
Model-Driven Development of
Interactive Multimedia Applications

Towards Better Integration of
Software Engineering and Creative Design

Andreas Pleuß

München 2009

Model-Driven Development of
Interactive Multimedia Applications

Towards Better Integration of
Software Engineering and Creative Design

Andreas Pleuß

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Andreas Pleuß

geboren in Würzburg

München, den 25. Februar 2009

Erstgutachter: Prof. Dr. Heinrich Hußmann

Zweitgutachter: Prof. Dr. Peter Forbrig (Universität Rostock)
Prof. Dr. Jean Vanderdonckt (Université Catholique de Louvain, Belgien)

Tag der mündlichen Prüfung: 27. Mai 2009

Contents

Abstract xv

1 Introduction 1

2 Interactive Multimedia Applications 5
2.1 Basic Terms and Definitions . 5

2.1.1 Multimedia . 5

2.1.2 Multimedia vs. Multimodality . 7

2.1.3 Multimedia Applications . 7

2.1.4 Multimedia Applications vs. Web and Hypermedia Applications 8

2.2 Multimedia Application Development . 9

2.3 Implementation Technologies and Tools . 10

2.3.1 Frameworks and APIs . 11

2.3.2 Declarative Languages . 12

2.3.3 Authoring Tools . 13

2.4 Classification . 19

2.4.1 Existing Classifications . 19

2.4.2 A Classification for this Thesis . 20

2.5 Conclusions for this Thesis . 22

3 Problem Statement and Proposed Solution 25
3.1 Current Problems in Multimedia Application Development 25

3.1.1 Interdisciplinary Roles . 28

3.1.2 Authoring Tools . 30

3.2 Analyzing the Spectrum of Possible Solutions . 30

3.3 Proposed Solution: A Model-Driven Approach . 33

3.4 A Short Introduction into Model-Driven Engineering 34

3.4.1 Models, Metamodels, and Modeling Languages 34

3.4.2 Model-Driven Development . 37

3.4.3 Practical Application and Profiles . 40

3.5 An Illustrating Example Scenario . 43

4 Related Modeling Approaches 47
4.1 User Interface Modeling . 47

4.1.1 General Concepts . 48

4.1.2 Concrete Examples . 51

4.1.3 User Interface Modeling and Software Engineering Concepts 57

vi CONTENTS

4.2 Web Engineering . 61

4.3 Multimedia Modelling . 63

4.3.1 HyDev . 64

4.3.2 OMMMA . 68

4.3.3 Code Generation . 74

4.4 Discussion . 75

5 Modeling Multimedia – MML Core Principles 79
5.1 Basic Decisions and Language Engineering . 79

5.1.1 Scope . 80

5.1.2 Language Definition . 80

5.1.3 Notation . 81

5.1.4 Custom Icon Design . 82

5.1.5 Basic Technical Metamodeling Principles 84

5.2 Modeling Media Components . 86

5.2.1 Rationale . 86

5.2.2 Media Types and Media Components . 87

5.2.3 Interfaces . 89

5.2.4 Media Representations . 91

5.2.5 Artifacts and Instances . 92

5.2.6 Keywords for Media Representations . 94

5.2.7 Media Parts . 95

5.2.8 Inner Properties . 98

5.2.9 Part Artifacts . 100

5.2.10 Variations . 101

6 MML – A Modeling Language for Interactive Multimedia Applications 103
6.1 MML – Task Model . 103

6.2 MML – Structural Model . 105

6.3 MML – Scene Model . 107

6.4 MML – Presentation Model . 113

6.4.1 Abstract User Interface . 114

6.4.2 UI Realizations . 118

6.4.3 Sensors . 120

6.5 MML – Interaction Model . 123

6.5.1 Rationale . 123

6.5.2 MML Interaction Model based on UML Activity Diagrams 126

6.5.3 Temporal Synchronization . 129

6.6 Model Interrelations and Modeling Process . 132

6.6.1 Modeling Process . 132

6.6.2 Conceptual Interrelations . 135

6.7 Modeling Tool Support . 136

7 Integrating Creative Design: From MML to Flash 141
7.1 A Metamodel for Flash and ActionScript . 141

7.1.1 Flash Metamodel Basics . 142

7.1.2 Flash Documents . 144

Contents vii

7.1.3 ActionScript . 147

7.2 A General Structure for Flash Applications . 152

7.2.1 Principles . 152

7.2.2 Scenes . 153

7.2.3 Complete Structure . 156

7.3 Transformations . 158

7.3.1 Round-Trip-Engineering . 161

7.3.2 A Tool for Extracting Flash Models from Flash Applications 164

7.4 Working with the Code Skeletons in the Authoring Tool 164

8 Validation 173
8.1 Platform Independence: Transformations to other Platforms 174

8.1.1 Code Generation for Java . 175

8.1.2 Code Generation for SVG/JavaScript . 176

8.1.3 Code Generation for FlashLite . 176

8.2 External Validation . 178

8.2.1 MML in the Course “Multimedia-Programming” 179

8.2.2 MML in Project Theses . 183

8.2.3 Conclusions . 187

8.3 Internal Validation . 187

8.3.1 Comparison to General Criteria for Modeling Languages 188

8.3.2 Comparison to the Goals of This Thesis . 191

8.3.3 Comparison to Other Approaches . 193

9 Outlook: Towards Better Integration of Software Engineering and Creative Design 197
9.1 Creative Design in Software Development . 197

9.2 Vision: Models as Central Hub . 198

9.3 First Steps . 199

10 Summary and Conclusions 203
10.1 Summary . 203

10.2 Contributions . 204

10.3 Future Work . 204

10.4 Conclusions . 206

A Multimedia Taxonomy by Hannington and Reed 207

B ActionScript Class MovieClip – Documentation 209
B.1 Properties . 209

B.2 Properties Inherited from Class Object . 211

B.3 Operations . 211

B.4 Event Handling Operations . 214

C Transformation from MML to Flash Model 217

D Questionnaire 221

Bibliography 227

viii Contents

List of Figures

1.1 Examples for multimedia applications today. (From left to right, starting in the top

row: Rich Internet Application [Goo], E-Learning [Jungwirth and Stadler03], Enter-

tainment [Hilliges et al.06], Entertainment on mobile devices [Tavares], Infotainment

in cars [Inf], Instrumented Environments [Bra]) . 2

2.1 Technical media: Classes and examples based on [Hoogeveen97] and MHEG [ISO97b]. 6

2.2 Classification of media according to [Fetterman and Gupta93]. 6

2.3 Multimedia applications in the value chain. 9

2.4 Structure in the Piccolo framework . 12

2.5 MHEG-5 class hierarchy from [MHE]. 13

2.6 A screenshot of Adobe Authorware. 15

2.7 A screenshot of Adobe Director. 16

3.1 RepresentationOf relationship according to [Favre04c] 35

3.2 ConformsTo relationship according to [Kurtev et al.06] 35

3.3 The basic idea of MDA . 37

3.4 OMG Metadata Architecture according to [Obj05] 39

3.5 Technical Spaces according to [Kurtev et al.06] . 40

3.6 Notation options for UML stereotypes. 41

3.7 Screenshot from the example Racing Game application. 44

3.8 Example: Wheels of a racing car defined as independent inner parts. 45

3.9 The generated skeletons including placeholders can be directly opened and edited in

the Flash authoring tool. 46

4.1 Model-based User Interface Development Environments according to [Szekely96,

da Silva00] . 48

4.2 The CAMELEON reference framework according to [Calvary et al.02, Calvary et al.03] 50

4.3 Example ConcurTaskTree Model from [Wu06b] . 52

4.4 Extract from the UsiXML metamodel [Usi06] showing the UsiXML models. 53

4.5 Relationships between different models in UsiXML 54

4.6 Example for a Context-sensitive task model in Dynamo-Aid. 55

4.7 Example for a Context-specific dialog model calculated from task models in Dynamo-

Aid. 56

4.8 Web Engineering approaches according to [Schwinger and Koch03] 61

4.9 Example Hypermedia Modeling Technique (HMT) model from [Specht and Zoller00] 64

4.10 HyDev domain model for a virtual museum application from [Pauen et al.98a] 65

x LIST OF FIGURES

4.11 Extract from HyDev instance model for the virtual museum application taken from

[Pauen et al.98a] . 66

4.12 Extract from HyDev representation model for the virtual museum application taken

from [Pauen et al.98a] . 67

4.13 Screenshot from the automotive information system example for OMMMA [Engels

and Sauer02] . 68

4.14 OMMMA class diagram from [Engels and Sauer02] for the example automotive in-

formation system . 69

4.15 OMMMA sequence diagram from [Engels and Sauer02] for the example automotive

information system . 70

4.16 OMMMA presentation diagram from [Engels and Sauer02] for the top level view. . . 71

4.17 OMMMA presentation diagram from [Engels and Sauer02] for the cockpit view. . . 72

4.18 OMMMA statechart diagram from [Engels and Sauer02] for the example automotive

information system . 72

4.19 Approach from [Depke et al.99] interpreted as kind of MDE approach. 76

5.1 The trade-off in icon design illustrated by two alternative notations. 83

5.2 Notations for Abstract Interaction Objects based on Canonical Abstract Prototypes

(CAP). 84

5.3 MML metamodel - Root Elements . 85

5.4 MML metamodel - Media Types . 88

5.5 Icons for MML Media Components. 89

5.6 Interfaces for Media Components. 91

5.7 Example for Media Representation. 92

5.8 MML metamodel for Media Representation. 92

5.9 Illustrating example of abstraction layers of Media Components 93

5.10 Media Artifacts. 94

5.11 Examples for Keywords for Media Representations: The left hand side shows the

MML example models, the right hand side corresponding example situations at runtime. 96

5.12 Metamodel for Media Parts. 97

5.13 Icons for MML Media Components and Media Parts (some Media Parts do not have

an icon representation yet). 97

5.14 Illustration of different abstraction layers of media and their inner structure. In MML

structure diagrams the white colored model elements need not to be specified in the

model. The light yellow colored model elements are modeled only optionally. 99

5.15 MML Example: Media Parts and Inner Properties. 99

5.16 Specifying Part Artifacts. 101

5.17 Example: Individual vs. unique Part Artifacts. 102

5.18 Metamodel for Inner Properties and Part Artifacts. 102

5.19 Metamodel for Variations. 102

5.20 Example: Variations. 102

6.1 Task Diagram for the Racing Game Example. 104

6.2 MML metamodel - Tasks . 104

6.3 Domain Classes for the Racing Game example. 106

6.4 MML metamodel for classes reused from UML. 106

6.5 MML metamodel for interfaces reused from UML. 107

LIST OF FIGURES xi

6.6 Complete Structure Diagram for the Racing Game example 108

6.7 MML metamodel for MML Structure Diagram Elements. 108

6.8 MML metamodel for Media Components in the Structure Diagram. 109

6.9 MML Scene Diagram. 109

6.10 Metamodel for MML Scene Diagram elements. 111

6.11 Class representation of Scene Intro. 112

6.12 Icons for Abstract Interaction Objects. 115

6.13 Metamodel for MML Abstract Interaction Objects. 115

6.14 MML Presentation Diagram containing the Presentation Unit for the Scene Game. . 117

6.15 MML Presentation Diagram including UI Realizations for the Scene Game. 119

6.16 Metamodel for MML Presentation Models. 121

6.17 MML Presentation Diagram for the Scene Game enhanced with Sensors. 123

6.18 MML Metamodel for Sensors. 124

6.19 MML Interaction Diagram for Entry Operation start of Scene Game. 127

6.20 Metamodel for MML-specific actions. 128

6.21 MML Interaction Diagram for operation main of Scene Game. 130

6.22 Simplified extract from the UML metamodel for Activities. 131

6.23 Metamodel defining the integration of Activities and Scenes. 131

6.24 MML Interaction Diagram for operation show of Scene Intro. 132

6.25 Typical modeling process for MML models. 133

6.26 “Essence” of MML. 136

6.27 Tree editor for MML generated with EMF. 137

6.28 MML Structure Model in Magic Draw . 138

6.29 MML Presentation Model in Magic Draw. 139

6.30 Steps for visually creating EMF-compliant MML models. 139

7.1 The Flash Authoring Tool . 144

7.2 Timeline and Stage (containing some Tweens) in the Authoring Tool 145

7.3 Metamodel for the Timeline Elements in Flash . 146

7.4 Metamodel for the Library Elements in Flash . 147

7.5 Metamodel for the specific Media Formats in Flash 148

7.6 Metamodel for the Elements on the Stage in Flash 149

7.7 Metamodel for Files and Folders . 149

7.8 Metamodel for ActionScript . 151

7.9 Proposed Structure applied to the Racing Game example. 157

7.10 Transformation of MML models into Flash application skeletons. 160

7.11 The generated files in the file explorer. 165

7.12 The generated application skeleton can be directly executed. The user can trigger

transitions between the Scenes as far as specified in the MML model. 165

7.13 The generated FLA file for the Scene Game. 166

7.14 The generated folder media. 167

7.15 Replacing the generated placeholder for CarAnimation. 169

7.16 CarAnimation in Scene Game. 170

7.17 Media files need just to be replaced in the file explorer. 170

7.18 The final result. 171

8.1 Simple target structure for Flash Lite applications and small Flash applications. . . . 177

xii List of Figures

8.2 Blockout example on the Flash Lite platform. 178

8.3 Development process for the practical project in 2006 180

8.4 Screenshots from the result of Team 1 in 2006. 181

8.5 Screenshots from different results in 2007. 183

8.6 Screenshot of the StyleAdvisor application for a hairdresser. 184

8.7 Example for a learning application with transcript. 185

8.8 Screenshots from the authoring tool for the Unterrichtsmitschau. 186

8.9 Example for a learning application with transcript. 187

8.10 MML in terms of the Model Driven Architecture. 193

9.1 Simplified user interface design process and used tools in practice (based on [Ziegler08].198

9.2 Models as central hub in the development integrating different specific development

steps and tools. 199

9.3 Using XAML as “central hub”. 201

A.1 factes and possible values for the taxonomy for multimedia applications taken from

[Hannington and Reed02]. 208

List of Tables

2.1 Overview on the spectrum of multimedia applications 22

3.1 Applied development methods in web and multimedia industry [Lang and Fitzgerald05] 27

4.1 Temporal operators in CTT on tasks T1, T2. The binary operators are listed with

descending priority. 52

5.1 Media Component Standard Interfaces . 90

6.1 AIO and Sensor Standard Interfaces . 125

7.1 Flash versions and MML support . 161

8.1 Coverage of the examples from section 8.2. 192

8.2 Comparison of MML and selected other modeling languages. 195

xiv List of Tables

Abstract xv

Abstract

The development of highly interactive multimedia applications is still a challenging and complex

task. In addition to the application logic, multimedia applications typically provide a sophisticated

user interface with integrated media objects. As a consequence, the development process involves

different experts for software design, user interface design, and media design. There is still a lack of

concepts for a systematic development which integrates these aspects.

This thesis provides a model-driven development approach addressing this problem. Therefore

it introduces the Multimedia Modeling Language (MML), a visual modeling language supporting a

design phase in multimedia application development. The language is oriented on well-established

software engineering concepts, like UML 2, and integrates concepts from the areas of multimedia

development and model-based user interface development.

MML allows the generation of code skeletons from the models. Thereby, the core idea is to

generate code skeletons which can be directly processed in multimedia authoring tools. In this way,

the strengths of both are combined: Authoring tools are used to perform the creative development

tasks while models are used to design the overall application structure and to enable a well-coordinated

development process. This is demonstrated using the professional authoring tool Adobe Flash.

MML is supported by modeling and code generation tools which have been used to validate the

approach over several years in various student projects and teaching courses. Additional prototypes

have been developed to demonstrate, e.g., the ability to generate code for different target platforms.

Finally, it is discussed how models can contribute in general to a better integration of well-structured

software development and creative visual design.

Kurzzusammenfassung

Die hier beschriebene Arbeit geht von der vielbeschriebenen Forderung nach einem strukturierten

Entwicklungsprozess für Multimedia-Anwendungen aus. Dazu wird mit der Multimedia Model-
ing Language (MML) eine graphische Modellierungssprache speziell für Multimedia-Anwendungen

vorgeschlagen, sowie ein darauf basierender modellgetriebener Entwicklungsprozess. MML unter-

stützt eine strukturierte, explizite Integration von Software-Design, User-Interface-Design undMedien-

Design.

Eine wichtige Zielsetzung der Arbeit ist die Einbeziehung etablierter Multimedia-Autorenwerk-

zeuge in den modellgetriebenen Entwicklungsprozess mit MML. Dazu werden aus den MML-Model-

len automatisch Codegerüste generiert, die dann direkt im Autorenwerkzeug geöffnet und weiterver-

arbeitet werden können. Dadurch werden die Vorteile von Modellen und die Vorteile von Autoren-

werkzeugen vereint.

MML wird unterstützt durch verschiedene Werkzeuge zur Modellierung und Code-Generierung,

die über mehrere Jahre hinweg in verschiedenen Projekten in der Lehre eingesetzt wurden. Weitere

prototypische Werkzeuge demonstrieren z.B. die Platformunabhängigkeit der Sprache. Abschliessend

wird anhand weiterer Beispiel diskutiert, wie Modelle im allgemeinen zu einer besseren Integration

von systematischer Entwicklung und kreativem, graphischen Design beitragen können.

xvi Abstract

Chapter 1

Introduction

With upcoming graphical and auditive capabilities of personal computers in the mid of the 90s, the

term “multimedia” emerged to a hype. The idea of multimedia raised expectations on very intelligent

and intuitive user interfaces making use of speech input and output, gestures and complex graphics to

provide complex information in a very convenient way, like in science fiction movies. Related to that

were overrated expectations on the content and the impact of multimedia systems, like in e-learning

where some authors painted the scenario that people will learn much more continuously and efficiently

due to omnipresent multimedia learning software. Like any “buzz word” the term “multimedia” was

used for product promotion and hence in a very ambiguous way. For example, personal computers

just equipped with a CD-Rom drive were called “multimedia systems”.

Similar as described by the Hype Cycle by Gartner [Gartner], a phase of disillusion followed.

Most existing applications could not meet the expectations. While the implementation of multimedia

became easier by increasing support in toolkits and programming languages, its usage was still lim-

ited because of its complexity [Mühlhäuser and Gecsei96, Bulterman and Hardman05]. In addition,

there was no common understanding of its precise meaning. This lead some authors to the statement

that “Multimedia is dead. In fact, it never really existed.”[Reisman98] (see also [Hirakawa99, Gonza-

lez00]).

Multimedia Applications Today Nowadays, multimedia capabilities are used in a much more nat-

ural and mature way. One reason for this is certainly the evolved implementation support. It has

become much easier now (on implementation level) to integrate multimedia and application logic.

From the viewpoint of multimedia, this allows to enhance multimedia applications with more sophis-

ticated interactivity and application logic. For instance, multimedia authoring tools like Flash [Flaa]

nowadays include a powerful object-oriented programming language. From the viewpoint of con-

ventional software development, the better integration leads to easier enrichment of applications with

multimedia user interfaces. For instance, the framework Flex [Kazoun and Lott07] aims to enable

software developers to integrate Flash user interfaces without knowledge on the Flash authoring tool.

A second reason is the evolution in user interface design. In earlier days, complex applications

were mainly developed for professional context like business applications. Today, due to the general

penetration of computers in all aspects of life, applications target also private everyday life situations.

Hence, criteria like the application’s usability, likeability, and also its entertainment factor become

more and more important [Dix et al.03, Shneiderman and Plaisant04]. On the other hand, the increas-

ing general awareness of the importance of usability leads also to more sophisticated user interfaces

in general. Research in the Human-Computer Interaction area, like new interaction techniques or user

2 1. Introduction

Figure 1.1: Examples for multimedia applications today. (From left to right, starting in the top

row: Rich Internet Application [Goo], E-Learning [Jungwirth and Stadler03], Entertainment [Hilliges

et al.06], Entertainment on mobile devices [Tavares], Infotainment in cars [Inf], Instrumented Envi-

ronments [Bra])

interfaces for Ubiquitous Computing, break new grounds by investigating into much more intelligent

and complex user interfaces using different media, new interaction techniques, and individual ele-

ments precisely tailored to the concrete tasks to be fulfilled by the user [Marculescu et al.04]. In this

way, user interfaces step by step approach the initial vision described above.

Accordingly, the application area of multimedia has expanded to almost all areas of software appli-

cations. Classical examples include E-Learning, Entertainment, Computer Games, Simulations, and

Arts. Today, additional areas are, for instance, Rich Internet Applications like the well-known Google
Maps [Goo], Car Infotainment Systems, Entertainment Software, also on various devices beyond the

Personal Computer, and various research prototypes for new user interfaces or for applications in

ambient environments. Figure 1.1 shows some examples.

Multimedia Application Development A ‘multimedia application’ in the sense of this thesis is

hence any kind of application with a multimedia user interface. ‘Multimedia user interface’ here basi-

cally means that the user interface is not restricted to standard widgets (like buttons, text fields, etc.),

but makes use of individual graphics, animations, video, sound, 3D graphics, etc. The underlying

application logic can be of any complexity. In particular, in an advanced, highly interactive appli-

cation the media objects are tightly connected to the application logic: Examples like Google Maps

demonstrate that media objects on the one hand can be used as elements for user input, on the other

hand they are dynamically calculated and modified by the application logic.

For such kinds of applications there is still a lack of a systematic development process. Exist-

ing development methods for conventional software development provide only very limited support

for specifying and designing complex media objects. In contrast, multimedia-specific development

approaches focus on the creation of media objects but disregard Software Engineering principles.

However, the integration of the different development tasks and artifacts is essential for a coordinated,

3

systematic, and finally successful development process. This thesis aims to fill this gap by providing

an integrated and tailored model-driven development approach.

Approach in this Thesis This thesis provides a model-driven development approach to address

these challenges. To integrate the different developer groups and the artifacts they produce, it proposes

a “design phase” to plan and specify the application preliminary to its implementation. For this, it uses

a modeling language that integrates software design, user interface design, and media design into a

single, consistent language. As no such language exists so far, it introduces the Multimedia Modeling
Language (MML) which integrates different existing modeling concepts, like the Unified Modeling

Language (UML) and concepts from model-based user interface development (MBUID), and adds

new modeling concepts which are specific for interactive multimedia. The language is defined as a

standard-compliant metamodel and is supported by a visual modeling tool.

MML models can be automatically transformed into code skeletons. As MML is platform-

independent, it is possible to generate code for any target platform. In particular, existing multimedia

authoring tools are supported as target platforms: The generated code skeletons can be loaded di-

rectly into the authoring tool where they can be processed and finalized by user interface and media

designers. Hence, established professional tools for the creative, visual design are fully integrated

into the model-driven development process. This is demonstrated in detail by a fully implemented

transformation for the authoring tool Adobe Flash. In this way, the approach supports both: Sys-

tematic model-driven development for planning, structuring and integration of the different aspects

of multimedia applications and professional support for the creative visual media and user interface

design.

Thesis Structure The central theme throughout this work is the integration of creative, visual user

interface and media design with systematic Software Engineering methods.

At first, chapter 2 examines the basic definitions and the current practice in context of multimedia

application development. In turns out that the basic theme – the integration of software development

and creative design – is reflected in all aspects of multimedia development. For instance, common

implementation technologies are multimedia authoring tools like Flash or Director which strongly

support the creative design. However, they do neither support a development process nor a systematic

structure of the application in terms of Software Engineering.

Chapter 3 examines this problem in more detail. It turns out that existing literature as well as

existing studies on industrial practice clearly confirm the lack of adequate systematic, integrated de-

velopment methods. In particular, two specific challenges are discussed. First, the need to integrate

different kinds of design usually performed by different experts: interactive multimedia application

development requires software design, media design, and user interface design. Second, the final

implementation is often performed with multimedia authoring tools which must be integrated into a

development process.

Subsequently, the chapter discusses possible alternative solutions. As result, a model-driven de-

velopment process seems to be most promising: Models are an excellent tool to plan the overall

structure of the application and the coordination between different developer groups. In addition, a

specific idea is proposed to integrate existing authoring tools into the model-driven process: From the

models, it is possible to generate code skeletons directly for the authoring tools. Thereby, placehold-

ers are generated for the concrete visual media objects and user interface objects. These placeholders

can be filled out in the authoring tool, using the authoring tool’s established and powerful support for

creative design. However, the placeholders are already integrated into the overall application by the

4 1. Introduction

code generated from the models. This means that the models are used to specify and automatically

generate the application’s overall structure and the relationships between its different parts while the

authoring tool is used for the concrete creative design by filling out the placeholders. In this way, the

strengths of models (systematic planning of the overall structure) and the strengths of authoring tools

(creative design) are combined.

Chapter 4 then analyzes existing modeling approaches which can be used for such a model-driven

approach. It turns out, that there is a large amount of modeling approaches which target some as-

pects of multimedia applications. The chapter gives a comprehensive overview and structures them

into three identified research areas: user interface modeling, web engineering, and existing modeling

approaches from multimedia domain. However, none of this approaches is sufficient to model inter-

active multimedia applications: they either support only standard user interfaces or only multimedia

documents without advanced interactivity and application logic.

Due to the lack of a sufficient modeling language, the chapters 5 and 6 introduce the Multimedia
Modeling Language (MML). It integrates the concepts found in the related work and extends them

where necessary. Therefore, chapter 5 first presents the preliminary considerations for the language

design and then introduces concepts for modeling advanced media properties which have not been

addressed in existing modeling approaches yet. Subsequently, chapter 6 presents the resulting over-

all language under strong consideration of existing concepts from chapter 4. it is concluded by an

overview on the modeling process and the implemented tool support.

On that base, chapter 7 shows the transformation from MML models into code skeletons for a

multimedia authoring tool. The example platform here is Flash, as it is one of the most important

professional multimedia authoring tools today. The chapter also illustrates by screenshots how to

work with the skeletons directly in the authoring tool.

Chapter 8 addresses the validation of the proposed approach. First, several transformations to

other target platforms are shown to demonstrate the platform independence of MML. The next section

describes several projects for the external validation followed by a section on the internal validation.

Chapter 9 provides an outlook by generalizing the idea from this thesis to combine the strengths

of models and of tools for visual creative design. The model thereby acts as a kind of “central hub”.

The idea is illustrated by a real-world project in industry which provides a first step into this direction.

Finally, chapter 10 summarizes the contributions of the thesis.

Chapter 2

Interactive Multimedia Applications

This chapter discusses the characteristics of multimedia applications and elaborates the required def-

initions for this thesis. Therefore, the first section discusses basic terms and definitions based on

existing literature. As this thesis deals with the development of multimedia applications, the second

section provides a more detailed look on multimedia applications from that point of view. In addition,

a third section introduces existing technologies for implementation and selects the platform Flash as

running example in this thesis. Based on the discussion above, the fourth section presents a clas-

sification of multimedia applications from the viewpoint of development. Finally, the fifth section

summarizes the most import findings and derives a resulting definition for this thesis.

2.1 Basic Terms and Definitions

This section introduces central terms like multimedia, and multimedia applications and shows how

they differ from associated terms like multimodality and hypermedia.

2.1.1 Multimedia

The term medium has its origin in the Latin word medius which means ‘in the middle’. Today it

has in general the meaning of ‘intermediary’ or ‘mean’ but is overloaded with many specific mean-

ings in different contexts. Concerning the context of computer technology, the MHEG standard

[ISO97b, Meyer-Boudnik and Effelsberg95] distinguishes between five categories of technical media.
Figure 2.1 illustrates this classification with examples. The term multimedia applies to the category

of perception media, which is related to the way how a human being can perceive a piece of infor-

mation, e.g. visually or auditory. Visual media can then be further refined e.g. in text, still images,

animations, and movies. Auditory media are music, sound, and speech [Steinmetz00]. The remaining

human senses – touch, smell, and taste – are still rarely used for digital media today. These kinds of

media are sometimes also referred to as media types [Engels and Sauer02] to distinguish from media
objects. A media object is a concrete unit of information on one or more channels of information

[Henning01], i.e. of a specific media type.

Each media type is associated with one or more dimensions: one to three spatial dimensions and

one optional temporal dimension. Sound has one spatial dimension, images have two, and holograms

have three spatial dimensions. In contrast to still images, a video has an additional temporal dimen-

sion.

6 2. Interactive Multimedia Applications

Representation Medium Representation Medium

Transmission Medium

Presentation Medium Interchange Medium Processing Medium

Software Tools

Storage Medium

Memory Stick

Output Medium

Coaxial Cable Twisted Pair

Optical Fibre

Input Medium

Microphone

Keyboard HarddiskAuditive

CD-RomCamera

Screen

Mouse

Printer

Medium

Tactile

FloppyVisual

Paper

Taste

MPEG

Smell

ASCII

JPEG

OCR

Air

PC CPU

MIDI

TV... ...

...... ...

...

Figure 2.1: Technical media: Classes and examples based on [Hoogeveen97] and MHEG [ISO97b].

Continuous
(time based) Sound Video

Photo Text Graphics

Animation

Discrete
(space based)

Captured
from real world

Synthesized
by computers

Figure 2.2: Classification of media according to [Fetterman and Gupta93].

A classification of media useful for the context of this work is provided by [Fetterman and

Gupta93]: They distinguish on the one hand between discrete media and continuous media. Contin-
uous media have a temporal dimension, i.e. their representation changes dynamically over the time,

like audio, video or animation. Discrete media are time-independent, like text, image and graphics.

On the other hand they distinguish between captured media and synthesized media. Captured media
are captured via sensors and digitalization from the real world, like usually audio, video, and images

(photos). Synthesized media are created with the computer, like text, graphics, and animation. Thus,

synthesized media often have an explicit inner structure as it can be stored during the development

process (for instance, a vector graphics consists of graphic primitives while for captured images this

information is initially not available). A corresponding matrix categorizing media (types) is shown in

figure 2.2.1

Various definitions have been provided for the term multimedia. A popular definition2 is provided

by Steinmetz and Nahrstedt [Steinmetz and Nahrstedt04]:

A multimedia document is characterized by information which is coded in at least one

continuous (time-dependent) and one discrete (time-independent) medium.

As observed by Boll [Boll01] most alternative definitions mainly emphasize on the integrative

1Although sound is often captured in practice, it can also be synthesized like MIDI files.
2sometimes referred to as de-facto convention [Zendler98]

2.1 Basic Terms and Definitions 7

aspect of multimedia documents like in the early work of [Bulterman et al.91]:

Multimedia documents consist of a set of discrete data components that are joined to-

gether in time and space to present a user (or reader) with a single coordinated whole.

An analysis from Boll [Boll01] of existing definitions in research work and standards identifies as

the main characteristics the integrative aspect in conjunction with temporal and spatial composition:

A multimedia document is a media element that forms the composition of continuous and

discrete media elements into a logically coherent multimedia unit. [Boll01]

2.1.2 Multimedia vs. Multimodality

A term related with multimedia is multimodality. In the context of human-computer interaction,

modality refers to the human communication channels for input and output, like seeing, hearing, touch,

taste, smell. Thus, multimodality basically has a very similar meaning than multimedia. According to

some authors multimedia implies "multisensory", "multimodal", and "multichannel" [Hoogeveen97].

However, the common understanding in the research community often is often different. [Coutaz and

Caelen91] provides a taxonomy of multimodality and discusses the difference to multimedia. Ac-

cording to them, multimodal systems analyze the semantics of information while multimedia systems

only encapsulates the information into typed chunks. These chunks can be manipulated but a multi-

media system does not consider their inner semantics. However, this distinction might not be always

sufficient as today also typical multimedia applications (e.g. [Grana et al.05, Felipe et al.05, Ozcan

et al.05]) and standards like MPEG-7 [Salembier and Sikora02] deal with the semantics of data.

Typical examples of multimodal applications which formed the common understanding of multi-

modality usually combine speech input with pointing or gestures [Bolt80, Cohen et al.97]. [Coutaz

and Caelen91] mention this difference stating that “multimedia information is the subject of the task (it

is manipulated by the user) whereas multimodal information is used to control the task”. Other work

goes one step further into this direction and just associates multimodality as input and multimedia as

output:

Multimodal systems process combined natural input modes – such as speech, pen, touch,

hand gestures, eye gaze, and head and body movements – in a coordinated manner with

multimedia system output. [Oviatt99]

The understanding in this thesis conforms to this last definition which allows a clear distinction be-

tween the development support: Multimodality requires interaction design and complex algorithms

for analyzing the semantics of user input while multimedia focuses on design and integration of media

objects.

2.1.3 Multimedia Applications

The work described so far understands multimedia as kind of documents. Even later research ap-

proaches like [Boll01] restrict user interaction to navigation, adaptation of the presentation (e.g. to

change the resolution of a movie), and basic player control (e.g. to play and pause a multimedia pre-

sentation). However, this is a very restricted understanding of “interactivity”. Some critical authors

even claim that aspects like navigation can not be called interactivity at all as interactivity rather means

“controlling the object, subject or contents” represented by the user interface [Schulmeister03].

8 2. Interactive Multimedia Applications

Thus, the viewpoint of understanding multimedia as kinds of documents is clearly no longer suf-

ficient today. In contrast, the original vision associated with multimedia, to create highly interactive,

intelligent, and usable systems, often requires a tight integration with complex application logic. Ex-

amples are many of the most successful applications these days, like Google Maps [Goo] and others

mentioned in section 1.

Basically, multimedia can be combined with any kind of application today. This means, that an

application provides a (usually more sophisticated) multimedia user interface instead of standard user

interfaces only. Typical reasons for this are [Hoogeveen97]:

• to enhance efficiency and productiveness of the user interface,

• to achieve more effective information and knowledge transfer, or

• an enhanced entertainment value.

This leads to the term multimedia application: Generally, an application (or application software)

is defined as a kind of software which directly serves the user [Microsoft03]. A multimedia application

in broadest sense is any kind of software which directly serves the user and provides a multimedia user

interface.

According to [Steinmetz and Nahrstedt04], a multimedia application enables the user to interact

with multimedia data.

A more comprehensive definition of multimedia applications is provided by [Engels and Sauer02]:

Multimedia applications can be defined as interactive software systems combining and

presenting a set of independent media objects of diverse types that have spatio-temporal

relationships and synchronization dependencies, may be organized in structured compo-

sition hierarchies, and can be coupled with an event-based action model for interaction

and navigation.

Consequently, multimedia applications integrate two aspects [Mühlhäuser and Gecsei96]: multi-

media authoring (which corresponds to the document character) and software programming (like for

conventional applications). This is an important characteristic which has strong impact on multimedia

application development and has to be frequently taken up during this thesis.

Section 2.5 will come back to the term “multimedia application” and provide a definition for this

thesis from the viewpoint of development.

2.1.4 Multimedia Applications vs. Web and Hypermedia Applications

Web and multimedia are often named in the same breath. This is probably caused by the fact that

in the 90’s both were dominating innovations and future applications were expected to support both

[Lang01a]. In fact, web and multimedia applications have in common that they differ from traditional

business applications, e.g. in terms of the target audience and their entertaining character [Balzert and

Weidauer98]. In addition, common implementation technologies like Flash (sec. 2.3.3) support both,

web and multimedia. Thus, companies focusing on these technologies often developed both kinds of

applications. However, despite these definitely relevant commonalities in the development, web and

multimedia are still independent properties of an application.

[Kappel et al.03] defines web applications as software systems which base on specifications of

the World Wide Web Consortium (W3C, [WWWa]) and provides web-specific resources like content

and services which can be used via a web browser. Often they are conventional business applications

and do not provide any specific media objects. Moreover, until the last few years HTML was still

the dominating implementation technology which provides only poor support for multimedia. On the

2.2 Multimedia Application Development 9

Examples:

Companies: Media Industry Multimedia
Companies

Service Providers

Results: Text, Image, Video,
3D Graphics

Multimedia
Application

Infrastructure

Development Tools: Photoshop,
Illustrator,
3D Studio Max

Authoring Tools
(see section 2.3)

C/C++

Content
Production

Distribution
Platform
Provision

Application
Production

Figure 2.3: Multimedia applications in the value chain.

other hand, many multimedia applications have no additional need for web support compared to other

kinds of application. Thus, in the context of application development, web and multimedia properties

have to be distinguished.

Applications combining the hypertext concept with multimedia are referred to as hypermedia
applications. [Lang01a] defines hypermedia information systems as the intersection of hypertext sys-

tems, web information systems, and multimedia systems, i.e. requiring hypermedia to fulfill all three

properties. However, often hypermedia is described as superset of multimedia and hypermedia appli-

cations [Zendler98, Gonzalez00]. In practice, often the latter interpretation is used which means that

the term hypermedia is applied to all applications with either hypertext and/or multimedia character-

istics.

2.2 Multimedia Application Development

This work deals with the development of multimedia applications. Thus, a more detailed characteri-

zation of multimedia applications is conducted from that point of view to gain a better understanding

of multimedia applications.

The upper part of figure 2.3 shows multimedia applications in the value chain and assigns ex-

amples to each step according to [Hussmann07, Osswald03, Steinmetz and Nahrstedt04]. Content
Production means the production of the actual content, e.g. a movie or the learning content in a

learning application. Often, the content itself has some economic value. As the content has to be

represented by any media, Content Production in our context means the production of media objects,

e.g. text, videos, 3D animations, etc.

Application Production means the production of the multimedia application from single media

objects. It includes the selection and integration of media objects, creating the application’s user in-

terface and interaction, as well as the application logic. Finally, Distribution Platform Provision refers

to those services which are necessary to run the multimedia application in the target environment. This

includes the infrastructure of networks and target platforms, hosting on servers, etc.

“Multimedia Applications” as defined in this work are thus the result of the Application Production

step. Infrastructure software and system software required for Distribution Platform Provision are not
understood as multimedia application here. This means that a multimedia application (conforming to

the definition of “application” given above) directly serves the user and thus has itself a user interface

with multimedia properties.

10 2. Interactive Multimedia Applications

The last row in figure 2.3 shows examples for implementation technologies typically required in

each step. They are explained in the following.

The production of media objects in the first step requires very different processes and tools de-

pending on the media type. Synthesized media is created and processed by specific authoring tools.

For example 3D animations are created with 3D authoring tools like 3ds Max [3DS] or Maya [May].

2D animations are often created with Flash [Flaa]. Graphics are created for instance with Illustrator
[Ill] or CorelDRAW [Cor].

Captured media is usually captured from the real world but further processing and post-editing is

usually performed in authoring tools as well. Video is edited in video editing software like Premiere
[Pre] or Final Cut [Fin]. Sound is edited (and can also be created) with audio editing tools and MIDI

Sequencers like Cubase [Cub] or Reason [Rea]. Images are edited with image editing tools like

Photoshop [Phoa] or Paint Shop Pro [Pai]. An comprehensive overview on such tools can be found

e.g. in [Zendler98].

As shown by these examples, the production of media objects is supported by various very specific

authoring tools for the different media types. These authoring tools focus on efficient, creative, and

visual media design and are well established. At this point in the development, only the creative media

design is important – programming and software development knowledge are hardly relevant there.

In contrast, software for the last step in the value chain, Distribution Platform Provision, is usually

developed like conventional software using conventional programming languages like C/C++. This

holds also for infrastructure software in the broadest sense like Multimedia Database Management
Systems (MMDBMS, [Narasimhalu96, Zendler98] or player software like the Flash player [Adobed].

Such software provides general functionality independent from the actual content and the actual ap-

plication. The development of such software requires mainly programming skills and only few (or no)

creative visual design.

The development tasks in the Application Production step (the focus of this work) combine the

aspects of both areas: On the one hand, creative design is required. The developers have to create a

user interface and to integrate the content. Therefore, they often have to post-edit existing content or

to create additional content. On the other hand, the developers have to create the application logic and

the interactivity similar to conventional software development. Thus, authoring tools and conventional

programming are both required in this step. An overview on the different implementation technologies

and tools for application production is given in the next section 2.3.

2.3 Implementation Technologies and Tools

This section briefly provides an overview on typical technologies and tools for implementing interac-

tive multimedia applications, i.e. for the second step in figure 2.3 (the focus of this thesis).

They can be classified into three categories [Engels and Sauer02]:

1. Frameworks and APIs,

2. Declarative Languages, and

3. Authoring Tools.

The next three sections give a brief overview on each category, with an emphasis on authoring

tools, and and shows some selected examples.

2.3 Implementation Technologies and Tools 11

2.3.1 Frameworks and APIs

There are several frameworks and APIs (Application Programming Interface) supporting the devel-

opment of multimedia applications with conventional programming languages. They usually address

specific programming languages or target platforms.

DirectX A popular example is DirectX from Microsoft [Microsofta]. It is a collection of APIs

for the operating system Windows and the game console XBox. The APIs provide support for all

media types, including creation and rendering of 2D and 3D graphics and animation (DirectDraw,

Direct3D, DirectAnimation), playback and recording of audio (DirectSound, DirectMusic), playback
and processing of video and other streaming media (DirectShow; now part of the platform SDK).

The basic functionality of DirectX is rather low level and can be classified as system software. It

abstracts from concrete hardware devices and allows the programmer to access hardware components

and functionality via standard interfaces defined by DirectX. However, it also provides more high

level multimedia functionality and is often directly used by developers. The API provides objects and

interfaces in the style of the Microsoft Component Object Model (COM, [Box98]). It can be used with

different programming languages like C++, Visual Basic or C#. DirectX is commonly used for game

development [Sherrod06, Luna08] and other performance-dependent applications.

Java Media Framework An example for the programming language Java are the Java Media APIs
[Microsystems] provided by Sun. Similar to DirectX they consists of different APIs for different

media types. It includes among others the Java Media Framework (JMF) which supports video and

audio, the Java Advanced Imaging API (JAI) supporting images, the Java 2D API supporting 2D

graphics and images as well, and the Java 3D API supporting 3D graphics and animations. Some of

them like Java 2D and Java Sound from the JMF have become part of the standard Java distribution.

There is no specific support for 2D animations. The APIs are platform-independent. However, there

are performance packs for some selected platforms (Windows, Linux, and Solaris) which provide

access to the platform’s native media libraries.

The programming style is rather heterogeneous depending on the media type. The JMF interprets

the media objects as abstract data sources and data sinks which are processed in processing chains.

They use several software design patterns to implement the concepts. The API structure and the

available examples mainly target the development of applications to create and edit media objects

– i.e. software for the first step in the value chain from section 2.2 – instead of applications with

multimedia user interfaces. This might also be a reason why 2D animation is not supported although

it is important for multimedia user interfaces and e.g. a core element in professional authoring tools

like Flash (see sec. 2.3.3).

Piccolo Besides the Java Media APIs, several other Java frameworks exist which mainly focus on

a specific media type. An example for 2D animations is Piccolo developed by Human-Computer

Interaction Lab at University of Maryland [Bederson et al.04, of Maryland]. It is the successor of

the framework Jazz provided by the same group and focuses in particular on zoomable graphical user

interfaces. There is also a version for the programming language C# available.

In general, Piccolo structures user interface elements in terms of a scene graph, i.e. as a hierarchi-

cal structure of nodes (figure 2.4). Piccolo nodes are for instance a graphic (class PPath), an image

(PImage) or text (PText)). A camera node (PCamera) represents a viewport to other nodes and can

apply transformations on them. A canvas node (PCanvas) represents a canvas where e.g. conventional

Java Swing widgets can be placed on. Piccolo also allows to create custom node types, for instance

12 2. Interactive Multimedia Applications

Figure 2.4: Structure in the Piccolo framework

by class inheritance. In that way the framework supports implementing graphics and animations for

user interfaces on a high level of abstraction.

Java and Piccolo will be used as an example platform later in section 8.1.

2.3.2 Declarative Languages

Some languages exist which aim to support declarative specification of multimedia applications. They

adhere to the viewpoint that multimedia applications can be seen as kind of documents (see sec. 2.1.3).

Interactivity and application logic are sometimes supported by the declarative language itself but often

added by external program code e.g. written in a scripting language.

Basically, it can be useful to use a declarative language in combination with an authoring tool,

analogous to e.g. visual tools for HTML. This gives the developer the possibility to edit the documents

either visually using the authoring tool or directly in the declarative code. As several declarative

formats are also defined as official standard, this would cause the effect that the authoring tool becomes

compliant to a standard. However, most existing professional authoring tools use proprietary binary

file formats yet (see sec. 2.3.3). SMIL (explained in the following) is also supported by a commercial

tool but this has not become very relevant in professional practice today.

SMIL An important standard in this category is the Synchronized Multimedia Integration Language
(SMIL, [Bulterman et al.05, Bulterman and Rutledge04]), an XML-based language defined by the

World Wide Web Consortium (W3C). It supports the integration and synchronization of different

multimedia objects into a whole multimedia application in declarative way. Basic concept is the

spatio-temporal integration of media objects. For the spatial aspect, each SMIL document specifies

multiple regions on the presentation screen. The different media objects then can be assigned to these

regions. For the temporal aspect it is possible to define e.g. sequential or parallel presentation of

different media objects.

It is possible to define event handling for user events like mouse clicks, e.g. to start and stop the

presentation. However, complex behavior it not intended in SMIL. As SMIL is an XML format it can

of course be accessed by scripting and programming languages like any other XML document, e.g.

using JavaScript. However, there is no further support for scripting language integration into SMIL

presentations. Thus, SMIL focuses on multimedia presentations but hardly on interactive applications

as considered in this work. SMIL presentations can be played with browsers and with several media

players like the RealPlayer or Quicktime Player.

There is also a commercial authoring tool for SMIL, called GRiNS [Oatrix, Bulterman et al.98],

provided by the company Oatrix which has its background in the Human-Computer Interaction re-

search group at CWI [CWI]. It allows to visually define the spatial layout and to define the presenta-

tion’s temporal structure by visually arranging media objects on a timeline. It is also possible to view

2.3 Implementation Technologies and Tools 13

���������	
���������	
���������	
���������	
 ���
����
����
����
�

�	�� �
������
�

�		�

��
���
���
���
� ��	���� �������������
��������������������������������� �	
��	
��	
��	
� �������	���������	���������	���������	������

����	
����	
����	
����	

���	����	�����	����	�����	����	�����	����	����������

������
���	��������
���	��������
���	��������
���	����������

�
������
�����	���
������
�����	���
������
�����	���
������
�����	����������

�		���
�������		���
�������		���
�������		���
��������������

�
������������
������������
������������
�������������������

������������
�����������������
�����������������
�����������������
���������

�� �����!���������� �����!���������� �����!���������� �����!��������

�	
��
���!���������	
��
���!���������	
��
���!���������	
��
���!��������

������� ����	����	����	����	 ������������������������"	��
�	"	��
�	"	��
�	"	��
�	��������

�����	�������	�������	�������	��

����	
����	
����	
����	

"	��
#�
����

������������������������"�"�"�"�$�$�$�$� �������������	�	�	�	 �"������"������"������"������������� �����
�����
�����
�����
����

�����
������
������
������
���������

%&%&%&%&
������
����
������
����
������
����
������
����

�
����������

'&���"�$�'&���"�$�'&���"�$�'&���"�$�

((((
��&�����
��&�����
��&�����
��&�����

������������������������

����	

'	���	�'	���	�'	���	�'	���	�

��������������������������������	
	
	
	
 ����)��������	
)��������	
)��������	
)��������	

Figure 2.5: MHEG-5 class hierarchy from [MHE].

and edit the corresponding SMIL code directly so that developers can choose the preferred view for a

task.

MHEG-5 Another standard in this category is the MHEG-5 standard. It is mainly used for inter-

active television. It supports audio, video, graphics, bitmaps, and text. It also provides interactive

user interface objects like buttons, sliders, or text input, as well as different kinds of events. How-

ever, detailed specification of behavior is not defined in the standard and depends on the engine which

executes the MHEG application [Marshall08]. MHEG defines a class hierarchy for multimedia appli-

cations shown in figure 2.5.

2.3.3 Authoring Tools

The third category are multimedia authoring tools. They are very important in practice as multimedia

application development is a creative, visual task and should thus be supported by visual tools. More-

over, developers like multimedia designers and user interface designers often are not familiar with

text-based declarative languages or programming languages. For these reasons, authoring tools are an

important implementation technology in industrial practice [Britton et al.97, Tannenbaum98, Engels

and Sauer02, Bulterman and Hardman05, Hannington and Reed07] and will be considered more in

detail in this work.

Advanced authoring tools allow to embed programming code into the developed application to

define the application logic. It is also possible that the authoring tools just encapsulates a declarative

language or programming language. In that case the same result can be created by either using the

authoring tool or by editing the respective language directly (see sec. 2.3.2).

An important challenge in designing a visual authoring tool is to find a suitable representation

of the application’s temporal behavior. Existing authoring tools are thus frequently classified accord-

14 2. Interactive Multimedia Applications

ing to their authoring paradigm (or authoring metaphor) used to solve this challenge. A common

classification [Boles and Schlattmann98, Henning01, Engels and Sauer02] distinguishes between:

• Frame-based (screen-based, card-based) authoring tools,

• Graph-based authoring tools, and

• Timeline-based authoring tools.

The following sections briefly introduce each of these classes. An additional analysis and com-

parison of the different classes can be found in [Bulterman and Hardman05]. A reference model for

authoring tools is presented in [Lorenz and Schmalfuß98].

Frame-based Authoring Tools

Frame-based authoring tools represent the application by different frames or screens which contain

the actual user interface content and the spatial layout. When the application is executed the different

screens are by default presented in sequential order. It is usually possible to control the order of the

frames by additional scripting code or hyperlinks. Actually, all classes of authoring tools are frame-

based but the other classes use an additional visual metaphor (flowchart or timeline) to specify the

frame’s order and duration.

The content of each frame is usually edited visually by dragging and dropping user interface

elements provided by the tool. The properties of each user interface element are displayed and can

be edited in a property window. Furthermore it is possible to add script code to the user interface

elements, e.g. to handle user input.

There are many examples which fall into this category. A classical example is Apple HyperCard
[Hyp]. In HyperCard the application is represented as a stack of cards. Each card corresponds to

a screen shown to the user. It is possible to define a background for the cards containing user in-

terface elements common to multiple cards. Supported user interface elements are images, buttons

and textfields. Buttons and textfields can be associated with scripts which are specified in the built-in

object-oriented scripting language HyperTalk [Apple88]. Scripts can either be event handlers associ-

ated with user interface events, like clicking a button or opening a new card from the stack, or functions

to be called from other elements. The scripting code can control the application’s navigation as well

as read and write the properties of user interface elements.

Over the years there has been a large number of frame-based authoring tools. Most of them have

the same basic functionality like HyperCard. A popular example with practical relevance is Toolbook
[Too] originally produced by Asymetrix and now by SumTotal Systems. It is mainly used to create

e-learning content like interactive multimedia presentations. Advanced features of the current version

9.5 are for instance: templates for various types of questionnaires, easy creation of software simulation

(e.g. for user interface prototyping) through a screen recorder and a specific simulation editor view,

and support for multiple target platforms like mobile devices.

Graph-based Authoring Tools

Graph-based authoring tools provide the same basic functionality like frame-based tools but in ad-

dition visually represent the application’s temporal behavior in terms of a graph. The most popular

example ([Britton et al.97, Hannington and Reed07] for this class is Authorware [Aut] from Adobe
(formerly Macromedia) which uses flowcharts. Thus, most authors call this class more specifically

flowchart-based authoring tools.

2.3 Implementation Technologies and Tools 15

Figure 2.6: A screenshot of Adobe Authorware.

Figure 2.6 shows a screenshot of Authorware. The window on the left hand side shows the

flowchart. The nodes in the graph are called Icons and define the content and behavior of the ap-

plication to be developed. Several icons represent content to be displayed on the application’s user

interface: A Display Icon is associated with text and graphics. The Movie Icon, the Sound Icon,
and the Video Icon represent other media content. In figure 2.6 the window on the right hand side

shows the content associated with the Display Icon selected in the flowchart. There are also prede-

fined components (Knowledge Objects) providing common functionality like multiple choice tests for

e-learning applications.

Other icons can be used to manipulate existing content: The Animation Icon allows to define

animations while the Erase Icon allows to remove content from the application’s user interface. The

Decision Icon is used to control branch the flowchart based on variable values or calculations. The

Calculation Icon is used to calculate values and manipulate data or global variables. User interaction

is supported by the Wait Icon which causes the application to wait for user input and the Interaction
Icon which is used to branch the flowchart depending on the user’s input. It is also possible to structure

the flowchart hierarchically to handle complex flows.

Authorware includes a scripting language (Authorware Scripting Language, AWS) and supports

also Java Script in the latest versions so that it is possible to script more complex functionality. Basi-

cally, the flowchart in Authorware visually defines the application’s basic behavior and can be inter-

preted as a kind of visual programming. Of course, complex applications may require much scripting

code so that the flowchart becomes less meaningful.

Similar to Toolbook presented above 2.3.3, Authorware is mainly used fro creating applications

with limited interaction. The main application areas are e-learning applications and multimedia pre-

sentations like tutorials, help systems, or product presentations. In addition, it is often used for user

interface prototyping [Britton et al.97, Hannington and Reed07].

There are only few other graph-based authoring tools besides Authorware. [Bulterman and Hard-

16 2. Interactive Multimedia Applications

Stage

Cast

Score

Tool-
bar

Property
Window

Figure 2.7: A screenshot of Adobe Director.

man05] mentions two approaches from academic area: Firefly [Buchanan and Zellweger05] provides

automatic “temporal layout” for multimedia documents based on temporal relationships which can be

specified as directed graph by the developer. Eventor [Eun et al.94] aims to combine the flowchart-

based and the timeline-based (see below) authoring paradigm. In addition, [Bulterman and Hard-

man05] mentions that the concept of Timed Petri Nets has been discussed extensively in research

literature as candidate for specifying temporal behavior, however, there is no implementation as an

authoring tool yet.

Timeline-based Authoring Tools

Timeline-based authoring tools provide the same basic functionality like frame-based tools but ad-

ditionally visually represent the application’s temporal dimension by the metaphor of a timeline.

Usually the timeline consists of several tracks. Each track is associated with some content of the

application, e.g. a media object. The timeline visualizes the periods when a certain track becomes

active, e.g. is displayed or played.

Many of todays most popular professional authoring tools are timeline-based. Director and

Flash, both produced by Adobe, are the most important examples from this category [Hannington

and Reed07]. Thus, they are both briefly introduced here. The subsequent comparison shows, that

Flash is probably the most important professional authoring tool today. For this reasons it is selected

as example platform for this thesis.

Director Figure 2.7 shows an annotated screenshot of Director. It uses metaphors from the area of

movie production. The window on the bottom right hand side shows the Cast Members. These are

arbitrary media elements to be used in the application. A Sprite is an instance of a media element (i.e.

2.3 Implementation Technologies and Tools 17

instance of a Cast Member) on the stage. The stage (top left in fig. 2.7) represents the application’s

user interface.

The timeline is called the Score (top right in fig. 2.7). It is horizontally divided into Channels
which are associated to Sprites. The channel in the score visualizes when and how long its associated

Sprite appears on the user interface. In addition, there are special Effect Channels for effects and

filters which apply to the whole Stage. In horizontal dimension the Score is divided into Frames.
A frame represents a point of time. The playback head on top of the Score determines the frames

currently displayed on the stage. It is possible to place the playback onto a frame to shows or edit its

content. Playing the application (either for testing purpose in the authoring tool or when executing

the final application) means that the playback head moves along the timeline and frame after frame is

displayed (i.e. the corresponding content on the stage).

A Keyframe is a kind of frame where the associated content on the stage has been explicitly defined

by the developer. The developer can specify any frame to be a Keyframe. The content of other (simple)

frames is automatically derived from its foregoing Keyframe and can not be directly manipulated by

the developer. It is possible to animate the content on the user interface by interpolations (called

Tweening in Director). Tweenings are always defined between two Keyframes (an example for Flash

is shown later in figure 7.2).

Director supports a scripting language called Lingo. It is an object-based programming language

and can be used to control the application, its content and their properties, as well as to add interaction

and application logic. Scripts can be added only as event handlers. However, Director triggers an

event when the application starts which can be used as kind of “main” method.

Director applications are compiled into the Shockwave format which is interpreted by a player.

The player is available as plugin for web browsers. It is also possible to export the application as an

executable file which is often used to distribute Director applications as multimedia CD-Roms.

Flash The Flash authoring tools provides very similar authoring concepts like Director. In the last

years it has become a very popular platform. The term “Flash” is often also used to denote the

technology as a whole or the format of the resulting applications. In fact, Flash is the name of the

authoring tool which uses a proprietary file format with the file extension FLA. For execution the FLA

files have to be compiled into Shockwave Flash files (SWF)3. SWF is a binary file format interpreted

by the Flash player which is available as plugin for web browsers.

Compared to Director, Flash provides exceeding support for creating 2D vector graphics and

animations. An important concept are MovieClips. Each MovieClip owns a local timeline of its own.

The frames on its internal timeline can contain any kind of content just like the application’s main

timeline, i.e. graphics, animations, audio, video, etc. It is also possible to hierarchically nest multiple

MovieClips up to any depth. Once aMovieClip has been created by the developer it can be instantiated

multiple times on the stage or within other MovieClips. In this way it is possible to create animations

of any complexity.

The scripting language in Flash is called ActionScript. The first version of ActionScript was an

object-based scripting language. It is close to the third edition of the ECMAScript standard [Ecm99].

ActionScript2 introduced in 2003 provides in addition object-oriented mechanisms. It is possible

to define class files (similar to class files in Java) and to associate them with a MovieClip. This

causes that every instance of this MovieClip is associated with a corresponding ActionScript object.

Besides, scripts can be added to frames on the timeline or as event handler to media instances on the

stage. ActionScript enables to control the whole application and its contents. It is thus possible to

3Not to be confused with the format of Director which is called Shockwave only.

18 2. Interactive Multimedia Applications

develop a complete Flash application only by programming ActionScript and without usage of the

visual authoring tool features. In the latest version of ActionScript, ActionScript 3, the step towards

object-orientation has been completed and several inconsistencies from earlier versions have been

removed.

More detailed information on the Flash authoring tool will be given later in chapter 7.1 as Flash

is selected as example platform for this thesis. The next section explains the reasons why Flash is

currently the probably most important authoring tool in industrial practice.

Director vs. Flash According to studies in industry [Britton et al.97, Hannington and Reed06, Han-

nington and Reed07] as well as personal experience, the most important authoring tools are Author-

ware, Flash, and Director. Authorware seems to be less optimal as typical example platform for this

thesis as its graph-based paradigm is quite exotic and it is also rarely used to create highly interactive

applications. The following paragraph will compare Flash and Director and give a brief overview on

their background.

Director was one of the first products of the company MacroMind which was renamed to Macro-
media in 1992 after a merge with the producer of Authorware (see sec. 2.3.3). The first version

emerged in 1997 from FutureSplash, a tool for 2D animations by the company FutureWave Software
which was acquired byMacromedia. While Flash originally addressed vector graphics and animations

only, Director has always been developed as a multimedia authoring tool. Thus, in the nineties Di-

rector was the probably most popular authoring tool for professional multimedia developers [Britton

et al.97, Hannington and Reed07].

In the end of the nineties Macromedia put their focus towards web technologies and emphasized

on Flash. After Macromedia was acquired by Adobe in 2005 this trend continues. Since 2002 only

two new versions of Director have been released (2008: version 11) while four version of Flash have

been released during the same period (2008: version 10, called Flash CS4). As mentioned above

major revisions have been made on ActionScript which has now emerged to a fully object-oriented

Java-like programming language. In general, the technology around Flash seems to move more to-

wards better support for programming and software development. An important example is the Flex
framework [Kazoun and Lott07, Gruhn07]. This framework enables conventional software develop-

ers to develop applications with Flash user interfaces in a conventional Eclipse-based development

environment independent from the Flash authoring tool. Flex is intended to be used for development

of so-called Rich Internet Applications (see sec. 4.2). However, the drawback in terms of creative

media design and user interface design is that there is no visual development support for Flex.

According to a study published by Adobe the browser penetration on desktop PCs currently lies

at already around 99% [Adobee]. Moreover, Adobe aims to establish Flash as platform for multi-

platform development4. The Flash Lite player is a lightweight version of the Flash player for mobile

phones and other devices with limited computing power (see 8.1.3).

In summary, Director is the more traditional multimedia authoring tool and is still relevant. How-

ever, there seems to be a clear trend that Adobe relies more and more on Flash. Flash provides various

new features and extensions, like ActionScript 3 or multi-platform development, which are not avail-

able for Director and seems thus more promising for the future. Thus, Flash is chosen in this work as

best example for an up-to-date professional authoring tool.

4The media informatics group takes part in a development project initiated by Adobe which makes use of multi-platform

support

2.4 Classification 19

2.4 Classification

The introduction in chapter 1 has already mentioned several typical examples for multimedia applica-

tions today. This section aims to provide a more detailed understanding of the spectrum of multimedia

applications by a suitable classification.

2.4.1 Existing Classifications

Two kinds of classifications can be found in the literature: The first type are classifications based

on the application domain. The second type are classifications based on multiple facets. Both are

explained in the following.

Classifications based on the Application Domain A large part of the existing literature on multi-

media applications addresses the spectrum of applications by lists of examples which are classified

into some larger example domains. For instance, [Boll01] lists the areas:

• Multimedia teaching and training

• Distributing and trading of multimedia content

• Mobile multimedia applications

[Tannenbaum98] identifies six application areas:

• Scientific Data Analysis, Research and Development, Experimentation, and Presentation

• Instruction in School and Elsewhere

• Business Applications

• Entertainment

• Enabling Technology for Persons with Special Needs

• Fine Arts and Humanities

As part of a detailed taxonomy (explained below) [Hannington and Reed02] proposes:

• Multimedia information systems: databases, information kiosks, hypertexts, electronic books,

and multimedia expert systems

• Multimedia communication systems: computer supported collaborative work, videoconfer-

encing, streaming media, and multimedia teleservices

• Multimedia entertainment systems: 3D computergames, multiplayer network games, info-

tainment, and interactive audio-visual productions

• Multimedia business systems: immersive electronic commerce, marketing, multimedia pre-

sentations, video brochures, and virtualshopping

• Multimedia educational systems: electronic books, flexible teaching materials, simulation

systems, automatic testing, and distance learning

While these classes are certainly typical for multimedia it still raises the question whether they

are complete and how these classes would be located within the spectrum of all possible application

software. The thesis [Kraiker07] supervised by the author of this thesis examines this question. In

a first step, Kraiker selected common taxonomies for software in general mainly aggregated from

the taxonomies in [Klußmann01, Staas04]. In a second step, Kraiker sorted the examples given in

[Tannenbaum98] into this taxonomy. It turns out that multimedia applications can be found (more or

less, depending on the interpretation) in all classes of application software.

20 2. Interactive Multimedia Applications

Faceted Taxonomies As a classification purely based on the purpose is not always sufficient some

literature proposes detailed faceted taxonomies. An often cited taxonomy can be found in [Heller

et al.01]. They propose three dimensions:

• Media Type with the values Text, Sound, Graphics, Motion, and Multimedia,
• Media Expression with the values Elaboration, Representation, and Abstraction. This refers to

the degree of abstraction, i.e. whether content is for instance represented by a lifelike photo or

by an icon.

• Context, which does not contain discrete values but a collection of categories for qualitative

questions that can be asked about a software product and categorize it in a non-quantitative way.

The six proposed categories concern the audience, discipline, interactivity, quality, usefulness,
and aesthetics of a multimedia product.

In contrast to [Heller et al.01] which focus more towards aesthetics, the taxonomy in [Hannington

and Reed02] assumes the viewpoint of development. Thus, it is the most important for this thesis.

It provides a large number of facets to describe all aspects which might influence the development

of a multimedia application. Altogether they propose 21 facets together with possible values. The

facets span from general facets used in other taxonomies, like the application domain, over facets like

the delivery target platform (online, offline, etc.), navigation (linear, hierarchical, etc.), security re-

quirements (access levels, authorization, etc.), up to very detailed properties like used media formats

(JPEG, GIF, etc.), user interface widgets (button, checkbox, etc.) or authoring tools used for devel-

opment (Flash, Director, etc.). A listing taken from [Hannington and Reed02] showing all facets and

possible values is attached in appendix A.

The facets by [Hannington and Reed02] from above provide a very detailed understanding on

properties in multimedia application development. Taking them all into account would be useful for

instance to compare two concrete existing multimedia products. However, its level of detail is much

too high to achieve a compact overview on the whole spectrum of multimedia applications. Thus,

as intended by the authors in [Hannington and Reed02], it is possible to customize the taxonomy by

selecting only those factes which are most important for our purpose. The next section elaborates such

a taxonomy for this thesis.

2.4.2 A Classification for this Thesis

For this thesis it seems useful to aim for a taxonomy which covers the whole spectrum of multimedia

applications from the viewpoint of development but is still manageable. A central observation in the

foregoing sections was that multimedia application development is strongly affected by two different

fields, media design and software programming. Many tasks, developer roles, tools, implementation

technologies, etc., depend on the expression of these two aspects for a given application. Thus, it is

useful to use this central theme also as main idea for a compact taxonomy.

A reasonable proposal by [Kraiker07] is to use the two facets Domain and Interactivtiy for this

purpose. When looking at [Hannington and Reed02] (appendix A), it turns out that indeed most other

facets are less important for our purpose: The taxonomy for multimedia applications here should base

on the conceptual properties of applications themselves, i.e. their requirements on a certain level of

abstraction. However, most facets in [Hannington and Reed02] actually describe either:

• the concrete solution chosen by the developers (solution space, navigation, interface, program-
ming),

• the concrete development itself (operations, design technique, authoring tools, skills),

2.4 Classification 21

• or technical details (state, duration, size, format).

Thus, it is reasonable to omit them here. Delivery Platform and Security both indeed describe appli-

cation requirements but they are considered here as too specific to really influence the development in

general.

The remaining two facets from [Hannington and Reed02] are Media and Origin. Media means the

media type used in the application. This facet indeed influences the development process as e.g 3D

graphics requires very different experts, tools, and concepts than e.g. a mainly text-based application.

Origin refers in [Hannington and Reed02] to the origin of a media artifact with the values: Acquired,
Repurposed, and Created. This also influences the development as it makes a difference whether

media artifacts must be created in a possibly very complex design process or whether they are just

taken from an external source and must be integrated (only).

For sake of simplicity it is possible here to omit the value “Repurposed”: Either it requires some

effort to adapt the media then it is similar “Created”. Otherwise it is close to “Acquired”. Thus,

for our purpose the values are substituted by two more generic values: Received means that a media

object must not be designed within the development process but is taken from an external source, like

another company, an existing application, or by the user at runtime (e.g. in a video editing application

the videos are provided by the user herself). Designed means that the media object is designed as part

of the development process.

However, there is an additional value which is useful in our context which can be called Generated.
An example is Google Maps which contains complex graphics. This graphics is neither designed by

graphic designer nor taken from an external source – it is generated directly from geographical data

instead. This makes a significant difference, as it requires no media design but complex programming

instead.

In summary, we the following facets are used, in order of their importance:

Domain Gives a basic idea on the application’s purpose and its required domain concepts. Possible

values: Business, Information, Communication, Entertainment, Education (see sec. 2.4.1).

Interactivity Influences the degree of programming vs. authoring. Possible Values ([Hannington and

Reed02, Aleem98, Heller et al.01]):

• Passive: The user has no control like in a movie.

• Reactive: Provides limited response for the user within a scripted sequence. For example

the user can select between some predefined graphics.

• Proactive: Allows the user to play a major role in the design and construction of situa-

tions, typically by manipulating values. For instance, the user can initiate changes to the

properties of a graphics, like color, shape, rotation, position, etc.

• Directive: Allows the user to control the content of the application (in addition to manip-

ulate values). For instance, the user can create her own graphics.

Media Origin: Influences design vs. programming vs. integration only. Possible Values: Received,
Designed, Generated.

Media Types: Influences kind of design/programming/integration. Possible Values: Audio, Video,
Graphics, 2DAnimation, 3DAnimation, Text, Image.

Table 2.1 shows the spectrum of multimedia applications in terms of the classification. The table

columns and rows represent the first two facets, ‘Domain’ and ‘Interactivity’. In the Interactivity facet

22 2. Interactive Multimedia Applications

Directive
Authoring
Tool CSCW System

City-building
Game

Electronic
Circuit Simu-
lation

Proactive
Car
Configurator

Navigation
System

Video
Conference

Car Racing
Game

Flight
Simulator

Reactive
Online Shop Encyclopedia Media Player Medical

Course

Interactivity /
 Domain Business Information Communication Edutainment Education

Media Origin: Received
Designed
Generated

GG

G

G D

DD R

D

D

DD G

R

R

RR

R
D
G

Table 2.1: Overview on the spectrum of multimedia applications

the values ‘Passive’ has been omitted for simplicity as this work is on interactive applications. The

values of the third dimension, ‘Media Origin’, are indicated inside the table cells by the letters ‘R’

for ‘Received’, ‘D’ for ‘Designed’, and ‘G’ for ‘Generated’. The fourth dimension, ‘Media Type’, is

omitted for simplicity, as it has the lowest influence here.

The table contains an example for each class defined by the primary two facets. Of course, clas-

sifying the examples is to some extent subjective. In particular, the media origin often depends on

the detailed functionality. Often, an application combines two or three types of media origin. For in-

stance, the media in authoring tool are mainly provided by the user (e.g. a video in Flash) or generated

(e.g. graphics created in Flash). But an authoring tool could additionally provide predefined media

which then might be designed. Similarly, the media origin for other applications depends on the de-

tailed example. Nevertheless, it is not that much important here which kind of application uses which

media origin but rather that all kinds of media origin frequently occur and are often also combined

within the same application.

One can see in the table that applications using “generated” media are mostly proactive or directive

which seems quite logical. For communication applications no “reactive” example was found. This

makes probably sense as for communication software the content must by definition be influenced

by the user. In turn, there is no “directive” examples for information software, as such examples are

usually classified as communication software. However, again the classification is quite subjective.

In general, it is not the intention here to provide a new contribution in terms of the preciseness

of a taxonomy but rather to provide a reasonable and meaningful overview. It will be used later in

section 8.3.3 to evaluate the solution proposed in this thesis.

2.5 Conclusions for this Thesis

This section specifies interactive multimedia applications as understood in this thesis by collecting the

conclusions from the foregoing sections.

Depending the kind of application, the previous sections elaborated the following properties:

2.5 Conclusions for this Thesis 23

• A multimedia application basically is any application with a multimedia user interface (sec-

tions 2.1.3 and 2.4).

• A multimedia application as understood here directly serves the user and is not just infrastruc-

ture software (sec. 2.2).

• The term “multimedia application” does not necessarily mean a multimodal application (sec. 2.1.2).

The term multimedia still needs some more discussion here as this thesis assumes the viewpoint of

development. From that point of view, an interactive multimedia application usually involves media

design and user interface design (sec. 2.1.3). It is implemented with specific implementation support

for multimedia (sec. 2.3). However, when looking at advanced multimedia applications, media ob-

jects are not always designed as part of a media design process but can also be generated at runtime

(sec. 2.4).

In contrast some to existing definitions for “multimedia” (sec. 2.1.1), it is not so important here,

whether and how many different media types are integrated (e.g. one continuous and one discrete) but

much more the integrative aspect itself (sec 2.2). Moreover, in contrast to some document-oriented

points of view, integration is not restricted to spatio-temporal behavior but rather concerns also media

objects and application logic.

This leads to the following definition:

An interactive multimedia application is any application with a multimedia user in-

terface which means that

• it has a non-standard user interface but uses (to a relevant amount) media objects

like audio, video, image, graphics, 2D- and 3D-animations,

• which are tightly coupled to the application logic,

• and are possibly designed in a media design process.

Thereby, the coupling between media objects and application logic is may include:

• Creation, deletion, modification of media objects by application code at runtime,

• Creation of events from media objects propagated to the application logic (i.e. usage of media

objects for interactivity).

24 2. Interactive Multimedia Applications

Chapter 3

Problem Statement and Proposed
Solution

This chapter provides an overview over the approach presented in this thesis. The first section dis-

cusses the problem to be addressed in this thesis based on literature in particular existing studies on

industrial practice. It turns out that multimedia application development still lacks of adequate devel-

opment concepts as known in software engineering. The section also outlines the specific challenges

which clearly distinguish multimedia application development from other areas. On that base, the

second section discusses the solution space and identifies a model-driven development approach as

the most promising solution. The third section briefly introduces the main concepts of model-driven

development necessary to understand the subsequent chapters. Finally, the fourth section briefly illus-

trates the main ideas of the solution by an example application which is also used as running example

in the further parts of the thesis.

3.1 Current Problems in Multimedia Application Development

Multimedia has still not found its way into common applications and many multimedia applications

are still far away from its full power. One reason for this is certainly the still very high costs and

efforts required for creation of sophisticated and fully integrated multimedia user interfaces [Bulter-

man and Hardman05]. Research has mainly focused on multimedia services and system technologies

like network and databases – which are certainly necessary foundations – but too sparsely addressed

sufficient support for more advanced multimedia application development [Engels and Sauer02]. An

earlier article from industry illustrates the situation: In “The Killing Fields” [Kozel96] Kathy Kozel, a

popular multimedia developer and evangelist for the authoring tool Director heavily complains about

the situation in multimedia development where the total absence of systematic methods and processes

leads to inscrutable projects and excessive long working times.

This is to some extent approved by the work by Kerstin Osswald [Osswald03] who provided one

of the most in-depth studies focusing on companies developing interactive multimedia applications in

Germany. From 3000 candidate companies 30 were selected based on rankings to find those with ei-

ther the highest business volume in this area or which stand out for their creative innovations. Finally,

22 companies agreed to take part in semi-structured interviews which took about 2 hours. The study

examines the development process and its specific tasks and artifacts in the multimedia companies. As

it was found that no adequate multimedia development process exists, Osswald integrates the identi-

fied tasks and artifacts with an iterative development process from conventional software engineering

26 3. Problem Statement and Proposed Solution

like the Rational Unified Process [Jacobson et al.99].

As it turned out in the study, companies are basically willing to use more systematic develop-

ment concepts but in practice use, if any, mainly very basic or legacy concepts – probably because

of the lack of concepts well adjusted for multimedia development. For example, more than 80% of

the respondents stated to apply the waterfall model. On the other hand, project size and complexity

are considerably increasing which suggests that optimized and systematic methods will be even more

important in the future. The average working time per week was found to be still between 50 and 60

hours. As Osswald summarizes, companies themselves often call their process as ad-hoc implementa-

tion. With the increasing size of today’s projects (project budgets exceeding one million Euros are no

longer rare) and their increasing complexity causes that developers get totally lost within the bunch of

development tasks (see preface in [Osswald03]).

Since the upcoming of larger multimedia applications in the 90’s research literature frequently ad-

monishes the missing systematic approach in multimedia development, e.g. [Dospisil and Polgar94],

[Rahardja95], [Arndt99], [Hirakawa99], [Rout and Sherwood99], [Gonzalez00], [Aedo and Díaz01],

[Engels and Sauer02]. A comprehensive summary is e.g. provided in [Balzert and Weidauer98]: One

of the main problems is the missing support for pre-implementation phases which leads to an ad-

hoc implementation. This leads to unstructured results which are very hard to understand, maintain,

and extend. There are also no sufficient concepts which help to build a bridge between the initial

requirements and the implementation. Furthermore, the results of requirements are quite informal,

either textual or in form of informal diagrams like storyboards, whereby they can easily become am-

biguous, inconsistent, on different levels of abstraction, difficult to process and can not be used for

(semi-)automatic transitions. In all, according to [Balzert andWeidauer98] the situation in multimedia

development can be compared to the state-of-the-art in software engineering in the early 70s. [Engels

and Sauer02] states:

From a software engineering perspective, the problem with the current state of multime-

dia application development is not only the absence of sophisticated, yet practical multi-

media software development process models, but also the lack of usable (visual) notations

to enable an integrated specification of the system on different levels of abstraction and

from different perspectives.

and comes to the conclusion that

The implement-and-test paradigm used during multimedia authoring resembles the state

of software development before leading to the software crisis of the 1980s.

Some authors move a step further and introduce the term of hypermedia crisis1:

Hypermedia development is currently at the stage software development was at thirty

years ago. Most hypermedia applications are developed using an ad hoc approach. There

is little understanding of development methodologies, measurement, and evaluation tech-

niques, development processes, application quality, and project management. [. . .] We

are potentially about to suffer a hypermedia crisis. [Lowe and Hall99]

Such statements are heavily criticized by Lang, who has already been co-author of one of the

largest studies so far, described in [Barry and Lang01], which results were more ambiguous. He

performed a new study together with Fitzgerald [Lang and Fitzgerald05] to find out 1) the extent

1The term hypermedia here refers to web and multimedia applications, see section 2.1.4. Additional information about

the companies examined here is also given at the end of this section.

3.1 Current Problems in Multimedia Application Development 27

Hybrid, customized, or proprietary in-house method or approach (not further specified) 23%

Traditional “legacy” software development methods and approaches or variants thereof, such

as Structured Systems Analysis and Design Methodology (SSADM), Yourdon, Jackson Struc-

tured Programming (JSP), System Development Life Cycle, or Waterfall

22%

Rapid or agile development methods and approaches, such as Rapid Application Development

or Extreme Programming

18%

Approaches that focus on the use of tools and development environments, such as PHP, Java,

etc.

15%

Object-oriented development methods and approaches, such as Rational Unified Process or

object-oriented analysis and design

11%

Approaches that focus on the use of techniques, such as Storyboards, Flowcharts, Wireframes,

or UML

8%

No method used or development approach is ad-hoc 8%

Specialized nonproprietary methods for Web and hypermedia systems development, such as

Fusebox, Web Site Design Method (WSDM), or OOHDM (see section 4.2)

5%

Table 3.1: Applied development methods in web and multimedia industry [Lang and Fitzgerald05]

to which the problems characterizing the alleged “hypermedia systems development crisis” actually

exist in practice, and 2) which, if any, mechanisms developers use to guide and control hyperme-

dia systems development. Therefore they sent questionnaires to web and multimedia development

companies in Ireland which were responded by 167 companies. The findings to question 1) were

that according to the questionnaires there is no evidence for a “crisis”. However, one problem of the

survey, also described by Lang, is that there is no evidence that the answers of the respondents are

too optimistic. (Most participants estimated different development aspects with “minor problems” or

“moderate problems” instead of “no problems” or “major problems”).

The questions for the study’s second issue were open ended and provided very ambiguous results.

Table 3.1 shows the answers structured into categories like in [Lang and Fitzgerald05].

When asked about their general opinion on structured development methods, 94% agreed that

planning is essential, and 80% agreed that plans and working methods should be clearly documented.

69 % agreed that ad-hoc methods generally result in poor systems. The suggestion that “documented

working methods are pointless” was firmly rejected by 79%.

Lang and Fitzgerald conclude that most companies do already use software engineering concepts

and that major problems in web and multimedia development do not exist. According to their inter-

pretation in this article, there is neither a hypermedia crisis nor are academic hypermedia approaches

accepted in industry. They summarize that the academic view of this area is far away from industrial

practice.

One can object that the survey findings about approaches applied in industry are difficult to inter-

pret. For example, stating a tool or programming language as applied “development approach” can

lead to the assumption that the company does not really apply an approach besides ad-hoc program-

ming. “In-house approach” is also difficult to interpret as well. In particular, the usage of “legacy”

software engineering methods, not adapted to web and multimedia application area, suggests that,

even if it might work, there is at least much space for optimization.

These objections are approved by another more in-depth follow-up study by Lang and Fitzgerald

[Lang and Fitzgerald06] where they examined more in detail the applied approaches and methods.

They find out that “old” software engineering concepts are mainly used

28 3. Problem Statement and Proposed Solution

[. . .] even though a substantial cohort, including some who actually use such methods,

consider them somewhat impractical. [Lang and Fitzgerald06]

On the other hand

The level of formality of development processes was found to be negatively correlated

to the level of severity of problems raised by a number of selected development issues,

suggesting that formalized processes and procedures can help reduce the incidence of

such issues. [Lang and Fitzgerald06]

In summary, the truth certainly lies somewhere in between. The situation in multimedia and web

development might be not as bad as sometimes described. Clearly, many companies are successful

since many years and do also improve their development processes over time. On the other hand,

well-structured and more formal concepts are clearly seen to be valuable and existing methods are

definitely not optimal. Thus, despite of the personal opinion on the situation in industry (“crisis”

or just a need for optimization), there is clearly space for optimization by providing more suitable

methods for web and multimedia development.

As Lang and Fitzgerald underline, new approaches must be practically usable [Lang and Fitzger-

ald06]. According to them this requires easy usage, good documentation, and a good reputation in

industry. While the last point is often difficult to achieve for academics and also professional tool sup-

port can only be provided by a respective tool vendor company, at least ease of use and applicability

clearly must be ensured as much as possible by academic proposals.

The studies of Lang and Fitzgerald includes web and multimedia companies. In the last study the

ratio of multimedia companies was about 14%2. While conventional standard web applications are

very well understood today and already comprehensive modeling approaches exist (see section 4.2),

the conclusions above are even more important in multimedia development, as this area comprises

additional complexity. The following two sections discuss the two essential challenges specific for

multimedia application development.

