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Zusammenfassung

In Anlehnung an die Baumeigenschaft geben wir kombinatorische Prinzipien an, die die
Konzepte der sogenannten subtle und ineffable Kardinalzahlen so einfangen, dass diese auch
für kleine Kardinalzahlen anwendbar sind. Auf diesen Prinzipien aufbauend entwickeln wir
dann ein weiteres, das dies sogar für superkompakte Kardinalzahlen leistet.

Wir zeigen die Konsistenz dieser Prinzipien ausgehend von den jeweils entsprechenden
großen Kardinalzahlen. Zudem zeigen wir die Äquikonsistenz für subtle und ineffable.
Für Superkompaktheit beweisen wir durch das Fehlschlagen des Quadratprinzips, dass die
besten derzeit bekannten unteren Schranken für Konsistenzstärke anwendbar sind.

Das Hauptresultat der Arbeit ist das Ergebnis, dass das Proper Forcing Axiom das der
Superkompaktheit entsprechende Prinzip impliziert.
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Summary

In the style of the tree property, we give combinatorial principles that capture the concepts
of the so-called subtle and ineffable cardinals in such a way that they are also applicable
to small cardinals. Building upon these principles we then develop a further one that even
achieves this for supercompactness.

We show the consistency of these principles starting from the corresponding large cardi-
nals. Furthermore we show the equiconsistency for subtle and ineffable. For supercompact-
ness, utilizing the failure of square we prove that the best currently known lower bounds for
consistency strength in general can be applied.

The main result of the thesis is the theorem that the Proper Forcing Axiom implies the
principle corresponding to supercompactness.
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Introduction

Foreword

In [Hau14, p. 131] Felix Hausdorff wrote that if there are inaccessible cardinals, “so ist die
kleinste unter ihnen von einer so exorbitanten Größe, daß sie für die üblichen Zwecke der
Mengenlehre kaum jemals in Betracht kommen wird.”1 While he could not foresee the way
set theory was heading and that large cardinals would once assume a central role in it, he is
still right for most of other mathematics. This is not without reason, for the inaccessibility
of a cardinal κ merely says that the set theoretic universe up to height κ already is a universe
of set theory itself, so that all of usual mathematics fully lives within it.

So why should a mathematician not intrinsically interested in large cardinals care about
them? The answer is that there are many questions about small cardinals like ω2 that need
large cardinals for their answer. But beyond that, for some large cardinal axioms there
exist combinatorial principles that capture the crux of the axiom yet make sense even for
small cardinals. They thus provide a framework for strong hypotheses without requiring
any actual reference to large cardinals. Such canonical principles had previously only been
known for the large cardinal properties Mahlo and weak compactness, giving the impression
it was more an exception these large cardinals admitted such a definition.2

In the present work, we give such characterizations for subtle and ineffable cardinals and
then extend them to supercompactness. Subtlety and ineffability are, by today’s standards,
rather weak large cardinal concepts. They have also received relatively little attention lately,
which we mainly attribute to the fact their definitions appeared to be conceptually different
from other large cardinal axioms. We hope to counter this impression by demonstrating
how ineffability is in many ways an evidently natural strengthening of weak compactness.

Supercompactness, on the other hand, is not only very strong, it is probably among the
large cardinal axioms that currently receive most attention; one of the biggest open problems
in set theory is to find an inner model for a supercompact cardinal. While it is not like the
principle we isolated formed the puzzle stone that had been missing so far—such a stone
is yet to be determined—it nonetheless is a new approach, and one might hope for it to be

1. . . , “then the least among them is of such exorbitant size that it will hardly ever come into consideration
for the usual goals of set theory.”

2For weak compactness the corresponding canonical principle is the well known property that there exist no
κ-Aronszajn trees. For Mahlo, it is the less well known principle that no special κ-Aronszajn trees exist,
see [Tod87, (1.9)] or [Tod, Theorem 9.4].
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Introduction

of help by suggesting different strategies. Also, since we show the Proper Forcing Axiom
PFA implies the supercompactness principle for ω2, we can give some reassurance to the
conjecture that the consistency strength of PFA is that of a supercompact cardinal and to
the understanding that PFA makes ω2 behave like a very large cardinal.

Overview

For a cardinal κ, let φ0(κ) stand for the property that if T ⊂ <κ2 is a downward closed3 tree
of height κ, then it has a cofinal branch. By König’s Lemma, φ0(ω) holds. Thus it is not
too surprising that φ0(ω) captures some of the large cardinal character of ω, and indeed
φ0(κ) is merely a slightly nonstandard way of saying κ is weakly compact for uncountable κ.
So what is φ0(κ) good for? Not much, in fact it one could argue it is a bad definition. For
it obscures the fact that a cardinal κ is weakly compact iff4 it is inaccessible and satisfies
a combinatorial property κ-TP which is not restricted to inaccessibility. This κ-TP is, of
course, the tree property on κ, or as it is more convenient for us, the property that any
downward closed tree T ⊂ <κ2 that is thin5 has a cofinal branch.6

As Aronszajn trees exist in ZFC, the least uncountable cardinal κ for which κ-TP can
hold is ω2. By results of William Mitchell and Jack Silver [Mit73], ω2-TP implies ω2 is
weakly compact in L and can be forced from a model of ZFC + “there exists a weakly
compact cardinal.” It therefore captures, in a very concrete way, the large cardinal character
of ω2 without requiring ω2 to actually be inaccessible in V .

Now take κ to be subtle. Recall that a cardinal κ is subtle iff φ1(κ) holds, where φ1(κ)
stands for the principle that for every club C ⊂ κ and every sequence ⟨dα | α < κ⟩ with
dα ⊂ α for all α < κ there exist α, β ∈ C such that α < β and dα = dβ ∩ α. This φ1(κ) suffers
from the same problem as φ0(κ) does, it already implies the inaccessibility of κ. However,
having learned our lesson, we again require the sequence ⟨dα | α < κ⟩ in the definition of
φ1(κ) to be thin, that is, for every δ < κ the set {dα ∩ δ | α < κ} is required to have cardinality
less than κ. This yields a combinatorial principle κ-STP which relates to subtlety the same
way κ-TP is related to weak compactness:

• A cardinal κ is subtle iff it is inaccessible and satisfies κ-STP.

• ω2-STP can be forced from a model of ZFC + “there exists a subtle cardinal.”

• ω2-STP implies ω2 is a subtle cardinal in L.

3By downward closed we mean that if f ∈ T and α < dom f , then f ↾ α ∈ T . It feels more natural to restrict
our attention to these trees, in particular in light of what we are aiming at.

4One can often read “iff” should be spelled out as “if and only if” in mathematical documents, the reason
being it is not correct English and therefore bad style. Since it shortens the text, removes unnecessary
redundancy, and thereby aids the reader, the author cannot help but to disagree with this point of view.

5We call a tree T ⊂ <κ2 thin iff every of its levels has cardinality less than κ.
6See the next section as to why we consider this principle more natural.
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It will not come as a surprise that the same can be done for ineffability. Still the reader
will most likely not be entirely convinced of the importance of thin. We managed to
replace the bad φ’s by good TPs once more but still have not even left the realm of large
cardinals compatible with V = L. Therefore it will hopefully be at least a little surprising
that—naturally giving up the third point—the same can be done for supercompactness!

For λ ≥ κ, κ is λ-ineffable iff for every sequence ⟨da | a ∈ Pκλ⟩ such that da ⊂ a for
all a ∈ Pκλ there are a stationary S ⊂ Pκλ and d ⊂ λ such that da = d ∩ a for all a ∈ S .
We additionally require the sequence ⟨da | a ∈ Pκλ⟩ to be thin in the sense that for a club
C ⊂ Pκλ and every c ∈ C we have |{da ∩ c | c ⊂ a ∈ Pκλ}| < κ and call the resulting
principle (κ, λ)-ITP. This yields κ is λ-ineffable iff κ is inaccessible and (κ, λ)-ITP holds.
Menachem Magidor [Mag74] showed a cardinal κ is supercompact iff it is λ-ineffable for all
λ ≥ κ. Thus κ is supercompact iff it is inaccessible and (κ, λ)-ITP holds for all λ ≥ κ. Since
we can force (ω2, λ)-ITP from a model of ZFC + “there exists a λω1-ineffable cardinal,” we
can produce a model in which ω2 is, apart from the missing inaccessibility, “supercompact.”
This form of supercompactness implies the failure of a weak form of square, so that the
best currently known lower bounds for consistency strength apply to it.

Let us now turn our attention to the forcing axiom PFA. As PFA implies ω2-TP by work
of James Baumgartner [Tod84b, Theorem 7.7], PFA preserves some large cardinal structure,
the weak compactness, of ω2. The word “preserve” is used as PFA is usually forced by
collapsing a supercompact cardinal to ω2 in a certain way, and one can consider PFA to
“remember” that ω2 used to be a very large cardinal. The existence of a supercompact
cardinal is widely regarded as the correct consistency strength of PFA. We will provide
what might be considered strong heuristic evidence that this is correct: We show PFA
implies (ω2, λ)-ITP for all λ ≥ ω2. This, in the sense of the previous paragraph, says that
PFA captures the “supercompactness” of ω2.

The principle (κ, λ)-ITP might also prove useful for finding an inner model of a super-
compact cardinal. While Pκλ-combinatorics does not relativize as smoothly as ordinal
combinatorics does, which is mainly due to the fact that being club is no longer absolute,
the principle still seems to be a canonical candidate. One “only” needs to find an inner
model that inherits (κ, λ)-ITP from V and in addition thinks κ is inaccessible.

In the course of developing a theory for κ-ITP and (κ, λ)-ITP, we introduce a weakening
of thin called slender which comes from Saharon Shelah’s approachability ideal. Its purpose
is twofold. On the one hand, it pulls together different concepts like the tree property and
the approachability property. On the other, it is the correct weakening of thin in the sense
that most proofs that make use of thin actually use slender.

Simple Yet Powerful

At first glance, thin appears to be a standard concept. The tree property is well known,
Aronszajn trees are one of the most prominent combinatorial objects in set theory. However,
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Introduction

we shall try to argue thin has—quite surprisingly—been completely omitted from the
literature during the last decades.

Historically, Nachman Aronszajn’s result that ω1-Aronszajn trees exist motivated the
tree property, while weak compactness emerged as a generalization of the compactness
theorem for first order predicate language. For the connection between these two, it was
probably unfortunate that the definition of tree is of axiomatic nature. For despite the fact
that for the various equivalences of weak compactness downward closed subtrees of <κ2, let
us call them standard trees for now, are the natural objects to consider, the focus remained
on trees in general. However, unlike the set of standard trees, the class of trees of height κ
also includes pathological trees with levels of size κ. These pathological cases misleadingly
hide the fact that one can drop the thinness requirement by restricting oneself to standard
trees. Without the understanding that thin is something that is automatically implied by
inaccessibility but needs to be explicitly required for successor cardinals, it is less surprising
that it was missed for subtlety and ineffability, properties that live on standard trees, and
much more so for λ-ineffability.

So while there is a plausible argument for the omission of thin, it seems slightly aston-
ishing that κ-STP has never been considered before. For a tree T of height κ, let us call
an antichain A ⊂ T a club-antichain iff there is a club C ⊂ κ such that A ∩ Tα ≠ ∅ for all
α ∈ C, where Tα denotes the αth level of T . We can thus rephrase κ-STP: If a κ-tree does
not split at limit levels,7 then it cannot have a club-antichain. Club-antichains have received
some attention before, see [Tod84b, Remark 9.6 (iii)], but still κ-STP somehow remained
unnoticed.

For one, thin enables us to see a much more natural connection between weak compact-
ness, subtlety, and ineffability. But furthermore it gives rise to (κ, λ)-ITP for all λ ≥ κ,
apart from its strengthening (κ, λ)-ISP the only known combinatorial principle the author
intuitively expects to have the consistency strength of a supercompact cardinal, even more
so among the known consequences of PFA.

Annotation of Content

The thesis is divided into three chapters. Each chapter starts with a Preliminaries section
which recalls definitions and standard lemmas and states nonstandard notation or technical
lemmas.

Chapter 1 introduces the concepts fundamental to this work. Sections 1.2 and 1.3 define
various ideals and what we will refer to as tree and forest properties.8 The most important

7A tree T is said to not split at limit levels iff for every t, t′ ∈ T of limit height from {s ∈ T | s < t} = {s ∈
T | s < t′} it follows that t = t′.

8The term forest was originally used by the author to address what should be called the downward closure of
a Pκλ-list in the present terminology, extending the meaning of downward closure to Pκλ in the obvious
manner. The concept first appeared in [Jec73] and was called binary mess in there. However, the author felt
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among these are probably the principles κ-ITP and (κ, λ)-ITP. Section 1.4 shows (κ, λ)-ITP
implies the failure of a weak version of square on λ, which will be used in Section 2.4 to
give lower bounds for the consistency strength of (κ, λ)-ITP. Section 1.5 gives results about
the filter corresponding to (κ, λ)-ITP for inaccessible κ that will be needed in Chapter 2.

Chapter 2 deals with the consistency of the principles introduced in Chapter 1. In
Section 2.2, a forcing construction originally developed by Mitchell is presented. It is then
used in Section 2.3 to give upper bounds on the consistency strengths of our tree and forest
properties. These are accompanied by the lower bounds established in Section 2.4.

Chapter 3 is mostly independent of Chapter 2. The main result of the thesis, that PFA
implies ω2-ITP (Section 3.2) and even (κ, λ)-ITP for all λ ≥ ω2 (Section 3.3), is proved in
it. The proof yields, as corollaries, several known implications of PFA.

Not every possible definition is fully exploited. One could consider principles κ-AITP and
(κ, λ)-AITP by weakening “stationary” to “cofinal” in the definitions of κ-ITP and (κ, λ)-ITP
respectively. These principle then naturally correspond to almost ineffability and λ-almost
ineffability. In the one cardinal case, all the results generalize in a canonical way to κ-AITP.
In the two cardinal case, for inaccessible κ the statements “(κ, λ)-AITP holds for all λ ≥ κ”
and “(κ, λ)-ITP holds for all λ ≥ κ” are equivalent by [Car86], so that (κ, λ)-AITP appears
to be rather fruitless.

A different aspect that has been neglected is (κ, λ)-TP, the generalization of the tree
property toPκλ-combinatorics and thus a weakening of (κ, λ)-ITP: If ⟨da | a ∈ Pκλ⟩ is a thin
Pκλ-list9 and E ⊂ Pκλ is cofinal, then there exists b ⊂ λ such that for every a ∈ Pκλ there
exists e ∈ E such that a ⊂ e and de ∩ a = b ∩ a.10 In [Jec73], this property is considered
for inaccessible κ and shown to be the correct concept for strong compactness, that is, an
inaccessible cardinal κ is strongly compact iff (κ, λ)-TP holds for all λ ≥ κ. We omitted
(κ, λ)-TP since we could have only derived corollaries for it from (κ, λ)-ITP.

As indicated earlier, throughout the thesis a weakening of thin called slender is being
worked with. It proved to be a more natural replacement for thin. For the proof of ω2-ITP
and (ω2, λ)-ITP for all λ ≥ ω2 under PFA, a detour was taken. It did not, however, apply to
the slender principles. Section 3.4 shows this detour was unnecessary and that slender can
indeed fully replace thin for all our results.

It would have been possible to completely remove thin or at least special arguments
concerning it. But as such a removal would have betrayed the results’ history, we decided
against any such omission. All results are thus developed for thin and slender in parallel.
Still the reader is asked to bear in mind that some results are actually redundant, in particular
what we will refer to as the thin τ-approximation property and its associated theorems.

the word forest was more suggestive. While forests were removed from this thesis in an overall attempt to
simplify the content by eliminating unnecessary definitions, the author thinks the name “forest properties”
is still the catchiest way to describe the two cardinal combinatorial principles under consideration.

9See Definitions 1.3.1 and 1.3.2.
10This would be “every (κ, λ)-forest has a cofinal branch” in the abandoned terminology. It is called “every

binary (κ, λ)-mess is solvable” for inaccessible κ in [Jec73].
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Introduction

Notation

As they say, the notation used is mostly standard. Ord denotes the class of all ordinals. For
A ⊂ Ord, Lim A denotes the class of limit points of A. Lim stands for Lim Ord. If a is a set
of ordinals, otp a denotes the order type of a. For a regular cardinal δ, cof δ denotes the
class of all ordinals of cofinality δ, and cof(< δ) denotes those of cofinality less than δ.

For forcings, we follow the less is more, more or less rule and write p < q to mean
p is stronger than q. A forcing ℙ is δ-closed (δ-directed closed) iff it is closed under
descending sequences (directed sets) of conditions of size less than δ. It is δ-distributive iff
the intersection of fewer than δ many dense open sets is dense open. Names either carry a
dot above them or are canonical names for elements of V , so that we can confuse sets in
the ground model with their names. If ℙκ is an iteration of forcings, then for p ∈ ℙκ we let
supp p denote the support of p.

The phrases for large enough θ and for sufficiently large θ will be used for saying that
there exists a θ′ such that the sentence’s proposition holds for all θ ≥ θ′.

The text requires knowledge of several standard definitions and notations of set theory.
Chapter 2 expects the reader to be acquainted with iterated forcing, and for Chapter 3 it is
helpful to be familiar with forcing axioms. To anyone meeting these conditions, the text
should be readily accessible. In the inaccessible case, a standard textbook like [Jec03] should
suffice for the necessary background theory. For further reading on large cardinals, [KM78]
is recommended to the reader as a start.
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1 Tree and Forest Properties

1.1 Preliminaries

The following definition comprises most of what the reader needs to know about Pκλ-
combinatorics. It is possible that the reader is used to a slightly different definition of
δ-closed. Apart from this, the only thing in Definition 1.1.1 which is not standard is the
notation P′κX.

1.1.1 Definition. Let κ be a regular uncountable cardinal and X such that κ ≤ |X|. Set

PκX ≔ {x ⊂ X | |x| < κ}.

C ⊂ PκX is called δ-closed, iff for any sequence ⟨xν | ν < η⟩ with η < δ such that xν ⊂ xν′
and xν ∈ C for all ν < ν′ < η it follows that supν<η xν ≔

⋃
{xν | ν < η} ∈ C. C ⊂ PκX is

called closed iff it is κ-closed. C is called cofinal iff for every y ∈ PκX there exists x ∈ C
such that y ⊂ x. C is called δ-club iff C is δ-closed and cofinal. C is called club iff it is
κ-club. S ⊂ Pκλ is called stationary iff C ∩ S ≠ ∅ for every club C ⊂ Pκλ.

If κ ⊂ X, then

P
′
κX ≔ {x ∈ PκX | κ ∩ x ∈ Ord, ⟨x, ∈⟩ ≺ ⟨X, ∈⟩}

is club. For x ∈ P′κX we set κx ≔ κ ∩ x.

For f : PωX → PκX let Cl f ≔ {x ∈ PκX | ∀z ∈ Pωx f (z) ⊂ x}. Cl f is club, and it is
well known that for any club C ⊂ PκX there is an f : PωX → PκX such that Cl f ⊂ C,
see [Men75].

If X ⊂ X′, R ⊂ PκX, U ⊂ PκX′, then

U ↾ X ≔ {u ∩ X | u ∈ U} ⊂ PκX

and

RX′ ≔ {x′ ∈ PκX′ | x′ ∩ X ∈ R} ⊂ PκX′.

It is easily seen that both operations preserve the property of containing a club and thus also
stationarity. ⌟
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1 Tree and Forest Properties

1.2 Tree Properties

In this section, κ is assumed to be a regular uncountable cardinal. We first give three
definitions that proved to be notationally useful but do not carry much weight beyond that.

1.2.1 Definition. A sequence ⟨dα | α < κ⟩ is called κ-list iff dα ⊂ α for all α < κ. ⌟

1.2.2 Definition. For A ⊂ { f | ∃α < Ord f : α→ 2} we call the tree of its initial segments

dc A ≔ { f ↾ α | f ∈ A, α < Ord}

its downward closure, ordered by inclusion. ⌟

1.2.3 Definition. Let ⟨dα | α < κ⟩ be a κ-list. For α < κ define tα : α→ 2 by tα(β) = 1 :↔
β ∈ dα. We call ⟨tα | α < κ⟩ the characteristic functions of ⟨dα | α < κ⟩ and dc{tα | α < κ} its
corresponding tree. ⌟

The next definition is simple yet essential. While the property thin was of original interest
to this work, the property slender gained attention as it became apparent it is the correct
concept for the results in Chapter 2. It was key to understanding how to correctly attack the
problems in Chapter 3. It comes from Shelah’s approachability ideal but does not seem to
have received attention as a more general concept before.

1.2.4 Definition. Let ⟨dα | α < κ⟩ be a κ-list.

1. ⟨dα | α < κ⟩ is called thin iff |{dα ∩ δ | α < κ}| < κ for all δ < κ.

2. ⟨dα | α < κ⟩ is called slender iff there exists a club C ⊂ κ such that for every γ ∈ C
and every δ < γ there is β < γ such that dγ ∩ δ = dβ ∩ δ. ⌟

While thin is rather intuitive, slender might first appear to be not. But consider the charac-
teristic functions ⟨tα | α < κ⟩ of a κ-list ⟨dα | α < κ⟩. Then ⟨dα | α < κ⟩ is slender iff for club
many γ < κ the function tγ is a branch in the tree dc{tα | α < γ}. In particular, slender is, as
the following proposition shows, a weakening of thin.

1.2.5 Proposition. Let ⟨dα | α < κ⟩ be a κ-list. If ⟨dα | α < κ⟩ is thin, then it is slender.

Proof. Suppose to the contrary there is a stationary S ⊂ κ such that

∀γ ∈ S ∃δγ < γ ∀β < γ dγ ∩ δγ ≠ dβ ∩ δγ.

