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1 Abstract 

Plant beneficial microorganisms, such as arbuscular mycorrhiza fungi (AMF), increasingly attract 

scientific and agronomic attention due to their capacity to increase nutrient accessibility for plants 

and to reduce inorganic fertilizer requirements. AMF are thought to form symbioses with most land 

plants, obtaining carbon from the autotrophic host whilst enhancing uptake of poorly available 

nutrients. 

The species of AMF are mainly identified by spore morphology, which is time consuming, requires 

expertise and is rarely applicable to AMF identification in roots. Molecular tools such as analysis of 

standardized DNA fragment sequences may allow the recognition of species through a ‘DNA 

barcode’, which may partly overcome this problem. The focus of this study was to evaluate 

different regions of widely used rDNA repeats for their use as DNA barcodes for AMF including the 

small subunit rRNA gene (SSU), the internal transcribed spacer (ITS) and the large subunit rRNA 

gene (LSU). Closely related species in the genus Ambispora, members of which have dimorphic 

spores, could not be separated by analysis of the SSU region, but of the ITS region. Consequently, 

the SSU was not used for subsequent analysis, but a DNA fragment covering a small part of the 

SSU, the entire ITS region and about 800 bp of the LSU (SSUmCf-LSUmBr fragment) was 

analysed, providing phylogenetic resolution to species. New AMF specific primers for these 

potential barcoding regions were developed and can be applied, without amplification of non-target 

organisms, for AMF species determination, including identification from field and root samples. 

Analyses based on the application of the SSUmCf-LSUmBr fragment showed that the widely used 

AMF model organism Glomus sp. DAOM197198 (formerly called Glomus intraradices) is not 

conspecific with Gl. intraradices. The SSUmCf-LSUmBr fragment clearly provides a much higher 

species resolution capacity when compared with the formerly preferred ITS and LSU regions. 

Further study of several groups of AMF species using different regions of the SSUmCf-LSUmBr 

fragment revealed that only the complete SSUmCf-LSUmBr fragment allowed separation of all 

analysed species. Based on these results, an extended DNA barcode covering the ITS region and 

parts of the LSU region is suggested as a DNA barcode for AMF. The complete SSUmCf-LSUmBr 

fragment sequences can serve as a database backbone for also using smaller rDNA fragments as 

barcodes. Although the smallest fragment (approximately 400 bp) analysed in this study was not 

able to discriminate among AMF species completely, such short regions covering the ITS2 or LSU 

D2 regions, respectively, would most likely be suitable for community analyses with 454 GS-FLX 

Titanium sequencing, providing that the analyses is based on the longer DNA sequences. 
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2 Zusammenfassung 

Arbuskuläre Mykorrhizapilze (AM-Pilze) bilden eine Symbiose mit den meisten Landpflanzen, in 

welcher sie der Pflanze Nährstoffe bieten und im Austausch Kohlenhydrate erhalten. Sie zählen zu 

den Mikroorganismen, die einen positiven Einfluss auf Pflanzen ausüben und erwecken zunehmend 

wissenschaftliche und agronomische Aufmerksamkeit, da sie die Nährstoffzugänglichkeit für 

Pflanzen erhöhen und damit zum Beispiel die benötigte Menge an Phosphordünger deutlich 

reduzieren können.  

AM-Pilzarten wurden klassischerweise durch morphologische Analysen identifiziert, welche 

sowohl zeitaufwendig als auch schwierig sind und sich für Artidentifizierung in Pflanzenwurzeln 

nicht eignen. Die molekularbiologische Analyse eines standardisierten DNA-Fragments, welches 

für eine Art spezifisch ist und dadurch als „DNA Barcode“ definiert wird, ist ein vielversprechendes 

Werkzeug für eine verlässliche Artidentifizierung. 

Der Fokus dieser Arbeit lag in der Etablierung eines geeigneten DNA-Barcodes für arbuskuläre 

Mykorrhizapilze. Hierfür wurden verschiedene Abschnitte des in früheren Arbeiten bereits oft 

verwendeten „rDNA-Repeats“ analysiert, darunter das „small subunit rRNA gene” (SSU), die 

„ internal transcribed spacer region” (ITS) und das „large subunit rRNA gene” (LSU). 

Nah verwandte Arten der Gattung Ambispora, welche zum Teil dimorphische Sporen aufweisen, 

konnten nicht durch Analysen der SSU Region aufgetrennt werden, was durch Analysen der ITS-

Region aber möglich war. Die SSU-Region wurde folglich für weitere Analysen nicht weiter 

bearbeitet, sondern ein durch die Primer SSUmCf-LSUmBr amplifiziertes Fragment, das einen 

kleinen Teil der SSU, die ITS Region und ca. 800 bp der LSU umfasst. Mit Hilfe der SSUmCf-

LSUmBr Fragmentes konnten alle untersuchten AM-Pilze bis hin zur Artenebene aufgelöst werden. 

Neue, AM-Pilz spezifische Primer für diese potentielle Barcode-Region wurden entwickelt und 

können für spezifische AM-Pilz Artbestimmung von Feld- und Wurzelproben benutzt werden. 

Analysen basierend auf dem SSUmCf-LSUmBr Fragment ergaben, dass der weit verbreitete 

Modelorganismus Glomus sp. DAOM197198 (früher Gl. intraradices genannt) nicht zur Art Gl. 

intraradices gehört. Das SSUmCf-LSUmBr Fragment erlaubt eine deutlich besserer Artauflösung 

im Vergleich zu der früher oft benutzten ITS und LSU Regionen. 

Detaillierte Analysen verschiedener Sequenzabschnitte des SSUmCf-LSUmBr Fragmentes ergaben, 

dass nur Analysen des kompletten Fragmentes alle analysierten AM-Pilzarten erfolgreich separieren 

kann. Basierend auf diesen Ergebnissen wird vorgeschlagen, das SSUmCf-LSUmBr Fragment als 

erweiterten DNA Barcode für AM Pilze zu nutzen. Das SSUmCf-LSUmBr Fragmente kann auch als 

‚Rückgrat‘ für auf kürzeren Sequenzen basierende Analysen dienen. Die kürzesten hier 
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untersuchten rDNA Sequenzen (ca. 400bp) alleine können nicht alle AM-Pilzarten auflösen. Auf 

Basis von robusten, SSUmCf-LSUmBr Fragment basierten Phylogenien ist es aber wahrscheinlich 

möglich auch 400 bp Sequenzen verlässlich bestimmten Arten zuzuordnen. Dies wäre für 454 GS-

FLX Titanium Pyrosequenzierungen zur Bestimmung von AM-Pilz-Gemeinschaften in 

Ökosystemen ein deutlicher Fortschritt. 

 



Introduction 

10 

3 Introduction 

3.1 Arbuscular mycorrhizal fungi (AMF) 

Arbuscular mycorrhizas (AM) are named from the treelike structures formed inside root cortical 

cells, called arbuscules (‘little bushes’). They are symbioses between plants and a particular group 

of fungi, the so called arbuscular mycorrhizal fungi (AMF). Such symbioses are generally regarded 

as mutualistic, with a bidirectional transfer of nutrients (Smith & Read, 2008). The contact zones of 

mycorrhiza are in general on the surface or inside the roots of plants, which is reflected in the name 

mycorrhiza (ancient Greek: µυκης (mykes) = fungus and ριζα (rhiza) = root) (Frank, 2005). The 

fungal structures are always surrounded by the plant cell wall (intercellular) or the plant plasma 

membrane (intracellular). AMF provide the plant with nutrients such as phosphorus, nitrogen, zinc 

and copper. They receive carbon assimilate from the host plant. Whereas plants may be able to live 

without AMF, the fungi are thought to be obligate symbionts. It is said that approx. 70-90 % of all 

land plant species form AM (Brundrett, 2009). Potential host plants range from liverworts, 

hornworts, ferns and gymnosperms to angiosperms (Harley & Harley, 1987; Brundrett, 2009; Wang 

& Qiu, 2006). 

Based on small subunit (SSU) rDNA sequences and their symbiotic lifestyle, the AMF were placed 

in the separate phylum Glomeromycota (Schüßler et al., 2001). The origin of this phylum may be 

more than 1000 million years ago. The AM symbiosis is also ancient and AMF may have played an 

important role during land colonization by plants (Redecker et al., 2000a; Remy et al., 1994; Simon 

et al., 1993; Heckman et al., 2001). 

 

3.1.1 Effects of AMF on plants 

It has long been recognised that AMF have an influence on plant nutrition and growth (Mosse, 

1957; Gerdemann, 1965; Daft & Nicolson, 1966, 1969a, b; Hayman & Mosse, 1971, 1972; Mosse 

& Hayman, 1971). Much of the research on AMF is driven by the desire to improve plant 

production. Up to 20 % of plant photosynthates can be delivered to the AMF (Jakobsen & 

Rosendahl, 1990; Bago et al., 2003). Some AM associations under some circumstances result in 

increased plant nutrient uptake and growth (Smith et al., 2009), but this is not universal and there 

are examples in which there is no or even a negative mycorrhizal growth response (Tawaraya, 

2003). Graham & Abbott (2000) noted growth depression by 10 different AMF cultures tested on 
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wheat in pot cultures. Different AMF cultured with the same plant gave different growth effects 

(van der Heijden et al., 2003; Klironomos, 2003). Pringle & Bever (2008) showed that an early 

mortality of Rumex seedlings consistently occurred in the laboratory and in a field experiment, 

when inoculated with Scutellospora pellucida, but it is worth noting that Rumex spp. are considered 

generally to be non-mycorrhizal (Fransson et al. 2003). Barley showed a similar large growth 

depression in the presence of Glomus geosporum with 20 % colonization (6 weeks) or in the 

presence of a Gl. intraradices-like fungus with 72% colonization (6 weeks) (Grace et al., 2009). 

The phenomenon of plant growth depression may indicate a potential occurrence of cheating within 

this symbiosis (Johnson et al., 1997; Smith et al., 2009). However, the plant might benefit from 

other characteristics of this symbiosis like tolerance against pathogens or drought (Newsham et al., 

1995). 

The establishment of seedlings (van der Heijden, 2004) and the success of plant invasion 

(Klironomos, 2002) can be enhanced by AMF through their influence on plant productivity, plant 

diversity and plant community structure (Grime et al., 1987; Gange et al., 1990; van der Heijden et 

al., 1998; Hartnett & Wilson, 1999; Klironomos et al., 2000; Bever et al., 2001; O'Connor et al., 

2002). The ability of plants to compete with each other may affect the structure of plant 

communities. For example, Centauria maculosa and Festuca idahoensis show no positive response 

to AM when cultivated in separate pots (Marler et al., 1999). However, when cultivated together in 

the presence of AMF, Centauria maculosa responded more than Festuca idahoensis (Marler et al., 

1999). In this instance, no direct effect of AM on the individual plant species growth could be 

detected, but an indirect benefit from AM occurred when co-cultivating two different species. 

The bacterial rhizosphere community also may be influenced by AMF (Marschner & Baumann, 

2003) changing in reaction to different AMF species (Marschner & Timonen, 2005). 

 

3.1.2 Plant nutrition and water relations effected by AMF 

It is widely accepted that the main function of the AM symbiosis is the exchange of nutrients 

between partners. Phosphorus, which occurs in inorganic or organic forms in soil, in many 

ecosystems is the most important nutrient for which uptake is mediated by AMF. Inorganic 

phosphorous is held firmly within the soil in insoluble forms such as Al-, Ca-, and Fe-phosphates 

(Smith & Read, 2008), whereas organic phosphorous occurs as inositol phosphates (phytate), 

phospholipids and nucleic acids in the soil. Organic phosphorous is mineralised by desorption, 

precipitation and with the help of organisms (Smith & Read, 2008). The available phosphorous 
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around roots rapidly becomes exhausted and a depletion zone is formed. AMF can bridge this zone 

and make additional phosphorous accessible. Furthermore, the small diameter and rapid growth of 

the AMF hyphae compared with roots can reach smaller soil pores, facilitating phosphorous uptake. 

This may result in larger plants, which contain higher concentrations of phosphorous in their tissues 

(Smith & Read, 2008). Even when mycorrhizal plants do not grow larger, they can receive 

phosphorus from AMF (Grace et al., 2009; Smith et al., 2009). The increased inflow of phosphorus 

into mycorrhizal roots was first studied in Allium cepa by Sanders and Tinker (1973), followed by 

studies in other plants with varying responses and dependencies of the plants (Smith et al., 2003, 

2004). 

Another main nutrient for plant growth is nitrogen. Nitrogen is a principal component of most 

fertilizers, on which modern day agriculture depends. Nitrogen production is very energy 

consuming. Rhizobia in root nodules can fix nitrogen in their natural environments. Additionally 

AMF hyphae can absorb nitrogen in form of ammonium and nitrate. The contribution of such 

absorption to plant growth is unclear. Some studies showed, that up to 30-42 % of total plant 

nitrogen can be taken up via AMF (Mäder et al., 2000; Govindarajulu et al., 2005), whereas 

Reynolds et al. (2005) showed no increase of total nitrogen uptake for some perennials plants. 

Besides nitrogen and phosphorous, micronutrients, such as copper and zinc are also important for 

plant growth. AMF can increase copper concentration of different plant species (Mosse, 1957; 

Gildon & Tinker, 1983; Kucey & Janzen, 1987; Gnekow & Marschner, 1989; Li et al., 1991) and 

may contribute up to 62% of total copper uptake of white clover (Li et al., 1991). Zinc, which, like 

phosphorous, is poorly labile in the soil, can be transported via AMF hyphae to the plant over a 

distance of at least 14 cm (Jansa et al., 2003) and therefore reduce zinc deficiency (Thompson, 

1990; Bürkert & Robson, 1994). On the other hand, AMF colonization reduces zinc accumulation in 

plants growing on soils with high zinc content (Li & Christie, 2001; Zhu et al., 2001; Burleigh et 

al., 2003). Although AMF can affect copper and zinc uptake, little is known in respect of other 

micronutrients (Hart & Trevors, 2005). 

Another fundamental factor for plant growth is the water availability. AMF has an effect on the 

plant water relations (Augé, 2001, 2004; Augé et al., 2008). For example in the study of Mosse and 

Hayman (1971), mycorrhizal Allium cepa seedling did not wilt when tranplanted in contrast to non-

mycorrhizal controls. Different AMF show different effects on plant water stress (Marulanda et al., 

2003; Aroca et al., 2007), however, it remains unclear, if this effect results directly from, or is 

caused by, the increased phosphorous uptake and therefore by plant size or fitness. The mycelium in 

the soil changes soil moisture characteristics and improves soil structure by formation of soil 

aggregates (Rillig, 2004; van der Heijden et al., 2006) and might therefore also effect water 
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availability (Augé, 2001, 2004). Augé (2004) showed that mycorrhiza deficient (non-mycorrhizal) 

mutant plants grown together with mycorrhizal plants in pots with mycorrhiza kept stomata longer 

open than in soil without AMF. 

Although there is considerable evidence that AMF in general enhance the uptake of phosphorous, 

micronutrients and water, many questions about nutrient uptake of individual AMF species, both 

singly and in cohorts, remain to be solved. 

 

3.1.3  AMF spore characteristics and morphology of root colonization 

AMF form large spores, sometimes as big as 1.2 mm in diameter, containing many storage 

components and a numerous nuclei (576 to 35 000 in different species; Hosny et al., 1998; Viera & 

Glenn, 1990), although the highest value is estimated rather than counted (Hosny et al., 1998). It is 

suggested that nuclei of Gl. sp. DAOM197198, Gl. etunicatum and Sc. castanea are haploid 

(Bianciotto et al., 1995; Hijri & Sanders, 2004). The DNA content of one nucleus is between 0.26 

and 3.4 pg, depending on species and method of assessment (Viera & Glenn, 1990; Bianciotto & 

Bonfante, 1992; Hosny et al., 1998). The genome size of Gl. sp. DAOM197198 was determined to 

be approximately 16.54 Mb (Hijri & Sanders, 2004), but preliminary results of the genome 

sequencing of a fungus of this name revealed the genome to be approx. five times larger than this 

(Martin et al., 2008). The Sc. pellucida genome has been calculated to have a size of 1058 Mb 

(Bianciotto & Bonfante, 1992). It is still debated whether one spore contains several different nuclei 

(heterokaryotic; Hijri & Sanders, 2005) or identical nuclei (homokaryotic; Pawlowska & Taylor, 

2004). This is interesting, in regard to the high genetic diversity for example within the ITS of a 

single species (Sanders et al., 1995; Lloyd-Macglip et al., 1996; Lanfranco et al., 1999; Jansa et al., 

2002b). Variations have been also detected by AFLP analysis of a culture started with 30 spores 

(Rosendahl & Taylor, 1997) and in some genes involved in cellular function (Kuhn et al., 2001; 

Sanders et al., 2003; Pawlowska & Taylor, 2004). Kuhn et al. (2001) indicated that a nucleus of Sc. 

castanea contains different numbers of divergent ITS region sequences. This genetic variation 

within spores may have a significant impact on species definition and on phylogenetic 

identification. Whether the variation within a single organism influences the interactions of AMF 

and plants or the colonization of plants in various ecological habitats is still unclear. 

AMF preferentially germinate from a spore even in the absence of roots. Plant derived signals such 

as strigolactones can induce hyphal branching (Akiyama et al., 2005) and change fungal physiology 

and mitochondrial activity (Besserer et al., 2006). Upon contact with the root, AMF form an 



Introduction 

14 

appressorium, also called hyphopodium (Genre et al., 2008). The plant cell responds to this contact 

with the formation of a pre-penetration apparatus (PPA). The PPA then determines the path of the 

fungal growth and seems to form a tunnel. Additionally, the plant root cell triggers AMF growth 

(Genre et al., 2005, 2008). According to Parniske (2008) the 'pre-infection thread' of legumes most 

likely evolved from the PPA. This relatedness is also reflected by common plant genes involved in 

rhizobial symbiosis and AM (Parniske, 2008). 

The fungal colonization of the plant root is restricted to the cortical cells. Two distinct structural 

types of colonization were originally described (Gallaud, 1905): the Arum-type, in which hyphae 

grow intercellularly and form intracellular arbuscules, and the Paris-type, which exhibits 

intracellular growth and form hyphal coils cells from which small arbuscules can originate. More 

recent studies have shown that this differentiation is not so clear and several intermediate forms 

exist (Dickson, 2004). It remains unclear which factors control the colonization type and it seems it 

is influenced by both plant and fungus species (Cavagnaro et al., 2001; Dickson, 2004; Kubota et 

al., 2005; Dickson et al., 2007). 

 

3.1.4 AMF species communities in the field 

Ecological studies on AMF have been widely performed based on spore identification and 

colonization intensity of plant. The surveys of different plant species for AM colonization have been 

summarized in the publications of Harley and Harley (1987), Wang and Qiu (2006), and Brundrett 

(2009) who gave an overview of the numerous plant hosts. There are many community studies 

based on spore morphology. In one, about 30 AMF species have been found in a field containing 50 

plant species (Bever et al., 2001). Different AMF spore communities were detected in different soil 

depths (Oehl et al., 2005) and in different farming systems (Oehl et al., 2003), both in cultivated 

and non-cultivated lands (Li et al., 2007). Trap cultures were furthermore established to allow 

expression of species not sporulating at the time of sampling. These cultures are influenced by the 

plant host and age of the culture. Some species start their sporulation in such cultures only after 18 

months (Oehl et al., 2005). Furthermore, the spore community may not reflect the active AMF 

community colonizing roots and soil. Therefore, molecular methods were developed for the 

identification of AMF colonizing roots and soil. These molecular ecological studies have shown that 

many AMF phylotypes might correspond to undescribed species (Öpik et al., 2008; Kottke et al., 

2008). In addition, Sýkorová et al. (2007a) have detected a bias between the analysis of roots from 

field, roots from trap cultures, and roots from bait plants. This bias and different methods and DNA 
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regions makes the comparison among publications very difficult or even impossible. 

 

3.1.4.1 AMF-plant preferences 

Early investigators stated that there is no specificity between AMF taxa and potential host plant 

taxa. No strict specificity can be expected, as the 214 known AMF species form AM with roughly 

250 000 host plants species (Fitter, 2005). Some species like Plantago lanceolata, Trifolium 

subterraneum and Sorghum sudanense are considered to be generalists and therefore are used for 

cultivation of AMF species in trap cultures (Smith & Read, 2008). However, recent studies indicate 

that some preferences exist, e.g. for Acer pseudoplatanus which was only colonized by a fungus 

determined to be Glomus hoi (Helgason et al., 2002). In addition, mycoheterotrophic plants such as 

Arachnites, Voria and Voyriella spp. are associated with a limited number of glomeromycotan 

symbionts possibly because of their narrow specificity to all kinds of fungal associates (Bidartondo 

et al., 2002). Different plant species used in trap cultures, had also an effect on the sporulation of 

different AMF (Jansa et al., 2002a). Bever et al. (2009) show that Allium vineale allocated more 

carbon to the AMF species with greater mutualistic tendencies. This kind of work on specific 

relationships among host plants and AMF is still in its infancy, and many questions remain 

unanswered providing opportunities for much future research. 

 

3.1.5 Species concepts for AMF 

The classical species concept for AMF is mainly based on spore morphology and development. 

Identifying species from spore morphology is not easy and even specialists do not agree on general 

characteristics of spores. About 214 AMF species have been described to date (www.amf-

phylogeny.com), many of which are not in culture. Many, but still not all, new species descriptions 

include molecular evidence and provide reference cultures, which can be found in 

BEG (www.kent.ac.uk/bio/beg/), INVAM (http://invam.caf.wvu.edu/), GINCO 

(http://emma.agro.ucl.ac.be/ginco-bel/) or other available culture collections (e.g. Gamper et al., 

2009). Morphological identification of spores can sometimes be misleading. For example, single 

species with dimorphic spores (Sawaki et al., 1998; Redecker et al., 2000b) have been placed in two 

different taxa because of their morphological characteristics. 

The molecular species concept is mainly based on rDNA sequences such as SSU, internal 
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transcribed spacer (ITS) region or partial large subunit (LSU) rDNA. Some new markers have also 

been used such as the mitochondrial LSU (mtLSU; Raab et al., 2005) and tubulin genes (Corradi et 

al., 2004a; Corradi et al., 2004b; Msiska & Morton, 2009) and microsatellites (Croll et al., 2008; 

Mathimaran et al., 2008). Some of these can differentiate strains within species of AMF. 

A biological species concept is not definable within AMF, because no sexual stage, indispensable 

for this concept, has yet been found. Therefore, it is assumed that AMF are asexual and clonal. Croll 

et al. (2008) introduced the idea of “non-self fusion compatibility groups” to define species based 

on anastomosis formation. Such analyses are time-consuming and only one species was analysed up 

to date. Application of such a concept is also very difficult, because the majority of species is not 

established in root organ cultures (ROC) or similarly controlled monoxenic systems. Another 

approach towards species identification utilizes a recombination test. Croll and Sanders (2009) have 

performed recombination test on 11 polymorphic markers, all showing recombination with 40 

clonal isolates from a field, all of which were identified as Gl. intraradices, but which are probably 

more closely related to a different Glomus sp. DAOM197198, conspecific with, or closely related to 

Gl. irregulare. 

 

3.1.6 Taxonomy and phylogeny of AMF 

The most modern higher taxonomy within AMF is based on a combination of morphology and SSU 

rDNA sequences. The phylogenetic analysis of SSU rDNA sequences has placed the AMF in a 

separate phylum, the Glomeromycota. This phylum is divided into four orders (Figure 1 

Glomerales, Diversisporales, Archaeosporales, Paraglomerales). Within this, 13 families have been 

defined (Glomeraceae, Diversisporaceae, Acaulosporaceae, Entrophosporaceae, 

Scutellosporaceae, Gigasporaceae, Racocetraceae, Dentiscutataceae, Pacisporaceae, 

Geosiphonaceae, Ambisporaceae, Archaeosporaceae and Paraglomeraceae), and 19 genera 

(Glomus, Diversispora, Otospora, Acaulospora, Kuklospora, Entrophospora, Scutellospora, 

Gigaspora, Racocetra, Cetraspora, Dentiscutata, Fuscutata, Quatunica, Pacispora, Geosiphon, 

Ambispora, Archaeospora, Intraspora and Paraglomus; see www.amf-phylogeny.com). Some of 

these taxa are paraphyletic, and some may by synonyms. In particular, regarding the separation of 

Scutellospora (personal communication Christopher Walker) many questions are still unanswered 

about taxonomy and phylogeny. Another example is the genus Glomus still appearing in two 

different orders. The order Glomerales is divided into at least two major clades, with both being 

referred to as Glomeraceae. Hence Schwarzott et al. (2001) divided them into two groups, Glomus 
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Group A and Glomus Group B. It is likely that these two groups will become separate families as 

soon as the type of Glomus could be assigned to one of these groups. To clearly understand the 

relationship within the Glomeromycota it is necessary to have comparable datasets for at least 

representative species for each clade. However, only one part of the rDNA sequence is available for 

some species, for example, only the LSU sequence is available for Sc. nigra, and therefore 

comparisons with other species are not possible. Some species are well covered for different rDNA 

regions, but the sequences may have originated from different cultures and despite their annotations 

may not be conspecific because of taxonomic difficulties. Such problems exist in particular when 

cultures have been lost over time and no voucher had been deposited. Even when taxonomic 

vouchers have been preserved, they often are not amenable to further DNA extraction. Inadequately 

prepared vouchers may even lack sufficient characters for verification of the species, or may contain 

more than one species or heavily parasitized spores (personal communication Christopher Walker). 

The introduction of an easily and quickly applicable method for species determination would be 

highly beneficial for reliable and comprehensive identification. 
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Figure 1: Phylogenetic tree of the AMF showing the organisation within the phylum 
Glomeromycota. After Schüßler et al. (2001). 
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3.2 DNA barcodes and molecular species identificati on 

A DNA barcode is defined as a short and easily PCR amplifiable DNA fragment for identification of 

organisms to species level. DNA barcoding must ideally be feasible for non experts, accurate, rapid, 

cost-effective, culture-independent and universally accessible (Frézal & Leblois, 2008). The aim of 

a barcode system is to be applicable for all kingdoms of eukaryotic life and to simplify recognition 

of cryptic species. The identification of fragments from organisms or such from different life cycle 

stages will become possible, where morphological identification is not realizable (Gilmore et al., 

2009). This is also a general problem for microorganisms, also such living within other organisms 

and in the soil. In addition, a genetic barcode can be invaluable for controlling the trade in 

endangered species (see Convention on International Trade in Endangered Species of Wild Fauna 

and Flora, CITES) because of its practicality for non experts. Furthermore, it can facilitate the 

search for new species and may help to protect them before they are lost.  

Morphological identification of fungi often requires cultivation of the target organism, which in 

many cases poses major problems (O'Brien et al., 2005). Therefore molecular methods, such as 

DNA barcoding, may be the only way to identify such recalcitrant organisms. Of the estimated 1.5-

3.5 million fungal species, about 100.000 are described (Hawksworth, 2001; O'Brien et al., 2005; 

Kirk et al., 2008). Currently no official DNA barcode is suitable for fungi, although many studies 

deal with the identification of fungi through molecular markers. 

 

3.2.1 Official DNA barcodes 

The first official barcode, that is a barcode accepted by the Consortium for the Barcode of Life 

(CBOL) consists of approx. 640 bp of the cytochrome oxidase subunit I (COX1) in the 

mitochondrial DNA, and it is mainly used for animal species identification 

(http://www.barcoding.si.edu/, Hebert et al., 2003). Mitochondrial DNA of plants has a low 

substitution rate, and a two-locus barcode from the chloroplast region, using the matK and rbcL 

genes consequently was proposed by the CBOL plant working group (Hollingsworth et al., 2009). 

These authors have observed a species separation capability of the two-locus barcode to a success 

rate of approx. 72 %, which did not increase significantly when taking in account all seven analysed 

markers (matK, rbcL, rpoC1, rpoB, psbK-psbI, trnH-psbA, psbK-psbI) together. 
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3.2.2 Molecular identification of fungi using COX1 

COX1 works well for most animal species; however some drawbacks have been detected within 

fungi. In a case study of species in the genus Penicillium, COX1 seems to be a likely candidate for 

species identification (Seifert et al., 2007), although they have already shown considerable length 

variations possible within the fungi. The COX1 gene of fungi varies between 1548 bp and 22 kb, 

similar to the barcoding region within COX1 gene which ranges from 642 bp to 12.3 kb (Seifert et 

al., 2007; Seifert, 2009). Only one COX1 gene is published for just one glomeromycotan species 

with a length of 2200 bp (based on NC_12056, Lee & Young, 2009). However the length can vary 

as seen in other parts of the mitochondrial genome in Glomeromycota. The mitochondrial large 

subunit (mtLSU) for example has different sizes and introns even among closely related species 

(Raab et al., 2005; Börstler et al., 2008). 

Multiple copies (paralogous) of the COX1 gene have been found in the genus Fusarium and proved 

inadequate for species level identification (Gilmore et al., 2009). A similar situation was observed 

within the complex group of Aspergillus niger (Geiser et al., 2007). Lang and Hijri (2009) reported 

a COX1 intron in Glomus diaphanum with a high sequence similarity to both a plant sequence and a 

Rhizopus oryzae COX1 intron. This intron may result from a lateral gene transfer from fungi to 

plant (Vaughn et al., 1995; Seif et al., 2005; Lang & Hijri, 2009). 

3.2.3 Molecular identification of fungi using rDNA sequences 

Recent studies using molecular markers for species identification of fungi typically use nuclear 

ribosomal genes such as the small subunit (SSU), the ITS region (ITS1-5.8S-ITS2) or the partial 

large subunit (including two variable subregions called D1 and D2). For most fungi the ITS has 

become the default marker for species identification. This led Seifert (2009) to conclude, that “ITS 

[is] already functioning as de facto barcode”. However, yeasts represent an exception, as the LSU is 

already widely used for species identification (Seifert, 2009). Most sequence data available for 

members of the Glomeromycota are still only from the SSU. 

The fungal ITS is rich in insertions and deletions, rendering it useful for developing taxon-specific 

primers. The length of the ITS varies within fungi from 270 bp for yeasts to 973 bp for 

Dothideomycetes, but the indels and the length variations make the ITS difficult to align (Seifert, 

2009). 
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3.2.3.1 Primer used for PCR amplification of AMF 

Several primer combinations were published for the use of PCR amplification for AMF. The 

resulting DNA fragment varies in their discriminatory power. The most widely used primer 

combination for AMF is AM1 (Helgason et al., 1998) - NS31 (Simon et al., 1992) (~550 bp). NS31 

amplifies all eukaryotic species, and although supposedly specific to AMF, AM1 excludes the 

ancestral lineages such as Archaeosporales and Paraglomerales (Redecker et al., 2000b; Schüßler 

2001). This primer combination is thus mainly useful for studying Glomerales and Diversisporales. 

Some of these studies reported additional amplifications even of non-AMF sequences (Helgason et 

al., 2002; Douhan et al., 2005; Rodríguez-Echeverría & Freitas, 2006; Santos-Gonzalez et al., 

2007). To solve this, new specific SSU primers known as AML1-AML2, covering the AM1-NS31 

fragment, were designed that include species in all the major orders of AMF (Lee et al., 2008; 

~800 bp). Santos-Gonzalez et al. (2007) designed additional new primers (AM2, AM3) based on 

the AM1 to amplify additional groups, such as the Glomus Group B and Diversisporaceae species. 

