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Summary 

Summary 
 
Integrins are α/β heterodimeric transmembrane receptors that can bind to the extracellular 

matrix (ECM) and thereby mediate cell adhesion. Integrins are also signal transducing 

receptors. Since integrins are devoid of enzymatic activity and actin binding capability 

they depend on the recruitment of adaptor, scaffolding and signalling proteins in order to 

couple to the cytoskeleton and to propagate signals that regulate a variety of cellular 

processes including proliferation, survival, differentiation, and migration. One central 

constituent of this multiprotein complex is integrin-linked kinase (ILK), which is 

recruited to β1 and β3 integrin-mediated adhesion complexes. ILK consists of an ankyrin, 

pleckstrin homology (PH) and kinase domain and has been shown to directly bind the 

cytoplasmic parts of these integrin subunits. At the beginning of my thesis it has also 

been thought that ILK possesses kinase activity towards substrates such as Akt and Gsk-

3β. However, the kinase activity of ILK and its physiological relevance was controversial 

due to several reasons: (1) ILK lacks well conserved residues that are important for 

kinase activity, (2) deletion of ILK in several cell types such as keratinocytes, fibroblasts 

or chondrocytes failed to diminsh or ablate phosphorylation of key substrates such as Akt 

or Gsk-3β, (3) genetic studies in C.elegans and D.melanogaster failed to confirm a kinase 

function of ILK in vivo.  

Due to this controversy, it was important to determine whether the catalytic activity of 

ILK exists in a mammalian model system. To this end I established knock-in mouse 

strains with point mutations in ILK that were reported to convert ILK kinase activity in 

vitro either into a constitutive-dead or constitutive-active kinase. Surprisingly, knock-in 

mice carrying mutations in the putative PH domain (R211A, required for kinase activity) 

or in the autophosphorylation site (S343A; required for kinase activity, or S343D; renders 

ILK constitutive-active) do not show any obvious phenotype or changes in Akt or Gsk-3β 

phosphorylation or actin organization. In contrast, mice carrying point mutations in the 

potential ATP-binding site (K220A/M; required for catalytic activity) die shortly after 

birth due to kidney agenesis. This phenotype does not result from impaired kinase 

activity, as the mutations did not alter the phosphorylation levels of reported ILK 

substrates in vivo. In addition, no evidence of kinase activity was detected in vitro. 
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However, these mutations selectively impair the interaction of ILK and its key binding 

partner α-parvin. In line with this, similar kidney defects occur also in α-parvin null mice.  

On the basis of this study, it is now clear that the proposed kinase activity does not exist 

and thus is neither playing a role in mammalian development or adult life nor the 

integrin-actin linkage. However, the adaptor function of ILK is crucial for mammalian 

kidney development. Thus, my studies allow the conclusion that the kinase domain of 

ILK has been mutated in evolution to provide a novel and essential, non catalytic 

function to integrins. 

 
 



Introduction 

Introduction 
 

1. The integrin receptor family 
 
Integrins are α/β heterodimeric type I transmembrane glycoproteins that mediate the 

attachment of cells to the extracellular matrix (ECM) and to other cells. The receptor 

family is evolutionarily highly conserved. Integrins have been identified in mammals, 

chicken and zebrafish, as well as in lower eukaryotes, including sponges, the nematode 

C.elegans (two α and one β subunit, generating two integrins) and the fruitfly D. 

melanogaster (five α and one β subunit, generating five integrins) (Johnson et al., 2009). 

The name “integrin” was coined in the 1980ties to denote the importance of these 

receptors for maintaining the integrity of the cytoskeletal-ECM linkage (Hynes, 2004; 

Tamkun et al., 1986). The majority of integrins links the ECM to the actin cytoskeleton, 

while integrin α6β4 connects to the intermediate filament system. 

Integrins present a bi-directional conduit for mechanochemical information across the 

cell membrane, as they provide a major mechanism to connect the inside of the cell with 

the extracellular environment. Their activation triggers a large variety of signal 

transduction events that affect cell behaviors such as adhesion, proliferation, survival or 

apoptosis, shape, polarity, motility, haptotaxis, gene expression, and differentiation, 

mostly through modulating the cytoskeleton (Takada et al., 2007). Notably, integrins do 

not possess enzymatic or actin-binding activity of their own. 

 
 

1.1 Structure of integrins 

 
Integrin α- and β-subunits have large extracellular domains (approximately 800 amino 

acids) that contribute to ligand binding, single transmembrane domains (approximately 

20 amino acids) and short cytoplasmic tails (13 to 70 amino acids, with the exception of 

β4, which has a length of approximately 1.000 amino acids). While there is a striking 

sequence homology among the different β-subunit cytoplasmic tails, the α-subunit tails 

are highly divergent apart from a conserved GFFKR motif next to the transmembrane 

region, which is important for association with the β-tail (Takada et al., 2007). The 

extracellular domain of the heterodimer consists of a ligand-binding head domain 
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Introduction 

standing on two long legs (Figure 1). The extracellular domains can also associate 

laterally with other proteins such as tetraspanins, growth factor receptors, matricellular 

proteins, and matrix proteases or their receptors at the cell surface (Miranti and Brugge, 

2002). 

 

 

Figure 1: Integrin architecture and schematic representation of integrin activation 
(Moser et al., 2009b). 
Specific contacts between the ectodomain, the transmembrane domain and cytoplasmic 
domains keep the integrin in its bent, inactive conformation. During integrin activation 
the integrin legs, transmembrane domain and cytoplasmic domains separate, resulting in 
an extended integrin conformation. βTD, β tail domain; EGF, epidermal growth factor 
domain; PSI, plexin/semaphorin/integrin domain 
 
 
The ectodomain of an integrin α-subunit is composed of a seven-bladed β-propeller, 

which is connected to a thigh, a calf-1 and a calf-2 domain, together forming the leg 

structure that supports the integrin head. The last blades of the β-propeller contain EF-

hand domains that bind Ca2+ -ions and thereby affect ligand binding (Humphries et al., 

2003). Nine of the integrin α chains contain an additional I domain (Table 1), referred to 

as a von Willebrand factor A domain that almost always constitutes the ligand binding 

site. Ligand binding occurs via a coordinating Mg2+ -ion in the so-called metal-ion-

dependent-adhesion site (MIDAS) motif (Barczyk et al., 2009; Moser et al., 2009b).  

The β-subunit is composed of a βA (I) domain, which is analogous to the I domain of the 

α-subunit, a hybrid domain, a PSI (plexin/semaphorin/integrin) domain, four epidermal 
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growth factor (EGF) domains and a membrane proximal β tail domain (βTD). In integrins 

lacking an I domain, ligands bind to a crevice between the αβ-subunit interface, where 

they interact with a metal ion-occupied MIDAS within the β-subunit and the propeller 

domain of the α-subunit (Figure 1) (Moser et al., 2009b). 

Most integrin β cytoplasmic domains (also called integrin tails) contain one or two motifs 

that are part of a canonical recognition sequence for phosphotyrosine-binding (PTB) 

domains: a membrane proximal NPxY motif and a membrane distal NxxY motif. These 

protein sequences are present in a wide variety of signaling and cytoskeletal proteins, and 

play a crucial role in integrin activation. 

Integrins can exist in low-, intermediate-, and high-affinity states. Based on structural and 

electron microscopy studies, it is believed that integrins are in a low-affinity state when 

their extracellular domains are bent and in a high-affinity state when the extracellular 

domains are extended (Figure 1). Two models have been proposed for the affinity 

change. In both, the inactive integrin is in a bent conformation, with the headpiece facing 

the membrane. In the “deadbolt model” the bent conformation is maintained in the 

activated integrin, but piston-like movements of the transmembrane regions cause sliding 

of the extracellular stalks of the α- and β-subunits. As a consequence, this sliding disrupts 

the interaction between the headpiece and the β stalk just beyond the membrane (Arnaout 

et al., 2005). In the “switchblade model”, dissociation of the α and β cytoplasmic and 

transmembrane regions leads to dislocation of an EGF-like repeat in the β stalk, which 

causes the head region to extend outwards in a switchblade-like movement (Arnaout et 

al., 2005). Support for “the switchblade model” came from the crystal structure of 

integrin αVβ3, which revealed a bent conformation of the head region associated with 

low-affinity for the ligand. It was therefore proposed that the bent form does not bind to a 

ligand and that activated integrins have an extended form (switchblade model) (Takada et 

al., 2007). However, the bent conformation does not always seem to be inactive, 

especially in the context of  binding to small ligands (Askari et al., 2009). 

The transmembrane domains have a key role in integrin activation. The transmembrane 

domains of inactive integrins are engaged in a coiled-coil interaction between canonical 

GxxxG dimerization motifs in each subunit. Separation of integrin transmembrane 

domains is a requirement for integrins to adopt the high-affinity state (Moser et al., 

3 



Introduction 

2009b). The role of integrin cytoplasmic tails in regulating integrin affinity has been 

extensively studied in the rapidly activated leukocyte-specific β2 and platelet-specific 

aIIbβ3 integrins. High integrin affinity has been shown to be associated with separation 

of the α and β cytoplasmic tails. The separation is most likely achieved by binding of 

cytoplasmic proteins to the β-tail and will be discussed later. 

 
 

1.2 Integrins and their ligands 

 
Integrin heterodimers are composed of non-covalently associated α- and β-subunits 

(Hynes, 2002). In vertebrates, the family is comprised of 18 α-subunits and 8 β-subunits 

that can assemble into 24 different heterodimers. Some subunits appear only in a single 

heterodimer, whereas 12 integrins contain the β1 subunit and five contain αV (Figure 2 

and Table 1). Integrins assemble in the endoplasmatic reticulum and are transported to 

the plasma membrane as heterodimers.  

 

Figure 2: Representation of the integrin receptor family grouped by their main 
ligand specificity (Barczyk et al., 2009).  
Vertebrates possess 18 α- and 8 β-subunits, which give rise to 24 heterodimers that can 
be assembled into four distinct ligand binding classes. 
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Table 1: Characteristics of human integrin α-subunits (Barczyk et al., 2009). 

CI, cleavage; αI, αI domain 
 
Integrin α chain 

characteristics 
Cl αI Prototypic ligands Additional 

ligands 

α1β1 (CD49a, 
VLA1) 

1151 aa - X collagens (collagen IV > collagen I; 
collagen IX) 

semaphorin 7A, 
laminin 

α2β1 (CD49b, 
VLA2) 

1181 aa - X collagens (collagen I > collagen IV; 
collagen IX) 

E-cadherin, 
endorepellin, 

laminin 

α3β1 (CD49c, 
VLA3) 

1051 aa, splice 
variants α3A and 

α3B 

X - laminins (LN-511 > LN-332 > LN-
211) 

- 

α4β1 (CD49d, 
VLA4) 

1038 aa - - fibronectin, VCAM-1 - 

α5β1 (CD49c, 
VLA5) 

1049 aa X - fibronectin (RGD) endostatin 

α6β1 (CD49f, 
VLA6) 

1073 aa, splice 
variants α6A and 

α6B 

X - laminins (LN-511 > LN-332 > LN-
211 > LN-411) 

- 

α7β1 1137 aa, splice 
variants X1, X2, 
α7A and α7B 

X - α7X1β1: laminins (LN-511 > LN-
211 > LN-411 > LN-111) 

α7X2β1: laminins (LN-111 > LN-
211 > LN-511) 

- 

α8β1 1025 aa X - fibronectin, vitronectin, 
nephronectin (RGD) 

- 

α9β1 1035 aa - - tenascin-C, VEGF-C, VEGF-D osteopontin 

α10β1 1167 aa - X collagens (collagen IV > collagen 
VI > collagen II; collagen IX) 

- 

α11β1 1188 aa, serted 
domain 21 aa 

- X collagens (collagen I > collagen IV; 
collagen IX) 

- 

αLβ2 (CD11a) 1170 aa - X ICAM-1, -2, -3, -5 - 

αMβ2 (CD11b) 1153 aa - X iC3b, fibrinogen + more - 

αXβ2 (CD11c) 1163 aa - X iC3b, fibrinogen + more - 

αDβ2 (CD11d) 1162 aa - X ICAM-3, VCAM-1 - 

αIIbβ3 (CD41, 
GpIIb) 

1039 aa X - fibrinogen, fibronectin (RGD) - 

α6β4  X - laminins (LN-332, LN-511) - 

αVβ1 (CD51) 1048 aa X - fibronectin, vitronectin (RGD) - 

αVβ3  X - vitronectin, fibrinogen, fibronectin 
(RGD) 

tumstatin 

αVβ5  X - vitronectin (RGD) - 

αVβ6  X - fibronectin, TGF-β-LAP (RGD) - 

αVβ8  X - vitronectin, TGF-β-LAP (RGD) - 

αEβ7 (CD103, 
HML-1) 

1178 aa X X E-cadherin - 

α4β7  - - MadCAM-1, fibronectin, VCAM-1 - 
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Table 2: Characteristics of human integrin β-subunits (Barczyk et al., 2009). 

Integrin β chain Charateristics Notes 

β1 (CD29, GpIIa) 798 aa, splice variants β1A-D, Splice variants β1B and β1C not 
present in mice, minor variants 

with unclear function 

β2 (CD18) 769 aa - 

β3 (CD61, GpIIIa) 788 aa, splice variants β3A, β3B 
and β3C 

β3A major form 

β4 (CD104, TSP-180) 1875 aa, splice variants β4A-E β4A and β4B major forms, 
similar function 

β5  799 aa, splice variants β5A, β5B Both splice variants have similar 
functions 

β6  788 aa - 

β7 (LPAM-1, βP) 798 aa - 

β8  769 aa - 

 
 
Integrins are grouped into subgroups based on ligand-binding properties (Figure 2) or 

based on their subunit composition (Table 1 and 2). It is possible to cluster integrin-

ligand combinations into four main classes, reflecting the structural basis of the 

molecular interaction: collagen-binding integrins, laminin-binding integrins and RGD 

(arginine, glycine, aspartate)-binding integrins (Humphries et al., 2006). Leukocyte-

specific integrins establish cell-cell contacts with endothelial cells by interacting with 

cellular counter-receptors such as intercellular adhesion molecules (ICAMs) and vascular 

cell adhesion molecules (VCAMs) (Ley et al., 2007). 

All five αV containing integrins and two β1 integrins (α5β1, α8β1) share the ability to 

recognize ligands containing an RGD tripeptide active site. RGD constitutes the minimal 

integrin recognition sequence in ligands such as fibronectin, vitronectin, tenascin, 

osteopontin and fibrinogen. α4β1, α4β7, α9β1, the four members of the β2 subfamiliy and 

αEβ7 recognize related sequences in their ligands. α4β1, α4β7 and α9β1 bind to an acidic 

motif, termed “LDV” (lysine, aspartate, valin) that is functionally related to RGD. 

Fibronectin contains the prototype LDV ligand in its type III connecting segment region; 

other ligands (such as VCAM-1 and MadCAM-1) employ related sequences. Four α- 

subunits containing an αA-domain (α1, α2, α10, α11) combine with β1 and form a 

distinct laminin/collagen-binding subfamily. The fourth group includes three β1 integrins 
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(α3β1, α6β1 and α7β1) and α6β4 that are highly selective laminin receptors which do not 

have an αA-domain (Humphries et al., 2006).  

Other integrin ligands include milk fat globule-EGF factor 8 (MFGE8) and complement 

factor iC3b, which facilitate phagocytosis of apoptotic cells and pathogens, respectively; 

the latency-associated peptide of transforming growth factor β (TGFβ), which regulates 

the activation of TGFβ and some of the a disintegrin and metalloproteinase (ADAM) 

family members and matrix metalloproteinase-2 (MMP-2) which participate in ECM 

remodeling during cell adhesion and migration (Table 1) (Legate and Fassler, 2009). 

