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Zusammenfassung

Der Nachweis nichtklassischer Eigenschaften in der Quantenmechanik
spielt eine zentrale Rolle für deren Konsolidierung und stellt nach wie vor
ein aktuelles Forschungsgebiet dar. In dieser Dissertation schlage ich zwei
eigenständige Szenarien zur Beobachtung von Bell-Korrelationen in der
Bewegung zweier makroskopisch separierter Materieteilchen vor. Damit
würden wesentliche Charakteristika für Nichtklassizität, nämlich quanten-
mechanische Verschränkung und das Superpositionsprinzip, einem System
mit unmittelbarer klassischer Interpretation aufgeprägt.
Beide Szenarien verwenden die graduelle Dissoziation ultrakalter Feshbach-
Moleküle und führen zur makroskopischen Delokalisierung der einzelnen
Atome. Ich beschreibe die jeweiligen Abläufe, einschließlich der opti-
schen Führung der Wellenpakete und deren interferometrische Verarbeitung,
bis hin zu den abschließenden Ortsmessungen. In beiden Fällen wird die
Möglichkeit, eine Bell-Ungleichung zu verletzen, untersucht. Dies geschieht
zunächst in einem allgemein gehaltenen Rahmen, mit dem Ziel, den stören-
den Einfluss der dispersiven Zeitentwicklung zu verstehen. Anschließend ent-
wickle ich eine gekoppelte Kanal-Beschreibung der Feshbach-Dissoziation;
aufbauend auf dieser wird dann die Möglichkeit einer Bell-Verletzung
mit geeignet gewählten, experimentell realisierbaren Dissoziationszuständen
nachgewiesen. In der vorgeschlagenen experimentellen Umsetzung ließen sich
Delokalisierungen und inter-atomare Abstände auf der Größenordnung von
Zentimetern erreichen.

Abstract

This thesis proposes two complementary scenarios to observe Bell cor-
relations in the motion of two macroscopically separated material particles.
Both are based on the gradual dissociation of ultracold Feshbach molecules
and result in macroscopic delocalizations of the single-atom states. By giving
a full account of these scenarios, including the coupled-channel description
of the Feshbach dissociation, the optically guided dispersive propagation,
interferometric processing and the final position measurements, I demonstrate
for both cases their potential to violate a Bell inequality under experimen-
tally viable conditions that correspond to delocalizations and interatomic
separations on the order of centimeters.
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1

Chapter 1

Introduction

Quantum mechanics (QM) is rightly considered our most successful physical theory,
explaining everything from subnuclear particles up to solid state properties and beyond,
and giving rise to revolutionary new technologies. Even theories such as string theory
that intend to supersede state of the art physics and resolve the seemingly last remaining
puzzle in physics, the unification of QM with the theory of gravity, are constructed on
the principles of QM. At the same time, there has been a debate about its status as a
fundamental theory that persists ever since its formulation. What provides the basis
for putting it into question over and over again? What distinguishes QM from other,
“classical”, theories of physical phenomena?

Divided world... In contrast to “classical” theories, which claim to give a direct ac-
count of nature, the quantum mechanical formalism comes along with a fundamental
discrepancy between the way it describes the world and our perception of it. The quan-
tum mechanical wave functions seem not to admit a naive realistic interpretation, and
orthodox QM resolves the apparent contradiction between classically well-defined prop-
erties and their quantum superpositions by attributing a privileged role to the measure-
ment process as a means to mediate between these otherwise irreconcilable positions.
The prize to pay is, besides the inherent indeterminism expressed by Born’s rule, the
abandonment of an “objective reality”, since according to this philosophy it is the mea-
surement which “creates” the properties, whereas the wave function is degraded to the
status of a mere catalogue of our knowledge about the system. Such an epistemic attitude
towards the interpretation of QM seems also favorable when considering the in general
entangled wave functions of many-particle systems, which do not admit their embed-
ding in ordinary space and render the concept of logically separable physical objects
questionable.

...or not? However, the division of the world into two parts, one that is described ap-
propriately by QM, and another consisting of observers and classical apparatuses, must
be considered unsatisfactory from the point of view of a “classical” physicist, who seeks
a physical theory that gives a uniform and complete account of logically independent ob-
jects and their (possibly local) interactions, independent of observers or whether being
measured or not. While the “Copenhagen interpretation” and modern quantum infor-
mation theorists accept this dualism as a fundamental epistemological limit, there have
thus been several proposals to resolve the measurement problem and at the same time
to regain an undivided description of reality, most by assuming an objective interpreta-
tion of QM. Mentioning the most prominent, the Bohmian approach, e.g., considers QM
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universally valid, but to be completed by (hidden) definite particle trajectories carrying
the desired classical properties [1, 2]. Spontaneous collapse models, on the other hand,
consider QM complete, but unrestrictedly valid only in the microscopic regime (where
“microscopic” has to be defined appropriately), whereas macroscopically unique proper-
ties are guaranteed by introducing nonlinear stochastic modifications to the Schrödinger
equation preventing superpositions from reaching the “classical” regime [3, 4]. Prob-
ably mostly favored among physicists nowadays, however, are those approaches that
consider QM complete and universally valid, the emergence of classicality merely being
an issue concerning the correct interpretation of the formalism; decoherence theory and
the many-world interpretation are among those [5–9]. But despite of its great successes
in explaining the vanishing of quantum mechanical coherences by the interaction with
the ubiquitous environment, decoherence theory cannot give a complete account for the
definite outcomes in measurements.

Probing the borderline In view of the variety of competing proposals the status of
QM must be considered pending: Is the “Heisenberg cut” really as arbitrary as sug-
gested by the operational viewpoint? Can the resolution of the measurement problem,
the emergence of classicality really be traced back to an intricate interplay between quan-
tum mechanical degrees of freedom, much in the sense decoherence theory proposes?
Or do entanglement and the superposition principle encounter principal barriers at the
transition to classicality? Where does this transition from a holistic bunch of quantum
particles to a “measurement apparatus” occur, being virtually indispensable for an ob-
jective world to be in compliance with our experience? It seems advisable to remain
open-minded, in particular the more one advances into presumably classical territory.

1.1 Scope of the thesis

Goal In this thesis I propose scenarios to challenge the classical perspective by de-
localizing and entangling the free motion of two material particles over macroscopic
scales. Such experiments would probe both pillars of nonclassicality, the superposition
principle and entanglement, in a genuine classical system, since persistent material par-
ticles can claim their objective existence much more than elusive photons, whose role
as an interaction exchange particle rather attributes them to the forces than to matter.
Pinpointing the hierarchy with the above discussion in mind, one may say that, while
photons effect clicks in detectors, atoms are detectors. Moreover, delocalization of the
particle motion affects the fundamental question to what extent particles should be de-
scribable by trajectories, the basis of Newtonian mechanics. Any serious attempt to
account for the emergence of our experienced world should give rise to these trajecto-
ries at some stage. Alternative theories, in turn, are expected to reflect their divergence
from QM most profoundly in the spatial degrees of freedom. This is challenged even
the more, since in the proposed experiment both the single-particle delocalization and
the inter-particle separation reach the macroscopic scales of everyday life on the order
of centimeters, which are amenable even without auxiliary devices and hence would
naively be attributed to the tamed classical world we usually experience. Finally, the
nonclassicality is revealed by employing simple position measurements, which admit an
immediate classical interpretation completing the classical correspondence.

While some of these aspects have already been probed separately in previous ex-
periments (see also [10–16]), e.g. entanglement at macroscopic separation on the order
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of 100 kilometers with photons [17, 18], or motional entanglement of microscopically
separated ions in an ion trap [19, 20], or interference of massive fullerenes with delo-
calizations on the scale of micrometers [21, 22], the combined testing of all of them
simultaneously would set a further milestone at the front line between QM and classi-
cality.

Implementation The presented scheme is based on the gradual dissociation of an ul-
tracold Feshbach molecule. It thus relies on the unprecedented expertise that has been
experimentally achieved in producing and manipulating even molecular Bose-Einstein
condensates, reaching a level of control where quantum effects become amenable [23–
34]. Ultimately, the scheme aims at reproducing Bell state correlations in the motional
degree of freedom. The violation of a Bell inequality then serves to unambiguously con-
firm the entanglement and at the same time the delocalization. To this end, the scheme
utilizes a sequence of magnetic field pulses in order to delocalize each of the dissoci-
ated atoms into two spatially distinct wave packets, where the state of the two counter-
propagating atoms entangles the wave packets corresponding to the same dissociation
instant. By either generating subsequent wave packets that propagate with the same or
with differing velocities, one obtains two complementary ways to reconcile the under-
lying continuous variable system with operationally dichotomic correlations similar to
those supported by the spin-1/2 singlet state. While the former scenario is supplemented
by subsequent interferometric processing to mimic a Bell test with correspondence to
the spin-based formulation even on the state level, the latter can dispense with the inter-
ferometers, recovering the Bell test only on an operational level.

The violation of a Bell inequality implies that QM does not admit an explanation
of the correlations without resorting to entanglement, the quantum mechanical way of
expressing the impossibility of a description by separate systems. From a more funda-
mental point of view, and apart from the locality loophole, which lies not in the focus of
this proposal, such a Bell violation would extend the refutation of any (possibly effective)
local realistic description to the motion of material particles, and even to macroscopic
parameter regimes. This refutation would pose an even more severe threat to the plausi-
bility of the objective view point than the established nonlocality in internal or photonic
degrees of freedom.

I investigate the possibility of a Bell violation in both mentioned scenarios. Besides
specifying frame parameters where the resulting scales are experimentally under con-
trol, e.g. the ability to resolve the fringe pattern or to guide the atoms optically, this
comprises in particular to determine the constraints on the wave packets due to the detri-
mental effect of inevitable matter wave dispersion [35,36]. A confirmative answer in the
conceived scenarios thus requires the precise knowledge of the generated Feshbach dis-
sociation states for given magnetic field pulses. To this end, I develop the formalism to
obtain the asymptotic dissociation state for arbitrary pulses based on a coupled-channel
approach [37]. Both scenarios are then shown to support a Bell violation for appropriate
choices of the dissociation pulses [38].

1.2 Structure

The thesis is structured as follows: In Chapter 2 I recapitulate Bell’s derivation of his
inequality, which is based on Bohm’s spin version of the EPR Gedankenexperiment, with
the test of local realism in mind. Chapters 3 and 4 then introduce two classes of matter



4 CHAPTER 1. INTRODUCTION

wave states that, on the one hand, are capable to generate Bell state correlations, and,
on the other hand, are amenable within the considered Feshbach dissociation scenario.
While dissociation-time entangled (DTE) states achieve the correspondence to a Bell
test by mimicking both the spin singlet state and the subsequent spin measurements with
superposed wave packets of equal velocity, the hedgehog-rabbit entangled (HRE) states
superpose wave packets of different velocities, where two-time position measurements
in the overlap regions and their appropriate dichotomization reveal the Bell correlations
on an operational level. In both cases the resulting correlations are investigated for not
further specified, dispersing wave packets, yielding general conditions to be met by the
dissociation states to achieve a Bell violation.

Chapter 5 presents a common experimental frame for both scenarios, based on the
partial dissociation of a molecular Bose-Einstein condensate and on subsequent optical
guidance, admitting atomic velocities on the order of cm/s and particle separations of up
to 10 cm. The coupled-channel description of the Feshbach dissociation dynamics and
the derivation of the resulting asymptotic dissociation state for a general time-dependent
magnetic field behavior in Chapter 6 then provides the basis for feasibility studies con-
cerning the DTE and the HRE scenarios.

