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Abbreviations 

%    percent 

>    bigger than 

<    less than 

Σ    sum 

α    alpha 

β    beta 

µ    micro 

Ab    antibody 

ALL    acute lymphatic leukemia 

AML    acute myeloid leukemia 

AML-M0   AML FAB-type M0 

AML-M1   AML FAB-type M1 

AML-M2   AML FAB-type M2 

AML-M3   AML FAB-type M3 

AML-M4   AML FAB-type M4 

AML-M4eo   AML FAB-type M4 with eosinophilia 

AML-M5   AML FAB-type M5 

AML-M6   AML FAB-type M6 

APC    Allophycocyanin 

Bla    blast 

Blacon    converted blasts 

BM    bone marrow 

Ca    calcium 

CD    differentiation antigen (cluster of differentiation) 

CLL    chronic myeloid leukemia 

CML    chronic lymphatic leukemia 

CMML   chronic myelomonocytic leukemia 

CSF    colony stimulating factor 

CTL    cytotoxic T-cells 

d    days 



B 

 

DC    dendritic cells 

DCA    DC antigen 

DCleu    leukemia-derived dendritic cells 

DCopt    optimum of DC 

dgn    diagnosis 

del    deletion 

der    derivat 

DNA    deoyribonucleic acid 

EDTA    ethylendiamintetraacetic acid 

e.g.    for example 

FAB    French American British 

FACS    Fluorescent-activated cell sorting 

FCS    fetal calf serum 

FITC    fluorescein isothiocyanate 

FISH    fluorescent in situ hybridization 

FISH-IPA   FISH-immunophenotyping     

GM-CSF   granulocyte/macrophage stimulating factor 

GVHD    graft-versus-host-disease 

IFN    interferon 

Ig    immunoglobulin 

IL    interleukin 

ins    insertion 

inv    inversion 

MCM    monocyte-derived medium 

MDS    myelodysplastic syndrome 

Mg    magnesium 

MHC    major histocompatibility complex 

ml    milliliter 

MLR    mixed lymphocyte reaction 

MNC     mononuclear cell 

moAb    monoclonal antibody 

MPO    Myeloperoxidase 
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MRD    minimal residual disease 

n    number 

ng    nanogramm 

NK-cell   natural killer cell 

no.    number 

pAML    primary AML 

p    short arm of a chromosome 

PB    peripheral blood 

PBS    phosphate buffered saline  

PC5    Cy5-PE-conjugation  

PE    phycoerythrin 

PGE2    prostaglandin E2 

q    long arm of a chromosome 

RA    refractory anemia 

RAEB    refractory anemia with excess blasts 

RAEBt   refractory anemia with excess blasts in transformation 

RAS    refractory anemia with ringed sideroblasts 

RNA    ribonucleic acid 

sAML    secondary AML 

SCF    stem cell factor 

SCT    stem cell transplantation 

t    translocation 

TAA    Tumor-associated antigen 

t-MDS    therapy-related MDS 

TNF    tumor necrosis factor 

U    Unit 

WHO    World Health Organisation
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1 Abstract  

Dendritic cells (DC) have a central role in connecting innate with specific adoptive immunity 

resulting in target specific activation T-cells. As professional antigen presenting cells (APC) 

DC specifically stimulate T-effector cells, especially tumor-cytotoxic T-cells. Therefore they 

are regarded as interesting candidates for anti-tumor or anti-leukemic vaccination strategies. 

The insufficient expression of costimulatory antigens, MHC molecules and tumor-associated 

antigens (TAA) on the surface of cancer cells and disturbed mechanisms of apoptosis are the 

main reason for an ineffective immune response in oncologic diseases. It was shown that 

acute myeloid leukemic cells can be differentiated to leukemia-derived DC (DCleu ), regaining 

the stimulatory capacity of professional DC while potentially presenting the whole leukemic 

antigen repertoire. Thus, vaccination strategies, using ex vivo or in vivo generated DC, might 

induce a highly specific anti-leukemic T-cell response circumventing the cumbersome 

identification of leukemia-associated antigens.  

In this thesis DC antigen (DCA) expression profiles of mononuclear cells (MNC) and 

dendritic cells (DC) generated from these MNC should be analyzed. The generated MNC and 

DC should be compared with respect to their DC antigen (DCA) expression profiles and the 

DCAs value to detect and quantify (leukemia-derived) DC in different AML/MDS subtypes 

and under different culture conditions. Therefore MNC and DC were generated from 137 

patients with acute myeloid leukemia (AML) and 49 patients with myelodysplastic syndromes 

(MDS) under 6 different serum free culture conditions. DCA studied were: CD1a/1b/1c, 

CD206, CD25, CD137L, CD83, CD86, CD80 and CD40.   

DC-generating media were chosen according to their different mechanisms of inducing DC-

differentiation: 1. ‚Basic method„: TNF/GM-CSF/IL-4, 2. MCM-Mimic, 3. Ca Ionophore, 4. 

Picibanil, 5. Poly I:C and 6. Cytokines. Quality and quantity of generated DC was estimated 

by Flow cytometry applying a specified, „DC-based‟ gating-strategy. Expression and 

coexpression profiles of 10 different DCA as well as various costimulatory molecules, 

maturation markers and blast antigens were evaluated. Only those DCA qualified for the 

quantification of leukemia-derived DC that were not expressed on uncultured MNC fractions. 

AML patients presented with an average of 58 % blasts, MDS patients with 13 % blasts in 

MNC fractions. DCA were expressed on average on less than 7% of uncultured MNC, 
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however some of the markers could be expressed on up to 77% of uncultured cells in single 

AML cases. Consequently these DCA did not qualify for detection of DC in those cases. 

Highest expression rates were found for CD86 and CD40 in naïve AML and for CD137L and 

CD40 in naïve MDS samples. Other DCA (e.g. CD1a, 1b, 1c) were only rarely found on naïve 

blasts. DCA expression on uncultured AML and MDS MNC varied with FAB types and 

cytogenetic risk.  

After culture in different DC-differentiating media, on average 28% DC could be generated 

from AML MNC and 30% from MDS MNC, depending on methods used, with an average 

DC viability of more than 60% and an average DC maturity of 49% (AML) and 56% (MDS). 

On average 36% of leukemic blasts could be converted to DC. Proportions of DCleu in the 

total DC fraction varied from 40-58% and were on average 49% (AML) and 43% (MDS) after 

culture. Average results of all culture methods tested were comparable, however every 

method failed to create DC in some individual cases.  

The most important results of this thesis are: 

1. It could be shown that DCA are expressed on naïve blasts in AML and MDS in 

individual patients. That means that the individual patients‟ DCA-profiles have to be 

evaluated before DC-culture to find suitable DCA to detect and quantify (leukemia-

derived) DC after culture.  

2. Different methods of DC-generation qualify with varying individual efficiency to 

generate leukemic, mature, migratory and viable DC in individual cases.  

3. To select the best DC-generating method the best DC-marker (no expression on naïve 

blasts, high expression on DC) has to be chosen to quantify DC in individual samples.   

4. The use of only one method is not sufficient to create DC in every single AML and 

MDS sample. However, a successful, quantitative DC/DCleu -generation is possible in 

every case of AML and MDS by the combination of 3 different DC-generating media, 

but not every blast is convertible to DC leu .  

5. There is a need for new, specific DC-markers that are not expressed on naïve blasts.  
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Zusammenfassung 

Dendritische Zellen (DC) sind professionelle antigenpräsentierende Zellen (APC) und spielen 

eine zentrale Rolle in der Verknüpfung von unspezifischer und spezifischer Immunabwehr, 

die zu einer zielgerichteten Aktivierung von T-Zellen führt. T-Effektor-Zellen, v.a. tumor-

zytotoxische T-Zellen, werden durch DC spezifisch stimuliert. Aus diesem Grund stellen DC-

basierte Immuntherapieansätze interessante Optionen für neue Vakzinierungsstrategien bei 

der Behandlung von malignen Erkrankungen, wie z.B. Leukämien, dar.  

Die ineffektive Immunantwort bei onkologischen Erkrankungen ist u.a. bedingt durch die 

ungenügende Expression von kostimulatorischen Molekülen, MHC-Molekülen und 

tumorassoziierten Antigenen auf der Oberfläche von Krebszellen, aber auch durch gestörte 

Apoptosemechanismen. Vakzinierungsstrategien mit DC könnten diese Mechanismen 

umgehen: es konnte bereits gezeigt werden, dass Blasten von Patienten mit akuter 

myeloischer Leukämie (AML) zu leukämischen DC (DCleu) differenziert werden können. 

Dabei können sie weiterhin Antigene des spezifischen Blastenphänotyps exprimieren, aber 

zudem noch das  immunstimulatorische Potential von originären DC erlangen. 

Vakzinierungsstrategien mit ex vivo oder in vivo generierten DC könnten dadurch die 

Stimulation einer hochspezifischen antileukämischen T-Zell-Antwort ohne Kenntnis von 

leukämischen Antigenen auf Blasten ermöglichen.  

Im Rahmen dieser Arbeit wurden DC-Antigen (DCA) Expressionsprofile von mononukleären 

Zellen (MNC) sowie von aus diesen MNC generierten dendritischen Zellen (DC) analysiert. 

Die generierten MNC und DC wurden bezüglich ihrer DCA Expressionsprofile und der 

Eignung der verschiedenen exprimierten DCA zur Detektion und Quantifizierung von 

leukämischen DC verglichen. Zu diesem Zweck wurden MNC und DC von 137 Patienten mit 

AML und 49 Patienten mit myelodysplastischem Syndrom (MDS) unter Verwendung von 6 

verschiedenen serumfreien Kulturmedien generiert. Es wurden 10 verschiedene DCA 

untersucht: CD1a/1b/1c, CD206, CD25, CD137L, CD83, CD86, CD80 und CD40.  

Zur DC-Generierung wurden 6 verschiedene serumfreie Kulturmedien verwendet, die 

aufgrund ihrer unterschiedlichen Mechanismen einer Differenzierung von DC aus MNC 

ausgewählt wurden: 1. Basis-Methode: TNF/GM-CSF/IL-4, 2. MCM-Mimic, 3. Ca 

Ionophore, 4. Picibanil, 5. Poly I:C und 6. Zytokine. Die Qualität und Quantität der 

generierten DC wurde mittels Durchflusszytometrie mit einer speziellen, ‚DC-basierten„ 

Gating-Strategie bestimmt. Die Expression und Koexpression von 10 verschiedenen DCA 
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sowie kostimulatorischen Molekülen und Blastenantigenen wurde evaluiert.  In die Analyse 

zur Quantifizierung von leukämischen DC wurden nur diejenigen DCA eingeschlossen, die 

nicht auf unkultivierten MNC exprimiert wurden. 

Im Durchschnitt fanden sich in den unkultivierten MNC-Fraktionen der AML-Patienten 58% 

Blasten (MDS-Patienten: 13% Blasten). Die untersuchten DCA wurden durchschnittlich auf 

weniger als 7% der unkultivierten Zellen exprimiert, es fand sich jedoch eine große 

individuelle Variabilität: manche DCA wurden in einzelnen AML-Fällen auf bis zu 77% der 

Zellen exprimiert.  D.h. dass diesen Fällen die untersuchten DCA nicht zur anschließenden 

Quantifizierung von DC geeignet waren. CD86 und CD40 zeigten die höchsten 

Expressionsraten auf unkultivierten AML- Proben (MDS-Proben: CD137L und CD40). 

Andere DCA wie CD1a, CD1b und CD1c wurden nur in geringem Maß auf naïven Blasten 

exprimiert.  Die Expression von DCA auf unkultivierten AML- und MDS-Proben variierte in 

Abhängigkeit von verschiedenen FAB-Typen und zytogenetischen Risikogruppen.   

Nach Kultur mit 6 verschiedenen Medien zur DC-Generierung konnten durchschnittlich 28% 

DC in AML-Proben und 30% DC in MDS-Proben generiert werden. Die durchschnittliche 

Rate an lebenden DC betrug sowohl in AML als auch MDS-Fällen 67%. In den AML-Fällen 

wurden durchschnittlich 49% reife DC gefunden, in MDS-Fällen 56%.  Im Durchschnitt 

konnten 36% der leukämischen Blasten zu DC konvertiert werden. Die durchschnittlichen 

Anteile von DCleu in den absoluten DC-Fraktionen waren 49% in AML- und 43% in MDS-

Fällen. Die durchschnittlichen Ergebnisse bzgl. der Generierbarkeit von DC waren 

vergleichbar, allerdings versagte jede Methode in einzelnen Fällen bei der DC-Generierung. 

Die wichtigsten Erkenntnisse dieser Arbeit waren: 

1. DCA werden auf naiven Blasten von AML- und MDS-Patienten patientenabhängig 

variabel exprimiert. D.h. dass eine Evaluation der individuellen DCA-

Expressionsprofile von AML- und MDS-Patienten vor Kultur erfolgen muss, um nach 

Kultur geeignete DCA zur Detektion von leukämischen DC für jeden einzelnen 

Patienten zu finden.  

2. Die Verwendung von verschiedenen serumfreien Medien zur DC-Generierung kann 

bei verschiedenen Patienten unterschiedliche Ausbeuten von leukämischen, reifen, 

lebenden und migratorischen DC zur Folge haben.  
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3. Um die beste DC-Generierungsmethode zu finden, ist eine Evaluation des individuell 

besten DC-Markers (d.h. ohne Expression auf naiven Blasten, aber hohe 

Expressionsraten nach DC-Kultur)  zur Quantifizierung von Zellen bei jedem 

einzelnen Patienten notwendig.  

4. Die Anwendung nur einer Methode ist nicht ausreichend, um in jedem einzelnen Fall 

von AML und MDS DC erfolgreich zu generieren. Allerdings ist eine erfolgreiche, 

quantitative DC/DCleu-Generierung  in jedem Fall von AML oder MDS mit 

mindestens einer von 3 vorab getesteten  Methoden möglich.  

5. Es besteht ein großer Bedarf an neuen, spezifischen DC-Markern, die nicht auf naïven 

Blasten exprimiert werden.  
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2 Introduction 

2.1 Definition and classification of leukemia 

The term „leukemia‟ refers to a group of neoplastic disorders characterized by malignant 

transformation of hematopoietic or lymphatic cells. These transformed cells are characterized 

by an increased rate of self-renewal and an aberrant differentiation. Accumulation of leukemic 

cells in the bone marrow ultimately suppresses normal hematopoiesis, resulting in anemia, 

thrombocytopenia and/or granulocytopenia, fatigue, hemorrhage and immune deficiency 

(Dietel et al., 2008).  

Leukemia is not a consistent group of disorders and clinically and pathologically subdivided 

into several groups. Classification criteria are the course of disease (acute vs. chronic), the 

blasts„ differentiation (lymphocytic vs. myelogenous/myeloid/nonlymphocytic) and the grade 

of differentiation of cells (mature vs. immature) (Dietel et al., 2008). 

Cases of chronic leukemia normally present with rather differentiated malignant cells, 

whereas most cases of acute leukemia are characterized by immature cells. Chronic forms of 

leukemia are mostly geriatric disorders. Acute leukemia can be found in patients of all ages 

including children and adolescents. According to the affected cell type, leukemia is 

subdivided into four main groups: acute lymphoblastic leukemia (ALL), chronic lymphocytic 

leukemia (CLL), acute myelogenous leukemia (AML) and chronic myelogenous leukemia 

(CML) (Wilmanns et al., 1994). 

Besides, there are clonal disorders of the hematopoietic systems which cannot be classified in 

acute leukemia subgroups, but overlap in some characteristics, e.g. myeloproliferative and 

myelodysplastic syndromes (MDS) (Hiddemann and Haferlach, 2003).  Morphologic and 

cytogenetic similarities can be found between AML and MDS. MDS are regarded as a 

heterogeneous family of clonal ‚preleukemia„ disorders
 
of hematopoietic stem cells resulting 

in ineffective
 
hematopoiesis and susceptibility to AML (List, 2002;List et al., 2004). In 13% 

of AML cases, a precedent MDS can be found (Fialkow et al., 1987).  

 

 

 

 

http://en.wikipedia.org/wiki/Acute_lymphoblastic_leukemia
http://en.wikipedia.org/wiki/Chronic_lymphocytic_leukemia
http://en.wikipedia.org/wiki/Chronic_lymphocytic_leukemia
http://en.wikipedia.org/wiki/Chronic_lymphocytic_leukemia
http://en.wikipedia.org/wiki/Acute_myeloid_leukemia
http://en.wikipedia.org/wiki/Chronic_myelogenous_leukemia
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2.2 Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) 

2.2.1 Epidemiology 

The annual incidence of AML in Germany is about 9.100 persons, which is 2.1% of all newly 

diagnosed malignant diseases (Robert-Koch-Institut and Gesellschaft der epidemilogischen 

Krebsregister in Deutschland e.V., 2008). About 15% to 20% of acute leukemia in children 

and 80% of acute leukemia in adults are classified as ‚AML‟. The median age at diagnosis is 

67 years for male and 70 years for female patients with leukemia (Robert-Koch-Institut and 

Gesellschaft der epidemilogischen Krebsregister in Deutschland e.V., 2008).  

The age-specific incidence of AML increases from 3.5/100.000 under the age of 45, then 

ascends to 15/100.000 in persons older than 70 years and to 35/100,000 over the age of  90. 

Only 15-20% of AML-patients are children. AML is slightly more common in male than in 

female persons. Besides, geographical differences can be shown: the highest incidences of 

AML are found in North America and Europe, the lowest incidences in Asia and Latin 

America (Fuchs, 2002).  

Primarily, MDS is a disorder of the elderly; in children and adolescents, MDS are accounting 

for less than 5% of hematopoietic malignancies, mostly as a consequence of chromosomal 

fragility or in line with a secondary neoplasia (Aul et al., 1998;Niemeyer and Baumann, 

2008;Solenthaler and Tobler, 2004). More than 80% of MDS patients are older than 60 years 

(Aul et al., 1998). Patients with therapy-related MDS (t-MDS) often present with an earlier 

onset of the disease (Aul et al., 1998). 

The incidence of MDS ranges from 3.5-12.6/100,000 per year in the USA, with an increasing 

relative risk with age, which is 15-50/100,000 per year in persons older than 70 years (Aul et 

al., 2002). It is expected that the incidence of MDS will rise over the next decades (Dansey, 

2000). Men have a slightly higher MDS risk than women (Wilmanns et al., 1994). 

 

2.2.2 Etiology and pathogenesis 

AML is a neoplastic disorder characterized by clonal proliferation of myeloid precursors 

associated with an impaired cell differentiation. The conversion of a normal stem cell to a 

leukemic blast requires a multistep process, however, etiology of AML is not yet completely 

clarified (Giles et al., 2002). In general, primary and secondary AML are distinguished. The 
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term „secondary leukemia‟ refers to the development of AML following the history of a 

previous disease, such as MDS or chronic myeloproliferative disorders. Secondary leukemia 

also includes therapy-related AML (t-AML) defined as AML subtypes caused by mutation-

inducing therapies like radiation therapy, chemotherapy or a combination of both (Godley and 

Larson, 2008;Larson, 2007). According to two hypotheses the neoplasia‟s origin is either a 

mutated primitive pluripotent stem cell or a mutated more differentiated progenitor cell 

(Fuchs, 2002). In both cases, genomic mutations and modifications (chromosomal 

aberrations, activated oncogenes, inactivated tumor-suppressor genes) lead to uncontrolled 

cell division (el-Deiry, 1997).  

In most cases, the cause of leukemia is unknown. However, some predisposing factors and 

inciting agents are well established. E.g., ionizing radiation is the most conclusively identified 

leukemogenic factor (Committee on the Biological Effects of Ionizing Radiations, 1990). 

Noxa like chemotherapeutics (especially alkylating agents or topoisomerase II inhibitors), or 

the exposure to chemicals like benzene or pestizides, which are known or are suspected to 

impair hematopoietic progenitor cells, are other potential risk factors for AML. Besides, 

smoking is an established risk factor for AML (Godley and Larson, 2008;Ishimaru et al., 

1979;Natelson, 2007;Pyatt et al., 2007). A genetic disposition for AML is being discussed:  

clinical observations have identified higher susceptibility to AML in monozygotic twins 

(Linet, 1985). Some heritable disorders and genetic syndromes like Down‟s syndrome and 

Bloom‟s syndrome are associated with an increased risk for leukemia (Bischof et al., 

2001;Linabery et al., 2008). Besides, a viral etiology of leukemia is discussed: e.g., infections 

with the human T-cell leukemia virus type I (HTLV-I) are etiologically linked to the genesis 

of adult T-cell leukemia (ATL) (Harhaj et al., 2005). 

