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Abstract 
 
 
The Standard model of particle physics is a very successful theory 
of strong weak and electromagnetic interactions. This theory is 
perturbative at sufficiently high energies and renormalizable thus it 
describes these interactions at quantum level. However it has a 
number of limitations, one being the fact that it has 28 free 
parameters assuming massive neutrinos. Within the Standard 
model these parameters can not be explained, however they can be 
accommodated in the standard theory. Particularly the masses of 
the fermions are not predicted by the theory. The existence of the 
neutrino masses can be regarded as the first glimpse of the physics 
beyond the standard model.  
In this thesis we have described the quark and lepton masses and 
mixings in context of non-SUSY SO(10) and four zero texture 
(FZT). In the four zero texture case the fermion masses and mixing 
can be related. We have made some predictions using tribimaximal 
mixing, the near tribimaximal (TBM) mixing and the triminimal 
parameterization. Our results show that under the TBM the 
neutrinos have normal, but weak hierarchy. Under near tri- 
bimaximal mixing and the triminimal parameterization we find that 
the neutrino masses in general increase, if the value of solar angle 
increases from its TBM value and vice versa. 
It appears that the neutrinos become more and more degenerate for 
solar angle values higher than TBM value and hierarchical for 
lower values of solar angle. We also briefly discuss neutrino 
parameters in the SUSY SO(10) theories. An overview of SUSY 
SO(10) theories and proton decay is also presented. 
 
 



 
 
 
 
 



Zusammenfassung 
 
Das Standardmodell der Teilchenphysik ist eine sehr erfolgreiche 
Theorie der starken, schwachen und elektromagnetischen 
Wechselwirkungen. Bei hohen Energien kann diese Theorie mit 
perturbativen Methoden beschrieben werden. Sie ist renormierbar 
und beschreibt die Wechselwirkungen im Rahmen der 
Quantentheorie. Jedoch sind die Grenzen der Theorie durch die 
Tatsache gegeben, dass 28 freie Parameter eingeführt werden 
müssen, darunter 8 Parameter für die massiven Neutrinos. Diese 
Parameter können im Standardmodell nicht berechnet werden. Die 
Neutrinomassen müssen als erste Hinweise auf die Physik jenseits 
des Standardmodells interpretiert werden.   
 
In dieser Arbeit haben wir die Massen der Quarks und Leptonen 
und ihre Mischungen in der SO(10) – Theorie beschrieben. In 
diesem Modell gibt es Relationen zwischen den Fermionenmassen 
und den Mischungswinkel auf der Grundlage einer durch 
Symmetrien festgelegten Textur der Massenmatrizen. Speziell 
konnten wir diese Relationen im Fall der „tribimaximal“ und der 
„tribiminimal“ Mischungen angeben. Unsere Resultate ergeben, 
dass die Neutrinos eine normale, allerdings nicht sehr ausgeprägte 
Massenhierarchie besitzen. Wir finden, dass die Neutrinomassen 
größer werden, wenn der solare Mischungswinkel anwächst. In 
diesem Fall werden die Neutrinomassen fast gleich. Falls der 
solare Mischungswinkel kleiner ist, wird die Massenhierarchie 
ausgeprägter.  
 
Wir diskutieren auch Details der supersymmetrischen SO(10) – 
Theorie, insbesondere die Neutrinoparameter und den 
Protonzerfall. 
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Introduction

The Standard Model (SM) of electroweak and strong interactions is extremely
successful theory of elementary particles [1],[2]. The electroweak theory put
forward by Glashow, Salam and Weinberg [1], describing electromagnetic
[3] and weak [4] interactions betweens the quarks and leptons, is based on
an SU(2)L �U(1)Y gauge symmetry group of weak isospin and hypercharge.
Combined with the SU(3)C gauge symmetry group for Quantum Chromo-
dynamics (QCD)[2], which is the theory for the strong interactions, the SM
describes the three forces of nature. This theory is perturbative at su¢ ciently
high energies and renormalizable [5], and thus describes these interactions at
quantum level [6]. One of the key ingredients of the SM is the phenomenon
of the spontaneous electroweak symmetry breaking (EWSB)[7],[6], called the
Higgs Mechanism, which respects renormalizability [5] and unitarity of the
theory [8]. In this mechanism the neutral component of an SU(2) dou-
blet of complex scalar �eld assumes a non-zero expectation value. Hence
the electroweak symmetry SU(2)L �U(1)Y is spontaneously broken to the
U(1)Q symmetry. The W� and Z bosons absorb three of the four degrees of
freedom of doublet scalar �eld to form their longitudinal polarizations and
acquire masses. The fermions masses are generated through the Yukawa in-
teraction with the same scalar �eld and its conjugate �eld. The remaining
degree of freedom corresponds to a scalar particle called Higgs Boson, which
is yet to be discovered.

Excluding neutrinos there are 19 free parameters in the standard model
[9]. Out of these 19, 3 gauge couplings, the Higgs quartic coupling � and
Higgs mass squared �2 are �avor universal. The others are �avor parame-
ters. They include 6 quark masses, 3 charged lepton masses, 4 quark mixing
parameters and a strong CP phase. The existence of the neutrino mass can
be regarded as the �rst glimpse of the physics beyond the standard model.
Including small neutrino masses and mixings, 9 more parameters, 3 neutrino
masses, 3 mixing angles and 3 phases have to be introduced. One may ask,
why are there so many free parameters? Why do they show hierarchical
structure spanning six order of magnitude? Are the mixing parameters and

ix



x INTRODUCTION

mass ratios related to each other? What is origin of CP violation? Answers
to these questions necessarily leads one to the physics beyond the Stan-
dard model as the origin of these parameters is still unknown. Within the
Standard model these parameters cannot be explained however they can be
accommodated in the standard theory.
The grand uni�ed theories (GUTs) can help to reduce these parameters.

Some of the beyond standard model scenarios can be con�rmed or refuted
by the forthcoming experiments, especially at LHC. If the new physics exists
near the TeV scale, it would be accessible at LHC, but if it exists at a much
higher scale, it will not be accessible.
This thesis is organized as follows: in chapter 1 we review the generation

of fermions masses through the Higgs mechanism. The mixing and mass
matrices in the quak and lepton sectors are discussed. In the second chapter
using zero texture, we discuss the possibility of relating the mixing angles
and mass ratios of fermions. Some predictions are also made about neutrino
masses. In chapter 3 we discuss the fermion mass and mixing problem in
non- SUSY SO(10) grand uni�ed theory. The symmetry breaking and the
Yukawa sector of the SO(10) theory is described. In chapter 4 we describe
the two explicit models of fermions masses in non-SUSY SO(10) theory.
Some predictions about neutrino mass are made. Chapter 5 is dedicated to
the same problem in SUSY SO(10) theories and beyond.



Chapter 1

Fermion masses in the
Standard Model

The high precision measurement tests [10],[11] performed at LEP, SLC, Teva-
tron etc. has clearly established that the standard model of particle physics
is the correct e¤ective theory of the strong and electroweak interactions at
the present energies.The tests have probed the quantum corrections and the
structure of the SU(3)c � SU(2)L �U(1)Y local gauge symmetry. The the-
ory has precisely predicted the measured values of the couplings of the elec-
troweak gauge bosons with the leptons and quarks. The SU(3)c gauge
symmetric sector of the theory has also been tested at LEP, however the
scalar sector of the Standard Model(SM) has yet to be tested satisfactorily.
The missing and the most important ingredient of the model has not been
observed yet [11],[12]. Only indirect constraints from high precision data
have been obtained [6],[10]. The three generations of weak isospin doublets
are given by

L0eL =

�
� 0eL
e0L

�
; L0�L =

�
� 0�L
�0L

�
; L0�L =

�
� 0�L
� 0L

�
(1.1)

Q01L =

�
u0L
d0L

�
; Q02L =

�
c0L
s0L

�
; Q03L =

�
t0L
b0L

�
(1.2)

and the singlets are

`0eR = e0R; `0�R = �0R; `0�R = � 0R (1.3)

q0uuR = u0R; q0ucR = c0R; q0utR = t0R (1.4)

q0DdR = d0R; q0DsR = s0R; q0DbR = b0R (1.5)

1



2 CHAPTER 1. FERMION MASSES IN THE STANDARD MODEL

The primes in (1.1) � (1.5) represent the fermion �elds discussed above.
They do not have a de�nite mass, but they are linear combinations of the
fermions having de�nite mass. The three generation electroweak SM la-
grangian is [13]

L = i
X

�=e;�;�

L
0
�L


�D�L
0
�L + i

X
�=1;2;3

Q
0
�L


�D�Q
0
�L + i

X
�=e;�;�

`
0
�R


�D�`
0
�R

(1.6)

+ i
X
�=d;s;b

q0D�R

�D�q

0D
�R + i

X
�=u;c;t

q0U�R

�D�q

0U
�R �

1

4
A��A

�� � 1
4
B��B

��

+ (D��)
y (D��)� �2�y�� �

�
�y�

�2 � X
�;�=e;�;�

�
Y 0`
��L

0
�L�`

0
�R + Y 0`�

�� `
0
�R�

yL0�L

�
�
X

�=1;2;3

X
�;�=d;s;b

�
Y 0D
��Q

0
�L�q

0D
�R + Y 0D�

�� q0D�R�
yQ0�L

�
�
X

�=1;2;3

X
�;�=d;s;b

�
Y 0U
��Q

0
�L
e�q0U�R + Y 0U�

�� q
0U
�R
e�yQ0�L�

The Higgs-Yukawa fermions couplings responsible for the generation of
fermions masses, are given by last three entries of above lagrangian. The
charged-current weak interaction lagrangian can be obtained from the �rst
line of the equation above and is given by

L(CC)I = � g

2
p
2
j�WW� + h:c: (1.7)

The fermion charged current j�W represents the sum of the leptonic and
quark charged weak currents

j�W = j�W;L + j�W;Q (1.8)

They are given as

j�W;L = 2
�
� 0eL


�e0L + � 0�L

��0L + � 0�L


�� 0L
�

(1.9)

j�W;Q = 2
�
u0L


�d0L + c0L

�s0L + t

0
L


�b0L

�
(1.10)

We can write the fermionic charged current in a compact form

j�W;L = 2
X

�=e;�;�

� 0�L

�`0�L (1.11)



3

with `0eL = e0L, `0�L = �0L, `
0
�L = � 0L and using raising and lowering

operators

j�W;L = 2
X

�=e;�;�

L
0
�L


�I+L
0
�L (1.12)

j�yW;L = 2
X

�=e;�;�

L
0
�L


�I�L
0
�L (1.13)

j�W;Q = 2
X

�=1;2;3

Q
0
�L


�I+Q
0
�L (1.14)

j�yW;Q = 2
X

�=1;2;3

Q
0
�L


�I�Q
0
�L (1.15)

Raising and lowering operators are

I+ !
�+
2
=
�1 + ��2
2

=

�
0 1
0 0

�
I� !

��
2
=
�1 � ��2
2

=

�
0 0
0 1

�
where �1,�1 are the Pauli matrices. The equations containing raising oper-

ators represent the corresponding currents, and equations containing lowering
operators represent corresponding complex conjugate currents. The neutral
current weak interaction lagrangian obtained from (1.6) is

L(Z) = � g

2 cos �W
j�ZZ� (1.16)

The neutral current is

j�Z = j�Z;L + j�Z;Q (1.17)

with the leptonic neutral current

j�Z;L = 2g
�
L

X
�=e;�;�

� 0�L

�
L�

0
�L + 2

X
�=e;�;�

�
glL`

0
�L


�`0�L + glR`
0
�R


�`0�R

�
(1.18)

and the quark neutral current

j�Z;Q = 2
X
�=u;c;t

�
gUL q

0U
�L


�q0U�L + gURq
0U
�R


�q0U�R
�

(1.19)

+ 2
X
�=d;s;b

�
gDL q

0D
�L


�q0D�L + gURq
0D
�R


�q0D�R
�
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coe¢ cients g�,l,U ,DL , g�,l,U ,DR

Fermions gL gR gV gA
�e,��,�� g�L =

1
2

g�R = 0 g�V =
1
2

g�A =
1
2

e,�,� g`L = �1
2
+ sin2 �W g`R = sin

2 �W g`V = �1
2
+ 2 sin2 �W g`A = �1

2

u,c,t gUL =
1
2
� 2

3
sin2 �W gUR = �2

3
sin2 �W gUV =

1
2
� 4

3
sin2 �W gUA =

1
2

d,s,b gDL = �1
2
+ 1

3
sin2 �W gDR =

1
3
sin2 �W gDV = �1

2
+ 2

3
sin2 �W gDA = �1

2

Table 1.1: Values for coe¢ cients of the quark �elds

with q0UuL = u0L, q0UcL = c0L, q0UtL = t0L, q0DdL = d0L, q0DsL = s0L, q0DbL = b0L
values of coe¢ cients g�,l,U ,DL and g�,l,U ,DR are given in table 1.1.

1.1 The Higgs Mechanism

In the Standard Model the masses of the fermions and gauge bosons are
generated through the Higgs mechanism. We consider the Higgs doublet

� (x) =

�
�+ (x)

�0 (x)

�
Here �+ (x), and �0 (x) represent the charged and neutral complex �elds,

and their gauge quantum numbers are given by the table 1.2.
The Higgs part of the SM Lagrangian which is invariant under the SU(2)L

�U(1)Y gauge symmetry is

LHiggs = (D��)
y (D��)� �2�y�� �

�
�y�

�2
(1.20)

The corresponding potential is

V (�) = �2�y�� �
�
�y�

�2
(1.21)

The coe¢ cient � of quartic self- coupling of the Higgs �elds must be
positive (� > 0) in order to have the Higgs potential which is bounded from
below. We assume the mass squared parameter �2 < 0 for spontaneous
breakdown of the gauge symmetry

SU(2)L � U(1)Y ! U(1)Q (1.22)

U(1)Q is the symmetry group for electromagnetic interaction. De�ning

� =

r
��

2

�
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Higgs Doublet

I I3 Y Q
�+ (x) 1

2
1
2

+1 1
�0 (x) 1

2
�1
2
+1 0

Table 1.2: Quantum numbers of the Higgs Doublet

and neglecting the term
�4

4
, the Higgs potential can be written as

V (�) = �

�
�y�� �2

2

�2
the minimum of the potential is at

�y� =
�2

2

Unlike the fermions �elds and charged scalar �elds, the neutral �eld �0 (x)
can have non zero vacuum expectation value.

h�i = 1p
2

�
0

�

�

So in unitary gauge the Higgs doublet can be written as

h�i = 1p
2

�
0

� +H (x)

�
(1.23)

where H (x) is a �eld which is obtained by the excitations of the neutral
Higgs �eld above the vacuum. It represents the physical Higgs boson. Now
we can write the Higgs lagrangian in the unitary gauge

LHiggs =
1

2
(@H)2 � ��2H2 � ��H3 � �

4
H4 +

g2�2

4
W y
�W

� (1.24)

+
g2�2

8 cos2 �W
Z�Z

� +
g2�

2
W y
�W

�H +
g2�

4 cos2 �W
Z�Z

�H

+
g2

4
W y
�W

�H2 +
g2

8 cos2 �W
Z�Z

�H2

From the second term we get the mass for the Higgs boson.

mH =
p
2��2 =

p
�2�2 (1.25)
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4�2 = �2 � �2min versus mH, from global �t to electroweak data

Figure 1.1: Bounds on the Higgs mass from electroweak data
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Since �2 is not connected to the other quantities in the Standard Model,
the value of the Higgs boson is not predicted in the Standard Model. It
must be determined from experiments. One of the aims of LEP was to �nd
the Higgs boson . Although LEP played a key role in establishing SM as
the e¤ective theory of the weak and electromagnetic interactions, it failed
to detect any particle like the Higgs Boson. However these results put a
very strong limit on SM-like Higgs boson, mH & 114:4 GeV[12]. The global
electroweak �t results in 4�2 = �2 � �2min curve is shown in the �gure 1.1.
At 95% C.L. one gets [14],[15] .