3.1.1 Interdisciplinary Roles

The development of interactive multimedia applications is characterized by the integration of know-

ledge, tools, and experts from different areas. For example [Tannenbaum98] describes that multimedia

production includes among others: acting, animation, arts and graphics, audio recording and editing,

computer programming, copyright law, directing, engineering, graphic design, human factors anal-

ysis, instructional design, legal analysis, marketing and packaging, morphing, motion videography,

networking, producing, script writing, software design, stage and set design, still imaging, story-

telling, systems analysis, technical writing, text design, text formatting, text layout, user interface

design, video editing, and virtual reality.

While some aspects are obviously part of conventional application development as well, many of

them are specific for multimedia objects. Some authors ([Mühlhäuser and Gecsei96][Gallagher and

Webb97]) initially distinguish between two kinds of categories: software design and media design.
But today it is commonly accepted that user interface design is an additional own aspect of interactive

application development [Dix et al.03, Shneiderman and Plaisant04]. It is not necessarily part of

software and media design and should thus be explicitly considered as an own category ([Gonzalez00,

Wolff05]), in particular as the user interface is eminently important in multimedia domain.

Thus, in this thesis the development tasks are subsumed into three categories of design:

2companies stating “E-Learning/CBT” or “multimedia” as their primary business

3.1 Current Problems in Multimedia Application Development 29

Software Design refers to development tasks required to conceive and produce the conventional soft-

ware part of the application, i.e. the application logic, according to standard software engineer-

ing principles like in [Sommerville06, Balzert98]

User Interface Design refers to development tasks required to conceive and produce the user inter-

face of the application according to principles of human-computer interaction like described in

[Dix et al.03, Shneiderman and Plaisant04].

Media Design refers to media-specific development tasks required to conceive and produce the media

objects and their integration.

Of course, the detailed tasks of each category depend on the company and the concrete project.

In particular, media design includes very different tasks depending on the specific media types, e.g.

video production or 3D graphics design. A fourth category of tasks, usually part of any kind of project,

is project management which includes tasks required for the coordination between the different de-

veloper groups (see more detailed developer roles provided by Osswald [Osswald03]). Some authors,

like Gonzalez [Gonzalez00], mention additional tasks like systems design which includes the design

of hardware components. Such low-level tasks are not considered in this work as the focus here lies

on the abstraction levels required for application development.

The coordination of the different developer groups and their artifacts integration of their different

results is clearly a requirement specific for interactive multimedia applications. It is often claimed

as one of the main challenges which have to be addressed by multimedia application development

approaches (e.g. [Morris and Finkelstein96, Hirakawa99, Rout and Sherwood99, Hannington and

Reed02]). Balzert [Balzert and Weidauer98] reports by own experience that the implementation of

interactivity by different teams is tedious and often inconsistent. When multimedia user interfaces

become more sophisticated, the dependencies between media objects, user interface, and application

logic increases. For example, media objects can be used for additional user input, e.g. by clicking

on an image or dragging and dropping an animation. In particular, media objects do not only act as

monolithic objects but require a specific inner structure which can be connected to application logic.

For example, the user can trigger functionality by selecting a specific part of a graphic, e.g. in a map.

In turn, the application logic often must be able to access inner parts of a media object, for instance

when some parts of an animation are moved according to application logic (example see figure 3.8).

Synchronization between media objects may require knowledge about their inner structure as well,

e.g. if some action on the user interface should be triggered while a specific scene within a video is

displayed.

Such interrelations are a critical bottleneck within the application development and require careful

coordination between the different developer groups. Analogous to conventional software develop-

ment it is mandatory to specify the “interfaces” between the different artifacts which should become

connected. “Interface” here means not necessarily an interface or component model on implementa-

tion level – in is already an significant help if there is a systematic for a fix agreement between the

developer groups how their results must be composed so that they fit together. Development support

for specifying these interfaces on an adequate level of abstraction can greatly increase efficiency in

development and maintainability of the application.

In summary, a development method for multimedia applications should support the integration of

media design, user interface design, and software design.

30 3. Problem Statement and Proposed Solution

3.1.2 Authoring Tools

Usually multimedia applications are developed using authoring tools [Engels and Sauer02, Bulterman

and Hardman05]. They are necessary for the creative design tasks in media design and user interface

design. A well-known problem of authoring tools is the trade-off which has to be made: “On one hand,

a tool with programming structure built-in may ease software maintainability, but it entails harder and

longer learning curve for the end users, who are likely to be the main users of the tools. On the other

hand, an authoring tool that is free of programming structure may be intuitive and easy to use, it is

also susceptible to maintenance problems if the software is not properly designed.” [Rahardja95].

Authoring tools like Flash, which is probably one of the most widespread and advanced profes-

sional authoring tools today, show that this situation has not changed today. On the one hand, Flash

is very well established because of its support for creative design and it is used by many user inter-

face and media designer for various tasks. On the other hand, structuring the application is still very

difficult. Script snippets can be added directly to objects on the user interface, which allows quick

and easy specification of functionality and event handling. With increasing number of user interface

objects, the script snippets are scattered all over the application. The latest versions of Flash allow

also object-oriented code in separate class files. However, by the historic evolution of Flash, object-

oriented concepts can not always be used consistently. Often it remains unclear how to integrate

object-oriented code with the different kinds of user interface objects in a structured way. Even struc-

turing the application to some degree requires good knowledge of software engineering principles

and very disciplined adherence to conventions in Flash. As already noticed by [Rahardja95] shifting

the problem to the developer by at least enabling him to apply patterns and templates can reduce the

problem but can not be the final solution. For other authoring tools like Director, where the integrated

scripting language has not evolved much, the situation is even worse.

Another important problem of authoring tools (also described by [Balzert and Weidauer98]) is the

lack of version and configuration management which is still a problem today even in professional tools

like Flash and Director. The version management in Flash does only allow locking of files, but does

not provide any other standard functionality like file comparison or file recovering. The situation is

similar for Adobe Director. Use of external version management tools can not improve this situation

significantly, because authoring tools usually use a proprietary binary file format.

Another problem to be mentioned is the large dependency on the company producing the authoring

tool as changes of the implementation platform requires implementing the application completely new.

In summary, development support for multimedia applications must support authoring tools as

they are very well established for the creative design tasks, but it should provide support for better

structuring and maintenance of the applications.

3.2 Analyzing the Spectrum of Possible Solutions

This section discusses possible solutions and elaborates a solution approach. As discussed in sec-

tion 3.1 there is absolutely a need for a better integration of software engineering principles into

multimedia development. Possible solutions must fit to the specific properties and challenges of multi-

media development, which are in particular their highly interdisciplinary character and the integration

of authoring tools.

Formal Methods A classical branch in software engineering are formal methods based on mathe-

matical logic like the general purpose language Z [Potter et al.96] or algebraic specification languages

3.2 Analyzing the Spectrum of Possible Solutions 31

[Wirsing90, Broy et al.93]. They allow a very well-structured development process with a high degree

of automation and validation of the developed system. Some formal approaches for multimedia de-

velopment have already been proposed [Blair et al.97, Sampaio et al.97]. The disadvantage of formal

methods is the high effort required for learning as well as for applying the method, which results as

trade-off from the feasibility of automatic validation. This will pay off mainly for safety critical sys-

tems which are only a very small part of multimedia systems. Furthermore, the focus of a multimedia

application often lies on weak, non-functional requirements regarding aesthetics, realistic effects, ef-

ficient information transfer, and usability. They are difficult to measure and formalize – if at all, then

only with a very high effort. The already existing methods in multimedia development, like prototyp-

ing and user tests, are usually more adequate for validating such requirements. Finally, like discussed

in section 3.1, approaches for multimedia development must be lightweight and easy to use. Formal

methods will hardly be accepted in this area.

Agile methods Agile methods [Poppendieck and Poppendieck03, Eckstein04] can be regarded as

counterpart of formal methods in software engineering. By their lightweight character and their close

relationship to prototyping and user tests, they are obviously candidates to be applied in multimedia

development. As these approaches do not require any high-level design artifacts like models (in terms

of a pre-implementation design like with UML), choosing an agile approach would cause that the

problem of missing models becomes obsolete. Also, agile approaches fit optimally to high occurrence

of requirement changes in multimedia development. However, there are also some serious difficulties

when applying such approaches to multimedia application development.

In the annually course “Multimedia Programmierung” (multimedia programming) at the Univer-

sity of Munich, supervised by Prof. Hußmann and assisted by the author of this work, students have

to develop a Flash application over three months in teams of 5 to 7 people. In the 2004 edition we

conducted an experiment and forced the students to use an agile development process. The concrete

agile approach to be applied was Extreme Programming (XP, [Beck and Andres04, Stephens and

Rosenberg03]). In its original version, XP uses twelve interwoven practices which have to be adhered

strictly in order to compensate the missing formality and ensure the quality of process and results.

While some of these work well very in multimedia projects, others are hard to apply.

An important practice is testing. XP requires writing automated tests before implementing a

feature (unit tests and functional tests). At any time of the project the unit tests have to run for

100%, and all of them have to be run every time new code is added or code is changed. This is also

interwoven with the practice of refactoring which requires that when adding new code the overall code

is (if necessary) re-structured to have at any time a well-structured overall system which is as simple as

possible and does not contain duplicate code. These two XP practices are essential to compensate the

missing design specification. However, in multimedia programming automated tests are only possible

to a limited extent. As explained above, the requirements are often weak and can not be measured

directly. Thus, refactoring becomes more difficult as well. In addition, refactoring is much more

difficult when using multimedia authoring tools, as (see above) structuring the application in general

is difficult and requires specific expert knowledge and additional conventions. Also, other issues of

multimedia, like missing version management systems, are problematic as well. Thus, it is doubtful

whether the code-centric practices of XP can really ensure a good structure of the overall application.

Another problem is that the production of complex media objects can require a relatively long

period of time. This constricts the XP ideas of very small, manageable increments and iterations. In

fact, multimedia developers often have to work in parallel for longer periods which contradicts the

XP ideas and rather profits from preceding specifications. In general, XP does not provide specific

32 3. Problem Statement and Proposed Solution

support for the problem of integrating the interdisciplinary experts in multimedia development.

Altogether, XP has some striking commonalities with multimedia development but in fact the

practices are too much code-centric to be applied directly to multimedia-specific conditions and di-

rectly improve the existing situation.

Approaches based on Visual Modeling Languages Another conventional approach in software

engineering considered to be in the middle between formal methods and extreme programming are it-

erative processes including a software design phase where the system is specified in a semi-formal way

e.g. using visual modeling languages. A typical example is the Rational Unified Process (RUP, [Ja-
cobson et al.99]) combined with the Unified Modeling Language (UML, [Rupp et al.07, Hitz et al.05]

see also section 3.4). The intensive usage of modeling languages has gained increasing popularity in

the last decade and is sometimes referred to as de-facto standard for object-oriented software devel-

opment.

An adoption of RUP specific for multimedia applications, called the SMART process (see sec-

tion 3.1) has been introduced by [Osswald03] based on her comprehensive study. However, the main

problem – as indicated by research literature as well as by the critical study of Lang and Fitzgerald –

lies in the missing modeling concepts for multimedia applications. UML is not sufficient because it

does neither support concrete concepts for modeling the user interface (see sec. 4.1) nor for modeling

media. Thus, research literature claims to introduce customized modeling concepts and some first

approaches have already been proposed (see section 4.3).

Models provide – at least partially3 – the advantages of formal methods like ambiguousness of

specifications and the possibility of their automatic processing e.g. for validation or code generation

purposes. On the other hand they are more accessible for developers by their representation as visual

diagrams. (For example UML class diagrams are frequently used also by developers without specific

software engineering knowledge.) As models provide a relatively clear and abstract overview they

are in general very well suited for integration and communication between developers. In multimedia

projects models can be used to act as a kind of contract which specifies the interfaces for the different

artifacts of the different developer groups.

An important concept is the ability to automatically generate code or code-skeletons from models.

While usage of models in general is often referred to as model-based development, the so-called

model-driven development goes a step further and proposes to use various models throughout the

whole development process up to the final implementation which is completely generated from the

models. The upcoming field of Model Driven Engineering proposes tools and standards for model-

driven development which provide additional advantages for the development. Besides, advanced

tool support these include e.g. well-defined concepts for maintaining, customizing, and combination

of modeling approaches and code generation. An overview on model-driven engineering is provided

in the next section 3.4.

Automatic code generation from the models can not only improve significantly the efficiency in

the development but also can increase the quality as the generated code adheres consistently to the

specification. Furthermore, specific expert knowledge about the implementation platform can be put

into the code generator so that it is automatically available for all future projects. This is in particular

very helpful for multimedia projects where implementation platforms, like authoring tools, require

very advanced knowledge about structuring the code.

Often, modeling languages provide platform-independent models. From those, models for differ-

ent specific platforms can be derived which are finally transformed into platform-specific code. This

3Modeling languages are often referred as semi-formal as often their semantics is not defined formally, see sec. 3.4

3.3 Proposed Solution: A Model-Driven Approach 33

means that the general concepts for an application have to be specified only once and can be reused for

an arbitrary number of implementation platforms. For multimedia applications this will be even more

important in the future as visions like ubiquitous computing [Weiser99] suppose that user interfaces

run on a large spectrum of different devices and platforms. For this reason model-based approaches

are considered as very promising for development of future user interfaces in general [Myers et al.00].

Platform-independent models also help for the problem described by Balzert that multimedia appli-

cation developers are highly dependent from authoring tools vendors and must completely re-develop

applications if support by a specific authoring tool becomes insufficient.

In summary, the discussion shows that among conventional approaches from the software engi-

neering area a model-driven approach advantages clearly seems to prevail. Certainly, other concepts,

like Agile Development approaches, might be useful for multimedia development as well, if adequate

adaptations could be found. However, the study of Lang and Fitzgerald [Lang and Fitzgerald05]

suggests that the general acceptance for more formal approaches is not as low as expected. A promis-

ing future direction can be Agile modeling Processes [Rumpe04, Rumpe06] which might achieve a

combination of both advantages for multimedia development.

The following section discusses the cornerstones of an adequate model-driven development ap-

proach customized for multimedia applications.

3.3 Proposed Solution: A Model-Driven Approach

This section shows how a model-driven development approach can meet the challenges of multimedia

applications development identified in section 3.1. The approach provides a visual modeling language

as base for the communication between the different developers groups. As described in chapter 4,

various modeling approaches already exist in the fields of media design, user interface design, and

software design. This work is based on these approaches, reuses established concepts where possible,

and integrates the concepts from all three areas. In that way, the models allow the media design-

ers, user interface designers, and software designers to specify the interfaces and interrelationships

between the different aspects of the application.

The proposed modeling language, called Multimedia Modeling Language (MML), is platform-

independent and object-oriented. Furthermore, it enables code generation for various platforms.

Thereby it strongly adheres to the concepts of model-driven engineering, enabling relatively easy

adaptations or combination with more specific existing modeling concepts e.g. for context-sensitive

user interfaces (see section 4.1).

A core idea of the approach is the integration of authoring tools. From the models it is possi-

ble to generate code skeletons customized for the authoring tool which can then be directly loaded

and processed within the authoring tool. The overall structure and the interfaces and relationships

between user interface elements, media objects and application logic can be specified in the model

and be generated automatically in a consistent way. The concrete creative design and layout and the

implementation of the detailed behavior is not specified within the model – instead, just placeholders

are generated which have then to be filled out in the authoring tool using its established features for

creative design and the platform-specific code constructs for the detailed behavior. So, models and

authoring tools are both used for what they are best at: models for structuring, communicating and

specifying the overall structure and the interfaces between different parts, authoring tools for creative

design. In this way the advantages of models and authoring tools are combined. As mentioned above,

the proposed code generators can also contain specific expert knowledge about the implementation

platform.

34 3. Problem Statement and Proposed Solution

The provided modeling language is as lightweight as possible. The concept to restrict modeling on

the overall application structure, as described above, contributes to this goal very well. Furthermore,

also the detailed behavior is not specified in the models, as this is much more efficiently realized

within the authoring tools or programming environment. Anyway, an efficient implementation usually

requires platform-specific constructs which would be very tedious to specify within the models. In

particular for multimedia applications the code often causes effects on the user interface. Concrete

algorithms and parameter values to achieve the desired effects can often not be specified just on a

theoretical base but have to be found out by try and error and by examination of the running system.

Thus, such details are omitted in the models. The models are reduced as much as possible to the

essential elements to keep them as easy to use as possible. In that way the approach adheres to the

requirements of Lang and Fitzgerald [Lang and Fitzgerald05] and [Voss et al.99] (see above) which

postulate that solutions must be lightweight and easy to use.

In summary, the approach introduced in this thesis provides the following solutions to address the

specific problems and challenges in multimedia application development:

1. Integration of media design, user interface design, and software design into a single, consistent

modeling approach.

2. A level of abstraction which enables code generation but ensures a lightweight approach.

3. Advanced integration of authoring tools.

The following section first introduces the current state-of-the-art in model driven development and

the respective area of model driven engineering. Afterwards an illustrating example scenario for the

proposed approach is shown. Both sections build the background for the more detailed descriptions

in the following chapters of this work.

3.4 A Short Introduction into Model-Driven Engineering

This section briefly introduces terms like models, model-driven development, and related terms which

are important later in this thesis. It briefly summarizes the basics and the current state-of-the-art in

this area.

3.4.1 Models, Metamodels, and Modeling Languages

Models are an essential concept in all scientific areas.

Modeling, in the broadest sense, is the cost-effective use of something in place of some-

thing else for some cognitive purpose. It allows us to use something that is simpler, safer

or cheaper than reality instead of reality for some purpose. A model represents reality for

the given purpose; the model is an abstraction of reality in the sense that it cannot repre-

sent all aspects of reality. This allows us to deal with the world in a simplified manner,

avoiding the complexity, danger and irreversibility of reality. [Rothenberg89] (according

to [Bézivin05])

Examples are a human blood circulatory model in medicine or a globe for geographical informa-

tion. Both represent only certain aspects of the system. For example, it is not possible to use a globe

for measuring the temperature on a certain point on the earth. In addition, models show given aspects

3.4 A Short Introduction into Model-Driven Engineering 35

AbstractSystemPhysicalSystem DigitalSystem

System

representationOf

model
*

systemUnderStudy
*

{incomplete}

Figure 3.1: RepresentationOf relationship according to [Favre04c]

MetaMetaModel

MetaModel

Model

context MetaMetaModel inv:
self.conformsTo = self

-- A MetaMetaModel
-- conforms to itself

conformsTo

1

*

Figure 3.2: ConformsTo relationship according to [Kurtev et al.06]

of a system at different levels of abstraction. For example, geographical maps exist in many different

scales for different purposes (see [Bézivin05]).

A short and common definition of models is provided in [Seidewitz03]:

A model is a set of statements about some system under study.

A model itself can also be interpreted as system. Thus, a model can be represented by another

model, e.g. on another level of abstraction. Analogously, a map can also be seen as a representation

of another more detailed map of the same territory. Figure 3.1 shows these relationships: A system

can be a model of another system. Kinds of systems include physical systems, digital systems, and

abstract systems. The relationship between a model and the system it represents (system under study)

is called representationOf.
Each geographical map requires – at least implicitly – a legend, to interpret the elements in the

map. This concept can be generalized and applied to models which must also conform to a speci-

fied modeling language. According to the spirit in the modeling community, modeling languages are

defined by models themselves, which are called metamodels. As shown in figure 3.2, each model con-
forms to a metamodel which is a model itself. Thus, a metamodel has to be conform to a metamodel,

too, which is thus called meta-metamodel. The existence of a common meta-metamodel enables to

compare, merge, transform, etc. between different metamodels and the corresponding models (see e.g.

[Fabro et al.06] for advanced operations on metamodels). To avoid unlimited number of meta-steps,

the meta-metamodel is its own reference model, i.e. it conforms to itself.

A more formal definition of these relationships is given in [Kurtev et al.06]:

• A directed multigraph G = (NG, EG, Γ G) consists of a set of nodes NG, a set of edges EG

and a mapping function Γ G : EG → NG × NG

• Model is then defined as a triple (G, ω, μ) where

36 3. Problem Statement and Proposed Solution

• G = (NG, EG,ΓG) is a directed multigraph,

• ω is itself a model (called the reference model ofM) associated to a graphGω = (Nω, Eω,Γω)
• μ : NG

⋃
Nω is a function associating elements (nodes and edges) of G to nodes of of G

to nodes of Gω

The conform to relationship then corresponds to the relation between a model and its reference

model. A meta-metamodel A metametamodel is a model that is its own reference model (i.e. it

conforms to itself). A metamodel is a model such that its reference model is a meta-metamodel. A

(terminal) model is a model such that its reference model is a metamodel [Kurtev et al.06].

An advantage of visual modeling languages is that they provide a visual notation in terms of

diagrams. Often a modeling language provides different kinds of diagrams providing different views
onto the model. A visual representation can provide a higher degree of usability as it provides much

more possibilities to encode information and can often be percepted, understood, explored, etc. much

more efficiently by humans than a purely textual notation [Tufte01, Ware04]. Certainly, as mentioned

by Green [Green00], a visual notation alone will not improve usability. Instead, the notation has to

support the given developer tasks as good as possible, which can be analyzed e.g. using the cognitive

dimensions framework by Green [Green00].

Software systems usually should reflect information and processes of the real world. In software

development, models are thus used to specify or prescribe the software system to be developed, but

also to describe the system under study (e.g. a business process which should be supported by the

software). In software engineering, many different kinds of models are used (see e.g. [Burmester

et al.05] for an overview). A common distinction is made between General Purpose Languages
(GPL) which aim to support many different application domains and Domain Specific Languages
(DSLs) like shown at [Metb] which aim to provide optimized support for a delimited set of tasks, e.g.

modeling a very specific kind of application, maybe even for a specific company.

The most important example of a visual modeling language is the Unified Modeling Language
(UML, [Rupp et al.07, Hitz et al.05]), a general purpose language which integrates different types

of diagrams originating from different areas in software engineering. It has been defined by the

Object Management Group [OMGb], an industrial consortium, and has today become an industrial

standard. UML is usually used in common software engineering methods like object-oriented analysis

and design [Booch et al.07]. However, UML is independent from the development process and the

concrete usage of UMLmodels is explicitly not part of the UML specification. The concepts described

above apply also to the UML: The UML is described by a metamodel [Obj07c, Obj07d] where UML

models should conform to.

It is important to notice that a metamodel specifies only the abstract syntax of a modeling lan-

guage. However, like any other (textual) language in computer science, a modeling language can

be formally specified by defining its syntax and semantics. A discussion is provided in [Harel and

Rumpe00]. For modeling languages like UML, the metamodel is supplemented with well-formedness
rules – using the Object Constraint Language (OCL) [Obj06b, Warmer and Kleppe03] specified by

the OMG as well – which further constrain the abstract syntax. The semantics and the concrete syntax

– i.e. the graphical or visual notation – are defined only informally by natural language (although there

are several initiatives to achieve a formal definition for UML, like [Broy et al.05, Reggio et al.01]). Ex-

amples for formally defined visual modeling languages are Petri Nets [Murata and Murata89] or State

Machines [Harel and Naamad96]. However, in model-driven development the (execution) semantics

of modeling languages is indirectly defined by transformations which map a modeling language onto

a formally specified language, like e.g. Java code.

3.4 A Short Introduction into Model-Driven Engineering 37

Platform-specific
Model n
(PSM)

Platform-specific
Model 1
(PSM)Meta-

Model 0

Meta-
Model 1

Meta-
Model n

Implementation
Code

(Platform 1)

Implementation
Code

(Platform n)

Trans-
formation

1-1

Platform-
independent

Model
(PIM)

Trans-
formation

1-2

Trans-
formation

1-3

Trans-
formation

n-1

Trans-
formation

n-n

Figure 3.3: The basic idea of MDA

3.4.2 Model-Driven Development

In a model-based development process, the models are used to bridge the gap between the real world,

i.e. the requirements on the software system, and its final implementation. This allows explicitly

capturing and understanding the system and planning and structuring the implementation. Model-
driven development (MDD, or model-driven software development MDSD) goes a step further and

uses models as primary artifacts in the development process. More specifically, the primary artifacts

in a model-driven development process are

1. models which conform to metamodels and

2. explicit transformations between them.

The OMG specifies the Model Driven Architecture (MDA, [Miller and (Eds.)03]), a concrete

framework for the realization of model-driven development. The current working definition [OMGa]

defines MDA according to [Obj04b]:

MDA is an OMG initiative that proposes to define a set of non-proprietary standards

that will specify interoperable technologies with which to realize model-driven develop-

ment with automated transformations. Not all of these technologies will directly concern

the transformations involved in MDA.

MDA does not necessarily rely on the UML, but, as a specialized kind of MDD

(Model Driven Development), MDA necessarily involves the use of model(s) in devel-

opment, which entails that at least one modeling language must be used. Any modeling

language used in MDA must be described in terms of the MOF language, to enable the

metadata to be understood in a standard manner, which is a precondition for any ability

to perform automated transformations.

Figure 3.3 shows the general idea of MDA: during the development process different models

(conform to metamodels) are used, starting with abstract, platform-independent models (PIM) via

38 3. Problem Statement and Proposed Solution

transformations to an arbitrary number of different platform-specific models (PSM) which are finally

transformed into the final implementations.

A model transformation is “the production of a set of target models from a set of source models,

according to a transformation definition” [Sottet et al.07a]. They are executed by a transformation
engine. [Czarnecki and Helsen06] provides a classification of transformation languages. Important

classes are graph-transformation based approaches and hybrid approaches.

Graph-transformation-based approaches specify transformation rules in terms of typed, attributed

labeled graphs [Rozenberg97]. A rule consists of a left-hand-side (LHS) and a right-hand-side (RHS).

The LHS is matched in the source model and replaced by the corresponding RHS in place. The LHS

consists of the matched pattern in terms of a graph, conditions, and some additional logic. Basically,

the graph patterns can be expressed in the abstract or the concrete syntax of the source and the target

language. Examples for Graph-transformation-based approaches are AGG [Taentzer00, AGG], Atom3
[Vangheluwe et al.03, ATo], and VIATRA [Csertán et al.02, VIA].

The hybrid approaches combine several different paradigms, like declarative and imperative state-

ments. Two important languages are classified by [Czarnecki and Helsen06] into this category: QVT

and ATL. QVT (Query/Views/Transformations, [Obj07a]) is a standard defined by the OMG support-

ing queries on models, views on metamodels, and transformations of models. It includes two declar-

ative components on different abstraction levels, Core and Relations, and a mapping between them

(RelationsToCoreTransformation). Imperative logic is supported by the imperative component Oper-
ational Mappings and the component Black Box which allows the integration of complex algorithms

written in any other language. As QVT standard definition is currently finalized, first implementations

are still under development, e.g. as part of the Eclipse model-to-model transformation (M2M) project

[Eclc]. A hybrid language with tool support is the Atlas Transformation Language (ATL, [Jouault and

Kurtev05, AMM]). It also provides declarative and imperative statements and is relatively close to the

QVT standard (see discussion in [Jouault and Kurtev06]). It has been integrated into the Eclipse M2M

project as well. In particular, there is a library with ATL transformations at [ATLa]. More details on

ATL can be found in section 7.

A transformation can be seen as a model as well. Thus, QVT has been defined in terms of MOF-

compliant metamodels. As transformation languages and transformation engines are defined system-

atically they provide additional useful properties (in contrast to e.g. proprietary code generators).

Basic properties a transformation should fulfill are [Kleppe et al.03]:

1. Tunability, i.e. the possibility to adapt the transformation by parameters for the transformation.

2. Traceability, i.e. the possibility to trace one element in the target model back to its causing

element in the source model.

3. Incremental consistency, i.e. information added manually to the target model is protected and

not overwritten if the transformation is executed again later (e.g. after the model has been

updated).

Another property with low priority is bidirectionality, which means that the transformation can be

applied not only from source to target but also backwards from target to source. However, this property

is rarely applicable in practice and thus often ignored.

The OMG specifies various concepts for model-driven development, including XML Metadata
Interchange (XMI, [Obj07b]) an XML-based exchange format for any kind of MOF-based model, the

Object Constraint Language (OCL) [Obj06b], a formal language allowing the definition of constraints

and conditions in models, and the QVT language (Query/View/Transformation, [Obj07a]) which al-

lows specifying queries on models, views on metamodels, and model transformations. The OMG

3.4 A Short Introduction into Model-Driven Engineering 39

MOF Model

UML
Metamodel

IDL
Metamodel

UML Models IDL Interfaces

M0 Layer

M1 Layer

M2 Layer

M3 Layer

Figure 3.4: OMG Metadata Architecture according to [Obj05]

specifications base on the common meta-metamodel defined by the OMG, called Meta Object Facil-
ity (MOF, [Obj06a]). All OMG modeling languages like UML and others (e.g. CWM [Obj03]) are

defined by a MOF-compliant metamodel. Traditionally the OMG illustrates the relationships between

models, metamodels, and the MOF by the “four layer metadata architecture” shown in figure 3.4:

Layer M3 contains the meta-metamodel MOF. Layer M2 contains the MOF-conformant metamodels

defined by the OMG or third parties. Layer M1 contains the models which conform to the metamodels

of M2. Finally, M0 contains the data of the real-world which is described by the models of M1.

In the past, the four-layer-architecture caused several problems and misunderstandings. In earlier

versions the relationships between the model layers were called instantiation relationships, e.g. a

class in an UML model was supposed to be an instantiation of the metaclass “Class”. This kind of

instantiation has not been distinguished from object-oriented instantiation as defined e.g. within UML

models. An object in a UML diagram would then be instance of multiple elements: On the one hand

an instance of a class in the UML model and on the other hand an instance of the metaclass “Object”

in the UML metamodel. Several publications, e.g. by Atkinson and Kühne [Atkinson and Kühne01,

Atkinson and Kühne03], discuss such problems and show that they lead to inconsistencies, concluding

that the basic definitions have to be improved, e.g. by introducing the conformance relationship as

defined above. It is also important to understand, that layer M0 contains only the real-world objects at

runtime. The objects in a model (e.g. in a UML object diagram) are only snapshots of them and part of

the model and thus reside in layer M1. Moreover, as also mentioned in the latest MOF specification,

the number of model layers is not necessarily restricted to four layers.

In general, Bézivin [Bézivin05] shows that modeling concepts have to be clearly distinguished

from object-oriented concepts. Moreover, the more general paradigm of models can replace object-

orientation. While the existing paradigm of object-orientation “Everything is an Object” failed to

enclose all important concepts from software engineering, the new paradigm “Everything is a Model”

seems to be general enough for this purpose. This is illustrated by fig. 3.5 showing the application

of MDE concepts on different technical spaces as described in [Kurtev et al.02, Kurtev et al.06]. As

40 3. Problem Statement and Proposed Solution

an XML Document

XML Metaschema

an RDF Document

UML Metamodel an XML Schema

a Java Program

an RDF SchemaJava Grammar

a UML Model

RDF SchemaMOF EBNF

conformsTo conformsTo

conformsTo

conformsToconformsTo conformsTo conformsTo

conformsToconformsTo conformsTo

conformsTo conformsTo

Figure 3.5: Technical Spaces according to [Kurtev et al.06]

in practice often one single technology is insufficient, the concepts from MDE can be used to bridge

between them [Kurtev et al.06]. Another important related technology are ontologies ([Bechhofer

et al.04, Bodoff et al.05] which can be integrated into the MDE concepts as well [Gasevic et al.07,

Obj07e].

The area of Model Driven Engineering (MDE, see e.g. [Pla]) deals with the general concepts of

MDD. The problems discussed in context of the MOF four layer metadata architecture show that the

foundations of MDE requires further investigation and a more precise definition. Favre discusses the

MDE theory ([Favre04b, Favre04a, Favre and Nguyen05]) and specifies them in terms of a model, the

so-called megamodel [Favre04c] (see also e.g. [Bézivin et al.04]) where the extract in fig. 3.1 is taken

from.

3.4.3 Practical Application and Profiles

From the practical point of view, Voelter [Stahl et al.07] mentions three different ways of defining a

modeling language:

1. Definition of an independent metamodel

2. Definition of an own metamodel based on existing metamodels, e.g. the UML metamodel

3. Definition of an extension of the UML metamodel using the built-in extension mechanisms of

UML

The first approach is useful for DSLs which are compact and/or do not have much in common with

other metamodels. Besides, the MOF defined by the OMG there are several other meta-metamodels

supported by tools, like Ecore which is part of the Eclipse modeling Framework [Steinberg et al.08],

or KM3 [Jouault and Bézivin06].

For languages providing concepts similar to those included in UML it is often useful to reuse the

UMLmetamodel: Besides efficiency reasons, this can also increase the quality and the interoperability

of the resulting metamodel. Technically, reuse on metamodel level can be achieved by importing

or merging packages from the UML metamodel and adding new classes, e.g. using generalization

relationships.

For the third approach, mainly so-called stereotypes are used. A Stereotype is part of the UML

specification itself and allows the customization of UML metaclasses without changing the UML

3.4 A Short Introduction into Model-Driven Engineering 41

Account
<<entity>>

(a)

Account

(b)

Account

(c)

Figure 3.6: Notation options for UML stereotypes.

metamodel. An example is a stereotype entity for UML classes which specifies that a class rep-

resents a business concept which should be persistent. It extends the UML metaclass class. A

stereotype is denoted in a model like the extended UML element but marked with either a stereotype

label (fig. 3.6a) or, if available, an icon (fig. 3.6b). Alternatively the UML notation can be replaced

completely by the stereotype icon (fig. 3.6c).

The advantages of stereotypes is that they are a more lightweight mechanism than changing the

metamodel and are supported by many UML modeling tools. A disadvantage is the restricted flex-

ibility as it is only possible to extend existing metaclasses, but not e.g. to add additional ones. A

collection of stereotype definitions for a specific purpose is called Profile [Pleuß02].The pros and

cons of Profiles versus DSLs have been subject of many discussions (e.g. [Desfray00, Kent05]). Of

course, there is a large difference between a very specific DSL for a specific company and a Profile

which is very close to UML. Nevertheless, there are many cases where the difference is not that large

and the intermediate solution from above fits as well. [Abouzahra et al.05] proposes an approach

for automatic transformation between models compliant to a given specific metamodel and models

compliant to a given analogous Profile.

A more detailed discussion of alternative ways to customize UML is provided in [Bruck and

Hussey07].

Tool Support

A large number of tools supports the UML as the de-facto modeling standard. [Jeckle04] lists more

than hundred UML tools. Widespread commercial tools are for instance Magic Draw [No Magic],

IBM Rational Modeler [IBM] (the successor of Rational Rose), Poseidon [Gentleware], and many

others. Many of them provide also support for UML Profiles and other customization mechanisms.

Domain-specific modeling languages are traditionally supported by Meta-CASE tools [Isazadeh

and Lamb97], like MetaCase [Meta] or GME2000 [GME]. They provide an integrated support for

definition of DSLs, creation of customized modeling editors, model validation, and code generation.

Most of them use proprietary concepts for language definition and transformations. The Microsoft
DSL tools [Cook et al.07] can be put into this category as well.

Several tool projects are under development which aim to support the latest concepts in MDE. An

important example are the sub-projects of the open source tool Eclipse [Eclb] devoted to modeling.

The Eclipse Modeling Framework (EMF [EMFb, Budinsky et al.03]) supports automatic generation

of an Java implementation from a given metamodel. It also automatically generates a simple tree-

editor which can be used to create models conforming to the given metamodel. More sophisticated,

visual modeling editors can be created for Eclipse using the Eclipse Graphical Editing Framework
(GEF [GEF]), a framework supporting 2D graphics and graphical editors in general. As an alternative

the Eclipse Graphical Modeling Framework (GMF [GMF]) allows to specify visual editors in terms

of a model and generate their implementation from the models. These projects together with many

42 3. Problem Statement and Proposed Solution

others devoted to modeling are subsumed in the Eclipse Modeling Project [Ecld] like tools for model-

to-model transformations, model validation, model weaving, etc. For example, the M2M [Eclc] (sub-

)project provides the transformation languages ATL and Procedural and Declarative QVT.

Consequently there are three typical kinds of support for implementing a custom visual modeling

tool:

1. Extension mechanisms of existing (UML) modeling tools

2. Meta-CASE tools for domain-specific languages

3. Frameworks and APIs from the area of Modeling Driven Engineering

Benefits

The overall goal of MDE is increasing the productivity in the development process. [Atkinson and

Kühne03] distinguishes between short-term and long-term productivity of artifacts created in the de-

velopment process. Short-term productivity depends on the value which can be derived from an

artifact in the development process. This is increased by MDE through automatic code generation.

The long-term productivity depends on how long a created artifact stays valuable. It is increased by

MDE as design knowledge is explicitly specified and documented in terms of abstract models as well

as by the possibility to reuse platform-independent models for new platforms and devices.

More in detail, advantages of MDE combine advantages of a design phase using visual modeling

languages with those of code generation. Compared to the whole spectrum of possible development

processes, MDE provides benefits 1) resulting from a design phase compared to development without

any design, 2) resulting from the usage of abstract, platform-independent, visual models compared to

development without models, and 3) resulting from code generation compared to approaches without

code generation.

However, there is an additional class of benefits resulting from MDE: The involved concepts are

systematically defined in terms of models, metamodels, and transformations and can thus be easier

managed, reused, and combined. Tools and frameworks can be reused for different application pur-

poses. These properties do not improve the development of an application itself but the development

of development support, i.e. they apply to a “metalevel” similar like metamodels.

Thus, expected benefits of MDE can be subsumed as follows4:

1. Benefits resulting from the existence of a design phase:

• Reducing the gap between requirements and implementation: A design phase aims to

ensure in advance that the implementation really addresses the customer’s and user’s re-

quirements.

• Developer coordination: Previous planning of the developed system enables the develop-

ers to coordinate their work e.g. by dividing the system into several parts and defining

interfaces between them.

• Well-structured systems: A design phase provides explicit planning of the system archi-

tecture and the overall code structure. This facilitates implementation itself as well as

maintenance.

2. Benefits resulting from the use of visual abstract models:

4Within the categories ordered by the temporal occurrence in the development process

3.5 An Illustrating Example Scenario 43

• Planning on adequate level of abstraction: Modeling languages provide the developer

concepts for planning and reasoning about the developed system on an adequate level of

abstraction.

• Improved communication by visual models: The visual character of modeling languages

can lead to increased usability (understanding, percepting, exploring, etc., see sec. 3.4.1)

of design documents for both author and other developers.

• Validation: (Semi-)Formal modeling languages enable automatic validation of the design.

• Documentation: Models can be used as documentation when maintaining the system.

• Platform-independence: Platform-independent models can be reused or at least serve as

starting point when implementing the system for a different platform. This includes de-

velopment platforms like a programming language or component model, as well as de-

ployment platforms like the operating system or target devices.

3. Benefits resulting from code generation:

• Enhanced productivity: Generating code from a given model requires often only a teeny

part of time compared to manual mapping into code.

• Expert knowledge can be put into the code generator: Expert knowledge – e.g. on code

structuring, code optimizations, or platform-specific features – can once be put into the

code generator and then be reused by all developers.

• Reduction of errors: Automatic mapping prevents from manual errors.

4. Meta goals: Easier creation and maintenance of development support

• Knowledge about creation of modeling languages: MDE concepts and definitions reflect

existing knowledge about modeling, modeling languages, and code generation.

• Frameworks and tools: Tools like Eclipse Modeling Tools (p. 41) provide sophisticated

support for all steps in MDE like creating and processing metamodels, creating modeling

editors, and defining and executing transformations.

• Maintenance of modeling language and transformations: Systematic and explicit defini-

tion of metamodels and transformations facilitates maintenance of modeling languages

and code generators.

• Reuse of metamodels and transformations: MDE compliant explicit metamodels and

transformations can easily be understood and reused by others.

Like in many areas of Software Engineering, there is unfortunately only few empirical data on the

effect of MDE. Some experiments and reports from industry on the productivity of Domain Specific

Languages (in the broadest sense) can be found e.g. in [Kieburtz et al.96, Long et al.98, MetaCase99].

The lack of systematic validation is probably also caused by the fact, that software development meth-

ods and processes are often hard to validate (see “Validation Techniques in Software Engineering” in

section. 8).

3.5 An Illustrating Example Scenario

This section provides an example to illustrate the main ideas of the solution. The example application

introduced here will also be used as running example for the following chapters of this thesis.

The example application is a racing game application. It is important to understand that the ap-

proach described here is not restricted to game applications – it can be applied to all the different

44 3. Problem Statement and Proposed Solution

Figure 3.7: Screenshot from the example Racing Game application.

domains explained in section 2.4 (this will be shown later in section 8.3). On the other hand, not all

kinds of games are suited to be developed with Flash: High-end 3D games are an exception within

multimedia development as they require specific development methods and experts and are not pro-

duced in conventional multimedia authoring tools. However, technically less sophisticated games are

indeed produced with authoring tools like Flash or Director [Bilas05, Besley et al.03], like produced

for advertisement [Wernesgrüner], specific platforms [Phob], or even for conventional commercial

purposes [Tap].

For the purpose of this thesis there are two important reasons while a small game serves best as

example application: First, the requirements of common games are easy to understand without specific

domain knowledge. For example, a learning application would require much previous explanation

about its content and the media components which should be used. Second, games naturally make

intensive use of all aspects of a multimedia application – individual media objects, application logic,

and interaction – while other kinds of multimedia application sometimes cover only some of these

aspects.

Figure 3.7 shows a screenshot of the application. It shows a screen with the actual race. The

application consists of several other screens like a start screen, a menu, a help screen, etc. Several

different Flash implementations (including multiplayer support) developed by students under super-

vision by the author of this thesis can be found at [MMPa]. A nice tutorial how to create racing game

applications with Flash is also given in [Besley et al.03].

In a model driven development process with MML, first the requirements would be analyzed in

conventional way like with any other development process. This can include first prototypes to gain

knowledge about the application domain and discuss basic decisions with the customer, but also e.g.

task models like ConcurTaskTrees [Paternò et al.97] to specify the general user tasks. During the

design phase, MML models are used to specify the different aspects of the application. This includes

the domain logic, the user interface in terms of abstract user interface elements, the interaction, and

the media objects.

Specifying the application’s media objects in particular means defining their interface to the appli-

3.5 An Illustrating Example Scenario 45

(a) Wheels when driv-

ing straight ahead.

(b) Wheels when driv-

ing a corner.

(c) Wheels hence defined

as independent parts

CarAnimation

frontwheel_right : WheelfrontWheel_left : Wheel

(d) Inner structure of media objects specified in an MML

model.

Figure 3.8: Example: Wheels of a racing car defined as independent inner parts.

cation logic. For example, in a car racing game it might be desired that the car’s wheels turn when the

car drives a corner (figure 3.8). As the player controls the car interactively, the movement of the car is

not a predefined animation but controlled by program code. For example, turning the car to the right

requires in Flash a scripting command which increases the car’s rotation angle like: myCar._rotation

+= 5. To achieve an effect like in figure 3.8b commands have to be added to turn the front wheels:

myCar.frontwheel_right._rotation += 5;. This requires that the front wheels are not just part of

the animation’s graphics but instead they must be independent (sub-)animations with an own name

to be accessed by the scripting code. These properties of the application can be specified in MML

(figure 3.8d). The media designer can then design the media objects according to these requirements.

Already the systematic documentation of such agreements and naming conventions between different

developer groups can improve the development process significantly. Moreover, code generation from

models enables to ensure and validate that the implementation conforms to them in a consistent way.

From the MML models, code skeletons can be generated for different platforms, in particular

for authoring tools like Flash as in the example. It is possible to open the generated code directly

in Flash and finish the implementation using the powerful abilities of the authoring tool. Figure 3.9

shows skeletons generated for from an MML model for the racing game. For the media components

which require an individual design, placeholders are generated which contain an inner structure as

defined in the MML model. They are filled out by the media designer. The user interface designer can

finalize the user interface using the visual editor facilities, e.g. by visually laying out the generated

components and replacing or adapting components where the generated ones are not sufficient. For the

application logic, scripting code skeletons are generated which are finalized by the software designer

46 3. Problem Statement and Proposed Solution

Figure 3.9: The generated skeletons including placeholders can be directly opened and edited in the

Flash authoring tool.

(programmer).

The generated placeholders can be edited without any restrictions or additional effort. The design-

ers can freely use all available tools and features of Flash as usual. As overall structure and navigation

of the application are already generated, the application can be started and tested at any time; indepen-

dent from missing parts. The different developer groups can work in parallel as all interfaces between

their artifacts to develop are already defined within the MML model. In addition, they are supported

by a Flash plugin which helps them to finalize the implementation and allows tracing changes in the

structure back to model, i.e. supports a round-trip-engineering.
Except the round-trip engineering which has been investigated mainly on conceptual level, full

prototypical tool support has been developed within this thesis for all above-mentioned steps.

Chapter 4

Related Modeling Approaches

This chapter summarizes existing modeling approaches related to this thesis. While existing tech-

nologies and approaches for multimedia application development are introduced in chapter 2 and the

general foundations on model-driven development in section 3.4, this chapter focuses on existing

modeling concepts relevant for this work.

Currently only a very small number of modeling approaches for interactive multimedia applica-

tions exists. Section 4.3 describes them in detail. However, there is a large number of approaches

which cover one or more aspects important for this thesis. These approaches originate from different

research communities with different backgrounds. While the research work within each community is

tightly related, there is sometimes a gap between the different communities. For instance, approaches

for modeling multimedia does barely rely on knowledge from user interface modeling area – although

the user interface is an important part of a multimedia application. Thus, this chapter aims to classify

the existing work according to three identified communities and gives a summary on their general

backgrounds and their points of view.

A large number of concepts for modeling user interfaces in general originates from the field of

Human-Computer Interaction. Section 4.1 provides an overview about them. The area of Web Engi-

neering addresses the automatic generation of Web applications based on models. It is briefly intro-

duced in section 4.2. Finally, section 4.3 describes research efforts directly focusing on multimedia

aspects.

4.1 User Interface Modeling

A user interface is part of any kind of application. Since windows-based graphical user interfaces

(GUI) became common in the 1980’s, user interfaces of applications became quite unary [Myers

et al.00]. The same user interface concepts and tools – mainly GUI toolkits and GUI builders – have

been used across all domains in software development independently from the kind of application.

In contrast to other areas in computer science, user interface concepts and tool must not only fulfill

technical requirements. Rather, the user’s abilities and needs must be carefully considered which

requires knowledge in cognitive sciences like physiology, sociology, or even philosophy [Rosson and

Carroll02]. The research field of Human-Computer Interaction (HCI, [Hewett et al.92]) addresses

these issues. Consequently, researchers in the HCI domain come from very different backgrounds.

Approaches aiming for more systematic development, like model-based development, are usually not

the main focus on large HCI conferences like CHI [CHI, Rosson and Gilmore07] or INTERACT [INT,

Baranauskas et al.07], but they are frequently present. In addition, a community directly addressing

48 4. Related Modeling Approaches

Developer

Modeling
Tools

Domain,
Task Models

Concrete UI
Model

Abstract UI
Model

User Interface Model

Model
Analysis Tools

Abstract
Design Support

Concrete
Design Support

Presentation
Guidelines

Design
Knowledge

Figure 4.1: Model-based User Interface Development Environments according to [Szekely96,

da Silva00]

user interface modeling has evolved. The most popular events in this specific area are CADUI [CAD,

CAD07], DSV-IS [DSV, Doherty and Blandford07], and TAMODIA [TAM, Winckler et al.07] which

is held in 2008 together with HCSE at EIS [EIS].

The following sections will first introduce the common concepts in user interface modeling, show

some selected examples (ConcurTaskTrees, UsiXML, Dynamo-Aid, and UIML), and finally discuss

the relationship to Software Engineering concepts like model-driven engineering.

4.1.1 General Concepts

A large amount of user interface modeling approaches has been proposed over the years from different

directions. Early examples of declarative languages allowing the abstract specification of user inter-

faces can be found in 1985 with Cousin [Hayes et al.85] and ADM [Schulert et al.85]. They evolved

to Model-Based User Interface Development Environments (MB-UIDE) which used different kinds of

models to guide the developer from abstract specifications to the final user interface. Figure 4.1 shows

the model-based development process and the common kinds of models according to overview papers

like those by Szekely [Szekely96] or da Silva [da Silva00].

The most abstract kinds of models commonly used are task model and domain model. The task
model specifies the tasks which are activities either by the user or the system which have to be ac-

complished to reach the user’s goals. Examples for kinds of task models are CTT (ConcurTaskTrees,
[Paternò et al.97, Paternò99], see section 4.1.2) or TKS (Task Knowledge Structure, [Johnson and

Johnson89, Johnson91]). An overview on task models is provided in [Limbourg et al.01].

The domain model (also called application model or data model) specifies the structure of the

application logic. It can be specified for instance in terms of a UML class diagram or an Entity-

Relationship Diagram [Chen76].

The Abstract User Interface Model (AUI) is specified based on the task model and the domain

model. It is sometimes composed of an abstract presentation model and a dialogue model. It spec-

ifies the user interface in an abstract and platform-independent way in terms of abstract interaction

objects. Abstract Interaction Objects (AIO, introduced in [Vanderdonckt and Bodart93]), sometimes

also called interactors, are user interface objects which enable the user for instance to input data or

select an object on the user interface. They can be seen as an abstraction of widgets and are indepen-

dent from any visual representation, platform or modality. The AIOs are grouped into Presentation
Units (also called Presentations, Views, or Interaction Spaces) which can be seen as the abstraction

of a window in a graphical user interface. For the abstract presentation model, no common diagram

used throughout different approaches exists.

4.1 User Interface Modeling 49

The dialogue model specifies the dialogue how to interact with the AIOs. It can be specified for

example in terms of State-Transition diagrams [Wasserman85], or Petri Nets [Palanque et al.93]. An

comparison of different possibilities for modeling the dialogue is provided in [Cockton87]. Some

approaches use only the task model, or a refined version of it, to specify the interaction and do not use

an additional dialogue model. Thus, the term abstract user interface model refers sometimes to the

abstract presentation model only.

Finally, the Concrete User Interface Model (CUI) realizes the AUI for a specific modality in terms

of concrete widgets and layout.

While most existing approaches and tools comply more or less with this general framework, the

concrete kinds of models and diagrams used by them varies significantly. Several surveys list and

compare the models used in the different existing approaches, e.g. Griffiths [Griffiths et al.98],

Schlungbaum [Schlungbaum96], daSilva [da Silva00], and Gomaa [Gomaa et al.05]. In addition,

[Limbourg04] compares various approaches regarding further properties like mappings and trans-

formations between the models and methodological issues. MB-UIDEs surveyed in at least three

of these comparisons are ADEPT [Markopoulos et al.92], AME [Märtin96], FUSE [Lonczewski

and Schreiber96], GENIUS [Janssen et al.93], HUMANOID [Szekely et al.92], JANUS [Balzert95],

MASTERMIND [Szekely et al.95], MECANO [Puerta96], MOBI-D [Puerta andMaulsby97], TADEUS

[Elwert and Schlungbaum95], Tealleach [Griffiths et al.99], TRIDENT [Bodart et al.95], and UIDE

[Foley et al.91]. Altogether, 34 approaches were compared. This shows that there exists a really large

number of relevant proposals. The missing common agreement about the best models and diagram

types to be used is one of the main problems of MB-UIDEs [da Silva00, Clerckx et al.04] and might

be one of the reasons why user interface models have not gained stronger popularity until now.

Even if user interface modeling has not become widely established until now, paradigms like

Ubiquitous Computing [Weiser99] or Ambient Environments [Wisneski et al.98] which strongly in-

fluence the Human-Computer Interaction area might significantly increase the importance of user

interface modeling: Future applications are expected to run on various different devices, like mobile

devices, public displays or computers embedded into items of every-day life. Moreover, expectations

include that users will be able to seamlessly switch applications between devices and be able to share

information everywhere they are. To provide the desired degree of usability, applications must be able

to adapt to the various contexts of use which includes the user, the devices, and further influencing

properties of the environment like the user’s location [Schmidt et al.99, Coutaz and Rey02]. In such a

scenario it will be very difficult to design the user interfaces for all the different contexts and devices

by hand. Moreover, an application’s user interface should be able to adapt to new kinds of devices and

contexts of use which have not been prospected at design time. Thus, it will be necessary to specify

user interfaces on a higher level of abstraction from which the user interfaces adapted to the current

context can be derived. User interface models will then play an essential role [Myers et al.00].

Current approaches in the user interface modeling area focus on such capabilities. As a result,

the general MB-UIDE framework from figure 4.1 has been extended by the CAMELEON reference

framework [Calvary et al.03] shown in figure 4.2. It adds generic models required to capture the

context of use of the application like user model, platform model and environment model. The evo-
lution model specifies the how the application switches between different configurations according

to relevant context changes. The transition model specifies how these transitions between different

configurations should be performed avoiding discontinuities between them. These models, together

with the task model and the domain model (here: concepts model) are the initial models which have

to be specified by the modeler during the design process. From these models the specification of

Tasks-and-Concepts, Abstract User Interface and Concrete User Interface is derived.

The horizontal translations illustrate the different configurations of the application according to

50 4. Related Modeling Approaches

Context 2Context 1

Platform

User

Environment

Transition

Evolution

Concepts

Tasks

Concepts and
Tasks

Abstract UI

Concrete UI

Final UI for
Context 1

reification/abstraction

Translation

Platform

User

Environment

Transition

Evolution

Concepts

Tasks

Concepts and
Tasks

Abstract UI

Concrete UI

Final UI for
Context 1

reification/abstraction

Figure 4.2: The CAMELEON reference framework according to [Calvary et al.02, Calvary et al.03]

different contexts. The vertical transformations specify the refinement of specifications during the

design process. The reference framework explicitly allows starting the development process on any

level of abstraction as well as a flexible order of transitions between levels of abstraction because

many approaches are not strictly top-down or support reverse engineering steps. [Calvary et al.02]

examines several existing approaches in terms of the framework. Furthermore, a general schema for

the application’s context-sensitive behavior at runtime is provided.

An advanced feature of user interfaces in ambient environments is the capability of flexible mi-

gration over different devices to utilize available devices as profitably as possible. For example, if the

user gets to a room with a large display she wants for some information to be presented on the large

display. In particular, it is sometimes desirable to allow not only migration of the whole user interface

but rather partial migration: For example, when using a large display it might be useful to provide the

visualization part (i.e. purely output) on the large display while the control part (buttons etc.) should

be rendered on the user’s personal mobile device as supported by [Bandelloni and Paternò04, Ban-

delloni et al.04] or [Braun and Mühlhäuser05]. A taxonomy and general discussions of user interface

migration can be found in [Berti et al.05, Luyten and Coninx05].

Two concrete examples approaches are described in the next section: UsiXML, and XML-based

approach which realizes the design-time part of the reference framework very closely, and Dynamo-
Aid which provides an example for context-sensitivity at runtime.

A subclass of user interface modeling languages with increasing practical relevance are XML-

based languages focusing only on concrete user interface specification. They allow a declarative and

often platform-independent specification of the user interface but do not aim to support the devel-

opment process or to provide abstract models. The user interface specifications can be executed for

example by mappings onto specific platforms, like in UIML (see section 4.1.2), or by player compo-

nents. Of course, the latter ones can only be executed on platforms for which a player component

exists. Such languages can be found more and more even in large open-source projects or as part of

commercial tools by large vendors. For example, XUL [XUL] is part of the Mozilla Project [Moz]

and is interpreted by the Mozilla Browser. MXML is provided by Adobe [Ado] and enables declarative

specification of user interfaces for the Flex framework [Kazoun and Lott07] and is compiled into Flash

4.1 User Interface Modeling 51

files to be executed in the Flash player (see section 2.3). XAML [XAM] is developed by Microsoft
[Mic] and can be compiled into Windows .NET applications or be interpreted by XAML players.

Due to their declarative nature, their ability to run on several platforms, and their similarity with

CUI models, it is often useful to consider XML-based user interface specification languages either as

target format or directly as CUI model in model-based user interface development approaches.

4.1.2 Concrete Examples

This section describes some concrete exemplary approaches in this field. ConcurTaskTrees are one

of the most important approaches for task modeling. UsiXML is a comprehensive approach closely

compliant to the CAMELEON reference framework, enabling the developer to move between differ-

ent levels of abstraction and surrounded by various tools. Dynamo-Aid supports development and a

runtime environment for context-sensitive user interfaces. Finally, UIML is shown as an example for

an platform-independent XML-based user interface specification language.

ConcurTaskTrees

One of the most popular approaches for task modeling is the ConcurTaskTree (CTT) notation by

Paternó [Paternò et al.97, Paternò99] which partially bases on LOTOS [ISO88], a formal language for

concurrent systems specification. It supports four kinds of tasks:

User Tasks are performed by the user. Usually they are cognitive activities rele-

vant when using the application like making a decision.

Interaction Tasks require an interaction between the user and the system like push-

ing a button.

Application Tasks are performed by the system like searching in a database or

calculations.

Abstract Tasks represent complex tasks which are further subdivided into several

subtasks.
A CTT model consists of tasks hierarchically structured in a tree structure. If child nodes of a

task are all of the same type, the parent node is of the same type as well. Otherwise the parent node

is an abstract task. Temporal relationships between the tasks are specified using operators shown in

figure 4.1.

Figure 4.3 provides an example for a task tree. It shows an extract of a music player application

which can run on a PC and a mobile phone. It was developed in a diploma thesis supervised by the

author where several user interface modeling approaches were compared [Wu06b].

It is possible to calculate Enabled Task Sets (ETS) from a task model. “An enabled task set is

a set of tasks that are logically enabled to start their performance during the same period of time.”

[Paternò99]. This means the tasks which must be accessible at the same time for the user according

to the hierarchy and the temporal operators in the task model and should thus be available within the

same presentation unit of a user interface. (It should be mentioned that it is not always possible to

present the user all tasks from an ETS in parallel, e.g. when facing a very large task model or for

mobile devices with a small display. Such cases require additional decisions which tasks to present.)

For the model in figure three Enabled Tasks Sets are calculated:

• ETS 0: adjust volume, list songs, quit
• ETS 1: adjust volume, select song, quit

52 4. Related Modeling Approaches

Operator Description
T1[]T2 Choice

T1|=|T2 Order Independence

T1|||T2 Independent Concurrency

T1|[]|T2 Concurrency with information exchange

T1[>T2 Disabling/Deactivation

T1|>T2 Suspend resume

T1>>T2 Enabling

T1[]»T2 Enabling with information passing

T1* Iteration

T1(n) Finite Iteration

([T1]) Optional Task

Table 4.1: Temporal operators in CTT on tasks T1, T2. The binary operators are listed with descending

priority.

listen music

adjust volume

 |||

manage songs*

list songs

 >>

select song

 []>>

delete song

 []

listen song

play selected song

play song

 |>

pause song

 [>

stop song

 [>

quit

Figure 4.3: Example ConcurTaskTree Model from [Wu06b]

4.1 User Interface Modeling 53

modelType
- id : string
- name : string

authorName

version
- modifDate : string

comment

transformationModel domainModel taskModel auiModel cuiModel mappingModel contextModel ResourceModel

uiModel
- creationDate : string
- schemaVersion : string

0..n 0..n0..n 0..n

0..n
1..n

0..n
1..n

0..n 10..n 1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..n

1

0..n

1

0..1

1

0..1

1

Figure 4.4: Extract from the UsiXML metamodel [Usi06] showing the UsiXML models.

• ETS 2: adjust volume, delete song, play song, pause song, stop song, quit

A development method based on CTT supporting the development of multimodal user interfaces

for multiple target devices is presented in [Paternò and Santoro02, Mori et al.04]. It is supported by a

modeling tool, TERESA, which is freely available [TERa].

UsiXML

UsiXML (USer Interface eXtensible Markup Language, [Limbourg et al.04, Usib] is a model-based

approach close to the CAMELEON reference framework supporting user interfaces for multiple con-

texts. The language is based on XML and is defined in terms of a metamodel [Usi07]. Figure 4.4

shows the supported models. As their multiplicity is ‘0..1’ or ‘0..n’ it is possible to flexibly combine

the models according to the modeler’s needs.

The domain model corresponds to UML class diagrams. The task model is based on CTT. The

abstract user interface model is independent from platform and modality and specifies abstract in-
teraction objects (AIOs) and relationships between them. An abstract interaction object (AIO) can

be either a container or an individual AIO which consists of one or more of the four facets input,
output, navigation, and control. The relationships between them specify for example decomposition,

or spatio-temporal relations.

The concrete user interface model is modality-dependent but still platform-independent. It defines

the user interface in terms of concrete interaction objects (CIOs) – platform-independent widgets like

Button, Label, etc. in case of a graphical interface – and their layout. It currently supports graphical

user interfaces and vocal interfaces. The CIOs can be associated with behavior like operation calls

triggered by events.

The context model specifies the context of use including the user, the platform and the environ-
ment. Furthermore, it contains a set of plasticity domains which defines the specific contexts for which

e.g. an AIO or CIO should be available. The resource model can be used to specify content for the

interaction objects which depends on localization aspects, for example text in different languages or

the reading path. The transformation model enables to define transformations on the models e.g. from

54 4. Related Modeling Approaches

Domain Class

Interaction Objects

AIO CIO

Class
Property Task Resource

Plasticitiy
Domain

Context

isShapedFor

observes/updates/triggers

manipulates isAllocatedTo

isGraftedOn

IsExecutedIn

isAbstractedInto/
isReifiedBy

isTranslatedInto

hasContext

isDelegatedTo

Figure 4.5: Relationships between different models in UsiXML

a task model elements to interaction objects or transitions of the interaction objects according to the

context.

The mapping model is used to specify relationships between models (often called inter-model re-
lationships in contrast to intra-model relationships which reside within a model). They are important

parts of the user interface specification, as the mapping model connects the model elements from the

other models and thus provides important information for the overall model. Figure 4.5 shows the

relationships between model elements from different models in UsiXML. For purpose of illustration

the figure depicts the relationships (metaclasses in UsiXML) as named relationships between models

and/or model elements. Some models or model elements are clustered into groups. For example, the

relationship hasContext can be specified between a context and any other model or model element.

As UsiXML is close to the CAMELEON reference framework the UsiXML mapping model provides

a good example for conventional relationships between user interface models in general.

A visual notation is not part of the UsiXML specification. The concrete syntax is XML but it

is intended to provide various tools for convenient creation of the models. Task and Application

Models can be created with IdealXML [Ide]. GraphiXML [Michotte and Vanderdonckt08, Gra] is a

GUI builder for UsiXML and allows storing the results as AUI and as CUI. To enable a less formal

development SketchiXML [Coyette et al.07, Ske] is a tool for user interface prototyping which allows

export into UsiXML specifications. Besides, various other tools exist, like and a tool for defining

and executing transformations based on graph grammars [Montero et al.05, Tra], code generators and

interpreter for various platforms (e.g. Java, Xul, and XHTML [Usia]) or a tool for reverse engineering

HTML pages into AUI and CUI models [Bouillon et al.04, Rev].

Dynamo-Aid

An approach supporting context adaptations at runtime is Dynamo-Aid (Dynamic Model-Based User
Interface Development, [Clerckx et al.05a, Clerckx et al.05b, Clerckx and Coninx05] which is part of

the framework Dygimes [Coninx et al.03, Luyten04]. Dynamo-Aid includes a modeling tool support-

ing the development process as well as a runtime architecture.

Dynamo-Aid supports the following models: Context-sensitive task model (also called Dynamic

task model), Context Model, Dialog Model, Presentation Model, and Interface-Model.

The context-sensitive task model is an extension of CTT enabling context-sensitive task models.

4.1 User Interface Modeling 55

Figure 4.6: Example for a Context-sensitive task model in Dynamo-Aid.

Therefore, a it supports a new kind of task, the decision task. A decision task has several subtasks.

At runtime the system decides according to the context which of them is active. Figure 4.6 shows the

context-sensitive task model for the example music player application from [Wu06b]. Depending on

the context, the application is either executed on the desktop PC or the mobile phone. In addition,

a specific location-based service is available for the mobile phone version: When the user enters a

music shop (supporting this service) the application offers the user to listen to some sample versions

of new songs.

The context model consists of Concrete Context Objects (CCOs) and Abstract Context Objects
(ACOs). A CCO represents low-level context information, like obtained by a sensor. An ACO is

connected to CCOs and interprets their information to provide context information which is relevant

for the application. The ACOs can be connected to decision tasks in the context-sensitive task model

to specify the context information which determines the selection of tasks at runtime.

For each context of use a context-specific dialog model is calculated from the task model. It

consists of states and transitions. A state corresponds to an enabled task set (see CTT in 4.1.2).

A transition is associated with a task which triggers the transition. For the calculation of enabled

task sets, Dynamo-Aid implements an algorithm presented in [Luyten et al.03] which bases on the

algorithm from [Paternò99] and uses heuristics given in [Paternò and Santoro02]. Figure 4.7 shows

the context-specific dialog model for the example application by [Wu06b] calculated from the task

model from figure 4.3. The Enabled Task Sets correspond to those in section 4.1.2. ETS-1 corresponds

to a terminal state.

The modeler specifies the context-sensitive dialog model by defining transitions between the states

of different context-specific dialog models. They have to be defined manually to avoid any context

change which is not desired.

The presentation model is defined by selecting AIOs and assigning them to the tasks. Avail-

able AIOs are Choice, Input, Static, Navigation Control, Hierarchy, Canvas, URI, and Group. The

Dynamo-Aid modeling tool supports hierarchically structuring the AIOs and provides support when

56 4. Related Modeling Approaches

Figure 4.7: Example for a Context-specific dialog model calculated from task models in Dynamo-Aid.

assigning the associated tasks. However, the links between the AIOs and the tasks are not directly

visible in the diagram.

The context-sensitive interface model contains the aggregation of all the models defined before

and thus provides an overview of all relationships between them. As the number of relationships is

usually very large, the tool supports to show or hide them and to mark them with different colors and

provides semantic zooming.

UIML

The User Interface Markup Language (UIML, [Abrams et al.99, Phanouriou00, UIM]) allows to spec-

ify the concrete user interfaces independently from the platform. The language is based on XML. The

current version is 3.1 [Abrams and Helms04].

UIML enables to specify user interfaces in a platform-independent way. This is realized by vo-
cabularies for the different platforms. A vocabulary is a mapping from UIML specifications onto

the corresponding implementation for a specific platform, e.g. onto Java Swing classes. When using

UIML one can either use an existing vocabulary or create an own. According to the UIML website

vocabularies are currently available or under development for the following target platforms: Java,

J2EE, CORBA, C++, .NET, HTML, Symbian, QT, Visual Basic, VoiceML, and WML.

UIML aims to fully support all user interface elements and properties of the target platforms. On

the other hand, it aims for the highest possible extensibility. For that reason, the available user interface

elements in UIML are not defined by UIML itself but within the vocabularies. The structure of UIML

documents is very modular and provides a strict separation between structure, content, layout, and

behavior. A UIML document contains the following parts:

Structure: The structure of the user interface in terms of widget objects, like a panel or a button, and

relationships between them. The relationships are usually spacial for graphical user interfaces

and temporal for vocal ones. They are defined by specific widget classes like containers. All

available widget classes are defined in the vocabulary. An application may have several different

4.1 User Interface Modeling 57

user interfaces structures for different purposes, e.g. a vocal and a graphical. It is also possible

to define dynamic changes of the structure by restructuring.

Style: The style of user interface elements in terms of properties. For example, assigning a text to a

button label or gray color to all buttons. Properties are defined in the vocabularies and assigned

to widget objects from the structure section.

Content: Content on the user interface, for example strings to be used as text on the user interface or

as label for a button. The content can be referenced by properties in the style section.

Behavior: Behavior of the user interface in terms of conditions and corresponding actions. The

conditions are usually events from widget objects. Logical operations and other boolean ex-

pressions can be used for complex conditions. Actions allow either calling a method from the

application logic or assigning a value to an object’s properties. A value can be any of the fol-

lowing: a constant value, a reference to a constant, the value of a property or the return value of

a method call. Available events are defined in the vocabulary. The application logic is defined

in the logic section.

The sections above contain the actual interface definitions. As already mentioned, two additional

sections may be necessary:

Logic: Objects representing the application logic together with mappings on the actual implemen-

tations. The application logic objects are just a collection of application methods and can be

mapped to any kind of implementation, like a database, script snippets, or Java objects.

Vocabulary: The vocabulary defines all the elements used for the interface definitions which includes

the widget classes to be instantiated in the structure section and associated class properties. In

addition, events and listeners are specified as classes and used by the widget classes. For all

classes and properties, mappings onto the target implementation platform must be specified.

The described mechanisms show that languages like UIML clearly aim for a pragmatic, detailed

specification of the concrete user interface. Abstraction and platform-independence are hence limited

compared to other approaches or depend on the vocabularies. The main contribution lies in the single

declarative language which can be used for different platforms and the general framework for strict

separation of different user interface aspects. These properties also make such languages a useful

candidate as target language for transformations from more abstract models.

4.1.3 User Interface Modeling and Software Engineering Concepts

This section briefly discusses model-based user interface development approaches from the viewpoint

of Software Engineering and MDE as relevant for this work. The relationship to Software Engineer-

ing concepts and standards (see section3.4) are indeed discussed and often mentioned as one of the

important challenges, like in [Clerckx et al.04] or in group discussions like [Basnyat et al.05].

Compliance

Considering Software Engineering concepts can be performed on two levels: First, the user interface

must be linked to the the application logic. Provided that the application logic is developed using

models as well, it is useful to enable links between these models. Many approaches do already fulfill

these requirement by including an application model into their approach. Of course, it is useful to

58 4. Related Modeling Approaches

enable compliance with application models in Software Engineering by either using UML, as the

de-facto standard in Software Engineering, or by enabling flexible usage of any application model.

Second, it can be useful to adhere to Software Engineering standards in general, as they are subject of

intensive research and well established. This enables reuse of general concepts and tools and might

also increase the general acceptance of an approach.

Several contributions discuss the integration of user interface modeling and UML. Standard UML

does not explicitly support user interface modeling concepts. For example, there is no kind of abstract

user interface element. Of course, on implementation level a widget is just an ordinary class and can

thus be specified in an ordinary UML class diagram. However, its semantics then would not differ

from any other application class, which would not be useful for meaningful user interface modeling.

Modeling the dialogue is easier with UML as behavior diagrams like State Charts can be used for this

purpose. Finally, the tasks, as one of the central user interface modeling concepts, are not explicitly

supported in UML but it is subject of several discussions (e.g. [Trætteberg02, Paternò01]) whether

they can be substituted by existing UML elements with similar semantics. On a first look, UML Use

Cases seem similar to tasks as they specify the actions a system can perform when interacting with

the user. However, Use Cases focus on system when interacting with one or multiple actors while task

models focus on the individual user and his goals [Paternò99, Markopoulos and Marijnissen00, Con-

stantine and Lockwood01]. Another possibility is to substitute tasks by actions from UML Activity

Diagrams as discussed in [Van den Bergh06, Nóbrega et al.05]. While this is basically possible, au-

thors agree that using standard Activity Diagrams would lead to a limited usability for the modeler

and adaptations are desired.

In particular for transformations into other models or code, it is often necessary to specialize the

semantics of UML even if the notation remains unchanged. For example, defining that in a State

Chart each state represents a Presentation Unit is an extension of the the semantics of UML states.

Thus, UML usually has to be extended anyway. Existing UML extensions for user interface modeling

mainly use the stereotype mechanism (see section 3.4.3). Examples are the Wisdom approach [Nunes

and Falcão e Cunha00, Nunes01] or UMLi [da Silva and Paton00, da Silva and Paton03] which support

the basic user interface models like in figure 4.1. The Context-sensitive User Interface Profile (CUP,

[Van den Bergh and Coninx05, Van den Bergh and Coninx06, Van den Bergh06] supports a similar

approach like Dynamo-Aid (section 4.1.2). Besides, a few other approaches aim for a integration of

the task concept with more general Software Engineering concepts: For example, [Sinnig et al.07]

defines a common semantic domain for task models and Use Cases or [Bourguin et al.07] describes a

component-based approach where each component represents a (generic) user task.

As the area of model-driven engineering is relatively young, currently only a few user interface

modeling approaches comply to its concepts and upcoming standards. Basically, many user interface

modeling approaches constitute themselves as “model-based” (instead of “model-driven”) but this is

often not intended as a statement about the degree of automation. UsiXML provides explicit meta-

models and supports transformations and adheres to many MDE concepts [Vanderdonckt05]. Some of

the latest approaches explicitly adhere to MDE concepts and tools: [Botterweck06] addresses the de-

velopment of user interfaces for multiple target devices. [Sottet et al.07b, Coutaz et al.07] focuses on

development and runtime adaptation of user interfaces for ambient spaces. Both approaches provide

EMF-compliant metamodels and ATL transformations between them.

Automation and Usability

An important general challenge lies in the degree of automation and, related with that, the usability

of resulting user interfaces. Applying the idea of model-driven development, more concrete models

4.1 User Interface Modeling 59

would be automatically derived from abstract models by transformations and modified and completed

by the developer. On the other hand, automation can easily lead to user interfaces whose provided de-

gree of usability is not sufficient. An example for intensive automation is JANUS [Balzert95, Balzert

et al.96] which is still available as a commercial tool [Otr]. It generates the user interfaces directly

from the domain model. Although it provides various possibilities for the user to tune the transforma-

tion, the resulting user interfaces tend to reflect the application model instead of the user’s conceptual

model. Such user interfaces are useful to provide user access e.g. on database values but are often not

sufficient to support a less experienced user through his/her tasks. Thus, such highly automated de-

velopment approaches are usually considered as adequate only for very specific application domains

[Puerta and Eisenstein99]. [Arens and Hovy95] is another example addressing in particular multi-

media: It proposes an intelligent system (called Cicero) which aims to automatically select a media

representation for a given piece of information and specified user.

The opposite alternative is to specify all models up to the final implementation manually – maybe

even in parallel and by different persons – and finally to specify manually the relationships between

them required to complete the overall specification – e.g. between task model or dialog model and

interaction objects. In the literature the problem how to establish the relationship between the different

models is referred to as Mapping Problem [Puerta and Eisenstein99] which is discussed in several

contributions [Limbourg et al.00, Clerckx et al.04, Montero et al.05]. As pointed out by [Szekely96],

any approach should give the possibility for manual post-editing to provide the interface designer the

final control about the results and not to hinder him/her to revise the final results.

While manual specification of models and mappings aims to ensure usability by leaving the re-

sponsibility to the human developer, it remains still desirable to increase productivity by a possibly

high amount of automation. One of the most important arguments for user interface modeling men-

tioned above – the possibility to generate user interfaces for different devices which might even be

unknown at design time – would become quite weak if no (semi-)automatic transformation from

platform-independent user interface models to platform-specific user interfaces exist. Moreover, even

a non-automated but systematic approach should include as much knowledge as possible about how to

systematically achieve appropriate usability. Thus, it is useful to formalize knowledge about usability,

or at least make it explicit, as much as possible.

A common definition from the ISO standard on Ergonomics of Human System Interaction [ISO98]

defines usability as:

The extent to which a product can be used by specified users to achieve specified goals

with effectiveness, efficiency and satisfaction in a specified context of use.

From the viewpoint of Software Engineering usability is usually considered as one of the non-

functional requirements. While some approaches for formalizing and modeling non-functional re-

quirements already exist [Zschaler07], it currently seems not possible to adopt them for usability as

there currently is not even a concept how usability could be measured at all [Seffah and Metzker04].

The HCI domain has provided several collections of usability guidelines and patterns. Guide-

lines are generic rules to be obeyed when designing a user interface. Some guidelines are often very

concrete, as found in guidelines for operation systems like the Apple Human Interface Guidelines
[App08] or the GNOME Human Interface Guidelines [GNO04] for GNOME desktops. They spec-

ify for instance the look of widget components and distances between them on the screen. Such

guidelines can often be integrated into code generators easily so that the code generator helps to obey

them. Other guidelines are very generic and qualitative rules like the design rules in [Shneiderman

and Plaisant04, Nielsen93, Preece et al.94, Constantine and Lockwood99], for instance the rule that a

user interface should be consistent. Some formal rules can be indirectly derived from them, e.g. by

60 4. Related Modeling Approaches

generating the same kind of widgets for similar user tasks. Model driven development can be valuable

for realizing such rules as it allows to implement, manage, and maintain them by explicit declarative

transformation rules, as sketched in first proposals by [Sottet et al.06, Zhao and Zou07].

However, the problem remains that usability guidelines are often contradictory, e.g. using the

same kind of widgets for similar tasks can conflict with the rule that the user interface should prevent

errors, for instance by using widgets which allows only valid inputs. A possible solution can be to

treat this as an optimization problem with a cost function which is user specific and adapts according

to the user’s usage of the generated user interfaces like in SUPPLE [Gajos and Weld04].

Another promising solution is to build on existing established manually created building blocks,

i.e. user interface patterns. Examples for existing user interface pattern collections are [Tidwell05,

van Welie, Duyne et al.02]. An approach for integrating patterns into user interface generation is pre-

sented in [Radeke and Forbrig07, Radeke et al.06]. They provide the User Interface Pattern Extensi-
ble Markup Language (UsiPXML) to describe patterns and their implementations in machine-readable

form. UsiPXML describes the patterns in terms of model fragments based on an adapted version of

UsiXML. The authors propose a general framework how to integrate patterns into model-based user

interface development and apply it as example to their development approach presented in [Wolff

et al.05].

The model driven solution from Sottet et.al. aims to integrate such mechanisms. They propose a

mix of automated, semi-automated and manually performed transformations. The approach aims to

enable flexible integration of any usability framework into the transformation. The transformations are

treated as models and, thus, usability guidelines can be managed and maintained in terms of models

as well. In particular, a transformation can be associated with properties representing one or more

usability rules (see [Sottet et al.07a]).

As follow up step on that base, it seems desirable to create customized user interfaces for the user

interface designer which allow to manage the transformations – including guidelines and patterns –

as proposed e.g. by [Sottet et al.06]. This idea was already supported to some extent by earlier tools

like Mobi-D [Puerta and Eisenstein99]. Moreover, the end-user might also need a “Meta-UI” which

allows to control and customize the user interface adaptations at runtime in ambient spaces as claimed

by [Coutaz06].

Initiatives

In general, modeling is a highly active research area in Software Engineering (see section 3.4). Hence

the interchange between user interface modeling area and Software Engineering area is important.

User interface modeling can profit from the evolving concepts, tools, and standards from the MDE

community. In turn, results from HCI are important for Software Engineering as the usability of ap-

plications is a key factor for its success. In addition, user interface modeling can be an important

application area for applying and evaluating the theory of modeling as due to the large experience

existing in this field. An increasing number of efforts investigates into this directions, e.g. confer-

ences and workshops like the HCSE conference mentioned above or HCI-SE and books like [Seffah

et al.05]. Another initiative is the workshop on Model Driven Development of Advanced User Inter-
faces (MDDAUI) co-organized by the author of this thesis and so far held three times on the MODELS

conference (one of the main conferences on MDE) in 2005 [Pleuß et al.05b, Pleuß et al.05a], 2006

[Pleuß et al.06b, Pleuß et al.06a], and 2007 [Pleuß et al.07c, Pleuß et al.07a]

4.2 Web Engineering 61

ER OMT UML

OOHDMRMM

WebML

HDM

W2000

WSDM

HDM-Lite

UWE

OO-H

WAE

WAE2

Data-oriented
methods

Hypertext-oriented
methods

Object-oriented
methods

Software-oriented
methods

4th generation

3rd generation

2nd generation

1st generation

Underlying
modeling language

Figure 4.8: Web Engineering approaches according to [Schwinger and Koch03]

4.2 Web Engineering

As discussed in section 2.1.4 Web and multimedia applications have many commonalities. This is

manifested in the term hypermedia application which refers to applications integrating both aspects

(see sec. 2.1.4). While only few approaches exist which focus directly on multimedia applications

there is a whole research community addressing systematic development of Web applications, called

Web Engineering. Although several modeling approaches from Web Engineering use the term hyper-

media application, this area clearly emphasizes on Web information systems. Nevertheless, due to

their general relevance and adjacency to multimedia this section gives a short general overview on the

typical concepts. Some exceptions which focus more on multimedia capabilities are provided in the

next section, even if they arise from the Web Engineering community

The area of Web Engineering is part of the general research on the Web and its applications. The

World Wide Web Conference (WWW, [WWWb, Williamson et al.07]) is one of the main conferences in

this area. The systematic development of web applications is a specific sub-area within this commu-

nity and referred to as Web Engineering. One of the first papers introducing this term was published

in 1997 by Gellersen, Wicke and Gaedke [Gellersen et al.97]. First workshops followed in 1998 held

on the International Conference on Software Engineering (ICSE, [ICS]) and the WWW conference.

The area thus has also a strong background in Software Engineering. Web Engineering is devoted to

the

application of systematic, disciplined and quantifiable approaches to the cost-effective

development and evolution of high-quality solutions in the World Wide Web. [Weba]

Modeling is one of the main topics in this area.

