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Zusammenfassung

In dieser Dissertation wird die Kopplung zwischen ultrakalten Atomen und mikro-
mechanischen Oszillatoren untersucht. In unserem Experiment positionieren wir ein
Bose-Einstein Kondensat (BEC) mithilfe Chip-basierter magnetischer Mikrofallen
nahe der Oberfläche eines mikromechanischen Balkenresonators. Wir zeigen, dass
attraktive Oberflächenkräfte dazu verwendet werden können, Biegeschwingungen
des Resonators an kollektive Schwingungen der Atome in der Falle zu koppeln.

Die Kopplung ermöglicht resonante Anregung mehrerer spektral getrennter me-
chanischer Moden des BECs. Wir beobachten unter anderem die Dipolmode und
eine Kompressionsmode. Als Signatur für die Anregung atomarer Bewegung dienen
erhöhte Fallenverluste, womit Schwingungen des Resonators bis zu minimalen Am-
plituden von 13 nm detektiert werden können. Unter Verwendung eines Schemas
zur direkten Auslese der atomaren Bewegung sollte die Sensitivität um etwa zwei
Grössenordnungen verbessert werden können.

Zur Charakterisierung der Wechselwirkung zwischen Atomen und Resonator ent-
wickeln wir eine Methode, mit der die absolute Stärke der Oberflächenkräfte be-
stimmt werden kann. Dazu analysieren wir Messungen von Fallenverlusten an der
Resonatoroberfläche und Messungen zu resonanter BEC Anregung auf beiden Seiten
des Resonators. Damit lässt sich die Kopplungskonstante der Wechselwirkung quan-
titativ bestimmen. Die Messungen werden in Abständen von 0.8 − 2.5 µm von
der Oberfläche durchgeführt, so dass äußerste Positioniergenauigkeit erforderlich
ist. Wir erreichen eine Reproduzierbarkeit der Fallenposition von unter 6 nm, deut-
lich kleiner als typische BEC Durchmesser von 500 nm. Präzise Positionierung ist
grundlegend für eine Vielzahl weiterer Experimente, wie z.B. Messungen lokaler
Atom-Oberflächenkräfte, rastermikroskopische Oberflächenabbildung mit Atomen
und Kopplung von Atomen an Festkörpersysteme über elektromagnetische Nah-
felder.

Gekoppelte Systeme aus ultrakalten Atomen und kryogenen mechanischen Os-
zillatoren werden als vielversprechendes hybrides Quantensystem diskutiert. Wir
zeigen verschiedene Systeme auf, die eine Kopplung im Quantenregime ermöglichen
können. Zur Kopplung über Oberflächenkräfte bedarf es keiner Spiegel, Magnete
oder Elektroden auf dem Oszillator, sodass Atome an molekulare Resonatoren wie
Kohlenstoffnanoröhrchen gekoppelt werden könnten. Alternativ untersuchen wir die
magnetische Kopplung eines Nanoresonators an den Spin eines BECs. In diesen Sys-
temen können die Atome den Oszillator signifikant beeinflussen, wodurch Kontrolle
und Manipulation des Oszillators möglich wird. Darüberhinaus zeigen wir auf, dass
das Regime starker Kopplung erreicht werden kann.





Abstract

This thesis reports experiments on the interaction between a Bose-Einstein con-
densate (BEC) of magnetically trapped 87Rb atoms and the motion of a microme-
chanical oscillator. We make use of the exceptional control provided by chip-based
magnetic microtraps to approach a microcantilever with a BEC to about one mi-
crometer distance, where atom-surface forces play an important role. We show both
theoretically and experimentally that the attractive forces close to the oscillator’s
surface can be used to coherently couple mechanical motion of the cantilever to
collective motion of the atoms in the trap.

We observe resonant coupling to several well-resolved mechanical modes of the
condensate, including in particular the center of mass mode and the breathing mode.
We use trap loss as the simplest way to detect the atomic motion induced by the
coupling. With this method we are able to sense cantilever oscillations with a min-
imum resolvable amplitude of 13 nm. We investigate the effects that limit such
coupling experiments and find a quantitative explanation for our observations. We
propose that the sensitivity could be improved by about two orders of magnitude
by using an improved readout scheme for the atoms.

To quantify the atom-cantilever interaction we develop a method to characterize
the absolute strength of the surface forces. We analyze measurements of atom loss in
the static surface potential and loss induced by cantilever motion on both sides of the
cantilever. This allows us to infer the value of the coupling constant that describes
the interaction. The measurements are performed at a distance of 0.8−2.5 µm from
the surface, which requires exceptional precision in the positioning of the atoms. We
achieve a positioning reproducibility below 6 nm, much less than the typical diameter
of 500 nm of the condensates. Such high control is an important prerequisite also
for other experiments such as measurements of local atom-surface forces, scanning
surface microscopy with atoms, and the coupling of atoms to solid state systems
through local electromagnetic fields.

Atoms coherently coupled to cryogenic mechanical oscillators are considered as
promising hybrid quantum systems. We discuss different schemes that could enable
atom-cantilever coupling at the quantum level. Coupling via surface forces does not
require mirrors, electrodes, or magnets on the oscillator and could thus be employed
to couple atoms to molecular-scale oscillators such as carbon nanotubes. Alterna-
tively, we discuss the magnetic coupling of a nanomechanical resonator to the spin
of a BEC. In both settings, back action of the atoms on the mechanical oscillator
can become significant, enabling manipulation and control of the oscillator. We
furthermore investigate the conditions required to achieve the strong coupling limit.
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1. Introduction

Ultracold neutral atoms are an ideal system to study quantum physics in a very
clean and directly accessible way. For the coherent manipulation and detection of
the internal atomic state exists an elaborate toolbox [1], trapping techniques [2, 3]
permit levitation and confinement of a gas, and Bose-Einstein condensation [4, 5, 6]
facilitates the preparation of a cloud in the ground state of a trap, thereby enabling
high control over the motional degrees of freedom [7, 8, 9]. Furthermore, coherent
manipulation of internal states, control of interactions, and quantum non-demolition
measurements enable the creation of non-classical states like single particle superpo-
sitions [10, 11, 9] or collective entangled states [12, 13, 14, 15]. High fidelity quantum
manipulation of ultracold atoms is thus at hand.

A central advantage of neutral atomic quantum gases is their exceptional isolation
from the environment. Their neutrality suppresses coupling to electric fields, and
their magnetic field sensitivity can be suppressed by a proper choice of the used
internal levels [10, 11] and by magnetic shielding. Finally, trapping of the gas in an
UHV environment detains the atoms from any contact except for some infrequent
collisions with the remaining background gas. With these conditions it becomes
possible to achieve lifetimes of quantum states of several seconds [10, 11].

An important technique to facilitate the production and control of quantum gases
was provided by the development of atom chips [16, 17, 18, 19]. The technology
makes use of chip-based, microfabricated wires that generate versatile magnetic
potentials for the trapping and transporting of ultracold atoms. The strong gradients
which are achievable close to a wire provide substantially tighter trapping and thus
faster production of Bose-Einstein condensates (BECs) compared to conventional
techniques [20, 21], thereby also relaxing the vacuum requirements.

Beyond these technical advantages, atom chips have the potential to open a new
perspective for research with ultracold gases. They enable the controlled trapping
and versatile positioning of atoms close to surfaces. This gives the possibility of
studying interactions between atoms and on-chip solid-state systems. Such inter-
actions can be exploited on three different levels. First, atoms can be used as a
sensitive local probe to detect electromagnetic fields and forces. This was e.g. beau-
tifully demonstrated with measurements of the structure of the current density in
evaporated gold [22, 23]. Other significant examples for this approach are preci-
sion measurements of surface forces [24, 25, 26, 27] or measurements of thermal
magnetic near-field noise [28, 29, 24]. In a complementary approach, engineered
solid state systems can be employed to manipulate and control atoms. This can
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either extend existing techniques or introduce novel concepts. A recent example
is the coherent manipulation of BECs with microwave near-field radiation from a
microfabricated waveguide on a chip [9]. Finally, extending the previous concepts
to the quantum regime, the engineering of strong coupling between a solid sate
system and an atomic system could enable coherent, bidirectional energy exchange
on the single quantum level, very much as in the strong coupling limit of cavity
quantum electrodynamics [30]. Such a coupling would provide a quantum inter-
face between the two systems and enable e.g. coherent manipulation of the solid
state system via the atoms. A variety of different systems has been considered in
this context, including dipolar molecules [31] or neutral atoms [32] coupled to su-
perconducting cavities, ions coupled to a mesoscopic electrode [33] or to a Cooper
pair box [34], and atomic systems coupled to micro- and nanomechanical oscillators
[35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48].

Micro- and nanostructured mechanical oscillators [49, 50, 51] constitute particu-
larly well suited coupling partners for such experiments. They are characterized by
a spectrum of well resolved mechanical resonances, where mostly the fundamental
mode is considered for experiments. It can serve as an isolated degree of freedom
that is in many cases very well described by a simple harmonic oscillator weakly
coupled to a thermal bath. Fundamental resonance frequencies range from kHz to
GHz, such that possible couplings to atomic degrees of freedom may include atomic
motional states, Zeeman transitions, and Hyperfine transitions. Their conceptual
simplicity, moderate technical complexity (e.g. due to the possibility of room temper-
ature operation), and the accessibility of the degree of freedom of interest distinguish
them from other solid state systems. Micro- and nanomechanical resonators have
attracted much attention lately, owing to the great achievements in the minimiza-
tion of mechanical damping [52, 53, 54, 55], the improvement of readout sensitivity
[56, 57, 58], the development of novel manipulation techniques for micromechan-
ical motion [59, 60, 61], and the extreme sensitivity in force sensing applications
[62, 63, 64]. One field that contributed much activity recently is cavity optome-
chanics [65, 66, 67, 68]. Its central accomplishment is the investigation of radiation
pressure forces which allow one to manipulate the motional state of micromechanical
oscillators. In particular, it has become possible to substantially cool the thermal
excitation of a single mechanical mode, down to a few tens of remaining phonons
[69, 70, 71, 72]. With these developments, micro- and nanomechanical resonators
now represent an important model system with the prospect of demonstrating quan-
tum effects on a macroscopic scale.

Interfacing ultracold atomic systems with mechanical resonators could both profit
from and contribute to this development. The intriguing question is raised whether
the sophisticated toolbox for coherent manipulation of the quantum state of atoms
could be employed to read out, cool, and coherently manipulate mechanical oscilla-
tors. Several theoretical proposals have addressed this question and considered the
coupling of micro- and nanomechanical oscillators to atoms [38, 39, 41, 42, 43, 44,
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45, 46, 47, 48], ions [35, 36, 37], and molecules [40]. They show that sufficiently
strong and coherent coupling would enable studies of atom-oscillator entanglement,
quantum state transfer, and quantum control of mechanical force sensors.

In part of these scenarios the coupling relies on local field gradients, calling for
very close approach of the atoms to the oscillator. In this respect, ground-state
neutral atoms stand out because preparation [24] and coherent manipulation [11] at
micrometer distance from a solid surface has already been demonstrated on atom
chips. While the intrinsically weak coupling of neutral atoms to the environment
enables long coherence times, it makes coupling to solid-state degrees of freedom non-
trivial. So far, only first steps have been made to investigate coupling mechanisms
experimentally, and the only experiment in this direction was performed in the
group of John Kitching [73]. There, atoms in a heated vapor cell are coupled to
a micromechanical cantilever with a magnetic tip. Piezo-excited oscillations of the
cantilever create an oscillating magnetic field in the vapor cell and induce detectable
spin precession. However, thermal motion of the atoms limits the interaction time
and the control over the coupling.

This thesis

In this thesis I describe experiments realizing a controlled, resonant coupling be-
tween a micromechanical resonator and the collective motion of a Bose-Einstein
condensate of 87Rb atoms in a trap. We employ a novel coupling mechanism that
does not require magnets, electrodes, or mirrors on the oscillator. The coupling is
thus applicable to a large class of mechanical oscillators, including molecular-scale
oscillators such as carbon nanotubes that are of particular interest due to their small
mass.

The interaction relies on surface forces experienced by the atoms at about one
micrometer distance from the mechanical structure. The forces deform the trapping
potential and lead to the excitation of collective motion of the atoms in the trap
when cantilever oscillations are resonant with a mechanical mode of the atoms, see
Fig. 1.1. We observe resonant coupling to several well-resolved mechanical modes of
the condensate, including in particular the center of mass mode and the breathing
mode. The small spectral width of the atomic resonances provides an effective means
to control the coupling via the trap frequency and e.g. permits to switch the coupling
on and off. We use trap loss as the simplest way to detect BEC dynamics induced by
the coupling. We can detect driven cantilever oscillations with a minimum resolvable
amplitude of 13 nm within an interaction time of 3 ms. This value is limited by the
strong anharmonicity of the trap, and by the short trap lifetime due to three-body
collisional loss and technical heating. We show that the sensitivity could be improved
by about two orders of magnitude by directly detecting the induced motion of the
condensate.

To quantify the atom-cantilever interaction we develop a method to characterize
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Figure 1.1.: Schematic setting of the experiment. We integrate a mechanical res-
onator on an atom chip. A Bose-Einstein condensate brought close to the cantilever
is attracted by the surface potential and can be excited to collective motion via
resonant cantilever oscillations.

the absolute strength of the surface forces with a combination of static loss and
resonant coupling measurements. This allows us to precisely calibrate the atom
surface distance and to infer the strength of the coupling constant that describes
the interaction. The measurements are performed at a distance of 0.8−2.5 µm from
the surface, which requires exceptional precision in the positioning of the atoms.
Using ultra-stable current sources, we achieve a positioning reproducibility below
6 nm rms, much less than the typical diameter of 500 nm of the condensates.

Application of this coupling mechanism to a single-wall carbon nanotube with
improved readout of the atoms could permit to resolve the quantum fluctuations of
the nanotube. Furthermore we discuss two alternative coupling schemes to achieve
atom-cantilever coupling at the quantum level. Firstly, we describe the magnetic
coupling of a nanomechanical resonator to the spin of a BEC. This scheme profits
from the possibility of higher oscillator frequency, and from the long coherence life-
time and the high control over the spin degree of freedom. Secondly, we sketch a
long distance coupling between a mechanical oscillator and laser cooled atoms via an
optical lattice. Back action of the atoms on the mechanical oscillator becomes sig-
nificant in these three scenarios, enabling manipulation and control of the oscillator.
We discuss the conditions for which the strong coupling limit can be achieved.

Organization of the chapters

The second chapter gives an introduction to atom chips. I review the principle of
magnetic microtraps and summarize the theory of Bose-Einstein condensation with
a focus on collective excitations. A central section is then dedicated to surface forces
and the resulting effects of a surface on trapped atoms nearby.
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The third chapter introduces mechanical resonators and motivates their use in
experiments on the coupling to ultracold atoms. I give an overview of detection and
manipulation techniques of micro- and nanomechanical motion, and comment on
the efforts to realize quantum states in these systems.

The fourth chapter describes the experimental setup and the techniques em-
ployed in the experiments. Furthermore, it summarizes measurements for the char-
acterization of ultracold atoms close to a surface.

The fifth chapter presents the main results of this thesis. The coupling mecha-
nism is explained, measurements for the determination of the surface potential are
described, and measurements of dynamical atom-resonator coupling are presented
and analyzed. Finally we present a numerical simulation that allows a quantitative
interpretation of the data.

The sixth chapter gives an outlook on three different atom-resonator coupling
scenarios that could be suited to study the coupling on the quantum level.

Work on fiber based Fabry-Perot resonators

Parallel to the studies described in this thesis I continued research on the develop-
ment and the application of fiber based Fabry-Perot resonators. This work is covered
in the publications listed below ([74, 75, 76, 77, 78]).

Contributions to publications

• Stable fiber-based Fabry-Perot cavity [74]
T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. War-
burton, J. Reichel
Appl. Phys. Lett. 89, 111110 (2006).

• Strong atom-field coupling for Bose-Einstein condensates in an optical cavity
on a chip [75]
Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel
Nature 450, 06331 (2007).

• Bose-Einstein condensate coupled to a nanomechanical resonator on an atom
chip [39]
P. Treutlein, D. Hunger, S. Camerer, T. W. Hänsch, J. Reichel
Physical Review Letters 99, 140403 (2007).

• Fluctuating nanomechanical system in a high finesse optical microcavity [76]
I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E.
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Weig, K. Karrai
Optics Express 17, 12813 (2009).

• Resonant Coupling of a Bose-Einstein Condensate to a Micromechanical Os-
cillator [79]
D. Hunger, S. Camerer, T. W. Hänsch, J. Reichel, D. König, J. P. Kotthaus,
P. Treutlein
Physical Review Letters 104, 143002 (2010).

• Fiber Fabry-Perot cavity with high finesse [77]
D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, J. Reichel
to be published in New Journal of Physics,
preprint available on arXiv: 1005.0067 [physics.optics].

• CO2 laser fabrication of concave, low-roughness depressions on optical fibers
end facets [78]
D. Hunger, C. Deutsch, R. Warburton, T.W. Hänsch, J. Reichel
in preparation.

• Optical Lattices with Micromechanical Mirrors [47]
K. Hammerer, K. Stannigel, C. Genes, M. Wallquist, P. Zoller, P. Treutlein,
S. Camerer, D. Hunger, T. W. Hänsch
preprint available on arXiv: 1002.4646 [quant-ph].



2. Atoms in magnetic chip traps

In this chapter I give an introduction to atoms in magnetic chip traps, the workhorse
of the experiments described in this thesis. After covering the basics of trapping
neutral atoms and the properties of magnetic microtraps, I will review the theory
of ultracold and condensed quantum gases as it is important for the experiments
presented in chapter 5. This includes mainly the description of atomic interactions,
collective excitations, and effects of trap anharmonicity.

The central part of this chapter will then focus on the description of surface forces
and their effect on trapped atoms near the surface. In chapter 5 we show that
surface forces can be harnessed to realize a controlled, dynamical coupling between
a mechanical resonator and ultracold atoms. Here we describe the origin of surface
forces and their static effect on magnetic traps. We want to study the situation
where atoms are brought as close as possible to a surface. Due to surface forces,
the trapping potential will be deformed strongly and the remaining trap depth will
be of the order of the atomic energy. In this regime, four effects, namely sudden
loss, surface evaporation, tunneling, and quantum reflection affect the lifetime of
the atomic cloud. Furthermore we discuss loss processes that limit experiments
independent of the potential deformation. Especially collisional loss and technical
heating become severe for the tight traps that are of interest for close approach to
the surface.

We give quantitative models for the different loss processes that allow us to de-
scribe our experimental observations.

2.1. Magnetic microtraps

Magnetic traps are a standard tool to trap neutral atoms with magnetic moment.
Due to the rather weak forces arising from magnetic interactions, the atoms have
to be precooled before trapping is possible. The standard approach to realize a
magnetic trap is to drive currents through macroscopic coils (10 cm scale) to generate
magnetic field configurations for 3D enclosure. This bears the disadvantages of the
need of large currents (typically 102 A), limited trap frequencies, and the restriction
to simple, large scale geometries. These shortcomings can be overcome in an elegant
way by using microfabricated wires to generate the magnetic potentials. Here one
profits from the fact that a current I in a wire creates a magnetic field B(r) and
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field gradient B′(r) which scale as

B(r) =
µ0

2π

I

r
(2.1)

B′(r) = −µ0

2π

I

r2
, (2.2)

where r is the distance to the wire. Thus, by approaching the wire from cm dis-
tances to µm distances, one benefits from an increase of the magnetic field by a
factor 104 and of the gradient by a factor 108. Thereby one can increase the con-
finement substantially, while the current requirements are at the same time relaxed
to comfortable values of a few Ampére. Furthermore, the high achievable gradients
are of major advantage for evaporative cooling, the standard technique to achieve
Bose-Einstein condensation in trapped gases. This comes from the fact that the
trap frequency, which is directly related to the field gradient, determines the speed
of the cooling process. While for macroscopic magnetic traps with trap frequencies
of a few hundred Hertz it can take more than a minute to reach BEC, microtraps
with trap frequencies of several kHz can accomplish this within less than one second
[80]. For such short experimental cycle times, background gas collisions become less
important. In consequence, the vacuum requirements are relaxed and the apparatus
can be simplified considerably (see chapter 4).

Besides these technical advantages, there are qualitatively new benefits from this
approach: First, it gives the freedom to design quite arbitrarily shaped potentials
of high complexity and scalability. This enables e.g. the creation of 1D potentials
[81], double-well or even multi-well potentials [82], and a large range of trap aspect
ratios. Furthermore, several structures such as wave guides, splitting junctions or
”conveyor belts” can be combined on a single chip [83, 84, 19]. Finally, it provides
techniques to manipulate and position ultracold atoms close to surfaces with high
precision. Three dimensional controlled positioning above a surface is the central
ingredient for studies of atom-surface interactions or controlled interfacing of atoms
with solid state systems as studied in this thesis.

2.1.1. Magnetic trapping of neutral atoms

In the following we introduce the basics of magnetic trapping following Ref. [6].
Magnetic trapping is based on the Zeeman interaction of the magnetic moment µ
of a particle with an external magnetic field B(r). The classical interaction energy

E(r) = −µ ·B(r) = −µB(r) cos θ (2.3)

depends on the angle θ between µ and B. When the magnetic field is inhomoge-
neous, the particle will feel a force proportional to the gradient of the field

f(r) = −µ∇B(r) cos θ, (2.4)
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where the direction of the force again depends on the relative orientation of the
magnetic moment and the field. Minimization of the magnetic interaction energy
will align µ with B such that unlike poles face (θ = 0◦), and the force attracts the
particle to the field maximum. The situation changes when the particle is rotating
around the axis of µ. Then, θ is stabilized due to rapid Larmor precession of µ
around B. This comes close to the quantum mechanical situation. For a quantum
particle like an atom, the angle θ is quantized and the classical term cos θ is replaced
by the value mF/F , where the magnetic quantum number mF is the projection of the
total angular momentum F on the direction of B. The associated magnetic moment
is then µ = −µBgFF and the quantum mechanical interaction energy reads

EF,mF
(r) = µBgFmFB(r), (2.5)

where µB is the Bohr magneton and gF is the Landé g-factor of the angular momen-
tum state F. This position dependent energy describes a potential landscape for an
atom in a certain mF state. If gFmF > 0, the atom will be attracted to a magnetic
field minimum and the state is called a ”low-field seeker”. As magnetic field max-
ima in free space do not exist according to Maxwell’s equations, atoms have to be
prepared in low-field seeking states for magnetic trapping.

Majorana spin flips

Trapping is only stable, if the atom remains in the initially prepared mF state. This
will be the case as long as the precessing spin can adiabatically follow the local
direction of the magnetic field. Looking at the situation from the moving atom, this
requires that the rate of change of the magnetic field direction θ is small compared
to the precession frequency ωL,

dθ

dt
� ωL(r) =

µB|gF |B(r)

~
. (2.6)

If this condition is not fulfilled, transitions to ”non-low-field seeking” states can
occur, which lead to loss of the atom from the trap. These so called Majorana spin-
flips can lead to a considerable loss rate in traps with vanishing (or small) minimum
magnetic field strength B0 = min(|B|) = 0 G. Calculations for anisotropic harmonic
traps show that Majorana loss is suppressed exponentially for increasing minimum
Larmor frequency [85], and a safe value for the magnetic field minimum of a trap is

B0 & 10
~ω
µBgF

, (2.7)

where we have assumed that dθ/dt equals the highest trap frequency ω in the trap.
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Figure 2.1.: Level scheme of the ground state of 87Rb in a weak magnetic field. The
Zeeman effect shifts the levels by ∆EF,mF

. Low field seeking states are |1,−1〉, |2, 1〉
and |2, 2〉 (indicated in red).

Hyperfine structure

The above discussion describes an approximate potential for a ground state atom.
It neglects that the total angular momentum F = I +J is composed of the nuclear
angular momentum I and the electron angular momentum J . The full Hamiltonian
for a ground state atom in an external magnetic field is

H = AhfsI · J + µBB(gJJz + gIIz), (2.8)

where the first term describes the hyperfine interaction between the nuclear and
electron angular momentum with the hyperfine structure energy Ahfs, and the other
terms describe the couplings of I and J to the magnetic field, with the z−axis
chosen parallel to B. Note that |gI | ∼ 10−3 × gJ such that the coupling to the
nuclear angular momentum leads only to a small energy contribution. The exact
energy levels can be derived from diagonalizing the Hamiltonian 2.8, which for the
case of J = 1/2 gives the Breit-Rabi formula [86]. For weak magnetic fields where
EF,mF

is small compared to the hyperfine energy, the deviation from equation 2.5 is
small and can be neglected in many cases. For the 52S1/2 ground state of 87Rb the
angular momenta are J = 1/2 and I = 3/2 so that F takes the two possible values
F = (1, 2), and the hyperfine energy splitting is Ehfs = Ahfs(I+1/2) = h×6.8 GHz.
The Hyperfine energy levels of the 87Rb ground state are shown in Figure 2.1.

2.1.2. Trap configurations

The two most basic types of magnetic traps can be discerned by the value of the field
at the trap minimum. A quadrupole field has B0 = 0 G and B rises linearly with
the distance from the minimum. A Ioffe-Pritchard trap has a quadratic minimum
with a non-zero value of B0.
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Quadrupole trap: The field of a quadrupole trap can be written as

B = B′xx+B′yy +B′zz (2.9)

where the field gradients have to satisfy B′x +B′y +B′z = 0 to fulfill Maxwell’s equa-
tions. For the case of B′x = 0 the configuration is a 2D quadrupole in the xy−plane
with B′y = −B′z. A 3D quadrupole can be created e.g. by a pair of coils in the Anti-
Helmholtz configuration, where opposing currents are driven through two coaxial
coils facing each other. This results in a field with gradients B′y = B′z = −2B′x with
the common axis of the coils chosen along x.

Due to Majorana spin-flips, the zero crossing at the center of quadrupole traps
effectively acts as a ”hole” with radius r ∼

√
v~/µB′, where v is the velocity of

the atom. Such traps are useful for relatively hot clouds, where the atoms mostly
populate orbits with large radii around the center. The minimum of a quadrupole
trap can be shifted along all directions without changing the shape of the trap by
superimposing a homogeneous field along the respective axis. This can be useful for
transporting thermal ensembles over large distances (see chapter 4.3).

Ioffe-Pritchard trap: The field of a Ioffe-Pritchard trap has a finite magnetic field
minimum and a quadratic confinement. It can be realized by superimposing a con-
stant offset field B0 which defines the trap axis, a 2D quadrupole field in the trans-
verse plane to the trap axis, and a field with curvature along the trap axis [87]:

B = B0

 1
0
0

+B′

 0
−y
z

+
B′′

2

 x2 − (y2 + z2)/2
−xy
−xz

 . (2.10)

Close to the minimum of the field configuration, the potential can be approximated
by a radial symmetric, harmonic trap with trap frequencies

ω⊥ =

√
µBgFmF

m

B′√
B0

(2.11)

ωx =

√
µBgFmF

m

√
B′′ (2.12)

for atoms of mass m. Note that for the radial direction, the harmonic approxima-
tion is only valid for a small region around the center, and for larger distances the
potential shows the linear dependence of the 2D quadrupole.

Wire traps

The two trap types can be realized with microfabricated, current carrying wires in
many different ways. The first proposal of this kind was from Weinstein and Lib-
brecht [88], however requiring a rather complex wire geometry and several wires. The
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Figure 2.2.: Principle of the wire trap. Superposition of the radial field of a current
in the wire with a homogeneous bias field in the plane transverse to the wire forms
a 2D quadrupole guide. Left column: Magnetic field lines. Right column: Modulus
of the magnetic field for a wire current I = 2 A and Bb,y = 40 G. Figure taken from
[18].

following examples show the configurations which are commonly used in atomchip
experiments.

Wire guide The basic building block of wire based magnetic traps is the wire
guide. A DC current sent through a straight wire creates a circular magnetic field
that decays according to equation 2.1 with 1/r, where r is the distance to the
wire. If a homogeneous field Bb,y is superimposed perpendicular to the wire axis, a
quadrupole field minimum is created at a distance

z0 =
µ0

2π

I

Bb,y

(2.13)

which forms a line parallel to the wire. This 2D confinement can already be used to
guide atoms [89]. Figure 2.2 shows the field configuration.
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|Bx(x)|

zm

x

By,z

y

Figure 2.3.: The ”Dimple” trap. A wire crossing with currents Ix, Iy and bias
fields Bb,y and Bb,x allows to create a 3D Ioffe-Pritchard trap. Figure adapted from
[16].

It is natural to fabricate the wires with microfabrication techniques on a substrate
(see Chapter 4 and Appendix D). This provides the frame for a complex wire layout,
and substrate materials with good heat conductivity allow to transport away the heat
created by dissipation in the wires.

Ioffe-Pritchard Dimple trap To obtain 3D confinement, additional crossing wires
can be added to create a configuration called Dimple trap. The schematic geometry
is depicted in Fig. 2.3. It consists of a wire trap along e.g. the x-axis with a current
Ix and a bias field Bb,y as discussed above, which creates a 2D quadrupole in the yz-
plane and defines the trap axis. A homogeneous field Bb,x along the wire axis shifts
the zero field minimum to a finite field value B0 and creates a 2D Ioffe-Pritchard
trap. To obtain axial confinement, the field from the current Iy in the crossing wire
modulates the axial field. For small currents Iy in the crossing wire, the trap axis
remains parallel to the main wire and the trap minimum position z0 is determined
only by Ix and Bb,y.
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The parameters of the trap are then given by

B0 = |Bb,x + µ0Iy/2πz0| (2.14)

B′z =
µ0Ix
2πz2

0

(2.15)

B′′x = µ0Iy/πz
3
0 . (2.16)

and the trap frequencies are approximated by

ωx =
√
µ/mB′′x, and ω⊥ =

√
µ

m

B′2z
B0

. (2.17)

By designing arrays of wire crossings, an array of Ioffe-Pritchard traps can be created,
where the geometry of each individual trap can be controlled independently. Such
a configuration also enables to continuously shift the trap minimum along the trap
axis to transport atoms.
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Figure 2.4.: Wire layout and magnetic field for a quadrupole ”U”-trap (a) and
an Ioffe-Pritchard ”Z”-trap (b). Left column: wire layout in the plane z = 0 and
orientation of the bias field. Center column: Magnetic field modulus on a line along
z through the trap center. Right column: Magnetic field modulus on a line along x
through the trap center. The fields were calculated for L = 250 µm and I = 2 A,
taking a finite wire width of 50 µm into account. The bias field is Bb,y = 54 G
(dashed lines) and Bb,y = 162 G (solid lines). Figure taken from [18].

Quadrupole U-trap and Ioffe-Pritchard Z-trap Alternatively to introduce addi-
tional crossing wires, a single wire can also be bent to achieve 3D confinement. The
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central part of the wire is used to create a 2D quadrupole and to define the trap
axis in the same manner as a wire trap. The necessary field components along the
trap axis are provided by the bent sections of the wire, orthogonal to the central
part. When bending the wire in a ”U” shape, the magnetic fields of the two bent
sections are opposing each other and cancel in the center of the trap. This pro-
vides a 3D quadrupole trap. When bent in a ”Z” shape, the magnetic fields add
up to a finite field at the trap center and thus provide the parabolic confinement
of a Ioffe-Pritchard trap. Figure 2.4 shows the wire configuration and the magnetic
fields along the z-axis pointing out of the plane of the wire, and along the trap axis
parallel to the x-axis.

2.2. Properties of Bose-Einstein condensates

One great achievement of experiments with ultracold atoms is the full control over
the quantum state of the gas. Preparation of all atoms in one internal state by optical
pumping, and the preparation of the ensemble in the motional ground state by Bose-
Einstein condensation results in a system in a well initialized single quantum state. It
has been identified that collective mechanical modes of a BEC can serve as a perfectly
isolated mechanical oscillator [90, 91], which permits to study quantum mechanics
and measurement back action in a very clean system. The first experiments along
this line [90, 91, 92] explore the mechanics of BECs in optical cavities. In our
experiments, we use collective excitations to directly probe mechanical motion of a
mechanical resonator.

In this section we describe the theory of dilute, weakly interacting Bose-Einstein
condensates and review two different limits to describe condensate excitations.

Bose-Einstein condensation (BEC) was predicted already in 1924 by Albert Ein-
stein [93], based on ideas from Satyendra Bose. The first realization of this state
of matter was demonstrated with the superfluidity of liquid 4He. However, in this
system the atoms are strongly interacting and only ∼ 10% of the atoms populate the
ground state. In dilute atomic gases, BEC was first experimentally realized in 1995
[4, 5, 94]. Here, interactions are weak and very pure condensates can be created.
Condensation occurs at sub-microkelvin temperatures. At such low temperatures,
inelastic atomic collisions lead to stable molecules, and the gaseous phase is only a
metastable configuration. An important condition for the possibility of condensation
is thus that the rate of elastic collisions, which are responsible for the thermalization
of the gas, is much larger than the rate of inelastic collisions, which lead to trap loss
and molecule formation.

The phenomenon of BEC is the direct consequence of the statistics of an ensemble
of undistinguishable bosonic particles [95]. It occurs as a non-trivial phase transition
when a gas of atoms is cooled down to ultralow temperatures. The remarkable point
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is that already at finite temperature, below a certain critical value Tc, bosonic stim-
ulation leads to a scattering of atoms from thermally excited states to the ground
state [96]. This leads to a macroscopic occupation of the ground state and results in
a markedly non-thermal energy distribution. Described in position space, condensa-
tion occurs when the size of an atomic wave packet, given by the thermal deBroglie
wavelength λdB =

√
2π~2/mkBT , becomes larger than the interatomic spacing n

1/3
0 ,

such that the wavepackets overlap and the atoms loose their identity. Here, m is the
mass of the atom, n0 the maximum density, and T the temperature of the cloud.
More accurately, for a three dimensional uniform gas in the thermodynamic limit,
the condition for condensation is given by

n0λ
3
dB ≥ 2.61. (2.18)

The product in Eq. 2.18 equals the phase space density and is directly proportional
to the atom number in the condensate. A condensate is thus an object composed of
a macroscopic number of particles that share a single quantum state which can be
described by a single wave function.

The temperature at which the phase transition occurs for a trapped cloud can be
calculated analytically [95], and for a gas in the thermodynamic limit one obtains

Tc = 0.94
~ωho

kB
N1/3, (2.19)

where N is the total atom number and ωho = (ωxωyωz)
1/3 denotes the geometric

average of the trap frequencies along the the main axes of the trap. For T < Tc the
number of particles in the condensate is

N0(T ) = N [1− (T/Tc)
3], (2.20)

such that for T � Tc effectively all atoms are in the ground state. For small atom
number, as it is the case in the experiments described here, the finite size of the
cloud leads to a smaller condensate fraction [95]

N0(T ) = N

[
1−

(
T

Tc

)3

− 2.18
ω̄

ωho

(
T

Tc

)2

N−1/3

]
, (2.21)

with the ratio of the arithmetic (ω̄) and geometric (ωho) averages of the trap fre-
quency.
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2.2.1. Gross-Pitaevskii description

Binary elastic collisions between atoms play an important role for both static and
dynamic properties of a condensate. In general, collisions depend strongly on the
interatomic scattering potential Uint, which is often approximated by a Lennard-
Jones type potential Uint = C12/r

12 − C6/r
6. However, at low temperature, when

the deBroglie wavelength is much larger than the effective range of the interatomic
potential, collisions can be described in a simplified manner by a hard sphere contact
potential

Uint(ri − rj) =
4π~2as
m

δ(ri − rj) (2.22)

with the s-wave scattering length as. The coupling constant g = 4π~2as/m charac-
terizes the strength of the collisional interaction. In the case of 87Rb, the interaction
is repulsive and as = 5.0 nm [97, 98] for the state |2, 2〉.