Integrin ligands can also be generated by proteolysis. Endostatin (derived from collagen 

XVIII), endorepellin (derived from perlecan) and tumstatin (derived from collagen α3) 

are the best-known examples (Bix and Iozzo, 2005; Wickstrom et al., 2005). In addition, 

integrins can bind snake toxins, and certain viruses and bacteria. Some of these 

interactions occur outside the regular ligand-binding sites in the integrins and display 

distinct binding characteristics compared with the binding of physiological ligands 

(Barczyk et al., 2009). 

Alternative splicing of mRNA leads to additional complexity of the integrin family. 

Variants of both the extracellular and cytoplasmic domains have been reported. 

Alternative extracellular domains may account for different ligand-binding affinities or 

variations in the state of activation, while variants of the cytoplasmic domain may 

modulate integrin activity, cytoskeletal associations and/or signaling events (van der Flier 

and Sonnenberg, 2001). The best studied are the four cytoplasmic variants of the β1 

subunit: β1A, β1B, β1C and β1D. Integrin subunit β1A is present in all tissues except 

mature cardiac and skeletal muscle, which instead express the highly homologous β1D 

variant. However, β1A and β1D are not functionally equivalent in embryonic 

development. The replacement of β1A by β1D results in embryonic lethality in mice, 

whereas replacement of β1D with β1A does not lead to severe abnormalities in striated 

muscles in vivo (Baudoin et al., 1998). 

Each of the 24 vertebrate integrins appears to have a specific, non-redundant function. 

This is in part apparent from their ligand specificities but is best proven by the distinct 

phenotypes of the knockout mice of single integrin subunits. The phenotypes reflect the 

different functions of individual integrins and range from a complete block in 
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preimplantation development (β1) through major developmental defects (α4, α5, αV, β8) 

to perinatal lethality (α3, α6, α8, αV, β4, β8) and defects in leukocyte function (αL, αM, 

αE, β2, β7), inflammation (β6), homeostasis (αIIb, β3, α2), bone remodeling (β3), and 

angiogenesis (α1, β3) as well as others (Bouvard et al., 2001; Hynes, 2002). Generation 

of tissue-specific integrin knockout mice that gave rise to severe phenotypes during 

embryonic development provided further insight to the specific function of a given 

integrin. 

 
 

1.3 Bidirectional regulation of integrin signaling 

 
Integrin receptors possess the rare ability to signal bidirectionally across the plasma 

membrane. Ligand binding triggers signal transduction into the cell through the 

recruitment of adaptor and signaling proteins that establish a connection to actin and 

various signal transduction pathways (“outside-in” signaling) which is important for 

example in cell spreading and cell migration. Conversely, intracellular non-integrin 

mediated signals can induce changes in integrin conformation and activation that alters its 

ligand-binding affinity in a process termed “inside-out” signaling or integrin activation. 

Integrin clustering follows the engagement of integrins triggered by the naturally 

multivalent nature of ECM, and it promotes the localized concentration of intracellular 

signaling molecules. 

 
 

1.3.1 Inside-out signaling 

 
Inside-out activation of integrins relys on the binding of cytoplasmic ligands to specific 

sites within the integrin tails. This induces conformational changes that are transmitted to 

the extracellular ligand-binding domains via the transmembrane domains and stalk 

regions. The β-integrin interacting proteins talin and kindlin have emerged as important 

regulators of integrin activation. 

Talin orthologs have been identified in all multicellular eukaryotes studied; vertebrates 

encode two talin isoforms, talin1 and talin2, whereas lower eukaryotes encode only a 

single talin isoform corresponding to talin1 (Moser et al., 2009b). Talins are ~ 270 kD 
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proteins, composed of an N-terminal 47 kD head domain and a C-terminal flexible rod 

domain and form dimers. The talin head consists of a FERM (4.1, ezrin, radixin, moesin) 

domain composed of three subdomains (F1-F3) and an F0 subdomain with no homology 

to known domains (Figure 3). The F3 subdomain resembles a phosphotyrosine-binding 

(PTB) domain and binds to the conserved membrane proximal NPxY motifs in β integrin 

tails (Calderwood et al., 2002), but also to phosphatidylinositol 4-phosphate 5-kinase γ 

(PIPK1γ), and the hyaluronan receptor layilin. The talin rod domain is made of a series of 

domains composed of helical bundles that contain multiple binding sites for the F-actin-

binding protein vinculin, and a second integrin binding site (Figure 3) (Critchley and 

Gingras, 2008). As talin binds to integrin cytoplasmic domains, vinculin and actin 

filaments it is suggested that it forms an important link between the cytoskeleton and the 

ECM (Critchley and Gingras, 2008).  

 

 

Figure 3: Schematic representation of the domain structure of talin (Roberts and 
Critchley, 2009). 
Talin binds to β integrin cytoplasmic tails and regulates integrin activation in cooperation 
with kindlin proteins. In addition, talin can bind to actin and vinculin and thereby links 
the ECM to the actin cytoskeleton. 
 
 
Talin's role in integrin activation was originally demonstrated by the ability of its F3 

domain to activate αIIbβ3 integrin when expressed in CHO cells (Calderwood et al., 

2002; Calderwood et al., 1999). Knock-out and knock-down experiments subsequently 
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reinforced the notion that talin is a key component of integrin affinity regulation 

(Nieswandt et al., 2007; Petrich et al., 2007; Tadokoro et al., 2003).  

Inside-out signaling has been extensively studied in circulating blood cells such as 

platelets, leukocytes and lymphocytes which present integrin αIIbβ3 or β2 integrins on 

their surfaces. In these cells, integrin activation has to be rapid and tightly controlled as 

constitutively active αIIbβ3 for example, would trigger pathologic thrombus formation 

causing strokes, myocardial infarction and other embolic events. This tight regulation is 

achieved by controlling the binding of integrin-activating proteins such as talin. NMR 

studies revealed an intramolecular autoinhibitory interaction between the talin C-terminus 

and its PTB domain that masks the integrin binding pocket. The precise mechanism that 

disrupts this autoinhibition requires further investigation, although the small GTPase 

Rap1 and its binding partner RIAM have been shown to play a key role in talin activation 

(Figure 4). In addition, PIPK1γ90 and PIP2 have also been implicated in this process 

(Roberts and Critchley, 2009). The talin-integrin interaction might additionally be 

controlled on the receptor level through phosphorylation of the β integrin tail. The 

tyrosine residue within the β1 and β3 integrin NPxY motif can be phosphorylated by Src 

family kinases. When this tyrosine is mutated to phenylalanine it reverses the integrin-

dependent spreading and migration defects in v-Src-transformed cells, suggesting that 

phosphorylation might inhibit talin binding (Moser et al., 2009b; Sakai et al., 2001).  
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Figure 4: Agonist stimulation triggers integrin activation (Han et al., 2006). 
Agonist receptors like G-protein coupled receptors or tyrosine-kinase coupled receptors 
induce the formation of diacylglycerol (DAG) and increased Ca2+ leading to the 
activation and/or translocation of active GTP bound Rap1 to the plasma membrane via 
activation of protein kinase C (PKC) or a Rap guanine nucleotide exchange factor (Rap-
GEF). At the plasma membrane, activated Rap interacts with RIAM, leading to the 
recruitment of talin to form the integrin activation complex. 
 
 
Mutations and truncations of the β3 integrin tail C-terminal to the the talin binding site 

decrease integrin affinity for ligands (Ma et al., 2006), which raised the possibility that 

additional factors besides talin also affect the affinity states of integrins. Indeed, recent 

work showed that talin alone is not sufficient for integrin activation and that kindlin 

proteins are as important in mediating this function (Montanez et al., 2008; Moser et al., 

2009a; Moser et al., 2008; Ussar et al., 2008). Kindlins are essential components of the 

integrin adhesion complex, which bind to the membrane distal NxxY motif of β1, β2 and 

β3 integrins (Böttcher et al., 2009; Meves et al., 2009). As kindlins and talin bind distinct 

regions of the β integrin tail, they most likely cooperate to regulate integrin affinity. 

Although kindlins are not sufficient to shift integrins to a high-affinity state, they 

facilitate talin function. Conversely, talin depends on kindlins to promote integrin affinity 

because talin-head overexpression failed to induce activation of αIIbβ3 in kindlin-

depleted CHO cells. Thus, kindlins require talin, and talin alone is not sufficient to 

increase integrin affinity (Moser et al., 2009b). 

For more information about the kindlin protein family, the reader is referred to the second 

publication (review) presented in this PhD thesis. 
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1.3.2 Outside-in signalling 

 
Extracellular ligand binding to integrins is believed to induce conformational changes 

within the integrin heterodimer, including the outward swing of the hybrid domain, 

separation of the α and β “leg” domains and separation of the transmembrane and 

cytoplasmic domains. This leads to the interaction of the cytoplasmic tails with 

intracellular signaling molecules (“switchblade” model) (Arnaout et al., 2005). Once 

integrins are activated and clustered they are able to transmit the vast array of 

intracellular changes collectively referred to as “outside-in” signaling. Interestingly, up to 

now, around 156 components have been described that build up the so called “integrin 

adhesome”. Theoretically, interactions among those components could give rise to 690 

interactions (Zaidel-Bar et al., 2007). 

Integrin activation leads to downstream signaling events that can be divided into three 

temporal stages (Figure 5) (Legate et al., 2009). The immediate effects of integrin 

activation are the up-regulation of lipid kinase activity that increases the local 

concentration of the phosphoinositide second messengers PtdIns-4, 5-P2 and PtdIns-3, 4, 

5-P3 as well as rapid phosphorylation of specific protein substrates. Within several 

minutes these changes then lead to the activation of diverse signaling pathways. 
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Figure 5: Integrin activation leads to downstream signaling events that can be 
divided into three temporal stages (Legate et al., 2009). 
The immediate effects are increased lipid kinase activity and increased tyrosine 
phosphorylation. Short-term changes consist of cytoskeletal rearrangements and long-
term effects are regulation of various signaling pathways and gene expression. 
 
 
One important event in integrin-mediated signaling is cell adhesion-dependent 

phosphorylation of key focal adhesion proteins such as FAK and Src. Phosphorylation of 

FAK at tyrosine-397 creates a docking site for the SH2 domain of Src family kinases. 

Binding of Src to the FAK phosphotyrosine-397 site releases an autoinhibitory 

interaction and consequently activates Src. The activated FAK/Src complex in turn 

phosphorylates components of focal adhesions including FAK, paxillin and p130Cas, 

resulting in the recruitment of additional signaling intermediates including Grb2 and 

activation of downstream signaling pathways such as the Ras/MAPK signaling pathway. 

Another central event is the activation of Rho family GTPases and other actin regulatory 

proteins, which drive the reorganization of the actin cytoskeleton allowing cells to adopt 

their characteristic shape and initiate migration. Long-term consequences of integrin 

outside-in signaling are the activation of proliferation and survival pathways, leading to 

the induction of genetic programs to control cell fate (Legate et al., 2009).  
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Importantly, other signaling pathways such as growth factor signaling interact with 

integrin-mediated signaling on multiple levels. They can regulate integrin affinity for 

their ligands, regulate the activity of the integrin-associated signaling proteins, and 

control the activity of the downstream effectors such as ERK, Akt and JNK and the Rho 

GTPases.  

In addition, key protein complexes such as the integrin-linked kinase 

(ILK)/PINCH/parvin (IPP) complex are recruited to cell-ECM contacts. The IPP complex 

connects integrin signaling with growth factor signaling through interaction of PINCH 

with Nck2 and can connect integrins to the actin cytoskeleton through direct binding of 

parvin proteins to F-actin or through interaction of ILK with paxillin (Legate et al., 

2006). In addition, ILK has initially been identified as a true kinase and later shown to 

directly phosphorylate substrates such as Akt and Gsk-3β and thereby regulate cell 

survival and cell proliferation (McDonald et al., 2008). However, ILK lacks well 

conserved amino acid residues that are required for eukaryotic kinase activity. Therefore 

its kinase activity and the physiological relevance was hotly debated (Legate et al., 2006). 

Interestingly, integrin-dependent processes are strongly influenced by mechanical 

properties of the matrix such as rigidity and tensile strength. Conversely, endogenous 

tension (cell contractility) is transmitted through integrins to the ECM to influence matrix 

rigidity. This occurs through the recruitment of cytoplasmic proteins that induce 

downstream effectors involved in regulating matrix deposition or remodeling (Berrier and 

Yamada, 2007). 

In summary, the composition of the ECM, its mechanical properties and the growth 

factor environment regulate the outside-in signaling by integrins in cooperation with 

growth factor receptors (Figure 6). 
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Figure 6: Examples of signaling pathways located downstream from integrin 
activation and their possible crosstalk (Legate et al., 2009). 
Growth factor signaling interacts with integrin-mediated signaling on multiple levels: by 
regulating integrin affinity for ligands (I), by regulating the activity of the integrin-
associated signaling proteins such as FAK, Src and PI3K (II), and by regulating the 
activity of the downstream effectors such as ERK, Akt and JNK and the Rho GTPases 
(III). The central signaling module downstream of integrins is the Src/FAK complex, 
which activates ERK and JNK to regulate cell survival, proliferation and differentiation. 
In addition, through activation of Crk/Dock180 or alternatively PIX/GIT pathways, the 
Src/FAK complex regulates Rho GTPase activity, resulting in cytoskeletal reorganization 
and regulation of cell migration, adhesion and polarity. Integrins also activate PI3K, 
which in collaboration with ILK and mTOR is thought to regulate cell survival through 
Akt.  
Growth factor receptor (GFR), PI-3-kinase (PI3K), Integrin-linked kinase (ILK), 
mammalian target of rapamycin complex (TORC), Focal Adhesion kinase (FAK), 
extracellular signal-regulated kinase (ERK), Crk-associated substrate (Cas), Janus kinase 
(JNK), dedicator of cytokinesis 1 (DOCK180), PAK interactive exchange factor (PIX), 
G-protein-coupled receptor kinase-interacting protein (GIT). 
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1.4 Assembly of integrin-dependent adhesion structures 

 
Matrix adhesions are highly dynamic structures that organize around activated integrin 

clusters. All subtypes of matrix adhesions are areas of very close contact between the 

plasma membrane and the substrate. The number of adhesions, their morphology and 

molecular composition vary widely between cell types.  

The current nomenclature differentiates between five different types of integrin-

containing cell-substrate adhesion structures: focal complexes, focal adhesions (FAs), 

fibrillar adhesions, podosomes and 3D-matrix adhesions. Focal complexes are small 

(~100 nm in diameter), dot-like transient matrix contact structures that provide early cell 

attachment at the leading edge. If stabilized, they will subsequently mature and form FAs 

(size around 1-5 µm). The molecular nature of this transition is still enigmatic, even 

though differences in protein composition, phosphorylation status and dynamics were 

detected. The LIM-domain protein zyxin, for example, constitutes a distinctive protein 

marker that localizes to FAs but not to the nascent focal complexes (Zaidel-Bar et al., 

2003).  

Focal adhesions are structures that are predominantly found in resting cells or in areas of 

cells with low motiliy and display much slower turnover than focal complexes. 

Structurally, mature FAs are elongated and localized at the termini of stress fibers. Stress 

fibers consist of actin filament bundles that contain a multitude of accessory proteins, 

including actin filament crosslinkers (such as α-actinin and filamin) and myosin II. 