We may assume δγ = δ for some δ < κ and all γ ∈ S . But then in particular for distinct
γ, γ′ ∈ S we have dγ ∩ δ ≠ dγ′ ∩ δ, so that |{dα ∩ δ | α < κ}| ≥ |S | = κ, contradicting
⟨dα | α < κ⟩ being thin. ◻

For the following definition, the wording was chosen as to reflect the connection to the
already existing terminology. If one is not familiar with these concepts, one might feel a
little taken aback.

12



1.2 Tree Properties

1.2.6 Definition. Let A ⊂ κ and let ⟨dα | α < κ⟩ be a κ-list.

1. ⟨dα | α < κ⟩ is called A-approachable, iff there exists a club C ⊂ κ such that sup dα = α
and otp dα = cf α < α for all α ∈ A ∩C.

2. ⟨dα | α ∈ A⟩ is called A-unsubtle iff there exists a club C ⊂ κ such that dα ≠ dβ ∩ α
for all α, β ∈ A ∩C with α < β.

3. ⟨dα | α ∈ A⟩ is called A-effable iff for every S ⊂ A which is stationary in κ there exist
α, β ∈ S such that α ≤ β and dα ≠ dβ ∩ α.

⟨dα | α < κ⟩ is called approachable, unsubtle, or effable iff it is κ-approachable, κ-unsubtle,
or κ-effable respectively. ⌟

Combining Definitions 1.2.4 and 1.2.6, it is natural to define the following ideals.

1.2.7 Definition. We let

IAT[κ] ≔ {A ⊂ κ | there exists a thin A-approachable κ-list},
IST[κ] ≔ {A ⊂ κ | there exists a thin A-unsubtle κ-list},
IIT[κ] ≔ {A ⊂ κ | there exists a thin A-effable κ-list},
IAS[κ] ≔ {A ⊂ κ | there exists a slender A-approachable κ-list},
ISS[κ] ≔ {A ⊂ κ | there exists a slender A-unsubtle κ-list},
IIS[κ] ≔ {A ⊂ κ | there exists a slender A-effable κ-list}.

By FAT[κ], FST[κ], FIT[κ], FAS[κ], FSS[κ], FIS[κ] we denote the filters associated to IAT[κ],
IST[κ], IIT[κ], IAS[κ], ISS[κ], IIS[κ] respectively.

Furthermore we write κ-STP for κ ∉ IST[κ], κ-ITP for κ ∉ IIT[κ], κ-SSP for κ ∉ ISS[κ],
and κ-ISP for κ ∉ IIS[κ]. ⌟

1.2.8 Proposition. It holds that
IAT[κ] ⊂ IST[κ]

and
IAS[κ] ⊂ ISS[κ].

Proof. Let ⟨dα | α < κ⟩ be an A-approachable κ-list, witnessed by a club C ⊂ Lim. We
define

d̃α ≔ ({ζ + 1 | ζ ∈ dα} ∪ {cf α}) − cf α

if cf α < α and set d̃α ≔ ∅ otherwise.

Then ⟨d̃α | α < κ⟩ is A-unsubtle, for let α, α′ ∈ A ∩ C, α < α′. If cf α = cf α′, then
otp(d̃α′ ∩ α) < cf α′ = cf α = otp d̃α. If cf α < cf α′, then cf α ∈ d̃α but cf α ∉ d̃α′ ∩ α, and
if cf α > cf α′, then cf α′ ∈ d̃α′ ∩ α but cf α′ ∉ d̃α.
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1 Tree and Forest Properties

If ⟨dα | α < κ⟩ is thin, then so is ⟨d̃α | α < κ⟩. For if δ < κ is a limit ordinal, then

{d̃α ∩ δ | α < κ} = {(({ζ + 1 | ζ ∈ dα} ∪ {cf α}) − cf α) ∩ δ | α < κ}
⊂ {({ζ + 1 | ζ ∈ dα ∩ δ} ∪ {β}) − β | α < κ, β < δ} ∪ {∅},

which has cardinality < κ.

If ⟨dα | α < κ⟩ is slender, without loss of generality witnessed by C, let f : κ × κ → κ
be bijective such that f (α, α) = α for club many α < κ. We may assume C ⊂ {α <
κ | f ′′(α × α) = α, f (α, α) = α}. Let

d̄α ≔ (({ζ + 1 | ζ ∈ dα0} ∪ {cf α1}) − cf α1) ∩ α,

where α = f (α0, α1). Then d̄γ = d̃γ for γ ∈ C. By assumption, if γ ∈ C and δ < γ, then
there is a β < γ such that dγ ∩ δ = dβ ∩ δ. If cf γ = γ, then d̄γ = ∅, so assume cf γ < γ. Then
for β̄ ≔ f (β, cf γ) < γ we have

d̄β̄ = ({ζ + 1 | ζ ∈ dβ} ∪ {cf γ}) − cf γ,

so d̄γ ∩ δ = d̄β̄ ∩ δ. Thus ⟨d̄α | α < κ⟩ is a slender A-unsubtle κ-list. ◻

1.2.9 Proposition. IAS[κ] is the approachability ideal on κ, that is, if

I[κ] ≔ {A ⊂ κ | there is a sequence ⟨aα | α < κ⟩ of bounded subsets of κ and a club C ⊂ κ
such that ∀γ ∈ A ∩C ∃bγ ⊂ γ with otp bγ = cf γ < γ and sup bγ = γ
such that ∀δ < γ ∃β < γ bγ ∩ δ = aβ},

then IAS[κ] = I[κ].

Proof. For the “⊂” part of the proof, let ⟨dα | α < κ⟩ be an A-approachable slender κ-list, and
let the club C witness it. Let f : κ×κ → κ be a bijection such that f (α, α) = α for club many
α < κ. So we can assume C ⊂ {α < κ | f (α, α) = α, f ′′(α × α) = α}. Let aα ≔ dα0 ∩ α1,
where α = f (α0, α1). Let bγ ≔ aγ = dγ for γ ∈ A ∩ C. Then if δ < γ ∈ A ∩ C, there is a
β < γ such that dγ∩δ = dβ∩δ, so for β̃ ≔ f (β, δ) < γ we have bγ∩δ = dγ∩δ = dβ∩δ = aβ̃.

For the other direction, let ⟨aα | α < κ⟩, a club C ⊂ κ and sets bγ ⊂ γ for γ ∈ A ∩ C
witness A ∈ I[κ]. Define a′α+1 ≔ aα, a′γ ≔ bγ for γ ∈ A ∩ C, and a′γ ≔ ∅ in all other cases.
Let ⟨Uν | ν < κ⟩ be a partition of κ − Lim such that Uν is unbounded in κ for all ν < κ. We
may assume C ⊂ ∆ν<κ Lim Uν. Set dγ ≔ a′γ if γ ∈ Lim ∩ κ, and for successor α < κ let
ν < κ be such that α ∈ Uν and set dα ≔ a′ν ∩ α. Then ⟨dα | α < κ⟩ is an A-approachable
slender κ-list. It is obviously A-approachable. To see it is slender, let δ < γ ∈ C. Then there
is β < γ such that bγ ∩ δ = aβ = a′β+1. As γ ∈ Lim Uβ+1, there is a β̃ ∈ [δ, γ) with β̃ ∈ Uβ+1.
But then dγ ∩ δ = bγ ∩ δ = a′β+1 ∩ δ = dβ̃ ∩ δ. ◻

IAT[κ] was first considered by Mitchell in [Mit04].
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1.2 Tree Properties

By definition, all ideals from Definition 1.2.7 contain the nonstationary ideal on κ.
Obviously, if a κ-list is A-unsubtle, then it is A-effable. Therefore IAT[κ] ⊂ IST[κ] ⊂ IIT[κ]
and IAS[κ] ⊂ ISS[κ] ⊂ IIS[κ]. Furthermore, by Proposition 1.2.5, it is immediate that
IAT[κ] ⊂ IAS[κ], IST[κ] ⊂ ISS[κ], and IIT[κ] ⊂ IIS[κ].

We will not actually consider the ideals IAT[κ] and IAS[κ] in great detail. The reason they
are included here is that they canonically fit in and that some results are most naturally
formulated for them.

The next two definitions are independently due to Kenneth Kunen and Ronald Jensen.

1.2.10 Definition. κ is called subtle iff there is no unsubtle κ-list. ⌟

1.2.11 Definition. κ is called ineffable iff there is no effable κ-list. ⌟

Note that, since for inaccessible κ every κ-list is thin, κ is subtle iff κ is inaccessible and
κ-STP holds, and κ is ineffable iff κ is inaccessible and κ-ITP holds.

1.2.12 Proposition. IAT[κ], IST[κ], IIT[κ], IAS[κ], ISS[κ], IIS[κ] are normal ideals on κ.

Proof. Let I be one of the ideals. Let g : D → κ be regressive with D ∉ I and assume to
the contrary that Aγ ≔ g−1′′{γ} ∈ I for every γ < κ. Without loss we may assume every
element of D is indecomposable. For every γ < κ let ⟨dγα | α < κ⟩ be a κ-list witnessing
Aγ ∈ I, and let Cγ be a club that witnesses that ⟨dγα | α < κ⟩ is Aγ-approachable, Aγ-unsubtle,
or Aγ-effable and, if appropriate, slender. Set C ≔ ∆γ<κCγ. Then Aγ ∩ C ⊂ Aγ ∩ Cγ as
Aγ ⊂ κ − (γ + 1).

In the thin case, for α ∈ D let γ ≔ g(α) and set

eα ≔ {γ} ∪ {γ + 1 + η | η ∈ dγα},

and for α ∈ κ − D let eα ≔ ∅. Then eα ⊂ α as every α ∈ D is indecomposable. Also
⟨eα | α < κ⟩ is thin. For take δ < κ. Then

{eα ∩ δ | α < κ} =
⋃
γ<κ

{eα ∩ δ | α ∈ Aγ} ∪ {∅}

=
⋃
γ<δ

{eα ∩ δ | α ∈ Aγ} ∪ {∅}.

But for fixed γ we have

|{eα ∩ δ | α ∈ Aγ}| = |{({γ} ∪ {γ + 1 + η | η ∈ dγα}) ∩ δ | α ∈ Aγ}|
≤ |{dγα ∩ δ | α ∈ Aγ}|
< κ

by the thinness of ⟨dγα | α < κ⟩, so |{eα ∩ δ | α < κ}| < κ as well.
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1 Tree and Forest Properties

In the slender case, as in the proof of Proposition 1.2.9 let f : κ × κ → κ bijective be such
that α ≤ f (α, β) for all α, β < κ. C′ ≔ {α < κ | f ′′(α × α) ⊂ α} is club, and we may assume
C ⊂ C′. Furthermore let ⟨Uν | ν < κ⟩ be a partition of κ − Lim such that Uν is unbounded in
κ for all ν < κ. We can assume C ⊂ ∆ν<κ Lim Uν. For α ∈ C ∩ D let

eα ≔ {g(α)} ∪ {g(α) + 1 + η | η ∈ dg(α)
α },

which is a subset of α by the indecomposability of α. Define

eα+1 ≔ ({ν} ∪ {ν + 1 + η | η ∈ dνα1
}) ∩ α,

where α = f (α0, α1) and ν < κ is such that α0 + 1 ∈ Uν. In all other cases, let eα ≔ ∅. Then
⟨eα | α < κ⟩ is slender, for take α ∈ C and δ < α. If α ∉ D, then eα ∩ δ = ∅ = e0 ∩ δ, so let
α ∈ D. Let γ ≔ g(α). Then α ∈ Cγ, so by the slenderness of ⟨dγα | α < κ⟩ there is β < α
such that dγα ∩ δ = dγβ ∩ δ. Since α ∈ Lim Uγ, there is an α0 ∈ [δ, α) such that α0 + 1 ∈ Uγ.
Let β̃ ≔ f (α0, β) < α. Then β̃ ≥ δ and thus

eα ∩ δ = ({γ} ∪ {γ + 1 + η | η ∈ dγα}) ∩ δ = ({γ} ∪ {γ + 1 + η | η ∈ dγβ}) ∩ δ = eβ̃+1 ∩ δ.

In both cases we arrived at an either thin or slender κ-list ⟨eα | α < κ⟩ such that for every
α ∈ C ∩ D

eα = {γ} ∪ {γ + 1 + η | η ∈ dγα} ⊂ [γ, κ),

where γ ≔ g(α). We will now produce a contradiction to D ∉ I in each of the three possible
cases.

If I = IAT[κ] or I = IAS[κ], then for every α ∈ C ∩ D and γ ≔ g(α) it holds that
sup eδ = sup dγδ and otp eδ = 1 + otp dγδ = otp dγδ , so ⟨eα | α < κ⟩ is D-approachable.

If I = IST[κ] or I = ISS[κ], let α, β ∈ C ∩ D, α < β. If γ ≔ g(α) = g(β), then
eβ ∩ α = {γ} ∪ {γ + 1 + η | η ∈ dγβ} ∩ α = {γ} ∪ {γ + 1 + η | η ∈ dγβ ∩ α} because
α is indecomposable. But ⟨dγα | α < κ⟩ is Aγ-unsubtle, witnessed by C, so eβ ∩ α =
{γ} ∪ {γ + 1 + η | η ∈ dγβ ∩ α} ≠ {γ} ∪ {γ + 1 + η | η ∈ dγα} = eα. If g(α) ≠ g(β), then for
γ ≔ min{g(α), g(β)} we have γ < α, β and either γ ∈ eα − (eβ ∩ α) or γ ∈ (eβ ∩ α) − eα, so
again eα ≠ eβ ∩ α. Therefore ⟨eα | α < κ⟩ is D-unsubtle.

If I = IIT[κ] or I = IIS[κ], take an arbitrary stationary S ⊂ C ∩ D. As g is regressive, we
can assume S ⊂ Aγ for some γ < κ. Since ⟨dγα | α < κ⟩ is Aγ-effable, there are α, β ∈ S such
that α < β and dγα ≠ dγβ ∩ α. But then

eα = {γ} ∪ {γ + 1 + η | η ∈ dγα}
≠ {γ} ∪ {γ + 1 + η | η ∈ dγβ ∩ α}

= ({γ} ∪ {γ + 1 + η | η ∈ dγβ}) ∩ α

= eβ ∩ α.

This means ⟨eα | α < κ⟩ is D-effable. ◻
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1.2 Tree Properties

The following four propositions are all more or less folklore in the sense they are standard
knowledge for IAS[κ].

1.2.13 Proposition. If κ is inaccessible, then

{δ < κ | δ inaccessible} ∈ FAT[κ].

Proof. Because of the inaccessibility of κ the set {δ < κ | δ strong limit} is club in κ. But
obviously {δ < κ | δ singular} ∈ IAT[κ]. ◻

1.2.14 Proposition. cof ω ∩ κ ∈ IAT[κ].

Proof. For α ∈ cof ω ∩ κ, let dα ⊂ α be cofinal of order type ω, otherwise let dα ≔ ∅. Then
⟨dα | α < κ⟩ is thin and (cof ω ∩ κ)-approachable. ◻

1.2.15 Proposition. If λ is regular, then cof(< λ) ∩ λ+ ∈ IAT[λ+].

Proof. By [She91, Lemma 4.4] there exist ⟨S i | i < λ⟩, ⟨Ci
δ | δ ∈ S i⟩ such that

⋃
i<λ S i =

cof(< λ) ∩ λ+ and for every i < λ, α ∈ S i, and η < α

(i) Ci
α ⊂ α ∩ cof(< λ), |Ci

α| < λ, Ci
α is closed, and Ci

α unbounded in α if α ∈ Lim,

(ii) η ∈ Ci
α → η ∈ S i ∧ Ci

η = Ci
α ∩ η.

For δ < λ let Dδ ⊂ δ be cofinal of order type cf δ. Let

Ci
α,δ ≔ {γ ∈ Ci

α | otp(Ci
α ∩ γ) ∈ Dδ},

and
Tβ ≔ {Ci

α,δ ∪ {η} | i < λ, δ < λ, η < β, α ≤ β},

for β < λ+, so that |Tβ| ≤ λ.

For α ∈ cof(< λ) ∩ λ+, let dα ≔ Ci
α,otp Ci

α
, where i < λ is such that α ∈ S i. For

α ∈ cof λ ∩ λ+, let dα ≔ ∅. Then ⟨dα | α < λ+⟩ is (cof(< λ) ∩ λ+)-approachable as for
α ∈ cof(< λ) ∩ λ+ the set dα is cofinal in α and otp dα = otp Dotp Ci

α
= cf otp Ci

α = cf α. If
β < α and dα ∩ β ≠ ∅, then for η ≔ sup(Ci

α ∩ β) we have η ∈ Ci
α ∩ S i. If η = β, this means

Ci
α ∩ β = Ci

α ∩ η = Ci
η. If η < β, we have Ci

α ∩ β = Ci
α ∩ η ∪ {η} = Ci

η ∪ {η}. Therefore

dα ∩ β − {η} = {γ ∈ Ci
α ∩ β − {η} | otp(Ci

α ∩ γ) ∈ Dotp Ci
α
}

= {γ ∈ Ci
η | otp(Ci

η ∩ γ) ∈ Dotp Ci
α
}

= Ci
η,otp Ci

α
,

so dα ∩ β ∈ Tβ. This shows ⟨dα | α < λ+⟩ is thin. ◻

1.2.16 Proposition. If ◻∗λ holds, then λ+ ∈ IAT[λ+].
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1 Tree and Forest Properties

Proof. By Proposition 1.2.14 it suffices to show the set of all ordinals below λ+ of un-
countable cofinality is in IAT[λ+]. Let ⟨Cα | α ∈ Lim ∩ λ+⟩ be a ◻∗λ sequence, and let
C ′α ≔ {Lim C | C ∈ Cα}. Then for α < κ+ with cf α ≥ ω1 every C ∈ C ′α is club in α, and if
β ∈ C, then C ∩ β ∈ C ′β .

Now as in the proof of Proposition 1.2.15 let Dδ ⊂ δ be cofinal of order type cf δ for
δ ≤ λ. For C ∈ C ′α let Cδ ≔ {γ ∈ C | otp(C ∩ γ) ∈ Dδ}. For every α < κ+ of uncountable
cofinality, let C ∈ C ′α and set dα ≔ Cotp C. Set dα ≔ ∅ otherwise. Then ⟨dα | α < κ+⟩ is a
thin (cof(≥ ω1) ∩ κ+)-approachable κ+-list. ◻

1.3 Forest Properties

For the whole section κ and λ are assumed to be cardinals, κ ≤ λ, and κ is regular and
uncountable. Our goal is to generalize the concepts of Section 1.2 to Pκλ. The reader will
notice that we could develop the theory more generally for Hλ or an arbitrary set X instead
of λ. However, it appeared sensible to simplify the concepts by only considering λ.

1.3.1 Definition. ⟨da | a ∈ Pκλ⟩ is called Pκλ-list iff da ⊂ a for all a ∈ Pκλ. ⌟

1.3.2 Definition. Let ⟨da | a ∈ Pκλ⟩ be a Pκλ-list.

1. ⟨da | a ∈ Pκλ⟩ is called thin iff there is a club C ⊂ Pκλ such that |{da ∩ c | c ⊂ a ∈
Pκλ}| < κ for every c ∈ C.

2. ⟨da | a ∈ Pκλ⟩ is called slender iff for every sufficiently large θ there is a club
C ⊂ PκHθ such that for all M ∈ C and all b ∈ M ∩Pκλ

dM∩λ ∩ b ∈ M. ⌟

The definition of thin introduces a club as this results in a more natural definition. We do
not claim that the generalization of slender is obvious. However, applied by any standard it
is the correct one, as we will see later.

1.3.3 Proposition. Let ⟨da | a ∈ Pκλ⟩ be a Pκλ-list. If ⟨da | a ∈ Pκλ⟩ is thin, then it is
slender.

Proof. Let C ⊂ Pκλ be a club that witnesses ⟨da | a ∈ Pκλ⟩ is thin. Define g : C → PκHθ
by

g(c) ≔ {da ∩ c | c ⊂ a ∈ Pκλ}.

Let C̄ ≔ {M ∈ CHθ | ∀b ∈ M ∩Pκλ ∃c ∈ M ∩C b ⊂ c, ∀c ∈ M ∩C g(c) ⊂ M}. Then C̄ is
club. Let M ∈ C̄ and b ∈ M ∩Pκλ. Then there is c ∈ M ∩C such that b ⊂ c, so

dM∩λ ∩ b = dM∩λ ∩ c ∩ b ∈ M

as dM∩λ ∩ c ∈ g(c) ⊂ M. Therefore C̄ witnesses ⟨da | a ∈ Pκλ⟩ is slender. ◻
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1.3 Forest Properties

Looking at Definition 1.2.6, approachable seems to not generalize to Pκλ. But neither
does unsubtle. For if one takes the obvious generalization, then by [Men75, Lemma 1.12] κ
is λ-subtle for all λ ≥ κ iff κ is subtle.

1.3.4 Definition. Let A ⊂ Pκλ and let ⟨da | a ∈ Pκλ⟩ be a Pκλ-list. ⟨da | a ∈ Pκλ⟩ is called
A-effable iff for every S ⊂ A which is stationary in Pκλ there are a, b ∈ S such that a ⊂ b
and da ≠ db ∩ a. ⟨da | a ∈ Pκλ⟩ is called effable iff it is Pκλ-effable. ⌟

1.3.5 Proposition. A Pκλ-list ⟨da | a ∈ Pκλ⟩ is A-effable iff for every S ⊂ A which is
stationary in Pκλ there are a, b ∈ S such that da ∩ (a ∩ b) ≠ db ∩ (a ∩ b).