In second quantization, one describes the condensate by a bosonic field with par-
ticle creation and annihliation operators ψ̂†(r), ψ̂(r), and the Hamiltonian for the
system in an external potential Uext is given by

Ĥ =

∫
drψ̂†(r)

(
− ~2

2m
∇2 + Uext

)
ψ̂(r) + g

∫
drψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r). (2.23)

The first part of Eq. 2.23 represents the kinetic and potential energy, while the
last term accounts for the collisional interactions, where we have made use of Eq.
2.22. Despite the high phase space density, BECs are dilute gases in the sense that
the characteristic size as of the atom is much smaller than the mean interatomic
distance 〈n〉1/3, with 〈n〉 the mean density. In this limit, 〈n〉a3

s � 1, the collisional
interaction can be approximated by a mean field potential felt by each atom. In
the mean field description, the bosonic field operator ψ̂(r) is decomposed into an
expectation value Φ(r) = 〈ψ̂(r)〉 that describes the condensate and which is called
the order parameter, and a field operator Ψ̂(r) that describes excitations,

ψ̂(r) = Φ(r) + Ψ̂(r). (2.24)

The order parameter represents a macroscopic wave function, which is just the renor-
malized single particle wave function φ(r) into which condensation occurs,

Φ(r) =
√
N0φ(r). (2.25)

Here, N0 is the number of condensate atoms with a density distribution nc(r) =
|Φ(r)|2.

In the simplest approximation, the excitations Ψ̂(r) are neglected, and one obtains
the well known Gross-Pitaevskii equation (GPE)(

− ~2

2m
∇2 + Uext(r) + gN0|φ(r)|2

)
φ(r) = µcφ(r) (2.26)
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which determines the wave function φ(r) and the condensate chemical potential µc.
It is valid for low temperatures T � Tc, large atom number N0 � 1, and weak
interaction 〈n〉a3

s � 1.
The dynamics of the condensate wavefunction is given by the time-dependent

Gross-Pitaevskii equation

i~
∂

∂t
φ(r, t) =

(
− ~2

2m
∇2 + Uext(r) + gN0|φ(r, t)|2

)
φ(r, t). (2.27)

In the mean field description, a new length scale enters, the healing length ξ of the
condensate

ξ = ~/
√

2mgn. (2.28)

It is the minimal distance, over which the condensate wave function can vary signif-
icantly.

Thomas-Fermi approximation

If the kinetic energy is much smaller than the interaction and potential energy
~ωho � gnc, a simple solution of the GPE can be found by neglecting the kinetic
energy term in Eq. 2.26. It is known as the Thomas-Fermi approximation, which
results in simple analytical formulas for the main properties of a BEC:

nc(r) = |φ(r)|2 = max {0, [µc − Uext(r)]/g} (2.29)

µc =
~ωho

2

(
15asN0

aho

)2/5

(2.30)

RTF,i =
√

2µc/mω2
i i = x, y, z. (2.31)

The density profile nc(r) is directly given by the shape of the trapping potential
rather than by the single particle ground state wave function (a gaussian for a har-
monic trap), and repulsive interaction leads to larger cloud radii RTF,i, called the
Thomas-Fermi radii. Due to the interaction, also the chemical potential is larger
than the ground state energy by the Thomas-Fermi factor χTF = (15N0as/aho)2/5,
where aho =

√
~/mωho is the mean oscillator length. In our experiments, con-

densates with small atom number (N0 ∼ 103) are prepared, and the TF-limit
Nas/aho � 1 is not always satisfied. An interpolation between the TF-regime
and the non-interacting regime N0as/aho < 1 can be used to calculate the precise
cloud properties in this case [99, 100].

2.2.2. Condensate excitations

In the GPE, only the condensate wave function and the interaction within the con-
densate is described. To cover excitations and interaction induced correlations, the
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field operator Ψ̂(r) for the excitations has to be included. There is a hierarchy of ap-
proximations regarding how the excitations are treated. In the following, we review
two relevant limits: First the Bogoliubov theory, which gives predictions for collec-
tive mode frequencies that we observe in our experiments. However, this description
neglects the thermal component of the gas, which is important e.g. for surface loss
and for the damping of excitations. To include these effects, we discuss the Popov
approximation in the second section.

Bogoliubov theory

The simplest approximation is the Bogoliubov theory: It considers excitations as
small fluctuations with vanishing expectation value 〈δΨ̂〉 = 0. This corresponds to
the zero temperature limit, where the fluctuations are not thermally populated.

The resulting Hamilton operator can be diagonalized when the field operator Ψ̂
is written in a form given by the Bogoliubov transformation

Ψ̂(r) =
∑
k

uk(r)b̂k − vk(r)b̂†−k (2.32)

Ψ̂†(r) =
∑
k

uk(r)b̂†−k − vk(r)b̂k

with the ”quasiparticle”and ”hole”mode functions uk(r), vk(r) of wave vector k, and
the creation and annihilation operators b̂†, b̂ of bosonic quasiparticle excitations.

The solution of the Hamilton operator results now in three equations. The first is
the GPE (Eq. 2.26) for the condensate, which remains unaffected from the excita-
tions. The remaining two equations are for the mode functions of the quasiparticles,
the coupled Bogoliubov equations [95]

~ωk uk(r) =
(
H0 + 2gN0φ

2(r)
)
uk(r) + gN0φ

2(r)vk(r), (2.33)

−~ωk vk(r) =
(
H0 + 2gN0φ

2(r)
)
vk(r) + gN0φ

2(r)uk(r),

with H0 = −(~2/2m)∇2 + Uext(r). The solution of these equations gives the ex-
citation spectrum of the condensate. However, analytic solutions for a trapped
condensate only exist for the special case of spherical symmetry of a harmonic trap
[101] or in the homogeneous case [102]. For a homogeneous gas, the amplitudes of
the quasiparticle modes satisfy [102]

u2
k = v2

k + 1 =
1

2

(
ε0k + gn

εk
+ 1

)
(2.34)

with εk the Bogoliubov quasiparticle energy

εk =
√
ε0k(ε

0
k + 2gn) = gn

√
(kξ)2[(kξ)2 + 2], (2.35)
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and the free particle energy ε0k = ~2k2/2m.
The equations describe excitations that are composed of atoms moving with ±~k,

where u2
k gives the number of atoms moving in the direction of the excitation and

v2
k atoms moving in the opposite direction. Although typically large numbers of

atoms contribute to an excitation, the net momentum carried by a single excitation
is equal to ~k.
Furthermore, Eq. 2.35 describes a quasiparticle spectrum with two regimes: For low
energy excitations with kξ < 1, where the excitation wavelength ∼ k−1 is larger than
the healing length ξ, the condensate can deform on the scale of the wave vector and
the excitations propagate like a sound wave in a medium. This results in a phonon
like, linear dispersion

εk ≈ ck (2.36)

where c =
√
gn/m is the speed of sound of the condensate. In the phonon regime,

the amplitudes u2
k, v

2
k ≈ 1/2kξ > 1 describe collective excitations with many atoms

contributing to the mode.
For high energy excitations with kξ > 1, the condensate wavefunction can not

adapt to the modulation, and the spectrum becomes single-particle like with a
quadratic dispersion relation

εk ≈
~2k2

2m
+ gn. (2.37)

In the single-particle regime, u2
k ≈ 1 and v2

k ≈ 0, and there is an extra energy gn
required for the excited atoms to move with kξ > 1 in the surrounding gas.

Collective mode frequencies We now discuss the excitations of a trapped, repul-
sively interacting gas. When the interaction energy gn is large and the Thomas-
Fermi approximation is valid, equations 2.33 coincide with the hydrodynamic equa-
tions for superfluids. In the spherical case, the eigenfrequencies of low frequency
excitations have the analytic form [101]

ω(n, `) = ωho

√
2n2 + 2n`+ 3n+ `, (2.38)

where n and ` are the principal and the angular momentum quantum number,
respectively. This is in contrast to the non-interacting case, where ω(n, `) = ωho(2n+
`).

The result can also be extended to the case, where the kinetic energy Ekin is not
negligible compared to the potential energy Epot (as assumed in the TF approxima-
tion). For the often studied quadrupole mode (n = 0, ` = 2), which is also important
for our experiments, the mode frequency is

ω0,2 =
√

2ωho

√
1 + Ekin/Epot. (2.39)
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Figure 2.5.: Three of the lowest collective excitations of a BEC in a prolate trap
ω⊥ � ωx. Left: Low frequency (m = 0, ` = 2) quadrupole mode with frequency
ω =

√
5/2ωx. Middle: High frequency (m = 0, ` = 0) radial compression mode

with frequency ω = 2ω⊥. Right: Quadrupole mode (m = 2, l = 2) with frequency
ω =
√

2ω⊥.

For the case of a trap with cylindrical symmetry as used in our experiments, the
generalization to prolate clouds with ω⊥ � ωx has to account for the dependence
on the axial component of the angular momentum, the quantum number m. One
obtains

ω2
`,m=±` = `ω2

⊥ (2.40)

ω2
`,m=±(`−1) = (`− 1)ω2

⊥ + ω2
x (2.41)

For the quadrupole mode (` = 2) with m = 0, a coupling to the monopole mode
(n = 1, ` = 0) leads to two decoupled modes with frequencies

ω`=2,m=0 =

{ √
5/2ωx

2ω⊥
(2.42)

in the limit of ωx � ω⊥. Figure 2.5 depicts the major low lying collective modes.
For small clouds beyond the TF regime, where the kinetic energy has to be in-

cluded, the quadrupole mode frequency is calculated similarly to Eq. 2.39 and reads
[103]

ω2,2 =
√

2ω⊥

√
1 + Ekin,⊥/Epot,⊥. (2.43)

The kinetic and potential energy along the transverse dimension Ekin,⊥, Epot,⊥ can
be evalutated following Ref. [100].

In experiments, collective oscillations were the first object of study after demon-
stration of BEC. Early experiments on low lying collective modes were demonstrated
in [104, 105, 106]. More recently, a high order collective mode was excited by a cav-
ity standing wave, and the dynamical coupling between the cavity light field and
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the collective mechanical motion was studied [91, 107]. In our experiments we ob-
serve the excitation of low lying collective modes by the coupling to an oscillating
micro-cantilever (see chapter 5).

Popov approximation

In contrast to the Bogoliubov approximation, the Popov approximation includes a
thermally occupied quasiparticle spectrum, and neglects only the so-called anoma-
lous density term m̃ = 〈Ψ̂(r)Ψ̂(r)〉 and terms with higher than quadratic order in
Ψ̂. This means that besides the condensate density nc(r) = |Φ(r)|2 one now also
solves for a thermal density distribution nT = 〈Ψ̂†Ψ̂〉. The condensate wave function
is determined by the generalized GPE [108, 109]

[H0 + gnc(r) + 2gnT (r)] Φ(r) = µcΦ(r). (2.44)

The thermal cloud is obtained by a Bogoliubov transformation (Eqs. 2.32) of Ψ̂
which leads to coupled Popov equations similar to Eqs. 2.33, now also containing a
mean field contribution due to nT . A solution for the quasiparticle energies εk and
amplitudes uk, vk determines the non-condensate density

nT (r) =
∑
k

|uk(r)|2 + |vk(r)|2

exp(εk/kBT )− 1
+ |vk(r)|2. (2.45)

The first term is the thermal occupation of the quasiparticle states and describes the
”normal”thermal cloud. The last term gives a finite thermal density distribution also
for T = 0 and is called quantum depletion. This accounts for the fact that collisions
within the condensate can scatter atoms to excited states. For dilute gases with
weak interactions, quantum depletion is of the order (N −Nc)/N = (8/3)

√
n0a3

s/π,
eg. for the case of 87Rb and maximum density n0 = 1015 /cm a depletion of 1%.
This is in contrast to suprafluid 4He, where quantum depletion limits the condensate
fraction to ∼ 10%.

Note that due to atom bunching in the thermal cloud, the mean field interaction
for thermal atoms is twice as large as for condensate atoms. Thus, while for con-
densate atoms the effective potential becomes flat in the TF limit, there will be a
bump for thermal atoms. This pushes the thermal component away from the trap
center, forming a thermal shell around the condensate. On the other hand, this
shell contributes to an effective potential for the condensate and compresses it [110].
The density distributions for the thermal and condensed cloud have to be found
self-consistently to fulfill equations 2.44 and the generalizations of Eqs. 2.33.

In the semi-classical Thomas-Fermi approximation, the densities are given by two
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Figure 2.6.: Top: Bimodal density distribution (cut along the radial direction).
Blue: nc, light red: undisturbed thermal cloud, dark red: nT , black: n = nc + nT .
Bottom: Effective potential Ueff for the thermal cloud in the presence of a TF-
condensate. The thermal cloud sees the meanfield of the condensate density as
a bump in the effective potential and is thereby repelled from the trap center.
Calculation for 2000 atoms in a 10 kHz trap at T = 0.7 Tc with condensate fraction
of 60% in dimensionless units a0 =

√
~/mω⊥.

coupled equations [108]

nT (r) = λ−3
dB g3/2

[
exp

(
−2gnT (r) + 2gnc(r) + Uext(r)− µc

kBT

)]
, (2.46)

nc(r) = max

{
µc − 2gnT (r)− Uext

g
, 0

}
, (2.47)

where g3/2(z) =
∑

l z
l/l3/2 is the polylogarithm function. The mean field potential

arising from the thermal cloud 2gnT (r) is usually much smaller than the condensate
mean field and can be neglected in many cases. In this limit, the two equations
become decoupled and the density profiles can be obtained easily. Figure 2.6 shows
the density distribution of a partially condensed cloud at T = 0.7 Tc with N = 2000
in a trap with ω⊥ = 10 kHz, ωx = 1 kHz where the condensate fraction is determined
by Eq. 2.21 and the themal cloud mean field is neglected.

The Popov approximation describes all important effects properly for tempera-
tures far enough below Tc. In particular the repulsion of the thermal cloud due to
the condensate mean field, damping of condensate excitations due to friction by in-
teraction with the thermal cloud, and excitation of the condensate by thermal cloud
motion or vice versa are predicted.

However, the Popov approximation fails to explain experiments with large ther-
mal fractions (> 50%). This situation is described correctly in the Hartree-Fock-
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Bogoliubov theory, where only terms of Ψ̂(r) and Ψ̂†(r) in fourth order are neglected.
The main extension is the inclusion of the coupling between excitations and the so-
called anomalous density, which describes correlations between thermal atoms. This
theory also explains excitations for temperatures close to Tc with good accuracy, and
e.g. describes the unexpected large damping of collective excitations at temperatures
close to Tc [111, 112].

2.2.3. Condensate motion in anharmonic traps

A collective mode of a condensate represents a very well isolated mechanical oscilla-
tor which is initially prepared in its ground state [90, 91, 92]. A special role is taken
by the lowest excitation of the cloud, the center of mass (c.o.m.) or dipole mode.
The c.o.m. motion of an ensemble of atoms in a harmonic trap leaves the internal
cloud dynamics unaffected, regardless of the strength of interactions within the sys-
tem. This is a result of the Kohn theorem [113]. As a consequence, the dipole mode
of a cloud can act as a mechanical oscillator with very high quality factor, which is
only limited by the lifetime of the atoms in the trap (Q ∼ 104 was demonstrated in
[26]).

However, it was mentioned in the previous section, that condensate excitations
are subject to considerable damping when the thermal component does not oscillate
in phase. Due to the different density distributions and the discrepancy in speed
of sound, this will be the case for all modes but the dipole mode in a harmonic
potential. For this mode, the condensate and the thermal cloud oscillate together,
such that the center of mass coordinate of the total density distribution

R(t) =

∫
rn(r, t)d3r∫
n(r, t)d3r

(2.48)

performs oscillations of the form

Ri(t) =
∑
i

ai sin(ωit+ θi), i = x, y, z (2.49)

and the shape of the cloud remains unchanged, independent of interactions and
mean field potentials associated with n(r).

Trap anharmonicities change the situation and can lead to excitation of higher
modes and thereby cause damping. We give an analytical description for the GPE
dynamics in potentials with small anharmonicity following [114, 115, 116] and [117]
where the thermal cloud is neglected for simplicity. (An alternative approach to
describe excitation in an anharmonic trap was given by [118].)

The solution of the time-dependent GPE 2.27 can be written in the form

φ(r, t) = φ0(r −R, t)eiS(r)eiϕ(t) (2.50)
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with a phase S whose gradient is given by the velocity of the c.o.m. coordinate

∇S(r, t) =
m

~
Ṙ (2.51)

and an additional global phase ϕ(t). The dynamics of the c.o.m. coordinate can be
described by the classical equation of motion

mR̈ = −∇Uext(R), (2.52)

and the in general anharmonic potential Uext can be expanded in a taylor series
around the c.o.m. coordinate of the cloud.

For small anharmonicity, the potential can be approximated as locally harmonic,
and it is sufficient to expand the series to second order. In the frame of the con-
densate moving in this potential, the anharmonicity appears as a time-dependent
oscillation frequency

ω2
i (t) =

1

m

∂2

∂r2
i

Uext(R(t)), i = x, y, z. (2.53)

In the TF limit, an exact analytical solution can be found for this problem. It
describes the time evolution of the parabolic density distribution by rescaling factors
λi(t) of the TF-radii [114]

nc(r, t) =
µc
g

1

λx(t)λy(t)λz(t)

[
1−

∑
i=x,y,z

(
ri

RTF,0iλi(t)

)2
]
. (2.54)

The rescaling factors determine the complete time evolution of the TF radiiRTF,i(t) =
λi(t)RTF,0i and satisfy the differential equations

λ̈i =
ω2

0i

λiλxλyλz
− ω2

i (t)λi, i = x, y, z (2.55)

In this way, the anharmonicity couples the c.o.m. motion and the time evolution of
the TF radii. Experimentally such a coupling to the cloud shape has been demon-
strated with large amplitude oscillations (b ≈ 1 mm) of a BEC in an anharmonic
wave guide [115]. The two l = 2,m = 0 modes at

√
5/2ωx and 2ωx, and nonlinear

mode mixing was observed.

To describe the situation of our experiments, where anharmonicity can be very
strong, this analytical description is of limited use and we employ a numerical sim-
ulation of the GPE to investigate the cloud dynamics (see chapter 5.8.2).
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2.3. Surface forces

In the following we direct our view on the situation of an ultracold cloud or a BEC in
ultimate proximity to a surface. In such a setting, the presence of surface forces has
an important influence on the behaviour of the atoms. We discuss different origins
of surface potentials and show that they are typically attractive and decay over a
characteristic length of a few microns.

2.3.1. Van der Waals-London and Casimir-Polder Potential

A neutral ground state atom close to a surface feels an attractive force. It arises
due to the interaction of the fluctuating electric dipole of the atom with the electro-
magnetic field, which is modified by the presence of the surface. Depending on the
atom-surface distance, three different regimes can be distinguished [119].

Van der Waals-London regime

For distances z where the propagation time of electromagnetic waves at the frequency
of the strongest atomic transition can be neglected, the force can be described as the
interaction of a dipole with its image dipole. The fluctuating electric dipole moment
causes a fluctuating image dipole, which leads to an attractive interaction, called
the London dispersion force or one type of van der Waals force. Near a dielectric
surface with refractive index nr =

√
εr , the potential is described by

UvdW(z) = − ~
16π2ε0

1

z3

∫ ∞
0

α(iξ)
εr(iξ)− 1

εr(iξ) + 1
dξ ≡ −C3

z3
(2.56)

with a(iξ) the polarizability of the atom evaluated for imaginary frequencies. For a
perfectly reflecting surface, εr →∞ and the fraction in the integral becomes unity.

Casimir-Polder regime

For distances larger than λ/2π, retardation of the electromagnetic field becomes
important, and a QED description of the situation is necessary. Casimir and Polder
[120] derived the potential for a perfectly conducting surface

UCP(z) = − 3~c
32π2ε0

α0

z4
≡ −C4

z4
, (2.57)

where the DC polarizability α0 is sufficient to describe the properties of the atom.
Lifshitz generalized the treatment of surface forces, yielding the London and Casimir-
Polder regimes as limiting cases. The theory also includes the generalization to
dielectric media, wich leads to a weaker potential

UCP(z) = − 3~c
32πε0

α0

z4

εr − 1

εr + 1
φ(εr) ≡ −

C4,d

z4
(2.58)
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Figure 2.7.: Surface potential of a perfect conductor and a dielectric bulk or
slab SiN. Shown are the asymptotic potentials in the van der Waals-London and
Casimir-Polder regimes as well as the potential of a thin dielectric slab.

with a numerical factor φ(εr) which is 0.81 (0.46) for Si (SiN) having a dielectric
constant εr = 13.69 (4.08) [119].

The short range van der Waals-London and the retarded Casimir-Polder regime
can be summarized by an interpolation formula that describes a smooth transition
between the two regimes,

UCP(z) = − C4

z3(z − λ/2π)
, (2.59)

where the distance of the crossover is given by the reduced wavelength of the
strongest atomic dipole transition (λ/2π ≈ 120 nm for 87Rb). This implies that
the two strength coefficients are connected via C4/C3 = λ/2π. Figure 2.7 shows the
two asymptotic potentials and the interpolation Eq. 2.59.

The interpretation of the various forces is an interesting question for itself. Es-
pecially, whether the CP potential could be regarded as a retarded van der Waals-
London force was discussed [121, 122]. It was found that in the CP regime, the
physical origin has to be described as a distance dependent AC Stark shift of the
atomic ground state which is caused by quantum fluctuations of the vacuum, rather
than by retarded image fields.

Thermal (Lifshitz) regime

In the above discussion, the CP force originates from zeropoint fluctuations of the
vacuum. The situation is different when thermal populations of the vacuum modes
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are present. Thermally excited modes will have a wavelength λ > λT = ~c/kBT ,
and the surface potential will differ from UCP for distances large compared to the
thermal wavelength λT . In a simple form [123], the resulting potential for a dielectric
can be written as

Uth(z) = − 1

16πε0

α0kBT

z3

εr − 1

εr + 1
, (2.60)

which is now dependent on the temperature T of the surrounding environment defin-
ing the temperature of the vacuum, and Planck’s constant is no longer contained.

Thin layers

So far, the formulas are derived by assuming the dielectric as a semi-infinite, ho-
mogeneous medium. The scaling changes when the thickness h of the dielectric
medium is much less than the atom-surface distance d, h � d. Calculations show
that in this limit, the short range van der Waals-London and the intermediate range
Casimir-Polder forces scale as [124, 125, 126]

UvdW(z, h) ∝ −C3h

z4
(2.61)

UCP(z, h) ∝ −C4,dh

z5
. (2.62)

For conductors the behaviour is different, and the penetration depth becomes an
important parameter. As a general result one can state that thin metal layers have
essentially the bulk surface potential as soon as the reflectivity comes close to the
bulk value. E.g. for Au this occurs for a film thickness h & 30 nm.

When several thin layers are combined, the non-additivity of surface forces has
to be accounted for. In [127], the van der Waals potential of a dielectric waveguide
consisting of a several stacked thin films is calculated. The potential for an interface
between vacuum with refractive index n1 = 1 and a stack of two dielectric layers
with refractive index n2, n3 is found to be

UvdW(z, t) = −C3

(
α21

z3
+
α2

21 − 1

α21

∞∑
n

(α21α23)n

(z + nh)3

)
, (2.63)

where αij = (εr,i−εr,j)/(εr,i+εr,j). The layers lead to an enhancement of the potential
due to multiple reflections of the electromagnetic waves inside the waveguide layer.

Finally we want to mention the possibility of repulsive CP forces by either realizing
thermal non-equilibrium situations [123] or by using magneto-dielectric materials
[125].
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Measurements of van der Waals - London and Casimir-Polder forces

Measurements of fundamental surface forces has been a long standing topic. Using
atoms as a sensitive probe has proven to be a powerful method to investigate this
physics, especially at large atom-surface distance. Experiments include transmission
measurements with Rydberg atoms [128, 129], reflection of ultracold atoms from
evanescent waves [130, 131], examination of surface induced atom loss [24], precision
measurements of trap frequency shifts [26, 27], or quantum reflection from the surface
[132, 133, 134].

2.3.2. Adsorbates and stray charges

The microscopic state of a surface is a dirty affair, dominated by a high concentration
of defect states, electric and magnetic impurities, oxide layers, and adsorbed atoms
or molecules which can be the origin of electric or magnetic stray fields. Ultracold
atoms trapped close to the surface are sensitive to electromagnetic fields and can
thus be affected by the fields emanating from the surface.

Stray field potentials from adsorbates

One particular origin of surface potentials are stray fields from alkali adsorbates
that are deposited during the course of experiments with ultracold atoms close to a
surface. We review this effect in more detail since it is a likely origin for the surface
potential that we observe in our experiments.

For distances of the order of the Bohr radius, the attractive van der Waals-London
force is overwhelmed by a repulsive force originating from the Pauli exclusion prin-
ciple. An atom accelerated towards a surface should be reflected at the repulsive
potential when no dissipative process occurs. However, one observes that a large
fraction of atoms sticks on the surface and forms adsorbates. The inelastic pro-
cess associated with this behaviour can be described in the language of Feshbach
resonances [135]. The atom is deexcited to a local bound state, where the energy
difference is resonantly coupled to a phonon excitation of the local surface configura-
tion. Due to the high density of states of surface excitations, inelastic atom-surface
collisions are likely and the probability to stick at the surface is usually high.

Alkali atoms adsorbed on a metal surface suffer from level broadening and a
deformation of the lowest S and P orbitals of the valence electron due to interaction
with the energy bands of the substrate. If the work function φs of the substrate
is larger than the ionization energy Ei of the atom, the valence electron will be
transferred partially to the substrate, and a dipole moment µel aligned normal to the
surface is formed [136, 137, 138, 139, 25]. Figure 2.8 (a) depicts the situation. The
resulting stray field of the dipoles of a collection of adatoms can become sizable and
lead to a polarization of trapped atoms nearby. When the adatoms are deposited in
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a non-uniform density distribution, the electric stray field can have strong gradients
and lead to an attractive potential

Uad(z) = −α0

2
|E(z)|2 . (2.64)

Depending on the density distribution and the number of adatoms, the potential
can be larger than the CP potential and dominate the atom-surface interaction.

The distance-dependence of Uad depends on the spatial distribution of adsorbates
on the surface. E.g. a line of dipoles would cause a potential ∼ 1/z4, while for
a point-like distribution it would fall off as ∼ 1/z6. In cold atom experiments,
strongly inhomogeneous distributions can originate from the deposition of BECs on
the surface. The condensates from a cigar-shaped trap would result in an elongated
distribution of adsorbates. To estimate the stray field of such a distribution, we
assume a gaussian 2D density distribution

n(x, y) = n0 exp

(
− x2

(2RTF,x)2
− y2

(2RTF,y)2

)
(2.65)

where the choice of 2RTF,i as radius accounts for some diffusion on the surface. The
number of adsorbed atoms is given by Nad =

∫∫
n(x, y)dxdy. The electric field E(z)

is obtained by an integration over the density distribution of the adatoms

E(z) =

∫∫
dx′dy′

en(x′, y′)

4πε0

[
1

(z − µel

2e
)2 + x′2 + y′2

− 1

(z + µel

2e
)2 + x′2 + y′2

]
(2.66)

with e the electron charge, and where the individual positive and negative charge
contributions of the dipole are summed explicitly.

Figure 2.8 (b+c) shows a typical adsorbate density distribution for deposited
BECs and the resulting potential Uad(z). As an upper limit for the inhomogeneity
of the adsorbate distribution we calculate the density distribution with Eq. 2.65 for
a BEC of Nc = 2000 atoms in a trap with ωx,y = 2π × [1, 10] kHz. The stray field
potential is shown for [100, 500, 2500] BECs deposited at the same position. We
assume a dipole moment of µel = 3 Debye for Rb adsorbed on Au, which has a work
function φs = 4.8 − 5.1 eV1. For Nad > 6 × 105 the adsorbate potential becomes
larger than the CP potential. The maximum density for the largest atom number is
∼ 0.5 nm−2 and thus only a few percent of a monolayer.

In [25, 27] the electric stray field of controllably deposited 87Rb BECs was mea-
sured for various different materials. The electric dipole moment of Rb on Si and
Ti (work function φs = 4.8 eV and 4.3 eV respectively, to be compared to the 87Rb

1We have found no value for the dipole moment of Rb adsorbates on evaporated Au in the
literature. The choice of the value is motivated by the similar work function for Si and the
measured µel in [25].
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Figure 2.8.: (a) Potential energy diagram for an alkali adatom adsorbed to a
metal surface. The adatom electronic ground state is shifted and broadened. For
Rb on Au, the ionization energy Ei of Rb is smaller than the work function φs of
gold, leading to a partial charge transfer to the surface and thus a dipole moment.
(b) Elongated gaussian density distribution of adsorbed Rb atoms as expected from
a deposition of BECs on the surface. (c) Adsorbate potential for a distribution
as in (b) with RTF,i = [3, 0.3] µm. Adsorbate potentials are shown for Nad =
(2 × 105, 1 × 106, 5 × 106) atoms (from light to dark red). For comparison, the
CP potential and potentials of the form Aδ/z

δ with δ = (3, 4) fit to the potential
forNad = 5× 106 are shown.

ionization energy of Ei = 4.2 eV) was found to be µel ∼ 3 − 15 Debye [25], while
fused silica with no expected charge transfer also showed ∼ 3 Debye [27].

The surface coverage of adsorbates Θ plays an important role for the strength of
the dipole. One effect is that the work function of the surface approaches the value
of the metallic adsorbate species already for small coverage Θ0 ∼ 0.3 [137, 138]. Yet
this does not imply that no dipole moment remains for Θ ≥ Θ0, as the deformation
of the lowest orbitals also contributes to polarization. For high coverage one expects
a residual dipole comparable to the value for a dielectric surface.

A related question is the steady state coverage of the surface depending on the
partial pressure of Rb atoms. For a given partial pressure p, the adsorption rate for
atoms of mass m and temperature Ta is given by the flux of atoms impinging on the
surface

rad = S(Θ)
p√

2πmkBTa
, (2.67)
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which depends on the surface coverage via the sticking probability S(Θ). On the
other hand, the desorption rate is given by an Arrhenius law

rde = ν0(Θ)N0Θ exp

(
−Eb(Θ)

kBTs

)
(2.68)

with the surface temperature Ts, the eigenfrequency of the bound state ν0 (typically
of the order of 1013 Hz), the binding energy Eb, and the number of adsorbed atoms
Nad = ΘN0 being a fraction of a monolayer withN0 atoms per unit area. The balance
between these two rates determines the dynamics and the steady state value of the
surface coverage,

N0
dΘ

dt
= rad − rde. (2.69)

To obtain meaningful predictions from this rate equation, adequate models or mea-
sured coverage dependences for S(Θ), ν(Θ), E(Θ) are required. In the founding
theory of Langmuir [136, 140] one assumes S(Θ) = S0(1 − Θ) with the zero cov-
erage sticking probablilty S0 often set to unity. This simple form describes a very
idealized situation of a uniform surface with only one adsorption process, no inter-
action between adsorbates, and the formation of one single layer. Extensions of the
Langmuir theory to multilayer adsorption in the BET theory [141] or the inclusion
of interactions between adsorbed and gaseous adsorbates [142] proved to be more
successful to describe experiments.

In the limit where rad � rde, desorption can be neglected and Eqs. 2.69 with 2.67
result in an exponential law Θ(t) = 1− exp(−t/τm), where τm is the time constant
for the formation of a monolayer,

τm ≈
N0

√
2πmkBTa
p

= 6× 10−5 s× 1

p [mbar]
. (2.70)

For the case of Rb thermalized at Ta = 300 K with a partial pressure of 10−10 mbar
it is about ten days. Figure 2.9 shows a numerical integration of Eq. 2.69 for an
initially uncoated Au surface exposed to Rb with partial pressure p. For comparison,
the exponential law with the time constant from Eq. 2.70 is shown.

For Rb, the condensed metal has a work function φs = 2.2 eV which is comparable
or even larger than the binding energy of Rb adsorbed to Au. This makes the
formation of multilayers favourable.

Desorption is not the only process to reduce the surface coverage, e.g. Rb can
form an alloy with Au, which also changes the work function of the surface. An
other process for alkali atoms adsorbed on metals with large work function (as for
Rb on Au) is that the atom gives its valence electron to the surface and desorbs as
an ion.
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Figure 2.9.: Numerical integration of the adsorption dynamics according to
Eq. 2.69 (solid lines) and exponential growth (dashed lines) valid for the limit
rad � rde. For the numerical calculation we use the Langmuir sticking coefficient
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Θ), and use ν0 = 1013. The temperatures are chosen to be Ta = Ts = 300 K. The
equilibrium coverage does not reach unity due to the decrease of Eb with Θ.

The binding energy of alkali adatoms on metal is of the order of 0.1 − 3 eV and
can thus be comparable to the room temperature energy kBT = 26 meV. Weak
binding leads to thermal diffusion of adatoms across the surface and enables fast
desorption. In [27] the diffusion of controllably deposited adatoms was determined
by measurements of the decay time of the stray field. It showed to be similar for the
studied Yttrium and fused silica surfaces and amounted to 8 and 2 days respectivley
at room temperature. The data allowed to extract the activation energy 0.4 eV and
the frequency ν0 = 102 Hz, the latter being ∼ 10 orders of magnitude smaller than
the expected eigenfrequency of the bound state.

In summary, already small amounts of adsorbates can play an important role for
cold atom experiments close to surfaces. However, the situation is rather unclear for
the case of high coverage. At the relatively high partial pressures used in our experi-
ments, the surfaces will be coated with a first layer with coverage of ∼ 60−90 % and
several more layers that may form islands. The stray field of additionally deposited
adsorbates will be reduced with respect to a deposition on an uncoated surface, and
diffusion will be faster. But there are also effects that increase stray field potentials:
E.g. a homogeneous field of a uniform adsorbate distribution also polarizes atoms
nearby and can thereby increase the effect of an additional non-uniform distribution.
Quantitative estimates of the strength of controllably deposited adsorbates in this
regime are thus difficult.
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Patch potentials and stray charges

Small-scale random fluctuations in the potential of conducting materials associated
with strain, irregularities, or impurities, lead to electrostatic potentials and thus
additional attractive forces on nearby atoms. Typical patch potentials are of the
order of 100 mV with a gaussian patch size distribution with rms diameter of D ∼
50 nm [129, 143]. The field strength at the surface is a few hundred V/cm, but
for distances d� D from the surface the potentials average out and the remaining
gradient is small.

A different source of electric stray fields can be stray charges on dielectrics. The
field of only 6 elementary charges located in a region with diameter D � d causes
an attractive potential of the same magnitude as the CP potential. The shape of
the potential is |E|2 ∝ 1/z4 and thus identical to the CP potential in the retarded
regime. The influence from stray charges can be important e.g. for laser irradiated
surfaces, where ionization is expected. It was recently found that this has strong
impact for ion traps with laser irradiated dielectrics close to the trap [144]. But also
the ionization of alkali adsorbates on metal surfaces can create ions on neighbouring
dielectric surfaces.

Magnetic impurities

Impurities with magnetic moments embedded in the substrate close to the surface
can affect the trapping potential. Due to the vector nature of the magnetic field and
the structure of magnetic traps, a stray field will (except for very few special cases)
affect axial and radial trapping frequencies and the center of the trap simultaneously.
As an example we sketch two worst case situations.

First we consider the change in trap frequency when the magnetic stray field
contains a component parallel to the trap axis B∗x. The strongest effect is on the
transverse trap frequencies ω⊥ ∝ 1/

√
B0 (see equation 2.11). The relative change

δω⊥/ω⊥ = B∗x/(2B
3/2
0 ) can be significant for small B0. E.g. for a typical field B0 =

1 G, a field of B∗x = 5 mG changes ω⊥ by one percent. At a distance d = 1.5 µm
from the surface, such a field could be generated e.g. by a magnetic particle (e.g.
Co) of ∼ 20 nm diameter magnetized along the x−axis, corresponding to ∼ 107

atoms.