Myosin II possesses both actin-bundling activity (motor-independent) and contractile 

activity. The presence of myosin II is responsible for the contractile nature of the stress 

fibers such that FAs experience continuous pulling forces, which they in turn transmit to 

the ECM through the associated integrins (Geiger et al., 2009). Interestingly, it has 

recently been shown that the formation of focal complexes does not require myosin II 

activity whereas both functions seem to be essential for adhesion maturation (Choi et al., 

2008). 

FAs can subsequently transform into streak-like fibrillar adhesions which differ from FAs 

in their characteristic morphology, consisting of elongated fibrils or array of dots, and 

their distribution in more central areas under the cells. Certain integrin receptors are 
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preferentially concentrated at different cell-matrix adhesion structures. For example, 

fibroblasts adhering to a 2D fibronectin matrix will form focal complexes and focal 

adhesions that are rich in integrin αVβ3 (Figure 7). In the same cells integrin α5β1 is 

often excluded from the focal adhesion core, but localizes to fibrillar adhesions (Berrier 

and Yamada, 2007). 

Podosomes are found naturally in osteoclasts or cells of hematopoietic origin. They 

compare with focal complexes in both size and half-life, but are composed of a ring-like 

assembly of matrix adhesion components surrounding an F-actin core (Gimona et al., 

2008). 

The biological relevance of FAs was initially questioned, since equivalent structures to 

these prominent 2D adhesion structures were not observed in tissues. However, FAs have 

been found in cells at points of high fluid shear stress in blood vessels (Romer et al., 

2006). 

 
 

 

Figure 7: Comparison of focal adhesions with fibrillar adhesions (Berrier and 
Yamada, 2007). 
Subsets of proteins are recruited to different adhesion structures suggesting that 
adhesions may have signaling specificity. For instance, focal adhesions contain vinculin 
and numerous tyrosine-phosphorylated proteins including FAK and paxillin. In contrast, 
fibrillar adhesions contain high levels of tensin, low levels of protein tyrosine 
phosphorylation, and integrin α5β1 instead of integrin αVβ3. 
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1.4.1 The integrin-actin connection 

 
A central consequence of integrin outside-in signaling is the establishment of the 

integrin-actin connection allowing cells to change their cell shape and to initiate 

migration. This linkage is a network of transient, highly dynamic interactions between 

FA proteins and F-actin. FA proteins that are involved in establishing and maintaining the 

integrin-cytoskeleton linkage can roughly be divided into four classes: (1) integrin-bound 

proteins that directly bind actin, such as talin, α-actinin and filamin; (2) integrin-bound 

proteins that indirectly associate with/regulate the cytoskeleton, such as kindlin, ILK, 

paxillin and FAK; (3) non-integrin-bound actin-binding proteins, such as vinculin; and 

(4) adaptor and signaling molecules that regulate the interactions of the proteins from the 

above mentioned groups (Legate et al., 2009). 

Experiments utilizing novel imaging technologies such as total internal reflection 

fluorescence microscopy and fluorescent speckle microscopy, in combination with 

structural, biochemical, and in vivo data, point to talin, vinculin, α-actinin, and ILK as the 

crucial structural elements of the integrin-actin linkage, as well as the main components 

regulating FA growth. 

The initial integrin-cytoskeleton linkage following fibronectin binding involves the 

recruitment of talin to β integrins and the establishment of a 2-pN slip bond, which 

provides the initial force applied by the cytoskeleton to the extracellular ligand (Jiang et 

al., 2003). The importance of talin in connecting integrins to the actin cytoskeleton is 

underlined by in vivo studies in mice. Mice lacking talin1 die during gastrulation due to a 

defect in cytoskeletal organization and cell migration (Monkley et al., 2000). Ablation of 

both talin1 and talin2 in skeletal muscle causes defects in myoblast fusion, sarcomere 

assembly and maintenance of myotendinous junctions. Interestingly, talin1/2-deficient 

myoblasts express functionally active β1 integrins suggesting that the defects are caused 

by disruptions of the interaction of integrins with the actin cytoskeleton (Conti et al., 

2009). 

Talin binding is rapidly followed by the recruitment of proteins such as vinculin to the 

nascent adhesion. Vinculin binds to several sites in the talin rod that are normally buried 

in helical bundles but may become exposed upon mechanical stretch. Expressing the talin 
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head domain, which does not bind vinculin, in talin-null cells, activates integrins but fails 

to form detectable focal contacts (Zhang et al., 2008). This study suggests that talin 

makes the initial contacts between integrins and actin, but it is not sufficient to maintain 

this connection on its own. Vinculin is required to strengthen the linkage by acting as a 

crosslinker and by stabilizing the talin-actin interaction by binding directly to both 

proteins (Legate et al., 2009).  

Recent studies have highlighted the importance of α-actinin, a binding partner of both 

talin and vinculin, in linking integrins to the actin cytoskeleton. It has been shown that 

the force-dependent strengthening of integrin-cytoskeleton linkages correlates with the 

incorporation of α-actinin into integrin adhesion sites (Laukaitis et al., 2001). 

ILK as a core scaffold protein connecting integrins with the actin cytoskeleton and with 

growth factor signaling will be discussed in more detail below. 

Most proteins that mediate the integrin-cytoskeleton linkage act by some means or other 

on Rho GTPases. Mammalian Rho GTPases are a family of 20 signaling proteins, which 

cycle between an active GTP-bound state and an inactive GDP-bound state. Three types 

of proteins can regulate the cycling and thereby the activation of Rho GTPases: guanine 

nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine 

nucleotide dissociation inhibitors (GDIs). The most important regulators of actin 

dynamics downstream of integrins are RhoA, Rac and Cdc42. The activation of RhoA, 

Rac or Cdc42 leads to the assembly of contractile actin-myosin filaments, protrusive 

lamellipodia and protrusive actin-rich filopodia, respectively (Etienne-Manneville and 

Hall, 2002). Although Rac and Cdc42 lead to morphologically distinct protrusions at the 

plasma membrane (lamellipodia and filopodia), they both initiate peripheral actin 

polymerization through the Arp2/3 complex whereas RhoA stimulates actin 

polymerization through formins (Jaffe and Hall, 2005).  

Regulation of actomyosin-based contraction by RhoA, Rac and Cdc42 is antagonistic. 

RhoA activates Rho-kinase (ROCK), which in turn phosphorylates and inactivates the 

phosphatase that dephosphorylates myosin light chain (MLC), resulting in increased 

contractility. Conversely, Rac activates PAK, which phosphorylates and inactivates MLC 

kinase, leading to decreased contractility, which promotes cell spreading (Vicente-

Manzanares et al., 2005). 
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Interestingly, besides the remote actin nucleation upon integrin activation by Rho-family 

GTPases, Butler et al. have shown that purified adhesion complexes possess the entire 

machinery to actively assemble F-actin suggesting that Arp2/3 and formins might also be 

recruited directly to matrix adhesion complexes through integrin-associated adaptor 

proteins (Butler et al., 2006). For more details, the reader is referred to the first 

publication (comment) presented in this PhD thesis. 

In addition, mechanotransduction is an essential function of FAs that requires an intact 

integrin-actin connection. Conversion of physical signals into chemical signals is critical 

for many biological and pathological processes including morphogenesis, wound healing, 

cancer, atherosclerosis and osteoporosis. In principle, mechanotransduction can be 

achieved through force-induced protein conformational changes, modifications and/or 

positional changes (Bershadsky et al., 2006; Orr et al., 2006). The ECM protein 

fibronectin is so far the best-studied example. Friedland et al. provide evidence that the 

major fibronectin-binding integrin, α5β1, undergoes a force-dependent conformational 

transition. The emerging picture from these results is that initial low-tension binding of 

integrin α5β1 to fibronectin involves association of the integrin with the RGD sequence, 

which under force converts to a higher-strength, more readily cross-linked bond that 

involves the synergy site. Only this second conformation can activate FAK and transmit 

downstream signals (Friedland et al., 2009; Schwartz, 2009). Focal adhesion proteins that 

serve as force sensors in cells include talin and p130Cas (Sawada et al., 2006). 

Interestingly, also ILK has been recently shown to act as a cardiac stretch sensor, 

fulfilling a structural role as a mechanical integration site that links membrane-bound β 

integrins via β-parvin and α-actinin to the sarcomeric Z-disc to exert a functional role in 

the regulation of cardiomyocyte contractility via Akt/VEGF signaling (Bendig et al., 

2006). 

 
 

1.5 The ILK/PINCH/parvin (IPP) complex 

 
The response of the cell to integrin ligation depends not only on the type of integrin 

heterodimer but also on the molecular composition of the adhesion complex. The 
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ILK/PINCH/parvin (IPP) complex is a central constituent of at least β1 and β3 integrin 

containing adhesion sites, from where it regulates multiple cellular processes. 

 
 

1.5.1 The molecular composition of the IPP complex 

 
The assembly of the IPP complex precedes cell adhesion, which indicates that these 

complexes first form in the cytosol (Zhang et al., 2002). Interestingly, the stability of the 

individual IPP components is dependent on complex formation (Fukuda et al., 2003). 

ILK, which is ubiquitously expressed in mammalian tissues, is composed of three 

structurally distinct domains. The N-terminus consists of four (five) ankyrin repeats 

followed by a PH-like domain and a C-terminal kinase-like domain (Figure 8). 

Interestingly, almost all adaptor proteins that bind either directly or indirectly to ILK 

regulate the actin cytoskeleton and hence could be responsible for the shape change and 

FA dysfunction associated with altered ILK expression. 

The ankyrin repeats mediate the interaction between ILK and PINCH, a family of LIM 

domain only containing proteins consisting of two members, PINCH-1 and PINCH-2. 

Both PINCH proteins contain five LIM domains, the first of which is responsible for their 

interaction with ILK (Chiswell et al., 2008; Tu et al., 2001; Tu et al., 1999). PINCH can 

signal to receptor tyrosine kinases (RTKs) through the SH2-SH3 adaptor Nck2, thereby 

PINCH couples growth factor signaling to integrin signaling (Vaynberg et al., 2005). The 

PH domain of ILK has been shown to bind phosphatidylinositol-3,4,5-trisphosphate 

(PtdIns(3,4,5)P3) (Delcommenne et al., 1998; Pasquali et al., 2007). The C-terminal 

kinase-like domain binds several adaptor proteins including the parvins that consist of 

three members; the ubiquitously expressed α-parvin (also known as actopaxin or CH-

ILKBP), -parvin (also known as affixin), which is primarily expressed in heart and 

skeletal muscle, and γ-parvin, which is expressed exclusively in the haematopoietic 

system (Chu et al., 2006; Nikolopoulos and Turner, 2000; Olski et al., 2001; Tu et al., 

2001; Yamaji et al., 2001). Parvins are characterized by an N-terminal polypeptide 

stretch followed by two calponin homology (CH) domains arranged in tandem, of which 

the second has been shown to mediate its interaction with ILK (Tu et al., 2001).  
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Figure 8: Anatomy of the IPP complex and its main binding partners (Legate et al., 
2006). 
ILK consists of three structurally distinct domains, N-terminal ankyrin repeats (ANK), a 
pleckstrin homology domain (PH) and a C-terminal kinase-like domain. Via ANK1, ILK 
binds to the PINCH isoforms as well as to ILK associated phosphatase (ILKAP). The PH 
domain is believed to bind phosphatidylinositol-3, 4, 5-trisphosphate (PtdIns(3, 4, 5)P3. 
The kinase domain of ILK binds parvins, paxillin, kindlin-2, the cytoplasmic tails of β 
integrins, and maybe the kinase substrate Akt/PKB and PDK1.  
 
 

1.5.2 The biological functions of the IPP complex 

 
The biological functions of the IPP complex proteins have been extensively studied in 

several organisms and cell types. Genetic ablation of ILK or PINCH-1 in mice results in 

embryonic lethality (Li et al., 2005; Sakai et al., 2003). Mice lacking ILK expression die 

during peri-implantation due to a failure in epiblast polarisation, which is associated with 

severe defects in F-actin organization at adhesion sites (Sakai et al., 2003). ILK-deficient 

fibroblasts display defects in cell adhesion, spreading and migration due to a delay in the 

formation of FAs, which also fail to mature and are poorly linked to a disorganized actin 

cytoskeleton (Sakai et al., 2003; Stanchi et al., 2009). The defective maturation of ILK-

deficient FAs into fibrillar adhesions leads to defects in deposition of the fibronectin 

matrix (Stanchi et al., 2009). Interestingly, this function requires the interaction of ILK 

with α-parvin but not with PINCH-1 (Stanchi et al., 2009). The essential role of ILK in 
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linking integrins to the actin cytoskeleton has been further confirmed in several tissue and 

cell types (McDonald et al., 2008). Recent studies suggest that ILK does not only 

regulate the actin cytoskeleton but can also modulate the microtubule network and 

influence mitotic spindle orientation (Dobreva et al., 2008; Fielding et al., 2008). 

However, as loss of ILK can lead to both increased or decreased proliferation rates in 

vivo, depending on the cellular context (Gkretsi et al., 2008; Grashoff et al., 2003; Lorenz 

et al., 2007; Sakai et al., 2003), the relevance of these functions needs to be established. 

PINCH-1 is ubiquitously expressed throughout mammalian development and adult life, 

whereas PINCH-2 expression starts during the second half of embryonic development 

and has a slightly more restricted expression pattern (Braun et al., 2003). Ablation of 

PINCH-2 does not affect mouse development, but loss of PINCH-1 results in abnormal 

epiblast polarity, impaired cavitation, and detachment of endoderm and epiblast from 

basement membranes (Li et al., 2005). However, the functions of PINCH-1 are not 

restricted to the regulation of cell-matrix adhesions as PINCH-1 has been shown to 

regulate cell-cell adhesion of the endoderm and epiblast as well as cell survival in the 

endoderm layer (Li et al., 2005). As ILK has not been shown to play a role in these 

processes, it suggests that several functions of PINCH are independent of the IPP 

complex.  

Like ILK and PINCH, parvins play a role in modulating cell spreading and actin 

organization downstream of integrins. However, the role of parvins in these processes is 

more complex and the precise functions of the different isoforms in vivo are not clear. 

Mice lacking β- or γ-parvin show no obvious phenotypes, whereas α-parvin null mice die 

between E11.5 and E14.5, suggesting that the parvin isoforms can functionally substitute 

for each other during development (Chu et al., 2006; Montanez et al., 2009). All parvins 

contain two CH-domains and bind F-actin in vitro, but the functional significance of this 

interaction is unknown (Olski et al., 2001; Yamaji et al., 2004; Yamaji et al., 2001). The 

primary sequences of both CH domains of α-parvin are highly diverged from the typical 

CH-domains found in actin binding domains (Gimona et al., 2002), and it has been 

shown that α-parvin uses these domains to interact with paxillin (Lorenz et al., 2008; 

Nikolopoulos and Turner, 2000; Wang et al., 2008). Since the C-terminal region 

containing the CH-domains is highly conserved throughout the parvin family, it is likely 
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that all parvin paralogues may be able to bind paxillin and its homologue Hic-5 (Lorenz 

et al., 2008).  

ILK is an important scaffold protein due to its interaction with several actin regulatory 

proteins whereas the importance of its signaling function is unclear. 

 
 

1.5.3 The putative kinase activity of ILK  

 
As integrins themselves lack enzymatic activity, they propagate intracellular signals by 

recruiting signalling proteins such as tyrosine and serine/threonine kinases to their 

cytoplasmic tails. In the study that identified ILK, it was proposed that ILK acts as a 

direct binding partner of β1 integrin. Furthermore, it was shown that bacterially expressed 

recombinant ILK possesses kinase activity and phosphorylates serine and threonine 

residues in the cytoplasmic tail of β1 integrin (Hannigan et al., 1996). Since then, about 

200 studies confirmed the putative kinase activity of ILK towards a diverse set of 

substrates ranging from Akt, a kinase regulating key cellular functions such as cell cycle 

progression, survival, differentiation and energy homeostasis, to myosin light chain 

(MLC) whose phosphorylation regulates actomyosin contractility and vascular tone. 