Wubet et al. (2006) also published a new set of primers, specific for different families, amplifying 

an even longer fragment of about 1130 bp of the SSU (Figure 2). 

Several group-specific primers were developed for the amplification of the ITS region (Redecker, 

2000). In another approach, Renker et al. (2003) designed primers for both the amplification of the 

ITS region and partial LSU (SSU-Gom1/LSU-Glom1, Figure 2). They also reported that designing 

primers suitable for all AMF, but not amplifying other fungi is challenging. In addition, different 

primers were used on the LSU, wherein most of them cover the first 800 bp of the LSU or at least a 

part of it (Figure 2). These fragments were amplified using a nested PCR approach. All these 

different fragments make the comparison of results complicated and difficult. 

Sequences of contaminated samples are a serious problem in AM research. Schüßler (1999) and 

Redecker et al. (1999) reported that some published rDNA sequences of Scutellospora castanea 

were from ascomycotan origin and even spores with a healthy appearance can contain non 

glomeromycotan fungi (Hijri et al., 2002). Utilizing AMF specific primers would be an advantage 

for such contaminated material. 
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Figure 2: Schematic overview of different primer combinations used in AMF research citing the 
corresponding publications. A part of the rDNA repeats is illustrated on the top. Grey arrows 
indicate the genes; thin lines the internal transcribed spacers (ITS1& ITS2). For clarity, the LSU 
gene is not shown in full length. Triangles show priming site and direction. Publications showing 
several primer combinations indicate nested PCR approaches, except for Redecker (2000), who 
developed AMF subgroup-specific primers. 

 
 

3.3 Aim of this study 

The focus of this study was to develop a simple and robust system for the identification to species 

level of glomeromycotan fungi. The study aimed to contribute to the development of a DNA 

barcode for fungi and in particular for AMF such as that already established for animals. The 

identification system must ideally be based on parts of the widely used rDNA such as the SSU, the 

ITS or LSU region because the largest number of published sequences are available from these 

regions. In the course of the work, the ITS region was proposed as the possible DNA barcode for 

fungi. In addition to the ITS region, several other parts of the rDNA region were investigated for 

their potential DNA barcode suitability. The high variation of the rDNA within one AMF species or 
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even a single spore was critically checked for all fragments for successful species identification. 

To amplify AMF in roots of plants and to overcome the problem with potential contaminations, new 

AMF specific primers were designed and tested in anticipation of them being used as AMF 

barcoding primers. In recognition of new sequencing technologies, such as the 454 GS-FLX 

Titanium system, approximate 400 bp long fragments were tested for its potential usage in such 

systems to identify species of AMF. 
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DNA-based species level detection of Glomeromycota: 
one PCR primer set for all arbuscular mycorrhizal fungi

Manuela Krüger, Herbert Stockinger, Claudia Krüger and Arthur Schüßler
Ludwig-Maximilians-University Munich, Dept Biology I, Genetics, Großhaderner Strasse 4, D–82152 Planegg-Martinsried, Germany

Summary

• At present, molecular ecological studies of arbuscular mycorrhizal fungi (AMF)
are only possible above species level when targeting entire communities. To improve
molecular species characterization and to allow species level community analyses in
the field, a set of newly designed AMF specific PCR primers was successfully tested.
• Nuclear rDNA fragments from diverse phylogenetic AMF lineages were
sequenced and analysed to design four primer mixtures, each targeting one binding
site in the small subunit (SSU) or large subunit (LSU) rDNA. To allow species resolution,
they span a fragment covering the partial SSU, whole internal transcribed spacer
(ITS) rDNA region and partial LSU.
• The new primers are suitable for specifically amplifying AMF rDNA from material
that may be contaminated by other organisms (e.g., samples from pot cultures
or the field), characterizing the diversity of AMF species from field samples, and
amplifying a SSU-ITS-LSU fragment that allows phylogenetic analyses with species
level resolution.
• The PCR primers can be used to monitor entire AMF field communities, based on
a single rDNA marker region. Their application will improve the base for deep
sequencing approaches; moreover, they can be efficiently used as DNA barcoding
primers.
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Introduction

Arbuscular mycorrhizal fungi (AMF) are associated with
70–90% of land plants (Smith & Read, 2008) in a symbiosis
called arbuscular mycorrhiza (AM), that has existed for
> 400 million yr (Parniske, 2008; Schüßler et al., 2009). The
economic and ecological importance of these ancient biotrophic
plant symbionts is therefore obvious. Arbuscular mycorrhizal
fungi transfer inorganic nutrients and water to the plant and
receive carbohydrates in exchange. By driving this bidirectional
nutrient transport between soil and plants, they are highly
relevant for global phosphorus (P), nitrogen (N) and CO2
cycles. Moreover, they affect directly and indirectly the
diversity and productivity of land-plant communities (van
der Heijden et al., 1998) by their central role at the soil–plant
interface (van der Heijden et al., 2008). They can also improve
host plant pathogen resistance (Vigo et al., 2000; de la Pena
et al., 2006) and drought stress tolerance (Michelson &
Rosendahl, 1990; Aroca et al., 2007).

Despite the enormous role of AMF in the entire terrestrial
ecosystem, their biodiversity in relation to functional aspects

is little understood. Most of the 214 currently described
species (www.amf-phylogeny.com) are characterized only
by spore morphology and the majority have not yet been
cultured. Moreover, from molecular ecological studies we
know that the species described represent only a small fraction
of the existing AMF diversity (Kottke et al., 2008; Öpik et al.,
2008). Problems with identification of AMF result from
their hidden, biotrophic lifestyle in the soil, few morpho-
logical characters, and the potential formation of dimorphic
spores. This led to many AMF species, phylogenetically
belonging to different orders, being placed in one genus
(Glomus) and, conversely, individual species forming different
spore morphs being described as members of different orders.

Another drawback of morphologically monitoring AMF
by their resting spores (Oehl et al., 2005; Wang et al., 2008)
is that the presence of spores may not reflect a symbiotically
active organism community. Furthermore, many species
cannot be reliably identified at all from heterogeneous field
samples, and when identifying described species (likely to
represent less than 5% of the existing species diversity) similar
morphotypes may be erroneously determined as a single species.

mailto:krueger@lrz.uni-muenchen.de
mailto:krueger@lrz.uni-muenchen.de
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To reveal functional and ecological aspects of distinct AMF
communities associated with different plants and/or under
different environmental conditions it is essential to detect
AMF communities in the field on the species level. However,
there are as yet no unbiased methods for this purpose, not
only for morphological identification but also for molecular
methods. Principally, DNA sequence based methods are most
useful for detecting organisms at different community levels,
but for ecological work they also depend on reliable baseline
databases and tools. For example, fingerprinting methods
such as random amplification of polymorphic DNA (RAPD),
inter-simple sequence repeat PCR (ISSR) and amplified
fragment length polymorphism (AFLP) are expected to be error
prone in uncharacterized environments because of too many
‘unknowns’ in the background, which hampers interpretation
of specificity (Mathimaran et al., 2008). A similar problem
exists for DNA array techniques. Nevertheless, suitable
molecular methods are crucial to overcome the limitations
of morphological identification (Walker & Schüßler, 2004;
Walker et al., 2007; Gamper et al., 2009; Stockinger et al., 2009).

But how are DNA or RNA sequence data for community
analyses obtained and how can the current limitations of
molecular tools be overcome? Molecular characterization of
AMF is in most cases achieved by PCR on DNA from roots
of host plants, spores or soil samples. Several primers targeting
the rDNA regions as molecular marker were claimed to be
AMF specific. Most of these amplify only a restricted number
of glomeromycotan taxa or DNA of nontarget organisms. The
most comprehensive taxon sampling for the Glomeromycota
covers the small subunit (SSU) rDNA region (Schüßler
et al., 2001a,b), for which a new, AMF specific primer pair
was recently published (AML1 and AML2; Lee et al., 2008).
Unlike the often used AM1 primer (Helgason et al., 1998) it
is perhaps suitable to amplify sequences from all AMF taxa,
but the SSU rDNA is inadequate for species resolution of
AMF. Inclusion of the internal transcribed spacer (ITS) and
the large subunit (LSU) rDNA region allows both robust
phylogenetic analyses and species level resolution (Gamper et al.,
2009; Stockinger et al., 2009).

The available public database sequences are scattered
through SSU, ITS and LSU rDNA subsets with varying
lengths, often only 500–800 bp. In most cases this does not
allow species level analyses, and short sequences obtained
with primers that have inaccurately defined specificity may
result in errors. For example, some short database sequences
labelled as Gigaspora (Jansa et al., 2003) cluster with those of
Glomus versiforme BEG47 (Diversisporaceae) (Gamper et al.,
2009). Because of the relatively few LSU sequences in the
public databases, the design of improved primers is challenging
or even impossible. We therefore sequenced the ITS region
and the 5′ part of the LSU rDNA of a set of well-characterized,
but phylogenetically diverse AMF, and designed new primers
from the resulting database. These primers are suited to
amplify DNA from members of all known glomeromycotan

lineages and, by allowing elaboration of a more accurate
baseline dataset, could be a breakthrough for molecular
community analyses of AMF.

Materials and Methods

Fungal and plant material for primer tests

We first tested different samples as DNA templates for PCR
to confirm the specificity of the newly designed primers.
These included plasmid inserts (Table 1), DNA extractions
from single AMF spores and root samples from the Andes
(Ecuador) and the Spessart Mountains (Germany). Primers
were tested for specificity by PCR with plasmids carrying rDNA
fragments with known sequences. All these plasmids had been
amplified from single spore DNA extracts with the SSU
rDNA primer SSUmAf, described here, and the LSU rDNA
primer LR4+2 (modified from LR4; www.aftol.org). The
specificity of SSUmAf could therefore not be investigated directly.

DNA extraction for primer tests

All vials, tips, beads, solutions, and other equipment used
were sterile and DNA free.

From cleaned, single AMF spores DNA was extracted
with the Dynabead DNA DIRECT Universal Kit (Invitrogen,
Karlsruhe, Germany) as described in Schwarzott & Schüßler
(2001).

Roots potentially colonized by AMF were cut into ten
0.5 cm pieces and collected in a single 1.5 ml Eppendorf tube
containing one tungsten carbide bead (diameter 3 mm;
Qiagen, Hilden, Germany). They were immediately frozen in
liquid N2 within the closed tube, placed in liquid N2 precooled
Teflon holders, and ground to a fine powder in a MM2000
bead-mill (Retsch, Haan, Germany). Extraction was done by
either an innuPREP Plant DNA Kit (Analytik Jena, Jena,
Germany) following the instructions of the manufacturer,
or a cetyltrimethylammonium bromide (CTAB) protocol
modified from Allen et al. (2006). For the CTAB protocol,
prewarmed extraction buffer (750 µl for 75 mg tissue) was
added to each sample of frozen, ground tissue, followed by
incubation at 60°C for 30 min. Next, one volume of a
chloroform–isoamylalcohol mixture (24 : 1) was added. The
samples were centrifuged for 5 min at 2570 g and the upper
phase was transferred into a new tube. After addition of 2.5 µl
RNase A (10 mg ml−1) this was incubated at 37°C for 30 min.
One volume chloroform–isoamylalcohol (24 : 1) was then
added and the tube was centrifuged as above. The supernatant
was collected and two-thirds volumes of isopropanol added.
The samples were incubated at 4°C for 15 min. After centrifu-
gation (10290 g for 10 min) the pellet was washed in 70%
ethanol, air dried, and eluted in 100 µl of molecular biology
grade H2O. Volumes of 2–5 µl of each DNA extract were
used as PCR template.
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PCR conditions

The Phusion High-Fidelity DNA polymerase 2× mastermix
(Finnzymes, Espoo, Finland) was used for PCR with the
SSUmAf–LSUmAr or SSUmCf–LSUmBr primer pairs.
SSUmCf and LSUmBr were also applied as nested primers
(see Fig. 1c). The final concentration of the reaction mix
contained 0.02 U µl−1 Phusion polymerase, 1× Phusion HF
Buffer with 1.5 mm MgCl2, 200 µm of each dNTP and
0.5 µm of each primer. Thermal cycling was done in an
Eppendorf Mastercycler Gradient (Eppendorf, Hamburg,
Germany) with the following conditions for the first PCR:
5 min initial denaturation at 99°C; 40 cycles of 10 s
denaturation at 99°C, 30 s annealing at 60°C and 1 min
elongation at 72°C; and a 10 min final elongation. The same
conditions were used for the nested PCR primers except that
the annealing temperature was 63°C and only 30 cycles were
carried out. The PCR products were loaded on 1% agarose
gels (Agarose NEEO; Carl Roth, Karlsruhe, Germany) with
1× sodium borate buffer (Brody & Kern, 2004) at 220 V, and
visualized after ethidium bromide staining (1 µg ml−1).

Cloning, restriction fragment length polymorphism 
(RFLP) and sequencing

Polymerase chain reaction products were cloned with the
Zero Blunt TOPO PCR Cloning Kit (Invitrogen) following
the instructions of the manufacturer, except that to reduce
costs only one-third of the specified volume of all components
was used. Only SOC medium for initial bacterial growth after
transformation was used in the volume as per the instructions.
From each cloning we analysed up to 48 clones for correct
length of plasmid inserts. In some instances fewer clones
were available because of low cloning efficiency. Colony-PCR

was performed with the GoTaq DNA Polymerase (5 U µl−1;
Promega, Mannheim, Germany) and modified M13F and
M13R primers. To roughly detect intrasporal and intersporal
sequence variability in the clones, RFLP was performed in
10 µl reaction volume, containing 5 µl colony-PCR product,
one of the restriction enzymes Hinf I (1 U), RsaI (1 U), or
MboI (0.5 U) and the specific buffer. One or two clones for
each restriction pattern were sequenced, using M13 primers,
by the LMU Sequencing Service Unit on an ABI capillary
sequencer with the BigDye v3.1 (Applied Biosystems, Foster
City, CA, USA) sequencing chemistry. The sequences were
assembled and edited in seqassem (www.sequentix.de) and
deposited in the EMBL/GenBank/DDBJ databases with the
accession numbers FM876780 to FM876839.

Primer design

For the design of new AMF specific primers a sequence
alignment was established with the programs align
(www.sequentix.de) and arb (Ludwig et al., 2004). The
alignments contained all AMF sequences present in the public
databases and our new data. In total > 1000 AMF sequences,
covering all known phylogenetic lineages, were analysed to
design the SSU and LSU rDNA primers. To allow com-
parison to the existing SSU rDNA datasets the primers were
designed to overlap (approx. 250 bp) with the SSU rDNA.
We used blast against the public databases and the probe
match tool in arb to test the specificity of the newly
designed primers in silico. For the alignment in the arb
database a combination of our new dataset and the 94th
release version of the SILVA database (Pruesse et al., 2007,
www.arb-silva.de) was used. The oligonucleotides were
then synthesized as standard primers (25 nmol, desalted)
by Invitrogen.

Table 1 Plasmids used to test primer specificity and their origin

Species (order)
Plasmid 
no.

Spore 
no.

Attempt number 
(culture code) Voucher

Source 
(collector) Origin

Glomus luteum (Glomerales) pMK020.1 2 Att 676-5 (SA101) W3184 INVAM Saskatchewan, Canada
Glomus intraradices (Glomerales) pHS051.14 283 Att 1102-12 

(MUCL49410)
W5070 GINCO (Nemec) Orlando, USA

Glomus sp. (Glomerales) pMK010.1 11 Att 15-5 (WUM3) W2940 Walker (Mercer) Merredin, Australia
Acaulospora sp. (Diversisporales) pMK005.1 19 Att 869-3 (WUM18) W2941 Walker (Mercer) Nedlands, Australia
Pacispora scintillans (Diversisporales) pMK027.1 190 Field collected W4545 Walker (Schüßler) Griesheim, Germany
Gigaspora sp. (Diversisporales) pMK003.1 14 Field collected W2992 Walker (Cabello) Tres Arroyos, Argentina
Scutellospora heterogama 
(Diversisporales)

pMK029.3 72 Att 334-16 (BEG35) W3214 Walker (Miranda) exact location unknown, 
North America

Glomus versiforme (Diversisporales) pHS036.4 262 Att 475-45 (BEG47) W5165 Walker (Bianciotto) Corvallis, USA
Kuklospora kentinensis (Diversisporales) pHS098.16 310 Att 1499-9 (TW111A) W5346 INVAM Tainan, Taiwan
Geosiphon pyriformis (Archaeosporales) pMK044.1 8 GEO1 W3619 Schüßler Bieber, Germany

Single spores from which the cloned amplicons (amplified with primers SSUmAf-LR4+2) originated and the geographic origin of the respective 
arbuscular mycorrhizal fungi (AMF) are shown.
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(a) SSUmAf1 TGGGTAATCTTTTGAAACTTYA...---------------------- 
SSUmAf2 TGGGTAATCTTRTGAAACTTCA...---------------------- 
SSUmCf1 ----------------------...--TCGCTCTTCAACGAGGAATC 
SSUmCf2 ----------------------...TATTGTTCTTCAACGAGGAATC 
SSUmCf3 ----------------------...TATTGCTCTTNAACGAGGAATC 
Gl. caledonium BEG20 Y17635 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Gl. mosseae UT101 AY635833, Gl. geosporum BEG11 AJ132664 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Gl. sp. 'intraradices' DAOM197198 AY635831  TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTGAACGAGGAATC 
Gl. claroideum BEG14 AJ301851 TGGGTAATCTTTTGAAACTTTA...TATCGCTCTTCAACGAGGAATC 
Gl. luteum SA101 AJ276089 TGGGTAATCTTTKGAAACTTTA...TATCGCTCTTCAACGAGGAATC 
Ac. laevis AU211 AJ250847 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTAAACGAGGAATC 
Ac. longula W3302 AJ306439, Ac. rugosa WV949 Z14005 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Ac. scrobiculata BEG33 AJ306442, Ac. spinosa WV860 Z14004 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Ac. sp. W3424 AJ306440 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTTAACGAGGAATC 
Ku. colombiana WV877 Z14006 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Di. spurca ex-type W3239 AJ276077 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTTAACGAGGAATC 
Gl. versiforme BEG47 X86687, G. sp. W2423 AJ301863 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Gl. eburneum AZ420 AM713405 TGGGTAATCTTGTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Gl. eburneum AM713406, Gl. fulvum AM418548, Ot. bareai AM905318 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Gi. candida BEG17 AJ276091 TGGGTAATCTTTTGAAACTTTA...TATTGCTCTTCAACGAGGAATC 
Gi. cf. margarita W2992 AJ276090 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTTAACGAGGAATC 
Gi. rosea DAOM194757 X58726  TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Sc. cerradensis MAFF520056 AB041345 TGGGTAATCTTTTGAARCTTCA...TATTGCTCTTCAACGAGGAATC 
Sc. heterogama FL225 AY635832  TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Pac. scintillans W3793 AJ619940 TGGGTAATCTTTTGAAACTTCA...TATTGYTCTTAAACGAGGAAYC 
Ge. pyriformis AM183923 TGGGTAGTCTTATGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Am. fennica W3847 AM268194, W4752 AM268196 TGGGTAATCTTGTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Am. leptoticha MAFF520055 AB047304, NC176 AJ006466 TGGGTAATCTTGTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Ar. trappei NB112 AJ243420 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTAAACGAGGAATC 
In. schenkii CL401 AM743189 TGGGTAATCTTTTGAAACTTCA   TATTGCTCCTAAACGAGGAATC 
Pa. brasilianum WV219 AJ012112, Pa. occultum IA702 AJ276081 TGGGTAATCTTGTGAAACTTCA...TATTGTTCTTCAACGAGGAATC 
Ichthyophonus hoferi U25637 CGGGTAATCTTTTGAAACCTTA...TATTGATCTTCAACGAGGAATT 
Neurospora crassa X04971 CGGGTAATCTTGTTAAACTGTG...TATTGCTCTTCAACGAGGAATC 
Parasitella parasitica AF157149 TGGGTAAACTTTT-AAATTTCA...TATTGCTCTTCAACGAGGAATT 
Penicillium notatum M55628 TGGGTAATCTTGTTAAACCCTG...TATTGCTCTTCAACGAGGAATG 
Peridermium/Endocronartium harknessii M94339 TGGGTAATCTTGTGAAACTTGG...TATTGCTCTTCAACGAGGAATA 
Peziza badia L37539 TGGGTAATCTTGTGAAACTCTG...TATTGCTCTTCAACGAGGAATT 
Russula compacta U59093 TGGGTAATCTTGTGAAACTCTG...TATTGCTCTNCAACNAGGAAAT 
Saccharomyces cerevisiae J01353 TTGGTAATCTTGTGAAACTCCG...TATTGCTCTTCAACGAGGAATT 

(b) LSUmAr1                           -GCTCACACTCAAATCTATCAAA...---------------------- 
LSUmAr2                           -GCTCTAACTCAATTCTATCGAT...---------------------- 
LSUmAr3  TGCTCTTACTCAAATCTATCAAA...---------------------- 
LSUmAr4  -GCTCTTACTCAAACCTATCGA-...---------------------- 
LSUmBr1                           -----------------------...DAACACTCGCATATATGTTAGA 
LSUmBr2                           -----------------------....AACACTCGCACACATGTTAGA 
LSUmBr3                           -----------------------....AACACTCGCATACATGTTAGA 
LSUmBr4                           -----------------------...AAACACTCGCACATATGTTAGA 
LSUmBr5              -----------------------....AACACTCGCATATATGCTAGA 
Gl. etunicatum BEG92 AF145749          TGTTCTTACTCAAATCTATCAAA...GAACACTCGCATATATGTTAGA 
Gl. etunicatum AJ623309          TGCTCTTACTCAAATCTATCAAA...GAACACTCGCATATATGTTAGA 
Gl. etunicatum AJ623310          AGNTCTTACTCAAATGTATCAAA...GAACACTCGCACATATGTTAGA 
Gl. luteum SA101 FM876809, Gl. sp. W3349 FM876804 TGCTCTTACTCAAATCTATCAAA...GAACACTCGCATATATGCTAGA 
Gl. sp. WUM3 FM876813 TGCTCTTACTCAAATCTATCAAA...AAACACTCGCATATATGTTAGA 
Gl. coronatum W3582 FM876794, BEG28 AF145739  TGCTCTCACTCAAATCTATCAAA...AAACACTCGCATATATGTTAGA 
Gl. coronatum BEG49 AF145740, Gl. mosseae BEG25 AF145735 TGCTCTTACTCAAATCTATCAAA...AAACACTCGCATATATGTTAGA 
Gl. sp. 'intraradices' DAOM197198 DQ273790  TGCTCTTACTCAAATCTATCAAA...TAACACTCGCATATATGTTAGA 
Gl. claroideum BEG14 AF235007          TGCTCTTACTCAAATCTATCAAA...AAACACTCGCATATATGCTAGA 
Gl. constrictum BEG130 AF145741         TGCTCTTACTCAAATCTATCAAA...AAACACTCGCATATATGTTAGA 
Gl. fragilistratum BEG05 AF145747      TGC-CTTACTCAAATCTATCAAA...AAACACTCGCATATATGTTAGA 
Ac. laevis WUM11 FM876787 TGCTCACACTCAAATCTATCAAA...AAACACTCGCACACATGTTAGA 
Ac. sp. WUM18 FM876792 TGCTCGTACTCAAATCTATCAAA...AAACACTCGCACACATGTTAGA 
Ac. scrobiculata BEG33 FM876788 TGCTCTTACTCAAATCTATCAAA...AAACACTCGCACACATGTTAGA 
Di. celata BEG231 AM713417, Gl. versiforme BEG47 FM876814 TGCTCTTACTCAAATCTATCAAA...AAACACTCGCACATATGTTAGA 
Gi. sp. W2992 FM876803, Sc. heterogama BEG35 FM876837 TGCTCTAACTCAATTCTATCGAT...TAACACTCGCATACATGTTAGA 
Sc. heterogama FL225 DQ273792          TGCTCTGACTCAATCCTATCGAT...TAACACTCGCATACATGTTAGA 
Sc. sp. W3009 FM876833 TGCTTTAACTCAATTCTATCGAT...TAACACTCGCATACATGTTAGA 
Pac. scintillans W4545 FM876831 TGCTCTTACTCAAATCTATCAAA...AAACACTCGCATATATGTTAGA 
Ge. pyriformis GEO1 AM183920         TGCTCTAACTCAAATCTATCAAA...AAACACTCGCACGTATGTTAGA 
Pa. occultum IA702 DQ273827           TGCTCTTACTCAAACCTATCGAT...AAACACTCGCACATATGCTAGA 
Aspergillus niger AM270051     CGCTCTTACTCAAATCCATCCGA...GAACACTCGCGTAGATGTTAGA 
Endogone pisiformis DQ273811      TGCTCTTACTCAAATCTATCCAA...AAACACTTGCATATATGTTAGA 
Laccaria bicolor DQ071702        TGCTCTACCGCAGAATCGTCACA...AAATACTCGCAGGCATGTTAGA 
Malassezia cf. restricta HN312 DQ789978  TGCTCTTACGCAGACCCATCCGA...AAAAACTCGCACACATGTTAGA 
Mortierella sp. MS-6 DQ273786     TACTCTTACTCAATCCCAGTCAC...AAACACTCGCATATATGTTAGA 
Mucor racemosus M26190            TGCTTTACCTCGGTCATTTCAGT...AAATACTTGCACTTATGGTGGA 
Saccharomyces cerevisiae Z73326    TGCTCTTACTCAAATCCATCCGA...AAACACTCGCATAGACGTTAGA 

(c)

5.8S

ITS1
SSUmCf

SSUmAf LSUmAr
LSUmBr

SSU LSU

ITS2

Fig. 1 Forward and reverse primers designed in this study (5′–3′ direction), compared with their annealing sites in sequences from representative 
members of all main AMF taxa and some non-AMF species. Variable sites not represented in any primer mixture are shaded. When no culture 
identifiers are known, voucher (W) numbers are given behind the species name. (a) Forward primers SSUmAf (mixture SSUmAf1-2) and SSUmCf 
(mixture SSUmCf1-3). (b) Reverse primers LSUmAr (mixture LSUmAr1-4) and LSUmBr (mixture LSUmBr1-5). (c) Small subunit (SSU) rDNA, 
internal transcribed spacer (ITS) region and large subunit (LSU) rDNA (5465 bp) of Glomus sp. ‘intraradices’ DAOM197198 (AFTOL-ID48, other 
culture/voucher identifiers: MUCL43194, DAOM181602; accession numbers: AY635831, AY997052, DQ273790) showing the binding sites of 
the newly designed forward and reverse primer mixtures.
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Results

Primer design

Potentially suited binding sites for primers that match AMF
sequences but discriminate against plant and non-AM fungal
(non-AMF) sequences were identified for the SSU rDNA and
LSU rDNA. They were located at positions 1484 and 1532
on the SSU, and at positions 827 and 928 on the LSU rDNA
(based on Glomus sp. ‘intraradices’ DAOM197198 sequence;
Fig. 1c). Sequence variation made it impossible to derive
individual primer sequences that specifically amplify all
Glomeromycota. Thus, a set of four primer mixtures was
designed, each targeting one binding site (Table 2, Fig. 1).
Certain non-3′ located mismatches that only slightly altered
melting temperature and some mismatches (Glomus etunicatum)
that were perhaps caused by low sequence quality were
accepted for primer design (Fig. 1). To discriminate against
nontarget organisms mismatches at the 3′ end of the primers
were included. blast searches indicated high specificity of the
new primer pairs for AMF.

Glomeromycota sequences that represent the known
variability at the primer binding sites are shown in Fig. 1. We
aimed to include as many main phylogenetic lineages (Fig. 2)
for primer design as possible. However, the following taxa
could not be included for LSU rDNA binding sites analyses:
Entrophosporaceae, containing only two species lacking
sequence data; Archaeosporaceae, because available sequences
did not cover the LSU rDNA binding sites; Otospora for
which only two nonoverlapping partial SSU rDNA sequences
are known; Intraspora, represented by only one SSU rDNA
database sequence.

Primer specificity – discrimination against plants

The discrimination of primer SSUmAf1 against ‘lower’ plants
is weak and exemplified by only one mismatch to database
sequences from mosses (Polytrichastrum, Leptodontium
and Pogonatum), a liverwort (Trichocoleopsis), a hornwort
(Phaeoceros) and a clubmoss (Selaginella). Burmannia, one
Phaseoleae sp. and some other plant sequences also showed
only one mismatch. All other plant sequences had a minimum

Table 2 Polymerase chain reaction primer mixtures designed for amplification of arbuscular mycorrhizal fungi (AMF)

Primer Nucleotide sequence (5′–3′) nt Target taxa (mainly)

SSUmAf1 TGG GTA ATC TTT TGA AAC TTY A 22 Acaulosporaceae, Archaeosporaceae, Diversisporaceae, Geosiphonaceae, 
Gigasporaceae, Glomeraceae (GlGrA & GlGrB), Pacisporaceae

SSUmAf2 TGG GTA ATC TTR TGA AAC TTC A 22 Ambisporaceae, Diversisporaceae, Geosiphonaceae, Paraglomeraceae

SSUmAf Mix SSUmAf1-2 (equimolar) 22 All AMF lineages

SSUmCf1   T CGC TCT TCA ACG AGG AAT C 20 Archaeosporaceae (indirect evidence by amplification 
of Ambispora fennica), Glomeraceae (mainly GlGrB) 

SSUmCf2 TAT TGT TCT TCA ACG AGG AAT C 22 Paraglomeraceae
SSUmCf3 TAT TGC TCT TNA ACG AGG AAT C 22 Acaulosporaceae, Ambisporaceae, Archaeosporaceae, Diversisporaceae, 

Geosiphonaceae, Gigasporaceae, Glomeracea (mainly GlGrA), Pacisporaceae 

SSUmCf Mix of SSUmCf1-3 (equimolar) 20–22 All AMF lineages

LSUmAr1   GCT CAC ACT CAA ATC TAT CAA A 22 Acaulosporaceae
LSUmAr2   GCT CTA ACT CAA TTC TAT CGA T 22 Gigasporaceae
LSUmAr3 T GCT CTT ACT CAA ATC TAT CAA A 23 Acaulosporaceae, Diversisporaceae, Geosiphonaceae, Gigasporaceae, 

Glomeraceae (GlGrA and GlGrB), Pacisporaceae
LSUmAr4   GCT CTT ACT CAA ACC TAT CGA 21 Paraglomeraceae

LSUmAr Mix of LSUmAr1-4 (equimolar) 21–23 All AMF lineages

LSUmBr1 DAA CAC TCG CAT ATA TGT TAG A 22 Acaulosporaceae, Archaeosporaceae, Glomeraceae (GlGrA), Pacisporaceae 
LSUmBr2  AA CAC TCG CAC ACA TGT TAG A 21 Acaulosporaceae
LSUmBr3  AA CAC TCG CAT ACA TGT TAG A 21 Gigasporaceae
LSUmBr4 AAA CAC TCG CAC ATA TGT TAG A 22 Diversisporaceae, Geosiphonaceae, Glomeraceae, Paraglomeraceae, 

(primer sequence was also found in amplicons from Ambispora 
fennica and an Archaeospora sp.)

