Aus dem Institut für Humangenetik der Ludwig-Maximilians-Universität München Direktorin: Prof. Dr. med. Ortrud Steinlein

Die Untersuchung der menschlichen Kaliumkanalfamilie KCNQ im Modelltier Zebrafisch: Identifizierung, Klonierung und Analyse alternativer Spleißvarianten

Dissertation zum Erwerb des Doktorgrades der Medizin an der medizinischen Fakultät der

Ludwig-Maximilians-Universität

Vorgelegt von Ina Elisabeth Klier aus München 2010

Mit Genehmigung der Medizinischen Fakultät der Universität München

Berichterstatterin:	Prof. Dr. med. Ortrud Steinlein
Mitberichterstatter:	Prof. Dr. Dr. h.c. Christian Haass
	Prof. Dr. Joachim-Ulrich Walther
Mitbetreuung durch die	
promovierte Mitarbeiterin:	Dr. rer. nat. Wenli Gu
Dekan:	Prof. Dr. med. Dr. h.c. M. Reiser, FACR, FRCR
Tag der mündlichen Prüfung:	08.07.2010

Die vorliegende Arbeit wurde von September 2006 bis Februar 2009 im Institut für Humangenetik der Ludwig-Maximilians-Universität durchgeführt. (Direktor: Prof. Dr. med. Ortrud Steinlein)

Danksagung

Mein bester Dank gilt Frau Prof. Ortrud Steinlein an deren Institut es mir ermöglicht wurde, diese Arbeit zu verwirklichen. Ich danke ihr für die Überlassung eines sehr interessanten Themas und für ihre Hilfestellung bei der Überarbeitung dieser Arbeit.

Mein besonderer Dank geht an Frau Dr. Wenli Gu für die Aufnahme in ihre Arbeitsgruppe, die Einführung in die Welt der Wissenschaft ihre Unterstützung bei verschiedenen Fragestellungen und ihre Hilfe bei der Fertigstellung dieser Arbeit.

Herrn Franz Jansen danke ich für seine professionelle Hilfe bei der Einarbeitung in verschiedene wissenschaftliche Methoden und seine Geduld. Ohne ihn hätte ich diese Arbeit nie verwirklichen können.

Der Arbeitsgruppe von Frau Dr. Laure Bally-Cuif aus der GSF und insbesondere Frau Dipl. Biol. Karin Dörner danke ich herzlich für die Bereitstellung der Zebrafischembryonen.

Herrn Lorenz Kohl möchte ich für die Übernahme verschiedener Laboraufgaben danken.

Dr. Song Huaidong danke ich für die Überlassung zweier Klone, mit deren Hilfe es möglich war alle Gene vollständig zu sequenzieren.

Meinem lieben Sebastian danke ich für seine Unterstützung bei der Fertigstellung dieser Arbeit, seine wertvollen Tipps und für sein Vertrauen während der gesamten Zeit.

Zu guter letzt danke ich meinen Eltern, die mich mein gesamtes Studium unterstützt, in jeder Lebenslage an mich geglaubt und mir so alles ermöglicht haben.

Inhaltsverzeichnis

1	Zusammenfassung			8
2	Einleitung			9
	2.1 Ionenkanäle		nenkanäle	9
	2.2	Ka	liumkanäle	10
	2.3	Di	e KCNQ-Genfamilie	11
	2.3.	1	Durch KCNQ-Mutationen ausgelöste Erkrankungen	11
	2	.3.1.1	Long-QT-Syndrom	. 11
	2	.3.1.2	2 Epilepsie	. 13
	2	.3.1.3	3 Taubheit	. 15
	2.3.	2	Die einzelnen KCNQ-Gene	16
	2	.3.2.1	<i>KCNQ1</i> und assoziierte Mutationen	. 17
	2	.3.2.2	2 KCNQ2, KCNQ3 und assoziierte Mutationen	. 18
	2	.3.2.3	3 KCNQ4 und assoziierte Mutationen	. 19
	2	.3.2.4	4 KCNQ5	. 20
	2.4	Sp	leißvarianten	20
	2.5	De	r Zebrafisch als Tiermodell	22
	2.5.	1	Vorteile des Zebrafisches	22
	2.5.	2	Gegenüberstellung verschiedener Tiermodelle	24
	2.5.	3	Vergleich zwischen Mensch und Zebrafischmodell	25
	2.5.	4	Entwicklungsstadien des Zebrafischembryos	26
	2.6	Fra	ngestellung	27
3	Ma	teria	l und Methoden	28
	3.1	Ma	iterial	28
	3.1.	1	Chemikalien	28
	3.1.	2	Geräte	29
	3.1.	3	Oligonukleotid-Primer für die PCR	30
	3.1.	4	Lösungen	30
	3.2	Me	ethoden	30
	3.2.	1	RNA-Gewinnung	30
	3	.2.1.1	RNA-Isolation aus Zebrafischembryonen in TRIzol	. 30
	3	.2.1.2	2 Konzentrationsbestimmung der gewonnenen RNA und Qualitätskontrolle	. 31
	3.2.	2	Polymerasekettenreaktion	31
	3	.2.2.1	Reverse-Transkriptase Polymerasekettenreaktion (RT-PCR)	. 32
	3	.2.2.2	2 Reamplifikation	. 34
	3.2.	3	Agarose-Gelelektrophorese	35
	3.2.	4	DNA-Gewinnung	35
	3	.2.4.1	DNA-Extraktion von Agarosegel	. 35
	3	.2.4.2	2 Konzentrationsbestimmung und Qualitätskontrolle	. 36
	3.2.	5	DNA-Sequenzierung	36
	3.2.	6	Klonierung	37
	3	.2.6.1	Vorbereitung der DNA für die Transformation	. 38
	3	.2.6.2	2 Ligation	. 39
	3	.2.6.3	3 Transformation	. 40
	3	.2.6.4	Ausstreichen transformierter Bakterien und Selektion kompetenter Zellen	. 40
	3	.2.6.5	5 Miniprep	. 40
	3	.2.6.6	5 Verdau	. 41

	3.2.7	Herstellung verschiedener Lösungen	42
	3.2.7	1 Agarplatten	42
	3.2.7	2 Agarosegel	42
	3.2.7	3 Ampicillin (D[-]-α-Aminobenzylpenicillin)	43
	3.2.7	4 LB-Medium	43
	3.2.7.	5 dATP, dCTP, dGTP, dTTP	43
	3.2.7.	6 X-Gal und IPTG	43
4	Ergebn	1550	44
	4.1 kc	nq beim Danio rerio	44
	4.1.1	Orthologien der menschlichen KCNQ-Gene mit den kcnq-Genen des Zebrafisches	45
	4.1.2	Große der Gene	46
	4.2 K	onservierte benachbarte Gene (Syntenien)	47
	4.3 Sp	oleißvarianten	47
	4.4 K	<i>CNQ1</i> und orthologe Gene <i>kcnqa_d</i> und <i>kcnqg</i>	48
	4.4.1	Syntenie	49
	4.4.2	Spleißvarianten	49
	4.5 K	<i>CNQ2</i> und orthologe Gene <i>kcnqb_e</i> und <i>kcnqi</i>	50
	4.5.1	Syntenie	50
	4.5.2	Spleißvarianten	51
	4.5.2	1 kcnqb_e	51
	4.5.2	2 kenqi	53
	4.6 K	<i>CNQ3</i> und orthologes Gen <i>kcnqh</i>	54
	4.6.1	Syntenie	54
	4.6.2	Spleißvarianten	55
	4.7 K	CNQ4 und orthologes Gen kcnqj	55
	4.7.1	Syntenie	56
	4.7.2	Spleißvarianten	56
	4.8 K	CNQ5 und orthologe Gene kcnqc und kcnqf	57
	4.8.1	Syntenie	58
	4.8.2	Spleißvarianten	58
5	Diskus	sion	60
	5.1 De	er Zebrafisch als Tiermodell	60
	5.1.1	Herz	60
	5.1.2	Zentralnervensystem	61
	5.1.3	Innenohr	63
	5.2 D	e KCNQ-Genfamilie	64
	5.2.1	Genomduplikation	64
	5.2.2	Syntenie	65
	5.2.3	Konservierung	66
	5.2.3	1 Proteinzielsteuerung	66
	5.2.3	2 Retigabinsensitivität	66
	5.2.3	3 IQ-Motiv	67
	5.2.3	4 C3-Domäne	68
	5.3 Sp	pleißvarianten	69
	5.3.1	KCNQ2	69
	5.3.2	KCNQ4	70
	5.3.3	KCNQ5	70
	5.4 A	usblick	71

6	Anhan	g	
	6.1 Pi	imer	
	6.1.1	kcnga_d	
	6.1.2	kcngb_e	
	6.1.3	kcngc	
	6.1.4	kcnaf	
	6.1.5	kcnag	
	6.1.6	kenah	
	617	kenai	76
	618	kenai	77
	62 G	ene.	78
	621	kenaa d	
	6.2.1	1 DNA und Aminosäureseguenz mit Primern und Intron-Evon-Grenzen:	
	6.2.1	 Dra und Anniosauresequenz Mensch/Zehrafisch: Vergleich der Aminosäuresequenz Mensch/Zehrafisch: 	
	622	konah e	
	622	1 DNA und Aminosäureseauenz mit Primern und Intron-Exon-Grenzen	81
	6.2.2	 Vergleich der Aminosäuresequenz Mensch/Zebrafisch 	
	6.2.2	3 Alternative Exons	
	6.2.3	kcnac	85
	6.2.3	DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen	85
	6.2.3	2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch	87
	6.2.4	kcnqf	88
	6.2.4	DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen	88
	6.2.4	2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch	
	6.2.4	3 Alternatives Exon	
	6.2.5	kcnqg	
	6.2.5	.1 DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen	
	6.2.5	2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch	
	6.2.6	kcnqh	
	6.2.6	.1 DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen	
	6.2.6	2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch	
	6.2.7	kcnqi	
	6.2.7	.1 DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen	
	6.2.7	2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch	
	6.2.8	Alternatives Exon	101
	6.2.8	.1 Splicevarianten <i>kcnqi</i> Exon mit oder ohne Exon 12 erstellt über ClustalW	
	6.2.9	kcnqj	101
	6.2.9	.1 DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen	
	6.2.9	2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch	
_	6.2.9	3 Alternatives Exon	
7	Abkür	zungen	105
	7.1 A	llgemeine Abkürzungen	105
	7.2 G	ene	108
	7.3 A	minosäuren	109
	7.4 B	asen	109
8	Queller	nverzeichnis	110

1 Zusammenfassung

Die Anzahl der Genmutationen, die mit bestimmten Erkrankungen in Verbindung gebracht werden, steigt kontinuierlich. Um die Funktion der betroffenen Gene und daher auch die Pathomechanismen, welche durch deren Mutationen ausgelöst werden, besser zu verstehen, werden verschiedene Tiermodelle herangezogen. Eines dieser Tiermodelle ist der Zebrafisch (*Danio rerio*), der sich sehr gut eignet, da er als Embryo oder Larve fast durchsichtig ist und bei geringen Kosten und hoher Fekundität leicht gezüchtet und gehalten werden kann. Zudem ist sein Genom inzwischen durchsequenziert und somit weitgehend in Datenbanken abrufbar.

KCNQ bezeichnet eine Klasse spannungsabhängiger Kaliumkanäle die evolutionär von einem gemeinsamen Vorläufer abstammen. Beim Menschen wurden bis Februar 2010 fünf *KCNQ*-Gene erforscht, die in verschiedenen Geweben unterschiedlich exprimiert werden und bei Mutationen zu unterschiedlichen phänotypischen Erscheinungsbildern führen. So ist das *KCNQ1*-Gen mit dem autosomal-dominanten Romano-Ward-Syndrom (RWS) oder dem rezessiven Jervell-Lange-Nielsen-Syndrom (JLNS) assoziiert. Mutationen in den Genen *KCNQ2* und *KCNQ3* können zu benignen familiären Neugeborenenkrämpfen führen. *KCNQ2* ist außerdem mit dem Krankheitsbild der Myokymie assoziiert. Bei Mutationen in *KCNQ4* kann es im frühen Erwachsenenalter zu einer dominanten nicht-syndromalen Form des progressiven Hörverlustes kommen, der rapide fortschreitet. Als bisher letztes Gen der *KCNQ*-Familie wurde im Jahr 2000 *KCNQ5* identifiziert. Bisher sind noch keine Mutationen in diesem Gen bekannt, die mit einer Erkrankung assoziiert sind.

Der Zebrafisch wurde ausgewählt, um zu prüfen, ob sich dieser als Tiermodell für funktionelle Untersuchungen an *KCNQ*-Genen und damit für die Erforschung der pathogenetischen Zusammenhänge bei *KCNQ*-assoziierten Krankheiten eignet. Hierzu wurden erstmals die verschiedenen *KCNQ*-Gene beim Zebrafisch identifiziert, ihre evolutionären Beziehungen zu den menschlichen Orthologen analysiert und vergleichende Untersuchungen der Spleißvarianten durchgeführt. Dabei wurden acht Loci erfasst, die orthologe Gene zu den humanen *KCNQ*-Genen darstellen. Da es bei den Strahlenflossern in der Evolution zu einer weiteren Genomduplikation kam, existieren von etwa achtzig Prozent der humanen Gene zwei Co-orthologe beim Zebrafisch. Im Wesentlichen sind die orthologen *KCNQ*-Gene zwischen Mensch und Zebrafisch stark konserviert, vor allem an funktionell essentiellen Bereichen.

Bei allen fünf humanen *KCNQ*-Genen wurden Spleißvarianten nachgewiesen. Beim Zebrafisch konnten in vier der acht Gene Spleißvarianten gefunden werden, die mit denen der orthologen humanen Gene weitgehend übereinstimmen.

Die durch das Online-Programm ClustalW analysierte Orthologie der *KCNQ*-Gene zwischen Mensch und Zebrafisch konnte durch die konservierte Syntenie bei sieben der acht *kcnq*-Gene vom Zebrafisch bestätigt werden.

8

2 Einleitung

2.1 Ionenkanäle

Ionenkanäle sind an einer Vielzahl physiologischer Prozesse des menschlichen Körpers beteiligt, wie etwa der Erregungsausbildung und –fortleitung in Nerven, dem Herzen oder der Skelettmuskulatur. Dabei handelt es sich um porenbildende Transmembranproteine, die den Durchtritt von Ionen durch die Lipiddoppelschicht der Zellmembran ermöglichen. Entsprechend der transportierten Ionen unterscheidet man selektive und nicht-selektive bzw. Anionen- und Kationenkanäle, entsprechend des Aktivierungsmechanismus dagegen spannungs- und ligandenabhändige Ionenkanäle [1, 2].

Spannungsabhängige Kationenkanäle, wie etwa Natrium- und Kaliumkanäle bestehen aus einer porenbildenden α -Untereinheit und einer akzessorischen, klassenspezifischen β -Untereinheit. Durch die Wirkung eines Spannungssensors kann der Ionenkanal seine Konformität ändern und so zwischen einem Offen- und einem Geschlossen-Zustand wechseln, dem so genannten *gating*. Dadurch wird die Leitfähigkeit verändert und damit die Grundlage für die Ausbildung von Membranpotenzialen geschaffen [1-3].

Zu den spannungsabhängigen Anionenkanälen zählen vier der neun ClC-Kanäle, die sich in ihrer Struktur stark von derer anderer Ionenkanäle unterscheiden. ClC-Kanäle können in der äußeren Zellmembran oder auch in intrazellulären Membrankompartimenten lokalisiert sein. Die α -Untereinheit setzt sich aus 18 Transmembrandomänen zusammen, wobei sich jeweils zwei α -Untereinheiten zu einem ClC-Kanal zusammenlagern und zwei Kanalporen ausbilden. Beispielsweise bildet ClC1 einen funktionellen homodimeren Kanalkomplex, der in der Skelettmuskulatur exprimiert wird, wohingegen CLCNKA und CLCKB ausschließlich in der Niere exprimiert werden [1, 2]. ClC-Kanäle sind unselektive Anionenkanäle, die ein breites Spektrum unterschiedlicher Anionen permeiren lassen. Das *gating* erfolgt nicht auf dem klassischen Weg wie bei den Kationenkanälen, sondern über einen extrinsischen Spannungssensor, wodurch sich die Chloridleitfähigkeit von der extra- und intrazellulären Chloridkonzentration kontrollieren lässt [2].

Neben den spannungsabhängigen Ionenkanälen gibt es auch ligandenaktivierte Ionenkanäle, die aus vier bis fünf Untereinheiten bestehen. Sie werden durch einen Transmitter bzw. Liganden aktiviert und sind auf den postsynaptischen Raum beschränkt [2]. Ligandengesteuerte Kationenkanäle werden auch als exzitatorische Rezeptorkanäle bezeichnet, während man unter ligandenabhängigen Anionenkanälen auch inhibitorische Rezeptorkanäle versteht. Erstere werden unter anderem durch Glutamat und Acetylcholin aktiviert und ermöglichen so den Durchtritt von Natrium-, Kalium- und teilweise Calciumionen, wohingegen letztere durch GABA und Glycin aktiviert werden und hochselektiv für Chloridionen sind [2].

Mutationen in Genen, die für Ionenkanäle kodieren, führen zum klinischen Bild der so genannten Kanalopathien [1, 2]. Molekulargenetisch lassen sich zwei Arten von solchen Mutationen unterscheiden, einerseits solche, die zum Funktionsverlust des Gens (*loss of function*) führen. Hierbei

kann es sich beispielsweise um "*Nonsense*"-Mutationen handeln, die zum Einbau eines vorzeitigen Stoppcodons und damit in der Regel zum Kettenabbruch bei der Translation führen. Andererseits gibt es auch Mutationen wie die sogenannten "*Missense*"-Mutationen, bei denen es zum Austausch einer Aminosäure kommt und die sowohl eine Einschränkung (*loss of function*) aber auch eine Steigerung der Funktion nach sich ziehen können (*gain of function*) [1, 2].

In dieser Arbeit geht es um die *KCNQ*-Genfamilie, die für die α -Untereinheit eines Kaliumkanals kodiert und für die Mutationen bei einer Reihe von Kanalopathien beschrieben sind.

2.2 Kaliumkanäle

Der erste Kaliumkanal, dessen Gen kloniert wurde, war der spannungsabhängige Drosophila shaker-Kanal. Danach folgte die Identifikation weiterer spannungs- und ligandenabhängiger Kaliumkanäle, wobei die spannungsabhängigen Kationenkanäle die größte Familie darstellen [4]. Bis heute sind beim Menschen über 80 Geneloci identifiziert, die für Kaliumkanäle kodieren [5]. Die spannungsabhängigen Kaliumkanäle gehören zu einer Familie, die sich vermutlich aus einem gemeinsamen Vorläufer entwickelt hat. Sie bestehen aus vier meist identischen α-Untereinheiten und optionalen β -Untereinheiten. Die aus sechs Domänen (S1–S6) bestehenden α -Untereinheiten lagern sich so zusammen, dass eine Kanalpore entsteht. Die Domänen S1, S2 und S3 bilden zusammen mit der positiv geladenen Domäne S4 den Spannungssensor. Bei den β -Untereinheiten handelt es sich um assoziierte Proteine, die für die Integrität und Funktion des Kanals wichtig sind, jedoch nicht direkt an der Bildung der Kanalpore beteiligt sind. Sie sind über die N-terminale T1-Domäne der α -Untereinheit an den Kanal angelagert. Einige Kaliumkanäle, darunter auch die durch die KCNQ-Gene kodierten Kanäle, die in dieser Arbeit behandelt werden, besitzen anstelle einer T1-Domäne eine zusätzliche Cterminale Sensordomäne (Abbildung 1). Zwischen den einzelnen Domänen der α-Untereinheiten befinden sich α -helikale Segmente. Die so genannte P-Domäne, die zwischen Segment fühf und sechs liegt, ist für die Selektivität der Kanäle verantwortlich [6]. Spannungsabhängige Kaliumkanäle werden durch Depolarisation aktiviert, wodurch es zum Ausstrom der Kaliumionen gegen den elektrischen Gradienten aus dem Zellinneren kommt. Dies führt zur Repolarisation der Membran [1].

Abbildung 1: Aufbau eines Kaliumkanals (nach [6]). Links: Kaliumkanal mit T1-Domäne, rechts: Kaliumkanal mit C-terminaler Sensordomäne.

Störungen dieser physiologischen Prozesse Kaliumkanalmutationen führen bei zu Erregungsrückbildungsstörungen. Ursache hierfür können Haploinsuffizienz, bei der das haploide Gen eine zu geringe Menge des Proteins produziert oder ein dominant-negativer Effekt sein, wobei hier die Mutation Einfluss auf das nicht mutierte Allel hat [7]. Einerseits führt eine fehlerhafte Proteinzielsteuerung dazu, dass mutierte Untereinheiten nicht in die Zellmembran eingebaut werden. Die hierbei reduzierte Anzahl an Kaliumkanälen führt zu einem Funktionsverlust von bis zu 50 % (Haploinsuffizienz). Andererseits führen defekte Kanäle, die in die Membran eingebaut werden zu einer Reduktion der Kanalspannung, was zu einem Funktionsverlust von mehr als 50 % führt (dominant-negativer Effekt) [7].

Eine Subspezies der Kaliumkanäle wird durch die *KCNQ*-Genfamilie kodiert [1]. Mutationen in den *KCNQ*-Genen können beispielsweise zu Long-QT-Syndrom und anderen Herzrhythmusstörungen, Taubheit und Epilepsie führen [8].

2.3 Die KCNQ-Genfamilie

2.3.1 Durch KCNQ-Mutationen ausgelöste Erkrankungen

2.3.1.1 Long-QT-Syndrom

Unter dem Long-QT-Syndrom (LQTS) versteht man eine bestimmte Form von Erregungsrückbildungsstörungen am Herzen, die zu Synkopen, polymorphen ventrikulären Tachykardien (*torsades de pointes*) und plötzlichem Herztod führen können. Neben den häufigeren erworbenen Formen gibt es auch verschiedene angeborene, durch Genmutationen verursachte Formen, deren Prävalenz auf 1 von 2500 geschätzt wird [9].

Die Diagnose des Long-QT-Syndroms wird durch die klinische Symptomatik und das 12-Kanal-EKG gestellt. Da die im EKG in Ableitung II und V5 oder V6 gemessene QT-Zeit von der Herzfrequenz abhängig ist, verwendet man die frequenzkorrigierte QT-Zeit, die als QTc-Zeit bezeichnet wird. Diese wird durch die Bazett-Formel bestimmt, obwohl sie vor allem bei Brady- oder Tachykardie zu Unteroder Überkorrektur der Werte führt [10]:

$$QT_c = \frac{QT(s)}{\sqrt{RR - Intervall(s)}}$$

	1-15 Jahre	männliche Erwachsene	weibliche Erwachsene
normal	< 440	< 430	< 450
Grenzwert	440-460	430-450	450-470
Verlängerung	> 460	> 450	> 470

Tabelle 1: Diagnosekriterien eines Long-QT-Syndroms (Angaben in Millisekunden) (nach [10]).

LQT1, LQT2, LQT3, LQT5 und LQT6 sind die klassischen genetischen Formen des Long-QT-Syndroms. Bei den zugrunde liegenden Genen sind bisher über 300 verschiedene Mutationen bekannt [11], wobei 95% der bekannten Mutationen zu LQTS1, LQTS2 oder LQTS3 führen [12]. Handelt es sich um genetisch bedingte Ursachen des Long-QT-Syndroms, so war man vor einigen Jahren noch der Ansicht, dass vor allem der Genotyp die Morbidität und Letalität bedingt [13]. Neuere Studien zeigen dagegen einen starken Zusammenhang zwischen klinischen Risikofaktoren wie QTc-Zeit, weiblichem Geschlecht, Anzahl der Synkopen, Synkopendauer und einem kardialen Ereignis, während der Genotyp selbst keinen signifikanten Einfluss hat [14, 15]. Geschlechtsabhängig treten Ereignisse in unterschiedlichem Lebensalter auf. So sind Frauen vorrangig im Erwachsenenalter, Männer hingegen eher in der Kindheit betroffen [14, 15]. Eine Erklärung dafür ist die QTc-Verkürzung in der Adoleszenz junger Männer. Obwohl der genaue Mechanismus noch unklar ist, geht man von einer Verkürzung der QTc-Zeit durch Androgene und einer Verlängerung durch Östrogene aus [16].

Lässt man verschiedene klinische Risikofaktoren außer Acht, kann man drei Risikogruppen unterscheiden. Die Hochrisikogruppe umfasst Patienten, die in der Vergangenheit schon einmal Kammerflimmern oder Torsade de Pointes Tachykardien überlebt haben. Ein mittleres Risiko tragen Patienten mit zeitabhängigen Synkopen und einer QTc-Zeit von über 0,5 Sekunden. Ein geringes Risiko an einem kardialen Ereignis zu sterben haben asymptomatische Patienten mit einer QTc-Zeit von maximal 0,5 Sekunden [7].

Eine Therapie mit β -Blockern verbessert das Überleben signifikant, vor allem bei LQTS1 oder LQTS2 oder einer QTc-Zeit von mehr als 0,5 Sekunden [14, 17]. Für Hochrisikogruppen stehen therapeutisch außerdem implantierbare Cardioverter-Defibrillatoren oder die linkszervikothorakale Sympathektomie zur Verfügung [16].

Um die Grundlagen für spätere Studien zur Entstehung des Long-QT-Syndroms am Tiermodell zu schaffen, wurden in der vorliegenden Arbeit Studien an homologen *KCNQ*-Genen an Zebrafischembryonen durchgeführt.

2.3.1.2 Epilepsie

Nach den Leitlinien der Deutschen Gesellschaft für Neurologie versteht man unter Epilepsie eine in der Regel vorübergehende plötzliche Dysfunktion des zentralen Nervensystems, wobei es zu einer hochsynchronen und hochfrequenten pathologischen, zeitlich begrenzten Entladungsserie einer unterschiedlich großen Gruppe von Neuronen kommt. Das Erscheinungsbild variiert dabei je nach Ursprungsort erheblich und kann von fokalen Anfällen mit Zuckungen einer Extremität über Absencen bis hin zu komplexen Bewegungs- und Bewusstseinsphänomenen und zu klassischen tonisch-klonischen Anfällen führen [18].

Die altersspezifische Prävalenz für Epilepsien in Zentraleuropa beträgt für Kinder und Jugendliche 4,5-5 von 1000, für Erwachsene 6 von 1000 und für die Bevölkerung über 65 Jahre sogar 7 von 1000. Die Gesamtprävalenz beträgt 5,2 pro 1000 Einwohner [19]. Die Diagnose Epilepsie wird gestellt auf Basis von Anamnese, Fremdanamnese, neurologischer Untersuchung, EEG, MRT und teilweise Laboruntersuchungen einschließlich genetischer Testungen [20].

Epilepsien werden neben der ätiologischen Einteilung in idiopathische, kryptogene und symptomatische Formen auch nach der Lokalisation der epileptogenen Zone in fokale epileptische (33-65 % der Fälle), generalisierte (17-60 % der Fälle) und unklassifizierbare Anfälle (2-8 % der Fälle) unterteilt [19-21]. Diese strikte Abgrenzung der einzelnen Formen der Epilepsie findet zwar klinisch weiterhin Anwendung, erscheint nach dem derzeitigen Stand der Forschung aber nicht mehr sinnvoll [22].

Obwohl rein genetisch bedingte Epilepsien selten sind, spielen genetische Faktoren bei fast allen Epilepsieformen eine wichtige Rolle [22]. Unter den syndromatischen Epilepsien haben beispielsweise die Lafora-Erkrankung, das Unverricht–Lundborg-Syndrom, verschiedene Lissenzephalie-Syndrome und die mitochondrial vererbten Enzephalomyopathien wie MERRF (*myoclonic epilepsy with ragged red fibres*) einen genetischen Hintergrund [23]. Die genetisch determinierten idiopathischen Epilepsien lassen sich entsprechend der zugrunde liegenden Mutationen in Ionenkanalgenen bzw. Nicht-Ionenkanalgenen in zwei Subtypen unterteilen [23]. Wichtige Nicht- Ionenkanalgene sind *LGI1 (leucine-rich glioma inactivated gene 1)*, welches zu einer autosomal-dominanten familiären lateralen Temporallappenepilepsie (ADLTE) führt [23-25], *MASS1/VLGR1*, welches in seltenen Fällen zu febrilen Anfällen führen kann [23] und *EFHC1*, welches als erste Genmutation bei juveniler myoklonischer Epilepsie beschrieben wurde [25, 26]. Die meisten Mutationen, die bei idiopathischen Epilepsien gefunden wurden, betreffen dagegen Ionenkanalgene. Bildung und Weiterleitung eines Nervenimpulses erfolgt durch Aktionspotentiale, deren Basis Ionenkanäle darstellen. Jede Art der

Mutation in einem Ionenkanal kann die neuronale Erregbarkeit direkt beeinflussen und somit zur Epilepsie führen [27]. Durch den Einstrom von Natrium kommt es zur Depolarisation, während die Repolarisation durch Ausstrom von Kalium entsteht. Eine Unterbrechung der schnellen Natriumanäle oder des verminderten Kaliumausstroms führt zu einer Übererregbarkeit und spontanen Serien von Aktionspotentialen. Verlangsamte Natrium- und Kaliumströme sind die häufigsten Mechanismen in der Pathophysiologie der Kanalopathien. Während nur wenige verschiedene Natriumkanäle mit hoch konservierter Funktion bekannt sind, existiert eine Vielzahl verschiedener spannungsabhängiger Kaliumkanäle mit jeweils spezifischen elektrophysiologischen Eigenschaften [27]. Zu den idiopathischen Epilepsien mit Mutationen in Ionenkanalgenen gehören beispielsweise die benignen familiären infantilen Krämpfe (BFIC), ein genetisch sehr heterogenes autosomal-dominantes partielles Epilepsiesyndrom [22]. Die Anfälle beginnen gewöhnlich zwischen dem vierten und sechsten Lebensmonat und sistieren bis zum Alter von drei Jahren. Bei den seltenen kombinierten benignen familiären neonatalen/infantilen Konvulsionen (BFNIC) kommen Neugeborenenkrämpfe und infantile Anfälle in der gleichen Familie vor. BFNIC werden bei einigen Patienten durch eine Mutation im spannungsabhängigen Natriumkanal SCN2A hervorgerufen [22]. Fieberkrämpfe sind der häufigste Anfallstyp beim Menschen. Sie betreffen etwa fünf bis zehn Prozent der Kinder unter sechs Jahren. Es handelt sich in den meisten Fällen um ein oligo- oder polygenes Vererbungsmuster, jedoch wurden auch Genloci beschrieben, die zu autosomal-dominanter Vererbung dieser Fieberkrämpfe führen. In manchen Familien persistieren die Anfälle jedoch über das Alter von sechs Jahren hinaus und können zudem noch mit verschiedenen afebrilen epileptischen Anfällen kombiniert sein, ein Syndrom, das als "generalisierte Epilepsie mit febrilen Anfällen plus" (GEFS+) bezeichnet wird. Die afebrilen Anfälle des GEFS+ können generalisiert oder fokal sein. Die Art der Vererbung ist derzeit noch nicht vollständig geklärt, es wird aber von einer oligogentischen Vererbung ausgegangen, in die verschiedene Ionenkanäle, meist jedoch Natriumkanäle involviert sind [22, 28].

Die in der vorliegenden Arbeit behandelte Form der idiopathischen Epilepsie sind die benignen familiären Neugeborenenkrämpfe. Sie wurden erstmals 1964 von Rett und Teubel beschrieben [29]. Es handelt sich dabei um eine seltene, autosomal-dominant vererbte Form der Epilepsie, die sich in den ersten Lebenstagen in Form häufiger kurz andauernder Anfälle manifestiert, die meist nach einigen Wochen bis Monaten spontan sistieren [27]. Bei etwa 10-15% der Betroffenen kommt es jedoch im weiteren Leben erneut zu Anfällen, die unter anderem durch Schlafmangel provoziert werden können [22, 30]. Die Anfallsdauer variiert dabei von einigen Sekunden bis zu drei Minuten, beginnt tonisch und kann von Tachykardie oder kurzer Apnoe begleitet sein. Die generalisierte oder fokal klonische Phase wird häufig durch Vokalisieren oder Kaubewegungen des Kiefers eingeleitet [31].

Neben dem oben beschriebenen LQT-Syndrom waren die benigen Neugeborenenkrämpfe die zweite Erkrankung, deren funktionelle Erforschung Anlass für die hier durchgeführten Studien an homologen *KCNQ*-Genen an Zebrafischembryonen gaben.

2.3.1.3 Taubheit

Etwa eins von tausend Kindern ist bei oder kurz nach der Geburt von einer starken Schwerhörigkeit betroffen [32]. Die Hörschwelle liegt bei jungen gesunden Erwachsenen zwischen 0 und 20 dB, die Schmerzschwelle bei 120 dB [33]. Von Schwerhörigkeit spricht man, wenn der Hörverlust 25 dB übersteigt, von Taubheit, wenn der Verlust mehr als 80 dB auf beiden Ohren beträgt [34]. Hörverlust kann leitungs- oder sensorineural bedingt sein, manchmal besteht eine Kombination aus beiden Formen. Ein leitungsbedingter Hörverlust betrifft das äußere Ohr sowie die Gehörknöchelchen des Mittelohres, während ein sensorineuraler Hörverlust Strukturen des Innenohres wie die Cochlea, den N. vestibulocochlearis (VIII. Hirnnerv), den auditorischen Hirnstamm oder den Cortex betrifft [33]. Die Haarzellen im Innenohr sind die Rezeptorzellen des Cortiorgans und wandeln mechanische Stimulation in elektrische Potentiale um. Die inneren Haarzellen sind dabei vor allem für das elektrische Potential verantwortlich, die äußeren Haarzellen dienen als Reizverstärker, indem sie das Rezeptorpotential in mechanische Kraft umwandeln. Innere und äußere Haarzellen befinden sich in der von Endolymphe umspülten Scala media. Im Gegensatz zu normaler extrazellulärer Flüssigkeit weist die Endolymphe eine hohe Konzentration an Kaliumionen (150 mM) und ein positives Membranpotential von etwa + 80 mV auf. Der dem Hörvorgang zugrunde liegende Kaliumstrom wird durch Kaliumkanäle in den Haarzellen und den Deiters-Stützzellen bewerkstelligt [33].

Man geht davon aus, dass in entwickelten Ländern bei 50 % der Hörgeschädigten eine Genmutation die Ursache ihres Hörverlusts ist, 30 % davon im Rahmen eines Syndroms [32, 33]. Bei den 70 % nicht-syndromalen genetischen Formen der Taubheit sind etwa 80 % autosomal-rezessiv, 20 % autosomal-dominant, sehr selten X-chomosomal oder mitochondrial vererbt (Abbildung 2).

Abbildung 2: Arten der kongenitalen Schwerhörigkeit (nach [33]).

Die autosomal-rezessive Form ist dabei die schwerste Erkrankungsform und wird fast ausschließlich durch Defekte der Cochlea bedingt (sensorineurale Taubheit). Autosomal-dominante Formen sind gewöhnlich post-lingual und progredient [32]. Derzeit sind über 400 verschiedene Formen genetisch bedingter Taubheit bekannt, denen über 40 verschiedene Gendefekte zugrunde liegen. Auch eine Kombination aus genotypischer Vulnerabilität und Umweltfaktoren bedingt häufig einen Hörverlust im Alter [33]. Je nach Vererbungsmodus unterscheidet man *DFN-*, *DFNA-* und *DFNB*-Gene (DFN steht dabei für "DeaFNess"). Gene, die autosomal-dominant vererbt werden, bezeichnet man als *DFNA*, autosomal-rezessiv vererbte Gene *DFNB*. X-chromosomale Vererbungsmuster werden als *DFN* bezeichnet [33]. Unter den 19 verschiedenen bisher beschriebenen, überwiegend autosomal-dominant oder rezessiv vererbt werden können [35].

Die häufigsten Formen syndromaler autosomal-dominanter Hörverluste sind das Waardenburg-Syndrom, das Branchio-oto-renale-Syndrom und das Stickler-Syndrom. Auch die Neurofibromatose Typ 2 kann durch ein bilaterales vestibuläres Schwannom in seltenen Fällen zum Gehörverlust führen [33]. Die häufigsten autosomal-rezessiv vererbten Syndrome, die mit einem Hörverlust einhergehen sind das Pendred-Syndrom, das Strukturdefekte des Os temporale und des Innenohres aufweist und darüber hinaus zu einer euthyreoten Struma führt, das Usher-Syndrom, welches im Laufe der Jahre zusätzlich zur Erblindung führt, das Jervell-Lange-Nielsen-Syndrom, welches zusätzlich eine QTc-Verlängerung aufweist, Biotinidase-Defekte sowie die Refsum-Erkrankung [33].

Die häufigste Form der Schwerhörigkeit setzt spät ein, betrifft meist das Reizleitungssystem und kann durch ein Hörgerät beeinflusst werden. Diese Art der Schwerhörigkeit nimmt vom 20. zum 80. Lebensjahr um das 36-fache zu. Über diese Art der Schwerhörigkeit ist derzeit wenig bekannt, ätiologisch spielen genetische Komponenten, Presbyakusis, Infektionen und Umweltlärm eine Rolle [34].

Die funktionelle Untersuchung der durch Mutationen in KCNQ-Genen verursachten erblichen Hörstörungen waren ein weiterer Anlass, weshalb in der vorliegenden Arbeit die orthologen Gene des Zebrafischembryos charakterisiert wurden.

2.3.2 Die einzelnen KCNQ-Gene

KCNQ bezeichnet eine Klasse spannungsabhängiger Kaliumkanäle, die evolutionär von einem gemeinsamen Vorläufer abstammen [36].

2.3.2.1 KCNQ1 und assoziierte Mutationen

KCNQ1 befindet sich auf Chromosom 11 an der Lokalisation 11p15.5 [37]. Früher wurde das *KCNQ1*-Gen als *KvLQT* bezeichnet und wurde als erstes als ein Gen bekannt, dessen Mutationen eine erbliche Form des Long-QT-Syndroms hervorruft [8]. Dieses Gen kodiert für die porenbildende α -Untereinheit eines spannungsabhängigen Kaliumkanals, der für die Repolarisationsphase des Aktionspotentials am Herzen verantwortlich ist. Es kann Heteromultimere mit KCNE1 (minK oder IsK), KCNE2, KCNE3 und KCNE4 formen, die die β -Untereinheit darstellen [37]. Je nach Kombination variieren dabei Funktion und Lokalisation von KCNQ1. Ist es beispielsweise mit KCNE1 kombiniert, führt es zur Repolarisation am Herzen und reguliert die transepitheliale Kaliumsekretion im Innenohr [8], bei der Assoziation von KCNQ1 mit KCNE3 verändert es die Kanaleigenschaften in den Mozyten [38].

Dominant-negative Mutationen in *KCNQ1* und *KCNE1* führen zu einer speziellen Form des Long-QT-Syndroms, das erstmals von Romano (1963) und Ward (1964) beschrieben wurde [7]. Die Mutationen betreffen den bei *KCNQ*-Genen hoch konservierten N-Terminus und führen zu einer fehlerhaften Proteinzielsteuerung, wodurch die Proteine im Endoplasmatischen Retikulum verbleiben. Somit werden auch die Proteine, die keine Mutation aufweisen in geringerer Zahl in die Zellmembran der Kardiomyozyten integriert [39]. Bei homozygoter Mutation beider Allele von *KCNQ1* oder *KCNE1* kommt es zum Jervell-Lange-Nielsen-Syndrom (JLNS), einer erstmals 1957 beschriebenen rezessiven Form des Long-QT-Syndroms, das mit hochgradiger bilateraler Schwerhörigkeit einhergeht [7, 40]. Die Mehrheit der Fälle ist durch Mutationen in *KCNQ1* bedingt und betrifft somit die α -Untereinheit, wodurch es zu einem hochgradigen Funktionsverlust der Proteine kommt [41]. Bei einer ,,*gain-of function*"-Mutation von *KCNQ1* kommt es zum so genannten Short-QT-Syndrom [42]. Eine derartige Mutation kann des Weiteren auch mit einer autosomal-dominanten Form des Vorhofflimmerns assoziiert sein. Durch die absolute Arrhythmie wird die Messung der QT-Zeit erschwert, es kann jedoch davon ausgegangen werden, dass auch hier eine verkürzte QT-Zeit vorliegt [37].

In einer Studie mit 77 verschiedenen Mutationen im *KCNQ1*-Gen konnte gezeigt werden, dass eine deutliche Genotyp-Phänotyp-Korrelation besteht. So wurde bei Mutationen der Transmembranregion eine signifikant höhere Ereignisrate gefunden als bei Mutationen im C-Terminus. Mutationen, die einen dominant-negativen Effekt bewirken, zeigen eine längere QTc-Zeit und höhere Ereignisrate als Mutationen, die zu einer Haploinsuffizienz führen. Auch Missense-Mutationen führen zu einer höheren Rate an Ereignissen, sind aber kein unabhängiger Risikofaktor [43]. Einige Mutationsträger sind asymptomatisch, bei anderen kommt es trotz normaler QT-Zeit zu kardialen Ereignissen. Asymptomatische Träger besitzen eine Prädisposition, nach Einnahme bestimmter Medikamente Arrhythmien zu entwickeln [44].

Bei der Produktion der kaliumreichen Endolymphe im Innenohr spielen KCNQ1/minK-Kanäle eine wichtige Rolle. Mutationen im *KCNQ1-* oder *KCNE1-*Gen können durch einen Defekt in der Synthese

der Endolymphe zu angeborener Taubheit führen [35]. Dabei handelt es sich um eine syndromale mit einem Long-QT-Syndrom vergesellschaftete Form der Taubheit [35].

Auch außerhalb von Herz und Innenohr spielt KCNQ1 eine wichtige physiologische Rolle. In Kolon und Intestinum bildet es zusammen mit KCNE3 einen cAMP-aktivierten Kaliumkanal, der den transepithelialen Transport reguliert. Im Magen vermutet man eine Rolle von KCNQ1 und KCNE2 bei der Säuresekretion [45].

2.3.2.2 KCNQ2, KCNQ3 und assoziierte Mutationen

1989 wurde das putative Gen, dessen Mutationen benigne familiäre Neugeborenenkrämpfe (BFNC) verursachen, über Kopplungsstudien Chromosom 20 zugeordnet. Auf diesem Lokus (20q13.3) befindet sich das Gen *KCNQ2 (EBN1)*, das für ein Protein aus bis zu 844 Aminosäuren kodiert [46, 47]. Die erste Mutation im *KCNQ2*-Gen wurde bei einer australischen Familie mit benignen familiären Neugeborenenkrämpfen beschrieben [47]. Da nicht in allen BFNC-Familien Mutationen im *KCNQ2*-Gen vorkamen, wurde über Kopplungsstudien ein weiterer Genlokus für BFNC detektiert [29]. Auf diesem Genlokus auf Chromosom 8q24 befindet sich *KCNQ3 (EBN2)*, ein Paralog zu *KCNQ2*. Mutationen im *KCNQ3*-Gen, die zu benignen Neugeborenenkrämpfen führen, kommen viel seltener vor als Mutationen in *KCNQ2* [47, 48].

KCNQ2 kann mit KCNQ3 Heterotetramere bilden [49], ist jedoch nicht mit KCNQ1, KCNQ4 oder KCNQ5 assoziiert [50]. Selten wird präsynaptisches KCNQ2 auch ohne Assoziation mit KCNQ3 exprimiert [4]. KCNQ3 kann sowohl mit KCNQ2 als auch mit KCNQ4 und KCNQ5 assoziiert sein [48, 50]. Beide Kanäle bilden den sogenannten M-Strom, eine langsam aktivierende und deaktivierende Kaliumleitfähigkeit. Der M-Strom reguliert die Frequenz der Aktionspotentiale durch anhaltende Membrandepolarisation und stabilisiert so das Membranpotential. Dadurch können überschießende neuronale Erregbarkeit und Anfälle vermieden werden [22]. Die gemessene Stromstärke von KCNQ2 ist etwa zehn Mal so stark, wenn KCNQ2 mit KCNQ3 coexprimiert wird [27]. Schon eine relativ geringe Änderung im M-Strom ist ausreichend, um epileptische Anfälle hervorzurufen [27]. Mutationen in den *KCNQ*-Genen sind in zwei Regionen angehäuft, erstens in der P-Domäne zwischen den Segementen S5 und S6 der Kanalpore und zweitens in der Region des langen C-Terminus [27]. Sowohl *KCNQ2* als auch *KCNQ3* werden in fast allen Regionen des Zentralnervensystems exprimiert, in besonderem Maße jedoch im Kleinhirn, im Neokortex, im Hippocampus sowie im Gyrus dentatus [30].

Den benignen familiären Neugeborenenkrämpfen liegen Mutationen in *KCNQ2* (20q13.3) [47, 51] und seltener *KCNQ3* (8q24) zugrunde [52]. Bis jetzt wurden mehr als 40 Mutationen beschrieben, darunter Missensemutationen in den Transmembrandomänen, verkürzende Mutationen (Nonsense-, Insertions-, Deletions- oder Splicemutationen) oder große Deletionen. Die meisten Mutationen sind dabei familienspezifisch [22]. Wenige Mutationen haben einen dominant-negativen Effekt auf die

Kanalfunktion und reduzierten diese um mehr als 50 %. Eine davon (R207W), *KCNQ2* betreffend, führt zu BFNC und Myokymie, eine spontane, repetitive, nicht bewußt unterdrückbare Kontraktion von Muskelgruppen [22]. Myokymie ist das Ergebnis einer Übererregbarkeit des 2. Motoneurons im Vorderhorn des Rückenmarks, wo die Expression sowohl von *KCNQ2* als auch *KCNQ3* nachgewiesen werden konnte. Es wird postuliert, dass es durch die *KCNQ2*-Mutation zu einem unterschiedlichen Erregungsmuster in den Motoneuronen im Vergleich zum Zentralnervensystem kommt, was durch den verlangsamten Spannungsaufbau zum Symptom der Myokymie führt [50].

Eine Theorie warum die epileptischen Anfälle bei benignen familiären Neugeborenenkrämpfen insbesondere neonatal auftreten ist, dass das Gehirn in diesem Lebensabschnitt vulnerabler für Krampfanfälle ist, als im späteren Leben [27]. Eine andere Erklärung könnte die veränderte Expression von Kaliumkanälen während der Zeit der Hirnreifung sein. Dabei könnte sich es um eine erhöhte Expression der *KCNQ*-Gene oder um eine reduzierte Expression anderer Kaliumkanäle während der Neonatalperiode handeln [30]. Die Behandlung der BFNC ist mit Retigabin als Aktivator des M-Stroms möglich, jedoch sind die benignen familiären Neugeborenenkrämpfe auch ohne Therapie meistens benign und selbstlimitierend [22, 53, 54]. Da *KCNQ2* und *KCNQ3* speziell in Neuronen exprimiert werden, sind Nebenwirkungen des Retigabin am Herzen, wo vor allem *KCNQ1* exprimiert wird, kaum zu erwarten [27]. Derzeit wird diskutiert, ob diese Art der Epilepsie tatsächlich immer "benign" ist, da Fälle mit atypischem Verlauf beschrieben wurden. Die Patienten zeigten eine erhöhte Frequenz an Anfällen und waren häufig nach dem vierten Lebensmonat nicht anfallsfrei. Es wurden zudem Fälle einer medikamentenresistenen Epilepsie oder epileptischer Enzephalopathie mit Beginn kurz nach der Geburt beschrieben, die eine schwere psychomotorische Retardierung nach sich zogen [22].