Chapter 7 applies the general formalism derived in Chapter 6 to describe the gen-
eration of a DTE state by appropriate magnetic field pulses. This dissociation state is
then used to study a possible Bell violation by building on the preliminary results from
Chapter 3. An analogous treatment of the HRE scenario in Chapter 8 continues the
investigation of Chapter 4, now specializing to the corresponding dissociation state. In
both cases, experimentally viable pulse parameters predicting robust Bell violations are
determined. Besides summarizing the results of the thesis, I conclude in Chapter 9 by
discussing possible extensions and variations of the Feshbach dissociation scheme and
the DTE and HRE scenarios.
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Chapter 2

Probing nonclassicality

As already mentioned in the Introduction, no satisfactory resolution for the apparent
irreconcilability of QM with the classical perspective has been found so far. Instead
of trying to give such an explanation at a single stroke, one line of research thus aims
at pinpointing the origins of this irreconcilability by testing isolated concepts that are
taken for granted from the classical point of view. In the case of the Bell theorem, the
classical concept at test is local realism [39–41]. (In brief, this means that correlations
between separated, non-interacting objects should be explainable by a common past;
below, I give a precise definition.) Other nonclassicality tests assume, e.g., noncontex-
tuality (independent physical quantities should be able to take independent measured
values) [42–44], macroscopic realism (properties of macroscopic objects should be in-
dependent of whether being measured or not) [45], Lorentz invariance (of the hidden
variable underpinning) [46] or crypto-nonlocal realism (a nonlocal, but no-signaling
hidden variable underpinning, such that locally all measurements can be described by
classical mixtures of pure states, in reminiscence of particle properties) [47–49]. All
these tests share the same philosophy: they derive measurable consequences of the pre-
sumed classical concept that are in conflict with the predictions of QM; given that nature
confirms QM, one then gains the insight that any theory substituting QM would have to
do without this property. This way one can systematically learn about the possibilities
and limitations of any conceivable future theory constructed to complete QM.

We apply Bell’s theorem in order to establish the nonclassicality in our scenarios.
Besides probing locality,1 one of the most sacrosanct principles in modern physics, in
an unprecedented generality, the violation of a Bell inequality can serve to confirm both
the entanglement and the delocalization of the considered two-particle states. In this
chapter, I recapitulate the derivation of Bell’s inequality and its violation in the spin-
based experiment originally considered by him [39], and I discuss issues and challenges
one faces when one intends to apply it to the motion of material particles.

2.1 Entanglement vs. local realism

Bell’s analysis represents the culmination of a development that started with the bare
intuition that entanglement may tell us something fundamental about the constitution
of nature. It was recognized already shortly after the formulation of QM that the in
general nonseparable wave function of a system of several particles does not admit a

1Those physicists, who prefer to consider QM a local theory in view of its no-signaling property, would
rather refer to probing ‘separability’.
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naive realistic interpretation in ordinary space, but would require to concede the reality
of the higher-dimensional configuration space [50]. This may have been the reason for
de Broglie to secede from the guiding wave interpretation initially promoted by him,
whereas supporters of the de Broglie-Bohm theory consider it a merit of their theory to
render nature’s nonlocality explicit [51]. The inevitable nonlocal aspects of QM may
also have been the reason for Schrödinger to denote entanglement “the characteristic
trait of QM”, in the sense that among all the counter-intuitive features of QM mainly
entanglement may spoil the hope to regain a “classical”, local interpretation of nature
[52].

The argument of Einstein, Rosen and Podolsky

In contrast to those who attribute to QM some kind of nonlocality, Einstein, Podol-
sky and Rosen (EPR) advocate locality and instead employ entanglement in order to
attack the complementary principle, answering the question “Can quantum-mechanical
description of physical reality be considered complete?” in their famous paper to the
negative [53]. They consider the following motionally entangled (improper) two-particle
state,

|ΨEPR〉=
∫

dx|x〉1|x〉2 =
∫

dp|p〉1|− p〉2, (2.1)

which describes perfect correlations both in position and in momentum, whereas the
single-particle properties are completely undetermined. Measuring either position or
momentum of one of the particles then also determines the result of the corresponding
subsequent measurement of the other particle. EPR argue that, given the two particles
have ceased to interact at some point in the past, the second particle must have had this
property prior to measurement (the property must have been an “element of reality”, as
referred to by EPR), because otherwise some “spooky action at a distance” would have
to be in charge of communicating the measurement outcomes between the particles to
ensure the correlations. Since this holds both for position and momentum, which are
conjugate variables and hence cannot take definite values simultaneously according to
the complementary principle, EPR conclude that QM is incomplete, in the sense that the
theory does not reflect all elements of reality.

Consequently, EPR believed in the possibility of a local realistic underpinning of
their Gedankenexperiment, and indeed the EPR state (2.1) can be approximated by Gaus-
sian states, which admit a classical interpretation in the case of “classical” measurements
such as position and momentum. In brief, one may say that, based on locality and the
belief that correlations must be founded on preexisting “elements of reality”, EPR in-
fer the quantum mechanically denied reality of such preexisting local properties from
the correlations between the two distant parties. By turning the argument around, it
was Bell’s merit to demonstrate that such preexisting local properties cannot account for
all quantum mechanical correlations, thus rendering the EPR premise of local realism
wrong.

2.2 The Bell experiment

How can one probe local realism? Taking the non-existence of properties prior to mea-
surement serious suggests that quantum mechanical correlations are more intimately
related to the “free will” decisions which local observables one measures than classi-
cally explainable, since classically the presumed preexisting properties are by definition
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logically independent of these decisions. As already hinted at in the EPR experiment,
a clash between the quantum mechanical prediction and local realism may thus be pro-
voked by comparing measurements of noncommuting observables, whose simultaneous
existence is excluded by the complementary principle. Employing an appropriate en-
tangled state may then evoke correlations that cannot be reduced to shared randomness
given the measurement events are spacelike separated.

The adequate playground for such an attempt is not given by the EPR Gedanken-
experiment though, but by its reformulation in a more transparent spin-based setting
[39, 54], see Figure 2.1. Since Bell’s investigations are based on this scenario, we will
refer to it as Bell experiment from now on. Downgrading the motional degrees of free-
dom to the mere passive role of separating the two particles, we instead take their spins
to be in the entangled singlet state,

|Ψ−〉= (| ↑〉1| ↓〉2−| ↓〉1| ↑〉2)/
√

2. (2.2)

Let us assume that the particles are remote, they may even be continuously moving apart
from each other, such that we can exclude any kind of (local) interaction between them.
Spin measurements on both sides (e.g. with Stern-Gerlach magnets) along the directions
~n1 and~n2, respectively, yield the correlation function

C−(~n1,~n2) = 〈Ψ−|~n1 ·~σ1⊗~n2 ·~σ2|Ψ−〉 (2.3)

= −~n1 ·~n2,

where we have identified (~σi)x = | ↑〉i〈↓ |i + | ↓〉i〈↑ |i, (~σi)y = −i| ↑〉i〈↓ |i + i| ↓〉i〈↑ |i
and (~σi)z = | ↑〉i〈↑ |i− | ↓〉i〈↓ |i, meaning that the basis | ↑〉i, | ↓〉i is aligned along the
z-direction. As anticipated by inspection of (2.2) and in analogy with the EPR state, one
finds perfect (anti-)correlations for equally aligned measurement directions. Moreover,
measurements with arbitrarily oriented axes are easily implemented in this spin setting,
in contrast to the EPR experiment, where only single-particle position and momentum
measurements are viable. We will see below that combinations of non-trivially twisted
orientations are required to refute local realism.

Equivalently to the correlation function, one can consider the joint probability to
detect the outcomes σ1,σ2 ∈ {1,−1},

P−(σ1,σ2|~n1,~n2) = |〈~n1,σ1|〈~n2,σ2|Ψ−〉|2 (2.4)

=
1
4
[1−σ1σ2 cos(ϕ1−ϕ2)],

where |~ni,σi〉 denote the eigenfunctions of~ni ·~σi. In the second line we have parametrized
the measurement directions by ~ni = (sinθi cosϕi,sinθi sinϕi,cosθi)T and set θ1 = θ2 =
π/2 for convenience. We will find below that this restriction to measurements in the
plane perpendicular to the orientation of the spins (“in plane”-measurements) does not
diminish the possibility of a Bell violation. Note that the correlation function and the
joint probability are connected via

C−(~n1,~n2) = ∑
σ1,σ2=±1

σ1σ2P−(σ1,σ2|~n1,~n2). (2.5)

Usually, one considers the singlet state to discuss the Bell experiment, since it is
isotropic in the sense that its correlations (2.3) are invariant under synchronous rotations
of the measurement directions. For the purpose of comparison with later results, it is
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however useful to consider the more general Bell state (which is equivalent regarding
the potential to violate a Bell inequality)

|ΨBell〉= (| ↑〉1| ↑〉2 + eiφ | ↓〉1| ↓〉2)/
√

2, (2.6)

yielding the joint probability

PBell(σ1,σ2|ϕ1,ϕ2) =
1
4
[1+σ1σ2 cos(ϕ1 +ϕ2−φ)] (2.7)

for “in plane”-measurements, and the corresponding correlation function

CBell(ϕ1,ϕ2) = cos(ϕ1 +ϕ2−φ). (2.8)

We will see below that the singlet correlations (2.3) and the Bell state correlations
(2.8), respectively, are stronger than classical correlations in the sense that they depend
stronger on the control parameters than classically admissible, and hence can serve to
refute local realism, the presumed completion of QM by preexisting properties.

2.3 Bell inequalities

While EPR premise locality in order to derive the incompleteness of QM, a rather meta-
physical conclusion, Bell, driven by intuition about the nonlocal consequences of QM,
put locality itself into question. Turning the EPR argument around by assuming that
such hidden variables indeed exist, he could derive a quantitative, testable statement on
the possibility of such a complete account as a base for correlations. An essential con-
tribution to this end was turning towards the dichotomic spin setting with its flexibility
concerning amenable spin observables. In the following I recapitulate the derivations of
Bell and CHSH, respectively [39, 40].

Realism

Let us assume that there exist hidden variables that are responsible for the outcomes σ1
and σ2 of the measurements in the Bell experiment. The measurement outcomes σ1,
σ2 in an individual run can then considered to be determined by the underlying hidden
variable λ ∈ Λ and the chosen spin observables characterized by the measurement di-
rections ~n1 and ~n2, σ1(~n1,~n2,λ ), σ2(~n1,~n2,λ ). Note that it is important to distinguish
the settings from the hidden variables, since the former share the “free will” of the ex-
perimenter which observable to measure, while the latter exists by definition prior to
measurement and hence are independent of it. Indeed, one may say that Bell’s major ac-
complishment was the neat separation of the roles and mutual dependences of the hidden
variables, the settings (control parameters) and the outcomes. The resulting correlation
function emerges from averaging over a multitude of runs with their corresponding hid-
den variables,

CHV(~n1,~n2) =
∫

Λ

dλρ(λ )σ1(~n1,~n2,λ )σ2(~n1,~n2,λ ) (2.9)

where the hidden variables follow some unknown probability distribution ρ(λ ) (ρ(λ )≥
0,
∫

Λ
dλρ(λ ) = 1), which is by definition independent of the settings. Note that the

“hidden variable” λ may be thought of as being a single variable or several, discrete or
continuous, as denoting initial conditions or the physical state of the system as described
by any possible future theory; the argument does not require to be specific about this.
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Figure 2.1: Bell experiment based on Bohm’s version of the EPR argument: A pair
of remote, spin-entangled particles in the singlet state |Ψ−〉 = (| ↑〉1| ↓〉2 − | ↓〉1| ↑
〉2)/
√

2 is exposed to spin measurements (e.g. with Stern-Gerlach magnets) along arbi-
trary directions ~ni = (sinθi cosϕi,sinθi sinϕi,cosθi)T, yielding the correlation function
C−(~n1,~n2) = −~n1 ·~n2. Restricting to measurements in the plane perpendicular to the
spin orientation (note that for the sake of clarity I deliberately depict them parallel in the
figure), the correlation function reduces to C−(~n1,~n2) =−cos(ϕ1−ϕ2), which violates
the CHSH inequality maximally for appropriate choices of the control parameters ϕi. As
in the EPR experiment, locality is incorporated by deciding about the measured observ-
ables (parametrized by the control parameters ϕi) only after the particles have ceased
to interact and are remote. One may then assume that the measurement outcomes on
one side do not depend on the “free will” settings on the other side. A loophole-free
test with that respect would require that the measurement events are spacelike separated,
which even excludes the hypothetical (subluminal) communication of the measurement
settings based on an underlying hidden variable theory. Excluding such a communica-
tion, violation of the CHSH inequality refutes local realism, the presumed “complete”
account of the physical state denoted by the hidden variables λ . Since the formula-
tion of the CHSH inequality does not make any assumptions on the underlying physical
realization, one may also strive for generating the required dichotomic correlations by
employing degrees of freedom other than spin, may they be discrete or continuous. This
thesis presents two approaches to come up with Bell correlations based on the motion of
the particles.
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Locality

While the expression (2.9) merely determines the correlation function by preexisting
properties (“realism”), which alone does not have the potential to lead to any usable re-
strictions as compared to quantum mechanical correlations, we can promote (2.9) to a
local realistic description by additionally taking into account that the outcomes on each
side should not depend on the settings of the other side, σ1(~n1,λ ) and σ2(~n2,λ ), respec-
tively. This assumption, implementing locality, constitutes the heart of Bell’s argument,
rendering its striking consequences possible. The correlation function, which now reads

CLHV(~n1,~n2) =
∫

Λ

dλρ(λ )σ1(~n1,λ )σ2(~n2,λ ), (2.10)

turns out to be sufficiently restrictive to come into conflict with QM. Let me emphasize
that, most remarkably, Bell clear-sightedly reduced the locality requirement to a relation
between the settings and the outcomes, releasing him from making any assumptions
about the hidden variables and their dynamics whatsoever.

