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1 INTRODUCTION AND OBJECTIVES 

 

 

Since 1982 genetically modified mice have been widely employed in the biological and 

medical research in order to investigate different human and animal diseases and also to 

test possible therapies. Recently, transgenic animal models have also been generated to 

develop new treatment options in diabetes mellitus. The transgenic technology has been 

used for targeting molecules like hormones (Cayrol et al. 2006), oncogenes (Pelengaris 

et al. 2002), growth factors (Garcia-Ocana et al. 2001) or transcription factors (Ahlgren 

et al. 1998) in the pancreatic islets. Thereby, the rat (Hanahan 1985; Vasavada et al. 

1996), mouse (Hara et al. 2003) and human (Hotta et al. 1998; Krakowski et al. 1999) 

insulin promoters have been employed to control the overexpression of the transgene in 

the pancreatic β-cells. However, a big drawback of the most frequently recommended 

rat insulin promoter is the detected expression of the transgene not only in β-cells but 

also in several areas of the brain (Gannon et al. 2000; Martin et al. 2003). 

 

The use of mice as animal models is still useful for studies investigating basic problems 

of β-cell physiology. However, researches regarding, for instance, islet 

xenotransplantation approaches require large animal models. Due to similarities to 

humans in the blood glucose level regulation and in the general physiology, pigs are 

excellent candidates for such studies. Furthermore, results of different studies support 

the possibility to obtain pancreatic islets from newborn and adult pigs for 

xenotransplantation (MacKenzie et al. 2003; Cardona et al. 2006; Hering et al. 2006). 

Therefore, there is a considerable interest in the development of tools for the genetic 

modifications of porcine pancreatic islets for the delivery of gene products direct to 

β-cells. 

 

The aim of the present study was to create an expression cassette for the β-cell-specific 

overexpression of transgenes under the control of the porcine insulin promoter. 

The functionality of the construct was verified by expressing human betacellulin, a 

ligand of the EGFR family, known for its ability to stimulate β-cell differentiation in 

vitro and in transgenic mouse model. 
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2 LITERATURE REVIEW 

 

 

2.1 The Epidermal Growth Factor Receptor system 

 

2.1.1 Epidermal Growth Factor Receptor 

 

The epidermal growth factor receptor (EGFR) family of tyrosine kinase receptors 

comprises the following members: ErbB1/EGFR/HER1, ErbB2/Neu/HER2, 

ErbB3/HER3 and ErbB4/HER4 (Figure A). 

Studies on the structure of EGF receptors revealed the presence of several common 

regions, including an extracellular ligand-binding region, a single membrane-spanning 

region and a cytoplasmic part with a tyrosine kinase-containing domain (Holbro & 

Hynes 2004). 

 

 

 

ErbB1 ErbB2 ErbB3 ErbB4
 

Figure A     Epidermal Growth Factor Receptor and the related ErbB2-4 receptors. 
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The EGFR and many of its ligands are broadly expressed in the gastrointestinal tract, 

including the pancreas (Miettinen & Heikinheimo 1992). In the adult pancreas, the EGF 

receptor is predominantly expressed in the islets of Langerhans and ductal epithelial 

cells (Ueda et al. 2004). The expression of ErbB2 in the developing mouse pancreas 

has been detected in the ducts (Kritzik et al. 2000), as well as in the proliferating 

human adult duct cells (Rescan et al. 2005). ErbB3 is expressed in the developing 

mouse pancreatic ducts (Kritzik et al. 2000) and mesenchyme surrounding the pancreas 

(Erickson et al. 1997). The ErbB4 protein has been detected in the mouse pancreas as 

early as embryonic (E) day 12.5 (Huotari et al. 2002) and it is expressed in the fetal 

mouse pancreatic ducts (Kritzik et al. 2000). In the proliferating human adult pancreatic 

duct cells ErbB4 is expressed only weakly (Rescan et al. 2005). 

Moreover, the presence of the ErbB receptors has been shown also in other tissues like 

peripheral nervous system (Woldeyesus et al. 1999), heart (Gassmann et al. 1995; Lee 

et al. 1995), and several epithelial organs (Miettinen et al. 1995; Sibilia et al. 1998). 

 

The activation of ErbB receptors initiates a rich network of signaling pathways, 

culminating in variety of responses ranging from cell division to death. The 

phosphorylated residues are recognized as docking sites by different signal molecules, 

which activation promotes intracellular signaling cascades and control variety of 

genetic processes. Additionally, the activation of ErbBs occurs not only through ligand 

binging, but also via heterologous signals, like hormones, neurotransmitters, 

lymphokines and stress inducers (Carpenter 1999). However, two of the ErbB receptors 

make an exception to this rule. The “ligandless” ErbB2 receptor requires 

heterodimerisation with another ErbB receptor to be activated (Klapper et al. 1999). 

Also the ErbB3 receptor needs a dimerisation with a second ErbB receptor to become 

phosphorylated and to initiate signalling pathways (Guy et al. 1994). Therefore, neither 

ErbB2 nor ErbB3 in isolation can perform its function as membrane receptor. The most 

important downstream signaling pathways of ErbB receptors (Figure B) are the Ras- 

and Shc-activated MAPK networks, as well as phosphoinositide 3-kinase (PI3K)-

activated pathway (Yarden & Sliwkowski 2001). 
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Figure B  The EGFR system: Binding of a ligand (1) permits the receptor dimerisation and 
activation (2) of downstream signaling pathways, (3a and 3b) changing the 
activity of multiple nuclear transcription factors and cellular transcriptional 
program (4). 

 

 

The biological role of the ErbB receptors and their ligands has been often studied by 

using genetically modified mouse models. The epidermal growth factor receptor 

(EGFR)-deficient mice exhibited a significant reduction of the pancreas weight and 

disturbed pancreas morphogenesis (Miettinen et al. 2000). These alterations have been 

suggested to result from the impaired branching of the ductal tree. Although EGFR 

activation was reduced by only 40%, the transgenic mice exhibited a significant 
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decreased β-cell mass and became diabetic within two weeks of birth. To study the role 

of the EGF receptor in adult pancreas, a mouse model expressing a kinase-deficient and 

dominant-negative EGFR under the control of Pdx1 (pancreatic duodenal homeobox 

factor-1) promoter was generated (Miettinen et al. 2006). These mice showed an 

impaired postnatal β-cell growth, resulting in diabetes (Miettinen et al. 2006). 

 

Moreover, the other ErbB receptors are probably also required for an appropriate 

function of the pancreas. Knockout mouse models for ErbB2-, ErbB3- and ErbB4 

exhibited early prenatal mortality, mostly before pancreatic organogenesis could take 

place (Gassmann et al. 1995; Lee et al. 1995; Erickson et al. 1997). 

 

ErbB receptors have been shown to play an important role in the development and 

functionality of many other organs. For instance, EGFR knockout mice revealed the 

necessity of this receptor for the proper craniofacial development (Miettinen et al. 

1995). In this study, the heterozygous Egfr+/- mice exhibited a normal weight and 

reproductive ability, while Egfr-/- animals survived only a few days after birth because 

of lethal defects in the respiratory system and epithelial immaturity in several organs. 

Additionally, absence of a functioning EGFR in these mice led to abnormalities in the 

epidermis and hair coat. The skin was thinner and almost transparent, with only few 

hair follicles (Miettinen et al. 1995). Other studies on mice lacking the Egfr gene also 

demonstrated alterations in skin, kidney, brain, liver and gastrointestinal tract 

(Miettinen et al. 1995; Sibilia & Wagner 1995; Threadgill et al. 1995). 

 

Numerous studies demonstrated that alterations of ErbB receptor activity were 

associated with the appearance of severe cancer types including carcinomas of the 

breast (Slamon et al. 1987; Slamon et al. 1989; Barnes et al. 1992; Prenzel et al. 1999; 

Gschwind et al. 2002), colon and rectum (Shirai et al. 1995; Yang et al. 1997), 

endometrium (Berchuck et al. 1991), lung (Brandt-Rauf et al. 1994), ovary (Tanner et 

al. 1996) and prostate gland (Zhau et al. 1992; Fox et al. 1994). Abnormalities in the 

ErbB pathway system are often the reason for initiation and progression of cancer. 

Overproduction of ligands, overexpression of receptors or constitutive activation of 

receptors can drive the cell to uncontrolled proliferation. One of the best characterized 

ErbB ligands connected with human cancers is TGFA (transforming growth factor-
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alpha). Overexpression of TGFA and EGFR, particularly in lung, ovary and colon 

tumors, predicts poor recovery chances (Sandgren et al. 1990; Salomon et al. 1995). 

Overexpression of ErbB2 is often associated with the invasive ductal breast cancers 

(Slamon et al. 1987; Slamon et al. 1989), however alterations in ErbB2 alone are 

insufficient for breast cancer progression (Ross & Fletcher 1999). Importantly, the 

heterodimers ErbB2/ErbB3 represent an extremely high mitogenic complex (Pinkas-

Kramarski et al. 1998). Nevertheless, it has been shown that down-regulation of ErbB2 

follows decrease of ErbB3 expression as well (Lane et al. 2000; Neve et al. 2000; 

Basso et al. 2002; Motoyama et al. 2002). This observation suggests a close connection 

between these two partners in the initiation of signaling pathways and cell proliferation. 

 

2.1.2 Ligands of the Epidermal Growth Factor Receptor family 

 

There are seven known EGFR ligands: epidermal growth factor (EGF), transforming 

growth factor-alpha (TGFA), amphiregulin (AREG), heparin-binding EGF-like growth 

factor (HB-EGF), betacellulin (BTC), epiregulin (EREG) and epigen (EPGN) (Harris et 

al. 2003; Schneider & Wolf 2009). The genes encoding four of these ligands, EREG, 

EPGN, AREG and BTC are loated on the same chromosome in mice and humans 

(chromosomes 5 and 4, respectively) (Pathak et al. 1995). This tight linkage suggests 

that they may have arisen through a tandem gene duplication event. In general, the 

overall organization of the genes encoding members of the EGF family is highly 

conserved. These genes consist of 6 exons, where the first one encodes the 5’UTR and 

signal peptide. Exon 2 encodes the N-terminal precursor. The third exon encodes the 

mature EGF with the two first disulfide loops and the fourth accounts for expression of 

the third loop of the EGF-like domain. Exon 5 encodes the cytoplasmic region and exon 

6 the 3’UTR (Harris et al. 2003). 

 

The ligands of the EGFR family are synthesized as type I transmembrane proteins 

consisting of an N-terminal part, EGF motif, a short juxtamembrane stalk and a 

carboxy-terminal domain. The EGF motif contains 40 amino acids with six cysteines 

arranged as three disulfide bridges and forming three loops (Harris et al. 2003; 

Schneider & Wolf 2009;). An amino acid between the second and the third loop is 

called “hinge residue”. The probable function of this structure is to simplify the 

movement of these two structures (van Zoelen et al. 2000). 
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Cleavage of the EGFR ligands by surface proteases allows releasing the mature ligands 

from the cell membrane and their activity as growth factors (Massague & Pandiella 

1993). 

 

2.1.2.1 Amphiregulin (AREG) 

 

AREG was identified in the human breast adenocarcinoma cell line, MCF-7 (Shoyab et 

al. 1988). This growth factor is expressed in many tissues, including placenta, ovary, 

testis, heart, pancreas, spleen, kidney, lung, ovary, colon and breast (Plowman et al. 

1990). Under normal conditions, amphiregulin is not expressed in the liver. 

Nevertheless some studies demonstrated an upregulated AREG gene expression after 

liver injury or partial hepatectomy (Berasain et al. 2005; Castillo et al. 2006; Fausto et 

al. 2006). Amphiregulin activation appears to have an important functional role in the 

development and maturation of different organs, including mammary gland (Kenney et 

al. 1996; Sternlicht et al. 2005), bones (Qin et al. 2005) or placenta (Fukami et al. 

2009). Due to its ability to inhibit the growth of many human tumors and to stimulate 

the proliferation of other cells, like fibroblasts, keratinocytes or epithelial cells, AREG 

is known as a bifunctional growth factor (Plowman et al. 1990; Cook et al. 1991; 

Normanno et al. 1994; Chu et al. 2005). 

 

Reduced expression of AREG was detected in prolactin receptor knockout mice 

(Ormandy et al. 2003). Also, female AREG-deficient mice exhibited a defective 

mammary gland development and inadequate quality or quantity of milk (Luetteke et 

al. 1999). Together, these findings indicate that amphiregulin might be regulated by 

prolactin during the pregnancy and is necessary for an appropriate growth of mammary 

tissue. 

 

Amphiregulin seems to have an effect on other organs as well. For instance, 

overexpression of AREG in mouse pancreas caused an increased proliferation of 

pancreatic duct cells (Wagner et al. 2002). Results of such investigations suggested that 

amphiregulin induces a mitogenic response in pancreatic duct cells through activation 

of Ras, CDK2 or CDK4 (Wagner et al. 2002). Moreover, studies on human pancreatic 

cancer cell lines indicated an elevated expression of amphiregulin in the cytoplasm of 

these cells being a signal of a more advanced clinical stage of the disease. These 
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findings suggested the contribution of AREG to aberrant activation of EGF receptor in 

pancreatic tumor cells (Ebert et al. 1994). 

 

2.1.2.2 Epidermal Growth Factor (EGF) 

 

EGF was originally detected in the mouse submaxillary gland (Cohen 1962). This 

ligand is known for its ability to stimulate precocious tooth eruption and eyelid opening 

in newborn mice (Cohen 1962), skin development in fetal lambs (Wynn et al. 1995) 

and lung maturation in fetal rabbits (Catterton et al. 1979). Moreover, EGF has been 

shown to have several functions in the bone cells such as stimulation of the osteoblast 

proliferation (Ng et al. 1983) or inhibition of collagen production (Hata et al. 1984). 

 

Transgenic mice overexpressing EGF under the control of the human insulin promoter 

exhibited significant morphological changes within their pancreata (Krakowski et al. 

1999). The pancreatic islets of these animals were larger than the islets of their non-

transgenic littermates. Furthermore, a significant fibrosis around the islets was observed 

in the pancreas of transgenic animals. Treatment with EGF has been shown to stimulate 

the human adult pancreatic duct cells to expand and transdifferentiate (Rescan et al. 

2005). Adult human duct cells employed for this study exhibited an increased activation 

of ErbB1 and ErbB2 receptors, followed by elevated proliferation of a particular 

fraction of the pancreatic duct cells. The authors (Rescan et al. 2005) suggested a 

possible role of EGF in converting pancreatic duct cells into insulin producing cells in 

diabetic patients. Moreover, EGF has been postulated to stimulate β-cell differentiation 

and islet neogenesis regulation during the pancreas development (Yasuda et al. 2007). 

EGF has been also shown to have a positive effect on glucose metabolism in diabetic 

animals (Suarez-Pinzon & Rabinovitch 2008; Lim et al. 2009) increasing the insulin 

secretion and reducing the glucose levels. However, some other studies did not support 

this theory, postulating that EGF was not able to modulate the plasma insulin content 

after glucose administration (Jansen et al. 2006). 
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2.1.2.3 Epigen (EPGN) 

 

Epigen, a novel member of the EGFR family, was first described in mouse 

keratinocytes (Strachan et al. 2001). EPGN has a restricted tissue distribution; it is 

present in heart, liver and testis (Strachan et al. 2001). Moreover, EPGN is expressed in 

the inner and outer root sheath of hair follicles in newborn mouse skin (Kochupurakkal 

et al. 2005). So far, the function of epigen in the pancreas has not been investigated. 

 

In the epithelial cells, epigen stimulates the phosphorylation of the EGFR and MAPK 

kinase proteins (Strachan et al. 2001). Although the binding affinity of EPGN to 

receptor is 100-fold lower than receptor binding affinity of EGF, its mitogenic potency 

is significantly higher (Kochupurakkal et al. 2005). These authors suggested that the 

low affinity of the ligand to the receptor may elicit such a potent response because of 

ineffective internalization and recycling of the ligand-receptor complex. 

 

Recently, a transgenic mouse model with ubiquitously expression of epigen has been 

generated by Dahlhoff and colleagues (Dahlhoff et al. 2009). The transgenic mice were 

characterized by visibly reduced body size and impaired development of the first coat. 

Histological examination revealed extraordinarily enlarged sebaceous glands in the skin 

of EPGN-transgenic mice, suggesting a function of the EGFR pathways in the 

proliferation and/or differentiation of sebocytes. 

 

2.1.2.4 Epiregulin (EREG) 

 

Epiregulin was identified as a growth inhibitory factor from the conditioned medium of 

the fibroblast tumor cell line NIH-3T3 (Toyoda et al. 1995). This protein consists of 46 

amino-acid residues and exhibits a dual biological activity, resembling in this regard 

AREG. On the one hand, it stimulates the proliferation of fibroblasts, hepatocytes, 

smooth muscle cells and keratinocytes (Shirakata et al. 2000; Takahashi et al. 2003). 

On the other hand, it inhibits the growth of several tumor-derived epithelial cell lines 

(Lee et al. 2004). EREG was found to be an autocrine growth factor in relatively low 

levels in the human keratinocytes and in tissue-resident macrophages (Shirasawa et al. 

2004). Mice lacking epiregulin showed chronic dermatitis in the ear, face and neck area 

(Shirasawa et al. 2004). The authors demonstrated that epiregulin is a crucial molecule 
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for the regulation of IL-18 mRNA expression in keratinocytes. In contrast, Lee et al. 

reported that an independent line of EREG knockout mice did not display any abnormal 

phenotype (Lee et al. 2004) postulating that loss of epiregulin could be compensated by 

other EGFR ligands. Epiregulin as appears also to be an important factor in the female 

reproduction (Park et al. 2004) and liver regeneration (Toyoda et al. 1995). 

Investigations using insulinoma cell lines suggested that epiregulin may be a growth 

and insulinotropic factor in pancreatic β-cells (Kuntz et al. 2005). Treatment of rat 

insulinoma cell lines with epiregulin resulted in increased proliferation of these cells 

and elevated insulin production (Kuntz et al. 2005). 

Interestingly, overexpression of epiregulin is often correlated with pancreas and 

prostate cancer development (Torring et al. 2000; Zhu et al. 2000). 

 

2.1.2.5 Heparin-binding EGF-like growth factor (HBEGF) 

 

HB-EGF was first described as a heparin binding mitogen in fibroblasts and smooth 

muscle cells (Besner et al. 1990; Higashiyama et al. 1991). HB-EGF is also present in 

the wound fluid, skin, lung and heart (Vaughan et al. 1992a; Vaughan et al. 1992b). 

The presence of HB-EGF have been confirmed both in the normal islets of Langerhans 

(Kaneto et al. 1997) and in the pancreatic cancer cells (Kobrin et al. 1994). Moreover, 

presence of HB-EGF in the duct cells of fetal and neonatal rat pancreas suggests a 

possible involvement of this protein in pancreas development (Kaneto et al. 1997). 

 

Regenerative and therapeutic effects of HB-EGF on pancreatic β-cells have been 

postulated by Kozawa et al. using a diabetic mouse model (Kozawa et al. 2005). 

Results of this study demonstrated that treatment of a diabetic mouse with HB-EGF 

stimulated proliferation and differentiation of pre-existing β-cells leading to an increase 

in β-cell mass and improvement of glucose metabolism. However, overexpression of 

this growth factor in pancreas has been shown to promote pancreas cancer (Ito et al. 

2001; Hurtado et al. 2007), fibrosis and epithelial metaplasia (Means et al. 2003). 

 

HB-EGF was detected also in the epithelial cells of hair follicle (Rittie et al. 2007). 

Furthermore, its expression in the advancing epithelial margin and islands of 

regenerating epithelium within burn wounds suggests a role for this protein in wound 

healing (Marikovsky et al. 1993). Deletion of the HB-EGF gene resulted in early 
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postnatal mortality because of defected cardiac chamber dilation and heart valve 

malformation (Yamazaki et al. 2003), hypetrophic cardiomiocytes and hypoplastic lung 

(Iwamoto et al. 1999; Jackson et al. 2003). It is the only EGFR ligand whose deficiency 

causes early postnatal mortality. Loss of this ligand has been connected with epidermal 

hyperplasia and impaired differentiation of keratinocytes. For instance, keratinocyte-

specific HB-EGF-deficient mice were characterized by decreased wound closure ability 

(Shirakata et al. 2005). 

 

2.1.2.6 Transforming-Growth-Factor- α (TGFA) 

 

TGFA was initially identified in medium conditioned by retrovirus transformed rodent 

cells (Ozanne et al. 1980; Twardzik et al. 1982; Marquardt et al. 1983). This growth 

factor is also expressed in epidermis and hair follicle. Moreover, TGFA mRNA has 

been detected in the preimplantation mouse embryos (Rappolee et al. 1988), in the 

anterior pituitary (Samsoondar et al. 1986), skin keratinocytes (Coffey, Jr. et al. 1987) 

and brain (Wilcox & Derynck 1988). Also, presence of the TGFA in the fetal and 

neonatal upper digestive tract and pancreas suggests a possible functional role of this 

protein in the growth and development of these organs (Hormi et al. 1995). 

 

Overexpression of TGFA under control of the elastase promoter in transgenic mice has 

been shown to cause serious alterations in the growth and differentiation of several 

adult organs (Sandgren et al. 1990). In these animals the relative weight of the 

coagulation gland, colon, small intestine, liver and pancreas was increased by up to 

3-fold. However, the average body weight of transgenic mice was significantly 

decreased. Despite these changes, there was no evidence for endocrine pancreatic 

dysfunction. Wagner et al. reported that ubiquitous TGFA overexpression in mouse 

pancreas caused the development of cancer similar to the human disease (Wagner et al. 