The effect of magnetic stray fields on the trap position is largest when the field
is perpendicular to the trap axis. A calculation for the geometry and the trap
parameters as used in our experiments predicts that a position shift by 10% of the
ground state size in the trap requires a particle at least ten times as large as in the
previous example.

Gradients of the stray field add a position dependence to both examples and
additionally introduce forces.
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2.4. Effects of surface forces on atom trapping

In this section I describe the effects of surface forces on ultracold atoms trapped at
small distance from the surface. The static deformation of the trapping potential is
analyzed and the arising loss mechanisms are introduced. Trap deformation is the
basis for the dynamical coupling of ultracold atoms to mechanical motion, which is
discussed in chapter 5.

2.4.1. Potential deformation

At small atom-surface distance, the magnetic potential Um used to trap the atoms is
substantially modified by the surface potential Us = UCP+Uad, where Uad includes all
the additional potentials that can arise (see above). In the direction perpendicular
to the surface, the combined potential is (see Fig. 2.10)

U [z] = Um + UCP + Uad + Ugrav

=
1

2
mω2

z,0(z − zt,0)2 − C4

(z − zc)4
+ Uad[z − zc] +mgz. (2.71)

Here, zc is the position of the cantilever surface, C4 the CP-coefficient, zt,0 the
minimum position of the magnetic trap, ωz,0 the trap frequency of the trap far away
from the surface, m the atomic mass, and g the acceleration in the gravitational
potential Ugrav.

Trap depth reduction The most obvious effect of the surface potential Us is to
reduce the trap depth from the value of the magnetic potential at the surface Um[zc−
zt,0] to U0 (see Fig. 2.10) [24]. This results in a smooth barrier.

Frequency shift The curvature of Us gives rise to a shift of the trap frequency
[119] from ωz,0 in the unperturbed magnetic trap to

ω2
z = ω2

z,0 +
1

m

∫
n0(z)

∂2Us
∂z2

dz, (2.72)

where the normalized 1D column density n0(z) along the z-axis enters to account
for the variation of the curvature across the extension of the atom cloud. For a BEC
in the Thomas-Fermi regime one finds

n0(z) =
15

16

1

RTF,z

(
1− (z − zt)2

R2
TF,z

)2

. (2.73)

For a surface potential of the form of UCP, the integral in Eq. 2.72 can be carried
out analytically and one obtains

ω2
z = ω2

z,0 −
20C4

md6

1

(1− (RTF,z/d)2)3
. (2.74)
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Figure 2.10.: Calculation of the deformation of the magnetic trapping potential by
the Casimir-Polder potential for small atom-surface distance. It leads to a barrier of
height U0, a shift of the trap minimum and a change in trap frequency. Parameters
are ωz/2π = 10 kHz, d = 820 nm, Us = UCP. The chemical potential µc of a BEC
with N = 600 atoms is shown for comparison. Right panel: Enlarged view of the
potential close to the trap minimum (indicated by the grey box in the left panel).
The shift of the trap minimum is visible.

When the distance to the surface d = zt − zc is much larger than the cloud radius,
the last factor in Eq. 2.74 is close to unity and it is a good approximation to neglect
the spatial extent of the cloud. For an arbitrary surface potential, the trap frequency
is then given by

ω2
z = ω2

z,0 +
1

m

∂2Us
∂z2

, (2.75)

where the derivative of Us is taken at the c.o.m. position.

Trap anharmonicity The surface potential introduces anharmonicity to the trap-
ping potential. This results in a dependence of the oscillation period T on the
oscillation amplitude. In general, the oscillation will be asymmetric, and the clas-
sical turning points (z−, z+) which define the oscillation amplitude b = (z+ + z−)/2
can be found via the relation U(z±) = E, where E = mż2/2 + U(z) is the total
particle energy. The oscillation period in an arbitrary potential can be written as

T =
√

2m

∫ z+

z−

dz√
E − U(z)

, (2.76)

which directly links to the effective frequency of the oscillation ωcom = 2π/T . How-
ever, the singularities at (z−, z+) detain from an evaluation of the integral unless
U(z) leads to an elliptical form of the integrand. Various techniques are proposed



2.4 Effects of surface forces on atom trapping 37

to approximate T by proper expansions of the integrand [145, 146]. For small am-
plitudes, ωcom can be derived from an expansion of the potential around the trap
minimum position [119], yielding

ω2
com(b) ≈ ω2

z +
b2

8m

∂4Us(zt)

∂z4
. (2.77)

For traps close to a surface, the second term in Eq. 2.77 can be sizable and
introduce a significant amplitude dependence of the oscillation frequency. In chapter
5.8 we show that anharmonicity causes dephasing of collective oscillations and is a
limiting factor for the sensitivity of coupling measurements.

Minimum shift Finally, the gradient of Us leads to a shift of the center of mass
position from zt,0 to

zt = zt,0 −
∫
n0(z)

1

mω2
z

∂Us
∂z

dz ≈ zt,0 −
1

mω2
z

∂Us
∂z

. (2.78)

The approximation is again valid for d� RTF,z and in this case coincides with the
new trap minimum position zt. The right panel of Fig. 2.10 shows the shift of the
trap position.

The deformation of the trapping potential can e.g. be used to analyze the surface
potential. In the group of Eric Cornell, the change of the trap frequency was used to
measure the strength of the Casimir-Polder potential [26] or the shape and strength
of adsorbate potentials [25, 27].

In our experiments, we use the dynamic modulation of the trap deformation to
couple mechanical motion to collective motion of the atoms in the trap.

2.4.2. Sudden loss and surface evaporation

When a thermal or partially condensed cloud is quickly brought close to a surface
where the trap depth U0 is reduced to a value of the order . 8kBT , a notable
fraction of the atoms has higher energy than the barrier and will be lost from the
trap within one oscillation period, so called ”sudden loss”. The trap will be modified
mainly along one axis by the surface potential, and the situation is described by a
1D geometry. The 1D sudden loss of a thermal cloud corresponds to a truncation
of the 1D Boltzmann distribution at the energy U0, leaving a fraction of remaining
atoms [24]

χ = 1− e−η, (2.79)

where η = U0/kBT is the ratio between the remaining trap depth and the thermal
energy. The situation for a partially condensed cloud is more complicated since the
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mean field repulsion affects the energy distribution of the thermal component. We
discuss this in section 5.3.

Surface evaporation leads to additional atom loss on the timescale of typical trap
lifetimes. The evaporation rate equals the rate at which atoms with energy larger
than U0 are reproduced by elastic collisions. It is quantified by [147, 148, 24]

Γ(η) = f(η)e−η/τel. (2.80)

Elastic collisions occur at a rate τ−1
el =

√
2〈n〉σelv̄, given by the mean density 〈n〉,

the average relative velocity between two atoms
√

2v̄, and the elastic scattering
cross section σel. For a condensate, v̄c has to be evaluated via the kinetic energy,
v̄c =

√
2Ekin/m, while for a thermal cloud v̄th =

√
8kBT/πm. The scattering cross

sections are σel,c = 4πas and σel,th = 8πas respectively, and the mean densities 〈nc〉 =
4µc/7g and 〈nth〉 = N/(2πkBT/mω

2
ho)

3/2 (note that the condensate and especially
the thermal mean density is only a rough estimate, a more accurate determination
has to follow Eqns. 2.46 and 2.47).

The geometry of the situation enters via the dimensionless factor

f(η) = 2−5/2(1− η−1 +
3

2
η−2), (2.81)

which accurately describes 1D evaporation for η ≥ 4 and which is roughly a factor 4η
smaller than in the case of 3D evaporation [148, 147]. Evaporation is only important
for times t � τel. Figure 2.11 in chapter 2.5.2 shows the lifetime limitation due to
surface evaporation for a thermal cloud. It is important for distances d < 10 µm.

As the lost atoms carry away more than the average energy per atom, evaporation
also leads to cooling. In [149, 150] this effect was used for the preparation of BECs.

2.4.3. Tunneling

We now discuss effects that affect mainly the condensate. For traps in extreme
vincinity to the surface, the potential barrier between the surface and the trap can
be of the same size as the atomic energy and extend over a width smaller than e.g.
the size of the ground state wave function, such that tunneling through the barrier
becomes an important process. The transmission coefficient T of the barrier can be
calculated in the WKB approximation [151, 152, 153, 154]

T (E,U) = exp

{
−2

∫ x2

x1

√
2m

~2
(U(z)− E)dz

}
(2.82)

where E is the expectation value of the energy of an atom and x1,2 are the classical
turning points of the atom in the potential U(z). The tunneling rate is then given
by

Λ =
ωz
2π
T (E,U), (2.83)
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where the trap frequency gives the rate of bounces from the barrier. Tunneling
contributes only, when the atomic energy is close to U0. Due to the exponential
dependence on the energy difference, the effect of tunneling can be summarized by
a slight reduction of the barrier height (typically a few percent, see chapter 5.3).

2.4.4. Quantum reflection

From classical wave mechanics it is known that an impedance mismatch causes
reflection: A wave gets reflected, if the medium in which it propagates changes
its impedance such, that the local wavelength λ is changed substantially within a
distance smaller than λ. In optics this occurs for jumps in the refractive index
and leads to reflection on boundaries. For matter waves propagating in an external
potential, quantum reflection occurs when the local deBroglie wavelength λdB(z) =
~/p(z) with the local momentum p(z) =

√
2m(E − U(z)) changes substantially

within one wavelength. This violates the condition for the validity of the WKB
approximation

1

2π

∣∣∣∣dλdBdz

∣∣∣∣ = ~
∣∣∣∣ m

p(z)3

dU(z)

dz

∣∣∣∣� 1. (2.84)

When dλ/dz is markedly nonzero, the amplitude of the reflected wave becomes
significant, and the respective regions are called ”badlands”.2

Purely attractive potentials can also show quantum reflection. When analyzing
the maximum of WKB violation in Eq. 2.84, one finds that reflection occurs at a
position, where the modulus of the potential is of the same magnitude as the incident
energy [155, 135]. For potentials of the form Uα(z) = −Cα/zα one can see that for
α > 2, quantum reflection occurs at a finite distance from the surface, e.g. for the
Casimir-Polder potential zrefl = (C4/5E)1/4. In [155], approximate expressions for
the reflection probability are deduced. For potentials of the form Uα, the reflection
probability R is found to be

Rα ≈ exp(−2bαk) for k→ 0 (2.85)

with the effective range of the potential βα =
√

2Cαm/~2, the asymptotic wave

vector k =
√

2mE/~2, and the parameter bα=(3,4) = (πβ3, β4).
Experiments with Na BECs reflected from a bulk Si surface [134] or a nanostruc-

tured Si surface [156] showed that the mean-field interaction in the cloud leads to a
reduction of quantum reflection for low incident velocities. First, the repulsive mean-
field interaction accelerates atoms away from the cloud center, such that the atoms
aquire an average velocity vrep =

√
g〈nc〉/m, corresponding to the speed of sound in

2Note that the given condition is neither a necessary nor a sufficient criterion for quantum reflec-
tion. A proper criterion is given in [155].
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the condensate. Thus, the effective incident velocity is given by veff = vinc +vrep and
arbitrarily low values are not achievable (min(veff) ∼ 0.2 mm/s). Additionally, an
even stronger effect was attributed to the deformation of the combined mean-field
and surface potential. The spatial variation of the mean-field potential rounds off
the surface potential and thus reduces reflection for low incident velocities. Despite
these effects, normal incidence quantum reflection with up to 30% reflectivity for a
bulk Si [134] and up to 67% for a nanostructured Si surface with a strongly reduced
surface potential [156] was demonstrated.

In our experiments, BECs are prepared close to the surface with small vinc ∼
0 − 5 mm/s, but large vrep ∼ 4 − 10 mm/s due to high trap frequencies. For an
unmodified surface potential, only small reflectivity ∼ 10−3 is expected. However, in
combination with a magnetic trap, quantum reflection is relevant when the combined
potential shows a barrier of height U0 . µc. This situation is simlar to the proposals
[157, 158], and for moderate ωz an effect should be observable.

2.5. Atom loss and heating

In this section I summarize loss and heating effects that lead to a lifetime reduction
independent of the modification of the trapping potential. In particular, three-
body-collisional loss and technical heating impose severe limitations at the high
trap frequencies that are desired for our experiment.

2.5.1. Collisional loss

In typical BEC experiments, the condensate lifetime amounts to a few seconds up to
a minute. Longer lifetimes are inhibited by inelastic collisions that cause trap loss.

Three important collisional loss processes are contributing: Collisions with back-
ground gas atoms, two-body, and three-body inelastic collisions. Collisions wich
involve more partners are unlikely. The time evolution of the atom number is thus
governed by a rate equation with three contributions,

1

N

dN

dt
= −γbg −K〈n〉 − L〈n2〉. (2.86)

The background loss rate γbg is due to collisions with the room temperature back-
ground gas in the vacuum chamber. Due to the high energy, collisions with large
momentum transfer lead to loss of trapped atoms. The loss rate is given by γbg =

σbgp
√

3/kBTm, where p is the background pressure and σbg the cross section for a
background gas atom to eject a trapped atom [159].

The second term describes inelastic two-body collisions which are domintated by
spin-exchange processes, e.g. of the form |2, 1; 2, 1〉 → |2, 2; 2, 0〉. The rate depends
on the internal state of the collision partners and is energetically forbidden for the
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states |2,±2〉, |1,±1〉, such that it can be avoided by preparing the atoms in proper
states. A much weaker process is the spin-dipole interaction, which is negligible on
typical experimental timescales.

The last term in Eq. 2.86 describes loss due to inelastic three-body collisions.
When three atoms collide, two of them can form a molecule, while the third is
necessary for simultaneous momentum and energy conservation. The binding energy
is converted into kinetic energy of the collision partners and leads to trap loss of
typically both the molecule and the atom. Heating and additional loss can occur
due to collisions of these energetic particles with other trapped atoms. The loss rate
is

γ3b = L〈n2〉 ∝
{
ω

12/5
ho N4/5 BEC in TF limit
ω6

hoN
2 thermal cloud,

(2.87)

where L has been measured for the relevant states |1,−1〉, |2, 2〉 to be L = [5.8, 18]×
10−30 cm6s−1, respectively [160, 161].

For a condensate with a large thermal fraction, equation 2.86 has to be modified
to account for atom bunching in the thermal cloud. This leads to [161]

1

N

dN

dt
= −γbg −K [〈nc〉+ 2〈nT 〉]− L

[
〈n2

c〉+ 6〈ncnT 〉+ 6〈n2
T 〉
]
, (2.88)

which requires the knowledge of the density distributions given in Eq. 2.46.
Especially for high trap frequency (> 5 kHz), three-body collisional loss is a

severely limiting process that reduces the trap lifetime to a few ms also for small
clouds.

2.5.2. Thermal magnetic near-field noise

The thermal motion of electrons in a conductor at finite temperature leads to current
fluctuations called Johnson-Nyquist noise. The currents cause fluctuating magnetic
fields that couple to the magnetic moment of atoms. Close to the surface, the
fluctuating fields are strongly enhanced compared to the thermal blackbody field far
away due to the contribution of evanescent waves. This near-field regime manifests
in the low frequency spectrum, where the associated wavelengths are large compared
to the atom-surface distance. The frequency components of the fluctuations at the
Larmor frequency of the atoms in the trap can drive spin-flip transitions, leading to
trap loss and decoherence. The effect was predicted by Henkel et al. [162, 163] and
demonstrated experimentally in the groups of Hinds [28], Cornell [29] and Vuletic
[24].

The spectral density of magnetic field fluctuations at a distance d from a solid
with conductivity σ at temperature T is given by [163]

SB(ω) =
µ2

0σkBT

16πd
sαβg(d, h, w, δ), (2.89)
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with sαβ = diag(1
2
, 1

2
, 1) a diagonal tensor with the z−axis normal to the surface. The

dimensionless function g(d, h, w, δ) depends on the thickness h and width w of the
conductor, and on the skin depth δ =

√
2/σµ0ω being the only frequency dependent

factor. For typical Larmor frequencies of about one MHz and gold metallization,
δ is of the order of 100 µm and δ � (d, h, w) for typical wires. In the near field
(z � c/ω), analytic approximations for g exist [162, 164]

g =


(

1 + 2d3

3δ3

)−1

metallic half space,

h
h+d
· w
w+2d

thin wire, δ � (h, d).
(2.90)

To minimize magnetic near field noise it is thus beneficial to minimize the amount
of metallization close to the atoms. Cooling the substrate to reduce thermal fluc-
tuations will in general not be helpful since the conductivity increases for lower T
and the product σ(T )T even increases for decreasing T . However, the situation
changes in the superconducting regime, where magnetic noise is reduced by orders
of magnitude [165, 166, 167].

The spin-flip rate between two states |i〉, |f〉 caused by the magnetic field noise
can be calculated by Fermis golden rule [163]

γs =
∑

α=x,y,z

|〈i|µα|f〉|2

~2
SBαα(ωfi). (2.91)

For atoms trapped in the state |i〉 = |2, 2〉, trap loss occurs after the cascade process
|2, 2〉 → |2, 1〉 → |2, 0〉 [24] with the individual transition matrix elemtentsM12,yz =

〈1|µy,z|2〉 = µB/2, M01,yz = 〈0|µy,z|1〉 =
√

3/8µB, and M12,x = M01,x = 0 where
the spin is assumed to be oriented along x. Summed up, the factor for the matrix
elements isM2

02,yz = (M−2
12,yz +M−2

01,yz)
−1 = 3/20 and the spin-flip rate above a thin

wire becomes

γs =
9µ2

0µ
2
BσkBT

640π~2d

h

h+ d

w

w + 2d
. (2.92)

Figure 2.11 shows a calculation of the spin-flip rate together with surface evapora-
tion according to Eq. 2.80, three body collisional loss according to Eq. 2.87, and
background loss for a thermal cloud above a room temperature trapping wire.

Magnetic noise can also drive transitions between different hyperfine states |2, i〉 ↔
|1, f〉 with a transition frequency ωfi = 2π × 6.8 GHz. At such high frequencies,
δ = 0.9 µm and the thin wire limit δ � h is not valid for typical geometries. The
dependence of g on δ results in smaller noise spectral density, and the trap lifetime
will not be limited by these transitions.

While the components of the field noise transverse to the atomic spin S⊥(ω) can
drive spin-flips, parallel components S‖(ω) contribute to randomization of the phase
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Figure 2.11.: Trap lifetime above a room temperature gold wire (w = 50 µm,
h = 4 µm) for 3000 atoms in a trap with (ω⊥, ωx) = 2π×(1000, 100) Hz at T = 1.5Tc.
For large distance, background and three-body collisional loss limit the lifetime. For
intermediate distance, magnetic near-field noise induced spin-flip loss is the limiting
process. Very close to the surface, the reduced trap depth leads to fast evaporation.
The kink in the evaporation lifetime occurs where the trap depth becomes to low
for the 1D evaporation model to be valid.

of a state and lead to dephasing e.g. of spin superposition states.

At low frequencies, spatially inhomogeneous field fluctuations contribute to heat-
ing and decoherence of atomic c.o.m. motion [163]. The length scale for the inho-
mogeneities is of the order of the distance d between the trap and the metallization.
From an evaluation of Fermi’s golden rule now for spatial wave functions φ(r), one
obtains a transition rate from the ground to the first excited harmonic oscillator
state of

γh ≈
µ2
‖

~2

a2
ho

d2
S‖(ωt) ≈

a2
ho

d2
γs, (2.93)

where the parallel component of the magnetic field noise at the trap frequency ωt
has to be evaluated and the size of the wave function aho enters. Heating is thus
reduced by a factor (aho/d)2 compared to spin-flips and will be negligible unless the
cloud approaches the surface to d ≈ aho.

Spatially homogeneous fluctuations can lead to jitter of the trap position by adding
to the DC fields that create the trap. The associated heating rate can be estimated
by [82]

γh ≈
ωt
ωL
γs. (2.94)

As ωt � ωL in typical traps to avoid Majorana loss, this rate is small compared
to γs. Note that fluctuations leading to a jitter of the trap curvature at frequency
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ω = 2ωt excite the parametric resonance and also contribute to heating, however at
a rate substantially smaller than the other given rates.

2.5.3. Technical heating

Technical fluctuations of the magnetic trapping potential lead to heating and deco-
herence of a BEC. As the heating rates scale strongly with the trap frequency, tight
traps require exceptional low noise current sources.

Trap shaking Technical fluctuations of the trap minimum position give rise to a
time dependent potential

Uext(t) =
1

2
mω2

z(z − δz(t))2 (2.95)

with fluctuations δz(t) that are characterized by the spectral density

Sz(ω) =

∫ ∞
−∞

dτe−iωτ 〈δz(t+ τ)δz(t)〉. (2.96)

Trap shaking leads to resonant response only for the spectral components at the
trap frequencies. Small, temporally uncorrelated fluctuations that change phase
and amplitude ramdomly excite the c.o.m. mode of a trapped cloud into a thermal
state (see also chapter 3.1.2). This results in a temperature increase that can be
calculated perturbatively [168, 169]. One obtains a heating rate

Ṫ =
m

2kB
ω4
zSz(ωz) (2.97)

which depends on the spectral density at the trap frequency, scales with the fourth
power of the latter, and gives rise to a linear increase in temperature. For Ioffe-
Pritchard wire trap configurations (e.g. Dimple or Z-trap) with the trap axis along
x and trap minimum at z0 one finds [170]

Sz(ω) = z2
0(sIx(ω) + sBby

(ω)) (2.98)

where sI , sB are relative noise spectra (sI,B = SI,B/(I, B)). The magnitude of the
heating rate can then be obtained by

Ṫ = 3.3× 107 K

s

( ωz
2πkHz

)4
(
Ix/A

Bby/G

)2

×
(
sIx(ω) + sBby

(ω)
)
. (2.99)
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Fluctuations of the trap frequency Fluctuating fields also cause modulations of
the trap frequency. This is well known from parametric resonances and can be
modelled by a perturbation of the spring constant δk = δ(mω2

z), and the fluctuating
potential reads

Uext(t) =
1

2
mω2

z(1 + δk)z2(t). (2.100)

In this case, the excitation drives transitions with ∆n = 2 with n being the excitation
quantum number, and the energy increase is exponentially. The resulting energy
doubling rate is given by

γδz =
ω2
z

4
Sk(2ωz) (2.101)

which depends on the spectral density at 2ωz and scales quadratic with the trap
frequency.
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3. Micro- and nanomechanical
oscillators

In this chapter, micro- and nanomechanical oscillators are introduced from the per-
spective of using them as coupling partners for quantum optical atomic systems. In
the first section I review fundamental properties and important effects that charac-
terize these devices. I then summarize optical techniques for the read out and ma-
nipulation of mechanical resonators, which contribute largely to the controllablilty of
these devices. In the last section I turn the view to one of the fundamental goals for
the research with mechanical oscillators, the control of micro- and nanomechanical
motion at the quantum level and the observation of macroscopic quantum behaviour.

3.1. Fundamental properties

Micromechanical resonators are an important tool in many fields of science e.g.
due to their use in atomic force microscopes (AFM) [171]. The AFM has become
one of the central instruments for imaging, measuring, and manipulating matter at
the nanoscale. A recent achievement is e.g. the imaging of the chemical structure
of a molecule by the use of Pauli repulsion forces [172]. Apart from the broad
application in AFMs, micro- and nanomechanical resonators have proven to reach
extreme sensitivity in force sensing [173], mass detection [64], calorimetry [174],
or electrometry [175, 176, 177, 178], down to the zepto-range (= 10−21, e.g. zN).
One hallmark along this line is the resolution of a single electron spin in a solid,
demonstrated in the group of Dan Rugar at IBM [62], which could be improved
recently to a sensitivity of ∼ 10 nuclear spins by magnetic resonance force imaging
(MRFM) [63]. This corresponds to a force sensitivity below one Attonewton [173].
In a different context, such high sensitivity was used to establish new constraints
on non-Newtonian forces at small distances [179]. The force sensitivity is also the
figure of merit for mass sensing, which ultimately heads for single atom detectivity
[180, 181, 182, 64, 183]. A room temperature experiment employing a double-wall
carbon nanotube recently demonstrated a sensitivity of 0.4 gold atoms Hz−1/2 and
revealed the shot noise of the atomic adsorption [64].

Beyond their importance as versatile sensors, small scale mechanical oscillators are
also investigated for their own fundamental properties. Studies of classical properties
like nonlinear behaviour [184, 185, 186, 187], the origin of dissipation [188, 189], and
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Figure 3.1.: Standard geometries of micro- and nanomechanical resonators. (a)
Double clamped beam resonator, (b) single clamped beam or cantilever, (c) mem-
brane.

noise processes in nanomechanical resonators [190] span a broad range.

Resonator Types

Micro- and nanofabrication provide techniques for the creation of a plethora of
shapes for mechanical resonators on a microscopic scale [191]. A few basic ge-
ometries have been shown to achieve large responsivity and exceptional mechanical
quality. Most widely, flexural modes of single clamped cantilever resonators or dou-
ble clamped beam resonators are studied (see Fig. 3.1). Decoupling from modes
in orthogonal dimensions and minimization of the oscillator mass suggest a nearly
one dimensional geometry, characterized by a length l that is much larger than
the transverse dimensions w, h. Alternatively, membrane oscillators with l, w � h
and bulk oscillators with l ∼ w ∼ h can have amenities despite their larger mass.
Tensile stress is an important parameter for doubly clamped beams or membranes,
affecting the spectrum of resonance frequencies, the mode function, and also the
mechanical dissipation. The length scale for micromechanical resonators continu-
ously extends from mm scale down to molecular scale nano-oscillators like carbon
nanotubes (CNT) or graphene ribbons.

3.1.1. Modefunction, resonance frequency, and effective mass

A solid object consisting of A atoms has 3A modes of oscillation. While the high
frequency modes with wavelengths on the order of the interatomic distance are
typically referred to as phonons, the modes with wavelengths on the scale of the
dimensions of the device are termed mechanical modes [192]. In contrast to phonons,
mechanical modes are strongly affected by the geometry of the device.
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n=1 n=2 n=3

Figure 3.2.: Mode functions of the single clamped beam.

The mode shapes and frequencies can be accurately described by a continuum
theory [190, 50] unless the device extensions shrink to molecular scales. Let us
consider a beam resonator with length l much larger than the width w and thickness
h, see Fig. 3.1 (a) and (b). The relevant material properties are the mass density
ρ and the Youngs Modulus E. The dynamics of the transverse displacement along
the z-axis, described by the mode function u(x, t) extending along the beam axis x,
obeys the differential equation

ρwh
∂2u(x, t)

∂t2
= −EI ∂

4u(x, t)

∂x4
(3.1)

with I = wh3/12 the bending moment of intertia of the beam. The general solution
of this equation has the form

un(x, t) = [an cos knx+ bn cosh knx+ cn sin knx+ dn sinh knx]e−iωnt. (3.2)

The clamping of the beam defines the boundary conditions and thereby the coeffi-
cients (an, bn, cn, dn) and the eigenvalues kn.

For a single clamped beam, the transverse displacement as well as the derivatives
at the clamping point are zero, u(0) = u′(0) = 0, while the free end is force free such
that u′′(l) = u′′′(l) = 0. Inserting these conditions into Eq. 3.2 yields a conditional
equation for the eigenvalues kn which can be solved numerically. Furthermore, the
coefficients in Eq. 3.2 are found to be an = −bn, cn = −dn, and numerical evaluation
yields cn/an = −0.7341,−1.0185,−0.9920 for the three lowest eigenmodes with n =
1, 2, 3. Figure 3.2 shows the first three modes of the single clamped beam.

The eigenvectors with the numerical values knl = 1.875, 4.6941, 7.8548 together
with Eq. 3.1 determine the mode frequencies ωn =

√
EI/ρwhk2

n. The resonance
frequency of the fundamental mode can be expressed by the material and geometry
parameters, reading

ω1 = 2π × 0.1615

√
E

ρ

h

l2
. (3.3)

For comparison, a double clamped beam with otherwise identical geometry has a
6.4 times higher resonance frequency.
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Effective mass

An important concept for the description of mechanical resonators is the introduction
of the effective mass. When dealing with one peculiar mode of the oscillator, it is
desirable to think of the resonator as behaving like a point mass concentrated at a
position x0 where e.g. the mode function has its maximal value. This facilitates the
calculation of dynamic properties like the potential or kinetic energy. The mass of
this point is the effective mass that contributes to the motion in the mode. It is
calculated by [57]

Meff =
ρwh

∫ l
0
u2
n(x)dx(∫ l

0
u(x)s2(x− x0)dx

)2 (3.4)

where s(x−x0) denotes a probing function, describing e.g. the extension and profile
of a readout or coupling laser. When probing is approximately pointlike (laser beam
diameter � l), s2(x− x0) = δ(x− x0), and for the fundamental mode Eq. 3.4 yields
Meff = 33/140 M = 0.236 M for a single clamped beam, Meff = 0.735 M for a
doubly clamped beam, and Meff = 1/2 M for a beam under high tensile stress.

3.1.2. Thermal motion

At finite temperature, all mechanical modes of oscillation of a mechanical res-
onator are thermally excited, including high frequency phonons. According to the
equipartition theorem, each mode at frequency ωm is carrying the Boltzmann energy
(1/2)Meffω

2
ma

2
th = (1/2)kBT in thermal equilibrium. When studying only a single

mode, it is useful to describe the respective mode as a partially isolated degree of
freedom and to treat all other modes of the oscillator and the support to which the
resonator is clamped as a thermal bath. This thermal bath leads to a Langevin noise
force Fth with a white spectral density [190, 50]

〈SFF (ω, T )〉 = ~Meffκω coth

(
~ω

2kBT

)
≈ 2kBTMeffκ, (3.5)

where the approximation is valid for high temperatures T � ~ω/kB, and we have
introduced the mechanical damping rate κ (see below for an explicit definition).
This drives the oscillator into thermal motion with a mean number of phonons

nth =
1

e~ωm/kBT − 1
. (3.6)

The resulting thermal amplitude can be obtained either directly from the equipar-
tition theorem or by evaluating the Lorentzian response of the resonator to the
thermal noise force,

a2
th =

〈SFF 〉
M2

eff

∫
1

(ω2
m − ω2)2 + κ2ω2

dω

2π
' kBT

Meffω2
m

, (3.7)
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where we have assumed that SFF is sufficiently flat in the frequency range ωm ± κ
of the resonance. This equation permits to evaluate the resonator response also for
other noise sources acting on the resonator. The fluctuations in the amplitude are
of the same size as the mean amplitude, and the oscillator changes its amplitude
and phase on a timescale that is given by the inverse of the damping rate κ−1 of
the mechanical mode. The state of the oscillator can be written as an incoherent
mixture of coherent states |α〉 with a gaussian probability distribution

p(|α〉) =
1

πnth

e−|α|
2/nth . (3.8)

With |α|2 = n this is equivalent to an exponential phonon number distribution
p(n) ∼ e−n/nth .

For low temperatures T � ~ωm/kB, the mean thermal occupation nth becomes
less than unity and the resonator resides mostly in its ground state. It then displays
quantum fluctuations in its position with an rms amplitude

aqm =

√
~

2Meffωm
. (3.9)

E.g. for low mass and low frequency Si cantilevers (see Table 3.1, e.g. [62]) these
fluctuations amount to about one picometer.

3.1.3. Dissipation

One corner stone for the large success of micro- and nanomechanical systems is the
capability of achieving extremely low mechanical dissipation. Dissipation includes
all processes that propagate energy stored in a single mechanical mode to other
modes or excitations, be it the resonators thermal bath of other modes or some
external environment like air. The figure of merit that quantifies dissipation is the
quality factor Q, which states the number of oscillations the resonator undergoes
until the energy stored in the oscillation has decayed to 1/e of the initial value. It is
easily experimentally accessible, and can be infered either from the spectral width
of a resonance of mechanical oscillations,

Q =
ωm
2κ
, (3.10)

where ωm is the resonance frequency and κ the FWHM of the Lorentzian ampli-
tude spectrum, or from the amplitude decay time constant τ of an initially excited
oscillation

Q =
ωmτ

2
. (3.11)

The highest mechanical quality factor obtained so far amounts to 2× 109, measured
for a cm scale single-crystal Si rod with ω/2π = 20 kHz [193]. As a general trend,
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Figure 3.3.: Examples for micro- and nanomechanical resonators. (a) Si micro-
cantilever used for feedback cooling and single spin detection [194, 62]. (b) Si nano-
cantilever investigated for surface effects [52]. (c) SiC nano-wire [195]. (d) SiN
membrane under tensile stress [196] used for radiation pressure cooling. (e) SiN
nano-string under tensile stress [54]. (f) Suspended graphene sheet and ribbon
nano-resonators [197].

Q is found to decrease with the size of the device, and micro- and nanomechanical
resonators with Q substantially above a few thousands have been demonstrated
only recently. Figure 3.3 gives an overview of state of the art micro- and nanoscale
resonators with high quality factor. The respective parameters are summarized in
table 3.1.

Both fundamental and technical origins for mechanical dissipation have been iden-
tified. The individual sources of dissipation add up according to

Q−1 = Q−1
gas +Q−1

ted +Q−1
cl +Q−1

def +Q−1
sur, (3.12)

with the following contributions:
Gas damping: A resonator immersed in a gas such as air undergoes collisions

with the gas atoms or molecules. This gives rise to damping [198] and to a noise force
originating from adsorption and desorption processes [190]. For low pressure, gas
damping is negligible, whereas one observes damping that grows linearly with the
pressure Q−1

gas ∝ p for pressure in the mbar range, characteristic for the free molecular
flow regime. At even higher pressures, the resonator enters the viscous regime where
Q−1

gas ∝
√
p. The respective pressure for the transition between the three regimes

depends non-trivially on the geometry and eigenfrequency of the mode under study.
Thermo-elastic damping: The restoring force of an acoustic mechanical oscilla-

tion is provided by a strain field. Due to nonlinear interaction with the surrounding
bath of thermally excited phonons, energy will be transferred from the strain field to
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type dimension Q-factor ωm/2π mass T
(h,w, l) [µm] [Hz] [kg] [K]

Si cantilever (0.17, 5,50) 2.5× 105 9× 104 10−13 300 [202]
Si cantilever (0.1, 3,120) 4.4× 104 4× 103 10−13 4.2 [194]
SiN membrane (0.05,500,500) 4× 106 1× 107 10−11 300 [55]
SiN membrane (0.05,1000,1000) 1.2× 107 1× 105 10−10 2 [196]
SiN strings (0.11, 0.35, 300) 1.2× 106 1× 106 10−14 300 [54]
SiC nanowire (0.2, 0.2,130) 1.6× 105 3× 104 10−14 300 [195]
SWCNT (0.002, 0.002, 0.3) 1.4× 105 3× 108 10−21 2 [203]
Graphene sheet (0.001, 0.2, 2) 1.4× 104 5× 106 10−22 5 [197]

Table 3.1.: Examples for state of the art micro- and nanomechanical resonators
with high quality factors. The given temperatures refer to the conditions for the
determination of the quality factor. Single wall carbon nanotubes (SWCNT) are
further discussed in chapter 6.1.

the bath [188]. In the diffusive regime, where the phonons thermalize fast compared
to the timescale of the acoustic oscillation, the phonons constitute a temperature
field, and the interaction between the mode and the bath can be described solely
by the material’s thermal expansion coefficient αth = l−1∂l/∂T . Thermo-elastic
damping thus arises from the coupling of the strain field to a temperature field, and
from irreversible heat flow that is driven by the temperature gradients in this field.
This damping process constitutes a fundamental limit, which can be expressed by a
limiting value of the product of the quality factor and the mode frequency Qtedfm.
High stress SiN strings [54] or membranes [55] approach this limit closely.

Clamping loss: At the clamping points of the oscillator to the support, vibra-
tional energy is radiated away into the support. Calculations [199, 200] suggest that
clamping loss is related to the relative size of the clamping contact, Qcl ∝ l/w, the
number of clamping points, and the overall geometry. A related loss mechanism is
energy transfer to other acoustic modes with comparable resonance frequency and
large coupling to the considered oscillator mode [201].