Proof. Suppose that ⟨da | a ∈ Pκλ⟩ is not A-effable, that is, there exists a stationary S ⊂ A
such that for all a, b ∈ S , if a ⊂ b, then da = db ∩ a. Let a, b ∈ S be such that da ∩ (a ∩ b) ≠
db∩(a∩b). Let c ∈ S be such that a∪b ⊂ c. But then da∩(a∩b) = dc∩(a∩b) = db∩(a∩b),
a contradiction. ◻

1.3.6 Definition. We let

IIT[κ, λ] ≔ {A ⊂ Pκλ | there exists a thin A-effable Pκλ-list},
IIS[κ, λ] ≔ {A ⊂ Pκλ | there exists a slender A-effable Pκλ-list}.

By FIT[κ, λ] we denote the filter associated to IIT[κ, λ], and by FIS[κ, λ] the filter associated
to IIS[κ, λ].

We write (κ, λ)-ITP for Pκλ ∉ IIT[κ, λ] and (κ, λ)-ISP for Pκλ ∉ IIS[κ, λ]. ⌟

By Proposition 1.3.3, every thin Pκλ-list is slender, so IIT[κ, λ] ⊂ IIS[κ, λ].

1.3.7 Proposition. IIT[κ, λ] and IIS[κ, λ] are normal ideals on Pκλ.

Proof. Suppose D ⊂ Pκλ and g : D→ λ is regressive. Set Aγ ≔ g−1′′{γ}. Let f : λ×λ→ λ
be bijective, and define fα1 : λ→ λ by fα1(α0) ≔ f (α0, α1). We show that if Aγ ∈ IIT[κ, λ]
for all γ < λ, then D ∈ IIT[κ, λ], and that if Aγ ∈ IIS[κ, λ] for all γ < λ, then D ∈ IIS[κ, λ].

In the thin case, that is, if Aγ ∈ IIT[κ, λ] for all γ < λ, let ⟨dγa | a ∈ Pκλ⟩ be a thin
Aγ-effable Pκλ-list for γ < λ. Let Cγ ⊂ Pκλ be a club witnessing ⟨dγa | a ∈ Pκλ⟩ is thin. Set
C ≔ ∆γ<λCγ. We may assume that for all a ∈ C and all α0, α1 < λ

f (α0, α1) ∈ a↔ α0, α1 ∈ a. (1.1)

For a ∈ C ∩ D set
da ≔ f ′′g(a)d

g(a)
a ,

and set da ≔ ∅ for a ∈ Pκλ − (C ∩ D). If c ∈ C and a ∈ C ∩ D are such that c ⊂ a and
g(a) ∉ c, then

da ∩ c = ∅. (1.2)
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1 Tree and Forest Properties

For if g(a) ∉ c, then by (1.1) we have da ∩ c = f ′′g(a)d
g(a)
a ∩ c ⊂ rng fg(a) ∩ c = ∅. Thus for

fixed c ∈ C we have

{da ∩ c | c ⊂ a ∈ C ∩ D} ∪ {∅} = {da ∩ c | g(a) ∈ c, c ⊂ a ∈ C ∩ D} ∪ {∅}
⊂ { f ′′γ dγa ∩ c | γ ∈ c, c ⊂ a ∈ C ∩ Aγ} ∪ {∅}.

For γ ∈ c we have c ∈ Cγ and thus, as Cγ witnesses ⟨dγa | a ∈ Pκλ⟩ is thin,

|{dγa ∩ c | c ⊂ a ∈ C ∩ Aγ}| < κ.

Therefore

|{da ∩ c | c ⊂ a ∈ Pκλ}| ≤ |{ f ′′γ dγa ∩ c | γ ∈ c, c ⊂ a ∈ C ∩ Aγ}|

= |{ f ′′γ (dγa ∩ f −1
γ

′′
c) | γ ∈ c, c ⊂ a ∈ C ∩ Aγ}|

= |{ f ′′γ (dγa ∩ c) | γ ∈ c, c ⊂ a ∈ C ∩ Aγ}|

< κ,

which shows ⟨da | a ∈ Pκλ⟩ is thin.

If Aγ ∈ IIS[κ, λ] for all γ < λ, let ⟨dγa | a ∈ Pκλ⟩ be a slender Aγ-effable Pκλ-list for γ < λ.
Let Cγ ⊂ P′κHθ be a club witnessing ⟨dγa | a ∈ Pκλ⟩ is slender, where θ is some large enough
cardinal. Set C ≔ ∆γ<λCγ. We can again assume that for all M ∈ C and α0, α1 < λ

f (α0, α1) ∈ M ↔ α0, α1 ∈ M.

In addition, we may require that

⟨M, ∈, f ↾ (M × M)⟩ ≺ ⟨Hθ, ∈, f ⟩ (1.3)

for every M ∈ C. As above we define

da ≔ f ′′g(a)d
g(a)
a

for a ∈ (C ↾ λ) ∩ D and let da ≔ ∅ otherwise. By the same argument that led to (1.2), we
have

da ∩ b = ∅ (1.4)

if b ∈ Pκλ, a ∈ (C ↾ λ) ∩ D, b ⊂ a, and g(a) ∉ b. To show ⟨da | a ∈ Pκλ⟩ is slender, let
M ∈ C and b ∈ M ∩Pκλ. Set a ≔ M ∩ λ. If M ∉ D, then da ∩ b ⊂ da = ∅ ∈ M, so assume
M ∈ D. Then

da ∩ b = f ′′g(a)d
g(a)
a ∩ b = f ′′g(a)(d

g(a)
a ∩ f −1

g(a)
′′

b).

If g(a) ∉ b, then by (1.4) da ∩ b = ∅ ∈ M, so suppose g(a) ∈ b. Then f −1
g(a)
′′b = b, so by the

slenderness of ⟨dg(a)
ã | ã ∈ Pκλ⟩ we have dg(a)

a ∩ f −1
g(a)
′′b ∈ M. Thus, as g(a) ∈ b ⊂ M, by (1.3)

da ∩ b = f ′′g(a)(d
g(a)
a ∩ f −1

g(a)
′′

b) ∈ M.
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1.3 Forest Properties

In both cases we arrived at a Pκλ-list ⟨da | a ∈ Pκλ⟩ such that for a club C ⊂ Pκλ that is
closed under f and f −1 we have

da = f ′′g(a)d
g(a)
a

for every a ∈ C ∩ D, and da = ∅ for a ∈ Pκλ − (C ∩ D). Suppose that D ∉ IIT[κ, λ] for the
thin case or D ∉ IIS[κ, λ] for the slender case. Then there are S ⊂ C ∩ D stationary in Pκλ
and d ⊂ λ such that da = d ∩ a for all a ∈ S . Since g is regressive we may assume S ⊂ Aγ
for some γ < λ. But then for d̃ ≔ f −1

γ
′′d and a ∈ S it holds that

dγa = f −1
γ

′′
f ′′γ dγa = f −1

γ

′′
da = f −1

γ

′′(d ∩ a) = f −1
γ

′′
d ∩ f −1

γ

′′
a = d̃ ∩ a,

contradicting ⟨dγa | a ∈ Pκλ⟩ being effable. ◻

1.3.8 Lemma. Suppose λ < λ′. Then

IIT[κ, λ] ⊂ {A′ ↾ λ | A′ ∈ IIT[κ, λ′]}

and
IIS[κ, λ] ⊂ {A′ ↾ λ | A′ ∈ IIS[κ, λ′]}.

Proof. Suppose A ⊂ Pκλ and ⟨da | a ∈ Pκλ⟩ is an A-effable list. Let A′ ≔ Aλ
′

. Define
d′a′ ≔ da′∩λ for a′ ∈ Pκλ′.

Suppose S ′ ⊂ A′ is stationary. Then S ≔ S ′ ↾ λ ⊂ A is stationary in Pκλ. Thus there
are a, b ∈ S such that da ∩ (a ∩ b) ≠ db ∩ (a ∩ b). Let a′, b′ ∈ S ′ be such that a = a′ ∩ λ,
b = b′ ∩ λ. Then da′ ∩ (a′ ∩ b′) = da ∩ (a ∩ b) ≠ db ∩ (a ∩ b) = db′ ∩ (a′ ∩ b′). Therefore
⟨d′a′ | a

′ ∈ Pκλ
′⟩ is A′-effable by Proposition 1.3.5.

If C ⊂ Pκλ witnesses ⟨da | a ∈ Pκλ⟩ is thin, then for C′ ≔ Cλ
′

and c′ ∈ C′ we have

|{d′a′ ∩ c′ | c′ ⊂ a′ ∈ Pκλ′}| = |{da′∩λ ∩ c′ | c′ ⊂ a′ ∈ Pκλ′}|
= |{da ∩ (c′ ∩ λ) | c′ ∩ λ ⊂ a ∈ Pκλ}|
< κ,

because c′ ∩ λ ∈ C. So ⟨d′a′ | a
′ ∈ Pκλ

′⟩ is thin.

If ⟨da | a ∈ Pκλ⟩ is slender and C ⊂ PκHθ is a club witnessing the slenderness, then
obviously C also witnesses ⟨d′a′ | a

′ ∈ Pκλ
′⟩ is slender. ◻

1.3.9 Proposition. Suppose λ ≤ λ′. Then (κ, λ′)-ITP implies (κ, λ)-ITP, and (κ, λ′)-ISP
implies (κ, λ)-ISP.

Proof. If (κ, λ′)-ITP holds, then Pκλ′ ∉ IIT[κ, λ′], so by Lemma 1.3.8 Pκλ ∉ IIT[κ, λ],
whence (κ, λ)-ITP. The proof is the same for (κ, λ)-ISP. ◻
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1 Tree and Forest Properties

1.3.10 Proposition. It holds that

IIT[κ] = {A ∩ κ | A ∈ IIT[κ, κ]}

and
IIS[κ] = {A ∩ κ | A ∈ IIS[κ, κ]}.

Proof. Since κ is club in Pκκ, the only thing nontrivial is to show both definitions of slender
coincide. So let C ⊂ κ be a club witnessing ⟨dα | α < κ⟩ is a slender κ-list. For large enough
θ let

C̃ ≔ {M ∈ P′κHθ | κM ∈ C, ∀α < κM dα ∈ M}.

Then C̃ is club in PκHθ. If M ∈ C̃ and b ∈ M ∩ Pκλ, then sup b < κM. Since κM ∈ C,
there is β < κM such that dκM ∩ sup b = dβ ∩ sup b, and thus dM∩κ ∩ b = dκM ∩ sup b ∩ b =
dβ ∩ sup b ∩ b = dβ ∩ b ∈ M. Therefore C̃ witnesses ⟨da | a ∈ Pκκ⟩, where da ≔ ∅ if a ∉ κ,
is a slender Pκκ-list.

For the other direction, let ⟨da | a ∈ Pκκ⟩ be a slenderPκκ-list. We show there is a slender
κ-list ⟨d′α | α < κ⟩ such that dα = d′α for club many α < κ.

Let θ be large enough, and let M̄ ≺ Hθ with dβ ∩ α ∈ M̄ for all α ≤ β < κ and |M̄| = κ.
Let C ⊂ PκHθ be a club witnessing ⟨da | a ∈ Pκκ⟩ is slender. Let <M̄ be a well-order of M̄
of order type κ, and recursively define g : κ → M̄ by

g(α) ≔ <M̄-min{x ∈ M̄ − g′′α | x ∈ Pκκ → x ⊂ α}.

g is surjective, and for all α < κ, if g(α) ∈ Pκκ, then g(α) ⊂ α. Define h : κ → M̄ by

h(α) ≔

g(β) if α = β + 1 for some β < κ,
dα otherwise.

Then h is surjective, for every α < κ

h(α) ∈ Pκκ → h(α) ⊂ α, (1.5)

and
h(δ) = dδ (1.6)

for all limit ordinals δ < κ. Define

d′α ≔ h(α) ∩ α

for α < κ. Then by (1.5) and (1.6) we have d′δ = h(δ) ∩ δ = dδ for all limit ordinals δ < κ.

Pick a continuous ∈-chain ⟨Mν | ν < κ⟩ such that ⟨Mν, ∈, g ↾ Mν⟩ ≺ ⟨M̄, ∈, g⟩, κ ∈ Mν,
and Mν ∈ C ↾ M̄ for all ν < κ. Then C̃ ≔ {κMν | ν < κ} is club in κ. If γ ∈ Lim C̃, say
γ = κMν∗ , and β < γ, then

d′γ ∩ β = dγ ∩ β ∈ Mν∗
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1.3 Forest Properties

by the slenderness of ⟨da | a ∈ Pκλ⟩. As Mν∗ =
⋃
{Mν | ν < ν∗}, we have d′γ ∩ β ∈ Mν for

some ν < ν∗. Thus there exists an α < κMν with g(α) = d′γ ∩ β. Therefore

d′α+1 = h(α + 1) ∩ (α + 1) = g(α) = d′γ ∩ β

by (1.5) and the definition of h, proving ⟨d′α | α < κ⟩ is a slender κ-list. ◻

1.3.11 Proposition. κ-ITP holds iff (κ, κ)-ITP holds, and κ-ISP holds iff (κ, κ)-ISP holds.

Proof. Follows immediately from Proposition 1.3.10. ◻

Proposition 1.3.11 can be seen as affirmation that the two cardinal principles of this section
correctly generalize those from Section 1.2.

The next definition is due to Thomas Jech [Jec73].

1.3.12 Definition. κ is called λ-ineffable iff there is no effable Pκλ-list. ⌟

Again κ is λ-ineffable iff κ is inaccessible and (κ, λ)-ITP holds. It follows from Proposi-
tion 1.3.9 that if κ ≤ λ ≤ λ′ and κ is λ′-ineffable, then it is λ-ineffable.

The next two propositions are due to Magidor [Mag74]. The first is also independently
due to Jech [Jec73].

1.3.13 Proposition. If κ is λ-supercompact, then κ is λ-ineffable.

1.3.14 Proposition. If κ is |Vλ|-ineffable, then κ is δ-supercompact for all δ < λ.

Thus by Propositions 1.3.13 and 1.3.14 a cardinal κ is supercompact iff κ is inaccessible
and (κ, λ)-ITP holds for all λ ≥ κ.

The following proposition is the two cardinal analog of Proposition 1.2.14.

1.3.15 Proposition. Suppose cf λ ≥ κ. Then

{a ∈ Pκλ | Lim a ∩ cof ω ⊂ a} ∈ FIT[κ, λ].

Proof. Let A ≔ {a ∈ Pκλ | ∃ηa ∈ Lim a − a cf ηa = ω} and for a ∈ A let ηa be a witness.
For δ ∈ cof ω ∩ λ let ⟨dδν | ν < τδ⟩ be an enumeration of {d ⊂ δ | otp d = ω, sup d = δ}. For
a ∈ Pκλ and δ ∈ Lim a ∩ cof ω let

νδa ≔ min{ν < τδ | sup(dδν ∩ a) = δ}.

For a ∈ A set
da ≔ dηa

ν
ηa
a
∩ a,
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1 Tree and Forest Properties

and for a ∈ Pκλ − A let da ≔ ∅.

Then ⟨da | a ∈ Pκλ⟩ is A-effable, for suppose there were a cofinal U ⊂ A and a d ⊂ λ
such that da = d ∩ a for all a ∈ U. Let a ∈ U. Since cf λ ≥ κ there exists b ∈ U such that
a ∪ Lim a ⊂ b. But then otp(db ∩ a) < ω, contradicting db ∩ a = da.

⟨da | a ∈ Pκλ⟩ is also thin, for let a ∈ Pκλ. Let

Ba ≔ {dδνδa ∩ a | δ ∈ Lim a ∩ cof ω} ∪Pωa.

Then |Ba| < κ. Let b ∈ A with a ⊂ b, and suppose db∩a ∉ Pωa. Since a ⊂ b, we have νδb ≤ ν
δ
a

for all δ ∈ Lim a∩cof ω. Because |db∩a| = ωwe also have that dηb

ν
ηb
b
∩a = db∩a is unbounded

in ηb. Therefore νηb
a ≤ ν

ηb
b , so that νηb

a = ν
ηb
b . But this means db ∩ a = dηb

ν
ηb
a
∩ a ∈ Ba. ◻

1.4 The Failure of Square

We define a variant of the weak square principle that is natural for our application. It is a
“threaded” version of Ernest Schimmerling’s weak square principle and is only defined up
to a given cofinality µ.

1.4.1 Definition. A sequence ⟨Cα | α ∈ Lim ∩ cof(< µ) ∩ λ⟩ is called a ◻µ(κ, λ)-sequence
iff it satisfies the following properties.

(i) 0 < |Cα| < κ for all α ∈ Lim ∩ cof(< µ) ∩ λ,

(ii) C ⊂ α is club for all α ∈ Lim ∩ cof(< µ) ∩ λ and C ∈ Cα,

(iii) C ∩ β ∈ Cβ for all α ∈ Lim ∩ cof(< µ) ∩ λ, C ∈ Cα and β ∈ Lim C,

(iv) there is no club D ⊂ λ such that D ∩ δ ∈ Cδ for all δ ∈ Lim D ∩ cof(< µ) ∩ λ.

We say that ◻µ(κ, λ) holds iff there exists a ◻µ(κ, λ)-sequence. ◻(κ, λ) stands for ◻λ(κ, λ). ⌟

Note that ◻τ,<κ implies ◻(κ, τ+) and that ◻(λ) is ◻(2, λ). Also observe that ◻µ(κ, λ) →
◻µ
′

(κ′, λ) for µ′ ≤ µ and κ ≤ κ′.

1.4.2 Theorem. Suppose cf λ ≥ κ and ◻κ(κ, λ) holds. Then ¬(κ, λ)-ITP.

Proof. Let A ≔ {a ∈ Pκλ | Lim a ∩ cof ω ⊂ a}. By Proposition 1.3.15, A ∈ FIT[κ, λ].
So it remains to show A ∈ IIT[κ, λ]. We may assume sup a ∉ a for all a ∈ A. For
γ ∈ Lim ∩ cof(< κ) ∩ λ let Cγ ∈ Cγ, and set da ≔ Csup a ∩ a for a ∈ A, otherwise da ≔ ∅.
Then, since Lim a ∩ cof ω ⊂ a,

sup da = sup a (1.7)

for every a ∈ A.
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⟨da | a ∈ Pκλ⟩ is thin, for let a ∈ Pκλ. Set

Ba ≔ {(C ∩ a) ∪ h | ∃η ∈ Lim a C ∈ Cη, h ∈ Pωa} ∪Pωa.

Then |Ba| < κ. Let b ∈ A, a ⊂ b, and suppose db ∩ a ∉ Pωa. Let η ≔ max Lim(db ∩ a).
Then η ∈ Lim Csup b, so there is a C ∈ Cη such that db ∩ η = Csup b ∩ b ∩ η = C ∩ b, so
db ∩ a ∩ η = C ∩ a. Since |db ∩ a − η| < ω, this means db ∩ a = (C ∩ a) ∪ (db ∩ a − η) ∈ Ba.

⟨da | a ∈ Pκλ⟩ is also A-effable. For suppose there were a cofinal U ⊂ A and d ⊂ λ such
that da = d∩a for all a ∈ U. Then d is unbounded in λ by (1.7). Let δ ∈ Lim d∩cof(< κ)∩λ.
We will show d ∩ δ ∈ Cδ, which contradicts the fact that ⟨Cα | α ∈ Lim ∩ cof(< κ) ∩ λ⟩ is a
◻κ(κ, λ)-sequence, thus finishing the proof. For every a ∈ U such that δ ∈ Lim(d ∩ a) we
have Csup a ∩ a = da = d ∩ a, and thus δ ∈ Lim Csup a, so that there is a Ca ∈ Cδ such that
d ∩ a∩ δ = Ca ∩ a. But since |Cδ| < κ, there is a cofinal U′ ⊂ {a ∈ U | δ ∈ Lim(d ∩ a)} such
that Ca = C for some C ∈ Cδ and all a ∈ U′. But then we have d ∩ δ ∩ a = C ∩ a for all
a ∈ U′, which means d ∩ δ = C ∈ Cδ. ◻

The following corollary is originally due to Robert Solovay [Sol74].

1.4.3 Corollary. Suppose κ is δ-supercompact. Then ¬◻κ(κ, λ) for all κ ≤ λ ≤ δ with
cf λ ≥ κ. In particular, if κ is supercompact, then ¬◻(λ) for all λ ≥ κ with cf λ ≥ κ.

Proof. This follows directly from Proposition 1.3.13 and Theorem 1.4.2. ◻

1.5 Forest Properties for Inaccessible κ

When κ is inaccessible, the filter FIT[κ, λ] has some additional helpful properties. These
will be used in Section 2.3.

1.5.1 Proposition. Let κ be inaccessible. Then

{a ∈ P′κλ | κa inaccessible} ∈ FIT[κ, λ].

Proof. Let X ≔ {α < κ | α inaccessible}. By Proposition 1.2.13 X ∈ FAT[κ] ⊂ FIT[κ]. By
Proposition 1.3.10 and Lemma 1.3.8 FIT[κ] ⊂ FIT[κ, κ] ⊂ {A ↾ κ | A ∈ FIT[κ, λ]}, so there is
an X′ ∈ FIT[κ, λ] such that X = X′ ↾ κ. But if a ∈ P′κλ ∩ X′, then κa is inaccessible. ◻

1.5.2 Proposition. Let κ be inaccessible. Let g : Pκλ→ Pκλ. Then

{a ∈ P′κλ | ∀z ∈ Pκaa g(z) ⊂ a} ∈ FIT[κ, λ].
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1 Tree and Forest Properties

Proof. Suppose not. Then

B ≔ {a ∈ P′κλ | ∃za ∈ Pκaa g(za) ⊄ a} ∉ IIT[κ, λ].

So let S ⊂ B be stationary and z ⊂ λ be such that za = z ∩ a for all a ∈ S . For all a ∈ S
we have µa ≔ |za| < κa, so there are a stationary S ′ ⊂ S and µ < κ such that µa = µ for all
a ∈ S ′.