As obvious and intuitive as the separability assumption in (2.10) may be, in order
to make sure that no local communication between the measurement setting on one side
and the outcome on the other side is possible one must demand that the measurement
events are spacelike separated (and strictly speaking, even the decisions which observ-
ables to measure). But even if this is not provided there are good reasons for advocating
the plausibility of (2.10) from the point of view of a classical physicist, who expects to
recover the existence of separate systems and the possibility to explain correlations by
shared randomness at least with respect to certain not yet probed “classical” parameter
regimes and degrees of freedom, without the need to employ any conspirative unknown
interaction in charge of communicating the settings, be it local or not. Moreover, assum-
ing the existence of a local communication mechanism to reproduce quantum mechan-
ical correlations exactly within the light cone should result in an abrupt breakdown of
the correctness of quantum mechanical predictions at the transition to spacelike separa-
tions. In view of this rather peculiar behavior, it appears more reasonable to extend the
presumed validity of (2.10) from spacelike separations to timelike ones.

Aside from that, (2.10) can also be interpreted in terms of QM, denoting correlations
that emerge from a separable state; in this line of argument, a contradiction with (2.10)
then witnesses the entangled nature of the underlying quantum mechanical state.

2.3.1 Bell’s inequality

The correlation function (2.10) comprises the presumed local realism, and comparing it
with (2.5), one indeed realizes that it appears to leave less freedom on how to come up
with correlations than QM. How can we reveal this clash with QM? Above we suspected
that the quantum mechanically excluded simultaneous existence of noncommuting ob-
servables should play a crucial role; hence Bell’s final clue was to consider combinations
of correlation functions with differently oriented spin observables. In detail, he considers
the difference

|CLHV(~a,~b)−CLHV(~a,~c)| =
∣∣∣∣∫

Λ

dλρ(λ )[σ1(~a,λ )σ2(~b,λ )−σ1(~a,λ )σ2(~c,λ )]
∣∣∣∣

=
∣∣∣∣∫

Λ

dλρ(λ )[1−σ2(~b,λ )σ2(~c,λ )]σ1(~a,λ )σ2(~b,λ )
∣∣∣∣

≤
∫

Λ

dλρ(λ )[1−σ2(~b,λ )σ2(~c,λ )], (2.11)
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where the triangle inequality for integrals was used in the last step. Based on the singlet
state (2.2), Bell then assumes perfect anti-correlation for equally aligned measurement
directions,

σ1(~a,λ ) =−σ2(~a,λ ), (2.12)

which allows him to replace the last term in (2.11) by the corresponding correlation
function, yielding the inequality that now carries his name,

|CLHV(~a,~b)−CLHV(~a,~c)| ≤ 1+CLHV(~b,~c). (2.13)

The Bell theorem states that any hidden variable account of the Bell experiment satisfy-
ing the requirements of local realism (2.10) must as well satisfy Bell’s inequality (2.13).
This provokes two obvious questions: What has QM to say about it; and what nature?

2.3.2 CHSH inequality

In its original form (2.13) is not really suited for an experimental testing, since the
assumed perfect anti-correlations (2.12) are unrealistic from an experimental point of
view, where one must always take imprecisions into account. This was recognized by
Clauser, Horne, Shimony and Holt (CHSH), who generalized Bell’s derivation with that
respect [40]. Instead of premising the perfect correlations (2.12), they merely assume
the existence of measurement directions~b,~b′ such that the experimentally gained corre-
lations achieve

Cexp(~b′,~b) = 1−δ , (2.14)

with 0 ≤ δ ≤ 1 (Bell requires δ = 0 for~b′ = −~b). Dividing the set of hidden variables
Λ into two regions Λ+, Λ− such that Λ± = {λ |σ1(~b′,λ ) = ±σ2(~b,λ )} allows them to
write

CLHV(~b′,~b) =
∫

Λ

dλρ(λ )σ1(~b′,λ )σ2(~b,λ ) =
∫

Λ+

dλρ(λ )−
∫

Λ−
dλρ(λ )

= 1−2
∫

Λ−
dλρ(λ ) = 1−δ , (2.15)

which implies
∫

Λ−
dλρ(λ ) = δ/2. The correlation on the right hand side of (2.11) can

thus be rewritten as∫
Λ

dλρ(λ )σ2(~b,λ )σ2(~c,λ ) (2.16)

=
∫

Λ

dλρ(λ )σ1(~b′,λ )σ2(~c,λ )−2
∫

Λ−
dλρ(λ )σ1(~b′,λ )σ2(~c,λ )

≥CLHV(~b′,~c)−2
∫

Λ−
dλρ(λ )|σ1(~b′,λ )σ2(~c,λ )|= CLHV(~b′,~c)−δ .

With this (2.11) yields the CHSH inequality

|CLHV(~a,~b)−CLHV(~a,~c)| ≤ 2−CLHV(~b′,~b)−CLHV(~b′,~c). (2.17)

Note that we did not require δ to be small; (2.17) can thus be applied to arbitrary quan-
tum states. However, we will find that its violation is only possible for small δ . Below I
give a quantitative criterion for its violation in terms of the visibility of the fringe pattern,
which is directly connected to δ .
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The relation (2.17) gives the original inequality derived by CHSH; its most widely
used variant can be conveniently regained in hindsight when considering the quantity

X := σ1(~a,λ )σ2(~b,λ )+σ1(~a,λ )σ2(~b′,λ )+σ1(~a′,λ )σ2(~b,λ )−σ1(~a′,λ )σ2(~b′,λ )

= σ1(~a,λ )
[
σ2(~b,λ )+σ2(~b′,λ )

]
+σ1(~a′,λ )

[
σ2(~b,λ )−σ2(~b′,λ )

]
= ±2. (2.18)

The triangle inequality |
∫

Λ
dλρ(λ )X | ≤

∫
Λ

dλρ(λ )|X | then yields

|CLHV(~a,~b)+CLHV(~a,~b′)+CLHV(~a′,~b)−CLHV(~a′,~b′)| ≤ 2, (2.19)

which one usually refers to when talking about the CHSH inequality. In the following I
will term (2.19) simply Bell inequality, and a Bell test corresponds to testing whether a
physical setup satisfies or violates it.

2.4 Bell violation

Both the singlet correlations (2.3) and the Bell correlations (2.8) violate the Bell in-
equality (2.19), already when restricting to “in plane”-measurements, θ1 = θ2 = π/2. In
the case of the singlet, e.g., the maximal violation is achieved by the choice ϕ1 = 0,
ϕ ′1 = π/2, ϕ2 = π/4 and ϕ ′2 = −π/4, and for (2.8) correspondingly by ϕ1 = φ/2,
ϕ ′1 = φ/2+π/2, ϕ2 = φ/2−π/4 and ϕ ′2 = φ/2+π/4,

|CBell(φ/2,φ/2−π/4)+CBell(φ/2,φ/2+π/4) (2.20)

+CBell(φ/2+π/2,φ/2+π/4)−CBell(φ/2+π/2,φ/2−π/4)|= 2
√

2≥ 2.

As anticipated from the complementary principle, the violation is based on comparing
measurements of noncommuting observables. Indeed, it is well known that it is not
possible to violate a Bell inequality by measuring commuting observables [55]. The
required non-trivial twisting to observables “in between” the “canonical” observables σx,
σy, σz may indicate why the EPR experiment restricted to mere single-particle position
and momentum measurements is insufficient. Remarkably, the violation achieved in
(2.20) is not only maximal for the Bell state (2.6), but for any quantum mechanical state,
as was shown by Cirel’son [56]. General no-signaling theories, on the other hand, can
violate Cirel’son’s bound, and intense ongoing research attempts to pinpoint what singles
QM out among them, what causes nature not to exploit the full extent of correlations as
admitted by relativity [57–63].

The maximal violation in (2.20) implies the perfect correlations (2.8), but, as recog-
nized by CHSH, this corresponds to an idealized situation, whereas an experimentally
realistic consideration should take a non-vanishing diminishing δ of the correlations
into account, see (2.14). In terms of the joint probability (2.7) this results in a reduced
visibility v of the fringe pattern,

P(σ1,σ2|ϕ1,ϕ2) =
1
4
[1+σ1σ2vcos(ϕ1 +ϕ2−φ)], (2.21)

where 0 ≤ v ≤ 1. A violation in (2.20) is then ensured given the visibility exceeds the
threshold v > 1/

√
2, since the corresponding correlation function is reduced by a factor

ν as compared to (2.8).
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2.5 Application to motion

Bell derived his inequality with the spin-based Bell experiment in mind; however, an
analysis of the derivation reveals that it is completely operational with respect to both
the outcomes and the settings, in the sense that it makes no explicit use of the assumed
underlying spin system. One may thus just as well strive for realizations based on other
degrees of freedom. In fact, the first experiments testing local realism were performed
with photons, where the entanglement resided in their polarization [41, 64, 65].

It is not even necessary to require that the employed degrees of freedom are di-
chotomic (meaning that they are two-valued variables), since Bell’s derivation only as-
sumes the range of the outcomes to be bounded by [−1,1]; however, from (2.14) and
(2.21) we know that only the extremal outcomes contribute to sufficiently distinct cor-
relations as demanded by a Bell violation, which renders it favorable to consider di-
chotomic outcomes. In the case of continuous variables this amounts to giving a pre-
scription of how to end up with such binary outcomes.

For instance, one can define pseudo-spin or displaced parity operators on the quadra-
ture amplitudes of a single-mode light field with the annihilation operator a [66]. On the
one hand, one finds a spin algebra by defining

sz =
∞

∑
n=0

[|2n+1〉〈2n+1|− |2n〉〈2n|] (2.22)

s− =
∞

∑
n=0
|2n〉〈2n+1|= (s+)†,

where |n〉 are the eigenstates of the number operator N = a†a. On the other hand, the
annihilation operator defines a complementary pair of hermitian quadrature operators
via a = (X1 + iX2)/2. This way one can relate measured field quadratures to pseudo-spin
values. Note that such a complementary pair of quadrature operators can be interpreted
in terms of the usual position and momentum operators. Arbitrarily oriented pseudo-spin
measurements in general require measurements of linear combinations of the quadrature
operators Xi, which can be realized easily within a homodyne detection scheme. One
finds that two-mode squeezed vacuum states (the “regularized” EPR states) violate the
CHSH inequality when measuring non-trivially twisted combinations of quadrature op-
erators [66–68], as it was already the case in the spin experiment.

The ability to measure these mode observables renders a Bell violation possible,
even though the EPR states have a positive phase space representation. This is possible
since the Wigner representations of the pseudo-spin projectors have values outside of the
interval [0,1] and consequently cannot be interpreted as conditional probabilities [69,70].
However, only position measurements are easily realizable for free material particles,
the case we are interested in. A direct implementation of the pseudo-spin approach with
EPR states thus seems not to be practical in this situation. One may argue that the free
time evolution of the (Heisenberg picture) position operators (partly) recovers the ability
to perform arbitrary position-momentum measurements, and harmonic trapping of the
particles could even restore the full correspondence to the quadrature measurements;
however, while it is not obvious whether one can establish the full correspondence in
the former case, the experimental implementation of the latter seems to be exceedingly
hard. In both cases, it seems unlikely that the necessary measurement accuracy can be
achieved with present day technology.