LSUmBr5  AA CAC TCG CAT ATA TGC TAG A 21 Gigasporaceae, Glomeraceae (GlGrB)

LSUmBr Mix of LSUmBr1-5 (equimolar) 21–22 All AMF lineages

Variable sites among primers of an individual mixture are shaded. Target taxa most likely amplified, according to known binding site sequences, 
are listed. Comments in parentheses indicate that the primer was successfully used to amplify the given taxon, although the binding site 
sequences were not known.
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of two mismatches, mainly at the 3′ end of the primer. For
SSUmAf2 there were at least two mismatches to all plant
sequences, except for a moss (Archidium) with only one
mismatch. For the nested forward primer SSUmCf1 a
minimum of three mismatches for all plants, except for one
environmental Phaseoleae sequence with two mismatches,
were observed. SSUmCf2 mismatched at one site to the same
Phaseoleae sequence and to liverworts (Radula, Ptilidium and
Porella), a hornwort (Anthoceros) and a Taxus species. Other
plant sequences displayed a minimum of two mismatches, at
least one at the 3′ end. For SSUmCf3 the above mentioned
sequence of Phaseoleae showed no mismatch, but all other
environmental Phaseoleae sequences had at least one mismatch
at the 3′ region of the primer. SSUmCf3 also showed only
one mismatch for sequences of liverworts (Radula, Ptilidium
and Porella), a hornwort (Anthoceros) and for one Liliopsida
and Taxus sequence. The remaining blast hits displayed
two mismatches (several Taxus spp., Pinus and the liverwort
Haplomitrium) or more. These results show that for primer
mixtures SSUmAf and SSUmCf the discrimination against
‘lower’ plants is less than for vascular plants.

The LSU rDNA primers had at least two mismatches
to plant sequences. The minimum for LSUmAr1 was four
mismatches to a Brassica sequence. LSUmAr2 and LSUmAr3
showed four mismatches for a Medicago sequence, in the
case of LSUmAr2 this holds also true for Vitis vinifera and
Oryza sativa. All other plant sequences showed more
mismatches to LSUmAr1, LSUmAr2 and LSUmAr3. For
LSUmAr4, which was designed to target Paraglomeraceae,

two mismatches were found for Solanum lycopersicum
followed by at least three for all other plant sequences.
The LSUmBr primer set had a minimum of three mismatches
to plant sequences. LSUmBr1 shows more than three mis-
matches to a Lotus and a Brassica sequence. At least three
mismatches (to Ephedra and Larix) occurred for LSUmBr2.
There were three mismatches for LSUmBr3 to Selaginella,
followed by a liverwort (Trichocoleopsis) and a moss (Bryum) species
with four. LSUmBr4 had three mismatches for V. vinifera
and at least five for all other plant sequences. LSUmBr5
displayed more than four mismatches to any plant sequence.

Primer specificity – discrimination against 
nontarget fungi

The primer mixture SSUmAf should partly exclude
amplification of nontarget fungi, whereas SSUmCf poorly
discriminates non-AMF (Fig. 1a). Therefore, the highly
specific amplification of AMF rDNA results mainly from the
LSU primers. The primer mixture LSUmAr discriminates
well against most non-AMF. An exception is LSUmAr1 with
only one mismatch to a group of sequences from uncultured
soil fungi (Basidiomycota related) from a Canadian forestry
centre. For all other known non-AMF sequences more than
four mismatches to LSUmAr1 and three to LSUmAr2 were
observed. The primer LSUmAr3 shows only one mismatch
with several chytrid sequences. For all other non-AMF
LSUmAr3 as well as LSUmAr4 mismatched with at least two
sites, mainly at the 3′ end.

Fig. 2 Phylogenetic relationships of taxa in the Glomeromycota (Schüßler et al., 2001b; Walker et al., 2007). 1Species currently named Glomus. 
One of the main Glomus clades (GlGrA or GlGrB) will represent the Glomeraceae, once the phylogenetic affiliation of the type species of Glomus 
is known; 2contains Glomus fulvum, Gl. megalocarpum, Gl. pulvinatum; 3contains Kuklospora colombiana and Ku. kentinensis (formerly 
Entrophospora) (Sieverding & Oehl, 2006); 4contains one genus with two species, Entrophospora infrequens and En. baltica (Sieverding & Oehl, 
2006), neither of which is phylogenetically characterized; 5Otospora (Palenzuela et al., 2008) contains one species, Otospora bareai. Based on 
small subunit (SSU) rDNA sequences and from a phylogenetic viewpoint this genus is congeneric with Diversispora.
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For the (nested) LSUmBr primer mixture the specificity is
lower; for example, LSUmBr1 showed no mismatch to some
fungi in the more ancestral lineages, namely Endogone lactiflua
and Mortierellaceae species, chytrids (Rhizophlyctis and
Gonapodya), an uncultured alpine tundra soil fungus and
matched one ascomycete sequence (Catenulostroma). For
LSUmBr2, no mismatches occurred for sequences of some
basidiomycetes (Bulleribasidium, Paullicorticium and Russula)
and a zygomycete (Spiromyces minutus). Only one mismatch
was observed for sequences including basidiomycetes
(Calocera, Calostoma and Ramaria) and ascomycetes (Pyxidi-
ophora, Eremithallus and Phaeococcus), and some other fungi.
LSUmBr3 discriminates well against other fungi with at least
three mismatches, except for one uncultured soil fungus
sequence (Cryptococcus related) that matched completely.
The primer LSUmBr4 showed no mismatch to Clavulina
griseohumicola and only one to some fungal sequences
including ascomycetes (Pyxidiophora and Phaeococcus) and
basidiomycetes (Cryptococcus spp.). LSUmBr5 showed only
one mismatch to fungal sequences of Mortierella spp., a chytrid
(Rhizophlyctis rosea), and some ascomycetes (Schizosaccharomyces,
Verrucocladosporium, Passalora and Catenulostroma). In general
the LSUmAr primers discriminate better against non-AMF
than the nested primers LSUmBr.

Primer efficiency – tests on plasmids and DNA extracts 
from single spores

The new primer pairs were designed to amplify fragments
of approx. 1800 bp (SSUmAf–LSUmAr) and 1500 bp
(SSUmCf–LSUmBr). In a first PCR amplification test,
samples were chosen to encompass divergent phylogenetic
lineages of the Glomeromycota. Cloned rDNA of the AMF species
Acaulospora sp. and Kuklospora kentinensis (Acaulosporaceae),
Glomus luteum, Gl. intraradices and a Glomus sp. (Glomeraceae),
Pacispora scintillans (Pacisporaceae), and Scutellospora heterogama
(Gigasporaceae) were used (Table 1, Fig. 3a). In addition,
rDNA fragments were amplified from single spore DNA
extracts from Geosiphon pyriformis (Geosiphonaceae), Gl. mosseae
(Glomeraceae), Gl. eburneum and Gl. versiforme (Diversisporaceae),
a Paraglomus sp. (Paraglomeraceae), and a Gigaspora sp.
(Gigasporaceae) (not shown). All tested AMF species were
successfully amplified with the new primer set.

To test the potential sensitivity of the new primers, the
same plasmids as in the first PCR test and additional
plasmids carrying inserts of a Gigaspora sp., Gl. versiforme and
Ge. pyriformis (Table 1, Fig. 3b) were used. They were diluted
over several magnitudes to contain 100 pg, 10 pg, 1 pg,
100 fg, 10 fg, 1 fg, 0.1 fg and 0.01 fg DNA µl−1. One micro-
litre was used as template for PCR, whereas the four lowest
concentrations correspond with 5000, 500, 50 and 5 plasmid
molecules in the 20 µl PCR reaction volume. Both primer sets
were tested independently. Differences between specificity of
the first and nested primer sets were observed for Pacispora,

Kuklospora, and Geosiphon. For Pacispora the PCR with
SSUmAf and LSUmAr yielded, even with the lowest DNA
concentration, a clearly visible band, whereas PCR with
SSUmCf and LSUmBr yielded weaker bands, indicating
lower specificity. Weaker bands were also observed for the
rDNA amplification of Ku. kentinesis with the primers
SSUmCf-LSUmBr and for Ge. pyriformis with SSUmAf-
LSUmAr. However, these differences may be within the
error-range of photometric DNA concentration measurement
of the plasmid stock-solutions. Only slight or no differences
occurred between the other plasmid templates, when comparing
the intensity of the bands, except for Gl. versiforme. Here,
clearly visible bands were only found for the higher DNA
concentrations, but with the same pattern for both primer
pairs. However, this was an artefact caused by low template
DNA integrity. Later dilution series with fresh plasmid
preparations (also from other Diversisporaceae) were indistin-
guishable from those obtained with the other species shown in
Fig. 3(b). For Ku. kentinensis no amplicon could be observed
after PCR with the primers SSUmAf–LSUmAr, because
the cloned fragment was originally amplified with the nested
primers. The plasmid therefore serves only as a negative
control in the first PCR and as positive control for the PCR
with the nested primers.

Primer efficiency – tests on field and nursery sampled 
roots and spores

To test whether the newly designed primers discriminate
against nonglomeromycotan fungi and plants, we used them
on DNA extracted from single spores from pot cultures,
environmental root samples, and root samples from a tree
nursery, in nested PCR approaches. We observed not a single
non-AMF contaminant sequence in the 12 environmental
root and 40 single spore samples processed. The discrimination
against plants was tested with DNA extracts from roots of
potential AMF hosts. The species collected comprised Poa cf.
annua, Ranunculus cf. repens, and Rumex acetosella from a field
site in Germany, and Podocarpus cf. macrostaqui, Heliocarpus
americanus and Cedrela montana tree seedlings from a tree
nursery in Ecuador. From a large number of nested PCR
approaches, on just one occasion, three identical clones
carrying a plant sequence (R. acetosella) were obtained. The
Rumex related database sequence (AF189730, 630 bp) covers
the ITS region, but not the binding sites for the nested
primers. The new primers were also used successfully on DNA
extractions from single AMF spores from pot cultures and a
root organ culture (ROC). This demonstrates PCR amplification
with a broad phylogenetic coverage of AMF, while efficiently
discriminating against non-AMF and plants (Table 3).

The results show that the new primers are suitable to
amplify DNA from members of the whole Glomeromycota
and can be used for species level analyses of AMF communities
in the field.
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Discussion

There have been numerous efforts to design PCR primers
generally applicable for detection of the whole group of AMF
(Simon et al., 1992; Helgason et al., 1998), but later studies
showed that they do not amplify DNA of all Glomeromycota
or they also amplify ascomycetes, basidiomycetes or plant
DNA (Clapp et al., 1995, 1999; Helgason et al., 1999).
Other primers were successfully used for certain groups of the
Glomeromycota (Kjøller & Rosendahl, 2000; Redecker, 2000;
Turnau et al., 2001; Wubet et al., 2003, 2006; Gamper &
Leuchtmann, 2007).

Many of the approaches require different primer pairs
and independent PCR attempts for distinct target taxa.

Comparison of such studies can be difficult since the distinct
primer binding sites may behave very different in PCR and do
not allow semiquantitative approaches. A single primer set
for PCR amplification that covers all groups of the Glomero-
mycota and allows the identification of AMF at the species
level was not available.

We have chosen the strategy of mixed primer sets to cover
the defined sequence variability, instead of using fully
degenerated primers. This reduces the degree of degeneration
and results in a higher ratio of efficiently binding primers. The
approach also allows adjustment of the concentrations of
individual primers in future attempts. At the beginning of the
study we speculated that the exonuclease activity of the proof-
reading DNA polymerase used could hamper discrimination

Fig. 3 Polymerase chain reaction amplification with primers SSUmAf–LSUmAr (approx. 1800 bp amplicons) and SSUmCf–LSUmBr (approx. 
1500 bp amplicons). (a) PCR on cloned DNA fragments, using different annealing temperatures and a template concentration of 1 ng µl−1. A.s., 
Acaulospora sp.; G.s., Glomus sp.; G.l., Glomus luteum; P.s., Pacispora scintillans; K.k., Kuklospora kentinensis; G.i., Glomus intraradices; S.h., 
Scutellospora heterogama; N, negative control. Annealing temperatures: 1, 55°C; 2, 55.7°C; 3, 57.8°C; 4, 60.5°C; 5, 63.1°C; 6, 65°C; 7, 55.2°C; 
8, 56.6°C; 9, 59.1°C; 10, 61.8°C; 11, 64.2°C; 12, 65.5°C. (b) PCR using 1 µl of a 10-fold plasmid dilution (100 pg – 0.01 fg µl−1) as template, 
corresponding to 5×107 to 5 plasmid molecules in 20 µl PCR reaction volume. Annealing temperatures: SSUmAf–LSUmAr 60°C; SSUmCf-LSUmBr 
63°C. N, negative control; Marker, NEB 2-Log DNA Ladder (bp: 10 000, 8000, 6000, 5000, 4000, 3000, 2000, 1500, 1200, 1000 (arrowhead), 
900, 800, 700, 600, 500, 400, 300, 200, 100).
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Table 3 PCR amplification with the new primer pairs; DNA extracted from roots or spores

Environmental samples
Sample 
or culture

First 
PCR

Nested 
PCR Clones sequenced, most likely genus (BLAST hits for full length and partial sequences)

Cedrela montana roots (tree nursery pot) N1 − + pCK011.1-7 Ambispora (uncultured Archaeospora LSU)
Cedrela montana roots (tree nursery pot) N3 + + first PCR: pCK009.1-3 Glomus (mycorrhizal symbiont of Marchantia foliacea SSU, ITS, LSU; Glomus sp. 

MUCL43206 LSU); nested PCR: pCK016.1-3, pCK017.1 Glomus (uncultured AMF clone Glom3524.1 SSU; 
symbiont of M. foliacea SSU, ITS, LSU; Glomus sp. MUCL43206 LSU, MUCL43194, LSU; Glomus sp. 
‘intraradices’ AFTOL-ID845 LSU) 

Cedrela montana roots (tree nursery pot) N8 + + (ns) pCK010.1,2 Gigaspora and/or Scutellospora (uncultured Gigasporaceae clone S2R2 SSU, ITS, LSU; 
Gi. rosea SSU, ITS, LSU; Sc. heterogama AFTOL-ID138 LSU)

Heliocarpus americanus roots (tree nursery pot) N2 − + pCK012.2-4 Archaeospora and Glomus (Ar. trappei NB112 SSU, ITS, LSU; Glomus sp. ‘intraradices’
AFTOL-ID845 LSU)

Podocarpus cf. macrostaqui root without nodules 
(seedling from forest)

P0 + + (ns) pCK018.1 Acaulospora (Ac. alpina clone 1060/33 SSU, ITS; uncultured Acaulospora clone: 
A3-68-c LSU)

Podocarpus cf. macrostaqui root with nodules 
(seedling from forest)

P1 + + (ns) pCK020.1-13 Acaulospora (Ac. alpina clone 1060/33 SSU, ITS; Acaulospora clone: A3-68-c LSU)

Podocarpus cf. macrostaqui root nodules only 
(seedling from forest)

P2 − + pCK006.1,2 Glomus (Gl. diaphanum clone 3.3 SSU, ITS, LSU; Gl. coronatum BEG28 LSU; symbiont of 
M. foliacea SSU, ITS1; uncultured Glomus LSU)

Podocarpus cf. macrostaqui root nodules only 
(seedling from forest)

P3 − + pCK007.1,3,4 Glomus (Glomus sp. 0171 SSU, ITS; uncultured Glomus clone K7-10 SSU, ITS; Glomus clone K31-1 
LSU; uncultured Glomus clone 1298-21 SSU, ITS, LSU; uncultured glomeromycete 2-09 LSU); pCK007.5,6 
pCK008.1,3-7 Glomus (uncultured Glomus clone S1R2 + S2R1/2 SSU, ITS, LSU; Glomus sp. MUCL43206 
LSU, MUCL43207 LSU; symbiont of M. foliacea SSU, ITS1; uncultured Glomus clone: A10-28 LSU)

Ranunculus repens roots (field sample) 1A − + pMK078.1-3 Acaulospora (uncultured Acaulospora SSU; LSU)
Ranunculus repens roots (field sample) 3A − + pMK083.2,3,5 Acaulospora (Acaulospora sp. ZS2005 SSU, ITS; Ac. paulinae clone 2.2 LSU )
Ranunculus repens roots (field sample) 5A − + pMK077.1-5 Glomus (uncultured Glomus clones S1R2 + 850-23 SSU, ITS; uncultured Glomus clone H5-2 LSU)
Ranunculus repens roots (field sample) 7A − + pMK080.1-5 Diversispora (Gl. aurantium SSU, ITS, LSU; Gl. versiforme BEG47 LSU, uncultured Glomus 

LSU); pMK080.6,7 Glomus (uncultured Glomus clone S1R2 SSU, ITS; uncultured Glomus LSU)
Poa annua roots (field sample) 1C − + pMK082.1,4,6,9-17 Acaulospora (uncultured Acaulospora SSU, ITS, LSU; uncultured Acaulospora LSU)
Poa annua roots (field sample) 2C − + pMK081.1,3-5 Acaulospora (uncultured Acaulospora SSU, ITS, LSU; Ac. laevis BEG13 LSU)
Plantago lanceolata roots (pot culture, 
inoculated with C. montana roots)

Att 1451-8 + + (ns) pCK024.1,3,4 Glomus (uncultured Glomus clone S2R2 SSU, ITS, LSU; uncultured Glomus clone S1R2 SSU, 
ITS, LSU; Glomus sp. ‘intraradices’ AFTOL-ID845 LSU, Glomus sp. MUCL43206 LSU; Glomus sp. 
MUCL43203 LSU)

Plantago lanceolata roots (pot culture, 
inoculated with H. americanus roots)

Att 1456-1 − + pCK025.1-4 Glomus (uncultured Glomus clone S1R2 SSU, ITS, LSU; Glomus sp. MUCL43203 LSU)

AMF ss (ss pot culture) Att 1449-5 − + pCK022.1-3 Diversispora (Gl. aurantium SSU, LSU; Gl. versiforme BEG47 LSU)
AMF ss (ss pot culture) Att 1450-1 − + pCK023.1-4 Acaulospora (Ac. colossica clones 15.1+15.4 SSU, ITS, LSU; uncultured Acaulospora clone 

H1-1 LSU)
AMF ss (ss pot culture) Att 1456-7 − + pCK026.1,2-6 Archaeospora (uncultured Archaeospora clone 1400-71 SSU, ITS, clone R8-37 LSU; 

Ar. trappei SSU, ITS, LSU)
AMF ss (ss pot culture) Att 1456-11 − + pCK027.1-3 Glomus (Gl. claroideum clone 57.10 SSU, ITS, LSU)
AMF ss (ss pot culture) Att 1449-10 − + pCK028.2-5,7-12 Glomus (Gl. claroideum clone 57.10 SSU, ITS, LSU)
AMF ss morphotype 1 (ms pot culture) Att 1451-6 + + first PCR: pCK029.1 Glomus (Gl. claroideum clone 57.10 SSU, ITS, LSU); nested PCR: pCK030.1-6 

Glomus (uncultured Glomus clone Pa127 SSU, ITS, LSU; uncultured Glomus clone S1R2 SSU, ITS, LSU; 
Gl. etunicatum LSU; Glomus sp. MUCL43203 LSU)

AMF ss morphotype 2 (ms pot culture) Att 1451-6 − + pCK031.1,2 Gigaspora (Gi. rosea clone Gr8.2 SSU, ITS, LSU; Sc. heterogama AFTOL-ID138 LSU)
Glomus intraradices spore cluster (ROC) Att 4-64 

(from FL208)
− + pHS099.3,6,8,11,14,16,25,32,36,40,41,47 Glomus (uncultured Glomus clone S2R2 SSU, ITS, LSU; Glomus sp. 

MUCL43203 LSU, Glomus sp. MUCL43206 LSU, MUCL43207 LSU, Glomus sp. 'intraradices' AFTOL-ID845 LSU)

First PCR, SSUmAf–LSUmAr; nested PCR, SSUmCf–LSUmBr. PCR reactions are given as positive when a PCR product of the expected size was visible. The closest BLAST hits are shown for the first and/or 
nested PCR derived sequences. Att, culture attempt; ITS, internal transcribed spacer; LSU, large subunit; ms, multi spore; ns, not sequenced; ROC, root organ culture; ss, single spore; SSU, small subunit.
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by terminal 3′ primer mismatches, but no such problems
were detected.

Primer specificity

The primers designed show some mismatches to AMF
sequences at the 5′ end (Fig. 1), which do not hinder PCR
amplification (Bru et al., 2008). Primer mismatches such
as C–T, T–C and T–G do not impair amplification strongly
even when situated at the 3′ end of the primer (Kwok et al.,
1990). The forward primers SSUmAf as well as the reverse
primers LSUmBr mismatched once with Ge. pyriformis, but
did not hamper amplification. The LSU rDNA primers show
sufficient sequence similarity to the target organisms, as the
mismatches are either in the middle or at the 5′ end.
LSUmAr primers displayed individual mismatches to
sequences of Scutellospora spp., Gl. etunicatum, and one
Acaulospora sp. (Fig. 1). Nevertheless, DNA of these species
was successfully amplified from environmental samples and
in the primer efficiency test (Fig. 3). Ambisporaceae and
Archaeosporaceae species could not be included in the design
of the LSU primers, but Ambispora fennica DNA from a single
spore extraction (not shown) and Archaeospora sp. from single
spores and roots of an Ecuadorian tree seedling (Table 3) could
be amplified with the new primers, indicating well matching
binding sites. Sequences from Otospora (Diversisporaceae;
Palenzuela et al., 2008; matching the SSU primers), Intraspora
(closely related to Archaeospora), and Entrophospora (sensu
Oehl & Sieverd.; with two species only) are either not or only
partly characterized and therefore could not be included in
several aspects of primer design. Otospora and Intraspora are
very closely related to their sister genera (maybe congeneric),
so the lack of LSU rDNA sequences was therefore interpreted
as a minor limitation.

We could successfully amplify all AMF tested with the new
primers, but because of the lower number of LSU rDNA
sequences available for AMF an optimization of the LSU
primers might be reasonable in future. The discrimination
against non-AMF and plant DNA is excellent, as shown on
DNA extracts from environmental samples and spores from
pot cultures. To discriminate against non-AMF, LSUmAr
works much better than the nested primers LSUmBr. The
cloned plant (Rumex) rDNA fragment that originated from
root material can be interpreted as an ‘outlier’. The primer
binding sites could not be investigated for Rumex, because of
lacking sequence coverage. It should be indicated in this
context that we did not use HPLC-purified primers. This
means a certain fraction of primers may not be fully synthesized
and could result in less specific amplification. All plasmids
used in the plasmid test carried inserts that were originally
amplified with SSUmAf. Therefore, the efficiency of this
primer could not be validated, but because of the high
number of SSU rDNA sequences known, it can be stated
that the binding sites in the cloned fragments correspond to a

realistic situation. The efficient amplification from spore DNA
extracts was, moreover, confirmed in numerous former PCR.

Advantages over previously used PCR primer sets

In most former field studies SSU rDNA phylotypes were
analysed for molecular detection of AMF. However, this
region does not allow species resolution and each defined
phylotype, irrespective of the used distance threshold value or
phylogenetic analysis method, may hide a number of species
(Walker et al., 2007). In general, the LSU rDNA region
allows species resolution, and thus the LSU primer pair
FLR3–FLR4 (Gollotte et al., 2004) was used for species-
level community analyses. However, in particular, FLR4
is not phylogenetically inclusive (Gamper et al., 2009)
and discriminates many lineages, including Diversisporales,
Archaeosporales and Paraglomerales, which results in a strong
bias in community analyses towards the Glomeraceae. The
primer FLR3 binds to DNA of many nontarget fungi as it
shows no mismatch to > 1300 basidiomycete sequences and
some ascomycete sequences in the public databases. Such
problems obviously may bias tRFLP community analyses
(Mummey & Rillig, 2008) and seminested PCR approaches
(Pivato et al., 2007) using FLR3 and/or FLR4. The primer
pair SSUGlom1–LSUGlom1 (Renker et al., 2003) amplifies
many non-AMF and plants. Combined with the primers
ITS5–ITS4 in a nested PCR (Hempel et al., 2007) this
resulted in a 5.8S rDNA phylogenetic analysis, which
resolved only the genus level. Even the ITS region does not
always resolve species for AMF (Stockinger et al., 2009).

In some cases, species-specific detection tools are available
for individual species or certain well-defined and closely
related species. The three closely related AM fungi Gl. mosseae,
Gl. caledonium and Gl. geosporum were detected by using
LSU primers in field studies (Stukenbrock & Rosendahl,
2005; Rosendahl & Matzen, 2008), but these primers were
designed to only amplify subgroups or certain taxa in the
Glomeromycota. For the well-studied Gl. intraradices related
AMF (e.g. DAOM197198), which are, however, not conspecific
with Gl. intraradices (Stockinger et al. 2009), microsatellite
markers are available for their detection in the field (Croll
et al., 2008; Mathimaran et al., 2008). Some mtLSU region
markers were also studied (Börstler et al., 2008), but because
of the high length variation observed (1070–3935 bp) and the
difficulty in amplifying this region it is not very promising for
community analyses. Thus, such markers cannot be used for
general AMF community analyses.

The new primers described in the present study were
used to amplify efficiently and specifically target rDNA from
environmental samples of the main phylogenetic groups in
the Glomeromycota. For the first time, this will allow molecular
ecological studies covering all AMF lineages to be carried out
with only one primer set. Furthermore, the long sequences
allow robust phylogenetic analyses and species level resolution
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by inclusion of the variable ITS and LSU rDNA region
(Walker et al., 2007; Gamper et al., 2009; Stockinger et al.
2009), whereas formerly used primers mainly amplified
rDNA fragments of up to 800 bp (Helgason et al., 1999;
Redecker, 2000; Lee et al., 2008).

Potential application as DNA barcoding primers

The new primers are suited to amplify the most likely primary
DNA barcode region for fungi, the ITS region (already online
at the Barcode of Life Data Systems (BOLD) website;
www.barcodinglife.org). In general ‘barcode primers’ should
amplify short fragments and for the ITS region the amplicons
generated by our primers are in fact too long. However, the
main criterion for DNA barcodes is the resolution at species
level. Since for Glomeromycota this is difficult or impossible
to achieve with the ITS region only (Stockinger et al., 2009),
the inclusion of the 5′ LSU rDNA fragment is strongly
recommended. Our new primer set (SSUmAf, SSUmCf,
LSUmAr and LSUmBr) appears to be well suited as barcoding
primers for Glomeromycota. The primers will be helpful for
the molecular characterization of AMF, including species
descriptions (Gamper et al., 2009), resulting in a sequence
database that allows the design of further primers for the
detection of AMF from field samples. LSUmAr and LSUmBr,
located approximately at positions 930–950 and 830–850 on
the LSU rRNA gene, may be used in combination with new
forward LSU primers for amplification of fragments within
the variable D1/D2 LSU regions. Based on such amplicons,
deep sequencing approaches with the now feasible longer
reads of the new 454 FLX-titanium chemistry will allow
species level detection of the ‘unknown’ AMF community, in
future molecular ecological studies.
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Summary

• Glomus intraradices-like fungi are the most intensely studied arbuscular mycorrhizal
(AM) fungi. However, there are several AM fungi named as G. intraradices that may
not be conspecific. Therefore, the hypothesis was tested that DAOM197198 and
similar AM fungi, such as BEG195, correspond to the type of G. intraradices.
• The G. intraradices isotype material, a descendant (INVAM FL208) of the type
culture, and a morphologically corresponding AM fungus (MUCL49410) isolated
from the type locality were studied and compared with several cultures of
DAOM197198 and BEG195.
• Phylogenetic analyses of the partial small subunit (SSU), complete internal
transcribed spacer (ITS) and partial large subunit (LSU) nuclear rDNA regions
revealed two clades, one including G. intraradices FL208 and MUCL49410, the
other containing DAOM197198 and BEG195.
• The two clades were clearly separated by sequence analyses, despite the high
intraspecific and intrasporal ITS region sequence divergence of up to > 23%. We
conclude that the AM fungi with the identifiers DAOM197198 and BEG195 are
not G. intraradices, but fall in a clade that contains the recently described species
G. irregulare.
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Introduction

About 70–90% of land plant species form arbuscular
mycorrhiza (Smith & Read, 2008), so it is obvious that the
interaction of plants and the obligate symbiotic arbuscular
mycorrhizal (AM) fungi of the Glomeromycota (Schüßler
et al., 2001) is of major importance for the entire terrestrial
ecosystem. In research on AM fungi (hereafter AMF), a fungus
named Glomus intraradices is the most frequently used member
of the Glomeromycota. To date, > 1200 publications refer to
this species, > 130 of which have the name in the title. This
wide use resulted from the first AMF established in in vitro
root organ culture (ROC) being determined as G. intraradices
(Chabot et al., 1992). The descendants of this ROC
established in Canada, often referred to as DAOM197198 (or
DAOM181602, another voucher number for the same
fungus), are extensively used in basic research (e.g. for a genome
sequencing project; Martin et al., 2008) and to demonstrate
transient genetic transformation (Helber & Requena, 2008).
It also is a component of some commercial plant growth-
enhancing products (Corkidi et al., 2004; http://www.pro-
mixbas.com).

However, a very basic question still remains to be resolved:
does the DAOM197198 fungus indeed correspond to Glomus
intraradices? It is possible that more than one species may have
been identified with this name.

Despite the large body of published work, including recent
publications dealing with genetic recombination and anasto-
moses compatibility between isolates of AMF that are closely
related to DAOM197198 (Croll & Sanders, 2009; Croll
et al., 2009), the definition of ‘G. intraradices’ is far from clear.
The species was described by Schenck & Smith (1982) from
a citrus orchard in Florida. The type specimens came from
a pot culture established from root fragments of a Citrus sp.,
a descendant of which was donated to the INVAM collection
(http://www.invam.caf.wvu.edu) where it was catalogued as
FL208. Since then, many cultures and isolates have been
determined to be G. intraradices. Analyses of their rDNA
region showed that they belong within the Glomus Group
Ab (GlGrAb) (Schwarzott et al., 2001; Jansa et al., 2002b;
Börstler et al., 2008). Both DAOM197198 and BEG195
have been identified as G. intraradices, but there appears to
be no published work comparing them with the original
description, the type material, or FL208. Therefore, these

http://www.pro-mixbas.com
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cultures might represent one species, but they may instead
also belong to a cohort of related species. This element of
doubt stimulated a re-examination of the molecular evidence in
relation to the species G. intraradices.

A fungal species is defined by its nomenclatural type,
although as such it is a preserved sample and thus not available
for study as a living entity. However, being its descendant, the
culture G. intraradices FL208 can provide ‘living evidence’ of
the true nature of the species. Subculture of FL208, herein
termed ‘ex-type’ or ‘type-culture’, are available for such
comparative study, so it is possible to investigate whether
other AMF in the Glomus Group Ab (Schwarzott et al., 2001)
may be other species rather than G. intraradices. Strictly
speaking, the Botanical Code defines an ‘ex-type culture’ as
being obtained from type material permanently preserved in
a metabolically inactive state, but for convenience we extend
this here to include cultures such as FL208, derived from the
‘type culture’ through a series of living subcultures.

We compared the G. intraradices isotype with ex-type
specimens from pot cultures of FL208. Ex-type material was
then compared by partial nuclear small subunit (SSU), internal
transcribed spacer (ITS) and partial nuclear large subunit (LSU)
rDNA region sequencing with three other cultures: a new
isolate from the type locality corresponding morphologically to
G. intraradices (now cultured as ROC in the GINCO collection,
http://emma.agro.ucl.ac.be/ginco-bel, as MUCL49410),
DAOM197198 (from Pont Rouge, Canada); and BEG195
(from Germany). The aim of this research was to determine
if these organisms indeed all correspond to G. intraradices.