Suppose |z| > µ. Then there is y ⊂ z such that |y| = µ+ < κ. But S ′′ ≔ {a ∈ S ′ | y ⊂ a}
is stationary and for every a ∈ S ′′ we have za = z ∩ a ⊃ y ∩ a = y, which implies
µ = µa = |za| ≥ |y| = µ+, a contradiction.

Since S ′ is cofinal, there is an a ∈ S ′ such that z ∪ g(z) ⊂ a. But then za = z ∩ a = z and
g(za) = g(z) ⊂ a, so that a ∉ B, contradicting S ′ ⊂ B. ◻

The next two Propositions are due to Chris Johnson. In [Joh90], he proves the stronger
result that they hold for the so-called λ-Shelah property, a weakening of λ-ineffability that
was introduced by Donna Carr in [Car86]. Note that the second one is a simple corollary of
the first.

1.5.3 Proposition. Suppose κ is inaccessible and λ > κ is a successor cardinal. Then there
is A ∈ FIT[κ, λ] such that ⟨sup a | a ∈ A⟩ is injective.

1.5.4 Proposition. Suppose κ is λ-ineffable and cf λ ≥ κ. Then λ<κ = λ.
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2 Consistency Results

2.1 Preliminaries

In this section, let µ be a regular uncountable cardinal.

Since we only need internal approachability of length ω, the following definition only
covers the special case.

2.1.1 Definition. Let

IA(ω) ≔ {x | ∃⟨xn | n < ω⟩ (
⋃
{xn | n < ω} = x ∧ ∀n < ω ⟨xi | i < n⟩ ∈ x)}. ⌟

2.1.2 Proposition. Let θ be regular and large enough. Then P′µHθ ∩ IA(ω) is ω1-club in
PµHθ.

Proof. P′µHθ ∩ IA(ω) is cofinal, for let y ∈ PµHθ. Let x0 ∈ P
′
µHθ such that y ⊂ x0, and for

n < ω let xn+1 ∈ P
′
µHθ be such that xn ∪ {⟨xi | i < n⟩} ⊂ xn+1. Let x ≔

⋃
{xn | n < ω}. Then

y ⊂ x ∈ P′µHθ ∩ IA(ω).

To see that it is ω1-closed, let ⟨xk | k < ω⟩ be a sequence in P′µHθ ∩ IA(ω), and let
x ≔

⋃
{xk | k < ω}. For k < ω let ⟨xk

n | n < ω⟩ be such that xk =
⋃
{xk

n | n < ω} and
⟨xk

i | i < n⟩ ∈ xk for all n < ω. Let xn ≔
⋃
{x j

i | i, j < n}. Then ⟨xn | n < ω⟩ witnesses that
x ∈ IA(ω). ◻

We now give several definitions, propositions, and lemmas that are standard in the sense
they have appeared in the literature in one form or another or are of simple technical nature.
The exact terminology might be different from other texts or new, however.

2.1.3 Definition. Let ℙ be a forcing. q ∈ ℙ is called (M,ℙ)-generic iff for every dense
D ⊂ ℙ with D ∈ M the set D ∩ M is predense below q. ⌟

2.1.4 Definition. Let ℙ be a forcing, E a class. ℙ is µ-proper for E iff for all large enough
regular θ there is a club C ⊂ PµHθ such that

C ∩ E ⊂ {M ∈ PµHθ | ∀p ∈ ℙ ∩ M ∃q ≤ p (q is (M,ℙ)-generic)}.

ℙ is µ-proper iff ℙ is µ-proper for V . ℙ is proper iff it is ω1-proper. ⌟
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Note that by Proposition 2.1.2, a forcing ℙ is proper iff it is ω1-proper for IA(ω).

2.1.5 Proposition. Let ℙ be a forcing. If ℙ is µ-cc, then it is µ-proper.

Proof. Let θ be regular and large enough and let M ∈ P′µHθ. Then any q ∈ ℙ is (M,ℙ)-
generic because if D ∈ M is dense in ℙ, then there is a maximal antichain A ⊂ D such that
A ∈ M. Since ℙ is µ-cc, this means |A| < µ and thus A ⊂ M. Therefore D∩M ⊃ A∩M = A
is predense below q. ◻

2.1.6 Definition. Let ℙ be a forcing. ℙ satisfies the µ-covering property iff for V-generic
G ⊂ ℙ the classPV

µV is cofinal in PV[G]
µ V , that is, for every x ∈ V[G] with x ⊂ V and |x| < µ

there is a z ∈ PV
µV such that x ⊂ z. ⌟

If a forcing ℙ satisfies the µ-covering property, then in particular µ remains regular in Vℙ.

2.1.7 Lemma. Let ℙ be a forcing, θ regular and large enough, and M ≺ Hθ such that
ℙ ∈ M. Suppose q is (M,ℙ)-generic. Then

q ∥− M[Ġ] ∩ V = M.

Proof. Let G ⊂ ℙ be V-generic with q ∈ G. Let ẋ ∈ M be such that ẋG ∈ V . Define

D ≔ {p ∈ ℙ | ∃y p ∥− ẋ = y ∨ p ∥− ẋ ∉ V}.

Then D ∈ M is dense, so D∩M is predense below q. Thus there exists a p ∈ D∩M∩G and
some y such that p ∥− ẋ = y. But then y is definable from p and ẋ in M, so ẋG = y ∈ M. ◻

2.1.8 Proposition. Let ℙ be a forcing. If ℙ is µ-proper for IA(ω), then ℙ satisfies the
µ-covering property.

Proof. Let θ be regular and large enough, p ∈ ℙ and ẋ ∈ Vℙ such that p ∥− ẋ ∈ PµV .
By Proposition 2.1.2, there is an M ∈ P′µHθ ∩ IA(ω) with ẋ, p ∈ M. Since ℙ is µ-proper
for IA(ω), there is an (M,ℙ)-generic q ≤ p. Then q ∥− ẋ ∈ Pµ(M[Ġ]). By Lemma 2.1.7
q ∥− M[Ġ] ∩ µ = M ∩ µ < µ, so q ∥− ẋ ⊂ M[Ġ] ∩ V = M. ◻

2.1.9 Proposition. Let ℙ be a forcing. If ℙ is µ-cc, then ℙ satisfies the µ-covering property.

Proof. This follows immediately from Propositions 2.1.5 and 2.1.8. ◻

2.1.10 Definition. Let ℙ be a forcing. ℙ satisfies the thin µ-approximation property iff the
following holds. Suppose λ ≥ µ, C ⊂ Pµλ club, and Tz ∈ Pµ(Pz) for every z ∈ C. Then for
V-generic G ⊂ ℙ and x ∈ V[G], x ⊂ λ, it holds that if x ∩ z ∈ Tz for all z ∈ C, then x ∈ V .⌟

2.1.11 Definition. Let ℙ be a forcing. ℙ satisfies the µ-approximation property iff for
V-generic G ⊂ ℙ and x ∈ V[G], x ⊂ V , it holds that if x ∩ z ∈ V for all z ∈ PV

µV , then
x ∈ V . ⌟
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The following proposition is due to Silver, see [Kun80, chap. VIII, Lemma 3.4].

2.1.12 Proposition. Let ℙ be a forcing. If there is χ < µ such that 2χ ≥ µ and ℙ is
χ+-closed, then ℙ satisfies the thin µ-approximation property.

Proof. We may assume χ is minimal such that 2χ ≥ µ.

Suppose to the contrary that for some λ and a club C ⊂ Pµλ, for each z ∈ C there is
Tz ∈ Pµ(Pz) such that for some V-generic G ⊂ ℙ there is an x ∈ V[G], x ⊂ λ, such that
x ∩ z ∈ Tz for all z ∈ C, but x ∉ V . Let p̄ ∈ G be such that p̄ ∥− ∀z ∈ C x ∩ z ∈ Tz and
p̄ ∥− x ∉ V .

Let ẋ be a name for x and work in V . For z ∈ C the set

Dz ≔ {p ∈ ℙ | ∃t ∈ Tz p ∥− ẋ ∩ z = t}

is dense below p̄. On the other hand, for every q ≤ p̄ there is z(q) ∈ C such that for all
t ∈ Tz(q)

q ̸∥− ẋ ∩ z(q) = t.

For otherwise for x̃ =
⋃
{t | ∃z ∈ C q ∥− ẋ ∩ z = t} we would have q ∥− ẋ = x̃ ∈ V ,

contradicting q ≤ p̄.

2.1.12.1 Claim. For q ≤ p̄ and z ∈ C with z(q) ⊂ z there are q0, q1 ≤ q and t0, t1 ∈ Tz,
t0 ≠ t1, such that

qi ∥− ẋ ∩ z = ti

for i ∈ {0, 1}.

Proof. Since Dz is dense below p̄, there is q0 ≤ q and t0 such that q0 ∥− ẋ ∩ z = t0. As
q ̸∥− ẋ∩ z = t0, there is an r ≤ q with r ∥− ẋ∩ z ≠ t0. If q1 ≤ r is in Dz, then for some t1 ≠ t0

we have q1 ∥− ẋ ∩ z = t1, so q0 and q1 are as wanted. ⊣

For s ∈ ≤χ2 and δ ≤ χ we define ps ∈ ℙ, ts, and zδ ∈ C such that the following holds.

(i) ⟨zδ | δ ≤ χ⟩ is ⊂-increasing and continuous,

(ii) if s, s′ ∈ ≤χ2 and s is an initial segment of s′, then ps′ ≤ ps,

(iii) ts ∈ Tzdom s ,

(iv) ts⌢0 ≠ ts⌢1 if s ∈ <χ2,

(v) ps ∥− ẋ ∩ zdom s = ts.

To see this can be done, let δ ≤ χ and suppose ps, ts and zα have been defined for all α < δ
and s ∈ <δ2.

If δ = β + 1, then let zδ ∈ C such that zδ ⊃
⋃
{z(ps) | s ∈ <δ2} ∪ zβ, which exists as

2<δ ≤ 2<χ < µ by assumption. By Claim 2.1.12.1, for every s ∈ β2 there are ps⌢0, ps⌢1 ≤ ps

and ts⌢0, ts⌢1 ∈ Tzδ such that (iv) and (v) are satisfied.
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If δ is a limit ordinal, let zδ ≔
⋃
{zα | α < δ}, and for every s ∈ δ2 let p̃s ∈ ℙ be such that

p̃s ≤ ps↾α for all α < δ, which exists because ℙ is χ+-closed. Let ps ∈ Dzδ with ps ≤ p̃s.
Then ps ∥− ẋ ∩ zδ = ts for some ts ∈ Tzδ .

If s, s′ ∈ χ2, s ≠ s′, then ts ≠ ts′ . For let α < χ be minimal such that s ↾ (α + 1) ≠ s′ ↾
(α + 1). Then ps ∥− ts ∩ zα+1 = ẋ ∩ zχ ∩ zα+1 = ẋ ∩ zα+1. But ps↾(α+1) ∥− ẋ ∩ zα+1 = ts↾(α+1),
so ts ∩ zα+1 = ts↾(α+1). Likewise ts′ ∩ zα+1 = ts′↾(α+1). By (iv) ts↾(α+1) ≠ ts′↾(α+1), so that ts ≠ ts′ .
This is a contradiction because {ts | s ∈ χ2} ⊂ Tzχ , |{ts | s ∈ χ2}| = 2χ ≥ µ, and |Tzχ | < µ. ◻

2.1.13 Proposition. Let κ be regular uncountable, λ ≥ κ, ℙ κ-cc, p ∈ ℙ, and Ċ ∈ Vℙ such
that p ∥− Ċ ⊂ Pκλ club. Then there is a club D ⊂ Pκλ such that p ∥− D ⊂ Ċ.

Proof. Let ḟ be such that p ∥− “ ḟ : Pωλ→ Pκλ ∧ Cl ḟ ⊂ Ċ”. Define g : Pωλ→ Pκλ by

g(e) ≔
⋃
{x ∈ Pκλ | ∃q ≤ p q ∥− ḟ (e) = x}.

Then |g(e)| < κ by the regularity of κ and because ℙ is κ-cc. For e ∈ Pωλ we have
p ∥− ḟ (e) ⊂ g(e). This means that for x ∈ Clg and z ∈ Pωx we have p ∥− ḟ (z) ⊂ g(z) ⊂ x.
Hence p ∥− ClV

g ⊂ Cl ḟ ⊂ Ċ. ◻

2.1.14 Lemma. Let κ > ω be regular, ℙκ be the direct limit of an iteration ⟨ℙν | ν < κ⟩.
Suppose ℙκ is κ-cc. Let p ∈ ℙκ and ẋ ∈ Vℙκ such that p ∥− ẋ ∈ PκV. Then there is ρ < κ
such that p ∥− ẋ ∈ V[Ġρ].

Proof. For c ∈ V let Ac ⊂ ℙκ be a maximal antichain below p that decides “c ∈ ẋ.” Because
ℙκ satisfies the κ-covering property by Proposition 2.1.9, there is an ε < κ and an i : ε→ V
such that p ∥− ẋ ⊂ rng i. Set

ẋ′ ≔ {⟨ (̌i(ν)), a⟩ | ν < ε, a ∈ Ai(ν), a ∥− i(ν) ∈ ẋ}.

Then p ∥− ẋ = ẋ′, for let G ⊂ ℙκ be V-generic with p ∈ G. Then

δ ∈ ẋG ↔ ∃a ∈ Aδ ∩G a ∥− δ ∈ ẋ
↔ ∃ν < ε ∃a ∈ Ai(ν) ∩G (i(ν) = δ ∧ a ∥− i(ν) ∈ ẋ)

↔ ∃a ∈ G ⟨δ̌, a⟩ ∈ ẋ′

↔ δ ∈ ẋ′G.

Since ℙκ is direct limit and κ-cc, by the regularity of κ we have

ρ ≔ sup
ν<ε

⋃
{supp a | a ∈ Ai(ν)} < κ.

But by definition ẋ′ ∈ Vℙρ . ◻

2.1.15 Lemma. Suppose η is regular uncountable and ℙη is the direct limit of ⟨ℙν | ν < η⟩.
Also suppose {ν < η | ℙν direct limit of ⟨ℙν′ | ν′ < ν⟩} is stationary in η. If ℙν is η-cc for
every ν < η, then ℙη is η-cc.

The proof of Lemma 2.1.15 can be found in [Bau83, Theorem 2.2] or [Jec03, Theo-
rem 16.30].
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2.2 Forcing Constructions

We now describe a forcing construction that is originally due to Mitchell [Mit73]. The
presentation follows [Kru08]. The reader should note that we use the convention that
conditions are only defined on their support. We still write p(γ) = 1 to indicate γ ∉ supp p
though.

Let ℂ denote the forcing for adding a Cohen real, and let Coll(δ, γ) denote the forcing
for collapsing γ onto δ. Suppose C ⊂ Lim is a set and τ is a regular uncountable cardinal.
Let L ≔ {α + 1 | α ∈ C} and ζ ≔ sup{α + 1 | α ∈ L}. We define an iterated forcing
⟨ℙν(C, τ), ℚ̇γ(C, τ) | ν ≤ ζ, γ < ζ⟩ by the following four conditions. For the sake of brevity,
let ℙν ≔ ℙν(C, τ) and ℚ̇γ ≔ ℚ̇γ(C, τ).

1. If γ ∈ C, then ∥−γ ℚ̇γ = ℂ,

2. if γ ∈ L, then ∥−γ ℚ̇γ = Coll(τ, γ),

3. if γ ∈ ζ − (C ∪ L), then ∥−γ ℚ̇γ = {1},

4. for ν ≤ ζ and p ∈ ℙν it holds that

• | supp p ∩ C| < ω,

• | supp p ∩ L| < τ.

We define an ordering ≤∗ ⊂ ≤ on ℙν by

p ≤∗ q :↔ (p ≤ q ∧ ∀γ ∈ C ∩ ν p ↾ γ ∥−γ p(γ) = q(γ)),

and write ℙ∗ν for ⟨ℙν,≤∗⟩. Furthermore let

ℙ
′
ν ≔ {p ∈ ℙν | ∀α ∈ C ∩ ν ∃x p(α) = x̌}.

2.2.1 Lemma. For ν ≤ ζ, ℙ∗ν is τ-closed.

Proof. Let ⟨pα | α < δ⟩ be a decreasing sequence of conditions in ℙ∗ν for some δ < τ. Let

S ≔
⋃
{supp pα ∩ L | α < δ}.

Then |S | < τ.

We recursively define p. So suppose p ↾ γ is given, p ↾ γ ≤∗ pα ↾ γ for all α < δ. If
γ ∉ S , set p(γ) ≔ p0(γ). If γ ∈ S , then because ∥−γ “ℚ̇γ = Coll(τ, γ) is τ-closed” and
p ↾ γ ≤∗ pα ↾ γ for α < δ there is an ṙ such that ∥−γ ṙ ∈ ℚ̇γ and

p ↾ γ ∥−γ ∀α < δ ṙ ≤ pα(γ).

Set p(γ) to be this ṙ. ◻
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2.2.2 Lemma. For ν ≤ ζ, ℙ′ν is dense in ℙν.

Proof. Let γ < ν and suppose the statement is true for all β < γ. Let p ∈ ℙγ.

Suppose γ is a limit ordinal. Then there is β < γ such that supp p ∩ C ⊂ β. Hence there
is p̃ ∈ ℙβ with p̃ ≤ p ↾ β. If we set q ≔ p̃ ∪ p ↾ [β, γ), then q ≤ p and q ∈ ℙ′γ.

Suppose γ = β + 1 with β ∈ C. Since ∥−β p(β) ∈ ℂ, there are an x and p̄ ∈ ℙβ such that
p̄ ≤ p ↾ β and p̄ ∥−β p(β) = x. Let p̃ ∈ ℙ′β such that p̃ ≤ p̄. Then for q ≔ p̃ ⌢ ⟨x̌⟩ we have
q ≤ p and q ∈ ℙ′γ. ◻

The next lemma is very strong in that it directly implies important features of our forcing
iteration ⟨ℙν | ν ≤ ζ⟩.

2.2.3 Lemma. Let ν ≤ ζ. Suppose M ∈ PτHθ ∩ IA(ω) for some large enough regular
θ is such that ℙν,C ∈ M. Let p ∈ ℙ′ν ∩ M and suppose Ẋ ∈ Vℙν ∩ M is such that
p ∥−ν Ẋ ⊂ V ∧ Ẋ ∉ V. Then there is q ∈ ℙν such that q ≤∗ p and for every r ≤ q and
D ∈ M that is dense open in ℙν there are y0, y1 ∈ D ∩ M and x ∈ M with

(i) y0 and y1 are compatible with r,

(ii) y0 ∥−ν x ∈ Ẋ,

(iii) y1 ∥−ν x ∉ Ẋ.

Proof. There is a q ∈ ℙν such that if D ∈ M is dense in ℙ∗ν, then

∃d ∈ D ∩ M q ≤∗ d ≤∗ p. (2.1)

To see this, let ⟨Mn | n < ω⟩ witness M ∈ IA(ω). LetDn ≔ {D ∈ Mn | D ⊂ ℙ∗ν dense} ∈ M.
We recursively define a ≤∗-decreasing sequence ⟨qn | n < ω⟩ such that qn ∈ M and qn ≤

∗ p
for all n < ω. Suppose qm has been defined for all m < n. For D ∈ Dn, let D̄ ≔ {r ∈
ℙ∗ν | ∃d ∈ D r ≤∗ d}. Then D̄ is dense open. The forcing ℙ∗ν is τ-closed and thus in particular
τ-distributive. Since |Dn| < τ, this means F ≔

⋂
{D̄ | D ∈ Dn} is dense open. Note that

F ∈ M. So we can take qn ∈ F ∩ M such that qn ≤
∗ p and qn ≤

∗ qm for all m < n. If q is a
lower bound for the sequence ⟨qn | n < ω⟩, then it satisfies (2.1).

We now show that this q satisfies the claim of the lemma. So let r ≤ q, without loss
r ∈ ℙ′ν, and let D ∈ M be dense open in ℙν. Because r ∈ ℙ′ν, r ↾ (M ∩ C) ∈ M. Define
E ⊂ ℙ∗ν by e ∈ E iff e and p are ≤∗-incompatible or e ≤∗ p and there are y0, y1 ∈ D∩ℙ′ν such
that

(a) ∀γ ∈ M ∩ C ∥−γ y0(γ), y1(γ) ≤ r(γ),

(b) y0 ↾ L = y1 ↾ L = e ↾ L,

(c) ∃x (y0 ∥−ν x ∈ Ẋ ∧ y1 ∥−ν x ∉ Ẋ).

Then E ∈ M.
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Suppose E is dense in ℙ∗ν. Then by (2.1) there is an e ∈ E ∩ M such that q ≤∗ e ≤∗ p.
Since e ≤∗ p there are y0, y1, x ∈ M that satisfy (a), (b), (c). Thus y0 satisfies (ii) and y1

satisfies (iii). To prove (i), suppose yi and r are incompatible for either i = 0 or i = 1.
Let γ be minimal such that r ↾ γ ̸∥−γ “r(γ) and yi(γ) are compatible”. If γ ∈ C, then
γ ∈ supp yi ∩ C ⊂ M, so (a) gives a contradiction. Thus γ ∈ L. But because of r ≤ q ≤ e
and (b) we have r ↾ γ ∥−γ r(γ) ≤ e(γ) = yi(γ), which again is a contradiction.

So it remains to show that E is dense in ℙ∗ν. Let s ∈ ℙ∗ν be ≤∗-compatible with p, and let
t ≤∗ p, s. Define

w ≔ r ↾ (M ∩ C) ∪ t ↾ L.

2.2.3.1 Claim. It holds that w ≤ t.

Proof. Let γ < ν and suppose w ↾ γ ≤ t ↾ γ.

• 1st case: γ ∈ M ∩ C.

