2 ' 105 TeV. Using (.), this leads to FX ' 1022 GeV2. For gauge
mediated soft masses of the order 500GeV, we therefore get x ' 5 · 1016 GeV, which
is slightly beyond the stronger limit (.). For further suppression of the sfermion
masses there is no problem.

• In the first case one could ameliorate this problem by allowing for a certain tuning of
the Higgs mass, so that the supersymmetry breaking scale for the visible sector can be
larger than 500GeV. Let us still have FX ' 1022 GeV2 to avoid the CMP and require
x ' 5 ·1014 GeV to satisfy the constraint (.) for gauge mediation dominance. Then
the gauge mediated soft masses are of the order 50TeV.
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Finally, let us discuss in which way this simple model of gauge mediation needs to be
improved in order to show that it can really be embedded into string theory. As we al-
ready mentioned, we did not dynamically explain where the SUSY breaking field X gets
its vev from. ecently, various kinds of models have been suggested, which are not com-
pletely convincing from a string theory point of view. One promising model is the so-called
Fayet–Polonyi model. It combines an anomalous Peccei–Quinn symmetry with a linear
superpotential in X generated by another D3-instanton wrapping a del Pezzo surface of
size TFP. This gives rise both to a D-term potential with a TFP dependent Fayet–Iliopoulos
term and an F-term potential form the linear superpotential. Note, that the latter also de-
pends on TFP. Now, also taking the Kähler potentials into account one has to show that
dynamically really supersymmetry can be broken in such a way that the desired values for
x and FX arise.¹ Moreover, one expects that also FTFP 6= 0, which gives another source
of supersymmetry breaking. Finally, one has to ensure that the moduli stabilization in the
bulk, i. e. of the τb and τs moduli and the moduli stabilization of the localX and TFP moduli
decouple.

6.3.2. Implications for the Cosmological Moduli Problem

Let us comment on the cosmological moduli problem, discussed in section .. emember
that moduli fields are expected to be displaced from their minimum during the inflationary
epoch, subsequently oscillating about their minimum and red-shifting as matter. The lifetime
of such moduli is τ ∼ m2

P
m3

φ
� 1 s formφ . 1TeV. They come to dominate the energy density

of the universe, but if they decay too late then they fail to reheat the universe to temperatures
sufficient for nucleosynthesis.

The results in this chapter suggest a novel approach to this problem. One of the properties
of local LAGE volume GUTs with D-term stabilization is that the soft terms appear at a scale
hierarchically smaller than the gravitino mass. Depending on the extent of cancellations, we
have seen that soft terms appear at an order not larger than msoft ∼ m

3/2
3/2/m

1/2
P , in the case

when the dilaton F-term is responsible for uplifting. In all other cases gaugino masses will be
further suppressed, with at least an extra loop factor as in anomaly mediation, and possibly
even as far as msoft ∼ m2

3/2/mP. For the two extreme cases the gravitino mass appropriate
to TeV soft terms is

msoft ∼
m

3/2
3/2

m
1/2
P

−→ m3/2 ∼ 108 GeV, msoft ∼
m2

3/2

mP
−→ m3/2 ∼ 1011 GeV. (6.62)

Instead of solving the moduli problem by making the moduli heavy and keeping soft terms

1 It was shown in [], that this model with a simple choice of the Kähler potential actually still posses
supersymmetric minima.
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comparable to the gravitino mass, this suggests making the gravitino heavy and having soft
terms much lighter than the gravitino mass.

In the LAGE volume models the volume modulus Tb is relatively light and has a mass
mTb ∼ m

3/2
3/2/m

1/2
P , while all other moduli have masses comparable to m3/2. In the first case

listed above, with a gravitino mass of around 108 GeV, the volume modulus has m ∼ 1TeV
and still poses cosmological problems. However in the other casesmTb is sufficiently large to
decay before nucleosynthesis. In the case of maximal suppression, with m3/2 ∼ 1011 GeV,
then we have mTb ∼ 107 GeV with no cosmological problems. In all cases the other moduli
(for example dilaton and complex structure moduli) have masses comparable to the gravitino
mass and decay very rapidly.

