Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Persistente Radikalanionen mit ungewöhnlichen Eigenschaften auf der Basis von Carbonsäureimiden

von

Dipl.-Chem. Ulrike Ritter

aus

München

2008

Erklärung:

Diese Dissertation wurde im Sinne von § 13 Abs. 3 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Heinz Langhals betreut.

Ehrenwörtliche Versicherung:

Diese Dissertation wurde selbstständig und ohne unerlaubte Hilfe angefertigt.

München, den 18. Januar 2008

Ulrike Reffer

Ulrike Ritter

Dissertation eingereicht am: 18. Januar 2008

1. Berichterstatter: Prof. Dr. Heinz Langhals

2. Berichterstatter: Prof. Dr. Paul Knochel

Tag der mündlichen Prüfung: 28. Februar 2008

Danksagung

Die vorliegende Arbeit entstand unter der Betreuung von Prof. Dr. H. Langhals in der Zeit von April 2005 bis Januar 2008 am Institut für Organische Chemie der Ludwig-Maximilians-Universität München.

Mein besonderer Dank gilt meinem Doktorvater Prof. Dr. Heinz Langhals, für die hervorragende fachliche Betreuung, das entgegengebrachte Vertrauen und Wohlwollen, sowie das fortwährende Interesse am Verlauf meiner Arbeit.

Herrn Prof. Dr. Paul Knochel danke ich für die freundliche Übernahme des Zweitgutachtens.

Besonders möchte ich mich auch bei Prof. Knorr für die genaue Korrektur meiner Arbeit bedanken.

Ganz herzlich möchte ich meinen Arbeitskollegen Beata Oginski, Sandra Christian, Simon Poxleitner, Simon Kinzel, Ana Varja, Andreas Esterbauer, Jan Klitschke, Tim Pust, Andreas Obermeier, Armin Pfreintner, Sherif Abd el Moez und Andreas Walter für das freundliche Arbeitsklima, die große Hilfsbereitschaft und die gute Zusammenarbeit. Birgit Bischoff danke ich für die Hilfe bei der Durchführung der optischen Spektroskopie und die Aufnahme der IR-Spektren.

An dieser Stelle möchte ich allen Mitarbeitern des Departments Chemie danken, die zum Gelingen dieser Arbeit beigetragen haben. Für die Aufnahme von zahlreichen Spektren danke ich allen Mitarbeitern der Zentralen Analytik.

Für die Durchführung und Auswertung der Magnetmessungen danke ich Dr. B. Weber.

Großer Dank gebührt Dr. Oksana Storchewa, für die Aufnahme der ESR-Spektren und Prof. Dr. K. Köhler von der Technischen Universität München, der diese Kooperation ermöglicht hat.

Am meisten möchte ich meinen Eltern danken, die dieses Studium erst ermöglicht haben und meinem Freund Carlos, der mich während des Studiums immer unterstützt und ermutigt hat.

Für meine Eltern und Carlos

Pläne sind die Träume der Verständigen.

Ernst Freiherr von Feuchtersleben 29.April 1806 – 9. März 1849 Österr. Philosoph, Arzt und Lyriker

Verwendete Abkürzungen

Äquiv.:	Äquivalent(e)	
ATR:	"Attenuated total Reflectance"	
Ber.:	Berechnet	
°C:	Grad Celsius	
CD:	Circulardichroismus	
Gef.:	Gefunden	
Gew. %:	Gewichtsprozent	
DBU:	1,8-Diazabicyclo-[5,4,0]undec-7-en	
DC:	Dünnschichtchromatographie	
DCC:	Dicyclohexylcarbodiimid	
DMF:	N,N-Dimetylformamid	
ESR:	Elektronenspinresonanz	
EtOH:	Ethanol	
HAc:	Essigsäure	
HRMS:	"High Resolution Mass Spectroscopy"	
IR:	Infrarot	
MS:	Massenspektroskopie	
min:	Minute(n)	
MeOH:	Methanol	
NIR:	"Near-Infrared"	
ppm:	Parts per Million	
proz.:	prozentig	
R _f :	"Retention Factor"	
s, w, m, sh.:	"Strong, weak, medium, shoulder" (IR)	
tert:	tertiär	
THF:	Tetrahydrofuran	
TMS:	Tetramethylsilan	
TFA:	"Trifluoraceticacid" (Triflouressigsäure)	
UV:	Ultraviolett	
UV/Vis:	Absorptionsspektroskopie im ultravioletten/sichtbaren	
	Bereich	
Vol. %:	Volumenprozent	
z.B.:	zum Beispiel	

1 Inhaltsverzeichnis

Allgemeiner Teil	1
2 Einleitung	3
2.1 Stabile Organische Radikale und ihre Bedeutung in der Chemie	3
2.2 Perylenbisimide	5
2.3 Motivation der Arbeit	6
3 Problemstellung	
Theoretischer Teil	11
4 Synthese von Vorstufen und Ausgangsmaterialien	13
4.1 Aminoalkohole (4)	13
4.2 Perylenbisimide	15
4.2.1 Indanthrenrot GG (1a)	15
4.2.2 Perylenbisimide mit γ-Hydroxyalkylsubstituenten	16
4.2.3 Synthese von 2,9-Bis-(2,3-dihydroxypropyl)anthra[2,1,9- <i>def</i> ;6,5,	10-
d'e'f']diisochinolin-1,3,8,10-tetraon (9)	
4.2.4 Tyrosin-Derivate	
5 Darstellung von Naphthalinbisimiden mit γ -Hydroxyalkylsubstituenten (1-	4) 29
5.1 Synthese und spektroskopische Eigenschaften	
5.2 Untersuchung der Reflektivitäten	
6 Untersuchung der Stabilität von Naphthalinbisimiden mit γ-Hydroxyalk	ylsubstituenten
(14) im alkalischen Medium	
6.1 Umsetzung von (14c, e) mit KOH in tert-Butanol	
6.2 Isolierung und Charakterisierung der neuen Naphthalinlactam Hydroxyalkylsubstituenten (16a, b)	imide mit γ- 35
7 Detektion von freien Radikalanionen in der Küpe von Perylen- und Napht	halinbisimiden

	7.1 Me	thodik von Herstellung und Analyse der Farbstoffküpen
	7.2 Sp	ektroskopische Untersuchung der Küpe von Perylenbisimiden
	7.2.1	Perylenbisimide mit Alkylsubstituenten
	7.2.2	Perylenbisimide mit Hydroxygruppen in der Seitenkette
	7.2.3	Aktive Beeinflussung des Redoxgleichgewichts durch Zusatz von Diacetyl (18)
	7.3 Spo	ektroskopische Untersuchung der Küpe eines Naphthalinbisimids
	7.3.1	Beeinflussung des Redox-Gleichgewichts durch Zusatz von Diacetyl (18) 53
	7.4 Da Naphthali	rstellung und spektroskopische Untersuchung der Küpe des Perylen- (19) und des nlactamimids (16b)
8	Isolieru	ng der stabilen Perylenbisimidradikalsalze (22) und (23a-e)
	8.1 Ve	rsuche zur Isolierung des Dianions aus der Küpe von
	Perylendi	simiden durch Derivatisierung
	8.2 Iso	lierung von Radikalanionen aus der Küpe von Perylenbisimiden als stabile
	8.2.1	Umsetzung der Perylenbisimide mit γ -Hydroxyalkylsubstituenten (2)
	8.2.2	Spektroskopische Charakterisierung der Perylenbisimidradikalsalze (22) und
	(23a-e)	
	8.2.3	Untersuchungen zur Stabilität der Perylenbisimidradikalsalze (22) und (23a-e)
	in Lost	
9	Isolieru	ng von stabilen Naphthalinbisimidradikalsalzen
	9.1 Sy	nthese
	9.2 Sp	ektroskopischeCharakterisierung
	9.2.1	UV/Vis-Spektroskopie
	9.2.2	IR-, ¹ H-NMR- und Massenspektroskopie
	9.2.3	ESR-Spektroskopie

10 Erzeugung von Radikalanionen auf Basis von kernerweiterten Perylenbisimiden	. 91
10.1 Erzeugung eines <i>N</i> , <i>N</i> ', <i>N</i> ''-Benzoperylentrisimidradikalanions	. 91
10.1.1 Synthese von Benzoperylen (25a) und <i>N</i> , <i>N</i> ', <i>N</i> ''-Benzoperylentrisimid (26) als	S
Ausgangsmaterialien	. 91
10.1.2 Herstellung und spektroskopische Untersuchung der Küpe des N,N''-Bis-(1-	
hexylheptyl)-N'-[2-(hydroxymethyl)-2-octyldecyl]benzoperylentrisimids (26)	. 95
10.1.3 Versuch zur Isolierung des <i>N</i> , <i>N</i> ''-Bis-(1-hexylheptyl)- <i>N</i> '-[2-(hydroxymethyl)	-2-
octyldecyl]benzoperylentrisimidradikalanions als Tetrabutylammoniumsalz (30)	. 96
10.2 Erzeugung von Radikalanionen auf Basis der NIR-Farbstoffe Terrylen- u	ınd
Quaterrylenbisimid	, 98
10.2.1 Darstellung der Ausgangsmaterialien	. 99
10.2.2 Detektion von Radikalanionen in der Küpe der NIR-Farbstoffe N,N'-Bis-(1-	
hexylheptyl)terrylen- (27) und -quaterrylenbisimid (28)	100
10.2.3 Isolierung des N, N' -Bis-(1-hexylheptyl)quaterrylenbisimidradikalanions als	
Tetrabutylammoniumsalz (32)	104
11 Untersuchung der magnetischen Eigenschaften des stabilen Perylenbisimidradikalsal	zes
(23b) 1	108
11.1 Allgemeine Grundlagen der Magnetochemie	109
11.2 Prinzip der SQUID-Magnetometrie ^{,76}	112
11.3 Untersuchung des Magnetismus von 23b	113
12 Affinität von Perylenbisimiden zu Keratinoberflächen	117
12.1 Methodik der Färbungen	118
12.2 Untersuchung der Affinität in Abhängigkeit vom Substitutionsmuster	am
Imidstickstoff	119
12.2.1 Perylenbisimide mit Alkylseitenketten	119
12.2.2 Perylenbisimide mit γ -Hydroxyalkylsubstituenten	121
12.2.3 Tyrosinderivate	124

Inhaltsverzeichnis

12.	.3	Ausweitung des Farbspektrums durch Ausfärbungen mit Quaterrylenbisimid (2	8)
uno	d Ben	zoperylentrisimid (26)12	26
12.	.4	Einfluss des pH-Werts auf die Farbintensität	27
12.	.5	Färbungen mit den Perylenbisimidradikaltetrabutylammoniumsalzen (22) un	nd
(23	Ba-d) a	als Speicherform der Küpe	30
13 2	Zusan	nmenfassung13	32
Expe	rimen	teller Teil13	37
14	Analy	tik und allgemeine Arbeitstechnik13	39
14.	.1	Allgemeine Arbeitstechnik	39
14.	.2	NMR-Spektroskopie	39
14.	.3	IR-Spektroskopie	40
14.	.4	Massenspektroskopie 14	40
14.	.5	Optische Spektroskopie14	40
14.	.6	Elementaranalytik	41
14.	.7	Schmelzpunkte	41
14.	.8	ESR-Spektroskopie	41
14.	.9	Magnetische Eigenschaften	42
14.	.10	Reagenzien und Lösemittel	42
15	Synth	ese von aliphatischen Ausgangsmaterialien14	43
15.	.1	Alkylierung von Cyanessigsäuremethylester14	43
	15.1.1	2-Cyano-2-ethylbutansäuremethylester (3a) ⁴⁵	43
	15.1.2	2-Cyano-2-propylpentansäuremethylester (3b) ⁴⁵	44
-	15.1.3	2-Butyl-2-Cyanohexansäuremethylester (3c) ^{39, 45}	45
-	15.1.4	2-Cyano-2-pentylheptansäuremethylester (3d) ³⁹	46
-	15.1.5	2-Cyano-2-octyldecansäuremethylester (3e)14	48
15.	.2	Reduktion von alkylierten Cyanessigsäuremethylestern (3) zu Hydroxyaminen (4)
			50

	15.2.1	2-Aminomethyl-2-ethylbutan-1-ol (4a) ⁴⁵)
	15.2.2	2-Aminomethyl-2-propylpentan-1-ol (4b) ⁴⁵	1
	15.2.3	2-Aminomethyl-2-butylhexan-1-ol $(4c)^{39,45}$ 152	,
	15.2.5	$2 - \Delta \text{minomethyl} - 2 - \text{pentylbentan} - 1 - \text{ol} (Ad)^{45}$	2
	13.2.4	2-Annoineuryi-2-pentyineptail-1-01 (40)	,
	15.2.5	2-Aminomethyl-2-octyldecan-1-ol (4e) 154	ł
16	Synthes	e von Perylenbisimiden 155	5
1	6.1 S	ynthese von Perylenbisimiden mit γ -Hydroxyalkylsubstituenten (2)	5
	16.1.1	2,9-Bis-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9-def;6,5,10-	
	<i>d`e`f`</i>]d	iisochinolin-1,3,8,10-tetraon (2a) ⁴⁵	5
	1612	2.9-Bis-[2-(hydroxymethyl)-2-propylpentyl]anthra[2.1.9-def:6.5.10-	
	10.1.2	$2, y = \text{Disc}[2^{-}(1)y = 0, y] = (2^{45})^{45}$	-
	a e j ju	nsocmnoim-1,5,8,10-tetraon (2D))
	16.1.3	2,9-Bis-[2-butyl-2-(hydroxymethyl)hexyl]anthra[2,1,9-def;6,5,10-	
	<i>d`e`f`</i>]d	iisochinolin-1,3,8,10-tetraon (2c) ^{39, 45}	3
	16.1.4	2,9-Bis-[2-(hydroxymethyl)-2-pentylheptyl]anthra[2,1,9-def;6,5,10-	
	<i>d'e'f'</i>]d	isochinolin-1.3.8.10-tetraon $(2d)^{45}$)
	1615		
	16.1.5	2,9-Bis-[2-(hydroxymethyl)-2-octyldecyl]anthra[2,1,9- <i>def</i> ;6,5,10-	
	<i>d'e'f'</i> di	isochinolin-1,3,8,10-tetraon (2e))
1	6.2 2	,9-Dimethylanthra[2,1,9-def;6,5,10-d'e'f']diisochinolin-1,3,8,10-tetraon	
(Indanthre	enrot GG) (1a)	2
1	6.3 Т	Syrosin-Derivate	3
	16.3.1	2,9-Bis-[2-(4-hydroxyphenyl)ethyl]anthra[2,1,9-def;6,5,10-d'e'f']diisochinolin-	
	1,3,8,10	0-tetraon (10a)	3
	16.3.2	Umsetzung von Pervlen-3.4.:9.10-tetracarbonsäurebisanhydrid mit Tyrosin zu	
	(10c)		1
	1633	2-{9-[1-Carboxy-2-(4-hydroxyphenyl)ethyl]-1 3 8 10-tetraoxo-3 8 9 10-	
	totrohy	$\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \frac{1}{2} \left[\frac{1}{2} \left$	
		$10^{-111} - and a[2, 1, 3^{-}ue_{j}, 0, 3, 1^{-}ue_{j}] unsochimolini-2-yi] - 3-(4-$	_
	hydroxy	prenyi)propionsaure (10b))

16.4 2-[Butyl-2-ethyl-2-(hydroxymethyl)]-9-(1-hexylheptyl)anthra[2,1,9-def;5,6,10-
<i>d'e'f</i> ']diisochinolin-1,3,8,10-tetraon (7)
16.4.1 Perylen-3,4,:9,10-tetracarbonsäure-3,4-anhydrid-9,10-(1-hexylheptylimid) (6)
16.4.2 2-[Butyl-2-ethyl-2-(hydroxymethyl)]-9-(1-hexylheptyl)anthra[2,1,9- <i>def</i> ;5,6,10- $d'e'f'$]diisochinolin-1,3,8,10-tetraon (7)16
16.5 Synthese von 2,9-Bis-(2,3-dihydroxypropyl)anthra[2,1,9- <i>def</i> ;6,5,10-
<i>d'e'f'</i>]diisochinolin-1,3,8,10-tetraon (9)169
17 Naphthalinbisimide mit γ -Hydroxyalkylsubstituenten (14)
17.1 2,7-Bis-[2-ethyl-2-(hydroxymethyl)butyl]-benzo[<i>lmn</i>][3,8]phenantrolin-1,3,6,8- tetraon (14a)
17.22,7-Bis-[2-(hydroxymethyl)-2-propylpentyl]-benzo[<i>lmn</i>][3,8]phenanthrolin-1,3,6,8-tetraon (14b)
17.3 2,7-Bis-[2-butyl-2-(hydroxymethyl)hexy])benzo[<i>lmn</i>][3,8]phenanthrolin-1,3,6,8- tetraon (14c)
17.4 2,7-Bis-[2-butyl-2-(hydroxymethyl)hexyl]benzo[<i>lmn</i>][3,8]phenanthrolin-1,3,6,8- tetraon (14d)
17.5 2,7-Bis-[2-(hydroxymethyl)-2-octyldecyl]benzo[<i>lmn</i>][3,8]phenanthrolin-1,3,6,8- tetraon (14e)
18 Versuche zur Verseifung von Naphthalinbisimiden mit γ-Hydroxyalkylsubstituenten (16
18.1 1,6-Bis-[2-(hydroxymethyl)-2-propylpentyl]-1H-indolo[5,4,3-def]isochinolin- 2,5,7-trion (16a) 175
18.2 1,6-Bis-[2-(hydroxymethyl)-2-octyldecyl]-1 <i>H</i> -indolo[5,4,3- <i>def</i>]isochinolin-2,5,7- trion (16b)
19 Synthese von Radikalsalzen auf der Basis von Perylenbisimiden
19.1 <i>N,N'</i> -Di-(1-hexylheptyl)perylen-3,4:9,10-tetracarbonsäureimid-
radikalaniontetrabutylammoniumsalz (22)182

 19.2 Radikalsalze auf Basis von Perylenbisimiden mit γ-Hydroxyalkylsubstituenten (23)
19.2.1 2,9-Bis-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9-
<i>def</i> ;6,5,10 <i>d'e'f'</i>]diisochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz (23a)
19.2.2 2,9-Bis-[2-(hydroxymethyl)-2-propylpentyl]anthra[2,1,9-
def;6,5,10d'e'f']diisochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz
(23b)
19.2.3 2,9-Bis-[2-(hydroxymethyl)-2-butyloctyl]anthra[2,1,9-
<i>def</i> ;6,5,10 <i>d'e'f</i>]diisochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz (23c)
19.2.4 2,9-Bis-[2-(hydroxymethyl)-2-pentylheptyl]anthra[2,1,9-
def;6,5,10d'e'f']diisochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz
(23d)
19.2.5 2,9-Bis-[2-(hydroxymethyl)-2-octyldecyl]anthra[2,1,9-
<i>def</i> ;6,5,10 <i>d'e'f'</i>]diisochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz (23e)
20 Synthese von Radikalsalzen basierend auf Naphthalinbisimiden mit γ- Hydroxyalkylsubstituenten
20.1 2.7-Bis-[2-ethyl-2-(hydroxymethyl)butyl]-3.6.8-trioxo-1.2.3.6.7.8-
hexahydrobenzo[<i>lmn</i>][3,8]phenanthrolin-1-ol-radikalaniontetrabutylammoniumsalz (24a) 192
20.2 2,7-Bis-[2-(hydroxymethyl)-2-propylpentyl]-3,6,8-trioxo-1,2,3,6,7,8- hexahydrobenzo[<i>lmn</i>][3,8]phenanthrolin-1-ol-radikalaniontetrabutylammoniumsalz (24b)
193 20.3 2,7-Bis-[2-butyl-2-(hydroxymethyl)hexy]-3,6,8-trioxo-1,2,3,6,7,8- hexahydrobenzo[<i>lmn</i>][3,8]phenanthrolin-1-ol-radikalaniontetrabutylammoniumsalz (24c) 195

20.4 2,7-Bis-[2-(hydroxymethyl)-2-pentylheptyl]-3,6,8-trioxo-1,2,3,6,7,8-hexahydrobenzo[<i>lmn</i>][3,8]phenanthrolin-1-ol-radikalaniontetrabutylammoniums	alz (24d)
	196
21 Isolierung eines Radikalsalzes auf Basis von Quaterrylen-3,4,13,14-tetraca	rbonsäure-
3,4:9,10-bis(1-nexyineptylimid) (28)	
21.1 Quaterrylen-3,4,13,14-tetracarbonsäure-3,4:9,10-bis-(1-hexylheptylimid	1) $(28)^{72}$
21.2 Isolierung des Radikalsalzes (32)	
22 Darstellung des γ-Hydroxyalkylsubstituierten Benzoperylentrisimids	(26) und
anschließende Umsetzung zum entsprechenden Radikalsalz (30)	
22.1 N,N "-Bis-(1-hexylheptyl)benzo[g,h,i]perylen-2,3,8,9,11,12-hexacarbon	säure-
2,3;8,9-bis(dicarboximid)-11,12-anhydrid (25a)	
22.2 NN''-Bis-(1-hexylheptyl)-N'-[2-(hydroxymethyl)-2-octyldecyl]benzone	ervlen-
$1^{\circ}, 2^{\circ}, 3^{\circ}, 4^{\circ}, 9^{\circ}, 10^{\circ}$ -hexacarbonsäure- $1^{\circ}, 2^{\circ}, 3^{\circ}, 4^{\circ}, 9^{\circ}, 10^{\circ}$ -tris-(dicarboximid) (26)	202
22.2 NN'' Dis (1 hours/hortsul) N'_i [2 (hudroussethal) 2 sotuldes all hortsul	
22.5 N_{N} -Bis-(1-nexyineptyi)- N -[2-(nydroxymethyi)-2-octyidecyi]benzope	erylen-
1,2.5,4,.9,10-nexacarbonsaure-1,2.5,4.9,10-uris-	204
(uicarboxinnu)rauikaranionteu abutyraninioniunisaiz (50)	204
23 UV-spektroskopische Detektion von Radikalanionen in der Küpe von Peryler	nbisimiden
und Derivaten	
23.1 Perylenbisimide mit Alkylsubstituenten	
23.1.1 N,N'-Di-(1-hexylheptyl)perylen-3,4:9,10-tetracarbonsäurebisimid (1b)
23.1.2 2,9-Bis-(1-propylbutyl)anthra[2,1,9- <i>def</i> ;6,5,10- <i>d'e'f'</i>]diisochinolin-1,	3,8,10-
tetraon (1c)	
23.1.3 2.9-Dimethylanthra[2.1.9-def:6.5.10-d'e'f']diisochinolin-1.3.8.10-tetr	'aon
(Indanthrenrot GG $(1a)$)	207
$22.2 \qquad \text{Develophicity} identify using the Hadroneen between the states of the sector of the secto$	200
25.2 Perylendisimide mit γ -Hydroxysubstituenten	208
23.2.1 2,9-Bis-(2,3-dihydroxypropyl)anthra[2,1,9- <i>def</i> ;6,5,10- <i>d'e'f'</i>]diisochin	olin-
1,3,8,10-tetraon (9)	

23.2.2	2,9-Bis-[2-(hydroxymethyl)-2-propylpentyl]anthra[2,1,9-def;6,5,10-
<i>d'e'f'</i>]dii	sochinolin-1,3,8,10-tetraon (2b)
23.2.3	2,9-Bis-[2-(hydroxymethyl)-2-octyldecyl]anthra[2,1,9-def;6,5,10-
<i>d'e'f'</i>]dii	sochinolin-1,3,8,10-tetraon (2e)
23.3 2,9	9-Bis-[2-(hydroxymethyl)-2-propylpentyl]benzo[lmn][3,8]phenanthrolin-
1,3,6,8-tetra	aon (14b)
23.4 Pe	rylen-und Naphthalinbisimidlactamimide211
23.4.1	1,8-Bis-(1-hexylheptyl)-1 <i>H</i> -indolo[5',4',3':10,5,6]anthra[2,1,9- <i>def</i>]isochinolin-
2,7,9(8H)-trion (19)
23.4.2	1,6-Bis-[2-(hydroxymethyl)-2-octyldecyl]-1H-indolo[5,4,3-def]isochinolin-
2,5,7-tric	on (16b)
23.5 Ke	ernerweiterte Perylenbisimidderivate
23.5.1	Benzo[13,14]pentapheno[3,4,5- <i>def</i> :10,9,8- <i>d'e'f'</i>]diisochinolin-1,3,10,12(2H,
11 <i>H</i>)tetra	aon, 2,11-bis(1-hexylheptyl) (27)
23.5.2	Quaterrylen-3,4,13,14-tetracarbonsäure-3,4:9,10-bis-(1-hexylheptylimid) (28) ⁷²
23.5.3	N, N' 'Bis-(1-hexylheptyl)- N' -[2-(hydroxymethyl)-2-octyldecyl]benzoperylen-
1 ',2 ':3,4:	9,10-tris-(dicarboximid) (29)
24 Untersuc	hung der Affinität von Perylenbisimiden zu Keratinoberflächen
24.1 Ur	ntersuchung des Aufziehvermögens von Perylenbisimiden mit unterschiedlichem
Substitution	nsmuster
24.1.1	Perylenisimide mit γ -Hydroxyalkylsubstituenten (2)
24.1.2	2-(1-Hexylheptyl)-9-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9-def;6,5,10-
<i>d'e'f'</i>]dii	sochinolin-1,3,8,10-tetraon (7)
24.1.3	2,9-Bis-(2,3-dihydroxypropyl)anthra[2,1,9- <i>def</i> ;6,5,10- <i>d'e'f'</i>]diisochinolin-
1,3,8,10-	tetraon (9)
24.1.4	Perylenbisimide mit Alkylsubstituenten
24.1.5	Ausfärbungen mit Tyrosinderivaten

24.2 A	Ausweitung des Farbspektrums
24.2.1	N,N''-Bis-(1-hexylheptyl)-N'-[2-(hydroxymethyl)-2-octyldecyl]benzoperylen-
1',2',:3	,4:9,10-hexacarbonsäure-1',2':3,4:9,10-tris-(dicarboximid) (26)
24.2.2	Quaterrylen-3,4,13,14-tetracarbonsäure-3,4:9,10-bis-(1-hexylheptylimid) (28)
24.3 A	Auswirkungen von Säurezusatz auf die Farbintensität am Beispiel von 2,9-Bis-[2-
ethyl-2-(h	ydroxymethyl)butyl]anthra[2,1,9-def;6,5,10-d'e'f']diisochinolin-1,3,8,10-tetraon
(2a) .	
24.3.1	Methode A: Zusatz von Essigsäure
24.3.2	Methode B: Zusatz von Ascorbinsäure
24.3.3	Methode C: Zusatz von Borsäure
24.3.4	Methode D: Zusatz von Citronensäure
24.4 A	Ausfärbungen mit den Radikalsalzen (22) und (23a-d) auf Keratinfasern
24.4.1	2,9-Bis-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9-def;6,5,10-
<i>d'e'f'</i>]di	isochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz (23a)
24.4.2	2,9-Bis-[2-(hydroxymethyl)-2-propylpentyl]anthra[2,1,9-def;6,5,10-
<i>d'e'f'</i>]di	isochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz (23b)
24.4.3	2,9-Bis-[2-butyl-2-(hydroxymethyl)hexyl]anthra[2,1,9-def;6,5,10-
<i>d'e'f'</i>]di	isochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz (23c)235
24.4.4	2,9-Bis-[2-(hydroxymethyl)-2-pentylheptyl]anthra[2,1,9-def;6,5,10-
<i>d'e'f'</i>]di	isochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz (23d)
24.4.5	2,9-Bis-(2-hexylheptyl)anthra[2,1,9-def;6,5,10-d'e'f']diisochinolin-1,3,8,10-
tetraon	radikalaniontetrabutylammoniumsalz (22)
Anhang	
Auswertung	und Messwerte der Magnetmessung von (23b)
Lebenslauf.	
Literatur	

Allgemeiner Teil

2 Einleitung

2.1 Stabile Organische Radikale und ihre Bedeutung in der Chemie

Bei den meisten organischen und anorganischen Radikalen handelt es sich um extrem reaktive Verbindungen, die sich nur durch Anwendung von besonderen Techniken¹ spektroskopisch nachweisen lassen. Die hohe Reaktivität dieser Moleküle resultiert, gemäß ihrer Natur als *subvalente* Verbindungen, aus dem Bestreben ihre fehlenden Valenzen durch Dimerisierung, H-Abstraktion oder Disproportionierungsreaktionen auszugleichen.

Im Gegensatz dazu gibt es jedoch auch eine Vielzahl an stabilen Radikalen, bei denen die genannten Reaktionen aufgrund von sterischer Hinderung, Mesomerieeffekten oder elektronischer Stabilisierung durch elektronenziehende Gruppen nicht oder nur eingeschränkt stattfinden. Diese Spezies lassen sich problemlos mit den gängigen spektroskopischen Methoden beobachten, oder können sogar in Substanz isoliert und an der Luft gehandhabt werden.²

Es gibt eine Vielzahl an verschiedenen Strukturtypen von stabilen Radikalen. Als bekannteste Strukturbeispiele kennt man Nitroxid-, Phenoxy- und Hydrazylradikale. Darüber hinaus kennt man noch eine Reihe an π -Radikalen, die auf aromatischen Kohlenwasserstoffen basieren. Einige wichtige Vertreter der genannten Substanzklassen werden im Folgenden kurz angesprochen und sind in Abbildung 1 dargestellt.

Bereits vor über 150 Jahren war es Chemikern möglich stabile Radikale herzustellen und zu isolieren. So gelang es bereits 1845 durch die Darstellung von *Fremys Salz*, ein stabiles Nitroxid-Radikal herzustellen.³ Es folgte 1900 die Synthese von *Triphenylmethyl* durch *Gomberg*, der eigentlich ursprünglich *Hexaphenylethan* herstellen wollte.⁴

Obwohl das *Triphenylmethyl*, das auch unter dem Namen *Trityl* bekannt ist, nur im Gleichgewicht mit seinem Dimeren vorliegt, gilt es als wohl bekanntester Vertreter für ein persistentes π -Radikal.

Weitere bekannte Vertreter dieser Gruppe sind das *Koelsch-Radikal*⁵, *Triangulen*, *Sesquixanthydryl* und *Phenalenyl*. Im Gegensatz zu den drei letztgenannten Verbindungen, die stark zur Dimerisierung neigen, liegt das *Koelsch-Radikal*, welches erstmals 1932 synthetisiert wurde, in isolierter Form vor und verhält sich gegenüber Luftsauerstoff inert.

Des Weiteren seien auch das *Galvinoxyl-Radikal*^{6,7}, als Vertreter für ein luftstabiles Phenoxy-Radikal und das von *Goldschmidt* entdeckte *Diphenylpikrylhydrydrazyl-Radikal DPPH*⁸ erwähnt. Beide Verbindungen zeichnen sich durch ihre hohe Stabilität in Substanz und in Lösung aus. So wird z. B. *DPPH* als Stabilisator in der Polymerchemie eingesetzt⁹ oder als interner Standard für die ESR-Spektroskopie¹ verwendet.

Es sind auch stabile ionische Radikale bekannt. Populäre Beispiele sind hier Semichinonderivate und die *Wursters-Salze*. Die *Wursters-Salze* leiten sich von den *Triarylaminium-Radikalen*¹⁰ ab und stellen Derivate der *para-Phenylendiamine dar*. Sie sind nur innerhalb eines bestimmten pH-Bereichs stabil. Ferner wird ihre Stabilität maßgeblich durch das Substitutionsmuster an den Stickstoffen beeinflusst. Die Stabilität dieser Moleküle wird durch das Einführen von Alkyl- oder Arylresten an diesen Positionen erhöht.¹

Abbildung 1: Übersicht über einige der bekanntesten stabilen Radikale in der organischen Chemie.

Stabile Radikale sind in vielen Bereichen der Chemie von Bedeutung. So verlaufen viele biologische Prozesse über Radikalreaktionen, wobei persistente Radikale eine Schlüsselrolle einnehmen. Als Beispiel sei hier nur die Reaktivität der Vitamine C, E und K erwähnt.

In der Analytik werden stabile Radikale z. B. als *Spin Labels*¹¹ oder *Spin Traps¹* eingesetzt, um bei der Aufklärung von Reaktionsmechanismen radikalische Zwischenstufen beobachten zu können.

Auch für die organische Synthese sind stabile Radikale interessant. So können bestimmte Vertreter gezielt als (Co-)Katalysatoren für Oxidationsreaktionen von Alkoholen eingesetzt werden.^{12, 13, 14}Als bekanntestes Beispiel gilt hier das Nitroxid-Radikal *TEMPO*.

In der anorganischen Chemie werden stabile Radikale oft als Liganden für Übergangsmetallkomplexe verwendet.¹⁵

Darüber hinaus erlangt in der modernen Chemie die Darstellung von neuen stabilen organischen Radikalen im Hinblick auf ihre technisch relevanten Eigenschaften mehr und mehr an Bedeutung. Der Fokus des Interesses liegt dabei auf der Entwicklung von neuartigen elektrisch leitfähigen und magnetischen Materialien auf organischer Basis.¹⁶ So ist 1991 die Synthese des ersten, vollständig organischen Ferromagneten durch *M. Tamura et al.* bereits gelungen.¹⁷ Es handelt sich dabei um das Nitronyl-Nitroxid-Radikal *para-Nitrophenyl-Nitronyl-nitroxid* (**12**), das in seiner β -kristallinen Phase unterhalb einer kritischen Temperatur von 0.6 K eine ferromagnetische Kopplung zeigt.

2.2 Perylenbisimide

Seit ihrer Entdeckung 1913 durch *M. Kardos¹⁸* fanden die Perylenbisimide aufgrund ihrer einzigartigen Eigenschaften in zahlreichen Bereichen der Farbstoffchemie Anwendung. So zeichnen sich Perylenfarbstoffe durch eine hohe Photostabilität aus, sind nicht toxisch und ihr Grundgerüst ist stabil gegenüber extremen chemischen und thermischen Einflüssen.¹⁹

Abbildung 2: Allgemeine Strukturformel der Perylenbisimide.

Kurz nach ihrer Entdeckung wurden die Perylenbisimide zunächst als Küpenfarbstoffe eingesetzt. Diese Anwendung verlor jedoch bald an Bedeutung und sie wurden hauptsächlich als Hochleistungspigmente verarbeitet.²⁰

Durch das Einführen von (Di-*tert*-butyl)phenylsubstituenten^{21, 22, 23} und sekundären Alkylresten am Imidstickstoff^{24, 25, 26} ließ sich die Löslichkeit extrem steigern. Man erhielt stark fluoreszierende Derivate mit einer Fluoreszenzquantenausbeute von ungefähr 100 %.²⁷ Die Extinktionskoeffizienten der Farbstoffe liegen bei 89000 L·mol^{-1.}cm⁻¹ und lassen sich durch Kopplung von mehreren Chromophoren noch vervielfachen.^{28, 29, 30}

Die Absorption der Perylenbisimide kann zum Einen durch Einführung von Donor- oder Akzeptorsystemen am Perylenkern modifiziert werden.^{31, 32, 33} Zum Anderen lässt sich die Farbigkeit durch Ausweitung³⁴ oder Verkleinerung³⁵ des aromatischen Systems beeinflussen.

2.3 Motivation der Arbeit

Seit ihrer Entdeckung wurden Perylenbisimide bereits vielfach funktionalisiert und charakterisiert.^{19, 36} Dennoch gibt es in der Perylenchemie Themengebiete auf denen durchaus noch Forschungsbedarf besteht.

Ein Beispiel wäre die Entwicklung von stabilen radikalischen Chromophoren, die aufgrund ihrer potentiellen elektronischen, magnetischen und optischen Eigenschaften nicht nur für die chemische Grundlagenforschung von Interesse sind. So stellt, z. B. beim Design von neuen magnetischen Materialien, die Verknüpfung von optischen und magnetischen Eigenschaften ein wichtiges Konzept für die Entwicklung von entsprechenden Schalter und Speicherelementen dar.¹⁶

Voraussetzungen zur Erzeugung von stabilen organischen Radikalen sind zum einen das Vorhandensein eines ausgedehnten π -Systems, um das ungepaarte Elektron durch Mesomerie-Effekte stabilisieren zu können. Zum anderen ist eine genügend große sterische Hinderung erforderlich, um Dimerisierung zu vermeiden und Schutz vor ungewollter Oxidation zu bieten. Beide Anforderungen werden durch die Perylenbisimide erfüllt. Daher ist die Synthese von stabilen, radikalischen Chromophoren auf der Basis von Perylenbisimiden realisierbar.

Die Reduktion von Farbstoffen wird bereits seit langem in der Küpenfärberei^{37, 38} eingesetzt, wurde aber noch nie unter einem anderen Aspekt betrachtet.

Es erscheint möglich, dass beim Verküpen von Farbstoffen auch freie Radikalanionen entstehen können, da es sich bei der Reduktion um eine reine Elektronenübertragung handelt. Gelingt es diese Spezies im Falle der Perylenbisimide nachzuweisen und zu isolieren, eröffnen sich für das Anwendungsspektrum der Perylenchemie neue Möglichkeiten. Einerseits sind radikalische Chromophore aufgrund ihrer optischen und magnetischen Eigenschaften technisch relevant. Andererseits ergeben sich jedoch auch neue Konzepte für die Küpenfärberei mit Perylenbisimiden. Für die Perylenbisimide war das Verküpen aufgrund ihrer nur mäßigen Stabilität gegenüber Alkali bisher problematisch. Seit der Entwicklung von hydrolysestabilen Derivaten mit *y*-Hydroxyalkylsubstituenten³⁹ sind jedoch in dieser Richtung mehr Anwendungen möglich. Dies ist nicht nur für die Textilindustrie von Bedeutung, sondern vor allem auch für die Kosmetikindustrie. Die bisher gängige Technik zum Färben von Haaren beruht auf der direkten Kupplung von *p*-Phenylendiaminen auf dem Haar und anschließender Oxidation⁴⁰ und erscheint aufgrund ihrer potentiellen Toxizität problematisch. Daher besteht auf diesem Gebiet ein dringender Bedarf für die Entwicklung von neuen Methoden und neuen Chromophoren. Die Küpenfärberei wird im Fall von Indigo schon erfolgreich zum Färben von Haaren eingesetzt.^{41, 42} Es bleibt nun zu untersuchen ob sich auch die Perylenbisimide für derartige Anwendungen eignen. Dies erscheint besonders interessant, da sich durch entsprechende Funktionalisierung inzwischen nahezu das gesamte Farbspektrum abdecken lässt.^{19, 36}

Abbildung 3: Allgemeine Strukturformel der alkalipersistenten Perylenbisimide.

3 Problemstellung

Hauptziel dieser Arbeit war die Herstellung, Untersuchung und Anwendung von Farbstoffküpen auf der Basis von Perylenbisimiden und Derivaten. Ein wichtiges Augenmerk lag dabei vor allem auf der Detektion und Isolierung von radikalischen Chromophoren aus der Küpe, die dann nicht nur in Bezug auf potentielle interessante optische und magnetische Eigenschaften charakterisiert, sondern auch direkt als Speicherform der Küpe zum Färben von Keratinoberflächen getestet werden sollten. Unter diesen Gesichtspunkten wurden im Rahmen dieser Arbeit die folgenden Aspekte bearbeitet:

- Synthese der alkalipersistenten Perylenbisimide mit γ-Hydroxyalkylsubstituenten und Entwicklung von neuen Perylenbisimiden als Ausgangsmaterialien für eine weitere Umsetzung als Küpenfarbstoff.
- Herstellung und Charakterisierung von Naphthalinbisimiden mit γ-Hydroxyalkylsubstituenten und Untersuchung ihrer Stabilität im alkalischen Medium.
- Aufklärung der Struktur der Farbstoffküpen auf Basis von Perylenbisimiden und verwandten Substanzen:
 Dabei soll eine Methode zur spektroskopischen Charakterisierung der hergestellten Farbstoffküpen entwickelt werden und durch Beeinflussung des Redox-Gleichgewichts gezielt radikalische Chromophore erzeugt werden.
- Isolierung von radikalischen Chromophoren aus der Küpe von Perylen- und Naphthalinbisimiden:

Der Radikalcharakter dieser Verbindungen soll durch Anwendung von unterschiedlichen spektroskopischen Techniken nachgewiesen werden und Untersuchungen in Bezug auf das magnetische Verhalten der Substanzen angestellt werden.

Erzeugung von persistenten Radikalanionen auf der Basis von kernerweiterten Perylenbisimiden: Diesbezüglich sind die NIR-Farbstoffe Terrylen- und Quaterrylenbisimid und ein Benzoperylentrisimid zu untersuchen.

Anwendung von Perylenbisimiden als Küpenfarbstoffe zum Färben von Keratinoberflächen:

In Abhängigkeit vom Substitutionsmuster soll die Affinität von Perylenbisimiden zu Keratin untersucht werden und dabei auch der Einfluss des pH-Wertes auf die Farbintensität berücksichtigt werden. Ferner soll das Farbspektrum durch Ausfärbungen mit kernerweiterten Perylenbisimiden erweitert werden. Der Einsatz von radikalischen Chromophoren als Farbmittel, stellt ein neues Konzept für die Küpenfärberei mit Perylenbisimiden dar.

Theoretischer Teil

4 Synthese von Vorstufen und Ausgangsmaterialien

4.1 Aminoalkohole (4)

Die mit Alkylresten in der β Position substituierten Aminoalkohole 2 sind wichtige Vorstufen für viele Synthesen in dieser Arbeit.

Die Herstellung erfolgte in Übereinstimmung mit der Literatur^{43, 44, 39} in zwei Stufen, durch zweifache Alkylierung von Cyanessigsäuremethylester und anschließender Reduktion mit Lithiumaluminiumhydrid.

Abbildung 4: Synthesestrategie für die zweifach alkylierten Aminoalkohole 4.

3, 4	R
a	$-C_2H_5$
b	$-C_3H_7$
c	$-C_4H_9$
d	$-C_5H_{11}$
e	$-C_8H_{17}$

alkylierten Die Cyanessigester 3а-е konnten bei der Umsetzung von Cyanessigsäuremethylester mit Natriummethoxid und 2 Äquivalenten Alkylbromid, mit Ausbeuten zwischen 60 und 80 % isoliert werden. Alternativ sind die Substanzen 3 auch zugänglich, wenn man die Alkylierung in DMF mit Kaliumcarbonat als Base durchführt. Hier wurden für **3a-d** jedoch nur Ausbeuten zwischen 46 und 61 % erzielt.⁴⁵ Die Durchführung der Synthese mit Natriummethoxid, gemäß Abbildung 4, ist demnach gegenüber der Synthese in DMF mit Kaliumcarbonat zu bevorzugen. Verbindung 3e war dabei zuvor noch nicht in der Literatur beschrieben.

Die spektroskopische Identifizierung der Verbindungen **3a-e** war gut durch Anwendung der IR-Spektroskopie möglich. Charakteristisch ist die CN-Schwingungsbande bei 2243 cm⁻¹, die

in Kombination mit den Alkylschwingungen bei 2960-2860 cm⁻¹ und der Carbonylschwingung bei 1740 cm⁻¹ schon eine eindeutige Aussage zuließ, dass die gewünschten Substanzen **3a-e** entstanden sind.

Im ¹H-NMR-Spektrum sind die Methylgruppen als Triplett mit Kopplungskonstanten zwischen 7.0 und 7.5 Hz, bei 0.9 ppm zu beobachten. Die Methylestergruppe ist bei 3.8 ppm zu sehen.

Im ¹³C-NMR-Spektrum sind das Signal für die CN-Gruppe bei 119 ppm und das Signal für die Carbonylgruppe bei 170 ppm charakteristisch.

Die Reduktion der alkylierten Cyanessigester **3a-e** zu den entsprechenden Aminoalkoholen **4a-e** wurde mit LiAlH₄ in trockenem *tert*-Butylmethylether durchgeführt.

Ein entscheidender Faktor, um die Reaktionsprodukte **4a-e** in guten Ausbeuten isolieren zu können, stellt die richtige Aufarbeitung dar. Häufig bildete sich bei dem Abbruch der Reaktion durch Zugabe von Natronlauge ein gelartiger Niederschlag, der sich nur schwer abtrennen ließ und so die Isolation der Reaktionsprodukte sehr erschwerte. Dies lässt sich vermeiden, wenn stattdessen zu der Reaktionsmischung nur 1 bis 2 mL destilliertes Wasser pro Gramm eingesetztes LiALH₄ und erst im Anschluss die gleiche Menge an 2N NaOH zugetropft wird. Gibt man dann noch, unter möglichst konstantem Rühren die drei- bis vierfache Menge an destilliertem Wasser zu, erhält man einen farblosen, feinpulvrigen Niederschlag, der sich leicht abfiltrieren lässt.

Die erhaltenen Aminoalkohole **4a-e** wurden destillativ im Feinvakuum aufgereinigt. Im Falle der neuen Verbindung **4e** war, aufgrund des hohen Siedepunkts, die Durchführung einer Kugelrohrdestillation erforderlich. Die Produktausbeuten von **4a-e** variierten zwischen 34 und 91 %.

Im IR-Spektrum der Verbindungen war jetzt bei ungefähr 3300 cm⁻¹ die Schwingungsbande für die Hydroxy- und die Aminogruppe zu sehen. Im ¹H-NMR-Spektrum waren zwei Singuletts bei etwa 2.6 und 3.8 ppm für die neu entstandenen Methylen-Gruppen charakteristisch.

14

4.2 Perylenbisimide

Hauptziel dieser Arbeit war die Herstellung, Untersuchung, und Anwendung von Farbstoffküpen auf der Basis von Perylenbisimiden. Dazu wurden sowohl literaturbekannte, als auch neue Perylenbisimide mit unterschiedlichen Seitenketten synthetisiert und charakterisiert.

4.2.1 Indanthrenrot GG (1a)

Das Pigment Indanthrenrot GG **1a** ist bereits seit langem als Küpenfarbstoff bekannt, erlangte aber aufgrund seiner nur mäßigen Stabilität im alkalischen Medium²⁰ für diese Anwendung keine größere Bedeutung.

Im Rahmen dieser Arbeit wurde Indanthrenrot GG **1a** als Referenzsubstanz bei der Untersuchung und Anwendung von Farbstoffküpen, die auf Perylenbisimiden basieren verwendet.

Das Pigment wird industriell durch Methylierung von Perylentetracarbonsäurediimid oder direkt aus der Kalischmelze von *N*-Methylnaphthalimid gewonnen.²⁰ Die Synthese im Labormaßstab wurde hier jedoch in Anlehnung an das US-Patent 4496731⁴⁶ durchgeführt. Demgemäß wurde Perylentetracarbonsäurebisanhydrid **5** in einer wässrigen Suspension bei 0-5 °C mit einer Methylamin-Lösung (40 Gew. Proz. in Wasser) umgesetzt. Im Anschluss wurde noch eine wässrige Calciumchloridlösung zugesetzt. Bei erhöhter Temperatur erfolgte dann der Ringschluss zum Bisimid **1a**.

Abbildung 5: Synthese von Indanthrenrot GG 1a in Anlehnung an das US-Patent 4496731.⁴⁶

Zur Aufreinigung des erhaltenen Produkts **1a** wurde es in Kaliumcarbonatlösung (10 Gew. Proz. in Wasser) ausgekocht, um nicht umgesetztes Edukt **5** abzutrennen. So konnte das Pigment **1a** mit einer Ausbeute von 67 % isoliert werden. Dass es sich bei dem isolierten roten Pigment tatsächlich um Indanthrenrot GG **1a** handelt, konnte durch IR-Spektroskopie und den Molekülpeak (m/z = 418) als intensitätsstärkstes Signal im Massenspektrum eindeutig belegt werden.

Es gelang jedoch nicht, Reste von nicht umgesetztem Perylentetracarbonsäurebisanhydrid **5** komplett abzutrennen, wie im IR-Spektrum der Verbindung **1a** zu erkennen ist.

Es wurde auch das UV/Vis- und Fluoreszenzspektrum des Pigments **1a** in konzentrierter Schwefelsäure aufgezeichnet. In anderen Lösungsmitteln ist dies wegen der Schwerlöslichkeit des Materials kaum möglich. Die Absorptionen wurden bei 596, 552 und 405 nm bei der für Perylenbisimide typischen Schwingungsstruktur detektiert. Die Emission lag bei 616 nm.

4.2.2 Perylenbisimide mit *γ*-Hydroxyalkylsubstituenten

Perylenbisimide mit γ -Hydroxyalkylsubstituenten **2** stellten für diese Arbeit besonders interessante Ausgangsmaterialien dar. Sie wurden erstmals von Langhals *et al.* synthetisiert.³⁹ Anders als die klassischen bekannten Perylenbisimide widerstehen diese Farbstoffe **2** sogar der Einwirkung von heißen Alkalialkoholaten oder Alkalihydroxiden in Alkohol.

Dabei ist die Stabilität von den entsprechenden, unsymmetrisch substituierten Derivaten 7 im alkalischen Medium vergleichbar gut.

Im Rahmen dieser Arbeit wurden die symmetrisch substituierten Perylenbisimide mit γ -Hydroxyalkylgruppen **2a-e** und das unsymmetrisch substituierte Derivat **7** synthetisiert. Bei den symmetrisch substituierten Verbindungen **2a-e** wurde die Länge der Alkylketten in Position β von Ethyl- bis zu Octylresten variiert. Der mit Octylresten in Position β substituierte Farbstoff **2e** war zuvor noch nicht literaturbekannt.

Die Synthese der Verbindungen **2a-e** und **7** erfolgte durch Umsetzung von Perylentetracarbonsäure-3,4:9,10-bisanhydrid **5** oder Perylen-3,4,:9,10-tetracarbonsäure-3,4-anhydrid-9,10-(1-hexylheptylimid) **6** mit den entsprechenden Aminoalkoholen **4a-e** in Imidazol bei 140 °C.

Abbildung 6: Synthese von symmetrisch und unsymmetrisch substituierten Perylenbisimiden mit γ-Hydroxyalkylsubstituenten.

Die Aufreinigung der isolierten Farbstoffe erfolgte zunächst durch Auskochen in Kaliumcarbonatlösung (10 Gew. Proz. in Wasser). Bei den kurzkettigen Derivaten **2a-c** gelang, aufgrund ihrer schlechten Löslichkeit in organischen Lösungsmitteln, keine weitere Reinigung durch Umkristallisation oder Säulenchromatographie.

Farbstoff **2d** konnte durch Umfällung mit Methanol aus heißem Chloroform weiter aufgereinigt werden. Bei den neuen Farbstoffen **2e** und **7**, war dies aufgrund der langkettigen Alkylsubstituenten mittels Säulenchromatographie möglich.

Alle Perylenbisimide, die symmetrisch mit γ -Hydroxyalkylgruppen substituiert waren zeigen Metallglanz, der in Abhängigkeit von der Kettenlänge zu oder abnimmt. Dieses Phänomen wurde bereits im Rahmen der Doktorarbeit von Fritz Wetzel untersucht.⁴⁵ Aufgrund der Schwerlöslichkeit der Substanzen wurden damals jedoch keine weiteren Schritte zur Reindarstellung unternommen.

Jetzt gelang es bei Farbstoff **2d** die Reflektivität, durch den zusätzlichen Reinigungsschritt, im Vergleich zu den roh isolierten Derivaten **2a-d** stark zu steigern. Die entsprechenden Festkörperreflektionsspektren sind in Abbildung 7 dargestellt.

Abbildung 7: Festkörperreflexionsspektren der Perylenbisimide mit γ-Hydroxyalkylsubstituenten (links von unten nach oben): 2d (rot), 2c (violett), 2b (türkis), 2a (grün), 2d (aufgereinigt) (rot).

Alle synthetisierten Farbstoffe **2a-e** konnten mittels ¹H-NMR-Spektroskopie charakterisiert werden. Im Fall von Pigment **2a** wurde als Lösungsmittel konz. D_2SO_4 eingesetzt. Bei allen anderen Verbindungen **2b-e** und **7** wurde CDCl₃ verwendet.

Interessanterweise ist bei den Derivaten **2b-e** und **7** eine Kopplung zwischen der OH-Gruppe und den benachbarten Methylenprotonen zu beobachten. Dieser Effekt deutet auf eine starke Abschirmung durch die Alkylgruppen in Position β hin. Weiterhin scheint auch kein intermolekularer Protonenaustausch stattzufinden. Dies lässt den Rückschluss zu, dass die OH–Gruppen durch Ausbildung von intramolekularen Wasserstoffbrücken fest in Molekül lokalisiert sind. So sind die OH-Gruppen als Triplett bei 4.0 ppm und die benachbarte Methylengruppe bei 3.2 ppm als Dublett zu sehen. Die entsprechenden Kopplungskonstanten nahmen dabei Werte zwischen 7.5 und 7.6 Hz an. Das Signal der zum Imidstickstoff benachbarten Methylenprotonen liegt als Singulett, bei einer chemischen Verschiebung von 4.2 ppm, vor.

¹³C-NMR-Spektroskopie gelang, aufgrund der Schwerlöslichkeit der anderen Derivate, nur bei den Farbstoffen **2e** und **7**.

Einen weiteren Beleg dafür, dass die OH-Gruppen durch intramolekulare Wasserstoffbrücken im Molekül lokalisiert sind, lieferten die IR-Spektren der Substanzen. So wird die OH-Valenzschwingung bei den Substanzen **2a-e**, **7** als scharfe Schwingungsbande zwischen 3460 und 3470 cm⁻¹ beobachtet. Dies indiziert die Ausbildung von intramolekularen Wasserstoffbrücken. Denn in Übereinstimmung mit der Literatur⁴⁷ tritt die OH-Valenzschwingung, bei Ausbildung von intramolekularen Wasserstoffbrückenbindungen, charakteristisch zwischen 3450 und 3470 cm⁻¹als scharfe Bande auf.

Abbildung 9: IR-Spektrum von Verbindung 2e: Die OH-Valenzschwingung ist als scharfe Bande bei 3467 cm⁻¹ zu sehen.

Die Existenz von intramolekularen Wasserstoffbrückenbindungen muss sich jedoch auch auf die UV/Vis-Spektren der Substanzen auswirken. Kommt es zur Ausbildung von intramolekularen Wasserstoffbrücken wird den Carbonylgruppen am Imidring Elektronendichte entzogen. Dadurch wird der Chromophor als farbgebendes System beeinflusst und es ist ein bathochromer Shift der Absorption zu erwarten. So wird z. B. die Absorption von Perylenbisimiden in konzentrierter Schwefelsäure, wo eine Protonierung der Carbonylgruppen vermutet wird um etwa 80 nm in den langwelligeren Bereich verschoben.¹⁹ Wie erwartet, wurde auch in den UV-Vis-Spektren der Perylenbisimide mit y-Hydroxyalkylsubstituenten ein schwacher, bathochromer Shift der Absorption beobachtet. Die Absorptionen der Verbindungen 2b-e und 7 werden bei 528, 491 und 458 nm detektiert und sind damit, gegenüber den Absorptionen von Perylen-3,4,9,10-tetracarbonsäure-3,4,:9,10bis-(1-hexylheptylimid) (Handelsname S-13) 1b²⁵, als Beispiel für ein klassisches Perylenbisimid mit sekundären Alkylketten am Imidstickstoff, um zwei Nanometer bathochrom verschoben. Dies ist für Perylenbisimide ein erheblicher Wert.⁴⁸

Ein Strukturvorschlag für die Ausbildung von intramolekularen Wasserstoffbrücken bei Perylenbisimiden mit γ -Hydroxyalkylsubstituenten **2** ist in Abbildung 10 wiedergegeben.

Abbildung 10: Strukturvorschlag für die Ausbildung von intramolekularen H-Brücken bei Perylenbisimiden mit γ-Hydroxyalkylsubstituenten.

4.2.3 Synthese von 2,9-Bis-(2,3-dihydroxypropyl)anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon (9)

In Analogie zu den Perylenbisimiden mit γ -Hydroxyalkylsubstituenten **2a-e**, wurde auch das Derivat **9** synthetisiert, das statt den Alkylketten in Position β eine weitere Hydroxygruppe trägt. Die Synthese der neuen Verbindung **9** erfolgte, wie bei den Perylenbisimiden mit γ -Hydroxyalkylsubstituenten **2a-e**, durch Einkondensieren des entsprechenden Aminodialkohols **8** in Perylentetracarbonsäurebisanhydrid **5**.