In contrast to user interface modeling, which has a much longer history, the number of existing

approaches is more limited. Overview diagrams on the most established approaches can be found in

[Schwinger and Koch03] and [Lang01b].

Figure 4.8 shows the overview from [Schwinger and Koch03]. Methods basing on Entity-Relationship

Diagrams [Chen76] focus on database-oriented web applications. Examples are the Relationship
Management Methodology (RMM, [Isakowitz et al.98]) and the Web Modeling Language (WebML,
[Ceri et al.02]). Hypertext-oriented systems focus mainly on the hypertext character of web appli-

cations. Examples are the Web Site Design Method (WSDM, [Troyer and Decruyenaere00]) and the

62 4. Related Modeling Approaches

Hypertext Design Model (HDM, [Garzotto et al.95]) which evolved to W2000 ([Baresi et al.01])

and HDM-lite ([Fraternali and Paolini98]). Object-Oriented methods base either on OMT [Rum-

baugh et al.91] (one of the predecessors of UML) or UML. Examples are the Object-oriented Hyper-

media Design Method (OOHDM, [Schwabe et al.02]), UML-based Web Engineering (UWE, [Koch

et al.07]), and the Object-Oriented Hypermedia Method (OO-H, [Gómez et al.01]). Software-oriented

methods treat web applications from the viewpoint of traditional Software Engineering, like the Web

Application Extension (WAE, [Conallen00]) and its successor WAE2 [Conallen02].

The methods can be classified into four generations where each generation reused concepts from

earlier approaches. Altogether, a convergence can be observed in this field and most approaches cur-

rently are either defined as UML extension or extended with a UML Profile to support compliance to

UML [Schwinger and Koch03]. Moreover, the approaches are still enhanced and maintained and pro-

vide tool support, sometimes even as a commercial product (e.g. WebRatio [Webb, Acerbis et al.07],

a tool for WebML).

Usually, a web application model specifies three different aspects: Content, Hypertext, and Pre-

sentation. Thereby, the models aim to address the specific characteristics of the web. The Content
model corresponds to the application’s domain model and can thus be modeled e.g. by UML class

diagrams. Often, media types of documents are already considered here. Moreover, web applications

often base on existing infrastructure, e.g. an existing database, which then has to be considered in

the models. The hypertext model, often also referred to as navigation model, reflect the link and nav-

igation structure of the application. It distinguishes between different kind of links like for internal

navigation or for calling an external service. In addition, some approaches like OO-H support a pat-

tern language for navigation patterns. The Presentation Model specifies the “Look and Feel” of the

user interface and sometimes also its behavior.

Compared to user interface modeling approaches discussed in the section before, Web Engineering

approaches are specific for Web applications. This means in particular, that in existing approaches the

user interfaces are restricted to HTML which results in restricted interaction possibilities for the user

interface. Moreover, they consider web-specific patterns which often are quite different from desktop

applications. For example, many guidelines for web user interfaces regard the navigation bar, which

does usually not exist in desktop applications. Due to this specific focus, most Web Engineering

approaches aim to generate the complete application code from the models, except for the final user

interface which is supposed to be implemented manually in some approaches.

Several approaches consider media components. Basically, proposals mainly enable to specify

the media type of an element, like image or video to include a corresponding media object into the

HTML user interface, like e.g. in [Hennicker and Koch01]. HDM, one of the earlier approaches

(sometimes also cited in context of multimedia modeling [Zendler98]) allows defining different views

on information artifacts, e.g. text and an alternative image. For description of media objects they

use concepts from multimedia modeling for databases [Gibbs et al.94]. However, by their focus on

HTML-based user interfaces the approaches support only a limited kind of user interaction and hence

use media objects only as purely presentation elements. As examined in [Preciado et al.05], the

multimedia support of these traditional Web Engineering approaches is limited.

Currently several research groups work toward extending the approaches for supporting also so-

called Rich Internet Applications [Arteaga et al.06, Gruhn07], i.e. client-side web applications real-

ized e.g. with AJAX, OpenLaslo or Flex. RUX [Linaje et al.07] aims to support the user interface

aspect of RIAs and can be connected with existing Web Engineering approaches. A combination with

WebML is presented in [Preciado et al.07]. The RIA modeling approach in [Martinez-Ruiz et al.06b]

is based on UsiXML. Others mainly address certain aspects of RIAs, like the single-page paradigm

and client-server communication, and apply them as extensions for WebML [Bozzon et al.06, Carughi

4.3 Multimedia Modelling 63

et al.07] or OOHDM [Urbieta et al.07]. Although the emphasis certainly lies on widget-based user

interfaces using Ajax and Flex and the specifics of Web applications, it still seems promising that such

approaches will lead to an advanced multimedia support.

4.3 Multimedia Modelling

In the Multimedia Domain there is currently no established community which can be seen as equiv-

alent of UI modeling and Web Engineering, focusing on systematic multimedia application develop-

ment. Indeed, Multimedia as a whole has a well established community. One of the main events

is the ACM Multimedia conference [Lienhart et al.07]. Most papers in multimedia community deal

either with low-level techniques as base for multimedia applications, e.g. algorithms improving the

performance of applications like a compression algorithm or techniques for semantic querying of mul-

timedia data, or show new concrete applications. But they rarely address application development in

terms of Software Engineering. Conferences focusing on “multimedia modeling” like the Multimedia

Modeling Conference [MMM, Satoh et al.08] do not deal with modeling in terms of application de-

velopment. Modeling here refers rather to modeling of concrete domain knowledge, like for example

required for computer vision or semantic video concepts. In terms of model-driven development such

kinds of models are domain models, but not suitable as metamodel for multimedia applications in

general (which is of course even far away from their purpose).

Some increased research interest in systematic multimedia application development was postu-

lated in the end of ninetees. Several researchers introduced the term Multimedia Software Engineering
[Mühlhäuser96, Chang99], which refers to both: Using multimedia possibilities in Software Engineer-

ing, e.g. advanced code visualization techniques, as well as using Software Engineering Principles

for multimedia development. This means that Multimedia Software Engineering claimed the gen-

eral need for a better integration of multimedia and Software Engineering domain. However, these

initiatives still have not really established yet.

Thus, still only very few approaches with similar goals like this work exist. As described in sec-

tion 2.1, there is a number of contributions which provide multimedia modeling but are limited to

a document-centric approach. A prominent examples is the Amsterdam Hypermedia Model (AHM,

[Hardman et al.94, Hardman et al.97]) which revised the Dexter Hypertext Reference Model [Halasz

and Schwartz94] and added multimedia properties like temporal and spatial layout. [Boll01] intro-

duced context adaptivity to multimedia documents. An XML-based approach with similar features is

Madeus [Villard et al.00]. Besides content adaptation, it also supports a very basic kind of interactiv-

ity by enabling to define “abstract devices” (e.g. abstraction of a mouse) which can trigger an event.

[Tran-Thuong and Roisin03] provides a document model based on the MPEG-7 standard.

Beside the Hypermedia approaches which mainly focus on hypertext and Web application de-

velopment, there are a few approaches which in fact provide multimedia support. The Hypermedia

Modeling Technique (HMT, [Zoller01]) bases on concepts from RMM. It enables to define primitives

like audio or slide shows and fine grained temporal relationships between them [Specht and Zoller00].

The example in figure 4.9 from [Specht and Zoller00] shows the HMT model of a webpage of an re-

search association. The document homepage (in the center) shows the name, a logo an audio a header

and a standard footer. A table of content leads to a page with information about associated research

cooperations (left hand side). In addition, the names and logos of research cooperations are presented

by a slide show. The temporal synchronization is specified in the lower part of the model: First the

welcome-header, the slide-show and the audio are presented. Slide-show and audio are synchronized.

After the slide show has finished, the remaining parts of the page (logo, name, footer, and list of

64 4. Related Modeling Approaches

Research
Cooperations

Logo

Name

RC-Show

Research
Cooperations

Name
Logo

RC-List
Footer

Header

Research
Associations

Welcome-Header

Welcome_Page

Footer

S

member
of

Welcome-
Audio

Name

logo

T

member
of

Welcome-Header

Welcome-Audio

logo

Footer

1

RC-ListRC-Show

Name

Figure 4.9: Example Hypermedia Modeling Technique (HMT) model from [Specht and Zoller00]

research cooperations) are presented.

4.3.1 HyDev

An approach even more considering specific features of multimedia applications is HyDev [Pauen

et al.98a, Pauen and Voss98, Pauen et al.98b]. It aims to integrate both the document character and the

software character of multimedia applications. HyDev is platform-independent and based on UML. It

proposes three kinds of models: domain model, instances model, and representation model.
The domain model is used to model the application structure. It provides the conventional con-

cepts of UML class diagrams. In addition, three multimedia-specific kinds of classes are available:

N-classes used to model the application’s narrative structure, S-classes which represent "‘spatial ob-

jects"’, and A-classes representing agents. All kinds of classes may own attributes and operations like

conventional UML classes.

Figure 4.10 shows the domain model for an example application, a virtual museum. The applica-

tion allows the user to take virtual tours on specific topics guided by a virtual museum guide.

The N-classes are used to model the application’s narrative structure. An N-class represents a

narrative unit, like scenes or episodes and is marked with an icon . HyDev does not predefine kinds

of narrative units , i.e. the modeler can define any kind of narrative unit required for the respective

application. For this purpose several HyDev provides specific relationships between N-classes, like

sequence, simultaneity, and prerequisite-for. For example in figure 4.10 the application has a narrative

unit Tour which consists of a sequence of TourSegments which in turn consist of a sequence of Steps.
Simultanously with each Step, CommentsOnExhibits are given.

The S-classes are marked by the icon and represent spatial objects. In HyDev, this means a 2D

or 3D object, for example in a 3D virtual world. In one publication [Pauen et al.98a] they are also

named as “physical objects” (but this does not mean real-world objects as used for augmented reality

of tangible user interfaces). Specific kinds of relationships between them are adjacent-relationship
and the contained-in-relationship. In the example, the virtual museum, its sections, and its rooms

as well as the different kinds of exhibits are modeled as S-classes. A room has adjacent rooms and

contains exhibits.

Furthermore, in addition to conventional class attributes and operations S-classes may own be-
havior, which means multimedia-related spatio-temporal behavior, like movements of an animation.

4.3 Multimedia Modelling 65

Tour

TourSegment

Step

Theme Museum

MuseumGuide

ExhibitRoom

Section

PaintingPieceOfFurniture Installation

sequence

sequence

simultaneous

participant-in

participant-in

participant-in

participant-in

adjacent

contains

ThemeOfSection

1

1..n

1

1..n

1

1..n

1

1..n

1

1..n

CommentOnExhibit

MovementPattern

behaviour-of

behaviour-of

ThemeOfTour

Artist
MadBy

Figure 4.10: HyDev domain model for a virtual museum application from [Pauen et al.98a]

66 4. Related Modeling Approaches

adjacent

participant-in

adjacent

participant-in

behaviour-of

simultaneous

participant-in

contains

seq. seq.

seq.seq.

ThemeOfTour

contains

EarlyWorks
:Step

DetailsTour
:Tour

GroundFloor
:Section

Basement
:Section

TopFloor
:Section

Prado
:Museum

LeftRoom
:Room

RightRoom
:Room

Hombres
:Painting

Saturno
:Painting

LateWorks
:Step

ComSaturn
:Com.OnExhibit

PintNegras
:(Painting)*

SpanishPaintings
:Theme

Velazquez
:TourSegment

Goya
:TourSegment

Expert
:MuseumGuide

FranciscoGoya
:Artist

MadeBy

Figure 4.11: Extract from HyDev instance model for the virtual museum application taken from

[Pauen et al.98a]

However, HyDev does not provide any further mechanisms to specify such kinds of behavior - it can

only be specified informally using natural language [Pauen et al.98b].

The A-classes represent agents, which means elements “characterized by some kind of indepen-

dence and autonomy.” [Pauen et al.98a], like game characters or avatars. They always participate in

narrative units. In the example application in figure 4.10 the museum guide is modeled as an A-class.

The instance model shows the instances of the running application. The authors argue that the

concrete content of the application is an important information for the developer, e.g. which exhibits

have to be developed for the virtual museum application. For this purpose, an object diagram is

used, enhanced with the icons analogous to the domain model. An extract of the instance model for

the virtual museum example is shown in figure 4.11. It is possible to aggregate several objects into

collections, like for the series PintNegras in the example.

Finally, the representation model describes the object representation and the user interaction. It

defines for the objects of the instance model how they should be represented on the user interface

in terms of representations. Within an object’s representation can be defined which attributes and

relationships are represented by which media object. This includes the media type and a list of "‘output

media"’, like audio channel, window, or external device. The representations can be nested which

defines the overall structure of the user interface. Between media objects it is possible to define

spatio-temporal relationships by qualitative statements like "‘before"’, "‘after"’ (temporal), or "‘left"’,

"‘right"’ (spatial). Finally, the navigation between the representations is modeled by arrows annotated

with events which trigger the navigation. Figure shows an extract of the representation model for the

example application.

HyDev is a very interesting approach as it addresses many multimedia-specific properties of the

application. Nevertheless, the choice of the models can be discussed. Modeling the application’s

objects in the instance model can often be a very tedious task. For example, if objects are taken

4.3 Multimedia Modelling 67

Att Portrait : IMAGE - Win 1
Picture with head of ripe Goya

Att Overview : TEXT - Win 1
Written text with general infor-
mation about Goya (in Spanish)

Att Overview : AUDIO - L/R
Spoken text with general informa-
tion about Goya (female voice)

Att Biography : VIDEO - Win 1, L/R
Video with details about Goya’s
biography (approx. 3 min)

Att Influence : VIDEO - Win 1, L/R
Video Goya’s influence on
painting (approx. 4 min)

above
below simultaneous

left right

before with pause
after with pause

simultaneous

click
on text

termination
when video starts

GoyaDetailsRep

Object FranciscoGoya (:Artist)
Various information about Goya in a separate window.

SaturnoRep

Picture of Saturn devouring one of his sons.
Object Saturno (:Painting)

Att Contents : IMAGE - MainWin

HombresRep

Picture of two men resting against a tree.
Object Hombres (:Painting)

Att Contents : IMAGE - MainWin

LateWorksRep

Object LateWorks (:Step)
Step within a toursegment with the late paintings by Goya

before after

click on image click on image

name of representation

navigation

interaction

description

referred object

spatio-temporal
relationship

complex
representation

name of object
name of object’s class

represented attribute

name of object
media object type

list of output
 channels

description

event

representation

Figure 4.12: Extract from HyDev representation model for the virtual museum application taken from

[Pauen et al.98a]

68 4. Related Modeling Approaches

New

+

-

VoiceTemp

Fuel

Batt

Oil

421306.2

200

Audio

Comm
min-1 km/h

� MIS

Figure 4.13: Screenshot from the automotive information system example for OMMMA [Engels and

Sauer02]

from a database, creating the instance model can result in modeling whole database tables. On the

other hand, the benefit of the instance model can often be limited, as the concrete object’s names

and attributes are not always meaningful in multimedia applications, as objects differ mainly in their

visual representation. For example in a gaming application, different levels often have only the name

"‘level 1"’, "‘level 2"’, etc. and differ only in the concrete spatial arrangement of objects on the user

interface. On the other hand, the representation model tends to include too much information. It

contains structure and behavior of the user interface and at different levels of granularity. Probably,

when modeling a whole application, it can become very difficult to handle.

In its current form, code-generation is not supported by HyDev. Many of the language elements,

e.g. agents and spatial objects, are not defined precisely enough. Others, e.g. behavior of S-classes

and events in the representation model, are modeled just by textual descriptions. However, HyDev

provides a worthwhile example in which direction multimedia-specific modeling should investigate.

4.3.2 OMMMA

Another platform-independent modeling language for multimedia applications is provided by the Ob-
ject Oriented Modeling of Multimedia Applications (OMMMA, [Engels and Sauer02, Sauer and En-

gels01, Sauer and Engels99a]) approach by Sauer and Engels. It extends UML using Stereotypes and

supports four kinds of diagrams: an extended class diagram for the application and media structure,
an extended sequence diagram for temporal behavior, a presentation diagram for spatial aspects of
the presentation, and a state chart diagram for the interactive control.

The OMMMA diagrams are explained in the following using an example application given in

[Engels and Sauer02]: a (simulation) application of an automotive information system that provides

the user control over the car’s navigation and entertainment functionality via a multimedia user inter-

face. It includes car audio, navigation and communication systems, travel or tourist information, and

automotive system monitoring and control. Figure 4.13 shows a screenshot from its user interface.

The class diagram is used to model the application structure. Basically, it provides the conven-

tional class diagram elements, like classes and relationships between them. It is divided into two

parts: a hierarchy of media type definitions and a domain model describing the application logic.

Figure 4.14 shows the class diagram for the example application. The media type hierarchy defines

the media types to be used and is derived from existing multimedia standards and frameworks. In the

example, it is located on the bottom part of the diagram. The upper part shows the domain model for

4.3 Multimedia Modelling 69

AutoInfoSysSim

CommunicationAutoStatusSystem Navigation EntertainmentInfoServices

MapSpeedometer

Status2Monitor

1 1 1 1 1

1

*

Location
start

dest 1

1

*

*

*
**

MileageCounter
1

RevCounter
1

Media

TemporalMediaDiscreteMedia

Animation Audio VideoGraphics Image Text *

0..1

11

1

0..1

0..1

1
1..2

0..1

0..1

1

0..1
Direction

1..*
1

1

0..1 part:
Integer

Route

Announce
1
0..1

1

Figure 4.14: OMMMA class diagram from [Engels and Sauer02] for the example automotive infor-

mation system

the example application. Here it is modeled as an composition of five subsystems for the different

functionalities AutoStatusSystem, Communication, InfoServices, Navigation, and Entertainment. For
some of them, some further example domain classes are shown.

The associations between elements from the two parts specify that a domain class shall be pre-

sented in the application by a respective media type. For example, the speedometer should be pre-

sented by an animation and one or two graphics, a map should be presented by an image, etc. In this

way – using relationships between domain classes and media types instead of defining the domain

class itself as media object – one domain class can be flexibly presented by multiple media objects.

The OMMMA class diagram in addition (not shown in the example) contains a signal hierarchy
as base for the event-based interaction and, possibly in a separate package, presentation classes to

specify the possible composition of user interfaces as a base for the presentation diagram.

Extended UML sequence diagrams are used in OMMMA to model the predefined temporal be-

havior. It should be mentioned that when OMMMA was published UML 1.3 was the current version

of UML so it does not consider the additonal concepts of UML sequence diagrams in UML2.

The objects in the horizontal dimensions are instances from the domain model. Like in conven-

tional UML sequence diagrams they have a lifeline in vertical direction (dashed lines). Horizontal

arrows indicate a message sent between objects. An activation box on the lifeline indicates that the

element has become active as result of a message.

For the purpose of modeling synchronization OMMMA provides several extensions. Figure 4.15

shows an example from the automotive system. In OMMMA a sequence diagram represents a sce-

nario, which is specified by the initial message from an actor, e.g. a user interface component which

triggers the behavior. The example shows the scenario that the navigation system presents the user a

route from A to B. The initial message is showRoute(A, B). The lifelines in OMMMA represent local

timelines and can be related to the actor’s timeline which represent the global time. It is possible to

define durations and points in time in several ways using time intervals and constraints.

Activations can be annotated with names of presentation elements, i.e. media objects (denoted

with <>) or elements from the presentation diagram. In the example, the Navigation instance first

70 4. Related Modeling Approaches

:Navigation ABm:Map ABr:Route ab1:Direction

showRoute
(A, B)

show

start

ab1a:Announce ab2:Direction

start

end

start

end

start

end

end

finished

finished

< 10 sec

< 5 sec300 sec

[10;20]
sec

240 sec

< 3 sec

H*

Ce
nt

<
tL

ef
t:

Au
di

o>

M
ul

tiv
ie

w

M
ul

tiv
ie

w

N
av

A1

N
av

A1

<
st

ra
ig

ht
-le

ft
:

An
im

at
io

n>

<
st

ra
ig

ht
:

An
im

at
io

n>

<
AB

M
ap

:
Im

ag
e>

<
AB

Ro
ut

eS
eg

1:
An

im
at

io
n>

<
AB

Ro
ut

eS
eg

2:
An

im
at

io
n>

M
ul

tiv
ie

w

ABm:= calcMap(A, B)
ABr:= calcRoute(A, B)

Figure 4.15: OMMMA sequence diagram from [Engels and Sauer02] for the example automotive

information system

calculates the map and the route and then sends the message show to the Map instance. The map

instance is presented by its associated Image object ABMap which is presented in the Multiview object

from the presentation diagram.

Bold lines denote synchronization bars indicating that two or more objects should be synchro-

nized. In the example, the Navigation instance then sends another message to the Route instance

which should be synchronized with the Map presentation. Its activation box is not filled at the begin-

ning which indicates an activation delay used to model tolerated variance of synchronization relations.

The temporal constraint specifies that the presentation of the route must start at latest 10 seconds after

the presentation of the Map instance.

It is also possible to specify parallely composed activation of media objects to model the simul-

taneous presentation using different or presentation elements. In the example, the Route instance is

presented by its associated animation and in parallel the direction is presented and an announcement is

performed. Sequentially composed activations is used to specify that after the ABRouteSeg1 another

animation ABRouteSeg2 is shown. Finally, it is possible to overlay an activation with media filters
which are temporal functions, e.g. the increase of the audio level over the time.

For each sequence diagram the History concept from UML statecharts can be used to specify to

which extent it is possible to resume a behavior after an interruption. Deep history, denoted with H*,

means that the behavior can be resumed exactly in the same state before the interruption occurred.

Shallow history (H) specifies that returning is only possible on the top-level.

The presentation diagram specifies the spatial structure of the user interface. It shows the ele-

ments on the user interface in terms of bounding boxes. The diagram visually defines their size and

layout according to a specified coordinate system. There are two kinds of user interface elements in

OMMMA: visualization objects are passive output objects which present some information to the user

while interaction objects allow user interaction and trigger events. The latter ones are denoted by bold

boxes.

Presentation diagrams can be split into different areas representing different hardware devices, like

4.3 Multimedia Modelling 71

AutoInfoSysSim �

MileageView

FuelIndicator

Stat1

Stat2

Stat3

Stat4

DevCntrView
SpeedView

FlashIndicat

Cockpit

Com Mis
CockpitDisplay

Speaker
L R Cent

Figure 4.16: OMMMA presentation diagram from [Engels and Sauer02] for the top level view.

a screen and audio speakers. Figure 4.16 shows the presentation diagram for the example application’s

top level view (AutoInfoSysSim). The bottom area represents audio speakers (Speaker) which can be

referred e.g. in the sequence diagrams. The top area presents the display (CockpitDisplay) containing
bounding boxes for the visual user interface elements. In the example the display contains only

visualization objects as the user input is performed via specific hardware devices like knobs. Those

could be specified in an additional diagram compartment analogously to the speaker.

The user interface can be composed of different views which can be placed on different layers

on the virtual area. For example figure 4.17 shows the content of the Cockpit element from figure

Figure 4.16.

The statechart diagram in OMMMA describes the interactive control and the dynamic behavior

of the system. Therefore it specifies the different states of the systems and the transitions between

them which are triggered by events. It uses the standard UML statechart constructs. The events which

trigger the transitions correspond to the signal defined in the signal hierarchy in the class diagram. As

the class diagram is defined by the modeler, any kind of events are supported, including user events,

system events, or timer events.

Figure 4.18 shows the statechart diagram for the top level of the example application. It uses

advanced UML statechart concepts like composite states and submachine states. Complex composite

states, like Navigation, InfoServices, and Entertainment are specified in additional diagrams.

When the system enters a (simple) state it executes associated predefined behavior specified in the

sequence diagrams. For this purpose the initial message of the corresponding sequence diagrams is

specified in the Do-section of the state. For example, one of the substates of the Navigation state (not

shown in the diagram) performs the message showRoute(A,B) which triggers the predefined behavior

specified in figure 4.15.

Altogether, OMMMA seems to be the most elaborated approach for modeling interactive multi-

media applications. It covers the different aspects of multimedia applications and integrates them into

a consistent approach. It thus provides an important contribution for all further research in this area.

Nevertheless, a more in-depth analysis shows that there are still various aspects which are not covered

by OMMMA yet. Also, the modeling concepts in OMMMA are not sufficient to fulfill the goals iden-

72 4. Related Modeling Approaches

AutoInfoSysSim::MIS::MultiInfoSys �

MultiView

NavA1

Ctrl1

Ctrl2

Ctrl3

Ctrl4

CtrlA

CtrlB

AutoInfoSysSim::Cockpit

CockpitDisplay

Figure 4.17: OMMMA presentation diagram from [Engels and Sauer02] for the cockpit view.

AutoInfoSysSim

Navigation InfoServices

Entertainment

AutoStatusSystem

Communication

H

run
monitor

on

standby

call

hangup

dial

connect

redial

new

navi
navi

retNavi

infoSys

infoSys
eTaineTain

Off

MultiInfoSys

H

off
on

MIS

Figure 4.18: OMMMA statechart diagram from [Engels and Sauer02] for the example automotive

information system

4.3 Multimedia Modelling 73

tified in this work, like an easy usable and model-driven approach. Some important shortcomings are

discussed in the following:

As a first issue, several parts of the OMMMA language are too generic to enable a clear model-

driven process. Several elements, like user interface elements and signals for interaction, have to be

defined in the class diagram by the modeler. Predefining them would provide better support for the

modeler and would also also be necessary for code generation. In its current form, there is also poor

support for the modeler how to structure the overall model in a consistent way. For example, which

classes from the class diagram correspond to the top-level of the statechart diagram? Some of the

initial contributions [Bertram et al.99, Sauer and Engels99b] propose to explicitly specify one class as

the application’s top-level class labeled with the stereotype Multimedia Application which is composed

of several scene classes labeled with the stereotype Scene (or scenario in [Sauer and Engels01]).

A scene then represents an independent part of the application associated with domain classes, a

presentation and a top-level state in the statechart diagram. In figure 4.14 the class AutoInfoSysSim
would correspond to the Multimedia Application and the classes AutoStatusSystem, Communication,
InfoServices, Navigation, and Entertainment to Scenes. However, currently this is not further defined.

Besides, as OMMMA aims to be specified as a UML profile, such relationships between the model

elements (e.g. also between thestatecharts and sequence diagrams) currently have mainly the character

of conventions and can not be directly supported by modeling tools.

A second issue is the usability of the diagrams for the modeler. OMMMA emphasizes model-

ing the application’s predefined behavior. Therefore it uses UML sequence diagrams and various

extensions. However, as section 6.5 will discuss in more detail, it is questionable whether such a

fine grained definition of durations and time values is frequently necessary in an abstract model for

multimedia applications. In OMMMA, a sequence diagram specifies only one predefined behavior

without any interaction. Often the contained information will be of limited value for the modeler as

the predefined behavior is on the one hand trivial and on the other hand specification of exact time

values is not required during application design. In turn, the statechart diagram contains a very high

amount of information as it contains the application’s complete navigation and interaction. In inter-

active applications the statecharts becomes very complex as already indicated by the extract shown in

figure 4.18.

As third issue, OMMMA covers the user interface design only partially. The presentation diagram

focuses on the concrete spatial layout. There are neither predefined user interface elements nor is there

a notation to visually distinguish between different custom elements. The purpose of elements can

often be derived only by analyzing the statechart and the sequence diagrams. Moreover, it seems not

to be intended that media objects act as interactive elements as well.

Finally, the media objects in OMMMA are very simple model elements without any properties.

Thus, the information about the media objects which can be expressed by the models is very limited.

Let’s consider for example figure 4.14:

• Speedometer has a relationship with Graphics with the multiplicity ‘1..2’. What is the purpose

of this graphics and why are two graphics required? The textual description in [Engels and

Sauer02] explains that the graphics are two alternative background graphics “e.g. to enable

a day and night design of the background”. However, this information is not reflected in the

model. MML solves this issue by modeling each media object as an individual, named model

element like NightBackgound and DaylightBackground (section 5.2.2).

• According to the textual description in [Engels and Sauer02] the speedometer consists of two

graphics for day and night design of the background and an animated indicator for the actual

speed. This means that the background and the indicator animation must fit together and build

74 4. Related Modeling Approaches

the overall speedometer representation. MML solves this by providing support to model the in-

ner structure of media objects. For instance, it is possible to model an animation Speedometer
which contains as inner objects a graphic background and an animation speedIndicator (sec-

tion 5.2.8).

• The Entertainment class in figure 4.14 is related to videos. Obviously, the user must be able to

play, pause, stop, etc. the videos. Is such functionality already part of a video object (and if so,

what kind of functionality) or must it be specified by the modeler? MML solves this issue by

the concept of Media Components (section 5.2.2).

• Some media objects must be created by the media designer, like the speedometer. Others, like

the videos for the Entertainment class, are possibly loaded dynamically into the application,

e.g. from the user’s personal video collection, and need not to be created by the media de-

signer. There is no way to distinguish such different cases in OMMMA. MML solves this by

the possibility to specify concrete artifacts of Media Components and by additional keywords

(section 5.2.5 and 5.2.6).

These are just some examples showing that the simple way to model media objects in OMMMA is not

sufficient to capture all information necessary for the media designer. Useful code generation from the

models would require even more detailed information. A detailed discussion on issues and solutions

for modeling media objects in interactive applications is given in chapter 5.2.

OMMMA does currently not provide a modeling process or code generation. However, there are

several contributions into this direction regarding the extended sequence diagrams. [Engels et al.00]

specifies an approach for formal specification of behavioral UML diagrams using collaboration dia-

grams which are interpreted as graph grammar rules. On that base, [Hausmann et al.01] shows how

this approach can be extended to UML extensions like UML profiles and applies it as example to ex-

tensions for UML sequence diagrams. [Hausmann et al.04] then extends this example for specifying

temporal properties for UML sequence diagrams, as used in OMMMA, and provides an interpreter to

analyze or test such models.

4.3.3 Code Generation

This section discusses existing proposals directed towards automatic or manual derivation of code

from design models. The majority of them addresses non-interactive multimedia presentations (e.g.

[André95]) and they mostly address specific domains. An example is the discourse driven approach in

[Morris and Finkelstein96] which aims to generate multimedia documents for Software Engineering

tool demonstrations. An overview which classifies approaches according to their target domain – like

report generation, route directions or education – can be found in [André00].

Code generation for more complex, interactive applications is supported only by approaches from

User Interface Modeling or Web Engineering as explained in the foregoing sections, which provide

only limited multimedia support and focus on conventional widget-based user interfaces. In particular,

the idea of combining a systematic modeling approach and multimedia authoring tools has rarely been

investigated yet. This section describes two approaches which can be considered as very first steps

into this direction.

Boles, Dawabi, and Schlattmann [Boles et al.98] introduce such an approach for the domain of

virtual labs. Their example is a virtual genetic engineering lab application which shows how to set up

and conduct different experiments. As modeling language they use plain UML. UML Class diagrams

specify the application’s domain classes. A sequence diagram describes the experiment in terms

of messages between domain classes. Finally, simple UML statecharts specify the domain classes’

different states.

4.4 Discussion 75

The authoring tool Director is used for the implementation. The authors provide a proposal how

to implement the UML design models within the tool. The class diagram is mapped to Lingo class

constructs. The statecharts are implemented in the class methods by setting attribute values. Moreover,

they sketch how to structure the remaining application parts in terms of the Model-View-Controller

pattern. Automatic code generation or a generalization of the approach beyond the scope of virtual

labs seems not to be intended by the authors.

A second approach using UML models and the multimedia authoring tool Director is described

by Depke, Engels, Mehner, Sauer, and Wagner [Depke et al.99], the same research group which inves-

tigated in the OMMMA approach described above. They use several different UML class and object

diagrams to support the development process from platform-independent design toward the platform-

specific implementation in the authoring tool. For the platform-independent modeling they provide a

general application model in terms of a class diagram. It shows the general structure of a multimedia

learning application including classes for the media types, presentation, control, and a starting point

for the application logic. The application logic initially contains only a simple basic structure for

learning applications, i.e. learning units and relationships between them. When developing a concrete

application the application logic has to be extended to reflect the logic of the concrete application in

terms of the concrete learning content. The other parts of the application model (media types, presen-

tation, control) remain usually unchanged, i.e. these parts are a kind of general framework to be used

in multiple projects.

For the authoring tool, they provide an the authoring tool model in terms of a class diagram. It

defines the general structure of Director applications. It has to be defined only once as well. In

addition, the authors provide mapping rules for mapping instances of the application model classes

onto instances onto authoring tool model classes.

When developing a concrete application the developer first extends the application model with

application classes specific for the current application. Then the developer creates an object diagram

of the application by instantiating the classes from the application model. By application of the

mapping rules an object diagram is derived which contains instances of the authoring tool model. It

can finally be implemented in the authoring tool.

Interestingly, the proposal has many parallels with a model-driven development process (figure

4.19). However, it resides one meta-level below: instead of meta-models it uses class diagrams for the

general concepts which are instantiated for the concrete application. As a consequence, concepts on

class level (as required for example for the domain classes) must be specified by extending the generic

application model, e.g. by specifying subclasses.

As the authors state, the purpose of this article is not to provide complete generic models and

mappings but rather to demonstrate the process. They also restrict themselves to the static applica-

tion structure and conventional UML class and object diagrams. The mappings are intended to be

performed manually. Nevertheless, the proposal can be interpreted as a first systematic integration of

modeling and authoring tools and, moreover, includes ideas of model-driven development.

4.4 Discussion

In summary, a large variety of approaches related to multimedia modeling exists. But none of them

can provide sufficient support for highly interactive applications using non-standard user interface

elements.

The area of user interface modeling has a long history. The number of approaches is thus very

large and proposals are very sophisticated. However, the area addresses user interfaces in general

76 4. Related Modeling Approaches

Application Model

Control

Media
Types

Presen-
tation

Application
Logic

Application-specific
Application Logic

Concrete Application
Instance Model

Authoring Tool Model

Concrete Authoring Tool
Instance Model

Mapping
generic
models

models for
concrete
application

Class level

Object level

Figure 4.19: Approach from [Depke et al.99] interpreted as kind of MDE approach.

which results in standard widget-based user interfaces. Multimedia aspects are not further consid-

ered. However, many of the established concepts from this area can also be applied to multimedia

applications and are thus carefully considered in this work.

The area of Web Engineering provides approaches which allow a high degree of automation and

can be applied in commercial projects. However, this is caused by their restriction to common web-

specific applications and standard HTML-based user interfaces. Research on Rich Internet applica-

tions, providing a higher degree of interaction, has just started in the last few years. However, these

latest efforts show that modeling multimedia applications is becoming more and more relevant.

Finally, the research area of Multimedia itself hardly targets the application development aspects.

Various existing proposals cover multimedia data and multimedia documents very well but they are

not extended towards interactive applications. From the few remaining approaches, OMMMA clearly

seems to be the most elaborated one. As discussed above, various issues in OMMMA do not sat-

isfy the goals for the current work. For example, it does not consider concepts from user interface

modeling and also does not provide any manual or automatic transformations towards implementation

yet. Nevertheless, it provides several important basic contributions and is carefully considered in this

work.

The approach presented in the following integrates the relevant existing concepts from multime-

dia modeling and user interface modeling. As general foundation it uses the state-of-the-art concepts

from model-driven engineering. To gain feedback from these three important areas, MML has been

presented on conferences in all three communities: General foundations of MML and the overall

framework [Pleuß05b] have been presented on the MODELS conference. The MML modeling lan-

guage [Pleuß05a] has been presented on the International Symposium of Multimedia. A summary on

MML and the integration of authoring tools [Pleuß and Hußmann07] has been presented on the special

session on “Patterns and Models for the Development of Interactive Systems” at the HCI International

conference.

Chapter 5 will identify several important features of highly interactive multimedia applications

which can not be modeled with the existing work so far. Later on, section 8.3.3 will summarize these

new features and use them as base for a detailed comparison of selected approaches and MML.

Finally, the approach presented here proposes and implements the integration of an existing pro-

fessional multimedia authoring tool and a model-driven approach. Such an integration has not really

4.4 Discussion 77

been considered in existing work yet. As discussed in section 9, generalizing this idea might contribute

to a better integration of systematic Software Engineering concepts and creative design in general.

78 4. Related Modeling Approaches

Chapter 5

Modeling Multimedia – MML Core
Principles

The following three chapters present the Multimedia Modeling Language (MML) as main contribution

of this thesis. The current chapter discusses basic decisions on language definition and introduces core

modeling concepts in detail. Afterwards chapter 6 provides a more compact overview on the overall

modeling language, its different diagrams, and the process to create MML models. Finally, chapter

7 shows by the example of Flash how MML models are mapped to code and how visual multimedia

authoring tools are tightly integrated into development with MML.

The current chapter is structured as follows: The first section explains basic issues on modeling

language definition and resulting decisions made for the definition of MML. this includes a short

excursion on icon design for modeling languages which is necessary to understand how icons for

MML model elements have been developed. On that base the second chapter introduces in detail the

concept of Media Component as core concept for modeling multimedia and discusses it by various

examples.

5.1 Basic Decisions and Language Engineering

In chapter 3 the overall goals for the modeling language have been elaborated. It should be easy to

use, support a design phase and transformation into code for multimedia authoring tools, and integrate

multimedia design, software design, and user interface design. Realizing such a modeling language

requires some more detailed decisions about language design and definition. Currently, there is little

literature on such practical issues like systematic design of abstract and concrete syntax of a modeling

language or patterns to be used in metamodels. Latest books like [Kelly and Tolvanen08] address such

issues as well as, in a general scope, emerging initiatives on Language Engineering like the ATEM
workshop in 2007 [ATE].

The following sections do not claim to provide a generic overview on language design but discuss

such issues as far as they are important for the design of MML. This includes basic decisions about

MML like the language scope, UML-compliant definition, and some (very basic) applied metamod-

eling principles. In particular it provides a short excursion about systematic icon design for visual

modeling languages which has only marginally been addressed by literature yet and is necessary to

understand how the icons for MML model elements have been developed. In this way the section

provides a summary of basic language engineering issues which turned out during the development

of MML.

80 5. Modeling Multimedia – MML Core Principles

5.1.1 Scope

MML should support multimedia applications, as defined in section 2.5. It should address such ap-

plications in general, i.e. not devoted to a specific application domain. This is reasonable as concepts

of multimedia applications (section 2.5) and implementation technologies (section 2.3) can basically

be applied in any kind of application and any domain (see 2.4). From that point of view MML can be

judged as a General Purpose Language.

For the definition of Domain Specific Languages it is often useful to use terms and modeling

concepts tailored to the specific audience. This can even be a single company or development team.

In contrast, a more general language like MML must be accessible for a broader audience. Thus, it

is useful to reuse as much as possible existing common modeling concepts developers might already

be familiar with; i.e. mainly the de-facto standard UML. Reusing established modeling concepts also

ensures the quality of the resulting language.

Two aspects of multimedia applications are already supported by existing modeling languages:

the application logic and the general aspects of the user interface. For the application logic, UML

is already established as a standard. It seems useful to use it for MML as well. In the area of user

interface modeling there is currently no such standard but many general concepts exist (sec. 4.1) which

should be reused in MML.

These two existing areas (modeling of application logic and user interface modeling) provide in

addition some advanced approaches for modeling specific features. For example, several approaches

from the user interface modeling area support context-sensitive user interfaces (section 4.1) or phys-

ical user interface objects [Gauffre et al.07]. UML-based approaches support various application

features like databases or real-time constraints. As MML aims to support applications in general, the

question arises whether such aspects must be integrated into MML as well. Of course, a multimedia

application can be context-sensitive and use physical user interface objects, include a database, and

have real-time features. Furthermore, the area of web applications provides for example concepts for

modeling client server communication which can also be relevant for multimedia applications. How-

ever, it seems very hard to combine all such aspects into a single modeling language. The resulting

language then would become very large and hard to handle. It would also require to select the “best

of” the existing proposals. Such a unified language is specified better by a consortium like the OMG

than by single research efforts. Instead it is much more promising to focus on the core concepts for

multimedia applications and define them in a way that still allows to extend or combine them with

other approaches later if needed (see also discussion in sec. 10.3).

Consequently, MML focuses only on the core concepts of multimedia applications and is designed

in a way that it can easily combined or extended with other modeling approaches. The core concepts

are those required to model a multimedia application in general – without any specific features beside

“multimedia” itself – so that it is possible to generate useful code for multimedia-specific implemen-

tation technologies like Flash.

5.1.2 Language Definition

As discussed above MML should be compliant to the UML. Section 3.4 describes three different

alternatives how to define a standard compliant modeling language: as independent metamodel, as

metamodel extending the UML metamodel or as UML Profile.

The application logic in MML can be modeled using UML class diagrams. Other aspects of

multimedia applications, like media objects or the user interface, are not supported by UML. However,

some of them can be denoted using one of the UML general modeling concepts, like state charts used

5.1 Basic Decisions and Language Engineering 81

for modeling the dialogue in user interface modeling. It is valuable to prefer established existing

concepts but only as long as they can be applied properly. Thus MML aims to reuse UML concepts

where this does not lead to any drawbacks, and introduces new customized concepts otherwise.

Based on these considerations, it seems useful to define MML either as UML Profile or at least

based on the UMLmetamodel. However, MML is supposed to act as conceptual model for multimedia

applications. Furthermore, potential reuse of UML concepts should not at all prevent the design from

selecting the optimal solution for each concept in MML. Thus, MML is defined as an own metamodel

which partially reuses the UML metamodel but defines a customized and independent conceptual

model of multimedia applications. In a second step, it might then – if required – still possible to

additionally define it as UML Profile later, e.g. to reuse a UML modeling tool as a solution for

modeling tool support (see section 6.7).

5.1.3 Notation

As a consequence from the decisions above, the language’s notation partially reuses the UML no-

tations. Model elements which are directly adopted from UML should obviously keep their UML

notation. For other elements different possibilities exist: 1) just to apply an existing UML notation

for them, 2) to mark them by an additional keyword (which is in UML denoted in guillemets «» anal-

ogous to stereotypes, see section 3.4) or 3) to define a completely new notation for them, either using

icons (analogous to stereotype icons) or even by more complex graphical elements.

The advantage of the first case is that visual primitives and components already established in

modeling can be reused. As UML is a large modeling language, many preferable notations are already

used by UML model elements. Reusing them can lead to diagrams with easy to use and already

approved notations. The disadvantage is that such elements can be misinterpreted as UML elements.

Thus, reuse of notations is only useful when either the custom element is a specialization of the

UML element and no distinction is required (e.g. because the UML element is not part of the custom

language) and/or if the difference becomes clear from the context where the notation can be used. An

example is reusing the notation for UML states in a diagram modeling the user interface dialogue.

In particular, for the notation of relationships only a limited number of possible notations exists as

the main difference between notations results only from line style and line ends. When using too many

different notations for relationships they can easily become difficult to distinguish or when using too

complex solutions, difficult to draw (ideally, it should also be possible to sketch diagrams by hand).

On the other hand, relationships can often be understood just by their context, i.e. the kind of elements

they connect. Thus, for relationships in many cases the UML notation can be reused.

The advantage of the second case is that adding a keyword to the notation unambiguously defines

the kind of element. The disadvantage is that when using too many elements with keywords the visual

character of the notation can get lost and the modeler has to read all the keywords in a diagram to

distinguish the elements.

The third possibility allows to create a meaningful notation for custom elements which allows a

clear distinction from UML elements. But it can be difficult to find a notation which is easy to handle

and can be easily understood and recognized by different people.

MML uses all three possibilities according to their advantages and disadvantages. The notation of

model elements reused from UML remains unchanged. Elements which can be seen as specialization

of UML elements are denoted using the respective UML notation as well. Ideally, modeling tools

should allow to optionally show and suppress additional keywords. Relationships are denoted using

the UML notation as well and can be identified due to their context. For important elements not

supported by UML, like abstract user interface elements and media components, a custom visual

82 5. Modeling Multimedia – MML Core Principles

notation is provided.

5.1.4 Custom Icon Design

As custom icon design is not a trivial task and as no common way for systematic icon design in the

modeling community exists, this section provides a short excursion on this topic and finally explains

how the custom icons for MML (shown during the introduction of MML modeling elements in the

following sections) have been developed.

The goal of a custom notation is usually to enhance the usability of the modeling language, e.g. to

allow easier learning, recognizing, and understanding of modeling elements and thus finally increase

the efficiency when using the language (see e.g. [Moyes and Jordan93] for advantages and properties

of icons). However, developing new icons can be a difficult task, in particular as software engineers

often have little knowledge in graphic design. This section shows user testing methods for icons and

how they were applied for MML.

Kelly and Tolvanen provide several basic guidelines for symbol definition ([Kelly and Tolva-

nen08], pp.259). However, it remains a problem how to find appropriate visual representations and

the detailed visual design. For these questions design principles have to be considered. The design

handbook [Stankowski and Duschek94] addresses the design of pictograms where icons are usually

seen as a subclass from. Pictograms represent an object, concept or function by an visual representa-

tion. [Stankowski and Duschek94] describes pictogram design as a process with various steps which

includes to identify possible representations, simplify and objectify them, and finally humanize them

again so that the representation is not too abstract and still likeable by the user. A typical problem is

finding a representation for abstract concepts where no direct visual representation exists. Beside the

representation and the proper level of abstraction, the shape, color and layout details are important

just as well.

A specific property of icons is that they mostly occur as a set of related icons which results in

additional challenges. It should be apparent for the user that the icons of a set belong together. They

should be consistent, logically related and perhaps even allow to compose more complex icons from

the basic ones. On the other hand the contrast between them must be large enough to easily recognize

and identify different icons. This trade-off is illustrated in figure 5.1: It shows two alternative notations

for modeling an abstract user interface (see sec. 4.1.1) containing several Output Components and a

few Input Components.

Figure 5.1a shows a notation oriented at [Van den Bergh and Coninx05] where the set of icons

is very consistent and logically related. However, it is difficult to quickly find the Input Components

within the diagram (for example if a developer wants to look up how many Input Components to

implement). The alternative notation in figure 5.1b is less consistent but provides higher contrast

enabling to identify the Input Components at first look. (This notation has been elaborated for MML

by the user tests described below.)

The preferable way in such a situation is, according to the principles of human-computer interac-

tion, to perform user tests with different icon sets to find out the preferred solution and ensure quality

of designed icons. [Misanchuk et al.00] propose four kinds of tests specifically useful for icons:

Appropriateness test “is conducted to determine which icons from a number of variations (typically

three) are perceived by users to be most appropriate for communicating their intended meanings.

The test is conducted by showing a single participant each of the variants for an icon depicted

on an individual card. The participant is told the context in which the icon would appear, and

the intended meaning for the icon. Then the participant is asked to rank order the supplied

5.1 Basic Decisions and Language Engineering 83

(a) High consistency (b) High contrast

Figure 5.1: The trade-off in icon design illustrated by two alternative notations.

variants according to how appropriate they seem as representations of the intended meaning.”

[Misanchuk et al.00]

Comprehension test “is conducted by telling the participant the context in which icons will appear,

but not the intended meanings for the icons. Then the participant is shown individual icons that

have been created as a result from the prior appropriateness tests. Participants are asked to name

the function represented by each icon. The designs are not accompanied by the labels they will

have on screen.” [Misanchuk et al.00]

Matching test “is conducted to determine how well an entire set of icons works. Each participant

is shown the entire icon set and given one functional description to match with an icon out of

the set. In order to avoid a situation in which participants choose icons based on a process of

elimination, each participant should only be given one function for which to identify the correct

icon.” [Misanchuk et al.00]

Perceptibility test “is also conducted to determine how well an entire set of icons works. Each

participant is shown a screen representation from the product under development, including

the icons that would appear on that screen. Participants are given one task description at a

time and asked to identify the icon that should be used to complete or begin the task. Each

participant completes an entire list of tasks that covers the functions of all the icons, and each

function appears in more than one task so that the participant does not simply use the process

of elimination to guess the correct icons for tasks late in the test.” [Misanchuk et al.00]

In [Finkenzeller08], a project thesis supervised by the author, icons have been developed for the

most important MML model elements without an established notation: Abstract Interaction Objects

(see sec. 6.4) and Media Components (see sec. 5.2). The project started with a brainstorming under

consideration of some existing alternatives. For AIOs the notation from CUP [Van den Bergh and

Coninx05] shown above and from Canonical Abstract Prototypes (CAP) [Constantine03] have been

considered whereby the latter one could not be taken directly as it uses different AIO model elements

than MML. Figure 5.2a shows the usage of CAP in CanonSketch [Can], a visual editor based on the

Wisdom approach ([Nunes and Falcão e Cunha00, Nunes01], see also sec. 4.1.3). Figure 5.2b shows

a faceted notation in IdealXML [Ide], an editor for UsiXML (see sec. 4.1.2). It is an extension of CAP,

84 5. Modeling Multimedia – MML Core Principles

(a) Usage of CAP in CanonSketch [Can] (b) Extension of CAP with different icons and a faceted

notation in IdealXML [Ide]

Figure 5.2: Notations for Abstract Interaction Objects based on Canonical Abstract Prototypes (CAP).

using different icons and, in particular, a faceted notation: Each AIO supports the four facets input,
output, navigation, and control (see [Montero05]).

For Media Components common icons from operating systems or media player software have

been considered. The test were conducted in three iterations where each iteration included different

combinations of the four kinds of user tests described above (see [Finkenzeller08]). Altogether 18

participants took part. The small number of participants does not allow very general statements about

the icons although for some icons the trends shown in the test were very clear. Nevertheless, the

work ensures the quality of icons at least to a certain degree and exemplifies a possible way for more

systematic icon design in modeling language development.

The resulting icons are depicted later in figure 5.5, figure 5.13, and figure 6.12.

5.1.5 Basic Technical Metamodeling Principles

This section describes some basic rules for structuring and denoting the metamodels. They are com-

mon to many other metamodels, including the UML specification, and apply to all metamodels pre-

sented in the following chapters of this thesis.

Containment Hierarchy Metamodels are usually built up in a containment hierarchy, i.e. a hier-

archical tree structure resulting from the containment relationships between the model elements. For

example in UML a package may own classes and a class may own operations. Each model element

is owned by exactly one parent element. The top-most model element in a UML model is usually an

instance of the metaclass Model which is a specific kind of Package. The containment relationship in

the metamodel is denoted like a composite relationship in UML. The containment hierarchy allows for

instance assigning each model element to exactly one namespace or mapping the model into formats

like XML. Also it ensures that, if a model element is deleted, all child elements are deleted as well.

Some metaclasses have multiple containment relationships; for example a Property in UML can be

5.1 Basic Decisions and Language Engineering 85

NamedElement
+ name : String

Comment
+ text : String

Element
0..1 0..n+element 0..1 +ownedComment0..n

Figure 5.3: MML metamodel - Root Elements

owned by a class or by an association. In this case the “or” has to be interpreted as “exclusive-or”, i.e.

when the model element is instanciated it always has only one parent.

In MML the metaclass MultimediaApplication represents the top-most root element. In the MML

metamodel all model elements have at least one containment relationship either to MultimediaAppli-
cation directly or to one of its children.

Generalization Hierarchy Analogous to the containment hierarchy metamodels usually have a

generalization hierarchy as well. This means that there is a most general metaclass where all other

metaclasses are directly or indirectly subclasses from. In UML the top-most metaclass is Element. It
is an abstract metaclass and has attached properties and constraints which should hold for any model

element. An important direct subclass of Element is NamedElement which is used for any model

element which has a unique name (like classes and most other model elements).

The same mechanism is used in MML. Figure 5.3 shows the corresponding part of the MMLmeta-

model. All MML elements which have a name are subclasses (directly or indirectly) of NamedEle-
ment. In the following the generalization relationships to Element and NamedElement are not shown

explicitly in the metamodel figures to reduce their complexity.

Advanced Structuring Mechanisms A basic principle or kind of “pattern” in the UML metamodel

is to initially separate different aspects by different (abstract) metaclasses and combine them later

again by multiple inheritance if required. For example, UML uses an abstract metaclass Namespace
to generally define the concept of namespaces and a metaclass Type to generally define the concept

of types. For instance a UML Classifier fulfills various different roles, including that it can be used as

namespace and also as a type, and thus inherits from both Namespace and Type.
Moreover, metaclass properties can be refined by subclasses. For example, one can define that the

abstract metaclass Namespace owns other model elements by an association ownedElement. How-

ever, the subclass Package owns PackagableElements which is specified by an association pack-
agedElements. To specify that packages can only own PackagableElements as indicated by pack-
agedElements (and not any model element as indicated by the association ownedElement inherited
from Namespace) some additional definitions are required. UML2 offers new features to model such

constraints: subset properties, (strict) union properties, and property redefinition (see e.g. [Alanen

and Porres08, Amelunxen and Schürr06] for discussion). In the example, the property packagedEle-
ments can be marked as redefining ownedElement by denoting “redefines ownedElement” at the

corresponding association end.

These mechanisms are heavily used in the UML2 metamodels. The advantage is that metamod-

els can be defined in a very modular way and relationships between properties of superclasses and

subclasses can be specified more precisely. Moreover, those relationships are visible now directly in

86 5. Modeling Multimedia – MML Core Principles

the metamodel diagram. The disadvantage is that the overall metamodel can become more complex.

Furthermore they must be considered for the metamodel implementation (see [Amelunxen et al.04]).

Usually it is possible to construct the metamodel without these constraints like in previous versions

of UML. Often the property in an abstract superclass can be just omitted when it is redefined by all

its subclasses. Also, the relationships between properties can be defined by conventional OCL con-

straints. As tool support for metamodel implementation did not support those constraints when the

MML metamodel development started they are used very sparsely in the MML metamodel.

Conventions for Presentation For the presentation of the metamodel in terms of diagrams the same

rules hold like described in the UML specification ([Obj07d], 6.4.2). These are the most important

(additional) conventions used in the metamodel diagrams in this thesis:

• Abstract metaclasses are denoted with the metaclass name in italics.

• Metaclasses are often used in multiple diagrams. For example the metaclass Class is first de-

fined a metamodel diagram showing class diagram elements and but later used in other meta-

model diagrams. At its first occurrence – i.e. in its initial context – the metaclass is denoted

with an attribute compartment showing the metaclass’ attributes. Denoting a metaclass with

suppressed attribute compartment indicates that the metaclass has already been defined in an-

other diagram.

• Colors in metamodel diagrams are used to increase the diagram’s readability and are not asso-

ciated with additional semantics.

5.2 Modeling Media Components

This section introduces the basic concept of Media Component and specifies it in terms of a meta-

model. Each subsection discusses a specific aspect of Media Components and shows a brief example

using the racing game application from section 3.5.

At the end of each section there are optional paragraphs about Notation, Tool Support, and Code

Generation for the discussed model elements, if required. Code generation at this point is only

sketched on a platform-independent level to illustrate the model element’s semantics. A concrete

example for code generation for a specific multimedia authoring tool is given later in chapter 7.

Based on the concepts in this section the subsequent chapter 6 presents the overall modeling

language.

5.2.1 Rationale

The core characteristic of a multimedia application is the integration of different media types. The

choice of a media type determines the perception channels used to presented information to the user

and how the user can interact with it. Thus, it is a fundamental decision which media type to use

for an optimal presentation of a given piece of information to the user. Often the choice of media

type is determined a priori by the customer’s basic requirements or visions. For example, the learning

application later in figure 8.7 must contain video with synchronized text. In addition, in some cases

the media types can also be determined a priori by the application purpose, the target platforms or

target devices, e.g. when developing infotainment systems.

Furthermore, the production of media content can take much effort and time and requires specific

experts and tools. (Re-)using already existing media objects can require tasks like selection, post-

5.2 Modeling Media Components 87

processing, copyright management, etc. Creation of new media objects is either performed within a

multimedia authoring tool (like animations in Flash) or in a separate process (like video production).

For these reasons MML takes the position (in contrast to HyDev, sec. 4.3.1) that the developers

should be enabled to specify the media objects as early as possible in the development process. Due

to their possible high complexity and relevance for the development process they are considered as

first class entities and as part of the overall application structure (like in OMMMA, sec. 4.3.2).

5.2.2 Media Types and Media Components

The MML metamodel defines the different media types as base for the code generation. A gen-

eral classification of media types can be derived from multimedia standards and existing research

approaches for multimedia documents (see sections 2.1 and 4.3). Here in context of this thesis, the

purpose of the model is application development. Thus, it is useful to distinguish between those media

types which need different development support. For example, animations must be further separated

into 2D and 3D animations, as they are developed by significantly different experts, tools, and im-

plementation code. On the other hand, some literature introduces new media types where currently

no established knowledge about their development exists. For example, the [] specifies E-Ink as an

additional media type. But currently only little knowledge exists about the way E-Ink is used and

implemented different than conventional text or graphics. There is also no specific implementation

support yet. Similarly, media types related to other human senses – touch, smell, taste – are not rel-

evant here. For example, haptic output in shown in various research examples and even commercial

devices exist [Hayward et al.04]. In the form of “force-feedback” it is already common in commercial

input devices for computer games and is supported by the DirectX API [Microsoftb]. However, there

is currently no specific format for haptic information and it can not be handled and designed in the

sense of a media object. The purpose of modeling approaches like MML is to make established and

platform-independent knowledge explicit and support it by code-generation. Modeling approaches

can not predict the usage of new technologies or invent them; they have to be established by research

and implementation support by the respective experts first. Thus, it is not useful to include such

non-established media types into MML.

Figure 5.4 shows the resulting metamodel for media types. The media types are classified into

temporal and discrete media as it is relevant for the possible behavior in an application. Temporal

media types are Audio, Video, Animation2D and Animation3D1. Discrete media types are Image,
Graphics and Text.

The terms graphics and image are used to distinguish between synthesized and captured media

like in fig. 2.2 in chapter 2. The term image (instead of photo, like in fig. 2.2) is used to refer to any

kind of bitmap (raster graphics) which must not necessarily result from a photo. “Graphics” refers to

vector graphics. However, basically a vector graphics can also contain a bitmap as part of the graphic

(e.g. a texture).

An animation is basically defined as a visual change over the time [Steinmetz00]. More specifi-

cally it consists of graphics or images which change over the time. A “change” means here the change

of a parameter with impact on the visual appearance. These can be parameters on the image/graphic

as a whole – like its position on the screen or its orientation – as well as the content itself like colors

or shapes. In this understanding it is not important whether the animation’s behavior is predefined or

not nor whether the animation changes itself or is just changed as a whole – i.e. a graphic which is

moved over the screen is interpreted as animation as well. Complex animations usually base on vector

1To allow direct implementation in Java all metaclass names in MML start with an alphabetic character

88 5. Modeling Multimedia – MML Core Principles

AudioVideo

DiscreteMedia

Text

Animation3D

TemporalMedia

GraphicsImageAnimation

MediaComponent

MultimediaApplication

0..n

1

+media 0..n

+multimediaApplication1

Animation2D

MediaElement

Figure 5.4: MML metamodel - Media Types

graphics, like Movie Clips in Flash. An example for simple animations based on bitmaps are animated

GIF images. From the viewpoint of development it is also possible to classify them as images as they

are usually developed and handled similar to conventional still images. In 3D space there is no need to

distinguish between animated and non-animated 3D graphics as both are implemented and rendered

with 3D authoring tools and 3D rendering software.

A video is a sequence of images and can include synchronized audio. Audio usually refers to

captured sound but can also be synthesized using e.g. the Midi file format. However, there is usually

no significant difference in development. Text refers to any kind of text which can include formatting

and hyperlinks. Basically, any synthesized media object can be transformed into captured media either

using software which supports the export or just by capturing it, e.g. by taking a screenshot or a screen

video.

It is important to understand that in a MML model a media object should only be specified explic-

itly when it is relevant for the application development. Usually this means that the creation of the

media object requires some effort and/or the media object must be integrated with other parts of the

application. For instance, adding a conventional text label or an adorning image to a user interface

usually requires no specific development support and thus such media objects need not to be defined

in the model.

On a first look, media objects are purely documents, i.e. "‘content"’. However, in context of a

multimedia application the usage of a media object obviously implies the ability to present this con-

tent to the user. Hence, the media objects must be encoded and rendered or played. Furthermore,

there are some standard operations on the media elements. Some of them are often available at the

user-interface, like to pause and resume a video or to mute audio. Usually this is implemented by a

player component which presents the media content. In addition, standard operations on media ele-

ments must be available internally for the application logic to control the media objects, e.g. to start

an animation or set the location of an image. As this standard rendering functionality and standard

operations is in context of application development always part of media usage it would not be useful

if the modeler has to model it everytime. Thus, MML provides Media Components instead of purely

5.2 Modeling Media Components 89

Animation2D Animation3D GraphicsAudioVideo Image Text

Figure 5.5: Icons for MML Media Components.

media types. A Media Component encapsulates media content and standard player or rendering func-

tionality and provides some standard operations depending on the media type. Thus, in figure 5.4

all media types are defined as subclass of MediaComponent. The abstract metaclass MediaElement
represents any structural part of a Media Component including Media Components themselves.

Notation Basically, the notation of Media Components corresponds to classifiers in UML, i.e. a

solid-outline rectangle containing the Media Component’s name. Optionally it is shown with a com-

partment containing properties the Media Component’s inner structure (section 5.2.7).

MML provides icons to denote the different types of Media Components. Like in UML, the

modeler can optionally use the icon, a text label or both to denote the Media Component’s media

type (see example on UML stereotypes notation in fig. 3.6). Figure 5.5 shows the icons for Media

Components. They were developed based on user tests as explained in section 5.1.4.

Code Generation Media Components are mapped to placeholders for the actual media content

and an implementation for the player and rendering functionality. A placeholder is simple dummy

content corresponding to the component’s media type, e.g. a short dummy video, audio, animation,

image, graphic or text. The placeholders are then filled out or replaced by the media designer. The

(file) format for the placeholder depends on the implementation platform. For example, for the Flash

platform a video can be mapped to a dummy video in FLV file format while for the Java platform it

is mapped e.g. to AVI. A 2D animation in Flash is usually a Movie-Clip within a FLA file while in

Java it might be a Java class. In XML-based formats like SVG the media components are usually

implemented by corresponding XML tags; probably associated with some additional program code

like Java Script. For the player and rendering functionality the APIs of the target platform are used,

e.g. the MediaPlayer component in Flash.

5.2.3 Interfaces

As explained in the last section a Media Component provides standard operations. MML supports by

default the basic operations usually supported by any platform. They can be supported by automatic

code generation in straightforward manner. Moreover, it should be possible to specify additional

custom operations on Media Components. This includes operations realizing filters and transitions.

Filters and transitions are usually realized in implementation frameworks by classes or components

of their own [Gibbs and Tsichritzis95]. However, on platform-independent level they are considered

to be too implementation-specific. Thus, in MML they are considered just as operations (i.e. oper-

ation signatures) which can then be implemented using the respective classes and algorithms of the

implementation platform.

Consequently, different sets of operations are required for Media Components: Standard opera-

tions resulting from its media type and additional custom operations. The standard operations are the

same for each media component with the same media type. In addition, there are sets of operations

which apply to e.g. all temporal media types or all visual media types. It should also be possible to

90 5. Modeling Multimedia – MML Core Principles

Interface Name Media Types Standard Operations

TemporalDefault Video, Audio, Animation2D, Animation3D

play()
pause()
stop()
gotoAndPlay(cuePoint)
gotoAndStop(cuePoint)

VisualDefault

Video, Animation2D, Animation3D, Image,
Graphics, Text

getWidth()
getHeight()
setWidth(i:Integer)
setHeight(i:Integer)
getX():Integer
getY():Integer
setX(I:Integer)
setY(i:Integer)
setVisible()
setInvisible()

AuditiveDefault Video, Audio setVolume(percent:Integer)

Table 5.1: Media Component Standard Interfaces

define a custom operation only once and assign it to multiple Media Components, e.g. if multiple

Media Components should use the same kind of filter.

A useful modeling concept for this purpose are Interfaces as used in UML. The standard opera-

tions are defined once within standard interfaces. They can be classified into operations for temporal

media, visual media, and auditive media resulting in three standard interfaces TemporalDefault, Visu-
alDefault, and AuditiveDefault. Custom operations can just be modeled as – and if necessary grouped

by – additional interfaces which can be provided by one or more Media Components.

Table 5.1 shows the operations defined in the standard interfaces and the media type they are

assigned to. They are not defined directly in the MML metamodel as they are considered as instances

of the UML metaclass Operation and thus reside on model level (see [Atkinson and Kühne02], pp.8–

12). The standard interfaces are thus defined as model library elements. MML modeling tools must

automatically create them and assign them to theMedia Components. Figure 5.6 shows the metamodel

extract connecting Media Components with interfaces. The reused parts of the UML metamodel

defining interfaces, operations, etc. is shown later in figure 6.5 and 6.4.

Figure 5.6b shows an example for an Audio Component EngineSound realizing the standard in-

terface TemporalDefault and a custom interface AudioFilter. Each MML Media Component realizes

by default the standard interfaces from Table 5.1 according to its media type. The modeler needs not

to specify them explicitly in the MML models.

Tool support The default interfaces are created automatically by the modeling tool. When a Media

Component is created the modeling tool automatically adds interface realization relationships to the

corresponding default interface.

5.2 Modeling Media Components 91

InterfaceReali
zation

(from uml)

MediaComponent

0..n

0..1

+interfaceRe
alization0..n

+implementing
Component 0..1

(a) MML metamodel extract.

AudioFilter

+setPan(percentage : Integer)

EngineSound

TemporalDefault

(b) Example for specifying interfaces for

Media Components.

Figure 5.6: Interfaces for Media Components.

5.2.4 Media Representations

As already observed by OMMMA (see sec. 4.3.2), Media Components mostly represent concepts

of the application domain. The domain concepts are modeled as conventional domain classes and

specified in terms of a conventional class diagram as shown in section 6.2. In a racing game application

there is for example a domain class Car. It might be represented by an animation and sound. Other

examples are a video representing a learning unit, graphics representing a part of a map, or a 3D

graphics, an image, and a text representing a product in an online shop, etc. As a domain class can be

represented by multiple media components – possibly of the same media type, e.g. multiple images for

each product – it is useful to model this by relationships between the domain class and the respective

media components. In MML this kind of relationship is called Media Representation.
In MML each media component has an identifying name. Media components are considered as

first class elements, similar to classes. This is necessary to distinguish them from each other when

they should be referenced from other parts of the MML model as well as for code generation. In

addition, it should be possible to model individual properties for each media component, like its inner

structure or custom behavior (see below).

Often a Media Component represents only some specific properties or operations of a domain

class. For example, an animation Speedometer represents the property speed of the class Car. A

sound SkidSound might be played when the car breaks, i.e. it in particular represents the operation

break() of the class Car. MML allows to optionally annotate the Media Representation relationship

with the names of the properties or operations to be represented. It is also possible to annotate the

Media Representation with names of multiple properties or operations. Properties might also be asso-

ciation ends.

In figure 5.7 the domain class Car is represented by two animations CarAnimation and Speedome-
ter and three audio components SkidSound, Horn and EngineSound. In the figure, Speedometer
represents the property speed and SkidSound represents the operation break(). For the other Media

Components no specific property or operation is specified.

Figure 5.8 shows the metamodel for Media Representations. An MMA_Class is an abstract meta-

class for any kind of class in a multimedia application modeled with MML.

Code Generation A Media Representation is mapped to a link between the domain class and the

Media Component. It can be realized for instance by a variable or association in the domain class

92 5. Modeling Multimedia – MML Core Principles

Car

-x : Integer
-y : Integer
-rotation : Integer
-speed : Integer

+move()
+break()

CarAnimation

Speedometer

EngineSound

SkidSound

Horn

speed

break()

Figure 5.7: Example for Media Representation.

Class
(from uml)

MMA_Class MediaComponentMediaRepresentation

Operation
(from uml)

Property
(from uml)

Relationship
(from uml)

+represented
Class

1

+media
10..n0..n1 +mediaRepr

esentation

1
1

1

+represented
Operation0..n0..n

+represented
Property 0..n0..n

Figure 5.8: MML metamodel for Media Representation.

or by the design pattern Observer [Gamma et al.95]. If the media Representation is annotated with

a class property or operation then a property change or operation call potentially causes an update of

the Media Component. When using the Observer pattern, this can be implemented by notifying the

observer in the property’s setter operation (setSpeed() in the example) or at the end of the specified

operation (break() in the example). However, the details of the manipulation of the Media component

by the domain class have to be implemented manually.

5.2.5 Artifacts and Instances

On a first look the Media Components seem to be relatively simple constructs – a media object encap-

sulated by a player or renderer. However, considering all possible cases in multimedia development

the situation becomes more complex: For example the racing game application might provide the user

with different kinds of cars to choose from, say Porsche and Ferrari. In the early stage of application

development it is sometimes not definitely decided how many cars or which kind of cars the appli-

cation will provide – the developers just start with some example cars. Moreover, a common way of

implementation is to keep the concrete cars modular and to load them dynamically into the application

at runtime. Dynamic loading of Media Components is an important technique in larger multimedia

applications and must be considered by the modeling approach. Moreover, sometimes the user even

might create his own custom cars at runtime using a specific editor provided by the application. Other

typical examples for dynamic loading of Media Components are levels in games, exhibits in a virtual

museum or learning units in education software. In these examples Car, Level, Exhibit, or Learning

5.2 Modeling Media Components 93

x

y

Media
Designer

Media
Component:

Artifacts:

Media
Instances:

(a) Car Example

Porsche1

Porsche

Car

instanceOf

instanceOf

(b) Interpreted as in-

stantiation

Porsche1

Porsche

Car

instanceOf

(c) Interpreted as

generalization

Figure 5.9: Illustrating example of abstraction layers of Media Components

Unit are kind of abstractions of the (probably unknown) concrete media components.

Moreover, an application can contain multiple instances of the same concrete media component.

For example, in the racing game application multiple Porsche cars might be visible on the screen.

Each Porsche can be represented by the same animation, i.e. the same media component, but has

a different location on the screen and is related to a different domain object (e.g. associated with

a different player). It is also possible that some visual properties vary over the different instances,

e.g. the different Porsche cars have different colors. This phenomenon is not restricted to a specific

media type: There can be multiple instances of the same image at different locations on screen (e.g.

in different scales) or multiple instances of the same video (having different states). Depending on

the technology this is usually implemented either by multiple references to the same media object

(e.g. to the same video) or by creating multiple copies (e.g. when placing a Flash MovieClip from

the library on the screen). From the viewpoint of object-oriented programming the latter mechanism

can be considered as similar to prototypes in “prototype-based” (or “object-based”, see e.g. [No-

ble et al.99]) programming languages. Anyway, the media components (e.g. Porsche and Ferrari)
have to be designed only once by the media designer. Figure 5.9a illustrates the observed different

abstractions.

Despite of the possible implementations in different platforms an abstract modeling language

should support these different conceptual views on media components. There are different ways which

might be used to model the observed abstractions. One can interpret them as kind of instantiation: the

Porsche is an instance of Car and can itself be instantiated multiple times on the screen (fig. 5.9b).

Another possibility is using inheritance and interpreting Car as an (abstract) superclass of Porsche
(fig. 5.9c). However, both interpretations raise the problem that media components are basically no

classes and concepts like inheritance and instantiation can not be directly applied to them without

further definitions. For instance, it would be necessary to define the impact of inheritance as MML

supports to define the inner structure of media components (see below).

A beneficial concept to model these relations can be taken from components in UML.2 In UML,

a component can be manifested by one or more artifacts. “An artifact is the specification of a physical

2Please note that although Media Components reuse some selected concepts of UML components they are still an

independent concept. There are significant differences between components in UML and Media Components.

94 5. Modeling Multimedia – MML Core Principles

MediaArtifact
fileName : String

MediaComponent +manifestation
0..n+component

1
0..n

1

(a) MML metamodel for Media Artifacts.

<<Animation2D>>
Car

PorscheFerrari

(b) Example for Media Artifacts.

Figure 5.10: Media Artifacts.

piece of information that is used or produced by a software development process, or by deployment

and operation of a system. Examples of artifacts include model files, source files, scripts, and bi-

nary executable files, a table in a database system, a development deliverable, or a word-processing

document, a mail message. [. . .] Artifacts can be instantiated to represent detailed copy semantics,

where different instances of the same Artifact be deployed to various Node instances (and each may

have separate property values, e.g., for a ‘time-stamp’ property).” [Obj07d]. Examples are an artifact

Order.jar manifesting the component Order or an artifact Oracle manifesting the component Database
Management System [Jeckle et al.04]. In the UML metamodel the Manifestation relationship is de-

fined as a kind of abstraction. This concept fits very well as archetype for media components:

A Media Component (e.g. Car) can be manifested by one or more Media Artifacts (e.g.

Porsche) which can be instantiated (probably by copy) multiple times where different

instances may differ in some properties (e.g. their location on the screen).

Specifying media artifacts provides an important information to the media designer about which

and how many media artifacts must be designed. On the other hand it is not always possible to specify

the complete set of media artifacts as it might be not decided yet or it should be extended at runtime.

Thus, it is not expected that all media artifacts are defined in the MML model but it is recommended

to state at least some example artifacts.

Figure 5.10a shows the metamodel for Media Artifacts. In MML, each Media Artifact can mani-

fest only one Media Component. The manifestation relationship has no further properties and thus is

not specified as a metaclass of its own.

Notation The media artifacts are denoted similarly to artifacts in UML. They are optionally marked

by an icon and are connected to a media component by a manifestation relationship. Figure 5.10b

shows an example from the racing game application.

Code Generation For eachMedia Artifact one placeholder is generated as described in section 5.2.2

for Media Components. Each placeholder is named like the artifact in the model. If no Media Artifacts

are specified for a Media Component then a single placeholder is generated which is named like the

Media Component itself.

5.2.6 Keywords for Media Representations

An important information about associations in UML class diagrams is given by the multiplicities at

association ends specifying the numerical relation between instances of two associated classes. This

5.2 Modeling Media Components 95

section briefly discusses whether there is an analogy to that for Media Representations. As discussed

in the previous section one can distinguish between artifacts and instances of Media Components.

Consequently, the situation becomes more complex and two different relations can be identified: First,

the number of media instances related to a single domain object. This relationship can be defined when

specifying the concrete instances on the user interface in the MML Presentation Diagram described

in section 6.4. Second, the number of media artifacts which can represent a single domain object and

vice-versa. There are four basic cases which can be distinguished:

1. The most simple case is that there is only one media artifact which represents all domain objects.

For example, in the racing game there might be only one sound artifact Horn which is the same

for all car objects. It can be interpreted as n:1 relation between the domain object and the

intended number of possible representations (i.e. not the number of media instances but the

number of media artifacts which could represent the domain object). On implementation level

this means that there is only one media artifact and thus it can be statically assigned to all

domain objects.

2. The second case is that each domain object is associated with its own representation. A typical

example is a museum application where usually each exhibit has a representation of its own.

In the racing game, for instance each track might have a visual representation of its own. It

can be interpreted as 1:1 relation. On implementation level it means that there needs to be e.g.

a list or table or mapping rule which assigns the correct representation to each domain object

(e.g. assign “MonaLisa.jpg” to the exhibit “Mona Lisa” and “VenusdeMilo.jpg” to the exhibit

“Venus de Milo”, etc.).

3. A domain object also can be represented by multiple media artifacts but a media artifact also

represents multiple domain objects. This is the usual case at racing games where each player

selects a car type but several players might select the same one. This can be interpreted as

n:n relation. On implementation level it requires to assign the media artifacts dynamically to

domain objects, e.g. depending on the user’s selection of a car type.

Basically it would be possible to use multiplicities at the Media-Representation relationship for

its specification but this would easily lead to misunderstandings as multiplicities are commonly used

at associations to denote the relation between instances. Thus, the three cases identified above are

denoted in MML by the keywords unique (first case), one-to-one (second case), and dynamic which

denotes all other cases as the generated code in dynamic cases is always the same. The keywords

are denoted as text in curly braces placed close to the Media-Representation relationship they belong.

Figure 5.11 shows examples for the three identified cases. The MMLmodels are shown on the figure’s

left hand side while the right hand side provides a possible corresponding situation at runtime.

Additional constraints for the third case, like that each Media Component can only represent one

car at the same time (i.e. each user is represented by a different car type), are not considered by MML.

Such constraints are better realized during the final implementation by manually specified code.

5.2.7 Media Parts

As explained in section 3.1.1 (see also example in fig. 3.8) the inner structure of media components is

important in interactive applications. It must be possible to specify inner parts of a media component

if they should be accessible for other parts of the application, e.g. to associate them with some event

handling code or to control their behavior by program code. For this purpose the modeling language

96 5. Modeling Multimedia – MML Core Principles

andreas' car : Car susan's car : Cartom's car : CarCar

 : Horn : Horn : Horn
Horn

{unique}

(a) Keyword unique: All domain objects are represented by the same artifact.

indianapolis : Track

 : Indianapolis

monaco : Track

TrackAnimation

monza : Track

 : Monaco : Monza

Track

{one-to-one}

(b) Keyword one-to-one: Each domain objects is represented by an artifact of its own.

andreas' car : Car susan's car : Cartom's car : Car

CarAnimation
 : Porsche : Porsche : Ferrari

Car

{dynamic}

(c) Keyword dynamic: No a priori information about the assignment of artifacts to domain ob-

jects.

Figure 5.11: Examples for Keywords for Media Representations: The left hand side shows the MML

example models, the right hand side corresponding example situations at runtime.

should support to define the inner structure in an abstract and simple way. It is not the intention

of MML to define complete media objects in the models. Rather, in the viewpoint of MML creative

media design should be performed using the established authoring tools for the respective media types.

Thus, the definition in the MML model should only define an agreement on abstract level between the

media designers and the software developers.

A Media Component can consist of different kinds of parts depending on the media type. Syn-

thesized media usually consists of primitives having some kind of semantics, e.g. shapes and lines

inside of vector graphics. Based on the primitives, more abstract parts can be identified, e.g. a wheel

within a graphic representing a car. In contrast, media captured by sensors can only be decomposed

by its natural dimensions, e.g. a specific region in a bitmap image is identified by its spatial x- and

y-coordinates. Temporal media always has a temporal dimension which can be used for its decompo-

sition, e.g. specific points of time in a video.

3D animation – as synthesized media type with the largest number of dimensions – has the most

complex inner structure. Relevant types of inner parts can be identified based on an existing abstract

modeling language for 3D applications called SSIML [Vitzthum and Pleuß05]. SSIML specifies the

concepts common in 3D standard formats (like VRML [ISO97a] and X3D [ISO04]) and 3D authoring

tools and is used as base for a model driven development approach for Virtual Reality and Augmented

5.2 Modeling Media Components 97

Transformation2D Light3DCamera3D

Transformation3D

Object3D

Viewpoint3DSubAnimation2D

ImageRegion SubGraphics TextPassage

Animation

Animation2D

Animation2DPart

0..1

0..n

+owner 0..1

+part 0..n

Animation3D

Animation3DPart

0..1

0..n

+owner 0..1

+part 0..n
VideoRegion

AudioPart

Audio

0..n

0..1

+part 0..n

+owner 0..1

VideoPart

Video

0..n

0..1

+part 0..n

+owner 0..1

DiscreteMedia

Image

ImagePart

0..1

0..n

+owner 0..1

+part 0..n

Graphics

GraphicsPart

0..1

0..n

+owner 0..1

+part 0..n

Text

TextPart

0..1

0..n

+owner 0..1

+part 0..n

TemporalMediaCuePoint 1
0..n +owner

1+cuePoint
0..n

MediaPart

MediaElement

AudioChannel

Figure 5.12: Metamodel for Media Parts.

Transformation2D Transformation3D

SubAnimation2D

Animation2D

ImageRegion SubGraphics

Viewpoint3D

Animation3D

3DObject Camera3D

GraphicsVideo Audio TextImage

Light3D

Figure 5.13: Icons for MML Media Components and Media Parts (some Media Parts do not have an

icon representation yet).

Reality applications [Vitzthum05, Vitzthum06, Vitzthum and Hussmann06].

In the 3D domain the structure of a 3D scene (i.e. the virtual world) is often denoted by a scene

graph. Implementation formats usually use the same kind of hierarchical structure. A scene graph is

a directed acyclic graph (DAG) containing the content of the scenes – geometric objects, lights, view-

points, etc. – as its nodes. Positioning and orientation of objects is usually defined by transformation

nodes. A transformation is applied to all child nodes. This enables the positioning of groups of objects

relative to other objects. For example, the wheels of a car are positioned by a transformation relative

to the car’s body and the whole car is positioned within the whole 3D scene by another transformation.

The resulting hierarchical structure is very similar to a tree structure. However, it is possible that a

node has several parents to enable reuse of objects for increased efficiency of the implementation. For

instance, the four wheels of a car can be implemented using four references to the same wheel object

and positioning them at the four sides of the car by four transformations. Also, in many 3D formats,

only some kinds of nodes – e.g. transformation nodes and group nodes – can have children while the

others may only act as leaf nodes in the scene graph.