It would also be interesting to study whether these suppressed soft terms would affect the
thermal behavior of the LAGE volume models studied in [].

6.3.3. Implications for Model Building

Several scenarios regarding gravity and anomaly mediation are possible and which of these
is actually realized may be model dependent. The main possibilities are:

• If the F-term of the dilaton field is responsible for the uplifting to de Sitter space, then
F S ∼ V−3/2 and all the soft masses are of order mP

V3/2 ∼ m3/2√
V . This is of the same

order as the mass of the lightest modulus, the volume modulus, and this field remains
dangerous for the cosmological moduli problem.

• If any other field is responsible for the de Sitter uplifting, the dilaton induces gravity
mediated gaugino masses of order mP

V2 or from anomaly mediation, barring any further
cancellation, of order α mP

V3/2 where α is a loop factor. In both of these cases, identifying
the gaugino masses with the TeV scale, the cosmological moduli problem is absent since
the volume modulus would be at least as heavy as 10TeV.

• For each of the two cases of the previous item, gravity mediated scalar masses, if
not tachyonic, are of order mP

V3/2 and therefore hierarchically heavier than the gaug-
ino masses, indicating a minor version of split supersymmetry [,,]. However
if we have perfect sequestering in the sense that physical Yukawa couplings do not de-
pend on the Kähler moduli fields that break supersymmetry, such terms will cancel.
However scalar masses will always receive a contribution from the dilaton F-term at
order mP

V2 .

• Since leading order gravity and anomaly mediation contributions to the soft terms
are suppressed, then other effects have to be considered. In particular string loop
corrections could be relevant, e. g. as in [,], (giving potential contributions to scalar
masses of order mP

V4/3 []) but also a novel scenario may be conceived in which the
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main source of supersymmetry breaking for the observable sector is gauge mediation,
however the gravitino mass remains very large and unlike previous models of gauge
mediation, the LSP is no longer the gravitino but can be a more standard neutralino.

Even though there are several scenarios, we can still extract some general conclusions
from this analysis. First, as emphasized in [], the effects of the de Sitter uplifting play an
important rôle on the soft breaking terms. This is unlike previous scenarios based on the
LAGE volume in which they were negligible. Second, in all scenarios the gravitino mass is
much heavier than the TeV scale m3/2 ≥ 108 GeV which relaxes the cosmological problems
associated to low-energy supersymmetry. Generically (except in the case that the dilaton is
responsible for uplifting) the lightest modulus is heavier than the soft terms and therefore
cosmologically harmless also.

There is an interesting conclusion we can draw concerning the overall volume of the
compactification manifold: even though there are several cancellations that reduce the value
of the volume to have the TeV scale, there is a minimum value that can be extracted from
this analysis. Namely, the universal source of gaugino masses due to the dilaton dependence
of the gauge kinetic function, implies that the gaugino masses cannot be smaller than mP

V2 .
The same limit appears for scalar masses for the case of perfect sequestering (Z = eK/3). This
provides a bound for the size of the overall volume. In string units it is given by

V ∼ 106 − 107. (6.63)

This corresponds to a string scale of order ms ∼ 1015 GeV. Combining this with the recent
result [] that in local models the GUT unification scale is given by mGUT ∼ msV1/6 this
gives a unification scale of the same order as the one expected for supersymmetric GUT

models from LEP precision results of

mGUT ∼ 1016 GeV. (6.64)

If this scenario is actually realized it would provide an example in which a string model
addresses simultaneously the two positive properties of the MSSM, namely the full hierarchy
problem, without tuning, and obtaining the preferred scale of gauge unification.

Interestingly, this value of the volume is also of the order of magnitude preferred by models
of inflation in order for the inflaton to give rise to density perturbations of the right ampli-
tude, normalized by COBE. In particular a volume V ∼ 105 − 107 was needed to achieve
Kähler moduli inflation as we have seen in section .. It also ameliorates the gravitino mass
problem pointed out in [, ].



