
Aus der 

Eberhard-Karls-Universität Tübingen 

Department für Augenheilkunde 

Forschungsinstitut für Augenheilkunde, Bereich Neurodegeneration des Auges 

Univ.-Prof. Dr. M. W. Seeliger 

 

Einrichtung für Tierschutz, Tierärztlichen Dienst und Labortierkunde 

Dr. F. Iglauer 

 

vorgelegt über den 

Lehrstuhl für Tierschutz, Verhaltenskunde, Tierhygiene und Tierhaltung 

des Veterinärwissenschaftlichen Departments der Tierärztlichen Fakultät 

der Ludwig-Maximilians-Universität München 

Univ.-Prof. Dr. Dr. M. Erhard 

 

 

Noninvasive assessment of retinal morphology 
in mice using optical coherence tomography 

 

  

Inaugural-Dissertation 

zur Erlangung der tiermedizinischen Doktorwürde 

der Tierärztlichen Fakultät  

der Ludwig-Maximilians-Universität München 

 
 

von 

Gesine Huber 
aus Kusterdingen 

 

 

München 2010 



Gedruckt mit der Genehmigung der Tierärztlichen Fakultät 

der Ludwig-Maximilians-Universität München 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dekan: Univ.-Prof. Dr. Braun 

 

Referent: Univ.-Prof. Dr. Dr. Erhard  

 

Korreferent: Priv.-Doz. Dr. Deeg 

 

 

 

 

 

Tag der Promotion: 13.02.2010 

 

 



 

 

 

 

 

 

 

 

 

 

Meinem Bruder 

Felix 

 

 

 

 



Table of contents           IV 

TABLE OF CONTENTS 
 
I. INTRODUCTION ................................................................................ 1 
II. REVIEW........................................................................................... 2 
1. Proper use of animals in science............................................................. 2 
1.1 Background ............................................................................................. 2 
1.2 The concept of the three R`s ................................................................... 2 
1.2.1 Replacement alternatives ........................................................................ 3 
1.2.2 Reduction alternatives ............................................................................. 3 
1.2.3 Refinement alternatives ........................................................................... 3 
1.3 Current guidelines for animal use in science ........................................... 4 
1.4 Current guidelines for animal use in eye research (ARVO) ..................... 5 
2. The visual system.................................................................................... 6 
2.1 Anatomy of the eye.................................................................................. 6 
2.2 Retinal structure....................................................................................... 8 
2.2.1 Overview of the retinal layers .................................................................. 8 
2.2.2 Outer retina............................................................................................ 10 
2.2.3 Inner retina ............................................................................................ 12 
2.2.4 Retinal vasculature ................................................................................ 13 
3. Retinal imaging ...................................................................................... 15 
3.1 Scanning laser ophthalmoscopy............................................................ 15 
3.2 Optical coherence tomography.............................................................. 17 
3.2.1 Technical principle of optical coherence tomography ............................ 17 
3.2.2 Development of OCT imaging ............................................................... 19 
3.2.3 Third generation spectral-domain optical coherence tomography ......... 20 
3.2.4 OCT in animal eye research .................................................................. 22 
III. MANUSCRIPT FISCHER ET AL.  

Noninvasive in vivo assessment of mouse retinal structure using optical 
coherence tomography ................................................................................ 24 

IV. MANUSCRIPT HUBER ET AL.  
Spectral domain optical coherence tomography in mouse models of retinal 
degeneration ................................................................................................ 32 

V. DISCUSSION AND FUTURE PROSPECTS .............................................41 
VI. SUMMARY ......................................................................................48 
VII. ZUSAMMENFASSUNG .......................................................................50 
VIII. LIST OF REFERENCES......................................................................52 
IX. ACKNOWLEDGMENTS ......................................................................59 
 



I. Introduction   1 

I. INTRODUCTION 
 

Animal models are important organisms in many areas of science. They play a key 

role in experimental ophthalmology because they help to understand a variety of 

genetical, developmental, and disease mechanisms and to develop new 

pharmaceutical and gene therapies. Especially mice are valuable models to identify 

the genes involved in vision because of the availability of diverse genetically modified 

strains and the ease with which single gene mutants can be generated. 

The retina as part of the brain offers the opportunity to directly visualize changes 

associated with neurodegenerative disorders and vascular alterations. There are 

both morphological and functional approaches to characterize disease phenotypes, 

to monitor disease progression, and to evaluate the responsiveness to therapy, 

which can either be performed in living animals (in vivo) or in respective ocular tissue 

(in vitro).  

Whereas most functional tests, namely electroretinography (ERG), are performed in 

vivo, practically all morphological methods, like histology, are so far performed in 

vitro. The current need to sacrifice animals for histological examinations at different 

time points interferes with the ability to follow up disease processes and to monitor 

therapeutic or side effects during the preclinical assessment of novel genetical and 

pharmaceutical therapy strategies over time in the same individuals.  

Optical coherence tomography (OCT) is a novel technique to assess retinal 

morphology in vivo. Commercially available OCTs have been designed for clinical 

investigations in human ophthalmology. In this work, the establishment of a 

commercially available OCT for the in vivo analysis of mouse models of retinal 

degenerations is reported. 
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II. REVIEW 
 

1. Proper use of animals in science 
Animal experiments have facilitated numerous advances in fundamental scientific 

knowledge and most of the benefits of modern medicine. The humane treatment of 

animals in research is considered important to overcome existing conflicts between 

demands of science and medicine on one hand, and ethical considerations on the 

other hand. These considerations resulted in the concept of the three R`s: 

Replacement, Reduction and Refinement. 

 

1.1 Background 
The idea of a more humane treatment of animals used in science was first given 

serious consideration less than half a century ago (Russel and Burch 1959). Russel 

and Burch performed a scientific study of humane techniques in laboratory animal 

experiments. In 1959, they published “The principles of humane experimental 

technique”, in which they define and explain humane science. 

The three R`s are based equally on ethical consideration of animals in the laboratory 

setting and the recognition that, if the researcher in experimental design and 

implementation appropriately applies these principles, this results in a situation that is 

likely to produce more robust scientific results (Goldberg and Locke 2004). The 

rationale for incorporating the three R`s is commonly neither altruism nor public 

relations. Rather, methodological improvements are sought as a means to overcome 

the technical limitations inherent in current animal models. To practicing scientists, 

these more elegant and relevant methods represent technical progress and are 

considered to be additional or advanced, rather than alternative methods (Richmond 

2002). 

 

1.2 The concept of the three R’s 
Animal welfare may be improved by procedures which completely replace the need 

for animal experiments (replacement), reduce the number of animals required 

(reduction), or diminish the amount of pain or distress suffered by the animals 

needed (refinement) (Balls 1983). 
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1.2.1 Replacement alternatives  
Replacement alternatives encompass those methods that permit a given purpose to 

be achieved without conducting experiments or other scientific procedures on living 

animals. Russell and Burch (1959) distinguished between relative replacement, e.g. 

the humane killing of a vertebrate animal to provide cells, tissues, or organs for in 

vitro studies, and absolute replacement in which the use of animals would not be 

needed at all, e.g. the culture of human invertebrate cells and tissues.  

The range of replacement alternative methods and approaches includes improved 

storage, exchange and use of information about previous animal experiments to 

avoid unnecessary repetition of animal procedures, use of physical and chemical 

techniques and predictions based upon the physical and chemical properties in 

molecules, use of mathematical and computer models, use of organisms with limited 

sentience such as invertebrates, plants and microorganisms, use of in vitro methods 

including subcellular fractions, tissue slices, cell suspensions and perfused organs, 

and human studies including use of human volunteers, postmarketing surveillance, 

and epidemiology. In many areas of biomedical sciences, in vitro methods are 

increasingly used as the methods of choice to replace animal studies because they 

offer the best scientific approach.  

Russell and Burch (1959) warned that the fidelity of mammals as models for man is 

greatly overestimated; however, replacement alternative methods must be based on 

good science, and extravagant claims that cannot be substantiated must be avoided. 