114:4 GeV < mH < 144 GeV

The �fth term in the above lagrangian gives the mass of the W boson.
The sixth term gives the Z boson mass:

mW =
g�

2
(1.26)

mZ =
g�

2 cos �W
(1.27)

The experiments give mW = 80:398 � 0:025 GeV and mZ = 91:1875 �
0:0021 GeV. These masses agrees with the theoretical prediction.[14],[15]

1.2 Fermion Masses and Mixings

In the Standard Model the masses of the fermions arise through Yukawa
couplings of the fermions �elds with the Higgs doublet. As a fermion mass
term must involve a left handed and a right handed �eld, the neutrinos
are massless in the Standard Model, since they do not have right handed
components.

1.2.1 Lepton Masses

The Yukawa lagrangian is given by the ninth term in (1.6)

LH;L = �
X

�;�=e;�;�

Y 0`
��L

0
�L�`

0
�R + h:c (1.28)

The products L
0
�L`

0
�R are isospin doublets and they have hypercharge

Y = �1. The Higgs doublet has hypercharge Y = +1. Therefore the above
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mentioned lagrangian is invariant under the SU(2)L �U(1)Y gauge symme-
try. After symmetry breaking the Higgs doublet is given by (1.23), and the
Higgs-Lepton Yukawa lagrangian is

LH;L = �
�
� +Hp

2

� X
�;�=e;�;�

Y 0`
��`

0
�L`

0
�R + h:c (1.29)

In the above expression the term proportional to � (VEV) is the mass
term for the charged fermion. Because of the fact that Y 0` is usually a non
diagonal complex 3 � 3 matrix. e0; �0; � 0do not have de�nite mass. Charged
lepton �elds can be obtained, if we diagonalize the Yukawa matrix Y 0`:In
order to do this lets de�ne an array of charged lepton �elds

`0L =

0@e0L�0L
� 0L

1A , `0R =

0@e0R�0R
� 0R

1A
The Yukawa lagrangian is

LH;L = �
�
� +Hp

2

�
`
0
LY

0``0R + h:c

We can diagonalize the Y 0` through a biunitary transformation

V `y
L Y

0`V `
R = Y `, with Y `

�� = y`���� (�; � = e; �; �)

( V `
L are V

`
R are appropriate 3�3matrices). Rede�ning the charged lepton

�elds

`L = V `y
L `

0
L =

0@eL�L
�L

1A , `R = V `y
R `

0
R =

0@eR�R
�R

1A
where `L,`R are charged lepton �elds with de�nite mass, the Yukawa

lagrangian is given by

LH;L = �
�
� +Hp

2

�
`LY

``R + h:c

LH;L = �
X

�=e;�;�

y`��p
2
`�`� �

X
�=e;�;�

y`�p
2
`�`�H

( `� = `�L + `�R are charged lepton �elds with de�nite mass.)

`e = e, `� = � , `� = �
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The mass term for the charged leptons is given by the �rst term of the
lagrangian

m� =
y`��p
2

with (� = e; �; �) (1.30)

Since y`e,y
`
�,y

`
� are free parameters in the standard model, the charged

lepton masses are not predicted in the SM. If we de�ne

�L = V `y
L �

0
L = V `y

L

0@� 0eL� 0�L
� 0�L

1A =

0@�eL��L
��L

1A
Then the leptonic charged current can be written as

j�W;L = 2�L

�`L = 2

X
�;�=e;�;�

��L

�`�L

The neutrino �elds �eL, ��L, ��L still stay massless as they are linear
combinations of the massless (primed) �elds. They are called �avor neutrino
�elds as they only couple to the corresponding charged lepton �elds. In the
standard model the neutrino �avor eigenstates are also the neutrino mass
eigenstates, however in theories beyond the standard model such as SO(10),
right handed neutrino �eld also exist, and neutrinos are massive particles.
Therefore in these theories neutrino �avor eigenstates are not in general mass
eigenstates. The leptonic neutral current is given by:

j�Z;L = 2g
�
L�L


��L + 2g
l
L`L


�`L + 2g
l
R`R


�`R

So the leptonic neutral current remains invariant. This phenomenon is
called the GIM mechanism.

1.2.2 Quark Masses

As the mass term for the fermions possesses both the left handed and the
right handed �elds of the corresponding fermion, we can have two types of
such products

Q
0
�Lq

0D
�R , where � = 1; 2; 3 and � = d,s,b

Q
0
�Lq

0U
�R , where � = 1; 2; 3 and � = u,c,t
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The �rst term Q
0
�Lq

0D
�R has hypercharge �1 and can be combined to the

Higgs doublet with hypercharge +1 to form an SU(2)L �U(1)Y gauge in-
variant term

�
X

�=1;2;3

X
�;�=d;s;b

Y 0D
��Q

0
�L�q

0D
�R

where Y 0D is a 3 � 3 complex Yukawa couplings matrix, given by the
fourth line of (1.6) ( mass term for the down type of quarks ). In the unitary
gauge we can write the mass term as

�
�
� +Hp

2

� X
�;�=d;s;b

Y 0D
�� q

0D
�Lq

0D
�R

where Y 0D
d;s;b = Y 0D

1;2;3. The term proportional to � belongs to the mass term

for the down type quarks. For up type quarks, as Q
0
�Lq

0U
�R has hypercharge

+1, a Higgs doublet with hypercharge �1 is needed in order to have a SU(2)L
�U(1)Y gauge invariant term. Therefore we de�nee� = ��2�

�

and write the gauge invariant term as

�
X

�=1;2;3

X
�;�=u;c;t

Y 0U
��Q

0
�L
e�q0U�R

In the unitary gauge we have

e� = 1p
2

�
� +H (x)

0

�
The mass term for the up type of quarks can be written as

�
�
� +Hp

2

� X
�;�=u;c;t

Y 0U
�� q

0U
�Lq

0U
�R

Here Y 0U
u;c;t = Y 0U

1;2;3. The term proportional to � belongs to the masses of
the up type of quarks. In the unitary gauge the quark Yukawa lagrangian
can be written as

LH;Q = �
�
� +Hp

2

�" X
�;�=d;s;b

Y 0D
�� q

0D
�Lq

0D
�R +

X
�;�=u;c;t

Y 0U
�� q

0U
�Lq

0U
�R

#
(1.31)
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The complex Yukawa coupling matrices Y 0D
�� , Y

0D
�� are non diagonal in

general. In order to get mass terms for the quarks, we must diagonalize the
Yukawa matrices. We de�ne

q0UL =

0@u0Lc0L
t0L

1A , q0UR =

0@u0Rc0R
t0R

1A , q0DL =

0@d0Ls0L
b0L

1A , q0DR =

0@d0Rs0R
b0R

1A
This allows us to write the quark Yukawa lagrangian in matrix form as

LH;Q = �
�
� +Hp

2

��
q0DL Y

0Dq0DR + q0UL Y
0Uq0UR

�
+ h:c (1.32)

The Yukawa matrices can be diagonalized by a biunitary transformation:

V Dy
L Y 0DV D

R = Y D; with Y D
�� = yD� ��� (�; � = d; s; b)

V Uy
L Y 0UV U

R = Y U ; with Y U
�� = yU� ��� (�; � = d; s; b)

( V D
L , V

D
R , V

U
L , V

U
R are four suitable 3 � 3 matrices). Now we de�ne

unprimed �elds in terms of primed �elds:

qUL = V Uy
L q0UL =

0@uLcL
tL

1A , qUR = V Uy
R q0UR =

0@uRcR
tR

1A (1.33)

qDL = V Dy
L q0DL =

0@dLsL
bL

1A , qDR = V Dy
R q0DR =

0@dRsR
bR

1A
The Yukawa lagrangian becomes:

LH;Q = �
�
� +Hp

2

��
qDLY

DqDR + qULY
UqUR

�
+ h:c

= �
X
�=d;s;b

yD� �p
2
qD� q

D
� �

X
�=u;c;t

yU� �p
2
qU� q

U
�

�
X
�=d;s;b

yD�p
2
qD� q

D
�H �

X
�=u;c;t

yU�p
2
qU� q

U
�H

where the unprimed quarks �elds

qD� = qD�L + qD�R , qU� = qU�L + qU�R
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have a de�nite mass. Their masses are given by:

m� =
yD� �p
2

with (� = d; s; b) (1.34)

m� =
yU� �p
2

with (� = u; c; t)

Similar to the leptons case the values of yDd ,y
D
s ,y

D
b ,y

U
u ,y

U
c ,y

U
t are unknown

parameters of the SM. Therefore the quark masses cannot be calculated. Due
to mismatch between the (massive) unprimed quark �elds and primed quark
�elds, we are led to a particular phenomenon called quark mixing. The quark
weak current (1.10) can be written in matrix form

j�W;Q = 2q
0U
L 


�q0DL

Now expressing unprimed quark �elds in terms of primed quark �elds
(1.33), we can write the quark weak current as

j�W;Q = 2q
U
LV

Uy
L 
�V D

L q
D
L = 2q

U
L


�V Uy
L V D

L q
D
L

The charged current depends on the combination of V Uy
L ,V D

L called quark
mixing matrix or Cabibbo-Kobayashi-Maskawa (CKM) matrix, carrying the
physical e¤ects of quark mixing.

V = V Uy
L V D

L (1.35)

Neutral currents in unprimed quark �elds are given by

j�Z;Q = 2
�
gUL q

U
L


�qUL + gURq
U
R


�qUR
�
+ 2

�
gDL q

D
L 


�qDL + gURq
D
R


�qDR
�

This shows that the neutral current in terms of unprimed quark �elds is
identical to the neutral current, written in terms of the primed quark �elds (
GIM mechanism). Thus in the Standard Model there are no �avor changing
neutral currents.

1.2.3 Quark Mixing

The Cabibbo-Kobayashi-Maskawa (CKM) matrix is a 3 � 3 unitary matrix
given by

VCKM = V Uy
L V D

L =

0@V11 V12 V13
V21 V22 V23
V31 V32 V33

1A =

0@Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

1A (1.36)
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Here V U
L and V D

L unitary matrices which are used to diagonalize the up
type and the down type of quark mass matrices respectively. An arbitrary
unitary N �N has N2 real parameters, out of which

N(N � 1)
2

are mixing angles and
N(N + 1)

2
are phases

where N represents the number of generations of quarks. If we take
N = 3 , then we will have

N(N � 1)
2

= 3 mixing angles,
N(N + 1)

2
= 1 phase

For N = 2 we have:

N(N � 1)
2

= 1 mixing angles,
N(N + 1)

2
= 0 phase

So in case of 3 generations we have 1 phase (�13) and 3 mixing angles
(�12; �23; �13) where as in case of 2 generations, we do not have any phase
however we have one mixing angle called the Cabibo angle �W [18]. Parame-
terization of a 3� 3 mixing matrix is given in [16],[17]

VCKM =

0@ c12c13 s13c12 s13e
���13

�s12c23 � c12s23s13e
��13 c12c23 � c12s23s13e

��13 s23c13
s12s12 � c12c23s13e

��13 �c12s23 � s12c23s13e
��13 c23c13

1A
(1.37)

( cab = cos �ab , sab = sin �ab ). The experimental values of these parame-
ters are given by

s12 = 0:2243� 0:0016 , s23 = 0:0413� 0:0015 , s13 = 0:0037� 0:0005
�13 = 1:05� 0:24 = 60� � 14�

Another useful parameterization was put forward by Wolfenstein show-
ing the hierarchy among the quark mixing angles 1 � s12 � s23 � s13. By
using the following relations in ( 1.37), one can get the Wolfenstein parame-
terization

s12 = �; s23 = A�2 s13e
���13 = A�3 (�� ��)

VCKM =

0BBB@
1� �2

2
� A�3 (�� ��)

�� 1� �2

2
A�2

A�3 (1� �� ��) �A�2 1

1CCCA+ #
�
�4
�
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The experimental values of the CKM matrix elements are [17]

VCKM =

0@0:97419� 0:00022 0:2257� 0:0010 0:00359� 0:00016
0:2256� 0:0010 0:97334� 0:00023 0:0415+0:0010�0:0011
0:00874+0:00026�0:00037 0:0407� 0:0010 0:999133+0:000044�0:000043

1A
1.3 The Standard Model and the Neutrino

Mass

In the Standard Model the left-handed neutrinos form the electroweak dou-
blets with the charged leptons. They do not posses an electric charge and are
colorless. In this theory right handed neutrinos are not included. Due to the
absence of the right handed neutrinos in this theory neutrinos are massless
at the tree level. Due to the presence of the exact B � L symmetry in this
theory, neutrinos remain massless in all orders of the perturbation theory as
well as when non perturbative e¤ects are taken into account.[19]. It is there-
fore natural to assume that the nonzero neutrino masses must be associated
to the right-handed neutrinos and with the breaking of the B � L symme-
try. If the condition of explicit renormalizability of the theory is abandoned,
neutrino masses can be obtained even if the SM particles are the only light
degrees of freedom. The renormalizable operator generates the Majorana
neutrino mass after the electroweak symmetry breaking.[20]

�ij
M
(LiH)

T (LjH) , i; j = e; �; �

mij =
�ij hHi2

M

( �ij; H;M are the dimensionless coupling, the Higgs doublet and the cut
o¤ scale respectively ). In order to get the correct masses for the neutrinos,
some new physics scale below the MPl must exit.