Abbildung 11: Synthese von Perylenbisimid 9.

Das erhaltene, in organischen Lösungsmitteln komplett unlösliche Pigment **9** wurde durch Auskochen in Kaliumcarbonatlösung (10 Gew. % in Wasser) aufgereinigt. So konnte nicht umgesetztes Edukt **5** vollständig abgetrennt und das Pigment mit einer Ausbeute von 81 % analysenrein isoliert werden.

Wie aus dem IR-Spektrum der Verbindung **9** ersichtlich ist, wird hier, anders als bei den Perylenbisimiden mit γ -Hydroxyalkylsubstituenten **2**, keine Ausbildung von intramolekularen, sondern von intermolekularen Wasserstoffbrücken beobachtet. Demgemäß sind die OH-Gruppen jetzt als eine breite Bande bei 3380 cm⁻¹ zu sehen. Die beobachtete Bande liegt damit in dem Bereich zwischen 3600 und 3200 cm⁻¹, wo gemäß der Literatur⁴⁷ die Ausbildung von intermolekularen Wasserstoffbrücken beobachtet wird.

Neben IR-Spektroskopie und Elementaranalyse, konnte die Verbindung **9** auch durch den Molekülpeak im Massenspektrum bei m/z = 538 nachgewiesen werden. Weitere typische Fragmentierungen waren die Abspaltung von Wasser bei m/z = 507 ($M^+ 2 H_2O$) und die Abspaltung der Seitenketten bei m/z = 465 ($M^+ C_3H_7O_2$) und m/z = 390 ($M^+ 2 C_3H_7O_2$).

Das UV/Vis-Spektrum der Verbindung **9** wurde in konz. Schwefelsäure aufgezeichnet und die Extinktionskoeffizienten bestimmt. Die Absorptionen liegen bei 597, 556 und 400 nm. Für die Extinktionskoeffizienten wurden Werte von 70000, 46000 und 10000 L·mol⁻¹·cm⁻¹ ermittelt. Das Emissionsmaximum in konz. Schwefelsäure wird bei 623 nm detektiert.

4.2.4 Tyrosin-Derivate

Die natürliche Aminosäure Tyrosin stellt ein wichtiges Ausgangsmaterial bei der Biosynthese von Melaninen, den natürlichen Pigmenten, welche die Farbe von Augen, Haaren und Haut beim Menschen bestimmen. Es erschien daher auch interessant zu untersuchen wie sich Perylenbisimide mit Tyrosin und tyrosinähnlichen Substituenten in der Seitenkette auf Keratinoberflächen verhalten.

So sollten zunächst Perylenbisimide mit Tyramin- und Tyrosinsubstituenten in der Seitenkette 10 a, b als Ausgangsmaterialien hergestellt werden.

Abbildung 12: Perylenbisimide mit Tyramin- (10a) und Tyrosinsubstituenten (10b) in der Seitenkette.

4.2.4.1 Umsetzung von Perylentetracarbonsäurebisanhydrid (5) mit Tyraminhydrochlorid (11)

Für die Darstellung des Perylenbisimids **10a** wurde Perylentetracarbonsäurebisanhydrid **5** mit Tyraminhydrochlorid **11** bei 150 °C in Imidazol umgesetzt.

Abbildung 13: Umsetzung von Perylentetracarbonsäurebisanhydrid 5 mit Tyraminhydrochlorid 11.

Nach dem Auskochen mit Kaliumcarbonatlösung (10 Gew. Proz. in Wasser) konnte das Reaktionsprodukt **10a** als rot-braunes Pigment mit einer Ausbeute von 88 % isoliert werden. Aufgrund der Unlöslichkeit der Verbindung **10a** in organischen Lösungsmitteln erfolgte die

spektroskopische Charakterisierung nur mittels IR- und Massenspektroskopie. Die UVspektroskopische Analyse erfolgte in konz. Schwefelsäure.

Im IR-Spektrum des Pigments **10a** sind die Valenzschwingungen der phenolischen OH-Gruppen als breite, stark ausgeprägte Schwingungsbande bei 3384 cm⁻¹ zu sehen. Die Methylengruppen treten als sehr schwache Banden in der Gegend von 2970 cm⁻¹ auf. Die Carbonylschwingungen ergeben Absorptionen bei 1689 und 1636 cm⁻¹. Die Umsetzung zu **10a** war vollständig erfolgt war, denn die Carbonylfrequenzen von nicht umgesetztem Edukt **5** waren im Spektrum nicht mehr zu erkennen.

Die UV-Absorptionen in konzentrierter Schwefelsäure lagen bei 600 und 556 nm. Die Emission ergibt ein Maximum von 617 nm.

Darüber hinaus konnte die Substanz **10a** durch hochauflösende Massenspektroskopie eindeutig nachgewiesen werden.

4.2.4.2 Umsetzung von Perylentetracarbonsäurebisanhydrid (5) mit Tyrosin (12)

Für die Herstellung des Tyrosin-Derivats **10b** wurde in Analogie zu der Synthese von Perylenbisimid **10a** vorgegangen. Dementsprechend wurde Tyrosin **12** als natürliche Aminosäure bei 150 °C in Imidazol in Perylentetracarbonsäurebisanhydrid **5** einkondensiert.

Abbildung 14: Umsetzung von Perylentetracarbonsäurebisanhydrid 5 mit Tyrosin 12.

Interessanterweise entstand dabei nicht die erwartete Dicarbonsäure **10b**, sondern das Dicarboxylat **10c** als Bisimidazoliumsalz. Dies konnte mittels IR- und Massenspektroskopie eindeutig nachgewiesen werden.

So ist im IR-Spektrum keine Bande zwischen 1725 und 1700 cm⁻¹ zu finden, die der C=O Valenzschwingung einer freien Carbonsäure zuzuordnen wäre. Stattdessen sind nur die Imidschwingungen bei 1692 und 1650 cm⁻¹ zu sehen. Die Alkylschwingungen sind als schwache Banden bei 2941 und 2814 cm⁻¹ zu beobachten. Eine ebenfalls nur schwach ausgeprägte Schwingungsbande bei 2600 cm⁻¹ steht, gemäß der Literatur⁴⁷, für die NH-Valenzschwingung von Iminiumionen und deutet auf die Existenz von Imidazolium hin.

Im ESI-Massenspektrum trat der Molekülpeak des Dicarboxylatdianions, bei Abspaltung eines Protons, bei m/z = 716 auf.

Im FAB⁺-Massenspektrum konnte die Existenz von Imidazolium bei einem Massepeak von m/z = 69 eindeutig belegt werden. Im FAB⁻-Massenspektrum war der Molekülpeak des Dicarboxylats **10c** überraschenderweise bei m/z = 718 zu beobachten. Dies entspräche eigentlich dem Molekülpeak der Dicarbonsäure **10b**. Allerdings sollte diese in einem Anionenmassenspektrum gar nicht auftreten. Eine mögliche Erklärung für diese Beobachtung ist, dass im chemischen Gleichgewicht eine Protonenübertragung von dem Imidazolium auf das Dicarboxylat **10c** stattfindet und die so erzeugte zweifach protonierte Spezies durch Aufnahme eines Elektrons im Massenspektrometer trotzdem zu sehen ist. Das Dicarboxylat selbst lässt sich aufgrund seiner hohen Polarität schlechter in die Gasphase überführen, da es aufgrund von elektrostatischen Wechselwirkungen bevorzugt in der Matrix verbleibt.

Das isolierte Bisimidazoliumsalz **10c** war aufgrund der hohen Polarität gut wasserlöslich. In Methanol war die Verbindung **10c** nur bedingt löslich und in allen anderen gängigen organischen Lösungsmitteln komplett unlöslich.

Die Wasserlöslichkeit des Farbstoffs **10c** war nicht nur aufgrund der potentiellen positive Auswirkung auf das Aufziehvermögen auf Keratin interessant, sondern auch im Hinblick auf die optischen Eigenschaften. So wird bereits seit langem nach wasserlöslichen Perylenbisimiden für Anwendungen als Fluoreszenzfarbstoffe in Farbstofflasern oder als Biomarker gesucht. Leider ist jedoch im Falle des Farbstoffs **10c** keine Fluoreszenz zu beobachten.

In wässriger Lösung kam es zur Ausbildung von Aggregaten⁴⁹, so dass excitone Wechselwirkungen^{50 51} berücksichtigt werden müssen. Demgemäß liegen die UV-Absorptionen in Wasser mit einem bathochromen Shift von 17 nm gegenüber den Absorptionen von S-13 **1b**, bei 543 und 509 nm. Die gewöhnlich gut aufgelöste Schwingungsfeinstruktur der Perylenbisimide war stark verbreitert.

Aufgrund des starken bathochromen Shifts der Absorption kann man annehmen, dass es sich hier um *J*-Aggregate⁵² handelt. Damit wären Fluoreszenzeffekte generell nicht ausgeschlossen. Da es jedoch aufgrund der besonderen strukturellen Gegebenheiten noch zahlreiche weitere Möglichkeiten gibt, die aufgenommene Energie z. B. in Form von Schwingungen an die Umgebung abzugeben wird die Emission von Licht trotzdem, wie hier, nicht oder nur sehr schwach beobachtet.³⁶

Bei dem UV-Spektrum in Methanol ist die Schwingungsfeinstruktur der Perylenbisimide dagegen gut aufgelöst. Die Absorptionsmaxima wurden bei 523, 487 und 457 nm detektiert und waren damit um 3 nm hypsochrom gegenüber den Absorptionen von S-13 $1b^{26}$ verschoben. Dies spricht jedoch nicht für die Existenz von *H*-Aggregaten, da eine schwache Fluoreszenz bei 531 und 573 nm mit einer Fluoreszenzquantenausbeute von 2 % detektiert wurde. Bei der Ausbildung von *H*-Aggregaten ist die Abgabe der aufgenommenen Energie in Form von Fluoreszenz aus Symmetriegründen nicht erlaubt.³⁶ Stattdessen lässt sich die beobachtete Verschiebung eher auf Solvatochromie zurückführen.

CD-Spektren wurden weder in Wasser, noch in Methanol aufgezeichnet, da der CD-Effekt von Perylenbisimiden als Monochromophor für aussagekräftige Spektren erfahrungsgemäß⁵³ zu schwach ausgeprägt ist.

Abbildung 15: UV/Vis- und Fluoreszenzspektrum von 10c:(Absorptionsspektrum in Methanol (blaue Kurve, links), Absorptionsspektrum in Wasser (magentafarbene Kurve, Mitte), Emissionsspektrum in Methanol (grüne Kurve, rechts)).

4.2.4.3 Umsetzung des Dicarboxylats (10c) zur Dicarbonsäure (10b)

In einem nächsten Schritt wurde versucht das zuvor erhaltene Dicarboxylat **10c** durch zweifache Protonierung in die entsprechende Dicarbonsäure **10b** zu überführen. Dabei wurde sich zu Nutze gemacht, dass für die Dicarbonsäure **10b**, durch die Erniedrigung der Polarität eine viel schlechtere, oder gar keine Löslichkeit in Wasser erwartet wird, als bei der Ausgangsverbindung **10c**.

Demgemäß gelang es die Dicarbonsäure **10b** aus einer wässrigen Lösung des Dicarboxylats **10c** durch vorsichtige Zugabe von konzentrierter Salzsäure bei 0 °C auszufällen. Das dabei anfallende Imidazoliumchlorid verblieb dabei höchstwahrscheinlich gelöst in der wässrigen Phase.

Abbildung 16: Isolierung der Dicarbonsäure 10b.

Die isolierte Dicarbonsäure **10b** unterschied sich als rot-violetter Feststoff schon rein optisch von dem dunkelvioletten Bisimidazoliumsalz des Dicarboxylats **10c**. Wie erwartet war die Verbindung **10b** nicht mehr wasserlöslich. Im Gegensatz zum Dicarboxylat **10c** war **10b** jedoch bedingt in Aceton löslich. In Methanol und allen anderen gängigen organischen Lösungsmitteln wurde keine Löslichkeit beobachtet.

So erfolgte die spektroskopische Charakterisierung auch hier nur massenspektroskopisch. Für ein ¹H-NMR-Spektrum in D₆-Aceton war die Löslichkeit zu schlecht.

Im IR-Spektrum ist jetzt neben den Imidschwingungen bei 1690 und 1642 cm⁻¹ eine weitere, mittelstarke Schwingungsbande bei 1731 cm⁻¹ zu sehen, die sich der C=O Valenzschwingung von Carbonsäuren zuordnen lässt. Die Alkylschwingungen sind schwach in der Gegend von 2930 cm⁻¹ zu sehen. Die phenolischen OH-Gruppen sind als stark ausgeprägte, breite Schwingungsbande bei 3273 cm⁻¹ zu beobachten und überlagern vermutlich die entsprechenden Schwingungsbanden der Carbonsäuregruppen.

Im ESI-Massenspektrum ist der Molekülpeak der Verbindung **10b** nach Verlust eines Protons bei $m/z = 717 (M^+-H)$ zu sehen.

Die UV-spektroskopische Charakterisierung der Verbindung **10b** erfolgte in Aceton. Die Schwingungsfeinstruktur der Perylenbisimide ist im Spektrum mit einer guten Auflösung zu sehen. Die Absorptionsbanden liegen bei 521, 485 und 455 nm und sind damit gegenüber den Banden von S-13 **1b**²⁵ leicht hypsochrom verschoben. Dabei handelt es sich höchstwahrscheinlich um einen hypsochromen Solvenseffekt. Die Bildung von *H*-Aggregaten ist ausgeschlossen, da auch hier eine schwache Fluoreszenz bei 529, 565 und 606 nm detektiert werden konnte. Die entsprechende Fluoreszenzquantenausbeute betrug 4 %.

5 Darstellung von Naphthalinbisimiden mit γ-Hydroxyalkylsubstituenten (14)

Im Rahmen dieser Arbeit war die Synthese von Naphthalinbisimiden mit γ -Hydroxyalkylsubstituenten 14 nicht nur im Hinblick auf eine spätere Umsetzung als Küpenfarbstoff interessant, sondern auch in Bezug auf die Untersuchung ihrer chemischen Resistenz gegenüber Alkali. Es ist außerdem zu prüfen, ob spezielle optische Eigenschaften als Festkörper auftreten, wie dies bei den entsprechenden Perylenbisimiden mit γ -Hydroxyalkylsubstituenten 2 beobachtet wurde.

5.1 Synthese und spektroskopische Eigenschaften

Die Synthese der Verbindungen **14a-e** erfolgte in Anlehnung an eine von H. Langhals *et al.* ausgearbeitete Methode durch Umsetzung von Naphthalintetracarbonsäurebisanhydrid **13** mit den entsprechenden Aminoalkoholen **4a-e** in DMF.³⁵

Abbildung 17: Synthese von Naphthalinbisimiden mit *p*-Hydroxyalkylsubstituenten.

4, 14	R
a	$-C_2H_5$
b	$-C_3H_7$
c	$-C_4H_9$
d	$-C_5H_{11}$
e	$-C_8H_{17}$

Es wurde unter Schutzgasatmosphäre gearbeitet, um die Bildung von Perylenbisimiden, die während der Reaktion als Nebenprodukt entstehen können, zu minimieren. Aus dem gleichen Grund wurden die Reaktionszeiten gegenüber den in der Literatur angegebenen 24 h stark verkürzt. Trotzdem verlief die Umsetzung bei den gewählten Reaktionszeiten zwischen 50 min und 6 h erfolgreich.

So wurden die Reaktionsprodukte **14b-e**, nach der Entfernung von nicht umgesetztem Naphthalintetracarbonsäurebisanhydrid **13** durch Auskochen in Kaliumcarbonatlösung (10 Gew. % in Wasser) mit Rohausbeuten zwischen 83 % und 93 % isoliert. Bei den Synthesen der Verbindungen **14c** und **14d** wurde zudem beobachtet, dass die Reaktionsprodukte schon als Feststoffe aus der Reaktionsmischung ausfielen. Die Reaktion wurde dann kurz darauf abgebrochen. Bei Verbindung **14a** gelang die Umsetzung nur mit einer geringen Ausbeute von 26 %.

Da die erhaltenen Naphthalinbisimide **14a-d** in organischen Lösemitteln nur bedingt löslich sind, gelang eine weitere Aufreinigung durch Säulenchromatographie nicht.

Stattdessen konnte bei den Verbindungen **14b-d** die Aufreinigung durch mehrfache Umkristallisation aus Chloroform durchgeführt werden. Bei der Substanz **14a** gelang aufgrund ihrer Schwerlöslichkeit auch diese Methode nicht.

Dagegen gelang bei Verbindung **14e** eine Säulenchromatographie mit Chloroform/Essigsäure 30:1. Zusätzlich wurde auch hier zuvor zweifach aus Chloroform umkristallisiert.

Die analysenreinen Produkte **14b-e** konnten dann mit Ausbeuten zwischen 18 % und 56 % isoliert werden.

Bei allen dargestellten Naphthalinbisimiden mit γ -Hydroxyalkylsubstituenten **14a-e** handelt es sich um farblose Feststoffe, die wie die entsprechenden Perylenbisimide **2a-e**, einen schwachen Glanz zeigen. Meist enthielten die isolierten Feststoffe **14a-e** jedoch noch Spuren an Perylenbisimiden, die die Substanzen **14a-e** als zart-rosa erscheinen lässt. Diese Verunreinigung lag jedoch unterhalb der analytischen Nachweisgrenze. Durch weiteres Umkristallisieren der bereits analysenreinen Substanzen aus Chloroform können komplett farblose Materialien erhalten werden. Diese aufwendige Methode wurde bei den Verbindungen **14c** und **14d** durchgeführt.

Um die Bildung von Perylenbisimiden als Nebenprodukt gänzlich zu vermeiden, wurde die Synthese am Beispiel von Verbindung **14d** alternativ auch in Essigsäure als Lösemittel versucht.³⁵ Die Umsetzung gelang nach dieser Methode allerdings nur mit einer Ausbeute von 12 %. Darüber hinaus konnte die Bildung von Perylenbisimiden als Nebenprodukt nicht vermieden werden, da auch hier das Reaktionsprodukt **14d** als rosa Feststoff isoliert wurde.

Diese Synthesemethode erwies sich damit gegenüber der Methode in DMF als deutlich weniger effizient.

Die Spektroskopischen Eigenschaften der Naphthalinbisimide mit γ-Hydroxyalkylsubstituenten 14 ähneln denen der entsprechenden Perylenbisimide 2. Auch hier ist die Ausbildung von intramolekularen Wasserstoffbrücken im Molekül zu beobachten. So tritt die OH-Valenzschwingung im IR-Spektrum als scharfe Bande zwischen 3480 und 3550 cm⁻¹ auf. In den ¹H-NMR-Spektren zeigte die charakteristische Kopplung zwischen Methylengruppe und benachbarter **OH-Funktion**. kein intermolekularer dass Protonenaustausch stattfindet. Darüber hinaus waren die UV-Absorptionen bei 383, 362 und 344 nm gegenüber den Werten für literaturbekannten Naphthalinbisimiden³⁵ um 2 nm bathochrom verschoben.

Die Extinktionskoeffizienten der Verbindungen **14b-e** lagen bei 27000, 22000 und 13000 L·mol⁻¹·cm⁻¹. Dies sind im Vergleich zu literaturbekannten Naphthalinisimide typische Werte.³⁵ Fluoreszenz in Lösung wurde hier jedoch nicht beobachtet.

5.2 Untersuchung der Reflektivitäten

Wie bereits erwähnt, zeigen die Naphthalinbisimide mit γ -Hydroxyalkylsubstituenten **14**, in Analogie zu den entsprechenden Perylenbisimiden **2**, Glanzeffekte. Demgemäß wurden die Festkörper-Reflexionsspektren der Substanzen aufgezeichnet. Zum Vergleich wurde darüber hinaus auch erstmals das Spektrum des bereits literaturbekannten Naphthalinbisimids **15** mit Di-*tert*-butylphenylsubstituenten aufgezeichnet. Während Verbindung **15** in kristalliner Form vorlag, lagen alle anderen untersuchten Substanzen **14b-e** in Pulverform vor. Sämtliche Versuche zur Züchtung von Einkristallen der Verbindung **18** wiedergegeben.

Abbildung 18: Festkörperreflexionsspektren der Naphthalinbisimide 14b-e und 15. (Links von unten nach oben:14b (grüne Kurve), 14e (blaue Kurve), 14c (hellblaue Kurve), 15 (magentafarbene Kurve), 14 d (violette Kurve).

Bei allen untersuchten Naphthalinbisimiden **14b-e** war die Schwingungsfeinstruktur noch schwach zu erkennen. Bei Verbindung **15** war die Schwingungsfeinstruktur nicht mehr zu erkennen.

Die Reflektivitäten von **14b-e** im kurzwelligen Vis-Bereich zwischen 550-420 nm lagen alle zwischen 80 und 100 %. Die beobachteten, kleineren Werte von 80 und 90 % bei den Verbindungen **14b** und **e** sind wohl darauf zurückzuführen, dass hier noch Spuren von Perylenbisimiden enthalten waren. Diese Substanzen waren auch nicht komplett farblos, sondern zeigten noch einen zart-rosa Schimmer. Der Anstieg der Reflektivitäten von über 100 % bei manchen Derivaten, lässt sich durch eine schwache Festkörperfluoreszenz erklären. Im UV-Bereich zwischen 400 und 350 nm wurden Reflektivitäten zwischen 50 und 90 % gemessen. Damit waren die Verluste durch Absorption teilweise nur sehr gering. Die besten Reflexionseigenschaften zeigten Verbindung **14d** (violette Kurve) und Verbindung **15** (magentafarbene Kurve), deren Reflektivitäten auch noch im nahen UV noch um 90 % lagen. Die guten Reflexionseigenschaften der untersuchten Substanzen **14b-e** und **15** könnten ein neues Anwendungsspektrum für Naphthalinbisimide eröffnen. Da es sich zudem um farblose Festkörper handelt, erscheint auch eine Anwendung als organische Weißpigmente plausibel.⁸⁵

Oberflächen zu testen, wurde eine wässrige Suspension von Verbindung 14d, mit wenig

Ethanol als Netzmittel, auf eine bedruckte Celluloseoberfläche aufgetragen. Dabei gelang es den Druck vollständig abzudecken. Das Deckungsvermögen ist dabei so hoch, dass das Material auch in einer Rohrzuckerlösung (71 Gew. % in Wasser) mit einem Brechungsindex von $n_D^{20} = 1.472$ durch Lichtstreuung weiß erscheint. Der Brechungsindex von Leinölfirnis liegt bei 1.48 und ist damit in einem ähnlichen Bereich.

Gegenüber den kommerziellen Weißpigmenten Titandioxid (Rutil, $\rho = 4.26 \text{ g} \cdot \text{cm}^{-3}$), Zinksulfid (Wurtzit, $\rho = 3.98 \text{ g} \cdot \text{cm}^{-3}$) und Bariumsulfat ($\rho = 4.50 \text{ g} \cdot \text{cm}^{-3}$) besitzt das Material den Vorteil einer geringeren Dichte³⁵, so dass eine Anwendung für die Herstellung von speziell beschichtetem weißen Papier, z. B. für Tintenstrahl- oder Laserdrucker interessant erscheint. Aufgrund der geringeren Dichte der Naphthalinbisimide gegenüber den genannten anorganischen Pigmenten wird so das Papier nicht unnötig beschwert.

Ferner stellt auch das Lichtabsorptionsvermögen der Naphthalinbisimide für Anwendungen als Weißpigmente einen Vorteil dar, da dadurch ein UV-Schutz des Trägermaterials resultiert.

Abbildung 19: Auftragung einer wässrigen Suspension von Verbindung 14e auf eine bedruckte Celluloseoberfläche. Der Schriftzug konnte komplett abgedeckt werden.

6 Untersuchung der Stabilität von Naphthalinbisimiden mit γ-Hydroxyalkylsubstituenten (14) im alkalischen Medium

Im Hinblick auf eine spätere Umsetzung als Küpenfarbstoff sollte untersucht werden ob die Naphthalinbisimide mit γ -Hydroxyalkylsubstituenten **14** eine ähnlich gute Stabilität im alkalischen Medium wie die entsprechenden Perylenbisimide **2** zeigen. Dazu wurde die alkalische Hydrolyse der Verbindungen **14** mit einem Homologen mit einer etwas kürzeren Alkylkette **14c** und einem Derivat mit einer langen Alkylkette **14e**, stellvertretend für alle synthetisierten Verbindungen **14** ausprobiert.

6.1 Umsetzung von (14b, e) mit KOH in tert-Butanol

Die ausgewählten Verbindungen **14b** und **14e** wurden zunächst in *tert*-Butanol mit 23 Äquivalenten Kaliumhydroxid (85 Gew. Proz.) 6 h lang unter Rückfluss gekocht.

Abbildung 20: Umsetzung von Naphthalinbisimiden mit y-Hydroxyalkylsubstituenten mit KOH in tert-Butanol.

Nach Abbruch der Reaktion durch Säure konnte in beiden Fällen in geringen Mengen ein oranger Feststoff isoliert werden. Die UV-spektroskopische Untersuchung des erhaltenen Materials ergab, dass sich in beiden Fällen Naphthalinlactamimide **16** gebildet hatten. Das Produkt nach Umsetzung von **14b** enthielt zudem noch nicht umgesetztes Edukt. Dies war im UV-Spektrum als Absorption bei 382 nm zu erkennen. Im Massenspektrum war das nicht umgesetzte Edukt **14b** bei m/z = 550 zu sehen.

Im isolierten Material nach der Umsetzung von **14e** war im UV/Vis-Spektrum kein Eduktsignal mehr zu sehen. Stattdessen wurde auch hier eine Absorption für das Lactamimid **16b** gefunden und darüber hinaus starke Absorptionsbanden bei 365 und 348 nm. Dies deutet zudem auf die Bildung von Naphthalintetracarbonsäurebisanhydrid **13** als Folge des Verseifungsprodukts hin.

Die Entstehung der Lactamimide konnte neben UV-Spektroskopie auch durch die jeweiligen Molekülpeaks im Massenspektrum bei m/z = 522 (**16a**), m/z = 801 (M^+ +H) (**16b**) und im Falle von Verbindung **16a** zusätzlich mit IR-Spektroskopie nachgewiesen werden.

Demgemäß lässt sich zusammenfassen, dass die Naphthalinbisimide mit γ -Hydroxyalkylsubstituenten 14 nicht die gleiche Stabilität im alkalischen Medium besitzen die entsprechenden Perylenbisimide. Wie wie bei bereits literaturbekannten Naphthalinbisimiden⁵⁴ ist auch hier die im alkalischen Medium die Bildung von Naphthalinlactamimiden zu beobachten. Allerdings ist selbst unter den gegebenen, sehr harschen Reaktionsbedingungen immer noch Edukt nachzuweisen (14b). Eine Abschätzung der Produktbilanz gelang unter diesen Bedingungen jedoch nicht. Daher wurden in dieser Richtung weitere Versuche unternommen (siehe Kapitel 6.2). Die Stabilität der Naphthalinbisimide im Alkalischen scheint demgegenüber etwas besser zu sein als bei Naphthalinbisimiden mit Alkyl- oder Arylsubstituenten.

Eine Umsetzung als Küpenfarbstoff erscheint klar im Rahmen der Möglichkeiten, da hier für eine Umsetzung auch deutlich mildere Bedingungen gewählt werden (Siehe Kapitel 7.3 und 9).

6.2 Isolierung und Charakterisierung der neuen Naphthalinlactamimide mit γ-Hydroxyalkylsubstituenten (16a, b)

Um den Umsatz zu den entsprechenden, neuen Lactamimiden **16a, b** zu erhöhen und um diese isolieren zu können wurden die beschriebenen Reaktionen auch in Anlehnung an eine von P. v. Unold entwickelte Methode⁵⁴ durchgeführt. Demgemäß wurden die Naphthalinbisimide **14b**, **e** in Methanol, bei Zusatz von DMSO, mit KOH (85 %) zur Reaktion gebracht.

Abbildung 21: Umsetzung von Naphthalinbisimiden mit *p*-Hydroxyalkylsubstituenten mit KOH in Methanol mit Zusatz von DMSO.

Die entstanden Naphthalinlactamimide **16a,b** waren gut in Ethanol löslich und ließen sich damit von den in Ethanol unlöslichen, nicht umgesetzten Edukten **14b,e** abtrennen.

So ließen sich die Naphthalinlactamimide mit Ausbeuten von 40 % (**16a**) und 53 % (**16b**) als orange-farbene Feststoffe isolieren. Nicht umgesetztes Edukt konnte mit Ausbeuten von 15 % (**14b**) und 20 % (**14e**) isoliert werden. Es muss dabei jedoch noch berücksichtigt werden, dass die isolierten Lactamimide auch noch mit Spuren von nicht umgesetztem Edukt verunreinigt waren.

Es kann davon ausgegangen werden, dass Verseifungsprodukte mit Ausbeuten von 45 % und 33 % entstanden sind. Diese konnten jedoch nicht isoliert werden.

Verbindung **16b** wurde noch durch mehrfache Umkristallisation aus Chloroform weiter aufgereinigt und konnte danach mit einer Ausbeute von 17 % erhalten werden.

In Übereinstimmung mit dem ¹H-NMR-Spektrum war die Verbindung **16a** noch zu 5 % mit Naphthalinbisimid **14b** verunreinigt. Dies störte jedoch für eine weitergehende spektroskopische Untersuchung nicht. Darüber hinaus gelang eine weitere Aufreinigung durch Umkristallisation nicht.

Säulenchromatographie konnte zur Aufreinigung der Substanzen auch hier nicht angewendet werden, da kein Laufmittelgemisch gefunden wurde, bei dem eine Auftrennung zwischen Naphthalinbisimid **14** und Naphthalinlactam **16** gelang.

Das ¹H-NMR-Spektrum der synthetisierten Naphthalinlactamimide **16** war eindeutig von den Spektren der Ausgangsmaterialien **14** zu unterscheiden. So waren die aromatischen Protonen, die aufgrund der Änderung der Molekülsymmetrie durch die Ringverengung nicht mehr

chemisch äquivalent sind, nicht mehr als Singulett wie bei den Naphthalinbisimiden, sondern als vier Dubletts bei 7.2, 8.2, und 8.4 und 8.6 ppm mit Kopplungskonstanten von 7.6 und 7.3 Hz zu beobachten.

Dementsprechend traten dann auch für die Seitenketten zwei unterschiedliche Signalsätze auf. Eine charakteristische Kopplung zwischen Methylenprotonen und den benachbarten OH-Gruppen war auch hier zu beobachten, die allerdings in ihrer Intensität variierte. Dies lässt sich vermutlich dadurch erklären, dass im Falle der Seitenkette am Lactamring die Ausbildung von intramolekularen Wasserstoffbrücken aus räumlichen Gründen schwerer möglich ist als bei der entsprechenden Kette am Imidring. Die zum Imidstickstoff benachbarten Methylenprotonen waren als Singulett bei 3.8 und 4.1 ppm zu sehen. Das Signal bei 3.8 ppm trat dabei verbreitert auf.

Im IR-Spektrum trat die OH-Bande teilweise leicht verbreitert (**16b**) bei 3345 und 3377 cm⁻¹ auf. Dies ist mit der im NMR-Spektrum gemachten Beobachtung konsistent, dass es zwar intramolekulare Wasserstoffbrücken im Molekül gibt, die jedoch in Abhängigkeit von der Lage der Seitenkette unterschiedlich stark ausgeprägt sind. Weiterhin als charakteristisch waren im IR-Spektrum die Carbonylschwingungen für den Lactamring bei 1720 und 1651 cm⁻¹ (**16a**), sowie bei 1728 und 1664 cm⁻¹ (**16b**) zu sehen. Die Carbonylschwingungen für den Imidring traten bei 1696 und 1634 cm⁻¹ (**16a**), sowie bei 1704 und 1748 cm⁻¹ (**16b**) auf.

Das UV-Spektrum der synthetisierten Verbindungen **16a, b** hatte die für Naphthalinlactamimide typische Form. Die entsprechenden Absorptionen wurden bei 332, 365 und 440 nm beobachtet. Im Spektrum von Verbindung **16 a** war zusätzlich eine kleine Ausbuchtung bei 382 nm zu sehen. Dies war in Übereinstimmung mit der Auswertung des ¹H-NMR-Spektrums der Substanz auf die Existenz der enthaltenen 5% von nicht umgesetzten Edukt **14c** zurückzuführen.

Abbildung 24: Absorptions- und Emissionsspektrum von 16b (Absorption (magenta Kurve, links), Emission (blaue Kurve, rechts).

Es konnte auch bei beiden Derivaten **16a, b** eine schwache Fluoreszenz bei 572 nm detektiert werden. Die Fluoreszenzquantenausbeuten lagen bei 4 und 6 %. Bei bereits literaturbekannten Derivaten wurde im Gegensatz dazu jedoch starke Fluoreszenz mit hohen Fluoreszenzquantenausbeuten⁵⁴ beobachtet. Der Stokes-Shift war mit 32 nm zwar deutlich

größer als bei Perylenlactamimiden³⁹, aber viel kleiner als bei den von P. v. Unold synthetisierten Naphthalinlactamimiden⁵⁴ mit sekundären Alkyl-, oder Arylsubstituenten.

7 Detektion von freien Radikalanionen in der Küpe von Perylenund Naphthalinbisimiden

Perylen-und Naphthalinbisimide können elektrochemisch leicht zu den Radikalanionen **F**⁻, **N**⁻ und den entsprechenden Dianionen \mathbf{F}^{2-} , \mathbf{N}^{2-} reduziert werden.^{55, 56, 57, 58}

Abbildung 25: Elektrochemische Reduktion von Perylen- und Naphthalinbisimiden.

Es handelt sich dabei um reversible Ein-Elektron-Übertragungen, die bereits bei kleinen Potentialen stattfinden. Die daraus resultierenden Spezies \mathbf{F} und \mathbf{F}^{2-} , bzw. N⁻ und N²⁻sind wie die Ausgangsmaterialien gute Chromophore und können durch ihre charakteristischen Absorptionen im Vis- und NIR-Bereich eindeutig identifiziert werden.^{55, 56} Da es sich bei dem Verküpen von Farbstoffen auch um eine Reduktion handelt, bei der eine reine Elektronenübertragung vom Reduktionsmittel auf die Chromophore stattfindet, ist es plausibel, dass die oben beschriebenen Spezies \mathbf{F}^{-} , \mathbf{N}^{-} und \mathbf{F}^{2-} , \mathbf{N}^{2-} auch auf diese Weise entstehen. Dies sollte im Rahmen dieser Arbeit für Perylen- und Naphthalinbisimide nachgewiesen werden und so erstmals die Struktur der Küpe dieser Verbindungen aufgeklärt werden. Ein besonderes Augenmerk lag dabei auf der Detektion der radikalischen Chromophore \mathbf{F}^{-} und \mathbf{N}^{-} , die nicht nur aufgrund ihrer Absorptionsbanden im NIR-Bereich interessant erscheinen.

7.1 Methodik von Herstellung und Analyse der Farbstoffküpen

Die Farbstoffküpen der zu untersuchenden Substanzen wurden im alkalischen Medium durch Reduktion mit Hydroxyaceton **17** erzeugt.

Abbildung 26: Strukturformel von Hydroxyaceton (17) als Beispiel für ein Reduktionsmittel auf der Basis von α-Hydroxyketonen.

Als Base wurde dabei das nichtionische DBU eingesetzt, um die Bildung von Verseifungsprodukten bei der Untersuchung der alkalilabilen Substanzen zu vermeiden. Hydroxyaceton ist ein Beispiel für ein organisches Reduktionsmittel auf der Basis von α -Hydroxyketonen, und wird bereits für einen industriellen Prozess in der Textilfärberei eingesetzt.⁵⁹Aufgrund seiner guten Redox-Eigenschaften und der besseren Bioabbaubarkeit ist es bei der nasschemischen Reduktion von Farbstoffen gegenüber dem sonst gängigen Natriumdithionit zu bevorzugen. Für die Anwendung im Labormaßstab war zudem von Vorteil, dass die Reduktion so auch in organischen Lösungsmitteln durchgeführt werden konnte. Der erfolgte Reduktionsschritt war bei den Perylenbisimiden durch einen Farbumschlag nach Blau-violett und bei den Naphthalinbisimiden durch einen Farbumschlag nach Rot-braun gekennzeichnet.

Für die Analyse der Farbstoffküpen erwies sich die UV/Vis-Spektroskopie als geeignete Methode. Um die oxidationsempfindlichen Farbstoffküpen während der Messung vor einer schnellen Zersetzung zu bewahren, mussten entsprechende Vorkehrungen getroffen werden.

Es gelang die zu untersuchenden Küpen gut zu stabilisieren, ohne dabei das Absorptionsspektrum der Küpe maßgeblich zu beeinflussen, wenn das für die Messung verwendetem Lösungsmittel zu 4 Vol. % mit DBU und zu 6.5 Vol. % mit dem Reduktionsmittel Hydroxyaceton versetzt wurde. Die UV/Vis-Spektren konnten dadurch ab 450 nm störungsfrei aufgezeichnet werden. Bei Wellenlängen <450 nm musste die Eigenabsorption der Messlösung berücksichtigt werden. Als besonders geeignetes Lösungsmittel für die Durchführung der Messungen erwies sich Aceton, da die radikalische Spezies \mathbf{F}^{-} hierdurch am besten stabilisiert werden konnte.

Abbildung 27: Reduktion von Perylen- und Naphthalinbisimiden im alkalischen Medium mit Hydroxyaceton 17.

F	R	Ν	R
1a	-CH ₃	14b	-C ₃ H ₇
1c	-CH(C ₃ H ₇) ₂		
1b	$-CH(C_6H_{13})_2$		
2a	-C ₉ H ₁₈ OH		
2e	-C ₁₉ H ₃₈ OH		
9	$-C_{3}H_{5}(OH)_{2}$		

Spektroskopische Untersuchung der Küpe von Perylenbisimiden 7.2

7.2.1 Perylenbisimide mit Alkylsubstituenten

Aus den erhaltenen UV/Vis-Spektren war ersichtlich, dass in der Küpe der untersuchten Substanzen 1a, b, c immer eine Mischung des Dianions F^{2-} und des entsprechenden Radikalanions \mathbf{F}^{\cdot} vorliegt. Dies konnte im direkten Vergleich mit der Literatur, bei der Perylenbisimide elektrochemisch reduziert und die UV-Spektren der reduzierten Spezies aufgezeichnet wurden, eindeutig bestätigt werden. 55, 56

Abbildung 28: UV/Vis-Spektren der Küpe von 1a,b,c. Es ist sowohl das Radikalanion F⁻, als auch das Dianion F²⁻ zu sehen. (Küpe von 1a (orange Kurve, unten), Küpe von 1b (magenta Kurve, Mitte), Küpe von 1c (blaue Kurve, oben)).

Das Intensitätsverhältnis der vorliegenden reduzierten Spezies war dabei unter gleichen Messbedingungen in Abhängigkeit von der jeweiligen Seitenkette sehr unterschiedlich. Während im Spektrum der Küpe von **1c** Radikalanion \mathbf{F}^{-} und Dianion \mathbf{F}^{2-} zu fast gleichen Teilen enthalten waren, war im Fall von **1b** der Anteil an Radikalanion deutlich geringer (30-50 %). Im Spektrum der Küpe von Indanthrenrot GG **1a** lag der Gehalt an Radikalanion nur noch bei 10 %.

Die Spektren von der Küpe von 1c und 1b waren gegenüber dem Spektrum der Küpe von Indanthrenrot GG 1a leicht bathochrom verschoben. Dies lässt auf einen +*I*-Effekt bei 1b und 1c schließen. Die sekundären Alkylketten in der Seitenkette von 1b und 1c können mehr Elektronendichte in das Ringsystem schieben als die Methylseitenkette von Indanthrenrot GG 1a. Daraus resultiert ein schwacher, bathochromer Shift der Absorption.

Dass in der Küpe der Perylenbisimide **1a-c** gleichzeitig das Dianion \mathbf{F}^{2-} und das Radikalanion \mathbf{F}^{-} vorliegt, lässt den Rückschluss zu, dass die Reduktion von Perylenbisimiden mit Hydroxyaceton in zwei Stufen erfolgt. Das heißt, dass sich aus der Neutralform \mathbf{F} durch Aufnahme eines Elektrons zuerst das Radikalanion \mathbf{F}^{-} als stabile Zwischenstufe bildet, die dann, durch Aufnahme eines weiteren Elektrons, in das Dianion \mathbf{F}^{2-} übergeführt wird (siehe Abbildung 26).

Um dies zu überprüfen, sollte das zeitliche Verhalten einer Perylenbisimidküpe, am Beispiel von **1b** untersucht werden. Dazu wurde eine Probe für die Messung wie beschrieben präpariert und dann etwa 10 Minuten stehengelassen, damit sich ein Gleichgewicht einstellen konnte. Dann wurden innerhalb eines Zeitraums von 30 min, in Abständen von je 5 min, die Absorptionsspektren der Küpe aufgezeichnet.

Abbildung 29: Untersuchung des zeitlichen Verhaltens der Küpe von 1b. Während die Konzentration an Radikalanion F⁻⁻ abnimmt, nimmt die Konzentration an Dianion F²⁻ zu.

Dabei wurde beobachtet, dass im Verlauf von 30 min der Gehalt an Radikalanion \mathbf{F}^{-} abnahm, während der Anteil an Dianion \mathbf{F}^{2-} größer wurde. Das ist ein eindeutiger Beleg, dass die Reduktion mit Hydroxyaceton, wie erwartet, in zwei Stufen abläuft und ist mit einem Reaktionsmechanismus für die Reduktion von Küpenfarbstoffen mit α -Hydroxyketonen konsistent, der im Rahmen des Farbstoffsymposiums Cholorchem 2000 von P. Rys vorgestellt wurde.⁶⁰ Demgemäß erfolgt die Reduktion von Küpenfarbstoffen mit α -Hydroxyketonen in einem oszillierenden Redox-Gleichgewicht über radikalische Zwischenstufen, (Abbildung 29).

Abbildung 30: Vorschlag für einen Reduktionsmechanismus für die Reduktion von Küpenfarbstoffen mit Hydroxyaceton (17) nach P. Rys.⁶⁰

Die Reversibilität des Redox-Gleichgewichts war dabei bei den Perylenbisimiden optisch gut zu beobachten. So beobachtete man beim Schütteln der tiefviolett gefärbten Probenlösungen eine Entfärbung, die jedoch kurz darauf wieder verschwindet, da die Küpe zurückgebildet wird. Besonders gut zu sehen war dieser Effekt bei der Küpe von **1c** oder **1b** in Toluol.

Schließlich sollte noch geklärt werden, ob die Bildung des Radikalanions \mathbf{F}^{-} durch die Solvenspolarität beeinflusst werden kann. Dazu wurden die Spektren der Küpe von **1b** für einen direkten Vergleich gegenüber Aceton noch in Toluol, einem unpolaren aprotischen Lösungsmittel und in Ethanol, einem polaren protischen Lösungsmittel, aufgezeichnet.

Abbildung 31: Bildung des Radikalanions F⁻ in der Küpe von 1b, in Abhängigkeit von der Solvenspolarität. (Aceton (grüne Kurve, oben), Toluol (blaue Kurve, Mitte), Ethanol (magenta Kurve, unten).

Die Struktur der erhaltenen Spektren bleibt nahezu gleich, die Intensitätsverhältnisse zwischen Radikalanion \mathbf{F}^{\cdot} und Dianion \mathbf{F}^{2-} variieren jedoch in Abhängigkeit vom verwendeten Lösungsmittel stark. Der höchste Anteil an Radikalanion \mathbf{F}^{\cdot} wurde in Aceton detektiert. In Ethanol war nahezu kein Radikalanion \mathbf{F}^{\cdot} mehr zu sehen. Untypisch erscheint jedoch, dass das Dianion \mathbf{F}^{2-} als hochpolares System im unpolaren Medium Toluol besser stabilisiert wird, als das Radikal \mathbf{F}^{\cdot} . Daher wird vermutet, dass auch die monoprotonierte Form FH⁻ vorliegt. Diese kann durch Aufnahme eines Protons entstehen, welches entweder

durch bei der Reduktion anfallendes Wasser oder durch das Reduktionsmittel Hydroxyaceton 17 zur Verfügung gestellt wird.

Abbildung 32: Protonierung des Dianions F²⁻ im Redox-Gleichgewicht durch das Reduktionsmittel.

Die leichte Verschiebung der Spektren gegeneinander ist auf Solvatochromieeffekte zurückzuführen.

7.2.2 Perylenbisimide mit Hydroxygruppen in der Seitenkette

Im Gegensatz zu Perylenbisimiden 1a, b, c, wurde in der Küpe der Perylenbisimide 2a, e und 9 hauptsächlich das Dianion F^{2-} detektiert.

So lag der Anteil an Radikalanion \mathbf{F}^{\cdot} im Fall der beiden Perylenbisimide mit γ -Hydroxyalkylgruppen **2b**, **e** noch bei 2-5 %, während bei Verbindung **9** gar kein Radikalanion \mathbf{F}^{\cdot} gefunden wurde. Daraus lässt sich letztlich schließen, dass sich die Existenz der Alkylketten in Position β bei **2b** und **2e**, sich positiv auf die Bildung der radikalischen Zwischenstufe \mathbf{F}^{\cdot} auswirkt.

Die beobachteten Absorptionsbanden sind mit steigender Länge der enthaltenen Alkylketten bathochrom verschoben, was sich auch hier über den zuvor erwähnten +I-Effekt erklären lässt.

Abbildung 33: Küpe der Perylenbisimide mit γ-Hydroxyalkylsubstituenten 2b,e und des Perylenbisimids 8 in Aceton. (Küpe von 2b (grüne Kurve, Mitte), Küpe von 2e (magenta Kurve, unten), Küpe von 8 (blaue Kurve, oben).

7.2.3 Aktive Beeinflussung des Redoxgleichgewichts durch Zusatz von Diacetyl (18)

Es stellte sich die Frage, ob die vorliegenden Redox-Gleichgewichte von außen so beeinflusst werden können, dass hauptsächlich die radikalische Zwischenstufe **F**⁻ gebildet wird. Dies gelang durch Zusatz eines geringen Anteils an 2,3-Butandion (Diacetyl) **18** zur verwendeten Messlösung. In Übereinstimmung mit dem Massenwirkungsgesetz verschiebt sich ein Gleichgewicht bei Erhöhung der Konzentration auf der Produktseite nach links. Diacetyl **18** entspricht strukturell 2-Oxopropionaldehyd **17a**, dem Oxidationsprodukt von Hydroxyaceton **17** und ist daher für diesen Zweck ein geeignetes Reagenz.

Abbildung 34: Aktive Beeinflussung des Redox-Gleichgewichts durch Zusatz von Diacetyl 18 bei Perylenbisimiden.

Die Präparation und Handhabung der Messlösung mit Diacetyl **18** war jedoch nicht ganz unproblematisch, da es aufgrund des Zusatzes an Diacetyl **18** zu einer forcierten Bildung von braunen Nebenprodukten kommt. Es handelt sich dabei vermutlich um Kondensationsprodukte von Aldolreaktionen. Aldolreaktionen sind typische Reaktionen für Diketone im alkalischen Medium.

Abbildung 35: Aldolreaktion von Diacetyl 18 im alkalischen Medium als unerwünschte Nebenreaktion.

Um eine noch akzeptable Stabilität der verwendeten Messlösung zu erreichen, war es wichtig die Konzentrationen der Zusätze DBU, Hydroxyaceton **17** und Diacetyl **18** möglichst niedrig zu halten, ohne dabei die Wirksamkeit zu stören. Der Anteil an Diacetyl **18** musste den Anteil

an Hydroxyaceton **17** deutlich überwiegen, um das Gleichgewicht in gewünschter Weise beeinflussen zu können. Alle diese Faktoren waren gewährleistet, wenn man die Messlösung so präparierte, dass DBU zu 4 Vol. %, Hydroxyaceton zu 2.5 Vol. % und Diacetyl zu 5 Vol. % enthalten war. Die Messlösung konnte dann innerhalb eines Zeitraums von 10 min für Messungen verwendet werden.

Demgemäß wurden die Substanzen 1a, 2a, e, und 9 in Aceton untersucht.

Das Gleichgewicht konnte so, wie gewünscht, auf die linke Seite verschoben werden und in den Spektren waren jetzt, praktisch nur noch die Absorptionsbanden des Radikalanions \mathbf{F}^{-} und teilweise auch der Neutralform \mathbf{F} zu beobachten. Das Dianion \mathbf{F}^{2-} war nur noch bei Verbindung 9 zu einem geringen Anteil im Spektrum zu beobachten.

Abbildung 36: Küpe von 1b mit Zusatz von Diacetyl, (magenta Kurve) und ohne Zusatz von Diacetyl (blaue Kurve), in Aceton.

Abbildung 37: Küpe von 9 mit Zusatz von Diacetyl, (magenta Kurve) und ohne Zusatz von Diacetyl (blaue Kurve), in Aceton.

Abbildung 38: Küpe von 2b mit Zusatz von Diacetyl, (magenta Kurve) und ohne Zusatz von Diacetyl (blaue Kurve), in Aceton.

Verwendet man statt Aceton alternativ Toluol als Lösungsmittel, sinkt der Anteil an Radikalanion \mathbf{F} und es wird mehr Neutralform \mathbf{F} im Spektrum beobachtet. Dies ist plausibel, da die Neutralform \mathbf{F} aufgrund ihrer geringeren Polarität gegenüber dem Radikalanion \mathbf{F} in einem unpolaren, aprotischen Lösungsmittel besser stabilisiert werden kann.

7.3 Spektroskopische Untersuchung der Küpe eines Naphthalinbisimids

In Analogie zu den Perylenbisimiden, sollte auch die Küpe eines Naphthalinbisimids hergestellt und UV-spektroskopisch untersucht werden. Als zu untersuchende Substanz wurde das Naphtalinbisimid **14 b** gewählt, welches aufgrund der γ -Hydroxyalkylsubstituenten eine bessere Stabilität im alkalischen Medium zeigt, als einfache Naphthalinbisimide mit Aryloder Alkylsubstituenten, (siehe Abschnitt 6).

Als Lösungsmittel für die spektroskopische Charakterisierung der Küpe von **14b** wurden alternativ Aceton, Ethanol und Toluol eingesetzt.

Bei der der Herstellung der Küpe in Aceton war zu beachten, dass als Base nicht DBU eingesetzt wird, da hier eine Zersetzungsreaktion des Naphthalinbisimids eintritt, die durch eine Verfärbung unmittelbar nach Zusatz von DBU angezeigt wird. Daher wurde bei Verwendung von Aceton als Base alternativ NaOH (30 Gew. %) verwendet. Für die Herstellung der Messlösung wurde aber trotzdem weiterhin DBU verwendet, da durch Zusatz von NaOH die Qualität der Spektren negativ beeinflusst wurde. Darüber hinaus schienen die reduzierten Spezies in der Küpe N⁻⁻ und N²⁻, im Gegensatz zur Neutralform, gegenüber DBU stabil zu bleiben.

In den erhaltenen Spektren war zu erkennen, dass auch hier eine Mischung aus dem Radikalanion N^{\cdot} und dem Dianion $N^{2\cdot}$ vorliegt. Die beobachteten Absorptionen wurden im Vergleich mit der Literatur⁵⁶, in der die Naphthalinbisimide **14f** und **14g** elektrochemisch reduziert und spektroskopisch charakterisiert wurden, den in der Küpe vorliegenden Spezies N^{\cdot} und $N^{2\cdot}$ zugeordnet.

Abbildung 39: Allgemeine Strukturformel der literaturbekanntenNaphthalinbisimide 14f und 14g.

Eine klare Abgrenzung der Absorptionen von Radikal N^- und Dianion N^{2-} ist hier, im Gegensatz zu den Perylenbisimiden, im Spektrum der Küpe von Naphthalinbisimiden nicht zu beobachten. Daher wurden zur besseren Verständlichkeit die beobachteten

Absorptionsbanden für das Radikal **14b**⁻ und das Dianion **14b**²⁻ in den untenstehenden Tabellen zusammen mit den Literaturdaten⁵⁶ für **14f** und **g** dargestellt.

Abbildung 40: Spektroskopische Untersuchung der Küpe von 11b in Aceton (magenta Kurve), Toluol (grüne Kurve) und Ethanol (blaue Kurve).

N ²⁻		Messlösung				
14f ²⁻	400	423	520	563	612	DMF + 0.1 M NBu_4PF_6
$14g^{2-[56]}$	397	421	510	550	597	
14b ^{2- [56]}	392	412	-	540	588	Ethanol, 4 Vol. % DBU, 6.5 Vol. % Hydroxyaceton
14b ²⁻	393	416	-	-	594	Aceton, 4 Vol. % DBU, 6.5 Vol. % Hydroxyaceton
14b ²⁻	395	416	_	539	595	Toluol, 4 Vol. % DBU, 6.5 Vol. % Hydroxyaceton

Tabelle 7-1: Beobachtete Absorptionsbanden für das Radikalanion 14b⁺ in unterschiedlichen Lösungsmitteln, im Vergleich mit den elektrochemisch reduzierten Naphthalinbisimiden 14f und 14g.

N		Messlösung			
14f ^[56]	474	605	698	777	DMF + 0.1 M NBu_4PF_6
14g ^{·- [56]}	474	605	683	755	
14b ⁻	484	-	679	752	Ethanol, 4 Vol. % DBU, 6.5 Vol. % Hydroxyaceton
14b ⁻	478	610	686	760	Aceton, 4 Vol. % DBU, 6.5 Vol. % Hydroxyaceton
14b	482	610	686	762	Toluol, 4 Vol. % DBU, 6.5 Vol. % Hydroxyaceton

Tabelle7-2: Beobachtete Absorptionsbanden für das Radikalanion 14b⁻ in unterschiedlichen Lösungsmitteln, im Vergleich mit den elektrochemisch reduzierten Naphthalinbisimiden 14f und 14g.

Generell ist die Abhängigkeit zwischen der Struktur der Spektren und dem verwendeten Lösungsmittel viel stärker ausgeprägt, als bei den Perylenbisimiden. Während in Aceton hauptsächlich das Radikalanion N^{-} zu sehen ist, liegt in Ethanol fast nur das Dianion N^{2-} vor. In Toluol ist das Verhältnis zwischen Radikal N^{-} und Dianion N^{2-} nahezu ausgeglichen, wobei der Anteil an Radikalanion leicht überwiegt.

7.3.1 Beeinflussung des Redox-Gleichgewichts durch Zusatz von Diacetyl (18)

Wie bei den Perylenbisimiden, sollte auch bei **14b** das Redoxgleichgewicht durch Zusatz von Diacetyl gezielt auf die Seite des Radikalanions N⁻ verschoben und so gezeigt werden, dass es sich in Übereinstimmung mit dem von P. Rys vorgestellten Mechanismus⁶⁰ auch hier um ein zweistufiges Redoxgleichgewicht handelt.

Abbildung 41: Aktive Beeinflussung des Redox-Gleichgewichts durch Zusatz von Diacetyl (18) bei Naphthalinbisimiden.

Die Durchführung der entsprechenden Messungen erfolgte in Analogie zu den Perylenbisimiden. So wurden auch hier die verwendeten Messlösungen mit 4 Vol. % DBU, 2.5 Vol. % Hydroxyaceton und 5 Vol. % Diacetyl **18** präpariert. Als Lösungsmittel wurden Toluol und Ethanol verwendet. Zum Einen war hier ein besonders starker Effekt zu erwarten da bei Verwendung dieser Lösungsmitteln, in den Spektren der Küpe ohne Zusatz von Diacetyl, besonders viel Dianion N^{2-} und nur wenig Radikal N^{-} zu sehen war. Zum Anderen musste auch keine Beeinflussung durch Zersetzungsreaktionen des Ausgangsmaterials **14b** mit DBU berücksichtigt werden.

Nach Zusatz von Diacetyl ist in den Spektren, wie erwartet, hauptsächlich das Radikalanion $14b^{-}$ zu sehen. Schwache Absorptionsbanden bei 532 und 595 nm deuten noch auf die Existenz von wenig Dianion 14^{2-} hin.