 

1.2.2 Reduction alternatives 
Reduction alternatives describe methods to obtain comparable levels of information 

from the use of fewer animals in scientific procedures or to obtain more scientifically 

valuable information from a given number of animals, for that in the long run, fewer 

animals are needed to complete a given research project or test. 

The number of animals used should be the minimum necessary to test the 

experimental hypothesis and to give statistically usable results. 

 

1.2.3 Refinement alternatives 
Refinement alternatives cover those methods that eliminate or minimize potential 

pain and distress or enhance animal well-being. Distress is an aversive state in which 

an animal is unable to adapt completely to stressors and the resulting stress and 

therefore shows maladaptive behaviour. The stressors may induce physiological, 
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psychological and environmental stress. Pain results from potential or actual tissue 

damage, such as that caused by injury, surgery or disease and can lead to distress 

(Institute for Laboratory Animal Research 1992, Flecknell 1994, Morton and 

Townsend 1995). 

Assessments of animal pain and distress are currently based on subjective 

evaluation of abnormal behaviour and appearance. Proper evaluation of pain relies 

largely on the ability to understand the behaviour and needs of each species of 

laboratory animals. Therefore it is advisable for investigators to assume that a 

procedure that inflicts pain and distress on humans will inflict pain and distress on 

animals. To implement the refinement prong of the three R`s it is not enough to 

simply administer analgesics or anaesthesia to animals in pain. Every procedure in 

the experimental protocol must be considered from the perspective of the need to 

reduce or eliminate pain and distress. Thus, noninvasive experiments are finding 

their way into the laboratory.  

 

1.3 Current guidelines for animal use in science 
Current legislation in Europe and the United States mandates the incorporation of the 

three R`s (Council Directive 86/609/EEC 1986, U.S. Animal Welfare Act). It regulates 

that all proposed use of laboratory animals should be subject to review to determine 

whether such use appears to be justifiable both scientifically and ethically. Such laws 

not only approve Russell`s and Burch`s concept (1959) but place legal and moral 

obligations on everybody concerned to replace, to reduce and to refine laboratory 

animal experimentation whenever and wherever possible. Full implementation of this 

newly developed legislation depends on scientists’ ability to understand animal 

welfare issues and to accept the legitimacy of the publics’ interest in the conduct of 

science.  

Within the scientific community, fulfillment of the three R`s paradigm has 

necessitated a re-evaluation of the extent and manner in which animals are used. 

Thus, laboratory animal usage proposed for scientific studies now warrants prior 

consideration of factors such as relevance, ethical concerns, potential benefits, and 

scientific justification. Furthermore, legal and moral accountability to the principles of 

the three R`s has compelled consideration of alternative methods that have the 

potential to achieve replacement, reduction and refinement of laboratory animal 

experimentation.  

There is a general agreement that the best animal welfare results in the best science. 

http://frwebgate.access.gpo.gov/cgi-bin/usc.cgi?ACTION=BROWSE&TITLE=7USCC54
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Thus, “alternative” methods enabling reduction, refinement and/ or replacement are 

in reality often more scientifically “advanced” and valid methods (Richmond 2002). 

 

1.4 Current guidelines for animal use in eye research (ARVO) 
All experiments in ophthalmological research including those presented in this work 

were performed according to the “Statement for the Use of Animals in Ophthalmic 

and Visual Research” of the Association for Research in Vision and Ophthalmology 

(ARVO).  

The fundamental principle of the ARVO statement is that animals must not be 

subjected to avoidable distress or discomfort. The investigator's first concern must 

therefore be to avoid the use of animals whenever possible.  

Nevertheless, the work with living animals is essential to continued progress in many 

areas of clinical and basic research on vision, because its aim is to understand the 

structure and function of complex and intricately connected biological systems. 

Therefore, the proper use of animals in research contributes honorably and 

essentially to the improvement of human and animal lives.  

ARVO provides guidelines intended for the investigator responsible for the humane 

care and use of animals in vision research, because the concern for the humane 

treatment of animals obliges to establish that the potential benefits to human and 

animal health outweigh the cost in animal lives (ARVO 2009). 
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2.  The visual system 
The visual system as part of the central nervous system enables organisms to see. 

Vision originates in the photoreceptors of the retina, a layer of cells at the back of the 

eye. This information is then processed by a network of horizontal, bipolar and 

amacrine cells. Ganglion cells further process these signals and send the information 

to the brain via the optic nerve, which consists of their axons. The optic nerves of 

both eyes meet and partially cross at the optic chiasm at the base of the 

hypothalamus. At this point the information coming from both eyes is combined and 

then splits according to the visual field in a right and left optic tract. The optic tract 

wraps around the midbrain and reaches the lateral geniculate nucleus (LGN), where 

all the axons form synapses. The LGN is a sensory relay nucleus in the thalamus, 

whose neurons form the optic radiation and pass the visual information on to the 

primary visual cortex. The visual cortex is responsible for processing the visual 

image. It is located at the posterior end of the brain above the cerebellum. 

 

2.1 Anatomy of the eye 
The eyes of all vertebrate animals are constructed upon a common architectural plan 

(Rodieck 1998). They are composed of three concentric tunics or layers (1-sclera 

and cornea; 2-iris, ciliary body and choroid; 3-retina) and three chambers of fluid 

(anterior chamber, posterior chamber; vitreous) (Detwiler 1955) (Fig.1). 

The external layer (1), which includes the sclera and cornea, is designed for 

protection and also for the entrance and refraction of light. The cornea is a 

transparent external surface which covers both pupil and iris. It merges into the 

sclera, which is part of the supporting wall of the eyeball and is in continuity with the 

dura of the central nervous system. 

The anterior chamber, placed between cornea and iris, is filled with aqueous humor. 

The intermediate layer (2) is divided into two parts. The anterior part consists of iris 

and ciliary body, and the posterior part of the highly vascular and thus nutritive 

choroid. The iris is a disc-shaped pigmented contractile membrane whose degree of 

pigmentation is responsible for the eye color. It is attached at its margin to the ciliary 

body and has a central opening, the pupil. The ciliary body is the part of the eye 

between the choroid and the iris to which the ciliary muscle is attached. It is also 

highly vascularized and controls the intraocular pressure by the amount of aqueous 

humor released into the posterior chamber by ultrafiltration. The choroid is located 

between retina and sclera. It is composed of layers of blood vessels that nourish the 

http://en.wikipedia.org/wiki/Central_nervous_system
http://en.wikipedia.org/wiki/Visual_perception
http://en.wikipedia.org/wiki/Hypothalamus
http://en.wikipedia.org/wiki/Visual_field
http://en.wikipedia.org/wiki/Primary_visual_cortex
http://en.wikipedia.org/wiki/Cerebellum
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back of the eye.  

 

 
Fig. 1: Morphology of the eye (modified from Heckenlively and Arden 2006). 

 

 

The posterior chamber is situated between iris, zonule fibers and lens, and is 

connected to the anterior chamber via the pupil. 

The lens, which focuses light rays on the retina, is located between iris and vitreous. 

A normal lens contains about 65% water and 35% protein (Spalton et al. 1994). The 

lens is suspended by zonule fibers attached to the anterior portion of the ciliary body. 

These fibers translate any increase or reduction in the tone of the ciliary muscle into 

shape changes of the lens, a process called accommodation that allows to form 

sharp retinal images of objects at different distances.  

The vitreous is located between lens and retina. It is filled with vitreous humor, which 

is a jelly-like substance supporting the structure of the eye. Besides, it maintains the 

transparency of the eye because it is impervious to debris. 

The retina (3) is an outpouching of the central nervous system (CNS) that covers the 

back wall of the eye (Rattner et al. 1999). It is inverted, i.e. the receptor elements are 

turned away rather than towards the source of illumination (Detwiler 1955). Light 

must, therefore, travel all the way through the retina before it reaches and activates 

the photosensitive part of the photoreceptor cells.  
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2.2 Retinal structure 
The retina is part of the brain and has essentially a horizontally layered structure, 

consisting of several cell types. The different retinal layers are usually subdivided into 

an inner and an outer part. 

