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Preface

Still, intuitive assumptions about behavior is only the starting point of systematic analy-

sis, for alone they do not yield many interesting implications.2

This dissertation consists of three self-contained chapters that are contributions to

the fields of industrial organization, family economics, and energy economics. Each

chapter has its own introduction and can be read independently of the other two

chapters. All three chapters have the common theme “dynamic optimization” of either

an individual’s or firm’s objective. The first two chapters apply the tools of optimal

control theory to study different aspects of learning and timing, one in the field of

industrial organization, the other in family economics.

The first model studies the optimal timing for a firm to adopt a new technology.

Infant industries have often rendered positive externalities, which justify subsidies.

Examples can be found in the renewable energy sector; these technologies not only

provide electricity to their owners, but they also reduce the carbon dioxide content in

the atmosphere. Thus, it is in the public’s interest to support this sector, such that it

can reduce its costs to a level where it can compete with conventional, C02 emitting

technologies. A policy that has been implemented by governments throughout the

world to reduce the cost level, is to either subsidize the research of these technologies or

their distribution. Till this day the economic literature lacks a model that can evaluate

these instruments in a suitable way, allowing predictions of their effects on consumer

and producer surplus, and welfare in general. Chapter 1 demonstrates how government

interventions can affect the optimal timing for adoption of a new technology. The

timing increases positive externalities, as for example in the renewable energy field.

It is not only relevant that renewable energy technologies reach a low cost level in

the future, it is also important to know how many products are distributed before

this future date is reached. In addition, the timing of distribution matters. Imagine

2Gary Becker (Nobel laureate in Economics, 1992)
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there are two production plans for distributing solar panels, where both reach the

same cost level at a distant date in the future with the same number of solar panels

installed. Then the production plan, according to which distribution is larger in the

beginning, is preferred to one, where distribution takes place later, because the first

more greatly reduces the amount of carbon dioxide being released in the atmosphere.

Furthermore this first chapter makes predictions on how the effects change, when the

total quantity that can be produced is fixed; the installations of wind powered energy

plants in Germany exemplify this point. Onshore, there have only been a few new

instalments of wind power plants lately, because of a lack of suitable space. Sales and

research subsidies have a very different effect in this case, when the total production

quantity is not endogenous. Depending on whether producer rents, consumer rents or

early implementation are more important to the government, the chapter offers the

appropriate tools to attain its objective.

The second model analyzes the optimal timing for a woman to give birth. Malthu-

sianism has become a widely used term, one that stems from the paper ‘Essay on the

Principle of Population’ written by the infamous Thomas Malthus. He is one of the

main founders of population economics; forecasting that population growth would ulti-

mately outstrip the world’s food supply in 1798. With the immigration to the Americas

and Industrialization, the arguments of his essay became quickly neutralized. As Indus-

trialization advanced on the world, fertility began to stagnate and then to the surprise

of many avid Malthusians, recede.

Starting in the richer countries, fertility first began to fall in industrialized countries.

Within the last decades it has finally become possible to see a decline in growth rates in

the developing world, as they slowly have become richer. What is astonishing is not only

the rate at which this is happening but the scale of the decline. Developing countries

are changing so rapidly that the demographic transition has become one of the largest

social changes taking place. An example of this is Iran, in 1984 the fertility rate was

still relatively high at 7 children, in 2006 is had dropped to 1.9. With the worldwide

debate over the threats and solutions to climate change larger than ever before, the

Maltusian worries are resurfacing. Fears of a growing, richer, more consumer driven

population have steered economists to take a closer look at population growth. With

fertility rates falling in India, Brazil and Indonesia, the fertility rate has now reached

the replacement rate of 2.1 in half of the world. The trepidation of the environmental

impact due to high fertility can, at least for now, be negated.

A decrease of fertility along with a longer life expectancy, leads to an increase
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in the proportion of people that are retired compared to those that are working. A

pay-as-you-go (PAYG) social security system is characterized by contributions to their

beneficiaries, financed through the regular payment flows of working individuals, such

that reserves do not need to be created. If a fall in fertility occurs too quickly, then

a PAYG financed pension system could collapse. Retired people generally have ac-

cumulated own savings, but these are often insufficient to cover the entire retirement

phase if the share of the working population is relatively too low. Fewer people being

born means, there is less income during those periods, when they would have been

contributing on the job market. Lower old age pensions mean that the society’s wel-

fare decreases. In most pension systems there is no coherence between fertility and

pensions. Chapter two evaluates government policies that increase the incentive to

have children in order to smooth the digression of fertility.

This chapter is a joint work with Ray Rees, and contains a model to solve for the

optimal timing of childbirth and the optimal number of children in a continuous time

framework simultaneously. The model depicts how changes in wage at different stages of

an individual’s life, influence the timing decision of childbirth and the optimal number

of children. Some of the numerous findings are quite surprising. When a woman would

like to have more children, she decides to have them at a younger age. Medical research

that extends the fecund life span induces women to have fewer children. A reduction

of the parental leave due to day-care centers, and a reduction in the costs of leave due

to child benefits, increases the number of children. Women value labor more, when

they face the risk of an unknown divorce. This paper also shows that divorce does not

change the timing of childbirth directly, however it influences the number of children

negatively, and the reduced number of children delays the timing. The model can be

used to predict upper bound fertility rates, when the expected divorce rate continues

to increase.

While the first two models are framed in continuous time, the third is framed in

discrete time. It studies the effect of default risk on a market, where its players meet

twice; on a contract and on a spot market. The financial crisis has shown that there are

market players, which are "too big to fail". In order to preserve the financial system’s

stability, banks and insurances that have incurred speculation losses, have been bailed

out. Together with the nationalization of the firm, its debts are refinanced through

taxpayers’ money. In conjunction with this issue revealed by the banking crisis, the risk

of bankruptcy alone, can affect welfare negatively, which is demonstrated in chapter 3.

The chapter illustrates this point for the electricity sector, using a method that can
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be easily applied to other sectors as well. Upstream producers that possess market

power, sell forwards with a lengthy duration to regional electricity companies (REC).

As part of the liberalization of the electricity market, RECs have been privatized and

exposed to a possible bankruptcy risk, if spot prices fall below their expected value. An

interesting observation is that the downstream firm’s expected profit is larger, when it

is less likely to be bailed out. The intuition behind this result is that producers adopt

the spot price upwards to lower the retailer’s default risk that is positively correlated

to the REC’s loss from its contracts. The effect on upstream profits is ambiguous while

consumers loose. Options are less welfare increasing than forwards, but the difference is

minimal. In the presence of bankruptcy, options are the preferred welfare maximizing

market instrument.



Chapter 1

Learning and Technology Adoptions

1.1 Introduction

Typical infant industries are characterized by cost reductions through learning in the

production process, and continuous new technology adoptions. Mature industries are

often characterized by numerous technology generations, while learning takes place at

the same time.1 Market players try to find new technologies that are more sustainable,

efficient and safer, however, at the same time they are improving existing technologies.

Thus it is important to connect both: experience and innovations in a single model. In

this dynamic framework a firm can adopt innovation breakthroughs from its research

department. In addition, the firm decides upon a pricing rule for each point in time.

It is assumed that experience spills over to the next technology generation after an

innovation breakthrough has been adopted. The empirical literature till present, has

concentrated on learning models, in which technology spillovers were absent (Irwin and

Klenow, 1994). Jamasb (2007) is an exception: in his purely econometric analysis, he

estimates learning by doing and research rates for a range of energy technologies in

different stages of technical progress. He separates the cost reduction effect caused by

learning and research, expressed by cumulative sales and patents. Unfortunately, it is

difficult to obtain data on costs, which makes the study rely on very few data points.

This model shall be the theoretical foundation of applied work, in which firms can

use the experience, they have accumulated thus far, for the next technology generation.

In macroeconomics, there are studies, where the experience gained from learning, is

passed on from one generation to the next. Examples are Young (1993) and Parente

1Currently produced nuclear power plants for example use the 3rd technology generation, the 4th
generation will be deployed some time around 2030.
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(1994). Young makes clear that innovations occur in markets that are large. In this

setup, production costs do not decrease with new technology adoptions, but rather

through learning. In Parente’s model, learning and technology adoptions occur both

after the product introduction. A firm faces a trade-off between learning at a decreasing

rate or switching to a new technology, which is costly as not all expertise can be

transferred. In return, the learning curve becomes steeper. From a microeconomic

perspective, both models face one problem in particular: learning occurs only through

time and not through cumulative production or "by doing". Therefore the strategic

pricing behavior of firms can not be analyzed. This paper introduces a model, where

firms simultaneously choose a research budget and the optimal production quantity,

exploiting the learning effect optimally. The production and the time of technology

adoptions are control variables of the firm.

This research has two main objectives: firstly, to describe the market equilibrium of

a setup that accounts for innovations and learning; and secondly, to show the effects of

subsidies on the market equilibrium. The second objective is based on the observation

that products produced by learning industries have often rendered positive externalities

in the past; renewable energy technologies can be cited as examples. The production

cost per unit of electricity has been reduced significantly for technologies that are

powered by wind, sunlight and biomass. The positive externality is the deduction of

the carbon dioxide level in the atmosphere, because electricity from renewable energy is

a perfect substitute to conventionally generated electricity.2 It is illustrated that sales

and innovation subsidies have the same effect on the innovation date and prices, if and

only if the innovation date and total cumulative production quantity are endogenous.

Effects differ significantly, when the total quantity that can be produced in a market

is fixed. An example for such products, whose costs are affected by learning are wind

power plants. In Germany the installation of onshore wind power plants reached its

peak in 2002, with an installed capacity of over 3000 MW. The installed capacity in

2009 was estimated to be less than 1000 MW due to a lack of suitable space (Dena,

2005). The cost of producing wind power capacity has fallen drastically; the price of 1

KW wind energy capacity fell by 29% between 1990 and 2004 (Iset, 2005).

The layout of this model is as follows: a social planner or monopolist learn with

some learning parameter λ, and it can choose any particular date in the future, when

they would like to adopt a new technology. This is characterized by an increase of

2Another example is the aerospace technology, which was mainly developed for military purposes
during the 1930s and 40s. This was a stepping stone for the development of commercially used
airplanes, which has enabled societies to travel and trade at an increased pace. The learning effect in
this industry was described by Wright (1936).
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the learning parameter to γ, where γ ≥ λ. After the innovation date, newly gained

experience reduces the present level of cost by more, than before the innovation date.

Thus the process innovation described here, is a substitute to learning. A firm can

adopt a new technology when its research department has been successful. The cost

of research is given by a convex and decreasing function a(t1), where t1 is the date

of innovation. When firms prefer an earlier innovation date over that of a late one,

then they employ more researchers; this is reflected by a higher innovation cost in the

model. The setting is deterministic to avoid unnecessary complications, which would

not add any further results. Players choose the date of innovation at the beginning of

the planning horizon; production starts thereafter. In the first step, a pricing rule is

derived for an exogenous innovation date, which is endogenized thereafter.

The findings of this paper are: the social planner/ monopolist charges two differ-

ent prices, for the time phases before the innovation and after the innovation. Both

prices are constant for a constant price elasticity of demand. After the innovation

has occurred, the decision maker’s price rule, is such that the price (social planner)

or the marginal revenue (monopolist) equal marginal cost at the last unit produced.

This result is analogous to the findings of Spence (1981) who examined learning in

the absence of innovations. However before the innovation occurs, the social planner’s

(monopolist’s) price rule is such that the price (marginal cost) equals marginal cost at

t1 plus a negative constant. At the time of innovation, the costate variables of the two

phases equal the ratio of the learning parameters λ/γ. Thus there is a downward jump

in prices at the innovation date. In a second step, a subsidy on innovation cost and

a subsidy on sales are introduced. The central results of these market interventions

are: innovation subsidies and distribution subsidies reduce the prices of both phases if

all variables (the timing of innovation t1, the cumulative production quantities at the

innovation date; y(t1) and at the end of the planning horizon y(T )) are endogenous.

Both subsidy types induce innovation to proceed earlier. Consequently the total quan-

tity produced during the entire planning horizon increases. The production plan in the

presence of subsidies lies entirely above the production plan without subsidies. The

result being, if early distribution yield positive externalities, then subsidies on sales

and on innovation contain an additional positive effect.3

It is also shown that a subsidy on innovation cost (sales), which is financed through

a tax on sales (innovation cost) changes the proportion of consumer and producer

rents. Customers generally benefit more from sales subsidies, producers from innovation

3For technologies in the renewable energy sector holds that early distributions increase their pos-
itive externality on the atmosphere more. The total carbon dioxide emissions are reduced more,
because renewable energy sources can substitute conventional C02 emitting ones earlier.
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subsidies. Another central result emerges, when the total production y(T ) is restricted.

In this case the two kinds of subsidies that are analyzed have different effects.

The next section introduces the model and solves for an optimal pricing rule, which

is analyzed in detail. Section 1.3 endogenizes the timing of innovation. Section 1.4

continues with a welfare analysis. Section 1.5 concludes.

1.2 The Model with an exogenous innovation date

This model is solved for different market structures, at first the social planner’s problem

is solved, which can be easily extended to account for a market with perfect competition

that yields quite similar results. The learning by doing case without innovation has

been examined similarly by Brueckner et al. (1983). Later a monopolist takes the

place of the social planner. This scenario is more relevant to reality, because in an

environment of innovations, patents guarantee that their holders are able to execute

market power. It has been rarely observed that a state runs a public firm in a learning

industry, nevertheless a social planner’s actions are examined as though they are almost

identical to those of a monopolist.

1.2.1 The Social Planner’s Problem

Assume there is a publicly owned firm, which faces the demand function: x(p(t), t) for

a non-storable output x(t) that is sold at a price p(t). Time is denoted by t ∈ R0+. The

beginning of the first phase, when the planning horizon begins is t0. The time when

the innovation takes place is t1. It is the end of the first phase and the beginning of

the second phase. The planning horizon ends at t = T . The firm chooses an optimal

time path for its control variables during the first phase, p0(t) and the second phase,

p1(t); where p(t) = {p0(t), p1(t)} The instantaneous production flows of the first and
second phase are x0(p0(t), t) and x1(p1(t), t) respectively. They are the derivatives of

the state variables y0(t) and y1(t), which are the cumulative production quantities for

a period t before and after the innovation. Over the intervals [t0, t1] and [t1, T ], the

social planner receives a stream of consumption benefits discounted back to t = t0,

Z t1

t0

B0(p0(t), t)e
−r(t−t0)dt and

Z T

t1

B1(p1(t), t)e
−r(t−t0)dt (1.1)

where B0(p0(t), t) and B1(p1(t), t) denote the per-period social surplus during the
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first and second phase. They are each equivalent to the area below the inverse demand

function at some t, before and after t1, respectively. The social planner faces a marginal

cost that consists of two parts; a fixed part denoted by the parameterm, and a variable

part that is equal to c at the beginning of the first phase, when experience y0(t) equals

zero. This variable part decreases with a learning parameter λ before an innovation

occurs. Intuitively there is continuous discounting involved, which is expressed by the

exponential term.

MC0(y0(t)) = m+ ce−λy0(t) for t0 ≤ t ≤ t1 (1.2)

The social planner can adopt a new technology, when the research department has

been successful. The faster an innovation occurs, the more costly it is. For now, the

innovation cost function depends solely on the innovation date t1. When no innovation

occurs and the firm produces with the same technology during the entire planning

horizon, then the innovation cost is zero; a(t1) > 0,∇t \ t = T where a(T ) = 0. a0 < 0,

a00 > 0. A new technology is adopted right after the innovation. Otherwise, if a later

date of innovation is preferred, the planner could reduce its cost by devoting fewer

resources to its research department. A different cost function is introduced in section

1.2.4. The innovation cost is assumed to be paid in advance at t0. After t1 the firm

faces more intensive learning; it learns with a learning parameter γ ≥ λ. Experience

completely transfers to the new technology . Switching costs are ignored, because they

do not yield results, which extend the knowledge of the existing literature (see Parente,

1993). The second phase’s marginal costs are

MC1(y1(t)) = m+ ce−λy0(t1)−γ[y(t)−y0(t1)] for t1 < t ≤ T (1.3)

Thus the social planner’s objective is,

Max
p0(t), p1(t), t1

SP ≡
Z t1

t0

e−r(t−t0)
©
B0(p0(t), t)− (m+ ce−λy0(t))x0[p0(t), t]

ª
dt (1.4)

−a(t1)e−rt0 +
Z T

t1

e−r(t−t0)
©
B1(p1(t), t)− (m+ ce−λy0(t1)−γ[y(t)−y0(t1)])x1[p1(t), t]

ª
dt,

where ∂Bi

∂pi
= pi(t)

∂xi[pi(t),t]
∂pi(t)

for i ∈ (0, 1). The constraints of the problem are given by

·
y0(t) = x0[p0(t), t] t ∈ [t0, t1] (1.5)
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·
y1(t) = x1[p1(t), t] t ∈ [t1, T ] (1.6)

y0(t0) = 0 (1.7)

y0(t1) = y1(t1) = y(t1) is free (1.8)

y1(T ) is free (1.9)

·
y0(t) and

·
y1(t) are time derivatives of cumulative production quantities or experi-

ence stocks. To keep this analysis simple, a real interest rate of zero is assumed. In the

appendix it is shown, how the equilibrium changes when r 6= 0. Flows are functions of
the price and time, where the price itself is a function of time. The cumulative quan-

tity cannot change over night, when the innovation takes place and the new production

process is adopted (1.8). Condition (1.9) is used as a transversality condition for the

second phase. Necessary conditions of this problem are derived in two steps. Firstly

this study examines some innovation date t1 ∈ [t0, T ] and solves for the price paths
p0(t) and p1(t) with t1 being fixed. In the next step the innovation date is endogenized.

Proposition 1.1 A social planner chooses a constant price for each period of phase

one and two respectively. The two prices are different across phase one [t0, t1] and

phase two [t1, T ].

Proof By a theorem of Hestens, take SP (1.4) with a fix t1 and define η0(t)

on the interval [t0, t1] and η1(t) on the interval [t1, T ] as the costate variables of the

cumulative quantities y0(t) and y1(t) respectively.4 The innovation cost function is

a(t1). It can be ignored during the time the pricing rule is analyzed, because t1 is

fixed. Thus a(t1) is constant and drops out of the first order condition that describes

the optimal pricing rule. The Hamiltonian is

H [p0(t), p1(t), η0(t), η1(t)] = B0(t)− C0(t) +B1(p1(t), t)− C1(t) (1.10)

−a(t1) + η0(t)x[p0(t), t] + η1(t)x[p1(t), t]

where Ci(t) = xi(t)MCi(yi(t)) for i ∈ (0, 1) is the per-period cost. p∗0(t) and p∗1(t)

maximize (1.10) such that
4see Takayama p.658
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H [p∗0(t), p
∗
1(t), η0(t), η1(t)] ≥ H [p0(t), p1(t), η0(t), η1(t)] (1.11)

for all p0(t) ≥ 0, p1(t) ≥ 0.

The pricing rule for the first phase (t ≤ t1)

As p∗0(t) maximizes H for (t ≤ t1), the necessary condition is

∂H

∂p0(t)
= p0(t)

∂x0(p0(t), t)

∂p0(t)
− ∂x0(p0(t), t)

∂p0(t)
(m+ ce−λy0(t)) + η0(t)

∂x0(p0(t), t)

∂p0(t)
.
= 0

⇔ p0(t) = m+ ce−λy0(t) − η0(t) (1.12)

The social planner sets a price that equals the marginal cost minus the shadow price

of cumulative quantity at some t. The second necessary condition is

·
η0(t) = −

∂H

∂y0(t)

⇔ η0(t) = ce−λy0(t) + const1 (1.13)

The third necessary condition is (1.5).

Lemma 1.1 The shadow price at the end point of the first phase equals η0(t1) =
λ
γ
ce−λy(t1) − λ

γ
ce(γ−λ)y(t1)−γy(T ).

Proof. See appendix.

The second necessary condition (1.13) can be solved for const1 with the transversality

condition η0(t1) = −λ
γ
ce(γ−λ)y(t1)−γy(T ) +λ

γ
ce−λy(t1) . Evaluating η0(t) at t1

const1 = −
λ

γ
ce(γ−λ)y(t1)−γy(T ) +

λ− γ

γ
ce−λy(t1)

=⇒ η0(t) = ce−λy0(t) − λ

γ
ce(γ−λ)y(t1)−γy(T ) +

λ− γ

γ
ce−λy(t1) (1.14)

(1.13) and (1.14) solve for the price of the first phase

p0 = m+
γ − λ

γ
ce−λy(t1) +

λ

γ
ce(γ−λ)y(t1)−γy(T ); t0 ≤ t ≤ t1 (1.15)

During the first phase, p0 is independent of time, which completes the first part of the

proof of 1.1
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The pricing rule for the second phase (t > t1)

The necessary first order condition with respect to p1(t) can be solved for a function

of the the second phase’s costate

∂H

∂p1(t)
= p1(t)

∂x1(p1(t), t)

∂p1(t)
−∂x1(p1(t), t)

∂p1(t)
(m+ce−λy(t1)−γ[y(t)−y(t1)])+η1(t)

∂x1(p1(t), t)

∂p1(t)
.
= 0

⇔ p1(t) = m+ ce−λy(t1)−γ[y(t)−y1(t1)] − η1(t) (1.16)

The social planner’s price is equal to the marginal cost minus the shadow price of

cumulative quantity. The second condition that needs to be fulfilled is

·
η1(t) = −

∂H

∂y1(t)

⇔ η1(t) = ce−λy(t1)−γ[y(t)−y(t1)] + const2 (1.17)

The third condition is given by (1.6). η(T ) = 0, because the value of experience at

the end of the second phase is zero. The cumulative quantity at the end of the second

phase is not restricted, hence (1.9) can be used to set up the following transversality

condition, which solves for const2.

const2 = −ce(γ−λ)y(t1)−γy(T )

=⇒ η1(t) = ce−λy(t1)−γ[y(t)−y(t1)] − ce(γ−λ)y(t1)−γy(T ) (1.18)

(1.17) and (1.18) are used to express the second phase’s price

p1 = m+ ce(γ−λ)y(t1)−γy(T ); t1 ≤ t ≤ T (1.19)

For any t where t1 ≤ t ≤ T , the price of phase 2 is constant. This completes the

second part of proposition 1.1’s proof.

It is assumed that the demand function does not change over time, thus the planner

produces the same quantity in each period within the first phase and the same quantity

within the second phase. The intuition behind this result is: although costs decrease

through time, which would yield lower prices in a static model, the decrease of costs is

completely offset by the decrease of the experience value in this dynamic framework.

When either γ = λ or t1 = T , then (1.15) and (1.19) are equal: p0(t) = p1(t) =

m+ ce−λy(T ). For γ > λ or t1 < T , the price of the first phase exceeds the price of the

second, which is as follows
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p0 > p1

⇔ λ

γ
e(γ−λ)y(t1)−γy(T ) − λ− γ

γ
e−λy(t1) > e(γ−λ)y(t1)−γy(T )

⇔ λ− γ

γ
e(γ−λ)y(t1)−γy(T ) >

λ− γ

γ
e−λy(t1)

γ[y(t1)− y(T )] < 0

As the last expression holds, it follows that the claim p0 > p1 is correct. A social

planner encounters a loss, because during the first phase, the price is below the marginal

cost at t1, during the second phase the price just covers its cost at t = T and is below

that level for all preceding periods. Therefore one would need to introduce a tax on a

different market to compensate for the loss. The monopolist’s problem is solved, before

the results, which are quite similar are interpreted further.