2002). Mitogenic properties of TGFA have been shown in different studies using a 

transgenic mouse model with overexpression of this growth factor. For instance, 

Jhappan et al. demonstrated liver neoplasia and abnormal development of pancreas in 

TGFA transgenic mice (Jhappan et al. 1990). Also, Sandgren et al. presented the 

upregulated TGFA as an impotrant factor enhancing growth and development of 

pancreas and liver cancers in the transgenic mouse model (Sandgren et al. 1993). 
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Deficits in the expression of TGFA lead to phenotype forms including wavy hairs, 

curly whiskers and altered hair follicle structure (Luetteke et al. 1993; Mann et al. 

1993). TGFA is implicated in wound healing (Schultz et al. 1987), cell migration 

(Barrandon & Green 1987) and bone resorption (Stern et al. 1985). In addition, it has 

been demonstrated that also uncleaved, membrane spanning form of this ligand can 

initiate signal transduction through EGFR on the surface of the contiguous cells in vitro 

(Brachmann et al. 1989; Wong et al. 1989). 
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2.1.3 Betacellulin 

 

2.1.3.1 Structure of betacellulin 

 

Betacellulin is a 32-kilodalton polypeptide growth factor, originally isolated from the 

conditioned medium of a mouse pancreatic tumor β-cell line, βTC3 (Shing et al. 1993). 

BTC is a glycoprotein composed of 80 residues, synthesized as a membrane-spanning 

precursor with 177 amino acids (Figure C). In this form pre-BTC is composed of an 

extracellular part, a transmembrane part and a cytoplasmic part. The extracellular part 

contains a signal peptide for the localization to the secretory pathway and EGF-like 

domain including six cysteine residues forming three characteristic disulfide bonds. In 

EGFR ligands, these intermolecular loops are necessary for recognizing and binding of 

the ligand to the receptor (Carpenter & Cohen 1990). 
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Figure C Structure of a mature human betacellulin. A, B, C disulfide loops within the 
EGF-like domain. 
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A single copy gene for mouse BTC maps to chromosome 5 whereas the human 

betacellulin gene is localized on the chromosome 4 (Pathak et al. 1995). The human and 

bovine precursor BTC share 88% sequence identity, bovine and mouse precursors are 

79% identical, while identity between sequences of human and mouse pre-BTC reaches 

74% (Dunbar & Goddard 2000). The mature form of human betacellulin is released 

after proteolytical cleavage of the precursor protein between Ala31 and Asp32, as well 

as between Y111 and L112 (Shing et al. 1993; Dunbar et al. 1999). This growth factor 

exhibits the strongest affinity to ErbB1 receptor, but it can also bind to receptor dimers 

containing ErbB4. Moreover, the ability of betacellulin to recognize and activate the 

highly oncogenic receptor dimer ErbB2/ErbB3 has been demonstrated (Alimandi et al. 

1997). 

 

2.1.3.2 Expression of betacellulin 

 

Betacellulin is predominantly expressed in pancreas, liver, kidney and small intestine, 

but also in heart, lung, testis, ovary and colon. BTC is also present in various body 

fluids, including milk (Dunbar et al. 1999), suggesting that its absorption trough the 

small intestine influences the neonatal development and that BTC might be an 

important factor for growth and development of various neonatal organs including the 

pancreas. Investigations on fetal and neonatal pancreas demonstrated betacellulin to be 

localized to the primitive duct cells in fetal pancreas and to some islet cell populations 

associated with insulin producing cells (Miyagawa et al. 1999). This growth factor was 

able to stimulate the proliferation of fetal pancreatic epithelial cells and to promote 

growth, differentiation and survival of these cells (Seno et al. 1996; Miyagawa et al. 

1999).  

Betacellulin has been also found in tumor cells, such as mouse sarcoma 180 and 

fibrosarcoma BPV-11 cell lines, also in human breast adenocarcinoma MCF-7 cells 

(Sasada et al. 1993). 
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2.1.3.3 Functions of betacellulin in the endocrine pancreas 

 

Several in vitro and in vivo studies showed a positive impact of BTC on β-cell 

differentiation and insulin production (Watada et al. 1996; Huotari et al. 1998; 

Mashima et al. 1999; Yasuda et al. 2007). Human embryonic stem cells have a very 

wide replication capacity; therefore they could be an efficient and renewable source of 

insulin-producing cells (Demeterco et al. 2000). The treatment of human ES cells with 

betacellulin and nicotinamide has been demonstrated to sustain the expression of PDX1, 

a transcription factor necessary for pancreatic development and β-cell maturation, and 

to induce β-cell differentiation (Cho et al. 2008). Results of several other studies also 

suggest that BTC may modify the activity of several transcriptions factors, known for 

their negative impact on insulin production, and support the activity of the PDX1 gene 

promoter (Watada et al. 1996). One possible explanation of this phenomenon could be 

that BTC causes the demethylation of chromosomal DNA to release the insulin gene 

promoter from inactivation (Watada et al. 1996). 

 

Other in vitro researches showed that the activity of BTC could be intensified in the 

presence of activin A, a member of transforming growth factors-β family of cytokines 

(Mashima et al. 1996; Demeterco et al. 2000). Activin A induces endocrine 

differentiation, whereas BTC shows a mitogenic impact on undifferentiated pancreatic 

epithelial cells (Demeterco et al. 2000). This growth factor has also the ability to 

support betacellulin in converting multipotent pancreatic AR42J cells into pancreatic 

neuroendocrine cells (Mashima et al. 1996). Moreover, studies using a rat fetal pancreas 

cell line indicated the involvement of betacellulin and activin A in the inhibition of 

β-cell division and increase of β-cell volume during pancreas development (Demeterco 

et al. 2000; Yasuda et al. 2007). 

 

Furthermore, application of betacellulin inhibited the expression of amylase and 

glucagon, and elevated the expression of insulin and ghrelin in an in vitro model of 

murine embryonic pancreas (Thowfeequ et al. 2007). However, there is a single study 

not supporting the concept that betacellulin has a significant effect in the improvement 

of glucose metabolism (Sjoholm & Kindmark 1999). 
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Beta-cell regeneration occurs through both increasing the replication of pre-existing 

β-cells and neogenesis from the precursor cells located in the pancreatic duct (Bonner-

Weir et al. 1981; Dutrillaux et al. 1982). There are many studies showing improvement 

of glucose tolerance after treatment with BTC in animal models of diabetes (Yamamoto 

et al. 2000; Li et al. 2001). Hyperglycemia can be caused by administration of β-cell 

toxins such as streptozotozin or alloxan and by pancreatectomy. BTC was shown to 

promote regeneration and neoformation of β-cells mainly from somatostatin- and 

PDX1- positive cells (Li et al. 2008). Yamamoto and colleagues postulated that rhBTC 

(recombinant human BTC) was able to ameliorate glucose tolerance in the alloxan 

treated diabetic mouse by promoting β-cell differentiation from ductal and acinar cells. 

Indeed, injections of rhBTC significantly improved the glucose tolerance and 

contributed to a significant increase in body weight (Yamamoto et al. 2000). 

Additionally, Shin et al. showed a significantly higher level of serum insulin in diabetic 

mice up to two weeks after rAd-BTC (recombinant adenovirus BTC) treatment, 

indicating a positive impact of betacellulin on β-cell regeneration (Shin et al. 2008). 

Also, it is noteworthy that the delivery of a combination of Neurod and BTC genes to 

the liver induced islet neogenesis and reversed diabetes in STZ-treated diabetic mice 

(Kojima et al. 2003). In another diabetic mouse model, mice previously treated with 

STZ, presented a significantly increase of β-cell number and insulin positive islets after 

BTC application (Li et al. 2003). Here, daily administration of betacellulin significantly 

reduced the plasma glucose levels and elevated the plasma insulin concentrations (Li et 

al. 2003). Glucose tolerance tests confirmed the improvement of glucose homeostasis in 

these animals and additional morphometric analysis showed an increased β-cell mass 

without increasing β-cell size. 

 

Potential functions of betacellulin have been demonstrated also in many other organs. 

For instance, BTC was shown to stimulate the proliferation of both normal mammary 

cells and breast tumor cells (Beerli & Hynes 1996; Daly et al. 1999) and to induce the 

terminal phase of mammary epithelial differentiation and secretion (Alimandi et al. 

1997; Pinkas-Kramarski et al. 1998). Transgenic mice ubiquitously overexpressing 

BTC were characterized by high early postnatal mortality, caused by several defects in 

lung, and reduced body weight (Schneider et al. 2005). Additionally, pathological 

alterations like cataract and bone malformations were observed. The study of Dahlhoff 

et al. described several changes in the intestine of the BTC-transgenic mice. The small 
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intestine of transgenic mice was significantly briefer but simultaneously increased in 

weight. Moreover, BTC has been shown to stimulate the cell proliferation in intestinal 

crypts and to support the survival of nascent adenomas in the Apc+/Min mice (Dahlhoff et 

al. 2008). 

 

Similar to many other ligands of the EGFR family, betacellulin is also involved in 

reproduction. Thus, a function for BTC as a mediator of luteinizing hormone, 

prostaglandin and progesterone receptors has been reported (Park et al. 2004; Ashkenazi 

et al. 2005; Shimada et al. 2006). In addition, the studies of Gratao and colleagues on 

the transgenic mice overexpressing betacellulin did not demonstrate any alterations in 

the uterus and ovaries development but exhibited defects in sexual maturity and 

blastocyst implantation (Gratao et al. 2008). 

 

 

2.2 Animal models of diabetes 

 

2.2.1 Pharmacological and surgical induction of diabetes in different animal 

species 

 

There are two types of diabetes mellitus: type 1 and type 2. Diabetes mellitus type 1 is 

an autoimmune disease that results in destruction of insulin producing β-cells in the 

pancreas. Because of lack of insulin, fasting blood glucose in type 1 diabetic patients 

increases enormous (Eisenbarth 2003). Diabetes mellitus type 2 is predicted on 

alterations and dysfunction of insulin receptors leading to insulin resistance or reduced 

insulin sensitivity (Porte, Jr. 1991). 

 

The most common species used as animal models of diabetes are mice, rats, rabbits and 

recently pigs. These animals are often selected because of easy breeding requirements, 

short generation intervals, large number of progeny and the similarity of their 

morphology and pathology to humans (Huge et al. 1995). Other species like nonhuman 

primates, cats or dogs also exhibit many advantages as animal models of human 

diseases, but because of restricted availability and ethical considerations, they are rather 

seldom used. 
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There are many possibilities to induce diabetes in the healthy organism. The most 

commonly used method is application of β-cell toxins such as streptozotocin and 

alloxan (Portha et al. 1974; Waguri et al. 1997; Li et al. 2003; Pomaro et al. 2005). 

These substances can be administrated intraperitoneally, intravenously, subcutaneously 

or orally, depending on the species and aim of investigation. Perfusion of alloxan causes 

destruction of β-cells only in the particular segment of the pancreas, while β-cells in the 

non-perfused segment remain intact. Therefore, this diabetes model allows to clarify, for 

instance, the process of β-cell regeneration from the ductal pancreatic epithelium 

(Yamamoto et al. 2000). Streptozotocin, in contrast, destroys all β-cells in the pancreas 

of the treated animal (Li et al. 2003). 

 

Another method to generate an animal model of diabetes is pancreatectomy, the surgical 

removal of a part or of the whole pancreas (Stump et al. 1988; Li et al. 2001; Kobayashi 

et al. 2004). In this way type 1 diabetes can be induced. However, this technique is 

applied mostly in the large animal models, particularly in the swine. 

 

Because of the similarity of human type 2 diabetes to cat type 2 diabetes mellitus, cats 

have often been used to investigate the insulin resistance (Henson & O'Brien 2006; 

Hoenig 2006). Results of such studies showed that a high supply of glucose had the 

highest impact on β-cell dysfunction. So, it is possible to induce diabetes mellitus using 

only the phenomenon of glucotoxicity on the pancreatic cells (Zini et al. 2009). 

 

2.2.1.1 Mouse 

 

The most common and applied method to induce diabetes in the mouse is infusion of 

alloxan or streptozotocin (Boquist 1977; Boquist & Lorentzon 1980; Leiter et al. 1983; 

Zhao et al. 2005). In addition, the Cre-loxP-mediated gene recombination has been 

applied in order to investigate the role of insulin signaling (Bruning et al. 1998; Michael 

et al. 2000). Dysfunction of major insulin receptors in the target tissues, skeletal muscle, 

resulted in hypertriglyceridemia, however, the glucose metabolism was not impaired 

(Bruning et al. 1998; Michael et al. 2000). Furthermore, obese and leptin-deficient 

(ob/ob) mice are widely employed as mouse models of type 2 diabetes mellitus 

(Coleman 1982; Drel et al. 2006). The lack of leptin, a hormone necessary for the 

appetite regulation, causes uncontrolled food intake and massive obesity in ob/ob mice. 
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Consequently, these mutant mice display several symptoms of type 2 diabetes mellitus 

(Coleman 1982; Drel et al. 2006). 

 

Since 1980, non-obese diabetic mice (NOD) have been employed as a useful animal 

model of type 1 diabetes mellitus. These mice are distinguished by high incidence of 

spontaneous diabetes, resulting from insulitis, what means infiltration and destruction of 

pancreatic cells by the own immune system, particularly by CD4+ and CD8+ T cells 

(Anderson & Bluestone 2005). 

 

A monogenic diabetic mouse model, called Akita mouse, has been established by 

Yoshioka and colleagues (Yoshioka et al. 1997). This diabetic mouse model, 

characterized by early onset, an autosomal dominant mode of inheritance and primary 

dysfunction of β-cells, resembles human maturity onset diabetes of the young (MODY) 

and was employed in different studies to investigante the background of this disease 

(Wang et al. 1999; Izumi et al. 2003). Hyperglycemia in the Akita mice is caused by 

mutation in the insulin 2 gene leading to disruption of an intramolecular disulfide bond 

(Wang et al. 1999). Importantly, Akita mice do not exhibit either obesity or insulitis. 

 

Another diabetic mutant mouse model has been generated using N-ethyl-N-nitrosourea 

(ENU) (Herbach et al. 2007). The Munich Ins2C95Smutant mice exhibited a thymine to 

adenine transversion in the insulin 2 gene at nucleotide position 1903 in exon 3. 

Heterozygous mutant mice demonstrated a significant lower serum insulin level, 

pancreatic insulin content and homeostasis model assasment (HOME), as compared 

with their wild-tipe littermates. 

 

2.2.1.2 Rat 

 

Similar to mice, diabetic rats can be generated by administration of streptozotocin and 

alloxan or through a pancreatectomy. It has been reported that injection of STZ in the 

neonatal rats caused destruction of the most islets and provided an useful model for 

diabetes mellitus (Cantenys et al. 1981; Dutrillaux et al. 1982; Wang et al. 1994). 

Streptozotocin has also been employed as a diabetes-inducing agent in order to 

investigate the structure and functional alteration of the insulin receptor (Kergoat et al. 

1988). In this study, rats with non-insulin-dependent diabetes were employed to 
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demonstrate the lack of significant changes in the insulin receptor autophosphorylation 

between diabetic and healthy animals. 

 

Pancreatectomy is a method of induction of experimental diabetes in the rat as well (Liu 

et al. 2000; Delghingaro-Augusto et al. 2009). Additionally, Goto-Kakizaki rats are also 

useful as animal models of diabetes. Due to defects in the glucose- stimulated insulin 

secretion, Goto-Kakizaki rats spontaneously develop peripheral insulin resistance, 

hyperinsulinemia, and hyperglycemia, observable already 4 weeks after birth. 

Therefore, this model provides a valuable tool for dissecting the pathogenesis of the 

insulin resistance (Chen & Ostenson 2005; Kindel et al. 2009; Matsumoto et al. 2009). 

 

2.2.1.3 Rabbit 

 

Rabbits are also often used as experimental animals for diabetes mellitus. In the most 

studies, diabetes has been induced by administration of the β-cell toxins STZ and 

alloxan (Ragazzi et al. 2002; Choi et al. 2003; Pomaro et al. 2005; Eller et al. 2006; 

Breen et al. 2008; Habibuddin et al. 2008). Nevertheless, surgical techniques in the 

creation of diabetes in rabbits are sometimes employed (Lasserre et al. 2000; Catala et 

al. 2001). 

The experimental rabbits manifested disturbances in the glucose metabolism and 

thereby they could be employed to test new therapy methods of disorders connected 

with diabetes mellitus, like arrhythmias (Zhang et al. 2007), impaired wound healing 

(Breen et al. 2008) or nephropathies (Mumtaz et al. 2004; Mir & Darzi 2009). 

 

2.2.1.4 Pig 

 

While the rodent models are appropriated for answering basic questions of β-cell 

pathophysiology, translational studies, particularly regarding islet transplantations, 

would greatly benefit from large animal models. Pigs seem to be the best candidates for 

this role: they are readily available and produce a large amount of progeny. Also, 

similarities to humans in nutrition, pancreas development and morphology, and 

metabolism make the swine an interesting and useful model for the study of diabetes 

(Huge et al. 1995). 
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Induction of insulin-dependent diabetes in pigs has been achieved by use of 

streptozotocin and alloxan (Marshall 1979; Gabel et al. 1985; Grussner et al. 1993; 

Dixon et al. 1999; Larsen et al. 2002; Larsen et al. 2006; Velander et al. 2008). The 

intravenous administration of 200 mg/kg STZ in Yucatan mini-pigs induced diabetes 

with high mortality as a consequence of massive β-cell destruction (Phillips et al. 1980). 

A mild diabetes mellitus in Göttingen mini-pigs has been reported to originate by 

injection of 80 mg/kg STZ (Kjems et al. 2001). 

 

In humans a 20-30% reduction of β-cell mass leads to an increase of the fasting glucose 

level and abnormalities in the glucose metabolism (Kendall et al. 1990). Similar 

changes are able to be induced in animals using pancreatectomy. Therefore pigs serve as 

an especially appropriate species for such studies. Nevertheless, to induce significant 

hyperglycemia and alterations comparable to humans, it is necessary to remove 80% of 

the porcine pancreas, while a 40% pancreatectomy results only in mild changes (Lohr et 

al. 1989). Several studies described a swine model of diabetes created by a complete 

pancreatectomy (Stump et al. 1988; Kobayashi et al. 2004). The treated animals 

exhibited abnormalities like an increase of the fasting glucose level, decrease of insulin 

secretion, athrophy of hepatocytes and decreased glycogen storage in the liver. These 

findings allow the use of total pancreatectomized pigs to investigate the complications 

of diabetes. 

 

An important aspect supporting the employment of pigs as experimental animals is the 

possibility to obtain insulin-producing tissue from these animals for transplantation 

purposes. Allotransplantations, moving the pancreatic islets from one organism to 

another of the same species, became a useful therapy method against type 1 diabetes 

mellitus. Unfortunately, in humans the discrepancy between the number of recipients 

and the number of donors of pancreatic islets restricts the usage of this therapy in 

clinical practice on a large scale (Shapiro et al. 2000; Shapiro et al. 2006). Therefore, 

pigs might represent a possible source of insulin-producing tissue for transplantations 

into humans (Prabhakaran & Hering 2008). So far, experiments of transplantation of 

pancreatic islets from pigs into rats (Rogers et al. 2006), mice (Wu et al. 2000), dogs 

(Abalovich et al. 2009) or non-human primates(Hering et al. 2006; Dufrane & Gianello 

2008) have been performed. The results of these studies indicate an improved glucose 
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metabolism in the recipient organisms; however, rejection of the xenografts still 

remains the major problem of this therapy. 

 

2.2.1.5 Non-human primates 

 

Reflecting their close phylogenetic relationship with humans (Lu et al. 2008), metabolic 

and hormonal alterations in monkeys seem to be similar to those in humans. Therefore, 

primates would be an excellent animal model of different pathological abnormalities. 

Diabetes mellitus can be initiated in monkeys also by administration of streptozotocin 

or alloxan (Gibbs et al. 1966; Dufrane et al. 2006; Zou et al. 2006), and through a 

partial and total pancreatectomy as well (Qiao et al. 2009). Several studies performed 

on monkeys pointed to an analog glucose metabolism of these animals to humans. Thus, 

50 mg/kg streptozotocin appeared to be the optimal dose to increase the fasting and 

non-fasting blood glucose up to 6-fold and to generate a stable non-human primate 

model with all typical patterns of type 1 diabetes mellitus (Dufrane et al. 2006; Rood et 

al. 2006). 

 

2.2.1.6 Dog and cat 

 

Companion animals such as dogs and cats share the same living environment as humans 

and are exposed to similar illness agents (Kooistra et al. 2009). Feline diabetes mellitus 

closely resembles human type 2 diabetes mellitus (Henson & O'Brien 2006; Kooistra et 

al. 2009), whereas canine diabetes exhibits similarities to human type 1 diabetes 

mellitus (Catchpole et al. 2008). Clinical studies have shown that both living style and 

genetic predispositions are important factors causing diabetes mellitus in cats. 

Moreover, analog to humans, age and obesity were found to be the most important risk 

factors for diabetes in cats (Panciera et al. 1990). 