Defects: Amorphous materials like fused silica or SiN contain a high density of
defect states. Such defects can be successfully modeled by tunneling two-level sys-
tems formed by a double well potential [204]. In particular at low temperatures of a
few Kelvin, where these systems become unsaturated, energy is coupled into these
degrees of freedom and dissipation increases significantly [205, 189]. The stoichiom-
etry of the material has proven to be crucial e.g. for the dissipation in SiN films
[55, 206]. It is conjectured that high tensile stress considerably changes the energy
distribution of defect states and thereby restores high mechanical Q at cryogenic
temperatures [206] for amorphous materials.
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Surface quality: Oxide layers, metallization layers, adsorbed liquids or solids,
and surface defect states like dangling bonds are known to increase mechanical damp-
ing. By annealing of ultra-thin Si resonators [52, 202], mechanical loss could be
reduced by up to two orders of magnitude. As a general trend, the quality factor is
observed to decrease for smaller structures with larger surface to volume ratio.

3.2. Detection and manipulation of mechanical
motion

Optical detection and manipulation of mechanical motion has developed rapidly in
the recent years and established the new field of cavity optomechanics [67, 65, 66, 68].
The sensitivity and control has achieved a level where position fluctuations can be
monitored (almost) down to the standard quantum limit [56, 72, 207, 69, 71, 70]. The
standard quantum limit refers to the ultimate sensitivity achievable in a weak, linear,
and continuous measurement process [208]. It arises from the well known fact that a
measurement always disturbes the measured object, often called measurement back
action. Thus one has to find a compromise between measuring weaker but gaining
less information about the object and measuring stronger but imparting excessive
back action noise on the oscillator. The optimal setting is found where measurement
imprecision noise Szz (dominated by photon shot noise at the detector) and back
action noise SFF,ba (dominated by radiation pressure noise acting on the oscillator)
are equal and add up to a total inferred position noise 〈Stot〉 = 〈Szz〉 + 〈SFF,ba〉 =
2〈Sqm〉 which is twice the noise power of the zero-point fluctuations Sqm of the mode
under study. The minimum achievable position uncertainty is thus

∆zQL =
√

2aqm =

√
~

Meffωm
. (3.13)

Detection of such extremely small amplitudes is achieved by interferometric tech-
niques. A standard tool is the Michelson interferometer, where a mechanical res-
onator is incorporated as an end mirror in one arm. The differential length change of
the two arms leads to measurable intensity modulation at the output port (cf. Fig.
3.4 (a)). Sensitivities of ∼ 10−15m/

√
Hz are possible with this technique [209, 210],

and with modifications like introducing enhancement cavities inside the interferom-
eter arms as used e.g. for gravitational wave detection, sensitivities of 10−19m/

√
Hz

have been achieved [72, 211].
The devices for ultimate optical position readout are optical cavities that integrate

a mechanical oscillator either as one of the cavity mirrors [72, 71] (cf. Fig. 3.4 (b)),
as an additional device inside the cavity [196, 76], or as integral degree of freedom
of a bulk optical microcavity [69, 70]. Oscillator displacement affects the resonance
condition of the cavity and thus establishes a direct coupling between the mechanical



3.3 Quantum states of mechanical oscillators 55

Figure 3.4.: Optical readout schemes. (a) Michelson-Interferometer with a me-
chanical resonator in one arm. (BS) 50:50 beamsplitter, (PD) photodetector. (b)
Optical cavity incorporating a mechanical resonator as one end mirror.

motion and the light field inside the cavity. On the one hand, the resulting phase
or amplitude modulation can be used to achieve exceptional readout sensitivity
down to 10−19m/

√
Hz [56, 72]. On the other hand, radiation pressure of the light

reflected of the resonator exerts a force on the oscillator and thus provides a back
action that can be harnessed to cool [196, 72, 207, 69, 71, 70] or parametrically
amplify [212] mechanical motion. Employing such back action cooling, cryogenically
precooled oscillators have been cooled down to a few tens of phonons remaining in
the respective mode [69, 71, 70, 207], and e.g. a record value Teff = 1.4 µK for the
effective temperature of the pendulum mode of a 2.7 kg mirror has been achieved
[72].

However, the oscillators used in these experiments are rather large since they are
designed to support an entire optical mode. Experiments studying truely nanome-
chanical motion have been mainly performed in a solid state setting, e.g. by ca-
pacitively coupling the resonator to a single electron transistor [213, 214, 215] or a
microwave cavity [216, 207, 58]. There, a sensitivity close to or even below the stan-
dard quantum limit has been already achieved [207, 58]. Recently, novel approaches
also achieve optical nanomechanical motion detection with excellent sensitivity, ei-
ther by coupling a nanoresonator to the evanescent field of a microtoroid [57], by
introducing a nanoresonator into an optical cavity [76], or by the design of optically
resonant structures integrated into the mechanical oscillator [217].

3.3. Quantum states of mechanical oscillators

The creation and observation of quantum effects in a single mode of a mechanical
resonator is a central goal that is shared by the communities of cavity optome-
chanics [66, 67], micro- and nanoelectromechanical systems (MEMS/NEMS) [192],
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and gravitational wave detection [218, 219]. The motivation for this is manifold.
Firstly, it is the hallmark of ultimate control over a system. Practically, it would
have implications for the achievable sensitivity e.g. in force sensing [51], gravitational
wave sensing [218], or nuclear spin imaging [63]. Secondly, it would provide a new
testbed for non-standard decoherence theories [220, 221] and illucidate the crossover
from microscopic quantum systems to macroscopic classical systems. Finally, me-
chanical resonators coherently coupled to other controlled quantum systems could
establish a new class of coupled systems at the quantum level, so-called hybrid quan-
tum systems. This is interesting in the context of quantum engineering, quantum
information networks, and quantum information processing.

The systems investigated in the different fields have individual advantages and
drawbacks. Optomechanical systems are so far realized by a linear coupling of
mechanical motion to a strongly driven and thus classical optical cavity mode. In
this limit, the coupling can be very strong, and e.g. a mechanical analog of the Autler-
Townes splitting in the energy spectrum of a coupled resonator-cavity system was
demonstrated [222]. Theoretical proposals have shown that the coupled system could
generate mechanical squeezing [223, 224], entanglement between the light field and
the resonator [225, 226], or the creation of Schrödinger cat states [227, 226]. However,
the creation of mechanical Fock states or more general quantum superpositions are
not accessible by a linear coupling to a classical field, and coupling to e.g. a two-level
system would be required. Alternatively, dispersive measurement concepts that rely
on a quadratic coupling to the light field could permit the observation of quantum
jumps [196, 228]. Finally, non-classical light states such as superpositions of zero-
and single-photon states could be employed to generate superpositions of position
states [229, 230]. Yet, single photons lead only to a weak coupling, and the required
experimental conditions for such experiments are hard to reach.

Mechanical resonators in an entirely solid-state based environment certainly have
the longest tradition, and quantum manipulation of resonators has been discussed for
a variety of systems [231, 232, 233, 62, 234, 235]. NEMS systems have already been
successfully coupled to two-level systems such as a single electron spin in a solid [62]
or a cooper pair box [236]. In the latter experiment, the quantum state of the two-
level system, i.e. the presence or absence of an extra Cooper-pair in the box, was read
out by a nanomechanical resonator [236]. Very recently, an experiment of similar
kind has demonstrated quantum control of a mechanical oscillation [237] coupled
to a qubit. There, a 6 GHz oscillation of the thickness of a piezoelectric slab has
been cryogenically cooled to the ground state. By strongly coupling this mode to a
quantum controlled Josephson phase qubit, single phonon states could be prepared in
the mechanical resonator. Furthermore, the observation of Rabi oscillations between
the resonator and the qubit for a single quantum demonstrated the achievement of
the strong coupling regime. This experiment displays the big advantages of entirely
solid-state based approaches, being in essence a natural compatibility with cryo-
technology and high achievable coupling rates (e.g. 2g0 = 123 MHz in the experiment
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above,[237]). Yet, the coherence time of solid state based two-level systems as used so
far reside in the ns to ms regime (e.g. 13 ns in [237]) and thus require exceptional high
mechanical resonance frequency. Furthermore, the mechanical resonator is typically
integrated in a complex electronic environment and carries electrodes, making it
difficult to independently optimize the mechanical quality factor.

Using ultracold atoms to couple to mechanical oscillators would create a novel,
qualitatively different setting. Atomic systems would contribute the advantage of
exceptionally long coherence times. Superpositions of internal states have been
demonstrated to preserve coherence for several seconds [10, 11] also in close proximity
to surfaces. In addition, an elaborate toolbox for the quantum manipulation of the
atomic state is at hand [1, 8, 9] giving control over internal and external degrees of
freedom. Atoms could provide both the continuous degree of freedom of collective
atomic motion, and a discrete set of internal levels that can be reduced to a two-
level system. Furthermore, a unique feature of ultracold atoms is that dissipation
can be tuned, e.g. by switching on/off laser cooling, and that self-interactions can
be tuned, e.g. with Feshbach resonances [238, 239, 240]. In a large set of theoretical
proposals [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], various schemes for
the coupling of mechanical motion to different atomic degrees of freedom have been
discussed. This illustrates that the hybrid approach is multifaceted and permits to
individually optimize the separate systems and the interaction mechanism. Yet, the
experimental realization is involving and requires to combine the control of ultracold
atoms with an cryogenic environment. In the outlook 6 we discuss three coupling
scenarios that have the potential to achieve atom-oscillator coupling at the quantum
level.

3.3.1. Decoherence

Quantum states of a mechanical oscillator will show decoherence due to interaction
with the environment at a rate that is in general faster than the damping rate
κ of the amplitude of the oscillator. The standard derivation of the decoherence
rate assumes that the environment can be modelled as an ohmic bath of harmonic
oscillators [241]. The interaction is described by a linear coupling in the position of
the mechanical oscillator zc with coupling strengths gi

Hint = zc
∑
i

giqi, (3.14)

where qi are the coordinates of the bath harmonic oscillators. In the quasi classical
or high temperature limit for the bath, where only thermal excitations of the field
are taken into account (and zero point fluctuations are neglected), one can derive a
master equation for the density matrix of the oscillator. In position space it reads
[241, 242, 243]
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Figure 3.5.: (a) Thermal phonon occupation of the resonator mode. Cyrogenic
cooling of high frequency oscillators can achieve nth ∼ 1. (b) Decoherence rate γdec

for a Fock state or a superposition with ∆zc = aqm. A state of the art resonator
with Q = 107 [196] put into the coldest present day cryostat with T < 10−4 K
[244, 245] would show a coherence lifetime of one second.

dρ(zc, z
′
c)

dt
=− i

~
[H0, ρ(zc, z

′
c)]− κ(zc − z′c)

(
∂zc − ∂z′c

)
ρ(zc, z

′
c) (3.15)

− 2mκkBT

~2
(zc − z′c)2ρ(zc, z

′
c).

The first two terms describe the coherent dynamics according to the system Hamil-
tonian of the mechanical oscillator H0 = p2

m/2Meff +(1/2)Meffω
2
mz

2
c and the damping

of the oscillator amplitude respectively. These are the relevant terms for the (near)
diagonal elements of the density matrix where zc ≈ z′c. The third term describes
thermal fluctuations coupling to the oscillator. It acts mostly on the off-diagonal
elements of ρ and thus reduces the coherences.

For an oscillator in a superposition of two position states with distance ∆zc, the
off-diagonal elements will be peaked around two maxima at a distance (zc − z′c) ≈
∆zc, so that the prefactor of the third term, which is found to be the decay rate of
an exponential damping of the coherences, can be written as [241, 242, 243]

γdec =
2mκkBT

~2
(∆zc)

2 =
kBT

~Q

(
∆zc
zQL

)2

= κnth

(
∆zc
aqm

)2

. (3.16)

We have used κ = ω/2Q and the quantum limit of continuous position measurement
zQL =

√
2aqm. This result is commonly referred to as the golden rule of decoherence.

Its validity is restricted to small decoherence rates, either due to small separation
∆zc or small damping κ, such that γdec � ω and the oscillator can undergo many
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cycles before it decoheres. For larger amplitudes, the dynamics of the bath becomes
important and the decoherence dynamics is no longer exponential [246].

In Figure 3.5 (a) we show the thermal phonon number according to Eq. 3.6 for res-
onance frequencies spanning current micro- and nanoresonators with demonstrated
high quality factor. The temperature represents the range presently achievable by
cryogenic cooling techniques [244, 245]. For resonance frequencies ωm/2π & 1 MHz,
cryogenic ground state cooling is in reach. Figure 3.5 (b) shows the decoherence
rate given in Eq. 3.16 for a single phonon Fock state or a superposition |Ψ〉 =
2−1/2(|0〉 + |α = 1〉). Remarkably, present day mechanical quality factors in combi-
nation with state of the art cryogenic cooling should achieve coherence lifetimes on
the order of one second.

Finally, we mention that non-standard decoherence models such as the objective
reduction model [247, 221] that predicts a decoherence rate that is proportional
to the gravitational self energy, γdec ∼ ∆Egrav/~ could be tested with mechanical
resonators. A mechanical oscillator with Q ∼ 109 at T ∼ 10−5 K [230] would enter a
regime where decoherence due to gravitational interaction would be faster than the
rate predicted by Eq. 3.16.

3.3.2. The size of a superposition

Since one of the motivations to push mechanical objects towards quantum behaviour
is based on the question, how big quantum states can be and if there are any un-
conventional mechanisms for decoherence, we sketch here some considerations about
the size of a superposition.

The size of a superposition is not obviously defined. Dür et al [248] proposed a
measure of the size that includes the effect of state overlap. Consider a superposition
of N particles that can be described by

|ψ〉 =
1√
K

(
|φ1〉⊗N + |φ2〉⊗N

)
(3.17)

where K = 2 + 〈φ1|φ2〉N + 〈φ2|φ1〉N and |ψ〉 is a state of N two-level systems. In
general, |φ1〉 and |φ2〉 are not orthogonal but have finite overlap 〈φ1|φ2〉2 = 1 − ζ2,
e.g. ζ2 = 1−exp(−|α−α′|2) for a superposition of coherent states |α〉, |α′〉. From an
analysis of the decoherence rate or alternatively the entanglement content of such a
state, the authors of Ref. [248] derive the effective size

S ∼ ζ2N, (3.18)

which allows a direct comparison with a pure GHZ state |ψ〉 = 2−1/2(|0〉⊗N + |1〉⊗N),
often called a Schrödinger cat state. Extensions to general manybody states were
derived recently, either by considering the average number of single-particle opera-
tions necessary to map one part of the superposition to the other [249] or by asking
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how many fundamental subsystems of the object have to be measured to project the
state into a single branch [250]. For states of the form 3.17, Eq. 3.18 is reproduced.

However, these measures do not consider the number of excitations making up
the superposition and also treat compound objects irrespective of their mass. A
measure that is closer to our intuitive understanding of macroscopicness could be
related to the energy difference of the individual parts of the superposition, e.g. for
a mechanical resonator in a superposition of two position states ∆E ∼ Meffω

2∆z2
c .

With normalization to obtain dimensionless values, it could read

S = ζ2Meff

mp

(
ωm
ω0

)2(
∆zc
aqm

)2

, (3.19)

where the eigenfrequency ωm is normalized e.g. to ω0 = 1 Hz, and the effective mass
according to Eq. 3.4 is normalized e.g. to the proton mass mp. For collective states
such as the dipole mode of an atom cloud, Meff = Nmat. Using aqm to normalize
the displacement ∆zc gives a factor that also enters the decoherence rate in Eq. 3.16
and corresponds to the number of phonons involved in the superposition. In line
with the argumentation in [248], the modified size estimate Eq. 3.19 is proportional
to the decoherence rate of the state.

If one compares this measure for a single atom in a superposition between being at
rest and oscillating with an amplitude ∆x = 10 µm in a trap with ω/2π = 100 Hz as
it was similarly realized in [9], and a carbon nanotube (CNT) with Meff = 2×10−20kg
=̂ 106 atoms and ωm/2π = 20 kHz (see chapter 6.1) in a superposition of two position
states which differ by the CNT ground state spread ∆zc = aqm = 0.2 nm, one obtains
SCNT/Sat ∼ 107. This is in contrast to the size estimate given in Eq. 3.18, which
yields SCNT/Sat ∼ 1 for this case.
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In this chapter I describe and characterize the experimental setup and summarize
the techniques used for the production of Bose-Einstein condensates.

The system was designed along the lines of previous experiments as described in
[82, 150] and has been built up from scratch. The core of the experiment is an
atomchip with an integrated microcantilever. The chip is an integral part of a glass
cell which is attached to a compact, ultrahigh vacuum system. A diode laser system
is used for laser cooling and detection of atoms. The vacuum cell is surrounded by
three pairs of Helmholz coils to provide homogeneous magnetic bias fields. The coils
and the chip wires are supplied by low-noise, fast switchable current sources, which
provides versatile magnetic fields for the trapping of atoms.

For the experiments described in chapter 5, where we couple the collective motion
of a cloud of atoms to the oscillations of a microcantilever via short-range surface
forces, high control over the motional state of the atoms and small spatial extent
of the clouds is crucial. In a BEC, the atoms are prepared in the motional ground
state and thus show minimal position and momentum spread. With our setup we
achieve fast, robust, and reproducible preparation of BECs and precise positioning
of the atoms close to the microcantilever.

Using surface forces to couple BECs to the cantilever motion requires close ap-
proach of the atoms to the cantilever. In the last section, we characterize the BEC
lifetime and investigate limiting effects for the atoms in magnetic traps close to the
cantilever surface.

4.1. Atom chip with microcantilever

In collaboration with D. Anderson, our group has developed a very compact solution
for the integration of an atom chip to a vacuum system [251]. The chip is used to
seal the vacuum by gluing it on an open side of a glass cell. This minimizes the
size of the glass cell, the chip itself serves as an electrical feedthrough, and optimal
optical access is provided.

The presence of the chip calls for a special solution for the geometry for laser cool-
ing. The chip blocks the optical access for one half-space and the usual six-beam
configuration for the operation of a Magneto-Optical-Trap (MOT) would require
quite large separation from the chip. Instead, we use the mirror MOT configuration
[252] to operate a MOT close to the chip. It replaces two cooling beams by the
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a) b)

Figure 4.1.: Chip wire layout. (a) Base chip with wires for intermediate MOT
phases and feedthrough wires for the microtrap chip. The outline of the rotated
glass cell (grey) and the position of the experiment chip (dashed line, grey) are
shown. (b) Microtrap chip with wires for magnetic micro traps. The outline of the
cantilever subassembly is shown (grey).

reflection of two beams inclined by 45◦ on a mirror that is applied on the chip. In
this configuration, laser cooled atoms can be directly trapped with the magnetic mi-
crotraps created by the chip, without the need of additional trapping and transport
stages.

The integration of a mechanical oscillator on an atomchip calls for a seperate
cooling region suitable to run a mirror MOT, and an experiment region where the
cantilever is mounted.

4.1.1. The atom chip

It has proven to be advantageous to use a stack of a so-called base chip with macro-
scopic (mm-scale) wires for the use during MOT phases, and a second, so-called
microtrap chip with wires for magnetic trapping. The base chip seals the glass cell
and provides electrical contact to the outside and to the microtrap chip. This design
is advantageous for absorption imaging, as the microtrap chip inside the vacuum in-
troduces a spacing between the imaging axis and the glue meniscus that forms when
the base chip is glued to the glass cell. Figure 4.1 shows the wire layout of the two
chips.

Base chip

The base chip has a size of 45 × 38 mm2 and is fabricated on an 800 µm thick
AlN ceramic substrate. This material is electric insulating, has a large thermal
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conductivity of 180 W/Km, and good mechanical stability. The chip size is chosen
to be large enough to attach a 35×35 mm2 glass cell rotated by an angle of 7◦ on the
chip. This avoids fringes and standing waves in the imaging beam. The contact pads
at the sides of the chip are designed to match the pitch of a PCI connector, such
that the wires can be directly contacted with a PCI socket connector. The central
wires (not filled in fig. 4.1 (a)) remain unused and the PCI connector is carved out
at these positions to provide optical access for imaging in the central region close
to the chip. The outermost wires form ”H” shapes (to allow for both ”U” and ”Z”-
shapes in two possible orientations) in the center of the chip with a minimum wire
width of 1 mm. Currents in this wires contacted for U-shape provide quadrupole
fields during a phase where the MOT is ramped close to the chip.

For chip fabrication we use an Au electroplating process (see Appendix D). In
brief, we evaporate a 3 nm thick Ti adhesion layer and a 50 nm thick Au layer on
the entire chip surface and define the wire geometry by photolithography with a
foil mask. The metallization serves as a seed layer for the subsequent electroplating
process that grows the wires to a thickness of 10 µm. The wires on this chip can
carry maximal currents of up to 10 A.

Microtrap chip

The microtrap chip has a size of 24.3 × 27.5 mm2 and is fabricated on the same
type of substrate. The size is chosen to fit inside the glass cell including wire bonds,
and to allow for the rotation of the cell. A wire width comparable to the smallest
atom-wire distance is sufficient to avoid field reduction by the finite size of the wire.
As our experiments are performed close to a surface but far from the wires on the
chip, the wires can be relatively large. The connection pads that serve for wire
bonding have a width of 1 mm, and the wires are tapered down in the center of the
chip to a smallest width of 50 µm. We use the same fabrication process as described
above, but use a chrome mask to achieve better resolution, and we grow the wires
to a thickness of 5 µm.

We test the power stability of the chip wires by sending a constant current through
the wire and recording the voltage drop accross the wire, thus measuring the resis-
tance. A change in resisitivity indicates resistive heating and allows one to estimate
the maximum current the wire can stand. When sending a current of 3 A through
our smallest wire with cross section 5× 50 µm2, we observe a relative change in the
resistance of 5.7 %. This is still a small value, for typical relative changes for wire
breakdown are of the order of 50 % [253]. From a simple estimate for the contribution
of the resistance at the thin part of the wire, and using the temperature coefficient
αT = 4.0 × 10−3 K−1 for gold, we calculate a temperature increase of the wire of
21◦C. The current density in this case amounts to j = 1.2× 1010 A/m2, sufficiently
below the typical breakdown current density for thin wires of jmax = 1011 A/m2

[253].
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The wire layout comprises three main elements. First, a 3 mm wide H-geometry
with 200 µm wires for large currents. It is centered to the MOT quadrupole wires on
the base chip and is used to create a large volume trap for initial trapping of laser-
cooled atoms to load the atomchip. Second, a wire guide tapering down from 200 µm
to 50 µm width is used to transport the atoms between the loading region and the
position of the cantilever. The distance to the cantilever has to be large enough
to provide sufficient area for the MOT beams, and we choose an overall transport
distance of 6.4 mm between the center of the first trap and the cantilever. At the
location of the cantilever, a 2 mm wide H and four dimple wires of 50 µm width and
with a pitch of 90 µm provide traps at several positions with strong confinement
along all axes. Additional wires are used to contact a piezoelectric transducer.

Dielectric mirror

We apply a dielectric mirror on the chip for the operation of a mirror MOT. We use a
transfer technique, where a detachable dielectric mirror coating supplied on a carrier
substrate1 is glued on the desired chip area. The coating has > 99% reflectivity at
λ = 780 nm for both s and p-polarization under 45◦ incidence, but the different
penetration depth of the two components will alter circular polarization slightly.

As the cantilever should be at a small, well defined distance above the wires, it
is undesired to have a mirror there. For this reason we apply the mirror only on
a part of the microtrap chip. The transfer substrate is cleaved to the desired size
after scoring the coated side. The brittle coating is likely to sliver, and a corrugated
stripe of typically ∼ 500µm width results. We use Epo-Tek 353 ND after thorough
outgassing to glue the mirror on the chip. Careful dosing (with several tests) is
necessary, as excessive glue will form a large meniscus at the edge of the coating
that may obstruct the transport of the atoms accross the chip. On the other hand,
too little glue may result in air enclosures that act as virtual leaks, or the detachment
of the coating from the glue in the space between wires during curing. In our case,
a meniscus of < 100 µm height was achieved and proved to be sufficient not to
influence the atomic transport. The volume reduction of the glue during curing and
differences in the thermal expansion of the coating and the chip lead to fractures
and deformations of the coating. However they do not affect the performance of the
MOT.

Bonding of the chips

The microtrap chip is glued to the base chip by a UHV compatible, heat conductive
Epoxy glue, typically Epo-Tek H77S. Complete filling of the gap between the chips
is important to avoid virtual leaks, and a minimal thickness of the glue layer is
desired for optimal thermal conductivity.

1 We obtain it from the company O.I.B., 07745 Jena, Germany.
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Figure 4.2.: (a) Photograph of the assembled chip. The experiment chip is glued on
the base chip and contacted with wire bonds (see inset), the cantilever subassembly
is glued on the experiment chip. (b) Close up of the experiment chip. The dielectric
mirror is shaded in green. The cantilever subassembly comprises a spacer chip, a
piezo for actuation, and a cantilever chip with two cantilevers for experiments. (c)
SEM micrograph of the two cantilevers (blue) above a wire cross used for trapping
(yellow). The larger cantilever (blue) is used for the experiments reported here, the
second smaller cantilever (light blue) was intended for optical lattice experiments.

The electric contact between the two chips is provided by wire bonds. We use
a Ball bonder and 25 µm gold bond wires that can carry up to 800 mA each. We
apply 12 bond wires for chip wires that carry maximal currents of 3 A, and 8 bonds
for low current wires to guarantee sufficient safety overhead.

Integration of the resonator

We integrate the mechanical resonator directly on the microtrap chip to achieve high
control of the magnetic traps close to the cantilever and to minimize the mechanical
complexity in the vacuum. To obtain a defined distance between cantilever and
wires, we glue a 5 × 7 mm2 large, 45 ± 5 µm thick SOI spacer chip on the atom
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chip. We integrate a 5× 5 mm2 large, 300 µm thick piezo-electric transducer on the
spacer for mechanical excitation of the cantilever. Since the piezo sits on top of the
spacer, excitation relies on inertially generated sonic waves in the chip rather than
on the direct elongation of the piezo. We use Epo-Tek H20E to electrically contact
the bottom side of the piezo to three wires, and bond wires to contact the top side
to a neighbouring wire.

The cantilever is supplied on a Pyrex glass chip with a total size of 1.7 × 3.4 ×
0.5 mm3 which contains three more cantilevers placed on two sides of the chip. For
the final step of the gluing procedure, the cantilever chip is attached to a microposi-
tioning mount to achieve precise alignment. Observed with a long working distance
stereo microscope, we can align one of the cantilevers above a wire cross. For gluing,
the cantilever chip is slightly pressed on the spacer chip, and the glue is applied at
the backside of the chip to let capillary forces fill the space between the two chips.
This avoids flow of the glue to the cantilever during the low viscous phase of the glue
in the beginning of the curing. Defined by the spacer chip and the glue layers, the
cantilever surface is located at a distance of 68 µm from the wire surface, with an
uncertainty of ±10 µm due to the unknown thickness of the glue layers. From mea-
surements with atoms (see chapter 5), this distance can be inferred with a precision
of ±2 µm.

Figure 4.2 shows a photograph and a SEM image of the completed chip.

4.1.2. Resonator characterization and readout

The mechanical resonator is a commercial SiN cantilever (PNP-DB-2) which is typ-
ically used for AFM measurements2. It has specified dimensions of (200, 40, 0.6) µm
and carries a 65 nm thick Au/Cr coating on one side for optical readout. The spec-
ified fundamental resonance frequency is 16 kHz and its force constant is 0.05 N/m.
We calculate the mass from the geometry and obtain M = 20 ng, a factor two larger
than expected from the specified force constant, but in agreement with measure-
ments of the cantilever eigenfrequency. From SEM images of a similar cantilever
from the same batch we measure dimensions of (195, 35, 0.43) µm.

Optical readout

We implement a standard beam deflection readout [254] that allows us to monitor
the cantilever motion with simple optics from outside the vacuum cell. It is based
on the angular deflection of a laser beam reflected on the tip of the cantilever. To
permit readout also during atom preparation, we use a grating stabilized diode laser
running free at λ = 830 nm, far detuned from atomic resonances. After mode
cleaning in a singlemode fiber, the beam is collimated by an achromatic lens with

2We obtained it as a free test sample from NanoAndMore GmbH, 35578 Wetzlar, Germany
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Figure 4.3.: (a) Amplitude spectrum
√
Sz(ω) of cantilever oscillations for ther-

mal motion and resonant piezo excitation with 100 mVpp driving amplitude. The
cantilever frequency here is fm = 9724 Hz. The sensitivity of the readout is
2 × 10−12m/

√
Hz. We calibrate the piezo excited oscillation amplitude by com-

parison with the thermal motion and find a driving efficiency of 80 ± 12 nm/Vpp.
(b) Cantilever ringdown after an initial excitation to a = 160 nm measured with the
LockIn-amplifier. The inset shows the oscillations observed with an oszilloscope.
The measured time constant is τ = 0.11 s, corresponding to a Q-factor of Q = 3200.

focal length f = 80 mm and focused with a single achromatic lens with f = 160 mm
to a measured beam diameter of 35 µm. Two mirrors direct the beam on the tip
of the cantilever, and the reflected beam is measured with a quadrant photodiode3

that detects oscillations of the beam position with a bandwidth of 1 MHz.

The photodiode signal is observed either with an oscilloscope after AC-amplification,
or the signal amplitude at the cantilever eigenfrequency is measured with a Lock-In
amplifier4 or with a spectrum analyzer5.

To find the cantilever fundamental resonance we excite vibrations in the common
support by the piezo on the spacer chip and scan the excitation frequency to obtain
a spectrum of the amplitude response of the cantilever. The measured resonance
frequency drifts from day to day by up to ∼ 20 Hz, and we find a decrease from
ωm/2π ≡ fm = 10350 Hz to fm = 9530 Hz within one year. The drift does not
depend on whether experiments are performed, and we attribute it to aging of the
layered Au/Cr/SiN structure. The quite large deviation from the specified frequency
can be explained by the deviation from the specified thickness of the cantilever, and
we reproduce the measured frequency in a FEM simulation of the cantilever for the
dimensions obtained from SEM images. The simulation predicts higher order modes

3Thorlabs PDQ80A
4Stanford Research Systems SR830-DSP dual channel digital Lock-In amplifier, 1mHz - 102.4kHz
5Agilent E4405B 9 kHz - 13.2 GHz
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at frequencies (63.2, 179, 352, 586) kHz.
From measurements of the cantilever response at different excitation frequencies

we determine the FWHM of the amplitude spectrum of the resonances to be κ =
6.2 Hz. However, the driving can influence the line shape, and to determine the
mechanical quality factor we use a different method. We excite the cantilever to
large amplitude and observe the damping of the amplitude after switch-off of the
piezo drive. The exponential decay yields a time constant of τ = 0.11 ± 0.02 s,
corresponding to a quality factor Q = ωmτ/2 = 3200± 600. Figure 4.3 (b) shows a
ringdown measurement taken with the Lock-In amplifier. The inset shows the time
trace observed on an oscilloscope, where the individual oscillations can be seen (not
resolved here).

Calibration of the cantilever amplitude

We can resolve the thermal motion of the cantilever with the Lock-In amplifier and
thus observe the temporal fluctuations of the oscillations. Alternatively we can take
a spectrum with the spectrum analyzer and observe the full Lorentzian shape of the
fundamental resonance. We average over 10− 30 measurements to obtain the mean
amplitude spectrum of the oscillations. For longer averaging times, frequency drifts
spoil the measurement.

Figure 4.3 (a) shows a typical spectrum of the thermal motion, along with a
spectrum taken for resonant piezo excitation with a driving amplitude of 100 mVpp.
The additional weaker resonances at ±(47, 98, 145) Hz which become visible in the
driven case probably come from the mains supply of the frequency generator.

We calibrate the amplitude spectrum by integrating over the power spectral den-
sity of the thermal motion and setting it equal to the square of the calculated thermal
motion amplitude,∫

Sz(ω)dω = a2
th =

kBT

Meffω2
m

, (4.1)

with the effective mass Meff = 0.24M .
With this calibration we can infer the amplitude for piezo excited oscillations.

We find a driving efficiency of 80 ± 12 nm/Vpp. The error indicates the spread of
repetitive measurements, including measurements performed with the Lock-In am-
plifier. We prove the linearity of the cantilever response by measuring the cantilever
amplitude a on resonance as a function of piezo drive amplitude. We find linear
behaviour over the full range of accessible cantilever amplitudes (up to a = 1.6 µm
in a measurement performed in a SEM before glass cell assembly).

Temperature shift

We find that the cantilever eigenfrequency strongly depends on temperature. This is
probably caused by the different thermal expansion of Au and SiN and the resulting
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Figure 4.4.: (a) Measured change of the resonance frequency as a function of Ioffe
wire current. We observe the quadratic dependence expected for resistive heating.
The inset shows the temperature dependence of the eigenfrequency. We observe a
frequency shift of 11.2±1.5Hz/K. (b) Measured temporal evolution of the resonance
frequency during the experimental sequence. At t = −1700 ms the currents are set
to a fixed value, at t = 0 ms the experiments are performed. The inset shows the
velocity of the frequency shift calculated from the data.

change of tensile stress in the Au film. To calibrate the frequency shift we set the
temperature of the watercooling system to various values and measure the resonance
frequency after sufficient time for equilibration (see inset of figure 4.4 (a)). The
observed temperature shift amounts to 11.2 ± 1.5 Hz/K, about one linewidth per
degree Celsius. This shift becomes important as the wire currents that are used for
the magnetic traps during the experiment dissipate up to 7 W and thereby heat
the chip. We infer the amount of wire induced heating with a measurement of the
resonance frequency as a function of the wire current. We vary the static current in
the Ioffe wire and repeat the measurement with an additional current in the Dimple
wire. Figure 4.4 (a) shows the measurement together with a quadratic fit as expected
from resisitive heating PR = RI2. The total shift for II = 2 A amounts to 86 Hz,
corresponding to a temperature change of 7.7 K. In this measurement the cantilever
serves as a local thermometer on the chip.

During an experimental sequence where a Bose-Einstein condensate is produced
and brought close to the cantilever for coupling, we observe a rapid drift of the
resonance frequency due to the thermal drift (see figure 4.4 (b)). The drift can
cause uncontrolled cantilever amplitudes when piezo excitation is applied, and we
have to minimize it at the end of the sequence when the condensate is coupled to
the cantilever (t = 0 ms in the figure). Therefore we design the sequence such
that all currents are set to a fixed value at the beginning of the evaporation phase
(t = −1700 ms), and in subsequent phases only the offset fields from the coils are
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changed. This imposes a constant heat load and allows the chip to approach steady
state. The behaviour of the resonance frequency can be seen more clearly when
looking at the velocity of the frequency shift over time (see inset in 4.4 (b)). After
switching of the wire currents at t = −1700 ms, the velocity increases within 200 ms
to a maximum value of ∼ 3 κ/s, followed by a quite linear decrease. At the time
of the coupling phase it has reduced to 1.3 κ/s. After the coupling phase, the
currents are ramped down and the velocity increases again. Compared to a previous
sequence, the shift velocity is reduced by a factor 2− 3. For shift velocities . 1 κ/s,
the cantilever can reach its steady state amplitude within a time ∼ 3τ = 330 ms.
This is fairly satisfied during the respective time before the coupling period, and
when probing e.g. the cantilever resonance spectrum at t = 0 we observe a slightly
broadened Lorentzian with κ = 8.2 Hz.

An additional effect comes from absorption of laser power from the readout laser.
We observe a linear dependence up to optical powers of 0.8 mW and find a frequency
shift of 129 Hz/mW. Also the light from the MOT changes the frequency by ∼ 20 Hz.