A secondary aim was to contribute to strategies that might
be used for species determination based on DNA sequences.
Such identification, termed ‘DNA barcoding’, must be accurate,
rapid, cost-effective, culture-independent, universally accessible,
and usable by nonexperts (Frézal & Leblois, 2008). For animal
DNA barcoding, the mitochondrial cytochrome c oxidase I
(COI) gene is widely used. In fungi, COI possesses length
variation (0.64–12.3 kb; Seifert et al., 2007) too large to fulfil
barcoding requirements. Because the molecular identification
of fungi has been based mainly on the ITS rDNA region
(Nilsson et al., 2008; http://unite.ut.ee) the ITS region will most
likely become the primary barcode for fungi. The Barcoding of
Life Database (BOLD, http://www.barcodinglife.org) already
supports the storage and analysis of ITS sequences, and we
therefore intended also to study, using GlGrAb sequences
from public databases, whether the ITS region alone can be
used to resolve species in the Glomeromycota.

Materials and Methods

Fungal type material

The isotype of G. intraradices, voucher OSC40255, was
borrowed from Oregon State University herbarium (OSC). It
consisted of spores and stained roots on dried-out microscope

slides, and spores and blue-stained roots preserved in
lactophenol. It was examined microscopically by accepted
methods (Walker et al., 2007).

Cultures

All pot cultures were established as closed systems in Sunbags
(Sigma-Aldrich, Germany) (Walker & Vestberg, 1994).

Ex-type cultures Pot culture substrate of FL208 was
obtained on 23 March 2007 from INVAM (http://
www.invam.caf.wvu.edu, where in the ‘accessions details page’
it is described as ‘subculture of the original isotype’). A
subculture attempt (Att) number (Att4-36) was assigned to
this material on receipt (Att4-0 is the identifier in our
database for the original, root fragment, open pot culture of
S. Nemec, established in autumn 1974). Replicate ex-type pot
cultures were established in Germany (Att4-37, Att4-39–
Att4-43), England (Att4-38) and Belgium (Att4-44). Moreover,
a ROC (Declerck et al., 1998) was established in Belgium
(Att4-45) on transformed carrot (Daucus carota) roots (from
one root fragment of Att4-44). From this, one spore cluster on
a single hypha was taken to establish Att4-46 (MUCL49413
in GINCO-BEL) on transformed chicory (Chichorium intybus)
root (Fontaine et al., 2004). Material from a subsequent chicory
ROC (Att4-64) was used for DNA extraction in Germany.

New isolate from the type locality A sample was provided
by S. Nemec, collected in Florida, USA, from the type locality
of G. intraradices (a citrus plantation between Clermont and
Minneola close to Highway 27). From the description of the
locality, an approximate latitude and longitude was estimated
(28°33′41″N, 81°44′40″W) using Google Earth. A trap
culture with roots and soil was established with Plantago
lanceolata as host (Att1102-0, 14 October 2001) in disinfested
3 : 1 (v : v) horticultural sand-expanded attapulgite clay (Oil-Dri
Corp., Chicago, IL, USA). Voucher samples determined as
G. intraradices growing in the culture were made on 9
August 2002 (W4064), 17 March 2003 (W4344), and 3
March 2004 (W4598). From the 2004 sampling, a single
spore was germinated on a filter fragment (Brundrett &
Juniper, 1995) and successfully used to establish Att1102-7
with P. lanceolata. Spores formed in this culture corresponded
broadly to the type material of G. intraradices. They were
found abundantly singly in the substrate, in loose clusters of
2 to > 100, attached to fine, hyaline mycelium around roots.
The fungus also sporulated heavily in the root cortex. On 6
June 2006, a single spore ROC was established (Att1102-9,
MUCL49410) and subsequently subcultured as part of the
GINCO collection.

Descendants of DAOM197198 Several cultures correspond-
ing to DAOM197198 (originally collected in Pont Rouge,
Canada) were examined. DAOM181602 is an earlier voucher

http://emma.agro.ucl.ac.be/ginco-bel
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number for a sample from an ancestral pot culture taken in
1981, before the fungus was transferred to the company
Premier Tech Ltée. (Québec, Canada). The ROC widely used
in AM research (Chabot et al., 1992) was initiated from a pot
culture vouchered as DAOM197198 in 1987. Details about
the culturing history of this fungus will be provided in a
subsequent publication. As is common in many studies we use
DAOM197198 as organism identifier, but stress that it is
actually a voucher number of the herbarium in Ottawa and
thus defines what was present in the culture at the time of
sampling. We obtained ROC cultures of this fungus from
several sources. (1) Att1192-44 originated from a ROC culture
traced back to the laboratory of G. Becard (France), from
where it was sent to the laboratory of I. Sanders (Switzerland),
then to the laboratory of U. Paszkowski (Switzerland). In
2007 it was sent to the laboratory of M. Parniske (Germany)
and from there to our laboratory. (2) Att1192-27 was
obtained from the laboratory of P. Bonfante (Italy) in 2007,
via the laboratory of P. Lammers (USA), where it was
established from material produced by Premier Tech for the
genome sequencing project (http://www.jgi.doe.gov/genome-
projects/). (3) Att1192-53 was sent to us in 1996 by Y. Piché
and spores were stored at −80°C. (4) Att690-23 was obtained
via the University of Western Australia by C. Walker in
November 2006 and established as a closed pot culture in
Munich (March 2007). All this material purportedly stems
from the same ROC established in the early 1990s (Chabot
et al., 1992).

BEG195 This fungus originally was sampled from an
agricultural field with winter cereals near Hannover (Germany).
It was cultured at the University of Marburg, passed to the
Sainsbury Laboratory (Norwich, UK) and then to the
laboratory of M. Parniske (Munich, Germany), and thence,
from Att1485-12, to our subculture (Att1485-13) used for
DNA extraction.

Glomus proliferum (MUCL41827) This AMF was cultured
from banana plantation in Guadeloupe. It was described
by Declerck et al., (2000) and is available as ROC from
GINCO.

Identifiers used in this publication To distinguish the different
cultures and isolates studied here, we refer to them by using
the most common descriptors. It should be borne in mind
that these correspond either to vouchers (DAOM197198),
organisms (INVAM FL208, MUCL49410, BEG195), or to
individual subculture attempts (Att). DAOM197198 is used
for the Canadian fungus from Pont Rouge (the fungus used
in the AMF genome sequencing project), FL208 for the ex-
type cultures from Florida, and MUCL49410 (Att1102-12
and descendants) for the new isolate from the type locality.
BEG195 (as Att1485-13) was included in the analysis to
represent a G. intraradices-like fungus from Europe.

DNA extraction, PCR amplification, cloning and 
sequencing

DNA extraction and PCR amplification Spores were cleaned
and DNA extracted as described in Schwarzott & Schüßler
(2001). In a first PCR, an amplicon containing a part of the
SSU, the whole ITS1–5.8S–ITS2 region, and a part of the
LSU rDNA were amplified with two different primer pairs
(Table 1), using the Phusion High-Fidelity PCR Mastermix
(Finnzymes, Espoo, Finland). As template 5 µl of DNA extract
(except for Att1192-27 and G. proliferum, where 2 µl were used)
were used in 20-µl final reaction volumes. The final primer
concentration was 0.5 µm of each primer. For primers SSUmAf
(Krüger et al., 2009) and LR4+2 (ACCAGAGTTTCC-
TCTGGCT; modified LR4 primer, http://www.aftol.org)
the PCR parameters were: 5 min initial denaturation at 99°C;
40 cycles of: 10 s at 99°C, 30 s at 59°C, 1 min at 72°C; final
elongation 10 min at 72°C. The cycling parameters for the
SSUmAf and LSUmAr (Krüger et al., 2009) PCR mix were
identical, except for the annealing (15 s at 60°C) and elongation
(45 s at 72°C) parameters.

When the first PCR did not result in visible bands after gel
electrophoresis of 6 µl of PCR product, a second (nested)
PCR was performed. The PCR reactions were initiated as for
the first PCR with 0.1 µl, 0.2 µl, 0.5 µl or 1 µl from the first
PCR used as template. Either the primer combination SSU-
Glom1 (Renker et al., 2003) and NDL22 (van Tuinen et al.,
1998) or the AMF specific primers SSUmCf and LSUmBr
(Krüger et al., 2009) were used for the nested PCR. The
cycling regime for SSUGlom1-NDL22 was: 5 min at 98°C;
30 cycles of: 10 s at 98°C, 30 s at 65°C and 1 min at 72°C;
final elongation 10 min at 72°C. For SSUmCf-LSUmBr it
was: 5 min at 99°C; 30 cycles of 10 s at 99°C, 15 s at 63°C
and 45 s at 72°C; final elongation 10 min at 72°C. Nested
PCR amplifications for Att1192-44 (pHS059) were performed
with Taq DNA polymerase (Peqlab, Erlangen, Germany) and
for Att4-38 (pHS080) with Top-Taq polymerase (Qiagen,
Hilden, Germany), using the primer pair SSUGlom1-NDL22.
In these cases the PCR program was 5 min at 94°C; 30 cycles
of: 30 s at 94°C, 30 s at 58°C and 2 min at 72°C; final
elongation of 10 min at 72°C.

Cloning and sequencing The PCR products were cloned
with the TOPO TA or the Zero Blunt TOPO PCR Cloning
Kit (Invitrogen) according to manufacturer’s protocol, except
that all components were used as 1/3 volume (except SOC
medium for initial bacterial growth, which was used as full
volume). The pHS113 clones (G. proliferum) were obtained
using the StrataClone Blunt PCR Cloning Kit (Stratagene
Agilent Technologies, La Jolla, CA, USA) according to the
manual. Clones were analysed using colony PCR and products
showing correct fragment size were used for RFLP with
MboI, HinfI and RsaI. Selected clones were grown in liquid
Terrific Broth media and plasmids isolated with the NucleoSpin

http://www.jgi.doe.gov/genome-projects/
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Multi-8 Plasmid kit (Macherey & Nagel, Düren, Germany).
Alternatively, a ‘quick and easy’ method modified after
Ganguly et al. (2005) was used. Sanger sequencing was
performed by the LMU Sequencing Service Unit on an ABI
capillary sequencer using bigdye v3.1 sequencing chemistry.
The new rDNA sequences derived from this study were
deposited in the EMBL/GenBank/DDBJ databases with the
accession numbers FM865536–FM865617 and FM992377-
FM992402.

Phylogenetic analysis

The 3′ partial SSU rDNA, the ITS region, and the 5′ partial
LSU rDNA were either analysed for the sequences derived
from this study together with some selected shorter
sequences of characterized AMF from the database, or the ITS
region alone was used for comparison with public database
sequences. Sequences were assembled and proof-read with
the program seqassem and aligned with align (both from
http://www.sequentix.de). Sequence divergences in per cent
(uncorrected pairwise distances) were calculated by using
bioedit (Hall, 1999) and based on alignments containing
either sequences of G. intraradices-related species or of Ambispora
spp., including all positions. The alignment of the maximal
common length (representing the SSUGlom1-NDL22 frag-
ment) sequences comprised 1555 sites, 1387 of which could be
unambiguously aligned and were used for the analyses.

When sequences derived from the same PCR reaction were
identical after excluding ambiguous sites from the alignment,
only one was included in phylogenetic analyses and accession
numbers of the other sequences were later annotated to the
corresponding clade. The analyses of database sequences included
identical ones, because it is difficult to interpret whether they
came from the same or different spores, PCR reactions or even
cultures. Phylogenetic analysis was performed with phylip
(Felsenstein, 1989), raxml (Stamatakis & Hoover, 2008),
tree-puzzle (Schmidt et al., 2002) and mrbayes (Ronquist
& Huelsenbeck, 2003). Consensus trees were constructed
after 1000-fold bootstrapped neighbour-joining (NJ, based
on Kimura-2-parameter model with phylip 3.8; Felsenstein,
1989) analyses. raxml was set to a maximum likelihood (ML)
search for best-scoring tree after 1000 bootstraps and the
proportion of invariable sites was estimated by the program.
The ML quartet puzzling (MLQP) analyses were performed
with tree-puzzle 5.2 (based on GTR model), estimating
nucleotide frequencies and gamma distributed heterogene-
ous rates from the dataset. As an alternative approach, the
sequences (SSUGlom1-NDL22 fragment) were aligned
automatically using the MAFFT online server (http://
align.bmr.kyushu-u.ac.jp/mafft/online/server/), for comparison
with the results from the manual alignment. The iterative
refinement option of MAFFT was set to FFT-NS-i (Katoh
et al., 2002). Phylogenetic analysis was performed by raxml
with settings as above.Ta
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For the ITS region analyses, public database sequences
labelled as G. intraradices and such of closely related species
were included. Analyses were based on a manually made
alignment. Identical ITS region sequences were excluded and
afterwards annotated to the appropriate clade. In total 395
sites could be unambiguously aligned. Phylogenetic analyses
were performed with phylip (NJ) and raxml (ML). The two
sequence alignments (SSU + ITS + LSU rDNA sequences
from this study and ITS region including database sequences)
are available from http://www.amf-phylogeny.com.

Results

The isotype material of G. intraradices is in relatively poor
condition. It appears heavily parasitized and the spore wall
structure was difficult to determine. It was also much darkened
in colour because of storage in lactophenol. However, it was
possible to see characteristics used by the original authorities
to describe the species, along with other details that were not
published in the protologue, and to compare them with those
of DAOM197198. We do not show the detailed morphological
comparisons here, since a detailed re-description including
designation of an epitype of G. intraradices is currently in
preparation for publication elsewhere.

To characterize the ‘model AMF’ DAOM197198 at the
molecular level, we studied several cultures, including some
from single-spore isolates. The phylogenetic analyses com-
prising the partial SSU, entire ITS region, and the partial LSU
rDNA sequences show a clear separation into two clades (Fig. 1).
The first clade includes the ex-type culture of G. intraradices,
FL208 (Att4-38, Att4-41, Att4-64) and the new isolate from
the type locality, MUCL49410 (Att1102-12). The second
clade contains DAOM197198 (Att690-23, Att1192-27,
Att1192-44, Att1192-50) and BEG195 (Att1485-12). Shorter
sequences of G. irregulare, a G. intraradices-like species (Blasz-
kowski et al., 2008), and isolates from Switzerland were included
in the analyses and also cluster in the latter clade. When using
a fully automated MAFFT alignment as a base for the phylo-
genetic analyses, the same, distinct clades were resolved. Later,
we named the clade containing FL208 and MUCL49410 as the
‘G. intraradices clade’ and the clade containing DAOM197198,
BEG195, G. irregulare and the Swiss isolates as the ‘G. irregulare
clade’. A separation of these clades also existed when using only
the ITS1 region, the partial LSU sequences, or the combined
partial SSU + 5.8S + partial LSU (without ITS1 + ITS2)
fragment (raxml bootstrap support > 70%, for all three options;
data not shown). However, analyses of only the ITS2, or the
ITS1 + 5.8S + ITS2 region resulted in a monophyletic grouping
for the G. irregulare clade sequences, but the G. intraradices
clade appeared paraphyletic. This indicated that the ITS2
region alone carries conflicting phylogenetic signal or too
much noise, hindering resolution. Further ITS region analyses
including database sequences (see below) also show that this
region is not suitable to resolve species in GlGrAb.

The maximal pairwise uncorrected distance values (p-
distances) within the G. irregulare clade were 9.3% for the
newly obtained SSU + ITS + LSU rDNA sequences. The
divergence in the G. intraradices clade was up to 14.1%. An
overlap of highest intraspecific p-distances in the G. intraradices
clade with the lowest interspecific (relating to the G. irregulare
clade) p-distance values was observed for the full-length
sequences and ITS region, indicating the lack of a so called
‘barcode gap’ (http://www.barcoding.si.edu/). The variation
in the partial LSU sequences only was 7.8% for the
G. irregulare clade and 11.8% for the G. intraradices clade.

The most variable ITS region showed p-distances of up to
16.3% for the G. irregulare clade and up to 23.1% for the
G. intraradices clade. This enormous ITS region variability
was found within one FL208 ex-type culture spore from Att4-
41 (Fig. 1) and is the highest ever recorded for an individual
AMF spore. Within this spore the maximal p-distance for the
SSU + ITS + LSU rDNA sequence is 13.9%.

Analysing the ITS region including database sequences
revealed several clades. Most ITS-region sequences designated
as G. intraradices fell within the G. irregulare clade, including
those of BEG158, BEG195 and the known ITS sequences of
the genotypes (II, VI, XII, XV, XVII, XVIII; Croll et al.,
2008; Croll & Sanders, 2009) of isolates from a field site in
Switzerland ( Jansa et al., 2002a; Koch et al., 2004). The
FL208 sequences from the public database (Börstler et al.,
2008, Sudarshana P. et al., unpublished), as well as KS906
(AF185669-73) cluster together with the FL208 sequences
from our analysis. Three new sequences (FM865546 from
pHS051-20, FM865599 from pHS099-16 and FM865604
from pHS099-41) that stem from ROC of either a
G. intraradices FL208 descendant or the new isolate
(MUCL49410) cluster distantly from the main clade (Fig. 2).
Sequences from the recently described G. irregulare, which
was studied together with a fungus identified as G. intraradices
isolated from the same trap culture (Blaszkowski et al., 2008),
clearly fall into subclades containing DAOM197198 + BEG195
sequences (Figs 1, 2).

The analyses of database sequences solely from the ITS
region indicated that some that were annotated as
G. intraradices are resolved to belong to separated, highly
supported clades. One of these clades is represented by
EY118 + INVAM GR104 (AF185684, AF185686 and
AF185651) and another one by INVAM VA110 + INVAM
CA502 (AM980854–59) (see also Börstler et al., 2008).
However, further VA110 sequences (AF185674-6) group
within the G. intraradices FL208 + MUCL49410 clade.
Another closely related clade is represented by sequences of
Glomus cf. clarum Att894-7 and the G. clarum (CL883A)
database sequences AJ243275 and AJ239123. A very distinct
cluster of sequences (AJ517450-61; EnvGrA in Fig. 2)
annotated as G. intraradices (Renker et al., 2005) is clearly
separated from both, the G. intraradices and G. irregulare
clades.

http://www.amf-phylogeny.com
http://www.barcoding.si.edu/
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Fig. 1 Phylogenetic tree (partial small subunit (SSU), internal transcribed spacer (ITS) region, partial large subunit (LSU) rDNA sequences of 
approx. 1.5 kb) of Glomus cultures analysed, with Glomus cf. clarum (Att894-7) sequences as outgroup. DAOM197198, BEG195 and Glomus 
irregulare cluster together. The ex-type cultures of Glomus intraradices (FL208 and descendants) and the new isolate from the type location 
(MUCL49410) form a clearly separated clade. Distances of the phylogenetic tree are derived from a RAXML analysis. The values above the 
branches correspond to supports from RAXML/MLQP/NJ/Bayesian analyses. Support values are not shown if lower than 50% in more than 
one analysis, except for some main clades. Performing RAXML analysis based on a MAFFT alignment using the complete sequence length 
resulted in the same main topology, with even more strongly supported main clades (values below branches).
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Fig. 2 Simplified phylogenetic tree of a RAXML analysis of 285 internal transcribed spacer (ITS) region sequences that are annotated as 
Glomus intraradices, and related species. Clades with support values < 50 in both analyses were collapsed to polytomies. For simplicity, some 
well supported clades were collapsed to triangles whose sizes correspond to the respective sequence number contained. The values above the 
branches correspond to supports from RAXML and neighbour-joining (NJ) analyses. Accession numbers of clades or groups (code for the clade 
or group underlined, additional information written in brackets) are as follows: Environmental Group A (EnvGrA), AJ517450–61; Glomus 
diaphanum, AJ972457–63; Glomus sinuosum, AJ437105–6; Glomus proliferum (1), FM992388–99; G. proliferum (2), FM992400–2, 
AJ973393; FL208 (1), FM865545, 548–549;559–560, FM865573, 576, 577, 585, 597–598, 600, 605, AM980862–63; FL208 (2), FM865572, 
574, 575, 579, 581, 583, 586–87, 602–3; FL208 (3), FM865547, 61–71, 78, 84, 601, 606–7, AF185661–64, AF185667–68; VA110, 
AF185674–76; KS906, AF185669–73; Glomus cf. clarum Att894–7, FM865536–44; CL883A, AJ239123, AJ243275; GR104, AF185651; 
EY118, AF185684–86; VA110, CA502, AM980854–59; Environmental (1), EF989103–05, AJ567352, EF989109–12; EF989106, 108; 
AJ567773, AJ968411; AJ567769–70; BEG195 (1), FM865588–90, 92–94, 96; Glomus BLaszkowski, FJ009593–94, FJ009596–604; BEG158 (1), 
AF394752–53, 58, 67, 72–73, 78, 81; Glomus irregulare, FJ009605–18; DAOM197197 (1), FM992377–80, 83–87, FM865550–58, 
FM865608–12, FM865614–17, AM980836, AY842570–71; BEG158 (2), AF394750–51, 54, 56, 57, 59–64, 69–71, 74, 77, 79, 80, AY035641; 
Cultures 1 (Cult.1), AF197917, 20 (SW103) AF197919 (MD211), AJ968410 (BEG75), AM980834 (JJ141), 37, 38 (CR316), 39 (DD–4), 40, 41 
(JJ183), 42, 43 (AU212), AF185652, 53, 55, 56 (IS101), 60 (NB106), AY997054 (AFTOL 845), AJ557006 (A4,XVI),8 (D2,V), EU221582 (A2, 
XVIII); BEG158 (3), AF394765, 68, 76; Cult. 2, AM980835 (JA202), AM980833, AY035639 (JJ141), AM980844 (JJ145), AM980846 (KE114); 
BEG195 (2), FM865591, 95; Environmental (2), AJ517773–75, 77, 79–80, AJ504622, 28–29, AJ416417, AJ968411–12, AJ567733, 35–39, 
61–62, 64, 66–68.
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Discussion

The species G. intraradices is defined from its type material
and the accompanying protologue. Unfortunately, the latter,
while perhaps being adequate at the time it was written, does
not describe characteristics in the detail required by recent
species descriptions for glomeromycotan organisms. Indeed,
defining morphospecies within the clade in which G. intraradices
is placed by molecular analysis (GlGrAb, Schwarzott et al.,
2001) seems to be difficult. Glomus intraradices produces
spores both in the roots and in the substrate. The presence of
intraradical spores itself is not a species-specific character but
a symplesiomorphy shared with other AMF species. These
intraradical spores have considerable variation in size, shape,
subtending hyphal characteristics and reaction to Melzer’s
reagent, and generally a similar wall structure. The extraradical
spores are predominantly globose to subglobose. A detailed
description of the morphological characteristics of the species
is currently in preparation for publication elsewhere, based
on a re-examination of the type and study of both ex-type
material and a new isolate obtained in pot culture and ROC
from the type locality.

Organisms described as G. intraradices encompass 
more than one species

Our results revealed that many cultures or isolates frequently
used in AM research and named G. intraradices very likely do
not correspond to that species. In particular, the model fungus
DAOM197198 cannot be phylogenetically resolved as
G. intraradices (Fig. 1). This is in agreement with recently
published studies dealing with mtLSU and nuc5.8S-ITS2
sequence data (Börstler et al., 2008) and analyses of nucITS2
sequences (Jansa et al., 2002b), although these studies did not
focus on the species concept of G. intraradices. Based on our
analyses, the name G. intraradices should only be applied for
the INVAM FL208 descendants (ex-type), MUCL49410
(new isolate from the type locality) and other AMF that share
the same phylogenetic and morphological characteristics.
Because the recently described species G. irregulare clearly
clusters with DAOM197198, although this was not shown in
the original publication (Blaszkowski et al., 2008), we use the
label ‘G. irregulare clade’ for this group also containing sequences
from BEG195 and well investigated isolates from a field site
in Switzerland. The published G. irregulare sequences form a
weakly supported cluster within that clade (Fig. 1). This is
most likely caused by sequencing only one main ITS rDNA
variant, because the ITS variability in the published sequences
of G. irregulare is only c. 1% and exceptionally low for
GlGrAb. This raises questions of how to define species in such
a complex clade. The answer to this question will require
extensive further detailed analyses.

It can, however, be deduced that the G. irregulare clade
(DAOM197198 + BEG195 + G. irregulare + Swiss isolates)

and the G. intraradices clade (FL208 + MUCL49410) repre-
sent distinct AMF species, because:
• despite the large intraspecific sequence variability,
DAOM197198 sequences from AMF cultures that were
widely separated in space and time all cluster together in the
G. irregulare clade, clearly separated from the G. intraradices
clade showing even larger intraspecific (and intrasporal)
variability;
• BEG195 (from Europe) sequences are embedded within
the DAOM197198 (from North America) sequences, and
thus within the G. irregulare clade;
• no isolate gave rise to any sequence (including those from
the database) that cluster with members of the other clade,
indicating that no rRNA gene flow takes place between the
two clades. If the G. irregulare and the G. intraradices
clades would be conspecific, we would expect at least some
sequences crossing the borders of the phylogenetic clades.
This expectation is supported by recently published evidence
for genetic recombination between G. irregulare clade members
(Croll & Sanders, 2009);
• the G. intraradices and the G. irregulare clades separate
clearly from each other and from those representing closely
related species (G. proliferum, G. clarum).

Conclusively, the new isolate (MUCL49410) from the
type-locality corresponds phylogenetically to the G. intraradices
FL208 ex-type culture. This is an indication that FL208 had
not been contaminated over the years and should be accepted
as indeed corresponding with the type. From these results, the
earlier morphological identification of DAOM197198 and
BEG195 as G. intraradices, while perhaps satisfying earlier
morphological criteria, is shown to be incorrect by our molecu-
lar evidence.

Morphological, phylogenetic and biological species 
concepts

A morphological species concept is historically used for AMF,
but a biological concept is preferable if it can be defined.
A phylogenetic concept based on nonparalogous molecular
markers may be congruent with a biological concept. It might
be characterized by using just a single marker but only if such
a marker coincides with the species boundaries.

With these concepts in mind, we have investigated some
closely related AMF morphospecies in the past, to find out if
they can be distinguished by their rDNA sequences. For
example, morphological identification was difficult in the
family Ambisporaceae in which some species form both
acaulosporoid and glomoid spores. Molecular analyses proved
that they were well separated from either the Acaulosporaceae
or the Glomeraceae and ITS region analyses allowed separation
of what were interpreted as different species, improving the
morphological concept (Sawaki et al., 1998; Redecker et al.,
2000; Walker et al., 2007). Nevertheless, the resolution of the
ITS region seems to be limited, and in GlGrAb the situation
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is complicated. On one hand, isolates in this group were
named as G. intraradices (e.g. DAOM197198, BEG195 and
isolates from Switzerland) but are phylogenetically clearly
separated from the clade that actually includes G. intraradices
(FL208). On the other hand, G. irregulare seems morphologi-
cally different from both DAOM197198 and BEG195
(Blaszkowski et al., 2008), although from the molecular
evidence presented here, they might be interpreted as being
conspecific.

How can we explain such a situation? One simple reason
could be morphological plasticity making it difficult to distin-
guish species microscopically in this group of AMF. Glomus
irregulare is described from supposedly consistent morphological
characteristics, which are not shared by DAOM197198.
However, the DAOM197198 descendent Att690-23 is also
morphologically different from other DAOM197198 cultures,
but supposedly shares the same ancestry. There is, moreover,
some preliminary evidence that plasticity may relate to host
plant species or culture conditions (Walker, 2008). It is thus
possible that morphological differences in this group do not
consistently correlate with phylogeny, but we cannot yet draw
final conclusions about these aspects.

Possible plasticity may be correlated with the theory of con-
specificity of different genotypes of Swiss AMF from one field
site belonging to the G. irregulare clade. Some of these showed
different growth characteristic phenotypes (Koch et al., 2004)
and analyses indicated recombination events, at least for the
studied genotypes II (isolate B3) and VI (isolate D2), between
isolates (Croll & Sanders, 2009). Anastomosis compatibility
experiments using five isolates from that field site indicated
that isolates with different genotypes (A4 = XVIII, B3 = II,
C2 = XV, C3 = XVII, D1 = VIII) can anastomose and that
some progenies of C2 and C3 were genetically recombinant
(Croll et al., 2009). It is possible that G. irregulare and
DAOM197198-like fungi may be in one anastomosis
compatibility group. To answer such questions, AMF must be
cultured as isolates.

Regarding a phylogenetic concept for GlGrAb, species can-
not reliably be separated by analyses of the ITS region (Fig. 2).
For G. intraradices, a phylogenetic signal in the ITS2 region,
which was not found in earlier works analysing either 5.8S + ITS2
or ITS2 only ( Jansa et al., 2002b; Börstler et al., 2008),
hindered phylogenetic resolution. However, when using the
full-length (including the 3′ SSU and 5′ LSU rDNA region)
fragments, the G. intraradices and G. irregulare clades were
clearly separated. Our species concept is also in line with
mitochondrial marker analyses (Börstler et al., 2008). We
cannot yet conclude whether sequences clustering as more
ancestral in a subclade may represent pseudogenes, but if
this were to be the case they evolved after speciation because
the full-length fragment carries the phylogenetic signal
separating the clades. However, it is evident that concerted
evolution of the rDNA repeats is extremely relaxed in members
of GlGrAb.

Sequence variability and DNA barcoding

For the SSU + ITS + LSU rDNA fragment sequences the
phylogenetic analyses resulted in a well-supported tree topology
separating G. intraradices and the G. irregulare clade. We
obtained the same results with a manual alignment and after
fully automated alignment with MAFFT (Fig. 1), showing
that a relatively simple, automated phylogenetic approach
could resolve these two AMF subclades, interpreted as containing
different species. We cannot yet conclude whether the fungi
in the G. irregulare clade indeed are all conspecific, but from
the molecular evidence this may well be the case.

The current discussion about fungal DNA barcoding
(species identification) focuses on the ITS region, because of
its historical use for identification of fungi (Nilsson et al.,
2008). An important question is: ‘how can AMF species be
distinguished and identified by potential DNA barcoding
methods?’ This question is directly related to a species concept
and the enormous intraspecific rDNA variability in AMF. In
their recent publication about suitability of different rDNA
regions for fungal DNA barcoding Nilsson et al. (2008)
calculated an average glomeromycotan ITS variability of
7.5%. However, most data on Glomeromycota published therein
will require thorough reinterpretation because of inaccurate
species definition. For example, from 36 ITS sequences used
to calculate 7.6% intraspecific ITS variability for G. versiforme,
three are from a well-defined culture (BEG47), three are most
likely from the same organism (although without identifiers
in the public database) and the remaining 30 (> 83%) sequences
analysed stem from environmental roots or spores without
any reliable species affiliation. There is even evidence that the
different G. versiforme sequences encompass distinct species
(Gamper et al., 2009). Another dataset is composed of 12
sequences from six different Paraglomus occultum cultures, but
because the species concept among Paraglomus is not yet well
defined it is unclear whether these cultures indeed are conspe-
cific. For the members of the G. irregulare clade, Nilsson et al.
(2008) report 8.7%, intraspecific ITS variability and Jansa
et al. (2002b) up to 18% for G. sp. BEG158 (Fig. 2) intrasporal
ITS variability. For one G. intraradices FL208 spore we
could show > 23% variability. Some further values reported
for AMF are 9% for Gigaspora margarita (Lanfranco et al.,
1999), 6% for Glomus mosseae (Lloyd-Macgilp et al., 1996),
and 13.4% (when calculated based on the alignment of
Walker et al., 2007) to 9.8% (median of absolute
uncorrected (Hamming) distances calculated after automated
pairwise alignments; Nilsson et al., 2008) for Ambispora
leptoticha.