 

Diabetes in dogs and cats can also be induced by injection of streptozotocin or alloxan 

(Nelson et al. 1990; Anderson et al. 1993) and through pancreatectomy as well (Gupta 

et al. 2002). In the canine diabetes model, the portal insulin levels have been shown to 

determine the suppression of the hepatic glucose production and inhibition of the 

precursors for gluconeogenesis (Fisher et al. 1996; Giacca et al. 1999; Gupta et al. 
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2002). Moreover, a canine model of diabetes has been employed for auto- and xeno-

transplantation experiments (Stagner et al. 2007). 

 

2.2.2 Genetically modified mice in diabetic research 

 

2.2.2.1 Knockout mouse models 

 

Another possibility to investigate the influence of different molecules on β-cells is 

transgenic technology, the mouse being the most frequently employed specie. 

Especially useful are modifications within insulin (Esposito et al. 2003; Yang & Chen 

2009) and leptin receptors (Chen et al. 1996) or a total knockout of genes encoding 

these receptors (Accili et al. 1996; Joshi et al. 1996; Jackerott et al. 2002). Targeted 

disruption of the insulin receptor leads to the development of several metabolic 

disorders including diabetes mellitus (Taylor et al. 1991; Esposito et al. 2003). Mice 

homozygous for a null allele of the insulin receptor gene are born apparently without 

any developmental alterations. However, shortly after birth, the homozygous knockouts 

exhibit a massive hyperglycaemia and hyperketonaemia leading to death due to 

ketoacidosis within 72 hours (Accili et al. 1996). Moreover, a total absence of the 

insulin receptor in the homozygous animals resulted in other metabolic disorders like 

skeletal muscle hypotrophy, increase of the plasma triglyceride level and fatty 

infiltration of the liver (Joshi et al. 1996). Nevertheless, heterozygous mice, lacking 

only one allele of the insulin receptor gene did not develop any metabolic alterations, as 

indicated in the glucose tolerance tests (Joshi et al. 1996). 

 

A proper regulation of the β-cell function depends on cross-talk between leptin and 

insulin signaling pathways (Morioka et al. 2007). Depending on the employed 

transgenic strategy for the creation of a leptin receptor knockout mouse model, the 

influence on glucose metabolism can be different. For instance, knockout mice lacking a 

functional leptin receptor within pancreatic β-cells and hypothalamus developed 

obesity, fasting hypereinsulinemia, impaired glucose-stimulated insulin release and 

glucose intolerance (Covey et al. 2006). Mice lacking the leptin receptor only within 

pancreatic β-cells did not manifest any alterations in insulin sensitivity but exhibited 

improved glucose tolerance due to enhanced insulin secretion which was consistent with 

a lack of tonic inhibitory action of leptin on β cell secretion (Morioka et al. 2007). 
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One of the most important transcription factors for development of the pancreas and 

other foregut structures is pancreatic duodenal homeobox factor-1 (Pdx-1) (Offield et al. 

1996). Knockout mice lacking the Pdx-1 gene exhibit pancreatic agenesis and 

congenital diabetes (Stoffers et al. 1997; Edlund 2001; Johnson et al. 2003). Transgenic 

mice with a haploid deficiency of Pdx-1 demonstrated an impaired glucose metabolism, 

reduced insulin release and β-cell proliferation (Johnson et al. 2003), confirming the 

function of Pdx-1 as a mediator in the glucose-stimulated insulin gene transcription 

(Marshak et al. 1996). 

 

Also the loss of another transcription factor, hepatocyte nuclear factor-1α (HNF-1α), 

leads to body weight reduction and to defective insulin secretory response to glucose 

and arginine in a transgenic mouse model (Fajans et al. 2001). Disruption of this gene in 

mice caused a phenotype similar to one of the six known genetic forms of maturity 

onset diabetes in the young (MODY), namely MODY-3. Due to such investigations, the 

involvement of HNF-1α in the regulation of β-cell differentiation and β-cell mass has 

been uncovered. 

 

Signal transducer and activator of transcription 3 (STAT3) deficient mice have been 

generated in order to investigate the function of this ubiquitous transcription factor on 

the postnatal glucose homeostasis (Cui et al. 2004). This study revealed the 

development of diabetes mellitus, including body weight reduction, hyperglycaemia and 

hyperinsulinemia, in mice lacking STAT3 within hypothalamus and pancreatic β-cells 

(Cui et al. 2004). 

 

Studies investigating mouse models with a dysfunction of either cyclin D or partner 

cyclin-dependent protein kinase (Cdk) demonstrated an important role of these 

molecules for a proper β-cells proliferation and insulin synthesis (Rane & Reddy 2000; 

Georgia & Bhushan 2004). Cyclin D2-/- mice exhibited insulin-deficient diabetes caused 

by reduced postnatal α- and β-cell replication. Cdk-4-/- mice showed abnormalities 

similar to cyclin D2-deficient mice; in addition, the body weight of the knockout 

animals was 40% lower than wild-type controls (Martin et al. 2003). 
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Glucokinase (GLK) is a member of the hexokinase family and responsible for the 

phosphorylation of glucose to glucose-6-phosphate. This serves as a glucose-sensing 

mechanism for regulation of the insulin secretion in the pancreatic β-cells (Meglasson & 

Matschinsky 1986). Knockout mouse models confirmed a crucial role of glucokinase in 

the glucose metabolism. GLK-deficient mice generated by Grupe and colleagues 

showed massive hyperglycaemia and hyperacidemia, and died during the first five days 

after birth (Grupe et al. 1995). Nevertheless, mice with one functioning GLK allele 

developed only mild diabetes, comparable to MODY in humans (Grupe et al. 1995). 

 

2.2.2.2 Transgenic mouse models 

 

Transgenesis became a widespread strategy to create appropriate animal models for 

investigations on diabetes mellitus and for developing possible therapy methods. An 

important aspect in the generation of transgenic mouse lines is selection of an adequate 

promoter to control the expression of the transgene. 

The most commonly used promoter in diabetes research is the insulin promoter. In 

different studies rat, mouse, porcine or human insulin promoters have been applied to 

induce diabetes in the transgenic mouse models (Inada et al. 2004; Anneren et al. 2007; 

Hara et al. 2007; Watanabe et al. 2007). 

 

The employment of transgenic mice overexpressing hormones (Davani et al. 2004), 

tyrosine kinases (Anneren et al. 2007), transcription factors (Jackerott et al. 2006) or 

enzymes (Kebede et al. 2008) supported investigations concerning the function of these 

molecules in the development of diabetes. For instance, expression of a dominant 

negative glucose-dependent insulinotropic polypeptide receptor (GIPRdn) under the 

control of the rat proinsulin gene promoter induced diabetes mellitus in transgenic mice 

(Herbach et al. 2005). Also Kebede and colleagues showed that overexpression of 

fructose-1,6-bisphosphatase, a gluconeogenic enzyme upregulated in the pancreatic 

islets, under the rat insulin promoter contributed to insulin secretory dysfunction, 

increase of the serum glucose level and finally to the development of type 2 diabetes 

mellitus (Kebede et al. 2008). 
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A proper function of signal transducers and activators of transcription (STAT) proteins 

has been shown to be crucial for an adequate prenatal development (Cui et al. 2004; 

Yashpal et al. 2004). The rat insulin promoter has been employed to control the 

transcription of a dominant-negative and a constitutive active mutant form of the 

STAT5 gene (Jackerott et al. 2006). Due to these investigations, a role for STAT5 in 

glucose homeostasis has been uncovered. 

 

Furthermore, the employment of a rat insulin promoter confirmed the diabetogenic role 

of glucocorticoids (Davani et al. 2004). Mice overexpressing the rat glucocorticoid 

receptor under the control of the rat insulin promoter showed an inhibited insulin 

secretion, hyperglycaemia and impaired glucose tolerance (Davani et al. 2004). 

 

However, the rat insulin promoter is not the only one used in the diabetes research. 

Hara et al. employed a mouse insulin promoter causing the overexpression of the 

hepatocyte nuclear factor-6 and detected a significant loss of β-cell mass in transgenic 

mice (Hara et al. 2007). A diabetic mouse model has also been generated using a mutant 

form of the hepatocyte nuclear factor-1α regulated by the porcine insulin promoter 

(Watanabe et al. 2007). Results of this study indicated that expression of the transgene 

driven by the porcine insulin promoter induced a decrease in body weight, disturbed 

islet neogenesis and impaired insulin secretion in transgenic mice (Watanabe et al. 

2007). 

 

Insulin promoters have also often been applied to regulate the expression of molecules 

known to ameliorate the diabetic phenotype in mice. Miyawaki and colleagues 

demonstrated that overexpression of a cyclin-dependent kinase 4 in β-cells under the 

control of the human insulin promoter (HIP) led to glycaemic normalization and to 

improved plasma lipid concentration in transgenic, obese and insulin resistant db/db 

mice (Miyawaki et al. 2008). Moreover, a human insulin promoter has been useful for 

investigations on potentially protective impact of a programmed death-1 ligand (PD-L1) 

against autoimmune diabetes (Wang et al. 2008). In this study a human insulin promoter 

regulated the overexpression of PD-L1 in the pancreatic β-cells in the non-obese 

diabetic (NOD) mice. The proliferation rate of diabetogenic T-cells in the transgenic 

NOD mice was significantly reduced. Furthermore, a diabetic phenotype appeared in 

the transgenic animals significantly slower than in the control NOD mice. 
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A significant improvement of the glucose metabolism has been observed in transgenic 

mice expressing the hepatocyte growth factor in β-cells under the control of the rat 

insulin promoter (Garcia-Ocana et al. 2001). These animals exhibited an increased islet 

size and islet number, as well as insulin-mediated hypoglycaemia, suggesting a positive 

impact of this growth factor on the endocrine pancreas (Garcia-Ocana et al. 2001). 

 

Although the insulin promoter is the most frequently used in the research on glucose 

metabolism, there are also some studies employing a promoter sequence of the mouse 

metallothinein-I gene (Portanova et al. 1990; Robertson et al. 2008). Overexpression of 

both the insulin-like growth factor I (IGF-I) (Robertson et al. 2008) and the human 

growth factor (hGH) (Portanova et al. 1990) in transgenic animals resulted in body 

weight reduction, significant hypoglycaemia and elevated glucose metabolism. 

However, the widespread expression of the transgene in these mouse models can be a 

complicating factor for the interpretation of the results. 

 

A new mouse model, introduced in the following study, provides a possibility to achive 

β-cell-specific expression of different gene products and to investigate potential effects 

of these products in new therapies against diabetes mellitus. 
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Abstract 

 

 

The availability of regulatory sequences directing tissue-specific expression of 

transgenes in genetically modified mice and large animals is a prerequisite for the 

development of adequate models for human diseases. The rat insulin 2 gene (Ins2) 

promoter, widely used to achieve transgene expression in pancreatic β-cells of mice, 

also directs expression to extrapancreatic tissues and performs poorly in isolated 

pancreatic islets of human, mouse, and pig. To evaluate whether the full 5’ untranslated 

region (UTR) of the porcine insulin gene (INS) confers robust and specific expression 

in β-cells we generated an expression cassette containing 1500 bp of the porcine INS 5’ 

UTR and the 3’ UTR of the bovine growth hormone gene (GH). The cassette was 

designed to allow easy exchange of the sequences to be expressed and easy removal of 

the vector backbone from the expression cassette. To evaluate the properties of the 

cassette, we initially inserted a cDNA encoding human betacellulin, a growth factor 

known to affect structural and functional parameters of β-cells. After confirming the 

functionality and specificity of the construct in vitro, transgenic mouse lines were 

generated by pronuclear DNA microinjection. Using RT-PCR, immunohistochemistry 

and immunofluorescence, we show that transgenic mice expressed human betacellulin 

exclusively in β-cells. Confirming the proposed insulinotropic effect of betacellulin, 

transgenic mice showed improved glucose tolerance. We conclude that the newly 

designed expression cassette containing 1.500 bp of the porcine insulin promoter 5’ 

UTR confers robust and specific transgene expression to β-cells in vitro and in 

transgenic mice. 

 

Keywords: porcine insulin promoter, transgenic mice, betacellulin, EGFR, glucose 

tolerance test. 
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1 Introduction  

 

 

Genetically modified mice greatly contributed to advance our understanding of the 

physiology and pathology of the endocrine pancreas. A key component of this 

technology is the targeted expression of gene products in specific cell types of the 

pancreatic islets. The rat (Hanahan 1985; Dahl et al. 1996; Vasavada et al. 1996), 

mouse (Hara et al. 2003), and human (Hotta et al. 1998; Krakowski et al. 1999) insulin 

promoters have been frequently used to direct expression of oncogenes, hormones, 

growth factors, transcription factors, reporter genes, and more recently of the enzyme 

Cre recombinase (Ahlgren et al. 1998; Postic et al. 1999; Gannon et al. 2000; Dor et al. 

2004) specifically to pancreatic β-cells in transgenic mice. A major caveat of the rat 

insulin promoter, however, is the reported ectopic expression in certain areas of the 

brain, potentially resulting in phenotypes in both β-cells and neural cells (Gannon et al. 

2000; Martin et al. 2003). 

 

While the mouse model is appropriate for answering basic questions of β-cell 

pathophysiology, translational studies, particularly regarding islet transplantation, 

would greatly benefit from large animal models. Pigs seem to be the best candidates for 

this purpose: they are readily available, produce a large progeny, and regulate blood 

glucose levels similarly to humans. In addition, porcine neonatal islet cell clusters  

(MacKenzie et al. 2003; Cardona et al. 2006) and islets from adult pigs (Hering et al. 

2006) are an interesting source of insulin-producing tissue for transplantation purposes. 

In this regard, there is an urgent need of genetic tools for the tissue-specific delivery of 

gene products to porcine pancreatic β-cells. Unfortunately, the rat insulin promoter was 

shown to perform very poorly in isolated islets from pigs, humans, and mice (Londrigan 

et al. 2007). The porcine insulin gene (INS) contains three exons and two introns, and 

highly conserved cis-acting elements were identified in the 5’ flanking region (Han & 

Tuch 2001). Recently, a fragment of the porcine INS promoter containing 

approximately 680 bp of the 5’ untranslated region (UTR) was active in a cell type-

specific manner in vitro, but failed to confer expression in transgenic mice (Watanabe et 

al. 2007). Addition of a cytomegalovirus enhancer resulted in transgene expression both 

in vivo and in vitro, but at the expense of cell type specificity (Watanabe et al. 2007). 
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Here, we report that an expression cassette containing 1500 bp of the 5’ UTR from the 

porcine INS gene (including the first exon and the first intron) and the 3’ UTR of the 

bovine growth hormone gene (GH) is efficient to drive transgene expression in a robust 

and specific manner to β-cells in vitro and in transgenic mouse models. To test the 

functionality of the cassette we have chosen the cDNA encoding human betacellulin, a 

ligand of the EGFR (Schneider & Wolf 2009) known to stimulate β-cell differentiation 

in vitro and to improve glucose tolerance in diabetic models and in transgenic mice. 
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2 Material and Methods 

 

 

2.1 Construction of the transgene 

A ~1500-bp fragment of the 5’ flanking region of the porcine insulin gene (INS) was 

amplified by polymerase chain reaction (Expand High FidelityPLUS PCR System, Roche 

Diagnostics, Mannheim, Germany) using the sense primer (SalI restriction site 

underlined) 5’-TGT ACT GTC GAC GAG TTC AGC TGA GCT GGC TC-3’ and the 

antisense primer (HindIII restriction site underlined) 5’-CGC TAG AAG CTT TGG 

GGG ACG GGC GGC GTT-3’ (see Figure 1A). Template was a plasmid pGEM+INS 

(Flaswinkel et al., unpublished) containing the whole porcine INS gene. The human (h) 

betacellulin (BTC) cDNA was amplified with the same PCR system employing the pTB 

1560 vector (a gift of Dr. Y. Shing, Children’s Hospital, Boston, MA) as a template and 

the primers (HindIII restriction site underlined) 5’-ACT AAG CTT CAC CCC CCG 

CCA TGG ACC GGG CCG CCC GGT-3’, sense, and (EcoRV restriction site 

underlined, HA-tag in bold) 5’-TAG GAT ATC TTA AGC GTA GTC TGG GAC 

GTC GTA TGG GTA AGC AAT ATT TGT CTC TTC AAT ATC-3’, antisense. 

The PCR products were cloned into the pCRII-TOPO vector (Invitrogen, Carlsbad, CA) 

and Sp6/T7-sequenced to confirm amplification fidelity. The porcine INS promoter 

(PIP) was then subcloned into the SalI and HindIII sites of a pBluescript vector 

(Stratagene, La Jolla, CA) containing the bovine (b) GH 3’ untranslated region and 

polyadenylation signal (pA) within its XbaI and NotI sites (Figure 1B). Next, the BTC 

cDNA was cloned as a HindIII/ EcoRV fragment between PIP and bGHpA (Figure 1B). 

Correct positioning of each element was confirmed by restriction enzyme digests and 

sequencing from the PIP through the hBTC cDNA into the bGHpA using the primer 5’-

CATCTCGGCAGGAGGACGT-3’ (Figure 1A). 

 

2.2 Cell transfection 

All cell culture reagents were purchased from PAA (Pasching, Austria). Immortalized 

mouse hepatocytes (a gift from Dr. D. Accili, Columbia University, NY), human 

embryonal kidney 293 cells (HEK 293), and the MIN-6 mouse pancreatic β-cell line (a 

gift from Dr. J. Miyazaki, Osaka University) were cultured in low glucose (1 g/L) 

DMEM medium with 10% fetal bovine serum. 2x106 cells were transfected either with 

the PIP-hBTC construct or with the pGMAX-GFP vector using the Amaxa Nucleofector 
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system (Lonza, Cologne, Germany). After transfection cells were cultured in high 

glucose medium (4.5 g/L) for 48 hours and harvested for protein isolation. 

 

2.3 Western blot analyses 

Cells were homogenized in lysis buffer (Cell Signaling, Danvers, MA, USA) and 30 µg 

total protein were separated by SDS-PAGE and transferred to PVDF membranes by 

electroblotting. Loading of equal amounts of protein for each sample was verified with 

Ponceau staining. A rabbit antibody that reacts specifically with human BTC (R&D, 

Systems, Wiesbaden, Germany) and a secondary HRP-conjugated goat anti-rabbit-

antibody (Cell Signaling) were employed. Bound antibodies were detected using an 

enhanced chemiluminescence detection reagent (ECL Advance Western Blotting 

detection kit, GE Healthcare) and appropriate x-ray films (GE Healthcare). 

 

2.4 Generation of transgenic mice 

The PIP-hBTC expression cassette was released from the vector backbone by SalI/NotI 

double digestion, purified by agarose gel electrophoresis, diluted to 2 ng/µl in injection 

buffer (Nagy et al. 2003) and employed for pronuclear microinjection into fertilized 

oocytes from the inbred strain FVB/N. The injected zygotes were transplanted into the 

oviducts of pseudopregnant females and potential founder animals were screened by 

PCR. The animals had free access to a standard rodent diet (V1534, Ssniff, Soest, 

Germany) and water. All experiments were approved by the author’s institutional 

committee on animal care and carried out in accordance with the German Animal 

Protection Law with permission from the responsible veterinary authority. 

 

2.5 Immunohistochemistry and immunofluorescence 

Animals were anesthetized and killed by cervical dislocation. Pancreata and other 

organs were removed immediately after the animal’s death, carefully trimmed free of 

adjacent tissues, weighed, fixed in 4% paraformaldehyde (in PBS, pH 7.4) and 

embedded in paraffin. For immunohistochemical localization of BTC, the streptavidin-

biotin method was applied. Five µm thick sections were cut, deparaffinized and heated 

for 20 min in a microwave in 10 mM sodium citrate buffer for antigen retrieval. The 

primary antibody (same as for Western blot, dilution 1:300) was incubated for 2 hours 

at room temperature, followed by a biotin-conjugated rabbit anti-goat secondary 

antibody (Dako, Hamburg, Germany). Diaminobenzidine (Sigma, Taufkirchen, 
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Germany) served as chromogen. Finally, the sections were counterstained with 

hematoxylin. Colocalization of BTC with insulin and glucagon was studied by 

multicolor immunofluorescence: Five µm paraffin sections pretreated as described 

above were incubated for 1 hour at room temperature with the primary antibodies 

diluted in Tris-buffered saline (TBS, pH 7.6). After three washes with TBS, sections 

were incubated for 1 hour with fluorescence-labeled secondary antibodies. We used the 

previously described goat anti-human BTC antibody (R&D, Systems, Wiesbaden, 

Germany), rabbit anti-glucagon and guinea pig anti-insulin antibodies (Dako, Hamburg, 

Germany). The secondary antibodies all rose in donkey and coupled to FITC, Cy3, or 

Cy5 were from Dianova (Hamburg, Germany). After the last washing step, slides were 

mounted with Vectashield antifade solution (Vector Laboratories, Grünberg, Germany) 

containing DAPI as a nuclear counterstain. Confocal optical sections (pixel size 50 x 50 

nm, pinhole size 1 Airy unit corresponding to an optical thickness of 0.7 - 1 µm) were 

recorded using a confocal laser scanning microscope (LSM 510 Meta, Zeiss, 

Oberkochen, Germany) with a 40 × PlanNeofluar oil immersion objective (NA 1.3). For 

excitation of DAPI, FITC, TRITC and Cy5 laser lines of 364, 488, 543 and 633 nm 

were used. Fluorescence signals were detected through the following emission filters: 

BP 385 - 470 nm for DAPI, BP 505 - 530 nm for FITC, BP 560 - 615 for Cy3 and LP 

650 for Cy5. A polychromatic multichannel detector (Meta detector, Zeiss) was used to 

discriminate autofluorescence from immunofluorescence signals. 