 

2.2.1 Overview of the retinal layers (Fig. 2) 
a the retinal pigment epithelium (RPE) 

b the outer and inner segments (OS/IS) of photoreceptor cells (1,2) 

c the outer limiting membrane (OLM), a narrow zone of junctions between Müller 

cells and the ciliar region of photoreceptor outer segments 

d the outer nuclear layer (ONL), representing photoreceptor cell bodies 

e the outer plexiform layer (OPL), formed by processes involved in the synaptic 

connection between photoreceptor (1,2), bipolar (4), and horizontal cells (3)  

 

 
 
Fig. 2: Retinal Structure. (A) Functional organization of the vertebrate retina (modified from Wässle 

2004). (B) Histology of a murine retina (kindly provided by C. Grimm, Zurich, Switzerland). (1) Rods, 

(2) Cones, (3) Horizontal cells, (4) Bipolar cells, (5) Amacrine cells, (6) Ganglion cells. RPE: Retinal 

Pigment Epithelium, OS/IS: Outer/Inner Segment, OLM: Outer Limiting Membrane, ONL: Outer 

Nuclear Layer, OPL: Outer Plexiform Layer, INL: Inner Nuclear Layer, IPL: Inner Plexiform Layer, 

GCL: Ganglion Cell Layer, NFL: Nerve Fiber Layer, ILM: Inner Limiting Membrane. 
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f the inner nuclear layer (INL), representing cell bodies of horizontal (3), 

bipolar (4) and amacrine cells (5) and the nuclei of Müller cells 

g the inner plexiform layer (IPL), formed by processes involved in synaptic 

connections between bipolar (4), amacrine (5), and ganglion cells (6) 

h the ganglion cell layer (GCL), containing cell bodies of ganglion (6) and 

“displaced” amacrine cells 

i the nerve fiber layer (NFL), formed by the axons of ganglion cells  

k the inner limiting membrane (ILM), representing the endfeet of Müller cells 
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2.2.2 Outer retina 
The outer retina consists of four different layers: the retinal pigment epithelium, the 

photoreceptor outer and inner segments, the outer nuclear layer, and the outer 

plexiform layer (Fig. 2).

The retinal pigment epithelium (RPE) is a highly pigmented monolayer (Martinez-

Morales et al. 2004), which is located between the photoreceptors and the choroid 

(Fig. 1). It is an important part of the blood-retina barrier, maintains adhesion, and 

controls the transport of ions, water, retinol, and other metabolites between retina 

and choroid. Furthermore, it improves the quality of vision by absorbing stray light in 

melanin granules, thus preventing the degradation of the visual image. An important 

function is also the phagocytosis of remnants of photoreceptor outer segments, 

which are constantly renewed, and the protection against free radicals (Bok 1993, 

Boulton and Dayhaw-Barker 2001, Futter et al. 2004).  

On the choroidal side, the RPE is firmly attached to Bruch’s membrane. Both RPE 

and the choroid contribute to elements of this membrane, which consists of five 

layers and reaches from the optic disc to the “ora serrata” where the retina ends 

anteriorly. The innermost layer of Bruch’s membrane is formed by the basement 

membrane of the RPE cells. This is followed by an inner collagenous zone, an elastic 

layer, an outer collagenous zone, and finally the basement membrane of the choroid 

(choriocapillaris). 

The photoreceptors and their connections form the photoreceptor outer and inner 

segment layer (OS/IS), the outer limiting membrane (OLM), and the outer nuclear 

layer (ONL), which consists of the cell bodies of the photoreceptors. The synaptic 

terminals also contribute the outer plexiform layer (OPL). Photoreceptor cells are 

highly specialized to convert light into nerve signals. Their distal parts (inner and 

outer segments) are optimized for capturing light, and their proximal parts to synapse 

the information to the inner retina. The two main classes of photoreceptor cells are 

the light-sensitive rods that facilitate vision at low light levels, and the less sensitive 

cones working best under daylight conditions and permitting color vision.  

Rods are so extremely sensitive that they are capable of recognizing a single photon, 

and thus are used for vision in very dim environments or at night (scotopic vision). 

They contain the visual pigment rhodopsin, which is sensitive to blue-green light with 

a maximum at a wavelength of about 500 nm (Detwiler 1943).  

Mammals usually feature one type of rods but two or three types of cones. Primates 

commonly exhibit red, green, and blue cones that are maximally sensitive to light with 
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either long wavelengths (red, 588 nm), medium wavelengths (green, 531 nm) or 

short wavelengths (blue, 429 nm) (Curcio et al. 1987). Most other mammals including 

rodents typically exhibit only short wavelength-sensitive (SWS) cones, equivalent to 

blue cones, and medium wavelength-sensitive (MWS) cones, corresponding to green 

cones, but no red cones. The spectral sensitivity is determined by the molecular 

structure of their visual pigments, the cone opsins.  

Photoreceptor cells consist of a cell body, an outer and an inner segment, and 

synaptic terminals (Kaneko 1979) (Fig. 3). The outer segments, the light sensitive 

parts of the photoreceptors, are connected to the inner segments by a narrow 

connecting stalk, which includes a cilium arising from a basal body in the inner 

segment. With the exception of some diurnal mammals, rod cell bodies form the 

majority of the outer nuclear layer.  

Cones are usually shorter and thicker than the long, slim rods. Their cell bodies are 

commonly situated in the distal part of the outer nuclear layer (ONL), and their outer 

segments in the region of the rod inner segments.  

 

 

 
       Fig. 3: Sketch of rod (left) and cone (right) photoreceptor structure 

       (modified from Kellner und Wachtlin 2008). 

 

Apical processes from the retinal pigment epithelium are in contact with the outer 

segments of both rods and cones. This is important as the outer segments have to 

be constantly renewed. In rods, outer segment renewal involves the synthesis of disc 

material in the inner segments and the formation of new discs in the region of the 

cilium at the rate of about one to five per hour. The used discs are discarded of by 

intermittent shedding of the tips of the photoreceptor outer segments depending on 
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the circadian rhythm (i.e. during subjective night). The debris is then finally phagocy-

tosed by the RPE. In rods, the entire outer segment is replaced every 8-14 days, and 

in cones, a complete renewal takes about 9 months to one year (Rodieck 1998). 

The outer plexiform layer (OPL) includes synaptic bodies of photoreceptor synapses 

with bipolar and horizontal cells (rod spherules and cone pedicles, respectively), the 

dendrites of bipolar and horizontal cells, and Müller cell processes. The outer limiting 

membrane (OLM) of the retina is an alignment of adherent junctions between Müller 

cells and photoreceptor cell inner segments (Bunt-Milam et al. 1985). Müller cells 

extend beyond the outer limiting membrane into the subretinal space where they 

form microvilli. Their surface is increased so they can more easily exchange 

metabolites and ions with the subretinal space. The OLM forms a barrier between the 

subretinal space and the more proximal neural retina.  

 

2.2.3 Inner retina 
The inner retina further processes and reduces the visual information and facilitates 

the transfer towards the more central brain areas. It consists of four different layers: 

the inner nuclear layer (INL), the inner plexiform layer (IPL), the ganglion cell layer 

(GCL), and the nerve fiber layer (NFL) (Fig. 2). 

The inner nuclear layer (INL) contains the cell bodies of four types of cells: horizontal 

cells, bipolar cells, amacrine cells, and Müller cells.  

Horizontal cells are believed to be involved in contrast vision. They process 

information from groups of photoreceptors and provide local feedback in the outer 

plexiform layer. Bipolar cells collect and process information from the outer retina and 

relay it to the amacrine and/or ganglion cells in the proximal inner retina. The inner 

plexiform layer (IPL) is an ordered stack of synaptic planes where bipolar cells 

branch at different levels (Cajal 1972). 