7. Summary and Discussion

Since its proposal in , the LAGE volume scenario has shaped up as phenomenologically
very interesting set-up for both, particle and astrophysics. The topic of this thesis was to ex-
plore the implications of recent developments in the D-brane instanton calculus, in particular
the influence of charged zero modes and poly-instanton effects, to the LVS. On our path,
we gained new insights into supersymmetry breaking in local GUT models or corresponding
F-theory constructions.

Models in the context of the LAGE volume scenario are usually described in an effective
supergravity formalism. In chapter  we reviewed in detail its origin, type IIB string theory.
Starting with the world-sheet action of a single superstring, we explained how to extract the
low-energy effective action and identified the relevant degrees of freedom. Moreover, we
introduced all concepts appearing in the LVS including compactification to four space–time
dimensions, orientifolding, fluxes, D-branes, instantons and moduli stabilization.

We further set the stage in chapter , where we showed that α′-corrections to the Kähler
potential in a flux vacuum shift the minimum of the scalar potential for the Kähler moduli
to exponentially large volume, the LAGE volume minimum. This scenario requires special
geometrical properties of the compactification manifold. The class of appropriate spaces has
been given the name “swiss cheese manifolds”. A concrete example was studied on the hy-
persurface P4

[1,1,1,6,9][18], which has been the only one so far in the literature. After showing
that the new minimum is robust against quantum corrections, we presented some of the most
prominent phenomenological virtues in particle physical and astrophysical applications.

In chapter , for the first time we brought together our knowledge about the D-brane
instanton calculus and the LAGE volume scenario. We entered into the question of com-
bining Kähler moduli stabilization by instantons resp. gaugino condensation with a chiral
D7-brane sector carrying the unbroken chiral gauge theory which we would like to have in
four dimensions. Clearly, in order to make progress in deriving viable and predictive string
compactifications, this question is of utmost importance.

We argued quite generally, employing both string consistency conditions as well as phe-
nomenological input, that for chiral D7-brane sectors only a combination of F- and D-terms
can fix all Kähler moduli. Then we investigated whether the unquestionable nice features of
the LAGE volume scenario can be preserved once these D-terms are taken into account.
We showed that for more than one E3-instanton also the F-term scalar potential contains
new terms containing the axionic fields, which potentially destabilize the LAGE volume
minimum. equiring these terms to be absent means that the instanton cycles should not





 . S  D

intersect. Moreover, we also allowed for singular four-cycles, which homologically are linear
combinations of the elementary ones. These also induce a different moduli dependence in
the F-term scalar potential.

All these general arguments about F-and D-terms were exemplified by constructing a
concrete type IIB model on a new swiss cheese type Calabi–Yau manifold with three Kähler
moduli. Ignoring the details of the three-form flux sector, we constructed an example which
showed all the features we do expect for a realistic model including a chiral intersecting D7-
brane sector. Due to chirality there was an induced D-term, fixing (for vanishing vevs of
matter fields) one combination of the Kähler moduli at the boundary of the Kähler cone. We
had one rigid small cycle unoccupied by the D7-branes, so that a stringy O(1) E3-instanton
wrapped on this cycle contributed to the superpotential. Then the F- and D-terms together
fixed the overall volume V at large values and the two diagonal small ones at size τi ' log(V)
in a such a way that another four-cycle collapsed.

This simple toy model can be considered as a proof of principle that the LVS can be robust
enough that also chiral D7-brane sectors can be introduced. Of course, phenomenologically
it was not satisfying yet: the gauge group and matter content is not realistic and the D3-brane
tadpole constraint leaves probably not enough freedom to fix all complex structure moduli by
three-form fluxes. Moreover, our analysis of the non-chiral zero modes was not complete.
Presumably, these shortcoming only reflect the simplicity of the used Calabi–Yau space.
Using Calabi–Yau manifolds with larger Euler characteristics will remedy these problems.
To this end, it would be very important to know which of the toric Calabi–Yau manifolds
in the list of [] have a swiss cheese like structure, respectively can lead to large volume
moduli stabilization. It might be technically very challenging but would be a major step
forward to really build completely predictive concrete string compactifications with fluxes
and intersecting D7-branes on such more involved Calabi–Yau manifolds.