MML abstracts from these concepts supporting a simplified tree structure for inner parts of media

components. Any kind of node may have children, independently of whether it is further decomposed

98 5. Modeling Multimedia – MML Core Principles

internally using transformation nodes or group nodes. Also the structure is always a simple tree

structure independently of whether it is implemented internally by reusing a node multiple times for

efficiency reasons. The nodes are called Media Parts, reusing concepts from Parts in UML Composite

Structure Diagrams which describe e.g. the inner structure of UML components (see e.g. [Hitz

et al.05], chap. 3.5). A Media Part represents a specific structural part of a media component. For

example for 3D animations the possibleMedia Parts derived from SSIML are Object3D which refers to

an arbitrary complex geometrical object, Transformation3D, Camera3D, Viewpoint3D, and Light3D3.

Only those Media Parts are explicitly modeled in MML which are relevant for other parts of the

application, e.g. as they should be manipulated by the application logic. Other Media Parts which

are only required for the concrete realization of the Media component are omitted. A parent-child

relationship between two nodes specifies that the child node’s position is relative to it’s parent node.

An implementation for instance in VRML requires additional transformations between the elements

which are though not modeled explicitly in MML.

The metamodel in figure 5.12 shows the different kinds of Media Parts available in MML for the

different Media Types. Each temporal media can be structured by Cue Points which are abstract points

of time within a temporal Media Component’s timeline. A Cue Point can represent for instance the

beginning of a scene in a video or a specific point of time in an audio. The Cue Points are abstract as

well, i.e. they are described by a meaningful name while their concrete time values needs not to be

specified until the final implementation.

2D animations adopt those elements from 3D animations which make sense in 2D space, i.e.

objects (SubAnimation2D) and transformations (Transformation2D). Audio can be decomposed in dif-

ferent channels which represents on abstract level any decomposition beside CuePoints, for instance

a stereo channel or a MIDI channel. Video can be decomposed into regions like an image. Image,

Graphics and Text can be decomposed in the spatial dimension only. An ImageRegion represents

a spatial area within an image. A SubGraphics represents a part within a graphic. A TextPassage
represents a part within a text.

In addition, some types ofMedia Components can contain otherMedia Components. For example,

a video can contain sound, graphics can contain bitmaps, and animations often can contain bitmaps,

sound, or even videos. Such containment can be modeled by references to other Media Components

as shown in the next section 5.2.8.

For the Media Parts custom icons have been developed based on user tests as described in sec-

tion 5.1.4. They are shown in figure 5.13 A few Media Parts currently have not been considered yet:

Channel, VideoRegion, TextPassage, and CuePoint.

5.2.8 Inner Properties

As discussed above, Media Components can be manifested by different Media Artifacts which are

instantiated by Media Instances. Analogously, a Media Part can be manifested by different Part Arti-
facts which are instantiated by Part Instances (fig. 5.14). The Media Part initially is a kind of abstract

concept, e.g. Wheel. Each instance of the Media Component Car can contain several instances of

Wheel, like wheel_left and wheel_right. wheel_left and wheel_right are thus placeholders for concrete

instances – analogous to properties in (domain) classes. They are thus called Inner Properties4. An

Inner Property enables access to the Part Instances for a given Media Instance. Thus it is mandatory

3MML benefits from the concepts discussed in SSIML but still provides a slightly higher level of abstraction. Many

concepts are similar but must be adapted to the different purpose of MML as Media Components in MML can be manifested

by different artifacts and instantiated multiple times while the main focus of SSIML is a single large 3D scene.
4The term “Inner” is used to distinguish the model element from other general properties of Media Components

5.2 Modeling Media Components 99

MediaComponent

MediaInstance

InnerProperty

MediaArtifact

PartInstance

PartArtifact

MediaPart

refersTo

instanceOf instanceOf

manifests manifests

-type

Figure 5.14: Illustration of different abstraction layers of media and their inner structure. In MML

structure diagrams the white colored model elements need not to be specified in the model. The light

yellow colored model elements are modeled only optionally.

Figure 5.15: MML Example: Media Parts and Inner Properties.

to specify them in the MML model. Optionally, the name of the Media Part can be specified after

the Inner Property name separated by a ’:’, e.g. wheel_left:Wheel. Media Part names need only to be

specified explicitly if multiple Inner Properties refer to the same kind of Media Part, like wheel_left
and wheel_right which both refer to Wheel. Often a Media Property refers to a Media Part of its own

(e.g. a car contains only one hood). In that case the Media Part name can be omitted in the MML

model and is by default the same name as the Inner Property name (but starting with an uppercase

letter). For brevity it is also possible to specify a multiplicity for a Media Property to denote multiple

instances of the same type. This enables modeling in a compact way for instance multiple wheels

of a car or a large number of spectators at the stand. Specifying a property with the name n and the

multiplicity m corresponds to m properties of the same type named with the concatenation of n and

a consecutive number, i.e. n1, n2, n3, etc. Specifying a multiplicity range means that the concrete

number of properties is either decided during implementation or calculated at runtime.

Figure 5.15 shows as example a Media Component Car containing different Media Properties.

There are different Inner Properties referring to the Media Part Wheel. All Media Parts in this example

100 5. Modeling Multimedia – MML Core Principles

are from type SubAnimation. The frontwheels, fronwheel_left and frontwheel_right are both modeled

explicitly, while the two backwheels are modeled by a multiplicity. As explained above one can

reference them by the automatically generated names backwheel1 and backwheel2. For the other

Inner Properties in the example no Media Part names are specified which implies that front, back and

spoiler refer toMedia Parts Front, Back and Spoiler. Furthermore the hierarchy of theMedia Properties

specifies that frontwheel_left and frontwheel_right are located relative to front while backwheel and
spoiler are located relative to back.

Media Properties can not only refer to MediaParts but they may also refer to other Media Compo-

nents. This can be used to specify that a Media Component contains an instance of another one. For

example, in the racing game the track is represented by an animation TrackAnimation which contains

several instances of CarAnimation. The car animation instances are thus located inside the track ani-

mation and can be referred from it. Of course, the car animations still can be used at other places in the

application as well, for instance in the game’s menu when the user has to select a car. The metamodel

for Inner Properties is shown in the next section 5.2.8 when Part Instances have been introduced.

5.2.9 Part Artifacts

Until now, the Part Artifacts have not been mentioned. Figure 5.15 can be interpreted in different

ways: Either each wheel is manifested by an artifact of its own or some wheels are manifested by

the same artifact (see examples in fig. 5.16)5. Part Artifacts need not to be specified explicitly in

MML. If omitted then the Media Property is manifested by an implicit Part Artifact which has by

definition the same name as the Media Property itself. For example the model in figure 5.16a does not

specify explicitly any Part Artifacts. Thus, by definition each wheel is manifested by an individual Part

Artifact of its own (named like the respective Media Property, i.e. frontwheel_left, frontwheel_right,
backwheel1, and backwheel2). However, it is then still up to the media designer whether to create

really different wheels or e.g. to copy and paste a created wheel multiple times into the generated

placeholders.

Optionally, a Part Artifact can be specified explicitly at each property (denoted like a Tagged

Value in UML)6. This can be used to specify that multiple Media Properties are manifested by the

same artifact. In fig. 5.16b the two frontwheels are instances of the Part Artifact frontwheel while

the two backwheels are instances of the Part Artifact backwheel. In figure 5.16c all four wheels are

instances of the same Part Artifact. If, for instance, in fig. 5.16b no Part Artifact would be specified

for the backwheels then there would be three Part Artifacts: one for the frontwheels (frontwheel) and
two for the backwheels (backwheel1 and backwheel2).

Another aspect is the relation between Part Artifacts and the different Media Artifacts, i.e. whether

different cars have different wheels or not. The default interpretation in MML is that there exist indi-

vidual Part Artifacts for each Media Artifact, i.e. different kind of wheels for each car (figure 5.17a).

Alternatively, there might be only one unique kind of wheel which is used by all cars (figure 5.17b).

This means that the Media Part (wheel) is manifested by only one unique Part Artifact in all Media

Artifacts (the cars). This case is specified in MML by the keyword unique at the respective Media

Part. (If other Media Parts refer to the same Part Artifacts they are thus unique as well.)

Figure 5.18 shows the metamodel for Inner Properties and Part Artifacts. A InnerProperty may

refer as its type to any MediaElement, i.e. either a MediaPart or a MediaComponent. An optionally

specified Artifact must correspond to the specified type.

5The general term “artifact” can be used when it is clear by the context whether it refers to a MediaArtifact or a PartAr-

tifact
6The Part Artifacts in MML do not have any additional properties besides a name

5.2 Modeling Media Components 101

frontwheel_right : WheelfrontWheel_left : Wheel backwheel : Wheel [2]

(a) Each Media Part is possibly manifested by an artifact of its own (default case)

frontwheel_right : Wheel
{partArtifact =frontw heel}

frontWheel_left : Wheel
{partArtifact =frontw heel}

backwheel : Wheel [2]
{partArtifact = backw heel}

(b) Two artifacts specified for frontwheels and backwheels

frontwheel_right : Wheel
{partArtifact =w heel}

frontWheel_left : Wheel
{partArtifact =w heel}

backwheel : Wheel [2]
{partArtifact = w heel}

(c) The same artifact specified for all four wheels

Figure 5.16: Specifying Part Artifacts.

Tool Support The Part Artifacts need not to be specified as model elements of its own in the MML

diagrams. They are just used to be referenced by Media Properties. Of course, a modeling tools

manages them and shows them in the containment tree view which is usually part of every modeling

tool. It is also a common standard functionality that if a modeler has to refer a Part Artifact the

modeler can either create a new one or choose an existing one from a selection provided by the tool.

5.2.10 Variations

Sometimes content must be produced in different variants. Typical examples are different qualities

of a video or text in different languages. For this purpose it is possible to specify Variation Types in

MML. A Variation Type consists of a descriptive name and a list of possible values (literals). MML

allows defining any custom Variation Type. A Media Component refers to a Variation Type to specify

that the Media Component varys according to this type. This means that there is one variant for each

value of the Variation Type. If a Media Component refers to multiple Variation Types then it has a

variant for each possible value combination. Figure 5.20 shows the corresponding metamodel.

In the example in figure 5.20 a Variation Type Quality has been defined with the possible values

low, medium, and high and a second Variation Type Language with the values english and german.
The text HelpText refers to Language, i.e. it must be created in the two different languages English

and German. The video IntroVideo should be created for the two different languages and the three

different qualities, which means altogether in six different variants.

At this point MML could be extended with concepts from modeling approaches for context-

sensitive applications like UsiXML (sec. 4.1.2) or Dynamo-Aid (sec. 4.1.2). Then it would be possible

to describe in more detail e.g. hardware properties like screen size or different user groups. These

approaches also allow to specify how the user interface changes according to the context (see sec. 4).

102 5. Modeling Multimedia – MML Core Principles

wheel [4]

(a) Different cars (Media Artifacts) with different wheels

(Part Artifacts)

wheel [4]
{unique}

(b) Different Cars (Media Artifacts) using a unique wheel

(Part Artifacts)

Figure 5.17: Example: Individual vs. unique Part Artifacts.

MultiplicityElement
(from uml)

MediaElement

PartArtifact

MediaPart

0..n

1

+partArtifact 0..n

+owner 1

MediaArtifact

MediaComponent

Artifact

InnerProperty
isUnique : Boolean = false

0..1

0..n
+parent
0..1

+child
0..n

1+type 1

0..n

1 +innerProperty
0..n+owner

1

0..1

0..n

+artifact 0..1

+property
0..n

Figure 5.18: Metamodel for Inner Properties and Part Artifacts.

VariationLiteral

MultimediaApplication

VariationTypeMediaComponent

+literal 0..n

+multimedia
Application

1

+type
1

0..n

1

+variationType0..n0..n

1

+variations
0..n0..n

Figure 5.19: Metamodel for Variations.

IntroVideo
{variations = Quality, Language}

HelpText
{variations = Language}

<<VariationType>>
Quality

medium
high

low

<<VariationType>>
Language

german
english

Figure 5.20: Example: Variations.

Chapter 6

MML – A Modeling Language for
Interactive Multimedia Applications

This chapter gives an overview on the Multimedia Modeling Language (MML) supporting model

driven development of multimedia applications. The language design follows the basic decisions and

the multimedia modeling concepts introduced in chapter 5. This chapter provides a more straightfor-

ward overall view on the whole language including the modeling process and modeling tool support.

The sections on the different models as well as the subsections on the contained model elements

are basically structured as follows: Rationale, Semantics, Notation , Example, Abstract Syntax, Tool

Support, and Modeling Hints. To ensure readability and keep the descriptions as compact as possible,

redundant or trivial passages are omitted or described only once for multiple elements. A more formal

specification of the modeling language’s semantics is given by the model transformation into code in

chapter 7.

6.1 MML – Task Model

Most existing approaches in multimedia modeling area (see sec. 4.3) model the user interface mainly

in terms of media objects. Conventional standard user interface elements, like widgets, are not consid-

ered very well. However, an interactive multimedia application usually indeed uses standard widgets

– not specific media objects only. For example in the racing game, conventional standard widgets

might be used to e.g. display the player’s name and score and to steer the car (e.g. just by keyboard

keys). Thus, it is necessary that a modeling approach supports both kinds of elements on the user

interface, media objects and standard widgets.

In general, the user interface in multimedia applications is especially important – a high quality

of the user interface is usually the reason for usage of different media (see sec. 2.1.3). Thus, it is

essential to ensure a good usability of the user interfaces to be developed. As described in section 4.1,

usability is addressed by the modeling approaches from user interface modeling area. A common

concept there are Task Models which model the application from the view point of user tasks. From

the Task Models it is possible to derive the required user interface elements. Thus, Task Models are

supported by MML to integrate systematic user interface design into the models.

The Task Model in MML does not differ from those commonly used in user interface modeling

approaches. It uses the well-known CTT notation as introduced in section 4.1.2. Figure 6.1 shows a

simplified Task Diagram for the racing game example.

Originally, CTT is specified in terms of a Document Type Definition (DTD) for the XML-based

104 6. MML – A Modeling Language for Interactive Multimedia Applications

Root*

Race Settings

Input Player Name

 |=|

Select Car

 |=|

Select Track

 >>

Start Game

 []>>

Play Game

Show Track

 |||

Show Obstacles

 >>

Drive Car*

Control Speed

 |||

Control Direction

 [>

Quit

 []>>

Show Score

Score

 [>

Close

Figure 6.1: Task Diagram for the Racing Game Example.

Relationship
(from uml)

UserTask InteractionTask

ApplicationTaskAbstractTask

UnaryTaskOperator

BinaryTaskOperator

Task 0..1
+unaryOperator

0..1

0..1

0..n

+parent
0..1

+child
0..n

1

0..1

1

0..1+nextSibling 0..1

+leftTask1

+previousSibling 0..1

+rightTask1

MultimediaApplication

0..n

1

TemporalTask
Operator

0..n

1
+multimedia
Application 1

+task
0..n

+multimedia
Application1

+taskOperator
0..n

Iteration

FiniteInteration

Optional

Choice OrderIndepen
dency

IndependentCon
currency

ConcurrencyInfo
Exchange

Disabling SuspendRe
sume

Enabling EnablingInfo
Passing

Figure 6.2: MML metamodel - Tasks

6.2 MML – Structural Model 105

language which can be found at [TERb]. Metamodels for Task Models exist for instance in [Bastide

and Basnyat06, Usi07]. The MML metamodel for Task Models shown in figure 6.2 has been made

compliant to the other parts of the MML metamodel. For example, relationships have been defined as

a subclass of the metaclass Relationship reused from UML as Relationship is already existing in other

parts of the MML metamodel.

6.2 MML – Structural Model

This section introduces the Structural Model which defines the static application structure. In in-

cludes a Domain Model (like in most other existing approaches, see sec. 4) and in addition the Media

Components as introduced in section 5.2.

Domain Model The Domain Model is specified in terms of conventional UML class diagrams.

The classes usually correspond to domain concepts. To distinguish them from other kinds of classes

in MML they are referred to as Domain Classes.
All conventional model elements from UML 2 class diagrams are supported, like Property and

Operation including Visibility and Parameters, the relationships Association and Generalization, and
Primitive Types and Interface.

The domain model can be mapped to program code analogously to common mappings from UML

class diagrams to e.g. Java code. For the class operations only the operation signatures are generated.

It is not intended in MML to define the operation bodies (i.e. their behavior) within a model for

the following reasons: The domain class operations are expected to contain the application logic

which can be very complex behavior. Modeling them in such a way that code can be generated

would mean a kind of visual programming which can quickly lead to very large models. Furthermore,

the implementation of complex effects combined with optimal performance often requires platform-

specific code. In particular, the operations in multimedia applications often should cause a specific

effect on the user interface. For example, in a racing game the car should move in such a way that

it appears realistic to the user. It requires much fine-tuning to provide the optimal level of difficulty

for the user so that the application is really appealing, challenging, and entertaining. It is often very

difficult to specify such behavior in advance within a model – in contrary, often the optimal algorithms

and parameters have to be found out incrementally by multiple test runs. Thus, the operation bodies

are preferably implemented directly within an appropriate development environment (like the Flash

authoring tool) where they can be directly executed and tested.

The domain model is denoted like conventional UML class diagrams. Optionally the domain

classes can be marked with a keyword DomainClass but this is usually not necessary as all classes

without specific notation or keyword are interpreted as domain classes. Figure 6.3 shows as example

the domain classes for the Racing Game application.

Figure 6.4 and 6.5 show the corresponding parts of the metamodel. They are extracts from the

UML 2 metamodel, restricted to those elements supported by MML. Thereby the original structure

has not been changed to enable compliance with other approaches and tools, e.g. UML modeling

tools.

Media In addition, the Media Components are defined in the Structural Model. All model elements

elaborated in section 5.2 can be used, i.e. MediaComponent (sec. 5.2.2), MediaArtifact (sec. 5.2.5),
MediaPart (sec. 5.2.7), InnerProperty (sec. 5.2.8), PartArtifact (sec. 5.2.9), VariationType and Vari-
ationLiteral (sec. 5.2.10). A Media Component can refer to an Interface by an InterfaceRealization

106 6. MML – A Modeling Language for Interactive Multimedia Applications

Car

-speed : Integer
-rotation : Integer
-xPos : Integer
-yPos : Integer
-name : String
-completedLaps : Integer
-hasFinished : Boolean
-lastCheckpointNo : Integer
-damage : Integer

+start()
+move()
+leftRight(value : Integer)
+accelerate(value : Integer)
+addDamage(d : Integer)
+isBroken() : boolean
+addCheckpoint(no : Integer)
+isInFinish() : boolean

Obstacle

-damageValue
-distractionFactor

+getDamage() : Integer

Checkpoint

-number : Integer

+getNumber() : Integer

Race

-elapsedTime : Integer
-totalLaps : Integer

+getScore() : Integer

Track

-name : String

RacingGamePlayer

-name : String

Checkpoints have to
be passed in order
of their numbers
(including start and
goal)

-track
0..*

-game
1-player

0..* -game
1

-car
0..*

-game
1

-track
1

-checkpoint
0..*

-track
1

-obstacle0..*

-track
1

-race 0..*

-game 1

-car

0..*

-car 1

-player
1

Figure 6.3: Domain Classes for the Racing Game example.

Relationship

Type TypedElement
0..1

+type

0..1

Property owned by Association => not
navigable from class
Property owned by class => navigable

LiteralSpecification

LiteralBoolean
value : Boolean

LiteralString
value : String

LiteralInteger
value : Integer

LiteralNull

PrimitiveType EnumerationLiteral

Enumeration

0..n

0..1

+literal0..n

+enumeration
0..1

DataType

LiteralUnlimitedNatural
value : UnlimitedNatural

OpaqueExpression
body : String
language : String

Association

MultiplicityElement

Generalization

Property
aggregation : AggregationKind = none
visibility : VisibilityKind = public
isStatic : Boolean = false

0..10..n

+owningAssociation

0..1
+ownedEnd

0..n

0..12..n

+association

0..1

+memberEnd
2..n

ValueSpecification

0..1

0..1

+defaultValue
0..1

+owningProperty
0..1

0..10..1
+upperValue

0..1
+ownerUpper

0..1

0..10..1
+lowerValue

0..1
+ownerLower

0..1

Class
isAbstract : Boolean = false

0..n

1

+generalization
0..n

+specific
11

+general
1

0..1

0..n

+class

0..1

+owned
Attribute

0..n

Parameter

0..1

0..1

+defaultValue
0..1

+owningPa
rameter

0..1
Operation

visibility : VisibilityKind = public
isStatic : Boolean = false

0..n

0..1

+ownedOperation
0..n

+class
0..1

0..n
0..1 +formalParameter

0..n
+operation

0..1

0..10..1
+returnResult

0..1

+ownerReturnParameter
0..1

Figure 6.4: MML metamodel for classes reused from UML.

6.3 MML – Scene Model 107

Relationship

Operation

Property Interface

0..n 0..1

+ownedOperation
0..n

+interface

0..1

0..n 0..1

+ownedAttribute
0..n

+interface

0..1

InterfaceReali
zation

1+contract 1

Class 0..n
0..1 +interfaceRe

alization

0..n

+implementing
Classifier

0..1

Type

Figure 6.5: MML metamodel for interfaces reused from UML.

relationship (sec. 5.2.3). The Media Components represent the Domain Classes which is specified by

the MediaRepresentation relationship (sec. 5.2.4). It is possible to assign one of keywords defined in

section 5.2.6 to a Media Representation.

The example in figure 6.6 shows the complete Structural Model for the racing game application,

i.e. the domain model from fig. 6.3 enhanced with Media Components. In the example, the domain

class Car is represented by an animation CarAnimation and by EngineSound. The EngineSound in

particular represents the car’s property speed. The Keyword unique at the Media Representation be-

tween EngineSound and Car specifies that the same audio artifact is used for all cars. The Media

Component EngineSound also provides an additional interface containing an operation setPitch. An

inner structure is defined for CarAnimation and TrackAnimation. Thereby, inner properties of TrackAni-
mation refer to the Media Components ObstacleAnimation and CheckpointAnimation. TrackAnimation
is manifested by three Media Artifacts Monza, Indianapolis, and Monaco. CarAnimation is manifested

by Porsche and Ferrari. All animations should be created in two different qualities low and high as

specified by the Variation Type Quality.
Figure 6.7 shows the part of the MMLmetamodel defining the overall structure of the MML Struc-

tural Model. As explained in section 5.1.5 the top-most model element in the containment hierarchy

is MultimediaApplication. DomainClass is defined as a subclass of UML class. They are connected to

Media Components via MediaRepresentation relationships like introduced in section 5.2.4.

Figure 6.8 shows the metamodel part which further defines Media Components. It is the com-

position of the different metamodel extracts elaborated in chapter 5.2. In addition, the metamodel in

figure 5.12 defines the subclasses for the abstract metaclass MediaPart. Figure 5.12 can be added as

it is and is thus not depicted here again.

6.3 MML – Scene Model

The Scene Model specifies the application’s behavior in the large in terms of Scenes. The term Scene
originates from multimedia domain and refers to a state of the application associated with a specific

Presentation Unit. The Scene Model is similar to the Navigation Model in Web Engineering (sec. 4.2)

or some (coarse-grained) Dialog Models in user interface modeling approaches (see sec. 4.1). The

Scene Diagrams specifies the application’s Scenes and the transitions between them. Therefore MML

uses the concepts from State Charts, similar to OMMMA (sec. 4.3.2) and many user interface model-

ing approaches, e.g. Dynamo-Aid (sec. 4.1.2). A multimedia-specific difference to other approaches

is the dynamic character of Scenes. Thus, Scenes are more generic than conventional Presentation

108 6. MML – A Modeling Language for Interactive Multimedia Applications

<<Animation2D>>
TrackAnimation

{variationType = Quality}

checkpoint : CheckpointGraphic [1..*]

obstacle : ObstacleAnimation [*]

<<Animation2D>>
CarAnimation

{variationType = Quality}

frontwheel_right : Wheel
frontwheel_left : Wheel

Car

-speed : int
-rotation : Integer
-xPos : Integer
-yPos : Integer
-name : String
-completedLaps : Integer
-hasFinished : Boolean
-lastCheckpointNo : Integer
-damage : Integer

+start()
+move()
+leftRight(value : Integer)
+accelerate(value : Integer)
+addDamage(d : Integer)
+isBroken() : boolean
+addCheckpoint(no : Integer)
+isInFinish() : boolean

AudioFilter

+setPitch(percent : Integer)
ObstacleAnimation

{variationType = Quality}
CheckpointGraphic

{variationType = Quality}

Obstacle

-damageValue
-distractionFactor

+getDamage() : Integer

Checkpoint

-number : Integer

+getNumber() : Integer

Race

-elapsedTime : Integer
-totalLaps : Integer

+getScore() : Integer

<<VariationType>>
Quality

high
low

EngineSound

Track

-name : String

Indianapolis

RacingGamePlayer

-name : String

Porsche MonacoFerrari Monza

{one-to-one}

-track
0..*

-game
1-player

0..* -game
1

-track
1

0..*
-car

-game
1

speed
{unique}

-checkpoint
0..*

-track
1

-obstacle0..*

-track
1

0..*

-car

0..*-race

-game 1

1-car

-player
1

{dynamic}

Figure 6.6: Complete Structure Diagram for the Racing Game example

Relationship
(from uml)

DomainClass

Class
(from uml)

DataType
(from uml)

Association
(from uml)

Interface
(from uml)

MultimediaApplication0..n 1

+data
Type

0..n

+multimedia
Application

1 0..n
1

+association
0..n

+multimedia
Application

1

0..n

1

+interface
0..n

+multimedia
Application

1

Operation
(from uml)

Property
(from uml)

MMA_Class
0..n

1

+mma_Class
0..n

+multimedia
Application

1

MediaComponent
MediaRepres

entation

0..n
+represented

Operation0..n
0..n +represent

edProperty
0..n

0..n1 0..n
+representedClass
1 1

1 +media
1

+mediaRepr
esentation

1

Figure 6.7: MML metamodel for MML Structure Diagram Elements.

6.3 MML – Scene Model 109

MultiplicityElement
(from uml)

Variation
Literal

Multimedia
Application

MediaArtifact
fileName : String

InterfaceReali
zation

(from uml)

VariationType

0..n

1

+literal0..n

+type
1

0..n

1

+variationType 0..n

+multimedia
Application

1

MediaComponent
0..n

1 +manifestation
0..n+component

10..n
0..1+interfaceRe

alization

0..n
+implementing

Component
0..1

0..n
+variations

0..n

MediaElement

InnerProperty
isUnique : Boolean = false

0..1

0..n

+parent
0..1

+child0..n

0..n

1

+innerProperty0..n

+owner
1

1
+type

1

Artifact
0..n

0..1+property
0..n +artifact

0..1

PartArtifact

MediaPart

0..n

1

+partArtifact
0..n

+owner
1

Figure 6.8: MML metamodel for Media Components in the Structure Diagram.

Intro Game

Help

Score

Menu

show Menu()

show Menu()

startGame(p : Player, t : Track)

show GameHelp()
resumeGame()
{resume}

show MenuHelp()show Menu()
show Intro()

show Score(race : Race)

show Menu()

Figure 6.9: MML Scene Diagram.

Units and can receive parameter values at runtime.

Scene A Scene represents a specific state of the application. It is associated with a Presentation Unit.

However, an important multimedia-specific aspect of Scenes is their highly dynamic character. This

is caused on the one hand by the time-dependent behavior of temporal media instances in a Scene.

On the other hand, often the number, the position, and the presented artifacts of Media Components

is calculated at runtime. For example in a racing game the number of cars, the car types and the track

might be selected by the user at runtime. Often it is not possible or useful to specify all possible

configurations by a Scene of its own. Instead, a Scene is more generic and can receive parameter

values.

Every Scene is associated with exactly one (probably generic) Presentation Unit specified in the

MML Presentation Model (sec. 6.4). In contrast to OMMMA (sec. 4.3.2) the Scene Model specifies

only the application’s top-level behavior while the internal behavior of Scenes is specified in Interac-

tion Diagrams (sec. 6.5).

Scenes are denoted like a states in UML State Charts. Figure 6.9 shows an example Scene Diagram

for the racing game application. It contains the Scenes Intro, Menu, Help, Score, and Game.
In this example the Scene Game is generic and represents all possible races or levels the user

110 6. MML – A Modeling Language for Interactive Multimedia Applications

can play. In particular, when the different tracks, cars and configurations for a single race are loaded

dynamically it would not be useful to model each configuration as a scene of its own. Nevertheless,

it is of course still possible to model a scene of its own for each race if desired; for instance, if the

developers want to specify that there is always a fixed order of tracks (e.g. the user always has to play

the track Monza first, then the track Indianapolis, and finally Monaco).

Entry Operations, Exit Operations, and Transitions Due to its generic nature a Scene provides

Entry Operations. They can be used to initialize the Scene and pass parameters to it. During the final

implementation (after code generation), Entry Operations can be used in particular to initialize the

Scene’s associated Presentation Unit. This might include setting up media instances as well as estab-

lishing event listeners and connections between domain classes and user interface elements. The Entry

Operations also trigger associated behavior (according to the Interaction Diagrams in section 6.5), e.g.

invoke predefined behavior of contained Media Components.

Furthermore, each Scene has Exit Operations which can be used to clean up the Scene (e.g. to

free resources), call an Entry Operation of the next Scene, and pass parameters to it.

Transitions are defined between a source Scene and a target Scene analogous to transitions be-

tween states in UML State Charts. Basically, executing a transition means in MML that the target

Scene becomes active and its associated Presentation Unit is displayed while the source Scene be-

comes inactive and its Presentation Unit is no longer visible. Moreover, a Transition corresponds to

the execution of an Exit Operation in the source Scene followed by the execution of the Entry Opera-

tion in the target scene. Each Exit Operation is associated with exactly one Transition while an Entry

Operation can be targeted by multiple Transitions.

In the Scene Diagram a Transition is denoted as directed arrow leading from a source Scene to a

target Scene. A Transition is annotated with the name of the Entry Operation it addresses. The Exit

Operations need not to be specified explicitly in the diagram as a Scene has an Exit Operation for

each outgoing transition. As long as no name has been specified explicitly the Entry Operations can

be referenced by definition by a default name: The name of an Exit Operation is composed of the

prefix exitTo, the name of the target scene, and the name of the target Entry Operation, separated by

’_’, e.g. exitTo_Menu_showMenu().

In the example in figure 6.9, the Transitions specify that first the Scene Intro is shown followed

by the Scene Menu. From the Menu it is possible to proceed either to the Help or to the Game. From
the Game it is possible to call the Help as well. When the Game is finished the Score is shown and

afterwards the application returns to the Menu.
In the example the Game’s Entry Operation start is used to pass parameters from the Menu to the

Game Scene. The Scene Help provides two different Entry Operations showGameHelp and show-
MenuHelp which can be used to show different help content and to return to the foregoing Scene

afterwards. According to the naming convention for instance the Exit Operation which belongs to the

transition from Intro to Menu is named as exitTo_Menu_showMenu().

Start State, End State A Scene Model has exactly one StartState and one EndState specifying the

application’s start and its termination. They are denoted like initial states and final states in UML

providing specific kinds of Entry/Exit Operations. By definition, the Start State owns the operation

ApplicationStart which is automatically called when the application starts and triggers the Entry Op-

eration of a Scene as specified by the transitions in the Scene Model. The End State owns an operation

ApplicationExit which causes the application to terminate.

6.3 MML – Scene Model 111

State

ApplicationStart ApplicationExitEntryOperation
+ resume : Boolean

Scene
1

1..n

+scene

1
{redefines class}

+entryOperation1..n

ExitOperation

1

1..n

+scene

1
{redefines class}

+exitOperation 1..n

StateEntry

Transition

1

0..n

+callee 1

0..n

StateExit

1

1

+transition
1

+trigger1

Operation
(from uml)

Relationship
(from uml)

MMA_Class

StartState

1

1

+applicationStart 1

+startState 1

EndState

1

1

+applicationExit1

+endState1

MultimediaApplication

1

1

+startState
1

+multimediaApplication 1

1

1

+endState
1

+multimediaApplication1

Figure 6.10: Metamodel for MML Scene Diagram elements.

In the example in figure 6.9 the Start State calls the Entry Operation showIntro of Intro. From the

Menu it is also possible to exit the application.

Resuming Scenes As proposed by OMMMA (sec. 4.3.2) the Scene’s dynamic properties require to

distinguish between two different cases when entering a Scene: When a Scene has already been active

before it is possible to either initialize the Scene again or to return to its previous state. The former

case is the default case. The latter case is useful when a Scene has an inner state (e.g. resulting from

usage of temporal media) which should be resumed later. For example in the racing game the Scene

Game can be interrupted by calling the application’s Help and should be resumed afterwards.

Thus, it is possible to specify for an Entry Operation whether it resumes to the Scene’s previous

state or not. If a Scene is left by an Exit Operation which might (according to the Transitions in the

Scene Model) lead to an Entry Operation with resume set to true then the Scene instance is stored.

When the Scene is then entered again by an Entry Operation with resume set to true then the stored

previous instance is used instead of creating a new instance. If no previous instance of the Scene exists

then a new instance is created, i.e. the value of resume has no effect.

In the diagram the value of resume is specified as true by the attaching the keyword resume to

the corresponding Entry Operation1. It should be mentioned that such an example is modeled in

the original statechart formalism by a throughout mechanism ([Harel87], p.26) which is a possible

alternative for future versions of MML.

In the example in fig. 6.9 the Game’s Entry Operation resumeGame() is marked with the keyword

resume. In contrast, the Game’s Entry Operation startGame(p:Player, t:Track) creates a new game and

initializes it with (new) parameters.

1OMMMA uses History States for this purpose as OMMMA restricts to existing UML State Chart elements.

112 6. MML – A Modeling Language for Interactive Multimedia Applications

<<Scene>>
Intro

<<EntryOperation>>+show Intro()
<<ExitOperation>>+exitTo_Menu_show Menu()

IntroHeadline IntroMusicIntroVideo

Figure 6.11: Class representation of Scene Intro.

Figure 6.10 shows the resulting metamodel for the model elements in Scene Models. MML Scene

Models have a more restricted structure than UML State Charts and contain only MML-specific model

elements. Thus, none of the UML metaclasses is reused here. The basic concept defined by abstract

metaclasses is that a State owns a StateEntry and a StateExit. A StateExit owns a Transformation
which refers another StateEntry. In case of a Scene, the StateExits must be ExitOperations and the

StateEntrys must be EntryOperations. The metaclass EntryOperation has a boolean attribute resume.

Class Character of Scenes Media Components usually represent Domain Classes. But in some

cases a Media Component has no relationship with a Domain Class but rather represents a specific

Scene. A typical example is help content like a text document. Although some parts of it certainly

refer to Domain Classes the document as a whole only represents the Scene Help itself. Likewise, a

Video for the application’s intro usually represents not a specific Domain Class but the Scene Intro.
Thus, a Scene can be represented by a Media Component just like a Domain Class.

Moreover, a Scene can own properties and operations like a class:

• As described above, a Scene owns Entry Operations and Exit Operations.

• It is possible to define additional operations for a Scene encapsulating some additional behavior

(see sec. 6.4 and sec. 6.5).

• In context of the Presentation Model properties representing Domain Objects and Sensors are

assigned to Scenes (see sec. 6.4).

Thus, the character of a Scene is two-fold: on the one hand it can be interpreted as an application’s

State (regarding the application’s coarse-grained behavior defined in the Scene Model), on the other

hand it can be interpreted as a class owning properties and operations. During code generation a Scene

is mapped to a class associated with a user interface. Properties and operations owned by the Scene

are mapped to class properties and class operations.

To gain an overview on all a Scene’s properties and operations it is possible to denote it as a

specific kind of class in the Structural Model. A Scene can be denoted in the Structural Model like a

conventional class. It is marked with the keyword Scene to distinguish it from other kinds of classes

in MML. Entry Operations and Exit Operations are then also marked with keywords EntryOperation
and ExitOperation to distinguish them from other (conventional) operations a Scene may own. All

properties are denoted like class attributes.

Figure 6.11 shows an example: The Scene Intro is represented by three Media Components: In-
troVideo, IntroHeadline, and IntroMusic. According to the Scene Model from figure 6.9 it owns an

EntryOperation show Intro() and an Exit Operation exitTo_Menu_showMenu().

6.4 MML – Presentation Model 113

In the metamodel in figure 6.10 the metaclass Scene is defined as subclass of MMA_Class and

thus inherits its properties. Additional properties and operations for Scenes are defined in Presentation

Model and the Interaction Model explained in the following sections.

Modeling tools usually also provide a containment tree view listing all model elements in a tree

structure. Of course, this view can also be used to look up all properties of a Scene. Usually, it is also

possible to drag model elements from the containment tree into a diagram. A modeling tool should

thus support that Scenes can be dragged into an MML Structure Diagram where they are visualized

like in figure 6.11.

Composite Scenes It is also possible to define Composite Scenes in MML analogous to Composite

States in UML State Charts. This is mainly useful to specify that some parts of the user interface

elements should be available throughout multiple scenes (like in frame-based HTML pages). In that

case the user interface results from the unification of the Presentation Unit of the Sub-Scene and the

Presentation Unit of the Composite Scene. It is also possible to specify regions to specify that two

Scenes are active concurrently. This corresponds to e.g. two independent windows in a graphical user

interface. However, it is intended to use Composite Scenes sparsely to keep the models simple. Also

nested frames and multi-window applications are currently not that common in many multimedia ap-

plication domains and only little supported by authoring tools like Flash. For that reasons Composite

Scenes are not discussed here further in detail.

Future Extensions As mentioned in section 4.1 it is possible to calculate Enabled Task Sets (ETS)

from the task models which help to identify the Presentation Units. All tasks within an ETS must be

provided within the same Presentation Unit. [Luyten04] for example shows a concrete algorithm to

calculate the ETS and to derive a State Transition Network with ETS as nodes, transitions between

them as well as initial and finishing states. It then still has to be decided which ETSs to put together in a

single Presentation Unit (as a Presentation Unit often contains multiple ETS) and how to map the tasks

to user interface elements. Nevertheless, automatic derivation can provide a useful starting point for

the developer and also helps to validate the created results. Analogously such a transformation could

be applied to MML to derive a starting point for the Scene Model from the Task Model. Integrating

such a transformation for would thus be a possible enhancement for future version of MML but has

not been implemented yet.

6.4 MML – Presentation Model

The MML Presentation Model specifies the user interface of multimedia applications. The basic

concept is the Presentation Unit which represents an abstraction of a top-level user interface container,

e.g. a window. As described in the foregoing section (sec. 6.3) there is one Presentation Unit for each

Scene.

The Presentation Model integrates systematic user interface design with the media design. As

discussed in section 6.1 a modeling language for multimedia applications needs to consider the con-

cepts from user interface modeling area for systematic user interface design. For this reason MML

supports Task Models from which an Abstract User Interface Model can be derived. The Abstract

User Interface Model specifies Presentation Units containing Abstract Interaction Objects. The Ab-

stract Interaction Objects adhere to the user tasks to be supported by the application and reflect the

user interface design. They are platform- and modality-independent. The MML model elements for

this Abstract User Interface Model are presented in section 6.4.1.

114 6. MML – A Modeling Language for Interactive Multimedia Applications

In a second step, the user interface design and the Media Components have to be integrated.

Section 6.4.2 shows how this is supported in MML by UI Realization relationships to instances of

Media Components. At this point the user interface model is no longer independent from modality

as the modality of each media component is already determined by its media type. However, as

pointed out in section 6.1 the user interface of a multimedia application usually contains standard user

interface elements as well – not media objects only. For those standard elements it is still possible

to select between different modalities. For example, it is possible to present the user some piece of

information by audio instead of by a visual component, e.g. the lap time after each lap in the racing

game.

In a third step, Sensors are added to the Presentation Model. They represent specific events result-

ing from temporal media objects. These model elements are introduced in section 6.4.3.

Finally, it is possible to refine the Presentation Model in an additional step in terms of a Concrete

User Interface Model, as common in user interface modeling. It specifies the user interface in terms

of Concrete Interaction Objects for a specific modality. The Concrete Interaction Objects are concrete

(but usually still platform-independent) widgets derived from the Abstract Interaction Objects.

The current version of MML concentrates here on the scope defined in section 5.1.1. Thus, it re-

stricts on some basic concepts from user interface modeling to clearly demonstrate the integration with

media objects and enable code generation. The transformation from Task Models into the Abstract

User Interface as well as the Concrete User Interface model are not further investigated here.

6.4.1 Abstract User Interface

The first step when modeling the Presentation Model is to define the Abstract User Interface to sup-

port a systematic user interface design. It specifies the Presentation Units which are – according to

section 6.3 – associated with Scenes.

In the diagram the abstract user interface is denoted within a top-level container representing the

Scene. It contains another container for the Presentation Unit which in turn contains the AIOs (see

figure 6.14).

Abstract Interaction Objects: Types An Abstract Interaction Object (AIO) is a platform- and

modality-independent abstraction of user interface widgets like a button, a text field, etc. The set of

AIOs provided by existing user interface modeling approaches varies. Many of them, like [da Silva

and Paton03, Van den Bergh06, Görlich and Breiner07], provide a small set of simple, very abstract

AIOs like Input Component, Output Component, etc. Another possibility would be a faceted approach

like in UsiXML (sec. 4.1.2) or [Trætteberg02] where each AIO is more generic and has multiple

facets like input, output, navigation, and control. This approach is more flexible but the elements

and their notation becomes somewhat more complex. Others like Canonical Abstract Prototypes

[Constantine03] use more fine-grained distinction and provide various AIOs for different kinds of

actions, like move, duplicate, modify, etc. Then, the models can become more expressive but is

also more difficult to learn the different AIOs. Such a fine-grained distinction is not mandatory as

the purpose of an AIO becomes apparent also by its name and by the domain object, property, or

operation it refers to (see UI Representation relationship below).

MML sticks to the simplest solution and provides a small set of AIOs: An Input Component
enables the user to freely input data like a text field. An Output Component shows information to the

user like a text label. An Edit Component enables the user to edit data like a slider. It is a combination

of Input Component and Output Component. An Action Component enables the user to trigger an

action of the system like a button. A Selection Component enables to select an element from a given

6.4 MML – Presentation Model 115

NotificationComponent SelectionComponentOutputComponentInputComponent ActionComponentEditComponent

Figure 6.12: Icons for Abstract Interaction Objects.

InputComponent OutputComponent ActionComponent

EditComponent NotificationComponent

SelectionComponent

AbstractInteractionObject

UIContainer

0..n

0..1

+containedAIO
0..n

+container
0..1

Figure 6.13: Metamodel for MML Abstract Interaction Objects.

set of choices like a drop-down listbox. A UI Container is a container for any kind of AIOs and is used

to structure the AIOs within the Presentation Unit like a panel. Finally, MML provides in addition a

Notification Component which is a specific case of Output Component but is more conspicuous than

a conventional Output Component. By default it is not visible to the user and is only displayed during

runtime like a dialog box, e.g. after an event of a temporal media object. For instance, in the racing

game application a Notification Component can be used to notify the user when the race is finished

which can be implemented for example as a text banner or an animation.

Figure 6.12 shows the visual notation for AIOs in MML developed as described in section 5.1.4.

An example is shown in figure 6.14. It shows the Presentation Unit for the Scene Game. It

contains Output Components for information like the player’s name, the laps already completed, etc.

Also the track and the obstacles on the track must be shown to the user and are represented by an

Output Component. The car is shown to the user but in parallel the user can edit some parameters of

the car like its speed and rotation. Thus, car is defined as an Edit Component. There are also Action

Components to trigger functionality like starting the race or call the help.

Figure 6.13 shows the metamodel part for the AIOs available in MML. Abstract Interaction Object
is defined as an abstract superclass.

Extending MML with additional AIOs is relatively easy possible by adding an additional sub-

classes to the metamodel and adding an additional rule in the ATL transformation (for the mapping

from MML models to code, see chapter 7).

Abstract Interaction Objects: Properties For each AIO it is possible to specify that the AIO

is initially invisible on the user interface. This can be useful for multimedia user interfaces where

sometimes elements become visible only in specific situations, e.g. when an animation appears on the

screen at a specific point of time. For code generation this means that the user interface element is

created but not initially visible on the user interface, e.g. by setting a corresponding parameter or by

putting it outside the visible screen area. The most common case is the Notification Component which

is invisible by default. All other AIO types are visible by default but can be defined as invisible as

well. In case that the AIO should be realized by another modality like sound it might have no effect.

An invisible AIO can be denoted in the diagram by a dashed bounding box around the element.

116 6. MML – A Modeling Language for Interactive Multimedia Applications

An AIO in the Presentation Diagram can have a multiplicity. Multiplicities are very useful in

context of multimedia applications as the user interface is often dynamic and number and placement

of user interface elements can depend e.g. on user input. For example, there might be a varying

number of obstacles on the track in a racing game An AIO with a multiplicity corresponds to a set of

AIOs whose names are composed of the AIO name specified in the model and a consecutive number.

During code generation it has to be decided how many AIOs to initially instantiate on the generated

user interface. This can be done according to the following rule: For a multiplicity n..m, m elements

are generated if m is a number (i.e. not ’*’). Else, n elements are generated if n is greater than zero. If

the multiplicity is 0..* then three example elements are instantiated. Multiplicities are denoted behind

the AIO’s name.

An example can be found in figure 6.14: A multiplicity is specified for the Output Component

obstacle as there is a varying number of obstacles. According to the rule described above three

obstacles will be generated from the model named as obstacle1, obstacle2, and obstacle3.

Domain Objects and UI Representations Like in most user interface modeling approaches an AIO

is associated with the application logic. This is specified by UI Representation relationships between

AIOs and domain objects.

A Domain Object represents an instance of a Domain Class from the Structure Model (sec. 6.2).

More precisely, it is a placeholder for an instance having a specific role within the Scene (not a

concrete instance with concrete values defined in the model)2. They can be interpreted as properties

of the Scene and are mapped to properties of the Scene class during code generation.

The domain objects are denoted as a solid-outline rectangle containing its name and, separated by

colon, its type, i.e. the name of the domain class it instantiates.

A UI Representation relationship specifies that an AIO represents a domain object. Analogous

to Media Representation relationships (sec. 5.2.4) it is possible to specify concrete properties and/or

operations of the domain object which are represented by the AIO. The detailed meaning of the UI

Representation differs according to the AIO type: An Output Component represents either a property

or an operation, i.e. its return result. An Input Component refers to a property or an operation which

implies that it sets the value of the property or of the operation’s parameters. An Action Component

usually refers to an operation which means that the Action Component triggers the operation when it

is activated by the user. A specific case is the Selection Component as it consists of multiple choices

(which basically could be interpreted as kind or output elements). Thus, a Selection Component refers

either to a property with multiplicity greater than one or to an operation which returns a collection of

elements.

In general, the relationship between AIO and represented domain object is always 1:1 in MML. If

no specific property or operation is specified, it means that it is either not decided yet or that the AIO

represents the domain class as a whole.

The UI Representations are denoted as a solid line between an AIO and a Domain Object. It

can be annotated with the names of Domain Object’s properties and/or operations represented by the

AIO. Sometimes an AIO represents a property or operation of the containing Scene itself, like an Exit

Operation of the Scene. In this case no UI Representation relationship is depicted in the diagram.

Instead, the name of the represented property or operation is denoted in curly brackets below the AIO.

2One can distinguish between three layers of abstraction: 1) the “object level” describes properties for concrete objects

with concrete values 2) the “class level” describes properties which hold for all instances of a class. The “role level” resides

between those two and describes properties which hold for all instances of a class in a specific context. For example, class

attributes reside on role level as a property defined for a class attribute holds for all objects referenced by the attribute. See

[Hitz et al.05]

6.4 MML – Presentation Model 117

<<Scene>>
Game

<<PresentationUnit>>

help
{exitTo_Help_show GameHelp()}

quit
{exitTo_Menu_show Menu()}

obstcl : Obstacle

checkpoint [1..*]

cp : Checkpoint

lapsCompleted

player : Player

obstacle [0..*]

track : Track

playerName

race : Race

lapsTotal

car : Car

start

track

car

time

start()completedLapsname totalLapselapsedTime

Figure 6.14: MML Presentation Diagram containing the Presentation Unit for the Scene Game.

Figure 6.14 shows a Presentation Diagram for the Scene Game from the racing game example.

For instance, the Edit Component car, the Output Component lapsCompleted, and the Action Compo-

nent start all represent an instance car of the class Car. Thereby, lapsCompleted represents the class

attribute completedLaps, start represents the operation start(), while the EditComponent car repre-

sents the whole car object (i.e. multiple properties not further specified in the model). The Action

Components help and quit all represent operations of the Scene itself.

The metaclasses for the Abstract User Interface will be shown later in figure 6.16 together with

the metaclasses for UI Realizations.

Abstract Layout Existing user interface modeling approaches usually support to define the layout

of the AIOs on the user interface in an abstract way as well. It can be specified in an abstract way by

constraints on the AIOs and by relationships between them. For example, one can define that a user

interface element should always have a quadratic shape or that one element should be positioned left

to another. A discussion can be found e.g. in [Feuerstack et al.08].

For approaches which address independence from modality it is important to specify the abstract

layout independent from modality as well. For instance in a vocal user interface there are no spatial

relationships like “left-to”. Thus, they use more abstract relationships between the models. [Lim-

bourg04] uses the 13 basic relationships identified by [Allen83]. These relationships originally define

the temporal relation between to time intervals, e.g. “before”, “starts with”, “overlays”, “during”, etc.

They can also be applied to the visual dimension (e.g. one visual user interface element is placed

before another). Moreover, by composition they can also be applied to multiple dimensions like 2D

space or 3D space.

An alternative approach is to specify the designer’s intention instead of resulting physical layout

properties: for instance “grouping” , “ordering”, “hierarchy”, “relation”. For example, “grouping”

user interface elements can be realized on a visual user interface e.g. by “lining them vertically or

horizontally, or with the same colour or with bullets” [Paternò and Sansone06].

118 6. MML – A Modeling Language for Interactive Multimedia Applications

In the current MML version no layout mechanisms are implemented. When generating code for an

authoring tool like Flash the designer can specify the layout visually in the authoring tool. However,

MML can easily be extended e.g. with abstract layout relationships like specified in UsiXML [Usib].

6.4.2 UI Realizations

Until now, the Abstract User Interface has been specified like in user interface modeling approaches.

In conventional applications they would then be implemented by standard widgets. However, in mul-

timedia applications the AIOs can also be realized by instances of the Media Components instead.

MML enables to specify this by UI Realization relationships between AIOs and Media Instances.

Media Instance A Media Instance is an instance of aMedia Component from the Structure Diagram

(sec. 5.2). Analogous to AIOs and Domain Objects, the Media Instances are interpreted as properties

of the Scene as well. Although in fact (during implementation) a Media Instance is always an instance

of a concrete Media Artifact, the Media Instances in MML Presentation Diagrams are specified more

abstractly as instances of Media Components. This is necessary as the concrete Media Artifact might

be selected at runtime. However, it is optionally possible to specify a specific Media Artifact name

for the Media Instance.

The Media Instances are denoted like Media Components but in addition with an instance name,

separated by a colon, before the name of the Media Component. Thereby, the different alternatives to

depict a Media Component are all allowed, e.g. collapsed or with a compartment showing its inner

structure (see sec. 5.2.2).

UI Realization A UI Realization relationship specifies that an AIO is realized by a Media Instance.

It means that the Media Instance fulfills the AIOs role on the user interface. Thus, during code

generation such an AIO is not mapped to a standard widget but is implemented by an instance of a

Media Component on the user interface. Other AIOs which are not realized by Media Components

represent conventional user interface elements outside of the customer’s or designer’s multimedia-

specific visions. They are mapped to conventional standard widgets during code generation.

A UI Realization is denoted as a dashed arrow from a Media Instance to an AIO.

Figure 6.15 extends the example from figure 6.14 with UI Realizations. For instance, the Edit

Component car is realized by the Media Instance car which instantiates the Media Component CarAn-
imation and by an instance of EngineSound. The Output Component track is realized by an instance

of TrackAnimation.

UI Realizations: Media type vs. AIO type The most obvious case is that a Media Instance realizes

an Output Component. But in interactive applications Media Instances can also be used for user

interaction. For example, it can be possible to select a specific region in an image or to drag an

animation with a pointing device. It depends on the media type whether and how a media instance

may act as an interactive AIO, i.e. as an Input Component, Edit Component, Selection Component

or Action Component. Audio can usually not act as an interactive AIO as it can not be manipulated.

Of course it is possible to record and parse audio using a microphone as accomplished in speech

recognition. However, this has no relationship at all to playing an auditive media object (see distinction

between the terms “multimedia” and “multimodality” in sec. 2.1). The same holds for video, where a

camera and gesture recognition are necessary for user inputs. However, all visual elements, including

6.4 MML – Presentation Model 119

<<PresentationUnit>>

<<Animation2D>>
trackAnim : TrackAnimation

checkpoint : CheckpointGraphic [1..*] obstacle : ObstacleAnimation [*]

help
{exitTo_Help_show GameHelp()}

engineSound : EngineSound
quit

{exitTo_Menu_show Menu()}

carAnim : CarAnimation

obstcl : Obstacle

checkpoint [1..*]

cp : Checkpoint

lapsCompleted

player : Player

obstacle [0..*]

track : Track

playerName

race : Race

lapsTotal

car : Car

start

track

time

car

<<Scene>>
Game

start()name completedLapstotalLapselapsedTime

Figure 6.15: MML Presentation Diagram including UI Realizations for the Scene Game.

video, appear on the screen and can therefore receive user events, e.g. when selected by a pointing

device. Thus, all visual objects can act as Action Components.

As animations can dynamically change their content dependent on the application logic, they can

additionally act as Edit Components or Input Components. An example is a car animation which

represents e.g. the current rotation of the car. The user might manipulate the animation with an input

device to edit the car’s rotation value.

All visual objects can also act as Selection Component. As mentioned above Selection Compo-

nents are more complex as they consist of multiple choices. A visual Media Instance can act either

as the Selection Component as a whole or can represent a single choice. The former case requires

that the Media Instance consists of several parts which act as choices, for instance an image of a map

where different image regions can be selected. The latter case implies that there are multiple Media

Instances – one for each choice. The distinguish between this two cases in the model and for code

generation the latter case is specified by assigning the keyword choices (denoted in curly braces) to

the UI Realization.

UI Realizations of Inner Properties As defined above the UI Realization relationship is specified

between a Media Instance and an AIO. However, it is also possible that a specific part of the Media

Instance actually realizes the AIO. For example in a graphic representing a map, it might be useful

that a click on a specific region in the map triggers an event. In the racing game example, it might for

120 6. MML – A Modeling Language for Interactive Multimedia Applications

instance be possible to select the kind of tires (rain tires or dry-weather tires) for a car by clicking on

the wheels in the car animation.

In case of an Action Component, the part for instance triggers an event. In case of an Edit Com-

ponent, the part can for instance be manipulated by drag and drop. In case of a Selection Component,

the part can be selected.

In the Presentation Model this is specified by attaching a reference on the Inner Property (referring

to a specific part of a Media Component, see sec. 5.2.8) to the UI Realization.

In the diagram, the UI Realization can be annotated with the name of one ore more Inner Proper-

ties. Alternatively it is possible to draw the UI Realization directly as connection between the Inner

Property and the AIO like in figure 6.15. Of course, the latter alternative requires that the Inner Prop-

erty is visible in the diagram (i.e. the Media Instance must not be depicted in collapsed style) and that

only one Inner Property is referenced by the UI Realization.

In the example in figure 6.15 the AIO checkpoint is realized by the Inner Property checkpoint of
trackAnim and the AIO obstacle is realized by the Inner Property obstacle of trackAnim.

Figure 6.16 shows the metamodel for the MML Presentation Model introduced so far. The middle

part shows the basic metaclasses: a PresentationUnit is owned by a Scene and containts AbstractIn-
teractionObjects. The subclasses of AbstractInteractionObject have been shown in figure 6.13. The

upper part defines the UIRepresentation from an AIO to a DomainObject. Analogous to MediaRepre-
sentation (see fig. 6.7) a UIRepresentation can refer to properties and operations. The UIRealization
refers to a MediaInstance. A MediaInstance instantiates a MediaComponent and may in addition refer

to a specific MediaArtifact. The UIRealization may refer to a number of InnerProperty elements. The

Domain Objects and the Media Instances are owned by the Scene and can be interpreted as properties

of the Scene (see above).

6.4.3 Sensors

Another specific property of multimedia user interfaces is caused by temporal Media Components:

They can invoke actions independently from the user [Vazirgiannis and Boll97]. First of all, temporal

Media Components can trigger time-related events, e.g. when they reach a specific point on their

timeline or have finished. Second, there are further events depending on the media type caused by

dynamic behavior. For instance, a moving animation can trigger an event when it collides with other

animations or touches a specific region on the screen. However, a Media Component often does not

trigger such events by default. Instead, the developers often have to implement the corresponding

functionality (e.g. collision detection) themselves and integrate it with the Media Components. Thus,

a modeling language should provide support to specify such event triggers in the models. Moreover,

they are required in the Interaction Model (sec. 6.5) to specify the Scene’s behavior.

MML uses a metaphor from 3D domain called Sensor to model such event triggers. One can

distinguish between different types of sensors. The Time Sensor models temporal events in general.

In addition, there are other sensors for specific events which can be caused by temporal media. They

can be derived from 3D domain as the media type with the most dimensions. Common sensor types

are touch, proximity, visibility, and collision [Vitzthum08]. The following section discusses how and

to which media types they apply in MML.

Types of Sensors A Touch Sensor is attached to a visual object and triggers an event when the user

touches the object with a pointing device. Visual objects in MML are: Animation3D, Object3D, Ani-
mation2D, SubAnimation2D, Video, VideoRegion, Image, ImageRegion, Graphics, and SubGraphics.
However, this kind of sensor corresponds to user interaction which is in MML already covered by the

6.4 MML – Presentation Model 121

Relationship
(from uml)

Multiplicity
Element
(from uml)

artifact (if
specified) must
manifest media

DomainClass

Operation
(from uml)

Property
(from uml)

DomainObject
1

+class

1

UIRepresentation

0..n

+represented
Operation

0..n
0..n

+represented
Property0..n

1
+representedObject
1

Presentatio
nUnitScene 0..1

1 +present
ationUnit

0..1+scene
1

0..n

1

+object
0..n

+owner
1

MediaArtifact

MediaComponent

AbstractInteractionObject

1

1

+uiRepresentation 1

+aio1
0..n

1 +aio
0..n

+present
ationUnit

1

MediaInstance0..n

1

+media
0..n

+owner
1

0..1

+artifact
0..1

1

+media

1

InnerProperty UIRealization
choices : Boolean = false

0..n

1

+realization 0..n

+realizedAIO 1

1

0..n

+realizingMedia
1

+realization 0..n

0..n

+realizingPart

0..n

property and operation
(if specified) must
belong to
DomainObject

part must belong to
media component

Figure 6.16: Metamodel for MML Presentation Models.

AIOs. The semantics of a touch sensor can be described more precisely in MML by defining a UI Re-

alization between a part of a Media Instance and an Action Component, Edit Component, or Selection

Component. Thus, Touch Sensors are not required in MML.

A Visibility Sensor can be attached to visual object and triggers an event when the object becomes

visible, e.g. after it has been covered by another object or was located outside the screen. In MML

this applies to Presentation Units which contain animations. An animation might not only become

visible itself (e.g. by moving from outside into the screen) but it can also overlay other visual objects

on the user interface which then become visible when the animation moves. Thus, a Visibility Sensor

can be attached to any visual object in MML.

A Proximity Sensor is attached to a 3D object in a 3D scene and triggers an event when the user

navigates within the 3D scene close to this object. More precisely, this means that the difference

between the camera position and the object is lower than a specified threshold value (defined during

implementation). This sensor can only be owned by 3D animations as there is no analogy for other

media types3.

A Collision Sensor can be attached to animated objects and triggers an event when the object

collides (i.e. intersects) with another visual object. Possible moving visual objects in MML are

Animation3D, Object3D, Animation2D, and SubAnimation2D. The set of objects which are tested for

3In 2D domain one can also argue that there is a kind of camera which can be used for zooming. However, zooming in

2D domain is actually just a transformation on a 2D animation and is handled as such in MML. There is no useful semantics

for a Proximity Sensor in 2D space which is not already covered by the Visibility Sensor

122 6. MML – A Modeling Language for Interactive Multimedia Applications

a collision has to be specified in MML by a relationship Collision Test between the Collision Sensor

and the opponent objects.

A Time Sensor triggers an event at specific points of time in the application. In MML this points

of time can be either frequently after a given time interval (not further specified in MML) or one or

more Cue Points of temporal Media Components. In the first case the Time Sensor act as a kind of

clock in the application which can be used e.g. to frequently execute an action on the user interface,

like starting an animation. This is the default case if no Cue Points are associated with the sensor. The

second case means that the sensor triggers an event at specific point of time defined by Cue Points.

This can be for example used to execute an action when a temporal media object has reached a specific

point in its timeline or has finished.

Currently, there is no specific icon notation for Sensors. They are denoted with a solid-outline

rectangle containing the type of sensor (denoted as keyword in guillemets) and the Sensor’s name.

Usage of Sensors As discussed above, a sensor can either be assigned to a whole Media Component

(like an animation) or only to specific parts of it (i.e. to an Inner Property) like a single geometrical

3D object within a 3D animation. Moreover, a sensor can be owned either by a Media Component

or by a Media Instance. In the former case, the sensor is a part of the Media Component and is

globally available in all its instances. Then the sensor can only reference to Inner Properties within

this Media Component. In the latter case the sensor is only available in the specific instance of the

Media Component in the respective Presentation Unit. In this case it might also refer to other Media

Instances within this Presentation Unit. This is mainly important for Collision Sensors as they refer

to other objects by the Collision Test relationship.

In the diagram, Sensors are assigned to Media Components or Media Instances by a solid line

between the Media Component/Media Instance and the Sensor. If the Sensor is assigned to an Inner

Property then Inner Property’s name can be annotated at the relationship. Alternatively, it is possible

to draw the relationship directly as connection between the Inner Property and the Sensor.

The CollisionTest relationship is denoted by a dashed line between the Collision Sensor and the

element observed and is marked with the keyword CollisionTest.

Figure 6.17 shows as example the Scene Game containing two Collision Sensors obstacleSen-
sor and checkpointSensor. They belong to the Media Instance carAnim and test for collisions with

obstacle and checkpoint.

Figure 6.18 shows the metamodel for sensors. A Sensor is always owned either by a MediaCom-
ponent or a MediaInstance. (This relationship is not defined as a metaclass of its own as it has no

further properties.) A Sensor may in addition refer to an InnerProperty which must belong to the Sen-

sor’s owner, i.e. the MediaComponent or the MediaInstance. A CollisionSensor owns one or more

relationships CollisionTest which refer either to a MediaInstance or an InnerProperty.

Tool Support for Presentation Diagrams The Presentation Diagram contains three different as-

pects: The Presentation Units with UI Realizations, the UI Realizations, and the Sensors. Thus, a

modeling tool should support the modeler to view only one or two of these aspects and hide all other

model elements by selecting between the different views. The modeler should be able to hide the UI

Realizations and domain objects, the UI Realizations and Media Components, and the Sensors with

all their relationships. Hiding can mean either to set them completely invisible or to set them into

background by displaying them in light gray color or with an increased alpha value.

6.5 MML – Interaction Model 123

<<Scene>>
Game

<<PresentationUnit>>

<<Animation2D>>
trackAnim : TrackAnimation

checkpoint : CheckpointGraphic [1..*]

obstacle : ObstacleAnimation [*]

help
{exitTo_Help_show GameHelp()}

engineSound : EngineSound

quit
{exitTo_Menu_show Menu()}

carAnim : CarAnimation

<<CollisionSensor>>
checkpointSensor

<<CollisionSensor>>
obstacleSensor

obstcl : Obstacle

checkpoint [1..*]

cp : Checkpoint

lapsCompleted

player : Player

obstacle [0..*]

track : Track

playerName

race : Race

lapsTotal

car : Car

start

track

time

car

start()name completedLapstotalLapselapsedTime

<<test>>

<<test>>

Figure 6.17: MML Presentation Diagram for the Scene Game enhanced with Sensors.

6.5 MML – Interaction Model

The Interaction Model models the user interaction and the resulting behavior of the Scene. Each

Scene has an Interaction Model of its own. The core idea is to specify how events from the user

interface trigger operations from the application logic or from user interface elements. In multimedia

applications this includes also predefined temporal behavior between media instances within a Scene.

In that way the Interaction Model specifies the interplay between the elements defined in the foregoing

models.

This section starts with a general discussion on the basic concepts, the required level of abstraction,

and existing modeling concepts which can be reused for its realization (subsection 6.5.1). The second

part of this section (sec. 6.5.2) presents as proof of concept MML Interaction Diagrams based on UML

Activity Diagrams. Finally, section 6.5.3 provides a short discussion on temporal synchronization.

6.5.1 Rationale

Main Concept The different MML models defined so far consist of various elements which can

influence the application’s behavior within a Scene. Some of them, like user events, trigger behavior

while others, like domain class operations, encapsulate some behavior to be executed. The coordina-

tion of triggers and triggered behavior is managed by the Scenes. In detail, the following triggers are

available within a Scene:

• Events from contained AIOs (possibly realized by Media Components) defined in the Scene’s

124 6. MML – A Modeling Language for Interactive Multimedia Applications

Relationship
(from uml)

MediaComponent

Sensor

MediaInstance

VisibilitySensor CollisionSensor CollisionTestTimeSensor

InnerProperty

ProximitySensor

+owningComponent 0..1

+sensor
0..n0..n

0..1

+sensor
0..n

+owningInstance
0..1

0..n

0..1

+opponentInstance

0..1

+sensor

1
+test

1..n1..n

1

0..1

0..n
+observes

0..n

1
+observes
1

0..1
+opponentPart

0..1

1..n
+observes

1..n

1..n
+observes
1..n

Figure 6.18: MML Metamodel for Sensors.

Presentation Model (sec. 6.4).

• Events from Sensors defined in the Scene’s Presentation Model (sec. 6.4).

• In addition, Entry-Operations (sec. 6.3) are executed by definition when a Scene becomes active

and can thus trigger other behavior as well.

The following elements represent encapsulated behavior which can be triggered within a Scene:

• Operations from domain classes defined in the Structural Model (sec.6.2). Therefore, the Scene

refers to domain objects as defined in the Scene’s Presentation Model (sec. 6.4). If additional

domain objects are required to be accessed by the Scene then they can be passed as parameters

of the Scene’s Entry-Operations.

• Operations of Media Instances contained in the Scene (e.g. to play a video) defined in the

Interfaces of Media Components (sec. 5.2.3). The Media Instances contained in the Scene are

specified in the Scene’s Presentation Model (sec. 6.4).

• In addition, in a dynamic interface it must be possible to modify the AIOs and Sensors on

the user interface as well (e.g. to disable, highlight or hide an AIO or to disable a Sensor).

Analogously to Media Components, MML defines standard interfaces for the different types

of AIOs and Sensors. The interface contain operations which encapsulate required behavior

of Sensors and AIOs. Table 6.1 shows the standard interfaces and some exemplary operations

currently defined in MML. The code generator can then map the standard operations defined

within these interfaces into code on the specific target platform (e.g. setting the value of the

property enabled of a Button in ActionScript).

The Interaction Model specifies the interplay between those elements.

Level of Abstraction According to the general goals of MML (p. 34) it is intended to specify

the Interaction Model on a level of abstraction which enables to generate code from the models.

4The datatype OCLAny is used to refer to any kind of model element.

6.5 MML – Interaction Model 125

Metaclass Standard Operations

AIO

setValue()
getValue():OCLAny4

setVisible()
setInvisible()
enable()
disable()
highlight()
deHighlight
update()

Sensor
hasSensed()
getTrigger():OCLAny

CollisionSensor
(in addition to Sensor operations)

getOpponent():OCLAny

Table 6.1: AIO and Sensor Standard Interfaces

As stated in section 6.4, a Scene is mapped to a class and its contained elements are mapped to

class properties. As the lists above show, all elements (AIOs, domain objects, Media Instances, and

Sensors) are already defined in the foregoing models and are thus available as properties in the Scene.

The Interaction Model thus has to specify only the behavioral relationships between them. The idea is

that the behavior within a Scene does usually not require much complex algorithms – those are usually

encapsulated in the domain class operations. Thus, it is mostly possible to model a Scene’s behavior

with acceptable effort. Consequently, basically the complete code for a Scene (i.e. including the the

operation bodies) can be generated from the models. In turn, it is necessary to provide modeling

concepts on a sufficiently low level of abstraction so that the modeler is able to specify all details of

the Scene’s behavior if desired.

Reuse of Modeling Concepts Given the basic concept for Interaction Models above, this paragraph

now briefly discusses possible existing modeling concepts and notations which can be used for MML

Interaction Diagrams.

The basic behavior of Scenes is already defined by the temporal relationships defined in the Task

Model (sec. 6.1). For less dynamic user interfaces the information in the Task Model is sufficient

to directly generate code – as realized in many existing approaches in user interface modeling area

(see sec. 4.1). For example, the Menu Scene in the racing game example requires only AIOs to

input the player’s name and select a car and a track. The Task Model specifies that these tasks can be

performed in any order. The Presentation Model specifies how the AIOs are related to domain objects.

If the relationships between Tasks and corresponding AIOs is available in the model (defined e.g. by

isExecutedIn relationships like in UsiXML, see sec. 4.1.2) it is possible to generate the complete code

for the Scene analogous to existing user interface modeling approaches. In this case, an additional

Interaction Model is not mandatory.

However, for complex, dynamic Scenes, like the Scene Game in the racing game example, it

might be desired to specify the Interaction Model on a lower level of abstraction. For example, it

can be an important decision in the Scene Game whether user input is handled asynchronous, i.e. by

executing an event listener for each occurring event, or synchronized by polling for input in a specified

order. The latter mechanism is commonly used for highly dynamic and time-dependent user interfaces

126 6. MML – A Modeling Language for Interactive Multimedia Applications

[Besley et al.03, Pol08, Lord07]. In general, Task Models focus on the viewpoint of user tasks – not on

the system to be implemented [Paternò01]. Thus, MML complements the Task Models with another

diagram type supporting a more system-related point of view and modeling detailed behavior. For this

purpose MML reuses UML Activity Diagrams.

UML Activity Diagrams are part of the UML standard and provide the possibility to model a

system’s behavior very close to implementation if desired. Moreover, extended Activity Diagrams

are already used in other UML-oriented user interface modeling approaches like UMLi [da Silva

and Paton00] and CUP [Van den Bergh06] (see sec. 4.1.3) as UML-based variant of Task Models.

Moreover, the semantics of UML 2 Activity Diagrams has already been formally defined [Störrle04].

A general introduction and discussion of UML2 Activities can be found in the article series by Bock

[Bock03a, Bock03b, Bock03c, Bock04a, Bock04b].

As discussed in [Van den Bergh06] and [Nóbrega et al.05] Task Models can be mapped to (ex-

tended) Activity Diagrams. Thereby, each task is represented by an UML Action while the temporal

relationships are mapped to corresponding control flow. This can be used for MML as well to auto-

matically derive an Activity Diagram (i.e. MML Interaction Model) from the Task Models – either as

starting point to add more implementation-specific details or for direct transformation into code.

6.5.2 MML Interaction Model based on UML Activity Diagrams

This subsection shows how the concepts of MML Interaction Models can be realized based on UML

Activity Diagram. It briefly presents the most important restrictions and adaptations compared to

plain UML Activity Diagrams and shows some concrete examples from the racing game application.

Activities An Activity specifies the behavior of an operation of the Scene. These operations are

mainly the Scene’s Entry-Operations. But it is also possible to define additional (helper) operations

for a Scene to encapsulate some behavior (e.g. behavior which should be reused in multiple Entry-

Operations). An Activity is always associated with a Scene (the operation owner) and can access all

properties of the Scene.

The Activities are denoted like in UML. Their names result from a concatenation of the name of

the Scene and (separated by ’_’) the name of the the represented operation. Figure 6.19 shows as

example the Activity for the operation start of the Scene Game.

Objects All properties of a Scene defined in the Presentation Model can be represented as Object

Nodes in the Activity. This includes domain objects, AIOs and sensors. In addition, the operation’s

parameters are represented by Activity Parameters, like in UML. All Object Nodes, including Activity

Parameters, can be used as targets of Actions and as parameter values for Actions.

If an Object Node’s type has a specific icon notation then the icon is used to denote the Object

Node itself as well. For example, an Object Node from type MML Input Component is denoted by

the icon for MML Input Components. The Object Node’s name is denoted below the icon. Optionally

it is possible to place the type of the node behind its name, separated by ’:’. If the Object Node’s type

has no specific icon notation (e.g. domain classes) it is denoted like as a rectangle like conventional

Object Nodes in UML. Activity Parameters are denoted like in UML as well.

In the example in figure 6.19 the Object Node representing the Action Component start is denoted
like an MML Action Component. There are two Activity Parameters :Player and :Track which corre-

spond to the operation parameters defined in fig. 6.9. In addition, the is an Object Node car from type

Car.

6.5 MML – Interaction Model 127

Figure 6.19: MML Interaction Diagram for Entry Operation start of Scene Game.

Actions The primary kind of Action to be used in MML Interaction Diagrams is the CallOperation-
Action from UML. It represents an operation call on a target object. The target object can be specified

by an Object Flow to an Input Pin target of the Action. If no target object is specified then the tar-

get object is by definition the Scene itself.5 If the called operation has parameters then they must be

passed to the CallOperationAction via Input Pins marked as with the parameter name and optionally

with the parameter type (separated by ’:’). As discussed in sec. 6.5.1 the available operations can

belong to a domain object, a Media Instance, an AIO, or a sensor.

Besides CallOperationActions it is possible to use other kinds of UMLActions like Object Actions
to e.g. create new objects, Structural Feature Actions to e.g. read a property value, or Variable Actions
to e.g. store a value in a local variable, etc. (see chapter 11 in the UML specification [Obj07c]).

The Actions and Pins are denoted like in UML: CallOperationActions show the name of the oper-

ation they represent. The name of the class may optionally appear below the name of the operation, in

parentheses postfixed by a double colon. Other kinds of Actions are marked with a keyword indicating

their type. If an CallOperationAction refers to another operation (of the Scene) which is defined by

an Activity itself then this is marked (like in UML) by a rake symbol within the Action.

The example in figure 6.19 shows the different possibilities: The first four Actions are just used to

initialize the Scene’s class properties player, car, and track. The values for player and track are passed

as the Entry-Operations parameters. The value for car is fetched from the player object by calling its

operation getCar().
The next step in the example is a CallOperationAction initUI which encapsulates the initialization

of the user interface and is not further specified in the example. No target object is specified for initUI
which indicates that the operation is owned by the Scene itself.

5in UML the owner of an Activity (here: the Scene) would be retrieved by ReadSelfAction.

128 6. MML – A Modeling Language for Interactive Multimedia Applications

Action
(from uml)

Sensor

AcceptSensorEvent
Action

1+sensor 1

AcceptUIEvent
Action

AbstractInteraction
Object

1 +aio1

Operation
(from uml)

DomainObject

CallOperation
Action

1
+operation

11
+target

1

AcceptEventAction

Figure 6.20: Metamodel for MML-specific actions.

In the next step, the operation enable of the AIO start is called. This operation has been defined

in the AIOs standard interface. There are two more CallOperationActions: start is an operation of the

domain object car and main is an operation of the Scene itself which encapsulates the Scene’s main

behavior. The rake symbol indicates that main is defined in another Activity (see figure 6.21).

Events The events from AIOs and Sensors can be modeled in terms of UML AcceptEventActions.

MML specifies specialized subclasses for the different types of events triggered by AIOs and Sen-

sors: An AcceptUIEventAction is associated with an AIO and indicates that the AIO has triggered

an event. In case of an Input Component or Edit Component it means that the user has input some

data. In case of an Action Component it means that the user has triggered the Action Component. An

AcceptSensorEventAction specifies that a sensor reports the occurrence of the observed event.

All types of AcceptEventAction in MML are denoted like in UML as a concave pentagon. They

are anonymous and contain the name of the associated AIO or sensor instead of a name of its own.

In addition, the type of AIO or Sensor is indicated by the corresponding icon or keyword defined in

section 6.4.

Figure 6.19 shows as example an AcceptUIEventAction triggered by the Action Component start.
It calls the operation start() of the domain object car. This adheres to the Presentation Model in

figure 6.14 which already specifies that the Action Component start represents the domain object

car. However, the Interaction Model can refine the specification from the Presentation Model. For

instance, figure 6.14 shows that the operation main() is called after the operation start().
Like in UML, the AcceptEventActions can be used in combination with InterruptibleActivityRe-

gions. When an InterruptibleActivityRegion is left via an edge defined as interruptible edge then all

remaining tokens inside the InterruptibleActivityRegion are terminated. This mechanism can be used

to model that an event interrupts the control flow. For example, figure 6.21 shows (on the bottom left

side) an AcceptUIEventAction associated with the Action Component help. If help triggers an event,

the Scene’s main control flow is terminated and the Exit Operation exitTo_Help_showGameHelp is

executed.

Figure 6.20 shows the metamodel for the MML-specific actions.

Further Elements Besides the elements described above, the Interaction Model supports the model

elements from conventional UML Activity Diagrams to model behavior, like Control Flow, Control
Node, Object Flow, etc.

6.5 MML – Interaction Model 129

Figure 6.21 shows a more complex example specifying the operation main from the Scene Game.
It shows the core control flow for the racing game. In this model the input from AIOs and sensors is

polled by synchronized operation calls instead of using event listeners which is a common mechanism

in highly interactive and dynamic Scenes6. Conditional activity nodes are used to specify decisions.

The final actions in the example calls an Exit Operation of the Scene.

For such complex Scenes the Interaction Model provides additional support for the developers as

it clearly reflects the intended main program flow. This provides for instance the software developers

a good orientation for the final implementation of the domain class operations.

Figure 6.22 shows a simplified metamodel extract from UML for the basic Activity Diagram el-

ements. The abstract metaclass Action is refined by the MML specific actions previously shown in

figure 6.20. In addition, the UML subclasses of Action mentioned above (like AddStructuralFeature-
Action, etc.) are reused from the UML specification (see [Obj07d], chapter 11). In MML each Activity

is owned by an operation of a Scene (figure 6.23).

6.5.3 Temporal Synchronization

Various existing approaches in multimedia area propose concepts to model the temporal synchroniza-

tion between media objects. [Bertino and Ferrari98] provides a good overview on them. For applica-

tion design only the inter-object synchronization is relevant, i.e. the synchronization between different

media objects (in contrast to intra-object synchronization which refers to internal synchronization and

is provided by the implementation platform).

[Bertino and Ferrari98] distinguishes between two concepts to model synchronization: Timline

models and constraint-based models. Timeline models show the media objects on a temporal axis

which is very intuitive but less flexible. In particular, it provides low support for interactivity and

control constructs like decisions. For example, OMMMA (sec. 4.3.2) uses extended UML Sequence

Diagrams. Although since UML 2.0 Sequence Diagrams support constructs like loops and decisions

as well they still become very complex when modeling non-trivial interactive applications. OMMMA

solves this by using the Sequence Diagrams for modeling predefined behavior only and by putting all

interactive behavior into the State Charts. However, the result is that in highly interactive applications

the State Charts become very complex while the Sequence Diagrams become trivial.

A more flexible approach is the usage of constraints for the synchronization. Examples are

interval-based relationships like defined by [Allen83] or [Wahl and Rothermel94]. As described in

section 6.4.1 such relationships are used in user interface modeling approaches for modeling the

spatio-temporal layout and can thus already be covered by the Abstract User Interface Models.

The MML Interaction Model is already on an abstraction level more close to implementation

and focuses on modeling interactivity. Consequently, temporal synchronization is specified here in

terms of Cue Points and Events. More abstract relationships would have to be modeled as part of the

spatio-temporal layout in the Presentation Diagram.

Figure 6.24 shows as example an MML Interaction Diagram for the Entry Operation show of the

Scene Intro. Here a sound and video should be played in parallel. During the last sequence of the

video an animation should be played which fades in a headline showing the game title. This can be

modeled in MML by a Time Sensor LastVideoSequence which triggers an event when the last video

sequence is reached. The corresponding AcceptSensorEventAction then causes the animation to play.

Another Time Sensor VideoFinished is used to exit the Scene when the video has finished.

