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Zusammenfassung

In dieser Arbeit wird der Übergang von der quanten- zur klassishen Mehanik

für ein Testteilhen untersuht, das mit einem idealen Gas wehselwirkt. Ein der-

artiges System wird durh die lineare Quanten-Boltzmanngleihung beshrieben,

die sih auf reine Stoÿdekohärenz vereinfahen lässt, wenn es sih um eine Weh-

selwirkung zwishen viel shwereren Testteilhen und leihten Gasteilhen han-

delt. Im ersten Teil der Arbeit untersuhen wir die Entstehung und Dynamik

von Zeigerzuständen, die durh Stoÿdekohärenz induziert werden. Diese, durh

die Umgebung ausgezeihneten Zustände sind exponentiell lokalisierte solitoni-

she Wellenfunktionen, die sih nah den klassishen Hamiltonshen Gleihungen

bewegen. Basierend auf dem "orthogonalen Unraveling" der quanten Master-

gleihung kann ihre Entstehung und Dynamik harakterisiert werden und es lässt

sih zeigen, dass die statistishen Gewihte, die von einem anfänglihen Superposi-

tionszustand ausgehen, durh die erwarteten Projektionen gegeben sind. Darüber

hinaus gehende Aussagen der linearen Quanten-Boltzmanngleihung werden im

zweiten Teil unserer Arbeit beshrieben. Ein e�zienter stohastisher Algorith-

mus, der auf der Monte Carlo Wellenfunktions Methode basiert, wird genutzt um

eine Reihe von physikalishen Prozessen zu simulieren: Den Verlust von räum-

liher Kohärenz, die Entstehung von Interferenzmustern, Relaxation und Ther-

malisierung und den Übergang von quanten Dispersion zu klassisher Di�usion.

Die Eignung des Algorithmus wird durh die Analyse der vershiedenen Grenzfälle

der linearen Quanten-Boltzmanngleihung veri�ziert.

Abstrat

We study the quantum-to-lassial transition in the motion of a quantum test

partile interating with an ideal gas environment. Suh a system is desribed by

the quantum linear Boltzmann equation, whih simpli�es to the master equation

of pure ollisional deoherene if the test partile is muh heavier then the gas

partiles. In the �rst part of the thesis, we study the emergene and dynamis

of pointer states indued by ollisional deoherene. These environmentally dis-

tinguished states are shown to be exponentially loalized solitoni wave funtions

whih evolve aording to the lassial equations of motion. Based on the orthog-

onal unraveling of the quantum master equation, we haraterize their formation

and dynamis, and we demonstrate that the statistial weights arising from an

initial superposition state are given by the required projetion. The seond part

of the thesis is devoted to the general ase desribed by the quantum linear Boltz-

mann equation. We provide an e�ient stohasti algorithm in terms of the Monte

Carlo wave funtion method. This algorithm is used to study a variety of physi-

al proess: the loss of spatial oherenes, the formation of interferene patterns,

relaxation and thermalization, and the transition from quantum dispersion to

lassial di�usion. The auray of the results is veri�ed by exploiting the various

limiting forms of the quantum linear Boltzmann equation.
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1

Chapter 1

Introdution

Quantum mehanis provides the most aurate desription of atomi and sub-

atomi physis urrently known. Sine any objet is omposed of atoms and

moleules, it seems suggestive that this theory holds as well on the marosopi

sale. The observations made in our everyday world are, however, in sharp on-

trast to the laws of quantum mehanis. For instane, the eletron in a hydrogen

atom is ompletely deloalized aross the atom; its dynamis along this probability

loud is governed by the Shrödinger equation. The enter of mass of a maro-

sopi soer ball, on the other hand, moves on a spatially loalized trajetory,

whih is determined by Newton's equation of motion. Due to this disrepany,

the nontrivial question arises how the laws of lassial physis an be explained

within the framework of quantum mehanis.

Only at the beginning of the eighties, it was reognized that the in�uene

of environmental degrees of freedom is responsible for this quantum-to-lassial

transition [1�3℄. A soer ball �ying through the air, for instane, ollides with

a tremendous number of photons, gas moleules and dust partiles. Due to this

openness, the redued dynamis of the soer ball is now longer desribed by

Shrödinger's equation. Instead it is replaed by a quantum master equation,

whih is obtained by disregarding the environmental degrees of freedom. As re-

ognized by Zurek [1, 4℄, these e�etive equations may indue a preferred set of

robust states in the Hilbert spae of the subsystem. The latter are robust in the

sense that they stay pure for a relatively long time, whereas their superpositions

get mixed rapidly. In the ase of the soer ball, these robust states would be

sharply loalized states, moving on the lassial trajetories. The term pointer

states has also been oined [1,4℄ for suh states, whih is due to their role in mod-

els for quantum measurement. While the basi ideas behind this superseletion

or deoherene proess seem to be settled, it still remains an open problem to

understand the emergene, the dynamis, and the main properties of the pointer

states for mirosopi realisti environments.

Several strategies have been proposed so far for determining the pointer basis

given the environmental oupling. In [5℄ the suggestion was made to sort the

pure states in the Hilbert spae aording to their linear entropy prodution rate.

The pointer states are then identi�ed with the states having minimal loss of

purity. Similar results are obtained by the approah of [6�8℄ whih is based on a

time evolution equation whose solitoni solutions are identi�ed with the pointer

states. So far, this onept has been applied to the damped harmoni osillator

by Gisin and Rigo [7,8℄ and to a free quantum partile oupled linearly to a bath
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of harmoni osillators by Diosi and Kiefer [6, 8℄. Here, the solitoni solutions

of the orresponding nonlinear equation are oherent states and Gaussian wave

pakets, respetively. Moreover, the deoherene to Gaussian pointer states was

proved to be generi for linear oupling models [9℄.

All of the above studies were restrited to harmoni osillator baths and linear

ouplings. The goal of this thesis is to understand the emergene and dynamis of

pointer states for more realisti, non-perturbative models. More spei�ally, our

aim is to explain the quantum-to-lassial transition for systems whih interation

with their environment in terms of individual sattering events.

To arhive this goal, we fous on the so-alled quantum linear Boltzmann

equation (QLBE) proposed by Hornberger and Vahini in [10�12℄. It is the

quantum ounterpart of the lassial linear Boltzmann equation, whih desribes

how the motion of a lassial test partile is a�eted by elasti ollisions with an

ideal, stationary bakground gas. The derivation of the QLBE is based on the

monitoring approah [11,13℄ whih admits the treatment of the interations with

a bakground gas in a non-perturbative manner.

A limiting gas arises when the Brownian partile is muh heavier than the

partiles of the bakground gas. In this limit, the QLBE simpli�es, giving a model

alled ollisional deoherene. This master equation has �rst been suggested by

Gallis and Fleming [14℄ and was derived in its �nal form by Hornberger and

Sipe [15℄. Notably, experiments with interfering fullerene moleules display a

redution of interferene visibility in agreement with this theory [16�20℄.

1.1 Overview of the results

The thesis is divided into two parts. First, we present a omplete piture of the

quantum-to-lassial transition exhibited by the ollisional deoherene model.

The seond part is devoted to the numerial solution of the QLBE.

Pointer states of ollisional deoherene As mentioned above, the authors

in [6�8℄ disuss a nonlinear equation, whose solitoni solutions yield `andidate'

pointer states. Here we apply this approah to the one-dimensional version of

ollisional deoherene, giving a nonlinear integro-di�erential equation. We show

that it exhibits exponentially loalized solitoni wave funtions, whih move a-

ording to the lassial equations of motion. Using the underlying symmetry it

is shown that these solitons are related via translation and boost operators. This

admits to prove that these `andidate' pointer states form an overomplete basis.

To gain deeper insight into the emergene and dynamis of pointer states,

we relate the nonlinear equation to a spei� quantum trajetory method, the

orthogonal unraveling [21, 22℄. This stohasti proess on the one hand provides

the statistial weights of the pointer basis, and on the other hand presents an

e�ient way of solving master equations whih posses pointer states. Moreover,

it allows us to prove that the above solitons are indeed the pointer states of

ollisional deoherene.

As a further step, extensions of the above theory to the three-dimensional

problem are studied, whih yields in partiular an expression for the spatial ex-

tension of the pointer states in a realisti senario. The latter is proportional to

the mean free path of the gaseous environment, in ase of weakly interating or
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thin gases. In the limit of a strongly interating or dense gas, on the other hand,

it is bounded by the sale of the thermal wave length. This result allows us to

estimate the oherene length of interating gases.

While the above results are derived within the framework of deoherene the-

ory, they an also be applied to dynami redution models whih propose a modi�-

ation of the Shrödinger equation by means of nonlinear and stohasti terms. In

fat, the observational onsequenes of the Ghirardi-Rimini-Weber spontaneous

loalization model [23, 24℄ are equivalent to the ones of ollisional deoherene,

sine they are desribed by the same master equation [25℄. The present work

therefore applies to the Ghirardi-Rimini-Weber model. In partiular, it provides

the orresponding pointer basis.

Unraveling the QLBE Collisional deoherene applies to situations where

the traer partile is muh heavier than the gas moleules, suh that there is

no appreiable energy exhange. It is therefore not suitable for the desription of

long-time e�ets, suh as dissipation or thermalization. To study the full interplay

between oherene and deoherene on the one hand, and relaxation proesses on

the other hand, we analyze the solutions of the QLBE in the seond part of the

thesis.

Due to the omplexity of the QLBE, it is in general not analytially tratable.

Breuer and Vahini have therefore suggested [26℄ a stohasti algorithm, whih

admits an e�ient numerial solution of the QLBE in terms of a Monte Carlo wave

funtion method [27�29℄. However, their treatment is restrited to a simpli�ed

version of the QLBE and to spei� initial states, whih are superpositions of at

most two momentum eigenstates.

We expand the algorithm of Breuer and Vahini to the full QLBE and to

arbitrary initial states, suh as spatially loalized wave pakets. By using realis-

ti, mirosopially derived sattering amplitudes, several physial proesses are

simulated: the loss of momentum and spatial oherenes, the formation of inter-

ferene patterns, relaxation and thermalization, and the transition from quantum

dispersion to lassial di�usion. The auray of the simulations is heked by a

variety of onsisteny tests, based on limiting forms of the QLBE. In partiular,

this admits to verify the analytial preditions made in [10�12℄.

1.2 Struture of the thesis

Chapter 2 gives a general introdution to the onept of open quantum systems.

This inludes in partiular a disussion of the Markov assumption, as well as the

ensuing Lindblad form. The reader who is already familiar with this topi may

as well skip this hapter. As a next step, several exemplary master equations,

whih are used throughout the thesis as models for open quantum system, are

presented in Chapter 3, inluding the Caldeira-Leggett equation and ollisional

deoherene. In Chapter 4, we brie�y review the notion of pointer states, and

we summarize the method for determining the pointer states disussed in [6�8℄.

This method is then applied to ollisional deoherene in Chapter 5, whih

provides a set of solitoni states to be regarded as `andidate' pointer states. It

is shown that these solitons form an overomplete basis of exponentially loal-

ized states, and we give an expression for their spatial extension. Moreover, we
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demonstrate that these `andidate' pointer states move on the lassial phase

spae trajetories if they are su�iently loalized, and we study extensions of the

formalism to three dimensions.

The remaining part of the thesis applies quantum stohasti proesses. To

introdue this onept a variety of results from the lassial theory of Markovian

proesses are required. Chapter 6 therefore presents a survey of lassial stohas-

ti proesses. The reader who is already familiar with this subjet may as well

skip this hapter. Chapter 7 then introdues the theory of quantum trajetories,

inluding quantum state di�usion, the Monte Carlo wave funtion method and

the orthogonal unraveling. The latter is then applied to ollisional deoherene

in Chapter 8, whih allows us to show that the `andidate' states are indeed

pointer states in the sense of the de�nition given in Chapter 4. Furthermore, we

use the orthogonal unraveling to show that the statistial weights of the pointer

states are given by the overlap with the initial state.

The last two hapters are devoted to the numerial solution of the full QLBE.

In Chapter 9, the QLBE is reviewed in its basis independent operator form,

and the various limiting forms of the QLBE are summarized. We then develop a

stohasti algorithm whih admits an e�ient solution of the QLBE. The numer-

ial results of this algorithm are summarized in Chapter 10.
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Chapter 2

Conepts of open quantum

systems

An open quantum system [29,30℄ onsists of a quantum system S, whih interats

with the so-alled environment E, another quantum system; the orresponding

Hilbert spaes are denoted by HS and HE . Cruially, the environment E is

assumed to have a large number of degrees of freedom, whih is muh greater

than the one of S. The ombined system, denoted by SE, is typially assumed to

be losed, suh that it follows unitary dynamis; its assoiated Hilbert spae is

given by the tensor produt spae HSE = HE⊗HS . Figure 2.1 shows a shemati

piture of the ombined system. As an example, one might think of an atom

whih interats with an ideal gas environment or an eletromagneti �eld mode

oupled to a thermal bath of harmoni osillators.

In Set. 2.1, we brie�y review the notion of density operators, whih form the

physially allowed states ρS of S. Their temporal evolution, whih is indued by

the unitary dynamis of SE, is disussed in Set. 2.2.

2.1 Density operators

The observable properties of a quantum system (be it open or losed) are om-

pletely determined by a positive operator ρ with trae one, i.e.

ρ ≥ 0 , (2.1)

Tr (ρ) = 1 , (2.2)

ating on the orresponding Hilbert spae H [29,31℄. Sine the operator ρ, whih
is alled density operator or density matrix , is positive, it is also Hermitian,

ρ† = ρ . (2.3)

This implies that ρ an be written in terms of its spetral deomposition as

ρ =
∑

i

pi|ψi〉〈ψi| , pi ≥ 0 ,
∑

i

pi = 1 , (2.4)

where the pi's denote the eigenvalues of ρ and the |ψi〉's are the orresponding

eigenvetors. The relevane of the density operator ρ is that it gives the prob-

abilities of measurement outomes for an observable A, with spetral resolution
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Figure 2.1: Shemati piture of an open quantum system S, whih interats with

a thermal reservoir E. The ombined system SE is assumed to be losed.

A =
∑

i ai|ai〉〈ai|, by means of the Born rule

Prob (ai) = Tr (|ai〉〈ai|ρ) . (2.5)

In partiular, this admits the predition of expetation values:

〈A〉 =
∑

i

ai Prob (ai)

= Tr (ρA) . (2.6)

2.1.1 Pure versus mixed states

Cruially, the set of density operators S (H) is onvex, that is

λρ1 + (1 − λ) ρ2 ∈ S (H) , if ρ1, ρ2 ∈ S (H) and λ ∈ [0, 1 ] . (2.7)

A state ρ of S (H) is alled mixed if it an be written as λρ1 + (1 − λ) ρ2, where

0 < λ < 1 and ρ1 is di�erent from ρ2. Otherwise, the state is alled pure. The

pure states are therefore the extreme points of the onvex set S (H), and they

form rank one projetions,

ρpure = P

≡ |ψ〉〈ψ| , with |ψ〉 ∈ H .

In partiular, this implies that a state is pure if and only if

ρ2 = ρ . (2.8)

A measure for the purity of states is the von Neumann entropy,

SN (ρ) = −Tr (ρ ln ρ) . (2.9)

= −
∑

i

pi ln pi , (2.10)
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whih is equal to the Shannon entropy [31℄ of the eigenvalue distribution pi. It

vanishes if and only if the state is pure, that is SN (P) = 0, and it takes on its

maximum value SN (ρ) = ln d for the maximally mixed state ρ = I/d, if H is

�nite-dimensional with d = dim (H).

As an alternative measure for the purity of states, it is sometimes useful to

onsider the linear entropy,

Slin (ρ) = 1 − Tr
(
ρ2
)
, (2.11)

whih has the upper and lower bounds 0 ≤ Slin (ρ) ≤ 1 − 1/d, if d < ∞. Similar

to the von Neumann entropy, it attains its extreme values for the pure and the

maximally mixed state.

2.1.2 Ensemble interpretation

The spetral deomposition (2.4) admits an interpretation of the mixed state ρ by

means of a statistial ensemble {pi, |ψi〉} of systems, where pi is the proportion of

the ensemble being in the pure state |ψi〉. Conversely, the state ρ an be obtained

by realizing the pure state ensemble {pi, |ψi〉}.
However, this interpretation has to be taken with are, sine the onvex de-

omposition (2.4) is not unique. In fat, other partitions {qi, |ϕi〉}, de�ned as

√
qi|ϕi〉 =

∑

j

Uij
√
pj |ψj〉 , with

∑

j

U †
ijUjk = δik , (2.12)

an be onstruted, whih represent the same mixed state ρ =
∑

i pi|ψi〉〈ψi| =∑
i qi|ϕi〉〈ϕi| [32℄. Sine the observable properties, that is the expetation values

(2.6), are determined solely by the density matrix ρ, it is not possible to determine

whih partiular partition is realized. Thus, it must be avoided to draw onlu-

sions using a partiular ensemble, whih go beyond the preditions obtained from

ρ. In fat, suh a reasoning may lead to wrong onlusions known as the �partition

ensemble fallaies� [33℄.

2.1.3 The redued density operator

Perhaps the most important appliation of the density operator is the desription

of subsystems, suh as the open system shown in Fig. 2.1, of a omposite quantum

system. Suh a desription is provided by the redued density operator . Suppose

the state ρSE of the ombined system is known, then the redued state of the open

system S is given by

ρS =
∑

i

〈iE |ρSE|iE〉

≡ TrE (ρSE) , (2.13)

where the operator map TrE (·) denotes the partial trae over the environment E
and {|iE〉} is a basis of HE . This hoie is made so as to ensure that the redued

density operator ρS gives the orret results for the expetation values of loal

observables A = AS ⊗ I. In other words, the de�nition (2.13) assures that [31℄

TrSE (ρSE AS ⊗ I) = TrS (ρSAS) . (2.14)
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As an example, let us assume that SE is a pair of two-level systems, prepared in

a Bell state,

ρSE =
1

2
(|00〉 + |11〉) (〈00| + 〈11|) . (2.15)

Traing out the environment aording to (2.13), it follows that the open system

S is in a maximally mixed state,

ρS =
1

2
(|0〉〈0| + |1〉〈1|)

=
1

2
I . (2.16)

Remarkably, even though there is omplete knowledge about the total system,

sine it is in a pure state, the open subsystem is maximally mixed, suh that we

are ompletely ignorant about loal measurements. This property, whih is due

to the fat that the total system is in an entangled state, shows that the onept

of mixed states arises naturally in open systems.

2.1.4 Matrix elements of the density operator

In order to handle the density operator, it is useful to represent ρ in terms of an

orthonormal basis {|n〉} of H,

ρ =
∑

m,n

ρmn|m〉〈n| , with ρmn = 〈m|ρ|n〉 . (2.17)

The diagonal elements 0 ≤ ρnn ≤ 1 of the orresponding matrix are alled popu-

lations, sine they present the probabilities that, in a measurement, the system

is found in one of the basis states,

ρnn = Tr (|n〉〈n|ρ) . (2.18)

On the other hand, the non-diagonal elements ρmn = ρ∗nm, m 6= n, are alled

oherenes, sine they are responsible for interferene e�ets between the di�er-

ent basis states. They are bounded from above by the geometri mean of the

populations, i.e.

|ρmn|2 ≤ ρmm ρnn , (2.19)

a relation that holds for any positive matrix [34℄.

Later these onepts are applied to in�nite-dimensional systems, where in par-

tiular the one-dimensional motion of a single partile is onsidered. A basis of

the assoiated Hilbert spae is obtained, for instane, by the position eigenba-

sis {|x〉|x ∈ R}, forming an unountable set of improper eigenstates of the po-

sition operator x. A state ρ an be represented in this basis by means of a

two-dimensional funtion ρ (x, x′) ≡ 〈x|ρ|x′〉,

ρ =

∫
dxdx′ ρ

(
x, x′

)
|x〉〈x′| . (2.20)

Similarly to the �nite-dimensional ase, the populations ρ (x, x) are probability

densities, i.e. ρ (x, x) ≥ 0 and
∫

dxρ (x, x) = 1, providing the probability,

Prob (x ∈ [x1, x2]) =

∫ x2

x1

dxρ (x, x) , (2.21)
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that the partile is found in the interval [x1, x2]. On the other hand, the oherenes

ρ (x, x′) = ρ∗ (x′, x), x 6= x′, are responsible for spatial interferene e�ets. As

in �nite dimensions, they are bounded from above by the geometri mean of the

populations, i.e.

∣∣ρ
(
x, x′

)∣∣2 ≤ ρ (x, x) ρ
(
x′, x′

)
, (2.22)

whih an be shown using the positivity of ρ. To this end, one onsiders proje-

tions 〈θ|ρ|θ〉 ≥ 0 onto states of the form |θ〉 = cos (θ) |x〉 + eiϕ sin (θ) |x′〉, with
ϕ = arg [ρ (x, x′)].

2.2 Dynamis of open quantum systems

2.2.1 Dynamial maps

Sine the total system SE is assumed to be losed, it evolves unitarily,

ρSE (t) = Ut ρSE (0)U
†
t , (2.23)

where the propagator Ut is generated by the Hamiltonian HSE of the total system,

that is Ut = exp (−iHSE t/~). The latter may be taken to be of the form

HSE = HS ⊗ IE + IS ⊗ HE + HI , (2.24)

where HS denotes the Hamiltonian of the open system S, HE is the free Hamil-

tonian of the environment E, and HI denotes the interation Hamiltonian. The

indued dynamis of the open system S is obtained by taking the partial trae

over the environment,

ρS (t) = TrE

(
Ut ρSE (0)U

†
t

)
. (2.25)

In order to simplify this relation, let us assume that the state of the total system

ρSE is initially unorrelated, i.e. ρSE (0) = ρS (0) ⊗ ρE (0). This allows one to

formulate the temporal evolution of S in terms of a one-parameter family of

maps, alled dynamial map, from the spae S (HS) of density matries of the

open system onto itself,

Et : ρS (0) 7→ ρS (t) = TrE

(
Ut ρS (0) ⊗ ρE (0) U

†
t

)
, with t ∈ R+

0 . (2.26)

Cruially, the dynamial map Et is in general non-unitary (due to the interation

term HI). As a onsequene, one enounters in open systems a variety of dynam-

ial features, suh as deoherene and thermalization, that are not observed in

losed quantum systems.

In quantum information theory, one is typially interested in the input and

output state of a quantum devie, suh that one onsiders the map Et at a par-

tiular point in time t = T only. This map ET is in the literature referred to as

quantum operation or quantum hannel .
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Kraus representation Dynamial maps an be represented ompletely in terms

of operators ating on the open system's Hilbert spae [29, 31℄. To derive this

representation, whih is known as the Kraus representation or operator-sum rep-

resentation, onsider the spetral resolution of the initial state of the environment

ρE (0),

ρE (0) =
∑

i

ei|ei〉〈ei| , ei ≥ 0 ,
∑

i

ei = 1 . (2.27)

Plugging (2.27) into the dynamial map (2.26) gives

Et (ρS (0)) =
∑

i,j

Eij (t) ρS (0)E
†
ij (t) , (2.28)

where the Kraus operators Eij (t), ating on HS , read as

Eij (t) =
√
ei〈ei|Ut|ej〉 . (2.29)

Moreover, from the ompleteness of the basis {|ei〉} and the unitarity of Ut, one

obtains the ompleteness relation
∑

i,j

E
†
ij (t)Eij (t) = IS . (2.30)

Due to the onstrution of Eij (t), Eq. (2.29), the number N of required Kraus

operators is limited by the dimension of the open system's Hilbert spae, N ≤
dim (HS)2, in �nite-dimensional systems; in ase of an in�nite-dimensional Hilbert

spae, i and j label a ountable set.

Properties of dynamial maps Using the operator-sum representation, one

an dedue the basi properties of a dynamial map Et. One �nds that it is (a)

trae-preserving

Tr (Et (ρS (0))) = Tr


ρS (0)

∑

i,j

E
†
ij (t)Eij (t)


 = 1 , (2.31)

and (b) onvex-linear , meaning that

Et
(
∑

i

pi ρi

)
=

∑

i

pi Et (ρi) , if pi ≥ 0 . (2.32)

Moreover, Et is () ompletely positive, that is, trivial extensions of Et,

Et ⊗ IE : ρSE (0) =
∑

l

Al ⊗ Bl 7→ ρSE (t) =
∑

l

Et (Al) ⊗ Bl , (2.33)

map positive operators ρSE (0) ∈ S (HSE) to positive operators ρSE (t) ∈ S (HSE).
This an be veri�ed as follows:

〈ψ|Et ⊗ IE (ρSE) |ψ〉 =
∑

i,j

〈ψ|Eij ⊗ IE ρSE E
†
ij ⊗ IE |ψ〉

=
∑

i,j

〈ϕij | ρSE |ϕij〉

≥ 0 , (2.34)

with ρSE ≥ 0, |ψ〉 ∈ HSE and |ϕij〉 ≡ E
†
i ⊗ IE |ψ〉 ∈ HSE.
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Axiomati approah One an take an approah to open quantum systems

whih is in some sense omplementary to the ideas desribed above. To this end,

one de�nes a dynamial map Et as a one-parameter family of maps

Et : ρS (0) 7→ ρS (t) , with t ∈ R+
0 , (2.35)

satisfying the minimal set of requirements posed by the laws of quantum mehan-

is, that is it must be (a) trae-preserving, (b) onvex-linear and () ompletely

positive. From this de�nition one an then derive the representation given by

Eq. (2.26).

The axioms (a) to () are required for the following reasons.

a) Et (ρS) is a density operator and hene has trae one for all times t.

b) Suppose the state ρi is prepared initially with probability pi; then the state

at time t = T is given by ET (ρi) with probability pi. On the other hand, in

the ensemble average, the initial state is
∑

i piρi, while the image under the

map ET reads as ET (
∑

i piρi). This implies that Et must be onvex-linear.

) The open system S is a subsystem of the losed system SE. Apparently, Et
an be extenden to SE by multipliation with the identity operator Et ⊗ I.

The image of this extended map must be a density operator, and hene has

to be positive.

In �nite-dimensional systems, the representation (2.26) is guaranteed by Stine-

spring's dilation theorem [35℄, whih says that if ET : S (HS) → S (HS) is a map

between states on a �nite-dimensional Hilbert spae HS , satisfying the ondi-

tions (a)-(), then there exists a Hilbert spae HE and a unitary operation UT on

HS ⊗HE suh that

ET (ρS) = TrE

(
UT ρS ⊗ |0E〉〈0E |U†

T

)
, for all ρS ∈ S (HS) . (2.36)

Here the anilla spae HE an be hosen suh that dim (HE) ≤ dim (HS)2.

Quantum dynamial semigroups A variety of open quantum systems en-

ountered in pratie exhibit the so-alled Markov property ; a detailed introdu-

tion of this assumption is given below. To antiipate, a dynamial map is said to

ful�ll the Markov property if it satis�es the relation

Et (Es (ρS)) = Et+s (ρS) , for all ρS ∈ S (HS) . (2.37)

Suh a one-parameter family of maps Et is by de�nition losed under the binary

operation Et • Es (ρ) = Et (Es (ρ)), whih implies that a dynamial map Et satisfy-
ing the Markov property forms a semigroup. Note that suh a quantum dynamial

semigroup (QDS) [36℄ does in general not form a regular group sine the inverse

element E−1
t is not neessarily part of the semigroup (open system dynamis is in

general irreversible).

Under ertain mathematial onstraints [37℄, one an write a QDS in expo-

nential form,

Et = exp (Lt) , (2.38)

where L, the generator of the QDS, is alled Liouville super-operator. As we

shall see below, this generator is of a partiular form known as Lindblad form,

whih is enfored by the requirement that Et is trae-preserving, onvex-linear

and ompletely positive.
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2.2.2 Master equations in Lindblad form

As in other areas of siene, it is onvenient to formulate the dynamis of S in

terms of a di�erential equation. To this end, let us evaluate the time derivative

of ρS (t) using the dynamial map Et, whih formally yields

ρ̇t = lim
dt→0

ρt+dt − ρt
dt

= lim
dt→0

Et+dt (ρ0) − Et (ρ0)

dt
≡ Ktρ0 , (2.39)

where we dropped the subsript S for brevity, i.e. ρt ≡ ρS (t). Here Kt is a super-

operator, that is a map from the spae S (HS) of density matries into itself.

Equation (2.39) shows that the evolution equation of an open quantum system is

in general non-loal in time. An interpretation of this dependene on the system's

past is that the environment has a memory that stores information about the evo-

lution of the system. This information may then �ow from the environment bak

to the system, suh that the hange of ρt depends on its own history. However,

one may typially neglet memory e�ets if environmental orrelation times are

muh smaller than the harateristi time sale of the system evolution. Under

this ondition, one may assume that the hange of ρt depends on the urrent state

only. This is the so-alled Markov assumption or Markov property . It admits to

desribe the temporal evolution in terms of a loal di�erential equation,

ρ̇t = Lρt , (2.40)

generated by a time independent Liouville super-operator L. Suh an equation is

alled quantum Master equation, sine it leads to a lassial Master equation [38℄

for the populations, if expressed in an orthonormal basis.

Before the general form of the Liouvillian L an be stated, a more formal

de�nition of the Markov assumption and the orresponding quantum Markov

proess is needed. To this end, we �rst introdue the notion of a lassial Markov

proess, and then dedue the de�nition of its quantum ounterpart.

Classial Markov proesses A lassial Markov proess [38℄ is a stohasti

proess, that is a one-parameter family of random variables Xt, t ∈ R+
0 , whose

onditional probability distribution is determined entirely by the most reent ob-

servation, meaning that

Prob
(
Xtn+1

|Xtn , Xtn−1
, . . . , Xt1

)
= Prob

(
Xtn+1

|Xtn

)
, (2.41)

for ordered times tn+1 ≥ tn ≥ . . . ≥ t1 .

Quantum Markov proesses This motivates the following de�nition of quan-

tum Markov proesses. Let us suppose that the observable X,

X =
∑

i

Xi|Xi〉〈Xi| , (2.42)

will be measured at time tn+1. Then a quantum Markov proess is a one-

parameter family of density operators ρt, t ∈ R+
0 , whih leads to a onditional
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probability distribution for the measurement outomes of X that is determined

entirely by the most reent state, whih means that

Prob
(
Xi|ρtn , ρtn−1

, . . . , ρt1
)

= Prob (Xi|ρtn) , (2.43)

with time ordering tn+1 ≥ tn ≥ . . . ≥ t1 .
Using the dynamial map Et, one an rewrite Eq. (2.43) as

Tr
{
|Xi〉〈Xi|E(tn+1,tn)

(
E(tn,tn−1)

(
. . . E(t1,t0) (ρ0)

))}

= Tr
{
|Xi〉〈Xi|E(tn+1,tn)

(
E(tn,t0) (ρ0)

)}
. (2.44)

This implies that

E(tn,tn−1)

(
. . . E(t1,t0) (ρ0)

)
= E(tn,t0) (ρ0) , (2.45)

whih agrees with the semigroup assumption (2.37). We onlude that a quan-

tum proess is Markov if the orresponding dynamial map forms a quantum

dynamial semigroup, haraterized by ondition (2.37).

Lindblad form Using the Markov assumption (2.37), one an reformulate the

time derivative (2.39) as a time-loal equation of motion for the state ρt

ρ̇t = lim
dt→0

Et+dt (ρ0) − Et (ρ0)

dt

= lim
dt→0

Edt (ρt) − ρt
dt

≡ Lρt . (2.46)

Upon inserting the Kraus representation (2.28) for Edt (ρt) and using the onser-

vation of the trae, Tr (Lρt) = 0, one obtains the so-alled Lindblad form [29,39℄,

Lρ =
1

i~
[H, ρ] +

N∑

k=1

γk

(
LkρL

†
k −

1

2
L
†
kLkρ−

1

2
ρL†

kLk

)
, (2.47)

with N ≤ dim (HS)2 − 1, if HS is �nite-dimensional. The �rst summand repre-

sents the unitary part of the dynamis generated by the Hermitian operator H.

It is not neessarily equal to HS , the Hamiltonian of S, whih shows that the

energy levels of the system may be shifted due to the interation with the envi-

ronment (a famous example for suh an energy shift is the Lamb shift, aused by

the interation of the hydrogen's eletron with the eletromagneti vauum). The

non-unitary part is haraterized by the in general non-Hermitian operators Lk
known as Lindblad operators or jump operators (a name motivated by the quan-

tum trajetory approah introdued below), and the positive rates γk. The latter
have a dimension of inverse time, provided the Lk's are taken to be dimensionless.

The expression (2.47) was derived in 1976 by Gorini, Kossakowski and Sudar-

shan [40℄, and independently by Lindblad [37℄. The former proved that (2.47)

de�nes the most general generator of a QDS in �nite-dimensional systems, while

the latter showed that (2.47) is valid also for in�nite-dimensional systems provided

the generator is bounded and the index k is allowed to run over a ountable set.

In many appliations, though, the generator L is unbounded; this is for instane

the ase if the Lindblad operators are proportional to the position- or momentum

operator. Unfortunately, in this ase, there is no theorem giving the most general
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struture of the generator. However, it turns out that all known examples of

master equations desribing Markovian systems are either of Lindblad form, or

an be ast into it by slight modi�ations. In some of these examples, though,

one enounters an unountable set of Lindblad operators, suh that (2.47) takes

the form

Lρ =
1

i~
[H, ρ] +

∫
dq γq

(
LqρL

†
q − 1

2
L†

qLqρ−
1

2
ρL†

qLq

)
, (2.48)

where the measure has the meaning of a rate density. This representation may also

be onvenient in ases where the generator is bounded (an example is ollisional

deoherene, whih is studied below).

Non-uniqueness of the Lindblad operators Importantly, the generator L
does not uniquely �x the Lindblad operators Lq and the Hamiltonian H. This is

due to the fat that the master equation (2.48) is invariant under ertain transfor-

mations. As an example, let us onsider the `Fourier transform' of the Lindblad

operators,

√
γqLq →

√
γ′qL′

q =
1

(2π)3/2

∫
dk eiqk√γkLk , (2.49)

whih will be used in Set. 3.5.2 to reveal the similarity of ollisional deoherene

and the Ghirardi-Rimini-Weber model. The invariane of the generator (2.48)

under (2.49) an be seen easily:

L′ρ =
1

i~
[H, ρ] +

∫
dkdl

1

(2π)3

∫
dqeiq(k−l)√γkγl

(
LkρL

†
l −

1

2
L
†
lLkρ−

1

2
ρL†

lLk

)

=
1

i~
[H, ρ] +

∫
dkdl δ3 (k − l)

√
γkγl

(
LkρL

†
l −

1

2
L
†
lLkρ−

1

2
ρL†

lLk

)

= Lρ . (2.50)

Another type of invariane transformations are inhomogeneous ones where a om-

plex multiple zq of the identity I is added,

Lq → L′
q = Lq + zqI . (2.51)

In this ase, also the Hamiltonian must be transformed as

H → H′ = H − i~

2

∫
dq γq

(
z∗qLq − zqL†

q

)
, (2.52)

in order to assure the invariane of the master equation (2.48). Like above, the

latter an be demonstrated easily,

L′ρ =
1

i~

[
H − i~

2

∫
dq γq

(
z∗qLq − zqL†

q

)
, ρ

]

+

∫
dqγq

{
(Lq + zq) ρ

(
L†

q + z∗q

)
− 1

2

(
L†

q + z∗q

)
(Lq + zq) ρ

−1

2
ρ
(
L†

q + z∗q

)
(Lq + zq)

}
. (2.53)
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By expanding the terms on the right-hand side of the expression above, one ob-

tains

L′ρ =
1

i~
[H, ρ] − 1

2

∫
dq γq

(
z∗q [Lq, ρ] − zq

[
L†

q, ρ
])

+

∫
dq γq

(
LqρL

†
q − 1

2
L†

qLqρ −
1

2
ρL†

qLq

)

+

∫
dq γq

(
z∗qLqρ+ zqρL

†
q − 1

2
zqL†

qρ−
1

2
z∗qLqρ−

1

2
zqρL

†
q − 1

2
z∗qρLq

)

= Lρ . (2.54)

Similar invariane transformations exist, if there is a �nite number of jump opera-

tors, suh that the master equation is of the form (2.47). In this ase, the generator

is invariant under linear ombinations of Lindblad operators, with weights given

by elements of a left unitary matrix,

√
γkLk →

√
γ′kL

′
k =

∑

l

Ukl
√
γlLl , with

∑

k

U †
ikUkj = δij . (2.55)

Moreover, the generator (2.47) is invariant under the inhomogeneous transforma-

tions shown in Eqs. (2.51) and (2.52), although the integral in (2.52) must be

replaed by a sum over the Lindblad operators.

Translation-ovariant master equations The struture of the generator (2.48)

an be further spei�ed if the open system S is invariant under spatial transla-

tions. This is expeted to hold for a free partile (that is a system that is not

subjet to any external potential) whih is surrounded by a homogeneous medium

forming the environment. In the main part of this thesis we onsider models (ol-

lisional deoherene and the quantum linear Boltzmann equation) whih are of

this type.

To de�ne translational-invariane, let us express ρ̇ in position representation

ρ̇
(
x, x′; ρ

(
y, y′

))
≡ 〈x|L

(∫
dy dy′ ρ

(
y, y′

)
|y〉〈y′|

)
|x′〉 . (2.56)

In this representation, ρ̇ depends on the position oordinates x, x′ and on the

density ρ (y, y′). To be invariant under spatial translations, it must satisfy

ρ̇
(
x− z, x′ − z; ρ

(
y − z, y′ − z

))
= ρ̇

(
x, x′; ρ

(
y, y′

))
, (2.57)

for all spatial translations z. As one an hek easily, this ondition is equivalent

with requiring that L ommutes with the translation operator, that is

L
(
e−ixp/~ρeixp/~

)
= e−ixp/~L (ρ) eixp/~ , (2.58)

where p denotes the momentum operator. L is then said to be translation-

ovariant.

Under this ondition, and provided the generator is bounded, it takes the

form [41�45℄

Lρ =
1

i~
[H (p) , ρ] +

∫
dq
∑

k

γk (q)
(
eiqx/~Lk (p; q) ρL†

k (p; q) e−iqx/~

−1

2
L
†
k (p; q) Lk (p; q) ρ − 1

2
ρL†

k (p; q) Lk (p; q)

)
, (2.59)
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where q has the dimension of momentum, Lk (p; q) are arbitrary funtions of the

momentum observable, and H (p) is a Hamiltonian that depends on the momen-

tum operator p only.

The struture of the generator (2.59) an be interpreted as follows. The uni-

tary operator eiqx/~ e�ets a transfer of momentum q to the system, as follows

from the relation

〈p|eiqx/~ρe−iqx/~|p〉 = 〈p − q|ρ|p − q〉 . (2.60)

Cruially, the rate of this momentum transfer depends in general on the momen-

tum of the system, whih is due to the dependene of the funtions Lk (p; q) on the

system's momentum operator p. In this way, e�ets like dissipation and relaxation

are inorporated into the desription.