Although these values cannot yet be conclusively compared
because of the different of clones or variants, general sampling
densities, alignments and calculation methods, it appears that
G. intraradices-related AMF in the clade GlGrAb show
considerable sequence variability within the Glomeromycota.
The LSU variability reported here is also higher than in most
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other studies, especially in the G. intraradices FL208 type
culture (11.8%). The uncorrected p-distances for the diversi-
sporacean Glomus aurantium, Glomus eburneum and Diversispora
celata are 6.6, 1.4 and 2.5%, respectively, in the partial LSU
region sequences analysed (Gamper et al., 2009). Generally,
our results show that it will be necessary to include the 5′ LSU
region in addition to the ITS region for DNA barcoding of
AMF.

How many sequence variants in one species?

Assuming that Saccharomyces, Aspergillus and Neurospora spp.
have 45–200 rDNA repeats (Kobayashi, 1998; Simon &
Weiss, 2008) and the AMF Scutellospora castanea 75 (Hosny
et al., 1999), fewer than 200 rDNA repeats would be expected
within a nucleus of the AMF investigated here. It is still
debated whether AMF are homokaryotic (Pawlowska &
Taylor, 2004) or heterokaryotic (Hijri & Sanders, 2005), but
the data presented here cannot resolve this question (see later).
There are at least 149 ITS sequence variants from the different
cultures and isolates in the G. irregulare clade (Fig. 2). For
DAOM197198, we found 23 different ITS variants in the 30
sequences published here. From the public database, five
additional sequences were identified for the complete ITS
region, and further four covering ITS1 only. This makes 32
variants for DAOM197198, but the total number will be
higher. This variability is derived from different cultures,
which means that it potentially includes variants derived from
recombination in different culturing lineages and may be
higher than the number present in one spore. The variability
found is not too high to be encoded within one nucleus. An
interesting question is whether the very high variability in the
GlGrAb rDNA is also reflected in other parts of the genome,
which might be a problem when using members of this AMF
lineage as genetic model systems.

Other subclades comprising G. intraradices-like AMF 
species

There are several other species known in the GlGrAb clade,
and it was recently indicated that the only published
G. proliferum sequence might cluster as a sister lineage to
G. intraradices FL208 (Börstler et al., 2008). However, the
longer sequences of G. proliferum published here form a clade
separated from the G. intraradices and G. irregulare clades,
although not with high bootstrap support. Based on the
analyses of the ITS region alone further, well-separated clades
could be considered as likely to represent distinct species. The
cluster EnvGrA, named as ‘G. intraradices Type B’ (Renker
et al., 2005), represents a distinct species, being more distant
from G. intraradices than from species such as Glomus
diaphanum and Glomus sinuosum.

For some of the AMF investigated, phylogenetic relation-
ships cannot be satisfactory interpreted, such as for INVAM

VA110. Some VA110 sequenced cluster with FL208, as
already indicated by Börstler et al. (2008). These were
submitted to the database in 1999 as part of a G. intraradices
dataset that obviously included many contaminant sequences,
as shown by their phylogenetic placement in different
AMF orders. On the INVAM website it is noted that VA110
was derived from a mixed culture containing several species.
VA110 is listed there as Glomus sp. on the ‘Accessions Culture
Information’ pages and it is likely that sequences appearing in
distinct phylogenetic clades actually represent different organ-
isms. In general, sequence data from mixed cultures should be
interpreted with caution.

In this study, we showed that G. intraradices (FL208 ex-type
culture and MUCL49410 isolated from the type locality)
clearly separates from the AMF in the G. irregulare-clade
(DAOM197198 + BEG195 + Swiss isolates). Further, even
more distant clades (e.g. EnvGrA) that were annotated as
G. intraradices represent different, possibly undescribed AMF
species. The model fungus used in AM research, DAOM197198,
does not represent G. intraradices and is closely related to or
perhaps even conspecific with G. irregulare.
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7.1 Abstract 

• Currently, no official DNA barcode region is defined for the Fungi. The genes COX1 and 

mtLSU turned out to be difficult to apply, and the ITS region, the primary candidate for a fungal 

DNA barcode, was shown not to resolve closely related species of arbuscular mycorrhizal fungi 

(AMF). 

• DNA barcoding analyses were performed with datasets from several phylogenetic lineages 

of the Glomeromycota. We tested an approx. 1500 bp fragment of the nuclear ribosomal DNA, 

covering approx. 240 bp of the SSU and 800 bp of the LSU rRNA genes and the complete ITS 

region, for species resolving power. Moreover, the complete ITS region, the 800 bp LSU rDNA, as 

well as three shorter fragments, spanning the ITS2 and 5.8S rRNA gene, the LSU-D1 rDNA 

domain, or the LSU-D2 domain, were analysed. 

• The results show, that only the longest fragment resolves all analysed species. All other, 

shorter fragments failed to distinguish some closely related species. 

• We recommend using the 1500 bp fragment as a base for phylogenetic DNA barcoding of 

AMF. This will also allow future identification of AMF at species level using shorter DNA 

amplicons, e.g. from deep sequencing approaches. 

 

7.2 Introduction 

The aim of the present study was the definition of a DNA barcoding region for arbuscular 

mycorrhizal fungi (AMF), which is also useful for molecular in-field community studies. Despite 

the fact, that AMF are perhaps the most important fungi in terrestrial ecosystems, forming intimate, 

mutualistic symbioses with approximately 80% of land plants (Brundrett, 2009), much of their 

biology still is enigmatic. The asexual, obligate symbiotic and below ground lifestyle makes AMF 

difficult to study and, e.g., the nutrients transport capabilities and efficiencies in different AMF-

plant associations, formed by individual species or species combinations, are little understood. 

Different functional traits and mechanisms regarding plant nutrition by AMF are expected to exist, 

but it is mostly unknown which AMF (communities) preferentially associate with which plants, and 

under which environmental conditions. As long as AMF species cannot be reliably identified and 

monitored in the field, such questions are difficult to answer and the lack of such basic data will 

hinder the exploration of functional and causal aspects for differential AMF-plant associations. 

Moreover, a better understanding of AMF-plant associations and preferences may also directly 
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impact human life, e.g. by improvement of sustainable management practices in agriculture and 

forestry, making use of efficient AMF-plant combinations. 

7.2.1 Identification of AM fungal species from the field 

All AMF belong to the phylum Glomeromycota (Schüßler et al., 2001). Historically, species 

recognition was mainly through spore morphology, but modern molecular methods revealed cryptic 

species and, on the other hand, spore types that were affiliated to distinct families turned out to be 

of conspecific origin. A well known example are the spore morphs of Ambispora leptoticha, which 

were thought to represent different species but in fact are an example of spore dimorphism (Sawaki 

et al., 1998; Redecker et al., 2000; Walker et al., 2007). Many AMF community analyses are based 

on morphologically monitoring AMF spore occurrences in the soil (e.g., Oehl et al., 2009; 

Robinson-Boyer et al., 2009). However, such assays use resting stages and consequently do not 

necessarily reflect the AMF that are physiologically active in the soil and plant roots (Sanders, 

2004). Also, relatively little is known about the AMF sporulation behaviour, which may depend on 

season, environment, or host plant, and change over both space and time (Walker et al. 1982). 

To overcome such drawbacks, molecular methods were developed to detect AMF directly within 

roots. The most frequently used markers are one or more of the nuclear rRNA genes, e.g. the widely 

used SSU rRNA gene (Helgason et al., 1999; Wubet et al., 2006; Lee et al., 2008; Öpik et al., 

2009), the ITS rDNA region including the 5.8S rRNA gene (Wubet et al., 2004; Hempel et al., 

2007; Sýkorová et al., 2007), and a part of the LSU rRNA gene (Turnau et al., 2001; Gollotte et al., 

2004; Gamper & Leuchtmann, 2007; Pivato et al., 2007). However, also many molecular analyses 

are biased, as often only parts of the AMF community are detected with the used primers and the 

taxon-resolution level is uncertain. Moreover, neither a single molecular marker suitable for species 

level resolution of all AMF, nor a comprehensive and validated sequence database is yet available. 

Nevertheless, recent research shows that species level community analyses should be feasible based 

on rDNA regions (Gamper et al., 2009; Krüger et al., 2009; Stockinger et al., 2009). 

7.2.2 DNA barcoding for species definition and iden tification 

DNA barcoding is presently defined as the analysis of an easily amplifiable PCR fragment for 

sequence based identification of species. Identifications must be accurate, rapid, cost-effective, 

culture-independent, universally accessible, and usable by non-experts (Frézal & Leblois, 2008). In 

addition, cryptic species could be recognized, and organisms can be identified in life cycle stages 
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not suited for morphological identification (Gilmore et al., 2009). 

In DNA barcoding, species are separated by a 'barcode gap' analysis or by fast phylogenetic 

analysis. A barcode gap is based on the difference between the maximum intraspecific sequence 

variation of a species and the minimum interspecific variation. If the minimum interspecific 

variation is bigger than the maximum intraspecific variation, a barcode gap exists. Alternatively, 

phylogenetic neighbour joining analysis based on Kimura two-parameter (K2P = K80) distances are 

often used. Though these are the currently preferred methods, in future more sophisticated 

phylogenetic methods will probably be developed. 

For animals, a part of the mitochondrial cytochrome c oxidase 1 (COX1) gene has become the first 

official DNA barcode (Hebert et al., 2004) (http://www.barcoding.si.edu/) and a barcoding system 

for plants was established recently, based on the rbcL and matK loci (Hollingsworth et al., 2009). 

7.2.3 DNA barcode(s) for fungi 

There is not yet an officially agreed DNA barcoding method for fungi. Such a DNA based species 

identification system would be very useful, as most fungi cannot be identified in their vegetative, 

hyphal growth phase. There are approximately 100000 named fungal species (Kirk et al., 2008), 

and estimates suggest there may be as many as 1.5-3.5 million species in existence (Hawksworth, 

2001; O’Brien et al., 2005), many of them perhaps will only be accessible by molecular methods, in 

future. 

The nuclear ITS rDNA region is commonly used for fungi since long (White et al., 1990; Gardes & 

Bruns, 1993) and will probably be proposed to the Consortium for the Barcode of Life (CBOL, 

www.barcoding.si.edu) as a fungal barcode (Seifert et al., 2009). Unfortunately, quality problems 

exist for fungal barcoding, as sequence data are often derived from inaccurately identified material 

(Ryberg et al., 2008), the lack of vouchers precludes verification (Agerer et al., 2000), and third 

party annotations in sequence database as GenBank are not possible (Bidartondo et al., 2008). 

Initiatives like UNITE (http://unite.ut.ee) were established to provide validated and curated data, 

but such data are still lacking for most fungi, AMF inclusive. 

7.2.4 COX1 is not suited as general fungal barcode 

A prerequisite for not using the COX1 region, according to the CBOL standards, should be the 

demonstration that it is unsuitable for easy species identification. Although this region showed 

promise for Penicillium spp. (Seifert et al., 2007), the length of fungal COX1 is highly variable 
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(from 1.6 to 22 kb). The shortest potential barcoding region varies in length from 642 bp to >12 kb 

(Seifert, 2009), presenting difficulties for PCR-amplification and sequencing. Moreover fungal 

species level discrimination with COX1 genes is inaccurate (Chase & Fay, 2009) and in Fusarium 

and the Aspergillus niger complex multiple paralogous copies hinder species level resolution 

(Geiser et al., 2007; Gilmore et al., 2009). For AMF, the barcoding region of COX1 in Glomus sp. 

FACE#494 spans 2200 bp and contains introns (Lee & Young, 2009). Land and Hijri (2009) stated 

that the mtDNA of Glomus diaphanum contains a COX1 intron with high sequences similarity to a 

corresponding COX1 intron detected in plants and Rhizopus oryzae. The plant intron probably 

originated by horizontal gene transfer (HGT) from fungi (Vaughn et al., 1995; Lang & Hijri, 2009), 

further questioning the general usability of COX1 as a barcode for fungi, and also plants. 

As COX1 seems unsuited for Glomeromycota, the mitochondrial large subunit (mtLSU) rRNA gene 

was considered as an alternative. Unfortunately it also seems inapplicable because introns create 

very variable fragment sizes even in closely related species (Börstler et al., 2008). 

7.2.5 Defining a DNA barcoding region for AMF 

The goal of the present study was to compare different nuclear rRNA gene regions with the ITS 

rDNA region for use as a general DNA barcode for Glomeromycota, and to make recommendations 

based on the analyses of new rDNA sequence datasets. This directly relates to the applicability of 

environmental deep sequencing approaches using the 454 GS-FLX Titanium system, currently 

allowing approx. 400 bp average read lengths (www.454.com). It was already demonstrated, that 

the highly variable ITS rDNA region cannot discriminate some closely related species, e.g. in 

Glomus Group Ab (‘Gl. intraradices group’), which includes the model AMF Glomus sp. 

DAOM197198 (Stockinger et al., 2009). 

For convenience, we further on abbreviate the nuc SSU rRNA gene, as SSU, the nuc LSU rRNA 

gene, as LSU, and the 5.8S rRNA gene, as 5.8S; the term ITS region is used for the complete ITS1-

5.8S-ITS2 rDNA (Fig. 3). In this study, a DNA fragment of approx. 1500 bp was sequenced from 

species in divergent AMF clades, covering approx. 240 bp of the SSU, the complete ITS region, and 

approx. 800 bp of the LSU. We compared the complete fragment (1420-1602 bp), the ITS-region 

(400-526 bp), the LSU-region (776-852 bp), and three 400-500 bp fragments, covering the 

5.8S+ITS2, LSU-D1, or LSU-D2, respectively, for species resolving power and suitability as DNA 

barcodes. 
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7.3 Material & Methods 

7.3.1 Taxa and public sequences used for analyses 

The 'core dataset' sequences investigated in this study (Table 1) cover the partial SSU, the ITS-

region, and the partial LSU, at least corresponding to a fragment spanning the region amplified with 

primers SSU-Glom1 (Renker et al., 2003) and NDL22 (van Tuinen et al., 1998). For all AMF 

analysed, a culture identifier or a voucher deposited in a herbarium (W-numbers) are known, for 

most both information is available. The attempt (Att) numbers refer to the collection of Christopher 

Walker, BEG identifiers to the ‘International bank for the Glomeromycota’ 

(http://www.kent.ac.uk/bio/beg), INVAM to the international culture collection of (vesicular) 

arbuscular mycorrhizal fungi (http://invam.caf.wvu.edu) and MUCL to the Glomeromycota in vitro 

collection (GINCO; http://emma.agro.ucl.ac.be/ginco-bel/). In addition some other identifiers are 

listed for certain AMF species (Table 1). 

For analysis of the five AMF species analysed in the AFTOL project (James et al., 2006), the 

individual SSU, ITS and LSU sequences of each species were assembled to a consensus sequence. 

For the ‘extended dataset’ analyses of the Ambisporaceae, Diversisporaceae and Glomus Group Aa, 

additional public database sequences were included (Table S1-S5) Sequences indicated in Schüßler 

et al. (2003) as probably derived from contaminants were not used. 
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Table 1: Sequences used to assemble the core dataset. Number of spores used for DNA 

extraction is shown, if known (ss, single spore; ms, multi-spore), as well as cloning numbers 

(in parentheses, following the number of sequences) and the primers used for the new 

sequences published here (in parentheses, following the accession numbers; [n], amplified by 

nested PCR). 

Identifier, culture/voucher Species name 
No. of 
sequences 

DNA 
extraction Acc Nos. 

BEG12, Att109-20/W5147 Glomus mosseae 8 (pHS101), 
 7 (pHS110) 

1 x ss FN547474-6,82-93 (SSUmCf-LSUmBr 
[n]) 

WUM3, Att15-5/W2939 Glomus sp. WUM3 5 (pMK23) ss FN547477-81 (SSUGlom1-NDL22 [n]) 

MUCL41827, -/- Glomus proliferum 2 (pHS113) ss FN547500-1(SSUmCf-LSUmBr [n]) 

BEG13, -/W5258 Acaulospora laevis 7 (pHS054) ss FN547507-12, 16 (SSUmAf-LR4+2) 

Att423-4/W3077 Acaulospora cf. laevis 6 (pHS032) ss FN547502-6,17 (SSUmAf-LR4+2) 

BEG26, -/- Acaulospora cf. laevis 5 (pHS030) ss FN547513-5,18,19 (SSUGlom1-
NDL22[n]) 

INVAM TW111, Att1499-
9/W5346 

Kuklospora kentinensis 4 (pHS098) ss FN547520-3 (SSUmCf-LSUmBr [n]) 

Att1235-2/W5156 Ambispora appendicula 11 (pMK096) ms 
(3 spores) 

FN547524-34 (SSUmAf-LSUmAr) 

Att200-23/W4752 Ambispora fennica 12 (pMK094) ss FN547535-46 (SSUmCf-LSUmBr [n]) 

BEG34, -/- Gigaspora margarita 24 (pHS108) ss FN547547-70 (SSUmAf-LSUmAr) 

DAOM194757, Att1509-
20/W5384 

Gigaspora rosea 6 (pHS106),  
18 (pHS105),  
3 (pHS104) 

1 x ss FN547571-97 (SSUmCf-LSUmBr [n]) 

FCPC1145, Att590-
16/W5342 

Scutellospora gilmorei 21 (pHS107),  
5 (pHS103) 

1 x ss FN547598-622 (SSUmCf-LSUmBr [n]) 

Att1505-8/W5347 Glomus etunicatum 12 (pHS112) ss FN547623-34 (SSUGlom1-NDL22 [n]) 

BEG20, Att263-15/W3294 Glomus caledonium 6 (pHS031) ss FN547494-9 (SSUGlom1-NDL22 [n]) 

BEG47, Att475-45/W5165 Glomus versiforme 2 (pHS034) ss FN547635-6 (SSUGlom1-NDL22 [n]) 

BEG47, Att475-22/W3180 Glomus versiforme 10 (pMK73), 
6 (pMK72) 

2 x ss FN547666-81 (SSUmAf-LR4+2) 

Att1296-0/W4728 Glomus aurantium 11 (pHS109) ss FN547655-65 (SSUmCf-LSUmBr [n]) 

Att246-18/W4119 Diversispora spurca 18 (pHS100) ss FN547637-54 (SSUmCf-LSUmBr [n]) 

     

WUM18, Att869-3/- Acaulospora sp. WUM18 2 1 ss FM876792-3 

BEG33, Att209-37/- Acaulospora scrobiculata 4 1 ss FM876788-91 

BEG231, FACE#234 Diversispora celata 3 2 ms AM713402-4 

INVAM AZ420A, Att1290-
5/W4729 

Glomus eburneum 12 2 ms AM713405-16 

BEG28, Att108-7/- Glomus coronatum 5 1 ss FM876794-8 

WUM3, Att15-5/W2940 Glomus sp. WUM3 1 1 ss FM876813 

INVAM SA101, Att676-5/- Glomus luteum 5 1 ss FM876808-12 

Att565-11/W3349 Glomus sp. W3349 4 1 ss FM876804-7 

WUM11, Att862-7/W2928 Acaulospora laevis 8 1 ss FM876780-7 

Att894-7/- Glomus cf. clarum 9 3 ss FM865536-44 

DAOM197198 related, -
/W5533, W5495, W3182, 
W5499; BEG195, -/W5272 

Glomus sp. 'irregulare-like' 39 3 4 x ss,  
1 x ms 
 (3 spores) 

FM865550-8, FM865588-96, 
FM865608-17, FM992377-87 

INVAM FL208, -/W5413, 
W5166, W5507; 
MUCL49410, -/W5070 

Glomus intraradices 45 3 4 x ss FM865545-49, FM865559-87, 
FM865597-607 

-/W4545 Pacispora scintillans 2 1 ss FM876831-2 

INVAM TW111,  
Att1499-9/W5346 

Kuklospora kentinensis 10 1 ss FM876821-30 

MUCL41827, -/- Glomus proliferum 15 3 1 x ss, 1 x 
ms 

FM992388-402 

-/W3009 Scutellospora spinosissima 3 1 ss FM876834-6 
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BEG35, Att334-16/- Scutellospora heterogama 3 1 ss FM876837-9 

BEG47, Att475-45/W5165 Glomus versiforme 7 1 ss FM876814-20 

AFTOL-139/ 
INVAM UT101 

Glomus mosseae 1 4 unknown Consensus AY635833 + AY997053 + 
DQ273793 

AFTOL-845/ 
4695rac-11G2 

Glomus sp. 'irregulare-like' 1 4 unknown Consensus DQ273828 + DQ322630 + 
AY997054 

AFTOL-48/ 
DAOM181602 

Glomus sp. 'irregulare-like' 1 4 ms Consensus AY635831 + AY997052 + 
DQ273790 

AFTOL-138/ 
INVAM FL225 

Scutellospora heterogama 1 4 unknown Consensus AY635832 + AY997088 + 
DQ273792 

AFTOL-844/ 
INVAM IA702 

Paraglomus occultum 1 4 unknown Consensus DQ322629 + DQ273827 + 
AY997069 

     
1 Krüger et al. 2009, 2 Gamper et al. 2009, 3 Stockinger et al. 2009, 4 James et al. 2006 
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7.3.2 DNA extraction, PCR amplification, cloning an d sequencing 

Spores were cleaned and DNA was extracted as described in Schwarzott & Schüßler (2001). Some 

spores were crushed in 5x PCR buffer according to Lumini et al. (2007). As PCR template, 5 µl of 

the DNA extract were used in 20 µl final reaction volume. In the early phase of the study, PCR was 

performed using the primers SSU-Glom1 and NDL22 or LR4+2 (Stockinger et al., 2009). Most 

AMF cultures studied later were characterised by the nested PCR approach with AMF specific 

primers (Krüger et al., 2009; see Table 1). PCR using the Phusion High Fidelity DNA polymerase 

(Finnzymes, Espoo, Finland), cloning, RFLP analyses and sequencing were performed as described 

in Krüger et al. (2009), with exception of Gl. caledonium BEG20 which was amplified using a Taq 

DNA polymerase (Peqlab, Erlangen, Germany) and some clones which were obtained using the 

StrataClone Blunt PCR Cloning Kit (Stratagene Agilent Technologies, La Jolla, CA, USA), 

according to the manual. Sequences were assembled and proofread with SeqAssem 

(http://www.sequentix.de) and deposited in the EMBL/GenBank/DDBJ databases with the 

accession numbers FN547474-FN547681. 

7.3.3 Phylogenetic and sequence divergence analyses  

The 3′ partial SSU, the ITS region, and the 5′ partial LSU sequences from this study and public 

database sequences covering the same regions were analysed for their species resolving power 

(Table 1). Data were mainly from characterized AMF species, from single spore DNA extractions or 

single spore isolates. Regions were separated either by the gene borders, or by frequently used 

primer binding sites. The ITS region (400-526 bp) including the 5.8S was cut at the border to SSU 

and LSU rRNA genes; the LSU fragment (776-852 bp) covering the 5' LSU rRNA gene region until 

the binding site of primer LSUmBr (Krüger et al., 2009); the ITS2 fragment (352-430 bp) 

corresponds to an ITS3-ITS4 (White et al., 1990) amplicon and includes most of the 5.8S rRNA 

gene and the complete ITS2 region; the LSU-D1 fragment (281-394 bp) corresponds to a LR1-

FLR3reverse amplicon (van Tuinen et al., 1998), whereas FLR3 was designed as a forward primer 

(Gollotte et al., 2004); the LSU-D2 fragment (370-436 bp) corresponds to an FLR3-LSUmBr 

amplicon (Fig. 3). 

For three AMF families, the ITS region or a part of the LSU was analysed after adding shorter or 

less well defined sequences from the database. Those were aligned to the core dataset with Align 

(http://www.sequentix.de) or ARB (Ludwig et al., 2004; http://www.arb-home.de). The resulting 
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dataset is referred to as ‘extended dataset’. Sequence divergences were calculated based on the K2P 

model (Kimura, 1980) with pairwise deletion of gaps, using the APE package of R (Paradis et al., 

2004). To illustrate the sequence divergences within and between species, TaxonGap2.3 (Slabbinck 

et al., 2008) was used. 

The analyses of database sequences included identical sequences, when it was unclear if these 

originated from the same or different spores or even cultures. Phylogenetic analyses were 

performed with PHYLIP3.6 (Felsenstein, 2004), using the neighbour joining method (based on K2P 

model). A consensus tree was calculated from 1000-fold bootstrapped analyses with SumTrees 

(Sukumaran & Holder, 2008) and the bootstrap (BS) values were mapped on the neighbour joining 

tree. As an alternative approach, the sequences were aligned automatically using the MAFFT online 

server (MAFFT version 6; http://align.bmr.kyushu-u.ac.jp/mafft/online/server/), for comparison 

with the results from the manual alignment. The iterative refinement option of MAFFT was set to 

FFT-NS-i (Katoh et al., 2002). Phylogenetic trees were processed with TreeGraph2 

(treegraph.bioinfweb.info), TreeViewJ (Peterson & Colosimo, 2007), and Treedyn (Chevenet et al., 

2006) and refined with Adobe Illustrator CS3. 

 

 

 

 

Figure 3: Schematic representation of the nuclear ribosomal DNA regions studied. Positions of 
priming sites that were used as borders for in silico analyses of the fragments are shown as black 
triangles. Black lines indicate the fragments analysed. 
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7.4 Results 

7.4.1 Intraspecific rDNA sequence variation 

No general intraspecific percentage of sequence variation (K2P distance) could be defined as a 

threshold to separate AMF species, even within individual families in the Glomeromycota. For the 

longest DNA fragment studied, SSUmCf-LSUmBr (approx. 1500 bp, see Table S6, corresponding 

to the core dataset), the variation ranged from 0.47-10.8 %. When taking only the seven species into 

account for which at least 24 sequence variants are available (Ac. laevis, Gi. margarita, Gi. rosea, 

Sc. gilmorei, Gl. intraradices. Glomus sp. 'irregulare-like' and Gl. versiforme) the minimum 

intraspecific variation was 1.55 %. The highest value of 10.8 % was found in Gl. intraradices 

(cultures FL208 and MUCL49410). 

The ITS region revealed a variation of 0.23-14.6 %, or 2.96-14.6 % when only analysing the seven 

species with at least 24 variants of the SSUmCf-LSUmBr fragment available, respectively. Glomus 

intraradices (FL208 and MUCL49410) again showed the highest intraspecific variation with 

14.6 %. Interestingly, the highest maximum intraspecific variation of 15.7 %, for Gl. intraradices, 

was found in the LSU-D2 fragment (FLR3-LSUmBr). The range of variation in this region was 0-

15.7 % (2.8-15.7 % for species with at least 24 variants known). 

For the LSU-D1 fragment (LR1-FLR3), five species lacked intraspecific variation (number of 

distinct sequences in parentheses): Glomus sp. WUM3 (6), Gl. caledonium (3), Acaulospora 

scrobiculata (4), Gl. luteum (5), Diversispora celata (3). In general, this region showed the lowest 

intraspecific variation for most species analysed, but with exceptions. For Kuklospora kentinensis 

(14) a variation of 0.5 % was found in the LSU-D1 fragment but the ITS2 fragment (ITS3-ITS4) 

showed no variation at all for this species. 

7.4.2 Barcode gap analyses 

A barcode gap is not a prerequisite for DNA barcoding, but may be helpful to distinguish species 

without the need of phylogenetic analyses (e.g., Hebert et al., 2004). Comparison of the different 

regions, regardless of the alignment method used (Table S6, Figure 4), showed that the complete 

fragment (SSUmCf-LSUmBr) had the lowest number (4) of species without a barcode gap, 

followed by the complete ITS region with 5 species and the LSU region with 7. Analysis of the 

LSU-D2 fragment resulted in 7 species lacking a barcode gap, whereas the less variable LSU-D1 

fragment revealed 12 species without a barcode gap. The ITS2 fragment (covering most of the 5.8S) 
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resulted in 8 species without a barcode gap. For the complete fragment, the size of the existing 

barcode gaps varied from only 0.1 % to 22 %. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Barcode gap analyses of the rDNA regions studied. The SSUmCf-LSUmBr fragment was 

aligned either manually or automated (MAFFT). Light bar: maximum intraspecific variation, dark 

bar: minimum interspecific variation; to the right of the bar the closest species is given, 

respectively. Scale on top is % variation based on K2P distances. Vertical line indicates the minimal 

interspecific variation. 
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7.4.3 Phylogenetic analyses of the core dataset 

The Gigasporaceae, Acaulosporaceae, Diversisporaceae, Ambisporaceae, Glomus Group B, 

Glomus Group Aa and Glomus Group Ab were analysed separately, as the high variation in the ITS 

region made it impossible to align across family level groups. For each group, five defined regions 

covered by the SSUmCf-LSUmBr fragment were analysed (Figure 3). All positions in the alignment 

were included in the phylogenetic analyses (Figure 5, Supplementary Figs S1-S6), as summarized 

in Table 2 for the core dataset (Figure 5 and Supplementary Figs S1-S6). 

Using the complete fragment (SSUmCf-LSUmBr) resulted in the best discriminatory power. Each 

of the known species was resolved with bootstrap support of at least 72 %, for most species of 

>90 %. Almost all species studied could be separated using the complete ITS region, except Gl. 

intraradices and its close relatives. Similarly, maximum likelihood analyses of this region did not 

resolve sequences of Gl. intraradices (FL208 and MUCL49410) and related species as 

monophyletic clades (Stockinger et al., 2009). 

Analyses of the LSU region resulted in the similar problems regarding lacking resolution of Gl. 

intraradices and its close relatives. Two other species, Scutellospora spinosissima (3 sequences) 

and Gl. proliferum (15 sequences), were not resolved as monophyletic. In addition, the Gigaspora 

rosea clade (27 sequences) had bootstrap support below 50 %; the other species were separated with 

support values of at least 55 %. When the three shorter ITS2, LSU-D1 and LSU-D2 fragments were 

analysed separately, the LSU-D1 fragment performed worst. Sequences from 11 of the 25 species 

did not form monophyletic clades. The ITS2 and LSU-D2 fragments performed better, but still 

could not resolve two species (Gl. proliferum, 15 sequences; Gl. intraradices FL208 and 

MUCL49410, together 47 sequences), respectively. Gigaspora margarita BEG34 did not form a 

well supported clade for either fragment. The third species not resolved as monophyletic in the 

LSU-D2 analysis was Sc. spinosissima (3 sequences). The AFTOL sequences of Gl. mosseae and 

Sc. heterogama cluster with other sequences of the corresponding species, whereas the AFTOL 

Glomus sp. ‘intraradices’ sequences, derived either from culture MUCL43194 (=DAOM197198, 

=DAOM181602; used for the Glomus genome sequencing project) or from “GINCO #4695rac-

11G2”, clearly cluster with Glomus irregulare in the 'Gl. irregulare-clade', confirming the evidence 

of Stockinger et al. (2009). 
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Table 2: Neighbour joining analyses (based on K2P distances, 1000 bootstraps) of six different regions 

(complete SSUmCf-LSUmBr fragment, complete ITS region, ITS2, LSU, LSU-D1 and LSU-D2 fragments). 

Respective bootstrap values supporting species as monophyletic are shown. 