Etiology of MDS is quite similar to AML (Hirai, 2002). Analogous to AML, the conversion 

of a normal stem cell into a malignant blast requires a multistep process (Hirai, 2003). This 

process results in clonal malignant cells that can suppress normal hematopoiesis (Heaney and 

Golde, 1999). Again, primary and secondary MDS are distinguished. Secondary forms of 

MDS are observed especially after chemotherapy or radiation therapy (Rossi et al., 2000). 

E.g., patients with Hodgkin lymphoma have a 10% risk for a  therapy-related MDS (t-MDS) 

(Sanz et al., 1997). Mutations can be found more frequently in patients with t-AML and t-

MDS than in patients with de novo AML or MDS (Mauritzson et al., 2002). Similar to AML, 

an exposition to environmental carcinogens, e.g. smoking, or chemicals like benzene go along 

with an increased risk of MDS (Bjork et al., 2000;Travis et al., 1994). Besides, some 
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hereditary diseases and syndromes are associated with a higher risk of MDS, like Fanconi‟s 

anemia, Shwachman-Diamond Syndrome, Bloom‟s syndrome and Down‟s Syndrome. 

However, the mechanisms that lead to MDS in these cases are mostly unknown (Aul et al., 

1998;Hiddemann and Haferlach, 2003). 

 

2.2.3 Classification 

Most classification systems of AML are based on the morphological criteria of FAB 

classification. The French-American-British (FAB) Cooperative Group provided clear and 

useful criteria for the pathologic classification of AML in 1976, dividing AML into six 

subgroups (FAB classification) (table1) (Bennett et al., 1976;Handin et al., 1995). Since 1976, 

FAB classification of AML has been adapted and discussed, and alternative classification 

systems have been proposed that incorporate immunophenotyping, cytogenetic, and 

myelodysplastic changes (Bene et al., 1995;Bennett et al., 1985;De Vita (editor), 1997).  

The World Health Organisation (WHO) proposed another classification, subdividing AML 

into 4 big subgroups (table 2), including morphologic, immunologic, cytogenetic and clinical 

features (Arber, 2001;Harris et al., 2000). Some differences exist between the WHO and FAB 

classifications: the blast threshold required for diagnosing AML was reduced from 30 to 20% 

in WHO classification. Besides, new AML categories have been added for cytogenetic 

abnormalities, the presence of multilineage dysplasia as well as a history of chemotherapy and 

subtypes for acute basophilic leukemia, acute panmyelosis with myelofibrosis, and myeloid 

sarcoma (Wakui et al., 2008).  
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Table 1: FAB classification of AML.  

 abbr name characterization cytochemistry % of 

AML 

cases 

MO AUL undifferentiated 

leukemia 

expression of CD13, CD33 and 

other myeloid markers 

POX <3% 5 

M1  myeloblastic 

leukemia without 

maturation 

<10% promyelocytes or 

monocytes 

>3%POX or 

SBB+ 

20 

M2  myeloblastic 

leukemia with 

maturation 

>10%promyelocytes, 

monocytes; <20% monocytic 

cells 

POX+, SBB+, 

PAS- 

30 

M3 APL promyelocytic 

leukemia 

>20% abnormal hypergranular 

promyelocytes; Auer rods 

common 

POX+, SBB+, 

PAS- 

10 

M3

v 

  microgranular variant   

M4 AMML myelomonocytic 

leukemia 

>20% promonocytes and 

monocytes; >20% granulocytic 

component 

POX+, 

NASDA+ 

20 

M4

eo 

 Myelomoncytic 

leukemia with 

eosinophilia 

increase in abnormal marrow 

eosinophils (>5%) 

POX+, 

NASDA+, 

eosinophils are 

PAS+ 

5 

M5 AMOL monocytic 

leukemia 

 POX+, 

NASDA+ 

 

M5

a 

 monoblastic, 

undifferentiated 

>80% of monocytic cells are 

monoblasts 

 5 

M5

b 

 monocytic, 

differentiated 

<80% of monocytic cells are 

monoblasts 

 5 

M6 EL Erythroleukemia 

(DiGuglielmo‟s 

disease) 

megaloblastoid, erythroid and 

myeloid blasts 

 

PAS+, ringed 

sideroblasts 

with iron stain 

5 

M7  megakaryoblastic 

leukemia 

large polymorphic blasts, 

cytoplasmic blebs 

POX-, SBB-, 

NASDA+ 

1 

 

abbr abbreviation. POX myeloperoxidase. SBB Sudan black B stain. NASDA naphtol-ASD chloracetate 

esterase. PAS periodic acid-Schiff stain.   
 

 

 

http://en.wikipedia.org/wiki/Acute_myeloblastic_leukemia,_without_maturation
http://en.wikipedia.org/wiki/Acute_myeloblastic_leukemia,_without_maturation
http://en.wikipedia.org/wiki/Acute_myeloblastic_leukemia,_without_maturation
http://en.wikipedia.org/wiki/Acute_myeloblastic_leukemia,_with_granulocytic_maturation
http://en.wikipedia.org/wiki/Acute_myeloblastic_leukemia,_with_granulocytic_maturation
http://en.wikipedia.org/wiki/Acute_myeloblastic_leukemia,_with_granulocytic_maturation
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Table 2: WHO classification of AML (Fauci et al., 2008).  

I. AML with recurrent genetic abnormalities 

   - AML with t(8;21)(q22;q22);RUNX1/RUNX1T1 

   - AML with abnormal bone eosinophils [inv(16)(p13q22) or t(16;16)(p13;q22);CBFB/MYH11] 

  -  Acute promyelocytic leukemia  [AML with t(15;17)(q22;q12) )(PML/RARA) and variants] 

  - AML with 11q23 (MLL) abnormalities 

II. AML with multilineage dysplasia 

   - following a MDS or myeloproliferative disorder 

   - without antecedent MDS 

III. AML and MDS, therapy-related 

   - alkylating agent-related 

   - Topoisomerase type II inhibitor-related 

   - other types 

IV. AML not otherwise categorized 

   - AML minimally differentiated 

   - AML without maturation 

   - AML with maturation 

   - acute myelomonocytic leukemia 

   - acute monoblastic and monocytic leukemia 

   - acute erythroid leukemia 

   - acute megakaryoblastic leukemia 

   - acute basophilic leukemia 

   - acute panmyelosis with myelofibrosis 

   - myeloid sarcoma 

 

t translocation. p short arm of a chromosome. q long arm of a chromosome.
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The classification system for MDS developed by the FAB Cooperative Group is still the 

central system to classify subtypes according to morphological characterization(Bennett et al., 

1982) (table 3) (Lee et al., 1999;Souto et al., 1997). Besides, the WHO provides another 

useful schema for the classification of MDS (table 4) (Germing et al., 2001). 

 

Table 3: FAB classification of MDS (Handin et al., 1995).  

subtype abbr PB BM 

Refractory anemia RA <1% blasts <5% blasts 

Refractory anemia with ringed sideroblasts RAS <1% blasts <5% blasts 

Refractory anemia with excess of blasts RAEB 5% blasts 5-20% blasts 

Refractory anemia with excess of blasts in 

transformation 

RAEBt >5% blasts 20-30% blasts 

or Auer rods 

Chronic monomyelocytic leukemia CMML monocytes 

(>1000/L) 

 

 

abbr abbreviation. PB peripheral blood. BM bone marrow.
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Table 4: WHO classification of MDS.  

       subtype blasts in BM 

1. Refractory cytopenia with unilineage dysplasia (Refractory 

anemia, Refractory neutropenia, and Refractory 

thrombocytopenia) 

<5% 

2. Refractory anemia with ringed sideroblasts (RARS) <5% 

3. Refractory anemia with ringed sideroblasts - thrombocytosis 

(RARS-t) (provisional entity)  

<5% 

4. Refractory cytopenia with multilineage dysplasia (RCMD),  

includes the subset Refractory cytopenia with multilineage 

dysplasia and ringed sideroblasts (RCMD-RS) 

<5% 

5. Refractory anemia with excess blasts (RAEB) I and II RAEB I: 5-9% 

RAEB II: 10 -20% 

6. 5q- syndrome <5% 

7. Myelodysplasia unclassifiable  <5% 

8. Refractory cytopenia of childhood (dysplasia in childhood) <5% 

 

BM bone marrow. q long arm of a chromosome. 

 

 

2.2.4 Diagnosis 

AML patients often present with typical symptoms that begin either abruptly or gradually 

including weight loss, fatigue, bleeding and recurrent infections. Nearly 50% of patients have 

been symptomatic before diagnosis.  

The diagnosis of AML is based on the demonstration of immature myeloid cells in 

Pappenheim stained peripheral blood (PB) and bone marrow (BM) smears (Aul et al., 1983). 

Standard initial diagnostic evaluation of AML patients includes patient‟s history, physical 

examination, complete blood count with manual differential cell count, chemistry tests and 

smears of PB and BM stained with May-Grünwald-Giemsa stain and finally applying 

cytochemical tests like MPO reaction, unspecific esterase (NSE) reaction and PAS 

(glycogene) stain. Typical findings in PB samples are normocytic, normochromic anemia, 

thrombocytopenia and leukocytosis or more rarely leucopenia. The median leukocyte count is 

about 15,000/µL. No blasts in PB samples are detectable in about 5% of AML patients. 

http://en.wikipedia.org/wiki/5q-_syndrome
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Typical BM findings include a hypercellular aspirate with more than 30% blasts (according to 

FAB criteria, 20% according to WHO classification). Abnormalities in the erythroid, 

granulocytic and megakaryocytic lines can be found especially in M6 and M7 cases. The 

blasts‟ morphology varies in different subsets. Cytoplasm often contains nonspecific granules. 

Abnormal rod-shaped granules (Auer rods) are not always found, but their presence proofs a 

myeloid origin of cells (Fauci et al., 2008;Handin et al., 1995). Flow cytometric analyses 

facilitate classification to FAB subtypes and can verify myeloid lineage by demonstrating 

positive expression of myeloid markers like CD13 and CD33, if otherwise a differentiation 

between myeloid and lymphatic leukemia cannot be performed (Handin et al., 1995). 

Cytogenetic evaluation of AML cases can detect numeric or structural aberrations (with either 

classic cytogenetic analyses during metaphase or FISH-fluorescent in situ hybridization 

analysis during interphase) (Berger, 1992) and punctual mutations (PCR – polymerase chain 

reaction) (Kusec et al., 2006).  

Anemia can be found in the majority of MDS patients, sometimes as part of a bi- or 

pancytopenia. Isolated thrombocytopenia or neutropenia is more uncommon in MDS cases. 

Even leukocytosis and thrombocytosis can be diagnosed in some MDS patients. Further 

common findings are dysmorphic erythrocytes (e.g. akanthocytes), hypogranulated 

thrombocytes and hypogranulated neutrophils with abnormally shaped or ringed nuclei in the 

PB smear. Circulating myeloblasts correlate with marrow blast yields in most cases. The 

patients‟ BM is either normal or hypercellular, 20% of MDS cases present with hypocellular 

marrow (Fauci et al., 2008). Other typical findings are dysmyelopoiesis (signs of dysplasia in 

50% of cells in 2 or more cell lines) and a blast threshold between 5 and 30% (according to 

FAB criteria or 20% in WHO classification, respectively) (Bennett et al., 1982). 

 

 

2.2.5 Prognosis 

On average, 74% of AML patients under age 50 achieve complete remission (CR) after 

induction therapy, resulting in an average two year survival of 46%. With a CR rate of 52% 

and a two year survival of only 23%, prognosis of elderly patients is even worse (Jabbour et 

al., 2006;Woiciechowsky et al., 2001). One of the most important prognostic factors for AML 

patients is the achievement of CR after induction therapy. Moreover, age over 60 years, 
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certain chromosomal abnormalities, t- AML and sAML are clearly associated with lower 

remission rates (Haferlach et al., 2003;Handin et al., 1995;Karakas et al., 1998). The detection 

of aberrant karyotypes at diagnosis are important diagnostic factors. Frequently found 

chromosomal abnormalities can be classified into three different cytogenetic risk groups 

(table 5); defined FAB subtypes don‟t contribute to refine prognostic estimations (Haferlach 

et al., 2003).  

The prognosis of most MDS patients is desolate, median survival times range from 0.4 to 5.7 

years depending on individual risk factors (Greenberg et al., 1997). Especially therapy-related 

forms of MDS have an extremely poor prognosis (median survival 3 to 8 months) (Michels et 

al., 1985). The FAB classification has prognostic significance. E.g. Mufti et al. could show 

that median survival varies between different FAB subtypes (from 5 months in RAEBt to 76 

months in RAS cases) (Mufti et al., 1985). Cytogenetic studies have provided most relevant 

prognostic information (Nevill et al., 1998). Chromosomal aberrations can be found in 30 to 

50% of newly diagnosed MDS cases (Tassin et al., 1998), most of them are similar to those in 

AML and can be classified into the 3 previously mentioned cytogenetic risk groups 

(Greenberg et al., 1997) (table 6). However, defined deletions on the long arm of chromosome 

5 predict a favorable prognosis, summarized as cases with ‟5q-minus syndrome‟. 

Transformation to sAML, high-grade cytopenia as well as high yields of marrow blasts are 

associated with a worse prognosis (Greenberg et al., 2002).  
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Table 5: Frequent chromosomal abnormalities in AML patients and their prognostic 

significance.  

cytogenetic risk 
group 

karyotype associated FAB 
subtypes 

favorable t(8;21) 

t(15;17) 

inv(16)/t(16;16) 

M2 

M3/M3v 

M4eo 

intermediate normal karyotype 

other abnormalities 

 

poor t(11q23) 

17q aberrations 

inv(3)/t(3;3) 

complex abnormalities 

-5/5q- 

-7/7q- 

M4, M5a 

 

M0, M4 

 

Table 6: Prognostically relevant cytogenetic categories of MDS.  

cytogenetic risk type karyotype associated FAB 

subtypes 

favorable normal karyotype/-Y 

del(5q) 

del(20q) 

RA 

RAS 

CMML 

intermediate other abnormalities RA 

RAS 

RAEB 

RAEBt 

CMML 

poor complex abnormalities 

chromosome 7 abnormalities 

RAEB 

RAEBt 

CMML 

Table 5 and 6: t translocation. inv inversion. q long arm of a chromosome. del deletion. 
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2.2.6 Therapeutic options 

Treatment options for AML and MDS with cytotoxic regimens and stem cell transplantation 

(SCT) are still unsatisfying due to early relapse or persistence of disease. In addition, 

therapeutic options are often limited due to the advanced age of the patients.  

The main goal of therapy in AML patients is the eradication of  the leukemic cell population 

while preserving normal hematopoiesis. Although CR (<5% detectable blasts in PB or BM 

and restoration of normal marrow function) can be achieved in about 80% of AML patients by 

intensive chemotherapy-based treatments including SCT, long-term survival stays rather short 

(5-year overall survival 20-25%) due to the persistence of minimal residual disease (MRD) in 

about 80% of AML patients (Houtenbos et al., 2006;Li et al., 2003;Venditti et al., 2000). 

Established therapeutic regimen in AML are conventional chemotherapy and SCT (Bishop, 

1997). The first therapeutic step is induction therapy, which is normally carried out with 

Daunorubicin, Cytarabine and/or Etoposide. Postinduction treatments include further 

conventional chemotherapy, SCT strategies and experimental approaches. However, MRD 

does still exist in most patients who achieve CR. The aim of consolidation (repetitive course 

of the induction regimen) and intensification (higher doses of drugs than applied during 

induction) following induction therapy is to eradicate MRD. Both cause severe 

myelosuppression (Schmetzer et al., 2000). Maintenance chemotherapy includes several 

cycles of therapy over months or years to maintain remission and is less myelosuppressive 

(Fauci et al., 2008;Handin et al., 1995;Winton and Langston, 2004). Both autologous and 

allogeneic SCT are possible. It is still discussed whether polychemotherapy or SCT should be 

favored for consolidation (Levi et al., 2004). However, it has been shown that SCT is 

correlated with a higher rate of complications but better disease-free survival (Zittoun et al., 

1995). Despite side effects, SCT is the only curative therapeutic option for AML patients. The 

chimeric state after allogeneic SCT provides an ideal platform for adoptive immunotherapy 

using donor-derived cells, especially donor lymphocyte infusions (DLI) to restore complete 

chimerism and offers many advantages, e.g. minimizing therapy-related toxicitiy and 

mortality (Gorin et al., 2000;Kolb et al., 2004). More aspects of immunotherapy in AML and 

MDS patients are given in 2.3.2.  
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 Therapy of MDS patients ranges from low-intensity treatment for symptom management/ 

hematologic improvement including supportive care, biological response modifiers (BRM) 

and low-intensity chemotherapy to high-intensity treatment including chemotherapy and SCT. 

Especially older patients do not benefit from high-intensity-treatment in most cases. 

Supportive care, including red blood cell transfusions, platelet transfusions and antibiotic 

prophylaxis, may allow maintenance of a normal lifestyle and prevention of necessary 

morbidity and mortality (Greenberg et al., 2002). High-dose chemotherapy carried out with 

Cytarabine, Daunorubicin or other drugs can be applied in younger patients, however in most 

cases patients relapse after a short time (Bennett et al., 2002). Both allogeneic and autologous 

SCT are possible in MDS patients, however, long-term disease control is only achieved in 30 

to 50% of patients (Giralt, 2004).  

There is a need for new therapeutic strategies, e.g. immunotherapies with a minimum of toxic 

side effects in order to maintain stable remissions in AML and at least a stable disease in 

MDS-patients.  

 

2.3 Immunotherapy 

2.3.1 Short survey of the immune system and tumorbiology 

The immune system is a complex system protecting the organism with layered defenses of 

increasing specificity. The innate immune system provides an immediate, but non-specific 

response, whereas the adaptive immune system requires the recognition of specific “non-self” 

antigens during antigen presentation. This improved response is then retained after 

elimination of the pathogen as an immunological memory, and allows the adaptive immune 

system to mount enhanced attacks each time this pathogen is encountered (Mayer, 2006). The 

innate immune system is based on cell-mediated and humoral components such as 

complement system, cytokines, chemokines, growth factors etc. Cellular components are 

macrophages, natural killer (NK) cells, mast cells, eosinophils, neutrophils, basophils and DC. 

These cells identify and eliminate pathogens and are also important mediators in the 

activation of the adaptive immune system (Janeway CA, 2005;Mayer, 2006). B-cells are 

involved in the humoral part of adaptive immune response (production of antigen-specific 

antibodies), whereas T-cells (killer T-cells, helper T-cells) are part of cell-mediated adaptive 

immune response (Janeway CA, 2005). 

http://en.wikipedia.org/wiki/Adaptive_immune_system
http://en.wikipedia.org/wiki/Antigen_presentation
http://en.wikipedia.org/wiki/Immunological_memory
http://en.wikipedia.org/wiki/Adaptive_immune_system
http://en.wikipedia.org/wiki/Humoral_immunity
http://en.wikipedia.org/wiki/Cell-mediated_immunity
http://en.wikipedia.org/wiki/Cell-mediated_immunity
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One important role of the immune system is to detect and eliminate tumor cells. Tumor-

associated antigens (TAA) can be detected by antibodies or T-cells, which may lead to either 

lysis of tumor cells (complement system) or phagocytosis (macrophages, NK-cells, DC). 

However, tumors can evade mechanisms of the immune system in different ways. It has been 

shown that function and yields of cells of the innate and adaptive immune system can be 

reduced in various malignancies (Mohty et al., 2001;Ratta et al., 2002). The main reason for 

the phenomenon that tumor cells are aible to undergo mechanisms of immune defense is the 

complexity of carcinogenesis comprising “immune escape mechanisms” (Brossart et al., 

2000;Gemsa et al., 1997;Whiteway et al., 2003). Tumor cells often have a reduced number of 

MHC class I molecules on their surface, thus avoiding detection by killer T-cells (Seliger et 

al., 2006). Some tumor cells also release products that inhibit the immune response, e.g. by 

secreting TGF-β which suppresses the activity of macrophages and lymphocytes (Frumento et 

al., 2006). In addition, immunological tolerance may develop against tumor antigens (Seliger, 

2005).  

Another problem in tumor immunology is the fact that only few TAA are specific for one 

certain tumor; most TAA are group specific (i.e. expressed on tumors of the same group) or 

unspecific (i.e. expressed on various types of cells/tissues). Besides, deranged mechanisms of 

apoptosis play a role in carcinogenesis (Greenberg, 1998). 