As ILK lacks well conserved motifs required for eukaryotic protein kinase activity 

(Hanks et al., 1988), the putative kinase activity and its physiological relevance has 

remained a subject of debate and controversy. Although ILK contains the lysine residue 

in subdomain II required for phosphotransfer and the A/SPE motif in subdomain VIII 

involved in substrate recognition, the GxGxxG consensus sequence of the kinase 

subdomain I required for covering and anchoring the non-transferable phosphates of ATP 

is not conserved in ILK from different species. This suggests that if ILK is indeed a 

kinase, this function would have evolved late during evolution. It is, however, even more 

difficult to reconcile that ILK lacks the catalytic base in subdomain VIb, which accepts 

the proton from the hydroxyl group of the substrate during the phosphotransfer reaction, 

as well as the DFG motif in subdomain VII required to align the γ-phosphate of ATP. A 

conserved lysine, which neutralizes the charge on the γ-phosphate of ATP and a 

conserved asparagine which chelates the secondary magnesium ions, both in subdomain 

VIb, are also missing. Due to these characteristics, ILK has also been classified as a 
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pseudokinase, a catalytically inactive remnant of an active kinase that uses its substrate 

recognition motif to interact with other proteins (Boudeau et al., 2006).  

However, several lines of biochemical and cell biological evidence pointed to the 

possibility that ILK might be an active kinase (Hannigan et al., 1996). It has been shown 

that recombinant ILK expressed in bacteria can phosphorylate the cytoplasmic tail of β1 

integrin as well as the model substrate myelin basic protein (Delcommenne et al., 1998; 

Hannigan et al., 1996). Furthermore, purified ILK from mammalian cell extracts was 

shown to co-immunoprecipitate and phosphorylate Akt (Persad et al., 2001). Mutational 

analysis has been used to gain further insight to the catalytic activity of ILK, and several 

mutations have been described to abrogate the kinase activity in vitro. A serine (S) to 

alanine (A) substitution in the potential autophosphorylation site (S343A), an arginine 

(R) to A substitution in the potential PtdIns(3,4,5)P3 binding site of the PH-domain 

(R211A), or a lysine (K) to A or to methionine (M) substitution in the putative ATP-

binding site (K220A/M) have all been shown to result in a catalytically inactive ILK 

(Filipenko et al., 2005; Persad et al., 2001), whereas a S to aspartate (D) substitution in 

the autophosphorylation site (S343D) was shown to generate a hyperactive kinase 

(Persad et al., 2001). Importantly, however, these mutations have also been shown to 

disrupt the interaction of ILK with essential binding partners. The inactivating R211A 

mutation apparently disrupts the interaction with α-parvin and impairs the recruitment of 

ILK to FAs (Attwell et al., 2003), whereas the K220A mutation reduces β-parvin binding 

(Yamaji et al., 2001). These findings together with the observation that a combination of 

two inactivating mutations (S343D and K220M) can reverse the kinase dead phenotype 

despite abolishing the ability to bind ATP (Lynch et al., 1999), suggest that these 

mutations might affect the activation status of downstream substrates such as Akt 

phosphorylation by an indirect mechanism. 

For more details and information the reader is referred to the third and fourth publication 

presented in this PhD thesis. 
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2. Kidney physiology  
 

Kidneys are paired, mesoderm-derived organs that belong to the excretory/urinary 

system. In mammals, the urinary system includes two kidneys, two ureters, urinary 

bladder and urethra. In producing urine, the kidneys excrete wastes such as urea and 

ammonium and reabsorb glucose and amino acids. However, the kidneys’ role is not 

merely excretion. As part of the urinary system they are also regulatory organs, 

maintaining homeostasis along with the respiratory (lungs remove water and CO2) and 

the integumentary system (blood vessels dilate to allow more heat to escape; sweat 

glands produce sweat). The urinary system controls the composition of the blood, 

eliminates waste through filtration, reabsorption, and secretion and regulates the water 

balance through retention and excretion of acids, bases, ions and salts. In addition, it 

influences the blood pressure through production of the renin hormone and it helps to 

maintain a constant calcium level in the blood through conversion of cholecalciferol into 

vitamin D, which stimulates calcium absorption from the kidney.  

 
Anatomically the kidney consists of an outer cortex and an inner region, which is divided 

into the medulla and the renal pelvis (Figure 9). Nephrons are the functional units of the 

kidney which reside in the cortex and extend partly into the medulla. The initial filtering 

portion of a nephron is the renal corpuscle which is formed from a tuft of capillaries at 

the head of each nephron known as the glomerulus which is enclosed in the Bowman's 

capsule. The glomerular capillaries originate from an afferent arteriole and recombine to 

form an efferent arteriole. Between the glomerular capillaries are clusters of phagocytes 

called mesangeal cells. The proximal tubule arises directly from the Bowman's capsule. 

The epithelial cells of the proximal tubule are closely fused with one another via tight 

junctions near their apical surfaces, which are densely covered by microvilli giving rise to 

a prominent brush border. The proximale tubule connects with the intermediate tubule 

also known as the descending loop of Henle. The distale tubule arises from the ascending 

loop of Henle and merges via connecting tubules to form collecting ducts which pass 

through the cortex and medulla to the renal pelvis.  
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Figure 9: Anatomy of the adult kidney and the position and arrangement of a 
nephron (Schedl, 2007). 
The kidney consists of an outer cortex and an inner region, which is divided into the 
medulla and the renal pelvis. Nephrons are the functional unit of the kidney and contain 
the glomerulus where blood ultrafiltration takes place. 
 
 
The nephrons (about a million in each human kidney) form urine by three precisely 

regulated processes: filtration, reabsorption, and secretion. The first step of urine 

formation is glomerular filtration (ultrafiltration). The glomerular blood pressure provides 

the driving force for water and solutes to be filtered out of the blood into the space made 

by Bowman's capsule. The glomerular capillary wall consists of three layers, which 

together combine to an effective filtration system: the fenestrated capillary endothelial 

layer, the basement membrane, rich in collagen IV, laminin and nidogen and the 

podocyte (specialized epithelial cell) cell layer. The most selective filtration is believed to 

take place at the diaphragms of the slit pores formed by foot-like projections of podocytes 

onto the basement membrane. The glomerular filter is freely permeable to water, mineral 

ions (Na+, Ka+, Ca2+, Cl-) and to small organic molecules such as glucose. Plasma 

proteins with molecular weights above 40.000 daltons are passing only in small amounts, 

so urine is normally almost protein-free.  
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Pathological malfunction of podocytes causes, however, large quantities of protein in the 

urine (proteinuria). But also the loss of many of the plasma constituents (sodium, 

potassium, and water) that are freely filtered across the glomerular capillary walls must 

be avoided. This is achieved in a second step in the proximal tubule in which these 

substances are actively reabsorbed regardless of the ionic balance of the body. The 

energy for active reabsorption is provided by a Na+-concentration gradient generated by 

Na+-K+ pumps located in the basolateral membrane of proximal tubular cells. In addition 

to its role in reabsorption, the proximal tubule is the site at which secretion of numerous 

substances such as metabolic products (hydroxybenzoates, neurotransmitters, bile 

pigments, uric acid) or drugs and toxins occurs. In contrast, the uptake and secretion of 

mineral ions in the distal tubule and collecting ducts is regulated by the renin-angiotensin 

system. This is achieved by two specialized cell types, the P and I cells in the epithelium 

of the distal tubule and the collecting duct. The P cells absorb sodium and water from the 

tubular fluid and secrete potassium into the tubular fluid while I cells secrete hydrogen 

ions and reabsorb bicarbonate. The efficiency of sodium uptake and potassium secretion 

is mainly regulated by the hormone aldosterone which activity is in turn regulated by the 

enzyme renin. The osmolality of the plasma is regulated by adjusting the amount of water 

reabsorbed by the collecting ducts. Finally, renal calyxes, ureters, urinary bladder, and 

urethra comprise the urinary tract. Their function is to collect and store the urine formed 

by the kidneys (Richards, 2006). 

 
All animals must excrete waste products of their metabolism in order to maintain a 

constant body composition despite changes in the external environment. The excretory 

organs in higher species range from a single excretory cell in the nematode C.elegans to 

malphigian tubules in insects; nephridia in annelids; rectal glands in sharks as well as 

kidneys in amphibians, birds and mammals (Table 3). Despite the heterologous 

appearance of the different excretory systems many genes that are involved in the 

development of such organs are evolutionarily conserved.  
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Table 3: Selected characteristics of excretory systems of different species. 
Modified from (Igarashi, 2005). 
 

Organism Excretory organ Composition and function 
Differences from 

human 

C.elegans excretory cell 

four cell types make up the 
excretory system: pore cell, duct 

cell, canal cell, and a fused pair of 
gland cells; 

excretes saline fluid via the duct 
and pore to maintain the salt 

balance and to remove metabolites 

unicellular excretory 
cell 

D.melanogaster malphigian tubules 
four blind-ended epithelial tubes 
connected to the hindgut, mainly 
elimination of excess potassium 

absence of filtration 

Zebrafish pronephros (larvae) 

single midline glomerulus which 
drains into two pronephric tubules; 
tubules process the blood filtrate 

produced from glomeruli 

single glomerulus, 
no urinary 

concentration 

Mus musculus 
kidneys 

(metanephros) 

paired-organ, 
ultrafiltration in glomeruli; 

excretion and reabsorption in 
tubules; hormone production 

- 
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2.1 Kidney development in mice 

 
A variety of developmental processes play a role in kidney organogenesis such as 

inductive tissue interactions, branching morphogenesis, differentiation, cell polarization, 

mesenchymal-to-epithelial transformation (MET), and pattern formation. 

Branching morphogenesis is fundamental to the development of a number of organ 

systems that share similar tissue architecture, such as the kidney, lung, mammary gland 

and salivary gland. 

 
 

2.1.1 Kidney morphogenesis – pronephros, mesonephros and metanephros 

 
In mammals and birds, the kidney develops in three stages: pronephros, mesonephros and 

metanephros of which only the metanephros differentiates into the permanent kidney 

whereas the other structures form transiently (Figure 10a). Renal differentiation in mice 

starts at E8.0 with the formation of the pronephros from the intermediate mesoderm. It 

consists of the nephric duct and pronephric tubules which lack glomeruli. While in 

amphibians and fish the pronephros constitutes the functional excretory organ in their 

larval stages, a functional pronephros does not develop in mammals (Table 3). However, 

the pronephros is essential for the development of the more complex later kidneys. In 

mammals, the cranial part of the pronephric duct degenerates but the caudal portion, 

termed wolffian duct (WD) elongates and becomes part of the excretory system. 

Organogenesis of the mesonephros is initiated when the nephric duct reaches the 

presumptive mesonephric mesenchyme and induces adjacent mesenchymal cells to 

condensate and to form nephrons (Dressler, 2006). Mammalian mesonephric nephrons 

consist of a glomeruli-like structure and a proximal and distal tubule. The number, size 

and functional properties differ between species. In pigs and humans mesonephric 

nephrons are functional excretory organs during embryogenesis whereas the murine 

mesonephros is more primitive and non-secretory (Kuure et al., 2000; Sainio et al., 

1997a). Two distinct sets of mesonephric tubules can be observed in mice: cranial 

mesonephric tubules which are connected to the WD and caudal mesonephric tubules, 

which do not fuse with the WD. Eventually, murine mesonephric tubules degenerate by 
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apoptosis. The regression in mice starts from the caudal mesonephric tubules, progresses 

cranially and is completed by E15. In males this degradation is incomplete. The 

remaining cranial tubules form the epididymal ducts and the WD becomes the vas 

deferens (Sainio et al., 1997a). The permanent metanephric kidney starts to develop at 

E10.5-E11 after the WD has further extended caudally along the body axis and has 

reached a region close to the cloaca. This region is specified by a distinct intermediate 

mesoderm derived structure, termed metanephric mesenchyme (MM) (Figure 10a). The 

cloaca, an endodermal sac, becomes partitioned into the hindgut and the urogenital sinus, 

the primordium of the bladder and the urethra. Due to inductive signals arising from the 

MM, the ureteric bud (UB) is formed as an epithelial outgrowth from the WD, which 

then invades the MM (Saxen, 1987). Reciprocal induction between the UB and the MM 

leads to a number of iterative, dichotomous branching events of the UB epithelium to 

form the collecting duct system while the MM is induced to condense around the tip of 

the UB. Eventually mesenchymal pre-tubular aggregates undergo MET to form comma-

shaped and S-shaped bodies, which subsequently give rise to the components of the 

nephron: renal tubules (proximal and distal) and the epithelial component of the 

glomeruli (Figure 10b-d). In addition, mesenchymal–derived endothelial cells are 

attracted to the glomeruli and thereby contribute to the formation of the functional 

nephron (Dressler, 2006). Finally, at ~E13, the ureters dissociate from the WDs and 

merge with the bladder epithelium in the trigone, the muscular region located at the base 

of the bladder. It has been suggested that ureter insertion into the bladder depends on 

distinct events, starting with apoptosis between E11 and E12 that enables separation of 

the ureters from the WD, followed by fusion with the bladder epithelium that occurs on 

E13 and finally growth of the bladder, which expands enormously between E12 and E14 

(Mendelsohn, 2009).  

With the ureter fusion to the bladder the development of the functional metanephros is 

completed. Over the next weeks the metanephros continues to mature into the adult 

kidney.  
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Figure 10: Schematic overview of mammalian kidney development and morphology 
(Uhlenhaut and Treier, 2008).  
a) Kidney development proceeds through three stages: pronephros, mesonephros and 
metanephros. The metanephros develops into the permanent kidney and is formed by the 
outgrowth of the UB from the WD and invasion and branching of the UB in the MM. b) 
Ureteric branches give rise to the collecting duct system and induce MET of the 
surrounding mesenchymal cells resulting in nephron formation. c) The nephron 
represents the functional unit of the kidney. d) The initial blood filtration takes place 
inside the glomerulus.  
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2.1.2 Mesenchymal signals initiate kidney development 
 
Over the last decades the understanding of the molecular pathways underlying the 

different processes during metanephros formation has increased considerably. Such 

molecular players include genes that specify and pattern the intermediate mesoderm and 

thereby control the formation and survival of its derivatives WD and MM such as Lim1, 

Odd1 and Pax2/8 (Bouchard et al., 2002; Dressler, 2006; Pedersen et al., 2005; Wang et 

al., 2005). The specification of the MM as a unique region within the intermediate 

mesoderm is at least in part controlled by genes that provide positional information along 

the anterior-posterior axis such as mammalian homeobox (Hox) genes. Hoxb-7 

expression, for example, can already be detected in the mesonephros and later in the WD, 

ureter and collecting duct. Due to its early expression, the promoter of the Hoxb-7 gene is 

used to drive reporter gene expression in the urogenital system as well as to enable 

conditional deletion of a gene of interest specifically in the UB/collecting system using 

the cre/loxP system (Igarashi, 2004). In mice, Hox11 paralogous genes (Hoxa11, Hoxc11, 

and Hoxd11) are essential for early patterning of the MM, as their loss results in a 

complete failure of UB outgrowth (Wellik et al., 2002).  

Prior to UB outgrowth, the MM expresses a unique combination of markers including 

Hox11 paralogs, Osr1, Pax-2, Eya1, WT-1, Six1, Six2 and GDNF (glial cell derived 

neurotrophic factor) (Dressler, 2006). The early transcriptional regulation of key genes 

such as GDNF is still not fully understood. However, it has been suggested that a Hox11-

Eya1-Pax-2 positive regulatory network is necessary for early GDNF and Six2 expression 

in the uninduced MM (Gong et al., 2007).  