We have r ≤ q ≤ p, so r ↾ γ ∥−γ r(γ) ≤ p(γ). Since r, p ∈ ℙ′ν, r(γ) and p(γ) are
canonical names and therefore ∥−γ r(γ) ≤ p(γ), so ∥−γ w(γ) = r(γ) ≤ p(γ). Also
t ≤∗ p, so t ↾ γ ∥−γ t(γ) = p(γ) and thus w ↾ γ ∥−γ w(γ) ≤ t(γ).

• 2nd case: γ ∈ L.

Then w ↾ γ ∥−γ w(γ) = t(γ).

• 3rd case: γ ∈ ν − ((M ∩ C) ∪ L).

Because p ∈ M we have supp t ∩ C = supp p ∩ C ⊂ M ∩ C, so γ ∉ supp t and thus
w ↾ γ ∥−γ w(γ) = 1 = t(γ). ⊣

Let z ∈ D, z ≤ w. Then z ∥−ν “Ẋ ⊂ V ∧ Ẋ ∉ V” because z ≤ p. Thus there exist an x
and z̃0, z̃1 ≤ z such that z̃0 ∥−ν x ∈ Ẋ and z̃1 ∥−ν x ∉ Ẋ.

2.2.3.2 Claim. There are z0, z1 ∈ ℙ
′
ν such that z0 ≤ z̃0, z1 ≤ z̃1 and

∀γ ∈ L ∥−γ z0(γ), z1(γ) ≤ t(γ).

Proof. We can assume z̃0, z̃1 ∈ ℙ
′
ν. For i ∈ {0, 1} we define zi as follows. For γ ∈ ν − L,

simply let zi(γ) ≔ z̃i(γ). For γ ∈ L, let zi(γ) be such that z̃i ↾ γ ∥−γ z̃i(γ) = zi(γ) and for all
u ∈ ℙγ that are incompatible with z̃i ↾ γ we have u ∥−γ zi(γ) = t(γ). ⊣

Let z0, z1 be as in Claim 2.2.3.2.

2.2.3.3 Claim. There are y0, y1 ∈ D ∩ ℙ′ν which satisfy (a) and (c). Furthermore for γ ∈ L
∥−γ y0(γ) = y1(γ) ∈ {z0(γ), z1(γ)}.
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Proof. For γ < minC set y0(γ) ≔ y1(γ) ≔ 1. Choose incompatible y0(minC), y1(minC) ∈
ℂ such that y0(minC) ≤ z0(minC) and y1(minC) ≤ z1(minC).

Now suppose y0 ↾ γ and y1 ↾ γ have been defined. If γ ∉ L, let y0(γ) ≔ z0(γ) and
y1(γ) ≔ z1(γ). For γ ∈ L, let ȧ be such that y0 ↾ γ ∥−γ ȧ = z0(γ) and for any u ∈ ℙγ that is
incompatible with y0 ↾ γ it holds that u ∥−γ ȧ = z1(γ). Let y0(γ) ≔ y1(γ) ≔ ȧ.

Then y0 ≤ z0, y1 ≤ z1, y0 ↾ L = y1 ↾ L, and for any γ ∈ C

∥−γ yi(γ) = zi(γ) ≤ w(γ) = r(γ)

for i ∈ {0, 1}. ⊣

Let
e ≔ t ↾ C ∪ y0 ↾ L.

Then e ≤∗ t, for if γ ∈ C, then ∥−γ e(γ) = t(γ), and if γ ∈ L, then by Claims 2.2.3.2
and 2.2.3.3 ∥−γ ∃i ∈ {0, 1} e(γ) = y0(γ) = zi(γ) ≤ t(γ).

So e ≤∗ t ≤∗ s. As e, y0, y1 satisfy (b), we have shown that E is dense. ◻

2.2.4 Proposition. For ν ≤ ζ, ℙν is µ-proper for IA(ω) for every µ ∈ [ω1, τ].

Proof. Suppose M ∈ PµHθ ∩ IA(ω) for some large enough regular θ with ℙν,C ∈ M and
p ∈ ℙν ∩ M. Let p′ ≤ p be such that p′ ∈ ℙ′ν ∩ M. Let Ẋ ≔ Ġ. Then by Lemma 2.2.3 there
is q ≤∗ p′ which is (M,ℙν)-generic. ◻

2.2.5 Proposition. For ν ≤ ζ, ℙν satisfies the ω1-approximation property.

Proof. Suppose to the contrary that there is p ∈ ℙν and Ẋ ∈ Vℙν such that

p ∥−ν Ẋ ⊂ V ∧ Ẋ ∉ V ∧ ∀A ∈ PV
ω1

V Ẋ ∩ A ∈ V.

We can assume p ∈ ℙ′ν. Let θ be regular and large enough and, by Proposition 2.1.2, let
M ∈ Pω1 Hθ ∩ IA(ω) be such that Ẋ,ℙν,C, p ∈ M. Let q ≤∗ p be as in Lemma 2.2.3. As
M ∈ PV

ω1
V , there are r ≤ q and Y such that

r ∥−ν Ẋ ∩ M = Y.

Thus, for D = ℙν, there are y0, y1 ∈ M which are both compatible with r and x ∈ M such that
y0 ∥−ν x ∈ Ẋ and y1 ∥−ν x ∉ Ẋ. So there are s0 ≤ y0, r and s1 ≤ y1, r. But then s0 ∥−ν x ∈ Y
and s1 ∥−ν x ∉ Y , a contradiction. ◻

2.2.6 Theorem. Let τ be a regular uncountable cardinal and γ ≥ τ be a cardinal. Then
the forcing ℂ ∗ Coll(τ, γ) is µ-proper for IA(ω) for every µ ∈ [ω1, τ] and satisfies the
ω1-approximation property.
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Proof. Let C ≔ {γ}. Then ζ = γ + 2, and ℙζ(C, τ) is—up to a trivial isomorphism—the
forcing ℂ ∗ Coll(τ, γ). Therefore it is µ-proper for IA(ω) for every µ ∈ [ω1, τ] and satisfies
the ω1-approximation property by Propositions 2.2.4 and 2.2.5. ◻

Theorem 2.2.6 will be used in Chapter 3. While Coll(ω1, γ) only satisfies the thin ω1-
approximation property under PFA, ℂ ∗ Coll(ω1, γ) satisfies the ω1-approximation property
and thus allows us to treat slenderness as well.

2.2.7 Proposition. Let η ∈ (τ, ζ] be inaccessible. Then ℙη is the direct limit of ⟨ℙν | ν < η⟩
and is η-cc.

Proof. ℙν is the direct limit of ⟨ℙν′ | ν′ < ν⟩ for every ν ≤ η with cf ν ≥ τ. Since |ℙν| < η
for ν < η, every ℙν is η-cc. Thus ℙη is η-cc by Lemma 2.1.15. ◻

2.2.8 Theorem. Let κ be inaccessible, τ < κ be regular and uncountable. Then there exists
an iteration ⟨ℙν | ν ≤ κ⟩ such that ∥−κ κ = τ+ and for η = 0 and every inaccessible η ≤ κ

(i) ℙη is the direct limit of ⟨ℙν | ν < η⟩ and η-cc,

(ii) if ℙκ = ℙη ∗ ℚ̇, then ∥−η ℚ̇ satisfies the ω1-approximation property,

(iii) for every ν < η, ℙν is definable in Hη from the parameters τ and ν,

(iv) ℙη is µ-proper for IA(ω) for every µ ∈ [ω1, τ].

Proof. Let C ≔ {γ < κ | γ regular}. Then ζ = supC = κ.

Proposition 2.2.7 implies (i), (iii) follows from the definition of ℙκ, and (iv) follows from
Proposition 2.2.4.

Furthermore ∥−κ κ = τ+, for if ξ < κ, then for some regular ν ≥ ξ we have ∥−ν+1 ℚ̇ν+1 =

Coll(τ, ν + 1), so ∥−κ |ξ| ≤ τ and thus ∥−κ κ ≤ τ+. Since ℙκ is κ-cc, κ is not collapsed and so
∥−κ κ ≥ τ

+.

To verify (ii), let Gη ⊂ ℙη be V-generic and work in V[Gη]. But then ℚ̇Gη = ℙκ(C − η, τ).
Thus it satisfies the ω1-approximation property by Proposition 2.2.5. ◻

Theorem 2.2.8 is the basis for Section 2.3. Theorems 2.3.1 and 2.3.3 should be read with it
in mind.

2.3 Preservation Theorems and Upper Bounds

The following theorem is the logical continuation of Mitchell’s result that the tree property
is preserved by the forcing from Section 2.2. As with the original result, it is more natural to
formulate it for slenderness. It is probably helpful to the reader to understand Theorem 2.3.1
prior to Theorem 2.3.3 as it features the same structure and ideas and is less clouded by
technicalities and additional problems that arise in the two cardinal case.
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2.3.1 Theorem. Let κ be a cardinal, τ < κ regular and uncountable, and ⟨ℙν | ν ≤ κ⟩ be an
iteration such that for all inaccessible η ≤ κ

(i) ℙη is the direct limit of ⟨ℙν | ν < η⟩ and η-cc,

(ii) if ℙκ = ℙη ∗ ℚ̇, then ∥−η ℚ̇ satisfies the ω1-approximation property,

(iii) for every ν < η, ℙν is definable in Hη from the parameters τ and ν.

If κ is subtle, then ∥−κ κ-SSP, and if κ is ineffable, then ∥−κ κ-ISP.

Proof. Let G ⊂ ℙ be V-generic and work in V[G]. Let ⟨dα | α < κ⟩ be a slender κ-list and
let C′ ⊂ κ − τ be a club that witnesses the slenderness.

2.3.1.1 Claim. There is a club C ⊂ C′ such that for all γ ∈ C

{dα | α < γ} ⊂ V[Gγ].

Proof. Let
g(α) ≔ min{ρ < κ | dα ∈ V[Gρ]}.

Then g(α) < κ for every α < κ by Lemma 2.1.14. Thus there is a club C ⊂ C′ such that
g′′γ ⊂ γ for all γ ∈ C. ⊣

Let C be as in Claim 2.3.1.1. We may assume C ∈ V by Proposition 2.1.13. Let

E ≔ {η ∈ C | η inaccessible in V}.

2.3.1.2 Claim. If η ∈ E, then dη ∈ V[Gη].

Proof. Let ℙκ = ℙη ∗ ℚ̇. If z ∈ PV[Gη]
ω1 η, then δ ≔ sup z < η, so as η ∈ C′ there is a

β < η such that dη ∩ z = dη ∩ δ ∩ z = dβ ∩ δ ∩ z = dβ ∩ z ∈ V[Gη]. Thus, since by (ii)
V[Gη] |= “ℚ̇Gη satisfies the ω1-approximation property”, we have dη ∈ V[Gη]. ⊣

If η < κ is inaccessible in V , by (i) and (iii) ℙη ⊂ HV
η . By Claim 2.3.1.2, for η ∈ E there

is a ℙη-name ḋη for dη. Define, in V ,

Dη ≔ {⟨p, α, n⟩ | p ∈ ℙη, α < η, (n = 0 ∧ p ∥−η α ∉ ḋη) ∨ (n = 1 ∧ p ∥−η α ∈ ḋη)}

for η ∈ E. Then ⟨dη | η ∈ E⟩ ∈ V and Dη ⊂ HV
η .

Let
i : HV

κ → κ

be a bijection in V such that i′′HV
η = η for all η < κ inaccessible in V .
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2.3.1.3 Claim. If η, η′ ∈ E, η < η′, and i′′Dη = i′′Dη′ ∩ η, then dη = dη′ ∩ η.

Proof. If α ∈ dη, then there is a p ∈ G such that p ∥−κ α ∈ ḋη. Since ḋη ∈ Vℙη , also
p ↾ η ∥−η α ∈ ḋη. Therefore ⟨p ↾ η, α, 1⟩ ∈ Dη = Dη′ ∩ HV

η , so p ↾ η ∥−η′ α ∈ ḋη′ and thus
α ∈ dη′ .

By the same argument, if α < η and α ∉ dη, then α ∉ dη′ . Therefore dη = dη′ ∩ η. ⊣

By Proposition 1.2.13, E ∈ FV
AT[κ]. So if κ is subtle in V , then there are η, η′ ∈ E, η < η′,

with i′′Dη = i′′Dη′ ∩ η. Thus dη = dη′ ∩ η by Claim 2.3.1.3, which means ⟨dα | α < κ⟩ is not
unsubtle.

If κ is ineffable in V , then in V there are a stationary S ⊂ E and a D ⊂ κ such that
i′′Dη = D ∩ η for all η ∈ S . S remains stationary in V[G] by Proposition 2.1.13, so
⟨dα | α < κ⟩ is not effable by Claim 2.3.1.3. ◻

2.3.2 Theorem. If the theory ZFC + “there is a subtle cardinal” is consistent, then the
theory ZFC + ω2-SSP is consistent. If the theory ZFC + “there is an ineffable cardinal” is
consistent, then the theory ZFC + ω2-ISP is consistent.

Proof. Taking τ = ω1, this follows immediately from Theorems 2.2.8 and 2.3.1. ◻

The next theorem is the two cardinal version of Theorem 2.3.1. The two cardinal version
of slenderness now pays off as the consideration of (κ, λ)-ISP greatly clarified its proof. In
fact the proof of Theorem 2.3.3 was the main motivation for the generalization of slenderness
to Pκλ.

2.3.3 Theorem. Let κ, λ be cardinals, τ regular uncountable, τ < κ ≤ λ, and ⟨ℙν | ν ≤ κ⟩
be an iteration such that for all inaccessible η ≤ κ

(i) ℙη is the direct limit of ⟨ℙν | ν < η⟩ and η-cc,

(ii) if ℙκ = ℙη ∗ ℚ̇, then ∥−η ℚ̇ satisfies the ω1-approximation property,

(iii) for every ν < η, ℙν is definable in Hη from the parameters τ and ν,

(iv) ℙη satisfies the ω1-covering property.

Suppose κ is λ<κ-ineffable. Then ∥−κ (κ, λ)-ISP.

Proof. By Proposition 1.3.11, the case λ = κ is already covered by Theorem 2.3.1, so we
may assume λ > κ. Let G ⊂ ℙκ be V-generic and work in V[G]. Let ⟨da | a ∈ Pκλ⟩ be a
slender Pκλ-list, and let C′ ⊂ PκHθ be a club witnessing the slenderness of ⟨da | a ∈ Pκλ⟩
for some large enough θ.

2.3.3.1 Claim. There is a club C ⊂ C′ such that for all M ∈ C

Pκλ ∩ M ⊂ V[GκM ].
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Proof. For x ∈ Pκλ by Lemma 2.1.14 there is ρx < κ such that x ∈ V[Gρx]. Thus

C ≔ {M ∈ C′ | ∀x ∈ Pκλ ∩ M ρx ∈ M}

is as wanted. ⊣

Let C be as in Claim 2.3.3.1. Let σ ≔ (λ<κ)V . Let M̄ ∈ V be such that M̄ ≺ HV
θ ,

λ ∪PV
κ λ ⊂ M̄, |M̄|V = σ. Let C0 ≔ C ↾ M̄. By Proposition 2.1.13, there is a C1 ∈ V such

that C1 ⊂ C0 and V |= C1 ⊂ PκM̄ club. Let

E ≔ {M ∈ C1 | κM inaccessible in V , PV
ω1

(M ∩ λ) ⊂ M}.

2.3.3.2 Claim. If M ∈ E, then dM∩λ ∈ V[GκM ].

Proof. Let z ∈ P
V[GκM ]
ω1 (M ∩ λ). ℙκM satisfies the ω1-covering property by (iv), so there is

b ∈ PV
ω1

(M ∩ λ) such that z ⊂ b. Let M′ ∈ C be such that M = M′ ∩ M̄. Then b ∈ M ⊂ M′.
Therefore, by the slenderness of ⟨da | a ∈ Pκλ⟩, dM∩λ ∩ b = dM′∩λ ∩ b ∈ Pκλ ∩ M′ ⊂
V[GκM′ ] = V[GκM ] and thus

dM∩λ ∩ z = dM∩λ ∩ b ∩ z ∈ V[GκM ].

Let ℙκ = ℙκM ∗ ℚ̇. Then ℚ̇GκM satisfies the ω1-approximation property by (ii), so dM∩λ ∈

V[GκM ]. ⊣

For M ∈ E we have ℙκM ⊂ M by (i) and (iii). By Claim 2.3.3.2 dM∩λ ∈ V[GκM ], so there
is ḋM ∈ VℙκM such that ḋ

GκM
M = dM∩λ. Let

DM ≔ {⟨p, α, n⟩ | p ∈ ℙκM , α ∈ M∩λ, (n = 0∧ p ∥−κM α ∉ ḋM)∨ (n = 1∧ p ∥−κM α ∈ ḋM)}.

Then ⟨DM | M ∈ E⟩ ∈ V and DM ⊂ M.

Work in V . Let f : M̄ → σ be a bijection such that f ↾ κ = id ↾ κ. By Propositions 1.5.1
and 1.5.2

F ≔ {m ∈ P′κσ | κm inaccessible, Pω1(m ∩ f ′′λ) ⊂ m} ∈ FIT[κ, σ].

As κ is σ-ineffable, there exist a stationary S ′ ⊂ Pκσ and d′ ⊂ σ such that f ′′D f −1′′m =

d′ ∩ m for all m ∈ S ′ such that f −1′′m ∈ E. But E = { f −1′′m | m ∈ F} ∩ C1, so for
S ≔ { f −1′′m | m ∈ S ′ ∩ F} ∩C1 and for D ≔ f −1′′d′ we have

DM = D ∩ M

for all M ∈ S .

Back in V[G], let T ≔ S ↾ λ and

d ≔ {α < λ | ∃p ∈ G ⟨p, α, 1⟩ ∈ D}.
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2.3 Preservation Theorems and Upper Bounds

2.3.3.3 Claim. If a ∈ T, then da = d ∩ a.

Proof. If a ∈ T , then a = M ∩ λ for some M ∈ S . But then for α ∈ a, if α ∈ da = dM∩λ =

ḋ
GκM
M , then there is p ∈ GκM such that p ∥−κM α ∈ ḋM. Thus ⟨p, α, 1⟩ ∈ DM = D ∩ M, so that
α ∈ d by the definition of d.

By the same argument, if α ∉ da, then α ∉ d. ⊣

T is stationary in V , so by Proposition 2.1.13 it is also stationary in V[G]. Therefore by
Claim 2.3.3.3, ⟨da | a ∈ Pκλ⟩ is not effable. ◻

If cf λ ≥ κ, the condition that κ is λ<κ-ineffable in Theorem 2.3.3 can be weakened to
λ-ineffable by Proposition 1.5.4.

2.3.4 Theorem. If the theory ZFC + “there exists a supercompact cardinal” is consistent,
then the theory ZFC + “(ω2, λ)-ISP holds for every λ ≥ ω2” is consistent.

Proof. This follows immediately from Proposition 1.3.13 and Theorems 2.2.8 and 2.3.3.◻

In Theorems 2.3.2 and 2.3.4, ω2 only serves as the minimal cardinal for which the
theorems hold true. One can of course take successors of larger regular cardinals instead.
However, for simplicity the forcing described in Section 2.2 was defined only for adding
Cohen subsets of ω, so that it blows up the continuum. This is not actually necessary. For
example, starting from an ineffable cardinal and GCH, one could also force to get a model
of “2ω = ω1” + “2ω1 = 2ω2 = ω3” + ω3-ISP. The reader is referred to [Kru08] for a more
thorough treatment of the degrees of freedom one has when defining the underlying forcing.

The ideals in the generic extension behave well with respect to those in the ground model,
as shows the next theorem.

2.3.5 Theorem. Let κ be inaccessible, λ ≥ κ, and ⟨ℙν | ν ≤ κ⟩ be an iteration such that

(i) ℙκ is the direct limit of ⟨ℙν | ν < η⟩ and κ-cc,

(ii) ℙκ satisfies the ω1-approximation property,

(iii) for every ν < κ, |ℙν| < κ.

Let G ⊂ ℙκ be V-generic. Then

IV
IT[κ, λ] ⊂ IV[G]

IT [κ, λ] (2.2)

and
P

V[G]
κ λ −PV

κ λ ∈ IV[G]
IT [κ, λ], (2.3)

which furthermore implies
FV

IT[κ, λ] ⊂ FV[G]
IT [κ, λ]. (2.4)

So in particular, if V[G] |= (κ, λ)-ITP, then V |= (κ, λ)-ITP.
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2 Consistency Results

Proof. Work in V[G].

To prove (2.2), let A ∈ IV
IT[κ, λ], and let ⟨da | a ∈ PV

κ λ⟩ ∈ V be A-effable in V .

Then ⟨da | a ∈ Pκλ⟩ is thin, where da ≔ ∅ for a ∉ V . For let y ∈ Pκλ. By (i) and
Lemma 2.1.14 there is ρ < κ, such that y ∈ V[Gρ]. But since V[Gρ] |= “κ inaccessible”
by (iii), we have V[Gρ] |= |Py| < κ. This means that |{da ∩ y | a ∈ A}| ≤ |PV[Gρ]y| < κ.

Suppose ⟨da | a ∈ Pκλ⟩ were not A-effable. Let S ⊂ A be stationary and d ⊂ λ such
that dx = d ∩ x for all x ∈ S . Suppose d ∉ V . Then, by (ii), there is a z ∈ PV

ω1
λ such that

d ∩ z ∉ V . But for x ∈ S with z ⊂ x we have d ∩ z = d ∩ x ∩ z = dx ∩ z ∈ V . Therefore
d ∈ V , and S ⊂ S̄ ≔ {x ∈ PV

κ λ | dx = d ∩ x} ∈ V . Since ⟨da | a ∈ PV
κ λ⟩ ∈ V is A-effable in

V , S̄ is not stationary in V . So there exists C ∈ V , C ⊂ PV
κ λ club in V such that C ∩ S̄ = ∅.

Let f : Pωλ→ Pκλ be in V such that ClV
f ⊂ C. But then, by the stationarity of S , there is

an x ∈ S such that x ∈ Cl f , so that x ∈ C ∩ S̄ , a contradiction.