In chapter , another application of a D-brane instanton effect in the context of the LAGE

volume scenario was studied: we considered a compactification manifold of swiss cheese type
where gaugino condensation on two stacks of D7-branes leads to a racetrack superpotential.
Taking into account D-brane instanton corrections to the gauge kinetic function, manifest-
ing themselves as poly-instanton corrections to the racetrack superpotential, we constructed
a scenario featuring exponential control over the parameters W eff

0 and Aeff in an effective
superpotential of the form W eff =W eff

0 −Aeff exp(−aT ). In contrast to the usual LVS (and
also KKLT) set-up, these can be arranged for exponential small values without fine-tuning.

Within this set-up, we were able to find minima of the resulting scalar potential realizing
supersymmetric GUT scenarios with the string scale at the GUT scale ms = mX ' 1.2 ·
1016 GeV— in contrast to the usual LVS, where the string scale is at ms ' 1011 GeV. Also
the gauge coupling took the usual GUT value of α−1 ' α−1

X ' 25 and the gravitino mass was
found to be in the TeV region without fine-tuning. However, despite the phenomenological
interesting value of m3/2, the soft terms in our first set-up were strongly suppressed. The
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reason was that the racetrack modulus is stabilized in a nearly supersymmetric minimum
giving F-terms which are much smaller than expected. We proposed two resolutions of this
issue and constructed the corresponding set-ups:

• First, we scaled our parameters such that effectively W eff
0 is scaled by a factor of 106

leading to a larger gravitino mass but also to larger soft masses. The gaugino masses are
dominantly generated by anomaly mediation while the scalar masses are generated by
gravity mediation leading to a stringy realization of split supersymmetry if the Higgs
and Higgsino masses are tuned to small values.

• The second possibility we considered was to generate the soft terms not by the F-term
of the racetrack modulus but also by the F-term of the small LVS Kähler modulus. The
gaugino as well as the scalar masses are then generated by gravity mediation similarly
to the original LAGE volume scenario. The lightest modulus was on the edge of
posing problems with cosmology (CMP) and the µ-problem could be solved by the
Giudice–Masiero mechanism.

We showed also that the exponential tuning of the effective superpotential parameters
allows to construct a set-up with tree-level cosmological constant at the order of Λ0 ∼
−10−120m4

P which can be uplifted to a positive value without fine-tuning. However, al-
though we obtained an encouraging value for Λ0, introducing the standard model in this
set-up will spoil this feature.

Clearly, a more detailed analysis of the phenomenological implications of these set-ups
along the lines of [, ] would be very interesting. A drawback was however, that we did
not account for the problem concerning the intrinsic tension between moduli stabilization
via instantons and a chiral matter sector raised in chapter .

Inspired by the cancellations appearing in the soft terms in these set-ups, we studied in
chapter  in great detail the structure of gravity mediated soft terms that arise when com-
bining LAGE volume moduli stabilization with local GUT-like theories. The motivation
for local models came from our considerations on the chirality problem in chapter : the
stabilization of the cycle supporting the GUT branes via D-terms is such that the correspond-
ing four-cycle volume is driven to zero size. A similar geometry can be be found in local
F-theory models.

We found that the modulus determining the size of the standard model cycle does not
break supersymmetry and therefore the scale of gravity mediated soft terms is highly sup-
pressed compared to the gravitino mass. Both “standard” gravity mediated terms of O(m3/2)

and also known anomaly mediated terms of O(g2m3/2/16π
2) vanished. The first non-zero

terms appear to arise at O(m3/2/
√
V) ' m

3/2
3/2/m

1/2
P . However it is possible that additional

cancellations occur and suppress the soft terms even further than this down to O(m2
3/2/mP).
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The appearance of these further cancellations is related to the (in)dependence of the physical
Yukawa couplings on the fields breaking supersymmetry.