 

2.6 Reverse transcriptase PCR 

Isolation of total RNA, first strand cDNA synthesis, and semiquantitative RT-PCR were 

performed as described earlier (Schneider et al. 2001). The primers previously 

described for amplifying the human BTC cDNA were employed for the detection of 

transgene-specific BTC mRNA expression. The integrity of the template cDNA was 

confirmed by amplifying a sequence of the β-actin gene (sense, 

5’-GGCATCGTGATGGACTCC-3’; antisense, 5’-GTCGGAAGGTGGACAGGG-3’). 

 

2.7 Glucose metabolism studies 

After fasting for 14 hours, blood was drawn from the retro-orbital sinus of ether 

anesthetized mice for determination of blood glucose. For glucose tolerance test, fasted 

mice (16 hours) were injected intraperitoneally with glucose (1.5 g/kg body weight). 

Blood samples were obtained by puncture of the tail vein immediately before glucose 
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administration and at the indicated time points after injection. A glucometer (Precision, 

Abbott Diabetes Care, Wiesbaden, Germany) was used to determine glucose levels. 

 

2.8 Statistical analyses  

The results of glucose tolerance tests were statistically evaluated by analysis of variance 

(Linear Mixed Models; SAS 8.2; PROC MIXED), taking the fixed effects of Group 

(transgenic vs. control), Time (relative to glucose application) and the interaction 

Group*Time as well as the random effect of Animal into account (Verbeke & 

Molenberghs 2001). 
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3 Results 

 

 

3.1 Evaluation of promoter activity in vitro 

To evaluate the overall functionality and specificity of the construct, cell lines 

representing different cell types were transfected either with the PIP-hBTC or with the 

pMAX-GFP vector. Transfection efficiency, evaluated 24 hours after the transfection by 

monitoring GFP fluorescence, was similar for all lines (~50% green cells, data not 

shown). After 48 hours, cells transfected with PIP-hBTC were harvested for protein 

isolation and subjected to Western blot analysis employing an antibody that recognizes 

specifically human BTC. As shown in Figure 1C, human BTC was clearly detected in 

protein extracts from mouse MIN-6 β-cells, but not in extracts from mouse hepatocytes 

or human embryonic kidney (HEK 293) cells. These in vitro findings indicate that the 

PIP-hBTC construct is functional and suggest that the employed porcine insulin 

promoter is selectively activated in β-cells. 

 

3.2 Generation of PIP-hBTC transgenic mice 

After microinjection of the PIP-hBTC construct, forty mice were born and three of them 

were identified as being transgenic by PCR and Southern blot analyses (data not 

shown). One transgenic animal (#11) consistently failed to generate transgenic progeny 

and was therefore sacrificed. The remaining two founders (#16 and #38) transmitted the 

transgene to their descendents in a mendelian fashion, originating two PIP-hBTC 

transgenic lines (L2 and L3, respectively). 

 

3.3 Specific expression of the PIP-hBTC transgene in insulin-positive cells of the 

endocrine pancreas 

To evaluate expression of the construct in different organs, RT-PCR analysis was 

performed for RNA samples from lung, liver, small intestine, kidney, muscle, and 

pancreatic islets. As shown in Figure 2A, transgene expression was detected 

exclusively in the pancreatic islets in L2 transgenic mice. The same result was obtained 

for L3 mice (data not shown). Immunohistochemistry against hBTC also failed to detect 

positive cells in the above mentioned and additional organs such as the heart, stomach 

and brain (data not shown). To evaluate whether the used porcine insulin promoter 

directs expression to certain regions of the ventral brain, as described for the rat insulin 
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promoter (Gannon et al. 2000a), we additionally studied the pons, caudate putamen, and 

the hypothalamus. In none of these brain regions we detected transgene transcripts by 

RT-PCR (Figure 2B) or hBTC by immunohistochemistry (data not shown). In the 

pancreas of L2 and L3 transgenic mice, hBTC-positive cells were readily detected 

within the islets, but not in the exocrine compartment (Figure 2C). The number of cells 

expressing the transgene was considerably higher in the islets of L3 transgenic mice as 

compared to founder #11 and L2 animals (Figure 2D). To further evaluate whether the 

employed PIP sequence specifically directs expression of the transgene to insulin-

producing cells, we examined colocalization of hBTC with insulin and glucagon by 

multicolor immunofluorescence and confocal laser scanning microscopy. In both 

transgenic PIP-hBTC and non-transgenic control mice, insulin-specific 

immunofluorescence was evident in the cytoplasm of the majority of islets cells, while a 

smaller proportion of the cells were negative for insulin and positive for glucagon 

(Figure 2E). Importantly, in transgenic animals, hBTC staining was only observed in 

insulin-positive cells, indicating that the PIP sequence employed is adequate for 

targeting exclusively pancreatic β-cells (Figure 2E). Evaluation of pancreatic islets 

from transgenic fetuses sacrificed on day 17.5 of pregnancy revealed that the β-cell 

specificity of the employed promoter is already present at this early stage of islet 

formation (Figure 2F). 

 

3.4 PIP-hBTC transgenic mice show no overt phenotypic abnormalities  

Transgenic mice from both lines developed normally, were fertile, and did not show any 

obvious abnormalities. Histological analysis of the pancreas did not reveal any 

pathological alteration in PIP-hBTC transgenic mice, in agreement with our previous 

results in mice with overexpression of BTC in both the exocrine and the endocrine 

compartment (Dahlhoff et al. 2009c). Body and organ weights were evaluated in 

transgenic males and females and gender-matched littermates at the age of 5 months 

(n=4-6/group). No differences were observed in total body weight, and in absolute or 

relative organ weights, irrespective of the line (data not shown). 
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3.5 PIP-hBTC transgenic mice show improved glucose tolerance 

Intraperitoneal glucose tolerance tests showed that the blood glucose concentrations 

rose similarly in control and in PIP-hBTC transgenic mice from line 2 and 3 after 

glucose injection (Figure 3A). However, glucose clearance was improved in transgenic 

mice from both lines in the second half of the test period (Figure 3A). When the results 

were expressed as area under the glucose curve, a significant difference was observed 

between L2 and L3 transgenic mice and their control littermates, respectively 

(Figure 3B). 
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4 Discussion 

 

 

Here we show that an expression cassette containing 1500 bp of the 5’ UTR from the 

porcine insulin gene (including the first exon and the first intron) and the 3’ UTR of the 

bovine GH gene is efficient for driving transgene expression in a robust and specific 

manner to β-cells in vitro and in transgenic mice. 

 

To test the functionality of the cassette we have chosen a cDNA encoding the EGFR 

ligand betacellulin (Schneider & Wolf 2009). Betacellulin is known to stimulate β-cell 

differentiation in vitro and to improve glucose tolerance in diabetic models and in 

transgenic mice (reviewed in Dahlhoff et al. 2009) - although a few studies failed to 

demonstrate such an effect (Sjoholm & Kindmark 1999). Recently, we demonstrated an 

improved glucose tolerance in mice with ubiquitous overexpression of betacellulin 

(Schneider et al. 2005; Dahlhoff et al. 2009). This finding needed cautious 

interpretation, since betacellulin levels were also increased in other tissues. In the 

present study we demonstrate an improved glucose tolerance in an animal model with 

β-cell-specific overexpression of betacellulin. Also in agreement with our previous 

results is the lack of pathological alterations in PIP-hBTC transgenic mice. This is in 

contrast to the multiple pathological effects including islet disaggregation, fibrosis, and 

even ductal metaplasia observed in transgenic mice with β-cell-specific overexpression 

of the EGFR ligands EGF (Krakowski et al. 1999) and heparin-binding EGF (Means et 

al. 2003). This observation indicates that BTC has unique actions on pancreatic islets as 

compared to other EGFR ligands. The transgenic mouse lines described here are 

valuable for detailed studies of glucose metabolism and β-cell regeneration following 

induction of diabetes e.g. after injection of streptozotocin. 

 

The new expression cassette described here represents a significant improvement over 

available expression systems in different ways. First, our cassette potentially allows β-

cell-specific expression of gene products in transgenic mice without the unwanted 

expression in other tissues such as the central nervous system. Nevertheless, the level 

and specificity of transgene expression in new lines are always difficult to predict due to 

position effects and require careful characterization (Martin & Whitelaw 1996). Second, 
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the ease of exchanging the sequences to be expressed in the cassette and the availability 

of restriction sites for “rare cutter” enzymes for removing the relevant sequences from 

the vector backbone render this construct a handy tool for the generation of transgenic 

mice for β-cell specific overexpression of a variety of proteins. Third, it is plausible to 

predict that the transgene cassette will also perform well in pigs, promoting a 

widespread use of this species in diabetes research. 
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Figure 1 Generation of the PIP-hBTC construct. A: nucleotide sequence of the porcine insulin 
gene sequence employed in this study. The 5’ flanking region is shown in lower case (the 
consensus TATA box is shown in bold). The transcription initiation site is underlined, the 
transcribed sequence is shown in upper case (cDNA sequence in bold). The translation initiation 
site is double-underlined and the sequence of the primers used to amplify the promoter is boxed. 
The sequence changed to a HindIII site (AAGCTT) in the second primer is highlighted in grey. 
B: schematic representation of the construct employed to generate transgenic mice including the 
position of relevant restriction sites. C: Western blot analysis of hepatocytes (1), kidney cells 
(2) and MIN-6 β-cells (3) transfected with the PIP-hBTC construct showing expression of 
human BTC exclusively in the β-cells. Staining of an unspecific band is shown as a loading 
control.
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Figure 2 Tissue and cell-specific expression of the PIP-hBTC construct in transgenic mice. 
A, B: RT-PCR analysis showing that transgene transcription is restricted to the pancreatic islets. 
Data in A are from L2 animals. C.P.: caudate putamen. C: Immunohistochemical staining of 
hBTC showing exclusive transgene protein expression within the pancreatic islets of L3 
transgenic mice. D: Immunohistochemical detection of hBTC in the islets of transgenic mice as 
compared to non-transgenic control mice at higher magnification. Scale bars represent 500 µm 
in C and 50 µm in D. E, F: Simultaneous visualization of insulin, glucagon, and hBTC by 
multicolor immunofluorescence and confocal laser scanning microscopy in the islets of an adult 
PIP-hBTC (E), an adult non-transgenic control mouse (insert in E), and a PIP-hBTC fetus at day 
17.5 of pregnancy (F). 



Specific transgene expression in β-cells 

44 

Control PIP-hBTC L2
0

5000

10000

15000

20000

25000
*

A
U

C

Control PIP-hBTC L3
0

5000

10000

15000

20000

25000

*
A

U
C

A

B

0 20 40 60 80 100 120
0

5

10

15

20 Control (n=10)
PIP-hBTC L2 (n=8)

*
*

*

Minutes after glucose injection

B
lo

o
d

 g
lu

co
se

 (
m

m
o

l/
l)

0 20 40 60 80 100 120
0

5

10

15

20

PIP-hBTC L3 (n=9)

*
*

Control (n=10)

* *

Minutes after glucose injection

B
lo

o
d

 g
lu

co
se

 (
m

m
o

l/
l)

Control PIP-hBTC L2
0

5000

10000

15000

20000

25000
*

A
U

C

Control PIP-hBTC L3
0

5000

10000

15000

20000

25000

*
A

U
C

A

B

0 20 40 60 80 100 120
0

5

10

15

20 Control (n=10)
PIP-hBTC L2 (n=8)

*
*

*

Minutes after glucose injection

B
lo

o
d

 g
lu

co
se

 (
m

m
o

l/
l)

0 20 40 60 80 100 120
0

5

10

15

20

PIP-hBTC L3 (n=9)

*
*

Control (n=10)

* *

Minutes after glucose injection

B
lo

o
d

 g
lu

co
se

 (
m

m
o

l/
l)

 
 
Figure 3 Glucose metabolism in BTC-tg mice. Intraperitoneal glucose tolerance test (A) 
revealed a significant reduction of the area under the curve (AUC, B) in PIP-hBTC transgenic 
mice from L2 and L3 as compared to control littermates. Values represent means ± SEM of two 
independent experiments for L2 and L3. *: P < 0.05. 
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4 DISCUSSION 

 

 

In the present study transgenic mice overexpressing human betacellulin under the 

control of the porcine insulin promoter were generated in order to investigate the ability 

of a new cassette to direct expression of the transgene specifically to the pancreatic 

β-cells. Both in vitro and in vivo analyses performed in this study showed that the 

expression cassette containing 1500 base pairs of the 5’ UTR (untranslated region) from 

the porcine insulin gene and the 3’ UTR of the bovine GH gene efficiently drives the 

transgene expression in a robust and specific manner to β-cells. Other advantages of this 

new construct are the ease of exchanging the sequences to be expressed in the cassette 

and the availability of restriction sites for “rare cutter” enzymes for removing the 

relevant sequences from the vector backbone. It renders this construct a handy tool for 

the generation of transgenic mice with β-cell specific overexpression of a variety of 

proteins. 

 

The employment of insulin promoters in transgenic technology became a useful strategy 

to create animal models exhibiting not only diabetic symptoms but also an improved 

glucose metabolism. Transgenic animals overexpressing, for example, hepatocyte 

growth factor (Garcia-Ocana et al. 2001), pituitary adenylate cyclase-activating 

polypeptide (PACAP) (Yamamoto et al. 2003) or hepatocyte nuclear factor-1 α 

(Watanabe et al. 2007) under the control of the rat, human or porcine insulin promoter 

permitted to investigate the potentially positive function of these proteins in the insulin 

secretion and blood glucose reduction. Moreover, the usage of experimental diabetic 

mice with an transgenic overexpression of hyperglycaemia-avoiding molecules driven 

by insulin promoters (Miyawaki et al. 2008; Wang et al. 2008) demonstrated a possibly 

therapeutic approach to prevent the progression of diabetes mellitus in patients. 

 

Depending on the employed promoter, the targeted gene can be expressed in many 

different organs (Sandgren et al. 1990) or in one or more particular tissues (Yamamoto 

et al. 2003; Burkhardt et al. 2006). Also position effects can be an obstacle in the 

creation of a transgenic animal lines with a tissue specific expression of the transgene 

(Festenstein et al. 1996). The frequently used rat insulin promoter has been shown to 
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induce the transcription of the transgene not only in the pancreas but also in some parts 

of the brain, including hypothalamus (Gannon et al. 2000; Covey et al. 2006). In the 

present study the porcine insulin promoter was employed to elicit a β-cell specific 

expression of the transgene with the long-term goal of generating BTC transgenic pigs. 

 

Importantly, both PIP-hBTC transgenic mouse lines 2 and 3 used in the presenting study 

expressed the hBTC-mRNA solely within the islets of Langerhans. Reverse 

transcription PCR and immunhistochemical staining of different organs from the wild-

type and transgenic mice against hBTC supported the conclusion of islet-specificity of 

the expression. Investigations using a multicolour immunofluorescence confirmed the 

β-cell specificity of the expression. Moreover, additional analyses of several brain areas 

of the transgenic animals confirmed the islet-specificity. 

 

The potential of the PIP promoter to direct the β-cell specific expression of the 

transgene may stimulate the creation of large transgenic animal models overexpressing 

anti-diabetic agents solely in the pancreatic islets. Such an approach could be 

particularly worthwhile in the generation of transgenic pigs as donors for 

transplantations of the pancreatic islets into humans. Furthermore, results of the 

previous investigations (Yamamoto et al. 2000; Dahlhoff et al. 2009) and of the present 

study as well confirm betacellulin as an effective factor improving the glucose 

homeostasis and preventing diabetes mellitus. 

 

Molecular analysis of the porcine insulin gene and promoter (German et al. 1995; 

Ohneda et al. 2000; Melloul et al. 2002) provide a background for understanding the 

strict β-cell-associated insulin transcription. It has been demonstrated that regulation of 

the insulin gene occurs by various cis-acting elements localized in the 5’-flanking 

region of the insulin promoter (German et al. 1995; Ohneda et al. 2000). These 

elements are potentially able to induce the β-cell specific transcription of any gene 

placed downstream. This activity of the porcine insulin promoter has been also 

employed to regulate the expression of genes of interest in vitro and in vivo (Watanabe 

et al. 2007). However, so far there are hardly publications describing animal models 

with a porcine insulin promoter to direct the expression of a transgene. 
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During mouse embryogenesis, the insulin-containing cells appear in the dorsal 

pancreatic bud at embryonic day (E) 11.5 and one or two days later in the ventral 

pancreatic bud (Herrera et al. 1991). At E 18.5 the typical islets are already formed with 

the centrally located β-cells surrounded by other endocrine cells (Herrera et al. 1991). 

The immunohistochemical analyses of pancreatic tissue of the PIP-hBTC transgenic and 

wild type mice from E 17.5 detected expression of the transgene in the originating 

pancreatic islets, demonstrating activity of the porcine insulin promoter already during 

the embryonic development. Nevertheless, expression of the transgene under control of 

the mouse PDX1 promoter in the embryonic pancreas was detectable already at E 12.0 

(Dichmann et al. 2003). 

 

A positive effect of betacellulin on the stimulation of β-cell differentiation (Mashima et 

al. 1996; Thowfeequ et al. 2007) and increase of insulin production (Mashima et al. 

1996; Huotari et al. 1998;) was previously showed via in vitro investigations. 

Importantly, PIP-hBTC transgenic mice from lines 2 and 3 generated in the present 

study exhibited an improved glucose tolerance. These results confirm the results of 

other studies involving the overexpression of this growth factor in a mouse model 

(Schneider et al. 2005; Dahlhoff et al. 2009), suggesting a positive effect of this protein 

also in the glucose homeostasis. However, it must be considered that in the above 

mentioned studies betacellulin levels were elevated not only within the pancreas but 

also in many other tissues as well (Schneider et al. 2005; Dahlhoff et al. 2009). 

 

Furthermore, treatment of the alloxan- and streptozotocin-diabetic rodents with 

recombinant betacellulin, appeared to have a significant impact on the improvement of 

glucose metabolism (Yamamoto et al. 2000; Li et al. 2003). Nevertheless, there is at 

least one study showing that betacellulin had no significant impact on insulin secretion 

and blood glucose reduction (Sjoholm & Kindmark 1999). 

 

Overexpression of different growth factors or their receptors is often associated with 

pathological alterations. Human BTC transgenic mice from L2 and L3 did not show any 

alterations in the body weight. Also, general conditions of these animals were 

unimpaired. In contrast, studies employing mouse models with an ubiquitously 

overexpression of BTC demonstrated an early postnatal mortality rate and reduced body 

weight gain (Schneider et al. 2005). A retarded growth has been also reported in mice 
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overexpressing other EGFR ligands such as TGFA (Sandgren et al. 1993) or EGF (Chan 

& Wong 2000; Wong et al. 2000). Moreover, in contrast to betacellulin, the elevated 

expression of epithelial growth factors like TGFA (Sandgren et al. 1990) and HB-EGF 

(Means et al. 2003) has been shown to cause epithelial metaplasia, pancreatic 

hyperplasia and fibrosis in transgenic mice (Sandgren et al. 1990; Means et al. 2003). 

Furthermore, even though betacellulin is known for its mitogenic activity (Shing et al. 

1993; Kim et al. 2003), histological analysis of different tissues from PIP-hBTC mice 

did not detect any alterations pointing to tumor development. The life-span of the 

transgenic animals remained unimpaired. 
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5 SUMMARY 

 

 

Analysis of a new transgenic mouse model with β-cell specific overexpression of 

human betacellulin 

 

In the present study, a new transgenic mouse model was generated in order to evaluate 

whether the full 5’ untranslated region (UTR) of the porcine insulin gene was able to 

confer expression of a transgene robustly and specifically in the pancreatic β-cells. 

An expression cassette containing 1500 base pairs of the 5’ UTR porcine insulin gene 

promoter and 3’ UTR of the bovine growth hormone gene was designed to permit easy 

exchange of the sequences to be expressed. The functionality of the cassette was 

verified by employing a cDNA encoding human betacellulin, a growth factor known to 

affect structural and functional parameters of β-cells. 

The functionality of the PIP-hBTC construct was initially evaluated by conducting in 

vitro experiments. Transfection of different cell types with the PIP-hBTC vector, 

followed by Western blot analysis of the isolated proteins, showed the presence of 

human betacellulin solely in the mouse MIN-6 β-cell line. 

Next, two transgenic mouse lines (L2 and L3) were generated by pronuclear DNA 

microinjection. For evaluation of expression specificity, tissue samples of the liver, gut, 

kidney, muscle and pancreatic islets were removed from the transgenic and control 

mice, and analysed using reverse transcription PCR and immunhistochemistry. These 

investigations demonstrated the presence of human betacellulin only within the 

endocrine pancreas of the transgenic animals with concomitant absence of transgene 

expression in any other organ or in tissues of control littermates. 

Considering the reported ectopic activity of the rat insulin promoter in some brain areas 

of transgenic mice, the potential action of the porcine insulin promoter in different parts 

of the brain was analysed using reverse transcription PCR and immunhistochemistry. 

Transcripts for human betacellulin were never detected in any of the examined regions 

of the ventral brain. 