Some bipolar cells also form synapses with certain amacrine cells in the IPL, which 

modify or even transmit the signal to ganglion cells. Most amacrine cells are located 

in the proximal part of the inner nuclear layer, but some can be found in the ganglion 

cell layer or even in the NFL (“displaced” amacrine cells). As far as it is known, they 

all modulate signals in the inner plexiform layer but are diverse in both their 

morphology and neurochemistry (Kolb et al. 2002). 

Müller cells are the main glial cells which also form the scaffold of the retina. They 

extend through the entire retina, but their nuclei are located in the inner nuclear layer. 

In both inner and outer plexiform layer, Müller cell processes cover the dendritic 
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processes of the neurons to the synaptic clefts. In the nerve fiber layer, the Müller 

cell processes cover most ganglion cell axons (Ogden 1983). Apart from supporting 

the retinal structure, Müller cells seem to be associated with nutrition of the 

photoreceptor inner segments and the generation of neuronal impulses. They act as 

ionic reservoir during hyperpolarization of the photoreceptor upon light stimulation. 

They also form the major element of scar tissue, or gliosis, which is the retina’s 

characteristic response to cell death or disease (Spalton et al. 1994).  

The ganglion cell layer (GCL) consists of ganglion and the aforementioned 

“displaced” amacrine cells. Ganglion cells are neurons that collect all visual 

information processed in the retina and pass it on to the brain via the optic nerve 

(Fig. 1). Their cell bodies are located mainly in the ganglion cell layer, and their 

dendrites form synapses with bipolar and amacrine cells which are located in the 

inner plexiform layer (Wässle 2004). 
The nerve fiber layer (NFL) is located closest to the vitreous, and is formed by axons 

of ganglion cells as they converge from all parts of the retina toward the optic disc. 

The ganglion cell axons form small bundles in the NFL; these bundles are often 

surrounded by glial cell processes of Müller cells or astrocytes.  

In different layers, components of the Müller cells form the so-called “limiting 

membranes”. The proximal end of the Müller cells terminate in an expansion 

(endfoot), which rests on its basal lamina, called the inner limiting membrane (ILM). 

The ILM is the inner surface of the retina bordering the vitreous and thereby forming 

a diffusion barrier between neural retina and vitreous humor.  

 

2.2.4 Retinal vasculature 
The ocular blood supply has external and internal components. The entire outer 

retina is free of vessels and receives its support exclusively from the choroid and the 

choriocapillaris, mediated by the RPE. The inner retina gets its supply from 

intraocular vessels entering the eye together with the optic nerve (Fig. 1). 

These central retinal vessels divide into several main branches shortly after their 

entry at the optic disc (Fig. 4A, C, D), and then further subdivide in several steps 

down to the capillary level. In rodents, three major capillary beds of the retinal 

circulation are present (Cuthbertson and Mandel 1986), a proximal one at the level of 

the nerve fiber layer, an intermediate one at the junction of inner plexiform and inner 

nuclear layer, and a deep one at the outer plexiform layer (Fig. 4B) . In mice, retinal 

vessels develop gradually after birth in a radial fashion starting at the optic disc. At 
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the time of eye opening after about two weeks, they reach the retinal periphery 

(Michaelson 1948, Connolly et al. 1988). 

 

 
Fig. 4: Retinal vasculature in mice. (A) Retinal flat mount immunostained with anti-smooth muscle 

actin (green) to visualize arteries and arterioles, and with anti-collagen IV (red) to label the 

perivascular basement membrane. (B) Fresh-frozen retinal cross-section immunostained with anti-

collagen IV (green) to visualize vessels, and DAPI (blue) to mark outer and inner nuclear layers. ONL: 

Outer nuclear layer, INL: Inner nuclear layer, GCL: Ganglion cell layer. (C) Native SLO imaging of 

retinal (arrow) and choroidal (arrowhead) vasculature (D) Fluorescein angiography of retinal 

vasculature. Panels (A) and (B) are taken from Xu et al. 2004, (C) and (D) are own data. 

 

 

The outer retina is supplied by the choroid (choriocapillaris) located beneath the 

RPE. To accommodate visual function, the outer retina is completely avascular and 

receives its metabolic supply from the choroidal circulation by active transport 

through the RPE. Together, active transport mechanisms and tight junctions, which 

prevent free diffusion, constitute the outer blood-retinal barrier, a mechanism 

whereby photoreceptors are only exposed to selected molecules (Spalton et al. 

1994). 
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3. RETINAL IMAGING 
The optical apparatus of the eye designed to project an image may also be used to 

visualize retinal structures without the need for any manipulation. It is the only place 

in the body where blood vessels of the microvascular level are visible noninvasively 

(Liew et al. 2008). Retinal imaging is thus helpful to make predictions about the 

vascular status of other parts of the central nervous system and the cardiovascular 

system in general (Sharma and Ehinger 2003). The application of dyes in 

angiography allows an even more specific assessment of the vasculature. 

Whereas conventional imaging with a fundus camera becomes difficult to impossible 

with decreasing pupil size, recent imaging techniques based on narrow laser beams 

such as scanning laser ophthalmoscopy and optical coherence tomography are well 

suited to assess retinal morphology even in the small eyes of rodents.  

 

3.1 Scanning laser ophthalmoscopy 
Scanning laser ophthalmoscopy (SLO) is a diagnostic technique for confocal imaging 

of the eye with a narrow laser beam in vivo (Fig. 5). Although it does not provide 

color images like a conventional fundus camera, the low beam width and the 

confocal diaphragm make it particularly attractive for the examination of small animal 

models.  

The use of lasers of different wavelengths allows obtaining information about specific 

tissues and layers due to their transmission characteristics. Laser light of shorter 

wavelengths (blue-green) is generally more strongly absorbed by ocular structures – 

especially melanin granules in the retinal pigment epithelium (RPE) and choroid – 

than that of longer wavelengths (near infrared) (Preece and Claridge 2002). 

Consequently, the short wavelength lasers provide higher contrast images of the 

retina but are unable to penetrate the RPE/choroid in pigmented animals, whereas 

the infrared lasers give less retinal details but can pass through the choroid down to 

the sclera (Fig. 5B). The comparison of images taken with the different wavelengths 

provides information about specific tissues and layers due to their reflection and 

transmission characteristics. In addition, fluorescent dyes excitable in the blue and 

infrared range offer a unique access to the vascular structures associated with the 

eye (Seeliger et al. 2005).  
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Fig. 5: Technical overview of scanning laser ophthalmoscopy (SLO) (Seeliger et al. 2005). (A) Image 

generation in a confocal SLO system. (B) Layer selectivity of the different laser wavelengths.  
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3.2 Optical coherence tomography 
Optical coherence tomography (OCT) provides high-resolution, micron-scale, cross-

sectional or tomographic images of the internal microstructure in biological tissues 

(Huang et al. 1991a, Izatt et al. 1994, Hee et al. 1995, Fujimoto et al. 2000, Fujimoto 

2003, Drexler et al. 2001). The results are similar in appearance to ultrasonographic 

scans. Instead of sound, OCT uses laser light to obtain a reflectivity profile of the 

tissue under investigation (Huang et al. 1991a), which provides greater resolution (Li 

et al. 2001). The main difference between ultrasound and optical imaging is that the 

velocity of light is almost a million times faster than the velocity of sound. Another 

advantage, compared to ultrasound, is that OCT requires no contact medium, as the 

optical impedance, which is the refractive index between air and tissue, is not as 

large as the difference in acoustic impedance between air and tissue. Therefore it is 

not only noninvasive but also noncontact, which has some advantages with respect 

to hygiene. As long as the light exposure is limited to a certain level and duration, it is 

also safe for the patient examined (Wojtkowski et al. 2004).  