 

2.3.2 Current options of immunotherapy in AML and MDS 

The limited possibilities of common antitumor therapy described in 2.3.1 reveal that there is a 

need for new strategies to improve survival in AML and MDS patients. Strategies to influence 

the immune system for therapeutical options are subsumed by the term “immunotherapy” 

(Römpp, 2000). Some targeted immunotherapies are based on monoclonal antibodies which 

requires the identification of appropriate TAA (Greiner et al., 2006b). Conjugated antibodies, 

which are immunoglobulins conjugated to a cytotoxic agent (Steele, 2000), are already used 

in AML and MDS therapy, e.g. gemtuzumab, a monoclonal CD33-antibody (Sakamaki, 

2008). Recent studies also use bispecific antibodies that not only bind to TAA, but 

additionally to other structures like surface markers on DC or T-cells to enhance cytotoxic 

reativity against tumor-cells (Balaian and Ball, 2001;Kaneko et al., 1993). Other 

immunotherapeutic approaches in AML and MDS comprise cytokines to stimulate the 

immune system against leukemic blasts: Maraninchi et al. demonstrated that clinical 

http://en.wikipedia.org/wiki/TGF_beta
http://en.wikipedia.org/wiki/Macrophage
http://en.wikipedia.org/wiki/Lymphocyte
http://en.wikipedia.org/wiki/Immune_tolerance
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remission in AML patients can be induced by IL-2, a cytokine for T-cell stimulation 

(Maraninchi et al., 1998). Active immunotherapy based on cytotoxic T-cells (CTL) and/or DC 

are promising new therapeutic options in AML and MDS patients. In case of relapse or MRD, 

DLI is a therapeutic option to induce anti-leukemia effects (graft-versus-leukemia (GVL) 

effect) (Kolb et al., 1995;Kolb et al., 2003). These immunological effects demonstrate the 

potential of donor lymphocytes to reject leukemic blasts (Greiner et al., 2006a). DC 

specifically stimulate T-effector cells, especially tumor-cytotoxic T-cells and are regarded as 

interesting candidates for anti-tumor or anti-leukemic vaccination strategies: DC could help to 

enhance specific T-cell responses against leukemic blasts in or ex vivo. A more detailed 

survey of DC-based immunotherapy is given in chapter 2.4.3. 

 

2.4 Dendritic cells (DC) and DC-antigens (DCA) 

2.4.1 Definition and function of DC  

DC are antigen-presenting cells (APC) with a unique potential to induce primary immune 

responses. Besides, they play a central role in the stimulation and regulation of T-cell 

responses and in the induction of immune tolerance (Banchereau et al., 2000).  

DC represent a heterogeneous population of leukocytes that is defined by phenotypic, 

morphologic and functional criteria (Banchereau and Steinman, 1998). The DC system 

includes at least three different subsets, comprising two within the myeloid lineage (including 

Langerhans cells, interstitial DC and monocyte-derived DC) and one within the lymphoid 

lineage (Banchereau and Steinman, 1998;Young, 1999). Within each of these subsets, cells 

differentiate from precursors to immature DC resident in peripheral tissues, and to mature DC 

which are especially found in secondary lymphoid organs. Different DC subsets play different 

roles in immune response and immune tolerance: resident lymphoid DC induce self tolerance, 

whereas myeloid DC, especially migratory DC, are activated by antigens/pathogens and 

initiate immune response (Banchereau and Steinman, 1998) (figure 1). Immature DC are 

characterized by a high potential of antigen uptake and processing, but low T-cell stimulatory 

capacity. In contrast, mature DC have a high stimulatory function, but poor antigen uptake 

potential and processing ability. Several cytokines such as TNFα, IL-1 and PGE2 and bacterial 

products like lipopolysaccharides stimulate DC maturation, whereas IL-10 inhibits it (Bell et 

al., 1999;Rescigno et al., 1999). Only differentiated and mature DC finally are able to trigger 
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potent cytotoxic T-cell reponses (Sallusto and Lanzavecchia, 2002). DC express MHC class I 

molecules which are essential for stimulation of CD8
+
 CTL, but also MHC class II molecules 

to interact with CD4
+
 T-helper cells (Gatti and Pierre, 2003).  This fact is essential for 

eliciting immune responses, because DC have to be activated by CD4
+
 cells, e.g. via 

CD40/CD40L or other interactions, before they are able to stimulate CD8+ cells using a 

CD80/CD86-CD28 signal transduction (“cross-priming”) (Cho and Bhardwaj, 2003) 

(Dhodapkar and Dhodapkar, 2005). 

 

Figure 1: DC as an important link between innate and adaptive immunity in antitumor 

response. (Banchereau et al., 2000;Bell et al., 1999).  

Precusor DC (DC pre) recognize tumor-associated molecular patterns (PAMP) by their pattern-recognizing 

receptors (PRR) and release interferon (IFNα) to activate macrophages (MF) and natural killer T-cells (NKT). 

NKT that kill tumors lead to the release of tumor cell bodies which are captured by immature DC (DC imm), 

leading to maturation of DC (DC mat) and displaying of tumor-associated antigens (TAA). TAA are recognized 

by tumor-specific cytotoxic lymphocytes (CTL) and CD4+ T-cells which activate macrophages. 
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DC are characterized by a distinct morphology: in situ, both immature and mature DC have a 

stellate shape; isolated DC display fine dendrits in many directions from the cell body. The 

shape and motility of DC perfectly suit their function of capturing antigens and selecting 

antigen-specific lymphocytes (Bell et al., 1999).  

DC express a variety of molecules on their surface: migration receptors like CCR7 and E-

cadherin, adhesion and costimulatory molecules (e.g. CD50, CD54, CD86, CD80), receptors 

for antigen-uptake and antigen-presenting molecules (MHC I, MHC II, CD1) (Bell et al., 

1999). A more extended survey of CD (cluster of differentiation) antigens that are expressed 

on DC is given in chapter 2.4.2. At the moment, only a combination of antigens can define a 

population of DC, but no specific antigen is known which permits unequivocal assignment of 

a given cell to the DC family (Bell et al., 1999). 

 

2.4.2 Function of different DC-antigens (DCA) 

As already described in 2.4.1, DC express a variety of molecules on their surface to suit their 

different functions, e.g. antigen capture and presentation or migration. Different subsets of 

DC can only be distinguished from each other and from other cell types by a combination of 

surface markers, but not by only one specific antigen (Bell et al., 1999) (table 7). For this 

thesis, expression profiles of 10 different CD molecules which are typically expressed on DC 

were analyzed on naïve AML and MDS samples and cultured MNC fractions. 

CD1 molecules are regarded as a hallmark of DC. They are involved in antigen presentation 

and essential in the regulation of T-cell-responses (Banchereau et al., 2000). CD1 antigens are 

nonpolymorphic cell surface proteins and have been shown to present peptides as well as 

microbial, nonpeptide antigens to T-cells. They share functional and physical characteristics 

with MHC molecules and are import connectors between innate and adaptive immunity (Bell 

et al., 1999). In humans, five CD1 proteins are expressed on DC: Cd1a, CD1b, CD1c, CD1d 

and CD1e (Peiser et al., 2003). CD1a, CD1b and CD1c isoforms are recognized by 

conventional T-cells, whereas CD1d activates a restricted set of T-cells as well as NK-cells 

(Banchereau et al., 2000;Gelin et al., 2008). CD1c is variably expressed on Langerhans cells, 

whereas high yields of CD1b
+
 cells are especially found among dermal and migrating 

Langerhans cells (Bell et al., 1999). GM-CSF, TNFα, IL-6 and IL-1β induce the expression of 

CD1a (Athanasas-Platsis et al., 1995). CD1a molecules are not only found on DC, but also on 
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cortical thymocytes, and disappear at later stages of T-cell maturation (Bell et al., 1999). In 

some malignancies, CD1
+ 

cells also play an important role in the initiation of immune 

response (La et al., 2004). 

CD83 is one of the most important antigens to identify mature DC and not detectable on other 

APC like immature DC, resting B-lymphocytes or monocytes (Hirano et al., 2006). DC which 

express CD83 are mainly found within T-lymphocyte areas of lymphoid organs and express 

high levels of MHC II molecules (Bell et al., 1999). It is known that CD83 is essential for 

antigen presentation and for the stimulation of antigen-specific T-cells, especially CD8
+
 T-

cells: in vitro studies could show that CD83L is induced both on CD4
+
 and CD8

+
 T-

lymphocytes by CD28-mediated costimulation. Engagement with CD83 supports the 

expansion of newly primed naïve T-cells, enhances in vitro generation of CTL and enables 

long-term-survival of antigen-specific T-cell cultures (Hirano et al., 2006). Various cellular 

signals, including cytokines (e.g. TNF ), and other agents like bacterial lipopolysaccharide 

(LPS) and monocyte-conditioned
 
medium (MCM) have been shown to lead to high

 
levels of 

CD83 expression on cultured DC (Mosca et al., 2000).  

One way of DC to capture antigens is mediated via the mannose receptor CD206 (Sallusto et 

al., 1995). Antigen-uptake by DC via CD206 results in an amplified (about 100fold) antigen-

presentation and thus a more efficient activation of T-cells, as compared to antigens that are 

internalized via fluid phase (Engering et al., 1997). Expression of CD206 has been regarded a 

differentiation hallmark of immature dendritic cells, whereas other APC like monocytes and 

mature dendritic cells normally do not express CD206 (Wollenberg et al., 2002).  

CD25 is expressed on DC-precursors, immature and mature DC (Cella et al., 1997;von 

Bergwelt-Baildon et al., 2006). Besides, CD25 is found on T-cells (Cools et al., 2007) and on 

specialized, antigen-presenting B-cells (Brisslert et al., 2006).  

CD137L is a member of the TNF superfamily and is involved in the determination of cell 

proliferation, differentiation and apoptosis (Locksley et al., 2001;Salih et al., 2004). 

Interaction of CD137L with CD137, which is expressed on activated NK-cells, T-cells and 

DC, induces T-cell activation (Cheuk et al., 2004;Mittler et al., 2004;Sica and Chen, 1999). 

CD137L is expressed on several types of APC and can be induced on T-cells. Aberrant 

expression has been reported on leukemic cells, carcinoma and lymphoma (Hentschel et al., 

2006). 
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Table 7: DC surface phenotype (Fong and Engleman, 2000).  

 DC 

precur-

sors 

Langer-

hans cells 

activated 

DC 

monocyte-

derived 

DC 

monocytes activated 

B-cells 

MHC 

Class I 

Class II 

 

+ 

+ 

 

+ 

++ 

 

+ 

+++ 

 

+ 

++ 

 

+ 

+ 

 

++ 

++ 

myeloid 

markers 

CD14 

CD33 

 

- 

+ 

 

- 

+ 

 

- 

+ 

 

- 

+ 

 

+ 

+/- 

 

+/- 

- 

costimulatory 

molecules 

      

      CD80 

CD86 

CD40 

        - 

+ 

+/- 

        + 

+ 

+ 

       ++ 

+++ 

+ 

        + 

+ 

+ 

         - 

+ 

+ 

       ++ 

++ 

++ 

antigen 

receptors 
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Maturation of DC is associated with upregulation of the surface markers CD80, CD86 and 

CD40 (Banchereau et al., 2000). They are important costimulatory molecules which constitute 

T-cell activation (Bell et al., 1999;Nicod et al., 2005;Rogers et al., 2005). Interaction between 

CD28 on T-cells and CD86 and CD80 influences T-cell regulation: CD28-CD80 interaction 

skews towards type 1 responses, whereas CD28-CD86 interaction orientates towards type 2 

responses (Bell et al., 1999). CD86 seems to be the most critical factor for amplification of T-

cell responses (Banchereau et al., 2000). 

CD40 ligand (CD40L) is expressed on activated T-cells, basophils, B-cells, and DC. CD40-

CD40L-interaction is not only a one-way interaction for activating T-cells, but also the most 

effective stimulus for DC maturation (i.e., upregulation of CD80 and CD86). Besides, 

engagement with CD40L increases viability of DC (Bell et al., 1999). After CD40-CD40L 

interaction, DC release large amounts of cytokines like IL1, TNFα, chemokines and IL-12, 

which is important for the enhancement of T-cell-responses (Bell et al., 1999;Cella et al., 

1996;Sasaki et al., 2005).  

Expression profiles of DCA might be different on artificially generated DC. E.g. it has been 

shown that antigens typically expressed on DC (e.g. CD1a, CD83) are expressed to a lower 

degree on artificially generated DC (Pietschmann et al., 2000). Moreover, leukemic cells can 

show aberrant expression of DCA. Therefore a refined strategy has to be applied to quantify 

DC and especially leukemia-derived DC in individual cases by selection and combination of 

suitable DC with leukemic antigen markers (Schmetzer et al., 2007).  

 

 

2.4.3 Current options of DC-based immunotherapy in cancer patients 

DC are the most potent antigen-presenting cells (APC) of the immune system and important 

players in immune response against neoplastic cells (den Brok et al., 2005). This fact has 

moved DC-based immunotherapy to the center stage in active immunotherapy (Bocchia et al., 

2000;Mashino et al., 2002). Since the first clinical trial of DC vaccination has been published 

in 1996 (Hsu et al., 1996), more than 100 studies reported about more than 1000 DC-based 

vaccination trials in different types of solid tumors (e.g. malignant melanoma, prostate cancer, 

colorectal carcinoma) (Lodge et al., 2000;Mackensen et al., 2000b) and hematologic 
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malignancies (e.g. multiple myeloma) (Nestle et al., 1998;Ridgway, 2003;Satthaporn and 

Eremin, 2001).  

DC vaccines can either be prepared by pulsing DCs with tumor lysates or TAA (Mackensen et 

al., 2000b), by transfection with tumor DNA (Bocchia et al., 2000), or by creating tumor 

cell/DC fusions (Koido et al., 2008). Pilot DC vaccination studies showed specific anticancer 

responses and, in about 50% of trials, clinical responses (Fong and Engleman, 2000;Nestle et 

al., 2001;Ridgway, 2003).  

In contrast to solid tumors, a big advantage in DC-based immunotherapy of AML is that 

leukemia derived DC (DCleu) can be generated in vitro by converting leukemic cells directly 

to mature APC giving rise to leukemic cells coexpressing DC-typical antigens (Schmetzer et 

al., 2007). It has already been demonstrated that DC can be generated successfully in vitro 

from CD14
+
 monocytes or from CD34

+
 progenitor cells or leukemic cells, e.g. in the presence 

of cytokines (Lee et al., 2002;Westers et al., 2003;Woiciechowsky et al., 2001), Calcium-

ionophores (Houtenbos et al., 2003), nucleic acid fragments (Rouas et al., 2004) or bacterial 

lysates (Sato et al., 2003) with different mechanisms of inducing DC differentiation. The 

addition of Flt-ligand increases the harvest of DC (Kufner et al., 2005b;Woiciechowsky et al., 

2001). The use of fetal calf serum (FCS)-free media for DC-generation should be preferred to 

avoid immune reactions against FCS-peptide-associated, xenogeneic antigens or anaphylactic 

reactions (Mackensen et al., 2000a).  

Clinical trials on DC-based vaccination in patients with hematologic disorders are still in early 

stages, however, some recently published in vivo studies on DC vaccination in leukemia 

showed promising results (Reichardt and Brossart, 2005). First results of Phase I/II clinical 

trials vaccination with autologous DC in AML patients showed that vaccinations with DC are 

feasible and safe, although not regularly clinically effective. It could be demonstrated that 

concentrations of leukemic RNA can decrease and T-cell responses can be boosted after 

vaccination with autologous DC in many cases. However, regulatory or inhibitory effects may 

be limiting in some cases (Houtenbos et al., 2006;Roddie et al., 2006). In MDS, in vitro DC-

generation studies could show that DC can be generated as effectively as in AML patients 

(Kufner et al., 2005a). 
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DC-based vaccination provides a promising approach to cancer immunotherapy, however, 

there is still much debate about DC preparation, antigen loading, dosing, injection sites and 

monitoring of immune and clinical responses (Nestle et al., 2001;Ridgway, 2003). 

 

 

2.5 Aim of this thesis 

Due to persistence of MRD in about 80% of AML patients, long-time survival of AML 

patients is limited (5-year overall survival 20-25%) (Houtenbos et al., 2006;Li et al., 

2003;Venditti et al., 2000). As the median age of MDS patients is rather high, allogenic SCT 

is available only for a minority of these patients, and treatment options are mainly supportive 

(Hofmann and Koeffler, 2005;List, 2002). Thus, the achievement of long-term remission stays 

the central therapeutic challenge in most AML and MDS patients. New immunotherapeutic 

strategies, especially anti-tumor vaccination, are promising tools to improve long-term 

remission. DC play a central role in anti-tumor response and are regarded as interesting 

candidates for anti-tumor or anti-leukemic vaccination (Sallusto and Lanzavecchia, 2002). 

However, results of several in vitro studies showed that the differentiation from leukemic 

blasts to APC is not successful in 30-70% of cases (Kufner et al., 2005a;Roddie et al., 

2006;Roddie et al., 2002;Westers et al., 2003). 

The aims of this thesis were: 

1. the evaluation of DCA expression profiles on uncultured, naive AML and MDS MNC; 

2. the generation, quantification and characterization of DC from AML and MDS MNC 

with special regard to the variety of DCA expression after culture; 

3. to develop a strategy to find suitable DCA (in combination with blast markers) to detect 

and quantify leukemia-derived DC after culture; 

4. the comparison of efficacies (or failure rated) of different culture systems to generate DC 

in different subtypes of AML applying DCA/blast marker expression profiles; 

5. the evaluation of a DC generation and quantification strategy applying different DC-

generating media in combination with DCA/blast marker expression profiles in every 

given patient. 
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All in all, this thesis should contribute to the further optimization of DC-generating studies 

with regard to future in vivo studies to improve treatment options for AML and MDS patients.
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3 Material and Methods 

3.1 Characteristics of AML and MDS patients 

For this study, samples from 137 AML patients and 49 MDS patients in active stages of 

disease and 43 healthy donors were collected after obtaining informed consent. Most of these 

patients had been diagnosed and treated in the course of clinical studies. In addition, DC were 

generated from three AML cell lines: Kazumi and HL60, both AML-M2, and MUTZ-3 

(AML-M4) (Table 8a-c). 

 

Table 8: Characteristics of patients with AML (a) and MDS (b) and AML cell lines (c).  