The cancellation of contributions to the soft masses of order m3/2 introduces several sub-
tleties. In particular, as the soft terms occur at a scale parametrically smaller than the gravitino
mass, effects which are normally negligible become important. We have tried to include all
known effects and have given general arguments as to when cancellations will take place.
Nonetheless, it is important to look for any further possible contributions to soft terms
which could possibly be dangerous. In this respect one would ideally like a direct stringy
computation of soft terms that would bypass the need to go through the supergravity for-
malism.

Depending on the extent of cancellations in the soft terms, the volume modulus may
or may not be subject to the cosmological moduli problem. We identified several possible
scenarios with different sources for uplifting to de Sitter and considered also gauge mediation
as supersymmetry breaking mediation mechanism. In all scenarios, the gravitino mass is as
large as m3/2 ≥ 108 GeV, relaxing the cosmological moduli problem for the light volume
modulus in most cases. We were able to identify a minimal value for the overall volume of
V ∼ 106− 107 which is not only the range favored for moduli inflation but also implies that
the unification scale is at the usual value of mGUT ∼ 1016 GeV.

We consider our results bring closer local string/F-theory models to honest-to-God string
compactifications since we incorporate the main properties of such models regarding su-
persymmetry breaking and moduli stabilization. Many questions remain open. Concrete
examples where the cancellations illustrated here are realized, including an uplifting term,
loop corrections, etc. are desirable. The presence of such sub-leading contributions to soft
terms can be recast in the presence of corrections to the physical Yukawa couplings. Specif-
ically, the scale of the soft terms can be related to the extent to which the (local) physical
Yukawa couplings depend on the (bulk) supersymmetry breaking fields. In the limit of per-
fect sequestering the Kähler moduli contribution to soft masses vanish. It may be possible
to study this issue more precisely using the techniques of orbifold CFT. Furthermore, for
F-theory constructions, even though in general they are treated in a way similar to orien-
tifold constructions, the 4d effective field theory for F-theory models is less under control.
In particular the α′-corrections which are crucial in the large volume scenario, need to be
computed for F-theory compactifications.

It is fair to say that with the appearance of the LAGE volume scenario, the discipline
of string phenomenology received new impetus. Today’s state of the art techniques suffice
already to extract from the few well motivated assumptions one has to make a lot of distinctive
features of the models we considered, both, particle physical and cosmological ones. The
prospects of discovering some of those in the near future are better then ever. Still, a common
expressed criticism concerning string theory is that it does not produce any unique, testable
predictions. However one should bear in mind that string theory is still in an early stage of
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development. The merits of this long-term research programme are only now starting to
come to fruition.





A. Cohomology classes of line bundles

In this appendix we combinatorically compute the cohomology classes of general line bundles
L = O(m,n, l) over the resolution M of the ambient space P[1,3,3,3,5]. The corresponding
classes on the hypersurface X can then be computed via the Koszul sequence.

0 → L⊗O(−15,−10,−5)M → LM → LX → 0. (A.1)

Let us recall the resolution

x1 x2 x3 x4 x5 x6 x7
3 3 3 5 1 0 0

2 2 2 3 0 1 0

1 1 1 1 0 0 1

(A.2)

Then the classesH i(M,L) can be computed by counting monomials of degree (m,n, l) [,
] as listed in table A.. This can be easily put on a computer. We have checked for many
examples that the results are consistent with the Euler characteristic χ(X ,L) in eq. (.).

Cohomology Monomials of degree (m,n, l)

H0(M,L) P (x1, x2, x3, x4, x5, x6, x7)

H1(M,L) P (x1,x2,x3,x6,x7)
x4x5Q(x4,x5)

P (x1,x2,x3,x5,x7)
x4x6Q(x4,x6)

P (x1,x2,x3,x4,x6)
x5x7Q(x5,x7)

P (x1,x2,x3,x7)
x4x5x6Q(x4,x5,x6)

P (x1,x2,x3,x6)
x4x5x7Q(x4,x5,x7)

H2(M,L) 0

H3(M,L) P (x4,x5)
x1x2x3x6x7Q(x1,x2,x3,x6,x7)

P (x4,x6)
x1x2x3x5x7Q(x1,x2,x3,x5,x7)

P (x5,x7)
x1x2x3x4x6Q(x1,x2,x3,x4,x6)