Chapter 2

Fermion Masses Beyond the
Standard Model

In the Standard Model the mixing of the quark �avors arises after diago-
nalizing the up and down type quark mass matrices. Both mass matrices
cannot be diagonalized by unitary transformations which commute with the
charged weak generators. This diagonalization-mismatch gives rise to the
phenomenon of �avor mixing, whose dynamical origin is unknown. However
it is implied that the mechanism responsible for the generation of the quark
masses is also responsible for quark mixing [22]. In many models which go be-
yond the Standard electroweak model, based of �avor symmetries, the �avor
mixing angles are the functions of the mass eigenvalues [23],[24]. A hierarchy
exists between both the observed values of mass spectrum of quarks and the
observed values of �avor mixing parameters. This hierarchical structure can
be understood as a result of a speci�c pattern of chiral symmetries whose
breaking would cause the hierarchical tower of masses to appear step by step.
[25],[26]. Such a chiral evolution of the quark mass matrices leads to speci�c
way of describing the �avor mixing. Here we describe a parameterization
of �avor mixing which is unique in the sense that it incorporates the chiral
evolution of the mass matrices in a natural way.

We assume that the quark mass eigenvalues are the dynamical entities
whose values can be changed to study certain symmetry limits (as is done
in QCD). Without loss of generality we can take the quark mass matrices
as Hermitian matrices. In the limit where the masses of the u and d quarks
are set to zero, the quark mass matrix fM (both for up and down type of
quarks) can be described in such a way that its fM1i and fMi1 elements are

15
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zero. [25] Therefore fM takes the form

fM =

0@0 0 0

0 eC eB
0 eB� eA

1A (2.1)

The observed mass hierarchy is incorporated in this structure by takingeA >> eB; eC . The complex phases in the mass matrix (2.1) can be rotated
away by subjecting both fMu, fMd to the same unitary transformation. Thus
in both up and down quark sectors, eB can be taken as real. There is no
CP violation at this stage. The �avor mixing matrix which diagonalizes the
mass matrix (2.1), and describes the mixing between the second and the
third family by the angle e�, is given as

eV =
0@1 0 0
0 ec es
0 �es ec

1A
( ec = cos e� and es = sin e� ).
As the limit mu = md = 0 is not far from reality, e� is essentially given by

jV j = 0:039� 0:002 [27],[28] implying e� = 2:24� � 0:12�. At the next stage
of the chiral evolution of the mass matrices, the masses of the light quarks
u, d are introduced. A general hermitian mass matrix can be written as

Mq =

0@Eq Dq Fq
D�
q Cq Bq

F �q B�
q Aq

1A
(A >> C; jBj >> E; jDj ; jF j )
With a common unitary transformation of the up and the down quark

�elds, it is always possible to arrange the mass matrices Mu;Md in such way
that Fq = Fu = Fd = 0

Mq =

0@Eq Dq 0
D�
q Cq Bq
0 B�

q Aq

1A (2.2)

The basis in which the mass matrices take the form (2.2) is a basis in
which up and down quark mass matrices exhibit two texture zero. In this
basis the (1; 3) and (3; 1) elements of the mass matrices in Mu;Md are zero.
Therefore no direct mixing of the heavy quark t (or b) and the light quark
u (or d) is present [29]. In the hierarchy limit of the quark masses the mass
matrix of the type (2.2), can be diagonalized by a rotation matrix having
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just two angles [23]. At �rst the diagonal element Bq is rotated away by a
rotation between the second and the third families described by the angle
�23. Then the element Dq is rotated away by a transformation between the
�rst and second families given by angle �12. There is no rotation between the
�rst and the third families as described above. The rotation matrix for this
sequence takes the form

R = R12R23 =

0@ c12 s12 0
�s12 c12 0
0 0 1

1A0@1 0 0
0 c23 s23
0 �s23 c23

1A
The �avor mixing matrix V is product of two such matrices one for up

and the other for down type of the quark �elds.

V = Ru12R
u
23

�
Rd23
��1 �

Rd12
��1

The product of rotations Ru23
�
Rd23
��1
can be described by a single rotation

matrix, given by an angle �. The angles describing the rotations Ru12 and R
d
12

are given by �u and �d respectively. Thus in the absence of the CP- violating
phases the �avor mixing matrix takes the following form

V =

0@ cu su 0
�su cu 0
0 0 1

1A0@1 0 0
0 c s
0 �s c

1A0@cd �sd 0
sd cd 0
0 0 1

1A
( cu = cos �u; su = sin �u etc.)
By suitably rephasing the quark �elds, the �avor mixing matrix can be

written in terms of a single phase ' as follows:

V =

0@ cu su 0
�su cu 0
0 0 1

1A0@e�i' 0 0
0 c s
0 �s c

1A0@cd �sd 0
sd cd 0
0 0 1

1A

V =

0@susdc+ cucde
�i' sucdc� cusde

�i' sus
cusdc� sucde

�i' cucdc+ susde
�i' cus

�sds �cds c

1A (2.3)

As all the three angles �u; �d; � can be arranged to lie in the �rst quadrant,
su; sd; c all are positive de�nite. The CP violating phase ' can lie in the range
0� 2�. CP violation is present in the weak interactions if ' 6= 0; �; 2�.
The parameterization (2.3) has many advantages [22]. Some of them are

as follows
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1. As the mass matrix (2.3) is derived directly from the chiral expansion
of the mass matrices, it naturally takes into account the hierarchy of
the quark masses.

2. CP violation is linked to the �rst and the second families only.

3. The three mixing angles �u; �d and � have precise physical meaning.
The angle � describes the mixing between the second and the third
families in the limit mu << mc << mt, generated by Bu and Bd
in (2.2) which can be named as "heavy quark mixing". The angle �u
describes the mixing between u � c channel by term Du in (2.2) and
is called "u�channel mixing". Similarly the "d�channel mixing" is
mixing given by angle �d which describes the mixing between d � s
channel by the term Dd in (2.2) in the limit md << ms << mb.

4. A simple relation exists between the three mixing angles and some
observable quantities in the B-meson Physics. From (2.3) we can get
the following simple relations

sin � = jVcbj

s
1 +

����VubVcb

����2
tan �u =

����VubVcb

���� ; tan �d = ����VtdVts
����

These relations make the parameterization (2.3) especially favorable for
the study of B-meson Physics. An additional advantage which the parame-
terization (2.3) has over the standard parameterization is that the renor-
malization group evolution of the V is to a very high degree of accuracy
associated with only angle � . This can be veri�ed easily if one keeps only
the Yukawa coupling of t , b and neglect the possible threshold e¤ects in
renormalization group equations of the Yukawa matrices [30]. Thus if the
underlying scale is changed from weak scale (s 102 GeV) to grand uni�ed
scale (s 1016 GeV), the value of � changes where as the values of �u; �d and
' remain independent of this variation. So heavy quark mixing is subjected
to renormalization group equation e¤ects where as u�and d� channels and
CP- violation phase are not.

2.1 Realistic Zero texture

We can predict the �avor mixing angles in terms of quark masses in the
following way. We take Eq = 0 in the mass matrix (2.2)
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Mq =

0@ 0 Dq 0
D�
q Cq Bq
0 B�

q Aq

1A
The physical constraints are as follows; in the �avor basis in which the

(1,3) and (3,1) elements of Mu;d vanish the (1,1) element also vanish. The
vanishing of (1,1) elements can be viewed as a result of some underlying
discrete or continuous �avor symmetry [31] . The prediction about the
mixing angle obtained from the above texture is almost independent from
renormalization-group e¤ects. Therefore there is no need to specify any en-
ergy scale at which the above texture is realized.

2.1.1 Flavor mixing angles and masses:

For a quark mass matrix of the type (2.2) the following relations hold [31]

Xu �
����� jDuj
�1 � Eu

jDdj
�
�d3 � Ad

�
jBdj

�
�d3 � Ed

� + �d3 � Ad
jBdj

ei'1 +
jBuj

�u1 � Au
ei('1+'2)

����� (2.4)

Yu �
����� jDuj
�2 � Eu

jDdj
�
�d3 � Ad

�
jBdj

�
�d3 � Ed

� + �d3 � Ad
jBdj

ei'1 +
jBuj

�u2 � Au
ei('1+'2)

�����
( �i , i = 1; 2; 3 represent the quark mass eigenvalues and '1;2 are related

to the phases of Bu;d; Du;d)
Similar relations for down type quarks can be obtained by changing the

subscripts in (2.4) u$ d .

tan �u =
Ou21
Ou22

Xu

Yu
(2.5)

tan �d =
Od21
Od22

Xd

Yd

sin � =
�
(Ou21)

2X2
u + (O

u
22)

2 Y 2
u

� 1
2 Od33 (2.6)

=
h�
Od21
�2
X2
d +

�
Od22
�2
Y 2
d

i 1
2
Ou33

( Oqij , ij = 21; 22 , q = u; d , are the elements of the matrices used to
diagonalize.(2.2)).
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We can de�ne jBq j
Cq
� rq having magnitude # (1) with Cq 6= 0 for each quark

sector. The parameters Aq; jBqj ; Cq and jDqj can be expressed in terms of
quark mass eigenvalues and rq. Using relations (2.4), (2.5) and (2.6), we can
�nd three mixing angles in terms of the quark masses given by

tan �u =

r
mu

mc

(1 +4u) (2.7)

tan �d =

r
md

ms

(1 +4d)

sin � =

����rdms

mb

(1� �d)� ru
mc

mt

(1� �u) e
i'2

���� (2.8)

The next-to-leading order corrections are:

4u =

r
mcmd

mums

ms

mb

�����Re
�
ei'1 � ru

rd

mcmb

mtms

ei('1+'2)
��1����� (2.9)

4d =

r
mums

mcmd

mc

mt

�����Re
�
ei'1 � rd

ru

mtms

mcmb

ei('1+'2)
��1�����

�u =
mu

mc

+
�
1 + r2u

� mc

mt

�d =
md

ms

+
�
1 + r2d

� ms

mb

To simplify the above relations lets take ru = rd = r as is proposed in
some models with natural symmetry [31]. Then sin � becomes proportional
to parameter r. Using the fact that ms

mb
s # (10) mc

mt
, the relations (2.9) can

be simpli�ed as

4u =

r
mcmd

mums

ms

mb

cos'1 (2.10)

4d = 0

We obtain for the mixing angles:

tan �u =

r
mu

mc

�
1 +

r
mcmd

mums

ms

mb

cos'1

�
tan �d =

r
md

ms
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In leading order the above relations give

tan �u =

r
mu

mc

(2.11)

tan �d =

r
md

ms

2.2 Predicting the Neutrino Mass

Our understanding of the neutrinos has changed in past few years. Now
we know that neutrinos produced in a well de�ned �avor eigenstate, after
traveling some macroscopic distance, appear as a di¤erent eigenstate. The
simplest answer to this phenomenon is that neutrinos, like all other fermions
are massive particles. Their mass eigenstates are di¤erent than their �avor
eigenstates. This scenario opens up many of the new possibilities which does
not exist for the massless neutrinos, such as, massive neutrinos can have
nonzero magnetic dipole moments, they can decay to lighter neutrinos and
can have a Majorana mass term [32].
At least three light physical neutrinos with left handed �avor eigenstates

are required to explain the current solar and atmospheric neutrino oscillation
data. These three neutrino �avor eigenstates are related to the three mass
eigenstates by a mixing matrix called lepton mixing matrix or PMNS matrix
V [33]. 0@�e��

��

1A =

0@Ve1 Ve2 Ve3
V�1 V�2 V�3
V�1 V�2 V�3

1A0@�1�2
�3

1A
Assuming that the neutrino masses are Majorana masses V can be para-

meterized by the three mixing angles and three complex phases. The stan-
dard parameterization of V is similar to the parameterization of quarks and
is given as

VPMNS =

0@ c12c13 s13c12 s13e
���13

�s12c23 � c12s23s13e
��13 c12c23 � c12s23s13e

��13 s23c13
s12s12 � c12c23s13e

��13 �c12s23 � s12c23s13e
��13 c23c13

1A
( cab = cos �ab and sab = sin �ab ) with solar angle = �12 , atmospheric

angle = �23 , reactor angle = �13.
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Figure 2.1: The relation between the neutrino �avor-mass eigenstates

The discussion in the previous section for quarks can be extended for the
leptons in a straight forward way [35]. If neutrinos are Majorana particles,
then the lepton mixing matrix is given by V = UP , where

UPMNS =

0@ cl sl 0
�sl cl 0
0 0 1

1A0@e�i' 0 0
0 c s
0 �s c

1A0@c� �s� 0
s� c� 0
0 0 1

1A (2.12)

UPMNS =

0@sls�c+ clc�e
�i' slc�c� cls�e

�i' sls
cls�c� slc�e

�i' clc�c+ sls�e
�i' cls

�s�s �c�s c

1A (2.13)

( cl = cos �l , c� = cos �� , s = sin � ). The Majorana phase matrix is
given as P = fei�; ei�; 1g.
These mixing angles have direct physical interpretations angle � describes

the mixing between the second and the third family, �l describes the mixing
between charged lepton sector (e�� mixing), and the angle �� describes the
solar neutrino mixing(�e � �� mixing). In the approximation that solar and
atmospheric neutrino oscillations nearly decouple, the solar angle �12, the
atmospheric angle �23 and the CHOOZ angle �13 can be expressed in terms
of angles �l,�� and �.

�12 t �� ,�23 t � ,�13 t �l sin � (2.14)

Neutrino oscillation data can be described in a very convenient way by
using this parameterization. In order to relate the neutrino masses with the
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neutrino mixing angles ( similar to the case of quarks), we speculate that the
neutrino has the normal mass hierarchy. By using the equation (2.11), we
can write

tan �l =

r
me

m�

, tan �� =

r
m1

m2

(2.15)

Using the relations (2.15) and the fact that neutrino oscillations are as-
sociated with the mass squared di¤erences 4m2

21 = m2
2 �m2

1 and 4m2
32 =

m2
3 �m2

2, we arrive at the following relations:

m2
1 =

sin4 ��
cos 2��

4m2
21 (2.16)

m2
2 =

cos4 ��
cos 2��

4m2
21 (2.17)

m2
3 =

cos4 ��
cos 2��

4m2
21 +4m2

32 (2.18)

=
cos4 ��
cos 2��

4m2
21 +

�
4m2

31 �4m2
21

�
2.3 Tribimaximal mixing

It was conjectured independently by Cabibo [37] and Wolfenstein [39] , that
the mixing matrix linking charged leptons to the neutrino could be given by

UCWl� =

0@1 1 1
1 ! !2

1 !2 !

