Logo Logo
Hilfe
Kontakt
Switch language to English
Entwicklung und Analyse polarisierbarer Potentialfunktionen für Molekulardynamiksimulationen
Entwicklung und Analyse polarisierbarer Potentialfunktionen für Molekulardynamiksimulationen
Molekülmechanische (MM) Molekulardynamik-(MD)-Simulationen sollen eine virtuelle Realität von Makromolekülen im Computer erschaffen. Dabei zeigten sorgfältige Tests wiederholt, dass die bisherigen MM-Kraftfelder nur bedingt geeignet sind, um experimentelle Referenzdaten zu reproduzieren. In vielen Fällen sind die Mängel der Beschreibung auf die Vernachlässigung von nicht-additiven Effekten, insbesondere der elektrostatischen Polarisation, zurückzuführen. Das Wassermolekül ist stark polarisierbar und muss in MD-Simulationen von Biomolekülen einbezogen werden. Aus diesem Grund werden im ersten Teil meiner Arbeit die Effekte von externen elektrischen Feldern auf Wassermoleküle untersucht. In polarisierbaren MM-Modellen für Wasser wird das induzierte Dipolmoment zumeist an das Feld am Ort des Sauerstoffatoms gekoppelt – die Elektronendichte eines realen Wassermoleküls reagiert aber auf ein Volumenmittel des Feldes. Es wird gezeigt, dass im Gegensatz bisherigen Meinung, das elektrische Feld, dem ein Wassermolekül im Volumenwasser ausgesetzt ist, nicht homogen, sondern selbst auf dem kleinen Volumen, welches das Molekül einnimmt, hochgradig inhomogen ist. Die Feldinhomogenität ist aber dergestalt, dass sie durch eine mittlere Feldinhomogenität beschrieben werden kann. Deshalb ist das mittlere Feld annähernd proportional zum Feld am Ort des Sauerstoffatoms und kann daraus mit Hilfe eines Skalierungsfaktors berechnet werden. Das skalierte Feld kann dann zur Berechnung des Dipolmoments von punkt-polarisierbaren Wassermodellen herangezogen werden. Es wird außerdem gezeigt, dass die Polarisierbarkeit, die als Proportionalitätskonstante bei der Berechnung des Dipolmoments auftaucht, in der flüssigen Phase den gleichen Wert wie bei isolierten Wassermolekülen hat, obwohl ihre Geometrie dort von der Gasphasengeometrie abweicht. Dies ist darauf zurückzuführen, dass sich für die spezifische Geometrieänderung, die beim Transfer in die flüssige Phase beobachtet wird, zwei Beiträge zur Polarisierbarkeit gegenseitig aufheben. Diese Beiträge resultieren allgemein aus der Elongation der Bindungslängen und der Kompression des Bindungswinkels. Die Frage, ob der Einsatz eines solchen polarisierbaren Kraftfeldes die Beschreibung von Makromolekülen, wie beispielsweise Proteinen, verbessert, kann nur durch Vergleich mit dem Experiment beantwortet werden. Infrarotspektren sind hoch sensitiv bezüglich lokaler elektrischer Felder und wären deshalb eine gute Referenz. Theoretische Vorhersagen solcher Spektren sind allerdings nur für eine der in Proteinen auftretenden Banden – und auch hier nur bedingt – möglich. Der zweite Teil dieser Dissertation beschäftigt sich deshalb mit der Entwicklung eines Kraftfelds zur Berechnung aller Schwingungsbanden des Proteinrückgrats. Hier wird der Einfluss der lokalen elektrischen Felder auf die Stärke der kovalenten Bindungen explizit berücksichtigt. Aufbauend auf einer Vorabversion eines solchen Kraftfelds wird eine Methode entwickelt, um Schwingungsspektren mit spektroskopischer Genauigkeit, d.h. mit Fehlern im Bereich von wenigen Wellenzahlen, vorherzusagen. Der minimale Parametersatz, der zur korrekten Beschreibung dieser Schwingungsspektren notwendig ist, wird identifiziert, und die entbehrlichen Parameter werden eliminiert. Anhand des Moleküls N-Methylacetamid wird demonstriert, dass das neue Kraftfeld in der Lage ist, solvatochrome Verschiebungen für verschiedene polare Lösungsmittel gut zu reproduzieren.
Not available
Schropp, Bernhard
2010
Deutsch
Universitätsbibliothek der Ludwig-Maximilians-Universität München
Schropp, Bernhard (2010): Entwicklung und Analyse polarisierbarer Potentialfunktionen für Molekulardynamiksimulationen. Dissertation, LMU München: Fakultät für Physik
[thumbnail of Schropp_Bernhard.pdf]
Vorschau
PDF
Schropp_Bernhard.pdf