 

3.2.1 Technical principle of optical coherence tomography 
The original time-domain OCT (TD-OCT) is frequently compared to ultrasound 

because of their analogous basic principles. Both methods create a cross-sectional 

image by measuring the echo time delay and intensity of the reflected and 

backscattered light or sound. The velocity of light is much faster than that of sound, 

therefore OCT uses low-coherence interferometry to measure the time delays 

between reflections from different layers (Born et al. 1999). In conventional TD-OCT 

(Fig. 6), the low-coherent laser beam is divided into two parts by a partially reflecting 

mirror (beamsplitter). One part of the light beam is directed onto the sample under 

examination and is reflected from sample structures at different distances. The other 

one is directed to the reference arm inside the device with a mirror at a variable, 

known spatial position. The reflected reference beam travels back to the beamsplitter 

where it is combined with the beam reflected from structures within the eye. 

Time-domain systems use a moving reference mirror for measuring the return time of 

the light from the retina (Fig. 6). This mechanical moving reference mirror limits the 

speed at which data is acquired. Since it works on the “time of flight” principle, it is 

known as “time-domain” OCT (TD-OCT).  

In order to measure reflectivity at a given depth within the eye, the reference mirror 

has to be in the corresponding location (Huang et al. 1991a, Fercher et al. 1993). 
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     Fig. 6: Principle of conventional time-domain OCT with moving 

     reference mirror. 

 

The combination of the reference beam with the signal from the sample arm then 

provides information about the tissue reflectivity at the chosen depth. To obtain 

reflectance information for the entire light path within the sample, the position of the 

reference mirror may be varied continuously. If there are reflecting structures at 

different depths of the sample, then there will be a signal peak observed each time 

the delay of the reference beam matches the respective depth. Thus, it is possible to 

perform high-resolution measurements of the thickness of different structures 

(Fercher et al. 1988, Huang et al. 1991b, Hitzenberger 1992, Swanson et al. 1992). 

The light source, a compact superluminescent diode, usually emits continuous light 

waves having a short or low coherence length. 

The technical principle of spectral domain optical coherence tomography (SD-OCT) 

(see 3.2.3) is similar, however, the signal acquisition varies importantly. SD-OCT 

acquires all information in one single axial scan simultaneously by evaluating the 

frequency spectrum of the interference between the reflected light and a stationary 

reference mirror (Fig. 7). Therefore, the interference pattern is decoded and split into 

its frequency components by a Fourier transformation. Each detected frequency 

corresponds to a certain depth within the tissue, and all of these components are 

simultaneously detected. The use of broadband light sources instead of low-coherent 

ones enables a higher depth resolution (Drexler et al. 2001). Thus, SD-OCT currently 

outmatches TD-OCT as it combines high resolution with high recording speed (de 

Boer et al. 2003, Leitgeb et al. 2003, Nassif et al. 2004, Cense et al. 2004, 

Wojtkowski et al. 2004, Kim et al. 2008). 
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3.2.2 Development of OCT imaging 
Since its introduction in the early 1990s, optical coherence tomography has become 

a powerful method for imaging the internal structure of biological systems and 

materials. OCT is ideally suited for ophthalmological purposes because of the ease 

of optical access to the eye. Ocular media are essentially transparent, they transmit 

light with only minimal optical attenuation and scattering and provide easy optical 

access to the retina. For those reasons, ophthalmic diagnosis is the most clinically 

developed OCT application (Hee et al.1995, 1998, Massin et al. 2000, Puliafito et al. 

1995, Schumann et al. 1995, 1996, 2004). 

In vitro application of OCT for retinal imaging was initially reported in 1991, illustrating 

microstructural alterations of the tomographic architecture in vertical sections of the 

retina (Huang et al. 1991a,b). 

The first in vivo OCT imaging studies of the human retina were performed in 1993 

(Fercher et al. 1993, Swanson et al. 1993). Since that time, OCT has rapidly made its 

way as a noninvasive, optical medical diagnostic imaging modality that enables in 

vivo cross-sectional visualization of the internal microstructure in biological systems 

(Fercher et al. 1995, Fujimoto 2003, Fujimoto et al. 1995). OCT provides images of 

retinal structure that cannot be obtained by any other noninvasive diagnostic 

technique. Within a few years, the possibility of in vivo imaging of both healthy and 

pathologic retina and in particular the ease with which these images can be acquired 

considerably changed the diagnostic strategy used by ophthalmologists (Hee et al. 

1995, 1996).  

Podoleanu et al. (1997, 1998) pioneered the development of a different approach to 

OCT imaging. This method involves en-face scanning in the XY plane, and combines 

high-resolution tomographic images with the surface imaging capability of the 

scanning laser ophthalmoscope (SLO) (see 3.1). The combination of SLO and OCT 

offers the possibility to combine en face and cross-sectional images to provide 

complementary information. Indeed, en face images can reveal structures that pass 

unseen in cross-section and vice versa.  

Commercial OCT is one of the new standards for in vivo noninvasive ophthalmic 

imaging and is widely used for diagnosis and treatment monitoring of various ocular 

diseases in humans (Ruggeri et al. 2007). Several companies have commercialized 

stand-alone units and a third generation system from Heidelberg Engineering 

(Heidelberg, Germany) combining spectral-domain OCT (SD-OCT) with angiography 

recently became commercially available (Rosen et al. 2009).  
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3.2.3 Third generation spectral domain optical coherence tomography 
In the present work, high-resolution in vivo imaging was carried out with a novel third 

generation instrument (Spectralis HRA+OCT®, Heidelberg Engineering, Heidelberg, 

Germany) (Fig. 8A) which allows simultaneous recording of confocal scanning laser 

ophthalmoscopy (cSLO) and spectral-domain optical coherence tomography (SD-

OCT) (Helb et al. in press).  

 

 
    Fig. 7: Technical principle of a third generation spectral domain OCT  

    (Fischer et al. 2009). 

 

Different laser wavelengths allow obtaining information about specific tissues and 

layers due to their reflection and transmission characteristics. Furthermore, 

fluorescent dyes excitable in the blue and infrared range offer a unique access to the 

vascular structures associated with each layer.  

The Spectralis HRA+OCT® used in this work offers six imaging modalities to assess 

the eye: 

(1) Infrared (IR) 
Infrared light (820 nm) is used to image both retinal and choroidal structures. Laser 

light of longer wavelengths gives less retinal details but is able to penetrate the 

RPE/choroid in pigmented retinas. 
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(2) Red-free (RF) 
Laser light of shorter wavelengths is generally more strongly absorbed by ocular 

structures - especially melanin granules in the retinal pigment epithelium (RPE) and 

choroid (Preece and Claridge, 2002). Consequently, the short wavelength lasers 

provide higher contrast images of the retina but cannot penetrate the RPE/choroid in 

pigmented retinas. It is thus used for fundus imaging, especially for the nerve fiber 

layer and large retinal vessels, i.e. arteries and veins. 

(3) Autofluorescence (AF) 
The 488 nm wavelength is used for fundus autofluorescence (FAF) analyses, which 

reveals the presence of natural fluorophores in the retina and the RPE. 

(4) Fluorescein Angiography (FLA) 
Fluorescein is a dye that emits light at 400 nm and above when excited at a 

wavelength of 488 nm. To allow only the light emitted by the dye upon stimulation to 

become visible, a barrier filter at 500 nm is used to remove the light associated with 

the excitation. Thus, only the vessels that carry the dye remain to be seen. FLA 

provides the most detailed images of retinal capillaries. 

(5) Indocyanine Green Angiography (ICGA) 
Indocyanine green (ICG) is a dye that emits light at 800 nm and above when excited 

at a wavelength of 795 nm. Similar to FLA, a barrier filter at 800 nm is used to 

remove the light associated with the excitation. The main difference is a stronger 

bond of ICG to plasma proteins, and the advantages of longer wavelengths to 

provide information about choroidal vessels (Seeliger et al. 2005).  

(6) Spectral-domain OCT (SD-OCT) 
The Spectralis HRA+OCT® device scans the retina at 40.000 A-scans per second, 

which is a hundred times faster than time-domain OCT. A broadband light source is 

used to simultaneously measure multiple wavelengths across a spectrum, hence the 

name “spectral-domain” (also known as Fourier-domain OCT).  