A recent study also illustrated the importance of ECM signals to maintain GDNF 

expression in the MM. Linton et al. show that the ECM protein nephronectin, which is 

expressed by epithelial cells binds to integrin 8β1 on the surface of mesenchymal cells. 

Mice lacking either integrin α8 or nephronectin fail to maintain GDNF expression at E11, 

the critical time point for induction of UB outgrowth (Linton et al., 2007; Muller et al., 

1997). Interestingly, Hoxa11 is required for integrin α8 expression in mesenchymal cells 

suggesting that the lack of GDNF expression in Hoxa11 knockout mice is caused by a 

failure of integrin α8 expression rather than through direct GDNF gene regulation 

(Valerius et al., 2002). 
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Infact, the growth factor GDNF has a critical role in induction of UB outgrowth from the 

WD. Initially, GDNF has been identified as a factor maintaining dopaminergic, 

noradrenergic and motor neurons of the central nervous system (Airaksinen and Saarma, 

2002). The GDNF family members GDNF, neuturin, artemin and persephin are distant 

members of the transforming growth factor-β (TGF-β) superfamily. Unlike other 

members of the TGF-β superfamily, which signal through receptor serine/threonine 

kinases, GDNF signals via the receptor tyrosine kinase c-Ret (rearranged during 

transformation, Ret9 isoform in the kidney,) and the GPI-linked cell surface co-receptor 

GFRα1 (Costantini and Shakya, 2006; Vega et al., 1996). Like many other growth 

factors, GDNF also requires heparan sulphate proteoglycans for signaling (Barnett et al., 

2002). Accordingly, mice lacking either GDNF, c-Ret or GFR1 show similar excretory 

system defects, ranging from renal agenesis to blind ending ureters with no renal tissue, 

and tiny disorganized kidney rudiments (Cacalano et al., 1998; Enomoto et al., 1998; 

Moore et al., 1996; Pichel et al., 1996; Sanchez et al., 1996; Schuchardt et al., 1994). 

As indicated above, a tight spatiotemporal control of GDNF expression is crucial for 

proper kidney development (Figure 11). GDNF is expressed broadly throughout the 

nephrogenic cord at E9.5 but becomes restricted to the region of the MM by E10.5. The 

control mechanisms either directly regulate GDNF expression or modulate the signal 

transduction downstream of c-Ret. Deletion of negative regulators such as the 

transcription factor FOXC1 that is expressed in the MM and ROBO2/SLIT2 that are 

expressed in the nephrogenic mesenchyme and WD, respectively, cause an anterior 

expansion of the GDNF expression domain leading to the formation of multiple ureteric 

buds and ectotopic ureters that remain connected to the WD instead of the bladder 

(Grieshammer et al., 2004; Kume et al., 2000). In contrast, Sprouty1, a negative regulator 

of receptor tyrosine kinase signaling expressed by the WD and UB, modulates the c-

Ret/GDNF signaling intensity in the WD and thereby prevents the formation of multiple 

UBs (Basson et al., 2005). In addition, BMP-4 mediated signaling has been shown to 

prevent the formation of supernumerary buds. Spatially restricted expression of the BMP 

antagonist gremlin1 in the MM close to the budding site enables UB outgrowth, its 

invasion into the MM and the establishment of an autoregulatory GDNF/WNT-11 
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feedback loop that is crucial for branching morphogenesis (Majumdar et al., 2003; 

Michos et al., 2007). 

 
 

 

Figure 11: Molecular pathways that control kidney induction (Schedl, 2007). 
GDNF expression is tightly controlled. GDNF expression is spatially restricted through 
expression of the forkhead box protein C1 (FOXC1) transcription factor, Slit homologue 
2 (SLIT2) and its receptor Roundabout homologue 2 (ROBO2). GDNF binds and signals 
through c-RET (rearranged during transformation) and GDNF-family receptor α1 
(GFRα1) receptors that are expressed by the UB epithelium (mesonephric duct). The 
tyrosine kinase inhibitor sprouty 1 (Spry1) modulates Ret signaling. Bone morphogenic 
factor 4 (BMP-4) inhibits ureter outgrowth. 
GREM1, gremlin1; NPNT, nephronectin; EYA1, Eyes absent homologue 1; GDF11, 
growth factor differentiation factor 11; HOX11, homeobox protein 11; WT-1, Wilms 
tumour transcription factor. 
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2.1.3 Ureteric bud outgrowth and branching 

 
The region of the WD, which gives rise to the UB, is a site of intensive cell proliferation 

(Bridgewater and Rosenblum, 2009; Michael and Davies, 2004). The newly formed UB 

segregates into two functional domains, the ureteric stalk and the ureteric tip. Although 

the entire UB is derived from the WD, tip and stalk express a distinct set of genes. The 

tip, which is the site of branching and cell proliferation, expresses Ret, WNT-11, Sox9 

while expression of WNT-7b, aquaporin 3, collagen XVIII, and binding of the lectin 

Dolichos biflorus agglutinin (DBA) is restricted to the stalk epithelium. Eventually the tip 

cells differentiate into stalk cells and thereby cause elongation of the stalk. Finally, the 

stalk will give rise to the collecting duct system (Figure 12). 

 

                          a) 

  

 

 

 

 

 

                       b) 

 

 

 

 

 

Figure 12: Cell fate determination in the developing UB (Bridgewater and 
Rosenblum, 2009).  
a) The UB grows out from the WD and migrates into the MM. b) Further segmentation of 
the UB into tip and stalk (T-bud stage, in mice at E11.5). The tips will give rise to the 
ampulla and form new branches, while the stalks will differentiate into the collecting 
system. The tip segment (shown in green) expresses a unique set of genes, including 
WNT-11, Ret, Sox9, Ros1, Clfl, Cxcl14 and timeless. The stalk portion of the UB binds 
the lectin Dolichos biflorus agglutinin (DBA) and expresses stalk specific genes, such as 
aquaporin 3, collagen XVIII, and WNT-7b. 
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As mentioned above, proper UB induction and outgrowth requires GDNF expression in 

the MM adjacent to the caudal portion of the WD as well as c-Ret expression along the 

WD. The co-receptor GFR1 is expressed in the WD and MM. Wnt/β-catenin signaling 

has been reported to be a critical regulator of c-Ret expression in the WD/UB and appears 

to maintain the epithelium in an undifferentiated state allowing progression of 

morphogenesis (Bridgewater et al., 2008; Marose et al., 2008). Another important 

regulator of c-Ret expression in the WD is the Zn-finger transcription factor Gata3. 

Gata3-deficient embryos show an aberrant elongation of the WD and loss of c-Ret 

expression in the WD (Grote et al., 2006). Interestingly, Gata-3 expression is 

downregulated in β-catenin mutant WD epithelial cells, while β-catenin expression is 

retained in the WD epithelium of Gata3-deficient mouse embryos indicating that Gata3 

acts downstream of β-catenin to activate c-Ret expression. Once the UB forms and begins 

to branch, c-Ret expression is downregulated in the WD and UB trunks and becomes 

restricted to the distal tips of the branches.  

What are the signaling pathways downstream of GDNF/c-Ret and what cellular processes 

are stimulated by GDNF? So far, three signaling pathways have been shown to be 

important in GDNF/c-Ret mediated UB outgrowth and branching: Ras/ERK MAP kinase 

pathway, PI3-Kinase/Akt, and PLC-γ/calcium pathway (Costantini, 2006). Recently, it 

has been shown that the ETS transcription factors Etv4 and Etv5 are positively regulated 

by Ret signaling in the ureteric bud tips. Several genes have been identified whose 

expression in the ureteric bud depends on Etv4 and Etv5, including Cxcr4, Myb, Met, and 

MMP14 (Lu et al., 2009).  

Among the cellular processes, GDNF-mediated signaling has been implicated in the 

regulation of cell proliferation and migration/chemoattraction, but both functions are still 

controversial. In vitro, GDNF stimulates proliferation of cultured primary UB cells 

(Towers et al., 1998) and collecting ducts of whole kidney explants (Pepicelli et al., 

1997). However, it was also demonstrated that the primary response to GDNF is not 

mitogenic but rather a combination of decreased apoptosis, increased adhesiveness, 

secretion of basal lamina, and maintenance of the polarization of the ureteric cells in a 

hanging drop culture (Sainio et al., 1997b). In addition, time-lapse imaging of chimeric 

organ cultures has recently revealed that WD cells expressing the GDNF receptor c-Ret 
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undergo extensive movements to generate a specialized epithelial domain that gives rise 

to the first UB tip, while cells lacking c-Ret are excluded from this domain, suggesting 

that directed cell migration and not localized cell proliferation initiate UB formation 

(Figure 13) (Chi et al., 2009).  

 

 

Figure 13: c-Ret-dependent cell movements initiate UB formation (Chi et al., 2009; 
Michos, 2009).  
a) Ret-expressing cells (in blue) are initially dispersed along the WD and eventually start 
moving (yellow arrows) to caudal position next to the MM to form the primary UB tip 
domain. b) WD cells compete for inclusion in the forming primary UB based on their Ret 
activity levels. c) The tip of the UB elongates toward the source of GDNF secreted by the 
MM (in grey). 
 
 

The observations further imply that rearrangements result from competition among cells 

based on the level of signaling, a mechanism which is similar to that described for fly 

trachea branching where tracheal epithelial cells express Btl/FGFR and compete for the 

ligand Bnl/FGF to become a tip cell (Chi et al., 2009; Lu and Werb, 2008). Thus, 

receptor tyrosine kinase signaling-based cell competition might be an evolutionarily 

conserved mechanism of epithelial branching. However, the role of GDNF as a 

chemoattractant in this process is not completely clear. In vitro, GDNF can act as a 

chemotactic guidance cue for c-Ret-expressing epithelial cells, and this is mediated at 

least in part by the PI-3 kinase (Tang et al., 2002; Tang et al., 1998). However, 

misexpression of GDNF in WD and UB results in the formation of multiple ectotopic 

buds that branch independently of the MM, indicating that GDNF can signal in an 
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autocrine manner and mesenchymal GDNF is not required as a chemoattractive factor for 

the attraction of c-Ret-expressing UB cells in vivo (Shakya et al., 2005).  

Taken together, the experimental data point to the existence of multiple signaling 

pathways downstream of activated c-Ret, which coordinate proliferation and cell 

migration of UB epithelial cells. 

Upon invasion of the MM, the UB secretes survival factors such as TGF-α, TIMP-2, EGF 

and FGF2 to prevent apoptosis in the MM (Davies and Fisher, 2002; Koseki et al., 1992) 

and induces the MM to establish two cell fates - the stromal progenitor cells and the 

nephrogenic mesenchyme that undergoes MET.  

Many of the factors that regulate UB outgrowth are also essential for subsequent 

branching morphogenesis. Branching morphogenesis is characterized by the following 

repetitive sequence: 1) expansion of the UB branch at the leading tip (called ampulla); 2) 

division of the ampulla causing the formation of two new ureteric bud branches; and 3) 

elongation of newly formed branches (Figure 14).  

 

 

 
Figure 14: UB branching in organ culture (Costantini, 2006). 
Kidneys, isolated from E11.5 Hoxb-7/GFP transgenic embryos were cultured and 
photographed at 10 hours intervals. The UB can branch in a variety of complex patterns, 
including terminal bifid, terminal trifid and lateral branching (indicated with asterisks). 
The most UB branching events are terminal bifurcations. 
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The formation of new branches requires radical cellular changes. The bud epithelium 

gradually changes shape without losing its integrity or polarity. Such epithelial shape 

changes can be accomplished by several mechanisms such as localized cell proliferation 

or cell death, cell migration, changes in cell shape or cell adhesion or through forces 

exerted on the epithelium by the ECM or by surrounding cells or tissues (Lecuit and 

Lenne, 2007). Indeed, it seems that branching morphogenesis requires several of these 

processes. Localized proliferation appears to contribute to the outgrowth of the UB from 

the WD, as well as to the formation of ampullae at the UB tips (Michael and Davies, 

2004). In contrast, the contribution of apoptosis to branching morphogenesis is not clear 

as the number of apoptotic cells in normally growing UBs is low (Coles et al., 1993). 

However, Bcl-2, a proto-oncogene that inhibits apoptosis does not only act as a survival 

factor during kidney development but in addition promotes UB branching by modulating 

cell adhesion and migration, most probably through its interaction with paxillin (Sheibani 

et al., 2008; Sorenson, 2004). Branching morphogenesis could also be driven by the 

directed migration of epithelial cells towards the ampullae as has been shown for 

Drosophila air sac morphogenesis (Cabernard and Affolter, 2005). Extensive c-Ret-

dependent cell movements have been described for UB outgrowth from the WD (Figure 

13) (Chi et al., 2009). Apical constriction, which changes the cell shape from cuboidal to 

a wedge shape has been observed in UB cells of the ampullae and in forming outpouches. 

This could cause localized folding of the epithelial sheet and eventually lead to initiation 

of branching (Lecuit and Lenne, 2007; Meyer et al., 2004). This so-called “purse-string” 

model is further supported by accumulation of actin and myosin along the apical surface 

of the wedge-shaped cells, suggesting localized contraction of the actin-myosin 

cytoskeleton (Meyer et al., 2004). Acto-myosin contractility is mediated through 

activation of the small GTPase RhoA and its downstream target ROCK, a 

serine/threonine protein kinase. ROCK in turn can either directly activate MLC by 

phosphorylation or indirectly via inactivation of myosin light chain phosphatase (Amano 

et al., 1996; Kimura et al., 1996). Indeed, treatment of isolated UBs with a ROCK 

inhibitor increases budding and/or tip formation, while stalk formation is severely 

reduced, leading to the generation of a “stubby” UB with numerous stunted ampullae 

(Meyer et al., 2006).  
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Interestingly, the opposite phenotype was observed after interference of the MAPK 

pathway by MEK inhibition, which reduced UB branching whereas tubule elongation 

was not affected, giving rise to UBs with long tubules and just a few branches (Fisher et 

al., 2001). In an in vivo model for tumor angiogenesis it has been shown that 

MAPK/ERK inhibition leads to increased MLC2 phosphorylation indicating a crosstalk 

between the two pathways (Mavria et al., 2006). Therefore, in the developing kidney, the 

balance between MAPK/ERK signaling and RhoA/ROCK signaling could play a critical 

role in modulating the responsiveness of the epithelial cells to inductive factors and to 

eventually create branching tips with elongating stalks (Figure 15) (Meyer et al., 2006). 

 

                                             

Figure 15: Proposed model of balance of MAPK/ERK signaling to Rho-kinase 
signaling in the branching ureteric bud (Meyer et al., 2006). 
Stalk elongation requires higher ROCK activity whereas tip generation requires high 
MAPK activity that is thought to inhibit ROCK activity. 
 
 
Finally, the cellular crosstalk between UB tip cell (expressing Ret, WNT-11 and Emx2), 

stromal cells (expressing RARs and FoxD1/BF-2) and condensed mesenchyme (high 

expression of Pax-2) promotes branching. This crosstalk is in part mediated by BMP-7, 

which is expressed by the UB tip and the condensed mesenchyme and maintains 
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proliferation and survival. Interestingly, it has been shown that ILK is an effector of 

BMP-7-dependent epithelial cell morphogenesis through activation of p38 MAPK 

phosphorylation (Leung-Hagesteijn et al., 2005).  

Cortico-medullary patterning of collecting ducts and formation of the pelicalyceal system 

also requires the function of p57KIP2, BMP-4, BMP-5, and components of the renin-

angiotensin pathway (Piscione and Rosenblum, 2002).  