P (x4,x5,x6)
x1x2x3x7Q(x1,x2,x3,x7)

P (x4,x5,x7)
x1x2x3x6Q(x1,x2,x3,x6)

H4(M,L) 1
x1x2x3x4x5x6x7Q(x1,x2,x3,x4,x5,x6,x7)

Table A.1.: Cohomology groups and corresponding monomials for P[1,3,3,3,5][15]
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B. The P[1,1,3,10,15][30] Calabi–Yau

Here we will briefly summarize some properties of the Calabi–Yau P[1,1,3,10,15][30] as another
example of a swiss cheese like manifold. It has five Kähler moduli out of which four are toric.
In the following we collect the toric data for the resolution of the toric singularities.

• The manifold is specified by the resolution

x1 x2 x3 x4 x5 x6 x7 x8 p

15 10 3 1 1 0 0 0 30

5 3 1 0 0 1 0 0 10

3 2 0 0 0 0 1 0 6

6 4 1 0 0 0 0 1 12

(B.1)

• The Stanley–eisner ideal reads

S = {x2x7, x2x8, x3x8, x1x3x6, x1x6x7,
x1x6x8, x2x4x5, x3x4x5, x4x5x7}.

(B.2)

• The triple triple intersection numbers in the basis η1 = D5, η2 = D6, η3 = D7,
η4 = D8 are encoded in

I3 =− η31 + 18η32 + 8η33 + 9η34 + 2η21η2 + η21η4 − 6η1η
2
2

− 2η1η
2
3 + η23η4 − 3η1η

2
4 − 3η3η

2
4 + η1η3η4.

(B.3)

• If one expands the Kähler form in the basis {η1, η2, η3, η4} as

J = t1[η1] + t2[η2] + t3[η3] + t4[η4], (B.4)

then the volumes of the basis divisors are

τ1 =
1

2

(
−t21 + 4t1t2 − 6t22 − 2t23 + 2(t1 + t3)t4 − 3t24

)
,

τ2 = (t1 − 3t2)
2,

τ3 =
1

2
(−2t1 + 4t3 + 3t4)(2t3 − t4),

τ4 =
1

2
(t1 + t3 − 3t4)

2.

(B.5)


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• The Kähler cone is found by imposing
∫
C J > 0 which gives the following conditions

on the {ti}

3t2+t3−3t4 > 0, t1−3t2 > 0, t4−t3 > 0, −t1+2t2+t4 > 0. (B.6)

• Using these restrictions, the overall volume is expressed in terms of the four-cycle
volumes as

V =

√
2

45

(
(15τ1 + 5τ2 + 3τ3 + 6τ4)

3/2 − (3τ3 + τ4)
3/2 − 5√

2
τ
3/2
2 − 5τ

3/2
4

)
. (B.7)

From this we see that by making τ1 large while keeping the others small, we obtain a
swiss cheese like structure.

• The Euler characteristic χ for the cycle D = mη1 + nη2 + pη3 + qη4 is

χ(X ,OD) =− 3mn2 + 3
2
q3 + 3n3 − 1

6
m3 + 1

2
p2q +mpq − 3

2
pq2mp2

− 3
2
mq2 + 4

3
p3 + 1

2
m2q +m2n− n− 1

3
p− 1

2
q + 13

6
m,

(B.8)

where X stands for P[1,1,3,10,15][30]. The interesting combinations for the present set-
up are those with χ = 1 and m = 0. Up to wrapping numbers 100, these are

(m,n, p, q) = (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1). (B.9)

• It is more convenient to work in a diagonal basis which we define guided by the form
of the volume (B.)