Since SD-OCT has extremely high-resolution, it is essential to compensate for eye 

motion during the image acquisition because it causes image blurring. Therefore the 

manufacturers use the cSLO technology to track the eye and to guide the OCT to the 

selected location (TruTrack™). Because of two independent pairs of scanning 

mirrors, eye movements are registered and automatically corrected, allowing for 

pixel-to-pixel correlation of cSLO and OCT findings. TruTrack™ is an automatic 

retinal recognition technology which enables follow-up examinations to be scanned in 

the same exact location without relying on the operator to pick the spot.  
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Besides the advantages of SD-OCT mentioned so far, Spectralis HRA+OCT® is the 

only instrument to center the SD-OCT wavelength at 870 nm. Therefore, it has better 

light penetrating properties than other systems using shorter wavelength light (820 

nm). Also, the longer wavelength has the advantage of opening up the optical 

window for compatibility with the many other wavelengths used by the set-up 

(Heidelberg Engineering 2009). 

 

3.2.4 OCT in animal eye research 

Retinal morphology has been assessed noninvasively using techniques such as 

optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) in 

animal models of retinal degenerative diseases, namely rodents and dogs (Farber et 

al. 1994, Hauswirth and Timmers 2000, Panzan et al. 2004, Grieve et al. 2005, 

Lhériteau et al. 2009). OCT has also been used to study retinal microanatomy in 

chicken (Huang et al. 1998).  

The basic feasibility of obtaining OCT images of the mouse retina has been 

demonstrated in 2001 (Li et al. 2001, Horio et al. 2001, Ko et al. 2004), but acquiring 

 

 

  
Fig 8: (A) Heidelberg Engineering Spectralis HRA+OCT® used in this  

work. (B) OCT setup for imaging in mice. 

 

images of the mouse in vivo has been a time consuming challenge. (Xu et al. 2002, 

Paques et al. 2006, Ruether et al. 1997). Horio and Li used a custom-made time-

domain OCT (TD-OCT) to study mouse models of retinal degeneration. TD-OCT was 

able to resolve thinning of the mouse retina, but the low depth resolution of the used 

systems precluded resolution of detailed retinal microstructures.  
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There are several challenges in developing a retinal imaging system suitable for 

routine in vivo quantitative morphologic evaluation in small animals. It is difficult to 

align the mouse eye with the optical system due to the small size of the pupil, the 

large refractive power of the mouse eye and the lack of voluntary fixation (Kocaoglu 

et al. 2007). The small pupil size of the mouse eye makes the alignment for light 

delivery to the eye difficult. It also limits the beam size and thus the amount of light 

reflected from the retina, which decreases the signal-to-noise ratio. 

Although several groups have overcome technical challenges and were able to 

perform OCT imaging of retinas in small animals including mice (Ko et al. 2004, Kim 

et al. 2006), the reported self-made systems have limitations. Most lack the depth 

resolution and the image quality to resolve subretinal layers, therefore, the systems 

are not suitable for automatic quantitative retinal analysis. Moreover, custom-made 

setups interfere with the request for standardized examination protocols and thus the 

comparability of results.  

Therefore, the adaptation and establishment of a commercially available third 

generation OCT device designed for human use was assessed for imaging of the 

murine retina in this work. 
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V. DISCUSSION AND FUTURE PROSPECTS 
 

Animal studies in retinal degenerations are important to gain a deeper understanding 

of the pathophysiology of the corresponding human diseases and the development of 

treatment strategies. In inherited forms, mouse models are particularly valuable due 

to the opportunity to knock out respective causative genes (Takahashi et al. 1994, 

Kim et al. 2008). Over the past decade, many such knock out mice have been 

generated to study a variety of retinal degenerative diseases (Chang et al. 2002, Wu 

et al. 2004), and several more are being developed. They have also proven to be 

useful in the assessment of treatment options such as gene and stem cell therapy. 

Consequently, the number of studies on disease progression and therapeutical 

approaches is rising.  

However, it has been difficult to analyze and quantify retinal morphology and 

anatomy of the rodent retina without sacrificing the animal for conventional histology. 

In most cases, cross-sectional studies are performed to elucidate biological features, 

i.e. they are based on data from animal models sacrificed at different time points. 

This has the disadvantage that there is no information about intermediate periods, 

and that the animals used at one time point may systematically differ from that at 

another (e.g. due to breeding, food quality and intake, seasonal issues, number of 

siblings, temperature, light (cage position)). Because biological processes are subject 

to permanent modifications and alterations, the possibility of dynamic and systematic 

studies would promote a more comprehensive picture of the process. The key issue 

is that changes in retinal morphology could so far not be followed noninvasively 

during the course of degeneration in an individual animal; therefore, each animal 

contributed to just one single time point, and all other information about the actual 

disease progression in this individual was lost. It is well known that such cross-

sectional studies are statistically inferior to longitudinal studies because of the higher 

impact of interindividual variability. Consequently, larger numbers of animals must be 

sacrificed during the evaluation of disease progression to obtain statistically 

significant experimental results (Li et al. 2001).  

Numerous efforts of in vivo imaging in animals, particularly in rodents, have been 

made, but the visualization of the rodent retina has been challenging due to the small 

pupil size, short focal length, and thin retina (Srinivasan et al. 2006). Recently, the 

OCT has also been introduced as a new tool for the in vivo analysis of rodent eyes 
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(Ruggeri et al. 2007, Ko et al. 2004, Kim et al. 2006). Because previous commercially 

available first and second generation OCT devices based on time-domain technology 

lacked sufficient image quality to asses retinal morphology in small animals (Horio et 

al. 2001, Li et al. 2001), several prototype devices were built (Anger et al. 2004, Kim 

et al. 2008, Ruggeri et al. 2007). These custom-made OCT setups were specifically 

adapted for each respective animal visual system, but have not been made in 

sufficiently large numbers to have an impact on the scientific community. A further, 

unresolved issue is that morphometric results generated with different OCT setups 

varied significantly in dimensions. Only recently, third generation OCT devices 

providing major scanning speed and depth-resolution advantages compared to time-

domain devices became commercially available (Wolf-Schnurrbusch et al. 2008).  

In this study, a commercially available third generation OCT device (Spectralis 

HRA+OCT® Heidelberg Engineering, Heidelberg, Germany) was adapted to the 

optical properties of the murine eye. Compared to first and second generation 

devices, it provides improved performance with regard to parameters like scanning 

speed and depth resolution, the latter being crucial for the use in rodent eyes. As 

Podoleanu (1997, 1998) already mentioned, the combination of SLO and OCT offers 

the possibility to combine en face and cross-sectional images to add complementary 

information. It is however also important to be able to locate sites of interest for a 

more detailed inspection with OCT, in particular in the presence of solitary lesions, as 

shown in the first included manuscript (Fischer et al. 2009), where nature and extent 

of such solitary lesions were examined. 

In this work, the substantial methodological challenges of in vivo imaging in rodent 

eyes have been overcome without internal modification of the commercial setup by 

mounting a commercially available ophthalmologic standard Volk 78 dpt. 

ophthalmoscopic lens directly in front of the camera unit. This simplifies the optical 

design, reduces aberrations and provides a reasonably wide field of view for OCT 

scanning. 

Poor optical media due to cataract, corneal scarring, or vitreous opacities are the 

main limitations encountered in in vivo imaging in rodents. Corneal transparency is 

one of the keys for high-quality OCT images. To avoid media opacities under 

anesthesia, a plastic contact lens was fixed onto the cornea by a drop of 

methylcellulose 2% to prevent the cornea from drying out.  

To prevent image artifacts during OCT recording due to body movements (e.g. 

caused by breathing), an image alignment software (TruTrack™) was used that 
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continuously monitors the position of image landmarks like vessels and the optic disc 

and accordingly corrects the position of the area used for averaging.  