Employment of multicolour immunofluorescence and confocal laser scanning 

microscopy confirmed expression of human betacellulin solely by insulin producing 

cells of the transgenic mice, confirming the β-cell specificity of the expression. 
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PIP-hBTC transgenic mice from both lines developed normally, were fertile and did not 

exhibit any abnormalities. Also, histological analysis of the pancreas and other organs 

removed from older individuals did not reveal any pathological alterations. 

Confirming the known insulinotropic effects of betacellulin, transgenic mice 

demonstrated an improved glucose metabolism: during intraperitoneal glucose tolerance 

test, PIP-hBTC mice cleared glucose significantly faster as compared with their control 

littermates. 

Taking together, the newly designed expression cassette, containing 1500 base pairs of 

the 5’UTR of the porcine insulin promoter, drove the expression of the transgene 

robustly and specifically to β-cells, in vitro and in transgenic mice. It also represents a 

significant improvement over available expression systems due to easy exchange of the 

sequences to be expressed. Moreover, the possibility of eliciting a β-cell-specific 

expression of gene products in transgenic large animal models without unwanted 

expression in other tissues could become useful for future studies in diabetes research. 
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6 ZUSAMMENFASSUNG 

 

 

Untersuchung eines neuen transgenen Mausmodells mit β-Zell-spezifischer 

Überexpression des humanen Betacellulins 

 

Ziel dieser Studie war die Erstellung eines transgenen Mausmodells zur Überprüfung 

der Fähigkeit des 5’ untranslatierten Bereich (UTR) des Schweineinsulin-Genes, eine 

stabile und spezifische Expression des Transgens in pankreatischen β-Zellen 

hervorzurufen. 

Das Expressionskonstrukt besteht aus 1500 Basenpaaren des 5’ UTR des 

Schweineinsulin-Promotors (Porcine Insulin Promoter, PIP) und dem 3’ UTR des 

Rinderwachstumshormon-Genes (bovine Growth Hormone, bGH). Der Aufbau des 

Konstruktes ermöglicht eine einfache Verwendung für Sequenzen unterschiedlicher 

Transgene. Die Funktionalität der Kassette konnte durch den Einsatz der für das 

humane Betacellulin (hBTC) kodierende cDNA nachgewiesen werden. Betacellulin ist 

ein Wachstumsfaktor der die funktionellen und strukturellen Parameter der β-Zellen 

beeinflussen kann. 

Die spezifische Expression des Konstruktes wurde zunächst mit Hilfe von in vitro 

Experimenten überprüft. Verschiedene Zelltypen wurden mit dem PIP-hBTC Vektor 

transfiziert. Der Expressionsnachweis von BTC in den Zelllysaten erfolgte mittels 

Western-Blot-Analysen. Das hBTC-Protein konnte ausschließlich in der MIN6-

Insulinoma Zelllinie gefunden werden. 

Anschließend wurden zwei transgene Mauslinien (L2 und L3) durch 

DNA-Mikroinjektionen in die Vorkerne befruchteter Eizellen erstellt. Um die 

Expressionsspezifität in vivo beurteilen zu können, wurden Gewebeproben aus Leber, 

Darm, Niere, Muskel und isolierten pankreatischen Inseln von transgenen Mäusen und 

Kontrolltieren (Wurfgeschwister) entnommen und sowohl durch die Reverse 

Transkriptase-Polymerase-Kettenreaktion (RT-PCR) als auch durch 

immunhistochemische Verfahren untersucht. Das humane BTC konnte hierbei nur 

innerhalb des endokrinen Pankreas der transgenen Mäuse nachgewiesen werden. 

Da es Untersuchungen gibt, in denen eine zusätzliche Aktivität des Ratteninsulin-

Promotors in einigen Gehirnbereichen transgener Tiere festgestellt worden sind, wurde 
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eine potentielle Aktivität des Schweineinsulin-Promotors im Gehirn der hBTC-

transgenen Mäuse überprüft. Die Ergebnisse der RT-PCR und der Immunhistochemie 

haben keinerlei Expression des hBTC in den Gehirnen der transgenen Tiere gezeigt. 

Zur Überprüfung der β-Zell-Expressionsspezifität wurde eine konfokale Mehrfarb-

Immunfluoreszenzmikroskopie durchgeführt. Hierbei wurde das humane Betacellulin 

ausschließlich in den Insulin-produzierenden Zellen nachgewiesen. 

Obwohl mehrere Studien über mitogene Eigenschaften des humanen BTC berichten, 

konnten wir keine Entwicklungsstörungen und Fertilitätsprobleme in 

PIP-hBTC-Mäusen beobachten. Außerdem ergaben die histologischen Analysen der 

Pankreatiden und anderen Organen der älteren Tiere keine pathologischen 

Veränderungen. 

Die Blutglukose-senkende Wirkung von Betacellulin wurde auch in dieser Studie 

bestätigt: In intraperitonealen Glukose-Toleranz-Tests zeigten die PIP-hBTC-transgenen 

Tiere eine signifikant schnellere Senkung des Blutglukosespiegels im Vergleich zu 

ihren Kontrollgeschwistern. 

Zusammenfassend kann gesagt werden, dass das für diese Arbeit generierte Konstrukt 

mit seinen 1500 Basenpaaren des 5’UTR des Schweineinsulin-Promotors zu einer 

stabilen und spezifischen Expression eines Transgens ausschließlich in den β-Zellen des 

Pankreas führt. Ein weiterer Vorteil dieses Konstrukts ist der einfache Austausch der 

zur Expression vorgesehenen Sequenz. Darüber hinaus, bietet eine β-Zell-spezifische 

Überexpression (ohne ungewollte Expression in anderen Organen) eines gewünschten 

Genprodukts die Möglichkeit in Großtiermodellen beispielsweise Studien über neue 

Therapiemethoden, wie Xenotransplantationen, gegen Diabetes Mellitus durchzuführen. 



Bibliography 

56 

7 BIBLIOGRAPHY 

 

 

Abalovich A. G., Bacque M. C., Grana D., & Milei J. (2009) Pig pancreatic islet 

transplantation into spontaneously diabetic dogs. Transplant.Proc. 41: 328-330. 

Accili D., Drago J., Lee E. J., Johnson M. D., Cool M. H., Salvatore P., Asico L. D., 

Jose P. A., Taylor S. I., & Westphal H. (1996) Early neonatal death in mice 

homozygous for a null allele of the insulin receptor gene. Nat.Genet. 12: 106-109. 

Ahlgren U., Jonsson J., Jonsson L., Simu K., & Edlund H. (1998) beta-cell-specific 

inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and 

maturity onset diabetes. Genes Dev. 12: 1763-1768. 

Alimandi M., Wang L. M., Bottaro D., Lee C. C., Kuo A., Frankel M., Fedi P., Tang C., 

Lippman M., & Pierce J. H. (1997) Epidermal growth factor and betacellulin mediate 

signal transduction through co-expressed ErbB2 and ErbB3 receptors. EMBO J. 16: 

5608-5617. 

Anderson H. R., Stitt A. W., Gardiner T. A., Lloyd S. J., & Archer D. B. (1993) 

Induction of alloxan/streptozotocin diabetes in dogs: a revised experimental technique. 

Lab Anim 27: 281-285. 

Anderson M. S. & Bluestone J. A. (2005) The NOD mouse: a model of immune 

dysregulation. Annu.Rev.Immunol. 23: 447-485. 

Anneren C., Welsh M., & Jansson L. (2007) Glucose intolerance and reduced islet 

blood flow in transgenic mice expressing the FRK tyrosine kinase under the control of 

the rat insulin promoter. Am.J.Physiol Endocrinol.Metab 292: E1183-E1190. 

Ashkenazi H., Cao X., Motola S., Popliker M., Conti M., & Tsafriri A. (2005) 

Epidermal growth factor family members: endogenous mediators of the ovulatory 

response. Endocrinology 146: 77-84. 

Barnes D. M., Bartkova J., Camplejohn R. S., Gullick W. J., Smith P. J., & Millis R. R. 

(1992) Overexpression of the c-erbB-2 oncoprotein: why does this occur more 

frequently in ductal carcinoma in situ than in invasive mammary carcinoma and is this 

of prognostic significance? Eur.J.Cancer 28: 644-648. 



Bibliography 

57 

Barrandon Y. & Green H. (1987) Cell migration is essential for sustained growth of 

keratinocyte colonies: the roles of transforming growth factor-alpha and epidermal 

growth factor. Cell 50: 1131-1137. 

Basso A. D., Solit D. B., Munster P. N., & Rosen N. (2002) Ansamycin antibiotics 

inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress 

HER2. Oncogene 21: 1159-1166. 

Beerli R. R. & Hynes N. E. (1996) Epidermal growth factor-related peptides activate 

distinct subsets of ErbB receptors and differ in their biological activities. 

J.Biol.Chem. 271: 6071-6076. 

Berasain C., Garcia-Trevijano E. R., Castillo J., Erroba E., Santamaria M., Lee D. C., 

Prieto J., & Avila M. A. (2005) Novel role for amphiregulin in protection from liver 

injury. J.Biol.Chem. 280: 19012-19020. 

Berchuck A., Rodriguez G. C., Kamel A., Dodge R. K., Soper J. T., Clarke-Pearson D. 

L., & Bast R. C., Jr. (1991) Epidermal growth factor receptor expression in normal 

ovarian epithelium and ovarian cancer. I. Correlation of receptor expression with 

prognostic factors in patients with ovarian cancer. Am.J.Obstet.Gynecol. 164: 669-674. 

Besner G., Higashiyama S., & Klagsbrun M. (1990) Isolation and characterization of a 

macrophage-derived heparin-binding growth factor. Cell Regul. 1: 811-819. 

Bonner-Weir S., Trent D. F., Honey R. N., & Weir G. C. (1981) Responses of neonatal 

rat islets to streptozotocin: limited B-cell regeneration and hyperglycemia. Diabetes 30: 

64-69. 

Boquist L. (1977) The endocrine pancreas in early alloxan diabetes. Including study of 

the alloxan inhibitory effect of feeding and some hexoses. Acta 

Pathol.Microbiol.Scand.A 85A: 219-229. 

Boquist L. & Lorentzon R. (1980) Study of the early blood glucose response of mice to 

alloxan. Diabete Metab 6: 55-58. 

Brachmann R., Lindquist P. B., Nagashima M., Kohr W., Lipari T., Napier M., & 

Derynck R. (1989) Transmembrane TGF-alpha precursors activate EGF/TGF-alpha 

receptors. Cell 56: 691-700. 

 



Bibliography 

58 

Brandt-Rauf P. W., Luo J. C., Carney W. P., Smith S., De V., I, Milling C., Hemminki 

K., Koskinen H., Vainio H., & Neugut A. I. (1994) Detection of increased amounts of 

the extracellular domain of the c-erbB-2 oncoprotein in serum during pulmonary 

carcinogenesis in humans. Int.J.Cancer 56: 383-386. 

Breen A., Mc R. G., Dockery P., O'Brien T., & Pandit A. (2008) Assessment of wound 

healing in the alloxan-induced diabetic rabbit ear model. J.Invest Surg. 21: 261-269. 

Bruning J. C., Michael M. D., Winnay J. N., Hayashi T., Horsch D., Accili D., 

Goodyear L. J., & Kahn C. R. (1998) A muscle-specific insulin receptor knockout 

exhibits features of the metabolic syndrome of NIDDM without altering glucose 

tolerance. Mol.Cell 2: 559-569. 

Burkhardt B. R., Lyle R., Qian K., Arnold A. S., Cheng H., Atkinson M. A., & Zhang 

Y. C. (2006) Efficient delivery of siRNA into cytokine-stimulated insulinoma cells 

silences Fas expression and inhibits Fas-mediated apoptosis. FEBS Lett. 580: 553-560. 

Cantenys D., Portha B., Dutrillaux M. C., Hollande E., Roze C., & Picon L. (1981) 

Histogenesis of the endocrine pancreas in newborn rats after destruction by 

streptozotocin. An immunocytochemical study. Virchows Arch.B Cell 

Pathol.Incl.Mol.Pathol. 35: 109-122. 

Cardona K., Korbutt G. S., Milas Z., Lyon J., Cano J., Jiang W., Bello-Laborn H., 

Hacquoil B., Strobert E., Gangappa S., Weber C. J., Pearson T. C., Rajotte R. V., & 

Larsen C. P. (2006) Long-term survival of neonatal porcine islets in nonhuman primates 

by targeting costimulation pathways. Nat.Med. 12: 304-306. 

Carpenter G. (1999) Employment of the epidermal growth factor receptor in growth 

factor-independent signaling pathways. J.Cell Biol. 146: 697-702. 

Carpenter G. & Cohen S. (1990) Epidermal growth factor. J.Biol.Chem. 265: 

7709-7712. 

Castillo J., Erroba E., Perugorria M. J., Santamaria M., Lee D. C., Prieto J., Avila M. 

A., & Berasain C. (2006) Amphiregulin contributes to the transformed phenotype of 

human hepatocellular carcinoma cells. Cancer Res. 66: 6129-6138. 

 

 



Bibliography 

59 

Catala J., Daumas M., Chanh A. P., Lasserre B., & Hollande E. (2001) Insulin and 

glucagon impairments in relation with islet cells morphological modifications following 

long term pancreatic duct ligation in the rabbit--a model of non-insulin-dependent 

diabetes. Int.J.Exp.Diabetes Res. 2: 101-112. 

Catchpole B., Kennedy L. J., Davison L. J., & Ollier W. E. (2008) Canine diabetes 

mellitus: from phenotype to genotype. J.Small Anim Pract. 49: 4-10. 

Catterton W. Z., Escobedo M. B., Sexson W. R., Gray M. E., Sundell H. W., & 

Stahlman M. T. (1979) Effect of epidermal growth factor on lung maturation in fetal 

rabbits. Pediatr.Res. 13: 104-108. 

Cayrol C., Clerc P., Bertrand C., Gigoux V., Portolan G., Fourmy D., Dufresne M., & 

Seva C. (2006) Cholecystokinin-2 receptor modulates cell adhesion through beta 1-

integrin in human pancreatic cancer cells. Oncogene 25: 4421-4428. 

Chan S. Y. & Wong R. W. (2000) Expression of epidermal growth factor in transgenic 

mice causes growth retardation. J.Biol.Chem. 275: 38693-38698. 

Chen H., Charlat O., Tartaglia L. A., Woolf E. A., Weng X., Ellis S. J., Lakey N. D., 

Culpepper J., Moore K. J., Breitbart R. E., Duyk G. M., Tepper R. I., & Morgenstern J. 

P. (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a 

mutation in the leptin receptor gene in db/db mice. Cell 84: 491-495. 

Chen J. & Ostenson C. G. (2005) Inhibition of protein-tyrosine phosphatases stimulates 

insulin secretion in pancreatic islets of diabetic Goto-Kakizaki rats. Pancreas 30: 

314-317. 

Cho Y. M., Lim J. M., Yoo D. H., Kim J. H., Chung S. S., Park S. G., Kim T. H., Oh S. 

K., Choi Y. M., Moon S. Y., Park K. S., & Lee H. K. (2008) Betacellulin and 

nicotinamide sustain PDX1 expression and induce pancreatic beta-cell differentiation in 

human embryonic stem cells. Biochem.Biophys.Res.Commun. 366: 129-134. 

Choi D. H., Bae H. Y., & Choi J. S. (2003) Pharmacokinetic changes of acebutolol after 

oral administration in rabbits with diabetes mellitus induced by alloxan. 

Arch.Pharm.Res. 26: 499-503. 

Chu E. K., Foley J. S., Cheng J., Patel A. S., Drazen J. M., & Tschumperlin D. J. (2005) 

Bronchial epithelial compression regulates epidermal growth factor receptor family 

ligand expression in an autocrine manner. Am.J.Respir.Cell Mol.Biol. 32: 373-380. 



Bibliography 

60 

Coffey R. J., Jr., Derynck R., Wilcox J. N., Bringman T. S., Goustin A. S., Moses H. L., 

& Pittelkow M. R. (1987) Production and auto-induction of transforming growth factor-

alpha in human keratinocytes. Nature 328: 817-820. 

Cohen S. (1962) Isolation of a mouse submaxillary gland protein accelerating incisor 

eruption and eyelid opening in the new-born animal. J.Biol.Chem. 237: 1555-1562. 

Coleman D. L. (1982) Diabetes-obesity syndromes in mice. Diabetes 31: 1-6. 

Cook P. W., Mattox P. A., Keeble W. W., Pittelkow M. R., Plowman G. D., Shoyab M., 

Adelman J. P., & Shipley G. D. (1991) A heparin sulfate-regulated human keratinocyte 

autocrine factor is similar or identical to amphiregulin. Mol.Cell Biol. 11: 2547-2557. 

Covey S. D., Wideman R. D., McDonald C., Unniappan S., Huynh F., Asadi A., Speck 

M., Webber T., Chua S. C., & Kieffer T. J. (2006) The pancreatic beta cell is a key site 

for mediating the effects of leptin on glucose homeostasis. Cell Metab 4: 291-302. 

Cui Y., Huang L., Elefteriou F., Yang G., Shelton J. M., Giles J. E., Oz O. K., 

Pourbahrami T., Lu C. Y., Richardson J. A., Karsenty G., & Li C. (2004) Essential role 

of STAT3 in body weight and glucose homeostasis. Mol.Cell Biol. 24: 258-269. 

Dahlhoff M., Dames P. M., Lechner A., Herbach N., van Burck L., Wanke R., Wolf E., 

& Schneider M. R. (2009a) Betacellulin overexpression in transgenic mice improves 

glucose tolerance and enhances insulin secretion by isolated islets in vitro. Mol.Cell 

Endocrinol. 299: 188-193. 

Dahlhoff M., Horst D., Gerhard M., Kolligs F. T., Wolf E., & Schneider M. R. (2008) 

Betacellulin stimulates growth of the mouse intestinal epithelium and increases 

adenoma multiplicity in Apc+/Min mice. FEBS Lett. 582: 2911-2915. 

Dahlhoff M., Muller A. K., Wolf E., Werner S., & Schneider M. R. (2009b) Epigen 

Transgenic Mice Develop Enlarged Sebaceous Glands. J.Invest Dermatol. 

Daly J. M., Olayioye M. A., Wong A. M., Neve R., Lane H. A., Maurer F. G., & Hynes 

N. E. (1999) NDF/heregulin-induced cell cycle changes and apoptosis in breast tumour 

cells: role of PI3 kinase and p38 MAP kinase pathways. Oncogene 18: 3440-3451. 

Davani B., Portwood N., Bryzgalova G., Reimer M. K., Heiden T., Ostenson C. G., 

Okret S., Ahren B., Efendic S., & Khan A. (2004) Aged transgenic mice with increased 

glucocorticoid sensitivity in pancreatic beta-cells develop diabetes. Diabetes 53 

Suppl 1: S51-S59. 



Bibliography 

61 

Delghingaro-Augusto V., Nolan C. J., Gupta D., Jetton T. L., Latour M. G., Peshavaria 

M., Madiraju S. R., Joly E., Peyot M. L., Prentki M., & Leahy J. (2009) Islet beta cell 

failure in the 60% pancreatectomised obese hyperlipidaemic Zucker fatty rat: severe 

dysfunction with altered glycerolipid metabolism without steatosis or a falling beta cell 

mass. Diabetologia 52: 1122-1132. 

Demeterco C., Beattie G. M., Dib S. A., Lopez A. D., & Hayek A. (2000) A role for 

activin A and betacellulin in human fetal pancreatic cell differentiation and growth. 

J.Clin.Endocrinol.Metab 85: 3892-3897. 

Dichmann D. S., Miller C. P., Jensen J., Scott H. R., & Serup P. (2003) Expression and 

misexpression of members of the FGF and TGFbeta families of growth factors in the 

developing mouse pancreas. Dev.Dyn. 226: 663-674. 

Dixon J. L., Stoops J. D., Parker J. L., Laughlin M. H., Weisman G. A., & Sturek M. 

(1999) Dyslipidemia and vascular dysfunction in diabetic pigs fed an atherogenic diet. 

Arterioscler.Thromb.Vasc.Biol. 19: 2981-2992. 

Drel V. R., Mashtalir N., Ilnytska O., Shin J., Li F., Lyzogubov V. V., & Obrosova I. G. 

(2006) The leptin-deficient (ob/ob) mouse: a new animal model of peripheral 

neuropathy of type 2 diabetes and obesity. Diabetes 55: 3335-3343. 

Dufrane D. & Gianello P. (2008) Pig islet xenotransplantation into non-human primate 

model. Transplantation 86: 753-760. 

Dufrane D., van Steenberghe M., Guiot Y., Goebbels R. M., Saliez A., & Gianello P. 

(2006) Streptozotocin-induced diabetes in large animals (pigs/primates): role of GLUT2 

transporter and beta-cell plasticity. Transplantation 81: 36-45. 

Dunbar A. J. & Goddard C. (2000) Structure-function and biological role of 

betacellulin. Int.J.Biochem.Cell Biol. 32: 805-815. 

Dunbar A. J., Priebe I. K., Belford D. A., & Goddard C. (1999) Identification of 

betacellulin as a major peptide growth factor in milk: purification, characterization and 

molecular cloning of bovine betacellulin. Biochem.J. 344 Pt 3: 713-721. 

Dutrillaux M. C., Portha B., Roze C., & Hollande E. (1982) Ultrastructural study of 

pancreatic B cell regeneration in newborn rats after destruction by streptozotocin. 

Virchows Arch.B Cell Pathol.Incl.Mol.Pathol. 39: 173-185. 