6For purpose of clarity, Car is represented here by an Output Component and two additional Action Components accel-
erate and leftRight instead of just an Edit Component Car like in the Presentation Model

130 6. MML – A Modeling Language for Interactive Multimedia Applications

Game_main Game_mainactivity []

body

test
isBroken

(Car::)
target

body
exitTo_Score_show

(Game::)

getTrigger
(ObstacleSensor::)

getDamage
(Obstacle::)

target

damage
(Car::)

value

target

test
hasSensed

(ObstacleSensor::) target

body

test
isInFinish

(Car::)
target

body
exitTo_Score_show

(Game::)

getTrigger
(CheckpointSensor::)

getNumber
(Checkpoint::)

target

addCheckpoint
(Car::)

nr

target

test
hasSensed

(CheckpointSensor::)
target

<<CollisionSensor>>

checkpointSensor

<<CollisionSensor>>

obstacleSensor

accelerate
(Car::)

value

target

leftRight
(Car::)

target

value

move
(Car::)

target

getValue
(AIO::)

target

getValue
(AIO::)target

update
(AIO::)

target

accelerate

leftRight

car

car : Car

car : Car

car : Car

help

exitTo_Help_show
GameHelp

(Game::)

Figure 6.21: MML Interaction Diagram for operation main of Scene Game.

6.5 MML – Interaction Model 131

Action
ObjectNode

ControlNode

FinalNode

InitialNode

Pin
isControl : Boolean

TypedElement

ControlFlow

ObjectFlow

ActivityFinalNode FlowFinalNode

ForkNode

MergeNode

Behavior

DecisionNode

JoinNode
isCombineDuplicate : Boolean = true

ValueSpecification

ActivityEdge

ActivityNode
Activity

isSingleExecution : Boolean

+decisionInput

0..1

0..n

0..1

0..n

0..1

0..1

+joinSpec
0..1

0..1

0..10..1 +guard 0..10..1

+inco
ming

0..n
+outgoi

ng

0..n
+edge

0..n

+target
11

0..n

+source
11

0..n

+node0..n

+activity
0..1

0..n

0..1

+activity 0..1

0..n

0..1

Figure 6.22: Simplified extract from the UML metamodel for Activities.

Scene

Operation
(from uml)

Activity
(from uml)0..1

1 +activity
0..1+scene

1

0..1

1

+specification
0..1

+operation
1

operation is
owned by scene

Figure 6.23: Metamodel defining the integration of Activities and Scenes.

132 6. MML – A Modeling Language for Interactive Multimedia Applications

Figure 6.24: MML Interaction Diagram for operation show of Scene Intro.

6.6 Model Interrelations and Modeling Process

This section shows the modeling process and gives an overview on the relationships between the

different kinds of MML models. Here the focus lies on the modeling language itself, independently

from the details of code generation which are discussed in the next chapter 7.

6.6.1 Modeling Process

Figure 6.25 shows a typical modeling process for MML models. This section will go in detail through

the diagram.

Temporal Dimension The vertical axis in figure 6.25 shows the temporal dimension in the process.

Modeling languages like MML support the design phase in the development process, i.e. MML

builds a bridge between the analysis phase and implementation phase. Thus, MML models should

base on the results of analysis. Those are e.g. textual specifications like a detailed listing of expected

functionalities, visual examples like sketches, mock-ups, and storyboards , but also analysis models

like domain models or flowcharts (see [Bailey and Konstan03, Osswald03, Mallon95]). It is assumed

here that the analysis phase is not different from that in projects without MML. A small example for

a possible concrete overall development process is also shown later in figure 8.3.

The requirement analysis builds the starting point for the MML modeling process shown in the

diagram. The Task Models are located on topmost as they can be classified as on the borderline

between requirements analysis and design phase. While the other models describe the system to be

6.6 Model Interrelations and Modeling Process 133

Presentation Model

Abstract
Interaction

Objects

Scene Model

Media Realizations & Sensors

Structural Model

Interaction
Model

Software
Design

Media
Design

User Interface
Design

tim
e

MML Model
Task Model

Media
Components

Domain
Classes

operation

uIComponent, sensor

realizedAIO

scene

media

representedObject

representedClass

Figure 6.25: Typical modeling process for MML models.

134 6. MML – A Modeling Language for Interactive Multimedia Applications

implemented, the Task Model is still on a higher level of abstraction. It can be used in MML to derive

other MML models from it but (if MML Interaction models are fully specified) it is not mandatory for

the code generation.

Role Dimension One of the main goals of MML is the integration of multimedia design, software

design, and user interface design (p. 34). As discussed in section 3.1.1 the models specifies an in-

terface for the respective application part and form a kind of contract between the developers. The

horizontal axis in figure 6.25 shows how the MML models can be assigned to the corresponding de-

veloper roles to indicate which expert knowledge is considered for a specific kind of MML model. Of

course, in practice one role can be assumed by multiple developers or, in small projects, one developer

can assume multiple roles.

Some models require knowledge of multiple developer roles. This means that the developer

groups have to define the relationships between different expert areas in cooperation. In addition

to the three developer roles above, it can be useful to establish the role of a “modeling expert” in

the modeling process. This can be a software designer with good knowledge in MML. The model-

ing expert supports the other developers in modeling and takes care that the models are correct and

consistent.

Model Interrelations The center of figure 6.25 shows the MMLmodels introduced in the foregoing

sections. Some of them are split up into several parts to arrange them according to the two axes. The

arrows show how the models build up on each other. If a model builds up on another one, e.g. by

referencing elements, this often means in turn that the existing model is refined during this step. For

example, the modeler might detect that some elements in the existing model are still missing or that

the structure must be refined.

Task and Structural Model The modeling starts with the Task Model (sec. 6.1) and the Structural

Model (sec. 6.2). They can be specified independently from each other. The Structural Model can

be divided into domain classes and the Media Components. The domain classes are specified by the

software designer. They can be derived from the requirement specification in the same way as in any

conventional object-oriented software development process.

The media designer specifies the Media Components identified during requirement analysis. The

Media Representation relationships between domain classes and Media Components have to be spec-

ified in cooperation between software designer and media designer. They also specify together the

inner structure for Media Components. This is necessary for Media Components where inner parts

should be modified or accessed by domain classes or should trigger events. During this steps the

software designer adds domain classes to the Structural Model or refines them, if necessary.

Scene and Presentation Model The Scene Model (sec. 6.3) is specified by the user interface de-

signer. The Scenes and the transitions between them can be derived from the Task Model as explained

in section 6.3. Each Scene is associated with a Presentation Unit specified in an Presentation Model.

The Presentation Model (sec. 6.4) can be split into several parts. The Abstract Interaction Objects

are, similar like the Scene Model, specified by the user interface designer and can be derived from

the Task Model as well. They are associated with domain objects which refer to domain classes from

the Structural Model. If some domain classes are missing or must be refined then the user interface

designer has to coordinate this with the software designer at this point.

6.6 Model Interrelations and Modeling Process 135

In the next step the Presentation Model is complemented with Media Components and Sensors. At

this point the user interface designer and the media designer have to cooperate. They specify together

Media Representation relationships between the Abstract Interaction Objects and Media Instances.

The Media Instances refer to Media Components from the Structural Model. If Media Components

are missing they must be added to the Structural Model. In case that added Media Components are

related with application logic then it has to be coordinated with the software designer. If inner parts of

a Media Component, which has not been specified explicitly yet, should trigger user interface events

then these inner parts must be specified in the Structural Model. In addition, the user interface designer

and the media designer can add Sensors to Media Components.

Interaction Model Finally, the Interaction Model (sec. 6.5) is specified in cooperation between

the software designer and the user interface designer. It specifies the how the user interface events

and Sensor events trigger operation calls on domain objects. Basically, the user interface designer is

responsible for the interaction. The interaction can be derived from the Task Model as well – at least

to some degree, depending on the Scene’s complexity. The software designer’s knowledge is mainly

required for specifying the behavior of complex, dynamic Scenes like the Scene Game in figure 6.21.

The Interaction Model refers to Abstract Interaction Objects, Sensors and domain objects from the

Presentation Diagram. If Abstract Interaction Objects or Sensors are missing they have to be added to

the diagram. Domain objects usually need not to be added to the Presentation Model at this point as

often they can be accessed via properties or operations of available domain objects or as parameter of

the Scene’s Entry Operation. As the Interaction Model refers to operations of domain objects it thus

refers also to the Structural Model where they are defined. If class operations are missing or should

be refined then the Structural Model must be changed accordingly.

Alternatives It is not mandatory to follow the modeling process always as described here. Basi-

cally it is possible to start with any kind of MML model. An iterative process is possible as well. Of

course, model elements from other models must be defined at least at the moment when they should

be referenced. For example, it is possible to start the process with the Scene Models and the Presen-

tation Models. Specifying the UI Representations then requires domain objects which in turn requires

domain classes. Of course it is possible that the user interface designer initially creates them. The soft-

ware designer then still can create the Structural Model on that base. Alternatively, in a more iterative

process it is also possible that the UI Representations are added later to the Presentation Diagram.

Indeed, it is also possible that all three developer groups iteratively specify all models in coopera-

tion together.

6.6.2 Conceptual Interrelations

Another more abstract view on the integration of software design, media design, and user interface de-

sign in MML is given in figure 6.26. It shows the very abstract “essence” of the concepts which turned

out during the development of MML: Media Components represent domain classes. This is modeled

by Media Representation relationships. User interface elements, i.e. Abstract Interaction Objects in

MML, represent domain classes as well which is modeled by UI Representation relationships. The

Media Components can realize Abstract Interaction Objects which is modeled by UI Realization rela-

tionships. Finally, the Interaction Diagram refers to all three design aspects and defines the behavioral

connections between them.

136 6. MML – A Modeling Language for Interactive Multimedia Applications

Domain
Classes

Abstract
Interaction

Objects

Media
Components

represent represent

partially
realize

Interaction

Figure 6.26: “Essence” of MML.

6.7 Modeling Tool Support

Some prototypical tool support has been created for MML to apply and evaluate the language and

to create code from the models. Even if the tool support is mainly for evaluation purposes it is still

necessary to aim for a sufficient degree of usability as otherwise users are not willing to use it. Also,

often users unintentionally judge the feasibility and quality of a modeling approach by the quality of

its tool support. On the other hand, creating a fully featured visual modeling tool requires very much

effort. Thus, here the goal was to find a pragmatic solution with a good ratio between effort and result.

Section 3.4.3 lists three common ways for implementing modeling tools: Extending an existing

modeling tool, using a Meta-CASE tool, or using frameworks and APIs from MDE area. This section

briefly explains which technologies have been selected for which reasons and presents the resulting

tools: A metamodel implementation based on EMF, a visual modeling tool based on the UML tool

Magic Draw, and a transformation for integrating these two tools. These tools have been used for the

application of MML described in chapter 8.2.

EMF-based Metamodel Implementation One of the advantages of Model-Driven Engineering is

the fact that due to common concepts and standards it is possible to create frameworks which can

be applied to any MDE-compliant modeling language. An important example are the Eclipse-based

frameworks described in section 3.4.3. A core framework among them is the Eclipse Modeling Frame-
work (EMF) which has been used to generate a basic metamodel implementation from MML: The

MML metamodel is specified using the UML tool Rational Rose (2002 Enterprise Edition). EMF

supports files in the Rational Rose format and enables to automatically generate from them (among

other things):

• An implementation of the metamodel in Java and

• a simple tree editor for creating and editing models compliant to the metamodel.

Figure 6.27 shows a screenshot of the tree editor generated from the MML metamodel. The with

using the racing game application from this work as example MML model. The editor automatically

ensures that created models comply to the abstract syntax specified in the metamodel, like the con-

tainment hierarchy, attributes types, relationships, multiplicities, etc. For example in figure 6.27 a new

model element is added as child to the 2D animation CarAnimation. The context menu allows only to

select metaclasses which are valid children of 2D animation.

6.7 Modeling Tool Support 137

Figure 6.27: Tree editor for MML generated with EMF.

The EMF-based editor also automatically provides basic editor features like loading and saving

models as files. The file format is XMI, the XML-based exchange format for models defined by the

OMG (see sec. 3.4.2).

EMF-based models and metamodels have a large advantage: They are supported as input in vari-

ous other Eclipse-based MDE tools. For example, the MDT OCL plugin for Eclipse has been applied

in [Shaykhit07] to automatically validate whether an MML model complies to the OCL constraints

from the MML metamodel. Another example used in this thesis (chapters 7 and 8.1) is the Eclipse

plugin for ATL model transformations.

Visual Modeling Editor The next logical step is to build a visual editor on top of the EMF-based

MML implementation. The common way for this was at that time the Eclipse Graphical Editing
Framework (GEF) which supports creating visual editors. However, GEF does neither provide any

specific support for modeling tool functionality nor support for integration with EMF. Today the

Eclipse Graphical Modeling Framework (GMF) is available for this purpose but it was just under

development at this time in 2004. An available framework which provides semi-automatic support for

creating GEF modeling editors was openArchitectureWare (oAW [oAW, Völter and Kolb05]). Two

project theses [Eicher05, Mbakop06] supervised by the author of this thesis conducted very first pro-

totypes using GEF and oAW. However, it turned out that implementing a usable visual modeling tool

for all types of MML diagrams would require too much time and effort.

An alternative solution would be using Meta-CASE tools like MetaEdit or GME2000. However,

these tools provide their own proprietary mechanisms and were not compliant to Eclipse-based tools

from the research community while they still need considerably learning effort.

To gain results quickly, it was decided to extend an existing UML tool, Magic Draw, instead.

Magic Draw has established in the last years as one of the most successful professional UML tools and

provides good and easy to use support for UML extensions (UML Profiles). In addition, it provides

138 6. MML – A Modeling Language for Interactive Multimedia Applications

Figure 6.28: MML Structure Model in Magic Draw

academic classroom licenses for free which includes that students may install a version at home.

The prerequisite for using Magic Draw is that MML has to be defined as UML Profile (see

sec. 3.6). The implementation as Magic Draw Profile could be finished very quickly in a project

thesis [Shaykhit06] supervised by the author of this thesis. Indeed, defining MML as a UML Profile

is just a workaround and not the original intension of MML. Nevertheless, the result works very well.

The main drawback of this solution is that is that Magic Draw did not support custom constraints

at that time. This means that it does not prevent the modeler to create models which do not comply

to the MML metamodel. This could be improved to some extent as Magic Draw allowed to create

custom diagram types with customized tool bars. So it is possible to provide the modeler for each

MML diagram type a toolbar containing only customized model elements (using UML stereotypes

and a custom icon notation) valid for the respective diagram type. The advantage of Magic Draw

beside the very quick implementation of the Profiles is its very good basic usability. Professional

UML tools like Magic Draw provide high robustness, very quick creation of models, various support

for diagram layout, easy switch between different notations, functions for managing large models, etc.

This is very important for the modelers in practice.

Figure 6.28 and 6.29 show screenshots from Magic Draw with the custom MML diagrams. They

show as example an MML Structure Diagram (figure 6.28) and a MML Presentation Diagram. The

customized toolbars contain only the MML-specific elements for the diagrams, e.g. Media Compo-

nents and Media Parts in the Structural Diagram or Abstract Interation Objects in the Presentation

Diagram. The MML-specific visual notation is supported to a large extent. The plugins work for

all Magic Draw versions since version 11.6 at least up to the current version 15. All MML models

6.7 Modeling Tool Support 139

Figure 6.29: MML Presentation Model in Magic Draw.

depicted in this thesis have been created with the Magic Draw MML plugins.

Transformation from Magic Draw to EMF The final step in creating tool support was bridging

the gap between Magic Draw and EMF, so that models created with Magic Draw can be further

processed by the various Eclipse-based modeling tools. Magic Draw and EMF both save models in

the XMI format. However, there is a large difference between them: in Magic Draw MML is defined

as a UML Profile. Thus, the resulting models are UML models with some (MML) extensions (UML

Stereotypes). In contrast, EMF handles MML as a language of its own without any relationship to

UML.

To solve this issue, an XSLT transformation was created to automatically transform the models

Developer

Magic Draw
MML Model
as extended
UML Model

XSLT
Transformation

UML Profile
for MML

XSLT Processor EMF-compliant
MML Model

Figure 6.30: Steps for visually creating EMF-compliant MML models.

140 6. MML – A Modeling Language for Interactive Multimedia Applications

created with Magic Draw into EMF-compliant models. It was implemented in [Shaykhit06] and has

been extended and maintained by the author of this thesis. Figure 6.30 illustrates the resulting tool

chain. After this transformation, the models can be opened with the EMF-based tree editor described

above and can be e.g. processed with ATL model transformations for code generation purposes.

Lessons Learned As concluding remarks for future work it can be said that the solution chosen here

is a workaround. New frameworks like the Graphical Modeling Framework (GMF [GMF]), integrated

in modeling environments like Topcased [Top], provide a good possibility to create real metamodel-

compliant and custom visual modeling editors today. However, Magic Draw still remains as a very

fast solution. In addition, the latest versions of Magic Draw provide even a “DSL-Engine” supporting

custom metamodels and modeling constraints. But this has not been tested in the context of this thesis

yet.

Using XSLT for the transformation turned out to be not an optimal solution. The XSLT transfor-

mation is complex and difficult to maintain. The main reason is that models contain many references

between model elements. XSLT does not provide sufficient support for references, e.g. it is not di-

rectly possible to refer in the transformation to the target element created from a given source element.

Thus, either such an mechanism must be implemented manually or the transformation has to be coded

in an imperative style which makes it very complex. A better solution would be using a model trans-

formation language. This is possible, as Magic Draw supports also exporting models into EMF UML2

[EMFa] format which is now for example supported by the transformation language ATL.

Chapter 7

Integrating Creative Design: From MML
to Flash

This section presents the transformation from MML models to code skeletons. As example target

platform Flash has been selected as it is one of the most relevant professional multimedia authoring

tools today (see section 2.3.3). The chapter shows how the MML approach targets the integration of

creative design into the systematic model-driven development process (goal 3 from page 34).

The transformation is performed in two steps. The first step is a model-to-model transformation

from the platform-independent MML model to a model for the Flash platform. This step captures the

conceptual mapping on the abstraction level of models – without the need to consider the concrete

syntax and file formats of the target platform. The second step then transforms the Flash model into

the final code skeletons. The transformations adhere to the concepts of Model Driven Engineering.

They are specified as an explicit transformation written in the Atlas Transformation Language (ATL,
[AMM], see sec. 3.4.2).

The chapter is structured as follows: The first section gives a more detailed introduction into

the target platform Flash by hand of a metamodel: The metamodel has been defined in the context

of MML for the transformation from MML to platform-specific Flash models. The second section

discusses how the resulting Flash applications can be structured. This is necessary as no common sys-

tematic structuring mechanism for Flash application yet exists. The third section describes the trans-

formations and a solution how to generate files in the authoring tool’s proprietary, binary file format.

While the foregoing sections are more technical, the fourth section finally illustrates by screenshots

how easy to work with the generated code skeletons in the authoring tool. It demonstrates the tight

integration of systematic model-driven development and the authoring tool’s advanced support for

creative design.

7.1 A Metamodel for Flash and ActionScript

This section gives an introduction to the authoring tool Flash and introduces a metamodel for this

platform. Section 2.3.3 already provided a first general overview on Flash and ActionScript and

argued why Flash has been selected as example platform. The current section goes more into the

details of Flash which are required to understand the concepts for code generation. Thereby, the

metamodel for Flash is introduced which provides an abstract overview on the elements in Flash and

their relationships.

The section starts with an introduction of some general considerations for the Flash metamodel.

142 7. Integrating Creative Design: From MML to Flash

It consists of two parts – one for Flash Documents and one for ActionScript – which are explained in

the succeeding two sections1.

7.1.1 Flash Metamodel Basics

The metamodel presented here describes is platform-specific and describes applications to be devel-

oped with Flash and ActionScript. It is independent from MML and and enables to model any kind

of Flash application. Analogous to the MML metamodel it is defined according to the concepts of

Model-Driven Engineering (sec. 3.4) and has been implemented using the Eclipse Modeling Frame-

work (see sec. 6.7). The basic metamodel principles and conventions for presentation applied here are

the same as described in section 5.1.5. The Flash metamodel presented here adheres to Flash version

8. An overview on Flash versions and MML support is provided in table 7.1.

Purpose The main purpose of the metamodel in this thesis is to build the base for an intermediate

step in the transformation from MML to the final code skeletons, i.e. a first transformation from

MML to Flash models and a second transformation from Flash models to code. This provides several

benefits: First, it separates the conceptual mapping from MML to Flash from the concrete syntax for

Flash applications and is thus easier to maintain and extend. Second, the Flash metamodel and the

transformation into the concrete Flash syntax can be directly reused by other modeling approaches

which want to use Flash as target platform.

It is not necessary for the MML approach to edit the generated Flash models as they can be

transformed directly into the final code. Instead, the Flash authoring tool should be used to finalize

the application. Thus, no concrete visual syntax and no visual modeling tool has been defined for the

Flash models yet. However, an EMF-based tree editor analogous to that for MML (see figure 6.27)

exists for the Flash models. It can be used to check, modify, or even create Flash models if desired.

Of course, it is also possible in the future to add a concrete syntax to the Flash metamodel and create

and edit Flash models directly in a visual modeling tool.

Deriving the Metamodel from the Flash JavaScript API It is not always trivial to figure out all

possible elements in Flash Documents and the relationships between them as they are partially hidden

by the authoring tool. Existing literature (see section7.2) and documentation [Adobec]2 provide only

step-by-step instruction for typical tasks in Flash but do not provide a precise systematic overview.

Thus, this thesis proposes the solution to use the Flash JavaScript API to derive the metamodel in

a systematic way. The following paragraph provides a brief excursus into the Flash JavaScript API

and the associated scripting language JSFL. A basic understanding of them is also required later in

section 7.3).

Excursus: JSFL and the Flash JavaScript API Since FlashMX 2004 it is possible to write custom

extensions for the authoring tool. They have to be written in a scripting language JSFL (Java Script
for Flash, [Yard and Peters04, Ado05c]). This is a version of JavaScript to be used together with the

Flash JavaScript API. A JSFL file is a simple text file with the file extension jsfl which is interpreted

and executed in the authoring tool. It can be created using the authoring tool or any text editor. It

1The term ‘Flash’ refers to the overall applications while ‘Flash Document’ refers to the Flash Documents only, i.e. FLA

files without ActionScript classes).
2[Adobec] refers to a complete online version of the Flash documentation. Each chapter is alternatively available for

download as PDF manual. In the following we refer to the PDF manuals but the reader might also use [Adobec] instead.

7.1 A Metamodel for Flash and ActionScript 143

is possbile to use it in combination with custom dialogue boxes defined in XMLUI as subset of the

XML-based user interface description language XUL ([XUL], see also section 4.1.1).

The intended purpose of JSFL scripts is to extend the Flash authoring tool with custom function-

ality. Therefore, JSFL files and XMLUI files (and other resources) can be packed in a Flash Extension

file with the file extension mxi. The mxi files can be distributed and installed as extension for the

Flash authoring tool. Alternatively, it is possible to execute a JSFL file directly in the authoring tool.

As third alternative, JSFL files can also be started directly from the command line which causes the

Flash authoring tool to start and execute the file.

While JSFL itself is a simple JavaScript version without any specific features, the associated Flash

JavaScript API provides full control over the Flash authoring tool. It provides access in terms of a

Document Object Model (DOM) similar to that implemented by web browsers for HTML. The Flash

DOM provides full access on the content of a Flash Document. It enables to browse, manipulate, and

create new elements within the document. Moreover, another part of the API (sometimes called Flash
file API) allows common file management functionality. Consequently, it is possible for instance to

load a Flash Document into the authoring tool, manipulate it, and save it, or even to create an entirely

new Flash Document via JSFL.

Listing 7.1 shows a simple example JSFL script. The variable fl in line 1 is a predefined global

variable which refers to the Flash Object representing the Flash authoring tool. Here an operation of

the Flash Object is used which retrieves the current active Flash Document in the tool. Line 2 draws

a simple rectangle shape within the document. Finally, line 3 saves the document with the filename

“MyDocument.fla”.

var document = fl.getDocumentDOM();
document.addNewRectangle({left:0,top:0,right:100,bottom:100},0);
fl.saveDocument(document, "MyDocument.fla");

Listing 7.1: Simple example JSFL script.

Rules for Metamodel Derivation The metamodel for Flash Documents is derived from the Flash

JavaScript API as follows:

• An API class representing an entity in a Flash Document (i.e. a part of the document itself

instead of a functionality of the authoring tool) is mapped to a metaclass. Other API classes

(like the Tools object [Ado05c]) are omitted in the metamodel.

• A property in the API representing a structural property (like the name) or a basic visual prop-

erty (like x- and y-coordinates on the screen) is mapped to a property in the corresponding

metaclass. Properties representing the internal state of the authoring tool or visual details are

omitted.

• A properties or operation representing an reference to other API classes is mapped to an asso-

ciation in the metamodel.

• A generalization in the API is mapped to a generalization relationship in the metamodel.

• The API often uses class properties to specify the type of a class more in detail (like the prop-

erty symbolType for the class Symbol). For each possible property value defined in the API a

subclass is created in the metamodel.

In this way, also the semantics for the Flash metamodel is defined indirectly by the operational

semantics of its counterpart in the Flash JavaScript API.

144 7. Integrating Creative Design: From MML to Flash

Stage

Library

Compo-
nents

Timeline

Tool-
bar Property

Window

Figure 7.1: The Flash Authoring Tool

The Flash JavaScript API defines only Flash Documents. The resulting metamodel part is in-

troduced in the next section (7.1.2). Afterwards section 7.1.3 introduces the metamodel part for

ActionScript which is similar to metamodels for other programming languages like Java.

7.1.2 Flash Documents

As briefly introduced in section 2.3.3 the proprietary file format for Flash Documents is the FLA
format. They are compiled into SWF files which can be executed with the Flash player. The Flash

Documents are created in the Flash authoring tool.

Figure 7.1 shows a screenshot of the Flash authoring tool. Like many other development environ-

ments it provides large number of different windows and toolbars which can be individually arranged

by the developers. In figure 7.1 only the most essential windows are visible. The center window

shows the Stage which represents the actual 2D content visible to the user when the final application

is executed. It contains as example three simple shapes (the rectangle, the circle, and the polygon).

The Toolbar on the left hand side contains various drawing tools to create and manipulate 2D graphics

on the Stage. The Property Window on the center bottom shows properties of the currently selected

element, like its x- and y-coordinates, its size, an instance name, etc. On the right hand side there

is a Component Window which offers several predefined user interface widgets – like buttons, lists,

textfields, etc. – and the Library. The temporal dimension is represented by the Timeline in the top

center window. Library and Timeline will be explained in the following in more detail.

Timeline The Timeline consists of multiple Frames. A Frame represents a point of time in the

Timeline and is associated with content on the Stage. Figure 7.2 shows a larger image of the Timeline.

The Frames are ordered in horizontal direction from left to right on the Timeline. The Playhead
indicates the current Frame displayed on the stage. It is possible to play the Timeline directly in the

7.1 A Metamodel for Flash and ActionScript 145

Playhead

Keyframe

Layer

Tweens
on Stage

Figure 7.2: Timeline and Stage (containing some Tweens) in the Authoring Tool

authoring tool to preview the application: Then the Playhead moves continuously along the Frames.

Otherwise, it is possible to select a Frame by placing the Playhead onto a Frame.

By default, the Timeline is played in a loop when a Flash application is executed. As this is to

always useful it is possible to control the behavior of the Timeline by ActionScript commands. The

script commands can be used for example to stop playing and set the Playhead to a specific Frame. In

interactive applications the Timeline is usually used only for animations while the overall application

is controlled by script commands. For instance, when the user clicks a button the Playhead is set to

another Frame associated with different content.

In vertical direction the Timeline can be separated into multiple Layers. In the example there are

three Layers named as Layer1, Layer2, and Layer3. They represent an additional z-axis for the content

on the stage to define which object is the topmost when several objects overlap each other. Moreover,

there are some specific kinds of Layers, for instance a Guide Layer which is invisible in the final

application and is used to define a path along which an animation moves.

In the example, Frames are defined in all three Layers until frame 20. The Frames marked with

a black filled ball represent Keyframes. Only Keyframes are associated with content defined by the

developer. Other Frame’s content is automatically derived from the foregoing Frames: If a Tweening

is defined then the content is calculated accordingly, otherwise it remains the same as in the foregoing

Keyframe.

Tweenings are used in Flash to visually create 2D animations. A Tweening is an automatic in-

terpolation between two states of a graphical object. The start state and the end state are defined

in Keyframes. Flash then automatically calculates the intermediate states in between these two

Keyframes to create a smooth animation. A Motion Tween can manipulate the position, size, and ro-

tation of a graphical object. A Shape Tween can manipulate the shape and color of a graphical object.

In figure 7.2 the green ball on the Stage moves according to a Motion Tween and the polygon changes

its shape defined by a Shape Tween. A Tween is indicated in the Timeline by an arrow between two

Keyframes (figure 7.2, upper part). It is possible to fine-tune Tweenings by several parameters, for

instance the animation’s acceleration.

The metamodel extract in figure 7.3 shows the basic elements and their relationships: A Timeline

is divided into one or more Layers. Each Layer consists of multiple frames. A Frame can be associated

with graphical content on the Stage (represented by the abstract metaclass Element; see paragraph

“Stage Content” below). If a Frame is associated with content then it is automatically a Keyframe. A

Tween attached to a Frame runs until the next Keyframe. Finally, it is possible to attach ActionScript
code (ASCode) to a Frame. The code is executed each time the application enters the Frame.

146 7. Integrating Creative Design: From MML to Flash

GuidedLayer

NormalLayer MaskLayer

LayerFolder

ShapeTween MotionTweenGuideLayer

MaskedLayer

Frame number >= 0.
The frame number is
unique within a layer

FlashDocument
backgroundColor : String
frameRate : Double
height : Integer
width : Integer

Timeline
name : String

1..n

0..1

+timeline1..n

+document 0..1

Element

Layer
name : String

0..1
+parentLayer

0..1
1..n

1

+layer
1..n

{ordered}

+timeline1

ASScript
script : String

Tween
easing : Integer

Frame
name : String
number : Integer = 0

0..n

1

+element
0..n

+frame
1

0..n1
+frame

0..n

{ordered}
+layer

1

0..1

0..1

+actionScript0..1

+frame
0..1

0..11 +tween
0..1

+frame
1

Figure 7.3: Metamodel for the Timeline Elements in Flash

Library Flash supports a prototype-based paradigm, i.e. it is possible to create multiple instances

of a media element. When a new media object is created then it automatically serves as prototype for

potential further instances. For this purpose, it is automatically added to the Library – for instance,

when the developer imports a bitmap or a video into the authoring tool. The so-called Items in the

Library can be instantiated in any number by just dragging them onto the Stage.

A specific type of Library Item in Flash is the so-called Symbol. A Symbol is a complex 2D

graphics element. There are three kinds of Symbols: A Button is used to visually create custom

buttons, i.e. user interface elements which can be used to trigger some behavior. A so-called Graphic
is static graphic or a simple kind of animation.

The most important type of Symbol is the MovieClip. MovieClips are the most frequently used

type of user interface element in Flash as it is the most flexible and powerful kind of element. A

MovieClip is an arbitrary complex 2D graphic or animation. It owns a Timeline of its own that is

independent from the application’s main Timeline. The Frame’s in its internal Timeline can contain

all content like the main Timeline, including other media objects, interactive controls, ActionScript

code, etc. As it can contain other MovieClip instances as well, it is possible to nest MovieClips up

to any depth. Nesting MovieClips is a very common mechanism to achieve complex animations. For

instance, creating an animated character is usually performed by nested MovieClips for its different

body parts, e.g. a nested MovieClip moves the character’s arms when the character moves and in turn

another nested MovieClip moves the character’s hands when its arms moves.

Since ActionScript supports object-oriented concepts it is now possible to attach a custom Ac-

tionScript class to a MovieClip. Then each MovieClip instance is automatically associated with an

instance of this ActionScript class. Section 7.1.3 will provide more details on ActionScript.

Besides Symbols, Flash supports Bitmaps, Sound, and Video. Text is not supported by the Library;

it is created directly on the Stage or imported from from external text files. 3D graphics is currently

not supported by Flash yet.

Figure 7.4 shows the metamodel for Library Items. Each Flash Document contains a Library

7.1 A Metamodel for Flash and ActionScript 147

VideoItem

BitmapItem SoundItem

FontItem

TimelineSymbolItem
1

0..1 +timeline
1+symbolItem

0..1

FlashDocument

FolderItem

Library
1

1

+library 1

+document1

Class
Item

name : String
sourceFilePath : URL0..n

+item
0..n

0..n

1

+item0..n

+library 1

0..1
+actionScript

0..1

Figure 7.4: Metamodel for the Library Elements in Flash

containing Library Items. Beside the types of Items introduced above there is a FontItem which

represents a specific text font and a FolderItem which is used to structure the Library into folders

and subfolders. Figure 7.5 shows the concrete subclasses for media formats supported by Flash (see

[Ado05c] for details). Some kinds of Items (usually MovieClips) can be associated with ActionScript

classes. A SymbolItem owns a Timeline of its own.

Stage Content The content on the Stage can be either created directly with tools from the Toolbar

(shapes and text) or by instantiating an Item from the Library. Beside Library Items it is also possible

to instantiate a predefined Component from the Component Palette (upper left in fig. 7.1). Figure 7.6

shows the corresponding metamodel.

As visible in the metamodel, it is also possible in Flash to assign ActionScript code to a single

SymbolInstance. However, this mechanism is deprecated and should no longer be used.

Files and Folders A Flash Application often consists of multiple Flash Documents. Moreover, it

can include external media files, like audio or video files. Often it is useful to structure them into

folders in the file system.

Figure 7.7 shows the metamodel. The metaclass FlashApplication is the metamodel’s root ele-

ment. It consists of different files (abstracted by the metaclass MediaArtifact) including FlashDocu-

ment (which have been further specified above), MediaFile, and Folder.

7.1.3 ActionScript

ActionScript is the built-in scripting language in Flash. As briefly introduced in section 2.3.3 Action-

Script is close to the ECMA standard [Ecm99] and supports object-oriented constructs since version

2. The following section introduces ActionScript 2 and presents a metamodel.

Placement in Flash Documents The starting point for Flash applications is always a Flash Docu-

ment (explained in the foregoing section). There is no kind of main() operation in ActionScript. Even

148 7. Integrating Creative Design: From MML to Flash

VideoItemBitmapItem SoundItem FontItem SymbolItem

BitmapLossless

BitmapLossy
- quality : Integer = -1

MovieClip

Button

Graphic

SoundADPCM
bits : ADPCMBits
sampleRate : SoundSampleRate

SoundMP3
bitRate : MP3BitRate
convertStereoToMono : Boolea...
quality : MP3Quality

SoundRaw
- convertStereoToMono : Boolean
- sampleRate : SoundSampleRate

SoundSpeech
- sampleRate : SoundSampleRate

VideoEmbedded VideoLinked

Item

FolderItem

0..n+item 0..n

Figure 7.5: Metamodel for the specific Media Formats in Flash

if a Flash application consists only of ActionScript code it is still necessary to have a Flash Document

around which invokes the ActionScript code.

According to the metamodel in section 7.1.2 there are three kinds where to place ActionScript

code within a Flash Document:

1. Frames: It is possible to add code to a Frame in the Timeline (fig. 7.3). The code is executed

each time the Playhead enters the Frame.

2. Symbols: It is possible to add code to a Symbol – usually a MovieClip – in the Library (fig. 7.4).

It must be an ActionScript class which is then associated with the MovieClip. Each instance of

the MovieClip then is represented by an instance of the corresponding ActionScript class. An

ActionScript class must be a external text file, similar like a class file in Java.

3. Instances: It is possible to add code directly to a Symbol Instance (fig. 7.6). In this case the

possible code is restricted to event handling code. It is executed each time the corresponding

event occurs at this instance.

Consequently, there are two alternatives how code is created:

1. Embedded Code: Code added to a Frame or to an Instance is directly embedded in the Flash

Document. The developer types the code into the Actions window in the authoring tool. The

Actions window provides the basic features of simple source code editors, like a simple way of

syntax checking.

2. External Code: ActionScript classes are external class files analogous to class files in other

programming language like Java. They can be created in the Actions window as well but also

with any other external text editor. There are also plugins for ActionScript support for program-

ming environments like Eclipse [Powerflasher, ASD].

7.1 A Metamodel for Flash and ActionScript 149

Shape Text
textString : String

Rectangle
roundness : Integer = 0

Ellipse Line StaticText

DynamicText

InputText

Element

Component

ComponentInstance

1 +component1

ComponentParameter
name : String
value : String

1

0..n

+instance

1

+parameter
0..n

ASScript SymbolInstance
0..1

0..1+actionScript
0..1 +symbol

0..1

InstanceItem 1

+libraryItem
1

Figure 7.6: Metamodel for the Elements on the Stage in Flash

MediaFile
extension : String
description : String

FlashDocument

FlashApplication
name : String

MediaArtifact
name : String

1..n

0..1

+media 1..n

+application0..1

Folder

0..n

0..1

+media
0..n

+folder
0..1

Figure 7.7: Metamodel for Files and Folders

Language Basics The language’s syntax complies to the ECMA standard and is thus similar to

JavaScript. Attributes and variables are defined using the keyword var:
var myText:String = "Hello World";

Functions are defined using the keyword function:

function increment(i:Number):Number {...}

ActionScript 2 offers the following primitive types: String, Boolean, Number, Undefined, and
Void. Number is the only numeric type in ActionScript and contains double-precision floating point

numbers as well as 64-bit integers. Undefined indicates that a variable has no value or an object

instance does not exist yet. Void is used to specify that a function has no return value.

Listing 7.2 shows an example for a class definition. ActionScript 2 also supports interfaces and

packages.

import game.*; //imports all classes from package ’game’

class game.Car extends Vehicle { //class is in package ’game’

private var name:String; //class attributes
private var topspeed:Number;

150 7. Integrating Creative Design: From MML to Flash

public function Car(name) { //constructor (has no return value)
this.name = name;

}

public function getName():String { //another class operation
return this.name;

}
}

Listing 7.2: Example class in ActionScript.

Attributes and operations of an object are accessed by the ’.’-syntax:

s = car1.getName();

As ActionScript originally is object-based it is also possible to add new properties or functions to

an object at runtime just by the ’.’-syntax. For example:

o = new Object();

o.myProperty:Number = 5;

creates a new object and adds a new property myProperty to the object having the value “5”. A new

function can be added to the an object as follows:

o.myFunction = function(param:Number):Number {...}

This mechanism is often used in Flash to define operations of event listeners as ActionScript 2 does

not support anonymous inner classes like e.g. in Java.

Built-in Classes and Components ActionScript includes various built-in classes which allow to

control the application. Some of them directly correspond to visual elements in the Flash Document

and provide an interface to control it via ActionScript. An important example is the MovieClip class.

To give the reader an idea of its properties and operations they are listed in appendix B.

Other classes provide additional functionality which can not be achieved in the authoring tool

without ActionScript. An example is the XML class which provides support to to load, parse, send,

build, and manipulate XML documents. All ActionScript classes are subclasses of the class Object
which provides basic properties and operations inherited by all other classes. A complete documenta-

tion on ActionScript classes can be found in [Ado05a].

The Components from the Component Window (see sec. 7.1.2) are represented by ActionScript

classes as well. Basically, each component in Flash consists of a visual representation, a set of pa-

rameters, and an ActionScript class. It is possible to create custom components and add them to the

authoring tool. The set of standard components delivered with the authoring tool includes components

for the user interface (widgets), media (like a video player), or data handling (e.g. for connection to

web services). The component reference for Flash 8 is available in [Ado05b].

Figure 7.8 shows the metamodel part for ActionScript. FlashApplication is the root element like

in fig. 7.7. According to the descriptions above, ActionScript elements can be classified in Action-
ScriptArtifacts defined by the developer – like classes, interfaces, and packages – and BuiltInTypes –

like BuiltInClass, Component, and PrimitiveType. All of them, except PrimitiveType, are a subclass of

Classifier. Classifier and PrimitiveType both are a Type.
The lower part of figure 7.8 further specifies Classifier. This part is similar to metamodels for other

object-oriented languages like Java [Obj04a, INR05]. ActionScript statements in operation bodies are

not further modeled by the metamodel. They are just handled as strings so that source code can be

specified directly. Otherwise the models would become too complicated and the additional level of

abstraction provides no additional benefit for our purposes. Likewise, embedded ActionScript code

7.1 A Metamodel for Flash and ActionScript 151

VisibilityKind
public
private

<<enumeration>>
PrimitiveTypeKind

boolean
string
number
null
void

<<enumeration>>

Comment
text : String

CommentableElement

0..n

1

+comment 0..n

+context
1

PrimitiveType
name : PrimitiveTypeKind

ComponentBuiltInClassInterface Class
0..n

+implements
0..n

Feature
visibility : VisibilityKind
isStatic : Boolean = false
name : String

Classifier
name : String

0..n

1

+feature 0..n

+classifier 1

0..1

+extends
0..1

contains only
declaration of
functions (not their
implementation) and
public attributes

Attribute
defaultValue : String

Parameter
name : String

Type

1
+type

1

1
+type

1

BodyTextLine
text : String

Function
isConstructor : Boolean = false

0..n

1

+parameter0..n

+function 1

1

+return
Type1

0..n

1
+bodyText

Line
0..n

{ordered}
+function

1

BuiltInType

FlashApplication

0..n

1

+builtInType0..n

+application
1

ActionScriptArtifact
+ isInLibrary : Boolean = false

0..n

0..1

+actionScript0..n

+application
0..1

Package
name : String

0..n0..1
+actionScript

0..n
+package
0..1

component name
includes package (e.g.
'mx.controls.Button')

Figure 7.8: Metamodel for ActionScript

attached to a Frame in the Timeline or to a MovieClip instance is specified directly as a string (see

class ASScript in the metamodels in fig. 7.3 and 7.6).

The metamodel part presented here, together with the metamodel parts fro Flash Documents from

section 7.1.2, build the overall metamodel for Flash applications.

Accessing Stage Content So far, the metamodel has been presented and where ActionScript can be

placed within a Flash Document. This paragraph now explains how ActionScript code can access the

visual content in a Flash Document.

The authoring tool enables to assign an instance name to each instance on the Stage (fig. 7.6).

These elements can be accessed fromActionScript code by their instance name. Thereby, the available

namespace depends on where the ActionScript code is placed:

• Script code in a Timeline can directly access instances located in Frames on that Timeline by

their instance name.

• A class assigned to a MovieClip can directly access instances on the MovieClip’s Timeline as

class attributes by their instance name.

• It is possible to navigate within the hierarchy of Timelines using the ’.’syntax. For example

if the main Timeline contains a MovieClip instance car1 which in turn contains an instance

frontwheel_left it is possible to access the frontwheel from the Timeline by car1.frontwheel_left.
The property _parent refers to the parent Timeline of a MovieClip. The global variable _root
refers to the main Timeline of a Flash Document.

152 7. Integrating Creative Design: From MML to Flash

When assigning a custom ActionScript class to a MovieClip it is useful to specify the custom class

as subclass of the ActionScript class MovieClip. In that way the custom class inherits the properties

and operations of MovieClip (see appendix B). In particular, the custom class then can override the

event handling operations like onPress(). This is an easy way to define custom event handling code

for a MovieClips on the Stage.

It is also possible to create or remove Stage content dynamically by ActionScript code. In Action-

Script 2 the developer must use one the predefined MovieClip operations attachMovie, createEmp-
tyMovieClip, or duplicateMovieClip (see appendix B) which provide the created MovieClip as return

result. (In ActionScript 2 there is no possibility to create a MovieClip in a more object-oriented way

using e.g. the keyword new).

7.2 A General Structure for Flash Applications

For the transformation from MML models into Flash code it is necessary to select an applicable

structure for the resulting applications. This could be a kind of “framework” where the platform-

independent MML models can be mapped to. The specific problem for authoring tools like Flash

is that common structuring techniques and patterns from other programming languages alone do not

help – the application structure in Flash must integrate Flash Documents as well. Moreover, Flash

provides different ways to connect code with the Flash Documents (see sec. 7.2) but none of them can

be used for all purposes.

7.2.1 Principles

This section describes the problem and elaborates general principles for a framework for structuring

Flash applications.

Problem When reviewing the existing literature and resources on the web, it turns out that such a

framework currently not exist. When reviewing the existing literature one can observe that it reflects

again the central observation from the end of section 2.1.3 – it can be classified in two ctaegories:

• Visual Design/Authoring: Books and articles focusing on the authoring tool like [Franklin and

Makar03, Macromedia03, Kannengiesser and Kannengiesser06, Wenz et al.07] usually provide

step-by-step instructions how to perform common tasks in the authoring tool. The main Action-

Script code is usually just placed into the first Frame of the main Timeline. Since ActionScript 2

most books promote to use ActionScript classes for the application’s main entities and also give

some general advice on object-orientation like basic design patterns. But this usually affects

only the Domain Classes themselves but still the remaining code (main programm flow, user

interface management, event handling, etc.) still remains as a monolithic block in the Timeline.

Other, purely design-related books like [Dawes01, Capraro et al.04] do not cover ActionScript

at all.

• Programming: In contrast, several books like [Hall and Wan02, Moock04, Moock07] indeed

focus on a well-structured application. They show how to structure the whole application in an

object-oriented way using ActionScript classes. Unfortunately, these approaches do not use the

authoring tool at all. Instead, the whole user interface is defined by ActionScript code – e.g.

drawing MovieClips by ActionScript operations. This is a major drawback as abstaining from

the authoring tool capabilities results in a step backwards concerning the visual creative design.

7.2 A General Structure for Flash Applications 153

Existing frameworks like Flex (page 18) and related frameworks like Cairngorm [Adobea] also

fall into this category.

Consequently, to avoid the drawbacks of both viewpoints found in literature it is necessary to

design a framework which integrates Flash Documents for the visual elements to be designed in the

authoring tool and well-structured object-oriented ActionScript code for the non-visual, functional

application parts. A first step into this direction is given in [deHaan06] which discusses existing

mechanisms and gives useful recommendations which are considered in the structure proposed here.

Principles As concluded above, the basic goal for the framework is to integrate Flash Documents

for the visual elements with well-structured application code. Nevertheless, there are still various dif-

ferent solution how to realize such an application structure in Flash. Basically, simple straightforward

structure can sometimes be useful, e.g. for smaller applications or for lightweight applications like

for mobile devices. Here we aim for a very modular and flexible structure which is suitable to fit for

large and complex projects. It is then still possible to simplify the structure if desired (see sec. 8.1.3).

Thus, the framework here aims to provide a large degree of modularity. This enables scalability

up to large and complex applications and provides large developer groups to work in parallel. The

latter is especially important for Flash applications as Flash provides only poor support for cooper-

ative work on single Flash Documents. As Flash Documents are binary files they also can not be

handled using conventional file version control systems. Thus, it can be significant for large projects

to systematically divide the application into multiple Flash Documents.

The solution proposed here thus applies the following principles:

1. Modular, object-oriented style: As far as possible all ActionScript code is placed in external

ActionScript classes.

2. Separation of different aspects: Aspects like user interface, interaction, and application logic

are separated. Therefore, the framework orients towards the common Model-View-Controller
pattern (MVC, [Krasner and Pope88]) which is also proposed in [deHaan06].

3. Separation of the user interface: Different Scenes (see sec. 6.3) of the application are sepa-

rated into different Flash Documents so that they can be edited independently from each other.

Moreover, this enables that each Scene in the final application can be loaded on demand (in-

stead of being forced to load the whole application at once) which is a common mechanism

in web-based Flash applications. It is possible to load them in background and perform other

operations during the loading time.

4. Separation of Media Components: Complex Media Components are placed into a document of

their own so that it can be edited independently from other documents. Moreover, this enables

to apply a Media Component multiple times within different Scenes.

The following paragraphs present the realization of these principles and the resulting structure.

7.2.2 Scenes

The user interface should be modularized into multiple Scenes realized by independent Flash Docu-

ments (principle 3). ActionScript code for the Scene (e.g. to initialize its user interface and establish

relationships to the application logic) should be placed in an ActionScript class associated with the

Scene’s Flash Document (principle 1). In addition, a mechanism is required to perform the transitions

between Scenes at runtime.

154 7. Integrating Creative Design: From MML to Flash

class MyScene extends MovieClip implements Scene {

private static var theInstance : MyScene;

private function Scene1() {
}

public static function loadInstance():Scene {
if(theInstance == null) {

theInstance = new MyScene();
}
return theInstance;

}
}

Listing 7.3: Implementation of the Singleton pattern in an example Scene class MyScene.

Accessing Scenes Basically, two different principles can be considered for their implementation:

Either manage the different Scenes by a central instance (using e.g. the design pattern State [Gamma

et al.95]) or by implementing them as independent objects without a central instance (using e.g. the

design pattern Singleton [Gamma et al.95]). Here, the latter approach is used as it is more modular and

enables to add additional Scenes more easily to the application. Therefore the Scenes are implemented

using the Singleton design pattern so that they can be accessed and activated from any other Scene.

Using Singleton, the Scene class instantiates itself and thus has full control whether to keep or re-

initialize its inner state (see also “Resuming Scenes” on page 111). The transitions are managed

directly by the Scene class itself as well.

Listing 7.3 shows the resulting code for an example Scene class MyScene. The class construc-

tor is declared as private according to the Singleton pattern. The class provides a static operation

which returns the current unique instance of the class. Its name is in the original Singleton pattern is

getInstance(). As for our purposes we have to combine this with a loading mechanism (explained

below) its name is loadInstance(). All concrete Scenes are subclasses of the interface Scene defined

in our framework.

Loading Scenes As mentioned above, it should be possible to load Scenes separately. Be default,

Scenes are loaded on demand, i.e. when a Scene should be invoked the first time. To allow execution of

other operations during the loading time, an event listener (called SceneLoadingListener) is passed

to the Scene which notifies (call of operation sceneLoaded(s: Scene)) when the loading process has

finished. Listing 7.4 shows the resulting implementation of the operation loadInstance().

The loading itself is performed using the built-in ActionScript class MovieClipLoader. As ex-

plained on page 150 listeners can be implemented using the object-based mechanisms of ActionScript

as ActionScript 2 does not support anonymous inner classes.

Listing 7.5 shows how another Scene defines a SceneLoadingListener to load MyScene. In ad-

dition, it calls as example the operation startMyScene of MyScene. The example also shows how a

parameter can be passed (here to the operation startMyScene).

Connecting a Scene with an ActionScript Class In the Flash versions examined here, it is only

possible to associate an ActionScript class to a MovieClip. As Flash Documents are no MovieClips,

it is remains the question how a Flash Document representing a Scene can be associated with the Ac-

7.2 A General Structure for Flash Applications 155

public static function loadInstance(sll:SceneLoadingListener):Void {
if(theInstance == null) {

var loader = new MovieClipLoader(); //use built-in class MovieClipLoader
loader.onLoadInit = function(loaded_mc) { //define event listener:

sll.sceneLoaded(loaded_mc); //notify sll when loaded
}
loader.loadClip("MyScene.swf", container); //start loading

}
else{ //if already loaded then just pass it to sll

sl.sceneLoaded(theInstance);
}

}

Listing 7.4: The revised operation loadInstance with a loading mechanism

public function invokeMyScene():Void {
var listener = new DefaultSceneLoadingListener();
var oldScene = this;
var parameter = 5;
listener.sceneLoaded = function (s: Scene) { // Define event handling

oldScene._visible = false; // Old Scene must be set invisible
MyScene(s).startMyScene(parameter); // Call operation ’startMyScene’ of

loaded Scene
}
MyScene.loadInstance(listener);

}

Listing 7.5: Example how to use the SceneLoadingListener to load the Scene MyScene and invoke an

example operation startMyScene.

tionScript class for the Scene. Our proposed structure provides the following solution: A MovieClip

is created which has no visual representation of its own and acts as container for the Scenes. When

a Scene is loaded it is placed into the container MovieClip. This can be achieved using the built-in

ActionScript class MovieClipLoader whose operation loadClip(url:String, target:Object) specifies as

target a MovieClip where an SWF file from the URL is loaded into. The ActionScript class for the

Scene can then be assigned to the container MovieClip.

Listing 7.6 shows the resulting (final) version of the operation loadInstance().

Alternatives Flash offers some alternative mechanisms which should be briefly discussed in context

of Scenes:

• Flash “Scenes”: Earlier versions of Flash already provided a mechanism called “Scenes” to

divide the user interface into multiple independent units. However, it is deprecated today for

several reasons explained in [deHaan06].

• Flash “Screens”: Since Flash 83 it is possible to structure an application into multiple Screens
which are a quite similar concept like the Scene concept here in this thesis. It is also possible to

load the content of a Screen dynamically from a separate document and to associate a Screen

with a custom ActionScript class. Moreover, the Flash authoring provides an additional view

3in Flash Professional edition only

156 7. Integrating Creative Design: From MML to Flash

public static function loadInstance(sl:util.SceneLoadingListener):Void {
if(theInstance == null) {

var depth = _root.getNextHighestDepth(); // required for new MovieClip
var container = _root.createEmptyMovieClip("container"+depth, depth); //

create new container MovieClip
var loader = new MovieClipLoader();
loader.onLoadInit = function(loaded_mc) {

loaded_mc.__proto__= new MyScene(); //attach MyScene as class to
loaded_mc

sl.sceneLoaded(loaded_mc);
}
loader.loadClip("MyScene.swf", container);

}
else{

sl.sceneLoaded(theInstance);
}

}

Listing 7.6: Final version of operation loadInstance in class Scene1

for Screen-based applications showing the application’s Screen hierarchy and the transitions

between the Screens.

A drawback of Screen usage is that Screens are not completely transparent, i.e. some of their

properties and behavior can not be (directly) accessed by ActionScript code. For instance, the

transitions between the Screens must be defined by predefined “Behaviors” instead of within

ActionScript classes. Thus, the overall structure using Screens becomes even more complex.

Nevertheless, the Screens concept fits well to the structure proposed here and could be a useful

future extension.

7.2.3 Complete Structure

The Scene concept described in the last section builds the core for the application structure. This

section describes the other elements according to the principles from section 7.2.1 and shows the

resulting overall structure. Figure 7.9 exemplifies the structure by an extract of the Racing Game

example from chapters5 and 6.

Application Logic The application logic is implemented in conventional way as ActionScript classes

(principle 1). They constitute the ‘model’ in terms of MVC and are placed in a package model (prin-
ciple 2).

In the Racing Game example, the folder model would contain ActionScript classes Car, Track,
Player, etc. (fig. 7.9).

Media According to principle 4, (complex) Media Components are located in separate files in a

central folder media so that it is possible to apply them multiple times within the application. Graph-

ics and animations are implemented as a Flash Document containing the graphic or animation as

MovieClip. In general, audio, video and images are not created in Flash itself but just imported into

Flash Documents. Thus, within our structure, the audio, video or image files are placed into the folder

media as well from where they can be imported into multiple Flash Documents.

7.2 A General Structure for Flash Applications 157

media

IntroVideo.flv

model

...

Car.asCarAnimation.fla

TrackAnimation.fla

TrackAnimation

Track.as

Player.as

...

Game.fla

Game

Car.as

CarAnimation

EngineSound.mp3

Game.ascar
engineSound

carAnimation

time

time_textfield

time_label ...

Time.as ...

refers to

refers to

associated with associated with

associated
with

for each scene in
the application

once for the
whole application

Figure 7.9: Proposed Structure applied to the Racing Game example.

To apply media from folder media in different Scenes it is possible to either create a reference in

the Scenes’ Libraries or to load them dynamically during runtime into the Scenes. For the purpose

here, the former possibility should be preferred as it enables the developer to visually integrate the ex-

ternal MovieClip into the user interface at authoring time. A reference in the Library can be specified

in the properties dialog of Library Items (invoked in their context-menu). For example, in case of a

MovieClip, it is possible to specify a reference on a MovieClip in an external Flash Document. As

result, the MovieClip adopts the content from the referenced external file. The relationship between

source and target MovieClip is by reference, i.e. changes in the external MovieClip are adopted in the

referencing MovieClip.

The folder media in in figure 7.9 contains for instance a Flash Document CarAnimation.fla which

contains the actual MovieClip CarAnimation. It also contains sound and video files. The files in the

folder media are referenced from elements e.g. in the Scene Game.

User Interface Elements The user interface elements are located in the Scene on the Stage. They

are either instances of Media or from Flash user interface components. In our structure they constitute

the ‘view’ in terms of the MVC pattern (principle 2).

The user interface elements are associated with ActionScript classes as well (principle 1). It de-

pends on the type of element whether this is directly possible in Flash. For instance, for Flash user

interface components can be not be associated with custom classes directly. It is also not possible to

subtype them as no inheritance mechanism exists for Flash Components. Thus, all user interface ele-

ments are encapsulated intoMovieClips which are associated with an ActionScript class. As explained

in section 7.1.3 (“Accessing Stage Content”) the MovieClip’s content (e.g. a Flash Component) can

158 7. Integrating Creative Design: From MML to Flash

be accessed in the ActionScript class as class properties via their instance name. The ActionScript

classes are placed into a folder with the name of the Scene they belong to.

In the example in figure 7.9 the Scene Game contains for instance the user interface elements car
and time. They are encapsulated into MovieClips so that they can be associated to the ActionScript

classes Car and Time in the folder Game. The MovieClip time conatins two Flash Components, a text

label for the name and a text field for the actual value. TheMovieClip car contains twomedia instances

engineSound and carAnimation which refer to EngineSound.mp3 and the MovieClip CarAnimation
in the central folder media.

The relationship between user interface elements and application logic is implemented by the

design pattern Observer [Gamma et al.95] (associations between ActionScript classes are not shown

in fig. 7.9). ‘View’ classes thus implement the interface Observer while ‘model’ classes extend the

class Observable and notify their Observers after they have changed.

Like in many other implementations the ‘Controller’ part (in terms of MVC) is simplified by

placing the event listening operations directly into the ‘View’ class to avoid a very large number

of small classes. Event handling operations are specified either by overwriting operations of the

MovieClip directly (e.g. defining an operation onKeyDown()) or by attaching anonymous listeners

to its content (e.g. a mouse listener for a contained user interface component). As explained in

section 7.2.2 (“Loading Scenes”) ActionScript 2 does not support anonymous inner classes but the

object-based mechanisms can be used instead.

Scenes Finally, at some point the application must be initialized and the relationships between

‘Model’, ‘View’, and ‘Controller’ must be established. As the Scenes are the application’s main

building blocks they are used for this task. They contain the user interface elements on their stage

so that they are available as class properties in the Scene’s ActionScript class. This class thus initial-

izes the application logic by creating new domain instances or receiving them by parameters of Entry

Operations. It initializes the connections to ‘View’ classes by (due to the Observer pattern) calling

addObserver() operations. Besides, the Scenes are implemented as described in section 7.2.2.

Figure 7.9 shows as example the Scene Game. It is represented by a Flash Document containing

user interface elements, an associated ActionScript class, and a folder containing the ActionScript

classes for the user interface elements.

7.3 Transformations

This section describes the transformation from MML models into skeletons for Flash applications.

According to the general idea described in section 3.3, the overall application structure is generated

from the models while for the concrete Media Components, final visual layout, and detailed applica-

tion logic only placeholders are generated to be filled out in the authoring tool.

As explained in section 7.1.1 the transformation is split into two steps. The first step performs

the conceptual mapping from MML models into Flash models while the second step performs the

mapping to the final code.

MML to Flash Model The first transformation is a conventional model-to-model transformation

from platform-independent MML models to platform-specific Flash Models. The Flash models com-

ply to the Flash metamodel introduced in section 7.1. Moreover, in our approach the resulting appli-

cation structure should also comply to the framework introduced in the previous section 7.2.

7.3 Transformations 159

The detailed mapping rules are described as text in appendix C. The main ideas are summarized

in the following.

Domain Classes are mapped to ActionScript classes in the folder model. As operation bodies (i.e.

the detailed domain logic) is not specified in MML, they are also not part of the transformation and

have to be filled out manually by the software developer.

Media Components are mapped to placeholders in the folder media. Graphics and 2D Animations

are mapped to FLA files containing a placeholder MovieClip in the library. The placeholder can be a

simple rectangle shape with text inside showing the Media Component’s name. The media designer

can just replace the placeholder with the actual graphic or animation. Other media types are mapped

to corresponding files containing dummy content – e.g. a simple dummy image, video, or sound – to

be replaced by the media designer.

A Scene is mapped to a FLA file containing its user interface, an ActionScript class, and a folder

containing ActionScript classes for each user interface element. The FLA file contains instances of

user interface elements. The ActionScript class contains the user interface elements as class prop-

erties. It also contains the domain objects specified for the Scene as class properties. Moreover, it

initializes them by e.g. attaching user interface elements as Observer to domain objects. It also con-

tains the code for Entry- and Exit-Operations and the Transitions between the Scenes. The basic code

generated for the Scene class follows that proposed in section 7.2.2.

An AIOs is mapped to a MovieClip in the Scene and to an ActionScript class in the folder gen-

erated for the Scene. The MovieClip is located in the Scene’s library and instantiated on the Scene’s

stage. It encapsulates instances of widgets (Flash Components) and/or Media Instances (if the AIO is

realized by a Media Component). In the latter case, a reference is generated to the Media Component

in the folder media (see sec. 7.2.3). The ActionScript class contains event handling operations and is

attached to the MovieClip. It also implements the Observer pattern.

A detailed description of the mapping is described in appendix C. A fully functional prototype has

been implemented in ATL.

Extended Media Support by Third-Party Tools The basic mapping described here focuses on

Graphics and 2D Animations as they can be directly created within Flash. However, it is of course

possible to generate additional code to integrates third-party tools into the development process. The

diploma thesis in [Shaykhit07], supervised by the author of this thesis, discusses and implements sev-

eral examples into this direction: For instance, videos in Flash must be in FLV format. However, in

practice, videos are often encoded in a different video format like MPEG or AVI. Moreover, often

a video should be encoded in different qualities, e.g. as specified by Variations (sec. 5.2.10). The

approach in [Shaykhit07] uses a command line based video encoder FFmpeg [FFm] to address these

issues. The URL of a source video can be specified as additional property in the MML model. In

[Shaykhit07] the transformations have been extended to generate a shell script (a batch file in Win-

dows) from the information in the MML model to automatically execute FFmpeg and convert all

source videos into the FLV format – possibly in different versions with different qualities.

In general, by generating shell script commands from the models it is possible to integrate various

advanced support for Media Components. The shell scripts are executed in the same step like the JSFL

script for the Flash Documents. Of course, it is possible to generate a shell script which automatically

invokes all other generated scripts, including the JSFL script, so that the developer needs only to start

a single file.

160 7. Integrating Creative Design: From MML to Flash

MML
Model

JSFL File

Flash
Model

FLA FilesMML ModelFLA Files

FLA FilesMML ModelActionScript
Class FilesATL

Transformation

Execution of
JSFL file

Figure 7.10: Transformation of MML models into Flash application skeletons.

Flash Model to Code This transformation step maps the Flash model into the concrete implemen-

tation, i.e. Flash Documents (FLA files) and ActionScript code. However, this step rises a problem:

ActionScript classes can be generated in a straightforward manner as they are simple source code files

analogous to Java files. Thus, a conventional model transformation language can be used for their

generation. However, Flash Documents (FLA files) can not be generated directly as the FLA format

is a proprietary binary file format. The compiled format for Flash applications (SWF files) has been

made publically available by Adobe [Ado08] but it does not help here as the generated code skeletons

should be processed in the authoring tool. Basically, it is possible to reverse engineer a SWF file into a

FLA file using third-party tools like [Softwareb, Softwarea] but then still much authoring information

– like Symbol names – is missing.

Thus, MML proposes a different solution to create Flash Documents: As introduced in sec-

tion 7.1.1, JSFL scripts enable to create Flash Documents automatically. JSFL is well supported by

Adobe and the scripts are conventional text-based source code files which can be directly generated

by a transformation. Thus, the part of a Flash Model which describes the Flash Documents is mapped

to a JSFL file in the transformation. Using JSFL, the mapping to Flash is relatively straightforward.

The JSFL code which must be generated to create a FLA file looks similar like that in listing 7.1. The

resulting JSFL file then just has to be executed to create the final FLA files.

Figure 7.10 summarizes the resulting transformation steps: The first transformation maps anMML

model to a Flash model. The second transformation is split into two parts. ActionScript class files are

generated directly from the Flash model. For the document part, a JSFL file is generated. The JSFL

file then has to be executed on a system with Flash installed.

A fully functional prototype for this transformation has been written in ATL.

Supported Flash Versions The metamodel presented here reflects the Flash versions 7 and 8.

Over the years MML support has been developed for several Flash versions. Table 7.1 provides

an overview: The left hand side gibes an overview on the Flash versions, its version number, the

release date and the latest ActionScript version supported (all Flash versions support also previous

ActionScript versions for backward compatibility).

The table’s right hand side gives an overview which versions MML currently supports. The meta-

model and the transformations described in this thesis can be used for Flash 7 and Flash 8. While the

metamodel is exactly the same for both versions, the transformation from the Flash Model to Flash

Code provides a parameter to set the target version as there are slight changes in the JSFL file between

7.3 Transformations 161

Version MML Support
Product Name No. Released Action-

Script
Flash
Metamodel

Transformation Overall

Macromedia Flash

MX 2004

7 Sept. 9,

2003

AS2 as described in

sec. 7.1

as described in

app. C; provides

parameter to set

version number.
Macromedia Flash

Professional 8

8 Sept. 13,

2005

AS2

Adobe Flash CS3 9 April 16,

2007

AS3 Implemented

in [Meyer08]

Implemented in

[Meyer08]

Adobe Flash CS4 10 Oct. 15,

2008

AS3 [Meyer08] is expected to work but

was not tested yet.

Table 7.1: Flash versions and MML support

Flash 7 and Flash 8. Flash CS3 brought major changes, in particular introduction of ActionScript 3.

[Meyer08], supervised by the author of this thesis, discusses and fully implements an update of the

metamodel and the transformation for Flash CS 3 and ActionScript 3. As Flash CS4 does not provide

such structural changes it is expected that the implementation by [Meyer08] is still sufficient but this

has not been further tested yet.

7.3.1 Round-Trip-Engineering

An important practical aspect to be discussed in context of transformations is the so-called Round-Trip
Engineering [Sendall and Küster04, Hettel et al.08]. Round-Trip Engineering means that a source

model and code generated from the model are kept synchronous. If changes are made in the code

which affect the model, then the model is synchronized and vise-versa. In context of transformation

between models, Round-Trip Engineering is also called Model Synchronization.4

General Concepts It is important to understand that Round-Trip Engineering is not equivalent to
the sum of Forward Engineering (i.e. code generation) and Reverse Engineering. Reverse Engineering
[Tonella and Potrich04] usually means to (re-)construct a model from some given code, or more gen-

erally, to derive an abstract model from a more concrete model. However, in Round-Trip Engineering

the original source model should only be changed to that extent as necessary for synchronization – it

is not useful to construct via Reverse Engineering a completely new source model which reflects the

code but has nothing in common with the model specified originally by the modeler.

The basic steps in Round-Trip Engineering are [Sendall and Küster04]:

1. Deciding whether a model under consideration has been changed,

2. Deciding whether the changes cause any inconsistencies with the other models, and

3. Once inconsistencies have been detected, updating the other models so that they become con-

sistent again.

4In context of Model Driven Engineering code is treated as a specific kind of model as well – in the following the term

“target model” refers to any kind of transformation result including code.

162 7. Integrating Creative Design: From MML to Flash

A change means that an element is either added, modified, or deleted. To synchronize models it

is necessary to keep additional trace information, i.e. information to trace an element in the target

model back to its causing element in the source model (see examples in [Sendall and Küster04]). In

addition, it must be ensured that information added manually is not overwritten when synchronizing

the models. These two requirements correspond to the postulated properties of model transformations

from section 3.4.2: traceability and incremental consistency.
Incremental consistency on source code can be achieved by using a merge mechanisms as provided

e.g. by JMerge [JMe] which is part of the EMF. Ideally, a tool does not only preserve the custom code

but also updates the custom code when e.g. names of properties or operations have changed (using

e.g. refactoring functionality like provided by the Eclipse Java Development Tools [JDT]).

For keeping trace information two common ways exist: Either augment the target model with

the additional information, for instance comments in code containing specific tags, or store the trace

information externally, for instance in an additional model.

Several tool support already exists like SyncATL [Xiong et al.07, Syn], a synchronization tool

based on Eclipse supporting ATL. An important concept in this tool is to work on the modifications

performed by the user on a model since the last transformation. Thus, it requires as input the 1) original

source model, 2) the modified source model, 3) the modified target model, and 4) the transformation

(the original target model can just be calculated from the original source model and the transforma-

tion). The tool requires that each model element is always annotated with a unique identifier which

can not be changed by the user. The synchronization process first calculates the modifications between

original model and its modified version for both, source and target model. This calculation uses the

IDs to distinguish whether e.g. a model element has been added or renamed. As result of the calcu-

lation, an annotation is added to each element and property in the model to indicate the modification

by one of this four tags: insert, delete, replace, or none. The modifications on the target model are

propagated back to the source model and merged with the modifications on the source model. The

modifications in the resulting source model are then propagated to the target model and finally merged

with the modified target model. In that way, both models are synchronized while preserving all modi-

fication made by users on the source and the target model. For details, like merging rules, see [Xiong

et al.07]. Basic concepts for differencing and merging models can also be found in various other work

like [Abi-Antoun et al.08, Mehra et al.05].

Another important tool is the Atlas Model Weaver (AMW, [AMW]) based on Eclipse and ATL as

well. Its purpose is more general: AMW establishes links between two models and stores them in a so-

called Weaving Model. On that base various different use cases are available for download including

support for traceability relationships between models and calculating the differences between two

models.

Even with complete trace information there are still various cases where this information is not

sufficient to synchronize the models. For instance, if an element is added to the target model, multiple

alternative possibilities where to add corresponding elements in the source model may occur. Such

cases can be solved for instance by rules for default behavior or by additional user input. More

information on advanced issues can be found e.g. at [Oldevik et al.08].

Round-Trip Engineering for MML Basically, the general principles of Round-Trip Engineering

can also be applied to MML. In particular, the ActionScript classes can be treated like any other kind

of source code. But two specific problems must be considered: First, most existing solutions require

annotations on the model and code. Thus, it must be ensured that it is possible to annotate elements

in Flash Documents with custom data. Second, parts of the MML models reside on a quite high level

7.3 Transformations 163

of abstraction compared to the generated Flash implementation. Thus, it must be discussed for which

kind of modifications it is useful to propagate them back to the MML model. They are discussed in

the following.

ActionScript classes can be handled like conventional source code and be annotated with com-

ments. Annotations are important for Round-Trip Engineering, for instance to store trace information

or for unique IDs to calculate modifications between models like in SyncATL (see above).

Fortunately, the Flash Java Script API enables to store additional information to the most important

elements used in our structure: Data of any kind of primitive types can be added, read, and removed to

Flash Documents (method document.addDataToDocument()), to all Library Items (item.addData()),
and some types of Elements on the Stage including MovieClip instances and Component instances

(element.setPersistentData(), see figure 7.6 for metaclass Element). These elements cover already

the major part of the generated structure as elements on the Stage are encapsulated into MovieClips

(see “MML to Flash Model” on page 158).

Annotating the Flash elements with unique identifiers can help to ensure incremental consistency

for Flash Documents. The basic idea is to calculate modifications on the Flash model. The JSFL file

then propagates only these modifications to the Flash Documents. For instance, when a MovieClip

is renamed in the model, the JSFL file searches for the MovieClip by its identifier and modifies its

property name while leaving all other properties and content unchanged.

The second problem is the partially high level of abstraction. Thus, for some parts of the MML

models it is not trivial to synchronize a MML models when changes appeared in the generated code.

A general requirement is that modifications in the Flash application must comply to the generated

structure for Flash applications. If a developer adds an element which does not fit to the intended

structure at all, it is almost impossible to interpret its meaning in terms of the MML model.

The main MML elements can be handled as follows:

• MML Domain Classes are mapped 1:1 into ActionScript classes in the folder model. All

changes can be directly propagated to the MML Structure diagram just like in mappings from

UML class diagrams to Java.

• An MML Scene is mapped to a large number of elements and code. Thus, even modifications

like renaming can become tedious in the code. It is often better to add new Scenes only in the

model and re-generate the code. Modifying conventional class properties or class operations

of the Scene’s ActionScript class is unproblematic and can be directly propagated to the MML

model.

• Each AIO in MML is mapped to a MovieClip in the Scene and a listener class. Basically, it

should be possible to add, modify, or delete these MovieClips directly in Flash. The changes

can be propagated to the model. The corresponding listener classes could then just be updated

when re-generating code. However, it must be considered that adornments on the user interface

should not be interpreted as AIOs in MML. A useful solution is that only MovieClips instances

on the Stage having an instance name are interpreted as AIOs (in Flash, instances have no

instance name by default) while all other elements are interpreted as adornments.

• MML Media Components are directly mapped into the folder media. Adding, deleting or re-

naming a Media Component directly in the folder media is possible and can be propagated back

to the model. However, the developer has to consider Media Instances which refer to this Media

Component. Advanced modifications, concerning inner structure or different variations, are not

propagated back to the model.

Of course, when the developer fills out generated placeholders or operation bodies, this has not to

be propagated back to the model as specifying their content is not part of MML models.

164 7. Integrating Creative Design: From MML to Flash

7.3.2 A Tool for Extracting Flash Models from Flash Applications

A first important contribution to Round-Trip Engineering as well as Reverse Engineering of Flash

applications was implemented in [Mbakop07] supervised by the author of this thesis. The resulting

tool analyzes a Flash application and creates a corresponding Flash model. The Flash model complies

to the Flash metamodel presented in section 7.1. Like the Flash metamodel, the tool is independent

from MML and works for any kind of Flash application.

The tool considers both Flash Docments and ActionScript code. As first step, the tool analyzes

the Flash Documents. Therefore, a JSFL script is executed which browses all elements in the Flash

Documents and extracts all found information to an XML file. Moreover, it collects the ActionScript

code which belongs to the application. In a second step, a parser for ActionScript – implemented with

JavaCC [Jav] and JJTree [JJT] – creates an Abstract Syntax Tree for the ActionScript code. The third

step integrates the Abstract Syntax Tree and the information on the Flash Documents to the resulting

Flash Model.

The tool can be useful in various contexts:

• Round-Trip Engineering: The tool gives the possibility to reuse existing Round-Trip Engineer-

ing tools operating on models. The precondition is that the transformation back to the Flash

code preserves incremental consistency.

• Reverse Engineering: The resulting Flash models can be used as starting point for a transfor-

mation from Flash models to MML models to Reverse Engineer Flash applications. A very first

prototype for such a transformation has been implemented in [Mbakop07].

• Migration and Refactoring: In particular, it is possible to refactor the Flash Model and trans-

form it back to a Flash application. Thereby, Flash Documents can automatically be updated

to another Flash version. For instance, executing the transformation from [Meyer08] automat-

ically results in Flash Documents for Flash version 9. (Converting ActionScript to another

ActionScript version as well would require to write an additional transformation for this pur-

pose as the Flash model treats operation bodies and embedded scrips just as text strings – so the

currently existing transformations can only be used to create Flash 9 Documents with Action-

Script2 code.) This use case requires incremental consistency for the transformations back to

Flash.

7.4 Working with the Code Skeletons in the Authoring Tool

This section illustrates by screenshots how to work with the generated code skeletons in the Flash

authoring tool. It shows the application generated from the MML models for the example Racing

Game application from section 5 and 6.

Figure 7.11 shows the folder with the generated files in the file explorer. For each Scene there is

a FLA file and a folder. The folder model contains the domain classes. The folder media contains the

Media Components. The folder util contains some library classes.

By default there are already compiled versions of the Flash Documents (SWF files) which can

be directly executed by a double-click on the main file FlashRacingGame.swf. Then, – as specified

in the Scene model (fig. 6.9) – the application starts with the generated skeleton for the Scene Intro.
The generated Exit Operations in the Scene’s ActionScript class contain the code for the transitions

between the Scenes. However, it depends on the models whether they can already be triggered by the

user. In the Racing Game example, the Presentation Model defines some Action Components which

trigger the Exit Operations (e.g. the AIOs quit and help in fig. 6.14). As Action Components are

7.4 Working with the Code Skeletons in the Authoring Tool 165

Figure 7.11: The generated files in the file explorer.

Figure 7.12: The generated application skeleton can be directly executed. The user can trigger transi-

tions between the Scenes as far as specified in the MML model.

166 7. Integrating Creative Design: From MML to Flash

Figure 7.13: The generated FLA file for the Scene Game.

mapped to buttons, the user can use this buttons to trigger the transitions and navigate through the

Scenes.

Figure 7.12 shows the generated SWF files when they are executed by the user. It shows from left

to right how the user navigates through some generated Scenes. According to the Scene model, the

application start with the Into Scene (left screenshot) which contains a placeholder for the IntroHead-
line, a dummy video for IntroVideo, and a button skip. As specified in the Presentation Model, the

user can navigate to the Menu Scene (middle screenshot) by clicking the button. The Menu contains

a button startGame which leads the user to the Scene Game (right screenshot). In the Game Scene

the user can use the button quit to navigate back to the Menu. The application, as shown here, is the

direct result from the transformation – it has not been modified by the developer yet5. The following

sections show how the developers edit and complete the generated skeletons in the Flash authoring

tool.

The generated FLA files can be directly opened and processed in the authoring tool. Figure 7.13

shows the FLA file for the Scene Game generated according to the MML model in figure 6.17. The

graphics and animations have been mapped to placeholder MovieClips. Their Inner Structure is rep-

resented by contained Movie Clips. AIOs not realized by Media Components have been mapped to

widgets components. All generated elements can be very easily adapted and modified using the large

spectrum of tools available in Flash. For instance, they can be arranged by drag and drop and be

resized, rotated, skewed, reshaped, etc. using the transformation tool (like the button quit in fig. 7.13).

The generated instance names are visible in the Property Window while the generated connection be-

tween Movie Clips and ActionScript classes are visible via the context menu in the library (not visible

in the screenshot).

5except the spatial layout of the graphical elements as the current implementation does not include an algorithm for the

initial layout yet

7.4 Working with the Code Skeletons in the Authoring Tool 167

Figure 7.14: The generated folder media.

Figure 7.14 shows the content of the folder media in the file explorer. The FLA files generated for

graphics and animations contain only placeholders to be filled out by the media designers. Figure 7.15

shows how easy to fill out for instance the generated placeholders in the FLA file for CarAnimation.
The media designer can use all tools of the Flash authoring tool like normally. After the modified

CarAnimation is saved and compiled it is automatically available in all Scenes which refer to it (like

Game, see fig. 7.16a). For instance, the CarAnimation is used not only in the Scene Game but also in

Menu where the user can select between different cars. Several properties can be changed individually

for each instance including size, rotation (fig. 7.16b), and color properties like brightness, tint, alpha,

etc.

Other media types which are not directly created within Flash, like images, audio, and video, are

represented by files containing dummy content and are usually replaced directly in the file explorer.

Text files can be edited directly in a text editor. For instance, in figure 7.17a the dummy file for video

IntroVideo.flv is replaced in the file explorer. As result, all instances of IntroVideo in all Scenes are

updated in the application (like the Scene Intro in fig. 7.17b).

Besides filling out the placeholders in the authoring tool and replacing dummy files, the software

developers have to complete the ActionScript code. This will usually take some time as MML is not

a prototyping tool. The developers have to perform the following tasks on the ActionScript skeletons:

• Initialize Domain Objects in the Scene class.

168 7. Integrating Creative Design: From MML to Flash

• Specify parameters in Exit Operations for Entry Operation calls.

• Fill out Entry Operations in the Scene class.

• Fill out the bodies of Domain Class operations.

• Fill out the bodies of event handling operations or add own event listeners.

For instance, in the Racing Game example the developers would place the code to move the car

into the operation move of the class Car in the folder model. As the design pattern Observer is

generated for the connection to the user interface, the developers also have to fill out the operation

update in the class Car in the folder Game6.

All other basic relationships are already generated from the models: the class Car in the folder

Game is already assigned to MovieClip Car, the MovieClip is already instantiated on the Stage and

has an instance name, and the corresponding instance is accessible in the class Scene and already

registered as Observer for the Domain Class Car. Thus, it is already possible to directly compile,

execute, and test any added code. A possible result could look like in figure 7.18.

6The Domain Class and the AIO both have the same name in this example

7.4 Working with the Code Skeletons in the Authoring Tool 169

(a) Select wheel in the library (b) Select the placeholder shape of wheel

(c) Replace placeholder with custom drawing (d) Back to CarAnimation

(e) Arrange the wheels (f) Add two more wheel instances

(g) Replace car’s placeholder with custom drawing (h) Finalize CarAnimation

Figure 7.15: Replacing the generated placeholder for CarAnimation.

170 7. Integrating Creative Design: From MML to Flash

(a) Updated CarAnimation (b) Modifying rotation and size of a single instance

Figure 7.16: CarAnimation in Scene Game.

(a) Replacing IntroVideo.flv in folder media (b) All instances of IntroVideo are automatically re-

placed.

Figure 7.17: Media files need just to be replaced in the file explorer.