When driving large currents and operating the readout laser simultaneously, the
temperature of the cantilever can increase by up to 20 K. This could have implica-
tions for the desorption rate of Rb adsorbed on the cantilever surface (see chapters
2.3.2 and 5.4.3).

4.2. Vacuum, Lasersystem, Electronics

In the following I describe the peripheral experimental system.

4.2.1. Vacuum setup

The chip assembly described above is glued to a Pyrex cell6 with an inner edge
length of 30 mm and one open face. The outside of the cell is anti-reflection coated
for 780 nm, and the open side has a bevel of 0.3 mm to restrict the glue meniscus.
Before the chip is attached, we drill a 23 mm diameter hole in the opposite side
and glue a glass-to-metal adaptor7 to the cell. The two gluing steps that complete
the optical cell are critical. Due to the different thermal expansion of the chip and
the glass cell, substantial stress can build up and even cause a break of the cell.
Furthermore, the glued bond has to sustain the vacuum bakeout process and seal
the system at a base pressure of ∼ 10−10 mbar. Again we use Epo-Tek 353 ND after
thorough outgassing due to its good UHV compatibility and mechanical stability.

An optimized curing schedule is used to minimize the emergence of stress during
hardening of the epoxy [82]. After application of the glue we let it harden for two
days. This allows the glue to shrink almost to the final volume while it is still

6Hellma 704.027-BF without label
7Caburn DN40CF Pyrex to stainless steel adaptor
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viscous, and stress is avoided. For the final curing, the whole cell and glass-to-metal
transition is heated with a slow ramp over 1.5 h to a temperature of 150 ◦C. After
curing for 1 h at this temperature we slowly ramp down again. This procedure
proved to be very reliable.

ion pump

valve

viewport

ion
gauge

electrical
feed through

dispenser

Ti sublimation
pump

chip and
glass cell

valve

a) b)

Figure 4.5.: (a) Schematic overview of the vacuum system; graph adapted from
[82]. (b) Glass cell with chip and copper block mounted on a glass-to-metal adaptor
and flanged to the vacuum system.

On the backside of the chip we place a copper block that includes a water cooling
channel and an ”U” shaped bar that provides the quadrupole field for the MOT
[255]. It replaces bulky anti-Helmholtz coils and creates a field configuration close
to an ideal quadrupole.

The glass-to-metal adaptor is flanged to a stainless steel six-way cross with DN40
CF flanges. It contains an ion gauge8, a vacuum feedthrough, and three Rb dis-
pensers9 as source for thermal Rb atoms. A viewport on the bottom of the six-way
cross provides optical access to the chip from below, and is e.g. used to monitor the
performance of the MOT with a small video camera. The pressure in the system
is maintained by an ion pump10 and from time to time (every few months) by a
Ti-sublimation pump. Figure 4.5 shows an overview of the vacuum system.

After an initial bakeout of the steel chamber at 150 ◦C, the entire system including
the glass cell is baked at 100-110◦C. The low temperature is necessary due to the
integrated piezo and the glued glass cell. After a few weeks of bakeout we obtain

8Leybold Ionivac IE514 Extractor
9We have installed two dispensers based on Rb chromate (SAES Rb/NF/3.4/12 FT10+10) and

one dispenser involving a metallic Rb/In alloy (Alvatec Alvasource AS-RbIn-5-F), but used
only one of the SAES dispensers so far.

10Varian VacIon Plus StarCell 25 l/s
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a pressure of 1× 10−8 mbar at 110◦C and 3× 10−10 mbar after cool down to room
temperature and a few runs of Ti sublimation.

4.2.2. Laser system

We use a laser system based on home made diode lasers. It provides the optical
fields for laser cooling, optical pumping and absorption imaging. One additional
laser is used for the optical readout of cantilever motion. The system is compact
and fits on the area of 1.4 × 1.2 m2. We cover it with a foam board box to reduce
dust, acoustic vibrations and air circulation. To decouple the beam alignment at the
vacuum cell from the laser system, all beams are coupled to polarization maintaining
single-mode fibers11.

For the manipulation and detection of atoms we have to derive four different
frequencies of laser light close to the D2 line of 87Rb at 780.24 nm. An overview
of the involved transitions is shown in figure 4.6. We use three different lasers that
typically run with Sharp diodes12 with 120 mW nominal output power. Two of the
lasers contain a grating in Littrow configuration [256] to reduce the linewidth. Their
frequency is stabilized by Doppler-free saturation spectroscopy in a Rb vapour cell
[257]. We generate a locking signal by frequency modulation of the laser at 110 MHz
[258]. The feedback of the lock regulates the grating position with a piezo (integral
path) and the laser current (proportional path), which results in a laser linewidth
of ∼ 300 kHz.

An additional laser is used for the independent readout of the cantilever. We oper-
ate it with a diode running at 830 nm to be far off resonant from optical transitions.
This avoids scattering by the atoms, and at low intensity, dipole forces remain negli-
gible. It is thus possible to continuously monitor the cantilever, also in the presence
of atoms nearby.

A schematic overview of the system is shown in figure 4.7. The following beam
lines constitute the setup:

Cooling To obtain sufficient power for laser cooling we use a master-slave con-
figuration. The master laser is grating stabilized and frequency locked to the
F = 2 → F ′ = (2, 3) crossover resonance. We feed the light through a double-pass
AOM to change the frequency shift without altering the beam alignment. For cool-
ing we use a maximal red detuning of ∆ = −11 γ while for imaging in the presence
of magnetic fields we use blue detuning up to +3 γ, where γ = Γ/2π = 6.065 MHz
the natural linewidth of the D2 line. The beam is then injected into a slave laser
without grating. It provides the full output power of the diode while the frequency
stability is inherited from the master laser. We typically run the slave with a cur-

11Thorlabs PM-780HP
12Sharp GH0781JA2C
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Figure 4.6.: Level scheme of the 87Rb D2 line and used laser frequencies. The
locking point of the two spectroscopy stabilized lasers is indicated.

rent of 120 mA and obtain up to 80 mW optical power after an optical isolator.
A switching AOM is used to adjust the power and for fast switching. Finally, the
light is split into four paths, each of which is coupled into a polarization maintaining
single-mode fiber that guides it to the experiment. Two fibers provide the beams
that are reflected on the chip under 45◦ and carry 15 mW each, and the remaining
two provide horizontal beams carrying 5 mW each.

Imaging A small fraction of the slave light is split to a path with an additional
switching AOM to provide light for absorption imaging. We use two axis for imaging
to be able to cover both the cooling and the cantilever region. The power is chosen
such that the peak intensity in the collimated beam after the fiber is a small fraction
(< 20 %) of the saturation intensity Is = 1.67 mW/cm2 of the cycling transition
F = 2→ F ′ = 3.

Repumping The cooling light also drives the non-resonant transition F = 2 →
F ′ = 2 with a probability ∼ 1/2000 for each scattering event. This populates the
F = 2 excited state which can decay also to the F = 1 ground state. To bring
population in this state back to the cooling cycle we use a grating stabilized repump
laser. It is locked to the F = 1 → F ′ = (1, 2) crossover and shifted to resonance
with a switching AOM that is also used to set the power level. We overlap the beam
with the 45◦ cooling beam on a polarizing beam splitter. After the fibers we have a
power of 5 mW each.
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Figure 4.7.: Diode laser system used for cooling, optical pumping, imaging, and
cantilever readout. All beams are controlled with AOMs and electromechanical
shutters, and are coupled to polarization maintaining single-mode fibers.

Optical pumping Light for optical pumping is derived from the unshifted master
laser with a typical power of 17 mW. The pumping light is frequency shifted to the
F = 2 → F ′ = 2 transition by an AOM in double-pass configuration. The light is
overlapped with the imaging beam for the y-axis on a non-polarizing beam splitter
and coupled in the same fiber.

Fast switching within less than one microsecond is accomplished by switching
AOMs for each beam. However, residual scattering into all diffraction orders also
without RF driving of the AOM crystal leaves some light in the fibers and thereby
reduces the magnetic trap lifetime. Electro-mechanical shutters13 with a transient
time of 1 ms and a delay of 5− 7 ms are used to completely block all beams during
magnetic trapping phases.

13Harting Solenoid 2810025-0614
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4.2.3. Current sources and magnetic field coils

Current sources

Stable current sources play a key role for atom number stability after evaporative
cooling, low heating rates, and ultimate position reproducibility. The challenge is
that they have to achieve exceptional stability and low noise, while simultaneously
providing fast switching.

source use current voltage rms noise switching
[A] [V] [µA] [µs]

Delta copper U-bar +100 70 104 -
Kepco BOP transport coil ±20 20 750 150
FUG By coil +15 20 430 1000
Typ-Claus Base-Chip MOT +5 15 (60) 370 40
i-source (2x) Bb,x, Bb,z coil ±5 10 (10) 28 1500
i-source 2 mm Ioffe ±3 10 (9) 28 40
High Finesse 3 mm Ioffe +3 12 (20) 140 50
High Finesse Waveguide +3 10 (17) 140 50
High Finesse Shift Dimple +1 30 (40) 125 100
i-source Dimple ±1 10 (10) 28 150

Table 4.1.: Current sources used in the experiment. Bipolar sources are indicated
by ± currents. Noise and switching time values are measured in the setup. All
wires on the microtrap chip are connected, and only one of the respective sources is
grounded while all others are floating.

Overall we have 11 current sources in operation, table 4.1 gives an overview. We
quote the specified maximum current and output voltage and give the measured
maximum open circuit voltage (in brackets) for sources used for wires. This is
important for wire protection considerations. To avoid wire overloading we introduce
safety resistors that limit the maximal possible current of all sources connected to
a wire to an uncritical value. Additionally we use fuses that we test for proper
breakdown current. The given rms noise and switching times are measured in the
setup with the experiment control providing the set voltage. The loads are in general
floating and are mainly ohmic for wires (typically 0.6 − 2.5 Ω wire resistance plus
2− 40 Ω safety resistors) and inductive for coils (see below).

For the noisy sources we use switches14 to detach them during critical phases. The
sources called i-source were developed and built in our group [170]. They combine
exceptional low noise (5×10−6) and long term stability (1×10−5) with fast switching

14We use Crydom solid state relais for unipolar sources and a network of mechanical relais for
bipolar sources.
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coil windings field per current inductivity resistance
# [G/A] [mH] [Ω]

Bb,x 35 5.75 0.15 0.28
Bb,y 65 6.95 1.62 0.73
Bb,z 76 4.34 1.32 0.92
Transport 33 -/ 2.82 G/(cm A) 0.24 0.20

Table 4.2.: Coils for homogeneous and quadrupole magnetic fields. Values are
quoted for pairs of coils connected in series.

(∼ 15 µs for an ohmic load of 1 Ω). The Typ-Claus source is an old version developed
earlier in the group. All other sources are commercially available.

Magnetic field coils

In principle, all necessary magnetic fields could be generated on the chip. However,
the fields from wires on the chip have strong gradients and it is advantageous to have
homogeneous fields available. We use a cage with three pairs of coils in Helmholtz
configuration to provide homogeneous fields along all axes. Additional windings on
the x-axis connected in anti-Helmholtz configuration provide a strong quadrupole
field for a magnetic transport in a waveguide. To compensate for the earth magnetic
field we add small bias fields rather than using additional coils.

The mechanical design is adapted from [150] and modified with respect to easier
machining and the different chip geometry. We have implemented water cooling for
each coil to reduce thermal drifts. We use Kapton isolated copper wires of 1.22 mm
diameter, and spooling is done with a specialized machine at the MPI of plasma
physics (IPP) in Garching. The strongest field can be generated along the y-axis
with a maximum field of 100 G.

4.3. Experimental sequence for BEC preparation

The preparation of a Bose-Einstein condensate is accomplished by a series of indi-
vidual steps, each of which has to be optimized carefully. We control all the relevant
parameters of the experiment by a computer with several digital and analog output
cards15. In total we have 20 analog 16 bit channels, 32 analog 13 bit channels and
48 digital channels. We use a time-sequencing program with a time resolution set
to 50 µs which was initially written by Jakob Reichel and modified by Pascal Böhi.
For the acquisition and analysis of absorption images we use an additional computer
with a MATLAB-based application written by Pascal Böhi.

15National Instruments PCI-6733, PCI-6723, and PCIe-6259
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Figure 4.8.: Vacuum cell surrounded by magnetic field coils, MOT and imaging
optics.

Mirror MOT

The first step of the experiment is the preparation of a cloud of atoms with suffi-
ciently low temperature to allow magnetic trapping. This is realized with a Magneto-
Optical-Trap (MOT) [259] that combines laser-cooling to extract energy from ther-
mal atoms, and magnetic level shifts that introduce a position dependence to the
cooling forces, thereby creating a trap minimum where the atoms are collected.

The cooling principle is based on the Doppler shift of the resonance frequency
of a moving atom [260, 261, 262]. An atom moving in a pair of red detuned laser
beams will absorb light predominantly from the beam opposing its movement. The
associated scattering of photons imparts a net momentum on the atom which slows
it down. With beam pairs along three orthogonal axes, this provides cooling of a
gas. In our case, the chip obstructs one half-space for optical access, and we use
the configuration of a mirror-MOT [252, 16]. It replaces two beams by introducing
a mirror which is applied on the chip surface (see chapter 4.1). The four required
beams are circularly polarized and red detuned by a few linewidths from the cycling
transition F = 2→ F ′ = 3.

All light is led to the experiment via polarization maintaining single mode fibers.
After the fibers, the cooling beams are collimated by f = 60 mm achromatic lenses
to an 1/e2 diameter of 12 mm. Two of the beams are aligned under grazing incidence
with the chip, parallel to the base of the ”U” along the x-axis, and the remaining two
beams, which also include the repumping light, are inclined under an angle of 45◦

with respect to the chip surface along the y-axis. The imaging beams need a smaller
area and are collimated to a diameter of 8 mm. Figure 4.9 shows an overview on
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Figure 4.9.: Laser beams and wire structures for the operation of a mirror MOT
and optical molasses. Currents in a copper U-bar (brown) and a wire on the base chip
(red) together with a homogeneous field B0 = (Bb,y, Bb,z) provide a 3D quadrupole
field. Two horizontal beams and two beams inclined by 45◦ with respect to the chip
provide cooling and repumping light. Imaging light along the x-axis is combined
with (and split from) the cooling light by polarizing beam splitters (PBS), while
circular polarization is set by quarter wave plates (λ/4). Imaging along the y-axis
is not shown here.

the various beams at the vacuum cell.

The atomic species 87Rb is provided by resistively heated dispensers that set free a
constant flux of thermal atoms. Operation of the dispensers close to their threshold
(in our case with a constant current of 3.6 A) increases the vacuum pressure slightly,
and the pressure gauge typically shows ∼ 6×10−10 mbar. We perform three different
stages of the MOT:

1. Loading phase This MOT phase is used to load atoms from the Rb back-
ground gas. We operate it at a current of 55 A in the U-bar and offset fields
Bb,y = 10 G, Bb,z = 4 G. This defines the trap center at a distance of 7.2 mm from
the U-bar, and about 5.2 mm from the mirror on the chip surface. The resulting
gradient amounts to 15.2 G/cm along the strongest direction. We find an optimal
detuning of ∆ = −2.3 γ and typically load 1.5× 107 atoms in 6 s.
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2. Chip MOT For this phase we change from the U-bar as field source to a
U-shaped wire on the base chip. During field switching the lasers are briefly turned
off. The field is now generated by a current of 4.6 A and a homogeneous field of
Bb,y = 2.3 G. The trap center is then ramped within 20 ms to the chip surface by
reducing the current to 2.25 A. This also increases the gradient and compresses the
cloud. The steady state atom number in this stage would be much lower than in the
previous phase, and we choose a short duration of 5 ms. The position of the cloud
is optimized for loading into the magnetic trap in a later step.

3. Compressed MOT To obtain maximal density and minimal temperature we
increase the detuning to ∆ = −10γ and reduce the repumping power for a duration
of 3 ms. This reduces the scattering rate, while each scattering event extracts more
energy, and heating by reabsorption of scattered light is suppressed. This leaves us
with about 90 % of the atoms collected in the first phase at a temperature of 80 µK.

Molasses

To reduce the temperature below the achievable values in a MOT, we perform optical
Molasses cooling. This involves carefully nulled magnetic fields which we achieve
by Hanle spectroscopy [263, 264] and reduced cooling and repumping power. The
detuning is set to ∆ = −11γ and we find an optimal duration of 2.8 ms. This phase
reduces the temperature below 10 µK.

Optical pumping

After laser cooling, the atoms are distributed over all sublevels of the ground state.
For magnetic trapping we have to prepare the ensemble in a spin polarized, weak-
field seeking state, in our case the state |F = 2,mF = 2〉. To achieve this we
irradiate repumping light to ensure only F = 2 population, and circularly polarized
pumping light at the F = 2 → F ′ = 2 transition along the y-axis to polarize the
sample. To define the quantization axis we set a homogeneous field of 2 G along y.
This completes the laser manipulation of the atoms, and after a pumping duration
of 100 µs we obtain 1.2× 107 atoms at a temperature of 10 µK.

Magnetic traps and transport

We load up to 8×106 atoms into a Ioffe trap created by a 3 mm long, z-shaped Ioffe
wire16. We operate it with a current of 3 A and a homogeneous field of Bb,y = 9.8 G
which defines the trap-wire distance zt,0 = 600 µm. The overlap between the cloud
after laser cooling and the magnetic trap is optimized by the magnetic fields during
the last MOT phase.

16 We measure the atom number after a hold time of 0.5 s to allow for equilibration
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Figure 4.10.: Wire layout for the first magnetic trap (green, II1) and the wire
guide for the transport (red, IWG).

For experiments with the cantilever we have to transport the atoms over a distance
of 6.4 mm along the x-axis. This is realized by ramping to a wire guide with a
superimposed quardupole field along the x-axis from an anti-Helmholtz coil pair
to provide axial confinement. Applying an additional homogeneous field along x
enables to shift the minimum of the quadrupole [150]. The quadrupole provides an
axial gradient of 22.6 G/cm, while the wire guide generates a transverse gradient
of 250 G/cm for the used wire current IWG = 2 A and offset field Bb,y = 11.5 G.
The large difference in the gradients ensures that the superposition of the transverse
component of the external quadrupole field with the waveguide field leads only to
a small distortion of the transverse trapping potential. We find that the optimal
atom-surface distance for the transport changes from zt,0 = 400 µm at the beginning
to zt,0 = 370 µm at the position of the cantilever. We find an optimum transport
ramp duration of 170 ms and transfer typically 50% of the atoms to an Ioffe trap at
the cantilever (MTrap4, see table 4.3).

RF Cooling and condensation

To reduce the temperature and increase the phase space density of the cloud to
achieve Bose-Einstein condensation we use radio-frequency (RF) evaporative cooling
[147]. Evaporative cooling is based on the fact that a selective removal of the most
energetic atoms leaves the remaining part of the cloud at a lower temperature after
thermalization. Energetic atoms can be removed by a controlled opening of the
trap at a truncation energy E = ηkBT with an optimal η ≈ 6 by a RF field. The
field induces spin-flip transitions to untrapped magnetic sublevels, and the frequency
selects the energy at which the transitions occur.
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Figure 4.11.: (a) Wire layout of the 2 mm Ioffe trap. The used Ioffe (II) and
Dimple (ID) wires are highlighted in orange. (b) Cuts through the trapping potential
along the trap minimum in x (top) and z (bottom) direction. Shown are the three
traps for evaporative cooling and a trap close to the cantilever for coupling. The
cantilever surface is located at z = 64 µm and causes a reduced trap depth.

We use two frequency generators17 followed by a +18 dB amplifier and a switch,
which drive a self-made coil placed close to the cell to generate the RF field.

Rapid evaporation requires a high collision rate for thermalization, while the in-
elastic collision rate should remain small at the same time. Due to the different
density dependence of the two rates (see chapter 2.5.1) it is advantageous to begin
the evaporation in a trap with the highest possible trap frequency. At the end of
the cooling phase, when the density has increased by several orders of magnitude,
three-body collisional loss becomes severe and the trap frequency has to be reduced
to a moderate value.

We use a 2 mm wide, z-shaped wire with a crossing dimple wire to create a Ioffe-
type Dimple trap at this stage. Figure 4.11 (a) shows the relevant part of the wire
layout.

In our experiment, we have to respect two untypical boundary conditions during
evaporative cooling. First, we want to prepare the condensate as close as possible
to the surface to avoid large transport distances to the cantilever. Yet, we have to
ensure that the distance d between the trap and the cantilever surface is sufficiently
large for each stage to avoid uncontrolled surface loss. Second, we want to avoid
changes in the wire currents to minimize changes in the thermal load of the chip and

17We use a SRS DS345 for the first and a HP E4431B ESG-D with analog FM for arbitrary
frequency ramps during the final two stages
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the resulting frequency shift of the cantilever (see chapter 4.1.2). This influences the
choice of the phases and trap parameters.

We use three stages of evaporative cooling. The first two stages are performed in
traps at a relatively large distance d > 40 µm, while for the third stage we approach
the cantilever to d = 16.5 µm. We observe a lifetime of 2.5 s after cooling close to
the transition temperature in this trap, only slightly reduced from the value of 3.2 s
far away from the surface. Table 4.3 gives an overview of the parameters for the
cooling phases.

Trap ∆t II ID Bb,x Bb,y fz fx zt,0 B0 νRF0 νRF1

[ms] [A] [G] [kHz] [µm] [G] [MHz]
MTrap4 20 1.855 0.25 2.3 10 0.31 0.06 355.6 1.7 - -
RFC A 700 1.855 0.25 5.5 35 3.64 0.32 112.9 1.1 25 8
RFC B 600 1.855 0.4 9.0 37 3.86 0.43 105.9 1.3 8.5 2.5
RFC C 500 1.855 0.4 18.0 47 2.70 0.62 80.8 7.1 7.2 4.98
MTrap8 1-20 1.855 0.4 14.5 58.3 10.02 0.81 66.8 1.0 - -
Detection 3 0.6 0.05 4 10.5 0.75 0.14 119 2.1 - -

Table 4.3.: Magnetic traps at the cantilever after transport (MTrap4), for RF
Cooling (RFC A-C), and for coupling (MTrap8). We quote the duration of the
phase ∆t, Ioffe wire current II , Dimple wire current ID, axial (fx) and transversal
(fz ≈ fy) trap frequency, trap-wire distance zt,0, magnetic field in the trap minimum
B0, and start (νRF0) and stop (νRF1) frequency of the RF sweep.

The first stage (RFC A) uses a trap with a shallow dimple of only ∼ 4 MHz. This
has mainly technical reasons: We find a better performance for the evaporation
ramp when it spans only the part of the trap above the Dimple. Because the RF-
generator used for the subsequent ramps spans only 8.5 MHz we choose the depth
of the Dimple smaller than this value.

For the second stage (RFC B) we transform the trap such that the remaining cloud
is contained entirely in a 8 MHz deep dimple with a mean frequency of ωho/2π =
1.84 kHz, providing a high collision rate.

For the third stage (RFC C) we have to relax the trap to reduce the inelastic
collision rate. Furthermore we choose the minimal distance from the surface where
surface effects do not yet contribute (see also chapter 4.4.1).

Figure 4.11 (b) shows the resulting potentials along the x and the z axis for
the three cooling stages and for a typical trap used for measurements close to the
cantilever.

We produce pure BECs of typically 2000 atoms after an overall evaporation time
of 1.8 s. Figure 4.12 shows the atom number and optical density (OD) together with
three examples of absorption images during the final part of the third RF ramp. The
increasing OD for falling atom number is a sign for runaway evaporation [147]. The
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Figure 4.12.: RF cooling across the phase transition. Thermal cloud (top right,
νRF1 = 5.11 MHz), cloud at the transition temperature (top middle, νRF1 =
5.02 MHz) and fully condensed cloud (top left, νRF1 = 4.99 MHz) after 8 ms time
of flight (corresponding datapoints are indicated in orange / grey). Bottom: Opti-
cal density (OD) and atom number as a function of RF stop frequency of the last
cooling stage (RFC).

abrupt rise for frequencies νRF1 < 5.02 MHz indicates the phase transition to BEC.
For νRF1 < 4.95 MHz all atoms are removed from the trap, corresponding to the trap
bottom at a magnetic field of min(B) = 6.94 G. In our experiments, we typically
use a value of νRF1 = 4.98 MHz to prepare BECs without discernible thermal cloud.

Detection

We detect the atoms by the standard technique of absorption imaging [6]. We
irradiate the atoms with a 50 µs long pulse of σ+ polarized light resonant with the
cycling transition F = 2 → F ′ = 3 and observe the shadow the atoms cast on the
beam with a CCD camera. To discern the spatial modulations on the imaging beam
from the atomic signal, two images are taken, one with atoms (A) and a second
without (B). To take out camera dark counts and stray light, a third image (D)
without imaging beam is taken typically once a day. The three images allow to
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pixelwise calculate the optical density

OD = − ln
A−D
B −D

. (4.2)

For an imaging intensity much smaller than the saturation intensity Is, this links
directly to the atomic column density ñ(x, y) = OD(x, y)/σ0 with the scattering
cross section σ0 = 3λ2/2π. The atom number located in an area F is then calculated
by summing over all relevant pixels,

N =
F

σ0

∑
i,j

OD(i, j). (4.3)

For the initial phases before the transport we image along the y-axis and use a
video camera from JAI18. For the traps after the transport we image along the x-axis
and use a camera from Apogee19 with a quantum efficiency of 35% at 780 nm. The
two imaging beams are provided by two fiber outcouplers, each with a f = 40 mm
achromatic lens that collimates the beam to a diameter of 8 mm. We use a peak
intensity of . 0.2 Is to avoid saturation of the atoms. To image the shadow on the
CCD camera we use two achromatic plano-concave lenses back to back, such that
the imaging error is minimized. For the x-axis we use lenses with f1 = 100 mm and
f2 = 200 m, resulting in a magnification of 2.4 and a resolution of 9 µm. We observe
an imaging noise of 12 atoms rms on the respective area.

4.4. Atoms close to the surface

For the experiments presented in chapter 5 we want to use BECs in tight traps at
very small atom-surface distance. In chapter 2 we have discussed various effects
that influence the atoms under such conditions. In the following we characterize
the trap lifetime and heating rates. We find that three-body collisional loss and
technical current noise are severely limiting effects in the tight traps we use for
the experiments in chapter 5. Furthermore, Johnson-Nyquist noise and surface
evaporation contribute to a lifetime reduction independent of trap frequency.

4.4.1. Trap lifetime vs. atom-surface distance

First we determine the influence of Johnson-Nyquist noise and surface evaporation
on the trap lifetime close to the metallized side of the cantilever. For this measure-
ment we prepare thermal clouds close to the transition temperature at T = 1.5Tc
and measure the atom number decay for various atom-surface distances. We use a

18 CV-M50-IR, 752× 582 pixels, 8.4 µm pixel size, 8 bit dynamics.
19 Ap1E with Kodak sensor (KAF-0401E), 768×512 pixels, 9×9 µm2 pixel size, 14 bit dynamics.
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Figure 4.13.: Trap lifetime of a thermal cloud at T = 1.5Tc as a function of atom
surface distance. Initial atom number is N(0) = 5000 in a trap with (ωx, ωy ≈ ωz) =
2π × (0.5, 5.2) kHz. The solid lines show the prediction from surface evaporation
(blue) and Johnson-Nyquist noise (green).

thermal cloud to reduce the density and thus avoid excessive three-body collisional
loss.

We find that for distances d > 15 µm the lifetime of the atoms remains essentially
unaffected by the surface, while for d < 5 µm it has reduced to half of the value
for background loss, and falls off rapidly for d < 3 µm. Figure 4.13 shows the
measurement together with a calculation of the relevant loss rates according to Eqs.
2.92 and 2.80. The observed lifetimes can be well described by surface evaporation
and Johnson-Nyquist noise induced spin-flip loss.

The measurement shows that it is possible to perform measurements on a second
timescale at a distance of only a few microns away from the surface. Note that for
a BEC in front of a dielectric surface one expects no lifetime limitation due to the
surface as long as there is no heating.

4.4.2. BEC lifetime vs. trap frequency

Three-body collisional loss is a major limitation for the lifetime of a BEC at high
trap frequency (see chapter 2.5.1). The second effect with strong trap frequency
dependence is technical current noise induced heating (see chapter 2.5.3). In traps
close to the surface, where surface forces reduce the trap depth, heating also trans-
lates into trap loss via evaporation or sudden loss (see chapters 2.4.2). Both loss
mechanisms give rise to non-exponential atom loss.
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To quantify the collisional loss we prepare pure BECs and perform measurements
of the trap population as a function of hold time for several trap frequencies at
both small and large atom-surface distance. For simplicity we fit the data with
exponential decay laws to obtain the trap lifetime.

To investigate heating rates we do not rely on temperature measurements, as they
bear large errors for the small clouds in our experiments. We quantify the lifetime
of the condensates by visually inspecting the absorption images and assessing the
behaviour of the measured cloud radii. This allows us to infer the hold time after
which the condensate is heated above the transition temperature to a completely
thermal cloud. This is referred to as the BEC lifetime.
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Figure 4.14.: Atom number (red) and BEC lifetime (black) measured as a function
of trap frequency for three different trap configurations. Diamonds (close): close to
the surface as used for coupling experiments (see chapter 5.7). Circles (far): Similar
trap configuration as before, but far from the surface. Squares (shallow): Traps
with strongly reduced field gradients due to smaller II and Bb,y. The solid red line
shows a calculation of the lifetime for three-body collisional loss for a cloud with
Nc = 2000 atoms in a trap with an aspect ratio ωx/ωz = 0.1. The grey lines are
calculations of the current noise induced thermalization rate either using the rms
value (dark grey, ”heating”) for the used sources (FUG, i-source 2A) or the measured
noise spectrum of the FUG source (grey, ”FUG noise”). The dotted black line shows
the background lifetime.

Figure 4.14 shows the measurements together with a calculation of the colli-
sional loss rate (Eq. 2.87) and calculations of the expected thermalization time
tth = Tc/Ṫ [SI(ω)] according to Eq. 2.99. We either use the measured rms noise
of the used current sources (i-source 1 A and FUG, see table 4.1), or the noise power
spectral density SI(ω) to calculate the heating rate Ṫ .
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We find that the trap lifetime changes by two and the BEC lifetime by three orders
of magnitude over the studied range of trap frequencies. Unexpectedly, the BEC
lifetime close to the surface is larger than far away, while the trap lifetime shows
opposite behaviour. We attribute this to a shielding or evaporative cooling effect of
the surface, which removes energetic atoms that remain trapped after RF cooling
and that could otherwise heat the condensate by collisions. This is also consistent
with the observation of the reduced trap lifetime close to the surface. For the traps
with fz = 3 − 13 kHz which we use for coupling measurements we do not observe
thermalization, and the BEC lifetime is set by the trap lifetime to τ = 1 − 20 ms.
The observed values are consistent with three-body collisional loss, which thus gives
a fundamental restriction for coupling experiments.

4.4.3. Trap frequency measurements and trap simulation

For the coupling to cantilever motion, the trap frequency is an important parameter.
A first value can be obtained by a simulation of the trapping potential. We use a
MATLAB skript written by P. Treutlein [82] to calculate the magnetic fields gener-
ated by measured currents in the wires on the chip and the coils. Our simulation
takes into account the finite width and length of the wires as well as the rectangular
geometry of the three pairs of coils. However, uncertainties originating from the
position and the spooling of the coils lead to an error in the simulated fields on
the order of 10%. Measurements of the trap frequency in the actual traps used for
coupling are thus necessary. This allows us to adjust the homogeneous offset fields
in the simulation to match the measured data, thereby achieving an agreement of
better than ±3% (see below).

We employ trap modulation spectroscopy and use either the excitation of the
c.o.m. mode or trap loss as indicator. The trap is modulated by a small modulation
of the Ioffe current (∆II/II typically a few times 10−3), leading to a modulation of
the trap minimum position along the z−axis with an amplitude of a few nanometer.
This excites center of mass oscillations when the driving frequency is resonant with
the trap frequency. For traps close to the cantilever, the modulation is thus similar
to the action of the cantilever on the trap position (see chapter 5.1).

We also use trap loss as signature in these traps. In this case, the observed loss
resonances have a relatively large width of 70−2000 Hz, indicating trap anharmonic-
ity. The measured trap frequency is thus not ωz,0, the value corresponding to the
undisturbed trap, but corresponds to the inverse of the oscillation period for rather
large amplitude oscillations in a trap that is deformed by surface forces (see chapters
2.4.1 and 5.1). As this is the relevant frequency for the coupling measurements, we
refer to it as ωz. Figure 4.15 shows such measurements and respective simulations
for comparison. The relative uncertainty in the obtained ωz is < ±3 %, which is also
the amount of anharmonicity (for a cloud oscillating up to the barrier, a simulation
yields (ωz(0) − ωz(b))/ωz(0) = 5% anharmonicity). The simulation of the trapping
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Figure 4.15.: Top: Measured (black points) and simulated (green) trap frequency
for several traps at a few micron distance from the cantilever as used for dynamical
coupling measurements in chapter 5.7. The errorbars give the width of the loss
resonances used as signature for resonance. Red solid line: Fit of Eq. 2.11 to the
data with B′ and B0 as free parameters. Bottom: Deviation between simulation
and measurement. The errorbars show the resonance width for comparison. The
offset fields Bb,x and Bb,y in the simulation are adjusted to minimize the deviation
from the data.

potential deviates from the measured frequencies by less than +1
−5% after adjusting

the bias fields Bb,x and Bb,y once. We also compare the measured trap frequencies
to the analytic prediction for an ideal Ioffe-Pritchard trap (Eq. 2.11).



5. BEC-resonator coupling via
surface forces

This chapter covers the main results of this thesis. We show that atom-surface forces,
which represent the most fundamental interaction of atoms with solid objects, can
be harnessed to couple the motion of mechanical oscillators to the motion of trapped
atoms.

In the first theoretical section I introduce the principle of the coupling mechanism
and derive analytical expressions for the strength of the coupling.

I then describe experiments, where we first characterize and analyze the surface
potential in the distance range that is useful for dynamical coupling experiments.
The focus is then put on experiments where the driven motion of the microcantilever
is coupled to collective atomic motion. We study in detail the properties of the
coupling like the spatial range, overall strength, and spectral characteristics. We
observe resonant excitation of individual collective modes of the BEC. The narrow
resonances permit to control the coupling efficiently.

In the last section I present numerical simulations which we use to model the
cloud dynamics.

5.1. Coupling via surface forces

In chapter 2.4.1 we have discussed the effect of the surface potential on a magnetic
trap in vicinity of the surface. The main results were that the attractive potential
leads to a reduced trap depth U0, a shift of the trap minimum position zt, and a
shift of the trap frequency ωz. We now consider the situation of a trap close to the
tip of a cantilever that oscillates in its fundamental out of plane flexural mode with
eigenfrequency ωm.

In this setting, the position of the surface zc and thus the surface potential Us
at the position of the trap are time-dependent, leading to a modulation of U0, zt,
and ωz at the cantilever frequency. Figure 5.1 shows a calculation of the potential
modulation for typical experimental parameters. When the modulation is resonant
with a collective mode of the atoms in the trap, coherent motion is excited and energy
is transferred from the mechanical oscillator to the atomic cloud. This represents
the general system of two coupled harmonic oscillators.

In the following we discuss the classical excitation of the two strongest modes of
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Figure 5.1.: The surface potential Us of an oscillating cantilever modulates the trap
minimum position and the trap frequency of the combined potential U = Um + Us.
In the resonant case this excites collective modes of the atoms. The calculation
shows the experimental situation of a trap with ωz,0/2π = 10.0 kHz at distance
d = zt,0 − zc = 820 nm from the static position of the cantilever in the presence
of the Casimir-Polder potential of a perfect conductor. The static deformation
of the trap amounts to zt,0 − zt = 5.4 nm, ωz,0 − ωz = 104 Hz, and U0 = 94 kHz.
Cantilever oscillations with amplitude a = 80 nm lead to a modulation of the barrier
δU0 = 37.5 kHz, of the minimum position δzt = 1.5 nm, and of the trap frequency
δωz = 110 Hz.

the system, the center of mass (c.o.m.) or dipole mode, and the breathing mode.
Note that for our trap geometry, both modes have the same resonance frequency for
the condensed and the thermal component of the cloud.