Aufgrund der starken Eigenabsorption der Messlösung, konnte jedoch, anders als bei den Spektren ohne Zusatz von Diacetyl **18** keine Aussage über die Existenz von Banden im nahen UV getroffen werden.

Abbildung 42: Küpe von 11b mit Zusatz von Diacetyl in Toluol (magenta Kurve) und in Ethanol (blaue Kurve).

7.4 Darstellung und spektroskopische Untersuchung der Küpe des Perylen-(19) und des Naphthalinlactamimids (16b)

Perylen- **19** und Naphthalinlactamimide **16** entstehen bei der Umsetzung der entsprechenden Perylen- und Naphthalinbisimide mit KOH.^{39, 54} Die Chemie dieser recht neuen Farbstoffklassen, ist dabei noch relativ unerforscht. So wurden diese Substanzen auch bisher, weder elektrochemisch noch nasschemisch reduziert.

Im Rahmen dieser Arbeit sollte erstmals die Küpe eines Perylen- und eines Naphthalinlactamimids hergestellt und die beobachteten reduzierten Spezies spektroskopisch charakterisiert werden. Diesbezüglich wurden die Verbindungen **19** und **16b** untersucht.

Abbildung 43: Allgemeine Strukturformel des Naphthalinlactamimids 16b und des Perylenlactamimids 19.

	R
16b	$-C_8H_{17}$
19	$-CH(C_6H_{13})_2$

Die Herstellung der Küpe von **19** und **16b** erfolgte wie bei den Perylen- und Naphthalinbisimiden, durch Umsetzung mit Hydroxyaceton im alkalischen Medium. Als Lösungsmittel wurde Aceton verwendet, da hier, wie bereits bei den Perylen- und Naphthalinbisimiden beobachtet wurde, die Bildung von radikalischen Chromophoren besonders begünstigt ist. Als Base wurde DBU eingesetzt. Zersetzungsreaktionen der Substanzen in Aceton wurden nicht beobachtet.

Der erfolgte Reduktionsschritt war bei dem Perylenlactamimid **19** durch einen Farbumschlag der zuvor violetten Lösung, nach Blau gekennzeichnet. Bei dem Naphthalinlactamimid **16b** nahm die Lösung eine schwarz-grüne Farbe an.

Abbildung 44: Reduktion von Perylenlactamimid 19 und Naphthalinlactamimid 16b im alkalischen Medium.

Sowohl für das Perylen- **19** als auch für das Naphthalinlactamimid **16b** wird, wie bei den Perylen- und Naphthalinbisimiden, die Bildung der Radikalanionen **19^{-,} 16^{-,}** und der Dianionen **19^{2-,} und 16^{2-,} in der Küpe erwartet. Bei der graphischen Darstellung der Strukturen der Radikalanionen wurden mesomere Grenzformeln verwendet, bei denen das freie Elektron am Imid- und nicht am Lactamring lokalisiert ist. Da die Carbonylgruppen am Imidring elektronenärmer sind als die Carbonylgruppe am Lactamring, wird am Imidring eine bessere Stabilisierung des Radikalzentrums erwartet.**

Das UV-Vis-Spektrum der Küpe des Perylenlactamimids **19** ähnelt strukturell stark dem Spektrum der Küpe eines Perylenbisimids. So werden die Absorptionen bei 726, 814, 847, 876 und 974 nm dem Radikalanion **19**⁻ und die restlichen Banden bei 671, und 499 nm werden dem Dianion **19**²⁻ zugeordnet.

Abbildung 45: Küpe des Perylenlactamimids 19. Es liegt sowohl das Dianion 19²⁻, als auch das Radikal 19⁻⁻ vor.

Gemäß der Erhöhung der Elektronendichte am Chromophor durch die Beteiligung des Stickstoffs am Lactamrings sind alle Absorptionsbanden gegenüber den Perylenbisimiden bathochrom verschoben. Darüber hinaus überwiegt, im Gegensatz zu den Perylenbisimiden, hier der Anteil an Radikalanion **19**⁻.

	λ [nm]								
	Dianion			Radikalanion					
1b ²⁻ , 1b	-	-	556	633	701	767	800	860	957
19 ²⁻ , 19	499	-	671	-	726	814	846	877	974

Für einen direkten Vergleich sind die Absorptionen der Küpe des Perylenlactamimids **19** gegenüber der Küpe von S-13 **9** in untenstehender Tabelle nochmals dargestellt.

Tabelle 7-3: Absorptionsbanden der in der Küpe des Perylenlactamimids 19 detektierten Spezies 19²⁻ und 19⁻ im Vergleich zur Küpe von S-13 (1b).

Das Spektrum der Küpe des Naphthalinlactamimids **16b** unterscheidet sich optisch stark vom Spektrum der Küpe des Naphthalinbisimids **14b**.

Abbildung 46: Küpe von Naphthalinlactam 16b in Aceton.

Die intensivste Bande im Spektrum ist bei 452 nm zu sehen. Darüber hinaus gibt nur noch eine weitere sehr breite Absorptionsbande, deren Zentrum bei 539 nm liegt und die sich insgesamt bis etwa 720 nm erstreckt. Es wird davon ausgegangen, dass es sich hier um das

Dianion 16^{2} handelt. Für das entsprechende Radikalanion 16^{-1} sind die beobachteten Banden nicht weit genug bathochrom verschoben. So beobachtet man zum Vergleich beim Radikalanion des Naphthalinbisimids **14b** die kurzwelligste Bande bei 478 nm und die längstwelligste Bande bei 760 nm.

Die stark verbreiterte Struktur der Absorptionsbande bei 539 nm kommt höchstwahrscheinlich durch die Überlagerung von mehreren Übergängen zustande. Dabei wäre es auch durchaus möglich, dass unter dieser Bande auch zu einem geringen Anteil Absorptionen des Radikalanions liegen. Gegen diese These spricht jedoch, dass jenseits von 730 nm keine weiteren Absorptionsbanden mehr detektiert wurden.

8 Isolierung der stabilen Perylenbisimidradikalsalze (22) und (23a-e)

Nachdem die Struktur der Küpe von Perylenbisimiden erfolgreich aufgeklärt werden konnte, war das nächste Ziel die beobachteten Spezies in Substanz zu isolieren und weitergehend spektroskopisch zu charakterisieren. Ein besonderes Augenmerk lag dabei natürlich auf den Radikalanionen, aufgrund ihrer potentiellen, interessanten optischen und elektronischen Eigenschaften.

8.1 Versuche zur Isolierung des Dianions aus der Küpe von Perylenbisimiden durch Derivatisierung

Zuerst sollte jedoch versucht werden das Dianion \mathbf{F}^{2-} durch Derivatisierung zu stabilisieren und aus der Küpe zu isolieren. Zuerst wurde eine Umsetzung mit Trimethylsilylchlorid durchgeführt. Dazu wurde der Farbstoff **1b** unter Schutzgasatmosphäre in absolutem THF vorgelegt und nach Zusatz von DBU mit Hydroxyaceton reduziert. Dann wurde auf 0 °C gekühlt, Trimethylsilylchlorid zugesetzt und bei Raumtemperatur gerührt. Kurz nach der Zugabe des Trimethylsilylchlorids erfolgt jedoch eine Rückoxidation zum Ausgangsmaterial. (DC-Kontrolle)

Abbildung 47: Reduktion von Farbstoff 1b und Versuch zur Umsetzung mit Trimethylsilylchlorid.

Alternativ wurde versucht die Küpe von **1b** mit Acetanhydrid umzusetzen. Hier wurde jedoch ein ähnliches Ergebnis beobachtet. Nach Zusatz des Acetylierungsmittels Acetanhydrid wurde, auch hier, lediglich die komplette Rückoxidation zum Edukt beobachtet. (DC-Kontrolle)

Abbildung 48: Reduktion von Farbstoff 1b und Versuch zur Umsetzung mit Acetanhydrid.

8.2 Isolierung von Radikalanionen aus der Küpe von Perylenbisimiden als stabile Tetrabutylammoniumsalze

Schließlich gelang es die reduzierte Form des Perylenbisimids **1b** (S-13) in Anlehnung an die Referenzen^{61, 62} durch Fällung mit Tetrabutylammoniumbromid zu isolieren. Dazu wurde der Farbstoff **1b** in gewohnter Weise, mit Hydroxyaceton, nach Zusatz von DBU, unter Argonatmosphäre reduziert und die reduzierte Form durch Zugabe einer wässrigen Lösung von Tetrabutylammoniumbromid ausgefällt und unter Schutzgas abfiltriert.

Abbildung 49: Isolierung des Radikals 22 aus der Küpe von 1b, durch Fällung mit Tetrabutylammoniumbromid.

Im feuchten Zustand war der isolierte blau-violette Feststoff 22 noch sehr instabil. Daher ist das Trocknen der Substanz 22 ein essentieller Schritt für die erfolgreiche Synthese.

Am besten gelang dies gemäß folgender Methode: Nach der Filtration des Feststoffs wird der Kolben mit dem Filtrat von der Schlenkfritte entfernt und gegen einen Kolben mit Trocknungsmittel (CaCl₂ oder idealerweise P_4O_{10}) ausgetauscht. Dann wird die Apparatur für mehrere Stunden am Feinvakuum evakuiert und anschließend über einen Anschluss zu einer Inertgasleitung, 10 –20 h lang, ein konstanter Stickstoffstrom über die Substanz geleitet.

Danach kann das Radikal **22** in einen Schlenkkolben überführt werden und unbegrenzt unter Schutzgas-

atmosphäre aufbewahrt werden. Einfache Operationen

an der Luft sind möglich, nach einer kurzen Zeit verfärbt sich das blauviolette Pulver jedoch leicht rötlich, da es zum Ausgangsmaterial rückoxidiert wird.

Interessanterweise handelt es sich bei dem isolierten Material nicht wie erwartet um das Tetrabutylammoniumsalz des Dianions $1b^{2}$, sondern um das Salz des Radikalanions $1b^{-}$. Dies lässt sich dadurch erklären, dass das Tetrabutylammoniumsalz des Radikalanions wahrscheinlich das kleinste Löslichkeitsprodukt besitzt, und daher dem Redox-Gleichgewicht der Küpe, (siehe Kapitel 7), als schwerlöslichste Spezies entzogen wird.

8.2.1 Umsetzung der Perylenbisimide mit *γ*-Hydroxyalkylsubstituenten (2)

Die beschriebene Umsetzung wurde auch mit Perylenbisimiden mit γ -Hydroxyalkyl-Substituenten 2 durchgeführt. Durch die Existenz der Hydroxygruppe in der Seitenkette wurde eine zusätzliche Stabilisierung der isolierten radikalischen Chromophore 23 erwartet.

Abbildung 51: Isolierung der radikalischen Chromophore 23 aus der Küpe der Farbstoffe 2, durch Fällung mit Tetrabutylammoniumbromid.

2, 23	R
a	$-C_2H_5$
b	$-C_3H_7$
c	$-C_4H_9$
d	$-C_5H_{11}$
e	$-C_8H_{17}$

Aufgrund der guten Stabilität der eingesetzten Derivate 2 gegenüber der alkalischen Hydrolyse musste die Bildung von Verseifungsprodukten nicht mehr berücksichtigt werden und die Umsetzung konnte daher auch im stark alkalischen wässrigen Medium mit NaOH (30 Gew. % in Wasser) durchgeführt werden. Ein Zusatz an Ethanol gewährleistet eine bessere Durchmischung von Farbstoff und Reaktionsmedium. Ferner wurde nur entgastes Wasser für die Durchführung der Reaktion verwendet.

Wie erwartet waren die isolierten radikalischen Chromophore 23 an Luft noch stabiler als Verbindung 22. Die Oxidation der Verbindungen 23 verläuft so langsam, dass die Substanz auch 1-2 h, ohne große Verluste, an der Luft gelagert werden kann.

Generell können für die Fällung auch andere Tetrabutylammoniumsalze verwendet werden. So wurde die Fällung von Verbindung **23b** alternativ zu dem Bromid auch mit Tetrabutylammoniumhydrogensulfat durchgeführt. Dies hatte keine Auswirkungen auf die Qualität des isolierten Produkts.

Es wurde auch versucht bei der Fällung das Gegenion zu variieren. Getestet wurden dazu NH₄⁺, Mg²⁺, Ca²⁺, Ba²⁺, Li⁺, Na⁺, K⁺, Zn²⁺, Fe³⁺ und Fe²⁺. Dies gelang nicht. Bei Zusatz der Ionen in Form einer gesättigten wässrigen Lösung erfolgte unmittelbar die Rückoxidation zum Ausgangsmaterial. Allerdings beobachtete man bei der Fällung mit Fe(II) die Bildung eines violetten Niederschlags. Dieser wurde in gewohnter Weise isoliert und getrocknet. Im IR-Spektrum der isolierten Substanz sind jedoch nicht die für das Radikalanion typischen Schwingungsbanden zu sehen, sondern lediglich die des Ausgangsmaterials **2b**. Darüber hinaus war die Substanz in organischen Lösungsmitteln komplett unlöslich und eine weitergehende spektroskopische Charakterisierung gelang nicht.

8.2.2 Spektroskopische Charakterisierung der Perylenbisimidradikalsalze (22) und (23a-e)

Die Fällung mit Tetrabutylammoniumbromid aus der Farbstoffküpe, stellt eine neue effiziente Synthesemethode für radikalische Perylenbisimide dar, die so erstmals in Substanz isoliert werden konnten.⁶³ Bisher konnten Perylenbisimidradikalanionen nur durch Anwendung spezieller Messtechniken, ^{55, 56, 57} (siehe auch Kapitel 7) nachgewiesen werden. Aufgrund der Stabilität der isolierten Derivate **22** und **23a-e** in Substanz und in Lösung, ist jetzt erstmals auch eine weitergehende spektroskopische Charakterisierung von Perylenbisimidradikalanionen möglich.

8.2.2.1 UV-Vis-Spektroskopie

Wichtigster Beleg für die Struktur der isolierten Radikalsalze **22**, **23a-e** ist zweifelsohne das UV-Spektrum der Verbindungen. Die Substanzen **22**, **23** bilden in den aprotischen, polaren Solventien Aceton und Acetonitril tiefblaue Lösungen.

Aus Vergleich der UV-Spektren der Verbindungen mit den Spektren von elektrochemisch erzeugten Radikalanionen^{55, 56, 57, 58} und den Spektren, die bei der spektroskopischen Charakterisierung der Küpe von Perylenbisimiden resultierten, ist klar ersichtlich, dass es sich

bei den synthetisierten Verbindungen **22**, **23**, eindeutig um isolierte Perylenbisimidradikalanionen handelt. Die Absorptionsbanden der Substanzen **22**, **23**, reichen bis in den NIR-Bereich bei 957 nm. Die Farbigkeit wird daher nicht durch die längstwelligste Absorptionsbande bestimmt. Damit liegt hier ein Beispiel für das von J. Piccard entwickelte Konzept der *"Farben zweiter Ordnung"* vor, bei denen die Absorption im sichtbaren Bereich durch einen höheren Elektronenübergang hervorgerufen wird.⁶⁴

Abbildung 52: UV/Vis-Spektrum von Verbindung 22 in Acetonitril.

Abbildung 53: UV/Vis-Spektrum von Verbindung 23b.

Die Bestimmung der Extinktionskoeffizienten gestaltete sich bei den isolierten Perylenbisimidradikalanionen als schwierig, da die Substanzen in Lösung langsam zum Ausgangsmaterial zurückoxidiert werden. Daher waren im Spektrum meist auch noch die Absorptionen des rückoxidierten Ausgangsmaterials zu sehen. Dies musste bei der Berechnung der Extinktionskoeffizienten berücksichtigt werden. Am Beispiel der Verbindungen **23a,b** wurden die Extinktionskoeffizienten der isolierten Radikalanionen in Aceton auf eine Stelle genau bestimmt. Die erhaltenen Werte konnten durch Referenzmessungen mit unterschiedlichen Proben der gleichen Substanz bestätigt werden. Für die Bestimmung der Extinktionskoeffizienten wurde gemäß der folgenden Methode vorgegangen: Zuerst wurde die Gesamtkonzentration der Farbstoffe in Lösung, unter Einbeziehung des Volumens v und des Molekulargewichts M, bestimmt.

$$c(ges) = \frac{m}{M \cdot v}$$

Damit wurde die Konzentration des rückoxidierten Farbstoffs **2a,b** c(ox) in [mol·L⁻¹], über die gemessene Extinktion am Maximum bei 522 nm und dem entsprechenden Extinktionskoeffizient, der bereits bekannt ist, über das Lambert Beer'sche Gesetz ausgerechnet.

$$c(ox) = \frac{E(522 nm)}{\varepsilon(ox) \cdot d}$$

Dann wurde die tatsächliche Konzentration an Radikalanion c(rad) berechnet indem die Konzentration der oxidierten Form c(ox) von der zuvor ermittelten Gesamtkonzentration c(ges) subtrahiert wurde.

$$c(rad) = c(ges) - c(ox)$$

Gl. 3

Die so ermittelte Radikalkonzentration c(rad) wurde dann zusammen mit den für das Radikalanion gemessenen Extinktionen (im Bereich von 600-1000 nm) E(600-1000 nm) in das Lambert-Beersche Gesetz eingesetzt und so der Extinktionskoeffizient der Radikalanionen e(rad) ermittelt.

$$\varepsilon(rad) = \frac{E(600bis1000 nm)}{c(rad) \cdot d}$$
Gl.4

Die erhaltenen Werte konnten durch Referenzmessungen mit unterschiedlichen Proben der gleichen Substanz bestätigt werden und sind zusammen mit den entsprechenden Absorptionsbanden in untenstehender Tabelle wiedergegeben.

λ [nm]	680	702	711	767	797	957
$\boldsymbol{\varepsilon}$ [L·mol ⁻¹ ·cm ⁻¹]	40000	60000	60000	20000	40000	20000

Tabelle 8-1: Extinktionskoeffizienten der isolierten Perylenbisimidradikalanionen 23a,b.

Die verhältnismäßig großen molaren Absorptionskoeffizienten von 60000 bei 711 nm und 20000 L·mol⁻¹·cm⁻¹ bei 957 nm (siehe Tabelle) machen die Substanzen für Anwendungen als NIR-Farbstoffe interessant. Damit ergibt sich mit der Reduktion von Perylenbisimiden ein einfacher neuer Weg für die Synthese von NIR-Farbstoffen mit Absorptionen im Bereich von 1000 nm, was die Farbstoffchemie bisher noch vor erhebliche Probleme stellte. Die nur bedingte Stabilität der Substanzen gegenüber Luftsauerstoff stellt dabei sicherlich einen Nachteil dar. Dies ließe sich jedoch durch Anwendung konventioneller Methoden umgehen. So wäre z. B. der Einbau in Verbundglas eine einfache Methode, die Substanzen vor der Oxidation zu schützen.

Einen wichtigen Beleg, dass auch im Festkörper als radikalische Chromophore vorliegen, erhält man durch das Festkörper-UV-Spektrum von **23b**.

Abbildung 54: Festkörper-UV/Vis-Spektrum von 23b.

Die Struktur des Festkörper-UV-Spektrums entspricht im Wesentlichen der Struktur der Lösungsspektren. Demgemäß lassen sich die Banden bei 714, 769 und 802 und 957 nm eindeutig der Radikalstruktur zuordnen. Im Spektrum sind jedoch auch noch zusätzliche Banden bei 566 und 649 nm zu sehen. Die Absorption bei 566 nm mit einer kleinen Schulter bei 630 nm wird der Existenz von Dianion zugeordnet. Die Bande bei 649 nm deutet darauf hin, dass es im Festkörper auch zu einer Assoziation der Chromophore kommt, so dass sich z. B. dimere Addukte bilden, wodurch der Radikalcharakter verloren geht.

Die schwache Absorption bei 518 nm wird dem an der Luft oxidiertem Ausgangsmaterial 2 zugeschrieben.

8.2.2.2 IR-, ¹H-NMR- und Massenspektrometrie

Die IR-Spektren der Perylenbisimidradikalsalze 22, 23 unterscheiden sich stark von den Spektren der Ausgangsmaterialien 1b, 2 und lassen interessante Rückschlüsse auf die Struktur der Radikalanionen zu. So sind die Carbonylschwingungen mit einer Verschiebung von 1688 und 1638 cm⁻¹ nach 1600 und 1540 cm⁻¹, erheblich zu niedrigeren Wellenzahlen verschoben. Dies spricht für eine Schwächung der C=O-Bindung. Den C=C-Valenzschwingungen des

Perylengrundkörpers wurden die Schwingungsbanden bei 1560 und 1492 cm⁻¹ zugeordnet. Dies ist gegenüber den Schwingungsbanden der Neutralform, welche bei 1595, 1579 und 1507 beobachtet werden³⁶ ebenfalls eine beachtliche Verschiebung zu kleineren Wellenzahlen. Die zweite Schwingungsbande der C=C-Valenzschwingung ist beiden Radikalen **22**, **23** vermutlich von der 2. Carbonylschwingung bei 1540 cm⁻¹ überlagert. All diese Beobachtungen sprechen dafür, dass das freie Elektron bei den isolierten Perylenbisimidradikalanionen nicht nur über die vier Carbonylgruppen, sondern auch am aromatischen Perylenkern delokalisiert ist.

Abbildung 55: Vorschlag für die mesomeren Grenzformeln der Radikalsalze 22 und 23a-e, in Übereinstimmung mit den IR-Daten für die C=O- und C=C-Valenzschwingungen.

Dabei fällt auf, dass die C=O und C=C-Schwingungsbanden von 22 noch stärker zu kleineren Wellenzahlen verschoben sind, als bei den Derivaten mit γ -Hydroxyalkylsubstituenten 23. Demzufolge ist hier die Delokalisierung des freien Elektrons noch stärker ausgeprägt.

Weitere charakteristische Banden im Spektrum sind die Alkylschwingungen, die als 3 Banden zwischen 2958 und 2856 cm⁻¹ auftreten. Die OH-Valenzschwingung ist als breite Bande zwischen 3228 und 3257 cm⁻¹ zu beobachten.

 3252 cm^{-1} , Eine ebenfalls breite Bande bei die bei allen synthetisierten Perylenbisimidradikalsalzen zusehen ist, wird auf die Existenz von Kristallwasser zurückgeführt. Dies ist eine Erklärung dafür, dass die erhaltenen Ausbeuten immer größer als erwartet waren, unabhängig davon wie intensiv die Substanz zuvor getrocknet wurde. Die IR-Spektren von allen synthetisierten Radikalsalzen 22, 23a-e sind in den Abbildungen 56-61 dargestellt. Die entsprechenden charakteristischen Schwingungsbanden sind in Tabelle 8-2 wiedergegeben.

	$\tilde{\mathcal{V}}$ [cm ⁻¹]				
	-OH	Alkyl	C=C	-C=O	
22	-	2958 (s) 2924 (s) 2856 (s)	1561 (w) 1489 (m)	1582 (s) 1524 (s)	
23a	3228 (br, m)		1560 (w)	1600 (s)	
23b	3257 (br, m)	2957 (s) 2932 (s)	- 1492 (m)	1601 (s) 1542 (s)	
23c	3236 (br, m)	2872 (m) 2957 (s) 2930 (s)	- 1492 (m)	1600 (s) 1541 (s)	
23d	3250 (br, m)	2871 (m) 2955 (s) 2928 (s)	1561 (w) 1488 (m)	1600 (s) 1543 (s)	
23e	3239 (br, w)	2871 (s) 2957 (m) 2922 (s) 2852 (m)	- 1490 (m)	1601 (s) 1541 (s)	

Tabelle 8-2: Charakteristische Schwingungsbanden der isolierten Perylenbisimidradikalsalze 22 und 23a-e.

Abbildung 56: IR-Spektrum von 22.

Abbildung 59: IR-Spektrum von 23c.

Bei den isolierten Perylenbisimidradikalanionen mit γ -Hydroxyalkylsubstituenten **23a-e** konnten auch noch die ¹H-NMR-Spektren in d_6 -Aceton aufgezeichnet werden. In Übereinstimmung mit dem Radikalcharakter der Verbindungen **23a-e** waren in den erhaltenen Spektren keine Signale für den anionischen Teil zu sehen. Dies spricht für die radikaltypischen schnellen Relaxationsprozesse. Die Signale für das Tetrabutylammonium sind in den Spektren dagegen sehr wohl erkennbar. Sie waren jedoch in der Regel stark verbreitert und eine Kopplung konnte meist nicht bestimmt werden. Die Signale für die Methylgruppen bei 0.97 ppm und die Methylengruppen bei 1.37-1.46 ppm werden dabei noch von anderen Signalen überlagert. Dies ist umso deutlicher zu sehen, je länger die Alkylreste der untersuchten Verbindung sind. Dies lässt den Rückschluss zu, dass es sich bei diesen Signalen um Ausläufer der Alkylketten des anionischen Teils handelt. Diese These konnte, da sich die Substanzen in Lösung zersetzen, wegen der langen Messzeit leider nicht durch zweidimensionale NMR-Spektroskopie bestätigt werden.

Letztlich konnte die Struktur der Perylenbisimidradikalsalze 22 und 23a-e auch durch hochauflösende Anionen Massenspektroskopie nachgewiesen werden.

8.2.2.3 ESR-Spektroskopie

Die wohl wichtigste Analysemethode zur Analyse von Radikalen ist die ESR-Spektroskopie. So wurden auch die Perylenbisimidradikalsalze **22** und **23a-e** durch Anwendung dieser Analysenmethode charakterisiert. Dabei wurden sowohl Spektren in Lösung, als auch Festkörperspektren der Substanzen aufgezeichnet.

Lösungsspektren von organischen Radikalen werden optimalerweise in einem unpolaren Lösungsmittel wie Toluol oder Isohexan aufgezeichnet, um eine Wechselwirkung mit dem Lösungsmittel möglichst zu vermeiden. Im Fall der Perylenbisimidradikalsalze war dies aufgrund der Unlöslichkeit bzw. der schnellen Zersetzung der Substanzen in den genannten unpolaren Lösungsmitteln nicht möglich. Die Spektren wurden stattdessen in Aceton aufgezeichnet, da die Systeme, wie erwähnt, dort sowohl gut löslich waren, als auch lange stabil blieben.

Für die Messungen wurden dünne Glaskapillaren verwendet, damit die Struktur der Spektren durch Solvenseffekte möglichst wenig beeinflusst wird.

Die Lage der Signale wurde in Form von g-Faktoren angegeben, die in Bezug auf den internen Standard Mn²⁺ ermittelt wurden.

Abbildung 62: ESR-Spektrum von 22 in Aceton.

Abbildung 63: ESR-Spektrum von 23a in Aceton.

Abbildung 64: ESR-Spektrum von 23b in Aceton.

Abbildung 65: ESR-Spektrum von 23c in Aceton.

Abbildung 66: ESR-Spektrum von 23d in Aceton.

Abbildung 67: ESR-Spektrum von 23e in Aceton.

Die Struktur der erhaltenen Lösungsspektren erscheint auf den ersten Blick komplex. Neben dem eigentlichen Signal für die radikalischen Chromophore g_1 werden in den Spektren meist noch zwei weitere Signale g_2 und g_3 gefunden, deren Lage sich unabhängig von der untersuchten Substanz, praktisch nicht verändert. Dies deutet daraufhin, dass durch Wechselwirkungen mit dem Lösungsmittel in der Messlösung, weitere Radikale gebildet werden. Eine genaue Zuordnung dieser Signale ($g_2 = 2.0021$ und $g_3 = 2.0010$) gelang nicht. In der Literatur⁶⁵ wurde der *g*-Faktor eines Acetyl-Radikals mit 2.0011 angegeben.

Die *g*-Werte der radikalischen Chromophore selbst lagen bei 2.0037 und 2.0038. Eine Hyperfeinaufspaltung wurde nicht beobachtet. Da das freie Elektron über das gesamte Ringsystem delokalisiert ist, war im Fall der Perylenbisimide eine sehr kleine Hyperfeinaufspaltung zu erwarten, die von dem verwendeten Messgerät nicht mehr aufgelöst werden konnte. Zudem kann auch durch Wechselwirkungen mit dem Lösungsmittel mit einer Linienverbreiterung gerechnet werden.

Von den Verbindungen 22 und 23 wurden auch Festkörper-ESR-Spektren aufgezeichnet. Für beide Substanzen war ein klares Signal zu beobachten. Dies war ein weiterer eindeutiger Beleg, dass auch im Feststoff als radikalische Chromophore vorliegen.

Abbildung 69: Festkörper-ESR-Spektrum von 23b.

Die beobachteten g-Werte waren mit 2.0041 für **22** und **23b** etwas größer als die entsprechenden Werte in Lösung. Dies ist wahrscheinlich durch die Abwesenheit des Lösungsmittels zu erklären. Die Chromophore befinden sich im Festkörper in größerer räumlicher Nähe als in Lösung. Dadurch nimmt die Elektronendichte zu und der g-Faktor wird größer.

	g1 (Perylenbisimidradikalsalz)	g ₂	g 3
22	2.0037	2.0010	2.0021
22 (Festkörper)	2.0041	-	-
23a	2.0038	2.0009	2.0021
23b	2.0038	-	-
23b (Festkörper)	2.0041	-	-
23c	2.0037	2.0010	2.0021
23e	2.0037	2.0009	2.0021
23f	2.0038	2.0009	2.0021

Tabelle 8-3: Ermittelte g-Faktoren aus den ESR-Spektren der Perylenbisimidradikalsalze 22 und 23a-e.

8.2.3 Untersuchungen zur Stabilität der Perylenbisimidradikalsalze (22) und (23a-e) in Lösung

Als gute Lösungsmittel für die Perylenbisimidradikalsalze 22 und 23a-e erwiesen sich, wie bereits erwähnt, die polaren aprotischen Lösungsmittel Aceton oder Acetonitril. In anderen Solventien sind die Perylenbisimidradikalsalze 22 und 23a-e entweder unlöslich (Isohexan, Diethylether), oder werden unmittelbar zum Ausgangsmaterial zurückoxidiert (Chloroform, Dichlormethan, Toluol). Auch die Tendenz zur Bildung von Zersetzungsprodukten wird durch die Wahl des Lösungsmittels beeinflusst. Löst man die Substanzen in protischen, polaren Lösungsmitteln erhält man magentafarbene Lösungen und man beobachtet, beispielsweise im Absorptionsspektrum von Verbindung 23e in Ethanol, neben dem rückoxidierten Ausgangsmaterial auch verstärkt die Bildung eines Addukts, dessen Absorptionsmaximum bei 575 nm detektiert wird und das schon bei Zusatz von Chloroform wieder zersetzt wird. Die Bildung des gleichen Addukts wurde auch beobachtet, wenn eine Lösung des Farbstoffs 23e in Aceton mit wenigen Tropfen konzentrierter Salzsäure versetzt wurde.

Demgegenüber bleiben 22 und 23a-e in Aceton oder Acetonitril relativ lange stabil.

Daher konnte die langsame Zersetzung der Radikale zu den Ausgangsmaterialien 2, in Aceton gut, mittels UV/Vis-Spektroskopie, untersucht werden. Dazu wurden die Spektren der Substanzen 22 und 23a-e innerhalb eines Zeitraums von 100 min, in Abständen von je 5 min aufgezeichnet. Als Beispiel sind in untenstehender Abbildung, die für den Zerfall des Radikalanions von 22 erhaltenen Spektren dargestellt.

Abbildung 70: Oxidation des isolierten Radikalanions von 22 in Aceton.

In Abbildung 71 ist die Abnahme der Extinktion der isolierten Radikalanionen von 22 und 23a-e am Absorptionsmaximum bei 700 nm (22), bzw. bei 711 nm (23a-e) zu sehen, das zum Zeitpunkt t = 0 jeweils auf eins normiert wurde.

Abbildung 71: Abnahme der Extinktion am Absorptionsmaximum bei 711 bzw. 700 nm, bei der Zersetzung von 22 und 23a-e in Aceton. Die Extinktionen beim Zeitpunkt *t* = 0 wurden auf 1 normiert.

So wird aus Abbildung 71 ersichtlich, dass die radikalischen Chromophore **23a-e** mit γ -Hydroxyalkylsubstituenten, im Vergleich zu Verbindung **22**, deutlich stabiler sind. Innerhalb des betrachteten Zeitraums von 100 min liegt der Gehalt an Radikal für die Substanzen **23a-e**, bezüglich der relativen Extinktion bei t = 0 min, immer noch bei etwa 80 %, während sich bei Verbindung **22** schon über die Hälfte der Substanz zersetzt hat.

Eine Sonderstellung bei den Perylenbisimidradikalsalzen mit γ -Hydroxyalkylsubstituenten nimmt jedoch die Verbindung **23d**, mit Pentylsubstituenten in der Seitenkette, ein. Sie ist deutlich instabiler als die anderen Derivate mit γ -Hydroxyalkylsubstituenten. Darüber hinaus war hier bei der Zersetzung verstärkt die Bildung eines Nebenprodukts zu beobachten, dessen Absorptionsmaximum bei 574 nm detektiert. Aufgrund der Lage des Absorptionsmaximums kann es sich dabei um die Bildung eines ähnlichen Addukts handeln, wie bereits bei der Reaktion mit Ethanol beobachtet wurde. Die Absorptionsspektren von Verbindung **23e** zum Zeitpunkt t = 0 min und t = 100 min sind zur besseren Veranschaulichung in untenstehendem Diagramm abgebildet.

Abbildung 72: UV/Vis-Spektrum von Verbindung 23d zum Zeitpunkt *t* = 0 (blaue Kurve, oben) und zum Zeitpunkt *t* = 100 min (magneta Kurve, unten).

Zuletzt sollte noch die Kinetik des Zerfalls von 22 und 23a-e überprüft werden. Dazu wurden die gemessenen Extinktionen am Absorptionsmaximum der Radikalanionen (bei 711 bzw.

700 nm) über das Lambert-Beersche-Gesetz in Konzentrationen umgerechnet. Für den molaren Absorptionskoeffizient ε (rad) wurde der zuvor für **23b** ermittelte Wert von 60000 L mol⁻¹ cm⁻¹ eingesetzt.

$$c(t) = \frac{E(t) (700/711 nm)}{\varepsilon(rad)}$$
Gl. 5

Interessanterweise ergab sich für das Geschwindigkeitsgesetz 2. Ordnung (**Gl. 6**) ein linearer Zusammenhang.

$$c^{-1} - c_0^{-1} = k \cdot t$$

Gl. 6

Abbildung 73: Zerfall des isolierten Radikalanions von 22 in Aceton, gemäß einem Geschwindigkeitsgesetz 2. Ordnung

Abbildung 74: Zerfall des isolierten Radikalanions von 23a in Aceton.

Abbildung 75: Zerfall des isolierten Radikalanions von 23b in Aceton.

Abbildung 76: Zerfall des isolierten Radikalanions von 23c in Aceton, gemäß einem Geschwindigkeitsgesetz 2. Ordnung

Abbildung 77: Zerfall des isolierten Radikalanions von 23d in Aceton, gemäß einem Geschwindigkeitsgesetz 2. Ordnung

Abbildung 78: Zerfall des isolierten Radikalanions von 22 in Aceton, gemäß einem Geschwindigkeitsgesetz 2. Ordnung

Für die Abhängigkeit der Extinktion von der Zeit *t* wäre eigentlich ein Zerfall erster Ordnung zu erwarten gewesen, wenn die Zersetzung allein durch Reaktionen mit dem Lösungsmittel oder Luftsauerstoff determiniert würde.

Ein Zerfall 2. Ordnung bedeutet dagegen, dass die Zersetzung der Radikalanionen auch durch die Wechselwirkung mit einem weiteren Chromophor bestimmt wird.

Für die radikalischen Chromophore mit langen Alkylsubstituenten in der Seitenkette 22 und 23e war der Fit an das Geschwindigkeitsgesetz 2. Ordnung besonders exakt erfüllt. Für die Derivate 23c, und 23d war das Bestimmtheitsmaß des Fits weniger genau. Für 23a und 23b wurde kein linearer Zusammenhang beobachtet.

Die entsprechenden Halbwertszeiten, welche für einen Zerfall 2. Ordnung von der Anfangskonzentration c_0 abhängen, wurden gemäß **Gl.7** ermittelt und sind in Tabelle 8-4 wiedergegeben.

$$t_{1/2}(c_0) = \frac{1}{k \cdot c_0}$$
Gl. 7

	$k \; [\mathrm{mol}^{-1} \cdot \mathrm{L} \cdot \mathrm{s}^{-1}]$	$c_{\theta} [\mathrm{mol} \cdot \mathrm{L}^{-1}]$	$t_{1/2}(c_0)$ [s]	$t_{1/2}(c_0)$ [min]
22	23.4	$9.17 \cdot 10^{-6}$	4394	73
23c	1.66	$1.30 \cdot 10^{-5}$	46228	771
23d	8.93	1.59.10-5	7059	118
23e	3.30	9.36·10 ⁻⁶	32339	538

Tabelle 8-4: Ermittelte Geschwindigkeitskonstanten und Halbwertszeiten für den Zerfall 2. Ordnung von 22 und 23c-e.

Generell lässt sich aussagen, dass das Geschwindigkeitsgesetz 2. Ordnung für die längerkettigen Derivate besser erfüllt ist, als für die kürzerkettigen. Die Verbindungen mit kürzeren Alkylsubstituenten in der Seitenkette sind vermutlich aufgrund der schlechteren sterischen Abschirmung gegenüber äußeren Einflüssen eher angreifbar und der Zerfall 2. Ordnung kann dadurch gestört werden.

9 Isolierung von stabilen Naphthalinbisimidradikalsalzen

9.1 Synthese

In Analogie zu den entsprechenden Perylenbisimiden, gelang es auch, aus der Küpe von Naphthalinbisimiden mit γ -Hydroxyalkylsubstituenten **14**, erstmals Naphthalinbisimidradikalanionen als stabile Tetrabutylammoniumsalze zu isolieren.

Abbildung 79: Isolierung der stabilen Radikale 24 aus der Küpe von Naphthalinbisimiden mit γ -Hydroxyalkylsubstituenten 14.

14, 24	R
a	$-C_2H_5$
b	$-C_3H_7$
c	$-C_4H_9$
c	$-C_5H_{11}$

Die Synthese der Substanzen **24a-d** wurde exakt wie bei den Perylenbisimiden durchgeführt. Als Reaktionsmedium wurde jedoch Ethanol und als Base das nichtionische DBU verwendet, um die Entstehung von Verseifungsprodukten auszuschließen.

9.2 SpektroskopischeCharakterisierung

9.2.1 UV/Vis-Spektroskopie

Bei den Verbindungen **24a-d** handelt es sich um schwarz-braune Feststoffe, die in Aceton oder Acetonitril rot-braune Lösungen bilden. Eindeutiger Beleg für die Radikalstruktur der Verbindungen **24a-d** war auch hier primär das UV-Spektrum der Substanzen, das mit dem Spektrum von elektrochemisch generierten Naphthalinbisimidradikalanionen übereinstimmt.^{56 66, 67}

Abbildung 80: UV/Vis-Spektrum des isolierten Naphthalinbisimidradikalanions von 24b.

Die Struktur der Spektren Struktur ähnelt dabei der der Spektren der Perylenbisimidradikalanionen, ist jedoch aufgrund des verkleinerten chromophoren Systems zu kleineren Wellenlängen verschoben. Die intensivste Bande im Spektrum liegt bei 477 nm. Weitere Absorptionen im Vis-Bereich werden bei 611 und 686 nm detektiert. Die längstwelligste Absorptionsbande, die den D_0 - D_1 Übergang beschreibt⁵⁶, liegt mit 761 nm bereits im NIR-Bereich. Damit wird auch hier die Farbigkeit durch höhere Elektronenübergänge determiniert.⁶⁴

Auf die Bestimmung der Extinktionskoeffizienten wurde bei den Substanzen verzichtet, da die Oxidation der Substanzen 24a-d in Aceton nicht so glatt zu den Ausgangsmaterialien

14a-d verläuft wie bei den zuvor behandelten Perylenbisimidradikalanionen von 22 und 23a-e. So sind in den Spektren neben einer schwachen Bande bei 380 nm, die für das Ausgangsmaterial steht noch weitere schwache Absorptionen bei 400 nm und 350 nm zu sehen, die auf die Bildung von Zersetzungsprodukten, deren Identifizierung nicht gelang, hindeuten.

Einen wichtigen Beleg, dass die Chromophore auch im Festkörper als Radikalanionen vorliegen, liefert das Festkörper-UV-Spektrum von **24b**. Es ist in Abbildung 81 dargestellt.

Abbildung 81: Festkörper-UV-Spektrum von 24b.

9.2.2 IR-, ¹H-NMR- und Massenspektroskopie

Zur ausführlicheren spektroskopischen Charakterisierung der Verbindungen **24a-d** wurden auch hier zunächst die IR- und NMR-Spektren, die weitere Belege für den Radikalcharakter der Verbindungen **24**, als Feststoff und in Lösung darstellen, aufgezeichnet.

In den IR-Spektren der Radikalsalze **24a-d** variierte die Lage der C=O-Schwingungsbanden zwischen 1621 und 1632 cm⁻¹, sowie zwischen 1580 und 1587 cm⁻¹. Gegenüber den Ausgangsmaterialien stellt das eine deutliche Verschiebung zu kleineren Wellenzahlen dar und indiziert, dass auch hier die C=O Bindungen durch die Delokalisierung des freien Elektrons auf die vier Carbonylgruppen, geschwächt werden.

Den aromatischen C=C Valenzschwingungen wurden zwei intensive Banden bei 1556 und 1520 cm⁻¹ zugeordnet. Dies stellt einerseits gegenüber dem Ausgangsmaterial eine starke Verschiebung zu kleineren Wellenzahlen dar. Andererseits wird ein entsprechendes Signal für die 2. Schwingungsbande im Ausgangsmaterial nicht beobachtet.

Dementsprechend wird auch bei den Naphthalinbisimidradikalsalzen **24a-d**, das freie Elektron, sowohl über die vier Carbonylgruppen, als auch über das aromatische System delokalisiert.

Abbildung 82: Strukturvorschlag für die mesomeren Grenzformeln von Naphthalinbisimidradikalen.

Weitere charakteristische Schwingungsbanden im Spektrum waren, wie bei den entsprechenden Perylenbisimidradikalsalzen **23a-e**, die Alkylschwingungen und die OH-Valenzschwingung, die bei **24a-d** mehr oder weniger schwach ausgeprägt zwischen 3300 und 3332 cm⁻¹ zu beobachten war.

Abbildung 83: IR-Spektrum von 24a.

Abbildung 86: IR-Spektrum von 24d.

		ν̃[cm ⁻¹]	
24a 24b	-OH 3332 (s, br) 3317 (m, br)	Alkyl 2959 (s) 2875 (s) 2958 (s) 2931 (m) 2872 (s)	C=C 1558 (s) 1520 (s) 1555 (m) 1516 (s)	-C=O 1632 (s) 1580 (s) 1621 (s) 1577 (s)
24c	3300 (m, br)	2956 (s) 2929 (s) 2872 (s)	1556 (m) 1523 (s)	1621 (s) 1587 (m)
24d	3332 (m, br)	2956 (s) 2930 (m) 2871 (s)	1556 (m) 1519 (m)	1623 (s) 1586 (s)

Tabelle 9-1: Charakteristische Schwingungsbanden in den IR-Spektren der Naphthalinbisimidradikalsalze 24a-d.

In den NMR-Spektren der Verbindungen **24a-d** in D_6 -Aceton waren, ebenfalls wie bei den entsprechenden Perylenbisimidradikalsalzen **23a-d**, nur die Signale für das Gegenion Tetrabutylammonium zu sehen.

Darüber hinaus konnten sowohl die Naphthalinbisimidradikalanionen von **24a-d** und das Gegenion Tetrabutylammonium eindeutig durch hochauflösende FAB⁻/FAB⁺- Massenspektrometrie nachgewiesen werden.

9.2.3 ESR-Spektroskopie

Auch die Naphthalinbisimidradikalsalze **24b-d** konnten mittels ESR-Spektroskopie charakterisiert werden. Die Spektren wurden dabei unter den gleichen Bedingungen, wie bei den Perylenbisimidradikalsalzen **22** und **23a-e** gemessen und ausgewertet. Es wurden die Lösungsspektren der Substanzen **24b-d** in Aceton und auch das Festkörperspektrum von Substanz **24b** aufgezeichnet.

Abbildung 87: Festkörper-ESR-Spektrum von 24b.

Abbildung 89: ESR-Spektrum von 24c in Aceton.

Die Struktur der erhaltenen Spektren gleicht den Spektren der Perylenbisimidradikalsalze 22 und 23a-e. Die ermittelten *g*-Faktoren der Chromophore 24b-d g_1 waren sowohl in Lösung mit Werten von zwischen 2.0039 und 2.0042 als auch im Festkörper mit einem Wert von 2.0043 (24b) etwas größer als bei den Perylenbisimidradikalsalzen 22, 23. Eine Feinaufspaltung des Radikalsignals der Naphthalinbisimidchromophore konnte dabei auch hier nicht detektiert werden.

Prinzipiell stellt der *g*-Faktor eines Radikals ein Maß dafür dar, inwiefern das äußere Magnetfeld dazu befähigt ist, in dem Molekül lokale, elektronische Ströme zu erzeugen.⁶⁸

Naphthalinbisimide sind aufgrund ihres weniger ausgedehnten aromatischen Systems elektronenärmer als die Perylenbisimide. Daher wären hier eigentlich kleinere *g*-Werte als bei den Perylenbisimidradikalsalzen zu erwarten. Die experimentell ermittelten größeren *g*-Werte sind möglicherweise durch Ringstromeffekte bedingt.

Wie bei den Perylenbisimidradikalanionen sieht man auch hier in den Lösungsspektren neben dem Signal für die radikalischen Chromophore, die zwei weiteren Signale bei $g_2 = 2.0021$ und

 $g_3 = 2.0010$, die durch Wechselwirkung mit dem Lösungsmittel zustande kommen. Diese erscheinen im Vergleich zu den Spektren der Perylenbisimide 22 und 23 teilweise etwas stärker ausgeprägt. Dies lässt sich dadurch erklären, dass die Naphthalinbisimidradikalsalze 24 im Vergleich zu den Perylenbisimidradikalsalzen 22 und 23a-e etwas weniger stabil sind. Daher erscheint die Intensität des radikalischen Chromophores in Relation zu den Zersetzungsprodukten kleiner.

	g1 (Naphthalinbisimidradikalanion)	g_2	g 3
24b	2.0042	2.0010	2.0021
24b (Festkörper)	2.0043	-	-
24c	2.0039	2.0010	2.0021
24d	2.0040	2.0010	2.0021

Tabelle 9-2: Ermittelte g-Faktoren aus den ESR-Spektren von 24b-d.
10 Erzeugung von Radikalanionen auf Basis von kernerweiterten Perylenbisimiden

Zuletzt sollte im Rahmen dieser Arbeit noch untersucht werden, ob sich das zuvor an Perylenund Naphthalinbisimiden erprobte Konzept zur Erzeugung und Isolierung von stabilen Radikalen durch Reduktion im alkalischen Medium und anschließender Fällung mit Tetrabutylammoniumbromid auch auf kernerweiterte Perylenbisimidderivate anwenden lässt. Dazu sollte sowohl ein N,N',N''-Benzoperylentrisimid, als auch die NIR-Farbstoffe N,N'-Hexylheptylquaterrylen- **28** und N,N'-Hexylheptylterrylenbisimid **27** untersucht werden.

10.1 Erzeugung eines N,N',N''-Benzoperylentrisimidradikalanions

10.1.1 Synthese von Benzoperylen (25a) und *N*,*N*',*N*''-Benzoperylentrisimid (26) als Ausgangsmaterialien

Erweitert man den aromatischen Kern der Perylenbisimide orthogonal zur Richtung des Übergangsmoments μ , gelangt man zu den Benzoperylenbisimiden **25**, deren Absorptionsspektren gegenüber den Perylenbisimiden hypsochrom verschoben sind.

Abbildung 91: Allgemeine Strukturformel von Benzoperylenbisimiden.

Die Synthese des Benzoperylenbisimids **25a** als Ausgangsmaterial erfolgte gemäß der Clar-Variante der Diels-Alder-Reaktion durch Umsetzung des Perylenbisimids **1b** mit Maleinsäureanhydrid und gleichzeitiger Aromatisierung durch Chloranil bei hohen Temperaturen und langen Reaktionszeiten.^{31, 69, 70}

Abbildung 92: Synthese des Benzoperylenbisimids 25a in einer Clar-Reaktion.

Will man ein System, wie den Farbstoff **25a**, im alkalischen Medium reduzieren, so muss zunächst der Anhydridring gegenüber der alkalischen Hydrolyse, stabilisiert werden. Daher sollte an dieser Position eine γ -Hydroxyalkylseitenkette eingeführt werden.

Für die Synthese eines solchen N,N',N''-Benzoperylentrisimids **26** wurden zwei verschiedene Methoden getestet. Dabei wurde jeweils der langkettige Aminoalkohol **4e** eingesetzt, um später eine gute Löslichkeit des resultierenden Farbstoffs **26** zu erzielen.

Abbildung 93: Umsetzung des Benzoperylenbisimidanhydrid 25a zum N,N',N''-Benzoperylentrisimid 26.

Eine einfache Umsetzung des Ausgangsmaterials **25a** mit 1.5 Äquivalenten Amin **4e** in Imidazol bei 140 °C gelang nicht. Durch DC-Kontrolle konnte hier bei einer Reaktionszeit von 1 h nur das Ausgangsmaterial **25a** detektiert werden.

Dagegen verlief die Synthese in Chloroform mit Zusatz einer stöchiometrischen Menge an N,N'-Dicyclohexylcarbodiimid (DCC) und einer katalytischen Menge an Trifluoressigsäure (TFA) nach einer Reaktionszeit von 18 h bei 65 °C erfolgreich.⁷¹ Das erhaltene Benzoperylentrisimid wurde daraufhin durch zweimalige Säulenchromatographie aufgereinigt und konnte dann mit einer Ausbeute von 21 % als orange-gelbes Pulver isoliert werden.

Die Verbindung zeigte die für ein N'-substituiertes Benzoperylentrisimid typischen Absorptionsbanden.⁷¹ Diese wurden bei 379, 411, 436 und 466 nm detektiert. Die entsprechenden Extinktionskoeffizienten wurden zu 43000, 16000, 39000 und

61000 L mol⁻¹cm⁻¹ ermittelt. Die Substanz zeigte mäßige Fluoreszenz bei 475 und 509 nm mit einer Fluoreszenzquantenausbeute von 32 %.

10.1.1.1 Versuch zur Synthese eines dreifach γ-hydroxyalkylsubstituierten Benzoperylentrisimids (29)

Durch die Einführung des $N'-\gamma$ -Hydroxyalkylsubstituenten konnte der Farbstoff **26** im alkalischen Medium, im Vergleich zum Ausgangsmaterial **25a** stabilisiert werden. Die Positionen N und N'' sind jedoch, in Analogie zu den Perylenbisimiden mit sekundären Alkylsubstituenten, gegenüber der alkalischen Hydrolyse nur bedingt stabil. Zwar ist auch hier eine Reduktion unter milderen Bedingungen, bei Verwendung der nichtionischen Base DBU, möglich, aber dennoch wäre die Verwendung eines N,N',N''-Benzoperylentrisimids mit γ -Hydroxyalkylsubstituenten **29** an allen Imidstickstoffen wünschenswert.

Abbildung 94: Allgemeine Strukturformel für ein Benzoperylentrisimid mit drei γ-Hydroxyalkylseitenketten.

Daher wurde noch versucht, die zuvor beschriebene Synthese mit dem γ -Hydroxyalkylsubstituiertem Perylenbisimid **2e** als Ausgangsmaterial durchzuführen. Dieser Versuch scheiterte jedoch bereits an der 1. Synthesestufe, bei der Durchführung der Clar-Reaktion. Selbst nach einer Reaktionszeit von 5-6 Tagen bei 170 °C konnte im Dünnschichtchromatogramm lediglich das Edukt **2e** nachgewiesen werden.

Abbildung 95: Versuch zur Umsetzung des Farbstoffs 2e zum entsprechenden Benzoperylenbisimidanhydrid 25b.

	R
2e, 25b	$-C_8H_{17}$

Das Misslingen der Reaktion lässt sich vermutlich mit der schlechteren Löslichkeit des γ -Hydroxyalkylsubstituierten Perylenbisimids erklären. Zwar ist die verwendete Verbindung **2e,** mit den Octylsubstituenten in der Seitenkette, deutlich besser löslich als entsprechend kürzerkettigere Derivate, die Löslichkkeit ist jedoch bei weitem nicht so gut, wie die der

klassischen Perylenbisimide mit sekundären Alkylketten oder *tert*-Butylphenylsubstituenten in der Seitenkette.

10.1.2 Herstellung und spektroskopische Untersuchung der Küpe des *N*,*N*''-Bis-(1-hexylheptyl)-*N*'-[2-(hydroxymethyl)-2-octyldecyl]benzoperylen-trisimids (26)

In Analogie zu den Perylen- und Naphthalinbisimiden wurde konnte auch die Küpe des N,N''-Bis(1-hexylheptyl)-N'-[2-(hydroxymethyl)-2-octyldecyl]benzoperylentrisimids **26** in Aceton, bei Verwendung der Base DBU, durch Reduktion mit Hydroxyaceton hergestellt werden. Der erfolgte Reduktionsschritt ist hier durch einen Farbumschlag der zuvor gelben Lösung nach Dunkelgrün gekennzeichnet.

Abbildung 96: Herstellung der Küpe des N,N',N"-Benzoperylentrisimids mit γ-Hydroxyalkylsubstituenten 26.

Die Untersuchung der auf diese Weise hergestellten Küpe im UV-Spektrometer ergibt ein Spektrum, das gegenüber dem Ausgangsmaterial **26** stark bathochrom verschoben ist. Dabei liegt hauptsächlich das Radikalanion **26**^{\cdot} vor, dessen längstwellige Bande bei 867 nm beobachtet wird und damit im NIR-Bereich liegt. Eine weitere Absorptionsbande im Vis-Bereich, die dem Radikalanion **26**^{\cdot} zugeordnet wird, liegt bei 718 nm. Die intensivste Bande im Spektrum wird bei 644 nm detektiert. Die Struktur des Spektrums ähnelt damit stark der Struktur des Spektrums eines Perylenbisimidradikalanions, ist jedoch, aufgrund der orthogonalen Kernerweiterung, demgegenüber hypsochrom verschoben. Die zwei kleinen Schultern bei 535 nm und 580 nm zeigen die Existenz des Dianions **26**⁻ an.

10.1.2.1 Beeinflussung des Redox-Gleichgewichts durch Zusatz von Diacetyl (18)

Versetzt man die verwendete Messlösung mit wenig Diacetyl **18** und verschiebt damit das Gleichgewicht nach links (siehe Abschnitt 7.2.3) verschwinden diese schwachen Signale und es wird jetzt die Bildung der Neutralform **26**, durch ein intensives Signal bei 466 nm und das Radikalanion **26**⁻⁻ angezeigt. Der starke Anstieg der Absorption zwischen 400 und 550 nm ist durch die Zersetzung der verwendeten Messlösung zu erklären.

Abbildung 97: Spektroskopische Untersuchung der Küpe von 29. (Grüne Kurve, links: Spektrum von 29 in Chloroform; magenta-farbene Kurve, rechts: Küpe von 29, blaue Kurve, Mitte: Küpe von 29 nach Zusatz von Diacetyl).

10.1.3 Versuch zur Isolierung des N',N"-Bis-(1-hexylheptyl)-N-[2-(hydroxymethyl)-2-octyldecyl]benzoperylentrisimidradikalanions als Tetrabutylammoniumsalz (30)

Nachdem die Bildung des Benzoperylentrisimidradikalanions **26**⁻ erstmals durch spektroskopische Untersuchung der Küpe des N,N''-Bis-(1-hexylheptyl)-N'-[2- (hydroxymethyl)-2-octyldecyl]benzoperylentrisimids **26** eindeutig nachgewiesen war, wurde auch versucht, die beobachtete Spezies **26**⁻ durch Fällung mit Tetrabutylammoniumbromid aus der Küpe zu isolieren.

Abbildung 98: Isolierung des radikalischen Chromophors 30 aus der Küpe der von 26, durch Fällung mit Tetrabutylammoniumbromid.