2.3.2.3 KCNQ4 und assoziierte Mutationen

KCNQ4 wurde über seine Homologie zu *KCNQ3* kloniert, befindet sich auf dem Genlokus für *DFNA2* auf Chromosom 1p34 und kodiert für ein Protein aus bis zu 695 Aminosäuren [35]. KCNQ4, das wie KCNQ2 und KCNQ3 Charakteristika des M-Stroms aufweist, bildet homomere Kanäle, die bei Depolarisation langsam aktivieren [8, 35]. KCNQ4 kann zusammen mit KCNQ3 Heteromere bilden, Verbindungen von KCNQ4 mit KCNQ1, KCNQ2 oder KCNQ5 konnten jedoch nicht nachgewiesen werden [48]. In der Cochlea wird *KCNQ4* in den äußeren Haarzellen exprimiert. Auch in Herz, Gehirn und in der quergestreiften Muskulatur zeigt sich eine schwache Expression von *KCNQ4*. Bei Mutationen im *KCNQ4*-Gen kommt es zu einer nicht-syndromalen Form der Taubheit mit stark dominant-negativem Effekt auf das nicht mutierte Allel. In der zweiten bis dritten Lebensdekade kommt es zuerst zum Hörverlust in den hohen Frequenzen, der dann rapide fortschreitet [32]. Über den tatsächlichen Wirkungsmechanismus von KCNQ4 in den äußeren Haarzellen wird noch spekuliert, jedoch deutet der langsame Hörverlust darauf hin, dass KCNQ4-Ströme nicht für den

Hörvorgang per se wichtig sind. Vielmehr liegt dem Hörverlust ein langsamer degenerativer Prozess zugrunde, der durch eine Überladung der äußeren Haarzellen mit Kalium zustande kommt. Lärm, der zu einem schnellen Kaliumeinstrom führt, kann dabei den Pathomechanismus verstärken [8].

Mutationen in *KCNQ1* und *KCNQ4* führen zu Hörverlust, unterscheiden sich jedoch in Verlauf und Ausprägung. So ist die Form der Taubheit bei *KCNQ1*-Mutation syndromatisch, rezessiv, kongenital und beeinflusst die Sekretion von Kalium in die Endolymphe, wohingegen Mutationen bei *KCNQ4* eine dominante, langsam progrediente, nicht-syndromatische Schwerhörigkeit hervorrufen [35].

2.3.2.4 KCNQ5

KCNQ5 ist das zuletzt erforschte Gen der Subfamilie. *KCNQ5* befindet sich auf Chromosom 6q14. Es besteht aus 14 Exons und kodiert für ein Protein mit 897 Aminosäuren [55], wobei wie bei anderen *KCNQ*-Genen auch verkürzte Spleißvarianten bekannt sind [56]. *KCNQ5* wird hauptsächlich im Gehirn und in der quergestreiften Muskulatur [55, 56], aber auch in weiteren Geweben wie der glatten Muskulatur und dem Testis exprimiert [5].

Bis heute konnten keine Erkrankungen nachgewiesen werden, die mit Mutationen im *KCNQ5*-Gen vergesellschaftet sind [55, 56]. Bei Familien mit benignen familiären Neugeborenenkrämpfen oder frühen infantilen Krämpfen wurden Mutationsanalysen durchgeführt. In diesen Familien konnten keine Mutationen in *KCNQ2* oder *KCNQ3* nachgewiesen werden. Auch im *KCNQ5*-Gen wurden keine Mutationen gefunden, so dass eine Rolle von *KCNQ5* bei benignen familiären Neugeborenenkrämpfen unwahrscheinlich erscheint [55].

2.4 Spleißvarianten

Für alle oben beschriebenen *KCNQ*-Gene sind Spleißvarianten bekannt. Alternatives Spleißen ist ein im gesamten Genom bekanntes Phänomen [57]. Dabei können aus der selben DNA und prä-mRNA durch regulatorische Elemente unterschiedliche mRNAs erzeugt und dadurch unterschiedliche Proteinisoformen gebildet werden [58].

Im Durchschnitt besteht ein menschliches Gen aus acht Exons, die wiederum durchschnittlich aus 145 Basen zusammengesetzt sind. Die jeweiligen Introns sind etwa zehn Mal so groß, können diese Größe jedoch um ein vielfaches überschreiten [57]. Man geht davon aus, dass das Genom aus etwa 20.000 bis 25.000 Genen besteht. Aufgrund des alternativen Spleißens ist die Größe des Proteoms jedoch viel größer [59].

Es werden verschiedene Möglichkeiten des alternativen Spleißens unterschieden wie beispielsweise das Überspringen eines Exons, das Beibehalten eines Introns, den Austausch zweier Exons gegeneinander oder die Verkürzung oder Verlängerung von Exons durch das Benutzen unterschiedlicher 5' oder 3' *splice sites* [58]. Alternatives Spleißen betrifft mehr als die Hälfte aller

menschlichen Gene. Die aus den unterschiedlichen mRNAs translatierten Proteine haben eine unterschiedliche, teilweise sogar entgegengesetzte Funktion [57]. Beim alternativen Spleißen kann es zur Insertion oder Deletion einzelner Aminosäuren, zum Verschieben des Leserahmens oder zum vorzeitigen Einbau eines Stopcodons kommen. Alternatives Spleißen kann auch die Genexpression betreffen, indem regulatorische Elemente entfernt oder eingefügt werden, die die Translation, die Stabilität der mRNA oder deren Lokalisation betreffen [57]. In vielen Fällen unterscheiden sich die alternativen Isoformen in kleinen Änderungen funktioneller Elemente oder Domänen. So kann etwa ein Protein in löslicher oder membrangebundener Form vorkommen. Dabei hat letztere Isoform zusätzliche Exons, die für die Transmembranregion des Proteins kodieren, wobei es in unterschiedlichen Situationen zu unterschiedlich starker Ausprägung einzelner Spleißvarianten kommen kann [60, 61]. Jedoch hat nicht jede Isoform des Genprodukts einen funktionalen Effekt auf den Organismus, woraus sich der Begriff des funktionellen Spleißens entwickelte. Bei einer nicht funktionellen Spleißvariante kann etwa ein vorzeitiges Stoppcodon zur Degradation der mRNA führen. Auch wenn mehr als die Hälfte der menschlichen Gene von alternativem Spleißen betroffen ist, bleibt unklar, wieviele dieser Spleißprodukte tatsächlich funktionell sind [60, 61].

In den letzten Jahren konnten verschiedene Studien zeigen, dass alternatives Spleißen bei vielen Organismen vorkommt und dadurch eine Vielzahl essentieller biologischer Prozesse reguliert [60, 61]. Studien zum genauen Ausmaß der Konservierung dieser alternativen Spleißvarianten zwischen verschiedenen Spezies lieferten widersprüchliche Ergebnisse. Man nimmt an, dass insgesamt etwa zwei Drittel konserviert sind, wobei bedeutende Formen in bis zu 98 % erhalten sind [60]. Zwischen Vertebraten und wirbellosen Tieren bestehen erhebliche Unterschiede im alternativen Spleißen, so dass man davon ausgeht, dass sich bei den Wirbeltieren weitere, komplexe Möglichkeiten des alternativen Spleißens im Laufe der Evolution entwickelt haben [62].

Im menschlichen Herz konnte eine verkürzte KCNQ1-Isoform nachgewiesen werden, die physiologisch exprimiert wird, jedoch den Kaliumstrom supprimiert und einem dominant-negativen Effekt aufweist [45]. Es existieren verschiedene Spleißvarianten des menschlichen KCNQ2, die sich vor allem im C-Terminus unterscheiden. In einer Studie wurden eine lange und eine verkürzte Spleißvariante miteinander verglichen. Über Northern-Blot-Analysen konnte hierbei gezeigt werden, dass die lange Variante vor allem in differenzierten Neuronen exprimiert wird, während die verkürzte Variante vor allem im fetalen Gehirn, in undifferenzierten Neuroblastomzellen und in Hirntumoren vorkommt und überdies keine Kaliumströme ermöglicht [36]. Auch für *KCNQ3* wurden Spleißvarianten beschrieben [35]. Bei *KCNQ4* ist eine Spleißvariante bekannt, bei der das Exon 9 herausgespleißt ist [35]. Von KCNQ5 konnten im menschlichen Gewebe bisher zwei verschiedene Isoformen nachgewiesen werden. Die im Gehirn exprimierte Isoform aktiviert schneller, deaktiviert jedoch langsamer als die Variante, die im Skelettmuskel vorkommt. Am Mausmodel konnten drei verschiedene Spleißvarianten ohne pathologisches Korrelat nachgewiesen werden. Jedoch wurden in den glatten Muskelzellen immer verkürzte Isoformen vorgefunden, entweder in Kombination mit der langen Variante oder exklusiv [56].

2.5 Der Zebrafisch als Tiermodell

2.5.1 Vorteile des Zebrafisches

Um die Expressionsmuster von *KCNQ*-Genen und die funktionelle Bedeutung ihrer Spleißvarianten zu untersuchen, eignen sich insbesondere Tiermodelle wie etwa der Zebrafisch, der im lateinischen als *Danio rerio* bezeichnet wird.

Beim Zebrafisch handelt es sich um einen Vertebraten, der sich gut als Modelltier für menschliche Erkrankungen eignet. Seit den 1930er Jahren dient er als Tiermodell, da die Embryonen und Larven eine gute Übersichtlichkeit aufweisen und sich einfach manipulieren lassen [63]. Danio rerio ist ein Modelltier, das sich, anders als die meisten Wirbeltiere, einfach züchten lässt, Eigenschaften, die ansonsten nur wirbellose Modelltiere zeigten. Die Embryonen und Larven bieten eine gute Übersichtlichkeit über die Entwicklung. Der Zebrafisch kann einfach befruchtet werden (in-vitro-Fertilisation) und weist eine hohe Fekundität auf. Ein Weibchen kann alle fünf bis sieben Tage bis zu 300 Eier produzieren. Der Zebrafisch entwickelt sich schnell mit einer Generationenzeit von etwa drei Monaten und kann aufgrund seiner Größe auf kleinem Raum bei geringen verbundenen Kosten gehalten werden [63-65]. Des Weiteren ist das Zebrafischgenom weitgehend sequenziert. Dabei setzt sich die Sammlung der DNA aus 1,481,241,295 bp in 11,623 Fragmente unterteilt zusammen. Der durchschnittliche Deckungsgrad beträgt 6.5-7, das heißt, jedes Fragment ist im Durchschnitt 6,5 bis 7 Mal jeweils über verschiedene Individuen sequenziert worden. Die letzte Aktualisierung auf dem Browser von UCSC wurde für Dezember 2008 vermerkt (http://genome.ucsc.edu) (Stand Februar 2010). Der Zebrafisch weist eine gute Balance zwischen Einfachheit und Komplexität verschiedener Organsysteme auf, etwa beim Nervensystem [63, 65]. Es ist einfacher strukturiert als etwa beim Nagetier, jedoch weist es im allgemeinen eine repräsentative Anatomie zum Nervensystem des Menschen auf [63].

Bei den so genannten *forward-genetics* wird ein, durch Mutationen hervorgerufener, Phänotyp beobachtet und im Anschluss erfolgt die Genotypisierung [63]. Im Zebrafisch können mit dem Mutagen Ethylnitrosurea (ENU) besser Punktmutationen hervorgerufen werden als in anderen Vertebraten. Auch durch retrovirale Methoden konnten erfolgreich Mutationen erzielt werden [63]. Eine Methode die unter anderem das Mutagen ENU verwendet sind die so genannten *"forward-genetic-screens"*, wobei die Transparenz der Embryonen und Larven des Zebrafisches diese Methode vereinfacht [63]. Die Genotypisierungen können in großem Maßstab ohne großen technischen Aufwand durchgeführt werden, da das Zebrafischgenom weitgehend sequenziert und somit die Klonierung schneller durchführbar ist [63, 66]. Durch *"large-scale forward-genetic screens"* konnten daher einige Mutationen in Genen gefunden werden, die in orthologen Genen beim Menschen Krankheiten verursachen. Dabei zeigen sich eindeutige phänotypische Korrelate [66].

Durch Manipulationen am Embryo sind weitere Untersuchungen auf molekularer und zellulärer Ebene leicht durchführbar. In der Entwicklungsbiologie werden häufig Zeitrafferaufnahmen gemacht, die beim Zebrafisch ohne großen Aufwand durchführbar sind [63]. Das Tiermodell Zebrafisch hat weiterhin den Vorteil, dass die meisten Untersuchungen am ganzen Organismus vorgenommen werden können. Manchmal zeigen Mutanten des *Danio rerio* phänotypische Parallelen zu menschlichen Erkrankungen, was die Untersuchung unbekannter molekularer Ursachen ermöglicht. Auch für erworbene Krankheiten eignet sich der Zebrafisch aufgrund der einfachen Manipulierbarkeit hervorragend als Modelltier [63]. Säugetiere können nicht in großer Zahl untersucht werden, so dass oftmals zuerst Zellkulturen untersucht werden. Meist existieren jedoch Unterschiede zwischen einzelnen Zellen und ganzen Organismen (Tabelle 2, Tabelle 3) [64]. Auch hier bietet sich *Danio rerio* als geeignetes Tiermodell an.

In der vorliegenden Arbeit wurde das Tiermodell Zebrafisch verwendet, um die Expressionsmuster und die funktionelle Vielfalt von *KCNQ*-Genen im Detail zu untersuchen. Als Studienobjekt wurde dabei nicht das adulte Tier verwendet, sondern Zebrafisch-Embryonen in unterschiedlichen Entwicklungsstadien.

	Modellorganismus			
	Fliege	Zebrafisch	Maus	Ratte
Praktikabilität				
Haltungskosten	\downarrow	\downarrow	Ť	↑
Jahreskosten pro Tier	\downarrow	\downarrow	Ť	↑
anatomische Ähnlichkeit	-	+	++	++
molekulare/genetische Ähnlichkeit	+	++	+++	+++
pathologische Ähnlichkeiten	-	++	+++	+++
Aufbewahrung z.B. Spermaproben	-	+	+	+
molekularbiologische Möglichkeiten				
transgene Tiere	++	++	++	++
gezielte Genmodifikationen	+	-	++++	+
transiente in vivo Assays	++	++++	+	+
TILLING	+++	++++	++	+
Durchführbarkeit umfangreicher genetischer Screens	++++	+++	++	+
Bezahlbarkeit umfangreicher genetischer Screens	++++	+++	+	-
fortschreiten der Sequenzierung	+++	++	+++	++
fortschreiten des Wissens	++	++	++++	++
zellbiologisches Werkzeug				
Zelllinien und Gewebekulturen	++	+	++++	+
vorhandene Antikörper	++	+	++++	++

2.5.2 Gegenüberstellung verschiedener Tiermodelle

Tabelle 2: Gegenüberstellung verschiedener Tiermodelle (nach [63]). -: nicht relevant oder schwach, +-+++: relative Stärke; ↓: gering, ↑: hoch, *TILLING: targeting induced local lesions in genomes*.

2.5.3	Vergleich	zwischen	Mensch	und	Zebra	fischm	odell
-------	-----------	----------	--------	-----	-------	--------	-------

Merkmal Parallelen zum Menschen		Unterschiede zum Menschen
Genomstruktur	diploider Chromosomensatz, enthält alle Gene der Vertebraten	enthält z.T. Genduplikationen durch die Genomduplikation
Anatomie	Vertebrat	Wassertier,enthälteinenstromgünstigenKörperundunterschiedlicheLokomotorik
Nahrungsspektrum und Metabolismus	Allesfresser	Poikilothermisch, optimales Wachstum bei 28,5°C
Wachstum	determinierte Größe, saltatorisches Wachstum	starke Tendenz zur Regeneration verschiedener Gewebe wie Herz, Flosse und Retina
Lebenserwartung	juvenile und adulte Wachstumsphase zum Zeitpunkt der Reproduktivität, altersspezifische physiologische Veränderungen wie etwa kognitive Funktionen	3-5 Jahre, Generationen von 3 Monanten
Embryologie	Stadien und Prozesse der Zellteilung, Strukturierung, Gastrulation, Somitogenese, Organogenese	Sehr schnell, nicht- plazentar, ex-vivo, Einfluss maternaler Transkripte, Schlüpfen
Muskulatur	axiale Muskulatur und Muskulatur des Bewegungsapparates, quergestreifte, glatte und Herzmuskulatur vorhanden, schnelle und langsame quergestreifte Muskulatur	topographisch getrennte, schnell- und langsam zuckende Muskeln, Flossen- antrieb, Bewegungsapparat schwach ausgeprägt
Nervensystem und Verhalten	representative Anatomie mit Vorderhirn, Mittelhirn, Kleinhirn, Dienzephalon, Telenzephalon, Zerebellum, peripheres Nervensystem mit motorischer und sensorischer Komponente, enterisches und autonomes Nervensystem; spezialisierte sensorische Organe wie Augen, Geruchsorgan und Ohren; integrierte neuronale Funktionen, Gedächtnis, Konditionierung und soziales Verhalten	das Telenzephalon besitzt nur einen rudimentären Kortex fischspezifische sensorische Organe wie das Seitenlinienorgan das Verhalten und die kognitiven Funktionen sind im Vergleich zum Menschen stark vereinfacht
Kardiovaskuläres System	Atrium und Ventrikel vorhanden, Blutzirkulation in Arterien und Venen, separates Lymphsystem	Fehlen eines separaten Lungenkreislaufs parallel zum Körperkreislauf; keine Lymphknoten
Reproduktion	Keimzellentwicklung, zelluläre Anatomie von Keimzellorganen, Testikeln und Ovarien	keine geschlechtsspezifischen Chromosomen, Geschlechtsbestimmung ungewiss, Fertilisation erfolgt ex vivo, Oozyten sind von Chorion umgeben, nicht von einer Zona pellucida, keine Säugetiere
Genomstabilität	Mutationen durch die sogenannten "forward-genetic screens"	hohe Inzidenz an spontanen Tumoren oder Tumoranfälligkeit

Tabelle 3: Gegenüberstellung vom Modelltier Zebrafisch zum Menschen (der Bereiche, die für *KCNQ* entscheidend sind) (nach [63]).

2.5.4 Entwicklungsstadien des Zebrafischembryos

Es werden sieben Stadien der Embryogenese unterschieden, die Zygote, die Furchung, die Blastula, die Gastrula, die Segmentation, die Pharyngula und das Schlüpfen (Tabelle 4) [67].

Zeitpunkt	Stunden	Beschreibung
Zygote	0	das frisch befruchtete Ei beendet den ersten Zellzyklus
Furchung	3⁄4	zweiter bis siebter Zellzyklus, diese verlaufen schnell und synchron
Blastula	2 1⁄4	schnelle metasynchrone Zellzyklen acht und neun, anschließende länger andauernde asynchrone Zyklen, Beginn der Epibolie
Gastrula	5 1/4	Morphogenetische Involutionsbewegungen, Konvergenz und Extension von Epiblast, Hypoblast und der embryonalen Achse bis zum Ende der Epibolie
Segmentation	10	Entstehung von Somiten; primordialer Schlundbogen und Neuromere entwickeln sich, primäre Organogenese, frühe Bewegungen, der Schwanz entsteht
Pharyngula	24	Stadium des phylotypischen Embryos, Körperachse wird über den Dottersack gestreckt, Zirkulation, Pigmentation, Flossenentwicklung
Schlüpfen	48	Abschluss der schnellen Morphogenese der primären Organsysteme, Knorpelentwicklung am Kopf und an der pectoralen Flosse, Schlüpfen geschieht asynchron
frühe Larve	72	Die Schwimmblase entfaltet sich, Beginn der Futtersuche und aktives Vermeidungsverhalten

Tabelle 4: Stadien der frühen Entwicklung des Zebrafischembryos (nach [67]).

Die Einteilung in das jeweilige Stadium erfolgt am lebenden Embryo mittels Mikroskop. Ab der Phase der Segmentation entstehen Somiten, die Zellen differenzieren sich morphologisch und es kommt zu den ersten Körperbewegungen. Bei den Somiten handelt es sich um mesodermale Komponenten der frühen Rumpf- oder Schwanzsegmente oder Metamere. Diese formen die Myotome, Sklerotome und eventuell die Dermatome, wobei nicht nachgewiesen ist, ob diese beim Zebrafisch existieren. Die Einteilung in Somiten ist genauer als die Angabe in Stunden bei der Entwicklung, da einzelne Embryonen unterschiedlich schnell die einzelnen Phasen durchlaufen [67].

Ab der Phase der Pharyngula (24-48 Stunden) ist der Embryo so weit entwickelt, dass man die Morphologie mit der anderer Vertebratenembryonen vergleichen kann. Pigmentzellen und verschiedene Strukturen des ZNS differenzieren sich. Das kardiovaskuläre System bildet sich aus, im Herz entstehen Kammern und es beginnt zu schlagen. Schließlich kommt es zu einer Entwicklung des Verhaltens. Es entstehen eine taktile Sensitivität und Schwimmbewegungen.

Das Schlüpfen (48-72 Stunden) ist nicht als Stadieneinteilung zu verwenden, da individuell sehr große Unterschiede bestehen. Bei Standardtemperatur kann dies über den gesamten dritten Tag oder später verteilt sein. Dabei sind die Individuen, die schon geschlüpft sind nicht weiter entwickelt, als die, die noch im Chorion verbleiben. Bis zum Ende des dritten Tages spricht man von Embryonen und später von Larven, unabhängig davon, ob sie bereits geschlüpft sind oder noch nicht. Ab dem dritten Tag hat die geschlüpfte Larve fast ihre gesamte Morphogenese beendet und wächst weiterhin schnell [67].

In der vorliegenden Arbeit wurden zur Untersuchung der *KCNQ*-Homologen und ihrer Spleißvarianten ausschliesslich Entwicklungsstadien von 18 Somiten (ab 10 Stunden) und 96 Stunden verwendet, da diese Stadien bisher am häufigsten in der Forschung Verwendung fanden und der Zebrafischembryo in frühen Entwicklungsstadien größere Ähnlichkeiten zum menschlichen Embryo hat. Für spätere *In-situ-Hybridisierungen* eignen sich die frühen Entwicklungsstadien sehr gut, da der Embryo noch durchsichtig ist und somit als Ganzes Tier mit Proteinase-K angedaut und anschließend angefärbt werden kann, was beim adulten Tier nicht mehr möglich ist. Für die *In-situ-Hybridisierungen* eignen sich besonders Zebrafischembryonen zwischen 24 und 48 Stunden, was in früheren Studien gezeigt werden konnte [68].

2.6 Fragestellung

Evolutionär gesehen haben viele Gene, die bei Wirbeltieren vorkommen schon bei wirbellosen Tieren existiert. Die *KCNQ*-Genfamilie, die auch bei wirbellosen Tieren [69, 70] Orthologe zur humanen *KCNQ*-Familie aufweist sollte beim Zebrafisch repräsentiert sein. Nachdem in verschiedenen Spezies unterschiedlich viele Gene die *KCNQ*-Genfamilie definieren, stellte sich die Frage, wie viele Gene beim Zebrafisch für *kcnq* vorhanden sind und ob jedes humane *KCNQ*-Gen mindestens ein Ortholog beim Zebrafisch hat. Bei den humanen *KCNQ*-Genen wurden verschiedene Spleißvarianten gefunden. Auch beim Zebrafisch sollte deshalb nach möglichen Spleißvarianten gesucht werden und diese mit den humanen Orthologen verglichen werden. Zusammenfassend sollte somit in der vorgelegten Arbeit geklärt werden, in wie weit die Gene zwischen den Spezies Mensch und Zebrafisch konserviert sind und ob der Zebrafisch als geeignetes Modelltier für die Erforschung der pathogenetischen Zusammenhänge bei menschlichen Erkrankungen in Frage kommt.

3 Material und Methoden

3.1 Material

3.1.1 Chemikalien

Agar Nährboden/ LB-Medium

Agar	Fluka
Ampicillin (D[-]-α-Aminobenzylpenicillin)	Sigma
Aqua bidest.	H. Kerndl
Dimethylforamid	Sigma
IPTG Isopropylthio-β-D-galactoside	Carl Roth
NaCl	Merck
Trypton	Fluka
Xgal: 5-Bromo-4-chloro-3-indolyl-β-D-galactoside	Carl Roth
Yeast extract	Fluka
DNA-Extraktion	
Nucleo Spin ® Extract II	Clontech
Elektrophorese	
Agarose	Sigma
Aqua bidest.	H. Kerndl
Ethidiumbromid (10 mg/ml)	Sigma
fast ruler TM DNA-ladder middle range	Fermentas
gene ruler TM (0,5 μ g/ μ l),50 bp DNA-ladder	Fermentas
gene ruler TM (1 μ g/ μ l) 1 kb DNA-ladder	Fermentas
Loading dye	Fermentas
TAE-Puffer	Invitrogen
Klonierung	
dATP	Fermentas
MgCl ₂ 50 mM	Invitrogen
Rekombinante Taq-DNA-Polymerase 5 U/µl	Invitrogen
Taq-Puffer 10x PCR Rxn Puffer (-MgCl ₂)	Invitrogen
Ligation:	
Salt solution 1,2 M NaCl, 0,06 M MgCl ₂	Invitrogen
TOPO II-Vector pCR®II-TOPO®-Vektor	Invitrogen
TOPO TA cloning ® Kit Dual Promotor	Invitrogen
Transformation:	
QIAprep Spin Miniprep Kit	Qiagen
TOP10F' kompetente Zellen	Invitrogen

Reamplifikation	
H ₂ O HPLC	Fluka
Titaniumpuffer	Takara
Titaniumtaq	Takara
Restriktionsenzyme und Puffer	
Enzym 10 U/µl, Puffer mit BSA 10x	
EcoRI → Unique	Fermentas
RNA-Gewinnung aus Zebrafischembryonen	
Chloroform	Fluka
Ethanol	Merck
Isopropanol	Merck
Trizol	Invitrogen
<u>RT-PCR</u>	
dATP 100 mM	Fermentas
dCTP 100 mM	Fermentas
dGTP 100 mM	Fermentas
dTTP 100 mM	Fermentas
RNAsin	Promega
Titan One Tube RT-PCR System	Roche

3.1.2 Geräte

<u>Elektrophorese</u>	
Electrophoresis Power supply EPS200	Pharmacia Biotech AB
<u>Fluoreszenz</u>	
UV-Transilluminator	302 nm Bachofer
Kamera	
Kaiser RT1	Herolab
Kamera Avt Horn	Sony
OD-Messung	
GeneQuant RNA/DNA Calculator	Pharmacia
PCR	
PCR: MJ Research PTC-200	Bio Rad
RT-PCR: Applied Biosystems GeneAmp PCR-System 2400	Applied Biosystems
Waagen	
Mettler AC 100	Mettler Toledo
Mettler P 1210	Mettler Toledo
<u>Zentrifugen</u>	
Biofuge fresco	Haereus
Pico17 Centrifuge	Haereus

Sonstiges

Agarplatten Autoklav Eisschrank Eppendorfgefäße Gefrierschrank -20 °C Gefrierschrank -80 °C Inkubator (für Agarplatten) PCR-Gefäße Pipetten 2-1000 µl Pipettenspitzen 2-1000 µl Schüttelinkubator Thermomixer compact 10mm Ultramikrovolumenzelle Vortex Wasserbad Greiner Schütt Scotsman Eppendorf Liebherr Siemens Uniquip-Laborgeräte Sarstedt Eppendorf Eppendorf Eppendorf Hellma Heidolph Köttermann

3.1.3 Oligonukleotid-Primer für die PCR

Die Primer wurden individuell entworfen und bei Metabion, Martinsried bestellt. Die verwendeten Primer sind im Anhang aufgeführt.

3.1.4 Lösungen

Die Herstellung der Lösungen ist im Teil Methoden unter 3.2.7 beschrieben.

3.2 Methoden

Die Zebrafischembryonen (Wildtyp) im Alter von bis zu 96 Stunden wurden zur Verfügung gestellt von der Arbeitsgruppe Dr. Laure Bally-Cuif aus der GSF (Forschungszentrum für Umwelt und Gesundheit). Sie wurden in TRIzol oder Methanol gelagert.

3.2.1 RNA-Gewinnung

3.2.1.1 RNA-Isolation aus Zebrafischembryonen in TRIzol

Die Eppendorfbehälter mit Zebrafischembryonen (18 Somiten bis 4 Tage) in TRIzol wurden auf Raumtemperatur aufgewärmt. Pro Milliliter TRIzol wurden 200 µl Chloroform hinzugefügt. Danach wurde alles gut gemischt und 2-3 Minuten bei Raumtemperatur inkubiert. Es folgte eine Zentrifugation bei 10.000 U/min für 15 min und 4 °C. Dabei wurde eine Phasentrennung von RNA, DNA und Proteinen erreicht. Die obere wässrige Phase enthielt die RNA und wurde vorsichtig mit der Pipette entnommen und in ein neues Eppendorfgefäß pipettiert. Je Eppendorfgefäß wurden 500 μl Isopropanol hinzugegeben, wieder geschüttelt und das Gemisch bei Raumtemperatur für 10 Minuten inkubiert. Mit 13.000 U/min wurde erneut bei 4 °C für 15 Minuten zentrifugiert. Hiernach war die RNA am Boden des Eppendorfgefäßes als kleines Pellet sichtbar. Der Überstand wurde verworfen, das Pellet mit 1 ml Ethanol (75 %) gewaschen und anschließend mit 13.000 U/min bei 4 °C zentrifugiert. Der Überstand wurde verworfen, das Eppendorfröhrchen anschließend kurz zentrifugiert und der Rest des Ethanols vorsichtig abpipettiert. Das Pellet wurde kurz für 2-3 min. angetrocknet, um das restliche Ethanol verdampfen zu lassen. Alle Schritte erfolgten mit RNAse-freien Materialien. Danach wurden, je nach Größe des Pellets, 10-20 μl Wasser hinzugefügt und kurz gevortext, um das Pellet zu lösen. Die gewonnene RNA wurde bei -80 °C gelagert.

3.2.1.2 Konzentrationsbestimmung der gewonnenen RNA und Qualitätskontrolle

Über die Messung der optischen Dichte (OD) kann die Konzentration der RNA bestimmt werden. Hierzu wurde der GeneQuant RNA/DNA Calculator verwendet. Die Referenzprobenmessung erfolgte mit reinem H₂O bei einer Wellenlänge von 260 nm, die dem Absorptionsmaximum von Nukleinsäuren entspricht. Im Folgenden wurde zur Messung jeweils 1 μ l RNA mit 99 μ l H₂O in einer 10 mm Ultramikrovolumenzelle verdünnt. Je nach Konzentration wurden für die RT-PCR 0,5-2 μ l RNA verwendet.

Zur Überprüfung der Qualität der RNA wurde 1 μ l RNA mit 9 μ l H₂O und 3 μ l loading dye verdünnt und auf ein 1%-Agarosegel aufgetragen. Zur Kontrolle wurden 5 μ l H₂O, 3 μ l loading dye und 5 μ l gene Ruler 1 kb DNA ladder verwendet. Die Elektrophorese lief bei 190 mA etwa 90 Minuten. Unter UV-Licht erfolgte die Qualitätskontrolle, wobei die ribosomale RNA (rRNA) als zwei Banden bei etwa 1000 bp und 2500 bp sichtbar wurde.

3.2.2 Polymerasekettenreaktion

Die PCR wurde 1984 von Kary Mullis als Methode zur Vervielfältigung spezifischer DNA-Sequenzen entwickelt. Die Zielsequenz muss dabei von anderen bekannten Sequenzen flankiert sein [71]. Zur Durchführung der PCR werden neben der Ziel-DNA noch ein Primerpaar, dass mit den bekannten, angrenzenden Sequenzen hybridisiert, alle vier Desoxribonukleotidtriphosphate (dATP,dTTP, dCTP und dGTP zusammengefasst als dNTP) und die hitzestabile DNA-Polymerase benötigt. Diese

Polymerase stammt aus dem thermophilen Bakterium *Thermus aquaticus* und bleibt bei Temperaturen von 90-95 °C stabil.

Jeder PCR-Zyklus besteht aus drei Schritten. Zunächst erfolgt die Strangtrennung bei 95 °C. Es folgt die Annealingphase (Hybridisierung der Primer) bei 54 °C in der sich die Primer an die komplementären DNA-Sequenzen anlagern. Durch den großen Überschuß and Primern, kommt es beim Abkühlen nicht mehr zur Doppelstrangbindung. Die folgende DNA-Synthese erfolgt bei 72 °C. Die Taq-DNA-Polymerase verlängert die Primer an beiden Strängen in 5' \rightarrow 3' Richtung. Die in jedem Zyklus neu entstandene DNA dient als Matrize für den neuen Zyklus, wodurch die Zielsequenz exponentiell amplifizert wird [72, 73].

Es gibt bestimmte Kriterien, nach denen Primer entworfen werden. So sollten die Primer zwischen 18 und 30 Basenpaare betragen, um die Hybridisierung optimal zu gewährleisten. Die optimale Schmelztemperatur liegt zwischen 55 und 60°C, kann aber stark nach unten oder oben hin abweichen. Zwischen den jeweils verwendeten Primerpaaren soll die Differenz in der berechneten Schmelztemperatur nicht mehr als 2 bis 3°C betragen [74]. Um in der vorliegenden Arbeit ähnliche Primerpaare zu erhalten wurden die jeweiligen Primer nach folgenden Kriterien entworfen: Jeder Primer sollte zwischen 20 und 28 Basenpaare lang sein. Die Schmelztemperatur (T_m) der Primer wurde wie folgt berechnet:

$T_m = (Anzahl von A+T) \times 2^{\circ}C + (Anzahl von G+C) \times 4^{\circ}C$

Die Primer wurden so entworfen, dass die T_m zwischen 74°C und 78°C lag und entsprechende Primerpaare einer Sequenz dabei möglichst ähnliche Temperaturen aufwiesen. Der Anteil der Basenpaare Guanin und Cytosin sollte mindestens 40 %, maximal 80 % betragen. Die Endung der Primer wurde mit Adenin oder Thymin festgelegt. Die Endung der jeweiligen Primer d.h. die letzten 2-3 Aminosäuren sollten nicht kompatibel sein, da ansonsten die Gefahr besteht, dass die beiden Primer aneinander binden. Die Primer durften, wenn möglich, keine Palindromsequenzen (wie z.B. ccccgggg oder cgcgcgcg) enthalten. Das 3'-Ende musste immer eine sichere Sequenz sein.

3.2.2.1 Reverse-Transkriptase Polymerasekettenreaktion (RT-PCR)

Bei der RT-PCR wird mRNA als Ausgangsmaterial verwendet und mit Hilfe der reversen Trankriptase in cDNA umgewandelt. Die cDNA dient in einem weiteren Schritt als Matrize für die Amplifizierung der Zielsequenz [73].

Es wurde das Titan One Tube RT-PCR System verwendet. Dabei werden die reverse Transkription und die Polymerasekettenreaktion in einem Ansatz gewährleistet. Die Schritte werden durch einen Enzymmix gewährleistet, in dem neben der AMV reverse Transkriptase auch der *High Fidelity* Enzymmix aus Taq-DNA-Polymerase und Tgo-DNA-Polymerase für die PCR enthalten sind. Die Tgo-DNA-Polymerase besitzt eine $3' \rightarrow 5'$ Kontrolllesefunktion, was die Fehlerrate minimiert. Daneben wird ein einziger optimierter RT-PCR-Puffer verwendet.

Alle Arbeitsschritte wurden auf Eis am Arbeitsplatz für RNA mit RNase-freien Pipetten und Materialien durchgeführt, um das Risiko für Verunreinigungen zu minimieren.

Menge	Reagenz
1 µl	dNTP
2,5 µl	DTT
10 µl	Puffer
0,5 µl	RNAsin
30 µl	H ₂ O
1 µl	Enzymmix
2 µl	Primer I
2 µl	Primer II
1 µl	RNA

Tabelle 5: Reaktionsansatz für die RT-PCR.

Der erste Zyklus der RT-PCR bei 50 °C diente der reversen Transkription. Zur Denaturierung der RNA wurde der Ansatz für 2 Minuten auf 94 °C erhitzt. Danach erfolgte die PCR mit 10 Zyklen Denaturierung, Annealing und Elongation (Tabelle 7). Die Dauer der Elongation richtet sich nach der Länge der jeweiligen PCR-Fragmente (Tabelle 6), durch die Länge der zu synthetisierenden DNA-Fragmente in dieser Arbeit meist 1 Minute.

PCR- Fragment Länge	< 1kb	1,5 kb	3 kb	4,5 kb	6 kb
Dauer der Elongation	45 s	1 min	2 min	3 min	4 min

Tabelle 6: Auswahl der Zeit für Elongation (Herstellerangaben One Tube PCRsystem).

In den zweiten 25 Zyklen der PCR wurde die Elongationszeit durch das RT-PCR-Gerät automatisch um 5 Sekunden pro Zyklus verlängert. Am Ende erfolgte eine einmalige verlängerte DNA-Synthesephase von 7 Minuten. Danach wurde die synthetisierte DNA auf 15 °C gekühlt (Tabelle 7). Die Annealingtemperatur ist von der Schmelztemperatur der Primerpaare abhängig. Gegebenenfalls wurde die Annealingtemperatur von 65 °C auf 63 °C reduziert, sofern auch bei Zugabe von maximal $4 \mu I MgCl_2$ keine DNA-Bande in der anschließenden Elektrophorese sichtbar war.

Anzahl der Zyklen	Temperatur	Dauer
1 x	50 °C	30 Minuten
1 x	94 °C	2 Minuten
	94 °C	10 Sekunden
10 x	65 °C	30 Sekunden
	68 °C	1 Minute
	94 °C	10 Sekunden
25 x	65 °C	30 Sekunden
	68 °C	1 Minute
1 x	68 °C	7 Minuten
1 x	15 °C	00

Tabelle 7: Reaktionsbedingungen der RT-PCR.

3.2.2.2 Reamplifikation

War die Menge an cDNA nach der RT-PCR zu gering, so folgte eine Reamplifikation der cDNA mittels konventioneller PCR. Dazu wurde die cDNA je nach Ausgangskonzentration mit HPLC-Wasser auf 1:100 oder 1:500, selten auch auf 1:1, 1:10, 1:20 bzw. 1:50 verdünnt.

Zur nachfolgenden Sequenzierung wurde dann jeweils die höchste Verdünnungsstufe gewählt, bei der noch eine akzeptable Konzentration an cDNA mittels Gelelektrophorese nachweisbar war.

Menge	Reagenz	
5 µl	Titaniumpuffer	
1 µl	dNTP	
1 µl	Titanium-Taq	
40 µ1	H_2O	
1 µl	Primer I	
1 µl	Primer II	
1 µl	DNA (verdünnt)	

Tabelle 8: Reaktionsansatz für die Reamplifikation.

Anzahl der Zyklen	Temperatur	Dauer
1 x	95 °C	1 Minute
30 x	95 °C	30 Sekunden
	68 °C	90 Sekunden
1 x	68 °C	7 Minuten
1 x	4 °C	œ

Tabelle 9: Reaktionsbedingungen der Amplifikation mit Titaniumenzym.

3.2.3 Agarose-Gelelektrophorese

Agarose ist ein pflanzliches Polysaccarid, dass im Gel netzartige Strukturen bildet, durch die die DNA-Fragmente je nach angelegter Spannung ihrer Größe entsprechend wandern [73, 75].

Die Wanderung geladener Teilchen im elektrischen Feld erfolgt vom Minuspol zum Pluspol [75]. Hauptladungsträger der DNA ist der negativ geladene Zucker-Phosphat-Teil der DNA. Die Wanderungsgeschwindigkeit hängt von verschiedenen Faktoren ab, am wichtigsten ist die Größe der DNA. Lineare doppelsträngige DNA-Moleküle wandern mit Geschwindigkeiten, die umgekehrt proportional zum Logarithmus ihrer Größe sind. Weitere Faktoren sind die Stromstärke, die Pufferbedingungen und die Agarosekonzentration. Je kleiner die aufzutrennenden DNA-Fragmente sind, desto höher sollte die Agarosekonzentration sein. Auch die Form der DNA (z.B. superhelikal oder offen) beeinflusst die Wanderungsgeschwindigkeit. Linearisierte DNA wandert bei gleichem Molekulargewicht langsamer als superhelikale DNA [76]. Zur Darstellung der DNA unter UV-Licht dient Ethidiumbromid, welches dem Agarosegel zugesetzt wird. Dieses bindet an die DNA-Doppelhelix, verändert dabei sein Emissionsspektrum und fluoresziert danach intensiv unter UV-Licht. Bei der Wanderung der DNA durch das Gel kumulieren die Proben das Ethidiumbromid. DNA-Fragmente ab 50 ng lassen sich so als Banden nachweisen [72].

Es wurde 1%-Agarosegel verwendet, bei kleineren und nicht klar trennbaren DNA-Fragmenten auch 2-3%-Agarosegel. Zur Darstellung der alternativen Exons über die Gelelektrophorese wurde 3%-Agarosegel verwendet, da die alternativen Exons teilwese eine geringe Größe von minimal 155 bp besaßen.

Durch die Gelelektrophorese konnten die DNA-Produkte von verunreinigenden Produkten getrennt werden. Die zu erwartende Größe der DNA wurde mit dem mitgelaufenen *Standard Gene ruler 1kb DNA ladder* verglichen und die Bande dann unter UV-Licht mit einem Skalpell ausgeschnitten. Kontrollen liefen mit 190 mA und zu gewinnende Sequenzen mit 150 mA 90-120 Minuten in der Gelelektrophorese. Zur genauen Größenbestimmung der DNA wurden die Proben teilweise mit bis zu 90 mA für 6-8 Stunden in der Elektrophoresekammer belassen. Als Laufpuffer wurde TAE-Puffer verwendet, der das Gel vollständig bedeckte.

3.2.4 DNA-Gewinnung

3.2.4.1 DNA-Extraktion von Agarosegel

Die Isolierung der DNA erfolgte mit dem *Nucleo Spin[®] Extract II*. Die Isolierung der DNA beruht auf der Bindung der DNA an einer Silicamembran in Zusammenhang mit chaotropen Salzen. Kontaminationen wie Salze und andere Makromoleküle werden mit einem Waschpuffer und Ethanol entfernt.

Das Gewicht der ausgeschnittenen Banden wurde mit einer geeichten Waage bestimmt. Zunächst wurde das Gel lysiert. Dafür wurden pro 100 mg Gel 200 µl NT-Puffer zugesetzt (bei einem 2%-Gel wurden pro 100 mg 400 µl NT-Puffer verwendet) und das Gemisch bei 50 °C im Thermomixer inkubiert, bis sich das Gel vollständig gelöst hatte. Alle zwei Minuten wurde gevortext. Um die DNA zu binden wurde der NT-Puffer mit dem gelösten Gel in ein Nucleo Spin® Extract II Röhrchen mit 2 ml Auffangröhrchen pipettiert und bei 13.000 U/min zentrifugiert. Der Überstand wurde verworfen und das Nucleo Spin[®] Extract II Röhrchen zurück in das Auffangröhrchen gestellt. Um die Silicamembran zu waschen, wurden 600 µl NT3-Puffer auf die Membran gegeben und bei 13.000 U/min zentrifugiert. Der Überstand wurde erneut verworfen und die beiden Röhrchen wieder ineinander platziert. Um die Membran zu trocknen und den NT3-Puffer zu entfernen, wurde erneut für 2 Minuten mit 13.000 U/min zentrifugiert. Danach wurde das Nucleo Spin[®] Extract II Röhrchen ohne Auffangbehälter für 3 Minuten an der Luft getrocknet, um Pufferreste von der Membran zu entfernen. Die Eluierung der DNA erfolgte über das Spin® Extract II Röhrchen in ein 1,5 ml Eppendorfgefäß. Auf die Membran wurden 30 µl NE-Elution Puffer aufgetragen, bei Raumtemperatur 5 Minuten inkubiert und anschließend bei 13.000 U/min für 1 Minute zentrifugiert. Danach wurde der DNA enthaltende NE-Puffer aus dem Eppendorfröhrchen entnommen und erneut auf die Silicamembran gegeben, um die DNA-Ausbeute zu erhöhen. Es wurde erneut 5 Minuten bei Raumtemperatur inkubiert und anschließend mit 13.000 U/min zentrifugiert. Die gewonnene cDNA wurde bei -20 °C gelagert.

3.2.4.2 Konzentrationsbestimmung und Qualitätskontrolle

Die Konzentrationsbestimmung der cDNA erfolgte mittels Messung der optischen Dichte (siehe 3.2.1.2).

Zur Qualitätskontrolle der DNA wurde jeweils 1 μ l cDNA mit 9 μ l H₂O und 3 μ l *loading dye* gemischt. Als Standard wurden 5 μ l einer Fertigmischung *DNA ladder middle range*, die 20 ng/ μ l DNA entspricht, auf das 1%-Agarosegel aufgetragen. Die Elektrophorese erfolgte bei 190 mA für 90 Minuten. Unter UV-Licht wurden Fotos in verschiedener Beleuchtungsstärke gemacht.

3.2.5 DNA-Sequenzierung

Die Sequenzierung erfolgt durch die Didesoxymethode mittels kontrollierter Beendigung der enzymatischen Replikation, die durch Frederick Sanger und Mitarbeitern entwickelt wurde [77]. Die Sequenzierung wird in einem Reaktionsgemisch mit hitzestabiler DNA-Polymerase durchgeführt. Zum Reaktionsansatz wird jedoch nur ein Primer hinzugesetzt, was im Gegensatz zur regulären PCR zu einem linearen Anstieg des PCR-Produkts führt. Zu einer einzelsträngigen DNA wird die komplementäre Basenfolge synthetisiert.
Zusätzlich zu den vier Desoxyribonukleotidtriphosphaten wird eine geringe Menge an 2'3'-Didesoxyanaloga dem Ansatz hinzugefügt, was gelegentlich zum Kettenabbruch führt [77]. Dabei wird an jedes Didesoxyribonukleotid eine Fluoreszenzmarkierung angebracht, die für jedes Kettenabbruchnukleotid spezifisch gefärbt ist [72]. Durch das fehlende 3'-Hydroxylende kann die nächste Phosphodiesterbindung nicht geknüpft werden und es kommt zum Kettenabbruch. Die entstandenen Fragmente werden anschließemd mittels Gelelekrophorese aufgetrennt [77] und die einzelnen DNA-Banden anhand der unterschiedlichen Fluoreszenz detektiert, deren Abfolge die Sequenz darstellen [72]. Die Sequenzierung wurde von der Firma MWG übernommen.

3.2.6 Klonierung

Eine andere Möglichkeit DNA-Fragmente zu vervielfältigen ist die Klonierung. Von Vorteil ist dabei, dass beliebige Mengen in kurzer Zeit gewonnen werden können. Zur Klonierung eignen sich Bakterien, da fremde DNA leicht einzuschleusen ist und sie eine sehr hohe Vermehrungsfähigkeit besitzen. Da freie DNA in Bakterien nicht stabil ist, muss diese in Form eines Vektors in die Bakterien kloniert werden. Ist der Vektor in die Wirtszelle eingebracht, ist er in der Lage sich unabhängig vom Wirtsgenom zu vervielfältigen [73].

In dieser Arbeit wurde das *TOPO TA Cloning*[®] *System* mit dem pCR[®]II-TOPO-Plasmid verwendet, in welches das PCR-Produkt aufgrund des Adenosinrests einfach eingefügt werden kann. Das Plasmid pCR[®]II-TOPO besitzt im Gegensatz zu anderen Plasmiden an beiden Seiten einen so genannten *Promoter* (SP6 und T7), so dass nach Linearisierung des Plasmids durch Restriktionsendonukleasen eine RNA in *sense-* oder *antisense-*Richtung hergestellt werden kann (Abbildung 3). Dies ist bei Plasmiden wie dem pCR 2.1-TOPO mit nur einem *Promoter* T7 nicht möglich. Das *TOPO TA Cloning*[®] *System* enthält Plasmidvektoren mit einem Resistenzgen gegen Ampicillin oder Kanamycin. Die Bakterien, die das Plasmid aufgenommen haben, können auf antibiotikahaltigen Nährböden kultiviert und selektiert werden.

Außerdem besitzt das Plasmid das β -Galaktosidasegen (das so genannte lacZ-Gen). Die β -Galaktosidase hydrolysiert das zugesetzte X-Gal (5-Brom-4-chlor-3-indoxyl- β -D-galactopyranosid) zu Galaktose und dem blau scheinendem 5-Brom-4-chlor-indoxyl. Nach erfolgreicher Ligation kann die β -Galaktosidase nicht mehr exprimiert werden, wodurch das X-Gal nicht mehr gespalten wird und die Bakterienkolonien daher weiß erscheinen.