Collisional deoherene If one is interested in e�ets, suh as deoherene,

whih our on a time sale that is muh shorter than the relaxation time, then

one an neglet the p-dependene of the funtions Lk (p; q), suh that they beome

C-numbers instead of operators. The generator (2.59) then takes the form

Lρ =
1

i~
[H (p) , ρ] + γ

∫
dqG (q)

(
eiqx/~ρe−iqx/~ − ρ

)
, (2.61)

with rate γ G (q) ≡ ∑
k γk (q) |Lk (q)|2. Sine γ G (q) ≥ 0, one an hoose the

dimensionless funtion G (q) to be positive and normalized, i.e. G (q) ≥ 0 and∫
dqG (q) = 1, suh that it forms a probability density, providing the probability

Prob (q ∈ V ) =

∫

V
dq′G

(
q′
)
, (2.62)

that the momentum transfer q lies within a ertain region V .

The model (2.61) is introdued and analyzed in more detail in the next Chap-

ter. We shall �nd that it desribes the loss of spatial oherene due to ollisions of

the system with the bakground gas. It is therefore alled ollisional deoherene.
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Chapter 3

Exemplary master equations and

their mirosopi derivations

We shall now disuss di�erent methods whih allow the derivation of the Lind-

blad operators based on mirosopi onsiderations. Thereby, several exemplary

master equations are introdued, whih are used throughout the thesis as models

for open quantum systems. The disussion is based on the treatments in [29,39℄.

3.1 The weak oupling formulation

The most widely used method for determining quantum master equations is the

weak oupling approah. It permits the derivation of the generator (2.47) from

the underlying total Hamiltonian (2.24). The starting point is the von Neumann

equation expressed in the interation piture

d

dt
ρ̃SE (t) =

1

i~

[
H̃I (t) , ρ̃SE (t)

]
, (3.1)

where the use of the interation piture is denoted by the tilde

ρ̃SE (t) = eiH0t/~ ρSE e
−iH0t/~ , (3.2)

H̃I (t) = eiH0t/~HI e
−iH0t/~ . (3.3)

Here, H0 = HS ⊗ IE + IS ⊗ HE denotes the sum of the free Hamiltonians. Next,

the von Neumann equation is reformulated in its integral form

ρ̃SE (t) = ρ̃SE (0) +
1

i~

∫ t

0
ds
[
H̃I (s) , ρ̃SE (s)

]
. (3.4)

Upon inserting the integral form bak into the von Neumann equation (3.1) and

taking the trae over the environment one obtains

d

dt
ρ̃S (t) = −

∫ t

0
dsTrE

[
H̃I (t) ,

[
H̃I (s) , ρ̃SE (s)

]]
, (3.5)

assuming that TrE

[
H̃I (t) , ρ̃SE (0)

]
= 0 . This equation is still exat, although

it is not partiularly helpful as it stands, sine it is neither losed nor loal in

time. In order to make it feasible, one introdues two kinds of approximations,
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together known as the Born-Markov approximation. First, one assumes that the

interation Hamiltonian HI is su�iently weak and the environment is reasonably

large suh that the hanges of the state of the environment are small and the total

state remains approximately in a produt state,

ρSE (t) ≃ ρS (t) ⊗ ρE . (3.6)

This yields a losed integro-di�erential equation for the redued state of S

d

dt
ρ̃S (t) = −

∫ t

0
dsTrE

[
H̃I (t) ,

[
H̃I (s) , ρ̃S (s) ⊗ ρ̃E

]]
. (3.7)

Seond, it is assumed that the system obeys the Markov property, so that one

is allowed to reast the above equation into a time-loal master equation, whih

gives

d

dt
ρ̃ (t) = −

∫ ∞

0
dsTrE

[
H̃I (t) ,

[
H̃I (t− s) , ρ̃ (t) ⊗ ρ̃E

]]
, (3.8)

with ρ̃ (t) ≡ ρ̃S (t). Sine we have performed two rather strong approximations,

it is not guaranteed that the above master equation, whih is known as the Red-

�eld equation, is ompletely positive. To ast it into Lindblad form, one needs a

further approximation known as the rotating wave approximation, whih is appli-

able if the system Hamiltonian HS =
∑

i εi|εi〉〈εi| has a disrete non-degenerate

spetrum {εi}. To this end, let us deompose the interation Hamiltonian using

an operator basis of the total Hilbert spae whih gives

H̃I (t) =
∑

k

Ãk (t) ⊗ B̃k (t) . (3.9)

Turning bak to the Shrödinger piture, the system operators Ak an be further

deomposed using the eigenbasis of HS ,

Ak =
∑

ω

Ak (ω) , (3.10)

where the operators Ak (ω) are the ontributions with equal energy spaings ~ω =
ε′ − ε,

Ak (ω) =
∑

ε′−ε=~w

|ε〉〈ε|Ak|ε′〉〈ε′| . (3.11)

Due to this onstrution, the operators Ak exhibit a simple time dependene when

expressed in the interation piture

Ãk (t) =
∑

ω

eiωtAk (ω) . (3.12)

Upon inserting (3.12) and (3.9) into (3.8), one obtains an equation whose sum-

mands are proportional to the phase fators ei(ω−ω
′)t. By time-averaging this

expression, one �nds that the fast osillating terms, i.e. summands that are pro-

portional to ei(ω−ω
′)t with ω 6= ω′, an be negleted; this is the so-alled rotating

wave approximation. The resulting master equation has Lindblad form [29,39℄

d

dt
ρ̃ (t) =

∑

klω

γkl (ω)
(
Al (w) ρ̃ (t)A

†
k (w)

−1

2
A
†
k (w)Al (w) ρ̃ (t) − 1

2
ρ̃ (t)A

†
k (w)Al (w)

)
, (3.13)
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where the positive matrix γkl (ω) is given by the Fourier transform of the bath

orrelation funtions

γkl (ω) =
1

~2

∫ ∞

−∞
dteiωt〈B̃k (t) B̃l (0)〉ρE

. (3.14)

3.2 The damped harmoni osillator

As an appliation of the weak oupling approah let us now disuss the damped

harmoni osillator, whih will be used in Chapter 4 to motivate the de�nition

of pointer states. The model onsists of a harmoni osillator S, with frequeny

ω0, whih is linearly oupled to a bath of harmoni osillators E. This bath is

haraterized by a density of modes g (ω), and it is assumed to be in a thermal

state,

ρE =
1

Z exp

(
− HE

kBT

)
, with Z = Tr

[
exp

(
− HE

kBT

)]
. (3.15)

The Hamiltonians of this model read as

HS = ~ω0a
†a , (3.16)

HE =

∫ ∞

0
dωg (ω) ~ωb† (ω) b (ω) , (3.17)

HI =

∫ ∞

0
dωg (ω) ~

[
κ∗ (ω) ab† (ω) + κ (ω) a†b (ω)

]
, (3.18)

with ladder operators a and b (ω) and a frequeny dependent oupling onstant

κ (ω). Applying the weak oupling approah Eqs. (3.13) and (3.14) to the system

above, one �nds the master equation of the damped harmoni osillator [46℄

d

dt
ρ = −iω0

[
a†a, ρ

]
+ γ (n̄+ 1)

(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)

+γn̄

(
a†ρa − 1

2
aa†ρ− 1

2
ρaa†

)
, (3.19)

with damping onstant γ ≡ 2πg (ω0) |κ (ω0)|2 and the mean oupation number

n̄ ≡ n̄ (ω0, T ) = TrE

[
ρE b† (ω0) b (ω0)

]
. (3.20)

Below the zero temperature limit of (3.19), T → 0, is onsidered. Sine the mean

oupation number vanishes at zero temperature, that is n̄ (ω0, T → 0) = 0, the
orresponding master equation reads as

d

dt
ρ = −iω0

[
a†a, ρ

]
+ γ

(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
. (3.21)

In onlusion, the damped harmoni osillator oupled to a zero temperature

bath is desribed by a master equation in Lindblad form de�ned by the standard

Hamiltonian H = ~ω0a
†a, and a single Lindblad operator L = a, with assoiated

rate γ.
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3.3 The Caldeira-Leggett equation

Another paradigm of open quantum systems is the so-alled Caldeira-Leggett

model [47℄ desribing the fritional quantum dynamis of a Brownian partile.

The model onsiders a Brownian partile S of mass m with oordinate x, whih
moves in a potential V (x). Like in the ase of the damped harmoni osillator,

the environment E onsists of a bath of harmoni osillators with frequenies ω
and masses m (ω). The bath is haraterized by a density of modes g (ω), and
it is assumed to be in a thermal state, see Eq. (3.15). The form of the intera-

tion between system and environment is suh that the position operator x of the

Brownian partile ouples linearly to the positions x (ω),

x (ω) =

(
~

2m (ω)ω

)1/2 [
b (ω) + b† (ω)

]
, (3.22)

of the osillators in the environment. Aordingly, the Hamiltonians of the model

are given by

HS =
p2

2m
+ V (x) , (3.23)

HE =

∫ ∞

0
dωg (ω) ~ωb† (ω) b (ω) , (3.24)

HI = −x

∫ ∞

0
dωg (ω)κ (ω) x (ω) , (3.25)

with frequeny dependent oupling onstant κ (ω).
Remarkably, the redued dynamis of the Brownian partile S generated by

the above Hamiltonians an be solved in losed form [47℄ for all hoies of g (ω)
and κ (ω). In this thesis, though, a spei� ase is onsidered, namely the weak-

oupling and high-temperature limit . In this regime, the evolution equation has

almost Lindblad form [47℄

d

dt
ρ =

1

i~
[HS , ρ] +

γ

i~
[x, pρ+ ρp] − 4πγ

Λ2
th

[x, [x, ρ]] , (3.26)

with Λth the thermal de Broglie wavelength,

Λ2
th ≡ 2π~

2

mkBT
. (3.27)

The above equation is referred to as Caldeira-Leggett master equation.

It should be mentioned that we onsider here a Brownian partile in one spatial

dimension. The extension to three dimensions is obtained easily, by summing over

the di�erent oordinates on the right-hand side of Eq. (3.26).

3.3.1 Sketh of the derivation

Originally, the Caldeira-Leggett model was solved using the path integral ap-

proah, or more spei�ally the Feynman-Vernon in�uene funtional tehnique

[48℄. Here a less sophistiated approah [29℄ is disussed, whih applies spei�ally

to the weak-oupling and high-temperature limit. In this ase, the Born-Markov

approximation may be applied, so that one an take the Red�eld equation (3.8) as
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starting point. However one annot proeed further along the lines of Setion 3.1,

sine the rotating wave approximation (RWA) is not appliable to the Caldeira-

Leggett model. In fat, the RWA requires that the system Hamiltonian HS has

a disrete spetrum, so that the system dynamis is given by tS = |ω − ω′|−1
,

with |ω − ω′| a typial energy spaing; the RWA an be applied if tS is small om-

pared to the relaxation time. However, the Hamiltonian of the Caldeira-Leggett

model has a ontinuous energy spetrum, and one therefore needs an alternative

approximation sheme.

To this end, one makes spei� assumptions on the spetral density

J (ω) ≡ g (ω)
|κ (ω)|2
2m (ω)ω

. (3.28)

In order to obtain Ohmi damping , whih means frequeny independent damp-

ing with the rate γ, one requires the spetral density to be proportional to the

frequeny for small ω,

J (ω) =
2mγ

π
ω , for ω → 0 . (3.29)

Furthermore, to assure that the integral appearing in (3.8) is onvergent, one

introdues a high-frequeny uto� Ω, suh that J (ω) = 0 for ω > Ω. A andidate

for a spetral density whih satis�es the above properties is the so-alled Ohmi

spetral density with a Lorentz-Drude uto� funtion

J (ω) =
2mγ

π
ω

Ω2

Ω2 + ω2
. (3.30)

As a further ondition one requires that the system evolution is slow ompared

to the bath orrelation time. If ω0 denotes a typial frequeny of the system

evolution, then the time sale of the system dynamis an be estimated as tS =
ω−1

0 . On the other hand, the bath orrelation time tB = ν−1
1 an be assessed

by means of the �rst Matsubara frequeny ν1 ≡ 2πkBT/~. The ondition of slow

system dynamis therefore reads as

~ω0 ≪ 2πkBT . (3.31)

As a further ondition, it is assumed that the temperature is high, in the sense

that

kBT ≥ ~Ω . (3.32)

Using these onditions together with the spetral density shown in (3.30), one

an onvert the Red�eld equation (3.8) into the Caldeira-Leggett master equation

(3.26). It should be mentioned that the latter an also be obtained with spetral

densities other than the one in Eq. (3.30), as long as they are linear for small ω
and zero for ω > Ω.

3.3.2 Extension to Lindblad form

Sine the Caldeira-Leggett equation (3.26) annot be ast in Lindblad form, it is

not a ompletely positive master equation. As a matter of fat, it may violate

the positivity of ertain initial states, suh as wave pakets with a width less than
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the thermal de Broglie wavelength Λth [49℄. One might therefore ask whether

the Caldeira-Leggett equation (3.26) an be brought into Lindblad form, without

substantially modifying the dynamis. It turns out that this an be done by

adding a further double ommutator to the right-hand side of (3.26)

d

dt
ρ =

1

i~
[HS , ρ] +

γ

i~
[x, pρ+ ρp] − 4πγ

Λ2
th

[x, [x, ρ]]

−λ γΛ
2
th

16π~2
[p, [p, ρ]] . (3.33)

This equation an be brought into Lindblad form (2.47), provided that the dimen-

sionless parameter λ satis�es the ondition λ ≥ 1 [29, 49℄. A minimally invasive

modi�ation is therefore obtained with the parameter λ = 1. The orresponding

Lindblad operator reads as

L =

√
8π

Λth
x + i

Λth√
8π~

p , (3.34)

and the assoiated rate is given by γ. This an be veri�ed by a lengthy, but

straightforward alulation, whih makes use of the anonial ommutation rela-

tion, [x, p] = i~.
It should be mentioned that the importane of the Lindblad form goes beyond

the onservation of positivity: it admits to solve the master equation in terms of

quantum trajetories. A detailed introdution to this topi is given in Chapter 7.

3.3.3 Relaxation

The Caldeira-Leggett equation is a model for quantum Brownian motion and, as

suh, it should apture relaxation proesses. To see this, let us evaluate the time

evolution of the mean kineti energy,

〈T (t)〉 = Tr (ρtT) , with T ≡ p2

2m
, (3.35)

for a free partile with HS = p2/2m. We therefore take the time derivative of the

above expression and use the Caldeira-Leggett equation (3.26), whih yields

d

dt
〈T (t)〉 = Tr (ρ̇tT)

=
γ

i2m~
Tr
(
[x, pρ+ ρp] p2

)
− Tr

(
4πγ

2mΛ2
th

[x, [x, ρ]] p2

)
. (3.36)

Upon using the anonial ommutation relation, one obtains [29℄

d

dt
〈T (t)〉 = −4γ〈T (t)〉 + 2γkBT , (3.37)

whih is solved by the expression

〈T (t)〉 =
kBT

2
+

(
〈T (0)〉 − kBT

2

)
e−4γt . (3.38)

In onlusion, the mean kineti energy of the Brownian partile approahes the

thermal energy Eth = kBT/2 on a relaxation time sale set by the rate γ 1.

1In the three-dimensional ase one obtains a similar result with Eth = 3kBT/2.
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Note that this also holds if one takes the Lindblad form of the Caldeira-Leggett

equation (3.33) instead of (3.26).

In addition, one an show [50℄ that both versions of the Caldeira-Leggett equa-

tion, (3.26) and (3.33), exhibit the orret thermal state as stationary solutions.

This holds for free partiles as well as for quadrati potentials. The Caldeira-

Leggett model thus aurately desribes the long-time behavior of a Brownian

partile.

3.3.4 Deoherene

Our next aim is to disuss the short-time dynamis indued by the Caldeira-

Leggett equation (3.26). This regime is haraterized by an interplay of oherent

phenomena on the one hand, and deoherene, i.e. the loss of oherene, on the

other hand, while onepts with a lassial analog suh as relaxation or thermal-

ization do not yet play a role. To analyze the short-time dynamis, let us onsider

a simpli�ed version of the Caldeira-Leggett equation

d

dt
ρ =

1

i~
[HS , ρ] −

4πγ

Λ2
th

[x, [x, ρ]] , (3.39)

whih we shall refer to as the linear oupling model from now on. This simpli�-

ation may be justi�ed for su�iently small Λth (that is, in the high-temperature

limit) where the dominant terms in the Caldeira-Leggett equation are the uni-

tary part and the double ommutator. It should be mentioned that the above

model, and in partiular its role in deoherene, has been studied extensively in

the literature [2, 3, 51℄.

Cruially, this model leads to loalization in position spae, that is to a loss

of spatial oherene, as an been seen by swithing to the interation piture,

ρ̃ = eiHSt/~ρe−iHSt/~ , (3.40)

and the position representation, ρ (x, x′) ≡ 〈x|ρ|x′〉, disussed in Setion 2.1.4.

The resulting evolution equation reads as

∂tρ̃t
(
x, x′

)
= −4πγ

Λ2
th

(
x− x′

)2
ρ̃t
(
x, x′

)
, (3.41)

where we inluded the time argument for larity. This implies that the popula-

tions are una�eted by the inoherent part of (3.39), while the oherenes deay

exponentially

ρ̃t
(
x, x′

)
= e−F (x−x′)tρ̃0

(
x, x′

)
, (3.42)

with

F
(
x− x′

)
=

4πγ

Λ2
th

(
x− x′

)2
. (3.43)

The deay rate of the spatial oherenes is thus haraterized by a loalization rate

F (s) ≥ 0 whih grows with the square of the distane |x− x′|. A omparison with

the relaxation rate γ,

F (x− x′)

γ
= 4π

(x− x′)2

Λ2
th

, (3.44)
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reveals that the deoherene rate is muh greater than the relaxation rate γ,
provided the distane is large on the quantum sale set by the thermal de Broglie

wavelength Λth. This holds in partiular if the separation is marosopi.

Let us point out that the loalization rate F (s) grows above all bounds if

s → ∞. However, this is in ontrast to observations made in experiments

with interfering fullerene moleules [16℄. Here it was found that the loaliza-

tion rate saturates for large distanes s at the average ollision rate γcoll, that

is F (s→ ∞) = γcoll. This is a physially intuitive result: if the separation is

marosopi, one ollision should be su�ient to reveal the partiles `whih path'

information, so that one expets the deoherene rate to be given by γcoll. We

onlude that linear oupling models may lead to inorret results when studying

deoherene phenomena.

However, it turns out that this problem an be resolved if one goes beyond lin-

ear oupling models by treating the environmental oupling in a non-perturbative

fashion. An approah whih admits the inorporation of nonlinear ouplings is

presented in the following setion.

3.4 The monitoring approah

Let us now disuss an alternative method for the derivation of master equations

based on mirosopi onsiderations. This so-alled monitoring approah is quite

di�erent in nature than the weak oupling formulation used in the treatment of

the damped harmoni osillator or the Caldeira-Leggett model. It is not based

on the total Hamiltonian HSE of the ombined system, whih permits to treat

the environmental oupling in a non-perturbative fashion, i.e. it is not neessary

to assume that the interation Hamiltonian HI is weak. Moreover, one an in-

orporate the Markov assumption right from the outset, in ontrast to the weak

oupling approah where it was introdued arti�ially in Eq. (3.8). The method

is the basis for the derivation of the quantum linear Boltzmann equation and the

ollisional deoherene model, both of whih will be used throughout the thesis.

The approah is appliable whenever the interation with the environment

an reasonably be desribed in terms of individual two-partile interation events

or ollisions. A prototype for suh a senario is the interation of a Brownian

partile with an ideal gas environment. The Markov assumption an here nat-

urally be introdued by disregarding the hange of the environment state after

eah ollision.

A ombination of sattering theory and the onept of generalized and on-

tinuous measurements then admits the derivation of a general expression of the

master equation [13,39℄

d

dt
ρ =

1

i~
[HS , ρ] +

i

2
TrE

([
T + T†, Γ1/2 [ρ⊗ ρE ] Γ1/2

])

+TrE

(
TΓ1/2 [ρ⊗ ρE ] Γ1/2T†

)

−1

2
TrE

(
Γ1/2T†TΓ1/2 [ρ⊗ ρE ]

)

−1

2
TrE

(
[ρ⊗ ρE ] Γ1/2T†TΓ1/2

)
, (3.45)

with ρE the redued single-partile state of the environment. The operator T is

the nontrivial part of the two-partile S-matrix S = I+ iT desribing the e�et of



3.5. COLLISIONAL DECOHERENCE 25

a ollision between system and environmental partile [52℄. The rate of ollisions

is desribed by the positive operator Γ, whih gives the probability that a ollision

ours in a small time interval ∆t,

Prob (coll; ∆t) = ∆tTr (Γ [ρ⊗ ρE ]) . (3.46)

3.5 Collisional deoherene

The appliation of the monitoring approah to the motion of a quantum test par-

tile in an ideal gas environment yields the so-alled quantum linear Boltzmann

equation (QLBE) [10�12℄. A detailed introdution of this equation is given in

Chapter 9. For now, let us onsider the limiting ase where the Brownian par-

tile is muh heavier than the partiles of the bakground gas, suh that there

is no appreiable energy exhange during a ollision. In this limit, the QLBE

simpli�es a lot, giving a model alled ollisional deoherene. This model has

been �rst disussed by Gallis and Fleming [14℄ and was derived in its �nal form

by Hornberger and Sipe [15℄. The orresponding master equation has Lindblad

form (2.48), where the jump operators are momentum kik operators, Lq = eiqx/~

(with position operator x), and the rate is given by γq = γG (q). The ontinuous
label q has the meaning of a momentum transfer experiened by the test partile

with G (q) ≥ 0 the orresponding distribution,
∫

dqG (q) = 1; γ is the ollision

rate of the gas environment. The master equation thus reads

d

dt
ρ =

1

i~
[HS , ρ] + γ

∫
dqG (q)

(
eiqx/~ρe−iqx/~ − ρ

)
. (3.47)

This equation is already familiar from Set. 2.2.2, Eq. (2.61), where the short-time

limit of translation-ovariant master equations was disussed.

Note that the authors in [14, 15℄ have presented expliit expressions for the

distribution G (q) and the rate γ, relating them to the relevant mirosopi quan-

tities; these formulas are shown below in Eqs. (3.52) to (3.53).

Spatial Loalization As in the linear oupling model, ollisional deoherene

leads to loalization in position spae, that is to a loss of spatial oherene, as

an be seen by swithing to the interation piture, ρ̃ = eiHSt/~ρe−iHSt/~, and the

position representation,

d

dt
〈x|ρ̃|x′〉 = γ

∫
dqG (q)

(
〈x|eiqx/~ρ̃e−iqx/~|x′〉 − 〈x|ρ̃|x′〉

)

= γ

∫
dqG (q)

(
eiq(x−x′)/~ − 1

)
〈x|ρ̃|x′〉 . (3.48)

One thus �nds an exponential deay of the spatial oherenes,

ρ̃t
(
x,x′

)
= e−F (x−x′)tρ̃0

(
x,x′

)
, (3.49)

with a deay rate given by the loalization rate F (s) ≥ 0. The latter is related

to the momentum transfer distribution G (q) by

F (s) = γ

[
1 −

∫
dqG (q) exp

(
i

~
qs

)]
. (3.50)
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By performing a Fourier inversion of (3.50), one obtains an expression, whih

admits to alulate the momentum transfer distribution from the loalization

funtion,

G (q) =
1

(2π~)3

∫
ds exp

(
i

~
qs

)[
1 − F (s)

γ

]
. (3.51)

Sine the Fourier transform of the distribution G (q) tends to zero for large

distanes s ≡ |s|, the loalization rate saturates for large s at the maximum value

given by the average ollision rate γ, F (s→ ∞) = γ, whih an be interpreted

as the limit where one ollision is su�ient to reveal the partiles `whih path'

information. Collisional deoherene therefore yields the expeted behavior in

the limit of large distanes. Aording to Set. 3.3.4, this behavior is in sharp

ontrast to linear models, where the loalization rate grows quadratially, and

thus approahes in�nity in the limit of a large separation s.

3.5.1 Relation to mirosopi quantities

Sine ollisional deoherene an be derived from a sattering desription of the

interation between the quantum test partile S and the bakground gas, it is

possible to express the loalization rate in terms of the relevant mirosopi quan-

tities. These are the veloity distribution µ (v) of the bakground gas, its density

ngas, and the elasti sattering amplitude f
(
pf ,pi

)
. The latter desribes the

e�et of a ollision between S and a bath partile E, with pi and pf the ini-

tial and �nal momentum of E, respetively. Assuming isotropi sattering, suh

that f
(
pf ,pi

)
= f

(
cos
(
pf ,pi

)
;Ekin = p2

i /2m
)
, the loalization funtions reads

as [15,39℄

F (s) = γ − 2πngas

∫ ∞

0
dvµ (v) v

∫ 1

−1
d cos θ |f (cos θ;Ekin)|2

×sinc

[
2 sin

(
θ

2

)
mv |s|

~

]
, (3.52)

with m the mass of a bath partile and θ the sattering angle. This admits in

partiular to alulate the momentum transfer distribution by means of Eq. (3.51).

The average ollision rate γ an also be determined from mirosopi quantities

by the thermal average

γ =

∫ ∞

0
dvµ (v)ngasvσtot (mv) , (3.53)

where σtot is the total ross setion, σtot (p) = 2π
∫ 1
−1 d cos θ

∣∣f
(
cos θ; p2/2m

)∣∣2.
Typially one assumes that the bakground gas is in thermal equilibrium, so that

the veloity distribution is given by the Boltzmann distribution

µ (v) = 4π

(
m

2πkBT

)3/2

v2 exp

(
− mv2

2kBT

)
. (3.54)

The loalization rate shown in Eq. (3.52) has the behavior whih was already

predited in the paragraph on spatial loalization (see above). In the limit s→ 0,
the sin funtion approahes unity and the angular integral in (3.52) yields the
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Figure 3.1: Sketh of the loalization rate (3.52) as a funtion of the spatial sep-

aration ∆x. The solid line, whih gives the predition of ollisional deoherene,

saturates at the average ollision rate γ. The dashed line shows for omparison

the quadrati behavior (3.43) whih is predited by the Caldeira-Leggett model.

This demonstrates that ollsional deoherene gives a more aurate desription

of deoherene than linear oupling models.

total ross setion σtot, whih implies that the loalization rate vanishes. For

small distanes s, one may expand the sin funtion to seond order in s, so that

F (s) has the quadrati dependene predited by the linear oupling model, see

Eq. (3.44). In the limit of large distanes, s→ ∞, the sin funtion vanishes and

the loalization rate tends to the average ollision rate γ, see Figure 3.1. As men-

tioned above, this result agrees with observations made in moleular interferene

experiments in the presene of various bakground gases [16℄.

3.5.2 Dynami redution models

Collisional deoherene is intimately onneted with the so-alledGhirardi-Rimini-

Weber (GRW) spontaneous loalization model [23,24℄. To see this, we give a short

review of the basi ideas of quantum mehanis with spontaneous loalization.

This will show that the interpretation of the GRW model is ompletely di�erent

from the one underlying onventional quantum mehanis (and ollsional deoher-

ene). However, it will beome apparent that both models, ollsional deoherene

and GRW, lead to the same observational onsequenes, sine they are both de-

sribed by the same master equation [25℄.

Quantum mehanis with spontaneous loalization is a uni�ed framework that

aptures both, the quantum properties of mirosopi systems and the lassial

properties of marosopi objets. To this end, it suggests a modi�ation of the

Shrödinger equation by means of nonlinear and stohasti terms whih lead to a

loalization of the wave funtion. The rate, whih is assoiated to these stohas-

ti terms, grows linearly with the partile number, suh that marosopi bod-

ies get loalized while mirosopi objets may be deloalized in position spae.
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Cruially, these extra terms are assumed to be part of the fundamental laws of

quantum mehanis, they are not meant to be indued by an environmental ou-

pling as it is the ase in deoherene theory. It should also be stressed that the

loalizations a�et diretly the wave funtion, not only the statistial operator. In

ontrast to standard quantum mehanis, GRW assign an objetive, i.e. observer

independent, meaning to the wave funtion.

The stohasti proess Let us now disuss in more detail the stohasti pro-

ess experiened by the wave funtion |ψ〉 of a single partile. Here the wave

funtion evolution has a deterministi part given by the usual Shrödinger equa-

tion, whih is interrupted by random jumps. The latter are e�eted by Hermitian

operators Ly,

|ψ〉 → |ψ′〉 =
Ly|ψ〉
‖Ly|ψ〉‖

, (3.55)

whih ause a Gaussian-shaped loalization at point y,

Ly =
1

(2πσ2)3/4
exp

(
−(x − y)2

4σ2

)
, with

∫
dyL2

y
= 1 . (3.56)

Here x denotes the position operator. The jumps our with the rate

ry = ‖Ly|ψ〉‖2 , (3.57)

ensuring that redutions are more likely to our where the probability to �nd a

partile is greater, aording to onventional quantum mehanis.

The orresponding master equation This stohasti proess implies that

the evolution of the density matrix is desribed by a master equation in Lindblad

form [23,24℄

d

dt
ρ =

1

i~
[HS , ρ] + γ

(∫
dyLyρLy − ρ

)
, (3.58)

with rate γ and Lindblad operators Ly. The latter are however not uniquely �xed

by the master equation (3.58), see Set. 2.2.2. A master equation in Lindblad

form is invariant under ertain transformations of the Lindblad operators, suh

as a Fourier transform,

√
γyLy →

√
γ′

q
L′

q
=

1

(2π~)3/2

∫
dyeiqy/~√γyLy . (3.59)

Note that this equation agrees with Eq. (2.49) apart from the ~, whih aounts for

the fat that the variables y and q have the dimension of position and momentum,

respetively. Upon applying this transformation to the Lindblad operators (3.56),

one �nds an alternative set of operators and rates,

L′
q

= exp

(
i

~
qx

)
, (3.60)

γ′
q

= γ

(
2σ2

απ~2

)3/2

exp

(
−2q2σ2

~2

)
. (3.61)
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Remarkably, these are the Lindblad operators of ollisional deoherene, where

the assoiated momentum transfer distribution G (q) ≡ γ′
q
/γ is a Gaussian with

standard deviation σG = ~/2σ. In summary, both models, ollisional deoherene

and GRW, are desribed by the same master equation, provided the momentum

transfer distribution G (q) assumed in ollisional deoherene is a Gaussian dis-

tribution [25℄.
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Chapter 4

The pointer basis

The disussion so far was mainly foused on the haraterization of dynamial

equations governing the temporal evolution of Markovian open quantum systems.

From now on, the harateristi features of the orresponding solutions are dis-

ussed. It turns out that there are typially two types of proesses taking plae

on ompletely di�erent time sales. On a short time sale one observes the loss of

quantum oherene, alled deoherene, whih leads to the appearane of lassial

proerties. One the system behaves e�etively lassial, it may exhibit the whole

range of features known from open lassial systems, suh as di�usion, dissipa-

tion and the relaxation to thermal equilibrium. However, these e�ets our on a

time sale whih is typially muh greater than the one it takes to lose quantum

oherene. In the following hapters, solely the deoherene proess is onsidered,

the ombined treatment of both deoherene and relaxation will be analyzed from

Chapter 9 onwards.

What is typially observed in the deoherene proess, exhibited by the short-

time solutions of master equations, is the superseletion of ertain robust states

in the orresponding Hilbert spae. These so-alled pointer states, whih usually

form a basis, are distinguished by the feature that they remain pure for a relatively

long time, whereas their superpositions get mixed on a short time sale. This

e�etive superseletion therefore explains the absene of oherent phenomena in

systems, suh as marosopi objets, whih are su�iently strongly oupled to

their surroundings. Apart from that, one �nds that, at least in realisti models,

these robust states are loalized wave pakets moving aording to the lassial

equations of motion, thus explaining the transition from quantum- to lassial

dynamis.

The name pointer state was oined in [1℄ due to its relevane for the physial

desription of a measurement apparatus. A measurement devie whih probes

an observable A =
∑

α αPα is onstruted suh that marosopially distint

positions of the pointer or indiator are obtained for the di�erent eigenstates Pα
of A. For a quantum system initially prepared in an eigenstate of A the read-out

will display the orresponding eigenvalue with ertainty provided these pointer

states remain pure during the time evolution. On the other hand, if the quantum

system is prepared in a superposition of eigenstates of A, desribed by the state

ρ0, one expets the pointer not to end up in a superposition of di�erent read-

out states, but rather to be at a de�nite position, though probabilistially, with

probabilities pα given by the Born rule, pα = Tr (ρ0Pα).

In Set. 4.1, the prototype of an open quantum system, the damped harmoni
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osillator, is studied. This failitates the indution of a general de�nition of

pointer states, whih will be provided in Set. 4.2. Two di�erent methods that

admit the predition of the pointer states, given a partiular model of the open

system, are summarized in Sets. 4.3 and 4.4.

4.1 The damed harmoni osillator

In Setion 3.2, a model for the damped harmoni osillator oupled linearly

to a zero temperature harmoni osillator bath was introdued. Aording to

Eq. (3.21), its evolution an be desribed by a master equation in Lindblad form

de�ned by the standard Hamiltonian H = ~ωa†a, and a single Lindblad operator

L = a, with assoiated rate γ. For onveniene, let us write this master equation

as

d

dt
ρt = γaρta

† − γ+a†aρt − γ−ρta
†a ≡ Lρt , (4.1)

with γ+ ≡ γ/2 + iω and γ− ≡ γ/2 − iω. To start with, let us onsider as initial

state a oherent state [53℄

ρ0 = |α0〉〈α0|
= e−|α0|

2

exp
(
α0 a†

)
|0〉〈0| exp (α∗

0 a) , (4.2)

whih satis�es a|α0〉 = α0|α0〉, with α0 ∈ C. The solution of (4.1) is then given

by

ρt = |αt〉〈αt| , with αt = α0 exp (−γ+t) , (4.3)

whih an easily be veri�ed:

d

dt
|αt〉〈αt| = γ |αt|2 |αt〉〈αt| − γ+ αta

†|αt〉〈αt| − γ− α
∗
t |αt〉〈αt|a

= L (|αt〉〈αt|) . (4.4)

This shows that the oherent states are robust in the sense that they are pure

state solutions of the damped harmoni osillator. Aording to Eq. (4.3), they

spiral in phase spae towards the origin, approahing the ground state for large

times. Energy is therefore dissipated,

〈αt|H|αt〉 = e−γt〈α0|H|α0〉 , (4.5)

on a relaxation time sale trel = γ−1 determined by the rate γ.

Superposition of oherent states As a next step, let us onsider as initial

state a superposition of two quasi-orthogonal oherent states

|ψ0〉 = c1|α0〉 + c2|β0〉 , with |α0 − β0|2 ≫ 1 , (4.6)

so that the orresponding density operator reads as

ρ0 = |c1|2 |α0〉〈α0| + |c2|2 |β0〉〈β0| + c1c
∗
2|α0〉〈β0| + c∗1c2|β0〉〈α0| . (4.7)
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It is then easy to show that the master equation is solved by the expression [29,39℄

ρt = |c1|2 |αt〉〈αt| + |c2|2 |βt〉〈βt| + c1c
∗
2Dt|αt〉〈βt| + c∗1c2Dt|βt〉〈αt| ,

where the oherent `basis' states have the same time dependene as in (4.3) and

the oherenes deay as

Dt = exp

([
−1

2
|α0 − β0|2 + iIm (α0β

∗
0)

] (
1 − e−γt

))
. (4.8)

For times whih are short ompared to the relaxation time trel, one thus �nds an
exponential deay of the oherenes

|Dt| = exp
(
−γ

2
|α0 − β0|2 t

)
, for t≪ γ−2 . (4.9)

Assuming quasi-orthogonal oherent states, the time sale of this deay, that is

the deoherene time tdec, is muh shorter than the relaxation time trel,

tdec =
2trel

|α0 − β0|2
≪ trel . (4.10)

To onlude, any oherent state remains pure during the damped time evolution,

while any superposition of distint oherent states deays rapidly into a mixture

ρt ≃ |c1|2 |αt〉〈αt| + |c2|2 |βt〉〈βt| , if t≫ tdec . (4.11)

Moreover, one �nds that the statistial weights of this mixture are determined by

the initial overlaps |c1|2 = |〈α0|ψ0〉|2 and |c2|2 = |〈β0|ψ0〉|2. Due to this property,

the oherent states are to be identi�ed with the pointer states of the damped

harmoni osillator.

It should be mentioned that the quadrati dependene of the deoherene rate

on the distane between the oherent states has been on�rmed in a series of mi-

rowave avity QED experiments at ENS in Paris [54,55℄. Here the superposition

state (4.6) was prepared in one of the �eld modes through the interation of this

avity mode with a single Rydberg atom.

4.2 De�nition of pointer states

The above observation serves as the starting point for the following de�nition of

the pointer states for an open quantum system evolving aording to a Lindblad

master equation ∂tρ = Lρ. We say that the system exhibits a pointer basis if its

dynamis exhibits a separation of time sales, distinguished by a fast deoherene

time tdec, suh that for any time muh greater than tdec, the evolved state is well

approximated by a mixture of uniquely de�ned pure states Pα = |πα〉〈πα| whih
are independent of the initial state ρ0,

eLtρ0 ≃
∫

dα Prob (α|ρ0)Pα(t), if t≫ tdec , (4.12)

with Prob (α|ρ0) > 0 and
∫

dαProb (α|ρ0) = 1. Following the above example,

one further demands that for initial states ρ0, whih are superpositions of mu-

tually orthogonal pointer states Pβ , the probability distribution Prob (α|ρ0) =∑
β wβδ (α− β) is given by the initial projetions

wβ = Tr (ρ0Pβ (0)) . (4.13)
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The pointer states Pα initially form an (often overomplete) basis, and they may

evolve in time, though slowly ompared to tdec. Note that in (4.12) we assume

a ontinuous set of pointer states; in ase of a disrete set, the integral in (4.12)

must be replaed by a sum.

The above de�nition shows that the importane of pointer states goes beyond

the physis of measurement devies and the quantum-to-lassial transition sine

they are also a pratial tool for the solution of master equations. Knowing

the pointer states Pα, their time evolution Pα (t), and the assoiated probability

distribution Prob (α|ρ0), one an immediately speify the solution of the master

equation for any initial state and times greater than the deoherene time. Sine

the deoherene time is generially muh shorter than the system and dissipation

time sales of the pointer state motion, this allows one to apture a large part of

the system evolution without solving the master equation.

4.3 The preditability sieve

The most widely used method for obtaining pointer states Pα, given the envi-

ronmental oupling, is the so-alled �preditability sieve� introdued by Zurek

in [4, 5, 56℄. In order to explain this approah, reall from Set. 2.1.1, Eq. (2.11),

that the linear entropy, Slin (ρ) = 1 − Tr
(
ρ2
)
, provides a onvenient measure for

the purity of states. It is therefore natural to measure robustness in terms of the

linear entropy prodution rate,

Ṡlin (ρ) = −2Tr [ρL (ρ)] . (4.14)

This suggest identifying pointer states as the least entropy-produing states, i.e.