Die exakt in Analogie zu den Perylenbisimiden durchgeführte Synthese gelang und das N,N''-Bis-(1-hexylheptyl)-N'-[2-(hydroxymethyl)-2octyldecyl]benzoperylentrisimidradikalanion **26**⁻⁻ konnte als Tetrabutylammoniumsalz **30**, in Form eines dunkelgrünen Feststoffs, isoliert werden (siehe Abbildung 99).

Abbildung 99: Foto des isolierten Radikalsalzes 30.

Dieser oxidierte bereits bei Anwesenheit von Spuren von Luftsauerstoff innerhalb von Sekunden. Demgemäß mussten

alle durchgeführten Arbeitsvorgänge, während und nach der Durchführung der Synthese, streng unter Ausschluss von Sauerstoff durchgeführt werden.

Die Lösung der Verbindung **30** blieb ebenfalls nicht stabil. Es gelang jedoch die Existenz der Substanz durch UV/Vis-Spektroskopie in Aceton nachzuweisen. Die Verbindung wurde dabei zu einem geringen Anteil neben der rückoxidierten Neutralform detektiert. Das Spektrum der Substanz ist deswegen hier nur in dem Wellenlängenbereich von 550–1000 nm dargestellt und wurde auf die intensivste Bande des Radikals normiert.¹ Für einen direkten Vergleich ist dabei auch noch einmal das UV/Vis-Spektrum eines Perylenbisimidradikalanions dargestellt.

¹ Bei dem kleinen Signal bei 800 nm handelt es sich um ein Artefakt des Spektrometers, das durch die Umstellung des Detektors von einem Photomultiplier auf eine Halbleiterzelle erzeugt wird.

Abbildung 100: UV/Vis-Spektrum des isolierten Benzoperylentrisimidradikalsalzes 30 (grüne Kurve, links) im Vergleich zum isolierten Perylenbisimidradikalsalz 23b (magenta Kurve, rechts).

Es fällt auf, dass die NIR-Bande beim isolierten Benzoperylentrisimidradikalanion **30** sehr intensiv erscheint. Dies lässt sich auf die sehr schnelle Zersetzung der Substanz in Lösung zurückführen. Zum Zeitpunkt der Detektion der NIR-Bande war noch mehr Radikalanion in der Lösung vorhanden als beim Zeitpunkt der Detektion der Bande bei 644 nm.

Eine weitere spektroskopische Charakterisierung gelang wegen der Empfindlichkeit der Verbindung **30** nicht.

10.2 Erzeugung von Radikalanionen auf Basis der NIR-Farbstoffe Terrylenund Quaterrylenbisimid

Erweitert man das farbgebende, aromatische System der Perylenbisimide longitudinal, in Richtung des Übergangsmoments erzeugt man einen bathochromen Shift in der Absorption und man gelangt zu den NIR-Farbstoffen N,N'-Bis-(1-hexylheptyl)terrylen- 27 und -quaterrylenbisimid 28.

Abbildung 101: Strukturformeln des Terrylenbisimids 27 und des Quaterrylenbisimids 28.

10.2.1 Darstellung der Ausgangsmaterialien

Die Synthese des Quaterrylenbisimids³⁴ **28** wurde im Rahmen dieser Arbeit durch cyclisierende Aromatisierung des Bichromophors 31^2 in Ethanolamin, bei Zusatz von Kaliumcarbonat, bei 160 °C durchgeführt.⁷²

² Vielen Dank an Dipl.-Chem. Simon Kinzel und Dipl.-Chem. Jörn Büttner für die Synthese des Bichromophors **31**.

Abbildung 102: Synthese von Quaterrylenbisimid durch cyclisierende Aromatisierung von Bichromophor 31.

Das Terrylenbisimid **27**⁷³ wurde freundlicherweise von Dipl.-Chem. Dr. Simon Poxleitner zur Verfügung gestellt.

10.2.2 Detektion von Radikalanionen in der Küpe der NIR-Farbstoffe *N,N*'-Bis-(1-hexylheptyl)terrylen- (27) und -quaterrylenbisimid (28)

Auch die Küpe der NIR-Farbstoffe **27** und **28** konnte in Aceton, bei Zusatz von DBU, durch Reduktion mit Hydroxyaceton dargestellt werden. Der erfolgte Reduktionsschritt war durch eine leichte Farbveränderung der zuvor tiefblauen Lösungen nach Grün-blau zu erkennen.

Abbildung 103: Herstellung der Küpe von Terrylenbisimid 27.

Abbildung 104: Herstellung der Küpe von Quaterrylenbisimid 28.

Bei der UV-spektroskopischen Untersuchung der Farbstoffküpen konnte zunächst weder beim Terrylen- 27, noch beim Quaterrylenbisimid 28 die Bildung des Radikalanions 27^{-} bzw. 28^{-} nachgewiesen werden. In den Spektren war jeweils nur das Dianion mit einer längstwelligsten Absorption von 694 (27^{2-}) bzw. 804 nm (28^{2-}) zu sehen. Die Struktur der Dianionenspektren ähnelt dabei der Struktur des Absorptionsspektrums der Ausgangsmaterialien 27 und 28.

Abbildung 105: Spektrum von Quaterrylenbisimid 28 in Chloroform (blaue Kurve, links) und Spektrum der Küpe von Quaterrylenbisimid. Zu sehen ist im Spektrum der Küpe nur das Dianion 28²⁻, (magnenta-farbene Kurve rechts).

10.2.2.1 Beeinflussung des Redox-Gleichgewichts durch Zusatz von Diacetyl (18)

Das Redox-Gleichgewicht liegt bei der Küpe von Quaterrylen- **28** und Terrylenbisimid **27** weit auf der rechten Seite. Durch Zusatz von Diacetyl **18** zur verwendeten Messlösung gelingt es jedoch auch hier, das Gleichgewicht nach links zu verschieben und so gezielt die Radikalanionen **27**⁻⁻ und **28**⁻⁻ zu erzeugen.

Abbildung 106: Terrylenbisimid 27 in Chloroform (blaue Kurve, links), Küpe von Terrylenbisimid in Aceton (magentafarbene Kurve, Mitte), Küpe von Terrylenbisimid in Aceton, nach Zusatz von Diacetyl, (grüne Kurve, rechts).

Abbildung 107: Quaterrylenbisimid 28 in Chloroform und Küpe von Quaterrylenbisimid 28 nach Zusatz von Diacetyl in Aceton.

Strukturell ähneln die Spektren der Radikalanionen 27⁻⁻ und 28⁻⁻ stark den Spektren der Perylenbisimidradikalanionen, die Absorptionen sind jedoch im Vergleich stark bathochrom, bis weit in den NIR-Bereich verschoben. So liegt die längstwelligste Absorptionsbande beim Terrylenbisimidradikalanion 27⁻⁻ bei 1319 und beim Quaterrylenbisimidradikalanion 28⁻⁻ bei 1699 nm. Die Aufspaltung dieser Bande beim Quaterrylenbisimidradikalanion 28⁻⁻ ist dabei

auf die Eigenabsorption des Lösungsmittels zurückzuführen, welche in diesem Spektralbereich bereits auftritt. Die intensivsten Absorptionsbanden der Radikalspektren liegen bei 896 und 1078 nm. Des Weiteren werden noch Absorptionsbanden bei 982 und 1186, sowie bei 1028 und bei 1253 nm detektiert.

Demgemäß wird die Farbigkeit der Küpe von Quaterrylen- **28** und Terrylenbisimid **27** allein durch die entsprechenden Dianionen 27^{2-} und 28^{2-} determiniert, da die Absorptionen der Radikalanionen **27**²⁻ und **28**²⁻ alle außerhalb des sichtbaren Spektralbereichs liegen.

10.2.3 Isolierung des *N*,*N*'-Bis-(1-hexylheptyl)quaterrylenbisimidradikalanions als Tetrabutylammoniumsalz (32)

Es gelang erstmals auch, das Radiakalanion **28**⁻aus der Küpe von Quaterrylenbis-(1-hexylheptylimid) **28** als Tetrabutylammoniumsalz **32** auszufällen.

Abbildung 108: Isolierung von Verbindung 32 aus der Küpe von 28, durch Fällung mit Tetrabutylammoniumbromid.

10.2.3.1 Spektroskopische Charakterisierung

10.2.3.1.1 UV/Vis-Spektroskopie

Die Substanz **32** wurde in Form eines dunkelgrünen Feststoffs isoliert. Es wird daher davon ausgegangen, dass die Farbigkeit entweder durch Spuren des Ausgangsmaterials determiniert wird, oder die radikalischen Chromophore im Feststoff auch als Addukte assoziiert vorliegen und so Absorptionen im sichtbaren Spektralbereich resultieren, die auch im Festkörper-UV-Spektrum der Substanz zu sehen sind. Das Festkörper-UV-Spektrum von **32** belegt jedoch auch, durch die Absorptionsbande bei 1050 nm, dass die Chromophore auch im Festkörper in Form von freien Radikalanionen vorliegen.

Das UV-Spektrum des isolierten Feststoffs in Aceton belegt, dass in Lösung hauptsächlich das isolierte Radikalanion von **30** vorliegt. Die zusätzlichen Absorptionsbanden bei 734 und 699 nm sind nicht dem Ausgangsmaterial **28** zuzuordnen. Dies deutet darauf hin, dass bei der Zersetzung des isolierten Radikalanions von **32** Folgereaktionen stattfinden, so dass eine Rückoxidation zum Ausgangsmaterial **28** nicht stattfindet.

Die längstwelligste Absorptionsbande bei 1699 nm ist auch hier durch die Eigenabsorption des Lösungsmittel gestört.

Abbildung 109: UV-Vis-Spektrum des isolierten Quaterrylenbisimidradikalsalz 32 in Aceton.

Abbildung 110: Festkörper-UV-Spektrum von 32.³

10.2.3.1.2 IR- und Massenspektroskopie

Des Weiteren konnte das Radikalanion von **32** und auch das Gegenion Tetrabutylammonium, durch hochauflösende FAB-Anionenmassenspektroskopie eindeutig nachgewiesen werden. Darüber hinaus war die isolierte Substanz **32** auch stabil genug, um ein IR-Spektrum aufzuzeichnen. Es ist in untenstehender Abbildung dargestellt.

Abbildung 111: IR-Spektrum von Verbindung 32.

³ Das Rauschen bei 880 nm ist ein Artefakt des Spektrometers, das durch die Umstellung des Detektors von einem Photomultiplier auf eine Halbleiterzelle erzeugt wird.

Die Alkylschwingungen liegen bei 2957, 2924 und 2855 cm⁻¹. Die Schwingungsbanden bei 1643 und 1564 cm⁻¹ wurden den C=O-Valenzschwingungen zugeordnet. Es wird davon ausgegangen, dass die hohe Intensität der 2. Schwingungsbande bei 1564 cm⁻¹ durch eine Überlagerung mit der C=C-Valenzschwingung, die bei den Perylenbisimidradikalen bei 1550 cm⁻¹ detektiert wird, hervorgerufen wird. Weitere Banden, die der C=C-Valenzschwingung zugeordnet werden, liegen bei 1532 und 1504 cm⁻¹.

Darüber hinaus sind im Spektrum auch Kristallwasser, als breite Bande bei 3275 cm⁻¹ und Spuren des Ausgangsmaterials **28** bei 1688 cm⁻¹ zu sehen.

11 Untersuchung der magnetischen Eigenschaften des stabilen Perylenbisimidradikalsalzes (23b)

Freie Radikale besitzen aufgrund ihres ungepaarten Elektronenspins ein permanentes magnetisches Moment. Daher ist die Untersuchung von magnetischen Eigenschaften ein wichtiger Aspekt bei der Charakterisierung von Radikalen.

Für die im Rahmen dieser Arbeit synthetisierten Perylenbisimidradikalsalze **22** und **23a-e** wurden starke magnetische Eigenschaften erwartet, so dass für Perylenbisimidderivate völlig neue Anwendungen z.B., als magnetische Schalterelemente in der Elektronik, möglich werden sollten.

Verbindung **23b** wurde als Feststoff mit einem Permanentmagneten behandelt. Dabei wurde festgestellt, dass das pulverförmige Material wie Eisenspäne an dem Magneten haften bleibt. Die Teilchen folgten dabei den Feldlinien des Magneten. Es ist offensichtlich, dass magnetische Effekte für die beobachtete Strukturierung des Pulvers verantwortlich sind. Ein analoger Kontakt mit Edelstahl ergibt lediglich dicht anliegendes Material. Elektrostatische Effekte kommen daher für die beobachtete Anordnung der Partikel auf dem Permanentmagneten nicht in Frage.⁷⁴

Abbildung 112: Behandlung von 23 mit einem Permanentmagneten.

Abbildung 113: Behandlung von 23 mit einem Metallspatel.

Im Rahmen dieser Arbeit sollte daher, stellvertretend für alle anderen synthetisierten Perylenbisimidradikalsalze 22 und 23a-e, das magnetische Verhalten der Verbindung 23 b durch Anwendung der SQUID-Magnetometrie untersucht werden. Zum besseren Verständnis werden im Folgenden zunächst kurz, einige Grundlagen der Magnetochemie und das Prinzip der Messmethode erklärt, bevor die Ergebnisse der Messungen an Substanz **23b** erläutert werden.

11.1 Allgemeine Grundlagen der Magnetochemie

Bringt man Materie in ein äußeres Magnetfeld, so ändert sich die magnetische Flussdichte *B*. Dies wird durch die Magnetisierung *M* beschrieben, die auch als magnetische Dipoldichte bezeichnet wird, da sie durch das magnetische Dipolmoment μ (= magnetisches Moment) pro Volumen definiert ist.

$$M = \mu/V$$
Gl. 8

Für die Untersuchung des magnetischen Verhaltens von Stoffen betrachtet man meist die magnetische Suszeptibilität χ , welche ein Maß dafür ist, wie gut eine Substanz dazu in der Lage ist magnetische Feldlinien aufzunehmen. Sie ergibt sich als Proportionalitätsfaktor aus der Beziehung zwischen der Magnetisierung *M* und der Feldstärke *H*, die für genügend kleine Feldstärken erfüllt ist.

$$M = \chi \cdot H$$
Gl. 9

In der Praxis wird gerne mit der Molsuszeptibilität χ_M gearbeitet, die man unter Einbeziehung des Molekulargewichts M_g , der eingesetzten Substanzmenge m_g und des Volumens V aus χ berechnen kann.

$$\chi_M = \frac{\chi \cdot m_g}{\mathbf{V} \cdot M_g}$$
Gl. 10

Die magnetische Suszeptibilität einer paramagnetischen Verbindung setzt sich immer aus einem paramagnetischem und einem diamagnetischem Beitrag zusammen.

$$\chi_M = \chi_M(Dia) + \chi_M(Para)$$
GI. 11

Daher muss man, wenn man die reine paramagnetische Suszeptibilität einer Substanz bestimmen will, jeweils um den diamagnetischen Anteil korrigieren.

$$\chi_M$$
(Para) = $\chi_M - \chi_M$ (Dia)
Gl. 12

Der diamagnetische Beitrag χ_M (Dia) lässt sich dabei näherungsweise durch folgende Formel berechnen:

$$\chi_M (Dia) = -0.5 M_g \, 10^{-6} \, \text{cm}^3/\text{mol}$$

Gl. 13

Für die Analyse des magnetischen Verhaltens einer Verbindung ist die Temperaturabhängigkeit der Suszeptibilität charakteristisch. Im Idealfall, bei einer paramagnetischen Verbindung ohne Wechselwirkung zwischen den einzelnen Spins, ist das Curie-Gesetz gültig.

$$\chi_M (Para) = C/T$$
Gl. 14

C ist die Curie-Konstante und lässt sich auch gemäß der *Van-Vleck-Gleichung*^{75, 76}, einer Grundgleichung der Magnetochemie aus der Quantenmechanik, errechnen.

Treten zwischen benachbarten Spinmomenten Wechselwirkungen auf, dann ist das Curie-Gesetz nicht mehr gültig. Man beobachtet sogenannte *kooperative magnetische Eigenschaften*. Die wichtigsten dieser Phänomene werden im Folgenden kurz beschrieben:

• *Ferromagnetismus*: Bei einer ferromagnetischen Verbindung richten sich innerhalb von Weiss'schen Bezirken, unterhalb der ferromagnetischen Curie-Temperatur T_C , die Spinmomente spontan parallel aus. Innerhalb eines Magnetfelds resultiert eine Magnetisierung. Die Temperaturabhängigkeit der Suszeptibilität gehorcht dem Curie-Weiss-Gesetz, (vergleiche auch Referenz⁷⁷):

$$\chi_M(Para) = C/(T-\theta)$$
GL 15

- Antiferromagnetismus: Bei einer antiferromagnetischen Verbindung orientieren sich benachbarte Spinmomente unterhalb der Néel-Temperatur T_N spontan antiparallel. Oberhalb der Néel-Temperatur verhält sich die Temperaturabhängigkeit der Suszeptibilität gemäß dem Curie-Weiss-Gesetz. Die Weiss-Konstante θ nimmt dabei Werte kleiner als Null an.
- Ferrimagnetismus: Der Ferrimagnetismus vereint Eigenschaften des Ferro- und Antiferromagnetismus. Unterhalb der ferrimagnetischen Curie-Temperatur T_C richten sich benachbarte Spinmomente unterschiedlicher Größe spontan antiparallel aus. Im Magnetfeld resultiert wie beim Ferromagnetismus eine Magnetisierung.
- *Metamagnetismus*: Komplexeres Verhalten von kooperativen magnetischen Eigenschaften wird durch den Metamagnetismus beschrieben.

Abbildung 114: Darstellung der wichtigsten kooperativen magnetischen Eigenschaften

Magnetische Kenngrößen	SI-Einheiten	Weitere gebräuchliche Einheiten	Umrechnungsfaktoren
Magnetische Flussdichte B	Tesla [T] [Vs/m ²]	Gauß [G]	$1 \text{ T} = 10^4 \text{ G}$
Magnetische Feldstärke H	[A/m]	Örsted [Oe]	1 A/m = 0.012566 Oe

Magnetisierung M	[A/m]	Örsted [Oe]	1 A/m = 0.012566 Oe
Magnetisches Moment m	[Vsm]	[emu]	
		$= [G cm^3]$	
Magnetische Molsuszeptibilität χ_M	[cm ³ /mol]		

Tabelle 11-1: Wichtige Magnetische Kenngrößen.⁸⁰

11.2 Prinzip der SQUID-Magnetometrie^{78,76}

Die Untersuchung des magnetischen Verhaltens der Verbindung erfolgte mit einem SQUID-Magnetometer. Dabei wird das magnetische Moment μ einer Substanzprobe im homogenen Magnetfeld in Abhängigkeit von der Temperatur bestimmt. Die Abkürzung **SQUID** steht dabei für **S**uperconducting **Qu**antum Interference **D**evice (dt.: Supraleitende Quanteninterferenzeinheit). Dies ist momentan die häufigste und empfindlichste Methode für die Untersuchung von magnetischen Dipolen. Ein SQUID-Magnetometer ist in der Lage Magnetfelder bis 10⁻¹³ T nachzuweisen. Dem entspricht z. B. das den Herzstrom begleitende Magnetfeld des Menschen.

Die Funktionsweise eines SQUID-Magnetometers basiert auf einem SQUID-Sensor. Dabei handelt es sich um einen supraleitenden Ring, der durch einen oder zwei Josephson-Kontakte unterbrochen wird. Dabei handelt es sich um nicht supraleitfähige Barrieren, durch die Cooper-Paare, welche für die Supraleitung im Ring verantwortlich sind, hindurchtunneln können. Schickt man durch den SQUID-Sensor Strom, dessen Stärke einen kritischen Wert I_c übertrifft brechen die Cooper-Paare teilweise auf und der Tunneleffekt erfolgt nun auch für isolierte Elektronen. Dadurch entsteht ein Widerstand und eine messbare Spannung. Änderungen in einem äußeren Magnetfeld lassen sich so als Spannungsänderung detektieren.

Während einer Messung wird eine im homogenen Magnetfeld magnetisierte Probe durch eine supraleitende Mess-Spule in mehreren Schritten nach oben bewegt. Dadurch wird in der Mess-Spule ein schwacher Kreisstrom induziert, der durch eine zweite supraleitende Spule induktiv an den SQUID-Sensor weitergegeben wird. Dort entsteht ein periodisch schwankender Abschirmstrom. Durch Kopplung an einen Schwingkreis kann dieser als Spannung abgegriffen und als Funktion des Probenorts detektiert werden.

11.3 Untersuchung des Magnetismus von 23b

Der Magnetismus von Verbindung **23b** wurde mittels SQUID-Magnetometrie untersucht. Dazu wurde die zu untersuchende Substanz **23** in eine Gelatinekapsel eingewogen. Diese wurde in eine Kunststoffröhre eingebracht, die am Probenhalter des Magnetometers befestigt wurde. Die Messungen wurden in einem Temperaturbereich zwischen 5 und 300 K bei variierenden Feldstärken zwischen 200 und 5000 G durchgeführt.

Für die Auswertung der erhaltenen Rohdaten wurde zunächst, die bei den unterschiedlichen Temperaturen gemessenen magnetischen Momente (μ) um den Diamagnetismus der Gelatinekapsel korrigiert und dann die Molsuszeptibilität der Probe χ_M berechnet. Um die reine paramagnetische Suszeptibilität χ_M (Para) der Probe zu ermitteln, musste dann noch der Diamagnetismus der Probe χ_M (Dia), der gemäß Gleichung 13 ermittelt wurde, abgezogen werden. Die ermittelten Suszeptibilitäten χ_M (Para) von **23b** sind feldabhängig. Die Werte von χ_M (Para) von **23b** bei 295 K für 200, 500, 1000 und 5000 G sind in Tabelle 11-2 im Vergleich zu der magnetischen Suszeptibilität von FeCl₃⁷⁹ dargestellt.

	23b (200 G)	23b (500 G)	23b (1000 G)	23b (5000 G)	FeCl₃ ⁷⁹
$\chi_M(\text{Para})$ [cm ³ ·mol ⁻¹]	$3.26 \cdot 10^{-3}$	$2.25 \cdot 10^{-3}$	$1.78 \cdot 10^{-3}$	$4.04 \cdot 10^{-4}$	13,5·10 ⁻³

Tabelle 11-2: Magnetische Suszeptibilitäten von 23b bei 295 K im Vergleich zu FeCl₃.

In Abbildung 115 ist der Verlauf von χ_M (Para)[.]T in Abhängigkeit von der Temperatur bei unterschiedlichen Feldstärken dargestellt. Dabei ist die starke Feldabhängigkeit der Werte im betrachteten Temperaturbereich zu erkennen.

Abbildung 115: Feldabhängigkeit von χ_{M} ·T gegen *T* bei Verbindung 23b. Die sigmoiden roten Kurven entsprechen einem Fit für antiferromagnetische Kopplungen.

Für einen Paramagneten, bei dem keinerlei Wechselwirkungen zwischen den einzelnen Spinmomenten auftreten, ist das Curie-Gesetz (Gl. 14) erfüllt und man erhält für $\chi_M \cdot T$ eine Konstante, deren Erwartungswert für ein ungepaartes Elektron bei 0.37 cm³·K·mol⁻¹ liegt.⁸⁰ Im Fall von Verbindung **23** wird jedoch eine starke Abnahme der Werte für $\chi_M \cdot T$ bei fallender Temperatur beobachtet, wobei eindeutig ein linearer Zusammenhang gefunden wird.

Würde es sich hier um antiferromagnetische Wechselwirkungen handeln, wäre ein sigmoidaler Kurvenverlauf zu erwarten. Ein entsprechender Fit für antiferromagnetische Wechselwirkungen wurde nach Bleaney und Bowers⁸¹ sowohl für das Kettenmodell, als auch für dimere Kopplungen versucht (rote Linien in Abbildung 116). Dies führte jedoch zu keiner Übereinstimmung mit den bestimmten Werten für $\chi_M T$. Daher wird klar, dass es sich hier um eine andere Art von Wechselwirkung handeln muss. Die Abnahme der magnetischen Suszeptibilitäten χ_M (Para) bei steigender Feldstärke (Abbildung 116), deutet klar auf einen Sättigungseffekt hin, der bei Raumtemperatur schneller erreicht wird.

Abbildung 116: Abhängigkeit der magnetischen Suszeptibilitäten χ_M (Para) von 23b von der Feldstärke.

Für die Messwerte bei einem Feld von 5000 G wurde der Curie Plot $(1/\chi_M \text{ gegen } T)$ dargestellt. Dabei ergibt sich in einem Temperaturbereich zwischen 70 und 300 K ein annähernd linearer Zusammenhang. Dementsprechend konnte ein Fit an das Curie-Weiss-Gesetz (Gl. 15) durchgeführt werden.

Abbildung 117: Linearer Fit an das Curie-Weiss-Gesetz (Gl.15). Betrachtet wurden Messwerte zwischen 70 und 300 K.

Für die Curie-Konstante *C*, die sich aus der Steigung der ermittelten Geraden 1/*C* errechnet, konnte ein Wert von 0.29 cm³·K·mol⁻¹ ermittelt werden. Die Weiss-Konstante θ konnte aus dem Achsenabschnitt θ /C bestimmt werden. Mit einem Wert von 422 K liegt θ damit eindeutig im positiven Bereich. Dies lässt den Rückschluss zu, dass bei der untersuchten Substanz **23b** tatsächlich ferromagnetische Wechselwirkungen auftreten, die in Abhängigkeit vom angelegten Feld unterschiedlich stark ausgeprägt sind. Dabei ist die Feldabhängigkeit ein weiterer Aspekt, der für eine ferromagnetische Kopplung spricht. Die entsprechende Curietemperatur T_C liegt außerhalb des Messbereichs und ist größer als 300 K.

Zur Bestätigung dieses interessanten magnetischen Verhaltens wurden vier unterschiedliche Substanzproben der Verbindung untersucht. Eine Substanzprobe wurde dabei unter Ausschluss von jeglichen metallischen Materialien, wie z.B. Metallspatel, synthetisiert um eine ferromagnetische Kontamination ausschließen zu können. Der Effekt blieb unabhängig von der untersuchten Probe gleich. Nur die erhaltenen Messwerte blieben nicht konstant. Eine mögliche Erklärung dafür ist, dass die Weisschen-Bezirke innerhalb der Proben unterschiedlich strukturiert waren, da dies bekanntlich von der makroskopischen Struktur des Materials abhängt und damit von der Zufälligkeit der Probenherstellung. Ein weiterer Grund kann ein unterschiedlicher Gehalt an dimeren Addukten oder ein geringer Anteil der Neutralform **2b**, der sich im Verlauf der Messung gebildet hat, die den Paramagnetismus abschwächen, in den Substanzproben sein.

Es wurden auch andere Substanzen aus der Reihe der Perylenbisimidradikalsalze **23** untersucht, bei denen ein ähnlicher Effekt beobachtet wurde. Eine genauere Untersuchung war jedoch im Rahmen dieser Arbeit leider nicht möglich.

12 Affinität von Perylenbisimiden zu Keratinoberflächen

Im Rahmen eines Drittmittelprojekts der Firma Wella/PG, dessen Thema die Anwendung von Küpenfarbstoffen als Haarfärbemittel ist, sollte die Affinität von Perylenbisimiden zu Keratinoberflächen getestet werden.⁸² Dabei wurde zunächst untersucht, welche Farbstoffe, in Abhängigkeit vom Substitutionsmuster in der Seitenkette, ein gutes Aufziehvermögen auf Keratinfasern besitzen.

Dann sollte auf die Problematik des richtigen pH-Werts bei der Durchführung der Färbungen eingegangen werden. Für die Küpenfärberei ist ein alkalisches Medium erforderlich. Dies stellt für Textilien kein Problem dar, wohl aber für Keratinfasern, die aufgrund ihrer Proteinstruktur im alkalischen Medium hydrolysiert werden. Es sollte untersucht werden, in wie weit der pH-Wert bei einer Färbung mit Perylenbisimiden gesenkt werden kann, ohne das Farbergebnis maßgeblich zu beeinflussen, aber gleichzeitig die Schädigung des Haares zu minimieren. Dabei sollten verschiedene Säuren getestet werden und deren Anwendbarkeit in Abhängigkeit vom Farbergebnis beurteilt werden.

Für die Beurteilung der Farbintensität und der Schädigung der Haarstruktur wurden eigens eine entsprechende Skalen entwickelt, die sowohl in untenstehender Tabelle, als auch, aus Gründen der besseren Übersichtlichkeit, nochmals im Experimentellen Teil dargestellt sind.

12.1 Methodik der Färbungen

Um vergleichbare Ergebnisse erzielen zu können, wurden alle Färbeversuche unter praktisch gleichen Bedingungen, mit der gleichen Menge an Farbstoff durchgeführt.

Die Herstellung der Farbstoffküpen erfolgte für die alkalipersistenten Perylenbisimide **2a-d** in einem Gemisch aus Ethanol und Wasser im Verhältnis 1:3. Die Verwendung von Wasser als Reaktionsmedium ist günstig, da hier die bestmögliche Penetration des Farbstoffs auf die Faser erzielt wird.

Der Zusatz an Ethanol war jedoch auch wichtig, um eine gute Homogenität der Mischung zu gewährleisten. Als Base wurde 0.5 Vol. % Natronlauge (30 Gew. % in Wasser) zugesetzt. Als Reduktionsmittel diente, wie gewohnt, Hydroxyaceton **17**. Nach dem erfolgten Reduktionsschritt konnte optional der pH-Wert durch Säurezusatz gesenkt werden.

Bei Verwendung von alkalilabilen Perylenbisimiden wurde die Reduktion analog in Ethanol mit DBU als Base durchgeführt. Dies hatte den Vorteil, dass die Schädigung der Haarsträhnen auch ohne Säurezusatz minimal blieb. Allerdings wurde durch das veränderte Reaktionsmedium die Penetration des Farbstoffs auf die Faser negativ beeinflusst und die Intensität der Färbung fiel nur mäßig intensiv aus.

Als Beispiel für natürliche Keratinpolymere wurden gebleichte Büffelhaarsträhnen eingesetzt, die freundlicherweise von Wella/PG zur Verfügung gestellt wurden. Die Färbezeit lag in der Regel bei 20 min bei einer Temperatur von 45 °C. Die mit der Küpe behandelten Strähnen wurden unter fließendem Wasser abgespült, um so die reduzierte Form der Küpe auf der Faser zum Ausgangsmaterial zurückzuoxidieren.

12.2 Untersuchung der Affinität in Abhängigkeit vom Substitutionsmuster am Imidstickstoff

12.2.1 Perylenbisimide mit Alkylseitenketten

Zuerst wurden die Perylenbisimide **1a-d** mit Alkylsubstituenten in der Seitenkette, wie beschrieben, bezüglich ihrer Affinität zu Keratin untersucht.

Abbildung 118: Allgemeine Strukturformel der Perylenbisimide mit Alkylseitenketten.

R
-CH ₃
$-CH(C_6H_{13})_2$
-CH(C ₃ H ₇) ₂
$-CH(C_9H_{19})_2$

Das intensivste Farbergebnis konnte bei der Färbung mit Indanthrenrot GG $1a^4$ erzielt werden. Als Lösungsmittel wurde hier trotz der Labilität gegenüber Alkali Ethanol/Wasser 1:3 verwendet, da in reinem Ethanol kein Aufziehvermögen des Farbstoffs beobachtet wurde.

⁴ Für die Färbungen mit Indanthrenrot GG wurde sowohl das im Labor synthetisierte Pigment als auch technisches Indanthrenrot GG eingesetzt, welches von der Firma CIBA freundlicherweise zur Verfügung gestellt wurde.

Als Base wurde DBU eingesetzt. Die gefärbte Strähne hatte einen intensiven orange-roten Farbton angenommen.

Es wird davon ausgegangen, dass die Intensität der Färbung bei den Perylenbisimiden ausschließlich durch den Chromophor erfolgt, wobei die Seitenkette, je nach Art des Substituenten am Imidstickstoff, die Wechselwirkung zwischen Chromophor und Faser unterstützt, oder schwächt. Im Fall des Indanthrenrot GG **1a** ist die Alkylseitenkette nur kurz und nimmt so kaum Einfluss auf die Wirkung des Chromophors.

Dementsprechend konnten bei den Ausfärbungen mit Perylenbisimiden mit sekundären, langen Alkylketten lediglich Pastelltöne erreicht werden. Dass dieser Effekt nicht allein durch die Wahl des Lösungsmittels zustande kommt, beweist die Haltbarkeit der Färbungen. Während Indanthrenrot GG **1a** eine permanente Haltbarkeit zeigte, waren die mit den Verbindungen **1b-d** gefärbten Strähnen mit organischem Lösungsmittel komplett und mit Detergenzien bedingt aus waschbar. Während bei **1c** (Handelsname: S-7) fast gar keine Affinität zu Keratin beobachtet wurde, wurden bei den langkettigeren Derivaten **1b** (Handelsname: S-13) und **1d** (Handelsname: S-19) mäßig intensive Farbtöne erzielt.

Dies lässt den Rückschluss zu, dass hier die Wirkung des Chromophors zwar negativ durch die langen Alkylketten beeinflusst wird, aber bei den längerkettigeren Derivaten **1c** und **1d**, aufgrund von van der Waals-Kräften dennoch eine Wechselwirkung mit der Faser möglich wird.

Abbildung 119: Affinität der Perylenbisimiden mit Alkylseitenketten 1a-d zu Keratinfasern. (Von links nach rechts: 1a, b, c, d).

	Farbintensität und Aufziehvermögen	Haltbarkeit
1a	V-VI	Permanent
1b	III-IV	Temporär
1c	Ι	Temporär
1d	III-IV	Temporär

Tabelle 12-3: Beurteilung der Perylenbisimide mit Alkylseitenkette bezüglich Aufziehvermögen und Haltbarkeit auf Keratinfasern.

12.2.2 Perylenbisimide mit *y*-Hydroxyalkylsubstituenten

Die alkalipersistenten Perylenbisimide mit *p*-Hydroxyalkylsubstituenten sind für eine Anwendung als Küpenfarbstoff besonders interessant, da hier die alkalische Hydrolyse nicht berücksichtigt werden muss.³⁹

Abbildung 120: Allgemeine Strukturformel der alkalipersistenten Perylenbisimide 2a-d

	R
2a	$-C_2H_5$
2b	$-C_3H_7$
2c	$-C_4H_9$
2d	$-C_5H_{11}$

Dementsprechend wurde hier als Base statt DBU, 0.5 Vol. % Natronlauge (30 Gew. % in Wasser) eingesetzt.

Wie bereits zu erwarten war, wurde insbesondere bei den kurzkettigen Derivaten **2a**, **b** eine hohe Affinität zu Keratin beobachtet. Durch die kurzen Alkylketten in β -Stellung zum Imidstickstoff wird die Wirkung des Chromophors nur minimal beeinflusst. Die Hydroxylgruppe in Position γ kann als zusätzlicher "Anker" durch die Ausbildung von Wasserstoffbrücken fungieren. Die erzielten, intensiv schwarz-roten Färbungen sind permanent haltbar und lassen sich weder mit Detergenzien, noch mit organischen Lösungsmitteln auswaschen. Setzt man für die Färbung längerkettigere Derivate ein, so nimmt die Intensität der Färbung ab.

Abbildung 121: Affinität der alkalipersistenten Perylenbisimide 2a-d zu Keratinfasern. (Oben von links nach rechts: 2a, b, c; unten: 2d).

Als nächstes sollte die Affinität des unsymmetrisch substituierten Farbstoffs 7 getestet werden, um herauszufinden ob die Existenz einer sekundären Alkylkette die Wirkung des γ -Hydroxyalkylsubstituenten als Ankergruppe schwächt.

Abbildung 122: Allgemeine Strukturformel des unsymmetrisch substituierten Perylenbisimids 7.

Unabhängig von der Existenz der sekundären Alkylkette wurde jedoch ein sehr gutes Farbergebnis erzielt, dass sich nur um Nuancen von einer Färbung mit dem entsprechenden symmetrisch substituierten Perylenbisimid 2a unterschied. Die Wirkung des γ -Hydroxyalkylsubstituenten als Ankergruppe scheint daher so stark zu sein, dass der negative Einfluss eines weiteren, destabilisierenden Alkylsubstituenten, bezüglich der Farbintensität nicht ins Gewicht fällt. Dementsprechend war die Färbung permanent und mit organischen Solventien nicht auswaschbar. Es wurde jedoch im Gegensatz zu der symmetrisch substituierten Verbindung 2a eine bedingte Auswaschbarkeit mit Wasser und Detergenz festgestellt.

Als letztes Derivat in dieser Reihe sollte noch die Affinität der Verbindung 9 getestet werden.

Abbildung 123: Allgemeine Strukturformel des Perylenbisimids 9.

Eigentlich wäre hier eine besonders starke Wechselwirkung zwischen Farbstoff und Keratinfaser zu erwarten, da die Verbindung durch die zweite Hydroxylgruppe in Position β eine zusätzliche Ankergruppe trägt, die zur Ausbildung von Wasserstoffbrücken befähigt ist. Entgegen den Erwartungen wurde hier jedoch nahezu keine Affinität zu Keratin beobachtet. Die mit der Verbindung 9 behandelte Haarsträhne blieb nahezu farblos.

Dies lässt den Rückschluss zu, dass für die gute Wechselwirkung zwischen Farbstoff und Faser nicht nur die Existenz der Hydroxygruppe in Position γ essentiell ist, sondern auch die Existenz der Alkylketten in Position β . Der gute Zusammenhalt zwischen Faser und Farbstoff scheint also bei den Perylenbisimiden mit γ -Hydroxyalkylsubstituenten durch ein Zusammenspiel der Wechselwirkung zwischen Chromophor und Faser, sowie durch zusätzliche stabilisierende van der Waals Wechselwirkungen durch kurze Alkylketten und die Ausbildung von Wasserstoffbrückenbindungen durch die Hydroxygruppe determiniert zu sein.

Abbildung 124: Affinität der Perylenbisimide 1b, 2a, 7 und 9 zu Keratinfasern im Vergleich. (Von links nach rechts: 9, 2a, 7, 1b).

	Farbintensität und Aufziehvermögen	Haltbarkeit
2a	VI	Permanent
2b	V-VI	Permanent
2c	IV	Permanent
2d	III-IV	Permanent
7	V-VI	Semipermanent
9	I-II	Temporär

Tabelle 12-4 :Beurteilung von Aufziehvermögen und Haltbarkeit der Perylenbisimide 2a-d, 7 und 9 auf Keratinfasern.

12.2.3 Tyrosinderivate

Zuletzt wurden noch Färbungen mit den Tyrosinderivaten **10a** und **c** durchgeführt. Tyrosin stellt ein wichtiges Ausgangsmaterial in der Biosynthese von Melanin dar. Dementsprechend war es interessant das Aufziehverhalten von entsprechend substituierten Perylenbisimiden zu untersuchen.

Abbildung 125: Strukturformeln der Tyrosinderivate 10a und 10c.

Dabei wurde gefunden, dass die Verbindung **10a**, mit den Tyraminsubstituenten in der Seitenkette nahezu keine Affinität zu Keratin zeigte, wohl aber das entsprechende Tyrosinderivat **10c**. Hier konnte ein gutes Farbergebnis erzielt werden, obwohl die Färbung aufgrund der Gefahr der alkalischen Hydrolyse, in Ethanol durchgeführt wurde. Die verbesserte Farbintensität wird auf die Existenz der Carboxylatgruppen in der Seitenkette zurückgeführt, die eine gute Wirkung als Ankergruppe zu zeigen scheinen.

Abbildung 126: Affinität der Tyrosinderivate 10a (links) und 10c (rechts) zu Keratinfasern.

	Farbintensität und Aufziehvermögen	Haltbarkeit
10a	II	Temporär
10c	IV-V	Permanent

Tabelle 12-5: Beurteilung von Aufziehvermögen und Haltbarkeit der Tyrosinderivate 10a und 10c auf Keratinfasern

12.3 Ausweitung des Farbspektrums durch Ausfärbungen mit Quaterrylenbisimid (28) und Benzoperylentrisimid (26)

Für die Darstellung von Haarfärbemitteln ist ein vielfältiges Farbspektrum essentiell. Dieses entsteht durch Mischung der Grundfarben rot, blau und gelb. Rote Farbtöne entstehen durch die Verwendung von Perylenbisimiden. Es sollen jedoch auch blaue und gelbe Farbtöne durch Küpenfärberei mit Perylenbisimidderivaten erzeugt werden. Daher werden auch Färbungen mit dem Quaterrylenbisimid **28** und dem Benzoperylentrisimid **26** durchgeführt.

Abbildung 127: Strukturformeln von Quaterrylenbisimid 28 und Benzoperylentrisimid 26 (R: -C₈H₁₇).

Bei der Färbung mit Quaterrylenbisimid **28** konnte lediglich ein mäßig intensives Farbergebnis erzielt werden. Dagegen konnte bei der Färbung mit dem Benzoperylentrisimid ein gutes Farbergebnis erhalten werden. Dabei wurde zudem ein interessanter Effekt beobachtet: Die leuchtend gelb gefärbten Haarsträhnen zeigen im UV-Licht Fluoreszenz. Dies ist eine gute Eigenschaft die zur Steigerung der Farbbrillianz von Haarfarben genutzt werden kann. Die Anwendung von Benzoperylentrisimiden in Haarstyling-Produkten wird bereits von Wella/PG getestet.⁸³ Die Farbstoffe wurden dabei jedoch noch nie in Form einer Farbstoffküpe direkt auf Haar aufgebracht. Die durchgeführten Färbungen mit Benzoperylentrisimid **26** und Quaterrylenbisimid **28** waren temporär haltbar und konnten
dementsprechend durch Behandlung mit organischen Lösungsmitteln oder mit Detergenzien ausgewaschen werden.

Abbildung 128: Fluoreszenz von Benzoperylentrisimid 26 auf Keratin im UV-Licht.

Abbildung 129: Affinität von Quaterrylenbisimid 28 (links) und Benzoperylentrisimid 26 (rechts) zu Keratinfasern.

Farbintensität Haltbarkei und Aufziehvermögen			
26	V-VI	Temporär	
28	II-III	Temporär	

Tabelle 12-6: Beurteilung von Aufziehvermögen und Haltbarkeit von Quaterrylenbisimid 28 und Benzoperylentrisimid 26 auf Keratinfasern.

12.4 Einfluss des pH-Werts auf die Farbintensität

Die üblicherweise für die Küpenfärberei erforderlichen hohen pH-Werte von 13-14 sind für die praktische Anwendung als Haarfärbemittel aufgrund der Schädigung von Keratinfasern und der Kopfhaut nicht tolerierbar. Der pH-Wert muss bei einer entsprechenden Färbung so weit gesenkt werden, dass Schädigung von Haar und Kopfhaut minimal bleiben, ohne dabei

das Farbergebnis maßgeblich zu beeinflussen. Für die Anwendung von Indigo wurde dabei bereits ein entsprechender Kompromiss gefunden. Führt man Färbungen bei einem pH Wert von etwa 10^{41,42} aus, bleibt die Schädigung des Haares gering, während die Intensität der resultierenden Färbungen nicht beeinflusst wird.

Dementsprechend sollten auch für die Perylenbisimide die entsprechenden Bedingungen gefunden werden, bei dem die Intensität der Färbungen hoch bleibt, aber die Schädigung des Haares minimiert wird. Dabei sollten auch die zur Senkung des pH-Werts verwendeten Säuren variiert werden, um zu sehen ob das Farbergebnis auch durch die Wahl der Säure beeinflusst wird.

Demgemäß wurde der Farbstoff **2a** untersucht, für den eine hohe Affinität zu Keratin beobachtet wurde. Zuerst wurden Färbungen in einem pH-Bereich von 12-7 durchgeführt. Dabei wurde bei sinkendem pH-Wert eine steigende Abnahme der Farbintensität beobachtet.

Für die Senkung des pH-Werts wurden dabei Essigsäure, Borsäure, Zitronensäure und Ascorbinsäure getestet. Die besten Farbergebnisse konnten dabei bei pH-Werten von 9-10 erzielt werden. Bei Verwendung von Essigsäure war eine genaue Einstellung des pH-Werts schwierig, da die Neutralisation schlagartig erreicht wird.

Ein recht akzeptables Farbergebnis konnte bei Verwendung von Borsäure, bei einem pH-Wert von 9 beobachtet werden. Die gefärbte Strähne war jedoch nicht mehr tief-rot gefärbt, sondern hatte einen intensiven Magenta-Ton angenommen.

Verwendet man dagegen zur Senkung des pH-Werts Zitronensäure oder Ascorbinsäure in Form von gesättigten Lösungen, können bei einem pH-Wert von 9-10 sogar ähnlich gute Farbergebnisse erzielt werden, wie bei pH-Werten um 13, ohne jedoch das Haar massiv zu schädigen. Man erhält intensiv rot gefärbte Strähnen, wobei die Farbintensität nach Zusatz von Ascorbinsäure noch um eine Nuance intensiver ausfällt. Dies ist vermutlich auf die Wirkung der Ascorbinsäure als Antioxidans zurückzuführen. Die Schädigung des Haares blieb dabei gering, ließ sich jedoch nicht gänzlich vermeiden. Dieser Mangel könnte jedoch durch Verwendung von entsprechenden Pflegeprodukten ausgeglichen werden.

	pH-Wert	Schädigung des Haares	Farbintensität
2a	13	VI	VI
2a	12-13	VI	VI
2a	12	III-IV	IV
2a	6-7	Ι	II-III

Tabelle 12-7: Zusammenhang zwischen Farbintensität und pH-Wert am Beispiel von Farbstoff 2a bei Zusatz von Essigsäure.

	pH-Wert	Schädigung des Haares	Farbintensität
2a	9	Ι	IV

Tabelle 12-8: Zusammenhang zwischen Farbintensität und pH-Wert am Beispiel von Farbstoff 2a bei Zusatz von Borsäure.

	pH-Wert	Schädigung des Haares	Farbintensität
2a	10	II-III	V
2a	9	III	Ι
2a	6	Ι	II

Tabelle 12-9: Zusammenhang zwischen Farbintensität und pH-Wert am Beispiel von Farbstoff 2a bei Zusatz von Zitronensäure.

	pH-Wert	Schädigung des Haares	Farbintensität
2a	10	III-IV	V-VI
2a	9-10	III	V-VI
2a	9	Ι	III
2a	7	Ι	II

Tabelle 12-10: Zusammenhang zwischen Farbintensität und pH-Wert am Beispiel von Farbstoff 2a bei Zusatz von Ascorbinsäure.

Abbildung 130: Abnehmende Farbintensität bei sinkendem pH-Wert am Beispiel von Farbstoff 2a. Zur pH-Wert-Senkung wurde hier Ascorbinsäure verwendet.

Abbildung 131: Einfluss auf die Farbintensität durch die zur pH-Wert Senkung verwendeten Säure. Alle Färbungen wurden bei pH 9-10 durchgeführt. (Verwendete Säuren (von links nach rechts): Borsäure, Zitronensäure, Ascorbinsäure).

12.5 Färbungen mit den Perylenbisimidradikaltetrabutylammoniumsalzen (22) und (23a-d) als Speicherform der Küpe

Ein interessantes Konzept zur Umgehung der pH-Problematik ist es die reduzierten Spezies in der Farbstoffküpe zu isolieren und als Speicherform der Küpe auf die Keratinfasern aufzubringen. Ein alkalisches Medium ist dann für die Durchführung der Färbungen nicht mehr erforderlich. Dieses Konzept wird am Beispiel von Leukoküpenfarbstoffestern⁸⁴ bereits angewendet.

Die im Rahmen dieser Arbeit hergestellten Perylenbisimidradikalsalze **22** und **23a-e** stellen ebenfalls eine Speicherform der Küpe dar und sollten in dieser Form direkt auf das Keratin aufgezogen werden. Da die Verbindungen nicht wasserlöslich waren und sich in protischen Lösungsmitteln zersetzen, wurde Aceton als Lösungsmittel verwendet. Dementsprechend wurden die Keratinfasern 20 min lang, bei Raumtemperatur, mit einer 0.02 molaren Lösung der Farbstoffe **23a-d** behandelt und anschließend unter fließendem Wasser aufoxidiert. Die Chromophore blieben an den Fasern haften. Es konnten jedoch nur mäßige Farbergebnisse erzielt werden. Ein Grund dafür stellt sicherlich das verwendete Lösungsmittel Aceton dar, das hier eine optimale Penetration der Chromophore auf das Haar verhindert.

Abbildung 132: Affinität der isolierten Radikalsalze 23a-d zu Keratinfasern. (Von links nach rechts: 23a, 23b, 23c, 23d).

Die Derivate mit γ -Hydroxyalkylsubstituenten ließen sich nur durch Anwendung von Detergenzien teilweise wieder von den Fasern entfernen. Bei der mit Verbindung **22** gefärbten Strähne ließ sich der Farbstoff zusätzlich auch komplett mit organischem Lösungsmittel wieder auswaschen.

Darüber hinaus wurde bei Verbindung **22** eine weitere Besonderheit beobachtet. Die gefärbte Strähne zeigte einen leichten Violettstich, der auch mehrmonatiger Exposition mit Luft nicht verschwand. Dies könnte ein Indiz dafür sein, dass das Radikalanion auf der Faser auch nach dem Oxidationsschritt bestehen bleibt.

Abbildung 133: Affinität des isolierten Radikalsalz 22 zu Keratinfasern.

	Farbintensität und Aufziehvermögen	Haltbarkeit
22	III	Temporär
23a	II	Temporär
23b	IV	Temporär
23c	III-IV	Temporär
23d	III	Temporär

13 Zusammenfassung

- Bei der Darstellung von Perylenbisimiden als Ausgangsmaterialien gelang die Synthese der neuen Tyrosin-Derivate 10a, 10b, und 10c. Das Bisimidazoliumsalz 10c stellt aufgrund seiner hohen Polarität ein Beispiel für ein wasserlösliches Perylenbisimid dar. Die Struktur des UV/Vis-Spektrums der Verbindung 10c in lässt darauf schließen, dass in wässriger Lösung J-Aggregate gebildet werden. Fluoreszenz wird nicht beobachtet.
- ➢ Im Rahmen der Herstellung der Perylenbisimide mit γ-Hydroxyalkylsubstituenten 2 wurden erstmals die neue Verbindung 2e und das unsymmetrisch substituierte Derivat 7 synthetisiert. Bei allen synthetisierten Derivaten 2a-e und 7 konnte die Ausbildung von intramolekularen Wasserstoffbrückenbindungen, als Charakteristikum für Carbonsäureimide mit γ-Hydroxyalkylsubstituenten, nachgewiesen werden. Bei dem neuen Perylenbisimid 9, welches statt den Alkylsubstituenten in Position β eine weitere OH-Gruppe trägt, wird dagegen lediglich die Ausbildung von intermolekularen Wasserstoffbrücken beobachtet.
- Erstmals konnten im Rahmen dieser Arbeit auch Naphthalinbisimide mit Hydroxyalkylsubstituenten 14a-e synthetisiert werden. Die farblosen Feststoffe besitzen hohe Reflektivitäten zwischen 350 und 750 nm und besitzen darüber hinaus ein gutes Deckungsvermögen an Oberflächen, so dass eine Anwendung als organische Weisspigmente möglich ist.
- \triangleright Die Stabilität der Naphthalinbisimide mit γ -Hydroxyalkylsubstituenten 14 im alkalischen Medium ist nicht vergleichbar mit den entsprechenden alkalipersistenten Perylenbisimiden 2. Dennoch wird durch die Einführung der *y*-Hydroxyalkylsubstituenten eine höhere Stabilität gegenüber Alkali erreicht, als bei literaturbekannten Naphthalinbisimiden mit Alkyl- oder Arylsubstituenten in der Seitenkette. Bei der Umsetzung von Naphthalinbisimiden mit γ-Hydroxyalkylsubstituenten mit Alkali kommt Bildung es zur von

Naphthalinlactamimiden 16, wobei auch die Entstehung von weiteren Verseifungsprodukten nicht ausgeschlossen werden kann. Die neuen Naphthalinlactamimide 16a und 16b konnten in Substanz isoliert und charakterisiert werden. Es wurden Farbstoffküpen von Perylen- und Naphthalinbisimiden, sowie, zum ersten Mal, auch von Perylenlactamimid **19** und Naphthalinlactamimid **16b** durch Reduktion der Farbstoffe mit Hydroxyaceton 17 im alkalischen Medium hergestellt und erstmals UV-spektroskopisch charakterisiert. Die Untersuchung von alkalilabilen Derivaten wurde durch die Verwendung der nichtionischen Base DBU ermöglicht. Eine schnelle Zersetzung der Farbstoffküpen während der Messungen konnte durch Zusatz von Reduktionsmittel und DBU zur verwendeten Messlösung verhindert.

Bei der spektroskopischen Untersuchung wurde gefunden, dass in den untersuchten Farbstoffküpen Radikalanionen und Dianionen vorliegen. Diese Spezies konnten bisher bei Naphthalin- und Perylenbisimiden nur spektroelektrochemisch in unmittelbarer Nähe der Kathode nachgewiesen werden.^{55, 56} Für Perylen- und Naphthalinlactamimide wurden diesbezüglich zuvor noch keine Untersuchungen durchgeführt.

Rückschlüsse über den Mechanismus der Reduktion konnten durch UVspektroskopische Beobachtung des zeitlichen Verhaltens der Küpe von S-13 **1b** getroffen werden. Es wurde gefunden, dass sich das Dianion aus dem Radikalanion bildet, was mit einem Mechanismus, der im Rahmen des Farbstoffsymposiums CHOLORCHEM von P. Rys vorgestellt wurde konsistent war, der die Reduktion von Küpenfarbstoffen mit Hydroxyaceton als oszillierendes Redoxgleichgewicht beschreibt, das über radikalische Zwischenstufen abläuft.

Der Anteil an radikalischem Chromophor, als stabile Zwischenstufe, in der Küpe kann durch die Wahl des Lösungsmittels oder durch das Substitutionsmuster des Carbonsäureimids beeinflusst werden. Besonders günstig für die Bildung von Radikalanionen erwies sich dabei die Verwendung des polaren, aprotischen Lösungsmittels Aceton, sowie die Verwendung von Perylenbisimiden mit sekundären Alkylseitenketten.

Darüber hinaus kann das Redoxgleichgewicht durch Zusatz von Diacetyl gezielt auf die linke Seite verschoben werden, so dass ausschließlich Radikalanionen gebildet werden.

- Schließlich gelang es, die Radikalanionen von Perylen- und Naphthalinbisimiden, durch Fällung mit Tetrabutylammoniumbromid aus der Küpe erstmals in Substanz zu isolieren. Die erhaltenen Radikalsalze 22, 23a-e und 24a-e sind so stabil, dass einfache Operationen an der Luft durchgeführt werden können. Unter Schutzgas sind die Verbindungen unbegrenzt haltbar. Der Radikalcharakter der Verbindungen konnte in Lösung durch ESR, NMR und hochauflösende Massenspektroskopie nachgewiesen werden. Dass auch als Festkörper isolierte Radikalanionen vorliegen konnte durch Festkörper-ESR-, Festkörper-UV- und IR-Spektroskopie belegt werden. Aus den IR-Spektren der Radikalsalze ist aufgrund der Verschiebung von C=O- und C=C-Valenzschwingungen zudem zu erkennen, das das ungepaarte Elektron sowohl über die vier Carbonylgruppen als auch über das aromatische System delokalisiert sein muss.
- Als geeignetes Lösungsmittel für die Substanzen erwies sich Aceton. Die Kinetik der Zersetzung der isolierten Radikalanionen 22 und 23a-e wurde UV-spektroskopisch untersucht. Diese erfolgte für die Derivate mit längerkettigen Alkylresten 22 und 23c-e in guter Übereinstimmung gemäß einem Geschwindigkeitsgesetz 2. Ordnung. Dies deutet darauf hin, dass die Zersetzung der Substanzen auch durch die Wechselwirkung mit einem weiteren Chromophor determiniert wird.
- Das Konzept für die Erzeugung von stabilen Radikalanionen in einer Farbstoffküpe lässt sich auch auf kernerweiterte Perylenbisimide anwenden. Dementsprechend wurden das neue Benzoperylentrisimid 26 und die NIR-Farbstoffe N,N'-Bis-(1-hexylheptyl)terrylenbisimid 27 und N,N'-Bis-(1-hexylheptyl)quaterrylenbisimid 28 umgesetzt. In der Küpe von 27 und 28 wird die Bildung der Radikalanionen 27⁻⁻ und 28⁻⁻, deren längstwelligste Absorptionsbanden bei 1319 bzw. 1699 nm detektiert werden, erst nach Zusatz von Diacetyl beobachtet. Die Radikalanionen des Benzoperylentrisimids 26 und von Quaterrylenbisimid 28 konnten in Form der Tetrabutylammoniumsalze 30 und 32 isoliert werden. Der Radikalcharakter von 32 als Feststoff konnte dabei eindeutig durch IR- und Festkörper-UV-Spektroskopie belegt werden.