An alternative route thus proposes to employ nonclassical quantum states, instead,
in the sense that they have a partly negative phase space representation. In particular,
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one may hope that macroscopically delocalized phase space distributions support robust
quantum interference effects that restore the possibility to violate a Bell inequality, even
when one is restricted to position measurements with limited accuracy. In this thesis I
present two scenarios that employ such highly nonclassical quantum states of material
particles. The first considers motional states that admit an effectively dichotomic in-
terpretation themselves, the second assigns dichotomic values to the measurement out-
comes in a way adapted to the nonlocal interference.

Let me note that there exist other entanglement tests that are applicable to EPR-like
Gaussian states. For instance, only entangled states can violate Heisenberg-like uncer-
tainty relations of the kind [xcm, prel] ≥ h̄/2, where xcm and prel may denote the center
of mass position and the relative momentum of a diatomic system, respectively. Such
tests are used in existing proposals to verify EPR correlations in the dissociation states
of ultracold molecules [71–73]. However, a Bell violation constitutes a considerably
more convincing demonstration of nonclassicality, since it is conclusive independent
of whether QM is valid or not. And as mentioned above, the states we consider would
realize macroscopic delocalizations of the atomic wave functions, another desirable non-
classical feature that Gaussian states lack and which allows these states to uncover their
nonclassicality by robust interference effects. One goal of this thesis thus is to convince
the reader that such highly nonclassical states are realizable by dissociating ultracold
Feshbach molecules. A detailed description of the conceived dissociation scheme will
be given in the Chapters 5 and 6.

Finally, it should be mentioned that there exist extensions of Bell’s theorem to arbi-
trary (finite) numbers of parties, settings and outcomes [74, 75]; however, they neither
appear to be better suited to the case of continuous variables nor do they come along
with an essential conceptual gain as compared to the above dichotomic Bell test. Exist-
ing Bell inequalities that are explicitly designed for unbounded continuous variables, on
the other hand, are only shown to be useful in the case of field quadrature measurements
and more than 10 parties [76,77]. In our diatomic dissociation scheme a dichotomic Bell
test thus seems to be most appropriate.
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Chapter 3

Dissociation-time entanglement

We seek motional states that can serve as a basis for realizing Bell correlations and
thus make it possible to perform a Bell test. In the last chapter I argued that EPR-
like Gaussian states are not useful in the case of free material particles, where only
position measurements are easily realized. I proposed to employ nonclassical quantum
states, instead, which could disburden the Bell test on the measurement side. Here I
introduce the first of the two macroscopically nonclassical states investigated in this
thesis; both have the potential to achieve robust Bell violations based on single-particle
interferometry and simple position measurements.

The scenario considered in this chapter implements a Bell test by providing direct
correspondence to the spin-based Bell test both on the state level and on the measurement
level. The state preparation, which entangles and superposes macroscopically distinct
wave packets, is inspired by photonic time-bin entanglement and is implemented natu-
rally by the double-pulse dissociation of a diatomic molecule. Here I sketch the basic
idea of the state generation only briefly, to an extent required for the general discussion
in this chapter. Its detailed description within the Feshbach dissociation scheme will be
given in Chapter 7.

After introducing switched single-particle interferometry and subsequent position
measurements as a means to mimic spin measurements, I elaborate to which degree
the Bell state correlations can be reproduced when taking into account the effect of
detrimental, yet unavoidable dispersion [36]. Although dispersion generically decreases
the visibility of the resulting fringe pattern, careful choices of the parameters are shown
to exhibit the potential to violate a Bell inequality.

3.1 Motional binning by gradual molecular dissociation

The structure of the class of states considered in this chapter is understood best in terms
of the general generation procedure. Starting from a trapped diatomic molecule, two
equal dissociation pulses separated by a time period τ create the superposition of two
subsequent dissociations (“early” and “late”). Later, when we specialize to the dissocia-
tion of Feshbach molecules, magnetic field pulses will serve to lift the molecular bound
state above its dissociation threshold; however, the specific implementation is irrelevant
for the general discussion here. The dissociations must be coherent in the sense that no
information is leaked to the environment about the time of dissociation. Then an ob-
server cannot tell whether the dissociation took place at the early or at the late instant,
while both atoms must have started their journey at the same time. In this sense, the
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generated two-particle state may be called dissociation-time entangled (DTE). Due to
momentum conservation the dissociated atoms propagate in opposite directions along a
one-dimensional wave guide, with each atom delocalized into a pair of consecutive wave
packets, corresponding to the early and the late dissociation instant, see Fig. 3.1(a). A
macroscopic time period τ then results in a superposition of macroscopically distinct
wave packets, allowing us to address them individually. As we will see in Chapter 5,
the proposed experimental setup based on ultracold Feshbach molecules indeed renders
scales on the order of centimeters realistic [35].

We take the dissociation pulses to be equal in this chapter. The early and the late
wave packets then propagate at the same speed, which keeps them sufficiently long spa-
tially distinct and thus permits to address them individually in subsequent interferomet-
ric processing. As we will see below, this way the wave packets describe effectively
dichotomic properties. In Chapter 4 we will extend the scheme to unequal dissociation
pulses, resulting in early and late wave packets of different velocities. There we loose
the dichotomic analogue on the state level, whereas a different measurement prescription
sustains the Bell state correlations.

Note that the DTE state differs fundamentally from the Gaussian states describing
EPR-type correlations. As opposed to Gaussian states, it displays a strongly structured,
partly negative Wigner function. This is reflected most profoundly in the possible in-
terference between the macroscopically distinct early and late wave packets. Below, we
will use their interference to formulate a Bell test in terms of simple position measure-
ments.

3.1.1 Time-bin entanglement

The idea to encode qubits in spatially distinct wave packets was originally introduced
for photons [78], building upon the concept of energy-time entanglement [79]. A pulsed
laser in combination with an interferometric delay loop placed in front of a parametric
down-conversion crystal permits to generate twin-photons which are entangled in their
creation time. The resulting state, which has been termed time-bin entangled (TBE),
takes the form

|Ψtbe〉=
1√
2
(|E〉1|E〉2 + eiφτ |L〉1|L〉2), (3.1)

where |E〉i and |L〉i denote spatially distinct traveling photonic modes corresponding to
the early and the late creation time [78]. Since photons do not disperse in vacuum they
differ merely by their spatial displacement, their shape may be taken to be identical. The
TBE state (3.1) can be visualized in analogy to the DTE state depicted in Fig. 3.1(b),
although we will see that they differ in important aspects.

Since the relevant entanglement resides in the relation between the early and late
modes, we can interpret the creation times as a dichotomic property constituting an
effectively two-dimensional state space (per photon). By identifying, say, “early” with
“spin up” and “late” with “spin down”, the state |Ψtbe〉 evidently corresponds to the
Bell state (2.6), |ΨBell〉 = 1√

2
(| ↑〉1| ↑〉2 + eiφ | ↓〉1| ↓〉2). Provided that the early and the

late wave packet components are spatially sufficiently distinct, a switched, asymmetric
Mach–Zehnder interferometer makes it possible to perform the analogue of a general
spin measurement, see Fig. 3.2 and the discussion below [78]. Such a photonic TBE
state has indeed been used successfully for establishing nonlocal correlations over fiber
distances of more than 50 km [78,80,81] in a similar setup as in Fig. 3.2, though without
switching.
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Figure 3.1: (a) Generation of a dissociation-time entangled pair of atoms. A diatomic
molecule is exposed to two equal, subsequent dissociation pulses separated by a time
period τ . Anticipating the Feshbach dissociation scheme, one may think of magnetic
field pulses that lift the molecular bound state above its dissociation threshold. The early
pulse is chosen such that the atoms remain bound with a given probability; the second
pulse dissociates the remaining molecular state component. Each atom then has an early
and a late wave packet component such that the resulting state of two counterpropagating
particles is entangled in the dissociation times. (b) If the wave packet components of
the dissociation-time entangled atoms are spatially sufficiently separated, they encode
effectively dichotomic properties which are amenable to a Bell test in terms of switched
single-particle interferometry and position measurements, see Fig. 3.2.
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From now on we will interpret the TBE state (3.1) as a matter wave state, which
follows from identifying |E〉i and |L〉i with the early and the late wave packet components
of two freely moving atoms. Like for the photons, the early and late wave packets are
taken to propagate at the same velocity. And as in the photonic case, we assume that the
early and the late wave packets of each particle are identical in shape.1 It is important to
note that the dispersive spreading experienced by matter waves (in contrast to photonic
modes, which keep their shape during their travel through free space) does not spoil this
identity of the wave packets, since they are all affected in the same way. As we will
see, this renders the TBE Bell test described below resistant with respect to detrimental
dispersion effects and thus retains the perfect photonic correspondence with the spin-
based Bell experiment.

3.1.2 Dissociation-time entanglement

It should be emphasized that the TBE state (3.1) is not the natural outcome in a molecular
two-time dissociation process. In fact, it seems practically impossible to produce the
TBE state with material particles. As outlined above, the scheme conceived in this thesis
relies on the controlled dissociation of a weakly bound Feshbach molecule with the
help of a Feshbach resonance. An appropriately chosen magnetic field pulse causes the
atomic components to dissociate and propagate in opposite directions. A sequence of
two magnetic field pulses then generates the desired superposition of two dissociation
times. It is clear that only the relative motion of the two atoms is (directly) affected
by the dissociation, therefore the center of mass motion (of an untrapped molecule)
remains separable from the relative motion, unlike in the TBE product of single-particle
states. And even more incisively, we should take into account that the early wave packets
experience dispersive spreading in the time period τ between the two dissociation pulses.
This effects a dispersion-induced distortion between the early and the late wave packets.
A generic DTE state thus takes the form

|Ψdte〉=
1√
2

(
Û

(0)
τ |Ψ0〉+ eiφτ |Ψ0〉

)
, (3.2)

with the single-dissociation state

|Ψ0〉=
1√
2
|ψcm

0 〉
(
|ψ rel

0 〉+ P̂|ψ rel
0 〉
)

. (3.3)

Here, P̂ is the parity operator, and we assume that the early and the late dissociation
occur with equal probability. In the following, we take the state |Ψdte〉, and accordingly
|Ψtbe〉, to describe a one-dimensional, longitudinal motion, implying that the transverse
components of the motion are confined to the ground state of an atom guide. The state
|ψ rel

0 〉 denotes the wave packet of the relative motion after a single dissociation pulse
propagating into positive direction, while |ψcm

0 〉 describes the wave packet of the center
of mass motion residing at the former position of the molecule.

Note how the DTE state (3.2) differs from the above TBE state (3.1) as it is not
composed of two single-particle product states, but superposes the relative coordinate of
the two atoms (at a single dissociation time). Due to the symmetry of the dissociation
process, each particle has an amplitude to propagate in each direction. Moreover, the

1Remarkably, a successful Bell test does not require that the early wave packets of the two particles
are identical in shape (and similar for the late ones), since they do not have to interfere in the protocol
considered below.
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Figure 3.2: State analysis with an asymmetric Mach–Zehnder interferometer. (a) When
the early wave packet component arrives, the switchable mirror is in place and deflects
it into the long arm. (b) The switchable mirror is removed before the arrival of the late
wave packet. (c) The early wave packet acquires an optional phase shift ϕ in the long
arm, whereas the late wave packet propagates through the short arm. (d) The path dif-
ference is chosen such that it cancels the distance between the early and the late wave
packet components, which then interfere in the output ports of the interferometers. De-
tecting the atom in one of the output ports, at a given phase ϕ and splitting ratio θ ,
amounts to a measurement analogous to a spin-1/2 detection in an arbitrary direction.

DTE state incorporates the unavoidable dispersion-induced distortion between the early

and the late state components, described by the free time-evolution operator Û
(0)
τ .

3.2 Interferometric spin measurement analogue

A crucial property of both the TBE state (3.1) and the DTE state (3.2) is that they are
amenable to a Bell test based on interferometric state transformation and subsequent
position measurements. Before tackling the motional Bell experiment with the experi-
mentally appropriate DTE state (3.2), it is instructive to first describe the interferometric
setup and the effect of dispersion with the TBE state (3.1). This will render the corre-
spondence of the interferometric transformation to a spin measurement most transparent.