1A
( ! = exp

�
2�i
3

�
= �1

2
+ i

p
3
2
).

In the conventional notation this can be written as

�12 = �23 = 45
� , �13 = 35:3

� , �CP = 90
�

After the discovery of the neutrino oscillations Harrison, Perkins and
Scott proposed in 2002 the tribimaximal mixing matrix (or HPS) mixing
matrix [40], which describes the current neutrino oscillation data very well
and is given by
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UTBM = UHPSl� =

0B@
q

2
3

1p
3

0

� 1p
6

1p
3
� 1p

2

� 1p
6

1p
3

1p
2

1CA (2.19)

2.3.1 Numerical analysis of the Tribimaximal mixing:

The tribimaximal mixing leads to tan �12 =
1p
2
) �12 t 35:26�. For the

atmospheric neutrino oscillations we have tan �23 = 1 ) �23 = 45
�. For the

CHOOZ angle we take �13 = 0�.
From the matrices (2.13) and (2.19) we can calculate the numerical values

of the angles �l, �� and �

cos � =
1p
2
=) �23 t � = 45�

� sin �� sin � =
1p
6
=) �12 t �� = 35:26

�

cos �l sin � = �
1p
2
=) �l = � , 0 = �13 t �l sin � = 2:22

�

Using the best �t values of the mass splitting parameters 4m2
21 t 7:65�

10�5 eV2 , 4m2
31 t 2:40 � 10�3eV2 [36] and the mixing angle �� t 35�, we

can predict the masses of the neutrinos using relations (2.16)(2.17)(2.18)

m1 =

s
sin4 ��
cos 2��

4m2
21

=

s
sin4 35�

cos 2(35�)
� 7:65� 10�5

t 0:005 eV

m2 =

s
cos4 ��
cos 2��

4m2
21

=

s
cos4 35�

cos 2(35�)
� 7:65� 10�5

t 0:01 eV
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m3 =

s
cos4 ��
cos 2��

4m2
21 + (4m2

31 �4m2
21)

=

s
cos4 35�

cos 2(35�)
� 7:65� 10�5 + 2:32� 10�3

t 0:05 eV

The analysis shows that the neutrinos have normal but weak hierarchy
i.e. m1 : m2 : m3 = 1 : 2 : 10. Neutrino masses obtained using tribimaximal
mixing agree with those obtained by Fritzsch and Xing [35].

2.4 Near tribimaximal mixing

Although the tribimaximal mixing describes the neutrino oscillation data
very well, it is not unique. A neutrino mixing matrix describing near tribi-
maximal mixing can be written as [41]

UNTBM =

0BBBBBB@

2p
2 (2 + x2)

xp
2 + x2

0

� xp
2 (2 + x2)

1p
2 + x2

1p
2

xp
2 (2 + x2)

� 1p
2 + x2

1p
2

1CCCCCCA (2.20)

The relation x =
p
2 tan �12 can be used to determine the allowed range

of the parameter x. For 30� < �12 < 38� we obtain the values 0:82 . x
. 1:10 . The simplest choice of x = 1, leading to tribimaximal mixing, is the
most favored possibility, where as the value of x =

p
2 resulting in bimaximal

neutrino mixing, is ruled out. One can determine few viable forms of VPMNS

, by varying x in the suitable range speci�ed above.

2.4.1 Numerical analysis under near tribimaximal mix-
ing:

We can determine the �� in terms of the parameter x :

cos 2�� =
2� x2

2 + x2
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cos4 �� =
4

x4 + 4x2 + 4

sin4 �� =
x4

x4 + 4x2 + 4

With the help of the above relations and (2.16-2.18), one can obtain the
following mass relations

m1 =

s
x4

4� x4
��m2

21

=

s
x4

4� x4
� (7:65� 10�5) eV

m2 =

r
4

4� x4
��m2

21

=

r
4

4� x4
� (7:65� 10�5) eV

m3 =

r
4

4� x4
��m2

21 +�m
2
32

=

r
4

4� x4
� 7:65� 10�5 + (2:32� 10�3) eV

Graphs between m1;m2;m3 and x are drawn given by �gures 2.2 to 2.5.
These graphs show that the neutrinos have a normal hierarchy. As the pa-
rameter x increases from its TMB value ( x = 1), the neutrino masses also
increase and vice versa. The mass m3 is relatively stable against changes in
the parameter x as compared to m1and m2.
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Figure 2.2: A graph between m1 and parameter x

Figure 2.3: A graph between m2 and parameter x
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Figure 2.4: A graph between m3 and parameter x

Figure 2.5: A graph between m1, m2 , m3 and parameter x



Chapter 3

Fermion Masses in Grand
Uni�ed Theories

3.1 SO(10) Grand Uni�ed Theory

The SO(10) Grand Uni�ed Theory [42] is a candidate for a uni�ed theory of
the strong and electro-weak interactions. One of the strongest motivations
for the SO(10) gauge symmetry comes from the observation that all the
standard model multiplets of one generation �t in a single 16-dimensional
chiral spinor of SO(10) � SU(3)c � SU(2)L �U(1)Y

16F =

QLz }| {
(3; 2;+

1

3
)�

LLz }| {
(1; 2;�1)�

ucLz }| {
(3; 1;�4

3
)�

dcLz }| {
(3; 1;+

2

3
)�

�cLz }| {
(1; 1; 0)�

ecLz }| {
(1; 1;+2)

(3.1)
( in terms of SU(5) Grand uni�ed theory 16 = 5� 10� 1). Hence SO(10)
is the minimal theory of matter uni�cation. It has bene�ts

� It has a left right symmetry as a �nite gauge transformation in the
form of generalized charge conjugation and the Pati- Salam SU(4)C
symmetry which uni�es quarks and leptons.

� The right handed neutrino is automatically present which is required for
the Dirac mass term for the neutrinos and for the Majorana mass term
through the See-saw mechanism [43]. The Yukawa couplings, sponta-
neous symmetry breaking pattern and the gauge coupling uni�cation
determines the scale and structure of the Majorana mass.

� Tight connections among the Yukawa couplings exist because the gauge
symmetry does not distinguish among the components of (3.1). This

29
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reduces the number of independent parameters and the SO(10) textures
of the e¤ective quark and lepton mass and mixing matrices.

� The supersymmetric version has R-parity (matter parity) as a gauge
symmetry [44], a part of the center Z4 of SO(10). In some case (tree
level see-saw) it can be shown [45] that R-parity remains exact at all en-
ergies, surviving the symmetry breaking. The lightest supersymmetric
particle (LSP) is then stable. This is a perfect dark matter candidate.

3.1.1 Motivation for Non-SUSY SO(10)

In the previous years most of the attention was focused on the supersym-
metric version of SO(10), due to the success of supersymmetric uni�cation,
and the use of supersymmetry in controlling the gauge hierarchy. However,
supersymmetry may not be there [46]. It controls the Higgs gauge hierarchy,
but not the cosmological constant. The long standing failure of understand-
ing the smallness of the cosmological constant suggests that the unwelcome
�ne tuning may be necessary. Our �ne-tuned world can be viewed, in the
landscape picture simply as a selection criterion among the large number of
degenerate string vacua. Or it could be that the cosmological evolution of
the universe selects a light Higgs doublet [53]. If so, the main motivation
behind the low-energy supersymmetry would be gone. However it is possible
that the issue might be settled by the internal consistency and the predic-
tions of a well de�ned grand uni�ed theory, such as non-SUSY SO(10). It is
possible that simplicity and minimality at the GUT scale requires a speci�c
low-energy theory [46].
The neutrino oscillation data strongly favors the SO(10) theory. The

SO(10) does not require supersymmetry for a successful uni�cation of gauge
couplings. An additional Peccei-Quinn U(1)PQ symmetry [54] may also be
introduced in order to have a dark matter candidate. This is more than suf-
�cient motivation to carefully study ordinary non-supersymmetric SO(10).

3.1.2 Symmetry Breaking in SO(10)

Uni�cation of the gauge couplings in non-SUSY SO(10) can be achieved by
taking the left-right symmetry as the intermediate scale. This intermediate
mass scale must be consistent with the See-Saw mechanism for the neutrino
mass. TheB�L breaking scale which is responsible for right-handed neutrino
masses cannot be too low. Because the Higgs scalar and the right-handed
neutrinos, responsible for B � L breaking are Standard Model singlets, they
have no impact on the one loop running of renormalization group equations.
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The B � L breaking scale cannot be predicted. Because the couplings do
not unify in the Standard Model, B�L breaking scale must be below SU(5)
breaking. If we take MR as the SU(2)R breaking scale, then we can write
MB�L �MR. HenceMR must be large enough. One can discriminate among
many SO(10) scenarios and the corresponding breaking patterns using the
constraints imposed by the absolute neutrino mass scale on the position of
the B � L threshold and the proton decay bound on the uni�cation scale
MU .

3.1.3 Symmetry breaking chains with two intermedi-
ate scales

With 126H one can construct a potentially realistic SO(10) Yukawa sector.
Together with 10H , contractions of the the matter bilinears 16F16F with
126H or with 16H16H

�
leads to the Dirac Yukawa couplings and the Majorana

mass matrices at the Standard Model level , � being a scale at which the
e¤ective dimension �ve coupling emerge.
To govern the e¤ective Yukawa couplings up to lower energies, it is su¢ -

cient to have only two complex symmetric matrices Y10 and Y126 at renor-
malizable SO(10) level, if 10H , transforming under SO(10), has additional
quantum numbers of a complex representation of some additional symmetry
( U(1)PQ etc.)[47].

16F (10HY10 + 126HY126)16F

Such models are well constrained and well motivated. D-parity, a discrete
symmetry, belongs to the SO(10) gauge group. Invariance under SO(10) im-
plies exact D-parity. D-parity acts as charge conjugation in left-right sym-
metric theories [48]. It enforces equal left and right gauge couplings. D-odd
Pati-Salam (PS) singlets present in 210 may spontaneously break the D-
parity, or alternatively it may be broken by a 45 Higgs representation. A
left-right symmetric universe cannot lead to a baryonic asymmetry of the
universe[49]. The spontaneous breaking of a discrete symmetry, such as D-
parity, creates domain walls. These domain walls do not disappear, if they
are massive enough for intermediate mass scales and result in over-closing
the universe [50]. These problems may be avoided by con�ning D-parity at
the GUT scale or by invoking in�ation. In�ation causes the domain walls
to form above the reheating temperature and enforces a lower bound on the
D-parity breaking scale of 1012GeV.

The symmetry breaking chain with two intermediate scales SO(10) !
G2! G1! SM , is Given in the table 3.1.
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Table 3.1: SO(10) symmetry breaking chains via two intermediate gauge
groups G1 and G2
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3.2 Yukawa Sector of SO(10)

The fermion families are 16-dimensional spinors of SO(10).

16F � 16F = 10H + 120H + 126H (3.2)

One has three possible Yukawa coupling matrices [51], to �t all the fermion
masses and mixings. If one wants a predictive theory, one should stick to
the minimal one. Ideally one could use a single Higgs multiplet. A single
set of Yukawas can be diagonalized. Then all the fermion mass matrices
would be simultaneously diagonal. In this case we will get bad mass rela-
tions, and there will be no quark mixing and no lepton mixing in the weak
currents. Therefore the minimal theory must have at least two such Higgs
multiplets, hence two Yukawa matrices. As the Standard Model has at least
four Yukawa matrices, it should be no surprise, that such a minimal the-
ory is over-constrained and predictive. We have the following possibilities

(a) 126H + 10H
(b) 120H + 10H
(c) 126H + 120H
(d) 10H + 10H
(e) 120H + 120H
(f) 26H + 126H

Using the Pati-Salam SU(2)L � SU(2)R � SU(4)C decomposition

10H = (2; 2; 1) + (1; 1; 6) (3.3)

126H = (1; 3; 10) + (3; 1; 10) + (2; 2; 15) + (1; 1; 6)

120H = (1; 3; 6) + (3; 1; 6) + (2; 2; 15) + (2; 2; 1) + (1; 1; 10) + (1; 1; 10)

and the following properties of the Yukawa matrices

Y10 = Y T
10 , Y126 = Y T

126 , Y120 = �Y T
120 (3.4)

we can write the Mu, Md, Ml, MD, M�R, M�L, denoting up quark,
down quark, charged leptons, neutrino Dirac, right-handed neutrino and left-
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handed neutrino mass matrices respectively.

Mu = h2; 2; 1iu10 Y10 + h2; 2; 15i
u
126 Y126 + (h2; 2; 1i

u
120 + h2; 2; 15i

u
120)Y120

(3.5)

Md = h2; 2; 1id10 Y10 + h2; 2; 15i
d
126 Y126 + (h2; 2; 1i

d
120 + h2; 2; 15i

d
120)Y120

Ml = h2; 2; 1id10 Y10 � 3 h2; 2; 15i
d
126 Y126 + (h2; 2; 1i

d
120 � 3 h2; 2; 15i

d
120)Y120

MD = h2; 2; 1iu10 Y10 � 3 h2; 2; 15i
u
126 Y126 + (h2; 2; 1i

u
120 � 3 h2; 2; 15i

u
120)Y120

M�R = h1; 3; 10iY126
M II
�L =



3; 1; 10

�
Y126

Some obvious features of these relations (3.5) are

� 10 treats quarks and leptons on the same footing, because (2; 2; 1) is a
SU(4)C singlet.

� Type I and II see-saw, right handed neutrino and Georgi-Jarlskog factor
[52] ml = �3md is given by 126, since (2; 2; 15) is an adjoint of SU(4)C .
This works well for the second generation case.

� In the absence of 126, neutrinos would only have a Dirac mass, and their
masses are related to the charged fermion masses. This is cured through
the introduction of 16H needed to break B�L, since 16H�16H = 126H
can simulate the direct presence of 126.

It is noted that (d) and (f) gives md = me and 3md = �ml for the three
generations. These relations are obviously incorrect. Furthermore antisym-
metry of Y120 in (e) implies m1 = 0 and m2 = �m3 , which are also wrong.
Therefore we are only left with options (a),(b)and (c). We will discuss (a)
and (c) only, namely 126H + 10H and 126H + 120H . A low energy super-
symmetric and consistent 126H + 10H already exists [55],[56],[57]. Here we
will discuss a non-Supersymmetric version. In case of 126H + 120H , only
the analytic study will be done ignoring the e¤ects of �rst generation. It
will be shown in type I and type II See-Saw that the neutrino masses and
the atmospheric mixing angle are related and the large atmospheric mixing
angle �ts naturally with the small VCB mixing. Both (a) and (c) cases require
complex Higgs �elds.
The Yukawa sector of a non-supersymmetric theory does di¤er from the

supersymmetric version in many ways. Some of them are [46]

� The running of the gauge and Yukawa couplings are changed, so are
the inputs for a numerical evaluation at MGUT
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� Intermediate scales are necessary

� All SO(10) representations are not complex (like 16 Higgs or 126 Higgs
are real), if new symmetries are not introduced.