1.2.2 The Monopolist’s Problem

The monopolist’s instantaneous profit functions for the two phases are,

π0(t) ≡
£
p0(t)− (m+ ce−λy0(t))

¤
x0(p0(t), t) : t ∈ [t0, t1] (1.20)

π1(t) ≡
£
p1(t)− (m+ ce−λy0(t1)−γ[y(t)−y0(t1)])

¤
x1(p1(t), t) : t ∈ [t1, T ] (1.21)

where the variables and parameters are defined and interpreted in the social planner’s

problem. The firm’s objective is,

Max MP =

Z t1

t0

π0(t)e−r(t−t0)dt− a(t1)e
−rt0 +

Z T

t1

π1(t)e−r(t−t0)dt (1.22)

subject to constraints (1.5) to (1.9). In the absence of discounting, the Hamiltonian

equals
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H [p0(t), p1(t), η0(t), η1(t)] = π0(t) + π1(t)− a(t1) + η0(t)x[p0(t), t] + η1(t)x[p1(t), t]

(1.23)

One can use the same methods that were used to derive (1.15) and (1.19) to derive

the pricing rules when a monopolist is the decision maker

p0

µ
1− 1

ε(t)

¶
= m+ ce−λy(t1) − η0(t)

where ε(t) = −∂x0
∂p0

p0
x0

⇒MR0(t) = m+ ce−λy(t1) −
∙
λ

γ
ce−λy(t1) − ce(γ−λ)y(t1)−γy(T )

¸
; t0 ≤ t ≤ t1

(1.24)

(1.24) is the pricing rule before the innovation date,

p1

µ
1− 1

ε(t)

¶
= m+ ce−λy(t1)−γ[y(t)−y1(t1)] − η1(t)

where ε(t) = −∂x1
∂p1

p1
x1

⇒MR1(t) = m+ ce(γ−λ)y(t1)−γy(T ) (1.25)

and (1.25) the innovation date after t1. Therefore the monopolist sets the price

where the marginal revenue equals marginal cost minus the shadow price of cumulative

quantity. The only difference to the social planner’s problem is that the optimal rule

contains the multiplier (1 − 1
ε(t)
), and thus the marginal revenue and not the price,

appears in the optimality condition. Prices in the monopoly model are constant for

constant elasticities ε(t) = ε, hence the same holds for the per period production

quantities. When either the equality γ = λ or t1 = T hold, then (1.24) reduces to

(1.25): MR0(t) =MR1(t) =m+ce−λy(T ). This is the classical optimal pricing behavior

of a learning monopolist in the absence of innovations shown by Spence (1981): "At

every time, output should be profit maximizing output, given that marginal cost is the

unit cost that obtains at the end of the period".5 The total cost that a firm faces is

5See page 52.
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the area underneath the learning curve or marginal cost curve between t0 and T . If

the firm increases output by �0, in any interval within [t0, t1] or by �1, in any interval

within [t1, T ], then the incremental cost is not the cost that arises during that time. It

is rather the change of the total area below the learning curve.

Proposition 1.2 In the presence of innovations, a monopolist charges a price such
that marginal revenue equals incremental cost at any point in time.

Proof. See appendix.

Consequently, within the interval [t1, T ] the monopolist prices optimally, when the

marginal revenue at each point in time equals the marginal cost of the last unit pro-

duced. MR1(t) = MC|t=T by (1.25). In the interval [t0, t1] the monopolist charges
MR0(t) = MC|t=t1 −λ

γ

£
ce−λy(t1) − ce−λy(t1)−γ[y(T )−y(t1)]

¤
by (1.24), where the sum in

brackets is positive. Consequently, the monopolist charges a lower price such that

marginal revenue at each point in time is below the marginal cost of the last unit

produced at t1, because production continues beyond t1. The "price discount" equals
λ
γ

£
ce−λy(t1)−γ[y(T )−y(t1)] − ce−λy(t1)

¤
.6 It contains information about how much the ex-

perience level y(t1) is worth for the production after t1. In the next section this term

is analyzed further.

If discounting is included in the analysis, then prices increase compared to those in

(1.24) and (1.25) for all t. When future profits are discounted, then learning is valued

less, because the experience payoff decreases. Thus in the presence of a positive discount

rate, the firm increase its price over the entire planning horizon. In a model without

discounting, learning is appreciated most in the beginning of the planning horizon,

because its return lasts for a long period of time. In the absence of innovations the

price difference between a model with and without a discount rate, reaches its peak

at t0. In this model, where innovation increases the learning parameter, the price

difference could even be larger at t1 than at t0, because the learning intensity jumps.

At T , prices that include discounting are equal to those where discounting is absent,

because the return to experience is non-existing.

Proposition 1.3 When r 6= 0, then a monopolist sets its price during the first phase,
such that the following condition holds,MR0(t) = m+λ

γ
ce(γ−λ)y(t1)−γy(T )+ γ−λ

γ
ce−λy(t1)+

6To be precise, the price discount also contains the constant multiplier
¡
1− 1

ε

¢−1
, which is ignored

in the following partial analysis.
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r

Z t1

t

£
m+ ce−λy0(τ)

¤
e−r(τ−t)dτ + r

R T
t1
[m + ce(γ−λ)y(t1)−γy(τ)]e−r(τ−t)dτ . During

the second phase the optimality condition is MR1(t) = m + ce
(γ−λ)y(t1)−γy1(T ) +

r

Z T

t

h
m+ ce

(γ−λ)y(t1)−γy1(τ)
i
e−r(τ−t)dτ

Proof. See appendix.

The additional terms on the right hand side are positive, which implies that the price

increases. At r = 0, the conditions reduce to (1.24) and (1.25).

The market equilibrium of a social planner and a monopolist are quite similar.

In the past, infant industries have been heavily subsidized by governments, but they

were not run as public firms. Examples are the aerospace and defense industry during

and after World War Two, computer industries in the 1980/90s and firms that have

operated in the renewable energy sector during the last 10 years. In the presence of

learning and innovations, where the later can be protected by property rights, there

are either monopolies or oligopolies in the market. This holds true for all industries

mentioned above: Airbus and Boeing (aerospace market), Microsoft and IBM (software

and hardware) and the renewable energy sector, where for instance five producers have

a market share of over 90% of worldwide wind turbine sales.7 Based on these real

world observations, for the rest of this article, it seems reasonable to assume that a

monopolist is the decision maker. Furthermore it does not matter much, because the

pricing rules differ by a multiplier that depends on the demand elasticity.

1.2.3 A partial comparative analysis

The price discount of the first phase

The first phase’s price discount is λ
γ

£
ce−λy(t1) − ce−λy(t1)−γ[y(T )−y(t1)]

¤
. This section stud-

ies the discount’s size based on the underlying parameters. It follows a comparative

analysis; the discount is partially differentiated with respect to the parameters λ, γ

and c. It is important to note that all parameters affect the three variables t1, y(t1)

and y(T ), which are fixed here. This analysis is meant to explain intuitively the results

that are derived later, when t1 and y(t1) are endogenous, but y(T ) is not.

∂(·)
∂λ
[ce−λy(t1) − ce−λy(t1)−γ[y(T )−y(t1)]]

µ
1

γ
− λ

γ
y(t1)

¶
(1.26)

7Press release of BTM Consult ApS (27.3.2008).
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The first bracket of (1.26) is positive, the second is positive for λy(t1) < 1, which is

satisfied in the numerical simulation later. The price discount of the first phase rises

with the learning parameter of the first phase, λ. The monopolist reduces its first

phase’s price to exploit a larger learning intensity.

∂(·)
∂γ

= − λ

γ2
£
ce−λy(t1) − ce−λy(t1)−γ[y(T )−y(t1)]

¤
+

λ

γ
ce−λy(t1)−γ[y(T )−y(t1)] [y(T )− y(t1)]

(1.27)

In (1.27), the first summand is negative, because its bracket term is positive. The

second summand is positive. The first summand exceeds the second in absolute value

conditional on eγ[y(T )−y(t1)] − 1 > γ[y(T ) − y(t1)]. This condition is met when the

produced quantity after t1 is large enough. A large learning parameter after the in-

novation, γ decreases the incentive to reduce the incentive to reduce cost before the

innovation date.

∂(·)
∂c

=
λ

γ

£
e−λy(t1) − e−λy(t1)−γ[y(T )−y(t1)]

¤
(1.28)

(1.28) shows, how the variable part of the marginal cost level affects the price discount

of the first phase.8 The derivative is positive, because the return to experience increases

when the original cost level is high. The price discount on p0 increases with λ and c,

it decreases with γ.

The Costates

The costate variables are positive for all t, however they decrease. η0(t) declines at a

rate of the marginal cost’s derivative for the first phase, η1(t) at a rate of the marginal

cost’s derivative for the second phase. An interesting result is that the quotient of the

two costates at the optimal innovation time t1 is the quotient of the learning parameters:

η0(t1) =
λ

γ
ce−λy(t1) − λ

γ
ce(γ−λ)y(t1)−γy(T ) =

λ

γ
η1(t1)⇒

η0(t1)

η1(t1)
=

λ

γ
(1.29)

Figure 1.1 shows the course of two costates, given a cumulative production quantity at

the innovation date of 50 and 100. The cumulative quantity at the end of the planning

horizon is 150, thus experience becomes worthless and both costate functions converge

8Recall that MC|t=0 = m+ c
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Figure 1.1: Costates jump at the date of innovation

to the horizontal axis. At y(t1) the costates jump vertically upward such that the

costate at lim
�→0

[y(t1) + �] is γ
λ
times larger compared to its value at lim

�→0
[y(t1)− �].

Prices have been derived as functions of costates during phase one, (1 − 1
ε
)−1p0(t) =

m+ce−λy(t)−η0(t) [see (1.24)] and phase two, (1− 1
ε
)−1p1(t) = m+ce−λy(t1)−γ[y(t)−y1(t1)]−

η1(t) [see (1.25)]. At t1, the prices p0(t) and p1(t) reduce to
¡
m+ ce−λy(t1)

¢
(1 − 1

ε
),

subtracted by ηi(t)(1 − 1
ε
) for i ∈ (0, 1). Figure 1 clearly shows an upward jump of

costates, which means that prices drop discontinuously by the amount that the costates

jump with their constant multiplier.

In the past there have been government interventions that aimed to sell a fix number

of products, which are characterized through positive externalities e.g. solar panels.9

Figure 1.1 shows a decrease of y(t1) from 100 to 50, keeping y(T ) and all parameters

constant. The costate of the function, where the innovation occurs earlier is lower

9The "100,000 roof-program" was part of the Renewable Energy Law in Germany. It intended to
install 100,000 solar panels (which would be equivalent to y(T )) in a given time (T ).
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during its first phase compared to the other costate. It exceeds the other costate

thereafter before y(t1) = 75 is reached. Afterwards it is lower again. Therefore the

price during the first phase decreases with y(t1). The next proposition shows that the

same holds true for t1.

Proposition 1.4 An earlier innovation date t1 increases the price p0 and decreases

the price p1, iff y(T ) is fixed.

Proof. The elasticity of demand is assumed to be constant and the monopolist

chooses the optimal innovation date t1 before production starts. Given p0 (1.24) and

p1 (1.25), prices are differentiated with respect to t1.

∂p0
∂t1

=
(γ − λ)λ

γ| {z }
>0

c
£
e(γ−λ)y(t1)−γy(T ) − e−λy(t1)

¤| {z }
<0

ε

ε− 1| {z }
>0

y(t1)

∂t1| {z }
>0

< 0 (1.30)

In (1.30) all terms except of one, are positive for γ > λ, c > 0, y(t1) < y(T ). Later

it is shown numerically that a delay of the innovation date increases the cumulative

quantity up to the innovation date: y(t1)
∂t1

> 0.

∂p1
∂t1

=
∂p1

∂y(t1)

y(t1)

∂t1
= c
£
(γ − λ)e(γ−λ)y(t1)−γy(T )

¤| {z }
>0

ε

ε− 1| {z }
>0

y(t1)

∂t1| {z }
>0

> 0 (1.31)

The price after t1 increases, when the innovation occurs earlier.

This result seems to be puzzling at first glance. In the presence of learning without

process innovations, the learning effect is smaller than the level effect of costs. Fuden-

berg and Tirole (1983) show that "output increases over time, ... [but] produce a lot

now to lower costs, then ease off as an optimal control strategy" [was ruled out by their

results].10 This model also contains the same effects as in the Fundenberg and Tirole

model: A firm chooses a production plan that maximizes today’s profits taking account

of all future cost reductions, where the later is determined by the learning effect. In

the presence of innovations, the learning effect is stronger, when the date of innova-

tion occurs later. Therefore a firm reduces p0 when t1 increases. At the same time it

increases p1, because future time (T − t1) decreases along with the benefit of future

cost reduction. The "today’s-profit maximizing-effect" is stronger than the learning

effect and a decrease of t1 comes with an increase of p0. The intuitions provided by

this partial analysis are helpful for section 1.3, where t∗1 is endogenous. The numerical

10See proposition 2 on p. 525.
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part of section 1.3 contains two parts; in the first part all variables are endogenous,

and it is shown that (1.30) and (1.31) do not hold. In the second part, where t∗1 and

y(t∗1) are endogenous, but y(T ) is not, the results provided here, appear again.

1.2.4 A different innovation cost function

In this section the thus far neglected innovation cost function with a different structure

is introduced. It was able to be neglected, because it depended solely on the innovation

date, which was exogenous. What happens, when one assumes that the innovation cost

function also depends on the experience accumulated before t1 and a = a[y(t1), t1],

with ∂a
∂y(t1)

< 0? This assumption is reasonable, when the research department works

closely together with the production floor. The altered transversality condition of the

first phase is η0(t1) = −λ
γ
ce(γ−λ)y(t1)−γy(T ) + λ

γ
ce−λy(t1) − ∂a[y(t1),t1]

∂y(t1)
. As innovation cost

decreases with y(t1), so does the marginal revenue

MR0(t) = m+
γ − λ

γ
ce−λy(t1) +

λ

γ
ce(γ−λ)y(t1)−γy(T ) +

∂a[y(t1), t1]

∂y(t1)
; t0 ≤ t ≤ t1

(1.32)

Accordingly the price during the first phase decreases. The intuition behind the changes

are obvious; experience does not only reduce future production cost, but also the cost

of research.

1.3 The model with an endogenous innovation date

1.3.1 Analytical part

The optimal timing of innovation has been exogenous thus far, in this section it will

be endogenized. The problem is solved for an innovation cost function of the form

a = a(t1). With t1 fixed, consider the following problem with the two segments,

S.0.max
p0(t)

Z t1

t0

{x0(p0, t)(p0 −m− ce−λy0(t))}dt (1.33)

s.t.
·
y0(t) = x0(p0, t), t ∈ [t0, t1] t0, t1 fixed
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and

S.I.max
p1(t)

Z T

t1

{x1(p1, t)(p1 −m− ce(γ−λ)y(t1)−γy1(t))}dt (1.34)

s.t.
·
y1(t) = x1[p1, t], t ∈ [t1, T ] t1, T fixed

When p∗0 and p∗1 are solutions to the problem MP (1.22), given conditions (1.5) to

(1.9), then with the Hamiltonians being defined as usual,

H0(p
∗
0, η0(t)) ≥ H0(p0, η0(t)) ∇p0(t) ≥ 0 (1.35)

H1(p
∗
1, η1(t)) ≥ H1(p1, η1(t)) ∇p1(t) ≥ 0 (1.36)

where

H0(p0, η0(t)) = π0(t) + η0(t)x(p0, t)

H1(p1, η1(t)) = π1(t) + η1(t)x(p1, t)

Adding (1.35) and (1.36), one can see that p∗0 and p
∗
1 also satisfy Hamiltonian condition

(1.11). Therefore the control variables that solve (1.22) also solve problems (1.35) and

(1.36) respectively. Denote the maximized values of the objectives S.0. (1.33) by V ∗0 (t)

and S.I. (1.34) by V ∗1 (t). A standard result of optimal control theory is

∂V ∗0 (t)

∂t1
= H0(t1) and

∂V ∗1 (t)

∂t∗1
= −H1(t

∗
1) (1.37)

Consider the optimal value of t∗1, denoted by t
∗
1 ∈ (t0, T ). If t∗1 is optimal, it must solve

max
t1

½Z t1

t0

π0(p0, t)dt+

Z T

t1

π1(p1, t)dt− a(t1)

¾
= V ∗0 (t) + V ∗1 (t)− a(t1) (1.38)

∂

∂t1
[V ∗0 (t) + V ∗1 (t)− a(t1)] = H0(t

∗
1)−H1(t

∗
1)−

∂a(t∗1)

∂t∗1

.
= 0
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Figure 1.2: Benefits and costs of delaying innovation

⇔ a0(t∗1) = π0(t∗1) + η0(t
∗
1)x[p0, t

∗
1]− π1(t∗1)− η1(t

∗
1)x[p1, t

∗
1] (1.39)

(1.39) reveals that the optimal innovation date t∗1, the difference of the first and

second phase’s returns equal the derivative of the innovation function with respect to t∗1,

where the word ’return’ circumscribes the instantaneous profit flow π(t∗1) and the return

to experience η(t∗1)x[p, t
∗
1]. A simple innovation cost function a (·) that shall mimic

reality has the following characteristics: a(t1) > 0 ∇t \ t = T where a(T ) = 0, a0 < 0,

a00 > 0. Thus innovation is costly if it is implemented within the planning horizon.

The cost is proportionally larger, the sooner innovation takes place. The right side of

(1.39) is moderately negative over the entire planning horizon, which can be shown

numerically. Therefore the equality of both sides is guaranteed for an appropriate set

of parameters. Figure 1.2 demonstrates that postponing innovation comes along with

lower innovation cost (left diagram), but an increase of the production cost (on the

right). The optimality condition for t∗1 (1.39) conveys the same result; in the optimum

the cost savings of delaying innovation per period (left side) equals the differences of

return of phase 1 and 2 (right side).

In section 1.2.4, the innovation cost function was changed to a[y(t1), t1]. If one

accounts for these changes here, (1.39) adjusts to

∂a[y(t∗1), t
∗
1]

∂t∗1
+
∂a[y(t∗1), t

∗
1]

∂y(t∗1)

∂y(t∗1)

∂t∗1
= π0(t∗1)+η0(t

∗
1)x(p0)−π1(t∗1)−η1(t∗1)x(p1, t∗1) (1.40)
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If ∂a[y(t1),t1]
∂t1

has not changed and the assumptions ∂a[y(t1),t1]
∂y(t1)

< 0 and ∂y(t1)
∂t1

> 0 hold,

then the left side of (1.40) decreases. The optimal date of innovation would increase and

the monopolist’s research budget would decrease. When an increase in y(t1) decreases

the innovation cost, then the value of waiting with an innovation adoption increases.

1.3.2 Numerical part

After introducing a specific demand function, a numerical simulation method is used

to find specific values of t∗1, y(t
∗
1) and y(T ). Tax and subsidy parameters are added

simultaneously. They are also helpful for the next section, when a welfare analysis is

carried out.

Demand: The per period inverse demand function is,

p(xi) =
xi
−α

1− α
(1.41)

for i ∈ (0, 1). For p(xi) as defined in (1.41), the price elasticity of demand is ε = −∂x
∂p

p
x
=

1
α
.11 It follows from (1.24) and (1.25) that MRi = ki ⇔ pi(1 − α) = ki ⇔ x−αi = ki,

where

k0 =

µ
m+

λ

γ
ce(γ−λ)y(t

∗
1)−γy(T ) +

γ − λ

γ
ce−λy(t

∗
1)

¶

k1 =
¡
m+ ce(γ−λ)y(t

∗
1)−γy(T )

¢
Sales subsidy/ tax: An ad valorem subsidy (τ > 1) or tax parameter (τ < 1) is added,

a subsidy shifts the demand function out, a tax shifts it in. A demand function of the

the type in (1.41), which includes the parameter τ is

xi =

µ
τ

pi(1− α)

¶β

(1.42)

It is helpful to transform (1.39) such that the t2-optimality condition becomes

x0 [p0 −MC(t∗1) + η0(t
∗
1)]− x1 [p1 −MC(t∗1) + η1(t

∗
1)] = a0(t∗1) (1.43)

(1.29), (1.42) and (1.2) or (1.3) are substituted in (1.43)

11Define β = 1
α . One can easily account for a time-varying demand function by multiplying p(xi)

with b(t) where b(t)β = beδt. But this does not add much to this analysis.
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ατβ

1− α

³
k1−β0 − k1−β1

´
= a0(t∗1) (1.44)

Innovation cost: An innovation cost function that fulfills the requirements; a(t∗1) >

0,∇t \ t = T where a(T ) = 0. a0 < 0, a00 > 0 is

a(t∗1) = ie−μt
∗
1 − ie−μT (1.45)

The parameter i affects the level of the innovation cost, the parameter μ the slope with

respect to t∗1.

Innovation subsidy/ tax: The innovation subsidy is constructed in a way such that the

government either pays a part of the innovation cost, s > 0 or charges a tax, s < 0.

Thus the gross innovation cost is

a(t∗1) = ρ[ie−μt
∗
1 − ie−μT ] (1.46)

where ρ = 1− s. a0(t∗1) decreases with ρ, hence it becomes less beneficial for the firm

to procrastinate the innovation timing and the innovation date occurs earlier when

innovation is subsidized. Equation (1.44) can be rewritten as

ατβ

1− α

³
k1−β0 − k1−β1

´
= −ρμie−μt∗1 (1.47)

(1.47) is the optimality conditions for t1. In addition, one needs to express y(t∗1)

and y(T ) to solve for these three variables simultaneously. The demand function (1.42)

and the optimality condition pi = (1−α)−1ki solve for the per period demand of phase

1, x0 =
³

τ
k0

´β
. As the per period production is constant, the cumulative production

quantity up to the innovation date t∗1 is simply

yM(t∗1) =

µ
τ

k0

¶β

(t∗1 − t0) (1.48)

Similarly, y(T ) equals the integral of the second phase’s per period production flows

between t∗1 and T , which is added to the cumulative quantity up to t∗1

yM(T ) = y(t∗1) +

µ
τ

k1

¶β

(T − t∗1) (1.49)

Equations (1.47), (1.48) and (1.49) are three independent equations that contain as
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many unknowns t∗1, y(t
∗
1) and y(T ). The parameters c, m, i, γ, λ, α, μ, δ and the

planning horizon, t0 and T are known to the firm. Thus the model can be solved

numerically.12

Results

When y(T ) is endogenous then (1.30) does not hold. Figure 1.3 illustrates, how

the variables of the model t∗1, y(t
∗
1), y(T ) and the prices p0, p1 are affected by τ , ρ

(both upper part), λ, and γ (both lower part). The vertical axis of the cumulative

quantities is on the right side of each of the four panels, the vertical axis of all other

variables on the left side. In the upper left panel sales taxes (τ < 1) and subsidies

(τ > 1), in the upper right panel innovation subsidies (ρ < 1) and taxes (ρ > 1) vary.

Taxes/ subsidies are absent when τ = ρ = 1.13 Taxes and subsidies, either on sales

or innovation cost have the same effect. Taxes increase the prices of both phases and

decrease the total cumulative production. The cumulative quantity at the innovation

date increases, whenever innovation is postponed.