Pα = arg min
P
Ṡlin (P) , (4.15)

where the optimization is with respet to pure states (sine the pointer states are

pure aording to their de�nition in Eq. (4.12)) and the label α indiates that

in general the minimum is not unique but gives a whole set. This optimization

proedure is alled �preditability sieve�, beause it �lters out the most preditable

states.

As a �rst example, let us onsider the damped harmoni osillator. Reall

from Set. 4.1, that we have already identi�ed oherent states |α〉 as pure state

solutions of the orresponding master equation, that is Ṡlin (|α〉〈α|) = 0. Thus,

they provide solutions of the optimization problem (4.15).

Linear oupling model As a seond example, let us onsider the linear ou-

pling model introdued in Set. 3.3.4. It desribes the deoherene dynamis

exhibited by a quantum Brownian partile and it an be derived from the Hamil-

tonian of a partile whih is linearly oupled to a bath of harmoni osillators.

Its evolution is obtained by a master equation in Lindblad form,

d

dt
ρt =

1

i~
[HS , ρt] − Λ [x, [x, ρt]] , (4.16)

where Λ ≡ 4πγ/Λ2
th denotes the deoherene rate. The orresponding entropy

prodution rate is determined by the spatial width of the state

Ṡlin (P) = 2ΛTr
(
P2x2 − PxPx

)

= 2Λ
(
〈x2〉 − 〈x〉2

)
, (4.17)
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so that position eigenstates |x〉 are the andidate pointer states obtained by the

preditability sieve (4.15). However, loalized states disperse quikly. An initially

peaked wave paket will therefore rapidly spread in spae, implying that the

entropy prodution rate beomes large after a short time. It has therefore been

suggested in [4, 5℄ to replae the time-loal preditability sieve (4.15) by a time-

integrated expression,

Pα = arg min
P

∫ ∞

0
dt (Slin (P; t) − 1) . (4.18)

Here Slin (P; t) denotes the time-dependent linear entropy, whih results from an

initial state P, that is

Slin (P; t) = −2Tr
[
ρtL (ρt)] , with ρt = eLtP . (4.19)

As shown in [3℄, this funtion an be evaluated analytially

Slin (ψσ; t) = 1 −
(

3m2

4Λ2~2t4 + 2Λ~2σ−2t3 + 24Λm2σ2t+ 3m2

)1/2

,(4.20)

assuming Gaussian initial wave pakets ψσ (x) with variane σ2. A numerial

optimization of the time-integrated linear entropy (4.18) then yields an optimal

width [3℄

σopt ≃ 0.5

(
~

Λm

)1/4

. (4.21)

The andidate pointer states predited by the time-integrated preditability sieve

are therefore loalized wave pakets with a spatial extension σopt.

Disadvantages In spite of its oneptual learness, the preditability sieve has

several drawbaks. First of all, one has to solve a ompliated optimization prob-

lem, in partiular if the system is in�nite-dimensional. In the latter ase, it is

usually neessary to restrit the set of states to a partiular lass of test fun-

tions, suh as Gaussian wave pakets. A numerial optimization routine may

then yield a ertain parameter, suh as the width, but it does not provide the

preise shape of the wave pakets (see the example above). Furthermore, the pre-

ditability sieve does not yield the time evolution and the probability distribution

of the pointer states. Both of them are needed in order to obtain the full solution

(4.12) of the master equation.

4.4 Nonlinear equation for pointer states

A method whih irumvents the disadvantages desribed above was proposed

in [6�8℄. Here the pointer states are obtained as the �xed points or solitons of a

ertain nonlinear equation.

4.4.1 Pointer states of pure dephasing

Let us illustrate this method by means of a two level system, subjet to a dephasing

environment. The orresponding master equation in interation piture,

∂tρt = γ (σz ρt σz − ρt) , (4.22)
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Figure 4.1: Bloh representation of a two level system subjet to pure dephasing,

as desribed by (4.22). As t → ∞, the initial state ρ0 = P is projeted onto the

z-axis, implying that the poles (P↑ and P↓ ) are the pointer states. The thik line

indiates a trajetory within the set of pure states whih onnets the initial state

to a nearby pointer state (the north pole). The in�nitesimal inrements of this

trajetory has minimal distane from L (P) among all evolutions whih generate

pure state trajetories.

is haraterized by the Lindblad jump operator L =σz and the rate γ > 0. In

order to solve this equation, use the so-alled Bloh representation.

Bloh representation The density operator ρ of a two level system an be

represented by a point in the unit sphere,

ρ =
1

2
(I + a · σ) , with |a| ≤ 1 , (4.23)

where a = Tr (σρ) is the Bloh vetor and σ = (σx, σy, σz) denote the Pauli

matries. The pure states P form the surfae {a : |a| = 1} of the Bloh sphere,

while mixed states lie in the interior.

Upon inserting the Bloh representation (4.23) into (4.22), one obtains a set

of di�erential equations for the omponents of the Bloh vetor

(ȧx, ȧy, ȧz) = (−2γax ,−2γay, 0 ) , (4.24)

whose solution reads as

a (t) =
(
e−2γtax (0) , e−2γtay (0) , az (0)

)
. (4.25)

Hene, the surfae of the Bloh sphere is projeted onto the z-axis in the ourse of

the dephasing proess. This implies that the deohered state a (∞) = (0, 0, az (0))
is a mixture of the eigenstates of σz (denoted by P↓ = | ↓〉〈↓ | and P↑ = | ↑〉〈↑ |
respetively),

ρ∞ = Tr
[
P↑ρ0

]
P↑ + Tr

[
P↓ρ0

]
P↓ . (4.26)
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The omparison with (4.12) shows that the north and the south pole of the Bloh

sphere (orresponding to P↓ and P↑) form the pointer basis of the pure dephasing

proess.

Sine the solution of the master equation will not be at hand in general, one

requires a method whih yields the pointer states without the knowledge of ρt . To
motivate this, notie that the north pole of the Bloh sphere is the asymptoti end

point of the trajetory illustrated by the thik line in Fig. 4.1. This trajetory is

generated by an equation of motion with the following properties. (i) It preserves

the purity of pure initial states, meaning that an initial state whih lies on the

Bloh sphere remains on the surfae. (ii) It is expeted to be nonlinear beause

it must distinguish pointer states from their superpositions. (iii) The generated

trajetory follows the exat solution of the master equation as losely as possible.

In order to �nd suh an equation of motion for a (t), it is suggestive to minimize

the distane of the initial inrements,

min
∂ta

|L (a) − ∂ta|2 , with a · ∂ta = 0 . (4.27)

Here, L denotes the generator of the master equation (4.22) in Bloh represen-

tation and ∂ta is subjet to the ondition a · ∂ta = 0 whih ensures that the

generated trajetory remains on the surfae of the Bloh sphere. Using spherial

oordinates for a (and hoosing the oordinate system suh that the azimuth of

a vanishes, that is ϕ = 0) one an reformulate (4.27) as

min
θ̇,ϕ̇

[(
2γ sin θ + θ̇ cos θ

)2
+
(
ϕ̇2 + θ̇2

)
sin2 θ

]
, (4.28)

where it is used that ṙ = 0 due to the onstraint a · ∂ta = 0. Sine the funtion
in (4.28) is quadrati in θ̇ and ϕ̇, one an easily �nd its minimum by derivation,

whih yields

(
ṙ, ϕ̇, θ̇

)
= (0, 0,−γ sin (2θ)) . (4.29)

Beause the sine is positive for θ ∈ (0, π/2), the solutions of these equations tend
asymptotially towards a pointer state of the system, see Fig. 4.1. The equator

of the Bloh sphere forms a set of unstable �xed points of (4.29).

4.4.2 General Markovian master equations

Let us now generalize the above argument to general Markovian master equa-

tions ∂tρ = Lρ. To this end, let us replae the Eulidean norm in (4.27) by

an appropriate operator norm. A ommon hoie is the Hilbert-Shmidt norm

‖A‖2
HS ≡ Tr

(
A†A

)
, whih applies to arbitrary operators A in H. Aordingly, the

generalization of (4.27) to higher dimensional systems reads

min
∂tP

||L (P) − ∂tP||2HS , (4.30)

where the minimization is with respet to all evolution equations ∂tP = f (P)
whih propagate P within the set of pure states, suh that P2

t = Pt. In order to

�nd the struture of this lass of equations, let us write the evolution equation in

ompletely general terms as

∂t|ψ〉 = (Aψ + Bψ) |ψ〉 , (4.31)
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where Aψ = A
†

ψ and Bψ = −B
†

ψ are ψ-dependent, Hermitian and anti-Hermitian

mappings. This form an be further restrited using the onservation of norm

0 = ∂t||ψ||2
= (∂t〈ψ|) |ψ〉 + 〈ψ|∂t|ψ〉
= 2〈ψ|Aψ|ψ〉 . (4.32)

To assure that Aψ has a vanishing expetation value, replae it as

Aψ → Aψ − 〈ψ|Aψ|ψ〉 . (4.33)

In onlusion, norm-preserving evolution equations for state vetors |ψ〉 are of the
form

∂t|ψ〉 = (Aψ − 〈ψ|Aψ|ψ〉 + Bψ) |ψ〉 . (4.34)

This implies that the equation of motion for the projetor P = |ψ〉〈ψ| is given by

∂tP = (∂t|ψ〉) 〈ψ| + |ψ〉∂t〈ψ|
= [P, [P,AP]] + [BP,P]

= [P, [P,AP + [BP,P]]] . (4.35)

This expression an be further simpli�ed, by introduing the Hermitian operator

XP := AP + [BP,P], whih �nally yields

∂tP = [P, [P,XP]] . (4.36)

Note that any nonlinear trae and purity preserving evolution equation must have

this struture.

We are now in the position to reformulate the optimization problem (4.30) in

a more onvenient form

min
XP

‖L (P) − [P, [P,XP ]] ||2HS . (4.37)

In order to solve it, let us rewrite the expression in Eq. (4.37) as

‖L (P) − ∂tP||2HS = Tr
[
(L (P) − [P, [P,XP ]])2

]

= Tr
[
L (P)2 − 2

(
L (P)2 P − (L (P) P)2

)]

+2Tr
[
(L (P) − XP)2 P − [(L (P) − XP)P]2

]
. (4.38)

Here the �rst summand is independent of XP, whereas the seond one an be

rephrased as

2Tr
[
YP

2P − (YPP)2
]

= 2
(
〈YP

2〉 − 〈YP〉2
)
, (4.39)

with the de�nition YP:=L (P)−XP, YP
† = YP. The variane in (4.39) is minimal

whenever the mapping YP admits |ψ〉 as an eigenstate, YPP = λP. This implies

that the solution of (4.37) meets the ondition

XminP = (L (P) − λ)P . (4.40)
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The right-hand side of (4.36) therefore reads

[P, [P,Xmin]] = PL (P) + L (P) P − 2PL (P) P

= [P, [P,L (P)]] . (4.41)

To onlude, the generalization of (4.29) reads as [6�8℄

∂tP = [P, [P,L (P)]] . (4.42)

Motivated by the example in Set. 4.4.1, one is let to onjeture that the asymp-

toti solutions of (4.42) provide the pointer states in more omplex systems as

well.

State vetor representation In pratial appliations, it is more onvenient

to work with the vetor representation of (4.42) rather than with the projetor

equation itself. The former is given by

∂t|ψ〉 = (L (Pψ) − 〈ψ|L (Pψ) |ψ〉) |ψ〉 , (4.43)

with Pψ ≡ |ψ〉〈ψ|. It is straightforward to show that Eq. (4.43) implies the

projetor equation (4.42)

∂tP = (L (Pψ) − 〈L (Pψ)〉) |ψ〉〈ψ| + |ψ〉〈ψ| (L (Pψ) − 〈L (Pψ)〉)
= L (Pψ) Pψ + PψL (Pψ) − 2|ψ〉〈ψ|L (Pψ) |ψ〉〈ψ|
= [P, [P,L (P)]] . (4.44)

If one takes the Lindblad form for the generator in (4.43), the equation reads

∂t|ψ〉 =
1

i~
(H − 〈H〉) |ψ〉

+

∫
dqγq

[
〈L†

q〉 (Lq − 〈Lq〉) −
1

2

(
L†

qLq − 〈L†
qLq〉

)]
|ψ〉 , (4.45)

where the expetation values are with respet to |ψ〉. Note that the energy expe-

tation 〈H〉 is disregarded in the following, sine it ontributes only an additional

phase.

Quantum trajetories and the nonlinear equation It will be important in

subsequent hapters that Eq. (4.45) is known also in another ontext: it orre-

sponds to the deterministi part of a spei� quantum trajetory method alled

orthogonal unraveling . As we will demonstrate in Chapter 8, one an use this

spei� unraveling to prove for a partiular model that the asymptoti solutions

of (4.45) indeed provide the pointer states. Moreover, it allows one to alulate

the probability distribution Prob (α|ρ0) of the pointer states, with ρ0 the initial

state.

4.4.3 Pointer states of the damped harmoni osillator

As a �rst appliation of the nonlinear equation (4.45), let us onsider again the

damped harmoni osillator introdued in Set. 3.2. It is desribed by the Hamil-

tonian H = ~ωa†a and the single Lindblad operator L = a, implying that Eq. (4.45)

beomes

∂t|ψ〉 = −iωa†a|ψ〉 + γ

[
〈a†〉 (a − 〈a〉) − 1

2

(
a†a − 〈a†a〉

)]
|ψ〉 . (4.46)
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It is known already from Set. 4.1 that oherent states |α〉 onstitute the pointer

states of this model, suggesting the ansatz |ψ〉 = |α〉. Sine oherent states are

eigenstates of a, the �rst term of the non-unitary part in (4.46) vanishes, leading

to the equation

∂t|α〉 =
(γ

2
|α|2 − γ+αa†

)
|α〉 , (4.47)

with γ+ ≡ γ/2 + iω. It an be veri�ed easily that this equation is solved by

|αt〉 = e−|αt|
2/2eαta

† |0〉 , (4.48)

with αt = α0 exp (−γ+t). This shows that oherent states are indeed the predited

pointer states, onsistent with the expliit solution of the master equation (4.1).

Moreover, we �nd that the nonlinear equation provides the orret time evolution

for the pointer states, agreeing with the result obtained in Set. 4.1, Eq. (4.3).

Additional ondition Surprisingly, the nonlinear equation (4.46) is also solved

by energy eigenstates |n〉 of the isolated osillator. These states are eigenvetors

of the `number operator' n ≡ a†a, whih implies that the seond term of the

non-unitary part in (4.46) vanishes. The �rst term is also zero, sine

〈n|a†|n〉 =
√
n+ 1〈n|n+ 1〉 = 0 . (4.49)

Therefore, Equation (4.46) exhibits solutions of the form

|nt〉 = e−iωnt|n〉 . (4.50)

Energy eigenstates, however, are very fragile quantum states, sine their entropy

prodution rate grows linearly with the oupation number n

Ṡlin (|n〉〈n|) = −2γ
(
〈n|a|n〉〈n|a†|n〉 − 〈n|a†a|n〉

)

= 2γn , (4.51)

and they do therefore not math with the de�nition of pointer states (4.12) or

(4.15).

This shows that the �xed points P of the nonlinear equation (4.45) are not

neessarily pointer states. In fat, one needs a further ondition: the entropy

prodution rate Ṡlin (P) of the asymptoti solutions P of the nonlinear equation

(4.45) must be small. The reason for this additional ondition will beome lear

in Chapter 8 when studying the orthogonal unraveling mentioned above.

4.4.4 Pointer states of the linear oupling model

As a seond appliation of the nonlinear equation (4.45), let us study the linear

oupling model, see Set. 3.3.4, whih desribes the deoherene dynamis of a

quantum Brownian partile. It is haraterized by the Hamiltonian H = p2/2m
and the single Lindblad operator L =

√
2Λ/γx, implying that Eq. (4.45) beomes

∂t|ψ〉 =
p2

i~2m
|ψ〉 − Λ

[
(x − 〈x〉)2 − σ2

]
|ψ〉 , (4.52)
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Figure 4.2: Loalization indued by the inoherent part of the nonlinear equation

(4.53). The entered parts of the wave funtion ψ (x), whih lie within one sigma

of the mean 〈x〉, get ampli�ed, i.e. ∂tψ > 0, whereas the tails get damped, that is

∂tψ < 0.

with variane σ2 ≡ 〈x2〉 − 〈x〉2. This equation is most onveniently studied in

position representation, whih yields [6, 39,57℄

∂tψt (x) =
i~

2m
∂2
xψt (x) − Λ

[
(x− 〈xt〉)2 − σ2

t

]
ψt (x) , (4.53)

where we inluded the time arguments for larity.

The two summands in (4.53) have ounterative e�ets on the dynamis of

the wave funtion: the oherent term leads to its dispersion, whereas the seond,

inoherent summand tends to loalize the solution. In order to explain this loal-

ization, note that the entered parts of the wave funtion, whih lie within a one-

sigma interval around the mean, |x− 〈x〉| < σ, get ampli�ed, i.e. ∂tψ > 0, whereas
the tails of the wave funtion, where |x− 〈x〉| > σ, get damped, i.e. ∂tψ < 0. This
e�et is visualized in Figure 4.2. As a onsequene of these ompeting ontribu-

tions, one expets solitoni solutions where both e�ets are in equilibrium, so that

the state moves with �xed shape and onstant veloity. As disussed above and

already in [6,57℄, these solitons are andidates for the pointer states of the linear

oupling model.

Indeed, the nonlinear equation (4.53) exhibits Gaussian solitoni solutions of

the form [6,57℄

πt (x) = N exp

(
−1 − i

4σ2
[x− 〈xt〉]2 +

i

~
[x− 〈xt〉] 〈p〉 + iφt

)
, (4.54)

whih move with onstant momentum 〈p〉,

〈xt〉 =
〈p〉
m
t+ 〈x0〉 . (4.55)
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Here N denotes the normalization onstant and φt is a linear funtion in time,

given by

φt =

( 〈p〉2
2~m

− ~

4mσ2

)
t+ φ0 . (4.56)

Cruially, the Gaussian solitons move with a �xed width, whih is given by the

expression [6, 39,57℄

σ =
1√
2

(
~

mΛ

)1/4

=
1√
2

(
~Λ2

th

4πγ

)1/4

. (4.57)

We note that this width tends to zero in the limit of large temperature T or large

oupling onstant γ, that is σ (T → ∞) = 0 or σ (γ → ∞) = 0. This implies that

the pointer states of the linear oupling model are loalized in the limiting regime

where lassial behavior is expeted. It should also be mentioned that this result

for the soliton width agrees (apart from a fator of 1/
√

2) with the predition of

the time-integrated preditability sieve, see Set. 4.3, Eq. (4.21). This indiates

that the two approahes are of similar type.

In order to verify that (4.54) presents a solution of (4.53), let us evaluate its

time and position derivative, whih yields

∂tπt (x) −
i~

2m
∂2
xπt (x) =

(
i∂tφt −

i〈p〉2
2~m

+
i~

4mσ2

− ~

4mσ4

([
x− 〈xt〉2

]
− σ2

))
πt (x) , (4.58)

where the ballisti motion (4.55) is used. The omplex part of the right-hand side

vanishes if the phase φt exhibits the time dependene shown in Eq. (4.56). The

above equation then simpli�es, giving

∂tπt (x) −
i~

2m
∂2
xπt (x) = − ~

4mσ4

([
x− 〈xt〉2

]
− σ2

)
πt (x) . (4.59)

This dynamial equation oinides with the nonlinear equation (4.53), provided

the width is given by Eq. (4.57). This shows that the Gaussian soliton (4.54)

moves aording to Eq. (4.53), if it satis�es the onditions (4.55), (4.56) and

(4.57). We onlude that the linear oupling model (4.16) exhibits Gaussian

pointer states.

General linear oupling models Reall from Set. 3.3 that the linear oupling

model (4.16) is based on the Caldeira-Leggett equation (3.26), whih was derived

in [47℄ assuming the high-temperature limit (3.32) and Ohmi spetral densities

(3.29). A more general result was obtained by Hu, Paz and Zhang [58℄, where

a master equation is derived for the redued state of a free quantum system

linearly oupled to a heat bath at arbitrary temperature, with arbitrary spetral

density. It was proved rigorously in [9℄ that this master equation leads to the

omplete, �nite time deoherene in the Gaussian basis. This shows that the

deoherene to Gaussian pointer states is a generi feature of linear oupling

models. Note, however, that linear models may lead to inorret results when

studying deoherene phenomena, see Set. 3.3.4.
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Chapter 5

Pointer states of ollisional

deoherene

In the previous hapter, a nonlinear equation was disussed whose solitoni solu-

tions are supposed to provide the pointer states for a given open quantum system.

It was applied to several examples inluding the damped harmoni osillator and

a free quantum partile oupled linearly to a bath of harmoni osillators. There,

the solitoni solutions of the orresponding nonlinear equation are oherent states

and Gaussian wave pakets, respetively [6, 57℄. In the following, we go beyond

linear oupling models by applying the formalism to the one-dimensional version

of ollisional deoherene, whih provides a realisti desription of the deoherene

proess generated by an ideal gas environment, see Set. 3.5.

In Set. 5.1, we derive the orresponding nonlinear equation and present its

numerial solution. The properties of the obtained solitoni solutions are analyzed

in Set. 5.2. A disussion of their temporal evolution in the presene of an external

potential follows in Set. 5.3.

5.1 Determining the pointer states of ollisional deo-

herene

Collisional deoherene is desribed by a master equation in Lindblad form (3.47),

where the jump operators are momentum kik operators, Lq = eiqx/~, and the

rate is given by γq = γG (q), see Set. 3.5. For simpliity, let us treat the one-

dimensional ase in the following, where the momentum vetor q is replaed by

the one-dimensional momentum q. Assuming a free partile and the Lindblad

operators shown above, the nonlinear equation (4.45) beomes

∂t|ψ〉 =
p2

i~2m
|ψ〉 + γ

∫ ∞

−∞
dqG (q) 〈e−iqx/~〉

(
eiqx/~ − 〈eiqx/~〉

)
|ψ〉 , (5.1)

where it is used that the seond term of the non-unitary part in (4.45) vanishes,

due to the unitarity of the jump operators Lq. This equation is most onveniently

studied in position representation, whih gives

∂tψ (x) =
i~

2m
∂2
xψ (x) + γψ (x)

∫ ∞

−∞
dqG (q)

∫ ∞

−∞
dy |ψ (y)|2 e−iqy/~

×
(
eiqx/~ −

∫ ∞

−∞
dz |ψ (z)|2 eiqz/~

)
. (5.2)
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Figure 5.1: Simpli�ed piture of the loalization indued by the inoherent part of

the nonlinear equation (5.5), in the limit of a broad distribution where |ψ|2 ∗ Ĝ ≃
|ψ|2. This assumption implies that the entered parts of the wave funtion ψ (x),
where |ψ|2 exeeds the onstant cψ, get ampli�ed, i.e. ∂tψ > 0, whereas the tails

get damped, i.e. ∂tψ < 0. The ψ-dependent onstant cψ is given by the double

integral cψ =
∫

dy|ψ|2 (y)
(
|ψ|2 ∗ Ĝ

)
(y).

Upon interhanging the integrals in this equation, one �nds

∂tψ (x) =
i~

2m
∂2
xψ (x) + γψ (x)

(∫ ∞

−∞
dy |ψ (y)|2

∫ ∞

−∞
dqG (q) eiq(x−y)/~

−
∫ ∞

−∞
dy |ψ (y)|2

∫ ∞

−∞
dz |ψ (z)|2

∫ ∞

−∞
dqG (q) eiq(z−y)/~

)
. (5.3)

This expression an be simpli�ed by de�ning the Fourier transform of G (q), that
is Ĝ (x) ≡

∫∞
−∞ dq G (q) exp (iqx/~) , whih yields

∂tψ (x) =
i~

2m
∂2
xψ (x) + γψ (x)

(∫ ∞

−∞
dy |ψ (y)|2 Ĝ (x− y)

−
∫ ∞

−∞
dy |ψ (y)|2

∫ ∞

−∞
dz |ψ (z)|2 Ĝ (z − y)

)

=
i~

2m
∂2
xψ (x) + γψ (x)

(
|ψ|2 ∗ Ĝ (x)

−
∫ ∞

−∞
dy |ψ (y)|2

(
|ψ|2 ∗ Ĝ

)
(y)

)
. (5.4)

Here, g ∗ h(x) ≡
∫∞
−∞ dyg (y)h (x− y) denotes the onvolution of g and h. We

onlude that the appliation of the nonlinear equation (4.45) to ollisional deo-

herene yields an integro-di�erential equation of the form

∂tψt (x) =
i~

2m
∂2
xψt (x) + ψt (x) Λ

[
|ψt|2

]
(x) , (5.5)

Λ
[
|ψt|2

]
(x) = γ

(
|ψt|2 ∗ Ĝ (x) −

∫ ∞

−∞
dy|ψt|2 (y)

(
|ψt|2 ∗ Ĝ

)
(y)

)
, (5.6)
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Figure 5.2: The nonlinear equation (5.14) drives any initial state |ψ0〉 (here a

superposition of wave pakets traveling to the right) into a loalized soliton |πt〉
that moves with �xed envelope and onstant veloity. These solitoni solutions

form an overomplete set, the pointer basis of ollisional deoherene.

where the time argument is inluded for larity.

The two summands in (5.5) have ounterative e�ets on the temporal evo-

lution of the wave funtion: the oherent term leads to its dispersion, whereas

the seond, inoherent summand tends to loalize the solution. In order to ex-

plain this loalization, note that the seond summand in (5.6) is independent of

x. This implies that the entered parts of the wave funtion, where the onvolu-

tion |ψt|2 ∗ Ĝ (x) exeeds the onstant term in (5.6), get ampli�ed, i.e. ∂tψt > 0,
whereas the tails of the wave funtion get damped, i.e. ∂tψt < 0, see Fig. 5.1.

(Note that this di�ers from the loalization mehanism disussed in Fig. 4.2.) As

a onsequene of these ompeting e�ets, solutions of (5.5) evolve towards soli-

toni states πt (x) where both e�ets are in equilibrium, so that the state moves

with �xed shape and onstant veloity, that is |πt (x)| = |π0 (x− vt)|. As dis-

ussed above, these solitons are andidates for the pointer states of ollisional

deoherene.

Dimensionless form Let us now reformulate Eq. (5.5) in dimensionless form.

To this end, we use the dimensionless variables

y ≡ σG
~
x and τ ≡ γt , (5.7)

to de�ne the dimensionless wave funtion

ϕτ (y) ≡
√

~

σG
ψτ/γ

(
~

σG
y

)
, (5.8)

with a momentum sale σG (whose meaning will beome lear soon). This implies

that the original wave funtion an be written as

ψt (x) =

√
σG
~
ϕγt

(σG
~
x
)
, (5.9)
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whereas the derivative and the di�erential transform as

∂x =
σG
~
∂y and dx =

~

σG
dy . (5.10)

Upon inserting Eqs. (5.9) and (5.10) into the nonlinear equation (5.5), one obtains

∂τϕτ (y) =
i~

2mγ

(σG
~

)2
∂2
yϕτ (y) + ϕτ (y)

(∫
dy′
∣∣ϕτ

(
y′
)∣∣2 Ĝ

(
~

σG

[
y − y′

])

−
∫ ∫

dy′dy′′
∣∣ϕτ

(
y′
)∣∣2 ∣∣ϕτ

(
y′′
)∣∣2 Ĝ

(
~

σG

[
y − y′

]))
, (5.11)

where we dropped the integral boundaries for brevity. This expression an be

further simpli�ed assuming the momentum transfer distribution G (q) to be a

entered Gaussian with variane σ2
G ,

G (q) =
1√

2πσG
exp

(
− q2

2σ2
G

)
, (5.12)

whih implies that

Ĝ (x) = exp

(
− σ2

G

2~2
x2

)
= exp

(
−y

2

2

)
. (5.13)

Finally, by inserting (5.13) into (5.11), one obtains a nonlinear evolution equation

whih depends only on the single dimensionless parameter κ ≡ σ2
G/ (m~γ),

∂τϕτ (y) = − κ

2i
∂2
yϕτ (y) + ϕτ (y)

∫ ∞

−∞
dy′|ϕτ

(
y′
)
|2

×
(
e−(y−y′)2/2 −

∫ ∞

−∞
dy′′|ϕτ

(
y′′
)
|2e−(y′−y′′)2/2

)
. (5.14)

It should be mentioned that, under the assumption of a normal momentum trans-

fer distribution G (q), the master equation of ollisional deoherene is equivalent

with the one of the Ghirardi-Rimini-Weber model, see Set. 3.5.2.

Numerial solution Figures 5.2 and 5.3 show numerial solutions of (5.14)

omputed with the so-alled split operator FFT method [59, 60℄. In Fig. 5.2, we

hoose as the initial state a superposition of three loalized states φ1,2,3 travelling

to the right, ψ0 (x) = c1φ1 (x) + c2φ2 (x) + c3φ3 (x). The initial state in Fig. 5.3,

on the other hand, is a superposition of two ounter-propagating loalized states

φ4,5, ψ0 (x) = c4φ4 (x) + c5φ5 (x). As expeted from the above disussion, the

(modulus of the) solution onverges to a soliton, in both ases. Moreover, it

is found that the soliton inherits its initial position and momentum expetation

value from that loalized omponent φi of the initial state whih has the greatest

weight ci, |ci| > |cj 6=i|. Similar observations are found for various other initial

states.

5.2 Properties of the solitons

Let us proeed to haraterize the solitoni solutions of (5.5). In Set. 5.2.1, the

onsequenes of the onservation of probability on the phase of the solitons are

analyzed, allowing us to predit the asymptoti shape of the solitons in Set. 5.2.2.

In Set. 5.2.3 we estimate the spatial extension of the solitons, followed by the

proof that they form a basis of the Hilbert spae in Set. 5.2.4.
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Figure 5.3: Similar senario as in Figure 5.2, but with a di�erent initial state. The

latter is a superposition of two ounter-propagating loalized states. The piture

shows that the soliton inherits its initial position and momentum expetation

value from that loalized omponent of the initial state whih has the greatest

weight.

5.2.1 Consequenes of the ontinuity equation

As observed in the previous setion, the nonlinear equation (5.5) exhibits solitoni

solutions πt (x) in the sense that the modulus of πt (x) moves with onstants shape

and veloity, i.e.

πt (x) = f (x− vt) eig(x,t) , (5.15)

with f > 0 and g real. In this setion, the general struture of the phase g (x, t) is
analyzed, whih will be relevant subsequently. The time derivative of a solution

|ψt (x)|2 of (5.5), yields the ontinuity equation for ψt (x),

∂t|ψt (x)|2 = − ~

m
∂xIm (ψ∗

t ∂xψt) + 2|ψt (x)|2 Λ
[
|ψt|2

]
(x) . (5.16)

Plugging the solitoni form (5.15) into (5.16), gives

−2Λ
[
f2
]
(x− vt) − v∂x log f2 (x− vt)

= − ~

m

[
∂2
xg (x, t) + ∂xg (x, t) ∂x log f2 (x− vt)

]
. (5.17)

Here it is used that Λ
[
f2
t

]
(x) = Λ

[
f2
]
(x− vt), whih follows from ft (x) =

f (x− vt) . The time dependene of the left hand side of (5.17) orresponds to a

spatial shift. Thus, also the right-hand side of (5.17) must exhibit suh a simple

time dependene, whih implies that

−v∂xr (x, t) = ∂tr (x, t) , (5.18)

where r (x, t) denotes the right-hand side of (5.17). It follows that

−v∂3
xg (x, t) − v∂2

xg (x, t) ∂x log f2 (x− vt)

= ∂t∂
2
xg (x, t) + ∂t∂xg (x, t) ∂x log f2 (x− vt) . (5.19)
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Sine this equation must hold for all x, v and t, we may assume that the equality

holds already for the summands, so that

−v∂2
xg (x, t) = ∂t [∂xg (x, t)] . (5.20)

Therefore, the temporal and spatial dependene of the phase has the general

struture

g (x, t) = φ (x− vt) + χ (t) , (5.21)

with unknown funtions φ and χ.

5.2.2 Asymptoti form of the solitons

To explore the tails of the solitoni states πt (x) let us onsider the form of (5.5)

for asymptotially large positions. For this purpose, note that the onvolution

|ψt|2 ∗ Ĝ (x) vanishes in the limit |x| → ∞. It follows that Eq. (5.5) beomes

∂tψt (x) ∼ − ~

2mi
∂2
xψt (x) − γaψψt (x) , for |x| → ∞ , (5.22)

with

aψ ≡
∫ ∞

−∞
dy|ψt|2 (y)

(
|ψt|2 ∗ Ĝ

)
(y) , (5.23)

a ψ-dependent, positive onstant. Inserting the solitoni form (5.15) into (5.22)

yields

i∂tg (x, t) f (x− vt) = i
~

2m

[
∂2
xf (x− vt) − f (x− vt) (∂xg (x, t))2

]

+vf (x− vt) − ~

m
[∂xf (x− vt) ∂xg (x, t)

+f (x− vt) ∂2
xg (x, t)

]
− γaψf (x− vt) . (5.24)

Using (5.21), we �nd that both ∂xg (x, t) and ∂2
xg (x, t) are only a funtion of

xt = x − vt, and aordingly, that also the left hand side of (5.24) must be a

funtion of xt. If follows that χ (t) is at most linear in t (that is χ (t) = χ1t+χ0,

with unknown onstants χ0 and χ1). Regarding the real and imaginary part of

(5.24) separately, one obtains two oupled (seond order) di�erential equations

v∂xf − γaψf =
~

m

(
∂xf∂xφ+

1

2
f∂2

xφ

)
, (5.25)

(χ1 − v∂xφ) f =
~

2m

(
∂2
xf − f [∂xφ]2

)
, (5.26)

where f ≡ f (x− vt) and φ ≡ φ (x− vt). This set of equations has two unique

solutions

f (x) = e±k|x| , (5.27)

φ (x) = ∓sgn (x)
m

~

(
v +

γaψ
k

)
x, (5.28)

where the onstant k > 0 depends on the boundary ondition for (5.25) (whih

an be determined only by solving the full nonlinear equation (5.5)). The solution
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Figure 5.4: Semi-logarithmi plot of the numerial solitoni solution of (5.14).

The graph learly demonstrates that the pointer states have exponential tails.

with the positive exponent in (5.27) is irrelevant, sine it is not normalizable.

Figure 5.4 on�rms that the tails of the numerially obtained solitoni solutions

of (5.14) are in agreement with the funtional form (5.27); they are straight lines

in the semi-logarithmi plot. This shows that, unlike in linear models [9℄ where

the pointer states are Gaussian, the pointer states of ollisional deoherene are

exponentially loalized.

5.2.3 Size of the solitons

An important harateristi of the pointer states is their spatial extension. As

explained in Set. 5.4, the latter an be related to the experimentally aessible

one-partile oherene length of a thermal gas. We will determine the pointer

width in this setion, and apply the result later, when studying the dynamis of

pointer states in an external potential.

As a �rst step, onsider the standard deviation σ̃π of the numerially obtained

dimensionless solitoni solution |π̃ (y)|2 of (5.14) as a funtion of the dimensionless

parameter κ = σ2
G/ (γm~) . As shown by the solid line in Fig. 5.5, the size σ̃π

inreases linearly with κ over a wide range of this parameter.

This observation an be reprodued by a simpli�ed model whih has the pra-

tial advantage that it an be applied to more involved situations, suh as 3D

gases with a mirosopially realisti loalization rate F , see Set. 5.4. The idea

of the model goes as follows: the ideal gas environment onsists of partiles whih

ollide with the system at a rate γ. At eah ollision, the ambient partiles gain

position information, so that the wave funtion beomes spatially loalized to a

length sale ℓloc determined by the loalization rate F , see Eq. (3.50). After the
sattering event, the partile disperses freely, until it beomes loalized again by

a subsequent ollision. The approximate pointer width σπ is then obtained by

averaging the time-dependent width of the wave funtion over the waiting-time
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Figure 5.5: Spatial extension of the solitoni solution of (5.14) as a funtion of the

dimensionless parameter κ = σ2
G/ (γm~). The solid line represents the numerial

solution of (5.14). The result of the loalization model (5.36) with parameter

aloc = 0.42 is given by the dashed line.

distribution of a Poisson proess.

More spei�ally, it is assumed that the length sale ℓloc is haraterized by

the free parameter

a′loc =
F (ℓloc)

F (∞)
. (5.29)

To evaluate this expression, we take the momentum transfer distribution G (q) to
be a entered Gaussian with variane σ2

G , see Eq. (5.12), whih yields

F (x) = γ

[
1 − exp

(
− σ2

G

2~2
x2

)]
, (5.30)

where the de�nition of F (3.50) and the expression (5.13) is used. It follows that

the harateristi length sale ℓloc an be expressed as

ℓloc =
aloc ~

σG
, (5.31)

with a2
loc ≡ −2 log (1 − a′loc). The free dispersion after the ollision yields the

time-dependent size

σ2
π (t) =

(
~t

2mℓloc

)2

+ ℓ2loc. (5.32)

Upon averaging over the waiting-time distribution Prob (t) = γe−γt, one obtains

σπ ≡
∫ ∞

0
dτProb (τ)

1

τ

∫ τ

0
dtσπ (t) . (5.33)

≃ ℓloc +
~

4mγℓloc
, (5.34)
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Figure 5.6: Similar to Fig. 5.5, but for small κ's. The irles represent the nu-

merial solution of (5.14) and the result of the loalization model (5.36) with

parameter aloc = 0.42 is given by the dashed line. The plot indiates that the

solitoni width tends to zero (5.14) for κ→ 0.

where we use a linearization of σπ (t) in the seond line. Finally, by inserting the

expression for the loalization length sale (5.31), we �nd

σπ = aloc
~

σG
+

σG
4alocmγ

. (5.35)

The dimensionless version of (5.35) reads

σ̃π ≡ σπσG
~

= aloc +
1

4aloc
κ . (5.36)

The dashed line in Figure 5.5 shows the �t of (5.36) to the numerial solution of

(5.14), as represented by the solid line. This �t yields a value of aloc ≃ 0.4.

Limit κ → 0 It should be mentioned that the loalization model leads to in-

orret results for small values of κ. This is visualized in Fig. 5.6, whih shows

the dimensionless width σ̃π as a funtion of κ in the regime κ ∈ [0, 0.2]. Here the

irles were obtained from the numerial solution of (5.14), while the dashed line

shows the predition of the loalization model.