(a) AML patients (n=137) 

pat.

no. 

sex dgn stage age 

at 

dgn 

clonal markers cytoge-

netic 

risk 

ic 

blasts* 

blast phenotype (CD) 

2 m pM1 fd 69 - i 94 117,33,13,64 

6 f pM1 rel 67 - - 79 13,33,117,34,56 

7 m pM2 pers 59 normal i 62 13,33,65,117 

8 f pM2 fd 43 t(2;3)(pq) i 94 13,33,34,117,2,65,15 

9 m pM0 rel 60 normal - 17 33,Dr 

10 f pM4eo fd 37 inv(16pq),del(7q) f 43 13,33,117,34,Dr 

11 f sM5a fd 57 +8,+13,+20,t(9;11)(pq23

),inv(17pq) 

p 74 7.1,13,33,86,Dr,15,56,64 

12 m sM4 pers 76 +8,+9,+14 p 91 7,13,33,Dr,14,64,34 

17 w pM1 fd 73 normal i 89 33,13,Dr 

18 m pM5b rel 80 normal - 40 33,13,64,34 

20 m pM4eo fd 57 inv(16pq) f 81 117,33,34,13,Dr 

22 m pM2 fd 59 t(8;21) f 21 33,34,13 

23 f pM5 fd 53 t(11;22)(qq) p 37 - 

25 m pM0 fd 61 normal i 39 33,13,34,7,117 

29 m pM4 fd 56 normal i 31 14,15,33,64,Dr 

33 m sM2 pers 54 t(3;18)(qq),ins(4;9)(q?),t

(4;19)(p?),-

5,t(7;11)(qq),+9,del(9q),

t(9;12)(pq),t(5;10)(?p),-

11,t(5;14)(?p),del(17p),-

18,-19,-20 

p 91 7,13,33,34,56,117 

36 f pM4 fd 41 t(11;16)(pp) i 45 13,33 

37 m sM2 fd 67 - - 80 33,117 

38 f pM1 fd 75 - - 59 7,13,34,117,Dr 

41 m pM5 rel 43 normal - 48 4,15,33,56,64,65,Dr 

43 f pM3 fd 29 t(15;17),del(7qq) f 58 13,33,64,Dr 

44 m pM5 fd 37 normal i 46 15,33,56,64,Dr 

46 f pM4eo fd 33 normal i 75 4,15,33,56,64,Dr 

48 m pM4eo fd 40 normal i 88 13,15,33,34,65,Dr 

49 f sM2 fd 55 normal i 49 2,33,34 

50 f pM0 fd 72 - - 10 4,10,13,14,33,117,Dr 

51 f sM6 pers 31 -7 p 48 34 

53 m pM1 fd 24 normal i 87 4,13,33,117,Dr 

54 m sM6 pers 60 ins(5;17),del(5q),t(6;17) p 11 33,34 

56 m pM2 fd 36 normal i 38 13,33,117,Dr 

60 f pM3 fd 56 t(15;17) f 87 13,33,64,Dr- 

61 f pM0 fd 68 normal i 4 13,33,34,117 

64 m pM4eo fd 69 inv(16pq) f 25 13,14,33 
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65 f sM5 fd 74 r(1pq) i 79 15,33,64,65 

66 m sM2 fd 74 normal i 85 13,14,33,64,116,Dr 

89 m sM2 fd 67 - - 30 13,33,34,117,Dr 

92 m pM0 fd 73 - - 5 34,38,117 

93 f pM4 fd 52 normal i 52 13,33,64,117,Dr 

104 f pM2 fd 20 t(3;5)(qq) i 33 15,33,123 

107  pM5 fd 48 normal i 73 13,14,15,33,64 

121 f pM1 fd 69 normal i 40 13,117 

126 m pM2 fd 37 t(8;21)(qq) f 86 13,33 

130 m pM0 fd 53 t(9;18)(pq) i 76 2,7,13,15,33,65,117 

131  pM4 fd 56 +4,+9etc p 30 33,34,38 

135 f pM4 fd 26 normal i 52 13,33,34,38,MPO 

136 m pM1 fd 29 normal i 62 13,33,117 

137 f pM1 pers 68 normal i 69 13,33,MPO 

138 m sM4 fd 61 -7 p 36 13,14,15,33,34,65 

140 f pM2 fd 82 normal i 42 13,33,MPO 

143  pM2 fd 75 normal i 50 13,33 

146  pM5 fd 68 - - 84 33,34 

148 m pM1 rel 55 normal i 95 33,123 

153  pM0 fd 61 normal i 80 13,33 

161 m pM1 fd 50 normal i 90 4,13,33,117 

166 m pM1 fd 60 del(3pp) i 66 4,13,33,34,65 

168  pM0 fd 70 - - 8 7,13,33 

172 m sM2 fd 75 - - 75 13,15,33,117 

175 f sM1 fd 69 normal i 90 4,13,14,15,33,64,65 

176 m pM2 fd 58 normal i 79 13,33,117,135 

181 m sAML rel 63 t(3;6)(qq),-

7,del(16q),t(5;17)qq,t(6;

10)(qp) 

- 92 34,33,13 

182 f pM2 fd 51 normal i 18 7,33,34 

184 m pM4 fd 64 normal i 71 - 

188 f pM1 fd 40 normal i 96 56,123 

189 f pM1 fd 31 normal i 22 13,33,117,65,15,7,2,c3 

191 m sM2 fd 72 +8 i 12 34,33,117 

195 m pM0 rel 53 normal i 21 34 

196 f pM5 fd 67 - - 91 64,33,13,4,15 

197 f pM5 fd 59 t(9;11)(q21;q23) p 86 64,15,65,33,13 

198 m sM1 fd 68 +8 i 67 33,65,56,15,64 

200 f pM2 fd 32 normal i 23 117,13,33,65 

201 m pM5 fd 47 normal i 93 - 

202 m pM0 fd 62 +8 i 95 13,33,117,64,7 

205 m pM2 fd 38 t(8;21) f 85 13,33,34 

207 m pM4 fd 63 +11,inv11(pq13) i 61 33,65,14,4,56,135 

210 f pM2 fd 75 normal i 6 - 

211 m M0 pers 52 inv3,-7 p 84 33,34,13,117,4,7 

214 f pM1 fd 70 normal i 64 33,13,15,40 

229  pM2 fd 54 add(12p) i 70 33,13,34,7 

232  M2 fd - normal - 94 - 

236  sM0 rel 70 - - 22 33,13,117,7 

238 f pM1 fd 72 - - 53 13,33,117,34 

239 f sM4 rel 54 t(9;11)(q21;q23) - 49 13,33,117,135 

243  sAML - 64 - - - - 

244  pM2 rel 44 t(8;21)(q24;q22) f 26 33,13,117 

245  pM0 fd 54 - - 22 34,13,7,117,65 

248  AML - 71 - - 81 33,13 

249  AML - 41 - - - 13,34,33,117 

253  M3 fd 26 t(15;17) f 85 33,Dr- 

254  M1 fd 50 normal i 34 33,13,117 

256  AML - 67 - - 75 13,34,33,117 

258  M1 fd 81 - - 70 56,33,15,64,4 

259  M4 rel 57 -X i 95 15,33,64,4 

260  M2 rel 30 - - - 15,34,33,65,13 

261  M1 -  - - - - 

262  M2 fd 61 - - 85 33,13,65,15,117,34 



31 

 

264  sM3 fd 61 - - - 33,65,64,117,34,56,4 

265  sM5 fd 61 - - 64 33,13,64 

269  sM2 - 66 - - - 33,13,117,34,4 

270  sM4 fd 63 - - 80 65,15,56,64 

272  sAML fd 65 - - 49 33,65,64,15 

273  M5 fd 34 - - - 65,33,64,15,56,4 

275  M1 fd 37 - - 90 33,15,65,64,4 

280  AML rel 62 - - 68 13,33,65,15,34,117,4 

285  M2 fd 40 - - - - 

291  M1 - 82 - - - - 

293  M1 - 71 - - - - 

292  M1 - 67 - - - - 

295  M1 fd 46 - i 70 - 

298  pM2 rel 52 - - 90 - 

300  M2 fd 84 normal i 85 13,33,65,15 

301  M0 rel 51 del(2p),+11,+10,+10,+1

3,+13,+14,+21,+21,+22,

+22,t(7;10)q,t(2;10)p,t(1

3;16),del(16q) 

- 82 - 

305  M2 pers 62 Y,t(8;21),t(2;6)(qq),t(3;1

1)(pq23),t(7;9;15) 

f 50 7.1 

307  M1 fd 36 - - 95 13,33,64,117 

309  M2 rel - - - - 13,33,34,117 

311  M2 fd 48 +8,t(8;21) f - 33,15,13,65,34,19 

312  sM4 fd 72 normal i - 33,54,65,15,34 

313  M2 rel 35 +21,+21,+21 i - 7,33,34 

315  M4 fd 66 normal i 14 13,33,7,15 

317  M2 fd 29 -Y,ins(21;8)qq f - 56,13,33,15,117,34 

318  M0 fd 64 +13,-7 p - 13,33,65,15,4,34,117 

320  M4 fd 44 normal i - 33,13,65,14,64,15,4 

321  M2 rel 56 normal - 34 13,33,117,65 

322  sM2 fd 59 -3,-7,+10,-16,-

18,del(5q),t(6;17)(pq);t(

3;12)pq,i(8q),t(3;10)ßq,i

(11q),t(3;6)(?p) 

p 80 13,33,34,65 

323  sM0 fd 59 Inv(9pq) i 30 33,13,34 

324  M4 fd 64 - - 95 33,65,13,15,4,56,117 

325  pM2 fd 63 normal - 95 33,13,64,117 

328  sM2 rel 59 del(5qq),+8 - 65 34,33,13,117 

330  M4 fd 72 - - 90 56,33,65,13,15,14 

331  pM4 fd 41 - - 71 34,33,13,117,19,5,2 

332  pM2 fd 65 del(5qq) i - - 

336  pM3 fd 70  f 60 33,14,Dr 

344  M5 fd - +21 i 81 15,13,33 

347  sM5 fd - t(9;11)(pq23) p 94 - 

348  M1 fd - normal i - 13,33,14,117,34 

351  M5 fd - - - 95 33,65,15,64,7,117 

352  sM2 rel - normal - 34 - 

353  sM2 fd - normal i 85 117,33,13,15 
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(b) MDS patients (n=49) 

 
5 m RAEB pers 66 - - 12 34, 117 

15 m RAEB pers 49 normal f 10 34, 117 

16 w MDS pers 70 del(5q) f 2 34, 117 

19 f RAEB fd 73 t(3;5)(pq) i 11 117,33 

26 m RAEBt fd 63 normal i 17 15 

27 m RAEBt fd 51 normal i 25 33,7,117,34 

30 f RAEB pers 78 - - 4 33,34 

40 f RAEB fd 77 - - 2 34, 117 

52 m RAS fd 60 - - 4 34, 117 

57 f CMML fd 67 - - 23 13,33,34,117,Dr 

63  RAEBt fd 51 normal f 30 13,34,117 

67  RAEBt fd 71 - - 25 33,13,64,15 

69 m RAEB fd 51 t(2;10)(qp),-9,der(16q) p 15 33,34 

70 m RAEB fd 53 dic(5;17)(qp),+8,t(19;20

)(qp),-

20,+22,t(11;14)(?p) 

p 15 13,14,33 

75 f CMML fd 67 -21 i 15 13,117 

77 m RAEBt fd 67 normal f 25 13,33 

78 f RA fd 39 del(5q) f - 34, 117 

83 m RA pers 68 normal f 15 34, 117 

84 f RAS pers 43 +19 i 4 117 

88 m MDS fd 70 - - 3 34, 117 

96 m RAEB fd 60 normal f 15 34, 117 

97 m RA fd 76 normal f 2 34, 117 

99 m RAEB fd 76 normal f 11 34, 117 

102 m RAEB fd 67 XXYY i 10 34, 117 

110 f RAEB fd 77 normal f 9 34, 117 

123 f RAEB fd 62 - - 18 34, 117 

127 f RAEB fd 63 der(5;17)(qq),-

7,del(9q),t(9;12)(qq) 

p 3 34, 117 

129 f RA fd 49 normal f 3 34, 117 

133 f RAEBt fd 68 del(5q) f 21 33,34 

134 f RA pers 78 del(5q) f 8 33,34 

141 f RAEBt fd 63 i(17q) i 24 33 

145 m RA fd 76 normal f 3 34, 117 

158 f RAEBt fd 74 - - 21 34, 117 

160 m RAEBt fd 65 normal f 20 13,33,64,65 

169  RAEBt fd 74 - - 21 34 

179 m RAEBt fd 82 +1,+2,+4,+8,+9,+14,-

16,+19,t(8;11)(pq),dic(q

;11)(qp);t(9;19)(?q) 

p 15 34, 117 

190 m RAEB fd 68 -y f 12 34 

208 f RAEB fd 83 normal f 21 34, 117 

213  RAEBt/

NHL 

fd 40 normal f 22 34, 117 

215 f RAEB fd 45 normal f 2 117,34,33 

223 m RAEB fd 75 - - 15 34, 117 

225 m RAEBt fd 80 - - 7 34, 117 

227 w RAEBt fd 51 - - 6 117,33,13,7 

234 m RAEB fd 54 normal i 18 117,34 

257  MDS - 67 - - - 34, 117 

277  RA pers 66 - - 5 34, 117 

288  MDS fd 52 - - - 33,13,15,64 

302  RAEB fd 40 inv(1pq),inv(3qq) p 14 34, 117 

319  RAEBt pers 53 - - 29 13,65,15,3364,117 
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(c) AML cell lines 

name FAB type clonal markers blast phenotype 

HL 60 pM2 -X,-8,-16,-17,+18,+22,ins(1;8)(p?;q), 

t(5;17)(q;q),del(9)p(13)t(9;14)  

(q;q),t(9;14)(q ;q),t(16;17)(q;q), sideline 

with:-2,-5,-15,del11(q;q) 

13, 15, 34, 65 

Kasumi pM2 -9,-13,-16,t(8;21)(q;q),t(9;?)(p22;?) 

t(?9)(p22;?)t(?9;15)(p;q) 

4, 13, 33, 34 

Mutz-3 pM4 t(1;3)(q;q),inv(3)(q;q),t(2;7)(q;q), 

inv(7)(p;q),t(12;22)(p;q) 

4, 13, 33, 34 

pat.no. patient number. m male. f female.  dgn diagnosis. pM0 primary AML FAB type M0. sAML secondary 

AML no FAB type available. stage stage of disease. fd first diagnosis. rel relapse. pers persisting disease. – no 

data available. f favorable cytogenetic risk. i intermediate cytogenetic risk. p poor cytogenetic risk.  CD cluster 

of differentiation. * % of blasts found in the analyzed material (bone marrow or peripheral blood) by FACS 

analysis, alternatively % of CD34+cells in MDS cases. 

 

Diagnostic reports like morphology, cytochemistry, karyotype, immunophenotype and 

classification to cytogenetic risk groups were provided by the leukemia diagnostics 

laboratories of the Med III, University Hospital Großhadern, Munich, and the university 

hospitals of Berlin, Oldenburg and Ulm. Most of cell preparations (MNC, T-cells) and 

combined cell testings were performed by other members of our group. Many of the specified 

FACS-analyses and the complete statistical evaluation were performed by me. Results of 

functional assays (MLC and cytotoxicity assays) were provided for analyses for this thesis by 

other members of our group. 

99 AML patients studied presented at first diagnosis, 8 in persisting disease and 19 at relapse. 

In the cohort of MDS patients, 40 presented at first diagnosis and 9 in persisting disease. The 

median age of the AML-Patients was 56 years (range 20 - 84 years), the female:male ratio 

was 0.8. The median age of the MDS-patients was 64 years (range 39 – 83 years), the 

female:male ratio was 0.9.  

Diagnosis of AML and MDS cases was based on FAB classification (Bennett and Komrokji, 

2005;Hayhoe, 1988) as described in 2.2.1. 33 AML presented with minimally differentiated 

leukemia (M0: n=16, M1: n=27), 41 with acute myeloblastic leukemia with granulocytic 

maturation (M2) and 5 with promyelocytic leukemia (M3). 39 AML patients had been 

diagnosed with monocytoid leukemia (M4: n= 18, M4eo: n= 5, M5: n=16) and 2 with acute 

erythroid leukemia (M6). Primary leukemia (pAML) was found in 69 cases, secondary 

leukemia (sAML) in 31 cases (primary or secondary AML not defined in 37 cases). 7 MDS 

patients had been diagnosed with refractory anemia (RA), 2 with refractory anemia with 
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ringed sideroblasts (RAS) and 19 with a refractory anemia with excess of blasts (RAEB). 15 

MDS patients presented with refractory anemia with excess of blasts in transformation 

(RAEBt) and 2 with chronic myelomonocytoid leukemia (CMML). No FAB type was 

available for 7 AML and 4 MDS patients. 

Cytogenetic analyses were performed according to standard protocols and criteria defined by 

the International System for Human Cytogenetic Nomenclature (Mitelman, 1995) (see 3.4). 

14 of 137 AML patients were categorized as favorable cytogenetic risk, 59 patients as 

intermediate risk and 13 patients as poor cytogenetic risk. 19 MDS patients were categorized 

as favorable cytogenetic risk, 8 patients as intermediate and 5 patients as poor cytogenetic 

risk. No cytogenetic risk group was available for 51 AML and 17 MDS patients. 

 

3.2 Experimental processing of AML, MDS and healthy samples 

Bone marrow (BM) was obtained after informed consent by iliac crest puncture. Blood 

samples were taken by puncture of peripheral veins (PB). Anticoagulation of samples was 

carried out with heparin or ethylendiamintetraacetic acid (EDTA) (see 3.3). For morphologic 

and cytochemical diagnostic evaluation, PB or BMs smears were prepared and samples 

classified according to FAB classification criteria (see 3.4). For remaining analyses, 

mononuclear cells (MNC) were separated from whole blood samples by density gradient 

centrifugation (Böyum, 1984) using Ficoll-Hypaque, then washed and suspended in 

phosphate buffered saline (PBS) without Ca
2+

 and Mg
2+

 (both Biochrom, Berlin, Germany).  

Separated MNC fractions that were not processed at the same day were stored at +4 °C 

overnight. For some analyses we used MNC that had been defrosted after cryoconservation 

with nitrogen at -196 °C (Fliedner et al., 1977).  

 

3.3 Cytogenetic analysis of AML and MDS samples 

Cytogenetic analyses were performed in the diagnostic laboratories according to standard 

protocols (Schmetzer et al., 1997;Schoch et al., 1997) and criteria defined by the International 

System for Human Cytogenetic Nomenclature (Mitelman, 1995). Patients were categorized in 

cytogenetic risk groups as described in chapter 2.2.3 (Greenberg et al., 1997;Haferlach et al., 

2003). Favorable risk‟ AML-patients had presented with a t(8;21), t(15;17), inv(16), t(16;16); 
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„poor risk‟ AML-patients with -5/5q-, -7/7q-, t(11q23), inv(3), t(3;3), 17p abnormalities or a 

complex aberrant karyotype (≥3 abnormalities); „intermediate risk‟ AML-patients had 

presented with a normal karyotype or with any of the remaining aberrations. „Favorable risk‟ 

MDS-patients had presented with a normal karyotype, a del(5q) only, a del(20q) only or a –Y 

only; „poor risk‟ MDS-patients had presented with -7/7q aberrations or a complex aberrant 

karyotype; „intermediate risk‟ patients were MDS-patients with any remaining aberration. 

 

 

3.4 Generation of DC from MNC fractions with 6 different serum-free media 

MNC were separated from AML and MDS samples as described in 3.2. Cell counts were 

quantified and MNC were pipetted in 12-well multi well tissue culture plates in 1ml Xvivo 15 

(Bio Whittaker Europe, Verviers, Belgium) FCS-free medium. DC were generated with six 

DC differentiating media which were chosen according to their different mechanisms to 

induce blast differentiation towards DC (table 9). 

 

3.4.1 Basic Method (standard medium) 

MNC fractions were incubated in „standard‟ medium containing GM-CSF, IL-4, TNFα and 

FLT3-ligand. FLT3-ligand has been shown to act synergistically with other cytokines and 

increases yields of DC after culture (Woiciechowsky et al., 2001). 

2.5x10
6
 MNC/ml were incubated in medium containing 800 U/ml GM-CSF (Sandoz), 500 

U/ml IL-4 (Cell concepts, Umkirch, Germany), 40 ng/ml FLT3-ligand (PromoCell) for 10-12 

days, adding 200 U/ml TNF (Cell concepts) for the last two days (Kufner et al., 

2005a;Woiciechowsky et al., 2001). 

 

3.4.2 MCM Mimic 

This cytokine-based DC-differentiation method is a defined cocktail of recombinant cytokines 

and PGE2 mimicking the components of monocyte-conditioned medium („MCM mimic‟) 

including TNFα, IL-1β, IL-6. PGE2 is known to improve yields of DC, especially mature DC, 

and function of DC, e.g. migration capacity (Lee et al., 2002). 
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2.5x10
6
 MNC/ml were incubated in medium containing 800 U/ml GM-CSF, 500 U/ml IL-4 

and 40 ng/ml FL; the same cytokines were added after 4-5 days again. Half medium exchange 

was performed on day 7 or 8. At this time 150ng/ml IL-6 (Cell concepts), 5 ng/ml IL-1 (Cell 

concepts), 1µg/ml PGE2 (Pfizer, Vienna, Austria) and 5ng/ml TNF were added to the 

medium. Cells were harvested on day 10-12 (Lee et al., 2002;Woiciechowsky et al., 2001). 

 

3.4.3 Picibanil (OK-432) 

OK-432 is a biological response modifier (BRM) derived from the Su strain of Streptococcus 

pyogenes. This bacterial lysate stimulates immature DC towards maturation and can improve 

production of Th-1-type cytokines, e.g. IL-12, especially in combination with PGE2 (Sato et 

al., 2003). 

1-1.25x10
6
 MNC/ml were incubated in medium containing 500 U/ml GM-CSF and 250 U/ml 

IL-4 and in addition OK-432 (Chugai Pharmaceuticals, Kamakura City, Japan). After 7-8 

days in culture, 10µl/ml OK-432 and 1µg/ml PGE2 were added. Cells were harvested after 9 

to 11 days in culture (Sato et al., 2003). 

3.4.4 Cytokines 

MNC fractions were incubated in a medium containing a conventional cocktail of cytokines 

for DC differentiation: GM-CSF, TNFα, IL-3, SCF, FLT3-ligand and IL-4. 

2.5x10
6
 MNC/ml were incubated with a cytokine cocktail containing 250 U/ml GM-CSF, 50 

U/ml TNF, 20 ng/ml IL-3, 50 ng/ml SCF (Cell Concepts) and 50 ng/ml FLT3-ligand. Half 

medium exchange was performed every 3 or 4 days. At day 7, 250 U/ml IL-4 were added. 

Cells were harvested after 13 to 15 days in culture (Westers et al., 2003). 