The lower panel demonstrates what happens when the learning parameter λ varies

in a range of [0.5%, 1.5%], the lower right panel shows γ varying in a range of

[4.5%, 5.5%]. A rise in either learning parameter reduces both prices and increases

total cumulative quantity. Innovation is delayed when λ increases, it occurs earlier,

when γ increases. y(t∗1) moves into the same direction as t
∗
1. Subsidies and more in-

tense learning therefore are shown to reduce prices. A large λ decreases both prices

but the larger price p0 is charged by the monopolist longer, because a postponement of

innovation means that the length of phase 1 increases. In the absence of discounting

the average per period price is still smaller. But if consumer discounting is high, a

large λ might not be beneficial for buyers.

So far positive externalities, which justify subsidies have been ignored. An early

distribution of solar panels is preferred to a later date, to reduce the total carbon

dioxide concentration in the atmosphere. Both types of subsidies yield a lower p0 and

a lower t∗1, which together guarantee that with regards to time, more products are sold

12So far a process innovation was analyzed, it is however fairly simple to account for a product
innovation in this model. When a firm does not change its cost structure, but its product features,
then it is possible to change the demand function from one with an exponent of α to one with an
exponent different from α after t∗1. This article considers the case, where consumers do not anticipate
price changes, thus the demand is equal before and after t∗1.

13The command ’fsolve’ of the computer program MATLAB solves systems of nonlinear equations.
It was used to derive t1, y(t1) and y(T ) based on (1.47), (1.48) and (1.49). The parameters have been
arbitrarily chosen. The results hold for other parameter sets, which yields a solution. The parameters
used here are: α = 0.9, γ = 0.05, λ = 0.01, t0 = 0, μ = 0.1, m = 1, c = 5, T = 50 and i = 20.
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Figure 1.3: A comparative analysis, when all variables are endogenous

earlier, because p0 > p1. Thus both subsidies are beneficial, when early distributions

play a role.

Results change drastically, when y(T ) is given. The results of the partial analysis,

(1.30) and (1.31) are supported by a numerical analysis, illustrated in figure 1.4. The

structure and the parameters of this figure are the same as in figure 1.3. In figure

1.3 a total cumulative production quantity of around y(T ) = 8 was derived. Figure

1.4 shows the results, when y(T ) = 8 is assumed to be given exogenously. Thus the

optimality condition (1.49) is excluded from the analysis. The results here have changed

dramatically: innovation is postponed when sales are subsidized. It occurs earlier,

when the innovation cost is subsidized. p0 increases when innovation is subsidized, it

decreases, when sales are subsidized. p1 moves into the opposite direction. These

results correspond with the analytical study above, where it was shown that ∂p0
∂t1

< 0

and ∂p0
∂t1

> 0 given y(T ) being exogenous. In the absence of subsidies the average

production unit price equals pAV = y(t∗1)p0 + [y(T )− y(t∗1)] p1 = 53.47. If a low sales

subsidy (τ = 1.05) is introduced, then the average price increases to pAV,S = 53.89. An
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innovation subsidy (ρ = 0.95) decreases the average price pAV,I = 53.27. If a regulator

cares about consumer prices, but it wants to subsidize the industry as it yields positive

externalities, then an innovation subsidy is preferred over a sales subsidy. Even though

an innovation subsidy increases p0, the average price decreases. In order to keep p0

from rising, a price constraint could be implemented for the first time phase.

Proposition 1.5 A price constraint during the first phase increases the consumer sur-
plus and decreases t∗1.

Proof. See appendix.

The lower panels show the affect of the learning parameters. An increase of λ re-

duces p0 strongly, while p1 increases moderately. An increase of the second phase’s

learning parameter γ decreases p1 and increases p0. This observation is in line with

the results from the partial analysis (1.26) and (1.27). A change of any learning pa-

rameter affects the timing of innovation, which influences the cumulative quantity at

the innovation date positively if t∗1 increases and negatively if t
∗
1 decreases. A change

of y(t∗1) affects the prices as shown by (1.30) and (1.31). The average price decreases,

when either parameter increases. In the baseline case λ = 1%, γ = 5% and the average

price is pAV = 53.47. When λ = 1.5%, the average price increases to pAV,λ = 52.87,

when γ = 5.5% the average prices increases to pAV,γ = 52.67.

When the timing of early distribution plays a role, one has to examine a change of t∗1
and p0 to evaluate a policy or change of parameters in the same way as it has been done,

when y(T ) was endogenous. An innovation subsidy yields a higher p0, but innovation

occurs earlier than in the presence of a sales subsidy, where p0 is lower and t1 is larger.

With an innovation subsidy, fewer products are sold during the first phase. However,

the second phase, during which the number of products sold per period is larger (as

p1 < p0) begins earlier. Thus a regulator who is concerned about early distributions

prefers a sales subsidy towards an innovation subsidy if she is very impatient.

1.4 More on welfare effects

This section contains a welfare analysis based on consumer and producer rents, which

are first derived. It is illustrated that the two types of subsidies of either innovation or

sales have different effects on consumer/ producer rents. This article does not contain

a general welfare analysis, which needs to verify clearly the positive externalities that

would induce a state to intervene. It would only be rational to do this, if one considers
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Figure 1.4: Comparative statics with y(T ) being exogenously determined
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a specific industry with information pertaining to the model’s underlying parameters,

which is beyond the scope of this paper. This section shows that an innovation (sales)

subsidy, which is fully financed through a sales (innovation) tax, changes the proportion

of consumer and producer rents. This way consumer rents could be increased, which

has a market power mitigating effect.14 In this part all variables are endogenous. The

same inverse demand function holds; p = τ
1−αx

−α and in the numerical analysis, the

same set of parameters is used as before.

Consumer Rents: The per-period consumer rent during the first phase, CR0t equals

the area underneath the inverse demand function above the monopoly price.15

CR0t =

Z ∞

p0

x0[p0(t)]dp =

µ
τ

1− α

¶β Z ∞

p0

p−βdp =

µ
τ

1− α

¶β −1
1− β

p1−β0

=
α

(1− α)2
k1−β0 τβ (1.50)

The price is substituted for k0/(1−α) and k0 = m+ γ−λ
γ
ce−λy(t

∗
1)+ λ

γ
ce(γ−λ)y(t

∗
1)−γy(T ).16

The consumer rent over the entire first phase CR0 is

CR0 =

Z t∗1

t0

CR0tdt =
ατβk1−β0

(1− α)2
(t∗1 − t0) (1.51)

Applying the same steps again, the per period consumer rent after the innovation has

taken place CR1t and the consumer rent over all these periods, CR
1 are

CR1t =
ατβk1−β1

(1− α)2
(1.52)

CR1 =
ατβk1−β1

(1− α)2
(T − t∗1) (1.53)

where k1 = m+ ce(γ−λ)y(t
∗
1)−γy(T ).

14A valuation of such a measure is not part of this analysis. It depends on the specific industry to
judge, if such a procedure is justifiable.

15A necessary assumption is that the elasticity of demand exceeds one; β = 1
α > 1, to guarantee

lim
p→∞

p1−β = 0.
16An increase of α is equivalent to a decrease of the demand elasticity. Consider (1.50), an increase

of α increases CR0t , which is quite intuitive. A monopolist picks a lower price when the elasticity is
large.
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Producer Rents: The producer rent of the monopoly, which equals its profit over the

entire planning horizon is

PR =

Z t∗1

t0

x0
¡
p0 − ce−λy(t) −m

¢
dt+

Z T

t∗1

x1
¡
p1 − ce(γ−λ)y(t

∗
1)−γy(t) −m

¢
dt

=

µ
k0
1− α

−m

¶µ
τ

k0

¶β

(t∗1 − t0) +

µ
k1
1− α

−m

¶µ
τ

k1

¶β

(T − t∗1)

+
1

λ

£
ce−λy(t

∗
1) − ce−λy(t0)

¤
+
1

γ

£
ce(γ−λ)y(t

∗
1)−γy(T ) − ce−λy(t

∗
1)
¤

(1.54)

Results

The results are summarized by figure 1.5. In the absence of government inter-

ventions consumer and producer rents are given by the horizontal line. After a sales

subsidy is introduced to the market, consumer and producer rents jump upwards to the

level, where the falling curves touch the vertical axis. Then an innovation tax comes

into place. It is depicted on the horizontal axis of each panel. An increase of the in-

novation tax reduces consumer and producer welfare, which is expressed by the falling

graph. Producer rents fall much faster than consumer rents. Hence a sales subsidy,

which is financed through an innovation tax has market power mitigating effects. This

illustration shall not propose such a market intervention, rather it shows that either

subsidy type has different effects on producer and consumer rents. A similar figure

could be shown for welfare changes through an innovation subsidy that is financed by

a sales tax, where the upper curve is steeper for consumers.

1.5 Conclusion

The innovation of this model is that it is able to evaluate distribution and innovation

subsidies, while innovation costs depend on time, and learning depends on cumulative

production. This article examines the pricing of a monopolist and a public owned

firm in an environment, where the unit cost of production decreases through learning.

The learning intensity decreases with cumulative production. The firm can invest in

an innovation process. At the time, when research is successful, learning for a given

production quantity jumps. Thus a lower cost level can be achieved with less cumulative
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production added. So far models, which have included learning and innovation have

assumed that learning occurs through time. Hence these models are not applicable

to questions in the area of industrial organization, because learning has no effect on

production or pricing.

In the absence of discounting it is shown that prices before and after the innova-

tion date are constant. The price of the first phase exceeds the price of the second

phase, hence there is a downward jump when the new technology is implemented. If

discounting is included in the analysis, prices before and after the innovation date rise,

because the return on learning falls. The problem of a monopolist and social planner

are quite similar, however, this analysis concentrates on the monopolist, because learn-

ing industries, although often severely subsidized, are generally not publicly owned.

Other central results of this paper are: innovation subsidies and sales subsidies reduce

the prices of both phases if all variables (the timing of innovation t1, the cumulative

production quantities at the innovation date, y(t1) and at the end of the planning hori-

zon, y(T )) are endogenous. Both types of subsidies induces the date of innovation to

occur earlier. Therefore the total quantity produced during the entire planning horizon

increases. The production plan in the presence of subsidies lies entirely above the pro-

duction plan without subsidies. Thus if early distributions yield positive externalities,

then subsidies on sales and on innovation contain an additional positive effect.17 An-

other central result emerges, when the total production y(T ) is restricted.18 In this case

the two kinds of subsidies analyzed have different effects. Innovation subsidies decrease

the innovation date, but the price during the first phase increases (thus sales decrease).

It is shown that a price cap can reduce the first phase’s price, furthermore it induces

innovation to occur earlier. In order to evaluate an innovation subsidy one would need

to consider the negative effect of the "early-distribution argument". Sales subsidies

induce the innovation timing to occur later, which means that for a longer period of

time, consumer pay the higher first phase’s price p0. The positive effect is that p0 falls,

which is why the "early-distribution argument" might be in favour of sales subsidies.

The two subsidies considered have different effects on consumer and producer surplus.

It is also shown that a subsidy on innovation (sales), which is financed through a tax on

sales (innovation), changes the proportion of consumer and producer rents. Customers

generally benefit more from sales subsidies, producers from innovation subsidies.

17In the renewable energy sector early installations increase the positive externality. The total
amount of carbon dioxide in the atmosphere is reduced, because renewable energy sources are substi-
tutes to conventional energy sources that emit C02.

18For example in medium-sized countries, there is a fixed number of places, where wind energy
plants can be built.
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This paper does not conduct a general welfare analysis; for that one would need to

measure the cause for government subsidies (positive externalities). This would only

be feasible, if one would have specific learning parameters and the parameters of the

innovation cost function, which describe a specific market. This goes beyond the scope

of this article and is left for future work. It would also be interesting to show, how the

market equilibrium changes, when the date of innovation is anticipated by customers.

Most likely it would be optimal for some to wait and purchase the product after the

innovation date. This would reduce the learning before t1 unless innovation is delayed

by the firm. Another extension of this paper could add more insight by accounting for

a stochastic innovation process, market entry and technology switching cost.
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Proof of lemma 1.1

A transversality condition for the state variable solves for const1 in (1.13). The

total cost before t1 is sunk and can be ignored, η0(t1) has an influence only on future

cost. The area below the learning curve between y(t1) and y(t), for t ∈ [t1, T ] is defined
as

Γ [y(t)] =

Z y(t)

y(t1)

m+ce−λy(t1)−γ[v−y(t1)] dv = m[y(t)−y(t1)]+
c

γ
[e−λy(t1)−e−λy(t1)−γ[y(t)−y(t1)]

(1.55)

The time derivative is Γ̇ = dΓ
dt
= x(t)[m+ce−λy(t1)−γ[y(t)−y(t1)]], thus the time dependent

area under the learning curve or the total cost of the second phase isZ T

t1

Γ̇dt = [y(T )− y(t1)]m+
c

γ
[e−λy(t1) − e−λy(t1)−γ[y(T )−y(t1)]]

The usual methods of the principle of variations are used. At first the optimal

path of the production flow is displaced for the cost that occurs after t1; x(p1(t), t)→
x(p1(t), t) + δφ(t), −λ

γ
ce−λy(t1) + λ

γ
ce(γ−λ)y(t1)−γy(T )

Γ [y(t)] = y(T )m− y(t1)m−
1

γ
ce(γ−λ)y(t1)−γy(T ) +

1

γ
ce−λy(t1)

Γ [y(t)]δ = [

Z T

t0

[x(t) + δφ(t)]dt]m− [
Z t1

t0

[x(t) + δφ(t)]dt]m

+
1

γ
ce−λ

t1
t0
[x(t)+δφ(t)]dt − 1

γ
ce(γ−λ)

t1
t0
[x(t)+δφ(t)]dt−γ T

t0
[x(t)+δφ(t)]dt

In a second step the displaced total cost after t1 (called Γ [y(t)]δ) is differentiated with

respect to δ. The derivative is evaluated at δ = 0, employing the standard calculus of
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variations approach,

∂Γ [y(t)]δ

∂δ
|(δ=0) =

½
−λ
γ
ce−λy(t1) +

λ

γ
ce(γ−λ)y(t1)−γy(T )

¾Z t1

t0

φ(t)dt (1.56)

+{m+ ce(γ−λ)y(t1)−γy(T )}
Z T

t1

φ(t)dt

where (1.56) separates the terms multiplied by
R t1
t0
φ(t)dt and

R T
t1
φ(t)dt respectively.

For any t > t1, the marginal cost at T are collected. This result is similar to Spence’s

(1981) learning model. Given a production plan, he shows that when a firm extends

its production by one unit at any time, then the incremental cost is equal to marginal

cost at the end of the planning horizon. For t0 ≤ t ≤ t1 we collect another term;

−λ
γ
ce−λy(t1) + λ

γ
ce(γ−λ)y(t1)−γy(T ) < 0. For t = t1 the incremental cost is thus the

marginal cost of the second phase at T plus
h
−λ

γ
ce−λy(t1) + λ

γ
ce(γ−λ)y(t1)−γy(T )

i
. The

value of delaying the innovation by one production unit is obtained when this term

is multiplied by −1. Thus the first phase’s costate at the innovation date is η0(t1) =
λ
γ
ce−λy(t1) − λ

γ
ce(γ−λ)y(t1)−γy(T ).

Proof of proposition 1.2

When a firm produces an additional quantity �0 before the innovation occurs (t0 ≤
t ≤ t1) then the pricing rule (1.24) holds. The incremental cost for the first time phase

is computed next. The total cost is equal to

y(T )m+
c

λ
[1− e−λy(t1)] +

c

γ
[e−λy(t1) − e−λ[y(t1)]−γ[y(T )−y(t1)]] (1.57)

When the firm produces an additional unit �0 before the innovation takes place, then

total cost increases to

(y(T ) + �0)m+
c

λ
[1− e−λ[y(t1)+�0]] +

c

γ
[e−λ[y(t1)+�0] − e−λ[y(t1)+�0]−γ[y(T )−y(t1)]] (1.58)

The incremental cost during the first phase is denoted by IC0

IC0 =
(1.58)− (1.57)

�0
= c{−e

−λ[y(t1)+�0]

λ�0
− e−λy(t1)] +

e−λ[y(t1)+�0] − e−λy(t1)

γ�0
.

−e
−λ[y(t1)+�0]−γ[y(T )−y(t1)] − e−λ[y(t1)]−γ[y(T )−y(t1)]

γ�0
}+m (1.59)

It needs to be shown that (1.24) is equivalent to setting the marginal revenue equal
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to the incremental cost (1.59). ce−λy(t1) is equivalent to lim
�0−>0

− c
λ�0
[e−λ[y(t1)+�0] −

e−λy(t1)] and −λ
γ
e−λy(t1) to lim

�0−>0
e−λ[y(t1)+dx]−e−λy(t1)

γ�0
. In order to show the equivalence

of the third term, it has to be transformed: lim
�0−>0

− 1
γ�0
[e−λ[y(t1)+�0]−γ[y(T )−y(t1)] −

e−λ[y(t1)]−γ[y(T )−y(t1)]] = − 1
γ�0
[e(γ−λ)y(t1)−γy(T )−λ�0 − e−λ[y(t1)]−γ[y(T )−y(t1)]]. It follows that

lim
�0−>0

− 1
γ�0
[e(γ−λ)y(t1)−γy(T )−λ�0−e−λ[y(t1)]−γ[y(T )−y(t1)]] = λ

γ
e(γ−λ)y(t1)−γy(T ), where the fol-

lowing rule was applied: lim
�0−>0

ea−λ�0−ea
�0

= ea lim
�0−>0

e−λ�−1
�

= eaλ, for any constant a ∈ R.
This completes the first part of the proof. During the first time phase, the monopolist

behaves optimally, when it sets marginal revenue equal to incremental cost at each

instant of time. Next, the second time phase ∇t1 ≤ t ≤ T is analyzed. (1.25) is the

optimality condition during this phase. When the firm produces an additional unit �1
after the innovation has occurred, total cost (1.57) increases to

(y(T ) + �1)m+
c

λ
[1− e−λy(t1)] +

c

γ
[e−λy(t1) − e−λy(t1)−γ[y(T )+�1−y(t1)]] (1.60)

IC1 is the incremental cost that occurs through an additional �1 after t1

IC1 =
(1.60)− (1.57)

�1
=

c0
γ�1
[e−λy(t1)−γ[y(T )−y(t1)] − e−λy(t1)−γ[y(T )+�1−y(t1)]] (1.61)

(1.25) is equivalent to (1.61), because ce(γ−λ)y(t1)−γ[y(T )−y(t1)] = lim
�1−>0

c
γ�1
[e−λy(t1)−γ[y(T )−y(t1)] − e−λy(t1)−γ[y(T )+�1−y(t1)]].

Proof of proposition 1.3

Pricing during the first phase ( t ≤ t1); when r 6= 0

This section reconstructs equation (1.24) in the presence of discounting with t0 = 0.

The costate that contains a discount rate is denoted by ψ0(t) = e−rt η0(t). The

transversality condition for ψ0(t1) has to be derived. It is shown that (1.12) holds,

when η0(t) is substituted for ψ0(t)

∂H

∂p0(t)
= x0(p0(t), t)+p0(t)

∂x0(p0(t), t)

∂p0(t)
−∂x0(p0(t), t)

∂p0(t)
(m+ce−λy(t))+ψ0(t)

∂x0(p0(t), t)

∂p0(t)
.
= 0

⇔ p0(1−
1

ε(t)
) = m+ ce−λy(t) − ψ0(t) (1.62)

The second first order condition (1.13), becomes

ψ̇0(t)− rψ0(t) = −
∂H

∂y0(t)
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multiplying this equation by e−rt and transforming yields

⇔ e−rtψ̇0(t)− re−rtψ0(t) = −e−rt
∂H

∂y0(t)

⇔ e−rtψ0(t) + const3 =

Z £
e−rt(−λ)ce−λy0(t)x0(t)

¤
dt

⇔ e−rtψ0(t) + const3 = e−rtce−λy0(t) + r

Z
e−rtce−λy0(t)dt

⇔ ψ0(t) = ce−λy0(t) + rert
Z
e−rtce−λy0(t)dt− ertconst3 (1.63)

In order to find an expression of the costate at the innovation date ψ0(t1), the total

cost that occurs after the innovation is expressed by V .

V =

Z T

t1

©
x1(p1(t)(m+ ce(γ−λ)y(t1)−γy(t))e−rt

ª
dt

Integration by parts yields:

V =

Z T

t1

re−rt
½
my1(t)−

1

γ
ce(γ−λ)y(t1)−γy(t)

¾
dt

+e−rt
½
my(T )− 1

γ
ce(γ−λ)y(t1)−γy(T ) −my(t1) +

1

γ
ce−λy(t1)

¾
Applying the usual methods of the principle of variations; the optimal path of the

production flow x(p1(t), t)→ x(p1(t), t) + δφ(t) in V is displaced, before its derivative

is evaluated at δ = 0 according to the standard calculus of variations approach.

V =

Z T

t1

re−rt
½
m

Z t

t0

[x1(t) + δφ(t)] dt− 1
γ
ce(γ−λ)

t1
t0
[x1(t)+δφ(t)]dt−γ t

t0
[x1(t)+δφ(t)]dt

¾
dt

+e−rt{m
Z T

t0

[x1(t) + δφ(t)] dt− 1
γ
ce(γ−λ)

t1
t0
[x1(t)+δφ(t)]dt−γ T

t0
[x1(t)+δφ(t)]dt

−m
Z t1

t0

[x1(t) + δφ(t)] dt+
1

γ
ce−λ

t1
t0
[x1(t)+δφ(t)]dt}

∂V

∂δ
]δ=0 =

Z T

t1

re−rt
½
m

Z t

t0

φ(t)dt− γ − λ

γ
ce(γ−λ)y(t1)−y(t)

Z t1

t0

φ(t)dt+ ce(γ−λ)y(t1)−y(t)
Z t

t0

φ(t)dt

¾
dt
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+e−rt{m
Z T

t0

φ(t)dt− γ − λ

γ
ce(γ−λ)y(t1)−γy(T )

Z t1

t0

φ(t)dt+ ce(γ−λ)y(t1)−y(T )
Z T

t0

φ(t)dt

−m
Z t1

t0

φ(t)dt− λ

γ
ce−λy(t1)

Z t1

t0

φ(t)dt}

=

Z T

t1

re−rt
½£

m+ ce(γ−λ)y(t1)−y(t)
¤ Z t

t0

φ(τ)dτ − γ − λ

γ
ce(γ−λ)y(t1)−y(t)

Z t1

t0

φ(t)dt

¾
dt

+e−rt{
Z t1

t0

∙
λ

γ
ce(γ−λ)y(t1)−γy(T ) − λ

γ
ce−λy(t1)

¸
φ(t)dt+

Z T

t1

£
m+ ce(γ−λ)y(t1)−y(T )

¤
φ(t)dt}

(1.64)

The term
Z T

t1

re−rt
n
γ−λ
γ
ce(γ−λ)y(t1)−y(t)

R t1
t0
φ(t)dt

o
dt can be ignored. It originates from

displacing the cumulative quantity before t1 after the innovation has already taken

place. As the firm cannot change y(t1) after t1, it cannot effect the cost during the first

time phase at t1. It just has an effect on the second phase’s cost. One can also examine

this term itself and recognize that for any t it is zero, because when t < t1 then the

first integral becomes zero, when t > t1, then the second integral is zero. Hence (1.64)

becomes Z T

t1

re−rt
½£

m+ ce(γ−λ)y(t1)−y(t)
¤ Z t

t0

φ(τ)dτ

¾
dt

+e−rt{
Z t1

t0

∙
λ

γ
ce(γ−λ)y(t1)−γy(T ) − λ

γ
ce−λy(t1)

¸
φ(t)dt+

Z T

t1

£
m+ ce(γ−λ)y(t1)−y(T )

¤
φ(t)dt}

(1.65)

One can replace the variables of the first term above. The range of τ is [t0, t] and that

of t is: [t1, T ] → t0 ≤ τ ≤ t ≤ T . After replacing the variables t0 ≤ t ≤ τ ≤ T , the

range is [t, T ] for τ , when t > t1 and it is [t1, T ] when t ≤ t1. Before the swap, t was

larger than t1 hence τ is larger than t1 after the swap. When t is smaller than t1, then

τ ’s lower limit is t1. When t is larger than t1, then τ ’s lower limit is t. The new range

of t is [t0, T ]. Figure 1.6 illustrates the range before and after replacing the variables t

and τ .