Figure 5.6 indiates that the numerial result tends to zero for small κ's. This
behaviour an explained by writing Eq. (5.14) as

∂τ |ϕτ (y)|2 = 2 |ϕτ (y)|2
(∫ ∞

−∞
dy′
∣∣ϕτ

(
y′
)∣∣2 e−(y−y′)/2

(5.37)

−
∫

R2

dy′dy′′
∣∣ϕτ

(
y′
)∣∣2 ∣∣ϕτ

(
y′′
)∣∣2 e−(y′−y′′)/2

)
, for κ→ 0 .

This equation has delta funtions, |πτ (y)|2 = δ (y − y0), as stationary solutions

(meaning that ∂τ |πτ (y)|2 = 0), whih implies that the solitoni size vanishes for

κ = 0.
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The loalization model, on the other hand, predits a �nite solitoni width

σπ = ℓloc for κ = 0. To explain this, reall that the model assumes that the wave

funtion gets loalized to the loalization length sale ℓloc at eah ollision. Thus,

in the limit of in�nitely large ollision rates (γ → ∞ or κ→ 0) the width is equal

to the harateristi length sale, σπ = ℓloc. It follows that the loalization model

is not reliable in this regime.

5.2.4 Completeness of the soliton basis

Our next aim is to show that the solitoni solutions of (5.5), whih are interpreted

as the pointer states of ollisional deoherene, form an overomplete basis. For

this purpose, we �rst present a general method to onstrut a manifold of solu-

tions of (4.42) given a spei� one. It relies on the symmetry properties of the

orresponding master equation. Sine ollisional deoherene exhibits Galilean

(that is translation and boost) invariane, it is then easy to show that the pointer

states of this model form an overomplete basis.

Suppose there is a family of unitary operators Ut, satisfying

Ut D (ρ) U
†

t = D
(
Ut ρU

†

t

)
, (5.38)

∂t Ut =
1

i~
[H,Ut] , (5.39)

where D denotes the inoherent part of the master equation, L (ρ) ≡ [H, ρ] / (i~)+

D (ρ). Then, given a solution Pt of the nonlinear equation (4.42), also UtPt U
†

t

onstitutes a solution of (4.42).

This an be veri�ed easily:

[
UPU†,

[
UPU†,L

(
UPU†

)]]
=

1

i~

(
HUPU† − UPU†H

)
+ U [P, [P,D (P)]]U†

=
1

i~
(HUPU† − UPU†H + UHPU† − UHPU†

+UPHU† − UPHU†) + U [P, [P,D (P)]]U† ,

(5.40)

where the time argument is dropped for brevity. Here, the �rst equality makes use

of (5.38) and the unitarity of U. The above expression an be further simpli�ed

using the relation [H,P] = [P, [P, [H,P]]], whih yields

[
UPU†,

[
UPU†,L

(
UPU†

)]]

=
1

i~
[H,U]PU† + U

[
P,

[
P,

1

i~
[H,P] + D (P)

]]
U† − 1

i~
UP
[
U†,H

]

= ∂t

(
UPU†

)
, (5.41)

where (4.42) and (5.39) is used in the third line.

Let us now apply this to the Galilean invariane of ollisional deoherene; the

latter being desribed by the master equation (3.47). We will see that the phase

spae translations

Ut ≡ Ts,u = exp

(
i

~
[utx − stp]

)
, (5.42)



5.2. PROPERTIES OF THE SOLITONS 53

satisfy the symmetry onditions (5.38) and (5.39) provided the time dependene

of st and ut has the partiular form

st = u0 t/m+ s0 , (5.43)

ut = u0 . (5.44)

The latter enat a phase spae translation in aordane with the free shearing

motion.

Let us �rst verify ondition (5.38):

Ts,uD (ρ)T†
s,u = γ

∫ ∞

−∞
dq G (q) Ts,u e

iqx/~ρ e−iqx/~T†
s,u − γTs,uρT

†
s,u

= γ

∫ ∞

−∞
dq G (q) Ts,u e

iqx/~T†
s,uTs,uρT

†
s,uTs,u e

−iqx/~T†
s,u

−γTs,uρT†
s,u . (5.45)

Sine phase spae translation operators satisfy Ts,uf (x)T
†
s,u = f (x − s) for any

funtion f , one �nds

Ts,uD (ρ)T†
s,u = γ

∫ ∞

−∞
dq G (q) eiq(x−s)/~Ts,uρT

†
s,u e

−iq(x−s)/~ − γTs,uρT
†
s,u

= D
(
Ts,u ρT

†
s,u

)
, (5.46)

whih on�rms ondition (5.38). In order to verify (5.39), use the Campbell-

Hausdor� formula to rewrite the translation operator (5.42) as

Ts,u = exp

(
i

~
utx

)
exp

(
− i

~
stp

)
exp

(
−1

2

[
i

~
utx,−

i

~
stp

])

= exp

(
i

~
utx

)
exp

(
− i

~
stp

)
exp

(
− i

2~
stut

)
. (5.47)

The time derivative thus yields

∂tTs,u =
i

~

(
u̇tTs,u − ṡtTs,up − 1

2
(u̇tst + ṡtut)Ts,u

)

=
i

~

(
−ut
m

Ts,up − u2
t

2m
Ts,u

)

=
1

i~

[
p2

2m
,Ts,u

]
, (5.48)

where the shearing transformation (5.43) and (5.44) is required in the seond line.

This on�rms (5.39) for H = p2/2m .

In onlusion, the nonlinear equation (5.5) exhibits a family of solitoni solu-

tions PΓ = Ts,uPT
†

s,u, parameterized by the phase spae oordinate Γ = (s0, u0).
In order to verify that this family forms an overomplete basis, let us onsider

a spei� lass of phase spae representations. Aording to [61℄, any Hilbert-

Shmidt operator A an be represented as

A =

∫
dΓA (Γ)Ts,uQT

†

s,u , (5.49)
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provided Q is a trae-lass operator, meaning that

0 < Tr
(√

Q†Q
)
< ∞ . (5.50)

Here,
∫

dΓ· denotes a phase spae integral and A (Γ) is a funtion of the phase

spae oordinate Γ. Choosing for A the identity I, and for Q the solitoni solution

P0,0 of (5.5) with vanishing position and momentum expetations, one obtains a

resolution of the identity in terms of the solitons PΓ = Ts,uP0,0T
†

s,u,

I =

∫
dΓI (Γ)PΓ . (5.51)

This demonstrates that the pointer states of ollisional deoherene form an over-

omplete basis.

5.3 Dynamis in an external potential

So far, we have haraterized the solitoni solutions of the nonlinear equation

(5.5) whih applies in the absene of an external fore. If an additional poten-

tial is present the orresponding nonlinear equation ontains an additional term

V (x) / (i~) on the right-hand side of (5.5). The numerial treatment shows that

the solutions still onverge to loalized wave pakets, whih, however, hange their

shape and veloity in the ourse of the evolution. It is found that the enter of

these wave pakets moves on the orresponding lassial phase spae trajetory

in the ase of large ollision rates. We �rst summarize our numerial �ndings and

then proeed with an analyti explanation.

Figure 5.7 shows the position and momentum expetation values of the nu-

merial solution of the nonlinear equation, in ase of an anharmoni external

potential of the form

V (x) = ax4 − bx2 , with a, b > 0 , (5.52)

starting from an Gaussian initial state. The panel on the left hand side of Fig. 5.7

was obtained in the limit of a vanishing ollision rate γ (i.e. κ→ ∞), whih turns

(5.14) into the Shrödinger equation. The solution therefore disperses, and the

solid line shows a typial evolution of the phase spae expetation values. The

dashed line, on the other hand, gives the lassial trajetory of the phase spae

point where the initial state is loalized. The result for a large ollision rate γ
(or small κ) is shown on the right-hand side of Fig. 5.7. Here, the initial state

turns rapidly into a soliton whose expetation values move on the orresponding

lassial trajetory. This illustrates that the time evolution turns from quantum

to lassial dynamis with inreasing ollision rate γ (dereasing κ). Similar

observations were made with various other potentials.

In order to explain the numerial observation, �rst onsider a partile in a

linear potential V (x) = αx. The orresponding nonlinear equation reads as

∂tψt (x) +
~

2mi
∂2
xψt (x) =

1

i~
αxψt (x) + γψt (x)

(
|ψt|2 ∗ G̃ (x)

−
∫ ∞

−∞
dy|ψt|2 (y)

(
|ψt|2 ∗ Ĝ

)
(y)

)
. (5.53)
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Figure 5.7: Time evolution of pointer states in an anharmoni potential (solid

line). The dashed line shows the orresponding lassial phase spae trajetory.

(a) The ollision rate γ vanishes leading to dispersive quantum dynamis. (b)

The ollision rate γ is large, so that the dynamis of the pointer state is indistin-

guishable from the lassial trajetory.

As disussed in Set. 5.2.1, Eqs. (5.15) and (5.21), the �eld-free version of this

equation (α = 0) exhibits uniformly moving solitoni solutions of the form

ψt (x) = f (x− vt) exp (i [φ (x− vt) + χ (t)]) . (5.54)

This implies that (5.53) has solitoni solutions of the form

ψt (x) = f (x− xt) exp (ig (x− xt, t)) , (5.55)

g (x, t) = φ (x) + χ′ (t) − α

~
tx , (5.56)

whih are uniformly aelerated , xt = vt − αt2/2m . The time-dependent phase

χ′ (t) in (5.56) is given by the expression

χ′ (t) = χ (t) − 2α

~

∫ t

0
dτ xτ . (5.57)

In order to verify this statement, we evaluate the left-hand side of (5.53) with the

ansatz given by (5.55). This yields

∂tψt (x) +
~

2mi
∂2
xψt (x) = eig

(
α

i~
xf + if∂tχ

′ (t) +
2α

~
ixtf − v (∂xf + if∂xφ)

+
~

m

(
∂xf∂xφ− i

2
∂2
xf +

i

2
f (∂xφ)2 +

1

2
f∂2

xφ

))
,

(5.58)

with g ≡ g (x− xt, t), f ≡ f (x− xt) and φ ≡ φ (x− xt). The expression an

be further simpli�ed by noting that the free soliton (5.54) is a solution of the
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�eld-free version of (5.53), implying that

γfΛ
[
f2
]
(x) = if∂tχ (t) − v (∂xf + if∂xφ)

+
~

m

(
∂xf∂xφ− i

2
∂2
xf +

i

2
f (∂xφ)2 +

1

2
f∂2

xφ

)
, (5.59)

with Λ
[
f2
]
(x) de�ned in (5.6). Using (5.58), (5.59) and the de�nition of χ′ (t),

see Eq. (5.57), one �nds that

∂tψt (x) +
~

2mi
∂2
xψt (x) =

1

i~
αxψt (x) + γψt (x) Λ

[
|ψt|2

]
(x) , (5.60)

whih on�rms that ψt (x) evolves aording to (5.53).

We onlude that in a linear potential the pointer states have the same shape

as in the �eld-free ase and they are uniformly aelerated like a lassial partile.

For general potentials, this implies that the pointer states follow the orresponding

lassial motion, provided the spatial width of the solitons is su�iently small,

so that the linearization of the potential is justi�ed over their spatial extension.

Sine the size of the pointer states dereases with the ollision rate (see Setion

5.2.3), the pointer states must exhibit lassial dynamis in the limit of large

ollision rates.

5.4 Extensions to 3D

The above results apply to the one-dimensional motion of a traer partile in a

gaseous environment. Clearly, the onnetion of these results to realisti experi-

ments requires their extension to the three-dimensional situation. The nonlinear

equation (5.5) itself is trivially extended to 3D, though their numerial treatment

is then more di�ult. However, the loalization model introdued in Set. 5.2.3

allows one to diretly estimate the 3D pointer width. As we shall see below, the

latter admits the derivation of the oherene length of an interating gas. Using

the mirosopi de�nition of the loalization rate F (3.52), one an tailor this

method to all kinds of realisti interating gases (spei�ed by the veloity distri-

bution µ (v), its density ngas and the elasti sattering amplitude f
(
pf ,pi

)
).

Let us illustrate this method for the ase of s-wave hard-sphere sattering [62℄

o� a thermal gas with Maxwell-Boltzmann veloity distribution (3.54). Here the

sattering length [52℄ is equal to the radius R of the partiles, so that the sattering

amplitude is independent of the sattering angle θ and the energy of the inoming

partiles Ekin, that is [62℄

|f (cos θ;Ekin)|2 = R2 . (5.61)

We shall �rst estimate the harateristi length sale ℓloc for this partiular

setting, see Set. 5.4.1. This allows us to derive the 3D pointer width in Set. 5.4.2.

The determination of the oherene length follows in Set. 5.4.3.

5.4.1 Estimation of the loalization length sale

Aording to Eq. (5.29), the loalization length sale ℓloc is haraterized by the

free parameter a′loc = F (ℓloc) /F (∞), with F the loalization rate (3.52). Equa-
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tions (5.29), (3.52) and (5.61) together with F (∞) = γ imply that

γa′loc = γ − 2πngasR
2

∫ ∞

0
dvµ (v) v

∫ 1

−1
d cos θsinc

[
2 sin

(
θ

2

)
mv

~
ℓloc

]
.

(5.62)

The integral on the right-hand side an easily be evaluated [63℄, whih gives

γ
(
1 − a′loc

)
= 4πngasR

2

∫ ∞

0
dvµ (v) vsinc2

(mv
~
ℓloc

)

≡ 4πngasR
2〈vsinc2 (mvℓloc/~)〉th , (5.63)

with 〈·〉th the thermal average.

To evaluate Eq. (5.63), let us �rst alulate the average ollision rate γ using

Eq. (3.53). Sine the sattering amplitude is onstant (5.61), the total ross

setion reads as

σtot (mv) = 4πR2 . (5.64)

By ombining Eqs. (3.53) and (5.64), we �nd

γ = 4πngasR
2

∫ ∞

0
dvµ (v) v

≡ 4πngasR
2〈v〉th . (5.65)

The mean veloity 〈v〉th is easily obtained by using the Maxwell-Boltzmann dis-

tribution (3.54), whih yields

〈v〉th =

√
8kT

πm
=

4~

Λthm
, (5.66)

a result that an also be found in standard textbooks, suh as [64℄. The average

ollision rate therefore reads

γ = 16πngasR
2
~ (Λthm)−1 . (5.67)

As a next step, let us estimate the thermal average on the right-hand side

of Eq. (5.63). Upon inserting the Maxwell Boltzmann distribution (3.54), one

obtains

〈vsinc2 (mvℓloc/~)〉th (5.68)

= 4π
( m

2πkT

)3/2
(

~

mℓloc

)2 ∫ ∞

0
dvv exp

(
−mv

2

2kT

)
sin2

(
mvℓloc

~

)
.

By introduing the dimensionless quantities x2 ≡ mv2/ (2kT ) and ξloc ≡ ℓloc/Λth,

Eq. (5.68) beomes

〈vsinc2 (mvℓloc/~)〉th =
2Λth~

πmℓ2loc

∫ ∞

0
dxxe−x

2

sin2
(
2
√
πxξloc

)
. (5.69)

The integral on the right-hand side of this equation an be evaluated analytially

[63℄, whih yields

〈vsinc2 (mvℓloc/~)〉th =
~Λthξloc

mℓ2loc

exp
(
−4πξ2loc

)
erfi
(
2
√
πξloc

)
. (5.70)
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Here erfi (·) denotes the imaginary error funtion, whih is de�ned as

erfi (z) ≡ −ierf (iz) . (5.71)

Finally, by ombining Eqs. (5.63), (5.67) and (5.70), we �nd an analyti ex-

pression for the harateristi length sale,

ξloc =
1

4
(
1 − a′loc

) exp
(
−4πξ2loc

)
erfi
(
2
√
πξloc

)
. (5.72)

Using the de�nition of a′loc this equation beomes

ξloc =
1

4
exp

(
a2

loc

2
− 4πξ2loc

)
erfi
(
2
√
πξloc

)
. (5.73)

The numerial solution of this relation yields ξloc ≃ 0.1 if we assume aloc ≃ 0.4 as

in Set. 5.2.3.

5.4.2 Estimation of the pointer size

As you may reall from Set. 5.2.3, the loalization model assumes that sattering

events ourring with rate γ loalize the wave funtion to the length sale ℓloc,

while it disperses freely between the ollisions. Averaging the wave funtion width

over the waiting-time distribution of a Poissonian proess then yields Eq. (5.34),

a relation between ℓloc and the pointer state position spread σπ. By ombining

Eqs. (5.34) and (5.67) together with ℓloc = ξlocΛth one obtains an expression for

the 3D pointer width,

σπ = ξlocΛth +
1

4ξloc16πngasR2
, (5.74)

whih onnets σπ with the mirosopi details of the open system. This formula

an be further simpli�ed by introduing the mean free path [64℄

ℓfree =
1

ngasσtot
=

1

ngas4πR2
, (5.75)

whih yields

σπ = ξlocΛth +
ℓfree

16ξloc
. (5.76)

For a weakly interating or thin gas, the pointer state width is thus essentially

determined by the mean free path, that is

σπ =
1

16ξloc
ℓfree , for Λth ≪ ℓfree . (5.77)

In the limit of a strongly interating or dense gas, on the other hand, it is bounded

by the sale of the thermal wave length, meaning that

σπ = ξlocΛth , for Λth ≫ ℓfree . (5.78)
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5.4.3 Determining the oherene length

Let us now use the above results to aess the oherene length Λcoh of a self-

interating gas. The latter is de�ned [3℄ by the deay of the position o�-diagonal

elements of the redued single partile gas state ρgas,

〈r|ρgas|r′〉 ∝ exp

(
−π |r − r′|2

Λ2
coh

)
. (5.79)

To haraterize the thermal state of a partile in presene of the interating gas, we

use the de�nition of the pointer basis (4.12), and take the pointer states momenta

to be Maxwell distributed, that is

µ (p) =
1

(2πmkT )3/2
exp

(
− |p|2

2mkT

)
. (5.80)

Moreover, we let the partiles be on�ned to the region Ω ⊂ R3, whih yields

ρgas =
1

Ω

∫

Ω

∫

R3

dxdpµ (p) |πx,p〉〈πx,p| , (5.81)

with |πx,p〉 the orresponding pointer states; here x and p denote the mean posi-

tion and veloity of |πx,p〉, respetively. To evaluate the position representation

of (5.81), assume the pointer states to be oherent states [65℄,

〈r|πx,p〉 =
1

(2πσ2
π)

3/4
exp

(
−|r − x|2

4σ2
π

+
i

~
p · r

)
, (5.82)

where the position spread is given by (5.76). The matrix elements of the pointer

states thus read as

〈r|πx,p〉〈πx,p|r′〉 (5.83)

=
1

(2π)3/2 σπ
exp

(
− 1

4σ2
π

[
|r − x|2 +

∣∣r′ − x
∣∣2
]

+
i

~
p ·
[
r − r′

])
.

This implies that the position representation of the redued gas state, ρgas (r, r′) ≡
〈r|ρgas|r′〉, is given by

ρgas

(
r, r′

)
=

1

(2π)3/2 σπΩ

∫

Ω
dx exp

(
− 1

4σ2
π

[
|r − x|2 +

∣∣r′ − x
∣∣2
])

×
∫

R3

dpµ (p) exp

(
i

~
p ·
[
r − r′

])
. (5.84)

The Fourier transform of the Maxwell distribution an easily be evaluated, whih

yields

ρgas

(
r, r′

)
=

1

(2π)3/2 σπΩ
exp

(
−π |r − r′|2

Λ2
th

)

×
∫

Ω
dx exp

(
− 1

4σ2
π

[
|r − x|2 +

∣∣r′ − x
∣∣2
])

. (5.85)
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To evaluate the position integral, onsider the limit Ω → R3, whih gives

∫

Ω
dx exp

(
− 1

4σ2
π

[
|r − x|2 +

∣∣r′ − x
∣∣2
])

=
(
2πσ2

π

)3/2
exp

(
−|r − r′|2

8σ2
π

)
, for Ω → R

3 . (5.86)

The position representation of the redued single partile gas state therefore reads

ρgas

(
r, r′

)
=

1

Ω
exp

(
−π
∣∣r − r′

∣∣2
[

1

Λ2
th

+
1

8πσ2
π

])
. (5.87)

Finally, by omparing this equation with the de�nition of the oherene length

(5.79), we �nd

1

Λ2
coh

=
1

Λ2
th

+
1

8πσ2
π

. (5.88)

The square of the oherene length is therefore determined by the harmoni mean

of Λ2
th and 8πσ2

π. This intuitive result shows that the ideal oherene length,

Λcoh (ℓfree → ∞) = Λth, is redued by the interations in the gas. Sine σπ
is a funtion of the mean free path ℓfree and the thermal wave length Λth, see

Eq. (5.76), we have thus a means of omputing the oherene length Λcoh from

the mirosopi parameters.

Outlook The oherene length is a quantity that is in priniple measurable

in interferene experiments [66, 67℄. Equation (5.88) should therefore admit the

experimental veri�ation of the formalism used in this hapter. A detailed elabo-

ration of suh experimental tests, however, remains open for future investigations.

Another possible appliation of Eq. (5.88) (or of similar equations, that are

derived from more realisti sattering amplitudes) is the predition of the riti-

al temperature of phase transitions, suh as the Bose-Einstein ondensation of

interating Bose systems. A textbook argument states that the ondensation o-

urs whenever the oherene length Λcoh is lose to the mean partile distane

d ≃ 1/ngas. While this argument is typially used in the ontext of ideal Bose

gases, it has also been applied in some artiles [68, 69℄ to determine the ritial

temperature of interating systems. Sine Eq. (5.88) desribes the temperature

dependene of the oherene length of interating gases, it might be appliable to

suh senarios.
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Chapter 6

Classial stohasti proesses

Thus far, we have been onerned with the derivation of `andidate' pointer states

as the solitoni solutions of a nonlinear equation, and we have studied their prop-

erties and dynamis. Sine our goal is to show that these states have all properties

of a pointer basis, we proeed to relate this nonlinear equation to the deterministi

parts of a lass of stohasti proesses in the spae of pure quantum states. These

proesses, or �unravelings�, are designed suh that their ensemble mean reprodues

the solution of the master equation. Using this onnetion to the solution of the

master equation, a omplete piture of the emergene of the pointer basis will be

obtained. In partiular, this admits to show that the solitons mentioned above

are genuine pointer states Pα in the sense of de�nition (4.12), and it allows one

to alulate the probability distribution Prob (α|ρ0) of the pointer states (with ρ0

the initial state).

The onept of quantum stohasti proesses is based on a variety of results

from the lassial theory of stohasti proesses. We shall therefore give a survey

of lassial stohasti proesses in this hapter; this disussion is based on the

treatments in [29, 38, 70℄. The introdution of quantum stohasti proesses is

postponed to the next hapter, suh that readers familiar with lassial stohasti

proesses may as well skip the present hapter.

6.1 Classial Markov proesses

In many appliations of dynamial systems, from Brownian motion to deriva-

tive priing, one must aount for soures of noise that make the time evolution

probabilisti. A means of inorporating this randomness into the mathematial

desription of the dynamis is provided by the onept of stohasti proesses.

Tehnially speaking, a stohasti proess is a one-parameter family of (possibly

multivariate) random variables, Xt, t ∈ R+
0 . Aording to Kolmogorov's exis-

tene theorem [71℄, it is ompletely haraterized by the family of �nite joint

probability distributions

p (x1, t1) , (6.1)

p (x2, t2; x1, t1) , (6.2)

...

p (xn, tn; . . . .; x1, t1) , (6.3)

with xi a realization of Xt at time t = ti.
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The omplexity of this hierarhy of distributions an be redued tremendously

by applying the Markov assumption motivated in Set. 2.2.2. The latter requires

the onditional probability to be determined entirely by the most reent observa-

tion,

p (xn, tn|xn−1, tn−1; . . . ; x1, t1) = p (xn, tn|xn−1, tn−1) , (6.4)

where the times satisfy the ordering tn ≥ tn−1 ≥ . . . . ≥ t1. Under this as-

sumption, one an onstrut the omplete family of distributions by means of the

propagator p (x2, t2|x1, t1) and the initial distribution p (x0, t0).

p (xn, tn; . . . .; x1, t1) = p (xn, tn|xn−1, tn−1) p (xn−1, tn−1|xn−2, tn−2) . . .

. . . p (x1, t1|x0, t0) p (x0, t0) . (6.5)

A haraterization of the set of all Markov proesses is obtained using the

so-alled Chapman-Kolmogorov equation. In order to derive this equation, let us

onsider the three-point distribution of a Markov proess

p (x3, t3; x2, t2; x1, t1) = p (x3, t3|x2, t2) p (x2, t2|x1, t1) p (x1, t1) . (6.6)

Upon integrating over x2, one obtains

p (x3, t3; x1, t1) = p (x1, t1)

∫
dx2p (x3, t3|x2, t2) p (x2, t2|x1, t1) , (6.7)

whih immediately yields the Chapman-Kolmogorov equation in integral form

p (x3, t3|x1, t1) ≡ p (x3, t3; x1, t1)

p (x1, t1)

=

∫
dx2p (x3, t3|x2, t2) p (x2, t2|x1, t1) . (6.8)

The lassi�ation of Markov proesses amounts to the lassi�ation of the solu-

tions of this integral equation. For this purpose, it useful to rewrite the Chapman-

Kolmogorov equation in its di�erential form. Under rather weak onditions, one

obtains the di�erential form of Eq. (6.8) [29,38℄,

∂tp (x, t|x0, t0) = −
∑

i

∂

∂xi
[Ai (x, t) p (x, t|x0, t0)] (6.9)

+
∑

i,j

1

2

∂2

∂xi∂xj
[Bij (x, t) p (x, t|x0, t0)]

+

∫
dy [W (x|y, t) p (y, t|x0, t0) −W (y|x, t) p (x, t|x0, t0)] ,

with positive semi-de�nite matries A (x, t), B (x, t) and the non-negative rate

W (x|y, t).
The di�erent summands on the right-hand side of (6.9) give rise to ompletely

di�erent types of solutions. In ase that B (x, t) and W (x|y, t) vanish, one ends

up with the Liouville equation,

∂tp (x, t|x0, t0) = −
∑

i

∂

∂xi
[Ai (x, t) p (x, t|x0, t0)] , (6.10)
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so that the proess is deterministi. Here A (x, t) is known as the drift vetor. If

the seond summand is also present, one obtains the Fokker-Plank equation

∂tp (x, t|x0, t0) = −
∑

i

∂

∂xi
[Ai (x, t) p (x, t|x0, t0)]

+
∑

i,j

1

2

∂2

∂xi∂xj
[Bij (x, t) p (x, t|x0, t0)] , (6.11)

whih desribes di�usion proesses; B (x, t) is referred to as the di�usion matrix.

As we shall see below, realizations of the orresponding proess are ontinuous

but not di�erentiable.

A further lass of proesses arises when the rate W (x|y, t) is non-zero and

the di�usion matrix vanishes, implying that the di�erential Chapman-Kolmogorov

equation (6.9) beomes

∂tp (x, t|x0, t0) = −
∑

i

∂

∂xi
[Ai (x, t) p (x, t|x0, t0)] (6.12)

+

∫
dy [W (x|y, t) p (y, t|x0, t0) −W (y|x, t) p (x, t|x0, t0)] .

This is the so-alled Liouville master equation. It has an intuitive physial inter-

pretation as a balane equation for the rate of hange of the probability density.

The �rst term in the seond line of (6.12) desribes the rate of inrease of the

probability density at x due to jumps from other states y into x. The seond

term in the seond line of (6.12) is the rate for the loss of probability due to jumps

ouring out of the state x. Thus, this equation desribes pieewise determinis-

ti proesses, whose realizations onsist of smooth deterministi parts whih are

interrupted by random jumps. The latter our with a rate determined by the

jump rate W (x|y, t).
Needless to say, a general Markov proess will onsist of both di�usion and

jump proesses. Still, it is reasonable to treat them individually, sine the for-

malisms used for their solutions are di�erent. Let us therefore �rst disuss di�u-

sion proesses in Set. 6.2 and then treat jump proesses in Set. 6.3.

As a �nal point, note that Eqs. (6.9) to (6.12) are valid also for the one-point

probability density p (x, t), sine the latter is obtained from the propagator by

the integral

p (x, t) =

∫
dx0p (x, t|x0, t) p (x0, t) . (6.13)

However, the propagator is required for a omplete spei�ation of the proess by

means of Eq. (6.5).

6.2 Di�usion proesses

As mentioned above, a di�usion proess is a stohasti proess desribed by the

Fokker-Plank equation (6.11). Of ourse, the latter an be solved by standard

numerial tehniques suh as �nite element and �nite di�erene methods [72℄.

However, let us follow here a di�erent approah whih relies on stohasti di�er-

ential equations (SDEs). The idea is to onsider an ensemble of sample paths
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xα (t), α ∈ {1, . . . , N}, suh that upon averaging one reovers all expetation

values of the proess,

E [f (Xt)] =
1

N

N∑

α=1

f (xα (t)) , (6.14)

with f an arbitrary funtion of Xt. The ensemble of trajetories xα (t) is obtained
as the solution of a SDE, that is, a di�erential equation where one or more of the

terms are given by a stohasti proess. In ase of di�usion, these stohasti terms

are proportional to the inrements of the so-alled Wiener proess, whih is the

fundamental di�usion proess orresponding to a unit di�usion matrix Bij = δij
and a vanishing drift term. As suh the Wiener proess is the building blok for

the onstrution of all di�usion proesses.

We shall therefore �rst de�ne the Wiener proess in Set. 6.2.1. The following

setion is devoted to stohasti integration, that is to integration with respet to

the Wiener proess. This allows us to introdue the notion of stohasti di�eren-

tial equations in Set. 6.2.3.

6.2.1 Wiener proess

The Wiener proess W t is a di�usion proess with vanishing drift vetor A = 0
and di�usion matrix B = I, i.e. it is desribed by the di�usion equation

∂tp (w, t|w0, t0) =
1

2

∑

i

∂2

∂wi
p (w, t|w0, t0) . (6.15)

Furthermore, it is assumed to be peaked at the origin initially, p (w, 0) = δ (w).
By de�nition the multivariate Wiener proess

W (t) = [W1 (t) ,W2 (t) , . . . ,Wn (t)] , (6.16)

is omposed of n statistially independent one-dimensional proesses Wi (t), al-
lowing us to restrit the following disussion to one-dimensional proesses.

The solution of (6.15) is obtained [38℄ by transforming (6.15) into an algebrai

equation in Fourier spae, whih yields the Gaussian distribution

p (w, t|w0, t0) =
1√

2π (t− t0)
exp

(
−(w − w0)

2

2 (t− t0)

)
. (6.17)

Hene, the variane of the proess grows linearly with time, as expeted from a

di�usion proess.

The sample paths of the Wiener proess are ontinuous but not di�erentiable,

sine one an show [38℄ from (6.17) that the probability for the di�erene quotient

to be larger than an arbitrary threshold k onverges to unity, i.e.

lim
h→0

Prob

(
w (t+ h) − w (t)

h
> k

)
= 1 . (6.18)

Hene, the derivative is almost ertainly in�nite at all times.
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Inrements of the Wiener proess The SDE orresponding to a di�usion

proess involves the inrements dW (t) = W (t+ dt) −W (t) of the Wiener pro-

ess. An important property of these inrements, whih is used in many proofs

onerning SDEs, is their statistial independene,

p (dWn; dWn−1; . . . .; dW1) = p (dWn)p (dWn−1) . . . p (dW1) , (6.19)

with dWi = W (ti + dt) −W (ti). To see this, let us use the Markov property of

Wt, whih yields

p (wn, tn;wn−1, tn−1; . . . .;w0, 0) =
n−1∏

i=0

p (wi+1, ti+1|wi, ti) p (w0, 0) (6.20)

=

n−1∏

i=0

δ (w0)√
2π (ti+1 − ti)

exp

(
−(wi+1 − wi)

2

2 (ti+1 − ti)

)
.

It follows that the inrements ∆wi ≡ wi − wi−1 are distributed as

p (∆wn; ∆wn−1; . . . .; ∆w1;w0) =
n∏

i=1

δ (w0)√
2π∆ti

exp

(
−(∆wi)

2

2∆ti

)
, (6.21)

with ∆ti ≡ ti − ti−1. This on�rms the statistial independene (6.19) of the

inrements ∆wi, and it shows that the variane of the inrements is linear in ∆t,

Var [∆W ] = ∆t . (6.22)

6.2.2 Stohasti integration

In the next setion we shall �nd a representation of the sample paths xα (t) of

di�usion proesses in terms of stohasti di�erential equations of the form

dx (t)

dt
= a (x, t) + b (x, t)

dW (t)

dt
. (6.23)

However, this equation is not well-de�ned as it stands, sine the Wiener proess

is not di�erentiable, see Eq. (6.18). To make sense of (6.23) one must onsider

the orresponding integral equation

x (t) = x (0) +

∫ t

t0

a (x, t) dt+

∫ t

t0

b (x, t) dW (t) , (6.24)

whih an be de�ned in a strit mathematial sense by introduing the onept of a

stohasti integral as in the third term of (6.24). The naming `stohasti integral'

is due to the fat that the inrements of the Wiener proess form a stohasti

proess, implying that the value of the orresponding integral is desribed by a

stohasti proess. Needles to say, sine the Wiener proess is highly irregular,

these stohasti integrals have properties whih are quite di�erent from the ones

known from ordinary integrals (whih applies even more so to the assoiated

stohasti di�erential alulus). A survey of the relevant de�nitions and major

results is given in the following.

For ease of notation, we denote from now on both stohasti proesses Xt

and sample paths xα (t) in lowerase. This notation is typially used in physis

literature, suh as the textbook by Gardiner [38℄.
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Figure 6.1: De�nition of the stohasti integral of a funtion f (t) ≡ f [x (t) , t].

De�nition of stohasti integrals Consider a real funtion f [x (t) , t] of time

and of a stohasti proess x (t) as drawn in Fig. 6.1 and let W (t) be the Wiener

proess. Stritly speaking, f [x (t) , t] must be non-antiipating , that is f [x (t) , t]
must be statistially independent from W (s) −W (t) for all s > t. One de�nes

the integral
∫ t
t0
f [x (t′) , t′] dW (t′) similar to a Riemann integral. To this end,

onsider a partitioning of the interval [t0, tn = t] into subintervals

[t0, t1] , [t1t2] , . . . ., [tn−1, tn] , (6.25)

and a set of intermediate points τi, with ti−1 ≤ τi < ti, as depited in Fig. 6.1.

The stohasti integral is then de�ned as the limit of the Riemann sum

∫ t

t0

f
[
x
(
t′
)
, t′
]
dW

(
t′
)

:= lim
n→∞

n∑

i=1

f [x (τi) , τi] [W (ti) −W (ti−1)] .

(6.26)

Here x = limn→∞ xn is understood as the mean square limit , that is

lim
n→∞

E

[
(x− xn)

2
]

= 0 . (6.27)

Remarkably, though, the value of the above integral depends on the partiular

hoie of the supporting points τi, whih an be seen in the following example.

Example Let us make the hoie f [x (t) , t] = W (t). The expetation value of

the orresponding Riemann sum Sn yields

E [Sn] ≡ E

[
∑

i

W (τi) (W (ti) −W (ti−1))

]

=
∑

i

[min (τi, ti) − min (τi, ti−1)]

=
∑

i

(τi − ti−1) , (6.28)
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where it is used that E [W (s)W (t)] = min (s, t), see Ref. [29, page 26℄. If one

hooses for the intermediate points

τi = αti + (1 − α) ti−1 , with 0 ≤ α < 1 , (6.29)

then

E [Sn] =
n∑

i=1

α (ti − ti−1) = α (t− t0) . (6.30)

Thus, the mean value of the stohasti integral with integrand f [x (t) , t] = W (t)
an be anything between zero and (t− t0), depending on the hoie of the inter-

mediate points.

De�nition of the Ito stohasti integral The most important hoies for

the parameter α, see Eq. (6.29), are

• α = 0, de�ning the Ito stohasti integral, and

• α = 1/2, de�ning the Stratonovih stohasti integral.

Let us �rst treat the Ito integral and postpone the disussion of the Stratonovih

integral to Set. 6.2.3. To repeat, the Ito integral reads as

I

∫ t

t0

f
[
x
(
t′
)
, t′
]
dW

(
t′
)

:= lim
n→∞

n∑

i=1

f [x (ti−1) , ti−1] [W (ti) −W (ti−1)] .

(6.31)

This de�nition is partiularly suitable for mathematial proofs, sine the two fa-

tors f [x (ti−1) , ti−1] and [W (ti) −W (ti−1)] appearing in (6.31) are statistially

independent. Using this property one an show that [38℄

I

∫ t

t0

f
[
x
(
t′
)
, t′
] [

dW
(
t′
)]2+N

=

∫ t

t0

f
[
x
(
t′
)
, t′
]
dt′ , if N = 0 (6.32)

= 0 , if N > 0 . (6.33)

Similarly, it an be shown that [38℄

I

∫ t

t0

f
[
x
(
t′
)
, t′
]
dt′dW

(
t′
)

:= lim
n→∞

n∑

i=1

f [x (ti−1) , ti−1] [W (ti) −W (ti−1)] [ti − ti−1]

= 0 (6.34)

Sine the inrement dW (t) only ours under integrals, one simply writes

dW 2 (t) = dt , (6.35)

dW 2+N (t) = 0 , if N > 0 , (6.36)

dW (t) dt = 0 . (6.37)

These relations form the bakbone of the Ito alulus, by whih we mean the

alulus assoiated to Ito integrals and the orresponding Ito SDEs. In ontrast
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to ordinary alulus, it implies that terms quadrati in dW are signi�ant, while

higher order terms may be negleted. This is important in partiular when dealing

with Taylor expansions.

In the multivariate ase, the orresponding rules read as

dWi (t) dWj (t) = δijdt , (6.38)

dW 2+N
i (t) = 0 , if N > 0 , (6.39)

dWi (t) dt = 0 , (6.40)

where it is used that the di�erent omponents of a multivariate Wiener proess

are statistially independent.

6.2.3 Stohasti di�erential equations (SDEs)

A random proess xt is said to obey the SDE (6.23) if it satis�es the stohasti

integral (6.24). Though, the latter is not uniquely de�ned, sine it depends on the

partiular hoie of the intermediate points τi. It is therefore neessary to speify

the stohasti integral, in order to de�ne the orresponding SDE. To make this

lear, let us de�ne the Ito SDE.

A stohasti proess xt obeys an Ito SDE written as

dx (t) = a (x, t) dt+ b (x, t) dW (t) , (6.41)

if for all t and t0 we have

x (t) = x (0) +

∫ t

t0

a
(
x, t′

)
dt′ + I

∫ t

t0

b
(
x, t′

)
dW

(
t′
)
. (6.42)

Ito's formula As a �rst result onerning Ito SDEs let us onsider a hange

of variables from x (t) to f [x (t) , t], where the one-dimensional proess x (t) is

assumed to satisfy the Ito SDE (6.41). To see what di�erential equation f obeys

one expands f in a Taylor series in x and t, and uses the Ito rules (6.35) and

(6.36),

df [x, t] = ∂xfdx+ ∂tfdt+
1

2
∂2
xfdx2

=

(
∂tf + a∂xf +

1

2
b2∂2

xf

)
dt+ b∂xfdW , (6.43)

with the abbreviations f ≡ f [x (t) , t], a ≡ a [x (t) , t], b ≡ b [x (t) , t], W ≡ W (t)
and x ≡ x (t). This famous result is known as Ito's formula or Ito's lemma. It

is the stohasti alulus ounterpart of the hain rule in ordinary alulus. The

result for the multivariate ase an be found for instane in [38℄.