Da = 15D1 + 5D2 + 3D3 + 6D4, Db = 3D3 +D4,

Dc = D2, Dd = D4.
(B.10)

In this basis the total volume reads

V =

√
2

45

(
τ 3/2a − τ

3/2
b − 5√

2
τ 3/2c − 5τ

3/2
d

)
, (B.11)

and the triple intersection numbers again diagonalize

I3 = 225D3
a + 225D3

b + 18D3
c + 9D3

d. (B.12)

• Expanding also the Kähler form in this diagonal basis as J = ta[Da]−tb[Db]−tc[Dc]−
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td[Dd], we find that the Kähler cone is defined by

5tb > td > tc > 0, ta > tb + 2tc + td. (B.13)

• We finally present a list of monomials to be counted in order to determine the coho-
mology classesH i(M,L) on the ambient toric variety. We use the shorthand notation
(1, 2, 4, 5, 7, 8|3, 6) for all monomials of the form P (x1,x2,x4,x5,x7,x8)

x3x6Q(x3,x6)
and similarly for

the others.

Cohomology Monomials of degree (m,n, p, q)
H0(M,L) (1, 2, 3, 4, 5, 6, 7, 8|)
H1(M,L) (1, 2, 4, 5, 7, 8|3, 6) (1, 2, 4, 5, 6, 8|3, 7) (1, 2, 3, 4, 5, 7|6, 8)

(1, 2, 4, 5, 8|3, 6, 7) (1, 2, 4, 5, 7|3, 6, 8)
H2(M,L) (3, 4, 5, 6, 8|1, 2, 7) (3, 4, 5, 6, 7|1, 2, 8) (2, 3, 4, 5, 8|1, 6, 7)

(1, 3, 6, 7, 8|2, 4, 5) (1, 2, 6, 7, 8|3, 4, 5) (1, 2, 3, 6, 7|4, 5, 8)
(1, 2, 7, 8|3, 4, 5, 6) (1, 2, 6, 7|3, 4, 5, 8) (2, 3, 4, 5|1, 6, 7, 8)
(2, 4, 5, 8|1, 3, 6, 7) (1, 2, 3, 7|4, 5, 6, 8) (1, 2, 6, 8|3, 4, 5, 7)
(3, 4, 5, 6|1, 2, 7, 8) (3, 4, 5, 8|1, 2, 6, 7) (1, 6, 7, 8|2, 3, 4, 5)
(1, 3, 6, 7|2, 4, 5, 8) (4, 5, 6, 8|1, 2, 3, 7) (3, 4, 5, 7|1, 2, 6, 8)
(1, 2, 7|3, 4, 5, 6, 8) (1, 2, 8|3, 4, 5, 6, 7) (1, 6, 7|2, 3, 4, 5, 8)
(2, 4, 5|1, 3, 6, 7, 8) (3, 4, 5|1, 2, 6, 7, 8) (4, 5, 8|1, 2, 3, 6, 7)

H3(M,L) (3, 6|1, 2, 4, 5, 7, 8) (3, 7|1, 2, 4, 5, 6, 8) (6, 8|1, 2, 3, 4, 5, 7)
(3, 6, 7|1, 2, 4, 5, 8) (3, 6, 8|1, 2, 4, 5, 7)

H4(M,L) (|1, 2, 3, 4, 5, 6, 7, 8)

Table B.1.: Cohomology groups and corresponding monomials for P[1,1,3,10,15][30]





C. Vanishing D-terms Including Matter

We will consider in this appendix a concrete example with a generic D-term including not
only the field dependent FI-term but also a charged matter field. In general vanishing D-
terms do not imply vanishing FI-term but a cancellation between the two terms entering the
D-term potential. We argue here (following []) that once soft supersymmetry breaking
terms are included, as long as the square of the scalar masses is positive the minimum of the
scalar potential is for vanishing both matter field vev and FI-term.

Since in local models the standard model cycle is a del Pezzo surface that can and usually
prefers to shrink to small size, it is dangerous to work in the regime where the cycle size is
larger than the string scale. Even though at sizes of the order of the string scale the spectrum
and couplings of the model are not understood, the regime close to a del Pezzo singularity
is under a much better control, the spectrum is determined by the extended quiver diagrams
and the low-energy effective theory can be reliably used in an expansion in the small blow-up
mode.