 

3.4.5 Poly (I:C) 

Poly(I:C) is a synthetically fabricated double-stranded RNA acting through TLR3 expressed 

on DC. Poly(I:C) functions as a „danger signal‟ and induces DC-differentiation with high 

levels of IL-12 (Rouas et al., 2004).  
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 2x10
6
 MNC/ml were added to culture with 800 U/ml GM-CSF and 1000 U/ml IL-4. After 6 

to 7 days, 30 µg/ml poly(I:C) (Sigma-Medizin-Technik) were added, cells were harvested 48 

hours later (Rouas et al., 2004). 

 

3.4.6 Calcium Ionophore (A23187) 

The Calcium Ionophore A23187 is a DC-differentiating substance bypassing the cytokine-

driven DC-differentiation. 

7x10
5
 MNC/ml were incubated in medium containing 375ng/ml A23187 (Sigma-Medizin-

Technik) and 250 U/ml IL-4 for 3-4 days (Houtenbos et al., 2003). 

 

All of the substances used for DC-generation are approved for human treatment.
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Table 9: Survey of 6 different DC-generating methods for AML and MDS  

DC-

generating 

method 

 

DC-differentiation 

stimulating 

substances 

mode of action culture 

time 

references 

„Basic 

Method‟ 

GM-CSF, IL-4, 

TNFα, FLT3-ligand 

differentiation towards DC 

in combination with stem 

cell driven DC 

differentiation 

7-14d Woiciechowsky 

2001 

„MCM-

Mimic‟ 

GM-CSF, IL-4, 

TNFα, IL-1β, IL-6, 

PGE2, FLT3-ligand 

cytokine-based DC-

differentiation, PGE2 

increases CCR7-

expression and improves 

migration 

10-14d Lee 2001 

„Cytokines‟ GM-CSF, TNFα, IL-

4, IL-3, SCF, FLT3-

ligand 

cytokine-based DC-

differentiation via cytokine 

receptor expression on 

leukemic cells 

10-14d Westers 2003 

„Picibanil‟ GM-CSF, TNFα-

lysat from 

Streptococcus 

pyogenes, PGE2 

bacterial lysate and PGE2 

stimulate DC 

differentiation 

7-8d Sato 2003 

„Poly(I:C)‟ GM-CSF, IL-4, 

Poly(I:C) 

double stranded RNA as 

„danger signal‟ induces 

DC differentiation with 

high IL12-release  

8d Rouas 2004 

„Ca-

Ionophore‟ 

IL-4, A23187 bypass of cytokine-driven 

DC differentiation 

2-3d Houtenbos 2003 

 

GM-CSF granulocyte-macrophage colony-stimulating factor. IL interleukin. TNF tumor necrosis factor.  

PGE prostaglandine. SCF stem cell factor. 
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3.5 Flow cytometry 

With regard to the patient‟s initial diagnose and blast phenotype, a basic FACS analysis was 

performed in each case of AML and MDS, which allowed to quantify fractions of B-, T-, NK-

cells and monocytes (Rothe and Schmitz, 1996). In MDS cases, amounts of CD34
+
 cells were 

regularly analyzed to evaluate amounts of undifferentiated cells/blasts (Buchner et al., 

2003;Campana and Behm, 2000).  

Flow cytometric analyses with a panel of mouse monoclonal antibodies (moAbs) directly 

conjugated with fluorescein isothiocyanate (FITC), phycoerythrin (PE), tandem Cy5-PE-

conjugation (PC5) or Allophycocyanin (APC) were performed to evaluate and quantify 

amounts and phenotypes of leukemic cells, B-, T- and NK-cells and DC in the PB/BM 

samples analyzed. To avoid differences in the detection of antigens, we used the same clone 

of antibodies with the same conjugated fluorochrome in each analysis. Antigens which are 

normally expressed in rather low degrees on the cell surface were tested with the strong 

fluorescent fluorochrome PE or PC5. On the other hand, we tested antigens with rather high 

expression rates on cells with the less potent fluorochrome FITC. 

 

Table 10: Flow cytometric analyses with a panel of mouse monoclonal antibodies (moABs) 

directly conjugated with the fluorochromes fluorescein isothiocyanate (FITC), phycoerythrin 

(PE), tandem Cy5-PE-conjugation (PC5) or Allophycocyanin (APC) were performed to 

evaluate amounts and phenotypes of various cell subsets, using moAbs purchased from 

different distributors.  

CD antigen distributor fluorochrome 

CD1a BD, BC, Cal PE, PC5, APC 

CD1b BD FITC 

CD1c Mil PE, PC5, APC 

CD206 BC PE 

CD25 BC FITC, PE 

CD137L Phar FITC, PE 

CD86 Cal, Ser FITC, PE, PC5, APC 

CD80 BD, BC FITC, PE, PC5 
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CD40 Cal, Ser, BC FITC, PE, PC5, APC 

CD14 BC FITC, PC5 

CD83 BC, BD, Cal FITC, PE, PC5, APC 

CD33 BC FITC, PE, PC5, APC 

CD34 BC, Cal FITC, PC5, APC 

CD45 BC APC 

CD56 BC PE, APC 

CD117 BC PC5, APC 

CD13 Cal APC 

CD4 BC APC 

CD11c BC APC 

CD45Ra BC APC 

CD71 BC PE, APC 

CD3 BC FITC, PE, PC5 

CD15 BC PE, PC5 

CD19 BC PE 

CD28 BC FITC 

CD137 BD PE 

CD152 BC PE 

CD154 BD FITC 

CCR7 R&D PE 

CD209 R&D FITC 

HLA-Dr BC FITC, PC5 

CD7.1 BC PE 

 

BC Beckman Coulter. Ser Serotec. BD Becton Dickinson. Phar Pharmingen. Mil Milteny Biotec. Cal Caltag. 
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Antibodies were purchased from Becton Dickinson (Heidelberg, Germany), Immunotec/ 

Beckmann Coulter, Milteny Biotec (Bergisch Gladbach, Germany), Caltag, Serotec 

(Duesseldorf, Germany), R&D and Pharmingen (table 10).  

MNC or cultured cells were suspended in PBS with 20% FCS (Biochrome) and incubated 

with moAbs according to the respective manufacturer‟s instructions. Appropriate isotype 

controls were applied (<3% positive cells were tolerated). At least 5000 events were evaluated 

on a FACS Calibur Flow Cytometer (Becton Dickinson, BD) using Cell Quest data 

acquisition and analysis software (BD). For analysis and quantification of lymphocytes, 

monocytes and leukemic cells before culture, total MNC fractions were gated. CD antigens 

used for quantification of different cell subsets in naïve MNC fractions were CD3 for T-cells, 

CD14 for monocytes and CD19 or CD20 for B-lymphocytes. NK-cells were defined as CD3
-

/CD56
+
 cells. An AML sample was considered as `positive´ for a leukemic surface marker, if 

the percentage of positive events in a gate surrounding blasts, lymphocytes and monocytes 

was more than 20% (Campana and Behm, 2000). Proportions of positive events in defined 

gates compared with the isotype controls were calculated using CellQuest Software (BD). 

Leukemic populations showed typical patterns in the Dot-Plot-picture „Forward-Scatter‟ (y-

axis) versus „Sideward-Scatter‟ (x-axis) analogous to their cellular characteristics like cell size 

and granularity. For counting of cells a special gating strategy was applied (see next chapter). 

 

3.5.1 Quantification and characterization of DC 

3.5.1.1 Special gating strategy 

DC were generated as described, harvested, counted and quantified by FACS analysis. For 

analysis and quantification of DC and especially leukemia-derived DC, a refined gating 

strategy was applied (Schmetzer et al., 2007). This strategy takes into consideration different 

scatter profiles of blasts and DC: DC are characterized by a different fluorescence behavior 

than unconverted blasts. As a consequence, the quantification of DC and remaining leukemic 

blasts is not possible within one analyzing gate (Figure 2a). Therefore, a blast gate (equal to 

the MNC gate on day 0) surrounding blasts, residual lymphocytes and monocytes was defined 

individually in every cases of AML and MDS to characterize remaining cells after culture. 

Using this special gating strategy, a sensitive detection and quantification of non-converted 

blasts, of leukemia-derived DC and of DC without proof of leukemic derivation is possible. 
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Figure 2: Convertibility of blasts to leukemia-derived DC (DCleu) was quantified by FACS 

analysis with a special gating strategy.  

(a) Blast- and DC-marker profiles before and after DC-culture 

Given is schematic presentation of a blast population before (left side) and after conversion to 

DC (right side). Convertibility of blasts to leukemia-derived DC (DCleu) can be demostrated: 

conversion of naïve blasts expressing individual blast antigens (e.g., CD34, CD117) to DC 

can be detected after culture by the gain of DC antigens (e.g. CD80, CD86, CD1a) (right side) 

that had not been expressed on naïve blasts. Using coexpression analyses of blast and DC 

antigens, non-converted blasts (expression of blast markers, no expression of DC markers), 

DCleu (double positive cells expressing blast markers and DC antigens) as well as non-

leukemia-derived DC (single positive cells without the expression of blast markers) can be 

differentiated. 

 

Blast cell population before culture                             Blast/DC populations after culture in DC  

       differentiating media 
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Figure 2 (b) Gating strategy to quantify DC, DCleu and not to DCleu converted blasts 

Given is a schematic presentation of the applied special gating strategy to estimate amounts of 

DC, DCleu and non-converted blasts using an individual blast gate and DC gate: proportions of 

blasts before culture (left side) and of DC, DCleu and not to DCleu converted blasts can be 

estimated by coexpression analyses for blast markers and DC markers. 

 

 

 

a) Gating of cells before culture                        Gating of cells after culture 

b) Ungated cells stained with blast- or DC-markers 

c) Coexpression analyses for blast- and DC-markers and calculation of pos./neg./ 
double-pos. cells 

‚DC‘ 
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Σ blasts = Σ (A‟+D‟)            Σ blasts (not converted to DC) = Σ (A+D) 

Σ DC = Σ (C‟+B‟+F‟+E‟)*           Σ DC = Σ (C+B+F+E) 

* per definition < 7% in ungated setting          Σ DCleu = Σ (B+E)
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Figure 2 (c) Convertibility of blasts to leukemia-derived DC (DCleu) in a case of AML-M2 

Convertibility of blasts to leukemia-derived DC (DCleu): given is one example of 

immunophenotyping in a case of AML-M2, showing typical naïve blast cell populations (left 

side) and blast/DC-populations after culture in DC-differentiating media. The upper column 

shows FSC/SSC projections demonstrating the gain of higher SSC/FSC values of DC (right 

side) compared to blasts. Figures in the middle column demonstrate the (incomplete) 

conversion of CD117+ blasts (left side) to DCleu (right side). Figures in the third column 

demonstrate the gain of CD80-positivity of converted blasts (right side). 

 

 

 

FSC forward-scatter. SSC sideward-scatter. Bla
+
 cells with positive expression rates for blast antigens. DC

-
 cells 

with negative expression rates for DC-antigens. DCleu leukemia-derived DC.
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Figure 2a schematically presents antigen characteristics of the involved cells: naïve blasts are 

characterized by the expression of patient-specific antigens (e.g. CD34, CD56, CD33, CD34) 

(figure 2a upper left). These cells can be presented in a dot plot analysis by their expression of 

blast markers (e.g., CD117), but no expression of DC markers (e.g., CD80) (figure 2a lower 

left). After culture with DC-differentiating methods, varying proportions of non-converted 

blasts can be detected (expression of blast markers, no expression of DC markers), 

characterized by a low sideward scatter (SSC) (figure 2b upper and lower right). Moreover, 

DC without proof of leukemic origin can be detected (expression of DC markers, but no 

coexpression of blast markers), characterized by a high SSC. Leukemia-derived DC (DCleu) 

are characterized by a coexpression of blast markers and DC markers (figure 2a upper and 

lower right). 

Figure 2b schematically presents applied 2-step gating strategy to estimate amounts of DC, 

DCleu and non-converted blasts using an individual blast gate and DC gate: proportions of 

blasts before culture (left side) and of DC, DCleu and not to DCleu converted blasts can be 

estimated by coexpression analysis for blast markers and DC markers: the first gate surrounds 

the blast population characterized by a low FSC/SSC, the second gate surrounds all cells 

outside this gate. Debris and dead cells were excluded from analysis. For both gates, isotype 

controls were applied to separate positive from negative cell fractions in both gates. Positive 

events were quantified separately in each gate and summarized at the end (figure 2b column 

c). By applying coexpression analyses with a patient-specific blast marker and a DC-marker 

that had not been expressed on naïve MNC, a sensitive quantification of non-converted blasts, 

DCleu and of DC without proof of leukemic origin is possible (figure 2b column c): to 

determine cell counts, the results of the two different gates were summed up. Amounts of 

DCleu can be estimated by summing up double-positive cells in both gates that express a blast 

marker and a DC marker after culture (figure 2b column c right side). Amounts of DC after 

culture can be estimated by summing up single positive cells for a DC marker (DC+) in both 

gates (figure 2b column c, right side). 

Figure 2c gives an example of immunophenotyping in a case of AML M2. Our special gating 

strategy was applied using a specific combination of the patients‟ individual blast marker with 

a DC marker that was not expressed on uncultured MNC. Before culture, a blast population 

with a low forward scatter (FSC) and SSC could be detected (figure 2c column A, left side), 
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that was characterized by the expression of CD117 (figure 2c column B, left side), but without 

expression of the DC marker CD80 (figure 2c column C, left side). After DC culture, a shift 

of the initial blast population to a population characterized by a higher FSC and SSC profile 

could be demonstrated (figure 2c column A, right side). By immunophenotype analysis, a cell 

population with a high SSC could be detected, which had gained positivity for the DC marker 

CD80 (figure 2c column C, right side). Staining of cells with the individual blast marker 

CD117 showed CD117-expression on a big proportion of the cell fraction with the high SSC 

(resembling DC with leukemic antigen presentation). However, a cell population expressing 

CD117 with a low SSC could be detected, representing a blast population without conversion 

to DC (figure 2c column B, right side). For the exact quantification of blasts, of DCleu , and 

of blast convertibility to DCleu, we applied our 2-step gating and quantification strategy: the 

first gate surrounds the blast population characterized by a low FSC/SSC (figure 2c column 

A, left side). The second gate surrounds all cells outside this gate (figure 2c column A, right 

side). For both gates, isotype controls were applied to separate positive from negatve cell 

fractions in both gates. Positive events were quantified separately in each gate and 

summarized at the end, as described for figure 2b. This contributes to a refined quantification 

of positive cells, subdivided in blasts, DC without proof of leukemic origin, and DCleu. 

To characterize the blasts‟ convertibility to DCleu as well as proportions of DCleu cells, only 

markers expressed on leukemic cells but not on DC (e.g. CD34, CD117, CD56, CD7, CD65) 

qualified for evaluation (Figure 2b left side, Figure 2c upper left). As described above, 

amounts of converted blasts were determined by counting of cells that expressed a specific 

blast marker and gained a DC marker after culture. In some cases, no specific blast marker 

was available. In those cases (with less than 5% CD14
+
 cells in the naïve MNC fraction as a 

precondition), CD33 or CD13 were used to determine proportions of converted blasts. After 

culture, cells that expressed at least one typical DC surface marker (e.g. CD40, CD80, CD1a, 

CD86) which was not detectable on naïve blasts on day 0 (per definition  < 7%) were 

considered as DC (Schmetzer et al., 2007). In AML cases, DCleu were defined as the 

proportion of DC coexpressing a specific leukemic surface marker (Figure 2b and 2c right 

side). After culture, a specific combination of the patient‟s individual blast markers with DC-

antigens that were not expressed on uncultured MNC allowed the detection and quantification 

of DCleu and of blasts that could not be converted to DCleu (Figure 2b, Figure 2c lower right). 

In MDS cases with >10% CD34
+
 or CD117

+
 cells, those markers were used to evaluate 

proportions of converted blasts. Beside the described quantification of DC, amounts of 
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„optimum of DC‟ (DCopt) were evaluated: for each individual AML and MDS sample, a DCopt 

marker was evaluated, defined as the DC marker with highest expression rates on cultured 

MNC fractions (and without expression on naïve MNC). DCopt describes the amount of cells 

after culture expressing the patients‟ individual DCopt marker. 

Moreover, counts of DC were estimated by microscopical counting of MNC before and after 

culture.  

 

3.5.1.2 Analysis of viability, maturity and migratory capacity of DC 

To evaluate amounts of viable DC after culture, 7-amino actinomycin D (7AAD) staining was 

used, which allows concurrent cell surface staining and a clear distinction between the cell 

subsets: populations of dead (7AAD-bright), apoptotic (7AAD-dim) and viable (7AAD-

negative) cells can be quantified (Philpott et al., 1996). Viable DC were defined as 

DCA
+
/7AAD

-
 cells. Mature DC were characterized by coexpression of a selected DCA and 

CD83 (Bender et al., 1996). The migratory capacity was determined by coexpression of a DC-

marker and CCR7 (Sanchez-Sanchez et al., 2006).  

 

3.5.1.3 Criteria for a successful generation of DC and leukemia-derived DC (DCleu) 

We postulated at least 10% generated DC and in addition 5% of DCleu (DC that coexpressed 

blast markers) in the total cell fraction as „successful‟ DC generation.  

 

3.6 Mixed lymphocyte culture (MLC) 

Positively selected CD3+ T-cells (Milteney Biotech, Bergisch-Gladbach, Germany, 1 x 106 

cells/well) from AML, MDS or healthy MNC fractions were cocultured and primed with 

irradiated (20Gy) AML blast-containing MNC (5 x 104) and in parallel with irradiated DCleu-

containing AML MNC  (5 x 104) in 1 ml RPMI-1640 medium (Biochrom) containing 15% 

human serum (PAA) and IL-2 50 U/ml (Proleukin R5, Chiron). For the T-cell priming with 

DC/DCleu, the whole cell suspension after conversion of blasts to DC was used, resembling a 
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mixture of DCleu, nonconverted blasts, DC without proof of leukemic origin, and residual 

lymphocytes and monocytes. Total DC counts were adjusted to 5x10
4
 DC and T-cell counts 

adjusted to 1x10
6
/well. 

Cells were harvested after 10 days of coculture and 2-fold restimulation with 5x104 irradiated 

DC or 5x104 irradiated blast-containing MNC and supplementation of IL-2 (Kufner et al., 

2005a). Half medium exchange was carried out every 3 to 4 days. 6 days after the last 

restimulation, DC-primed T-cells (T
*DC

) or blast-containing MNC-primed T-cells (T
*MNC

) 

were harvested. By comparing the expression profiles of DC-ligands like CD28, CD137 or 

CD154 on T-cells before and after contact with DC, and by evaluating the proliferation 

activity of T-cells, the capability of leukemia-derived DC to activate T-cells was analyzed. T-

cell proliferation was calculated by quantification of CD71- and CD28-coexpressing T-cells 

before and after DC-contact (Nguyen et al., 2003). Results of MLC and fluorolysis assays 

were provided for my analysis by other members of our group. 

 

3.7 Cytotoxicity (fluorolysis) assay  

The lytic activity of effector T-cells was measured by a Fluorolysis assay through counting 

viable target-cells, labelled with specific fluorochrome-antibodies, before and after effector-

cell (E) contact. DC- or blast-containing MNC-primed donor-T-cells obtained from AML and 

MDS patients were cocultured in 1.5 ml Eppendorf tubes with blast-containing MNC as 

target-cells (T). The E:T ratio was adjusted to 1:1 and cells were incubated overnight at 37°C 

and 5% CO2. Before culture, blast-containing MNC-target cells were stained for 15 minutes 

with two FITC- and/or PE conjugated `blast` specific antibodies and cocultured for 3 hours 

with effector cells (T-cells or DC as target cells were stained with T-/DC-specific antibodies). 

As a control, target- and effector-cells were cultured separately and afterwards mingled with 

T-cells. To evaluate amounts of viable (7AAD-) target cells and to quantify the cell-loss after  

24 h incubation, cells were harvested, washed in PBS and resuspended in a FACS flow 

solution containing 7AAD (BD, Biosciences Pharmingen) and a defined number of 

Fluorosphere beads (Becton Dickinson, Heidelberg, Germany). Viable cells were gated in a 

SSC/7AAD-gate. Afterwards, viable cells coexpressing specific blast markers were 

quantified, taking into account defined counts of calibration beads as described. Cells were 

analyzed in a FACS Calibur Flow Cytometer using CELL Quest software (Becton Dickinson, 
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Heidelberg, Germany). The percentage of lysis was defined as the difference between 

proportions of viable blasts before and after effector-cell contact (Kienzle et al., 2002;Kufner 

et al., 2005a).  