3.2.1 Interferometric protocol

The setup is based on switched, asymmetric Mach–Zehnder interferometers, as shown
in Fig. 3.2. Their action can be described as follows: The early wave packet components
are deflected by the switches into the long arms of the interferometers, where they ac-
quire optional phase shifts ϕi before the beam splitters distribute them onto their output
ports according to their splitting ratios, as parameterized by the angles θi. The switches
are timed such that they let pass the late wave packet components, which then propagate
straight to the beam splitters where they are also distributed according to the splitting
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ratios θi. When the path length difference between the interferometer arms is chosen
such that it exactly cancels the distance between the early and the late wave packets, the
latter will overlap in the output ports of each interferometer and interfere. Assuming
ideal phase shifters and beam splitters, the early and late state components |E〉i and |L〉i
of the TBE state (3.1) transform according to

|E〉i → eiϕi cosθi|+〉i + eiϕi sinθi|−〉i (3.4)

|L〉i → sinθi|+〉i− cosθi|−〉i,

where |+〉i and |−〉i denote wave packet components in the two output ports of interfer-
ometer i = 1,2 at a stage of the time evolution when the particles must have passed the
interferometers. This mapping requires that the components |E〉i and |L〉i of the initial
state are identical wave packets up to their spatial displacement, that is |L〉i = eip̂isi/h̄|E〉i,
with si denoting their separation. Remember that this property was assumed for the TBE
state (3.1). Moreover, the states |E〉i and |L〉i must be spatially sufficiently distinct, such
that they can be distinguished by the switches, even when taking dispersion-induced
wave packet spreading into account. Note that it is not important to be specific about the
particular instant, at which we consider the wave packet components |+〉i and |−〉i, since
we will only be interested in the overall detection probabilities per port, which unitary
time evolution guarantees to remain unaffected by any subsequent time evolution. In
this sense, the present treatment already incorporates dispersion, since we do not have to
assume that the wave packets |+〉i and |−〉i are equal in shape to the wave packets |E〉i
and |L〉i.

3.2.2 TBE correlations

After passing the interferometers, the TBE state can be written in accordance with (3.4)
as

|Ψ′tbe〉=
1

22/3 ∑
σ1,σ2=±

[
ei(ϕ1+ϕ2) +σ1σ2eiφτ

]
|σ1〉1|σ2〉2. (3.5)

For clarity, I have taken 50:50 beam splitters (θ1 = θ2 = π/4). As argued in Chapter 2,
this restriction to effective “in-plane” spin measurements does not come with any loss
of significance, since it still admits the maximal violation of a Bell inequality. The joint
probability for detecting the particles in a particular output port combination thus reads
(σ1,2 =±1)

Ptbe(σ1,σ2|ϕ1,ϕ2) = |〈σ1|1〈σ2|2|Ψ′tbe〉|2 (3.6)

=
1
4
[1+σ1σ2 cos(ϕ1 +ϕ2−φτ)],

which yields the corresponding correlation function

Ctbe(ϕ1,ϕ2) = ∑
σ1σ2=±

σ1σ2Ptbe(σ1,σ2|ϕ1,ϕ2)

= cos(ϕ1 +ϕ2−φ). (3.7)

As desired, the detection probability (3.6) and the TBE correlation function (3.7) take
the same form as in the spin-based Bell experiment, compare with (2.7) and (2.8), and
are thus equally capable to violate the CHSH-inequality [40] |C(ϕ1,ϕ2)+C(ϕ1,ϕ

′
2)+

C(ϕ ′1,ϕ2)−C(ϕ ′1,ϕ
′
2)|6 2 maximally, e.g., for the choices ϕ1 = φ/2, ϕ2 = φ/2−π/4,

ϕ ′1 = φ/2 + π/2, and ϕ ′2 = φ/2 + π/4 (see Chapter 2). This demonstrates the perfect
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correspondence of the TBE Bell experiment with the spin-based Bell test and indicates
that the interferometric transformation indeed mimics a spin measurement on the TBE
state. In this interferometric scheme, the output ports provide dichotomic outcomes,
whereas the phase shifts ϕi and the beam splitting ratios θi take the role of the Bell
control parameters.

The perfect agreement of the TBE correlation function (3.7) with the spin-based
correlation function (2.8) reveals that the nonlocal correlations are not affected by the
dispersive spreading of the wave packets. This follows from the assumption that the
early and the late wave packets are identical up to a spatial displacement. We will see
below that this is not valid for the more realistic DTE state (3.2), where the dispersion-
induced distortion between the early and the late wave packets is taken into account.

From an experimental point of view, the natural quantity to be measured is the arrival
time of the particles at the detectors. The two-time probability density pr(σ1,σ2; t1, t2)
for detecting the particles at times t1, t2 in a particular output port combination con-
stitutes in general a complicated fringe pattern as a function of the ϕi, θi and ti. It
depends not only on the shape of the wave packets and their dispersion-induced modifi-
cations due to the overall propagation time, but also on the particular implementation of
the measurement [82–85]. The integrated probability Pσ1,σ2 =

∫
dt1dt2pr(σ1,σ2; t1, t2),

however, only measures the overall likelihood for finding the particles in a particular
output port combination. It is thus unaffected by the particular shape of the wave pack-
ets and any dispersion-induced modification thereof, since unitary time evolution im-
plies the conservation of probability in the output ports. Strictly speaking, this is valid
only if measurement-induced reflections of the wave packets at the detectors can be
excluded [82–86]. But since our setup does not require prominent temporal or spatial
resolution of the measurement, we can safely neglect this effect. For this reason, we may
identify the integrated probability Pσ1,σ2 with (3.6).

3.2.3 Spin measurement analogue

I conclude this section by presenting a more formal argument why the above state
transformation (3.4) acting on a general (single-particle) “time-bin” superposition state
|ψ〉 = a|E〉+ b|L〉, |a|2 + |b|2 = 1, followed by the detection in one of the output ports
can formally be understood as the analogue of a “spin” measurement with respect to
the measurement axis ~n = (sin(2θ)cosϕ,sin(2θ)sinϕ,cos(2θ)). To this end, we de-
fine the analogues of Pauli matrices σ̂x = |E〉〈L|+ |L〉〈E|, σ̂y = −i|E〉〈L|+ i|L〉〈E|,
σ̂z = |E〉〈E| − |L〉〈L|, and ~̂σ = (σ̂x, σ̂y, σ̂z). The interferometric transformation (3.4)
and the subsequent detection of the transformed state |ψ ′〉 in the output ports can then
be equivalently understood as a measurement of the observable~n · ~̂σ with respect to the
untransformed state |ψ〉. This is most easily seen by noting that the transformation (3.4)
acts like an expansion of the incoming time-bin state into the eigenstates |~n,+〉, |~n,−〉 of
~n · ~̂σ . With this, the joint detection probability may equally well be written as

Ptbe(σ1,σ2|~n1,~n2) = |〈~n1,σ1|1〈~n2,σ2|2|Ψtbe〉|2, (3.8)

and the correlation function is given by

Ctbe(~n1,~n2) = 〈Ψtbe|
[
~n1 · ~̂σ1

]
⊗
[
~n2 · ~̂σ2

]
|Ψtbe〉. (3.9)

We thus find the prescriptions to determine these quantities to be formally equivalent
to the spin case, rendering the reduction of the binned motion to a dichotomic property
manifest.
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3.3 Bell test with dissociation-time entanglement

Up to now, we established a motional Bell test for the TBE state (3.1). However, from an
experimental point of view, the DTE state (3.2) is much more relevant, since its structure
is naturally produced by the dissociation of a diatomic molecule. In the following I will
describe the effect of the above interferometric transformation on the DTE state (3.2).

The DTE wave function differs from the TBE state in two important points: (i) it does
not separate into single-particle states at a particular dissociation time and (ii) the disper-
sive time evolution between the early and the late dissociation process implies different
shapes for the early and late wave packet components. Furthermore, we now specify
the phase shifters to be implemented by varying the arm lengths of the interferometers,
which effects an additional mismatch between the early and the late state components.
All these modifications require a more sophisticated theoretical description of the setup.
It turns out that time-dependent scattering theory provides the appropriate framework.

3.3.1 Scattering description

Scattering theory applies when the system dynamics under consideration permits to re-
late asymptotic in-states to asymptotic out-states [87]. Then, given one is only interested
in the relation between these asymptotic states, the exact time evolution connecting the
in and the out states can be split up into an “instantaneous” transformation describing
the accumulated effect of the interaction potential and a subsequent free time evolution

Û
(0)
t . In our case,

|Ψ′dte〉 := Ût |Ψdte〉= Û
(0)
t Ŝ|Ψdte〉, (3.10)

where |Ψ′dte〉 denotes the DTE state at a given stage of evolution when the passage
through the interferometers is completed, and the scattering operator Ŝ describes the
“raw” action of the interferometers.

In our case, another subtlety comes into play, since we have to distinguish the effect
of the interferometers depending on whether the switch is in place (“on”), enforcing de-
flection into the longer arm, as for the early state component, or absent (“off”), admitting
undeflected passage, as for the late state component:

|Ψ′dte〉= Û
(0)
t

(
Ŝ

(on)
Û

(0)
τ |Ψ0〉+ eiφτ Ŝ

(off)
|Ψ0〉

)
. (3.11)

Here we presuppose that dispersion-induced spreading does not spoil the spatial dis-
tinctness of the early and the late wave packets. In order to specify the structure of the

scattering matrices Ŝ
(on)

and Ŝ
(off)

, it is convenient to rewrite the DTE state (3.2) as

|Ψdte〉=
1√
2

(
|Ψ(+)

dte 〉+ |Ψ
(−)
dte 〉
)

(3.12)

with

|Ψ(+)
dte 〉=

1√
2

(
Û

(0)
τ |Ψ

(+)
0 〉+ eiφτ |Ψ(+)

0 〉
)

, (3.13)

where |Ψ(+)
0 〉= |ψcm

0 〉|ψ rel
0 〉 and |Ψ(−)

dte 〉= P̂|Ψ(+)
dte 〉. Now |Ψ(+)

dte 〉 describes a two-particle
state with particle 1 exclusively propagating into positive direction (and particle 2 into
the negative one). This allows one to assign each particle to a definite interferometer,
e.g., interferometer 1 to particle 1 (and interferometer 2 to particle 2). The same applies
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to |Ψ(−)
dte 〉, only with the particles exchanged. Focusing on |Ψ(+)

dte 〉, the projection of the

scattered state |Ψ(+)
dte

′
〉 onto a particular output-port combination σ1, σ2 reads

(
Π̂σ1⊗ Π̂σ2

)
|Ψ(+)

dte

′
〉 =

Û
(0)
t√
2

{
Û

(0)
τ

[
Ŝ

(on)
σ1
⊗ Ŝ

(on)
σ2

]
|Ψ(+)

0 〉

+eiφτ

[
Ŝ

(off)
σ1
⊗ Ŝ

(off)
σ2

]
|Ψ(+)

0 〉

}
. (3.14)

Here, Π̂σi is the projection operator onto the region behind the output port labeled

by σi = (±)i of the ith interferometer. The scattering matrix components Ŝ
(on/off)
σi

=

Π̂σi Ŝ
(on/off)
i describe the mapping from an in-state to the out-state component of a par-

ticular beam splitter output port. For example, Ŝ
(on)
σ1=+1|in〉 yields the out-state component

in the output port labeled by σ1 = +1 with the switch in place (“on”). For the early wave
packets, the switch is in place, causing deflection into the long arm. The offset from
the optimum path length difference is reflected in a translation of the early wave packets
with respect to the late ones. The late wave packets, on the other hand, pass straight
through the short arm before they are distributed into the output ports according to the

splitting ratio of the beam splitter. For the scattering matrix components Ŝ
(on)
σi

and Ŝ
(off)
σi

,
one thus obtains

Ŝ
(on)
σi=+1 = eip̂i`i/h̄ cosθi, Ŝ

(off)
σi=+1 = sinθi, (3.15)

Ŝ
(on)
σi=−1 = ei p̂i`i/h̄ sinθi, Ŝ

(off)
σi=−1 =−cosθi,

where the translation operators exp(i p̂i`i/h̄) implement the additional displacements `i

of the early state component (switch “on”) with respect to the late ones.