� Radiative corrections to the Yukawa sector should be taken into ac-
count.

If we stick to the renormalizable version of the see-saw mechanism, this
makes the representation 126H indispensable, since it breaks the SU(2)R
group and gives a see-saw neutrino mass terms for the right handed and left
handed neutrinos

M�R = h1; 3; 10iY126 , M II
�L =



3; 1; 10

�
Y126 (3.6)

Thus one has both type I and type II seesaw

MN = �M�DM
�1
�RM�D +M�L (3.7)

Right-handed neutrino acquire its mass through large vacuum expectation
value (vev) of (1; 3; 10) using type I see-saw whereas in the type II case. The
left-handed triplet provides directly light neutrino masses through a small
vev [58],[59]. It is very di¢ cult to disentangle the two contributions.

3.2.1 Case 1: 126H + 10H
Schematically the Yukawa interaction in this case can be written as

LY = 16F (10HY10 + 126HY126)16F + h:c: (3.8)

where Y10and Y126 are symmetric matrices in the generation space. One
obtains relations for the Dirac fermion masses

MD =M1 +M0 (3.9)

ME = �3M1 +M0

MU = c1M1 + c0M0

M�D = �3c1M1 + c0M0

with the de�nitions

M1 = h2; 2; 15id126 Y126 (3.10)

M0 = h2; 2; 1id10 Y10
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and

c0 =
h2; 2; 1iu10
h2; 2; 1id10

(3.11)

c1 =
h2; 2; 15iu126
h2; 2; 15id126

Equations (3.6),(3.7) and (3.9) can be used to analyze [60] the fermionic
spectrum. With the minimal �ne-tuning the light Higgs is, in general, a
mixture of, among others, (2; 2; 1)of 10H and (2; 2; 15) of 126H . This happens
at least due to the large (1; 3; 10) vev in the term (126H)

2126
y
H10H .

The mixing of (2; 2; 1)of 10H and (2; 2; 15) of 126H require the breaking
of SU(4)C symmetry at a scale MPS , and it is controlled by the ratio MPS

M
,

where M corresponds to the mass of the heavy doublets. If M ' MGUT and
MPS � MGUT , this would not work. Therefore one needs to tune-down M .
Tuning down of the (2; 2; 1)mass cannot have much impact on the uni�cation
constraints, but (2; 2; 15) is a large �eld and could in principle cause trouble.
Its contribution is tiny in this case. However should be taken into account
while studying the uni�cation constraints [46].
If real 10H is used, then there is just one SU(2)L doublet in (2; 2; 1) and

thus jh2; 2; 1iu10j =
���h2; 2; 1id10��� leading to jc0j = 1. The parameter space

is thus smaller. Therefore using real parameters in two generations (second
and third) case, the result is inconsistent with the data. A physically sensible
approximation �q = VCB = 0 leads to jc0j � 1

jc0j =
mc(m� �mb)�mt(m� �ms)

msm� �m�mb

� mt

mb

(3.12)

This conclusion is subject to the uncertainties of the full three-generation
case. Although this simple model cannot be ruled out yet, there is an indi-
cation that a more complicated scenario should be considered. Introduction
of a complex 10H instead of a real 10H introduces new Yukawa couplings
in the theory, making it less predictive. However some predictions remain
valid, such as the connection between b�� uni�cation and large atmospheric
mixing angle in the type II seesaw. Because 10H cannot distinguish down
quarks from charged leptons, this connection is independently of the num-
ber of 10 dimensional Higgs representations. From M�L / Y126, one has
M�L / MD �ME. The relation among mb � m� and �ATM can be easily
established [61], [62] . In the non-supersymmetric theory, b � � uni�cation
fails badly, m� � 2mb [63]. The realistic theory will require a Type I seesaw,
or an admixture of both possibilities.
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3.2.2 Case 2: 126H + 120H
If we use 120H instead of 10H , we have only 3 new Yukawa couplings because
Y126 is anti symmetric. For the charged lepton case, 120H in addition to 10H
has already been studied by some authors [64] and it was readdressed in [65]
in the case of radiative seesaw mechanism [66]. The analytic study for the
second and third generation gives b � � uni�cation, and small quark and
large leptonic mixing angle. Because of the fact that 120H and 10H have
symmetric Yukawas, the analysis is quite similar. In case of 120H , the Dirac
mass matrices at the grand uni�cation scale take the following form

MD =M1 +M2 (3.13)

MU = c1M1 + c2M2

ME = �3M1 + c3M2

M�D = �3c1M1 + c4M2

where M1 and c1 are given by (3.10) and (3.11) and M2, c2 , c3 ,c4 are
given as

M2 = (h2; 2; 1id120 + h2; 2; 15i
d
120)Y120 (3.14)

c2 =
h2; 2; 1iu120 + h2; 2; 15i

u
120

h2; 2; 1id120 + h2; 2; 15i
d
120

c3 =
h2; 2; 1id120 � 3 h2; 2; 15i

d
120

h2; 2; 1id120 + h2; 2; 15i
d
120

c4 =
h2; 2; 1iu120 � 3 h2; 2; 15i

u
120

h2; 2; 1id120 + h2; 2; 15i
d
120

For the case of a real 120H , we have similar problems as we have with
real 10H . For real bidoublets the de�nitions (3.14) constrain all three ci to
the same order of magnitude. But this contradicts the requirements for small
second generation masses of charged leptons (c3 � 3) and of up quarks (c2 �
mt

mb
). As in previous case the remedy is to complexify the Higgs �elds. This

can be achieved by introducing a U(1)PQ global symmetry, which provides
as a byproduct a dark matter candidate. The type I seesaw contribution due
to right-handed neutrinos gives the light neutrino mass matrix

M I
N = �M�DM

�1
�RM�D / 9c21M1 � c24M2M

�1
1 M2 (3.15)

The type II see-saw contributions is
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M II
N /M1 (3.16)

In case of only two generation ( second and third) analysis, it is certainly
useful to get a physical insight through analytical arguments. We assume
that the e¤ects of the �rst generation can be treated as a perturbation.
In the basis where M1 is diagonal, real and nonnegative we have

M1 /
�
sin2 � 0
0 cos2 �

�
(3.17)

The most general charged fermion matrix can be written as

Mf = �f

�
sin2 � i(sin � cos � + �f )

�i(sin � cos � + �f ) cos2 �

�
(3.18)

where f = D,U ,E represent the charged fermions and the �f vanishes for

the negligible second generation masses i.e. �f / mf
2

mf
3

. Furthermore the real

parameter �f sets the third generation mass scale. One can determine the
matrices Lf and Rf used to diagonalize the mass matrixMf in the physically
relevant approximation of small j�f j. It follows:

M = Rf .Diag f��f�f sin 2�,�f (1 + �f sin 2�)g .Lf + #(
���2f ��) (3.19)

where

Lf =

�
1 �i cos 2��f

�i cos 2��f 1

��
cos � �i sin �
�i sin � cos �

�
(3.20)

Rf =

�
1 i cos 2��f

i cos 2��f 1

��
cos � i sin �
i sin � cos �

�
Up to the leading order in j�f j , using equation (3.19) we have

�f = mf
3 (3.21)

sin 2� j�f j =
mf
2

mf
3

(3.22)

The three predictions of this theory concern (1) the neutrino mass, (2)
the relation between bottom and tau masses, and (3) the quark mixing angle
[46]
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1. Using equations (3.15) , (3.16) and an explicit form of the 2� 2matrices
one concludes that the type I and type II seesaw leads to the same
structure

M I
N /M II

N /M1 (3.23)

In this basis the neutrino mass matrix is diagonal. The angle � has
to be identi�ed with the leptonic (atmospheric) mixing angle �A up to
terms of the order of j�f j � m�

m�
. For the neutrino masses we obtain

from (3.17)
m2
3 �m2

2

m2
3 +m2

2

=
cos 2�A

1� sin2 �A
2

+ #(j�f j) (3.24)

In this equation the maximality of the atmospheric mixing angle mea-
sure the degeneracy of neutrino masses. Without including the e¤ects
of �rst generation and the running from the GUT to the weak scale
one cannot make the precise determination. However some predictions
can be made in a situation where this formula is approximately valid.
Taking the value 4mA = jm2

3 �m2
2 j � 2:5 � 10�3 eV2 and the 99%

CL limit �A = 45��9� from [67], one would get m2 > 30 meV. Hence
the value of m2 could not be too small. Neutrinoless double beta de-
cay gives an upper bound on neutrino mass, which varies from 0:14 eV
to 0:5 eV, [67] . The larger the upper limit, the closer one can be to
�A = 45

�.

2. Contrary to the extrapolations in the Standard Model, suggesting
m�

mb
� 2, in this model at the GUT scale the ratio of tau and bottom

mass is given as

m�

mb

= 3 + 3 sin 2�ARe[�E � �D]+ #
�
�2
�

(3.25)

This discrepancy can be removed by several factors, particularly by
choosing suitable phases.

3. Another useful relation exists between the jVCBj and the atmospheric
mixing angle given by

jVCBj = jRe� � i cos 2�AIm�j+ #
�
�2
�

(3.26)

where � = cos 2�A (�E � �D). This equation suggest the successful
coexistence of the small and large mixing angles if atmospheric mixing
angle �A is as far away as possible from its maximal value 45�.
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Chapter 4

GUTs Mass Models

In recent years many attempts have been made to understand the current
mass and mixing data in the lepton sector [68] [69]. Particularly in GUT
models both the lepton and quark sectors can be analyzed.

4.1 SO(10) Mass Models

The fact that all the three families of matter �elds can �t into three copies
of the spinor representation of SO(10), 16i i = 1; 2; 3, makes SO(10) very
attractive for uni�ed model building. In order to break SO(10) to the Stan-
dard Model, the Higgs �elds 45H , 16H , 16H can be used. To break the
electroweak symmetry, two light Higgs doublets are needed. For this purpose
a single 10H of SO(10) consisting 5 + 5 of SU(5) or (6; 1; 1) + (1; 2; 2) of
SU(4)�SU(2)R�SU(2)L can be used. The required doublet-triplet splitting
of the Higgs �elds can be obtained through the Dimopoulos-Wilczek mech-
anism [70] if the h45Hi VEV points in the B-L direction. The electroweak
breaking, tan � =

�u
�d
� 55, is solely a¤ected by 10H .

The SO(10) theory relates quarks and the leptons of the same family.
However in order to avoid the bad SU(5) relations among masses md = me

andms = m� , one must invoke some horizontal symmetry. This can be done
at four di¤erent levels of model building given as [68]

� Level 1: A particular texture for the mass matrices can be imposed,
such as modi�ed Fritzsch texture.

� Level 2: One can introduce an e¤ective � � 0:22 expansion for each
mass matrix. However usually it is not possible in this case to determine
the prefactors of the expansion parameters.

41
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� Level 3: For each element of the mass matrix an e¤ective operator can
be assigned, possibly imposing some �avor symmetry.

� Level 4: A horizontal �avor symmetry can be introduced which as-
signs �avor charges to every Higgs and matter �eld. Renormalizable
Yukawa and Higgs potentials obeying �avor symmetry are constructed.
Matrix elements are obtained from the corresponding Froggatt-Nielsen
diagrams.

In the literature the SO(10) models di¤er by their choice of Higgs struc-
ture, �avor charge assignments and horizontal �avor symmetry. If h45Hi
Higgs VEV points in the B-L direction or if a



5 (126H)

�
Higgs VEV is

present, then one can easily obtain the Georgi-Jarlskog relations [71] ms

=
m�

3
, md = 3me. Flavor symmetry along with



5 (16H)

�
Higgs VEV leads

to a lopsided [72] charged lepton and down quark mass matrices L and D.
Such lopsided mass matrices lead to the small VCB and large U�3 mixing el-
ements [73] and enhanced the �avor violating decay rate which is within one
or two orders of magnitude of the present experimental limit. Therefore this
mechanism can be proven or ruled out by the future improved experiments.
Generally some �ne tuning is necessary to get the large mixing angle (LMA)
solution in SO(10) models. Those models have trouble getting LMA solution
which in order to get maximal atmospheric mixing, require special features
of the Dirac and right-handed Majorana mass matrices N and MR . This
can be easily achieved if the N and L are used to get maximal atmospheric
mixing where as MR is independently adjusted to yield the LMA solution.