7.4 Working with the Code Skeletons in the Authoring Tool 171

Figure 7.18: The final result.

172 7. Integrating Creative Design: From MML to Flash

Chapter 8

Validation

The basic problem addressed in this thesis is the lack of systematic development methods for the

interactive multimedia applications. As discussed in section 3.1, this problem statement is supported

by the existing research literature as well as by existing industry studies. A promising contribution to

solve this problem is to apply concepts from model-driven development to the multimedia application

domain (sec. 3.2). Thus, a modeling language and model-transformations were proposed. This section

aims to validate the presented approach.

Unfortunately, development methods and development processes, such as MML, are difficult to

evaluate. This is a specific problem of Software Engineering research: For instance, Human-Computer

Interaction research mostly target end users. Often it is possible with limited effort to acquire people

from the addressed target group and to perform user studies with them. For Software Engineering

research which addresses large real-world development projects, no such straightforward way exists.

Thus, the next paragraph provides a short analysis to find possible validation methods for MML.

The subsequent three section then present the validation based on the identified methods.

Validation Techniques in Software Engineering In [Shaw01], several common validation tech-

niques in Software Engineering research are listed:

• Persuasion: Argue for the solution and explain it e.g. by a running example.

• Implementation: Demonstration by a prototype.

• Evaluation: Evaluation in comparison to other approaches, against given criteria or based on

empirical data.

• Analysis: Derivation from facts by a formal proof or an empirical predictive model.

• Experience: Evaluation based on experience or on observations made during application in

industrial practice.

The first two techniques are already applied within this thesis: The Persuasion technique applies

to MML in chapters 5, 6, and 7 which discuss the reasons for modeling elements and show the basic

feasibility by means of the Racing Game example.

The Implementation of the transformations (sec. 7) shows that the modeling language provides an

adequate level of abstraction to enable code generation. It also shows that it is possible to generate

code directly for an authoring tool. Moreover, there are additional implementations of transforma-

tions, to other target platforms than Flash, which demonstrate the platform independence of MML.

They are presented in section 8.1.

To achieve stronger validation, the other three techniques need to be applied. Analysis is not

considered in this thesis as the problem space (multimedia applications, integration of creative design,

174 8. Validation

etc.) as well as the desired properties of the solution (expressiveness, usability, etc.) are hard to

formalize.

Evaluation against empirical data again is difficult for research like in this thesis. There are rarely

some opportunities to apply a new research approach directly in a real-world projects in a company.

Alone the tool support is certainly not sufficient for a really professional project.

Validation based on new Experience in industry is not possible for the same reasons. Of course,

already existing experience has already been considered carefully by the discussion of existing studies

provided in section 3.1.

An alternative to gain empirical data empirical data (for Evaluation against empirical data) is to

perform controlled experiments in the research lab. However – in contrast to other areas, like Inter-

action Design – development methods are hard to test due to many factors like the required learning

effort and the large number of variables which includes experience, skills, project type, project size,

etc. [Olsen07, Walker et al.03, Kitchenham et al.02]. Thus, it is usually not possible to create with rea-

sonable effort an experiment which allows to proof the effect of a development approach in industrial

practice.

Finally, Evaluation against given criteria is a feasible and important validation technique for

development approaches and modeling languages in particular. Also Evaluation in comparison to
other approaches could be examined at least on a theoretical level. Both methods are applied for

MML in section 8.3.

Nevertheless, all feasible validation techniques identified so far are still on a theoretical level. This

kind of validation is often called internal validation as it is usually conducted by the developers of

the research approach themselves. The danger is that their point of view is too optimistic. They also

certainly have a very different access to their own approach than other people would have. Hence, it

is strongly desirable to perform an external validation as far as possible – even if it is not possible

to definitely proof the effect of MML in industrial practice. To meet this demand, different kinds of

student projects have been conducted which are described in section 8.2.

8.1 Platform Independence: Transformations to other Platforms

Flash is not the only target platform for MML. From the beginning, MML was designed as a platform

independent language based on existing platform independent concepts. Thus, several transformations

for other target platforms have been implemented during the development of MML.

For the choice of a target platform it is useful, of course, to select a platform with sufficient

multimedia support. Moreover, an integration with authoring tools – like in the Flash example in

section 7 – is only possible for platforms supported by authoring tools. Nevertheless, as MML models

are platform independent they can be transformed into any target language – independent from its tool

support.

Beside the main example Flash (sec. 7), transformations for three other platforms have been de-

veloped in context of this thesis:

1. Java as example for a conventional programming language in conjunction with multimedia

frameworks,

2. SVG/JavaScript as example for a declarative language, and

3. Flash Lite as example for a platform for mobile devices.

8.1 Platform Independence: Transformations to other Platforms 175

Together with Flash, the first two examples cover all three categories of implementation platforms

identified in section 2.3: frameworks, declarative languages, and authoring tools. The third example,

Flash Lite, demonstrates that platform independence also adheres to the target devices.

While some of these transformations are (prototypically) implemented to a large extent, some are

only realized as a proof of concept. The following sections briefly describe them.

8.1.1 Code Generation for Java

The transformation into Java code is the result of two project theses [Wu06a, Kaczkowski07] super-

vised by the author of this thesis. The frameworks Piccolo is used to support 2D graphics, animations,

images, and text. For other media types, like audio and video, the Java Media Framework is used (both

frameworks are introduced in section 2.3.1. The focus in the project thesis was on the support for 2D

graphics and animations with Piccolo.

The structure of the generated application is analogous to that for Flash from section 7.2: The

application part implemented by ActionScript classes in Flash applications is implemented by (plain)

Java classes. The part implemented by Flash documents is implemented using the Piccolo frame-

work. The overall application structure complies to the Model-View-Controller paradigm. Compared

to Flash/ActionScript, it is much easier to gain a clear object-oriented structure for the overall appli-

cation, as Java, Piccolo, and JMF already provide an object-oriented structure.

[Kaczkowski07] proposes to map the MML models into the following structure:

• The overall application is structured into packages model, view, controller, and media. In addi-

tion, [Kaczkowski07] provides a package mml containing library classes like a class Scene as

superclass for all Scenes and classes for the different media types.

• An application is mapped to a main class which creates the application’s main window on the

user interface.

• Each Scene (sec. 6.3) is mapped to a class which initiates instances used in the Scene and

connects model and view classes by the Observer pattern [Gamma et al.95]. It contains Entry

and Exit Operations which pass the application’s main window as parameter so that a Scene can

set the actual user interface content.

• Domain Classes (sec. 6.2) are mapped to Java classes in the package model.
• Media Components (sec. 6.2) are mapped to classes in the package media. The package mml

provides a library class for each media type with standard functionality. They are specialized

by the classes in media.
• Each Presentation Unit (sec. 6.4) is mapped to a class in the package view. It inherits from

Piccolo classes and provides different operations to easily add Piccolo Nodes as well as Java

Swing elements as children1. Media Instances are mapped to instances from the package media
and added as children. AIOs not realized by Media Instances are mapped to Java Swing widgets

and added as children.

• For each Scene there is a Controller class in the package controller which contains event han-

dling operations. They are assigned to the user interface elements in the Scene’s view class.

The transformation was implemented in [Kaczkowski07] using ATL. [Kaczkowski07] also pro-

vides a metamodel for Java Piccolo applications. It consists of a part for Java classes and a part repre-

senting the Piccolo framework (which of course consists of Java classes as well but is represented on

a higher level of abstraction).

1As described in section2.3.1, Piccolo code is structured in terms of a Scene Graph

176 8. Validation

The Java classes generated by the transformation can directly be compiled and executed. The

application then shows a window with the (skeleton) user interface for the first Scene.

8.1.2 Code Generation for SVG/JavaScript

An approach developed in an early stage of MML was code generation for SVG and JavaScript in

[Leichtenstern04]. SVG refers to the Scalable Vector Graphics [W3C03], an XML-based description

language for 2D graphics and animations. It is a World Wide Web Consortium (W3C) [WWWa]

standard and can be displayed in most web browsers and by external viewers. Most existing vector

graphics software supports the SVG format and there are also some editors specifically for SVG.

SVG has also become a graphic standard for mobile devices and provides different profiles e.g. for

smartphones and PDAs.

It is possible to combine SVG with JavaScript to create interactive and dynamic documents. For

this purpose the nodes in a SVG document can be accessed via a Document Object Model similar to

that in HTML. It was chosen as example platform for MML (instead of e.g. SMIL) as it seemed a

promising platform at that time. In conjunction with JavaScript, it basically provides similar possibil-

ities as Flash. At that time, SVG was strongly supported by Adobe and some people expected that it

might become a competitor to Flash. However, this has not come true so far, in particular, as Adobe

acquired Macromedia with its products Flash and Director in 2005. Currently, SVG is sometimes

used for still graphics but is far away from a usage for applications, like Flash, as neither libraries nor

tool support exist for that purpose.

The work from [Leichtenstern04] falls in an early stage within the development of MML. It uses

the MML version described in [Hußmann and Pleuß04]. For code generation it uses the Eclipse-

based Java Emitter Templates (JET, [JET]) which are part of the Eclipse Modeling Framework (see

sec. 3.4.3). Again, the generated structure adheres to the Model-View-Controller pattern. Domain

classes, event handling, and the behavior of Scenes are implemented in JavaScript while each Presen-

tation Unit is mapped to a SVG document. The SVG document contains JavaScript code to connect

user interface elements with JavaScript objects. The detailed mapping and a working prototype can

be found in [Leichtenstern04].

8.1.3 Code Generation for FlashLite

In the context of his teaching assistance in the course “Multimedia-Programming” (see sec. 8.2.1),

Max Maurer examined a possible transformation fromMML into code skeletons for Flash Lite [Flab].

Flash Lite is a lightweight version of Flash for mobile phones and other devices with limited comput-

ing power (see [Adobeb]).

With growing version numbers, Flash Lite supports more and more similar functionality like con-

ventional Flash. The main difference lies in the limited computing power of target devices which

requires a different programming style. For instance, a large number of MovieClip instances or Ac-

tionScript objects causes a significant loss of performance. In simple tests on a smartphone device

(xde terra) from 2007, it was not possible to run about 20 instances of a simple MovieClip associated

with an ActionScript class with acceptable performance. Thus, the proposed framework for Flash

applications from section 7.2 is inappropriate for Flash Lite, as it focuses on modularity and thus uses

a very large number of instances.

Hence, Maurer provides a proposal for simplifying the application structure:

• The whole application is mapped to a single Flash Document (FLA file). It contains on its Stage

a MovieClip which acts as container for the Scenes.

8.1 Platform Independence: Transformations to other Platforms 177

Main.fla

Game

Car.as

carAnimation

engineSound

time_textfield

...

associated with

...

...

Figure 8.1: Simple target structure for Flash Lite applications and small Flash applications.

• Each Scene is mapped to a MovieClip in the main Flash Document’s library. They are dynam-

ically attached to the container MovieClip on the Stage. There are no ActionScript classes for

the Scenes.

• The user interface elements are directly placed into the Scenes without an encapsulatingMovieClip.

They are not associated with ActionScript classes. Instead, the event handling code is placed

directly on the main Timeline in the main Flash Document.

• As there is only a single Flash Document, the media objects need just to be placed in its library.

They can then be instantiated in the MovieClips for the Scenes.

• The Domain Classes are mapped to ActionScript classes.

Figure 8.1 shows an example for the resulting simple structure. The figure shows the Racing Game

example so that it can be easily compared to the Flash framework in figure 7.9. There is only a single

Flash Document for the whole application (Main.fla). Each Scene is represented by a MovieClip (e.g.

Game) which directly contains all Media Instances (e.g. carAnimation) and user interface elements

(e.g. time_textfield). As all Media Components are located in the library of the main Flash Document,

it is still possible to instantiate a Media Component multiple times within different Scenes. Only the

Domain Classes are represented by external ActionScript classes (e.g. Car). Any other code (like

event listeners) is embedded directly in the Flash Document.

This structure can also be used for conventional (desktop computer) Flash applications if a simple

straightforward structure is desired. This is useful e.g. for applications with limited application logic

like the CMD Tutorial later in section 8.2.2.

The transformation has not been implemented yet. However, Maurer demonstrates the feasibility

by a manual mapping for the Blockout Game example from [Pleuß05a]. Figure 8.2 shows some

screenshots from the resulting application. Despite of its high dynamics and fast animations, it runs

without any performance problems on the test device.

178 8. Validation

(a) (b) (c) (d)

Figure 8.2: Blockout example on the Flash Lite platform.

8.2 External Validation

As discussed above (“Validation Techniques in Software Engineering”), it is desired to perform an

external validation of MML, even if it can not provide a proof for the effect of MML in practice.

However, an external validation provides several more benefits:

• Experience on the feasibility of MML.

• Experience on the usability of MML.

• Experience on, how in general people develop multimedia applications with and without MML.

• Finding problems with MML not expected by its developers, in order to improve the approach.

• Acquiring qualitative indicators whether MML is beneficial in practice.

Therefore, MML has been applied in several student projects in teaching context at the Media In-

formatics group at University of Munich. In each of the projects, students had to develop a multimedia

application using MML. Thereby, the projects goals were independent from MML, i.e. the motivation

for the students was not to apply MML but to successfully develop an application. The participants

neither had previous knowledge on MML nor were concerned with the development of MML. MML

was applied multiple times in two kinds of projects:

1. The practical course “Multimedia Programming” (“Multimedia-Programmierung”) [MMPf]. In

this annual course about thirty students in teams of 5 to 7 people have to develop a multimedia

application over the period of three months.

2. Project theses where a single student develops a multimedia application over the period of three

to six months.

The applications developed in “Multimedia-Programmierung” were computer games similar like

the Racing Game example in the previous chapters. However, the applications developed in the project

theses are from different domains. In that way it is also shown that MML is not limited to the domain

of computer games.

The following sections describe the projects and summarize the resulting observations.

8.2 External Validation 179

8.2.1 MML in the Course “Multimedia-Programming”

The annual course “Multimedia Programming” consists of a lecture held by Prof. Hußmann, several

exercises, and, as main part, a practical project where students have to develop a multimedia applica-

tion on their own. The exercises and the practical project were supervised from 2004 until 2008 by the

author of this thesis together with student assistants. The main implementation technology applied in

this course is Flash/ActionScript.

While the course in its current form was held first in 2004, MML was mainly applied in 2006 and

2007. None of the participating students had previous knowledge of MML. They were informed that

MML is developed by the Media Informatics Group but not that MML is part of a Phd thesis or that it

is applied in the course for a kind of test.

The observations after each course were integrated in MML. So the students worked with different

versions and on different stages of tool support.

The following paragraphs describe how MML was applied over the different years and the results.

Preliminary Experience in 2004 and 2005 The course in 2004 [MMPa] had no connection to

MML. However, the students had to apply the Extreme Programming paradigm to their practical

projects. They were supported to apply it as far as possible and also had to frequently report to their

supervisors about their experience. Also, a questionnaire was filled out by all participating students at

the end of the project. This provided new insights on problems and benefits when applying Extreme

Programming to a multimedia project. Some of them are mentioned in section 3.2.

The applications to be developed by the students in 2004 were Racing Game applications similar

to the example in this thesis. A restricted version of the final results can be found at [MMPb]. Please

note that all applications (also in the following editions of the course) also provide a multiplayer mode

(which makes a significant part of the overall development effort) which is not available in the versions

on the webpage as it requires an additional multiplayer server.

In 2005 [MMPc], MML was applied the first time but only to a very limited extent. MML itself

was applied only as part of an exercise. The students then had to submit a modeling task with MML as

their homework. All submissions were briefly reviewed and each student received written feedback on

his/her models. This time, the students had to apply in their projects either the Extreme Programming

paradigm or a simplified version of the process proposed by Osswald [Osswald03]. Osswald’s process

is a version of the Rational Unified Process specifically adapted for multimedia applications (see

sec. 3.1).

Application and Questionnaire in 2006 In 2006 [MMPd], MML was applied in exercises and as

homework as well. But this time the students also had to use MML in the practical project. Altogether

35 students took part in the practical project in six teams of six to seven students each. Each team

had to apply a given development process which was an adapted version of the process from Osswald

based on the experience from 2005. It is depicted in figure 8.3. After each phase a milestone was

defined which had to be met by the students to ensure that they adhere to the process.

According to the process (fig. 8.3), each team first had to plan the team organization (communi-

cation, infrastructure, etc.) and to fix the main agreements in a written document. Subsequently, they

had to find ideas how to realize the application in terms of the gameplay and the overall theme for the

visual design. These ideas had to be presented to the supervisors by created prototypes. Additional

prototypes were created to get an idea on the implementation and the required algorithms.

On that base, each team had to design the application in terms of an MML model which was

then discussed with their supervisor and, if necessary, revised. They had to use all kinds of MML

180 8. Validation

Phase 1:
Strategy

Phase 2:
Creation

Phase 3:
Conception

Development of Global Goals
Finding Creative Ideas

Graphical Realization
Technical Realization

Time und Quality Management

Iteration 1 2 3 4 5

Overall
Planning:

Goals, Team,
Size...

Brain-
storming,
First small
Prototypes

First Model Iterative
improvements of
model and resulting
implementation

Modeling the Application

Filling the gaps in the
code resulting from
the model (leads to
first version)

Figure 8.3: Development process for the practical project in 2006

models, i.e. Structural Model, Scene Model, Presentation Model, and Interaction Model. However,

the Interaction Model was used only for a purely informative description of the interaction concepts

in their application as it is the least supported model type yet (see sec. 6.5).

The students used the MagicDraw-based editor (sec. 6.7) to create and edit their MML models.

The transformations for the mapping into Flash code were not finally implemented to that time. How-

ever, the framework proposed in section 7.2 for structuring Flash was already available. There was

a written documentation for the framework and an example project which students could start with.

So the students could manually map their MML models into a Flash implementation. However, using

this framework was optional for the students.

The task was to develop a ‘Jump and Run’ game with multiplayer support. Besides others, the

main requirements were:

• Animated characters,

• collision detection of animated characters with walls, platforms, bonus objects etc.,

• a camera which shows the current part of the level and moves with the player’s character,

• different kinds of bonus objects and obstacles,

• a singleplayer mode and a multiplayer mode including chat functionality, and

• different screens for menu, options, help, highscore, etc.

Figure 8.4 shows some exemplary screenshots from one of the six results. All results can be found

at [MMPe] (the multiplayer mode is disabled).

An important result from the project were the general observations on the usage of MML, what

worked, and what needed to be improved. Problems with the modeling language itself, like missing

expressiveness, were collected in a list and considered in the next version of MML. An example issue

is that Sensors are not always children of a Media Component but can also be assigned to a Media

Instance in a Scene (see sec. 6.4.3).

After the project was finished, the students had to answer a questionnaire about

• their previous experience on programming and development,

• the usage of MML in their project,

8.2 External Validation 181

(a) (b)

(c) (d)

Figure 8.4: Screenshots from the result of Team 1 in 2006.

• the MagicDraw-based modeling tool for MML,

• the framework for structuring Flash applications, and

• their opinion about the applicability of MML.

It is attached in appendix D (in German language). The participants had to answer the questions

in the questionnaire (except those on their previous experience) by stating their agreement to given

statements. Thereby, a Likert Scale was used from 1 to 5 with the meaning: 1 = ’Strongly disagree’,

3 = ’Neither agree or disagree’, and 5 = ’Strongly agree’. The questionnaire was answered by 27

students.

The main findings are (values in terms of the Likert Scale):

• The respondents found a design phase in general useful (average 4,2).

• Students who used the proposed Flash framework (usage > 2) found that it is of high quality

(average 4,2)

• Compared to the overall project time, the estimated percentage required for modeling was rel-

atively low. Some critical students stated a implausible high percentage value like 70 percent.

However, the median value is still (only) 5 percent.

It turned out that students had very different opinions about the development process with MML.

The resulting average of the most answers was slightly positive (average values slightly above 3) but

without significant findings. Also, no correlation was found between the stated previous experience

on programming and development and the grading of MML.

The students also had the possibility to add own comments. Again, some comments were very

positive about MML while others were very critical against it. Critical comments included that it

is difficult and takes too much effort to plan the application in such a level of detail like in MML.

Students who added positive comments to the questionnaire stated that they found MML helpful to

182 8. Validation

plan the application, structure the system, and distribute the development tasks within the team.

Application in 2007 In 2007 [MMPf], MML was used again in the exercise and in the project.

Seven teams with altogether 37 students participated the project. The development process, the usage

of the modeling language, and the usage of Magic Draw was analogous to 2006. However, this

time the ATL transformations were already available to automatically generate Flash code skeletons

from the models (see sec. 7). However, the students were allowed to decide themselves whether they

wanted to use the automatic transformation or not. Four of the seven teams (team3, team 4, team 5,

team6) asked for automatic code generation. As executing the ATL transformations requires some

basic knowledge of ATL, it was executed by the author of this thesis. All teams had to submit their

models and those teams interested in code generation received the resulting code.

The task that year was a minigolf game with multiplayer mode. The basic requirements were as

follows:

• mechanism to control the hits with the club,

• realistic simulation of ball physics like gravity,

• the courses should simulate different heights (e.g. ramps and stairs),

• different kind of obstacles including moving obstacles, elements to accelerate or slow down the

ball, etc.,

• singleplayer mode with at least 12 holes,

• multiplayer mode where players can interact like placing obstacles on the course, place bets for

the next hole, etc., and

• different screens for menu, options, help, highscore, etc.

Figure 8.5 shows screenshots of some of the resulting games. One result was even published on

the website of München TV, a local TV station [Wie].

The experience in that year was that there were rarely problems with the modeling language itself.

One expected problem for the code generation was that the simple modeling tool based onMagicDraw

does not provide support to create valid models. Surprisingly, it took only little effort to generate code

from the models received from the teams. Problems were mainly caused by incomplete information

about Domain Classes, like missing or undefined attribute types, missing names of association ends,

or artifacts which unintentionally were deleted only from the diagrams but not from the model, etc.

Such mistakes seem not to indicate conceptual problems. However, it should be mentioned that one

of the seven teams had general problems with the modeling phase and needed detailed help from the

supervisor to finally create a meaningful model.

Unfortunately, the students did not make use of the generated code or the proposed Flash frame-

work that year. All teams which asked for automatic code generation stated that they first planned

to use this opportunity, as it was for free. However, as the resulting code consists of a large amount

of files and folders (see sec. 7.2) they were concerned that it would take too much effort to learn the

structure. They also stated, that it is very difficult, in particular for team members without previous

knowledge of Flash, to learn Flash and the generated structure in parallel. Nevertheless, some students

who are more interested in modeling later asked for future topics on MML and performed on their on

initiative a project thesis in the context of MML.

In general, it was conspicuous, that in this year the teams, independent from MML, did not make

use of tools or structuring mechanisms beyond the Flash authoring tool. For instance, in 2006 almost

all teams used third-party Eclipse plugins for programming the ActionScript code. They also made

heavy usage of structuring mechanisms like the proposed framework for Flash as well as own ideas

8.2 External Validation 183

(a) (b)

(c) (d)

Figure 8.5: Screenshots from different results in 2007.

to structure the code in a modular way. In contrast, in 2007 only one team used the Eclipse plugin

and most teams used a much more monolithic structure for their application. There was no specific

reason found for this difference. At least, this shows that even with a large number of participants the

influencing factors for such projects are too complex to generalize the experience in general.

8.2.2 MML in Project Theses

Besides the application in “Multimedia-Programming”, MML was also applied in several project

theses. In these theses the students modeled an application using MML and used the transformation

into code for the final implementation. The applications had to be developed for third-party customers

who were frequently in contact with the students. So, the students’ main motivation was the resulting

product itself and to fulfill the customer’s requirements – not the use of MML.

The projects described here were implemented with Flash/ActionScript. The following paragraphs

show the three projects in chronological order.

The StyleAdvisor for a Munich Hairdresser Kraiker [Kraiker07] developed an application for a

Munich hairdresser called StyleAdvisor. Its purpose is to determine the best fitting color scheme for

the user in terms of clothing, jewelery, and make-up. It mainly uses text and images to provide the

user with several questions and calculates from the answers the user’s color scheme. Figure 8.6 shows

a screenshot from the application.

184 8. Validation

Figure 8.6: Screenshot of the StyleAdvisor application for a hairdresser.

The entire code generated from the MML models was used for the final implementation with-

out noteworthy problems (see discussion in [Kraiker07]). In his final project presentation the student

reported that he actually was surprised about the good result the code generator produced from the

models. He also had the feeling that the model-driven process with MML and automatic code gener-

ation saved an significant amount of time compared to manual implementation.

An Authoring Tool for the “Unterrichtsmitschau” In his project thesis [Kauntz07] Kauntz de-

veloped an authoring tool for the group for Unterrichtsmitschau und didaktische Forschung (short:

Unterrichtsmitschau; [Unta]) at the Department für Pädagogik und Rehabilitation (department for

pedagogy) at the University of Munich. This group produces, amongst others, multimedia learning

applications for pedagogues and teachers. The applications are commercial products and can be or-

dered via online shop [Untb].

Figure 8.7 shows an example for such an application (here from taken from [Jungwirth and

Stadler03]). It consists of different regions and tabs containing different kinds of learning content.

The most important content are the videos which show for instance a teaching lesson in a school.

The videos are accompanied by a transcript which runs synchronously to the videos but can also

be viewed or printed independently from the videos. Other content is for instance explanations of

important observations from the video or control questions.

The task in [Kauntz07] was to develop an authoring tool which supports the Unterrichtsmitschau

for the production of such applications. Thereby, it should fulfill the following requirements:

• import of text documents, images, and videos,

• create a hierarchical structure for the application,

• define different layouts for the application,

• define the synchronization between the videos and the transcript, and

• store the applications in a non-proprietary format.

Figure 8.8 shows screenshots from the authoring tool. Figure 8.8a show the main screen of the

8.2 External Validation 185

Figure 8.7: Example for a learning application with transcript.

tool. The center area shows the learning application under development. Some parts can be edited

directly in the center screen and some with help of the items in the toolbar on the left hand side.

Figures 8.8b-8.8d show dialogues for creating sections (in the learning application to be created),

importing documents, and synchronizing videos and transcripts.

To a large extent the project thesis was supervised by an external supervisor from the Unter-

richtsmitschau. The author of this thesis provided supervision for the development process itself but

was not involved in the requirements specification for the tool. Those were elaborated by Kauntz in

cooperation with his external supervisor who was the “customer” for this project. Kauntz used several

techniques for the requirement analysis, including (see [Kauntz07] for details):

• ConcurTaskTrees (see sec. 4.1.2),

• detailed Use Cases (including preconditions, postconditions, basic course of events, etc.),

• Storyboards, and

• a simple user interface prototype (click-dummy) implemented with Flash.

Subsequently, the application design was specified using MML models. The models were trans-

formed into code skeletons for Flash/ActionScript which were then finalized as described in section 7.

The authoring tool uses mainly Media Components which are generated at runtime. In these cases, the

generated placeholders were just deleted and, instead, code was added to the generated ActionScript

classes which creates or loads the Media Components at runtime. [Kauntz07] reports that the final im-

plementation is very close to the MML models. Also, there was no need to change the generated code

structure. Similar like Kraiker (see above), Kauntz had the feeling that the process with MML was

significantly faster than if he would have had to plan and implement application structure manually.

CMD Tutorial for Siemens Finkenzeller [Finkenzeller08] developed in a tutorial for an existing

application for customer relationship management at Siemens called Corporate Master Data (CMD)

. The tutorial is called CMD Tutorial. It shows the different screens of CMD and explains them. The

user can also click directly on user interface elements in the depicted screens which opens additional

help for the selected element.

186 8. Validation

(a) Main screen (b) Creating a main menu item

(c) Importing a document (d) Synchronizing a video

Figure 8.8: Screenshots from the authoring tool for the Unterrichtsmitschau.

Figure 8.9 shows a screenshot of the application. The buttons on the left hand side enable navigat-

ing between the different chapters. The center area shows a part of a screen from the CMD application

while the right hand side shows the corresponding explanations.

This application provides only a small degree of interactivity and application logic; only naviga-

tion and the possibility to select elements in the images of CMD. It was specified as MML model

from which code was generated. However, in such cases the resulting very modular code structure is

unnecessary. Thus, Finkenzeller implemented two versions: one manual implementation for Siemens

with a much more simplified structure (e.g. a single FLA file for the whole application instead of one

FLA file for each Scene) and one prototype from the generated code to demonstrate that the gener-

ated structure is basically also sufficient for such a kind of application. Beside the complexity of the

generated code, no other problems with MML occurred.

This case shows that the code structure generated from the models is not optimal for all kinds of

applications. As described in section (sec. 7.2.1) the goal for the proposed Flash framework used as

target structure for the transformation was a high degree of flexibility and modularity to support large

and complex applications. It is possible, of course, to create an alternative transformation which maps

8.3 Internal Validation 187

Figure 8.9: Example for a learning application with transcript.

an MML model into a Flash application with a simple structure. This can be useful for quite “simple”

applications like the CMD Tutorial but also, for instance, for applications on target platforms with

limited hardware resources. A concrete example for such an alternative transformation is presented

in section 8.1.3 for the example platform Flash Lite (it was not available at the time when the CMD

Tutorial was developed).

Nevertheless, the project also shows that MML itself can also be applied for applications like the

CMD Tutorial.

8.2.3 Conclusions

The projects in multimedia programming enabled to gain practical experience on the development

with MML. However, the experience from these projects confirms the expected problems explained

in section 8: It is indeed very hard to validate a complex development approach like MML in academic

context. Due to the large amount of influencing factors it is hardly possible to generalize the observed

results.

Nevertheless, the observations made during the usage of MML by many different external people

were considerably helpful to improve and refine MML. During the projects, no fundamental problems

occurred with MML. Minor problems observed on single modeling concepts have been taken up and

considered for the MML version presented here. The proposed framework for Flash applications was

graded very well by all participants who used it. Also the transformation itself worked for all models

it was applied on. Altogether, this provides at least a positive indication for the general feasibility of

MML.

8.3 Internal Validation

In section 8, two feasible validation techniques have been identified for internal validation: validation

against given criteria and validation compared to other approaches.

Evaluation against given criteria is a common technique for modeling languages. On the one

hand, existing literature provides some quality criteria for modeling languages. Thus, section 8.3.1

188 8. Validation

examines whether they are fulfilled by MML. On the other hand, several goals and requirements to be

fulfilled by the solution have been elaborated during this thesis. They are examined in section 8.3.2.

Validation compared to other approaches can only be performed here on a theoretical base by

a brief comparison to existing modeling languages based on the related work from chapter 4. It is

presented in section 8.3.3.

8.3.1 Comparison to General Criteria for Modeling Languages

The existing literature provides several lists or catalogs of criteria to be addressed by modeling lan-

guages. An often cited work is the Cognitive Dimension Framework by Green [Green and Petre96,

Green00]. It provides a framework to evaluate the usability of visual artifacts in general and has been

applied in particular to visual languages in Software Engineering [Green and Petre96, Green00, Black-

well et al.01].

While this work addresses mainly the visual aspects of a language, other work focuses more

specifically on modeling languages and addresses in addition aspects like the language definition,

ontological aspects, etc., [Paige et al.00, Shehory and Sturm01]. A very comprehensive “evaluation

schema for visual modeling languages” is proposed in [Frank and Prasse97] (in German language). It

orders the criteria into four classes: Language description, language concepts, language application,

and general criteria. The authors discuss the criteria and how they should be addressed by a modeling

language. They also provide some recommendations how to evaluate the criteria for a given modeling

language.

The schema from [Frank and Prasse97] is used in the following to evaluate MML. Each issue in

the list (denoted in italics) represents a criteria from [Frank and Prasse97] to be supported of fulfilled

by a modeling language. The order of the list items corresponds to the table on pages 41-44 in [Frank

and Prasse97]2. Each issue is followed by a statement how it is addressed in MML. For a general

discussion of each issue please refer to [Frank and Prasse97].

1. Description of the modeling language
1. Definition

1. The type of the grammar or metamodel used to define the language (if any)
MML is defined by a standard-compliant metamodel. It is compliant to MOF and to Ecore.

The latter is demonstrated by the EMF-based implementation

2. Documentation:

1. Documentation of the language specification
The MML metamodel is shown in this thesis.

2. User documentation
MML is described in this thesis by a textual description.

2. Language
1. Language Structure

1. The language can be monolithic or consist of different parts (“sub-languages”). A com-
mon practice in metamodel-based languages is to divide the metamodel into several sub-
metamodels
MML uses the described technique for metamodels: The overall metamodel consists of sev-

eral sub-models for the Structural Model, the Scene Model, the Presentation Model, and the

Interaction Model.

2. Modeling Concepts:

2The criteria have been translated into the English language here

8.3 Internal Validation 189

1. Object-oriented concepts
The MML Structure Model is based on UML class diagrams and supports all basic object-

oriented concepts. The concept of modeling Media Components is derived from UML Com-

ponents.

2. Concepts for modularization of models
The Structure Model in MML supports the same modularization concepts like UML. It is

possible to us packages to structure the Domain Classes if necessary. If necessary, Composite

Scenes can be used to structure the SceneModel. The PresentationModel and the Interaction

Models are structured by the Scenes.

3. Concepts for modeling the application’s dynamic behavior
The coarse-grained behavior within a Scene is described in the Interaction Model. The

detailed behavior of Domain Classes is explicitly not part of the model as it is intended to

implement it manually for the target platform. Basically, as the MML reuses UML, it is

possible to add UML concepts to model the behavior of Domain Classes

4. Concepts for modeling concurrency and parallel processing
Can be modeled in Interaction Models but is not specifically supported in MML yet.

5. Concepts for process-oriented modeling, like business processes
Basically supported by the Interaction Model.

6. Integration of modeling concepts
The integration of all modeling concepts is defined in the metamodel and in section 6.6.

3. Notation:

1. Diagram types to visualize different aspects of the application
Each model inMML is supported by a diagram type of its own, i.e. Structure Diagram, Scene

Diagram, Presentation Diagram, and Interaction Diagram. They provide different views on

the system analogous like in other modeling approaches (like OMMMA, sec. 4.3.2).

2. Notation of diagram elements and resulting usability of the modeling language
MML reuses as much as possible established existing notations. New visual icons for me-

dia components have been evaluated in first user tests. The notation for inner properties of

Media Components is partially taken from UML Components (different compartments, Me-

dia Artifacts, etc.) and from Scene Graphs (inner structure). A definitive evaluation of the

notation for Media Components would be a useful task for future work.

3. Annotations
MML supports to add comments to any kind of model element, like UML.

3. Application
1. Views

1. User’s View – support for communication between developers and tool support
MML is designed in such a way that all information of a model can be visualized in the

diagram and thus also in print-outs. It is possible to draw MML diagrams by hand (e.g. on a

paper or whiteboard for discussions). MML is supported by a visual modeling tool described

in section 6.7.

2. Meta view – extension and specialization of the language
MML is defined as explicit metamodel and is intended to be combined with other ap-

proaches. This issue is briefly discussed in section 10.3.

2. Purpose

1. Purpose and intended coverage of the modeling language The purpose and intended cover-

age of MML are defined in section 5.1.1.

3. Development tasks:

190 8. Validation

1. Analysis
MML aims not to provide support for an analysis phase. The relationships to typical artifacts

from an analysis phase are explained in section 6.6.1.

2. Design
As explained above, section 6.6.1 describes how MML models are created starting with

the results from the analysis phase. MML enables to specify the application so that it is

possible to derive the implementation from the models (see transformation in section 7 and

transformations for other platforms in section 8.1).

3. Implementation
MML supports the implementation by the transformation into code skeletons. Section 7.4

describes how to work with the code skeletons.

4. Verification and Validation Due to the usage of concepts from Model-Driven Engineering,

it is possible to validate models using OCL constraints. [Shaykhit07] (a diploma thesis

supervised by the author of this thesis) demonstrates this by applying an Eclipse OCL plugin

[Ecla, Damus07].

5. Integration of concepts for different phases
See sections 6.6.1 and 7.4.

4. General criteria
1. User-related criteria:

1. Feasibility of the modeling language
The feasibility is demonstrated by the running example in this thesis and the projects in

section 8.2.

2. Clearness and understandability of the language and the resulting models
Clearness and understandability are addressed by the extensive reuse of existing established

modeling concepts. The student projects in section 8.2 have been used to test the clearness

and understandability with external participants.

3. The language should be adequate compared to its purpose
A comparison to the goals of MML is provided in section 8.3.2.

4. Models can be validated compared to the reality to be modeled
The automatic transformations into code can help to find out whether a model specifies a

system as intended.

5. Expressiveness of the modeling language
The examples in student projects (sec. 8.2), the coverage of different kinds of multimedia

applications (sec. 8.3.3), and the possibility to generate code for different platforms (sec. 8.1)

indicate that the language is expressive enough to meet the goals of this work.

2. Model-related critera:

1. Abstract syntax and semantics must not be ambiguous
The transformations from MML models to code help to avoid ambiguousness as they indi-

rectly define the meaning of a model element.

2. The language should support consistency of the models
The abstract syntax in the metamodel and the well-formedness rules aim to some extent to

contribute that the models are consistent.

3. Adequate degree of formalization
The transformation into code indirectly provides to some degree a formal definition of

MML’s semantics.

4. Integration of the modeling concepts
The integration of models is described in the metamodel and in section 6.6.

8.3 Internal Validation 191

3. Economical criteria:

1. Reusability of language elements and model elements
Language elements can be reused as they are defined in an explicit metamodel according

to the concepts of Model Driven Engineering (see sec. 8.3.2). Within the models (and the

resulting code) itself, MML provides explicit support to reuse elements from the Structural

Model in multiple Scenes. Reuse of user interface elements is not supported yet. A possible

extension would be to allow e.g. a UIContainer to be reused in multiple PresentationUnits
(see sec. 6.4.2).

2. Extensibility of the modeling language
This issue is briefly discussed in section 10.3.

Altogether, the list shows that MML addresses all criteria. Two minor issues have been identified

for possible future work on MML:

• Find possible alternative notations for Media Components (beyond the icons) and evaluate them

in user tests (issue 2).

• Support for reuse of user interface elements like in other existing user interface modeling ap-

proaches (issue 1).

8.3.2 Comparison to the Goals of This Thesis

This section examines whether MML fulfills the goals and requirements defined throughout this thesis.

Fulfillment of Basic Goals Section3.3 defined three general goals for MML (page 34). They are

fulfilled as follows:

1. Integration of media design, user interface design, and software design into a single, consistent
modeling approach.
The modeling language integrates these three areas. This is illustrated in figure 6.25.

2. A level of abstraction which enables code generation but ensures a lightweight approach.
Section 7.3 demonstrates that the level of abstraction in MML is sufficient for code generation.

In addition, section 8.1 provides transformations to other target platforms.

The approach is ‘lightweight’ in that way that the models contain only information about the

overall application structure while those application parts which are very tedious to model (like

the detailed application logic, user interface layout, and the media design etc.) are not part of

the models. They have to be implemented directly in the authoring tool.

3. Advanced integration of authoring tools.
The integration of authoring tools is demonstrated in section 7.

Thus, all the basic goals are fulfilled by MML.

Coverage according to the Classification for Multimedia Applications Table 2.1 in section 2.4

provides a classification of multimedia applications. This section examines to which extent the iden-

tified spectrum of multimedia applications is covered by the examples presented in this thesis.

In table 8.1, the examples from the external validation (sec. 8.2) were added to the table (see the

highlighted classes).

192 8. Validation

Directive

Authoring
Tool

Authoring
Tool Unter-
richtsmitschau

CSCW System
City-building
Game

Electronic
Circuit Simu-
lation

Proactive

Car
Configurator

Navigation
System

Video
Conference

Car Racing
Game

Games from
„Multimedia-
Program-
mierung“

Flight
Simulator

Reactive

Online Shop Encyclopedia

StyleAdvisor

Media Player Medical
Course
CMD Tutorial

Interactivity /
 Domain Business Information Communication Edutainment Education

Media Origin: Received
Designed
Generated

D

D

D

R G

GG

G

G D

DD R

D

D

DD G

R

R

RR

R
D
G

Table 8.1: Coverage of the examples from section 8.2.

The table shows that the examples presented in this thesis cover all three degrees of interactivity

and at least four of the five application domains. Moreover, they cover all three kinds of ‘media

origin’. Finally, they cover also all media types, except 3D animation:

• Video is covered by the authoring tool for the “Unterrichtsmitschau”,

• Sound is covered by the various games from “Multimedia-Programmierung”,

• 2D animation is covered by the games from “Multimedia-Programmierung”,

• Image is covered by the StyleAdvisor, the CMD Tutorial, and the games from “Multimedia-

Programmierung”, and

• Graphics is covered by the games from “Multimedia-Programmierung”.

3D animation is not covered yet as it is not supported by Flash. However, the work in [Vitzthum08]

has already demonstrated that it is feasible to generate useful code skeletons for 3D formats like

VRML [ISO97a] or X3D [ISO04].

Altogether, the MML modeling examples from external evaluation cover all values (except 3D) of

all four facets from the identified classification for multimedia applications. This indicates that MML

is basically adequate to model any kind of multimedia application.

Comparison to Requirements of Model-Driven Engineering MML aims to comply to the con-

cepts of Model-Driven Engineering (MDE; also Model-Driven Development, MDD; see sec. 3.4).

The current working definition for the MDA (as a possible realization of MDE) from page 37 claims

the following requirements:

• Usage of at least one modeling language
This is addressed with MML.

• MOF-compliance of the modeling languages
MML is complaint to MOF. This is demonstrated by the implementation as Ecore metamodel

8.3 Internal Validation 193

Java/Piccolo
Model (PSM)

Flash Model
(PSM)MML

Meta-
model

Flash
Meta-
model

Java/
Piccolo
Meta-
model

Flash Documents/
ActionScript Code

Java/Piccolo
Code

ATL
MML2Flash

MML
(PIM)

ATL
MML2Flash

Lite

ATL
MML2Java

MML
Flash2String

ATL
Java2String

Figure 8.10: MML in terms of the Model Driven Architecture.

(using the with the Eclipse Modeling Framework, see sec. 6.7) which is an implementation of

E-MOF (see [Gruhn et al.06]).

• Automatic transformation.
The automatic transformations is implemented with ATL (sec. 7.3).

Figure 8.10 applies the models and transformations presented in this thesis to the MDA framework

from figure 3.33.

Thus, MML is compliant to MDA and hence to MDE.

8.3.3 Comparison to Other Approaches

Section 4 has presented various modeling approaches which cover one or more aspects of interactive

multimedia applications. It turned out that none of the existing approaches aims to cover multimedia

and interactivity and user interface design. Moreover, during the discussion of MML in section 5.2

and chapter 6, several issues for advanced interactive multimedia applications were identified. This

section first lists a collection of these issues. On this base, MML and the existing approaches are

compared.

Requirements for Modeling Advanced Interactive Multimedia Applications The following lists

summarizes requirements identified during the discussions in section 5.2 and chapter 6. They are

formulated independent from MML.

1. Media as First Class Entities: It should be possible to define media as first class entities as

the existence of specific (possibly complex) media can be direct requirement of the application.

3It should be mentioned that the Computation Independent Model (CIM) part of the MDA framework is outside the

scope of MML as MML focuses on the design phase. However, it is basically possible to derive the MML Domain Model

from a computation independent Domain Model or to create a transformation from a computation independent Task Model

onto the Scene Models and the Presentation Model.

194 8. Validation

Moreover, media creation can be a complex and time-consuming process.

Example: The customer wants that a given video and a given 3D graphic is used for a learning

application.

2. Media properties and behavior: In interactive applications it should be possible to specify

manipulations on media.

Example: Set the rotation value of an animation in a racing game or pause a video if a Scene is

canceled.

3. Media can represent parts of the application logic: It should be possible to model that a media

component is directly associated with parts of the application logic, e.g. a Domain Class.

Example: The car animation in a racing game is associated with the Domain Class car. A

direction in a car navigation system is associated with corresponding class or class property.

4. Media as interaction objects: It should be possible to use media objects for the user interaction

Example: The user clicks on video to trigger an action. The user drags an animation to input

some value.

5. Generic media: Media can be generic as the concrete content can be loaded or generated dy-

namically at runtime.

Example: The user can choose between different types of cars loaded from a specific folder. A

museum application shows a piece of art loaded from a database.

6. Instantiation of media: It should be possible to create multiple instances for media.

Example: A 3D component representing a rim in a 3D car configurator is instantiated four

times. An image is used multiple times within an application.

7. Inner structure: It should be possible to specify inner parts of media to modify them indepen-

dently or to use them for interaction.

Example: The wheels of a car animation should turn when the car drives through a corner. A

click on specific region in a map triggers some action.

8. Variations of media: It should be possible to specify different variations for media.

Example: An application provides all videos in different resolutions. An animation containing

text has different should have different sizes according to the text in different languages.

9. Dynamic number of instances: It should be possible to specify that the number of media on the

user interface is calculated dynamically.

Example: The number of cars in a racing game depends on the selected number of players

between 1 and 8. The number of videos in a videos in a video editing software is determined

by the videos provided by the user.

These issues have been identified mainly due to analysis of existing multimedia applications and

to personal experience during the external validation. As MML models aim to provide a certain level

of abstraction there is no proof that this list is complete and it can be extended in the future based on

further experience.

Comparison of Selected Approaches Table 8.2 compares some representative modeling approaches

from section 4: UsiXML [Usi07] as representative for the User Interface Modeling Domain, UWE

[Koch et al.07] from Web Engineering Domain, OMMMA [Engels and Sauer02] as one of the most

influencing multimedia modeling approaches and two document-oriented multimedia modeling ap-

proaches, the one from Boll [Boll01] and Madeus [Villard et al.00]. They are introduced in chapter 4.

The comparison considers the support for application logic, user interface design, and interaction

in general (first three rows in table 8.2). The support modeling for media is considered in more detail

by the identified requirements from the list above.

8.3 Internal Validation 195

User Interface
 Modeling

Web
Engineering

Multimedia Modeling

UsiXML UWE OMMMA Boll MADEUS

MML

User Interface Design Task Model,
Presentation Model

Interaction AIOs, Interaction Model

Application Logic Domain Classes

Media:
Media as First Class Entities Media Components

Media properties and
behavior: Media Interfaces

Media can represent parts of
the application logic: Media Representation

Media as interaction objects: Media Realization

Generic media: Media Artifacts

Instantiation of media: Media Instances

Inner structure: Media Parts, Inner
Properties, Part
Artifacts

Variations of media: Variations

Dynamic user interface: Properties of AIOs
(multiplicity and
visibility); Entry
Operations and
parameters for Scenes

Table 8.2: Comparison of MML and selected other modeling languages.

196 8. Validation

As visible in the table, none of the approaches besides MML covers the user interface, interaction,

application logic together with comprehensive media support.

It should also be kept in mind, that the integration of the listed requirements for advanced media

usage is not trivial. This thesis has shown a detailed discussion of such a integration (see different

abstraction layers in fig. 5.9 and 5.14) and provides a resulting consistent modeling concept for them.

To the best knowledge of the author, MML is the only approach which provides such a concept.

The presented comparison regards only the features of the modeling language itself. Regarding

model-driven development for interactive multimedia, including code generation for multimedia au-

thoring tools like Flash, there is (to the knowledge of the author) no existing approach with similar

goals besides MML.

Chapter 9

Outlook: Towards Better Integration of
Software Engineering and Creative
Design

This section gives an outlook on further work addressing a better integration of Software Engineering

and creative design. It generalizes the idea presented in this thesis, to integrate models for systematic

and well-structured software development and visual tools for creative design. Parts of this chapter

are close to [Pleuß and Hußmann07].

9.1 Creative Design in Software Development

It is frequently emphasized during this thesis that multimedia authoring tools play an essential role for

the creative design in multimedia development. However, multimedia is certainly not the only area

where creative design is important. In fact, any kind of interactive application requires to consider

user interface design [Dix et al.03, Shneiderman and Plaisant04] as the user interface often plays a

key role for the application’s success.

A common practice in user interface design is to adopt a User Centered Design [Vredenburg

et al.02] process. It relies on frequent user feedback to interactively elaborate a user interface tailored

to the user’s needs. User feedback is obtained based on different kinds of prototypes like paper

prototypes (in the early stage of the process), user interface mock-ups, and click-dummies (in a later

stage). Such a process is usually performed by user interface specialists with knowledge in interaction

design, graphics design, human perception, psychology, etc. Often, these specialists are not computer

scientists and have only limited knowledge on Software Engineering methods and tools.

Instead, the typical tools in user interface design are drawing tools like Adobe Illustrator [Ill],

image processing tools like Adobe Photoshop [Phoa], authoring tools like Flash (chapter 7), or 3D

graphic tools like 3D Studio Max [3DS]. Usually, many different tools are used throughout the design

process. For instance, first user interface mock-ups are created with Photoshop and later on click-

dummies with Flash.

In practice, the whole process can be quite complex involving different teams, different sub-

processes, and a large number of different tools . Figure 9.1 shows a simplified high level sketch

of the typical process and typical tools in a large user interface design department (about 50 people)

of a very large company. It was elaborated during an analysis of the user interface design process in

198 9. Outlook: Towards Better Integration of Software Engineering and Creative Design

Graphics
Design

Conceptual
Design

Prototype
Implementation

Photoshop
Illustrator

Flash
Java
HTML

Powerpoint
Microsoft Visio
MindManager
…

FreeHand
Cinema 4D
...

Figure 9.1: Simplified user interface design process and used tools in practice (based on [Ziegler08].

this department [Ziegler08]1, co-supervised by the author of this thesis. Ziegler was directly involved

as a team member into the design process and gained her results by personal observation as well as by

a large number of semi-structured interviews.

The advantage of using a large palette of different tools is that designers can select for each task

the most efficient tool. Thereby, it is important that they are used to the tool so that they can quickly

perform their tasks. On the other hand, the tool must be powerful enough to precisely realize the

designer’s creative ideas. However, the drawback is that the different tools are highly heterogeneous.

They provide neither support for cooperative work nor for managing the created artifacts. Moreover,

they use different file formats which are often incompatible.

Thus, handling the large amount of artifacts created over the time can become tedious. Possible

problems are for instance [Ziegler08]:

• The different artifacts have to be managed manually, e.g. by storing them in a common folder

structure.

• Changes in existing artifacts have to be propagated manually or by personal communication to

other collaborators.

• Reuse of parts from existing artifacts is only possible by copy and paste, e.g. by searching for a

specific part of a graphic in one document, cut it, and copy it into another screen.

• Often, results received from a previous step performed with a different tool have to be recreated

again in the next step. A simple example is that user interface screens provided by the designer

have to be manually recreated during prototype implementation.

One of the main ideas in this thesis is to use models and transformations for the integration of

multimedia authoring tools and systematic development. The next section describes a proposal to

generalize this idea like following: models and transformations can be used to integrate various het-

erogeneous tools with a more systematic development.

9.2 Vision: Models as Central Hub

Models are an excellent vehicle for integrating different stakeholders and different views on the sys-

tem during the whole development process. Thus, in the vision described here, models are also used

to integrate the different tools and the resulting artifacts. Thereby the concepts from model-driven de-

velopment, like explicit transformations, are applied for computer-supported transitions between tools

1Unfortunately, this document in confidential.

9.3 First Steps 199

Model

Flash: Click-Dummy

Photoshop: Mock-Up
GUI Builder:

Functional Prototype

3D Authoring Tool:
3D Graphics

IDE: Code

Flash: Multimedia UI

Transformations

Figure 9.2: Models as central hub in the development integrating different specific development steps

and tools.

and artifacts. This ensures consistency between the artifacts produced by heterogeneous tools and fur-

thermore reduces effort. For instance, the results from previous development tasks can automatically

be transformed into skeletons for subsequent tasks instead of taking them over manually.

Figure 9.2 visualizes this idea on models acting as a “central hub”. The upper part shows ex-

amples for earlier development phases where prototypes play a central role in interactive systems

development. For example, Photoshop mock-ups can be used to select first ideas about the system to

be developed. When this step is finished, transformations are used to transmit the relevant informa-

tion from the mock-ups into the model where it can be used for further development steps. A simple

example for extracting information from Photoshop mock-ups is provided in the next section.

A possible subsequent step could be creating Flash click-dummies for gaining more specific user

feedback. During this step, additional information about the system is added which should again

be kept in a central place, i.e. in the model. Thus, it is important to allow transitions into both

directions: extraction of relevant abstract information from the tools (kind of “reverse engineering”)

and generation of artifacts for the desired tools based on the existing model information. The ideal case

would be seamless transitions between the model and different heterogeneous tools, like in Round-

Trip Engineering (see sec. 7.3.1).

The lower part of figure 9.2 shows examples for later development steps, such as implementation

of a final release. Here, the kinds of tools are more diverse and depend on the application domain

and the target platforms. Models can be used to distribute the final implementation on different tools

optimized for realizing different aspects of the system. For example, in multimedia development with

Flash, it is a common practice to develop the code for system’s application logic within an external

programming IDE (like FDT [Powerflasher]), instead of using the Flash authoring tool’s built-in code

editor.

9.3 First Steps

An example for a transformation from a model into code skeletons for a specific tool (Flash) is already

shown in this thesis (sec. 7). Another example for generating code skeletons for 3D authoring tools

can be found in [Vitzthum08]. This section complements this with two additional examples. The first

example sketches a transformation in the opposite direction: Extracting information from Photoshop

mock-ups into a model. The second example is more elaborated and presents a partial application of

200 9. Outlook: Towards Better Integration of Software Engineering and Creative Design

the overall vision in a real-world user interface design project.

Extracting Information from Photoshop Photoshop is an image editing software which can be

used for the very fast creation of user interface mock-ups, i.e. images to present possible ideas about

the user interface to the customer or the target user group. Based on the mock-ups the most promising

approaches are selected and can then be further refined using more advanced prototypes e.g. created

with Flash or Java2

The information shown in the mock-up includes for instance the user interface elements which

should be provided on a specific screen. It also contains information about the intended layout, the

size of elements, the color scheme, etc. However, since the mock-ups are just images (raster graphics),

this information is not stored within the mock-ups. Instead, it has to be recreated manually in later

steps, e.g. when creating a click-dummy with Flash or Java.

Thus, the idea is to extract the relevant information from the mock-ups and store it in a model.

For this purpose, the designers working with Photoshop have to obey a convention: Each part of

the image which represents a user interface element is placed on a layer of its own. Indeed, it is a

common practice to use a large number of layers when working with Photoshop, as otherwise it is

not possible to move elements later. By convention, the designer has to specify a specific layer name

to each layer containing a user interface element which indicates the element’s name and type (for

instance <name>_<type>). The possible types can be for instance taken from user interface modeling

approaches.

Indeed, introducing an additional convention is to some extent a drawback. However, it is not

necessarily a problem, as designers are basically used to consider conventions and the convention

does not restrict the design or functionality of Photoshop.

Based on this convention, the information can be extracted as follows: Photoshop provides a built-

in command “Save Layers” which causes all layers to be saved on disk in separate files. The resulting

file names then correspond to the layer names which contain by convention the type and the name of

the user interface element. A simple Java application then collects the file names, parses them, and

creates a corresponding model, e.g. a simple kind of user interface model. Moreover, the graphics for

the single user interface elements are stored separately in this way and can be directly reused.

The model is used as base for further development steps, which may include, for instance, trans-

formations to code skeletons for a Flash click-dummy according to the mock-ups.

Application based on XAML The Extensible Application Markup Language (XAML [XAM]) from

Microsoft (briefly introduced in section 4.1.1) is a specification language for concrete user interfaces.

It is used for Microsoft technologies like the Windows Presentation Foundation. Applications with

XAML user interfaces can be interpreted in a for instance in the Silverlight [Sil] plugin for web-

browsers. It is also possible to edit and process them in Microsoft Visual Studio [Vis] and compile

them for .NET applications.

Microsoft has recently developed two tools for user interface design which can be used to create

XAML documents: Expression Design [Expb] is a drawing tool with similar coverage like Photoshop.

Expression Blend [Expa] is an authoring tool for XAML user interfaces. Its functionality is, roughly

spoken, similar to Flash.

Altogether, XAML and the related technologies realize already our vision to some extent: Ex-

pression Design and Expression Blend can be used for various steps in creative design. The results

2Please note that this is a very simple example for illustration purposes compared to a user interface design process like

in [Ziegler08].

9.3 First Steps 201

Graphics
Design

Conceptual
Design

Prototype
Implementation

Powerpoint
Microsoft Visio
MindManager
…

Expression Design
Expression Blend

Aurora XAML Designer

Expression Blend
Visual Basic

XAML

Figure 9.3: Using XAML as “central hub”.

are stored in XAML which can be used even for the final implementation with Visual Studio. This

enables a seamless transition between different tools and different developers.

Such a process was applied in a real-world project in a large user interface design department

in [Ziegler08]. Beside Expression Blend and Expression Design, Aurora XAML designer, a third-

party tool for creating XAML user interfaces, was used. Figure 9.3 shows the resulting situation:

The “Graphic Designers” perform their tasks using Expression Design. Their results are stored in

XAML and can be directly used for the prototype implementation. Due to XAML as “central hub”, all

subsequent changes can be automatically propagated back and forth between the different developer

groups.

[Ziegler08] observed the resulting development process and interviewed the different developers

about their experience. As result, she identified several problems. Many of these problems concern

technical details of the tools, for instance missing functionality compared to Photoshop. As the tools

are new, some of these problems might disappear in future versions.

More problematically was the observed problem, that only some the graphic designers were able

to structure the XAML user interface in such a way that it can be reused for the prototype implemen-

tation. This regards for instance usage of hierarchically nested user interface container components.

This means, that the advanced cooperation based on XAML would require also some learning effort

on conceptual level for the graphic designers. At this point it is hard to predict how difficult this would

be in practice and whether it is realistic or not.

Compared to the vision from section 9.2, XAML also has some drawbacks. First, the technology

is proprietary and restricted to Windows. Second, XAML is only in the broadest sense a modeling

language – it is much more a user interface specification languages. It provides only a low level

of abstraction and covers, in terms of user interface modeling, at most the Concrete User Interface

level. Consequently, [Ziegler08] found no way how to integrate e.g. the “Conceptual Design” into the

XAML-based approach.

Summary Altogether there are still many open questions. The presented vision is certainly not

much elaborated yet. Nevertheless, technologies like XAML show that this is indeed a relevant topic

in industry.

XAML represents an already very comprehensive example. However, the vision as described in

section 9.2 aims for a more general solution based on more profound concepts like standard-compliant

modeling languages and different levels of abstraction. A proposal for a next step can be found in

[Schweizer08] (supervised by the author of this thesis) which proposes to create transformations be-

202 9. Outlook: Towards Better Integration of Software Engineering and Creative Design

tween UsiXML and XAML in both directions and provides a (very first) prototype. A transformation

from UsiXML to XAML can also be found in [Martinez-Ruiz et al.06a].

Chapter 10

Summary and Conclusions

This section provides a summary, lists the contributions, discusses future work and finally draws some

conclusions.

10.1 Summary

This work has presented a model-driven development approach for interactive multimedia applica-

tions. It consists of the Multimedia Modeling Language (MML) (sec. 5 and 6) and automatic trans-

formations into code skeletons for different platforms (sec. 7 and 8.1). MML is platform independent

and bases on existing modeling approaches like UML, user interface modeling approaches, and multi-

media modeling (sec. 4 and 8.3.3). The resulting modeling language provides support for integration

of software design, media design, and user interface design (sec. 6.6). In addition, it allows modeling

advanced concepts of media objects, such as interactivity and dynamic alterations (sec. 5.2). Both,

models and transformations, are defined in compliance to the concepts of Model-Driven Engineering

(sec. 3.3 and 8.3.2).

Several model transformations exist for different target platforms. The most important target

platforms addressed here are multimedia authoring tools. The authoring tool Flash was chosen as

example because it is one of the most important professional platforms for multimedia application

development (sec. 2.3.3). It is possible to automatically generate code skeletons from MML models

which can be directly loaded and processed within the authoring tool (sec. 7.3). Thereby, the overall

application structure and the relationships between its different parts are generated from the models

(sec. 7.2). In contrast, for concrete media objects, user interface elements, and detailed application

logic, only placeholders are generated. The placeholders are filled out in the authoring tool making

use of its powerful support for visual creative design (sec. 7.4). In this way, the strengths of models

(systematic structuring) and authoring tools (creative design) are both combined.

The approach presented here has been carefully validated. This includes demonstration by various

implementations (sec. 6.7, 7.3, and 8.1), practical application in various projects (sec. 8.2), as well as

theoretical examination from different points of view (sec. 8.3.2). In addition, it is shown that MML is

the first modeling language which covers all three aspects to be modeled for an interactive multimedia

application, which are application logic, interactivity, and Media Components (sec. 8.3.3). Moreover,

MML is the first approach integrating existing well-established authoring tools into model-driven

development.

204 10. Summary and Conclusions

10.2 Contributions

In summary, this thesis provides the following general conceptual research contributions:

• Demonstration of a model-driven approach for multimedia applications.

• A set of new requirements for modeling advanced interactive media objects.

• A platform independent modeling language for integrating software design, user interface de-

sign, and media design.

• Integration of multimedia authoring tools in a systematic model-driven approach.

Thereby, the thesis provides the following secondary (technical) contributions:

• AMOF-compliant and platform independent metamodel for interactive multimedia applications

(sec. 5 and 6).

• An ATL transformation into Flash code skeletons (sec. 7.3 and app. C).

• A framework for structuring Flash applications (sec. 7.2).

• A MOF-compliant metamodel for Flash and ActionScript (sec. 7.1).

• An ATL transformation into Java/Piccolo code (sec. 8.1.1).

• A compact classification of multimedia applications from viewpoint of development (sec. 2.4).

10.3 Future Work

Section 9 shows some first steps into a possible area of future work: a better integration of heteroge-

neous tools and model-driven development. However, there are of course still many possible future

steps on MML itself which are briefly discussed in the following.

Refinements on MML During the validation in section 8.3.1 two issues for future work have been

identified:

• Find possible alternative notations for Media Components (beyond the icons) and evaluate them

in user tests.

• Support for reuse of user interface elements like in other existing user interface modeling ap-

proaches.

In addition, several useful extensions on the different MML language parts have been discussed

in section 6:

• Transformation from the Task Model to an initial Scene Model and Interaction Model (“Future

Extensions” in sec. 6.3).

• Extending the SceneModel with support for Composite Scenes (“Composite Scenes” in sec. 6.3).

• Further work on the Interaction Model; its current tool support is still on a more prototypical

stage compared to the other models and it has not been used extensively during the external

validation yet.

Practical Application The most important future step for MML is obviously to gain more practical

experience. Ideally, it should be applied in real-world projects in industrial practice. However, the

most important problem is probably the missing professional tool support. Although the existing

tools are sufficient to use MML in student projects, it is still far away from a really usable and stable

10.3 Future Work 205

professional tool which could be extensively used by other people on their own (i.e. without some

support by the author of this thesis or good previous knowledge on the Eclipse tools). The same

problems holds for many related approaches e.g. from user interface modeling domain [Clerckx

et al.04].

Nevertheless, there is a rapid progress in tool support in Model-Driven Engineering in the last

years. A very favorable fact is that projects like the Eclipse Modeling Project ([Ecld], see sec. 3.4.3

and 6.7) bundle the efforts on tool development for MDE. In the past, it often happened that research

concepts were implemented by different research groups independently and from scratch. This led in

the end to a variety of many incompatible alternative implementations where none of them was really

elaborated enough to help in practice. In contrast, the various Eclipse projects have grown together

and it has already emerged a very powerful collection of compatible and already very stable tools. The

existing tools are continuously extended and refined and make development of custom modeling tools

significantly easier than a few years before. Due to this pleasing situation it indeed becomes realistic

that it is possible to extend and refine the tool support for MML in the next years as MML was, from

start, developed in compliance to these tools.

Combination with other approaches The initial scope of MML (sec. 5.1.1) includes comprehen-

sive support for interactive multimedia combined with the basic concepts from UML and from user

interface modeling. It is thus an obvious opportunity to extend this scope towards additional concepts

from user interface modeling. The MML metamodel was designed with this in mind. For instance,

there is an abstract metaclass Abstract Interaction Object, analogous to other metamodels from user in-

terface modeling area. It is possible, for instance, to extend or replace the current subclasses with those

e.g. from UsiXML (sec. 4.1.2) or to add additional metaclasses for covering context-sensitiveness.

Another useful extension would be a combination with modeling approaches for Web and Rich

Internet Applications, similar like e.g. the combination described in [Preciado et al.08]. Such a

combination has already been discussed with one of the current contributors to UWE (sec. 4.2) and

might be realized in the next time.

General Integration of Different Aspects in User Interface Modeling In general, there are var-

ious kinds of models in user interfaces modeling area, covering different aspects like multimedia,

context-sensitivity, physical objects, etc. Even more aspects may arise in the future due to new in-

teraction techniques or from the area of Ubiquitous Computing. As discussed for instance on the

MDDAUI workshop in 2007 [Pleuß et al.07c], it raises the question how to manage and combine all

the models for these different aspects in long-term.

One possibility is, to agree on a kind of “unified” modeling language, like the UML, which in-

tegrates all these aspects (i.e. supports multimedia and context and physical objects and any other

possible kind of user interface). This would be mainly a matter of organization and is probably af-

fected by many practical problems.

A second alternative is to omit a general integration and instead create over the time many different

Domain Specific Languages (DSL) (see sec. 3.4.1). These DSLs can then be tailored and optimized

for the kind of user interface required in a specific project or for a specific company. In such an

approach, the existing (more general) metamodels from research would probably be used only as

orientation or starting point but could not be directly reused.

A third alternative would be a kind of “construction kit” mechanism: metamodels for various

aspects (like multimedia, context, etc.) are collected in a kind of library together with a common

framework for combining them. Different researchers could contribute with metamodels supporting

206 10. Summary and Conclusions

different or new aspects of user interfaces. The metamodels would have to follow a common structure

or to provide a kind of interface so that they could be combined. Maybe the combination (which

then would still be performed by modeling language specialists – not by end users) could be partially

supported by predefined transformations or some kind of “metamodel weaving”. A similar idea was

for instance proposed for UML Profiles in their early days (see the OMGWhite Paper on UML Profiles

in [Obj99]). Some first libraries for metamodels can be found for instance at [Atlb]. Certainly, such an

approach is currently far away from a practical realization and would require a lot of future research

on MDE and Language Engineering.

10.4 Conclusions

Based on the experiences and results mentioned in this thesis, Model Driven Engineering seems to

be able to fulfill many of its expectations. In the author’s experience, the explicit and declarative

form of metamodels and transformations and the corresponding tools were helpful during the devel-

opment of MML. For instance, maintenance of MML (with currently around 120 metaclasses) was

relatively easy and convenient by just visually editing the metamodel and automatically generating an

implementation and a tree-editor (which is sufficient for testing pruposes) with EMF (see sec. 3.4.3).

Moreover, based on the existing ATL transformation for Flash, students without any previous know-

ledge on MDE were able to create additional transformations (Java/Piccolo, sec. 8.1.1; ActionScript 3,

sec. 7.3) in short time. In the authors’s opinion, models and MDE certainly have the power to become

(as envisioned e.g. in [Bézivin05]) a new basic paradigm for Software Engineering.

Clearly, there are still some limitations. The external validation with students (see questionnaire

on p. 180), as well as personal talks to different people from industry, has shown that – beside many

positive findings – there are still software developers who are very critical against such systematic and

quite “formal” methods like MDE. Such skepticism regarding new approaches from research have

always occurred in Software Engineering – e.g. object-orientation was introduced. On the other hand,

it can be learned the past, that it is certainly useful to prevent overrated expectations. New paradigms

can never be the only “silver bullet” solving all existing problems – there are still some areas where

e.g. object-orientation plays no role or where e.g. procedural programming is sufficient. Likewise,

there will always be projects and situations where MDE is not sufficient or, at least, must be combined

with other approaches.

Certainly, it is of great importance for MDE, that it is not applied in a too isolated and dogmatic

way. Instead, bridges have to be build to other areas so that the strengths of MDE are emphasized

while its limitations are compensated by other solutions. For instance, good user interface design is

essential for an application’s quality. It cannot be the solution for MDE to neglect creative design

or just to discard the established existing methods and tools for user interface design. Instead, it

is necessary to build a bridge to this area. This thesis has shown through very concrete examples

a possible way for such a bridge – towards a better integration of Model-Driven Engineering and

creative design.

Appendix A

Multimedia Taxonomy by Hannington
and Reed

The next page shows the facets and their values of the taxonomy for multimedia applications taken

from Hannington and Reed [Hannington and Reed02].

208 A. Multimedia Taxonomy by Hannington and Reed

 Listing of Multimedia
 Taxonomy by
 Hannington and Reed

Domain Facet
 MM Business Systems

Electronic -
commerce

 Marketing
 Video Brochures
 Virtual Shopping

MM Communication
Systems

Computer-
supported -
collaborative work
MM teleservices

MM Educational
Systems

 Automatic testing
 Distance learning
 Flexible teaching -

materials
 Simulation systems
 MM Entertainment
 Systems
 Infotainment
 Multiplayer -

network games
3D computer -

games
MM Information
Systems

Solution Space facet

Databases
Electronic books
Electronic magazines
Hypertexts
Information kiosks
Interactive art and

performance
Interactive music
Multimedia expert

system
Multimedia presentation
Streaming media
Videoconferencing
…

Delivery Platform Facet
 Online
 Intranet
 Internet
 Offline
 CD-ROM
 Hard-disk -

installation
 Hybrid
 Online/Offline

Security Facet
Access levels
Authorization
Authentication

Digital signatures
 Time stamping
File privileges
Firewall type
Privacy
 Algorithm
 Encryption
 Key system
Password storage
System managed locally
System managed
globally - (remotely)
E-commerce

Transaction -
security

 Secure payment -
processing

…

Navigation Facet

Linear
Non-linear
Hierarchical
Composite

 Non-linear/linear
 Non-linear /

 hierarchical
 Hierarchical/linear

Interactivity Facet (based
on [44])

Passive
Reactive
Proactive
Directive

Interface Facet

Widget
 Menu
 Level
 Button
 Check box
 Text box
 List box
 Dialog box
 Slider
 Form
 …

Programming Requirements
Facet

Static Web page
Database
 Retrieval/storage
 Retrieval only -
 (data warehouse)
Information processing

 Forms (Web)
Scripting

 Client side
 javascript

…
 Server side
 php

…
Expert system
Interface for pre-

existing software
Legacy system
…

Media Facet

Static
 Text
 Graphics
 Photographs
Temporal
 Animation
 Audio
 Music
 Voice
 Sound effect
 Video

Origin Facet
 Acquired
 Repurposed
 Created

State Facet
 Completed
 Demo voice
 Partially rendered
 Sample track
 Space filler
 …

Duration Facet – unit of
measure and classification
of particular durations into
categories would need to be
defined by the classifier
 Long
 Medium
 Short

Size Facet - unit of measure
and classification of
particular sizes into
categories would need to be
defined by the classifier. I.e.
what might be regarded as
small when working on a
project with CD-ROM as
the delivery medium, would
be different from when
developing for a hand-held.
 Large

 Medium
 Small

Format Facet
 Gif
 Jpeg
 Mpeg
 Pdf
 Plain text
 Post script
 Word

…

Operations Facet –
operations performed on
media artefact – reflective
of development phases
 Concept and planning
 Design
 Production
 Testing

…

Design Technique/Artefact
Facet
 Mind map
 Information hierarchy
 Content map
 Navigation chart
 Flowchart
 Prototype
 Storyboard
 Interactive storyboard
 Storybook
 Script
 HDM
 OOHDM
 RMDM
 …

Authoring Tools Facet

Commercial
 Adobe Photoshop
 Authorware
 Corel Draw
 Dreamweaver
 Flash
 Macromedia -

Director
 Netscape -

Composer
 Pro Tools
 Sound Designer
 Toolbook

…
Research

 DEMAIS
 DENIM
 …

Skills Facet
 Actor
 Animator
 Content expert
 Editor
 Graphic artist
 Musicians
 Photographer
 Project manager
 Programmer
 Researcher
 Sound/audio engineer
 Sound designer
 Tester
 Testing supervisor
 Videographer
 Video editor
 Writer

…

Marginal Subjects
Instructional Design Facets
(based on [18])

Instructional Design Model
Facet
 Tutorials
 Drills
 Practice programs
 Simulations
 Instructional games
 Didactic presentations
 Explorations
 Structured
Observations
 Simulated Personal -
 Interactions

Instruction Phase Facet
 Present
 Guide
 Practice
 Assess

Instructional Assessment
Facet

Demonstration
/performance tests

 Problem solving tests
 Recall tests
 Fill-in-the-blank
 Short-answer
 Essay
 Recognition tests
 True-false
 Multiple-choice

Figure A.1: factes and possible values for the taxonomy for multimedia applications taken from [Han-

nington and Reed02].

Appendix B

ActionScript Class MovieClip –
Documentation

B.1 Properties

Property Description
_alpha:Number The alpha transparency value of the movie clip.

blendMode:Object The blend mode for this movie clip.

cacheAsBitmap:Boolean If set to true, Flash Player caches an internal bitmap

representation of the movie clip.

_currentframe:Number
[read-only]

Returns the number of the frame in which the play-

head is located in the movie clip’s timeline.

_droptarget:String
[read-only]

Returns the absolute path in slash-syntax notation of

the movie clip instance on which this movie clip was

dropped.

enabled:Boolean A Boolean value that indicates whether a movie clip

is enabled.

filters:Array An indexed array containing each filter object cur-

rently associated with the movie clip.

focusEnabled:Boolean If the value is undefined or false, a movie clip cannot

receive input focus unless it is a button.

_focusrect:Boolean A Boolean value that specifies whether a movie clip

has a yellow rectangle around it when it has key-

board focus.

_framesloaded:Number
[read-only]

The number of frames that are loaded from a stream-

ing SWF file.

_height:Number The height of the movie clip, in pixels.

_highquality:Number Deprecated since Flash Player 7. This property was

deprecated in favor of MovieClip._quality.

Specifies the level of anti-aliasing applied to the cur-

rent SWF file.

210 B. ActionScript Class MovieClip – Documentation

hitArea:Object Designates another movie clip to serve as the hit area

for a movie clip.

_lockroot:Boolean A Boolean value that specifies what _root refers to

when a SWF file is loaded into a movie clip.

menu:ContextMenu Associates the specified ContextMenu object with

the movie clip.

_name:String The instance name of the movie clip.

opaqueBackground:Number The color of the movie clip’s opaque (not transpar-

ent) background of the color specified by the number

(an RGB hexadecimal value).

_parent:MovieClip A reference to the movie clip or object that contains

the current movie clip or object.

_quality:String Sets or retrieves the rendering quality used for a

SWF file.

_rotation:Number Specifies the rotation of the movie clip, in degrees,

from its original orientation.

scale9Grid:Rectangle The rectangular region that defines the nine scaling

regions for the movie clip.

scrollRect:Object The scrollRect property allows you to quickly scroll

movie clip content and have a window viewing

larger content.

_soundbuftime:Number Specifies the number of seconds a sound prebuffers

before it starts to stream.

tabChildren:Boolean Determines whether the children of a movie clip are

included in the automatic tab ordering.

tabEnabled:Boolean Specifies whether the movie clip is included in auto-

matic tab ordering.

tabIndex:Number Lets you customize the tab ordering of objects in a

movie.

_target:String [read-only] Returns the target path of the movie clip instance, in

slash notation.

_totalframes:Number
[read-only]

Returns the total number of frames in the movie clip

instance specified in the MovieClip parameter.

trackAsMenu:Boolean ABoolean value that indicates whether other buttons

or movie clips can receive mouse release events.

transform:Transform An object with properties pertaining to a movie

clip’s matrix, color transform, and pixel bounds.

_url:String [read-only] Retrieves the URL of the SWF, JPEG, GIF, or PNG

file from which the movie clip was downloaded.

useHandCursor:Boolean A Boolean value that indicates whether the point-

ing hand (hand cursor) appears when the mouse rolls

over a movie clip.

_visible:Boolean A Boolean value that indicates whether the movie

clip is visible.

_width:Number The width of the movie clip, in pixels.

B.3 Operations 211

_x:Number An integer that sets the x coordinate of a movie clip

relative to the local coordinates of the parent movie

clip.

_xmouse:Number [read-only] Returns the x coordinate of the mouse position.

_xscale:Number Determines the horizontal scale (percentage) of the

movie clip as applied from the registration point of

the movie clip.

_y:Number Sets the y coordinate of a movie clip relative to the

local coordinates of the parent movie clip.

_ymouse:Number [read-only] Indicates the y coordinate of the mouse position.

_yscale:Number Sets the vertical scale (percentage) of the movie clip

as applied from the registration point of the movie

clip.

B.2 Properties Inherited from Class Object

constructor:Object Reference to the constructor function for a given ob-

ject instance.

__proto__:Object Refers to the prototype property of the class

(ActionScript 2.0) or constructor function

(ActionScript 1.0) used to create the object.

prototype:Object [static] A reference to the superclass of a class or function

object.

__resolve:Object A reference to a user-defined function that is invoked

if ActionScript code refers to an undefined property

or method.

B.3 Operations

Signature Description

attachAudio(id:Object)
:Void

Specifies the audio source to be played.

attachBitmap(bmp
:BitmapData, depth:Number,
[pixelSnapping:String],
[smoothing:Boolean]):Void

Attaches a bitmap image to a movie clip.

attachMovie(id:String,
name:String, depth:Number,
[initObject:Object])
:MovieClip

Takes a symbol from the library and attaches it to the

movie clip.

beginBitmapFill(bmp
:BitmapData, [matrix
:Matrix], [repeat
:Boolean], [smoothing
:Boolean]):Void

Fills a drawing area with a bitmap image.

212 B. ActionScript Class MovieClip – Documentation

beginFill(rgb:Number,
[alpha:Number]):Void

Indicates the beginning of a new drawing path.

beginGradientFill(fillType
:String, colors:Array,
alphas:Array, ratios
:Array, matrix:Object,
[spreadMethod:String],
[interpolationMethod
:String], [focalPointRatio
:Number]):Void

Indicates the beginning of a new drawing path.

clear():Void Removes all the graphics created during runtime by

using the movie clip draw methods, including line

styles specified with MovieClip.lineStyle().

createEmptyMovieClip(name
:String, depth:Number)
:MovieClip

Creates an empty movie clip as a child of an existing

movie clip.

createTextField
(instanceName:String,
depth:Number, x:Number,
y:Number, width:Number,
height:Number):TextField

Creates a new, empty text field as a child of the

movie clip on which you call this method.

curveTo(controlX:Number,
controlY:Number, anchorX
:Number, anchorY:Number)
:Void

Draws a curve using the current line style from the

current drawing position to (anchorX, anchorY) us-

ing the control point that ((controlX, controlY) spec-

ifies.

duplicateMovieClip(name
:String, depth:Number,
[initObject:Object])
:MovieClip

Creates an instance of the specified movie clip while

the SWF file is playing.

endFill():Void Applies a fill to the lines and curves that were since

the last call to beginFill() or beginGradientFill().

getBounds(bounds:Object)
:Object

Returns properties that are the minimum and max-

imum x and y coordinate values of the movie clip,

based on the bounds parameter.

getBytesLoaded():Number Returns the number of bytes that have already

loaded (streamed) for the movie clip.

getBytesTotal():Number Returns the size, in bytes, of the movie clip.

getDepth():Number Returns the depth of the movie clip instance.

getInstanceAtDepth(depth
:Number):MovieClip

Determines if a particular depth is already occupied

by a movie clip.

getNextHighestDepth()
:Number

Determines a depth value that you

can pass to MovieClip.attachMovie(),

MovieClip.duplicateMovieClip(), or

MovieClip.createEmptyMovieClip() to ensure

that Flash renders the movie clip in front of all other

objects on the same level and layer in the current

movie clip.

B.3 Operations 213

getRect(bounds:Object)
:Object

Returns properties that are the minimum and max-

imum x and y coordinate values of the movie

clip, based on the bounds parameter, excluding any

strokes on shapes.

getSWFVersion():Number Returns an integer that indicates the Flash Player

version for the movie clip was published.

getTextSnapshot()
:TextSnapshot

Returns a TextSnapshot object that contains the text

in all the static text fields in the specified movie clip;

text in child movie clips is not included.

getURL(url:String, [window
:String], [method:String])
:Void

Loads a document from the specified URL into the

specified window.

globalToLocal(pt:Object)
:Void

Converts the pt object from Stage (global) coordi-

nates to the movie clip’s (local) coordinates.

gotoAndPlay(frame:Object)
:Void

Starts playing the SWF file at the specified frame.

gotoAndStop(frame:Object)
:Void

Brings the playhead to the specified frame of the

movie clip and stops it there.

hitTest():Boolean Evaluates the movie clip to see if it overlaps or in-

tersects with the hit area that the target or x and y

coordinate parameters identify.

lineGradientStyle(fillType
:String, colors:Array,
alphas:Array, ratios
:Array, matrix:Object,
[spreadMethod:String],
[interpolationMethod
:String], [focalPointRatio
:Number]):Void

Specifies a line style that Flash uses for subsequent

calls to the lineTo() and curveTo() methods until

you call the lineStyle() method or the lineGradi-

entStyle() method with different parameters.

lineStyle(thickness
:Number, rgb:Number, alpha
:Number, pixelHinting
:Boolean, noScale:String,
capsStyle:String,
jointStyle:String,
miterLimit:Number):Void

Specifies a line style that Flash uses for subsequent

calls to the lineTo() and curveTo() methods until you

call the lineStyle() method with different parame-

ters.

lineTo(x:Number, y:Number)
:Void

Draws a line using the current line style from the

current drawing position to (x, y); the current draw-

ing position is then set to (x, y).

loadMovie(url:String,
[method:String]):Void

Loads a SWF, JPEG, GIF, or PNG file into a movie

clip in Flash Player while the original SWF file is

playing.

loadVariables(url:String,
[method:String]):Void

Reads data from an external file and sets the values

for variables in the movie clip.

localToGlobal(pt:Object)
:Void

Converts the pt object from the movie clip’s (local)

coordinates to the Stage (global) coordinates.

moveTo(x:Number, y:Number)
:Void

Moves the current drawing position to (x, y).