 
SSUmCf-
LSUmBr 

ITS 
region LSU 

ITS2 
(ITS3-ITS4) 

LSU-D1 
(LR1-FLR3) 

LSU-D2 
(FLR3-LSUmBr) 

Gigaspora margarita 88 75 55 47  34 
Gigaspora rosea 100 90 48 90  59 

Scutellospora gilmorei 100 99 88 100  69 
Scutellospora spinosissima 92 96  95   
Scutellospora heterogama 100 100 100 100 97 98 

Length of alignment (positions) 1505 468 795 394 398 376 
       

Acaulospora laevis 100 100 100 100 100 100 
Acaulospora scrobiculata 100 100 100 100 100 100 
Acaulospora sp. WUM18 100 100 100 100 100 100 
Kuklospora kentinensis 100 100 100 100 100 100 

Length of alignment (positions) 1591 525 826 436 403 401 
       

Diversispora celata 100 95 100 70 99 100 
Diversispora spurca 100 96 100 97  100 
Glomus aurantium 100 100 94 95  94 
Glomus eburneum 100 75 100 72 99 93 
Glomus versiforme 100 100 100 100 100 100 

Length of alignment (positions) 1600 497 860 407 398 440 
       

Glomus cf. clarum 100 100 100 100 100 100 
Glomus intraradices 72      

Glomus sp. 'irregulare-like' 100 96 99 53  95 
Glomus proliferum 94 80     

Length of alignment (positions) 1644 540 863 437 400 440 
       

Glomus mosseae 100 97 100 93 98 99 
Glomus sp. WUM3 100 97 100 98  100 
Glomus caledonium 100 100 96 99  97 
Glomus coronatum 100 100 96 100 99 99 

Length of alignment (positions) 1664 565 862 448 397 442 
       

Glomus etunicatum 100 99 100 90 96 100 
Glomus sp. W3349 100 100 100 100 100 100 

Glomus luteum 100 100 100 100 96 93 
Length of alignment (positions) 1624 539 843 433 392 430 

 

 

Figure 5: Phylogenetic tree computed from all approx. 1500 bp SSUmCf-LSUmBr fragment 

sequences analysed (core dataset), demonstrating species level resolution. Neighbour joining 

analyses (1000 BS) with BS support displayed down to the level of species. Note that the BS 

support values differ from those given in Table 2, because an unambiguous alignment of ITS1 and 

ITS2 sequences between families, as computed here, in fact is impossible. Therefore, the BS values 

shown here are biased by ambiguously aligned sites in the highly variable regions and for species 

level comparison the values from Table 2 should be referred to. Left of each cluster the 

corresponding species is written. For better readability every second cluster is highlighted in grey 
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7.4.4 Phylogenetic analyses of the extended dataset  

Shorter sequences from the public database were included in some analyses, selected according to 

their assigned name or culture identifier. Additionally, some environmental sequences were 

included, predominantly from the Ambisporaceae, Diversisporaceae and Glomus Group Aa. 

7.4.4.1 Analyses of Ambisporaceae  

Whereas only for two Ambisporaceae species the SSUmCf-LSUmBr fragment is available (Table 

S6, Figure 4), for the ITS region five Ambispora species and several environmental sequences could 

be analysed. All were phylogenetically well separated, with bootstrap support of at least 82 % 

(Figure S8). The ITS2 fragment analysis showed a very similar result, with environmental 

sequences not matching any of the characterized Ambispora species. The environmental sequences 

(number in parentheses) from Taxus baccata (6), Prunus africana (1) or Plantago lanceolata (1) 

roots form well separated branches, as already shown before (Walker et al., 2007). For all of them 

the distance to the closest related species or clade is two to three-times higher than the minimal 

intraspecific distances within Am. appendicula (11 sequences), Am. leptoticha (26), and Am. callosa 

(34). The intraspecific variation in the ITS region was 2.3-7.3 %. The barcode gap analysis showed 

that Am. leptoticha, with 7.3% intraspecific variation, lacked a barcode gap to Am. appendicula 

(Figure S7), but not vice versa. The phylogenetic analysis clearly separated both species from each 

other. 

7.4.4.2 Analyses of Diversisporaceae  

The ITS analyses of the Diversisporaceae using the extended dataset (Figure S9) did not reveal any 

fundamental differences to the analyses of the core dataset (Figure S5). It was already known, that 

Gl. fulvum (5 sequences), Gl. megalocarpum (2), and Gl. pulvinatum (2) form a clade much apart 

from the other Diversisporaceae species and together probably represent a distinct taxon at the 

genus level (Redecker et al., 2007). Some additional ITS database sequences formed separated 

clades, one of them containing sequences from the INVAM cultures AZ237B from Arizona (4 

sequences) together with NB101 from Namibia (4 sequences). These eight sequences are most 

likely conspecific and represent the closest known relative to Di. celata (3 sequences), as already 

stated by Gamper et al. (2009). At this point it should be mentioned that several Glomus species 

have not yet been formally transferred to the genus Diversispora and therefore carry the ‘wrong’ 
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genus name. The naming of sequences also is misleading for a set of 30 environmental sequences 

that are annotated as Gl. versiforme but separate from Gl. versiforme BEG47 (31 sequences) in 

several sub clades. From our analyses, they should be annotated as unknown Diversispora species. 

The ITS region of Gl. fulvum (5 sequences) showed the highest intraspecific variation in the 

Diversisporaceae, with about 15 %. This is caused by sequence AM818544, which originated from 

a field collected specimen different from the other sequences. Perhaps AM818544 is a different 

species. Excluding AM818544, Gl. fulvum showed an intraspecific variation of 9.8 %. All other 

characterized species in the Diversisporaceae had a variation below 7 %. 

For the LSU analyses (Figure S10), the four database sequences (AM947664,65, AY842573,74) 

from Gl. versiforme BEG47 clustered with the sequences of the core dataset of Gl. versiforme 

BEG47 (25 sequences). The sequence EU346868 from a 'Gl. versiforme' culture HDAM-4 and that 

of BEG47 were widely separated, and they are unlikely to have originated from a conspecific 

fungus. However, further sequences from such cultures are needed for more detailed analyses. The 

database sequences EF067886-88 clustered with the Gl. eburneum sequences, consistent with the 

fact that all sequences refer to the same culture identifier, INVAM AZ420A. The LSU sequences of 

Di. celata (Gamper et al., 2009) clustered with those of our core dataset. There are three Gl. 

aurantium LSU database sequences (EF581860,62,63), derived from trap cultures, which clustered 

with the Gl. aurantium sequences from our core dataset. However, two additional Gl. aurantium 

sequences (EF581861,64) form a distinct clade. All five sequences, linked to voucher W4728, 

originate from the same trap culture setup with material collected near Tel Aviv in Israel (J. 

Błaszkowski, personal communication 21.9.2009). As trap cultures usually contain several species, 

it is not certain that the sequences were indeed derived from conspecific organisms. Without 

cultures established as isolates such questions can hardly be answered. The inclusion of the public 

sequences increased the intraspecific variation of Di. celata to 2.6 % (26 sequences), of Gl. 

versiforme to 4.1 % (29 sequences), and of Gl. aurantium to 1.9 % (14 sequences). When including 

the outliers (EU346868, isolate HDAM-4) for Gl. versiforme the variation raised to 9.1 % and in the 

case of Gl. aurantium (EF581861,64) to 8.1 %, whereas both species lost the barcode gap to their 

neighbours (Figure S7). 

7.4.4.3 Analyses of Glomus  Group Aa (' Gl. mosseae  group') 

Analysis of our core dataset of this group showed clear separation of species with the ITS region, 

the ITS2 fragment, and the LSU fragments analysed. However, the situation changed considerably 

when including additional database sequences for the ‘extended dataset’. 



DNA barcoding of arbuscular mycorrhizal fungi 

89 

For the ITS region, Glomus sp. WUM3 (6 sequences), Gl. caledonium (10 sequences) and Gl. 

geosporum (31 sequences) were well separated, but the ex-type of Gl. coronatum BEG28 (16 

sequences) clade clustered in-between the two Gl. mosseae clades (Figure 6). Both Gl. mosseae 

clades were well supported by 80 % and 100 % bootstrap (BS) values, respectively. All new Gl. 

mosseae sequences from the present study, those from Avio et al. (2009), and from the databases 

being annotated as Gl. mosseae cluster together in the major clade (109 sequences). The smaller 

clade consists of seven sequences derived from field sampled spores with identifiers GMO2 and 

GMO3. One sequence (AF161058) characterised from spore GMO2 clusters in this minor clade 

while all the other ones (AF161055-57, AF166276) cluster within the major Gl. mosseae clade. 

The ITS sequences in Glomus Group Aa reveal more discrepancies. Glomus monosporum (IT102: 

AF004689; FR115: AF004690, AF125195), Gl. dimorphicum (BEG59: X96838-41), and 'Gl. 

fasciculatum' BEG58 (X96842,43, but see below) sequences cluster in the major Gl. mosseae clade. 

Another species that has two sequences in the Gl. mosseae clade is Gl. fasciculatum BEG58. This 

species’ morphology is very distinct from Gl. mosseae, as already discussed in Lloyd-Macglip et al. 

(1996), and in contrast to the BEG58 ITS sequences a SSU sequence from Gl. fasciculatum BEG53 

clusters in the Glomus Group Ab (Schwarzott et al., 2001), which is consistent with morphological 

data. The phylogenetic analysis of the ITS2 fragment revealed a similar separation of the analysed 

species, but, e.g., the support value for the clade of Gl. caledonium decreased from 90 % to 

insignificant 41 %. 

For the Gl. mosseae major clade, when taking only the sequences into account that are annotated 

under this species name, the intraspecific variation of the complete ITS region is 12.1 % (100 

sequences). When assuming that, although annotated with distinct names (Gl. monosporum, Gl. 

fasciculatum BEG58, Gl. dimorphicum), all sequences clustering within the major Gl. mosseae 

clade are conspecific, but excluding the single outlier sequence from GMO2 and all sequences of 

GMO3 (minor clade), the variation only marginally increased to 12.2 % (109 sequences). The 

variation rose to 20.0 % (140 sequences) when adding the GMO2 and GMO3 ‘outlier’ sequences. 

The intraspecific variation of all other well characterized and supported species within Glomus 

Group Aa varied between 0.8 and 2.8 %. 

The LSU-D2 fragment analysis resulted in clear separation into several well supported clades 

(Figure 6). However, also here, some clades contain sequences from more than one species. One Gl. 

fragilistratum sequence clusters within the Gl. caledonium clade. One Gl. coronatum BEG49 

sequence is far apart from those of ex-type Gl. coronatum BEG28 (=Att108). Glomus coronatum 

BEG49 clusters with Glomus sp. WUM3, but also a Gl. constrictum BEG130 sequence falls in this 

clade. Within the Gl. mosseae clade, 12 sequences form a separated subclade (AY639159,61,62,65, 



DNA barcoding of arbuscular mycorrhizal fungi 

90 

AY639270,71,74,78,80,81, DQ469126, AF396788; upper subclade in Fig. 6). Interestingly, LSU-

D2 sequences from single spore isolates (H. Gamper isolates 209 and BEG224; J. Jansa isolate 243) 

can be found in both of the Gl. mosseae subclades. The major clade (lower subclade in Fig. 6) also 

harbours all sequences of Gl. mosseae analysed by Rosendahl et al. (2009), representing cultures 

from six continents. For all Gl. mosseae sequences together, the intraspecific variation of the LSU-

D2 fragment is 19.4 % (170 sequences). The major clade had a variation of 15.8 % (158 sequences) 

and the smaller clade of 11.2 % (12 sequences). All other species in the clade showed an 

intraspecific variation between 1.2-5.0 % (5-28 sequences). 
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7.5 Discussion 

We analysed several regions of the nuclear rDNA region as possible candidates for DNA barcoding 

of AMF, including the widely used ITS region, which probably will become an official barcode for 

fungi (Seifert, 2009). However, Stockinger et al. (2009) already demonstrated that the ITS region is 

unsuitable to resolve some closely related AMF species, which could be resolved analysing a longer 

fragment, covering a part of the SSU, the ITS region and part of the LSU. Therefore, we used this 

approx. 1500 bp long and easily PCR amplifiable PCR fragment (Krüger et al., 2009) as a baseline 

for the present study. Based on this, shorter DNA fragments were studied for their power for species 

resolution (DNA barcoding). This was also done with respect to potential species monitoring by 454 

GS-FLX Titanium pyrosequencing (www.454.com; Valentini et al., 2009). 

7.5.1 Intraspecific rDNA variation 

Analyses presented in earlier publications (e.g., Lloyd-Macglip et al., 1996; Jansa et al., 2002; 

Walker et al., 2007) showed variable nuclear rDNA sequences to exist within one AMF spore, 

which holds true for all nuclear rDNA regions studied, but at different levels. One individual spore 

of Gl. intraradices (FL208) contains approximately the same extent of variation within the ITS 

region as found in two Gl. intraradices isolates from the same field site, but with 20 years in-

between (Stockinger et al., 2009). Based on that result, a single spore isolate or single spore DNA 

extractions could be interpreted as being valid to roughly define the intraspecific variability, but this 

will have to be proven in future, also with respect to differences in different phylogenetic lineages. 

The intraspecific and intrasporal variation varied considerably between the studied AMF species, 

for all regions analysed. This may only partly caused by different sampling density, as also when 

only AMF species with at least 24 known sequence variants were taken into account, the extent of 

intraspecific variation was diverse. In the present study, we followed the CBOL barcoding rules 

(www.barcoding.si.edu). This has to be mentioned, as the numbers for sequence variation differ 

significantly, depending on the method used for estimation. As an example, for Gl. intraradices 

(cultures FL208 and MUCL49410, together 47 sequences) the variation based on K2P distances is 

14.6 % in the ITS region, whereas a calculation based on uncorrected distances including gaps as a 

fifth character (Stockinger et al., 2009) raises the value to more than 23 %. Similarly high K2P 

distances were found, for the ITS region, of Gl. mosseae (12.2 %, 109 sequences) and Gl. fulvum 

(15 %, 5 sequences), including database sequences. The Gl. mosseae variation increased to 
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enormous 20.3 % when outlier sequences were included, but it is unlikely that these are from the 

same species. In comparison, the intrasporal ITS variation of Gl. mosseae analysed in this study was 

4.6 % (16 sequences) and only slightly increased to 5.3 % when adding 45 sequences from Gl. 

mosseae cultures with geographically widespread origin (Avio et al. 2009). Based on these data, 

there is some doubt whether all public database sequences annotated as Gl. mosseae are from the 

same species. 

The intraspecific variation of the complete LSU region was intermediate between that of the LSU-

D1 and the LSU-D2 fragment, with the highest variation (in the LSU-D2 core dataset) in Gl. 

intraradices (15.7 %; FL208 and MUCL49410). When including public database and outlier 

sequences, Gl. mosseae reached an intraspecific variation of 19.4 % (170 sequences in total), 

whereas without outliers the variation is 15.8 %. As for the ITS data, also here it is impossible to be 

sure about the conspecific origin of the database sequences annotated as Gl. mosseae. 

In general, the simple use of a % variation value as threshold to define and cluster molecular 

operational taxonomic units (MOTUs) for species identification must be considered inapplicable. 

7.5.2 Barcode gap analyses 

The comparison of the maximum intraspecific and the minimum interspecific variation revealed 

that none of the studied DNA fragments allowed absolute AMF species separation from a simple 

barcode gap analysis. Barcode gaps may often be an artefact of insufficient taxon sampling 

(Wiemers & Fiedler, 2007) and the likely existence of a large number of undescribed and 

uncharacterised species (Sýkorová et al., 2007; Kottke et al., 2008; Öpik et al., 2009) adds further 

complexity to the topic. Evidently, this method cannot be applied to AMF, when based on the rDNA 

regions. 

7.5.3 Phylogenetic analyses 

A barcode gap is not necessarily needed for a barcode-based identification of species, which can 

also be derived from phylogenetic inference. The phylogenetic analysis of the complete fragment 

(SSUmCf-LSUmBr) resulted in the strongest support for species. All species, where sequence data 

were available, could be separated by using simple neighbour joining analysis based on K2P 

distance. The about 1500 bp long sequences resulted in a clear distinction between Gl. proliferum, 

Gl. cf. clarum (Att894-7), Gl. intraradices (FL208, MUCL49410) and the closely related species or 

species complex represented by the Gl. irregulare-clade, in Glomus Group Ab. Maximum 
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likelihood analyses resulted in the same separation, with even higher support of the topology 

(Stockinger et al., 2009). The species concept is indirectly supported by the fact that also the 

mitochondrial LSU rDNA as a marker distinguishes between Gl. intraradices and sequences from 

the Gl. irregulare-clade (Börstler et al., 2008). It should be mentioned that the species description 

of Gl. irregulare did not compare all morphologically similar species and Gl. irregulare therefore 

may be a synonym of earlier described species (Walker, 2009). 

7.5.4 The ITS region 

The ITS region resolved many of the known species, but not the closely related members within 

Glomus Groups Ab and Aa, respectively. The intraspecific ITS variation is extremely high in these 

species and it is unclear how such highly divergent sequences can persist in an organism, even 

under relaxed concerted evolution. On the other hand, the ITS region resolved relatively closely 

related species in the Ambisporaceae (Walker et al., 2007), including Am. appendicula, which was 

earlier discussed as possibly being conspecific with Am. gerdemannii and Am. leptoticha (Morton & 

Redecker, 2001). Another example are the environmental ITS sequences labelled as Gl. versiforme, 

which do not cluster with the Gl. versiforme BEG47 and most likely represent distinct species, 

exemplifying that assigning environmental sequences to species should be done with care. 

For Glomus Group Aa, sequences with uncertain assignment to species are, e.g., from Gl. 

dimorphicum and Gl. monosporum, which were, on morphological grounds, discussed as possibly 

conspecific with Gl. mosseae (Walker, 1992). Further difficulties result from sequences originated 

from mixed cultures. For example, the fungus identified as Gl. monosporum INVAM FR115 was in 

a mixed culture that additionally contained spores of Gl. mosseae and Paraglomus occultum. The 

culture Gl. monosporum INVAM IT102 additionally contained Gl. mosseae and Gl. etunicatum 

spores (http://invam.caf.wvu.edu, 24.11.2009). It can neither be ruled out that the spores identified 

as Gl. mosseae and Gl. monosporum are conspecific, nor that contaminant sequences (Schüßler, 

1999) gave rise to wrong affiliations. In general, the Gl. mosseae sequences form two distinct 

clades, whereas the minor clade consists of sequences from two field sampled spores (GMO2 and 

GMO3). All GMO3 sequences (AF161059-64) and one GMO2 sequence (AF161058) fall in the 

minor clade, the remaining GMO2 sequences all fall in the major clade. Sequence AF161058 might 

be interpreted as a contaminant originating from spore GMO3 and sequences AF161058 and 

AF161059-64, consequently, might be interpreted as derived from an unidentified species, as 

discussed by Antoniolli et al. (2000). However, also here it is not possible to draw final conclusions, 

as the existing intrasporal ITS variation is unknown. In particular when including the database ITS 
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sequences it seems impossible to state whether the Gl. mosseae clade consists of one species or 

several species that cannot be separated. Analysing the complete fragment (SSUmCf-LSUmBr) for 

more cultures might solve this question. 

7.5.5 The LSU region 

Using the 800 bp LSU region resulted in more unresolved species in our neighbour joining analyses 

than using the ITS region. The reason could be ‘noise’ carried by the LSU-D1 fragment, which 

behaved worst with regard to resolving species, also for the core dataset. This could explains that 

the LSU-D2 fragment alone resolved species better than the complete 800 bp LSU region, with 

approximately the same species resolution power as the ITS region. Sequences of the cultures 

analysed by Rosendahl (2009), with geographically widespread origin, all fell into the main Gl. 

mosseae subclade (Fig. 6, lower clade). The authors suggested, based on the genetic variability 

found in the LSU and in two FOX2 and TOR gene introns that the geographical widespread isolates 

are closely related and the panglobal distribution likely is caused by anthropogenic dispersal. Our 

analyses may support this interpretation, but it should also be mentioned that three single spore 

isolates (HG isolate 209, BEG224, JJ isolate 243) gave rise to sequence variants in both, the major 

and the minor Gl. mosseae subclades. This indicates that the LSU variation reported in some studies 

may be an underestimate, caused by a lack of perhaps rare sequence types (represented by the upper 

LSU-D2 subclade in Figure 6). 

7.5.6 Database sequences 

It is clear that there are many inaccurate species determinations in the public sequence databases. 

For example, some ITS and SSU sequences annotated as of glomeromycotan origin were 

demonstrated to be from an ascomycete (Redecker et al. 1999; Schüßler, 1999). But also AMF 

contaminants sequences cannot be ruled when using spores from mixed species cultures. Some 

database sequences seem to be assigned to the wrong species. For example, Glomus fasciculatum 

sequences of two cultures (BEG53 and BEG58) cluster in two different groups, BEG53 in Glomus 

Group Ab and BEG58 in Glomus Group Aa. From a morphological viewpoint, it is very unlikely 

that BEG58 sequences X96842 and X96843 indeed belong to Gl. fasciculatum. A third party 

annotation facility in GenBank (as proposed by many mycologists, e.g., Bidartondo et al., 2008) or 

well defined and curated databases like UNITE would help to resolve sequence annotation 

problems in the Glomeromycota. 
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7.5.7 DNA fragments for 454 GS-FLX Titanium pyroseq uencing 

technology 

The 454 GS-FLX Titanium pyrosequencing technology currently allows an average read length of 

approx. 350-450 bp and offers great potential for ecological studies. Our data indicate that a read 

length of 400 bp will not be sufficient to identify all AMF species with certainty, based on 

neighbour joining analyses using such a short fragment only. However, there are alternative 

phylogenetic approaches that may overcome this lack of resolution when taking an alignment based 

on longer sequences as a ‘backbone’ for the phylogenetic inference. For example, the program 

RAxML 7.2.2 (http://wwwkramer.in.tum.de/exelixis/software.html) includes a new algorithm that 

offers likelihood values for phylogenetic positions of short sequences within a robust tree topology 

computed from longer sequences. We show the LSU-D2 and ITS2 fragments to be good candidates 

for species identification by 454 pyrosequencing. The LSU-D2 region may be preferred if AMF 

should be specifically amplified from roots or soil and it may have a slightly superior species 

resolution power. In studies where other groups of fungi are investigated together with the AMF 

diversity, the ITS2 fragment is a good alternative and can be amplified with established primers. We 

did not test the AM1-NS31 SSU fragment, used in many environmental studies including a recent 

454 GS-FLX sequencing approach, because the AM1 primer evidently discriminates many AMF 

taxa and this region clearly lacks species resolution power. 

7.5.8 Conclusion 

We show that, based on the rDNA regions studied, there is no barcode gap for many AMF species. 

The intraspecific variation is heterogeneous and exceptionally high in some phylogenetic groups. 

Neighbour joining analyses of the approx. 1500 bp SSUmCf-LSUmBr rDNA fragment 

distinguished all investigated species, whereas shorter rDNA fragments did not allow a separation 

of very closely related species. Regarding high throughput 454 GS-FLX Titanium pyrosequencing 

technology, the LSU-D2 and ITS2 fragments appear most suitable. However, beside purely 

methodological aspects, species recognition is mainly hampered by the lack of a comprehensive and 

accurate baseline dataset. For future analyses, a 'quantitative world of community analysis' beyond 

454 GS-FLX Titanium amplicon sequencing may soon become feasible by affordable high 

throughput sequencing of even longer DNA fragments (Pacific Biosciences 

www.pacificbiosciences.com; Eid et al., 2009). This may be taken as another argument in favour of 

using longer DNA barcodes for easier species resolution. 
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We propose the sequencing of the easily amplifiable SSUmCf-LSUmBr 1.5 kb fragment variants, 

covering the partial SSU, the ITS region and a part of the LSU, as a DNA barcoding region for 

Glomeromycota. We also recommend that such a molecular characterisation should be included as a 

prerequisite to AMF species description whenever possible. Such validated sequence data will be 

important for comprehensive molecular studies of AMF-plant associations in the field and they will 

help to uncover and study preferential associations, which are still mostly hidden. 
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8 General discussion 

The aim of my thesis was to develop and establish tools for the molecular characterisation and 

‘molecular tracing’ of AMF species in ecosystems. As a base, different genes and DNA regions had 

to be characterised and analysed for their potential use as DNA barcodes for AMF. DNA barcoding 

uses relatively short and standardized DNA marker sequences to determine species accurately, 

rapidly and cost efficiently (Frézal & Leblois, 2008). Ideally, DNA barcodes must be applicable for 

non-experts, culture independent and universally accessible. For AMF, DNA barcode identification 

would contribute significantly to biological research and agronomic field analyses as AMF are 

hidden in the soil, but known to increase plant biomass in varying degrees, depending on the AMF-

plant species combinations (van der Heijden et al., 2003; Klironomos, 2003; Smith & Read, 2008). 

A suitable AMF DNA barcode would help to determine the effects of particular AMF species to 

plants, in the field. The present work focused on the characterisation of a potential DNA barcode by 

using parts of widely studied rDNA sequences. The SSU rDNA region is largely giving the current 

molecular baseline for the higher AMF taxonomy (Schüßler et al., 2001), but often does not allow 

resolution at species level. Different regions of the rDNA were therefore analysed and evaluated for 

species resolution and identification power on several exemplary datasets. A summary of these 

analyses and results is shown in Figure 7. This included the in silico analysis of approximately 

400 bp fragments with regard to 454 GS-FLX Titanium sequencing. This new technology produces 

up to approx. 400 000 sequences with read lengths of approx. 400 bp in one run, which makes it 

suitable for environmental barcoding studies (Valentini et al., 2009). 
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Figure 7: Overview summarizing the main results of this thesis. A schematic phylogenetic tree is 
shown to the left. Analyses from sequences generated within this thesis are marked as coloured 
circles. The rDNA fragments analysed are displayed at the top. In relation to species resolution 
using neighbour joining analyses, sequences from one species form a monophyletic clade with a 
bootstrap support higher than 50 are indicated in green, sequences from one species form a 
monophyletic clade with a bootstrap support below 50 in yellow and sequences from one species, 
which do not form a monophyletic clade are shown in red. When analyses used additional 
sequences taken from databases the circles are marked with √ or X. √ marks successful species 
resolution after including additional database sequences, X marks lacking species resolution 
resulting after addition of database sequences for the given species.  
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8.1 AMF species resolution using the SSU rDNA 

In a first approach, the SSU rDNA was analysed for species resolution of AMF from the 

Ambisporaceae (chapter 4). Many glomeromycotan species have corresponding sequences of the 

SSU rDNA in the public databases, but not all are correctly identified. In the meanwhile, most AMF 

sequences in the databases are unidentified and of environmental origin. The results in chapter 4 

showed that analyses of the SSU rDNA do not allow resolving all Ambispora species. Members of 

this genus are known to produce dimorphic spores (both glomoid and acaulosporoid), which makes 

identification difficult when using purely morphological methods, particularly as some are thought 

to produce only glomoid spores. The limited resolution of the SSU rDNA is in agreement with a 

later study of Gamper et al. (2009) in which it proved impossible for members of the 

Diversisporaceae to separate all species. Another example are two closely related species, Gl. 

caledonium and Gl. geosporum, only showing a difference of 2-3 bp in this marker region 

(Rosendahl, 2008), which may be problematic when the quality of sequences is insufficient. 

Phylogenetic analyses of selected soil fungal species within Ascomycota and Zygomycota using 

partial SSU sequences only showed 52 % success rate for species identification (Molitor et al., 

2009). Bruns et al. (1991) already indicated that the SSU rDNA may not be suitable to separate 

fungi to species level, although at this time fewer sequences were available. 

Nevertheless, SSU or partial SSU fragments are widely used in characterizing AMF communities 

(Helgason et al., 1999; Wubet et al., 2006; Öpik et al., 2009). These analyses cannot be interpreted 

at species level and the comparison of such studies is difficult, a situation not changing principally 

with the introduction of operational taxonomic units (OTUs), molecular OTUs (MOTUs) or ‘virtual 

taxa’. The concept of OTUs follows that of bacteria, where OTUs are widely used based on a 3 % 

threshold of the SSU rDNA divergence to separate at species level (Quince et al., 2008). A similar 

transfer of the 3% threshold to AMF SSU analyses would, for instance, combine Gl. caledonium 

and Gl. geosporum to one species.  

Many unidentified AMF sequence types and clusters have been found in various ecological studies 

using parts of the SSU rDNA (e.g. Kottke et al., 2008; Öpik et al., 2009) highlighting the possible 

existence of many unknown AMF species. However, such sequence types or clusters (or OTUs) 

may contain more than one species, as exemplified in chapter 4 for Am. callosa, Am. gerdemannii 

and Am. leptoticha. On the other hand, several sequence clusters interpreted as distinct OTUs may 

correspond to one species. Due to the lack of species resolution, the SSU rDNA and the application 

of OTUs based on the SSU clearly are unsuitable for DNA barcoding.  
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8.2  AMF species resolution using the ITS region 

The ITS region is one of the most widely used markers for identification of fungi and has recently 

been considered to be a de-facto barcode for fungi (Seifert 2009). The ITS region was therefore 

chosen as the consequent promising marker sequence for AMF DNA barcoding. The first study 

(chapter 4) with a phylogenetic approach using the ITS region appeared promising. It was not only 

suited to resolve all well defined Ambisporaceae species tested, but also cryptic species. In addition, 

the ITS region separated species with very similar spore morphology. The ITS region was also used 

to separate AMF species in other families (Redecker et al., 2007; Gamper et al., 2009). Our 

subsequent research then focused on separating closely related species within the Glomus Group 

Ab, which contains the major model organism for AMF research, Glomus sp. DAOM197198. 

Although this organism was called Gl. intraradices, our studies (chapter 6) have shown it to be a 

different species more closely related to or perhaps conspecific with Gl. irregulare. However, in this 

case the ITS region alone was not suited to separate the closely related species, irrespective whether 

a simple neighbour joining or a more sophisticated maximum likelihood phylogenetic analysis was 

used. This partly is caused by the high intraspecific ITS region variation of up to 14.6 % K2P 

distance. High intraspecific ITS variation, such as uncorrected distances, within the Glomus Group 

Ab was already reported by Jansa et al. (2002b). The ITS region was also unsuited to distinguish all 

analysed species in some non-AMF fungal groups, e.g. the genus Cladosporium (Molitor et al. 

2009). Although for non-AMF the intraspecific variation can also reach relatively high levels, e.g. 

in Xylaria hypoxylon (Ascomycota, 24.2 %) and Rhizoctonia bataticola (Basidiomycota, 17.3 %), 

but is generally much lower than in glomeromycotan species (Nilsson et al., 2008). However, it 

should be noted that these values cannot be directly compared to the intraspecific variation reported 

in our and many other studies, because of methodological differences in pairwise distance 

calculation (see chapter 7). 

An analysis within this thesis (chapter 6) revealed that for Gl. intraradices FL208 a single AMF 

spore may contain approx. the same sequence variation as found within the two isolates available 

for this fungus (descendants from the FL208 ‘type culture’ and from a 20 years later re-isolation 

from the type locality). This high variation within a species and within an individual spore is 

remarkable and exceptional. Some studies argue that one AMF coenocyte contain genetically 

different nuclei (are heterokaryotic; Kuhn et al., 2001), though this is still moot (Pawlowska & 

Taylor, 2004). If the highly variable ITS sequences are located within one nucleus, a highly relaxed 

concerted evolution, which usually homogenizes the different repeats of rDNA, is indicated. 

Concerted evolution was demonstrated to be very efficient in some fungal species (Ganley & 
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Kobayashi, 2007) but e.g. relaxed in some species of cacti (Harpke & Peterson, 2006) and the 

grasshopper Podisma pedestris (Keller et al., 2006). This study (chapter 7) demonstrates, that not 

only AMF from Glomus group Ab, but also several species from other clades show a very high 

intraspecific ITS region (and also the LSU) variation. Therefore, relaxed concerted evolution seems 

widespread in Glomeromycota. 