(1.65) can be transformed to

Z t1

t0

re−rt
½£

m+ ce(γ−λ)y(t1)−y(t)
¤ Z t

t0

φ(τ)dτ

¾
dt+

Z T

t1

re−rt
½£

m+ ce(γ−λ)y(t1)−y(t)
¤ Z t

t0

φ(τ)dτ

¾
dt



Appendix to Chapter 1 39

Figure 1.6: Exchanging variables
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+e−rt{
Z t1

t0

∙
λ

γ
ce(γ−λ)y(t1)−γy(T ) − λ

γ
ce−λy(t1)

¸
φ(t)dt+

Z T

t1

£
m+ ce(γ−λ)y(t1)−y(T )

¤
φ(t)dt}

The variables are replaced next.

=

Z t1

t0

½Z T

t1

r
£
m+ ce(γ−λ)y(t1)−y(T )

¤
e−rτdτ

¾
φ(t)dt+

Z T

t1

½Z T

t

r
£
m+ ce(γ−λ)y(t1)−y(T )

¤
e−rτdτ

¾

φ(t)dt+e−rt{
Z t1

t0

∙
λ

γ
ce(γ−λ)y(t1)−γy(T ) − λ

γ
ce−λy(t1)

¸
φ(t)dt+

Z T

t1

£
m+ ce(γ−λ)y(t1)−y(T )

¤
φ(t)dt}

=

Z t1

t0

½Z T

t1

r
£
m+ ce(γ−λ)y(t1)−y(T )

¤
e−rτdτ

¾
φ(t)dt

+e−rt{
Z t1

t0

∙
λ

γ
ce(γ−λ)y(t1)−γy(T ) − λ

γ
ce−λy(t1)

¸
φ(t)dt

+

Z T

t1

½Z T

t

r
£
m+ ce(γ−λ)y(t1)−y(T )

¤
e−rτdτ

¾
φ(t)dt+

Z T

t1

e−rt
£
m+ ce(γ−λ)y(t1)−y(T )

¤
φ(t)dt}

=

Z t1

t0

½
e−rt

∙
λ

γ
ce(γ−λ)y(t1)−γy(T ) − λ

γ
ce−λy(t1)

¸
+

Z T

t1

r
£
m+ ce(γ−λ)y(t1)−y(T )

¤
e−rτdτ

¾
φ(t)dt

+

Z T

t1

½
e−rt

£
m+ ce(γ−λ)y(t1)−y(T )

¤
+

Z T

t

r
£
m+ ce(γ−λ)y(t1)−y(T )

¤
e−rτdτ

¾
φ(t)dt}

(1.66)

The same reasoning as in (1.56) applies here hence the costate of the first phase with

a non-zero discount rate at t1 equals,

→ ψ0(t1) = e−rt1
∙
λ

γ
ce−λy(t1) − λ

γ
ce(γ−λ)y(t1)−γy(T )

¸
−
Z T

t1

r
£
m+ ce(γ−λ)y(t1)−y(T )

¤
e−rτdτ

(1.67)

The constant const3 is found in the following.

⇔ ψ0(t) = ce−λy0(t) + rert
Z
e−rtce−λy0(t)dt− ertconst3

→ ψ0(t1) = ce−λy0(t1) +

∙
rert

Z
e−rtce−λy0(t)dt

¸
t=t1

− ert1const3

→ ce−λy0(t1) +

∙
rert

Z
e−rtce−λy0(t)dt

¸
t=t1

− ert1const3 =
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e−rt1
∙
λ

γ
ce−λy(t1) − λ

γ
ce(γ−λ)y(t1)−γy(T )

¸
−
Z T

t1

r
£
m+ ce(γ−λ)y(t1)−y(T )

¤
e−rτdτ

−
Z T

t1

r
£
m+ ce(γ−λ)y(t1)−y(T )

¤
e−rτdτ

⇔ ert1const3 =

∙
λ

γ
ce(γ−λ)y(t1)−γy(T ) − λ

γ
ce−λy(t1)

¸
e−rt1+

Z T

t1

r[m+ce(γ−λ)y(t1)−γy(τ)]e−rτdτ

+ce−λy0(t1) +

∙
rert

Z
e−rtce−λy0(t)dt

¸
t=t1

It is substituted into the costate function (1.67), which is

→ ψ0(t) = ce−λy0(t) + rert
Z
e−rtce−λy0(t)dt

−
∙
λ

γ
ce(γ−λ)y(t1)−γy(T ) − λ

γ
ce−λy(t1)

¸
e−rt1−

Z T

t1

r[m+ce(γ−λ)y(t1)−γy(τ)]e−rτdτ−ce−λy0(t1)

(1.68)

Finally one can substitute the costate in equation (1.68) to find an expression, how the

monopolist sets the price during the first time phase.

p0(1−
1

ε(t)
) = m+ ce−λy0(t) − ce−λy0(t) − rert

Z
e−rtce−λy0(t)dt

+

∙
λ

γ
ce(γ−λ)y(t1)−γy(T ) − λ

γ
ce−λy(t1)

¸
e−rt1+

Z T

t1

r[m+ce(γ−λ)y(t1)−γy(τ)]e−rτdτ+ce−λy0(t1)∙
rert

Z
e−rtce−λy0(t)dt

¸
t=t1

⇔MR0(t) = m+

∙
λ

γ
ce(γ−λ)y(t1)−γy(T ) − λ

γ
ce−λy(t1)

¸
e−rt1 + ce−λy0(t1)

+

∙
rert

Z
e−rtce−λy0(t)dt

¸
t=t1

− rert
Z
e−rtce−λy0(t)dt+ r

Z T

t1

[m+ ce(γ−λ)y(t1)−γy(τ)]e−rτdτ

⇔MR0(t) = m+
λ

γ
ce(γ−λ)y(t1)−γy(T ) +

γ − λ

γ
ce−λy(t1)
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+r

Z t1

t

£
m+ ce−λy0(τ)

¤
e−r(τ−t)dτ + r

Z T

t1

[m+ ce(γ−λ)y(t1)−γy(τ)]e−r(τ−t)dτ (1.69)

With a positive discount rate, there are two additional terms in the optimality condi-

tion. These reflect the fact that the return to experience or learning, which is expressed

by a lower future cost, matters less, due to the presence of discounting. The optimal

plan is to increase p0 and thus present profits at the expense of future profits. Note

that (1.69) reduces to (1.24), when r = 0.

Pricing during the second phase ( t > t1); when r 6= 0

(1.25) and (1.17) can be rewritten to account for discounting

MR1(t) = m+ ce(γ−λ)y(t1)−γy(t) − ψ1(t) (1.70)

ψ1(t) = ce
(γ−λ)y(t1)−γy1(t) + rert

Z
e−rte(γ−λ)y(t1)−γy(t)dt− e−rtconst4 (1.71)

Extending production at t = T does not increase the profit, if the firm behaves opti-

mally. Hence ψ1(T ) = 0.

→ ψ1(T ) = ce
(γ−λ)y(t1)−γy1(T ) +

∙
rert

Z
e−rte(γ−λ)y(t1)−γy(t)dt

¸
t=T

− e−rT const4 = 0

⇔ ce
(γ−λ)y(t1)−γy1(T ) +

∙
rert

Z
e−rte(γ−λ)y(t1)−γy(t)dt

¸
t=T

= e−rT const4

→ ψ1(t) = ce
(γ−λ)y(t1)−γy1(t) + rert

Z
e−rte(γ−λ)y(t1)−γy(t)dt− ce

(γ−λ)y(t1)−γy1(T )

−
∙
rert

Z
e−rte(γ−λ)y(t1)−γy(t)dt

¸
t=T

MR1(t) = m+ce
(γ−λ)y(t1)−γy1(T )−rert

Z
e−rte(γ−λ)y(t1)−γy(t)dt+

∙
rert

Z
e−rte(γ−λ)y(t1)−γy(t)dt

¸
t=T

⇔MR1(t) = m+ce
(γ−λ)y(t1)−γy1(T )−rert

Z
e−rte(γ−λ)y(t1)−γy(t)dt+

∙
rert

Z
e−rte(γ−λ)y(t1)−γy(t)dt

¸
t=T

During the second phase, the monopolist sets p1 such that

⇔MR1(t) = m+ ce
(γ−λ)y(t1)−γy1(T ) + r

Z T

t

h
m+ ce

(γ−λ)y(t1)−γy1(τ)
i
e−r(τ−t)dτ (1.72)



Appendix to Chapter 1 43

With a positive discount rate, there is an additional term. Again, the optimality

condition reflects the fact that the return to experience is in the future, which is

discounted, thus p1 rises. (1.72) reduces to (1.25), when r = 0.

Proof of proposition 1.5

For a fix total production quantity y(T ), it is shown analytically and numerically

that a subsidy on innovation cost, induces the innovation to occur earlier and thus p0 to

increase. The welfare loss could be encountered by a price ceiling during this phase. The

price ceiling would have a counter effect, when the date of innovation is delayed by the

introduction of a price constraint. In this case, consumers would pay the higher price p0
for a longer period of time. The answer is a straightforward extension of the preceding

section and is based on a method that is used in Rees (1986). p0 is constant, therefore

either the price constraint p− p0 ≥ 0, where p is the price ceiling binds over the entire
interval [t0, t1] or it does not bind at all. When it does not bind, it has no effect. Assume

it does bind, and p∗0 > p, where p∗0 is the optimal price set by the monopolist; in this

case the monopolist looses some of its profit due to the price cap. This loss is denoted

byR[x0(p)], withRx0 < 0, andR > 0 if x < x(p0). The per period quantity x0 on which

R depends upon is considered as a function of p. Whenever p0 ≤ p, then x > x(p0) and

R ≡ 0. The new objective is Max
x0,x1,t1

MP 0 =

Z t1

t0

[π0(t)−R(x(p))] dt+

Z T

t1

π1(t)dt−a(t1)

subject to the constraints (1.5)-(1.9). The problem can be divided into two segments.

The maximand over the first phase [t0, t1] is V ∗0 ≡Max
R t1
t0
[π0(t)−R(x0(p0))] dt−a(t1),

that of the second phase is V ∗1 ≡Max

Z T

t1

π1(t)dt. t∗1 maximizes the sum V ∗0 + V ∗1 , and

satisfies ∂ (V ∗0 + V ∗1 ) /t1 $ 0, from which the optimality condition a0(t∗1) + R(x(p0)) =

π0(t∗1)+ η0(t
∗
1)x[p0(t

∗
1), t

∗
1] − π1(t∗1) − η1(t

∗
1)x[p1(t

∗
1), t

∗
1] can be derived. Aside from R

the optimality condition is the same as (1.39). The introduction of a price constraint

decreases t∗1. The low price p1 is charged for a longer time span, because the length of

phase 2 increases. In addition, an earlier innovation date causes p1 to decrease further.

Summing up one can say that the introduction of a price constraint along with

an innovation subsidy increases consumer rents during the entire planning horizon.

Producers receive lower revenues, when y(T ) is fixed, because prices do not increase,

however, their innovation cost decline, due to the subsidy. Their production cost

decrease, because producers learn with a larger learning parameter sooner.



Chapter 2

Optimal Fertility Decisions in a
Life-Cycle Model ∗

2.1 Introduction

Three of the most significant socioeconomic developments in virtually all the developed

economies in the second half of the 20’th century were the large increases in female

labor force participation, the falls in fertility rates and the increases in divorce rates. A

number of exogenous factors clearly have played an important role in these, for example

the growth in demand for female labor, the availability of the contraceptive pill, and

changes in divorce laws that have made divorce easier and less costly to obtain. It seems

also clear however that there are several possible interrelationships among these three

developments: child care and work in the market are alternative uses of a mother’s

time and increasing wage rates raise the opportunity cost of children; the attempt

to build a career could lead to postponing childbirth and having fewer children as a

result of this; the perception of an increased chance that the marriage might end in

divorce could lead to a decision to have fewer children. At the same time, there is

considerable heterogeneity across households in respect of female market labor supply,

even after controlling for wage rates and number and ages of children, and it does not

seem adequate simply to regard this as due to preference heterogeneity.19

In this paper we develop a new theoretical framework to try to explore some of these

interrelationships, and to consider possible explanations for them, that are rooted in

optimal intertemporal decision taking over the life cycle. A woman’s human capital,

∗This chapter is a joint work with Ray Rees.
19See Apps and Rees (2009), chapters 1 and 5, where this is discussed at some length.
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and therefore her wage rate, is endogenous and depends first on the choice of how much

formal education to acquire, and secondly on how much work experience to gain in the

labor market. Both these decisions affect the timing and number of births, and in turn

are affected by them because of the demands on time made by child care. We first set

out a model which allows these interacting decisions to be formally analyzed. We then

extend it by analyzing the effect on the timing and number of births of perceptions of

the likelihood of divorce.

There is a large literature that asks how children affect such economic variables

as demand patterns and consumption. In that context they examine intertemporal

decisions and equality questions. For an overview of this literature see Browning (1992)

and (Becker 1993). Most of the literature that deals with the effect of children on

labor supply concentrates on female labor participation, because the effect on male

labor market participation has so far been quite low.20 Ward and Butz (1980) show

empirically that couples time their births to avoid periods when the female’s income is

high. Heckman and Walker (1990) show that the negative (positive) relation between

the optimal number of children (fertility timing) and female wages is robust across a

variety of empirical specifications, while they cannot prove that the same holds for

male wages. Based on this literature we focus on the female as the utility maximizing

individual throughout this paper.

In order to assess the costs of raising children, one has to take account of the timing

of births. Labor market earnings depend on work experience. In an early study Happel

et al. (1984) set up a model in which a woman works before she gives birth and gains

labor market experience, and her income increases with experience. After giving birth

a woman takes some time off to raise her child or children. When she re-enters the labor

market, some of her experience has decayed by some constant factor. It is assumed to

be zero for unskilled workers, in which case there is no timing preference. Otherwise a

woman would want to either have children in the very beginning of her marriage, when

she has not accumulated any labor experience before her marriage or shortly before

her period of fecundity ends. In an empirical paper using Swedish data, Walker (1995)

decomposes the total costs of children into the opportunity costs of not working, the

foregone return for foregone human capital investment and the net direct. The model

in this paper will take account of this decomposition and solve for the optimal timing

in a continuous time framework.

Gustafsson (2001) gives a nice overview of the past theoretical and empirical re-

search on the optimal timing of childbirth. Cigno (1991) analyses a dynamic model

20Browning (1992) pp. 1449-1464
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in discrete time, in which the female’s income depends on her education level as well

as on labor market experience. He derives the optimality conditions that describe an

optimal fertility profile, with the value of the number of children growing at the rate

of interest. Along these lines he demonstrates that postponing childbirth raises the

income loss and lowers the human capital loss of a birth, because income rises with

labor experience. In order to go a step further in this paper we set up a model in

continuous time, which allows us to find an explicit solution for the fertility timing

and number of children. Blackburn et al. (1993) show theoretical linkages between

a woman’s fertility timing and her investments in human capital and income profile.

A late child bearer accumulates more human capital when the discount rate is larger

than the economy-wide growth rate of wages for late child bearers.

In our baseline model in the next section, we examine the effects of the income level

on our two variables of interest: the timing of fertility and the number of children. We

then go on to analyze how the return to labor market experience within the different

life cycle phases affects the timing and number of births, which is new in this literature.

We also have various cost parameters included for the purpose of deriving some policy

implications. Empirically it can be shown that less educated families decide to have

more children (De la Croix and Doepke, 2003). This model can be extended with an

education phase. Empirically it can be shown that less educated families decide to have

more children (De la Croix and Doepke, 2003). This model can be extended to include

an education phase, where ability plays a role. Individuals that would benefit from a

higher return to education, enter the labor market later, and have later, fewer children.

We waived this addition though as it does not add much to the existing literature.

The major part of the fertility literature is embedded in a deterministic framework.

Exceptions are Newman (1983) and Hotz and Miller (1986). Drastic simplifications

have to be made to keep these models manageable. As a consequence these models

have bang-bang solutions, where the probability of giving birth is piled up either at

the beginning of marriage or at the end of a woman’s period of fecundity. Our model

introduces some stochastic elements by introducing the possibility of divorce. We then

show how this possibility influences the optimal timing and number of childbirths, and

this appears to be new to the literature.

2.2 The Baseline Model

We assume that the working life of a representative woman falls into 3 stages (Figure:

2.1):
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1. During the first phase t ∈ [t1; t2] she works full-time. A utility function that ac-
counts for leisure and consumption that can solve for the optimal control problem

is quasilinear in leisure and linear in consumption xi(t). Total time is assumed

to be Ψ, and labor is denoted by li(t), where i is the subscript for the present

phase the representative is in. An individual gains utility from consuming the

representative good and leisure: u1 [x1(t), l1(t)] = x1(t)+ ln [Ψ− l1(t)]. The price

of consumption is normalized to 1. All income is consumed, hence the budget

constraint is given by w(θ, L(t))l1(t) = x1(t), where the income w(θ, L(t)) de-

pends on ability θ and labor experience gained thus far, L(t) =
R t
t1
l(t)dt. Labor

experience L(t) is the state variable of this problem and to simplify notations it

is denoted L(t) = Lt. L0 is assumed to be zero, hence the the first income w(θ, 0)

depends solely on ability. Education could also be part of this ability parameter.

It can be shown how a proceeding education phase influences fertility; the timing

when she enters the labor market and her initial income becomes endogenous.

This reflects how, flexible this model setup is, and that it can be used for a wide

variety of policy evaluations that affect fertility. In order to keep the model man-

ageable to avoid adding more phases, we make the simplifying assumption that

all children are born at the same time t2 and do not require any child-care after

t3. The length of phase 3 has length h(k) and depends on the number of children

k. The decisions, how when to have children and how many children one wants

to have depend on each other in real life. This is also reflected by this model

setup as that t2 and k are derived simultaneously.

2. During phase two, when t ∈ [t2, t3], the woman has children and works part-time.
When she is married and does not get divorced, which we assume in the baseline

model, then time costs for k children that have been born at t2 are c(k, t2) and

the monetary costs are m(k, t2), which are lower that full costs. The father

bears the rest of the costs. For the purpose of this article, we do not need to

model the proportions. After divorce a woman’s time costs and monetary costs

increase to cd(k, t2) andmd(k, t2), respectively. cd andmd are strictly less than full

costs as the father has to bear some part that can be specified with appropriate

parameters. Having k children introduces not just costs but also benefits from

having children during phase two and three vi(k); i ∈ (2, 3). The utility function
is given by u2 [x2(t), l2(t)] = x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k). The labor

income is consumed partly by the mother and partly by her children, the budget

constraint is therefore w(Lt)l2(t) = x2(t)+m(k, t2), where the monetary costs for

the mother are smaller than the total monetary costs of having k children, because
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the husband is assumed to contribute his part as well. How much he contributes

depends on different aspects such as his own income, outside options for having k

children with this particular woman, and the intra-household distribution. This

model could be extended to take these complex issues into consideration. They

are left open for further research.

3. During the last phase t ∈ [t3, T ], the individual works full-time again. After
t3 children are older and do not have to be looked after. A woman consumes

the consumption good x3(t), leisure [Ψ− l3(t)] and retrieves utility from having

k children v3(k), thus u3 [x3(t), l3(t)] = x3(t) + ln [Ψ− l3] + v3(k). The budget

constraint in this phase is w(Lt3)l3(t) = x3(t). The wage depends on the labor

experience accumulated until the end of phase 2. We assume that the wage is

constant during this phase for simplicity. We also solved the model for a non-

constant wage, but the main results do not change. Empirically one can observe

that wage often even decreases before retirement, hence labor experience gained

then does not pay off. At time T the planning horizon ends. The retirement shall

not play any role in this analysis.

The Hamiltonian for phase i ∈ [1, 2, 3] is given by H [xi(t), li(t), ηi(t)] = ui +

ηi(t)li(t), where ηi(t) is the costate function of this optimal control problem. Dur-

ing the last phase η3(t) = 0, because the wage rate is constant then. The derivative of

the income with respect to labor experience is denoted as ∂wi(Lt)
∂Lt

= αi (, Lt). αi (Lt) is

larger during phase 1 than during phase 2 when a mother works part-time. A possible

income scheme is shown by figure 2.1, where we show income per time period. There

are no discontinuous vertical movements, because we assume the individual keeps earn-

ing the same hourly wage rate, when she enters a new phase, because experience does

not decay overnight.

The planning horizon begins at t = t1 and ends at t = T ; both exogenous. t2

is determined in the baseline model, t3 shall be equal to t2 plus h(k), which is time

independent and depends on the number of k children; t3 = t2+h(k). h(k) characterizes

the length of time of parental leave. For simplicity however, and because we are not

interested in the choice of interval between births, we assume that all children are born

at t2. We do not assume that skills deteriorate during phase two as Happel et al.

(1984), but that could be another possible extension.