5.1.1. Excitation of the dipole mode

The oscillation amplitude of the trap minimum position δzt is given by the modula-
tion of the surface force at the position of the trap center, and for a given cantilever
amplitude a it amounts to

δzt ∼=
1

mω2
z

∂2Us
∂z2

a ≡ εa. (5.1)

The coupling strength parameter ε has been introduced to describe the linear de-
pendence on a for small amplitudes. This is valid as long as ∂2Us/∂z

2 and hence ωz
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Figure 5.2.: Coupling strength parameter ε for different surface potential strength
as a function of atom-surface distance (a) and barrier height (b). Chosen parameters
are ωz,0 = 2π × 10 kHz and UCP = C4/(z − zc)4 with C4 the CP-coefficient for a
perfect conductor. Stronger surface potential can arise e.g. from adsorbates or
surface contaminants, weaker potentials arise e.g. for molecular scale oscillators.
The useful range for coupling experiments covers distance d d ≈ 0.4 − 4 µm and
trap depths U0 ≈ (1− 100)~ωz,0.

is approximately constant over one oscillation period.
An analytical calculation of ε as a function of atom-surface distance d and as

a function of the barrier height U0 is shown in Fig. 5.2 for a trap with ωz,0 =
2π×10 kHz. Large values of ε up to ε = 0.3 are found for small atom-surface distance,
where the remaining trap is shallow and contains only one or two bound energy
levels. A stronger surface potential enables large ε also for deeper traps. The atomic
lifetime in such traps set the timescale of possible coupling experiments. A certain
minimum coupling strength is thus necessary to achieve observable interaction, and
for cantilever amplitudes a� d, an order of magnitude estimate demands ε & 10−3.
Depending on the strength of the surface potential, this restricts experiments to trap
depths U0 ≈ (1− 100)~ωz,0, and for the trap frequency as in the given example, to
possible atom-surface distances d ≈ 0.4− 4 µm.

It is well known, that an atomic cloud in a harmonic potential subject to a force
modulated at the trap frequency is excited to center of mass (c.o.m.) oscillations
[265, 101]. The differential equation for the center of mass coordinate Z in the
presence of damping and driving can be written as

Z̈ + 2γŻ + ω2
zZ = δztω

2
z cos(ωmt). (5.2)

Here we have neglected the modulation of ωz and the anharmonicity introduced by
Us, and we have quoted the force in terms of the shift of the trap minimum position.
When damping is absent and the excitation is exactly on resonance ωm = ωz, the
solution of this equation predicts a c.o.m. oscillation Z(t) = b(t) cos(ωzt+ φ) with a
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linear rise of the amplitude

b(t) =
1

2
δztωzt. (5.3)

In the presence of damping, the amplitude will saturate at a steady state value

bmax
∼=

δztωz

2
√

∆2 + γ2

∆=0−→ δzt
ωz
2γ
, (5.4)

yielding a Lorentzian response as a function of the detuning ∆ = ωz − ωm, with
the amplitude damping rate γ being the Half Width at Half Maximum (HWHM)
of the resonance. Note that c.o.m. motion is essentially undamped, and dissipation
may only arise from collisions with atoms from the background gas. But as their
mean momentum is very large, this contributes to trap loss rather than amplitude
decay of the oscillation. In contrast, the lifetime of the atoms in the trap will limit
the coupling time th and thereby bmax. This will lead to a Fourier limited resonance
width of FWHM = 1/th.

Absence of anharmonicity is necessary both to allow an unbounded, linear increase
in amplitude, and to leave the spatial distribution of the cloud unaffected by the
c.o.m. oscillation. The decoupling of the internal cloud dynamics from the c.o.m.
dynamics for harmonic potentials holds true also in the case of (strong) inter-particle
interactions, and is known as the generalization of the Kohn theorem [113, 103,
115]. The situation changes significantly when the anharmonicity of the combined
potential is taken into account. As will be discussed in more detail in Section 5.8, it
leads to excitation of higher modes, dephasing, and a nonlinear rise of the amplitude.

5.1.2. Parametric excitation

The modulation of the trap frequency δωz provides a parametric excitation and leads
as well to coupling. Its magnitude is quantified by

δωz ∼=
√

1

m

∂3Us
∂z3

a ≡ ξ
√
a, (5.5)

where the proportionality factor ξ describes the dependence on a for small ampli-
tudes. In the distance range found above, the relative frequency shift amounts to
δωz/ωz ≈ 10−3 − 10−1.

For a single particle there is an infinite series of parametric modes [265, 266] which
are excited by modulation of one of the parameters of the oscillator, e.g. the trap
frequency. The differential equation describing the situation is the damped Mathieu
equation

z̈ + 2γż + [1 + q cos(ωt)]ω2
zz = 0. (5.6)
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Here, γ is the amplitude damping rate of the atomic motion and q describes the
relative amplitude of the modulation of the spring constant. This equation shows
instabilities, so called parametric resonances, for excitation frequencies

ωn =
2ωz
n

(5.7)

with integer n. The width of the instability region of the first parametric resonance
is given by

−
√(qωz

2

)2

− 4γ2 < ∆ <

√(qωz
2

)2

− 4γ2 (5.8)

where ∆ is the detuning from resonance. The time evolution of a single particle
subject to parametric drive is in general not a simple sinusoidal oscillation, however
the Floquet theorem states that the motion has the periodicity of the parametric
drive. A general characteristic is the exponential growth of the amplitude of the
oscillation over time within the instable regions, which can be expressed as

b(t) = δzte

(
1
4

√
q2ω2

z−4∆2−γ
)
t
. (5.9)

Parametric oscillations have a threshold that increases for higher orders according
to

qn ≈
(

2γ

ωz

)1/n

. (5.10)

For a cloud of atoms in an isotropic trap, the lowest order parametric resonance
corresponds to the radial breathing mode, where the whole cloud expands and con-
tracts periodically. As was discussed in chapter 2.2.2, interactions shift the reso-
nance frequency of this mode to higher frequency. Besides the resonances given by
the Mathieu equation that exist on a single particle level, there are resonance series
of shape oscillations for clouds of atoms (see chapter 2.2.2). For efficient excitation
of a mode, the trap modulation has to match both the symmetry properties and the
eigenfrequency of the mode. In our experiments, the magnetic traps have cylindri-
cal geometry with the long axis aligned parallel to the surface. The modulation will
thus match the symmetry of radial quadrupole modes.

5.1.3. Coupling Hamiltonian

The atomic c.o.m. mode represents an undamped mechanical oscillator that can be
routinely prepared in the ground state. One goal is to achieve this also for micro- and
nanomechanical resonators. In this regime, a coupled atom-resonator system has to
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be described quantum mechanically. Using the results of the previous sections, the
Hamiltonian for the combined system can be approximated by

H =
P 2

2Meff

+
1

2
Meffω

2
mδz

2
c +

∑
i

(
p2
i

2m
+

1

2
mω2

z(zi − δzt)2

)
, (5.11)

which represents the kinetic and potential energy of the resonator and the atoms,
and where zi is the position of the i-th atom and δzc the excursion of the resonator
from the static position zc. We have chosen the trap minimum position as the origin
and neglected the modulation of ωz. The coupling shows up in the potential term
of the atoms, which can be expanded to

Hpot =
∑
i

1

2
mω2

z(zi − εδzc)2 =
∑
i

1

2
mω2

z(z
2
i − 2εziδzc + ε2δz2

c ). (5.12)

The first term on the right hand side is the unaffected atomic potential, the second
term describes the coupling, and the third is a correction to the resonator frequency,
which can be neglected.
To derive a quantized Hamiltonian, the amplitudes zi, δzc have to be quantized by
setting ẑi = zqm(b̂†i + b̂i) and δẑc = aqm(â† + â) with the ground state amplitudes

zqm =
√

~/2mωz, aqm =
√

~/2Meffωm and the bosonic creation and annihilation

operators â†, b̂†, â, b̂. This casts the coupling term of Equation 5.12 in the form

Ĥint =
∑
i

mω2
zεẑiδẑc =

∑
i

1

2
ε~ωz

√
m

Meff

(b̂†i + b̂i)(â
† + â). (5.13)

This is a linear coupling in the cantilever amplitude, which can be further simplified
in the rotating wave approximation (neglecting the off resonant terms â†b̂† and âb̂)
to Ĥint = ~g0

∑
(â†i b̂ + âib̂

†). Here we have introduced the single phonon coupling

strength g0. For the center of mass mode b̂ = 1/
√
N
∑

i b̂i one obtains a collectively
enhanced coupling strength

gN =
√
Ng0 =

εωz
2

√
N

√
m

Meff

. (5.14)

The coupling is linear in ε and contains a disadvantageous term
√
m/Meff . E.g.

for the microcantilever used in our experiment, this term is of the order of 10−7,
and with typical parameters (N = 1000, ε = 0.13, ωz = 2π × 10 kHz) we obtain
gN = 2π × 1 mHz, too small to be detected. However, for a thermally driven
cantilever at room temperature, the coupling would lead to a phonon transfer rate
of 2gN

√
nth ≈ 2π×200 Hz, where nth

∼= kBT/~ωz is the thermal phonon occupation
of the resonator. This suggests that thermal motion should lead to an observable
coupling.
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5.2. Measurement of atom loss in the surface
potential

In a first set of measurements we determine the range of atom-cantilever distances
d = zt,0 − zc where the atoms are affected by the surface potential Us. We use a
method similar to Lin et al. [24], where atom loss at the surface is used to obtain
information about the trap depth U0. Together with a simulation of the magnetic
trapping potential Um this allows us to extract information about Us. In these
measurements, the static properties of Us are studied and the cantilever is undriven.

We prepare BECs of N = 2.0×103 atoms with no discernible thermal component
in a trap at d = 16.6 µm with ωz/2π = 2.7 kHz (see chapter 4.3 and 4.4.3 for trap
parameters and trap characterization). At this d, we observe no influence of the
surface. The trapping potential is then compressed to ωz/2π = 10 kHz (5 kHz),
resulting in a BEC radius of 290 nm (430 nm), and ramped adiabatically within
1 ms (3 ms) to a set value of zt,0 close to the cantilever surface.

To prove the adiabaticity of the ramp, we perform measurements for various ramp
times and compare the shape and position of surface loss data. Additionally, we
analyze residual cloud oscillations after ramp back into the detection trap. We
measure oscillation amplitudes of b′ = 4 − 7 µm after dt = 4 ms TOF from a
detection trap with ωz,d/2π = 750 Hz. Assuming that the excitation originates
only from the ramp to the surface, we obtain a maximum oscillation amplitude of
br =

ωz,d

ωz

b′

ωz,ddt
= b′

ωzdt
= 28 nm in the trap at the cantilever. More details about the

ramping can be found in Appendix B.

The atoms are held at the cantilever for an interaction time th = 1 ms during which
some of the atoms are lost because of the reduced U0. The short ramp and holding
time is chosen in order to minimize the influence of surface evaporation (which is not
very well quantified), technical heating, and three body collisional loss (see chapter
4.4.2). After the interaction, the atoms are ramped back into a relaxed trap at large
distance where the remaining atom number Nr is determined by absorption imaging.
Figure 5.3 (a) shows a typical absorption image. A measurement of the remaining
atom number as a function of zt,0 is shown in Fig. 5.3 (b). The atoms are lost in a
small interval of a few hundred nm at a distance of ∼ 66 µm from the chip surface.

5.2.1. Determination of the cantilever position

The expected position of the cantilever is roughly estimated to be zc = 68± 10 µm.
This is obtained from the knowledge of the spacer chip thickness (48 ± 5 µm) on
which the cantilever is glued, and the thickness of the glue layers. Here, zc refers to
the position of the surface of the metallized side of the cantilever. The surface of the
dielectric side is located at zc−h, where h = 450± 40 nm is the cantilever thickness
specified by the manufacturer and confirmed in electron microscope images.
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Figure 5.3.: (a) Absorption image of a BEC of 2000 atoms after 1.8 ms time
of flight from the detection trap. The structure on the left is the shadow of the
cantilever support chip with the cantilever located at the upper border of the image.
(b) Remaining number Nr of atoms in a trap with ωz,0 = 10 kHz after th = 1 ms at
the surface.

For a more precise determination of zc we use several measurements of atom loss
in the surface potential as shown in Figure 5.3 (b). In these measurements, the
position of the magnetic trap minimum, zt,0, is obtained from a simulation of the
magnetic trapping potential Um (see chapter 4.4.3). We check the simulated Um by
comparison with measurements of the trap frequencies, the magnetic field at the
trap bottom, and the trap position in absorption images. From this we estimate a
relative uncertainty in zt,0 of ±3%. This leads to an absolute uncertainty of ±2 µm
at zt,0 = 65 µm, which is also the absolute uncertainty in the z-axis in Figure 5.3
(b).

Taking advantage of the suspended structure we can perform surface loss measure-
ments also on the dielectric side of the cantilever, using the atoms as a “caliper” that
measures the effective cantilever thickness including Us. This involves manoeuvering
around the cantilever with several magnetic field ramps to the point of measurement,
and back again for imaging. We use a trajectory that orbits the cantilever at its
width along the x-axis. It involves an axial displacement of the cloud of ∼ 300 µm
by currents in a neighboring dimple wire. It is advantageous to transport a pre-
cooled thermal cloud around the cantilever and to prepare the condensate between
cantilever and chip. After the measurements, the atoms have to be transported
back around the cantilever. More details about the ”manoeuver” can be found in
Appendix C. We have no clear signature of the phase transition in the traps at the
back side of the cantilever, in part due to heating during the transport back to the
detection trap. Using surface loss data for thermometry (see section 5.3.1 below) we
find that during the measurements at the cantilever the clouds have a temperature
∼ 50% higher than for the measurements on the directly accessible metallized side.
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Figure 5.4.: Fraction χ of atoms remaining in the trap after th = 1 ms at distance
d from the cantilever surface. Blue (red) data points correspond to a trap with
ωz,0/2π = 10.0 kHz (5.1 kHz). Solid lines: Fit with a surface loss model, for details
see chapter 5.3. The extracted cantilever position is shown.

Figure 5.4 shows the remaining fraction χ = Nr/N as a function of d for both sides
of the cantilever and for two different trap frequencies. Because the cantilever has
to lie somewhere in the region where χ = 0, this allows us to determine the absolute
cantilever position zc = 64.7± 2.1 µm with an error comparable to the uncertainty
in zt,0. However, we point out that the uncertainty in d is much smaller than the
absolute uncertainties in zt,0 and zc. This is so because the distance between mag-
netic traps right above and below the cantilever is known to ±60 nm (corresponding
to the ±3% relative uncertainty in zt,0). For perfectly known surface potentials Us,
this would also be the uncertainty in d.

Comparing the data with a simulation of the total potential U allows us to cal-
ibrate d to ±160 nm and to obtain information about Us, because Um is very well
known. We find that the distance between the two points where the atoms get
lost is larger than expected from the cantilever thickness and the strength of the
Casimir-Polder potential on both sides. From an analysis of surface loss and reso-
nant coupling measurements we deduce that Us ≈ UCP on the dielectric side, while
on the metallized side Us is stronger by about two orders of magnitude, most likely
due to surface adsorbates (for details on the analysis of the surface potential and
the calibration of d see chapter 5.4).

We can model the loss of atoms in the surface potential Us by a sudden truncation
of the Boltzmann tail of the residual thermal cloud coexisting with the condensate,
in combination with 1D evaporation and tunneling [24] (for details on the model see
chapter 5.3). When comparing with the data, we leave the cloud temperature T as
a free parameter. The data is fit best for T = (1.5, 1.2, 1.0, 0.6)Tc (solid lines from
left to right in Fig. 5.4), where the critical temperature Tc is calculated by Eq. 2.19.
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Figure 5.5.: Atom number noise on the slope of a surface loss curve. Red data:
Repetitive measurement of the atom number for constant trap parameters ωz/2π =
10.5 kHz, d = 1.3 µm, and th = 3 ms. The mean atom number is 〈N〉 = 585 and the
overall noise amounts to σ = 34. Black data: Apparent atom number, determined in
an area of same size as used for the determination of N but without atoms present.
This yields an imaging noise of σ = 19 atoms.

These values are systematically larger but still in reasonable agreement with those
from independent measurements of T in time-of-flight for corresponding traps on the
metallized side. We note that for the short th of the measurements in Fig. 5.4, the
effect of evaporation and tunneling is small, and our determination of the cantilever
position is independent of th.

5.2.2. Positioning reproducibility

To estimate how reproducible atoms can be positioned close to the surface, we use
the fact that the trap position translates into atom number on the slope of a surface
loss curve. The data shows that e.g. for a 10 kHz trap, atoms get lost over a distance
of only 300 nm with a maximum slope of 4.5 atoms/nm for the analysed dataset.
For repetitive measurements of the atom number after ramping to d = 1.3 µm where
χ = 0.4 and 〈N〉 = 586 we find an rms noise σ = 34. Correcting for the noise of
the imaging system σI = 19 that is observed when no atoms are present, we obtain
σN =

√
342 − 192 = 28.2, close to the value

√
586 = 24.2 for shot noise.

As a worst case estimate we attribute all the noise to fluctuations of zt,0, which
yields ∆zt,0 = 6.3 nm rms. We can compare this value to the positioning repro-
ducibility expected from the stability of the magnetic potentials. The trap po-
sition is defined by a current through the Ioffe wire with a relative current sta-
bility of ∆II/II = 1.5 × 10−5 and a homogeneous field along the y-axis, having
∆Bb,y/Bb,y = 5.2× 10−5. Together, the two sources define the trap position with a
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rms stability ∆zt,0 = µ0/2π
√

(∆II/Bb,y)2 + (II∆Bb,y/B2
b,y)

2 = 3.3 nm. A larger con-

tribution comes from the background magnetic noise in the lab of ∆B = 20 mG peak
to peak, which in the worst case (when pointing exactly along our y-axis) would lead
to ∆zt,0 = 7.4 nm rms. Thus, the estimated positioning reproducibility is at the level
expected from background magnetic field fluctuations. By implementing a magnetic
shield and using a better current source for the Bb,y field, position fluctuations could
be brought down below 1 nm. However, at this level also the mechanical stability
of the coils becomes relevant. E.g. if our Bb,y-coils drift in position by 1 µm along
(x, y, z), the relative change in the field is ∆Bb,y/Bb,y = (3.1, 0.1, 9.3)×10−6 and the
trap shifts by ∆zt,0 = (0.2, 0.06, 0.6) nm for our trap parameters. A temperature
change of only 1◦C gives rise to a differential position shift along z between the atom
chip and the coils by ∼ 2 µm due to the different thermal expansion of the Pyrex
vacuum cell (αex = 3× 10−6 /K) and the steel coil mounts (αex = 13× 10−6 /K).

5.3. Model for surface induced atom loss

Here we discuss the model for the loss of atoms in the attractive surface potential Us
of the undriven cantilever. A simple model describing such measurements was de-
veloped by Lin et al. [24] and summarized in chapter 2.4.2. When the magnetic trap
is ramped to the surface, the trap depth is reduced to U0 by the surface potential.
The model assumes that this leads to a sudden loss of atoms with energy E > U0.
For a thermal cloud this is described by the truncation of the tail of the Boltzmann
distribution, while for partially condensed clouds at temperature T > 0, only the
residual thermal cloud coexisting with the condensate is affected. Furthermore, it
includes 1D evaporation from the trap to account for collisional repopulation of the
high energy states. In summary, the remaining fraction of atoms in the trap is given
by

χ = (1− e−η)e−Γ(η)th , (5.15)

where η = U0/kBT is the ratio of the trap depth and the thermal energy, and Γ(η) is
the 1D evaporation rate according to equation 2.80. Evaporation is important when
th � τel. In the measurement of figure 5.4, τel = 0.2 − 0.6 ms and th = 1 ms, and
evaporation has only a small effect.

Finally, atoms can be lost from the trap by tunneling through the barrier. The
loss rate can be estimated by calculating the transmission coefficient T (E,U) of the
barrier in the WKB approximation according to equation 2.82. This determines the
tunneling rate Λ = ωz/2πT (E,U) (Eq. 2.83). For our measurements, tunneling will
contribute when Λ(E) ≈ 1/th. As Λ increases exponentially with E, the effect can
be accounted for by setting the potential depth to the value where the tunneling
rate equals 1/th, or Ueff = E(Λ(E) = 1/th).
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Figure 5.6.: (a) Calculated relative reduction of the barrier height Ueff/U0 due to
tunneling as a function of U0 for Λ(Ueff) = 1 kHz. Red (blue) circles correspond to
a trap with ωz/2π = 10 kHz (5 kHz). (b) Measured fraction of remaining atoms
compared to a numerical simulation of the Gross-Pitaevskii equation, to the surface
loss model with modification (ii) and T = Tc, or both (i) and (ii) with T = 0.8Tc.
Parameters are ωz/2π = 10 kHz, th = 1 ms, Us = UCP − 200C4/(z − zc)4.

Figure 5.6 (a) shows a numerical simulation of the relative trap depth reduction
Ueff/U0 as a function of the barrier height U0 for th = 1 ms. The behaviour of the
(absolute) barrier reduction ∆U = U0−Ueff can be approximated by a polynomial of
the form ∆U ∼= cU0.3

0 , and for the traps used in the experiments we find c(5 kHz) =
5.6×10−3 and c(10 kHz) = 1.3×10−2. The effect is of the order of a few percent and
becomes important only for very shallow traps (U0 < 100 kHz). Overall, tunneling
shifts surface loss curves by z ∼ 20− 60 nm compared to the case where tunneling
is neglected. It thus has only a small impact for the interpretation of atom loss at
the surface.

5.3.1. Improvements of the model

Although this simple model already describes our data fairly well, several improve-
ments and alternative approaches are possible:

(i) The model describes loss only from the thermal cloud. A more accurate
description can be obtained by assuming a bimodal cloud for T < Tc and including
also loss from the condensate. The condensate and thermal atom numbers are
obtained by equation 2.20 or 2.21. The thermal cloud is lost for U0 ≥ µc as described
above with a modified η = (U0−µc)/kBT . The condensate is lost for U0 < µc, where
the number of remaining atoms Nr can be determined from µc[Nr] = U0, resulting
in χBEC = (U0/µc)

5/2.

(ii) For T ∼ Tc, most of the surface loss occurs for η ≤ 1, where the simple
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evaporation law is no longer valid and leads to unphysically large Γ. We correct
this by introducing a cutoff at the cross dimensional mixing rate [267], which we
implement by setting

Γ−1 = τel

(
1

f(η) exp(−η)
+ 2.7

)
. (5.16)

However, this is only a simple patch and does not account for the qualitatively
different situation at small η.

(iii) The repulsive interaction between the condensate and the thermal cloud
pushes the latter out of the trap center (see equations 2.46 and figure 2.6). This
leads to a broadening of the loss curves. This effect could be included by an effective
potential

Uth(r) =

∣∣∣∣12m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2)− µc
∣∣∣∣ (5.17)

for the thermal cloud. However, this no longer permits to treat the sudden loss in
the manner discussed above.

(iv) In chapter 5.8.2 we use a numerical 1D simulation of the Gross-Pitaevskii
equation to study the dynamics of a BEC in a modulated trap. In the context here,
we can use it to simulate the loss in the static surface potential.

(v) Technical heating, three-body collisional loss, and cooling due to evaporation
of the atoms are not included in the model. These effects have a strong dependence
on the trap frequency and in part also on the atom number.

Figure 5.6 (b) shows a comparison of two of the modifications of the model to-
gether with a numerical simulation for a pure BEC (iv) and experimental data. The
measurements often display a characteristic kink, which indicates a partially con-
densed cloud with different loss behaviour of the thermal cloud and the condensate
fraction. The data can be reproduced by using the improvements (i) and (ii).

When applying the above improvements (i) - (iv), we find that the resulting change
in the calibration of the atom-cantilever distance d is ±80 nm, which is within our
error bar on d. Furthermore, we point out that the data can also be analyzed
without a detailed model for atom loss by simply exploiting that χ = 0 corresponds
to the values of the atom-cantilever distance d where the trap has vanished (which
is well described by the condition U0 < ~ωz/2). This analysis depends only on
the knowledge of the trapping potential U , and again yields similar results as the
model described above for the short th of the measurements in Figure 5.4, where
evaporation does not play an important role.

5.3.2. Heating rate analysis with the surface loss model

In chapters 2.5.3 and 4.4.2 we have discussed limitations due to technical heating in
the trap. A difficulty is that temperature and heating rate measurements in TOF



102 BEC-resonator coupling via surface forces

1 1,5 2

0

0.2

0.4

0.6

0.8

1

atom surface distance d [µm]

χ 2.1× T
c

∆
RF

=70kHz

1.5× T
c

∆
RF

=45kHz

0.8× T
c

∆
RF

=20kHz

a)

0 5 10 15
100

101

102

103

trap frequency [kHz]

he
at

in
g 

ra
te

 [µ
K

/s
]

b)

Figure 5.7.: (a) Surface loss measurements for different cloud temperatures.
The temperature is set by changing the final value of the radio frequency for rf-
evaporation. For the data we quote the detuning of the RF stop-frequency ∆RF

from the trap bottom νRF,0 = 4.950 MHz. The fitted temperatures are slightly
higher but in reasonable agreement with the temperature following from the RF
stop-frequency (T = (2.0, 1.3, 0.6) × Tc). Such a reference measurement serves as
”calibration” of the thermometer. (b) Heating rates extracted from the surface loss
model applied to several measurements with given initial temperature and varying
holding time. The solid line is the heating rate calculated with Eq. 2.99 for the
measured current noise level.

show large uncertainty for small clouds. In an alternative approach we can use the
fit results of the surface loss model to obtain the temperature of the cloud. Even
though the accuracy of the evaluated temperature might be worse due to systematic
errors of the model, the reproducibility of the determination is very good. When
applied to measurements with varying interaction time th, the temperature as a
function of time and thereby a heating rate can be extracted. In Figure 5.7 (a),
surface loss measurements are shown where different cloud temperatures have been
set by changing the final value of the radio frequency during rf-evaporation. The
measurement illustrates, how well temperature differences can be discerned. From
repetitive measurements with fixed parameters we find a variation of the resulting
temperature ∆T = ±0.1 Tc. Note that the only free parameters of the fit are
the position of the surface (which is the same for all fits in the figure) and the
temperature.

To extract heating rates, we perform measurements for fixed initial temperature
with varying holding time at the surface for several trap frequencies. The results
are summarized in Figure 5.7 (b) together with a prediction of trap heating. The
observed heating rate dependence follows a ω4

z scaling as expected from technical
noise induced heating (Eq. 2.97, 2.99), and can be quantitatively explained by the
current noise of the source that drives the magnetic coils for the Bb,y offset field
(FUG 15A 20V, see chapter 4.4.2).
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5.4. Analysis of the surface potential

Here we describe how we use static and dynamic surface loss measurements to obtain
information about the surface potential Us = UCP + Uad and a calibration of the
atom-cantilever distance d = zt,0 − zc on both sides of the cantilever.

5.4.1. Additional potential Uad

If we assume for the moment that only the CP-potentials are present on both sides
of the cantilever (i.e. Uad = 0 on both sides), we would expect from a simulation of
U = Um + UCP that the “effective cantilever thickness” heff , defined by the width of
the window where χ = 0 in Figure 5.4, is heff = 1.4 µm for ωz/2π = 10 kHz and
th = 1 ms. However, we observe heff = 2.2 µm. This shows that Us is significantly
stronger than the expected contribution from UCP on at least one side of the can-
tilever. We explain this by the presence of an additional potential Uad due to surface
inhomogeneities or contamination [268, 129, 25, 26, 27, 269]. Without taking into
account further information about Uad, this leaves an uncertainty in d of ±400 nm,
corresponding to the difference between the observed and expected heff .

The atoms could be used as a three-dimensional scanning probe that allows one
to map out the spatial dependence of Uad in detail and to determine whether it
is due to magnetic, electrostatic, or other interactions, see e.g. the measurements
in [25, 26, 27, 269]. As the characterization of Uad is not the main focus of our
work, we simply determine its strength relative to UCP in the relevant range of d
by combining the measurements from chapter 5.2 (see Figure 5.4) with information
from measurements of resonant atom-cantilever coupling as described in chapter 5.5
(see e.g. Figures 5.8, 5.11).

Such dynamical coupling measurements are performed on both sides of the can-
tilever in traps with similar U0. We can determine U0 to 10% from the measured
curves in Figure 5.4 without detailed knowledge of Us or d. Comparing measure-
ments on both sides of the cantilever, we find that the dynamical coupling signal
is a factor β = 3.2 ± 0.6 larger on the metallized side. Furthermore we observe a
linear dependence of the coupling signal with the cantilever amplitude and thus also
a linear dependence of the signal on δzt = εa. From this we conclude that ε has
to be larger by the same factor, and the ratio β is thus given by the ratio of the
coupling strength parameters on the metallized and dielectric side, β = εmet/εdiel.
Because ε ∝ ∂2

zUs, this implies a stronger surface potential on the metallized side.
Stronger Us also implies larger d to maintain the same U0. Due to the fast decay
of Us with d, a substantially larger Us is required on the metallized side (not just
larger by a factor of order β).
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5.4.2. Iterative determination of the strength of Uad

To obtain an absolute value for the strength of the surface potential on both sides, we
use an iterative procedure to match both the observed effective cantilever thickness
and the measured coupling strength ratio β. We first choose a certain Cad and then
evaluate ε and d for the given U0 on the dielectric side. This fixes the cantilever
position zc. Then we adjust Cad on the metallized side to be consistent with the
surface loss curves in Figure 5.4 and extract ε for the given U0 on this side. We
compare the values of ε on both sides and start a new iteration with weaker (stronger)
Cad on the dielectric side if their ratio is smaller (larger) than the observed β, or
finish if it equals the observed β.

The observed β = 3.2 as well as the surface loss curves can be best explained by
potentials of the form Uad = Cad/(z − zc)4 with the following coefficients:

Cad = (200± 100)C4 metallized side

Cad = (10± 10)C4,d dielectric side. (5.18)

For these potentials, zc = 64.36 µm results.

For the metallized side, we use the C4 coefficient for a perfect conductor according
to Eq. 2.57, which bears a small error (on the percent level) due to the small thickness
and the finite conductivity of the Au/Cr film. On the dielectric side, the thin SiN
layer together with the Au/Cr film acts as a cavity or waveguide for the vacuum
modes [127], which results in a correction to the CP-potential (see chapter 2.3.1).
With Eq. 2.63 we calculate that at d = 1.0 µm this leads to a 25% larger potential
than that of a bulk dielectric described by C4,d (see Eq. 2.58). On this side, the
inferred potential is thus consistent with a pure Casimir-Polder potential.

To check the robustness of our analysis against changes in the assumed distance
dependence of Uad, we perform similar analyses with other distance-dependences,
such as Uad ∝ (z− zc)−3 on both sides or Uad ∝ (z− zc)−4 on the dielectric side and
Uad ∝ (z− zc)−3 on the metallized side. These analyses result in similar calibrations
of d. The overall error in d is ±160 nm, which contains the uncertainty in Uad, zt,0,
U0, β, as well as the uncertainty in the cantilever thickness, and a contribution due
to residual oscillations of the atoms in the trap due to the ramping to the cantilever.

We observe that Uad slowly changes over time by up to a factor of four on a
time scale of weeks. The measurements used to determine Uad described above
were all performed on the same day. The change in Uad during the course of these
measurements is negligible. However, for the analysis of measurements from other
days, the strength of the surface potential is known with less precision. But as the
relative change in the coupling strength ε is much less than the relative change in
the surface potential strength (by a factor β C4/Cad = 1.6× 10−2), this affects only
the atom-surface distance and not the dynamical coupling.
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5.4.3. Adsorbates

A likely explanation of the observed Uad are 87Rb adsorbates deposited during op-
eration of the experiment. This effect was studied in detail in [25, 26, 27, 269]. The
electric dipole moment of Rb on gold, µel ≈ 1 × 10−29 Cm, is about one order of
magnitude stronger than on SiN [25, 269]. Furthermore, as most of the measure-
ments are performed above the metallized surface, we estimate the adsorbed atom
number on this side to be substantially larger than on the dielectric backside of the
cantilever. Both effects would lead to a stronger Uad on the metallized side.

As discussed in chapter 2.3.2, the expected stray field of the spatial adsorbate
distribution can be well described by a power law Uad(z) = Cad/(z−zc)4 in the region
of interest. We find that Uad matches the observed Us for 3500 BECs containing
2000 atoms each, distributed over an area of 10 × 1 µm2, about two times the
size of a condensate. This is a realistic atom number, consistent with the number of
experiments performed. The observed changes in the surface potential are consistent
with the picture that atoms are deposited on the surface and subsequently diffuse
or desorb again [269].

However, in chapter 2.3.2 we have pointed out that for our vacuum conditions with
rather high background pressure of p = 3− 6× 10−10 mbar, the cantilever surface is
expected to have a large Rb coverage due to adsorption from the Rb background gas.
On the other hand, the heating of the cantilever by wire currents and the readout
laser (see chapter 4.1.2) can lead to temperatures up to 40 ◦C and thus increase the
desorption rate of Rb by almost one order of magnitude. The state of the surface is
thus not very well known and the given estimate bears some uncertainty.

5.5. Detection of mechanical motion with BECs

We now describe our main experiments, where cantilever oscillations are coupled
to the motion of trapped atoms nearby. We study mainly the c.o.m. mode of the
atoms because it has the best mechanical properties and is relevant for future sce-
narios. For comparison, we also investigate the behaviour of the breathing mode as
a representative for higher order collective excitations.

In our measurements we use trap loss as indicator for the coupling. This implies
that the excitation has to lead to large amplitude collective oscillations, such that
a part of the cloud spills over the barrier and is lost from the trap. Therefore the
atoms are ramped to a distance, where the magnetic trap is markedly affected by
the static surface potential. For typical distances used in the measurements, the
coupling strength parameter ε reaches values of ε = 0.05− 0.15 and the trap depth
is of the order U0 = 8− 25× ~ωz .
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Figure 5.8.: Remaining atom number after th = 3 ms in a trap with ωz/2π =
10.5 kHz at d = 1.5 µm from the driven cantilever, for varying drive frequency
ωp. The dark (light) blue circles correspond to a cantilever amplitude a = 120 nm
(50 nm) on resonance. Solid lines: Lorentzian fits with 6 Hz FWHM, corresponding
to the width of the cantilever resonance. The remaining atom number with (Na)
and without (Nr) resonant piezo excitation of the cantilever is indicated.

5.5.1. Probing the cantilever fundamental mode spectrum

For a first signature of dynamical coupling between a BEC and the resonator we use
the atoms to reveal the mechanical resonance spectrum of the fundamental mode
of the cantilever. Therefore we excite the cantilever with the piezo at frequency
ωp. When ωp is resonant with the cantilever’s fundamental out-of-plane mode at
ωm = 2π× 10 kHz, the cantilever oscillates with an amplitude a of typically several
tens of nm1. We prepare BECs on the metallized side at d = 1.5 µm in a trap with
ωz/2π = 10.5 kHz, so that resonance ωz ≈ ωm is given, and let the atoms interact
with the vibrating cantilever for th = 3 ms. In this trap, U0 = h · 205 kHz = 9µc
and χ = 0.4 if the cantilever is undriven.

When ωp is scanned from shot to shot of the experiment, a sharp resonance in
the remaining atom number is observed for ωp = ωm, see Fig. 5.8. The width of the
atomic resonance matches the width of the cantilever resonance very well, and it is
thus possible to resolve the spectral response of the cantilever with the atoms.