The functional relevance of the numerous variants is still not clear, but some of them may represent 

pseudogenes. Such rDNA pseudogenes were detected in other organisms, for example in a fish (Xu 

et al., 2009), a coral (Marquez et al., 2003) and a cactus species (Hartmann et al., 2001).  

The high intraspecific variation makes DNA barcoding for AMF even more complex because for 

analyses it is desirable to have highly similar sequences within a species (Valentini et al., 2009). 

The distance between the maximum intraspecific and the minimum interspecific variation (K2P 

distances), defined as barcode gap (Hollingsworth et al., 2009; www.barcoding.si.edu), is very low 

in the ITS region of AMF species and overlaps in some closely related species (chapter 7). Species 

identification based on this simple method was therefore not successful for AMF. For rapid 

detection of species, Hebert et al. (2004) proposed that the minimum interspecific variation should 

be 10 times of the maximum intraspecific variation analysed with COXI for animals. The ITS 

region of AMF clearly does not fulfil this criterion, but the ITS region could be used to distinguish 

most, but not all, of the AMF species analysed here by phylogenetic methods.  

 

8.3 AMF species resolution using the LSU region 

Another widely used rDNA part for AMF species identification is the LSU region. Like the ITS 

region, this region has also been used for AMF species identification and community analyses (van 

Tuinen et al., 1998; Kjøller & Rosendahl, 2000; Gollotte et al., 2004; Pivato et al., 2007; Gamper et 

al., 2009). Most studies used the first 800 bp or even smaller parts of the 5’ region of the LSU 

rRNA gene. Two variable regions, D1 and D2, exist within the first 800 bp of the LSU, which are of 

great interest for species identification. Our study therefore focused on this fragment, and on two 

sub-fragments containing either the D1 or the D2 region. Gamper et al. (2009) demonstrated 

successful separation of species in the Diversisporaceae using a partial LSU fragment. These 

analyses are in agreement with our results, except for some potentially misannotated sequences 

from the database. The species identification using the 800 bp part of the LSU was not successful 

for some members of Glomus Group Ab and the Gigasporaceae. In some other fungal groups, for 

example in the Lecanoromycetes (Ascomycota; Hofstetter et al., 2007) and rusts (Vialle et al., 
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2009), the LSU also was not suited to resolve all species, whereas the LSU species resolution was 

better than that of four studied mitochondrial genes, for the rusts. For their studies on AMF, Gollotte 

et al. (2004) excluded the D1 by using PCR primers amplifying only the D2 domain. This seems 

very reasonable, as in the present work the LSU-D1 fragment analyses could not correctly separate 

about half of the species studied and, moreover, the analysis of the D2 performed as good as the 

analyses of the D1 and D2 regions together, indicating a high amount of ‘phylogenetic noise’ in the 

D1 domain. Analysing a LSU fragment covering the D2 domain, Rosendahl et al. (2009) showed 

very little sequence differences of max. 6 bp for Gl. mosseae isolates from several continents. The 

variation within their analysed Gl. mosseae isolates is smaller, compared to the one Gl. mosseae 

isolate Att109-20/BEG12 analysed here (chapter 7). Rosendahl et al. (2009) argue that the small 

variation of the LSU and two other genes analysed indicate an anthropogenic dispersal of the 

geographically very widespread isolates. 

 

8.4 Species resolution with ITS region and partial LSU sequences 

The longest fragment (SSUmCf-LSUmBr, approx. 1500 bp) used for our analyses covers approx. 

240 bp of the SSU, the complete ITS region, and approx. 800 bp of LSU. This fragment allowed 

separating all species analysed by a simple phylogenetic method (chapter 7). In addition, our 

analyses showed that the model organism Glomus sp. 'irregulare-like' DAOM197198 (formerly 

called Gl. intraradices) is not conspecific with Gl. intraradices, which is in agreement with mtLSU 

analyses of sequences of Glomus Group Ab (Börstler et al., 2008). 

The successful resolution by using the longer SSUmCf-LSUmBr fragment highlights the often 

ignored aspect that longer sequences usually have better phylogenetic resolution (Nei et al., 1998; 

Rokas & Carroll, 2005), if carrying additional phylogenetically informative regions. The conserved 

regions in the LSU can help to affiliate unknown sequences, because they provide higher-level 

taxonomic information and are also easier to align unambiguously. Because our study was the first 

using both the ITS and the LSU region for detailed phylogenetic analyses of AMF, a comparison of 

the longest fragment (SSUmCf-LSUmBr) for a wide range of AMF species is not yet possible. 

Some ectomycorrhizal community studies were carried out on the ITS and partial LSU region 

together to identify species (Tedersoo et al., 2008), whereas the additional use of the ITS region 

enhanced species resolution (Smith et al., 2007). 

The phylogenetic analyses of the longest fragment (SSUmCf-LSUmBr) clearly separated all species 

analysed in this study, but such separation could not be revealed with a simple barcode gap analysis. 
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Generally, barcode gaps may often represent an artefact caused by insufficient taxon sampling, as 

discussed by Wiemers and Fiedler (2007). Our results clearly indicate that simple barcode gap 

analyses are impossible for AMF, when based on the rDNA fragments, and that phylogenetic 

methods are needed for species resolution. 

 

8.5 Evaluation of short rDNA fragments for new sequ encing 

technologies 

New sequencing technologies such as 454 sequencing (www.454.com) allow the generation of up to 

400 000 sequences per run with an average read length of approx. 400 bp (Valentini et al., 2009) 

and are promising tools to overcome the labour and cost intensive cloning approach for analyses of 

organism communities. When testing the power of such relatively short fragments to separate AMF 

species, it turned out that in particular the LSU-D1 (LR1-FLR3) fragment was the least useful of the 

tested regions (chapter 7). The ITS2 fragment and the LSU-D2 (FLR3-LSUmBr) fragment 

performed better. In some 454 studies the ITS1 was used as target region for fungal community 

analyses (Buée et al., 2009; Jumpponen & Jones, 2009), but Nilsson et al. (2009) have shown that 

the results of BLAST search based on the ITS1 or ITS2 disagree in 40 % over the taxonomic 

affiliation of the query sequence, which is a fundamental problem. Hence the right selection of the 

fragment and the use of high quality annotate sequences will be crucial for comparability of 454 

analyses. 

In the 454 sequencing approach of Öpik et al. (2009), a part of the SSU rDNA was sequenced with 

approx. 250 bp average read lengths. However, the maximum resolution of such studies, after 97 % 

clustering to ‘virtual taxa’, clearly is above species level. One virtual taxon defined and detected by 

the criteria published may in fact represent a number of different species. In the Ambisporaceae, the 

full length SSU is not suited to distinguish species (chapter 4). Care has to be taken to avoid over-

interpretation of data, and using the term ‘virtual taxa’ for MOTUs is misleading, as the taxonomic 

or even the phylogenetic level is not defined. 

Other next-generation sequencing systems, such as Genetic Analyzer/Solexa (Illumina), SOLiD 

DNA Sequencer (Applied Biosystems) and Heliscope (Helicos) produce even more sequences, but 

with maximal read length of 75 bases (Valentini et al., 2009; www.illumina.com). Such short read 

lengths seem to be insufficient for AMF determination, because even the 400 bp analysed here 

failed to identify all species. However, species identification based on 400 bp sequences could be 

considerably improved by phylogenetic classification using a ‘backbone’ based on the analysis of 
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longer fragments. Such tools are already available, as e.g. implementation in the RAxML software 

(http://wwwkramer.in.tum.de/exelixis/software.html). 

A recently published paper describes another promising next-generation sequencing technology 

(Pacific Bioscience www.pacificbiosciences.com; Eid et al., 2009). With this method sequencing of 

long DNA fragments from environmental DNA samples may become feasible without prior PCR 

amplification, and the longest fragment (SSUmCf-LSUmBr) analysed here could be used for 

community analyses of AMF. 

 

8.6 Arbuscular mycorrhizal fungi DNA barcoding - a conclusion 

DNA barcodes, by definition, should be applicable to identify species. The long fragment (approx. 

1500 bp) analysed here fulfils this requirement, as shown by phylogenetic analyses (chapter 6 and 

7). The fragment contains the ITS region, which is a proposed DNA barcode region for fungi 

(Seifert, 2009). Even closely related species could be separated, which was also supported by 

independent mitochondrial LSU marker analyses (Börstler et al., 2008). The minimal length of 

DNA barcodes was proposed to be 500 bp (Frézal & Leblois, 2008; Seifert, 2009). On the other 

hand, for analysing herbarium specimens DNA barcodes should be short enough to allow the 

amplification of degraded DNA, which is difficult for more than 150 bp (Valentini et al., 2009). In 

this case, the maximum barcode length is limited by technical considerations. When DNA 

barcoding was first attempted, Sanger sequencing technology allowed read lengths of approx. 

700 bp, which perhaps was one of the reasons for the size of the first official barcode (COX1) of 

about 650 bp. However, Hajibabaei et al. (2006) had to increase the barcode length of COX1 to 

1500 bp to resolve two chimpanzee species.  

The ITS region as a common fungal barcode did work for all, except some AMF species examined 

here for our datasets (chapter 7). However, this must be seen on the background that only a part of 

the known AMF was analysed. Environmental studies done with the ITS region or the SSU region 

reveal many new AMF sequence types, which at least partly will turn out to be uncharacterised 

species (Renker et al., 2005; Sýkorová et al., 2007b; Öpik et al., 2009; Wubet et al., 2009). Ryberg 

et al. (2009) reported that the genus Glomus had a high proportion of insufficiently identified 

sequences. Such unknown species may reduce the resolution of the ITS barcode. Incorporating 

sequences from the database in the ITS region analyses resulted in reduced species resolution, 

although this could also be an effect of misannotated sequences. Nilsson et al. (2006) showed that 

up to 20 % of fungal sequences in the public databases may be incorrectly identified at species 
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level. Feau et al. (2009) also highlighted misidentified Melampsora rust species in herbarium and 

sequence databases. Such problem sequences emphasize the necessity of curated databases, as for 

example BOLD (Ratnasingham & Hebert, 2007) or UNITE (Kõljalg et al., 2005). Alternatively, a 

third party annotation in the public databases (GenBank, EMBL, DDBJ) would help to overcome 

this problem (Bidartondo et al., 2008), but currently this is not allowed. 

All AMF species analysed in the present thesis could be separated if the proposed, relatively long 

SSUmCf-LSUmBr fragment was used. In general, DNA regions of AMF analysed in this work 

showed a very high intraspecific variation. In birds, the COX1 intraspecific variation is about 2 % 

(Hebert et al., 2003), whereas in AMF the ITS region variation may be up to 14.6 %. Interestingly, 

one AMF spore can harbour approx. the entire degree of variability of two independent isolates, as 

shown for Gl. intraradices (chapter 6).  

Regarding the DNA barcode region for AMF proposed here, new primers (SSUmCf-LSUmBr; 

SSUmAf-LSUmAr) were designed and tested for both AMF spores and environmental root samples 

(chapter 5). DNA barcoding primers should optimally be universal to higher taxa, for example, the 

entire fungal kingdom. However, this kingdom is huge and contains estimated 1.5–3.5 million 

species (Hawksworth, 2001; O'Brien et al., 2005). For many gene regions it will perhaps not be 

possible to design primers covering all fungi. The new primers described in chapter 5 are designed 

specifically for AMF and therefore allow analyses from contaminated and root material. In some 

former studies, ascomycotan sequences were assigned as of glomeromycotan origin, as 

demonstrated in Schüßler (1999) and Redecker et al. (1999). It later turned out that even healthy 

looking and surface-sterilized spores were colonized and therefore contaminated by other fungi 

(Hijri et al., 2002). An important application for AMF specific primers is the PCR-amplification of 

AMF DNA from plant roots. Such roots are not only colonized by AMF, but also by other fungi 

such as pathogens and many endophytes. The DNA amplified with these new primers includes the 

priming sites for the widely used primer pair ITS4 and ITS5, which is often used to identify fungal 

species and may be used as a general fungal DNA barcoding primer pair (Seifert, 2009). Therefore, 

the DNA barcode proposed here for AMF also covers and is compatible with the one suggested as a 

general fungal barcode. Beside the better species separation power of the long fragment, it will also 

allow to affiliate LSU sequences to their species if the ITS region fails to match to a sequence in the 

database. In AMF, use of the combined ITS region and partial LSU regions currently seems 

unavoidable for species separation, when based on rDNA. 
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8.7 Outlook 

AMF DNA barcodes provide a powerful and useful tool to identify species and provide a 

complementary method to classical morphological analyses. In the near future it will be desirable to 

generate more DNA barcodes for a greater coverage of AMF species. Morphologically well 

characterized AMF species and cultures are urgently needed to build up such a database, and AMF 

cultures should also be made available to the scientific community. Additionally, the DNA 

barcoding region should be analysed for all newly described species and the sequences should be 

deposited in a public database, similar to the classical need of conserving vouchers in a herbarium. 

For AMF several divergent sequences from a given species should be included. As indicated in 

chapter 6 for Gl. intraradices FL208, the analysis of a single spore may already cover a significant 

part of the intraspecific variability. 

The combined application of plant and AMF DNA barcodes will create an opportunity for analysing 

AMF-plant associations from root samples. The identification of the host and the symbiont could 

simultaneously be established from the same sample. Information about AMF species preferentially 

associated with certain plants may, e.g., be important for restoration and reforestation success 

(Wubet et al., 2009; Urgiles et al., 2009). This minimal destructive sampling method would also 

allow sampling of rare and endangered species.  

In phylogenetic analyses of AMF with molecular biological tools, individual sequences are often 

used to determine the identity. For short sequences, this in many cases may be insufficient for the 

species level, which is partly due to limited information content, partly to the high intraspecific 

variation (especially when analysing closely related species). On the other hand, a characterisation 

of intraspecific sequence variation of the longer fragment (SSUmCf-LSUmBr) proposed here as 

barcode will facilitate the separation of species based on shorter fragments (ITS or LSU) in future, 

at least to some extent.  

DNA barcode identification for AMF appears to offer a significant contribution to biological 

research and agronomic field analyses in the near future. In general, AMF supply phosphorus and 

other nutrients to plants, influence the plant and soil water relations and can stabilise soil through 

their hyphal network and secreted glycoproteins. These multifunctional beneficial effects on plant 

are gaining more interest because of the increasing demand for food and other plant materials, and 

for sustainable agricultural systems. Traditionally, plant production is promoted in high input 

systems by high amounts of fertilizers, but rock phosphate resources are depleting (Cordell et al., 

2009) and the increases in energy prices raise costs for nitrogen fertilizers (Huang, 2007). The 

application of AMF can help to reduce the fertilizer requirements for plant production (Sharma & 
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Adholeya, 2004). Therefore it is imporant to identify the most ‘suitable’ AMF species in the field or 

in nurseries. Molecular tools, such as DNA barcoding, are needed to characterise the efficient plant-

fungus combinations. Already a decade ago, van der Heijden et al. (1998) showed that plant species 

respond differently to various AMF species combinations. In addition, AMF species identification 

will play a role in approaches to breed plant cultivars with higher responsiveness to AM (Boomsma 

& Vyn, 2008). Another applied aspect is the fact that a standardized species classification system 

(DNA barcodes) will help inoculum producers to improve their quality control systems and to 

define their used AMF species. In addition, the use of a general fungal barcode allows the screening 

of inoculum for pathogenic fungi. DNA barcoding would eventually also reduce costs and time 

when compared to microscopical examination (von Alten et al., 2002; Gianinazzi & Vosátka, 2004). 

The importance of quality control in AMF production was emphasized at the formation of a 

working group within the COST action 870, which focuses on this topic 

(www.cost870.eu/cost.htm). Besides of being useful in laboratory research and for inoculum 

producers, a DNA barcode will facilitate AMF identification for quarantine and control agencies. 

An accurate AMF DNA barcode will moreover, at least in certain cases, allow tracing of introduced 

AMF in the field and the verification of the successful establishment and survival of applied AMF 

inoculum. 

Molecular tools are the only possibility to analyse the AMF species colonizing plant roots and to 

answer related ecological questions in AMF research. Several studies have been done on 

biodiversity and community analyses of AMF with molecular tools (Renker et al., 2005; Wubet et 

al., 2006; Hempel et al., 2007; Sýkorová et al., 2007b; Öpik et al., 2009). Most of the used DNA 

regions, however, lack species resolution. Furthermore, the primers used were often selective for 

subgroups within AMF and not covering the complete community (Schüßler, 2001). With both the 

newly designed primers presented in this work (chapter 5), targeting all Glomeromycota, and the 

knowledge of the intra- and interspecific sequence variation, species identification should be 

possible, also for AMF species communities. Although differences between two different types of 

AMF communities could be shown working with 'virtual taxa' (Öpik et al., 2009), such types of 

analyses would be much improved if performed at species or individual organismic level. 

It has been shown here that DNA barcoding in AMF is possible (chapter 7), but it is by far not as 

straightforward as barcoding in animals (e.g. Hebert et al., 2004). It is desirable that such a barcode 

is compatible with that used for other fungi. Although it would be a great improvement to use a 

uniform DNA barcode, such as the ITS region, for all fungi, the region on its own is not sufficiently 

accurate for robust species delineation and should be extended for Glomeromycota. This thesis 

contributes significantly to the discussion and evaluation of DNA barcodes for fungi and offers 
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improvements with regard to selected primers and detailed analyses of barcoding regions for AMF. 

The approx. 1500 bp SSUmCf-LSUmBr fragment is proposed as an extended DNA barcode for 

AMF, whereas the ITS2 and the LSU-D2 regions both are proposed as shorter barcodes for analyses 

making use of 454GS-FLX Titanium sequencing approaches. This and other deep sequencing 

methods will offer the potential of a rapid screening and monitoring of AMF communities in close 

future. However, robust deep sequencing data interpretation will strongly depend on well 

characterised and annotated ‘hand made’ sequences as a fundamental baseline, which in turn 

depends on the availability of diverse and well characterised AMF isolates. 
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11 Appendix 

11.1 Supplementary data 

The following data are supplementary material of the submitted publication “DNA barcoding of 

arbuscular mycorrhiza fungi” (chapter 7). 

Table S1: Sequences used for analysis of the Ambisporaceae ITS region and ITS2 
fragment (see Figure S8). 
 
Accession Species Culture/voucher 
FN547524 Ambispora appendicula Att1235-2/W5156 
FN547525 Ambispora appendicula Att1235-2/W5156 
FN547526 Ambispora appendicula Att1235-2/W5156 
FN547527 Ambispora appendicula Att1235-2/W5156 
FN547528 Ambispora appendicula Att1235-2/W5156 
FN547529 Ambispora appendicula Att1235-2/W5156 
FN547530 Ambispora appendicula Att1235-2/W5156 
FN547531 Ambispora appendicula Att1235-2/W5156 
FN547532 Ambispora appendicula Att1235-2/W5156 
FN547533 Ambispora appendicula Att1235-2/W5156 
FN547534 Ambispora appendicula Att1235-2/W5156 
AB048656 Ambispora callosa MAFF520057/W4769 
AB048657 Ambispora callosa MAFF520057/W4769 
AB048658 Ambispora callosa MAFF520057/W4769 
AB048659 Ambispora callosa MAFF520057/W4769 
AB048660 Ambispora callosa MAFF520057/W4769 
AB048661 Ambispora callosa MAFF520057/W4769 
AB048662 Ambispora callosa MAFF520057/W4769 
AB048663 Ambispora callosa MAFF520057/W4769 
AB048664 Ambispora callosa MAFF520057/W4769 
AB048665 Ambispora callosa MAFF520057/W4769 
AB048666 Ambispora callosa MAFF520057/W4769 
AB048667 Ambispora callosa MAFF520057/W4769 
AB048668 Ambispora callosa MAFF520057/W4769 
AB048669 Ambispora callosa MAFF520057/W4769 
AB048670 Ambispora callosa MAFF520057/W4769 
AB048671 Ambispora callosa MAFF520058/W4771 
AB048672 Ambispora callosa MAFF520058/W4771 
AB048673 Ambispora callosa MAFF520058/W4771 
AB048674 Ambispora callosa MAFF520058/W4771 
AB048675 Ambispora callosa MAFF520058/W4771 
AB048676 Ambispora callosa MAFF520058/W4771 
AB048677 Ambispora callosa MAFF520058/W4771 
AB048678 Ambispora callosa MAFF520058/W4771 
AB048679 Ambispora callosa MAFF520058/W4771 
AB048680 Ambispora callosa MAFF520058/W4771 
AB048681 Ambispora callosa MAFF520058/W4771 
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AB048682 Ambispora callosa MAFF520058/W4771 
AB259840 Ambispora callosa OK-m1/W4768 
AB259841 Ambispora callosa OK-m1/W4768 
AB259842 Ambispora callosa OK-m1/W4768 
AB259843 Ambispora callosa OK-m1/W4768 
AB259844 Ambispora callosa MAFF520073/W4752 
AB259845 Ambispora callosa MAFF520073/W4752 
AB259846 Ambispora callosa MAFF520073/W4752 
AM268197 Ambispora fennica Att200-11/W3569 
AM268198 Ambispora fennica Att200-23/W4752 
AM268199 Ambispora fennica Att200-11/W3569 
AM268200 Ambispora fennica Att200-11/W3569 
AM268201 Ambispora fennica Att200-11/W3569 
AM268202 Ambispora fennica Att200-11/W3569 
AM268203 Ambispora fennica Att200-23/W4752 
FN547535 Ambispora fennica Att200-23/W4752 
FN547536 Ambispora fennica Att200-23/W4752 
FN547537 Ambispora fennica Att200-23/W4752 
FN547538 Ambispora fennica Att200-23/W4752 
FN547539 Ambispora fennica Att200-23/W4752 
FN547540 Ambispora fennica Att200-23/W4752 
FN547541 Ambispora fennica Att200-23/W4752 
FN547542 Ambispora fennica Att200-23/W4752 
FN547543 Ambispora fennica Att200-23/W4752 
FN547544 Ambispora fennica Att200-23/W4752 
FN547545 Ambispora fennica Att200-23/W4752 
FN547546 Ambispora fennica Att200-23/W4752 
AM743187 Ambispora gerdemannii INVAM AU215 
AB048630 Ambispora leptoticha MAFF520055/W4770 
AB048631 Ambispora leptoticha MAFF520055/W4770 
AB048632 Ambispora leptoticha MAFF520055/W4770 
AB048633 Ambispora leptoticha MAFF520055/W4770 
AB048634 Ambispora leptoticha MAFF520055/W4770 
AB048635 Ambispora leptoticha MAFF520055/W4770 
AB048636 Ambispora leptoticha MAFF520055/W4770 
AB048637 Ambispora leptoticha MAFF520055/W4770 
AB048638 Ambispora leptoticha MAFF520055/W4770 
AB048639 Ambispora leptoticha MAFF520055/W4770 
AB048640 Ambispora leptoticha MAFF520055/W4770 
AB048641 Ambispora leptoticha MAFF520055/W4770 
AB048642 Ambispora leptoticha MAFF520055/W4770 
AB048643 Ambispora leptoticha MAFF520055/W4770 
AB048644 Ambispora leptoticha MAFF520055/W4770 
AB048645 Ambispora leptoticha MAFF520055/W4770 
AB048646 Ambispora leptoticha MAFF520055/W4770 
AB048647 Ambispora leptoticha MAFF520055/W4770 
AB048648 Ambispora leptoticha MAFF520055/W4770 
AB048649 Ambispora leptoticha MAFF520055/W4770 
AB048650 Ambispora leptoticha MAFF520055/W4770 
AB048651 Ambispora leptoticha MAFF520055/W4770 
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AB048652 Ambispora leptoticha MAFF520055/W4770 
AB048653 Ambispora leptoticha MAFF520055/W4770 
AB048654 Ambispora leptoticha MAFF520055/W4770 
AB048655 Ambispora leptoticha MAFF520055/W4770 
AJ567807 Am. sp. from Plantago lanceolata 

roots 
environmental 

AY236277 Am. sp. from Prunus africana environmental 
AY174701 Am. sp. from Taxus baccata environmental 
AY174702 Am. sp. from Taxus baccata environmental 
AY174703 Am. sp. from Taxus baccata environmental 
AY174707 Am. sp. from Taxus baccata environmental 
AY174708 Am. sp. from Taxus baccata environmental 
AY174710 Am. sp. from Taxus baccata environmental 
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Table S2: Sequences used for analyses of the Diversisporaceae ITS region and ITS2 
fragment (see Figure S9). 
Accession Species Culture/voucher 
AM713402 Diversispora celata FACE234; BEG231 
AM713403 Diversispora celata FACE234; BEG231 
AM713404 Diversispora celata FACE234; BEG231 
FN547637 Diversispora spurca Att246-18/W4119 
FN547638 Diversispora spurca Att246-18/W4119 
FN547639 Diversispora spurca Att246-18/W4119 
FN547640 Diversispora spurca Att246-18/W4119 
FN547641 Diversispora spurca Att246-18/W4119 
FN547642 Diversispora spurca Att246-18/W4119 
FN547643 Diversispora spurca Att246-18/W4119 
FN547644 Diversispora spurca Att246-18/W4119 
FN547645 Diversispora spurca Att246-18/W4119 
FN547646 Diversispora spurca Att246-18/W4119 
FN547647 Diversispora spurca Att246-18/W4119 
FN547648 Diversispora spurca Att246-18/W4119 
FN547649 Diversispora spurca Att246-18/W4119 
FN547650 Diversispora spurca Att246-18/W4119 
FN547651 Diversispora spurca Att246-18/W4119 
FN547652 Diversispora spurca Att246-18/W4119 
FN547653 Diversispora spurca Att246-18/W4119 
FN547654 Diversispora spurca Att246-18/W4119 
AM418549 Glomus pulvinatum environmental 
AM418550 Glomus pulvinatum environmental 
AJ849468 Glomus aurantium Holotype. Błaszkowski J., 2444 (DPP) 
FN547655 Glomus aurantium Att1296-0/W4728 
FN547656 Glomus aurantium Att1296-0/W4728 
FN547657 Glomus aurantium Att1296-0/W4728 
FN547658 Glomus aurantium Att1296-0/W4728 
FN547659 Glomus aurantium Att1296-0/W4728 
FN547660 Glomus aurantium Att1296-0/W4728 
FN547661 Glomus aurantium Att1296-0/W4728 
FN547662 Glomus aurantium Att1296-0/W4728 
FN547663 Glomus aurantium Att1296-0/W4728 
FN547664 Glomus aurantium Att1296-0/W4728 
FN547665 Glomus aurantium Att1296-0/W4728 
AM713405 Glomus eburneum AZ420A/W4729 
AM713406 Glomus eburneum AZ420A/W4729 
AM713407 Glomus eburneum AZ420A/W4729 
AM713408 Glomus eburneum AZ420A/W4729 
AM713409 Glomus eburneum AZ420A/W4729 
AM713410 Glomus eburneum AZ420A/W4729 
AM713411 Glomus eburneum AZ420A/W4729 
AM713412 Glomus eburneum AZ420A/W4729 
AM713413 Glomus eburneum AZ420A/W4729 
AM713414 Glomus eburneum AZ420A/W4729 
AM713415 Glomus eburneum AZ420A/W4729 
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AM713416 Glomus eburneum AZ420A/W4729 
AM418544 Glomus fulvum environmental 
AM418545 Glomus fulvum environmental 
AM418546 Glomus fulvum environmental 
AM418547 Glomus fulvum environmental 
AM418548 Glomus fulvum environmental 
AM418551 Glomus megalocarpum environmental 
AM418552 Glomus megalocarpum environmental 
AF185677 Glomus sp. INVAM AZ237B 
AF185679 Glomus sp. INVAM AZ237B 
AF185680 Glomus sp. INVAM AZ237B 
AF185681 Glomus sp. INVAM AZ237B 
AF185682 Glomus sp. INVAM NB101 
AF185690 Glomus sp. INVAM NB101 
AF185693 Glomus sp. INVAM NB101 
AF185694 Glomus sp. INVAM NB101 
AJ504642 Glomus sp. 'versiforme' environmental 
AJ504643 Glomus sp. 'versiforme' environmental 
AJ504644 Glomus sp. 'versiforme' environmental 
AJ516922 Glomus sp. 'versiforme' environmental 
AJ516923 Glomus sp. 'versiforme' environmental 
AJ516924 Glomus sp. 'versiforme' environmental 
AJ516925 Glomus sp. 'versiforme' environmental 
AJ516926 Glomus sp. 'versiforme' environmental 
AJ516927 Glomus sp. 'versiforme' environmental 
AJ516928 Glomus sp. 'versiforme' environmental 
AJ516929 Glomus sp. 'versiforme' environmental 
AJ516930 Glomus sp. 'versiforme' environmental 
AJ516931 Glomus sp. 'versiforme' environmental 
AJ516932 Glomus sp. 'versiforme' environmental 
AJ516933 Glomus sp. 'versiforme' environmental 
AJ516934 Glomus sp. 'versiforme' environmental 
AJ516935 Glomus sp. 'versiforme' environmental 
AJ517781 Glomus sp. 'versiforme' environmental 
AM076636 Glomus sp. 'versiforme' environmental 
AM076637 Glomus sp. 'versiforme' environmental 
AM076638 Glomus sp. 'versiforme' environmental 
DQ400187 Glomus sp. 'versiforme' environmental 
DQ400194 Glomus sp. 'versiforme' environmental 
DQ400197 Glomus sp. 'versiforme' environmental 
DQ400198 Glomus sp. 'versiforme' environmental 
DQ400212 Glomus sp. 'versiforme' environmental 
DQ400223 Glomus sp. 'versiforme' environmental 
DQ400225 Glomus sp. 'versiforme' environmental 
DQ400227 Glomus sp. 'versiforme' environmental 
DQ400229 Glomus sp. 'versiforme' environmental 
AF246141 Glomus versiforme BEG47 
AF246142 Glomus versiforme BEG47 
AF246143 Glomus versiforme BEG47 
AY842567 Glomus versiforme BEG47 
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AY842568 Glomus versiforme BEG47 
AY842569 Glomus versiforme BEG47 
FM876814 Glomus versiforme BEG47/W5165 
FM876815 Glomus versiforme BEG47/W5165 
FM876816 Glomus versiforme BEG47/W5165 
FM876817 Glomus versiforme BEG47/W5165 
FM876818 Glomus versiforme BEG47/W5165 
FM876819 Glomus versiforme BEG47/W5165 
FM876820 Glomus versiforme BEG47/W5165 
FN547635 Glomus versiforme BEG47/W5165 
FN547636 Glomus versiforme BEG47/W5165 
FN547666 Glomus versiforme BEG47/W3180 
FN547667 Glomus versiforme BEG47/W3180 
FN547668 Glomus versiforme BEG47/W3180 
FN547669 Glomus versiforme BEG47/W3180 
FN547670 Glomus versiforme BEG47/W3180 
FN547671 Glomus versiforme BEG47/W3180 
FN547672 Glomus versiforme BEG47/W3180 
FN547673 Glomus versiforme BEG47/W3180 
FN547674 Glomus versiforme BEG47/W3180 
FN547675 Glomus versiforme BEG47/W3180 
FN547676 Glomus versiforme BEG47/W3180 
FN547677 Glomus versiforme BEG47/W3180 
FN547678 Glomus versiforme BEG47/W3180 
FN547679 Glomus versiforme BEG47/W3180 
FN547680 Glomus versiforme BEG47/W3180 
FN547681 Glomus versiforme BEG47/W3180 
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Table S3: Sequences used for analyses of the Diversisporaceae LSU 
region, LSU-D1 and LSU-D2 fragment (see Figure S10). 