We solve the problem for each of the three phases of a woman’s life backward from

the last. We develop necessary conditions for this problem. First we take t2 ∈ [t1, T ]
and k > 0 as given and solve for the optimal consumption and labor supply. In a next
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Figure 2.1: The per period income over a life-cycle.
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step we characterize the optimal time of childbirth t2. By a theorem of Hestens, given

the problem with t2 and k fixed, we can define ηi(t) on [ti, ti+1] ; i = 1, 2 as the costate

variables of labor experience.21

2.2.1 Solving the model

Phase 3: t ∈ [t3, T ]

An individual’s objective is to maximize
R T
t3
{x3(t) + ln [Ψ− l3] + v3(k)} dt subject to

the budget constraint. The Lagrangian is

Γ [x3(t), l3(t)] = x3(t) + ln [Ψ− l3] + v3(k) + λ3(t) [w(Lt3)l3(t)− x3(t)] (2.1)

where λ3(t) is the Lagrangian multiplier for phase three. For simplicity we assume no

discounting. A positive discount rate complicates the analysis unnecessarily and leads

to a decrease in labor supply, because experience is valued less. A proof follows the

same lines as proposition 1.3 of chapter 1. The constant labor supply and consumption

can be expressed in terms of the wage rate achieved at t3.

l∗3 = Ψ− 1

w(Lt3)
(2.2)

x∗3 = Ψw(Lt3)− 1 (2.3)

Phase 2: t ∈ [t2, t3]

The computations are more refined in this section as that labor experience ob-

tained within this phase has a future return. The objective here is to maximizeR t3
t2
{x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k)} dt + V ∗3 subject to the budget constraint

w(Lt)l2(t) = x2(t) +m(k, t2) and
·
Lt = l2(t). V ∗3 is the optimally chosen utility stream

from t3 to T , given some labor experience level Lt2. The choice of labor in this phase

determines Lt3 and thus effects V
∗
3 . The Lagrangian is

Γ2 [x2(t), l2(t)] = x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k) (2.4)

+η2(t)l2(t) + λ2(t) [w(Lt)l2(t)− x2(t)−m(k, t2)]

21see Takayama p.658
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From the first order condition of labor and the general optimal control condition,

where the time derivative of the costate is equal to the negative Hamiltonian’s derivative

with respect to the state variable (labor experience), we determine the following two

expressions after substituting the optimality condition for consumption λ2(t) = 1. Time

derivatives are denoted by a dot above a time dependent function.

l2(t) = Ψ− c(k, t2)−
1

η2(t) + w(Lt)
(2.5)

·
η2(t) = −

·
w(Lt) (2.6)

The transversality condition here is an expression of the costate at t3. Working an

additional hour at t3 increases her income and has a future return of

η2(t3) =
∂w(Lt)

∂Lt
|t=t3

Z T

t3

l3dt (2.7)

Given the transversality condition (2.7) and the transformation

l2(t)
∂w(θ, Lt)

∂Lt
=

·
w(Lt) (2.8)

we can transform (2.6) in a way such that the costate function becomes

η2(t) = w(Lt3)− w(Lt) + α2(t3) [LT − Lt3 ] (2.9)

where α2(t3) =
∂w(Lt)
∂Lt

|t=t3 . Using (2.5) and (2.9) one can solve for the optimal labor
supply, which is time independent and its consumption counterpart, which does depend

on time,

l∗2 = Ψ− c(k, t2)−
1

w(Lt3) + α2(t3) [LT − Lt3 ]
(2.10)

x∗2(t) = w(Lt)[Ψ− c(k, t2)−
1

w(Lt3) + α2(t3) [LT − Lt3 ]
]−m(k, t2) (2.11)

The labor supply is also independent from time in phase 1, which we show next. This

result is driven by a decreasing return of experience, as the length of time between

any t and T , when earlier accumulated experience pays off, decreases. On the other
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side income increases with experience, which would increase labor supply. Both effects

are equally strong and cancel out. This result can be compared to the pricing of

a monopolist that produces a single good and learns through production, which is

reflected by decreasing unit costs. At each period it sets an optimal price such that its

marginal revenue equals the marginal costs at the end of its planning horizon. Given

a constant elasticity of demand its price is constant, even though its marginal costs

decrease (Spence, 1981). One can also draw the parallel to chapter 1, where in section

1.2.1 it is shown that a social planner sets different prices across phases, but the same

price across periods within a phase.

This feature is useful considering the fact that we do not view changes in labor

supply from period to period in reality either. Hence this model is more realistic owing

to a derivable constant labor supply. Furthermore we derive an increasing consumption

function mimicing reality.

Phase 1: t ∈ [t1, t2]

An individual’s objective is to maximize V1 =
R t2
t1
{x1(t) + ln [Ψ− l1(t)]} dt+ V ∗2 dt

subject to the budget constraint and
·
Lt = l1(t). The choice of labor in this phase

determines Lt2 and influences the utility stream after t = t2, which is denoted by V ∗2 .

The solution to the problem is

l∗1 = Ψ− 1

w(Lt2) + α1(t2) [LT − Lt2 ]
(2.12)

x∗1(t) = w(Lt)

∙
Ψ− 1

w(Lt2) + α1(t2) [LT − Lt2 ]

¸
(2.13)

The costate functional for phase 2 has been derived following the same lines that have

led to (2.7)

η1(t) = w(Lt2)− w(Lt) + α1(t2) [LT − Lt2 ] (2.14)

Conclusively we are able to determine the labor supplies for each phase and thus

expressions for cumulative labor supplies at the end of phases 1-3. These expressions

are needed, when solving for the timing of fertility. They are given by the integrals

of instantaneous labor supplies (2.2), (2.10) and (2.12). Since the per period labor

supplies are all constants, we can multiply them with the length of each respective

phase and add the experience gained in former phases to find the labor experience at
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the end of each phase.

Lt2 =

∙
Ψ− 1

w(Lt2) + α1(t2) [LT − Lt2 ]

¸
(t2 − t1) (2.15)

Lt3 = Lt2 +

∙
Ψ− c(k, t2)−

1

w(Lt3) + α2(t3) [LT − Lt3]

¸
(t3 − t2) (2.16)

LT = Lt3 +

∙
Ψ− 1

w(Lt3)

¸
(T − t3) (2.17)

Jumps of Costates

Proposition 2.1 There is a discontinuous downward jump (upward) jump, when the
return of labor experience is larger (smaller) during the first of the two phases. Further-

more one can show that the quotient of the two consecutive phases 1 and 2 is constant

at t2, when the experience derivative of income is constant within each phase.

Proof. For αi(t) 6= const

η1(t2)

η2(t2)
=

α1(t2) [LT − Lt2 ]

w(Lt3)− w(Lt2) + α2(t3) [LT − Lt3 ]
=

α1(t2) [LT − Lt2 ]R t3
t2
α2(t)ltdt+ α2(t3)

R T
t3
Ltdt

(2.18)

When the experience return is larger at a given point in time during phase 1 (in

particular at t2) than during phase 2, then the quotient (2.18) must be greater than

one. Hence there is a downward jump of labour supply at t2.

For αi(t) = αi = const

η1(t2)

η2(t2)
=

α1 [LT − Lt2]

w(Lt3)− w(Lt2) + α2 [LT − Lt3 ]
=

α1
α2

(2.19)

If α2(t) decreases with time, then the denominator of (2.18) is smaller than that of

(2.19), hence (2.18) must be larger than (2.19), which means that the upward jump is

larger when αi(t) 6= const.

In order to simplify the continuative analysis, we assume that a1 and α2 are independent

of time but a1 > α2 as discussed earlier. The income payments at the end of phase one

and two are then equal to the expressions,
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w(Lt2) = w(Lt1) + α1Lt2 (2.20)

w(Lt3) = w(Lt2) + α2 [Lt3 − Lt2 ] (2.21)

w(LT ) = w(Lt3) (2.22)

where w(Lt1) = w(0) is the income of an individual who has recently commenced

working. (2.22) reminds us that there is no return on experience gained during phase

3. How results change, when we substitute w(LT ) = w(Lt3) + α3 [LT − Lt3] for (2.22)

where the experience return during phase 3 is α3 6= 0, is briefly explored later.

2.2.2 The optimality condition for the timing of childbirth

There is the desire to have children earlier in life; and the probability that a child

has a disability increases with the mother’s age. This is modelled by a change in the

expected cost. To keep things simple, we assume that c(k, t2) andm(k, t2) increase with

certainty, when childbirth is delayed. Advanced medical research makes it feasible to

give birth later in life, but such procedures are expensive. In addition to which, parents

that are wealthier spend more money on raising their children. Since income increases

in this model continuously, monetary costs m(k, t2) increase with t2. Besides a positive

derivative of m(k, t2) with respect to t2, we argue for a positive relation of time costs

c(k, t2) and childbirth. The same rules that apply on the labor market also apply when

people raise children: younger people can generally adopt better to changing market

conditions and learn faster. A mother in her early 20s might be still able to drop off

her children at the kindergarten, before going to her part-time job and pick them up

again in the afternoon. Furthermore we assume that the length of time required to

raise children is longer, when there are more children; h0(k) > 0. This term can be used

later to evaluate policy implications for schools, where children can stay all day long.

Once children are old enough to go to these schools, both parents could begin to work

full-time again. In the model the individual then enters phase 3. We included monetary

costs for phase 3 in an earlier working paper. Results shall be briefly discussed below.

With t2 fixed, one can take the utility stream from t1up to T and differentiate this

expression with respect to t2. This expression must be equal to zero at the optimal

time of childbirth t∗2. Now consider the following three sub-problems:

For t ∈ [t1, t2] t1 and t2 fixed
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SP ∗1 = max
x1(t)

Z t2

t1

{x1(t) + ln [Ψ− l1(t)]} dt (2.23)

s.t.
·

l1(t) = l1(t) and w(Lt)l1(t)− x1(t) = 0

For t ∈ [t2, t2 + h(k)] t2 and h(k) fixed

SP ∗2 = max
x2(t)

Z t2+h(k)

t2

{x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k)} dt (2.24)

s.t.
·

l2(t) = l2(t) and w(Lt)l2(t)− x2(t)−m(k, t2) = 0

For t ∈ [t2 + h(k), T ] t2, h(k) and T fixed

SP ∗3 = max
x3(t)

Z T

t2+h(k)

{x3(t) + ln [Ψ− l3(t)] + v3(k)} dt (2.25)

s.t.
·

l3(t) = l3(t) and w(Lt)l3(t)− x3(t) = 0

We need to use the Leibniz Rule to derive ∂SP∗i
∂t2

for i = 1, 2 and 3. For each phase i we

receive three terms:

1. The integral of ∂SP∗i
∂t2

with the corresponding phase’s bounds.

2. We subtract the t2 derivative of the lower bound of phase i, which is multiplied

by the Hamiltonian evaluated at the lower bound.

3. Finally we add the derivative of the upper bound with respect to t2, which is

multiplied by the Hamiltonian evaluated at that point.

Phase 1
∂SP ∗1
∂t2

= H∗
1 (t2) (2.26)

Applying the envelope theorem, the first term is zero. The lower bound is independent

of childbirth, hence term two is zero. The third term; H∗
1 (t2) intuitively means that an

incremental increase in t2 comes along with additional per period utility gained during

phase one at t2.

Phase 2
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∂SP ∗2
∂t2

= −∂c(k, t2)
∂t2

h(k)

Ψ− l∗2 − c(k, t2)
−H∗

2 (t2) +H2(t3) (2.27)

One can show that H∗
2(t3)−H∗

2 (t2) = 0. This result is due to the fact that in the

presence of learning, the per period utility within each phase is constant. The change

in utility through an increase in consumption is completely offset by the change of

utility through the decrease of the experience value. One can draw a parallel to the

earlier discussion in section 2.2.1. Hamiltonians within any phase are of equal value

independent of the period in which they are evaluated.

Applying the envelope theorem, the first term is −∂c(k,t2)
∂t2

h(k)
Ψ−l∗3−c(k,t2)

and does not

vanish here, because the derivative with respect to c(k, t2) is not equal to zero. However

the derivatives of the per period Hamiltonian with respect to x∗2(t), l
∗
2 and η

∗
2(t), which

have already been chosen optimally are zero. c(k, t2) depends on the number of children

and the timing of childbirth, which are not optimal at this stage yet. The change of

time costs has to be paid for the length of this phase, h(k). The second term comes

from a decrease of phase two’s utility at the original t2 before the change, the third

term from an increase of phase two’s utility at t3. Phase two can be seen as shifted to

the right within the time interval.

Phase 3

∂SP ∗3
∂t2

= −H∗
3 (t3) (2.28)

The envelope theorem allows the first term to vanish, the third term does not occur

here either, because the upper bound of phase four T is exogenously given and hence

independent of t2. −H∗
3 (t3) expresses the fact that phase three becomes shorter and

loses an incremental period at t3.

Adding (2.26), (2.27), (2.28) and setting them equal to zero gives the optimality

condition for the optimal timing of childbirth, where k is still assumed to be fixed.

H∗
1 (t2)−

∂c(k, t2)

∂t2

h(k)

Ψ− l∗3 − c(k, t2)
−H∗

3 (t3)
.
= 0 (2.29)

2.2.3 The optimality condition for the number of children

Again we use the Leibniz rule and the Envelope theorem with the same method used

to derive the t∗2-optimality condition. The timing of childbirth depends on phase one’s

utility stream, but the number of children k does not, thus ∂SP∗1
∂k

= 0.
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The length of phase two and three changes with the number of children. The terms

that affect the number of children are the costs and benefits, while children are young

(phase 2), the benefits when they are older (phase 3), and the length of phase 2, h(k).

Phase 2

∂SP ∗2
∂k

=

∙
∂v2(k)

∂k
− ∂c(k, t2)

∂k

1

Ψ− l∗2 − c(k, t2)

¸
h(k) +H∗

2(t3)h
0(k) (2.30)

The first term is the change of the per period utility of phase two from an increase

of benefits from having more children, subtracted by additional costs multiplied by the

length of this phase h(k). The second term is the additional utility from an increase

of length of phase two.

Phase 3
∂SP ∗3
∂k

= (T − t3)
∂v3(k)

∂k
− h0(k)H∗

3 (t3) (2.31)

When more children are born, the additional benefit from having them is accounted

for by the first term. Phase 3 becomes shorter through an increase of length in phase

2 when more children are present (second term) .

The k∗-optimality condition is thus given by

h(k)

∙
∂v2(k)

∂k
− ∂c(k, t2)

∂k

1

Ψ− l∗2 − c(k, t2)

¸
+(T−t3)

∂v3(k)

∂k
+h0(k) [H∗

2(t3)−H∗
3 (t3)]

.
= 0

(2.32)

We derive the optimal number of children and the optimal timing of childbirth

simultaneously. The equation that describes the optimal number of children is given

by (2.32), which depends on t2 just in the same way as (2.29), the equation that

characterizes the optimal date of childbirth.

Given (2.15), (2.16), (2.17), (2.20), (2.21), (2.22), (2.29) and (2.32) we can solve for

the optimal number of children and timing of childbirth numerically. Besides these two

variables, we can also solve for cumulative labor experience at t2, t3, and T and the

per period income level at these points. The characterization of an analytical solution

would be extremely tedious, because one would have to apply the implicit function

theorem for eight equations, where each of them depends on all other seven equations.
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Functional form Phase
Time costs c(k, t2) = c1k

β1 + c−12 t
β2
2 2

Utility from Children v2(k) = c3k
β3 2

Utility from Children v3(k) = c4k
β3 3

Length of phase 2 h(k) = c5k
β4 2

Monetary costs m(k, t2) = c6k
β5 + c−12 t

β2
2 2

Table 2.1: Functional forms

2.2.4 Results

We need to make assumptions regarding the functional forms of the cost functions,

utility derived from children and the length of phase two. These are presented in table

2.1.22

All functions in table 2.1 are concave in the number of children k. When they

depend on the timing of childbirth, then they are convex in t2. The parameters have

also been chosen such that the optimal number of children is 2 .2 to reflect the number

of children a woman must have on average to keep the population at a constant level.

In 2006, the average age of a woman receiving her first child in the 25 European Union

member states was approximately 29 years of age.23 The parameters of the baseline

model are chosen to have an optimal number of years spent on the labor market of

about 7.4 years, because an average age, when entering the labor market of 21.6 seems

reasonable.24 T , the total number of years spent on the labor market is assumed to

be 40. The age at retirement is thus 61.6. The parameters α1 and α2 are 5% and 2%,

reflecting the observation that income increases with experience more during phase

1 when no children are present and less when she works part-time and looks after

her children (phase 2). Empirically one does not observe an increase of real income

during phase 3, hence we set α3 = 0. We start at an exogenously given wage of 10. It

endogenously increases to 13.7 until t∗2, furthermore goes up to 14.1 during phase 2 and

remains at this level until T . Comparative static results are summarized in table 2.2.

To save space we left out how other variables such as labor experience and the wage

rate are affected through a parameter change. Bold (italic) values represent increasing

(decreasing) t∗2’s or k
∗’s due to a 1% increasing parameter.

22We use Matlab to find numerical solutions for the eight conditions; the command “fsolve” finds
solutions for nonlinear systems.

23Eurostat (2006): Population statistics
24Within the EU-15 countries over 40% of the cohort aged 22 years has entered the labour force.
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Values of the baseline model

t∗2 7.447 L∗t2 74.200 w(t∗2) 13.710
k∗ 2.189 L∗t3 95.806 w(t∗3) 14.142

LT 345.583 w(T ) 14.142

How a 1% increase of the parameters below affects t∗2 and k∗

Variables wt1 = 10 α1 = 5% α2 = 2% t1 = 0 (+0.1) T = 40
t∗2 7.5035 7.7503 7.4299 7.4192 7.6150
k∗ 2.1604 2.1147 2.1901 2.2030 2.1829

c1 = 4 c2 = 50 c3 = 70 c4 = 70 c5 = 5
t∗2 7.5908 7.5228 7.3385 7.1978 7.4841
k∗ 2.1307 2.1742 2.2309 2.2565 2.1521

c6 = 20 β1 = 5% β2 = 2 β3 = 3% β4 = 3%
t∗2 7.474 7.5896 7.0766 7.1819 7.5548
k∗ 2.1307 2.133 2.2636 2.2854 2.1392

β5 = 5% Ψ = 10
t∗2 7.4619 8.0552
k∗ 2.1831 2.0429

Table 2.2: How the optimal number of children and the timing is affected by the
underlying parameters.
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Changing one of the underlying parameters affects all optimality conditions. A first

observation is that when k∗ increases (decreases) due to a change of one parameter,

then the timing of childbirth t∗2 decreases (increases). Besides the negative correla-

tion between these variables, there is a negative correlation between k∗ and all other

variables; the optimal number of children increases only, when the optimal cumulative

labor supplies and incomes at the end of all phases decrease. We interpret the results

one for one and concentrate on the timing of childbirth and the number of children.

An increase in the income level decreases the number of children wanted. The op-

portunity costs of having children increases, thus less children are born. An increase

in α1 delays the optimal timing of childbirth, because an individual wants to exploit

income increases during phase 1, which are larger than in any other phase. A delayed

timing of childbirth is automatically connected to fewer children. An increase in α2 on

the other hand increases the number of children wanted, because an early childbirth

is not as expensive, when her wage can still increase sufficiently after t∗2. In an earlier

version, we accounted for α3 > 0; labor experience gained during phase 3 increases the

future income. Increasing α3 has the same comparative effects on the choice variables

as increasing α2 with the same intuition behind it. Kreyenfeld (2003) examines the

difference of fertility rates between East and West Germany after the reunification in

1990. She shows that the East German cohort of young people has its first child at a

younger age compared to the West German cohort, even though it has fewer children

in total. Kreyenfeld (2003) claims that the increase in uncertainty about future income

was the main cause for this observation. Another reason seems compelling; many young

East Germans, who worked in areas for which labor experience mattered, moved to

West Germany after the re-unification, leaving those behind, whose opportunity costs

of having children early were low.

An increasing working-span of an individual (changes in t1, T andΨ) has a negative

effect on fertility. An increase of the working life raises life-time income and income

per period. Thus the opportunity costs of having children are larger. An increase

of c1 or β1 means that the marginal time cost of an additional child increases. Not

surprisingly, if these costs increase, the number of children goes down. Governments

that offer placements in kindergartens, where children can stay until the afternoon,

give the mother the opportunity to take a longer part-time job and hence decrease c1.

c2 and β2 are parameters that are connected to the time cost burden of raising children,

when children come late. Up to a number of
√
c2 years, the time costs reflected by

the second term of c(k, t2) are less than one. Since they increase exponentially though,

they do matter at some point and induce her to enter phase 2. When c2 increases or β2
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decreases, the marginal time cost of giving birth late decreases. Therefore women have

fewer children but later. Medical research enabling late childbirth has a negative effect

on fertility. Soares (2005) shows why advances in medical research corresponds with

lower fertility in developing countries. When child mortality is reduced, the expected

costs of large families increase and the marginal benefits decrease. An increase of

benefits from young and old children c3, c4 and β3 increase the number of children. If

the length of phase 2 is long (large c5 and β4), then the individual’s number of children

decreases. The results come from the underlying structure of the model based on costs

mainly occurring due to leaving phase 1 and entering phase 2 (decrease of cumulative

experience return), but benefits also occur during the last phase. A government that

offers sufficient placements of full-day care centres or full-time schools increases its

country’s fertility, by shortening phase 2. β5 and c6 are connected to the monetary costs

she has to encounter, when children are young. An increase of child benefits increases

the number of children. It is straightforward to include monetary costs for phase 3 as

well. Changing the parameters of these, when they have the same functional form as

m(k, t2) also has the same effect as changing β5 and c6. Child benefits are reflected by a

lower c6. A financial incentive given to parents in Germany is the so-called “Elterngeld”

(parental benefits). Parents receive up to 2/3 of one of the partner’s last net income

for one year, if one parent stays at home during that time and looks after the child.

Parents can choose between a one-year-parental-leave and a day-care centre. In our

model this would be reflected by the choice between a positive c6 and a lower c(k, t2)

if the parental leave is rejected and a negative c6 and a very large c(k, t2) such that

l∗2 = 0 if it is accepted. Apps and Rees (2004) also show how specific government

policies affect fertility choices.

2.3 Extension A: Divorce

Marriage may not last until the end of a woman’s planning horizon T . 25 When

the probability of divorce increases through an exogenous change, then Grossbard-

Shechtman (1984) argues that women have more outside options and reduce their

supply of household goods which includes the number of children. In our setup divorce

causes the number of children to be reduced as well, but for a different reason. Di-

vorce is more costly for a woman when she has more children. A woman with many

25Sweden and the United Kingdom have the highest divorce rates in Europe with over 50%. Austria,
Belgium, Czech Republic, Denmark, Finland, France, Germany, Hungary, Norway and Switzerland
have divorce rates between 40%-50%. Ireland, Italy, Poland and Spain have the lowest divorce rates
of less than 20% according to Eurostat (2006) "Population Statistics".
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children has less labor experience and hence a lower income. At the same time the

costs of having children increase after divorce, because she has to raise them by herself

cd(k, t2) > c(k, t2) and receives less monetary support from the father, hence her mone-

tary contribution to children increases md(k, t2) > m(k, t2). Benefits from children for

the mother do not change after divorce. A divorce solely effects the woman’s utility,

when it occurs during phase 2, therefore we also restrict it to that phase.

Phase 2 t ∈ [t2, t3] is solved in two steps

1. The date of divorce d is known and d ∈ [t2, t3]

2. The date of divorce is uncertain.

2.3.1 Step 1: The Optimal Plan before and after Divorce

known to occur at time d.

Optimal Plan after d We begin to solve the problem by finding the individual’s

optimal plan after divorce has occurred. Later it is shown, how the individual acts

before the known date d. The objective that needs to be maximized is

V d
2 =

R t3
d

©
x2(t) + ln

£
Ψ− l2(t)− cd(k, t2)

¤
+ v2(k)

ª
dt + V ∗3 subject to the budget

constraint w(Lt)l2(t) = x2(t) + md(k, t2) and as before
·
Lt = l2(t). The Lagrangian

after divorce is

Γd2 [x2(t), l2(t)] = x2(t) + ln
£
Ψ− l2(t)− cd(k, t2)

¤
+ v2(k) (2.33)

+η2(t)l2(t) + λ2(t)
£
w(Lt)l2(t)− x2(t)−md(k, t2)

¤
Substituting λ2(t) = 1 the equilibrium conditions of this problem are

ld2(t) = Ψ− cd(k, t2)−
1

η2(t) + w(Lt)
(2.34)

·
η2(t) = −

·
w(Lt) (2.35)

The transversality condition here is an expression of the costate at t3. Working an

additional hour at t3 increases her income and has a future return of

ηd2(t3) =
∂w(Lt)

∂Lt
|t=t3

Z T

t3

LTdt =
∂w(Lt)

∂Lt
|t=t3 [LT − Lt3] (2.36)
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Given transversality condition (2.36), equation (2.35) can be re-written such that the

costate becomes

ηd2(t) = w(Lt3)− w(Lt) + α2(t3) [LT − Lt3 ] (2.37)

where α2(t3) =
∂w3(Lt)
∂Lt

|t=t3.