4.2 SO(10) GUT with Zero Texture

Texture zero and some �avor symmetry is often employed to obtain the
quark and lepton mass matrices. In this scheme usually quarks and leptons
are treated on equal footing in accordance with observations. However there
is no theoretical basis, why and how quarks and leptons are uni�ed. A grand
uni�ed theory such as SO(10) provide relations between quark and lepton
mass matrices. However it is silent about the form of the matrices them-
selves. This suggests one to discuss the four zero texture under renormaliz-
able SO(10) GUT model. In the framework of the renormalizable SO(10)
GUT model, four zero texture model was analyzed by Fukuyama, Matsuda
and Nishiura (FMN) [74],[75]. In this scheme only the renormalizable Higgs-
fermion couplings are used. The fundamental representation of matter mul-
tiplets are 16i , i = 1, 2 , 3. Since 16�16 = 10+120+126 , the most general
form of Yukawa coupling is
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Y10;ij16i16j10H + Y120;ij16i16j120H + Y126;ij16i16j126H

4.2.1 Embedding zero texture mass matrices in SO(10)

The mass term in the Lagrangian of FMN Model [75] is

LM = �quR;iMuijq
u
L;j � qdR;iMdijq

d
L;j � lR;iMeijlL;j � � 0R;iMDij�L;j (4.1)

� 1
2
(�L;i)

cMLij�L;j �
1

2

�
� 0R;i
�c
MRij�

0
R;j + h:c:

and

quL;R =

0@ u
c
t

1A
L;R

, qdL;R =

0@ d
s
b

1A
L;R

, lL;R =

0@ e
�
�

1A
L;R

�L =

0@ �e
��
��

1A
L

, � 0R =

0@ � 0e
� 0�
� 0�

1A
R

The mass matrices for the up quark, down quark, charged leptons,
Dirac neutrinos, left handed Majorana neutrinos, and right handed Majorana
neutrinos are given asMu,Md,Me,MD,ML andMR. Block- diagonalization
of the neutrino mass matrix gives�

ML MT
D

MD MR

�
One gets using the See-saw mechanism, the mass matrix for the light

Majorana neutrinos M�

M� =ML �MT
DM

�1
R MD (4.2)

We consider a general renormalizable SO(10) model, involving 10, 120 ,
126 Higgs �elds and hence three type of Yukawa coupling and mass matrices.
These Higgs �elds can be decomposed under the Pati -Salammodel as follows:

10 = (6; 1; 1) (1; 2; 2) (4.3)

120 = (15; 2; 2) (6; 3; 1) (6; 1; 3) (1; 2; 2) (10; 1; 1)
�
10; 1; 1

�
126 = (10; 1; 3)

�
10; 3; 1

�
(15; 2; 2) (6; 1; 1)

There are two SU(2) doublets in each of 10 and 126 with Clebsch�Gordan
coe¢ cients 1 and �3. The 120 has four such doublets with no Clebsch�
Gordan coe¢ cients coe¢ cients. Under SU(5) decomposition we �nd
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16� 16� 10 � 5H (uuc + ��c) + 5H (dd
c + eec) (4.4)

16� 16� 120 � 5H��c + 45Huuc + 5H (ddc + eec) + 45H (dd
c � 3eec)

16� 16� 126 � 1H�c�c + 15H�� + 5H (uuc � 3��c) + 45H (ddc � 3eec)

The right-handed and left-handed Majorana masses are given by 1H�c�c

and 15H�� terms in the 126. The six SO(10) mass matrices Mu, Md, Me,
MD, ML and MR, have the following form

Mu = S + �0A+ �S 0 � Su + Au (4.5)

Md = �S + �A+ S 0 � Sd + Ad

MD = S + �00A� 3�S 0 � SD + AD

Me = �S + A� 3S 0 � Se + Ae

ML = �S 0 � SL

MR = 
S 0 � SR

Here S, S 0 are the common structures for mass matrices coming from 10
and 126 respectively, and A shows the common structures for mass matri-
ces coming from 120. The relative coe¢ cients of the vacuum expectation
values (VEVs) are expressed as �,�,�0,�,�,
. The symmetric part of Mf ,
(f = u,d,D,e,L,R) is represented by Sf , the antisymmetric part by Af . The
Mu,Md,Me andM� are hermitian. Also it is assumed thatMD,ML andMR

have the same zero texture as M� [76]. In this model the (2; 2) components
of the texture are non-zero. Quark and lepton mass matrices are treated on
same footing.
In the four zero texture (FZT) model the mass matrices are given as

follows:

Mu = PucMuP
y
u

= Pu

0@ 0 au 0
au bu cu
0 cu du

1AP yu =

0@ 0 aue
i�u 0

aue
�i�u bu cue

i�u

0 cue
�i�u du

1A (4.6)

Md = PucMdP
y
u

= Pd

0@ 0 ad 0
ad bd cd
0 cd dd

1AP yd =

0@ 0 ade
i�d 0

ade
�i�d bd cde

i�d

0 cde
�i�d dd

1A (4.7)
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MD = PDcMDP
y
D

= PD

0@ 0 aD 0
aD bD cD
0 cD dD

1AP yD =

0@ 0 aDe
i�D 0

aDe
�i�D bD cDe

i�D

0 cDe
�i�D dD

1A (4.8)

Me = PecMeP
y
e

= Pe

0@ 0 ae 0
ae be ce
0 ce de

1AP ye =

0@ 0 aee
i�e 0

aee
�i�e be cee

i�e

0 cee
�i�e de

1A (4.9)

M� = P�cM�P
y
�

= P�

0@ 0 a� 0
a� b� c�
0 c� d�

1AP y� =

0@ 0 a�e
i�� 0

a�e
�i�� b� c�e

i��

0 c�e
�i�� d�

1A (4.10)

ML =

0@ 0 aL 0
aL bL cL
0 cL dL

1A , MR =

0@ 0 aR 0
aR bR cR
0 cR dR

1A (4.11)

where Pf �diag
�
ei
f1; ei
f1; ei
f1

�
and �f � 
f1�
f2 , �f � 
f2�
f3,

f = u; d;D; e; L;R; �. These matrices can be collectively described as

Mf =

0@ 0 afe
i�f 0

afe
�i�f bf cfe

i�f

0 cfe
�i�f df

1A (4.12)

Denoting the mass eigenvalues of Mf as mfi , (i = 1; 2; 3), one can
express af ; bf ; cf in terms of mfi and df

af =

�
�mf1mf2mf3

df

� 1
2

bf = mf1 +mf2 +mf3� df

cf =

�
�(df �mf1) (df �mf2) (df �mf3)

df

� 1
2



46 CHAPTER 4. GUTS MASS MODELS

Parameters
From 10H part of mass matrices 4
From 126H part of mass matrices 4
From 120H part of mass matrices 2
Coe¢ cients of VEVs �; �; �0; � 4
Total 14

Table 4.1: Parameters in SO(10) FZT model

Experimental Constraints
Quark masses 6
CKM mixing angles 3
The Dirac phase 1
Lepton masses 3
Total 13

Table 4.2: Experimental Constraints

here 0 < mf1 < �mf2 < mf3 for j mf1j < df < jmf2j
0 < �mf1 < mf2 < mf3 for jmf2j < df < jmf3j

There are 14 parameters in this model [74] Given by the table 4.1

From the experiments we obtain 13 constraints: (table 4.2). After data
�tting of the quarks and the charged leptons, only one parameter is left to
be determined. Using this free parameter and �00, �, 
 we can determine the
neutrino masses and mixing angles.

The four zero textures matrices can be diagonalized:

U yfMfUf = Diag (mf1;mf2;mf3)

Uf = P yfOf , Uf = Diag (1; �f ; �f + �f ) � (1; �f2; �f3)

The orthogonal matrix Of is
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Of =

0BBBBBBB@

�
(df�mf1)mf2mf3

Rf1df

� 1
2

�
(df�mf2)mf1mf3

Rf2df

� 1
2

�
(df�mf3)mf2mf1

Rf3df

� 1
2

�
�
�(df�mf1)mf1

Rf1

� 1
2

�
�(df�mf2)mf2

Rf2

� 1
2

�
�(df�mf3)mf3

Rf3

� 1
2

�
mf1(df�mf2)(df�mf3)

Rf1df

� 1
2

�
�
mf2(df�mf3)(df�mf1)

Rf2df

� 1
2
�
mf3(df�mf1)(df�mf2)

Rf3df

� 1
2

1CCCCCCCA
(4.13)

where

Rf1 � (mf1 �mf2) (mf1 �mf3)

Rf2 � (mf2 �mf3) (mf2 �mf1)

Rf3 � (mf3 �mf1) (mf3 �mf2)

For f = u,d and e, we have (mf1;mf2;mf3)! (mu;mc;mt) ; (md;ms;mb) ; (me;m�;m� ),
The CKM quark mixing matrix is UCKM � U yuUd and can be written as [74]

(UCKM)12 �

s
jmdj
ms

� ei�2

s
jmuj
mc

xuxd � ei�3

s
jmuj
mc

(1� xu) (1� xd)

(4.14)

(UCKM)23 �

s
jmdjms

m2
b

� ei�2

s
jmuj
mc

xu (1� xd) + ei�3

s
jmuj
mc

(1� xu)xd

(UCKM)13 �

s
jmuj jmdjms (1� xd)

mcm2
bxd

+ ei�2
p
xu (1� xd)� ei�3

p
(1� xu)xd

The Dirac phase is given by

�q � arg

�
ei�3
p
(1� xu) (1� xd) + ei�2

p
xuxd

��
�
ei�3
p
(1� xu)xd � ei�2

p
xu (1� xd)

��
ei�2
p
(1� xu)xd � ei�3

p
xu (1� xd)

��
(4.15)

In the limit j(UCKM)13j � 1 we de�ne

xf �
df
mf3

�2 � �u2��d2 = �u � �d � 4�
�3 � �u3��d3 = �u � �d + (�u � �d) � 4� +4�
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The CKM mixing matrix is sensitive to mb and is not sensitive to the
value of mt: When the four zero texture model is embedded in the SO(10)
GUT, we have more constraints among the parameters. In the case of quarks
and charged leptons, Sf and Af obey the following relations

4�Su = (3 + ��)Sd + (1� ��)Se

�Au = �0Ad = ��0Ae

Expressing these relations in a component form results in the following
constraints among the parameters:

4�au cos (4� + �d) = (3 + ��) ad cos �d + (1� ��) ae cos �e (4.16)

4�cu cos (4� + �d) = (3 + ��) cd cos�d + (1� ��) ce cos�e

4�bu = (3 + ��) bd + (1� ��) be

4�du = (3 + ��) dd + (1� ��) de

�au sin (4� + �d) = �0ad sin �d = ��0ae sin �e

�cu sin (4� + �d) = �0cd sin�d = ��0ce sin�e

De�ning

k � ��; r � �0

�
;

F (r; du; dd) �
cd sin�d
ad sin �d

=
ce sin�e
ae sin �e

=
ce sin�e
ad sin �d

�

and using the restrictions

�1 � cos �d �
4�au cos (4� + �d)� (3 + ��) ad cos �d

(1� ��) ae
� 1 (4.17)

�1 � cos�e �
4�cu cos (4� + �d)� (3 + ��) cd cos�d

(1� ��) ce
� 1

one can express the constraints (4.16) as

F (r; du; dd)
2 [4�au cos (4� + �d)� (2 + k) ad cos �d]2 (4.18)

� [4�cu cos (4� + �d)� (3 + k) cd cos�d]2

= (1� k)2
�
a2eF (r; du; dd)

2 � c2e
�
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�d and �d can be found using equations (4.16)

tan �d =
au sin4�

rad � au cos4�
(4.19)

tan�d =
cu sin4�

rcd � cu cos4�
� and � can be determined in terms of du , dd and de

� =
(md +ms +mb) de � (me +m� +m� ) dd

(md +ms +mb �me �m� �m� ) du � (mu +mc +mt) (dd � de)

k =
(mu +mc +mt) (3dd + de)� [3 (md +ms +mb) + (me +m� +m� )] du
(md +ms +mb �me �m� �m� ) du � (mu +mc +mt) (dd � de)

The observed CKM values of the quark mixing matrix imposes severe
constraints on the parameters du, dd, 4� and 4�. The following values of
the parameters give the best �t:

4� = �

2
, 4� = �0:121

du = 0:9560 mt , dd = 0:9477 mb

The parameters �d , �d are determined from (4.19) in terms of de , r. The
best �t values of quarks and charged leptons at the uni�cation scale � =MX

are given as [77]

mu(MX) = 104
+0:19
�0:20 MeV md(MX) = 1:33

+0:17
�0:19 MeV

mc(MX) = 302
+25
��27 MeV ms(MX) = 26:5

+3:3
�3:7 MeV

mt(MX) = 129
+196
�40 GeV mb(MX) = 1:00� 0:04 GeV

me(MX) = 0:32502032� 0:00000009 MeV m�(MX) = 68:59813� 0:00022 MeV
m� (MX) = 1171� 0:2 MeV

(4.20)
Using (4.14) , (4.15) ,and (4.20) one can determine the CKM values and

the Dirac phase

j(UCKM)12j = 0:2251
j(UCKM)23j = 0:0340
j(UCKM)13j = 0:0032

�q = 58:86
�

Two remaining parameters de and r are determined from the equations

(4.16),(4.17) and (4.18). They predict two possible solutions having
de
m�
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values (i) 0.935883 and (ii) 0.307197. Hence the 13 parameters have been
successfully and consistently �tted into the quark and lepton sectors.

4.2.2 Lepton Mixing (PMNS) Matrix

The neutrino Majorana mass matrix M� and charged leptons mass matrix
Me are given by (4.9 , 4.10)

M� = P�cM�P
y
�

Me = PecMeP
y
e

Using the unitary matrices U� = P y�O�Q� and ULe = P yeOe, the neutrino
and charged lepton mass matrices can be diagonalized as [78]

U y�M�U� = diag (jm1j ;m2;m3)

U yLeMeULe = diag (� jmej ;m�;m� )

In order to obtain the real positive neutrino mass matrix, an additional
phase matrix Q� = diag (i; 1; 1) is used. Under the assumptions jm1j <
m2 � d� < m3 , jmej � m� � de < m� for the neutrinos and the charged
leptons respectively, the orthogonal matrices O� and Oe can be obtained
using (4.13) with f = �; e replacing mf1;mf2;mf3 by m1;m2;m3 and
me;m�;m� respectively.