 

Accession Species Culture/voucher 
AM713402 Diversispora celata BEG231 (FACE234) 
AM713403 Diversispora celata BEG231 (FACE234) 
AM713404 Diversispora celata BEG231 (FACE234) 
AM713405 Glomus eburneum AZ420A/W4729 
AM713406 Glomus eburneum AZ420A/W4729 
AM713407 Glomus eburneum AZ420A/W4729 
AM713408 Glomus eburneum AZ420A/W4729 
AM713409 Glomus eburneum AZ420A/W4729 
AM713410 Glomus eburneum AZ420A/W4729 
AM713411 Glomus eburneum AZ420A/W4729 
AM713412 Glomus eburneum AZ420A/W4729 
AM713413 Glomus eburneum AZ420A/W4729 
AM713414 Glomus eburneum AZ420A/W4729 
AM713415 Glomus eburneum AZ420A/W4729 
AM713416 Glomus eburneum AZ420A/W4729 
FN547635 Glomus versiforme BEG47/W5165 
FN547636 Glomus versiforme BEG47/W5165 
FM876814 Glomus versiforme BEG47/W5165 
FM876815 Glomus versiforme BEG47/W5165 
FM876816 Glomus versiforme BEG47/W5165 
FM876817 Glomus versiforme BEG47/W5165 
FM876818 Glomus versiforme BEG47/W5165 
FM876819 Glomus versiforme BEG47/W5165 
FM876820 Glomus versiforme BEG47/W5165 
FN547637 Diversispora spurca Att246-18/W4119 
FN547638 Diversispora spurca Att246-18/W4119 
FN547639 Diversispora spurca Att246-18/W4119 
FN547640 Diversispora spurca Att246-18/W4119 
FN547641 Diversispora spurca Att246-18/W4119 
FN547642 Diversispora spurca Att246-18/W4119 
FN547643 Diversispora spurca Att246-18/W4119 
FN547644 Diversispora spurca Att246-18/W4119 
FN547645 Diversispora spurca Att246-18/W4119 
FN547646 Diversispora spurca Att246-18/W4119 
FN547647 Diversispora spurca Att246-18/W4119 
FN547648 Diversispora spurca Att246-18/W4119 
FN547649 Diversispora spurca Att246-18/W4119 
FN547650 Diversispora spurca Att246-18/W4119 
FN547651 Diversispora spurca Att246-18/W4119 
FN547652 Diversispora spurca Att246-18/W4119 
FN547653 Diversispora spurca Att246-18/W4119 
FN547654 Diversispora spurca Att246-18/W4119 
FN547655 Glomus aurantium Att1296-0/W4728 
FN547656 Glomus aurantium Att1296-0/W4728 
FN547657 Glomus aurantium Att1296-0/W4728 
FN547658 Glomus aurantium Att1296-0/W4728 
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FN547659 Glomus aurantium Att1296-0/W4728 
FN547660 Glomus aurantium Att1296-0/W4728 
FN547661 Glomus aurantium Att1296-0/W4728 
FN547662 Glomus aurantium Att1296-0/W4728 
FN547663 Glomus aurantium Att1296-0/W4728 
FN547664 Glomus aurantium Att1296-0/W4728 
FN547665 Glomus aurantium Att1296-0/W4728 
FN547666 Glomus versiforme BEG47/W3180 
FN547667 Glomus versiforme BEG47/W3180 
FN547668 Glomus versiforme BEG47/W3180 
FN547669 Glomus versiforme BEG47/W3180 
FN547670 Glomus versiforme BEG47/W3180 
FN547671 Glomus versiforme BEG47/W3180 
FN547672 Glomus versiforme BEG47/W3180 
FN547673 Glomus versiforme BEG47/W3180 
FN547674 Glomus versiforme BEG47/W3180 
FN547675 Glomus versiforme BEG47/W3180 
FN547676 Glomus versiforme BEG47/W3180 
FN547677 Glomus versiforme BEG47/W3180 
FN547678 Glomus versiforme BEG47/W3180 
FN547679 Glomus versiforme BEG47/W3180 
FN547680 Glomus versiforme BEG47/W3180 
FN547681 Glomus versiforme BEG47/W3180 
AY842574 Glomus versiforme BEG47/W3180 
AY842573 Glomus versiforme BEG47/W3180 
EF067888 Glomus eburneum INVAM AZ420A 
EF067887 Glomus eburneum INVAM AZ420A 
EF067886 Glomus eburneum INVAM AZ420A 
AM947665 Glomus versiforme BEG47 
AM947664 Glomus versiforme BEG47 
EU346868 Glomus versiforme HDAM-4 
AY639306 Diversispora celata BEG231 (FACE234) 
AY639235 Diversispora celata BEG231 (FACE234) 
AY639234 Diversispora celata BEG231 (FACE234) 
AY639233 Diversispora celata BEG231 (FACE234) 
AY639241 Diversispora celata BEG232 (FACE272) 
AY639240 Diversispora celata BEG232 (FACE272) 
AY639239 Diversispora celata BEG232 (FACE272) 
AY639238 Diversispora celata BEG232 (FACE272) 
AY639237 Diversispora celata BEG232 (FACE272) 
AY639236 Diversispora celata BEG232 (FACE272) 
DQ350448 Diversispora celata BEG233 (FACE410) 
DQ350449 Diversispora celata BEG233 (FACE410) 
DQ350450 Diversispora celata BEG233 (FACE410) 
DQ350451 Diversispora celata BEG233 (FACE410) 
DQ350452 Diversispora celata BEG233 (FACE410) 
DQ350453 Diversispora celata BEG233 (FACE410) 
AY639232 Diversispora celata BEG230 (FACE83) 
AY639231 Diversispora celata BEG230 (FACE83) 
AY639230 Diversispora celata BEG230 (FACE83) 
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AY639229 Diversispora celata BEG230 (FACE83) 
AY639228 Diversispora celata BEG230 (FACE83) 
AY639227 Diversispora celata BEG230 (FACE83) 
AY639226 Diversispora celata BEG230 (FACE83) 
EF581864 Glomus aurantium Att1296-0/W4728 
EF581863 Glomus aurantium Att1296-0/W4728 
EF581862 Glomus aurantium Att1296-0/W4728 
EF581861 Glomus aurantium Att1296-0/W4728 
EF581860 Glomus aurantium Att1296-0/W4728 
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Table S4: Sequences used for analysis of the Glomus Group Aa ITS region 
and ITS2 fragment (see Figure 6). 
Accession Species Culture/voucher 
X96842 Glomus cf. fasciculatum BEG58 
X96843 Glomus cf. fasciculatum BEG58 
AY035642 Glomus caledonium JJ36 
AY035646 Glomus caledonium JJ40 
AY035647 Glomus caledonium JJ41 
AY035651 Glomus caledonium BEG161 
FN547494 Glomus caledonium BEG20/W3294 
FN547495 Glomus caledonium BEG20/W3294 
FN547496 Glomus caledonium BEG20/W3294 
FN547497 Glomus caledonium BEG20/W3294 
FN547498 Glomus caledonium BEG20/W3294 
FN547499 Glomus caledonium BEG20/W3294 
AJ890365 Glomus coronatum IMA3 
AJ890366 Glomus coronatum IMA3 
FM213083 Glomus coronatum environmental 
FM213084 Glomus coronatum environmental 
FM213085 Glomus coronatum environmental 
FM213086 Glomus coronatum environmental 
FM213087 Glomus coronatum environmental 
FM213088 Glomus coronatum environmental 
FM876794 Glomus coronatum BEG28 (Att108-7) 
FM876795 Glomus coronatum BEG28 (Att108-7) 
FM876796 Glomus coronatum BEG28 (Att108-7) 
FM876797 Glomus coronatum BEG28 (Att108-7) 
FM876798 Glomus coronatum BEG28 (Att108-7) 
X96844 Glomus coronatum BEG28 
X96845 Glomus coronatum BEG28 
X96846 Glomus coronatum BEG28 
X96838 Glomus dimorphicum BEG59 
X96839 Glomus dimorphicum BEG59 
X96840 Glomus dimorphicum BEG59 
X96841 Glomus dimorphicum BEG59 
AF231469 Glomus geosporum unknown 
AJ319778 Glomus geosporum unknown 
AJ319779 Glomus geosporum unknown 
AJ319780 Glomus geosporum unknown 
AJ319781 Glomus geosporum unknown 
AJ319782 Glomus geosporum unknown 
AJ319783 Glomus geosporum unknown 
AJ319784 Glomus geosporum unknown 
AJ319785 Glomus geosporum unknown 
AJ319786 Glomus geosporum unknown 
AJ319787 Glomus geosporum unknown 
AJ319788 Glomus geosporum unknown 
AJ319789 Glomus geosporum unknown 
AJ319790 Glomus geosporum unknown 
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AJ319791 Glomus geosporum unknown 
AJ319792 Glomus geosporum unknown 
AJ319793 Glomus geosporum unknown 
AJ319794 Glomus geosporum unknown 
AJ319795 Glomus geosporum unknown 
AJ319796 Glomus geosporum unknown 
AJ319797 Glomus geosporum unknown 
AJ319798 Glomus geosporum unknown 
AJ319799 Glomus geosporum unknown 
AJ319800 Glomus geosporum unknown 
AJ319801 Glomus geosporum unknown 
AJ319802 Glomus geosporum unknown 
AJ319803 Glomus geosporum unknown 
FJ009619 Glomus geosporum unknown 
FJ009620 Glomus geosporum unknown 
FJ009621 Glomus geosporum unknown 
FJ009622 Glomus geosporum unknown 
AF004689 Glomus monosporum INVAM IT102 
AF004690 Glomus monosporum INVAM FR115 
AF125195 Glomus monosporum INVAM FR115 
AF161043 Glomus mosseae environmental (GMO1a) 
AF161044 Glomus mosseae environmental (GMO1b) 
AF161045 Glomus mosseae environmental (GM01c) 
AF161046 Glomus mosseae environmental (GMO1d) 
AF161047 Glomus mosseae environmental (GMO1e) 
AF161048 Glomus mosseae environmental (GMO1f) 
AF161049 Glomus mosseae environmental (GMO1g) 
AF161050 Glomus mosseae environmental (GMO1h) 
AF161051 Glomus mosseae environmental (GMO1i) 
AF161052 Glomus mosseae environmental (GMO1j) 
AF161053 Glomus mosseae environmental (GMO1l) 
AF161054 Glomus mosseae environmental (GMO1) 
AF161055 Glomus mosseae environmental (GMO2a) 
AF161056 Glomus mosseae environmental (GMO2b) 
AF161057 Glomus mosseae environmental (GMO2c) 
AF161058 Glomus mosseae environmental (GMO2e) 
AF161059 Glomus mosseae environmental (GMO3a) 
AF161060 Glomus mosseae environmental (GMO3b) 
AF161061 Glomus mosseae environmental (GMO3c) 
AF161062 Glomus mosseae environmental (GM03d) 
AF161063 Glomus mosseae environmental (GM03e) 
AF161064 Glomus mosseae environmental (GM03f) 
AF166276 Glomus mosseae environmental (GMO2d) 
AJ849469 Glomus mosseae unknown 
AJ919273 Glomus mosseae INVAM AZ225C 
AJ919274 Glomus mosseae INVAM AZ225C 
AJ919275 Glomus mosseae INVAM NB114 
AJ919276 Glomus mosseae INVAM IN101C 
AJ919277 Glomus mosseae INVAM FL156 
AJ919278 Glomus mosseae INVAM FL156 
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AM076635 Glomus mosseae environmental 
AM157131 Glomus mosseae ISCB13 
AM157132 Glomus mosseae ISCB17 
AM157133 Glomus mosseae ISCB22 
AM157134 Glomus mosseae ISCB19 
AM157135 Glomus mosseae ISCB20 
AM423114 Glomus mosseae IMA1 
AM423115 Glomus mosseae IMA1 
AM423116 Glomus mosseae BEG25 
AM423117 Glomus mosseae BEG25 
AM423118 Glomus mosseae BEG25 
AM423119 Glomus mosseae BEG25 
AY035650 Glomus mosseae BEG160 
AY035652 Glomus mosseae BEG161 
AY236331 Glomus mosseae SP301 
AY236332 Glomus mosseae SP302 
AY236333 Glomus mosseae SP303 
AY236334 Glomus mosseae SP304 
AY236335 Glomus mosseae SP305 
AY236336 Glomus mosseae SP306 
AY997053 Glomus mosseae INVAM UT101 (AFTOL-ID 139) 
DQ400127 Glomus mosseae environmental 
DQ400128 Glomus mosseae environmental 
DQ400129 Glomus mosseae environmental 
DQ400130 Glomus mosseae environmental 
DQ400131 Glomus mosseae environmental 
DQ400132 Glomus mosseae environmental 
DQ400134 Glomus mosseae environmental 
DQ400136 Glomus mosseae environmental 
DQ400137 Glomus mosseae environmental 
DQ400138 Glomus mosseae environmental 
DQ400139 Glomus mosseae environmental 
DQ400141 Glomus mosseae environmental 
DQ400142 Glomus mosseae environmental 
DQ400144 Glomus mosseae environmental 
DQ400146 Glomus mosseae environmental 
DQ400149 Glomus mosseae environmental 
DQ400151 Glomus mosseae environmental 
DQ400158 Glomus mosseae environmental 
DQ400160 Glomus mosseae environmental 
EF989113 Glomus mosseae environmental 
EF989114 Glomus mosseae environmental 
EF989115 Glomus mosseae environmental 
EF989116 Glomus mosseae environmental 
EF989117 Glomus mosseae environmental 
FN547474 Glomus mosseae BEG12 
FN547475 Glomus mosseae BEG12 
FN547476 Glomus mosseae BEG12 
FN547482 Glomus mosseae BEG12 
FN547483 Glomus mosseae BEG12 
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FN547484 Glomus mosseae BEG12 
FN547485 Glomus mosseae BEG12 
FN547486 Glomus mosseae BEG12 
FN547487 Glomus mosseae BEG12 
FN547488 Glomus mosseae BEG12 
FN547489 Glomus mosseae BEG12 
FN547490 Glomus mosseae BEG12 
FN547491 Glomus mosseae BEG12 
FN547492 Glomus mosseae BEG12 
FN547493 Glomus mosseae BEG12 
U31996 Glomus mosseae BEG 12 
U49264 Glomus mosseae UKJII8 
U49265 Glomus mosseae INVAM FL156 
X84232 Glomus mosseae BEG12 
X84233 Glomus mosseae BEG12 
X96826 Glomus mosseae BEG25 
X96827 Glomus mosseae BEG25 
X96828 Glomus mosseae BEG25 
X96829 Glomus mosseae BEG55 
X96830 Glomus mosseae BEG54 
X96831 Glomus mosseae BEG54 
X96832 Glomus mosseae BEG54 
X96833 Glomus mosseae BEG57 
X96834 Glomus mosseae BEG57 
X96835 Glomus mosseae BEG57 
X96836 Glomus mosseae BEG61 
X96837 Glomus mosseae BEG61 
FM876813 Glomus sp. WUM3 WUM3/W2940 
FN547477 Glomus sp. WUM3 WUM3/W2939 
FN547478 Glomus sp. WUM3 WUM3/W2939 
FN547479 Glomus sp. WUM3 WUM3/W2939 
FN547480 Glomus sp. WUM3 WUM3/W2939 
FN547481 Glomus sp. WUM3 WUM3/W2939 
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Table S5: Sequences used for analysis of the Glomus Group Aa LSU-D2 
fragment (see Figure 6). 
Accession Species Culture/voucher 
FN547474 Glomus mosseae BEG12/W5147 
FN547475 Glomus mosseae BEG12/W5147 
FN547476 Glomus mosseae BEG12/W5147 
FN547477 Glomus sp. WUM3/W2939 
FN547478 Glomus sp. WUM3/W2939 
FN547479 Glomus sp. WUM3/W2939 
FN547480 Glomus sp. WUM3/W2939 
FN547481 Glomus sp. WUM3/W2939 
FN547482 Glomus mosseae BEG12/W5147 
FN547483 Glomus mosseae BEG12/W5147 
FN547484 Glomus mosseae BEG12/W5147 
FN547485 Glomus mosseae BEG12/W5147 
FN547486 Glomus mosseae BEG12/W5147 
FN547487 Glomus mosseae BEG12/W5147 
FN547488 Glomus mosseae BEG12/W5147 
FN547489 Glomus mosseae BEG12/W5147 
FN547490 Glomus mosseae BEG12/W5147 
FN547491 Glomus mosseae BEG12/W5147 
FM876813 Glomus sp. WUM3/W2940 
FN547492 Glomus mosseae BEG12/W5147 
FN547493 Glomus mosseae BEG12/W5147 
FM876798 Glomus coronatum BEG28 (Att108-7) 
FM876796 Glomus coronatum BEG28 (Att108-7) 
FM876797 Glomus coronatum BEG28 (Att108-7) 
FM876794 Glomus coronatum BEG28 (Att108-7) 
FM876795 Glomus coronatum BEG28 (Att108-7) 
FN547494 Glomus caledonium BEG20/W3294 
FN547495 Glomus caledonium BEG20/W3294 
FN547496 Glomus caledonium BEG20/W3294 
FN547497 Glomus caledonium BEG20/W3294 
FN547498 Glomus caledonium BEG20/W3294 
FN547499 Glomus caledonium BEG20/W3294 
AF145741 Glomus constrictum BEG130 
AF145747 Glomus fragilistratum BEG05 
AF145735 Glomus mosseae BEG25 
AF145745 Glomus caledonium BEG20 
AF145740 Glomus coronatum BEG49 
AF145742 Glomus geosporum BEG90 
AF396789 Glomus caledonium RMC658 
AF396794 Glomus caledonium RWC658 
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AF145736 Glomus mosseae BEG85 
AF396799 Glomus caledonium SC_658 
AJ510239 Glomus caledonium BEG86 
AF396788 Glomus mosseae 243 
AF396793 Glomus mosseae 243 
AF396798 Glomus mosseae 243 
AY639156 Glomus mosseae 8 
AY639157 Glomus mosseae 8 
AY639158 Glomus mosseae 8 
AY639160 Glomus mosseae environmental 
AY639162 Glomus mosseae environmental 
AY639163 Glomus mosseae environmental 
AY639164 Glomus mosseae 101 
AY639270 Glomus mosseae environmental 
AY639159 Glomus mosseae environmental 
AY639274 Glomus mosseae environmental 
AY639281 Glomus mosseae 209 
AY639271 Glomus mosseae environmental 
AY639278 Glomus mosseae 102 
AY639280 Glomus mosseae BEG224 (FACE 130) 
AY639161 Glomus mosseae environmental 
AY639165 Glomus mosseae BEG224 (FACE 130) 
AY639166 Glomus mosseae BEG224 (FACE 130) 
AY639167 Glomus mosseae BEG224 (FACE 130) 
AY639168 Glomus mosseae BEG224 (FACE 130) 
AY639169 Glomus mosseae BEG224 (FACE 130) 
AY639170 Glomus mosseae BEG224 (FACE 130) 
AY639171 Glomus mosseae 209 
AY639172 Glomus mosseae 209 
AY639173 Glomus mosseae 209 
AY639174 Glomus mosseae 209 
AY639266 Glomus mosseae 8 
AY639267 Glomus mosseae 8 
AY639268 Glomus mosseae 8 
AY639269 Glomus mosseae 8 
AY639272 Glomus mosseae environmental 
AY639273 Glomus mosseae environmental 
AY639276 Glomus mosseae environmental 
AY639277 Glomus mosseae 101 
DQ469128 Glomus mosseae 505 
AJ628059 Glomus caledonium BEG86 
AJ510241 Glomus geosporum BEG11 
DQ273793 Glomus mosseae INVAM UT101 (AFTOL-ID 139) 
AY639279 Glomus mosseae BEG224 (FACE 130) 
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FJ790678 Glomus mosseae DDAM 
EU931286 Glomus geosporum BEG199 
EU931285 Glomus geosporum BEG199 
EU931284 Glomus geosporum BEG199 
EU931283 Glomus geosporum BEG199 
EU931282 Glomus geosporum BEG199 
EU931281 Glomus geosporum BEG199 
EU931280 Glomus geosporum BEG199 
EU931279 Glomus geosporum BEG199 
EU931278 Glomus geosporum BEG199 
EU931277 Glomus geosporum BEG199 
EU931276 Glomus geosporum BEG199 
EU931275 Glomus geosporum BEG199 
EU931274 Glomus geosporum BEG199 
EU931273 Glomus geosporum BEG211 
EU931272 Glomus geosporum BEG211 
EU931271 Glomus geosporum BEG211 
EU931270 Glomus geosporum BEG211 
EU931269 Glomus geosporum BEG211 
EU931267 Glomus geosporum BEG211 
EU931266 Glomus geosporum BEG211 
EU931265 Glomus geosporum BEG211 
EU931264 Glomus geosporum BEG211 
EU931263 Glomus geosporum BEG211 
EU931262 Glomus geosporum BEG211 
EU931261 Glomus geosporum BEG211 
EU346866 Glomus mosseae HDAM-2 
EU234489 Glomus mosseae BEG116 
AM158954 Glomus mosseae BEG167 
AM158953 Glomus mosseae BEG167 
DQ469131 Glomus mosseae 505 
DQ469130 Glomus mosseae 505 
DQ469129 Glomus mosseae 505 
DQ469127 Glomus mosseae 505 
DQ469126 Glomus mosseae 505 
DQ469125 Glomus mosseae 505 
AJ459412 Glomus mosseae environmental 
AJ628057 Glomus mosseae BEG29 
AJ628056 Glomus mosseae BOL3 
AJ628055 Glomus mosseae BOL1 
AJ628054 Glomus mosseae V150 
AJ628053 Glomus mosseae V249 
AJ628052 Glomus mosseae V293 
AJ628051 Glomus mosseae V91 
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AJ628050 Glomus mosseae V296 
AJ628049 Glomus mosseae V296 
AF145746 Glomus caledonium BEG86 
AF145743 Glomus geosporum BEG106 
AF145738 Glomus mosseae BEG84 
AF145737 Glomus mosseae BEG83 
AJ271924 Glomus mosseae HM-CL1 
AJ510240 Glomus caledonium BEG20 
AF389014 Glomus mosseae BEG68 
AF389013 Glomus mosseae BEG68 
AF389012 Glomus mosseae BEG68 
AF389011 Glomus mosseae BEG68 
AF389010 Glomus mosseae BEG68 
AF389009 Glomus mosseae BEG68 
AF389008 Glomus mosseae BEG68 
GQ330818 Glomus mosseae AU34 
GQ330817 Glomus mosseae AU33 
GQ330815 Glomus mosseae AU8 
GQ330814 Glomus mosseae AU2 
GQ330813 Glomus mosseae WUM16 
GQ330811 Glomus mosseae Narrabii 
GQ330807 Glomus mosseae Bur11 
GQ330806 Glomus mosseae INVAM JA205c 
GQ330805 Glomus mosseae BEG229 
GQ330800 Glomus mosseae BEG55 
GQ330797 Glomus mosseae INVAM NB103c 
GQ330793 Glomus mosseae INVM SF1171 
GQ330791 Glomus mosseae INVAM CU134a 
GQ330789 Glomus mosseae DKB01D4 
GQ330788 Glomus mosseae DKK04D22 
GQ330787 Glomus mosseae DKGm1 
GQ330785 Glomus mosseae Sp813 
GQ330784 Glomus mosseae Sp6314 
GQ330783 Glomus mosseae Sp4318 
GQ330781 Glomus mosseae Sp2735 
GQ330780 Glomus mosseae Sp1841 
GQ330779 Glomus mosseae BEG128 
GQ330778 Glomus mosseae BEG124 
GQ330777 Glomus mosseae BEG85 
GQ330774 Glomus mosseae Dk11107 
GQ330773 Glomus mosseae Dk21107 
GQ330772 Glomus mosseae Dk17107 
GQ330771 Glomus mosseae BEG230 
GQ330768 Glomus mosseae Dk23135 



Appendix 

147 

GQ330760 Glomus mosseae INVAM WY111 
GQ330757 Glomus mosseae INVAM MT107 
GQ330756 Glomus mosseae INVAM OR229 
GQ330754 Glomus mosseae INVAM SC226 
GQ330749 Glomus mosseae INVAM MN101 
GQ330748 Glomus mosseae INVAM MI210 
GQ330747 Glomus mosseae INVAM ON201 
GQ330744 Glomus mosseae INVAM WI101 
GQ330743 Glomus mosseae INVAM NV106 
GQ330742 Glomus mosseae INVAM IN101 
 



Appendix 

148 

 
Table S6: Barcode gap analyses with TaxonGap 2.3 based on pairwise comparison of K2P 
distances based on a manual or automated alignment (MAFFT). Variation is given in % K2P 
distances. The closest species, presence or absence of a barcode gap were identical for the 
manual and MAFFT alignments, respectively. Seq, number of sequences; CS, closest species; 
BG, barcode gap; Max. ISV, maximum intraspecific variation; Min. ISV, minimum intraspecific 
variation; ?, unknown. 
 

     
manual 
alignment 

MAFFT 
alignment 

Family Species Seq CS BG 
Max. 
ISV 

Min. 
ISV 

Max. 
ISV 

Min. 
ISV 

Glomus mosseae 16 Gl. coronatum Yes 2.52 2.66 2.58 3.78 
Gl. sp. WUM3 6 Gl. caledonium Yes 0.85 2.1 0.85 2.09 
Gl. coronatum 5 Gl. mosseae Yes 0.5 2.66 1.01 3.78 

Glomeraceae 
(Glomus 
Group Aa) Gl. caledonium 3 Gl. sp. WUM3 Yes 0.8 2.1 0.8 2.09 

Gl. intraradices 47 Gl. proliferum No 10.77 4.29 11.75 4.7 
Gl. proliferum 15 Gl. intraradices Yes 4.02 4.29 3.89 4.7 
Gl. sp. 'irregulare-like’ 39 Gl. proliferum Yes 6.43 7 6.29 6.94 

Glomeraceae 
(Glomus 
Group Ab) Gl. clarum 9 Gl. proliferum Yes 1.09 7.58 1.59 7.96 

Acaulospora laevis 26 
Ku. Kentinensis & 
Ac. scrobiculata Yes 3.42 13.07 3.99 13.16 

Acaulospora sp. WUM18 2 Ac. scrobiculata Yes 1.02 5.66 1.02 5.66 
Ac. scrobiculata 4 Ac. sp. WUM18 Yes 0.47 5.66 0.47 5.66 Acaulo-

sporaceae Kuklospora kentinensis 14 Ac. scrobiculata Yes 0.54 11.98 0.54 11.38 
Ambispora appendicula 11 Am. fennica Yes 2.87 12.11 2.87 13.26 Ambi-

sporaceae Am. fennica 12 Am. appendicula Yes 1 12.11 1.14 13.26 
Gigaspora margarita 24 Gi. rosea No 4.15 3.26 4.42 3.34 
Gi. rosea 27 Gi. margarita No 6.17 3.26 6.53 3.34 
Sc. gilmorei 25 Sc. spinosissima Yes 1.55 2.64 1.62 2.5 
Sc. spinosissima 3 Sc. gilmorei No 2.84 2.64 2.84 2.5 Giga-

sporaceae Sc. heterogama 4 Gi. margarita Yes 1.95 4.69 2.74 5.07 
Glomus sp. W3349 4 Gl. luteum Yes 0.77 11.54 0.71 12.27 
Gl. etunicatum 12 Gl. luteum Yes 0.93 3.64 0.94 3.63 

Glomeraceae 
(Glomus 
Group B) Gl. luteum 5 Gl. etunicatum Yes 0.64 3.64 0.96 3.63 

Diversispora celata 3 Gl. eburneum Yes 0.9 2.61 0.83 3.39 
Gl. eburneum 12 Di. celata Yes 0.92 2.61 0.92 3.39 
Gl. versiforme 25 Gl. eburneum Yes 2.52 5.81 2.79 5.64 
Diversispora spurca 18 Gl. aurantium Yes 1.59 2.73 1.66 2.87 Diversi-

sporaceae Gl. aurantium 11 Di. spurca Yes 1.71 2.73 1.71 2.87 
Para-
glomeraceae Paraglomus occultum 1 Sc. gilmorei ? - 34.93 - 31.7 
Paci-
sporaceae Pacispora scintillans 2 Sc. heterogama Yes 0.62 22.59 0.55 20.55 
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Appendix

Figure S3: SSUmCf-LSUmBr (A), ITS region (B), LSU region (C), ITS2 fragment (D), LSU-D1 
fragment (E), LSU-D2 fragment (F) neighbour joining analyses (1000 BS) of Acaulosporaceae
from the core dataset. Kuklospora kentinensis (◆), Acaulospora sp. WUM18 (◀), Ac. scrobiculata
(□), Ac. laevis (●).
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Appendix

Figure S4: SSUmCf-LSUmBr (A), ITS region (B), LSU region (C), ITS2 fragment (D), LSU-D1 

fragment (E), LSU-D2 fragment (F) neighbour joining analyses (1000 BS) of Glomus Group B 

from the core dataset. Glomus sp. W3349 (◆), Glomus luteum (□), Gl. etunicatum (●).
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Figure S5: SSUmCf-LSUmBr (A), ITS region (B), LSU region (C), ITS2 fragment (D), LSU-D1 

fragment (E), LSU-D2 fragment (F) neighbour joining analyses (1000 BS) of Diversisporaceae from 

the core dataset. Glomus eburneum (▼), Gl. aurantium (◀), Gl. versiforme (□), Diversispora celata

(◀), Di. spurca (▼).
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Figure S6: SSUmCf-LSUmBr (A), ITS region (B), LSU region (C), ITS2 fragment (D), LSU-D1 

fragment (E), LSU-D2 fragment (F) neighbour joining analyses (1000 BS) of Gigasporaceae from 

the core dataset. Scutellospora spinosissima (■), Sc. heterogama (□), Gigaspora rosea (▼), Sc. gil-

morei (◆), Gi. margarita (●).
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Figure S8: ITS region (A) and ITS2 fragment (B) neighbour joining analyses (1000 BS) of the Am-

bisporaceae. Ambispora gerdemanii (▼), Am. leptoticha (⊠), Am. callosa (◀), Am. fennica (▲), Am. 

appendicula (◆), Ambispora sp. from Plantago (■), Ambispora sp. from Prunus (□), Ambispora sp. 

from Taxus (▶).
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Figure S9: ITS region (A) and ITS2 fragment (B) neighbour joining analyses (1000 BS) of the Diver-

sisporaceae. Glomus eburneum (▼), Gl. aurantium (◀), Gl. versiforme (□), Diversispora celata (◀), 

Di. spurca (▼), Gl. megalocarpum (●), Gl. fulvum (●), Gl. pulvinatum (▶), Glomus sp. NB101 (▲), 

Glomus sp. AZ37B (▲), Glomus sp.’versiforme’ environmental (⊠).
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Figure S10: LSU region (A), LSU-D1 fragment (B) and LSU-D2 fragment (C) neighbour joining 

analyses (1000 BS) of the Diversisporaceae. Glomus eburneum (▼), Gl. aurantium (◀), Gl. versi-

forme (□), Diversispora celata (◀), Di. spurca (▼).
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