Using (2.34) and (2.37) we solve for the optimal labor supply, which is independent

of time and its consumption counterpart, which does depend on time just as in the

absence of divorce,

ld2 = Ψ− cd(k, t2)−
1

w(Lt3) + α2(t3) [LT − Lt3]
(2.38)

xd2(t) = Ψw(Lt)− cd(k, t2)w(Lt)−
w(Lt)

w(Lt3) + α2(t3) [LT − Lt3 ]
−md(k, t2) (2.39)

The direct utility after divorce V d
2 (d), which is needed to find the optimal number of

children later is

V d
2 (d) =

Z t3

d

©
xd2(t) + ln

£
Ψ− ld2 − cd(k, t2)

¤
+ v2(k)

ª
dt+ V ∗3 (2.40)

and the per-period direct utility, needed for the same reason, is

V d
2 (t) =

Ψw(Lt)− cd(k, t2)w(Lt)− w(Lt)

w(Lt3 )+α2(t3)[LT−Lt3 ]
−md(k, t2)

+ ln

∙
1

w(Lt3 )+α2(t3)[LT−Lt3]

¸
+ v2(k)

(2.41)

Optimal Plan before d We solve for an optimal plan for a known date of divorce d.

The individual maximizes the objective
R d
t2
{x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k)} dt

subject to the constraint w(Lt)l2(t) = x2(t) +m(k, t2).

·
η2(t) = −

·
w(Lt) (2.42)

together with the transversality condition
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η2(d) = α2(d)

Z T

d

l(t)dt (2.43)

yields the costate’s functional equation

η2(t) = w(L(d))− w(Lt) + α2(d) [LT − L(d)] (2.44)

Proposition 2.2 The costate function does not change after a known date of divorce,
when the experience derivative of income is time independent α2(t) = α2.

Proof. Substituting α2 for α2(t) in (2.37)

ηd2(t) = w(Lt3)− w(Lt) + α2 [LT − Lt3]

= w(L(d)) +

Z t3

d

·
w(Lt)dt− w(Lt) + α2 [LT − Lt3]

= w(L(d)) +

Z t3

d

α2l(t)dt− w(Lt) + α2 [LT − Lt3]

= w(L(d)) + α2 [Lt3 − L(d)]− w(Lt) + α2 [LT − Lt3 ]

which is equal to (2.44).

The result here is also due to the utility’s functional form. If it were not quasi-linear

in the consumption good, then λ2(t) 6= 1 and the costate would depend on per-period
labor or consumption.

l2 = Ψ− c(k, t2)−
1

w(Lt3) + α2(t3) [LT − Lt3]
(2.45)

x2(t) = Ψw(Lt)− c(k, t2)w(Lt)−
w(Lt)

w(Lt3) + α2(t3) [LT − Lt3 ]
−m(k, t2) (2.46)

(2.46) shows that consumption is larger before than after divorce has occurred,

because c(k, t2) < cd(k, t2) and m(k, t2) < md(k, t2). l2 > ld2 because children demand

more time for their child care. Future benefits of labor remain unchanged.
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2.3.2 Step 2: The optimal plan before an unknown date of

divorce

Decisions after d are given in the last section; see (2.38) and (2.39). They do not vary,

when divorce is uncertain, because after d all uncertainty is cleared. Expectations

about divorce are uniform among all representatives, the subjective probability that

divorce occurs at time t is φ(t). The perceived probability that the marriage will persist

at least until time t is consequently calculated as

G(t) =

Z t3

t

φ(t)dt (2.47)

The date of divorce is unknown; the individual is obliged to maximize her expected

utility,

Z t3

t2

φ(d)H(d)dd+

Z t3

t2

φ(d)V d
2 (d)dd (2.48)

where V d
2 (d) is given by (2.40) and H(d) =

R d
t2
u2 [x2(t), l2] dt =R d

t2
{x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k)} dt. (2.48), upon integration by parts

may be expressed as

Z t3

t2

©
G(t)u2 [x2(t), l2] + φ(t)V d

2 (t)
ª
dt (2.49)

where V d
2 (t) is given by (2.41).

Therefore an individual maximizes

Z t3

t2

©
G(t)u2 [x2(t), l2] + φ(t)V d

2 (t)
ª
dt+ V ∗3 (2.50)

subject to the known constraints. Consequently, the Lagrangian fromwhich the socially

optimal plan before divorce can be derived is

Γ = G(t) {x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k)}+ φ(t)V d
2 (Lt) (2.51)

+ηbd2 (t)l2(t) + λ2(t) [w(Lt)l2(t)− x2(t)−m(k, t2)]



Optimal Fertility Decisions in a Life-Cycle Model 66

where the equilibrium conditions are

λ2(t) = G(t) (2.52)

l2(t) = Ψ− c(k, t2)−
G(t)

ηbd(t) +G(t)w(Lt)
(2.53)

·
ηbd2 (t) = −φ(t)

∂V d
2

∂Lt
−

·
w(Lt)G(t) (2.54)

where ηbd2 (t) is the costate of phase 3 before divorce, when divorce is uncertain.

The per period consumption is

x2(t) = Ψw(Lt)− c(k, t2)w(Lt)−
G(t)w(Lt)

ηbd2 (t) + λ2(t)w(Lt)
−m(k, t2) (2.55)

The expected direct utility in the presence of uncertainty (index U) at t2 for all future

periods of phase 3 is

V U
2 (k, Lt) =

Z t3

t2

©
G(t)u2 [x

∗
2(t), l

∗
2] + φ(t)V d

2 (Lt)
ª
dt+ V ∗3 (2.56)

The costate’s time derivatives before and after divorce in the absence of uncertainty

(2.42) and (2.35) respectively denoted by
·

η2(t) are equal. Comparing these with (2.54)

denoted by
·

ηbd2 (t) indicates the timing of childbirth, when divorce is uncertain. Both

equations are used to derive

·
η2(t) =

·
ηbd2 (t) + φ(t)

∂V d
2

∂Lt

G(t)
(2.57)

The costates’ time derivative and therefore also the costates themselves are equal,

when the probability of divorce at some time t, φ(t) = 0, and the perceived probability

that marriage will persist at least until time t, G(t) = 1. The second term in the

nominator of (2.57) is small, because the instantaneous probability of divorce φ(t) is

small. G(t) is the probability that a couple is still married at time t. In most EU

countries except the UK and Sweden this value is at least 0.5 for all t ∈ [t2, t3]. Thus
one can assume that G(t) > φ(t)

∂V d
2

∂Lt
. Both time derivatives are negative, because

within this phase and any other phase, experience pays off less and less the sooner she
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Figure 2.2: The co-states of phase two, when a divorce does not occur and when it
does for a known and an unknown d.

reaches her retirement, therefore
·

ηbd2 (t) <
·

η2(t). Both costate functions have the same

functional value at t3, because all uncertainty is resolved at t3. In the case of no divorce

ηbd2 (t)must lie entirely above η2(t). They coincide at t3. In case a divorce occurs, η
bd
2 (t)

must jump downwards such that both costates can coincide. This is shown in figure

2.2.

When the date of divorce is known, then the costate before and after divorce is

unchanged. It is only affected, when d is unknown. This shows that our individual

values labor more, when she faces the risk of divorce. She therefore has a higher labor

supply in the presence of uncertainty. A known date of divorce would therefore lead

to a lower labor supply and more children due to the negative correlation between

these variables. Next we answer the question whether a woman reduces the number

of children in the presence of divorce and if she consequently delays the timing of

childbirth.

2.4 Extension B: Divorce, a numerical simulation

After illustrating divorce within this model setup analytically such that there is a

positive probability of divorce in every period of phase 2 (extension A), we continue to

show a simplified method where divorce occurs with a positive probability at varying
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points in time between t2 and t3. Derivations from extension A are needed in this

section. The divorce probability is zero for all other periods as in extension A, because

a woman would not be affected by it in this setup. Again it’s a straightforward extension

to include divorce for phase 3, when there are monetary costs connected to children in

that phase. Our main results do not change, hence we leave it out, however we discuss

them briefly below. Within this framework, we can solve for the timing of fertility and

the number of children numerically as we have done in the baseline model. Extension A

was more general therefore less precise, because it only characterizes the costate during

phase 2 in the presence of divorce, but does not find a solution for t∗2 and k
∗ explicitly,

which this section does. With a probability of p < 1 there is a divorce during phase 2.

Re-marriages are excluded for simplicity. The possible date of divorce d during phase

2 is given by

d = t2 +
h(k)

c7
(2.58)

where c7 ∈ (1,∞). (2.58) means that divorce occurs after a certain portion of
phase 2 is over, which depends on c7. The longer phase 3 the more children are

present; h0(k) > 0. Divorce occurs then later as it is more costly, when more children

are present. Next we derive the t2 and k- optimality conditions. Again we differentiate

utility streams. The first and third phases’ utilities do not change through divorce but

their utility stream needs to be added to the two cases: divorce and no-divorce. The

utility streams from t1 to T are thus;

1. No divorce: (2.23)+(2.24)+(2.25)

2. Divorce during phase 2: (2.23)+DP ∗2.1 +DP ∗2.2d+(2.25).
26

For t ∈ [t2, d], t2 and d fixed

DP ∗2.1 = max
x2(t)

Z d

t2

{x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k)} dt (2.59)

s.t.
·

l2(t) = l2(t) and w(Lt)l2(t)− x2(t)−m(k, t2) = 0

For t ∈ [d, t2 + h(k)] t2, h(k) and d fixed

26The subscript 2.1 is attached to the utility during phase 2 up to d and 2.2d to the utility during
phase 2 after d.
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DP ∗2.2d = max
x2(t)

Z t2+h(k)

d

©
x2(t) + ln

£
Ψ− l2(t)− cd(k, t2)

¤
+ v2(k)

ª
dt (2.60)

s.t.
·

l2(t) = l2(t) and w(Lt)l2(t)− x2(t)−md(k, t2) = 0

Case 1, the no divorce case is described by the baseline model. The left hand side of

(2.29) multiplied by the no-divorce probability is the first part of the expected utility.

Case 2: We have already solved for DP ∗2.1 +DP ∗2.2d in extension A. The t2-optimality

conditions can be derived when adding the terms of our two cases:

1. The expected utility from "no-divorce" case for the t2-optimality condition is

given by

(1− p)

∙
H∗
2 (t2)−

∂c(k, t2)

∂t2

h(k)

Ψ− l∗2 − c(k, t2)
−H∗

3 (t3)

¸
(2.61)

2. The part, when divorce occurs at d during phase 3 is

p

⎧⎨⎩ H∗
2 (t2)−Hd∗

2 (t2 + h(k))− 1
Ψ−l∗2−c(t2,k)

∗h
h(k)
c7

∂c(k,t2)
∂t2

+ h(k)
¡
1− c−17

¢ ∂cd(k,t2)
∂t2

i ⎫⎬⎭ (2.62)

The quotient 1
Ψ−l∗2−c(t2,k)

is equal after and before divorce, because the change

of the labor supply and the change of the children’s time costs c(t2, k) cancel.

For the not-divorce and for the divorce case, Hamiltonians of the same phase

evaluated at different periods are equal such that H∗
2(t2+

h(k)
c7
)−H∗

2(t2) = 0 and

Hd∗
2 (t2 + h(k))−Hd∗

2 (t2 +
h(k)
c7
) = 0.

Adding (2.61) and (2.62), and setting these terms equal to zero is the t2-optimality

condition, when divorce is a possibility within a marriage. The k-optimality condition

is derived next.

1. Case 1: the probability of no-divorce is multiplied with the LHS of equation (2.32);

(1− p)

(
h(k)

h
∂v2(k)
∂k
− ∂c(k,t2)

∂k
1

Ψ−l∗2−c(k,t2)

i
+(T − t3)

∂v3(k)
∂k

+ h0(k) [H∗
2(t3)−H∗

3 (t3)]

)
(2.63)
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Parameter increases by 1%

Variables Baseline c7 = 2 c8 = 2 c9 = 1.5 p = 40%
Lt∗2

75.6536 75.6980 75.6994 75.7193 75.6926
Lt∗3

98.6950 98.7433 98.7523 98.7553 98.7389
LT 354.0908 354.1627 354.2116 354.1273 354.1630
wt∗2

13.7827 13.7849 13.7850 13.7860 13.7846
wt∗3

14.2435 14.2458 14.2460 14.2467 14.2456
wT 14.2435 14.2458 14.2460 14.2467 14.2456
t∗2 7.5928 7.5972 7.5974 7.5994 7.5967
k∗ 1.7887 1.7850 1.7828 1.7865 1.7851

Table 2.3: The effect of divorce related parameters on the variables of the model

2. Case 2: divorce at d:

p

(
h(k)

h
∂v2(k)
∂k
− ∂c(k,t2)

∂k
1

Ψ−l∗2−c(k,t2)

i
+ (T − t3)

∂v3(k)
∂k

+h0(k)
c7

£
H∗
2(d)−Hd∗

2 (d)
¤
+ h0(k)

£
Hd∗
2 (t3)−Hd∗

3 (t3)
¤ ) (2.64)

The first two terms are the same as in case 1. The length of phase 2 increases with

k by h0(k), also remember that d is positively dependent on h(k). When divorce

occurs at d, then the first part of phase 2 [t2, d3] increases, because divorce occurs

later (term 3). At the same time phase 2 becomes longer and phase 3 becomes

shorter (term 4).

Setting the sum of (2.63) and (2.64) equal to zero, is the k- optimality condition

in the presence of divorce. We can continue with the numerical simulation to

find k∗ and t∗2. We assume that a woman’s time cost, which occur during phase

2, when raising children increase to c8c(k, t2) after she had a divorce. Monetary

costs during phase 2 change to c9m(k, t2). The parameters c8 and c9 must all be

larger than one. Values of newly introduced parameters, where p is the divorce

probability and c7 the timing when divorce occurs within this phase are given in

the second line of table 2.3. The probability of divorce is assumed to be 40%.

Divorce occurs half way through within each phase, time costs are doubled and

monetary costs increase by one half. All other parameters are the same as in the

baseline model. The results for divorce are summarized by table 2.3.

The number of children in the presence of divorce decreases to k∗ = 1.79 from

around 2.2 in the baseline model, where divorce was excluded from the analysis. k∗ =

1.79 is closer to the average of the number of children a woman within the European

Union countries gave birth to in 2007. In 2007 the fertility rate within the 27 European
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member states was between 1.25 (Slovakia) and 1.98 (France).27 Not surprisingly, an

increase of all divorce related parameters delays childbirth and yields a decrease of

the optimal number of children. The burden of divorce is largest when children are

young. We extended this present model to allow for divorce during phase 3; children

would not need to be looked after, however they still receive a monetary transfer from

their parents: c3(k, t2) = 0 and m3(k, t2) > 0. A change of the divorce probability of

phase 3 affects fertility less than a change of the divorce probability of phase 2, because

costs are larger during phase 2, when time is devoted to raising children c8. If divorce

occurs with certainty, then fertility decreases to 1.38 in this setting. One can further

show that the second derivative of the fertility rate as a function of the divorce rate

is positive. Our results are in line with empirical observations. Bedard and Deschenes

(2003) use data from the 1980 U.S. Census Public-Use Micro Samples and show that

the ever-divorced women have higher wages, which are reflected by increased labor

supply intensities. In table 2.3, cumulative labor supplies or experience levels Lt2 , Lt3

and LT and corresponding wage levels are larger when the divorce probability increases

marginally. Our results still hold, when p would increase to 100%.

2.5 Conclusions

This model has been the first to solve simultaneously for the optimal timing of child-

birth and number of children in a continuous time framework, where the wage is de-

termined by work experience in a way that depends on the life phase in which it is

accumulated. It shows that the date of childbirth and the number of children are neg-

atively related. The marginal value of labor jumps when labor experience influences

income differently, which is most likely to be the case when one changes from a full-time

to a part-time job. A steep income profile right after leaving school has a negative effect

on fertility, while a steep income profile when raising children and afterwards affects

fertility positively.

We have shown the effects of the different types of cost of raising children, time

costs and money costs. Individuals with high returns from education spend more time

in education and have fewer children. Women value market work more when they face

the risk of divorce, and so fertility is delayed and fewer children are born. The largest

impact of divorce is when the probability of divorce during the phase in which the

children are at home is large. Then a woman has to bear larger monetary costs, but

27European Commission, Eurostat: Statistics in focus 81/2008, Population and social conditions.



Optimal Fertility Decisions in a Life-Cycle Model 72

even more importantly she has to devote more of her time towards child care. This has

two negative effects: her current and future income decrease, because she is forced to

work less on the labor market. Overall, the results of our model appear to be consistent

with what empirical evidence is available on these relationships.



Chapter 3

Derivatives and Default Risk in the
Electricity Market

3.1 Introduction

Motivation

The European Commission and the USA want to regulate the off-market trade of

derivatives that covers 592,000 billion US-$. This reform is one of the largest tasks

for governments and regulators to come. After the insurance company American In-

ternational Group (AIG) had to be backed up by the US government, due to its risky

bets with derivatives in September 2008, the USA and Europe have been working on

stricter regulations. Fundamental elements of the reform are Central Counter Parties

(CCPs) that take over the risk in case of liquidity shortages. According to EU and US

regulatory suggestions, standardized derivative contracts need to go through CCPs.

Derivatives of this kind are often used by energy producers. Thus, it is not surprising

that Eon, one of Europe’s largest electricity and gas suppliers claims that it needs

an additional 7.5 billion US$ in capital, when the CCP requirements are enforced.

(Financial Times, 7/10/ 2009).

This paper is a first attempt to evaluate defaults and forwards in the presence of

an upstream oligopoly and downstream firms, operating in a competitive environment.

In addition to potential government bailouts, the model shows that welfare decreases

for another reason: the threat of market exit through insolvency affects the market

equilibrium in itself. If an upstream oligopolist has sold forwards to a downstream firm,

and the spot price has unexpectedly fallen, then the downstream firm might not be able
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to discharge its payment obligations to the oligopolist. An oligopolist reduces this risk

by increasing the spot price, which has an immediate negative effect on customers. This

model is applied to the electricity sector, and uses parameters that are based on historic

data from England and Wales. It is based on regional electricity companies (RECs)

that purchase electricity from oligopolistic generators. Before liberalization took place,

RECs had local monopolies to supply residential customers. The interaction between

producers and RECs takes place on a contract and spot market.

Literature

The market environment of this model can be well framed into a branch of the

industrial organization literature that was initiated by Allaz and Villa (1993) [AV],

and is summarized in the following. AV’s influential article shows that the presence of

a contract market increases welfare, because the competition among firms is intensified.

It creates a prisoner’s dilemma, in which firms voluntarily sell forward some of their

production on the contract market. Once they have engaged on the contract market,

they find it profitable to extend production on the spot market; the marginal revenue

increases with the amount that has been contracted before. Sustaining from contracting

is a dominated strategy, because the other firm could increase its profits by writing

contracts alone, to then become the Stackelberg leader of the game.

Mahenc and Salanié (2004) [MS] challenge the view that contract markets increase

welfare. If risk neutral producers are allowed to buy their own quantity on the contract

market, then it is a dominant strategy to do so in order to increase prices on the spot

market. The intuition here is that producers want to increase their profits on the

contract market, by increasing the spot price. In AV, producers compete in quantities

on the contract and spot market, but in MS, producers compete in quantities on the

future market and prices on the spot market. It is a necessary assumption that the

spot market is modeled as a differentiated goods Bertrand model to ensure the strategic

complementarity of prices. Another well-knownmethod to avoid the prisoner’s dilemma

is to increase the time horizon, either to infinity or to a finite number of periods, where

firms use trigger strategies. This has been done by Liski and Montero (2006) [LM], who

extend the two-stage model of AV and MS to a multiple period game with Bertrand

and Cournot competition. Contracts are traded first, the corresponding spot market

takes place one period later. In their model firms can use a trigger strategy to sustain

collusion: they have to charge the monopoly price on both markets, or the price is

otherwise set equal to marginal costs for all subsequent periods. Contract markets help

to sustain collusion, because the spot market share decreases. Furthermore firms sell
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more forward, when they compete in prices, and less, when they compete in quantities

to stay on the collusion path. Le Coq (2004) exhibits similar results under a different

setting. Firms trade on the future market once. Quantities are delivered at multiple

subsequent spot markets.

Newbery (1998) introduces contracts in a supply function model, which is more

suitable to picture the electricity market. He shows that contracts that drive down

the expected spot price, reduce the incentive for competitors to enter the market.

Entry can thus be deterred, if incumbents hold sufficient capacity; a conception first

illustrated by Dixit (1980). Murphy and Smeers (2005) [MS] introduce investment

decisions in the two-markets setup. They prove that the equilibrium of a model with,

and without a contract market is the same, when players have to choose capacities

before they produce. The intuition behind the result is the same as in the Kreps and

Scheinkman (1983) model; firms choose low capacities to avoid destructive competition

and restore the Cournot equilibrium. Bushnell (2007) extends AV’s model to n firms

that face increasing marginal costs. He demonstrates, how the equilibrium changes,

when an additional firm enters the market in the presence of a contract market, as

opposed to the change in the absence of a contract market. Grimm and Zoettl (2006)

[GZ] establish that a contract market decreases investment capacity in a time-varying

demand model. Capacity choices decrease the positive competition effect of contract

markets. Firms choose lower capacities to avoid competition, but when demand is

low and capacity is not a binding constraint, then contracts do increase competition.

Only when demand is certain and capacity binds, then contracts do not affect the

efficiency outcome. The model of MS shows that capacity investment decisions under

perfect foresight yield the same market outcome with and without a contract market.

Newbery (2008) studies the effect of mergers in the presence of a contract market. He

demonstrates that market power increases more after a merger, when a contract market

is present. Furthermore he proves that contracts reduce capacity, which is consistent

with GZ. They also increase the fraction of time that capacity is constrained, but still

lower the time-weighted average price. The later finding shows that future markets

increase at least consumer rents, in the presence of capacity investments, and come

therefore closest to a positive contract market welfare analysis, even in the presence of

capacity constraints.

GZ and Newbery (1998) are the only papers that reasonably allude, future markets

could possible be welfare decreasing, because producers scale down their installed ca-

pacity. All other model that claim, forwards are welfare decreasing, rest on very strict

assumptions: differentiated goods, perfect information and collusion (LM) or allowing
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producers to buy forward (MS). However these assumptions can be counteracted by a

regulator, if they prove to be realistic. In line with the majority of articles, forwards

reduce the spot price in this essay, however, the efficiency gain is lower, when buyers

face an insolvency risk for low spot prices. The models examined so far, assume "no-

arbitrage profits" from futures. They model the upstream market and assume that

buyers accept any forward price, as long as it is not below the expected spot price. In

equilibrium, the forward price equals the spot price, an assumption that often does not

hold empirically.28 This essay models both market participants, and allows the forward

price to be different from the spot price.

The electricity sector

Few papers have studied the impact of retail competition on contracts. Exceptions

are Powell (1993) and Green (2004), on which this model is closely based. Powell shows

that there are more forwards sold, when producers coordinate on the forward and spot

market, as opposed to a market, where producers exclusively coordinate on the forward

market. Green finds that the number of contracts sold is higher in an industry, where

an incumbent does not face any competition (in the presence of yardstick regulation) as

compared to an incumbent that is faced by a competitive fringe, which always charges

the spot price (in the presence of switching costs).