- Stellvertretend f
 ür alle synthetisierten Radikalsalze wurden die magnetischen Eigenschaften von 23b mittels SQUID-Magnetometrie untersucht. Die Temperaturund Feldabhängigkeit der gemessenen molaren Suszeptibilitäten deutet darauf hin, dass es sich hier um einen organischen Ferromagneten handelt.
- Als Beispiel für eine konkrete Anwendung wurde die Affinität von Perylenbisimidradikalanionen zu Oberflächen, sowohl in Form von Farbstoffküpen, als auch in isolierter Form getestet werden. Dabei stand die Untersuchung von Keratinoberflächen im Vordergrund, um in Zusammenarbeit mit Wella/PG ein neues Konzept für permanente Haarfärbemittel auf der Basis von Perylenbisimiden zu erarbeiten.

Die beste Wechselwirkung zwischen Chromophor und Keratinfasern wurde dabei bei den Perylenbisimiden mit γ -Hydroxyalkylsubstituenten **2a, b, 7**, Indanthrenrot GG **1b** und dem Bisimidazoliumsalz **10c** gefunden. Um die Schädigung des Haares zu minimieren, bei einer gleichbleibend hohen Farbintensität, kann der pH-Wert nach dem Reduktionsschritt auf 10 gesenkt werden. Die besten Farbergebnisse konnten dabei durch Verwendung von Borsäure, Zitronensäure oder Ascorbinsäure erzielt werden. Durch Ausfärbungen mit den Radikalsalzen **22, 23a-d** kann die pH-Problematik komplett umgangen werden. Dabei konnten jedoch nur mäßige Farbintensitäten erzielt werden.

Experimenteller

Teil

14 Analytik und allgemeine Arbeitstechnik

14.1 Allgemeine Arbeitstechnik

Feinvakuum mit einem minimalen Arbeitsdruck von 10^{-3} mbar wurde mit einer Drehschieberpumpe RZ-5 der Firma Vacuubrand erzeugt. Als Inertgase wurden Stickstoff der Reinheit 5.0 und Argon der Reinheit 4.8 verwendet. Die Einwaage der Reagenzien erfolgte an einer Analysenwaage der Firma Mettler Toledo mit einer Genauigkeit von ± 0.1 mg.

Luft- und feuchtigkeitsempfindliche Reaktionen wurden gemäß den gängigen Methoden der Schlenktechnik in ausgeheizten Glasapparaturen durchgeführt. Die verwendeten Lösungsmittel wurden falls nötig gemäß den literaturbekannten Vorschriften getrocknet.

Für Dünnschichtchromatographie wurden DC-Platten der Firma Merck (Kieselgel 60 F_{254}) verwendet.

Säulenchromatographie wurde mit Kieselgel 60 (Merck, Geduran; Korngröße 0.040-0.063 mm oder 0.063-0.200 mm) durchgeführt.

Überschüssige Lösungsmittel wurden mit Rotationsverdampfern der Firma Heidolph oder Büchi am Membranvakuum abdestilliert. Die hier minimal erreichbaren Drücke lagen zwischen 1 und 10 mbar.

14.2 NMR-Spektroskopie

NMR-Spektren wurden an folgenden Geräten aufgezeichnet:

- Varian Mercury 200 (200 MHz)
- Bruker ARX 300, Varian Vnmrs 300 (300 MHz)
- Varian Inova 400, Varian VXR400S, Varian Vnmrs 400 (400 MHz)
- Bruker AMX600, Varian Vnmrs 600 (600 MHz)

Es wurden ¹H-und ¹³C-Spektren aufgenommen. Die chemischen Verschiebungen wurden in ppm angegeben und bezogen sich auf Tetramethylsilan bei 0.00 ppm oder die verwendeten Lösungsmittel (CDCl₃: 7.26 ppm (¹H), 77.0 ppm (¹³C); D₆-Aceton: 2.04 ppm (¹H), 29.3 ppm (¹³C);) als internen Standard.

Multiplizitäten wurden folgendermaßen angegeben: s (Singulett), d (Dublett), t (Triplett), q (Quartett), quin (Quintett), m (Multiplett). Verbreiterte Signale wurden zusätzlich mit br (breit) bezeichnet. Kopplungskonstanten wurden in Hz angegeben.

14.3 IR-Spektroskopie

Die Messung von IR-Spektren erfolgte an den Geräten:

- Perkin Elmer 1420 Ratio Recording
- BX II FT-IR

Das BX II FT-IR Spektrometer enthielt eine ATR-Einheit. Hier konnten die Substanzen direkt auf die Probenzelle aufgetragen und gemessen werden.

Bei Verwendung des Perkin Elmer 1420 Ratio Recording Spektrometer wurden flüssige Proben als Film zwischen zwei Natriumchlorid-Platten und feste Proben als Kaliumbromid-Pressling oder zwischen zwei Natriumchlorid-Platten in einem Nujol-Film gemessen.

Der Messbereich lag zwischen 400 und 4000 cm⁻¹. Die erhaltenen Schwingungsbanden wurden mit sehr stark (vs), stark (s), mittel (m), schwach (w), sehr schwach (vw) und breit (br) bezeichnet.

14.4 Massenspektroskopie

Für die Anfertigung von Massenspektren wurden folgende Geräte verwendet:

- Finnigan MAT 95 und MAT 90 (EI, CI, FIB)
- Thermo Finnigan LTQ FT (ESI, APCI)
- Finnigan JMS-700 (FAB)

14.5 Optische Spektroskopie

Alle Messungen wurden in Präzisionsglasquarzküvetten (Schichtdicke d = 1 cm) der Firma Hellma durchgeführt. Es wurden Lösungsmittel von der Firma Merck in der Uvasol Qualität verwndet. Für die Messung von extrem luftempfindlichen Substanzen wurden die Lösungsmittel vor der Messung entgast. Zur Aufzeichnung von UV/Vis-Spektren wurden die folgenden Geräte verwendet:

- Varian Cary 5000 (200-3000 nm)
- Bruins Omega 20 (280-750 nm)

Die Auflösung der aufgezeichneten Spektren betrug 0.2 oder 0.5 nm. Für die Bestimmung von Extinktionskoeffizienten wurden die Proben an einer Ultra-Mikrowaage mit einer Genauigkeit von \pm 0.2 µg eingewogen.

Festkörper UV-Spektren konnten mit dem Varian Cary 5000 aufgenommen werden. Dazu wurde in den Probenraum eine Ulbricht-Kugel eingesetzt.

Für Fluoreszenzmessungen standen folgende Geräte zur Verfügung:

- Perkin Elmer FS 3000
- Perkin Elmer LS 50 B

Fluoreszenzquantenausbeuten wurden gemäß der literaturbekannten Betriebsanweisung bestimmt.

14.6 Elementaranalytik

Elementaranalysen wurden im Mikroanalytischen Labor der Fakultät angefertigt. Zur Bestimmung des Gehalts an C, H und N wurde ein Elementar Vario EL verwendet. Halogene wurden mit einem Metrohm Titroprozessor 686 bestimmt.

14.7 Schmelzpunkte

Schmelzpunkte wurden an einem Büchi Melting Point B-450 oder an einem Büchi Melting Point 535 bis maximal 350 °C bestimmt.

14.8 ESR-Spektroskopie

ESR-Spektren wurden an einem JES-RE2X ESR-Spektrometer gemessen. Es wurden X-Band-Spektren in dünnen Kapillaren aufgezeichnet. Es wurden Festkörper- und Lösungsspektren aufgezeichnet. Als Lösungsmittel wurde Aceton verwendet.

14.9 Magnetische Eigenschaften

Die Untersuchung der magnetischen Eigenschaften einer Probe erfolgte an einem MPMSR-XL-SQUID-Magnetometer der Firma Quantum Design. Es wurden DC-Messungen im RSO-Messmodus bei Feldstärken zwischen 200 und 5000 G in einem Temperaturbereich von 3-350 K durchgeführt. Die Proben wurden in einer Gelatinekapsel mit einer Kunststoffröhre als Probenhalter präpariert. Die erhaltenen Messwerte wurden um den Magnetismus des Probenhalters und den Diamagnetismus der untersuchten Verbindung korrigiert.

14.10 Reagenzien und Lösemittel

Eingesetzte Reagenzien und Lösungsmittel stammten von der Zentralen Versorgung des Department Chemie und sind technischer Qualität. Feinchemikalien wurden bei den Firmen Acros, Aldrich, Fluka oder Lancaster bestellt.

9,9'-Bis-[perylen-3,4-dicarbonsäure-3,4-(1-hexylheptylimid) als Ausgangsmaterial für die Synthese von N,N'-(Hexylheptyl)quaterrylenbisimid **28** wurden freundlicherweise von Dipl.-Chem. Jörn Büttner und Dipl.-Chem. Simon Kinzel zur Verfügung gestellt.

N,N'-Di-(1-nonyldecyl)perylen-3,4:9,10-tetracarbonsäurebisimid **1d** und N,N'-(Hexylheptyl)terrylenbisimid **27** wurde freundlicherweise von Dipl.-Chem. Dr. Simon Poxleitner zur Verfügung gestellt.

15 Synthese von aliphatischen Ausgangsmaterialien

15.1 Alkylierung von Cyanessigsäuremethylester

Allgemeine Arbeitsvorschrift

Unter Ausschluss von Feuchtigkeit wird Cyanessigsäuremethylester mit 2 Äquiv. Alkylbromid vorgelegt. Unter leichtem Erwärmen werden dann 2 Äquiv. 25 proz. Natriummethanolatlösung in Methanol zugetropft. Natriumbromid fällt dabei als farbloser Niederschlag aus. Im Anschluss wird 8 h zum Sieden erhitzt, wobei sich die Reaktionsmischung rot verfärbt. Man lässt die Mischung noch über Nacht bei Raumtemperatur rühren, löst dann das ausgefallene Natriumbromid durch Zugabe von 100 mL destilliertem Wasser auf und destilliert die überschüssige Menge an Methanol am Rotationsverdampfer ab.

Man setzt der Mischung 100 mL Diethylether zu, trennt die organische Phase ab und extrahiert die wässrige Phase noch zweimal mit je 50 mL Diethylether. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet. Nach Filtration wird das Lösemittel abdestilliert.

Das Rohprodukt wird durch Destillation im Feinvakuum gereinigt.

15.1.1 2-Cyano-2-ethylbutansäuremethylester (3a)⁴⁵

Cyanessigsäuremethylester (18 mL, 200 mmol) wird mit Bromethan (30 mL, 400 mmol; 2 Äquiv.) und 25 proz. Natriummethanolatlösung (91 mL, 400 mmol, 2 Äquiv.) gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ausbeute: 22.1 g (143 mmol, 72 %) farblose Flüssigkeit.

Sdpkt.: $50-53^{\circ}C (7.8-7.9 \cdot 10^{-2} \text{ mbar}).$

- IR (ATR): $\tilde{v} = 2977 \text{ (m)}, 2942 \text{ (w)}, 2884 \text{ (w)}, 2243 \text{ (w)}, 1741 \text{ (s)}, 1460 \text{ (m)}, 1389 \text{ (w)}, 1436 \text{ (w)}, 1352, 1332, 1315, 1236 \text{ (s)}, 1176 \text{ (w)}, 1147 \text{ (w)}, 1037 \text{ (w)}, 896 \text{ (w)}, 811 \text{ (w)}, 748 \text{ cm}^{-1} \text{ (w)}.$
- ¹H-NMR (300 MHz, CDCl₃): $\delta = 1.02$ (t, 6 H, ³J = 7.4 Hz, -CH₃) 1.87 (m, 4 H, ³J = 7.4 Hz, -CH₂), 3.79 ppm (s, 3 H, -OCH₃).
- ¹³C-NMR (75 MHz, CDCl₃): $\delta = 9.7 (-CH_3), 30.4 (-CH_2), 51.5 (C_{qu}),$ 53.1 (-COOCH₃), 119.0 (-CN), 169.5 ppm (-COOCH₃).
- **MS (DEI⁺/70 eV):** m/z (%): 156 (5) $[M^++H]$, 127 (6) $[(M^++H)-C_2H_5]$, 112 (16), 96 (100) $[M^+-CO_2CH_3]$, 80 (6), 59 (8), 42 (10).
- HRMS (C₈H₁₃NO₂): Ber.: m/z: 155.0946 Gef.: m/z: 155.0924 Δ : -1.7 mmu

15.1.2 2-Cyano-2-propylpentansäuremethylester (3b)⁴⁵

Cyanessigsäuremethylester (18 mL, 200 mmol) wird mit 1-Brompropan (37 mL, 400 mmol; 2 Äquiv.) und 25 proz. Natriummethanolatlösung (91 mL, 400 mmol, 2 Äquiv.) gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ausbeute: 17.8 g (97.0 mmol, 60 %) farblose Flüssigkeit.

Sdpkt.: 79-81 °C (3.0·10⁻² mbar).

- IR (ATR): $\tilde{v} = 2964 \text{ (m)}, 2936 \text{ (w)}, 2877 \text{ (w)}, 2244 \text{ (w)}, 1743 \text{ (s)}, 1466 \text{ (m)}, 1437 \text{ (m)}, 1383 \text{ (w)}, 1307 \text{ (w)}, 1280 \text{ (w)}, 1226 \text{ (s)}, 1166 \text{ (m)}, 1143 \text{ (m)}, 1025 \text{ (w)}, 1006 \text{ (w)}, 992 \text{ (w)}, 940 \text{ (w)}, 848 \text{ (w)}, 792 \text{ (w)}, 737 \text{ cm}^{-1} \text{ (w)}.$
- ¹**H-NMR (300 MHz, CDCl₃):** $\delta = 0.92$ (t, 6 H, ³J = 7.5 Hz; -CH₃), 1.21-1.38 (m, 2 H, -CH₂), 1.56 (m, 2 H, -CH₂), 1.72 (m, 2 H, -CH₂), 1.85 (m, 2 H, -CH₂), 3.77 ppm (s, 3 H, -OCH₃).
- ¹³C-NMR (75 MHz, CDCl₃): $\delta = 13.6, 18.8, 39.5, 49.8, 53.0, 119.3, 169.7$ ppm.
- **MS (DEI⁺/70 eV):** m/z (%): 184 (2) $[M^++H]$, 182 (1) $[M^+-H]$, 155 (20), 141 (26), 124 (59), 42 (58), 41 (100).
- HRMS (C₁₀H₁₈O₂N): Ber.: m/z: 184.1293 [M^+ +H] Gef.: m/z: 184.1362 [M^+ +H] Δ : 3.0 mmu
- 15.1.3 2-Butyl-2-Cyanohexansäuremethylester (3c)^{39,45}

Cyanessigsäuremethylester (18 mL, 200 mmol) werden mit 1-Brombutan (43 mL, 400 mmol; 2 Äquiv.) und 25 proz. Natriummethanolatlösung (92 mL, 400 mmol, 2 Äquiv.) gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ausbeute: 34.0 g (161 mmol, 80 %) farblose Flüssigkeit.

Sdpkt.: 96-97 °C ($3.4 \cdot 10^{-2}$ mbar).

- **IR(ATR):** $\tilde{v} = 2958$ (s), 2932 (s), 2864 (s), 1743 (s), 1457 (m), 1381 (w), 1213 (s), 1141 (m), 1014 (w), 955 (w), 810 (w), 730 cm⁻¹ (w).
- ¹**H-NMR (300 MHz, CDCl₃):** $\delta = 0.88$ (t, 6 H, ${}^{3}J = 7.1$ Hz; -CH₃), 1.15-1.38 (m, 6 H, -CH₂), 1.58-1.59 (m, 2 H, -CH₂), 1.69-1.93. (m, 4 H, -CH₂), 3.78 ppm (s, 3 H, -OCH₃).
- ¹³C-NMR (75 MHz, CDCl₃): $\delta = 13.60 (-CH_3), 22.28 (-CH_2), 27.45 (-CH_2), 37.21 (-CH_2), 49.82 (C_{qu}.), 53.08 (-CO₂CH₃), 119.34 (CN), 169.79 ppm (-CO₂CH₃).$
- **MS (DEI⁺/70 eV):** m/z (%) = 212 (1) $[M^++H]$, 196 (1), 155 (39), 124 (100), 123 (97), 112 (83), 110 (14), 55 (18), 41 (29).
- HRMS (C₁₂H₂₂NO₂): Ber.: m/z: 212.1606 [M^+ +H] Gef.: m/z: 212.1664 [M^+ +H] Δ : 1.9 mmu
- 15.1.4 2-Cyano-2-pentylheptansäuremethylester (3d)³⁹

Cyanessigsäuremethylester (18 mL, 200 mmol) werden mit 1-Brompentan (37 mL, 400 mmol; 2 Äquiv.) und 25 proz. Natriummethanolatlösung (91 mL, 400 mmol, 2 Äquiv.) gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ausbeute: 36.1 g (151 mmol, 76 %) farblose Flüssigkeit.

- **Sdpkt.:** $109 \,^{\circ}\text{C} \, (9 \cdot 10^{-3} \, \text{mbar}).$
- **IR (ATR):** $\tilde{v} = 2956$ (m), 2930 (m), 2862 (m), 2244 (w), 1744 (s), 1458 (w), 1237 (m), 1158 (w), 1141 cm⁻¹ (w).
- ¹**H-NMR (600 MHz, CDCl₃):** $\delta = 0.88$ (t, 6 H, ³J = 7.4 Hz, -CH₃) 1.30 (m, 10 H, -CH₂), 1.55 (m, 2 H, -CH₂), 1.76 (m, 2 H, -CH₂), 1.88 (dt, 2 H, ³J = 4.0 Hz, ²J = 13.3 Hz -CH₂) 3.81 ppm (s, 3 H, -OCH₃).
- ¹³C-NMR (150 MHz, CDCl₃): $\delta = 13.8, 22.3, 25.1, 31.3, 37.5, 50.0, 53.17, 119.5, 169.9 \text{ ppm}.$
- **MS (DEI⁺/70 eV):** m/z (%) = 240 (12) $[M^+]$, 169 (33) $[M^+ C_5 H_{11}]$, 141 (54), 138 (63) $[M^+ - C_6 H_{13}O]$, 137 (100), 112 (57), 110 (27) $[M^+ - CO_2 CH_3, -C_5 H_{11}]$, 41 (21) $[C_2 H_3 N^+]$.
- HRMS ($C_{14}H_{25}NO_2$):
 Ber.:
 m/z: 239.1885

 Gef.:
 m/z: 239.1859

 Δ :
 -2.1 mmu

15.1.5 2-Cyano-2-octyldecansäuremethylester (3e)

Cyanessigsäuremethylester (18 mL, 200 mmol) wird mit 1-Bromoctan (70 mL, 400 mmol; 2 Äquiv.) und 25 proz. Natriummethanolatlösung (91 mL, 400 mmol, 2 Äquiv.) gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ausbeute: 43.5 g (135 mmol, 67 %) farblose Flüssigkeit.

Sdpkt.: 155-162 °C ($9 \cdot 10^{-3}$ -1.6 $\cdot 10^{-2}$ mbar).

IR (ATR): $\tilde{v} = 2955$ (s), 2925 (s), 2856 (s), 2244 (w), 1745 (s), 1458 (m), 1379 (w), 1232 (m), 1177 (w), 1137 (w), 1079 (w), 775 (w), 723 cm⁻¹ (w).

¹**H-NMR (600 MHz, CDCl₃):** $\delta = 0.88$ (t, 6 H, ³J = 7.0 Hz, -CH₃) 1.30 (m, 22 H, -CH₂), 1.55 (m, 2 H, -CH₂), 1.76 (m, 2 H, -CH₂), 1.88 (dt, 2 H, ³J = 4.0 Hz, ²J = 13.3 Hz -CH₂) 3.81 ppm (s, 3 H, -OCH₃).

¹³C-NMR (150 MHz, CDCl₃): $\delta = 14.1, 22.6, 25.4, 29.1, 29.2, 31.8, 50.0, 53.2, 119.5, 169.9 \text{ ppm}.$

MS (DEI⁺/70 eV): m/z (%) = 324 (1), 323 (3) $[M^+]$, 322 (3), 264 (15) $[M^+-CO_2CH_3]$, 212 (7), 211 (42) $[M^+-C_8H_{17}]$, 210 (6), 156 (9), 155 (100) $[M^+-C_8H_{17}, -CO_2CH_3)$, 154 (14), 39 (18).

HRMS (C ₂₀ H ₃₇ NO ₂):	Ber.:	<i>m/z:</i> 323.28	324	
	Gef.:	<i>m/z:</i> 323.28	336	
	Δ :	1.2 mmu		
C ₂₀ H ₃₇ NO ₂ (323.5):	Ber.:	C 74.25	Н 11.53	N 4.33
	Gef.:	C 74.29	H 11.41	N 4.30

15.2 Reduktion von alkylierten Cyanessigsäuremethylestern (3) zu Hydroxyaminen (4)

Allgemeine Arbeitsvorschrift

Unter Argon wird LiAlH₄ (5.90 g, 155 mmol, 1.6 Äquiv.) in 100 mL trockenem *tert*-Butylmethylether aufgeschlämmt. Nach Zugabe von weiteren 50 mL *tert*-Butylmethylether wird das zu reduzierende Cyanessigsäuremethylesterderivat (97 mmol) innerhalb einer Stunde unter Eiskühlung in 50 mL *tert*-Butylmethylether vorsichtig zugetropft. Im Anschluss wird zur Steigerung des Umsatzes nochmals LiAlH₄ (0.4 g, 11 mmol, 0.1 Äquiv) zugegeben. Dann erhitzt man die Mischung 1 h lang zum Sieden und lässt danach noch über Nacht bei Raumtemperatur rühren.

Zur Aufarbeitung wird zunächst überschüssiges Reduktionsmittel entfernt. Dazu tropft man vorsichtig unter kräftigem Rühren und unter Eiskühlung erst 6 mL destilliertes Wasser, dann 6 mL 2N NaOH zu. Nach Zugabe von weiteren 20 mL destilliertem Wasser und konstantem Rühren bildet sich aus der hochviskosen grauen Suspension ein feinpulvriger farbloser Niederschlag. Dieser wird nach zweistündigem Rühren bei Raumtemperatur abfiltriert und dreimal in je 50 mL *tert*-Butylmethylether 30 min lang ausgekocht.

Die vereinigten organischen Phasen werden noch mit Wasser gewaschen und über Magnesiumsulfat getrocknet. Nach Filtration und Entfernen des Lösemittels am Rotationsverdampfer wird das Rohprodukt durch Destillation im Feinvakuum aufgereinigt.

15.2.1 **2-Aminomethyl-2-ethylbutan-1-ol (4a)**⁴⁵

2-Cyano-2-ethylbutansäuremethylester **3a** (21.0 g, 140 mmol, 1 Äquiv.) wird mit LiAlH₄ (7.00 g, 210 mmol, 1.5 Äquiv.) gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ausbeute: 6.32 g (48.0 mmol, 34 %) farblose Flüssigkeit.

- **Sdpkt.:** 70-78 °C ($3.9 \cdot 10^{-2}$ mbar).
- IR (ATR): $\tilde{v} = 3369$ (s, br), 3299 (s, br), 2962 (s), 2918 (s), 2878 (s), 2863(s), 1599 (w), 1460 (m), 1380 (m), 1166 (vw), 1060 (m), 1028 (m), 984 (w), 914 (m), 786 (w), 718 cm⁻¹(w).
- ¹**H-NMR (300 MHz, CDCl₃):** $\delta = 0.71$ (t, 6 H, ³J = 7.5 Hz, -CH₃), 1.12-1.28 (m, 4 H, -CH₂), 2.41 (s, 2 H, -CH₂-NH₂), 3.56 ppm (s, 2 H, -CH₂-OH).
- ¹³C-NMR (75 MHz, CDCl₃): $\delta = 7.1, 23.3, 39.3, 48.5, 69.4$ ppm.
- **MS (DEI⁺/70 eV):** *m*/*z* (%): 172 (1), 157 (9), 156 (83), 142 (8), 126 (34), 114 (23), 97 (7), 84 (24), 71 (100), 58 (91), 55 (51).

15.2.2 2-Aminomethyl-2-propylpentan-1-ol (4b)⁴⁵

2-Cyano-2-propylpentansäuremethylester **3b** (17.8 g, 97.0 mmol, 1 Äquiv.) wird mit LiAlH₄ (5.90 g, 155 mmol, 1.6 Äquiv.) gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ausbeute: 16.0 g (88 mmol, 91 %) farblose Flüssigkeit.

Sdpkt.: 82-86 °C ($6 \cdot 10^{-3}$ mbar).

IR (ATR): $\tilde{v} = 3372$ (br, m), 3295 (br, m), 2955 (s), 2929 (s), 2870 (s), 1599 (w), 1465 (m), 1456 (m), 1377 (w), 1161 (w), 1046 (m), 934 (w), 897 (w), 837 (w), 739 cm⁻¹ (w).

¹**H-NMR (CDCl₃):** $\delta = 0.83 \text{ (m, 6 H, -CH₃), 1.16 (m, 8 H, -CH₂), 2.68 (s, 2 H, -CH₂-NH₂), 3.47 ppm (s, 2 H, -CH₂-OH).$

15.2.3 2-Aminomethyl-2-butylhexan-1-ol (4c)^{39,45}

2-Butyl-2-cyanohexansäuremethylester 3c (20.9 g, 99.0 mmol, 1 Äquiv.) wird mit LiAlH₄ (4.33 g, 115 mmol, 1.1 Äquiv.) gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ausbeute: 13.9 g (82.7 mmol, 55 %) farblose Flüssigkeit.

Sdpkt.: 135-145 °C (3.6·10⁻¹ mbar).

IR (ATR): $\tilde{v} = 2955$ (s), 2926 (s), 2859 (s), 1466 (m), 1378 (w), 1050 cm⁻¹ (m).

¹**H-NMR (300 MHz, CDCl₃):** $\delta = 0.87$ (t, 6 H, ³J = 7.0 Hz, -CH₃), 1.03-1.30 (m, 12 H, -CH₂), 2.72 (s, 2 H, -CH₂-NH₂), 3.51 ppm (s, 2 H, -CH₂-OH).

15.2.4 2-Aminomethyl-2-pentylheptan-1-ol (4d)⁴⁵

2-Cyano-2-pentylheptansäuremethylester **3d** (36.2 g, 151 mmol, 1 Äquiv.) wird mit LiAlH₄ (7.45 g, 196 mmol, 1.3 Äquiv.) gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ausbeute: 17.8 g (82.7 mmol, 55 %) farblose Flüssigkeit.

Siedepunkt: 164-180 °C (6.2·10⁻² mbar).

- **IR (ATR):** $\tilde{v} = 3369$ (br, m), 3299 (br, m), 2955 (s), 2926 (s), 2858 (s), 1466 (m), 1378 (w), 1056, 903 (w), 831 (w), 725 cm⁻¹ (w).
- ¹**H-NMR (300 MHz, CDCl₃):** $\delta = 0.91$ (t, 6 H, ³J = 6.9 Hz, -CH₃), 1.28 (m, 16 H, -CH₂), 2.77 (s, 2 H, -CH₂-NH₂), 3.55 ppm (s, 2 H, -CH₂-OH).
- ¹³C-NMR (75 MHz, CDCl₃): $\delta = 14.0, 22.5, 22.6, 31.8, 32.7, 49.9, 71.0$ ppm.
- **MS (DEI⁺/70 eV):** m/z (%): 224 (19) $[M^++CH_2O]$, 210 (8), 184 (18), 168 (34), 154 (18), 140 (4), 128 (3), 112 (9), 97 (17), 84 (15), 71 (72), 56 (31).

15.2.5 2-Aminomethyl-2-octyldecan-1-ol (4e)

2-Cyano-2-octyldecansäuremethylester **3e** (38.8 g, 120 mmol, 1 Äquiv.) wird mit LiAlH₄ (5.92 g, 156 mmol, 1.3 Äquiv.) gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet. Die Aufreinigung des Rohprodukts erfolgt durch Kugelrohrdestillation im Feinvakuum.

Ausbeute: 24.5 g (81.7 mmol, 68 %) farblose Flüssigkeit.

Sdpkt.: 205-225 °C ($1 \cdot 10^{-3} - 2 \cdot 10^{-3}$ mbar).

IR (ATR): $\tilde{v} = 3368$ (w, br), 3300 (w, br), 1596 (w), 1466 (m), 1378 (w), 1051 (m), 721 cm⁻¹ (w).

¹H-NMR (600 MHz, CDCl₃): $\delta = 0.88$ (t, 6 H, ³J = 7.0 Hz, -CH₃), 1.26 (m, 28 H, -CH₂), 2.77 (s, 2 H, -CH₂-NH₂), 3.56 ppm (s, 2 H, -CH₂-OH). ¹³C-NMR (150 MHz, CDCl₃): $\delta = 14.1$, 22.7, 23.0, 29.3, 29.6, 30.6, 31.9, 50.1, 71.5 ppm. C₂₀H₄₅NO (315.6): Ber.: C 76.12 H 14.37 N 4.44

Gef.: C 76.42 H 13.93 N 4.51

16 Synthese von Perylenbisimiden

16.1 Synthese von Perylenbisimiden mit γ -Hydroxyalkylsubstituenten (2)

Allgemeine Arbeitsvorschrift

Perylen-3,4,9,10-tetracarbonsäure-3,4:9,10-bisanhydrid **5** (2.2 mmol), das entsprechende γ -Hydroxyamin **4** (6.6 mmol, 2 Äquiv.) und Imidazol (15.0 g, 221 mmol, 105 Äquiv.) werden unter Stickstoff-Atmosphäre vorgelegt und 1 h lang auf 140 °C erhitzt. Dann wird die Reaktion durch Zugabe von 200 mL 2N HCl abgebrochen. Die schwach metallisch glänzenden Farbstoffe werden abgesaugt und im Trockenschrank getrocknet.

Zur Aufreinigung wird das Rohprodukt in wenige mL Methanol aufgenommen und 1-2 h lang in 10 proz. Kaliumcarbonatlösung ausgekocht. Die Farbstoffe werden abfiltriert und erneut im Trockenschrank getrocknet.

16.1.1 2,9-Bis-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (2a)⁴⁵

Perylen-3,4,9,10-tetracarbonsäure-3,4:9,10-bisanhydrid **5** (2.2 mmol) und 2-Aminomethyl-2ethylbutan-1-ol **4a** (6.6 mmol, 2 Äquiv.) in 15 g Imidazol werden gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ausbeute: 1.00 g (1.62 mmol, 74 %) roter Feststoff.

- Schmpkt.: $> 400 \,^{\circ}\text{C}$.
- **IR (ATR):** $\tilde{v} = 3466$ (s), 2961 (m), 2938 (w), 2864 (m), 1698 (s), 1643 (s), 1592 (s), 1576 (s), 1507 (w), 1443 (m), 1421 (m), 1403 (s), 1370 (s), 1335 (s), 1296 (w), 1243

(s), 1208 (w), 1170 (w), 1152 (w), 1124 (w), 1114 (w), 1071 (m), 1049 (m), 1004 (m), 972 (s), 938 (m), 910 (w), 871 (w), 863 (w), 849 (m), 809 (s), 795 (m), 752 (s), 713 cm⁻¹ (m).

¹**H-NMR (400 MHz, D₂SO₄):** $\delta = 1.65$ (t, 12 H, ³J = 7.3 Hz, -CH₃), 2.16-2.37 (m, br, 8 H, -CH₂), 4.08 (s, 4 H,-CH₂-OH), 5.52 (s, 4 H, -CH₂-NR₂), 9.63-9.80 ppm (m, 8 H, CH_{ar}).

UV/Vis (**H**₂**SO**₄): λ_{max} (*E_{rel}*) = 601 (1.00), 556 (0.55), 521 nm (sh., 0.19).

Fluoreszenz (H₂**SO**₄): $\lambda_{max} = 616, 644 \text{ nm}.$

MS (DEI⁺/70 eV): m/z (%): 619 (35), 618 (80) $[M^+]$, 588 (59) $[M^+ - CH_2OH]$, 517 (13), 505 (23) $[M^+ - C_7H_{14}OH]$, 488 (17), 419 (17), 418 (53), 404 (100), 390 (54) $[M^+ - 2 C_7H_{14}OH]$, 373 (22), 345 (23), 55 (22).

HRMS $(C_{38}H_{38}N_2O_6)$:	Ber.:	<i>m/z</i> : 618.2730
	Gef.:	<i>m/z</i> : 618.2719
	Δ :	-1.1 mmu

16.1.2 2,9-Bis-[2-(hydroxymethyl)-2-propylpentyl]anthra[2,1,9-def;6,5,10d'e'f']diisochinolin-1,3,8,10-tetraon (2b)⁴⁵

Perylen-3,4,9,10-tetracarbonsäure-3,4:9,10-bisanhydrid **5** (2.0 g, 5.1 mmol) 2-Aminomethyl-2-propylpentan-1-ol **4a** (1.91 g, 12.0 mmol, 2.3 Äquiv.) in 25 g Imidazol werden gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ausbeute: 3.01 g (4.46 mmol, 88 %) roter, metallisch glänzender Feststoff.

- Schmpkt.: $> 300 \,^{\circ}\text{C}$.
- IR (ATR): $\tilde{v} = 3471$ (s), 2955 (s), 2929 (m), 2870 (m), 1688 (s), 1638(s), 1592 (s), 1575 (s), 1444 (m), 1403 (m), 1366 (m), 1339 (s), 1248 (m), 1149 (w), 1117 (w), 1052 (w), 1019 (m), 968 (w), 854 (w), 811 (m), 793 (w), 752 cm⁻¹ (w).
- ¹**H-NMR (600 MHz, CDCl₃):** $\delta = 0.92$ (t, 12 H, ${}^{3}J = 6.9$ Hz, -CH₃), 1.32 (m, 16 H, -CH₂-), 3.22 (d, 4 H, ${}^{3}J = 7.6$ Hz, -CH₂-OH), 4.05 (t, 2 H, ${}^{3}J = 7.6$ Hz, -CH₂-OH), 4.21 (s, 4 H, -CH₂-NR₂), 8.68 (d, 4 H, ${}^{3}J = 8.1$ Hz, CH_{ar}), 8.74 ppm (d, 4 H, ${}^{3}J = 8.0$ Hz, CH_{ar}).

UV/Vis (CHCl₃): $\lambda_{max} (E_{rel}) = 528 (1.00), 492 (0.60), 460 \text{ nm} (0.22).$

- **Fluoreszenz** (CHCl₃): $\lambda_{max} = 536, 579 \text{ nm}.$
- **MS (DEI⁺/70 eV):** m/z (%): 675 (29), 674 (54) $[M^+]$, 644 (50) $[M^+ CH_2OH]$, 597 (67), 533 (21) $[M^+ - C_9H_{18}OH]$, 404 (100), 390 (54) $[M^+ - 2 C_9H_{18}OH]$, 373 (22), 345 (22), 69 (32), 55 (22).
- HRMS ($C_{42}H_{46}N_2O_6$):
 Ber.:
 m/z: 674.3356

 Gef.:
 m/z: 674.3348

 Δ :
 -0.8 mmu

16.1.3 2,9-Bis-[2-butyl-2-(hydroxymethyl)hexyl]anthra[2,1,9-*def*;6,5,10*d'e'f*']diisochinolin-1,3,8,10-tetraon (2c)^{39, 45}

Perylen-3,4,9,10-tetracarbonsäure-3,4:9,10-bisanhydrid **5** (2.0 g, 5.1 mmol) und 2-Aminomethyl-2-butylhexan-1-ol **4c** (2.35 g, 12.5 mmol, 2.5 Äquiv.) in 16 g Imidazol werden gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ausbeute: 3.10 g (4.24 mmol, 83 %) roter Feststoff mit leichtem Metallglanz.

- **Schmpkt.:** > 300 °C.
- IR (ATR): $\tilde{v} = 3455$ (s), 2952 (s), 2862 (m), 1687 (s), 1639 (s), 1591 (s), 1575 (m), 1507 (w), 1444 (m), 1403 (m), 1368 (w), 1337 (s), 1245 (m), 1219 (w), 1184 (w), 1147 (w), 1118 (w), 1050 (w), 1024 (m), 873 (w), 855 (w), 811 (w), 793 (w), 748 (w), 658 cm⁻¹ (w).
- ¹**H-NMR (600 MHz, CDCl₃):** $\delta = 0.93$ (t, 12 H, ${}^{3}J = 7.1$ Hz, -CH₃), 1.32 (m, 24 H, -CH₂-), 3.22 (d, 4 H, ${}^{3}J = 7.6$ Hz, -CH₂-OH), 4.04 (t, 2 H, ${}^{3}J = 7.6$ Hz, -CH₂-OH), 4.22 (s, 4 H, -CH₂-NR₂), 8.69 (d, 4 H, ${}^{3}J = 8.1$ Hz, CH_{ar}), 8.74 ppm (d, 4 H, ${}^{3}J = 8.0$ Hz, CH_{ar}).

UV/Vis (CHCl ₃):	$\lambda_{max} (E_{rel}) = 528 (1.00), 492 (0.60), 460 \text{ nm} (0.23).$
------------------------------	--

Fluoreszenz (CHCl₃): $\lambda_{max} = 536, 579 \text{ nm.}$

16.1.4 2,9-Bis-[2-(hydroxymethyl)-2-pentylheptyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon (2d)⁴⁵

Perylen-3,4,9,10-tetracarbonsäure-3,4:9,10-bisanhydrid 5 (2.0 g, 5.1 mmol) und 2-

Aminomethyl-2-pentylheptyl-1-ol **4d** (2.53 g, 11.7 mmol, 2.3 Äquiv.) in 30 g Imidazol werden gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Für eine weitergehende Reinigung wird ein Teil des erhaltenen Farbstoffs (200 mg, 254 μ mol) in 200 mL Chloroform bis zum vollständigen Lösen refluxiert. Dann wird heiß filtriert. Nach dem Abkühlen wird der Farbstoff durch Zugabe von wenigen mL Methanol ausgefällt. Der Farbstoff wird abgesaugt, mit Methanol gewaschen und im Trockenschrank bei 90 °C getrocknet.

Ausbeute: 3.72 g (4.73 mmol, 93 %) roter Feststoff mit schwachem Metallglanz.

Nach 2. Reinigungsschritt: 165 mg (210 µmol, 76 %) roter Feststoff mit starkem Metallglanz.

Schmpkt.: 326-327 °C.

IR (ATR): $\tilde{v} = 3461 \text{ (m)}, 2956 \text{ (m)}, 2928 \text{ (m)}, 2860 \text{ (m)}, 1688 \text{ (s)}, 1639 \text{ (s)}, 1592 \text{ (m)}, 1575 \text{ (m)}, 1444 \text{ (m)}, 1404 \text{ (m)}, 1368 \text{ (w)}, 1338 \text{ (s)}, 1254 \text{ (m)}, 1182 \text{ (w)}, 1119 \text{ (w)}, 1026 \text{ (m)}, 854 \text{ (w)}, 811 \text{ (m)}, 793 \text{ (w)}, 747 \text{ (m)}, 659 \text{ cm}^{-1} \text{ (w)}.$

¹**H-NMR (600 MHz, CDCl₃):** $\delta = 0.90$ (t, 12 H, ${}^{3}J = 7.2$ Hz, -CH₃), 1.32 (m, 32 H, -CH₂-), 3.22 (d, 4 H, ${}^{3}J = 7.5$ Hz, -CH₂-OH), 4.03 (t, 2 H, ${}^{3}J = 7.5$ Hz, -CH₂-OH), 4.21 (s, 4 H, -CH₂-NR₂), 8.68 (d, 4 H, ${}^{3}J = 8.1$ Hz, CH_{ar}), 8.73 ppm (d, 4 H, ${}^{3}J = 8.0$ Hz, CH_{ar}).

UV/Vis (CHCl ₃):	$\lambda_{max} (E_{rel}) = 528 (1.00), 492 (0.60), 460 \text{ nm} (0.22).$
Fluoreszenz (CHCl ₃):	$\lambda_{max} = 536, 579 \text{ nm.}$
MS (DEI ⁺ /70 eV):	m/z (%): 788 (18) $[M^+]$, 787 (57) $[M^+]$, 786 (100) $[M^+]$, 757 (50), 756 (93) $[M^+ - CH_2OH]$, 589 (30) $[M^+ - 2$
	$C_{13}H_{26}OH$], 559 (15), 418 (40), 405 (63), 404 (98), 390
	$(58) [M^+ - 2 C_{13}H_{26}OH].$

16.1.5 2,9-Bis-[2-(hydroxymethyl)-2-octyldecyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon (2e)

Perylen-3,4,9,10-tetracarbonsäure-3,4:9,10-bisanhydrid **5** (1.89 g, 4.82 mmol) und 2-Aminomethyl-2-pentylheptyl-1-ol **4e** (3.50 g, 11.1 mmol, 2.3 Äquiv.) in 50 g Imidazol werden gemäß der allgemeinen Arbeitsvorschrift umgesetzt und aufgearbeitet.

Ein Teil des Reaktionsprodukts (2.02 g, 2.11 mmol) wird an Kieselgel 60 mit Chloroform/Essigsäure 10:1 chromatographiert. Danach wird ein Teil des erhaltenen Farbstoffs (1.10 g, 1.15 mmol) nochmals an Kieselgel 60 mit Chloroform/Essigsäure 10:1 chromatographiert.

```
Ausbeute:5.39 g roter Feststoff.Nach 1. Säulenchromatographie:1.27 g (1.33 mmol, 63 %) roter Feststoff.Nach 2. Säulenchromatographie:826 mg (865 µmol, 38 %) roter Feststoff.
```

Schmpkt.: 293-296 °C.

R_f-Wert (Kieselgel, CHCl₃/H₃CCO₂H 10:1): 0.7.

- IR (ATR): $\tilde{v} = 3467$ (s), 2957 (s), 2921 (s), 2852 (s), 1688 (s), 1640 (s), 1592 (s), 1575 (m), 1508 (w), 1484 (vw), 1463 (w), 1443(m), 1404 (m), 1392 (w), 1368 (w), 1339 (s), 1247 (m), 1200 (w), 1182 (w), 1155 (w), 1120 (w), 1099 (w), 1066 (w), 1027 (m), 965 (w), 875 (w), 854 (w), 812 (m), 792 (w), 748 (m), 720 cm⁻¹ (w).
- ¹H-NMR (600 MHz, CDCl₃): $\delta = 0.88$ (t, 12 H, ${}^{3}J = 7.0$ Hz, -CH₃), 1.23-1.34 (m, 48 H, -CH₂-), 1.40-1.47 (m, 4 H, -CH₂-), 1.55 (m, 4 H, -CH₂-), 3.21 (s, 2 H, -CH₂-NR₂), 4.02 (s, br, 2 H, -OH), 4.20 (s, 4 H, -CH₂-OH), 8.62 (d, 4 H, ${}^{3}J = 8.0$ Hz, CH_{ar}), 8.69 ppm (d, 4 H, ${}^{3}J = 7.9$ Hz, CH_{ar}).
- ¹³C-NMR (600 MHz, CDCl₃): $\delta = 14.36, 22.91, 23.19, 29.59, 29.80, 30.85, 32.13, 32.20, 43.30, 43.89, 65.92, 123.29, 133.56, 126.62, 129.56, 132.26, 135.05, 165.06 ppm.$
- **UV/Vis (CHCl₃):** $\lambda_{max}(\varepsilon) = 529$ (88600), 492 (53300), 460 nm (19800 L·mol⁻¹·cm⁻¹).

Fluoreszenz (CHCl₃): $\lambda_{max} = 536, 579, 628 \text{ nm.}$

- **Fluoreszenzquantenausbeute (CHCl₃):** $\Phi = 100 \%$ (E = 0.0362, $\lambda_{exc} = 490$ nm) bezogen auf S-13 **1b**.
- HRMS/ESI (C₆₂H₈₆N₂O₆): Ber.: m/z: 955.6486 [M^+ +H] Gef.: m/z: 955.6556 [M^+ +H] Δ : 7 mmu

C ₆₂ H ₈₆ N ₂ O ₆ (955.4):	Ber.:	C 77.95 %	H 9.07 %	N 2.93 %
	Gef.:	C 78.02 %	H 9.14 %	N 2.95 %

16.2 2,9-Dimethylanthra[2,1,9-def;6,5,10-d'e'f']diisochinolin-1,3,8,10-tetraon (Indanthrenrot GG) (1a)

Perylen-3,4,:9,10-tetracarbonsäurebisanhydrid **5** (1.5 g, 3.8 mmol) wird in 30 mL Wasser aufgeschlämmt. Unter Eiskühlung wird innerhalb von 10 min 40 prozentige Methylamin-Lösung in Wasser (6.1 mL, 70.8 mmol, 18.6 Äquiv.) zugetropft. Die Innentemperatur liegt dabei zwischen 5 und 10 °C. Man lässt 15 min rühren. Dann tropft man Calciumchlorid (850 mg, 7.2 mmol, 1.9 Äquiv.) in 2.5 mL Wasser zu. Danach lässt man noch 1 h unter Eiskühlung rühren. Im Anschluss wird auf 80-100 °C erhitzt und 1 h lang gerührt. Im Anschluss lässt man auf etwa 50 °C abkühlen und neutralisiert die Mischung mit Eisessig. Man lässt noch eine halbe Stunde bei 50 °C rühren. Dann wird der entstandene Niederschlag abfiltriert und im Trockenschrank getrocknet.

Das Rohprodukt wird mit 10 % Kaliumcarbonatlösung ausgekocht, um nicht umgesetztes Bisanhydrid soweit wie möglich abzutrennen. Dann wird erneut filtriert und der erhaltene Farbstoff im Trockenschrank bei 100 °C getrocknet.

Ausbeute: 1.07 g (2.6 mmol, 67 %).

IR (ATR): $\tilde{v} = 1692$ (s), 1652 (s), 1591 (s), 1575 (s), 1506 (m), 1446 (m), 1436 (m), 1397 (s), 1348 (s), 1324 (m), 1279 (s), 1236 (m), 1181 (w), 1152 (w), 1155 (w), 1050 (m), 1020 (m), 960 (w), 863 (w), 848 (w), 807 (m), 792 (w), 784 (w), 739 (m), 605 (w), 584 cm⁻¹ (w).

UV/Vis (**H**₂**SO**₄): λ_{max} (*E_{rel}*) = 596 nm (1.00), 552 (0.57), 405 (0.11).

Fluoreszenz (H₂SO₄): $\lambda_{max} = 616 \text{ nm.}$
MS (DEI⁺/70 eV): *m*/*z* (%): 419 (26), 418 (100) [*M*⁺], 390 (25) [*M*⁺-2 *CH*₃], 362 (13), 334 (10), 289 (14), 250 (18), 249 (19), 248 (23), 247 (9), 207 (22), 169 (22), 153 (11), 152 (9), 125 (19), 124 (26), 123 (12), 69 (26), 43 (81).

16.3 Tyrosin-Derivate

16.3.1 2,9-Bis-[2-(4-hydroxyphenyl)ethyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon (10a)

Perylen-3,4,:9,10-tetracarbonsäurebisanhydrid **5** (2.0 g, 5.1 mmol) und Tyramin-Hydrochlorid **11** (2.1 g, 12 mmol, 2.4 Äquiv.) werden unter Schutzgas in 25 g Imidazol vorgelegt. Dann wird auf 150 °C erhitzt und 3 h bei dieser Temperatur gerührt. Die Reaktion wird durch Zugabe von 100 mL 2N Salzsäure abgebrochen. Der entstandene braun-rote Niederschlag wird abgesaugt und im Trockenschrank getrocknet. Um nicht umgesetztes Bisanhydrid abzutrennen wird das Rohprodukt in 10 proz. Kaliumcarbonatlösung und wenigen mL Methanol 1 h lang ausgekocht. Dann wird das Produkt abfiltriert und im Trockenschrank getrocknet.

Ausbeute: 2.92 g (4.64 mmol, 88 %) rot-brauner Feststoff.

Schmpkt.: > 250 °C

IR (ATR): $\tilde{v} = 3384$ (m), 2967 (m), 1689 (s), 1636 (s), 1589 (s), 1576 (m), 1513 (m), 1438 (m), 1402 (m), 1380 (w), 1337 (s), 1262 (m), 1235 (m), 1163 (m), 1123 (m), 1010 (w), 848 cm⁻¹ (w).

UV/Vis (**H**₂**SO**₄): $\lambda_{max} (E_{rel}) = 600 \text{ nm} (1.00), 556 (0.60).$

Fluoreszenz (H₂SO₄): $\lambda_{max} = 617$ nm.

MS (DEI⁺/70 eV): m/z (%): 630 (5) $[M^+]$, 511 (92), 391 (100), 273 (18), 345 (12), 120 (33).

HRMS ($C_{40}H_{26}N_2O_6$): Ber.: 630.1791 Gef.: 630.1779 Δ : -1.2 mmu

16.3.2 Umsetzung von Perylen-3,4,:9,10-tetracarbonsäurebisanhydrid mit Tyrosin zu (10c)

Perylen-3,4,:9,10-tetracarbonsäurebisanhydrid **5** (2.0 g, 5.8 mmol) wird mit Tyrosin (2.2 g, 12.0 mmol) in 35 g Imidazol vorgelegt. Die Mischung wird 2 h bei 140 °C gerührt. Danach wird die Reaktion durch Zugabe von 200 mL 2N HCl abgebrochen. Der entstandene Niederschlag wird abfiltriert und bei 100 °C im Trockenschrank getrocknet.

Ausbeute: 3.74 g violetter Feststoff.

IR (ATR): $\tilde{v} = 3140$ (m), 2941 (w), 2814 (w), 2608 (w), 1692 (s), 1650 (s), 1591 (s), 1574 (s), 1513 (s), 1435 (m), 1401 (m), 1364 (m), 1337 (s), 1249 (m), 1167 (m), 1128 (w), 1094 (w), 1060 (w), 982 (w), 954 (w), 858 (w), 825 (w), 808 (m), 744 (m), 656 (w), 630 cm⁻¹ (w).

UV/Vis (MeOH): $\lambda_{max} (E_{rel}) = 523 \text{ nm} (1.00), 487 (0.64), 457 (0.25).$

UV/Vis (H₂O): $\lambda_{max} (E_{rel}) = 543 \text{ nm (1.00)}, 509 (0.87).$

Fluoreszenz (MeOH): $\lambda_{max} = 535 \text{ nm}, 576.$

Fluoreszenz (H₂O): keine Fluoreszenz messbar.

Fluoreszenzquantenausbeute (MeOH): $\Phi = 2 \%$ (*E* = 0.0299, $\lambda_{exc} = 485$ nm) bezogen auf S-13 **1b**.

MS (ESI): m/z (%): 714.9 (22) $[C_{42}H_{24}N_2O_{10}^{2^2} - H].$

MS(FAB⁻): m/z (%): 718.2 (100) $[C_{42}H_{24}N_2O_{10}^{2} + 2H].$

MS(FAB⁺): m/z (%): 69.0 (100) $[C_3H_5N_2^+]$.

16.3.3 2-{9-[1-Carboxy-2-(4-hydroxyphenyl)ethyl]-1,3,8,10-tetraoxo-3,8,9,10tetrahydro-1*H*-anthra[2,1,9-*def*;6,5,19-*d'e'f'*]diisochinolin-2-yl}-3-(4hydroxyphenyl)propionsäure (10b)

Das Reaktionsprodukt **10c** (200 mg) wird in 50 mL Wasser vollständig gelöst. Dann werden unter Eiskühlung 90 mL konz. HCl zugetropft. Der entstandene Niederschlag wird über eine Glasfritte abfiltriert und bei 100 °C im Trockenschrank getrocknet.

Ausbeute: 54 mg violetter Feststoff.

IR (ATR): $\tilde{v} = 3273$ (vs, br.), 2929 (m), 1731 (m), 1690 (s), 1642 (s), 1591 (s), 1513 (s), 1436 (m), 1402 (m), 1340 (s), 1247 (m), 808 (m), 747 cm⁻¹ (m).

UV/Vis (Aceton): $\lambda_{max} (E_{rel}) = 521 \text{ nm} (1.00), 485 (0.61), 455 (0.23).$

Fluoreszenz (Aceton): $\lambda_{max} = 529 \text{ nm}, 565, 606.$

Fluoreszenzquantenausbeute (Aceton): $\Phi = 4 \%$ (*E* = 0.0296, $\lambda_{exc} = 490$ nm) bezogen auf S-13 **1b**.

MS (ESI): m/z (%): 717.2 (100) $[M^+ - H]$.

16.4 2-[Butyl-2-ethyl-2-(hydroxymethyl)]-9-(1-hexylheptyl)anthra[2,1,9def;5,6,10-d'e'f']diisochinolin-1,3,8,10-tetraon (7)

16.4.1 Perylen-3,4,:9,10-tetracarbonsäure-3,4-anhydrid-9,10-(1-hexylheptylimid) (6)

Unter Schutzgas wird Perylen-3,4,9,10-tetracarbonsäure-3,4:9,10-bis-(1-hexylheptylimid) **1b** (3.00 g, 3.97 mmol) in 44 mL *tert*-Butanol gelöst und 30 min auf 105-110 °C erhitzt. Dann wird fein gemörsertes Kaliumhydroxid (805 mg, 14.4 mmol, 3.6 Äquiv.) schnell zugegeben. Die Lösung erfährt dabei einen Farbumschlag nach Dunkelrot. Man lässt noch 12 min bei 110 °C Rühren. Dann wird die Reaktion durch Zugabe von 200 mL 2 N HCl/Essigsäure 1:1 abgebrochen. Der entstandene Niederschlag wird abfiltriert, mit wenig destilliertem Wasser gewaschen und im Trockenschrank getrocknet.

Das Rohprodukt wird mittels Säulenchromatographie an Kieselgel aufgereinigt. Zuerst wird nicht umgesetztes Edukt und das als Nebenprodukt entstandene, violette Lactam mit Chloroform eluiert. Dann führt man einen Laufmittelwechsel auf Chloroform/Essigsäure 10:1 durch und eluiert das gewünschte Produkt. Die vereinigten Fraktionen werden am Rotationsverdampfer eingeengt. Der Rückstand wird in wenig Chloroform aufgenommen und das Produkt durch Zugabe von reichlich Methanol ausgefällt.

Ausbeute: 1.63 g (2.84 mmol, 71 %) roter Feststoff.

 $R_{\rm f}$ -Wert (Kieselgel, CHCl₃): 0.06.

*R*_f-Wert (Kieselgel, CHCl₃/Essigsäure 10:1): 0.78.

IR (ATR): $\tilde{v} = 3097 \text{ (w)}, 2953 \text{ (m)}, 2922 \text{ (s)}, 2853 \text{ (s)}, 1767 \text{ (s)}, 1730 \text{ (m)}, 1697 \text{ (s)}, 1655 \text{ (s)}, 1591 \text{ (s)}, 1576 \text{ (m)}, 1505 \text{ (w)}, 1455 \text{ (w)}, 1426 \text{ (w)}, 1403 \text{ (m)}, 1353 \text{ (s)}, 1312 \text{ (m)}, 1265 \text{ (m)}, 1244 \text{ (w)}, 1198 \text{ (w)}, 1175 \text{ (w)}, 1151 \text{ (w)}, 1139 \text{ (w)}, 1122 \text{ (m)}, 1060 \text{ (w)}, 1011 \text{ (m)}, 845 \text{ (w)}, 807 \text{ (w)}, 775 \text{ (w)}, 734 \text{ (w)}, 634 \text{ cm}^{-1} \text{ (w)}.$

¹**H-NMR (600 MHz, CDCl₃):**
$$\delta = 0.82$$
 (t, 6 H, ³ $J = 7.0$ Hz, -CH₃), 1.28 (m, 16 H, -
CH₂), 1.87 (m, 2 H, -CH₂-CH-NR₂), 2.25 (m, 2 H, -CH₂-
CH-NR₂), 5.18 (m, 1 H, -CH-NR₂), 8.70 ppm (m, 8 H,
CH_{ar}).