Bibliography 

62 

Ebert M., Yokoyama M., Kobrin M. S., Friess H., Lopez M. E., Buchler M. W., 

Johnson G. R., & Korc M. (1994) Induction and expression of amphiregulin in human 

pancreatic cancer. Cancer Res. 54: 3959-3962. 

Edlund H. (2001) Developmental biology of the pancreas. Diabetes 50 Suppl 1: S5-S9. 

Eisenbarth G. S. (2003) Insulin autoimmunity: immunogenetics/immunopathogenesis of 

type 1A diabetes. Ann. N. Y. Acad. Sci. 1005: 109-118. 

Eller P., Hochegger K., Wehinger A., Tancevski I., Schgoer W., Ritsch A., & Patsch J. 

R. (2006) Hepatic ENPP1 expression is induced in diabetic rabbits. Mamm.Genome 17: 

886-891. 

Erickson S. L., O'Shea K. S., Ghaboosi N., Loverro L., Frantz G., Bauer M., Lu L. H., 

& Moore M. W. (1997) ErbB3 is required for normal cerebellar and cardiac 

development: a comparison with ErbB2-and heregulin-deficient mice. 

Development 124: 4999-5011. 

Esposito D. L., Li Y., Vanni C., Mammarella S., Veschi S., Della L. F., Mariani-

Costantini R., Battista P., Quon M. J., & Cama A. (2003) A novel T608R missense 

mutation in insulin receptor substrate-1 identified in a subject with type 2 diabetes 

impairs metabolic insulin signaling. J.Clin.Endocrinol.Metab 88: 1468-1475. 

Fajans S. S., Bell G. I., & Polonsky K. S. (2001) Molecular mechanisms and clinical 

pathophysiology of maturity-onset diabetes of the young. N.Engl.J.Med. 345: 971-980. 

Fausto N., Campbell J. S., & Riehle K. J. (2006) Liver regeneration. Hepatology 43: 

S45-S53. 

Festenstein R., Tolaini M., Corbella P., Mamalaki C., Parrington J., Fox M., Miliou A., 

Jones M., & Kioussis D. (1996) Locus control region function and heterochromatin-

induced position effect variegation. Science 271: 1123-1125. 

Fisher S. J., Lekas M. C., McCall R. H., Shi Z. Q., Giacca A., & Vranic M. (1996) 

Determinants of glucose turnover in the pathophysiology of diabetes: an in vivo analysis 

in diabetic dogs. Diabetes Metab 22: 111-121. 

Fox S. B., Persad R. A., Coleman N., Day C. A., Silcocks P. B., & Collins C. C. (1994) 

Prognostic value of c-erbB-2 and epidermal growth factor receptor in stage A1 (T1a) 

prostatic adenocarcinoma. Br.J.Urol. 74: 214-220. 



Bibliography 

63 

Fukami T., Yoshizato T., Miyamoto S., Yagi H., Yotsumoto F., Nabeshima K., 

Hachisuga T., Kuroki M., & Kawarabayashi T. (2009) Amphiregulin regulates the 

production of human chorionic gonadotropin in trophoblasts. Life Sci. 84: 796-804. 

Gabel H., Bitter-Suermann H., Henriksson C., Save-Soderbergh J., Lundholm K., & 

Brynger H. (1985) Streptozotocin diabetes in juvenile pigs. Evaluation of an 

experimental model. Horm.Metab Res. 17: 275-280. 

Gannon M., Shiota C., Postic C., Wright C. V., & Magnuson M. (2000) Analysis of the 

Cre-mediated recombination driven by rat insulin promoter in embryonic and adult 

mouse pancreas. Genesis. 26: 139-142. 

Garcia-Ocana A., Vasavada R. C., Cebrian A., Reddy V., Takane K. K., Lopez-Talavera 

J. C., & Stewart A. F. (2001) Transgenic overexpression of hepatocyte growth factor in 

the beta-cell markedly improves islet function and islet transplant outcomes in mice. 

Diabetes 50: 2752-2762. 

Gassmann M., Casagranda F., Orioli D., Simon H., Lai C., Klein R., & Lemke G. 

(1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin 

receptor. Nature 378: 390-394. 

Georgia S. & Bhushan A. (2004) Beta cell replication is the primary mechanism for 

maintaining postnatal beta cell mass. J.Clin.Invest 114: 963-968. 

German M., Ashcroft S., Docherty K., Edlund H., Edlund T., Goodison S., Imura H., 

Kennedy G., Madsen O., Melloul D., & . (1995) The insulin gene promoter. A 

simplified nomenclature. Diabetes 44: 1002-1004. 

Giacca A., McCall R., Chan B., & Shi Z. Q. (1999) Increased dependence of glucose 

production on peripheral insulin in diabetic depancreatized dogs. Metabolism 48: 

153-160. 

Gibbs G. E., Wilson R. B., & Gifford H. (1966) Glomerulosclerosis in the long-term 

alloxan diabetic monkey. Diabetes 15: 258-261. 

Gratao A. A., Dahlhoff M., Sinowatz F., Wolf E., & Schneider M. R. (2008) 

Betacellulin overexpression in the mouse ovary leads to MAPK3/MAPK1 

hyperactivation and reduces litter size by impairing fertilization. Biol.Reprod. 78: 43-52. 



Bibliography 

64 

Grupe A., Hultgren B., Ryan A., Ma Y. H., Bauer M., & Stewart T. A. (1995) 

Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase 

in maintaining glucose homeostasis. Cell 83: 69-78. 

Grussner R., Nakhleh R., Grussner A., Tomadze G., Diem P., & Sutherland D. (1993) 

Streptozotocin-induced diabetes mellitus in pigs. Horm.Metab Res. 25: 199-203. 

Gschwind A., Prenzel N., & Ullrich A. (2002) Lysophosphatidic acid-induced 

squamous cell carcinoma cell proliferation and motility involves epidermal growth 

factor receptor signal transactivation. Cancer Res. 62: 6329-6336. 

Gupta N., Sandhu H., Goh T., Shah K., Wiesenthal S. R., Yoshii H., Chong V., Lam T. 

K., Haber C. A., Williams W., Tchipashvili V., & Giacca A. (2002) Insulin inhibits 

glucose production by a direct effect in diabetic depancreatized dogs during euglycemia. 

Am.J.Physiol Endocrinol.Metab 283: E1002-E1007. 

Guy P. M., Platko J. V., Cantley L. C., Cerione R. A., & Carraway K. L., III (1994) 

Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. 

Proc.Natl.Acad.Sci.U.S.A 91: 8132-8136. 

Habibuddin M., Daghriri H. A., Humaira T., Al Qahtani M. S., & Hefzi A. A. (2008) 

Antidiabetic effect of alcoholic extract of Caralluma sinaica L. on streptozotocin-

induced diabetic rabbits. J.Ethnopharmacol. 117: 215-220. 

Hanahan D. (1985) Heritable formation of pancreatic beta-cell tumours in transgenic 

mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315: 115-122. 

Hara M., Shen J., Pugh W., Polonsky K. S., Le Beau M. M., & Bell G. I. (2007) 

Sustained expression of hepatocyte nuclear factor-6 leads to loss of pancreatic beta-cells 

by apoptosis. Exp.Clin.Endocrinol.Diabetes 115: 654-661. 

Hara M., Wang X., Kawamura T., Bindokas V. P., Dizon R. F., Alcoser S. Y., 

Magnuson M. A., & Bell G. I. (2003) Transgenic mice with green fluorescent protein-

labeled pancreatic beta -cells. Am.J.Physiol Endocrinol.Metab 284: E177-E183. 

Harris R. C., Chung E., & Coffey R. J. (2003) EGF receptor ligands. Exp.Cell Res. 284: 

2-13. 

Hata R., Hori H., Nagai Y., Tanaka S., Kondo M., Hiramatsu M., Utsumi N., & 

Kumegawa M. (1984) Selective inhibition of type I collagen synthesis in osteoblastic 

cells by epidermal growth factor. Endocrinology 115: 867-876. 



Bibliography 

65 

Henson M. S. & O'Brien T. D. (2006) Feline models of type 2 diabetes mellitus. 

ILAR.J. 47: 234-242. 

Herbach N., Goeke B., Schneider M., Hermanns W., Wolf E., & Wanke R. (2005) 

Overexpression of a dominant negative GIP receptor in transgenic mice results in 

disturbed postnatal pancreatic islet and beta-cell development. Regul.Pept. 125: 

103-117. 

Herbach N., Rathkolb B., Kemter E., Pichl L., Klaften M., Hrabe de Angelis M., Halban 

P., Wolf E., Aigner B., & Wanke R. (2007) Dominant-negative effects of a novel 

mutated Ins2 allele causes early-onset diabetes and severe β-cell loss in Munich Ins2C95S 

mutant mice. Diabetes. 56: 1268-1276. 

Hering B. J., Wijkstrom M., Graham M. L., Hardstedt M., Aasheim T. C., Jie T., Ansite 

J. D., Nakano M., Cheng J., Li W., Moran K., Christians U., Finnegan C., Mills C. D., 

Sutherland D. E., Bansal-Pakala P., Murtaugh M. P., Kirchhof N., & Schuurman H. J. 

(2006) Prolonged diabetes reversal after intraportal xenotransplantation of wild-type 

porcine islets in immunosuppressed nonhuman primates. Nat.Med. 12: 301-303. 

Herrera P. L., Huarte J., Sanvito F., Meda P., Orci L., & Vassalli J. D. (1991) 

Embryogenesis of the murine endocrine pancreas; early expression of pancreatic 

polypeptide gene. Development 113: 1257-1265. 

Higashiyama S., Abraham J. A., Miller J., Fiddes J. C., & Klagsbrun M. (1991) A 

heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. 

Science 251: 936-939. 

Hoenig M. (2006) The cat as a model for human nutrition and disease. 

Curr.Opin.Clin.Nutr.Metab Care 9: 584-588. 

Holbro T. & Hynes N. E. (2004) ErbB receptors: directing key signaling networks 

throughout life. Annu.Rev.Pharmacol.Toxicol. 44: 195-217. 

Hormi K., Onolfo J. P., Gres L., Lebraud V., & Lehy T. (1995) Developmental 

expression of transforming growth factor-alpha in the upper digestive tract and pancreas 

of the rat. Regul.Pept. 55: 67-77. 

 

 



Bibliography 

66 

Hotta M., Tashiro F., Ikegami H., Niwa H., Ogihara T., Yodoi J., & Miyazaki J. (1998) 

Pancreatic beta cell-specific expression of thioredoxin, an antioxidative and 

antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. 

J.Exp.Med. 188: 1445-1451. 

Huge A., Weber E., & Ehrlein H. J. (1995) Effects of enteral feedback inhibition on 

motility, luminal flow, and absorption of nutrients in proximal gut of minipigs. 

Dig.Dis.Sci. 40: 1024-1034. 

Huotari M. A., Miettinen P. J., Palgi J., Koivisto T., Ustinov J., Harari D., Yarden Y., & 

Otonkoski T. (2002) ErbB signaling regulates lineage determination of developing 

pancreatic islet cells in embryonic organ culture. Endocrinology 143: 4437-4446. 

Huotari M. A., Palgi J., & Otonkoski T. (1998) Growth factor-mediated proliferation 

and differentiation of insulin-producing INS-1 and RINm5F cells: identification of 

betacellulin as a novel beta-cell mitogen. Endocrinology 139: 1494-1499. 

Hurtado M., Lozano J. J., Castellanos E., Lopez-Fernandez L. A., Harshman K., 

Martinez A., Ortiz A. R., Thomson T. M., & Paciucci R. (2007) Activation of the 

epidermal growth factor signalling pathway by tissue plasminogen activator in pancreas 

cancer cells. Gut 56: 1266-1274. 

Inada A., Hamamoto Y., Tsuura Y., Miyazaki J., Toyokuni S., Ihara Y., Nagai K., 

Yamada Y., Bonner-Weir S., & Seino Y. (2004) Overexpression of inducible cyclic 

AMP early repressor inhibits transactivation of genes and cell proliferation in pancreatic 

beta cells. Mol.Cell Biol. 24: 2831-2841. 

Ito Y., Higashiyama S., Takeda T., Yamamoto Y., Wakasa K. I., & Matsuura N. (2001) 

Expression of Heparin-Binding Epidermal Growth Factor-like Growth Factor in 

Pancreatic Adenocarcinoma. Int.J.Gastrointest.Cancer 29: 47-52. 

Iwamoto R., Handa K., & Mekada E. (1999) Contact-dependent growth inhibition and 

apoptosis of epidermal growth factor (EGF) receptor-expressing cells by the membrane-

anchored form of heparin-binding EGF-like growth factor. J.Biol.Chem. 274: 

25906-25912. 

Izumi T., Yokota-Hashimoto H., Zhao S., Wang J., Halban P. A., & Takeuchi T. (2003) 

Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. 

Diabetes. 52: 409-416. 



Bibliography 

67 

Jackerott M., Baudry A., Bucchini D., Jami J., & Joshi R. L. (2002) Improved metabolic 

disorders of insulin receptor-deficient mice by transgenic overexpression of glucokinase 

in the liver. Diabetologia 45: 1292-1297. 

Jackerott M., Moldrup A., Thams P., Galsgaard E. D., Knudsen J., Lee Y. C., & Nielsen 

J. H. (2006) STAT5 activity in pancreatic beta-cells influences the severity of diabetes 

in animal models of type 1 and 2 diabetes. Diabetes 55: 2705-2712. 

Jackson L. F., Qiu T. H., Sunnarborg S. W., Chang A., Zhang C., Patterson C., & Lee 

D. C. (2003) Defective valvulogenesis in HB-EGF and TACE-null mice is associated 

with aberrant BMP signaling. EMBO J. 22: 2704-2716. 

Jansen C., Lundquist I., Salehi A., Axelson J., & Ohlsson B. (2006) Does epidermal 

growth factor participate in the regulation of glucose, insulin and glucagon levels? 

Eur.Surg.Res. 38: 377-384. 

Jhappan C., Stahle C., Harkins R. N., Fausto N., Smith G. H., & Merlino G. T. (1990) 

TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal 

development of the mammary gland and pancreas. Cell 61: 1137-1146. 

Johnson J. D., Ahmed N. T., Luciani D. S., Han Z., Tran H., Fujita J., Misler S., Edlund 

H., & Polonsky K. S. (2003) Increased islet apoptosis in Pdx1+/- mice. 

J.Clin.Invest 111: 1147-1160. 

Joshi R. L., Lamothe B., Cordonnier N., Mesbah K., Monthioux E., Jami J., & Bucchini 

D. (1996) Targeted disruption of the insulin receptor gene in the mouse results in 

neonatal lethality. EMBO J. 15: 1542-1547. 

Kaneto H., Miyagawa J., Kajimoto Y., Yamamoto K., Watada H., Umayahara Y., 

Hanafusa T., Matsuzawa Y., Yamasaki Y., Higashiyama S., & Taniguchi N. (1997) 

Expression of heparin-binding epidermal growth factor-like growth factor during 

pancreas development. A potential role of PDX-1 in transcriptional activation. 

J.Biol.Chem. 272: 29137-29143. 

Kebede M., Favaloro J., Gunton J. E., Laybutt D. R., Shaw M., Wong N., Fam B. C., 

Aston-Mourney K., Rantzau C., Zulli A., Proietto J., & Andrikopoulos S. (2008) 

Fructose-1,6-bisphosphatase overexpression in pancreatic beta-cells results in reduced 

insulin secretion: a new mechanism for fat-induced impairment of beta-cell function. 

Diabetes 57: 1887-1895. 



Bibliography 

68 

Kendall D. M., Sutherland D. E., Najarian J. S., Goetz F. C., & Robertson R. P. (1990) 

Effects of hemipancreatectomy on insulin secretion and glucose tolerance in healthy 

humans. N.Engl.J.Med. 322: 898-903. 

Kenney N. J., Smith G. H., Rosenberg K., Cutler M. L., & Dickson R. B. (1996) 

Induction of ductal morphogenesis and lobular hyperplasia by amphiregulin in the 

mouse mammary gland. Cell Growth Differ. 7: 1769-1781. 

Kergoat M., Simon J., & Portha B. (1988) Insulin binding and insulin receptor tyrosine 

kinase activity are not altered in the liver of rats with non-insulin-dependent diabetes. 

Biochem.Biophys.Res.Commun. 152: 1015-1022. 

Kim H. S., Shin H. S., Kwak H. J., Cho C. H., Lee C. O., & Koh G. Y. (2003) 

Betacellulin induces angiogenesis through activation of mitogen-activated protein 

kinase and phosphatidylinositol 3'-kinase in endothelial cell. FASEB J. 17: 318-320. 

Kindel T. L., Yoder S. M., Seeley R. J., D'Alessio D. A., & Tso P. (2009) Duodenal-

Jejunal Exclusion Improves Glucose Tolerance in the Diabetic, Goto-Kakizaki Rat by a 

GLP-1 Receptor-Mediated Mechanism. J.Gastrointest.Surg. 

Kjems L. L., Kirby B. M., Welsh E. M., Veldhuis J. D., Straume M., McIntyre S. S., 

Yang D., Lefebvre P., & Butler P. C. (2001) Decrease in beta-cell mass leads to 

impaired pulsatile insulin secretion, reduced postprandial hepatic insulin clearance, and 

relative hyperglucagonemia in the minipig. Diabetes 50: 2001-2012. 

Klapper L. N., Glathe S., Vaisman N., Hynes N. E., Andrews G. C., Sela M., & Yarden 

Y. (1999) The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as 

a shared coreceptor for multiple stroma-derived growth factors. 

Proc.Natl.Acad.Sci.U.S.A 96: 4995-5000. 

Kobayashi K., Kobayashi N., Okitsu T., Yong C., Fukazawa T., Ikeda H., Kosaka Y., 

Narushima M., Arata T., & Tanaka N. (2004) Development of a porcine model of type 1 

diabetes by total pancreatectomy and establishment of a glucose tolerance evaluation 

method. Artif.Organs 28: 1035-1042. 

Kobrin M. S., Funatomi H., Friess H., Buchler M. W., Stathis P., & Korc M. (1994) 

Induction and expression of heparin-binding EGF-like growth factor in human 

pancreatic cancer. Biochem.Biophys.Res.Commun. 202: 1705-1709. 

 



Bibliography 

69 

Kochupurakkal B. S., Harari D., Di Segni A., Maik-Rachline G., Lyass L., Gur G., 

Kerber G., Citri A., Lavi S., Eilam R., Chalifa-Caspi V., Eshhar Z., Pikarsky E., Pinkas-

Kramarski R., Bacus S. S., & Yarden Y. (2005) Epigen, the last ligand of ErbB 

receptors, reveals intricate relationships between affinity and mitogenicity. 

J.Biol.Chem. 280: 8503-8512. 

Kojima H., Fujimiya M., Matsumura K., Younan P., Imaeda H., Maeda M., & Chan L. 

(2003) NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and 

reverses diabetes in mice. Nat.Med. 9: 596-603. 

Kooistra H. S., Galac S., Buijtels J. J., & Meij B. P. (2009) Endocrine diseases in 

animals. Horm.Res. 71 Suppl 1: 144-147. 

Kozawa J., Tokui Y., Moriwaki M., Li M., Ohmoto H., Yuan M., Zhang J., Iwahashi 

H., Imagawa A., Yamagata K., Tochino Y., Shimomura I., Higashiyama S., & 

Miyagawa J. (2005) Regenerative and therapeutic effects of heparin-binding epidermal 

growth factor-like growth factor on diabetes by gene transduction through retrograde 

pancreatic duct injection of adenovirus vector. Pancreas 31: 32-42. 

Krakowski M. L., Kritzik M. R., Jones E. M., Krahl T., Lee J., Arnush M., Gu D., 

Mroczkowski B., & Sarvetnick N. (1999) Transgenic expression of epidermal growth 

factor and keratinocyte growth factor in beta-cells results in substantial morphological 

changes. J.Endocrinol. 162: 167-175. 

Kritzik M. R., Krahl T., Good A., Gu D., Lai C., Fox H., & Sarvetnick N. (2000) 

Expression of ErbB receptors during pancreatic islet development and regrowth. 

J.Endocrinol. 165: 67-77. 

Kuntz E., Broca C., Komurasaki T., Kaltenbacher M. C., Gross R., Pinget M., & Damge 

C. (2005) Effect of epiregulin on pancreatic beta cell growth and insulin secretion. 

Growth Factors 23: 285-293. 

Lane H. A., Beuvink I., Motoyama A. B., Daly J. M., Neve R. M., & Hynes N. E. 

(2000) ErbB2 potentiates breast tumor proliferation through modulation of p27(Kip1)-

Cdk2 complex formation: receptor overexpression does not determine growth 

dependency. Mol.Cell Biol. 20: 3210-3223. 

 



Bibliography 

70 

Larsen M. O., Rolin B., Sturis J., Wilken M., Carr R. D., Porksen N., & Gotfredsen C. 

F. (2006) Measurements of insulin responses as predictive markers of pancreatic beta-

cell mass in normal and beta-cell-reduced lean and obese Gottingen minipigs in vivo. 

Am.J.Physiol Endocrinol.Metab 290: E670-E677. 

Larsen M. O., Wilken M., Gotfredsen C. F., Carr R. D., Svendsen O., & Rolin B. (2002) 

Mild streptozotocin diabetes in the Gottingen minipig. A novel model of moderate 

insulin deficiency and diabetes. Am.J.Physiol Endocrinol.Metab 282: E1342-E1351. 