SDEs and the Fokker-Plank equation Our next aim is to show that SDEs

of the form (6.41) generate di�usion proesses. To this end, let us demonstrate

that the assoiated propagator p (x, t; x0, t0) obeys the Fokker-Plank equation

(6.11). In partiular, this reveals the relation between the matries a (x, t) and

b (x, t) speifying the Ito SDE, and the drift and di�usion matries A (x, t), B (x, t)
of the Fokker-Plank equation.
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To start with, let us onsider the time derivative of the expetation value of

an arbitrary funtion f (x (t)),

∂tE [f (x (t))] =
E [df (x (t))]

dt
, (6.44)

where the one-dimensional proess x (t) is assumed to satisfy the Ito SDE (6.41).

Applying Ito's formula (6.43) and using E [dW] = 0, one obtains

∂tE [f ] = E

[
a∂xf +

1

2
b2∂2

xf

]
, (6.45)

with f ≡ f (x (t)), a ≡ a [x (t) , t], and b ≡ b [x (t) , t]. Alternatively, one an rep-

resent the proess in terms of its onditional probability density p ≡ p (x, t;x0, t0),
whih yields

∂tE [f ] =

∫
dxf (x) ∂tp. (6.46)

On the other hand, we �nd from (6.45) that

∂tE [f ] =

∫
dx

(
a∂xf +

1

2
b2∂2

xf

)
p

=

∫
dxf (x)

(
−∂x [ap] +

1

2
∂2
x

[
b2p
])

, (6.47)

where integration by parts was used in the seond line. Sine f (x) is arbitrary,

one may assume that the integrands of (6.46) and (6.47) are equal,

∂tp (x, t;x0, t0) = −∂x [a (x, t) p (x, t;x0, t0)]

+
1

2
∂2
x

[
b (x, t)2 p (x, t;x0, t0)

]
. (6.48)

It follows that the Ito proess x (t) is governed by a Fokker-Plank equation with

drift oe�ient a (x, t) and di�usion oe�ient b2 (x, t).
A similar reasoning an be used to treat the multivariate senario [38℄. One

then �nds that a proess x (t) obeying the Ito SDE (6.41) is desribed by a

Fokker-Plank equation (6.11) with drift vetor a (x, t) and di�usion matrix

B (x, t) = b (x, t) bT (x, t). (6.49)

Surprisingly, this shows that the same Fokker-Plank equation arises if one on-

siders a transformed Ito SDE

dx (t) = a (x, t) dt+ b (x, t)O (t) dW (t) , (6.50)

provided O (t) is orthogonal, O (t)OT (t) = I. The inrements dV = OdW of

this proess are also inrements of a Wiener proess, sine, as a linear ombination

of Gaussian variables dW , they are Gaussian distributed, and they have the same

orrelation matrix as the Wiener proess.

〈dVidVj〉 =
∑

k,l

OikOjl〈dWkdWl〉

=
∑

k

OikOjkdt = δijdt . (6.51)

This implies that the ensemble of trajetories, generated by (6.50), is idential

with the one generated by (6.41).
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Stratonovih's stohasti di�erential equation The de�nition of the Ito

integral gives rise to a stohasti alulus quite di�erent from the ordinary one,

as an be seen by Ito's formula (6.43). An obvious question is whether one an

hoose the intermediate points τi in the de�nition of the stohasti integral (6.26)

suh that the orresponding alulus oinides with the ordinary one. It turns

out that this an be done by hoosing the τi's as the midpoints of the intervals

[ti−1,ti℄, whih yields the so-alled Stratonovih integral. To be more preise,

Stratonovih [73℄ de�ned the stohasti integral of a funtion f [x (t) , t], whih
depends on both x (t) and t, as

∫ t

t0

f [x (t) , t] ◦ dW
(
t′
)

:= lim
n→∞

n∑

i=1

f

[
x (ti) − x (ti−1)

2
, ti−1

]
[W (ti) −W (ti−1)] . (6.52)

Thus, only the dependene on the proess variable x (t) is averaged. It is shown

below that this partiular hoie leads to ordinary alulus. It should be noted

that the usage of Stratonovih's de�nition is indiated by the symbol ◦.
Having spei�ed the stohasti integral, one an de�ne the orresponding SDE:

a stohasti proess xt obeys a Stratonovih SDE written as

dx (t) = α (x, t) dt+ β (x, t) ◦ dW (t) , (6.53)

if for all t and t0 we have

x (t) = x (0) +

∫ t

t0

α
(
x, t′

)
dt′ +

∫ t

t0

β
(
x, t′

)
◦ dW

(
t′
)
. (6.54)

Connetion between Ito and Stratonovih SDEs Our next aim is to show

that the SDE (6.53) is equivalent to an appropriate Ito SDE. For simpliity, let us

treat the one-dimensional ase; the multivariate ase an be dealt with analogously

[38℄. To start with, let us onsider a disretized version of the Stratonovih SDE,

∆x = α (xi, ti)∆t+ β

(
xi+1 − xi

2
, ti

)
◦ ∆W , (6.55)

obtained by taking a mesh of points ti suh that ti < ti+1. Here we used the

abbreviations xi ≡ x (ti), ∆x ≡ xi+1 − xi and ∆t ≡ ti+1 − ti. By using a �rst-

order expansion of β, one obtains

∆x = α (xi, ti)∆t+ β (xi, ti) ∆W +
1

2
∂xβ (xi, ti)∆x∆W . (6.56)

Now, substitute the right-hand side of the above equation for the ∆x ontained

in the last term, and use the Ito rules (6.35) to (6.37). This yields the expression

∆x =

[
α (xi, ti) +

1

2
∂xβ (xi, ti)β (xi, ti)

]
∆t+ β (xi, ti)∆W , (6.57)

whih is a disretized version of the Ito SDE

dx =

[
α (x, t) +

1

2
∂xβ (x, t)β (x, t)

]
dt+ β (x, t) dW . (6.58)
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In onlusion, the one-dimensional version of the Stratonovih SDE (6.53) is

equivalent to the Ito SDE (6.58). Conversely, the Ito SDE

dx = a (x, t) dt+ b (x, t) dW , (6.59)

is equivalent to the Stratonovih SDE

dx =

[
a (x, t) − 1

2
b (x, t) ∂xb (x, t)

]
dt+ b (x, t) ◦ dW . (6.60)

Moreover, from Eqs. (6.55) and (6.56), one obtains the expression

β ◦ dW = β dW +
1

2
dβ dW , (6.61)

whih gives a relation between Stratonovih and Ito di�erentials. This relation is

used in the next hapter, where a quantum Stratonovih SDE is derived from its

Ito ounterpart.

Change of variables Let us use the above results to show that the rule for a

hange of variables in Stratonovih's SDE is the same as in ordinary alulus. For

this purpose, onsider a funtion f [x (t)] of a one-dimensional proess x (t) whih
obeys the Stratonovih SDE

dx = α (x, t) dt+ β (x, t) ◦ dW . (6.62)

The orresponding Ito SDE is given by Eq. (6.58). By applying Ito's formula

(6.43) to Eq. (6.58), we �nd a formula for the inrements of f :

df =

([
α+

1

2
β∂xβ

]
∂xf +

1

2
β2∂2

xf

)
dt+ β∂xfdW , (6.63)

with f ≡ f [x (t)], α ≡ α (x, t) and β ≡ β (x, t). Now, apply Eq. (6.61), whih

yields an expression for the last term of (6.63)

β∂xfdW = β∂xf ◦ dW − 1

2

[
∂xβ∂xf + β∂2

xf
]
dxdW . (6.64)

Upon inserting (6.58) into (6.64), and using the Ito rules (6.35) to (6.37), one

�nds

β∂xfdW = β∂xf ◦ dW − 1

2

[
∂xβ∂xf + β∂2

xf
]
β dt . (6.65)

Finally, by plugging (6.65) into (6.63), we obtain the hain rule of the Stratonovih

alulus,

df = ∂xf (αdt+ β ◦ dW ) = ∂xfdx . (6.66)

Indeed, this result agrees with the ordinary hain rule.
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Example: geometri Brownian motion As an appliation of stohasti al-

ulus, let us onsider geometri Brownian motion. This is a stohasti proess

in whih the logarithm of the random variable follows a Brownian motion. The

orresponding Ito SDE reads as

dx = µxdt+ σxdW (t) . (6.67)

This SDE is used in �nane as the standard model for the desription of stok-

prie dynamis. In partiular, it is the asset-prie model applied in the famous

Blak-Sholes theory [74℄. First, let us solve this equation using Ito alulus, then

we repeat this omputation by means of Stratonovih alulus.

To start with, make a hange of variables

f (x) = log x . (6.68)

By applying Ito's formula (6.43), one obtains an Ito SDE for f :

df =

(
µ− 1

2
σ2

)
dt+ σdW (t) . (6.69)

This SDE an easily be integrated giving

f (t) = f (0) +

(
µ− 1

2
σ2

)
t+ σW (t) , (6.70)

where it is used that t0 = 0 and W (0) = 0. The solution of (6.67) therefore reads

x (t) = x0 exp

([
µ− 1

2
σ2

]
t+ σW (t)

)
. (6.71)

Equation (6.70) shows that the logarithm of x (t) follows a Brownian motion.

To demonstrate the appliation of the Stratonovih alulus, let us repeat this

omputation within the Stratonovih piture. By applying Eqs. (6.59) and (6.60)

to the Ito SDE (6.67), one obtains the Stratonovih SDE of geometri Brownian

motion,

dx =

(
µ− 1

2
σ2

)
xdt+ σx ◦ dW (t) . (6.72)

The orresponding SDE for f = log x is found using the ordinary hain rule (6.66),

df =

(
µ− 1

2
σ2

)
dt+ σ ◦ dW (t) . (6.73)

The integral of this SDE yields the same result as the orresponding Ito SDE

(6.69), sine there is no dependene on x (t) in (6.73). This implies that the

solution of (6.72) is given by Eq. (6.71).

Ito versus Stratonovih alulus As a last point it is worthwhile to disuss

whih stohasti alulus one should hoose in a given irumstane. First of all,

it should be mentioned that the Ito integral as de�ned in (6.31) has the favourable

property that it forms a so-alled martingale. This is the name for a stohasti
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proess xt that has no tendeny to rise or fall, suh that its onditional expetation

satis�es the relation

E (xt|xs; s ∈ [a, b]) = xb . (6.74)

Mathematiians have derived a variety of theorems on martingales [75℄; the math-

ematial literature is therefore almost entirely onerned with Ito integrals. (An-

other reason may be that Ito SDEs appear typially in �nane appliations [70℄.)

In physis appliations, though, it is the Stratonovih SDE whih is obtained

most naturally. This an be understood, by onsidering the Langevin-like equation

dx = a (x, t) dt+ b (x, t) ξτc (t) dt , (6.75)

whih turns up frequently in physis. Here ξτc (t) is a rapidly varying noise term

whih exhibits some �nite orrelation time τc > 0. In order to obtain a math-

ematially tratable form, one typially onsiders the white noise limit, τc → 0,
of this SDE. As disussed in [38, 76℄, the Langevin-like equation then beomes a

Stratonovih SDE with the same oe�ients, that is, it yields

dx = lim
τc→0

[a (x, t) dt+ b (x, t) ξτc (t) dt ]

= a (x, t) dt+ b (x, t) ◦ dW . (6.76)

It is thus the Stratonovih form, whih is obtained by taking the white noise limit

of a �olored Langevin equation�.

6.3 Pieewise deterministi proesses (PDPs)

The remaining part of this hapter is devoted to pieewise deterministi Markov

proesses. These are stohasti proesses whih an be desribed by a Liouville

master equation (6.12). In the following the orresponding SDEs are presented.

These kind of SDEs an easily be implemented in many appliations by means of

Monte Carlo methods [72℄.

The Poisson proess serves as the fundamental proess for the onstrution

of jump proesses in the same way as the Wiener proess is the basi building

blok for di�usion proesses. Let us therefore �rst de�ne the Poisson proess in

Set. 6.3.1 and then introdue the stohasti alulus for pieewise deterministi

Markov proesses in Set. 6.3.2.

6.3.1 Poisson proess

The Poisson proess is a stohasti proess where disrete events our ontin-

uously and independently of one another with a time-dependent rate γ (t), e.g.
raindrops arriving at a given surfae of unit area. The time-dependent random

variable x (t) assoiated to the proess ounts the number of events N (t) that

have ourred up to time t, i.e. x (t) = N (t). The proess is therefore integer-

valued. In addition, it is a one-step proess, meaning that only jumps from n
to n + 1 are possible (sine the probability for two independent events ouring

exatly at the same time vanishes).

Aordingly, the master equation of the Poisson proess reads

∂tp (n, t|n0, t0) = γ (t) p (n− 1, t|n0, t0) − γ (t) p (n, t|n0, t0) , (6.77)



74 CHAPTER 6. CLASSICAL STOCHASTIC PROCESSES

where the initial ondition P (n, 0) = δn,0 is usually assumed. A solution of this

equation is obtained [29℄ using the harateristi funtion of the propagator, whih

yields the Poisson distribution

p (n, t|n0, t0) =
[µ (t, t0)]

n−n0

(n− n0)!
e−µ(t,t0) . (6.78)

Here µ (t, t0) ≡
∫ t
t0

dτ γ (τ) denotes the integrated jump rate. Similarly, the one-

point distribution p (n, t) is found to be Poisson distributed

p (n, t) =
[µ (t, 0)]n

n!
e−µ(t,0) , (6.79)

with mean and variane given by

E [N (t)] = Var [N (t)] = µ (t, 0) . (6.80)

A speial ase arises when the rate γ (t) is time-independent, γ (t) ≡ γ, suh
that the integrated jump rate reads µ (t, 0) = γt. The proess is then alled ho-

mogeneous, while the general ase, where γ (t) has a non-trivial time-dependene,

is referred to as inhomogeneous Poisson proess.

An important harateristi of the Poisson proess are the inter-arrival times

τi whih elapse between two suessive events. These times are independent ran-

dom variables and, in the ase of the homogeneous proess, they are exponentially

distributed [29℄, p (τi) = γ exp (−γτi). The orresponding arrival times are

sn =
n∑

k=1

τk , (6.81)

that is sn is the time of the nth jump or event.

Inrements of the Poisson proess The SDE assoiated to a PDP involves

the inrements dN (t) = N (t+ dt)−N (t) of the Poisson proess. An important

feature of these inrements is their statistial independene,

p (dNm; dNm−1; . . . ; dN1) = p (dNm) p (dNm−1) . . . p (dN1) , (6.82)

with dNi = N (ti + dt) − N (ti). To see this, let us use the Markov property of

the proess Nt,

p (nm, tm;nm−1, tm−1; . . . ;n0, 0) =
m−1∏

i=0

p (ni+1, ti+1|ni, ti) p (n0, 0) (6.83)

=
m−1∏

i=0

µ (ti+1, ti)
(ni+1−ni)

(ni+1 − ni)!
e−µ(ti+1,ti)δn0,0 .

It follows that the inrements ∆ni = ni − ni−1 are distributed as

p (∆nm; ∆nm; . . . ; ∆n1, n0) =

m∏

i=0

µ (t+ ∆ti, t)
∆ni

∆ni!
e−µ(t+∆ti,t)δn0,0 ,

(6.84)
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with ∆ti = ti − ti−1. This on�rms the statistial independene (6.82) of the

inrements and it shows that the expetation of the inrements is given by

E [∆N (t)] = µ (t+ ∆t, t)

= γ (t)∆t , if ∆t→ 0 . (6.85)

Note that, in ontrast to the Wiener inrements, one has to speify the rate γ (t)
in order to uniquely �x the distribution of the Poisson inrements.

6.3.2 Stohasti alulus for PDPs

Our next aim is to use the inrements of the Poisson proess in order to onstrut

SDEs for PDPs. For simpliity, the one-dimensional ase is treated in the follow-

ing; however, we allow various types of jumps to our, that is we onsider SDEs

of the form

dx = a (x, t) dt+
∑

i

bi (x, t) dNi (t) , (6.86)

where the Ni (t)'s are statistially independent inhomogeneous Poisson proesses

with rates γi (t). A stohasti proess Xt is said to satisfy the SDE (6.86) if it

obeys the orresponding integral equation

x (t) = x (0) +

∫ t

0
a (x, t) dt+

∑

i

∫ t

0
bi (x, t) dNi (t) . (6.87)

Stohasti integrals for PDPs To give a meaning to the integral appearing in

Eq. (6.87), we must de�ne stohasti integrals of the form
∫ t
0 f [x (t′) , t′] dN (t′),

where f [x (t) , t] is a real funtion of time and of a stohasti proess x (t) and

N (t) is a Poisson proess. Moreover, f [x (t) , t] must be non-antiipating , that

is f [x (t) , t] must be statistially independent from N (s) − N (t) for all s > t.
In ontrast to the di�usive ase, there is a `natural' partition of the time interval

[0, t] in terms of the arrival times si, see Eq. (6.81),

[0, s1] , [s1, s2] , . . . , [sn−1, sn] , [sn, t] . (6.88)

For vanishing drift, a (x, t) = 0, one expets the proess to be onstant in the

intermediate times (si−1, si), while at the jump times t = si one has ∆x =
f [x (si) , si]. Aordingly, one de�nes the stohasti integral of a PDP as [70℄

∫ t

0
f
[
x
(
t′
)
, t′
]
dN

(
t′
)

=
n∑

i=1

f [x (si) , si]∆Ni . (6.89)

Here ∆Ni = 1, sine the Poisson proess is a one-step proess.

Note that, in ontrast to the di�usive ase, the de�nition of the stohasti

integral is non-ambiguous. Thus, there is only one type of stohasti alulus for

PDPs, whih is alled the Ito alulus for PDPs [29, 70℄.
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As a �rst example, let us derive the Ito rules for PDPs. To this end, onsider

an integral of the form
∫ t
0 f [x (t) , t] dN (t)2. Using the above de�nition, we �nd

∫ t

0
f
[
x
(
t′
)
, t′
]
dN

(
t′
)2

=
n∑

i=1

f [x (si) , si] (∆Ni )
2

=
n∑

i=1

f [x (si) , si]∆Ni

=

∫ t

0
f
[
x
(
t′
)
, t′
]
dN

(
t′
)
. (6.90)

Sine the inrement dN (t) only ours under integrals, one may write

dN (t)2 = dN (t) . (6.91)

This formula is the PDP ounterpart of the di�usive Ito rules (6.35) to (6.37).

It shows that dN (t) is either zero or one, implying that the stohasti terms of

(6.86) do not get small as dt → 0. In partiular, this is important when dealing

with Taylor expansions, where all orders of dN (t) are relevant.

In the multiple jump ase, where several statistially independent Poisson

proesses take plae in parallel, the Ito rules read as

dNi (t) dNj (t) = δij dNi (t) . (6.92)

Ito's formula for PDPs Later we need the hain rule for PDPs. Let us

therefore onsider a funtion f [x (t)] of the proess variable x (t); the latter is

assumed to satisfy the SDE (6.86). One would like to obtain a SDE for the

inrements

df [x (t)] ≡ f (x+ a (x, t) dt+ dJ) − f (x) , (6.93)

of the funtion f , with dJ ≡ ∑
i bi (x, t) dNi (t). To this end, expand (6.93) to

�rst order in the drift term and keep the jump term to all orders, whih yields

df [x (t)] = ∂xf (x) a (x, t) dt+ f (x+ dJ) − f (x) . (6.94)

This result is known as Ito's formula for PDPs [70℄. Note that a further expansion

of (6.94) to a �nite order in dJ is not permissible, sine the jump term may have

�nite size aording to the Ito rule (6.91).

SDEs and the Liouville master equation Let us now onstrut a SDE whih

generates a PDP xt whose propagator p (x, t|x0, t0) satis�es the Liouville master

equation (6.12). To this end, one should design the stohasti part of the SDE

suh that jumps from x (t) to z our with a rateW (z|x (t)). One therefore needs

a ontinuous set of jump proesses dNz (t) in the SDE (6.86). The sum
∑

i in

(6.86) must aordingly be replaed by an integral
∫

dz·, suh that (6.86) reads

dx = a (x, t) dt+

∫
dz bz (x, t) dNz (t) . (6.95)

In addition, the Ito rule (6.92) must be replaed by its ontinuous ounterpart

dNx (t) dNy (t) = δ (x− y) dNx (t) . (6.96)
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Sine the stohasti term desribes jumps from x (t) to z, it is suggestive to make

the hoie bz (x, t) = z − x (t), implying that (6.95) beomes

dx = a (x, t) dt+

∫
dz [z − x (t)] dNz (t) . (6.97)

Furthermore, sine the rate of jumps from x (t) to z is given by W (z|x (t)), we
set

E [dNz (t)] = W (z|x (t)) dt . (6.98)

Let us now hek that Eqs. (6.97) and (6.98) lead to the orret dynamial

behavior as predited by the Liouville master equation (6.12). To start with, let

us onsider the time derivative of the expetation value of an arbitrary funtion

f (x (t)),

∂tE [f (x (t))] =
E [df (x (t))]

dt
, (6.99)

where the one-dimensional proess x (t) is assumed to satisfy the SDE (6.97).

Applying Ito's formula (6.94), one obtains

∂tE [f ] = E [a∂xf + f (x+ dJ) − f (x)] , (6.100)

with dJ =
∫

dz [z − x (t)] dNz (t), f ≡ f (x (t)) and a ≡ a (x, t). An approxi-

mation of this expression by a �nite Taylor expansion is not allowed, sine the

jump term dJ is not neessarily in�nitesimal small. One may however perform

an in�nite Taylor expansion

E [f (x+ dJ) − f (x)] = E

[
∞∑

k=1

(dJ)k

k!
∂(k)
x f (x)

]

= E

[
∞∑

k=1

1

k!
∂(k)
x f (x)

∫
dz (z − x)k dNz (t)

]

= E

[∫
dz (f (z) − f (x)) dNz (t)

]
, (6.101)

where the Ito rule (6.96) is used in the seond line. Upon using the expetation

value (6.98), one obtains

∂tE [f ] = E

[
a∂xf +

∫
dz [f (z) − f (x)]W (z|x)

]
. (6.102)

Alternatively, one an represent the proess in terms of its onditional proba-

bility density p ≡ p (x, t;x0, t0), whih yields

∂tE [f ] =

∫
dxf (x) ∂tp. (6.103)

On the other hand, we �nd from (6.102) that

∂tE [f ] =

∫
dx

(
a∂xf +

∫
dz (f (z) − f (x))W (z|x)

)
p (x, t|x0, t0)

=

∫
dxf (x) (−∂x [a (x) p (x, t|x0, t0)] (6.104)

+

∫
dz [W (x|z) p (z, t|x0, t0) −W (z|x) p (x, t|x0, t0)]

)
.
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Here integration by parts is used in the seond line, and the variables x and z are

interhanged in the third line.

Sine f (x) is arbitrary, one may assume that the integrands of (6.103) and

(6.104) are equal,

∂tp (x, t;x0, t0) = −∂x [a (x, t) p (x, t;x0, t0)] (6.105)

+

∫
dz [W (x|z) p (z, t|x0, t0) −W (z|x) p (x, t|x0, t0)] .

It follows that Eqs. (6.97) and (6.98) lead to the orret dynamial behavior as

predited by the Liouville master equation (6.12) with a drift oe�ient A (x, t) =
a (x, t).
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Chapter 7

Quantum trajetories

7.1 The quantum Markov proess

Having introdued the notion of lassial Markovian stohasti proesses in the

previous hapter, we are now in the position to deal with its quantum ounter-

part. As explained above, lassial Markovian proesses Xt are haraterized by

means of the Chapman-Kolmogorov equation (6.8). Solutions of this equation

were obtained in terms of an appropriate stohasti di�erential equation,

∂tx = a (x) + noise (x) , (7.1)

whih admits the generation of random trajetories {xα (t) |xα (t) ∈ Rn}, with
α = 1 . . . N . Upon averaging one reovers all kinds of expetation values of the

proess,

E [f (Xt)] ≃ 1

N

N∑

α=1

f (xα (t)) , (7.2)

with f an arbitrary funtion of Xt.

Similarly, quantum Markovian proesses ρt are haraterized by master equa-

tions in Lindblad form (2.47), see Set. 2.2.2. Solutions of the latter may be

obtained [21,27�29,77�80℄ by means of a suitable quantum stohasti di�erential

equation (quantum SDE),

∂t|ψ〉 = |a (ψ)〉 + |noise (ψ)〉 , (7.3)

allowing one to generate random samples of pure state trajetories {|ψα (t)〉},
|ψα (t)〉 in H, alled quantum trajetories [77℄. The ensemble average admits to

alulate di�erent expetation values 〈A〉 ≡ Tr (ρtA),

〈A〉 ≃ 1

N

N∑

α=1

〈ψα (t) |A|ψα (t)〉 , (7.4)

with A an arbitrary observable. Moreover, the evolution of the density matrix ρt ≡
eLtρ0 an be evaluated by averaging over the orresponding projetors Pα (t) ≡
|ψα (t)〉〈ψα (t) |,

ρt =
1

N

N∑

α=1

Pα (t) . (7.5)
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Any stohasti proess in the Hilbert spae of pure quantum states is alled an

unraveling of the master equation ∂tρ = Lρ [77℄, if it satis�es the relations (7.4)

and (7.5).

As the reader may reall from the previous hapter, there are di�erent lasses

of lassial stohasti proesses. These proesses may be either di�usive or piee-

wise deterministi. In the �rst ase, one has a noise term in (7.1) whih is pro-

portional to the time derivative of the Wiener proess W (t), i.e.

dx = a (x) dt+ b (x) dW , (7.6)

so that the sample paths are ontinuous but non-di�erentiable. In the seond

ase, the noise term is proportional to the time derivative of the Poisson proess

N (t),

dx = a′ (x) dt+ b′ (x) dN , (7.7)

implying that the sample paths onsist of smooth deterministi parts whih are

interrupted by random jumps. Similarly, also the unravelings of a quantum master

equation may be either di�usive [78�80℄, with quantum SDE

|dψ〉 = |a (ψ)〉dt+
∑

i

|bi (ψ)〉dWi , (7.8)

or pieewise deterministi [27�29℄,

|dψ〉 = |a′ (ψ)〉dt+
∑

i

|b′i (ψ)〉dNi . (7.9)

Note, however, that there is a ruial di�erene between lassial- and quan-

tum Markov proesses. In the lassial ase, unequal SDEs orrespond to di�erent

probability densities p (x, t). For instane, the Ito SDE (6.41) is equivalent to the

Fokker-Plank equation (6.11), while the pieewise deterministi SDE (6.97) or-

responds to the Liouville master equation (6.12). The assoiated time-dependent

probability densities are therefore di�erent in these two ases.

In the quantum mehanial setting, though, di�erent quantum SDEs may lead

to the same time-dependent density operator ρt [28, 29℄. This is due to the fat

that the onvex deompositions of the density matrix,

ρt =
∑

α

pα (t) |ψα (t)〉〈ψα (t) | , (7.10)

are not unique, see Set. 2.1.2. In fat, other ensembles {qα (t) , |ϕα (t)〉} may lead

to the same evolution

ρt =
∑

α

qα (t) |ϕα (t)〉〈ϕα (t) | . (7.11)

Hene, the quantum SDEs whih generate {pα (t) , |ψα (t)〉} and {qα (t) , |ϕα (t)〉}
are di�erent, even though they are assoiated to the same master equation. This

implies that the unravelings of a given master equation are not unique. More-

over, they are physially indistinguishable, sine the observable properties are

determined solely by the density matrix.
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It should be mentioned that one may assign a physial meaning to spei�

quantum SDEs (and to the orresponding quantum trajetories) if the envi-

ronment of the system is ontinuously monitored by a omplete measurement

[29, 77, 81℄. Then the systems evolves stohastially, always in a pure state, so

that individual quantum trajetories are indeed realized in suh a setting. In this

thesis, though, suh senarios are not onsidered, and hene di�erent unravelings

of a given master equation are assumed to be physially indistinguishable.

The purpose of this hapter is to give an overview of quantum SDEs whih

generate unravelings. In Set. 7.2, di�usive unravelings (7.8) are disussed. In

partiular, expliit expressions for the drift and the noise terms |a (ψ)〉 and |bi (t)〉
are derived, relating them to the Lindblad operators Li of the master equation. A

similar treatment of pieewise deterministi unravelings is presented in Set. 7.3.

7.2 Di�usive unravelings

A di�usive unraveling of a master equation ρ̇ = Lρ is a stohasti proess of pure

quantum states P (t), generated by a quantum SDE of the form (7.8), whose en-

semble mean satis�es E [P (t)] = eLtP (0). It was developed by Gisin and Perival

in [78℄ where it was alled quantum-state di�usion.

We shall �rst give a formal de�nition of di�usive quantum SDEs. An expliit

expression for the drift and di�usion terms of the Ito quantum SDE is evaluated in

Setion 7.2.1. The derivation of the orresponding quantum SDE in Stratonovih

form follows in Setion 7.2.2.

Complex-valued Wiener proesses It was found in [78℄ that the Wiener

proess appearing in (7.8) must be multivariate and omplex-valued in order to

provide an unraveling. A multivariate omplex-valued Wiener proess W (t) is a

stohasti proess of the form [78,82℄

W (t) ≡ [W1 (t) ,W2 (t) , . . . ,Wn (t)]

≡ [U1 (t) + iV1 (t) , U2 (t) + iV2 (t) , . . . , Un (t) + iVn (t)] , (7.12)

where Ui (t) and Vj (t) are independent real-valued Wiener proesses.

The inrements of the omponents Ui (t) and Vj (t) satisfy the Ito rules

2dUi dUj = δijdt , (7.13)

2dVi dVj = δijdt , (7.14)

dUi dVj = 0 , (7.15)

where the Ito rules (6.38) for real-valued Wiener proesses are used in the �rst

and the seond line, and the third line is due to the statistial independene of

the dUi's and the dVj 's. The fator 2 in Eqs. (7.13) and (7.14) was inluded for

notational onveniene. Aordingly, the Ito rules for the omplex-valued Wiener

proess read as

dWi dWj = dUi dUj − dVi dVj = 0 , (7.16)

dW ∗
i dWj = dUi dUj + dVi dVj = δijdt . (7.17)
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Quantum stohasti integrals Reall from Setion 6.2.3 that lassial SDEs

are de�ned in terms of the orresponding integral equations. Similarly, let us

de�ne quantum SDEs by means of the orresponding quantum stohasti integral

equations. To do so, one �rst has to de�ne quantum stohasti integrals of the

form
∫ t
t0
|f [ψ (t) ; t]〉dW (t′).

Let |f [ψ (t) ; t]〉 ∈ H be an arbitrary non-antiipating vetor-valued funtion

that depends on the state ψ (t) ≡ |ψ (t)〉 and on time t, and letW (t) be a omplex-

valued Wiener proess. To de�ne the stohasti integral, onsider a partitioning

of the interval [t0, tn = t] into subintervals

[t0, t1] , [t1, t2] , . . . , [tn−1, tn] . (7.18)

We de�ne the quantum Ito stohasti integral of |f [ψ (t) ; t]〉 as the limit

∫ t

t0

|f
[
ψ
(
t′
)
; t′
]
〉dW

(
t′
)

= lim
n→∞

n∑

i=1

|f [ψ (ti−1) ; ti−1]〉

× [W (ti) −W (ti−1)] , (7.19)

where X = limn→∞Xn is understood as the mean square limit, see Eq. (6.27).

Similarly, the quantum Stratonovih integral is de�ned as

∫ t

t0

|f
[
ψ
(
t′
)
; t′
]
〉 ◦ dW

(
t′
)

= lim
n→∞

n∑

i=1

|f
[
ψ (ti) + ψ (ti−1)

2
; ti−1

]
〉 [W (ti) −W (ti−1)] . (7.20)

Quantum stohasti di�erential equations (quantum SDEs)

Having de�ned the omplex-valued Wiener proess W (t) and the Ito and

Stratonovih quantum stohasti integrals, we are now in the position to de�ne

quantum SDEs.

A stohasti proess of pure quantum states |ψt〉 ∈ H obeys an Ito quantum

SDE written as

|dψt〉 = |a (ψt; t)〉dt+
∑

i

|bi (ψt; t)〉dWi (t) , (7.21)

if for all t and t0 one has

|ψt〉 = |ψ0〉 +

∫ t

t0

|a (ψτ ; τ)〉dτ +
∑

i

∫ t

t0

|bi (ψτ ; τ)〉dWi (τ) . (7.22)

Analogously, |ψt〉 ∈ H satis�es a Stratonovih quantum SDE

|dψt〉 = |α (ψt; t)〉dt+
∑

i

|βi (ψt; t)〉 ◦ dWi (t) , (7.23)

if for all t and t0 we have

|ψt〉 = |ψ0〉 +

∫ t

t0

|α (ψτ ; τ)〉dτ +
∑

i

∫ t

t0

|βi (ψτ ; τ)〉 ◦ dWi (τ) . (7.24)
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Conservation of normalization One usually requires a quantum SDE to be

norm-preserving, meaning that ‖ψt‖ = 1 for all times t. This implies that the

�utuations indued by the noise term must be orthogonal to that state [78℄,

〈ψt|bj〉 = 0 , (7.25)

with |bj〉 ≡ |bj (ψt; t)〉. To see this, onsider the di�erential of ‖ψt‖2 and use the

Ito rule (7.17),

d‖ψt‖2 = 〈dψt|ψt〉 + 〈ψt|dψt〉 + 〈dψt|dψt〉
= 〈a|ψt〉dt+

∑

i

〈bi|ψt〉dW ∗
i + 〈ψt|a〉dt

+
∑

i

〈ψt|bi〉dWi +
∑

i

〈bi|bi〉dt . (7.26)

Upon multiplying Eq. (7.26) with the Wiener inrement dW ∗
j , one obtains [78℄

d‖ψt‖2dW ∗
i = 〈ψt|bj〉dt , (7.27)

where Eqs. (7.16), (7.17) and (6.40) are used. In order to preserve the normal-

ization of |ψt〉, the di�erential d‖ψt‖2 vanishes, whih implies Eq. (7.25) sine

dt 6= 0.

7.2.1 Derivation of the drift and di�usion terms

In the following we shall determine the drift and di�usion vetors |a〉 ≡ |a (ψt; t)〉
and |bi〉 ≡ |bi (ψt; t)〉, suh that the Ito quantum SDE (7.21) provides an un-

raveling of the master equation (2.47). This derivation is based on the original

proposal of quantum-state di�usion [78℄.

To start with, we assume that the initial state is pure ρ = |ψ〉〈ψ|. The

quantum SDE (7.21) implies that ρ evolves as [78℄

∂tρ =
1

dt
E [|dψ〉〈ψ| + |ψ〉〈dψ| + |dψ〉〈dψ|]

= |a〉〈ψ| + |ψ〉〈a| +
∑

i

|bi〉〈bi| , (7.28)

where the Ito rule (7.17) and the expetation E [dW ] = 0 was used. On the other

hand, one demands that ρ evolves aording to the master equation (2.47), [78℄

|a〉〈ψ| + |ψ〉〈a| +
∑

i

|bi〉〈bi| = L (|ψ〉〈ψ|) , (7.29)

where L (ρ) has Lindblad form. This relation is used below to determine the drift

and di�usion vetors.

Notie that Eq. (7.29) guarantees [78℄ that also mixed initial states

ρ =
∑

α

pα|ψα〉〈ψα| , (7.30)
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evolve aording to the master equation (2.47). For, due to the linearity of L, one
�nds

dρ = E

[
∑

i

pα (|dψα〉〈ψα| + |ψα〉〈dψα| + |dψα〉〈dψα|)
]

=
∑

i

pα L (|ψα〉〈ψα|) dt

= L (ρ) dt . (7.31)

Derivation of the noise terms The noise terms |bi〉 an be determined by

onsidering the omponent of ∂tρ in the spae orthogonal to P ≡ |ψ〉〈ψ| [78℄.
To see this, multiply Eq. (7.29) with the projetor P⊥ ≡ I − |ψ〉〈ψ|, and use

Eq. (7.25) [78℄

P⊥L (P) P⊥

= (I − |ψ〉〈ψ|)
(
|a〉〈ψ| + |ψ〉〈a| +

∑

i

|bi〉〈bi|
)

(I − |ψ〉〈ψ|)

=
∑

i

|bi〉〈bi| . (7.32)

Upon inserting the Lindblad form (2.47) of the generator L (P) in (7.32), one

obtains after a short and straightforward alulation [78℄

∑

i

|bi〉〈bi| =
∑

i

γi (I − P) LiPLi (I − P) . (7.33)

This equation is satis�ed for instane by the set of noise terms [78℄

|bi〉 =
√
γi (Li − 〈Li〉) |ψ〉 , (7.34)

with the expetation values 〈Li〉 ≡ 〈ψ|Li|ψ〉.

Derivation of the drift term To obtain the drift term of the di�usive unrav-

eling, multiply Eq. (7.29) from the right-hand side with |ψ〉 [78℄.
L (P) |ψ〉 = |ψ〉〈a|ψ〉 + |a〉 . (7.35)

Here it is used again that the noise is orthogonal to the state, see Eq. (7.25), whih

follows from the ondition that the quantum SDE must be norm-preserving. Now

multiply (7.35) from the left-hand side with 〈ψ|, whih gives [78℄

〈ψ|L (P) |ψ〉 = 2Re (〈a|ψ〉) . (7.36)

Equations (7.35) and (7.36) imply that [78℄

|a〉 = L (P) |ψ〉 −
(

1

2
〈ψ|L (P) |ψ〉 + icψ

)
|ψ〉 , (7.37)

with cψ ≡ Im (〈a|ψ〉). Upon inserting the Lindblad form (2.47) of the generator

L (P) in (7.37), one obtains after a short and straightforward alulation

|a〉 = − i

~
(H − 〈H〉 + ~cψ) |ψ〉

+
∑

i

γi

(
〈L†
i 〉Li −

1

2
L
†
iLi −

1

2
〈L†
i 〉〈Li〉

)
|ψ〉 , (7.38)
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where the expetation values are with respet to |ψ〉.
The ψ-dependent onstant cψ ontributes only an additional phase, and it is

therefore hoosen suh that the quantum SDE agrees with the usual Shrödinger

equation if the system is losed [78℄. Thus, one makes the hoie cψ = 〈H〉/~,
whih together with the noise term (7.34) yields [78�80℄

|dψ〉 = − i

~
H|ψ〉dt+

∑

i

γi

(
〈L†
i 〉Li −

1

2
L
†
iLi −

1

2
〈L†
i 〉〈Li〉

)
|ψ〉dt

+
∑

i

√
γi (Li − 〈Li〉) |ψ〉dWi . (7.39)

This represents the Ito quantum SDE of quantum-state di�usion.