After the electricity sector has been liberalized, incumbent retailers have faced fierce

competition as opposed to producers, which have remained in an oligopoly position. A

famous retail bankruptcy example for the British market is the failure of ’Independent

Energy’ that collapsed in 2000. Thus, RECs have become vulnerable to the risk of

spot prices that have fallen below the expected level at the time, when contracts were

written. If they charge a retail price that exceeds the spot price substantially, then some

of their clients leave their previous electricity supplier to be supplied by a competitive

fringe, which buys and re-sells electricity for the current spot price. Green takes account

of the market reforms and calibrates his model with historic data from the English/

Welsh electricity sector in the 1990s that this model utilizes.

In the course of the 1990 electricity market liberalization of the UK, the RECs were

privatized. They became either public limited companies (plc) or they were bought

by large domestic producers (e.g. Powergen and Scottish Power) and foreign firms

(e.g. Eon and EDF). According to the Utilities Act in 2000, all former RECs had

to separate their supply and distribution businesses. The forwards studied here, are

"over-the-counter" (OTC) contracts that exclusively concern the supply business part,

28One of the first empirical essays on this issue is Protopapadakis and Stoll (1983).
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which supplies management services, such as billing, customer service, metering, debt

collection and administration. There is not much capital bound in the newly formed

retailer’s business, a miscalculation of past forward purchases can easily destabilize the

financial condition and force a retailer to exit the market.

Objectives

This model does not reconstruct bankruptcy probabilities for the electricity market

in England andWales, it uses the noise that was generated by its liberalization to justify

the assumption that the spot market alone is affected by the threat of insolvency. Before

the liberalization, incumbent retailers held monopoly positions and bankruptcies were

highly unlikely. The forward market, described in this model, has a very long time

horizon, such that the liberalization was not anticipated, when the contract market

opened. I study the market equilibrium, where the bankruptcy threat is anticipated,

in a different paper (Scholz, 2009). That model uses the same assumptions as the

literature described in the beginning; retailers are modeled just implicitly and buy

any number of forwards, offered by producers, but it lacks the adoptability to the

electricity market. Furthermore closed-form solutions cannot be derived, when the

default risk is endogenous. It shows that the anticipation of bankruptcy at the closure

of contracts reduces the number of contracts. This induces the negative welfare effect of

the insolvency risk to be even larger. The results presented here, can thus be interpreted

as being a conservative estimation.

Furthermore this model compares welfare effects between forwards and options. It

demonstrates that options yield a slightly lower welfare, but are easily the preferred

instrument in the presence of bankruptcy. It is the first model that allows a welfare

analysis, in which forwards are compared to options, whose strike price is endogenous.

The model of this essay has two parts; the first part (section 3.2) studies the impact

of bankruptcy in the presence of a forward market. The second part (section 3.3)

compares the market equilibrium in the presence of forwards, with the one in the

presence of options. Section 3.4 concludes.
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3.2 Forwards

3.2.1 Pre-liberalization period

There is an upstream market with producers, who sell forwards to incumbent regional

electricity companies. Producers set the price on the forward market and the quantities

on the spot market.29 RECs decide, how many forwards they want to buy.

Producers cooperate on the forward market, but do not coordinate on the spot

market. If there was no coordination among producers on the forward market, the

price would equal marginal costs, which is unrealistic for the electricity market. If there

was coordination on the forward and spot market, such that the total spot quantity is

the monopoly quantity, then the number of contracts increases compared to a market,

where coordination is restricted to the forward market.30 When a REC has paid a

high forward price pf , and the spot price is unexpectedly low, then the REC makes

a loss. The more contracts have been traded in the past, the larger the loss and the

bankruptcy probability; a positive correlation of these two variables is assumed. Thus

if producers cooperate on the spot market, retailers would have bought more contracts,

and the default probability would be even larger. The results presented here, can then

again be interpreted, as being a conservative estimation.

Production sector

Producers maximize their expected profits EπP , while RECs maximize a mean-variance

utility function of their profit πR. There are two symmetric producers and RECs, such

that in equilibrium the production quantity of producer i equals that of producer j

and the number of forwards sold to each REC is equal. Call fi(fj) the number of

forwards sold by producer i (j) and purchased by REC i (j).31 The game is solved

by backward induction. When producers set their spot market quantities, they do so

given the number of forwards f sold. Producers maximize their profits. Producer i0s

objective is

29Unitil 1995, the generation duopoly in the UK, even though it held less than 50% of generation
capacity, set the price 90% of the time, see Wolfram (1999). Section 3.2.2 explores this issue in greater
depth.

30The proofs are given in Powell (1993) on p. 449-450.
31In Germany RECs (“Stadtwerke”) often still buy all electricity exclusively from one generator,

even though they are not owned by it anymore.
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max
qi

πP = (p− c)qi − fi(p− pf) (3.1)

where qi is the spot quantity of producer i, c is marginal cost and pf is the forward

price. The first part of (3.1) is the spot market profit, and the second the contract

market profit. The linear inverse residual demand function with an intercept A and

slope −b can be expressed as

p = A− bqi − bqj + � (3.2)

where � ∼ N(0, σ2). All customers that do not pay the retail price are described by the

term "residual"; in particular large industrial customers, who can buy electricity from

the production sector directly. It is straightforward to solve (3.1) for the expected spot

quantity of producer i;

Eqi =
A− c+ 2bfi − bfj

3b
. (3.3)

As producers are symmetric, the expected spot price is

Ep =
A+ 2c− bfi − bfj

3
(3.4)

As mentioned before, producers set the forward price and maximize their objective

accordingly.

max
pf

EπP = (Ep− c)Eq − f(Ep− pf) + Cov(p, q) (3.5)

Cov(p, q) is the constant covariance of the spot price and quantity. The first order

condition of (3.5) can be solved for pf

pf = Ep+

µ
∂fi
∂pf

¶−1 ∙
−fi − (Eqi − fi)

∂Ep

∂pf
− (Ep− c)

∂Eqi
∂pf

¸
(3.6)

Powell (1993) shows that the forward price is larger than the expected spot price.

The capacity literature can be viewed parallel to this observation; in order to miti-

gate the negative effect of forwards on their market power, producers charge a higher

price than Ep, whereas in the capacity literature, incumbents might have an incentive

to over-invest in capacity as a strategic device; see Spence (1977), Dixit (1980) and

Newbery (1998) as a more recent application to the electricity market. In order to find
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∂f
∂pf
, RECs are modeled that choose the optimal number of contracts, given the forward

price that is offered by the production sector.

Retail sector

A fix number of customers served by an incumbent REC, V purchases electricity for a

regulated price r before the market was reformed.

The two RECs that have been characterized by subindexes i and j in the last

section, operate in separate markets but are symmetric. In reality there were 12, and

not two heterogeneous risk averse RECs in England and Wales; cooperation would

thus have been very difficult to implement, and is not assumed in this model. A REC

maximizes a mean-variance function applied to its profit as in Powell (1993),

Ui = E(πRi )−
1

2
λV ar(πRi ) (3.7)

where the expected profit is

E(πRi ) = V [r −E(p)] + fi[E(p)− pf ] (3.8)

The variance is V ar(πR) = V ar[V (r− p)+ fi(p− pf)] = V ar[p(fi−V )] = (V − fi)
2σ2,

where the only variable part is the price. RECs choose the optimal number of contracts,

they purchase. REC i0s objective is max
fi

Ui = E(πRi )− 1
2
λV ar(πRi ), which is solved for

fi

fi = V +
E(p)− pf

λσ2 − [∂E(p)/∂fi]
(3.9)

(3.4) is used to manipulate (3.9), in order to derive REC i0s demand for contracts as a

function of the number of contracts bought by the other REC.

fi(fj) =
V (b+ 3λσ2) +A+ 2c− bfj − 3pf

2b+ 3λσ2
(3.10)

Due to symmetry, fi(fj) and fj(fi) solve for REC’s demand function of contracts, given

the forward price:
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f(pf) =
V (b+ 3λσ2) +A+ 2c− 3pf

3(b+ λσ2)
(3.11)

Equation (3.6) and (3.11) can be solved for the optimal number of forwards, f∗i =

f∗j = f∗, based on the underlying parameters. The derivatives in (3.6) can easily be

derived, using (3.3), (3.4) and (3.11).

f∗ =
V ( b

3
+ λσ2)− 1

9
(A− c)

10
9
b+ 2λσ2

(3.12)

Furthermore the first order condition of pf , (3.6) is solved with (3.3), (3.4), (3.11)

and (3.12) to express pf based on the expected spot price and the number of contracts

signed

pf = Ep+
1

9
(A− c) + f∗(

7

9
b+ λσ2) (3.13)

This shows that the forward price exceeds the level of the expected spot price.

The difference increases with the risk aversion parameter. Even for λ = 0, the forward

price exceeds the expected price, because contracts decrease future spot prices (see also

Powell, 1993). The demand for contracts decreases with the number of contracts the

other REC purchases, (3.10), which is a justified result, as RECs were of considerable

size. The larger the demand elasticity, the more RECs hedge, because the negative

impact on the spot price per forward contract, increases with b. (see (3.4)) Another

reason for price divergence is the large percentage of OTC trade in the electricity sector,

which implicates non-transparent pricing.32

3.2.2 Post liberalization period

Since the market was reformed, residential customers have been able to choose their

electricity supplier. If a customer chooses to find a new supplier in this model, then she

would receive her electricity from the competitive fringe. Costumers are assumed to

face switching costs, such that some are willing to remain with their regional electricity

company and pay a higher price.

The market share of the incumbent retailer decreases, when the retail price, which

32In Germany for instance the liberalization of the electricity market has not yet reached the same
level as in the UK, because RECs (“Stadtwerke”) still hold both: distribution and supply. Over 80%
of electricity is sold through bilateral contracts, most with a single incumbent generator based on
historical ties. Due to commercial confidentiality, neither price nor quality information are revealed.
(WIK, 2008)
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is assumed not to be regulated after liberalization, is above the current spot price.

Green’s (2004) simple demand expression that an incumbent retailer faces, after a

competitive fringe has entered the market, is also useful for this work

V NEW = V − h(r − p) (3.14)

A high constant parameter h is interpreted by low switching costs. When switching

costs are low, the incumbent’s market share decreases more for (r − p) > 0.

Retail sector

The former RECs are allowed to choose the retail price r, which has been dictated by

a regulator before the liberalization. Thus the new retail objective becomes

max
r

πR = V NEW (r − p) + f(p− pf) (3.15)

The optimal new retail price is

r∗ = p+
V

2h
(3.16)

There is no expectation operator in (3.15), because retailers know the realization of

�, when they choose r∗. In the past, forward contracts were written to protect RECs

from volatile pool prices, because they had to sell into a regulated market with a for-

merly fix retail price. After the liberalization, this alleged protection has jeopardized

retailers that now have to act in a volatile retail price environment. Meanwhile the

market has become more competitive and retailers have to carry the burden of con-

tracts. This model assumes that there is a positive probability of bankruptcy, when

a retailer incurs a loss based on the contract of differences. The return of forwards

is negative, when the spot price is below the forward price, otherwise contracts yield

positive returns. If p < pf the situation worsens with low switching costs (large h),

because in that case, retailers can just charge a low mark-up, see (3.16). The bank-

ruptcy probability consists of an exogenous part s, which contains information about

its ownership structure, how likely the retailer is able to raise loans from banks, and

how much savings it holds. Incumbent retailers might also be bailed out by their own-

ers, when these are able to raise sufficient funds. Owners are generally less willing to

vouch for the retailers, when the loss −πR is very large, which is incorporated in the
bankruptcy probability. But there are also different warrantors as such; public entities
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are generally more willing to burn (taxpayer’s) money than private entities, to preserve

trust. In the English/ Welsh market all RECs were bought by private companies, some

of them very large and operating worldwide, thus they would be reluctant not to act as

a guarantor for their retailer, registered as public limited company, to maintain their

reputation. The different owner types are expressed by the exogenous multiplier s.

Thus the default probability is defined as

α = α(sπR) =
0 if πR > 0

−sπR if πR < 0
(3.17)

The survival probability is denoted by η(πR) = 1− α(πR). If a retailer has a low s

then it is owned by an entity that is more likely to guarantee for its retailer’s payments,

when πR < 0. If πR is positive, then the bankruptcy threat is absent, α = 0 and η = 1.

If bankruptcy occurs or not, is irrelevant in this model; it is the risk that affects the

spot market equilibrium.

Production sector

The retailer’s ownership structure is known in the UK, hence s can be estimated.

Furthermore the number of contracts can be assessed, based on the market that the

former REC operated, allowing the probability of default to be derived. Producers

maximize their expected profit by choosing an optimal production quantity, where

the expectation is based on, how likely it is that the retailer manages to transfer

pf − p, for the contracts signed. There is no uncertainty about the demand intercept

at this stage. If a retailer fails, contracts become worthless, but producers still sell

an unconstraint quantity on the spot market. The residual demand is not affected

by bankruptcy, because there are other generators that can absorb customers from

bankrupt, incumbent retailers. The generation capacity of the duopoly, which covered

73% of total capacity in 1990-91 decreased to 46% in 1995-96 and an estimated 38%

in 2000-01 (Monopolies and Merger Commission, 1996). But until 1995, the duopoly

set the pool’s electricity price 90% of the time, which justifies this model’s assumption

that the duopoly sets a quantity that reflects the market price.33

max
qi

EπPi = pqi − cqi − fi(p− pf)ηi(π
R
i ) (3.18)

33For background information see Wolfram (1999) and Newbery (1995, 1998).
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To find the spot quantity of (3.18), a function is maximized that depends on the

optimal outcome, as πR(q) is a function of q = (qi, qj). The optimal value of q is

found by solving two separate maximization problems with η(πR) < 1 and η(πR) = 1

respectively, because η(πR) is not continuous. Define πP,B(qB) to be the producer’s

objective, when η(πR) < 1 and πP,NB(qNB) the objective, when η(πR) = 1.34 qB∗ and

qNB∗ are the corresponding optimal values, which are compared in the four different

equilibria, possible;

1. qmax = qB∗ if EπP,B(qB∗) > πP,NB(qNB∗) and EπR(qB∗) < 0.35

2. qmax = qNB∗ if πP,NB(qNB∗) > EπP,B(qB∗) and EπR(qB∗) > 0.

3. πP,NB(qNB∗) > EπP,B(qB∗) and πR(qNB∗) < 0: when this outcome occurs, pro-

ducers prefer that retailers have a zero probability to go bust. If πP,NB(qNB∗) +

πR,NB(qNB∗) > EπP,B(qB∗)+EπR,B(qB∗), producers and retailers might consider

to either merge or renegotiate their contracts.

4. EπP,B(qB∗) > πP,NB(qNB∗) and πR(qB∗) > 0: In this case producers rather maxi-

mize the objective when their retailers could possibly default. Producers produce

qmax = qNB as they cannot force retailers to go bankrupt, when πR(qB∗) > 0.

Furthermore computing EπP,B(qB∗) does not make sense, because one would as-

sume that η > 1. Thus this equilibrium is not realistic.

For a retailer’s survival probability of η(πR) < 1

First, the optimal spot market quantity is solved, which is set by producers. When

an incumbent retailer goes bust, then the producer does not receive the forward price

for the contract coverage, but sells to customers directly or through the competitive

fringe. A retailer is threatened by a loss when p¿ pf , where the price difference has to

be sufficient, because retailers realize a profit from those customers who do not switch,

and pay a retail price above the spot price, see (3.16). After the bankruptcy of a

retailer, whom a producer has written contracts with, the positive transfer of f(p−pf)

would not be obtained. Thus producers minimize the default risk, by keeping the spot

price up. (3.15) and (3.17) are converted, to rewrite the producer’s profit as a function

of the retailer loss
34Throughout the rest of this chapter, the superscript B stands for, "there exists a bankruptcy

risk", and NB stands for, "there exists no bankruptcy risk".
35The expectation operator for profits applies to the B- case only, because there is no uncertainty,

when retailers cannot possible go bankrupt.
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πP,B1 = (p− c)q1 − f1(p− pf)
©
1 + s

£
V (r∗ − p) + f1(p− pf)

¤ª
The first term is the spot market profit, the second term is the expected contract

market return. The later simple contains the survival probability, η(πR) as a multiplier.

Substituting r∗

πP,B1 = (p− c)q1 − f1(p− pf)

½
1 + s

∙
V 2

4h
+ f1(p− pf)

¸¾
The spot price p contains A∗ = A + �. The demand is known at this point and

producers play the Cournot game on the spot market. At the contract market though

conjectural variations ∂fi
∂fj
are assumed to equal zero.

∂πP,B

∂qi
= A∗ − 2bqi − bqj − c + bfi

n
1 + sV

2

4h
+ sfi

£
(A∗ − bqi − bq2)− pf

¤o
+

sbf2i
£
(A∗ − bqi − bqj)− pf

¤ .
= 0

The foc can be rewritten for identical retailers and producers, fi = fj = f and qBi =

qBj = qB

qB∗ =
A∗ − c+ bf

³
1 + sV

2

4h

´
+ 2sbf2(A∗ − pf)

3b+ 4sb2f2
(3.19)

If qB∗ is realized, then the spot price is equal to

pB∗ = A∗ − 2bqB∗ =
A∗ + 2c− bf

³
2 + sV

2

2h

´
+ 4sbf2pf

3 + 4sbf2
(3.20)

(3.20) is the optimal production quantity, when bankruptcy is possible. One can

substitute (3.12), (3.16), (3.19) and (3.20) in (3.15) and (3.18) to derive πR(qB∗) and

EπP (qB∗) that only depend on the underlying parameters of the model. If πR < 0

and πP,B(qB∗) > πP,NB(qNB∗), then it is for generators optimal to take the risk, that

incumbent retailers are exposed to the bankruptcy threat.

For a retailer’s survival probability of η(πR) = 1

If a former REC realizes a profit, then it survives by definition and the survival prob-

ability equals one. Again, producers play the Cournot game on the spot market, while

conjectural variations at the forward market are zero. The equilibrium is described



Derivatives and Default 86

through (3.3) and (3.4), where A is substituted for the realized intercept A∗.

πR(qAV ∗) and πP (qAV ∗) can thus also be expressed by the model’s parameters.

When πR > 0 and πP,C(qC∗) < π(qAV ∗), generators choose a spot quantity such that

the incumbent retailer survives with certainty.

3.2.3 Results

This section presents a numerical solution of this model, based on data of the electric-

ity sector in England and Wales. In the early 1990s, there was a generation duopoly,

and there were 12 incumbents in the retail sector. The two privatized firms, National

Power and Powergen, held respectively 50% and 30% of the total generation capacity.

The Electricity Supply Industry in England and Wales was reformed in 1990. Before

its restructuring took place, there had been a state-owned Central Electricity Generat-

ing Board, responsible for generation and transmission, selling to 12 state-owned Area

Electricity Boards, which were responsible for distribution. Nearly 80% of the indus-

try’s generation came from coal-fired stations, and most of the remaining electricity

from nuclear power. Green’s (2004) parameter values are applied in this model. He

assumes marginal cost c being equal to £20/ MWh. The parameters of the residual

demand curve are set to A = 50 and b = 2
3
.

The welfare analysis, which is conducted later, estimates the consumer surplus based

on "residual" demand.36 Customers that remained with the incumbent are ignored,

because this is not a general welfare analysis of the liberalization process as such. This

model rather analyzes, how bankruptcy affects the market equilibrium. In the 1990s,

there were already some small generators on the market, which were price takers.

Therefore the profit and expected profit that are derived are "residuals", too.

Green sets the sales volume per REC to V=2.5 GW representing the total sales to

small customers of the 12 RECs equal to 30 GW. There are two retailers in this model;

each writes contracts with one generator, nevertheless the same volume per REC of

V=2.5 GW is adopted, as it can be shown that even with a relatively small contract

coverage, the market equilibrium is changed by the risk of default, significantly. This

makes this model’s findings even more meaningful. The switching cost parameter is

set to h = 0.15, because incumbents lost approximately one third of their market

share or 0.9 GW of sales due to a 10% retail price difference at that time, when the

retail price was around £60/MWh. Green claims that the variance of the annual

36In addition to consumer rents, welfare includes expected producer and retailer profits. Consumer
rents equal the area between the inverse demand function and the spot price.
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pool’s price, σ2 = 5.76 (from 01/1990 to 01/2000) was distinctively low, because of

high level contracting, market power and regulatory pressure. It is contrary to the

volatility in Nordic countries, which depend heavily on rainfall, due to the importance

of hydro power plants. There, the variance was equal to 34.9 between 1993 and 2003.

A volatility of somewhere in between is used; σ2 = 30. Green derives a risk aversion

parameter of λ = 0.178.37

The default probability consists of the retailer’s profit πR and the exogenous pa-

rameter s.38 In the first numerical simulation, which is summarized by figure 3.1, the

intercept is 20% below the expected value, thus � = −10. In order to analyze bank-
ruptcy, it must occur with positive probability. Accordingly, the necessary condition is

that retailers incur a loss. Instead of choosing a small �, one could have lowered switch-

ing costs though increasing h. Former RECs make a small profit, when the switching

parameter is lifted from h = 0.15 to h = 0.14. Thus in the absence of the unexpected

market entry, RECs would have never had to face a loss, which justifies the assumption

that default was never contemplated, when the contracts were signed. Finally s , the

multiplier of πR for πR < 0 is chosen to arrive at the bankruptcy probability α. This

essay is not interested in finding a potential default rate of former UK RECs, however

in the question, how the market equilibrium is affected, when different s-parameters are

considered. Different values of s are chosen that determine a reasonably bankruptcy

rate α.

In this setup, the number of forwards is not affected by the default probability. It

is just the production quantity that producers can influence. The number of contracts

has already been chosen before market entry took place, when RECs made profits even

when the spot price was below the forward price. Based on the underlying parameters,

the expected price is Ep = 29.59 by (3.4) and the optimal number of contracts f∗ =

0.93, see (3.12). Thus 37% of total expected sales are bought on the forward market

for a forward price of pf = 38.35, see (3.13). One can alter the multiplier s to show,

how total welfare, producer profits, α and thus the retailer’s loss are affected. When

s = 0, then qB∗ = qNB∗, because the objective (3.18) reduces to objective (3.1). When

the exogenous multiplier s of the bankruptcy probability α(πR∗) increases by some

percentage, then the default probability strictly increases by less or even decreases, as

long as b < 1. Producers lower the difference of pf and p by increasing p, (which lowers

37Green (2004) applies Grinold (1996)’s “grapes from wine” method, pp. 16-17.
38In order to derive profits and consumer surplus in monetary values one multiplies the values we

derive by 8.780 million. Prices are in MWh and based on hourly consumption, while V is an annual
capacity measured in GW. 1 GW annual capacity of electricity is equivalent to 8,780 GWh and 1
GWh=1000 MWh.



Derivatives and Default 88

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

50

100

150

200

250

300

Parameters concerning retailers: λ=0.176, σ
2=30, V=2.5 and h=0.15

as well as demand and marginal costs: A*=40, A=50, b=2/3 and c=20

Ex
pe

ct
ed

 to
ta

l w
el

fa
re

 a
nd

  E
  πP,

B*

 

 

0 0.1 0.2
-0.02

-0.01

0

0.01

0.02

0.03

0.04

Exogenous parameter s

B
an

kr
up

tc
y 

pr
ob

ab
ili

ty
   

 α
(π

R,
B*

)

 

 

EπP,B*

Expected welfare

α (πR,B*)

The problem is just defined for 
data points to the left of this vertical

line where α  ≥0 

Figure 3.1: The effect of s on α, expected welfare and profits



Derivatives and Default 89

the retailer’s loss) to scale down the probability that retailers fail. The intuition behind

this result is simple; when a retailer goes bust, producers do not receive the transfer

from contracts.