MS (ESI): m/z (%): 573 (100) $[M^+]$.

16.4.2 2-[Butyl-2-ethyl-2-(hydroxymethyl)]-9-(1-hexylheptyl)anthra[2,1,9*def*;5,6,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (7)

Perylen-3,4,:9,10-tetracarbonsäure-3,4-anhydrid-9,10-(1-hexylheptylimid) 6

(0.80 g, 1.4 mmol) und 2-Aminomethyl-2-ethylbutan-1-ol **4a** (0.22 g, 1.7 mmol, 1.2 Äquiv.) werden unter Schutzgas in 11 g Imidazol vorgelegt. Dann wird auf 140 °C erhitzt und 1 h 50 min bei dieser Temperatur gerührt. Die Reaktion wird durch Zugabe von 100 mL 2N Salzsäure abgebrochen. Der entstandene Niederschlag wird abgesaugt und im Trockenschrank getrocknet. Man erhält das Rohprodukt (927 mg, 1.35 mmol) mit einer Ausbeute von 97 %. Ein Teil des Rohprodukts (370 mg, 539 µmol) wird durch Säulenchromatographie an Kieselgel mit Chloroform/Essigsäure 10:1 weiter aufgereinigt. Die gesammelten organischen Phasen werden am Rotationsverdampfer eingeengt. Der Rückstand wird in wenig Chloroform aufgenommen und das Produkt durch Zugabe von reichlich Methanol ausgefällt.

Ausbeute: 199 mg (290 µmol, 52 %) roter Feststoff.

Schmpkt.: $> 250 \,^{\circ}\text{C}$.

 R_{f} -Wert (Kieselgel, CHCl₃): 0.03.

R_f-Wert (Kieselgel, CHCl₃/Essigsäure 10:1): 0.67.

- IR (ATR): $\tilde{v} = 3464$ (w), 3079 (w), 2956 (w), 2924 (w), 2856 (w), 1921 (w), 1695 (s), 1645 (s), 1593 (s), 1576 (m), 1506 (w), 1436 (w), 1403 (m), 1377 (w), 1333 (s), 1251 (m), 1211 (w), 1194 (w), 1174 (w), 1124 (w), 1107 (w), 1030 (w), 997 (w), 968 (w), 849 (w), 808 (s), 748 (s), 719 (w), 664 (w), 638 cm⁻¹ (w).
- ¹H-NMR (600 MHz, CDCl₃): $\delta = 0.83$ (t, 6 H, ${}^{3}J = 7.0$ Hz, -CH₃), 0.96 (t, 6 H, ${}^{3}J = 7.5$ Hz, -CH₃), 1.31 (m, 20 H,-CH₂), 1.87 (m, 2 H, -CH₂-CH-NR₂), 2.23 (m, 2 H, -CH₂-CH-NR₂), 3.23 (d, 2 H, ${}^{3}J = 7.6$ Hz, -CH₂-OH), 4.03 (t, 1 H, ${}^{3}J = 7.6$ Hz, -CH₂-OH), 4.20 (s, 2 H, -CH₂-NR₂), 5.18 (m, 1 H, -CH-NR₂), 8.65 ppm (m, 8 H, CH_{ar}).
- ¹³C-NMR (150 MHz, CDCl₃): $\delta = 7.4, 14.0, 22.6, 23.7, 27.0, 29.2, 31.8, 32.4, 43.1, 54.9, 65.1, 122.6, 122.9, 122.2, 126.2, 129.2, 129.4, 131.4, 133.9, 134.9, 164.8 ppm.$

UV/Vis (CHCl₃): $\lambda_{max}(\varepsilon) = 528 \text{ nm } (80700), 491 (48600), 460 (17900 \text{ L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}).$

Fluoreszenz: $\lambda_{max} = 535 \text{ nm}, 578.$

Fluoreszenzquantenausbeute: $\Phi = 100 \% (E = 0.0336 \text{ cm}^{-1}, \lambda_{exc} = 488 \text{ nm}) \text{ in CHCl}_3$ bezogen auf S-13 **1b** mit 100 %.

C ₄₄ H ₅₀ N ₂ O ₅ (686.9): Ber.:	C 76.94	H 4.08	N 7.34
Gef.:	C 76.51	H 4.05	N 7.36

16.5 Synthese von 2,9-Bis-(2,3-dihydroxypropyl)anthra[2,1,9-def;6,5,10d'e'f']diisochinolin-1,3,8,10-tetraon (9)

Perylen-3,4,9,10-tetracarbonsäure-3,4:9,10-bisanhydrid **5** (2.0 g, 5.3 mmol) und 3-Aminopropan-1,2-diol (1.1 g, 12.1 mmol) werden unter Schutzgas in 15 g Imidazol vorgelegt. Dann wird auf 140 °C erhitzt und bei dieser Temperatur gerührt. Nach einer Reaktionszeit von 1 h werden weitere 10 g Imidazol zu der zähflüssigen Mischung zugegeben. Dann lässt man das Gemisch noch 1 h 45 min bei 140 °C weiterrühren und bricht die Reaktion im Anschluss durch Zugabe von 200 mL 2N Salzäure ab. Der entstandene braun-rote Niederschlag wird abgesaugt und bei 80 °C getrocknet.

Zur Aufreinigung wird das Rohprodukt in 10 proz. Kaliumcarbonatlösung und wenigen mL Methanol 1-2 h lang ausgekocht. Dann wird das Produkt abfiltriert und erneut bei 80 °C getrocknet.

- Ausbeute: 2.3 g (4.3 mmol; 81 %) braun-rotes Pulver.
- **IR (ATR):** $\tilde{v} = 3378$ (br, s), 2955 (w), 1688 (s), 1653 (s), 1591 (vs), 1577 (m), 1508(w),1440 (m), 1404 (m), 1345 (s), 1246 (m), 1170 (m), 1112 (w), 1039 (m), 895 (w), 864 (w), 810 (m), 747 cm⁻¹ (m).

UV/Vis (**H**₂**SO**₄): λ_{max} (ϵ) = 597 nm (70000), 556 (46300), 400 (10000 L·mol⁻¹·cm⁻¹).

Fluoreszenz (H₂SO₄): $\lambda_{max} = 623$ nm.

MS (DEI⁺/70 eV): m/z (%): 539 (3) $[M^+$; Isotop 1], 538 (6) $[M^+$; Isotop 2], 523 (1) $[M^+ - H_2O, Isotop 1], 522$ (2) $[M^+ - H_2O, Isotop 2], 521, (3), 520$ (6), 508 (29) $[M^+ - 2 H_2O, Isotop 1], 507$ (100) $[M^+ - 2 H_2O, Isotop 2], 465$ (49) $[M^+ - C_3H_7O_2], 447$ (32), 433 (46), 418 (33), 405 (30), 404 (74), 403 (34), 391 (49), 390 (73) $[M^+ - 2 C_3 H_7 O_2]$, 376 (23), 345 (24), 43 (41).

$C_{30}H_{22}N_2O_8$ (538.5):	Ber.:	C 66.91	H 4.12	N 5.20
	Gef.:	C 66.66	H 3.82	N 5.37

17 Naphthalinbisimide mit γ-Hydroxyalkylsubstituenten (14)

17.1 2,7-Bis-[2-ethyl-2-(hydroxymethyl)butyl]-benzo[lmn][3,8]phenantrolin-1,3,6,8-tetraon (14a)

Unter Stickstoff werden Isochromen[6,5,4-*def*]isochromene-1,6,8-tetraon (410 mg, 1.53 mmol) und 2-Aminomethyl-2-ethylbutan-1-ol (600 mg, 4.60 mmol, 3 Äquiv.) in 25 mL DMF vorgelegt. Die entstandene Lösung wird 2 h lang bei 110 °C refluxiert, wobei man einen Farbumschlag nach Rot beobachtet.

Dann lässt man erst auf Raumtemperatur abkühlen und die Reaktion wird danach durch vorsichtige Zugabe von 50 mL 2N HCl unter Eiskühlung abgebrochen. Das Reaktionsprodukt wird abgesaugt, mit wenig Wasser gewaschen und im Trockenschrank getrocknet. Zur Aufreinigung wird das Produkt in wenig Methanol aufgeschlämmt und 1 h in 10 proz. Kaliumcarbonatlösung ausgekocht. Das Produkt wird abfiltriert, mit einem Gemisch aus Methanol/Wasser 1:1 nachgewaschen und im Trockenschrank getrocknet.

Ausbeute: 202 mg (404 µmol, 26 %) zart-rosa Feststoff.

Schmpkt.: 255-258 °C.

IR (ATR): $\tilde{v} = 3550$ (s), 3508 (m), 2967 (s), 2883 (m), 1702 (s), 1657 (s), 1580 (m), 1549 (w), 1454 (m), 1428 (w), 1372 (m), 1329 (s), 1247 (m), 1168 (w), 1105 (w), 1030 (w), 1001 (w), 889 (w), 772 cm⁻¹ (m).

¹**H-NMR (CDCl₃, 600 MHz):** $\delta = 0.94$ (t, 12 H, ${}^{3}J = 7.5$ Hz, ${}^{-}CH_{3}$), 1.32 (qd, 4 H, ${}^{3}J = 7.5$ Hz, ${}^{2}J = 14.7$ Hz, ${}^{-}CH_{2}$ -), 1.41 (qd, 4 H, ${}^{3}J = 7.5$ Hz, ${}^{2}J = 14.9$ Hz, ${}^{-}CH_{2}$ -), 3.23 (d, 4 H, ${}^{3}J = 7.6$ Hz, ${}^{-}CH_{2}$ -OH), 3.62 (t, 2 H, ${}^{3}J = 7.6$ Hz, ${}^{-}CH_{2}$ -OH), 4.20 ((s, 4 H, ${}^{-}CH_{2}$ -NR₂), 8.79 ppm (s, 4 H, CH_{ar}).

- ¹³C-NMR (CDCl₃, 600 MHz): $\delta = 7.4, 23.7, 43.1, 43.7, 65.2, 126.5, 126.6, 131.6, 164.3 ppm.$
- **UV/Vis (CHCl₃):** λ_{max} (ε) = 383 (26600), 362 (22000), 344 nm (13800 L·mol⁻¹·cm⁻¹).
- **MS (ESI):** $m/z: 529 [M^+ + {}^{35}Cl^-], 494 [M^+], 493 [M^+-H].$
- HRMS ($C_{28}H_{34}N_2O_6$):Gef.: m/z: 494.2429Ber.: m/z: 494.2417 Δ :1.2 mmu
- 17.2 2,7-Bis-[2-(hydroxymethyl)-2-propylpentyl]benzo[lmn][3,8]phenanthrolin-1,3,6,8-tetraon (14b)

Unter Stickstoff werden Isochromeno[6,5,4-*def*]isochromen-1,3,6,8-tetraon **13** (655 mg, 2.45 mmol) und 2-Aminomethyl-2-propylpentan-1-ol **4b** (1.17 g, 7.34 mmol; 3 Äquiv.)

vorgelegt. Dann werden 75 mL DMF zugegeben und die Mischung wird 5 h bei 110 °C refluxiert. Dabei verfärbt sich die zunächst gelbliche Reaktionslösung rot.

Das Reaktionsprodukt wird nach Beendigung der Reaktionszeit unter Eiskühlung durch Zugabe von 60 mL 2 N Salzsäure ausgefällt. Danach lässt man noch 30 min bei 0 °C rühren. Dann wird das Rohprodukt abfiltriert, mit destilliertem Wasser gewaschen und über Nacht im Trockenschrank getrocknet.

Zur Aufreinigung wird das Rohprodukt (1.18 g, 2.14 mmol, 88 % in 10 proz. Kaliumcarbonatlösung und wenigen mL Methanol 1 h lang ausgekocht. Dann wird das Produkt abfiltriert, im Trockenschrank getrocknet und noch zweimal aus Chloroform umgefällt.

Ausbeute: 0.75 g (1.36 mmol, 56 %) zart-rosa glänzender Feststoff.

- **Schmpkt.:** 199-201 °C
- IR (ATR): $\tilde{v} = 3478$ (s), 2953 (s), 2928 (m), 2871 (m), 1698 (s), 1642 (s), 1582 (m), 1458 (m), 1433 (m), 1374 (m), 1330 (s), 1244 (m), 1202 (m), 1161 (w), 1094 (m), 1039 (w), 1016 (m), 975 (w), 890 (w), 860 (w), 776 (m), 720 (w), 662 cm⁻¹ (w).
- ¹**H-NMR (300 MHz; CDCl₃):** $\delta = 0.94$ (t, 12 H, ${}^{3}J = 7.3$ Hz, $-CH_{3}$,), 1.34 (m, 12 H, $-CH_{2}$), 1.50 (m, 4 H, $-CH_{2}$), 3.20 (d, 4 H, ${}^{3}J = 7.6$ Hz $-CH_{2}$ -OH,), 3.70 (t, 2 H, ${}^{3}J = 7.6$ Hz, $-CH_{2}$ -OH,), 4.20 (s, 4 H, $-CH_{2}$ -NR₂), 8.79 ppm (s, 4 H, CH_{ar}).
- ¹³C-NMR(600 MHz, CDCl₃): $\delta = 14.96, 16.28, 34.38, 43.25, 43.99, 65.68, 126.5, 131.6, 164.3 \text{ ppm}.$
- **UV/Vis (CHCl₃):** $\lambda_{max}(\varepsilon) = 383 (26600), 362 (22000), 344 \text{ nm} (13400 \text{ L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}).$
- **MS (DEI⁺, 70 eV):** m/z (%) = 550 (15) $[M^+]$, 520 (100) $[M^+$ CH₃O], 422 (7), 410 (12), 409 (53), 294 (9), 281 (13), 268 (6).

$C_{32}H_{42}N_2O_6$ (550.7) :	Ber. :	C 69.79	H 7.69	N 5.09
	Gef.:	C 69.42	H 7.69	N 4.96

17.3 2,7-Bis-[2-butyl-2-(hydroxymethyl)hexyl]benzo[lmn][3,8]phenanthrolin-1,3,6,8-tetraon (14c)

Unter Stickstoff werden Isochromeno[6,5,4-*def*]isochromen-1,3,6,8-tetraon **13** (1.31 g, 4.89 mmol) und 2-Aminomethyl-2-butylhexan-1-ol **4c** (2.75 g, 14.7 mmol, 3 Äquiv.) in 70 mL DMF vorgelegt. Die erhaltene Lösung wird auf 80 °C erhitzt, wobei ein Farbumschlag nach Rot zu beobachten ist. Nach 20 min fällt das Reaktionsprodukt als rosa gefärbter Niederschlag aus. Nach weiteren 30 min Rühren bei 80 °C lässt man die Mischung abkühlen und bricht die Reaktion unter Eiskühlung durch vorsichtige Zugabe von 2 N HCl ab. Der Niederschlag wird abgesaugt und im Trockenschrank getrocknet.

Zur Aufreinigung wird das Rohprodukt (2.67 g, 4.4 mmol; 90 %) in 10 proz. Kaliumcarbonatlösung und wenigen mL Methanol 1 h lang ausgekocht. Dann wird das Produkt abfiltriert, im Trockenschrank getrocknet und noch zweimal aus Chloroform umgefällt.

Ausbeute: 985 mg (1.62 mmol, 33 %) farblos glänzender Feststoff.

Schmpkt.: 232-234 °C.

IR (ATR): $\tilde{v} = 3480$ (s), 2953 (s), 2930 (s), 2864 (m), 1698 (s), 1646 (s), 1581 (m), 1459 (m), 1432 (m), 1367 (m), 1330 (s), 1244 (s), 1199 (w), 1150 (w), 1099 (w), , 1024 (m), 884 (w), 865 (w), 776 (w), 720 (w), 660 cm⁻¹ (w).

- ¹**H-NMR (CDCl₃, 600 MHz):** $\delta = 0.92$ (t, 12 H, ${}^{3}J = 7.1$ Hz, -CH₃), 1.22-1.33 (m, 20 H, -CH₂-), 1.38-1.46 (m, 4 H, -CH₂-), 3.21 (d, 4 H, ${}^{3}J = 7.6$ Hz, -CH₂-OH), 3.67 (t, 2 H, ${}^{3}J = 7.6$ Hz, -CH₂-OH), 4.21 (s, 4 H, -CH₂-NR₂), 8.79 ppm (s, 4 H, CH_{ar}).
- ¹³C-NMR (CDCl₃, 600 MHz): $\delta = 14.07, 23.60, 25.1, 31.65, 43.02, 43.98, 65.70, 126.51, 131.58, 164.25 ppm.$
- **MS (ESI):** m/z (%): 641 (82) $[M^+ + {}^{35}Cl]$, 605 (47) $[M^+ H]$.
- **UV/Vis (CHCl₃):** $\lambda_{max} (\varepsilon) = 383 (26600), 362 (21900), 344 \text{ nm} (13400 \text{ L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}).$

$C_{40}H_{42}N_2O_6$ (606.8):	Ber.: C	71.26	H 8.31	N 4.62
	Gef.: C	71.11	H 8.37	N 4.62

17.4 2,7-Bis-[2-butyl-2-(hydroxymethyl)hexyl]benzo[lmn][3,8]phenanthrolin-1,3,6,8-tetraon (14d)

Methode A:

Unter Stickstoff werden Isochromeno[6,5,4-*def*]isochromen-1,3,6,8-tetraon **13** (1.31 g, 4.89 mmol) und 2-Aminomethyl-2-pentylheptan-1-ol **4d** (3.16 g, 14.7 mmol, 3 Äquiv.) in 75 mL DMF vorgelegt. Die erhaltene Lösung wird 90 min lang bei 80 °C gerührt. Dabei beobachtet man einen Farbumschlag nach Rot. Man lässt abkühlen, wobei bereits ein Teil des Reaktionsprodukts als zart-rosa gefärbter Niederschlag ausfällt. Das restliche Produkt wird durch vorsichtige Zugabe von 200 mL 2 N HCl bei 0 °C ausgefällt. Der Niederschlag wird abgesaugt, mit destilliertem Wasser gewaschen und im Trockenschrank getrocknet.

Zur Aufreinigung wird das Rohprodukt (3.08 g, 4.65 mmol; 95 %) in 10 proz. Kaliumcarbonatlösung und wenigen mL Methanol 1 h lang ausgekocht. Dann wird das Produkt abfiltriert, im Trockenschrank getrocknet und noch dreimal aus Chloroform umkristallisiert.

Ausbeute: 575 mg (867 µmol, 18 %) farblos glänzender Feststoff.

- **Schmpkt.:** 226-229 °C
- IR (ATR): $\tilde{v} = 3486$ (s), 2930 (s), 2862 (m), 1698 (s), 1644 (s), 1581 (m), 1460 (m), 1431 (w), 1413 (w), 1369 (w), 1330 (s), 1242 (m), 1209 (w), 1191 (w), 1150 (w), 1104 (w), 1058 (w), 1026 (m), 890 (w) 863 (vw), 778 (w) 719 (w) 662 cm⁻¹ (w).
- ¹**H-NMR (CDCl₃, 600 MHz):** $\delta = 0.92$ (t, 12 H, ³J = 7.2 Hz, -CH₃), 1.19-1.37 (m, 28 H, -CH₂-), 1.38-1.48 (m, 4 H, -CH₂-), 3.20 (d, 4 H, ³J = 7.6 Hz, -CH₂-OH), 3.65 (t, 2 H, ³J = 7.6 Hz, -CH₂-OH), 8.79 ppm (s, 4 H, CH_{ar}).
- ¹³C-NMR (CDCl₃, 600 MHz): $\delta = 14.12, 22.59, 31.95, 32.79, 43.10, 65.72, 126.50, 131.57, 164.24 ppm.$
- **UV/Vis (CHCl₃):** $\lambda_{max} (\varepsilon) = 383 (26600), 362 (22000), 344 \text{ nm} (13800 \text{ L} \cdot \text{mol} \cdot \text{cm}^{-1}).$
- **MS (ESI):** m/z (%) : 697 (68) $[M^+ + {}^{35}Cl^-]$, 661 (47) $[M^+ H]$.
- $C_{40}H_{58}N_2O_6$ (662.9):Ber. : C 72.47H 8.82N 4.23Gef. : C 72.41H 8.72N 4.16

Methode B :

Isochromeno[6,5,4-*def*]isochromen-1,3,6,8-tetraon **13** (548 mg, 2.04 mmol) und 2-Aminomethyl-2-pentylheptan-1-ol **4d** (1.32 g, 6.13 mmol, 3 Äquiv.) werden in 12 ml Eisessig vorgelegt und 2 h 30 min auf 110 °C erhitzt. Nach dem Abkühlen wird der entstandene Niederschlag abfiltriert und im Trockenschrank getrocknet. Das noch klebrige beige-rote Präzipitat wird danach in Chloroform aufgenommen und kurz refluxiert. Durch Heißfiltration wird nicht umgesetztes Edukt **13** abgetrennt. Das Filtrat wird am Rotationsverdampfer eingeengt. Der Rückstand wird in wenig Chloroform aufgenommen und das Produkt **14d** durch Zugabe von reichlich Methanol ausgefällt.

Ausbeute: 156 mg (235 µmol, 12 %) rosa Feststoff.

IR (ATR): $\tilde{v} = 3486$ (s), 2930 (s), 2862 (m), 1698 (s), 1644 (s), 1581 (m), 1460 (m), 1431 (w), 1413 (w), 1369 (w), 1330 (s), 1242 (m), 1209 (w), 1191 (w), 1150 (w), 1104 (w), 1058 (w), 1026 (m), 890 (w) 863 (vw), 778 (w) 719 (w) 662 cm⁻¹ (w).

17.5 2,7-Bis-[2-(hydroxymethyl)-2-octyldecyl]benzo[lmn][3,8]phenanthrolin-1,3,6,8-tetraon (14e)

Unter Stickstoff werden Isochromeno[6,5,4-*def*]isochromen-1,3,6,8-tetraon **13** (1.50 g, 5.59 mmol) und 2-Aminomethyl-2-octyldecan-1-ol **4e** (5.30 g, 16.8 mmol, 3 Äquiv.) in 170 mL DMF vorgelegt. Die erhaltene Lösung wird 4 h auf 110 °C erhitzt, wobei ein Farbumschlag nach Rot zu beobachten ist.

Das Reaktionsprodukt wird durch vorsichtige Zugabe von 130 mL 2 N HCl bei 0 °C ausgefällt. Man lässt über Nacht erst unter Eiskühlung dann bei Raumtemperatur rühren. Dann wird der Niederschlag abgesaugt, mit destilliertem Wasser gewaschen und im Trockenschrank getrocknet.

Zur Aufreinigung wird das Rohprodukt in 10 proz. Kaliumcarbonatlösung und wenigen mL Methanol 1 h lang ausgekocht. Dann wird das Produkt abfiltriert, im Trockenschrank getrocknet zweimal aus Chloroform umkristallisiert und an Kieselgel 60 mit CHCl₃/H₃CCO₂H 50:1 chromatographiert. Ausbeute: 1.74 g (2.09 mmol, 37 %) zart-rosa glänzender Feststoff.

Schmpkt.: 176-178 °C.

R_f-Wert (Kieselgel, CHCl₃/H₃CCO₂H 50:1): 0.5.

- IR (ATR): $\tilde{v} = 3481$ (s), 2956 (m), 2921 (s), 2852 (s), 1699 (s), 1645 (s), 1580 (s), 1460 (s), 1432 (w), 1415 (w), 1387 (w), 1370 (w), 1331 (s), 1255 (w), 1245 (m), 1191 (w), 1152 (w), 1112 (w), 1094 (w), 1027 (w), 975 (w), 891 (w), 865 (w), 815 (w), 779 (w), 720 cm⁻¹ (w).
- ¹**H-NMR (600 MHz, CDCl₃):** $\delta = 0.88$ (t, 12 H, ³J = 7.0 Hz, -CH₃), 1.20-1.33 (m, 50 H, -CH₂-), 1.36-1.45 (m, 4 H, -CH₂-), 1.54-1.60 (m, 2 H, -CH₂-), 3.20 (s, 4 H, -CH₂-NR₂), 3.66 (s, br, 2 H, -OH), 8.79 ppm (s, 4 H, CH_{ar}).
- ¹³C-NMR (600 MHz, CDCl₃): $\delta = 14.11, 22.66, 22.89, 29.31, 29.51, 29.53, 30.55, 30.57, 31.87, 31.95, 31.98, 43.08, 43.97, 65.69, 126.48, 131.56, 164.21, 164.23 ppm.$
- **UV/Vis (CHCl₃):** $\lambda_{max}(\varepsilon) = 383 \ (26900), \ 362 \ (22300), \ 344 \ nm \ (14000 \ L \cdot mol^{-1} \cdot cm^{-1}).$
- **MS (ESI):** m/z (%) : 865.6 (100) $[M^+ + {}^{35}Cl^-]$, 830.6 (44) $[M^+ H^+]$.
- HRMS ($C_{52}H_{81}N_2O_5$):
 Ber.: m/z:
 831.6173

 Gef.: m/z:
 831.6290

 Δ :
 1.1 mmu
- $C_{52}H_{82}N_2O_6$ (831.2):Ber. : C 75.14H 9.94N 3.37Gef. : C 75.15H 10.18N 3.36

18 Versuche zur Verseifung von Naphthalinbisimiden mit γ-Hydroxyalkylsubstituenten (16)

18.1 1,6-Bis-[2-(hydroxymethyl)-2-propylpentyl]-1H-indolo[5,4,3def]isochinolin-2,5,7-trion (16a)

Methode A:

2,7-Bis-[2-(hydroxymethyl)-2-propylpentyl]benzo[lmn][3,8]phenanthrolin-1,3,6,8-tetraon

14b (496 mg, 901 µmol) und KOH Pulver (85 Gew. %) (1.4 g, 21 mmol, 23 Äquiv.) werden in 8 mL DMSO und 6 mL Methanol vorgelegt. Die Mischung wird 3 h bei 100 °C unter Rückfluss erhitzt. Dann wird der Ansatz heiß und unter Rühren in 200 mL Wasser eingegossen. Danach werden weitere 300 mL Wasser zugegeben. Die Mischung wird mit 100 mL konz. Salzsäure versetzt und für 20 h bei Raumtemperatur stehen gelassen. Dann wird der entstandene Niederschlag abfiltriert, mit Wasser gewaschen und im Trockenschrank getrocknet.

Der trockene Filterkuchen wird in 100 mL Ethanol refluxiert bis es weitgehend gelöst ist. Dann lässt man kurz abkühlen und gibt 15 mL konz. Salzsäure zu. Der Ansatz wird erneut zum Sieden erhitzt und dann mit 300 mL Wasser verdünnt. Der Niederschlag wird über eine Glasfilternutsche abfiltriert, mit Wasser gewaschen im Trockenschrank getrocknet. Man erhält eine Rohausbeute von 365 mg (700 µmol, 78 %). Das Rohprodukt wird aus 300 mL Ethanol umkristallisiert, abfiltriert und erneut im Trockenschrank getrocknet.

Aus dem Filtrat fällt nicht umgesetztes 2,7-Bis-[2-(hydroxymethyl)-2-propylpentyl]-

benzo[*lmn*][3,8]phenanthrolin-1,3,6,8-tetraon **14b** als schwach rosa gefärbter Niederschlag aus. Dieses lässt sich nach Filtration und Trocknen mit einer Ausbeute von 75 mg (0.14 mmol, 16 %) isolieren.

Ausbeute: 187 mg (360 µmol, 40 %) oranges Pulver.

IR (ATR): $\tilde{v} = 3345(s), 2959(s), 2900(s), 2871(s), 1720(s), 1696(s), 1651(s), 1634(s), 1585(m), 1508(m), 1468(m), 1419(s), 1375(m), 1329(s), 1288(w), 1213(w), 1187(w), 1157(w), 1135(w), 1092(w), 1044(m), 1007(m), 931(w), 906(w), 868(w), 833(w), 764(m), 747(w), 699 cm⁻¹(w).$

¹ H-NMR (600 MHz, CDCl ₃):	$\delta = 0.99$ (t, 6 H, ${}^{3}J = 6.8$ Hz, -CH ₃), 0.93 (t, 6 H,
	$^{3}J = 7.0$ Hz, -CH ₃), 1.15-1.50 (m, 16 H, -CH ₂), 3.19 (s,
	2 H, -CH ₂), 3.34 (s, 2 H, -CH ₂), 3.54 (s, br, 1 H, -OH),
	3.82 (s, 2 H, -CH ₂), 3.90 (s, br, 1 H, -OH), 4.16 (s 2 H, -
	CH ₂), 7.20 (d, 1 H, ${}^{3}J = 7.6$ Hz, -CH _{ar}), 8.21 (d, 1 H,
	$^{3}J = 7.3$ Hz, -CH _{ar}), 8.44 (d, 1 H, $^{3}J = 7.6$ Hz, -CH _{ar}),
	8.61 (d, 1 H, ${}^{3}J = 7.3$ Hz, -CH _{ar}) ppm.

Aus dem ¹H-NMR-Spektrum geht hervor, dass das Reaktionsprodukt noch zu 5 % nicht umgesetztes Edukt enthält, dessen Abtrennung nicht gelang. Der prozentuale Anteil an Edukt **14b** wurde bezogen auf das Eduktsignal bei 8.80 ppm bestimmt.

¹³C-NMR (150 MHz, CDCl₃): $\delta = 14.84, 14.96, 15.0, 16.32, 16.36, 34.41, 43.19, 43.34, 43.37, 46.13, 65.17, 65.68, 107.20, 116.55, 124.04, 125.74, 125.94, 129.57, 132.05, 135.05, 146.24, 164.73, 164.82, 169.92 ppm.$

UV/Vis (CHCl₃): $\lambda_{max} (E_{rel}) = 332 \text{ nm} (1.00), 365 (0.91), 441 (0.83).$

Fluoreszenz: $\lambda_{max} = 567 \text{ nm.}$

Fluoreszenzquantenausbeute: $\Phi = 4 \%$ (E = 0.0136, $\lambda_{exc} = 435$ nm) bezogen auf Perylen-3,4:9,10-tetracarbonsäure-tetramethylester mit 100 %.

MS (ESI): m/z (%): 557.3 (100) $[M^+ + Cl^-]$, 523.3 (100) $[M^+ + H^+]$.

HRMS $(C_{31}H_{42}N_2O_5)$:	Ber.:	<i>m/z</i> : 523.3094
	Gef.:	<i>m/z</i> : 523.3158
	$\Delta = 6$	4 mmu

Methode B:

2,7-Bis-[2-(hydroxymethyl)-2-propylpentyl]benzo[*lmn*][3,8]phenanthrolin-1,3,6,8-tetraon **14b** (182 mg, 330 μmol) und KOH Pulver (85 Gew. %) (106 mg, 1.09 mmol, 3.9 Äquiv.) werden in 10 mL *tert*-Butanol aufgeschlämmt und 6 h unter Rückfluss gekocht. Die Reaktion wird durch Zugabe von 50 mL 2N Salzsäure/Essigsäure 1:1 abgebrochen. Der entstandene Niederschlag wird abfiltriert, mit destilliertem Wasser gewaschen und im Trockenschrank getrocknet.

Ausbeute: 46 mg oranges Pulver.

- IR (ATR): $\tilde{v} = 3386(s), 2953(s), 2928(s), 2859(s), 1719(s), 1695(s), 1650(s), 1632(s), 1586(m), 1508(m), 1467(m), 1419(s), 1376(m), 1330(m), 1243(m), 1156(w), 1098(w), 1022(w), 860(w), 822(w) 763(m), 700 cm⁻¹(w).$
- **MS (DEI⁺/70 eV):** m/z (%): 523 (21) $[M^++H]$, 522 (66) $[M^+]$, 495 (100), 493 (37) $[M^+-CH_2OH]$, 464 (12), 411 (5), 410 (14), 394 (12), 382 (5), 380 (9) $[M^+-C_9H_{18}OH]$, 350 (12), 282 (5), 265 (26), 251 (40), 224 (23), 221 (17), 180 (8), 152 (9), 124 (9), 56 (5), 55 (18).

18.2 1,6-Bis-[2-(hydroxymethyl)-2-octyldecyl]-1H-indolo[5,4,3def]isochinolin-2,5,7-trion (16b)

180

Methode A:

2,7-Bis-[2-(hydroxymethyl)-2-octyldecyl]benzo[*lmn*][3,8]phenathrolin-1,3,6,8-tetraon 14e (496 mg, 900 µmol) wird mit Kaliumhydroxidpulver (85 Gew. %) (1.4 g, 21 mmol, 23 Äquiv.) in einer Mischung aus 6 mL DMSO und 8 mL Methanol vorgelegt. Es wird 3 h unter Rückfluss erhitzt, dann wurde der noch heiße Ansatz unter Rühren auf 200 mL destilliertes Wasser gegossen. Danach werden weitere 300 mL Wasser zugegeben. Die Mischung wird mit 100 mL konz. Salzsäure versetzt. Der entstandene Niederschlag wird abfiltriert, mit Wasser gewaschen und im Trockenschrank getrocknet. Zur Aufreinigung wird das Rohprodukt in der Hitze in 250 mL Ethanol gelöst. Der unlösliche, blassgelbe Rückstand, bei dem es sich um nicht umgesetztes Edukt handelt, wird abfiltriert (158 mg, 0.19 mmol). Das Filtrat wird am Rotationsverdampfer eingeengt und das erhaltene orange-farbene Harz (395 mg, 490 µmol, 53 %) im Trockenschrank getrocknet. Zur weiteren Aufreinigung wird das Produkt in wenig Chloroform aufgenommen und mit viel Methanol versetzt. Das Chloroform, sowie ein Teil des zugesetzten Methanols werden am Rotationsverdampfer wieder abdestilliert. Die erhaltene Lösung wird über Nacht auf 4 °C gekühlt. Der erhaltene Feststoff wird abfiltriert und im Trockenschrank getrocknet. Dieser Vorgang wird insgesamt zweimal durchgeführt.

Ausbeute: 123 mg (153 µmol, 17 %) oranger Feststoff.

IR (ATR): $\tilde{v} = 3377$ (br., m), 2956 (w), 2922 (s), 2853 (s), 1728 (m), 1704 (m), 1664 (m), 1648 (s), 1631 (m), 1586 (w), 1508 (w), 1467 (m), 1417 (m), 1375 (w), 1357 (w), 1326 (m), 1243 (m), 1228 (w), 1212 (w), 1136 (w), 1109 (w), 1051 (w), 988 (w), 860 (w), 823 (w), 765 (w), 724 (w), 860 (w), 823 (w), 765 (w), 724 (w), 661 cm⁻¹ (w).

¹H-NMR (600 MHz, CDCl₃):
$$\delta = 0.88$$
 (m, 12 H, -CH₃), 1.27 (m, 56 H, -CH₂), 3.17 (d,
2 H, ³J =7.0 Hz, -CH₂-OH), 3.33 (d, 2 H, ³J =6.2, -CH₂-OH), 3.58 (t, 1 H, ³J = 6.5 Hz, -CH₂-OH), 3.81 (br, s,
2 H, -CH₂-NR₂), 3.89 (m, 1 H, - CH₂-OH), 4.14 (s, 2 H, -
CH₂-NR₂), 7.20 (d, 1 H, ³J = 7.6 Hz, CH_{ar}), 8.20 (d, 1 H,

	${}^{3}J$ = 7.3 Hz, CH _{ar}), 8.40 (d, 1 H, ${}^{3}J$ = 7.6 Hz, CH _{ar}), 8.57 (d, 1 H, ${}^{3}J$ = 7.3 Hz, CH _{ar}) ppm.
¹³ C-NMR (150 MHz, CDCl ₃):	$\delta = 14.1, 22.6, 22.7, 29.3, 29.5, 30.4, 30.6, 31.8, 31.9, 32.0, 43.0, 43.2, 43.3, 46.2, 65.2, 65.7, 107.3, 116.5, 124.0, 124.4, 125.6, 125.9, 129.5, 132.0, 135.0, 146.2, 164.6, 164.7, 169.8 ppm.$
UV/Vis (CHCl ₃):	$\lambda_{max} (E_{rel}) = 332 \text{ nm} (1.00), 365 (0.84), 440 (0.86).$
Fluoreszenz:	$\lambda_{max} = 572 \text{ nm.}$
Fluoreszenzquantenausbeute:	$\Phi = 6 \%$ (<i>E</i> = 0.0127, $\lambda_{exc} = 430$ nm) bezogen auf Perylen-3,4:9,10-tetracarbonsäure-tetramethylester mit 100 %.
MS (DEI ⁺ /70 eV):	m/z (%): 803 (60) $[M^+]$, 773 (100) $[M^+-CH_2OH]$, 772 (10), 656 (10), 533 (12), 521 (24) $[M^+-C_{19}H_{38}OH]$, 504 (10), 265 (33), 252(55), 111 (4), 97 (9), 83 (13), 55 (19).
HRMS (C ₅₁ H ₈₂ N ₂ O ₅):	Ber.: m/z: 802.6224 Gef.: m/z: 802.6222 Δ : -0.2 mmu

Methode B

2,7-Bis-[2-(hydroxymethyl)-2-octyldecyl]benzo[*lmn*][3,8]phenanthrolin-1,3,6,8-tetraon (284 mg, 330 µmol) und KOH Pulver (106 mg, 1.28 mmol, 3.9 Äquiv.) werden in 10 mL *tert*-Butanol aufgeschlämmt und 6 h unter Rückfluss gekocht. Die Reaktion wird durch Zugabe von 50 mL 2N Salzsäure/Essigsäure 1:1 abgebrochen. Der entstandene Niederschlag wird abfiltriert, mit destilliertem Wasser gewaschen und im Trockenschrank getrocknet.

Ausbeute: 24 mg orange-farbenes Harz.

MS (ESI): m/z (%): 801.6 (41) [M^+ - H].

19 Synthese von Radikalsalzen auf der Basis von Perylenbisimiden

19.1 N,N'-Di-(1-hexylheptyl)perylen-3,4:9,10-tetracarbonsäureimidradikalaniontetrabutylammoniumsalz (22)

N,N'-Di-(1-hexylheptyl)perylen-3,4:9,10-tetracarbonsäurebisimid **1b** (0.18 g, 0.24 mmol) wird unter Ar vorgelegt und in 1.5 mL entgastem Ethanol und DBU (0.2 mL, 2 mmol) aufgeschlämmt. Es wird auf 50-55 °C erwärmt und das Reduktionsmittel Hydroxyaceton (1 mL, 15 mmol) zugegeben. Das Reaktionsgemisch erfährt dabei einen Farbumschlag nach Violett. Um eine vollständige Reduktion zu gewährleisten lässt man noch 5-10 min rühren. Dann wird eine Lösung von Tetrabutylammoniumbromid (1.0 g, 3.1 mmol) in 1.5 mL entgastem Wasser zugegeben. Das Heizbad wird jetzt entfernt und durch ein Eisbad ersetzt. Die entstandene Suspension wird mit 10 mL entgastem, destilliertem Wasser verdünnt. Man lässt noch weitere 5-10 min bei 0 °C Rühren. Dann wird der Niederschlag unter Schutzgas abfiltriert. Das Reaktionsprodukt wird dann erst im Feinvakuum für mehrere Stunden und danach im N₂-Gegenstrom über P₄O₁₀ getrocknet.

Ausbeute: 197 mg (197 µmol, 82 %) violetter Feststoff.

IR (ATR): $\tilde{v} = 2958 \text{ cm}^{-1}(\text{s}), 2924 \text{ (vs)}, 2856 \text{ (s)}, 1582 \text{ (vs)}, 1561 \text{ (s)}, 1524 \text{ (s)}, 1489 \text{ (s)}, 1362 \text{ (m)}, 1318 \text{ (s)}, 1228 \text{ (w)}, 1132 \text{ (w)}, 1100 \text{ (w)}, 782 \text{ (w)}, 742 \text{ cm}^{-1} \text{ (w)}.$

UV/Vis (Aceton): $\lambda_{max} (E_{rel}) = 680 \text{ nm} (0.61), 700 (1.00), 711 (0.92), 766 (0.37), 796 (0.60), 957 (0.43).$

ESR (Aceton): g = 2.0037.

ESR (Festkörper): g = 2.0041. **MS (FAB⁻):** m/z: 754 (20) $[M^{-}(C_{50}H_{62}N_2O_4^{--})]$.

HRMS ($C_{50}H_{62}N_2O_4$): Ber.: 754.4715 Gef.: 754.4756 Δ : 0.5 mmu

19.2 Radikalsalze auf Basis von Perylenbisimiden mit γ -Hydroxyalkylsubstituenten (23)

Allgemeine Versuchsvorschrift

Der entsprechende Farbstoff 2 (0.24 mmol) wird unter Ar vorgelegt und in 0.5 mL Ethanol aufgeschlämmt. Dann werden 1 mL entgastes Wasser und 1 mL 30 proz. NaOH zugegeben. Man erwärmt auf 50-55 °C und fügt das Reduktionsmittel Hydroxyaceton (1 mL, 15 mmol) hinzu. Um eine vollständige Reduktion zu gewährleisten lässt man noch 5-10 min rühren. Dann wird eine Lösung von Tetrabutylammoniumbromid (1.0 g, 3.1 mmol) in 1.5 mL Wasser zugegeben. Das Heizbad wird jetzt entfernt und durch ein Eisbad ersetzt. Die entstandene Suspension wird mit 10 mL entgastem, destilliertem Wasser verdünnt. Man lässt noch weitere 5-10 min bei 0 °C rühren. Dann wird der Niederschlag unter Schutzgas abfiltriert und der Rückstand bis zum farblosen Ablauf mit entgastem Wasser gewaschen. Das Reaktionsprodukt wird dann erst im Feinvakuum für mehrere Stunden und danach im N₂-Gegenstrom über P₄O₁₀ getrocknet.

19.2.1 2,9-Bis-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9 *def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10tetraonradikalaniontetrabutylammoniumsalz (23a)

2,9-Bis-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10tetraon **2a** (148 mg, 239 μmol) wird gemäß der allgemeinen Versuchsvorschrift umgesetzt.

Ausbeute: 242 mg violettes Pulver.

- Schmpkt.: $> 300 \,^{\circ}\text{C}$.
- IR (ATR): $\tilde{v} = 3228$ (br, m), 1600 (s), 1560 (m), 1541 (s), 1491 (m), 1468 (m), 1437 (m), 1415 (m), 1378 (m), 1358 (m), 1327 (s), 1297 (w), 1228 (m), 1208 (w), 1177 (w), 1145 (m), 1087 (w), 1051 (w), 999 (w), 968 (w), 928 (w), 875 (w), 820 (w), 788 (s), 752 (w), 735 (w), 700 (w), 632 (w), 579 cm⁻¹ (w).
- ¹H-NMR (400MHz, D₆-Aceton): $\delta = 0.97$ (t, 12 H, ${}^{3}J = 7.3$ Hz, N-(CH₂)₃-CH₃) 1.37-1.46 (m, 8 H, ${}^{3}J = 7.3$ Hz, 7.2 Hz, N-(CH₂)₂-CH₂-CH₃), 1.80 (m, br, 8 H, N-CH₂-CH₂-CH₂-CH₃), 3.41-3.45 ppm (t, 8 H, ${}^{3}J = 7.7$ Hz N-CH₂-CH₂-CH₂-CH₃).

ESR (Aceton) : g = 2.0038.

UV/Vis (Aceton): $\lambda_{max} (\varepsilon) = 680 (40000), 702 (60000), 711 (60000), 767 (20000), 797 (40000), 957 nm (20000 L·mol⁻¹cm⁻¹).$

MS (FAB⁻): m/z (%): 618.3 (100) $[C_{38}H_{38}N_2O_6^-]$

HRMS ($C_{38}H_{38}N_2O_6^{-}$): Ber.: m/z: 618.2735 Gef.: m/z: 618.2730 Δ : -0.5 mmu

19.2.2 2,9-Bis-[2-(hydroxymethyl)-2-propylpentyl]anthra[2,1,9*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10tetraonradikalaniontetrabutylammoniumsalz (23b)

2,9-Bis-[2-(hydroxymethyl)-2-propylpentyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2b** (164 mg, 243 μmol) wird gemäß der allgemeinen Versuchsvorschrift umgesetzt.

Ausbeute: 254 mg violetter Feststoff.

- **Schmpkt.:** $> 300 \,^{\circ}\text{C}.$
- IR (ATR): $\tilde{v} = 3525$ (w), 3257 (br, m), 2957 (s), 2932 (s), 2872 (m), 1601 (s), 1542 (s), 1492 (m), 1466 (m), 1436 (w), 1414 (w), 1379 (w), 1359 (m), 1328 (s), 1294 (m), 1226 (m), 1208 (vw), 1177 (vw), 1145 (m), 1103 (w), 1081 (vw), 1057 (m), 1016 (vw), 955 (vw), 928 (w), 879 (w), 850 (vw), 788 (m), 744 (m), 701 cm⁻¹ (m).
- ¹H-NMR (400MHz, D₆-Aceton): $\delta = 0.97$ (t, 12 H, N-(CH₂)₃-CH₃), 1.39-1.43 (m, br, 8 H, N-(CH₂)₂-CH₂-CH₃), 1.77-1.82 (m, br, 8 H, N-CH₂-CH₂-CH₂-CH₃), 3.41-3.45 ppm (m, br, 8 H, N-CH₂-CH₂-CH₂-CH₃).

ESR (Festkörper): g = 2.0041

ESR (Aceton):	g = 2.0038.
UV/Vis (Aceton):	$\lambda_{max}(\varepsilon) = 680 \ (40000), \ 702 \ (60000), \ 711 \ (60000), \ 767 \ (20000), \ 797 \ (40000), \ 957 \ nm \ (20000 \ L \cdot mol^{-1} cm^{-1}).$
MS (-p ESI): (+p ESI):	m/z : 674(100) $[M^{-}(C_{42}H_{46}N_2O_6^{})].$ m/z : 243 (100) $[C_{16}H_{36}N^{+}].$
HRMS (C ₄₂ H ₄₆ N ₂ O ₆	T): Ber. : m/z : 674.3361
	Gef.: <i>m/z</i> : 674.3359
	Δ : -0.2 mmu
$(C_{16}H_{36}N^{+})$:	Ber.: <i>m/z</i> : 242.2842
	Gef.: <i>m/z</i> : 242.2839
	Δ : -0.3 mmu

Fällung des Radikalanions mit Tetrabutylammoniumhydrogensulfat

2,9-Bis-[2-(hydroxymethyl)-2-propylpentyl]anthra[2,1,9-

def;6,5,10*d'e'f'*]diisochinolin1,3,8,10-tetraon **2b** (164 mg, 243 µmol) wird gemäß der allgemeinen Versuchsvorschrift umgesetzt. Statt Tetrabutylammoniumbromid wird zur Fällung des Radikalsalzes eine Lösung aus Tetrabutylammoniumhydrogensulfat (1.1 g, 3.1 mmol in 1.5 mL entgastem Wasser) verwendet.

Ausbeute: 254 mg violetter Feststoff.

IR (ATR): $\tilde{v} = 3525 \text{ cm}^{-1}(\text{w}), 3257 \text{ (br, m)}, 2957 \text{ (s)}, 2932 \text{ (s)}, 2872 \text{ (m)}, 1601 \text{ (s)}, 1542 (s), 1492 (m), 1466 (m), 1436 (w), 1414 (w), 1379 (w), 1359 (m), 1328 (s), 1294 (m), 1226 (m), 1208 (vw), 1177 (vw), 1145 (m), 1103 (w), 1081 (vw), 1057 (m), 1016 (vw), 955 (vw), 928 (w), 879 (w), 850 (vw), 788 (m), 744 (m), 701 (m).$

UV/Vis (Aceton): $\lambda_{max} (\varepsilon) = 680 (40000), 702 (60000), 711 (60000), 767 (20000), 797 (40000), 957 nm (20000 L·mol⁻¹cm⁻¹).$

19.2.3 2,9-Bis-[2-(hydroxymethyl)-2-butyloctyl]anthra[2,1,9def;6,5,10d'e'f']diisochinolin-1,3,8,10tetraonradikalaniontetrabutylammoniumsalz (23c)

2,9-Bis-[2-(hydroxymethyl)-2-butyloctyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10tetraon **2d** (177 mg, 242 μmol) wird gemäß der allgemeinen Versuchsvorschrift umgesetzt.

Ausbeute: 277 mg violetter Feststoff.

IR (ATR): $\tilde{v} = 3236$ (br, m), 2957 (s), 2930 (s), 2871 (m), 1600 (s), 1541 (s), 1492 (m), 1466 (m), 1436 (w), 1413 (w), 1378 (w), 1359 (m), 1328 (s), 1296 (m), 1229 (m), 1208 (w), 1177 (vw), 1145 (m), 1104 (w), 1086 (vw), 1053 (m), 935 (w), 876 (w), 795 (m), 788 (m), 742 (m) 702 (m) 647 cm⁻¹ (w).

¹H-NMR (400MHz, d₆-Aceton): $\delta = 0.97$ (t, 12 H, -CH₃ ($C_{16}H_{36}N^+$)), 1.41-1.43 (m, br, 8 H, -CH₂-CH₃ ($C_{16}H_{36}N^+$)), 1.80-1.82 (m, br, 8 H, -CH₂-CH₂-CH₃ ($C_{16}H_{36}N^+$)), 3.45-3.46 ppm (t, br, 8 H, -CH₂-N ($C_{16}H_{36}N^+$)).

ESR (Aceton): g = 2.0037

UV/Vis (Aceton): $\lambda_{max} (E_{rel}) = 680 (0.62), 701 (0.98), 710 (1.00), 766 (0.26), 796 (0.57), 957 nm (0.36).$

MS (FAB⁻): m/z (%): 730.4 (100) [$M^{-}(C_{46}H_{54}N_2O_6^{-})$

HRMS ($C_{46}H_{54}N_2O_6$): Ber.: m/z: 730.3987 Gef.: m/z: 730.3982 Δ : -0.5 mmu

19.2.4 2,9-Bis-[2-(hydroxymethyl)-2-pentylheptyl]anthra[2,1,9*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10tetraonradikalaniontetrabutylammoniumsalz (23d)

2,9-Bis-[2-(hydroxymethyl)-2-pentylheptyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2d** (189 mg, 240 mmol) wird gemäß der allgemeinen Versuchsvorschrift umgesetzt.

Ausbeute: 346 mg violetter Feststoff.

Schmpkt.: > 300 °C

IR (ATR): $\tilde{v} = 3250$ (br, m), 2955 (s), 2928 (s), 2871 (m), 1600 (s), 1561 (w), 1543 (s), 1488 (m), 1466 (m), 1377 (w), 1360 (m), 1330 (s), 1296 (m), 1229 (m), 1204 (vw), 1145 (m), 1105 (w), 1067 (m), 949 (vw), 878 (w), 788 (m), 741 (m), 702 (m), 646 cm⁻¹ (w). ¹H-NMR (400MHz, d₆-Aceton): $\delta = 0.98$ (t, 12 H, -CH₃ ($C_{16}H_{36}N^+$)), 1.40-1.46 (m, br, 8 H, CH₂-CH₃ ($C_{16}H_{36}N^+$)), 1.82 (m, br, 8 H, -CH₂-CH₂-CH₃ ($C_{16}H_{36}N^+$)), 3.47-3.48 ppm (t, br, 8 H, -CH₂-N ($C_{16}H_{36}N^+$)).

ESR (Aceton): g = 2.0037

UV/Vis (Aceton): $\lambda_{max} (E_{rel}) = 956 \text{ nm} (0.36), 796 (0.58), 766 (0.28), 711 (1.00), 701 (0.98), 680 (0.63).$

MS (-**p ESI**): m/z: 786 (50) [$M^{-}(C_{50}H_{62}N_2O_6^{-})$]. (+**p ESI**): m/z: 242 (100) [$C_{16}H_{36}N^{+}$].

HRMS $(C_{50}H_{62}N_2O_6^{-})$:	Ber. : m/z :	786.4631
	Gef. : <i>m/z</i> :	786.4607
	Δ : -2.4 mmu	
$(C_{16}H_{36}N^{+})$:	Ber. : m/z :	242.2842
	Gef.: m/z :	242.2838
	Δ : -0.4 mmu	

19.2.5 2,9-Bis-[2-(hydroxymethyl)-2-octyldecyl]anthra[2,1,9 *def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10tetraonradikalaniontetrabutylammoniumsalz (23e)

2,9-Bis-[2-(hydroxymethyl)-2-octyldecyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10tetraon **2e** (229 mg, 240 μmol) wird gemäß der allgemeinen Versuchsvorschrift umgesetzt.

Ausbeute: 294 mg violetter Feststoff.

- **Schmpkt.:** 230 °C.
- IR (ATR): $\tilde{v} = 3449$ (br, w), 3239 (br, w), 2957 (m), 2922 (s), 2852 (m), 1601 (s), 1541 (s), 1490 (m), 1464 (m), 1439 (m), 1361 (w), 1329 (s), 1297 (m), 1228 (m), 1208 (w), 1176 (w), 1147 (m), 1096 (w), 1054 (w), 1024 (w), 940 (w), 912 (w), 876 (w), 788 (s), 740 (s), 724 (w), 703 (m), 648 cm⁻¹ (w).

ESR (Aceton): g = 2.0038.

UV/Vis (Aceton): λ_{max} (E_{rel}) = 957 nm (0.48), 797 (0.63), 767 (0.29), 711 (1.00), 701 (0.97), 680 (0.61).

MS (FAB⁻): m/z (%): 954.7 (100) $[M^{-}(C_{62}H_{86}N_2O_6^{-})]$

HRMS ($C_{62}H_{86}N_2O_6$): Ber.: m/z: 954.6491 Gef.: m/z: 954.6486 Δ : -0.5 mmu

20 Synthese von Radikalsalzen basierend auf Naphthalinbisimiden mit γ-Hydroxyalkylsubstituenten

Allgemeine Arbeitsvorschrift

Das entsprechende γ -Hydroxyalkylnaphthalinbisimid **14a-d** (0.24 mmol) wird unter Ar vorgelegt und in 0.5 mL Ethanol aufgeschlämmt. Dann werden 1 mL entgastes Wasser und DBU (1 mL, 10 mmol) zugegeben. Man erwärmt auf 45 °C und fügt das Reduktionsmittel Hydroxyaceton (1 mL, 15 mmol) hinzu. Es erfolgt ein Farbumschlag nach Rotbraun. Um eine vollständige Reduktion zu gewährleisten lässt man noch 5-10 min rühren.

Dann wird eine Lösung von Tetrabutylammoniumbromid (1.0 g, 3.1 mmol) in 1.5 mL Wasser zugegeben. Das Heizbad wird jetzt entfernt und durch ein Eisbad ersetzt. Die entstandene Suspension wird mit 10 mL entgastem, destilliertem Wasser verdünnt. Man lässt noch für weitere 5 min bei 0 °C Rühren. Dann wird der Niederschlag unter Schutzgas abfiltriert und der Rückstand bis zum farblosen Ablauf mit entgastem Wasser gewaschen. Das Reaktionsprodukt wird dann erst im Feinvakuum für mehrere Stunden und danach im N₂-Gegenstrom über P_4O_{10} getrocknet.

20.1 2,7-Bis-[2-ethyl-2-(hydroxymethyl)butyl]-3,6,8-trioxo-1,2,3,6,7,8hexahydrobenzo[lmn][3,8]phenanthrolin-1-olradikalaniontetrabutylammoniumsalz (24a)

2,7-Bis-[2-ethyl-2-(hydroxymethyl)butyl]benzo[lmn][3,8]phenanthrolin-1,3,6,8-tetraon 14a

(81 mg, 0.16 mmol) wird gemäß der allgemeinen Arbeitsvorschrift umgesetzt. Das Reaktionsprodukt wird wie beschrieben isoliert.

Ausbeute: 25 mg (33 µmol, 21 %) schwarz-brauner Feststoff.