Very important for the scientific community is the consistency of results between 

different studies. The use of commercially available equipment to perform imaging in 

small animals bears the possibility to enhance the worldwide comparability of results, 

and generates reliable and reproducible results that compare well to histological 

cross-sections. In terms of availability, reproducibility, familiarization and 

standardization, commercial setups are therefore superior to custom-made ones and 

particularly valuable for the future spread of this technique. 

OCT imaging has also important functional advantages over conventional imaging 

techniques and standard histology. Ultrahigh resolution time-domain OCT systems 

provide unique information about ocular structures in vivo, which, like edema 

formation, were previously not even accessible by means of histology (Fischer et al. 

2009). Because OCT is noninvasive, the same specimen can be monitored over a 

prolonged period to observe changes in morphology in the same animal, which 

allows to follow up the degenerative changes or therapeutical approaches over time.  

Similar to ultrahigh-resolution imaging in the human retina, imaging in the murine 

retina enables visualization of major intraretinal layers (Drexler et al. 2003, Ko et al. 

2004). However, the data arising from a novel imaging technology also create the 

need for a proper interpretation. The OCT is no exception in this respect, and the 

lack of an appropriate gold standard makes this task not easier. In contrast to 

histology, the optical path in OCT is from top to bottom of the image, which leads to 

windowing effects (i.e. structures behind strongly reflective ones are less well visible), 

and potential distortion due to variations in optical properties from layer to layer. 

However, a comparison with histological images taken of the same identical eye has 

shown that these potential problems apparently do not play a major role in the 

interpretation of OCT images of the murine retina. An exception is the distal outer 

retina, where the classification of reflecting bands is still challenging.  

It is important to note that OCT is capable to resolve reflectance changes induced by 

tissue optical scattering properties and refractive index discontinuities, but it cannot 

distinguish between tissues of similar optical properties (Srinivasan et al. 2006). By 

comparison, histology visualizes tissues by light absorbance according to specific 

staining properties (Toth et al. 1997). Although OCT does not yet allow a resolution 

of the retina at a cellular level, it is possible to track morphologic alterations in retinal 

diseases in vivo, like the site of edema in light damage models (Fischer et al. 2009). 
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Whereas the reflectivity profiles of the proximal part of the retina, ranging from the 

internal limiting membrane to the junction of the inner and outer segments of the 

photoreceptor layer, are widely congruent with histology (Anger et al. 2004, 

Gloesmann et al. 2003), the origin of signals arising from the distal part of the outer 

retina, including the retinal pigment epithelium (RPE), Bruch`s membrane, 

choriocapillaris, and the choroidal complex, has been subject to debate. Recently, 

the current opinion about the cellular basis of these reflectivity profiles has been 

summarized (Huber et al. in press).  

Anger (2004) pointed out that a quantitative comparison of OCT images to histology 

may be difficult because of histologic processing artifacts, such as nonlinear tissue 

shrinkage, depending on the applied fixation protocols. Since OCT is an in vivo 

technique, it reflects tissue dimensions under live conditions. The morphologic data 

generated by OCT therefore is not influenced by changes in tissue structure 

associated with handling, fixating and staining procedures.  

In contrast to former studies (Horio et al. 2001, Li et al. 2001, Kim et al. 2008) it could 

be shown in the present work that the overall retinal thickness was only marginally 

overestimated compared to histology (Huber et al. in press). Besides, no significant 

differences in layer thickness were detectable between the two methods (Fischer et 

al. 2009). Retinal detachments are also difficult to assess with histological means, as 

their extent may be altered by tissue processing, and sometimes they even form 

postmortem. In contrast, OCT scans provide a more realistic estimate of their 

structure and dimensions. The visualization of retinal detachments is extremely 

important not only for the assessment of structural alterations associated with 

diseases, but also for evaluation and follow-up of subretinal surgical procedures. The 

evaluation of the success of subretinal manipulations and the injection of therapeutic 

and/or experimental reagents like in gene therapy is thus an important field of 

application of the OCT. 

The OCT has opened new avenues for visualizing and recording over time dynamic 

changes in genetic, developmental and disease mechanisms that cannot be captured 

by conventional light microscopy (Farkas and Becker 2001). A practical advantage is 

that OCT scanning and image acquisition is very fast and relatively inexpensive, and 

results can be obtained easily from a large number of animals within a period 

comparing very favorably to lengthy histological procedures. 

Given the variety of new gene and pharmacologic therapies that may cure or retard 

the progression of retinal degenerations (Ali et al. 1997, Benett et al. 1996, Lewin et 
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al. 1998, LaVail et al. 1998, Hauswirth and Timmers 2000), the ability to observe a 

therapeutic regimen through its entire course in individual rodent models greatly 

enhances the reliability and speed of testing, and would help to reduce the number of 

experimental animals needed. In analogy to electroretinography (ERG), where 

translational research using identical hardware in clinical and experimental settings 

resulted in adaptation of standard ERG protocols (Marmor and Zrenner 1993) and 

new insights in ERG signal composition (Seeliger et al. 2001), one might expect a 

similar impact of SD-OCT as it is readily available in patient care. In addition, the use 

of identical systems allows a direct comparison of retinal images acquired in a mouse 

model of a specific ocular disease or condition with images obtained clinically in 

human subjects (Kocaoglu et al. 2007). Furthermore, OCT images are in digital form 

and therefore are inherently quantifiable for statistical analysis. Finally, standard-

ERG analysis and OCT imaging can be performed sequentially in the same animal, 

thus allowing essentially simultaneous documentation of retinal function and structure 

in the same living animal. 

The growing number of newly established mouse models which feature genetically 

based retinal degeneration (Frederick et al. 2000, Petersen-Jones 1998) has 

increased the need for informative and efficient animal experiments. There is an urge 

for a rapid, noninvasive analysis of retinal degeneration in mouse eyes, for that the 

number of animal needed for experiments is not getting out of hand.  

For the scientific community, there are different reasons to replace animal testing 

whenever and wherever possible. Animal welfare is an important consideration that is 

strongly backed by scientific, economic, logistical, ethical, legal and political 

pressures. Similarly compelling is the development of better, scientifically more 

advanced methods for a subsequent use in humans. In addition, alternative methods 

in general tend to be less expensive to perform, and, more important, to have a 

higher rate of test item throughput. A most satisfying aspect is that both humans and 

animals are expected to benefit from this work (Balls 2002).  

A convenient and standardized way to objectively assess animal pain and distress is 

difficult to establish. This assessment is rather based on subjective clinical signs of 

abnormal behaviour and appearance. Because proper evaluation of pain relies 

largely on the ability to understand the behaviour and needs (Fraser and Broom 

1990) of each species of laboratory animals, it is most suitable for investigators to 

assume that a procedure which inflicts pain and distress in humans will inflict at least 

as much pain and distress in animals unless there is evidence to the contrary 
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(Goldberg et al. 1996).  

Russel and Burch (1959) published their considerations concerning the humane 

treatment of laboratory animals half a century ago. The development of various 

genetically modified strains more than ever emphasizes the need for alternative 

methods in animal experimentation. Focusing on the three R`s, recently developed 

noninvasive imaging methods contribute not only to replacement and refinement but 

also have the power to reduce the absolute number of animals needed due to the 

possibility of follow-up studies on almost arbitrary time points in the very same 

individual. Furthermore, the successful application of a commercially available tool 

renders the possibility to achieve worldwide standardization and assignability of both 

technical features as well as standardized examination protocols. This will increase 

the degree of acceptance and the number of diversified applications due to benefits 

for researchers in charge. Standardized examination protocols and features facilitate 

a replacement of check-up studies due to establishment of norm values of frequently 

used control animals at various ages. A lower number of animals implies not only 

fewer costs, but, even more important when it comes to thinking about animal 

welfare, should be the possibility to visualize the condition of each eye of every single 

animal at every chosen time point. Thus, OCT has the potential to reduce distress 

and pain in laboratory animals because morphological changes caused by retinal 

degeneration or adverse effects of therapeutical approaches are visible within time, 

which enables a gentle withdrawal of experiments at an early stage. 