Complete parameterization of di�usive unravelings The unraveling de-

�ned by the above Ito quantum SDE and the Ito rules (7.16) and (7.17) is not the

only oneivable di�usive unraveling. In fat, others may be onstruted by al-

lowing orrelations between the di�erent omponents dWi of the Wiener proess.

It was proved by Wiseman and Diosi in [83℄ that a omplete parameterization of

di�usive quantum trajetories is obtained by writing the Ito rules as

dWi dWj = uij dt , (7.40)

dW ∗
i dWj = δij dt , (7.41)

with u a omplex symmetri matrix subjet to the ondition ‖u‖2 ≤ 1 for the ma-

trix two-norm. The latter is de�ned as the square root of the maximum eigenvalue

of u†u.

7.2.2 Quantum Stratonovih SDEs

Let us now evaluate the Stratonovih quantum SDE assoiated to the Ito dif-

fusive unraveling (7.39). To this end, reall that the lassial relation between

Stratonovih and Ito di�erentials is provided by Eq. (6.61). The orresponding

relation for state vetors reads as 1

|bi (ψ)〉 ◦ dWi = |bi (ψ)〉dWi +
1

2
|dbi (ψ)〉dWi , (7.42)

with |dbi (ψ)〉 ≡ |bi (ψ + dψ)〉 − |bi (ψ)〉. By hoosing the noise term (7.34), one

obtains

|dbi (ψ)〉dWi =
√
γi (Li − [〈ψ| + 〈dψ|] Li [|ψ〉 + |dψ〉]) (|ψ〉 + |dψ〉) dWi

−√
γi (Li − 〈ψ|Li|ψ〉) |ψ〉dWi , (7.43)

where |dψ〉 is given by the Ito quantum SDE (7.39). Upon using the Ito rules

(7.16) and (7.17), we �nd that the only non-vanishing term on the right-hand side

of (7.43) is the one ontaining the fator 〈dψ|Li|ψ〉dWi. Thus,

|dbi (ψ)〉dWi =
√
γi〈dψ|Li|ψ〉|ψ〉dWi

= −
(
〈L†
iLi〉 − 〈L†

i 〉〈Li〉
)
|ψ〉dt , (7.44)

1The proof of this relation is analogous to the lassial one shown in Set. 6.2.3. One merely
has to replae the funtions α (x, t), β (x, t) and x (t) by state vetors.
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where we used (7.39) and the Ito rules dWidt = 0 and (7.17). It follows from

Eqs. (7.39), (7.42) and (7.44) that the Stratonovih quantum SDE assoiated to

Eq. (7.39) is given by [7, 57,80℄

|dψ〉 = − i

~
H|ψ〉dt+

∑

i

γi

(
1

2
〈L†
iLi〉 −

1

2
L
†
iLi + 〈L†

i 〉Li − 〈L†
i 〉〈Li〉

)
|ψ〉dt

+
∑

i

√
γi (Li − 〈Li〉) |ψ〉 ◦ dWi . (7.45)

Notie that the drift term of this quantum SDE agrees with the nonlinear

equation (4.45) whose asymptoti states are argued to provide the pointer states

of the open system, see Chapter 4. For this reason, it is suggestive to use this

partiular unraveling in order to study the emergene and evolution of pointer

states. This has indeed been done by Diosi and Kiefer [6℄ in the ontext of linear

oupling models; the following hapter will omment on this in more detail.

7.3 Pieewise deterministi unravelings

A pieewise deterministi unraveling of a master equation ∂tρ = Lρ is a stohas-

ti proess P (t) = |ψt〉〈ψt| in the Hilbert spae of pure quantum states whih is

de�ned by a quantum SDE of the form (7.9), and whose ensemble mean satis�es

E [P (t)] = eLtP (0). As disussed at the beginning of this hapter, these unrav-

elings are not unique, meaning that there are in�nitely many equations of the

form (7.9), whih generate the same time-dependent density matrix ρt = E [Pt].
The most widely used pieewise deterministi unraveling is the Monte Carlo

method [27, 28℄; here the quantum jumps are indued by the Lindblad opera-

tors Li, so that the noise terms read as

|bi (ψ)〉 =
Li|ψ〉
‖Li|ψ〉‖

− |ψ〉 . (7.46)

We start out with a formal de�nition of pieewise deterministi quantum

SDEs. Then the Monte Carlo unraveling is derived (Set. 7.3.1), and a strat-

egy admiting the generation of other unravelings is presented (Set. 7.3.2). This

strategy is then used to determine the so-alled orthogonal unraveling , whih will

be important in the next hapter when the emergene of pointer states is dis-

ussed.

Stohasti integrals of quantum jump proesses Let |f [ψt; t]〉 ∈ H be

an arbitrary non-antiipating vetor-valued funtion that depends on the state

ψt ≡ |ψt〉 and on time t, and let N (t) be a Poisson proess with rate r (t) and

arrival times si. Then we de�ne the quantum stohasti integral of |f [ψt; t]〉 as

∫ t

t0

|f
[
ψt′ ; t

′
]
〉dN

(
t′
)

=
n∑

i=1

|f [ψsi
; si]〉∆Ni , (7.47)

with ∆Ni = 1 and n de�ned by the inequality sn < t < sn+1.
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Pieewise deterministi quantum SDEs A stohasti proess of pure quan-

tum states |ψt〉 ∈ H obeys a pieewise deterministi quantum SDE written as

|dψt〉 = |a (ψt; t)〉dt+
∑

i

|bi (ψt; t)〉dNi (t) , (7.48)

if for all t and t0 one has

|ψt〉 = |ψ0〉 +

∫ t

t0

dτ |a (ψτ ; τ)〉dτ +
∑

i

∫ t

t0

dτ |bi (ψτ ; τ)〉dNi (τ) . (7.49)

Notie that one must speify the rates ri (t) of the Poisson proesses Ni (t), in
order to uniquely de�ne the quantum SDE (7.48).

7.3.1 Derivation of the Monte Carlo unraveling

Let us now derive the Monte Carlo unraveling, that is a quantum SDE of the form

(7.48) with noise terms (7.46) and expetation value

E [|ψt〉〈ψt|] = eLt|ψ0〉〈ψ0| , (7.50)

where |ψt〉 are stohasti solutions of the quantum SDE and |ψ0〉 is some arbitrary

initial state. L (·) denotes the generator (2.47) of a quantum dynamial semigroup.

To ahieve this task, one has to determine the drift term |a〉 ≡ |a (ψt; t)〉 and the

rates ri (t) of the Poisson proesses involved in (7.48).

To start with, assume that the initial state is pure ρ = |ψ〉〈ψ|. The general

ase follows from the linearity of the generator L, as in Set. 7.2.1, Eq. (7.31).

The quantum SDE (7.48) implies that ρ evolves as

∂tρ =
1

dt
E [|dψ〉〈ψ| + |ψ〉〈dψ| + |dψ〉〈dψ|]

= |a〉〈ψ| + |ψ〉〈a|
+
∑

i

(|bi〉〈ψ| + |ψ〉〈bi| + |bi〉〈bi| ) ri, (7.51)

where we used the Ito rule (6.92) and the relation E [dNi] = ridt (see Eq. (6.85)).
As a next step, notie that the quantum SDE should agree with the Shrödinger

equation if the system is losed. It is therefore suggestive to make the ansatz

|a〉 = − i

~
H|ψ〉 + |ã〉 , (7.52)

with unknown state |ã〉. By inserting the drift vetor (7.52) and the noise terms

(7.46) into Eq. (7.51), one obtains

∂tρ = − i

~
[H,P] + |ã〉〈ψ| + |ψ〉〈ã|

+
∑

i

[(
Li

Ni
− I

)
P + P

(
L
†
i

Ni
− I

)
+

(
Li

Ni
− I

)
P

(
L
†
i

Ni
− I

)]
ri

= − i

~
[H,P] + |ã〉〈ψ| + |ψ〉〈ã| +

∑

i

ri

(
LiPL

†
i

N 2
i

− P

)
, (7.53)
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with normalization Ni ≡ ‖Li|ψ〉‖ and P ≡ |ψ〉〈ψ|. On the other hand, we demand

that ρ evolves aording to the master equation,

∂tρ = − i

~
[H,P] +

∑

i

γi

(
LiPL

†
i −

1

2
L
†
iLiP − 1

2
PL

†
iLi

)
. (7.54)

A omparison of (7.53) and (7.54) suggests the ansatz

ri = γiN 2
i = γi〈L†

iLi〉 , (7.55)

so that Eq. (7.53) beomes

∂tρ = − i

~
[H,P] + |ã〉〈ψ| + |ψ〉〈ã| +

∑

i

γi

(
LiPL

†
i − 〈L†

i Li〉P
)
. (7.56)

From Eqs. (7.54) and (7.56) one �nds an equation for the drift |ã〉

|ã〉〈ψ| + |ψ〉〈ã|

=
∑

i

γi

(
〈L†
iLi〉|ψ〉〈ψ| −

1

2
L
†
iLi|ψ〉〈ψ| −

1

2
|ψ〉〈ψ|L†

iLi

)
, (7.57)

whih is satis�ed by the vetor

|ã〉 =
∑

i

γi

(
1

2
〈L†
iLi〉 −

1

2
L
†
iLi

)
|ψ〉 . (7.58)

Finally, by ombining Eqs. (7.48), (7.52), (7.58) and (7.46), one �nds that the

Monte Carlo unraveling is desribed by the pieewise deterministi quantum SDE

[27�29℄

|dψt〉 = − i

~
H|ψt〉dt−

1

2

∑

i

γi

(
L
†
iLi − 〈L†

iLi〉
)
|ψt〉dt

+
∑

i

(
Li|ψt〉

‖Li|ψt〉‖
− |ψt〉

)
dNi (t) , (7.59)

where the Poisson inrements satisfy the expetations [27�29℄

E [dNi (t)] = ri (t) dt

= γi〈L†
iLi〉dt . (7.60)

7.3.2 Derivation of the orthogonal unraveling

As may be realled from Set. 2.2.2, the Lindblad master equation ρ̇ = L (ρ)
does not uniquely �x the Lindblad operators Li and the Hamiltonian H. That is,

there are ertain transformations Li → L′
i and H → H′ whih keep L (ρ) invariant.

The idea suggested in [78℄ and [28℄ is to generate other unravelings, by inserting

the transformed operators L′
i and H′ into a known unraveling, suh as the Monte

Carlo quantum SDE (7.59).

For reasons whih will beome apparent shortly, let us onsider the inhomo-

geneous transformations (2.51) and (2.52) with the partiular hoie

zi = −〈Li〉 . (7.61)
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In this ase the transformed Lindblad operators are given by

Li → L′
i = Li − 〈Li〉 , (7.62)

and the orresponding Hamiltonian reads as

H → H′ = H − i~

2

∑

i

γi

(
〈Li〉L†

i − 〈L†
i 〉Li

)
. (7.63)

By inserting these operators into the quantum SDE (7.59), one obtains

|dψt〉 = − i

~

[
H − i~

2

∑

i

γi

(
〈Li〉L†

i − 〈L†
i 〉Li

)]
|ψt〉dt

−1

2

∑

i

γi

[(
L
†
i − 〈L†

i 〉
)

(Li − 〈Li〉) − 〈L†
iLi〉 + 〈L†

i 〉〈Li〉
]
|ψt〉dt

+
∑

i

(
(Li − 〈Li〉) |ψt〉
‖ (Li − 〈Li〉)ψt〉‖

− |ψt〉
)

dNi (t) . (7.64)

Upon expanding Eq. (7.64), one obtains the quantum SDE of the orthogonal

unraveling [22℄

|dψt〉 = − i

~
H|ψ〉dt+

∑

i

γi

(
1

2
〈L†
iLi〉 −

1

2
L
†
iLi + 〈L†

i 〉Li − 〈L†
i 〉〈Li〉

)
|ψ〉dt

+
∑

i

(
(Li − 〈Li〉) |ψt〉
‖ (Li − 〈Li〉)ψt〉‖

− |ψt〉
)

dNi (t) , (7.65)

where the Poisson inrements must now exhibit the expetation values

E [dNi (t)] = γi〈
(
L
†
i − 〈L†

i 〉
)

(Li − 〈Li〉)〉dt .

= γi

(
〈L†
iLi〉 − 〈L†

i 〉〈Li〉
)

dt . (7.66)

To our knowledge, this unraveling was �rst noted by Rigo and Gisin [22℄, although

it has not been studied numerially so far.

Disussion of the sample paths The orthogonal unraveling has a number of

remarkable properties. Cruially, the deterministi piees of the sample paths of

(7.65) are generated by the nonlinear equation (4.45), whose asymptoti states

are supposed to provide the pointer states of the open system, see Chapter 4. For

this reason, one may use this unraveling to study the emergene and dynamis

of pointer states; a detailed explanation of this appliation is given in the next

hapter.

The stohasti parts, on the other hand, onsist of quantum jumps whih

our with the rate

ri (t) =
E [dNi (t)]

dt

= γi

(
〈L†
iLi〉 − 〈L†

i 〉〈Li〉
)
, (7.67)
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and are aused by the nonlinear operators

Ji =
Li − 〈Li〉√

ri
. (7.68)

This implies that the overlap 〈ψ|Ji|ψ〉 vanishes,

〈ψ|Ji|ψ〉 =
1√
ri
〈ψ| (Li − 〈Li〉) |ψ〉 = 0 , (7.69)

whih means that the states |ψi〉 = Ji|ψ〉 into whih the system may jump are

orthogonal to the original state |ψ〉. This justi�es the naming `orthogonal unravel-

ing'. Notie, however, that the states |ψi〉 are not neessarily mutually orthogonal.

Another quantity of interest, whih will be needed below, is the total jump

rate r ≡∑i ri. In the ase of the orthogonal unraveling, it is determined by the

linear entropy prodution rate Ṡlin de�ned in Set. 2.1.1, Eq. (2.11).

r (t) =
1

2
Ṡlin (|ψ〉〈ψ|) . (7.70)

This an be veri�ed easily:

Ṡlin (|ψ〉〈ψ|) = −2〈ψ|L (|ψ〉〈ψ|) |ψ〉
= 2

∑

i

γi

(
〈L†
iLi〉 − 〈L†

i 〉〈Li〉
)

= 2
∑

i

ri . (7.71)

In the next hapter, we seek an unraveling whose quantum trajetories turn into

pointer states asymptotially. This implies that the total jump rate of the asymp-

toti trajetories must tend to zero for suh an unraveling. On the other hand,

reall from Set. 4.3, Eq. (4.15), that pointer states are distinguished by having

the minimal linear entropy prodution rate in the Hilbert spae. Sine in the ase

of the orthogonal unraveling the total jump rate agrees with Ṡlin (apart from a

fator 2), the latter is a andidate for an unraveling whose quantum trajetories

evolve into pointer states asymptotially; the following hapter will omment on

this in more detail.

Diosi's orthogonal unraveling A related unraveling, whih is also referred to

as the `orthogonal unraveling', was introdued by Diosi [21, 84℄. Here, the deter-

ministi piees of the evolution are as well generated by the nonlinear equation

(4.45). However, the states |ψi〉 into whih the system may jump are obtained

di�erently, as the eigenvetors of the Hermitian operator

P⊥L (P) P⊥ , (7.72)

with P⊥ ≡ I − |ψ〉〈ψ| and P ≡ |ψ〉〈ψ|. As a onsequene, these states are also

mutually orthogonal (in �nite dimensional systems). Sine the orthogonal unrav-

eling of [21,84℄ requires the diagonalization of the operator (7.72), it is muh more

involved that the one de�ned by (7.65) and (7.66), whih is why the latter is used

in the subsequent hapter.

Continuous set of Lindblad operators Finally, we note that all of the re-

lations presented in this hapter are also valid if there is an unountable set of

Lindblad operators, so that the master equation has the form (2.48). The dis-

rete index i must then be replaed by a ontinuous label q, and the sums are

substituted by integrals.
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Chapter 8

Unraveling ollisional

deoherene

8.1 Pointer states and quantum trajetories

As shown in the preeding hapter, a given Lindblad master equation is ompletely

equivalent to ertain quantum stohasti di�erential equations (quantum SDEs).

The latter should therefore enode information about the pointer states Pα, if

there are any. Moreover, it was found that there are in�nitely many of those

unravelings, all leading to the same physial preditions. This gives us the freedom

to hoose among the unravelings the ones most onvenient for the analysis of

pointer states. As we shall �nd in this hapter, these are the unravelings whih

generate diretly the ensemble of pointer states, meaning that the orresponding

quantum trajetories end up asymptotially in one of the Pα's.

To make this more onrete, let us reall the de�nition of pointer states given

in Set. 4.2. The set of pointer states Pα (t) is essentially haraterized by the

fat that the evolved state ρt = eLtρ0 an be onvex-deomposed for any initial

state ρ0 and for times greater than the deoherene time, t≫ tdec, as
1

ρt ≃
∑

α

pαPα (t) . (8.1)

A natural further requirement is that the weights pα are given by the initial

projetions

pα = Tr [ρ0Pα (0)] . (8.2)

From this de�nition it beomes lear that an unraveling will produe the

ensemble of pointer states if it generates for any initial state ρ0 an ensemble

of trajetories {Pα (t)} whih get independent of ρ0 for large times. Then the

ensemble mean has preisely the form shown in Eq. (8.1), so that the asymptoti

states of the quantum trajetories are to be identi�ed with the pointer states of

the system. This implies that one may use the relative frequeny of these states to

estimate the probabilities pα of the pointer states, and to verify whether Eq. (8.2)

holds. Suh an unraveling does therefore provide the omplete information, that

is {pα,Pα (t)}, about the deoherene proess.

1For larity, the de�nition is given for a �nite number of dimensions.
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It still remains an open problem to give a omplete list of unravelings whih

produe the pointer states of a master equation, if there are any. Clearly this is a

hallenging task, sine it is not even known so far how to ompletely parameterize

unravelings. Besides that, even the general proof that a partiular unraveling

generates pointer states remains open.

What an be done, however, is to give plausibility arguments that indiate

why ertain unravelings are supposed to do the job. This leads in partiular to

the di�usive and the orthogonal unraveling introdued in the previous hapter.

One an then prove for partiular models that these unravelings produe pointer

states. To make this more preise, it is useful to disuss di�usive and pieewise

deterministi unravelings separately.

Di�usive unravelings As was noted by Diosi in [6℄, a andidate for an un-

raveling with the above property is the di�usive unraveling desribed by the Ito

quantum SDE (7.39). Expressed in the Stratonovih piture (7.45), its drift term

agrees with the nonlinear equation (4.45) whose asymptoti states are supposed

to provide the pointer states of the system, see Chapter 4. Of ourse, it is not

lear whether this also holds in the presene of the di�usive noise terms ontained

in the quantum SDE (7.45).

It turns out, however, that this is indeed the ase for the linear oupling model

shown in Eq. (3.39). Aording to [6℄, the solutions of (7.45) tend for all initial

states to the Gaussian solitons (4.54) with width (4.57). One the trajetory has

turned into a soliton, its position and momentum expetation values follow the

lassial motion Eq. (4.55) up to a small random di�usion [6℄.

Surprisingly, the above only holds for a spei� di�usive unraveling where

the noise terms are haraterized by the Ito rules (7.16) and (7.17). Reall from

Set. 7.2.1 that di�usive unravelings are not unique. There is a ertain freedom

in the hoie of the Ito rules, whih is expressed in Eqs. (7.40) and (7.41).

It should be mentioned that the observations made in [6℄ hold for both the

Ito and the Stratonovih piture, sine the two are equivalent in the sense that

the orresponding quantum SDEs (7.39) and (7.45) produe the same ensemble

of quantum trajetories.

In summary, the di�usive unraveling desribed by the quantum SDE (7.39)

and the Ito rules (7.16) and (7.17) produes asymptotially the ensemble of pointer

states in the example of the linear oupling model. Nevertheless, we do not apply

this di�usive unraveling in the following, sine we are not aware of general riteria

whih guarantee that the quantum trajetories of the di�usive unraveling evolve

into pointer states asymptotially.

Pieewise deterministi unravelings However, in the ase of pieewise de-

terministi unravelings, one may formulate suh riteria. These riteria will be

ruial below, when we analyze the formation of pointer states in ollisional de-

oherene. To start with, reall that we seek a pieewise deterministi unraveling

whih produes for any initial state P0 an ensemble of P0-independent projetors

{Pα (t)}. Clearly, this is satis�ed if

1) its deterministi part exhibits stable �xed points or solitons Pα,

2) the assoiated total jump rate vanishes, r (Pα) = 0.
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In that ase, the sample paths haraterizing the proess will end up in one of the

states Pα, by all means. The onditions 1) and 2) therefore provide a su�ient

ondition for the Pα's to be genuine pointer states.

A andidate for suh an unraveling is the orthogonal unravelings disussed

in Set. 7.3.2, Eqs. (7.65) and (7.66). One may expet it to ful�ll the above

onditions, provided the system exhibits pointer states, for the following reasons.

I) Its deterministi part is given by the nonlinear equation (4.45) whose asymp-

toti states are reasonable andidates for the pointer basis of the system, as

disussed in detail in Chapter 4. Moreover, Equation (4.45) exhibits stable

�xed points or solitons in all of the examples studied so far (namely, the

damped harmoni osillator, the linear oupling model and ollisional deo-

herene). We therefore onjeture that this is a generi feature of Eq. (4.45).

II) Its total jump rate is determined by the linear entropy prodution rate, see

Eq. (7.70). Reall that the latter should be minimal for pointer states, as

disussed in Set. 4.3, Eq. (4.15). It is therefore reasonable to expet that

the total jump rate of the asymptoti states vanishes or is at least muh

smaller than the typial rates.

Hene, there is strong evidene that the orthogonal unraveling generates the en-

semble of pointer states, if the system exhibits lassial properties.

8.2 Appliation to ollisional deoherene

Now let us ome bak to the main theme of this thesis, namely to the emergene

and dynamis of pointer states in the motion of a quantum test partile oupled to

an ideal gas environment. Suh a system is desribed by ollisional deoherene,

disussed in Set. 3.5. We therefore apply the orthogonal unraveling de�ned

by Eqs. (7.65) and (7.66) to ollisional deoherene (3.47), by �rst evaluating

the deterministi part of the quantum SDE (7.65) in Set. 8.2.1 and then the

stohasti one in Set. 8.2.2. This allows us in partiular to verify the onditions

1) and 2) mentioned in the previous setion, so that we are able to identify the

pointer states Pα of ollisional deoherene.

8.2.1 Deterministi evolution

The deterministi part of the quantum SDE (7.65) orresponds to the nonlinear

equation (4.45) derived in Set. 4.4. Applying (4.45) to the ase of ollisional

deoherene yields the soliton equation (5.5) disussed in Set. 5.1. Let us now

further simplify this equation, by onsidering initial states

Ψ0 (x) =
N∑

i=1

ci (0)φi (x, 0) , (8.3)

whih are superpositions of non-overlapping wave funtions φi (x, 0),

φi (x, 0)φ∗j 6=i (x, 0) = 0 . (8.4)

The latter are assumed to be loalized in the sense that

σ2
φi

<
2π~

2

σ2
G

, (8.5)
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where σ2
φi

and σ2
G denote the varianes of the distributions |φi (x, 0)|2 and G (q),

respetively. Under this assumption, whih will be justi�ed at the end of this

setion, one an extrat a system of evolution equations for the time evolution of

the oe�ients in (8.3),

d

dt
ci (t) = −




N∑

j=1

Fij |cj (t)|2 −
N∑

j,k=1

Fjk |cj (t)|2 |ck (t)|2

 ci (t) . (8.6)

Here, the matrix Fij ≡ F (xi − xj) is obtained from the one-dimensional version

of the loalization rate (3.50), where the xi ≡ 〈x〉φi
denote the mean positions of

the onstituent wave funtions φi (x, t). The latter evolve aording to

∂tφi (x, t) = − ~

2mi
∂2
xφi (x, t) + φi (x, t) Λ

[
|φi|2

]
(x, t)

+φi(x, t)
N∑

j=1,j 6=i

|cj (t)|2 γ̃ij (x, t) , (8.7)

where Λ is de�ned in (5.6) and γ̃ij is a rate of the order of γ,

γ̃ij (x, t) ≡ |φi|2 ∗ F (x, t) − |φj |2 ∗ F (x, t) + Fij . (8.8)

Before verifying these evolution equations, let us disuss the onsequenes of

the loalization assumption (8.5). It is required to justify the approximation

∫ ∞

−∞
dx |φi (x)|2 eiqx/~ ≃ eiqxi/~ , (8.9)

for all q ontributing appreiably to integrals weighted with the momentum trans-

fer distribution G (q); we omment on the validity of this approximation at the

end of this setion. Equation (8.9), in turn, implies

Fjk ≃
∫ ∞

−∞
dx |φj (x)|2

(
|φk|2 ∗ F

)
(x) . (8.10)

To see this, ombine Eqs. (3.50) and (8.9) to obtain

F (xj − xk) ≃ γ

(
1 −

∫
dqG (q)

∫
dx |φj (x)|2 eiqx/~

∫
dy |φk (y)|2 e−iqy/~

)

=

∫
dx |φj (x)|2

∫
dy |φk (y)|2 γ

(
1 −

∫
dqG (q) eiq(x−y)/~

)

=

∫
dx |φj (x)|2

∫
dy |φk (y)|2 F (x− y) , (8.11)

whih on�rms Eq. (8.10). Furthermore, from the latter together with F (0) = 0
one an indue that

∫ ∞

−∞
dx |φi (x)|2

(
|φi|2 ∗ F

)
(x) ≃ 0 . (8.12)
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Veri�ation of the evolution equations Let us now verify that

Ψt (x) =

N∑

i=1

ci (t)φi (x, t) , (8.13)

with ci (t) and φi (x, t) solutions of (8.6) and (8.7), evolves aording to (5.5). To

this end, onsider the time derivative of Ψt (x), whih gives

∂tΨ =
N∑

i=1

(
ċiφi + ciφ̇i

)

= − ~

2mi

N∑

i=1

ci∂
2
xφi −

(
N∑

i=1

ciφi

) 


N∑

j=1

|cj |2
(
|φj |2 ∗ F

)

−
N∑

j,k=1

|cj |2 |ck|2 Fjk


 +

N∑

i=1

ciφi

(
Λ
[
|φi|2

]
+ |φi| ∗ F

)
, (8.14)

where the arguments are dropped for brevity. In (8.14), we used (8.6)-(8.8), the

fat that Fii = 0, and the normalization ondition
∑N

i=1 |ci|2 = 1. This expression
an be further simpli�ed, by noting that, due to the de�nition of Λ (5.6) and the

relation (3.50), one has

Λ
[
|φi|2

]
(x, t) =

∫ ∞

−∞
dx |φi (x)|2

(
|φi|2 ∗ F

)
(x) −

(
|φi|2 ∗ F

)
(x, t)

= −
(
|φi|2 ∗ F

)
(x, t) , (8.15)

where Eq. (8.12) was used in the seond line. Equation (8.14) therefore turns into

∂tΨ = − ~

2mi

N∑

i=1

ci∂
2
xφi −

(
N∑

i=1

ciφi

)

×




N∑

j=1

|cj |2
(
|φj |2 ∗ F

)
−

N∑

j,k=1

|cj |2 |ck|2 Fjk


 . (8.16)

Now, replae Fjk in (8.16) by the right-hand side of (8.10), and use (8.4), whih

yields

∂tΨt (x) = − ~

2mi
∂2
xΨt (x) − Ψt (x)

[
|Ψt|2 ∗ F (x)

−
∫ ∞

−∞
dx|Ψt|2 (y)

(
|Ψt|2 ∗ F

)
(y)

]
. (8.17)

Finally, by using (3.50), one obtains

∂tΨt (x) = − ~

2mi
∂2
xΨt (8.18)

+γΨt (x)

(
|Ψt|2 ∗ Ĝ (x) −

∫ ∞

−∞
dy|Ψt|2 (y)

(
|Ψt|2 ∗ Ĝ

)
(y)

)
,

whih on�rms that Ψt (x) evolves aording to (5.5).
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Figure 8.1: Numerial solution of (8.6) for N = 3. The x-axis gives p1 = |c1|2
and the y-axis p2 = |c2|2; |c3|2 is then �xed by normalization. Left: trajetories

indiating the �ow into the stable �xed points |ci| = δi,n, (n = 1, 2, 3). Right:

regions of attration of the stable �xed points; the area denoted with n is the

region of attration of the �xed point |ci| = δi,n.

Evolution of the oe�ients Let us now disuss the time evolution of the o-

e�ients aording to Eq. (8.6). First onsider situations where the wave pakets

φi (x) are su�iently far apart so that the loalization rate is saturated, meaning

that

Fij = γ (1 − δij) . (8.19)

Under this assumption, (8.6) redues to the equation

d

dt
ci (t) = −γ




N∑

j=1

|cj (t)|4 − |ci (t) |2

 ci (t) , (8.20)

whih was already studied in [85℄ in the ontext of a disrete model for quantum

measurement. It is shown there that all stable �xed points of (8.20) have the form

|ci| = δi,n, and that the partiular �xed point |ci| = δi,m, with

m = argmax
i

(
|ci (0)|2

)
, (8.21)

is approahed monotonially, i.e. the omponent with the largest initial weight

wins. This behavior is visualized in Fig. 8.1 whih was obtained by solving (8.20)

numerially for the ase N = 3. Here, the x- and the y-axis indiate the weights

p1 = |c1|2 and p2 = |c2|2, respetively. The plot on the left-hand side shows

various trajetories, illustrating in partiular the �xed points. The plot on the

right displays the regions of attration of the stable �xed points |ci| = δi,n, in
agreement with the riterion (8.21). For instane, area 1 highlights the region of

attration of the �xed point |ci| = δi,1.
Figure 8.2, on the other hand, depits a situation where the wave pakets

φi (x) are loated more losely so that the loalization rate is unsaturated, that is

Fij 6= γ (1 − δij) . (8.22)
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Here, we hoose N = 3 and non-equidistant position expetations,

(x1, x2, x3) =
σG
~

(1.4, 1.3, 0.8) . (8.23)

It is observed that similarly to the saturated ase all stable �xed points of (8.6)

have the form |ci| = δi,n. However, the regions of attration are deformed so

that riterion (8.21) is no longer valid, and the �xed points are not neessarily

approahed monotonially.

Proof of the �xed point stability To see that |ci| = δi,n are stable �xed

points of (8.6), assume that the oe�ients are lose by, in the sense that

|cn (t)|2 = 1 − ε (t) , (8.24)

|cj 6=n (t)|2 = O (ε (t)) , (8.25)

with ε (0) ≪ 1. Now, let us onsider the time evolution of |cn (t)|2 indued by

(8.6),

d

dt
|cn|2 = −2



∑

j

Fnj |cj |2 −
∑

j,k

Fjk |cj |2 |ck|2

 |cn|2 . (8.26)

Here the time arguments are dropped for brevity. By inserting Eq. (8.24), one

obtains

ε̇ = 2



∑

j

Fnj |cj |2 −
∑

j,k

Fjk |cj |2 |ck|2

 (1 − ε) , (8.27)

whih together with Fnn = 0 yields

ε̇ = 2
∑

j

Fnj |cj |2 − 2
∑

k

(Fnk + Fkn) (1 − ε)2 |ck|2 +O
(
ε2
)
. (8.28)

Sine the loalization rate F (x) is a funtion of the distane |x| only, see Eq. (3.52),
Fjk is symmetri, Fjk = Fkj , so that

ε̇ (t) = −
∑

j

Fnj |cj (t)|2 +O
(
ε2
)
< 0 , (8.29)

and hene, |ci (t→ ∞)| = δi,n.

Evolution of the wave pakets The knowledge of the �xed points of the

oe�ients allows us to disuss the asymptoti evolution of the initial state shown

in Eq. (8.3). Sine the oe�ients cj with j 6= m tend to zero asymptotially, it

follows that

|ψ (t→ ∞)〉 = |φm (t→ ∞)〉 , (8.30)

for a spei� m (whih is given by (8.21) in the saturated ase). The asymptoti

behavior of the wave pakets |φm〉 an, in turn, be predited from Eq. (8.7). Sine

the cj 6=m vanish for large times, the oupling term given by the last summand in
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Figure 8.2: Similar to Fig. 8.1, but the wave pakets φi (x) are positioned loser

so that the loalization rate is unsaturated, i.e. Fij 6 γ (1 − δij). The stable

�xed points are still of the form |ci| = δi,n, but they may be approahed non-

monotonially and the regions of attration, shown on the right, are deformed

ompared to the saturated ase.

(8.7) vanishes as well, implying that the time evolution (8.7) of |φm〉 is asymptot-

ially equal to the soliton equation (5.5). Therefore, in the absene of stohasti

jumps, the state |Ψ0〉 evolves into the solitoni solution πm (x) of (5.5) whih is

assoiated to the initial wave pakets |φm (0)〉.
It should be mentioned that Eqs. (8.6) and (8.7) for the oe�ients ci and the

onstituent wave pakets φi are not ompletely deoupled, sine (8.6) depends on

the matrix Fij ≡ F (xi − xj) whih ontains the position expetations xi of the
wave pakets φi. However, the position expetation follows the lassial trajetory

for su�iently large κ's, implying that (8.6) an be solved without knowing the

solution of (8.7).

Disussion of the assumptions Let us now take a loser look at the validity

of the assumption of small position variane (8.5), and the ensuing approximation

(8.9). The former an be justi�ed by our observation in Setion 5.2.3, that the

dimensionless pointer width σπσG/~ is a funtion of the parameter κ ≡ σ2
G/m~γ

only,

σπ
σG
~

=
κ

4aloc
+ aloc , with aloc = 0.4 . (8.31)

Thus, for all κ ≪ 4a2
loc ≃ 1 we �nd that the position variane σ2

π of a pointer

state is one order of magnitude smaller than the reiproal width of the momentum

transfer distribution G (q),

σ2
π ≃ a2

loc

~
2

σ2
G

≃ 0.2
~

2

σ2
G

< 2π
~

2

σ2
G

. (8.32)
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The above relation for the width of the pointer state is also su�ient to justify

the approximation

∫
dxeiqx/~ |π (x)|2 ≃ eiq〈x〉π/~ , (8.33)

as we heked numerially, by using the solitoni solution of (6). The relative

error is less than 2% for q ∈ [−2σG, 2σG] and κ 6 10−3.

8.2.2 Stohasti part

Jump operators By inserting the Lindblad operator Lq =
√
γG (q)eiqx into

Eq. (7.68) one �nds that the jump operator takes the form

Jq = Nq

(
eiqx/~ − 〈eiqx/~〉

)
. (8.34)

Here Nq denotes the normalization

Nq =
(
1 − |〈eiqx/~〉|2

)−1/2
. (8.35)

Again onsider states of the form (8.3) whih are superpositions of non-overlapping

(8.4) and loalized (8.5) wave pakets φi (x). Under this assumption, it follows

that

〈φj |eiqx/~|φk〉 = δjke
iqxj/~ , (8.36)

so that one an evaluate the expetation value in (8.34)

〈eiqx/~〉Ψ =
∑

j,k

c∗jck〈φj |eiqx/~|φk〉

=
∑

j

|cj |2 eiqxj/~ . (8.37)

Aordingly, the state Ψq (x) ≡ JqΨ (x) into whih the system may jump takes

the form

Ψq (x) = Nq

(
eiqx/~ −

∑

i

|cj |2 eiqxj/~

)
∑

i

ci φi (x) . (8.38)

Later we will hoose the wave funtions φi (x) to be solitons πi (x). Let us

therefore assume that the φi's form a basis, so that Ψq (x) an be represented as

Ψq (x) =
∑

i ci (q)φi (x). Then the transformed oe�ients ck (q) an be evalu-

ated by the overlap ck (q) = 〈φk|Jq|Ψ〉. Using (8.4) and (8.9) this leads to the

following expression for the redistribution of the oe�ients due to an orthogonal

jump

ck (q) = Nq

(
eiqxk/~ −

N∑

i=1

|ci|2 eiqxi/~

)
ck . (8.39)
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Jump rates Similarly, one an evaluate the rate (7.67) assoiated to the jump

operator of ollisional deoherene,

rq = γ G (q)
(
1 − |〈eiqx/~〉|2

)
. (8.40)

The above approximation (8.37) further simpli�es this expression,

rq = γ G (q)


1 −

N∑

j,k=1

|cj |2 |ck|2 eiq(xj−xk)/~


 . (8.41)

One observes that this rate vanishes for the stable �xed points |ci| = δi,n. Thus,
it is veri�ed that states of the form (8.3) with |ci| = δi,n satisfy the onditions

1) and 2) presented in Set. 8.1. Reall that these onditions guarantee that the

quantum trajetories of the orthogonal unraveling evolve into the pointer states.

Sine states with |ci| = δi,n evolve asymptotially into solitoni solutions πt (x) of
(5.5), it is thus evident that the latter represent the pointer states of ollisional

deoherene.

Non-ideal pointer states It should be mentioned that due to the �nite pointer

width (5.36) the exat expression for the jump rate (8.40) does not vanish iden-

tially, although it is very small ompared to γ. For instane, the numerially

obtained soliton displays a strongly suppressed total jump rate rtot =
∫

dq rq of

rtot/γ = 7×10−3 for κ = 10−3, while the superposition state deays with the rate

rtot ∼= γ.
One requires from pointer states Pα satisfying de�nition (4.12) that the quan-

tum trajetories of the orthogonal unraveling stay most of the time within the

set of states {Pα}, for times greater than the deoherene time. The jump rate

rtot of the solitons must therefore be small ompared to the ontration rates γc.
The latter haraterize the times whih are needed for the transformed states

Pα,q ≡ JqPαJ
†
q to return to solitons of the nonlinear equation (4.45). If the on-

tration rate is estimated by γ, that is by the loalization rate in the saturated

regime, we �nd that indeed rtot ≪ γc for the numerially obtained soliton. Hene,

the latter math with the de�nition of pointer states (4.12).

Stohasti di�erential equation (SDE) By ombining Eqs. (8.6), (8.39) and

(8.41), one �nds a set of oupled SDEs for the stohasti evolution of the oe�-

ients

dci (t) = −



∑

j

Fij |cj (t)|2 −
∑

j,k

Fjk |cj (t)|2 |ck (t)|2

 ci (t) dt (8.42)

+

∫
dq


Nq


eiqxi/~ −

∑

j

|cj (t)|2 eiqxj/~


 ci (t) − ci (t)


dNq (t) ,

where the Poisson inrements satisfy the expetations E [dNq] = rqdt. The orig-

inal quantum SDE (7.65), whih is de�ned in the in�nite dimensional Hilbert

spae of the system, has therefore been redued to a SDE in CN , demonstrating

the e�ieny of the orthogonal unraveling.
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Figure 8.3: Quantum trajetory generated by (8.42) and (8.41) with N = 2 . The
solid line depits the evolution of |c1 (t)|2 , while the dashed line shows |c2 (t)|2.
Sine there is an odd number of jumps (three jumps in this example), the traje-

tory evolves into the �xed point |ci| = δi,1.