- Schmpkt: $> 300 \,^{\circ}\text{C}$.
- IR (ATR): $\tilde{v} = 3332 \text{ (m,br)}, 2959 \text{ (s)}, 2875 \text{ (m)}, 1632 \text{ (s)}, 1580 \text{ (s)}, 1558 \text{ (s)}, 1520 \text{ (s)}, 1458 \text{ (m)}, 1376 \text{ (m)}, 1298 \text{ (m)}, 1146 \text{ (w)}, 1068 \text{ (m)}, 876 \text{ (w)}, 798 \text{ (w)}, 756 \text{ (w)} \text{ cm}^{-1}.$
- **UV/Vis (Aceton):** $\lambda_{max}(E_{rel}) = 477 \text{ nm} (1.00), 611 (0.24), 686 (0.06), 761 (0.14).$

20.2 2,7-Bis-[2-(hydroxymethyl)-2-propylpentyl]-3,6,8-trioxo-1,2,3,6,7,8hexahydrobenzo[lmn][3,8]phenanthrolin-1-olradikalaniontetrabutylammoniumsalz (24b)

2,7-Bis-[2-(hydroxymethyl)-2-propylpentyl]benzo[*lmn*][3,8]phenanthrolin-1,3,6,8-tetraon **14b** (132 mg, 0.24 mmol) wird gemäß der allgemeinen Arbeitsvorschrift umgesetzt. Das Reaktionsprodukt wird wie beschrieben isoliert.

Ausbeute: 97 mg (0.11 mmol, 48 %) schwarz-brauner Feststoff.

Schmpkt.: $> 300 \,^{\circ}$ C.

IR (ATR): $\tilde{v} = 3317$ (m, br), 2958 (s), 2931 (m), 2872 (s), 1621 (s), 1577 (s), 1555 (m), 1516 (s), 1488 (w), 1461 (m), 1435 (w), 1379 (w), 1324 (m), 1296 (m), 1232

(w), 1204 (w), 1150 (w), 1103 (w), 1053 (w), 1010 (w), 880 (w), 853 (w), 812 (w), 744 cm⁻¹ (w).

```
<sup>1</sup>H-NMR (400 MHz, D<sub>6</sub>-Aceton): \delta = 0.97 (t, 12 H, <sup>3</sup>J = 7 Hz, R<sub>3</sub>N-(CH<sub>2</sub>)<sub>3</sub>-CH<sub>3</sub>), 1.42 (m,
8 H, R<sub>3</sub>N-(CH<sub>2</sub>)<sub>2</sub>-CH<sub>2</sub>-CH<sub>3</sub>), 1.80 (q, br, 8 H, R<sub>3</sub>N-CH<sub>2</sub>-
CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>3</sub>), 3.42 ppm (t, 8 H, <sup>3</sup>J = 8 Hz, R<sub>3</sub>N-CH<sub>2</sub>-
(CH<sub>2</sub>)<sub>2</sub>-CH<sub>3</sub>).
```

ESR (Festkörper): g = 2.0043.

ESR (Aceton): g = 2.0042.

UV/Vis (Aceton): $\lambda_{max}(E_{rel}) = 477 \text{ nm } (1.00), 611 (0.13), 686 (0.08), 761 (0.02).$

MS (FAB⁻): m/z (%): 550.3 (100) [M⁻⁻ (C₃₂H₄₂N₂O₆⁻⁻)].

HRMS $(C_{32}H_{42}N_2O_6^{-})$:	Ber.:	550.3048
	Gef.:	550.3063
	Δ :	1.5 mmu

20.3 2,7-Bis-[2-butyl-2-(hydroxymethyl)hexy]-3,6,8-trioxo-1,2,3,6,7,8hexahydrobenzo[lmn][3,8]phenanthrolin-1-olradikalaniontetrabutylammoniumsalz (24c)

2,7-Bis-[2-butyl-2-(hydroxymethyl)hexyl]benzo[*lmn*][3,8]phenanthrolin-1,3,6,8-tetraon (146 mg, 0.24 mmol) wird gemäß der allgemeinen Arbeitsvorschrift umgesetzt. Das Reaktionsprodukt wird wie beschrieben isoliert.

Ausbeute: 117 mg (0.14 mmol, 58 %) schwarz-braunes Pulver.

- **Schmpkt.:** > 300 °C.
- IR (ATR): $\tilde{v} = 3300 \text{ (m, br)}, 3110 \text{ (m, br)}, 2956 \text{ (s)}, 2929 \text{ (s)}, 2872 \text{ (s)}, 1621 \text{ (s)}, 1587 (w), 1572 (w), 1556 (m), 1523 (s), 1493 (w), 1463 (m), 1424 (w), 1400 (w), 1380 (w), 1364 (w), 1293 (m), 1196 (w), 1145 (w), 1106 (w), 1066 (w), 1053 (w), 1026 (w), 984 (w), 935 (w), 879 (w), 815 (w), 743 \text{ cm}^{-1} (w).$

¹**H-NMR (400 MHz, D₆-Aceton):** $\delta = 0.98$ (t, 12 H, ³J = 7 Hz, R₃N-(CH₂)₃-CH₃), 1.43 (m, 8 H, R₃N-(CH₂)₂-CH₂-CH₃), 1.82 (q, br, 8 H, R₃N-CH₂-CH₂-CH₂-CH₃), 3.46 ppm (t, 8 H, ³J = 8 Hz, R₃N-CH₂-(CH₂)₂-CH₃).

ESR (Aceton): g = 2.0039.

UV/Vis (Aceton): $\lambda_{max}(E_{rel}) = 477 \text{ nm} (1.00), 611 (0.28), 686 (0.11), 761 (0.18).$

MS (FAB⁻): m/z (%): 606.4 (100) [M⁻⁻ ($C_{36}H_{50}N_2O_6^{--}$)].

HRMS $(C_{36}H_{50}N_2O_6^{-})$:	Ber.:	606.3674
	Gef.:	606.3658
	Δ :	-1.6 mmu

20.4 2,7-Bis-[2-(hydroxymethyl)-2-pentylheptyl]-3,6,8-trioxo-1,2,3,6,7,8hexahydrobenzo[lmn][3,8]phenanthrolin-1-olradikalaniontetrabutylammoniumsalz (24d)

2,7-Bis-[2-(hydroxymethyl)-2-pentylheptyl]benzo[*lmn*][3,8]phenanthrolin-1,3,6,8-tetraon **14d** (159 mg, 0.24 mmol) wird gemäß der allgemeinen Arbeitsvorschrift umgesetzt. Das Reaktionsprodukt wird wie beschrieben isoliert.

Ausbeute: 207 mg (230 µmol, 95 %) schwarz-brauner Feststoff.

Schmpkt. : $> 300 \degree$ C.

IR (ATR): $\tilde{v} = 3332 \text{ (m, br)}, 2956 \text{ (s)}, 2930 \text{ (m)}, 2871 \text{ (s)}, 1623 \text{ (s)}, 1586 \text{ (s)}, 1556 \text{ (m)}, 1519 \text{ (m)}, 1487 \text{ (w)}, 1464 \text{ (m)}, 1424 \text{ (w)}, 1400 \text{ (w)}, 1380 \text{ (w)}, 1365 \text{ (w)}, 1298 \text{ (m)}, 1256 \text{ (w)}, 1237 \text{ (w)}, 1189 \text{ (w)}, 1171 \text{ (w)}, 1141 \text{ (w)}, 1089 \text{ (w)}, 1057 \text{ (w)}, 1029 \text{ (w)}, 1012 \text{ (w)}, 979 \text{ (w)}, 958 \text{ (w)}, 932 \text{ (w)}, 879 \text{ (w)}, 833 \text{ (w)}, 812 \text{ (w)}, 759 \text{ (w)}, 739 \text{ cm}^{-1} \text{ (w)}.$

¹**H-NMR (400 MHz, D₆-Aceton):** $\delta = 0.98$ (t, 12 H, ³J = 7 Hz, R₃N-(CH₂)₃-CH₃), 1.43 (m, 8 H, R₃N-(CH₂)₂-CH₂-CH₃), 1.83 (q, br, 8 H, R₃N-CH₂-CH₂-CH₂-CH₃), 3.45 ppm (t, 8 H, ³J = 8 Hz, R₃N-CH₂-(CH₂)₂-CH₃). **ESR (Aceton):** g = 2.0040.

UV/Vis (Aceton): $\lambda_{max}(E_{rel}) = 477 \text{ nm} (1.00), 611 (0.55), 686 (0.46), 761 (0.51).$

MS (FAB'): m/z (%): 662.4 (100) [M⁻ (C₄₀H₅₈N₂O₆⁻⁻)].

HRMS ($C_{40}H_{58}N_2O_6^{-}$): Ber.: 662.4300 Gef.: 662.4233 Δ : -6.7 mmu

21 Isolierung eines Radikalsalzes auf Basis von Quaterrylen-3,4,13,14-tetracarbonsäure-3,4:9,10-bis(1-hexylheptylimid) (28)

21.1 Quaterrylen-3,4,13,14-tetracarbonsäure-3,4:9,10-bis-(1-hexylheptylimid) (28)⁷²

9,9'-Bis-[perylen-3,4-dicarbonsäure-3,4-(1-alkylimid)] **31** (200 mg, 196 mmol) wird mit Kaliumcarbonat (1.26 g, 9.31 mmol) in 1.8 mL Ethanolamin aufgeschlämmt. Die Suspension wird auf 160 °C erwärmt und 4 h gerührt. Danach lässt man das Reaktionsgemisch auf Raumtemperatur abkühlen, filtriert nach Zugabe von 10 mL Methanol den entstandenen blauen Niederschlag ab und wäscht mit reichlich destilliertem Wasser nach. Das Rohprodukt wird im Trockenschrank bei 100 °C über Nacht getrocknet und am Folgetag über Kieselgel mit Dichlormethan chromatographiert. Die vereinigten Fraktionen werden am Rotationsverdampfer eingeengt. Der Rückstand wird in wenig Dichlormethan aufgenommen und durch Zugabe von reichlich Methanol ausgefällt. Nach Filtration wird der erhaltene Farbstoff im Trockenschrank getrocknet.

Ausbeute: 96 mg (94 µmol, 48 %) blauer Feststoff.

Schmpkt.: $> 250 \,^{\circ}\text{C}$.

\mathbf{R}_f (Kieselgel/CH₂Cl₂): 0.07.

- IR (ATR): $\tilde{v} = 2920$ (s), 2851 (s), 1688 (s), 1645 (s), 1595 (m), 1571 (s), 1502 (m), 1456 1404 (m), 1372 (w), 1344 (s), 1284 (m) 1219 (w), 1171 (w), 1104 (w), 1047 (w), 836 (w) 804 (m), 745 (m), 669 cm⁻¹ (w).
- ¹H-NMR (CDCl₃, 600 MHz): $\delta = 0.85 \cdot 0.95$ (t, br, 12 H -CH₃), 1.14 (m, 32 H, -CH₂), 2.00 (m, br, 4 H, R₂NCH-CH₂-R), 2.30 (m, 4 H, R₂NCH-CH₂-R), 5.19 (m, 1 H, R₂NCH-), 7.72 \cdot 7.85 (m, 12 H, CH_{ar}), 8.23 ppm (s, 4 H, CH_{ar}).
- ¹³C-NMR (CDCl₃, 150 MHz): $\delta = 14.4, 2.9, 27.5, 29.6, 29.9, 31.2, 32.1, 32.7, 54.9,$ 120.4, 122.4, 123.8, 125.8, 127.3, 127.9, 129.2, 129.9, 131.3, 135.3 164.8 ppm.
- **UV/Vis:** $\lambda_{max} (E_{rel}) = 762 (1.00), 694 (sh., 0.18), 377 nm (sh., 0.09).$
- **MS (ESI):** m/z (%): 1002.5 (43) $[M^+]$.

21.2 Isolierung des Radikalsalzes (32)

Quaterrylen-3,4,13,14-tetracarbonsäure-3,4:9,10-bis(1-hexylheptylimid) **28** (50 mg, 50 µmol) wird unter Ar vorgelegt und in 0.1 mL Ethanol aufgeschlämmt. Dann werden 0.2 mL entgastes Wasser und DBU (0.2 mL, 2 mmol) zugegeben. Man erwärmt auf 45-50 °C und
fügt das Reduktionsmittel Hydroxyaceton (0.2 mL, 3 mmol) hinzu. Um eine vollständige Reduktion zu gewährleisten lässt man noch 5-10 min rühren.

Dann wird eine Lösung von Tetrabutylammoniumbromid (238 mg, 741 μ mol) in 0.3 mL Wasser zugegeben. Das Heizbad wird jetzt entfernt und durch ein Eisbad ersetzt. Die entstandene Suspension wird mit 3 mL entgastem, destilliertem Wasser verdünnt. Man lässt noch weitere 5-10 min bei 0 °C Rühren. Dann wird der Niederschlag unter Schutzgas abfiltriert und der Rückstand bis zum farblosen Ablauf mit entgastem Wasser gewaschen. Das Reaktionsprodukt wird dann erst im Feinvakuum für mehrere Stunden und danach im N₂-Gegenstrom über P₄O₁₀ getrocknet.

Ausbeute: 63 mg grüner Feststoff.

IR (ATR): $\tilde{v} = 2957$ (m), 2924 (m), 2855 (m), 1643 (m), 1564 (s), 1532 (m), 1504 (m), 1480 (w), 1465 (m), 1376 (m), 1364 (m), 1332 (s), 1292 (w), 1277 (w), 1242 (s), 1203 (w), 1180 (w), 1144 (w), 1104 (w), 1048 (w), 937 (w), 883 (w), 806 (w), 780 (m), 748 (m), 664 (w), 608 (w), 588 cm⁻¹ (w).

UV/Vis (Aceton): $\lambda_{max} = 1075 (1.00), 1185 (0.16), 1251 (0.30), 1697 nm (0.20)$

MS (FAB⁻): m/z: 1002.5 (100) $[M^{-}(C_{70}H_{70}N_2O_4)]$.

 HRMS ($C_{70}H_{70}N_2O_4$):
 Ber.: 1002.5341

 Gef.: 1002.5372
 Δ :

 3.1 mmu

22 Darstellung des γ-hydroxyalkylsubstituierten Benzoperylentrisimids (26) und anschließende Umsetzung zum entsprechenden Radikalsalz (30)

22.1 N,N"-Bis-(1-hexylheptyl)benzo[g,h,i]perylen-2,3,8,9,11,12hexacarbonsäure-2,3;8,9-bis(dicarboximid)-11,12-anhydrid (25a)

2,9-Bis-(1-hexylheptyl)anthra[2,1,9-*def*,6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **1b** (4.00 g, 5.30 mmol) wird mit Maleinsäureanhydrid (26.0 g, 265 mmol) vorgelegt und erhitzt. Sobald eine Innentemperatur von 110 °C erreicht ist wird Chloranil (2.58 g, 10.6 mmol) der Mischung zugegeben. Dann lässt man die Mischung 4 Tage lang bei einer Ölbadtemperatur von 170 °C rühren. Die Innentemperatur im Kolben beträgt dabei etwa 125 °C.

Nach Beendigung der Reaktionszeit lässt man kurz abkühlen, dispergiert die noch warme Mischung in Aceton und gießt sie auf 330 mL 2 N Salzsäure. Es wird noch 3 Tage bei Raumtemperatur gerührt. Dann wird der Niederschlag abfiltriert, getrocknet und mittels Säulenchromatographie gereinigt. Zuerst werden nicht umgesetzte Edukte mit Chloroform abgetrennt. Dann wird das Reaktionsprodukt mit einer Mischung von Chloroform/Essigsäure 10:1 eluiert. Die vereinigten Fraktionen werden am Rotationsverdampfer eingeengt. Der Rückstand wird in wenig Chloroform aufgenommen und das Produkt durch Zugabe von reichlich Methanol ausgefällt. Nach Filtration wird der erhaltene Farbstoff im Trockenschrank getrocknet.

Ausbeute: 3.56 g (4.19 mmol, 79 %) gelber Feststoff.

*R*_f-Wert (Kieselgel, CHCl₃/H₃CCOOH): 0.8.

IR (ATR):
$$\tilde{v} = 2954$$
 (s), 2924 (s), 2855 (s), 1844 (m), 1768 (s), 1705 (s), 1658 (s), 1624 (m), 1595 (m), 1523 (w), 1458 (m), 1414 (m), 1365 (m), 1319 (s), 1296 (m),

1281 (m), 1248 (w), 1201 (m), 1164 (m), 1124 (w), 909 (m), 860 (w), 813 (m), 764 (m), 749 (w), 724 (w), 692 cm⁻¹ (w).

- ¹**H-NMR (600 MHz, CDCl₃):** $\delta = 0.82$ (t, 12 H, ${}^{3}J = 7.0$ Hz, -CH₃), 1.14-1.47 (m, 32 H, -CH₂), 1.96 (m, 4 H, NR₂-CH-CH₂), 2.34 (m, br, 4 H, NR₂-CH-CH₂), 5.31 (m, br, 2 H, R₂N-CH), 9.28 (s, 2 H, -CH_{ar}), 9.51 (d, 2 H, ${}^{3}J = 8.4$ Hz, -CH_{ar}), 10.33 ppm (s, 2 H, -CH_{ar}).
- ¹³C-NMR (150 MHz, CDCl₃): $\delta = 14.02, 21.78, 26.98, 29.20, 31.75, 32.41, 55.48, 123.44, 124.69, 125.07, 127.41, 128.07, 129.20, 133.62, 162.32 ppm.$
- **UV/Vis (CHCl₃):** λ_{max} (*E_{rel}*) = 332 (0.46), 370 (0.03), 413 (0.28), 438 (0.68), 468 nm (1.00).
- **Fluoreszenz** (CHCl₃): $\lambda_{max} = 477, 511 \text{ nm.}$
- MS (DIE+, 70 eV): m/z (%): 850.4 (7) $[M^+]$, 849.4 (25) $[M^+-H]$, 848.4 (45), 669.2 (19), 668.2 (67), 667.2 (100), 666.2 (25), 487.1 (21), 486.0 (79), 485.0 (87), 484.0 (25), 413 (19), 69 (11), 55 (16).

22.2 N,N''-Bis-(1-hexylheptyl)-N'-[2-(hydroxymethyl)-2octyldecyl]benzoperylen-1',2':3,4:9,10-hexacarbonsäure-1',2':3,4:9,10tris-(dicarboximid) (26)

N,*N*''-Bis-(1-hexylheptyl)benzo[g,h,i]perylen-2,3,8,9,11,12-hexacarbonsäure-2,3;8,9bis(dicarboximid)-11,12-anhydrid **25a** (500 mg, 590 µmol), Dicyclohexylcarbodiimid

(609 mg, 295 μmol, 5 Äquiv.) und 2-Aminomethyl-2-octyldecan-1-ol 4e (931 mg, 295 μmol, 5 Äquiv.) werden in 18 mL Chloroform gelöst. Dann gibt man 3 Tropfen Trifluoressigsäure zu und lässt die Mischung 18 Stunden lang refluxieren.

Nach Beendigung der Reaktionszeit lässt man kurz Abkühlen und gibt 80 mL Wasser zu.

Nach anschließendem, dreistündigem Rühren bei Raumtemperatur wird die Mischung mit 350 mL Chloroform verdünnt und dreimal mit je 300 mL 2 N Salzsäure extrahiert. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet und überschüssiges Lösungsmittel am Rotationsverdampfer entfernt.

Der Rückstand wird in wenig Chloroform aufgenommen und das Reaktionsprodukt durch Zugabe von viel Methanol ausgefällt und abfiltriert.

Das Rohprodukt wird durch zweimalige Säulenchromatographie gereinigt. Im ersten Reinigungsschritt wird das Produkt mit Toluol eluiert. Im zweiten Reinigungsschritt wird das Produkt in Isohexan aufgenommen und zunächst mit 31 reinem Isohexan gesäult um alphatische Verunreinigungen abzutrennen. Danach wird das Produkt mit reinem Toluol eluiert. Die vereinigten Fraktionen werden am Rotationsverdampfer eingeengt. Der Rückstand wird in wenig Chloroform aufgenommen und das Produkt durch Zugabe von reichlich Methanol ausgefällt. Nach Filtration wird der erhaltene Farbstoff im Trockenschrank getrocknet. Ausbeute: 137 mg (123 µmol, 21 %) gelber Feststoff.

Schmpkt.: 289-292 °C.

R_f-Wert (Toluol): 0.5.

- IR (ATR): $\tilde{v} = 3551$ (m), 2955 (s), 2924 (s), 2855 (s), 1766 (w), 1707 (m), 1663 (m), 1625 (w), 1596 (w), 1523 (w), 1457 (w), 1414 (w), 1397 (w), 1364 (w), 1316 (m), 1239 (w), 1175 (w), 1103 (w), 945 (w), 845 (w), 812 (w), 764 (w), 747 cm⁻¹ (w).
- ¹H-NMR (600 MHz, CDCl₃): $\delta = 0.84$ (t, 12 H, ³J = 7.0 Hz, -CH₃), 0.89 (t, 6 H, ³J = 6.9 Hz, -CH₃), 1.23-1.58 (m, 56 H, -CH₂), 2.01 (m, br, 4 H, NR₂-CH-CH₂), 2.38 (m, br, 4 H, NR₂-CH-CH₂), 3.39 (s, 2 H, -CH₂-OH), 3.73 (s, br, 1 H, -CH₂-OH), 3.93 (s, 2 H, -CH₂-NR₂), 9.10 (s, br, 2 H, CH_{ar}), 9.18 (s, br, 2 H, CH_{ar}), 10.22 ppm (s, br, 2 H, CH_{ar}).
- ¹³C-NMR (150 MHz, CDCl₃): $\delta = 14.0, 22.7, 27.1, 29.3, 29.4, 29.7, 30.6, 31.8, 31.9, 42.9, 55.4, 65.5, 122.9, 123.8, 124.4, 127.0, 127.4, 132.8, 169.6 ppm.$
- **UV/Vis (CHCl₃):** $\lambda_{max}(\varepsilon) = 379 \text{ nm } (43000), 411 (16000), 436 (39000), 466 (61000 \text{ L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}).$

Fluoreszenz (CHCl₃): $\lambda_{max} = 475, 509 \text{ nm}.$

Fluoreszenzquantenausbeute: $\Phi = 32 \%$ (E = 0.0338, $\lambda_{exc} = 435$ nm) in CHCl₃ bezogen auf Perylen-3,4:9,10-tetracarbonsäuretetramethylester mit 100 %. **MS (DEI⁺, 70 eV):** m/z (%): 1132.1 (29), 1131.1 (29), 1130.1 (64), 1129.1 (83) $[M^+]$, 1116.1, 1099.1 (46), 950.1 (13), 949.1 (37), 948.1 (61), 917.1 (46), 861.1 (27), 860.1 (21), 737.1 (46), 735.1 (38), 680.0 (49), 679.0 (81), 678.0 (42), 666.0 (25), 509.9 (11), 499.0 (19), 498.0 (58), 496.9 (100), 495.9 (74), 483.9 (58), 482.9 (34), 414.0 (18), 111.2 (17), 83.2 (35), 69.2 (47).

HRMS/ESI (C73H101N3O7):	:	Ber.:	<i>m/z</i> : 1131.7640
		Gef.:	<i>m/z</i> : 1131.7643
		Δ:	0.3 mmu
C ₇₃ H ₁₀₁ N ₃ O ₇ (1130.5):	Ber.:	C 77.4	H 8.99

Gef.: C 76.82

22.3 N,N"-Bis-(1-hexylheptyl)-N'-[2-(hydroxymethyl)-2octyldecyl]benzoperylen-1',2':3,4,:9,10-hexacarbonsäure-1',2':3,4:9,10tris-(dicarboximid)radikalaniontetrabutylammoniumsalz (30)

H 8.93

N 3.71

N 3.65

Der Farbstoff **26** (47 mg, 42 μ mol) wird unter Ar vorgelegt und in 0.1 mL Ethanol aufgeschlämmt. Dann werden 0.2 mL entgastes Wasser und DBU (0.2 mL, 2 mmol) zugegeben. Man erwärmt auf 45-50 °C und fügt das Reduktionsmittel Hydroxyaceton (0.2 mL, 3 mmol) hinzu. Um eine vollständige Reduktion zu gewährleisten lässt man noch 5-10 min rühren.

Dann wird eine Lösung von Tetrabutylammoniumbromid (200 mg, 620 µmol) in 0.3 mL Wasser zugegeben. Das Heizbad wird jetzt entfernt und durch ein Eisbad ersetzt. Die entstandene Suspension wird mit 3 mL entgastem, destilliertem Wasser verdünnt. Man lässt noch weitere 5-10 min bei 0 °C Rühren. Dann wird der Niederschlag unter Schutzgas abfiltriert und der Rückstand bis zum farblosen Ablauf mit entgastem Wasser gewaschen. Das Reaktionsprodukt wird dann erst im Feinvakuum für mehrere Stunden und danach im N₂-Gegenstrom über P₄O₁₀ getrocknet.

Ausbeute: 38 mg grüner Feststoff.

UV/Vis (Aceton): $\lambda_{max} (E_{rel}) = 646 (1.00), 721 (0.59), 863 nm (0.88).$

23 UV-spektroskopische Detektion von Radikalanionen in der Küpe von Perylenbisimiden und Derivaten

Allgemeine Arbeitsvorschrift I

Zur Herstellung der Küpe wird der entsprechende Farbstoff (1.5 μ mol) in 1 mL Aceton (Uvasol) vorgelegt und mit DBU (50 μ L, 500 μ mol) und Hydroxyaceton (50 μ L, 700 μ mol) versetzt. Die erfolgte Reduktion ist an einem Farbumschlag der Mischung nach Violett zu erkennen.

In einem 20 mL Messkolben werden DBU (0.8 mL, 8 mmol) und Hydroxyaceton (1.3 mL, 19 mmol) in Aceton (Uvasol) gelöst. Nach dem Mischen wird der Kolben mit Aceton (Uvasol) auf 20 mL aufgefüllt. Alternativ können als Lösungsmittel auch Toluol (Uvasol) oder Ethanol (Uvasol) eingesetzt werden

Aus der so dargestellten Messlösung werden zweimal je 3 mL entnommen und in zwei Quarzglasküvetten überführt. In eine der beiden Küvetten werden zusätzlich wenige Tropfen der Küpe gegeben. Die so hergestellte Probe wird gegen die andere Küvette als Referenz UVspektroskopisch charakterisiert.

Allgemeine Arbeitsvorschrift II: Messung mit Zusatz von Diacetyl

Die Herstellung der Küpe erfolgte in Analogie zur allgemeinen Arbeitsvorschrift I. Für die Messlösung werden in einem 25 mL Messkolben DBU (0.8 mL, 8 mmol), Hydroxyaceton (0.5 mL, 7 mmol) und Diacetyl (1 mL, 11 mmol) in wenig Aceton (Uvasol) gelöst und im Anschluss mit Aceton (Uvasol) auf 25 mL aufgefüllt. Alternativ können als Lösungsmittel auch Toluol (Uvasol) oder Ethanol (Uvasol) eingesetzt werden. Nach Zugabe des Diacetyls sollte die Probe sofort hergestellt werden, da das Diacetyl schnell abreagiert. Dies ist an einem Farbumschlag der zuvor gelben Messlösung nach Braun zu erkennen. Die Präparation der Probe und die Messung erfolgt in Analogie zur allgemeinen Arbeitsvorschrift I.

23.1 Perylenbisimide mit Alkylsubstituenten

23.1.1 N,N'-Di-(1-hexylheptyl)perylen-3,4:9,10-tetracarbonsäurebisimid (1b)

Gemäß der allgemeinen Arbeitsvorschrift I wird N,N'-Di-(1-hexylheptyl)perylen-3,4:9,10tetracarbonsäurebisimid **1b** (1.0 mg, 1.3 µmol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift I beschrieben präpariert und UV-spektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (4 Vol.%), Hydroxyaceton (6.5 Vol. %)):						
562 (1.00), 632 (0.30),	Dianion 1b ²⁻					
580 (sh., 0.17), 701 (0.28), 711 (0.27), 766 (0.06), 796 (0.15),	Radikalanion 1b [.]					
957 nm (0.11).						
	n, DBU (4 Vol.%), Hydroxyaceton (6.5 Vol. %)): 662 (1.00), 632 (0.30), 680 (sh., 0.17), 701 (0.28), 711 (0.27), 766 (0.06), 796 (0.15), 957 nm (0.11).					

UV/Vis (Ethanol, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

$\lambda_{max} (E_{rel}) =$	554 (1.00), 620 (0.26),	Dianion 1b ²⁻
	715 (0.05), 796 (0.02), 957 nm (0.01).	Radikalanion 1b ^{·-}

UV/Vis (Toluol, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

$\lambda_{max} \left(E_{rel} \right) =$	567 (1.00), 628 (sh., 0.36),	Dianion 1b ²⁻
	715 (0.20), 799 (0.07), 957 nm (0.04).	Radikalanion 1b

Messung mit Zusatz von Diacetyl

Gemäß der allgemeinen Arbeitsvorschrift II wird *N*,*N*'-Di-(1-hexylheptyl)perylen-3,4:9,10tetracarbonsäurebisimid **1b** (1.0 mg, 1.3 μ mol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift II beschrieben präpariert und UV-spektroskopisch charakterisiert. Zur Herstellung der Messlösung wird DBU (0.4 mL, 4 mmol), Hydroxyaceton (0.25 mL, 3.5 mmol) und Diacetyl (0.5 mL, 5.5 mmol) mit Aceton (Uvasol) auf 10 mL aufgefüllt.

UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (2.5 Vol. %), Diacetyl (5 Vol. %)):

 $\lambda_{max} (E_{rel}) = 455 (0.28), 485 (0.46), 520 (0.60), Neutral form$ **1b** 680 (sh., 0.64), 701 (1.00), 711 (0.93), 767 (0.23), 796 (0.49), Radikalanion**1b**⁻957 nm (0.17).

23.1.2 2,9-Bis-(1-propylbutyl)anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10tetraon (1c)

Gemäß der allgemeinen Arbeitsvorschrift I wird 2,9-Bis-(1-propylbutyl)anthra[2,1,9*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **1c** (0.8 mg, 1.3 μ mol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift I beschrieben präpariert und UV-spektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

 $\lambda_{max} (E_{rel}) = 514 (0.43), 562 (1.00), 635 (0.44), Dianion 1c²⁻$ 701 (0.95), 710 (0.90), 766 (0.23), 795 (0.52), 959 nm (0.39). Radikalanion 1c⁻

23.1.3 2,9-Dimethylanthra[2,1,9-*def;*6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (Indanthrenrot GG, (1a))

Gemäß der allgemeinen Arbeitsvorschrift I wird 2,9-Dimethylanthra[2,1,9-*def;*6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon **1a** (1.1 mg, 2.6 μ mol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift I beschrieben präpariert und UV-spektroskopisch charakterisiert. UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)): $\lambda_{max} (E_{rel}) = 554 (1.00), 623 (0.29),$ 706 (0.09), 763 (0.03), 792 (0.05), 954 nm (0.05).Dianion 1a²⁻Radikalanion 1a⁻

23.2 Perylenbisimide mit y-Hydroxysubstituenten

23.2.1 2,9-Bis-(2,3-dihydroxypropyl)anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (9)

Gemäß der allgemeinen Arbeitsvorschrift I wird 2,9-Bis-(2,3-dihydroxypropyl)anthra[2,1,9*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **9** (0.8 mg, 1.5 μ mol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift I beschrieben präpariert und UV-spektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

 $\lambda_{max} (E_{rel}) = 514 \text{ (sh., 0.54), 550 (1.00), 623 nm (0.25).}$ Dianion 9²⁻

Messung mit Zusatz von Diacetyl

Gemäß der allgemeinen Arbeitsvorschrift II wird Gemäß der allgemeinen Arbeitsvorschrift I wird 2,9-Bis-(2,3-dihydroxypropyl)anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (0.8 mg, 1.5 µmol) verküpt. Zur Herstellung der Messlösung wird DBU (0.4 mL, 4 mmol), Hydroxyaceton (0.25 mL, 3.5 mmol) und Diacetyl (0.5 mL, 5.5 mmol) mit Aceton (Uvasol) auf 10 mL aufgefüllt. Die Messprobe wird wie in Arbeitsvorschrift II beschrieben präpariert und UV-spektroskopisch charakterisiert.

UV/Vis (Ace	eton, DBU (4 Vol. %), Hydroxyaceton (2.5 Vol. %), Diacetyl (5	Vol. %)):
$\lambda_{max} (E_{rel}) =$	482 (0.41), 516 (0.44),	Neutralform 9
	550 (0.42), 635 (0.42),	Dianion 9 ²⁻
	701 (1.00), 709 (1.00), 765 (0.32), 796 (0.54), 956 nm (0.36).	Radikalanion 9 [.]

23.2.2 2,9-Bis-[2-(hydroxymethyl)-2-propylpentyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon (2b)

Gemäß der allgemeinen Arbeitsvorschrift I wird 2,9-Bis-[2-(hydroxymethyl)-2propylpentyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2b** (1.0 mg, 1.5 μ mol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift I beschrieben präpariert und UV-spektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

 $\lambda_{max} (E_{rel}) = 523 \text{ (sh., 0.55), 558 (1.00), 630 (0.23),} Dianion 2b^{2}$ 701 (0.05), 711 (0.05), 766 (0.03), 796 (0.04), 957 nm (0.03). Radikalanion 2b⁻

Messung mit Zusatz von Diacetyl

Gemäß der allgemeinen Arbeitsvorschrift II wird 2,9-Bis-[2-(hydroxymethyl)-2propylpentyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2b** (1.0 mg, 1.5 μ mol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift II beschrieben präpariert und UV-spektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (3.2 Vol. %), Hydroxyaceton (2 Vol. %), Diacetyl (4 Vol. %)): $\lambda_{max} (E_{rel}) = 684$ (sh., 0.61), 702 (0.97), 711 (1.00), 767 (0.26), 797 (0.55), Radikalanion 2b⁻⁹⁵⁷ nm (0.33).

23.2.3 2,9-Bis-[2-(hydroxymethyl)-2-octyldecyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon (2e)

Gemäß der allgemeinen Arbeitsvorschrift I wird 2,9-Bis-[2-(hydroxymethyl)-2octyldecyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (1.4 mg, 1.5 μ mol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift I beschrieben präpariert und UVspektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

 $\lambda_{max} (E_{rel}) = 523 \text{ (sh., 0.55), 558 (1.00), 630 (0.23),} Dianion 2e^{2}$ 701 (0.02), 711 (0.02), 766 (3.8·10⁻³), 796 (4.7·10⁻³), Radikalanion 2e⁻ 957 nm (2.6·10⁻³).

Messung mit Zusatz von Diacetyl

Gemäß der allgemeinen Arbeitsvorschrift II wird 2,9-Bis-[2-(hydroxymethyl)-2octyldecyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (1.4 mg, 1.5 μ mol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift II beschrieben präpariert und UVspektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (3.2 Vol. %), Hydroxyaceton (2 Vol. %), Diacetyl (4 Vol. %)): $\lambda_{max} (E_{rel}) = 711 (1.00), 767 (0.26), 797 (0.55), 956 \text{ nm} (0.22).$ Radikalanion 2b⁻

23.3 2,9-Bis-[2-(hydroxymethyl)-2-propylpentyl]benzo[lmn][3,8]phenanthrolin-1,3,6,8-tetraon (14b)

Gemäß der allgemeinen Arbeitsvorschrift I wird 2,9-Bis-[2-(hydroxymethyl)-2propylpentyl]benzo[*lmn*][3,8]phenanthrolin-1,3,6,8-tetraon **14b** (1.2 mg, 2.2 μ mol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift I beschrieben präpariert und UVspektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

 $\lambda_{max}(E_{rel}) = 478 (1.00), 532 (0.36), 610 (0.33), 688 (0.15), 762 \text{ nm} (0.21).$ Radikalanion **14b**

UV/Vis (Ethanol, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

$\lambda_{max} \left(E_{rel} \right) =$	392 (0.76), 412 (1.00), 540 (0.37), 588 (0.51),	Dianion 14b ²⁻
	484 (0.35), 679 (0.04), 752 nm (0.06).	Radikalanion 14b ^{··}

UV/Vis (Toluol, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

 $\lambda_{max} (E_{rel}) = 395 (0.67), 416 (0.86), 539 (0.45), 595 (0.47), Dianion$ **14b**²⁻482 (1.00), 610 (0.40), 686 (0.10), 762 nm (0.22). Radikalanion**14b**⁻

Messung mit Zusatz von Diacetyl

Gemäß der allgemeinen Arbeitsvorschrift II wird 2,9-Bis-[2-(hydroxymethyl)-2propylpentyl]benzo[*lmn*][3,8]phenanthrolin-1,3,6,8-tetraon **14b** (1.2 mg, 2.2 µmol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift II beschrieben präpariert und UVspektroskopisch charakterisiert. Zur Herstellung der Messlösung wird DBU (0.4 mL, 4 mmol), Hydroxyaceton (0.25 mL, 3.5 mmol) und Diacetyl (0.5 mL, 5.5 mmol) mit Ethanol (Uvasol) auf 10 mL aufgefüllt. Alternativ wird als Lösungsmittel auch Toluol (Uvasol) eingesetzt.

UV/Vis (Toluol, DBU (4 Vol. %), Hydroxyaceton (2.5 Vol. %), Diacetyl (5 Vol. %)): $\lambda_{max} (E_{rel}) = 482 (1.00), 615 (0.27), 686 (0.10), 761 \text{ nm} (0.16).$ Radikalanion 14b⁻

UV/Vis (Ethanol, DBU (4 Vol. %), Hydroxyaceton (2.5 Vol. %), Diacetyl (5 Vol. %)): $\lambda_{max} (E_{rel}) = 482 (1.00), 615 (0.31), 678 (0.11), 754 \text{ nm} (0.16).$ Radikalanion 14b⁻⁻

23.4 Perylen-und Naphthalinbisimidlactamimide

23.4.1 1,8-Bis-(1-hexylheptyl)-1*H*-indolo[5',4',3':10,5,6]anthra[2,1,9*def*]isochinolin-2,7,9(8*H*)-trion (19)

Gemäß der allgemeinen Arbeitsvorschrift I wird 1,8-Bis(1-hexylheptyl)-1*H*indolo[5',4',3':10,5,6]anthra[2,1,9-*def*]isochinolin-2,7,9(8*H*)-trion **19** verküpt. Die Messprobe wird wie in Arbeitsvorschrift I beschrieben präpariert UV-spektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

 $\lambda_{max} (E_{rel}) = 415 (0.32), 504 (0.49), 581 (0.46), 642 (0.59), 672 (0.65), Dianion$ **19b**²⁻726 (1.00), 814 (0.29), 847 (0.17), 876 (0.21), 974 nm (0.20). Radikalanion **19b**⁻

23.4.2 1,6-Bis-[2-(hydroxymethyl)-2-octyldecyl]-1*H*-indolo[5,4,3-*def*]isochinolin-2,5,7-trion (16b)

Gemäß der allgemeinen Arbeitsvorschrift I wird 1,6-Bis-[2-(hydroxymethyl)-2-octyldecyl]-1*H*-indolo[5,4,3-*def*]isochinolin-2,5,7-trion **16b** (0.4 mg, 0.5 μ mol) in 0.7 mL Aceton (Uvasol) vorgelegt und verküpt. Die Messprobe wird wie beschrieben präpariert und UVspektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)): $\lambda_{max} (E_{rel}) = 452 (1.00), 539 \text{ nm (br., 0.30)}.$ Dianion **16b**²⁻

23.5 Kernerweiterte Perylenbisimidderivate

23.5.1 Benzo[13,14]pentapheno[3,4,5-*def*:10,9,8-*d'e'f'*]diisochinolin-1,3,10,12(2*H*, 11*H*)tetraon, 2,11-bis(1-hexylheptyl) (27)

Gemäß der allgemeinen Arbeitsvorschrift I wird N,N'-Bis(hexylheptyl)terrylenbisimid **27** verküpt. Die Messprobe wird wie in Arbeitsvorschrift I beschrieben präpariert und UV-spektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

 $\lambda_{max} (E_{rel}) = 635 (0.36), 694 \text{ nm} (1.00).$ Dianion 27b²⁻

Messung mit Zusatz von Diacetyl

Gemäß der allgemeinen Arbeitsvorschrift II wird *N*,*N*''-Bis(hexylheptyl)terrylenbisimid **27** verküpt. Die Messprobe wird wie in Arbeitsvorschrift II beschrieben präpariert und UV-spektroskopisch charakterisiert. Zur Herstellung der Messlösung wird DBU (0.4 mL, 4 mmol), Hydroxyaceton (0.25 mL, 3.5 mmol) und Diacetyl (0.5 mL, 5.5 mmol) mit Aceton (Uvasol) auf 10 mL aufgefüllt.

UV/Vis (Toluol, DBU (4 Vol. %), Hydroxyaceton (2.5 Vol. %), Diacetyl (5 Vol. %)): $\lambda_{max} (E_{rel}) =$ 635 (0.16), 694 (0.12),Dianion 27b²⁻896 (1.00), 982 (0.13), 1028 (0.24), 1319 nm (0.12).Radikalanion 27b⁻⁻

23.5.2 Quaterrylen-3,4,13,14-tetracarbonsäure-3,4:9,10-bis(1-hexylheptylimid) (28)⁷²

Gemäß der allgemeinen Arbeitsvorschrift I wird Quaterrylen-3,4:13,14bis(1-hexylheptylimid) **28** (1.0 mg, 1.0 µmol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift I beschrieben präpariert und UV-spektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

 $\lambda_{max} (E_{rel}) = 592 (0.06), 647 (0.11), 726 (0.30), 804 \text{ nm} (1.00).$ Dianion **28b**²⁻

Messung mit Zusatz von Diacetyl

Gemäß der allgemeinen Arbeitsvorschrift II wird Quaterrylen-3,4:13,14-

bis(1-hexylheptylimid) **28** (1.0 mg, 1.0 µmol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift II beschrieben präpariert und UV-spektroskopisch charakterisiert. Statt in einem 25 mL Messkolben wird die Messlösung in einem 20 mL Messkolben hergestellt.

UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (2.5 Vol. %), Diacetyl (5 Vol. %)):

 $\lambda_{max} (E_{rel}) = 589 (0.10), 646 (0.14), 728 (0.32), 805 (1.00), Dianion$ **28b**²⁻1078 (0.41), 1186 (0.08), 1253 (0.14), 1699 nm (0.10). Radikalanion **28b**⁻

23.5.3 N,N''Bis-(1-hexylheptyl)-N'-[2-(hydroxymethyl)-2octyldecyl]benzoperylen-1',2':3,4:9,10-tris-(dicarboximid) (29)

Gemäß der allgemeinen Arbeitsvorschrift I wird N,N''-Bis-(1-hexylheptyl)-N'-(2-hydroxymethyl-2-octyldecyl)benzoperylen-1',2':3,4:9,10-tris-(dicarboximid) **29** (1.0 mg, 1.5 µmol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift I beschrieben präpariert und UV-spektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (4 Vol. %), Hydroxyaceton (6.5 Vol. %)):

 $\lambda_{max} (E_{rel}) = 535 (0.43), 580 (0.53), Dianion$ **29b**²⁻644 (1.00), 718 (0.45), 867 nm (0.27). Radikalanion**29b**⁻

Messung mit Zusatz von Diacetyl

Gemäß der allgemeinen Arbeitsvorschrift II wird N,N''-Bis-(1-hexylheptyl)-N'-[2-(hydroxymethyl)-2-octyldecyl]benzoperylen-1',2':3,4:9,10-tris-(dicarboximid) **29** (1.0 mg, 1.5 µmol) verküpt. Die Messprobe wird wie in Arbeitsvorschrift II beschrieben präpariert und UV-spektroskopisch charakterisiert.

UV/Vis (Aceton, DBU (3.2 Vol. %), Hydroxyaceton (2 Vol. %), Diacetyl (4 Vol. %)):

$\lambda_{max} \left(E_{rel} \right) =$	433 (1.00), 465 (0.96),	Neutralform 29
	643 (0.51), 720 (0.29), 867 nm (0.27).	Radikalanion 29b [.]

24 Untersuchung der Affinität von Perylenbisimiden zu Keratinoberflächen

Allgemeine Arbeitsvorschrift

159 μmol des entsprechenden Perylenfarbstoffs wird in 10 mL EtOH oder 10 mL EtOH/H₂O 1:3 und 0.5 mL NaOH 30 proz. oder 0.5 mL DBU aufgeschlämmt.

Dann wird auf eine Temperatur von 40-50 °C erwärmt und das Reduktionsmittel Hydroxyaceton (1 mL, 15 mmol) zugegeben. Dabei beobachtet man einen Farbumschlag nach Violett. Optional wird zur Senkung des pH-Wertes Säure (Essigsäure, Citronensäure, Ascorbinsäure oder Borsäure) zugegeben.

Dann wird eine Büffelhaarsträhne (0.6 g Haar) 10-20 min lang in das Färbebad gehängt. Dieses wird dabei mit Polypropylenfolie abgedeckt, damit Luftsauerstoff soweit wie möglich ausgeschlossen wird.

Die anschließende Oxidation erfolgt unter fließendem Wasser. Die Strähne wird gründlich mit Wasser ausgewaschen und an der Luft getrocknet.

Auswertung

Bei der Auswertung der Färbetests werden die folgenden Kriterien berücksichtigt:

- Farbintensität und Aufziehvermögen
- Auswaschbarkeit ([+] \equiv auswaschbar; [-] \equiv nicht auswaschbar) und Haltbarkeit
- Schädigung des Haares

	I	Keine Färbung, Ungenügendes Aufziehvermögen des Farbstoffs		
	Π	Sehr schwache Färbung, Mangelhaftes Aufziehvermögen des Farbstoffs	Ι	Keine Schädigung des Haares
	III	Schwache Färbung; Ausreichendes Aufziehvermögen des Farbstoffs	Π	Sehr schwache Schädigung des Haares
	IV	Mittelstarke Färbung; Befriedigendes Aufziehvermögen des Farbstoffs	III	Schwache Schädigung des Haares
	V	Starke Färbung; Gutes Aufziehvermögen des Farbstoffs	IV V	Mittelstarke Schädigung des Haares Starke Schädigung des Haares
	VI	Sehr starke Färbung; Sehr gutes Aufziehvermögen des Farbstoffs	VI	Sehr starke Schädigung des Haares
Tabe	lle 24-	1: Skala zur Bewertung des mögens von Pervlenbisimiden auf	Tabell	e 24-2: Skala zur Beurteilung der S
Kera	tinfase	ermaterial.	Peryle	nbisimiden.

r Schädigung von erei mit Perylenbisimiden.

24.1 Untersuchung des Aufziehvermögens von Perylenbisimiden mit unterschiedlichem Substitutionsmuster

24.1.1 Perylenisimide mit γ-Hydroxyalkylsubstituenten (2)

24.1.1.1 2,9-Bis-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon (2a)

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-ethyl-2-

(hydroxymethyl)butyl)anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL 30 proz. Natronlauge zugesetzt. Die Färbezeit beträgt 10 min.

Farbintensität und Aufziehvermögen: VI

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol	
-	-	-	-	-	

Haltbarkeit: Permanent

Schädigung des Haares: V-VI

24.1.1.2 2,9-Bis-[2-(hydroxymethyl)-2-propylpentyl]anthra[2,1,9*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (2b)

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-(hydroxymethyl)-2propylpentyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10tetraon **2b** (107 mg, 159 μmol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL 30 proz. Natronlauge zugesetzt. Die Färbezeit beträgt 10 min.

Farbintensität und Aufziehvermögen: VI

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	-	-	-	-

Haltbarkeit: Permanent

Schädigung des Haares: V-VI

24.1.1.3 2,9-Bis-[2-butyl-2-(hydroxymethyl)hexyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon (2c)

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-butyl-2-

(hydroxymethyl)hexyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon 2c (116 mg, 159 µmol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL 30 proz.

Natronlauge zugesetzt. Die Färbezeit beträgt 10 min.

Farbintensität und Aufziehvermögen: IV

Auswaschbarkeit: Wasser Wasser mit Detergenz CHCl₃ Aceton Ethanol

Haltbarkeit: Permanent

Schädigung des Haares: V-VI

24.1.1.4 2,9-Bis-[2-(hydroxymethyl)-2-pentylheptyl]anthra[2,1,9*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (2d)

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-(hydroxymethyl)-2pentylheptyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2d** (125 mg, 159 µmol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL 30 proz. Natronlauge zugesetzt. Die Färbezeit beträgt 10 min.

Farbintensität und Aufziehvermögen: III-IV

Auswaschbarkeit:

Wasser Wasser mit Detergenz CHCl₃ Aceton Ethanol

Haltbarkeit: Permanent

Schädigung des Haares: V-VI

24.1.2 2-(1-Hexylheptyl)-9-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9def;6,5,10-d'e'f']diisochinolin-1,3,8,10-tetraon (7)

Gemäß der allgemeinen Arbeitsvorschrift wird 2-(1-Hexylheptyl)-9-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **7** (109 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: V-VI

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol	
-	-	-	-	-	

Haltbarkeit: Permanent

Schädigung des Haares: IV-V

24.1.3 2,9-Bis-(2,3-dihydroxypropyl)anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (9)

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-(2,3-dihydroxypropyl)anthra[2,1,9*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **9** (86 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: I-II

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol	
-	+	-	-	-	

Haltbarkeit: Temporär

Schädigung des Haares: I-II

24.1.4 Perylenbisimide mit Alkylsubstituenten

24.1.4.1 2,9-Dimethylanthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10tetraon (1a)

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Dimethylanthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon **1a** (67 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: V-VI

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	-	-	-	-

Haltbarkeit: Permanent

Schädigung des Haares: IV-V

24.1.4.2 2,9-Bis-(1-propylbutyl)anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (1c)

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-(1-propylbutyl)anthra[2,1,9*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **1c** (93 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: I-II

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	+	+	+	+

Haltbarkeit: Temporär

Schädigung des Haares: I-II

24.1.4.3 2,9-Bis-(1-hexylheptyl)anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (1b)

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-(1-hexylheptyl)anthra[2,1,9*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **1b** (120 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: III-IV

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	+	+	+	+

Haltbarkeit: Temporär

Schädigung des Haares: I-II

24.1.4.4 2,9-Bis-(1-nonyldecyl)anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon (1d)

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-(1-nonyldecyl)anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon **1d** (120 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: III-IV

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol	
-	+	+	+	+	

Haltbarkeit: Temporär

Schädigung des Haares: I-II

24.1.5 Ausfärbungen mit Tyrosinderivaten

24.1.5.1 2,9-Bis-[2-(4-hydroxyphenyl)ethyl]anthra[2,1,9-*def*,6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraon (10a)

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-(4-

hydroxyphenyl)ethyl]anthra[2,1,9-*def*,6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **10a** (100 mg, 159 μmol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: II

Auswaschbarkeit:

 Wasser
 Wasser mit Detergenz
 CHCl₃
 Aceton
 Ethanol

 +

Haltbarkeit: Temporär

Schädigung des Haares: I-II

24.1.5.2 2-{9-[1-Carboxy-2-(4-hydroxyphenyl)ethyl]-1,3,8,10-tetraoxo-3,8,9,10-tetrahydro-1*H*-anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-2-yl}3-(4hydroxyphenyl)propionsäuredianionbisimidazoliumsalz (10c)

Gemäß der allgemeinen Arbeitsvorschrift wird 2-{9-[1-Carboxy-2-(4-hydroxyphenyl)ethyl]-1,3,8,10-tetraoxo-3,8,9,10-tetrahydro-1*H*-anthra[2,1,9-*def*;6,5,10-d'e'f']diisochinolin-2-yl}3-(4-hydroxyphenyl)propionsäure (107 mg, 159 µmol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: VI-V

Haltbarkeit: Permanent

Schädigung des Haares: VI

24.2 Ausweitung des Farbspektrums

24.2.1 *N*,*N*''-Bis-(1-hexylheptyl)-*N*'-[2-(hydroxymethyl)-2octyldecyl]benzoperylen-1',2',:3,4:9,10-hexacarbonsäure-1',2':3,4:9,10tris-(dicarboximid) (26)

N,N''-Bis-(1-hexylheptyl)-N'-[2-(hydroxymethyl)-2-octyldecyl]benzoperylen-1',2',:3,4:9,10-hexacarbonsäure-1',2':3,4:9,10-tris-(dicarboximid) **26** (50 mg, 44 µmol) wird in 2.7 mL EtOH und 0.5 mL DBU aufgeschlämmt.

Dann wird auf eine Temperatur von 40-50 °C erwärmt und das Reduktionsmittel Hydroxyaceton (0.3 mL, 4.3 mmol) zugegeben. Dabei beobachtet man einen Farbumschlag nach Grün. Dann wird eine Büffelhaarsträhne (0.6 g) 20 min. in das Färbebad gehängt. Das

Färbebad wird dabei mit Polypropylenfolie abgedeckt, damit Luftsauerstoff soweit wie möglich ausgeschlossen wird. Die anschließende Oxidation erfolgt unter fließendem Wasser. Die Strähne wird gründlich mit Wasser ausgewaschen und an der Luft getrocknet.

Farbintensität und Aufziehvermögen: V-VI

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol	
-	+	+	+	+	

Haltbarkeit: Temporär

Die Haarsträhne fluoresziert im UV-Licht.

24.2.2 Quaterrylen-3,4,13,14-tetracarbonsäure-3,4:9,10-bis-(1-hexylheptylimid) (28)

Quaterrylen-3,4,13,14-tetracarbonsäure-3,4:9,10-bis(1-hexylheptylimid) **28** (5 mg, 5.0 µmol) wird in 1 mL EtOH und DBU (0.05 mL, 0.50 mmol) aufgeschlämmt.

Dann wird das Reduktionsmittel Hydroxyaceton (0.05 mL, 0.7 mmol) zugegeben. Dabei beobachtet man einen Farbumschlag nach Grün. Dann wird eine Büffelhaarsträhne (0.2 g) 10 min. in das Färbebad gehängt. Das Färbebad wird dabei mit Polypropylenfolie abgedeckt, damit Luftsauerstoff soweit wie möglich ausgeschlossen wird. Die anschließende Oxidation erfolgt unter fließendem Wasser. Die Strähne wird gründlich mit Wasser ausgewaschen und an der Luft getrocknet.

Farbintensität und Aufziehvermögen: II-III

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	+	+	+	+

Haltbarkeit: Temporär

24.3 Auswirkungen von Säurezusatz auf die Farbintensität am Beispiel von 2,9-Bis-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9-def;6,5,10-d'e'f']diisochinolin-1,3,8,10-tetraon (2a)

24.3.1 Methode A: Zusatz von Essigsäure

Versuch A1

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 µmol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL 30 proz. Natronlauge zugesetzt. Nach der vollständigen Reduktion werden noch 0.02 mL Essigsäure zugesetzt. (pH = 13) Danach wird die Färbung wie gewohnt durchgeführt. Die Färbezeit beträgt 10 min.

Farbintensität und Aufziehvermögen: VI

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol	
-	-	-	-	-	

Haltbarkeit: Permanent

Schädigung des Haares: VI

Versuch A2

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-ethyl-2-

(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL 30 proz. Natronlauge zugesetzt. Nach dem Reduktionsschritt werden 0.05 mL (0.43 Vol. %) Essigsäure zugesetzt.

(pH = 12-13) Danach wird die Färbung weiter wie gewohnt durchgeführt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: VI

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol	
-	-	-	-	-	

Haltbarkeit: Permanent

Schädigung des Haares: VI

Versuch A3

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-ethyl-2-

(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL 30 proz. Natronlauge zugesetzt. Nach dem Reduktionsschritt werden 0.10 mL (0.87 Vol. %) Essigsäure zugesetzt. (pH = 12)Danach wird die Färbung weiter wie gewohnt durchgeführt. Die Färbezeit beträgt 15 min.