O� '

0BBBBBBB@

�
m2

jm1j+m2

� 1
2

�
jm1j

jm1j+m2

� 1
2

�
jm1jm2

m2
3

1� x�
x�

� 1
2

�
�

jm1j
jm1j+m2

x�

� 1
2

�
m2

jm1j+m2

x�

� 1
2

(1� x�)
1
2�

jm1j
jm1j+m2

(1� x�)

� 1
2

�
�

m2

jm1j+m2

(1� x�)

� 1
2

(x�)
1
2

1CCCCCCCA
(4.21)

Oe '

0BBBBBBBB@

1

�
jmej
m�

� 1
2

�
jmejm�

m2
�

1� xe
xe

� 1
2

�
�
jmej
m�

xe

� 1
2

(xe)
1
2 (1� xe)

1
2�

jmej
m�

(1� xe)

� 1
2

� (1� xe)
1
2 (xe)

1
2

1CCCCCCCCA
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Using the diagonal phase matrix Pl = PeP
y
� = diag

�
1; ei�2 ; ei�3

�
,the

lepton mixing (MNS) matrix UMNS can be written as

UMNS = U yLeU� = OTe P
y
�O�Q� (4.22)

UMNS '

0BBBBBBB@
i

�
m2

jm1j+m2

� 1
2

�
jm1j

jm1j+m2

� 1
2

�
jm1jm2

m2
3

1� x�
x�

� 1
2

+ �5

�
jmej
m�

� 1
2

�i�1
�

jm1j
jm1j+m2

� 1
2

�1

�
m2

jm1j+m2

� 1
2

�3

i�3

�
jm1j

jm1j+m2

� 1
2

��3
�

m2

jm1j+m2

� 1
2

�4

1CCCCCCCA

The complex quantities �i , i = 1; 2; 3; 4; 5 are de�ned by

�1 = (x�xe)
1
2 ei�2 + [(1� x�) (1� xe)]

1
2 ei�3

�2 = [(1� x�)xe]
1
2 ei�2 � [x� (1� xe)]

1
2 ei�3

�3 = � [x� (1� xe)]
1
2 ei�2 + [(1� x�)xe]

1
2 ei�3

�4 = [(1� x�) (1� xe)]
1
2 ei�2 + (x�xe)

1
2 ei�3

�5 = [(1� x�)xe]
1
2 ei�2 + [x� (1� xe)]

1
2 ei�3

For the required maximal lepton mixing between the second and third
generation we have to choose

j�1j = j�2j = j�3j = j�4j =
r
1

2

The above equations can be satis�ed irrespective of the values of the
phases �2 and �3 , if we choose

x� =
1

2
, xe ' 1

The explicit expressions for the components
���(UMNS)ij

��� of the lepton mix-
ing matrix are given as
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j(UMNS)11j '
r

m2

jm1j+m2

, j(UMNS)12j '

s
jm1j

jm1j+m2

j(UMNS)13j '

s
jm1jm2

m2
3

+ ei�2

s
jmej
2m�

, j(UMNS)21j '
1p
2

s
jm1j

jm1j+m2

j(UMNS)22j '
1p
2

r
m2

jm1j+m2

, j(UMNS)23j '
1p
2

j(UMNS)31j '
1p
2

s
jm1j

jm1j+m2

, j(UMNS)11j '
1p
2

r
m2

jm1j+m2

j(UMNS)31j '
1p
2

The solar �12; atmospheric �23; and the CHOOZ �13 angles and the
phases are related to the lepton masses [78] as follows:

tan2 �12 =
j(UMNS)12j

2

j(UMNS)11j
2 '

jm1j
m2

(4.23)

sin2 2�23 = 4
��j(UMNS)23j

2 j(UMNS)33j
2
�� ' 1

j(UMNS)13j
2 '

�����
s
jm1jm2

m2
3

+ ei�2

s
jmej
2m�

�����
2

�� ' � arg
 s

jm1jm2

m2
3

+ ei�2

s
jmej
2m�

!
�2 ' �3 ' �

1

2

One can obtain the neutrino masses in terms of the mixing angles. Using

the �rst equation tan �12 '
jm1j
m2

, one can write sin2 �12 =
m1

m1 +m2

and

cos2 �12 =
m1

m1 +m2

. The neutrino experiments are only sensitive to the mass

squared di¤erences �m2
21 = m2

2 �m2
1 and �m

2
32 = m2

3 �m2
2. We obtain the

neutrino masses:

m1 =

s
sin4 �12
cos 2�12

4m2
21 (4.24)
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m2 =

s
cos4 �12
cos 2�12

4m2
21 (4.25)

m3 =

s
cos4 �12
cos 2�12

4m2
21 +4m2

32 (4.26)

4.3 Triminimal parameterization

Even if tribimaximal mixing, in the lepton sector is the result of some �avor
symmetry, in general there will be deviations from this scheme. [80] [79]
The triminiml parameterization is a completely general scheme of the MNSP
matrix, treating Tribimaximal mixing as the zeroth order basis. Four inde-
pendenent parameters of the UMNS are given by �jk, jk = 21; 32; 13, which
are the deviations of the �jk from their tribimaximal values and CP- violating
phase �. One can obtain the usual tribimaximal mixing by taking �jk = 0.
The triminimal parameterization is given by

UTMin = R32

��
3

�
U� (�32 , �13 , �21, �)R21

�
sin�1

1p
3

�
(4.27)

U� = R32 (�32)U
y
�R13 (�13)U�R21 (�21)

UTMin =

0@ p
2 0 0
0 1 1
0 �1 1

1A U�p
6

0@ p
2 1 0

�1
p
2 0

0 �0
p
3

1A
The neutrino observables up to second order in �jk can be expressed in

terms of the triminimal parameters as

sin2 �21 =
1

3

�
cos �21 +

p
2 sin �21

�2
(4.28)

' 1

3
+
2
p
2

3
�21 +

1

3
�221

sin2 �23 =
1

2
+ sin �32 cos �32

' 1

2
+ �32

Ue3 = sin �13e
�i�

( This means �23 = �13 and � = � )
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4.3.1 Numerical analysis using the triminimal parame-
terization:

Using equations (4.28) and (4.24-4.26), one can obtain the neutrino mass
relations in terms of the deviations from solar angle �12:

m1 �

s
1 + 4

p
2 �12

3� 12
p
2 �12

�m2
21 (4.29)

m2 �

s
4� 8

p
2 �12

3� 12
p
2 �12

�m2
21

m3 �

s
4� 8

p
2 �12

3� 12
p
2 �12

�m2
21 +�m

2
32

In the limit �12 ! 0 using the best �t values of the mass squared di¤er-
ences 4m2

21 t 7:65� 10�5 eV2 , 4m2
31 t 2:40� 10�3eV2 [36], we obtain the

neutrino masses for the tribimaximal mixing (TBM):

m1 �
r
1

3
�m2

21 � 0:00504 eV

m2 �
r
4

3
�m2

21 � 0:010 eV

m3 �
r
4

3
�m2

21 +�m
2
32 � 0:05 eV

The behavior of the neutrino masses in the vicinity of tribimaximal mixing
(TBM) (�12 = 0) is shown by the �gures 4.1 to 4.4.
The neutrino masses obtained using tribimaximal mixing agree with those

obtained in chapter 2 and by Fritzsch and Xing. In the triminimal case we
see that as the value of the solar angle increases from the tribimaximal value,
the neutrino masses m1;m2;m3 generally increase and the neutrino masses
become more and more degenerate. However if the value of the solar angle
decreases from the tribimaximal value, the neutrino masses tend to decrease,
increasing the neutrino mass hierarchy.
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Figure 4.1: Behavior of m1 in the vicinity of TBM

Figure 4.2: Behaviour of m2 in the vicinity of TBM
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Figure 4.3: Behavior of m3 in the vicinity of TBM

Figure 4.4: Behavior of m1, m2,m3 in the vicinity of TBM
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4.4 Fermion masses and mixing in the SO(10)�
A4 Model

The neutrino mixing parameters can be constrained very well, when the
SO(10) GUT is combined with a horizontal symmetry acting on the fermion
families. We know most of the parameters in the quarks and charged lepton
sectors: the masses of the quarks and the charged leptons, the quark mixing
angles and the phases. The neutrino mass squared di¤erences and the two
mixing angles in the lepton sector are known. These experimental values
may be the result of a discrete symmetry in the lepton sector [81]. The
neutrino data can be explained by the tribimaximal mixing which one can
obtain very easily using the A4 discrete �avor symmetry. Such a discrete
symmetry could be the result of some underlying high energy theory such as
the super string theory or compati�cation of the heterotic orbifolds [82]. In
the Morisi-Picariello-Torrente Lujan (MPT) non-SUSY SO(10) � A4 GUT
Model [81], matter �elds are treated as 16 of SO(10) and triplet of A4, in the
Higgs sector a 10, a 126s , three singlets 45 of A4, two triplets, a 45 and a 126t
of A4 are used. We must break the left-right symmetry at the uni�cation
scale, because the leptons and quark mass matrices cannot be symmetric.
Vacuum expectation values of the Higgs A4� triplets dynamically break the
discrete symmetry A4. In this SO(10) theory the vacuum expectation values
(VEVs) of the four scalar 45s are assumed to be in the directions of T3R , Y
and two linear combinations of them: C and D. A contribution proportional
to identity is given by 10. Higher dimensional operators contribute only to
Mu, Md, M l and there is no contribution to M �

Dirac because of our choice
of a particular VEV direction and the fact that 45sappears only in a given
combination. The Majorana mass matrix gets contributions from 126 only.
By using the see-saw mechanism, one obtains the low energy neutrino mass
matrix [83].
The Yukawa Lagrangian of the model is given by [81]

LY = hij0 16
i10 16j + h0ij0 16

i10 45T3R 45Y 16
j + hijk16i10 45T3R 45Y 45

j
C 45D 16

k

(4.30)

+ �ij16i 45T3R 126s 45T3R16
j + �ijk16i45T3R 126

j
t 45T3R16

k

� LDirac + LMajorana

In the equation (4.30) i; j; k etc are the A4 indices. The gauge indices
are assumed to be summed. The three A4 indices can be contracted in two
ways in an invariant way. The 10 Higgs can not belong to triplet of A4 as we
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SO(10) 16 10 45T3R 45Y 45C 45D 126s 126t
A4 3 1 1 1 3 1 1 3

Table 4.3: Matter and Higgs �eld representations

want only one Higgs. The 10 Higgs can transform under A4 in three ways,
i.e. as 1; 10; 100 . From the �rst term in the lagrangian the fermion masses
Mf , f = u; d; l; � can be written as0@ 1 0 0

0 1 0
0 0 1

1A ;

0@ 1 0 0
0 !2 0
0 0 !

1A ;

0@ 1 0 0
0 ! 0
0 0 !2

1A (4.31)

These mass matrices give three degenerate eigenvalues mu = mc = m� .
This relation is corrected by the other terms in (4.30). We assume that the
A4 triplets 45C ; 126t get VeVs in the following directions

h45Ci = �45C (1; 1; 1)

h126ti = �126t (1; 0; 0)

The quadratic part for the fermions of the lagrangian in (4.30) after sym-
metry breaking can be written as

LDirac = h0 (161161 + 162162 + 163163) �10 (4.32)

+ h00 (16116
0
1 + 16216

0
2 + 16316

0
3) �10

+ h1 (16116
00
2 + 16216

00
3 + 16316

00
1) �10

+ h2 (16116
00
3 + 16216

00
1 + 16316

00
2) �10

(4.33)

LMajorana = � (160001 16
000
1 + 16

000
2 16

000
2 + 16

000
3 16

000
3 ) �126s + 16

000
2 16

000
3 �126t

with

1600i � �45T3R�45Y �45C�45D16i , i = 1; 2; 3;

160i � �45T3R�45Y 16i , 16000i � �45T3R16i

Absorbing the VEVs of the 45s into coupling constants and representing
the quantum numbers of the product of the charges T3R, Y ! xfL;R , T3R,
Y , C, D ! x0fL;R and of the charges T3R ! x00fL;R , we obtain
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X Y B � L T3R

q 1 1
3

1 0
uc 1 �4

3
�1 1

2

d c �3 2
3

�1 �1
2

l �3 �1 �3 0
ec 1 2 3 1

2

�c 5 0 3 1
2

Table 4.4: Quantum numbers for the low energy matter �elds

160 = (xqL q; xuR u
c; xdR d

c; xlL l; xeR e
c; x�R �R)

T

1600 =
�
x0qL q; x

0
uR u

c; x0dR d
c; x0lL l; x

0
eR e

c; x0�R �R
�T

16000 =
�
x00qL q; x

00
uR u

c; x00dR d
c; x00lL l; x

00
eR e

c; x00�R �R
�T

4.4.1 Mass matrices and mixings

The terms 16i1600j�10 in the Lagrangian LDirac do not contribute to the Dirac
neutrino mass since x�R = 0 , x0lL = 0 ( Y of right handed neutrino and
T3R of the lepton doublet are zero). When 45s gets a VEV, we have from the
second line of equation (4.32)

M �
Dirac = h0�

uI

I is the identity matrix and �u is vev of the up component of 10 Higgs.
The Dirac neutrino mass matrix M �

Dirac is proportional to the identity. This
fact is useful to realize the see-saw mechanism and the emergence of the
tribimaximal mixing matrix in the lepton sector. The terms h116116002 and
h216216

00
1 from the third and fourth lines of (4.32), using the conventions

xuL = xdL = xqL , xeL = x�L = xlL and �e = �u , give the following mass
terms

h1�
f
�
x0fL  L1 R2 + x0fR  L2 R1

�
+ h2�

f
�
x0fL  L2 R1 + x0fR  L1 R2

�
+ h:c:

We can write it as

�f
�

0 h1x
0
fL + h2 x

0
fR

h1x
0
fR + h2 x

0
fL 0

�
12
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Similarly one can get other components. Suppose that

Af = h1x
0
fL + h2 x

0
fR (4.34)

Bf = h1x
0
fR + h2 x

0
fL

Finally the operators proportional to the 45 representation give the fol-
lowing contribution to the Dirac mass matrices:

�f

0@ 0 Af Bf
Bf 0 Af
Af Bf 0

1A
�u; �d represent the vevs of up and down components of 10; and hf0 are

de�ned by the relations

hu0 = h0 + xuR h
0
0 , hd0 = h0 + xdR h

0
0 , hl0 = h0 + xeR h

0
0

We can write the charged fermion mass matrices as

Mu = �u

0@ hu0 Au Bu

Bu hu0 Au

Au Bu hu0

1A , Md = �d

0@ hd0 Ad;l Bd;l

Bd;l hd0 Ad;l

Ad;l Bd;l hd0

1A (4.35)

M l = �d

0@ hl0 Ad;l Bd;l

Bd;l hl0 Ad;l

Ad;l Bd;l hl0

1A
The mass matrices have the same form as given in [84]. If we de�ne

a = ��126s and b = ��126t the Majorana neutrino mass matrix for the right
handed neutrino can be written as

MR =

0@ a 0 0
0 a b
0 b a

1A
The Dirac mass matrices (4.35) can be diagonalized by

U =
1

3

0@ 1 1 1
1 ! !2

1 !2 !