Note that a is more than one order of magnitude smaller than d, and the cantilever
does not touch the atomic cloud. A calculation of the potential yields that the surface
potential of the oscillating cantilever modulates zt with an amplitude δzt = 10 nm
(4 nm) for a = 120 nm (50 nm) on resonance, and thus ε = 0.08. This excites
coherent motion of the atomic center of mass (c.o.m.). For large c.o.m. amplitudes,
the anharmonicity of the deformed trap and the reduced U0 convert this motion into
heating and loss.

1 Due to temperature dependent frequency shifts of the cantilever, excitation is only resonant for
a short time during the experimental sequence. For more details see chapter 4.1.2
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Figure 5.9.: (a) Contrast C and (b) signal to noise ratio SNR of the observed
atomic signal as a function of atom-surface distance d. For this measurement we
use constant a = 90 nm and ωp = ωm. Blue (red) data points correspond to
ωz/2π = 10.5 kHz (5.0 kHz) and th = 3 ms (20 ms).

5.5.2. Distance dependence

An central property is the distance range over which the coupling is observable.
To study this we measure Nr and Na (see Fig. 5.8 for the definition) for various
distances d. We perform the measurements for traps tuned to both the c.o.m and
the breathing mode. For the latter mode, the resonance condition ωm = 2ωz has to
be fulfilled such that ωz = 2π × 5 kHz in this measurement (see also chapter 5.7).
We set the coupling time th to the respective optimal values (see chapter 5.5.3).

Figure 5.9 (a) shows the dependence of the atomic signal on d for a constant
cantilever amplitude a = 90 nm. We show the contrast C = (Nr − Na)/Nr which
measures the relative amount of coupling induced loss. To determine the signal
visibility we calculate the signal to noise ratio SNR = (Nr−Na)/σ, see Fig. 5.9 (b),
with σ = 34 the r.m.s. atom number noise observed without cantilever driving. The
strong variation of the signal over ∼ 300 nm matches with the range of d where Us
modifies the trapping potential noticeably. This proves that no external mechanism
such as e.g. direct driving of the atoms by the piezo, which is 4 mm away, contributes
to the signal.

The sharp maximum of the SNR reveals a high sensitivity of the coupling on
d, which thus requires high control over the atomic position. We find that the
position and shape of the maximum depend on the coupling time and the exact trap
frequency. To maximize the signal over the entire distance range, the trap frequency
would have to be optimized for every set value of d, while here we set ωz,0 to a
constant value over the measurement.
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Figure 5.10.: SNR normalized to the cantilever amplitude a as a function of the
hold time th at the cantilever. We compare the c.o.m. mode measured in a trap with
ωz/2π = 10 kHz (blue), and the breathing mode with ωz/2π = 5 kHz (red). For
both modes the signal reaches a comparable maximal value of SNR/a = 0.08 nm−1.
However, the optimal th differs by a factor 5.

5.5.3. Dependence on hold time

The observed coupling signal depends non-trivially on the duration of the coupling
th. For a cloud excited at the trap frequency in a perfectly harmonic trap, the linear
increase in amplitude according to Eq. 5.3 suggests that th should be chosen as
long as possible. Excitation of the breathing mode with exponential rise according
to Eq. 5.9 calls for even longer interaction time. However, parasitic loss due to
inelastic collisions, evaporation, or technical heating decrease Nr and thereby set
an upper limit on th. Since part of this loss is density dependent, the optimum th
will also depend on ωz. A further influence comes from the anharmonicity of the
trap, which reduces the amplitude growth due to dephasing and makes long coupling
times unfavourable.

Figure 5.10 shows a measurement of the dependence of the SNR on th for both
the c.o.m. and the breathing mode. We perform measurements at several distances
and cantilever amplitudes and give the maximal value of SNR/a for each th. The
error bars include the uncertainty in the determination of Nr and Na as well as the
uncertainty in a. The data shows that the c.o.m. mode is excited to large amplitude
within a few ms, leading to a fast rise of the signal. We find an optimal interaction
time th = 4 ms and a decrease of the signal for th > 4 ms with a time constant
comparable to the lifetime of the atoms in the trap. Excitation of the breathing
mode takes longer to lead to sizable atom loss. Yet, with the lower collisional loss
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and heating rates in the trap tuned to this mode frequency, the maximal SNR is
comparable to that of the c.o.m. mode, but for longer hold time th = 20 ms. The
comparable value of the optimum coupling signal for the two studied modes is rather
a coincidence. It is a consequence of the trap frequency scaling of the parasitic loss,
and thus depends on the trap geometry, the atom number Nr, the technical current
noise level, and also on the value of the cantilever eigenfrequency.

5.6. Readout sensitivity

So far we have shown that resonant excitation of atomic motion via surface forces can
lead to significant trap loss after a few ms of interaction time. This demonstrates
that the atoms can be used for readout of cantilever motion. To determine the
achievable sensitivity of the readout method we use parameters that maximize the
SNR and measure the signal as a function of the cantilever amplitude.

Figure 5.11 shows measurements of the contrast as a function of the cantilever
amplitude for the c.o.m. mode. For comparison, the signal for an off resonant trap
with ωz = 4 kHz is shown. The measurements yield a minimum resolvable r.m.s.
cantilever amplitude of arms = 13± 4 nm for SNR=1 without averaging, where the
error is dominated by the uncertainty of the cantilever amplitude (see chapter 4.1.2).

As introduced already in the previous chapter, we identify two origins for the
observed sensitivity limit. First, the lifetime of the atoms in the trap set by para-
sitic loss limits the coupling duration and thus the achievable excitation for small
amplitudes. This is indicated by the measurements shown in Fig. 5.10. Second,
trap anharmonicity leads to dephasing of the cloud oscillations and thereby to a
maximum cloud amplitude for a given cantilever amplitude. A detailed picture of
the dynamics of the cloud and the influence of the trap anharmonicity is found by
numerical simulations which we discuss in chapter 5.8.

We also perform coupling measurements on the dielectric back side of the can-
tilever in a trap with comparable trap frequency and depth U0. We observe an
approximately linear dependence C ∝ a on both sides as long as the contrast does
not saturate, i.e. for C < 1. The coupling signal can thus be quantified by the value
C/a, and we find it to be a factor β = 3.2 ± 0.6 smaller on the back side than on
the metallized side. Since the origin of the excitation is the modulation of δzt, one
can conclude that C ∝ δzt. With Eq. 5.1, the contrast is thus determined by the
coupling strength parameter, C/a ∝ ε = (mω2

z)
−1∂2Us/∂z

2, and thereby related to
the curvature of the surface potential. In chapter 5.4 we use this result together
with static measurements to quantitatively infer the absolute strength of Us on both
sides of the cantilever.
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Figure 5.11.: Contrast C for the c.o.m. mode as a function of the cantilever
amplitude a. The smallest detectable cantilever amplitude is arms = 13 ± 4 nm
for SNR=1 without averaging. For measurements on the metallized side (dark
blue) we find C/a = 1.1 × 10−2nm−1 while on the dielectric backside (light blue),
C/a = 3.5×10−3nm−1, a factor β = 3.2±0.6 smaller. For comparison, the contrast
for an off-resonant trap with ωz/2π = 4 kHz is shown (red). The dotted line indicates
the rms noise of the measurement.

Improvement of the sensitivity

We have used trap loss as the simplest way to detect BEC dynamics induced by
the coupling. For trap loss to occur, the cantilever has to drive the BEC to large
amplitude oscillations with ∼ 103 phonons. Achieving such cloud amplitudes with
small cantilever amplitudes is hindered by the strong trap anharmonicity close to
the barrier, and by the finite trap lifetime. By contrast, BEC amplitudes down
to the single phonon level could be observed by direct imaging of the motion. A
coherent state |α〉 of the c.o.m. mode of N = 100 atoms with α = 1 released from a
relaxed detection trap with ωz = 2π× 100 Hz has an amplitude of

√
2~ωz/mNαt =

400 nm after t = 4 ms time-of-flight. This is about 10% of the BEC radius and
could be resolved by absorption imaging with improved spatial resolution. From a
simulation of the cloud excitation (see chapter 5.8) we estimate that arms = 0.2 nm
would excite the BEC to α = 1 within th = 20 ms and could thus be detected.
This would be sufficient to resolve the thermal motion of our cantilever, which has
a relatively large effective mass Meff = 5 × 10−12 kg and correspondingly small
r.m.s. thermal amplitude ath =

√
kBT/Meffω2

m = 0.4 nm, where T = 300 K is the
cantilever temperature. Using similar cantilevers with comparable ωm but smaller
Meff [194, 52], the thermal motion would be detectable already with the presently
used technique.

Furthermore, one can harness the result that a stronger surface potential leads
to a stronger coupling. Stronger potentials could be generated e.g. by electrostatic
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charging of the cantilever. This should allow to reach ultimate values of ε ∼ 0.3 (see
Fig. 5.2), thereby increasing the coupling strength by a factor ∼ 4.

So far, the demonstrated and also the expected readout sensitivity for the type
of cantilever as used here is not comparable to the achievements of optical readout
techniques (see chapter 4.1.2 and 3.2). However, there are scenarios where the em-
ployed coupling mechanism opens new possibilities for readout or even manipulation
of mechanical oscillators. One example is the application to ultra-light, nanoscale
oscillators, which are difficult to access optically. We discuss this scenario in the
outlook (chapter 6.1).

5.7. Mode spectroscopy

As discussed in section 2.2.2, the spectrum of collective mechanical modes is in-
fluenced by atomic collisions [101, 103] and shows additional, shifted resonance
frequencies compared to the harmonic spectrum of a non-interacting gas. When
anharmonicity is present, resonance broadening and nonlinear mode mixing can fur-
ther modify the spectrum.

Studying the spectrum can give insight about which modes can be excited effi-
ciently, how selective the atomic response is on the trap frequency, and to which
extent the strong anharmonicity of the coupling trap affects the situation. We mea-
sure the dependence of the atomic response on the trap frequency ωz and by this
perform a spectroscopy of the strongest cloud excitations. We find that the cantilever
can be coupled selectively to different, spectrally well separated BEC modes.

Experimental issues

In the ideal setting for such a measurement, the trap frequency is varied without
affecting the number of bound levels of the trap ∼ U0/~ωz (or alternatively U0/µc)
nor changing the coupling strength parameter ε. Assuming that the temperature is
proportional to ωz and neglecting the dependence of the loss in the static surface
potential on ωz, this would result in a constant reference atom number N(ωz) =
N0 without driving. Then, the relative strength of resonances would be directly
comparable and could indicate the relative strength of the modes. However, for the
large range of trap frequency to be spanned, the change in the technical heating
rate and the elastic and inelastic collision rate leads to vastly different trap lifetime
(see chapter 4.4.2). A compromise is thus chosen to set the atom-surface distance
d(ωz) such that for a given cantilever amplitude all resonances remain unsaturated
(χ > 0) and that the changes in Nr are minimal (see lower panel of Fig. 5.12).

The holding time is chosen such that the observed resonance widths are not Fourier
limited and that the SNR is close to the optimum as found in the measurements of
chapter 5.5.3.
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Figure 5.12.: Top graph: BEC response as a function of ωz, for fixed a = 180 nm
and ωp = ωm (dark blue). Datapoints are connected with a line to guide the eye.
Light blue: reference measurement without piezo excitation. We observe two major
resonances at ωm = ωz and ωm = 2ωz and up to four smaller ones (green arrows).
Furthermore, we find reproducible anti-resonances with strongly suppressed signal
(red arrows). Due to cantilever aging, ωm/2π = 9.68 kHz in this measurement.
Bottom graph: set values of d, chosen such that Nr ≈ const. (Nr[10 kHz] = 700,
Nr[5 kHz] = 1100) and Na does not saturate.

Loss spectrum

The cantilever is excited resonantly (ωp = ωm) to constant amplitude a = 180 nm
with the piezo, and coupled to the BEC for th = 20 ms on the metallized side. In
Fig. 5.12 we show how the observed atomic SNR changes when we scan ωz.

The measured spectrum shows strong resonances at ωm = ωz and ωm = 2ωz.
They correspond, respectively, to the atomic c.o.m. mode and the high frequency
ml = 0 collective mode of the BEC in our cigar-shaped trap [101, 103]. These two
modes have been studied in the previous chapters in detail. In our trap, the latter
coincides also with the breathing mode of the thermal component of the gas. The
mode at ωz (2ωz) is excited by the cantilever through modulation of zt (ωz) and we
calculate a modulation amplitude of δzt = 7 nm (δωz = 2π × 150 Hz). The c.o.m.
mode resonance at ωm = ωz shows pronounced asymmetry and has a full width of
300 Hz. For the resonance at ωm = 2ωz, we observe a linewidth of only 60 Hz,
corresponding to a quality factor of ≈ 100. This is close to the expected resonance
width of both the instable region of a parametric resonance ∆ωz < δωz/2 = 75 Hz
and the Fourier limit ∆ω = 1/th = 50 Hz. Furthermore, we find up to four weaker
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Figure 5.13.: Gallery of spectra taken at different distances and hold times. Spec-
tra are shifted by a constant value of 13 (26) for better visibility and averaging of
adjacent points is performed to reduce noise. To compare the chosen atom-surface
distances of the measurements we quote the value d0 = d(4 kHz), except for the
measurement with th = 3 ms (grey) where d0 = d(10 kHz). We observe resonance
broadening for decreasing d and the relative height of the resonances changes. No-
tably, the BEC quadrupole mode at 6.1 kHz becomes stronger than the breathing
mode at small d.

resonances at frequencies ωm = (1.6, 1.8, 2.1, 2.4)ωz. The first resonance can be
identified with the |ml| = 2 quadrupole mode of the BEC [101], whose frequency is
given by ωm = ωz

√
2(1 + Ekin,⊥/Epot,⊥) (see [103] and Eq. 2.43). We calculate the

BEC kinetic energy Ekin,⊥ and potential energy Epot,⊥ in the radial direction as in
[100] for 1100 atoms, which reproduces the measured mode frequency.

Next to the resonances, we observe reproducible ”anti-resonances”where the atomic
response is suppressed by a factor of ∼ 20. This can be used to switch the coupling
on and off very efficiently by a slight detuning of the trap frequency. A possible origin
for the suppression of atom loss is destructive interference between two resonances.
This can arise e.g. due to a second resonance with nearby resonance frequency, ei-
ther one of the indicated weaker resonances in the spectrum, or an oscillation along
the transverse radial axis (the y-axis) in the trap. The two oscillations can lead to
a beating and thus to destructive interference. Alternatively, the fast ramping to
the surface can give rise to residual oscillations of the cloud. These can interfere
destructively with the excitation by the cantilever close to an atomic resonance and
thereby cause the anti-resonances. A similar effect has been observed e.g. in [213].
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Distance dependence

We perform analogous measurements at smaller distances to see the effect of anhar-
monicity. Figure 5.13 shows examples of a few measurements. We observe broaden-
ing of the resonances, and the resonance at ωm = 1.6ωz becomes stronger than the
resonance at ωm = 2ωz for small distance. We explain this by a complete removal
of the thermal cloud for the small remaining barrier, which leaves only collective
BEC modes. The |ml| = 2 quadrupole mode matches the excitation symmetry best
and becomes the strongest mode after the dipole mode. In a further measurement
we study the behaviour of the c.o.m. mode for short holding time and significantly
smaller d. We observe strong broadening and response for frequencies ωz > ωp which
corresponds to subharmonic excitation. In the 1D quantum simulation in chapter
5.8.2 we find such resonances, while they are absent in the classical simulation.

5.8. Simulation of cloud excitation

To confirm the interpretation of the measurements in the previous sections and to
gain more insight into the dynamics of the atoms, we perform numerical simulations.

The surface potential introduces strong anharmonicity to the trap and leads to
nonlinear response which is not predictable analytically. A proper description would
have to deal with a solution of the generalized Gross-Pitaevskii equation in 3D e.g.
in the Popov approximation. As this would be a major computational task, we
restrict ourselves to two simple approaches.

In the first section, we simulate classical particles in the modulated trapping poten-
tial to approximate the behaviour of the thermal cloud. The evolution of individual
trajectories show the effects of dephasing, the bounding of the atomic amplitude,
and the frequency shift and broadening of the oscillation for large amplitude.

In the second section, we perform a simulation of the Gross-Pitaevskii dynamics
of the condensate where we also explicitly include loss due to adsorption on the
surface. We can thus model static and dynamic loss and study the distortion of the
wave function, which is the origin of heating.

5.8.1. Simulation of classical trajectories

In this section we numerically solve the differential equation for a collection of point
particles in a harmonic potential subject to a force arising from a surface potential
of the form Us = −C/(z − zc)4. The differential equation is given by∑

i

(
z̈i + 2γżi + ω2

0zi −
4C

m(zi − zc)5

)
= 0, (5.19)

where zi is the position coordinate of the i-th atom. The minimum of the magnetic
potential is chosen to be at the origin zt,0 = 0, the cantilever position is zc =
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zc,0 + a cosωt, and γ is the atomic amplitude damping rate which we neglect in the
following. The temperature of the cloud enters via the choice of initial parameters
zi(0), żi(0). For the calculation we use the ode45 solver of MATLAB.

As long as anharmonicities are negligible, we expect a linear rise of the oscilla-
tion amplitude on resonance as derived in chapter 5.1. We can use Eq. 5.3 for a
crude estimate of the expected cloud amplitude after a coupling interval for typical
experimental parameters. In our experiment, the minimum resolvable amplitude is
a = 13 nm rms, measured in a trap with ωz = ωm = 2π × 10 kHz at d = 1.5 µm.
The analysis of the surface potential yields Us = 200C4/(z− zc)4 (which is assumed
from now on), and for the chosen distance results in ε = 0.13 and thus δzt = 1.7 nm
for the minimum resolvable amplitude. After a coupling interval of th = 20 ms we
expect an amplitude b(20ms) = 200πδzt = 1130 nm. The trap has a radius (i.e.
the distance between the trap minimum and the barrier) of ∼ 700 nm, while the
cloud has a 1/e radius rth = 150 nm at T = Tc/2. A naive guess would be that loss
becomes visible for an amplitude b ∼ 550 nm. This indicates that deviations from
Eq. 5.3 will be substantial and that the anharmonicity will dominate the dynamics.

Figure 5.14 shows the time evolution of a cloud at T = Tc/2 with a radius rth =
150 nm in a resonant trap for typical coupling parameters as used in the experiments.
For clarity we show a representative set of three classes of atomic initial conditions
in the trap. The first class covers atoms with energy E = p2

i /2m + (1/2)mω2
zz

2
i =

kBTc/2 with evenly spaced (pi, zi) to fill a ring in phase space. The second class
represents atoms with E = kBTc/4 while the third class shows an atom initially
at the trap bottom with E = 0. The simulation yields that a linear rise of cloud
oscillation according to Eq. 5.3 is given only during the first ∼ 2 ms. This is also the
timescale during which all trajectories stay in phase, and for which the excitation
can be considered as coherent or reversible. For longer times, the rim of the cloud
begins to lag behind the cloud center, given by the lower curvature and hence longer
oscillation period for larger amplitudes. For t > 10 ms, the oscillations of the
individual trajectories have dephased completely and the excitation of the cloud
corresponds to an increased temperature rather than a coherent displacement.

An important characteristic is the existence of a maximum amplitude bmax for a
given excitation amplitude, a well known property of anharmonic oscillators [265].
Figure 5.15 (a) shows bmax(a) for an atom initially at the center of the trap. Only
for amplitudes a > 50 nm the excitation suffices to kick atoms out of the trap. The
upper bound is a consequence of the strong deformation of the trap close to the
barrier. In our experiments, we observe coupling induced atom loss also for smaller
amplitude. This is explained by the fact that the actual cloud extends up to the
barrier and that atoms with energy close to U0 are lost either directly due to the
modulation of the barrier or excited within a few periods above the barrier.

Solving for bmax as a function of the trap frequency can be used to determine
the spectrum of 1D excitations. Figure 5.15 (b) shows spectra for two different
cantilever amplitudes with similar atom-surface distance as in the experiments. The
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Figure 5.14.: (a) Resonant excitation (ωm = ωz): Atomic oscillation vs excitation
time for a = 13 nm rms, d = 1.5 µm, and Us = 200UCP, resulting in ε = 0.13 and
δzt = 1.7 nm rms. Bright gray lines: trajectories of atoms with E = kBTc/2; dark
gray lines: atoms with E = kBTc/4; red line: atom with E = 0. Dephasing due
to the trap anharmonicity gives rise to a maximum amplitude bmax = 460 nm of
the atoms. The blue line shows the linear rise in amplitude according to Eq. 5.3.
Small panels show zooms into the green indicated areas. (b) Parametric excitation
(ωm = 2ωz) for d = 1.7 µm and a = 70nm, resulting in δωz ≡ ωzq = 408 Hz. The
blue line shows the exponential growth given by Eq. 5.9.
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Figure 5.15.: (a) Maximum amplitude bmax as a function of cantilever amplitude
a. For bmax > 670 nm the atom is lost in the surface potential. (b) Maximum
amplitude as a function of trap frequency, analogous to the measurements of chapter
5.7. Parameters are th = 20 ms, a = 50 nm (dark blue), a = 200 nm (light blue),
and varying d between 1.5− 1.9 µm.

c.o.m. mode shows an asymmetry opposite to the experimental observation and has
a width of ∼ 300 Hz. As expected, it has a shape similar to a Duffing oscillator with
softening anharmonicity.

We now study, to which extent coherent and reversible excitation of atomic motion
is possible in the presence of anharmonicity. The condition that has to be met is
that all trajectories remain in phase to a certain degree during a coupling interval.
The degree of phase coherence then determines the fidelity of the c.o.m. excitation.

Dephasing is directly related to the dependence of the oscillation frequency on
the oscillation amplitude. Figure 5.16 a shows a calculation of the frequency shift
ωcom(b)−ωz as a function of oscillation amplitude for a trap with ωz,0/2π = 10 kHz
at d = 1.5 µm according to equation 2.77. To test the validity of Eq. 2.77 for
large amplitudes, we evaluate the oscillation frequency of trajectories obtained by
the numerical solution of Eq. 5.2 by Fourier transform. We find that the spectrum
becomes substantially broadened for large amplitude, owing to non-uniform motion.
The analytical prediction is very accurate for small amplitudes, but underestimates
the shift for amplitudes close to the trap radius.

For an extended cloud of atoms, individual trajectories will differ in amplitude
and will thus oscillate at a frequency deviating from the frequency for the c.o.m.
coordinate of the cloud. The consequence is a phase spread of the trajectories. For
a quantitative estimate we consider the difference of the accumulated phase of two
trajectories with minimum and maximum amplitude bmin, bmax,

∆φ(b, t) =

∫ t

0

ωcom(bmax)dt′ −
∫ t

0

ωcom(bmin)dt′, (5.20)
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Figure 5.16.: (a) Oscillation frequency shift ωcom(b)−ωz as a function of oscillation
amplitude calculated with Eq. 2.77 (red solid line). The color scale shows a Fourier
spectrum calculated from trajectories simliar to those in Fig. 5.14 for a trap with
ωz,0/2π = 10 kHz, d = 1.5 µm, th = 100 ms, and Us = 200×UCP. (b) Phase spread
increase per cycle ∆φ(b, T ) for various d and constant amplitudes bmax = b + rth
and bmin = max(0, b− rth) and rth = 150 nm.

where the two amplitudes are bmax
min = max(0, b± rth).

Figure 5.16 (b) shows the increase in phase spread per period as a function of
the oscillation amplitude. For a typical coupling trap at d = 1.7 µm and a c.o.m.
amplitude of the order of the cloud radius b = 150 nm, the per cycle phase spread
amounts to ∆φ = 0.15◦, such that after a holding time th = 20 ms or equivalently
200 oscillations, a phase spread of 30◦ has accumulated and the oscillation is already
notably dephased. Note that due to its energy spread, a cloud at finite temperature
yields a finite phase spread also for infinitesimal c.o.m. amplitude. Thus, also small
amplitude oscillations show dephasing, and e.g. a collective single phonon excitation
with b =

√
~/2Nmω2

z ∼ 10 nm dephases with ∆φ = 0.01 − 0.15◦ per cycle. While
larger atom-surface distance reduces the anharmonicity, the coupling strength is
also reduced, and longer interaction time is necessary to excite the cloud to a given
amplitude. From an evaluation of Eq. 5.20 for the phase spread accumulated during
the ecxitation to a given amplitude b as a function of the coupling strength parameter
ε, one finds ∆φ ∝ 1/ε. This shows that small atom-surface distance is advantageous
despite large anharmonicity.

5.8.2. Simulation of 1D Gross-Pitaevskii dynamics

In this section we use a numerical simulation of the Gross-Pitaevskii equation 2.26 in
1D to study the excitation of a BEC. In a first step, the ground state wave function
for the repulsive gas in the potential U(z) = Um + Us is found by imaginary time
propagation. Then we perform time integration using a split-step Fourier method to
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Figure 5.17.: Time evolution of a BEC with N = 2000 in a coupling trap with
ωz/2π = 10 kHz (top) and ωz/2π = 5 kHz (bottom) at d = 1.5 µm for th = 3 ms.
The cantilever amplitude is set to a = 50 nm (top) and a = 70 nm (bottom). Axes
are in dimensionless units (z0 =

√
~/mωz, the color scale indicates the normalized

probability density |ψ|2). Horizontal lines show the position of the barrier (grey),
the matching layer (dark grey), and the cantilever surface (black).

obtain the temporal dynamics of the wave function in the time dependent potential
U(z, t). The code is adapted from [82, 270]. To avoid artificial Bragg scattering
from the computational grid at high momentum in the attractive potential, it is
necessary to introduce absorbing boundary conditions. We use the concept of a
perfectly matched layer [271, 272] and implement an imaginary potential rather
than an imaginary spatial coordinate. The idea is based on the fact that in a
region, where a potential has a sizable imaginary contribution, matter waves are
exponentially damped. The imaginary region is added to the potential in the form

U(z) = (Um + UCP + Uad)× exp

[
−iπ

4

(
1− tanh

z − zl
dz

)]
. (5.21)

This implements a smooth transition from a purely real potential for z � zl to an
imaginary potential for z � zl within a matching layer of thickness dz. For reason-
ably large dz (∼ 50−200 nm), artificial reflections are very small and incident waves
are completely absorbed. The position zl is chosen such that the deBroglie wave-
length remains much larger than the grid spacing, λdB(zl) = ~/

√
2m(µc − U(zl))�

(zi+1 − zi).
Figure 5.17 a shows the simulated cloud excitation for the c.o.m. mode at ωm =
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Figure 5.18.: BEC loss as a function of cantilever or trap frequency (trap param-
eters as in fig. 5.17). Upper panel: Fraction of remaining atoms χ as a function
of ωm for fixed ωz,0 = 2π × 10 kHz. Lower panel: Logarithmic plot of the contrast
C = 1 − χ. For comparison with experimental data we transform the axis to a
frequency ω∗ = ω2

z,0/ωm which is analog to the trap frequency in a scan with fixed
ωm and varied ωz.

ωz and the breathing mode at ωm = 2ωz. The dipole oscillation amplitude rises
linearly in time until it saturates at an amplitude where the rim of the cloud reaches
the trap barrier. Excitation of internal dynamics is visible from the modulation
of the peak density. The breathing mode at twice the trap frequency increases
also rather linearly in amplitude and saturates at a similar amplitude as the c.o.m.
mode. For long times, dephasing leads to interference and finally to a decay of the
breathing mode. The wave function temporarily shows only minor dynamics and is
transformed into an excited state with ∼ 4 nodes. With adequate timing, this could
enable the preparation Fock states.

The atom number remaining after a coupling interval is simply evaluated by in-
tegrating over the density distribution. Simulating the coupling loss for different
excitation frequencies yields a loss spectrum as shown in Fig. 5.18. For better con-
trol of the trap parameters, the cantilever frequency is varied rather than the trap
frequency. This avoids e.g. unwanted changes in U0, ε, or the contribution from
tunneling, and thus permits to compare the strength of the resonances. The trap
parameters are ωz,0/2π = 10.0 kHz and d = 1.5 µm. The shifted trap frequency for
small amplitude oscillations is ωz/2π = 9.434 kHz. The c.o.m. and breathing mode
resonance frequencies for medium oscillation amplitude are shifted by −450 Hz and
−2488 Hz respectively. The resonances have opposite asymmetry, in agreement with
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Figure 5.19.: Comparison of measured and simulated contrast as a function of
cantilever amplitude for the c.o.m. mode. The parameters for the simulation are
identical to those of the experiment without adjustments.

the classical simulation but deviating from experimental findings. The resonances of
the 3D collective BEC modes are not reproduced (as expected), because the coupling
to the other dimensions is not included. An interesting feature is the additional res-
onance in the spectrum for the stronger drive at ωm ≈ 8 kHz. The cloud dynamics
shows that several collective modes are excited at these subharmonic frequencies.
This might explain the observed resonance lineshape in experiments for large drive
and small atom-surface distance. Such modes do not exist in an harmonic trap and
are also absent in the classical simulation for the anharmonic potential.

A central benefit of the simulation is to provide insight about the sensitivity limit
of the used readout scheme. The simulation requires only the trap parameters and
the cantilever amplitude as input, and has no free parameters to adjust. The only
uncertainty comes from the error bars from the measurement of the trap frequency
(see chapter 4.4.3). In Fig. 5.19, the simulated coupling loss as a function of the can-
tilever amplitude is compared to the measurement of chapter 5.11. Measurements
and simulation agree surprisingly well, and especially the sensitivity predicted by
the simulation is very close to our experimental findings. This is surprising, since
we model a pure BEC in a 1D trap, whereas the experiment deals with partially
condensed clouds with thermal fraction in a 3D trap. Possible effects could be e.g.
nonlinear coupling to other trap axes, variation of ωz along the trap axis, depen-
dence of the barrier height on the axial distance to the trap center, and damping of
condensate motion by the thermal cloud. However, it seems that these effects play
a minor role for the loss.
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6. Outlook

The experiments reported in this thesis represent a first step in the coupling of
ultracold atoms to mechanical resonators. One of the long term motivations for this
research is to achieve such a coupling on the quantum level. In this outlook I discuss
three different scenarios for atom-resonator coupling, all of them having the potential
to achieve observable back action of the atoms on the resonator. We furthermore
show that for cryogenic temperatures and high mechanical quality factors, the strong
coupling regime can be reached. In this regime, the presence of a single excitation
quantum in one of the two subsystems leads to an energy exchange rate faster than
all dissipation or decoherence rates, enabling coherent coupling on the quantum
level. This is the key ingredient for the realization of hybrid quantum systems that
would allow one to create atom-resonator entanglement, quantum state transfer, and
quantum control of mechanical force sensors.

6.1. Coupling BECs to a carbon nanotube

Coupling ultracold atoms and mechanical oscillators via surface forces has one cen-
tral advantage: The employed coupling force is of fundamental origin, and function-
alization of the oscillator, e.g. by the fabrication of mirrors, magnets or electrodes
on the resonator, is not required. This is in contrast to most of the theoretical pro-
posals considering atom-resonator coupling so far [35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48]. Coupling via surface forces could thus be used to couple atoms to
molecular-scale oscillators. The importance of this fact becomes clear when recalling
the coupling strength derived in chapter 5.1.3. We have found that the quantum
mechanical coupling rate between the motion of a single atom of mass m and the
motion of a mechanical resonator of mass M and resonance frequency ωm scales as

g0 =
εωm

2

√
m/Meff . (6.1)

In our case, ε = δzt/a describes the ratio between resonator amplitude a and trap
position shift amplitude δzt. The equation shows that for a large coupling rate, high
frequency and extreme-low mass oscillators are desirable. The easiest way to increase
the coupling, by choosing an oscillator with high eigenfrequency, is limited by the
achievable atomic trap frequencies. For a cloud of atoms, trap frequency dependent
loss like inelastic three-body collisions imposes an even harder limit (see chapter
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Figure 6.1.: Examples of CNT oscillators. (a) Freestanding, 6 µm long multiwall
CNT showing thermal (A) and excited motion at the fundamental (B) and first
harmonic resonance (C). Graph taken from [273]. (b) Double clamped SWCNT
with Q-factor 1.4× 105. Graph taken from [203]. (c) Double clamped, up to 6 µm
long (bottom) SWCNTs with 80 nm thermal amplitude. Graph taken from [274].

2.5.1 and 4.4). Moreover, just increasing the eigenfrequency is not necessarily a
solution, as all dissipative rates will also in most cases increase proportional to
the eigenfrequency (if we assume fixed Q). A more beneficial direction is thus the
employment of oscillators with ultra-low mass.

Due to their ultimately low mass and the high achievable quality factor, single wall
carbon nanotubes (SWCNT) are particularly promising in this context. Techniques
for controlled growth enable the realization of suitable geometries, e.g. several mi-
crons long, single clamped nanotubes [275, 273]. Alternatively, also double clamped
nanotubes might be interesting, as sensitive on chip readout and actuation schemes
exist [276, 274, 277, 278, 279]. Figure 6.1 shows a few examples. A central point
is that mechanical dissipation in SWCNTs can be very low, e.g. a quality factor
of Q > 105 was achieved recently [203]. Alternatively, SiC nanowires have been
shown to also reach exceptional Q-factor (1.6 × 105) [195] and can be fabricated
in the desired frequency range. Finally, suspended graphene sheets have been re-
cently studied as mechanical resonators [280, 197], and Q-factors up to 104 have
been demonstrated at low temperature.

SWCNTs are typically produced with a diameter in the range of dCNT = 1−4 nm.
Their Youngs modulus amounts to E = 1 TPa, comparable to the value of diamond.
Their mass can be directly determined from the surface mass density of graphene,
ρ2D = 7.7× 10−7kg/m2, giving a length mass density ρ1D = πdCNTρ2D, and a typical
value is ρ1D = 5× 10−21 kg/µm.

A nanotube has a fundamental resonance frequency [274]

ωm = k2
1

√
EI

ρ1D

(6.2)
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with I = πd4/64 the moment of inertia and k1 = (1.875, 4.730)/l for a single and
double clamped nanotube respectively with suspended length l. For a SWCNT
with dCNT = 1.5 nm and l = 15 µm we obtain ωm = 20 kHz and a mass of
M = 6×10−20 kg, or effective mass Meff = 0.24M . This leads to a room temperature
thermal motion amplitude of ath =

√
kBT/Meffω2

m = 4 µm, much larger than typical
atom-surface distances in our experiment. Even more impressive, the ground state
amplitude is almost macroscopic,

aqm =

√
~

2Meffωm
= 0.2 nm. (6.3)

These numbers are about four orders of magnitude larger than those of our cantilever.
When the readout scheme of direct imaging of the cloud excitation (see chapter 5.6) is
employed, the expected sensitivity should permit measurements close to the ground
state of such a nanotube.

However, one central concern is whether the strength of the surface potential of
such nanoscale objects is sufficient for coupling experiments. The Casimir-Polder
potential of a SWCNT was calculated by Fermani et al. [281]. From an approxima-
tive reproduction of the surface potential in the distance range d = 50 − 250 nm
as shown in this article, we infer a potential UCP,SWCNT ≈ 0.06 × UCP, a factor 17
smaller than the CP potential of a bulk conductor. A trap with ωz/2π = 20 kHz at a
distance d = 600 nm from the nanotube has a trap depth U0 = 80 kHz, similar as in
our coupling measurements. For this trap we calculate a coupling strength param-
eter ε = 5× 10−3, a factor β = 10 smaller than that expected for the CP potential
of a perfect conductor and a factor β = 30 weaker than measured with the stronger
surface potential above the metallized side of our cantilever. By approaching the
nanotube closer and using a trap with smaller U0, this can be partially compensated,
e.g. at d = 480 nm we have U0 = 34 kHz and ε = 0.02.