 

3.8 Statistical methods 

Mean and standard deviation, median and range, two-tailed t-test as well as variance analysis 

were performed with a personal computer using Microsoft 
®
 Excel 2003 and 2007, WinStat 

for MS Excel and SPSS
®
 Statistics 17 software. Differences were considered as significant, if 

the p-value was  0.05. 
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4 Results 

4.1 Characterization of MNC fractions obtained from AML, MDS and healthy probands 

before culture 

4.1.1 Cell subsets in MNC fractions before culture 

To evaluate cell counts of monocytes, B-cells, NK-cells and blasts in AML, MDS and healthy 

MNC fractions, 137 AML, 49 MDS and 43 healthy samples were analyzed via flow 

cytometry before DC culture. On average, AML samples presented with 6 (±9)% B-cells, 8 

(±9)% T-cells, 4 (±6)% NK-cells, 12% monocytes and 58(±16)% blasts (figure 3); in MDS 

samples, 5 (±6)% B-cells, 11 (±10)% T-cells, 5 (±7)% NK-cells, 10 (±11)% monocytes and 7 

(±7)% blasts could be detected (figure 3). In MNC fractions obtained from healthy probands 

(n=43), on average 7% B-cells could be detected (NK-cells not available) (data not shown). 

Average counts of T-cells (37%) and monocytes (31%) were significantly higher compared to 

AML and MDS samples (p < 0.05). 

 

Figure 3:  Different cell subsets were evaluated in 137 uncultured AML and 49 uncultured 

MDS MNC fractions: amounts of B-cells (CD19
+
, CD20

+
), T-cells (CD3

+
), NK-cells 

(CD56
+
), monocytes (CD14

+
) and blasts (specific blast markers), given are average results 

(mean ± standard deviation).  
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4.1.2 DCA are regularly expressed on uncultured AML and MDS MNC fractions with 

variations in subtypes  

   Expression of DCA on individual AML and MDS samples before culture was analyzed 

(figure 4). On average, 4% (CD1c) to 29% (CD40) DCA
+
 cells in AML, 2% (CD1a and 

CD25) to 26% (CD40) DCA
+
 cells in MDS samples (figure 4) and 3% (CD83) to 43% 

(CD40) DCA
+
 cells in healthy samples (data not shown) could be detected in uncultured 

MNC fractions.  

   Different DCA are expressed in varying degrees on uncultured MNC fractions. Highest 

average expression rates could be demonstrated for CD40 on uncultured AML and MDS 

samples (29±27% and 26±14%). High average expression rates were also found for CD86 

(23±21% in AML, 13±15% in MDS samples) and CD137L in MDS samples (16±18%). All 

groups presented with low expression rates especially for CD1a (2-7%), CD1c (4-5%), CD83 

(3-5%) and CD80 (4%). However, no significant differences between expression rates of 

different DCA were found (AML: p = 0.95; MDS: p = 0.81) 

   

   Figure 4: Proportions of 10 different DCA were analyzed in 137 uncultured AML and 49 

MDS MNC fractions. Given is the average (± standard deviation) of DCA
+
 cells in the total 

cell fraction. 

 

    
     DCA+ DC-antigen-positive cells. No bar shown: no data available. 
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As already described in the „Materials and Methods‟ section, DCA only qualify to be used for 

detecting leukemia-derived DC after culture if they are not expressed on uncultured MNC 

fractions (per definition < 7% DCA
+
 cells). Thus, not only average DCA expression rates 

were evaluated before culture, but also the number of negative and positive DCA for every 

individual sample. Data presented in figure 5 show that 39 of 137 analyzed AML samples 

(28%) and 14 of 49 tested MDS samples (31%) presented with  less than 7% DCA
+
 cells 

defined as „negative‟ for every DCA. Vice versa, 70% of all tested samples expressed at least 

1 DCA, some of them 3 or more DCA. About 50% of AML and MDS samples expressed 1 or 

2 DCA. One AML and one MDS sample expressed 7 of the 8 tested DCA. In 37 of the 43 

healthy samples, only 3 DCA were available. In this group, 35 of 37 samples were positive for 

1 DCA before culture. 2 samples showed no expression of any DCA (data not shown). In 6 

cases of healthy persons, 9 DCA were available before culture. In this group, every case 

showed positive expression rates for at least 2 DCA. 

 

   Figure 5: In each individual case of 137 AML and 49 MDS samples, the number of DCA that 

were already expressed on naïve MNC fractions (per definition >7% of cells) was evaluated. 

It could be demonstrated that uncultured AML and MDS samples can express up to 7 DCA. 

 

    

    n DCA number of DCA that are expressed on one individual AML or MDS sample. 
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A detailed analysis was performed for each tested DCA to evaluate the frequency of positive 

expression rates of this marker on uncultured samples. More than half of both AML and MDS 

samples presented with positive expression rates for CD86, and about one third of the samples 

presented with positive CD40 expression rates. On the other hand, only up to 10% of naïve 

AML and MDS samples showed positive expression of any of the other tested DCA. No case 

of MDS was found with positive expression of CD1a or CD25 before culture. 

 

Figure 6: 137 naïve AML and 49 MDS MNC fractions were analyzed with regard to either 

positive or negative expression rates for 10 different given DCA: positive expression of a 

DCA was defined as >7% DCA
+
 cells in an uncultured MNC fraction.  

 

 

* % of uncultured AML or MDS samples with DCA expression rates >7% for the given marker. 

 

 

Subdividing the AML patients‟ cohort in FAB subtypes, expression rates for CD86 ranged 

from 12(±11)% in M0 to 33(±21)% in M5 cases, for CD137L between 1(±1)% in M0 and 

11(±17)% in M2 samples (figure 7a). All FAB subtypes presented with rather high expression 

rates for CD86 and CD40 (between 12% in M3 and 35% in M5 cases). CD206 expression 

rates were much higher in M3 cases compared to other FAB subtypes, whereas expression 

rates of other DCA like CD1b, CD1c and CD80 were quite similar in the different FAB 

groups (< 10%).  
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Figure 7:  Expression profiles of 10 different DCA (CD1a, CD1b, CD1c,CD206, CD25, 

CD137L, CD83, CD86, CD80, CD40) in uncultured AML MNC fractions were analyzed 

depending on FAB subtype (a) and cytogenetic risk group (b). DCA are expressed in varying 

degrees on uncultured AML MNC fractions (n=137) depending on FAB subtypes (a) and 

cytogenetic risk groups (b). Given are average results.  

(a) 

  

 

(b) 

 

No bar shown: no data available.    
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However, average expression rates of single DCA in individual cases were very variable. On 

average, when pooling all expression results, DCA expression on uncultured AML MNC was 

similar, and low in the poor cytogenetic risk group, compared to the favorable cytogenetic 

risk group (13% vs. 11% DCA
+
 cells, data not shown).  High average proportions of CD40 

and CD86 were found especially in the poor risk group (55±32% and 26±15%), whereas 

expression rates for CD1a, CD1b, CD1c, CD83 and CD80 were rather low in both cytogenetic 

risk groups (< 10%) (figure 7b). Expression rates of the given DCA did not significantly 

differ between different cytogenetic risk groups or FAB subtypes (p-value always > 0,05). 

Subdividing MDS cases in FAB subtypes, a detailed comparison between MDS FAB 

subtypes was only available for CD1a, CD86, CD80 and CD40 (figure 8). Expression rates of 

CD86 on naive MNC fractions did significantly differ between MDS FAB subtypes (p-value 

0.02): high average CD86 expression rates in the two CMML cases (58% CD86
+
 cells) and 

low expression rates in the six RA cases ( 10% CD86
+
 cells) could be demonstrated (figure 8). 

The remaining FAB subtypes presented with similar average expression rates for CD1a (≤ 5% 

CD1a
+
 cells), CD80 (1-4%) and CD40 (24-31% CD40

+
 cells) (p-value always > 0.05). In 

MDS cytogenetic risk groups, only 3 DCA were available for a comparable analysis. Average 

expression rates of CD1a (2% in cases with favourable cytogenetic risk and 1% in cases with 

poor cytogenetic risk), CD86 (10%/12%) and CD80 (3%/2%) were comparable in both 

cytogenetic risk groups (data not shown). A more extended differential analysis of DCA 

expression profiles was not possible due to a low case number and/or low number of tested 

DCA per sample. 

Low proportions of CD1a were found for the cell lines HL60 and Kasumi. HL60 showed an 

expression of CD86 (84%). The other 3 tested cell lines presented with low proportions of 

CD86 before culture (between 5% and 7%, data not shown). 

 

In summary, DCA are already expressed in high degrees on naïve MNC fractions in many 

cases and are expressed in varying degrees in different subtypes of uncultured AML and MDS 

MNC. Consequently, it is essential to evaluate expression profiles of DCA in individual, 

uncultured AML or MDS MNC samples to find out those DCA that are not expressed on 

naïve MNC and can be used for the quantification of DC after culture of MNC. 
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Figure 8:  Expression profiles of 10 different DCA in uncultured MDS MNC fractions was 

analyzed depending on FAB subtypes. Given are average results (mean).  

 

 

No bar shown: no data available.   

 

 

 

4.2 DCA expression rates and gain of DCA
+
 cells after conversion of MNC to DC in 

AML and MDS samples – results of all methods pooled 

To compare capabilities of different DC-differentiating media to generate DC and leukemia-

derived DC (DCleu), MNC from AML, MDS and healthy donors were cultured in 6 different 

media. Those media were chosen according to their different modes of action to determine 

differentiation towards DC, which have already been described in the „Material and Methods‟ 

section. After culture, average DC counts and DC subsets were evaluated with FACS 

analysis. Only data from samples with DCA expressed on less than 7% DCA
+
 cells in 

uncultured MNC fractions qualified for analysis.  

Data of a parallel comparison of 6 methods were not available in every case of AML and 

MDS, in some cases only one or few methods were tested. In this section, results of all 

methods pooled are given, i.e., data of all patients were included, independent from the 

number of methods used for culture of DC. A detailed analysis of a parallel comparison of 5 
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DC-generating media, where data of patients was only included if all 5 methods had been 

tested, is given in chapter 4.3. 

 

4.2.1 Mature, viable, migratory and leukemia-derived DC (DCleu) can be generated from 

AML and MDS MNC fractions  

4.2.1.1 Comparable average amounts of DC subtypes can be generated from AML and MDS 

MNC fractions 

One of the most important goals of this thesis was to find the „optimum DC marker‟ (DCopt) 

for each individual sample, i.e., the DCA that is not expressed on uncultured blast fractions 

but with highest expression on cultured DC. Using this „DCopt-marker‟ and pooling all results 

obtained with different DC-differentiating methods, on average 28(±19)% DCopt could be 

generated from AML samples, (cell lines between 16 and 46%) and 30(±20)% DCopt from 

MDS samples (figure 9). On average, 49(±23)% mature DC (coexpression of a DCA and 

CD83) could be generated from AML MNC (AML cell lines: between 24% and 98%) and 

56(±24)% from MDS MNC. 38(26)% migratory DC (coexpression of a DCA and CCR7) 

from AML MNC (cell lines between 6% and 94%) and 39(±23)% from MDS MNC fractions 

could be generated. Proportions of viable DC (7AAD
-
/DC

+
 -cells) were similar in AML and 

MDS MNC fractions (both 67%). Quantifying amounts of leukemia-derived DC (DCleu) by 

the combination of a DCA and an individual blast marker, it could be shown that on average 

49(±27)% DCleu could be generated from AML MNC (cell lines: Mutz 3: 85%, Kasumi 2: 

71%) and 43(±28)% from MDS-MNC. The convertibility of blasts to DCleu  could be 

estimated by the gain of DCA on the blast population (Blacon). On average, 36% of blasts both 

in AML and MDS were convertible to DCleu  (figure 9). 
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Figure 9: Quantification of DC from AML and MDS MNC after culture in different media. 

DC were generated from blast-containing AML and MDS MNC using 6 different DC-

generating methods (Basic method, MCM Mimic, Ca Ionophore, Picibanil, Cytokines and 

Poly I:C). Quantification of different subsets of DC was performed after culture using 

combinations of DC, costimulatory, maturation and migration antigens. Average results 

(mean± standard deviation) are given from all methods pooled. Proportions of flow 

cytometrically estimated DCopt, migratory DC (CCR7+), mature DC (CD83+), viable (7AAD-

), DCleu and Blacon were analyzed in AML (n=137) and MDS (n=49) samples. DCopt optimum 

of DC, i.e. for each individual sample, the DCA with lowest expression on naïve cells and 

with highest expression rates after culture was evaluated; DCopt means the percentage of cells 

that expressed the specific DCopt marker after culture (percentage of cells in the total cell 

amount).  

 

DCopt optimum of DC. DCleu leukemia-derived DC. Blacon converted blasts. 

 

 

 

4.2.1.2 Each DC-generating method regularly fails to generate DC, however DC can be 

generated in any given case after pretesting of a combination of 3 methods 

To evaluate the success of DC generation from AML and MDS samples, not only average 

counts of DC after culture were analyzed. Additionally, the failure rate of each method in DC 

generation was evaluated: DC generation was defined as successful if more than 10% DC 

(using the DCopt marker) could be found in cultured AML and MDS fractions. Comparing the 

different methods, some methods failed more frequently in generating DC than others (figure 

10). In AML cases, the failure rate ranged between 11% (Basic method) to 47% (Ca 

Ionophore), in MDS cases it ranged from 13% (MCM Mimic) to 57% (Ca Ionophore). It 
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could be shown that by a combination of merely two methods, DC could not be generated 

successfully in many cases. However, if three or more DC-generating methods were used in 

parallel, a successful DC generation could be demonstrated in every patient with at least one 

method.  

Figure 10: Failure rate of various DC-generating methods to generate DC successfully (per 

definition >10% DC using the DCopt marker): for each of the 6 given media for generation of  

from AML and MDS MNC, the number (and then rate) of cases with less < 10% detectable 

DC after culture was evaluated. 

 

  

* failure rate in % of AML or MDS cases. 

 

 

4.2.2 Expression of DCA on cultured AML and MDS MNC is highly variable in FAB 

subtypes or cytogenetic risk groups  

Expression profiles of 10 DCA on cultured AML and MDS MNC fractions were evaluated. 

Pooling results of all methods, both AML and MDS samples presented with lowest expression 

rates for CD25 (6%) and CD137L (5%/4%) after culture (figure 11). Highest average 

expression rates of DCA could be detected for CD1b in AML (28±18%) and CD206 in MDS 

(39±20%). AML and MDS cases presented with similar expression rates for CD1a (8%), 

CD25 (6%), CD137L (5%/4%) and CD83 (10%/8%). No significant differences could be 

shown between DCA expression rates both in AML and MDS samples. Comparing AML and 
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MDS samples, different expression rates could be shown for CD206 (15±14% in AML 

samples, 39±20% in MDS samples), CD1b (28±18%/13±8%) and CD1c (8±11%/2212%) (p < 

0.05).  

In healthy samples, average expression rates of DCA were rather low and ranged from 3% 

(CD137L) to 11% (CD83) (data not shown).  

 

Figure 11: DCA expression in AML and MDS MNC after culture in different media is 

variable: expression rates of different DCA were analyzed after culture of 137 AML and 49 

MDS samples with 6 different methods (Basic method, MCM Mimic, Ca Ionophore, 

Picibanil, Cytokines and Poly I:C). Average results (mean ± standard deviation) are given of 

all methods pooled. Only cases were included with less than 7% DCA
+
 cells before culture.  

 

No bar shown: no data available. 

 

 

Subdividing AML cases according to FAB subtypes and pooling results obtained with all 

methods, undifferentiated AML cases (M0, M1) presented with high average expression rates 

of CD1b (37±16% and 26±18%) and CD206 (figure 12a). Average expression rates of CD1b 

(13%-37%), CD86 (9%-29%) and CD40 (40%-38%) were rather high in all FAB subtypes, 

whereas CD25, CD137L and CD83 were expressed in lower degrees on cultured cells, (≤ 

10% in all FAB subtypes). All analyzed DCA, except CD137L, were expressed in higher 

degrees on AML cases with poor cytogenetic risk (no data available for CD40 in the poor 
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cytogenetic risk group and for CD25), especially CD1b (Ø 37±16%) and CD206 (Ø 24±14%), 

however, significant differences between AML cytogenetic risk groups could only be 

demonstrated for CD1a (p 0.02). 

In different MDS FAB subtypes, only few data were available. CD1a showed the highest 

expression rates in the two cases with CMML (Ø17% CD1a
+
 cells); CD206 was expressed the 

highest in the 17 cases with RAEBt (Ø37% CD206
+ 

cells) and the 6 cases with RA (Ø41% 

CD206
+ 

cells, data not shown). A more extended, differential analysis of DCA-expression 

profiles (e.g. with the remaining other antigens or subdiving cases in cytogenetic risk groups) 

was not possible. 
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Figure 12: DCA expression in AML FAB subtypes (a) and cytogenetic risk groups (b) after 

culture in different media is variable.  Expression profiles of 10 different DCA were analyzed 

on AML samples (n=137) after culture with 6 different DC-differentiating methods (Basic 

method, MCM Mimic, Ca Ionophore, Picibanil, Cytokines and Poly I:C). Average results 

(mean ± standard deviation) are given, results of all methods pooled. Only cases were 

included with less than 7% DCA
+
 cells before culture.  

(a) 

 

 

 (b) 

 

No bar shown: no data available. 
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4.2.3 Upregulation of DCA after DC culture is highly variable in AML and MDS samples 

The gain of DCA
+
 cells, demonstrated by cells upregulating distinct DCA after culture in 

cases with AML and MDS, was analyzed. Only cases with less than 7% DCA
+
 cells in 

uncultured MNC fractions were included. Again, results of various methods given were 

pooled. 

Neither AML nor MDS or healthy samples presented with a loss of DCA
+
 cells compared to 

the expression profiles before culture, although big variations were seen between different 

DCA (figure 13). The DCA with highest upregulation were CD1b in AML samples (+3190% 

gain of CD1b
+
 cells), CD1a in MDS cases (+1550%) and CD80 in healthy samples (+718%) 

(figure 13). The DCA with lowest upregulation were CD25 in AML cases (+72%) and 

CD137L (+70%) in MDS cases.  

 

Figure 13: Gain of DCA
+
 cells in AML and MDS MNC after culture is variable. The 

average gain (mean) of 10 selected on 137 AML and 49 MDS samples was analyzed after 

culture with 6 different methods (Basic method, MCM Mimic, Ca Ionophore, Picibanil, 

Cytokines and Poly I:C). Results obtained with different methods were pooled. Only cases 

were included with less than 7% DCA
+
 cells before culture. 

 

    

DCA+ DCA positive. No bar shown: no data available.    
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Subdividing cases in FAB subtypes, an upregulation of all DCA in all AML FAB subtypes 

except for CD137L, CD1a and CD83 in M3 cases could be demonstrated (figure 14a). 

Highest rates of DCA upregulation could be demonstrated for CD1a in M1 cases (+3090%), 

CD1b in M2 and M5 cases and CD86 in M3 samples (+1470%).  

In AML cases, both favorable and poor cytogenetic risk groups showed an upregulation of 

DCA except CD137L in the favorable risk group (-64%) (figure 14b). Highest yields of 

gained DCA
+
 cells could be demonstrated for CD1b in both AML cytogenetic risk groups 

(+5400% in cases with favorable cytogenetic risk). 

An average upregulation of all available DCA in all MDS FAB subtypes except CD137L in 

RAEBt could be shown. A more extended, differential analysis of DCA upregulation (e.g. 

with the remaining other antigens or subdividing cases in cytogenetic risk groups) was not 

possible due to a low case number.         

This means, that except CD1a, CD83 and CD137L in M3 cases and CD137L in RAEBt cases, 

any of the analyzed DCA principally qualify to be used as „markers to detect and quantify 

DC‟ according to criteria to quantify DC. 
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Figure 14: Gain of DCA
+
 cells in different AML FAB subtypes (a) and cytogenetic risk 

groups (b). After culture with different DC-differentiating media, the average gain of 10 

different DCA (CD1a, CD1b, CD1c, CD206, CD25, CD137L, CD83, CD86, CD80, CD40) 

was analyzed in 137 AML samples, depending on different FAB subtypes (a) and cytogenetic 

risk groups (a). All AML were included in which FAB subtype and/or cytogenetic risk group 

were available, and with less than 7% DCA
+
 cells before culture. Average results (mean) 

obtained with all methods pooled are given. 

 (a) 

 

DCA+ DCA positive. No bar shown: no data available. 

 

(b) 

 

DCA+ DCA positive. No bar shown: no data available. 
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As the average upregulation of DCA after culture isn‟t informative concerning the number of 

upregulated DCA in individual cases, the number of upregulated DCA in every single AML 

and MDS case as well as the failure rate to upregulate DCA of various methods was analyzed. 