Im Bereich des β -Galaktosidasegens besitzen die Plasmidvektoren eine multiple Klonierungsstelle (*multiple cloning site*) mit den Schnittstellen für die Restriktionsendonukleasen (Abbildung 3). An diesen Stellen konnte mit EcoRI geschnitten werden, um eine Größenkontrolle der DNA-Fragmente durchzuführen oder mit einer anderen Restriktionsendonuklease um das Plasmid zu linearisieren.

Abbildung 3: Plasmidvektor mit Restriktionsstellen (Abbildung von Invitrogen).

Durch diese Eigenschaften können die gewünschten gentechnisch veränderten Bakterien selektiert werden. Nur Bakterien, die das Plasmid enthielten, konnten auf Ampicillin-haltigem Nährboden wachsen. Enthielten sie Plasmide ohne Fremd-DNA, färbten sie sich blau, während Plasmide mit eingebauter Fremd-DNA als weiße Kolonie sichtbar waren.

Die Klonierung der DNA-Fragmente wurde in folgende Schritte aufgeteilt, 1) Vorbereitung der DNA für die Transformation, 2) Verbindung des Vektors mit der DNA (Ligation), 3) Einbringen der Ligation in kompetente Zellen (Transformation) und 4) Selektion der Klone, die das DNA-Fragment enthalten (Picken).

3.2.6.1 Vorbereitung der DNA für die Transformation

Der doppelsträngige Plasmidvektor des *TOPO TA Cloning[®] Kit* liegt linearisiert mit einem 3'-Thymidin-Überhang vor. Topoisomerase I ist kovalent an den Vektor gebunden. Um die Ligation durchführen zu können, muss an das 3'-Ende des PCR-Produkts ein Adenosin gebunden werden (Abbildung 4). Die Taq-Polymerase besitzt eine templateunabhängige terminale Transferaseaktivität, die ein einzelnes Desoxyadenosin an das 3'-Ende des PCR-Produktes anhängt.

Abbildung 4: Einbau des PCR-Produktes in den Vektor (Abbildung von Invitrogen).

Das PCR-Produkt wurde mit dem Reaktionsansatz (Tabelle 10) auf Eis pipettiert und danach bei 72 °C 20 Minuten inkubiert. Danach wurde das Produkt auf Eis gestellt und abgekühlt.

Menge	Reagenz
21 µl	PCR-Produkt
0,5 µl	MgCl ₂
2,5 µl	Taq-Puffer
0,5 µl	Taq-Polymerase
0,5 µl	dATP
gesamt: 25 µl	

Tabelle 10: Reaktionsansatz zur Vorbereitung der Transformation.

3.2.6.2 Ligation

Durch die Ligation wurde das cDNA-Fragment mit dem 3'-Adenosinüberhang in den Plasmidvektor pCR[®]II-TOPO (4kb) eingebaut.

Nachdem der Reaktionsansatz (Tabelle 11) auf Eis pipettiert worden war, wurde das Gemisch bei 22 °C für 40 Minuten bei unbeheiztem Deckel in der PCR-Maschine inkubiert und danach erneut auf Eis gestellt.

Menge	Reagenz
4 µ1	3'A PCR-Produkt
1 µl	Salt solution
1 µl	TOPO II Vektor
gesamt: 6 µl	

Tabelle 11: Reaktionsansatz für die Ligation.

3.2.6.3 Transformation

Bei der Transformation wurde das Plasmid mit *Insert* in die kompetenten E. coli Zellen One Shot[®] TOP10F' übertragen. Die kompetenten Zellen wurden etwa 10 Minuten auf Eis aufgetaut. Danach wurden 2 µl der Ligation zu den Zellen pipettiert und vorsichtig gerührt. Die Mischung wurde 1 Stunde auf Eis inkubiert. Nach 30 Minuten wurde erneut umgerührt. Während der Inkubation erfolgte die Bindung der Plasmid-DNA an die Zellmembran. Durch den folgenden Hitzeschock für 30 Sekunden bei 42 °C im Wasserbad wurde die Zellmembran destabilisiert und dadurch die Aufnahme der Fremd-DNA ermöglicht. Die transformierten Zellen wurden danach mindestens 2 Minuten auf Eis abgekühlt, bevor je Zell-Aliquot 250 µl SOC-Medium bei Raumtemperatur dazugegeben wurden. Danach wurden die Zellen im Schüttelinkubator bei 220 U/min. 1 Stunde bei 37 °C inkubiert.

3.2.6.4 Ausstreichen transformierter Bakterien und Selektion kompetenter Zellen

In der Zeit, in der die kompetenten Zellen mit Plasmid-DNA im Schüttelinkubator waren, wurden die Ampicillin-Agarplatten in der Trockenkammer gelagert, um kondensierte Flüssigkeit bei 37 °C zu verdampfen. Anschließend wurden die Agarplatten mit je 40 µl der Farbstoffe X-Gal (20 mg/ml) und IPTG (250 mg/ml) bestrichen, die Zellen ausplattiert und über Nacht bei 37 °C im Brutschrank inkubiert.

Nach spätestens 17 Stunden wurden die Bakterien aus dem Brutschrank entnommen und über Tag bei Raumtemperatur inkubiert. Anschließend wurden von jeder Agarplatte durchschnittlich 8 Kolonien entnommen und in ein mit 5 ml LB-Medium (Luria-Bertani-Medium) befülltes Röhrchen gegeben. Pro ml LB-Medium wurde 1 µl Ampicillin (100 mg/ml) hinzugefügt. Danach wurde das Medium mit den Zellen wieder über Nacht mit 230 U/min. und 37 °C im Schüttler inkubiert.

3.2.6.5 Miniprep

Das Miniprep erfolgte durch das *QIAprep Spin Miniprep Kit*. Zuerst wurden 1,5 ml des LB-Mediums mit den über Nacht gewachsenen Zellen in einem Eppendorfgefäß 1 Minute bei 13.000 U/min.

zentrifugiert. Der Überstand wurde verworfen, erneut 1,5 ml von dem Medium mit Bakterien in das gleiche Eppendorfröhrchen gegeben und erneut zentrifugiert. Nachdem der Überstand erneut verworfen worden war, wurde erneut anzentrifugiert und der Rest des LB-Mediums mit einer Pipette vorsichtig abgesaugt. Das Bakterienpellet wurde mit 250 µl P1-Puffer resuspendiert.

Nach der Bakterienernte und Resuspension wurden die Bakterien in NaOH/SDS (Natriumdodecylsulfat) zusammen mit RNase A unter alkalischen Bedingungen mit 250 µl P2-Puffer lysiert. SDS löst die Phospholipid- und Proteinkomponenten der Zellmembran und führt dadurch zur Lyse. Die alkalischen Bedingungen denaturieren die chromosomale und Plasmid-DNA sowie die Proteine. Das Gemisch wurde vorsichtig mit der Hand hin- und herbewegt, um die Reagenzien zu vermischen. Zu starke Bewegungen mussten vermieden werden, um die chromosomale DNA nicht mit der Plasmid-DNA zu vermischen, da die chromosomale DNA bei zu starken Bewegungen segmentiert werden kann und dadurch sich das Molekulargewicht ähnlicher wird.

Das Lysat wurde danach schnell mit 350 µl N3-Puffer durch hohe Salzkonzentrationen neutralisiert. Die hohe Salzkonzentration bewirkt, dass chromosomale DNA, denaturierte Proteine, restliche Zellbestandteile und SDS präzipitieren, während die Plasmid-DNA in Lösung bleibt und renaturiert. Das Gemisch musste gut geschüttelt werden, um die vollständige Präzipitation sicherzustellen.

Danach wurde alles 10 Minuten bei 13.000 U/min. zentrifugiert. Die Plasmid-DNA fand sich danach in der klaren oberen Flüssigkeit. Der flüssige Überstand wurde auf eine *QIA prep spin column*[®] gegeben und anschließend für 1 Minute zentrifugiert. Der Überstand wurde verworfen. Die an die Silicamembran gebundene Plasmid-DNA wurde in einem weiteren Schritt mit 500 µl PB-Puffer gewaschen und eine Minute zentrifugiert. Es folgte ein weiterer Waschschritt mit 750 µl PE-Puffer. Es wurde erneut 1 Minute zentrifugiert, der Überstand verworfen, erneut zentrifugiert und die Membran für 3 Minuten getrocknet. Danach wurde das *QIA prep spin column*[®] in ein neues Eppendorfgefäss gestellt und 70 µl EB-Puffer auf die Membran aufgetragen. Die Reaktion wurde 5 Minuten stehen gelassen und danach 1 Minute zentrifugiert. Der Puffer mit der Plasmid-DNA wurde erneut auf die Membran gegeben, um weitere DNA aus der Membran zu lösen. Nach erneuter Zentrifugation erfolgte ein Testverdau und es wurden 2x 15 µl Plasmid-DNA zur Sequenzierung zu MWG eingeschickt. Die Sequenzierung erfolgte mit SP6 und T7.

3.2.6.6 Verdau

Um in der anschließenden Gelelektrophorese die Größe der klonierten DNA-Fragmente bestimmen zu können und um den Erfolg der Klonierung zu überprüfen, muss die DNA aus dem Plasmid herausgeschnitten werden. Hierzu eignen sich Restriktionsendonukleasen. Kurz vor und nach der Stelle der eingebauten DNA gibt es zwei Schnittstellen für das Restriktionsenzym EcoR1. Hierzu wurden 5 μ l der durch Miniprep gewonnenen DNA mit 1,5 μ l Puffer (Unique), 1 μ l des Restriktionsenzyms EcoR1 und 7,5 μ l H₂O bei 37 °C für zwei Stunden inkubiert (Tabelle 12).

Anschließend wurden zu dem jeweiligen Ansatz $3 \mu l$ *loading dye* hinzugefügt und das Gemisch mittels Gelelektrophorese aufgetrennt und die DNA-Bande identifiziert. Als Referenz wurde die *l kb DNA-ladder* verwendet.

Menge	Reagenz
5 µ1	DNA
1,5 µl	Puffer (Unique)
1 µl	Enzym (EcoR1)
7,5 µl	H ₂ O

Tabelle 12: Reaktionsansatz für den Verdau.

3.2.7 Herstellung verschiedener Lösungen

3.2.7.1 Agarplatten

Der Ansatz (Tabelle 13) wurde mit bidestilliertem Wasser auf 1 Liter aufgefüllt und anschließend autoklaviert. Zur Selektion der transformierten Bakterien wurden 100 μ g/ml Ampicillin in die abgekühlte Lösung gegeben (d.h. 1 μ l Ampicillin pro 1 ml Agarlösung). Um die Verunreinigung mit Umweltkeimen zu minimieren, wurde der Agar unter dem Abzug in Petrischalen gegossen. Die Agarplatten konnten im Kühlschrank bei +4 °C gelagert werden.

Menge	Reagenz
7,5 g	Trypton (Pepton aus Casein, pankreatisch verdaut)
3,75 g	Yeast extract
7,5 g	NaCl
11,25 g	Agar

Tabelle 13: Ansatz für die Agarplatten.

3.2.7.2 Agarosegel

Zur Herstellung von 1%-Gel wurden 300 ml 1:10 verdünnter TAE-Puffer mit 3 g Agarosegel versetzt. Dieser Ansatz wurde in der Mikrowelle unter dem Abzug für 150 Sekunden erhitzt, umgerührt und danach nochmals bis zum Siedepunkt in der Mikrowelle erwärmt. Nach dem Abkühlen wurden 15 µl Ethidiumbromid zugesetzt und danach vorsichtig und blasenfrei in den Gelträger gegossen. Bei höherprozentigen Agarosegelen wurden pro Gramm Agarose 5 µl Ethidiumbromid (10mg/ml) zugesetzt.

3.2.7.3 Ampicillin (D[-]-α-Aminobenzylpenicillin)

Um eine Konzentration von 100 mg/ml zu erhalten, wurde 1 g Ampicillinpulver in 10 ml bidestiliertem Wasser gelöst. Das Ampicillin konnte bei -20°C gelagert werden.

3.2.7.4 LB-Medium

Der Kolben mit dem Ansatz (Tabelle 14) wurde mit bidestiliertem Wasser auf 1 Liter aufgefüllt und autoklaviert.

Menge	Reagenz
10g	Trypton (Pepton aus Casein, pankreatisch verdaut)
5g	Yeast extract
10g	NaCl

Tabelle 14: Ansatz für einen Liter LB-Medium.

3.2.7.5 dATP, dCTP, dGTP, dTTP

Um von einer Ausgangskonzentration von 100 mmol/l auf eine Konzentration von 10 mmol/l zu gelangen, wurde mit bidestilliertem Wasser 1:10 verdünnt. Die dNTP wurden bei -20°C gelagert.

3.2.7.6 X-Gal und IPTG

X-Gal (5-Bromo-4-chloro-3indoyl-β-D-Galaktosidase)

20 mg des X-Gal Pulvers wurden in 1 ml Dimethylformamid gelöst, um eine Konzentration von 20 mg/ml zu erhalten. Zur Aufbewahrung wurde ein Eppendorfröhrchen verwendet, das mit Alufolie umwickelt wurde, um das X-Gal vor Licht zu schützen. Die Proben wurden bei -20°C gelagert. *IPTG (Isopropylthio-\beta-D-galactoside (dioxanfrei))*

2 g IPTG wurden in 8 ml bidestiliertem Wasser gelöst und anschließend auf 10 ml aufgefüllt. IPTG wurde bei -20°C gelagert.

4 Ergebnisse

4.1 *kcnq* beim Danio rerio

Die Datenbanken <u>http://www.ensembl.org</u>, und <u>http://www.ncbi.nlm.nih.gov/BLAST</u> wurden verwendet, um nach *kcnq*-Genen des *Danio rerio* zu suchen. Hierzu wurde die Aminosäuresequenz der jeweiligen humanen *KCNQ*-Gene verwendet um nach der cDNA bzw. den Proteinen zu suchen. Wurde die cDNA der orthologen Gene gefunden, wurde über <u>http://genome.ucsc.edu/cgi-bin/hgBlat</u> die genomische DNA gesucht. Alle Angaben in der vorliegenden Arbeit beziehen sich auf die Version Zv8 (Dezember 2008) des publizierten Zebrafischgenoms, falls nicht explizit anders beschrieben.

Es wurden 13 Sequenzen gefunden, die Orthologien zwischen Mensch und Zebrafisch aufweisen. Die RT-PCR wurde verwendet, um die entsprechenden Fragmente zu verifizieren und zu verlängern. Es fanden sich letztendlich acht verschiedene *kcnq*-Gene beim Zebrafisch. Sie wurden mit *kcnqa_d* (*kcnqa*: DN857133 CD595089, *kcnqd*: AL921276), *kcnqb_e* (*kcnqb*: AF164764, *kcnqe*: CN321665), *kcnqc* (AL916915), *kcnqf* (EB932200), *kcnqg* (CK238868, EB898557), *kcnqh* (CO915259, CD755064), *kcnqi* (noch kein Zugangscode vorhanden) und *kcnqj* (DW642439) bezeichnet. Anfangs ging man bei *kcnqa*, *kcnqd*, *kcnqb* und *kcnqe* von vier verschiedenen Genen aus. Es stellte sich jedoch heraus, dass *kcnqa* und *kcnqd* bzw. *kcnqb* und *kcnqe* jeweils ein Gen darstellen, so dass die Bezeichnung *kcnqa_d* bzw. *kcnqb_e* gewählt wurde.

Für alle *kcnq*-Gene konnte das gesamte so genannte offene Leseraster (*open reading frame*) sequenziert werden, d.h. der Bereich, der zwischen Start- und Stopp-Codon liegt. Aufgrund der noch vorhandenen Unvollständigkeit der Datenbank und den dadurch bedingten Lücken im Genom bei der anfangs verwendeten Version Zv6 konnte das gesamte offene Leseraster von *kcnqa_d* nur aufgrund der Klone CD605499 und CD595089, die uns freundlicherweise von Dr. Song Huaidong zur Verfügung gestellt wurden und *kcnqi* nur durch degenerierte Primer der Goldenen Dickopfelritze (*Pimephales promelas*) und des Atlantischen Lachses (*Salmo salar*) sequenziert werden.

Mit den Sequenzen der acht *kcnq*-Gene des Zebrafisches konnten diese über UCSC den jeweiligen Chromosomen zugeordnet werden (Tabelle 15). In der Version Zv8 wurde *kcnqa_d* bei UCSC auf Chromosom 25, gefunden, die letzten vier Exons jedoch auf dem so genannten *reverse strand*. In der Version Zv6 waren die letzten vier Exons noch auf Chromosom 21 zu finden gewesen. Die genomische DNA von *kcnqb_e* wurde auf Chromosom 8, die von *kcnqc* auf Chromosom 13, die von *kcnqf* auf Chomosom 1, die von *kcnqg* auf Chomosom 7, die von *kcnqh* auf Chromosom 2 und die von *kcnqi* auf Chomosom 19 des Zebrafischgenoms detektiert. In der Version Zv6 von März 2006 wird *kcnqi* Chomosom 13 zugeordnet. In der aktuellen Version Zv8 kann *kcnqi* keinem Chromosom mehr zugeordnet werden. Dabei finden sich auch das erste und letzte Exon, die in der Version Zv6 nicht zu finden waren und nur durch die degenerierten Primer sequenziert werden konnten.

In der Version Zv6 waren zwei verschieden Gene der gleichen Genfamilie auf dem Chromosom 13 zu finden (*kcnqc* und *kcnqi*), allerdings mit unterschiedlichen genomischen Koordinaten. (genomische

Koordinaten Zv6 *kcnqc* ab Basenpaar 32235837, *kcnqi* ab Basenpaar 15938297, jedoch nicht über das erste Exon definiert). Da derzeit keine Aussage über die Lokalisation getroffen werden kann, ist es fraglich, ob diese ehemaligen Angaben in zukünftigen Versionen verifiziert werden können.

Gen	kcnqa_d	kcnqb_e	kcnqc	kcnqf	kcnqg	kcnqh	kcnqi	kcnąj
Chromosom	25	8	13	1	7	2	13 (?)	19

Tabelle 15: Genomische Lokalisation der *kcnq*-Gene des Zebrafisches.

4.1.1 Orthologien der menschlichen KCNQ-Gene mit den kcnq-Genen des Zebrafisches

Um die menschlichen *KCNQ*-Gene mit denen des Zebrafisches zu vergleichen, wurden folgende Zugangsnummern bzw. Loci verwendet:

Gen	Zugangsnummer/Locus	Basenpaare
KCNQ1	NM_000218	3262
KCNQ2	NM_172107	3251
KCNQ3	NM_004519	3097
KCNQ4	NM_004700	2335
KCNQ5	NM_019842	3325

Tabelle 16: Humane KCNQ-Gene.

Die phylogenetischen Relationen zwischen den fünf menschlichen *KCNQ*-Genen und den acht *kcnq*-Genen des Zebrafisches wurden mittels der Online-Software ClustalW erstellt (http://www.ebi.ac.uk/clustalw/). Hierbei zeigte sich, dass alle menschlichen *KCNQ*-Gene orthologe Gene beim Zebrafisch haben, d.h. sie stammen von einem gemeinsamen früheren Vorläufer ab, unabhängig von ihrer Funktion (Abbildung 5) [78].

Abbildung 5: Orthologien zwischen den *KCNQ*-Genen des Menschen und des Zebrafisches im Phylogram (ClustalW).

Das menschliche *KCNQ1* weist die höchsten Orthologien mit *kcnqa_d* und *kcnqg* auf. *KCNQ2* ist am besten mit *kcnqb_e* und *kcnqi* zu vergleichen. *KCNQ3* zeigt größte Ähnlichkeit zu *kcnqh* und *KCNQ4* zu *kcnqj*. Bei *KCNQ5* zeigten sich die stärksten Orthologien mit *kcnqc* und *kcnqf* (Tabelle 17).

KCNQ (human)	KCNQ1	KCNQ2	KCNQ3	KCNQ4	KCNQ5
kcnq (Zebrafisch, ortholog)	kcnqa_d kcnqg	kcnqb_e kcnqi	kcnqh	kcnąj	kcnqc kcnqf

Tabelle 17: Orthologe KCNQ-Gene von Mensch und Zebrafisch.

4.1.2 Größe der Gene

Mit dem Online-Programm *Blat search UCSC* (<u>http://genome.ucsc.edu/cgi-bin/hgBlat</u>) wurde die Zebrafischdatenbank durchsucht. Dabei konnte die genomische Sequzenz (Intron-Exon-Sequenz) aller *kcnq*-Gene gefunden werden und so die genomischen Koordinaten ermittelt werden. Im Anhang finden sich die Sequenzen der jeweiligen cDNA mit markierten Intron-Exon-Grenzen sowie den verwendeten Primern. Die Größe der cDNA sowie die genomischen Koordinaten (genomische DNA) sind in Tabelle 18 zusammengefasst.

Gen	genom. Koordinaten (Anfang des Gens)	genom. Koordinaten (Ende des Gens)	Basenpaare (bp) cDNA
kcnqa_d	1652250	2150794 (reverse Strand)	2016
kcnqb_e	26135332	26189943	2628
kcnqc	28134021	28376102	2808
kcnqf	30828479	31046372	2922
kcnqg	49199116	49300036	1929
kcnqh	42168892	42087787	2385
kcnqi	keine Aussage möglich		2568
kcnąj	41380271	41501996	2040

Tabelle 18: genomische Lokalisation der *kcnq*-Gene und Größe der cDNA. Für die Gene, bei denen alternative Exons vorhanden waren, wurde die längste bekannte Spleißvariante angegeben.

Das Gen *kcnqa_d* ist auf Chromosom 25 zu finden. Jedoch kann die Größe der genomischen DNA nicht mit Sicherheit bestimmt werden, da die letzten vier Exons auf dem *reverse strand* zu finden sind. In der Version Zv6 wurden das erste und letzte Exon sowie Exon 5 von *kcnqi* in UCSC nicht gefunden, jedoch wurde das Gen Chromosom 13 zugeordnet. In der neuen Version ist die Sequenz keinem Chromosom zugeordnet (siehe auch 4.1).

4.2 Konservierte benachbarte Gene (Syntenien)

Um die durch ClustalW vorhergesagte Orthologie der jeweiligen Gene zwischen Zebrafisch und Mensch zu verifizieren, wurde die Syntenie bestimmt. Unter konservierter Syntenie versteht man die evolutionär beibehaltene Nachbarschaft verschiedener Gene auf einem Chromosom [79]. So finden sich Gruppen von Genen, die beim Menschen in enger Nachbarschaft auf einem Chromosom lokalisiert sind, auch beim Zebrafisch in ähnlicher Konstellation auf einem gemeinsamen Chromosom [80, 81]. Die genomische Lokalisation der Zebrafisch *kcnq*-Gene wurde über UCSC bestimmt (Tabelle 18), die Syntenie über Ensembl berechnet. Dazu wurden jeweils orthologe benachbarte Gene bei Mensch und Zebrafisch gesucht. Die Angaben zu genomischen Koordinaten der jeweiligen Gene beziehen sich beim Zebrafisch auf die Version Zv8 und beim Menschen auf die Version GRCh37.

Zusammenfassend kann gesagt werden, dass eine lokale Syntenie zwischen den *kcnq*-Genen des Zebrafisches und den humanen *KCNQ*-Genen vorliegt. Ausnahmen bilden *kcnqa_d* und *kcnqi*. Bei *kcnqa_d* sind die konservierten benachbarten Gene in einem größeren Abstand von minimal 21,9 Mb zu finden. Bei *kcnqi* und dessen orthologen menschlichem Gen können keine gemeinsamen benachbarten Gene in Version Zv6 gefunden werden. Da in der Version Zv8 *kcnqi* keinem Chromosom zugeordnet ist, kann hier nicht nach Syntenien zum orthologen Gen gesucht werden.

4.3 Spleißvarianten

Da sich manche RT-PCR-Produkte nicht sequenzieren ließen und an den gleichen Stellen am Ende eines Exons immer wieder multiple Signale vorhanden waren, wurde in diesem Bereich nach alternativen Exons gesucht. Dazu wurde das jeweilige RT-PCR-Produkt mit dem *TOPO TA Cloning*[®] *System* kloniert und nach Abschätzung der Basenpaare über eine Gelelektrophorese erneut sequenziert. So ließen sich bei *kcnqb_e*, *kcnqf*, *kcnqi* und *kcnqj* alternative Exons finden.

Bei *kcnqb_e*, das die höchste Orthologie mit *KCNQ2* aufweist, kann Exon 11 entweder vorhanden sein, oder beim Spleißen entfernt werden. Bei den Exons 13 und 14 können entweder beide, nur Exon 13 oder keines der beiden Exons vorhanden sein. Auch die Exons 17 und 18 sind von alternativem Spleißen betroffen, wobei entweder beide Exons, nur Exon 18 oder keines der beiden Exons vorhanden sein kann. Bei *kcnqf*, welches ortholog zu *KCNQ5* ist, wurde eine weitere Form des alternativen Spleißens gefunden, in der zwei verschiedene Varianten von Exon 8 vorkommen, die nicht zusammen exprimiert werden. Dabei war Variante 8a mit 94 bp nur unwesentlich größer als Variante 8b mit 88 bp. Bei *kcnqj*, dem Orthologen des menschlichen *KCNQ4*, finden sich zwei Varianten von Exon 9, die nicht zusammen exprimiert werden, eine ähnliche Konstellation wie bei *kcnqf* (Abbildung 6). Im Anhang sind die jeweiligen Aminosäuresequenzen der alternativen Exons aufgeführt. Die Vergleiche wurden über das Online-Programm ClustalW erstellt.

Um die Expression der alternativen Exons in den jeweiligen Embryonalstadien zu untersuchen, wurde mit RNA aus unterschiedlichen Entwicklungsstadien (20 Somiten, 1 Tag, 2 Tage, 3 Tage und 4 Tage) eine RT-PCR durchgeführt. Die Ergebnisse sind bei den jeweiligen Genen beschrieben.

Abbildung 6: Alternative Exons (a links bezeichnet das Protein, b-e links die einzelnen *kcnq*-Gene. Arabische Ziffern bezeichnen die Exons, römische Ziffern die Möglichkeit der Zusammensetzung alternativer Spleißvarianten, Buchstaben (a/b) die Möglichkeit des Austausches zweier Exons. Die Exons des N-Terminus und der C-Terminus, sowie die Exons, die nicht vom alternativen Spleißen betroffen sind, sind grau ausgefüllt. Weiß ausgefüllte Exons sind vom alternativen Spleißen betroffen Die Sensordomäne S1-S6, die vom alternativen Spleißen nicht betroffen ist, ist schwarz dargestellt.)

4.4 *KCNQ1* und orthologe Gene *kcnqa_d* und *kcnqg*

Zu *KCNQ1* wurden zwei co-orthologe Gene *kcnqa_d* und *kcnqg* auf Chromosom 25 und Chromosom 7 im Zebrafischgenom gefunden. Dabei zeigt sich, dass die cDNA der jeweiligen Zebrafischgene weniger Basenpaare als deren orthologes Gen beim Menschen besitzen (*KCNQ1* 3262 bp, *kcnqa_d* 2016bp, *kcnqg* 1929 bp). Sowohl *kcnqa_d* als auch *kcnqg* setzen sich aus jeweils 17 Exons zusammen, wohingegen das menschliche *KCNQ1* 16 Exons besitzt.

Exon 10 des menschlichen *KCNQ1* wird im *kcnqa_d*-Gen sowie dem *kcnqg*-Gen des *Danio rerio* in zwei kleinere Exons unterteilt, was erklärt, warum bei *kcnqa_d* und *kcnqg* 17 Exons und bei *KCNQ1* 16 Exons nachweisbar sind. Es zeigt sich, dass die Intron-Exon-Grenzen in beiden Spezies gut konserviert sind. Die entsprechenden Aminosäuresequenzen sind unter 6.2.1.2 (*kcnqa_d*) und unter 6.2.5.2 (*kcnqg*) im Anhang zu finden.

4.4.1 Syntenie

Das Gen kcnqg ist auf Chromosom 7, das Gen kcnqa_d auf Chromosom 25 lokalisiert.

Zwischen *KCNQ1* auf Chromosom 11 und *kcnqg* auf Chromosom 7 konnten konservierte Gene teilweise in der gleichen Reihenfolge gefunden werden (*conserved synteny*). Beiden Genen folgt direkt im Abstand von maximal 500 kb *cdkn1c*. Auch die Gene *trpm5* und *igf2* sind in nächster Nähe mit maximal 400 kb Abstand lokalisiert, wobei hier die Reihenfolge vertauscht ist. Daneben befinden sich auch *slc22a18* mit einem Abstand von 9,3 Mb sowie *cars* und *nap114b* in einem Abstand von bis zu 17,1 Mb zu *kcnqg* auf Chromosom 7.

kcnqa_d befindet sich bei 1,6 Mb auf Chromosom 25. Orthologe zu den menschlichen Genen *HCCA2*, *DUSP8*, *PHLD2* und *NAP1L4*, die einen maximalen Abstand von 1,0 Mb zu *KCNQ1* aufweisen, sind auf Chromosom 25 im Abstand von bis zu 23 Mb zu *kcnqa_d* konserviert (Abbildung 7).

Durch die nachgewiesene Syntenie kann die Orthologie zwischen *KCNQ1* und den Genen *kcnqa_d* und *kcnqg* des Zebrafisches verifiziert werden.

Abbildung 7: Orthologe Zebrafischgene auf Chromosom 7 und 25 im Vergleich zum menschlichen Chromosom 11 (Abkürzungen der Gennamen sind im Abkürzungsverzeichnis aufgeführt).

4.4.2 Spleißvarianten

Obwohl für *KCNQ1* verkürzende Spleißvarianten beschrieben sind [45], konnten in der vorliegenden Arbeit weder für *kcnqa_d* noch für *kcnqg* Spleißvarianten nachgewiesen werden.

4.5 *KCNQ2* und orthologe Gene *kcnqb_e* und *kcnqi*

Die beiden co-orthologen Gene zu *KCNQ2* sind *kcnqb_e* und *kcnqi*, die auf Chromosom 8 und möglicherweise Chromosom 13 zu finden sind. Es zeigt sich, dass die cDNA der Gene beim Zebrafisch mit 2628 bp (*kcnqb_e*) und 2568 bp (*kcnqi*) kleiner sind als *KCNQ2* mit 3251 bp. *kcnqb_e* besteht aus bis zu 19 Exons, wobei verschiedene verkürzende Spleißvarianten von *kcnqb_e* existieren. Durch die Kombination zweier Versionen des Zebrafischgenoms (Zv6 und Zv8) kann angenommen werden, dass sich *kcnqi* aus maximal 16 Exons zusammensetzt, wobei eine verkürzende Spleißvariante existiert. Das menschliche *KCNO2* besitzt 17 Exons.

Vergleicht man *KCNQ2* mit *kcnqb_e* (siehe dazu auch im Anhang 6.2.2.2), so zeigt sich, dass das humane Exon 9 des *KCNQ2* bei *kcnqb_e* nicht vorhanden ist. Dafür besitzt *kcnqb_e* an der Stelle, die ortholog zum menschlichen Exon 13 ist, drei verschiedene Exons (Exon 12, 13, 14), wobei Exon 13 und 14 beim humanen *KCNQ2* nicht vorhanden sind. Desweiteren besitzt *kcnqb_e* ein Exon 17, das beim Menschen nicht vorkommt. Bei diesen Exons gibt es verkürzende Spleißvarianten, so dass auch Varianten des *kcnqb_e* exprimiert werden können, in denen diese Exons herausgespleißt sind (siehe hierzu auch Abbildung 6). Alle weiteren Exon-Intron-Grenzen von *kcnqb_e* und *KCNQ2* sind an der jeweils identischen Stelle im jeweiligen Gen zu finden.

Vergleicht man *KCNQ2* mit *kcnqi* (siehe dazu auch im Anhang 6.2.7.2), zeigt sich, dass *KCNQ2* ein Exon 9 aufweist, das keine orthologe Sequenz bei *kcnqi* hat. Auch das humane Exon 12 ist beim Zebrafisch (*kcnqi*) nicht vorhanden. Dafür existiert bei *kcnqi* ein Exon 12, das beim Menschen nicht exprimiert wird. Dabei handelt es sich um eine Spleißvariante, d.h. es existieren auch verkürzende Varianten ohne Expression dieses Exons 12 (Abbildung 6). Bis auf eine Ausnahme sind die Exon-Intron-Grenzen zwischen *KCNQ2* und *kcnqi* erhalten.

Vergleicht man *KCNQ2* mit *kcnqb_e* und *kcnqi*, so fällt auf, dass sowohl bei *kcnqb_e* als auch bei *kcnqi* das Exon 9 nicht vorhanden ist, das bei *KCNQ2* existiert. Dafür sind bei beiden Genen des *Danio rerio* Exons vorhanden, die beim Menschen nicht vorkommen (*kcnqb_e*: Exon 13 und 14; *kcnqi*: Exon 12).

4.5.1 Syntenie

KCNQ2 auf Chomosom 20 wird durch die Gene *YTHDF1* und *PPDPF* innerhalb von maximal 200 kb flankiert. Die orthologen Gene beim Zebrafisch liegen in Nachbarschaft zu *kcnqb_e* auf Chromosom 8 in einem Abstand von maximal 2,3 Mb. Ebenfalls in der näheren Umgebung des *kcnqb_e* sind die Gene *prex1*, *mc3r* und *slc13a3* zu finden (maximaler Abstand 3,2 Mb), die auf dem menschlichen Chromosom 20 in größerem Abstand vorkommen. *MC3R* ist 7,2 Mb, *PREX1* 14,8 Mb und *SLC13A3* 16,9 Mb von *KCNQ2* entfernt (Abbildung 8).

Zwischen den Orthologen *kcnqi* und *KCNQ2* konnten keine gemeinsamen Gene auf Chromosom 13 des Zebrafisches (Zv6) und Chromosom 20 des Menschen gefunden werden. Eine mögliche

Erklärung hierfür ist, dass *kcnqi* oder die benachbarten Gene um *kcnqi* im Laufe der Evolution umfangreich ausgetauscht wurden. Eine weitere Möglichkeit besteht darin, dass die Gendatenbank noch nicht vollständig ist oder dass es sich bei *kcnqi* um ein in der Evolution später entstandenes Gen handelt, dass aus einer Duplikation von *kcnqb_e* hervorgeht. So finden sich beim Menschen auch keine zwei *KCNQ*-Gene auf einem Chromosom, während *kcnqi* und *kcnqc* in der Version Zv6 jeweils auf Chromosom 13 im Zebrafischgenom detektiert wurden.

Die Orthologie zwischen *KCNQ2* und *kcnqb_e* konnte durch die nachgewiesene Syntenie verifiziert werden. *kcnqi* zeigt die größten Übereinstimmungen zu *KCNQ2*, so dass auch hier von einer Orthologie ausgegangen werden kann, auch wenn dies nicht durch Syntenie verifiziert werden konnte.

Abbildung 8: Orthologe Zebrafischgene auf Chromosom 8 im Vergleich zum menschlichen Chromosom 20 (Abkürzungen der Gennamen sind im Abkürzungsverzeichnis aufgeführt).

4.5.2 Spleißvarianten

4.5.2.1 kcnqb_e

Zwischen den ursprünglichen Primersequenzen 9/10 und 11/12 ließen sich alternative Exons nachweisen. Um cDNA zu erhalten, die die jeweiligen alternativen Exons einschließt, erfolgte die RT-PCR mit den Primerpaaren 220/231 und 11/230 und RNA in unterschiedlichen Entwicklungsstadien (20 Somiten, 1 Tag, 2 Tage, 3 Tage und 4 Tage).

Für die Exons 11, 13 und 14 bzw. 17 und 18 konnten alternative Spleißvarianten gefunden werden (Abbildung 9 und Abbildung 10). Für beide Regionen zeigt die größte mRNA mit 411 bp bzw. 324 bp, die alle alternativen Exons enthält, die stärksten Signale von Tag 1 bis Tag 3. Bei 20 Somiten zeigt 220/231 die stärksten Signale bei 393 bp, was darauf schließen lässt, dass Exon 14 in diesem Stadium

seltener exprimiert wird. Am vierten embryonalen Tag sind Variante III und IV am stärksten exprimiert, d.h. entweder ist Exon 11 oder Exon 14 seltener in der mRNA zu finden. Im Stadium 20 Somiten zeigt sich das stärkste Transkript mit Exon 11, 13 und 18, jedoch nicht mit Exon 14 und 17. Die beiden Introns, die an das alternative Exon 11 angrenzen, haben die gleiche "Phase" und sind zwischen dem zweiten und dritten Nukleotid eines Kodons eingefügt, genau so wie die drei Introns zwischen Exon 13 und 14. Daher erhalten alle entdeckten Varianten des alternativen Spleißens zwischen diesen Exons das Leseraster. Bei Exon 17 und 18 erhalten Variante I (17 + 18) und II (nur 18) das Leseraster, wohingegen Variante III (keines der Exons 17 und 18 vorhanden) eine Verschiebung des Leserasters in Exon 19 (*frame shift*) und somit einen vorzeitigen Abbruch der Sequenz nach 29 Aminosäuren bewirkt.

Abbildung 9: Alternative Spleißvariante von *kcnqb_e*. (Arabische Ziffern über den Exons bezeichnen das jeweilige Exon. Graue Exons sind vom alternativen Spleißen betroffen, arabische Ziffern in den Kästchen bezeichnen die Anzahl der Basenpaare (bp) des jeweiligen Exons. Graue vertikale Balken kennzeichnen die Primer, die schraffierten Kästchen fassen die Exons zusammen, die nicht vom alternativen Spleißen betroffen sind und in denen keine Primer gelegt wurden. Für die genauen Sequenzen siehe auch Anhang 6.2.2).

Abbildung 10: Spleißvarianten von *kcnqb_e*. A: Darstellung der Exons 11-14. Verwendet wurden die Primer 220 und 231. B: Darstellung der Exons 17 und 18. Verwendet wurden die Primer 11 und 230.

4.5.2.2 kcnqi

Das alternative Exon 12 wurde bei *kcnqi* gefunden (Abbildung 11 und Abbildung 12). Die beiden Introns, die das alternative Exon flankieren, verschieben den Leserahmen nicht. Die Variante, die das Exon 12 enthält, zeigt in allen Stadien von 20 Somiten bis Tag 4 die stärkeren Signale, was darauf schließen lässt, dass diese Variante häufiger exprimiert wird. Am zweiten Embryonaltag ist die Variante ohne Exon 12 am stärksten vorhanden.

Abbildung 11: Alternative Spleißvariante von *kcnqi*. (Arabische Ziffern über den Exons bezeichnen das jeweilige Exon. Graue Exons sind vom alternativen Spleißen betroffen, arabische Ziffern in den Kästchen bezeichnen die Anzahl der Basenpaare (bp) des jeweiligen Exons. Graue vertikale Balken kennzeichnen die Primer, die schraffierten Kästchen fassen die Exons zusammen, die nicht vom alternativen Spleißen betroffen sind und in denen keine Primer gelegt wurden. Für die genauen Sequenzen siehe auch Anhang 6.2.7.)

Abbildung 12: Spleißvarianten von kcnqi. Verwendet wurden die Primer 254 und 108.

4.6 KCNQ3 und orthologes Gen kcnqh

Zu *KCNQ3* wurde das orthologe Gen *kcnqh* gefunden, das sich auf Chromosom 2 befindet. Es zeigt sich, dass die cDNA von *kcnqh* beim Zebrafisch mit 2385 bp kleiner ist als dessen menschliches Ortholog mit 3097 bp. Sowohl *kcnqh* als auch *KCNQ3* setzen sich aus 15 Exons zusammen. Die Exons 1 und 15 von *kcnqh* sind im Vergleich zu *KCNQ3* kürzer, wohingegen die Exons 5 und 10 von *KCNQ3* im Vergleich zu *kcnqh* kürzer sind. Hier sind alle Exon-Intron-Sequenzen zwischen den beiden Spezies gut konserviert (6.2.6.2 im Anhang).

4.6.1 Syntenie

kcnqh befindet sich auf Chromosom 2. Das orthologe Gen des Menschen (*KCNQ3*) ist auf Chromosom 8 zu finden. Beide Gene weisen Syntenien zu *erf3a*, *adcy8* und *lrrc6* auf, die jeweils in einem Abstand von bis zu 2,1 Mb beim menschlichen Chromosom 8 und bis zu 1,0 Mb beim

Zebrafischchromosom 2 zu finden sind. *ddef1* hat beim Zebrafisch einen Abstand von 10,9 Mb zu *kcnqh*, während beim menschlichen *KCNQ3* nur einen Abstand von 2,1 Mb vorliegt (Abbildung 13). Insgesamt kann die Orthologie zwischen *KCNQ3* und *kcnqh* aufgrund der vorhandenen Syntenie bestätigt werden.

Abbildung 13: Orthologe Gene des Zebrafischs auf Chromosom 2 im Vergleich zum menschlichen Chromosom 8 (Abkürzungen der Gennamen sind im Abkürzungsverzeichnis aufgeführt).

4.6.2 Spleißvarianten

Obwohl für *KCNQ3* Spleißvarianten existieren [35], konnten sie in der vorliegenden Arbeit beim orthologen Gen *kcnqh* im Zebrafisch nicht nachgewiesen werden.

4.7 KCNQ4 und orthologes Gen kcnqj

Zu *KCNQ4* wurde das Ortholog *kcnqj* auf Chromosom 19 gefunden. Die cDNA von *KCNQ4* besitzt 2335 bp und die von *kcnqj* 2040 bp. Es existieren alternative Spleißvarianten, bei denen es jeweils zum Austausch von Exons kommt, d.h. die Gesamtzahl von 14 Exons bleibt bestehen.

Die orthologen Gene *KCNQ4* und *kcnqj* werden durch 14 Exons definiert, deren Intron-Exon-Grenzen gut konserviert sind (6.2.9.2). Exon 1 ist weniger gut konserviert und Exon 9 ist bei *kcnqj* kürzer als beim menschlichen *KCNQ4*. Von Exon 9 bei *kcnqj* existieren zwei Spleißvarianten, von denen die längere Spleißvariante zum Vergleich mit dem orthologen humanen *KCNQ4* herangezogen wurde.

4.7.1 Syntenie

Sowohl *KCNQ4* als auch *kcnqj* sind in nächster Nähe zum Gen *nfyc* lokalisiert. Auch die Gene *rims3* und *ctps* kommen auf Chromosom 19 im Zebrafischgenom vor. Ihr Abstand zu *kcnqj* ist jedoch größer, als der Abstand der orthologen Gene zu *KCNQ4* auf Chromosom 1 im menschlichen Genom. Dabei weisen *RIMS3* und *CTPS* zu *KCNQ4* einen maximalen Abstand von 200 kb auf, wohingegen die orthologen Gene im Zebrafischgenom einen Abstand zwischen 17,4 und 25,9 Mb aufweisen (Abbildung 14).

Durch den Nachweis der Syntenie kann die Orthologie von *kcnqj* zum menschlichen *KCNQ4* bestätigt werden.

Abbildung 14: Orthologe Zebrafischgene auf Chromosom 19 im Vergleich zum menschlichen Chromosom 1 (Abkürzungen der Gennamen sind im Abkürzungsverzeichnis vorhanden).

4.7.2 Spleißvarianten

Bei *kcnqj*, dem orthologen Gen zum humanen *KCNQ4*, wurden zwei Varianten des Exons 9 gefunden (Abbildung 15). Es lässt sich keine Varianten finden, in denen beide Exons 9a und 9b vorhanden sind. Bis zum Tag 2 der Embryonalphase ist ausschließlich Variante 9a zu finden, ab Tag 3 ist eine schwache Expression von 9b nachweisbar. Bei beiden möglichen Alternativen zeigt sich keine Verschiebung des Leserasters. Nach dem Ergebnis der Gelelektrophorese scheint darüber hinaus eine dritte Variante zu existieren, die bei den Sequenzierungen jedoch nicht nachgewiesen werden konnte. Insgesamt lässt sich sagen, dass Variante 9a die häufiger vorkommende Möglichkeit der Expression ist (Abbildung 16).

Abbildung 15: Alternative Spleißvariante von *kcnqj*. (Arabische Ziffern über den Exons bezeichnen das jeweilige Exon. Graue Exons sind vom alternativen Spleißen betroffen, arabische Ziffern in den Kästchen bezeichnen die Anzahl der Basenpaare (bp) des jeweiligen Exons. Graue vertikale Balken kennzeichnen die Primer, die schraffierten Kästchen fassen die Exons zusammen, die nicht vom alternativen Spleißen betroffen sind und in denen keine Primer gelegt wurden. Für die genauen Sequenzen siehe auch Anhang 6.2.9.)

Abbildung 16: Spleißvarianten von kcnqj. Verwendet wurden die Primer 95 und 135.

4.8 *KCNQ5* und orthologe Gene *kcnqc* und *kcnqf*

Zu *KCNQ5* wurden zwei co-orthologe Gene *kcnqc* und *kcnqf* gefunden, die sich auf den Chromosomen 13 und 1 finden. Die cDNA der orthologen Gene beim Zebrafisch ist mit 2808 bp (*kcnqc*) und 2922 bp (*kcnqf*) kleiner als bei *KCNQ5* mit 3325 bp. Sowohl *kcnqc* als auch *kcnqf* bestehen wie *KCNQ5* aus 14 Exons. Es wurden Spleißvarianten von *kcnqf* gefunden, jedoch werden diese nicht zusammen exprimiert, so dass sich *kcnqf* immer aus jeweils 14 Exons zusammensetzt.

Zwischen *KCNQ5* und *kcnqc* sind alle Intron-Exon-Grenzen zwischen den gleichen Aminosäuren konserviert. Es zeigt sich, dass bei *kcnqc* das Exon 1 kürzer und das Exon 14 länger ist, als die jeweiligen Exons des orthologen humanen *KCNQ5* (6.2.3.2).

Zwischen *KCNQ5* und *kcnqf* findet sich eine gute Konservierung der Exons mit gleichen Intron-Exon-Grenzen. Exon 8 des *kcnqf*, bei dem eine alternative Spleißvariante besteht, zeigt in der längeren Variante Ähnlichkeiten zu *KCNQ5*. Exon 1 ist bei *kcnqf* kürzer als bei *KCNQ5*, jedoch ist Exon 14 bei *kcnqf* größer als bei *KCNQ5* (6.2.4.2). Zusammenfassend kann man feststellen, dass die orthologen Gene zwischen den Spezies gut konserviert sind.

4.8.1 Syntenie

Die orthologen Gene zu *KCNQ5* auf Chromosom 6 befinden sich beim Zebrafisch auf Chromosom 1 (*kcnqf*) und Chromosom 13 (*kcnqc*). Im Abstand von 800 bzw. 900 kb zu *KCNQ5* befinden sich *RIMS1* und *EEF1A1*, die auch im Abstand von bis zu 300 kb zu *kcnqf* auf Chromosom 1 zu finden sind. *EEF1A1*, *C6orf150*, *DDX43* und *RIMS1* sind im Abstand von maximal 900 kb zu *KCNQ5* lokalisiert. Die orthologen Gene beim Zebrafisch befinden sich im Abstand von 300 kb zu *kcnqc* auf Chromosom 13 (Abbildung 17).

Beide orthologen Gene des Zebrafisches weisen eine konservierte Syntenie zum humanen *KCNQ5* auf, womit die Orthologie dieser *KCNQ*-Gene zwischen Mensch und Zebrafisch bestätigt werden kann.

Abbildung 17: Orthologe Gene des Zebrafisches auf Chromosom 1 und 13 im Vergleich zum menschlichen Chromosom 6 (Abkürzungen der Gennamen sind im Abkürzungsverzeichnis aufgeführt).

4.8.2 Spleißvarianten

Bei *kcnqf* zeigt das Exon 8 zwei Spleißvarianten (Abbildung 18, Abbildung 19). In den durchgeführten Sequenzierungen konnte gezeigt werden, dass beide Varianten nicht gleichzeitig vorkommen. Keine der beiden Möglichkeiten 8a und 8b führt zu einer Leserasterverschiebung. Aufgrund der geringen

Längenunterschiede von nur 6 bp war mit den verwendeten Primern mittels Gelelektrophorese keine quantitative Aussage über die unterschiedliche Expression während der verschiedenen Embryonalperioden möglich.