The expected producer profit increases with s as the spot price goes up. The

retailer’s expected loss is largest when s = 0 and EπR = −0.775. Retailers break
even at s ≈ 0.195, where producers have their largest profit of EπP = 79.1 up by

4.5% compared to its profit at s = 0. The bankruptcy probability reaches its peak

for intermediate values of s. Total expected welfare, consisting of consumer surplus,

producer and incumbent retail profits decreases from 291.5 to 283.1, when s increases

from zero to 0.195 (and α = 0 for the second time after s = 0) at the expense of the

residual consumer surplus that decreases when p goes up. Thus a producer prefers a less

solvent retailer, as producers are then committed to set a lower production quantity to

keep the possible loss from retailers low. This has been the realization of equilibrium 1

at each data point on the left hand side of the gray vertical line. Equilibrium 4, which

is not reasonable in reality occurs to the right of the vertical line. Next, examples for

equilibrium 3, which is realized when � is smaller, are demonstrated.

The parameters of the simulation that figure 3.2 is based on are the same as before,

except that � = −15 (upper part) and � = −25 (lower part). In the upper part of
figure 3.2, one can notice again that α is a concave function of s. Producers reduce the

spot price when they face a less solvent retailer to increase the probability that they

receive a payment when � < 0 and pf À p. Retailers benefit from increasing s, thus less

solvent retailers have a lower loss. Producers do not benefit from low retailer reserves.

πP,B(qB∗) falls with s up to a level where s = 0.12, which is equivalent to a bankruptcy

probability of 20%. The sum of expected producer and retailer profits is illustrated. It

is a convex increasing function of s. The sum decreases with s for small s and increases

once s ≈ 0.04, which corresponds to α ≈ 9%. Thus in a range of s ∈ (0, 0.04], producers
and retailers prefer to merge, as EπP,B(qB∗) +EπR(qB∗) < πP,NB(qNB∗) + πR∗(qNB∗),

which is equilibrium 3.

The lower part of figure 3.2, where � is even smaller, shows that for any α > 0 or

s > 0, the sum of the retail profit and expected producer profit is lower as when α = 0

and s = 0. Thus a merger might always be a preferable solution. It is straightforward

to derive the solution for asymmetric retailers with respect to h and s. A producer, who

has written contracts with a retailer that is less likely to be bailed out (high s), or one

that has customers that are more likely to switch (high h), is more prepared to adjust

the spot price downward. The other producer increases its production quantity, due

to the strategic substitutability. Accordingly, the profit of the producer with the more



Derivatives and Default 90

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
46

47

48

49

Parameters concerning retailers: λ=0.176, σ2=30, V=2.5 and h=0.15
as well as demand and marginal costs: A*=35, A=50, b=2/3 and c=20           

E
πP,

B*
+E

πR,
B*

 a
nd

  E
πP,

B*

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

Exogenous parameter s

Ba
nk

ru
pt

cy
 p

ro
ba

bi
lit

y 
 α

( π
R,

B*
)

 

 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
10

12

14

16

18

20

Parameters: same as above except A*=25.

Exogenous parameter s

E π
P,

B*
+E

πR,
B*

 a
nd

  E
πP,

B*

 

 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.05

0.1

0.15

0.2

0.25

Ba
nk

ru
pt

cy
 p

ro
ba

bi
lit

y 
 α

( π
R,

B*
)

 

 

α (πR,B*)

EπP,B*

EπP,B*+EπR,B*

EπP ,B*

EπP ,B*+EπR,B*

α (πR,B*)

Figure 3.2: When renegotiations or mergers are preferable



Derivatives and Default 91

solvent retailer, rises, while that of its competitor falls. The same holds for producers,

who wrote contracts with retailers that used to cover a larger market or were more

risk averse. These retailers purchased larger stakes in production plants and hold more

forwards; thus they are more exposed to the risk of low spot prices today.

3.3 Options

’Contracts for differences’ (CfDs) are pure financial contracts that resemble two-way

forward contracts, which have been examined in section 3.2. One-way CfDs, which are

call options are examined next. The first type has been studied by a broad literature

mentioned in the introduction, the second type only by very few authors. This model

demonstrates, how options can reduce market power, just in the same way, as two-way

contracts can. Retailers do not transfer (pf−p)f , when the spot price p is low, thus they
have the advantage that an incumbent retailer cannot be underbid by a competitive

fringe, which might enter the market after privatization takes place. When the spot

price is low, the option holder purchases its demand at the spot market, when the price

is high, the option holder pays the lower strike price ps. The cost of an option, paid

in any demand state, is po. Indeed if the spot price is lower than the strike price, the

REC looses po on each option bought. The option price is generally paid before the

spot market opens, thus illiquidity does not occur when the spot price is lower than

expected.39

In this section, a model is introduced that compares the market equilibrium with

forwards, to one with options. It is also shown, if welfare is higher in the forward

or option model. This is the first model that allows a welfare analysis between an

option and a forward market in the Allaz Vila (1993) framework, where the strike

price is endogenously determined. Vázquez et al. (2002) propose options as a long-

term security of supply mechanism. Few papers have compared welfare effects between

markets that use options and those that use forwards. Exceptions are Chao/ Wilson

and Willems (both 2004). The first of the two papers proposes

“an annual auction of a specified quantity of multi-year option contracts at

each strike price in a specified range. Each contract is an option on physical

capacity since it requires the supplier to back the contract with available

39Schmidt (1997) shows that liquidation risk increases managerial incentives. If a firm would have
had a low liquidity in the past, previous payments would have increased managerial incentives. Hence
generally payments, made in the past are less harmful to a firm as they could be balanced through
managerial effort in consecutive periods.
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capacity, to submit a standing bid at the ISO for the contracted quantity

at a price no higher than the strike price, and to be dispatchable for either

energy or reserve capacity.” (p.3)

Willems took the idea of using auctions and embedded this into a model that can be

compared to the AVmodel. Willems introduced an exogenous strike price and retrieved

the following results from his model: When the strike price is above the Cournot price,

options are out of money and the producers settle at the Cournot equilibrium. For strike

prices below the spot price achieved in AV, the AV price is achieved. For intermediate

strike prices, producers flood the market until the market price reaches the strike price.

The main result of Willems (2004) was that the market price is never lower in an option

market than in a forward market. This model supports this view, but shows that if a

model is extended by a possible bankruptcy threat, an option market is preferred to a

forward market from a welfare perspective.

One needs to make some changes to the setup, to be able to compare the option with

the forward market, while keeping it simple. If one continues to use an � ∼ N(0, σ2),

the spot price, strike price and the optimal number of contracts would depend on the

probability Pr(p > ps) and its derivative with respect to these variables. To avoid the

resulting complications that do not add further insight to our questions, it helps to

assume that � takes on discrete values, which act as demand shocks; � ∈ {0,H} with
probabilities φ for � = H and (1 − φ) for � = 0. Thus E� = φH and V ar(�) = σ2 =

φ(1 − φ)H2. If the risk aversion parameter in (3.12) is set equal to zero, the optimal

number of forwards becomes: f∗ = 3V b−(A−c)
10b

. Just for 3V b = A− c, f∗ = 0 otherwise

hedging still takes place; there are short hedges when 3V b > A − c and long hedges

when 3V b < A− c. Powell (1993) shows that in the absence of risk aversion and when

generators sell the monopoly quantity on the spot market; f∗ = 1
2
V > 0, which implies

that there is always short, never long hedging. Meaning even risk neutral RECs hedge

to keep the future spot price low, assuming that they are not too small in relative

size to the market. It is legitimate to assume that RECs buy contracts to lower the

future spot price, as their size was significant in the UK, before they were privatized.

Producers coordinate on the future market as before. This model has two parts again.

First, the market equilibrium before the liberalization is solved, second, it is modified

to account for bankruptcy after the liberalization. The first part of the model is

solved for producers that coordinate on the spot market, as only then the number of

forwards and options is guaranteed to be positive. For a study on market power of

UK’s generation duopoly, see Wolfram (1999).40 The equilibrium is shown, when there

40Müsgens (2006) shows that there have been price agreements among German producers in par-
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is no coordination likewise. After the liberalization of the market, producers do not

coordinate, as they did in section 3.2. The liberalization of the electricity market has

come along with strict actions by regulators against price agreements among incumbent

generators. 41 RECs are risk neutral, λ = 0, which reduces the demand for options

and forwards in the same way, a comparison of the two models is thus still possible.

They maximize their expected profit instead of a mean-variance utility function. First,

the forward market has to be solved under the changed market setup to be able to

compare it to the option market, then the option market is solved.

3.3.1 Pre-liberalization period

Forward Market

Production sector

Producers maximize the expected monopoly profit EπM by choosing the expected

monopoly spot quantity EQ, taking the total number of forwards fΣ as given;

max
EQ

EπM = (Ep − c)EQ − fΣ(Ep − pf) + Cov(p,Q) where Ep = A + E� − bEQ

and Cov(p,Q) = σ2

4b
. Thus the expected forward price and monopoly quantity are

Ep =
A+ φH + c− bfΣ

2
(3.21)

EQ =
A+ φH − c+ bfΣ

2b
(3.22)

The first order condition of the forward price (3.6), is thus pf = Ep +³
∂fΣ
∂pf

´−1 h
fΣ − (EQ− fΣ)

∂Ep
∂pf
− (Ep− c)∂EQ

∂pf

i
.

Retail sector

RECs maximize their utility functions of the form (3.7) (with λ = 0) where the foc can

be solved for the number of contracts f (see (3.9)), which can be further transformed

to

f∗(pf) =
V b+A+ φH + c− 2pf

3b
(3.23)

ticular during peak periods.
41The former generation duopoly National Power and Powergen was forced to sell generation units

to reduce their market power. Finally they were bought by foreign competitors after National Power
demerged in 2001.
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This is the number of forwards as a function of pf , which each REC requests. One

can now transform the pf -foc using (3.21), (3.22) and (3.23) to solve for the future spot

price premium,

pf −Ep =
3bfΣ
4

(3.24)

and the optimal number of contracts, which depends on the REC’s market size alone

f∗Σ =
V

2
(3.25)

Option Market

Production sector

The spot price is defined to exceed the strike price, p > ps when � = H, otherwise

a REC would never want to exercise its option. Thus H must be sufficiently large,

because pf > Ep. Later it is proven that the same holds for options; the expected

unit price, covered by an option is larger than the expected spot price: (1 − φ)pL +

φps + po > Ep. RECs are willing to pay an option price premium, just as they pay

a forward price premium. In return, to receive one unit for the lower strike price,

the REC pays an option price po to the producer in any state of the world. The

total number of options sold to both RECs is oΣ. The generator’s monopoly profit is

πM = (pH − c)QH −φoΣ(p
H − ps)+ oΣp

o with probability φ where pH = A+H− bQH .

It is πM = (pL − c)QL + oΣp
o with probability (1 − φ) and pL = A − bQL, thus the

expected profit function is EπM = (Ep − c)EQ − φoΣ(p
H − ps) + oΣp

o + Cov(p,Q),

where Ep and Cov(p,Q) are defined in the forward model. The expected price, the

corresponding spot quantity and the high spot price are

Ep =
A+ φH + c− φboΣ

2
(3.26)

EQ =
A+ φH − c+ φboΣ

2b
(3.27)

pH =
A+H + c− boΣ

2
(3.28)

Besides the spot quantity, producers choose po and ps, while RECs choose the
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number of options they want to buy. The first order conditions are

∂EπM

∂po
=

∂Ep

∂po
EQ+ (Ep− c)

∂EQ

∂po
+

∂oΣ
∂po

£
po − φ(pH − ps)

¤
+ oΣ

µ
1− φ

∂pH

∂po

¶
.
= 0

(3.29)

∂EπM

∂ps
=

∂Ep

∂ps
EQ+ (Ep− c)

∂EQ

∂ps
+
∂oΣ
∂ps

po − φ
∂oΣ
∂ps

(pH − ps) + φoΣ

µ
1− φ

∂pH

∂ps

¶
.
= 0

(3.30)

Retail sector

RECs choose the number of options they buy, REC i0s objective (3.7) reduces to

max
oi

Ui = E(πRi ).
42 Retailer i0s expected profit is

EπRi = V (r −Ep) + φoi(p
H − ps)− oip

o (3.31)

The first order condition of (3.31) is

oi =
V ∂Ep

∂oi
+ po − φ(pH − ps)

φ∂pH

∂oi

(3.32)

As the denominator of (3.32) is negative, the REC’s demand for options increases

with pH and decreases with the strike and option price. (3.26)-(3.28) solve for o1(o2) =
1
2

£
V − o2 + b−1

¡
A+H + c− 2ps − 2φ−1po

¢¤
, taking ps and po as given. The demand

for options decreases with the number of options that the other REC buys. The public

good attributes that are observed on the forward market also apply to options. Due

to symmetry across RECs, the optimal number of options based on the underlying

parameter set is

o(ps, po) =
1

3

£
V + b−1

¡
A+H + c− 2ps − 2φ−1po

¢¤
(3.33)

(3.26)-(3.28) and (3.33) transform (3.29) and (3.30) in order to find expressions for

ps and po, keeping in mind that oΣ = 2o(ps, po). The first order condition for the strike

price ps can be expressed as

42If we would allow λ > 0, the variance of the REC’s profit is (φ − φ2)[V H − o(pH − ps)]2. The
high demand price is a function of o. The derivative of V ar(πR) with respect to o depends on cubed
and quadratic oi,- and oj ,- terms, which would not allow us to have closed form solutions.
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ps(po, oΣ) =
1

4

£
2(A+H + c− 2φ−1po) + oΣ(2bφ− b)

¤
(3.34)

It is linearly dependent to the first order condition for the option price po

po(ps, oΣ) =
φ

4
[2(A+H + c− 2ps) + oΣ(2bφ− b)] (3.35)

This is not surprising as (pH − ps) is a transfer from the producer to the REC with

probability φ, and po is a transfer from the REC to the producer with certainty, while

both pairs of players are risk neutral and maximize their expected profit, ps must be

negatively correlated to po, and one variable can be expressed through the other. One

can write po(o, ps) as po(ps) using o(ps, po) and substitute po(ps) in o(ps, po) to receive

the optimal number of options o∗, independent of po and ps, based on the underlying

parameter set. po(ps) can be transformed to

po + φps =
φ

2
(A+H + c) +

φb(2φ− 1)
2(φ+ 1)

V (3.36)

which is the expected option payment made to the generator, to avoid paying pH .

Adding (1− φ)pL to po + φps, gives an expected unit price; when that unit is covered

with an option. (1−φ)pL+ po+φps−Ep = (4φ+1)bφV
6(1+φ)

> 0 does not depend on the size

of the demand shock. This corresponds to the observation, first made by Powell (1993)

for the forward market, who shows that pf > Ep, which goes back to Allaz and Vila’s

(1993) article. But so far, it has not been shown for the option market. The reason

behind this solution is the same; forwards and options lower the expected future spot

price. Substituting po in (3.33) by (3.36) gives an expression for the optimal number

of options

o∗Σ =
2

3
V
2− φ

1 + φ
(3.37)

There are all the ingredients, one needs to compare the expected spot price for

futures and options, stated here again for convenience: EpFutures = A+φH+c−bfΣ
2

with

f∗Σ =
V
2
and EpOptions = A+φH+c−φboΣ

2
. The expected spot price is larger in the presence

of options than forwards when: φo∗Σ < f∗Σ ⇔
2φ(2−φ)
3(1+φ)

< 1, which holds for all 0 ≤ φ ≤ 1.
The expected spot price is smaller in the forward model. For the simulation of both

models, the same parameters are used as before: h = 0.15, V = 2.5, A = 50, b = 0.67

and c = 20 . The retail price did not matter in the analysis of the first part of this

article, here it equals r=£60/MWh as in Green (2004). Furthermore the probability of
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f ∗Σ , o
∗
Σ Ep pf ,Epw. Options EQ EπM EπR E (CS )

Forwards 1.25 39.48 40.21 30.63 609.90 50.65 159.51
Options 1.6 39.72 40.00 30.42 609.73 50.23 156.31

Table 3.1: Welfare in the absence of bankruptcy

a positive demand shock, H = 20, is φ = 50%. Before the liberalization takes place,

market participants choose the values given by table 3.1.

Welfare is hardly smaller in the one-way contract model, residual consumers loose

about 2% in expectation [E(CS)], while expected producer and REC profits are barely

different. Note that the expected price of a unit purchased with an option is less

expensive than pf , which holds when 8φ2− 5φ−1 < 0. One can repeat the derivations
described in this section so far, when producers do not coordinate at the spot market.

In that case, the analog equation for (3.36) and (3.37) are

po + φps =
φ

18 + 12φ
[A (9 + 4φ) + c (9 + 8φ) +H (6 + 7φ) + V b (−3 + 4φ)] (3.38)

and

o∗Σ
2
=
3V b+ c−A− φH

b(6 + 4φ)
(3.39)

One can easily see that there are long hedges possible, when producers do not coop-

erate at the spot market and 3V b+c < A+φH. The rest of the analysis uses the model,

where producers cooperate, and shows under what circumstances a welfare maximizing

regulator prefers one-way contracts over two-way contracts, when the default threat is

included. In the absence of bankruptcy, one-way contracts have the disadvantage that

just in the high demand state, a fix price is paid for the production that was covered.

When options are “out-of-the-money” and producers play the Cournot game. Thus

intuitively it is clear, why one-way contracts can not reduce market power to the same

extend as two-way contracts do.

3.3.2 Post liberalization period

This section contains the same structure previously used. After a competitive fringe

has entered the market, the new demand for incumbent retailers is (3.14) as before,

and the optimal retail price is (3.16).
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Forwards

The retailer’s profit in the absence and presence of a demand shock are

πR = V 2

4h
+ f∗(pL − pf) if � = 0

πR = V 2

4h
+ f∗(pH − pf) if � = H

(3.40)

πR > 0, when � = H in the forward model, because pf > Ep > pL. Bankruptcy is

possible, when � = 0 in the forward model when switching costs are low (large value of

h), V is small and pL is much smaller than pf , such that πR becomes negative. When

� = H, and thus bankruptcy does not occur with certainty, (3.3) and (3.4) continue to

hold, where A is substituted by the realized intercept A+H. Bankruptcy does not play

any role. When � = 0, then a retailer’s profit is πRi =
V 2

4h
+ f∗i (p

L− pf), where f∗i =
f∗Σ
2
.

Each producer maximizes its profit, max
qLi

πPi = (p
L− c)qLi −f∗i (pL−pf)(1+sπRi ), where

(1 + sπRi ) is the survival probability of retailer i, when πRi < 0. (3.19) and (3.20)

describe the equilibrium, where the realized intercept is A∗ = A.

Options

The possible retail profits in the option model are

πR = V 2

4h
− o∗po if � = 0

πR = V 2

4h
+ o∗[pH − (ps + po)] if � = H

(3.41)

When � = 0 the producer’s objective ismax
qL

πP = (pL−c)qL+opo and the equilibrium

values are qL∗ = A−c
3b
and pL∗ = A+2c

3
. Thus producers offer the regular Cournot price.

It is a reasonable assumption that the option price has been paid in advance, thus

a possible bankruptcy does not affect the producer’s objective. When � = H, the

producer’s objective is

max
qHi

πPi = (p
H − c)qHi + oi[p

o + ps − pH ] (3.42)

If � = H , options are “in the money” and the second term of πP is strictly positive

by definition, as po + ps > pH . Otherwise the option would never be exercised. In the

preceding analysis, the relevant value has been, po + φps. The problem was defined in

such a way that options are exercised when � = H. It would not have been a realistic

assumption from the REC’s point of view, when it would make a loss through exercising
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Figure 3.3: Welfare: Forwards vs. Options

an option, when the demand is high. Options just lower producer’s market power on

the spot market if they are exercised for � = H. If it would not be in the REC’s interest

to exercise the option, it would be known to the producers. Thus options would not

reduce market power and RECs would not purchase them in the first place.

The optimal values are qH∗ = A+H−c+bo∗
3b

and pH∗ = A+H+2c−2bo∗
3

, where o∗ = oΣ
2
.

They have the same structure as in the Allaz Vila equilibrium. The buyer of one-way

contracts pays in either state of the world po. Thus the difference between profit and

loss is smaller with options than with forwards.

3.3.3 Results

There are two different equilibria for forwards and options, respectively when � = 0

and � = H. It has already been proven that forwards are preferable to options in

the absence of bankruptcy. After weighting the two possible outcomes of the forward

model equilibrium, one can determine, if either options or forwards are preferable in

the presence of the threat of bankruptcy.

The same parameters are used to generate figure 3.3, which summarizes the main
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result: in the absence of a default threat (s = α = 0), the option model yields a

lower welfare than the forward model, which has been shown algebraically before. But

note that the welfare difference is quite small. The lower diagram shows the relation

between s and α, the upper diagram between α and welfare.43 As the bankruptcy

threat of former RECs just concerns producers in the forward model, welfare in the

option model is not affected by the exogenous parameter s. The higher the bankruptcy

probability α = −sπR becomes, the lower the welfare in the two-way contract model
just as in figure 3.1 and 3.2. For a default probability of around 10%, a regulator that

maximizes total welfare would prefer the option model over that of the forward model.

One has to bear in mind that this estimate is very conservative, as in this model,

default only has an effect on the spot, but not contract market.

3.4 Conclusion

This paper introduces a simple model, where downstream firms, operating in a com-

petitive environment, may go bankrupt after incurring a loss on forward contracts that

have been signed with upstream firms. The first part of the model shows that for-

mer RECs, which still hold long term forward contracts, benefit when they have an

owner that is less likely to bail them out. The bankruptcy probability consists of the

retailer’s loss, and an exogenous multiplier that reflects the willingness for bail-out of

the retailer’s owner. Producers minimize the risk of a retailer not meeting its contract

of difference payments by reducing the production quantity and hence increasing the

spot price, which in return reduces the difference. For reasonable parameters, when an

owner is less likely to bail its subsidiary out, the upward spot price shift is sufficiently

large to turn a loss (in the absence of a default threat) into a profit (in the presence

of a default threat). Depending on the extent of the upward price adoption, producers

benefit or loose. Consumers always loose more than firms gain, thus welfare decreases.

The second part of the model introduces one-way contracts, and demonstrates that

options lower the spot price, as forwards do. In the absence of risk aversion, the

expected price of a unit that is bought with an option, exceeds the expected price. Once

again, the parallel can be drawn to the forward market. Options reduce the profit of an

upstream firm less than forwards do; thus the spot price is larger in an option model

than a forward model. The model simulates the English/ Welsh electricity market and

shows that the welfare difference is very small. Producer and retailer profits are hardly

43Welfare equals the residual consumer surplus, which is the area below the inverse demand function
and above the spot price. In addition, the producer and retail profits are added.
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differently affected by the instruments, and consumer surplus decreases by a mere 2%.

Including bankruptcy and comparing the option and forward model again, one-way

contracts are preferred to two-way contracts for bankruptcy probabilities of 10%. If

one includes other costs that are connected to bankruptcy, and considering that this

estimate is very conservative, options might quickly become preferred to forwards.

When regulators decide how to treat off-market trade in the near future, they shall

have to keep in mind that depending on the industry structure, insolvency might not

only cost taxpayers’ money, it may also reduce the market power mitigating effect

of two-way contracts. If two-way contracts become more heavily regulated to avoid

bankruptcies, and require a large amount of capital as market participants claim, one-

way contracts could step in, and play the same role that forwards have done in the

past.
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