For the proof of (2.3), let B ≔ Pκλ − PV
κ λ. For x ∈ B let ax ∈ P

V
ω1
λ be such that

x ∩ ax ∉ V , which exists by (ii). Put dx ≔ ax ∩ x. For x ∈ Pκλ − B, let dx ≔ ∅.

⟨dx | x ∈ Pκλ⟩ is thin, for let y ∈ Pκλ and, by (i) and Lemma 2.1.14, let ρ < κ be such that
y ∈ V[Gρ]. Then for x ∈ Pκλ with y ⊂ x we have dx∩ y = ax∩ y ∈ PV[Gρ]

ω1 y and |PV[Gρ]
ω1 y| < κ

because κ is inaccessible in V[Gρ] by (iii).

Suppose ⟨dx | x ∈ Pκλ⟩ were not B-effable. Then there are d ⊂ λ and U ⊂ B be such that
U is cofinal and dx = d ∩ x for all x ∈ U. Define a ⊂-increasing sequence ⟨xα | α < ω2⟩

with xα ∈ U for all α < ω2 and a sequence ⟨eα | α < ω2⟩ such that xα ⊂ eα and eα ∈ PV
κ λ

for all α < ω2 as follows. Let β < ω2 and suppose ⟨xα | α < β⟩ and ⟨eα | α < β⟩ have been
defined. Let xβ ∈ U be such that

⋃
α<β(xα ∪ aα ∪ eα) ⊂ xβ, and let eβ ∈ PV

κ λ be such that
xβ ⊂ eβ, which exists since by (i) and Proposition 2.1.9 ℙκ satisfies the κ-covering property.

Then ⟨dxα | α < ω2⟩ is ⊂-increasing as dxα = d ∩ xα for all α < ω2, and since |dxα | < ω1

for all α < ω2, there is γ < ω2 such that dxα = dxα′ for all α, α′ ∈ [γ, ω2). But then
axγ+1 ∩ eγ ⊂ axγ+1 ∩ xγ+1 = dxγ+1 = dxγ ⊂ eγ and dxγ+1 ⊂ axγ+1 , so that dxγ = axγ+1 ∩ eγ ∈ V , a
contradiction.

To see (2.4), let A ∈ FV
IT[κ, λ]. ThenPV

κ λ−A ∈ IV
IT[κ, λ], so, by (2.2),PV

κ λ−A ∈ IV[G]
IT [κ, λ].

Thus, by (2.3), PV[G]
κ λ − A = (PV[G]

κ λ − PV
κ λ) ∪ (PV

κ λ − A) ∈ IV[G]
IT [κ, λ], which means

A ∈ FV[G]
IT [κ, λ]. ◻

Note that by [Git85, Theorem 1.1] the set PV[G]
κ λ − PV

κ λ in (2.3) of Theorem 2.3.5 is
stationary for λ ≥ κ+ if the forcing ℙκ adds a real, as is the case with our forcing from
Theorem 2.2.8. Also note that the proof of (2.2) only required the κ-approximation property.
It was the proof of (2.3) that required the τ-approximation property for a τ < κ, and we
stated it for τ = ω1.

The next theorem was a natural byproduct of the author’s—in retrospect pointless—
endeavor to show PFA does not imply ω2-STP.
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2.3 Preservation Theorems and Upper Bounds

2.3.6 Theorem. Let ℙ be a κ-closed forcing. If κ-STP holds, then ∥− κ-STP. If κ-SSP
holds, then ∥− κ-SSP.

Proof. Suppose ⟨ḋα | α < κ⟩ is such that ∥− “⟨ḋα | α < κ⟩ is a thin unsubtle κ-list” or
∥− “⟨ḋα | α < κ⟩ is a slender unsubtle κ-list”. By Lemma 2.1.13 we may assume there is a
club C ∈ V such that ∥− dγ ≠ dγ′∩γ and, in the slender case, ∥− ∀δ < γ ∃β < γ ḋγ∩δ = ḋβ∩δ
for all γ, γ′ ∈ C with γ < γ′.

For α < κ and β < α let Dαβ ≔ {p ∈ ℙ | p ∥− β ∈ ḋα ∨ p ∥− β ∉ ḋα}. Dαβ is dense open,
so Dα ≔

⋂
{Dαβ | β < α} ≠ ∅ because ℙ is κ-distributive.

We inductively define a decreasing sequence ⟨pα | α < κ⟩ and a sequence ⟨hα | α < κ⟩. In
the thin case we furthermore define ⟨εα | α < κ⟩, and in the slender case ⟨βαδ | δ < α < κ⟩,
such that the following holds.

(i) pα ∈ Dα,

(ii) pα ∥− hα = ḋα,

(iii) εα < κ and pα ∥− {ḋν ∩ α | ν < κ} = {ḋν ∩ α | ν < εα},

(iv) if δ < α ∈ C, then βαδ < α and pα ∥− ḋα ∩ δ = ḋβαδ ∩ δ.

Suppose the sequences were defined for all α′ < α. Let r ∈ Dα be such that r ≤ pα′ for all
α′ < α, which exists since ℙ is κ-closed, and let hα be such that r ∥− ḋα = hα. In the thin
case, since r ∥− ∃ε < κ {ḋν ∩ α | ν < κ} = {ḋν ∩ α | ν < ε}, there are pα ≤ r and εα < κ such
that (iii) holds. In the slender case, we can define a decreasing sequence ⟨rδ | δ < α⟩ along
with ⟨βαδ | δ < α⟩ such that r0 ≤ r and rδ ∥− ḋα ∩ δ = ḋβαδ ∩ δ. Again this can be done as ℙ is
κ-closed. If pα ≤ rδ for all δ < α, then (iv) is fulfilled.

In the thin case, ⟨hα | α < κ⟩ is thin, for suppose not. Then there are α < ν < κ such
that hν ∩ α ∉ {hν ∩ α | ν < εα}. But for η ≔ max{ν, εα} we get pη ∥− hν ∩ α = ḋν ∩ α ∈
{ḋν ∩ α | ν < κ} = {ḋν ∩ α | ν < εα} = {hν ∩ α | ν < εα}, a contradiction.

In the slender case, ⟨hα | α < κ⟩ is slender. For let δ < α ∈ C. Then pα ∥− hα ∩ δ =
ḋα ∩ δ = ḋβαδ ∩ δ = hβαδ ∩ δ.

Furthermore ⟨hα | α < κ⟩ is unsubtle, for if α, α′ ∈ C, α < α′, then pα′ ∥− hα = ḋα ≠
ḋα′ ∩ α = hα′ ∩ α. ◻

Theorem 2.3.6 is in some sense unique to subtlety. As mentioned in the introduction,
in analogy to ineffability one can define a principle κ-AITP by weakening “stationary” to
“unbounded” in the definition of κ-ITP. Then Theorem 2.3.1 shows κ-AITP can be forced
from an almost ineffable cardinal. Let κ-AITP′ and κ-ITP′ be the restrictions of κ-AITP and
κ-ITP to κ-lists whose corresponding trees have at most κ many cofinal branches. Then it is
not hard to see that κ-AITP′ and κ-ITP′ are in fact equivalent.11

11If T is such a tree and ⟨bν | ν < κ⟩ enumerates its cofinal branches, define a partial function f : T → κ such
that t ∈ b f (t) and f (t) < ht(t) whenever possible. Then κ-AITP′ implies there is a stationary S ⊂ κ such
that T ↾ S ⊂ dom f , which in turn implies κ-ITP′ holds for T .
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2 Consistency Results

Suppose now we start in a model with exactly one almost ineffable cardinal κ and one
inaccessible λ above it. We force to get ω2-AITP, preserving the inaccessibility of λ. If we
now Lévy-collapse λ to ω3, then in the extension any ω2-tree has at most ω2 many cofinal
branches, making ω2-AITP′ and ω2-AITP as well as ω2-ITP′ and ω2-ITP equivalent. So if
ω2-AITP were preserved, then ω2-ITP would hold in the extension. But Theorem 2.4.3 will
show that ω2-ITP has consistency strength of an ineffable cardinal, which is strictly above
that of an almost ineffable cardinal and an inaccessible above it. This shows it is consistent
that Lévy-collapsing an inaccessible cardinal λ to ω3 destroys ω2-AITP.

Theorem 3.2.4 will show ω2-ITP′ is consistent relative to a Σ2
1-indescribable cardinal, so

by the same argument the ω2-closed forcing that Lévy-collapses an inaccessible to ω3 and
thus forces the nonexistence of ω2-Kurepa trees can destroy ω2-ITP′. On the other hand, as
PFA is preserved by ω2-closed forcings and implies ω2-ITP, in models of PFA it holds that
ω2-ITP is preserved by ω2-closed forcings.

2.4 Lower Bounds

This section deals with lower bounds for the consistency strength of our combinatorial
principles. We first consider the one cardinal variants, showing that Theorem 2.3.2 was best
possible.

2.4.1 Theorem. Suppose κ is regular and uncountable. If κ-STP holds, then L |= κ is
subtle.

Proof. First note that L |= κ is inaccessible. For if κ is a limit cardinal, then it is a regular
limit cardinal in L and thus inaccessible by GCH in L. So assume κ = λ+. Then by
Proposition 1.2.16, ◻∗λ fails, and it is well known that this implies κ is inaccessible in L,
see [Mit73].

Let ⟨dα | α < κ⟩ ∈ L be a κ-list and C ∈ L be a club in κ. Then {dα ∩ β | α ≤ κ} ⊂ PLβ.
But L |= 2β < κ since κ is strong limit in L, so |PLβ| < κ, which means ⟨dα | α < κ⟩ is thin in
V . Thus there are α, β ∈ C, α < β, such that dα = dβ ∩ α. ◻

The next lemma is usually only given in its weaker version where κ is required to be
weakly compact.

2.4.2 Lemma. Suppose κ is regular uncountable and the tree property holds for κ. Let
A ⊂ κ. If A ∩ α ∈ L for all α < κ, then A ∈ L.

Proof. Let δ ≔ κ + ω.

2.4.2.1 Claim. There exists a nonprincipal κ-complete ultrafilter on PL[A]κ ∩ Lδ[A].
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2.4 Lower Bounds

Proof. Work in L[A]. Let ⟨Ai
α | α < κ, i < 2⟩ be an enumeration of PL[A]κ ∩ Lδ[A] such that

A0
α = κ − A1

α for all α < κ. Define a tree

T ≔ { f ∈ <κ2 ∩ L[A] | |
⋂
{A f (α)
α | α < dom f }| = κ},

ordered by inclusion. By [Mit73], κ is inaccessible, so every level of T has cardinality less
than κ. To see T has height κ, let ν < κ. For β < κ, choose fβ ∈ ν2 such that β ∈ A fβ(α)

α

for all α < ν. Then, as |ν2| < κ by the inaccessibility of κ, there is an f ∈ ν2 such that
|{β < κ | fβ = f }| = κ. Hence f ∈ Tν.

Now work in V . By assumption, T has a cofinal branch b ∈ κ2. But then U ≔ {Ab(α)
α | α <

κ} is as wanted. ⊣

Let U be as in Claim 2.4.2.1. Let M be the transitive collapse of the internal ultrapower of
Lδ[A] by U, and let j : Lδ[A] → M be the corresponding embedding. Then j has critical
point κ. As Lδ[A] |= V = L[A], we have M |= V = L[ j(A)], so M = Lγ[ j(A)] for some limit
ordinal γ ≥ δ. It holds that Lδ[A] |= ∀α < κ A∩α ∈ L, so Lγ[ j(A)] |= ∀α < j(κ) j(A)∩α ∈ L,
so in particular Lγ[ j(A)] |= A = j(A) ∩ κ ∈ L. Therefore really A ∈ L. ◻

2.4.3 Theorem. Suppose κ is regular and uncountable. If κ-ITP holds, then L |= κ is
ineffable.

Proof. By Theorem 2.4.1, κ is inaccessible in L.

Let ⟨dα | α < κ⟩ ∈ L be a κ-list. As in the proof of Theorem 2.4.1, it follows that
⟨dα | α < κ⟩ is thin in V . Thus by κ-ITP there is a d ⊂ κ such that dα = d ∩ α for stationarily
many α < κ. This also means d ∩ γ ∈ L for all γ < κ. Therefore d ∈ L by Lemma 2.4.2.
Since {α < κ | dα = d ∩ α} ∈ L is also stationary in L, the proof is finished. ◻

Since as remarked above κ is supercompact iff it is inaccessible and (κ, λ)-ITP holds
for all λ ≥ κ, (κ, λ)-ITP appears to be the correct concept for supercompactness for small
cardinals. The best known lower bounds for its consistency are derived from the failure of
square. The following proposition is due to Jensen, Schimmerling, Ralf Schindler, and John
Steel [JSSS09].12

2.4.4 Proposition. Suppose λ ≥ ω3 is regular such that ηω < λ for all η < λ. If ¬◻(λ) and
¬◻λ, then there exists an inner model with a proper class of strong cardinals and a proper
class of Woodin cardinals.

2.4.5 Theorem. The consistency of ZFC + “there is a κ+-ineffable cardinal κ” implies the
consistency of ZFC + “there is a proper class of strong cardinals and a proper class of
Woodin cardinals.”
12The result is actually even stronger, they show there exists a sharp for a proper class model of the cardinals

in Proposition 2.4.4.
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2 Consistency Results

Proof. If κ is κ+-ineffable, then it is inaccessible and thus ηω < κ for all η < κ. By
Proposition 1.3.9, (κ, κ)-ITP holds. By Theorem 1.4.2, (κ, κ)-ITP and (κ, κ+)-ITP imply
¬◻(κ) and ¬◻(κ+), so by Proposition 2.4.4 there is an inner model with a proper class of
strong cardinals and a proper class of Woodin cardinals. ◻

2.4.6 Theorem. Suppose κ is regular uncountable and λ ≥ ω3 is such that cf λ ≥ κ and
ηω < λ for all η < λ. If (κ, λ+)-ITP holds, then there exists an inner model with a proper
class of strong cardinals and a proper class of Woodin cardinals.

Proof. This follows again from Proposition 1.3.9, Theorem 1.4.2, and Proposition 2.4.4.◻
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3 Implications under PFA

3.1 Preliminaries

3.1.1 Definition. Let ℙ be a forcing. By MA(ℙ) we denote the following principle: If Dα is
dense in ℙ for α < ω1, then there exists a filter G ⊂ ℙ such that Dα ∩G ≠ ∅ for all α < ω1.

PFA(δ) stands for the principle that MA(ℙ) holds for every proper forcing ℙ with |ℙ| ≤ δ.
PFA holds iff PFA(δ) holds for every δ. ⌟

The following proposition is due to Hugh Woodin [Woo99, Proof of Theorem 2.53],
where it is shown for what is commonly referred to as weakly stationary. It provides a
means to “applying PFA coherently stationarily often.”

Recall that G ⊂ ℙ is said to be M-generic iff G is a filter on ℙ and G ∩ D ∩ M ≠ ∅ for all
D ∈ M that are dense in ℙ.

3.1.2 Proposition. Let ℙ be a forcing such that MA(ℙ) holds, and let θ be sufficiently large.
Then

{M ∈ Pω2 Hθ | ∃G ⊂ ℙ G is M-generic}

is stationary in Pω2 Hθ.

Proof. Pick a club C ⊂ Pω2 Hθ and let f : PωHθ → Pω2 Hθ be such that Cl f ⊂ C.

3.1.2.1 Claim. There is ḣ ∈ Vℙ such that

(i) ∥− ḣ : ω1 → HV
θ injective,

(ii) ∥− rng ḣ ∈ Cl f ,

(iii) ∥− ∀D ∈ rng ḣ (D is dense in ℙ→ Ġ ∩ D ∩ rng ḣ ≠ ∅).

Proof. Let H ⊂ ℙ be V-generic and work in V[H]. Let M0 ∈ Pω2 HV
θ ∩ Cl f . Suppose Mi

has been defined. Let Mi+1 ∈ Pω2 HV
θ ∩ Cl f be such that Mi ⊂ Mi+1 and G ∩ D ∩ Mi+1 ≠ ∅

for all D ∈ Mi that are dense subsets of ℙ. Let M ≔
⋃

i<ω Mi and h : ω1 → M be bijective.
Then h : ω1 → HV

θ is injective, rng h ∈ Cl f , and if D ∈ rng h is dense in ℙ, then D ∈ Mi for
some i < ω, so G ∩ D ∩M ⊃ G ∩ D ∩Mi+1 ≠ ∅. Therefore if ḣ is a name for such h, then ḣ
is as wanted. ⊣
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3 Implications under PFA

Let ḣ be as in Claim 3.1.2.1. For α < ω1 define

Dα ≔ {p ∈ ℙ | ∃x ∈ Hθ p ∥− ḣ(α) = x},

and for a ∈ Pωω1 let
Da ≔

⋂
{Dα | α ∈ a}.

Then Dα and Da are dense open. Furthermore let

D′α ≔ {p ∈ Dα | ∀q ∈ ℙ (p ∥− “q = ḣ(α) ∈ Ġ”→ p ≤ q)}.

D′α is open, for otherwise there would be a p0 ∈ Dα and q ∈ ℙ such that p0 ∥− q = ḣ(α) ∈ Ġ
and ∀p ≤ p0 p ≰ q, so that p0 and q are incompatible, a contradiction.

For x ∈ Pω2 Hθ let ix : ω1 → x be surjective, and for a ∈ Pωω1 and β < ω1 let

Eβa ≔ {p ∈ Da | ∃γ < ω1 p ∥− i f (ḣ′′a)(β) = ḣ(γ)}.

Then Eβa is dense open in ℙ for every a ∈ Pωω1 and β < ω1. For suppose that for some
a ∈ Pωω1 and β < ω1 Eβa were not dense, that is, there is a p ∈ ℙ such that

∀q ≤ p ∀γ < ω1 q ̸∥− i f (ḣ′′a)(β) = ḣ(γ).

Then p ∥− ∀γ < ω1 i f (ḣ′′a)(β) ≠ ḣ(γ), so p ∥− i f (ḣ′′a)(β) ∈ f (ḣ′′a) − rng ḣ, contradicting
∥− rng ḣ ∈ Cl f .

Finally for δ < ω1 let

Fδ ≔ {p ∈ Dδ | p ∥− “ḣ(δ) is dense in ℙ”→ ∃β < ω1 p ∥− ḣ(β) ∈ ḣ(δ) ∩ Ġ}.

Fδ is open dense in ℙ for every δ < ω1, for otherwise there were a p ∈ ℙ such that
p ∥− “ḣ(δ) is dense in ℙ” and ∀q ≤ p ∀β < ω1 q ̸∥− ḣ(β) ∈ ḣ(δ) ∩ Ġ, so that p ∥−
rng ḣ ∩ ḣ(δ) ∩ Ġ = ∅, contradicting (iii) of Claim 3.1.2.1.

By MA(ℙ) there is a filter G ⊂ ℙ that has nonempty intersection with D′α, Eβa, and Fδ for
all α, β, δ < ω1 and a ∈ Pωω1. Set h ≔ ḣG.

3.1.2.2 Claim. It holds that rng h ∈ Cl f .

Proof. Let b ∈ Pω rng h and take z ∈ f (b). Let a ∈ Pωω1 be such that b = h′′a and β < ω1

such that i f (b)(β) = z. Let p ∈ Eβa ∩G. Then there is a γ < ω1 with p ∥− i f (b)(β) = ḣ(γ). Let
p′ ≤ p be such that p′ ∈ Dγ ∩G. Then p′ ∥− z = i f (b)(β) = ḣ(γ) = h(γ), so z ∈ rng h. ⊣

3.1.2.3 Claim. If D ∈ rng h is dense in ℙ, then G ∩ D ∩ rng h ≠ ∅.

Proof. Let δ be such that h(δ) = D. Let p ∈ Fδ ∩G. Then p ∥− “ḣ(δ) = D is dense in ℙ”,
so there is β < ω1 with p ∥− ḣ(β) ∈ D ∩ Ġ. Let p′ ≤ p and q ∈ ℙ be such that p′ ∈ D′β ∩G
and p′ ∥− q = ḣ(β). Then p′ ≤ q, so q ∈ G ∩ D ∩ rng h. ⊣
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3.1 Preliminaries

By Claims 3.1.2.2 and 3.1.2.3, rng h ∈ C is such that if D ∈ rng h is dense in ℙ, then
G ∩ D ∩ rng h ≠ ∅, finishing the proof. ◻

3.1.3 Lemma. Let ℙ be a forcing, ℚ ⊂ ℙ dense. If ẋ ∈ Vℙ, then there is ẋ′ ∈ Vℚ such that

∥−ℙ ẋ = ẋ′.

Proof. The proof is by induction over ẋ. Let

ẋ′ ≔ {⟨ẏ′, q⟩ | q ∈ ℚ, ∃p ∈ ℙ (q ≤ p ∧ ⟨ẏ, p⟩ ∈ ẋ)},

where ẏ′ ∈ Vℚ is such that ∥−ℙ ẏ = ẏ′, which exists by the induction hypothesis. Then
∥−ℙ ẋ = ẋ′, for let G ⊂ ℙ be V-generic. Obviously ẋ′G ⊂ ẋG, so for the other direction
let y ∈ ẋG. Then there is a p ∈ G and ẏ ∈ Vℙ such that ⟨ẏ, p⟩ ∈ ẋ and ẏG = y. The set
{q ∈ ℚ | q ≤ p} is dense below p, so there is q ∈ ℚ ∩G with q ≤ p. Therefore ⟨ẏ′, q⟩ ∈ ẋ′

and thus y = ẏG = ẏ′G ∈ ẋ′G. ◻

3.1.4 Lemma. Let ℙ be a proper forcing. If ℝ ⊂ ℙ is dense, then ℝ is proper.

Proof. Let M ∈ P′ω1
Hθ and p ∈ M ∩ ℝ. As ℙ is proper, there is an (M,ℙ)-generic p̃ ≤ p.