 
 

2.1.4 Tubulogenesis – MET 

 
Once the UB has reached the MM, mesenchymal cells adjacent to the UB organize in 

such a way that their long axis is perpendicular to the surface of the tubule (called 

“condensing mesenchyme”), unlike more distant layers of mesenchyme and stroma, 

which show a horizontal orientation (Figure 16a). Mesenchymal cells that adopt this cell 

shape change start to undergo MET. 

MET is characterized by a stepwise change in gene expression pattern (Figure 16b). Cells 

that undergo MET start to express R-cadherin, cadherin-6 and subsequently E-cadherin 

whereas the expression of the mesenchymal specific cadherin-11 is suppressed. This 

cadherin switch is followed by the translocation of ZO-1 and β-catenin to the lateral cell 

surfaces, and finally the deposition of a laminin-containing basement membrane. The 

renal vesicle remains associated with the UB epithelia. By the comma-shaped-body stage, 

the distal end of the growing nephron fuses to the epithelium of the duct to form a 

continuous lumen (Figure 10b) (Dressler, 2006). Several UB-derived factors have been 

identified to induce epithelial conversion in the MM. It has been shown that leukemia 

inhibitory factor (LIF) and interleukin-6 (IL-6) are among the first UB-derived inductive 

molecules (Barasch et al., 1999). 
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a) 

 

 

b) 

 

Figure 16: Mesenchymal to epithelial transformation (MET) during kidney 
development (Schmidt-Ott et al., 2006). 
a) Early signs of polarity can already be observed at the coronal cell stage. Mesenchymal 
cells at the tip of the ureteric bud reveal a columnar shape (arrows). b) MET in the 
developing kidney leads to the formation of renal vesicles and is characterized by discret 
morphological stages and the expression of distinct marker genes.  
 
 
Other factors that are associated with tubulogenesis are WNT-9b, WNT-4, Notch-2 and 

BMP-7. Genetic deletion of WNT-9b leads to an arrest of epithelialization in the MM and 

loss of WNT-4 expression (Carroll et al., 2005). In WNT-4-/- kidneys, the mesenchyme 

initially condenses, but MET fails, and tubules do not form (Stark et al., 1994). It has 

been shown that stabilization of β-catenin through the inhibition of Gsk-3β, with for 

instance lithium, is sufficient to induce nephron differentiation in isolated mouse kidney 

mesenchymes suggesting that canonical WNT signaling induces nephrogenesis (Kuure et 
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al., 2007). Notch-2 expression can be detected in the early renal vesicle. It is required for 

the differentiation of proximal nephron structures such as podocytes and proximal tubules 

(Cheng et al., 2007). BMP-7, which is expressed in the UB seems to be important for 

early induction of nephrogenesis as in the absence of BMP-7 only a few and/or 

incomplete mesenchymal condensations are observed. This implies that BMP-7 regulates 

target genes in metanephric mesenchymal cells that are critical for nephrogenesis such as 

genes whose products are important for proliferation, differentiation and survival (Luo et 

al., 1995). 

The mature nephron is subdivided into segments that are dedicated to specific tasks (see 

2.1). This specialization, which is acquired during terminal differentiation, is reflected in 

protein expression profiles of various segments. However, the factors that drive 

segmental nephron identity are still poorly understood. LIM1 is required to induce the 

initial stages of patterning in the renal vesicle, by controlling the expression of the POU-

domain transcription factor BRN1 and the Notch ligand DLL1. DLL1 itself contributes 

via Notch-2 activation to the specification of the proximal tubule fate. Under the control 

of the transcription factors BRN1 and Iroquois-class homeodomain proteins IRX1-3, 

distal segments further extend and differentiate towards distal tubule and the Henle's 

loop. Finally, to terminally differentiate cells need to withdrawal from the cell cycle and 

repress genes involved in cell cycle control. Proteins of the p53 family perform a dual 

function by inducing cell cycle arrest genes (e.g., p21Cip1) and repressing proliferation 

genes (e.g., PCNA and CDC2) on one hand and by activating terminal differentiation 

markers, including the bradykinin B2 receptor, aquaporin-2 and the Na+-K+-ATPase a1 

(El-Dahr et al., 2008) on the other hand. 

 
 

2.1.5 Role of stroma in kidney development 

 
After induction of the MM by the UB at least two different sets of cells are found: 

epithelial cells contributing to the nephron and stromal cells. Renal stromal cells have 

been identified as an important source of metanephric regulatory signals. So far three 

different factors secreted or expressed by stromal cells have been shown to influence 

kidney development. The first hints to the importance of the stromal compartment came 
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from forkhead box D1 (Foxd1) knockout mice which display defects in the collecting 

duct system and nephrons, suggesting that it regulates the expression of a stromal-cell-

derived signal that promotes branching and tubulogenesis (Hatini et al., 1996). Vitamin A 

has also been shown to play a role in branching morphogenesis of the UB epithelium. A 

double knockout of both vitamin A receptors, the nuclear retinoic acid receptor (rar)- 

und –β, leads to reduced growth of the UB which is accompanied by reduced expression 

of c-Ret and WNT-11 (Mendelsohn et al., 1999). The third factor is FGF-7 which is 

specifically secreted from stromal cells that surround the UB and the developing 

collecting duct. Its receptor FGFR2 is expressed in the UB itself. FGF-7-deficient mice 

have reduced growth of the UB and collecting ducts and ~30% fewer nephrons (Qiao et 

al., 1999). In isolated WDs treated with a combination of FGF-7 and blockade of the 

TGF-β family member activin A with Follistatin, outgrowth of extra-UBs was induced 

(Maeshima et al., 2007). Therefore, it has been suggested that the FGF-7/activin A 

pathway might also modulate UB outgrowth and branching in vivo and thus explain why 

30 to 50% of knockout mice that lack either GDNF, c-Ret or GFR have normal ureters. 
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2.2 Renal abnormalities in humans 

 
Developmental abnormalities of the kidney are diverse and include renal agenesis (the 

absence of a kidney), multiple ureters, renal hypoplasia (reduced kidney size, reduced 

number of intact nephrons) and dysplasia (a kidney containing abnormal structures). Each 

defect corresponds to irregularities at a particular stage of development (Figure 17).  

 

UB induction

Renal agenesis

Multiple ureters

Branching Hypoplastic 
kidneys

Nephrogenesis

Dysplastic 
kidneys

Wilms tumours

Nephron 
patterning

Patterning 
defects

 

Figure 17: Developmental abnormalities of the kidney. Adapted from (Schedl, 
2007). 
Development of the kidney can be subdivided into several distinct stages. Abnormalities 
in these stages usually lead to specific developmental defects that in turn can be related to 
a human disease. 
 
 
Human urinary tract abnormalities are phenotypically variable and can affect several 

segments simultaneously. As a consequence the renal and urologic malformations are 

grouped together into “Congenital Anomalies of the Kidney and the Urinary Tract” 

(CAKUT). 

Renal agenesis is a relatively frequent congenital defect in humans. An estimate of a 

congenital absence of the kidney is 0.48 to 0.58 per 1000 live births. Unilateral agenesis 

occurs with a frequency of 1 in 200 births and lethal bilateral agenesis with a frequency 

of 1 in 5.000-10.000 births. In addition, major malformations, including those involving 
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the kidneys or lower urinary tract, are often lethal in utero or shortly after birth (Pohl et 

al., 2002). 

In humans, renal agenesis seems to arise mainly from mutations in genes known to affect 

GDNF expression or signaling. These include diseases such as Townes-Brock syndrome 

(SALL1), Renal-coloboma syndrome (Pax-2) or Brancho-Oto-Renal syndrome (Eya1) 

(Shah et al., 2004). In addition, in 37% of stillborn fetuses with congenital renal agenesis 

mutations in Ret have been found suggesting that also in humans mutations in Ret may 

contribute significantly to abnormal kidney development (Skinner et al., 2008).  

Mutations in ROBO2 which restricts GDNF expression to the caudal part of the WD have 

been identified in patients with vesicoureteral junction defects and vesicoureteral reflux 

(Table 4).  

Kidney size is primarily determined by the total number of nephrons that are formed 

during development. The average nephron number varies between individuals, ranging 

from 300.000 to 1 million in each kidney. Recent studies suggest that there is a strong 

correlation between the number of nephrons and the risk to develop primary hypertension 

(high blood pressure for which no particular cause is known). The number of ureteric 

branches also determines the nephron number. As the GDNF/c-Ret pathway is important 

for UB outgrowth and branching, mutations that affect the expression of transcriptional 

regulators of these genes will also result in reduced ureter branching. Indeed, 

heterozygous mutations in Pax-2 cause Renal-coloboma syndrome in humans, a 

congenital disease that is characterized by optic nerve coloboma and renal hypoplasia 

(Sanyanusin et al., 1995).  

Fraser syndrome is an autosomal recessive disorder occurring in 11/100.000 stillbirths 

and 0.4/100.000 live births and is characterized by cryptophthalmos (eyeball covered by 

skin), syndactyly (fused digits) and kidney malformations. Some Fraser syndrome 

individuals have mutations in either FRAS1 or FRAS1-related ECM gene 2 (FREM2), 

that encode for basement membrane related transmembrane proteins. FRAS1 is found to 

be expressed around the UB and is upregulated as the MM differentiates into nephrons, 

particularly in nascent glomeruli. FRAS1 deficiency is associated with failed UB growth 

into the MM causing kidney agenesis and glomeruli defects (Pitera et al., 2008).   
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Table 4: Human congenital abnormalities and gene defects linked to the diseases 
(Schedl, 2007).  
 

Renal congenital 
defects 

Symptoms Syndromes Gene defects 

Renal agenesis 
Absence of kidneys; usually 
unilateral, but can occur 
bilaterally 

Brancho-Oto-Renal syndrome 
(BOR) 

Eya1, Six1, Six4, 
Six5 

Duplex (multiple) 
ureter 

Formation of several ureters 
resulting from defective ureter 
induction 

Usually no symptoms; can 
however be associated with 
hydroureter 

 

Renal hypoplasia 

Reduction of kidney size 
without abnormal 
development, probably caused 
by a reduced number of 
nephrons 

Renal-coloboma 
Townes-Brocks 
Pallister-Hall 

Pax-2 
Sall1 
Gli3 

Renal dysplasia 
Kidney contain abnormally 
developed structures; often 
associated with hypoplasia 

Fraser 
Campomelic dysplasia 
 

Fras1, Frem1 
Sox9 
 

Tubular dysgenesis 
Defective proximal tubules 
formation 

Renal tubular dysgenesis 
Ren, Agt, ACE, 
AGTR1 

Nephrotic syndrome 
(NS) 

Proteinuria resulting from a 
failure of blood filtration; 
usually caused by glomerular 
defects 

Frasier, Denys-Drash 
Nail-Patella-syndrome 

WT-1 
LMX1B 

Polycystic kidneys 
Formation of cysts affecting 
either tubules, collecting ducts 
or both 

Renal cysts and diabetes 
Polycystic kidney disease 

HNF1B 
PKD1, PKD2 
AP2beta 

 
 

Wilms tumour is a pediatric kidney cancer that affects 1 in 10.000 children. Wilms 

tumours seem to develop from so called nephrogenic rests, an abnormal structure in the 

kidney that is formed as a result of a failure of the mesenchymal tissue to differentiate 

into nephrons. WT-1 is required for kidney induction but it has also an important role in 

nephron formation and podocyte differentiation. Hence, loss of WT-1 during kidney 

development is likely to arrest nephron precursors in a multipotent state. Usually, a 

second mutation in the β-catenin gene preventing its degradation is associated with WT-1 

mutations promoting cell growth (Schedl, 2007). 
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2.2.1 The glomerulus and proteinuria 
 

One primary function of the mature kidney is the filtration of high-molecular-weight 

proteins present in the blood which takes place in the glomeruli. This highly specialized 

function resides in the glomerular filtration unit, composed of (1) fenestrated endothelial 

cells of the capillary tuft; (2) an intervening glomerular basement membrane (GBM), rich 

in specialized collagens, laminins, and heparan sulphate proteoglycans; and (3) the 

podocytes, terminally differentiated epithelial cells with specialized major cell processes 

that extend to interdigitate with adjacent foot processes, forming an intervening slit 

diaphragm (Figure 18). The epithelial foot processes serve as a molecular sieve that 

selectively restricts the filtration of different molecules on the basis of their size, shape 

and charge (Tryggvason and Wartiovaara, 2001). 

 

The GBM has a thickness of 300 to 350 nm and it derives initially from fusion of two 

independent basement membranes, that of endothelial cells with that of the glomerular 

epithelial cell. As the glomerular epithelial cell differentiates into the mature podocyte, it 

continues to synthesize GBM, whereas the contribution of the endothelial cell is thought 

to cease. The main components of the GBM are type IV collagen, proteoglycans, laminin 

and nidogen. Interestingly, a developmental switch in the composition of the GBM 

matrix expression occurs during glomerulogenesis. During embryogenesis and postnatal 

life, heterotrimeric type IV collagen containing α1 and α2 chains are replaced with 

heterotrimeric type IV collagen containing tissue-specific α3, α4 and α5 chains that are 

primarily present in the glomeruli (Miner and Sanes, 1994). Parallel to this, 

heterotrimeric laminin 511, containing α5/β1/γ1 chains switch to heterotrimeric laminin 

521, containing α5/β2/γ1 (Miner et al., 1997). Ablation of the laminin β2 gene in mice 

causes a lack of laminin 521 resulting in proteinuria and neonatal death (Noakes et al., 

1995). Mutations in the laminin β2 gene cause Pierson's syndrome, an early lethal form 

of congenital nephrotic syndrome in humans (Zenker et al., 2004). Hence, laminin 521 

seems to be important for macromolecular filtration whereas mutations in adult collagen 

IV cause only mild proteinuria (Tryggvason et al., 2006).  
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Figure 18: The glomerular filtration system of human kidneys (Tryggvason et al., 
2006). 
a) Each kidney contains about 1 million glomeruli in the renal cortex. b) An afferent 
arteriole enters the Bowman's capsule and branches into several capillaries that form the 
glomerular tuft. c) The filtration barrier of the capillary wall contains a fenestrated 
endothelium, the glomerular basement membrane and a layer of interdigitating podocyte 
foot processes. d) Cross section through the glomerular capillary. An ultra thin slit 
diaphragm spans the filtration slit between the foot processes. 
 
 
Podocytes are highly specialized, pericyte-like cells, with large arborization of cell 

processes that make up the unique foot processes covering the GBM. Their function is to 

control the turnover of the GBM and to regulate ultrafiltration of urine. An electron-dense 
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slit diaphragm (SD) approximately 40 nm in size extends from foot processes (FP) of 

adjacent cells to form specialized cell-cell junctions, thereby establishing the final barrier 

to urinary protein loss (Figure 10d). The SD shares certain features with other 

intercellular junctions. Similarly to tight junctions, SDs contain zona occludens-1 (ZO-1) 

protein, whereas the presence of FAT and P-cadherin resembles the composition of 

desmosomes and adherens junctions.  

Nephrin, podocin and CD2AP are considered as the main structural elements of the SD. 

Nephrin is a single-pass transmembrane protein that homodimerizes and forms 

heterodimers with its homolog NEPH1, thus connecting adjacent foot-processes to each 

other and transducing signals that control glomerular permeability (Liu et al., 2003).  