1A
Using f = u; d; l, �l = �d and the complex parameters hf0 ; A

f and Bf we
can write the diagonalized charged fermion mass matrices

M f = U

0BBB@
�
hf0 + Af +Bf

�
�f 0 0

0
�
hf0 + !Af + !2Bf

�
�f 0

0 0
�
hf0 + !Bf + !2Af

�
�f

1CCCAU y
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The charged fermion mass eigenvalues can be written as

mf
1 =

�
hf0 + Af +Bf

�
�f (4.36)

mf
2 =

�
hf0 + !Af + !2Bf

�
�f

mf
3 =

�
hf0 + !Bf + !2Af

�
�f

Generally the charged fermion masses mf
i , obtained this way are complex

with unphysical phases. hf0 , A
f , Bf are complex parameters and �f represent

the scalar Higgs doublet in 10 with �l = �d. Using the see-saw mechanism
and the fact that the Dirac neutrino mass matrix M �

Dirac is proportional to
the identity, we can write the light neutrino mass matrix as

M � =M �
Dirac

1

MR

(M �
Dirac)

T

The low energy neutrino mass matrixM
�
, in the basis where the charged

leptons are diagonal, is given by

M
�
= UTM �U =M �

Dirac

1

U yMRU�
(M �

Dirac)
T

For the right handed Majorana mass matrix we obtain

U yMRU
� =

0BBBB@
a+ 2

b

3
� b
3

� b
3

� b
3

2
b

3
a� b

3

� b
3

a� b

3
2
b

3

1CCCCA
A tribimaximal matrix is used to diagonalize the above mass matrix and

as well as the low energy neutrino mass matrix M
�
. The eigenvalues of M

�

are

m1 =
(h0�

u)2

a+ b

m2 =
(h0�

u)2

a

m3 =
(h0�

u)2

b� a
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4.4.2 Data �tting and analysis:

Using the experimental data the parameters of this model can be constrained
[81]. Particularly the charged fermion mass matrices can be �tted very well.
Some predictions about the absolute neutrino mass can be made.
The general solution of the equations (4.36) is

hf0 =
1

�f
mf
1 +mf

2 +mf
3

3
(4.37)

Af =
1

�f
mf
1 + !2mf

2 + !mf
3

3

Bf =
1

�f
mf
1 + !mf

2 + !2mf
3

3

The fermion masses �x the values of the complex parameters hf0 ; A
f ; Bf

up to phases. If �1 ,�2 represent the relative phases between m1 and m3 and
between m2 and m3 respectively, then the absolute value of h

f
0 is given by���hf0 ���2 = � 1

3�f

�2
[
�
mf
1 +mf

2 +mf
3

�2
� 2

n
mf
1m

f
3 (1� cos�1) +mf

1m
f
2 (1� cos (�1 � �2)) +m

f
2m

f
3 (1� cos�2)

o
]

If mf
3 > mf

1 ;m
f
2 , we can write the above equation as

1

3�f

�
mf
1 +mf

2 +mf
3

�
�
���hf0 ��� � 1

3�f

�
mf
3 �mf

1 �mf
2

�
Similarly for Afand Bfwe can have the following relations

1

3�f

�
mf
1 +mf

2 +mf
3

�
�
���Af0 ��� � 1

3�f

�
mf
3 �mf

1 �mf
2

�
1

3�f

�
mf
1 +mf

2 +mf
3

�
�
���Bf

0

��� � 1

3�f

�
mf
3 �mf

1 �mf
2

�
The phases of the hf0 ; A

f
0 ; B

f
0 are very strongly constrained by the last

equation in (4.36) under the assumption mf
3 >> mf

1 ;m
f
2 . From equation

(4.37) we have

Af

h0
' ! ,

Bf

h0
' !2

From equations (4.34) and (4.37) and using the notation x0f� � x0fL �x
0f
R ,

we �nd
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mu (MeV) 0:8351+0:1636�0:1700
mc (MeV) 242:6476+23:5536�24:7026
mt (GeV) 75:4348+9:9647�8:5401
md (MeV) 1:7372+0:4846�0:2636
ms (MeV) 34:5971+4:8857�5:1971
mb (GeV) 0:9574+0:0037�0:0169
me (MeV) 0:4414+0:0001�0:0001
m� (MeV) 93:1431+0:0136�0:0101
m� (GeV) 1:5834+10:4664�13:6336

Table 4.5: Charged fermion masses at GUT scale

x0f+ =
1

3�f
mf
3 +mf

2 � 2m
f
1

h1 + h2
, x0f� =

ip
3�f

mf
3 �mf

2

h1 � h2

The ratios
x0f+

x0f
0

+

and
x0f�

x0f
0

�
are independent of the parameters hi, therefore

they are experimentally determined up to the undetermined phases of the
masses.

x0u+
x0d+

=
�d

�u
mt +mc � 2mu

mb +ms � 2md

,
x0u�
x0d�

=
�d

�u
mt �mc

mb �ms

(4.38)

x0u+
x0e+

=
�d

�u
mt +mc � 2mu

m� +m� � 2me

,
x0u�
x0e�

=
�d

�u
mt �mc

m� �m�

x0d+
xe+

=
mb +ms � 2md

m� +m� � 2me

,
x0u�
x0d�

=
mb �ms

m� �m�

Using (non- SUSY) Standard model fermion masses at the scale 2� 1016
GeV [81] [85], one obtains

x0u+
x0d+

= 0:972+0:073�0:013 ,
x0u�
x0d�

= 1:034+0:007�0:072 (4.39)

x0u+
x0e+

= 0:573+0:079�0:011 ,
x0u�
x0e�

= 0:640+0:011�0:077

x0d+
xe+

= 0:590+0:085�0:048 ,
x0u�
x0d�

= 0:619+0:054�0:075
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To �t this data theoretically in the model, the values of
x0f+

x0f
0

+

;
x0f�

x0f
0

�
are

determined from Table 4.1 and the de�nition of x0f� . If we take, for example,
the direction C = (28X � 249Y ) and D = (238X � 9Y ), we have

x0u+
x0d+

= 1 ,
x0u�
x0d�

= 1

x0u+
x0e+

=
300

517
,

x0u�
x0e�

=
300

517

This relation is in very good agreement with the experimental values in
equation (4.39). As there are only two parameters a; b in the neutrino sector,
the absolute neutrino mass scale is �xed. Using the mass squared di¤erence
values from the neutrino experiments

�m2
12 = 7:92 (1� 0:09)� 10�5 eV2 ,

�� �m2
12

�� = 2:2 �1+0:21�0:26
�
� 10�5 eV2

For a normal hierarchy the neutrinos masses are given by [81]:

m1 = 0:0051� 0:0005 eV, m2 = 0:0102� 0:0005 eV , m3 = 0:049� 0:004 eV

For the inverted hierarchy one �nds

m1 = 0:052� 0:005 eV, m2 = 0:052� 0:005 eV , m3 = 0:017� 0:002 eV



Chapter 5

Beyond Non-SUSY SO(10)
GUTs

5.1 SUSY SO(10) Models

The SUSY GUTs [86],[87] are well motivated theories. They are expected to
clarify on many relevant problems

1. They provide a solution to the hierarchy problem by explaining, why
�wk << MPl.

2. The gauge coupling uni�cation proceeds without intermediate energy
scales.

3. As demanded by the solution to the gauge hierarchy, uni�cation of elec-
troweak and strong gauge couplings considering supersymmetry break-
ing, masses are in the TeV range.

Supersymmetric grand uni�ed theories generally predict proton decay.
Considering the current lower limit on the proton decay modes, one can rule
out a number of simple SUSY GUTs [88]. The gauge coupling uni�cation
scale 1016 GeV and the atmospheric neutrino data �tting seesaw scale 1015

GeV are rather close. This suggests that the seesaw scale could be the GUT
scale itself. Therefore one can hope that the supersymmetric grand uni�ca-
tion can explain the smallness of the neutrino masses very well by the seesaw
mechanism. There are many di¤erent ways to understand the large mixings
in the lepton sector in the context of the SUSY SO(10) GUTs. The presence
of a local B � L symmetry as a sub group of SO(10) is the distinguishing
feature of the SO(10) models as compared to SU(5) models.

65
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If this B � L symmetry is broken by a 16 Higgs, one necessarily ob-
tains right handed neutrino mass arising from a nonrenormalizable coupling
in a low energy MSSM with R-parity breaking such that without additional
assumptions, the model cannot have a cold dark matter candidate. In the
SO(10) theories with 16 Higgs, one assumes that there is a further high en-
ergy theory (String theory etc.) that below the heavy scale leads to this
version of SO(10). In such a theories it is hard to make predictions about
the fermion masses. Without additional symmetry restrictions there are
less physical input than the free parameters. However in these theories the
Yukawa couplings can be restricted to some extent. In some cases the pre-
dictions for the neutrino sector can be made [89]. As the �rst term in the
type II seesaw model is negligible, neutrino masses are dictated by the sec-
ond term ( type I seesaw). The value of the CHOOZ angle �13, predicted
by most of such theories, is very small and can not be tested in the next
generation of the planned experiments.

If the B�L symmetry is broken by a 126 Higgs, one gets a right handed
neutrino mass from renormalizable coupling. The lightest SUSY particle as
dark matter candidate results from a low energy MSSM. The neutrino masses
can be obtained from �rst term or second term or from both terms of type II
seesaw. Such models have many interesting features [90],[91]. The neutrino
sector is very predictive because the �avor structures of quarks and neutrinos
get uni�ed in these models as a consequence of the 126 Higgs contribution
to the fermion masses through MSSM doublets. In some cases all the mixing
angles and masses can be predicted. Ignoring CP violation there are only
12 parameters, which can be determined using charged fermion masses and
quark mixings. It has been shown in one such model that one gets wrong
predictions of the neutrino parameters using type I seesaw [92]. However the
type II seesaw model works very well, and large mixings can be obtained
very easily [93]. The Model predicts �13 ' 0:180, which can be tested in the
next generation experiments.

Here are some models with the predictions in the neutrino sector [94]

Texture Zero Models

Reference Hierarchy sin2 2�23 sin2 �12 sin2 �13 sin2 �23

GL1 [95] Normal 1.0 � 0:005
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WY [96] Normal 0.0006-0.0030
Inverted 0.0006-0.0030
Normal <0.023
Normal 0.017-0.14

CPP [97] Normal 0.0066-0.0083
Inverted � 0:00005
Inverted � 0:032

Le� L� � L� Models

Reference Hierarchy sin2 2�23 sin2 �12 sin2 �13 sin2 �23

BM [98] Inverted 0:00029
GMN1 [99] Inverted � 0:28 � 0:05
PR [100] Inverted . 0:37 � 0:007
GL2 [101] Inverted 0:30 0

2� 3 Symmetric Models

Reference Hierarchy sin2 2�23 sin2 �12 sin2 �13 sin2 �23

RS [102] Normal �23 � 45� 0
Inverted �23 � 45� � 0:02

MN [103] Normal 1:0 0:0024
AKKL [104] Normal 0:006� 0:016

Inverted 0:022� 0:04
SRB [105] Inverted 1:0 0:31 0 0:50
BY [106] Normal 1:0 0:31 < 0:0025

Inverted 1:0 0:31 < 0:008
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S3 Models

Reference Hierarchy sin2 2�23 sin2 �12 sin2 �13 sin2 �23
1:0

KMMR-J [107] Inverted 0:000012
CFM [108] Normal 0:00006� 0:001
T [109] Normal 0:016� 0:0036
TY [110] Inverted 0:93 0:30 0:0025 0:37
MNY [111] Normal 0:000004� 0:000036
MMP [112] Inverted 1:0 0:31 0:0034
MC [113] Normal 1:0 < 0:01

A4 Tetrahedral Models

Reference Hierarchy sin2 2�23 sin2 �12 sin2 �13 sin2 �23

Ma1 [114] Normal 1:0 0:31 0 0:50
Inverted 1:0 0:33� 0:34 0 0:50

ABGMP [115] Normal 1:0 0:27� 0:30 0:0007� 0:0037 0:51� 0:52
AG1 [116] Normal 1:0 0:31 0:0026� 0:034 0:51� 0:56
HT [117] Normal 1:0 0:29� 0:33 < 0:0022
AG2 [118] Inverted 1:0 0:27� 0:34 < 0:0012 0:52� 0:53
L [119] Normal 1:0 0:29� 0:38 0:0025
Ma2 [120] Normal 1:0 0:32 0 0:50

S4 Models

Reference Hierarchy sin2 2�23 sin2 �12 sin2 �13 sin2 �23

MPR [121] Q-deg 0:99 0:25� 0:27 0:008� 0:01 0:44
HLM [122] Normal 1:0 0:30 0:0044 0:50

Normal 1:0 0:31 0:0034 0:50
Z [123] Normal 0:96� 1:0 0:311 < 0:030 0:41� 0:50
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SO(3) Models

Reference Hierarchy sin2 2�23 sin2 �12 sin2 �13 sin2 �23

M [124] Normal 1:0 0:31 0:00005
W [125] Normal 0:0027� 0:0036

T 0 Models

Reference Hierarchy sin2 2�23 sin2 �12 sin2 �13 sin2 �23

FM [126] Normal 0:93� 0:95 0:024� 0:036

5.2 Proton Decay in GUTs

Most of the grand uni�ed theories predict an unstable proton. Therefore
the proton decay can be used to determine the speci�c nature of the grand
uni�ed theory [19]. Since the Yukawa couplings responsible for the �avor
structure of fermions arise from dimension �ve operators in SUSY SO(10)
GUTs, one can hope to learn about fermion texture from proton decay modes.
Predictions about the proton decay have been studied in 16H model [127]
through mode p �! �K+ and 126H SO(10) model through n �! �0�
[128]. However the gauge mediated proton decay p �! e+�0 being model
independent, is the true test of grand uni�cation. The lower limit of this
mode is 5 � 1033 years [129]. For SUSY theories this limit is expected at
about 1038 years and hence cannot be tested by conventional technology.
The non-SUSY theories seems to be more promising in this regard. In non-
SUSY SO(10) �! SU(2)L�SU(2)R�SU(4)C theories the prediction for the
proton lifetime is about 1:44� 1032:1�0:7�1:0�1:9 years [130]. In these theories
the intermediate energy scale is at about 1013:6 GeV which can be treated as
seesaw scale to predict neutrino masses
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Chapter 6

Conclusion

In this thesis we have described the quark and the lepton mixing mechanism
in context of hermitian mass matrices. In particular we have analyzed a re-
alistic pattern of quark and leptons mass matrices within four zero texture
(FZT). Four zero texture relates the fermions mass ratios and the mixing
angles in the quark and lepton sectors [31],[35]. Using tribimaximal mixing
predictions about the neutrino mass are made. Considering the mixing ma-
trix as near tribimaximal, behavior of the neutrino masses near tribimaximal
mixing is studied. The four zero texture can be imbedded in the non-SUSY
SO(10) [74]. In this case the model is more tightly constrained than either
of FZT or SO(10) alone. The model predicts the consistent values for the
quarks and charged leptons. For neutrino masses we can use the triminimal
mixing matrix and determine the values of neutrino masses for tribimaximal
mixing given by m1 � 0:005 eV, m1 � 0:01 eV and m1 � 0:00504 eV. This
shows that neutrinos have weak but normal hierarchy. We have also studied
the e¤ect on neutrino masses when the value of solar angle is changed from its
TBM value. Our analysis shows that the neutrinos masses m1, m2 in general
tend to increase as the value of solar angle increases from its TBM value and
vice versa. However m3 seems to be rather stable against the change in solar
angle. It appears that the neutrinos become more and more degenerate for
solar angle values higher than TBM value and hierarchical for lower values
of solar angle.
We speculate that in order to explain the fermion masses and mixings,

the SO(10) symmetry may be su¢ cient. No new physics beyond non-SUSY
SO(10) may be needed [46]. We have described the two potentially realistic
Yukawa structures based on 126H and 10H or 120H . It seems that both
of these scenarios require U(1) PQ. It also provides axion as a dark matter
candidate. We have also reviewed the SO(10) � A4 model [81] and SUSY
SO(10) models.

71
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