Abbildung 18: Alternative Spleißvariante von *kcnqf*. (Arabische Ziffern über den Exons bezeichnen das jeweilige Exon. Graue Exons sind vom alternativen Spleißen betroffen, arabische Ziffern in den Kästchen bezeichnen die Anzahl der Basenpaare (bp) des jeweiligen Exons. Graue vertikale Balken kennzeichnen die Primer, die schraffierten Kästchen fassen die Exons zusammen, die nicht vom alternativen Spleißen betroffen sind und in denen keine Primer gelegt wurden. Für die genauen Sequenzen siehe auch Anhang 6.2.4.)

Abbildung 19: Spleißvarianten von kcnqf. Verwendet wurden die Primer 134 und 234.

5 Diskussion

Durch Mutationen in der *KCNQ*-Genfamilie kann es beim Menschen zu verschiedenen genetischen Erkrankungen kommen, etwa dem Long-QT-Syndrom und anderen Herzrhythmusstörungen, den benignen familiären Neugeborenenkrämpfen und verschiedenen Formen der genetisch bedingten Taubheit bzw. dem progredienten Hörverlust. Die für Kaliumkanäle kodierenden *KCNQ*-Gene liegen bereits im Genom verschiedener niederer Spezies vor, etwa der Nematode *Caenorhabditis elegans* [69] oder der Taufliege *Drosophila melanogaster* [70]. Um die *KCNQ*-Genfamilie im Hinblick auf die beim Menschen beobachteten Erkrankungen zu erforschen, ist allerdings das Wirbeltier Zebrafisch für die Grundlagenforschung ein geeigneteres Tiermodell. In der vorliegenden Studie konnten zu den fünf humanen *KCNQ*-Genen acht orthologe Zebrafischgene identifiziert werden, von denen vier Gene Spleißvarianten aufweisen.

5.1 Der Zebrafisch als Tiermodell

Der Zebrafisch ist ein in der biomedizinischen Forschung weit verbreitetes Tiermodell [63]. Das Zebrafischgenom ist sequenziert [82] und der Zebrafisch ist ein Wirbeltier, das sich bei geringen Kosten einfach züchten lässt. Die Generationszeit beträgt etwa drei Monate [63-65]. Der Zebrafisch ist anatomisch einfacher aufgebaut als etwa Nagetiere, dennoch können verschiedene komplexe Verhaltensweisen beobachtet und antrainiert werden [65].

Nachteile des Zebrafischmodells sind die erheblichen anatomischen Unterschiede zum Menschen und die Möglichkeit der Subfunktionalisierung von Genen aufgrund der zusätzlichen Genomduplikation und der damit verbundenen Änderung des Phänotyps einer Erkrankung [63, 78].

5.1.1 Herz

Das Herz des Zebrafischembryos ist gut einsehbar und lässt sich mittels Lichtmikroskopie einfach untersuchen [83, 84]. Es besteht jedoch aus nur einem Atrium und einem Ventrikel ohne separaten Lungenkreislauf, so dass unklar war, ob der Zebrafisch ein geeignetes Tiermodell für humane kardiovaskuläre Erkrankungen darstellt [63].

In neueren Studien konnte ein EKG des adulten Zebrafisches mittels zweier Nadelelektroden über der ventralen Epidermis abgeleitet werden, nachdem der Zebrafisch paralysiert und perfundiert worden war (Abbildung 20) [83]. Die durchschnittliche Herzfrequenz beträgt beim Zebrafisch 151 \pm 30 Schläge pro Minute, die Leitungsintervalle sind mit denen des Menschen vergleichbar [83]. So beträgt die durchschnittliche QTc-Zeit des erwachsenen Zebrafisches 416 \pm 8 Millisekunden [85]. In der Studie von Milan et al. konnte gezeigt werden, dass Medikamente, die beim Menschen eine QT-Prolongation bewirken, auch beim Zebrafisch zu einer Verlängerung der QT-Zeit führen und damit ein

Äquivalent des humanen Long-QT-Syndroms im Zebrafisch erzeugt werden kann [83]. Durch *Knockdown* mit antisense Morpholinos des orthologen *KCNH2*, einem Gen, das für einen Kaliumkanal kodiert, konnte beim Zebrafischembryo eine Bradykardie und in hoher Dosis sogar eine Asystolie erzeugt werden [86]. Durch eine mittels Ethylnitrosurea induzierte Mutation in *kcnh2* konnte gezeigt werden, dass homozygote Zebrafischembryonen nach etwa 10 Tagen absterben, heterozygote Tiere jedoch das Erwachsenenalter erreichen [85].

Trotz morphologischer Unterschiede gibt es zwischen Mensch und Zebrafisch Gemeinsamkeiten. So spielen Gene, die für Ionenkanäle kodieren, sowohl beim Menschen als auch beim Zebrafisch eine wichtige Rolle in der Elektrophysiologie des Herzens. Mutationen dieser Gene führen zu vergleichbaren pathologischen Phänotypen, womit sich der Zebrafisch als Tiermodell für die kardiovaskuläre Forschung eignet.

Signal averaged ECG + Ctx

Abbildung 20: EKG des Zebrafisches (nach [83]). A: initiales EKG mit Artefakten durch Muskel- und Kiemenbewegungen. B: EKG nach Signaloptimierung C: weitere Artefaktreduktion durch Signaloptimierung und Paralyse mit μ -conotoxin GIIIB (CTX).

5.1.2 Zentralnervensystem

Der Zebrafisch weist ähnliche Strukturen des Zentralnervensystems auf wie der Mensch und zeigt höhere kognitive Funktionen, wie etwa Gedächtnis und soziales Verhalten, auch wenn diese im Vergleich zum Menschen stark vereinfacht sind. Das Telenzephalon besitzt nur einen rudimentären Kortex und es existieren fischspezifische Organe wie etwa das Seitenlinienorgan [63]. Zebrafische zeigen eine gewisse Krampfanfälligkeit bei Gabe prokonvulsiver Medikamente (Abbildung 21). Dabei wird ein Krampfanfall bei Zebrafischembryonen bzw. -larven in drei Stadien eingeteilt: Stadium I geht mit einer dramatischen Erhöhung der Schwimmgeschwindigkeit einher. Im Stadium II kommt es zu "whirlpool"-artigen, zirkulären Schwimmbewegungen. Zu klonischen Zuckungen, die zu einem Verlust der Körperhaltung führen, kommt es im Stadium III. Dabei fällt der Fisch auf eine Seite und bleibt für ein bis drei Sekunden unbeweglich liegen [82, 87, 88]. Durch spezielle Elekroden, die im so genannten optischen Tectum, der größten Mittelhirnstruktur, befestigt sind, können an immobilisierten Zebrafischlarven (7dpf) epileptiforme Entladungen gemessen werden [88]. Baraban et al. setzten sieben Tage alte Zebrafische dem prokonvulsiven PTZ (Pentylentetrazol) aus, bis sich eine generalisierte tonisch-klonische epileptische Aktivität zeigte. Danach wurden sie mit Antiepileptika behandelt [88]. Berghmans et al. hielten Zebrafischlarven für 24 Stunden in Antikonvulsiva-angereichertem Wasser und verabreichten anschließend das prokonvulsive Pentylentetrazol (PTZ), was in der Mehrheit der Fälle zu einer Bewegungssuppression führte [82]. Andererseits konnten über ENU-Mutationen auch juvenile Zebrafische (3 bis 7 dpf) gezüchtet werden, die eine gewisse Resistenz gegen PTZ-induzierte Krampfanfälle zeigten, da sie bei hohen PTZ-Konzentrationen lediglich Stadium II eines epileptischen Anfalls erreichten [89]. In einer Studie von Winter et al. wurden Zebrafischembryonen verschiedenen Medikamenten ausgesetzt, die beim Menschen Krampfanfälle auslösen können. In 72 % der Fälle zeigten die beim Menschen prokunvulsiven Medikamente ähnliche Effekte beim Zebrafisch [87].

Damit stellt der Zebrafisch ein geeignetes Tiermodell zur Untersuchung neurologischer Erkrankungen wie etwa der Epilepsie dar.

Abbildung 21: Elektroenzephalogramm eines Zebrafisches mit epilepsieartiger Aktivität (nach [88]). A, links: Platzierung der Elektrode an einem in Agar eingebetteten Zebrafischembryo. A, rechts: EEG eines Zebrafischembryos, der 15 bzw. 45 Minuten mit PTZ behandelt wurde. B: vergrößerte Ausschnitte aus A (a zeigt eine interiktale Entladung, b eine iktale Entladung).

5.1.3 Innenohr

Etwa nach 20 hpf werden beim Zebrafischembryo die ersten Haarzellen sichtbar und die Otolithen lagern sich an die Kinozilien an. Nach 96 hpf schwimmen die Larven frei und besitzen voll funktionsfähige Ohren, die in den ersten Wochen ihres Lebens aufgrund der schwachen Pigmentierung gut sichtbar bleiben [90]. Der Zebrafisch besitzt weder Außen- noch Mittelohr, dafür aber ein für Vertebraten typisch aufgebautes Innenohr, auch wenn keine Cochlea vorhanden ist. Der Zebrafisch gehört zur Gruppe der Ostariophysi, die den Weberschen Apparat besitzen, der über vier kleine Knöchelchen die Schwimmblase mit dem Innenohr verbindet. Dadurch können Zebrafische in einem Bereich zwischen 100 und 5000 Hz hören [91]. Fische besitzen zusätzlich zum Ohr noch das so genannte Seitenlinienorgan, das sensorische Haarzellen aufweist. Dadurch können sie im Bereich tiefer Frequenzen empfinden. Dies betrifft vor allem Wasserströmungen, das Schwimmen im Schwarm und die Gefahrenwahrnehmung [90].

Bisher wurden verschiedene vestibuläre und auditorische Defekte beim Zebrafisch erforscht [91]. Um Mutanten mit Vestibularisdefekten zu identifizieren kann beispielsweise das Schwimmverhalten analysiert werden. Dabei kann beobachtet werden, dass Mutanten auf der Seite, kopfüber, in Kreisen oder Schleifen schwimmen. Diese Bewegungsabläufe zeigen dabei Ähnlichkeiten mit einer tauben Mausmutante, die gleichzeitig einen Vestibularisdefekt aufweist. Bei einer Vielzahl der Zebrafischmutanten, die in Kreisen schwimmen, konnte gleichzeitig eine abnormale Struktur und Funktion der Haarzellen nachgewiesen werden [91]. Häufig zeigen Zebrafische, bei denen eine Mutation in einem orthologen Gen vorliegt, das beim Menschen zur Taubheit führt, zusätzlich eine vestibuläre Dysfunktion [92], so dass durch die Untersuchung der vestibulären Funktion des Zebrafisches indirekt die auditorische Funktion analysiert werden kann. Darüberhinaus führt ein auditorischer Stimulus bei Zebrafischmutanten mit Taubheit zu einer direkten Bewegungsreaktion [93].

Der Zebrafisch erreicht ein durchschnittliches Alter von drei bis fünf Jahren bei einer Generationszeit von etwa drei Monaten [63]. Es ist daher fraglich, ob der Zebrafisch ein geeignetes Tiermodell für die Untersuchung des autosomal-dominant vererbten Hörverlust aufgrund *KCNQ4*-Mutation darstellt, da diese Form des Hörverlusts beim Menschen durchschnittlich in der zweiten bis dritten Lebensdekade auftritt [32]. Für *KCNQ4* wurde nur ein orthologes Gen beim Zebrafisch identifiziert, so dass eine Neofunktionalisierung oder Subfunktionalisierung weniger wahrscheinlich ist, als bei Vorliegen von zwei co-orthologen Genen [78].

Punktmutationen in *KCNQ1* bzw. *KCNE1* führen beim Menschen zum Jervell-Lange-Nielsen-Syndrom, das mit angeborener hochgradiger bilateraler Schwerhörigkeit assoziiert ist [41]. Aufgrund dieser frühen Krankheitsmanifestation im Menschen könnte der Zebrafisch hier ein adäquates Tiermodell darstellen.

Trotz der großen Unterschiede zwischen dem Innenohr des Zebrafisches (Abbildung 22) und des Menschen kann der Zebrafisch als Tiermodell zur Erforschung der Taubheit herangezogen werden. Bisher konnte von einem Drittel der Gene, die beim Menschen zur syndromalen oder nonsyndromalen Taubheit führen, orthologe Gene beim Zebrafisch identifiziert werden [91]. So wurde beispielsweise *kcnd3*, ein Gen, das für eine Untereinheit eines Kaliumkanals kodiert, in den Haarzellen des Zebrafisches nachgewiesen [92].

Für die Erforschung der Taubheit scheint der Zebrafisch als Tiermodell zwar geeignet, weist aber gewisse Limitationen auf.

Abbildung 22: Innenohr des Zebrafischembryos (linkes Bild) und des adulten Febrafisches (rechtes Bild) (nach [90]). ac: anteriore Crista am: anteriore Makula, l: Lagena, mc: mediale Crista, o: Otolith, pc: posteriore Crista, pm: posteriore Makula, s: Sacculae, u: Utrikuli.

5.2 Die *KCNQ*-Genfamilie

5.2.1 Genomduplikation

Das Zebrafischgenom umfasst 50 Chromosomen [94]. Die meisten Genfamilien umfassen mehr Gene als dies bei Säugetieren der Fall ist [81], wobei insgesamt etwa 70-80 % Homologie zum menschlichen Genom besteht [88]. Für jedes der menschlichen *KCNQ*-Gene konnten am Zebrafischmodell orthologe Gene gefunden werden, zu *KCNQ3* und *KCNQ4* jeweis ein orthologes Gen, zu *KCNQ1*, *KCNQ2* und *KCNQ5* jeweils zwei co-orthologe Gene.

Es wird angenommen, dass bei Landwirbeltieren im Laufe der Evolution insgesamt zwei Genomduplikationen stattgefunden haben [95], während es bei Strahlenflossern wie dem Zebrafisch zu einer zusätzlichen Genomduplikation (Tetraploidisation) kam, wodurch die Co-Orthologie erklärt werden kann [78]. Trotz der zusätzlichen Genomduplikation besitzt der Zebrafisch entegegen der Vemutung nicht doppelt so viele Chromosomen wie etwa der Mensch, sondern lediglich 50 Chromosomen. Vermutet werden eine starke Fusion der Chromosomen im Zebrafischgenom bzw. eine starke Spaltung der humanen Chromosomen [96]. Durch Untersuchung verschiedener Teleostei (echte Knochenfische) kann davon ausgegangen werden, dass der letzte gemeisame Vorfahre von Strahlenflossern und Landwirbeltieren 12 bis 13 haploide Chromosomen besessen hat, bevor es zur Genomduplikation kam [96, 97]. Durch phylogenetische Analysen konnte die Genomduplikation auf einen Zeitraum vor etwa 350 Millionen Jahren datiert werden [78].

Für mindestens 20 % der humanen Gene besitzt der Zebrafisch zwei co-orthologe Gene [78, 96]. Durch Genverlust oder sich entwickelnde Nonfunktionalität entspricht die Anzahl der Gene nicht der vermuteteten doppelten Anzahl im Säugetiergenom [94]. Andererseits gibt es auch seltene Fälle, in denen zwei Säugetiergene nur durch ein orthologes Gen beim Zebrafisch repräsentiert werden [80].

Eine Genduplikation führt in 50-90 % der Fälle zu nonfunktionalen Genen, es entstehen so genannte Pseudogene. Desweiteren kann es zu Genen mit veränderter Funktionalität kommen (Neofunktionalisation bzw. Subfunktionalisation) [78]. Entscheidend bei der Subfunktionalisierung ist, dass sich die betroffenen Gene in ihrer Funktion ergänzen [98]. Die Subfunktionalisierung kann so genutzt werden, um einzelne konservierte Gene beim Säugetier besser zu charakterisieren [78].

Die in der vorliegenden Arbeit untersuchten Gene *KCNQ1*, *KCNQ2* und *KCNQ5* werden aufgrund der Genomduplikation beim Zebrafisch durch jeweils zwei co-orthologe Gene repräsentiert. Obwohl die Orthologie unabhängig von der jeweiligen Funktion definiert ist [78], ist die Funktion orthologer Gene dennoch häufig konserviert [79]. Somit können Studien zu Mutationen im Zebrafischgenom wichtige Hinweise auf die Funktion menschlicher Gene und den durch die Mutation hervorgerufenen Pathomechanismus aufzeigen [79].

5.2.2 Syntenie

Trotz früher phylogenetischer Trennung von Mensch und Zebrafisch finden sich umfangreiche konservierte Syntenien zwischen beiden Spezies [94]. Unter konservierter Syntenie versteht man die evolutionär beibehaltene Nachbarschaft verschiedener Gene auf einem Chromosom [79]. So finden sich Gruppen von Genen, die beim Menschen in enger Nachbarschaft auf einem Chromosom lokalisiert sind, auch beim Zebrafisch in ähnlicher Konstellation auf einem gemeinsamen Chromosom [80, 81]. Durch die Syntenie kann die Orthologie zwischen zwei Genen verifiziert werden [99] die durch ClustalW vorhergesagt wurde. Barbazuk et al. konnten zeigen, dass die Syntenie zwischen Mensch und Zebrafisch durchschnittlich 3,7 Gene umfasst [99]. Von den bisher analysierten Genen und ESTs (Expressed Sequence Tags) weisen etwa 80 % konservierte Syntenie auf. Bei 20 % der analysierten Gene und ESTs vermutet man zusätzliche Syntenien, homologe Segemente, Fehler in der Orthologie bzw. Genkartierung oder einen Verlust des menschlichen orthologen Gens als Ursache fehlender konservierter Syntenie [99].

Das Wissen über die Beziehungen zwischen dem humanen und dem Zebrafischgenom kann genutzt werden, um genetisch bedingte Erkrankungen durch Vergleich mit Mutationen in orthologen Genen näher zu untersuchen [99].

5.2.3 Konservierung

5.2.3.1 Proteinzielsteuerung

Dahimene et al. beschreiben ein N-terminales Segment in KCNQ1, das wichtig für die Proteinzielsteuerung ist. Kommt es in diesem Bereich zu Mutationen, verbleiben die Proteine im endoplasmatischen Retikulum. Das Segment besteht aus der auch bei den anderen *KCNQ*-Genen konservierten Aminosäurensequenz QxxxYxxLERPxGW (Tabelle 19) [39]. In der vorliegenden Arbeit konnte gezeigt werden, dass diese Sequenz bis auf die letzten beiden Aminosäuren "GW" auch im Zebrafischgenom konserviert ist (Tabelle 19). Dies legt eine Bedeutung für die Proteinzielsteuerung auch beim Zebrafisch nahe.

KCNQ (human)	Aminosäuresequenz (human)	<i>kcnq</i> (Zebrafisch)	Aminosäuresequenz (Zebrafisch)
KCNO1	O CDU V NE I EDD T CM KCE	kcnqa_d	<u>Q</u> GDV <u>Y</u> NF <u>LERP</u> A GL RCF
KCNQI	Z GKA T ME TEKE I GM KCE	kcnqg	<u>Q</u> grv <u>y</u> nf lerp t gw kcf
KCNQ2	ONEL YNWI FODDOW AET	kcnqb_e	<u>Q</u> nfl y na lerp r gw afi
	<u>Q</u> NFLINV <u>LEKP</u> RGW-AFI	kcnqi	<u>Q</u> nfl y nv lerp r gw afi
KCNQ3	Q TLI y da lerp r gw -Afl	kcnqh	<u>Q</u> nli <u>Y</u> da lerp r gw all
KCNQ4	<u>Q</u> NWV <u>Y</u> NV LERP R GW -AFV	kcnqj	<u>Q</u> ncl <u>Y</u> nv lerp r gw afi
KCNQ5	ONVI VNUT FODDOW AFT	kcnqc	<u>Q</u> nyl <u>y</u> nv lerp r aw afv
	QUILINVLERPRGW AFT	kcnqf	<u>Q</u> nyl y nv lerp r sw afi

Tabelle 19: Für die Proteinzielsteuerung verantwortliche Aminosäuresequenz (nach [39], ergänzt um eigene Ergebnisse).

5.2.3.2 Retigabinsensitivität

Schenzer et al. [100] und Wuttke et al. [101] konnten zeigen, dass ein Tryptophanrest (W) im S5-Segment wichtig ist für das Ansprechen auf das Antikonvulsivum Retigabin (Retigabinsensitivität). Das entsprechende Segment ist in *KCNQ2* bis *KCNQ5* konserviert (Tabelle 20). Retigabin aktiviert Kaliumkanäle, eine Funktion für die das Tryptophan-265 wichtig aber nicht alleinig verantwortlich ist [100]. In den Aminosäuresequenzen beim Zebrafisch zeigte sich, dass das Tryptophan an der gleichen Stelle lokalisiert und innerhalb der *kcnq*-Genfamilie konserviert ist (Tabelle 20). Auch das Leucin-266 (L) in KCNQ1 [100] ist in den orthologen Genen des Zebrafisches konserviert. Dies könnte darauf hinweisen, dass die Sensitivität auf Retigabin auch in den orthologen Genen des Zebrafischs durch Tryptophan reguliert wird.

KCNQ (human)	Aminosäuresequenz (human)	<i>kcnq</i> (Zebrafisch)	Aminosäuresequenz (Zebrafisch)
KCNO1		kcnqa_d	GS VVFI H RQ ELIT T LYI
KCNQI		kcnqg	GS VVFI H RQ ELIT T LYI
IZ CNO 2		kcnqb_e	GSVVYAHSKELITA <u>W</u> yi
KCNQ2	GS VVIAHSKELVIA <u>w</u> ii	kcnqi	gs vvya h sk elita<u>w</u>yi
KCNQ3	gs aica h sk el i t a wyi	kcnqh	gs aiyt h sk elita<u>w</u>yi
KCNQ4	gs vvya h sk el i t a wyi	kcnqj	GSVVYAHSKELITA <u>W</u> yi
KCNQ5	Ο Ο 1777 ΤΟ ΙΟΥΡΤ ΤΟ ΙΟΥΓ	kcnqc	GSVVYAHSKELVTAWYI
	GSVVIAHSKELITA <u>w</u> il	kcnqf	gs vvya h sk elvta<u>w</u>yi

Tabelle 20: Aminosäuresequenz des S5-Segments, das für die Retigabinsensitivität verantwortlich ist (nach [100] ergänzt um eigene Ergebnisse). Der entscheidende Tryptophanrest (W) ist hervorgehoben.

5.2.3.3 IQ-Motiv

Der Calciumsensor Calmodulin (CaM) stellt eine zusätzliche Untereinheit des KCNQ2/3-Kaliumkanals dar, was diesen sensitiv für intrazelluläres Calcium macht [102, 103]. Calmodulin bindet dabei an das sogenannte IQ-Motiv, ein Sequenzmotiv, das häufig Isoleucin (I) und Glutamin (Q) enthält (Tabelle 21). Gamper et al. [102], Wen et al. [103] und Yus-Nájera et al. [104] konnten die IQ-Motive IQ₁ und IQ₂ unabhängig voneinander nachweisen.

Vergleicht man die humanen *KCNQ*-Gene mit den Orthologen des Zebrafisches (Tabelle 22), so stellt man fest, dass die IQ-Motive auch beim Zebrafisch vorhanden und relativ konserviert sind. Die IQ-Motive in *KCNQ1* gleichen sich zwischen Mensch und Zebrafisch (*kcnqa_d, kcnqg*), unterscheiden sich aber innerhalb der jeweiligen Spezies von den IQ-Motiven in *KCNQ2-5*.

KCNQ (human)	IQ-Motiv 1 (IQ ₁) (human)	IQ-Motiv 2 (IQ ₂) (human)
KCNQ1	AAS LIQTAWRCYAAE NPDS	TIKVIRRMQ yfvakkkfq qark
KCNQ2	hfekrrnpaag liqsawrfyatn lsrtd	SIRAVCVMR flvskrkfk eslr
KCNQ3	hfekrrkpaae liqaawryyatn pnrld	AIRAVRILQ frlykkkfk etlr
KCNQ4	hfekrrmpaan liqaawrlystd msray	VIRSIRILK flvakrkfk etlr
KCNQ5	HFEKRRNPAAN LIQCVWRSYAAD EKSVS	VIRAIRIMK FHVAKRKFK ETLR

Tabelle 21: IQ-Motive IQ₁ und IQ₂ der humanen *KCNQ1* (nach [104]) und *KCNQ2-5* (nach [102]).

KCNQ (human)	<i>kcnq</i> (Zebrafisch)	IQ-Motiv 1 (IQ ₁) (Zebrafisch)	IQ-Motiv 2 (IQ ₂) (Zebrafisch)
KCNQ1	kcnqa_d	AAAS LIQTLWRCYACE KSDS	AIKVIRRMQ YFVARRKFQ QARK
	kcnqg	AAAS LIQASWRCFAL LNPD	AIRVIQRMY YFVARKKFQ QARK
KCNQ2	kcnqb_e	PAAG LIQAAWRFHATN LSRT	TIRSICVMR fllskrrfk eslr
	kcnqi	PAAG LIQAAWRFYATN LNRT	TIRAVCIMR FMVSKRKFK ESLR
KCNQ3	kcnqh	PAAS liqaawryystn pvre	VIRALRIIM fllnkkrfk etlr
KCNQ4	kcnqj	PAAN liqaawrlystd aqhs	LIRAVRILK flvakrkfk etlr
KCNQ5	kcnqc	PAAS liqaawrlystd lsrsy	VIRAIRIMK FHVAKKKFK ETLR
	kcnqf	PAAC LIQGVWRSYAAD ENSV	VIRAVRIMK FHVAKKKFK ETLR

Tabelle 22: Orthologe Aminosäuresequenzen der IQ-Motive.

5.2.3.4 C3-Domäne

Alle KCNQ-Untereinheiten enthalten eine C1-Domäne, die Calmodulin und Phosphatidylinositolbisphosphat bindet und eine C2-Domäne, die für die Tetramerisation und die Interaktion der Untereinheiten wichtig ist [105]. Pan et al. konnten zeigen, dass im Gegensatz dazu die C3-Domäne nur bei KCNQ2 und KCNQ3 von Wirbeltieren vorhanden ist (Tabelle 23) [105]. Diese C3-Domäne spielt eine wichtige Rolle in der Lokalisation von KCNQ2/KCNQ3 in den so genannten "*axonal initial segments*" (AIS) und im Bereich der Ranvier'schen Schnürringe [105]. Innerhalb der C3-Domäne befindet sich ein Bereich, der auch bei Natriumkanälen eine wichtige Funktion in der Lokalisation spielt, die so genannte Ankyrin-G-Bindungsstelle [105]. Die C3-Domäne befindet sich jeweils im letzten Exon der entsprechenden Gene. *kcnqb_e*, *kcnqh* und *kcnqi* sind orthologe Gene des Zebrafisches zu *KCNQ2* und *KCNQ3* und sind in ihrer Aminosäuresequenz zu 100% konserviert (Tabelle 23). Dies legt die Vermutung nahe, dass auch die orthologen Proteine zu KCNQ2 und KCNQ3 in den Bereichen der AIS und des Ranvier'schen Schnürrings aufzufinden sind.

KCNQ (Mensch)	C3-Domäne (Mensch)	kcnq (Zebrafisch)	C3-Domäne (Zebrafisch)
KCNQ2	akvr pyiaegesd tdsdlctp	kcnqb_e	CTRIR PYLAEGESD TDSD
		kcnqi	CTKVR pyiaegesd tdsd
KCNQ3	MREK RYLAEGETD TDTDPFTP	kcnqh	WGRDR RYLAEGETD TDTD

Tabelle 23: Konservierter Bereich der C3-Domäne, hervorgehoben ist die Ankyrin-G-Bindungsstelle (nach [105] ergänzt durch eigene Ergebnisse).

Zusammenfassend kann gesagt werden, dass verschiedene essentielle Bereiche in den *KCNQ*-Genen zwischen Mensch und Zebrafisch konserviert sind und daher eine ebenso konservierte Funktionalität

angenommen werden kann. Daher erscheint der Zebrafisch als gutes Modelltier zur funktionellen Untersuchung der menschlichen Kaliumkanalfamilie *KCNQ*.

5.3 Spleißvarianten

Beim Zebrafisch wurden in den Genen *kcnqb_e*, *kcnqf*, *kcnqi* und *kcnqj* alternative Exons gefunden. In den letzten Jahren konnten diverse Studien nachweisen, dass alternatives Spleißen in vielen Organismen vorkommt, um verschiedene essentielle biologische Prozesse zu regulieren. Zwischen den Spezies sind unter den orthologen Genen die Spleißvarianten in unterschiedlichem Ausmaß konserviert [60]. Bei den menschlichen *KCNQ*-Genen konnte bis jetzt bei jedem Gen dieser Genfamilie mindestens eine Spleißvariante nachgewiesen werden [35, 36, 45, 56].

5.3.1 KCNQ2

Die Untersuchungen am Tiermodell Zebrafisch zeigen, dass bei $kcnqb_e$ fünf alternative Exons vorhanden sind, wohingegen kcnqi nur ein alternatives Exon 12 besitzt. In einer Variante des $kcnqb_e$, in der die beiden Exons 17 und 18 entfernt sind, kommt es zu einer Verschiebung des Leserasters.

Im Gehirn wurden vier verschiedene Spleißvarianten des humanen *KCNQ2* identifiziert. Bei der ersten Spleißvariante handelt es sich um ein zusätzliches Exon, das für die Aminosäuresequenz **S**SQTQTYGAS kodiert [30]. Es handelt sich hierbei um das Exon 9, das beim Zebrafisch (*kcnqb_e* und *kcnqi*) nicht vorhanden ist. Ein weiteres alternatives Exon kodiert die Aminosäuresequenz **S**KGSPCRGPLCGCCPGRS [30], das dem Exon 12 des *KCNQ2* entspricht. Auch die Sequenz **G**ILGSGFALK wird von einem alternativen Exon kodiert [30], wobei es sich hierbei nicht um ein vollständiges Exon handelt, sondern nur um den ersten Teil von Exon 7. Bei der vierten Variante handelt es sich um eine Deletion einer einzelnen Base in Position 2110 und um einen Basenaustausch in Position 2120 von G zu A. Durch die Punktmutation wird der Leserahmen verschoben, wodurch das resultierende Protein aus 930 statt 872 Aminosäuren besteht [30]. Durch Transfektion in COS-Zellen konnte nur durch zwei der vier Spleißvarianten ein Kaliumstrom generiert werden [30]. Smith et al. konnten eine lange und eine kurze Spleißvariante von *KCNQ2* nachweisen, die sich im C-Terminus unterscheiden (Abbildung 23). Dabei zeigte sich, dass die lange Variante in differenzierten Neuronen exprimiert wird, die kurze Variante dagegen, die keine Kaliumströme erzeugen kann, verstärkt im fetalen Gehirn und in Hirntumoren [36].

Die Ergebnisse der vorliegenden Studie deuten darauf hin, dass auch beim Zebrafisch verschiedene Spleißvarianten in jeweils unterschiedlichen Entwicklungsstadien bevorzugt exprimiert werden. Weitere Forschung kann so eventuell Aufschlüsse über die Funktion der einzelnen Spleißvarianten und deren Einfluss auf die Entwicklung geben. MVQKSRNGGVYPGPSGEKKLKVGFVGLDPGAPDSTRDGALLIAGSEAPKRGSILSKPRAGGAGAGKPPKRNAFY RKLQNFLYNVLERPRGWAFIYHAYVFLLVFSCLVLSVFSTIKEYEKSSEGALYILEIVTIVVFGVEYFVRIWAA **S1 S**2 GCCCRYRGWRGRLKFARKPFCVIDIMVLIASIAVLAAGSQGNVFATSALRSLRFLQILRMIRMDRRGGTWKLLG **S**3 S4 SVVYAHSKELVTAWYIGFLCLILASFLVYLAEKGENDHFDTYADALWWGLITLTTIGYGDKYPQTWNGRLLAA **S**5 Pore TFTLIGVSFFALPAGILGSGFALKVQEQHRQKHFEKRRNPAAGLIQSAWRFYATNLSRTDLHSTWQYYERTVTV **S6** SOTOTYGASRLIPPLNOLELLRNLKSKSGLAFRKDPPPEPSPSOKVSLKDRVFSSPRGVAAKGKGSPOAO PMYS RYRRRAPATKQLFHFLFSICS. (Q2S) TVRRSPSADQSLEDSPSKVPKSWSFGDRSRARQAFRIKGAASRQNSEEASLPGEDIVDDKSCPCEFVTEDLTPG LKVSIRAVCVMRFLVSKRKFKESLRPYDVMDVIEQYSAGHLDMLSRIKSLQSRVDQIVGRGPAITDKDRTKGPA EAELPEDPSMMGRLGKVEKQVLSMEKKLDFLVNIYMQRMGIPPTETEAYFGAKEPEPAPPYHSPEDSREHVDRH GCIVKIVRSSSSTGQKNFSAPPAAPPVQCPPSTSWQPQSHPRQGHGTSPVGDHGSLVRIPPPPAHERSLSAYGG PYIAEGESDTDSDLCTPCGPPPRSATGEGPFGDVGWAGPRK. (02L)

Abbildung 23: Lange und kurze Spleißvariante des menschlichen *KCNQ2* (nach [36]). Die Transmembrandomänen (S1-S6) sind unterstrichen. Der Bereich, der für die Retention im endoplasmatischen Retikulum kodiert (RYRR) ist umrandet.

5.3.2 KCNQ4

Bei *kcnqj* kommt eine Spleißvariante vor, in der Exon 9 aus zwei verschiedenen Alternativen a und b besteht. Bei *KCNQ4* ist eine seltene Spleißvariante bekannt, bei der Exon 9 fehlt. Dabei kommt es zu einem Verlust von 54 Aminosäuren, die den Leserahmen jedoch nicht verändern. Auch bei der Maus sind vier Spleißvarianten bekannt, die das Exon 9 betreffen. Dabei handelt es sich jeweils um drei verschiedene Varianten von Exon 9 und eine Variante, in der dieses ausgelassen wird. Alle bekannten Varianten haben den gleichen C-Terminus (Abbildung 24) [106].

KCNQ4_v1	AYLTATWYYYDSILPSFRELALLFEHIQRARNGGLRPLEVRRAPVP
	DGAPSRYPPVATCHRPGSASFCPGESSRMGIKDRIRISSSQ
KCNQ4_v2	AYLTATWYYYDSILPSF SQMFSNKRSFFRIHASWRP SSRMGIKDRIRISSSQ
KCNQ4_v3	AYLTATWYYYDSILPSF SWREEEAAGPRCLSL SSRMGIKDRIRISSSQ
KCNQ4_v4	AYLTATWYYYDSILPSF*SSRMGIKDRIRISSSQ

Abbildung 24: Alternative Exons des Kcnq4 der Maus (nach [106]). Dargestellt ist jeweils die Aminosäuresequenz.

5.3.3 KCNQ5

Beim Zebrafisch wurden bei *kcnqc* keine alternativen Exons gefunden, jedoch bei *kcnqf*, wobei es sich um Exon 8 handelt, von dem zwei Varianten vorkommen.

Beim orthologen menschlichen *KCNQ5* konnte ein alternatives Exon nachgewiesen werden. Dabei kommen zwei Varianten vor allem in der quergestreiften Muskulatur vor, eine andere Variante vor allem im Gehirn (Abbildung 25) [107]. In der vorliegenden Studie stellte sich heraus, dass es sich hierbei um Exon 9 handelt, das auch in der Maus alternativem Spleißen unterliegt [56]. Es existieren dabei zwei alternative Varianten (I und III) des Exon 9 und eine Variante (II), bei der Exon 9 nicht vorhanden ist.

I	hKCNQ5	361	HLKALHTCSPTKKEQGEASSSQKLSFKERVRMASPRGQSIK
11	hKCNQ5	361	HLKALHTCSPTNQKLSFKERVRMASPRGQSIK
III	hKCNQ5	361	HLKALHTCSPTNKFCSNKQKLFRMYTSRKQSQKLSFKERVRMASPRGQSIK

Abbildung 25: Drei Spleißvarianten von Exon 9 des humanen *KCNQ5* (nach [107]), Variante I wird im Gehirn exprimiert, wohingegen Variante II und III vor allem in der quergestreiften Muskulatur zu finden sind.

5.4 Ausblick

Um die Expressionsorte verschiedener Gene beim Zebrafisch sowie Zebrafischembryo zu untersuchen eignet sich das Verfahren der in-situ-Hybridisierung [108, 109]. Hierbei wird die cDNA in cRNA umgeschrieben und mit einem Marker ("Tag") versehen, der anschließend sichtbar gemacht werden kann. Die cRNA dient somit als Sonde für die Hybridisierung. Durch den Vektor pCR®II-TOPO, der auch in dieser Arbeit verwendet wurde, kann sowohl antisense als auch sense cRNA erzeugt werden, die bei den in-situ-Hybridisierungen Verwendung finden [108, 109]. Besonders das Digoxigenin-System findet bei der *in-situ-Hybridisierung* von Zebrafischembryonen häufig Anwendung [108, 109]. Die Methode der DIG-Markierung basiert auf einem Steroid, das aus dem Fingerhut (Digitalis Purpurea und Digitalis lanata) isoliert wird. Die Blüten und Blätter dieser Pflanze sind die einzigen natürlichen Quellen für Digoxigenin, wodurch der Anti-DIG-Antikörper an keinem anderen biologischen Material bindet. Die DIG-Nukleotide können in die Nukleinsäureproben mittels DNA-Polymerasen, RNA-Polymerasen oder terminalen Transferasen eingebaut werden. Die hybridisierten Dig-Proben können durch Anti-Digoxigenin-Antikörper (Anti-DIG) detektiert werden, wobei die Antikörper mit Enzymen wie alkalischer Phosphatase oder Peroxidase konjugiert sind. Wird beispielsweise alkalische Phosphatase verwendet, kann diese durch Substrate wie NBT (Nitroblau-Tetrazoliumchlorid) und BCIP (5-Brom-4-chlor-3-indoxylphosphat) visualisiert werden [110].

Durch genetische Screeningmethoden beim Zebrafisch konnten bereits viele Mutationen entdeckt werden, mit deren Hilfe Einblicke in die Physiologie und Pathologie von Vertebratengenen gewonnen werden konnten [79]. Man unterscheidet zwei wichtige Verfahren zur genetischen Manipulation, zum einen die so genannten *reverse genetic approaches* und zum anderen die so genannten *forward genetic screens*, wobei bei letzteren die Gene nicht bekannt sind und daher nicht gezielt untersucht werden können [111].

Reverse genetic approaches dienen der gezielten Bestimmung von Genen, deren Sequenz bekannt ist [111]. Eine weit verbreitete Methode sind so genannte Morpholinos, die zum *Knockdown* der Genexpression führen. Morpholinos sind chemisch modifizierte Antisense-Oligonukleotide, die in Embryonen injiziert werden und an die Ziel-mRNA binden. Dadurch blockieren Morpholinos entweder die Translation, indem sie eine komplementäre Sequenz zur 5'-UTR oder zum Initiationscodon besitzen [112] oder sie verhindern das Spleißen, indem sie eine komplementäre Sequenz zu Exon-Intron-Grenzen besitzen [113]. Morpholinos führen normalerweise zu einem Funktionsverlust eines oder mehrerer Gene (*loss of function*) [66] [111]. Die Methode des *Knockdown* von Genen durch Morpholinos wird genutzt, um die Funktion von verschiedenen Genen *in vivo* zu erforschen und dadurch im Verlauf wertvolle Informationen über medikamentöse Therapieansätze und deren Wirkungsweise zu erlangen [114]. Im Laufe mehrerer Zellteilungen werden die Morpholinos zunehmend verdünnt, so dass sich die Aussagen dieser Studien auf die frühen Entwicklungsstufen beziehen [111]. Durch diese Methode kann in weiterführenden Studien zur *kcnq*-Genfamilie beim Zebrafischembryo versucht werden, den durch Mutationen bedingten Pathomechanismus beim Menschen besser zu verstehen.

Auch das *TILLING (target induced local lesions in genomes)* ist eine Methode der *reverse genetic approaches*. Durch Ethylnitrosurea (ENU) oder Ethylmethansulfonat (EMS) werden Punktmutationen erzielt und anschließend durch Sequenzierung einzelner bekannter Gene detektiert [111, 115]. Durch *TILLING* lassen sich in kurzer Zeit viele Mutationen in einzelnen Genen nachweisen und so potentielle *Knockout*-Tiere züchten [116]. Der Zebrafisch ist das zweite Modelltier, an dem diese Methode der *reverse genetic approaches* angewendet wurde [115]. Durch *TILLING* erhofft man sich neue Erkenntnisse über den Pathomechanismus, der durch Punktmutationen in Genen ensteht und sich dabei nicht auf die frühen Entwicklungsstufen des Tiermodells bezieht [66].

Die Techniken der *reverse genetic approaches wie* Morpholinos und *TILLING* sind dabei nur sinnvoll anwendbar, wenn die interessierenden Gene bereits kloniert und sequenziert sind. Mit Hilfe dieser Methoden kann man in weiteren Studien ätiologische Zusammenhänge zwischen Mutationen in den *kcnq*-Genen des Zebrafisches und der Entwicklung von kardiovaskulären, neurologischen oder otologischen Erkrankungen aufklären. Durch diese Studien könnten in der Folge Funktion und Bedeutung von Genmutationen beim Menschen, ihre Rolle in der Entstehung genetischer Erkrankungen und damit mögliche neue therapeutische Ansätze näher untersucht werden.
6 Anhang

6.1 Primer

6.1.1 kcnqa_d

Ina27:	5'-ttgtgctggtggtgtttttcgggact-3'
Ina28:	5'-cgccccaccacagagcatcagcat-3'
Ina29:	5'-tcctgggtctgatcttctcatcgtat-3'
Ina30:	5'-cgtctgtaaccacaggcagaggaat-3'
Ina85:	5'-gtctgcaggctgccggagcaaata -3'
Ina86:	5'-tactgcatctttttcagccaaataca-3'
Ina87:	5'-ggacgggccggacatctctcga -3'
Ina88:	5'-cagcgtgtgatccagccttctct-3'
Ina89:	5'-tctccacacctttctcaggcagaa-3'
Ina90:	5'-tccagacggatgagccgggct-3'
Ina129:	5'-gtgctggtggtgtttttcgggact-3'
Ina146:	5'-ctgagaaaggtgtggagaaggagt-3'
Ina147:	5'-aggagcccggctcatccgtct-3'
Ina155:	5'-cagagaaggctggatcacacgct-3'
Ina156:	5'-atctacacctcagtgtctccctgt-3'
Ina157:	5'-acagatgccacgaccacgattagat-3'
Ina251:	5'-cctcagtgtttgactctgtgtgcgt-3'
Ina259:	5'-aaatatgtgggcattaaaggccgtct-3'
Ina260:	5'-tggccttcccgatccacgtctga-3'

6.1.2 kcnqb_e

Ina5:	5'-cgaaagtcggctttgtgggtctgga-3'
Ina6:	5'-ggatctggagaaacctcagactcct-3'
Ina7:	5'-tggccgctggctcacaggggaat-3'
Ina8:	5'-catgtggaaaaaaggtctgttcgtgat-3'
Ina9:	5'-gtcgtaaccccgctgcaggtcttat-3'
Ina10:	5'-cgggacagcatgtccagatgtcct-3'
Ina11:	5'-agagagcctcagaccctacgacgt-3'
Ina12:	5'-gtcagagtctgtatctgattcgccct-3'
Ina13:	5'-ggacccaacgggactctgactga-3'
Ina14:	5'-acttcattccaggccacatcctgt-3'
Ina75:	5'-acgacgtgatggatgtgatagagca-3'

- Ina76: 5'-tgctcatcctgctggtgccatgaggta-3' Ina111: 5'-agcttcggtttctgatcgtgggat-3' Ina113: 5'-gaccaagagcctgagcttcacaga-3' Ina114: 5'-catgcttgggtcctcaggcacct-3' Ina118: 5'-gaaccaggcaggaaaacaccagca-3' Ina 153: 5'-atgtacaaggcgctctccgagct-3' Ina195: 5'-gctactttacacactcgtttggatct -3' Ina196: 5'-aagcaccatgatatcgatgatacagaa -3' Ina220: 5'-aggaaggactctcagatagatgtca-3' Ina230: 5'-cccatttgtgccgtgtatatgctga-3' 5'-gagtccgggtgacagatgtggca-3' Ina231: 5'-aaacgtccatcagctacatccagga-3' Ina246: Ina261: 5'-agaggttataactgtgaatttctgcca-3'
- Ina262: 5'-tggactgaaggtttttgatacggga-3'

6.1.3 kcnqc

Ina31:	5'-cagaactacctctacaatgtcctgga-3'
Ina32:	5'-ttctgtctgtgctgctcttggacct-3'
Ina33:	5'-gggcatctcgttcttcgctttgcct-3'
Ina34:	5'-agtctgcagactcttgatacgacataa-3'
Ina35:	5'-aagatgtgatcgagcaatactccgct-3'
Ina81:	5'-atgagettgatgeetgeacttgtea-3'
Ina82:	5'-cggagcctcctgcacctgttgta-3'
Ina83:	5'-tcgcgggacgatgaacaacgcga-3'
Ina84:	5'-tccagtattaggagacagtgattgga-3'
Ina91:	5'-tatgtcgtatcaagagtctgcagacta-3'
Ina92:	5'-ctgaatgtgggtaaccggtaccca-3'
Ina179:	5'-tagtcggaggtctgatccagctca-3'
Ina183:	5'-gcttggccgcgtctgtaaagtaga-3'
Ina184:	5'-catgagcatcagtggatcaatgtca-3'
Ina185:	5'-cagtctccacagtgaggttgctgt-3'
Ina197:	5'-tccaccaacagagcaacgacacca-3'

Ina252: 5'-gcgtttccagcctgcgctggtga-3'

6.1.4 kcnqf

Ina15: 5'-ccggaggattcagaactacctgtaca-3'

Ina16:	5'-tccaccagataaaccaggaaagagga-3'
Ina17:	5'-ttctgggatctgtagtttatgcacaca-3'
Ina18:	5'-ggtttgcagactcttaattcggcaga-3'
Ina123:	5'-ctctcccgtcttccggagataca-3'
Ina124:	5'-accaagcagccaaacaccagcaca-3'
Ina134:	5'-ttgccttgaaggttcaagagca-3'
Ina137:	5'-ctcatccacagtaacgttagcctca-5'
Ina172:	5'-gcagcacagacagaagcacttcgagaa-3'
Ina173:	5'-aacctgccggtagatgtccagca-3'
Ina174:	5'-aggaaactctgcgcccatatgatgt-3'
Ina175:	5'-gttctggttgaggttcatgagttcat-3'
Ina176:	5'-ggtgtgcaaggttgaaagacaggt-3'
Ina177:	5'-gggttgaatgagatcctgcactgat-3'
Ina178:	5'-tatcaaagattcattccatcagaggca-3'
Ina207:	5'-agcatgctgggaagggtgtgcaaggt-3'
Ina208:	5'-tgctctgccgaattaagagtctgca-3'
Ina209:	5'-tcttaatgagttgtacactctaagaatc-3'
Ina234:	5'-caggactcgatccatcagtgctga-3'
Ina263:	5'-gaggatctgccgtctgcgctgaa-3'
Ina264:	5'-tgccggtagatgtccagcaacga-3'

6.1.5 kcnqg

Ina1:	5'-cgaaagtcggctttgtgggtctgga-3'
Ina2:	5'-ccaccacagagcatcggcgtagct-3'
Ina3:	5'-gtatctggcagagaaggatgcggt-3'
Ina4:	5'-cacatcatatggcttacgtgcttgct-3'
Ina79:	5'-gacgtgtttataattcttggaga-3'
Ina80:	5'-cgcatccttctctgccagata-3'
Ina97:	5'-cctccatccccgcatgtccgtgtaca-3'
Ina98:	5'-tgaggaaccttgtctccgtagcca-3'
Ina100:	5'-ggttgaggagagactttcacgcct-3'
Ina102:	5'-acccgtgggtctctccaagaaatta-3'
Ina107:	5'-atggtgcgcatcaaggagctgca-3'
Ina133:	5'-tgaccacagacggaccacgtact-3'
Ina150:	5'-agcagtattcacagggccatctca-3'
Ina169:	5'-cacggatggctgctcgatgagaa-3'
Ina170:	5'-cgcacatcatatggcttacgtgctt-3'

5'-gttttgaagtgagaaatcaggcgtga-3' Ina182: 5'-atcatgtttctctgtcttcgctatct-3' Ina189: 5'-tggaggtgtggagaactggaacga-3' Ina190: 5'-acacatgagcgactggaatgagca-3' Ina191: 5'-gatteteategageagecatecgt-3' Ina193: 5'-gtactactttgtggccagaaagaagt-3' Ina194: 5'-cgatccacatgcagcattcgcaga-3' Ina201: 5'-tcatctgatgctgaacctgagccaa-3' Ina204:

6.1.6 kcnqh

Ina19:	5'-atccagaacctcatttacgacgcgct-3'
Ina20:	5'-ccttctcgaccagatacaccaggaaa-3'
\rightarrow in der Sec	quenz: 5'-ccttctcgaccaggtacaccaggaaa-3'
Ina21:	5'-ctgatcacagcgtggtacatcggct-3'
Ina22:	5'-taggccttcattctgaaagcagttcta-3'
Ina23:	5'-agagtccatcaaaagagggcaaacca-3'
Ina24:	5'-tgttgcatatgcatgtccaccaggaa-3'
Ina25:	5'-caggtggaagacatggagaagaaact-3'
Ina26:	5'-tgggtgtaaagggatcagtgtctgta-3'
Ina52:	5'-gtggtagagcagcgcccatcct-3'
Ina53:	5'-gttggggccgtgaccgccgatat-3'
Ina55:	5'-atctaaatatgtatccacgtcacgct-3'
Ina60:	5'-ccccgcgcactgctccaggtct-3'
Ina109:	5'-cctccctctctgaacgaggtcct-3'
Ina110:	5'-cgcagcgacgtggccaacacatt-3'
Ina132:	5'-gageegaateettetegtgetet-3'
Ina188:	5'-tgttgttaatatcgacagaatcagacat-3'
Ina198:	5'-agcagtctcctagacaggagtcgt-3'
Ina199:	5'-cgtcatgttttgtgctgtacaagtct-3'

6.1.7 kcnqi

Ina37:	5'-tcgtgacgatcgtggtgtttggagt-3'
Ina38:	5'-agtcctgctgcaggatttctccgtt-3'
Ina39:	5'-taaagttcaggaacagcatcggcaga-3'
\rightarrow in der Se	quenz: 5'-gaaagttcaggaacagcatcggcaga-3'
Ina40:	5'-agttctgtcgggacgccgctcct-3'

- Ina41: 5'-gaagacagtccatctaaagtgcccaa-3'
- Ina42: 5'-ctgtttctccactttcccgagtcgt-3'
- Ina 108: 5'-ttccgcttggacaccataaacctca-3'
- Ina130: 5'-cctgaaggagcgagtgttctcca-3'
- Ina131: 5'-tcgtcccatcatgctgggatcct-3'
- Ina211: 5'-atatcgacagcagcatccggctga-3'
- Ina254: 5'-ccttcagatttaaaggagcggcgt-3'
- Ina255: 5'-aatcccatttctcattcatctctct-3'
- Ina256: 5'-catgatgggacgactcgggaaagt-3'
- Ina257: 5'-gatctccatgacggctgcgcct-3'
- Ina258: 5'-agatggaggcgatcagcaccatga-3'

Degenerierte Primer :

Pimephales promelas:

Ina158: 5'-gccgatgtaccaggcggtgatca-3'

Salmo salar:

Ina163:	5'-gcagtccagagtggatcagattgt-3'
---------	--------------------------------

6.1.8 kcnqj

Ina93:	5'-agcaaacgctacagaaagttgcagaa-3'
Ina94:	5'-ttgagtagagacgccatgcagcct-3'
Ina95:	5'-gctctgaaagtgcaggagcagcat-3'
Ina96:	5'-ctgtttctctactttcaccacgcgt-3'
Ina127:	5'-taatgatcatagtacagatgaatgcatta-3'
Ina128:	5'-gaaagcaccagacagctgaacacta-3'
Ina135:	5'-taaaggagaagccttgctccggat-3'
Ina139:	5'-ggagtcggagaagagcacactga-3'
Ina140:	5'-tcactccatgttaccgctgtctga-3'
Ina141:	5'-gccattccatctgataagaagctga-3'
Ina168:	5'-tcctgaactggaacagatggatgaat-3'
Ina180:	5'-ctcagcactcgtatctcacagcca-3'
Ina200:	5'-tgagttgccctgatgcagaggtca-3'
Ina253:	5'-tagtccttccaataacggaggcatca-3'

Teilweise wurde ein Poly A' Primer zu verschiedenen individuellen Primern verwendet.