Alternatively, stronger coupling could be realized by static charging of the CNT.
Due to the small atom-surface distance, the field E ∼ V/dCNT and also the field gra-
dient will be enhanced dramatically. Thereby, a potential much stronger than the
CP potential could be created, and coupling strength parameters of ε ∼ 0.3 might
be possible. Figure 6.2 shows the coupling strength parameter ε as a function of the
strength of the surface potential. The observed ε at the both sides of the cantilever
used in our experiments is shown together with the expected value for a SWCNT.
Since CNTs can be fabricated in metallic or semiconducting configuration, charging
does not require fabrication on the nanotube, and electric contacting is a standard
technique that is compatible with high quality factors [203].

Finally, coupling schemes that do not rely on surface forces could be employed.
One possibility is to use a doubly clamped, suspended SWCNT as current carrying
wire to generate a magnetic trap. Several papers have theoretically investigated
this situation [152, 153, 281] and studied its feasibility for atom trapping. In this
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Figure 6.2.: Variation of the coupling strength parameter ε = δzt/a as a function
of surface potential strength normalized to the CP potential of a perfect conductor,
calculated for a trap depth of U0 = 80 kHz (solid line). In addition, the evaluated
ε above the metallized and dielectric side of our cantilever and the expected value
for a SWCNT are shown.

configuration, mechanical oscillations of the nanotube translate directly into trap
oscillations and provide a coupling strength parameter ε = 1. In combination with
compensating fields with convex curvature (U ′′ > 0), even values of ε > 1 could
be possible. A different possibility is to couple to an internal degree of freedom of
the atoms. A constant current sent through an oscillating nanotube will create an
oscillating magnetic field at the position of the atoms that is proportional to the field
gradient and the nanotube oscillation amplitude. If the magnetic field oscillations
are resonant with a Zeeman transition of the atoms, observable spin-flip transitions
are induced. This coupling mechanism is discussed in the next chapter for the case
of a nanomechanical resonator with a magnetic tip.

An independent readout of the nanotube is highly desirable, e.g. to observe the
back action directly. Using capacitive readout for a doubly clamped, semiconducting
SWCNT, Hüttel et al. [203] have achieved a resolution of ∼ 0.3 nm for a 300 MHz
oscillation. An alternative readout scheme that is capable to sense single clamped
nanoscale oscillators relies on dispersive or absorptive interaction of the oscillator
with an optical cavity mode [282, 76]. With a fiber based optical micro-cavity devel-
oped in our group [79], the thermal motion of a carbon nanorod with fundamental
resonance frequency of 470 kHz could be measured with a sensitivity of 0.2 pm/

√
Hz

[76]. This technique might also allow one to cool the oscillators motion.
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Strong coupling parameters

We now estimate the achievable coupling parameters for a SWCNT coupled either to
a small BEC or to a single atom. For an atom cloud, three-body collisional loss is the
dominating dissipative process, which also restricts the choice of the trap frequency
(see chapter 2.5.1). For N = 500 atoms in an elongated trap with aspect ratio
ωz/ωx = 25 that is resonant with the CNT considered above with frequency ωm =
20 kHz, we obtain an atomic loss rate of γa = 2π×13 Hz, and for a moderate quality
factor of Q = 104 we have a mechanical damping rate κ = ωm/2Q = 2π×2 Hz. This
is to be compared to the single-phonon single-atom coupling rate, which amounts to
g0 = 2πε×35 Hz, and for an ensemble of atoms, the coupling is collectively enhanced
according to gN = g0

√
N . On the other hand, for a single atom, the only dissipative

processes are collisions with the background gas, technical current noise induced
heating, or Johnson noise induced spin-flip loss (see chapter 2.5). These effects are
small or can be controlled, and we assume an atomic loss rate γa = 2π×1 Hz. Here,
the trap frequency can be made as large as possible, and in a magnetic microtrap,
frequencies of ωz = 250 kHz should be possible. For a SWCNT with l = 4.25 µm
such that ωm = ωz we find a coupling rate g0 = 2πε × 800 Hz, and for the same
quality factor as above we obtain κ = 2π×12 Hz. Comparing the coherent coupling
g = {g0, gN} and dissipative rates for both cases we obtain

(g, κ, γa) = 2π ×
{

(ε× 780, 1, 13) Hz collective
(ε× 800, 12, 1) Hz single atom.

(6.4)

This is sufficient to enter the strong coupling limit both for a single atom and collec-
tively for an atom cloud with comparable rates. Furthermore, the strong coupling
condition is met for a large range of coupling strength parameters, down to ε ∼ 0.02.
While the overall rates are quite low, we would like to emphasize that the relative
coupling strength g0/ωm = ε×3×10−3 is enormous. The strongest relative coupling
strength so far was demonstrated in a microwave cavity dispersively coupled to a
superconducting qubit, where g0/ωcav = 105 MHz/5.7 GHz = 2×10−2 was obtained
[283]. For comparison, the strongest optical cavity QED coupling so far was achieved
with fiber based micro-cavities [79] and amounts to g0/ωcav = 215 MHz/380 THz =
6× 10−7 [75].

The low overall rates constitute a setting where the oscillator environment has
strong impact. While thermal excitations of the mode under study are easily frozen
out in microwave or optical cavity QED experiments, this is challenging for low
frequency mechanical oscillators. A low bath occupation is essential, as the decoher-
ence rate of an oscillator coupled to a bath scales with the mean thermal occupation
nth ' kBT/~ωm (see chapter 3.3.1),

γdec = nthκ =
kBT

~Q
. (6.5)
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The requirements for the achievement of useful quantum state lifetimes are ambitious
but within reach, e.g. for 1/γdec = 10 ms one needs T = 10 mK and Q = 107.

We note that several cryogenic atom chip experiments have already been demon-
strated [284, 285, 286, 287, 288, 289, 290], and BEC has been achieved [287]. Most
of the experiments are operated at the liquid He base temperature of ∼ 4 K, and
superconducting trapping wires are employed to avoid heat load. This should enable
the operation of magnetic traps also at much lower temperatures.

6.2. Magnetic coupling of a BEC to a
nanomechanical resonator

In this chapter I summarize a theoretical proposal where we study a magnetic cou-
pling between a nanoscale mechanical resonator and the internal state of atoms. We
propose an experimental setting for the realization of this system and discuss the
potential of reaching the strong coupling limit. This work was published in [39] and
summarized in [82].

Coupling to internal states has the advantage that high frequency mechanical res-
onators can be employed, as the coupling now is to be resonant e.g. with Zeeman
transitions at typically MHz frequencies. Additionally, the internal levels can be
chosen and modified (e.g. by state selective microwave level dressing [9]) such that
the atoms act as effective two-level systems. This is important for the generation and
readout of quantum states, because in a two-level system, Fock states and superpo-
sition states can be prepared by classically driving Rabi oscillations. Furthermore,
the quantum control of internal states is more advanced than that for collective
motion, at least in magnetic traps.

Coupling mechanism

We consider the setting of a nanomagnet on the tip of a nanomechanical cantilever
whose magnetic field couples to the atomic spin and drives Zeeman transitions. Fig-
ure 6.3 shows the situation with the involved transitions. The nanomagnet trans-
duces mechanical oscillations of the cantilever into magnetic field oscillations at
the position of the atoms. The amplitude of the field oscillations is linked to the
cantilever oscillation a(t) via the field gradient Gm,

Br(t) = a(t)Gmex. (6.6)

The interaction of the atomic spin with Br(t) is described by the Zeeman Hamil-
tonian HZ = −µ · Br(t) = µBgFFxGma(t), where µ = −µBgFF is the magnetic
moment and F the atomic spin. The field direction is chosen orthogonal to the
field in the trap center, such that the oscillations can drive spin-flip transitions be-
tween neighboring Zeeman sublevels (see figure 6.3(b)). The spin-flip transition rate
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Figure 6.3.: (a) Schematic setting of the magnetic coupling of a nanomechanical
resonator to a BEC. A nanomagnet on the tip of the cantilever transduces me-
chanical motion into magnetic field oscillations. (b) Involved ground state levels.
Magnetic field oscillations at the Larmor frequency ωL lead to a coupling g between
different Zeeman sublevels.

becomes sizable when the field oscillations at frequency ωm are resonant with the
Larmor frequency ωL = µB|gF |B0/~ of the atoms in the trap, set by the value of
the overall magnetic field B0 in the trap center. Since B0 can be easily varied ex-
perimentally, the resonance condition ωm = ωL can be fulfilled for a large range of
cantilever frequencies. Furthermore, by rapidly changing B0 the coupling can be
switched on and off.

For detection of the coupling induced spin-flip rate one can either rely on tran-
sitions to untrapped states, as e.g. given for the transition |1,−1〉 → |1, 0〉, or one
can implement state-selective detection to monitor the population of e.g. the state
|2, 2〉 coupled to |2, 1〉.

In the case of a transition to an untrapped state, e.g. for a BEC in state |1,−1〉
coupled to |1, 0〉, the outcoupling rate Γr from the trap has to account for the energy
broadening of the cloud in the trap, which directly translates into a broadening of the
Larmor frequency. This situation is known from atom laser experiments [291, 292],
and the coupling to the untrapped state with a Rabi frequency ΩR = µBGma/

√
8~

leads to a loss rate

Γr =
15π

8

~Ω2
R

µc
(rc − r3

c ) (6.7)

for a BEC in the Thomas-Fermi limit and for weak coupling ~ΩR � µc. Here,
rc =

√
~δ/µc, and output coupling takes place on a thin ellipsoidal resonance shell

with main axes ri = rcRTF,i.
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Figure 6.4.: (a) Proposed layout. Currents in 2 µm wide gold wires of typically
4 mA together with a homogeneous field Bb = (−0.1, 4.2,. 6) G create a magnetic
trap with trap frequency ωx,y,z/2π = (8.9, 1.2, 9.7) kHz at (y0, z0) = (0.0, 1.5) µm.
The wire color indicates the current density obtained from a finite elements simula-
tion. The coupling magnet is located at the tip of the cantilever at (y, z) = (0, 0) µm,
and two compensation magnets are aligned in a row with it to reduce trap distortion.
(b) 2D cut through the potential energy for the atoms in the y, z-plane. Included
are the magnetic potential from the wires, the homogeneous field Bb, the stray field
of the three magnets, the Casimir-Polder surface potential and gravity. The orange
colored area indicates the extension of a BEC of 1000 atoms.

Simulation and chip layout

We perform a detailed simulation of the system in order to optimize a possible
experimental geometry for the realization of the system. Figure 6.4 (a) shows an
optimized setting of current carrying wires, an integrated nanoresonator, and cou-
pling as well as compensation magnets. The latter have to be introduced to reduce
the distorting effect of the coupling magnet on the trap. Long compensation mag-
nets on the substrate with small gaps to the coupling magnet on the resonator bend
away magnetic field lines, such that the static field gradients are suppressed while
the field oscillation amplitude remains unaffected. Figure 6.4 (b) shows the resulting
potential seen by the atoms. It includes the magnetic trapping potential generated
by the wires shown in figure 6.4 (a) together with homogeneous bias fields Bb, the
potential due to the coupling and compensation magnets, the Casimir-Polder sur-
face potential, and gravity. The effect of the magnets is visible as a strong repulsive
deformation close to y = 0 µm.

The trap is optimized to maximize the ratio between Γr and three-body collisional
loss γ3b, and we find optimal values as quoted in figure 6.4. The resonator is a
Si cantilever with dimensions (l, w, t) = (7.0, 0.2, 0.1) µm, leading to a resonance
frequency of ωm/2π = 1.12 MHz and an effective mass Meff = 3 × 10−16 kg. The
nanomagnet for coupling is chosen to be a single domain Co island of dimensions
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Figure 6.5.: Simulation of the statistics of coupling loss measurements for a ther-
mally driven cantilever. The histogram shows the fraction of remaining atoms after
a coupling time τ = 0.2/〈Γr〉 including background loss. We have assumed ±5%
fluctuations in atom number due to the preparation.

(lm, wm, tm) = (1.3, 0.2, 0.08) µm, the two compensation magnets have same cross
section and 5 µm length, and the gap between the magnets is 200 nm.

The simulation predicts that the coupling rate Γr for a thermally driven cantilever
at room temperature can be made much larger than the dissipative rates γa for the
atoms and κ = ωm/2Q for the nanoresonator. For experimentally realistic quality
factors Q = 5000 and a loss rate dominated by three-body collisions calculated for
1000 atoms in a trap as given in figure 6.4, we obtain

(Γr, γa, κ) = (2.1, 0.02, 0.74) kHz. (6.8)

This achieves the condition for coherent coupling and permits to use the BEC as
a direct probe for the thermal fluctuations of the cantilever amplitude a(t). For
such a measurement, the BEC in state |1,−1〉 is coupled to the cantilever for a time
τ � κ−1 and the remaining atom number N(a, τ) = N exp[−Γr(a)τ ] is measured.
In a single shot of the experiment, the cantilever has a well defined and approxi-
mately constant amplitude a(τ). Repeating the experiment samples different can-
tilever amplitudes and results in fluctuations of N(a, τ). Because Γr ∝ a2 ∝ n, the
fluctuations reflect the distribution of the phonon number n, with the mean value
nth = [exp(~ωm/kBT )− 1]−1 defining 〈Γr〉. Figure 6.5 shows a simulated histogram
for a mean coupling rate 〈Γr〉 = 2.1 kHz.

The geometry and the parameters of the simulation have been optimized in close
interplay with the development of a fabrication process for the system. This is work
carried out by Stephan Camerer in collaboration with the group of Jörg P. Kotthaus.

Mechanical cavity QED

At room temperature, the phonon occupation of the cantilever is macroscopic (nth ∼
5×106), permitting a classical description of the coupling, and the back action of the
atoms on the resonator is negligible. In contrast, for low temperatures, where the
atom number is comparable or larger than the mean phonon occupation, N ∼ nth,
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back action can become significant and might be used to manipulate the resonator
on the quantum level. In this regime, the system has to be described quantum
mechanically. A system of N two-level systems coupled to a harmonic oscillator can
be described by the Tavis-Cummings Hamiltonian [293], a multi-particle version
of the broadly known Jaynes-Cummings Hamiltonian for a single two-level system.
The coupling is described by a single-atom single-phonon coupling constant g0 =
µBGmaqm/

√
8~, and for an ensemble of N identically coupled atoms, the coupling

is again collectively enhanced and leads to a coupling constant gN =
√
Ng0.

If the coherent coupling rate can be made larger than all dissipative rates, gN >
(κ, γ) where γ summarizes all atomic loss rates, an equivalent to the strong coupling
limit of cavity QED [30, 294, 295, 296] is reached.

A simulation for a cloud of N = 104 atoms in a trap with ωho = 2.9 kHz at a
distance d = 2.0 µm from a 1.1 MHz resonator with Q = 105 predicts the achieve-
ment of the collective strong coupling limit. Alternatively, a smaller resonator with
ωm/2π = 2.8 MHz coupled to a single atom in a tight trap with ωho = 250 kHz at
distance d = 250 nm would enter the single atom strong coupling limit. Summarized,
the system could reach coupling parameters

(g, κ, γ) = 2π ×
{

(21, 5, 10) Hz collective
(62, 14, 1) Hz single atom.

(6.9)

To prepare the resonator in the ground state, a temperature T < 100 µK is needed
(e.g. possible in a nuclear demagnetization cryostat [244]), while the regime nth ∼
N , where collective effects should become visible, is reached already for 50 mK,
a temperature achievable in a dilution refrigerator. This suggests that the strong
coupling regime is accessible for low bath temperatures and a high quality factor of
the cantilever.

6.3. Optical coupling of ultracold atoms to
mechanical resonators

So far we have discussed coupling mechanisms that rely on close approach of the
atoms to a mechanical resonator. They are based on forces generated by the mechan-
ical resonator that decay over a few micrometer distance. This requires exceptional
control both of the position of the cloud with respect to the oscillator, and of the
temperature of the atoms, i.e. Bose-Einstein condensates to achieve the minimum
possible extension of the cloud.

In this section we briefly introduce a coupling scheme that relies on the long
distance coupling between a mechanical resonator and laser cooled atoms.

Consider a dipole trap laser that is retro reflected on a mechanical resonator to
form a 1D standing wave, suitable to trap laser cooled atoms. Movements of the
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Figure 6.6.: Schematic coupling mechanism: A lattice laser is retro reflected on
a mechanical resonator to form a standing wave dipole trap. Oscillations of the
resonator shake the lattice and excite c.o.m. motion of atoms trapped in the lattice.
Laser cooling of the atoms provides sympathetic cooling of the resonator.

resonator will move the antinodes of the standing wave, such that the resonator
oscillations are directly transferred to an oscillation of the trapping potential of the
atoms. When the cantilever oscillation frequency is resonant with the trap frequency
of the atoms along the lattice direction, resonant excitation of the collective c.o.m.
mode of the atoms leads to an energy transfer from the resonator to the atom cloud.

Furthermore, there is also a back action of the atoms on the oscillator: The
restoring force that holds the atom at an anti-node of the standing wave is provided
by coherent redistribution of photons between the two k-vectors that make up the
lattice. E.g. if an atom is displaced to the right of an anti-node, it will scatter
photons from the beam coming from the right to the beam that runs to the right,
such that the photon recoils will push it back to the center. This redistribution
leads to a modulation of the power of the beam impinging on the resonator, which
results in a modulation of the radiation pressure force on the resonator due to the
reflection of the beam. When the atoms are excited by the resonator to collective
motion, there is a fixed phase relation between atomic and resonator motion, and
the resulting radiation pressure modulation at the resonator will have just the right
delay to damp the oscillations. To avoid heating of the atoms out of the trap due to
the excitation, one can apply laser cooling to the atoms and thereby continuously
extract the gained energy of the atoms. The motion of the mechanical resonator
can in this way be sympathetically cooled via laser cooling of the atoms. Figure 6.6
depicts the situation.

This scheme has several remarkable advantages. Most prominently, the lattice
provides a coupling that can bridge large distances (several hundred meter), limited
only by retardation of the light field and by the frequency stability or coherence
of the laser. This relaxes technical effort considerably, as the mechanical resonator
does not have to be integrated into a cold atom UHV environment. It also simplifies
the implementation of a cryogenic environment for the resonator. On the atomic
side it is sufficient to prepare laser cooled atoms instead of BECs, and no positioning
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is necessary. This simplifies and shortens the experimental cycle considerably. Fur-
thermore, laser cooling of the trapped atoms can be realized in several ways. E.g.
optical molasses cooling in the lattice already provides sufficient temperature con-
trol. Finally, the coupling strength scales with the atom number and can be made
large by loading a large ensemble of atoms into the lattice. Altogether, this promises
to observe back action effects already at room temperature in a fairly simple setup.

We started to realize this experiment and initiated a collaboration with the group
of Peter Zoller on the theoretical description of the coupling [47].
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6.4. Conclusion

In this thesis I introduce a new type of experiment that interfaces solid state physics
and quantum optics. The motivation for such research is manifold, amongst it
the exploration of atom-solid state interfaces for quantum information tasks, the
extension of quantum control to more complex or even macroscopic systems, and
the achievement of quantum limited sensitivity e.g. for position or force sensing.

I report experimental results on coupling a Bose-Einstein condensate to the driven
motion of a micromechanical resonator via surface forces. The experiment is a first
demonstration of the direct and controlled coupling between a single degree of free-
dom of a solid state system and a gas of ultracold atoms. Due to the short-range
nature of the coupling force, high spatial control over the atoms is necessary. We
demonstrate such high control over the atoms at small distance from the resonator
surface, and quantify the effects that limit experiments under such conditions. We
observe a clear signature of the coupling by detecting increased atom loss. In this
way, the atoms can be used to sense mechanical oscillations. We study the spatial
distance range, the temporal evolution, and the resonant character of the coupling.
We observe sharp resonances in the frequency spectrum of the atomic response to
the coupling, indicating coherent excitation of collective modes of the condensate.
Backed by numerical simulations we find a consistent picture of the coupling dy-
namics and an explanation for the observed sensitivity.

The reported experiment is a first step on the way to realize a coherent link
between ultracold atoms and mechanical resonators. Yet, considerable challenges
have to be overcome to achieve the experimental conditions required for a coupling
on the quantum level. The most fundamental issue is to achieve a coherent coupling
rate that exceeds the decoherence rate of the resonator, and the technically most
demanding one is the implementation of such an experiment in a cryogenic setup.

To engineer a stronger interaction it is advisable to explore various coupling
schemes. The three proposals reported in the outlook have the potential to show
back action of the atoms onto the resonator, the next important step on the way
to a hybrid quantum system. We furthermore show that the regime of mechanical
strong coupling can be achieved, limited essentially by the achievable mechanical
quality factor and the bath temperature. Recent cryogenic experiments with cold
atoms or BECs show that it is indeed possible to combine atom trapping and cryo-
genics. In conjunction with the ongoing improvements in the mechanical properties,
the readout, and the control of micro- and nanomechanical resonators, it seems that
the era of quantum mechanics is about to come.
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A. Fundamental constants and
Rubidium Data

Fundamental constants
Speed of light c 2.997 924 58× 108 m/s
Planck’s constant h 6.626 068 76(52)× 10−34 J s
Bohr magneton µB 1.399 624 624(56) MHz/G
Bohr radius a0 0.529 177 208 3(19) 10−10m
Boltzmann’s constant kB 1.380 650 3(24)× 10−23 J/K

Rb physical properties
Atomic number Z 37
Total nucleons Z +N 87
Relative abundance 27.8 %
Atomic mass m 1.443 160 60(11)× 1025kg
Melting point TM 39.31◦C
Vapor pressure at 25◦C PV 4.0× 10−7 mbar
Nuclear spin I 3/2

52S1/2 ground state properties
Hyperfine splitting Ehfs h · 6.83468261090429(9) GHz
Electron spin g-factor gJ 2.002 331 13(20)
Nuclear spin g-factor gI -0.000 995 141 4(10)
Ground state polarizability α0 h · 0.0794(16) Hz/(V/cm)2

D2 transition (52S1/2 → 22P3/2) optical properties
Transition frequency ω0 2π · 384.230 484 468 5(62) THz
Vacuum wavelength λ 780.241 209 686(13) nm
Natural line width Γ 2π × 6.065(9) MHz
Saturation intensity Is 1.669(2) mW/cm2

Recoil energy Er = 2π2~2/λ2m h · 3.7710 kHz
Doppler temperature TD = ~Γ/2kB 146 µK

Data taken from [86].



B. Fast trap ramping

To transport the atoms to the cantilever we use ramps where the trap frequency and
the position are changed simultaneously at a rate close to the limit of adiabaticity.
This is important because three-body collisional loss limits the lifetime in the com-
pressed trap to ∼ 17 ms and technical heating leads to thermalization within 3 ms
when the cloud is away from the surface. To avoid cloud excitation we use Blackman
pulse shaped ramps. They define the velocity of the trap center according to

v(t, tr) =
1

tr

(
1− 25

21
cos(2π

t

tR
) +

4

21
cos(4π

t

tr
)

)
. (B.1)

To minimize changes in the power dissipation on the chip which would affect the
eigenfrequency of the cantilever (see chapter 4.1.2), we ramp the bias field rather
than the wire current. The used power supply (FUG 12A 15V) allows ramp times
tr > 0.7 ms, but slight deviations from the set ramp as well as asymmetries show
up for tr < 1.5 ms. Furthermore, we apply the ramp to the bias field Bb,y, which
translates into position according to zt ≈ (µ0/2π)I/Bb,y. As the relative change
during the ramp ∆Bb,y/Bb,y ≈ 30% is not small, the nonlinear dependence zt(Bb,y)
will cause a slightly distorted position ramp. The ramp time is chosen such that the
change in trap frequency fullfills the adiabaticity criterion

∂ωz
∂t
� ω2

z (B.2)

at all times during the ramp. Fig. B.1 shows a calculation for a ramp from the
condensation trap to a coupling trap with final trap frequency ωz/2π = 10 kHz.
The lower panel of (a) shows the criterion B.2.

A condition to describe how well the cloud remains at the trap center can be
formulated by demanding forces during the ramp to be smaller than the restoring
force for a cloud displaced by one ground state extension bqm =

√
~/2mωz,

∂2z

∂t2
< ω2

zbqm. (B.3)

This is not always fulfilled for the used ramps. Excursions of the center of mass
with respect to the trap center amount to ∼ 2 × bqm = 300 nm. However, due to
the symmetry of the ramp, the cloud should be at the trap center at the end of the
pulse again. The upper panel of Fig. B.1 b) shows the velocity of the trap center
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Figure B.1.: Trap parameters during ramps to the surface.

and for comparison the rms velocity spread of the ground state vqm = ωzbqm. In the
lower panel of Fig. B.1 (b) the condition B.3 is shown.

The adiabaticity of the ramp is verified experimentally (see chapter 5.2 for details).



C. Manoeuvre around the cantilever

For measurements on the dielectric back side of the cantilever it is desirable to
have conditions comparable to the measurements on the front side. This requires a
non-trivial transport around the cantilever and as a consequence a modified atom
preparation. We find it advantageous to orbit the cantilever along the axial direction
of the trap (the x-axis) and use a neighbouring dimple wire (”shift wire”) to axially
move the trap.

The ramping involves several phases and a relaxed trap frequency along the axial
direction during one stage, such that the ramping could easily cause excitations or
even destroy a BEC. We therefore prepare a cloud with a temperature of ∼ 200µK
with the second RF evaporation ramp (RFC) stopped 2.6 MHz above the trap
bottom (other parameters as in RFC B, see table 4.3 in chapter 4.3). After bypassing
the cantilever, a BEC is then prepared a in a trap at 15 µm distance from the back

Figure C.1.: Schematic geometry of the manoeuvre in the x, z-plane. The goal
is to prepare BECs on the back side of the cantilever and perform measurements
under comparable conditions as on the front side.
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Figure C.2.: Potential minimum along the x-axis. Dimple trap before (MTrap7)
and after (MTrap9) passing the cantilever. Ioffe trap with repulsive barrier during
the bypass of the cantilever (MTrap8). A tight dimple trap above the shift wire is
used for fast ramping into the detection trap (MTrap13).

side of the cantilever. For imaging, the cantilever has to be bypassed again. We
want to minimize background and collisional loss after coupling measurements, and
we use a different path with higher trap frequencies to allow for a quick withdrawal
from the chip. Figure C.1 schematically shows the geometry of the situation. The
axial trapping potentials during the important phases are displayed in Figure C.2.

The following steps comprise the manoeuvre:

• To axially shift the cloud away from the cantilever we ramp down the dimple
confinement and use the shift wire to produce a repulsive bump along x, while
zt remains approximately constant at zt = 80 µm (MTrap8). This shifts the
cloud by 250 µm along x, but also relaxes the axial confinement to ωx/2π =
43 Hz, giving a cloud radius of Rx = 65 µm.

• This trap is then ramped towards the chip to a distance zt ∼ 51 µm from the
chip, thereby bypassing the cantilever.

• After transforming back into the dimple at the cantilever we perform RF evap-
oration (RFCoolingC) and make coupling measurements with parameters very
similar to those on the other side of the cantilever (MTrap11).

• We then ramp back into the condensation trap (MTrap12) which we transform
into a dimple formed by the shift wire to by-pass the cantilever for detection.
However, during crossfading between the two dimples, the intermediate po-
tential forms a double well, and the atoms ”fall down” a potential step of a
few hundreds of kHz when the well centered at the cantilever vanishes. This
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causes heating, and after final ramping into a detection trap at large distance
we have no clear signature of the phase transition to BEC.

Table C.1 summarizes the trap parameters for all phases of the manoeuvre.

Trap ∆tR II ID IS Bb,x Bb,y fz fx zt,0 xt
[ms] [A] [G] [kHz] [µm]

RFC B 600 1.855 0.40 0.0 9.0 37 3.86 0.43 105.9 0
MTrap7 50 1.855 0.40 0.0 18.0 47 2.70 0.62 80.8 0
MTrap8 100 1.500 0.00 -0.1 12.0 40.0 1.80 0.03 79.1 -251
MTrap9 60 1.100 0.00 -0.1 20 44 2.19 0.02 51.5 -305
RFCoolingC 60 1.100 0.05 0.0 11 44 3.36 0.42 51.3 0
MTrap11 3 1.855 0.40 0.0 19.8 60.6 4.81 0.87 63.1 0
MTrap12 3 1.100 0.05 0.0 11 44 3.36 0.42 51.3 0
MTrap13 80 1.100 0.00 0.15 20 44 2.88 0.74 49.5 90
Detection 40 0.400 0.00 0.1 4 7 0.72 0.18 115 93

Table C.1.: Magnetic traps for the transport around the cantilever. Given are the
duration of the phase ∆t, Ioffe wire current II , Dimple wire current ID, shift wire
current IS , axial (fx) and transversal (fz ≈ fy) trap frequency, trap-wire distance
zt,0, and axial trap position xt.



D. Chip Fabrication

Electroplating process

Material used: Aluminium Nitride AlN, 800 µm thick, one side polished to Ra < 40
nm, purchased from Ceramtek or Anceram. Thermal conductivity 180 W/m K.

1. Substrate preparation

a) raw cleaving

• Score outline with sharp diamond scorer and cleave with a bench
vice.

• maximum substrate size for UHV evaporation chamber: 52 mm ×
43 mm.

• if possible, 5 mm rim on all sides for handling, mounting, contacting.

• bevel edges of substrate on wet diamond whetstone.

b) clean substrate

• dip for 5 min in Acetone in ultrasonic bath (USB) at 55◦C.

• without drying dip or rinse with Isopropanol, blow dry with clean
Nitrogen.

• dip for 5 min in Piranha (H2SO4:H2O2 4:1).

• rinse well in H2O.

• dip in Acetone, rinse with Isopropanol, blow dry.

2. Seed layer fabrication

a) Evaporate gold seed layer.

• clean 5−10 min in oxygen plasma (55−60 W, 2 Torr O2), blow dust
off.

• mount in UHV vacuum chamber without delay.

• turn on e-beam with current set to 55 mA and shutter closed for
a few minutes, until pressure drops markedly, typically to 4 − 10 ×
10−9 mbar.

• evaporate 2 nm Ti with evaporation rate 0.1− 0.5 Å/s.
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• heat gold with e-beam with shutter closed, current 60 mA.

• evaporate 30− 50 nm gold at a rate < 1.6 Å/s, optimally 1 Å/s.

b) spin on photo resist

• heat chip 5 min on hotplate at 105◦C to desorb water.

• Dispense photo resist ma-P 1240 (micro resist) or ma-P 240 on chip,
completely cover surface, avoid bubbles.

• spin on 5 s with 800 rpm, then 40 s with 1000−6000 rpm (depending
on desired resist thickness, max. ∼ 8 µm possible).

• 5 min softbake at 102◦C (depends on resist thickness).

c) Resist exposure and development

• place Cr mask in Mask Aligner, place chip in Mask Aligner on a
rubber ring, Newton rings should be visible when contacted.

• Expose for 96 s for Cr mask, 300 s for foil mask.

• Prepare developer (ma-D 336 : H2O 3:7).

• Rinse chip in water, then dip in developer for 2 : 30− 3 : 30 min for
Cr mask, 5− 6 min for foil mask, agitate during developing.

• Stop development in beaker with water, rinse ∼ 1 min in running
water to remove developer completely.

3. Electroplating

a) Heat electroplating solution (METAKEM ammonium gold sulfide solu-
tion (NH4)3Au(SO3)2) in water bath to 57± 1◦C. Use magnetic stir bar
at 100 rpm to agitate solution. Rinse empty bottles with water.

b) Wipe off photoresist with Acetone in chip corners to get contact pads for
electric contacting during electroplating.

c) Remove residual photoresist in developed areas by oxygen plasma (50 W,
2 Torr, 5 min).

d) Mount chip on chip holder without delay, connect contact pads, rinse
with water.

e) Connect chip to −-pole, platin electrode to +-pole of current source.

f) Set output current such that current density ≤ 3 mA/cm2, for our chips
I ∼ 10 − 40 mA. The volume growth rate is 10−10 m3/As. Make shure
that no uncontrolled voltages or currents occur during switching.

g) Electroplate until desired layer thickness is reached. E.g. for area 1400 mm2

and 5 µm layer thickness take I = 34 mA, t = 2060 s.
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h) Rinse chip thoroughly with running water, filter electroplating solution
with paper filter, refill bottle with water; rinse all equipment thorougly
with running water to avoid drying of solution.

4. Remove photoresist, etch seed layer and finish chip

a) Remove resist in Acetone USB (5 min, 10%, 55◦C), rinse in Isopropanol,
blow dry.

b) remove residual resist with Piranha (4:1, 1 min), rinse in water, blow dry.

c) Etch gold seed layer and Ti adhesion layer with fresh aqua regia (H2O
: H2Cl : HNO3 = 1:3:1) for 40 − 120 s (about twice the time until the
substrate becomes visible), rinse with water, blow dry.

d) Measure gold film thickness under microscope.

e) Spin on photoresist for protection.

f) Cleave chip to final size.

g) Bevel chip corners. Marked bevelling E.g. for experiment chip helps to
absorb excess glue and avoids glue rims.

h) Remove resist in Acetone USB (5 min, 10%, 55◦C), rinse in Isopropanol,
blow dry.



146 Chip Fabrication



Bibliography

[1] S. Chu, Cold atoms and quantum control, Nature 416, 206 (2002).

[2] A. L. Migdall, J. V. Prodan, and W. D. Phillips, First Observation of Magnetically
Trapped Neutral Atoms, Phys. Rev. Lett. 54, 2596 (1985).

[3] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Optical dipole traps for neutral
atoms, Adv. At. Mol. Opt. Phys. 42, 95 (2000).

[4] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell,
Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269,
198 (1995).

[5] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn, and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms,
Phys. Rev. Lett. 75, 3969 (1995).

[6] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, Making, probing and un-
derstanding Bose-Einstein condensates, in Bose-Einstein condensation in atomic
gases, Proceedings of the International School of Physics “Enrico Fermi”, Course
CXL, edited by M. Inguscio, S. Stringari, and C. E. Wieman, pages 67–176, Ams-
terdam, 1999, IOS Press.

[7] Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto,
M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, Atom Michelson Interfer-
ometer on a Chip Using a Bose-Einstein Condensate, Phys. Rev. Lett. 94, 090405
(2005).

[8] S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, and J. Schmiedmayer,
Radiofrequency-dressed-state potentials for neutral atoms, Nat. Phys. 2, 710 (2006).
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[13] J. Estève, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler, Squeezing and
Entanglement in a Bose-Einstein condensate.

[14] M. H. Schleier Smith, I. D. Leroux, and V. Vuletić, States of an Ensemble of Two-
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[59] C. Höhberger Metzger and K. Karrai, Cavity cooling of a microlever, Nature 432,
1002 (2004).
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[222] S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, Observation of
strong coupling between a micromechanical resonator and an optical cavity field,
Nature 460, 724 (2009).

[223] C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, and S. Reynaud,
Quantum-noise reduction using a cavity with a movable mirror, Phys. Rev. A 49,
1337 (1994).

[224] K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, Cavity-
assisted squeezing of a mechanical oscillator, Phys. Rev. A 79, 063819 (2009).

[225] M. Pinard, A. Dantan, O. Arcizet, T. Briant, and A. Heidmann, Entangling movable
mirrors in a double-cavity system, Europhys. Lett. 72, 747 (2005).

[226] D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, a. A. G. P. Tombesi, V. Vredal,
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[295] M. Brune, E. Hagley, J. Dreyer, X. Mâıtre, A. Maali, C. Wunderlich, J. M. Raimond,
and S. Haroche, Observing the Progressive Decoherence of the “Meter” in a Quantum
Measurement, Phys. Rev. Lett. 77, 4887 (1996).

[296] R. J. Thompson, G. Rempe, and H. J. Kimble, Observation of normal-mode splitting
for an atom in an optical cavity, Phys. Rev. Lett. 68, 1132 (1992).





Danksagung

Diese Arbeit ist keine Einzelleistung, sondern entstanden durch die gemeinsame
Vision und Anstrengung eines Teams. Hier möchte ich meinen Dank an alle diejeni-
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