In AML samples, the Basic method failed in 12 cases, MCM Mimic in 7 cases, and Poly (I:C) 

in 3 cases, whereas Cytokines, Ca Ionophore and Picibanil each failed in only 1 case to 

upregulate at least one DCA (data not shown). In MDS samples, the Basic method failed to 

upregulate at least one DCA in 3 cases, MCM Mimic in 1 case. All other methods were 

successful in upregulating at least one DCA in every case of MDS. Vice versa, individual 

AML or MDS cases could be detected where up to 7 DCA were upregulated after DC 

generation with one method. On average, 3 DCA were upregulated in AML and MDS cases. 

It can be concluded that with a pretesting of 3 (MCM Mimic, Ca Ionophore, Picibanil) of the 

5 tested different media, it was possible to upregulate at least one DCA on one sample in 

every case of AML, MDS or healthy samples.  

Summing up, it is not sufficient to use only one DC-medium to generate DC successfully in 

every AML and MDS case. Rather, it is necessary to test at least three DC-media in parallel 

for their potential to differentiate DC. A pretesting of MCM Mimic, Ca Ionophore and 

Picibanil seems to be the most effective way to create DC in every case of AML and MDS 

sufficiently. 

 

 

4.3 Parallel comparison of 5 different DC methods shows comparable average DCA 

expression rates and upregulation after conversion of MNC to DC in AML, MDS or 

healthy samples 

It has been shown that in 6%-60% of healthy, AML or MDS cases, less than 10% of DC 

could be generated. In order to find at least one DC-generating method for every individual 

patient and to detect method-specific characteristics, 37 AML-, 3 MDS- and 6 healthy MNC 

were cultured in parallel in 5 different DC-media. This means that only those cases qualified 

for this analysis where all 5 media (MCM Mimic, Ca Ionophore, Picibanil, Cytokines and 

Poly (I:C)) had been tested in parallel. 

 



67 

 

4.3.1 Similar average amounts of mature, viable, migratory and leukemia-derived DC can be 

generated from AML, MDS and healthy MNC fractions under different parallel culture 

conditions  

Comparing yields of DC subtypes, we found similar average results as gained by pooling 

results from all methods (p-value always > 0.05).In AML samples (n=43) especially average 

amounts of DCopt  (on average between 27(±18)% DCopt after culture with MCM Mimic and 

30(±19)% after culture with Poly (I:C)) were very similar after culture with 5 different 

methods (figure 15a). Yields of mature DC ranged from 43(±21)% (Picibanil) to 52(±23)% 

(MCM Mimic). Highest amounts of DCleu were found after culture with Ca Ionophore 

(60±23%), whereas yields of DCleu were lower after culture with MCM Mimic (on average 

45±26%) or Cytokines (47±30%). Average amounts of viable DC always were ≥ 63% in 

AML samples (figure 16a). Yields of Blacon ranged from 31(±23)% (Ca Ionophore) to 

38(±22)% (MCM Mimic) in AML samples (figure 15a).  

A parallel comparison of average DC amounts after culture was possible in only 3 cases of 

MDS: yields of DCopt   ranged from 19(±12)% (Ca Ionophore) to 27(±10)% (Poly I:C) (figure 

15b). Highest numbers of migratory DC were found after culture with Ca Ionophore and 

Cytokines (50%). Yields of mature DC ranged from 45(±19)% (MCM Mimic) to 65(±28)% 

(Cytokines). Highest numbers of viable DC and DCleu were found for MCM Mimic (70±29% 

and 60±6%). Yields of Blacon in cultured MDS samples ranged from 24(±12)% (MCM 

Mimic) to 37(±29)% (Poly I:C). 
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Figure 15: Quantification of DC subsets in AML (a) and MDS (b) after culture, parallel 

comparison of 5 different methods: DC were generated from blast-containing AML and MDS 

MNC using 6 different DC-generating methods. Quantification of different subsets of DC was 

performed after culture using combinations of DC, costimulatory, maturation and migration 

antigens. Average results (mean± standard deviation) are given. Proportions of flow 

cytometrically estimated DCopt, migratory DC (CCR7+), mature DC (CD83+), viable  

(7AAD-), DCleu and Blacon were analyzed in AML (n=137) and MDS (n=49) samples. DCopt 

optimum of DC, i.e. for each individual sample, the DCA with lowest expression on naïve 

cells and with highest expression rates after culture was evaluated; DCopt means the 

percentage of cells that expressed the specific DCopt marker after culture (percentage of cells 

in the total cell amount). 

(a) 
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Figure 15 (b) 

 

DCopt optimum of DC. DCleu leukemia-derived DC. Blacon converted blasts. 

 

 

4.3.2 Similar average expression of specific DCA can be found on DC from AML MNC 

under different, parallel cultured conditions  

To compare the average expression of DCA
+  

cells for the given 5 methods that were tested in 

parallel, average expression rates of all available DCA for every single method were pooled.  

It could be shown that average counts of DC generated with different DC-generating methods 

were similar in AML samples (10% after culture with Ca Ionophore, 12% after culture with 

MCM Mimic and Poly I:C, and 13% after culture with Picibanil and Cytokines) (data not 

shown), whereas DCA were expressed in lower degrees on healthy samples (between 5% 

after culture with Ca Ionophore and 9% after culture with Cytokines) (data not shown). An 

analysis of average DCA expression rates on MDS samples was not possible due to a low 

case number. 

Moreover, it is demonstrated in figure 16 that average expression rates of selected DCA in 

AML cases that were evaluated after parallel culture are similar, although individual 

variations of expressions occur. Average expression rates of <10% after culture with any of 

the 5 methods could be demonstrated for CD1a, CD25 and CD137L. Highest expression rates 
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were found for CD1b (between 24% after culture with Ca Ionophore and 30% after culture 

with Cytokines). No data were available for CD83. 

Due to only 3 MDS cases and 6 healthy samples available for parallel comparison, a 

differential analysis of DCA expression rates under different culture conditions was not 

possible. 

Figure 16: Average proportions of single DCA expressed on AML cells after culture; parallel 

comparison of 5 different methods: only AML (n=37) were included where all 5 methods 

(MCM Mimic, Ca Ionophore, Picibanil, Cytokines and Poly (I:C)) had been tested in parallel 

to generate DC. Average expression rates (mean) of 10 selected DCA, depending on methods 

used, are given. Only cases were included with less than 7% DCA
+
 cells before culture.  

 

 

 

4.3.3 Average gain of DCA
+
 cells on DC generated from AML, MDS and healthy MNC is 

similar under different parallel culture conditions 

The gain of DCA
+
 cells after culture in AML MNC after parallel culture in the 5 different 

media was compared. Again, cases with more than 7% DCA
+
 cells before culture were 

excluded. Figure 17 shows comparable gains of DCA
+ 

cells in AML-samples after parallel 

culture in different DC-differentiating methods with highest gain of DCA
+ 

cells found for 

CD1b (between 2471% after culture with Ca Ionophore and 4269% after culture with 

Cytokines) (figure 17). It could be demonstrated that on average, all tested DCA are 
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upregulated after culture, independent from the methods used for DC generation; however, in 

some individual cases, a downregulation of one or more DCA could be found after culture. 

No data were available for CD83. 

Due to only 3 MDS cases and 6 healthy samples available for parallel comparison, a 

differential analysis of DCA upregulation under different culture conditions was not possible. 

 

Figure 17: Gain of DCA
+
 cells in AML cases after culture; parallel comparison of 5 different 

methods: only AML (n=37) were included where all 5 methods (MCM Mimic, Ca Ionophore, 

Picibanil, Cytokines and Poly (I:C)) had been tested in parallel to generate DC. Average gain 

(mean) of 10 selected DCA, depending on methods used, are given. Only cases were included 

with less than 7% DCA
+
 cells before culture. 

 

 

 

4.4 DC regularly contribute to prime T-cells against leukemic targets 

For the proof of principle it has to be shown, that DC generated with different methods are 

able to prime T-cells, giving rise to specific anti-leukemia-directed T-cells. DC from 17 cases 

with AML and MDS blast containing MNC were generated and cocultured with T-cells for 10 

days. T-cell sources were either autologous or allogeneic from the patients‟ stem cell donors. 

Naïve blasts in the MNC fractions added to the primed cells could be lysed in 11 of 17 cases 

(65%) (figure 18 left side) after 24 hours incubation with an average lytic efficiency of 44% 
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of blasts (range 10-83%) (figure 18 right side). In 6 cases (35%) no lysis or even a stimulation 

of blast proliferation was seen with an average increase of blasts of 70%. In the group with 

lytic activity, DC had been generated with MCM-Mimic (n= 9) or Ca-Ionophore (n=4). In 

cases with blast stimulatority activity, DC had been generated with MCM-Mimic (n=5) or 

Picibanil (n=2). Priming T-cells in parallel with blast-containing MNC instead of DC showed 

that a lytic activity of blast-containing MNC-primed T-cells could be achieved in only 5 of the 

17 cases (29%) after 24 hours incubation with naïve blasts, with an average lytic efficiency of 

23% of blasts (range 6%-69%). In 12 cases (71%), no lysis or even a stimulation of blast 

proliferation was seen with an average increase of blasts of 98%. 

These data provide the proof of principle that in the majority of cases DC mediate a lytic 

activity of T-cells, although in some cases blast stimulation can be achieved, whereas a T-

cell-priming with blast containing MNC results in a stimulation of blast proliferation in the 

majority of cases. 

 

Figure 18: AML MNC (n=17) were cocultured with autologous DC and in parallel with 

autologous blasts. DC were generated from 17 cases with AML and MDS blast containing 

MNC and then cocultured with autologous or allogeneic T-cells for 10 days. In parallel, T-

cells were cocultured with blast containing MNC instead of DC. Left side of the figure shows 

a comparison of the average rates of cases (mean results are given) with a documented lysis of 

blasts after coculturing T-cells either with DC or blast containing MNC. 

 

  
* % of cases with lysis of blasts. **average lytic efficiency of blast
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5 Discussion 

5.1 Clinical course of AML and MDS and immunotherapeutic treatment options 

Due to the high median age of MDS patients, allogeneic SCT is available only for a minority 

of patients. Thus, treatment options in MDS stay rather supportive (Hofmann and Koeffler, 

2005;List, 2002). Although complete remission can be achieved in about 80% of AML 

patients by intensive chemotherapy-based treatments including SCT, long-term survival stays 

rather short (5-year overall survival 20%-25%) due to persistence of MRD in about 80% of 

AML patients (Houtenbos et al., 2006;Li et al., 2003;Venditti et al., 2000). Therefore, there is 

a tremendous need for new less intensive (post-remission) options both in AML and MDS.  

DC are the most potent antigen-presenting cells of the immune system. Besides, they play an 

important role in immune response against neoplastic cells (den Brok et al., 2005) and are 

able to stimulate naïve T-cells, which leads to an antigen-specific immune response 

(Banchereau et al., 2000). A defective host antitumor immune response is an important 

mechanism
 
that allows tumors to evade the immune system (Almand et al., 2000). It has been 

shown that function and yields of cells of the innate and adaptive immune system can be 

reduced in various malignancies (Mohty et al., 2001;Ratta et al., 2002). Several studies 

focused on the defective function of DC in tumor-bearing mice and cancer patients (Almand 

et al., 2000;Mashino et al., 2002). Thus, in vivo targeting of DC seems not to be the best 

approach in leukemia (Houtenbos et al., 2006). Immunotherapeutic approaches based on ex 

vivo targeted DC addressing the role of T-cell immunity and the role of DC to elicit T-cell 

responses are regarded as belonging the most promising tools in the immunotherapy of 

hematological disorders (Fujii et al., 2009;Gilboa, 2007). The important role of T-cells in 

overcoming this therapeutic resistance has already been demonstrated by the use of DLI in 

relapsed AML, proving the anti-leukemia directed effect of cytotoxic T-cells – although not 

all patients respond to this therapy (Kolb et al., 1995;Kolb et al., 2003;Schmid et al., 

2006;Venditti et al., 2000). Various animal models have demonstrated the ability of DC to 

prime antigen-specific T-cells which are capable of recognizing and killing tumor cells (Boon 

et al., 1994;Celluzzi et al., 1996). The anti-leukemia mediating activity of DCleu could be 

previously demonstrated in vitro (Cella et al., 1996;Kufner et al., 2005a). First results of 

Phase I/II clinical trials vaccination with autologous DC in AML-patients showed that 

vaccinations with DC are feasible and safe, although not regularly clinically effective 

(Houtenbos et al., 2006;Roddie et al., 2006). 
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5.2 DC antigens (DCA)  

5.2.1 Detection of DCA and their significance for vaccination strategies 

DC for anti-tumor vaccination in patients with solid tumors or leukemia can be generated in 

different ways: either by pulsing DC with tumor-specific antigens or tumor lysates, by 

transfection of DC with RNA encoding for such antigens or by converting leukemic cells to 

DC (Gilboa, 2007;Soleimani et al., 2009;Toh et al., 2009).  Moreover, TAA-pulsed DC 

(e.g.WT1-pulsed DC) were successful in generating anti-leukemia directed, specific cytotoxic 

T-lymphocytes (CTL) ex vivo that lysed specifically CD34
+
 leukemic cells but not healthy 

CD34
+ 

progenitor cells. Thereby they yield the proof of principle that DC presenting a 

leukemic antigen are mediators of an anti-leukemia directed specific cytotoxic reaction (Gao 

et al., 2000). In addition, minor antigens like HA-1 and HA-2, restrictedly expressed on 

hematopoetic cells, are useful peptides to induce anti- HA-1/2 directed CTL after stimulation 

with donor –DC pulsed with these antigens (Mutis et al., 1999). Leukemic blasts from AML 

patients can also be converted to „leukemia-derived DC‟ (‚DCleu‟) in vitro by using different 

DC-generating methods based on cytokines, and giving rise to cells expressing ‚DC-typical 

markers‟ together with the patient‟s specific clonal or cell surface blast markers (Kufner et al., 

2005a;Schmetzer et al., 2007). An advantage of this approach is the potential to develop a 

DC-vaccine that presents not only one but multiple leukemic antigens of the patient‟s 

individual AML, rather than constructing e.g. an artificial leukemic peptide-target that is only 

expressed in selected AML-subtypes (e.g. WT1 in HLA-A2-AML, cases after SCT with HA-

1/HA-2 mismatch).  

 

5.2.2 DCA expression profiles of 10 analyzed DCA 

Only DCA that are not expressed on uncultured cells qualify for the detection of DCleu. In 

previous examinations, we and others could already show that DCA can be expressed on 

uncultured AML and MDS MNC fractions – and even predict a worse prognosis for the 

patients (Graf et al., 2005) .  

We postulated at least 10% generated DC and in addition 5% of DCleu (DC that coexpressed 

blast markers) in the total cell fraction as „successful‟ DC generation (Schmetzer et al., 2007). 
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Average expression rates were higher than 7% for CD1a, CD206, CD25, CD86 and CD40 in 

AML MNC, for CD1b, CD137L, CD86 and CD40 in uncultured MDS MNC and for 

CD137L, CD86 and CD40 in uncultured healthy MNC. Analyzing the number of DCA with 

positive expression rates for each individual sample, it was found that 28% of AML samples 

and 31% of MDS samples showed no expression of any of the tested DCA before culture. 

This means vice versa that about 70% of all patients did express at least 1 DCA on naïve 

MNC fractions, some of them even 3 or more DCA. High expression rates of DCA on naïve 

MNC fractions can be explained either by contamination of MNC fractions with non-

leukemic cells expressing those markers (e.g. monocytes, lymphocytes) or by aberrant 

expression of those DCA on naïve blasts (e.g. CD137L, CD206 or CD25).  

A detailed analysis for each DCA was performed to evaluate the frequency of positive 

expression rates of these markers on uncultured samples. More than one half of both AML 

and MDS samples presented with positive expression rates for CD86 before culture, about 

30% of all samples presented with expression rates >7% for CD40. This means that those 2 

DCA especially don‟t qualify for the detection of leukemia-derived DC in most cases. Less 

than 10% of all uncultured AML and MDS samples presented with positive expression rates 

for any of all other tested DCA. However, as there is huge interindividual variety of DCA 

expression profiles on naïve AML and MDS samples, it is important to pre-test a variety of 

DC-antigens in the analysis of DC expression profiles in every individual patient. Besides, the 

frequency of positive expression rates of DCA on naïve MNC fractions might be even higher 

as in results gained for this thesis, as not every DCA was tested in any given case. Data 

presented by other authors, who demonstrated a deficient expression of costimulatory 

molecules in leukemic blasts (especially CD40) that might hamper stimulation of T-cell 

responses (Li et al., 2003), could not be confirmed. 

CD1 antigens are expressed on DC, monocytes, B-cells and cortical thymocytes and are 

essential for antigen presentation on DC and for T-cell activation (Banchereau et al., 

2000;Bell et al., 1999;Brigl and Brenner, 2004;Sloma et al., 2004). We found relatively low 

average expression rates of CD1 antigens in uncultured MNC fractions and an upregulation 

with any of the tested DC-differentiating methods. Only M3 cases presented with a loss of 

CD1a
+
 cells (results of all methods pooled). Athanasas-Platsis et al. could show that GM-

CSF, TNFα, IL-6 and IL-1β can induce CD1a expression (Athanasas-Platsis et al., 1995). 

However, we found similar expression rates after culture in Ca Ionophore that bypass the 
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cytokine-driven differentiation. We can confirm the observation of  Pietschmann et al. that, 

compared to other DCA, CD1a is expressed to a lower degree due to serum free culture 

(Pietschmann et al., 2000). These findings indicate that CD antigens qualify as useful markers 

for the quantification of DCleu in most cases, however, positive expression of CD1a, CD1b 

and CD1c can be found in individual cases on naïve MNC fractions. 

CD83 is one of the most important antigens to identify mature DC and is essential for antigen 

presentation to T-cells (Hirano et al., 2006;Tobiasova-Czetoova et al., 2005). We found low 

average expression rates for CD83 in uncultured AML and MDS fractions, but also relatively 

low expression rates on cultured AML MNC samples thereby again confirming the 

observation of Pietschmann et al. (Pietschmann et al., 2000).  

Average CD206 expression rates on uncultured MNC fractions were 11% for AML and 4% 

for MDS samples. After culture, we detected higher expression rates of CD206 in MDS 

compared to AML samples and also in AML cases with poor cytogenetic risk, but a relative 

low expression of CD206 on cells after culture with Ca Ionophore. As it is known that 

antigen-uptake by DC via CD206 results in a multiplied antigen-presentation and thus a more 

efficient activation of T-cells (Engering et al., 1997), this could mean that DC cultured with 

Ca Ionophore have a lower capacity of antigen presentation compared to other methods.  

CD25 is expressed on DC precursors, but also on mature DC (Cella et al., 1997;von Bergwelt-

Baildon et al., 2006). Since CD25 is not specific for DC, but also a  T-cell-proliferation 

marker (Chen et al., 2006), expression rates of up to 12% CD25
+
 cells in uncultured AML 

MNC can be expected. We found relatively low expression rates of CD25 in uncultured MNC 

(11% in AML cases and 4 % in MDS cases). In general, CD25 was upregulated in low 

degrees. Highest upregulation of CD25 was found after culture in MCM Mimic and Picibanil, 

both media containing PGE2, which is known to promote CD25 expression on DC (von 

Bergwelt-Baildon et al., 2006). These findings indicate that CD25 is not a useful marker for 

quantification of leukemia-derived DC in most cases. 

An aberrant expression of CD137L on carcinoma cells and in leukemia has been reported 

(Salih et al., 2001;Scholl et al., 2009). Moreover, CD137L is known to be upregulated during 

DC differentiation, resulting in T-cell activation (Mittler et al., 2004). This means, that 16% 

CD137L
+ 

cells being found in uncultured blast containing samples can be expected as well as 

an upregulation of CD137L expression. All in all it thus can be said that CD137L doesn‟t 

qualify as a marker to detect DC in most cases. We found relatively low average expression 
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rates of CD137L in uncultured AML and MDS samples (6% and 16%), compared to healthy 

probands and an average upregulation in both AML and MDS samples. A loss of CD137L
+
 

cells could be demonstrated for M3 and RAEBt cases. 

 

CD80, CD86 and CD40 are important costimulatory molecules on DC to activate T-cells 

triggering T-cell responses towards either Th1- or Th2-cells (Banchereau et al., 2000;Nicod et 

al., 2005;Rogers et al., 2005). We could show high expression rates for CD86 and CD40 on 

uncultured AML and MDS samples, especially in cases with poor cytogenetic risk, thereby 

confirming previously published data (Graf et al., 2005). This means that an expression of 

those three markers after DC culture, as recommended by some authors, cannot be used as a 

reliable factor to estimate DC without previous testing of their expression on uncultured MNC 

(Roddie et al., 2006;Schmetzer et al., 2007). Extremely high average expression rates of 

CD86 in CMML cases (n=2) (58%) might be caused by an aberrant expression of CD86 on 

one CMML sample (90% CD86 
+
 cells) or by contamination with CD86

+
 cells. Confirming 

data of other authors (Li et al., 2005), CD80, CD86 and CD40 were upregulated after culture.  