6.2 Gene

6.2.1 kcnqa_d

6.2.1.1 DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen:

Ina156

ATCTACACCTCAGTGTCTCCCTGT DNA: GAAAAATTCATCTCATTTAGACTATTTTTACCCAAGAAACAGAGCTCGGCG DNA: TTCCATCATGTACCATCCGACCCCTCTGCTGTCCCGCGGCCGCACGTTCGG M Y H P T P L L S R G R T F G +2: DNA: CTGGTCGTCCTCCAGCTCCAGCATCAAACTGAAGCAAAATGGTCATGAATT +2: W S S S S S S S I K L K Q N G H E F DNA: CCCAAACCAGAGCTCATTTCACAGCCTGGAGGAGGCAGCAGTGTCCAGCGC +2: P N Q S S F H S L E E A A V S S A DNA: GTCCCGCTCTCCTGTTTCACTGGAACTGGAGCCTGTAGTGAATAATGGATC +2: S R S P V S L E L E P V V N N G S DNA: AAGCGCACCCGTCGCTCCAGGTGGCCACACAAAAGAGCCACCGGCCCACAG S A P V A P G G H T K E P P A H S +2: DNA: CCAGCGCCGGCCAGCCCGTCTCCATCCACAGCGGGCCCGGAGAGACGCTAGC +2: Q R R Q P V S I H S G P G E T L A DNA: CGCCGCTGCACGCTTCACGCACAGCCCTTACCACGCCAAGACTAGCATGCA +2: A A A R F T H S P Y H A K T S M Q DNA: GGGCGATGTGTACAACTTCCTAGAGAGACCCGCCGGCCTGAGGTGCTTCCT +2: G D V Y N F L E R P A G L R C F L DNA: GTATCACTTCCTCGTG**TT**CCTGATGGTCCTGGTGTGTCTGATCTTCAGTGT +2: YHFLVFLMVLVCLIFSV DNA: GTTGTCCACCATTGAACAGTATGCAGACTTCGCCACAGGATCTCTGTTCTG +2: L S T I E Q Y A D F A T G S L F W _______ Inal29 _____ DNA: GATGGAGATTGTGCTGGTGGTGTGTTTTTCGGGACTGAGTATGTGGTGCGGCT +2: ME IVLVVFFGTEYVVRL Ina85 Ina259 DNA: CTGGTCTGCAGGCTGCCGGAGCAAATATGTGGGCATTAAAGGCCGTCTGCG +2: W S A G C R S K Y V G I K G R L R Ina157 DNA: CTTCATCAGGAAACCCATCTCCATTATAGATCTAATCGTGGTCGTGGCATC +2: FIRKPISII DLIVVVAS DNA: TGTTGTTGTTCTCAGCGTCGGCTCTAATGGACAAGTGTTTGCCACGTCTGC +2: V V V L S V G S N G Q V F A T S A DNA: AATCAGAGGGATCCGCTTCCTCCAGATCTTGCGGATGCTGCATGTGGATCG +2: I R G I R F L Q I L R M L H V D R DNA: GCAGGGAGGAACGTGGAGGCTTCTGGGATCAGTGGTTTTTATCCATCGGCA +2: Q G G T W R L L G S V V F I H R Q Ina29 -----DNA: **GG**AGCTGATCACCACACTGTACATCGGGT**TCCTGGGTCTGATCTTCTCATC** +2: E L I T T L Y I G F L G L I F S S Ina86 DNA: GTATTTTGTGTATTTGGCTGAAAAAGATGCAGTAGATGAAGAAGGGAAGAC +2: Y F V Y L A E K D A V D E E G K T Ina28 DNA: AGGTTTCTCCAGCTATGCTGATGCTCTGTGGTGGGGGGCGTGGTTACTGTGAC +2: G F S S Y A D A L W W G V V T V T Ina260 ┥ 🗕 DNA: CACGATCGGCTACGGAGACAAAGTCCCTCAGACGTGGATCGGGAAGGCCAT +2: TIGYGDKVPQTWIGKAI

+2: A S C F S V F A I S F F A L P A DNA: CATTCTGGGGTCTGGTTTTGCTCTTAAAGTCCAGCAGAAACAGAGGCAAAA +2: I L G S G F A L K V O O K O R O K DNA: GCATTTTAACCGTCAGATTCCAGCCGCGGCCTCTCTAATACAGACGCTGTG +2: H F N R Q I P A A A S L I Q T L W DNA: GAGATGCTACGCTTGCGAAAAGTCAGACAGCTGTACGGCTACGTGGAAGAT +2: R C Y A C E K S D S C T A T W K M DNA: GTACGTGCTGACGGGCGACTATATTCCCATTATAAACTCTGAAAACTCCAG +2: Y V L T G D Y I P I I N S E N S S DNA: TCCGGGAAACTTCAGACGACT**GA**GTAAACGCTACAAACGCAAACCCAAATC +2: PGNFRRLSKRYKRKPKS DNA: CCTGCGCGACAACGGCTCCCTGGGTCCTGCTGGAGAACGGGCTCTGTCCAT +2: L R D N G S L G P A G E R A L S I DNA: CCCGCAGATCACCTACGACCACATCGAGGATAAAGACGCTGTGTTTACAGA +2: P Q I T Y D H I E D K D A V F T D DNA: CGACTCTACAGACCGTCAGCGATCATGGTCCGCTTTCACTCTCAGCTGTCC +2: D S T D R Q R S W S A F T L S C P Ina87 -DNA: TTCTTCTCCAGTGAAGAAAAAGCTGGACGGGCCGGACATCTCTCGAAAACAA +2: S S P V K K K L D G P D I S R N N Ina30 DNA: CAGTCTGGTGGATGAGCTGGACTTCACCACTGAGGACATTCCTCTGCCTGT +2: S L V D E L D F T T E D I P L P V -DNA: GGTTACAGACGCCTCACAAACTTTCCCATGCACACAGATCCGCCATCAAGGT +2: V T D A S Q L S H A H R S A I K V DNA: CATCAGACGCATGCAGTACTTTGTGGCTCGGCGGAAATT**TC**AGCAAGCGAG +2: I R R M Q Y F V A R R K F Q Q A R DNA: GAAACCGTACGACGTGCGGGACGTGATCGAGCAGTATTCACAGGGACATCT +2: K P Y D V R D V I E Q Y S Q G H L Ina155 — Ina88 ┥ DNA: CAACATGATGGTGCGCATTAAGGAGCTGCAGAGAAGGCTGCACACACGCT +2: N M M V R I K E L Q R R L D H T L Ina89 ┥ 🗕 Inal46 — DNA: GGGGAAACCTGGAATATTTCTGCCTGAGAAAGGTGTGGAGAAGGAGTATTA +2: G K P G I F L P E K G V E K E Y Y DNA: TACAGTAGGAGCCCGGCTCATCCGTCTGGAAGATAAGGTGTTCCAGATGGA +2: T V G A R L I R L E D K V F Q M D DNA: CGTGAAGCTGGAGAACATTCAGAAGATCCTGCTGGAGCATTTCCAACCCAA +2: V K L E N I Q K I L L E H F Q P K DNA: ATCCGAGCTCCTCCAGAGGCCGAGTCCGCTGAGCTCGCGGGTCACCGTCAT +2: S E L L Q R P S P L S S R V T V M In251 DNA: GAAGAGACTGGGCGTCAGTATGGATGAAACCCAATGAGACGCACACAGAGT +2: K R L G V S M D E T Q * DNA: CAAACACTGAGGGAAACAAACACAGGCCCGGACCAGGAGCCTGACCATTAC DNA: CCTTCTGAACATCATACAAGTGTGGCCACATGAGCCGAATGTGGCCTTTATA DNA: GATGGCGATGGGGATGGGAGTTTTCATTATTTGGACGCCATCTCTCGGTT

DNA: GGATTGGTTTTATGGGTCGGTGATC

(die Klone CD605499 und CD595089 wurden freundlicherweise von Dr. Song Huaidong zur Verfügung gestellt)

	Π	
KCNQ1 kcnqa_d	MAAASSPPRAERKRWGWGRLPGARRGSAGLAKKCPFSLELAEGGPAG-GALYAPIA -MYHPTPLLSRGRTFGWSSSSSSIKLKQNGHEFPNQSSFHSLEEAAVSSASRSPVSLELE	55 59
KCNQ1 kcnqa_d	PGAP-GPAPPASPAAPAAPPVASDLGPRPPVSLDPRVSIYSTRRPVLARTHVQG PVVNNGSSAPVAPGGHTKEPPAHSQR-RQPVSIHSGPGETLAAAARFTHSPYHAKTSMQG * . *.:.*.: * * * . * ***: :: *: * *: *: *: *: *: *: *: *: *: *: *	108 118
	2 3	
KCNQ1 kcnqa_d	RVYNFLERPTGWKCFVYHFAVFLIVLVCLIFSVLSTIEQYAALATGTLFWMEIVLVVFFG DVYNFLERPAGLRCFLYHFLVFLMVLVCLIFSVLSTIEQYADFATGSLFWMEIVLVVFFG **********************************	168 178
	2 3	
KCNQ1 kcnqa_d	[4] TEYVVRLWSAGCRSKYVGLWGRLRFARKPISIIDLIVVVASMVVLCVGSKGQVFATSAIR TEYVVRLWSAGCRSKYVGIKGRLRFIRKPISIIDLIVVVASVVVLSVGSNGQVFATSAIR ************************************	228 238
	5 6	
KCNQ1 kcnqa_d	GIRFLQILRMLHVDRQGGTWRLLGSVVFIHRQELITTLYIGFLGLIFSSYFVYLAEKDAV GIRFLQILRMLHVDRQGGTWRLLGSVVFIHRQELITTLYIGFLGLIFSSYFVYLAEKDAV	288 298
	5 6	
KCNQ1 kcnqa_d	U NESGRVEFGSYADALWWGVVTVTTIGYGDKVPQTWVGKTIASCFSVFAISFFALPAGILG DEEGKTGFSSYADALWWGVVTVTTIGYGDKVPQTWIGKAIASCFSVFAISFFALPAGILG	348 358
KCNQ1 kcnqa_d	B B SGFALKVQQKQRQKHFNRQIPAAASLIQTAWRCYAAENPDSSTWKIYIRKAPRSHTLL SGFALKVQQKQRQKHFNRQIPAAASLIQTLWRCYACEKSDSCTATWKMYVLTGDYIPIIN ************************************	406 418
KCNQ1 kcnqa_d	LU SPSPKPKKSVVVKKKKFKLDKDNGVTPGEKMLTVPHITCDPPEERRLDHFSVD SENSSPGNFRRLSKRYKRKPKSLRDNGSLGPAGERALSIPQITYDHIEDKDAVFTDDSTD ** :: *:** ::*****: *::*:** * *:: :. *:*	459 478
KCNQ1 kcnqa_d	GYDSSVRKSPTLEVSMPHFMRTNSFAEDLDLEGETL-LTPITHISOLREHHRA RQRSWSAFTLSCPSSPVKKKLDGPDISRNNSLVDELDFTTEDIPLPVVTDASOLSHAHRS	512 538
	11 12 13	
KCNQ1 kcnqa_d	[13] [14] TIKVIRRMQYFVAKKKFQQARKPYDVRDVIEQYSQGHLNLMVRIKELQRRLDQRSLDSL AIKVIRRMQYFVARRKFQQARKPYDVRDVIEQYSQGHLNMMVRIKELQRRLDHTLGKPGI	572 598
KCNQ1 kcnqa_d	FISVSEKSKDRGSNTIGARLNRVEDKVTQLDQRLALITDMLHQLLSLHGGSTPGSGGPPR FLPEKGVEKEYYTVGARLIRLEDKVFQMDVKLENIQKILLEHFQPKS	632 645
	*:. **. :: *:**** *:**** *:* * .:* : :. :. 16 17	
KCNQ1 kcnga_d	EGGAHITQPCGSGGSVDPELFLPSNTLPTYEQLTVPRRGPDEGS 676 ELLQRPSPLSSRVTVMKRLGVSMDETO 672	
	: :*. *. : ::* *. ** .	

6.2.1.2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch:

6.2.2 kcnqb_e

6.2.2.1 DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen

Ina195

->

GCTACTTTACACACTCGTTTGGATCT DNA: GTCAAACTGTAAGGATGGTGAAGAAATCCGCCAACGGGGAAGTTTATCTCC M V K K S A N G E V Y L P Ina5 🔶 DNA: CTCCGGCTGGGGAAAAGAAACCGAAAGTCGGCTTTGTGGGTCTGGACCCCG +3: PAGEKKPKVGFVGLDPG DNA: GGGCGGCGGAGACCAGCCGAGACGGGGCACTTCTCATCGCCGGTTCCGAAA +3: A A E T S R D G A L L I A G S E S DNA: GCACAAAACGGGGCAGCATCCTGTGCAGACCGCGGTCCAGCATCTCCAGAG +3: TKRGSILCRPRSSISRG DNA: GGAGCATCGCTCACAAGAGAAACGCGCGTTATCGCAGACTGCAAAATTTCC +3: S I A H K R N A R Y R R L O N F L DNA: TGTATAATGCTCTGGAGCGACCCCGCGGCTGGGCGTTCATTTACCACGCTT +3: Y N A L E R P R G W A F I Y H A Y -Inall8 DNA: ATG**TG**TTTG*TGCTGGTGTTTTCCTGCCTGGTTC*TGTCTGTTTTCGCAACAA +3: VFVLVFSCLVLSVFATI Ina153 🔶 DNA: TCAAAGAGTACAAGAAAAGCTCGGAGAGCGCCTTGTACATCCTGGAAAATTG +3: KEYKKSSESALYILEIV DNA: TGACAATCGTGGTGTTTGGTGTGGGAATATATTGTGCGTATCTGGGCTGCCG +3: TIVVFGVEYIVRIWAAG DNA: GCTGCTGCTGCTGCGCTACAGAGGATGGAGAGGGAAGGCTGAGATTTGCTCGCA +3: PFCIIDIMVLFASVSVL Ina7 Ina6 DNA: TGGCCGCTGGCTCACAGGGGAATGTTTTTGCCACCTCGGCCATAAGGAGTC +3: A A G S Q G N V F A T S A I R S L -DNA: TGAGGTTTCTCCAGATCCTCCGAATGCTGCGAATGGACCGGCGCGGTGGCA +3: R F L Q I L R M L R M D R R G G T +3: WKLLGSVVYAHSKELIT +3: AWYIGFLCLILASFLVY DNA: ACTCTGTGGAGAAGGATGACAATGCAGAGATGTTCGAGACCTACGCAGACG S V E K D D N A E M F E T Y A D A +3: DNA: CCCTCTGGTGGGGGACT GG TGACTCTTACAACTATTGGCTATGGGGACAAAT+3: L W W G L V T L T T I G Y G D K F DNA: TTCCTGTCACGTGGAATGGTCGTCTAATTGCTGCCACTTTCAGTCTGATTG P V T W N G R L I A A T F S L I G +3: DNA: GGGTGGCTTTTTTCGCTCTTCCTGC**GG**GTATCCTGGGCTCAGGATTTGCTC +3: VAFFALPAGILGSGFAL Ina9 DNA: TGAAGGTTCAAGAGCAGCACAGACAGAAGCATTTCGAGAAGCGTCGTAACC +3: K V Q E Q H R Q K H F E K R R N P DNA: CCGCTGCAGGTCTTATCCAGGCTGCTTGGAGGTTTCATGCCACAAACCTAT +3: A A G L I Q A A W R F H A T N L S Ina8 +3: R T D L F S T W D F Y A Q T V S V

DNA: TCCCAATGTACAGACTCATTCCTCCTGTAAATCAGCTGGACATTTTAAGAA +3: PMYRLIPPVNQLDILRS Ina220 +3: LKGKSAFRKDSQIDVTP DNA: CGAGTAGTGAGATTTCACACAAAGACACTCTGTGTGGGTGCTGTCCAAGAA +3: S S E I S H K D T L C G C C P R T DNA: CCAATAGTCGTAAGCCCAGCGTAAAAGAGAAAGGCAGTCCCTCTAAGAGCA +3: N S R K P S V K E K G S P S K S T DNA: CCGGGGGGAAAGAAGCCAGAACCGATGGAGTCAAAGAGAGTCCCAGCAAAG +3: G G K E A R T D G V K E S P S K V Ina113 -----DNA: TGACCAAGAGCCTGAGCTTCACAGACCGCAACAAAGCCAAACACGCTTTCA +3: TKSLSFTDRNKAKHAFK DNA: AAATGAAAGATGGAGCTTCTCGCCAGAACTCTGAA**GT**GCTGATTGAGTTGC +3: MKDGASRQNSEVLIELQ DNA: AAGACGAGGACTTCGCCATGAAGAGATCTCCA**GC**GATTGAGGGCTTAATCA +3: DEDFAMKRSPAIEGLIK Ina261 DNA: AGGCAAGTCTTCCAGAAGATTTGGGAGATGACAGAGGTTATAACTGTGAAT +3: A S L P E D L G D D R G Y N C E F → Ina231 - -DNA: TTCTGCCACATCTGTCACCCGGACTCAAGGTCACCATCAGATCAATCTGT +3: L P H L S P G L K V T I R S I C Inal1 DNA: TAATGCGGTTCCTGTTGTCTAAGAGGAGATTTAAAGAGAGCCTCAGACCCT +3: M R F L L S K R R F K E S L R P Y Ina75 Ina10 -> DNA: ACGACGTGATGGATGGATAGAGCAGTATTCAGCAGGACATCTGGACATGC +3: DVMDVIEQYSAGHLDML Ina262 DNA: TGTCCCGTATCAAAAACCTTCAGTCCAGGATAGATTTGATTGTGGGTCCCC +3: S R I K N L Q S R I D L I V G P P DNA: CTCCCCCTCGACCCCTCGCCACAAGAAAGTGGGATCAGATTGTGGGAAAAG +3: PPSTPRHKKVDQIVGKG Inall4 DNA: GAGCCAGTGCAGGAGAAAAGGACAAACCCAAAAGTGACACAGAGGTGCCTG +3: A S A G E K D K P K S D T E V P E DNA: AGGACCCAAGCATGATGGGACGTCTAAACAAGATGGAGAAAGAGGGTGGGAG +3: D P S M M G R L N K M E K E V G A Ina230 -DNA: CAATGGACCTTAAACTCAACTTTTTGGTCAGCATATACACGGCACAAATGG +3: M D L K L N F L V S I Y T A Q M G Inall1 -DNA: GCATCCCACGATCAGAAACCGAAGCTCTTTTAGGCTTCAAAATTGCGTACC I P R S E T E A L L G F K I A Y P +3: DNA: CTGCTCCTCCTTACCACAGCCCTGACGAGAAGAGTGAGAAAGTGCCGGATG +3: A P P Y H S P D E K S E K V P D E Ina13 DNA: AGGATGAAAACAAAGGCAAGAGCCCATCTCCCATCAACCCCGGACCCAACG +3: DENKGKSPSPINPGPNG Ina76 -DNA: GGACTCTGACTGAGAGTCAGTGTCGGCCTTCTACCTCATGGCACCAGCAGG +3: TLTESQCRPSTSWHQQD DNA: ATGAGCATCCCCTCAGCGTGCCTCTCTGGAACAACAGTCGAGGAGTGTCAC +3: E H P L S V P L W N N S R G V S P DNA: CGATTGGTACCGATGACCCATCACTGTACCGCTTACCGCCTCCGCCATTCC +3: IGTDDPSLYRLPPPFH DNA: ATGAGAGCACGGACAACAGCCGCTCACGCAGGTCCAGGAGACCCGTCCAGC E S T D N S R S R R S R R P V Q Q +3: DNA: AGCAGGCTGCTGTCGAAAGTGACACATCCCTCTCCATTCCCTCAGTGGACC +3: O A A V E S D T S L S I P S V D H DNA: ATGAGGAGCTAGATCGCTCTTTCAGTGGCTTTAGCATTTCCCAGGCCAGGG +3: E E L D R S F S G F S I S Q A R E

```
DNA: AAGAGGATTACGTGCCTCCAGTAAGTCTGGGGCCTTTCGGTGAGGCGGCGGCGGG
+3: E D Y V P P V S L G P F G G G G G Ina12
DNA: GGACGCTGTGTACCCGAATCAGACCATATCTAGCAGAGGGCGAATCAGATA
+3: T L C T R I R P Y L A E G E S D T
\blacksquare
DNA: CAGACTCTGACCTGTATACGCCGGGAGCACCATCCCCTCTCTGTTACAG
+3: D S D L Y T P G A P S P L S F T G
Ina14
DNA: GGGAGGGAACTTTCGGGGACAGGATGTGGCCTGGAATGAAGTAGTTG
+3: E G T F G D R M W P G M K *
Ina246
TTGAAAAAATTTCCTGGATGTAGCTGATGGACGTTT
```


KCNQ2 kcnqb_e	1 MVQKSRNGGVYPGPSGEKKLKVGFVGLDPGAPDSTRDGALLIAGSEAPKRGSILSKPRAG 60 MVKKSANGEVYLPPAGEKKPKVGFVGLDPGAAETSRDGALLIAGSESTKRGSILCRPRSS 60 **:** ** **:**** 1 1
KCNQ2 kcnqb_e	GAGAGKPPKRNAFYRKLQNFLYNVLERPRGWAFIYHAYVFLLVFSCLVLSVFSTIKEYEK 120 ISRGSIAHKRNARYRRLQNFLYNALERPRGWAFIYHAYVFVLVFSCLVLSVFATIKEYKK 120 : ***** ************************************
KCNQ2 kcnqb_e	2 3 SSEGALYILEIVTIVVFGVEYFVRIWAAGCCCRYRGWRGRLKFARKPFCVIDIMVLIASI 180 SSESALYILEIVTIVVFGVEYIVRIWAAGCCCRYRGWRGRLRFARKPFCIIDIMVLFASV 180 ***.*********************************
KCNQ2 kcnqb_e	3 AVLAAGSQGNVFATSALRSLRFLQILRMIRMDRRGGTWKLLGSVVYAHSKELVTAWYIGF 240 SVLAAGSQGNVFATSAIRSLRFLQILRMLRMDRRGGTWKLLGSVVYAHSKELITAWYIGF 240 :*****************
KCNQ2 kcnqb_e	5 6 LCLILASFLVYLAEKGEN-DHFDTYADALWWGLITLTTIGYGDKYPQTWNGRLLAATFTL 299 LCLILASFLVYSVEKDDNAEMFETYADALWWGLVTLTTIGYGDKFPVTWNGRLIAATFSL 300 ********** .** :* : *:*****************
KCNQ2 kcnqb_e	6 7 IGVSFFALPAGILGSGFALKVQEQHRQKHFEKRRNPAAGLIQSAWRFYATNLSRTDLHST 359 IGVAFFALPAGILGSGFALKVQEQHRQKHFEKRRNPAAGLIQAAWRFHATNLSRTDLFST 360 ***:*********************************
KCNQ2 kcnqb_e	Image: Constraint of the second system in the second system is second system in the second system in the second system is second system in the second system in the second system is second system in the second system in the second system is second system in the second system in the second system is second system in the second system in the second system is second system in the second system in the second system is second system in the second system in the second system is second system in the second
KCNQ2 kcnqb_e	P LU 12 13 PCRGPLCGCCPGRS QKVSLKDRVFSSPRGVAAKGKGSPQAQTVRRSPSADQSLEDSPSK 479 SHKDTLCGCCPRTNSRKPSVKEKGSPSKSTGGKEARTDG-VKESPSK 454 . :******* ****** 11 12
KCNQ2 kcnqb_e	Id VPKSWSFGDRSRARQAFRIKGAASRQNSEEASLPGEDI 517 VTKSLSFTDRNKAKHAFKMKDGASRQNSEVLIELQDEDFAMKRSPAIEGLIKASLP-EDL 513 *.** ** **.:*::**::**::**: I3
KCNQ2 kcnqb_e	15 VDDKSCPCEFVTEDLTPGLKVSIRAVOVMRFLVSKRKFKESLRPYDVMDVIEQYSAGHLD 577 GDDRGYNCEFLPH-LSPGLKVTIRSIOVMRFLLSKRRFKESLRPYDVMDVIEQYSAGHLD **:. **:. **:. **:. **:. **:. **:. **:. **:. **:. **:. **:.
KCNQ2 kcnqb_e	I6 MLSRIKSLQSRVDQIVGRGPAITDKDRTKGPAEAELPEDPSMM MLSRIKNLQSRIDLIVGPPPSTPRHKKVDQIVGKGASAGEKDKPKSDTEVPEDPSMM ******.*** 17

KCNQ2 kcnqb_e	17 GRLGKVEKOVLSMEKKLDFLVNIYMQRMGIPPTETEAYFGAKEPEPAPPYHSPEDSREHV GRLNKMEKEVGAMDLKLNFLVSIYTAQMGIPRSETEALLGFKIAYPAPPYHSPDEKSEKV ***.*:**:* :*: **:*** :**** :**** :* * . ********	680 690
KCNQ2 kcnqb_e	DRHGCIVKIVRSSSSTGQKNFSAPPAAPPVQCPPSTSWQPQS-HPRQGHGTSPV PDEDENKGKSPSPINPGPNGTLTESQCRPSTSWHQQDEHPLSVPLWNNSRGVSPI * . * . * * *****: *. ** :.:*.**:	733 745
KCNQ2 kcnqb_e	G-DHGSLVRIPPPPAHERSLSAYGGGNRASMEFLRQEDTPGCRPPEGNLRDSDTSISIPS GTDDPSLYRLPPPPFHESTDNSRSRRSRRPVQQQAAVESDTSLSIPS * *. ** *:**** ** : .: .* * .::*: : :*****	792 792
KCNQ2 kcnqb_e	VDHEELERSFSGFSISQSKENLDALNSCYAAVAPCAKVRPYIAEGESDTDSDLCT VDHEELDRSFSGFSISQAREEDYVPPVSLGPFGGGGGGTLCTRIRPYLAEGESDTDSDLYT ******:******************************	847 852
KCNQ2 kcnqb_e	PCGPPPRSATGEGPFGDVGWAGPRK 872 PGAPSPLSFTGEGTFGDRMWPGMK- 876 * .*.* * ****.*** *.* :	

6.2.2.3 Alternative Exons

6.2.2.3.1 Splicevariante kcnqb_e mit alternativem Exon 11 erstellt über ClustalW

	10	11	12	
kcnqb_ea	AFRKDSQIDVTPSSGISH	KDTLCGCCPRTN	SRKPSVKEKGSPSKSTGGKEARTDGVKESP	60
kcnqb_eb	AFRKDSQIDVTP		SRKPSVKEKGSPSKSTGGKEARTDGVKESP	42
	* * * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *	

|--|

	12	13	14	15	
kcnqb_ed	RNKAKHAFKMKDGASRQNSE <mark>V</mark> L	IELQDEDFAMKRS	PE	CASLPEDLGDDRGYNCEF	54
kcnqb_ee	RNKAKHAFKMKDGASRQNSE		E	CASLPEDLGDDRGYNCEF	38
kcnqb_ec	RNKAKHAFKMKDGASRQNSEVL	IELQDEDFAMKRSP	AIEGLI	ASLPEDLGDDRGYNCEF	60
	* * * * * * * * * * * * * * * * * * * *			****	

6.2.2.3.3 Splicevariante kcnqb_e mit alternativen Exons 17 und 18 erstellt über ClustalW

kcnqb_ef kcnqb_eg	16 17 SRIKNLQSRIDLIVGPPPSTPRH SRIKNLQS	18 KKVDQIVGKGASAGEKDKPKSDTEVPEDPSMMGRLN -RVDQIVGKGASAGEKDKPKSDTEVPEDPSMMGRLN :****	60 43
kcnqb_ef kcnqb_eg	KMEKEVGAMDLKLNFLVSIYTAQM KMEKEVGAMDLKLNFLVSIYTAQM	GIPRSETEALLGFKIA 100 GIPRSETEALLGFKIA 83 *******	

Sind beide Exons herausgespleißt, so kommt es zur Leserasterverschiebung.

6.2.3 kcnqc

6.2.3.1 DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen

Ina81 -> ATGAGCTTGATGCCTGCACTTGTCA DNA: GTAGGTGATCCTGTTATTTACATGTAATGCTAAAGAAAAAAGAAGAACAAT DNA: AAAACACTCAATGTTTTTACACAGGGAACTGTGAATCTCGTGTACAGCTTC Ina252 -----DNA: TTTGTATGTGCGCACCGCTGGTGCCAGACGCGCGTTTCCAGCCTGCGCTGG DNA: TGATGCGATGCCCCGCAACCACAGCGGCGATGAGGGCGGTGCTGGTCTCTG M P R N H S G D E G G A G L W DNA: GATGAAGACCTCGCAGCACTATGGCATGAAAGATGTTGAAGCCGGTCGCGG +2: M K T S Q H Y G M K D V E A G R G Ina83 — DNA: GACGATGAACAACGCGACCAGGAATGCCGACAGTCTACTGTCGGCGCCGGG +2: T M N N A T R N A D S L L S A P G Ina82 DNA: TACAACAGGTGCAGGAGGCTCCGAGAACCAGAGGAGAAATCAGGGCGCCCG +2: T T G A G G S E N Q R R N Q G A R DNA: TCTAAGCCTGCTGGGGAAGCCGCTCGCATACAGCGCGCAGAGCGGCCGGAG +2: L S L L G K P L A Y S A Q S G R R Ina31 DNA: AAACGCGCGCTACAGGAAGCTCCAGAACTACCTCTACAATGTCCTGGAGCG +2: NARYRKLONYLYNVLER DNA: ACCGCGAGCCTGGGCATTCGTTTACCATGCCTTTG TG TTCACATTGGTCTT+2: P R A W A F V Y H A F V F T L V F DNA: TGGCTGTCTGGTTCTGTCTGTGTTCTCCACCATCCCGGCTCACATGGACCT +2: G C L V L S V F S T I P A H M D L . -Ina84 DNA: CTCCAATCACTGTCTCCTAATACTGGAGGTTTGTGATGATTGTTGTGTTTGG +2: S N H C L L I L E F V M I V V F G DNA: TCTGGAGTACATCATCCGCATCTGGTCTGCTGGATGCTGCCGGTACAG +2: L E Y I I R I W S A G C C C R Y R DNA: GGGATGGCAAGGACGACTGCGCTTCGCTAGAAAACCATTCTGTGTGATAGA +2: G W Q G R L R F A R K P F C V I D DNA: CATTATTGTGCTCATAGCATCCATCGCAGTGGTTTCAGCTGGTAGCCAGGG +2: I I V L I A S I A V V S A G S Q G DNA: CAATATTTTTGCCACGTCTGCACTTCGCAGTCTGCGTTTTTTGCAGATTCT +2: NIFATSALRSLRFLQIL DNA: GCGCATGGTGCGCATGGACCGGCGAGGCGGTACCTGGAAACTGCTTGGATC +2: R M V R M D R R G G T W K L L G S DNA: TGTAGTCTACGCTCACAGCAA**GG**AGCTTGTGACTGCCTGGTACATTGGCTT +2: V V Y A H S K E L V T A W Y I G F +2: L V L I F S S F L V Y L V E K E F DNA: TAACAAACAGTTTGCCACCTATGCTGATGCCCTCTGGTGGGGTACCATTAC +2: N K Q F A T Y A D A L W W G T DNA: CCTCACAACCATTGGATATGGGGATAAGACTCCACAGACCTGGACCGGACG +2: L T T I G Y G D K T P Q T W T G R Ina33 DNA: ACTTCTTTCCGCAGGGTTTGCTTTGTTGGGGCATCTCGTTCTTCGCTTTGCC +2: L L S A G F A L L G I S F F A L P Ina32 -DNA: TGCTGGTATTCTCGGCTCTGGTTTTGCTCTGAAGGTCCAAGAGCAGCACAG +2: A G I L G S G F A L K V Q E Q H R

DNA: ACAGAAGCACTTTGAAAAGAGGCGAAACCCAGCCGCCAGTCTCATACAGGC +2: Q K H F E K R R N P A A S L I Q A DNA: TGCGTGGCGTCTCTACTCCACAGACCTGTCCAGATCATACCTGAGTGCCAC +2: A W R L Y S T D L S R S Y L S A T DNA: ATGGCTGTTCTATAAAAGTGTTCTCCCTCCTCAAA**GG**AAAGACCAGGGGGA +2: W L F Y K S V L P P Q R K D Q G E DNA: ATCCATCAGCAGT CAAAAGTTAAGTTTCCGTGAGCGAGTGCGCATGGCCAG +2: S I S S Q K L S F R E R V R M A S DNA: CCCGCGTGGTCAGAGTGTAAAGAGCAGACAGATGTCTGTTAACGACCGGCG +2: P R G Q S V K S R Q M S V N D R R DNA: CTCTCCTGGCACAGAGGTGGCAGTGGAGGGCAGCAGTCCAGCCAAGGTCCA +2: S P G T E V A V E G S S P A K V O DNA: GAAGAGCTGGAGCTTCAATGACCGAACACGCTTTCGACCGTCGCTCAGGCT +2: K S W S F N D R T R F R P S L R L DNA: CAAGAGCCAGTCACGCACAACGACTGAAGCTGACACCACTCTTGGACCGGA +2: K S Q S R T T T E A D T T L G P D DNA: TGATGCTTTTGATGATAAGGCTTGCCACTGTGATGTGACAGTAGAAGATCT +2: D A F D D K A C H C D V T V E D L DNA: GTCAGCTCCGCTAAAGGCAGTGATCAGGGCCATCAGGATAATGAAGTTCCA +2: S A P L K A V I R A I R I M K F H DNA: TGTGGCCAAAAAGAAGTTTAAGGAGACACTGCGGCCGTATGATGTGAAAGA +2: V A K K K F K E T L R P Y D V K D Ina35 — Ina34 🔶 DNA: TGTGATCGAGCAATACTCCGCTGGACACCTAGATATGTTATGTCGTATCAA +2: V I E Q Y S A G H L D M L C R I K Ina91 _ DNA: GAGTCTGCAGACTAGGGTGGATCAGATACTGGGCAAGGGCCAGATTTCAGT +2: S L Q T R V D Q I L G K G Q I S V DNA: GGACAGAAAAGGCAGAGAGAAAATCCTCCCAGAAGGAGAGTCTCTGGAGCA +2: D R K G R E K I L P E G E S L E H Ina183 \longrightarrow +2: D M S M L G R V C K V E R Q V O S DNA: CATAGAGTCAAAGTTGGACTCATTGCTGGATATATACCGGCAGGTGTTGCA +2: I E S K L D S L L D I Y R Q V L Q DNA: GAAAGGCTCCTCTTCGATGCTCGGGTTGTCTGCCTTTGCCACTATT**TGAGCT** +2: K G S S S M L G L S A L P L F E L Ina179 -DNA: GGATCAGACCTCTGACTACCAAAGTTCCCTCCATAGCAAGGAATCTTCCTC +2: D O T S D Y O S S L H S K E S S S DNA: CCAGCTCACCGGTAGTGGAGTGTCTCGTTCCTGCAGCAGTAACCTGCACCG +2: Q L T G S G V S R S C S S N L H R Ina92 DNA: CGGTCTTCATCTTGCTTTGGCCCCTAGTGAACTCAATTTGGGTACCGGTTA +2: G L H L A L A P S E L N L G T G Y -+2: P H S A S S F S P S P L L N N Q P DNA: TTCCAGTCCAGACAGTTTCTACCCATCATCCCCTCCTAATTCTCACCCC +2: S S P D S F Y P S S P P I L T P DNA: CAACAACCTCTCCAGAAGCCACCAGCGGTTTAGTGAGTTAACCAGGCCTGT +2: N N L S R S H Q R F S E L T R P V DNA: CCCAACAGTCCATTCAACCTCAACAACCCTTCAGCTCCCGCCAATGGTACC +2: PTVHSTSTTLOLPPMVP DNA: AGCGCCTCCAGGTCGGCCTACCAGCCTCATCCCAGAGACTCTACAGGAGAG +2: A P P G R P T S L I P E T L Q E S DNA: CCGGGCTGAGTGTCCGACAAATTGCCTGCTGGGGGACCCAAAACGAGGTTGA +2: R A E C P T N C L L G T Q N E V E

86

DNA:	GTC	AGA	CAA	GGA	GGC	TGA	GAG	TAT	TCC	AAG	CAC	GGT	ACA	GCT.	TCG	GGA	CAA
+2:	S	D	K	Ε	A	Е	S	Ι	Ρ	S	Т	V	Q	L	R	D	K
DNA:	GCC	TGA	GCG	CAA	СТС	CAA	GGA	AGA	TGG	GTC	CTG	GAG	AAG	ACA	TTT	GAG	ССТ
+2:	Р Іл	Е а18	R 4	Ν	S	K	_E	D	G	S	W	R	R	Н	L	S	L
DNA:	TGA	CAT	TGA	TCC	ACI	'GAI	GCT	'CAT	'GTC	TTC	CAC	AGC	AGC	TGC	TTC	GCT	ACA
+2:	D	Ι	D	Ρ	L	М	L	М	S	S	Т	A	A	A	S	L	Q
DNA:	GGT	CGA	GCG	TGG	ACT	CGG	TAA	GTC	TCT	TTC	AGC	TCA	GAA	CCT	CAT	GCT	ACC
+2:	V	Ε	R	G	L	G	K	S	L	S	A	Q	Ν	L	Μ	L	Ρ
DNA:	AAC	TGC	TGC	TGA	CTG	CCA	CCC	TGC	ATT	GTC	CAC	TCG	GAG	CAG	CGG	CAG	CAG
+2:	Т	A	A	D	С	Η	Ρ	A	L	S	Т	R	S	S	G	S	S
DNA:	CAA	CAA	TGA	GTC	CAG	CGA	CCG	CGA	GCC	GCT	GAC	CGA	CTG	GGG	CGA	AAC	GGA
+2:	Ν	Ν	Ε	S	S	D	R	Ε	Ρ	L	Т	D	W Ina	G 197	E	Т	E
DNA:	ACT	CTT	TAT	CAG	TGA	CAA	AGA	GAT	GGA	CTT	CCT	CCA	CCA	ACA	GAG	CAA	CGA
+2:	L	F	Ι	S	D	K	Ε	Μ	D	F	L	Η	Q	Q	S	Ν	D
DNA:	CAC	CA A	CTT	СТС	TTC	TGA	GCT	GCT	ACG	GAC	AGG	GGC	CAG	CGG	GAC	GTC	тсс
+2:	Т	Ν	F	S	S	Ε	L	L	R	Т	G	A	S	G	Т	S	Ρ
DNA:	CAG	TCA	GGC	TGG	ACC	AAG	AGA	TGT	TCT	CGA	GTC	ССА	TAA	CTT	GCC	тса	CGT
+2:	S	Q	А	G	Ρ	R	D	V	L	Е	S	Н	Ν	L	Ρ	Н	V
											Ina	a18.	5		-		
DNA:	ATG	ССТ	CGA	ATA	ACC	CCA	ACG	GAG	CAC	AGC	AAC	CTC	ACI	'GTG	GAG	ACT	G
+2:	С	L	Ε	*													

6.2.3.2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch

	1	
KCNQ5	MPRHHAGGEEGGAAGLWVKSGAAAAAAGGGRLGSGMKDVESGRGRVLLNSAAARGDGLLL (60
kcnqc	MPRNHSGDEGGAGLWMKTSQHYGMKDVEAGRGTMNNATRNADSLLS	46
	:*:* * * * *:*: *****:***********	
	1	
VONOE		1 2 0
kanga	POLICIAL POLICIAL PROPERTIES AND A PROPE	120 99
Kellye		,,
	3	
KCNQ5	RPRGWAFIYHAF <mark>V</mark> FLLVFGCLILSVFSTIPEHTKLASSCLLI <mark>LE</mark> FVMIVVFGLEFIIRIW 1	180
kcnqc	RPRAWAFVYHAF <mark>V</mark> FTLVFGCLVLSVFSTIPAHMDLSNHCLLI <mark>LE</mark> FVMIVVFGLEYIIRIW 1	159
	.:******* ******:****************	
KCNO5		210
kenge	SAGCCCRYRCWOGRLRFARKPFCVIDIIVLIASIAVVSAKIQGNIFAISALRSLRFLOIL	219

	4	
	5	
KCNQ5	RMVRMDRRGGTWKLLGSVVYAHS <mark>KE</mark> LITAWYIGFLVLIFSSFLVYLVEKDANKEFSTYAD 3	300
kcnqc	RMVRMDRRGGTWKLLGSVVYAHS <mark>KE</mark> LVTAWYIGFLVLIFSSFLVYLVEKEFNKQFATYAD 2	279

VCNO5		360
kenge	ALWWGTITILTTIGYGDKTPOTWTGRLLSAGFALLGISFFALPAGILGSGFALKVOEOHRO	339

	6 7	
	8	
KCNQ5	KHFEKRRNPAANLIQCVWRSYAADE-KSVSIATWKPHLKALHTCSPTKKEQGEASSSQKL 4	419
kcnqc	KHFEKRRNPAASLIQAAWRLYSTDLSRSYLSATWLFYKSVLPPQRKDQGESISSQKL 3	396

	8	
V GNO F		470
KCNQ5	SFKEKVKMASPKGQSIKSRQASVGDRRSPSTDITAEGS-PTKVQKSWSFNDRTRFRPSLR 4	4/8
KCHQC	5 r r r v r v r s x x x x x x x x x x x x x x x x x x	чЭЮ

	11 12	
KCNQ5 kcnqc	LKSSQPKPVIDADTALGTDDVYDEKGCQCDVSVEDLTPPLKTVIRAIRIMKFHVAKRKFK 53 LKS-QSRTTTEADTTLGPDDAFDDKACHCDVTVEDLSAPLKAVIRAIRIMKFHVAKKKFK 51	8 5
	*** *.: :***:**.**.:*:*:*:*:****:.***:.***:.***: 11 12 13	
KCNQ5 kanga	ETLRPYDVKDVIEQYSAGHLDMLCRIKSLQTRVDQILGKGQITSDKKSREKITAEHETTD 59 ETLRPYDVKDVIEQYSAGHLDMLCRIKSLOTRVDOILGKGOISVDRKGREKILPEGESLE 57	8
	**************************************	Ū
KCNQ5	-DLSMLGRVVKVEKQVQSIESKLDCLLDIYQQVLRKGSASALALASFQIPPFECEQTSDY 65	7
kenge	*:****** ***:*************************	5
KCNQ5 kenge	QSPVDSKDLSGSAQNSGCLSRSTSANISRGLQFILTPNEFSAQTFYALSPTMHSQATQVP 71 OSSLHSKESSSOLTGSG-VSRSCSSNLHRGLHLALAPSELNLGTGYPHSASSFSPSPLLN 69	7
	.:.: *** :*** *:*: *:*:*: *:*.*: * *. *. *. * :. :	
KCNQ5 kcnqc	ISQSDGSAVAATNTIANQINTAPKPAAPTTLQIPPPLPAIKHLP 76 NQPSSPDSFYPSSPPPILTPNNLSRSHQRFSELTRPVPTVHSTSTTLQLPPMVPAPPGRP 75	1
	: *: :.*.::. : * * * ::.****:** :**	
KCNQ5 kcnqc	RPETLHPNPAGLQESISDVTTCLVAS-KENVQVAQSNLTKDRSMRKS 80 TSLIPETLQESRAECPTNCLLGTQNEVESDKEAESIPSTVQLRDKPERNSKEDGSWRRHL 81	7
	****: * . * * * * * * .:: :*:. *:*	
KCNQ5 kcnqc	-FDMGGETLLSVCPMVPKDLGKSLSVQNLIRSTEELNIQLSGSESSGSRGSQ 85 SLDIDPLMLMSSTAAASLQVERGLGKSLSAQNLMLPTAADCHPALSTRSSGSSNNESSDR 87	8 2
	:*:. *:* * :.*****: .* .:.*****:	
KCNQ5	DFYPKWRESKLFITDEEVGPEETETDTFDAAPQPAREAAFASDSLRTGRSRSSQSICKAG 91	8
Kenge	:* *::***:*:* :* * :.:: *:*: *:** :	2
KCNQ5	ESTDALSLPHVKLK 932	
nongo	: :: .**** *:	