Nephrin interacts through its C-terminal part with podocin and CD2AP. The 

nephrin/NEPH1 complex transduces phosphorylation mediated signals that assemble an 

actin polymerization complex at the podocyte intercellular junction and recruits Grb2 and 

Nck1/2 adaptor proteins, which mediate downstream activation of the cytoskeletal 

regulators N-WASP and Pak. In addition, nephrin phosphorylation by Fyn kinase 

increases its interaction with PI3K and the subsequent PI3K-dependent activation of Akt 

and Rac modifies the actin cytoskeleton, confirming the determinant role of nephrin 

signaling on podocyte morphology. Similarly, CD2AP has been implicated in the 

PI3K/Akt survival pathway and in dynamic actin remodeling. Another function of this 

complex is the regulation of podocyte polarity, which occurs via its interactions with 

Par3, Par6 and aPKC complex (Figure 19) (Machuca et al., 2009).  

FPs are further characterized by a podosome-like, cortical network of short branched 

actin filaments and the presence of highly ordered parallel, contractile actin filament 

bundles, which are thought to modulate the permeability of the filtration barrier through 

changes in FP morphology. FPs are functionally defined by three membrane domains: the 

apical membrane domain (AMD), the SD and the basal membrane domain, which is 

associated with the GBM. All three domains are physically and functionally linked to the 

FP actin cytoskeleton. Interference with any of the three FP domains changes the actin 

cytoskeleton from parallel contractile bundles into a dense network resulting in FP 

effacement and proteinuria. Thus, proteins regulating the plasticity of the podocyte actin 
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cytoskeleton are of crucial importance for the maintenance of the glomerular filter 

function (Faul et al., 2007) and their loss of function results in proteinuria (Table 5).  

 

 

Figure 19: Molecular overview of the slit diaphragm and podocyte cell-matrix 
interactions (Machuca et al., 2009). 
At the slit diaphragm, nephrin mediates signals that control actin cytoskeleton remodeling 
(Nck1/2, WASP), cell polarity (Par3/6, aPKC) and survival (PI3K, Akt). TRPC6-podocin 
interactions modulate mechanosensation, whereas angiotensin II type 1 receptor (AT1) 
may increase TRPC6 mediated calcium influx upon stimuli by angiotensin II (AGT II). 
The main component of the podocyte-matrix interaction structure is the integrin α3β1-
laminin 521 and dystroglycan-uthropin complex that connects GBM components 
(proteoglycans, nidogen, perlecan and type IV collagen) to the actin cytoskeleton. 
FP, foot-process; SD, slit diaphragm; GBM, glomerular basement membrane

52 



Introduction 

Table 5: Hereditary forms of Nephrotic syndrome (Machuca et al., 2009). 
Nephrotic syndrome (NS) is a group of disorders characterized by heavy proteinuria with 
hypoalbuminemia, edema and dyslipidema.  
AR, autosomal-recessive; AD, autosomal-dominant; SRNS, steroid-resistant NS; SSNS, 
steroid-sensitive NS; FSGS, focal segmental glomerulosclerosis; ESKD, end stage kidney 
disease; CNS, congenital kidney disease  
Gene Locus Inheritance Protein Function Phenotype or Syndrome 

Actin cytoskeleton components 
ACTN4 19q13 AD α-actinin-4 F-actin cross-

linking protein 
Late-onset SRNS with 

imcomplete penetrance and 
slow progression to ESKD 

MYH9 22q12.3 complex NMMHC-A Cellular myosin: 
cytokinesis and 

cell shape 

High risk haplotypes 
associated with increased risk 

of FSGS and ESKD in 
African-Americans 

Glomerular basement membrane proteins 
LAMB2 3p21 AR Laminin-β2 GBM 

component, 
scaffold for type 

IV collagen 
assembly  

Pierson syndrome 

ITGB4 17q25.1 AR Integrin-β4 Cell-matrix 
adhesion, 

structural role in 
the 

hemidesmosome 
of epithelial cells 

Epidermolysis bullosa. 
Anecdotic cases presenting 

with NS and FSGS 

Slit diaphragm protein complex 
NPHS1 19q13.1 AR Nephrin Main component 

of the SD. 
Anchors the SD 
to the actin 
cytoskeleton. 
Modulates actin 
cytoskeleton  

CNS of the Finnish type. 
Early-onset SRNS in cases 
carrying at least one mild 
mutation 

NPHS2 1q25–
31 

AR Podocin Scaffold protein 
linking plasma 
membrane to the 
actin 
cytoskeleton  

CNS. Early and late onset AR 
SRNS. Juvenile and adult 
SRNS in cases bearing the 
R229Q variant in compound 
heterozygous state with a 
pathogenic mutation 

PLCE1 10q23 AR Phospho-
lipase C 1 

Involved in cell 
junction 
signaling and 
glomerular 
development 

Early-onset SRNS with DMS 
and FSGS 

CD2AP 6p12.3 AR (?) CD2 
associated 
protein 

Adaptor protein, 
may anchor the 
SD to the actin 
cytoskeleton 

Not precisely defined in 
humans, may cause early-
onset SRNS and FSGS. Mice 
model exhibits a severe 
phenotype resembling CNS in 
humans 
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2.2.2 Cystic kidney diseases 

 
Renal cystic diseases are a major clinical concern as they are the most common genetic 

cause of end-stage kidney disease. During the course of the disorders clusters of cysts 

(noncancerous round sacs containing water-like fluid) develop primarily in the kidney 

leading to an increase in kidney size while its function decreases. Among other 

symptoms, patients suffer from a high risk of high blood pressure and kidney failure. 

Cyst formation might be primarily caused by defective planar cell polarity (PCP) and/or 

ciliary defects. Healthy mammalian nephrons are characterized by a striking structural 

organization. A series of morphogenic remodeling events characterized by limited 

cellular proliferation progressively shape vesicles into slightly elongated and folded 

tubular structures called “comma” and “S-shaped” bodies. Subsequently, extensive cell 

proliferation at the corticomedullary junction gives rise to the final elongated structure. 

Normally, this proliferation does not give rise to a huge increase of tubular diameter. 

Instead, this intense proliferation specifically produces tubular elongation, so that at the 

end of the maturation process, tubules are several hundred folds longer than their width. 

Polycystic kidney disease (PKD) represents an example of a drastic dysfunction of this 

morphogenetic process (Figure 20a) (Fischer and Pontoglio, 2009). Autosomal-dominant 

polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 loci, 

which code for polycystin-1 (PC-1) and 2 (PC-2). PC-1 is a large transmembrane protein 

while PC-2 is an L-type calcium channel that modulates calcium signaling in response to 

mechanical deformation. PC-1 and PC-2 form a complex and assemble in cilia of renal 

epithelial cells. The primary cilium is a microtubule-based, antenna-like extension that 

projects from the surface of most cells. These structures are non-motile and composed of 

an axoneme comprised of nine microtubule doublets surrounded by the ciliary membrane. 

The primary cilium is anchored in the cell by the basal body, a structure that also 

functions as one of the centrioles during cell division (Figure 20b). 
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a)                                                            b) 

  
 
Figure 20: Role of cilia in polycystic kidney disease. 
a) Kidney from a patient having ADPKD (Bacallao and McNeill, 2009). Large cysts are 
marked with arrows. b) Schematic presentation of the structure of a primary cilium 
(Fischer et al., 2006). Primary cilia are microtubular structures surrounded by a ciliary 
membrane and separated from the cytoplasm by transition fibers. The basal body contains 
nine microtubules triplets and is oriented perpendicular to the daughter centriole, 
represented here in cross section.  
 
 
In the kidney, a single primary cilium is found on the apical surface of most tubular 

epithelial cells. Primary cilia have been implicated in cell cycle regulation, hedgehog 

signaling, Wnt signaling and PCP signaling (Bacallao and McNeill, 2009). During 

normal kidney function, urine flows over kidney epithelial cells, bending their primary 

cilia. This bending results in a PC-1- and PC-2-dependent increase in intracellular Ca2+ 

ion concentration and the inhibition of the regulated intramembrane proteolysis of PC-1. 

Disruption of urine production or flow allows the cilium to straighten, blocks Ca2+ ion 

flux and activates the proteolysis of PC-1. PC-1 proteolysis releases a portion of its 

cytoplasmic tail which translocates to the nucleus in a complex with Stat6 and P100. 

Once in the nucleus, the complex activates transcription. In ADPKD, mutations in PKD1 
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and PKD2 lead to constitutive activation of this pathway which results in uncontrolled 

cell proliferation and cyst formation (Singla and Reiter, 2006). Another form of human 

PKD is caused by mutations in the gene inversin which leads to constitutive activation of 

the canonical Wnt pathway and aberrant proliferation. Finally, a defective PCP pathway 

may also contribute to the pathogenesis of PKD. During kidney tubule elongation, the 

mitotic apparatus of cells is precisely oriented to direct cell division parallel to the axis of 

the tubule. Decreased expression of the ciliary protein Pkhd1 results in both PKD and 

disoriented kidney cell mitosis (Fischer et al., 2006).  

 
 

2.3 Integrins and kidney 
 
Formation, growth and branching morphogenesis of the collecting system of the kidney 

requires interaction between UB and MM. As mentioned above, this complex 

developmental process is regulated by a set of growth factors including GDNF and FGF-

7 and is dependent on interactions between cells and ECM components mediated by 

integrin receptors. 

 
 

2.3.1 ECM and its receptors in mammalian nephrogenesis 
 
ECM glycoproteins influence intracellular events via their receptors, e.g. integrins, and 

thereby regulate cell differentiation, migration and polarization. On the other hand, 

transcription, translation and posttranslational modification of such ECM components are 

regulated by various growth factors or hormones and their receptors indicating an 

interdependence of growth factors and ECM proteins. This interdependence is in addition 

reflected by the fact that the ECM can act as a storage depot for certain growth factors 

such as GDNF or FGFs.  

A large number of ECM proteins are expressed during renal development (Table 6) in a 

spatiotemporal manner. ECM proteins expressed in the MM include interstitial collagens, 

tenascin, nidogen, fibrillins, osteopontin, and fibronectin while type IV collagen, laminin, 

proteoglycan, and nephronectin are associated with the basement membrane (Kanwar et 

al., 2004). 
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Table 6: Spatiotemporal expression of ECM proteins during metanephric development (Kanwar et al., 2004). 
BL, basal lamina; GBM, glomerular basement membrane; CS-PG, chondroitin sulphate-proteoglycan; TIN-Ag, tubulointerstitial 
nephritis antigen; BMP-7, bone morphogenetic protein-7  

ECM protein Ureteric 
Bud 

Stage of 
Vesicle 

Comma/S-
Shaped 

Precapillary 
Stage 

Glomerular 
Capillary, 

(GBM) 

Glomerular 
Mesangium 

Proximal 
Tubule 

Distal 
Tubule 

Metanephric 
Mesenchmye 

Collagen IV 
(BL) +, α1, α2 +, α1, α2 +, α1, α2 +, α1, α5 +, α3, α5 +, α1, α2 +, α1, α2 +, α1, α2 - 

Laminins (BL) 
+, α1, α5 

+, α1, α4, 
β1 

+, α1, α4, 
α5, β1 

+, α1, α4, 
α5, β1, β2 

+, α1, β2 +, α1, α2 +, α1, α5 +, α5 - 

Perlecan (BL) 
+ + + + + - + + - 

CS-PG (BL) - - + - - + - - - 

Nidogen (BL) 
+ ± + ± + - + + ± 

TIN-Ag (BL) + + + - - - + + - 

Collagen I/III 
- - - - - + - - + 

Fibronectin - - - - - + - - + 

Tenascin-C - - - - - - - - + 

Fibrillin-1 - - - - - + - - + 

Nephronectin + ± + + + - + + - 

Osteopontin + - +, cleft - - + - + ± 

BMP-7 + + + + - + - - + 
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Table 7: ECM proteins and their binding proteins/integrin receptors expressed 
during metanephric development (Kanwar et al., 2004).  
 

ECM protein Integrin receptor(s), binding proteins 

Collagen IV (BL) α1β1, α2β1, α3β1, αVβ3 

Laminins (BL) α1β1-α3β1, α6β1, α6β4, α7β1, αVβ3, Dystroglycan 

Perlecan (BL) Dystroglycan 

Nidogen (BL) α3β1 

TIN-Ag (BL) α3β1, αVβ3 

Collagen I/III α1β1, α2β1, αVβ3 

Fibronectin α1β1, α5β1, α8β1, αVβ3 

Tenascin-C α8β1, αVβ3, 9β1 

Fibrillin-1 αVβ3 

Nephronectin α8β1 

Osteopontin α8β1, αVβ3, 9β1 

 
 
Integrins serve as receptors for a variety of ECM molecules, including laminins, 

collagens, osteopontin, nephronectin, vitronectin, and tenascin (Table 7 and chapter 1.2).  

The expression pattern of distinct integrin heterodimers in the developing and adult 

kidney has been analysed in recent years.  

The α1β1-integrin, a receptor for collagen and laminin, is expressed in S-shaped tubules 

mainly by cells invading the glomerular cleft. In more mature glomeruli, integrin α1β1 is 

restricted to the mesangial area within glomeruli.  

Another laminin and collagen binding integrin, α2β1-integrin, is expressed in the part of 

the S-shaped tubule that will contribute to distal tubules as well as in endothelial cells 

within the capillary loops of immature glomeruli. In more mature kidneys, α2β1-integrin 

is expressed in collecting ducts and glomerular endothelial cells.  

The α3β1-integrin was originally characterized as a promiscuous receptor that can bind to 

collagen, fibronectin, laminin, and nidogen and with higher affinity to α5 chain 

containing laminin isoforms. α3β1 is expressed weakly by the UB and most highly in 

those cells of the early tubule that represent the presumptive podocytes. In more mature 
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kidneys expression is observed in distal tubules and collecting ducts. In maturing 

glomeruli, α3β1 is highly expressed by glomerular podocytes in a polarized pattern along 

the glomerular basement membrane.  

The laminin receptor α6β1, is expressed along both proximal and distal tubular basement 

membranes, as well as by collecting ducts (Kreidberg and Symons, 2000).  

 
 

2.3.2 Role of integrins and their binding partners in the development of the 

collecting system 

 
To address the role of integrins during kidney development different mouse strains have 

been generated that lack expression of specific integrin subunits. Among the different 

integrin α-null mice generated, only integrin α3 and α8 knockout mice show a severe 

collecting system phenotype whereas integrin α6-deficient mice do not display any 

obvious kidney phenotype (Georges-Labouesse et al., 1996; Kreidberg et al., 1996; 

Muller et al., 1997). Mice lacking the α3 subunit show decreased branching of the 

medullary collecting ducts suggesting impaired branching morphogensis of the UB. In 

addition, glomerular development is markedly affected. The glomerular basement 

membrane is disorganized and glomerular podocytes are unable to form mature foot 

processes (Kreidberg et al., 1996). Specific deletion of the integrin α3-subunit in the UB 

leads to either absent or abnormal kidney papillae, while the rest of the collecting system 

of the kidney is unaffected (Liu et al., 2009). Interestingly, integrin α3β1 and the HGF 

receptor c-Met, signal in concert to regulate the expression of WNT-7b, which is required 

for the establishment of the cortico-medullary axis through regulation of the cell cleavage 

plane (Liu et al., 2009; Yu et al., 2009).  

Integrin α8 expression is induced in mesenchymal cells upon contact with the ureter. In 

integrin α8 knockout mice, growth and branching of the UB as well as recruitment of 

mesenchymal cells into epithelial structures are defective (Muller et al., 1997). 

Nephronectin has been identified as the ligand for integrin α8β1 in the kidney 

(Brandenberger et al., 2001). Mice lacking nephronectin also frequently display kidney 

agenesis, similar to integrin α8-null mice (Linton et al., 2007). Interestingly, GDNF 

expression in the MM at the time of UB invasion is transiently reduced in both 
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nephronectin and integrin α8-null mice suggesting that nephronectin/integrin α8β1 are 

part of a signaling pathway that regulates GDNF expression (Linton et al., 2007). 