214 B. ActionScript Class MovieClip – Documentation

nextFrame():Void Sends the playhead to the next frame and stops it.

play():Void Moves the playhead in the timeline of the movie

clip.

prevFrame():Void Sends the playhead to the previous frame and stops

it.

removeMovieClip():Void Removes a movie clip instance created with dupli-

cateMovieClip(), MovieClip.duplicateMovieClip(),

MovieClip.createEmptyMovieClip(), or

MovieClip.attachMovie().

setMask(mc:Object):Void Makes the movie clip in the parameter mc a mask

that reveals the calling movie clip.

startDrag([lockCenter
:Boolean], [left:Number],
[top:Number], [right
:Number], [bottom:Number])
:Void

Lets the user drag the specified movie clip.

stop():Void Stops the movie clip that is currently playing.

stopDrag():Void Ends a MovieClip.startDrag() method.

swapDepths(target:Object)
:Void

Swaps the stacking, or depth level (z-order), of this

movie clip with the movie clip that is specified by

the target parameter, or with the movie clip that cur-

rently occupies the depth level that is specified in the

target parameter.

unloadMovie():Void Removes the contents of a movie clip instance.

B.4 Event Handling Operations

Event Description

onData():Void Invoked when a movie clip receives data

from a MovieClip.loadVariables() call or a

MovieClip.loadMovie() call.

onDragOut():Void Invoked when the mouse button is pressed and the

pointer rolls outside the object.

onDragOver():Void Invoked when the pointer is dragged outside and

then over the movie clip.

onEnterFrame():Void Invoked repeatedly at the frame rate of the SWF file.

onKeyDown():Void Invoked when a movie clip has input focus and user

presses a key.

onKeyUp():Void Invoked when a key is released.

onKillFocus(newFocus
:Object):Void

Invoked when a movie clip loses keyboard focus.

onLoad():Void Invoked when the movie clip is instantiated and ap-

pears in the timeline.

onMouseDown():Void Invoked when the mouse button is pressed.

onMouseMove():Void Invoked when the mouse moves.

B.4 Event Handling Operations 215

onMouseUp():Void Invoked when the mouse button is released.

onPress():Void Invoked when the user clicks the mouse while the

pointer is over a movie clip.

onRelease():Void Invoked when a user releases the mouse button over

a movie clip.

onReleaseOutside():Void Invoked after a user presses the mouse button inside

the movie clip area and then releases it outside the

movie clip area.

onRollOut():Void Invoked when a user moves the pointer outside a

movie clip area.

onRollOver():Void Invoked when user moves the pointer over a movie

clip area.

onSetFocus(oldFocus
:Object):Void

Invoked when a movie clip receives keyboard focus.

onUnload():Void Invoked in the first frame after the movie clip is re-

moved from the Timeline.

216 B. ActionScript Class MovieClip – Documentation

Appendix C

Transformation from MML to Flash
Model

Main:

1. For each application, a new main folder is generated named by the application. It contains

a folder media and a folder model. (For the ActionScript classes a folder corresponds to a

package).

2. A folder util is generated where some library classes and interfaces are copied into.

3. A Flash Document is generated with the name of the application

4. An ActionScript class is generated

Domain Classes:

5. A Domain Class is mapped to an ActionScript class file in the folder model. For each class:

• A property is mapped to an ActionScript class property. In the current implementation,

associations are simply mapped to class attributes as well. But this could easily be ex-

tended with more advanced mappings analogous to mappings from UML class diagrams

to Java code (see e.g. discussion in [Génova et al.03]).

• An operation is mapped to an operation signature in ActionScript. The developer has to

fill out the operation body manually.

• Generalizations, etc. are mapped to the corresponding ActionScript constructs (analogous

to mappings from UML to e.g. Java code)

6. All Domain Classes inherit from the library class Observable.

Media Components:

7. A Media Components is mapped to a file in the folder media containing a simple placeholder to

be replaced by the media designer. The filename corresponds to the Media Component’s name.

Its type depends on the media type:

218 C. Transformation from MML to Flash Model

• A 2D animation or a graphic is mapped to a FLA file containing a placeholder MovieClip.

The placeholder can be a simple rectangle shape with text inside showing the Media Com-

ponent’s name.

• An image is mapped to a JPEG file containing a dummy image.

• Sound is mapped to an MP3 file containing a short dummy sound.

• A video is mapped to a FLV file (the Flash-specific video format) containing a short

dummy video. For each instantiation an instance of a Flash video player component

(FLVPlayback) is generated refering to the video.

• Text is mapped to a text file containing dummy text in a restricted HTML format supported

by Flash. For each instantiation an instance of a Flash Text Area component is generated.

Code is generated into the attached ActionScript class (rule 8) which automatically im-

ports the text file into the Text Area when the Text Arae is loaded.

• 3D animations are currently not supported by Flash but basically a 3D animation can be

mapped to e.g. a VRML or X3D file analogous to SSIML [Vitzthum08].

8. In addition, an ActionScript class is created which may provide general operations and proper-

ties of the media component. It is generated in the folder media and is automatically attached

to the placeholder, e.g. the MovieClip in case of an animation.

9. Properties and Operations from Interfaces in MML are mapped to properties and operations in

the ActionScript class from rule 8.

10. If a Media Component is manifested by Media Artifacts (sec. 5.2.5) then a subfolder of the

folder media is generated named after the Media Component and containing a file for each

Media Artifact.

11. Inner Structure of Media Components is defined by Media Parts, Part Artifacts, and Inner Prop-

erties. Their mapping depends on the media type. As only animations and graphics are created

within Flash itself, the inner structure is only fully supported for these two media types as

example:

• For 2D animations and graphics a SubAnimation2D, Transformation2D or SubGraphics

is mapped to a MovieClip in the library within the FLA file for the owning Media Com-

ponent. Thereby, one MovieClip is generated for each Part Artifact. As Flash requires

that each item in the library has a unique name (e.g. if different cars are imported into

the same Scene) the name of the owning Media Component is added as prefix to the Par-

tArtifact’s name in the library (e.g. “FerrariFrontWheel” instead of “FrontWheel”). Each

Inner Property is then mapped to an instance on the Stage of its parent MovieClip, i.e. the

hierarchy of inner properties is mapped to a hierarchy of MovieClips.

• Other media types are only supported partially:

11.1. For Video and Images a VideoRegion or ImageRegion is mapped to a transparent

MovieClip. Transparent MovieClips are visible in the authoring tool and can there

easily be placed and reshaped by the developer to visually define a region. It is then

possible e.g. to add a event listener to the transparent MovieClip which listens for

instance for mouse clicks. In this way it is easy to define e.g. a specific region of an

image which is sensitive to mouse clicks.

11.2. Regarding Audio, Flash supports only basic functionality. Basically, an AudioChan-

nel would be mapped to a Channel in a Midi Sequencer or to a track in a audio editor.

219

In Flash itself it is possible to distinguish between the two stereo channels and mod-

ify the panning. It is also possible to play synchronize multiple pieces of audio in the

timeline.

11.3. 3D animation is not supported by Flash. Basically, the inner structure of 3D ani-

mations can be mapped to VRML or X3D code analogous to SSIML [Vitzthum and

Pleuß05]. An Object3D is mapped to an external file. Each instance corresponds

to an Inline Node referring to this file. Transformation3D, Camera3D, Light3D, and

Viewpoint3D are mapped to corresponding VRML/X3D nodes.

11.4. A Text Region can be mapped to a text file. For each Inner Property code is gener-

ated which adds the Text Region at runtime to Text Areas.

12. If a Media Component has different variants (see sec. 5.2.10) then a file is generated for each

value combination. The Variation Type values of each file are attached as suffixes to the file-

name, separated by ‘_’ (e.g. video1_english_low, video1_english_high, video1_german_low,

video1_german_high, etc.).

13. Note that Media Representations are not explicitly reflected in the generated code as the imple-

mentation proposed here uses only the Observer pattern between Domain Classes and AIOs to

manipulate user interface elements.

Scenes:

14. A scene from the MML model is mapped to a FLA file (representing the Presentation Unit) and

an ActionScript class. Both are located in the top-level folder. The ActionScript class for the

Scene complies to the structure described in section 7.2.2, i.e. it applies the Singleton design

pattern for accessing Scene, provides a loading mechanism, and is dynamically attached to the

content of the FLA file (the Presentation Unit).

15. The Application Start is mapped to a static operation main in the main ActionScript class from

rule 4 and to script code in the first frame of the timeline in the main Flash Document from

rule 3 which triggers the operation main. (The operation main is provided for compatibility

with the popular external third-party ActionScript compiler [Motion-Twin]).

16. An Entry Operation is mapped to an operation of its Scene’s ActionScript class named with the

prefix entry_.

17. An Exit Operation is mapped to an operation with the prefix exit_.

18. A Transition from the Scene Model is mapped to code in the operation body of the correspond-

ing Exit Operation (resp. the operation main from rule 15). The code loads the target Scene and

afterwards invokes the target Entry Operation analogous to listing 7.5.

19. For each Scene class an operation init is generated where code to initialize contained user in-

terface elements is generated into. For example output components are initialized as observer

(with addObserver()) by default (see rule 25)

20. For each Scene a folder (package) is generated which is used to store the ActionScript classes

for contained user interface elements (see rule 22)

220 C. Transformation from MML to Flash Model

AIOs:

21. An AIO is mapped to a Movie Clip and an instance on the stage. The Movie Clip acts as

container and has content depending on the AIO type:

• For AIOs realized by Media Instances the container Movie Clip contains these Media

Instances. Therefore, a library item is generated in the Scene’s FLA file which refers to

the Media Component from the folder media (see 7.2.3).

• For AIOs not realized by a Media Instance the container Movie Clip contains one or more

widget instances according to the AIO type. For instance, for an Action Component an

instance of a button named with the name of the AIO while for an Input Component a text

label showing the name of the AIO and a text input field next to it.

22. For each AIO an ActionScript class is generated in the Scene’s folder which is attached to the

container Movie Clip. This class is used for event handling operations (“Controller” in terms of

MVC). The default code generated into this class initializes a default event listener depending

on the widget type. For instance, for buttons a click event listener and for text input fields an

enter event listener. The developer has to complete the body of the event handling operation

manually, except for Action Components referring to an operation – in this case the operation

call is generated automatically.

23. The instance on the stage is defined as property of the Scene class (to be directly accessible in

the class, see 7.1.3).

24. A domain object represented by an AIO is mapped to a class property in the Scene class.

25. A UI Representation between a domain object and an AIO from type Output Component or

Edit Component is mapped to code for the Observer pattern:

• The ActionScript class for the AIO implements the interface observer and provides an

operation update
• A line of code is added to the operation init in the Scene class which adds the AIO class

as observer to the domain object. (The domain object is available as property in the Scene

class and all Domain classes are defined as Observable, see above).

• Sensors are mapped to corresponding ActionScript code in the Scene class and attached to

the Media Instance they belong to. If a Sensor is owned by a Media Component (instead

of a single instance) then in Flash the sensor code is attached to all Media Instances. For

example a Collision Sensor is mapped to an onEnterFrame operation in the Scene class.

This operation is inherited from MovieClip and is called every time the Scene enters a new

frame. Within onEnterFrame the operation hitTest from class MovieClip is used to find out

whether a collision appeared.

Interaction:

26. The information from the Interaction Model is mapped to code within the corresponding Entry

Operation. The mapping mainly corresponds to general rules for mapping UML Activity Dia-

grams to source code. A discussion and a first prototypical implementation based on existing al-

gorithms has been discussed and implemented in the Diploma Thesis by Shaykhit [Shaykhit07]

supervised by the author of this work.

Appendix D

Questionnaire

The next four page show the questionnaire on MML which has been filled out by 27 participants after

the course “Multimedia-Programming” in 2006.

222 D. Questionnaire

I. Programmier-Vorkenntnisse:

Mit Flash/ActionScript hatte ich vor Beginn der Lehrveranstaltung folgende Vorerfahrungen:
Professionelle

Projekte
Hobby-Projekte Grundkenntnisse Keine Kenntnisse

Java O O O O

Mit anderen Programmiersprachen habe ich folgende Erfahrungen:
Professionelle

Projekte
Hobby-Projekte Grundkenntnisse Keine Kenntnisse

Java O O O O
C/C++ O O O O
JavaScript O O O O
PHP O O O O
__________ O O O O
__________ O O O O

Mit anderen Multimedia-Autorenwerkzeugen habe ich folgende
Erfahrungen:

Professionelle
Projekte

Hobby-Projekte Grundkenntnisse Keine Kenntnisse

Director O O O O
Toolbook O O O O
__________ O O O O
__________ O O O O

Vor Beginn der Lehrveranstaltung hatte ich folgende Vorerfahrung mit graphischen
Modellierungssprachen wie UML oder MML:

Ich habe Modelle
für eigene Projekte

erstellt

Ich habe Beispiel-
Modelle (z.B. aus
Übungsaufgaben)

erstellt.

Ich habe davon
gehört oder

gelesen

Keine Kenntnisse

UML O O O O
MML O O O O
__________ O O O O

Ich verfüge über grundlegende Kenntnisse im Bereich der
Softwaretechnik (Software-Engineering).

Ja Nein

O O
Ich habe bereits im Rahmen des Softwarepraktikums ein Spiel
programmiert.

Ja Nein

O O
Fachsemester: (Zahl)

Studiengang: (Bitte angeben)

223

II. Modellierung mit MML:
Ich stimme

voll zu
 Ich stimme

nicht zu
Bei der Entwicklung von Software ist eine Entwurfsphase
(d.h. die Erstellung eines Entwurfs der Anwendung vor
Beginn der Implementierung) generell wichtig.

O O O O O

Die Verwendung von MML ist für den Entwurf von
Multimedia-Anwendungen sinnvoll. O O O O O

Der Einarbeitungsaufwand in MML ist gering. O O O O O
Für das MMP-Projekt wurde in unserem Team MML
verwendet. O O O O O
Ich habe mich persönlich mit MML beschäftigt. O O O O O
Falls verwendet:
Der Einsatz von MML war für unser MMP-Projekt hilfreich. O O O O O
Falls verwendet:
Die Modellierung hat nur einen kleinen Teil der Gesamtzeit
unseres Projektes benötigt.

O O O O O

Der Einsatz von MML ist für große, professionelle Projekte
sinnvoll. O O O O O
Der Einsatz von MML ist für kleinere und mittelgroße
Projekte sinnvoll. O O O O O

Ich würde MML zukünftig in eigenen Multimedia-Projekten
einsetzen.

 ja nein

 O O
Ich habe ……… Prozent der Zeit des Gesamtprojekts zur Einarbeitung in MML benötigt.
(bitte Zahl einsetzen)

Ich habe ….…. Prozent der Zeit des Gesamtprojekts für die Modellierung mit MML benötigt.
(bitte Zahl einsetzen)

Vorteile von MML:

Nachteile von MML:

Sonstige Kommentare zu MML:

224 D. Questionnaire

III. Verwendung von MagicDraw für MML:

Ich stimme
voll zu

 Ich stimme
nicht zu

Ich habe bereits mit UML-Werkzeugen gearbeitet. O O O O O

Der Einarbeitungsaufwand in MagicDraw war gering. O O O O O
Für die gesamte Modellierung habe ich MagicDraw
verwendet. O O O O O
Falls verwendet:
MagicDraw war gut benutzbar. O O O O O
Vorteile von MagicDraw:

Nachteile von MagicDraw:

Sonstige Kommentare zu MagicDraw:

IV. Ableitung von Codegerüsten aus den MML-Modellen:

Anmerkung: im MMP-Projekt wurde ein Code-Gerüst zur Verfügung gestellt
(„ExampleProjekt“), zusammen mit einer Anleitung, wie man ein MML-Modell in ein
Codegerüst (entsprechend der Vorlage) abbilden kann. Ein Codegenerator, der diese
Abbildung des Modells in FLA-Dateien und ActionScript-Code auch automatisch ausführen
kann, befindet sich in der Erstellung.

Bezogen auf das Codegerüst („ExampleProject“), das Ihnen im MMP-Projekt zur Verfügung
gestellt wurde:

Ich
stimme
voll zu

 Ich
stimme
nicht zu

Der Einarbeitungsaufwand in das Codegerüst war gering. O O O O O

Unser Team hat das Codegerüst verwendet. O O O O O

Falls verwendet:
Die Qualität des Codes im Codegerüst ist hoch. O O O O O

Die Verwendung von (generierten) Codegerüsten ist in
Multimedia-Projekten grundsätzlich sinnvoll. O O O O O

225

Stellen Sie sich vor, der Code würde automatisch aus den MML-Modellen generiert.
Wie schätzen Sie den Gesamtansatz (Verwendung von MML und automatische
Codegenerierung aus den Modellen) ein im Vergleich zu „herkömmlichen“ Vorgehen (d.h.
Vorgehen ohne Entwurfsphase)?

viel besser gleich viel schlechter
Wartbarkeit, d.h. die Anwendung ist gut strukturiert und kann
nachher einfach geändert oder erweitert werden O O O O O

Plattformunabhängigkeit, d.h. die Anwendung kann einfach
für verschiedene Plattformen (z.B. unterschiedliche Geräte)
implementiert werden.

O O O O O

Aufwand für die Entwicklung der Anwendung. O O O O O

Möglichkeit zur Einbindung von Expertenwissen in den Code
(z.B. der Code entspricht den Regeln, um eine gute
Performance der Anwendung zu erreichen).

O O O O O

Generelle Eignung zur Erstellung großer professioneller
Anwendungen. O O O O O
Generelle Eignung zur Erstellung kleinerer und mittelgroßer
Anwendungen. O O O O O
Ihre persönliche Gesamtwertung. O O O O O
Sonstige wichtige Vorteile des Ansatzes (Modellierung +
Codegenerierung):

Sonstige wichtige Nachteile des Ansatzes (Modellierung +
Codegenerierung):

Sonstige Kommentare:

226 D. Questionnaire

Bibliography

[3DS] “Autodesk 3ds Max,” [Website]. URL: http://usa.autodesk.com/adsk/servlet/index?

siteID=123112&id=5659302

[Abi-Antoun et al.08] M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, and D. Garlan, “Differenc-

ing and merging of architectural views,” Automated Software Engg., vol. 15, no. 1, pp.
35–74, 2008.

[Abouzahra et al.05] A. Abouzahra, J. Bézivin, M. D. D. Fabro, and F. Jouault, “A Practical Approach

to Bridging Domain Specific Languages with UML profiles,” in Proceedings of the
Best Practices for Model Driven Software Development at OOPSLA’05, San Diego,

California, USA, 2005. URL: http://www.softmetaware.com/oopsla2005/bezivin1.pdf

[Abrams and Helms04] M. Abrams and J. Helms, User Interface Markup Language (UIML)
Specification, 3rd ed., UIML.org, March 2004, wd-UIML-UIMLspecification-3.1.

URL: http://www.oasis-open.org/committees/download.php/5937/uiml-core-3.1-dra%

20ft-01-20040311.pdf

[Abrams et al.99] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J. E. Shuster,

“UIML: an appliance-independent XML user interface language,” in WWW ’99: Pro-
ceedings of the eighth international conference on World Wide Web. New York, NY,

USA: Elsevier North-Holland, Inc., 1999, pp. 1695–1708.

[Acerbis et al.07] R. Acerbis, A. Bongio, M. Brambilla, and S. Butti, “WebRatio 5: An Eclipse-

Based CASE Tool for Engineering Web Applications,” in Web Engineering, 7th In-
ternational Conference, ICWE 2007, Como, Italy, July 16-20, 2007, Proceedings, ser.
Lecture Notes in Computer Science, L. Baresi, P. Fraternali, and G.-J. Houben, Eds.,

vol. 4607. Springer, 2007, pp. 501–505.

[Ado] “Adobe,” [Website]. URL: www.adobe.com

[Ado05a] Flash 8 – ActionScript 2.0 Language Reference, Adobe, San Francisco, CA, 9 2005.

URL: http://download.macromedia.com/pub/documentation/en/flash/fl8/fl8_as2lr.pdf

[Ado05b] Flash 8 – Components Language Reference, Adobe, San Francisco, CA, 9 2005. URL:

http://download.macromedia.com/pub/documentation/en/flash/fl8/fl8_clr.pdf

[Ado05c] Flash 8 – Extending Flash, Adobe, San Francisco, CA, 9 2005. URL:

http://download.macromedia.com/pub/documentation/en/flash/fl8/fl8_extending.pdf

[Ado08] SWF File Format Specification, 10th ed., Adobe, 11 2008. URL: http://www.adobe.

com/devnet/swf/pdf/swf_file_format_spec_v10.pdf

228 BIBLIOGRAPHY

[Adobea] Adobe, “Cairngorm,” [Website]. URL: http://opensource.adobe.com/wiki/display/

cairngorm/Cairngorm;jsessionid=6CABDBBBE2CB65747462A07D0CBF0E05

[Adobeb] Adobe, “Flash – Supported Devices,” [Website]. URL: http://www.adobe.com/mobile/

supported_devices/

[Adobec] Adobe, “Flash 8 Livedocs [Complete Online Documentation],” [Website]. URL:

http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/js/html/wwhelp.htm

[Adobed] Adobe, “Flash Player Software,” [Website]. URL: http://www.adobe.com/de/products/

flashplayer/

[Adobee] Adobe, “Flash Player Statistics,” [Website]. URL: http://www.adobe.com/products/

player_census/flashplayer/

[Aedo and Díaz01] I. Aedo and P. Díaz, “Applying software engineering methods for hypermedia

systems,” in ITiCSE ’01: Proceedings of the 6th annual conference on Innovation and
technology in computer science education. New York, NY, USA: ACM, 2001, pp.

5–8.

[AGG] “The AGG Homepage,” [Website]. URL: http://tfs.cs.tu-berlin.de/agg/

[Alanen and Porres08] M. Alanen and I. Porres, “A metamodeling language supporting subset and

union properties,” Software and System Modeling, vol. 7, no. 1, pp. 103–124, 2008.

[Aleem98] T. A. Aleem, “A Taxonomy of Multimedia Interactivity,” Ph.D. dissertation, The Union

Institute, USA, 1998.

[Allen83] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun. ACM, vol. 26,

no. 11, pp. 832–843, 1983.

[Amelunxen and Schürr06] C. Amelunxen and A. Schürr, “Vervollständigung des Constraint-

basierten Assoziationskonzeptes von UML 2.0,” in Modellierung, ser. LNI, H. C. Mayr

and R. Breu, Eds., vol. 82. GI, 2006, pp. 163–172.

[Amelunxen et al.04] C. Amelunxen, A. Schürr, and L. Bichler, “Codegenerierung für Assoziationen

in MOF 2.0,” in Modellierung, ser. LNI, B. Rumpe and W. Hesse, Eds., vol. 45. GI,

2004, pp. 149–168.

[AMM] “The AMMA Homepage,” [Website]. URL: http://www.sciences.univ-nantes.fr/lina/

atl/

[AMW] “Atlas Model Weaver (AMW),” [Website]. URL: http://www.eclipse.org/gmt/amw/

[André95] E. André, Ein planbasierter Ansatz zur Generierung multimedialer Präsentationen, ser.
DISKI. Infix Verlag, St. Augustin, Germany, 1995, vol. 108.

[André00] E. André, “The Generation of Multimedia Presentations,” in A Handbook of Natural
Language Processing: techniques and applications for the processing of language as
text, R. Dale, H. Moisl, and H. Somers, Eds. Marcel Dekker Inc., 2000, pp. 305–327.

BIBLIOGRAPHY 229

[App08] Apple Human Interface Guidelines, Apple Inc., 3

2008. URL: http://developer.apple.com/documentation/UserExperience/Conceptual/

OSXHIGuidelines/OSXHIGuidelines.pdf

[Apple88] Apple, Ed., Hypercard Script Language Guide: The Hypertalk Language. Boston,

MA, USA: Addison Wesley, 8 1988. URL: http://amazon.com/o/ASIN/0201176327/

[Arens and Hovy95] Y. Arens and E. Hovy, “The design of a model-based multimedia interaction

manager,” Artif. Intell. Rev., vol. 9, no. 2-3, pp. 167–188, 1995.

[Arndt99] T. Arndt, “The evolving role of software engineering in the production of multimedia

applications,” in Multimedia Computing and Systems, 1999. IEEE International Con-
ference on, vol. 1, 7-11 June 1999, pp. 79–84vol.1.

[Arteaga et al.06] J. M. Arteaga, F. J. Martínez-Ruiz, J. Vanderdonckt, and A. Ochoa, “Categorization

of Rich Internet Applications based on Similitude Criteria,” in Proc. of XI Simpósio
de Informática e VI Mostra de Software Acadêmico SIMS’2006 (Uruguaiana, 8-10
November 2006). Brazilian Computer Society, 2006.

[ASD] “Action Script Development Tools (ASDT) and AXDT,” [Website]. URL: http:

//www.asdt.org/

[ATE] “ATEM 2007: 4th International Workshop on (Software) Language Engineering,”

[Website]. URL: http://planet-mde.org/atem2007/

[Atkinson and Kühne01] C. Atkinson and T. Kühne, “The Essence of Multilevel Metamodeling,” in

UML 2001 - The Unified Modeling Language, Modeling Languages, Concepts, and
Tools, 4th International Conference, Toronto, Canada, October 1-5, 2001, Proceed-
ings, ser. Lecture Notes in Computer Science, M. Gogolla and C. Kobryn, Eds., vol.

2185. Springer, 2001, pp. 19–33.

[Atkinson and Kühne02] C. Atkinson and T. Kühne, “Profiles in a strict metamodeling framework,”

Sci. Comput. Program., vol. 44, no. 1, pp. 5–22, 2002.

[Atkinson and Kühne03] C. Atkinson and T. Kühne, “Model-Driven Development: A Metamodeling

Foundation,” IEEE Software, vol. 20, no. 5, pp. 36–41, 2003.

[ATLa] “ATL Transformations Zoo,” [Website]. URL: http://www.eclipse.org/m2m/atl/

atlTransformations/

[Atlb] “AtlanMod – Metamodel Zoos,” [Website]. URL: http://www.emn.fr/x-info/atlanmod/

index.php/Zoos

[ATo] “AToM3 A Tool for Multi-formalism Meta-Modelling,” [Website]. URL: http:

//atom3.cs.mcgill.ca/

[Aut] “Adobe Authorware,” [Website]. URL: http://www.adobe.com/products/authorware/

[Bailey and Konstan03] B. P. Bailey and J. A. Konstan, “Are informal tools better?: comparing DE-

MAIS, pencil and paper, and authorware for early multimedia design,” in CHI ’03:
Proceedings of the SIGCHI conference on Human factors in computing systems. New

York, NY, USA: ACM, 2003, pp. 313–320.

230 BIBLIOGRAPHY

[Balzert and Weidauer98] H. Balzert and C. Weidauer, “Multimedia-Systeme: Ein neues Anwen-

dungsgebiet für die Software-Technik,” Softwaretechnik-Trends, vol. 18, no. 4, pp. 4–9,
November 1998.

[Balzert et al.96] H. Balzert, F. Hofmann, V. Kruschinski, and C. Niemann, “The JANUS Application

Development Environment - Generating More than the User Interface,” in Computer-
Aided Design of User Interfaces I, Proceedings of the Second International Workshop
on Computer-Aided Design of User Interfaces, June 5-7, 1996, Namur, Belgium, J. Van-

derdonckt, Ed. Presses Universitaires de Namur, 1996, pp. 183–208.

[Balzert95] H. Balzert, “From OOA to GUIs - the JANUS System,” in Human-Computer Interac-
tion, INTERACT ’95, IFIP TC13 Interantional Conference on Human-Computer In-
teraction, 27-29 June 1995, Lillehammer, Norway, ser. IFIP Conference Proceedings,

K. Nordby, P. H. Helmersen, D. J. Gilmore, and S. A. Arnesen, Eds. Chapman & Hall,

1995, pp. 319–324.

[Balzert98] H. Balzert, Lehrbuch der Softwaretechnik (Bd. II). Software-Management, Software-
Qualitätssicherung, Unternehmensmodellierung. Heidelberg: Spektrum Akademis-

cher Verlag, 1998.

[Bandelloni and Paternò04] R. Bandelloni and F. Paternò, “Flexible interface migration,” in Proceed-
ings of the 2004 International Conference on Intelligent User Interfaces, January 13-
16, 2004, Funchal, Madeira, Portugal, J. Vanderdonckt, N. J. Nunes, and C. Rich, Eds.

ACM, 2004, pp. 148–155.

[Bandelloni et al.04] R. Bandelloni, S. Berti, and F. Paternò, “Mixed-Initiative, Trans-modal Inter-

face Migration,” in Mobile Human-Computer Interaction - Mobile HCI 2004, 6th In-
ternational Symposium, Glasgow, UK, September 13-16, 2004, Proceedings, ser. Lec-
ture Notes in Computer Science, S. A. Brewster and M. D. Dunlop, Eds., vol. 3160.

Springer, 2004, pp. 216–227.

[Baranauskas et al.07] M. C. C. Baranauskas, P. A. Palanque, J. Abascal, and S. D. J. Barbosa, Eds.,

Human-Computer Interaction - INTERACT 2007, 11th IFIP TC 13 International Con-
ference, Rio de Janeiro, Brazil, September 10-14, 2007, Proceedings, Part I, ser. Lec-
ture Notes in Computer Science, vol. 4662. Springer, 2007.

[Baresi et al.01] L. Baresi, F. Garzotto, and P. Paolini, “Extending UML for Modeling Web Applica-

tions,” in HICSS ’01: Proceedings of the 34th Annual Hawaii International Conference
on System Sciences (HICSS-34)-Volume 3. Washington, DC, USA: IEEE Computer

Society, 2001, p. 3055.

[Barry and Lang01] C. Barry and M. Lang, “A Survey of Multimedia and Web Development Tech-

niques and Methodology Usage,” IEEE MultiMedia, vol. 8, no. 2, pp. 52–60, 2001.

[Basnyat et al.05] S. Basnyat, J. D. Boeck, E. Cuppens, L. Nóbrega, F. Montero, F. Paternò, and

K. Schneider, “Future Challenges of Model-Based Design,” in Interactive Systems, De-
sign, Specification, and Verification, 12th International Workshop, DSVIS 2005, New-
castle upon Tyne, UK, July 13-15, 2005, Revised Papers, ser. Lecture Notes in Com-

puter Science, S. W. Gilroy and M. D. Harrison, Eds., vol. 3941. Springer, 2005, p.

261.

BIBLIOGRAPHY 231

[Bastide and Basnyat06] R. Bastide and S. Basnyat, “Error Patterns: Systematic Investigation of De-

viations in Task Models,” in Task Models and Diagrams for Users Interface Design,
5th International Workshop, TAMODIA 2006, Hasselt, Belgium, October 23-24, 2006.
Revised Papers, ser. Lecture Notes in Computer Science, K. Coninx, K. Luyten, and

K. A. Schneider, Eds., vol. 4385. Springer, 2006, pp. 109–121.

[Bechhofer et al.04] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,

P. F. Patel-Schneider, and L. A. Stein, OWL Web Ontology Language Reference, W3C,

2004. URL: http://www.w3.org/TR/2004/REC-owl-ref-20040210/

[Beck and Andres04] K. Beck and C. Andres, Extreme Programming Explained: Embrace Change,
2nd ed. Addison-Wesley Professional, 2004.

[Bederson et al.04] B. B. Bederson, J. Grosjean, and J. Meyer, “Toolkit Design for Interactive Struc-

tured Graphics,” IEEE Trans. Softw. Eng., vol. 30, no. 8, pp. 535–546, 2004.

[Berti et al.05] S. Berti, F. Paternò, and C. Santoro, “A Taxonomy for Migratory User Interfaces,” in

Interactive Systems, Design, Specification, and Verification, 12th International Work-
shop, DSVIS 2005, Newcastle upon Tyne, UK, July 13-15, 2005, Revised Papers, ser.
Lecture Notes in Computer Science, S. W. Gilroy and M. D. Harrison, Eds., vol. 3941.

Springer, 2005, pp. 149–160.

[Bertino and Ferrari98] E. Bertino and E. Ferrari, “Temporal SynchronizationModels for Multimedia

Data,” IEEE Trans. on Knowl. and Data Eng., vol. 10, no. 4, pp. 612–631, 1998.

[Bertram et al.99] J. Bertram, C. Kemper, M. Klotz, and S. Nabbefeld, “Ab-

schlussbericht zur Projektgruppe OMMMA,” University of Paderborn, De-

cember 1999. URL: http://wwwcs.uni-paderborn.de/cs/ag-engels/ag_dt/Courses/

Lehrveranstaltungen/SS98/OMMMA/Homepage/Zwischenbericht/Folien.ps

[Besley et al.03] K. Besley, S. Bhangal, G. Rhodes, B. Monnone, S. Young, K. Peters, A. Eden, and

B. Ferguson, Macromedia Flash MX 2004 Games Most Wanted, 1st ed. Berkeley,

CA, USA: friends of ED, 11 2003. URL: http://amazon.com/o/ASIN/1590592360/

[Bézivin and Heckel05] J. Bézivin and R. Heckel, Eds., Language Engineering for Model-Driven
Software Development, 29. February - 5. March 2004, ser. Dagstuhl Seminar Proceed-

ings, vol. 04101. Internationales Begegnungs- und Forschungszentrum für Informatik

(IBFI), Schloss Dagstuhl, Germany, 2005.

[Bézivin et al.04] J. Bézivin, F. Jouault, and P. Valduriez, “On the Need for Meg-

amodels,” in OOPSLA Workshop on Best Practices for Model-Driven Soft-
ware Development, 2004. URL: www.sciences.univ-nantes.fr/lina/atl/www/papers/

OOPSLA04bezivin-megamodel.pdf

[Bézivin05] J. Bézivin, “On the unification power of models,” Software and System Modeling,
vol. 4, no. 2, pp. 171–188, 2005.

[Bilas05] S. Bilas, “What About Flash? Can You Really Make Games With It?” in

Game Developers Conference 2005, 2005. URL: http://www.drizzle.com/~scottb/gdc/

flash-paper.htm

232 BIBLIOGRAPHY

[Blackwell et al.01] A. F. Blackwell, K. N. Whitley, J. Good, and M. Petre, “Cognitive Factors in

Programming with Diagrams,” Artif. Intell. Rev., vol. 15, no. 1-2, pp. 95–114, 2001.

[Blair et al.97] G. Blair, L. Blair, H. Bowman, and A. Chetwynd, Formal Specification of Distributed
Multimedia Systems. University College London Press, September 1997. URL:

http://www.cs.kent.ac.uk/pubs/1997/339

[Bock03a] C. Bock, “UML 2 Activity and Action Models,” Journal of Object Technology, vol. 2,
no. 4, pp. 43–53, 2003.

[Bock03b] C. Bock, “UML 2 Activity and Action Models, Part 2,” Journal of Object Technology,
vol. 2, no. 5, pp. 41–56, 2003.

[Bock03c] C. Bock, “UML 2 Activity and Action Models, Part 3: Control Nodes,” Journal of
Object Technology, vol. 2, no. 6, pp. 7–23, 2003.

[Bock04a] C. Bock, “UML 2 Activity and Action Models, Part 4: Object Nodes,” Journal of
Object Technology, vol. 3, no. 1, pp. 27–41, 2004.

[Bock04b] C. Bock, “UML 2 Activity and Action Models, Part 5: Partitions,” Journal of Object
Technology, vol. 3, no. 7, pp. 37–56, 2004.

[Bodart et al.95] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, I. Provot, B. Sacré, and J. Vander-

donckt, “Towards a Systematic Building of Software Architectures: the TRIDENT

Methodological Guide,” in Design, Specification and Verification of Interactive Sys-
tems ’95, Proceedings of the Eurographics Workshop in Toulouse, France June 7-9,
1995, P. A. Palanque and R. Bastide, Eds. Springer, 1995, pp. 262–278.

[Bodoff et al.05] D. Bodoff, M. Ben-Menachem, and P. C. K. Hung, “Web Metadata Standards: Ob-

servations and Prescriptions,” IEEE Softw., vol. 22, no. 1, pp. 78–85, 2005.

[Boles and Schlattmann98] D. Boles and M. Schlattmann, “Multimedia-Autorensysteme - Grafisch-

interaktive Werkzeuge zur Erstellung multimedialer Anwendungen,” LOG IN, vol. 18,

no. 1, pp. 10–, 1998.

[Boles et al.98] D. Boles, P. Dawabi, M. Schlattmann, E. Boles, C. Trunk, and F. Wigger, “Ob-

jektorientierte Multimedia-Softwareentwicklung: Vom UML-Modell zur Director-

Anwendung amBeispiel virtueller naturwissenschaftlich-technischer Labore,” in Work-
shop Multimedia-Systeme, GI Jahrestagung, 1998, pp. 33–51.

[Boll01] S. Boll, “Zyx – Towards flexible multimedia document models for reuse and

adaptation,” Phd, Vienna University of Technology, Vienna, Austria, August 2001.

URL: http://medien.informatik.uni-oldenburg.de/index.php?id=31

[Bolt80] R. A. Bolt, “P̈ut-that-there:̈ Voice and gesture at the graphics interface,” in SIGGRAPH
’80: Proceedings of the 7th annual conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM, 1980, pp. 262–270.

[Booch et al.07] G. Booch, R. A. Maksimchuk, M. W. Engel, B. J. Young, J. Conallen, and K. A.

Houston, Object-Oriented Analysis and Design with Applications, 3rd ed. Addison-

Wesley Professional, 2007.

BIBLIOGRAPHY 233

[Botterweck06] G. Botterweck, “A Model-Driven Approach to the Engineering of Multiple User In-

terfaces,” in Models in Software Engineering, Workshops and Symposia at MoDELS
2006, Genoa, Italy, October 1-6, 2006, Reports and Revised Selected Papers, ser. Lec-
ture Notes in Computer Science, T. Kühne, Ed., vol. 4364. Springer, 2006, pp. 106–

115.

[Bouillon et al.04] L. Bouillon, J. Vanderdonckt, and K. C. Chow, “Flexible re-engineering of web

sites,” in Proceedings of the 2004 International Conference on Intelligent User Inter-
faces, January 13-16, 2004, Funchal, Madeira, Portugal, J. Vanderdonckt, N. J. Nunes,

and C. Rich, Eds. ACM, 2004, pp. 132–139.

[Bourguin et al.07] G. Bourguin, A. Lewandowski, and J.-C. Tarby, “Defining Task Oriented Com-

ponents,” in Task Models and Diagrams for User Interface Design, 6th International
Workshop, TAMODIA 2007, Toulouse, France, November 7-9, 2007, Proceedings, ser.
Lecture Notes in Computer Science, M. Winckler, H. Johnson, and P. A. Palanque,

Eds., vol. 4849. Springer, 2007, pp. 170–183.

[Box98] D. Box, Essential COM. Boston, MA, USA: Addison-Wesley Professional, 1 1998.

URL: http://amazon.com/o/ASIN/0201634465/

[Bozzon et al.06] A. Bozzon, S. Comai, P. Fraternali, and G. T. Carughi, “Conceptual modeling and

code generation for rich internet applications,” in ICWE ’06: Proceedings of the 6th
international conference on Web engineering. New York, NY, USA: ACM, 2006, pp.

353–360.

[Bra] “Fluidum – BrainStorm.” URL: http://www.fluidum.org/projects_brainstorm.shtml

[Braun and Mühlhäuser05] E. Braun and M. Mühlhäuser, “Automatically Generating User Interfaces

for Device Federations,” in Seventh IEEE International Symposium on Multimedia
(ISM 2005), 12-14 December 2005, Irvine, CA, USA. IEEE Computer Society, 2005,

pp. 261–268.

[Briand and Williams05] L. C. Briand and C. Williams, Eds., Model Driven Engineering Languages
and Systems, 8th International Conference, MoDELS 2005, Montego Bay, Jamaica,
October 2-7, 2005, Proceedings, ser. Lecture Notes in Computer Science, vol. 3713.

Springer, 2005.

[Britton et al.97] C. Britton, S. Jones, M. Myers, and M. Sharif, “A survey of current practice in

the development of multimedia systems,” Information & Software Technology, vol. 39,
no. 10, pp. 695–705, 1997.

[Broy et al.93] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Regens-

burger, O. Slotosch, and K. Stølen, “The Requirement and Design Specification Lan-

guage SPECTRUM. An Informal Introduction. Version 1.0,” Technische Universität

München, Tech. Rep. TUM-I9312, May 1993.

[Broy et al.05] M. Broy, J. Dingel, A. Hartman, B. Rumpe, and B. Selic, Eds., A Formal Semantics
for UML, Workshop on European Conference on Model Driven Architecture ECMDA
2005, 2005. URL: http://www.cs.queensu.ca/~stl/internal/uml2/ECMDA2005/index.

html

234 BIBLIOGRAPHY

[Bruck and Hussey07] J. Bruck and K. Hussey, “Customizing UML: Which Technique is Right

for You?” 2007. URL: http://www.eclipse.org/modeling/mdt/uml2/docs/articles/

Customizing_UML2_Which_Technique_is_Right_For_You/article.html

[Bruel06] J.-M. Bruel, Ed., Satellite Events at the MoDELS 2005 Conference, MoDELS 2005
International Workshops, Doctoral Symposium, Educators Symposium, Montego Bay,
Jamaica, October 2-7, 2005, Revised Selected Papers, ser. Lecture Notes in Computer

Science, vol. 3844. Springer, 2006.

[Buchanan and Zellweger05] M. C. Buchanan and P. T. Zellweger, “Automatic temporal layout mech-

anisms revisited,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 1, no. 1, pp.
60–88, 2005.

[Budinsky et al.03] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose,

Eclipse Modeling Framework. Boston, MA, USA: Addison-Wesley, 8 2003. URL:

http://amazon.com/o/ASIN/0131425420/

[Bulterman and Hardman05] D. C. A. Bulterman and L. Hardman, “Structured multimedia author-

ing,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 1, no. 1, pp. 89–109, 2005.

[Bulterman and Rutledge04] D. C. Bulterman and L. W. Rutledge, SMIL 2.0. Heidelberg, Germany:

Springer, 2004.

[Bulterman et al.91] D. C. A. Bulterman, G. van Rossum, and R. van Liere, “A Structure for Trans-

portable, Dynamic Multimedia Documents,” in Proceedings of the Summer 1991
USENIX Conference, Nashville, TN. USENIX Association, 1991, pp. 137–155.

[Bulterman et al.98] D. C. A. Bulterman, L. Hardman, J. Jansen, K. S. Mullender, and L. Rutledge,

“GRiNS: a graphical interface for creating and playing SMIL documents,” in WWW7:
Proceedings of the seventh international conference on World Wide Web 7. Amster-

dam, The Netherlands, The Netherlands: Elsevier Science Publishers B. V., 1998, pp.

519–529.

[Bulterman et al.05] D. Bulterman, G. Grassel, J. Jansen, A. Koivisto, N. Layaïda, T. Michel,

S. Mullender, and D. Zucker, Synchronized Multimedia Integration Language
(SMIL 2.1), W3C, December 2005, [Website]. URL: http://www.w3.org/TR/2005/

REC-SMIL2-20051213/

[Burmester et al.05] S. Burmester, H. Giese, and S. Henkler, “Visual Model-Driven Development of

Software Intensive Systems: A Survey of available Techniques and Tools,” in Proc. of
the Workshop on Visual Modeling for Software Intensive Systems (VMSIS) at the the
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05),
Dallas, Texas, USA, September 2005, pp. 11–18.

[CAD] “Computer-Aided Design of User Interfaces,” [Website]. URL: http://www.isys.ucl.ac.

be/bchi/cadui/

[CAD07] Computer-Aided Design of User Interfaces V: Proceedings of the Sixth International
Conference on Computer-Aided Design of User Interfaces CADUI ’06 (6-8 June 2006,
Bucharest, Romania). Springer, 2007.

BIBLIOGRAPHY 235

[Calvary et al.02] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, N. Souchon, L. Bouillon,

M. Florins, and J. Vanderdonckt, “Plasticity of User Interfaces: A Revised Reference

Framework,” in Task Models and Diagrams for User Interface Design: Proceedings of
the First International Workshop on Task Models and Diagrams for User Interface De-
sign - TAMODIA 2002, 18-19 July 2002, Bucharest, Romania, C. Pribeanu and J. Van-

derdonckt, Eds. INFOREC Publishing House Bucharest, 2002, pp. 127–134.

[Calvary et al.03] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdon-

ckt, “A Unifying Reference Framework for multi-target user interfaces,” Interacting
with Computers, vol. 15, no. 3, pp. 289–308, 2003.

[Can] “University of Madeira – CanonSketch,” [Website]. URL: http://dme.uma.pt/projects/

canonsketch/

[Capraro et al.04] M. Capraro, D. McAlester, E. Bianchi, C. Corbin, D. Design, A. Danika,

A. Heim, R. Hoekman, T. Marks, B. Spencer, and J. Williamson, Macromedia
Flash MX 2004 Magic. Indianapolis, IN, USA: New Riders Press, 2 2004. URL:

http://amazon.com/o/ASIN/0735713774/

[Carughi et al.07] G. T. Carughi, S. Comai, A. Bozzon, and P. Fraternali, “Modeling Distributed

Events in Data-Intensive Rich Internet Applications,” in Web Information Systems En-
gineering - WISE 2007, 8th International Conference on Web Information Systems En-
gineering, Nancy, France, December 3-7, 2007, Proceedings, ser. Lecture Notes in

Computer Science, B. Benatallah, F. Casati, D. Georgakopoulos, C. Bartolini, W. Sadiq,

and C. Godart, Eds., vol. 4831. Springer, 2007, pp. 593–602.

[Ceri et al.02] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera, Designing
Data-Intensive Web Applications, 1st ed. Morgan Kaufmann, 12 2002. URL:

http://amazon.com/o/ASIN/1558608435/

[Chang99] S.-K. Chang, “Perspectives in Multimedia Software Engineering,” in ICMCS, Vol. 1,
1999, pp. 74–78.

[Chen76] P. P.-S. Chen, “The entity-relationship model–toward a unified view of data,” ACM
Trans. Database Syst., vol. 1, no. 1, pp. 9–36, 1976.

[CHI] “CHI 2008 Conference Website,” [Website]. URL: http://www.chi2008.org/

[Clerckx and Coninx05] T. Clerckx and K. Coninx, “Towards an Integrated Development Environ-

ment for Context-Aware User Interfaces,” in Mobile Computing and Ambient Intel-
ligence: The Challenge of Multimedia, 1.-4. May 2005, ser. Dagstuhl Seminar Pro-

ceedings, N. Davies, T. Kirste, and H. Schumann, Eds., vol. 05181. Internationales

Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-

many IBFI, Schloss Dagstuhl, Germany, 2005.

[Clerckx et al.04] T. Clerckx, K. Luyten, and K. Coninx, “The mapping problem back and forth: cus-

tomizing dynamic models while preserving consistency,” in Task Models and Diagrams
for User Interface Design: Proceedings of the Third International Workshop on Task
Models and Diagrams for User Interface Design - TAMODIA 2004, November 15 - 16,
2004, Prague, Czech Republic, P. Slavík and P. A. Palanque, Eds. ACM, 2004, pp.

33–42.

236 BIBLIOGRAPHY

[Clerckx et al.05a] T. Clerckx, K. Luyten, and K. Coninx, “Designing Interactive Systems in Context:

From Prototype to Deployment,” in People and Computers XIX Ů The Bigger Picture -
Proceedings of HCI 2005. London: Springer, 2005, pp. 85–100.

[Clerckx et al.05b] T. Clerckx, F. Winters, and K. Coninx, “Tool support for designing context-

sensitive user interfaces using a model-based approach,” in Task Models and Diagrams
for User Interface Design: Proceedings of the Forth International Workshop on Task
Models and Diagrams for User Interface Design - TAMODIA 2005, Gdansk, Poland,
September 26-27, 2005, M. Sikorski, Ed. ACM, 2005, pp. 11–18.

[Cockton87] G. Cockton, “Interaction ergonomics, control and separation: open problems in user

interface management,” Inf. Softw. Technol., vol. 29, no. 4, pp. 176–191, 1987.

[Cohen et al.97] P. R. Cohen, M. Johnston, D. McGee, S. Oviatt, J. Pittman, I. Smith, L. Chen, and

J. Clow, “QuickSet: multimodal interaction for distributed applications,” in MULTI-
MEDIA ’97: Proceedings of the fifth ACM international conference on Multimedia.
New York, NY, USA: ACM, 1997, pp. 31–40.

[Conallen00] J. Conallen, Building Web applications with UML. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 2000.

[Conallen02] J. Conallen, Building Web Applications with Uml, 2nd ed. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 2002.

[Coninx et al.03] K. Coninx, K. Luyten, C. Vandervelpen, J. V. den Bergh, and B. Creemers, “Dy-

gimes: Dynamically Generating Interfaces for Mobile Computing Devices and Em-

bedded Systems,” in Human-Computer Interaction with Mobile Devices and Services,
5th International Symposium, Mobile HCI 2003, Udine, Italy, September 8-11, 2003,
Proceedings, ser. Lecture Notes in Computer Science, L. Chittaro, Ed., vol. 2795.

Springer, 2003, pp. 256–270.

[Coninx et al.07] K. Coninx, K. Luyten, and K. A. Schneider, Eds., Task Models and Diagrams for
Users Interface Design, 5th International Workshop, TAMODIA 2006, Hasselt, Bel-
gium, October 23-24, 2006. Revised Papers, ser. Lecture Notes in Computer Science,

vol. 4385. Springer, 2007.

[Constantine and Lockwood99] L. L. Constantine and L. A. Lockwood, Software for Use: A Prac-
tical Guide to the Models and Methods of Usage-Centered Design (ACM Press).
Addison-Wesley, 1999.

[Constantine and Lockwood01] L. L. Constantine and L. A. D. Lockwood, Structure and style in
use cases for user interface design. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 2001, pp. 245–279.

[Constantine03] L. L. Constantine, “Canonical Abstract Prototypes for Abstract Visual and Interac-

tion,” in Interactive Systems. Design, Specification, and Verification, 10th International
Workshop, DSV-IS 2003, Funchal, Madeira Island, Portugal, June 11-13, 2003, Re-
vised Papers, ser. Lecture Notes in Computer Science, J. A. Jorge, N. J. Nunes, and

J. ao Falcão e Cunha, Eds., vol. 2844. Springer, 2003, pp. 1–15.

BIBLIOGRAPHY 237

[Cook et al.07] S. Cook, G. Jones, S. Kent, and A. C. Wills, Domain-Specific Development with
Visual Studio DSL Tools. Boston, MA, USA: Addison Wesley, 6 2007. URL:

http://amazon.com/o/ASIN/0321398203/

[Cor] “CorelDRAW Graphics Suite,” [Website]. URL: http://www.corel.com/servlet/

Satellite/us/en/Product/1191272117978#tabview=tab0

[Coutaz and Caelen91] J. Coutaz and J. Caelen, “A Taxonomy for Multimedia and Multimodal

User Interfaces,” in Proceedings of the ERCIM Workshop on User Interfaces and
Multimedia, 1991, pp. 143–147. URL: http://iihm.imag.fr/publs/1991/ERCIM91_

PoleIHMM.ps.gz

[Coutaz and Rey02] J. Coutaz and G. Rey, “Foundations for a Theory of Contextors,” in Computer-
Aided Design of User Interfaces III, Proceedings of the Fourth International Confer-
ence on Computer-Aided Design of User Interfaces, May, 15-17, 2002, Valenciennes,
France, C. Kolski and J. Vanderdonckt, Eds. Kluwer, 2002, pp. 13–34.

[Coutaz et al.07] J. Coutaz, L. Balme, X. Alvaro, G. Calvary, A. Demeure, and J.-S. Sottet, “An

MDE-SOA Approach to Support Plastic User Interfaces in Ambient Spaces,” in Uni-
versal Access in Human-Computer Interaction. Ambient Interaction, 4th International
Conference on Universal Access in Human-Computer Interaction, UAHCI 2007 Held
as Part of HCI International 2007 Beijing, China, July 22-27, 2007 Proceedings, Part
II, ser. Lecture Notes in Computer Science, C. Stephanidis, Ed., vol. 4555. Springer,

2007, pp. 63–72.

[Coutaz06] J. Coutaz, “Meta-User Interfaces for Ambient Spaces,” in Task Models and Diagrams
for Users Interface Design, 5th International Workshop, TAMODIA 2006, Hasselt, Bel-
gium, October 23-24, 2006. Revised Papers, ser. Lecture Notes in Computer Science,

K. Coninx, K. Luyten, and K. A. Schneider, Eds., vol. 4385. Springer, 2006, pp. 1–15.

[Coyette et al.07] A. Coyette, S. Kieffer, and J. Vanderdonckt, “Multi-fidelity Prototyping of User

Interfaces,” in Human-Computer Interaction - INTERACT 2007, 11th IFIP TC 13 In-
ternational Conference, Rio de Janeiro, Brazil, September 10-14, 2007, Proceedings,
Part I, ser. Lecture Notes in Computer Science, M. C. C. Baranauskas, P. A. Palanque,

J. Abascal, and S. D. J. Barbosa, Eds., vol. 4662. Springer, 2007, pp. 150–164.

[Csertán et al.02] G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varró, “VIATRA

– Visual Automated Transformations for Formal Verification and Validation of UML

Models,” in ASE ’02: Proceedings of the 17th IEEE international conference on Auto-
mated software engineering. Washington, DC, USA: IEEE Computer Society, 2002,

p. 267.

[Cub] “Steinberg Cubase,” [Website]. URL: http://www.steinberg.net/en/products/

musicproduction/cubase4_product.html

[CWI] “Centrum Wiskunde & Informatica (CWI), Netherlands,” [Website]. URL: http:

//www.cwi.nl/

[Czarnecki and Helsen06] K. Czarnecki and S. Helsen, “Feature-based survey of model transforma-

tion approaches,” IBM Syst. J., vol. 45, no. 3, pp. 621–645, 2006.

238 BIBLIOGRAPHY

[da Silva and Paton00] P. P. da Silva and N. W. Paton, “UMLi: The Unified Modeling Language for

Interactive Applications,” in UML 2000 - The Unified Modeling Language, Advancing
the Standard, Third International Conference, York, UK, October 2-6, 2000, Proceed-
ings, ser. Lecture Notes in Computer Science, A. Evans, S. Kent, and B. Selic, Eds.,

vol. 1939. Springer, 2000, pp. 117–132.

[da Silva and Paton03] P. P. da Silva and N. W. Paton, “User Interface Modeling in UMLi,” IEEE
Software, vol. 20, no. 4, pp. 62–69, 2003.

[da Silva00] P. P. da Silva, “User Interface Declarative Models and Development Environments: A

Survey,” in DSV-IS, 2000, pp. 207–226.

[Damus07] C. W. Damus, Implementing Model Integrity in EMF with MDT
OCL, Eclipse Corner Articles, 2007. URL: http://www.eclipse.org/articles/

Article-EMF-Codegen-with-OCL/

[Dawes01] B. Dawes, Drag, Slide, Fade – Flash ActionScript for Designers. Indianapolis, IN,

USA: New Riders, 11 2001. URL: http://amazon.de/o/ASIN/0735710473/

[DBL01] 2002 IEEE CS International Symposium on Human-Centric Computing Languages and
Environments (HCC 2001), September 5-7, 2001 Stresa, Italy. IEEE Computer Soci-

ety, 2001.

[DBL05] Seventh IEEE International Symposium on Multimedia (ISM 2005), 12-14 December
2005, Irvine, CA, USA. IEEE Computer Society, 2005.

[deHaan06] J. deHaan, “Flash 8 Best Practices,” 2006. URL: http://www.adobe.com/devnet/flash/

articles/flash8_bestpractices.html

[Depke et al.99] R. Depke, G. Engels, K. Mehner, S. Sauer, and A. Wagner, “Ein Vorgehensmod-

ell für die Multimedia-Entwicklung mit Autorensystemen,” Inform., Forsch. Entwickl.,
vol. 14, no. 2, pp. 83–94, 1999.

[Desfray00] P. Desfray, “UML Profiles versus Metamodel extensions : An ongo-

ing debate,” 2000, talk at OMG Workshop on UML In The .com

Enterprise. URL: http://www.omg.org/news/meetings/workshops/presentations/uml_

presentations/5-3%20Desfray%20-%20UMLWorkshop.pdf

[Dix et al.03] A. Dix, J. E. Finlay, G. D. Abowd, and R. Beale, Human-Computer Interaction, 3rd ed.

Prentice Hall, 2003.

[Doherty and Blandford07] G. J. Doherty and A. Blandford, Eds., Interactive Systems. Design, Spec-
ification, and Verification, 13th International Workshop, DSVIS 2006, Dublin, Ireland,
July 26-28, 2006. Revised Papers, ser. Lecture Notes in Computer Science, vol. 4323.

Springer, 2007.

[Dospisil and Polgar94] J. Dospisil and T. Polgar, “Conceptual modelling in the hypermedia develop-

ment process,” in SIGCPR ’94: Proceedings of the 1994 computer personnel research
conference on Reinventing IS : managing information technology in changing organi-
zations. New York, NY, USA: ACM, 1994, pp. 97–104.

BIBLIOGRAPHY 239

[DSV] “DSV-IS 2008 – The XVth International Workshop on Design, Specification and

Verification of Interactive Systems,” [Website]. URL: http://www.cs.queensu.ca/

dsvis2008/

[Duyne et al.02] D. K. V. Duyne, J. Landay, and J. I. Hong, The Design of Sites: Patterns, Principles,
and Processes for Crafting a Customer-Centered Web Experience. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 2002.

[Eckstein04] J. Eckstein, Agile Softwareentwicklung im Gros̈sen. Ein Eintauchen in die Untiefen
erfolgreicher Projekte. Heidelberg: Dpunkt Verlag, 2004.

[Ecla] “Eclipse – Model Development Tools (MDT) – OCL,” [Website]. URL: http:

//www.eclipse.org/modeling/mdt/?project=ocl

[Eclb] “Eclipse - an open development platform,” [Website]. URL: http://www.eclipse.org/

[Eclc] “Eclipse M2M Project,” [Website]. URL: http://www.eclipse.org/m2m/

[Ecld] “Eclipse Modeling Project,” [Website]. URL: http://www.eclipse.org/modeling/

[Ecm99] Standard ECMA-262 – ECMAScript Language Specification, Ecma International,

Geneva, Switzerland, 1999, [Website]. URL: http://www.ecma-international.org/

publications/standards/Ecma-262.htm

[Eicher05] C. Eicher, “Konzeption und prototypische Realisierung eines Graphischen Editors zur

Unterstützung von Präsentationsdiagrammen,” Project Thesis, University of Munich,

Munich, August 2005.

[EIS] “EIS 2008 – Engineering Interactive Systems,” [Website]. URL: http://www.se-hci.

org/ehci-hcse-dsvis07/

[Elwert and Schlungbaum95] T. Elwert and E. Schlungbaum, “Modelling and Generation of Graph-

ical User Interfaces in the TADEUS Approach,” in Design, Specification and Verifica-
tion of Interactive Systems ’95, Proceedings of the Eurographics Workshop in Toulouse,
France June 7-9, 1995, P. A. Palanque and R. Bastide, Eds. Springer, 1995, pp. 193–

208.

[EMFa] “Eclipse Modeling - MDT - EMF UML2,” [Website]. URL: http://www.eclipse.org/

modeling/mdt/?project=uml2

[EMFb] “Eclipse Modeling Framework Project (EMF),” [Website]. URL: http://www.eclipse.

org/modeling/emf/

[Engels and Sauer02] G. Engels and S. Sauer, “Object-oriented Modeling of Multimedia Appli-

cations,” in Handbook of Software Engineering and Knowledge Engineering, S. K.

Chang, Ed. Singapore: World Scientific, 2002, vol. 2, pp. 21–53.

[Engels et al.00] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer, “Dynamic Meta Modeling: A

Graphical Approach to the Operational Semantics of Behavioral Diagrams in UML,”

in UML 2000 - The Unified Modeling Language, Advancing the Standard, Third Inter-
national Conference, York, UK, October 2-6, 2000, Proceedings, ser. Lecture Notes in

Computer Science, A. Evans, S. Kent, and B. Selic, Eds., vol. 1939. Springer, 2000,

pp. 323–337.

240 BIBLIOGRAPHY

[Eun et al.94] S. Eun, E. S. No, H. C. Kim, H. Yoon, and S. R. Maeng, “Eventor: an authoring system

for interactive multimedia applications,” Multimedia Syst., vol. 2, no. 3, pp. 129–140,
1994.

[Evans et al.00] A. Evans, S. Kent, and B. Selic, Eds., UML 2000 - The Unified Modeling Language,
Advancing the Standard, Third International Conference, York, UK, October 2-6, 2000,
Proceedings, ser. Lecture Notes in Computer Science, vol. 1939. Springer, 2000.

[Expa] “Microsoft Expression Blend,” [Website]. URL: http://www.microsoft.com/expression/

products/Overview.aspx?key=blend

[Expb] “Microsoft Expression Design,” [Website]. URL: http://www.microsoft.com/

expression/products/Overview.aspx?key=design

[Fabro et al.06] M. D. D. Fabro, J. Bézivin, and P. Valduriez, “Weaving Models with the Eclipse

AMW plugin,” in Eclipse Modeling Symposium, Eclipse Summit Europe 2006,
Esslingen, Germany, 2006. URL: http://www.eclipsecon.org/summiteurope2006/

presentations/ESE2006-EclipseModelingSymposium2_WeavingModels.pdf

[Favre and Nguyen05] J.-M. Favre and T. Nguyen, “Towards a Megamodel to Model Software Evo-

lution Through Transformations,” Electr. Notes Theor. Comput. Sci., vol. 127, no. 3,
pp. 59–74, 2005.

[Favre04a] J.-M. Favre, “Foundations of Meta-Pyramids: Languages vs. Metamodels - Episode

II: Story of Thotus the Baboon1,” in Language Engineering for Model-Driven Soft-
ware Development, 29. February - 5. March 2004, ser. Dagstuhl Seminar Proceed-

ings, J. Bézivin and R. Heckel, Eds., vol. 04101. Internationales Begegnungs- und

Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2004.

[Favre04b] J.-M. Favre, “Foundations ofModel (Driven) (Reverse) Engineering : Models - Episode

I: Stories of The Fidus Papyrus and of The Solarus,” in Language Engineering for
Model-Driven Software Development, 29. February - 5. March 2004, ser. Dagstuhl

Seminar Proceedings, J. Bézivin and R. Heckel, Eds., vol. 04101. Internationales

Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-

many, 2004.

[Favre04c] J.-M. Favre, “Towards a Basic Theory to Model Model Driven Engineering,” in

Workshop on Software Model Engineering (WISME 2004), joint event with UML2004,
2004. URL: http://www-adele.imag.fr/users/Jean-Marie.Favre/

[Felipe et al.05] J. C. Felipe, J. B. Olioti, A. J. M. Traina, M. X. Ribeiro, E. P. M. de Sousa, and

C. T. Jr., “A Low-cost Approach for Effective Shape-based Retrieval and Classification

of Medical Images,” in Seventh IEEE International Symposium on Multimedia (ISM
2005), 12-14 December 2005, Irvine, CA, USA. IEEE Computer Society, 2005, pp.

565–570.

[Fetterman and Gupta93] R. L. Fetterman and S. K. Gupta, Mainstream Multimedia: Applying
Multimedia in Business. New York: Van Nostrand Reinhold, 6 1993. URL:

http://amazon.com/o/ASIN/0442011814/

BIBLIOGRAPHY 241

[Feuerstack et al.08] S. Feuerstack, M. Blumendorf, V. Schwartze, and S. Albayrak, “Model-based

layout generation,” in AVI ’08: Proceedings of the working conference on Advanced
visual interfaces. New York, NY, USA: ACM, 2008, pp. 217–224.

[FFm] “FFmpeg,” [Website]. URL: http://ffmpeg.org/

[Fin] “Apple Final Cut,” [Website]. URL: http://www.apple.com/finalcutstudio/finalcutpro/

[Finkenzeller08] S. Finkenzeller, “Untersuchung und Verbesserung der visuellen Model-

lierungssprache MML,” Project Thesis, University of Munich, Munich, February

2008.

[Flaa] “Adobe Flash CS4 Professional,” [Website]. URL: http://www.adobe.com/products/

flash/

[Flab] “Adobe Flash Lite,” [Website]. URL: http://www.adobe.com/products/flashlite/

[Foley et al.91] J. Foley, W. C. Kim, S. Kovacevic, and K. Murray, “UIDE–an intelligent user inter-

face design environment,” in Intelligent user interfaces. New York, NY, USA: ACM,

1991, pp. 339–384.

[Frank and Prasse97] U. Frank and M. Prasse, “Ein Bezugsrahmen zur Beurteilung Ob-

jektorientierter Modellierungssprachen – Veranschaulicht Am Beispiel von

OML und UML,” Universität Koblenz-Landau, Tech. Rep. 6, 1997. URL:

http://www.wi-inf.uni-duisburg-essen.de/MobisPortal/upload/Nr6.pdf

[Franklin and Makar03] D. Franklin and J. Makar, Macromedia Flash MX 2004 ActionScript:
Training from the Source. Berkeley, CA, USA: Macromedia Press, 11 2003. URL:

http://amazon.com/o/ASIN/0321213432/

[Fraternali and Paolini98] P. Fraternali and P. Paolini, “A Conceptual Model and a Tool Environ-

ment for Developing More Scalable, Dynamic, and Customizable Web Applications,”

in EDBT ’98: Proceedings of the 6th International Conference on Extending Database
Technology. London, UK: Springer-Verlag, 1998, pp. 421–435.

[Gajos and Weld04] K. Gajos and D. S. Weld, “SUPPLE: automatically generating user interfaces,”

in Proceedings of the 2004 International Conference on Intelligent User Interfaces,
January 13-16, 2004, Funchal, Madeira, Portugal, J. Vanderdonckt, N. J. Nunes, and

C. Rich, Eds. ACM, 2004, pp. 93–100.

[Gallagher and Webb97] S. Gallagher and B. Webb, “Competing Paradigms in Multimedia Systems

Development: Who Shall Be The Aristocracy,” in Proceedings of the Fifth European
Conference on Information Systems. Cork, Ireland: Cork Publishing Ltd, 1997, pp.

1113–1120.

[Gamma et al.95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of
reusable object-oriented software. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 1995.

[Gartner] Gartner, “Understanding Hype Cycles,” [website].

242 BIBLIOGRAPHY

[Garzotto et al.95] F. Garzotto, L. Mainetti, and P. Paolini, “Hypermedia Design, Analysis, and Eval-

uation Issues,” Commun. ACM, vol. 38, no. 8, pp. 74–86, 1995.

[Gasevic et al.07] D. Gasevic, N. Kaviani, and M. Hatala, “On Metamodeling in Megamodels,” in

Model Driven Engineering Languages and Systems, 10th International Conference,
MoDELS 2007, Nashville, USA, September 30 - October 5, 2007, Proceedings, ser.
Lecture Notes in Computer Science, G. Engels, B. Opdyke, D. C. Schmidt, and F. Weil,

Eds., vol. 4735. Springer, 2007, pp. 91–105.

[Gauffre et al.07] G. Gauffre, E. Dubois, and R. Bastide, “Domain Specific Methods and Tools for

the Design of Advanced Interactive Techniques,” in Proceedings of the MoDELS 2007
Workshop on Model Driven Development of Advanced User Interfaces, Nashville, Ten-
nessee, USA, October 1, 2007, ser. CEUR Workshop Proceedings, A. Pleuß, J. V. den

Bergh, H. Hußmann, S. Sauer, and D. Görlich, Eds., vol. 297. CEUR-WS.org, 2007.

[GEF] “Graphical Editing Framework (GEF),” [Website]. URL: http://www.eclipse.org/gef/

[Gellersen et al.97] H.-W. Gellersen, R. Wicke, and M. Gaedke, “WebComposition: an object-

oriented support system for the Web engineering lifecycle,” in Selected papers from
the sixth international conference on World Wide Web. Essex, UK: Elsevier Science

Publishers Ltd., 1997, pp. 1429–1437.

[Génova et al.03] G. Génova, C. R. del Castillo, and J. Lloréns, “Mapping UML Associations into

Java Code,” Journal of Object Technology, vol. 2, no. 5, pp. 135–162, 2003.

[Gentleware] Gentleware, “Poseidon for UML,” [Website]. URL: http://www.gentleware.com/

products.html

[Gibbs and Tsichritzis95] S. J. Gibbs and D. Tsichritzis, Multimedia programming: objects, environ-
ments and frameworks. New York, NY, USA: ACM Press/Addison-Wesley Publishing

Co., 1995.

[Gibbs et al.94] S. J. Gibbs, C. Breiteneder, and D. Tsichritzis, “Data Modeling of Time-Based Me-

dia,” in Proceedings of the 1994 ACM SIGMOD International Conference on Man-
agement of Data, Minneapolis, Minnesota, May 24-27, 1994, R. T. Snodgrass and

M. Winslett, Eds. ACM Press, 1994, pp. 91–102.

[Gilroy and Harrison06] S. W. Gilroy and M. D. Harrison, Eds., Interactive Systems, Design, Speci-
fication, and Verification, 12th International Workshop, DSVIS 2005, Newcastle upon
Tyne, UK, July 13-15, 2005, Revised Papers, ser. Lecture Notes in Computer Science,

vol. 3941. Springer, 2006.

[GME] “GME: The Generic Modeling Environment,” [Website]. URL: http://w3.isis.

vanderbilt.edu/projects/gme/

[GMF] “The Eclipse Graphical Modeling Framework (GMF),” [Website]. URL: http:

//www.eclipse.org/modeling/gmf/

[GNO04] GNOME Human Interface Guidelines 2.0, The GNOME Usability Project, 2004.

URL: http://library.gnome.org/devel/hig-book/stable/

BIBLIOGRAPHY 243

[Gomaa et al.05] M. Gomaa, A. Salah, and S. Rahman, “Towards A Better Model Based

User Interface Development Environment: A Comprehensive Survey,” in Midwest
Instruction and Computing Symposium, April 8 - 9, 2005, Eau Claire, Wisconsin, USA,
April 2005. URL: http://www.micsymposium.org/mics_2005/papers/paper72.pdf

[Gómez et al.01] J. Gómez, C. Cachero, and O. Pastor, “Conceptual Modeling of Device-Independent

Web Applications,” IEEE MultiMedia, vol. 8, no. 2, pp. 26–39, 2001.

[Gonzalez00] R. Gonzalez, “Disciplining Multimedia,” IEEE MultiMedia, vol. 7, no. 3, pp. 72–78,
2000.

[Goo] “Google Maps,” [Website]. URL: http://maps.google.com/

[Görlich and Breiner07] D. Görlich and K. Breiner, “Useware Modeling for Ambient Intelligent Pro-

duction Environments,” in Proceedings of the MoDELS 2007 Workshop on Model
Driven Development of Advanced User Interfaces, Nashville, Tennessee, USA, October
1, 2007, ser. CEUR Workshop Proceedings, A. Pleuß, J. V. den Bergh, H. Hußmann,

S. Sauer, and D. Görlich, Eds., vol. 297. CEUR-WS.org, 2007.

[Gra] “UsiXML – GrafiXML,” [Website]. URL: http://www.usixml.org/index.php?mod=

pages&id=12

[Grana et al.05] C. Grana, G. Tardini, and R. Cucchiara, “MPEG-7 Compliant Shot Detection in

Sport Videos,” in Seventh IEEE International Symposium on Multimedia (ISM 2005),
12-14 December 2005, Irvine, CA, USA. IEEE Computer Society, 2005, pp. 395–402.

[Green and Petre96] T. R. G. Green and M. Petre, “Usability Analysis of Visual Programming En-

vironments: A ’Cognitive Dimensions’ Framework,” Journal of Visual Languages and
Computing, vol. 7, no. 2, pp. 131–174, 1996.

[Green00] T. R. G. Green, “Instructions and descriptions: some cognitive aspects of programming

and similar activities,” in AVI ’00: Proceedings of the working conference on Advanced
visual interfaces. New York, NY, USA: ACM, 2000, pp. 21–28.

[Griffiths et al.98] T. Griffiths, J. McKirdy, G. Forrester, N. W. Paton, J. B. Kennedy, P. J. Barclay,

R. Cooper, C. A. Goble, and P. D. Gray, “Exploiting Model-based Techniques for User

Interfaces to Databases,” in Visual Database Systems 4 (VDB4), IFIP TC2/WG 2.6
Fourth Working Conference on Visual Database Systems, L’Aquila, Italy, 27-29 May
1998, ser. IFIP Conference Proceedings, Y. E. Ioannidis and W. Klas, Eds., vol. 126.

Chapman & Hall, 1998, pp. 21–46.

[Griffiths et al.99] T. Griffiths, P. J. Barclay, J. McKirdy, N. W. Paton, P. D. Gray, J. B. Kennedy,

R. Cooper, C. A. Goble, A. West, and M. Smyth, “Teallach: A Model-Based User

Interface Development Environment for Object Databases,” in UIDIS, 1999, pp. 86–
96.

[Gruhn et al.06] V. Gruhn, D. Pieper, and C. Röttgers, MDA: Effektives Softwareengineering
mit UML2 und Eclipse, 1st ed. Springer, Berlin, 7 2006. URL: http:

//amazon.de/o/ASIN/3540287442/

[Gruhn07] R. Gruhn, “Entwicklung von Rich Internet Applications mit dem Adobe Flex Frame-

work,” Project Thesis, University of Munich, Munich, December 2007.

244 BIBLIOGRAPHY

[Halasz and Schwartz94] F. Halasz and M. Schwartz, “The Dexter hypertext reference model,” Com-
mun. ACM, vol. 37, no. 2, pp. 30–39, 1994.

[Hall and Wan02] B. Hall and S. Wan, Object-Oriented Programming with Actionscript, 1st ed.

Indianapolis, IN, USA: New Riders, 12 2002. URL: http://amazon.de/o/ASIN/

0735711836/

[Hannington and Reed02] A. Hannington and K. Reed, “Towards a Taxonomy for Guiding Multime-

dia Application Development,” in APSEC ’02: Proceedings of the Ninth Asia-Pacific
Software Engineering Conference. Washington, DC, USA: IEEE Computer Society,

2002, p. 97.

[Hannington and Reed06] A. Hannington and K. Reed, “Preliminary Results from a Survey of

Multimedia Development Practices in Australia,” in Product-Focused Software Pro-
cess Improvement, 7th International Conference, PROFES 2006, Amsterdam, The
Netherlands, June 12-14, 2006, Proceedings, ser. Lecture Notes in Computer Science,

J. Münch and M. Vierimaa, Eds., vol. 4034. Springer, 2006, pp. 192–207.

[Hannington and Reed07] A. Hannington and K. Reed, “Factors in Multimedia Project and Process

Management–Australian Survey Findings,” in ASWEC ’07: Proceedings of the 2007
Australian Software Engineering Conference. Washington, DC, USA: IEEE Computer

Society, 2007, pp. 379–388.

[Hardman et al.94] L. Hardman, D. C. A. Bulterman, and G. van Rossum, “The Amsterdam hyper-

media model: adding time and context to the Dexter model,” Commun. ACM, vol. 37,

no. 2, pp. 50–62, 1994.

[Hardman et al.97] L. Hardman, M. Worring, and D. C. A. Bulterman, “Integrating the Amsterdam

hypermedia model with the standard reference model for intelligent multimedia pre-

sentation systems,” Comput. Stand. Interfaces, vol. 18, no. 6-7, pp. 497–507, 1997.

[Harel and Naamad96] D. Harel and A. Naamad, “The STATEMATE Semantics of Statecharts,”

ACM Trans. Softw. Eng. Methodol., vol. 5, no. 4, pp. 293–333, 1996.

[Harel and Rumpe00] D. Harel and B. Rumpe, “Modeling Languages: Syntax, Semantics and All

That Stuff, Part I: The Basic Stuff,” Weizmann Institute Of Science, Jerusalem, Israel,

Israel, Tech. Rep. MCS00-16, 2000.

[Harel87] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci. Comput. Pro-
gram., vol. 8, no. 3, pp. 231–274, 1987.

[Hausmann et al.01] J. H. Hausmann, R. Heckel, and S. Sauer, “Towards Dynamic Meta Modeling

of UML Extensions: An Extensible Semantics for UML Sequence Diagrams,” in 2002
IEEE CS International Symposium on Human-Centric Computing Languages and En-
vironments (HCC 2001), September 5-7, 2001 Stresa, Italy. IEEE Computer Society,

2001, pp. 80–87.

[Hausmann et al.04] J. H. Hausmann, R. Heckel, and S. Sauer, “Dynamic Meta Modeling with time:

Specifying the semantics of multimedia sequence diagrams,” Software and System
Modeling, vol. 3, no. 3, pp. 181–193, 2004.

BIBLIOGRAPHY 245

[Hayes et al.85] P. J. Hayes, P. A. Szekely, and R. A. Lerner, “Design alternatives for user interface

management sytems based on experience with COUSIN,” in CHI ’85: Proceedings of
the SIGCHI conference on Human factors in computing systems. New York, NY,

USA: ACM, 1985, pp. 169–175.

[Hayward et al.04] V. Hayward, O. R. Astley, M. Cruz-Hernandez, D. Grant, and G. Robles-De-La-

Torre, “Haptic interfaces and devices,” Sensor Review, vol. 24, no. 1, pp. 16–29, 2004.

[Heller et al.01] R. S. Heller, C. D. Martin, N. Haneef, and S. Gievska-Krliu, “Using a theoretical

multimedia taxonomy framework,” J. Educ. Resour. Comput., vol. 1, p. 6, 2001.

[Hennicker and Koch01] R. Hennicker and N. Koch, “Modeling the User Interface of Web Applica-

tions with UML,” in Practical UML-Based Rigorous Development Methods - Counter-
ing or Integrating the eXtremists, Workshop of the pUML-Group held together with the
UML2001, October 1st, 2001 in Toronto, Canada, ser. LNI, A. Evans, R. B. France,

A. M. D. Moreira, and B. Rumpe, Eds., vol. 7. GI, 2001, pp. 158–172.

[Henning01] P. A. Henning, Taschenbuch Multimedia. Fachbuchverlag Leipzig, 6 2001. URL:

http://amazon.com/o/ASIN/3446217517/

[Hettel et al.08] T. Hettel, M. Lawley, and K. Raymond, “Model Synchronisation: Definitions for

Round-Trip Engineering,” in Theory and Practice of Model Transformations, First In-
ternational Conference, ICMT 2008, Zürich, Switzerland, July 1-2, 2008, Proceedings,
ser. Lecture Notes in Computer Science, A. Vallecillo, J. Gray, and A. Pierantonio,

Eds., vol. 5063. Springer, 2008, pp. 31–45.

[Hewett et al.92] T. T. Hewett, R. Baecker, S. Card, T. Carey, J. Gasen, M. Mantei, G. Perlman,

G. Strong, and W. Verplank, “ACM SIGCHI curricula for human-computer interac-

tion,” ACM, New York, NY, USA, Tech. Rep., 1992, chairman-Thomas T. Hewett.

[Hilliges et al.06] O. Hilliges, P. Holzer, R. Klüber, and A. Butz, “AudioRadar: A metaphorical visu-

alization for the navigation of large music collections,” in Proceedings of the Interna-
tional Symposium on Smart Graphics 2006, Vancouver Canada, 2006.

[Hirakawa99] M. Hirakawa, “Do software engineers like multimedia?” in Multimedia Computing
and Systems, 1999. IEEE International Conference on, vol. 1, 7-11 June 1999, pp.

85–90vol.1.

[Hitz et al.05] M. Hitz, G. Kappel, E. Kapsammer, and W. Retschitzegger, UML @ Work, 3rd ed.

Heidelberg: Dpunkt Verlag, 2005.