6.2.4 kcnqf

6.2.4.1 DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen

Ina123

CTCTCCCGTCTTCCGGAGATACA DNA: ACAACACGCATGCCACGCGCATTTGGGTCCGCGTTGGTGATGCCATGCCCC M P R DNA: GCAACCACAGCGGAGATGAGGCCGGTTCCGGCCTCTGGATGAACACCTCTC +3: NHSGDEAGSGLWMNTSP DNA: CAGGGCACCACGCCGAAAGTTACGGATTGCATAATGTGGAATGTGATAATA +3: G H H A E S Y G L H N V E C D N R DNA: GAATGAAGAACAATTGTTCGCGGCCGGGGGGGGGGCCTGTTGTCCGCATCTC +3: M K N N C S R P G D G L L S A S H DNA: ATGCCGGCACAGGTGCATCGGGCACGGAGAGAGCCGCGGGAAGCAGGGCG +3: A G T G A S G T E R D R G K Q G A DNA: CTCGGCTGAGTCTGCTCGGGAAGCCGCTGGTGTACGGCACGCAAAGCGGCA +3: R L S L L G K P L V Y G T Q S G R Ina15 DNA: GGAGAAACGCGCGCTACCGGAGGATTCAGAACTACCTGTACAACGTGCTGG +3: R N A R Y R R I Q N Y L Y N V L E

Ina124

DNA:	AGAG	ACC	AAG.	ATC	ATG	GGC	TTT	TAT	CTA	CCA	CGC	GTI	CG	GT	ſ <i>TG</i> !	rgc1	"GG
+3:	R	Ρ	R	S	W	Α	F	I	Y	Н	Α	F	V	F	V	L	V
			-		_												
DNA:	TGTT	'TGG	CTG	CTT	'GGI	TCT	GTC	TGT	CTT	CTC	TAC	TAI	TCC	CAGA	ATCA	CCA	.GG
+3:	F	G	С	L	V	L	S	V	F	S	Т	Ι	Ρ	D	Η	Q	Е
DNA:	AAAT	GGC	CTC	TCA	GAG	TCT	TCI	GAT	TTT	GGA	GTT.	TG:	[GA]	[GA]	rcg:	TGI	GT
+3:	М	А	S	Q	S	L	L	Ι	L	Е	F	V	М	Ι	V	V	F
DNA:	TTGG	GTT	GGA	GTA	CAT	CAT	TCG	CAT	CTG	GTC	TGC	TGG	STTG	STTO	STTO	CCC	GT
+3:	G	L	Ε	Y	Ι	Ι	R	Ι	W	S	А	G	С	С	С	R	Y
DNA:	ACAG	AGG	ATG	GCA	GGG	ACG	TC1	TCG	CTT	TGC.	AAG	GAA	AGCC	CATT	CTG	FIGI	CA
+3:	R	G	W	Q	G	R	Ц	R	Ę,	А	R	K	Р	F.	С	V	T
		1 ~~~													~~~~		
DNA:	TAGA	CAI	AA'I'	AGT	GCI	GA1	-TGC	CTC	AGI	rrgc -	TGI	GG.	[']']'(GGG(JGGC	-GAC	FTC
+3:	D	Ţ	T	V	L	Ţ	А	S	V	A	V	V	S	А	G	S	Q
		~	~ ~ ~				~ ~ ~					~~~					
DNA:	AAAG	CAA	CAT	TTT	TGC	AAC	GTC	TGC	TCI	GCG.	AAG	CTI	AAG	ATT.	TC1	ACA	AA
+3:	5	IN	T	Ľ	А	T	5	А	Ц	ĸ	5	Ц	ĸ	Ľ	Ц	Q	17
DNA .	TCCT	ccc	אא	ССТ	ACC	CAT	CCA	CCC	CCC	ccc	ACC	אאר	ידדה	C 7 7		TTC1	
+3.	ICCI I.	BCG	M	V	R	M	ддд П	R	R	.000.0	C C	ллс Т	M N	ND K	I.JULI	T.	G
					10		D	10	11	0	0	-		11	-	-	0
DNA ·	GATC	TGT		דידא	TGC		CAG	CAA	GGZ	ACT	GGT	CA	TG	сто	GTZ		тG
+3.	S	V	V	Y	Δ	н	S	K	E	T.	v	Т	Δ	W	Y	т	G
	0	v	v	-			0		Ina	16	·	-					0
DNA:	GGTT	CCT	TGT	GCT	CAT	CTT	т тс	ссто	TTT	CCT	GGT	TTZ	ATCI	GG	rggz	AAA	GG
+3:	F	L	V	L	I	F	S	S	F	L	V	Y	L	V	Е	Κ	Е
DNA:	AATT	CAA	TAA.	AGA	CTT	TGC	CAC	ста	TGC	TGA	TGC	ATI	ATG	GTO	GGGG	CAC	GA
+3:	F	Ν	K	D	F	А	Т	Y	А	D	А	L	W	W	G	Т	Ι
DNA:	TCAC	TCT	AAC	CAC	TAT	TGG	ATA	TGG	GGA	TAA	GAC	TCC	TAA	AAC	СТС	GAC	CG
+3:	Т	L	Т	Т	I	G	Y	G	D	Κ	Т	Ρ	Κ	Т	W	Т	G
DNA:	GACG	AAT	GCT	GTC	TGC	TGG	GTI	TGC	TTT	GCT	CGG	CAI	CTC	CTI	TTT	CAC	AC
										-	~	-	0	_		_	-
+3:	R	М	L	S	A	G	F	A	L	L	G	1	S	F,	F	T	L
+3:	R	M	L	S	A	G	F	A	L	L I	G na1	⊥ 34	S	F.	F	Т	L
+3: DNA:	R TGCC	M TGC	L GG	S TAT	A TTT	G	F	A CAGO	L GTT 2	L I I TTGC	G na1 CT1	1 34 'GAJ	S AGG:	F TTC		A <u>GC</u> Z	GC
+3: DNA: +3:	R TGCC P	M TGC A	L GG G	S TAT I	A TTI L	G IGGG G	F TTC S	A CAGO G	L STT S F	I I I I I I I I I I I I I I I I I I I	G na1 CTI L	1 34 'GAJ K	S A <i>GG</i> : V	F TTC2 Q	F AAG E	T A <u>GC2</u> Q	L GC H
+3: DNA: +3:	R TGCC P	M TGC A In	L GGG a17	S TAT I 2 CCD	A TTTI L	G G G	F TTC S	A CAGO G	L STT S F	L I I I I I I I I I I I I I I I I I I I	G na1 CTI L	34 'GA2 K	S AGG: V	F TTCZ	F AAG E	T A <u>GCZ</u> Q	L GC H
+3: DNA: +3: DNA:	R TGCC P ACAG	M TGC A In ACA	L GGG a17: GAA	S TAT I <u>2</u> GCA	A TTTT L <u>CTT</u>	G G G CGA	F STTC S GAA	A CAGO G GAG	L STT: F SAAG	L TTGC A GAA	G na1 CTI L CCC	J 34 GAN K TGC	S AGG: V CTGC	F TTC		T A <u>GCZ</u> Q CAT	H AC
+3: DNA: +3: DNA: +3:	R TGCC P ACAG R	M TGC A In ACA Q	L G a17: GAA K	S TAT I <u>2</u> GCA H	A TTTI L CTT F	G G G CGA E	F TTC S GAA K	A CAGO G GAG R	L F F AAG R	I TTGC A GAA N	G na1 CTI L CCC P	J 34 GAX K TGC A	AGG: V CTGC A	F Q Q CTC C	F AAG E SCCI	Q Q CAT I	H AC Q
+3: DNA: +3: DNA: +3:	R TGCC P ACAG R	M TGC A In ACA Q	L GGG a17 GAA K	S TAT I <u>2</u> GCA H	A TTTI L <u>CTT</u> F	G G G CGA E	F TTC S GAA K	A G G G G G G G G G G G G G G G G G G G	L F F AAG R	L ITTGC A GAA N	G na1 CTI L CCC P	34 GAN K TGC A	AGG: V TGC A	F TTCZ Q C C C		Q Q CAT I	H AC Q
+3: DNA: +3: DNA: +3: DNA:	R TGCC P ACAG R AGGG	M TGC A In ACA Q TGI	L GG a17: GAA K GAA	S TAT I <u>S</u> GCA H	A TTI L CTT F	G G G CGA E GCTA	F STTC S GAA K .TGC	A G G G G G G G G G G G G G G G G G G G	L F AAG R CTGP	L ITTGC A GGAA N ATGA	G na1 CTI L CCC P GAA	J GAU K TGC A	AGG: V CTGC A	F TTC: Q C C C C C		T Q Q CAT I TTGC	L GC H AC Q TA
+3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG	M TGC A In ACA Q TGI V	L GGG a17: GAA K GTG W	S TAT I <u>2</u> GCA H GCG R	A TTTT L CTT F STAG	G G G CGA E GCTA Y	F STTC S GAA K K TGC A	A G G G G G G G G G G G G G G G G G G G	L F F AAG R TG D	L ITTGC A GGAA N ATGA E	G na1 CTI L CCC P GAA N	J GAJ K TGC A .CTC S	AGG V TGC A CGG1 V	F Q Q CTC C C TTTC	F AAG E GCCI L CCGI	Q Q CAT I TTGC A	L H AC Q TA T
+3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G	M TGC A A A CA TGI V	L GG a17: GAA K GTG W ACC	S TAT I <u>2</u> GCA H GCG R	A TTTI L CTT F STAC S	G G G CGA E CCTA Y	F STTC S GAA K .TGC A	A G G G G G G G G G G G G G T T	L F F AAG R CTGA D	I TTGC A GGAA N ATGA E	G na1 CTT L CCC P GAA N	34 K TGC A CTC S	AGG: V TGC A CGGI V			Q Q CAT I TGC A	H AC Q TA T
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG	M TGC A In ACA Q TGI V GAA	L G G A17: GAA K GTG W ACC	S TAT I GCA H GCG R TCA	A TTTI L F TAG S TTT	G G CGA E CCTA Y GAA	F TTC S GAA K TGC A GGC	A G G G G G G G G G G G G T T L	L F F AAG R TGA D GCA	L I TTGC A GGAA N ATGA E ATGA	G na1 CTI CCC P GAA N CTG	J SA K TGC A CTC S CAC	S AGG: V CTGC A CGG1 V STCC	F Q Q CTC C C TTC C C TTC	F AAG E SCCI L CCG V CAA	Q Q CAT I TTGC A K	L H AC Q TA T
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W	M TGC A In ACA Q TGI V GAA K	L G a17 GAA K GTG W ACC P	S TAT I GCA H GCG R TCA H	A TTTI L CTT F STAC S TTT L	G G G CGA E CCTA Y GAA K	F STTC S GAA K TGC A GGC A	A G G G G G G G G G G G G T T L	L F F AAAG R CTGA D GCA H	L I TTGC A GGAA N ATGA E ATGA T	G na1 CTI CCC P GAA N CTG C	I 34 K TGC A CTC S CAC S	S V TGC A CGGI V STCC P	F Q Q C C C C C C C C C C C C C C C C C	F E E CCG V CAA	Q Q CAT I TGC A K	I H AC Q TA T AGG D
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA	M TGC A In ACA Q TGI V GAA K GGGG	L GG a17: GAA K GIG W ACC P	S TAT I 2 GCA H GCG R TCA H GTC	A TTTI L CTT F STAG S TTTT L	G G G CCA E SCTA Y GAA K AAC	F TTIC S GAA K TGC A GGCC A AAA	A G G G G G G G G G G G G G T L G T C C G G T	L F F AAAG R CTGZ D GGCA H	L I TTGC A GGAA N ATGA E ATGA T AATGA	G na1 CCTI L CCCC P GAAA N CTG C GAG	34 GAU K TGC A .CTC S CAG S	S V V CTGC A CGGGI V STCC P	F Q Q CCTC C TTTC S CTAC T	F E E GCCI L CCCG: V CAA	T Q CAT I TTGC A K GAZ K	L H AGC Q CTA T AGG D
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGG G CCTG W ATCA	M TGC A In ACA Q TGT V GAA K GGG G	L GGG G A A C GAA K K C GTG W A A C C T C GA A C C C G G G G G G G G G G G G G	S TAT I 2 GCA H GCCG R TCA H GTCC S	A TTTT L CTT F STAG S TTTT L AGCC A	G GGGG G CGAA Y GAAA K AACC T	F STTC S GAA K TGC A GGC A AAA	A G G G CGGGC A CGGTT L CF CF O	L F F CAAC R CTGA D CTGA H K	L I TTGC A GGAA N ATGA E ATGA T AACT L	G na1 CCTI L CCCC P GAA N CTG C C GAG	34 GAN K TGC A CTC S CAC S TTT: F	S AGG: V TIGC A CIGGI V STCC P TIAA	F TTCA Q C C C C C C C C C C C C C	F AAAG E GCCCI L CCCG: V CCAAZ K K ACCCC	T AGCZ Q CCAT I ITGC A K K GGGGI	L AGC H AGC Q CTA T AGG D CTAA R
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGG G CCTG W ATCA Q	M TGC A In ACA Q TGT V GAA K GGG G G	L GGG G GAA K CGTG W ACCC P AGAA E	S TAT I 2 GCA H GCG R TCA H GTCC S	A TTTT L CTT F STAG S TTTT L AGC A	G GGGG G CGAA Y GGAA K AAC T	F STTC S GAA K TGC A GGC A A A A A S	A CAGO G CGGGC A CGGTT L STC7 Q	L GTT F AAAG R CTG <i>F</i> D CTG <i>F</i> H AGA <i>F</i> K	L ITTGC A GGAA N ATGA E T T AACT L	G na1 CCTI L CCCC P GAA N CCTG C C GAG S	I 34 K TGC A CTC S CAC S TTT F	S AGG: V CTGC A CGGT V STCC P TTAA K	F Q CCTC C CTTC S CTAC T C C C C C C C C C C C C C C C C	F E E GCCTI L CCCGT V CAAAZ K ACCCC R	T Q Q CCAT I TTGC A K K GGGI V	L H AC Q TTA T AGG D CTA R
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA:	R TGCC P ACAG R AGG G CCTG W ATCA Q GAAT	M TGC A In ACA Q TGT V GAA K GGG G GGC	L GGGG a17: GAA K GGIG W ACC' P AAGA' E AAGA	S TAT I 2 GCA H GCG R TCA H GTC S TCC	A TTTI CTT F TTTC S TTTT L AGCC A	G GGGG G CCAA Y GGAA K AACC T TGG	F STTC S GAA K TGC A GGC A AAA S S	A G G G G G G G G G G G G G G G G G G G	L GTT: F CAAC R CTGA CTGA H AGAA K	L I ITTGC A GGAA N ATGA E ITAC T AACT L TTAA	G na1 CTI CCCC P GAA N CTG C GAG S AAG	I 34 K TGC A CTC S CAG S TTT: F CAG	S V V CTGC A CGGT V STCC P TTAA K	F Q CCTC C CTTC S CTAC T AGG2 D	F AAG2 E GCCTI L CCGT V CAA2 K ACCCC R	Q Q CCAT I TTGC A GGGT V TTGT	L H AGC Q H CTA T AGG D CAA R TA
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M	M TGC A In A C Q TGI V GAA K GGG G G GGC A	L GGGG G a17 GAA K GAA W ACC' P AGAA E AAGA' S	S TAT I Z GCA H GCG R TCA H GTC S TCC P	A TTTI L CTT F STAG S TTT L AGC A ACG R	G GGGG G CGAA Y GGAA K AACC T TGG G	F STTC S GAA K TGC A GGCC A AAA S AAA O	A G G G G G G G G G G G G G G G G G G G	L F F AAAG R CTG <i>P</i> D GCA H K CAT I	L II TTGC A GGAA N ATGA E TTAC T AACTT L TTAA K	G na1 CCTI L CCCC P GAA CCTG C GAA C GAA S	I 34 K TGC A CAC S CAC S TTT: F CAC R	S V V CTGC A V CCGGT V STCCC P TTA <i>I</i> K GGCCA O	F Q Q CCTC C C TTTC S CTAC T AGGA D AGAC T	F AAG E E GCCTI L V V CCAA K K ACCCC R CGTCC S	Q Q CCAT I TTGC A K GGGI V TTGT V	L H AGC Q TA T AGG D CAA R TA TA T
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGG G CCTG W ATCA Q GAAT M	M TGC A In A CA Q TGT V GAA K GGG G G GGC A	L GGGG G A17. K GIGG W ACCC P AGAA E AAGA S	S TAT I Z GCA H GCG R TCA GTC S TCC P	A TTTI CTT F STAG S TTT L AGC A C R	G CGGG G CGA E CCTA Y GGAA K AACC T TGG G	F STIC S GAA K TGC A GGC A AA C A ACA Q	A CAGG G G CGGGC A CGTT L CGT C F Q C G G G G G G G G G G G G G G G G G G	L F F AAAG R CTGA H AGAA K CCAT I	L II TTGC A GGAA N ATGA E TTAC T L TTAA K	G na1 CTI L CCCC P GAA N CTG C GAG S AAAG S C	I 34 K TGC A CAC S CAC S TTT: F CAC R 234	S V V TTGC A CGGT V STCCC P TTA <i>I</i> K GGC <i>A</i> Q	F Q Q CCTC C TTTC S CTTC S C T T AGG2 D AGG4C T	F AAG E E GCCTI L V V CCAA K ACCCC R CGTCC S	AGCZ Q CCAT I TTGC A K K GGGGI V CTGI V	L H AC Q TA T AGG D TA R TA T TA T TA
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGG G CCTG W ATCA Q GAAT M CGGA	M TGC A Inn ACA Q TGT V GAA K GGG G GGC A CAG	L GGGG G A17. GAA K CGTG W ACCC P AAGA E AAGA S GCG	S TAT I Z GCA H GCG R TCA H GTC S TCC P CTC	A TTTI CTT F STAC S TTT L AGC A C GCC	G CGGG G CGA E GCTA Y GGAA K AAC T TGG G TGG	F TTC S GAA K TGC A GGC A AAA S ACA Q AGC	A CAGG G G G G G G G G G G G G G G G G G	L F F AAAG R CTG# D GCAA K CAT I AAA2	L II TTGC A GGAA N ATGA E TTAC T TAACT L TTAA K J CCAG	G na1 CTI L CCCC P GAA N CTG C GAG S CAC CAC	I 34 GAN K TGC A CAC S TTT: F CAC R 234 TGZ	S AGG V TGC A CGG V STCC P TTAA K GGCA Q ATGG	F Q Q CCTC C TTTC S CTTC S CTTC T C C T C C T C C C C	F E E CCCG V CCAA K A A CCCC S	AGCZ Q CCAT I TTGC A AGAZZ K K CTGT V V TTGT V	L H H AC Q TA T AGG D TAA R TA T TA T TA
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG G CCTG W ATCA Q GAAT M CGGA D	M TGC A Inn Q TGT V GAA K GGG G G GGC A CAG R	L GGGG GAA K CGTG W AGCC P AGAA S GCGG R	S TAT I Z GCA H GCG R TCA H GTCC S TCCC P CTCC S	A TTTI L CTT F STAG S TTT L AGCC A GCCC P	G CGGG G CGA E GCTA Y GAAA K AACC T TGG G TGG G	F TTC S GAA K TGC A GGC A AAA Q AAAQ AGC A	A CAGG G G G G G G G G G G G G G G G G G	L GTT: F CAAC R CTG CTG H CGCA K CCAT I I AA 2 I	L II TTGC A GGAA N ATGA E TTAC T TAA CCAG S	G na1 CTTI L CCCC P GAA N CTG C GAG S CAA S CTG S C C C C C C C C C C C C C	I 34 GAU K TGC A CAC S CAC S TTT: F CAC R Z 234 D	S AGG V CTGC A CGG V STCC P TTAL K GGCL Q G G G	F Q Q CCTC C C C C C C C C C C C C C	F E E CCCG V CCAA K K ACCCC R CCAA S	T AGCZ Q CCAT I TTGC A K K GGGT V V TTGT V P	L AGC H AGC Q TTA T AGG D TTA R TTA T T CTG A
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG G CCTG W ATCA Q GAAT M CGGA D	M TGC A In ACA Q TGT V GAA K GGG G GGC A CAG R	L GGGG GAA K GAA W ACCC P AGAA S AAGA S GCGGR	S TAT I Z GCA H GCCG R TCA H GTCC S TCCC P CTCC S	A TTTI L CTT F GTAG S TTTT L AGCC A GCCC P	G G G CGGA E CGAA K CGAA K AACC T TGG G TGG G	F STTC S GGAA K TGC A GGCC A S ACA Q AACC A Q AGCC A	A GAGG R CGGGC A CGTT L STCP Q GAGGS S CTGA E	L GTT: F CAACC R CTG/A H GCAA K CCAT I I AAA?	L I I I I I I I I I I I I I I I I I I I	G na1 CTTI L CCCC P GAA N CTG C GAG S S Ina2 CAC T	I 34 CAU K TGC A CAU S CAU S TTT: F CAU R 234 D	S V V TGC A V STCC P TTA K K GGCA Q G	F Q Q CCTC C C TTTC S CTAC T AGG2 T AGG2 T S ATC S	F AAG E CCCCT L V CCAA R CCAC C CCAC S	T Q CCAT I TTGC A K GGGGI V CTGI V P	H AGC Q TA T AGG D TAA R TAA T TAA T A CTG A
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M CGGA D CCAA	M TGC A In ACA Q TGT V GAA K GGG G GGC A CAG R GGT	L GGGG G A GAA K CGTG W ACCC P AGAA S GCGA R CCA	S TAT I Z GCA H GCG R TCA H GTC S CTC S GAA	A TTTT F TTTC S TTTC L AGCC A GCCC P GAG	G CGGG G CCGA E CCTA Y CGAA K AACC T TGG G TTGG G	F STTC S GGAA K TGC A GGCC A S ACA Q AGCC A GAGC	A GAGG R CGGGC A CGGTT L CGGT Q Q CGGAG S CTGA E	L F F AAAG R CTGF D GCA H K CAGAF K CAT I I TAA	L I I I I I I I I I I I I I I I I I I I	G na1 CTT L CCCC P GAAA N CTG C C GAG S Ina2 CAC T CCCG	I 34 K TGC A TGC A CAC S TTT F CAC R 2.34 TGZ D CAC	S V V TGC A V STCC P TTA K SGCA Q G SCCC	F TTCA Q CCTC C CTTC S CTAC T AGG2 D AGGC T S GAT1	F AAG E E GCCT L V CCAA R CCAC C CCAC	CAT I TTGC A CAT K GGGT V CTGT V CTGT V P GGCC	L H H AC Q TA T AGG D TAA R TAA T TAA T A CTA
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M CGGA D CCAAA K	M TGC A In ACA Q GGA K GGGG CAG CAG R CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG	L GGGG G A GAA W ACCC P AGGA E AAGG S GCCGC R CCCA Q	S TAT I Z GCA H GCCG R TCA H GTCC S CTCC S GAA K	A TTTI L CTT F STAG S TTT L AGCC A C C P GAG S	G CGGG G CCGA E CCTA Y GGAA K AACC T TGG G TGG G TTGG W	F STTC S GAA K TGC A GGC A AAA Q AACA Q AACA S S GAG S	A GAGG R CGGGC A CGTT L CGTT Q GAGG S CTGA E CTTT F	L F AAAG R CTG7 D GCA H K CAGA7 I I AAA7 I I TAA N	L I I I I I I I I I I I I I I I I I I I	G na1 CTT CCCC P GAAA N CTG C C GAG S CAC T CCCG R	I 34 CAA CAC CAC S CAC R CAC R CAC R CAC CAC T CAC CAC CAC CAC CAC	S AGG V CTGC A CGGT V STCC P STCC P STCC Q G G CCCC R	F PTCA Q CCTC C CTTC S CTAC T AGGA T C AGGA T S SATTI F	F AAG E E CCCCI L CCCCC V CAACCO R CCCAC S CCCAC S CCCAC R	Q Q CCAT I TTGC A K GGGT V CTGT V V CTGT V P GGCCC P	L H AGC Q CTA T AGG D CAA R TA T TA T CTG A CCT S
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M CGGA D CCAA K	M TGC A In ACA Q GGA K GGGG CAG GGC R CAG R CAG R CAG R CAG R V	L GGGG G G G G G G G G G G G G G G G G	S TAT I Z GCA H GCG R TCA H GTC S CTC S GAA K	A TTTT CTT F TTAC S TTTT L AGCC R GCCC P GAG S	G G G CGAA Y GGAA K AACC T GGAA K TGG G TGG G TTGG G	F STTC S GAA K TGC A GGCC A AAA Q AACA Q AGCC A GACC S	A GAGG R CGGGC A CGGTT L CGGC S CGGAG S CTGA E TTTT F	L F F CAAG R CTGA D CGCA H K CCAT I I AAA I I TAA N	L I I I I I I I I I I I I I I I I I I I	G mal ccrr L CCCC P GAA N CTGG C GAA C CGAC S CAC T CCCC R	I 34 CAC CAC S CAC S CAC R CAC R CAC CAC CAC CAC CA	S V V CTGC A CGGT V STCC P STCC P STCC P STCC G G C CCCC R C CCCC R	F TTCA Q CCTC C TTCC C C TTCC C C T C C C C C C C C C C C C C	F AAG E E CCGC V CCAA R CCCC CCAC S CCAC R CCAC CCAC R CCAC R CCAC R TINA	T Q CCAT I TTGC A K GGGT V TTGT V P GGCCC P	L H H AGG D CTA T AGG D CAA R TA T T A CTA C TA T C TA C TA C C C C C
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M CGGA D CCAA K CCCT	M TGC A TGT V GAA K GGG G GGC R CAG R GGT V CCG	L GGGG G G G G G G G G G G G G G G G G	S TAT I Z GCA H GCG R TCA H GTC S CTC S GAA K CAA	A TTTI L CTT F STAC S TTT L AGCC R ACG R GCCC P GAG S GAG	G G G CGAA Y GGAA K AACC T TGG G TGG G TTGG G	F STTC S GAA K TGC A GGCC A AAA Q AAA Q AACA Q AACC A ACCA A ACCA A C A	A GAGG R CGGC A CGGC A CGGC C CGGC S CGGC S CGGC S CTGA C CGGC S CTGA C CGGC S CTGA C CGGC C C CGGC C C CGGC C C C C C C	L F F CAAC R CTGZ D CGCA H CGCA I I CAAZ I SGTC	L I I I GGAA N ATGA E AATGA T AACT L TTAA K J CCAG S CCAC	G mal ccrr L CCCC P GAA N CTGG C GAA S CAC T CCCG R GCCC	I 34 CAC CAC S CAC S CAC S CAC R CAC CAC CAC CAC CAC CAC	S V TIGC A CIGGI V STCC P TTAA K GGCA Q G CCCC R R AAGCO	F TTCA Q CCTC C TTCC C C TTCC C C TTCC C C C C C C C C C C C C	F AAG E GCCTI L CCCGC V V CAAC R K ACCCC R S CCAC R CCAC R CCAC R Ina.	T Q CCAT I TTGC A K GGGT V TTGT V F GGCC P GGCC P	L H H AGC D CTA T AGG D CTA R TA R TA T T CTA A C C T S
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M CGGA D CCAA K CCCT L	M TGC A TGT V GAA K GGG G GGC R GGC R CAG R CAG R CAG R CCG R	L GGGG GA17: K GGGGW AGGA B AGGA S GCGG R Q CCA Q TCT L	S TAT I Z GCA H GCCG R TCA H GTCC S CTCC S GAA K CAA K	A TTTI CTT F STAC S TTT L AGCC A GACG S GAG S	G G G G G G G G G G G G G G G G G G G	F STIC S GAA K TGC A GGC A A A A C A A C A C A C A C A C	A GAGG R CGGCC A CGGTT L CGGT L CGGT C A GGGC S CTGA S CTGA C CGAG S CTGA C CGAG S CTGA C C CGAG R	L F F CAAC R CTGA D CGCA H S CCAI I I S CCAI I S CCAI S	L I I I GGAA N ATGA E AATGA T AACT L I TAA K I I CAG S TGA D CCAC T	G mal ccri CCC P GAA N CTG C GAC S CAC C C C C C C C C C C C C C	I 34 K TGC A CTC S CAC S STT: F CAC R 234 TGZ CAC CAC CAC CAC CAC CAC CAC CA	S AGG V TIGC A CGGI V STCC P TTAA K G G CCCC R AAG G G	F C C C C C C C C C C C C C	F AAGJ E GCCTI L CCCGC V V CAACCO R K CCCCC S CCCAC S CCCAC R IIIAA	T Q CAT I TTGC A K GGGT V TTGT V TTGT V C TGT V C TTGT V C TTGT V N	L AGC Q CTA T AGG D CAA R T AGG C C A A C C T A C C C T A C C C C C C C
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M CGGA D CCAA K CCCT L	M TGC A D Q TGT V GAAA K GGG G GGC CAG R CAG R CAG R CAG R CCG R CCG R	L GGGGG GAA K GGGGW AGGA E AAGA CCCA Q CCCA Q TCT L	S TAT I Z GCA H GCCG R TCA H GTCC S CTCC S GAA K CAA K	A TTTI CTT F STAC S TTT L AGCC A GACG S GACG S GACG S	G G G G G G G G G G G G G G G G G G G	F TTIC S GAA K TGC A GGC A AAC A C A C A C C A C C C C C	A GAGG R CGGCC A CGGTT L CGGTT L CGGTT CA Q CGGT C A GGAG S CTGA E CTGA R CAGGC R	L F F CAAC R CTGA D CGCA H CGCA I I CCAI I I TAA N SGTCC S	L I I GGAA N ATGA E ATGA T AACT L TTAA K J CAG S TTGA D CCAC T	G mal ccri CCC P GAA N CCG GAC S CAC CAC C CCC C C C C C C C C C C	I 34 K TGC A CTC S CAC S CTTT F CAC R 234 TGZ CAC CAC CAC CAC CAC CAC CAC CA	S V TGC A CGGT V STCC P TTAA K GGCA Q CCCG R G CCCG R G	F C C C C C C C C C C C C C	F AAG E E CCCT L CCCC V CAA Z CCAA C CCAA C CCAA C CCAA C CCAA C CCAA C CCAA C CCAA C CCAA C CCAA C CCAA C C CCAA C C CCAA C	T Q Q CAT I TTGC A K GGGT V TTGT V TTGT V C TTGT V C TTGT V N	L AGC Q CTA T AGG D CAA R TA T CTA T CTA C CTA S CTA C C C C C C C C C C C C C C C C C C
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M CGGA D CCAA K CCCT L TTAC	M TGC A A Q Q TGT V GAA K GGG G G G G G G CAG R CAG R CAG R CAG R CAG R CAG TGT	L GGGGG GAA K GGGGW AGGA AGGA CCCA Q CCCA Q TCT' L	S TAT I Z GCA H GCG R TCA H GTC S CTC S GAA K CAA K TGA	A TTTI L CTT F TTAG S TTT L AGCC P GAG S GAG S GAG S GAG	G GGGG G G CGA Y GAA K AAC T G G TGG G TGG G TTG G TTG G TTG G TTG G TTG G	F TTIC S GAA K TGC A GGC A A A C A A C A C A C C A C C A C A	A GAGG R CGGCC A CGGTT L CGGT C A GGGC S TTGA C CGGT C A GGGC S C T G A C GGCC A C G C C A C C G C C C C C	L GTT: F GAAG CTGA D GGCA H GGAA K GGAA I TAA N GGTC S GAA	L I I TTGC A GGAA N ATGA E AATGA T AACT L TTAA K J CCAC S TTGA D CCAC T T AGGG	G G G G G G G G G G G G G G G G G G G	I GAU K TGC A CTC S CAG S CAG S CAG S CAG C C C C C C C C C C C C C C C C C C	S V V TGC A CGGT V STCC P TTAA K GGCA Q G CCCCC R G CCCCCC R G G	F TTC Q C C C C C C C C C C C C C	F AAGU E GCCTI L CCGC V K ACCCC R CCAA C CCAC C CCAC C CCAC C CCAC C CCAC C CCAC C CCAC C CCAC C CCAC C CCAC C CCAC C C CCCC C C C C C C C C C C C C C C C	T Q Q CCAT I TTGC A K GGGT V TTGT V TTGT V TTGT V V TTGT V V TTGT N	L AGC H AC Q CTA T AGG D CAA R TA T CTA CTA CTA CTA CTA CTA C
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG CCTG W ATCA Q GAAT M CGGA D CCAA K CCCT L TTAC T	M TGC A A A CA Q GAA K GGG G G G G G G G G CAG R CAG R CAG R CAG R CAG TGT V V	L GGGG GAA K GGTG W AGCC P AGAA C C C C C C C C C C C C C C C C C	S TAT I Z GCA H GCG R TCA H GTC S GTC S GAA K CAA K TGA E	A TTTI L CTT F STAC S TTT L AGC A C G A G A C G A C G C C A	G GGGG G G CGA Y GAA K AAC T G G TGG G TTG G TTG G TTG G TTG G TTT F	F TTIC S GAA K TGC A GGC A A C A C A C A C C A C C A C C A C C A C C A C A C C A C C A C A C A C A C C A C A C C A C A C C C A C A C C A C A C C C A C C C C A C C C C A C	A GAGG R CGGCC A CGTT L CGGC S CGTT C A GAGG S CTGA C CTGA R C CGTT C A C C C C C C C C C C C C C C C C C	L GTT: F GAAG CTGA D GGCA H GGCA K GCAT I SGTC S GAA K	L I I I GGAA N ATGA E ATGA T AACT L I TAA CAGG S I TGA G G	G G G G G G G G G G G G G G G G G G G	I GAU K TGC A CTC S CAG S CAG S CAG S TTT: F CAG R 234 TG2 TC A CAC T CAG T CAG T CAG T CAG T CAG T CAG T CA	S V V CTGC A CGGT V STCC P TTAA K GGCA G C C C C	F TTC Q C C C C C C C C C C C C C	F F AAGU E GCCCI L CCGC V CAAZ R CCAAZ S CCAAC S CCAAC S CCAAC S CCAAC A CCAAC A A CCAAT A A A CCAAT A A CCAAT A A CCAA A C CCAA A C CCAA A C CCAA A C CCAA A C CCAA A C CCAA A C CCAA A C CCAA A C CCAA A C CCAA A C CCAA A C CCAA A C CCAA A C C C C A C C C A C C C C A C	T Q Q CCAT I I TIGC A K GGGT V TIGT V TIGT V P GGCC P S GCCC P N S GCCC S	L AGC H AGG D CTA T AGG D CTA T CTA CTA CTA CTA CTA CTA
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M CGGA D CCAA K CCCT L TTAC T	M TGC A M ACA Q Q TGT V GAA K GGG G G G G G CAG R CAG R CAG R CAG R CAG TGT V U I	L GGGGG GAA K GGTG W ACCC P AGAA E AAGA E AAGA CCA Q CCA Q TCT L GGA D	S TAT I Z GCA H GCG R TCA H GTC S GTC S GAA K CAA K CAA K CAA K CAA K	A TTTI L TTT F TTAC S TTTT L AGC A C G A G G G G G G G G G G G C C A	G GGGG G CGA Y GGAA K AAC T GG G TGG G TTGG G TTG G TTG G TTG G TTG G	F TTIC S GAA K TGC A GGC A A C A A C A C A C A C C A C C A C C A C C A C A C C A C C A C A C A C A C C A C A C C A C A C C A C A C C A C A C C C A C C C C A C C C A C C C C A C	A GAGG R CGGCC A CGGTT L CGGCC A CGGTT L CGGCC S CTGA C CGTT C A CGGCC S CTGA C CGTT C A CGGCC C A CGGCC A C CGGCC A C CGGCC A C C CGGCC A C C C C	L GTT: F GAAG R CTGA D GGCA H AGAA K CAT I AAA I S GTC S GAA K	L I I I GGAA N ATGA E ATGA T AACT L I TAA CAGG S I TGA C CAC T CAGG G	G G G G G G G G G G G G G G G G G G G	I GAU K TGCC A CACC S CACC S TTT: F CACC R 234 TGZ D CACC T CGZ E TCZ H	S V V TGC A CGGT V STCC P TTAA K GGCA Q G CCCCC R A A G CCCCCC R A A G CCCCCCCC R A A CCCCCCCCCC	F TTC Q C C C C C C C C C C C C C	F F AAGU E GCCTI L CCGC V K ACCCC R CCAC R CCAC S CCAC S CCAC C R CCAC C CCAC C CCAC C CCAC C CCAC C C CCCCI C CCCCI C CCCCI C C CCCCI C C CCCCI C	T Q Q CCAT I I TIGC A K GGGT V TIGT V CTGT V C TIGT S GGCC P S GCCC P S GCCC TIGT C S S GCC TIGT C S S CCAT I I S C I S C S C	L AGC H AC Q CTA T AGG D CTA T CTA R T CTA R T CTA C C C C C C C C C C C C C
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M CGGA D CCAA K CCCT L TTAC T TGGA	M TGC A M ACA Q Q TGT V GGA K GGG G GGC CAG GGC CAG R CAG CAG R CCG R V U CCG R U U CCG C CGG C C CGG C C C C C C C C C	L GGGGGG GAA K GAAA K GGGA M ACCC P AGAA E AAGA E AAGA C CAA Q TCT L CGGA D CCAA Q TCT	S TAT I Z GCA H GCG R TCA H GTC S GTC S GAA K CAA K CAA K CAA K CAA K CAA K CAA CAA	A TTTI L TTT F TTTC AGC A ACG R GAG S GAG S GAG S GAG S GAG	G GGGG G G CGA Y GGAA K AAC T TGG G TGG G TTGG TTTT F C TGC	F TTIC S GAA K TGC A GGC A A C A A C A C A C C C TGA D C C C	A GAGG R CGGCC A CGGCC A CGGCC A CGGCC C CGAC CGAC	L GTT: F GAAG CTGA CTGA CTGA CTGA CCAT I GGAA CAT I GGAC CAT CAT CAT CAT CAT CAT CAT CAT CAT C	L I I TTGCC A GGAA N ATGA T TACCT C AACT L TTAA S CCAC T CCAC T CCAC G G CCGT	G AAG GAAA N CTG GAAA N CTG GAG S AAG S CAC T CCG R GCC P ATG C CAT	I GAU GAU K TGC A TGC A CAC CAC CAC T CAC T CAC T CAC CAC	S V V CTGC A CCGGI V STCC P TTAA K G G CCCG R G CCCG R A A G G CCCG R C G A CCGGI C G G CCGGI C G G CCGGI C G G C G G C G G C G C	F TTC Q CCTC C CTTC S CTAC T AGG2 D CAGG2 S AGG2 T S AGG2 T S AGG2 T S AGG2 C T C C C C C C C C C C C C C	F AAGU E GCCT L CCGC V CAAZ K ACCCC R CGTC S CCAC S CCAC S CCAC A CGTC S CCAC C R CCAC C R CCAC C C CCAC C C CCCC C C C	CAT I TTGC A GGGI K GGGI V TTGI V TTGI P GGCC P SGCC P SGCC N SGCC SGCC	L AGC H AGC Q TA T AGG D CTA R TA T TA T AGG D CTA R TA T CTA R CTA R C C C C C C C C C C C C C
+3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M CGGA D CCAA K CCCT L TTAC T TGGA E	M TGC A M ACA Q Q TGT V GGA K GGG CAG GGC R CAG R CAG R CAG R CAG C C C G G U U U U U D	L GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	S TAT I Z GCA H GCC R TCA H GTC S GTCC S GAA K CAA K CAA K CAA K CAA K CAA K CAA K CAA K CAA K CAA	A TTTI L CTT F STAGC S TTTT L AGCC A C GAGC S GAGC S GAGC S C GCC S	G GGGG G G CGA Y GAA K AACC T TGG G TGG G TTGG W CCCA Q TTTT F G TTGC A	F TTIC S GAA K TGC A GGC A A A A C A A C A C A C A C C C I L	A GAG CGAG CGAG CGAC CGAC S CTGA CACG R CACG R CGAA K	L GTT: F GAAG R GCA H GGAA K GGAA S GGAA K GGAC T	L I I TTGCC A GGAA N ATGA T TAA CAC T TAA TTAA S CAC S TTGA D CCAC T CCAC T CCAC T CCAC C CCT V	GAA CTG CCC P GAAA N CTG C GAAG S CAC C C C C C C C C C C C C C	A CTCC A CTCC A CTCC CACC CACC CACC CACC	S V V CTGC A CCGGT V G G CCGGT R G G CCGG R G G CCGG R G G CCGG R G G CCGG R G G CCGG R G G CCGG C R G G CGGT C C G G C G C G C G C G C G C	F TTC Q CCTC C C TTC S CTAC T AGG2 D GATO S GATO F E GTG2 C C C C C C C C C C C C C	F AAG E E GCCT L CCGC V CAAZ K ACCCC R CGAC S CCAC R CGAC S CCAC R Ina. A ACAT M CGAC	CAT I TTGC A GGAZ K GGGI V V TTGT P GGCC P SGCC P SGCC N SGCC S GGAI I	L GC H AGC Q TA T AGG D CTA R TA T TG A CTG A CTG CTG CTG CTG CTG CTG CTG CTG
+3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M CGGA M CCGA K CCCT L TTAC T TGGA	M TGC A M ACA Q Q TGT V GAA K GGG G G G G CAG R CAG R CAG R CCG R V U CCG R D	L GGGGGG GAA K GGTG W ACCC P AGAA E AAGA E AAGA S GCCGA Q TCTT L GGGA D TCTT L	S TAT I Z GCA H GCC R TCA H GTC S GCC S GAA K CAA K CAA K CAA K CAA K CAA K CAA C CAA C CAA C CAA C CAA C CAA C CA	A TTTI L CTT F STAC S S TTT L AGC A A C G A G G C C P G A G G C C A S G C C C T C T C T C T C T C T C T C T C	G GGGG G G CGA Y GAA K AACC T GG G TGG G TGG G TTG C CCA Q TTTT F CCA CCA Q	F TTIC S GAA K TGC A GGC A ACA Q AGCC A C A C C C C C C C C C C C C C C	A GAG CGAG CGAG CGAC CGAC CTGA CTGA CACG CACG	L GTT: F CAAG R CTGZ D CGCA H CGCA I CAA I I CAA I S GGCC K CAT I I CGTC S GAA K	L I I I TTTGC A SGAA N ATGA E TTAC T AACT L TAA C CCC G CCAC T CCAC C G CCAC T CCAC C CCAC	G AAAG G AAAG G AAAG G G G G G G G G G G	34 36 36 37 34 36 37 37 37 37 37 37 37 37 37 37	S V V CTGC A CGGT V STCC P STCC P STCC C SGC2 G C C SAGC A A SAGC C C SAGC A A SAGC C C SAGC C C SAGC C C C C C C C C C C C C C C C C C C	F TTC Q C C C C C C C C C C C C C	F F AAG E E CCCC V V CAA C CCAA R CCAA R CCAA R CCAA R CCAA R CCAA R CCAA R CCAA R CCAA R CCAA R CCAA R CCAA R CCAA R CCCCC R CCCCCC R CCCCCCC R CCCCCCCC	CAT I TTGC A CAT I TTGC A CAT C CAT C C C C C C C C C C C C C	L GC H AC Q CTA T AGG D CTA R T A CT A CT C CTA C C C C C C C C C C C C C
+3: DNA: +3:	R TGCC P ACAG R AGGG G CCTG W ATCA Q GAAT M CGGA M CCGA K CCCT L TTAC T TGGA	M TGC A In ACA Q Q GGAA K GGGG C A GGC A CAG G GC A CAG C CCG R V CCG R V CCG C C C C C C C C C C C C C C C C C	L GGGGGGG GAA K GGTGW ACCCP P AGAA E AAGA E AAGA S GCCGA Q TCTT L CCCA Q TCTT L	S TAT I Z GCA H GCC R TCA H GTC S GCC R CTC S GAA K CAA K CAA K CAA K CAA K CAA K CAA K CAA	A TTTI L CTT F STAC S S TTTT L AGC A A C G C C P G A C G C C C C C C C C T C T C T C T C T C	G GGGG G G CGA F GGAA K AACC T TGG G TGG G TTGG W CCCA Q TTTT F CCCA Q TTTT F AAAA	F TTIC S GAA K TGC A GGC A ACA Q AGCC A ACC A GAC S TGA D CC1 L GGAA	A GAG CGAG CGAG CGGC A CGGC A CGAG CTTA CACG CACG	L GTT: F CAAG R CTGZ D CGCA H CCAT I CAGAZ K CAT I CAA CAT I CAA CAT I CAA CAT I CAA CAT I CAA CAT I CAA CAA CAA CAA CAA CAA CAA CAA CAA C	L I I I TTTGC A SGAA N ATGA E TTAC T AACT L TTAA K J CCAC S CCAC T CCAC G CCGT V TTAA	G GAA G GAA N CTG CTG CTG CTG CTG CTG CTG CTG	AACTC	S V V CTGC A CGGT V STCC P STCC P STCC P STCC C C STCC C C SAGC A SAGC C C SAGC	F TTC Q C C C C C C C C C C C C C	F AAG E E GCCT L V V CAA C C C C C C C C C C C C C C C C	Q Q CCAT I TTGC A CGAZ K CGAZ C CCAT C CCAT C CCAT C C C C C C C C C	L AGC H AC Q TA T AGG D CTA R TA T TA T CTA C CTA C CTA C C C C C C C C C C C C C