8.3 The statistial weights of the pointer states

The previous setion showed that the orthogonal unraveling of an initial super-

position state subjet to ollisional deoherene an be redued to a stohasti

proess with respet to the orresponding oe�ients. In partiular, this applies

to the ase where the initial state is a superposition of pointer states,

|Ψ0〉 =
N∑

i=1

ci|πi (0)〉 . (8.43)

Thus one an now verify, by using the disrete proess de�ned by the SDE (8.42)

and the rate (8.41), that after deoherene the statistial weights of the pointer

states are given by the overlap of the initial state with the initial pointer states,

in agreement with Eq. (8.2). More spei�ally, this demonstrates that the initial

state Ψ0 (x) evolves into the mixture

ρ
(
x, x′

)
=

N∑

i=1

piπi (x)π
∗
i

(
x′
)
, (8.44)

where the statistial weights are given by the overlap

pi = |〈Ψ0|πi (x, 0)〉|2 . (8.45)

First an analyti proof of the above for N = 2 is presented. The general ase,

N > 2 , is then treated numerially in the following setion.

8.3.1 Superposition of two loalized states

Consider the expetation value for the oe�ients after a jump, that is

〈ck (q)〉G :=

∫ ∞

−∞
dq G (q) ck (q) , k = 1, 2 . (8.46)
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Upon inserting (8.39) one obtains

〈c1 (q)〉G = 〈Nq

(
eiqx1/~ − |c1|2 eiqx1/~ − |c2|2 eiqx2/~

)
c1〉G

= N ′ |c2|2 c1 , (8.47)

with the normalization onstant N ′ = 〈Nq

(
eiqx1/~ − eiqx2/~

)
〉G . By using

1 = |〈c1 (q)〉G|2 + |〈c2 (q)〉G|2

= N ′2 |c2|4 |c1|2 + N ′2 |c1|4 |c2|2

= N ′2 |c1c2|2 , (8.48)

one �nds |N ′| = 1/ (|c1c2|) whih implies

|〈c1 (q)〉G| = |c2| . (8.49)

This shows that after a jump the moduli of the oe�ients are simply inter-

hanged. This property (whih does not hold for N > 2) makes the stohasti

proess analytially tratable (beause the dynamis is independent of the phases

of the oe�ients). Sine the deterministi part (8.6) of the evolution is mono-

toni for N = 2, a trajetory starting from |c1 (0)| < 1/2 will end up in the state

|ci (∞)| = δi,1 if and only if an odd number of jumps ours in the proess. This

is demonstrated in Fig. 8. Cruially, the jump rate rtot (t),

rtot (t) :=

∫ ∞

−∞
dqrq (t)

=
2∑

j,k=1

F (xj − xk) |cj (t)|2 |ck (t)|2

= 2F (x1 − x2) |c1 (t)|2 |c2 (t)|2 , (8.50)

is una�eted by the jump (8.49) at all times, sine it is invariant under interhang-

ing the oe�ients. Hene, the time dependene of the jump rate is idential for

all trajetories, whih, in turn, means that the number of jumps follows an inho-

mogeneous Poisson proess. The probability for an odd number of jumps, whih

is equal to the statistial weight p1 of the pointer state π1 (x), an therefore be

evaluated analytially by using Eq. (6.79),

Prob (odd) = e−µ(∞)
∞∑

n=0

µ (∞)2n+1

(2n+ 1)!

= e−µ(∞) sinh [µ (∞)]

= 1 − 1

2
e−2µ(∞) , (8.51)

with µ (t) =
∫ t
0 dτ rtot (τ) the integrated jump rate. The latter an easily be

evaluated by noting that (8.6) an be written for N = 2 as

2F (x1 − x2) |c1 (τ)|2 |c2 (τ)|2 =
1

2

d

dt
ln
(
1 − 2 |c1 (τ)|2

)
. (8.52)
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Figure 8.4: Relative entropy H (fk|pk) of the numerially obtained distribution of

pointer states fk with respet to the expeted distribution pk = |ck|2 as a funtion
of the number of trajetories n generated in the simulation. The plot indiates

that the pointer states are distributed aording to the initial overlap |ck|2.

By inserting this result into (8.50) one obtains the integrated jump rate:

µ (∞) =

∫ ∞

0
dτ

1

2

d

dt
ln
(
1 − 2 |c1 (τ)|2

)

= −1

2
ln
(
1 − 2 |c1 (0)|2

)
. (8.53)

Noting (8.51) we thus �nd the probability of an odd number of jumps

Prob (odd) = |c1 (0)|2 . (8.54)

This �nally on�rms that the statistial weights of the pointer states are indeed

given by the expeted overlap (8.45).

8.3.2 Superposition of N > 2 loalized states

The stohasti proess is muh more ompliated if the initial superposition on-

sists of more than two pointer states. Our numerial implementation of the

stohasti proess de�ned by the SDE (8.42) and the rate (8.41) is based on

a Metropolis-Hastings algorithm [72℄ to draw the momentum transfer q in a-

ordane with the rate (8.41), with G (q) a Gaussian. Eah of the generated

trajetories ends asymptotially in one of the �xed points orresponding to a

pointer state, and we thus obtain a numerial estimate of the statistial weights

by means of the relative frequenies fk , 1 6 k 6 N , of the asymptoti states.
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Relative entropy To on�rm the expeted probability distribution pk = |ck (0)|2,
we evaluate the relative entropy

H (fk|pk) ≡
∑

k

pk ln
pk
fk
, (8.55)

between these two distributions. Figure 9 shows the result for a random initial

state with N = 5 as a funtion of the number of trajetories n, indiating onver-

gene to zero. In addition, we found for 100 random initial states, with random

2 < N < 11, based on 104 trajetories that the relative entropy was always less

than 4× 10−3. This holds both for ases where the initial wave pakets πi (x) are

far apart suh that the loalization rate is saturated, F (xi − xj) ≃ γ, and for sit-

uations where the wave pakets are loated lose together so that F (xi − xj) < γ.
This is good evidene that the asymptoti trajetories are indeed distributed a-

ording to the expeted overlap (8.45).

Chi square test As an alternative on�rmation of the statistial weights, we

performed a χ2-test. Similar to the treatment above, 100 random initial states

{Ψi| 1 6 i 6 100} , with random 2 < N < 11, were drawn by the simplex piking

method [86℄. For eah random state, n = 100 trajetories were generated, eah

of whih ends asymptotially in one of the pointer states. Using the observed

relative frequenies fk , 1 6 k 6 N , of the pointer states, we evaluate

χ2 = n
N∑

k=1

(
fk − |ck (0)|2

)2

|ck (0)|2
, (8.56)

for eah random state. In order to verify that the pointer states are distributed

aording to |ck (0)|2, the set
{
χ2
i

}
must be shown to be sampled from a χ2-

distribution with N − 1 degrees of freedom. Comparing the set
{
χ2
i

}
with the

α-quantiles 2 (denoted by Qα) of the orresponding χ2-distribution, a typial run

shows ten ases where χ2
i > Q0.9 , one ase where χ

2
i > Q0.99, but not a single ase

where χ2
i > Q0.999, as one expets if the

{
χ2
i

}
are χ2-distributed. Like above, this

on�rms statistially that the asymptoti trajetories are distributed aording

to the expeted overlap (8.45)

2For instane, the 0.9 quantile is the value suh that 90% of the samples lie below Q0.9.
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Chapter 9

Unraveling the quantum linear

Boltzmann equation

The previous hapters have been onerned with the short-time dynamis indued

by ollisional deoherene. As disussed in Set. 3.5, ollisional deoherene de-

sribes the motion of a quantum test partile in an ideal gas environment, assum-

ing the Brownian partile to be muh heavier than the atoms or moleules of the

bakground gas. The situation is muh more involved when the traer mass M
is of the order of the gas mass m. In this ase the Brownian partile experienes

frition, so that the orresponding master equation must be able to desribe the

full interplay between deoherene and dissipation.

An example of suh an equation is the Caldeira-Leggett equation (3.26), dis-

ussed in Set. 3.3. However, this equation is appliable only if the interation

an be linearized and the partile state is lose to a thermal one. Moreover, its

derivation is not based on a mirosopi desription of the ollisional interation

with the gas.

A Lindblad master equation whih irumvents these downsides is the quan-

tum linear Boltzmann equation QLBE, proposed in [10�12℄. It is the quantum

ounterpart of the lassial linear Boltzmann equation [87℄, whih desribes how

the motion of a lassial test partile is a�eted by elasti ollisions with an

ideal, stationary bakground gas. The derivation of the QLBE is based on the

monitoring approah, disussed in Set. 3.4, whih admits the treatment of the

interations with the bakground gas in a non-perturbative manner. These inter-

ations may therefore be strong and the traer partile may be in a state whih is

far from equilibrium. A premise for the appliability of the monitoring approah

is that three-partile ollisions are su�iently unlikely, and that subsequent ol-

lisions with the same gas partile are negligible within the relevant time sale.

These onditions should be ful�lled for the ase of an ideal gas in a stationary

state. A further ondition is that the interations are short-ranged, suh that the

appliation of sattering theory is possible.

Due to the omplexity of the QLBE, it is in general not analytially tratable.

However, sine the QLBE has Lindblad form, one may apply quantum traje-

tory methods, suh as the Monte Carlo unraveling disussed in Set. 7.3.1. The

straightforward appliation would be omputationally very intensive, espeially

if one is dealing with the three-dimensional version. Breuer and Vahini have

therefore suggested in [26℄ to exploit the translation-ovariane of the QLBE to

solve it e�iently. Their treatment is restrited to the Born approximation of the
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QLBE and to simulations of spei� initial states, whih are superpositions of at

most two momentum eigenstates.

The purpose of this hapter is to expand the algorithm of Breuer and Vahini

[26℄ to the full QLBE and to arbitrary initial states, suh as spatially loalized

wave pakets. The latter will allow us to analyze physial phenomena whih are

more apparent in position spae, suh as di�usion or deoherene in position. As

a further extension of [26℄, we apply the algorithm to realisti, mirosopially

derived sattering amplitudes.

The struture of this hapter is as follows. Setion 9.1 reviews the QLBE in

its basis independent operator form. In Set. 9.2, the various limiting forms of

the QLBE are summarized, based on the treatments in [10, 12, 13℄. In Set. 9.3,

we apply the Monte Carlo unraveling to the QLBE; as mentioned above, this

treatment is an extension of the work presented in [12,26℄. The numerial results

of this algorithm are summarized in the next hapter.

9.1 The quantum linear Boltzmann equation (QLBE)

The QLBE is a Markovian master equation for the redued density operator ρ
desribing the evolution of a traer partile in an ideal gas environment. It has

Lindblad form, ρ̇ = Lρ, with generator

Lρ =
1

i~

[
P2

2M
+ Hn (P) , ρ

]
+ Dρ . (9.1)

Here Hn (P) desribes the energy shift due to the interation with the bakground

gas; it will be negleted in the following, sine it is typially small. The inoherent

part of the interation is aounted for by the superoperator D, whih an be

expressed as [10�12℄

Dρ =

∫

R3

dQ

∫

Q⊥
dp
(
eiQ·X/~L (p,P,Q) ρL† (p,P,Q) e−iQ·X/~

−1

2

{
ρ, L† (p,P,Q)L (p,P,Q)

})
, (9.2)

with X = (X1,X2,X3) and P = (P1,P2,P3) the position and the momentum

operator of the Brownian traer partile and {·, ·} the anti-ommutator. The

integration variables are given by Q, the momentum transfer experiened in a

single ollision, and p, orresponding to the momentum of a gas partile. Notably,

the p-integration is over the plane Q⊥, whih is perpendiular to Q, that is

Q⊥ =
{
p ∈ R3|p · Q = 0

}
.

The operator-valued funtion L (p,P,Q) ontains all the details of the olli-

sional interation with the gas; these are the gas density ngas, the momentum dis-

tribution funtion µ (p) of the gas, and the elasti sattering amplitude f
(
pf ,pi

)
.

It is de�ned by [10�12℄

L (p,P ,Q) =

√
ngasm

m2
∗Q

f

(
rel
(
p⊥Q,P⊥Q

)
− Q

2
, rel

(
p⊥Q,P⊥Q

)
+

Q

2

)

×
√
µ

(
p⊥Q +

m

m∗

Q

2
+
m

M
P ‖Q

)
. (9.3)
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Here m∗ ≡ mM/ (m+M) is the redued mass, Q ≡ |Q| gives the modulus of the

momentum transfer Q, and

rel (p,P ) ≡ m∗

m
p − m∗

M
P , (9.4)

de�nes relative momenta. The subsripts ‖Q and ⊥ Q denote the omponent of

a vetor parallel and perpendiular to Q, meaning that

P ‖Q =
(P · Q) Q

Q2
, (9.5)

P⊥Q = P − P ‖Q . (9.6)

Notie that the QLBE desribed by Eqs. (9.1) and (9.2) has the general stru-

ture of a translation-ovariant Lindblad master equation (2.59), as haraterized

by Holevo [41�45℄. This feature will be important below, when applying the Monte

Carlo unraveling to the QLBE.

9.2 Limiting forms

Suitable limiting proedures redue the QLBE to other well-known evolution equa-

tions, whose solutions are (at least partly) understood. These onnetions allow

us to interpret the numerial solutions of the QLBE in the next hapter. At the

same time, the stohasti simulation tehnique of the full QLBE permits us to

study the range of validity of these approximate evolution equations.

9.2.1 Classial linear Boltzmann equation (CLBE)

To establish the onnetion with the CLBE, one may swith to the interation

piture, ρ̃ = eiHt/~ρe−iHt/~ with H = P2/2M , and onsider the evolution of the

diagonal elements w (P ) ≡ 〈P |ρ̃|P 〉 in the momentum basis. As is shown in

[10�12℄, the inoherent part of the QLBE, Eqs. (9.2) and (9.3), implies that

∂tw (P ) =

∫
dQ [W (P |P − Q)w (P − Q) −W (P + Q|P )w (P ) ] ,

(9.7)

where the transition rates W are given by

W (P + Q|P ) =

∫

Q⊥
dp |L (p,P ,Q)|2 (9.8)

=
ngasm

m2
∗Q

∫

Q⊥
dpµ

(
p⊥Q +

m

m∗

Q

2
+
m

M
P ‖Q

)

×σ
(

rel
(
p⊥Q,P⊥Q

)
− Q

2
, rel

(
p⊥Q,P⊥Q

)
+

Q

2

)
.(9.9)

Here σ
(
pf ,pi

)
≡
∣∣f
(
pf ,pi

)∣∣2 denotes the quantum mehanially de�ned di�er-

ential ross setion.

Aording to [10�12℄, Eqs. (9.7) and (9.9) agree with the ollisional part of the

CLBE. A omparison with Eq. (6.9) shows that it has the struture of a lassial

Markovian master equation, withW the transition rates of the Markovian proess.
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In addition, it is argued in [12℄ that the solution of the QLBE gets asymptot-

ially diagonal in momentum basis for any initial state ρ0, that is

〈P |eLtρ0|P ′〉 → 0 , for t→ ∞ and P 6= P ′. (9.10)

It follows that the QLBE asymptotially approahes the CLBE for the population

dynamis in momentum spae. This onnetion will be important below, when

analyzing the di�usive behavior exhibited by the numerial solution of the QLBE.

9.2.2 Pure ollisional deoherene

The omplexity of the QLBE redues a lot, if one assumes the test partile to

be muh heavier than the gas moleules. For, taking m/M to zero the Lindblad

operators in (9.2) no longer dependent on the momentum operator P of the traer

partile, so that the p-integration in (9.2) an be arried out [11,12℄. The QLBE

then turns into the master equation of pure ollisional deoherene de�ned by

Eqs. (3.47), (3.51), (3.52) and (3.53).

As the reader may reall from Set. 3.5, Eq. (3.49), ollisional deoherene

leads to an exponential deay of the spatial oherenes. The orresponding deay

rate, and its dependene on the spatial distane s = |x − x′|, is desribed by the

loalization rate F (s), whih an be determined from the relevant mirosopi

quantities by Eq. (3.52). This fat will allows us below to predit the deoherene

dynamis exhibited by the numerial solution of the QLBE in the limit M ≫ m.

9.2.3 Born approximation

Another simpli�ation results when the interation potential V (x) is muh weaker

than the kineti energy E = p2/2m (x and p denote relative oordinates). One

may then replae the exat sattering amplitude f by its Born approximation fB,
whih is determined by the Fourier transform of the interation potential,

fB
(
pf − pi

)
= − m∗

2π~2

∫
dxV (x) exp

(
−i
(
pf − pi

)
· x

~

)
. (9.11)

The approximated sattering amplitude therefore depends on the momentum

transfer pf−pi only, suh that the f in (9.3) is not operator-valued anymore. Tak-

ing µ to be Maxwell-Boltzmann distributed, see Eq. (5.80), one may then perform

the p-integration in (9.2), suh that the generator D beomes [11,12,88,89℄

DBρ =

∫
dQ

(
eiQ·X/~LB (P,Q) ρL†

B (P,Q) e−iQ·X/~

−1

2

{
ρ, L†

B (P,Q)LB (P,Q)
})

. (9.12)

Here the jump operators ontain the funtions LB (P,Q), given by the expression

[11,12,89℄

LB (P ,Q) =

(
βm

2π

)1/4
√
ngasσB (Q)

m2
∗Q

× exp

(
− β

16mQ2

[(
1 +

m

M

)
Q2 + 2

m

M
P · Q

]2)
, (9.13)
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where σB (Q) ≡ |fB (Q)|2 denotes the di�erential ross setion in Born approxi-

mation and β ≡ 1/kT is the inverse temperature.

The QLBE in Born approximation de�ned by Eqs. (9.12) and (9.13) was pro-

posed by Vahini in [88, 89℄. As mentioned in the introdution of this hapter,

its solution may be obtained numerially by the stohasti algorithm proposed by

Breuer and Vahini [26℄.

9.2.4 Quantum Brownian limit

The quantum Brownian or di�usive limit applies when the Brownian state is lose

to thermal and the mass of the test partile is muh greater than the gas partile

mass [11, 12℄. The momentum transfer Q is then small ompared to the momen-

tum of the traer partile. As disussed in [90℄, this admits the expansion of the

Lindblad operators in (9.2) up to seond order in the position and momentum

operators. Aording to [11,12℄, this expansion yields the Caldeira-Leggett equa-

tion in Lindblad form (3.33), with dimensionless parameter λ = 1. The QLBE

therefore leads naturally to the minimally invasive modi�ation of the original

Caldeira-Leggett equation, see Set. 3.3.2.

As a by-produt, this derivation yields a mirosopi expression for the relax-

ation rate appearing in the Caldeira-Leggett equation [12℄

γ = ngas
8m

3M

√
2π

mβ

∫ ∞

0
duu5e−u

2

∫ π

0
dθ sin θ (1 − cos θ) |f (cos θ, upβ)|2 .

(9.14)

Here it is assumed that the gas partile momenta are Maxwell-Boltzmann dis-

tributed, and that the sattering is isotropi suh that f depends only on the

sattering angle θ and the modulus of the momentum p ≡ |pi| =
∣∣pf
∣∣. The in-

tegration variable u ≡ p/pβ denotes the momentum in dimensionless form and

pβ =
√

2m/β is the most probable momentum at temperature T = 1/ (kBβ).

9.3 Monte Carlo unraveling

To solve the QLBE we now employ the Monte Carlo wave funtion method [27�

29℄. In this framework, a pure initial state |ψ (0)〉 is propagated by a stohasti

di�erential equation (SDE) to generate an ensemble of pure states {|ψα (t)〉},
whose average yields the solution of the master equation,

E [|ψ (t)〉〈ψ (t) |] = eLt|ψ (0)〉〈ψ (0) | . (9.15)

As an be realled from Set. 7.3.1, Eq. (7.59), the orresponding SDE has the

form

|dψt〉 = − i

~
Heff |ψt〉dt+

1

2

∑

i

γi‖Li|ψt〉‖2|ψt〉dt

+
∑

i

(
Li|ψt〉
‖Li|ψt〉‖

− |ψt〉
)

dNi (t) , (9.16)

where the non-Hermitian operator Heff denotes the e�etive Hamiltonian

Heff = H − i~

2

∑

i

γiL
†
iLi . (9.17)
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The Poisson inrements dNi (t) in Eq. (9.16) satisfy the Ito rules (6.92) and the

expetation value (7.60), whih an also be written as

E [dNi (t)] = γi‖Li|ψt〉‖2dt . (9.18)

In the following setion, we will introdue an algorithm whih is typially

used for the implementation of the SDE (9.16); this disussion is based on the

treatments in [29, 91℄. The algorithm is then applied to unravel the QLBE in

Set. 9.3.2. As mentioned in the introdution, this result is an extension of the

work presented in [12,26℄.

9.3.1 The general algorithm

Suppose the state |ψt〉 was reahed through a quantum jump at time t. Then, sub-
sequently, the state follows a deterministi evolution generated by the nonlinear

equation

∂t|ψt〉 = − i

~
Heff |ψt〉 +

1

2

∑

i

γi‖Li|ψt〉‖2|ψt〉 . (9.19)

Its formal solution reads as [29℄

|ψt+τ 〉 =
exp (−iHeffτ/~) |ψt〉

‖ exp (−iHeffτ/~) |ψt〉‖
, (9.20)

whih an be veri�ed by omputing the time derivative of |ψt+τ 〉 [29℄. The prob-

ability for a jump to our out of this state is haraterized by the total jump

rate

Γ (ψt) =
1

dt

∑

i

E [dNi (t)] =
∑

i

γi ‖Li|ψt〉‖2, (9.21)

whih admits to evaluate the orresponding waiting time distribution W (τ |ψt).
The latter is the umulative distribution funtion of the probability that a jump

ours in the time interval [t, t+ τ ]. Sine the quantum jumps follow a Poisson

proess, the waiting time distribution reads

W (τ |ψt) = 1 − Prob (no jump in [t, t+ τ ]) (9.22)

= 1 − exp

(
−
∫ t+τ

t
dt′Γ (ψt′)

)
, (9.23)

where we have used Eq. (6.79) in the seond line. Using (9.20) and (9.21) it an

be shown that this yields [29℄

W (τ |ψt) = 1 − ‖ exp (−iHeffτ/~) |ψt〉‖2 . (9.24)

A sample τ of this umulative distribution funtion is obtained, for instane, by

the inversion method, that is by solving the equation

η = ‖ exp (−iHeffτ/~) |ψt〉‖2 , (9.25)

where η is a random number drawn from the uniform distribution on [0, 1].
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One this waiting time τ has elapsed, the state makes a jump, that is |ψt+τ 〉
is replaed by

|ψt+τ 〉 → Li|ψt+τ 〉
‖Li|ψt+τ 〉‖

. (9.26)

The index i of the orresponding jump operator is drawn from the probability

distribution given by the ratio of the jump rate Γi (ψt+τ ) = E [dNi (t+ τ)] /dt of
the Poisson proess Ni (t) and the total jump rate Γ (ψt+τ ), that is

Prob (i|ψt+τ ) =
Γi (ψt+τ )

Γ (ψt+τ )

=
γi

Γ (ψt+τ )
‖Li|ψt+τ 〉‖2 . (9.27)

9.3.2 Unraveling the QLBE

The Monte Carlo method is now applied to solve the QLBE, whih is harater-

ized by the two-parameter family of Lindblad operators eiQ·X/~L (p,P,Q). The

orresponding algorithm is obtained by replaing the index i with the ontinu-

ous variables Q and p, and by substituting sums over i by integrals over these

momenta, that is

∑

i

→
∫

R3

dQ

∫

Q⊥
dp . (9.28)

This proedure is straightforward; nevertheless, we repeat the main steps in the

following, sine these formulas are required for referene later on.

The stohasti di�erential equation The Monte Carlo unraveling of the

QLBE is desribed by the SDE

|dψt〉 = − i

~
Heff |ψt〉dt+

1

2

∫

R3

dQ

∫

Q⊥
dp‖L (p,P,Q) |ψt〉‖2|ψt〉dt (9.29)

+

∫

R3

dQ

∫

Q⊥
dp

(
eiQ·X/~L (p,P,Q) |ψt〉
‖L (p,P,Q) |ψt〉‖

− |ψt〉
)

dNQ,p (t) ,

where the e�etive Hamiltonian has the form

Heff = H − i~

2

∫

R3

dQ

∫

Q⊥
dpL† (p,P,Q) L (p,P,Q) . (9.30)

The Poisson inrements in (9.29) satisfy the expetation values

E [dNQ,p (t)] = ‖L (p,P,Q) |ψt〉‖2dt , (9.31)

and the Poisson �eld

dNQ,p (t) dNQ′,p′ (t) = δ(3)
(
Q − Q′

)
δ(2)

(
p⊥Q − p′

⊥Q

)
dNQ,p (t) .(9.32)

These rules are the ontinuous ounterpart of the disrete set of equations (6.92).
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The Monte Carlo algorithm The deterministi part of the Monte Carlo un-

raveling is generated by the nonlinear equation

∂t|ψt〉 = − i

~
Heff |ψt〉 +

1

2

∫

R3

dQ

∫

Q⊥
dp‖L (p,P,Q) |ψt〉‖2|ψt〉 , (9.33)

whose formal solution is given by Eq. (9.20). The probability for a jump to our

out of this state is determined by the total jump rate

Γ (ψt) =

∫

R3

dQ

∫

Q⊥
dp‖L (p,P,Q) |ψt〉‖2 , (9.34)

whih is assoiated to the waiting time distribution (9.24). An instane of a

waiting time τ is obtained by the inversion method, that is by the solution of

Eq. (9.25).

At time t+ τ , the state makes a jump, that is |ψt+τ 〉 is replaed as

|ψ (t+ τ)〉 → eiQ·X/~L (p,P,Q) |ψt+τ 〉
‖L (p,P,Q) |ψt+τ 〉‖

. (9.35)

The momenta p and Q haraterizing the above jump operator are drawn from

the following probability density

Prob (p,Q|ψt+τ ) =
1

Γ (|ψt+τ 〉)
‖L (p,P,Q) |ψt+τ 〉‖2 . (9.36)

9.3.3 Unraveling the QLBE in the momentum basis

As suggested in [26℄, the implementation of the above algorithm is partiularly

simple when the initial state is a disrete superposition of a �nite number of

momentum eigenstates

|ψ (0)〉 =
N∑

i=1

αi (0) |P i (0)〉 , with
N∑

i=1

|αi (0)|2 = 1 . (9.37)

Due to the translation-ovariane of the QLBE, the Lindblad operators have the

struture eiQ·X/~L (p,P,Q). This implies that the e�etive Hamiltonian is a fun-

tion of the momentum operator only, so that the deterministi evolution a�ets

solely the weights of the superposition, that is

|ψ (t)〉 =
N∑

i=1

αi (t) |P i (0)〉 . (9.38)

The jumps, on the other hand, ause a translation of the momentum eigenstates

and a redistribution of the weights,

eiQ·X/~L (p,P,Q) |ψ (t)〉 =

N∑

i=1

α′
i (t) |P i + Q〉 , (9.39)

This shows that the quantum trajetory remains a superposition of N momentum

eigenstates at all times. The stohasti proess has therefore been redued from an

in�nite dimensional unraveling to a stohasti proess in the spae of amplitudes

αi and momenta P i [12, 26℄.
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It should be mentioned that the momentum eigenstates in (9.37) are assumed

to be normalized with respet to a large volume Ω, so that they form a disrete ba-

sis 〈P i|P j〉 = δij . Stritly speaking, the algorithm in Set. 9.3.2 is not appliable

to the ontinuous ase, where the momentum eigenstates are improper. Pra-

tially, however, the states |P i〉 may be onsidered to disretize the ontinuous

basis, assuming Ω to be su�iently large.

Dimensionless variables It turns out to be onvenient to work with the di-

mensionless variables

U ≡ P

Mvβ
, K ≡ Q

m∗vβ
, W ≡ p

mvβ
, (9.40)

with the sale given by the most probable veloity of the gas partiles vβ =√
2kBT/m. Note that W , being proportional to p, lies in the plane perpendiular

to K. The quantum trajetories are then represented as

|ψ (t)〉 =

N∑

i=1

αi (t) |U i (t)〉 , with

N∑

i=1

|αi (t)|2 = 1 . (9.41)

Jump rate Before disussing the unraveling of the QLBE in more detail, let

us evaluate the jump rate (9.34) for momentum eigenstates, |ψt〉 = |P 〉. This

quantity appears frequently in the algorithm desribed below.

By inserting |ψt〉 = |P 〉 into Eq. (9.34), one obtains

Γ (P ) =

∫

R3

dQ

∫

Q⊥
dp‖L (p,P,Q) |P 〉‖2

=

∫

R3

dQ

∫

Q⊥
dp|L (p,P ,Q) |2 . (9.42)

Noting Eq. (9.8), one �nds that the jump rate agrees with the total ollision rate

for a partile with momentum P ,

Γ (P ) =

∫
dQW (P + Q|P ) . (9.43)

It follows that Γ (P ) = Γ (P ) is funtion of the modulus of P only, sine the

ollision rate must be independent of the orientation of P for a homogeneous

bakground gas.

Upon using the dimensionless quantities (9.40), Eq. (9.42) beomes

Γ (U) = m∗mv
2
β

∫

R3

dK

∫

K⊥
dW |L (mvβW ,MvβU ,m∗vβK) |2 . (9.44)

By inserting (9.3) for L and the Maxwell-Boltzmann distribution (5.80) for µ, one
�nds

Γ (U) =

∫

R3

dK

∫

K⊥
dW g (W ,U ,K) pσK

(K) pσW
(W ) , (9.45)

with

g (W ,U ,K) = 8πngasvβ
1

|K|

∣∣∣∣f
(
m∗vβ

[
R − K

2

]
,m∗vβ

[
R +

K

2

])∣∣∣∣
2

×e−K·Ue
−U2

‖K , (9.46)
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and R ≡ W⊥K − U⊥K. The densities pσK
(K) and pσW

(W ) denote three- and
two-dimensional normal distributions, respetively,

pσK
(K) =

1

(2πσK)3/2
exp

(
− K2

2σ2
K

)
,

pσW
(W ) =

1

2πσW
exp

(
− W 2

2σ2
W

)
, (9.47)

with varianes σK =
√

2 and σW = 1/
√

2.
The integral (9.45) an be solved numerially using a Monte Carlo method

with importane sampling [72℄. For this purpose, one draws n samples Ki from

the normal distribution pσK
(K) and omputes orthonormal vetors e1i and e2i

whih are orthogonal to Ki, that is

e1i · Ki = 0 , e2i · Ki = 0 , e1i · e2i = 0 , (9.48)

using the Gram-Shmidt method. As a next step, n further samples (ui, vi) are

drawn from the two-dimensional Gaussian distribution pσW
, whih admits to eval-

uate instanes of saled momentum vetors

W i = uie1i + vie2i. (9.49)

The jump rate (9.45) is then approximated by the average

Γ (U) ≃ 1

n

n∑

i=1

g (W i,U ,Ki) . (9.50)

The deterministi evolution Let us now disuss in more detail the unraveling

of the QLBE in the momentum basis. To this end, suppose the state

|ψ (t)〉 =

N∑

i=1

αi (t) |U i (t)〉 , (9.51)

was obtained through a quantum jump at time t. As mentioned above, the e�e-

tive Hamiltonian (9.30) depends on the momentum operator only, suh that the

momenta U i stay onstant during the deterministi evolution. The propagation

of the state (9.51) with the non-Hermitian operator (9.30) thus yields

|ψ (t+ τ)〉 =
N∑

i=1

αi (t+ τ) |U i (t)〉 . (9.52)

Here the weights have the form

αi (t+ τ) =
1

N exp

(
− i

2~
MvβU

2
i τ

)
exp

(
−τ

2
Γ (Ui)

)
αi (t) , (9.53)

with the normalization

N 2 =
N∑

i=1

|αi (t+ τ)|2 =
N∑

i=1

|αi (t)|2 exp (−τΓ (Ui)) . (9.54)
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Drawing waiting times As a next step, let us evaluate the waiting times τ .
For this purpose, onsider the expression

‖ exp (−iHeffτ/~) |ψt〉‖2

=
N∑

i,j=1

α∗
i (t)αj (t) 〈U i (t) |eiH

†
eff
τ/~e−iHeffτ/~|U j (t)〉 . (9.55)

By using the de�nition of Heff (9.30), the fat that the two summands in Heff

ommute, and the jump rate (9.44), this yields

‖ exp (−iHeffτ/~) |ψt〉‖2 =
N∑

i=1

|αi (t)|2 exp (−τΓ (Ui)) . (9.56)

It follows from (9.25) that samples of the waiting times τ are obtained by solving

the non-algebrai equation

η =
N∑

i=1

|αi (t)|2 exp (−τΓ (Ui)) , (9.57)

with η drawn from the uniform distribution on [0, 1].

Drawing the momentum transfer To be able to arry out the quantum

jumps, we have to determine the momenta K and W , whih haraterize the

jump operator. These vetors are obtained by sampling from the probability

distribution (9.36). Upon inserting states of the form (9.52), Eq. (9.36) beomes

Prob (W ,K|ψt+τ ) =
N∑

i=1

|αi (t+ τ)|2 Γ (Ui)∑N
j=1 |αj (t+ τ)|2 Γ (Uj)

‖L (W ,U i,K) |U i〉‖2

Γ (Ui)

≡
N∑

i=1

pi Prob (W ,K|U i) . (9.58)

This distribution is a mixture of the probabilities

pi =
|αi (t+ τ)|2 Γ (Ui)∑N
j=1 |αj (t+ τ)|2 Γ (Uj)

, (9.59)

and the probability densities

Prob (W ,K|U i) =
‖L (W ,U i,K) |U i〉‖2

Γ (Ui)

=
8πngasvβ
Γ (Ui) |K|

∣∣∣∣f
(
m∗vβ

[
R − K

2

]
,m∗vβ

[
R +

K

2

])∣∣∣∣
2

×µ
(
mvβ

[
W⊥K +

K

2
+ U‖K

])
. (9.60)

In order to draw a sample from the mixture (9.59), one may proeed as follows [26℄.

First, an index i is drawn from the probabilities (9.59). Then, the momenta K

and W are drawn from the probability distribution Prob (W ,K|U i) using a

stohasti sampling method, suh as the Metropolis-Hastings algorithm [72℄.
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Appliation of the jump operators Having the momenta W and K at hand,

one an now perform the quantum jump. Aording to Eq. (9.35), the state (9.52)

is transformed as

|ψ (t+ τ)〉 → Ñ−1 exp

(
i

~
mvβK · X

)
L (W ,U,K)

N∑

i=1

αi (t+ τ) |U i (t)〉

=
N∑

i=1

Ñ−1L (W ,U i,K)αi (t+ τ) |U i (t) +
m∗

M
K〉 , (9.61)

where the normalization Ñ is determined by

Ñ 2
=

N∑

i=1

|L (W ,U i,K)αi (t+ τ)|2 . (9.62)

This shows that the momentum eigenstates are shifted

|U i〉 → |U i +
m∗

M
K〉 , (9.63)

while the weights are redistributed as

αi (t+ τ) → α′
i (t+ τ) = xiαi (t+ τ) , (9.64)

where the fators xi are given by xi = Ñ−1L (W ,U i,K). Upon using the expliit

form of L (9.3), and by inserting the Maxwell-Boltzmann distribution (5.80), we

�nd

xi =
1

Ñ
f

(
m∗vβ

[
Ri −

K

2

]
,m∗vβ

[
Ri +

K

2

])

× exp

(
−1

2

[
K

2
+ U i‖K

]2
)

(9.65)

with relative momenta Ri = W⊥K − U i⊥K.

Numerial analysis Aording to Eq. (9.63), the momentum eigenstates are

all shifted with the same momentum K in a quantum jump. This fat is very

important for the numerial performane of the algorithm, sine it implies that

the time intensive Metropolis-Hastings algorithm must be applied only one for

all i ∈ {1, . . . , N}. This suggests that the algorithm an be applied also to initial

states whih are superpositions of many momentum eigenstates.

This is substantiated by the numerial analysis depited in the logarithmi

plot of Figure 9.1. Here, the CPU time of the above algorithm was measured as

a funtion of the number N of basis states involved in the initial superposition.

For the latter, we hoose the (arbitrary) state |ψ (0)〉 =
∑N

i=1 |U i〉/
√
N , with

U i = (0, 0, i). The simulation is based on 102 quantum trajetories in eah run.

The urve shown in Fig. 9.1 is almost a straight line with a slope a ≃ 1.1. It

follows that the CPU time grows almost linearly, t ∝ N1.1, with N .

We onlude that the Monte Carlo unraveling an be implemented for initial

superposition states that are omposed of a large number of momentum eigen-

states (say, on the order of 102 to 103). This implies that one may hose loalized

initial states and onsider senarios where a partile rosses a slit or a grid. The

following hapter presents numerial results obtained with suh kind of states.
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Figure 9.1: CPU time of the Monte Carlo unraveling as a funtion of the number

N of basis states involved in the initial superposition. The urve is almost a

straight line with slope a ≃ 1.1 in the logarithmi plot. It follows that the CPU

time grows almost linearly with N , that is t ∝ N1.1.
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Chapter 10

Numerial results

In the previous hapter an algorithm was developed whih admits an e�ient

unraveling of the quantum linear Boltzmann equation (QLBE). In the following,

let us apply this tool to simulate the dynamis of a test partile, a�eted by

elasti ollisions with an ideal, thermal bakground gas. The interation will be

desribed by two kinds of senarios: s-wave hard-sphere sattering and a more

realisti one, whih results from a Gaussian interation potential; an overview of

these sattering amplitudes is given in Set. 10.1.

In the �rst part of this hapter, the simulation of short-time e�ets is disussed.

At �rst, initial states are hosen whih are superpositions of two momentum

eigenstates, and the loss of oherene in this basis is measured (Set. 10.2). As a

next step, superpositions of spatially loalized wave pakets are onsidered, suh

that deoherene in the position basis an be measured (Set. 10.3). This admits

in partiular to extrat the loalization funtion introdued in Set. 3.5. As a

further appliation, ounter-propagating loalized initial states are onsidered,

whih leads to the formation of interferene patterns (Set. 10.4). In the ourse of

the evolution, fringe visibility is lost, suh that the interplay between oherene

and deoherene an be demonstrated.

The seond part of this hapter is devoted to long-time e�ets, whih exhibit

a lassial ounterpart. Setion 10.5 studies energy and momentum relaxation,

and the approah to thermal equilibrium. Then, in Set. 10.6, spatially loalized

initial states are onsidered, and the variane of the populations is measured.

Here, one observes a transition from quantum dispersion to lassial di�usion.