3.3.2 DTE correlations

Like for the TBE state, the joint probability for detecting the particles in a particular
output-port combination σ1, σ2 is obtained from the projection P(+)

dte (σ1,σ2|`1, `2) =

|
(
Π̂σ1⊗ Π̂σ2

)
|Ψ(+)

dte

′
〉|2. Hence, with (3.14) and (3.15), we get

P(+)
dte (σ1,σ2|`1, `2) =

1
4

[
1+σ1σ2Re

{
e−iφτ 〈Ψ(+)

0 |e
ip̂1`1/h̄e−i p̂2

1τ/(2mh̄)

⊗eip̂2`2/h̄e−i p̂2
2τ/(2mh̄)|Ψ(+)

0 〉
}]

, (3.16)

where we have for simplicity taken the beam splitters to be symmetric (θi = π/4) and
the particles to be of equal mass m. Evaluating the matrix element in momentum repre-
sentation, with the abbreviations ~p = (p1, p2)T and ~̀ = (`1, `2)T, yields

P(+)
dte (σ1,σ2|`1, `2) =

1
4

[
1+σ1σ2Re

{
e−iφτ

∫
∞

−∞

dp1

∫
∞

−∞

dp2ei~p·~̀/h̄

×e−i~p2τ/(2mh̄)|〈p1, p2|Ψ(+)
0 〉|

2
}]

. (3.17)

The intermediate result (3.17) already reveals some important features of the setup:

Firstly, the overall free time evolution Û
(0)
t in (3.14) drops out for the detection proba-

bility, as it was the case for the TBE state. Hence, only the dispersion-induced distortion



24 CHAPTER 3. DISSOCIATION-TIME ENTANGLEMENT

between the early and late wave packets, which is due to the period τ between the two
dissociation processes, causes potential harm to the fringe pattern of the detection prob-
ability as a function of the arm length variations. Next, only the two-particle momentum
distribution |〈p1, p2|Ψ(+)

0 〉|2 of the single dissociation pulse component |Ψ(+)
0 〉 enters the

detection probability P(+)
dte (σ1,σ2|`1, `2). As a consequence, P(+)

dte (σ1,σ2|`1, `2) is invari-
ant under momentum phase transformations 〈p1, p2|Ψ0〉 → exp[iξ (p1, p2)]〈p1, p2|Ψ0〉,
which includes spatial translations. This means that the signal is unaffected by shot-
to-shot shifts of the source position with respect to the interferometers (as long as the
interferometric procedure is still feasible).

The fact that the correlation signal depends merely on the two-particle momen-
tum distribution also shows that it is straightforward to generalize the detection prob-
ability to nonpure and nonseparable states, |Ψ(+)

0 〉〈Ψ
(+)
0 | → ρ

(+)
0 , and correspondingly

|〈p1, p2|Ψ(+)
0 〉|2 → pr(p1, p2) := 〈p1, p2|ρ(+)

0 |p1, p2〉. In particular, the separability of
the center of mass and the relative motion, as it is assumed for the single-dissociation
state (3.3), was not used to derive (3.17). In fact, we will see in Chapter 6 that the Fes-
hbach dissociation state only approximately separates into center of mass and relative
motion if an experimentally realistic setup is considered.

So far, I have restricted my investigation to the DTE state |Ψ(+)
dte 〉 with each particle

propagating into a given direction. It is clear that I could have followed the same reason-
ing for the DTE state |Ψ(−)

dte 〉, only with the labels for the particles exchanged, such that
the corresponding joint detection probability P(−)

dte (σ1,σ2|`1, `2) equals P(+)
dte (σ1,σ2|`1, `2).

Finally, since our setup is not sensitive to interference between |Ψ(+)
dte 〉 and |Ψ(−)

dte 〉, the
detection probability for the symmetric DTE state |Ψdte〉= 1√

2

(
|Ψ(+)

dte 〉+ |Ψ
(−)
dte 〉
)

follows
from

Pdte(σ1,σ2|`1, `2) =
1
2

(
P(+)

dte (σ1,σ2|`1, `2)+P(−)
dte (σ1,σ2|`1, `2)

)
= P(+)

dte (σ1,σ2|`1, `2). (3.18)

Hence, the results obtained for the directed DTE state |Ψ(+)
dte 〉 apply just as well to the

experimentally realized DTE state |Ψdte〉.

3.3.3 Gaussian evaluation

In order to be able to relate the joint detection probability (3.17) to the spin-based joint
probability (2.7) and to get a qualitative and quantitative understanding of the resulting
fringe pattern, we evaluate Eq. (3.17) in closed form for the case that the early and the
late wave packet components are each described by Gaussian center of mass and relative
states. This is reasonable, since even for non-Gaussian wave packet components with a
more complicated momentum distribution, an appropriate Gaussian fit should allow us
to derive at least a lower bound to the quality of the fringe pattern. The evaluation of
(3.17) for an actual Feshbach dissociation state will be done in Chapter 7.

We consider a Gaussian momentum distribution,

pr(p1, p2) =
1

2πσp,cmσp,rel
exp

(
−(p1 + p2)2

2σ2
p,cm

− (p1− p2−mvrel)2

8σ2
p,rel

)
, (3.19)

where σp,rel and σp,cm denote the variances of the relative and the center-of-mass mo-
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mentum, respectively. This yields

P(+)
dte (σ1,σ2|`1, `2) =

1
4

{
1+σ1σ2

(
1+

τ2

T 2
cm

)−1/4(
1+

τ2

T 2
rel

)−1/4

(3.20)

× exp
[
− Trel

T 2
rel + τ2

(`1− `2− τvrel)2

2vrelλ rel
− Tcm

T 2
cm + τ2

(`1 + `2)2

2vrelλ rel

]
×cos

[
`1− `2

λ rel
+

τ

T 2
rel + τ2

(`1− `2− τvrel)2

2vrelλ rel
+

τ

T 2
cm + τ2

(`1 + `2)2

2vrelλ rel
− ϕ0

2

]}
,

with ϕ0 = τvrel/λ rel + arctan(τ/Tcm) + arctan(τ/Trel) + 2φτ . The variances σp,rel and
σp,cm determine characteristic dispersion times, Tcm = 2mh̄/σ2

p,cm and Trel = mh̄/2σ2
p,rel.

The latter indicate the time scale of transition to a dispersion-dominated spatial extension
of the wave packets. The expectation value of the relative momentum p0,rel = mvrel/2
defines the reduced wave length λ rel = h̄/p0,rel, which sets the scale for the nonlocal
interference fringes. This can be traced back to the fact that we implement the phase
shift by displacing the early and late wave packets with respect to each other, whose
phase variation, in turn, is set by their de Broglie wave length.

3.3.4 The possibility of a Bell violation

The DTE joint detection probability (3.20) clearly inherits from the TBE Bell test the as-
pired structural correspondence to the Bell state correlation function (2.7). This implies
that one can observe nonlocal interference effects based on DTE states: By varying either
`1 or `2 the probability to detect the particle pair in a particular output port combination
exhibits a periodic variation, while there are of course no single-particle interference
effects when one ignores the measurement outcomes of one of the particles.

However, the dispersion-induced distortion between the early and the late wave
packet components leaves its marks in those terms in (3.20) which depend on the char-
acteristic dispersion times Tcm and Trel. In particular, it is responsible for the overall
suppression of the fringe pattern as described by the Lorentzian reduction factors in the
first line. Further, it causes a quadratic compression of the fringe pattern, as can be de-
duced from the quadratic terms in the argument of the cosine. The additional Gaussian
suppression in the second line, on the other hand, is due to the unavoidable envelope mis-
match that follows from the variation of the arm lengths. One expects no interference
if there is no overlap in the beam splitter output ports, which results in the uncorrelated
probability distribution of 0.25 per output port combination. The envelope width of this
Gaussian thus reflects approximately the size of the initial wave packets, with minor
modifications due to the dispersion-induced distortion between them.

In Chapter 2 we found for the case of the imperfect Bell correlations (2.21) that
the fringe visibility must exceed the threshold value 1/

√
2 in order to achieve a Bell

violation. This should last over at least a few fringes when varying either arm length
by `i. An analysis of the joint detection probability (3.20) shows that a sufficient fringe
pattern can be expected provided the following two conditions are met:

λ rel/(τvrel)� 1, (3.21)

(1+ τ
2/T 2

cm)(1+ τ
2/T 2

rel) < 4. (3.22)

While (3.21) guarantees a sufficiently wide envelope and negligible quadratic compres-
sion of the fringe pattern, (3.22) controls the Lorentzian reduction factor to comply with
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the visibility threshold. In particular, the latter implies that τ must not greatly exceed the
dispersion times Tcm and Trel.

One can reformulate (3.22) in terms of conditions on the momentum distributions of
the center of mass and the relative motion,(

σp,cm

p0,rel

)2

. 2
mh̄

τ p2
0,rel

and
(

σp,rel

p0,rel

)2

.
1
2

mh̄
τ p2

0,rel
. (3.23)

The proposal conceived in this thesis considers lithium atoms with relative velocities
on the order of vrel = 1cm/s and time separations of τ = 1s. For these parameters one
finds mh̄/τ p2

0,rel ≈ 5×10−4, which implies that the momentum distributions of both the
center of mass and the relative motion must be sharply peaked. The resulting reduced
wave length λ rel ≈ 2 µm, on the other hand, easily meets the condition (3.21).

3.3.5 Summary

The DTE scenario uses the two-time dissociation of a molecule in order to split the wave
function of the atoms into consecutive propagating wave packets. In combination with
interferometric spin measurement analogues based on single-particle matter wave optics
and simple position measurements, this admits the desired one-to-one correspondence to
the spin-based Bell experiment. The interferometric phase shift and the beam splitting
ratio then take the role of the control parameters in this motional Bell test. The resulting
nonlocal correlations would manifest both the coherence between the macroscopically
distinct early and late wave packet components and their entanglement.

The violation of a Bell inequality is affected by dispersion, though, and it therefore
requires sharply peaked momentum distributions. In Chapter 7 I will demonstrate that
Feshbach dissociation states can indeed meet the conditions (3.21) and (3.22) [35], and
hence pave the way for demonstrating nonclassicality in the motion of material particles.
The proposal involves time separations between the two dissociation pulses on the order
of seconds, which would result in a spatial separation between the early and late wave
packets on the order of centimeters, rendering the DTE state truly macroscopic.

It is remarkable that the DTE scenario does not require interferometric stability be-
tween the two interferometers, which makes it experimentally easy to put them at large
distances. Moreover, the restriction to the coherence properties between the early and
late wave packets as a whole means that only integral measurements behind the ports
are needed, requiring neither prominent spatial nor temporal resolution. This renders the
nonclassical correlations largely independent of the shape of the wave packets and of
the particular implementation of the position measurement. Finally, let me note that the
photonic experiments performed to date have been done without switch using instead a
post-selection procedure [78]. This has been shown to allow for a local hidden variable
model [88, 89], a drawback that is avoided if the switching can be easily implemented,
as is the case with slow material particles.
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Chapter 4

Hedgehog-rabbit entanglement

In the dissociation-time entanglement (DTE) scenario the approach to end up with Bell
state correlations consisted of finding a motional one-to-one correspondence to the spin-
based Bell test, both on the state level and on the measurement level. This could be
achieved by spatial binning in a two-time dissociation process and by a subsequent in-
terferometric transformation mimicking a spin measurement. The phase shift and the
beam splitting ratio in the interferometers took the role of the Bell control parameters,
the output ports provided dichotomic measurement outcomes.

In this chapter, I present a motionally entangled state, which follows from a gener-
ation protocol almost identical to that of the DTE state. While this allows us to embed
it into the same dissociation scenario, it differs completely in its potential to reveal its
nonclassical correlations. Instead of applying a sequence of two identical dissociation
pulses, let us now choose the late dissociation pulse to be stronger, hence supplying the
late wave packets with a larger (mean) kinetic energy. We can then dispense with the in-
terferometers in order to have the early and late wave packets overlap, since we just have
to wait for the fast late wave packets to catch up with the slow early ones. Position mea-
surements in the overlap regions on both sides and their suitable dichotomization then
reveal correlations similar to the Bell state correlations. Here the freely selectable mea-
surement times take the role of the control parameters. The violation of a Bell inequality
requires the formal post-selection of the measurement results in this setting. However
in principle the full sample of atom pairs is detected and hence available. In contrast to
the DTE setting, the “hedgehog-rabbit” state considered in this chapter does not admit a
photonic analogue and thus represents a genuine entangled matter wave state.