<u>Ina208</u>

DNA:	ATGT	GAA	GGA	TGT	AAT	AGA	GCA	ATA	TTC	AGC	TGG	STCA	TCT	GGA	CA	'GCT	CT
+3:		K	D	V Ina	I 18	E	Q	Y	S	A	G	Η	L	D	М	L	С
DNA:	GCCG	AAT	TAA K	GAG	TCT	GCA	AAC	CAG	G GI	TGA	TCA	AGAT T	TCT	TGG	TAC	GGGG	CC
т ј.	л 2 с л т	1	n nom	5	ц ттт	Ŷ	1	Л	v		~~~	1	ц т п с	G	г - с с	G	Ŷ
DNA: +3:	AGAT M	P	V	GGA: D	raa K	GAA K	GG1 V	R	AGA E	AAA K	GC1 L	GTT L	ATC S	D	G	AGA D	.CA I
DNA:	TTCT	GGA.	AGA	TGT	Ina . G AG	207 CAT	GCI	GGG	→ AAG	GGT	GTG	Inai 5CAA	176 .GGT	TGA	AAG		GG
+3:	L	Е	D	V	S	М	L	G	R T	V 1 22	С 54	K	V	E	R	Q 73	V
DNA:	T ACA	ATC	TAT	TGA	GTC	TAA	GCI	'GGA	.c <u>TC</u>	GTT	GC1	GGA	CAT	CTA	CCG	GCA	GG
+3:	Q ◀───	S	Ţ	E	S	K	Г	D	S	L	Г	D	1	Y	R	Q	V
DNA: +3:	<i>TT</i> CT L	GCA Q	GAA K	GGG G	ITC S	TTC S	CAC T	AGC A	CCT L	CAC T	GTI F	STTC	CTC S	TCT L	TCC P	TCC P	TT F
DNA:	TTGG	TTT	GGA	GGA	GAA	TTC.	AGA	TTA	TCA	GAG	CAC	CGT	CCT	TAG	TAA	.GGA	TC
+3:	G	Г	L	£	IN	Б	D	Ţ	Q	Б	1	V	Ц	5	ĸ	D	Ц
DNA: +3:	TCTC S	TTG C	TGC A	GTC2 S	ACA Q	GGT V	CAG S	CCA Q	.GTC S	CAT I	CTG C [na	GTGG G 175	CAA N	TCA H	P	TAG R –	GG A
DNA:	CCCT	CCA	GCT	AAT <i>i</i>	ATT	AGC	CCC P	CAA	TGA	ACT	CA1 M	GAA	CCT	CAA N	CCA	GAA M	CA N
тJ.	Ц	Q	Ц	T	Ц	A	г	IN	Е	Ц	1*1	IN	Ц	IN	Q	IN	IN
DNA: +3:	ACTC S	CAC. T	AAC T	ATC: S	TTC S	CCC. P	AGG G	ACT L	CAA N	TCC. P	AGC A	SGTC S	CGC A	CTC' S	TCC P	TTT F	TA N
DNA: +3:	ACCT	GTC S	GAC T	CTT(F	CCA O	GGT V	TCC P	TTC S	AAC T	CCC. P	ATC S	CACT	GGA E	GTG' C	TCC P	GTC	AG A
DNA .	-	100	-	-	~	т. Т.С.Л.	- 	-	- ת ת הי	-	~ ~	-	-	- 	-	-	
+3:	Q	G	S	P	S	Q	I	L	n N	A	N	S	F	H	S	S	I
DNA: +3:	TAGG G	CCA H	CTT F	TCC2 P	AAG S	CGT V	GGG G	TCA Q	ACC P	ACC P	TCC P	P P	TCT L	CTC. S	ATC S	CAC T	AA T
DNA: +3:	CCAC T	TTC. S	AAA K	ATA' Y	ICA Q	ACT L	TTC S	CAC T	AGT V	TCC P	TTC S	Q Q	AGC A	AGG G	CCA H	.TGC A	TC R
DNA:	GCAG	TAT	GGG	ACC	CAC	TAG	GTC	GGA	TCC	CGC.	AGA	CTA	TGC	CAA	GTC	TTG	CT
+3:	S	М	G	P	Т	R	S	D	Ρ	A	D	Y	A	K	S	С	F
DNA: +3:	TCAG R	AGG. G	AGT V	TGG(G	GAT I	AGA D	CCT L	TGG G	ACT L	CAA N	CTC S	STAG	TAT M	GAT I	CTG C	CAA K	.GC L
DNA: +3:	TTCA Q	GCA Q	GAA K	AAA N	CAG R	ACC P	CAG S	TGC A	TAA K	AGA E	AGA D	CAG S	TTC S	TTG W	GAG R	AAG R	AC H
DNA: +3:	ATAT I	AAG' S	TCT L	GGA D	TTC S	AGA E	GGI V	'GGA E	.GAT M	GGA D	CCC P	CCT L	TGC A	TCC. P	AGT V	CTC S	AC P
DNA:	CTCT	TGC	ссс	AGT	ГСА	AGG	ССА	GTG	CAG	TGG	GGA	CAG	AGG	ACT	GGG	GAA	GT
+3:	L	A I	Р na1	V 77	Q	G	Q	C	S	G	D	R	G	L	G	K	S
DNA:+3:	CCCT L	ATC. S	AGT V	GCA Q	GGA D	TCT L	CA1 I	TCA Q	ACC P	CGC A	TTT L	GGA E	GGG G	TGT V	GGG G	TGT V	GG D
DNA:	ACAC	GCA	TTC	TAG	CCA	GGC	TAG	TTT	CTC	CAC	CAG	GCAT	CAG	CAG	CAG	CCA	GG
+3:	Т	Η	S	S	Q	A	S	F	S	Т	S	Ι	S	S	S	Q	D
DNA: +3:	ACTC S	TTC. S	AGC A	TGG G	IGG G	TAT I	TGA E	.GAT M	GGG G	CGC A	AGG G	GGGG G	CTG W	GGG. G	AGA E	.AGC A	TG D
DNA:	ATCT	CTT	TAT	CAG	CGA	TAG.	AGA	CTT	GGA	GAC	ATC	CAAC	AAA	GGC.	ACA	TAA	TC
+3:	L	F	Ι	S	D	R	D	L	Ε	Т	S	Т	K	A	Η	Ν	Q
DNA: +3:	AAGG G	GTT F	TGA D	CTT F	ICT L	CTC S	CCA Q	.GGC A	CCC P	CAT I	TGA D	ATGC A	GTC S	TTA Y	CTC S	TTC S	CG E
DNA: +3:	AGCT L	GCT L	TAG R	GAC T	AAG S	CAC T	TGC A	GGC A	TGG G	TGC A	TAG S	TCA H	CAG S	CCT. L	AGC A	AAG S	TG G
DNA:	GACA	TAC	ATC	CAA	CAC	AGG	CAG	CAA	TGA	GAC	TAT	TAA	TAT	GCC.	ACA	TGT	CC
+3:	Н	Т	S	Ν	Т	G	S	Ν	Ε	Т	I	Ν	М	Ρ	Η	V	R

Ina209 Ina178 DNA: GGCTAAAATAAGACTC*TCTTAATGAGTTGTACACTCTAAGAATC<u>TGCCTCT</u>* +3: L K * DNA: GATGGAATGAATCTTTGATA

6.2.4.2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch

	1	
KCNQ5 kcnqf	MPRHHAGGEEGGAAGLWVKSGAAAAAGGGRLGSGMKDVESGRGRVLLNSAAARGDGLLL MPRNHSGDEAGSGLWMNTSPGHHAESYGLHNVECDNRMKNNCSRPGDGLLS ***:*:*:* * ***:*:*:* * 1	60 51
KCNQ5 kcnqf	LGTRAATLGGGGGGGLRESRRGKQGARMSLLGKPLSYTSSQSCRRNVKYRRVQNYLYNVLE ASHAGTGASGTERDRGKQGARLSLLGKPLVYG-TQSGRRNARYRRIQNYLYNVLE *: .* * * ***************************	120 105
KCNQ5 kcnqf	2 3 RPRGWAFIYHAFVFLLVFGCLILSVFSTIPEHTKLASSCLLILEFVMIVVFGLEFIIRIW RPRSWAFIYHAFVFVLVFGCLVLSVFSTIPDHQEMASQSLLILEFVMIVVFGLEYIIRIW ***********************************	180 165
KCNQ5 kcnqf	4 SAGCCCRYRGWQGRLRFARKPFCVIDTIVLIASIAVVSAKTQGNIFATSALRSLRFLQIL SAGCCCRYRGWQGRLRFARKPFCVIDIVLIASVAVVSAGSQSNIFATSALRSLRFLQIL ************************************	240 225
KCNQ5 kcnqf	 	300 285
KCNQ5 kcnqf	Image: Constraint of the second system Image: Constraint of the second system ALWWGTITLTTIGYGDKTPLTWLGRLLSAGFALLGISFFALPAGILGSGFALKVQEQHRQ ALWWGTITLTTIGYGDKTPKTWTGRMLSAGFALLGISFFTLPAGILGSGFALKVQEQHRQ ************************************	360 345
	6 8 9	
KCNQ5 kcnqf	KHFEKRRNPAANLIQCVWRSYAADEKSVSIATWKPHLKALHTCSPTKKEQGEASSSQKLS KHFEKRRNPAACLIQCVWRSYAADENSVSVATWKPHLKALHTCSPTKKDQGESATSQKLS ************************************	420 405
KCNQ5 kcnqf	10 FKERVRMASPRGQSIKSRQASVGDRRSPSTDITAEGS-PTKVQKSWSFNDRTRFRPSLRL FKDRVRMASPRGQSIKSRQTSVTDRRSPGAEISTDGSSPAKVQKSWSFNDRTRFRPSLRL **:*********************************	479 465
KCNQ5 kcnqf	[1] [12] KSSQPKPVIDADTALGTDDVYDEKGCQCDVSVEDLTPPLKTVIRAIRIMKFHVAKRKFKE IMKFHVAKRKFKE KS-QSRSTPEGEANVTVDEAFDEKGCHCDMSVEDLPSALKTVIRAVRIMKFHVAKKKFKE IMKFHVAKKKFKE ** * : II II	539 524
KCNQ5 kcnqf	13 TLRPYDVKDVIEQYSAGHLDMLCRIKSLQTRVDQILGKGQITSDKKSREKITAEHETTDD TLRPYDVKDVIEQYSAGHLDMLCRIKSLQTRVDQILGRGQMPVDKKVREKLLSDGDILED ************************************	599 584
KCNQ5 kcnqf	I4 LSMLGRVVKVEKQVQSIESKLDCLLDIYQQVLRKGSASALALASFQIPPFECEQTSDYQS VSMLGRVCKVERQVQSIESKLDSLLDIYRQVLQKGSSTALTFSSLPPFGLEENSDYQS :****** ***:*********************************	659 642
KCNQ5 kcnqf	PVDSKDLSGSAQNSGCLSRSTSANISRGLQFILTPNEFSAQTFYALSPTMHS- TVLSKDLSCASQVSQSICGNHPRALQLILAPNELMNLNQNNSTTSSPGLNPASASP .* ***** ::* :*:*:*:**:**: .* ***** :*:*:*	711 698
KCNQ5 kcnqf	QATQVPISQSDGSAVAATNTIANQINTAPKPAAPTTLQIPPPLPAIKHLPRPET FNLSTFQVPSTPSLECPSAQGSPSQILNANSFHSSIGHFPSVGQPPPPLSSTTTSKYQLS ** :: :::: : : *:. * ****.::	765 758

KCNQ5 kcnqf	LHPNPAGLQESISDVTTCLVASKENVQVAQSNLTKDRSMRK 806 TVPSQAGHARSMGPTRSDPADYAKSCFRGVGIDLGLNSSMICKLQQKNRPSAKEDSSWRR 818 *. ** .*::*: : *. :: *.* .:* * *:
KCNQ5	SFDMGGETLLSVCPMVPKDLGKSLSVQNLIRSTEEL 842
kcnqf	HISLDSEVEMDPLAPVSPLAPVQGQCSGDRGLGKSLSVQDLIQPALEGVGVDTHSSQASF 878 :*. :. *.*:.* : *******: **: * .:
KCNQ5	NIQLSGSESSGSRGSQDFYPKWRESKLFITDEEVGPEETETDT-FDAAPQPAREAAFASD 901
kcnqf	STSISSSQDSSAGGIEMGAGGWGEADLFISDRDLETSTKAHNQGFDFLSQAPIDASYSSE 938 :*.*:.*: * *:.***:*.:: : ** .**. ****: * *:.***:*.:: : ** .**.
KCNQ5	SLRTGRSR-SSQSICKAGESTDALSLPHVKLK 932
kcnqf	LLRTSTAAGASHSLASGHTSNTGSNETINMPHVRLK 974 ***.: :*:*: * .::::***:**

6.2.4.3 Alternatives Exon

6.2.4.3.1 alternatives Exon 8, erstellt über ClustalW

	7 8	9	
kcnqfa	PAACLIQ <mark>C</mark> VWRSYAAD-ENS	VSVATWKPHLKALHTCSPT <mark>K</mark> KDQGESATSQKLSFKDRVRM 5	9
kcnqfb	PAACLIQ <mark>A</mark> AWRYYSTDGSRP	YLQATWHPYESTIPIRRKDQGESATSQKLSFKDRVRM 5	7
	******	***:*: .:: :*******************	

6.2.5 kcnqg

6.2.5.1 DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen

Ina182 -----Ina100 GTTTTGAAGTGAGAAATCAGGCGTGA 4 DNA: AAGTCTCTCCTCAACCGCGGTATGACCTCCCCAGCTCACAGTACAGCCACC М Т Ѕ Ҏ А Н Ѕ Т А Т DNA: GAGGCTTCATGGACTGCTGGAGCCGCAGACCTGCAGATGACCGAGGCTCTG +1: E A S W T A G A A D L Q M T E A L DNA: CACCTGCGGAATGACGGCGTGCGCTTCCCCTCCGGTGCCCGTGGATCCG DNA: GCGGTGATCACGCAGCACCCGCCGTCTCACCTCCATCCCCGCATGTCCGTG DNA: **<u>TACA</u>GCGCCACACGCCCCACACTCTCCAGGTCCTTCCAAGGACGTGTT** DNA: TATAATTTCTTGGAGAGAGACCCACGGGT +1: Y N F L E R P T G W K C F V Y H F DNA: ACAG**TA**TTCCTCATTGTGCTTTCTTGCCTGATCCTCAGTGTGCTGTCCACC +1: T V F L I V L S C L I L S V L S T +1: I D E Y Q A L A N K T L F W M E L Ina133 DNA: GTGCTGGTAATGTTCTTTGGTGTGGAGTACGTGGTCCGTCTGTGGTCAGCT +1: V L V M F F G V E Y V V R L W S A DNA: GGATGCCGGAGTAAATATGTGGGAATTCTGGGCAGGCTTCGCTTTGCCCGA +1: G C R S K Y V G I L G R L R F A R DNA: AAGCCAATTTCTGTTATT**GA**CCTGATTGTGGTGGTGGCTTCTATTATTGTA +1: K P I S V I D L I V V V A S I I V DNA: TTGGCATTTGGCTCTAATGGCCAGGTATTTGCTACCTCTGCTGTCACA +1: L A F G S N G Q V F A T S A V R G

						In	a20	1		-	_					
DNA:	GTCC	GCTT	CCT	TCA7	AAT 1	CTO	GCGI	ATC	GCT	GCA1	IGT (GGA	TCG	ACAA	AGG	IGGA
+1:	V R	F	L	Q	I	L	R	М	L	Н	V	D	R	Q	G	G
DNA:	ACAT	GGCG	GTT	GCTI	IGGZ	ATCA	AGTA	GTG	GTT1	TATA	ACAT	CGZ	ACA	GG A)	ACT	GATC
+1:	T W	R	L	L	G	S	V	V	F	Ι	Н	R	Q	Ε	L	I
DNA:	ACAA	CTCT	CTAT	TAT	CGGA	ATTC	ссте	GGGG	GCTO	CATC	CTTC	CTCC	CTC	CTAC	CTT	fgt <i>g</i>
+1:	т т	L	Y	I	G	F	L	G	L	I	F	S	S	Y	F	V
	Ina	80 <	<u> </u>	- II	1a3											
DNA:	TATC	TGGC	AGA	GAA	GA	rgce	GT	GAI	GAG	CCAC	CGGI	[AAC	CTCI	rggo	GTT:	IGGC
+1.	Y L	Δ	E	K	D	Δ	V	D.	D	н	G	N	S	G	г Г	G
	Tna	2	-				•	D	D		0		0	0	1	0
DN7 •	ACCT	acco	CCA	TCC	rc m	TTCC	TTC	CCT	ст		N A C	ACT	N N C (~7.0	тлт	TCCC
	AGCI	ACGC	CGA.	7 301	- -	1.7	1.7	-GG1		30 17	-n-C/	1011		- JAC	- T	6660
+1:	S I	A	D	А	Ц	W	W	G	V	V	Ţ	V	Ţ	Ţ	1	G
	Ina	98	~ ~ ~	+											10	a189
DNA:	TACG	GAGA	CAA	5G1'1	ICC:	CA	JACI	. IGG	-AIA	AGGA		JACI		-	41.02	41G1
+1:	Y G	D	K	V	Р	Q	Т	W	T	G	K	Т	Ţ	A	S	С
			-									-				
DNA:	TTCT	CTGT	CTT	CGC	TATO	CTCC	CTTI	TTT	GCC	CCTC	CCCI	ſGC	A G Gž	AAT(CCT	GGGC
+1:	F S	V	F	A	Ι	S	F	F	A	L	Ρ	А	G	Ι	L	G
DNA:	TCCG	GTTT	TGC	ГСТС	GAAG	GGTA	ACAG	GCAG	GAAA	ACAG	GAGA	ACAP	AAA	ACAT	TTT	CAAC
+1:	S G	F	A	L	Κ	V	Q	Q	K	Q	R	Q	Κ	Η	F	Ν
DNA:	AGGC	AAAT	TCC	rgc <i>i</i>	AGCI	GCG	GAGI	сто	CAT		GC	GTC	CTG	GAG	GTG	TTTC
+1.	R O	т	P	Δ	Δ	Δ	S	Τ.	т	0	Δ	S	W	R	C	F
· ± •	10 Q	-	-		11		0	-	-	×	11	0		11	0	-
DNA ·	GCCT	тсст	GAA		CDT	TCT	GCC		тас	~ <u>a</u> a c	TTZ	ידדע	ст	2222		адат
+1.	Δ T.	T.	M	P	D	с . т.С.1	Δ	T	V	K K	т.	F 1	V	K	B 10.01	N
11.	лц	ш	IN	T	D	5	л	T	T	11	ш	Ľ	v	IV.	11	14
	OT CA	~~~~~			-		1001	ה ה הי		.		~~ ~ ~ ~	· ۳ ۳	~ ~ ~	~ ~ ~	~ ~ ~ ~
DNA:	CICA	GCAG	TICA	AGGC	JICI	. AGC	-001	. AAF	<u> </u>	AAA	jG⊥	JAA	JAI	JAG	JAG	JAAA
+1:	LS	S	S	G	S	S	Р	K	Г	K	V	K	Μ	R	R	K
DNA:	ATGA	AGAT	TAG	IGAC	CCGG	GAAI	TAAC	CGGG	GCAC	GAAI	TCI	[CC]	[GC]	AGTZ	ACC	FTCC
+1:	M K	Ι	S	D	R	Ν	Ν	G	Q	Ν	S	Ρ	А	V	Ρ	S
DNA:	ATAA	CCTA	TGA	CTCC	CTTI	GAI	GAI	GGA	AGG	GGAC	CAG	CAGO	GCAA	AGAC	GAC	ACTG
+1:	I T	Y	D	S	F	D	D	G	R	D	S	R	Q	Е	Т	L
DNA:	ACCA	GTCT	TCA	ACAC	GTCA	GA	ACGA	AGCO	GCC	GTC	CTG	GAA	CTC	ICT(GTC	C TCG
+1:	T S	L	0	0	S	Е	R	А	Р	S	W	Ν	S	L	S	S
	In	a190	~	Ĩ.												
DNA ·	TTCC	AGTT	CTC	TAC	ACCT	rccz	GC		3AA(3007	TGG	GGT	гтта	GA	GGT	CTCA
11.	F 0		c	т	D	D	7	т Т	v	D. D. D.	c			- -	17	c
τ ι .	ΓŲ	r	3	T	Г	Г	A	T	17	r	G	v	г	Ľ	v	3
	тото	~~~~	<u> </u>	2000				17.00	17.00	س ر د						77.07
DNA:	ICIC	GGCC	CACI	JCIJ	CAU	JAGO	JAGU	AGC	AGU	AII T	.GCF	AGA I	IGAI	LAIC	JGAU	JACI
+1:	SR	P	Ţ	Ц	Q	R	5	5	5	T	A	D	D	М	Ł	T
					_			11	aly	1	-					
DNA:	GAGC	CGGA	GCGZ	AGAC	GATI	G T 6	GCTO	CATI	CC2	AGTO	CGC'	[CA]	IGT	JT C	rc a	GTTG
+1:	E P	Ε	R	Ε	Ι	V	L	Ι	Ρ	V	А	Η	V	S	Q	L
		Ina1	<u>93</u> —		In	al6	59 -	←						In	a19	4
DNA:	CGG G	ATTC	TCA	TCGI	AGC2	AGCC	CATO	CCG1	GTO	GATC	CCAC	GAGA	AAT (GTA (CTA	CTTT
+1:	R D	S	Η	R	А	A	Ι	R	V	I	Q	R	М	Y	Y	F
			-			I	na4		-	_	I	na1	70	←		
DNA:	GTGG	CCAG	AAA	GAA	<i>GT</i> TT	CA	GCA	AGC	ACG	TAA	GCC.	ATA	TGA	TGT	GCG	GGAC
+1:	V A	R	К	K	F	0	0	A	R	K	Р	Y	D	V	R	D
				Tr	- a15	õ	~		•		-	-	-	Tn	a10	7
DNA ·	GTCA	TTGA	GCA	STA'	TTC	CAG	GGG	CAT	ст	ZAAC	сто	- A TC	GT	CG	7470	CAAG
±1.	V T	F	0	v	c	0	G	u	т.	M	т	M	V	P	т	K
11.	V I		Ŷ	T	5	Ŷ	G	11	ш	IN	ш	1.1	v	1	T	17
	<i>a</i> 7, <i>c</i> 0		7707				TO N	-	p.m.m.		~ ~ ~ ~		-	200	rrr.	2010
DINA:	GAGC	IGCA	AAGA	-464		JGA.			- I I I -		JAA	JUAU	3100	T	- I I I	CCAG
+1:	ЕL	Q	R	R	Г	D	Н	S	Ь	G	K	Q	S	Г	F.	Q
			- [-				~ ~ .		~ -		~ -		-		
DNA:	ACAA	GTTC	A GA	GCG	JTT	JAA	AGA	CAA	AGG	CAC	AAA	CAC	l'AT	ľGG	CTC	CAGA
+1:	T S	S	Е	R	L	Κ	D	Κ	G	Т	Ν	Т	I	G	S	R
DNA:	CTCA	ACAG	AAT	GGAT	GAG	GAA	SA T(CAC	ACA	CAT	GGA	CAG	GAC	CCT	CAA	CAGC
+1:	L N	R	М	D	Е	к	Ι	Т	Н	М	D	R	Т	L	Ν	S
•				-	-		_	-			-		-	_		-
DNA ·	ΔΤΤΩ	СТСЛ	GTC	CTO	יאאר	ירידר	יאדמי	CTO	3600		GD	SAC7		366	GD	гстс
+1.	ттт. Т тто	L D I C I C I C I C I C I C I C I C I C I	0 I U U	T	VI TUTC	T	M	T	2000	B 517GG	F	P	P	C	D. D.	T.
T.	т А	Ľ	S	Ц	τN	ш	1.1	ш	л	17	LL.	17	1/	G	ν	ш
DN7 •	CCCA	cccc	C774	2070			27.00	-700	יד אי				ייידב		יחתי	TTC
 1.	JUCCA	0000 7	UAAU V	JAU T	O	ירפנ ס	, 407 2		M	DDCC	D D	-CAC	JIUE C	7000	T	L L
ΥT:	л К	G	T/	خد	¥	17	J	T	1.1	1/	1/	¥	S	Ч	T	Ľ

DNA: AGCCTGTCAGTGCCGGACAGCAGCAGCAGCAACTGTCCACAACAACTGCTATT +1: S L S V P D S S E Q L S T T T A I DNA: CATGAGGACAGCTGAGTCACCAACGGAGCTCTTGCTCACAAAGTGCCTACT +1: H E D S * Ina204 DNA: GGGGCCTTTTCGGCTTGATTTAGTAGAGAAGT**TTGGCTCAGGTTCAGCATCAGATGA**

6.2.5.2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch

	1	
KCNQ1	MAAASSPPRAERKRWGWGRLPGARRGSAGLAKKCPFSLELAEGGPAGGALYAPIAPGAPG 60	
kenqg	MISPAHSIAIEASWIG 33 :**.::* *:*.*: *.	
KCNQ1	PAPPASPAAPAAPPVASDLGPRPPVSLDPRVSIYSTRRPVLARTHVQGRVYNFLERPTGW 12	0
kcnqg	VRFPSSVPVDPAVITQHPPSHLHPRMSVYSATRPTLSRSFLQGRVYNFLERPTGW 88	
	_ 2 _ 3	
KCNQ1	KCFVYHFAVFLIVLVCLIFSVLSTIEQYAALATGTLFWMEIVLVVFFGTEYVVRLWSAGC 18	0
kengg	**************************************	0
KCNO1	4 DSKVUCI MCDI DEADKDISTIDI IVUVASMUVI CVCSKCOVEATSAIDCIDEI OII DMI H 24	0
kenqg	RSKYVGLUGRLRFARKFIGIIDLIVVVASHVVLCVGSRGQVFAIGAIRGIRFLGILRMLH 24 RSKYVGILGRLRFARKPISVIDLIVVVASHVVLAFGSNGQVFAIGAIRGIRFLGILRMLH 20	8
	*****: ********************************	
	4 6	
KCNQ1	VDRQGGTWRLLGSVVFIHRQELITTLYIGFLGLIFSSYFVYLAEKDAVNESGRVEFGSYA 30	0
kcnqg	VDRQGGTWRLLGSVVFIHRQELITTLYIGFLGLIFSSYFVYLAEKDAVDDHGNSGFGSYA 26	8
	··· ·	
KCNQ1	DALWWGVVTVTTIGYGDKVPQTWVGKTIASCFSVFAISFFALPAGILGSGFALKVQQKQR 36	0
kengg	***************************************	0
KCNO1	OKHENROTDAAASI.TOTAMRCVAAENDDSSTWKTVTRKAPRSHTLLSDSDKDKKSWWKK 42	0
kcnqg	QKHFNRQIPAAASLIQASWRCFALLNPDSATYKLFVKRNLSSSGSSPKLKVKMRR 38	3

KCNQ1	KKFKLDKDNG-VTPGEKMLTVPHITCDPPEERRLDHFSVDGYDSSVR 46	6
kcnqg	KMKISDRNNGQNSPAVPSITYDSFDDGRDSRQETLTSLQQSERAPSWNSLSSFQFSTPPA 44	3
	11 12	
KCNQ1	KSPTLLEVS-MPHFMRTNSFAEDLDLEGETLLTPITHISOLREHHRATIKVIRRMQYF 52	3
kengg	* ::*** * : *:.*:*: * * :* *:*********	З
	12 13	
VCNO1		2
kengg	VARKKFQQARKPYDVRDVIEQYSQGHLNLMVRIKELQRRLDQSIGAPSLFISVSEKSADK 58 VARKKFQQARKPYDVRDVIEQYSQGHLNLMVRIKELQRRLDHSLGKQSLFQTSSERLKDK 56	3
15	**:************************************	
KCNQ1	GSNTIGARLNRVEDKVTQLDQRLALITDMLHQLLSLHGGSTPGSGGPPREGGAHITQPCG 64	3
kcnqg	GTNTIGSRLNRMDEKITHMDRTLNSIAESLNLMLARERRGDLARGKEQRSTMRR 61	7
	$16 \qquad 17$	
KCNQ1	SGGSVDPELFLPSNTLPTYEQLTVPRRGPDEGS 676	
renda	** :*. : ***: ::. 	

6.2.6 kcnqh

6.2.6.1 DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen

•

Ina109 DNA: CGCCCTTCCTCGCGCCCCCCCCCCCGAACGAGGTCCTTAAATGACCCACGA DNA: CCACTAAGAAGCTCGTGCTTTCCCTGTCCGGATCATGGCATGCGCCCCATC Tna187 Tna60 MGT -DNA: TCAGGTCCAGAAATGCCGCCGAGGGCCCGAGGGCCCGGGGGCGCGGGGGCGTAAAA +3: R S R N A A N S A E D S R E R K S DNA: GCGCGCTGGCCGGAGACCTGGAGCAGTGCGCGGGGCAGGAACGGGACGGCG +3: A L A G D L E Q C A G Q E R D G A +3: LLLVGSGREVDFKRGSQ DNA: AGAACATCGGGCTGCTCGCCAAGACGCCCCTGGGATACACGCGCCCCGTGA +3: NIGLLAKTPLGYTRPV Ina19 DNA: AGAGGAATAATATCAGGAAGCGACGGATCCAGAACCTCATTTACGACGCGC +3: R N N I R K R R I Q N L I Y D A L Ina52 DNA: TCGAGAGACCACGAGGATGGGCGCTGCTCTACCACGCGTTTGTGTTTTCTGA DNA: TTGTTTTGGGATGTCTGATTCTGTCGATATTAACAACATTCAAAGAGCACG +3: V L G C L I L S I L T T F K E H E -DNA: AGAAGGATTCGGCTCACTGGCTGGTGATTCTGGAGACGTTTACCATCTTTA +3: K D S A H W L V I L E T F T I F I DNA: TTTTTGGAGGTGAGTTTGCGTTGAGGATATGGGCCGCCGGCTGCTGCTGTC +3: F G G E F A L R I W A A G C C C R DNA: GATATAAAGGCTGGAGAGGACGGCTCAAATTCGCCCGCAAACCGCTGTGTG +3: Y K G W R G R L K F A R K P L C V +3: L D I F V L I A S V P V V A V R N Inallo DNA: ATCAGGGA**AATGTGTTGGCCACGTCGCTGCG**CAGTCTGCGTTTCCTGCAGA +3: Q G N V L A T S L R S L R F L Q I DNA: TCCTCCGGATGCTGCGAATGGACAGACGCGGAGGAACCTGGAAACTGCTGG +3: L R M L R M D R R G G T W K L L G Ina21 -> DNA: GATCTGCAATATACACACACAGCAAGCAAGCAGCGTGGTACATCG +3: S A I Y T H S K E L I T A W Y I G Ina20 -DNA: GCTTCCTGTCATTGATCCTGGCTTCTTCCTGGTGTACCTGGTCGAGAAGG F L S L I L A S F L V Y L V E K D +3: DNA: ACGATGAGACCACAGAGACTCCACAGAGACACTGATGGCCCTTCACCGACAC DETTELHRDTDGPSPTP +3: DNA: CGGCCCCGCAGGACTTTGACACCTATGCAGACGCCCTCTGGTGGGGGACTGA A P O D F D T Y A D A L W W G L +3. DNA: TCACTTTGACCACCATCGGTTACGGTGACAAGACCCCAAAGACATGGGCAG +3: TLTTIGYGDKTPKTWAG DNA: GGCGTCTTCTGGCCGGGACCTTCGCTCTTATTGGCGTATCATTCTTTGCAC +3: R L L A G T F A L I G V S F F A L DNA: TTCCAGCCGGCATTCTTGGTTCAGGTCTGGCTCTGAAAGTTCAGGAACAGC +3: PAGILGSGLALKVQEQH DNA: ACAGACAGAAACACTTTGAGAAACGCAGACATCCCGCAGCTTCATTAATAC +3: RQKHFEKRRHPAASLIQ

DNA: AGGCTGCATGGAGATATTACTCCACCAACCCCGTCAGAGAAGATCTCATCG +3: A A W R Y Y S T N P V R E D L I A DNA: CCACATGGAGATTCTATGAGACTGTGATCTCTCTGCCATGCTTCAGGAAGG +3: T W R F Y E T V I S L P C F R K D DNA: ATCCTCTTGAAGTTATGGCCA**GT**CAGAAGTTGAGTTTGCTGGATCGTGTTC +3: PLEVMASQKLSLLDRVR DNA: GTCTGTCGACTCCGAGGCCATCCACAGTGAGAGCCCGCGTCATGATGCCTG +3: L S T P R P S T V R A R V M M P A DNA: CTGCCAATCCTGAAAGTGTGCCAGGGAACTGTGGGCCGGCGGAGGCCATTG +3: A N P E S V P G N C G P A E A I E Ina23 -> DNA: AAGAGAGTCCATCAAAAGAGGGCAAACCAGCGGGATTCAGTAACAGAGAGA +3: E S P S K E G K P A G F S N R E R Ina22 4 DNA: GATT**TAGAACTGCTTTCAGAATGAAGGCCTA**CGCCCTGAGACAGAGCTCTG +3: F R T A F R M K A Y A L R Q S S E DNA: AGGATACTGGTGGTCTTCCTGATCCCACCCCTGAGGAGAAGGGCTTCCCGC +3: D T G G L P D P T P E E K G F P P DNA: CTGATATACTGCTGGAGGAGATGATTCCCACTCTCAAACTAGTGATACGAG +3: DILLEEMIPTLKLVIRA DNA: CACTGC**GG**ATTATAATGTTCCTGCTGAATAAGAAGCGTTTTAAGGAGACTC +3: L R I I M F L L N K K R F K E T L DNA: TGAGGCCATATGATGTGAAGGATGTGATTGAACAGTATTCTGCTGGACACC +3: R P Y D V K D V I E Q Y S A G H L DNA: TCGACATGCTCACCAGAATCAAATATCTGCAGACACGGTTAGATCTGATTC +3: DMLTRIKYLQTRLDLIL +3: T P G P T L T P K H K K P Q K T P Ina198 -DNA: CATTTCCGTACCCATCCCAGCAGTCTCCTAGACAGGAGTCGTACCTTGCCA +3: F P Y P S Q Q S P R Q E S Y L A K DNA: AAACAAGCCTGCCAGATCCCGAAGACCAAAGCATGATGGGTAGATTTGTGC +3: T S L P D P E D Q S M M G R F V R Ina25 Ina24 DNA: GGGTGGAGAGACAGGTGGAAGACATGGAGAAGAAACTGGACTTCCTGGTGG +3: VERQVEDMEKKLDFLVD -DNA: ACATGCATATGCAACATGACTTCACAGGCCCGGGTCACATGACCATGGAGC +3: MHMOHDFTGPGHMTMER DNA: GCTGCGACCCCACATTAACCGTTAGCGTAGCGGGCGACCGCGTTTACTGCA +3: C D P T L T V S V A G D R V Y C S DNA: GCTACGGCCCCCGCTACACAACACCCCCATACTACACACATCCGCCGAGAC +3: Y G P P L H N T P Y Y T H P P R P DNA: CGACCGTCCTGCCAATTAGCCCACTGCCAAGCCACTCGCCATCCTCCAACG +3: TVLPISPLPSHSPSSNV DNA: TCAGCCAAACTGGTGGCCATCGGGTCGGGACACCACTCTCGCTCCTGTCGG +3: SQTGGHRVGTPLSLLSV DNA: TCACTCACGAGGAGCTGGAGCGGTCACCCAGCGGATTTAGCATCTCAGCGG +3: THEELERSPSGFSISAE DNA: AGAAAGAAGAGGTCACGGGGAAGGCCTCGGGGTTAACAGCAGGGTCGAGTT +3: K E E V T G K A S G L T A G S S W Ina26 Ina53 -----DNA: GGGGCCGTGACCGCCGATATTTAGCCGAGGGAGAGACGGATACAGACACTG +3: G R D R R Y L A E G E T D T D T D -DNA: ATCCCTTTACACCCAGCGGACCTGTTCCTCCATCCTCCACCGGAGATGGCT P F T P S G P V P P S S T G D G F +3: +3: O S D G A W G T P P

6.2.6.2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch

	1	
KCNQ3 kcnqh	MGLKARRAAGAAGGGGDGGGGGGGGAANPAGGDAAAAGDEERKVGLAPGDVEQVTLALGAG 60 MGIRSRNAANSAEDAG 31 **:::*.**.:* .*)
KCNQ3 kcnqh	ا] ADKDGTLLLEGGGRDEGQRRTPQGIGLLAKTPLSRPVKRNNAKYRRIQTLIYDALERP 11 QERDGALLLVGSGREVDFKRGSQNIGLLAKTPLGYTRPVKRNNIRKRRIQNLIYDALERP 91	.8
-	::**:*** *.**: . :* .*.****************	
KCNQ3 kcnqh	RGWALLYHALVFLIVLGCLILAVLTTFKEYETVSGDWLLLLETFAIFIFGAEFALRIWAA 17 RGWALLYHAFVFLIVLGCLILSILTTFKEHEKDSAHWLVILETFTIFIFGGEFALRIWAA 15 *********:***************************	'8 51
	2 B 4	
KCNQ3 kcnqh	GCCCRYKGWRGRLKFARKPLCMLDIFVLIASVPVVAVGNQGNVLATSLRSLRFLQILRML 23 GCCCRYKGWRGRLKFARKPLCVLDIFVLIASVPVVAVRNQGNVLATSLRSLRFLQILRML 21 ************************************	38 .1
KCNQ3 kcnqh	RMDRRGGTWKLLGSAICAHSKELITAWYIGFLTLILSSFLVYLVEKDVPEVDAQGEE 29 RMDRRGGTWKLLGSAIYTHSKELITAWYIGFLSLILASFLVYLVEKDDETTELHRDTDGP 27	95 71
	5 []	
KCNQ3 kcnqh	<u>الا</u> MKEEFETYADALWWGLITLATIGYGDKTPKTWEGRLIAATFSLIGVSFFALPAGIL 35 SPTPAPQDFDTYADALWWGLITLTTIGYGDKTPKTWAGRLLAGTFALIGVSFFALPAGIL 33 ::*:********************************	51 31
KCNQ3 kcnqh	☐ GSGLALKVQEQHRQKHFEKRRKPAAELIQAAWRYYATNPNRIDLVATWRFYESVVSFPFF 41 GSGLALKVQEQHRQKHFEKRRHPAASLIQAAWRYYSTNPVREDLIATWRFYETVISLPCF 39 ************************************	.1)1
KCNQ3 kcnqh	RKEQLEAASSQKLGLLDRVRLSNPRGSNTKGKLFTPLNVDAIEESPSKE 46 RKDPLEVMASQKLSLLDRVRLSTPRPSTVRARVMMPAANPESVPGNCGPAEAIEESPSKE 45 **: **. :****.*************************	50 51
	9 10 11	
KCNQ3 kcnqh	PKPVGLNNKERFRTAFRMKAYAFWQSSEDAG-TGDPMAEDRGYGNDFPIEDMIPTLKAAI 51 GKPAGFSNRERFRTAFRMKAYALRQSSEDTGGLPDPTPEEKGFPPDILLEEMIPTLKLVI 51 **.*:.*:******************************	.9 .1
	12 13	
KCNQ3 kcnqh	RAVRILQFRLYKKKFKETLRPYDVKDVIEQYSAGHLDMLSRIKYLQTRIDMIFTPGPPST 57 RALRIIMFLLNKKRFKETLRPYDVKDVIEQYSAGHLDMLTRIKYLQTRLDLILTPGPTLT 57 **:**: * * **:************************	/9 71
	12 13 14 15	
KCNQ3 kcnqh	PKHKKSQKGSAFTFPSQQSPRNEPYVARPSTSEIEDQSMMGKFVKVERQVQDMGKKLDFL 63 PKHKKPQK-TPFPYPSQQSPRQESYLAKTSLPDPEDQSMMGRFVRVERQVEDMEKKLDFL 63 *****.** :.*:********:*.*:*:* .: *******:********	39 30
KCNQ3 kcnqh	VDMHMQHMERLQVQVTEYYPTKGTSSPAEAEKKEDNRYSDLKTIICNYSETGPPEPPYSF 69 VDMHMQHDFTGPGHMTMERCDPTLTVSVAGDRVYCSYGPP 67 ****** ::**: : .:* : *.* ***	99 70
KCNQ3 kcnqh	HQVTIDKVSPYGFFAHDPVNLPRGGPSSGKVQATPPSSATTYVERPTVLPILTLLDSRVS 75 	59 93
KCNQ3 kcnqh	CHSQADLQGPYSDRISPRQRRSITRDSDTPLSLMSVNHEELERSPSGFSISQDRDDY 81 HSPSSNVSQTGGHRVGTPLSLLSVTHEELERSPSGFSISAEKEEVTGK 74 :.* *: :* .*****:**.****************	.6 11

KCNQ3	VFGPNGGSSWMREKRYLAEGETDTDTDPFTPSGSMPLSSTGDGIS-DSVWTPSNKPI 872
kcnqh	ASGLTAGSSWGRDRRYLAEGETDTDTDPFTPSGPVPPSSTGDGFQSDGAWGTPP 795
	· ***** *::**************************

6.2.7 kcnqi

6.2.7.1 DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen

Anmerkung: Für kcnqi wurde die Version Zv6 verwendet, um die Exons zu definieren.

Ina257 -----

										GA!	TCTC	CAI	rGAC	GGG	CTG	CGC	CT
DNA:	CCGG	GAT	GGT	GCA	gaa	ATC	CCG	CAA	CGG	CGG	CGT	GTT	TCC	CGC	CGC	ссс	GC
		Μ	V	Q	K	S	R	Ν	G	G	V	F	Ρ	A	A	Ρ	Q
DNA: +3:	AGGC A	CGA E	GAA K	.GAA K	GCT L	'GAA K	.GGT V	GGG G	CTT F	CGT V	GGG' G	TGT V	GGA(E	GGC A	GGG G	CGC A	GC P
DNA:	CGGA	GTG	CAG	CCG	GGA	CGG	AGC	GCT	GCT	GAT	CGC	GGG	AGC	CGA	GGC	GTC	GA
+3:	E	С	S	R	D	G	A	L	L	I	A	G	A	Е	A	S	K
DNA:	AGCG	CGG	CAG	CAT	ССТ	CAG	CAA	ACA	GCG	СТС	CAG	CAT	CTC	CGG	CAA	GCG	GC
+3:	K	G	5	T	Ц	5	ĸ	Q	ĸ	5	5	Ţ	5	G	ĸ	K	Р
DNA: +3:	CGCC P	CAA K	.GCG R	CAA N	CGC A	GTT F	TTA Y	R R	ACG R	CCT L	GCA Q	GAA N	TTT(F	CCT L	CTA Y	CAA N	.TG V
DNA:	TGCT	GGA	GAG	ACC	GCG	CGG	ATG	GGC	GTT	САТ	СТА	CCA	CGC	ТТА	CGT	ттт	CC
+3:	L	Е	R	Ρ	R	G	W	A	F	I	Y	Н	А	Y	V	F	L
DNA:	TGCT	G GT	TTT	стс	сто	GCCI	GGI	TTT	ATC	TGT	TTT	стс	TAC	CAT	CAA	AGA	AT
+3:	L	V	F	S	С	L	V	L	S	V	F	S	Т	I I	K na3	Е 37	Y
DNA:	ATGA	GAA	GAG	CTC	TGA	AGA	TGC	GCT	GTA	CAT	ССТ	GGA	AA T	CG1	'GAC	GA1	CG
+3:	E 	K	S	S	Ε	D	A	L	Y	Ι	L	Е 1	I Ina2	V 11	Т	Ι	V
DNA:	TGGI	GTI	'TGG	AGT	GGA	GTA	TAT	CGT	GAG	GAT	CTG	G TC	AGC	CGG	ATG	CTG	CT
+3:	V	F	G	V	Ε	Y	Ι	V	R	Ι	W	S	A	G	С	С	С
DNA:	GTCG	ATA	TCG	AGG	ATG	GAG	AGG	AAG	ACT	CAA	GTT	TGC	CCG	CAA	GCC	CTT	ΤT
+3:	R	Y	R	G	W Ina	R 258	G	R	L		F	A	R	K	Ρ	F	С
DNA:	GTGT	GAT	CGA	CAI	CA	rGG1	IGC1	IGA I	CGC	CTC	CAT	CTC	GGT	TTT	GGC	TGC	GG
+3:	V	I	D	I	Μ	V	L	Ι	A	S	Ι	S	V	L	A	A	G
DNA:	GTAC	GCA	.GGG	GAA	TGT	GTT	CGC	CAC	CTC	CGC	CAT	CAG	GAG	ICT	TCG	ATT	СС
+3:	Т	Q	G	Ν	V	F	A	Т	S	A	Ι	R	S	L	R	F	L
DNA:	TCCA	.GAT	TCT	CCG	CAT	GAT	CCG	CAT	GGA	CCG	CCG	CGG	GGGZ	AAC	CTG	GAA	.GC
+3:	Q	Ι	L	R	М	Ι	R	М	D	R	R	G	G In	Т а15	W 58	K	L
DNA:	TGCT	GGG	ATC	CGT	CGI	CTA	CGC	TCA	CAG	CAA	GGA	GC 1	'GAT	CAC	CGC	CTG	GT
+3:	L	G	S	V	V	Y	A	Н	S	Κ	Е	L	Ι	Τ	A	W	Y
DNA:	ACAT	'CGG	CTT	CCT	TTG	CCT	GAT	CCT	GGC	CTC	GTT	ГСТ	GGT	GTA	TTT	GGC	AG
+3:	I	G	F	L	С	L	Ι	L	A	S	F	L	V	Y	L	A	Ε
DNA:	AGAA	AGA	.GGA	.CAA	CGA	GAT	GTT	TGA	GAC	СТА	TGC	AGA	CGC	ACT	CTG	GTG	GG
+3:	K	Ε	D	Ν	Ε	М	F	Ε	Т	Y	A	D	A	L	W	W	G
DNA:	GCCT	GAI	CAC	TCT	GAC	CCAC	CAI	CGG	СТА	TGG	TGA	TAA	ATA	ccc	CAI	CAC	ст
+3:	L	I	Т	L	Т	Т	I	G	Y	G	D	K	Y	Ρ	Ι	Т	W
DNA:	GGAA	TGG	TCG	TCT	GCI	GGC	CGC	CAC	ATT	CAC	ACT	CAT	CGG	CGT	СТС	CTT	СТ
+3:	Ν	G	R	L	L	A	A	Т	F	Т	L	Ι	G	V I	S Ina 3	F 3 9	F
DNA:	TTGC	CTCI	GCC	GGC	GGG	GAAI	TCI	GGG	TTC	TGG	GTT	TGC	CTT	GAA	AG1	TCA	lGG
+3:	A	L	Ρ	А	G	Ι	L	G	S	G	F	А	L	Κ	V	Q	Е

Ina38 -DNA: AACAGCATCGGCAGAAACACTTTGAGAAACGGAGAAATCCTGCAGCAGGAC +3: Q H R Q K H F E K R R N P A A G L DNA: TCATCCAGGCTGCCTGGAGGTTTTACGCCACAAACCTGAATCGTACGGATC +3: I Q A W R F Y A T N L N R T D L DNA: TCTATTCAACATGGGATTATTATGAGAGGACCATTTCAGTGCCCATGTACA +3: Y S T W D Y Y E R T I S V P M Y R DNA: GACTCATCCCTCCGCTGAATCAACTCGACCTGCTCCGCAACCTCAAGAGTA +3: LIPPLNQLDLLRNLKSK DNA: AATCCGGCCTCTCCTTCA**GG**AAGGAAGCCCAACCGGAGCCTTCACCAA**GT**C +3: S G L S F R K E A Q P E P S P S Inal30 DNA: AGAAGGTGAGCCTGAAGGAGCGAGTGTTCTCCAGCCCGAGGAATTCAGCGA +3: K V S L K E R V F S S P R N S A T DNA: CCAAAGGCAAAAACTCTCCTCAGGGTCAGCAGTCGCTACGCCGTTCACCCA +3: K G K N S P Q G Q Q S L R R S P S Ina41 DNA: GCGCCAACAGCATT GAAGACAGTCCATCTAAAGTGCCCAAAAAGTCTGAGTT +3: A N S I E D S P S K V P K S L S F Ina254 — Ina40 DNA: TCGGAGACCGCAACCGCGCCAGACAAG<u>CCTTCAGATTTAAAGGAGCGGCGT</u> +3: G D R N R A R Q A F R F K G A A S -DNA: CCCGACAGAATTCAGAAGTGCTCATTGAGATGCAAGAGGAAGATTTGAGAC +3: R Q N S E V L I E M Q E E D L R H DNA: ACAGGAACTCTCCA**GA**AGCCAGCCTTCCCGGAGAAGACATTGTTGATGACA +3: R N S P E A S L P G E D I V D D N DNA: ATAAGAGCTGCCATTGTGAGTTTGTCCCTCAGGATTTAACACCAGGACTCA +3: K S C H C E F V P Q D L T P G L K Ina108 -DNA: AAGTTACCATCAGAGCTGTGTGCATCATGAGGTTTATGGTGTCCAAGCGGA +3: VTIRAVCIMRFMVSKRK DNA: AGTTTAAGGAAAGTCTGCGGCCGTATGACGTGATGGACGTGATCGAGCAGT +3: F K E S L R P Y D V M D V I E Q Y Ina163 DNA: ATTCAGCCGGACATCTGGACATGCTGGCACGCATTAAAAACCTGCAGTCCA +3: S A G H L D M L A R I K N L Q S R -DNA: GAGTGGATCAGATTGTCGGTCGAGGGGGCTCCAATTACAGACAAGGACCGTC +3: V D Q I V G R G A P I T D K D R P <u>Ina131</u> 🗲 — Ina256 DNA: CTAAAGGAACCACGGATGGAGAACTGCCAGAGGATCCCAGCATGATGGGAC +3: K G T T D G E L P E D P S M M G R -> Ina42 🔶 DNA: GACTCGGGAAAGTGGAGAAACAGGTCATGTCAATGGAAAGGAAGCTGGATT +3: LGKVEKQVMSMERKLDF DNA: TCCTGGTGAACATCTACATCCAGCGTATGGGCATCCCGCAGTCTGAGACGG +3: L V N I Y I Q R M G I P Q S E T D DNA: ACGCGTACTTCGCCTCTAAGGAGCCCGACCCGGCGCCTCCATACCACAGTC +3: A Y F A S K E P D P A P P Y H S P DNA: CGGTGGAGCACATGGTGAAAAGCGGCTCCATCACCAAAATCATCCGCTCCA +3: VEHMVKSGSITKIIRSN DNA: ACAGCTCCGCCGGCCAGAAGAACTTCGACCCTCCGCCTTCCACCTGCGTCA +3: SSAGOKNFDPPSTCVN DNA: ACCACCACTGCCCGCCCTCCACCTCCTGGCACCCCCAAACAGCGCCCGAGG +3: HHCPPSTSWHPOTAPEA DNA: CCGGCCAGGGTTCATCTCCAATGGGTGACCCCTCACTAGTGCGCATCCCTC +3: G Q G S S P M G D P S L V R I P P DNA: CACCACCAGCCAACGAGCGCTCGTTTGGAGGCCACAGCGGAGGCTCCCGCG +3: P P A N E R S F G G H S G G S R G

```
DNA: GACATCATCATCCCGTGGGACACCGGCTGAAGACGGACGTCCAGCTTCCC
+3: H H H S R G T P A E D G R P A S Q
DNA: AAGCGCAAGCCGGAGCTGAAAGCGACACGTCTATCTCCATCCCCTCGGTAG
+3: A Q A G A E S D T S I S I P S V D
DNA: ACCACGAGGAGCTGGAGCGCTCCTTCAGCGGATTCAGCATCTCACAGTCTA
+3: H E E L E R S F S G F S I S Q S K
DNA: AAGAAAACCTGGACTTCTGAACAACGCCTACTTTAGTGGTGTGTCGCGGGT
+3: E N L D F L N N A Y F S G V S R C
DNA: GCACTAAAGTCCGGCCGTACATTGCAGAGGGTGAATCGGACACGGATTCTG
+3: T K V R P Y I A E G E S D T D S D
DNA: ACTTGTGCGCTCCTTCGCCCCTCTTCGGCCACCGGTGTGTGCCAGG
+3: L C A P S P H S A T G D G A Y A D
Ina 255
```