Let p̄ ≤ p̃, p̄ ∈ ℝ. Then p̄ is (M,ℝ)-generic, for let D ∈ M be dense in ℝ. Then D is dense
in ℙ, so by the (M,ℙ)-genericity of p̄ the set D ∩ M is predense below p̄ in ℙ. But then
D ∩ M is also predense below p̄ in ℝ. ◻

3.1.5 Lemma. Let ℙ, ℚ̇, and δ be such that ℙ is proper, ∥−ℙ ℚ̇ is proper, |ℙ| ≤ δ, and
∥−ℙ |ℚ̇| ≤ δ. Then there is a dense ℝ ⊂ ℙ ∗ ℚ̇ with |ℝ| ≤ δ.

Proof. Since ∥−ℙ |ℚ̇| ≤ δ there is ḟ ∈ Vℙ such that ∥−ℙ ḟ : δ→ ℚ̇ surjective. Let g : δ→ Vℙ

be such that ∥−ℙ ḟ (α) = g(α) for all α < δ.

Let ℝ ≔ ℙ × rng g, ordered by the restriction of the ordering of ℙ ∗ ℚ̇, that is ⟨p, g(α)⟩ ≤
⟨p′, g(α′)⟩ iff p ≤ p′ and p ∥−ℙ g(α) ≤ g(α′). Then |ℝ| ≤ δ. ℝ is dense in ℙ ∗ ℚ̇. For
let ⟨p, q̇⟩ ∈ ℙ ∗ ℚ̇. Then p ∥−ℙ ∃α < δ q̇ = ḟ (α), so for some p̄ ≤ p and α < δ we have
p̄ ∥−ℙ q̇ = ḟ (α) = g(α). This means ⟨ p̄, g(α)⟩ ≤ ⟨p, q̇⟩. ◻

3.1.6 Lemma. Let ℙ be proper, |ℙ| ≤ δ, and ℚ̇ such that ∥−ℙ “ℚ̇ is ccc”. If Dα, α < δ, are
dense open subsets of ℙ ∗ ℚ̇, then there is a properℝ ⊂ ℙ ∗ ℚ̇ with |ℝ| ≤ δ such that Dα∩ℝ
is dense open in ℝ for all α < δ.

Proof. For α < δ let
Ėα ≔ {⟨q̇, p⟩ | ⟨p, q̇⟩ ∈ Dα}.

3.1.6.1 Claim. For α < δ
∥−ℙ Ėα is dense in ℚ̇.
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3 Implications under PFA

Proof. Let p ∈ ℙ and q̇ ∈ Vℙ with p ∥−ℙ q̇ ∈ ℚ̇. Let ⟨p̃, ˙̃q⟩ ∈ Dα such that ⟨ p̃, ˙̃q⟩ ≤ ⟨p, q̇⟩.
Then ⟨ ˙̃q, p̃⟩ ∈ Ėα and thus p̃ ∥−ℙ “ ˙̃q ≤ q̇ ∧ ˙̃q ∈ Ėα”. ⊣

3.1.6.2 Claim. There is ℚ̇′ such that ∥−ℙ ℚ̇′ ⊂ ℚ̇, ∥−ℙ |ℚ̇′| ≤ δ, ∥−ℙ “ℚ̇′ is ccc”, and
∥−ℙ “Ėα ∩ ℚ̇′ is dense in ℚ̇′” for every α < δ.

Proof. Let G ⊂ ℙ be V-generic and work in V[G]. Set ℚ ≔ ℚ̇G. For compatible q, q′ ∈ ℚ
let c(q, q′) be such that c(q, q′) ≤ q, q′, and for α < δ and q ∈ ℚ let fα(q) ∈ ĖG

α be such that
fα(q) ≤ q, which exists since ĖG

α is dense in ℚ by Claim 3.1.6.1. Let ℚ′ ∈ Pδ+ℚ be closed
under c and fα for all α < δ.

Then any antichain in ℚ′ is an antichain in ℚ, so ℚ′ is ccc, and if ℚ̇′ is a name for ℚ′,
then it is as wanted. ⊣

Let ℚ̇′ be as in Claim 3.1.6.2. We apply Lemma 3.1.5 to ℙ∗ℚ̇′ and get a denseℝ ⊂ ℙ∗ℚ̇′

which satisfies |ℝ| ≤ δ. By Lemma 3.1.4, ℝ is proper.

So it remains to show Dα ∩ ℝ is dense open in ℝ for all α < δ. Let ⟨p, q̇⟩ ∈ ℝ. As
∥−ℙ “Ėα ∩ ℚ̇′ is dense in ℚ̇′”, there is q̇′ ∈ Vℙ such that p ∥−ℙ q̇′ ∈ Ėα ∩ ℚ̇′ ∧ q̇′ ≤ q̇.

3.1.6.3 Claim. There is p̃ ≤ p and ⟨q̇0, p0⟩ ∈ Ėα such that p̃ ≤ p0 and p̃ ∥−ℙ q̇0 = q̇′.

Proof. Suppose not, so for all p̃ ≤ p and all ⟨q̇0, p0⟩ ∈ Ėα it holds that p̃ ≤ p0 → p̃ ̸∥−ℙ
q̇0 = q̇′. Let G ⊂ ℙ be V-generic such that p ∈ G and work in V[G]. Then q̇G ∈ ĖG

α , so
there is ⟨q̇0, p0⟩ ∈ Ėα with p0 ∈ G and q̇G

0 = q̇G. Let p1 ∈ G such that p1 ≤ p0, p. Then
p̃ ̸∥−ℙ q̇0 = q̇′ for all p̃ ≤ p1, so p1 ∥−ℙ q̇0 ≠ q̇′, a contradiction. ⊣

Let p̃ ≤ p and ⟨q̇0, p0⟩ ∈ Ėα be as in Claim 3.1.6.3. Then ⟨p0, q̇0⟩ ∈ Dα, so ⟨p̃, q̇0⟩ ∈ Dα.
Furthermore p̃ ∥−ℙ q̇0 = q̇′ ∈ ℚ̇′, so ⟨ p̃, q̇0⟩ ∈ ℙ ∗ ℚ̇

′. So for ⟨p̄, ˙̄q⟩ ∈ ℝ with ⟨p̄, ˙̄q⟩ ≤ ⟨p̃, q̇0⟩

we have ⟨p̄, ˙̄q⟩ ∈ Dα ∩ℝ and ⟨ p̄, ˙̄q⟩ ≤ ⟨p, q̇⟩. ◻

3.1.7 Proposition (PFA(2ω)). Suppose ℙ = 𝔻 ∗ Coll(ω1, ω2) ∗ ℚ̇ is such that 𝔻 is proper,
|𝔻| ≤ 2ω, ∥−𝔻 2ω = ω2 = ω

V
2 , and ∥−𝔻∗Coll(ω1,ω2) “ℚ̇ is ccc”. Then MA(ℙ).

Proof. For α < ω1, let Dα ⊂ 𝔻 ∗ Coll(ω1, ω2) ∗ ℚ be dense. Since

∥−𝔻 |Coll(ω1, ω2)| = ωω2 = 2ω = ωV
2 ,

by Lemma 3.1.5 there is a dense ℝ ⊂ 𝔻 ∗Coll(ω1, ω2) such that |ℝ| ≤ 2ω. Then ℝ is proper
by Lemma 3.1.4. By Lemma 3.1.3 there is ℚ̇′ ∈ Vℝ such that

∥−𝔻∗Coll(ω1,ω2) ℚ̇ = ℚ̇
′.

Let D′α ≔ {p ∈ 𝔻 ∗ Coll(ω1, ω2) ∗ ℚ̇′ | ∃q ∈ Dα p ≤ q}. Then D′α is dense open in
𝔻 ∗ Coll(ω1, ω2) ∗ ℚ̇′ for α < ω1. Therefore by Lemma 3.1.6 there is a proper ℝ̄ ⊂ ℝ ∗ ℚ̇′

with |ℝ̄| ≤ 2ω and D′α ∩ ℝ̄ dense open in ℝ̄ for all α < ω1. By PFA(2ω) there is a filter
Ḡ ⊂ ℝ̄ such that G ∩ D′α ≠ ∅ for all α < ω1. Let G ≔ {q ∈ ℙ | ∃p ∈ G p ≤ q}. Then G is a
filter on ℙ that has nonempty intersection with every Dα for α < ω1, for if p ∈ D′α ∩ Ḡ, then
there is q ∈ Dα with p ≤ q, so that also q ∈ G. ◻
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3.2 Tree Properties

3.1.8 Proposition. If T is a tree without uncountable branches, then there exists a ccc
forcing ℚ that specializes T , that is, it holds that

Vℚ |= ∃s : T → ω ∀t, t′ ∈ T (t <T t′ → s(t′) ≠ s(t)).

The proof of Lemma 3.1.8 can be found in [She98, chap. III, Theorem 5.4] or [Jec03,
Theorem 16.17].

3.1.9 Proposition (PFA). Let ℙ be an ω2-directed closed forcing. Then Vℙ |= PFA.

Proof. Let ℚ̇ ∈ Vℙ be a name for a proper forcing and let ⟨Ḋα | α < ω1⟩ be names for dense
subsets of ℚ̇. Let

Eα ≔ {⟨p, q̇⟩ ∈ ℙ ∗ ℚ̇ | p ∥− q̇ ∈ Ḋα}.

Then the sets Eα are dense in ℙ ∗ ℚ̇.

By PFA there exists a filter G = G1 ∗ Ġ2 ⊂ ℙ ∗ ℚ̇ such that G ∩ Eα ≠ ∅ for all α < ω1.
For α < ω1 let ⟨pα, q̇α⟩ ∈ G be such that pα ∥− q̇α ∈ Ḋα. Then {pα | α < ω1} is directed
because G1 is a filter. As ℙ is ω2-directed closed, there exists a p ∈ ℙ with p ≤ pα for all
α < ω1. But p ∥− ∀α < ω1 q̇α ∈ Ġ2 ∩ Ḋα, so p ∥− ∀α < ω1 Ġ2 ∩ Ḋα ≠ ∅. ◻

Using a technique of Robert Beaudoin [Bea91], in [KY04] it is shown that Proposition 3.1.9
actually only requires the forcing ℙ to be ω2-closed.

3.2 Tree Properties

The goal of this section is to prove Theorem 3.2.5, which says that PFA implies ω2-ITP.
We have to face one major obstacle. The usual applications of PFA use forcings of the
form Coll(ω1, ω2) ∗ ccc or ℂ ∗ Coll(ω1, ω2) ∗ ccc, where ℂ denotes the forcing for adding a
Cohen real, which by Proposition 3.1.7 actually only require PFA(2ω). However, by [NS08]
PFA(2ω) is consistent relative to the existence of a Σ2

1-indescribable cardinal, which has
consistency strength below that of a subtle cardinal! So in view of Theorem 2.4.1 we cannot
hope to prove ω2-ITP or even ω2-STP using such a construction.

3.2.1 Definition. Let T be a tree and B be a set of cofinal branches of T . A function
g : B→ T is called Baumgartner function iff g is injective and for all b, b′ ∈ B it holds that

(i) g(b) ∈ b,

(ii) g(b) < g(b′)→ g(b′) ∉ b. ⌟

The following lemma is due to Baumgartner, see [Bau84].
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3 Implications under PFA

3.2.2 Lemma. Let T be a tree and B be a set cofinal branches of T . Suppose κ ≔ ht(T ) is
regular and |B| ≤ κ. Then there is a Baumgartner function g : B→ T.

Proof. Let ⟨bα | α < µ⟩ enumerate B, with µ ≤ κ. Recursively define g by

g(bα) ≔ min(bα −
⋃
{bβ | β < α}).

This can be done since κ is regular. Suppose g(bα) < g(bα′) for some α, α′ < µ. Then
g(bα′) ∈ bα′ , so g(bα) ∈ bα′ , so α < α′ and thus g(bα′) ∉ bα. ◻

Recall that a tree T is said to not split at limit levels iff for all t, t′ ∈ T such that ht t =
ht t′ ∈ Lim and {s ∈ T | s < t} = {s ∈ T | s < t′} it follows that t = t′.

3.2.3 Lemma. Let T be a tree that does not split at limit levels and suppose B is a set of
cofinal branches of T . Suppose g : B→ T is a Baumgartner function. Suppose ⟨αν | ν < ω1⟩

is continuous and increasing. Let α ≔ supν<ω1
αν and t ∈ Tα. Suppose that for all ν < ω1

there is bν ∈ B such that g(bν) < t ↾ αν ∈ bν. Then there is an s < t such that t ∈ g−1(s).

Proof. Let h(ν) ≔ ht(g(bν)) < αν for ν < ω1.

3.2.3.1 Claim. There is an η < α such that h−1′′{η} is unbounded in ω1.

Proof. We first observe that for ν, ν′ < ω1

h(ν) < h(ν′)→ h(ν) < αν < h(ν′) < αν′ . (3.1)

For if h(v) < h(v′), then g(bν′) ∉ bν. But t ↾ αν ∈ bν, so αν < h(ν′). From (3.1) and the
monotonicity of ⟨αν | ν < ω1⟩ we also get

ν ≤ ν′ → h(ν) ≤ h(ν′). (3.2)

Now suppose h−1′′{η} is bounded in ω1 for all η < α. Let ν0 ≔ 0. Suppose νi has been
defined. Let νi+1 be such that νi+1 > sup h−1′′{h(νi)}. Then νi < νi+1 and h(νi) ≠ h(νi+1), so
by (3.2) h(νi) < h(νi+1). Set v∗ ≔ supi<ω νi. Then h(νi) < h(ν∗) for all i < ω, so ανi < h(ν∗)
by (3.1). But this implies αν∗ = supi<ω ανi ≤ h(ν∗), a contradiction. ⊣

By Claim 3.2.3.1 there is η < α such that U ≔ h−1′′{η} is unbounded in ω1. This means
that for all ν ∈ U t ↾ αν ∈ bν = g−1(g(bν)) = g−1(t ↾ η). But then t ∈ g−1(t ↾ η) since T does
not split at limit levels. ◻

PFA can be seen as some sort of a reflection principle. One takes a structure of size ω2,
collapses its size to ω1, and then uses a forcing to fix some of its properties. In the ground
model, one can then apply PFA in such a way that these properties must already hold for a
substructure of size ω1.
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3.2 Tree Properties

However, it is not apparent what should be reflected when one tries to proveω2-ITP or just
ω2-STP from PFA. The solution to this problem becomes clearer when one concentrates
on ω2-ISP rather than ω2-ITP. For slenderness is, roughly spoken, just the property that,
when we consider the corresponding tree to be growing along the ordinals, new branches
will be added only very rarely. Thus it seems natural to try reflecting the tree’s cofinal
branches—they all already exist and thus never need to be added. The two previous lemmas
provide the framework for such a reflection.13

The problem that opens up now is that one does not know much about the set of cofinal
branches of the corresponding tree. Therefore we just assume there are at most ω2 many.14

3.2.4 Theorem (PFA(2ω)). Let ⟨dα | α < ω2⟩ be a slender ω2-list. If its corresponding tree
has at most ω2 many cofinal branches, then ⟨dα | α < ω2⟩ is not effable.

Proof. Let T ≔ dc{tα | α < ω2}, where ⟨tα | α < ω2⟩ are the characteristic functions
of ⟨dα | α < ω2⟩, and let B ≔ {b ⊂ T | b cofinal branch}. By Lemma 3.2.2, there is a
Baumgartner function g : B→ T . Define

T 0 ≔ {t ∈ T | ∃b ∈ B g(b) < t ∈ b},

T 1 ≔ T − T 0.

Then T 1 has no cofinal branch, for if b ⊂ T 1 were one, then one would have t ≤ g(b) ∈ b
for all t ∈ b.

Let ℙ ≔ ℂ ∗ Coll(ω1, ω2). Let ċ ∈ Vℙ be such that Vℙ |= “ċ : ω1 → ω
V
2 is continuous

and cofinal”. By Theorem 2.2.6, ℙ has the ω1-approximation property, so Vℙ |= “(T ↾
rng ċ)∩ T 1 has no cofinal branches”. Therefore by Proposition 3.1.8 there is a ℚ̇ ∈ Vℙ such
that Vℙ |= “ℚ̇ is ccc and specializes (T ↾ rng ċ) ∩ T 1”. Let ḟ ∈ Vℙ∗ℚ̇ be a name for the
specialization map.

Let θ be large enough.

3.2.4.1 Claim. Let M ∈ P′ω2
Hθ be such that ⟨dα | α < ω2⟩,T 0,T 1,ℙ ∗ ℚ̇, ḟ , ċ ∈ M. Suppose

there is an M-generic filter G ⊂ ℙ ∗ ℚ̇. Let δM ≔ M ∩ω2. Then there is an s ∈ M such that

tδM ∈ g−1(s).

Proof. For α < δM and ν < ω1 define

Dα ≔ {p ∈ ℙ ∗ ℚ̇ | ∃ν < ω1 p ∥− ċ(ν) ≥ α}

13This is the line of thought by which the author found a solution to the problem. It is not obvious how
the reflection must work in detail, and the author only arrived at the current solution after an odyssey of
different attempts that eventually led to what had already been done by Baumgartner.

14Section 3.4 will show there is a much better solution.
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and
Eν ≔ {p ∈ ℙ ∗ ℚ̇ | ∃α < ω2 p ∥− ċ(ν) = α}.

Then Dα, Eν ∈ M are dense open in ℙ. Therefore c ≔ ċG : ω1 → δM is continuous and
cofinal. For α < δM and γ < ω1 let

Fγα ≔ {p ∈ ℙ ∗ ℚ̇ | ∃n < ω p ∥− “tα ↾ ċ(γ) ∈ T 1 → ḟ (tα ↾ ċ(γ)) = n”}.

Fγα ∈ M is also dense open in ℙ ∗ ℚ̇. Therefore for f ≔ ḟ G we have

f : (dc{tα | α < δM} ↾ rng c) ∩ T 1 → ω

is a specialization map. As M |= “⟨dα | α < ω2⟩ is slender”, there is a club C ∈ M that
witnesses the slenderness of ⟨dα | α < ω2⟩. This means δM ∈ C so that tδM is a branch
through the tree dc{tα | α < δM}. Thus there is an α < δM such that tδM ↾ β ∈ T 0 for all
β ∈ rng c − α.

For β ∈ rng c − α let bβ be such that g(bβ) < tδM ↾ β ∈ bβ. Then, letting ⟨αν | ν < ω1⟩

enumerate rng c − α, by Lemma 3.2.3 there is an s < tδM with tδM ∈ g−1(s). Then also
s ∈ M. ⊣

By Proposition 3.1.7, MA(ℙ ∗ ℚ̇) holds. Thus by Proposition 3.1.2

S ≔ {M ∈ P′ω2
Hθ | ⟨dα | α < ω2⟩,T 0,T 1,ℙ ∗ ℚ̇, ḟ , ċ ∈ M, ∃G ⊂ ℙ G is M-generic}

is stationary in Pω2 Hθ. By Claim 3.2.4.1, for every M ∈ S there is an sM ∈ M such that
tM∩ω2 ∈ g−1(sM). Thus there are a stationary S ′ ⊂ S and an s ∈ T such that sM = s for all
M ∈ S ′. But then

tM∩ω2 ∈ g−1(s)

for all M ∈ S , which implies
dα = dβ ∩ α

for α < β and α, β ∈ {M ∩ ω2 | M ∈ S ′} ≕ S̃ . S̃ is stationary in ω2, and ⟨dα | α < ω2⟩ is
therefore not effable. ◻

Our original goal to prove ω2-ITP from PFA is now just one collapse away.

3.2.5 Theorem (PFA). ω2-ITP holds.

Proof. Let ⟨dα | α < ω2⟩ be a thin list. Let ⟨tα | α < ω2⟩ be the list of its characteristic
functions, and let T ≔ dc{tα | α < ω2}. Set λ ≔ |{b ⊂ T | b cofinal branch}|. If λ > ω2, let
ℙ ≔ Coll(ω2, λ), otherwise ℙ ≔ {1}.

ℙ is ω2-directed closed, so by Proposition 3.1.9 Vℙ |= PFA. As 2ω1 = ω2, by Proposi-
tion 2.1.12 ℙ satisfies the thin ω2-approximation property and hence does not add any new
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branches through T , so Vℙ |= “T has at most ω2 many cofinal branches”. Therefore we can
apply Theorem 3.2.4 and get Vℙ |= “∃d ⊂ ω2 {α < ω2 | dα = d ∩ α} stationary”. But this d
corresponds to a cofinal branch in T and thus is already in V . So

S ≔ {α < ω2 | dα = d ∩ α}

is in V as well and stationary in Vℙ. But then S is also stationary in V and therefore
⟨dα | α < ω2⟩ not effable. ◻

3.2.6 Corollary (PFA). ω2 is ineffable in L.

Proof. This follows from Theorems 3.2.5 and 2.4.3. ◻

The fact that there can be no ω2-Aronszajn trees under PFA is originally due to Baum-
gartner, see [Tod84b, Theorem 7.7].

3.2.7 Corollary (PFA(2ω)). Suppose ⟨dα | α < ω2⟩ is a slender ω2-list. Then its corre-
sponding tree has a cofinal branch. In particular there is no ω2-Aronszajn tree.

Proof. This follows immediately from Theorem 3.2.4. ◻

The next corollary is originally independently due to Matthew Foreman and Stevo
Todorčević, see [KY04].