This effective field theory has been recently discussed in []. We start with the same
background geometry as before including one large τ1 and two small cycles τ2, τ3. On the
rigid cycle τ2 we have the standard non-perturbative effect. Being at the singular locus for
τ3, the effective field theory can be approximated by the following supergravity set-up:

K = −2 log
(
V + ξ̂

2

)
+
ατ 23
V

+ Z|ϕ|2,

W = W0 + Ae−aT2 ,

f = dT3 + S,

(C.1)

where ϕ denotes a matter field that is charged under an anomalous U(1) on the standard
model cycle, as is the cycle volume itself. As discussed in [], the effective theory for τ3
differs from the standard treatment for relatively large values of τ3 since we are working close
to the singularity. The anomalous U(1) generates a D-term potential with a Fayet–Iliopoulos
term:

VD =
1

2(dτ3 + s)

(
QϕZ|ϕ|2 +

Qτ3τ3
V

)2

. (C.2)

The matter metric Z is taken to have the general form

Z =
1

V2/3

(
β + γτλ3 − δ

V

)
, (C.3)


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where the constants β, δ can in principle depend on the dilaton and complex structure
moduli.

The D-term potential determines the size of τ3 and implies

τ3 ∼ |ϕ|2V1/3. (C.4)

For a vanishing vev of ϕ this implies as previously τ3 = 0. Expanding around ϕ = 0, the
scalar potential is given by the standard LAGE volume potential and at next-to-leading
order by a contribution quadratic in ϕ:

V =
1(

V + ξ
2

)2
(
8

3
|aA|2

√
τ2τ

3/2
1 e−2aτ2 − 4W0aAτ2e

−aτ2 +
W 2

0 3ξ

4τ
3/2
1

+ Y

− β|ϕ|2

3τ1

(
8

3
|aA|2

√
τ2τ

3/2
1 e−2aτ2 − 4W0aAτ2e

−aτ2 +
9W 2

0 (5
δ
β
+ 2ξ)

4τ
3/2
1

))

+
β|ϕ|2

τ1
(
V + ξ

2

)2
(
8

3
|aA|2

√
τ2τ

3/2
1 e−2aτ2 − 4W0aAτ2e

−aτ2 +
3W 2

0 ξ

4τ
3/2
1

+ Y

)
,

(C.5)

where the last term arises from the expansion of eK and Y denotes the F-term uplifting
term, which allows for a stabilization at zero vacuum energy.

With zero vacuum energy, the mass of ϕ is given by

m2
ϕ = K−1

ϕϕ

−β
3τ 41

(
8

3
|aA|2

√
τ2τ

3/2
1 e−2aτ2 − 4W0aAτ2e

−aτ2 +
9W 2

0

(
2ξ − 5 δ

β

)
4τ

3/2
1

)
= − 1

3τ 31

(
Vmin +

45W 2
0

(
ξ
3
− δ

β

)
4τ

3/2
1

)
≈

15W 2
0

(
δ
β
− ξ

3

)
4τ

9/2
1

.

(C.6)

Different ratios of δ/β allow for tachyonic, zero or positive masses at this order. In particular:

δ

β


< ξ

3
tachyonic,

= ξ
3

zero,

> ξ
3

positive.

(C.7)

With respect to the matter metric the condition δ
β
= ξ

3
can be understood as follows: The

case of vanishing masses corresponds to the following matter metric:

Z =
β

V2/3

(
1− ξ

3V

)
≈ β(

V + ξ
2

)2/3 = βeK/3, (C.8)
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which is the condition found in section .. for extreme sequestering and cancellation
of scalar masses at the 1/V3/2 level. Without the uplifting term, the effect of the term
arising from the expansion of eK is generally sub-leading to the other contribution since it
is suppressed with 1/aτ2.

For positive scalar masses we can clearly see that combining the term m2
ϕϕ

2 with the D-
term potential, both the vev of ϕ and the FI-term vanish at the minimum as desired. For the
tachyonic case this would indicate as usual that at the minimum the scalar field and the FI-
term would be non-vanishing. If ϕ is a field charged under the standard model gauge group
this is undesirable since it would break the standard model symmetries at high energies. If
the condition δ

β
= ξ

3
is satisfied the positivity of the squared scalar masses at a higher order

would have to be determined.
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