4.1 Bichromatic entanglement from unbalanced two-time dis-
sociation

Like with the DTE state presented in the previous chapter, I sketch the basic idea of
the generation procedure only briefly, since a detailed description within the Feshbach
dissociation scenario will be given in Chapter 8. In fact, the generation protocol for the
state considered in this chapter is almost identical to that of the DTE state. We start again
from a diatomic molecule and apply a sequence of two dissociation pulses separated by
a time period τ (“early” and “late”), only this time the pulses are not equal, but the late
pulse is slightly stronger than the early pulse. This way they generate a superposition
of wave packets with different velocities, see Figure 4.1(a). More precisely, the wave
packets that emerged at the late dissociation pulse are the faster ones, allowing them to
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atom 1 atom 2t

 early weak dissociation pulse

 late strong dissociation pulse

slow fast

atom 1 atom 2

a)

b)

atom 1 atom 2

fast slow

source

diatomic molecule

Figure 4.1: (a) Generation of a hedgehog-rabbit entangled pair of atoms. A diatomic
molecule is exposed to a sequence of two unbalanced dissociation pulses separated by a
time period τ . The late dissociation pulse is stronger and hence endows the correspond-
ing wave packets with a higher kinetic energy. The resulting two-particle state consti-
tutes the superposition of the two dissociation outcomes, with each atom described by
an early slow and a late fast wave packet. (b) The time separation τ and the different
(mean) velocities vs and vf of the slow and the fast wave packets, respectively, determine
their meeting point xm and their meeting time tm, where they come to overlap and in-
terfere. Although the reduced single-particle states do not show an interference pattern,
position measurements in the overlap region on both sides then reveal nonlocal corre-
lations that can be subjected to suitable dichotomization and post-selection procedures,
yielding Bell state correlations.
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catch up with the preceding slower wave packets. Metaphorically, one might thus call
the slow wave packets “hedgehogs” and the fast ones “rabbits”, and the state correspond-
ingly hedgehog-rabbit entangled (HRE). The generic structure of a HRE state takes the
form

|Ψhre〉=
1√
2

(
Û

(1)
0 (τ)⊗ Û

(2)
0 (τ)|S〉+ eiφ |F〉

)
, (4.1)

with the free single-particle time evolution operator1 Û
(i)
0 (t) = exp(−it p̂2

i /2mh̄). |F〉 and
|S〉 denote the early and the late two-particle dissociation state components, respectively.

Gaussian HRE state

The dissociation states emerging from our Feshbach scenario will turn out to be rather
involved, suggesting to find as general a treatment of the situation as possible. For the
sake of clarity, however, it is helpful to evaluate the main steps in addition in terms of a
Gaussian HRE state. To this end, we take the initial early and late state components to
separate into single-particle states, |S〉= |s〉1|s〉2 and |F〉= |f〉1|f〉2, where

〈x1|s〉1 =
1

(2π)1/4
√

σ
exp
(
− x2

1
4σ2 + i

psx1

h̄

)
,

〈x2|s〉2 =
1

(2π)1/4
√

σ
exp
(
− x2

2
4σ2 − i

psx2

h̄

)
, (4.2)

and similar for the fast wave packets, with ps replaced by pf. The single-particle position
uncertainty σ is taken to be the same for all wave packets. According to this state,
Particle 1 propagates (exclusively) into positive and Particle 2 (exclusively) into negative
direction, the early wave packets with velocity vs = ps/m and the late ones with vs =
ps/m.

4.2 Temporal correlations with position measurements

The HRE state comes with the benefit not to require interferometers in order to have the
early and the late wave packets interfere, since they naturally come to overlap when the
late fast wave packets catch up with the early slow ones. The time separation τ between
the two dissociation pulses and the particle velocities vs and vf of the slow and the fast
state components schedule the meeting point xm and the meeting time tm of the wave
packets on each side (note that vs and vf denote single-particle velocities, not relative
velocities) according to

xm =± vfτ

vf/vs−1
and tm =

τ

vf/vs−1
, (4.3)

where the plus (minus) sign is assigned to Particle 1 (2). We expect that the HRE state
shows nonclassical correlations in the vicinity of this overlap region, since there the early
and the late wave packets are not distinguishable and may therefore interfere.

We thus perform position measurements in the vicinity of the meeting points on each
side. The measurement times are the control parameters in this scenario and are chosen
to lie in the time interval when the wave packets overlap. Note that position operators

1In this chapter we slightly change the notation of the free time evolution operator as compared to
Chapter 3. The notation in this chapter is more convenient for the situation when different evolution times
for the two particles have to be taken into account. The notation in Chapter 3 was adopted from [35].
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do not commute at different times (when considered in the Heisenberg picture), as it is
required to achieve correlations that are stronger than classically allowed [90]. Position
measurements are comparatively easy to implement for material particles, in the case of
atoms, e.g., by laser illumination [91]. Moreover, we only have to probe the extent of
the overlap region, since the early and late wave packets are assumed to be sufficiently
localized.

Joint detection probability

In the end we want to determine the joint probability to detect particle 1 at position x1
when measuring at time t1 and particle 2 at position x2 when measuring at time t2,

P(x1,x2|t1, t2) =
∣∣∣〈x1,x2|Û

(1)
0 (t1)⊗ Û

(2)
0 (t2)|Ψhre〉

∣∣∣2 . (4.4)

Elaborating (4.4) for the HRE state (4.1), one gets

P(x1,x2|t1, t2) =
1
2

∣∣∣〈x1,x2|Û
(1)
0 (t1 + τ)⊗ Û

(2)
0 (t2 + τ)|S〉

∣∣∣2 (4.5)

+
1
2

∣∣∣〈x1,x2|Û
(1)
0 (t1)⊗ Û

(2)
0 (t2)|F〉

∣∣∣2
+Re

[
e−iφ 〈x1,x2|Û

(1)
0 (t1 + τ)⊗ Û

(2)
0 (t2 + τ)|S〉〈F|Û(1)†

0 (t1)⊗ Û
(2)†
0 (t2)|x1,x2〉

]
.

4.2.1 Dispersion-dominated limit

We now make use of the fact that the wave packets experience considerable dispersive
spreading before meeting at the meeting point xm at the meeting time tm2. This implies
that the shape of the wave packets is determined by their momentum distributions, inde-
pendently of their initial shapes. In this dispersion-dominated limit, t�mσ2

x /h̄, the time
evolution of an arbitrary (single-particle) wave packet with initial position uncertainty
σx can hence be written as

〈x|ψ(t)〉 '
√

m
it

exp
(

i
m(x2− x̄2)

2h̄t

)
ψ̃

(
m(x− x̄)

t

)
, (4.6)

where x̄ = 〈ψ(t)|x̂|ψ(t)〉|t=0 denotes the mean initial position and ψ̃ (p) = 〈p|ψ(0)〉 the
momentum representation of the initial state. A derivation of (4.6) in terms of the free
propagator is given in Appendix A.1, and the generalization of (4.6) to the case of two
particles is straightforward. Concerning the HRE state, we require that the meeting time
tm fulfills

tm� mσ
2
x,s/h̄ and tm� mσ

2
x,f/h̄, (4.7)

2In principle, this might also hold for the DTE scenario. However there we found that the overall time
evolution does not affect the correlation function, but only the dispersive distortion due to the time interval
τ between the early and the late dissociation pulse, which we had to require, on the contrary, to be in the
regime of negligible dispersion. Hence the asymptotic approximation (4.6) was of no use there.
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where σx,s and σx,f characterize the position uncertainty of the slow and fast single par-
ticle states, respectively3. Applying (4.6) to (4.5) then yields

P(x1,x2|t1, t2) =
1
2

m2

(t1 + τ)(t2 + τ)
|Ψ̃S

(
mx1

t1 + τ
,

mx2

t2 + τ

)
|2 +

1
2

m2

t1t2
|Ψ̃F

(
mx1

t1
,
mx2

t2

)
|2

+
m2√

t1(t1 + τ)t2(t2 + τ)
Ψ̃S

(
mx1

t1 + τ
,

mx2

t2 + τ

)
Ψ̃F

(
mx1

t1
,
mx2

t2

)
×cos

[
m
2h̄

(
1

t1 + τ
− 1

t1

)
x2

1 +
m
2h̄

(
1

t2 + τ
− 1

t2

)
x2

2−φ

]
, (4.8)

where we assumed that the Fourier transforms Ψ̃S(p1, p2) and Ψ̃F(p1, p2) are real, which
indeed is the case for the Feshbach dissociation states and the Gaussian states (4.2). We
find that the joint probability splits into the two classical terms describing the probability
distributions as given by the early slow and the late fast wave packet, respectively, and
into a quantum term capturing their interference in the overlap region. Albeit we have
not yet established the full correspondence to the Bell state correlations, we can already
see at this stage that the interference term in the third line of (4.8) describes nonlocal
correlations between the measured positions, which can be probed by varying the mea-
surement times t1 and t2. Note that the phase in the interference term does not depend on
the details of the setting, allowing us to analyze the nonlocal correlations without having
to be specific about the early and late wave packets.

Gaussian evaluation

Evaluating (4.8) for the Gaussian ansatz (4.2), we get

P(x1,x2|t1, t2) =
1
2

m2

t1t2

2σ2

π h̄2 exp

[
−2σ2

h̄2

(
mx1

t1
− pf

)2

− 2σ2

h̄2

(
mx2

t2
+ pf

)2
]

(4.9)

+
1
2

m2

(t1 + τ)(t2 + τ)
2σ2

π h̄2 exp

[
−2σ2

h̄2

(
mx1

t1 + τ
− ps

)2

− 2σ2

h̄2

(
mx2

t2 + τ
+ ps

)2
]

+
m2√

t1(t1 + τ)t2(t2 + τ)
2σ2

π h̄2 exp

[
−σ2

h̄2

(
mx1

t1 + τ
− ps

)2

− σ2

h̄2

(
mx1

t1
− pf

)2
]

×exp

[
−σ2

h̄2

(
mx2

t2 + τ
+ ps

)2

− σ2

h̄2

(
mx2

t2
+ pf

)2
]

×cos
[

m
2h̄

(
1

t1 + τ
− 1

t1

)
x2

1 +
m
2h̄

(
1

t2 + τ
− 1

t2

)
x2

2−φ

]
.

We can see that the envelope of the interference term is given by the overlap of the early
and the late wave packets on each side. The Gaussian ansatz (4.2) has the additional
benefit that it permits us to determine the joint probability (4.5) exactly, without hav-
ing to employ the dispersion-dominance approximation (4.6). The exact expression is
too complicated to be reproduced here, but it allows us in the following to confirm the
validity of the dispersion-dominance approximation.

3Even when considering measurement times t < tm, the approximation still remains valid given the
maximum offset ∆tmax defined by the wave packet overlap is small compared to tm. Indeed this will be the
case for all scenarios we are interested in. However, one could restrict the discussion to measurement times
t > tm without loss of generality.
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In Chapter 8 we will evaluate (4.8) for a Feshbach dissociation state of Lithium
atoms that can be characterized by the parameters

τ = 1s, σ = 50 µm,

vf = 0.5cm/s, vs = 0.45cm/s, (4.10)

corresponding to xm = 4.5cm and tm = 9s. A plot of the Gaussian fringe pattern (4.9) for
the parameters (4.10) is given in Figure 4.2. The dispersion-dominance condition (4.7)
evaluates to mσ2/h̄tm = 0.025� 1 for these parameters, and comparing (4.9) numeri-
cally with the exact Gaussian result verifies that the asymptotic expression (4.8) indeed
yields a valid approximation to the exact probability density. We consider this the jus-
tification of applying (4.8) to the Feshbach dissociation state characterized by the same
frame parameters in Chapter 8.

4.2.2 Phase Linearization

We get a deeper insight into the parameter dependence of the fringe pattern (4.8) by
linearizing in the vicinity of the meeting point and time. Such an approximation should
yield a valid description over the extent of the overlap region given that the spatial and
temporal widths of the envelope, ∆xmax and ∆tmax, are small compared to the meeting
point xm and the meeting time tm, respectively,

∆xmax� xm and ∆tmax� tm. (4.11)

This is fairly well the case for our set of parameters (4.10), however, let me emphasize
that the linearizability is not a necessary requirement for the success of the Bell test. Let
us introduce the spatial and temporal deviations from the meeting point and time by

x1 = xm +∆x1, t1 = tm +∆t1 (4.12)

x2 =−xm +∆x2, t2 = tm +∆t2.