3.2.8 Corollary (PFA(2ω)). The approachability property fails for ω1, that is ω2 ∉ IAS[ω2].

Proof. The proof is actually trivial, but unfortunately some cosmetics are required as our
definition of an approachable slender ω2-list allows, for example, an ω2-Kurepa tree to hide
in some nonstationary part of it. Suppose ⟨dα | α < ω2⟩ is an approachable slender ω2-list,
its approachability witnessed by a club C. Let ⟨tα | α < ω2⟩ be its characteristic functions.
For α ∈ ω2 −C, let

g(α) ≔ sup{δ + 1 | δ ≤ α, ∃γ ∈ C dγ ∩ δ = dα ∩ δ},

and let

d′α ≔

dα if α ∈ C,
dα ∩ g(α) if α ∉ C

for α < ω2. Then ⟨d′α | α < ω2⟩ is still approachable and slender. Let ⟨t′α | α < ω2⟩ be its
characteristic functions and T ′ be its corresponding tree.

3.2.8.1 Claim. If b is a branch through T ′, then b−1′′{1} is bounded ω2.

Proof. Suppose b is a branch through T ′ such that b−1′′{1} is unbounded in ω2. For every
δ < ω2 there is an αδ < ω2 such that b ↾ δ = t′αδ ↾ δ.

We may assume αδ ∈ C for all δ < ω2, for take δ < ω2. Then there is δ′ ≥ δ such that
b(δ′) = 1. Since b ↾ (δ′ + 1) = t′αδ′+1

↾ (δ′ + 1), this means t′αδ′+1
(δ′) = 1, so that either
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αδ′+1 ∈ C or g(αδ′+1) ≥ δ′ + 1. In the first case we can simply choose αδ to be αδ′+1, so
suppose the second case holds. Then, by the definition of g, there is a γ ∈ C such that
dγ ∩ δ′ = dαδ′+1 ∩ δ

′, so t′αδ′+1
↾ δ′ = tαδ′+1 ↾ δ

′ = tγ ↾ δ′ = t′γ ↾ δ
′. So we can choose αδ to be

this γ.

Now if b−1′′{1} is unbounded in ω2, pick δ < ω2 such that otp(b−1′′{1} ∩ δ) > ω1.
Then otp dαδ = otp t−1

αδ

′′
{1} = otp t′αδ

−1′′
{1} = otp(b−1′′{1} ∩ δ) > ω1, contradicting the

approachability of ⟨dα | α < ω2⟩ since αδ ∈ C. ⊣

By Claim 3.2.8.1, there are at most 2<ω2 = ω2 many branches through T ′. Thus by
Theorem 3.2.4 there are a stationary S ⊂ C and d ⊂ ω2 such that dα = d′α = d ∩ α for all
α ∈ S , which contradicts the approachability of ⟨dα | α < ω2⟩. ◻

3.3 Forest Properties

Using another collapse, we can extend the results of Section 3.2 to Pκλ. It is slightly ironic
that the proof of Theorem 3.2.4 required so much work although its conclusion is weak
measured by its consistency strength, while concluding now to theorems of much higher
consistency strength is almost straightforward.

3.3.1 Theorem (PFA). (ω2, λ)-ITP holds for all λ ≥ ω2.

Proof. Let ⟨da | a ∈ Pω2λ⟩ be a thin list, and let E ⊂ Pω2λ be club witnessing it is thin. For
z ∈ E let Tz ≔ {da ∩ z | z ⊂ a ∈ Pω2λ} ∈ Pω2(Pz).

Let ℙ ≔ Coll(ω2, λ) and G ⊂ ℙ be V-generic.

3.3.1.1 Claim. In V[G], there is a ⊂-increasing continuous sequence ⟨Xα | α < ω2⟩ cofinal
in PV

ω2
λ with Xα ∈ E for all α < ω2.

Proof. Let f : ω2 → λ be bijective. Recursively define ⟨Xα | α < ω2⟩ as follows. Suppose
δ < ω2 and Xα has been defined for all α < δ. If δ = β + 1, take Xδ ∈ E such that
Xβ ∪ { f (β)} ⊂ Xδ. If δ is a limit ordinal, then, as ℙ is ω2-distributive, ⟨Xα | α < δ⟩ ∈ V , so
Xδ ≔

⋃
{Xα | α < δ} ∈ E. ⊣

Now work in V[G] and let ⟨Xα | α < ω2⟩ be as in Claim 3.3.1.1. We may assume
∅ ∈ E and X0 = ∅, as well as |Xα+1 − Xα| = ω1 for all α < ω2. For α < ω2, let sα :
[ω1 · α, ω1 · (α + 1))→ Xα+1 − Xα be bijective. Set s ≔

⋃
{sα | α < ω2}. Then s : ω2 → λ is

bijective, C ≔ {γ < ω2 | ∀α < γ ω1 · (α + 1) < γ} is club, and if γ ∈ C, then

s′′γ = s′′
⋃
{[ω1 · α, ω1 · (α + 1)) | α < γ} =

⋃
{rng sα | α < γ} = Xγ. (3.3)

For α < ω2, define d̃α ≔ s−1′′dXα if α ∈ C, d̃α ≔ ∅ otherwise. Then for α ∈ C by (3.3)
d̃α ⊂ α. Furthermore ⟨d̃α | α < ω2⟩ is thin, for if α, δ ∈ C, then

d̃α ∩ δ = s−1′′dXα ∩ δ = s−1′′(dXα ∩ s′′δ) = s−1′′(dXα ∩ Xδ) ∈ {s−1′′y | y ∈ TXδ}.
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3.3 Forest Properties

By Proposition 3.1.9, PFA holds in V[G], so by Theorem 3.2.5 ⟨d̃α | α < ω2⟩ is not
effable. Thus there are a stationary S̃ ⊂ C and d̃ ⊂ ω2 such that d̃α = d̃ ∩ α for all α ∈ S̃ .
Let d ≔ s′′d̃ and

S ≔ {a ∈ PV
ω2
λ | da = d ∩ a}.

3.3.1.2 Claim. If D ∈ V is such that D ⊂ PV
ω2
λ is club in V, then D ∩ S ≠ ∅.

Proof. We first show R ≔ {α ∈ C | Xα ∈ D} is club in ω2. To see it is unbounded, take
α0 < ω2 and recursively define sequences ⟨αn | n < ω⟩ and ⟨ln | n < ω⟩ such that ln ∈ D for
all n < ω and Xα0 ⊂ l0 ⊂ Xα1 ⊂ l1 ⊂ . . .. Let α ≔ supn<ω αn. Then by the ω2-distributivity
of ℙ it follows that ⟨ln | n < ω⟩ ∈ V , so Xα =

⋃
{ln | n < ω} ∈ D and thus α ∈ R. R is closed,

for if δ < ω2 and ⟨αν | ν < δ⟩ is an increasing sequence with supremum α such that αν ∈ R
for all ν < δ, then ⟨Xαν | ν < δ⟩ ∈ V and thus Xα ∈ D, so α ∈ R.

Now since R is club, there exists α ∈ R ∩ S̃ . But then dXα = s′′d̃α = s′′(d̃ ∩ α) =
s′′d̃ ∩ s′′α = d ∩ Xα, so Xα ∈ D ∩ S . ⊣

It remains to show d ∈ V because then S ∈ V and S is stationary in V by Claim 3.3.1.2.
Let z ∈ E. Choose a ∈ S with z ⊂ a. Then d ∩ z = d ∩ a ∩ z = da ∩ z ∈ Tz. By
Proposition 2.1.12, ℙ satisfies the thinω2-approximation property, so that d ∈ V as wanted.◻

A closer look at the proof of Theorem 3.3.1 will reveal we actually did not require the
full strength of thin. It is sufficient for the Pκλ-list ⟨da | a ∈ Pκλ⟩ to satisfy the weaker
requirement that for a club C ⊂ Pκλ and every c ∈ C there is a zc ∈ Pκλ such that
|{da ∩ c | zc ⊂ a ∈ Pκλ}| < κ for all c ∈ C. Since this definition is equivalent in the one
cardinal case, it might be a reasonable modification of thin, possibly even a more natural
generalization.

The failure of weak square under PFA is originally due to Todorčević and Magidor,
see [Tod84a] and [Sch95, Theorem 6.3].

3.3.2 Corollary (PFA). Suppose cf λ ≥ ω2. Then ¬◻ω2(ω2, λ).

Proof. This follows from Theorems 1.4.2 and 3.3.1. ◻

If we weaken Theorem 3.2.4 by replacing “slender” with “thin,” then in its proof we can
replace ℙ by Coll(ω1, ω2) as we only need the thin ω1-approximation property. In [Kön07],
Bernhard König introduces a weakening PFA(ΓΣ) of PFA which is sufficient for forcings of
the form Coll(ω1, ω2) ∗ ccc and Coll(ω2, λ) but consistent with ω2 ∈ IAS[ω2]. Thus in any
model of PFA(ΓΣ) + “ω2 ∈ IAS[ω2]” Theorem 3.2.4 holds for thin ω2-lists, and thus also
Theorem 3.3.1. Therefore it is consistent that we have (ω2, λ)-ITP holds for all λ ≥ ω2 but,
via Corollary 3.2.8, ¬ω2-ISP.
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3 Implications under PFA

3.4 Slenderness Revisited

While Chapters 1 and 2 provided a homogeneous picture of slender, suggesting it is a more
natural replacement for thin, Chapter 3 so far left much about slender in the unclear. In this
section, we are going to close this gap.

The main problem of our previous attempt to prove ω2-ISP from PFA was the limitation
on the number of the branches of the corresponding tree. Reading a draft of this thesis,
Matteo Viale made an important observation; a small modification of the proof of Theo-
rem 3.2.4 solves the problem. One just needs to reverse two steps of the proof: First collapse
everything necessary to ω1, then apply Lemma 3.2.2 to find the Baumgartner function g.
Theorem 3.4.1 should thus be seen as his contribution.

3.4.1 Theorem (PFA). ω2-ISP holds.

Proof. Let ⟨dα | α < ω2⟩ be a slender ω2-list, and let T ≔ dc{tα | α < ω2}, where ⟨tα | α <
ω2⟩ are the characteristic functions of ⟨dα | α < ω2⟩. Let B ≔ {b ⊂ T | b cofinal branch}.

Define ℙ ≔ ℂ ∗ Coll(ω1,max{|B|, ω2}). Let ċ ∈ Vℙ be such that Vℙ |= “ċ : ω1 → ω
V
2 is

continuous and cofinal”. As ℙ satisfies the ω1-approximation property by Theorem 2.2.6,
we have Vℙ |= B = {b ⊂ T | b cofinal branch}. Thus by Lemma 3.2.2, there is ġ ∈ Vℙ such
that Vℙ |= “ġ : B→ T ↾ rng ċ is a Baumgartner function”.

Let Ṫ 0, Ṫ 1 ∈ Vℙ be such that

Vℙ |= Ṫ 0 = {t ∈ T ↾ rng ċ | ∃b ∈ B ġ(b) < t ∈ b},

Vℙ |= Ṫ 1 = T ↾ rng ċ − Ṫ 0.

Then again Vℙ |= “Ṫ 1 has no cofinal branch”. Therefore there is a ℚ̇ ∈ Vℙ such that
Vℙ |= “ℚ̇ is ccc and specializes Ṫ 1”. Let ḟ ∈ Vℙ∗ℚ̇ be a name for the specialization map.

Let θ be large enough.

3.4.1.1 Claim. Let M ∈ P′ω2
Hθ be such that ⟨dα | α < ω2⟩,T, ċ, ġ, Ṫ 0, Ṫ 1,ℙ ∗ ℚ̇, ḟ ∈ M.

Suppose there is an M-generic filter G ⊂ ℙ ∗ ℚ̇. Let δM ≔ M ∩ ω2. Then there is a
bM ∈ B ∩ M such that

tδM ∈ bM.

Proof. Again c ≔ ċG : ω1 → δM is continuous and cofinal. For b ∈ B ∩ M let

Db ≔ {p ∈ ℙ ∗ ℚ̇ | ∃t ∈ T p ∥− ġ(b) = t}.

Then Db ∈ M is dense, so g ≔ ġG ↾ M : B∩M → (T ↾ rng c)∩M = dc{tα | α < δM} ↾ rng c
is a Baumgartner function. Let T 0 ≔ (Ṫ 0)G∩M and T 1 ≔ (Ṫ 1)G∩M. Again for f ≔ ḟ G ↾ M
we have f : T 1 → ω is a specialization map. Also tδM is a branch in dc{tα | α < δM} as
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3.4 Slenderness Revisited

M |= “⟨dα | α < ω2⟩ is slender”. Thus there is an α < δM such that tδM ↾ β ∈ T 0 for all
β ∈ rng c − α.

For β ∈ rng c − α

Eβ ≔ {p ∈ ℙ ∗ ℚ̇ | ∃b ∈ B p ∥− “tδM ↾ β ∈ Ṫ 0 → ġ(b) < tδM ↾ β ∈ b”}

is dense. Also Eβ ∈ M as tδM ↾ β ∈ M because tδM is a branch in dc{tα | α < δM}. Hence for
every β ∈ rng c − α there is bβ ∈ B ∩ M such that g(bβ) < tδM ↾ β ∈ bβ.

Thus we can apply Lemma 3.2.3 and get an s < tδM such that tδM ∈ g−1(s). So bM ≔
g−1(s) ∈ B ∩ M is as wanted. ⊣

The proof is now finished exactly as the proof of Theorem 3.2.4. ◻

Note that Theorem 3.4.1 implies Corollary 3.2.8 immediately. It does require the stronger
assumption of PFA, not just PFA(2ω), though.

Using the same technique, we will now show PFA implies (ω2, λ)-ISP for all λ ≥ ω2.
In the proofs of Theorems 3.2.4 and 3.4.1, we used the forcing ℂ ∗ Coll(ω1, ω2), which
satisfies the ω1-approximation property by Theorem 2.2.6, for adding a club of order type
ω1 through ω2. Here we need something adapted to the Pω2 Hθ situation. The following
theorem provides us with the necessary tool. It is due to John Krueger [Kru08].15

3.4.2 Theorem. Suppose E ⊂ Pω2 Hθ is club, where θ is sufficiently large. Let ℙ̇(E) ∈ Vℂ

be such that

Vℂ |= ℙ̇(E) = {⟨eα | α ≤ γ⟩ | γ < ω1, ∀α ≤ γ eα ∈ E,
⟨eα | α ≤ γ⟩ is ⊂-increasing and continuous},

ordered by end extension. Then ℂ ∗ ℙ̇(E) is proper, satisfies the ω1-approximation property,
and there is ċ ∈ Vℂ∗ℙ̇(E) such that

Vℂ∗ℙ̇(E) |= ċ : ω1 → E is continuous and cofinal.

In the proof of the next theorem, we use Theorem 3.4.2 to shoot a club of order type ω1

through the club witnessing the slenderness of aPω2λ-list. This basically results in a slender
tree in the extension, and we can treat it the same way we did in the proof of Theorem 3.4.1.

3.4.3 Theorem (PFA). (ω2, λ)-ISP holds for all λ ≥ ω2.
15It should be noted the theorem does not literally exist in [Kru08]. Proposition 2.2 of it shows, together

with the rest of the paper, the forcing ℂ ∗ ℙ̇(PV
ω1

HV
θ ) for shooting a club of order type ω1 through Pω1 Hθ

satisfies the ω1-approximation property. However, the proof is easily adapted to what we claim, and since
the modifications are all straightforward and trivial, it is not reasonable to repeat the argument.
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3 Implications under PFA

Proof. Let ⟨da | a ∈ Pω2λ⟩ be a slender Pω2λ-list, and let E ⊂ P′ω2
Hθ be a club witnessing

its slenderness for some large enough θ. Define B ≔ λ2. Let ℙ ≔ ℂ ∗ ℙ̇(E) be as in
Theorem 3.4.2.

Work in Vℙ. As ℙ satisfies the ω1-approximation property, we have B = {h ∈ λ2 | ∀a ∈
PV
ω1
λ h ↾ a ∈ V}. Let ċ : ω1 → E be continuous and cofinal. Define

Ṫ ≔
⋃
{ċ(α)2 ∩ V | α < ω1},

ordered by inclusion. Then Ṫ is a tree of height ω1 and B the set of its cofinal branches.
Since |B| = ω1, we can apply Lemma 3.2.2 and get a Baumgartner function ġ : B→ Ṫ . Let

Ṫ 0 ≔ {t ∈ Ṫ | ∃b ∈ B ġ(b) < t ∈ b},

Ṫ 1 ≔ Ṫ − Ṫ 0.

As Ṫ 1 does not have cofinal branches, there is a ccc forcing ℚ̇ that specializes Ṫ 1 with a
specialization map ḟ .

Now work in V . Let θ̄ be large enough and set Ē ≔ EHθ̄ .

3.4.3.1 Claim. Let M̄ ∈ Ē be such that B, E, ċ, Ṫ , ġ, Ṫ 0, Ṫ 1,ℙ ∗ ℚ̇, ḟ ∈ M̄. Suppose there is
an M̄-generic filter G ⊂ ℙ ∗ ℚ̇. Then there is hM̄ ∈ B ∩ M̄ such that

dM̄∩λ = h−1
M̄
′′
{1} ∩ M̄ ∩ λ.

Proof. By the usual density argument, c ≔ ċG : ω1 → E ∩ M̄ is continuous and cofinal.
We let g ≔ ġG ↾ M̄, T ≔ ṪG ∩ M̄, T 0 ≔ (Ṫ 0)G ∩ M̄, T 1 ≔ (Ṫ 1)G ∩ M̄, and f ≔ ḟ G ↾ M̄.
Then g : B ∩ M̄ → T is a Baumgartner function, and f : T 1 → ω is a specialization map.

Let t : M̄∩λ→ 2 be the characteristic function of dM̄∩λ. We show t is a branch through T .
So let β < ω1. Since M̄∩Hθ ∈ E and c(β)∩λ ∈ M̄∩Hθ∩Pω2λ, we have dM̄∩λ∩c(β) ∈ M̄∩Hθ
by the slenderness of ⟨da | a ∈ Pω2λ⟩. Thus t ↾ c(β) ∈

⋃
{c(α)2 ∩ M̄ | α < ω1} = T .

As f shows T 1 is special, there is an α < ω1 such that t ↾ c(β) ∈ T 0 for all β ∈ rng c−α, so
by Lemma 3.2.3 we have t ∈ g−1(s) ≕ hM̄ for some s ∈ T . Hence dM̄∩λ = h−1

M̄
′′
{1} ∩ M̄∩λ.⊣

By Proposition 3.1.2, there are stationarily many M̄ ∈ Ē that satisfy the premise of
Claim 3.4.3.1, and we may assume hM̄ = h for some h and all those M̄. This shows
⟨da | a ∈ Pω2λ⟩ is not effable. ◻
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Conclusion

Closing Words

To sum up the course of the thesis, one could say we started with thin and arrived at slender.
While thin provided the basis for this research, viewing back one cannot help but feel
slender has risen as its heir. It might not be as intuitive as thin, but the way it naturally
generalizes the approachability ideal and finds applications in proofs makes it feel like a
fruitful concept which deserves further investigation. Although (κ, λ)-ITP does not imply
(κ, λ)-ISP, they coincide in the natural models we considered. Hence we believe thin should
only be seen as an intermediate concept that was necessary to find slender, not unlike PFA,
which can be seen as a technical precursor to the natural forcing axiom MM. Like PFA
however, thin still deserves attention as it is easier to grasp and a sufficient replacement for
slender in many applications.

One of the main advantages of MM over PFA had always been the knowledge about
the framework of strong reflection principles MM implies. Therefore one might hope for
(ω2, λ)-ITP or (ω2, λ)-ISP to form a similar unified framework that can be utilized under
PFA. Corollaries 3.2.7, 3.2.8, and 3.3.2 showed at least some of the known standard
consequences of PFA can be derived from this framework.

Open Questions

Finally we present some open questions and conjectures. Some were left open from the
beginning, others were grown back by the mathematical Hydra when one was answered.

Looking at how Proposition 1.3.15 generalized Proposition 1.2.14, it seems reasonable to
expect Proposition 1.2.15 to generalize in the following way.

Conjecture 1. If τ is regular and κ = τ+, then

{a ∈ Pκλ | Lim a ∩ cof(< τ) ⊂ a} ∈ FIT[κ, λ].

It might be possible to find a variant of the existence of partial squares that enables one to
prove Conjecture 1.

Proposition 1.5.3 gives rise to the next question.
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Conclusion

Question 2. Suppose κ is regular uncountable and λ ≥ κ is such that cf λ ≥ κ. Is there an
A ∈ FIT[κ, λ] such that ⟨sup a | a ∈ A⟩ is injective?

A positive answer to Question 2 would entail the following generalization of Proposi-
tion 1.5.4, even with the requirement 2<κ = κ replaced by 2<κ ≤ λ.

Conjecture 3. Suppose κ is regular uncountable such that 2<κ = κ. If cf λ ≥ κ and (κ, λ)-
ITP holds, then

λ<κ = λ.

Note that Conjecture 3 would imply a different proof of the theorem due to Viale that PFA
implies the Singular Cardinal Hypothesis, confer [Via06].

Mitchell showed in [Mit09] it is consistent that IAS[ω2] is the nonstationary ideal on the
ordinals of uncountable cofinality.

Question 4. Is it consistent that IIS[ω2] does not contain any stationary subset of cof ω1 ∩

ω2?

Since in any such model by an argument due to Shelah it holds that 2ω ≥ ω3, a positive
answer to Question 4 would also imply a positive answer to Question 5.

Question 5. Is it consistent that ω2-ITP holds and 2ω ≥ ω3?

Question 6. Suppose (ω2, λ)-ISP holds for all λ ≥ ω2. Does this imply 2ω = ω2?

The last two questions are motivated by [MS96], which shows that if κ is the singular
limit of strongly compact cardinals, then κ+-TP holds.

Question 7. Suppose κ is the singular limit of supercompact cardinals. Does this imply
κ+-ITP?

From this, the authors establish the consistency of ωω+1-TP using some very large cardinal
assumptions.

Question 8. Is ωω+1-ITP consistent?
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Pκλ-list, 18
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proper, 27
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