[Hoogeveen97] M. Hoogeveen, “Towards a Theory of the Effectiveness of Multimedia Systems,”

International Journal of Human Computer Interaction, vol. 9, no. 2, pp. 151–168,

1997. URL: http://www.cyber-ventures.com/mh/paper/mmtheory.htm

[Hußmann and Pleuß04] H. Hußmann and A. Pleuß, “Model-Driven Development of Multimedia

Applications,” in The Monterey Workshop 2004 – Workshop on Software Engineering
Tools: Compatibility and Integration, 2004. URL: http://www.medien.ifi.lmu.de/

pubdb/publications/pub/hussmann2004monterey/hussmann2004monterey.pdf

[Hussmann07] H. Hussmann, “Vorlesung Multimedia-Programmierung,” pp. 2–50, 6 2007. URL:

http://www.medien.ifi.lmu.de/lehre/ss07/mmp/vorlesung/mmp3b.pdf

246 BIBLIOGRAPHY

[Hyp] “Apple HyperCard,” [Website]. URL: http://www.apple.com/hypercard/

[IBM] IBM, “Rational Software Modeler,” [Website]. URL: http://www-01.ibm.com/

software/awdtools/modeler/swmodeler/index.html

[ICS] “ACM/IEEE International Conference on Software Engineering (ICSE),” [Website].

URL: http://www.icse-conferences.org/

[Ide] “UsiXML – IdealXML,” [Website]. URL: http://www.usixml.org/index.php?mod=

pages&id=15

[Ill] “Adobe Illustrator CS4,” [Website]. URL: http://www.adobe.com/products/illustrator/

[Inf] “Automotive Infotainment Systems,” [Website]. URL: http://www.smsc-ais.com/AIS/

[INR05] ATL UML to Java, INRIA, March 2005. URL: http://www.eclipse.org/m2m/atl/

atlTransformations/UML2Java/ExampleUML2Java%5Bv00.01%5D.pdf

[INT] “The INTERACT Conference Series,” [Website]. URL: http://www.ifip-hci.org/

INTERACT.html

[Isakowitz et al.98] T. Isakowitz, A. Kamis, and M. Koufaris, “Reconciling Top-Down and Bottom-

Up Design Approaches in RMM,” DATA BASE, vol. 29, no. 4, pp. 58–67, 1998.

[Isazadeh and Lamb97] H. Isazadeh and D. A. Lamb, “CASE Environments and MetaCASE

Tools,” Queen’s University, Canada, Tech. Rep. 1997-403, 1997. URL: http:

//ftp.qucis.queensu.ca/TechReports/Reports/1997-403.pdf

[ISO88] Information processing systems – Open Systems Interconnection – LOTOS – A formal
description technique based on the temporal ordering of observational behaviour, ISO,

1988, iSO/IS 8807.

[ISO97a] The Virtual Reality Modeling Language 1.0, ISO, 1997, iSO/IEC 14772-1:1997. URL:

http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/

[ISO97b] Information technology – Coding of multimedia and hypermedia information – Part 1:
MHEG object representation – Base notation (ASN.1), ISO/IEC, Geneva, Switzerland,

1997, iSO/IEC 13522-1:1997.

[ISO98] Ergonomics of Human System Interaction – Part 11: Guidance on usability, ISO, 1998,

iSO 9241-11.

[ISO04] ISO/IEC 19775:2004 – Extensible 3D (X3D), ISO, 2004, iSO/IEC 19775:2004. URL:

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/

[Jacobson et al.99] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development
Process. Addison-Wesley Professional, 2 1999. URL: http://amazon.com/o/ASIN/

0201571692/

[Janssen et al.93] C. Janssen, A. Weisbecker, and J. Ziegler, “Generating user interfaces from data

models and dialogue net specifications,” in Human-Computer Interaction, INTER-
ACT ’93, IFIP TC13 International Conference on Human-Computer Interaction, 24-29

BIBLIOGRAPHY 247

April 1993, Amsterdam, The Netherlands, jointly organised with ACM Conference on
Human Aspects in Computing Systems CHI’93, S. Ashlund, K. Mullet, A. Henderson,

E. Hollnagel, and T. N. White, Eds. ACM, 1993, pp. 418–423.

[Jav] “JavaCC,” [Website]. URL: https://javacc.dev.java.net/

[JDT] “Eclipse Java development tools (JDT),” [Website]. URL: http://www.eclipse.org/jdt/

[Jeckle et al.04] M. Jeckle, C. Rupp, J. Hahn, B. Zengler, and S. Queins, UML 2 glasklar. München,

Wien: Carl Hanser Verlag, 2004.

[Jeckle04] M. Jeckle, “Unified Modeling Language (UML) Tools,” 2004, [Website]. URL:

http://www.jeckle.de/umltools.htm

[JET] “Eclipse – Model to Text (M2T) project – JET,” [Website]. URL: http:

//www.eclipse.org/modeling/m2t/?project=jet

[JJT] “JavaCC: JJTree Reference Documentation,” [Website]. URL: https://javacc.dev.java.

net/doc/JJTree.html

[JMe] “What is JMerge,” [Website]. URL: http://wiki.eclipse.org/JET_FAQ_What_is_

JMerge%3F

[Johnson and Johnson89] P. Johnson and H. Johnson, “Knowledge analysis of task : Task analysis

and specification for human-computer systems,” in Engineering the human-computer
interface, A. Downton, Ed. New York, NY, USA: McGraw-Hill, Inc., 1989. URL:

http://portal.acm.org/citation.cfm?id=141687

[Johnson91] P. Johnson, Human Computer Interaction. McGraw-Hill Publishing Co., 12 1991.

URL: http://amazon.com/o/ASIN/0077072359/

[Jorge et al.03] J. A. Jorge, N. J. Nunes, and J. ao Falcão e Cunha, Eds., Interactive Systems. Design,
Specification, and Verification, 10th International Workshop, DSV-IS 2003, Funchal,
Madeira Island, Portugal, June 11-13, 2003, Revised Papers, ser. Lecture Notes in

Computer Science, vol. 2844. Springer, 2003.

[Jouault and Bézivin06] F. Jouault and J. Bézivin, “KM3: A DSL for Metamodel Specification,” in

Formal Methods for Open Object-Based Distributed Systems, 8th IFIP WG 6.1 Inter-
national Conference, FMOODS 2006, Bologna, Italy, June 14-16, 2006, Proceedings,
ser. Lecture Notes in Computer Science, R. Gorrieri and H. Wehrheim, Eds., vol. 4037.

Springer, 2006, pp. 171–185.

[Jouault and Kurtev05] F. Jouault and I. Kurtev, “TransformingModels with ATL,” in Satellite Events
at the MoDELS 2005 Conference, MoDELS 2005 International Workshops, Doctoral
Symposium, Educators Symposium, Montego Bay, Jamaica, October 2-7, 2005, Revised
Selected Papers, ser. Lecture Notes in Computer Science, J.-M. Bruel, Ed., vol. 3844.

Springer, 2005, pp. 128–138.

[Jouault and Kurtev06] F. Jouault and I. Kurtev, “On the architectural alignment of ATL and QVT,”

in SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing. New

York, NY, USA: ACM, 2006, pp. 1188–1195.

248 BIBLIOGRAPHY

[Jungwirth and Stadler03] H. Jungwirth and H. Stadler, Ansichten - Videoanalysen zur Lehrer/-
innenbildung (CD-ROM). Innsbruck, Austria: Studienverlag, 2003.

[Kaczkowski07] M. Kaczkowski, “Realisierung einer Transformation von MML-Modellen nach

Java-Code,” Project Thesis, University of Munich, Munich, July 2007.

[Kannengiesser and Kannengiesser06] C. Kannengiesser and M. Kannengiesser, Flash 8, 2nd ed.

Poing, Germany: Franzis Verlag GmbH, 5 2006. URL: http://amazon.de/o/ASIN/

3772370950/

[Kappel et al.03] G. Kappel, B. Pröll, S. Reich, and W. Retschitzegger, Web Engineering. Systema-
tische Entwicklung von Webanwendungen. Heidelberg: Dpunkt Verlag, 2003.

[Kauntz07] G. Kauntz, “MMLbasierte Entwicklung eines Autorenwerkzeugs für Lernanwendun-

gen der Unterrichtsmitschau,” Project Thesis, University of Munich, Munich, Mai

2007.

[Kazoun and Lott07] C. Kazoun and J. Lott, Programming Flex 2: The comprehensive guide to
creating rich media applications with Adobe Flex (Programming). Sebastopol, CA,

USA: OŠReilly, 4 2007. URL: http://amazon.com/o/ASIN/059652689X/

[Kelly and Tolvanen08] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full
Code Generation. New York, NY, USA: John Wiley & Sons, Inc., 3 2008. URL:

http://amazon.com/o/ASIN/0470036664/

[Kent05] S. Kent, “A DSL or UML Profile. Which Would You Use? - Panel Discussion,”

in Model Driven Engineering Languages and Systems, 8th International Conference,
MoDELS 2005, Montego Bay, Jamaica, October 2-7, 2005, Proceedings, ser. Lecture
Notes in Computer Science, L. C. Briand and C. Williams, Eds., vol. 3713. Springer,

2005, p. 719.

[Kieburtz et al.96] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis, D. P. Oliva,

T. Sheard, I. Smith, and L. Walton, “A software engineering experiment in software

component generation,” in ICSE ’96: Proceedings of the 18th international conference
on Software engineering. Washington, DC, USA: IEEE Computer Society, 1996, pp.

542–552.

[Kitchenham et al.02] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin,

K. E. Emam, and J. Rosenberg, “Preliminary guidelines for empirical research in soft-

ware engineering,” IEEE Trans. Softw. Eng., vol. 28, no. 8, pp. 721–734, 2002.

[Kleppe et al.03] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Professional, 5 2003. URL:

http://amazon.com/o/ASIN/032119442X/

[Klußmann01] N. Klußmann, Lexikon der Kommunikations- und Informationstechnik, 3rd ed.

Heidelberg, Germany: Hüthig, 10 2001. URL: http://amazon.de/o/ASIN/3778539515/

[Koch et al.07] N. Koch, A. Knapp, G. Zhang, and H. Baumeister, “Uml-Based Web Engineering:

An Approach Based on Standards,” in Web Engineering: Modelling and Implementing
Web Applications, G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, Eds. London, UK:

Springer, 2007, pp. 157–191.

BIBLIOGRAPHY 249

[Kolski and Vanderdonckt02] C. Kolski and J. Vanderdonckt, Eds., Computer-Aided Design of User
Interfaces III, Proceedings of the Fourth International Conference on Computer-Aided
Design of User Interfaces, May, 15-17, 2002, Valenciennes, France. Kluwer, 2002.

[Kozel96] K. Kozel, “The Interactive Killing Fields,” Multimedia Producer, no. 5, May 1996.

[Kraiker07] S. Kraiker, “Klassifikation von Multimedia-Anwendungen bezüglich der Modellierung

mit MML,” Project Thesis, University of Munich, Munich, February 2007.

[Krasner and Pope88] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view controller

user interface paradigm in Smalltalk-80,” J. Object Oriented Program., vol. 1, no. 3,
pp. 26–49, 1988.

[Kühne07] T. Kühne, Ed., Models in Software Engineering, Workshops and Symposia at MoD-
ELS 2006, Genoa, Italy, October 1-6, 2006, Reports and Revised Selected Papers, ser.
Lecture Notes in Computer Science, vol. 4364. Springer, 2007.

[Kurtev et al.02] I. Kurtev, J. Bézivin, and M. Aksit, “Technological Spaces: An Initial Appraisal,”

in CoopIS, DOA’2002 Federated Conferences, Industrial track, Irvine, 2002. URL:

http://fparreiras/papers/TechnologicalSpaces.pdf

[Kurtev et al.06] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez, “Model-based DSL frameworks,”

in Companion to the 21th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26,
2006, Portland, Oregon, USA, P. L. Tarr and W. R. Cook, Eds. ACM, 2006, pp.

602–616.

[Lang and Fitzgerald05] M. Lang and B. Fitzgerald, “Hypermedia Systems Development Practices:

A Survey,” IEEE Softw., vol. 22, no. 2, pp. 68–75, 2005.

[Lang and Fitzgerald06] M. Lang and B. Fitzgerald, “New Branches, Old Roots: A Study of Methods

and Techniques in Web/Hypermedia Systems Design,” Information Systems Manage-
ment, vol. 23, no. 3, pp. 62–74, June 2006.

[Lang01a] M. Lang, “Issues and Challenges in the Development of Hypermedia Information Sys-

tems,” in Proceedings of 11th Annual Business Information Technology Conference
(BIT 2001), R. Hackney, Ed. Machester, UK: Manchester Metropolitan University,

2001.

[Lang01b] M. Lang, “A Study of Practice in Hypermedia Systems Design,” in Doctoral
Consortium, European Conference on Information Systems (ECIS), 2001. URL:

http://ecis2001.fov.uni-mb.si/doctoral/Students/ECIS-DC_Lang.pdf

[Leichtenstern04] K. Leichtenstern, “Automatische Generierung von SVG/JavaScript-Code für

Multimedia-Anwendungen,” Project Thesis, University of Munich, Munich, Decem-

ber 2004.

[Lienhart et al.07] R. Lienhart, A. R. Prasad, A. Hanjalic, S. Choi, B. P. Bailey, and N. Sebe, Eds.,

Proceedings of the 15th International Conference on Multimedia 2007, Augsburg, Ger-
many, September 24-29, 2007. ACM, 2007.

250 BIBLIOGRAPHY

[Limbourg et al.00] Q. Limbourg, J. Vanderdonckt, and N. Souchon, “The Task-Dialog and Task-

Presentation Mapping Problem: Some Preliminary Results,” in DSV-IS, 2000, pp. 227–
246.

[Limbourg et al.01] Q. Limbourg, C. Pribeanu, and J. Vanderdonckt, “Towards Uniformed TaskMod-

els in a Model-Based Approach,” in Interactive Systems: Design, Specification, and
Verification, 8th International Workshop, DSV-IS 2001, Glasgow, Scotland, UK, June
13-15, 2001, Revised Papers, ser. Lecture Notes in Computer Science, C. Johnson, Ed.,

vol. 2220. Springer, 2001, pp. 164–182.

[Limbourg et al.04] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and V. López-Jaquero,

“USIXML: A Language Supporting Multi-path Development of User Interfaces,” in

Engineering Human Computer Interaction and Interactive Systems, Joint Working
Conferences EHCI-DSVIS 2004, Hamburg, Germany, July 11-13, 2004, Revised Se-
lected Papers, ser. Lecture Notes in Computer Science, R. Bastide, P. A. Palanque, and

J. Roth, Eds., vol. 3425. Springer, 2004, pp. 200–220.

[Limbourg04] Q. Limbourg, “Multi-Path Development of User Interfaces,” Phd, Université

catholique de Louvain, Louvain-La-Neuve, 2004.

[Linaje et al.07] M. Linaje, J. C. Preciado, and F. Sánchez-Figueroa, “Engineering Rich Internet Ap-

plication User Interfaces over Legacy Web Models,” IEEE Internet Computing, vol. 11,
no. 6, pp. 53–59, 2007.

[Lonczewski and Schreiber96] F. Lonczewski and S. Schreiber, “The FUSE-System: an Integrated

User Interface Design Environment,” in Computer-Aided Design of User Interfaces I,
Proceedings of the Second International Workshop on Computer-Aided Design of User
Interfaces, June 5-7, 1996, Namur, Belgium, J. Vanderdonckt, Ed. Presses Universi-

taires de Namur, 1996, pp. 37–56.

[Long et al.98] E. Long, A. Misra, and J. Sztipanovits, “Increasing productivity at Saturn,” Computer,
vol. 31, no. 8, pp. 35–43, 1998.

[Lord07] R. Lord, “Polling the keyboard in Actionscript 3,” September 2007, [Website]. URL:

http://www.bigroom.co.uk/blog/polling-the-keyboard-in-actionscript-3

[Lorenz and Schmalfuß98] M. Lorenz and R. Schmalfuß, “Multimedia Authoring Systems: A

Proposal for a Reference Model,” in The Sixth International Conference in
Central Europe on Computer Graphics and Visualization (WSCG’98), 1998. URL:

http://wscg.zcu.cz/WSCG1998/papers98/Lorenz_98.ps.gz

[Lowe and Hall99] D. Lowe andW. Hall, Hypermedia and the Web: An Engineering Approach. New

York, NY, USA: John Wiley & Sons, Inc., 1999.

[Luna08] F. D. Luna, Introduction to 3D Game Programming with DirectX 10. Plexo, TX, USA:

Wordware Publishing, Inc., 10 2008. URL: http://amazon.com/o/ASIN/1598220535/

[Luyten and Coninx05] K. Luyten and K. Coninx, “Distributed User Interface Elements to support

Smart Interaction Spaces,” in Seventh IEEE International Symposium on Multimedia
(ISM 2005), 12-14 December 2005, Irvine, CA, USA. IEEE Computer Society, 2005,

pp. 277–286.

BIBLIOGRAPHY 251

[Luyten et al.03] K. Luyten, T. Clerckx, K. Coninx, and J. Vanderdonckt, “Derivation of a Dialog

Model from a Task Model by Activity Chain Extraction,” in Interactive Systems. De-
sign, Specification, and Verification, 10th International Workshop, DSV-IS 2003, Fun-
chal, Madeira Island, Portugal, June 11-13, 2003, Revised Papers, ser. Lecture Notes

in Computer Science, J. A. Jorge, N. J. Nunes, and J. ao Falcão e Cunha, Eds., vol.

2844. Springer, 2003, pp. 203–217.

[Luyten04] K. Luyten, “Dynamic User Interface Generation for Mobile and Embedded Systems

with Model-Based User Interface Development,” Phd, Transnationale Universiteit

Limburg, Diepenbeek, Belgium, October 2004. URL: http://research.edm.uhasselt.be/

~kris/research/phd/phd-luyten.pdf

[Macromedia03] Macromedia, Ed., Macromedia Flash MX 2004 ActionScript 2.0 Dictionary.
Berkeley, CA, USA: Macromedia Press, 11 2003. URL: http://amazon.com/o/ASIN/

0321228413/

[Mallon95] A. Mallon, “The Multimedia Development Process,” 1995. URL: http://ourworld.

compuserve.com/homepages/adrian_mallon_multimedia/devmtpro.htm

[Marculescu et al.04] R. Marculescu, M. Pedram, and J. Henkel, “Distributed Multimedia System

Design: A Holistic Perspective,” in DATE ’04: Proceedings of the conference on De-
sign, automation and test in Europe. Washington, DC, USA: IEEE Computer Society,

2004, p. 21342.

[Markopoulos and Marijnissen00] P. Markopoulos and P. Marijnissen, “UML as a Representation

for Interaction Designs,” in Proc. Australian Conf. Computer-Human Interaction
(OZCHI), 2000, pp. 240–249. URL: http://www.idemployee.id.tue.nl/p.markopoulos/

downloadablePapers/P.MarkopoulosOZCHI2000.pdf

[Markopoulos et al.92] P. Markopoulos, J. Pycock, S. Wilson, and P. Johnson, “Adept-a task based

design environment,” in Proc. Twenty-Fifth Hawaii International Conference on System
Sciences, J. Pycock, Ed., vol. ii, 1992, pp. 587–596 vol.2.

[Marshall08] D. Marshall, “Multimedia – Online Course Notes – Multimedia and Hypermedia

Information Encoding Expert Group (MHEG),” Cardiff University, 2008. URL: http://

www.cs.cf.ac.uk/Dave/Multimedia/node297.html#SECTION04360000000000000000

[Märtin96] C. Märtin, “Software Life Cycle Automation for Interactive Applications: The AME

Design Environment,” in Computer-Aided Design of User Interfaces I, Proceedings of
the Second International Workshop on Computer-Aided Design of User Interfaces, June
5-7, 1996, Namur, Belgium, J. Vanderdonckt, Ed. Presses Universitaires de Namur,

1996, pp. 57–76.

[Martinez-Ruiz et al.06a] F. J. Martinez-Ruiz, J. M. Arteaga, and J. Vanderdonckt, “Transformation

of XAML schema for RIA using XSLT,” in Proc. of XlX Congreso Nacional
y V Congreso Internacional de Informática y Computación de la ANIEI,
Avances en Tecnologías de la Información CNCIIC’2006, 2006. URL: http:

//www.isys.ucl.ac.be/bchi/publications/2006/Martinez-CNCIIC2006.pdf

252 BIBLIOGRAPHY

[Martinez-Ruiz et al.06b] F. J. Martinez-Ruiz, J. M. Arteaga, J. Vanderdonckt, J. M. Gonzalez-

Calleros, and R. Mendoza, “A first draft of a Model-driven Method for Designing

Graphical User Interfaces of Rich Internet Applications,” in LA-WEB ’06: Proceedings
of the Fourth Latin American Web Congress. Washington, DC, USA: IEEE Computer

Society, 2006, pp. 32–38.

[May] “Autodesk Maya,” [Website]. URL: http://usa.autodesk.com/adsk/servlet/index?id=

7635018&siteID=123112

[Mbakop06] X. Mbakop, “Erstellung eines MML Editors mittels der openArchitectureWare,”

Project Thesis, University of Munich, Munich, January 2006.

[Mbakop07] X. Mbakop, “Reverse-Engineering von MML-Modellen aus Flash-Anwendungen,”

Diploma Thesis, University of Munich, Munich, March 2007.

[Mehra et al.05] A. Mehra, J. Grundy, and J. Hosking, “A generic approach to supporting diagram

differencing and merging for collaborative design,” in ASE ’05: Proceedings of the
20th IEEE/ACM international Conference on Automated software engineering. New

York, NY, USA: ACM, 2005, pp. 204–213.

[Meta] “MetaCase - Domain-Specific Modeling with MetaEdit+,” [Website]. URL:

http://www.metacase.com/

[Metb] “Metacase - Examples on Domain-Specific Modeling,” january 30, 2008. URL:

http://www.metacase.com/cases/dsm_examples.html

[MetaCase99] MetaCase, “Nokia Case Study,” 1999. URL: http://www.metacase.com/papers/

MetaEdit_in_Nokia.pdf

[Meyer-Boudnik and Effelsberg95] T. Meyer-Boudnik and W. Effelsberg, “MHEG Explained,” IEEE
MultiMedia, vol. 2, no. 1, pp. 26–38, 1995.

[Meyer08] R. Meyer, “MML Code Generation for ActionScript 3,” Project Thesis, University of

Munich, Munich, 11 2008.

[MHE] “MHEG-5 Class Hierarchy,” [Website]. URL: http://user.chol.com/~mheg5/down/

class.pdf

[Mic] “Microsoft Corporation,” [Website]. URL: www.microsoft.com/

[Michotte and Vanderdonckt08] B. Michotte and J. Vanderdonckt, “GrafiXML, A Multi-Target User

Interface Builder based on UsiXML,” in Proc. of 4th International Conference on Au-
tonomic and Autonomous Systems ICASŠ2008. IEEE Computer Society Press, 2008.

[Microsofta] Microsoft, “DirectX Developer Center,” [Website]. URL: http://msdn.microsoft.com/

en-us/directx/default.aspx

[Microsoftb] Microsoft, “Microsoft MSDN Library – IDirectInputDevice8 Interface,” [Website].

URL: http://msdn.microsoft.com/en-us/library/bb205956(VS.85).aspx

[Microsoft03] Microsoft, Ed., Computerlexikon mit Fachwörterbuch, 7th ed. UnterschleiSSheim,

Germany: Microsoft Press, 2003.

BIBLIOGRAPHY 253

[Microsystems] S. Microsystems, “Java Media APIs,” [Website]. URL: http://java.sun.com/javase/

technologies/desktop/media/

[Miller and (Eds.)03] J. Miller and J. M. (Eds.), MDA Guide Version 1.0.1, Object Management

Group, June 2003, omg/2003-06-01.

[Misanchuk et al.00] E. R. Misanchuk, R. A. Schwier, and E. Boling, Visual design for instructional
multimedia. CD-ROM hypertextbook, 2000. URL: http://www.indiana.edu/~vdim/

Start.HTM

[MMM] “International Multimedia Modeling Conference 2008.” URL: http://research.nii.ac.jp/

mmm2008/

[MMPa] “University of Munich – Multimedia-Programmierung Summer Semester 2004,”

january 28, 2008. URL: http://www.medien.ifi.lmu.de/lehre/ss04/mmp/

[MMPb] “University of Munich – Multimedia-Programmierung Summer Semester 2004 –

Results,” january 28, 2008. URL: http://www.medien.ifi.lmu.de/fileadmin/mimuc/

mmp_ss04/results/mmp_results.swf

[MMPc] “University of Munich – Multimedia-Programmierung Summer Semester 2005.” URL:

http://www.medien.ifi.lmu.de/lehre/ss05/mmp/

[MMPd] “University of Munich – Multimedia-Programmierung Summer Semester 2006.” URL:

http://www.medien.ifi.lmu.de/lehre/ss06/mmp/

[MMPe] “University of Munich – Multimedia-Programmierung Summer Semester 2006 –

Results.” URL: http://www.ifi.lmu.de/studium-medieninformatik/galerie/mmp-ss06/

[MMPf] “University of Munich – Multimedia-Programmierung Summer Semester 2007.” URL:

http://www.medien.ifi.lmu.de/lehre/ss07m/mmp/

[Montero et al.05] F. Montero, V. López-Jaquero, J. Vanderdonckt, P. González, M. D. Lozano, and

Q. Limbourg, “Solving the Mapping Problem in User Interface Design by Seamless

Integration in IdealXML,” in Interactive Systems, Design, Specification, and Verifica-
tion, 12th International Workshop, DSVIS 2005, Newcastle upon Tyne, UK, July 13-15,
2005, Revised Papers, ser. Lecture Notes in Computer Science, S. W. Gilroy and M. D.

Harrison, Eds., vol. 3941. Springer, 2005, pp. 161–172.

[Montero05] F. Montero, “Quality and experience integration in the model-driven user

interfaces development process (Slides),” 2005. URL: http://www.isys.ucl.ac.be/bchi/

publications/Ph.D.Theses/Montero-PhD2005.ppt

[Moock04] C. Moock, Essential ActionScript 2.0, 1st ed. Sebastopol, CA, USA: O’Reilly Media,

6 2004. URL: http://amazon.de/o/ASIN/0596006527/

[Moock07] C. Moock, Essential ActionScript 3.0, 1st ed. Sebastopol, CA, USA: O’Reilly Media,

7 2007. URL: http://amazon.de/o/ASIN/0596526946/

[Mori et al.04] G. Mori, F. Paternò, and C. Santoro, “Design and Development of Multidevice User

Interfaces through Multiple Logical Descriptions,” IEEE Trans. Software Eng., vol. 30,
no. 8, pp. 507–520, 2004.

254 BIBLIOGRAPHY

[Morris and Finkelstein96] S. J. Morris and A. C. W. Finkelstein, “Integrating Design and Devel-

opment in the Production of Multimedia Documents,” in MMSD ’96: Proceedings of
the 1996 International Workshop on Multimedia Software Development (MMSD ’96).
Washington, DC, USA: IEEE Computer Society, 1996, p. 98.

[Motion-Twin] Motion-Twin, “MTASC – Motion-Twin ActionScript 2 Compiler,” [Website]. URL:

http://www.mtasc.org/

[Moyes and Jordan93] J. Moyes and P. W. Jordan, “Icon design and its ef-

fect on guessability, learnability, and experienced user performance,” in

People and Computers VIII, L. Alty, D. Diaper, and S. Guest,

Eds. Cambridge, England: Cambridge University Press, 1993.

URL: http://books.google.de/books?hl=en&lr=&id=Jzwbj9B1vpQC&oi=fnd&pg=

PA49&dq=icon+design&ots=1t0zrEbkIp&sig=3YWMa_bs0BwcXxDy-4YDhyq0jh4

[Moz] “Mozilla Project,” [Website]. URL: http://www.mozilla.org/

[Mühlhäuser and Gecsei96] M. Mühlhäuser and J. Gecsei, “Services, Frameworks, and Paradigms

for Distributed Multimedia Applications,” IEEE MultiMedia, vol. 3, no. 3, pp. 48–61,
1996.

[Mühlhäuser96] M. Mühlhäuser, “Issues in Multimedia Software Development,” in MMSD ’96: Pro-
ceedings of the 1996 International Workshop on Multimedia Software Development
(MMSD ’96). Washington, DC, USA: IEEE Computer Society, 1996, p. 2.

[Murata and Murata89] T. Murata and T. Murata, “Petri nets: Properties, analysis and applications,”

Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[Myers et al.00] B. A. Myers, S. E. Hudson, and R. F. Pausch, “Past, present, and future of user

interface software tools,” ACM Trans. Comput.-Hum. Interact., vol. 7, no. 1, pp. 3–28,
2000.

[Narasimhalu96] A. D. Narasimhalu, “Multimedia databases,” Multimedia Syst., vol. 4, no. 5, pp.
226–249, 1996.

[Nielsen93] J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann Pub-

lishers Inc., 1993.

[No Magic] I. No Magic, “MagicDraw UML,” [Website]. URL: http://www.magicdraw.com/

[Noble et al.99] J. Noble, A. Taivalsaari, and I. Moore, Eds., Prototype-Based Programming: Con-
cepts, Languages and Applications, 1st ed. Singapore: Springer, 2 1999.

[Nóbrega et al.05] L. Nóbrega, N. J. Nunes, and H. Coelho, “Mapping ConcurTaskTrees into UML

2.0,” in Interactive Systems, Design, Specification, and Verification, 12th International
Workshop, DSVIS 2005, Newcastle upon Tyne, UK, July 13-15, 2005, Revised Papers,
ser. Lecture Notes in Computer Science, S. W. Gilroy and M. D. Harrison, Eds., vol.

3941. Springer, 2005, pp. 237–248.

[Nunes and Falcão e Cunha00] N. J. Nunes and J. Falcão e Cunha, “Towards a UML profile for inter-

action design: the Wisdom approach,” in UML 2000 - The Unified Modeling Language,

BIBLIOGRAPHY 255

Advancing the Standard, Third International Conference, York, UK, October 2-6, 2000,
Proceedings, ser. Lecture Notes in Computer Science, A. Evans, S. Kent, and B. Selic,

Eds., vol. 1939. Springer, 2000, pp. 101–116.

[Nunes01] N. J. Nunes, “Object Modeling for User-Centered Development and User Interface

Design: The Wisdom Approach,” Ph.D. dissertation, University of Madrid, Madrid,

Spain, 2001.

[Oatrix] Oatrix, “GRiNS,” [Website]. URL: http://www.oratrix.com/

[oAW] “openArchitectureWare,” [Website]. URL: http://www.openarchitectureware.org/

[Obj99] Requirements for UML Profiles, Object Management Group (OMG), 1999, oMG doc-

ument ad/99-12-32.

[Obj03] Common Warehouse Metamodel (CWM) Specification, Version 1.1, Ob-

ject Management Group, February 2003, formal/2003-03-02. URL: http:

//www.omg.org/cgi-bin/apps/doc?formal/03-03-02.pdf

[Obj04a] Metmodel and UML Profile for Java and EJB Specification, Object Management

Group (OMG), February 2004, formal/04-02-02. URL: http://www.omg.org/docs/

formal/04-02-02.pdf

[Obj04b] An ORMSC Definition of MDA, Object Management Group (OMG), August 2004,

ormsc/04-08-02. URL: http://www.omg.org/docs/ormsc/04-08-02.pdf

[Obj05] Meta Object Facility (MOF) Specification, Version 1.4.1, Object Management Group,

July 2005, formal/05-05-05. URL: http://www.omg.org/docs/formal/05-05-05.pdf

[Obj06a] Meta Object Facility (MOF) Core Specification, Version 2.0, Object Management

Group, January 2006, formal/06-01-01. URL: http://www.omg.org/docs/formal/

06-01-01.pdf

[Obj06b] Object Constraint Language OMG Available Specification Version 2.0, Object

Management Group, May 2006, formal/2006-05-01. URL: http://www.omg.org/docs/

formal/06-05-01.pdf

[Obj07a] Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Object

Management Group, July 2007, ptc/07-07-07. URL: http://www.omg.org/docs/ptc/

07-07-07.pdf

[Obj07b] MOF 2.0/XMI Mapping, Version 2.1.1, Object Management Group, December 2007,

formal/2007-12-01. URL: http://www.omg.org/docs/formal/07-12-01.pdf

[Obj07c] OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2, Object

Management Group, November 2007, formal/2007-11-04. URL: http://www.omg.org/

spec/UML/2.1.2/Infrastructure/PDF

[Obj07d] OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2, Object

Management Group, November 2007, formal/2007-11-02. URL: http://www.omg.org/

spec/UML/2.1.2/Superstructure/PDF

256 BIBLIOGRAPHY

[Obj07e] Ontology Definition Metamodel, Object Management Group, 2007, ptc/2007-09-09.

URL: http://www.omg.org/docs/ptc/07-09-09.pdf

[of Maryland] U. of Maryland, “Piccolo Home Page,” [Website]. URL: http://www.cs.umd.edu/hcil/

jazz/

[Oldevik et al.08] J. Oldevik, G. K. Olsen, T. Neple, and R. Paige, Eds., ECMDA Traceability
Workshop Proceedings, 2008. URL: http://modelbased.net/ecmda-traceability/images/

papers/2008/ecmda-tw-proceedings08.pdf

[Olsen07] D. R. Olsen, Jr., “Evaluating user interface systems research,” in UIST ’07: Proceedings
of the 20th annual ACM symposium on User interface software and technology. New

York, NY, USA: ACM, 2007, pp. 251–258.

[OMGa] “Object Management Group (OMG) – Object and Reference Model Subcommittee

(ORMSC) – MDA Guide Working Page,” [Website]. URL: http://ormsc.omg.org/mda_

guide_working_page.htm

[OMGb] “Object Management Group (OMG) Website,” january 23, 2008. URL: http:

//www.omg.org/

[Osswald03] K. Osswald, Konzeptmanagement - Interaktive Medien - Interdisziplinäre Projekte.
Berlin Heidelberg: Springer, 2003.

[Otr] “Otris Software AG – JANUS,” [Website]. URL: http://www.otris.de/cms/JANUS_

Softwarefabrik_MDA_otris.html

[Oviatt99] S. Oviatt, “Ten myths of multimodal interaction,” Commun. ACM, vol. 42, no. 11, pp.

74–81, 1999.

[Ozcan et al.05] G. Ozcan, C. Isikhan, and A. Alpkocak, “Melody Extraction on MIDI Music Files,”

in Seventh IEEE International Symposium on Multimedia (ISM 2005), 12-14 December
2005, Irvine, CA, USA. IEEE Computer Society, 2005, pp. 414–422.

[Pai] “Corel Paint Shop Pro,” [Website]. URL: http://www.corel.com/servlet/Satellite/us/en/

Product/1184951547051#versionTabview=tab0&tabview=tab0

[Paige et al.00] R. F. Paige, J. S. Ostroff, and P. J. Brooke, “Principles for modeling language design,”

Information & Software Technology, vol. 42, no. 10, pp. 665–675, 2000.

[Palanque and Bastide95] P. A. Palanque and R. Bastide, Eds., Design, Specification and Verification
of Interactive Systems ’95, Proceedings of the Eurographics Workshop in Toulouse,
France June 7-9, 1995. Springer, 1995.

[Palanque et al.93] P. A. Palanque, R. Bastide, L. Dourte, and C. Sibertin-Blanc, “Design of User-

Driven Interfaces Using Petri Nets and Objects,” in CAiSE ’93: Proceedings of Ad-
vanced Information Systems Engineering. London, UK: Springer-Verlag, 1993, pp.

569–585.

[Paternò and Sansone06] F. Paternò and S. Sansone, “Model-based Generation of Interactive Digi-

tal TV Applications,” in Proceedings of the MoDELS’06 Workshop on Model Driven
Development of Advanced User Interfaces, A. Pleuß, J. V. den Bergh, S. Sauer, H. Huß-

mann, and A. Bödcher, Eds., vol. 214. CEUR-WS.org, 2006.

BIBLIOGRAPHY 257

[Paternò and Santoro02] F. Paternò and C. Santoro, “One Model, Many Interfaces,” in Computer-
Aided Design of User Interfaces III, Proceedings of the Fourth International Confer-
ence on Computer-Aided Design of User Interfaces, May, 15-17, 2002, Valenciennes,
France, C. Kolski and J. Vanderdonckt, Eds. Kluwer, 2002, pp. 143–154.

[Paternò et al.97] F. Paternò, C. Mancini, and S. Meniconi, “ConcurTaskTrees: A Diagrammatic No-

tation for Specifying Task Models,” in Human-Computer Interaction, INTERACT ’97,
IFIP TC13 Interantional Conference on Human-Computer Interaction, 14th-18th July
1997, Sydney, Australia, ser. IFIP Conference Proceedings, S. Howard, J. Hammond,

and G. Lindgaard, Eds., vol. 96. Chapman & Hall, 1997, pp. 362–369.

[Paternò99] F. Paternò, Model-Based Design and Evaluation of Interactive Applications. London,

UK: Springer-Verlag, 1999.

[Paternò01] F. Paternò, “Towards a UML for Interactive Systems,” in Engineering for Human-
Computer Interaction, 8th IFIP International Conference, EHCI 2001, Toronto,
Canada, May 11-13, 2001, Revised Papers, ser. Lecture Notes in Computer Science,

M. R. Little and L. Nigay, Eds., vol. 2254. Springer, 2001, pp. 7–18.

[Pauen and Voss98] P. Pauen and J. Voss, “The HyDev Approach to model-based Development of

Hypermedia Applications,” in Proceedings Hypertext ’98 Workshop, 1st International
Workshop on Hypermedia Development: Processes, Methods and Models, Pittsburgh,
Juni 1998. URL: http://voss.fernuni-hagen.de/pi3/hydev/hypertext98/index.htm

[Pauen et al.98a] P. Pauen, J. Voss, and H.-W. Six, “Modeling Hypermedia Applications with Hy-

Dev,” in Designing Effective and Usable Multimedia Systems: Proceedings of the IFIP
Working Group 13.2 Conference on Designing Effective and Usable Multimedia Sys-
tems, Stuttgart, Germany, September 1998, ser. IFIP Conference Proceedings, A. G.

Sutcliffe, J. Ziegler, and P. Johnson, Eds., vol. 133. Kluwer, 1998.

[Pauen et al.98b] P. Pauen, J. Voss, and H.-W. Six, “Modeling of Hypermedia Applications with

HyDev,” in Proceedings CHI-98 Workshop Hyped-Media to Hyper-Media: Toward
Theoretical Foundations of Design, Use and Evaluation, Los Angeles, April 1998.

URL: http://www.informatik.fernuni-hagen.de/import/pi3/PDFs/chi98.pdf

[Phanouriou00] C. Phanouriou, “UIML: A Device-Independent User Interface Markup Lan-

guage,” Phd, Virginia Polytechnic Institute and State University, Blacksburg,

Virginia, USA, September 2000. URL: http://scholar.lib.vt.edu/theses/available/

etd-08122000-19510051/unrestricted/PhanouriouETD.pdf

[Phoa] “Adobe Photoshop,” [Website]. URL: http://www.adobe.com/products/photoshop/

photoshop/

[Phob] “Photoplay Games,” january 25, 2008. URL: http://www.photoplay.com/

[Pla] “Planet MDE,” january 30, 2008. URL: http://planetmde.org/

[Pleuß and Hußmann07] A. Pleuß and H. Hußmann, “Integrating Authoring Tools into Model-Driven

Development of Interactive Multimedia Applications,” in Human-Computer Interac-
tion. Interaction Design and Usability, 12th International Conference, HCI Interna-
tional 2007, Beijing, China, July 22-27, 2007, Proceedings, Part I, ser. Lecture Notes

in Computer Science, J. A. Jacko, Ed., vol. 4550. Springer, 2007, pp. 1168–1177.

258 BIBLIOGRAPHY

[Pleuß et al.05a] A. Pleuß, J. V. den Bergh, H. Hußmann, and S. Sauer, Eds., MDDAUI ’05, Model
Driven Development of Advanced User Interfaces 2005, Proceedings of the MoD-
ELS’05 Workshop on Model Driven Development of Advanced User Interfaces, Mon-
tego Bay, Jamaica, October 2, 2005, ser. CEUR Workshop Proceedings, vol. 159.

CEUR-WS.org, 2005.

[Pleuß et al.05b] A. Pleuß, J. V. den Bergh, S. Sauer, and H. Hußmann, “Workshop Report: Model

Driven Development of Advanced User Interfaces (MDDAUI),” in Satellite Events
at the MoDELS 2005 Conference, MoDELS 2005 International Workshops, Doctoral
Symposium, Educators Symposium, Montego Bay, Jamaica, October 2-7, 2005, Re-
vised Selected Papers, ser. Lecture Notes in Computer Science, J.-M. Bruel, Ed., vol.

3844. Springer, 2005, pp. 182–190.

[Pleuß et al.06a] A. Pleuß, J. V. den Bergh, H. Hußmann, S. Sauer, and A. Bödcher, Eds., MDDAUI
’06, Model Driven Development of Advanced User Interfaces 2007, Proceedings of the
MoDELS’06 Workshop on Model Driven Development of Advanced User Interfaces,
Genova, Italy, October 2, 2006, ser. CEUR Workshop Proceedings, vol. 214. CEUR-

WS.org, 2006.

[Pleuß et al.06b] A. Pleuß, J. V. den Bergh, S. Sauer, H. Hußmann, and A. Bödcher, “Model Driven

Development of Advanced User Interfaces (MDDAUI) - MDDAUI’06 Workshop Re-

port,” in Models in Software Engineering, Workshops and Symposia at MoDELS 2006,
Genoa, Italy, October 1-6, 2006, Reports and Revised Selected Papers, ser. Lecture
Notes in Computer Science, T. Kühne, Ed., vol. 4364. Springer, 2006, pp. 101–105.

[Pleuß et al.07a] A. Pleuß, J. V. den Bergh, H. Hußmann, S. Sauer, and D. Görlich, Eds., MDDAUI
’07, Model Driven Development of Advanced User Interfaces 2007, Proceedings of the
MoDELS’07 Workshop on Model Driven Development of Advanced User Interfaces,
Nashville, Tennessee, USA, October 1, 2007, ser. CEUR Workshop Proceedings, vol.

297. CEUR-WS.org, 2007.

[Pleuß et al.07b] A. Pleuß, J. V. den Bergh, H. Hußmann, S. Sauer, and D. Görlich, Eds., Proceedings
of the MoDELS 2007 Workshop on Model Driven Development of Advanced User Inter-
faces, Nashville, Tennessee, USA, October 1, 2007, ser. CEUR Workshop Proceedings,

vol. 297. CEUR-WS.org, 2007.

[Pleuß et al.07c] A. Pleuß, J. V. den Bergh, S. Sauer, D. Görlich, and H. Hußmann, “Third Interna-

tional Workshop onModel Driven Development of Advanced User Interfaces,” in Mod-
els in Software Engineering, Workshops and Symposia at MoDELS 2007, Nashville,
TN, USA, September 30 - October 5, 2007, Reports and Revised Selected Papers, ser.
Lecture Notes in Computer Science, H. Giese, Ed., vol. 5002. Springer, 2007, pp.

59–64.

[Pleuß02] A. Pleuß, “Werkzeugunterstützung für UML Profiles,” Diploma Thesis, Technische

Universität Dresden, Dresden; Germany, October 2002.

[Pleuß05a] A. Pleuß, “MML: A Language for Modeling Interactive Multimedia Applications,” in

Seventh IEEE International Symposium on Multimedia (ISM 2005), 12-14 December
2005, Irvine, CA, USA. IEEE Computer Society, 2005, pp. 465–473.

BIBLIOGRAPHY 259

[Pleuß05b] A. Pleuß, “Modeling the User Interface of Multimedia Applications,” in Model Driven
Engineering Languages and Systems, 8th International Conference, MoDELS 2005,
Montego Bay, Jamaica, October 2-7, 2005, Proceedings, ser. Lecture Notes in Com-

puter Science, L. C. Briand and C. Williams, Eds., vol. 3713. Springer, 2005, pp.

676–690.

[Pol08] “Game Programming Snippets – Keyboard Input: Polling System In

Java,” March 2008, [Website]. URL: http://gpsnippets.blogspot.com/2008/03/

keyboard-input-polling-system-in-java.html

[Poppendieck and Poppendieck03] M. Poppendieck and T. Poppendieck, Lean Software Develop-
ment: An Agile Toolkit. Addison-Wesley Professional, 2003.

[Potter et al.96] B. Potter, J. Sinclair, and D. Till, An introduction to formal specification and Z.
London, New York: Prentice-Hall, Inc., 1996.

[Powerflasher] Powerflasher, “FDT Development Tool for Flash,” [Website]. URL: http:

//fdt.powerflasher.com/

[Pre] “Adobe Premiere,” [Website]. URL: http://www.adobe.com/products/premiere/

[Preciado et al.05] J. C. Preciado, M. L. Trigueros, F. Sanchez, and S. Comai, “Necessity of method-

ologies to model Rich Internet Applications,” in Seventh IEEE International Workshop
on Web Site Evolution (WSE 2005), 26 September 2005, Budapest, Hungary. IEEE

Computer Society, 2005, pp. 7–13.

[Preciado et al.07] J. C. Preciado, M. L. Trigueros, and F. Sánchez-Figueroa, “An approach to

support the Web User Interfaces evolution,” in Proceedings of the 2nd International
Workshop on Adaptation and Evolution in Web Systems Engineering AEWSE’07,
ser. CEUR-WS-Proc., S. Casteleyn, F. Daniel, P. Dolog, M. Matera, G.-J. Houben,

and O. D. Troyer, Eds., vol. 267, 2007. URL: http://ftp.informatik.rwth-aachen.de/

Publications/CEUR-WS/Vol-267/

[Preciado et al.08] J. Preciado, M. Linaje, R. Morales-Chaparro, F. Sanchez-Figueroa, G. Zhang,

C. Kroiss, and N. Koch, “Designing Rich Internet Applications Combining UWE and

RUX-Method,” in Proc. Eighth International Conference on Web Engineering ICWE
’08, 2008, pp. 148–154.

[Preece et al.94] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, and T. Carey, Human-
Computer Interaction: Concepts And Design (ICS). Addison Wesley, 1994.

[Puerta and Eisenstein99] A. R. Puerta and J. Eisenstein, “Towards a General Computational Frame-

work for Model-Based Interface Development Systems,” in Intelligent User Interfaces,
1999, pp. 171–178.

[Puerta and Maulsby97] A. R. Puerta and D. Maulsby, “Management of Interface Design Knowledge

with MOBI-D,” in Intelligent User Interfaces, 1997, pp. 249–252.

[Puerta96] A. R. Puerta, “The MECANO Project: Comprehensive and Integrated Support for

Model-Based Interface Development,” in Computer-Aided Design of User Interfaces
I, Proceedings of the Second International Workshop on Computer-Aided Design of

260 BIBLIOGRAPHY

User Interfaces, June 5-7, 1996, Namur, Belgium, J. Vanderdonckt, Ed. Presses Uni-

versitaires de Namur, 1996, pp. 19–36.

[Radeke and Forbrig07] F. Radeke and P. Forbrig, “Patterns in Task-Based Modeling of User In-

terfaces,” in Task Models and Diagrams for User Interface Design, 6th International
Workshop, TAMODIA 2007, Toulouse, France, November 7-9, 2007, Proceedings, ser.
Lecture Notes in Computer Science, M. Winckler, H. Johnson, and P. A. Palanque,

Eds., vol. 4849. Springer, 2007, pp. 184–197.

[Radeke et al.06] F. Radeke, P. Forbrig, A. Seffah, and D. Sinnig, “PIM Tool: Support for Pattern-

Driven and Model-Based UI Development,” in Task Models and Diagrams for Users
Interface Design, 5th International Workshop, TAMODIA 2006, Hasselt, Belgium, Oc-
tober 23-24, 2006. Revised Papers, ser. Lecture Notes in Computer Science, K. Coninx,

K. Luyten, and K. A. Schneider, Eds., vol. 4385. Springer, 2006, pp. 82–96.

[Rahardja95] A. Rahardja, “Multimedia Systems Design: A Software Engineering Perspective,” in

International Conference on Computers and Education (ICCE) 95 Proceedings. IEEE

Computer Society, 1995.

[Rea] “Propellerhead Reason,” [Website]. URL: http://www.propellerheads.se/products/

reason/

[Reggio et al.01] G. Reggio, M. Cerioli, and E. Astesiano, “Towards a Rigorous Semantics of

UML Supporting Its Multiview Approach,” in Fundamental Approaches to Software
Engineering, vol. Volume 2029/2001. Springer Berlin / Heidelberg, 2001, pp.

171–186. URL: http://www.springerlink.com/content/y4abenbqhc9pq9q4/

[Reisman98] S. Reisman, “Multimedia Is Dead,” IEEE MultiMedia, vol. 5, no. 1, pp. 4–5, 1998.

[Rev] “UsiXML – ReversiXML,” [Website]. URL: http://www.usixml.org/index.php?mod=

pages&id=32

[Rosson and Carroll02] M. B. Rosson and J. M. Carroll, Usability Engineering: Scenario-
Based Development of Human Computer Interaction (Interactive Technologies),
1st ed. San Francisco, USA: Morgan Kaufmann, 10 2002. URL: http:

//amazon.com/o/ASIN/1558607129/

[Rosson and Gilmore07] M. B. Rosson and D. J. Gilmore, Eds., Proceedings of the 2007 Conference
on Human Factors in Computing Systems, CHI 2007, San Jose, California, USA, April
28 - May 3, 2007. ACM, 2007.

[Rothenberg89] J. Rothenberg, “The nature of modeling,” in Artificial intelligence, simulation &
modeling, L. E. Widman, K. A. Loparo, and N. R. Nielson, Eds. New York, NY,

USA: John Wiley & Sons, Inc., 1989, pp. 75–92.

[Rout and Sherwood99] T. Rout and C. Sherwood, “Software engineering standards and the devel-

opment of multimedia-based systems,” in Software Engineering Standards, 1999. Pro-
ceedings. Fourth IEEE International Symposium and Forum on, 17-21 May 1999, pp.

192–198.

BIBLIOGRAPHY 261

[Rozenberg97] G. Rozenberg, Ed., Handbook of graph grammars and computing by graph transfor-
mation: volume I. foundations. River Edge, NJ, USA: World Scientific Publishing

Co., Inc., 1997.

[Rumbaugh et al.91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-
oriented modeling and design. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,

1991.

[Rumpe04] B. Rumpe, Modellierung mit UML : Sprache, Konzepte und Methodik (Xpert.press).
Berlin Heidelberg: Springer, June 2004.

[Rumpe06] B. Rumpe, Agile Modellierung mit UML: Codegenerierung, Testfälle, Refactoring
(Xpert.press). Berlin Heidelberg: Springer-Verlag, 2006.

[Rupp et al.07] C. Rupp, S. Queins, and B. Zengler, UML 2 glasklar. Praxiswissen für die UML-
Modellierung, 3rd ed. München Wien: Carl Hanser Verlag, 2007.

[Salembier and Sikora02] P. Salembier and T. Sikora, Introduction to MPEG-7: Multimedia Content
Description Interface, B. Manjunath, Ed. New York, NY, USA: John Wiley & Sons,

Inc., 2002.

[Sampaio et al.97] P. N. M. Sampaio, C. Y. Shiga, and W. L. de Souza, “Modelling

Multimedia and Hypermedia Applications using an E-LOTOS/MHEG-5 Approach,”

in Workshop on Conceptual Modelling in Multimedia Information Seeking, 1997.

URL: http://osm7.cs.byu.edu/ER97/workshop1/

[Satoh et al.08] S. Satoh, F. Nack, and M. Etoh, Eds., Advances in Multimedia Modeling, 14th Inter-
national Multimedia Modeling Conference, MMM 2008, Kyoto, Japan, January 9-11,
2008, Proceedings, ser. Lecture Notes in Computer Science, vol. 4903. Springer,

2008.

[Sauer and Engels99a] S. Sauer and G. Engels, “Extending UML for Modeling of Multimedia Appli-

cations,” in VL ’99: Proceedings of the IEEE Symposium on Visual Languages, M. Hi-

rakawa and P. Mussio, Eds. Washington, DC, USA: IEEE Computer Society, 1999,

p. 80.

[Sauer and Engels99b] S. Sauer and G. Engels, “UML-basierte Modellierung von Multimediaanwen-

dungen,” in Modellierung 1999, Workshop der Gesellschaft für Informatik e. V. (GI),
März 1999 in Karlsruhe, J. Desel, K. Pohl, and A. Schürr, Eds. Teubner, 1999, pp.

155–170.

[Sauer and Engels01] S. Sauer and G. Engels, “UML-based Behavior Specification of Interactive

Multimedia Applications,” in 2002 IEEE CS International Symposium on Human-
Centric Computing Languages and Environments (HCC 2001), September 5-7, 2001
Stresa, Italy. IEEE Computer Society, 2001, pp. 248–255.

[Schlungbaum96] E. Schlungbaum, “Model-based User Interface Software Tools Current state of

declarative models,” Georgia Institute of Technology, Tech. Rep. GIT-GVU-96-30,

November 1996.

262 BIBLIOGRAPHY

[Schmidt et al.99] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V. Laerhoven, and W. V.

de Velde, “Advanced Interaction in Context,” in HUC ’99: Proceedings of the 1st inter-
national symposium on Handheld and Ubiquitous Computing. London, UK: Springer-

Verlag, 1999, pp. 89–101.

[Schulert et al.85] A. J. Schulert, G. T. Rogers, and J. A. Hamilton, “ADM – a dialog manager,”

in CHI ’85: Proceedings of the SIGCHI conference on Human factors in computing
systems. New York, NY, USA: ACM, 1985, pp. 177–183.

[Schulmeister03] R. Schulmeister, “Taxonomy of Multimedia Component Interactivity,” Studies in
Communication Sciences., vol. 3, no. 3, pp. 61–80, March 2003.

[Schwabe et al.02] D. Schwabe, a. Robson Mattos Guimar and G. Rossi, “Cohesive Design of Per-

sonalized Web Applications,” IEEE Internet Computing, vol. 6, no. 2, pp. 34–43, 2002.

[Schweizer08] E. Schweizer, “Integration modell-getriebener Software-Entwicklung mit zusät-

zlichen heterogenen Werkzeugen durch Transformationen,” Project Thesis, University

of Munich, Munich, March 2008.

[Schwinger and Koch03] W. Schwinger and N. Koch, “Modellierung von Web-Anwendungen,” in

Web Engineering: Systematische Entwicklung von Web-Anwendungen. Heidelberg:

Dpunkt Verlag, 2003, pp. 49–76.

[Seffah and Metzker04] A. Seffah and E.Metzker, “The obstacles and myths of usability and software

engineering,” Commun. ACM, vol. 47, no. 12, pp. 71–76, 2004.

[Seffah et al.05] A. Seffah, J. Gulliksen, and M. C. Desmarais, Human-Centered Software
Engineering, Integrating Usability in the Software Development Lifecycle, 1st ed.

Springer Netherlands, 12 2005. URL: http://amazon.de/o/ASIN/140204027X/

[Seidewitz03] E. Seidewitz, “What Models Mean,” IEEE Softw., vol. 20, no. 5, pp. 26–32, 2003.

[Sendall and Küster04] S. Sendall and J. M. Küster, “Taming Model Round-Trip Engineering,” in

Proceedings of Workshop on Best Practices for Model-Driven Software Development
on OOPSLA 2004, Vancouver, Canada, 2004. URL: http://www.zurich.ibm.com/pdf/

csc/position-paper-mdsd04_sendall.pdf

[Shaw01] M. Shaw, “The coming-of-age of software architecture research,” in ICSE ’01: Pro-
ceedings of the 23rd International Conference on Software Engineering. Washington,

DC, USA: IEEE Computer Society, 2001, p. 656.

[Shaykhit06] D. Shaykhit, “Definition and implementation of an UML Profile and a transformation

for the graphical specification of MML Models in UML-Tool MagicDraw,” Project

Thesis, University of Munich, Munich, December 2006.

[Shaykhit07] D. Shaykhit, “A Flexible Code Generator for the Model-Driven Development of Mul-

timedia Applications,” Diploma Thesis, University of Munich, Munich, October 2007.

[Shehory and Sturm01] O. Shehory and A. Sturm, “Evaluation of modeling techniques for agent-

based systems,” in AGENTS ’01: Proceedings of the fifth international conference on
Autonomous agents. New York, NY, USA: ACM, 2001, pp. 624–631.

BIBLIOGRAPHY 263

[Sherrod06] A. Sherrod, Ultimate Game Programming With DirectX, 1st ed. Boston, MA, USA:

Charles River Media, 5 2006. URL: http://amazon.com/o/ASIN/1584504587/

[Shneiderman and Plaisant04] B. Shneiderman and C. Plaisant, Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction, 4th ed. Addison Wesley, 2004.

[Sikorski05] M. Sikorski, Ed., Task Models and Diagrams for User Interface Design: Proceedings
of the Forth International Workshop on Task Models and Diagrams for User Interface
Design - TAMODIA 2005, Gdansk, Poland, September 26-27, 2005. ACM, 2005.

[Sil] “Microsoft Silverlight,” [Website]. URL: http://silverlight.net/

[Sinnig et al.07] D. Sinnig, P. Chalin, and F. Khendek, “Common Semantics for Use Cases and

Task Models,” in Integrated Formal Methods, 6th International Conference, IFM 2007,
Oxford, UK, July 2-5, 2007, Proceedings, ser. Lecture Notes in Computer Science,

J. Davies and J. Gibbons, Eds., vol. 4591. Springer, 2007, pp. 579–598.

[Ske] “UsiXML – SketchiXML,” [Website]. URL: http://www.usixml.org/index.php?mod=

pages&id=14

[Softwarea] E. Software, “Flash Decompiler Trillix,” [Website]. URL: http://www.

flash-decompiler.com/

[Softwareb] S. Software, “Sothink SWF Decompiler,” [Website]. URL: http://www.sothink.com/

[Sommerville06] I. Sommerville, Software Engineering: (Update) (8th Edition) (International
Computer Science Series), 8th ed. Addison Wesley, 6 2006. URL: http:

//amazon.com/o/ASIN/0321313798/

[Sottet et al.06] J.-S. Sottet, G. Calvary, and J.-M. Favre, “Mapping Model: A First Step to Ensure

Usability for sustaining User Interface Plasticity,” in MDDAUI’06, ser. CEUR Work-

shop Proceedings, A. Pleuß, J. V. den Bergh, H. Hußmann, S. Sauer, and A. Bödcher,

Eds., vol. 214. CEUR-WS.org, 2006.

[Sottet et al.07a] J.-S. Sottet, G. Calvary, J. Coutaz, and J.-M. Favre, “A Model-Driven Engineering

Approach for the Usability of User Interfaces,” in Proc. Engineering Interactive
Systems 2007. Springer (to appear), 2007. URL: http://iihm.imag.fr/publs/2007/

EIS07-sottet.pdf

[Sottet et al.07b] J.-S. Sottet, V. Ganneau, G. Calvary, J. Coutaz, A. Demeure, J.-M. Favre, and

R. Demumieux, “Model-Driven Adaptation for Plastic User Interfaces,” in Human-
Computer Interaction - INTERACT 2007, 11th IFIP TC 13 International Conference,
Rio de Janeiro, Brazil, September 10-14, 2007, Proceedings, Part I, ser. Lecture Notes

in Computer Science, M. C. C. Baranauskas, P. A. Palanque, J. Abascal, and S. D. J.

Barbosa, Eds., vol. 4662. Springer, 2007, pp. 397–410.

[Specht and Zoller00] G. Specht and P. Zoller, “HMT: Modeling Temporal Aspects in Hypermedia

Applications,” in Web-Age Information Management, First International Conference,
WAIM 2000, Shanghai, China, June 21-23, 2000, Proceedings, ser. Lecture Notes in

Computer Science, H. Lu and A. Zhou, Eds., vol. 1846. Springer, 2000, pp. 259–270.

264 BIBLIOGRAPHY

[Staas04] D. Staas, “Standardanwendungen,” in Taschenbuch Informatik, 5th ed., U. Schneider

and D. Werner, Eds. Munich, Germany: Carl Hanser Verlag, 2004, ch. 23.

[Stahl et al.07] T. Stahl, M. Völter, and S. Efftinge, Modellgetriebene Softwareentwicklung.
Techniken, Engineering, Management, 2nd ed. Dpunkt Verlag, 5 2007. URL:

http://amazon.de/o/ASIN/3898644480/

[Stankowski and Duschek94] A. Stankowski and K. Duschek, Eds., Visuelle Kommunikation: Ein
Design-Handbuch, 2nd ed. Berlin: Dietrich Reimer Verlag, 12 1994. URL:

http://amazon.de/o/ASIN/3496011068/

[Steinberg et al.08] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework (2nd Edition) (The Eclipse Series), 2nd ed. Addison-Wesley

Professional, 4 2008. URL: http://amazon.com/o/ASIN/0321331885/

[Steinmetz and Nahrstedt04] R. Steinmetz and K. Nahrstedt, Multimedia Applications, 1st ed.

Berlin: Springer, 1 2004. URL: http://amazon.de/o/ASIN/3540408495/

[Steinmetz00] R. Steinmetz, Multimedia-Technologie. Grundlagen, Komponenten und Systeme.,
3rd ed. Berlin: Springer, 7 2000. URL: http://amazon.de/o/ASIN/3540673326/

[Stephens and Rosenberg03] M. Stephens and D. Rosenberg, Extreme Programming Refactored: The
Case Against XP. Apress, 2003.

[Störrle04] H. Störrle, “Semantics of Structured Nodes in UML 2.0 Activities,” in Nordic
Workshop on UML (NWUML) 2004, 2004. URL: http://crest.abo.fi/nwuml04/

[Syn] “SyncATL,” [Website]. URL: http://www.ipl.t.u-tokyo.ac.jp/~xiong/

modelSynchronization.html

[Szekely et al.92] P. Szekely, P. Luo, and R. Neches, “Facilitating the exploration of interface design

alternatives: the HUMANOID model of interface design,” in CHI ’92: Proceedings
of the SIGCHI conference on Human factors in computing systems. New York, NY,

USA: ACM, 1992, pp. 507–515.

[Szekely et al.95] P. A. Szekely, P. N. Sukaviriya, P. Castells, J. Muthukumarasamy, and E. Salcher,

“Declarative interface models for user interface construction tools: the MASTER-

MIND approach,” in Engineering for Human-Computer Interaction, Proceedings of
the IFIP TC2/WG2.7 Working Conference on Engineering for Human-Computer Inter-
action, Yellowstone Park, USA, August 1995, ser. IFIP Conference Proceedings, L. J.

Bass and C. Unger, Eds., vol. 45. Chapman & Hall, 1995, pp. 120–150.

[Szekely96] P. A. Szekely, “Retrospective and Challenges forModel-Based Interface Development,”

in Design, Specification and Verification of Interactive Systems’96, Proceedings of the
Third International Eurographics Workshop, June 5-7, 1996, Namur, Belgium, F. Bo-

dart and J. Vanderdonckt, Eds. Springer, 1996, pp. 1–27.

[Taentzer00] G. Taentzer, “AGG: A Tool Environment for Algebraic Graph Transformation,” in AG-
TIVE ’99: Proceedings of the International Workshop on Applications of Graph Trans-
formations with Industrial Relevance. London, UK: Springer-Verlag, 2000, pp. 481–

488.

BIBLIOGRAPHY 265

[TAM] “TAMODIA 2007 – 6th International workshop on TAsk MOdels and DIAgrams,”

[Website]. URL: http://liihs.irit.fr/tamodia2007/

[Tannenbaum98] R. S. Tannenbaum, Theoretical Foundations of Multimedia. New York: W. H.

Freeman, 1998.

[Tap] “Taparo Games,” january 23, 2008. URL: http://www.taparo.com/

[Tavares] A. Tavares, “An Interactive Home Media Center,” [Website]. URL: http://www.

adrianatavares.com/iyro/

[TERa] “TERESA Homepage,” february 27, 2008. URL: http://giove.cnuce.cnr.it/teresa.html

[TERb] “XML languages of TERESA,” juli 31, 2008. URL: http://giove.isti.cnr.it/teresa/

teresa_xml.html

[Tidwell05] J. Tidwell, Designing Interfaces: Patterns for Effective Interaction Design. Se-

bastopol, CA, USA: O’Reilly Media, Inc., 2005.

[Tonella and Potrich04] P. Tonella and A. Potrich, Reverse Engineering of Object Oriented Code.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2004.

[Too] “Sum Total Systems – Toolbook,” [Website]. URL: SumTotalSystems

[Top] “Topcased,” [Website]. URL: http://topcased.gforge.enseeiht.fr/

[Tra] “UsiXML – TransformiXMLWWW,” [Website]. URL: http://www.usixml.org/index.

php?mod=pages&id=34

[Trætteberg02] H. Trætteberg, “Model-based User Interface Design,” Ph.D. dissertation, Norwegian

University of Science and Technology, Oslo, 2002. URL: http://www.idi.ntnu.no/~hal/

_media/research/thesis.pdf?id=research%3Athesis&cache=cache

[Tran-Thuong and Roisin03] T. Tran-Thuong and C. Roisin, “Multimedia modeling using MPEG-

7 for authoring multimedia integration,” in MIR ’03: Proceedings of the 5th ACM
SIGMM international workshop on Multimedia information retrieval. New York,

NY, USA: ACM, 2003, pp. 171–178.

[Troyer and Decruyenaere00] O. D. Troyer and T. Decruyenaere, “Conceptual modelling of web sites

for end-users,” World Wide Web Journal, vol. 3, no. 1, pp. 27–42, 2000.

[Tufte01] E. R. Tufte, The Visual Display of Quantitative Information, 2nd ed. Chesire, CT,

USA: Graphics Press, 2001.

[UIM] “UIML.org,” march 05, 2008. URL: http://UIML.org

[Unta] “Department für Pädagogik und Rehabilitation – Unterrichtsmitschau und didaktische

Forschung,” [Website]. URL: http://mitschau.edu.lmu.de/index.html

[Untb] “Department für Pädagogik und Rehabilitation – Unterrichtsmitschau und didaktische

Forschung – Shop,” [Website]. URL: http://mitschau.edu.lmu.de/av_medien/index.php

266 BIBLIOGRAPHY

[Urbieta et al.07] M. Urbieta, M. Urbieta, G. Rossi, J. Ginzburg, and D. Schwabe, “Designing the

Interface of Rich Internet Applications,” in Proc. Latin American Web Congress LA-
WEB 2007, G. Rossi, Ed., 2007, pp. 144–153.

[Usia] “UsiXML – Code Generators,” [Website]. URL: http://www.usixml.org/index.php?

mod=pages&id=21

[Usib] “UsiXML - Home of the USer Interface eXtensible Markup Language,” february 27,

2008. URL: http://www.usixml.org/

[Usi06] “UsiXML v1.6.4 Metamodel as Rational Rose file,” 2006. URL: http://www.usixml.

org/index.php?mod=download&file=usixml-doc/UsiXML-v1.6.4.mdl

[Usi07] UsiXML V1.8 Reference Manual, February 2007. URL: http://www.usixml.org/index.

php?mod=download&file=usixml-doc/UsiXML_v1.8.0-Documentation.pdf

[Van den Bergh and Coninx05] J. Van den Bergh and K. Coninx, “Towards modeling context-

sensitive interactive applications: the context-sensitive user interface profile (CUP),”

in Proceedings of the ACM 2005 Symposium on Software Visualization, St. Louis, Mis-
souri, USA, May 14-15, 2005, T. L. Naps and W. D. Pauw, Eds. ACM, 2005, pp.

87–94.

[Van den Bergh and Coninx06] J. Van den Bergh and K. Coninx, “CUP 2.0: High-Level Modeling of

Context-Sensitive Interactive Applications,” in Model Driven Engineering Languages
and Systems, 9th International Conference, MoDELS 2006, Genova, Italy, October 1-6,
2006, Proceedings, ser. Lecture Notes in Computer Science, O. Nierstrasz, J. Whittle,

D. Harel, and G. Reggio, Eds., vol. 4199. Springer, 2006, pp. 140–154.

[Van den Bergh06] J. Van den Bergh, “High-Level User Interface Models for Model-Driven Design

of Context-Sensitive User Interfaces,” PhD, Hasselt University, Diepenbeek, Belgium,

2006. URL: http://research.edm.uhasselt.be/~jvandenbergh/phd/phd-JanVandenBergh.

pdf

[van Welie] M. van Welie, “A Pattern Library for Interaction Design,” [Website]. URL:

http://www.welie.com/

[Vanderdonckt and Bodart93] J. M. Vanderdonckt and F. Bodart, “Encapsulating knowledge for in-

telligent automatic interaction objects selection,” in CHI ’93: Proceedings of the IN-
TERACT ’93 and CHI ’93 conference on Human factors in computing systems. New

York, NY, USA: ACM, 1993, pp. 424–429.

[Vanderdonckt et al.04] J. Vanderdonckt, N. J. Nunes, and C. Rich, Eds., Proceedings of the 2004
International Conference on Intelligent User Interfaces, January 13-16, 2004, Funchal,
Madeira, Portugal. ACM, 2004.

[Vanderdonckt96] J. Vanderdonckt, Ed., Computer-Aided Design of User Interfaces I, Proceedings
of the Second International Workshop on Computer-Aided Design of User Interfaces,
June 5-7, 1996, Namur, Belgium. Presses Universitaires de Namur, 1996.

BIBLIOGRAPHY 267

[Vanderdonckt05] J. Vanderdonckt, “AMDA-Compliant Environment for Developing User Interfaces

of Information Systems,” in Advanced Information Systems Engineering, 17th Interna-
tional Conference, CAiSE 2005, Porto, Portugal, June 13-17, 2005, Proceedings, ser.
Lecture Notes in Computer Science, O. Pastor and J. Falcão e Cunha, Eds., vol. 3520.

Springer, 2005, pp. 16–31.

[Vangheluwe et al.03] H. Vangheluwe, H. Vangheluwe, and J. de Lara, “Computer automated multi-

paradigm modelling: meta-modelling and graph transformation,” in Proc. Winter Sim-
ulation Conference, J. de Lara, Ed., vol. 1, 2003, pp. 595–603 Vol.1.

[Vazirgiannis and Boll97] M. Vazirgiannis and S. Boll, “Events in interactive multimedia applica-

tions: modeling and implementation design,” in Proc. IEEE International Conference
on Multimedia Computing and Systems ’97. IEEE Computer Society, 1997, pp. 244–

251.

[VIA] “VIATRA2 Component – Eclipse Generative Modeling Technologies (GMT) Project,”

[Website]. URL: http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/

VIATRA2/index.html

[Villard et al.00] L. Villard, C. Roisin, and N. Layaïda, “An XML-Based Multimedia Document Pro-

cessing Model for Content Adaptation,” in Digital Documents: Systems and Principles,
8th International Conference on Digital Documents and Electronic Publishing, DDEP
2000, 5th International Workshop on the Principles of Digital Document Processing,
PODDP 2000, Munich, Germany, September 13-15, 2000, Revised Papers, ser. Lecture
Notes in Computer Science, P. R. King and E. V. Munson, Eds., vol. 2023. Springer,

2000, pp. 104–119.

[Vis] “Microsoft MSDN – Visual Studio.” URL: http://msdn.microsoft.com/en-us/vstudio/

default.aspx

[Vitzthum and Hussmann06] A. Vitzthum and H. Hussmann, “Modeling Augmented Reality User

Interfaces with SSIML/AR,” Journal of Multimedia (JMM), vol. 1, no. 3, pp. 13–22,
June 2006.

[Vitzthum and Pleuß05] A. Vitzthum and A. Pleuß, “SSIML: designing structure and application in-

tegration of 3D scenes,” in Proceeding of the Tenth International Conference on 3D
Web Technology, Web3D 2005, Bangor, UK, March 29 - April 1, 2005, N. W. John,

S. Ressler, L. Chittaro, and D. A. Duce, Eds. ACM, 2005, pp. 9–17.

[Vitzthum05] A. Vitzthum, “SSIML/Behaviour: Designing Behaviour and Animation of Graphical

Objects in Virtual Reality and Multimedia Applications,” in ISM ’05: Proceedings of
the Seventh IEEE International Symposium on Multimedia. Washington, DC, USA:

IEEE Computer Society, 2005, pp. 159–167.

[Vitzthum06] A. Vitzthum, “SSIML/Components: a visual language for the abstract specification of

3D components,” in Web3D ’06: Proceedings of the eleventh international conference
on 3D web technology. New York, NY, USA: ACM, 2006, pp. 143–151.

[Vitzthum08] A. Vitzthum, “Entwicklungsunterstützung für interaktive 3D-Anwendungen,” Ph.D.

dissertation, University of Munich, Munic, Germany, 2008. URL: http://edoc.ub.

uni-muenchen.de/9459/

268 BIBLIOGRAPHY

[Völter and Kolb05] M. Völter and B. Kolb, “openArchitectureWare und Eclipse,” Eclipse Magazin,
vol. 3, Mai 2005.

[Voss et al.99] J. Voss, P. Pauen, H.-W. Six, M. Nagl, A. Behle, B. Westfechtel, H. Balzert, C. Wei-

dauer, W. Schäfer, J. Wadsack, and U. Kelter, Eds., Studie über Softwaretechnische An-
forderungen an multimediale Lehr- und Lernsysteme. Forschergruppe SofTec NRW,

September 1999.

[Vredenburg et al.02] K. Vredenburg, J.-Y. Mao, P. W. Smith, and T. Carey, “A survey of user-

centered design practice,” in CHI ’02: Proceedings of the SIGCHI conference on Hu-
man factors in computing systems. New York, NY, USA: ACM, 2002, pp. 471–478.

[W3C03] Scalable Vector Graphics (SVG) 1.1 Specification, W3C, January 2003. URL:

http://www.w3.org/TR/SVG11/

[Wahl and Rothermel94] T. Wahl and K. Rothermel, “Representing time in multimedia systems,” in

Proc. International Conference on Multimedia Computing and Systems, 1994, pp. 538–
543.

[Walker et al.03] R. J. Walker, L. C. Briand, D. Notkin, C. B. Seaman, and W. F. Tichy, “Panel:

empirical validation: what, why, when, and how,” in ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering. Washington, DC, USA: IEEE

Computer Society, 2003, pp. 721–722.

[Ware04] C. Ware, Information Visualization, 2nd ed. San Francisco, CA, USA: Morgan Kauf-

mann, 2004.

[Warmer and Kleppe03] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MDA, 2nd ed. Addison-Wesley Professional, 9 2003. URL:

http://amazon.com/o/ASIN/0321179366/

[Wasserman85] A. I. Wasserman, “Extending State Transition Diagrams for the Specification of

Human-Computer Interaction,” IEEE Trans. Softw. Eng., vol. 11, no. 8, pp. 699–713,
1985.

[Weba] “The Web Engineering Community Site,” [Website]. URL: http://webengineering.org

[Webb] “WebRatio,” [Website]. URL: http://www.webratio.com/Home.do?link=oln489d.

redirect

[Weiser99] M. Weiser, “The computer for the 21st century,” SIGMOBILE Mob. Comput. Commun.
Rev., vol. 3, no. 3, pp. 3–11, 1999.

[Wenz et al.07] C. Wenz, T. Hauser, and A. Kappler, ActionScript 3 – Das Praxisbuch, 1st ed. Bonn,

Germany: GALILEO PRESS, 12 2007. URL: http://amazon.de/o/ASIN/3836210525/

[Wernesgrüner] Wernesgrüner, “Go For Green – Gewinnspiel,” [Website]. URL: http://www.

wernesgruener.de/www/wg/bereich/gewinnspiel/

[Wie] “München TV – Wiesn Minigolf,” [Website]. URL: http://www.muenchen-tv.de/

archiv/Wiesn_Minigolf-1031.html

BIBLIOGRAPHY 269

[Williamson et al.07] C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider, and P. J. Shenoy, Eds.,

Proceedings of the 16th International Conference on World Wide Web, WWW 2007,
Banff, Alberta, Canada, May 8-12, 2007. ACM, 2007.

[Winckler et al.07] M. Winckler, H. Johnson, and P. A. Palanque, Eds., Task Models and Diagrams
for User Interface Design, 6th International Workshop, TAMODIA 2007, Toulouse,
France, November 7-9, 2007, Proceedings, ser. Lecture Notes in Computer Science,

vol. 4849. Springer, 2007.

[Wirsing90] M. Wirsing, “Algebraic Specification,” in Handbook of Theoretical Computer Science,
J. van Leeuwen, Ed. Elsevier and MIT Press, 1990, vol. B: Formal Models and

Sematics, pp. 675–788.

[Wisneski et al.98] C. Wisneski, H. Ishii, A. Dahley, M. G. Gorbet, S. Brave, B. Ullmer, and P. Yarin,

“Ambient Displays: Turning Architectural Space into an Interface between People and

Digital Information,” in CoBuild ’98: Proceedings of the First International Workshop
on Cooperative Buildings, Integrating Information, Organization, and Architecture.
London, UK: Springer-Verlag, 1998, pp. 22–32.

[Wolff et al.05] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Linking GUI elements to tasks:

supporting an evolutionary design process,” in Task Models and Diagrams for User
Interface Design: Proceedings of the Forth International Workshop on Task Models and
Diagrams for User Interface Design - TAMODIA 2005, Gdansk, Poland, September
26-27, 2005, M. Sikorski, Ed. ACM, 2005, pp. 27–34.

[Wolff05] C. Wolff, “Media Design Patterns,” in Designing Information Systems, ser. Schriften
zur Informationswissenschaft, M. Eibl, C. Wolff, and C. Womser-Hacker, Eds. Kon-

stanz: UVK, 2005, vol. 43, pp. 209–217.

[Wu06a] W.-W.Wu, “Abbildung vonMML-Modellen in Code für das Java-Framework Piccolo,”

Project Thesis, University of Munich, Munich, February 2006.

[Wu06b] W.-W. Wu, “Analyse und Vergleich ausgewählter Ansätze zur modellgetriebenen En-

twicklung von Benutzerschnittstellen,” Diploma Thesis, University of Munich, Mu-

nich, November 2006.

[WWWa] “World Wide Web Consortium,” [Website]. URL: http://www.w3.org/

[WWWb] “WWW2007 – 16th International World Wide Web Conference,” [Website]. URL:

http://www2007.org/

[XAM] “Microsoft XAML,” [Website]. URL: http://msdn.microsoft.com/en-us/library/

ms752059.aspx

[Xiong et al.07] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei, “Towards automatic

model synchronization from model transformations,” in ASE ’07: Proceedings of the
twenty-second IEEE/ACM international conference on Automated software engineer-
ing. New York, NY, USA: ACM, 2007, pp. 164–173.

[XUL] “XULPlanet,” [Website]. URL: http://www.xulplanet.com/

270

[Yard and Peters04] T. Yard and K. Peters, Extending Macromedia Flash MX 2004: Complete Guide
and Reference to JavaScript Flash, 1st ed. Berkeley, CA, USA: friends of ED, 1

2004. URL: http://amazon.com/o/ASIN/1590593049/

[Zendler98] A. Zendler, Multimedia Development Systems (with methods for modeling multimedia
applications), R. Haggenmüller and H. Schwärtzel, Eds. Marburg, Germany: Tectum

Verlag, 1998. URL: http://amazon.de/o/ASIN/3896089285/

[Zhao and Zou07] X. Zhao and Y. Zou, “A Framework for Incorporating Usability into Model Trans-

formations,” in MDDAUI’07, ser. CEUR Workshop Proceedings, A. Pleuß, J. V. den

Bergh, H. Hußmann, S. Sauer, and D. Görlich, Eds., vol. 297. CEUR-WS.org, 2007.

[Ziegler08] S. Ziegler, “Steigerung der Effizienz bei der UI-Gestaltung im Kontext der interdiszi-

plinären Zusammenarbeit unter Einsatz von WPF,” Diploma Thesis, University of Mu-

nich, Munich, January 2008.

[Zoller01] P. Zoller, “HMT: Modeling Interactive and Adaptive Hypermedia Applications,” in In-
formation Modeling in the New Millennium, M. Rossi and K. Siau, Eds. Hershey, PA,

USA: IGI Publishing, 2001, pp. 383–405.

[Zschaler07] S. Zschaler, “A Semantic Framework for Non-functional Specifications of Component-

Based Systems,” Dissertation, Technische Universität Dresden, Dresden, Germany,

Apr. 2007.

Acknowledgements

First of all, I would like to thank Prof. Hußmann for his continuous support, his good advice, and the

constructive and positive working atmosphere he created as head the research group.

I would like to thank Prof. Forbrig and Prof. Vanderdonckt for their willingness to be reviewers

for this thesis and for their contributions and remarks.

I would like to thank all my colleagues for the fruitful and pleasant collaboration in our research

group. In particular, I would like to thank my former colleague Arnd Vitzthum for the fruitful discus-

sions on modeling and multimedia.

Finally, I would like to thank my family for their sincere support throughout all times and, in

particular, Astrid Weiland whose support is the most important to me.