Lasserre B., Navarro-Delmasure C., Pham Huu C. A., Catala J., & Hollande E. (2000) 

Modifications in the TXA(2) and PGI(2) plasma levels and some other biochemical 

parameters during the initiation and development of non-insulin-dependent diabetes 

mellitus (NIDDM) syndrome in the rabbit. Prostaglandins Leukot.Essent.Fatty 

Acids 62: 285-291. 

Lee D., Pearsall R. S., Das S., Dey S. K., Godfrey V. L., & Threadgill D. W. (2004) 

Epiregulin is not essential for development of intestinal tumors but is required for 

protection from intestinal damage. Mol.Cell Biol. 24: 8907-8916. 

Lee K. F., Simon H., Chen H., Bates B., Hung M. C., & Hauser C. (1995) Requirement 

for neuregulin receptor erbB2 in neural and cardiac development. Nature 378: 394-398. 

Leiter E. H., Beamer W. G., & Shultz L. D. (1983) The effect of immunosuppression on 

streptozotocin-induced diabetes in C57BL/KsJ mice. Diabetes 32: 148-155. 

Li L., Li F., Qi H., Gao F., Deng H., & Zhou H. (2008) Co-expression of Pdx1 and 

betacellulin in mesenchymal stem cells could promote the differentiation of nestin-

positive epithelium-like progenitors and pancreatic islet-like spheroids. Stem Cells Dev. 

Li L., Seno M., Yamada H., & Kojima I. (2001) Promotion of beta-cell regeneration by 

betacellulin in ninety percent-pancreatectomized rats. Endocrinology 142: 5379-5385. 

Li L., Seno M., Yamada H., & Kojima I. (2003) Betacellulin improves glucose 

metabolism by promoting conversion of intraislet precursor cells to beta-cells in 

streptozotocin-treated mice. Am.J.Physiol Endocrinol.Metab 285: E577-E583. 

Lim J. Y., Min B. H., Kim B. G., Shin J. S., Park C. S., Yoon T. W., & Han S. S. (2009) 

Combinations of growth factors enhance the potency of islets in vitro. Pancreas 38: 

447-453. 



Bibliography 

71 

Liu Y. Q., Nevin P. W., & Leahy J. L. (2000) beta-cell adaptation in 60% 

pancreatectomy rats that preserves normoinsulinemia and normoglycemia. Am.J.Physiol 

Endocrinol.Metab 279: E68-E73. 

Lohr M., Lubbersmeyer J., Otremba B., Klapdor R., Grossner D., & Kloppel G. (1989) 

Increase in B-cells in the pancreatic remnant after partial pancreatectomy in pigs. An 

immunocytochemical and functional study. Virchows Arch.B Cell 

Pathol.Incl.Mol.Pathol. 56: 277-286. 

Lu Y. R., Wang L. N., Jin X., Chen Y. N., Cong C., Yuan Y., Li Y. C., Tang W. D., Li 

H. X., Wu X. T., Li Y. P., Wang L., & Cheng J. Q. (2008) A preliminary study on the 

feasibility of gene expression profile of rhesus monkey detected with human 

microarray. Transplant.Proc. 40: 598-602. 

Luetteke N. C., Qiu T. H., Fenton S. E., Troyer K. L., Riedel R. F., Chang A., & Lee D. 

C. (1999) Targeted inactivation of the EGF and amphiregulin genes reveals distinct 

roles for EGF receptor ligands in mouse mammary gland development. 

Development 126: 2739-2750. 

Luetteke N. C., Qiu T. H., Peiffer R. L., Oliver P., Smithies O., & Lee D. C. (1993) 

TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and 

waved-1 mice. Cell 73: 263-278. 

MacKenzie D. A., Hullett D. A., & Sollinger H. W. (2003) Xenogeneic transplantation 

of porcine islets: an overview. Transplantation 76: 887-891. 

Mann G. B., Fowler K. J., Gabriel A., Nice E. C., Williams R. L., & Dunn A. R. (1993) 

Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy 

hair, and curly whiskers and often develop corneal inflammation. Cell 73: 249-261. 

Marikovsky M., Breuing K., Liu P. Y., Eriksson E., Higashiyama S., Farber P., 

Abraham J., & Klagsbrun M. (1993) Appearance of heparin-binding EGF-like growth 

factor in wound fluid as a response to injury. Proc.Natl.Acad.Sci.U.S.A 90: 3889-3893. 

Marquardt H., Hunkapiller M. W., Hood L. E., Twardzik D. R., De Larco J. E., 

Stephenson J. R., & Todaro G. J. (1983) Transforming growth factors produced by 

retrovirus-transformed rodent fibroblasts and human melanoma cells: amino acid 

sequence homology with epidermal growth factor. Proc.Natl.Acad.Sci.U.S.A 80: 

4684-4688. 



Bibliography 

72 

Marshak S., Totary H., Cerasi E., & Melloul D. (1996) Purification of the beta-cell 

glucose-sensitive factor that transactivates the insulin gene differentially in normal and 

transformed islet cells. Proc.Natl.Acad.Sci.U.S.A 93: 15057-15062. 

Marshall M. (1979) Induction of chronic diabetes by streptozotocin in the miniature pig. 

Res.Exp.Med.(Berl) 175: 187-196. 

Martin J., Hunt S. L., Dubus P., Sotillo R., Nehme-Pelluard F., Magnuson M. A., 

Parlow A. F., Malumbres M., Ortega S., & Barbacid M. (2003) Genetic rescue of Cdk4 

null mice restores pancreatic beta-cell proliferation but not homeostatic cell number. 

Oncogene 22: 5261-5269. 

Mashima H., Ohnishi H., Wakabayashi K., Mine T., Miyagawa J., Hanafusa T., Seno 

M., Yamada H., & Kojima I. (1996) Betacellulin and activin A coordinately convert 

amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J.Clin.Invest 97: 

1647-1654. 

Mashima H., Yamada S., Tajima T., Seno M., Yamada H., Takeda J., & Kojima I. 

(1999) Genes expressed during the differentiation of pancreatic AR42J cells into 

insulin-secreting cells. Diabetes 48: 304-309. 

Massague J. & Pandiella A. (1993) Membrane-anchored growth factors. 

Annu.Rev.Biochem. 62: 515-541. 

Matsumoto T., Ishida K., Nakayama N., Kobayashi T., & Kamata K. (2009) 

Involvement of NO and MEK/ERK pathway in enhancement of endothelin-1-induced 

mesenteric artery contraction in later-stage type 2 diabetic Goto-Kakizaki rat. 

Am.J.Physiol Heart Circ.Physiol 296: H1388-H1397. 

Means A. L., Ray K. C., Singh A. B., Washington M. K., Whitehead R. H., Harris R. 

C., Jr., Wright C. V., Coffey R. J., Jr., & Leach S. D. (2003) Overexpression of heparin-

binding EGF-like growth factor in mouse pancreas results in fibrosis and epithelial 

metaplasia. Gastroenterology 124: 1020-1036. 

Meglasson M. D. & Matschinsky F. M. (1986) Pancreatic islet glucose metabolism and 

regulation of insulin secretion. Diabetes Metab Rev. 2: 163-214. 

Melloul D., Marshak S., & Cerasi E. (2002) Regulation of insulin gene transcription. 

Diabetologia 45: 309-326. 



Bibliography 

73 

Michael M. D., Kulkarni R. N., Postic C., Previs S. F., Shulman G. I., Magnuson M. A., 

& Kahn C. R. (2000) Loss of insulin signaling in hepatocytes leads to severe insulin 

resistance and progressive hepatic dysfunction. Mol.Cell 6: 87-97. 

Miettinen P. J., Berger J. E., Meneses J., Phung Y., Pedersen R. A., Werb Z., & 

Derynck R. (1995) Epithelial immaturity and multiorgan failure in mice lacking 

epidermal growth factor receptor. Nature 376: 337-341. 

Miettinen P. J. & Heikinheimo K. (1992) Transforming growth factor-alpha (TGF-

alpha) and insulin gene expression in human fetal pancreas. Development 114: 833-840. 

Miettinen P. J., Huotari M., Koivisto T., Ustinov J., Palgi J., Rasilainen S., Lehtonen E., 

Keski-Oja J., & Otonkoski T. (2000) Impaired migration and delayed differentiation of 

pancreatic islet cells in mice lacking EGF-receptors. Development 127: 2617-2627. 

Miettinen P. J., Ustinov J., Ormio P., Gao R., Palgi J., Hakonen E., Juntti-Berggren L., 

Berggren P. O., & Otonkoski T. (2006) Downregulation of EGF receptor signaling in 

pancreatic islets causes diabetes due to impaired postnatal beta-cell growth. 

Diabetes 55: 3299-3308. 

Mir S. H. & Darzi M. M. (2009) Histopathological abnormalities of prolonged alloxan-

induced diabetes mellitus in rabbits. Int.J.Exp.Pathol. 90: 66-73. 

Miyagawa J., Hanafusa O., Sasada R., Yamamoto K., Igarashi K., Yamamori K., Seno 

M., Tada H., Nammo T., Li M., Yamagata K., Nakajima H., Namba M., Kuwajima M., 

& Matsuzawa Y. (1999) Immunohistochemical localization of betacellulin, a new 

member of the EGF family, in normal human pancreas and islet tumor cells. 

Endocr.J. 46: 755-764. 

Miyawaki K., Inoue H., Keshavarz P., Mizuta K., Sato A., Sakamoto Y., Moritani M., 

Kunika K., Tanahashi T., & Itakura M. (2008) Transgenic expression of a mutated 

cyclin-dependent kinase 4 (CDK4/R24C) in pancreatic beta-cells prevents progression 

of diabetes in db/db mice. Diabetes Res.Clin.Pract. 82: 33-41. 

Morioka T., Asilmaz E., Hu J., Dishinger J. F., Kurpad A. J., Elias C. F., Li H., 

Elmquist J. K., Kennedy R. T., & Kulkarni R. N. (2007) Disruption of leptin receptor 

expression in the pancreas directly affects beta cell growth and function in mice. 

J.Clin.Invest 117: 2860-2868. 



Bibliography 

74 

Motoyama A. B., Hynes N. E., & Lane H. A. (2002) The efficacy of ErbB receptor-

targeted anticancer therapeutics is influenced by the availability of epidermal growth 

factor-related peptides. Cancer Res. 62: 3151-3158. 

Mumtaz F. H., Dashwood M. R., Khan M. A., Thompson C. S., Mikhailidis D. P., & 

Morgan R. J. (2004) Down-regulation of nitric oxide synthase in the diabetic rabbit 

kidney: potential relevance to the early pathogenesis of diabetic nephropathy. 

Curr.Med.Res.Opin. 20: 1-6. 

Nelson R. W., Brown S. A., Jones R. J., Smith P., & Bottoms G. D. (1990) Absorption 

kinetics of regular insulin in dogs with alloxan-induced diabetes mellitus. 

Am.J.Vet.Res. 51: 1671-1674. 

Neve R. M., Sutterluty H., Pullen N., Lane H. A., Daly J. M., Krek W., & Hynes N. E. 

(2000) Effects of oncogenic ErbB2 on G1 cell cycle regulators in breast tumour cells. 

Oncogene 19: 1647-1656. 

Ng K. W., Partridge N. C., Niall M., & Martin T. J. (1983) Epidermal growth factor 

receptors in clonal lines of a rat osteogenic sarcoma and in osteoblast-rich rat bone cells. 

Calcif.Tissue Int. 35: 298-303. 

Normanno N., Selvam M. P., Qi C. F., Saeki T., Johnson G., Kim N., Ciardiello F., 

Shoyab M., Plowman G., Brandt R., & . (1994) Amphiregulin as an autocrine growth 

factor for c-Ha-ras- and c-erbB-2-transformed human mammary epithelial cells. 

Proc.Natl.Acad.Sci.U.S.A 91: 2790-2794. 

Offield M. F., Jetton T. L., Labosky P. A., Ray M., Stein R. W., Magnuson M. A., 

Hogan B. L., & Wright C. V. (1996) PDX-1 is required for pancreatic outgrowth and 

differentiation of the rostral duodenum. Development 122: 983-995. 

Ohneda K., Ee H., & German M. (2000) Regulation of insulin gene transcription. 

Semin.Cell Dev.Biol. 11: 227-233. 

Ormandy C. J., Naylor M., Harris J., Robertson F., Horseman N. D., Lindeman G. J., 

Visvader J., & Kelly P. A. (2003) Investigation of the transcriptional changes 

underlying functional defects in the mammary glands of prolactin receptor knockout 

mice. Recent Prog.Horm.Res. 58: 297-323. 



Bibliography 

75 

Ozanne B., Fulton R. J., & Kaplan P. L. (1980) Kirsten murine sarcoma virus 

transformed cell lines and a spontaneously transformed rat cell-line produce 

transforming factors. J.Cell Physiol 105: 163-180. 

Panciera D. L., Thomas C. B., Eicker S. W., & Atkins C. E. (1990) Epizootiologic 

patterns of diabetes mellitus in cats: 333 cases (1980-1986). J.Am.Vet.Med.Assoc. 197: 

1504-1508. 

Park J. Y., Su Y. Q., Ariga M., Law E., Jin S. L., & Conti M. (2004) EGF-like growth 

factors as mediators of LH action in the ovulatory follicle. Science 303: 682-684. 

Pathak B. G., Gilbert D. J., Harrison C. A., Luetteke N. C., Chen X., Klagsbrun M., 

Plowman G. D., Copeland N. G., Jenkins N. A., & Lee D. C. (1995) Mouse 

chromosomal location of three EGF receptor ligands: amphiregulin (Areg), betacellulin 

(Btc), and heparin-binding EGF (Hegfl). Genomics 28: 116-118. 

Pelengaris S., Khan M., & Evan G. I. (2002) Suppression of Myc-induced apoptosis in 

beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic 

progression. Cell 109: 321-334. 

Phillips R. W., Panepinto L. M., Will D. H., & Case G. L. (1980) The effects of alloxan 

diabetes on Yucatan miniature swine and their progeny. Metabolism 29: 40-45. 

Pinkas-Kramarski R., Lenferink A. E., Bacus S. S., Lyass L., van de Poll M. L., Klapper 

L. N., Tzahar E., Sela M., van Zoelen E. J., & Yarden Y. (1998) The oncogenic ErbB-

2/ErbB-3 heterodimer is a surrogate receptor of the epidermal growth factor and 

betacellulin. Oncogene 16: 1249-1258. 

Plowman G. D., Green J. M., McDonald V. L., Neubauer M. G., Disteche C. M., 

Todaro G. J., & Shoyab M. (1990) The amphiregulin gene encodes a novel epidermal 

growth factor-related protein with tumor-inhibitory activity. Mol.Cell Biol. 10: 

1969-1981. 

Pomaro D. R., Ihara S. S., Pinto L. E., Ueda I., Casarini D. E., Ebihara F., Santos A. O., 

Izar M. C., & Fonseca F. A. (2005) High glucose levels abolish antiatherosclerotic 

benefits of ACE inhibition in alloxan-induced diabetes in rabbits. 

J.Cardiovasc.Pharmacol. 45: 295-300. 

Portanova R., Yun J. S., & Wagner T. E. (1990) Stress-induced secretion of human 

growth hormone in transgenic mice. Proc.Soc.Exp.Biol.Med. 193: 46-49. 



Bibliography 

76 

Porte D., Jr. (1991) β-Cells in type II diabetes mellitus. Diabetes. 40: 166-180. 

Portha B., Levacher C., Picon L., & Rosselin G. (1974) Diabetogenic effect of 

streptozotocin in the rat during the perinatal period. Diabetes 23: 889-895. 

Prabhakaran S. & Hering B. J. (2008) What strain of pig should be used? 

Xenotransplantation. 15: 83-86. 

Prenzel N., Zwick E., Daub H., Leserer M., Abraham R., Wallasch C., & Ullrich A. 

(1999) EGF receptor transactivation by G-protein-coupled receptors requires 

metalloproteinase cleavage of proHB-EGF. Nature 402: 884-888. 

Qiao C. F., Tian B. L., Mai G., Wei L. L., Jin X., Ren Y., Chen Y. N., Li H. X., Li Y. 

P., Wang L., Cheng J. Q., & Lu Y. R. (2009) Induction of diabetes in rhesus monkeys 

and establishment of insulin administration strategy. Transplant.Proc. 41: 413-417. 

Qin L., Tamasi J., Raggatt L., Li X., Feyen J. H., Lee D. C., Dicicco-Bloom E., & 

Partridge N. C. (2005) Amphiregulin is a novel growth factor involved in normal bone 

development and in the cellular response to parathyroid hormone stimulation. 

J.Biol.Chem. 280: 3974-3981. 

Ragazzi E., Costa C. V., Caparrotta L., Biasiolo M., Bertazzo A., & Allegri G. (2002) 

Enzyme activities along the tryptophan-nicotinic acid pathway in alloxan diabetic 

rabbits. Biochim.Biophys.Acta 1571: 9-17. 

Rane S. G. & Reddy E. P. (2000) Cell cycle control of pancreatic beta cell proliferation. 

Front Biosci. 5: D1-19. 

Rappolee D. A., Brenner C. A., Schultz R., Mark D., & Werb Z. (1988) Developmental 

expression of PDGF, TGF-alpha, and TGF-beta genes in preimplantation mouse 

embryos. Science 241: 1823-1825. 

Rescan C., Le Bras S., Lefebvre V. H., Frandsen U., Klein T., Foschi M., Pipeleers D. 

G., Scharfmann R., Madsen O. D., & Heimberg H. (2005) EGF-induced proliferation of 

adult human pancreatic duct cells is mediated by the MEK/ERK cascade. Lab Invest 85: 

65-74. 

Rittie L., Kansra S., Stoll S. W., Li Y., Gudjonsson J. E., Shao Y., Michael L. E., Fisher 

G. J., Johnson T. M., & Elder J. T. (2007) Differential ErbB1 signaling in squamous cell 

versus basal cell carcinoma of the skin. Am.J.Pathol. 170: 2089-2099. 



Bibliography 

77 

Robertson K., Lu Y., De Jesus K., Li B., Su Q., Lund P. K., & Liu J. L. (2008) A 

general and islet cell-enriched overexpression of IGF-I results in normal islet cell 

growth, hypoglycemia, and significant resistance to experimental diabetes. Am.J.Physiol 

Endocrinol.Metab 294: E928-E938. 

Rogers S. A., Chen F., Talcott M., Liapis H., & Hammerman M. R. (2006) Glucose 

tolerance normalization following transplantation of pig pancreatic primordia into non-

immunosuppressed diabetic ZDF rats. Transpl.Immunol. 16: 176-184. 

Rood P. P., Bottino R., Balamurugan A. N., Smetanka C., Ezzelarab M., Busch J., Hara 

H., Trucco M., & Cooper D. K. (2006) Induction of diabetes in cynomolgus monkeys 

with high-dose streptozotocin: adverse effects and early responses. Pancreas 33: 

287-292. 

Ross J. S. & Fletcher J. A. (1999) The HER-2/neu oncogene: prognostic factor, 

predictive factor and target for therapy. Semin.Cancer Biol. 9: 125-138. 

Salomon D. S., Brandt R., Ciardiello F., & Normanno N. (1995) Epidermal growth 

factor-related peptides and their receptors in human malignancies. Crit 

Rev.Oncol.Hematol. 19: 183-232. 

Samsoondar J., Kobrin M. S., & Kudlow J. E. (1986) Alpha-transforming growth factor 

secreted by untransformed bovine anterior pituitary cells in culture. I. Purification from 

conditioned medium. J.Biol.Chem. 261: 14408-14413. 

Sandgren E. P., Luetteke N. C., Palmiter R. D., Brinster R. L., & Lee D. C. (1990) 

Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, 

pancreatic metaplasia, and carcinoma of the breast. Cell 61: 1121-1135. 

Sandgren E. P., Luetteke N. C., Qiu T. H., Palmiter R. D., Brinster R. L., & Lee D. C. 

(1993) Transforming growth factor alpha dramatically enhances oncogene-induced 

carcinogenesis in transgenic mouse pancreas and liver. Mol.Cell Biol. 13: 320-330. 

Sasada R., Ono Y., Taniyama Y., Shing Y., Folkman J., & Igarashi K. (1993) Cloning 

and expression of cDNA encoding human betacellulin, a new member of the EGF 

family. Biochem.Biophys.Res.Commun. 190: 1173-1179. 

 

 



Bibliography 

78 

Schneider M. R., Dahlhoff M., Herbach N., Renner-Mueller I., Dalke C., Puk O., Graw 

J., Wanke R., & Wolf E. (2005) Betacellulin overexpression in transgenic mice causes 

disproportionate growth, pulmonary hemorrhage syndrome, and complex eye 

pathology. Endocrinology 146: 5237-5246. 

Scheider M.R., Wolf E. (2009) The epidermal growth factor receptor ligands at a 

glance. J. Cell. Physiol. 24: 455-467 

Schultz G. S., White M., Mitchell R., Brown G., Lynch J., Twardzik D. R., & Todaro G. 

J. (1987) Epithelial wound healing enhanced by transforming growth factor-alpha and 

vaccinia growth factor. Science 235: 350-352. 

Seno M., Tada H., Kosaka M., Sasada R., Igarashi K., Shing Y., Folkman J., Ueda M., 

& Yamada H. (1996) Human betacellulin, a member of the EGF family dominantly 

expressed in pancreas and small intestine, is fully active in a monomeric form. Growth 

Factors 13: 181-191. 