As disussed in Set. 9.2, the QLBE has several limiting forms, for some of

whih analytial solutions are known. Some of the simulations presented in this

hapter orrespond to situations where these limiting forms are expeted to be

valid. This admits to test the validity of our numerial results, and, on the other

hand, to verify the limiting proedures disussed in Set. 9.2. Other simulations

presented in this hapter orrespond to situations where the full QLBE is required,

so that new physial regimes are entered whih have not been understood so far.

This inludes in partiular simulations of deoherene e�ets where the traer

mass is taken to be omparable to the gas partile mass.
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10.1 Sattering amplitudes

Let us start with a desription of the two kinds of elasti sattering amplitudes

f
(
pf ,pi

)
used throughout this hapter.

10.1.1 s-wave hard-sphere sattering

In s-wave hard-sphere sattering [62℄, the partiles are assumed to be hard spheres

with radius R, suh that the interation potential V (r) has the form

V (r) =

{
∞ , if r ≤ R ,
0 , if r > R ,

(10.1)

with r the distane between the olliding partiles. In addition, the energy of the

inoming partiles is assumed to be small, pR≪ ~, implying that the desription

an be restrited to the lowest partial wave ontribution.

It is a textbook problem [62℄ to show that the sattering length [52℄ is in this

ase equal to the radius R of the partiles, suh that the sattering amplitude is

independent of the sattering angle θ and the energy of the inoming partiles

Ekin, that is

|f (cos θ;Ekin)|2 = R2 . (10.2)

Sine this ross setion is onstant, one may perform the p-integration in the

QLBE (9.2), suh that it agrees with the QLBE in Born approximation (9.12).

The numerial results obtained with this interation should therefore agree with

the ones found by the stohasti algorithm of Breuer and Vahini [26℄, providing

a further test for the orretness of our algorithm.

Below, a variety of examples is presented, where the interation is desribed

by s-wave hard-sphere sattering. In these examples, the system of units is de�ned

by setting ~ = 1, M = 1 and R = 1; for the temperature we hose kBT = 1 and

the gas density is set to one, ngas = 1.
An important ingredient for the implementation of the Monte Carlo unraveling

is the jump rate Γ (U) presented in Eq. (9.45). Figure 10.1 shows its numerial

solution hoosing the sattering amplitude (10.2). This plot is obtained using a

Monte Carlo integration with importane sampling (9.50), where the number of

steps is taken to be su�iently large, n = 105. The jump rate is saled with the

harateristi rate

Γ0 = ngasvβ4πR
2 , (10.3)

whih gives the sattering rate of inoming partiles having the most probable

veloity vβ. To interpret Fig. 10.1 reall that the jump rate is given by the

average ollision rate of a partile with momentum U with the thermal bakground

gas. Sine the ross setion is onstant, the ollision rate grows linearly for large

momenta, while it saturates at a value lose to Γ0 for a vanishing U . The same

behavior is found by the analytial result presented in [26℄.

10.1.2 Gaussian potential

To aount for realisti sattering amplitudes, we hose as our seond ase an

attrative Gaussian potential

V (r) = V0 exp

(
− r2

2d2

)
. (10.4)
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Figure 10.1: Jump rate Γ as a funtion of the momentum U assuming a onstant

sattering ross setion. The result was obtained using a Monte Carlo integration

with importane sampling. It agrees with the analytial result presented in [26℄.

Born approximation The sattering amplitude in the Born approximation

an be obtained analytially using Eq. (9.11). The latter an be simpli�ed for

rotationally symmetri potentials V (x) = V (|x|) ≡ V (r), whih yields

fB
(
pf − pi

)
= −2m∗

~2

∫ ∞

0
drr2sinc

(qr
~

)
V (r) , (10.5)

with q =
∣∣pf − pi

∣∣ = 2psin (θ/2) denoting the momentum transfer and sinc (x) ≡
sin (x) /x. Upon inserting the Gaussian potential (10.4), the sattering amplitude

beomes

fB (p, cos θ) = −
√
π

2

2m∗V0d
3

~2
exp

(
−d

2p2

~2
[1 − cos θ]

)
. (10.6)

Partial wave expansion The Born approximation is reliable only for weak

interation potentials, V0 ≪ Ekin; otherwise, one may apply the exat sattering

amplitudes as obtained by means of the partial wave deomposition [52℄

f (p, cos θ) =
∞∑

l=1

(2l + 1) fl (p)Pl (cos θ) , (10.7)

with the Legendre-polynomials Pl and the partial sattering amplitudes fl. The

latter are related to the partial wave phase shifts δl by [52℄

fl (p) =
~

p
eiδl sin δl . (10.8)

Given the interation potential, the phase shifts an be omputed numerially by

means of the Johnson algorithm [92℄.

A onsisteny test of the numerially alulated phase shifts is obtained for

instane by analyzing the low and high energy limits, whih should behave as
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Figure 10.2: The �rst four phase shifts δl as a funtion of the relative momentum

p for m/M = 1. The interation potential is assumed to be a Gaussian (10.4)

with V0 = −20. The orretness of the simulation is on�rmed by the low and

high energy limits: the phase shifts vanish for high values of p, and they behave

aording to the Levinson theorem (10.9) for low energies. There are two bound

states for l = 0, 1, one for l = 2, and zero for l = 0.

follows. For weak potentials or large energies, that is V ≪ p2/2M , the partial

waves are hardly a�eted by the ollision, so that the sattering amplitudes and

phases vanish, δl (p→ ∞) = 0. For small energies, on the other hand, they behave

as [52℄

δl (p) ∼ nlπ − alp
2l+1 , for p→ 0 , (10.9)

with the sattering lengths al. Aording to the Levinson theorem [52℄, the integer

nl equals the number of bound states with angular momentum l.

Numerial results We have alulated the phase shifts for the potential ener-

gies V0 = −1 and V0 = −20, and di�erent mass ratios; Figure 10.2 shows the �rst

four of them for V0 = −20, d = 1, ~ = 1 and m = M . Notably, the low energy

limit, p → 0, agrees with the Levinson-theorem (10.9), and also the high energy

limit is orret, that is δl (p→ ∞) = 0. Having the phase shifts at hand, the sat-
tering amplitudes are obtained using Eqs. (10.8) and (10.7), where it is enough

to take the �rst 30 partial waves, sine the phase shifts beome smaller with in-

reasing angular momentum l. The numerially obtained f for V0 = −1 is shown

in Fig. 10.3 on the left-hand side. It di�ers substantially from the orresponding

Born approximation shown on the right of Fig. 10.3.
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Figure 10.3: Square of the sattering amplitude f as a funtion of the relative

momentum p and the sattering angle θ for m/M = 1. The interation potential

is assumed to be a Gaussian (10.4) with V0 = −1. Left plot: numerial solution

obtained by means of the partial wave deomposition. Right plot: Born approx-

imation. The di�erenes between the two amplitudes are signi�ant (notie the

di�erent salings of the z-axis).

As a further test of the orretness of this result, both sides of the optial

theorem were alulated

Im [f (p, θ = 0)] =
p

4π~
σ (p) , (10.10)

with σ (p) = 2π
∫

d (cos θ) |f (p, cos θ)|2 the total ross setion. It yields a perfet

agreement.

The numerially evaluated jump rate Γ (U) orresponding to this sattering

amplitude is shown in Fig. 10.4. It is obtained using a Monte Carlo integration

of Eq. (9.45) with importane sampling, where the number of points is taken to

be su�iently large, in this ase n = 104. The jump rate is given in units of the

e�etive ollision rate, as de�ned by the thermal average

Γeff ≡ ngas

∫

R3

dp
p

m
µ (p)σ (p) . (10.11)

The simulation shown by the solid line in Fig. 10.4 is based on the exat sat-

tering amplitude (obtained by the partial wave deomposition and the Johnson

algorithm), while the dashed orresponds to the Born approximation of f . One

observes that the two results di�er drastially, in partiular for large interation

potentials V0, while they agree for large momenta p, where the two sattering

amplitudes are lose to eah other.

The Gaussian interation potential is applied in several examples below. In

these ases, the system of units is de�ned by setting ~ = 1, m = 1 and d = 1;
moreover, we hose kBT = 1 for the temperature of the gas environment and the

gas density is set to unity, ngas = 1.
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Figure 10.4: Jump rate Γ as a funtion of the momentum U for a mass ra-

tio M/m = 100 and a Gaussian interation potential with V0 = −1 (left) and

V0 = −20 (right). The solid line orresponds to the exat sattering amplitude

omputed with the partial wave deomposition and the Johnson algorithm. The

dashed line was obtained in Born approximation. For large interation potentials,

the results deviate strongly.

10.2 Deoherene in momentum

Let us now apply the Monte Carlo algorithm presented previously to the analysis

of deoherene e�ets in momentum spae. For this purpose, we hose as initial

state a superposition of two momentum eigenstates,

|ψ (0)〉 = α (0) |U (0)〉 + β (0) |V (0)〉) , (10.12)

whih are taken to have the form

U (0) = −V (0) = (U0, 0, 0) . (10.13)

Sine the states |U (0)〉 and |V (0)〉 are genuine momentum eigenstates, any

ollision neessarily leads to an orthogonal state. It follows that the oherenes

deay exponentially

|〈U (0) |ρ (t) |V (0)〉|
|〈U (0) |ρ (0) |V (0)〉| = e−Γ(U0)t , (10.14)

with the deay rate given by the total ollision rate Γ (U0).
Alternatively, one may view the states |U (0)〉, |V (0)〉 as representing states

whih are well loalized in momentum spae, but with a �nite width greater

than the typial momentum transfer. Here a suitable measure for the degree of

oherene is the ensemble average of the oherenes exhibited by the individual

quantum trajetories |ψ (t)〉 [26℄, that is

C (t) = E

[ |〈U (t) |ψ (t)〉〈ψ (t) |V (t)〉|
|〈U (0) |ρ (0) |V (0)〉|

]
. (10.15)

To evaluate this term, reall that the quantum trajetories remain in a superpo-

sition of two momentum eigenstates during the time evolution, suh that |ψ (t)〉
has the form

|ψ (t)〉 = α (t) |U (t)〉 + β (t) |V (t)〉 . (10.16)
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Figure 10.5: Semi-logarithmi plot of the �oherene� C (t) de�ned in (10.17) for

the state (10.12) with U0 = 4. The interation is desribed by s-wave hard-

sphere sattering and the mass ratio is m/M = 1. The deoherene rate, whih is

obtained from an average over 5 ·103 trajetories, agrees with the result presented

in [26℄.

By inserting this expression into equation (10.15), one �nds [26℄

C (t) = 2E [|α (t)β (t)|] . (10.17)

Simulation results Figure 10.5 shows a semi-logarithmi plot of the oherene

C (t) for a onstant ross setion, an initial momentum U0 = 4, equal amplitudes

α (0) = β (0) = 1/
√

2 and the mass ratio m/M = 1. It reveals an exponen-

tial deay of the oherene; the orresponding deay rate agrees with the result

presented in [26℄.

The simulation results for the Gaussian interation potential are shown in

Fig. 10.6, where we hose an initial momentum U0 =
√

6 and, like above, a mass

ratio m/M = 1 and equal amplitudes. The left-hand side of this plot represents a

weak interation potential, whereas a strong one is assumed on the right. In the

latter ase, the result obtained with the exat sattering amplitude (solid line)

di�ers markedly from the orresponding Born approximation (dashed line).

These results show that the full QLBE (9.2) may lead to physial preditions

whih deviate signi�antly from the ones obtained with the QLBE in Born ap-

proximation (9.12), if the interation potential is su�iently strong. A similar

onlusion is drawn below, when studying relaxation rates.

Experimental tests The design of experimental tests for deoherene e�ets

in momentum spae is a hallenging task [12,67,93℄. Suh a setup would have to

provide on the one hand a soure of states having momentum oherenes (whih

in turn requires the preparation of non-stationary beams), and on the other hand

it would require an interferometri measurement apparatus able to detet momen-

tum oherenes. A further di�ulty lies in the inevitable presene and dominane

of position deoherene. During the free evolution, a superposition state of dif-

ferent momenta evolves into a superposition of spatially separated wave pakets,

whih is a�eted by deoherene mehanisms in position spae [12℄.
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Figure 10.6: Similar to Fig. 10.5 but with an initial momentum U0 =
√

6 and a

Gaussian interation potential (10.4) with V0 = −1 (left) and V0 = −20 (right).

The solid line is obtained using the exat sattering amplitude, while the dashed

line orresponds to the Born approximation. The preditions of the deoherene

rates di�er substantially in ase of the large interation potential with V0 = −20.

Position deoherene, in ontrast, has already been observed experimentally in

Vienna [16℄ in fullerene interferene experiments. The following setion therefore

fouses on the theoretial predition of spatial deoherene e�ets based on the

Monte Carlo unraveling of the QLBE.

10.3 Deoherene in position

10.3.1 Measuring spatial oherenes

Let us now quantify the loss of spatial oherenes ρ (X,X ′) ≡ 〈X|ρ|X ′〉. To this

end, we need to be able to measure ρ (X,X ′) given the quantum trajetories in

momentum representation, |ψ (t)〉 =
∑N

j=1 αj (t) |U j (t)〉. For this purpose, it is

onvenient to express the position variable X in units of the thermal wavelength

Λth (3.27),

S ≡ X

Λth
. (10.18)

The spatial oherenes are then obtained by taking the ensemble average of the

oherenes of the individual quantum trajetories, that is

ρ
(
S,S′, t

)
= E

[
〈S|ψ (t)〉〈ψ (t) |S′〉

]
. (10.19)

By inserting the momentum representation of |ψ (t)〉 into this expression, we �nd

ρ
(
S,S′, t

)
(10.20)

=
N∑

j,k

E
[
αj (t)α∗

k (t) 〈S|U j (t)〉〈Uk (t) |S′〉
]

=
1

(2π)3

N∑

j,k

E

[
αj (t)α∗

k (t) exp

(
i

~
MvβΛth

[
S · U j (t) − S′ · Uk (t)

])]
.
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Figure 10.7: Evolution of the density matrix in position representation for an

initial superposition of two Gaussian wave pakets, obtained by solving the three-

dimensional QLBE for s-wave hard-sphere sattering. The spatial oherenes

ρ (x/λ, y/λ) are expressed in units of the thermal wavelength λ ≡ Λth.

This formula allows us to ompute the oherenes ρ (S,S′, t) by means of the

amplitudes αj (t) and the saled momenta U j (t).

Loalization in one spatial diretion A typial appliation of this formalism

is the desription of partiles �ying through an interferometer whih ontains slits

or grids. After passing a grid, the partile is loalized in one spatial diretion,

while it typially has a de�nite momentum (or an inoherent thermal distribution

of momenta) in the other two diretions. We therefore restrit the disussion from

now on to initial states of the form

|ψ (0)〉 =
N∑

j=1

αj (0) |Uj (0) , V (0) ,W (0)〉 , (10.21)

where |Uj (0) , V (0) ,W (0)〉 denote saled eigenstates of the momentum operator

P ≡ (Px,Py,Pz). By taking N to be su�iently large, (10.21) may represent

states whih are loalized in one spatial diretion. Due to the onservation of

momentum superpositions, the ensuing quantum trajetories have the struture

|ψ (t)〉 =
N∑

j=1

αj (t) |Uj (t) , V (t) ,W (t)〉 . (10.22)



128 CHAPTER 10. NUMERICAL RESULTS

Figure 10.8: Deay rate of the spatial oherenes as a funtion of the separation

x/λ, λ ≡ Λth, for a Gaussian interation potential and the mass ratiosM/m = 100
(left) and m = M (right). The solid line shows the predition of pure ollisional

deoherene, Eq. (3.52), and the �lled irles give the result of the stohasti

simulation of the QLBE. For M ≫ m, the preditions of the two models agree,

while there are deviations visible for m = M . The loalization rate saturates in

all ases at the average ollision rate Γeff . Form = M and x = 0, the predition of

the QLBE does not vanish, sine there is a loss of the populations due to di�usion.

The measurement of spatial oherenes (10.20) an in this ase be simpli�ed, by

fousing on the oherenes in x-diretion,

ρ
(
[S, 0, 0] ,

[
S′, 0, 0

]
, t
)

(10.23)

=
1

(2π)3

N∑

j,k

E

[
αj (t)α∗

k (t) exp

(
i

~
Mvβ Λth

[
SUj (t) − S′Uk (t)

])]
.

Simulation result To visualize the evolution of the density matrix in position

representation, onsider an initial superposition of two resting Gaussian wave

pakets, with saled mean positions 〈S〉1,2 = ±1.2 and width σ1,2 = 0.2 (in units of

Λth). This state may be written in the form (10.22), by using a �nite dimensional

representation of the orresponding Fourier transform. Figure 10.7 depits the

ensuing evolution of the matrix elements (10.23), obtained by solving the QLBE

under the assumption of s-wave hard-sphere sattering and equal masses m =
M . It shows four snapshots of the density matrix for the saled times tΓ0 =
(0, 1/3, 2/3, 4/3). The simulation is based on 103 realizations of the stohasti

proess and the state is represented using 55 momentum eigenstates.

10.3.2 Measuring the loalization rate

As disussed in Set. 9.2.2, the QLBE simpli�es to pure ollisional deoherene,

if one assumes the traer partile to be muh heavier than the gas partiles. In

this model, the deay rate F of spatial oherenes is a funtion of the distane

|∆X| only; it does not dependent on the partiular matrix elements of the state,

see Eq. (3.49). Hene, the deoherene proess is ompletely haraterized by the

loalization funtion F (|∆X|).
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By evaluating the deoherene rates for various mass ratios and initial states,

we found that this behavior holds as well in regimes where the QLBE di�ers from

the model of ollisional deoherene. This suggests that the deoherene dynamis

of the QLBE is generally haraterized by a one-dimensional funtion F (|∆X|).
Figure 10.8 shows the loalization rate for a Gaussian interation potential

with V0 = −1 and the mass ratios M/m = 100 (left) and m/M = 1 (right). The

�lled irles give the deay rate as evaluated from (10.23), obtained by 5 × 104

realizations of the Monte Carlo unraveling of the QLBE. The solid line represents

the loalization rate of ollisional deoherene (3.52), alulated by numerial

integration.

As expeted, one �nds a perfet agreement between the preditions of olli-

sional deoherene and the solution of the QLBE if the test partile mass is muh

larger than the gas mass, M/m = 100. This is a further on�rmation of the

auray of the stohasti algorithm.

Moreover, it turns out that the results of the two models do not di�er substan-

tially even for equal masses m = M . This holds in partiular for large distanes,

where the deay rates onverge to the average ollision rate Γeff (all ases). In this

limit, one ollision is enough to reveal the full `whih path' information, so that a

saturation at Γeff is expeted. For equal masses the predition of the QLBE does

not tend to zero in the limit of small distanes, F (0) > 0. This is due to the

ontribution of quantum di�usion, whih is naturally more pronouned when the

test partile is lighter.

10.4 Interferene and deoherene

As an appliation of the previous two setions, and as an illustration of the inter-

play between oherent and inoherent dynamis, let us study how the formation

of interferene patterns is a�eted by the interation with the bakground gas.

To this end, onsider the senario depited in Fig. 10.9. Here the x-omponent of

the three-dimensional initial state is prepared in a superposition of two ounter-

propagating oherent states ψ1,2, while the other two omponents have a de�-

nite momentum. In the ourse of the evolution the wave pakets start overlap-

ping, whih leads to interferene, that is to osillations of the spatial popula-

tions ρ (x, x, t) in x-diretion. The frequeny of these osillations is given by the

de-Broglie wavelength λdB assoiated to the relative momentum of the oherent

states. Besides this oherent e�et, one observes a signature of deoherene, whih

manifests itself in the loss of fringe visibility. This beomes apparent in partiular

in the panel at the bottom of Fig. 10.9.

Details of the simulation Figure 10.9 is obtained by the Monte Carlo un-

raveling of the QLBE, assuming s-wave hard-sphere sattering and a mass ratio

M/m = 100. It shows three snapshots of the populations of the density matrix for

the saled times Γ0 (t0, t1, t2) = (0, 9, 18). The simulation is based on 2.5 × 104

realizations of the stohasti proess.

The parameters of the simulation are onveniently expressed in units of the

de-Broglie wavelength λdB and the sattering rate Γ0 (10.3), whih de�ne the

dimensionless variables

SdB ≡ X

λdB
, UdB ≡ P

MλdBΓ0
. (10.24)
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Figure 10.9: Evolution of the populations of the density matrix ρ (x/λdB, x/λdB)
for an initial superposition of two ounter-propagating oherent states. It is

obtained by solving the QLBE for s-wave hard-sphere sattering. The �gure

shows three snapshots of the dynamis at times Γ0 (t0, t1, t2) = (0, 9, 18). Due

to quantum oherene, one observes interferene fringes with frequeny λdB (the

de-Broglie wavelength). Besides that, there is a signature of deoherene given

by the loss of fringe visibility.

In this system of units the position and momentum expetations of the oherent

states ψ1,2 read as 〈SdB〉1,2 = ∓15 and 〈UdB〉1,2 = ±0.9; their width is har-

aterized by the standard deviation σ1,2/λdB = 4. Furthermore, the de-Broglie

wavelength is �xed by setting λdB/Λth = 2.5 × 10−2.

As mentioned above, an interesting quantity is the fringe visibility, whih

quanti�es the loss of quantum oherene. It is here de�ned pragmatially as the

di�erene between the �rst maximum and the �rst minimum, divided by their

sum. For the visibility of the interferene pattern in the last snapshot (Fig. 10.9,

bottom), we �nd

vis (t2) ≃ 55%. (10.25)

Estimation of the visibility using ollisional deoherene To understand

this result quantitatively, let us estimate the deay rate of the visibility by means

of the integrated loalization rate,

vis (τ) = exp

(
−
∫ τ

0
dτ ′F

[
S
(
τ ′
)]
τ ′
)

vis (0) , (10.26)
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where S (τ) = |〈X (τ)〉1 − 〈X (τ)〉2| /Λth denotes the distane of the oherent states

in units of the thermal wavelength at time τ . By noting that the state moves in

absene of an external potential, one �nds

S (τ) =
λdB

Λth
(|〈SdB〉1 − 〈SdB〉2| − τ |〈UdB〉1 − 〈UdB〉2|) . (10.27)

Sine the traer partile is muh heavier than the gas moleules, M ≫ m, the

dynamis desribed by the QLBE should be well approximated by the master

equation of pure ollisional deoherene, see Set. 9.2.2. It follows that F is

desribed by the formula (3.52), whih an be evaluated analytially in the ase

of s-wave hard-sphere sattering. This yields

F (S) = 2
√
πngasR

2vβ
[
4 − S−1 exp

(
−4πS2

)
erfi
(
2
√
πS
)]
, (10.28)

where erfi (x) denotes the imaginary error funtion (5.71). The result follows from

Eqs. (5.62), (5.63), (5.67) and (5.70) together with vβ = 2
√
π~/ (mΛth).

The visibility (10.26) may then be obtained by numerial integration, whih

yields

vis (t2) ≃ 56%. (10.29)

This result is in good agreement with the one obtained by the stohasti solution

of the full QLBE, see Eq. (10.25).

10.5 Relaxation and thermalization

Thus far, we have been onerned with the short-time dynamis indued by the

QLBE. In this setion, let us study the long-time behavior of the energy and

momentum expetation values. Before desribing the numerial results, a short

summary of the expeted results is given. This disussion is based on the analyt-

ial treatment in [12℄.

Approah to thermal equilibrium Similar to the H-theorem of the non-

linear Boltzmann equation [87℄, the QLBE satis�es an entropy inequality [12℄.

In ontrast to the H-theorem, it is formulated in terms of the quantum relative

entropy

S (ρA|ρB) ≡ kBTr [ρA ln ρA] − kBTr [ρA ln ρB] . (10.30)

It states that the time derivative of the entropy of the solution of the QLBE

ρt = eLtρ0 relative to the stationary solution ρEQ is non-positive [12℄,

d

dt
S (ρt|ρeq) ≤ 0 . (10.31)

Here the equality sign holds if and only if ρt equals the equilibrium state [12℄.

Sine the quantum relative entropy is a measure for the distinguishability of two

quantum states, it follows that the solution of the QLBE approahes asymptoti-

ally the stationary solution.

Moreover, using detailed balane and assuming the momenta of the gas parti-

les to be Maxwell-Boltzmann distributed, one an show [12℄ that the stationary
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Figure 10.10: Energy and momentum relaxation assuming a onstant ross setion

and mass ratios M/m = 1 (top) and M/m = 10 (bottom). The solid line shows

the solution of the QLBE obtained by averaging over 104 trajetories. The dashed

line orresponds to the analyti solution of the Caldeira-Leggett (CL) equation

(10.35). The results are idential with the ones obtained in [26℄.

solution of the QLBE is given by the orresponding thermal state. The average

kineti energy of the solution of the QLBE must therefore asymptotially ap-

proah the thermal energy 3/ (2β). Expressed in dimensionless units, this means

that [12℄

〈U2〉t → 〈U2〉eq =
3

2

m

M
, for t≫ γ −1, (10.32)

with γ the relaxation rate. In addition, it follows that the average momentum

〈U〉t tends to zero for t≫ γ−1.

Quantum Brownian limit As the reader may reall from Set. 9.2.4, the

QLBE redues to the Caldeira-Leggett (CL) equation in Lindblad form (3.33) if

the state is lose to thermal and the traer partile is muh heavier than the gas

partiles, M ≫ m. The orresponding evolution of the energy and momentum

expetation values is then well understood, see Refs. [12, 29℄ and Set. 3.3.3.

Formulated in dimensionless units, it reads as [12,29℄

〈U2〉t = 〈U2〉eq +
(
〈U2〉t0 − 〈U2〉eq

)
e−4γt , (10.33)

〈U〉2t = 〈U〉2t0e−2γt , (10.34)
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Figure 10.11: Energy relaxation using the exat sattering amplitude of the Gaus-

sian interation potential, the orresponding Born approximation, and the solu-

tion of the CL equation (9.14). We hose the potential energies V0 = −1 (left) and

V0 = −20 (right) and the mass ratios M/m = 1 (top) and M/m = 10 (bottom).

One obtains the orret equilibrium values (10.32), 3/2 (top) and 3/20 (bottom).

The exat result agrees with the solution of the CL equation for heavy traer par-

tiles (bottom). The Born approximation gives reliable results when the kineti

energy is muh larger than the potential one (top left).

with 〈U2〉eq = 3m/ (2M). Aording to [12℄, the relaxation rate γ an be expressed
in terms of the gas density, the temperature, the mass ratio, and the sattering

amplitude, see Eq. (9.14). For the onstant ross setion, this formula an be

evaluated analytially, whih yields [12℄

γ =
4

3
√
π

m

M
Γ0 . (10.35)

Simulation results Figure 10.10 shows the energy and momentum relaxation

proess exhibited by the stohasti solution of the QLBE with onstant satter-

ing ross setion (solid line). The initial state is here a momentum eigenstate

with eigenvalue U0 =
√

6. Suh a state is su�iently lose to the thermal one,

so that the quantum-Brownian limit holds for M ≫ m. In this limit (bottom),

one obtains a good agreement with the analyti solution, Eqs. (10.33) to (10.35),

of the CL equation (dashed line). For equal masses, m = M , the results deviate

notieably (top). As expeted, all of the solutions onverge to the orret equilib-
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rium values, that is the saled energies onverge to 3/2 (top) and 3/20 (bottom),

while the saled momenta tend to zero (right). Similar results are obtained by

the QLBE in Born approximation [26℄.

The energy relaxation for the Gaussian interation potential with V0 = −1
(left) and V0 = −20 (right) is shown in Fig. 10.11. Here the mass ratios are

the same as above: M/m = 1 (top) and M/m = 10 (bottom). The solid line

shows the solution of the QLBE based on the exat sattering amplitude, while

the orresponding Born approximation is represented by the dashed line; both

simulations are based on 5×103 trajetories. Furthermore, the predition (10.33)

of the CL equation is presented (dots). Here the relaxation rate was obtained

by numerial integration of the right-hand side of Eq. (9.14). As in the previ-

ous example, the orret equilibrium values are approahed asymptotially: 3/2
(top) and 3/20 (bottom). Moreover, it turns out that the preditions of the CL

equation �t well in the quantum Brownian limit, that is for M ≫ m. The Born

approximation yields reliable results when the kineti energy is muh larger than

the potential one (top left).

As in Set. 10.2, we onlude that the full QLBE (9.2) may lead to physial

preditions whih deviate signi�antly from the ones obtained with the QLBE in

Born approximation (9.12). This holds in partiular for strong interation poten-

tials, where the orresponding sattering amplitudes are di�erent. Furthermore,

this setion veri�es that the expression (9.14) obtained in [11,12℄ yields the orret

relaxation rate in the quantum Brownian limit.

10.6 Di�usion

As a �nal disussion, let us study the simulation of quantum di�usion proesses

desribed by the QLBE. To this end, a loalized initial state is prepared and the

growth of the variane of the spatial populations is measured. Before disussing

the numerial result, a short summary of analytial preditions is presented, based

on the treatment in [12℄.

Quantum dispersion On short time sales, where the number of ollisions is

small, one expets the variane growth to be dominated by quantum dispersion.

This implies that the variane growth is desribed by the paraboli behavior

Var (X, t) = Var (X, 0) +
~

2

4M2Var (X, 0)
t2 , (10.36)

where an initial state of minimum unertainty is assumed.

Classial di�usion After time sales after whih many ollisions have ourred,

the variane growth is expeted to be dominated by lassial di�usion, where the

orresponding di�usion onstant an be estimated by the following onsideration.

As disussed in Set. 9.2.1, the QLBE approahes asymptotially the lassial

linear Boltzmann equation (CLBE). The latter an be simpli�ed, by onsidering

the Brownian limit , that is the limit of heavy traer partiles, M ≫ m, with a

momentum P lose to the typial thermal value Pβ =
√

2M/β [12,94,95℄. Under

these onditions, the CLBE (9.7) redues to the lassial Kramers equation, whih
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reads as [12℄

∂tw (P ) = η
3∑

i=1

(
∂

∂Pi
[Piw (P )] +

M

β

∂2

∂P 2
i

w (P )

)
, (10.37)

with momentum distribution w (P ) and frition oe�ient η. The latter an be

expressed in terms of the mirosopi details of the gas [12,96℄, giving η = 2γ, with
γ the relaxation rate appearing in the Caldeira-Leggett equation, see Set. 9.2.4,

Eq. (9.14).

The important point to note is that the Kramers' Fokker-Plank equation

leads to di�usion, that is to a linear growth of the variane [97℄

Var (X, t) = Var (X, 0) + 2Dt , (10.38)

with di�usion onstant D = ηM/β [97℄. This implies that

Var (X, t) = Var (X, 0) +
1

βMγ
t . (10.39)

In ase of a onstant ross setion, γ an be evaluated analytially [12℄, whih

yields Eq. (10.35). In onlusion, Eqs. (10.39) and (10.35) provide an analytial

predition for the di�usion onstant, assuming the limit M ≫ m.

Simulation results The solid line in Fig. 10.12 shows the variane growth of the

spatial populations, obtained by solving the QLBE for s-wave hard-sphere sat-

tering and mass ratios M/m = 100 (left) and M/m = 1 (right). This stohasti

simulation is based on 4× 103 trajetories. For the initial state, we hose a Gaus-

sian with width Var (X, 0) /Λ2
th = 1.6×10−3 (left) and Var (X, 0) /Λ2

th = 1.6×10−1

(right).

To interpret the results, let us �rst disuss the panel on the left-hand side.

Here the solution of the QLBE starts for small times with a quadrati dependene,

as expeted by the quantum dispersion Eq. (10.36) (dashed line). However, the

slope of the parabola is steeper than expeted, whih is presumably due to the

fat that the time sale shown in Fig. 10.12 is of the order of 10 to 102 ollisions.

The dynamis is therefore a�eted by inoherent e�ets.

For large times the urve goes over to a straight line, as expeted for lassial

di�usion. A linear �t to this linear part is shown by the �lled dots; its slope is

approximately 7.5 × 10−6. From the analytial onsiderations presented above,

one expets a straight line of the form

Var (X, t)

Λ2
th

=
Var (X, 0)

Λ2
th

+
(
βMγΛ2

thΓ0

)−1
tΓ0

= 1.6 × 10−3 + 6.7 × 10−6 tΓ0 . (10.40)

The relative error between the analytial predition and the simulation result for

the slope is around 12%.

For equal masses (right panel) one obtains a straight line even for small times,

whih shows that lassial di�usion is dominant over quantum dispersion. The

slope of the urve is about 3.2 × 10−2, implying that the di�usion onstant is

muh stronger for light test partiles. These results annot be predited by the

Kramers' Fokker-Plank equation, sine the latter holds in the Brownian limit

only.
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Figure 10.12: The solid line shows the variane of the spatial populations, obtained

by solving the QLBE for s-wave hard-sphere sattering and mass ratios M/m =
100 (left) and M/m = 1 (right). Left plot: the urve goes over from a quadrati

behavior (quantum dispersion) to a straight line (lassial di�usion). The dashed

parabola shows the theoretial predition of quantum dispersion. The dotted

straight line gives a linear �t to the solid line. Its slope is lose to the di�usion

onstant predited by the Kramers' Fokker-Plank equation (relative error: 12%).

Right plot: the variane growth is dominated by lassial di�usion, sine the test

partile is relatively light, M = m.

10.7 Summary

In this hapter we applied the Monte Carlo algorithm introdued in the previous

hapter to spei� examples where a test partile interats with an ideal gas

environment either by s-wave hard-sphere sattering or by a Gaussian interation

potential. It is demonstrated how important physial observables an be extrated

from the simulated quantum trajetories, allowing us to monitor a variety of

physial proesses. These phenomena inlude pure quantum e�ets, suh as the

appearane of interferene patterns, as well as inoherent features, for example

relaxation and di�usion. The results were used to test the range of validity of the

various limiting forms of the QLBE. For instane, we found an agreement with the

preditions of the Caldeira-Leggett equation in the quantum Brownian limit, while

the simulations agree with the solutions of pure ollisional deoherene for short-

time sales and heavy test partiles. Moreover, it turns out that the full QLBE

agrees with the simpli�ed QLBE in Born approximation for weak interation

potentials.
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Chapter 11

Conlusions

11.1 Pointer states and the orthogonal unraveling

In this thesis, we related the nonlinear double braket equation disussed in [6�8℄

to a spei� orthogonal unraveling of Markovian quantum master equations. This

yields two su�ient riteria, whih guarantee the existene of pointer states: (1)

the double braket equation must exhibit stable �xed points or solitons, (2) whih

are haraterized by a vanishing entropy prodution rate. By applying these ri-

teria to a partile in an ideal gas environment, it is shown that the orresponding

pointer states are exponentially loalized solitoni wave pakets, whih form an

overomplete basis. For su�iently strong ollisions with the bakground gas,

these solitoni wave pakets move aording to the lassial equations of motion.

Sine the dynamis of the system is asymptotially represented by an ensemble

of these loalized trajetories, it thus helps to explain the emergene of lassial

trajetories within the quantum framework.

In order to study the formation of pointer states, we applied the orthogonal

unraveling to spei� initial states whih are superpositions of a �nite number of

loalized wave pakets. This way, the orthogonal unraveling was redued from an

in�nite-dimensional unraveling to a stohasti proess in CN , whih an easily

be implemented. As a result, it is found that after the deoherene proess the

statistial weights of the pointer states are given by the Born rule, that is by the

overlap of the initial state with the initial pointer states.

Finally, a simple model is presented whih admits the estimation of the pointer

state width based on the mirosopially de�ned loalization rate of the master

equation. By applying this model to three-dimensional settings and realisti inter-

ation potentials, one obtains an expression that relates the width of the pointer

states to the mean free path and the thermal wave length of the gaseous environ-

ment. This result allows us in partiular to estimate the oherene length in an

interating thermal gas.

Future studies might onsider the emergene and dynamis of pointer states

in dissipative quantum systems. We note that this part of the thesis relies on

the model of pure ollisional deoherene whih does not desribe long-time ef-

fets suh as dissipation or thermalization. As a next step, one might determine

the pointer states of a more involved model suh as the quantum linear Boltz-

mann equation. For large mass ratios, one expets that the pointer states then

evolve aording to a Langevin equation, thus explaining the emergene of lassi-

al Brownian motion within the quantum framework.
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Apart from the investigation of spei� open quantum systems, it might be

interesting to analyze the double braket equation for general Lindblad master

equations. It would ertainly be worth to investigate under whih onditions the

double braket equations exhibits (loalized) stationary or solitoni solutions.

Besides these mathematial issues, it remains an open problem to �nd ex-

perimental signatures of pointer states. This ould potentially be done by mea-

suring longitudinal oherenes in atomi beams, as in the experiments desribed

in [67,93℄. An alternative idea is to observe pointer states indiretly by exploiting

our preditions for the oherene length of interating thermal gas. This relation

ould possibly be used for the predition of the ritial temperature of phase tran-

sitions, suh as the Bose-Einstein ondensation of interating Bose systems. A

textbook argument states that the ondensation ours whenever the oherene

length is lose to the mean partile distane. While this argument is typially used

in the ontext of ideal Bose gases, it has also been applied in some artiles [68,69℄

to determine the ritial temperature of interating systems. Sine our theory

yields the temperature dependene of the oherene length of interating gases,

it might be appliable to suh senarios.

11.2 Stohasti simulation of the quantum linear Boltz-

mann equation

The seond part of the thesis presents a stohasti algorithm, whih admits the

solution of the full quantum linear Boltzmann equation (QLBE) for a given in-

teration potential. It is based on the translational invariane of the QLBE, and

admits the e�ient propagation of superpositions of momentum eigenstates. Sine

the omputation time sales almost linearly with the number of basis states, it

an however be used in pratie to simulate arbitrary states, suh as spatially

loalized ones. This enables us to simulate many important physial proesses,

ranging from short-time e�ets, suh as the loss of fringe visibility in interferene

experiments, to long-time phenomena, for example relaxation and thermalization.

These results were used to determine the range of validity of the di�erent

limiting forms of the QLBE, inluding the ollisional deoherene model, the

quantum Brownian limit and the lassial linear Boltzmann equation. Moreover,

we ompared these simulations to the orresponding preditions of the simpli�ed

QLBE in Born approximation. Here it is found that the full QLBE may lead to

physial preditions whih deviate signi�antly from the ones obtained with the

QLBE in Born approximation, if the interation potential is su�iently strong.

As an appliation of these results, one might onsider interferene experiments

with test partiles, suh as eletrons or small moleules, whih are light ompared

to the gas partiles. Their loss of quantum oherene due to the interations with

a bakground gas is unaessible with previous methods, sine all of them rely on

the limit of heavy traer partiles.

On the theoretial side, it remains an open problem to design algorithms

whih admit the solution of the QLBE in presene of an external potential. Reall

that the Monte Carlo algorithm presented in this thesis relies on the translational

invariane of the QLBE. However, this symmetry is broken if an external potential

is applied, suh that the algorithm is no longer appliable. Presumably it is then

neessary to perform the simulations on a three-dimensional grid.
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