Farbintensität und Aufziehvermögen: III-IV

|--|

W	asser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
	-	-	-	-	-

Haltbarkeit: Permanent

Schädigung des Haares: IV

Versuch A4

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-(2-ethyl-2-

(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL 30 proz. Natronlauge zugesetzt. Nach dem Reduktionsschritt werden 0.50 mL (4.4 Vol. %) Essigsäure zugesetzt. (pH = 6-7) Danach wird die Färbung weiter wie gewohnt durchgeführt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: II-III

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	-	-	-	-

Haltbarkeit: Permanent

Schädigung des Haares: I

24.3.2 Methode B: Zusatz von Ascorbinsäure

Versuch B1

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-ethyl-2-

(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Nach dem Reduktionsschritt werden 0.10 mL (0.87 Vol. %) einer gesättigten Ascorbinsäurelösung zugegeben. (pH = 10) Danach wird die Färbung weiter wie gewohnt durchgeführt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: V-VI

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	-	-	-	-

Haltbarkeit: Permanent

Schädigung des Haares: III-IV

Versuch B2

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-ethyl-2-

(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Nach dem Reduktionsschritt werden 0.20 mL (1.7 Vol. %) einer gesättigten Ascorbinsäurelösung zugegeben. (pH = 9-10) Danach wird die Färbung weiter wie gewohnt durchgeführt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: V-VI

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol	
-	-	-	-	-	

Haltbarkeit: Permanent

Schädigung des Haares: III

Versuch B3

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-ethyl-2-

(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Nach dem Reduktionsschritt werden 0.5 mL (4.3 Vol. %) einer gesättigten Ascorbinsäurelösung zugegeben. (pH = 9) Danach wird die Färbung weiter wie gewohnt durchgeführt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: III

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	-	-	-	-

Haltbarkeit: Permanent

Schädigung des Haares: I

Versuch B4

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-ethyl-2-

(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Nach dem Reduktionsschritt werden 0.80 mL (7.0 Vol. %) einer gesättigten Ascorbinsäurelösung zugegeben. (pH = 6-7) Danach wird die Färbung weiter wie gewohnt durchgeführt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: II

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol	
-	-	-	-	-	

Haltbarkeit: Permanent

Schädigung des Haares: I

24.3.3 Methode C: Zusatz von Borsäure

Versuch C

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-ethyl-2-

(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Nach erfolgter Reduktion wird Borsäure (1.6 g, 26 mmol) zugegeben. (pH = 9) Danach wird die Färbung weiter wie gewohnt durchgeführt.

Farbintensität und Aufziehvermögen: IV

Auswaschbarkeit:

 Wasser
 Wasser mit Detergenz
 CHCl3
 Aceton
 Ethanol

Haltbarkeit: Permanent

Schädigung des Haares: I

24.3.4 Methode D: Zusatz von Citronensäure

Versuch D1

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-ethyl-2-

(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Nach dem Reduktionsschritt werden 0.12 mL (1.0 Vol. %) einer gesättigten Zitronensäurelösung zugegeben. (pH = 10). Danach wird die Färbung weiter wie gewohnt durchgeführt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: V

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol	
-	-	-	-	-	

Haltbarkeit: Permanent

Schädigung des Haares: III

Versuch D2

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-ethyl-2-

(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Nach dem Reduktionsschritt werden 0.20 mL (1.7 Vol. %) einer gesättigten Citronensäurelösung zugegeben. (pH = 9). Danach wird die Färbung weiter wie gewohnt durchgeführt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: III

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	-	-	-	-

Haltbarkeit: Permanent

Schädigung des Haares: I

Versuch D3

Gemäß der allgemeinen Arbeitsvorschrift wird 2,9-Bis-[2-ethyl-2-

(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraon **2a** (98 mg, 159 μ mol) auf eine Büffelhaarsträhne aufgezogen. Als Reaktionsmedium wird EtOH/H₂O 1:3 verwendet. Als Base werden vor dem Reduktionsschritt 0.5 mL DBU zugesetzt. Nach dem Reduktionsschritt werden 0.50 mL (4.3 Vol. %) einer gesättigten Citronensäurelösung zugegeben. (pH = 6). Danach wird die Färbung weiter wie gewohnt durchgeführt. Die Färbezeit beträgt 20 min.

Farbintensität und Aufziehvermögen: II

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol	
-	-	-	-	-	

Haltbarkeit: Permanent

Schädigung des Haares: I

24.4 Ausfärbungen mit den Radikalsalzen (22) und (23a-d) auf Keratinfasern

Allgemeine Arbeitsvorschrift

Je eine Spatelspitze des entsprechenden Radikalsalzes **22** bzw. **23a-d** werden in Aceton gelöst. Dann wird eine trockene Büffelhaarsträhne für 20 min in die Lösung gegeben. Die anschließende Oxidation erfolgt unter fließendem Wasser.

Taucht man statt des trockenen Fasermaterials, mit Wasser angefeuchtetes Fasermaterial in die Lösung erfolgt unmittelbar Oxidation (Farbumschlag nach Magenta; Bildung eines roten Niederschlags).

24.4.1 2,9-Bis-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz (23a)

Die Färbung wird gemäß der allgemeinen Arbeitsvorschrift mit 2,9-Bis-[2-ethyl-2-(hydroxymethyl)butyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz **23a** (17 mg, 20 μ mol) in 1 mL Aceton durchgeführt. Es wird 0.1 g Haar verwendet.

Farbintensität und Aufziehvermögen: I-II

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol	
-	+	-	-	+	

Haltbarkeit: Temporär
24.4.2 2,9-Bis-[2-(hydroxymethyl)-2-propylpentyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz (23b)

Die Färbung wird gemäß der allgemeinen Arbeitsvorschrift mit 2,9-Bis-[2-(hydroxymethyl)-2-propylpentyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10tetraonradikalaniontetrabutylammoniumsalz **23b** (18 mg, 20 μ mol) in 1 mL Aceton durchgeführt. Es wird 0.1 g Haar verwendet.

Farbintensität und Aufziehvermögen: IV

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	+	-	-	-

Haltbarkeit: Temporär

24.4.3 2,9-Bis-[2-butyl-2-(hydroxymethyl)hexyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz (23c)

Die Färbung wird gemäß allgemeinen Arbeitsvorschrift mit 2,9-Bis-[2-butyl-2-(hydroxymethyl)hexyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz **23c** (10 mg, 10 μ mol) in 0.5 mL Aceton durchgeführt. Es wird 0.06 g Haar verwendet.

Farbintensität und Aufziehvermögen: III-IV

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	+	-	-	-

Haltbarkeit: Temporär

24.4.4 2,9-Bis-[2-(hydroxymethyl)-2-pentylheptyl]anthra[2,1,9-*def*;6,5,10*d'e'f'*]diisochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz (23d)

Die Färbung wird gemäß allgemeinen Arbeitsvorschrift mit 2,9-Bis-[2-(hydroxymethyl)-2pentylheptyl]anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10tetraonradikalaniontetrabutylammoniumsalz **23d** (5 mg, 5 μ mol) in 0.25 mL Aceton durchgeführt. Es wird 0.03 g Haar verwendet.

Farbintensität und Aufziehvermögen: III

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	+	-	-	-

Haltbarkeit: Temporär

24.4.5 2,9-Bis-(2-hexylheptyl)anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10-tetraonradikalaniontetrabutylammoniumsalz (22)

Die Färbung wird gemäß allgemeinen Arbeitsvorschrift mit 2,9-Bis-(2hexylheptyl)anthra[2,1,9-*def*;6,5,10-*d'e'f'*]diisochinolin-1,3,8,10tetraonradikalaniontetrabutylammoniumsalz **22** (1 Spatelspitze) in 0.5 mL Aceton durchgeführt. Es wird 0.09 g Haar verwendet.

Farbintensität und Aufziehvermögen: III

Auswaschbarkeit:

Wasser	Wasser mit Detergenz	CHCl ₃	Aceton	Ethanol
-	+	+	+	+

Haltbarkeit: Temporär

Anhang

Auswertung und Messwerte der Magnetmessung von (23b)

Die Messwerte für das magnetische Moment μ in [emu] wurden mit dem Programm *Origin* folgendermaßen ausgewertet:

• Korrektur um den Diamagnetismus der Gelatinekapsel:

$$\mu(kor) = \mu - m_G \cdot \chi^G \cdot H$$

m_G [mg]	<i>H</i> [G]	$\chi^{ m G}$ [emu·g ⁻¹]			
(Masse der Gelatinekapsel)	(Feld)	(Grammsuszeptibilität der Gelatinekapsel)			
20.34	200	$-4.5 \cdot 10^{-7}$			
20.34	500	$-4.5 \cdot 10^{-7}$			
20.34	1000	$-4.5 \cdot 10^{-7}$			
20.34	5000	$-4.5 \cdot 10^{-7}$			

• Berechnung der Molsuszeptibilität χ_M der Probe in [cm³·mol⁻¹]:

$$\chi_M = \frac{\mu(kor) \cdot M}{m \cdot H}$$

<i>m</i> [mg]	<i>M</i> [g⋅mol ⁻¹]			
(Masse der Substanzprobe)	(Molekulargewicht der Probe)			
31.91	917.29			

• Bestimmung der paramagnetischen Molsuszeptibilität $\chi_M(Para)$ in $[cm^3 \cdot mol^{-1}]$:

$$\chi_M (Para) = \chi_M + 0.5 M \ 10^{-6} \text{ cm}^3 \cdot \text{mol}^{-1}$$

• Bestimmung des effektiven magnetischen Moments μ_{eff} in $[\mu_B]$:

$$\mu_{eff} = \sqrt{\frac{3 k}{N_A \cdot \mu_B^2} \cdot \chi_M(Para) \cdot T} = 2.83 \sqrt{\chi_M(Para) \cdot T}$$

$$\overline{N_A} \text{ Avogadrokonstante } 6.022 \cdot 10^{22} \text{ mol}^{-1}$$

k	Boltzmannkonstante	$1.381 \cdot 10^{23} \mathrm{J} \cdot \mathrm{K}^{-1}$
μ_{B}	Bohrsches Magneton	$9.274\!\cdot\!10^{23}J\!\cdot\!T^{1}$

• Durchführung eines linearen Fits an das Curie-Weiss-Gesetz für $1/\chi_M$ (Para) gegen zwischen 50 und 300 K bei einem Feld von 5000 G gemäß:

$$\frac{1}{\chi_M(Para)} = \frac{T}{C} - \frac{\theta}{C}$$

 θ Weisskonstante422 KCCurie-Konstante0.29 cm³·K·mol⁻¹

Darstellung der Messwerte

Messwerte für 200G:

<i>T</i> [K]	<i>Н</i> [G]	μ [emu]	μ (kor) [emu]	χ_M [cm ³ mol ⁻¹]	<i>χ_M(Para)</i> [cm ³ mol ⁻¹]	μ _{eff} [μ _B]	1/χ _M (Para) [mol·cm ⁻³]	<i>χ_M(Para)·T</i> [cm ³ ·K·mol ⁻¹]
295,0	200	1,77E-05	1,95E-05	2,81E-03	3,26E-03	2,7772	306	0,9630
289,1	200	1,77E-05	1,95E-05	2,81E-03	3,27E-03	2,7508	306	0,9448
284,4	200	1,78E-05	1,96E-05	2,81E-03	3,27E-03	2,7305	306	0,9309
279,8	200	1,78E-05	1,96E-05	2,82E-03	3,28E-03	2,7107	305	0,9175
274,9	200	1,79E-05	1,97E-05	2,83E-03	3,29E-03	2,6906	304	0,9039
269,9	200	1,79E-05	1,97E-05	2,83E-03	3,29E-03	2,6661	304	0,8875
264,9	200	1,79E-05	1,97E-05	2,84E-03	3,30E-03	2,6443	303	0,8731
259,9	200	1,80E-05	1,98E-05	2,84E-03	3,30E-03	2,6221	303	0,8585
255,0	200	1,80E-05	1,98E-05	2,85E-03	3,31E-03	2,5988	302	0,8433
250,2	200	1,80E-05	1,98E-05	2,84E-03	3,30E-03	2,5726	303	0,8264
244,8	200	1,80E-05	1,98E-05	2,85E-03	3,31E-03	2,5480	302	0,8106
239,9	200	1,81E-05	1,99E-05	2,86E-03	3,32E-03	2,5250	301	0,7961
235,0	200	1,81E-05	1,99E-05	2,87E-03	3,32E-03	2,5012	301	0,7812
229,9	200	1,81E-05	2,00E-05	2,87E-03	3,33E-03	2,4759	300	0,7654
224,9	200	1,82E-05	2,00E-05	2,88E-03	3,34E-03	2,4527	299	0,7511
219,8	200	1,82E-05	2,01E-05	2,88E-03	3,34E-03	2,4254	299	0,7345
214,9	200	1,83E-05	2,01E-05	2,89E-03	3,35E-03	2,4002	299	0,7193
209,9	200	1,83E-05	2,02E-05	2,90E-03	3,36E-03	2,3762	298	0,7050
204,9	200	1,84E-05	2,02E-05	2,90E-03	3,36E-03	2,3487	297	0,6888
199,9	200	1,84E-05	2,02E-05	2,91E-03	3,37E-03	2,3212	297	0,6727
194,9	200	1,84E-05	2,02E-05	2,90E-03	3,36E-03	2,2911	297	0,6554
189,8	200	1,84E-05	2,03E-05	2,91E-03	3,37E-03	2,2636	297	0,6398
184,8	200	1,85E-05	2,03E-05	2,92E-03	3,38E-03	2,2351	296	0,6238
179,8	200	1,85E-05	2,04E-05	2,93E-03	3,39E-03	2,2080	295	0,6087
174,8	200	1,86E-05	2,04E-05	2,93E-03	3,39E-03	2,1791	295	0,5929
169,8	200	1,86E-05	2,04E-05	2,94E-03	3,40E-03	2,1494	294	0,5769
164,7	200	1,87E-05	2,05E-05	2,94E-03	3,40E-03	2,1189	294	0,5606
159,7	200	1,87E-05	2,05E-05	2,95E-03	3,41E-03	2,0874	294	0,5440
154,7	200	1,87E-05	2,06E-05	2,95E-03	3,41E-03	2,0566	293	0,5281
149,7	200	1,88E-05	2,06E-05	2,96E-03	3,42E-03	2,0239	293	0,5115
144,7	200	1,88E-05	2,07E-05	2,97E-03	3,43E-03	1,9933	292	0,4961
139,7	200	1,89E-05	2,07E-05	2,97E-03	3,43E-03	1,9598	291	0,4796
134,7	200	1,89E-05	2,08E-05	2,98E-03	3,44E-03	1,9271	290	0,4637

T [K]	[<i>Н</i> G]	μ [emu]	μ (kor) [emu]	χ _M [cm ³ ·mol ⁻¹]	$\chi_M(Para)$ [cm ³ ·mol ⁻¹]	μ_{eff} [µ _B]	$1/\chi_M(Para)$ [mol·cm ⁻³]	$\chi_M(Para) \cdot T$ [cm ³ ·K·mol ⁻¹]
129	9,7 2	200	1,90E-05	2,08E-05	2,99E-03	3,45E-03	1,8926	290	0,4473
124	,7 2	200	1,90E-05	2,09E-05	3,00E-03	3,46E-03	1,8580	289	0,4311
119	9,7 2	200	1,91E-05	2,10E-05	3,01E-03	3,47E-03	1,8248	288	0,4158
114	l,7 2	200	1,92E-05	2,10E-05	3,02E-03	3,48E-03	1,7876	288	0,3990
109	9,7 2	200	1,92E-05	2,11E-05	3,03E-03	3,49E-03	1,7508	287	0,3827
104	4,8 2	200	1,93E-05	2,12E-05	3,04E-03	3,50E-03	1,7135	286	0,3666
99	9,8 2	200	1,94E-05	2,12E-05	3,05E-03	3,51E-03	1,6745	285	0,3501
94	4,8 2	200	1,94E-05	2,13E-05	3,06E-03	3,52E-03	1,6342	284	0,3335
89	9,8 2	200	1,95E-05	2,14E-05	3,07E-03	3,53E-03	1,5936	283	0,3171
84	, 9 2	200	1,96E-05	2,15E-05	3,08E-03	3,54E-03	1,5518	282	0,3007
79	9,9 2	200	1,97E-05	2,16E-05	3,10E-03	3,56E-03	1,5092	281	0,2844
74	, 9 2	200	1,98E-05	2,17E-05	3,11E-03	3,57E-03	1,4641	280	0,2676
70),0 2	200	1,99E-05	2,18E-05	3,13E-03	3,59E-03	1,4178	279	0,2510
65	5,0 2	200	2,00E-05	2,19E-05	3,14E-03	3,60E-03	1,3692	278	0,2341
60),0 2	200	2,02E-05	2,20E-05	3,16E-03	3,62E-03	1,3188	276	0,2172
55	5,0 2	200	2,03E-05	2,21E-05	3,18E-03	3,64E-03	1,2663	275	0,2002
50),1 2	200	2,04E-05	2,22E-05	3,20E-03	3,65E-03	1,2102	274	0,1829
45	5,1 2	200	2,05E-05	2,23E-05	3,21E-03	3,67E-03	1,1510	272	0,1654
40),0 2	200	2,07E-05	2,25E-05	3,24E-03	3,70E-03	1,0885	270	0,1479
35	5,0 2	200	2,09E-05	2,28E-05	3,27E-03	3,73E-03	1,0226	268	0,1306
30),0 2	200	2,12E-05	2,31E-05	3,31E-03	3,77E-03	0,9519	265	0,1132
25	5,0 2	200	2,16E-05	2,34E-05	3,36E-03	3,82E-03	0,8746	262	0,0955
20),1 2	200	2,21E-05	2,40E-05	3,44E-03	3,90E-03	0,7932	256	0,0786
15	5,0 2	200	2,30E-05	2,49E-05	3,57E-03	4,03E-03	0,6969	248	0,0606
10),0 2	200	2,45E-05	2,64E-05	3,79E-03	4,25E-03	0,5841	235	0,0426
4	5,0 2	200	2,85E-05	3,03E-05	4,36E-03	4,81E-03	0,4396	208	0,0241

Messwerte für 500 G:

Т	H	μ	μ (kor)	Ҳм	χ _M (Para)	μ_{eff}	1/χ _M (Para)	$\chi_M(Para) \cdot T$
[K]	[G]	[emu]	[emu]	[cm ³ ·mol ⁻¹]	[cm ³ ·mol ⁻¹]	[µ _B]	[mol·cm ⁻³]	[cm ³ ·K·mol ⁻¹]
295,1	500	2,66E-05	3,12E-05	1,79E-03	2,25E-03	2,3063	444	0,6641
289,1	500	2,67E-05	3,13E-05	1,80E-03	2,26E-03	2,2869	443	0,6530
284,4	500	2,67E-05	3,13E-05	1,80E-03	2,26E-03	2,2682	443	0,6424
279,8	500	2,68E-05	3,14E-05	1,80E-03	2,26E-03	2,2513	442	0,6328
274,9	500	2,69E-05	3,14E-05	1,81E-03	2,27E-03	2,2337	441	0,6230
269,9	500	2,70E-05	3,16E-05	1,81E-03	2,27E-03	2,2168	440	0,6136
264,9	500	2,70E-05	3,16E-05	1,81E-03	2,27E-03	2,1964	440	0,6023
260,2	500	2,71E-05	3,16E-05	1,82E-03	2,28E-03	2,1784	439	0,5925
254,9	500	2,72E-05	3,18E-05	1,83E-03	2,28E-03	2,1594	438	0,5822
249,9	500	2,73E-05	3,18E-05	1,83E-03	2,29E-03	2,1405	437	0,5721
245,0	500	2,73E-05	3,19E-05	1,83E-03	2,29E-03	2,1210	436	0,5617

T [K]	<i>Н</i> [G]	μ [emu]	μ (kor) [emu]	<i>χ_M</i> [cm ³ ·mol ⁻¹]	$\chi_M(Para)$ [cm ³ ·mol ⁻¹]	$\mu_{e\!f\!f}$ [$\mu_{ m B}$]	1/χ _M (Para) [mol·cm ⁻³]	$\chi_M(Para) \cdot T$ [cm ³ ·K·mol ⁻¹]
239,9	500	2,74E-05	3,20E-05	1,84E-03	2,30E-03	2,1004	435	0,5508
234,9	500	2,75E-05	3,20E-05	1,84E-03	2,30E-03	2,0802	435	0,5403
229,9	500	2,76E-05	3,22E-05	1,85E-03	2,31E-03	2,0610	433	0,5304
224,9	500	2,76E-05	3,22E-05	1,85E-03	2,31E-03	2,0387	433	0,5189
219,9	500	2,77E-05	3,23E-05	1,86E-03	2,31E-03	2,0183	432	0,5086
214,9	500	2,78E-05	3,24E-05	1,86E-03	2,32E-03	1,9991	431	0,4990
209,9	500	2,78E-05	3,24E-05	1,86E-03	2,32E-03	1,9755	431	0,4873
204,9	500	2,80E-05	3,26E-05	1,87E-03	2,33E-03	1,9555	429	0,4775
199,8	500	2,80E-05	3,26E-05	1,87E-03	2,33E-03	1,9326	429	0,4663
194,8	500	2,82E-05	3,27E-05	1,88E-03	2,34E-03	1,9110	427	0,4560
189,8	500	2,82E-05	3,28E-05	1,88E-03	2,34E-03	1,8871	427	0,4447
184,8	500	2,83E-05	3,29E-05	1,89E-03	2,35E-03	1,8644	426	0,4340
179,8	500	2,84E-05	3,30E-05	1,90E-03	2,36E-03	1,8417	424	0,4235
174,8	500	2,85E-05	3,31E-05	1,90E-03	2,36E-03	1,8181	424	0,4127
169,8	500	2,86E-05	3,32E-05	1,91E-03	2,37E-03	1,7942	422	0,4019
164,7	500	2,87E-05	3,33E-05	1,91E-03	2,37E-03	1,7695	421	0,3910
159,7	500	2,89E-05	3,34E-05	1,92E-03	2,38E-03	1,7452	420	0,3803
154,7	500	2,89E-05	3,35E-05	1,93E-03	2,38E-03	1,7190	419	0,3690
149,7	500	2,91E-05	3,37E-05	1,94E-03	2,39E-03	1,6943	418	0,3584
144,7	500	2,92E-05	3,38E-05	1,94E-03	2,40E-03	1,6673	417	0,3471
139,7	500	2,93E-05	3,39E-05	1,95E-03	2,41E-03	1,6404	416	0,3360
134,7	500	2,95E-05	3,41E-05	1,96E-03	2,42E-03	1,6144	414	0,3254
129,7	500	2,96E-05	3,42E-05	1,96E-03	2,42E-03	1,5864	413	0,3142
124,7	500	2,97E-05	3,43E-05	1,97E-03	2,43E-03	1,5581	411	0,3031
119,7	500	2,98E-05	3,44E-05	1,98E-03	2,44E-03	1,5286	410	0,2918
114,7	500	3,00E-05	3,46E-05	1,99E-03	2,45E-03	1,4992	409	0,2807
109,7	500	3,02E-05	3,48E-05	2,00E-03	2,46E-03	1,4702	407	0,2699
104,8	500	3,04E-05	3,50E-05	2,01E-03	2,47E-03	1,4392	405	0,2586
99,8	500	3,06E-05	3,52E-05	2,02E-03	2,48E-03	1,4077	403	0,2474
94,8	500	3,07E-05	3,53E-05	2,03E-03	2,49E-03	1,3749	402	0,2360
89,8	500	3,10E-05	3,56E-05	2,05E-03	2,50E-03	1,3422	399	0,2250
84,9	500	3,12E-05	3,58E-05	2,06E-03	2,51E-03	1,3075	398	0,2134
79,9	500	3,14E-05	3,60E-05	2,07E-03	2,53E-03	1,2717	396	0,2019
74,9	500	3,17E-05	3,63E-05	2,09E-03	2,54E-03	1,2357	393	0,1907
70,0	500	3,19E-05	3,65E-05	2,10E-03	2,56E-03	1,1969	391	0,1789
65,0	500	3,22E-05	3,68E-05	2,11E-03	2,57E-03	1,1572	389	0,1672
60,0	500	3,25E-05	3,70E-05	2,13E-03	2,59E-03	1,1154	386	0,1554
55,0	500	3,28E-05	3,73E-05	2,15E-03	2,61E-03	1,0717	384	0,1434
50,1	500	3,31E-05	3,77E-05	2,17E-03	2,62E-03	1,0257	381	0,1314
45,0	500	3,35E-05	3,81E-05	2,19E-03	2,65E-03	0,9775	377	0,1193
40.0	500	3,39E-05	3,85E-05	2.21E-03	2.67E-03	0,9253	374	0.1069
35.0	500	3,45E-05	3,91E-05	2,25E-03	2,71E-03	0,8708	370	0.0947
22,0		.,	- , 00	_, 00	_, 00	.,	2.0	-,

<i>T</i> [K]	<i>Н</i> [G]	μ [emu]	μ (kor) [emu]	<i>χ_M</i> [cm ³ ·mol ⁻¹]	$\chi_M(Para)$ [cm ³ ·mol ⁻¹]	μ_{eff} [µ _B]	1/χ _M (Para) [mol·cm ⁻³]	$\chi_M(Para) \cdot T$ [cm ³ ·K·mol ⁻¹]
30,0	500	3,52E-05	3,98E-05	2,29E-03	2,74E-03	0,8120	364	0,0823
25,0	500	3,61E-05	4,07E-05	2,34E-03	2,80E-03	0,7484	357	0,0699
20,1	500	3,75E-05	4,21E-05	2,42E-03	2,88E-03	0,6808	348	0,0579
15,0	500	3,96E-05	4,42E-05	2,54E-03	3,00E-03	0,6008	333	0,0451
10,0	500	4,34E-05	4,80E-05	2,76E-03	3,22E-03	0,5081	311	0,0322
5,0	500	5,31E-05	5,77E-05	3,32E-03	3,77E-03	0,3892	265	0,0189

Messwerte für 1000 G:

Т [K]	Н [G]	μ [emu]	μ (kor) [emu]	<i>χ</i> _M [cm ³ ·mol ⁻¹]	$\chi_M(Para)$ [cm ³ ·mol ⁻¹]	$oldsymbol{\mu}_{e\!f\!f}$ [$oldsymbol{\mu}_{ extbf{B}}$]	1/χ _M (Para) [mol·cm ⁻³]	χ _M (Para)·T [cm ³ ·K·mol ⁻¹]
295,0	1000	3,67E-05	4,59E-05	1,32E-03	1,78E-03	2,0493	563	0,5244
289,1	1000	3,69E-05	4,61E-05	1,32E-03	1,78E-03	2,0317	561	0,5154
284,4	1000	3,71E-05	4,62E-05	1,33E-03	1,79E-03	2,0174	560	0,5082
279,8	1000	3,72E-05	4,63E-05	1,33E-03	1,79E-03	2,0026	559	0,5008
274,9	1000	3,72E-05	4,64E-05	1,33E-03	1,79E-03	1,9864	558	0,4927
269,9	1000	3,75E-05	4,66E-05	1,34E-03	1,80E-03	1,9718	556	0,4855
264,9	1000	3,76E-05	4,68E-05	1,34E-03	1,80E-03	1,9558	555	0,4776
259,9	1000	3,78E-05	4,69E-05	1,35E-03	1,81E-03	1,9396	553	0,4698
254,9	1000	3,79E-05	4,70E-05	1,35E-03	1,81E-03	1,9223	552	0,4614
250,0	1000	3,80E-05	4,72E-05	1,36E-03	1,81E-03	1,9062	551	0,4537
245,0	1000	3,81E-05	4,73E-05	1,36E-03	1,82E-03	1,8888	550	0,4454
240,0	1000	3,83E-05	4,75E-05	1,36E-03	1,82E-03	1,8720	548	0,4376
234,9	1000	3,85E-05	4,76E-05	1,37E-03	1,83E-03	1,8544	547	0,4294
229,8	1000	3,86E-05	4,77E-05	1,37E-03	1,83E-03	1,8354	546	0,4206
224,9	1000	3,87E-05	4,78E-05	1,38E-03	1,83E-03	1,8176	545	0,4125
219,9	1000	3,89E-05	4,81E-05	1,38E-03	1,84E-03	1,8001	543	0,4046
214,9	1000	3,90E-05	4,81E-05	1,38E-03	1,84E-03	1,7808	543	0,3960
209,9	1000	3,92E-05	4,84E-05	1,39E-03	1,85E-03	1,7629	541	0,3880
204,9	1000	3,94E-05	4,86E-05	1,40E-03	1,85E-03	1,7445	539	0,3800
199,8	1000	3,95E-05	4,87E-05	1,40E-03	1,86E-03	1,7242	538	0,3712
194,9	1000	3,98E-05	4,89E-05	1,41E-03	1,87E-03	1,7061	536	0,3635
190,0	1000	3,98E-05	4,90E-05	1,41E-03	1,87E-03	1,6849	536	0,3545
184,8	1000	4,00E-05	4,92E-05	1,41E-03	1,87E-03	1,6641	534	0,3458
179,8	1000	4,02E-05	4,94E-05	1,42E-03	1,88E-03	1,6442	533	0,3376
174,8	1000	4,04E-05	4,95E-05	1,42E-03	1,88E-03	1,6231	531	0,3289
169,7	1000	4,06E-05	4,98E-05	1,43E-03	1,89E-03	1,6028	529	0,3208
164,7	1000	4,08E-05	4,99E-05	1,44E-03	1,89E-03	1,5809	528	0,3121
159,7	1000	4,11E-05	5,02E-05	1,44E-03	1,90E-03	1,5601	526	0,3039
154,7	1000	4,12E-05	5,03E-05	1,45E-03	1,91E-03	1,5366	525	0,2948
149,7	1000	4,14E-05	5,06E-05	1,45E-03	1,91E-03	1,5139	523	0,2862

<i>T</i> [K]	<i>Н</i> [G]	μ [emu]	μ (kor) [emu]	χ_M [cm ³ ·mol ⁻¹]	$\chi_M(Para)$ [cm ³ ·mol ⁻¹]	μ_{eff} [µ _B]	<i>1/χ_M(Para)</i> [mol·cm ⁻³]	$\chi_M(Para) \cdot T$ [cm ³ ·K·mol ⁻¹]
144,7	1000	4,16E-05	5,07E-05	1,46E-03	1,92E-03	1,4903	522	0,2773
139,7	1000	4,19E-05	5,10E-05	1,47E-03	1,93E-03	1,4675	519	0,2689
134,7	1000	4,21E-05	5,13E-05	1,47E-03	1,93E-03	1,4436	518	0,2602
129,7	1000	4,25E-05	5,16E-05	1,48E-03	1,94E-03	1,4204	515	0,2519
124,7	1000	4,26E-05	5,18E-05	1,49E-03	1,95E-03	1,3942	514	0,2427
119,7	1000	4,29E-05	5,21E-05	1,50E-03	1,96E-03	1,3690	511	0,2340
114,7	1000	4,32E-05	5,24E-05	1,51E-03	1,96E-03	1,3433	509	0,2253
109,7	1000	4,36E-05	5,27E-05	1,52E-03	1,97E-03	1,3173	506	0,2167
104,8	1000	4,38E-05	5,30E-05	1,52E-03	1,98E-03	1,2892	505	0,2075
99,8	1000	4,42E-05	5,34E-05	1,53E-03	1,99E-03	1,2619	502	0,1988
94,8	1000	4,45E-05	5,37E-05	1,54E-03	2,00E-03	1,2330	500	0,1898
89,8	1000	4,50E-05	5,41E-05	1,56E-03	2,01E-03	1,2039	496	0,1810
84,9	1000	4,54E-05	5,45E-05	1,57E-03	2,03E-03	1,1733	494	0,1719
79,9	1000	4,58E-05	5,49E-05	1,58E-03	2,04E-03	1,1420	491	0,1628
74,9	1000	4,63E-05	5,55E-05	1,60E-03	2,05E-03	1,1102	487	0,1539
70,0	1000	4,68E-05	5,59E-05	1,61E-03	2,07E-03	1,0759	484	0,1445
65,0	1000	4,73E-05	5,65E-05	1,62E-03	2,08E-03	1,0412	480	0,1354
60,0	1000	4,79E-05	5,70E-05	1,64E-03	2,10E-03	1,0042	477	0,1259
55,0	1000	4,84E-05	5,76E-05	1,65E-03	2,11E-03	0,9652	473	0,1163
50,1	1000	4,91E-05	5,83E-05	1,67E-03	2,13E-03	0,9247	469	0,1068
45,0	1000	4,97E-05	5,89E-05	1,69E-03	2,15E-03	0,8808	465	0,0969
40,0	1000	5,07E-05	5,99E-05	1,72E-03	2,18E-03	0,8358	459	0,0872
35,0	1000	5,18E-05	6,10E-05	1,75E-03	2,21E-03	0,7874	452	0,0774
30,0	1000	5,33E-05	6,24E-05	1,79E-03	2,25E-03	0,7357	444	0,0676
25,0	1000	5,52E-05	6,43E-05	1,85E-03	2,31E-03	0,6796	433	0,0577
20,1	1000	5,78E-05	6,70E-05	1,93E-03	2,38E-03	0,6196	419	0,0479
15,0	1000	6,20E-05	7,12E-05	2,05E-03	2,50E-03	0,5491	399	0,0376
10,0	1000	6,95E-05	7,86E-05	2,26E-03	2,72E-03	0,4672	368	0,0273
5,0	1000	8,85E-05	9,77E-05	2,81E-03	3,27E-03	0,3621	306	0,0164

Messwerte für 5000 G:

<i>T</i> [K]	<i>Н</i> [G]	μ [emu]	μ (kor) [emu]	χ_M [cm ³ ·mol ⁻¹]	$\chi_M(Para)$ [cm ³ ·mol ⁻¹]	μ _{eff} [μ _B]	1/χ _M (Para) [mol·cm ⁻³]	$\chi_M(Para)\cdot T$ [cm ³ ·K·mol ⁻¹]
295,0	5000	-5,53E-05	-9,55E-06	-5,49E-05	4,04E-04	0,9766	2478	0,1191
289,1	5000	-5,38E-05	-8,04E-06	-4,62E-05	4,12E-04	0,9771	2425	0,1192
284,4	5000	-5,44E-05	-8,63E-06	-4,96E-05	4,09E-04	0,9650	2446	0,1163
279,8	5000	-5,41E-05	-8,35E-06	-4,80E-05	4,11E-04	0,9590	2436	0,1148
275,0	5000	-5,34E-05	-7,67E-06	-4,41E-05	4,14E-04	0,9553	2413	0,1140
269,9	5000	-5,26E-05	-6,83E-06	-3,93E-05	4,19E-04	0,9520	2385	0,1132
264,9	5000	-5,29E-05	-7,10E-06	-4,08E-05	4,18E-04	0,9413	2394	0,1106
259,9	5000	-5,21E-05	-6,29E-06	-3,62E-05	4,22E-04	0,9376	2368	0,1098
254,9	5000	-5,17E-05	-5,95E-06	-3,42E-05	4,24E-04	0,9306	2357	0,1081

. <u> </u>	<i>T</i> [K]	Н [G]	μ [emu]	μ (kor) [emu]	χ _M [cm ³ ·mol ⁻¹]	$\chi_M(Para)$ [cm ³ ·mol ⁻¹]	$\mu_{e\!f\!f}$ [$\mu_{ m B}$]	1/χ _M (Para) [mol·cm ⁻³]	$\chi_M(Para)\cdot T$ [cm ³ ·K·mol ⁻¹]
	249,9	5000	-5,12E-05	-5,48E-06	-3,15E-05	4,27E-04	0,9245	2342	0,1067
	244,9	5000	-5,07E-05	-4,89E-06	-2,81E-05	4,30E-04	0,9189	2323	0,1054
	239,9	5000	-5,01E-05	-4,33E-06	-2,49E-05	4,34E-04	0,9127	2306	0,1040
	234,8	5000	-4,97E-05	-3,97E-06	-2,28E-05	4,36E-04	0,9052	2295	0,1023
	229,9	5000	-4,94E-05	-3,60E-06	-2,07E-05	4,38E-04	0,8979	2284	0,1007
	224,9	5000	-4,88E-05	-3,06E-06	-1,76E-05	4,41E-04	0,8911	2268	0,0992
	219,8	5000	-4,83E-05	-2,56E-06	-1,47E-05	4,44E-04	0,8839	2253	0,0976
	214,8	5000	-4,85E-05	-2,72E-06	-1,56E-05	4,43E-04	0,8730	2258	0,0952
	209,9	5000	-4,74E-05	-1,61E-06	-9,24E-06	4,49E-04	0,8690	2226	0,0943
	204,8	5000	-4,71E-05	-1,38E-06	-7,91E-06	4,51E-04	0,8598	2219	0,0923
	199,8	5000	-4,62E-05	-4,77E-07	-2,74E-06	4,56E-04	0,8540	2194	0,0911
	194,9	5000	-4,56E-05	2,04E-07	1,18E-06	4,60E-04	0,8472	2175	0,0896
	189,8	5000	-4,51E-05	6,85E-07	3,94E-06	4,62E-04	0,8383	2162	0,0878
	184,8	5000	-4,44E-05	1,35E-06	7,75E-06	4,66E-04	0,8308	2145	0,0862
	179,8	5000	-4,40E-05	1,80E-06	1,03E-05	4,69E-04	0,8216	2133	0,0843
	174,8	5000	-4,24E-05	3,41E-06	1,96E-05	4,78E-04	0,8180	2092	0,0836
	169,8	5000	-4,22E-05	3,53E-06	2,03E-05	4,79E-04	0,8069	2089	0,0813
	164,7	5000	-4,20E-05	3,77E-06	2,17E-05	4,80E-04	0,7959	2083	0,0791
	159,7	5000	-4,04E-05	5,37E-06	3,09E-05	4,89E-04	0,7912	2043	0,0782
	154,7	5000	-4,00E-05	5,80E-06	3,33E-05	4,92E-04	0,7806	2033	0,0761
	149,7	5000	-3,89E-05	6,82E-06	3,92E-05	4,98E-04	0,7725	2009	0,0745
	144,7	5000	-3,84E-05	7,32E-06	4,21E-05	5,01E-04	0,7616	1998	0,0724
	139,7	5000	-3,79E-05	7,87E-06	4,53E-05	5,04E-04	0,7507	1985	0,0704
	134,7	5000	-3,69E-05	8,87E-06	5,10E-05	5,10E-04	0,7413	1963	0,0686
	129,7	5000	-3,58E-05	1,00E-05	5,75E-05	5,16E-04	0,7321	1938	0,0669
	124,7	5000	-3,51E-05	1,06E-05	6,12E-05	5,20E-04	0,7204	1924	0,0648
	119,7	5000	-3,40E-05	1,18E-05	6,76E-05	5,26E-04	0,7102	1901	0,0630
	114,7	5000	-3,30E-05	1,28E-05	7,33E-05	5,32E-04	0,6990	1880	0,0610
	109,7	5000	-3,19E-05	1,38E-05	7,96E-05	5,38E-04	0,6877	1858	0,0591
	104,8	5000	-3,06E-05	1,51E-05	8,71E-05	5,46E-04	0,6766	1833	0,0572
	99,8	5000	-2,94E-05	1,63E-05	9,39E-05	5,52E-04	0,6645	1810	0,0551
	94,8	5000	-2,84E-05	1,74E-05	1,00E-04	5,59E-04	0,6512	1790	0,0530
	89,8	5000	-2,66E-05	1,92E-05	1,10E-04	5,69E-04	0,6397	1758	0,0511
	84,9	5000	-2,57E-05	2,00E-05	1,15E-04	5,74E-04	0,6244	1743	0,0487
	79,9	5000	-2,42E-05	2,16E-05	1,24E-04	5.83E-04	0,6107	1717	0,0466
	74.9	5000	-2.27E-05	2.31E-05	1.33E-04	5.91E-04	0.5956	1692	0.0443
	70.0	5000	-2.09E-05	2.49E-05	1.43E-04	6.02E-04	0.5806	1662	0.0421
	65.0	5000	-1.89E-05	2.69E-05	1.55E-04	6.13E-04	0.5649	1631	0.0398
	60.0	5000	-1.75E-05	2.82E-05	1,62E-04	6.21E-04	0.5463	1611	0.0373
	55.0	5000	-1.58E-05	2,99E-05	1,72E-04	6.31E-04	0.5273	1586	0.0347
	50.1	5000	-1 41F-05	3 17F-05	1,72E 04	6.41F-04	0 5069	1561	0.0321
	45 O	5000	-2 35E-06	$4.34F_{-05}$	2 50F-04	7 085-04	0,5054	1/12	0,0321
	+Э,0	5000	-2,551-00	т,5тш-05	2,501-04	7,001-04	0,5054	1412	0,0317

Т	H	μ	μ (kor)	Хм	$\chi_M(Para)$	μ_{eff}	1/χ _M (Para)	$\chi_M(Para) \cdot T$
[K]	[G]	[emu]	[emu]	[cm ³ ·mol ⁻¹]	[cm ³ ·mol ⁻¹]	[µ _B]	[mol·cm ⁻³]	[cm ³ ·K·mol ⁻¹]
 40,0	5000	2,03E-06	4,78E-05	2,75E-04	7,33E-04	0,4848	1364	0,0294
35,0	5000	1,44E-05	6,01E-05	3,46E-04	8,04E-04	0,4748	1243	0,0282
30,0	5000	1,92E-05	6,50E-05	3,74E-04	8,32E-04	0,4471	1202	0,0250
25,0	5000	2,73E-05	7,31E-05	4,20E-04	8,79E-04	0,4194	1138	0,0220
20,1	5000	3,94E-05	8,51E-05	4,89E-04	9,48E-04	0,3905	1055	0,0190
15,0	5000	5,91E-05	1,05E-04	6,03E-04	0,00106	0,3574	942	0,0160
10,0	5000	9,46E-05	1,40E-04	8,07E-04	0,00127	0,3186	790	0,0127
5,0	5000	1,87E-04	2,33E-04	0,00134	0,0018	0,2688	556	0,0090

Lebenslauf

Persönliche Daten:

Name	Ulrike Ritter
Geburtsdaten:	9.11.1979 in München
Staatsangehörigkeit:	deutsch
Familienstand:	ledig

Schulausbildung:

09/1986 - 07/1990	Grundschule Planegg
09/1990 - 06/1999	Feodor-Lynen-Gymnasium Planegg
06/1999	Allgemeine Hochschulreife

Studium:

11/1999 - 03/2005	Diplomstudiengang Chemie an der Ludwig-Maximilians- Universität in München
07/2004	mündliche Diplom-Chemiker Hauptprüfung
09/2004-03/2005	Anfertigung der Diplomarbeit im Arbeitskreis von Prof. Dr. Heinz Langhals im Institut für organische Chemie an der Ludwig-Maximilians-Universität Thema: <i>Wege zu neuen Chinacridon-Farbstoffen</i>

Promotion:

04/2005 - 01/2008	Dissertati	Dissertation im Arbeitskreis von Prof. Dr. Heinz Langhals				
	Thema:	Persistente	Radikalanionen	mit	ungewöhnlichen	
	Eigensche	aften auf der I	Basis von Carbons	äurein	ıiden	

Berufserfahrung:

04/2005 – 01/2008 wissenschaftliche Mitarbeiterin im Institut für organische Chemie an der Ludwig-Maximilians-Universität, Betreuerin bei Organisation und Durchführung des Praktikums für Makromolekulare Chemie; Betreuung von Forschungspraktika

Patentanmeldungen:

H. Langhals, U. Ritter, "Gammahydroxyalkylnaphthalinbisimide-neue Weißpigmente", *Ger. Offen*, DE 102007061307.7 (19. Dezember, **2007**).

H. Langhals, U. Ritter, "Stable radical anions from perylene-3,4:9,10-tetra-bis-imides for dyeing hair", *Ger. Offen*, DE 102006011271.7 (10. März, **2006**); *Chem. Abstr.* **2007**, *147*, 345625.

H. Langhals, U. Ritter, "Stable radical anions from perylene-3,4:9,10-tetra-bis-imides", *Ger. Offen*, DE 102006011270.9 (10. März, **2006**); *Chem. Abstr.* **2007**, *147*, 345624.

H. Langhals, U. Ritter, "Stable radical anions from perylene-3,4:9,10-tetra-bis-imides as near-IR-absorbing dyes", *Ger. Offen*, DE 102006011269.5 (10. März, **2006**); *Chem. Abstr.* **2007**, *147*, 367019.

Anhang

Literatur

¹ D. C. Nonhebel, J. C. Walton, *Free-radical Chemistry*, Cambridge University Press 1974,

ISBN 0-521-20149-7.

- ² R. G. Hicks, Org. Biomol. Chem. 2007, 5, 1321-1338.
- ³ E. Fremy, Ann. Chim. Phys. 1845, 15, 459.
- ⁴ M. Gomberg, J. Am. Chem. Soc. **1900**, 22, 757-771.
- ⁵ C. F. Koelsch, J. Am. Chem. Soc. **1957**, 79, 4439-4441.
- ⁶ G. M. Coppinger, J. Am. Chem. Soc. 1957, 79, 501-502.
- ⁷ F. Dietz, N. Tyutyllulkov, M. Baumgarten, J. Phys. Chem. B 1998, 102, 3912-3916.
- ⁸ S. Goldschmidt, J. Bader, Annalen 1929, 473, 137-62.
- ⁹ H. Langhals, *Vorlesung Polymerchemie* **2005**, an der Ludwig-Maximilians-Universität München.
- ¹⁰ E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. E. Leedy, R. N. Adams, *J. Am. Chem. Soc.* **1966**, *88*, 3498.
- ¹¹ D. Marsh, V. A. Livshits, *Physics in medicine and biology* **1998**, *43* (7), 1977-1986; *Chem. Abstr.* **1998**, 366620.
- ¹² H. Zimmer, D. C. Lanking, S. W. Horgan, *Chem. Rev.* **1971**, *71*, 229-246.
- ¹³ A. E. J. de Nooy, A. C. Besemer, H. van Bekkum, *Synthesis* **1996**, 1153-1174.
- ¹⁴ R. A. Sheldon, I. Arends, G. J. Ten Brinks, A. Dijksman, Acc. Chem. Res. 2002, 35, 774-781.
- ¹⁵ P. Chaudhuri, K. Wieghardt, Prog. Inorg. Chem. 2001, 50, 151-216; Chem. Abstr. 2002, 136, 334121.
- ¹⁶ W. Plass, *Chemie in unserer Zeit* **1998**, 6, 323-333.
- ¹⁷ M. Tamura, Y. Nakuzawa, D. Shiomi, K. Nazawa, M. Ishikawa, M. Takahashi, M. Kinoshita, *Chem. Phys. Lett.* **1991**, *186*, 401-404.

¹⁸M. Kardos, D. R. P. 276357, 1913; *Friedländers Fortschr. Teerfarbenfabr.* **1917**, *12*, 492; *Chem. Abstr.* **1914**, 8, 3243.

¹⁹ H. Langhals, *Heterocycles* **1995**, *40*, 477-500.

²⁰ W. Herbst, K. Hunger, *Industrielle Organische Pigmente. Herstellungen, Eigenschaften, Anwendung,* 2. Aufl., VCH Verlagsges., Weinheim **1995**, ISBN 3-527-28744.

- ²¹ H. Langhals, Ger. Pat. 3016764, (30. April, **1980**); Chem. Abstr. **1982**, 96, P70417x.
- ²² H. Langhals, Nachr. Chem. Tech. Lab. 1980, 28, 716-718; Chem. Abstr. 1981, 95, R9816q.
- ²³ A. Rademacher, S. Märkle, H. Langhals, *Chem. Ber.* **1982**, *115*, 2927-2934.
- ²⁴ H. Langhals, Ger. Offen. DE 3703495, (5. Februar, **1987**); Chem. Abstr. **1989**, 110, P59524s.
- ²⁵ S. Demmig, H. Langhals, *Chem. Ber.* **1988**, *121*, 225-230.
- ²⁶ H. Langhals, S. Demmig, T. Portrawa, J. Prakt. Chem. 1991, 333, 733-748.
- ²⁷ H. Langhals, J. Karolin, L. B.-Å. Johannson, J. Chem. Soc., Faraday Trans. 1998, 94, 2919-2922.
- ²⁸ H. Langhals, W. Jona, Angew. Chem. **1998**, 110, 998-1001; Angew. Chem. Int. Ed. Engl. **1998**, 37, 952-955.
- ²⁹ H. Langhals, F. Süßmeier, J. Prakt. Chem. 1999, 341, 309-311.
- ³⁰ L. Feiler, H. Langhals, K. Polborn, *Liebigs Ann. Chem.* **1995**, 1229-1244.
- ³¹ H. Langhals, S. Kirner, Eur. J. Org. Chem. 2000, 365-380.

- ³² H. Langhals, H. Bastani-Oskoui, J. Prakt. Chem. 1997, 339, 597-602.
- ³³ H. Langhals, R. El-Shishtawy, P. von Unold, M. Rauscher, *Chem. Eur. J.* 2006, *12*, 4642-4645.
- ³⁴ H. Langhals, J. Büttner, P. Blanke, *Synthesis*, 364-366.
- ³⁵ H. Langhals, H. Jaschke, Chem. Eur. J. 2006, 12, 2815-2824.
- ³⁶ H. Langhals, *Helvetica Chimica Acta* **2005**, 88, 1309-1343.
- ³⁷ H. Zollinger, *Color Chemistry, Synthesis, Properties and Applications of Organic Dyes and Pigments*, 3. Aufl., Wiley-VCH, Zürich **2003**; ISBN 3-906390.

³⁸ H. R. Schweizer, *Künstliche Organische Farbstoffe und ihre Zwischenprodukte*, 1. Aufl., S. 385, Springer-Verlag, Berlin, **1964**, LCCC-Nr. 63-23138.

- ³⁹ H. Langhals, H. Jaschke, H. Bastani-Oskoui, M. Speckbacher, Eur. J. Org. Chem. 2005, 4313-4321.
- ⁴⁰ W. Umbach, *Kosmetik-Entwicklung, Herstellung und Anwendung kosmetischer Mittel*, 2. *Erweiterte Aufl.* Georg Thieme Verlag, Stuttgart-New York, **1995**, ISBN 3-13-712602-9, S. 294 ff.
- ⁴¹ M. Javet, C. Müller, A. Villarlod, *Ger. Offen.*, DE 102004014763, 26. März **2004**, *Chem. Abstr.* **2005**, *143*, 352830.
- ⁴² M. Javet, C. Müller, A. Villarlod, *Ger. Offen.*, DE 102004014764, 26. März **2004**, *Chem. Abstr.* **2005**, *143*, 372823.
- ⁴³ Organikum, Org.-chem. Grundpraktikum, 17. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin, 1988,
 S. 51.
- ⁴⁴ J. J. Blomfield, J. Org. Chem. **1961**, 26, 4112-4115.
- ⁴⁵ H. Langhals, F.T. Wetzel, Ger. Offen., DE 10357978, (11. Dezember, 2003); Chem. Abstr. 2005, 140, 165442.
- ⁴⁶ E. Spietschka et al., Ger. Offen., US 4496731, **1983**, Chem. Abstr. **1983**, 99, 214170.
- ⁴⁷ M. Hesse, H. Meier, B. Zeeh, *Spektroskopische Methoden in der organischen Chemie*, 5. Aufl. Georg Thieme Verlag Stuttgart-New York, **1995**.
- ⁴⁸ H. Langhals in R. I. Zalewski, T. M. Krygowski, J. Shorter, *Similarity Models in Organic Chemistry, Biochemistry and Related Fields*, Elsevier Publishers, Amsterdam **1991**, 283-342.
- ⁴⁹ G. Scheibe, Angew. Chem. **1936**, 49, 563.
- ⁵⁰ W. Kuhn, *Trans. Faraday. Soc.* **1930**, *26*, 293.
- ⁵¹ M. Kasha, H. R. Rawls, M. A. El-Bayoumi, Pure Appl. Chem. 1965, 11, 371-392.
- ⁵² E. Jelley, *Nature (London)* **1936**, *138*, 1009-1010.
- ⁵³ Dipl.-Chem. A. Pfreintner, *Mündliche Mitteilung*.
- ⁵⁴ H. Langhals, P. v. Unold, Angew. Chem. **1995**, 107, 2436-2439.
- ⁵⁵ J. Salbeck, H. Kunkely, H. Langhals, R. W. Saalfrank, J. Daub, *Chimia* **1989**, *43*, 6-9.
- ⁵⁶ D. Gosztola, M. P. Niemczyk, W. Svec, A. S. Lukas, M. R. Wasielewski, *J. Phys. Chem.*, **2000**, *104*, 6545-6551.
- ⁵⁷ S. K. Lee, Y. Zu, A. Herrmann, Y. Geerts, K. Müllen, A. J. Bard, J. Am. Soc. **1999**, 121, 3513-3520.
- ⁵⁸ T. Kircher, H.-G. Löhmannsröben, *Phys. Chem. Chem. Phys.* **1999**, *1*, 3987-3992.
- ⁵⁹ W. Marte, P. Rys, (Ciba-Geigy A.-G., Schweiz), *Ger. Offen.* **1990**, EP 357548 (7. März **1990**), *Chem. Abstr.* **2007**, *113*, 25500.
- ⁶⁰ P. Rys, *Cholorchem 2000 L11*.

- ⁶¹ F. Nestelberger, Ger. Offen. DE897992, (26. 11. 1953); Chem. Abstr. 1958, 52, 100717.
- ⁶² G. Muthuraman, K. Palanivelu, *Dyes and Pigments* **2005**, *64*, 251-257.
- ⁶³ H. Langhals, U. Ritter, Ger. Offen., DE 102006011269 (10. März. 2006); Chem. Abstr. 2007, 147, 345625.
- ⁶⁴ J. Piccard, J. Am. Chem. Soc. 1926, 48, 2352-2354.
- ⁶⁵ J. E. Bennett, B. Mile, *Transactions oft he Faraday Society* **1971**, 67, (6), 1587-1597.
- ⁶⁶ E. K. Todd, S. Wang, X. Wan, Z. Y. Wang, *Tetrahedron Lett.* 2005, 46, 587-590.
- ⁶⁷ In Referenz 66 ist im UV/Vis-Spektrum der Naphthalinbisimidradikalanionen zwischen 471 und 530 nm eine zusätzliche Schulter zusehen. Diese wurde jedoch weder in Referenz 55, noch in den hier vorliegenden Spektren gefunden.
- ⁶⁸ P. W. Atkins, *Physikalische Chemie*, Weinheim; New York; Basel; Cambridge; Tokyo: VCH-Verlagsgesellschaft, **1996**, ISBN 3-527-28507-5.
- ⁶⁹ E. Clar., M. Zander, J. Chem. Soc. **1957**, 4616-4619.
- ⁷⁰ E. Clar, *Polycyclic Hydrocarbons*, Academic Press, New York, **1964**.
- ⁷¹ M. Rauscher, *Dissertation*, Universität München, **2006**.
- ⁷² F. Nolde, W. Pisula, S. Müller, C. Kohl, K. Müllen, *Chem. Mater.* **2006**, *18*, 3715-3725.
- ⁷³ F. Nolde, J. Qu, C. Kohl, N. G. Pschirer, E. Reuther, K. Müllen, *Chem. Eur. Joc.* 2005, 11, 3959-3967.
- ⁷⁴ H. Langhals, U. Ritter, Ger. Offen., DE 102006011271, (10. März, 2006); Chem. Abstr. 2007, 147, 345624.
- ⁷⁵ J. van Vleck, *The Theory of Electric and Magnetic Susceptibilities*, Oxford University Press, Oxford, **1932**.
- ⁷⁶ H. Lueken, *Magnetochemie*, B. G. Teubner Stuttgart-Leipzig, **1999**.
- ⁷⁷ J. H. van Fleck, *Physica* **1973**, *69*, 177-192.
- ⁷⁸ http://de.wikipedia.org/wiki/SQUID, 16.1.2008.
- ⁷⁹ David R. Lide Editor-in-Chief, Handbook of Chemistry and Physics, CRC Press, 80th Edition, 1999-2000.
- ⁸⁰ B. Weber, Vorlesung Molekulare Magneten **2005**, an der Ludwig-Maximilians-Universität München.
- ⁸¹ B. Bleaney, K. D. Bowers, Proc. Roy. Soc. (London) Ser. A 1952, 214, 451.
- ⁸² Alle untersuchten Farbstoffe wurden auch für Celluloseoberflächen getestet. Aufgrund der veränderten Oberflächenstruktur und da hier die Färbungen auch problemlos bei hohen pH-Werten durchgeführt werden konnten fielen die Farbergebnisse auf Cellulose etwas intensiver aus, als auf Keratin.
- ⁸³ M. Speckbacher, J. Baumeister, Ger. Offen., WO 2005123012, (1. Juni 2005), Chem. Abstr. 2005, 144, 93800.
- ⁸⁴ D. M. Lewis, Ger. Offen., US 5364415, (15. November, 1994), Chem. Abstr. 1995, 122, 38536.
- ⁸⁵ H. Langhals, U. Ritter, Ger. Offen., DE 102007061307.7, (19. Dezember, 2007).