Shapiro A. M., Lakey J. R., Ryan E. A., Korbutt G. S., Toth E., Warnock G. L., 

Kneteman N. M., & Rajotte R. V. (2000) Islet transplantation in seven patients with 

type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. 

N.Engl.J.Med. 343: 230-238. 

Shapiro A. M., Ricordi C., Hering B. J., Auchincloss H., Lindblad R., Robertson R. P., 

Secchi A., Brendel M. D., Berney T., Brennan D. C., Cagliero E., Alejandro R., Ryan E. 

A., DiMercurio B., Morel P., Polonsky K. S., Reems J. A., Bretzel R. G., Bertuzzi F., 

Froud T., Kandaswamy R., Sutherland D. E., Eisenbarth G., Segal M., Preiksaitis J., 

Korbutt G. S., Barton F. B., Viviano L., Seyfert-Margolis V., Bluestone J., & Lakey J. 

R. (2006) International trial of the Edmonton protocol for islet transplantation. 

N.Engl.J.Med. 355: 1318-1330. 

Shimada M., Hernandez-Gonzalez I., Gonzalez-Robayna I., & Richards J. S. (2006) 

Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus 

oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and 

progesterone receptor. Mol.Endocrinol. 20: 1352-1365. 

Shin S., Li N., Kobayashi N., Yoon J. W., & Jun H. S. (2008) Remission of diabetes by 

beta-cell regeneration in diabetic mice treated with a recombinant adenovirus expressing 

betacellulin. Mol.Ther. 16: 854-861. 



Bibliography 

79 

Shing Y., Christofori G., Hanahan D., Ono Y., Sasada R., Igarashi K., & Folkman J. 

(1993) Betacellulin: a mitogen from pancreatic beta cell tumors. Science 259: 

1604-1607. 

Shirai H., Ueno E., Osaki M., Tatebe S., Ito H., & Kaibara N. (1995) Expression of 

growth factors and their receptors in human early colorectal carcinomas: 

immunohistochemical study. Anticancer Res. 15: 2889-2894. 

Shirakata Y., Kimura R., Nanba D., Iwamoto R., Tokumaru S., Morimoto C., Yokota 

K., Nakamura M., Sayama K., Mekada E., Higashiyama S., & Hashimoto K. (2005) 

Heparin-binding EGF-like growth factor accelerates keratinocyte migration and skin 

wound healing. J.Cell Sci. 118: 2363-2370. 

Shirakata Y., Komurasaki T., Toyoda H., Hanakawa Y., Yamasaki K., Tokumaru S., 

Sayama K., & Hashimoto K. (2000) Epiregulin, a novel member of the epidermal 

growth factor family, is an autocrine growth factor in normal human keratinocytes. 

J.Biol.Chem. 275: 5748-5753. 

Shirasawa S., Sugiyama S., Baba I., Inokuchi J., Sekine S., Ogino K., Kawamura Y., 

Dohi T., Fujimoto M., & Sasazuki T. (2004) Dermatitis due to epiregulin deficiency and 

a critical role of epiregulin in immune-related responses of keratinocyte and 

macrophage. Proc.Natl.Acad.Sci.U.S.A 101: 13921-13926. 

Shoyab M., McDonald V. L., Bradley J. G., & Todaro G. J. (1988) Amphiregulin: a 

bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-

acetate-treated human breast adenocarcinoma cell line MCF-7. 

Proc.Natl.Acad.Sci.U.S.A 85: 6528-6532. 

Sibilia M., Steinbach J. P., Stingl L., Aguzzi A., & Wagner E. F. (1998) A strain-

independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J. 

17: 719-731. 

Sibilia M. & Wagner E. F. (1995) Strain-dependent epithelial defects in mice lacking 

the EGF receptor. Science 269: 234-238. 

Sjoholm A. & Kindmark H. (1999) Short- and long-term effects of beta-cellulin and 

transforming growth factor-alpha on beta-cell function in cultured fetal rat pancreatic 

islets. Endocrine. 11: 189-193. 



Bibliography 

80 

Slamon D. J., Clark G. M., Wong S. G., Levin W. J., Ullrich A., & McGuire W. L. 

(1987) Human breast cancer: correlation of relapse and survival with amplification of 

the HER-2/neu oncogene. Science 235: 177-182. 

Slamon D. J., Godolphin W., Jones L. A., Holt J. A., Wong S. G., Keith D. E., Levin W. 

J., Stuart S. G., Udove J., Ullrich A., & . (1989) Studies of the HER-2/neu proto-

oncogene in human breast and ovarian cancer. Science 244: 707-712. 

Stagner J. I., Rilo H. L., & White K. K. (2007) The pancreas as an islet transplantation 

site. Confirmation in a syngeneic rodent and canine autotransplant model. JOP. 8: 

628-636. 

Stern P. H., Krieger N. S., Nissenson R. A., Williams R. D., Winkler M. E., Derynck R., 

& Strewler G. J. (1985) Human transforming growth factor-alpha stimulates bone 

resorption in vitro. J.Clin.Invest 76: 2016-2019. 

Sternlicht M. D., Sunnarborg S. W., Kouros-Mehr H., Yu Y., Lee D. C., & Werb Z. 

(2005) Mammary ductal morphogenesis requires paracrine activation of stromal EGFR 

via ADAM17-dependent shedding of epithelial amphiregulin. Development 132: 

3923-3933. 

Stoffers D. A., Zinkin N. T., Stanojevic V., Clarke W. L., & Habener J. F. (1997) 

Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene 

coding sequence. Nat.Genet. 15: 106-110. 

Strachan L., Murison J. G., Prestidge R. L., Sleeman M. A., Watson J. D., & Kumble K. 

D. (2001) Cloning and biological activity of epigen, a novel member of the epidermal 

growth factor superfamily. J.Biol.Chem. 276: 18265-18271. 

Stump K. C., Swindle M. M., Saudek C. D., & Strandberg J. D. (1988) 

Pancreatectomized swine as a model of diabetes mellitus. Lab Anim Sci. 38: 439-443. 

Suarez-Pinzon W. L. & Rabinovitch A. (2008) Combination therapy with epidermal 

growth factor and gastrin delays autoimmune diabetes recurrence in nonobese diabetic 

mice transplanted with syngeneic islets. Transplant.Proc. 40: 529-532. 

Takahashi M., Hayashi K., Yoshida K., Ohkawa Y., Komurasaki T., Kitabatake A., 

Ogawa A., Nishida W., Yano M., Monden M., & Sobue K. (2003) Epiregulin as a major 

autocrine/paracrine factor released from ERK- and p38MAPK-activated vascular 

smooth muscle cells. Circulation 108: 2524-2529. 



Bibliography 

81 

Tanner B., Kreutz E., Weikel W., Meinert R., Oesch F., Knapstein P. G., & Becker R. 

(1996) Prognostic significance of c-erB-2 mRNA in ovarian carcinoma. 

Gynecol.Oncol. 62: 268-277. 

Taylor S. I., Accili D., Cama A., Kadowaki H., Kadowaki T., Imano E., & Sierra M. L. 

(1991) Mutations in the insulin receptor gene in patients with genetic syndromes of 

insulin resistance. Adv.Exp.Med.Biol. 293: 197-213. 

Thowfeequ S., Ralphs K. L., Yu W. Y., Slack J. M., & Tosh D. (2007) Betacellulin 

inhibits amylase and glucagon production and promotes beta cell differentiation in 

mouse embryonic pancreas. Diabetologia 50: 1688-1697. 

Threadgill D. W., Dlugosz A. A., Hansen L. A., Tennenbaum T., Lichti U., Yee D., 

LaMantia C., Mourton T., Herrup K., Harris R. C., & . (1995) Targeted disruption of 

mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269: 

230-234. 

Torring N., Jorgensen P. E., Sorensen B. S., & Nexo E. (2000) Increased expression of 

heparin binding EGF (HB-EGF), amphiregulin, TGF alpha and epiregulin in androgen-

independent prostate cancer cell lines. Anticancer Res. 20: 91-95. 

Toyoda H., Komurasaki T., Ikeda Y., Yoshimoto M., & Morimoto S. (1995a) Molecular 

cloning of mouse epiregulin, a novel epidermal growth factor-related protein, expressed 

in the early stage of development. FEBS Lett. 377: 403-407. 

Toyoda H., Komurasaki T., Uchida D., Takayama Y., Isobe T., Okuyama T., & Hanada 

K. (1995b) Epiregulin. A novel epidermal growth factor with mitogenic activity for rat 

primary hepatocytes. J.Biol.Chem. 270: 7495-7500. 

Twardzik D. R., Todaro G. J., Marquardt H., Reynolds F. H., Jr., & Stephenson J. R. 

(1982) Transformation induced by Abelson murine leukemia virus involves production 

of a polypeptide growth factor. Science 216: 894-897. 

Ueda S., Ogata S., Tsuda H., Kawarabayashi N., Kimura M., Sugiura Y., Tamai S., 

Matsubara O., Hatsuse K., & Mochizuki H. (2004) The correlation between cytoplasmic 

overexpression of epidermal growth factor receptor and tumor aggressiveness: poor 

prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas 29: e1-e8. 



Bibliography 

82 

van Zoelen E. J., Stortelers C., Lenferink A. E., & van De Poll M. L. (2000) The EGF 

domain: requirements for binding to receptors of the ErbB family. Vitam.Horm. 59: 

99-131. 

Vasavada R. C., Cavaliere C., D'Ercole A. J., Dann P., Burtis W. J., Madlener A. L., 

Zawalich K., Zawalich W., Philbrick W., & Stewart A. F. (1996) Overexpression of 

parathyroid hormone-related protein in the pancreatic islets of transgenic mice causes 

islet hyperplasia, hyperinsulinemia, and hypoglycemia. J.Biol.Chem. 271: 1200-1208. 

Vaughan T. J., Littlewood C. J., Pascall J. C., & Brown K. D. (1992a) Epidermal 

growth factor concentrations in pig tissues and body fluids measured using a 

homologous radioimmunoassay. J.Endocrinol. 135: 77-83. 

Vaughan T. J., Pascall J. C., & Brown K. D. (1992b) Tissue distribution of mRNA for 

heparin-binding epidermal growth factor. Biochem.J. 287 ( Pt 3): 681-684. 

Velander P., Theopold C., Hirsch T., Bleiziffer O., Zuhaili B., Fossum M., Hoeller D., 

Gheerardyn R., Chen M., Visovatti S., Svensson H., Yao F., & Eriksson E. (2008) 

Impaired wound healing in an acute diabetic pig model and the effects of local 

hyperglycemia. Wound.Repair Regen. 16: 288-293. 

Wagner M., Weber C. K., Bressau F., Greten F. R., Stagge V., Ebert M., Leach S. D., 

Adler G., & Schmid R. M. (2002) Transgenic overexpression of amphiregulin induces a 

mitogenic response selectively in pancreatic duct cells. Gastroenterology 122: 

1898-1912. 

Waguri M., Yamamoto K., Miyagawa J. I., Tochino Y., Yamamori K., Kajimoto Y., 

Nakajima H., Watada H., Yoshiuchi I., Itoh N., Imagawa A., Namba M., Kuwajima M., 

Yamasaki Y., Hanafusa T., & Matsuzawa Y. (1997) Demonstration of two different 

processes of beta-cell regeneration in a new diabetic mouse model induced by selective 

perfusion of alloxan. Diabetes 46: 1281-1290. 

Wang C. J., Chou F. C., Chu C. H., Wu J. C., Lin S. H., Chang D. M., & Sytwu H. K. 

(2008) Protective role of programmed death 1 ligand 1 (PD-L1)in nonobese diabetic 

mice: the paradox in transgenic models. Diabetes 57: 1861-1869. 

Wang R. N., Bouwens L., & Kloppel G. (1994) Beta-cell proliferation in normal and 

streptozotocin-treated newborn rats: site, dynamics and capacity. Diabetologia 37: 

1088-1096. 



Bibliography 

83 

Wang J., TakeuchiT., Tanaka S., Kubo S-K., Kayo T., Lu D., Takata K., Koizumi A., & 

Izumi T. (1999) A mutation in the insulin 2 gene induces diabetes with severe 

pancreatic β-cell dysfunction in the Mody mouse. J. Clin. Invest. 103: 27-37. 

Watada H., Kajimoto Y., Miyagawa J., Hanafusa T., Hamaguchi K., Matsuoka T., 

Yamamoto K., Matsuzawa Y., Kawamori R., & Yamasaki Y. (1996) PDX-1 induces 

insulin and glucokinase gene expressions in alphaTC1 clone 6 cells in the presence of 

betacellulin. Diabetes 45: 1826-1831. 

Watanabe M., Umeyama K., Kawano H. O., Izuno N., Nagashima H., & Miki K. (2007) 

The production of a diabetic mouse using constructs encoding porcine insulin promoter-

driven mutant human hepatocyte nuclear factor-1alpha. J.Reprod.Dev. 53: 189-200. 

Wilcox J. N. & Derynck R. (1988) Developmental expression of transforming growth 

factors alpha and beta in mouse fetus. Mol.Cell Biol. 8: 3415-3422. 

Woldeyesus M. T., Britsch S., Riethmacher D., Xu L., Sonnenberg-Riethmacher E., 

Abou-Rebyeh F., Harvey R., Caroni P., & Birchmeier C (1999) Peripheral nervous 

system defects in erbB2 mutants following genetic rescue of heart development. Genes 

Dev. 13: 2538-2548. 

Wong R. W., Kwan R. W., Mak P. H., Mak K. K., Sham M. H., & Chan S. Y. (2000) 

Overexpression of epidermal growth factor induced hypospermatogenesis in transgenic 

mice. J.Biol.Chem. 275: 18297-18301. 

Wong S. T., Winchell L. F., McCune B. K., Earp H. S., Teixido J., Massague J., 

Herman B., & Lee D. C. (1989) The TGF-alpha precursor expressed on the cell surface 

binds to the EGF receptor on adjacent cells, leading to signal transduction. Cell 56: 

495-506. 

Wu G., Korsgren O., Zhang J., Song Z., van Rooijen N., & Tibell A. (2000) Pig islet 

xenograft rejection is markedly delayed in macrophage-depleted mice: a study in 

streptozotocin diabetic animals. Xenotransplantation. 7: 214-220. 

Wynn P. C., Brown G., & Moore G. P. (1995) Characterization and distribution of 

epidermal growth factor receptors in the skin and wool follicles of the sheep fetus 

during development. Domest.Anim Endocrinol. 12: 269-281. 

 



Bibliography 

84 

Yamamoto K., Hashimoto H., Tomimoto S., Shintani N., Miyazaki J., Tashiro F., 

Aihara H., Nammo T., Li M., Yamagata K., Miyagawa J., Matsuzawa Y., Kawabata Y., 

Fukuyama Y., Koga K., Mori W., Tanaka K., Matsuda T., & Baba A. (2003) 

Overexpression of PACAP in transgenic mouse pancreatic beta-cells enhances insulin 

secretion and ameliorates streptozotocin-induced diabetes. Diabetes 52: 1155-1162. 

Yamamoto K., Miyagawa J., Waguri M., Sasada R., Igarashi K., Li M., Nammo T., 

Moriwaki M., Imagawa A., Yamagata K., Nakajima H., Namba M., Tochino Y., 

Hanafusa T., & Matsuzawa Y. (2000) Recombinant human betacellulin promotes the 

neogenesis of beta-cells and ameliorates glucose intolerance in mice with diabetes 

induced by selective alloxan perfusion. Diabetes 49: 2021-2027. 

Yamazaki S., Iwamoto R., Saeki K., Asakura M., Takashima S., Yamazaki A., Kimura 

R., Mizushima H., Moribe H., Higashiyama S., Endoh M., Kaneda Y., Takagi S., Itami 

S., Takeda N., Yamada G., & Mekada E. (2003) Mice with defects in HB-EGF 

ectodomain shedding show severe developmental abnormalities. J.Cell Biol. 163: 

469-475. 

Yang J. L., Yu Y., Markovic B., Russell P. J., & Crowe P. J. (1997) Overexpression of 

c-erbB-2 mRNA and/or c-neu oncoprotein is a predictor for metastases from colorectal 

cancer. Anticancer Res. 17: 1023-1026. 

Yang X. Q. & Chen A. F. (2009) High-cholesterol Diet Augments Endothelial 

Dysfunction via Elevated Oxidative Stress and Reduced BH(4) in Ins2(Akita) Mice, an 

Autosomal Dominant Mutant Type 1 Diabetic Model. Clin.Exp.Pharmacol.Physiol. 

Yarden Y. & Sliwkowski M. X. (2001) Untangling the ErbB signalling network. 

Nat.Rev.Mol.Cell Biol. 2: 127-137. 

Yashpal N. K., Li J., & Wang R. (2004) Characterization of c-Kit and nestin expression 

during islet cell development in the prenatal and postnatal rat pancreas. Dev.Dyn. 229: 

813-825. 

Yasuda M., Yamamoto M., Ochiai H., Eguchi Y., & Arishima K. (2007) Effects of 

growth factors on development of fetal islet B-cells in vitro. J.Vet.Med.Sci. 69: 807-811. 

Yoshioka M., Kayo T., Ikeda T., & Koizumi A. (1997) A novel locus, Mody4, distal to 

D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 

(Akita) mutant mice. Diabetes. 46: 887-894. 



Bibliography 

85 

Zhang Y., Xiao J., Lin H., Luo X., Wang H., Bai Y., Wang J., Zhang H., Yang B., & 

Wang Z. (2007) Ionic mechanisms underlying abnormal QT prolongation and the 

associated arrhythmias in diabetic rabbits: a role of rapid delayed rectifier K+ current. 

Cell Physiol Biochem. 19: 225-238. 

Zhao M., Amiel S. A., Christie M. R., Rela M., Heaton N., & Huang G. C. (2005) 

Insulin-producing cells derived from human pancreatic non-endocrine cell cultures 

reverse streptozotocin-induced hyperglycaemia in mice. Diabetologia 48: 2051-2061. 

Zhau H. E., Wan D. S., Zhou J., Miller G. J., & von Eschenbach A. C. (1992) 

Expression of c-erb B-2/neu proto-oncogene in human prostatic cancer tissues and cell 

lines. Mol.Carcinog. 5: 320-327. 

Zhu Z., Kleeff J., Friess H., Wang L., Zimmermann A., Yarden Y., Buchler M. W., & 

Korc M. (2000) Epiregulin is Up-regulated in pancreatic cancer and stimulates 

pancreatic cancer cell growth. Biochem.Biophys.Res.Commun. 273: 1019-1024. 

Zini E., Osto M., Franchini M., Guscetti F., Donath M. Y., Perren A., Heller R. S., 

Linscheid P., Bouwman M., Ackermann M., Lutz T. A., & Reusch C. E. (2009) 

Hyperglycaemia but not hyperlipidaemia causes beta cell dysfunction and beta cell loss 

in the domestic cat. Diabetologia 52: 336-346. 

Zou C., Suen P. M., Zhang Y., Wang Z., Chan P., Leung P. S., & Zhang Y. A. (2006) 

Isolation and in vitro characterization of pancreatic progenitor cells from the islets of 

diabetic monkey models. Int.J.Biochem.Cell Biol. 38: 973-984. 

 



Acknowledgments 

86 

8 ACKNOWLEDGMENTS 

 

 

I would like to express my appreciation to Prof. Dr. Eckhard Wolf, my Doktorvater, for 

providing me with the possibility of performing this study at the Institute of Molecular 

Animal Breeding and Biotechnology at the Gene Center of the Ludwig-Maximilian 

University in Munich. 

 

My special thanks go to Dr. Marlon R. Schneider for his sustained help, advice and 

excellent guidance of this work. 

 

My particular thanks go to all the members of the “Graduiertenkolleg”, the Research 

Training Group 1029: “Functional genome research in veterinary medicine”, especially 

its speaker Prof. Dr. Bernd Kaspers and its former speaker Prof. Dr. Dr. Reinhold G. 

Erben for the excellent organization of the education program. Furthermore, I am 

thankful to the “Deutsche Forschungsgemeinschaft” (DFG) for financial support of this 

study. 

 

This study would not have been successfully carried out without the extensive support 

of Dr. Ingrid Renner-Müller, Retra Renner, Tamara Holy, Nadine Zerhoch, Tanja 

Hndawy and all my other colleagues from the animal-care facility of the Gene Center. 

 

I wish to thank Dr. Maik Dahlhoff, Dr.Elisabeth Kempter, Dr. Harald Lahm, Dr. 

Heinrich Flaswinkel, Sepp Milauer, Olga Fettscher Sylvia Hornig and all my colleagues 

from the Institute of Molecular Animal Breeding and Biotechnology. 

  

I am also grateful to Prof. Dr. Rüdiger Wanke and Dr. Nadia Herbach from the Institute 

of Veterinary Pathology, LMU Munich, and to Dr. Felix Habermann from the Institute 

of Veterinary Anatomy, LMU Munich for giving me the opportunity to perform all 

histological investigations required for this work.  

 

 

 



Acknowledgments 

87 

My special thanks to my family and friends, especially my parents Miroslawa and 

Stanislaw Grzech, sister Wioletta Grzech and my dearest Jürgen Fath for their support 

and patience during the difficult times and joining me in my happy moments. At lastly, I 

would like to thank Siobhan Birkefeld for her linguistic help in the creation of this 

dissertation. 

Thank you very much! 



 

 

 