15MB

Abstract

Molekülmechanische (MM) Molekulardynamik-(MD)-Simulationen sollen eine virtuelle Realität von Makromolekülen im Computer erschaffen. Dabei zeigten sorgfältige Tests wiederholt, dass die bisherigen MM-Kraftfelder nur bedingt geeignet sind, um experimentelle Referenzdaten zu reproduzieren. In vielen Fällen sind die Mängel der Beschreibung auf die Vernachlässigung von nicht-additiven Effekten, insbesondere der elektrostatischen Polarisation, zurückzuführen. Das Wassermolekül ist stark polarisierbar und muss in MD-Simulationen von Biomolekülen einbezogen werden. Aus diesem Grund werden im ersten Teil meiner Arbeit die Effekte von externen elektrischen Feldern auf Wassermoleküle untersucht. In polarisierbaren MM-Modellen für Wasser wird das induzierte Dipolmoment zumeist an das Feld am Ort des Sauerstoffatoms gekoppelt – die Elektronendichte eines realen Wassermoleküls reagiert aber auf ein Volumenmittel des Feldes. Es wird gezeigt, dass im Gegensatz bisherigen Meinung, das elektrische Feld, dem ein Wassermolekül im Volumenwasser ausgesetzt ist, nicht homogen, sondern selbst auf dem kleinen Volumen, welches das Molekül einnimmt, hochgradig inhomogen ist. Die Feldinhomogenität ist aber dergestalt, dass sie durch eine mittlere Feldinhomogenität beschrieben werden kann. Deshalb ist das mittlere Feld annähernd proportional zum Feld am Ort des Sauerstoffatoms und kann daraus mit Hilfe eines Skalierungsfaktors berechnet werden. Das skalierte Feld kann dann zur Berechnung des Dipolmoments von punkt-polarisierbaren Wassermodellen herangezogen werden. Es wird außerdem gezeigt, dass die Polarisierbarkeit, die als Proportionalitätskonstante bei der Berechnung des Dipolmoments auftaucht, in der flüssigen Phase den gleichen Wert wie bei isolierten Wassermolekülen hat, obwohl ihre Geometrie dort von der Gasphasengeometrie abweicht. Dies ist darauf zurückzuführen, dass sich für die spezifische Geometrieänderung, die beim Transfer in die flüssige Phase beobachtet wird, zwei Beiträge zur Polarisierbarkeit gegenseitig aufheben. Diese Beiträge resultieren allgemein aus der Elongation der Bindungslängen und der Kompression des Bindungswinkels. Die Frage, ob der Einsatz eines solchen polarisierbaren Kraftfeldes die Beschreibung von Makromolekülen, wie beispielsweise Proteinen, verbessert, kann nur durch Vergleich mit dem Experiment beantwortet werden. Infrarotspektren sind hoch sensitiv bezüglich lokaler elektrischer Felder und wären deshalb eine gute Referenz. Theoretische Vorhersagen solcher Spektren sind allerdings nur für eine der in Proteinen auftretenden Banden – und auch hier nur bedingt – möglich. Der zweite Teil dieser Dissertation beschäftigt sich deshalb mit der Entwicklung eines Kraftfelds zur Berechnung aller Schwingungsbanden des Proteinrückgrats. Hier wird der Einfluss der lokalen elektrischen Felder auf die Stärke der kovalenten Bindungen explizit berücksichtigt. Aufbauend auf einer Vorabversion eines solchen Kraftfelds wird eine Methode entwickelt, um Schwingungsspektren mit spektroskopischer Genauigkeit, d.h. mit Fehlern im Bereich von wenigen Wellenzahlen, vorherzusagen. Der minimale Parametersatz, der zur korrekten Beschreibung dieser Schwingungsspektren notwendig ist, wird identifiziert, und die entbehrlichen Parameter werden eliminiert. Anhand des Moleküls N-Methylacetamid wird demonstriert, dass das neue Kraftfeld in der Lage ist, solvatochrome Verschiebungen für verschiedene polare Lösungsmittel gut zu reproduzieren.