However, the mechanism of GDNF expression regulation by nephronectin/integrin α8β1 

is not understood as integrin α8β1 is not expressed in the uninduced MM when the 

GDNF signal is required for UB outgrowth. 

Recently, the role of β1 integrins in the development of the collecting duct system has 

been addressed. The deletion of β1 integrin at E10.5, the time where UB 

outgrowth/branching is initiated leads to a severe branching phenotype and decreased 

nephron formation followed by the death of mice by 4 to 6 weeks of age. Integrin β1 null 

collecting duct cells are impaired in FGF and GDNF mediated signaling, growth factors 

known to be important for UB outgrowth and branching morphogenesis. Interestingly, 

the abnormality in branching morphogenesis is significantly worse in mice in which β1 

integrin rather than α3 was specifically deleted in the UB (Liu et al., 2003; Zhang et al., 

2009), suggesting that other αβ1 integrin heterodimers play a role in this process.  

In contrast, when β1 integrin was deleted in collecting ducts at E18.5, kidney 

development preceded normally. However, severe collecting system injury is observed in 

adult animals following ureteric obstruction (Zhang et al., 2009). Thus β1 integrins are 

required to maintain structural integrity when the collecting system is subjected to the 

increased hydrostatic pressure induced by tying the ureter. 

 
 

2.3.3 Role of integrins and their binding partners in the development and 

function of the glomerulus 

 
β1 integrins are also highly expressed in the glomerulus of the kidney. Recently, the 

integrin α3-subunit was selectively deleted in podocytes, which resulted in mice that 

developed proteinuria within the first week after birth and a nephrotic syndrome (NS) by 

5-6 weeks of age (Sachs et al., 2006). Newborn mice had podocyte foot process 

effacement and the glomeruli of the 6-weeks-old mice were severely sclerosed, had a 

disorganized GBM and protein casts in dilated proximal tubules. Deletion of all β1 

containing integrins using the podocin-cre that is active at the S-shaped body stage results 

in normal morphogenesis of the glomerulus, despite podocyte abnormalities, a defective 
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glomerular filtration barrier present at birth and podocytes loss over time. Three weeks 

old mice develop severe end-stage renal failure characterized by both tubulointerstitial 

and glomerular pathology (Pozzi et al., 2008). The overall phenotype is similar to that 

found in mice where the α3 integrin subunit is selectively deleted in podocytes suggesting 

that integrin α3β1 is the main integrin required to maintain the structural integrity of the 

glomerulus. In a parallel study, β1 integrin has also been deleted in podocytes. Here, the 

phenotype is more severe as the mutant mice have proteinuria on day 1 and die within 

one week after birth (Kanasaki et al., 2008). Interestingly, the podocyte/slit diaphragm 

defects are accompanied by structural defects in the GBM and matrix assembly which 

has not been observed in a study by Pozzi et al. (Pozzi et al., 2008).  

The glomerular endothelial cells and also the podocytes contribute to the GBM that 

initially develops as two separate layers. These two layers fuse to form the mature GBM. 

In the podocin-cre integrin β1-fl/fl mice, the GBM remains as two layers and in many 

areas it is further disrupted (Kanasaki et al., 2008). The role of integrin β1 for proper 

formation of basement membranes is well established (Li and Yurchenco, 2006; Miner 

and Yurchenco, 2004). Integrin β1 has been shown to facilitate the recruitment of laminin 

followed by type IV collagen to organize the basement membrane structure at the 

basolateral site of the cell. Podocytes express integrin α3β1 and bind to laminin 511 and 

laminin 521 in the GBM suggesting that an impaired laminin recruitment could be causal 

for the observed GBM defects (Li and Yurchenco, 2006; Miner and Yurchenco, 2004). 

ILK, PINCH and parvin function as a signaling platform for integrins by regulating the 

actin cytoskeleton and diverse signaling pathways (Legate et al., 2006). As mentioned 

above, podocytes are anchored to the GBM through the α3β1-integrin complex that is 

present in the sole of the foot processes. However, whether the integrin and SD signals 

are connected and how this occurs is still not clear. Dysregulation of ILK expression is 

implicated in the pathogenesis of a wide variety of chronic kidney diseases, including 

nephrotic syndrome and diabetic and obstructive nephropathy (Guo et al., 2001; Kretzler 

et al., 2001; Li et al., 2003; Teixeira Vde et al., 2005). Overexpression of ILK can be 

observed in patients with congenital nephrotic syndrome and in glomerular podocytes of 

murine models of proteinuria (Kretzler et al., 2001). Selective ablation of ILK in 

podocytes causes aberrant distribution of the SD protein nephrin and α-actinin-4 as well 
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as early foot process effacement. This results in heavy albuminuria, glomerulosclerosis, 

and kidney failure, which leads to lethality at 10 weeks of age. In addition, ILK is in a 

complex with nephrin together with α-actinin suggesting that cell-matrix integrin 

signaling and the cell-cell adhesion SD signaling are intrinsically coupled through an 

ILK-dependent mechanism (Figure 21) (Dai et al., 2006). 

 

 

Figure 21: Schematic model that illustrates how ILK bridges the integrin and slit 
diaphragm signaling (Dai et al., 2006). 
ILK functions as an adaptor protein that physically and functionally associates with the 
slit diaphragm protein nephrin. α-Actinin-4 participates in the ILK/nephrin complex 
formation. 
 
 
The redistribution of the actin cross-linking protein α-actinin-4 could change the actin 

cytoskeleton dynamics and may cause the collapse of the actin meshwork underneath or 

near the SD of the foot processes. As the actin cytoskeleton defines cell shape and 

morphology, altered cytoskeletal structure of the foot processes as observed in the 

absence of ILK could lead to disappearance of the SD structures and development of an 

“effaced” phenotype. Interestingly, mutations or deletion of α-actinin-4 cause proteinuria 

and focal segmental glomerulosclerosis in animal models and patients (Kaplan et al., 

2000; Kos et al., 2003; Weins et al., 2005).  
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Aim of the Thesis 

 
Although ILK was discovered 13 years ago, it is still a puzzling integrin adaptor protein 

with respect to its function. The essential role of ILK in strengthening the integrin-actin 

linkage as well as in actin reorganization is well established through numerous studies. 

However, it is still largely unknown how ILK exerts its effects on the actin cytoskeleton. 

In addition, a large amount of studies suggested that ILK regulates phosphorylation of 

several substrates such as Akt, Gsk-3β or MLC downstream of integrin engagement, yet 

the potential kinase activity remained controversial since ILK’s discovery.  

The aim of the thesis was to analyse the function of the ILK kinase domain, and the 

relevance of the putative kinase activity for mouse development. The tasks were defined 

as follows: 

(1) Generation of mice carrying point mutations that have been shown to affect the ILK 

kinase activity in vitro. 

 

Mutation Motif 
Reported altered kinase 

function 

K220A ATP-binding site kinase dead 

K220M ATP-binding site kinase dead 

E359K 
conserved APE-motif 

of subdomain VIII 
kinase dead 

 
S343A 

 
(auto)phosphorylation site kinase dead 

S343D (auto)phosphorylation site 
kinase active 

 

R211A PH-domain reduced phosphorylation of Akt 

 

(2) Analysis of the phenotypes of these mice with a special focus on the role of ILK as a 

serine/threonine kinase. 
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Short Summaries of Publications 
 
Publication I: Local call: from integrins to actin assembly 

 
The focus of this commentary is an article published by Butler et al.  

Integrin receptors link the extracellular matrix to the actin cytoskeleton. As integrins lack 

actin binding capacity they depend on the recruitment of other proteins to fulfill this 

function. Because many of those proteins bind to integrin cytoplasmic tails and F-actin 

simultaneously, actin binding to matrix adhesions was considered as recruitment of pre-

assembled filaments. 

The activity of actin nucleation factors such as the Arp2/3 complex and the formin 

protein family, which both have been shown to localize to adhesion sites, is controlled by 

small GTPases of the Rho family, which are in turn activated downstream of integrin 

engagement. However, this suggests that actin polymerization occurs at a certain distance 

to the core adhesion site.  

Butler et al. show here that isolated αVβ3 adhesion complexes from hematopoietic cells 

can induce the polymerization of actin filaments suggesting that local actin 

polymerization through the direct recruitment of Arp2/3 and formins to matrix adhesion 

sites could be possible. A few proteins were found to be involved in the regulation of the 

actin nucleation activity. Among them were PI3K, Vav1, Pyk2 and Src. 
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Publication II: How ILK and kindlins cooperate to orchestrate integrin signaling 

 
This review article summarizes the current knowledge about the role of ILK and kindlins, 

a family of three integrin-binding proteins, in the regulation of integrin function. It also 

includes a discussion of cell-matrix adhesion-independent functions of both proteins. 

Integrin receptors possess the rare ability to signal bi-directionally across the membrane 

and appear in different conformations characterized by their affinity to the ligand but do 

not possess enzymatic activity or actin binding capability by their own. Ligand binding 

triggers the recruitment of a multiprotein complex to the cytoplasmic tails of integrins 

which establishes a connection from the ECM to the actin cytoskeleton and to various 

signal transduction pathways. This is of crucial importance for processes such as cell 

spreading and migration (“outside-in” signaling). Conversely, integrin tail binding 

proteins can also induce conformational changes in the integrin ectodomain that alters the 

affinity for their ligands (“inside-out” signaling).  

A number of recent studies have established the role of kindlins, together with the FERM 

domain-containing protein talin, as important regulators of integrin inside-out signaling. 

How kindlins and talin cooperate is still unknown. In addition, kindlin proteins have also 

been shown to play a major role in integrin “outside-in” signaling through binding and 

recruitment of actin regulatory proteins such as ILK and migfilin to focal adhesions/cell-

matrix adhesion sites. Two human diseases have been associated with loss of kindlin 

function so far and are reflected in the corresponding kindlin knock-out mouse: Kindler 

syndrome (kindlin-1) and leukocyte adhesion deficiency type III (kindlin-3).  

Kindlins also colocalize with their interaction partners ILK and migfilin at subcellular 

structures such as the nucleus and cell-cell contact sites. However, the function of focal 

adhesion proteins at these structures remains to be determined. 
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Publication III: Integrin-linked kinase is an adaptor with essential functions during 

mouse development 

 
Integrin binding to extracellular matrix catalyses the assembly of multiprotein complexes, 

which transduce mechanical and chemical signals that regulate many aspects of cell 

physiology. Integrin-linked kinase (ILK) is a multifunctional protein that binds β-integrin 

cytoplasmic domains and regulates actin dynamics by recruiting actin binding regulatory 

proteins such as α- and β-parvin. ILK has also been shown to possess kinase activity and 

to regulate signaling downstream of integrins through phosphorylation of substrates such 

as Akt and Gsk-3β in mammalian cells; however, genetic studies in flies and worms 

failed to confirm the importance of ILK as a kinase.  

Here we report the generation of ILK mutant mice harboring point mutations that have 

been shown to affect the kinase activity in vitro. These mice were generated in order to 

determine whether the catalytic activity of ILK might be specific for mammals or certain 

cell types. Mice carrying point mutations in the proposed autophosphorylation site 

(S343A/D) of the putative kinase domain and in the pleckstrin homology domain 

(R211A) are normal. In contrast, mice with point mutations in the conserved lysine 

residue of the potential ATP-binding site of the kinase domain die due to renal agenesis. 

The observed phenotype is not caused by altered kinase activity of the mutant ILK 

(K220A/M) but rather it affects ILK´s ability to act as a scaffold protein as this mutation 

specifically impairs binding of ILK to α-parvin. Similarly, renal effects also occur in α-

parvin deficient mice. 

Thus, we conclude that the kinase activity of ILK is dispensable for mammalian 

development and adult life; however, an interaction between ILK and α-parvin is crucial 

for kidney development. 
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Publication IV: The ILK/PINCH/parvin complex: the kinase is dead, long live the 

pseudokinase! 

 
Genetic studies have firmly established a role for the IPP complex in adhesion 

strengthening and organization of the actin cytoskeleton downstream of integrins. This 

review focuses on the recent advances made towards the understanding of the function of 

the ILK/PINCH/parvin complex regarding the specialized roles this complex and its 

individual components have acquired during evolution. 

It is now clear that the putative kinase activity of ILK is non-existent neither in 

invertebrates nor in vertebrates and thus not required for its function in vivo, and that the 

kinase homology domain is a critical mediator of several protein-protein interactions.  

Recently, the analysis of the α-parvin-null mice has revealed a specific function of this 

protein in regulating cell contractility in a subset of cell types. Despite the ubiquitous 

expression pattern of α-parvin, these mice survive to E14.5, because of the ability of β-

parvin to compensate during early development, and die as a result of severe 

cardiovascular defects. The absence of α-parvin causes impaired investment of vascular 

smooth muscle cells to developing vessel walls resulting in defective stabilization of the 

vasculature and subsequent dilation of vessels, formation of microaneurysms, and vessel 

rupture. At the molecular level, these defects are caused by increased RhoA activity that 

leads to elevated MLC phosphorylation and aberrant actomyosin contractility. 

Interestingly, α-parvin-null fibroblasts or endothelial cells do not display a 

hypercontractile phenotype, suggesting that the function of α-parvin as a negative 

regulator of RhoA is cell-type specific. A similar role for ILK in the regulation of Rho 

activity has been observed in Schwann cells of the nervous system, where ablation of 

ILK leads to upregulation of Rho/Rock signaling, resulting in the inability of the 

Schwann cells to extent cytoplasmic processes to envelope the nerves. In addition, point 

mutations in the potential ATP-binding site of ILK which selectively disrupts its 

interaction with α-parvin induce contractile cell behavior as well as enhanced random 

motility and loss of directional cell migration in collecting duct epithelial cells.  

In conclusion these studies collectively identify the ILK/α-parvin complex as a negative 

regulator of cell contractility in certain cell types. 

67 



Short Summaries of Publications 

68 

Publication V: Integrin-mediated signals control microtubule dynamics required for 

plasma membrane targeting of caveolae 

 
Caveolae are cell surface organelles involved in signalling, endocytosis and cholesterol 

transport and have been shown to suppress tumor formation. Formation of caveolae 

requires the transport of caveolin-1 from the endoplasmatic reticulum where it is 

synthesized to the golgi apparatus where caveolae assembly is believed to start. Finally, 

caveolae are transported to the plasma membrane. 

Interestingly, mice lacking either integrin β1 or ILK in the epidermis show reduced 

numbers of plasma membrane caveolae in vivo. The lack of plasma membrane caveolae 

is due to an impaired transport of caveolin-1 containing vesicles along microtubules 

caused by destabilzed microtubules at the cell cortex.  

At the molecular level, the integrin/ILK complex recruits the F-actin binding protein 

IQGAP1 to nascent focal adhesions, which in turn recruits mDia leading to microtubule 

stabilization. 

 

 

Publication VI: Bacteria hijack integrin-linked kinase to stabilize focal adhesions 

and block cell detachment 

 
Cell-matrix attachment is crucial for normal development. Therefore bacterial pathogens 

often target cell adhesion molecules to attach to host cells, to invade them and to spread.  

One of these pathogens is Shigella, a bacterium that infects the digestive tract and 

induces an intense inflammatory reaction. Using the type III secretion system Shigella 

injects virulence proteins into the host, which then manipulate host cell signalling 

cascades allowing them to colonize the gastric epithelium efficiently. In this study, it has 

been found that the effector protein OspE, which is secreted into the host cell, binds to 

ILK. This interaction causes stabilization of integrin-containing adhesion sites due to 

reduced adhesion turnover and suppression of detachment of infected cells from the 

basement membrane. 
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