Summing up, none of the analyzed 10 DCA qualifies as a single suitable marker (no 

expression on uncultured cells, high upregulation after culture) for a reliable detection and 

quantification of leukemia-derived DC in all cases of AML and MDS: although a low average 

expression on uncultured cells and average upregulation could be demonstrated for some 

DCA, a big interindividual variety in DCA expression profiles was found in AML and MDS 

cases. This means that: 1. there is a need for new, more specific DCA. 2., DCA expression 

profiles have to be evaluated before and after culture in every individual case to find those 

markers in every given patient that qualify as DC markers (no expression on uncultured cells, 

high upregulation after culture). With regard to the 10 analyzed DCA, CD1a, CD1b and CD1c 

seem to be the most suitable DCA for a quantification of DC in most cases. 

 

5.3 Value of different DC-differentiating methods for generation of leukemia-derived 

DC (DCleu) 

Various methods, characterized by different modes of action, can induce DC-differentiation. 

Most authors only chose one single method for DC generation, resulting in an insufficient DC 
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generation in many cases, as described (Kharfan-Dabaja et al., 2005;Kufner et al., 

2005a;Roddie et al., 2006).  

It has already been demonstrated that DC can be generated successfully in vitro from CD14
+
 

monocytes or from CD34
+
 progenitor cells or leukemic cells in the presence of cytokines (Lee 

et al., 2002;Westers et al., 2003;Woiciechowsky et al., 2001), Calcium ionophores 

(Houtenbos et al., 2003), nucleic acid fragments (Rouas et al., 2004) or bacterial lysates (Sato 

et al., 2003), with different mechanisms of inducing DC differentiation. The addition of Flt-

ligand increases the harvest of DC (Kufner et al., 2005b;Woiciechowsky et al., 2001). The use 

of foetal calf serum (FCS)-free media for DC-generation should be preferred to avoid immune 

reactions against FCS-peptide-associated, xenogeneic antigens or anaphylactic reactions 

(Mackensen et al., 2000a). 

In this thesis, 6 different media were compared: a Basic method (Woiciechowsky et al., 

2001), MCM Mimic (Lee et al., 2002), Cytokines (Westers et al., 2003) using Cytokine-based 

ways of DC-differentiation, Picibanil as a bacterial lysate combined with PGE2 (Sato et al., 

2003), double-stranded RNA in Poly I:C (Rouas et al., 2004) and Ca Ionophores (Houtenbos 

et al., 2003).  

Previous studies tried to generate leukemia-derived DC via receptor-mediated extracellular 

pathways, using different cytokine combinations (Westers et al., 2003;Woiciechowsky et al., 

2001). The „Basic method‟ used by us and described and established by Woiciechowsky et al. 

2001 contains GM-CSF, IL-4, TNFα and FLT3-ligand. FLT3-ligand has been shown to act 

synergistically with other cytokines and increases yields of DC after culture. Besides, DC-

generation from CD34
+
 cells is increased by the addition of FLT3-ligand (Woiciechowsky et 

al., 2001). Using the described method, Woiciechowsky et al. were able to differentiate DC 

from 77% of AML patients, regardless of FAB classification and clinical status 

(Woiciechowsky et al., 2001). MCM Mimic is another cytokine-based DC-differentiation 

method mimicking the components of monocyte-conditioned medium („MCM mimic‟) 

including TNFα, IL-1β, IL-6.  MCM Mimic also contains PGE2 which is known to improve 

yields of DC, especially mature DC, and function of DC, e.g. migration capacity (Lee et al., 

2002). The use of MCM Mimic, first described by Jonuleit et al. 1997, improves the yield and 

function of DC, including the skewing of T-cells to a TH1 phenotype (Jonuleit et al., 1997). 

Lee et al. could show that the use of MCM Mimic in the differentiation of monocyte-derived 

DC results in a uniformly mature phenotype and a high immunostimulatory capacity (Lee et 
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al., 2002). The third cytokine-based medium used by us to generate leukemia-derived DC 

contains a conventional cocktail of cytokines for DC differentiation: GM-CSF, TNFα, IL-3, 

SCF, FLT3-ligand and IL-4. Westers et al. could demonstrate that the generation of APC was 

possible in the majority of AML patients by the use of this cytokine cocktail. However, when 

cells where cocultured with Ca Ionophores, AML-APC were at a more mature stage after 

culture with Ca Ionophores (Westers et al., 2003). 

Picibanil (OK-432) is a biological response modifier (BRM) derived from the Su strain of 

Streptococcus pyogenes. This bacterial lysate stimulates immature DC towards maturation 

and can improve production of Th-1-type cytokines, e.g. IL-12 , especially in combination 

with PGE2 (Sato et al., 2003). Sato et al. could demonstrate that DC derived from cancer 

patients in the presence of OK-432 showed a mature phenotype. By a combination of OK-432 

and PGE2, CCR7 expression and migratory capacity of the generated DC were significantly 

higher compared to OK-432 alone, without inhibiting other immunostimulatory functions 

(Sato et al., 2003). 

Poly(I:C) is a synthetically fabricated double-stranded RNA acting through TLR3 expressed 

on DC. Poly(I:C) functions as a „danger signal‟ and acts through TLR3 expressed by DC. 

Rouas et al demonstrated that Poly(I:C), compared to other media such as cytokine cocktails, 

might be one of the most appropriate agents to generate stable mature DC, as these DC are 

still able to secrete high levels of IL-12 and might generate effective in vivo immune 

responses (Rouas et al., 2004).  

The Calcium Ionophore A23187 is a DC-differentiating substance bypassing the cytokine-

driven DC-differentiation. Houtenbos et al. demonstrated that serum-free generation of 

leukemia-derived DC using Ca Ionophore is feasible, and could observe a trend towards a 

more mature phenotype of DC after culture with Ca Ionophore compared to a cytokine mix 

(Houtenbos et al., 2003). 

Data presented in this thesis show that there is no specific method to create DC for a single 

patient and that different methods qualified better or worse for a single patient. This might be 

due to the heterogeneity and state of maturation.  

DC generation was defined as successful if > 10% DC using the DCopt marker and in addition 

at least 5% DCleu could be generated. This marker (no expression on uncultured cells, highest 
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upregulation after culture) was evaluated for every individual patient. However, actual total 

amounts of generated DC might be even higher than evaluated by DCopt, as not all generated 

DC might express this specific marker, but other DCA. 

None of the used media was a reliable tool to generate DC successfully in every patient. 

However, it could be shown that a successful DC generation was possible in every given case 

by a parallel pretesting of 3 different methods. Every method failed to generate DC in some 

cases, but we could show that a successful DC generation was possible in every given case by 

a pretesting of 3 different methods and a selection of the best method. Every method failed to 

generate DC in some cases, but the combination of  MCM mimic, Ca Ionophore and Picibanil 

tested in parallel yielded to a successful generation of DC with at least one method. 

Consequently, we can overcome the resistance of blasts to be converted to DC, as described 

by Roddie 2002 and 2006 (Roddie et al., 2006;Roddie et al., 2002).  

On average, no significant differences were found in the expression of different DCA, the 

average generation of DCopt, DCleu, mature, migratory or viable DC in AML or MDS samples 

depending on used method. On average, more than 50% of DC were ‟leukemia-derived‟ with 

respect to the total MNC fraction. In consequence this means that high proportions of 

unconverted blasts were found in the suspension, confirming the observation of Houtenbos et 

al. that high blast counts (about 50%) remain unconverted in the culture (Houtenbos et al., 

2003). Observations of Houtenbos et al. that DC generated in the presence of Ca Ionophores 

are more mature but less viable compared to DC generation with Cytokines, could not be 

confirmed (Houtenbos et al., 2006). 

 

 

5.4 Value of FACS analysis for quantification of leukemia-derived DC 

Recently we have published a method that allows a sensitive, reliable and reproducible 

strategy to quantify DC as well as to estimate their quality with respect to different DC-

subtypes and especially their leukemic derivation (Schmetzer et al., 2007). Using a refined 2-

step gating strategy that considers different scatter profiles of blasts and DC, amounts of 

DCleu, DC without proof of leukemic origin and nonconverted blasts is possible. Especially, 

the convertibility of blasts to DCleu can be estimated without knowledge of a clonal 

chromosomal marker, which is very practical due to the fact that only about 50% of AML 
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patients show chromosomal aberrations (Frohling et al., 2002). On the other hand, counts of 

DCleu may be underestimated, because only those DC were accepted as ‟leukemia-derived‟, 

that coexpressed a patient-specific blast marker and a DC marker, whereas blasts that didn‟t 

express this blast marker (but may belong to the blast population) were not accepted as DCleu. 

However, the leukemic origin of DC cannot be proven with this method in cases without 

clonal aberration by cytogenetic/FISH methods. 

Moreover, a gain of migratory capacity, necessary for the migration of DC from the injection 

site to lymph nodes can be evaluated, as well as the maturity of DC, responsible for TH1 

activation or a combined antigen presentation (Lee et al., 2002;Sallusto and Lanzavecchia, 

2002;Westers et al., 2003) 

 

 

5.5 DC regularly and specifically prime T-cells, however not always successfully 

The adoptive transfer of selected tumor-reactive T-cells, especially of DC-primed CTL, could 

be an effective therapeutic option for patients after non-myeloablative chemotherapy 

(Choudhury et al., 1999;Spisek et al., 2002). It has been shown that costimulatory molecules 

are often downregulated on leukemic cells, which impedes contact to effector cells (Vollmer 

et al., 2003). However, we and others found that costimulatory antigens like CD80 and CD86 

can be expressed on naïve AML and MDS blasts in varying degrees (Graf et al., 2005). These 

data indicate that the expression of costimulatory antigens on naïve leukemic cells alone is not 

sufficient to induce anti-leukemic T-cell responses and affirm the common assumption that a 

simultaneous expression of several costimulatory antigens and leukemic markers on 

professional APC is needed to activate specific T-cells. We could demonstrate that DC 

generated from AML and MDS MNC fractions with different methods are able to prime T-

cells, giving rise to specific anti-leukemia-directed T-cells. This confirms results of other DC 

studies (Choudhury et al., 1999;Kufner et al., 2005a). Data provide the proof of principle that 

in the majority of cases, DC mediate a lytic activity of T-cells, although in some cases blast 

stimulation can be achieved, whereas a T-cell-priming with blast containing MNC results in a 

stimulation of blast proliferation in the majority of cases. Critical points remain to be 

discussed: our functional data show, that a successful priming of T-cells, giving rise to 

specific anti-leukemia directed cytotoxic T-cells, is not possible in every case. Therefore, the 
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role and influence of the chosen DC-media (with/without immunogenic stimuli) on the quality 

of DC (e.g. mature DC, DCleu ) or a possible inhibitory effect of unconverted blasts or soluble 

factors released by blasts, DC or T-cells in the mixed lymphocyte culture for a successful ex 

vivo T-cell priming has to be evaluated.  

Detailed analyses of the role of cellular (e.g., DC, T-cells) and soluble partners (e.g. 

chemokines, cytokines) are in the focus of the ongoing research of our group. Moreover, the 

focus is on strategies to increase DCleu counts and their T-cell priming efficiency. New results 

of our group show that not only the maturation stage of DC, but especially the proportions of 

leukemia-derived DC are predictive for the induction of anti-leukemic T-cells (Schuster et al., 

2008) (thesis of Christine Grabrucker, Med III, Klinikum Großhadern: Qualität von 

Dendritischen Zellen (DC), die aus leukämischen Blutproben von Patienten mit AML und 

MDS generiert wurden, als prädiktiver Faktor für das lytische Potenzial DC-geprimter 

leukämiespezifischer T-Zellen). Moreover, the quality and composition of T-cells is 

predictive for the antileukemic efficiency of DC-primed cells (data not yet published; data 

gained in the course of thesis of Anja Liepert, Med III, Klinikum Großhadern: Qualität von 

Blasten- bzw DC-geprimten T-zellen als prädiktiver Faktor für deren lytisches, 

leukemiespezifisches Potenzial bei Patienten mit AML und MDS).  

Moreover, a possible correlation of ex vivo results with the clinical course of the disease, e.g. 

after an immunotherapy like SCT, could contribute to understanding biological antileukemia-

directed mechanisms involved in the specific (DC-mediated) T-cell priming in vivo. Vice 

versa, it could contribute to developing strategies to overcome the blasts‟ resistances to 

apoptosis by specifically adapted anti-leukemia directed immunotherapies. A positive 

selection of DCleu by double staining with a DC and a blast marker could help to enrich DCleu 

for vaccination.  

 

 

5.6 Previous and current DC-generation studies 

Deeb et al. could demonstrate the efficacy of DC-based vaccination in leukemia for 

eradication of MRD and prevention of relapse in a mouse model (Deeb et al., 2006). 

Leukemia-derived DC-generation studies and clinical trials were first carried out in CML 

patients, e.g. Choudhury et al were one of the first who could show that in vitro-generated DC 
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can be effectively used as APC for the ex vivo expansion of antileukemic T-cells (Choudhury 

et al., 1997). Dietz et al treated CML patients with subcutaneous injection of autologous 

leukemia-derived DC (Dietz et al., 2001). First clinical trials with leukemia-derived DC as a 

T-cell stimulating vaccine were carried out in 5 patients with CML (Claxton et al., 2001). 

First results of Phase I/II clinical vaccination trials with autologous DC in AML-patients 

showed that vaccinations with DC are feasible and safe, although not regularly clinically 

effective (Houtenbos et al., 2006;Roddie et al., 2006). Lee et al. vaccinated relapsed AML 

patients with DC pulsed with leukemic lysates and could show immunological responses with 

positive delayed-type hypersensitivity skin reaction and increasing autologous T-cells 

stimulatory, but no improvement of the BM blast proportion (Lee et al., 2004). Li et al could 

also demonstrate an enhanced and specific response of cytotoxic T-cells in 5 relapsed AML 

patients who had been treated with subcutaneous injections of autologous AML-DC without 

any severe side effects. Three patients remained in a stable condition for up to13 months, two 

patients died from rapidly progressive AML (Li et al., 2006a). These data prove that DC-

based therapies lead to T-cell activation in vivo. However, a reduction of the blast threshold 

was not yet observed. This means that DC-based therapies might be of special value for AML 

and MDS patients in remission to fight MRD and improve long-time survival. 

 

 

5.7 Challenges in DC vaccination 

In order to evaluate the value of DC vaccination in AML and MDS patients, some consensus 

on quality criteria and immune monitoring is necessary. Protocols for DC preparation and 

quality controls should include criteria like cell source, cell purity, cell viability, markers of 

DC activation, sterility control, veiled appearance, and in vitro T-lymphocyte response. 

Cytokines, growth factors etc. should be manufactured under good manufacturing practice 

(GMP) (Nestle et al., 2001). There is still much debate about selection of culture methods. We 

could demonstrate that DC generation is possible in every case of AML and MDS by a 

pretesting of three different media and selection of the best one. However, no single 

established method for DC generation is known yet that would allow successful generation of 

DC in every given case. Besides, long culture times of the most established media for 

generation of leukemia-derived DC provide another problem (Lee et al., 2002;Rouas et al., 

2004;Woiciechowsky et al., 2001). This problem, of which Ca Ionophores (2-3 days culture 
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time) (Houtenbos et al., 2003) is the exception, brings risks of contamination with bacteria 

etc. and cause high costs.  

Reproduction of DC for vaccination reflects a balance between antigen presenting capacity 

and antigen loading. The optimal DC maturation state is still a critical parameter for the use of 

DC in active immunization. Dhodapkar et al. could demonstrate that the injection of antigen-

loaded immature DC can lead to immune tolerance by inducing IL-10 producing regulatory T-

cells as well as to antigen-specific inhibition of preexisting CD8
+
 cell immunity (Dhodapkar 

et al., 2001). In contrast, mature DC are able to induce functionally superior CD4
+
  and CD8

+
 

T-cells (Banchereau et al., 2001). This means that the quality could be predictive for the 

induction of antileukemic responses. 

The amount of injected DC that is necessary to evoke anti-leukemic responses in AML and 

MDS patients is not yet known and may depend on different factors, such as immune status of 

the patient, residual leukemic burden and antigenic density (Houtenbos et al., 2006;van de 

Loosdrecht et al., 2009). Consequently, immune responses have to be monitored with reliable 

tools that can predict clinical efficacy. One critical point is that the induction of immune 

responses is not necessarily correlated with a clinical response (Nestle et al., 2001). However, 

it has been shown that the clinical outcome of melanoma patients vaccinated with antigen-

pulsed mature DC correlates with the presence of specific T-cells in delayed-type 

hypersensitivity responses (de Vries et al., 2005). Ossenkoppele et al. demonstrated that four 

vaccines, each with 10x10
6
 DC, resulted in strong delayed type hypersensitivity responses in 

CML patients vaccinated with autologous DC (Ossenkoppele et al., 2003). For the generation 

of DC in AML patients, an amount of 4x10
8
 viable AML blasts is needed at diagnosis, based 

on the assumption that an effective vaccination regimen requires four vaccinations with each 

10x10
6
 cells and that the average AML-DC yield is 25% (Houtenbos et al., 2006). 

Injection schedules have to be optimized as they are mostly derived from animal models or 

human vaccination studies in infectious diseases and vaccination with overestimated doses 

might be harmful. Most DC vaccination trials could show highest tumor-specific T-cell 

activation when DC vaccines were applied one or two times a month (Nestle et al., 2001).  

Another unresolved question is the optimal route of administration of DC vaccines. 

Intradermal or subcutaneous injections may lead to better T-cell responses than those 

following intravenous administration (Butterfield et al., 2003;Fong et al., 2001). However, 

these routes of administration rely on the capacity of the injected DC to migrate towards the 
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lymph nodes. Intranodal injections of DC circumvent this problem and allow the delivery of a 

defined amount of DC to the desired anatomic region, which might lead to an increased T-cell 

immunity (Mullins et al., 2003). Fong et al. found Ag-specific T-cell responses in all patients 

following immunization regardless of the route of administration. However, intradermal and 

intralymphatic injections were superior to intravenous injections for the induction of IFN-

gamma production (Fong et al., 2001).  

As most antigens used in DC vaccination protocols are not only tumor-specific antigens, but 

also self-antigens, the induction of strong immune responses against these antigens might lead 

to severe autoimmune disorders. Interestingly, recent studies on DC vaccination that could 

show clinical responses never observed severe side effects or autoimmune complications 

(Avigan et al., 2004;Lee et al., 2004;Li et al., 2006b;Nestle et al., 2001). One possible 

explanation for the lack of autoimmune responses could be that the stimulation of (auto-

directed) T-cell responses is too weak (Dannull et al., 2000). Another explanation could be 

that transient autoantibody responses in vaccinated patients may
 
simply be undetected. Data 

obtained in a mouse model suggest that DC vaccination consistently triggers autoimmune 

responses, but only susceptible subjects develop clinical autoimmune reactions (Bondanza et 

al., 2003). Homma et al. could show that serum levels of antinuclear antibodies (ANA) can be 

elevated in cancer patients after DC vaccination, which might be associated with anti-tumour 

immune response induced by vaccination. Elevation of ANA was correlated with better 

clinical response (Homma et al., 2006). 

Last but not least, there is a need for reliable tools for monitoring of immune responses after 

DC vaccination. At the moment, the focus is mostly on the monitoring of cytotoxic T-cell 

activity, however the induction of T-cell responses is not necessarily correlated with the 

clinical outcome. Qualitative assays of immune effector mechanisms as surrogate markers for 

clinical responses of patients after DC vaccination have to be established (Nestle et al., 2001). 

 

5.8 Conclusion 

DC-based immunotherapy might be a promising new approach to stabilize remissions before 

or after SCT in AML and MDS. Data provided by recent human pilot studies indicate that DC 

vaccination can induce immunological and clinical responses in AML patients. However, 

many problems concerning protocols for successful DC generation, clinical settings of 
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possible DC vaccination trials and monitoring of immune and clinical responses remain to be 

discussed. Hopefully this thesis could contribute to the improvement of DC generation and to 

the establishment of quality-controls for future DC-based immunotherapies. Improved quality 

control, implementation and study reporting may provide a basis for choosing the best DC 

vaccination strategy and give AML and MDS patients a new therapeutic option.
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