6.2.7.2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch

KCNQ2 kcnqi	MVQKSRNGGVYPG-PSGEKKLKVGFVGLDPGAPDSTRDGALLIAGSEAPKRGSILSKPRA MVQKSRNGGVFPAAPQAEKKLKVGFVGVEAGAPECSRDGALLIAGAEASKRGSILSKQRS	59 60
	1	
	2	
KCNQ2 kcnqi	GGAGAGKPPKRNAFYRKLQNFLYNVLERPRGWAFIYHAYWFLLVFSCLVLSVFSTIKEYE SISGK-RPPKRNAFYRRLQNFLYNVLERPRGWAFIYHAYVFLLWFSCLVLSVFSTIKEYE	119 119
	2	
KCNO2	3 KSSEGALYILEIVTIVVFGVEYFVRIWAAGCCCRYRGWRGRLKFARKPFCVIDIMVLIAS	179
kcnqi	KSSEDALYILEIVTIVVFGVEYIVRIWSAGCCCRYRGWRGRLKFARKPFCVIDIMVLIAS	179
	<u>.</u> 3	
WONO 0		0.2.0
kcngi	IAVLAAGSQGNVFAISALRSLRFLQILRMIRMDRRGGIWELLGSVVYAHSKELVIAWYIG ISVLAAGTQGNVFATSAIRSLRFLQILRMIRMDRRGGTWELLGSVVYAHS <mark>KE</mark> LITAWYIG	239 239
	* : * * * * * : * * * * * * * * * : *	
KCNQ2 kcngi	FLCLILASFLVYLAEKGENDHFDTYADALWWG <mark>LI</mark> TLTTIGYGDKYPQTWNGRLLAATFTL FLCLILASFLVYLAEKEDNEMFETYADALWWG <mark>LI</mark> TLTTIGYGDKYPITWNGRLLAATFTL	299 299
-	***************************************	
KCNQ2_1	☐ ☐ IGVSFFALP <mark>AG</mark> ILGSGFALKVQEQHRQKHFEKRRNPAAGLI <mark>QS</mark> AWRFYATNLSRTDLHST	359
kcnqi	IGVSF <mark>F</mark> ALPAGILGSGFALKVQEQHRQKHFEKRRNPAAGLI <mark>QA</mark> AWRFYATNLNRTDLYST ************************************	359
KCNO2	WOYYERTVTVPMYSSOTOTYGASRLTPPLNOLELLRNLKSKSGLAFRKDPPPEPSPSKGS	419
kcnqi	WDYYERTISVPMYRLIPPLNQLDLLRNLKSKSGLSFRKEAQPEPSPS	406
	*:*****::***** ************************	
	12 13	
KCNQ2	PCRGPLCGCCPGRSSQKVSLKDRVFSSPRGVAAKGKGSPQ-AQTVRRSPSADQSLEDSPS	478
kengi	QKVSLKEKVESSPKNSAIKGKNSPQGQQSLKKSPSAN-SIEDSPS	450
	11	
VONO 2		E O 1
kcnqi	KVFKSWSFGDRSRARQAFRFKGAASRQNSE	510
	***** *********************************	
	13 FS	
KCNQ2	یست SCPCEFVTEDLTPGLKVSIRAV <mark>C</mark> VMRFLVSKRKFKESLRPYDVMDVIEQYSAGHLDMLSR	581
kcnqi	SCHCEFVPQDLTPGLKVTIRAVCIMRFMVSKRKFKESLRPYDVMDVIEQYSAGHLDMLAR	570

	16	
KCNQ2	IKSLQSRVDQIVGRGPAITDKDRTKGPAEAELPEDPSMMGRLGKVEKQVLSMEKKLDFLV 64	11
kcnqi	IKNLQSRVDQIVGRGAPITDKDRPKGTTDGELPEDPSMMGRLGKVEKQVMSMERKLDFLV 63	30
	** • *********** • • ***** • ** • • • •	
	15	
	17	
KCNQ2	NIYMQRMGIPPTETEAYFGAKEPEPAPPYHSPEDSREHVDRHGCIVKIVRSSSSTGQKNF 70)1
kcnqi	NIYIQRMGIPQSETDAYFASKEPDPAPPYHSPVEHMVKSGSITKIIRSNSSAGQKNF 68 ** <u>*:</u> ****** :**:***:*******************	37
	16	
KCNQ2	SAPP-AAPPVQCPPSTSWQPQSHPRQGHGTSPVGDHGSLVRIPPPPAHERSLSAYGGGNR 76	50
kcnqi	DPPPSTCVNHHCPPSTSWHPQTAPEAGQGSSPMGDP-SLVRIPPPPANERSFGGHSGGSR 74 ** :. :******:**: *. *:*:*** *********	16
KCNQ2	ASMEFLRQEDTPGCRPPEGNLRDSDTSISIPSVDHEELERSFSGFSISQSKENLDAL 81	7
kcnqi	GHHHSRGTPAEDGRPASQAQAGAESDTSISIPSVDHEELERSFSGFSISQSKENLDFL 80 * ::. *:. * :************************)4
KCNO2	N-SCYAAVAPCAKVRPYIAEGESDTDSDLCTPCGPPPRSATGEGPFGDVGWAGPRK 872	
kcnqi	NNAYFSGVSRCTKVRPYIAEGESDTDSDLCAPSPHSATGDGAYADRGWTGNK- 856 * : ::.*: *:***************************	

6.2.8 Alternatives Exon

6.2.8.1 Splicevarianten kcnqi Exon mit oder ohne Exon 12 erstellt über ClustalW

	11	12	13	
kcnqia	QAFRFKGAASRQNSE	VLIEMQEEDLRHRNSF	EASLPGEDIVDDNKSCHCEFVPQDLTPGL	60
kcnqib	QAFRFKGAASRQNSE		EASLPGEDIVDDNKSCHCEFVPQDLTPGL	44
	* * * * * * * * * * * * * * * *		*****	

6.2.9 kcnąj

6.2.9.1 DNA und Aminosäuresequenz mit Primern und Intron-Exon-Grenzen

												2	'AA'	I IGA1	na1 'CA1	27 'AG 1	TAC
	AGAI	'GAA	TGC	ATT	AAT	ATT	TAT	CGC	AGT	TTA	TGA.	ATA	TTT	ATT.	AAA	gca	ΤG
DNA:	ATCA	.TTA	TTA	TTT	AAC	TAA	ATC	TGT	ATT	AGA	TTT	CAA	ATC	AGT	TCA	GTA	TA
DNA:	TCAG	ACG	CTT	AAT	ACA	ATT	AAT	AGT	TAT	TGG	TCG.	AAA	CAA	ATA	TAT	GGT	GC
												1	naź	253			
DNA:	ACTA	GTT	TGC	GTG	TGT	AAA	CAC	AAT	AAT	GCT	GGG	TAG	TCC	TTC	CAA	TAA	CG
									Μ	L	G	S	Ρ	S	Ν	Ν	G
			-														
DNA:	GAGG	CAT	CA G	GAT	GCT	GGC	CCC	CCC	ATC	AGC	CAA	ГGА	TGA	CAG.	ACG	GGT	ΤG
+3:	G	Ι	R	М	L	А	Ρ	Ρ	S	A	Ν	D	D	R	R	V	Е
DNA:	AGTT	TGT	GGC	тст	GAC	TGC	тдт	тса	CAC	TGA	AAG	AAG	CGA	GCC	GTC	CAC	тс
+3:	F	V	A	L	T	A	V	Н	T	E	R	S	E	P	S	T	P
DNA:	CAGA	GCG	GGG	TCA	TCC	ATC	CCA	TCG	CAC	CGG	CTT.	ACT	GGG	CAC	CCC	ACT	СС
+3:	Ε	R	G	Η	Ρ	S	Н	R	Т	G	L	L	G	Т	Ρ	L	Ρ
														I	na9	3	
DNA:	CGGT	GCC	CCC	AGG	CCC	CAG	AGC	GAC	CCC	TTC	TGC	CTC	CAG	CAA	ACG	CTA	CA
+3:	V	P	P	G	Ρ	R	A	Т	Ρ	S	A	S	S	K	R	Y	R
DNA:	GAAA	GTT	GCA	GAA	CTG	CCT	GTA	CAA	TGT	GCT	GGA	GAG	ACC	CAG.	AGG.	ATG	GG
+3:	K	L	Q	Ν	С	L	Y	Ν	V	L	Е	R	Ρ	R	G	W	А

Ina128 -DNA: CTTTCATCTATCACGCCTTCATTTTTTCTCCCTAGTGTTCAGCTGTCTGGTGC +3: FIYHAFIFLLVFSCLVL DNA: TTTCTGTTTTCTCCACCATTCCAGACCATCATAAATTTGCCAACGAGGCGC +3: SVFSTTPDHHKFANEAL DNA: TCTTCATCCTGGAGTTTGTGATGATCGTGGTTTTTGGGCTGGAATATTTTG +3: FILEFVMIVVFGLEYFV DNA: TGAGGATCTGGGCTGCCGGATGCTGCCGGTACAGGGGATGGCAGGGTC R I W A A G C C C R Y R G W O G R +3: DNA: GACTACGCTTTGCCAGAAAGCCTTTCTGTGTCATAGACTTCATAGTGTTTG +3: L R F A R K P F C V I FIVFV DNA: TGGCGTCCCTGGCAGTGATAGCAGCGGGCACACAGGGAAACATCTTCGCCA A S L A V I A A G T O G N I F A T +3: DNA: CATCTGCTCTGCGCAGCATGCGCTTTCTGCAGATCCTGCGCATGGTGCGTA +3: SALRSMRFLQILRMVRM DNA: TGGACCGCCGCGGAGGAACCTGGAAGCTGCTGGGCTCTGTGGTTTACGCTC +3: D R R G G T W K L L G S V V Y A H DNA: ACAGCAAGGAGCTGATCACGGCCTGGTACATCGGCTTCCTGGTGCTGATCT +3: SKELITAWYIGFLVLIF DNA: TTGCCTCTTTCCTGGTGTATCTGGCAAAGAAGGAGGATAACCAGGAGTTTT +3: A S F L V Y L A K K E D N Q E F S DNA: CCACCTATGCAGACTCCCTCTGGTGGGGGGGCCCATAACCCTGACTACGATCG +3: TYADSLWWGTITLTTIG DNA: GCTACGGTGACAAGACTCCACACACCTGGCAAGGTCGTCTTTTAGCAGCTT +3: Y G D K T P H T W Q G R L L A A C DNA: GTTTTGCCCTTCTGGGAGTTTCTTTCTTTGCCCTGCCCGC**TG**GCATCCTGG +3: FALLGVSFFALPAGILG Ina95 DNA: GGTCAGGCTTTGCTCTGAAAGTGCAGGAGCAGCATCGACAGAAACACTTCG +3: SGFALKVQEQHRQKHFE Ina94 DNA: AGAAGAGGAGAACTCCTGCTGCAAACCTCATTCAGGCTGCATGGCGTCTCT +3: K R R T P A A N L I Q A W R L Y Ina180 ◄----DNA: ACTCAACAGATGCTCAGCACTCGTATCTCACAGCCACCTGGTATTTCTATG +3: S T D A Q H S Y L T A T W Y F Y D DNA: ACAGTATGCTGCCGTCCTTCAGA GAACTGACATTACTGTTCAGTCACCTCC +3: SMLPSFRELTLLFSHLQ DNA: AACGGCAGCGTAGCACCAAGAAGGTTCTGCACAACTCCTACCACACCTTGC +3: R Q R S T K K V L H N S Y H T L L DNA: TGTCGGGGCTCCGGCCGTACAGCTCCCCCTACCTGGGGGGACAGTGGGAAGA +3: SGLRPYSSPYLGDSGKM DNA: TGGGCTTTCGTGACCGCATTAGGATGAATAATTCTCGCTCCTCTCAGGCCA +3: G F R D R I R M N N S R S S Q A I Ina135 -DNA: TCCGGAGCAAGGCTTCTCCTTTACCTCCAGGTAACGTGCGGTGTTCACCCA +3: R S K A S P L P P G N V R C S P S DNA: GCACTGAGAACGTCCCAGAAGCCACCAGCCCTGGGAAAGTGCAGAAAAGCT +3: TENVPEATSPGKVQKSW DNA: GGAGCTTCAATGACCGAACACGTTTTCGCACATCTCTGCGCCTCAAACCAC +3: S F N D R T R F R T S L R L K P R Ina139 DNA: GACCCGCTGCAGACAATGGAGGAGGAGGAGGAGGAGGAGAGAGGAGAAAAT +3: PAADMEGVGEEHTEDKS DNA: CTTACTGTGACGTGGCCATGGAGGATGTGATTCCCGCAGTGAAGACCCTGA +3: Y C D V A M E D V I P A V K T L I

DNA: TTCGAGCGGTTC**GG**ATCCTAAAGTTCCTGGTGGCCAAGAGGAAGTTTAAAG +3: RAVRILKFLVAKRKFKE DNA: AAACCCTGCGGCCGTATGATGTGAAAGACGTGATCGAGCAGTATTCGGCTG +3: TLRPYDVKDVIEQYSAG DNA: GACACCTCGATATGCTGGGCCGAATCAAAAGCCTGCAGATGA**GG**GTGGATC +3: H L D M L G R I K S L Q M R V D Q DNA: AGATCGTGGGCCGTGGCGCCATTCCATCTGATAAGAAGCTGAGGCCTGAAA +3: IVGRGAIPSDKKLRPEK Inal68 DNA: AGGGAGAGAAAACTCCTCCTGAACTGGAACAGATGGATGAATATAGCATGA +3: G E K T P P E L E Q M D E Y S M M Ina96 DNA: TGGGACGCGTGGTGAAAGTAGAGAAACACG +3: G R V V K V E K Q V Q S I E N K L DNA: TGGACCTGCTACTAAACTTCTACTCGCAGTGCCTGAAAAAGGGCTCGTCCC +3: D L L L N F Y S Q C L K K G S S H Inal41 DNA: ACTTCACCCTGTCATCCCTCGGAGCCCGATTCCACCTCTGACTACCACA +3: FTLSSLLEPDSTSDYHS DNA: GTCCCACCGACAAACATGACCTATTCCCCTCCGCAAACACTCTTAATATCT +3: P T D K H D L F P S A N T L N I S Inal40 Ina200 -DNA: CCCACTCAGACAGCGGTAACATGGAGTGACCCCTCCTCACTTCTGACCTCTGCATCAGGGCAACTCA +3: H S D S G N M E *

	1	
KCNQ4	MAEAPPRRLGLGPPPGDAPRAELVALTAVQSEQGEAGGGGSPRRLGLLGSPLP 5	3
kcnqj	MLGSPSNNGGIRMLAPPSANDDRRVEFVALTAVHTERSEPSTPERGHPSHRTGLLGTPLP 6	0
	* :* *: ** *.*:*****::*:.* *:* ****:***	
	<u>1</u>	
	2	
KCNQ4	PGAPLPGPGSGSGSACGQRSSAAHKRYRRLQNWVYNVLERPRGWAFVYHVFIFLLVFSCL 1	13
kcnqj	VPPGPRATPSASSKRYRKLQNCLYNVLERPRGWAFIYHAFIFLLVFSCL 1	09
	*** : . **: **** :*** :****************	
	<u> </u>	
KCNQ4	VLSVLSTIQEHQELANECLLILEFVMIVVFGLEYIVRVWSAGCCCRYRGWQGRFRFARKP 1	73
kenqj	VLSVFSTIPDHHKFANEALFILEFVMIVVFGLEYFVRIWAAGCCCRYRGWQGRLKFARKP I	69
	лала і ала і а і і і і ала і а і ала ала	
KONOA		<u></u>
kongi		20
KCIIQJ	**************************************	29
KCNO4	HSKELTTAWYIGELVLIFASELVYLAEKDANSDESSYADSLWWGTTTLTTIGYGDKTPHT 2	93
kcngi	HSKELITAWYIGFLVLIFASFLVYLAKKEDNOEFSTYADSLWWGTITLTTIGYGDKTPHT 2	89
15	****	
	5	
KCNQ4	WLGRVLAAGFALLGISFFALPAGILGSGFALKVQEQHRQKHFEKRRMPAANLIQAAWRLY 3	53
kcnqj	WQGRLLAACFALLGVSFFALP <mark>AG</mark> ILGSGFALKVQEQHRQKHFEKRRTPAANLIQAAWRLY 3	49
	* ***** *******************************	
	7	
	8	
KCNQ4	STDMSRAYLTATWYYYDSILPSF <mark>R</mark> ELALLFEHVQRARNGGLRPLEVRRAPVPDGAPSRYP 4	13
kcnqj	STDAQHSYLTATWYFYDSMLPSF <mark>R</mark> ELTLLFSHLQRQRSTKKVLHNSYH 3	97
	*** .::******:***:****:****************	
	8	
	_ 10	
KCNQ4	PVATCHRPGSTSFCPGESSRMGIKDRIRMGSSQRRTGPSKQHLAPPTMPTSPSSEQVG 4	71
kcnqj	TLLSGLRPYSSPYL-GDSGKMGFRDRIRMNNSRSSQAIRSKASPLPPGNVRCSPSTENVP 4	56

6.2.9.2 Vergleich der Aminosäuresequenz Mensch/Zebrafisch

_

	11	
KCNQ4	EATSPTKVQKSWSFNDRTRFRASLRLKPRTSAEDAPS-EEVAEEKSYQCELTVDDIMPAV 53	0
kcnqj	EATSPGKVQKSWSFNDRTRFRTSLRLKPRPAADMEGVGEEHTEDKSY-CDVAMEDVIPAV 51	5
	***** *********************************	
	11	
	12	
KCNQ4	KTVIRSIRILKFLVAKRKFKETLRPYDVKDVIEQYSAGHLDMLGRIKSLQTRVDQIVGRG 59	0
kcnqj	KTLIRAVRILKFLVAKRKFKETLRPYDVKDVIEQYSAGHLDMLGRIKSLQMRVDQIVGRG 57	5
	:::********************************	
	12	
	13 14	
KCNQ4	PGDRKAR-EKGDKGPSDAEVVDEISMMGRVVKVEKQVQSIEHKLDLLLGFYSRCLRSG 64	7
kcnqj	AIPSDKKLRPEKGEKTPPELEQMDEYSMMGRVVKVEKQVQSIENKLDLLLNFYSQCLKKG 63	5
	.:* * ***:* *.: * :** ***************	
	13	
KCNQ4	TSASLGAVQVPLFDPDITSDYHSPVDHEDISVSAQTLSISRSVSTNMD 695	
kcnqj	SSHFTLSSLLEPDSTSDYHSPTDKHDLFPSANTLNISHSDSGNME 680	
	:**::** ******.*: **:** **:** * **:	

6.2.9.3 Alternatives Exon

6.2.9.3.1 alternatives Exon 9 erstellt über ClustalW

	8	9	10
kcnqja	YFYDSMLPSFRELT	LLFSHLQRQRSTKKVLHNSYHTL	LSGLRPYSSPYLGD <mark>S</mark> GKMGFRDR 60
kcnqjb	YFYDSMLPSFR	RTDAQC	SGKMGFRDR 26
	* * * * * * * * * *	*: :	* * * * * * * *

(das alternative Exon9 von *kcnqjb* kann über UCSC nicht gefunden werden, daher sind die Intron-Exon-Grenzen nicht eingezeichnet)

7 Abkürzungen

7.1 Allgemeine Abkürzungen

%	Prozent
α	Alpha
β	Beta
β-Blocker	Betablocker
°C	Grad Celsius
μl	Mikroliter
ADLTE	autosomal-dominante familiäre laterale Temporallappenepilepsie
BCIP	5-Brom-4-chlor-3-indoxylphosphat
BFIC	benigne familiäre infantile Krämpfe
BFNC	benigne familiäre Neugeborenenkrämpfe
BFNIC	benigne familiäre neonatale/infantile Konvulsionen
bp	Basenpaare
CaM	Calmodulin
cDNA	complementary DNA
CFTR	cystic fibrosis transmembrane conductance regulator
CLC	chloride channel protein
COS-Zellen	Cercopithecus aethiops- Zellen
СТХ	μ-conotoxin GIIIB
dATP	Desoxyadenosintriphosphat
dB	Dezibel
dCTP	Desoxycytidintriphosphat
DFN	DeaFNess
DFNA	DFN mit autosomal-dominantem Erbgang
DFNB	DFN mit autosomal-rezessivem Erbgang
dGTP	Desoxyguanosintriphosphat
DNA	Desoxyribonukleinsäure (deoxyribonucleic acid)
dNTP	Desoxyribonukleosidtriphosphate
dpf	days post fertilisation
DTT	Dithiothreitol
dTTP	Desoxythymidintriphosphat
dTTP EBN1	Desoxythymidintriphosphat epilepsy, benign neonatal 1 (benign familial neonatal convulsions 1)

EEG	Elektroenzephalogramm
EFHC1	EF-hand domain (C-terminal) containing 1
EKG	Elektrokardiogramm
EMS	Ethylmethansulfonat
ENU	Ethylnitrosurea
ESTs	Expressed Sequence Tags
GABA	Gamma-Aminobuttersäure
GEFS+	"generalisierte Epilepsie mit febrilen Anfällen plus"
h	Stunde
hpf	hours post fertilisation
HPLC	high performance liquid chromatography
Hz	Hertz (1/sec.)
IPTG	Isopropylthio-β-D-galactoside
JLNS	Jervell-Lange-Nielsen-Syndrom
kb	Kilobasen
LB-Mediums	Luria-Bertani- Medium (lysogeny broth)
LGI1	leucine-rich glioma inactivated gene 1
LQTS	Long-QT-Syndrom
mA	Milliampere
mA MASS1	Milliampere monogenic, audiogenic seizure susceptibility 1
mA MASS1 mb	Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen
mA MASS1 mb MERRF	Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres
mA MASS1 mb MERRF mg	Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm
mA MASS1 mb MERRF mg mg/ml	Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm Milligramm pro Milliliter
mA MASS1 mb MERRF mg mg/ml MgCl ₂	Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm Milligramm pro Milliliter Magnesiumchlorid
mA MASS1 mb MERRF mg mg/ml MgCl ₂ min.	Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm Milligramm pro Milliliter Magnesiumchlorid Minute
mA MASS1 mb MERRF mg mg/ml MgCl ₂ min. ml	Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm Milligramm pro Milliliter Magnesiumchlorid Minute Milliliter
mA MASS1 mb MERRF mg mg/ml MgCl ₂ min. ml	 Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm Milligramm pro Milliliter Magnesiumchlorid Minute Milliliter Milliliter Milliliter Milliliter
mA MASS1 mb MERRF mg mg/ml MgCl ₂ min. ml mM	 Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm Milligramm pro Milliliter Magnesiumchlorid Minute Milliliter Milliliter Millinol Millimol pro Liter
 mA MASS1 mb MERRF mg/ml MgCl₂ min. ml mM mM01/1 mRNA 	 Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm Milligramm pro Milliliter Magnesiumchlorid Minute Milliliter Milliliter Millimol pro Liter messenger RNA (Ribonukleinsäure)
 mA MASS1 mb MERRF mg/ml MgCl₂ min. ml mM mMA mRNA MRT 	 Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm Milligramm pro Milliliter Magnesiumchlorid Minute Milliliter Milliliter Millimol pro Liter messenger RNA (Ribonukleinsäure) Magnetresonanztomographie
mA MASS1 mb MERRF mg mg/ml MgCl ₂ min. ml mM mmol/l mRNA MRT mV	 Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm Milligramm pro Milliliter Magnesiumchlorid Minute Milliliter Millinol Millimol pro Liter messenger RNA (Ribonukleinsäure) Magnetresonanztomographie Millivolt
mA MASS1 mb MERRF mg mg/ml MgCl ₂ min. ml mM mmol/l mRNA MRT MRT MRT	 Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm Milligramm pro Milliliter Magnesiumchlorid Minute Milliliter Millinol Millimol pro Liter messenger RNA (Ribonukleinsäure) Magnetresonanztomographie Millivolt Nervus
mA MASS1 mb MERRF mg mg/ml MgCl ₂ min. ml mM mol/l mRNA MRT MRT MRT MRT MRT MRT	 Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm Milligramm pro Milliliter Magnesiumchlorid Minute Milliliter Millimol Millimol pro Liter messenger RNA (Ribonukleinsäure) Magnetresonanztomographie Millivolt Nervus Nitroblau-Tetrazoliumchlorid
mA MASS1 mb MERRF MgRr mg mg/ml MgCl ₂ min. ml mM mol/l mRNA MRT MRT MRT MRT MRT MRT MRT MRT	 Milliampere monogenic, audiogenic seizure susceptibility 1 Megabasen myoclonic epilepsy with ragged red fibres Milligramm Milligramm pro Milliliter Magnesiumchlorid Minute Milliliter Millimol Millimol pro Liter messenger RNA (Ribonukleinsäure) Magnetresonanztomographie Millivolt Nervus Nitroblau-Tetrazoliumchlorid Nanogramm

UTR	untranslated region
nm	Nannometer
PCR	Polymerase-Kettenreaktion (Polymerase Chain Reaction)
PTZ	Pentylentetrazol
RNA	Ribonukleinsäure (ribonucleic acid)
RNAsen	Ribonukleasen
RWS	Romano-Ward -Syndrom
SDS	Natriumdodecylsulfat (sodium dodecyl sulfate)
sec.	Sekunde
SOC-Medium	Super Optimal Broth- Medium mit Zusatz von 20 mM Glucose
SS	Somiten
TAE-Puffer	Tris-Acetat-EDTA-Puffer
Taq-DNA-Polymerase	hitzestabile DNA-Polymerase des Bakteriums Thermus aquaticus
Tgo-DNA-Polymerase	hitzestabile DNA- Polymerase des Bakteriums Thermococcus gorgonarius
TILLING	targeting induced local lesions in genomes
T _m	Schmelztemperatur
TORCH-Infektionen	Toxoplasmose, "others", Röteln, Cytomegalie, Herpes simplex- Infektionen
U/min.	Umdrehungen pro Minute
UCSC	University of California, Santa Cruz
UV-Licht	ultraviolettes Licht
X-Gal	5-Bromo-4-chloro-3-indolyl-β-D-galactoside
ZNS	Zentralnervensystem

7.2 Gene

ADCY8	adenylate cyclase 8
C6orf150	chromosome 6 open reading frame 150
CARS	cysteinyl-tRNA synthetase
CDKN1C	cyclin-dependent kinase inhibitor 1C
CTPS	CTP synthase
DDEF1	development and differentiation enhancing factor 1
DDX43	DEAD (Asp-Glu-Ala-Asp) box polypeptide 43
DUSP8	dual specificity phosphatase 8
EEF1A1	eukaryotic translation elongation factor 1 alpha 1
ERF3A	efr3 homolog A, receptor kinase
HCCA2	hepatocellular carcinoma-associated gene 2
IGF2	insulin-like growth factor 2
KCNE	potassium voltage-gated channel, Isk-related family
KCNE1, minK oder IsK	potassium voltage-gated channel, Isk-related subfamily, member 1
KCNH2	potassium voltage-gated channel, subfamily H (eag-related), member 2
KCNQ	potassium voltage-gated channel, KQT-like subfamily
LRRC6	leucine rich repeat containing 6
MC3R	melanocortin 3 receptor
NAP1L4	nucleosome assembly protein 1-like 4
NFYC	nuclear transcription factor Y, gamma
PHLDA2	pleckstrin homology-like domain, family A, member 2
PPDPF	pancreatic progenitor cell differentiation and proliferation factor
PREX1	phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1
RIMS1 (RIMS=RIM)	regulating synaptic membrane exocytosis 1
RIMS3	regulating synaptic membrane exocytosis 3
SCN2A	sodium channel, voltage-gated, type II, alpha subunit
SLC13A3	solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 3
SLC22A18	solute carrier family 22, member 18
TRPM5	transient receptor potential cation channel, subfamily M, member 5
VLGR1	= GPR98 = G protein-coupled receptor 98
YTHDF1	YTH domain family, member 1
7.3 Aminosäuren

Einbuchstabencode	Dreibuchstabencode	<u>Aminosäure</u>
A	Ala	Alanin
В	Asx	Aspartat oder Asparagin
C	Cys	Cystein
D	Asp	Aspartat
E	Glu	Glutamat
F	Phe	Phenylalanin
G	Gly	Glycin
Н	His	Histidin
Ι	Ile	Isoleucin
Κ	Lys	Lysin
L	Leu	Leucin
Μ	Met	Methionin
Ν	Asn	Asparagin
Р	Pro	Prolin
Q	Gln	Glutamin
R	Arg	Arginin
S	Ser	Serin
Т	Thr	Threonin
V	Val	Valin
W	Trp	Tryptophan
Х		Х
Y	Tyr	Tyrosin
Z	Glx	Glutamat oder Glutamin
*		Stopcodon

7.4 Basen

A	Adenin
С	Cytosin
G	Guanin
Т	Thymin

8 Quellenverzeichnis

- 1. Lehmann-Horn, F. and K. Jurkat-Rott, *Voltage-gated ion channels and hereditary disease*. Physiol Rev, 1999. 79(4): p. 1317-72.
- 2. Schmidt R., L., *Physiologie des Menschen mit Pathophysiologie*. Springer Verlag, 2007. 30.
- 3. Terlau, H. and W. Stuhmer, *Structure and function of voltage-gated ion channels*. Naturwissenschaften, 1998. 85(9): p. 437-44.
- 4. Gutman, G.A., et al., International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev, 2005. 57(4): p. 473-508.
- 5. Roura-Ferrer, M., et al., *Functional implications of KCNE subunit expression for the Kv7.5* (*KCNQ5*) channel. Cell Physiol Biochem, 2009. 24(5-6): p. 325-34.
- 6. Yellen, G., *The voltage-gated potassium channels and their relatives*. Nature, 2002. 419(6902): p. 35-42.
- 7. Goldenberg, I. and A.J. Moss, *Long QT syndrome*. J Am Coll Cardiol, 2008. 51(24): p. 2291-300.
- 8. Jentsch, T.J., *Neuronal KCNQ potassium channels: physiology and role in disease*. Nat Rev Neurosci, 2000. 1(1): p. 21-30.
- 9. Crotti, L., et al., *Congenital long QT syndrome*. Orphanet J Rare Dis, 2008. 3: p. 18.
- 10. Goldenberg, I., A.J. Moss, and W. Zareba, *QT interval: how to measure it and what is "normal"*. J Cardiovasc Electrophysiol, 2006. 17(3): p. 333-6.
- 11. Splawski, I., et al., Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation, 2000. 102(10): p. 1178-85.
- 12. Moss, A.J. and R.S. Kass, *Long QT syndrome: from channels to cardiac arrhythmias.* J Clin Invest, 2005. 115(8): p. 2018-24.
- 13. Zareba, W., et al., Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N Engl J Med, 1998. 339(14): p. 960-5.
- 14. Sauer, A.J., et al., *Long QT syndrome in adults*. J Am Coll Cardiol, 2007. 49(3): p. 329-37.
- 15. Goldenberg, I., et al., *Risk factors for aborted cardiac arrest and sudden cardiac death in children with the congenital long-QT syndrome*. Circulation, 2008. 117(17): p. 2184-91.
- 16. Hobbs, J.B., et al., *Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome.* Jama, 2006. 296(10): p. 1249-54.
- 17. Moss, A.J., et al., *Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome*. Circulation, 2000. 101(6): p. 616-23.
- 18. *Leitlinien für Diagnostik und Therapie in der Neurologie.* Georg Thieme Verlag Stuttgart, 2008. 4. überarbeitete Auflage: p. 654 ff.
- 19. Forsgren, L., et al., *The epidemiology of epilepsy in Europe a systematic review*. Eur J Neurol, 2005. 12(4): p. 245-53.
- 20. Dodel, R., F. Rosenow, and H.M. Hamer, *[The costs of epilepsy in Germany]*. Pharm Unserer Zeit, 2007. 36(4): p. 298-305.
- 21. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia, 1989. 30(4): p. 389-99.
- 22. Steinlein, O.K., *Genetics and epilepsy*. Dialogues Clin Neurosci, 2008. 10(1): p. 29-38.
- 23. Steinlein, O.K., *Genetic mechanisms that underlie epilepsy*. Nat Rev Neurosci, 2004. 5(5): p. 400-8.
- 24. Gu, W., et al., *LGI1: a gene involved in epileptogenesis and glioma progression?* Neurogenetics, 2005. 6(2): p. 59-66.
- 25. Lu, Y. and X. Wang, *Genes associated with idiopathic epilepsies: a current overview*. Neurol Res, 2009. 31(2): p. 135-43.
- 26. Gu, W., et al., *A new EF-hand containing gene EFHC2 on Xp11.4: tentative evidence for association with juvenile myoclonic epilepsy*. Epilepsy Res, 2005. 66(1-3): p. 91-8.
- 27. Lerche, H., K. Jurkat-Rott, and F. Lehmann-Horn, *Ion channels and epilepsy*. Am J Med Genet, 2001. 106(2): p. 146-59.

- 28. Wallace, R.H., et al., *Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B.* Nat Genet, 1998. 19(4): p. 366-70.
- 29. Lewis, T.B., et al., *Genetic heterogeneity in benign familial neonatal convulsions: identification of a new locus on chromosome 8q.* Am J Hum Genet, 1993. 53(3): p. 670-5.
- 30. Tinel, N., et al., *The KCNQ2 potassium channel: splice variants, functional and developmental expression. Brain localization and comparison with KCNQ3.* FEBS Lett, 1998. 438(3): p. 171-6.
- 31. Steinlein, O.K., [Benign familial neonatal convulsions: molecular pathology and diagnosis]. Nervenarzt, 2000. 71(8): p. 611-5.
- 32. Petersen, M.B., *Non-syndromic autosomal-dominant deafness*. Clin Genet, 2002. 62(1): p. 1-13.
- 33. Kochhar, A., M.S. Hildebrand, and R.J. Smith, *Clinical aspects of hereditary hearing loss*. Genet Med, 2007. 9(7): p. 393-408.
- 34. Morton, N.E., *Genetic epidemiology of hearing impairment*. Ann N Y Acad Sci, 1991. 630: p. 16-31.
- 35. Kubisch, C., et al., *KCNQ4*, a novel potassium channel expressed in sensory outer hair cells, *is mutated in dominant deafness*. Cell, 1999. 96(3): p. 437-46.
- 36. Smith, J.S., et al., *Differential expression of kcnq2 splice variants: implications to m current function during neuronal development.* J Neurosci, 2001. 21(4): p. 1096-103.
- 37. Chen, Y.H., et al., *KCNQ1 gain-of-function mutation in familial atrial fibrillation*. Science, 2003. 299(5604): p. 251-4.
- 38. Ohno, S., et al., *Novel KCNE3 mutation reduces repolarizing potassium current and associated with long QT syndrome.* Hum Mutat, 2009. 30(4): p. 557-63.
- 39. Dahimene, S., et al., *The N-terminal juxtamembranous domain of KCNQ1 is critical for channel surface expression: implications in the Romano-Ward LQT1 syndrome.* Circ Res, 2006. 99(10): p. 1076-83.
- 40. Jervell, A. and F. Lange-Nielsen, *Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death.* Am Heart J, 1957. 54(1): p. 59-68.
- 41. Zehelein, J., et al., *Skipping of Exon 1 in the KCNQ1 gene causes Jervell and Lange-Nielsen syndrome*. J Biol Chem, 2006. 281(46): p. 35397-403.
- 42. Bellocq, C., et al., *Mutation in the KCNQ1 gene leading to the short QT-interval syndrome*. Circulation, 2004. 109(20): p. 2394-7.
- 43. Moss, A.J., et al., *Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene.* Circulation, 2007. 115(19): p. 2481-9.
- 44. Wehrens, X.H., et al., *Novel insights in the congenital long QT syndrome*. Ann Intern Med, 2002. 137(12): p. 981-92.
- 45. Yamada, Y., et al., *A truncated splice variant of KCNQ1 cloned from rat heart*. Biochem Biophys Res Commun, 2002. 294(2): p. 199-204.
- 46. Leppert, M., et al., *Benign familial neonatal convulsions linked to genetic markers on chromosome 20.* Nature, 1989. 337(6208): p. 647-8.
- 47. Biervert, C., et al., *A potassium channel mutation in neonatal human epilepsy*. Science, 1998. 279(5349): p. 403-6.
- 48. Hirose, S., et al., A novel mutation of KCNQ3 (c.925T-->C) in a Japanese family with benign familial neonatal convulsions. Ann Neurol, 2000. 47(6): p. 822-6.
- 49. Tang, B., et al., A novel mutation in KCNQ2 gene causes benign familial neonatal convulsions in a Chinese family. J Neurol Sci, 2004. 221(1-2): p. 31-4.
- 50. Dedek, K., et al., *Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel.* Proc Natl Acad Sci U S A, 2001. 98(21): p. 12272-7.
- 51. Singh, N.A., et al., A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet, 1998. 18(1): p. 25-9.
- 52. Charlier, C., et al., A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet, 1998. 18(1): p. 53-5.
- 53. Main, M.J., et al., *Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine*. Mol Pharmacol, 2000. 58(2): p. 253-62.

- 54. Wickenden, A.D., et al., *Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels.* Mol Pharmacol, 2000. 58(3): p. 591-600.
- 55. Kananura, C., et al., *The new voltage gated potassium channel KCNQ5 and neonatal convulsions*. Neuroreport, 2000. 11(9): p. 2063-7.
- 56. Yeung, S.Y., et al., *Expression profile and characterisation of a truncated KCNQ5 splice variant*. Biochem Biophys Res Commun, 2008. 371(4): p. 741-6.
- 57. Faustino, N.A. and T.A. Cooper, *Pre-mRNA splicing and human disease*. Genes Dev, 2003. 17(4): p. 419-37.
- 58. Matlin, A.J., F. Clark, and C.W. Smith, *Understanding alternative splicing: towards a cellular code*. Nat Rev Mol Cell Biol, 2005. 6(5): p. 386-98.
- 59. Michalowski, J., *Alternative Splicing*. HHMI Bulletin, 2005.
- 60. Lareau, L.F., et al., *The evolving roles of alternative splicing*. Curr Opin Struct Biol, 2004. 14(3): p. 273-82.
- 61. Shi, N.Q., B. Ye, and J.C. Makielski, *Function and distribution of the SUR isoforms and splice variants*. J Mol Cell Cardiol, 2005. 39(1): p. 51-60.
- 62. Sammeth, M., S. Foissac, and R. Guigo, *A general definition and nomenclature for alternative splicing events*. PLoS Comput Biol, 2008. 4(8): p. e1000147.
- 63. Lieschke, G.J. and P.D. Currie, *Animal models of human disease: zebrafish swim into view.* Nat Rev Genet, 2007. 8(5): p. 353-67.
- 64. Guyon, J.R., et al., *Modeling human muscle disease in zebrafish*. Biochim Biophys Acta, 2007. 1772(2): p. 205-15.
- 65. Ninkovic, J. and L. Bally-Cuif, *The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse.* Methods, 2006. 39(3): p. 262-74.
- 66. Amsterdam, A. and N. Hopkins, *Mutagenesis strategies in zebrafish for identifying genes involved in development and disease*. Trends Genet, 2006. 22(9): p. 473-8.
- 67. Kimmel, C.B., et al., *Stages of embryonic development of the zebrafish*. Dev Dyn, 1995. 203(3): p. 253-310.
- 68. Gu, W., et al., Using gene-history and expression analyses to assess the involvement of LGI genes in human disorders. Mol Biol Evol, 2005. 22(11): p. 2209-16.
- 69. Wei, A.D., A. Butler, and L. Salkoff, *KCNQ-like potassium channels in Caenorhabditis elegans. Conserved properties and modulation.* J Biol Chem, 2005. 280(22): p. 21337-45.
- 70. Wen, H., et al., A Drosophila KCNQ channel essential for early embryonic development. J Neurosci, 2005. 25(44): p. 10147-56.
- 71. Mullis, K.B. and F.A. Faloona, *Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction*. Methods Enzymol, 1987. 155: p. 335-50.
- 72. Stryer, T., Berg, *Stryer Biochemie*. 2007.
- 73. Löffler, P., *Biochemie und Pathobiochemie*. 2003.
- 74. Dieffenbach, C.W., *PCR Primer: a laboratory manual.* 2003: p. 61-62.
- 75. Serwer, Agarose gels: Properties and use for electrophoresis. Electrophoresis, 1983. 4: p. 375-382.
- 76. Knippers, *Molekulare Genetik*. 2006.
- 77. Sanger, F., S. Nicklen, and A.R. Coulson, *DNA sequencing with chain-terminating inhibitors*. Proc Natl Acad Sci U S A, 1977. 74(12): p. 5463-7.
- 78. Postlethwait, J., et al., *Subfunction partitioning, the teleost radiation and the annotation of the human genome.* Trends Genet, 2004. 20(10): p. 481-90.
- 79. Woods, I.G., et al., *The zebrafish gene map defines ancestral vertebrate chromosomes*. Genome Res, 2005. 15(9): p. 1307-14.
- 80. Gates, M.A., et al., A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. Genome Res, 1999. 9(4): p. 334-47.
- 81. Postlethwait, J.H., et al., *Vertebrate genome evolution and the zebrafish gene map.* Nat Genet, 1998. 18(4): p. 345-9.
- 82. Berghmans, S., et al., Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res, 2007. 75(1): p. 18-28.
- 83. Milan, D.J., et al., *In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation*. Am J Physiol Heart Circ Physiol, 2006. 291(1): p. H269-73.

- 84. Sehnert, A.J. and D.Y. Stainier, A window to the heart: can zebrafish mutants help us understand heart disease in humans? Trends Genet, 2002. 18(10): p. 491-4.
- 85. Arnaout, R., et al., *Zebrafish model for human long QT syndrome*. Proc Natl Acad Sci U S A, 2007. 104(27): p. 11316-21.
- 86. Milan, D.J., et al., *Drugs that induce repolarization abnormalities cause bradycardia in zebrafish*. Circulation, 2003. 107(10): p. 1355-8.
- 87. Winter, M.J., et al., *Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs.* J Pharmacol Toxicol Methods, 2008. 57(3): p. 176-87.
- 88. Baraban, S.C., et al., *Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression.* Neuroscience, 2005. 131(3): p. 759-68.
- 89. Baraban, S.C., et al., *A large-scale mutagenesis screen to identify seizure-resistant zebrafish.* Epilepsia, 2007. 48(6): p. 1151-7.
- 90. Nicolson, T., *The genetics of hearing and balance in zebrafish*. Annu Rev Genet, 2005. 39: p. 9-22.
- 91. Whitfield, T.T., Zebrafish as a model for hearing and deafness. J Neurobiol, 2002. 53(2): p. 157-71.
- 92. McDermott, B.M., Jr., J.M. Baucom, and A.J. Hudspeth, *Analysis and functional evaluation of the hair-cell transcriptome*. Proc Natl Acad Sci U S A, 2007. 104(28): p. 11820-5.
- 93. Bang, P.I., et al., *High-throughput behavioral screening method for detecting auditory response defects in zebrafish.* J Neurosci Methods, 2002. 118(2): p. 177-87.
- 94. Meyer, A. and M. Schartl, *Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions.* Curr Opin Cell Biol, 1999. 11(6): p. 699-704.
- 95. Nadeau, J.H. and D. Sankoff, *Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution.* Genetics, 1997. 147(3): p. 1259-66.
- 96. Postlethwait, J.H., et al., Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res, 2000. 10(12): p. 1890-902.
- 97. Naruse, K., et al., A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res, 2004. 14(5): p. 820-8.
- 98. Van de Peer, Y., et al., *Wanda: a database of duplicated fish genes*. Nucleic Acids Res, 2002. 30(1): p. 109-12.
- 99. Barbazuk, W.B., et al., *The syntenic relationship of the zebrafish and human genomes*. Genome Res, 2000. 10(9): p. 1351-8.
- 100. Schenzer, A., et al., *Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine.* J Neurosci, 2005. 25(20): p. 5051-60.
- 101. Wuttke, T.V., et al., *The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate.* Mol Pharmacol, 2005. 67(4): p. 1009-17.
- 102. Gamper, N. and M.S. Shapiro, *Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels.* J Gen Physiol, 2003. 122(1): p. 17-31.
- 103. Wen, H. and I.B. Levitan, *Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels*. J Neurosci, 2002. 22(18): p. 7991-8001.
- 104. Yus-Najera, E., I. Santana-Castro, and A. Villarroel, *The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels.* J Biol Chem, 2002. 277(32): p. 28545-53.
- 105. Pan, Z., et al., A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci, 2006. 26(10): p. 2599-613.
- 106. Beisel, K.W., et al., *Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss.* J Neurosci, 2005. 25(40): p. 9285-93.
- 107. Schroeder, B.C., et al., *KCNQ5*, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem, 2000. 275(31): p. 24089-95.
- 108. Liu, Q., et al., *R-cadherin expression in the developing and adult zebrafish visual system*. J Comp Neurol, 1999. 410(2): p. 303-19.
- 109. Liu, Q., et al., *Expression of leptin receptor gene in developing and adult zebrafish*. Gen Comp Endocrinol, 2009.

- 110. Holtke, H.J., et al., *The digoxigenin (DIG) system for non-radioactive labelling and detection of nucleic acids--an overview*. Cell Mol Biol (Noisy-le-grand), 1995. 41(7): p. 883-905.
- 111. Stemple, D.L., *TILLING--a high-throughput harvest for functional genomics*. Nat Rev Genet, 2004. 5(2): p. 145-50.
- 112. Nasevicius, A. and S.C. Ekker, *Effective targeted gene 'knockdown' in zebrafish*. Nat Genet, 2000. 26(2): p. 216-20.
- 113. Draper, B.W., P.A. Morcos, and C.B. Kimmel, *Inhibition of zebrafish fgf8 pre-mRNA splicing* with morpholino oligos: a quantifiable method for gene knockdown. Genesis, 2001. 30(3): p. 154-6.
- 114. Chen, E. and S.C. Ekker, *Zebrafish as a genomics research model*. Curr Pharm Biotechnol, 2004. 5(5): p. 409-13.
- 115. Wienholds, E., et al., *Target-selected inactivation of the zebrafish rag1 gene*. Science, 2002. 297(5578): p. 99-102.
- 116. Wienholds, E., et al., *Efficient target-selected mutagenesis in zebrafish*. Genome Res, 2003. 13(12): p. 2700-7.