In the last two decades, technical advances and new experimental animal models 

gave privileged insight into specific aspects of retinal morphology. Moreover, the 

unique features of OCT will enable a broad range of new research and clinical 

applications in the future that will not only complement existing imaging technologies 

available today, but also will reveal new and previously invisible morphological, 

dynamic and functional changes in the retina (Drexler and Fujimoto 2008).  

It is well known that changes in blood flow and vascularization are early precursors of 

important diseases such as diabetes (Leitgeb 2007). In analogy to ultrasound, a 

logical step is to retrieve blood flow information from the additional Doppler shifts 

induced by moving blood in the retinal vasculature (Yazdanfar et al. 2003).  

New dimensions have been added, like measuring tissue oxygenation based on 

spectroscopy (Faber et al. 2004), or observing physiological responses within the 

retina (Bizheba et al. 2006). Furthermore, polarization-sensitive OCT uses the 

birefringent characteristics of the retinal nerve fiber layer and the RPE to better 
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assess their thickness (Cense et al. 2002, Pircher et al. 2004). Other functionalities 

will become available if shown to be useful. Very promising are the developments in 

contrast-enhanced molecular optical imaging, for example with the use of contrast 

agents targeted at specific tissue or cell structures. Functional OCT promises not 

only to improve image contrast, but also to enable the differentiation and early 

detection of pathologies by using integrated structural and functional imaging. These 

technological advances suggest that OCT will ultimately provide visualization of 

tissue morphology at a cellular level, thus enabling optical biopsies while imaging 

metabolic and physiological processes, in one single volumetric OCT measurement 

(Drexler and Fujimoto 2008).  

Despite the fact that many of the functional OCT options mentioned above show 

great potential, it is unlikely that one machine will be able to provide all these 

modalities. Besides, interpretation of the results of these new implementations will 

require extensive experience. 

In conclusion, as OCT devices become more and more elaborated, one may expect 

a diversification of capabilities and techniques such as Doppler flow, polarization-

sensitive OCT, or depth-resolved functional imaging promising to integrate structural 

and functional information into a single measurement. OCT thus holds the promise 

for continuing advances in fundamental research and improvements in clinical care.  
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VI. SUMMARY 
 
Noninvasive assessment of retinal morphology in mice using 
optical coherence tomography 
 

In comparison to other organs, the eye is ideally suited for examination with imaging 

techniques because ocular media are essentially transparent. They transmit light with 

only minimal optical attenuation and scattering and provide excellent optical access 

to the retina.  

Animal models are indispensable tools for understanding the cellular and molecular 

events associated with human retinal degenerative diseases. This is because 

functional and histological data of human patients are mostly available from 

advanced cases, and due to the slow progression of degenerative processes, it is 

rarely possible to do follow-up studies within a reasonable amount of time and 

trustworthy results.  

As most inherited retinal degenerations are monogenic, the majority of studies 

focuses on genetically modified mice replicating the human disorder. It is anticipated 

that the already substantial number of studies on the rodent visual system will further 

grow with the rapid developments of novel genetic, biomedical, and physiological 

tools. Since there is, up to now, no curative treatment for these potentially blinding 

diseases, research on animal models is the basis for the understanding of the 

underlying pathophysiology and the development and assessment of therapeutical 

strategies.  

Until today, the gold standard for analyzing the structural component of retinal 

pathophysiology including the assessment of disease progression and the evaluation 

of therapeutical approaches is histological examination. As a result, large numbers of 

animals must be sacrificed to obtain statistically significant experimental results for 

each time point included.  

In this work, optical coherence tomography (OCT) was implemented to obtain 

histology-like images of retinal structure in live mice. For the first time, a commercially 

available high-resolution third generation OCT designed for use in human patients 

(Spectralis HRA+OCT®, Heidelberg Engineering, Heidelberg, Germany) was adapted 

for in vivo imaging in rodents. The associated methodological challenges have been 

overcome without the need for an internal modification of the commercial setup.  
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The successful application of a commercially available tool renders the possibility to 

achieve international standardization and assignability of both technical features as 

well as examination protocols. Such standards will also remove the need for 

individual studies to establish norm values in frequently used control strains at 

various ages. The expected replacement of conventional histological sections and 

the potential to conduct follow-up studies will almost certainly lead to a significant 

reduction of animals needed. In individual experimental animals, OCT further has the 

potential to reduce distress and pain because morphological changes caused by 

retinal degeneration or adverse effects of therapeutical approaches become visible 

as early as they occur, which enables a termination of experiments at that stage 

(refinement). Taken together, it is expected that these benefits of the OCT will help to 

increase the acceptance of the inevitable animal experiments in retinal degeneration 

research in the future.  
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VII. ZUSAMMENFASSUNG 
 

Nicht-invasive Beurteilung der Netzhautmorphologie bei Mäusen 
mittels optischer Kohärenztomographie 
 

Das Auge eignet sich im Gegensatz zu anderen Organen aufgrund der 

Lichtdurchlässigkeit optischer Medien besonders gut für die Untersuchung mit 

bildgebenden Verfahren.  

Für die effektive Aufklärung der pathophysiologischen Grundlagen und der 

Bewertung von Therapieverfahren für menschliche erbliche Netzhautdegenerationen 

ist die Forschung an Tiermodellen Grundvoraussetzung. Funktionelle und 

histologische Daten beim Menschen liegen meist nur von fortgeschrittenen 

Krankheitsstadien vor. Auch Verlaufsuntersuchungen sind durch den langsamen 

Degenerationsprozess in überschaubaren Zeiträumen nicht oder nur unzuverlässig 

möglich.  

Die steigende Zahl bekannter Gene und die breite Etablierung der Techniken zur 

Generierung von Mausmodellen führen zu einer stetig steigenden Anzahl von 

Mausmutanten, was wiederum zu einem konstanten Anstieg der Forschungsprojekte 

führt. 

Als derzeitiger Goldstandard der Analyse retinaler Pathophysiologien allgemein als 

auch über Zeitverlauf von Degeneration und Effekten von Therapiestrategien im 

Besonderen gilt die histologische Untersuchung. Zu jedem Untersuchungszeitpunkt 

muss hierfür eine bestimmte Anzahl an Tieren euthanasiert werden, um statistisch 

aussagekräftige Daten zu erhalten. 

Im Rahmen dieser Arbeit wurde nun erstmalig ein kommerziell verfügbares 

Basisgerät aus der Humandiagnostik (Spectralis HRA+OCT®, Heidelberg 

Engineering, Heidelberg, Deutschland) zur in vivo Darstellung der Retina bei Mäusen 

eingesetzt. Die erfolgreiche Adaption des Humangerätes an die optischen 

Eigenschaften des Mausauges konnte ohne Eingriffe in das Setup durchgeführt 

werden. Der hochauflösende optische Kohärenztomograph liefert dem Untersucher 

routinemäßig Bilder der Netzhaut in bisher nicht erreichter Qualität.  

Die erfolgreiche Adaption eines kommerziell verfügbaren Gerätes ermöglicht eine 

weltweite Standardisierung der Untersuchungsprotokolle und damit eine 

Übertragbarkeit der Daten. Durch die Erstellung mauslinienspezifischer Normwerte 
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kann das OCT zum replacement durch den Ersatz von Kontrolluntersuchungen 

beitragen. Die histologieäquivalente Auflösung retinaler Strukturen und 

Verlaufsuntersuchungen an ein und demselben Individuum ermöglichen eine 

Reduktion (reduction) der Tierzahlen durch den Ersatz konventioneller Histologie. 

Des Weiteren ermöglicht das OCT ein zeitnahes Erkennen belastender 

pathologischer Veränderungen und eventueller Nebenwirkungen bei der 

Therapieentwicklung, so dass durch frühzeitigen Versuchsabbruch eine potentielle 

Verminderung der Belastung (refinement) der Versuchstiere gegeben ist. 

Diese Vorteile der in vivo Darstellung retinaler Strukturen lassen auf eine hohe 

Akzeptanz und eine breite Anwendung des OCTs in der Zukunft hoffen. 
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