By expanding the arguments of the cosine and of the Fourier transforms Ψ̃S and Ψ̃F in
the interference term in (4.8) to first order in ∆xi and ∆ti, and using ps = mxm/(tm + τ)
and pf = mxm/tm, one obtains

P(x1,x2|t1, t2)

=
1
2

m2

(t1 + τ)(t2 + τ)
|Ψ̃S

(
mx1

t1 + τ
,

mx2

t2 + τ

)
|2 +

1
2

m2

t1t2
|Ψ̃F

(
mx1

t1
,
mx2

t2

)
|2

+
m2

tm(tm + τ)
Ψ̃S

(
ps

[
1− ∆t1

tm + τ
+

∆x1

xm

]
, ps

[
−1+

∆t2
tm + τ

+
∆x2

xm

])
(4.13)

× Ψ̃F

(
pf

[
1− ∆t1

tm
+

∆x1

xm

]
, pf

[
−1+

∆t2
tm

+
∆x2

xm

])
× cos

[
(pf− ps)(∆x1−∆x2)

h̄
−

(Ekin,f−Ekin,s)(∆t1 +∆t2)
h̄

+
τ pf ps

h̄m
+φ

]
,

where we introduced the (mean) kinetic energies Ekin,s = p2
s/2m and Ekin,f = p2

f /2m.
We thus find that the spatial scale of the fringe pattern λhre is determined by the relative
momentum between the early slow and the late fast wave packet,

λhre =
h

pf− ps
, (4.14)
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a)

b)

Figure 4.2: Joint probability P(x1,x2|t1, t2) for the Gaussian wave packets (4.2), as eval-
uated in (4.9), for the parameters (4.10). (a) Spatial fringe pattern as a function of the
measured position x1 in the vicinity of the meeting point xm, conditioned on x2 = xm,
t1 = tm and t2 = tm. The period λhre = 137 µm is sufficiently large to be resolvable with
present day technology [91]. On the other hand, it is small compared to the spatial width
∆xmax of the envelope, such that the envelope can be considered to be constant over the
extent of a single period. This will allow us to make a crucial simplification when it
comes to the dichotomization of the spatial fringe pattern. (b) Temporal fringe pattern
as a function of the measurement time t1 in the vicinity of the meeting time tm, condi-
tioned on x1 = xm, x2 = xm and t2 = tm. The period Thre = 29ms of the fringe pattern
is sufficiently small as compared to the temporal width ∆tmax of the envelope such that
the experimenter can sweep the measurement time–which is under her control–over sev-
eral periods without leaving the regime of optimum overlap. On the other hand, Thre is
comfortably large for being under experimental control.
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and the temporal scale Thre by the relative kinetic energy,

Thre =
h

Ekin,f−Ekin,s
. (4.15)

For the parameters (4.10), they read λhre = 137 µm and Thre = 29ms. The arguments of
the Fourier transforms Ψ̃S(p1, p2) and Ψ̃F(p1, p2), on the other hand, make it manifest
that the conditions (4.11) are equivalent to the requirement of sharply peaked momentum
distributions,

σp,s� ps and σp,f� pf, (4.16)

since the envelope widths ∆xmax and ∆tmax are determined by the momentum uncertain-
ties σp,s and σp,f

4. In Chapter 6 I will demonstrate the feasibility of generating such
states within the Feshbach dissociation scenario.

4.3 Chessboard dichotomization

Up to now, we have seen that the HRE state (4.1) indeed gives rise to nonlocal correla-
tions. But to perform a Bell test we still have to find a prescription for the dichotomiza-
tion of the position measurement outcomes, replacing the output ports of the interferom-
eters in the DTE scenario. Instead of employing an active experimental element to be in
charge of the dichotomization, we shall stick with the elementary position measurements
and rather postprocess the gained data by assigning dichotomic values to the continuous
position measurement outcomes.

More precisely, we are looking for dichotomization functions χσ=±(x), which are
defined by assigning to each measurement outcome x either σ = +1 or σ =−1,

χσ (x) =
{

1 if x has been assigned to dichotomic outcome σ

0 otherwise
, (4.17)

such that they satisfy χ+ + χ− = 1 for all x. The resulting dichotomic joint probability
then reads

P(σ1,σ2|t1, t2) =
∫

dx1

∫
dx2χσ1(x1)χσ2(x2)P(x1,x2|t1, t2). (4.18)

It gives the probability to detect Particle 1 at a position that has been assigned to the
dichotomic outcome σ1 and to detect Particle 2 at a position that has been assigned to
the dichotomic outcome σ2.

In principle, the dichotomization functions may be arbitrary binary functions, and
they might even depend on the setting of the corresponding side, i.e. χσi(xi; ti), since such
a dependence can be understood as a local manipulation. However, such a conditioning
on the setting is not necessary in the following.

Phase-adapted assignment

We want to accumulate positions that contribute with the same phase to the interference
term in (4.8),

Φ =
m
2h̄

(
1

t1 + τ
− 1

t1

)
x2

1 +
m
2h̄

(
1

t2 + τ
− 1

t2

)
x2

2−φ . (4.19)

4Note that σp,s and σp,f characterize the two-particle momentum uncertainties of the corresponding
HRE state components. In the case of unbalanced momentum uncertainties between the two particles, we
take σp to be the larger one.
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a) b)
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Figure 4.3: (a) A possible dichotomization of the position measurements bisects each
period of the fringe pattern, into a half assigned to “+1” and a half assigned to “−1”.
(b) By including a third measurement outcome, “0”, that is discarded, one can increase
the fringe contrast of the resulting dichotomic correlation function (as a function of the
measurement time), since then the maxima and minima of the “+1’ and “−1” bins are
more distinct.

An appropriate choice for the dichotomization functions adopts the periodicity of cos(Φ),
bisecting each period into a half assigned to “+1” and a half assigned to “−1”, see Fig-
ure 4.3 (a). In this sense one may speak of (1D) “chessboard dichotomization”. This can
formally be described by the dichotomization functions

χ+(x) =
1
2

(
1+ sgn

{
cos
[

m
2h̄

(
1

tm + τ
− 1

tm

)
x2
]})

,

χ−(x) =
1
2

(
1− sgn

{
cos
[

m
2h̄

(
1

tm + τ
− 1

tm

)
x2
]})

. (4.20)

Note that the times are kept fixed at tm as compared to (4.19). This is important, since
we want to capture the shift of the fringe pattern with respect to the chessboard pattern
when varying the measurement times. In principle, the spatial period of cos(Φ) is time
dependent, but the resulting shift is of second order in ∆x and ∆t and hence negligible.

Equidistant assignment

From (4.18) we know that the dichotomization function is only relevant in the over-
lap region. Accounting for the generically good applicability of the linearized inter-
ference term in (4.13), one might then suggest to settle for the more transparent linear
dichotomization functions

χ±(x) =
1
2

(1± sgn{cos [kx]}) , (4.21)

with k = (pf− ps)/h̄. However, this turns out not to be an alternative, since even small
quadratic corrections to the linear fringe pattern in (4.13) effect an increasing detun-
ing between the fringe pattern and the chessboard pattern towards the outer ends of the
envelope and hence spoil the phase correlation required over the entire extent of the en-
velope. Nevertheless, it remains valid to assume that the dichotomization function (4.20)
can be linearized over the extent of each single period. This is used below for an analytic
treatment of (4.18). Let me stress once more that the structure of the dichotomization
function has no consequences for the experimental procedure in the laboratory, but only
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affects the interpretation of the gained data. The appropriate choice of the dichotomiza-
tion function, though, might decide whether it is possible to violate a Bell inequality or
not!

4.3.1 Scale separation and local linearizability

In principle, we could determine the dichotomic joint probability (4.18) numerically, us-
ing the joint probability density (4.8) and either the quadratic dichotomization functions
(4.20) or the linear ones (4.21). The visibility of the fringe pattern evaluated with the lin-
ear dichotomization functions would be reduced as compared to the former ones, which
is due to the detuning of the “wrong” chessboard pattern towards the outer ends of the
envelope. However, we can get a deeper insight into the structure of the correlations, if
we make use of the fact that the phase of the fringe pattern is linearizable at least over the
range of a single period (“local linearizability”), meaning that we can assign a specific
wave length to each period of the spatial fringe pattern. If we further assume that the
envelope of the fringe pattern varies slowly over the extent of a single period (“scale sep-
aration”), we can take each period to yield the same contribution to (4.18), weighted by
the corresponding magnitude of the envelope. More precisely, let χ(x) be an oscillating
function with a (constant) period λ , and E(x) an envelope function that varies slowly on
the scale λ . We can then write to good approximation∫

∞

−∞

dxχ(x)E(x)≈
∫

∞

−∞

dxE(x)
1
λ

∫
λ

0
dx′χ(x′). (4.22)

A derivation of (4.22) under the assumption of scale separation can be found in Appendix
A.2. It is clear that it is not necessary to require that all periods share the same wave
length (corresponding to “global linearizability”). In fact, in the case of varying wave
lengths (local linearizability), the right-hand side of (4.22) takes exactly the same form,
only that this time we have to pick an exemplary period for the second integral. That both
assumptions, local linearizability and scale separation, are justified for the parameters
(4.10) can be seen from Figure 4.2.

Applying (4.22) to (4.18) using (4.8), one obtains
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]
.

For the evaluation of the periodic integrals we choose the periods enclosing the meeting
points, which are characterized by the wave length λ = λhre = h/(pf− ps). The inten-
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sity terms of (4.23) are evaluated straightforwardly using the normalization of the wave
functions, ∫

∞

−∞

dx1

∫
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−∞
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t1t2

∣∣∣∣Ψ̃F/S

(
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)∣∣∣∣2 = 1, (4.24)

and
1
λ

∫ xm+λ/2

xm−λ/2
dx′χσ (x′) =

1
2
. (4.25)

Concerning the interference term, we exploit that in the direct vicinity of the meeting
points (at least within the first few periods) the linearizations (4.13) and (4.21) yield
excellent approximations5. The periodic integrals thus reduce to integrals of the form

1
λ 2

∫
σ1λ/4+λ/4

σ1λ/4−λ/4
d∆x1

∫
σ2λ/4+λ/4

σ2λ/4−λ/4
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λ
(∆x1−∆x2)+ϕ

]
=

1
π2 sin2

[
π

2

]
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[
σ1

π

2
−σ2

π

2
+ϕ

]
(4.26)

=
1
4

sinc2
[

π

2

]
σ1σ2 cos[ϕ].

Here we chose the “σ = +1”-domain to lie in the interval [xm,xm + λ/2], and the
“σ =−1”-domain in the interval [xm−λ/2,xm]. This is done for convenience, utilizing
that the dichotomization functions can always be redefined by adding arbitrary constant
phases. In the last line we used that there is no phase shift for σ1 and σ2 having equal
sign, but that there is a phase shift of π for opposite signs, which corresponds to a sign
change of the cosine.

4.3.2 Dichotomic correlation function

Putting all together, one ends up with

P(σ1,σ2|t1, t2) =
1
4

{
1+σ1σ2E(t1, t2)sinc2

[
π

2

]
cos
[
ω(∆t1 +∆t2)−φ

′]} , (4.27)

where we have defined the envelope function

E(t1, t2) =
∫

dx1

∫
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Ψ̃S

(
mx1

t1 + τ
,

mx2

t2 + τ

)
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,

(4.28)
the frequency ω = (p2

f − p2
s )/2mh̄, and the phase φ ′ = τ ps pf/h̄m + φ . As desired, we

find that the dichotomic joint probability (4.27) takes a similar structure as the Bell state
correlation function (2.7), or more precisely (2.21). This time, the freely choosable
measurement times t1, t2 take the role of the control parameters. Note that the time de-
pendence was linearized in (4.27), which is legitimate since it is sufficient to sweep over
a few periods within the vicinity of the meeting times. In contrast to the DTE scenario,
we do not have an analogue for “out of plane”-measurements, there implemented by the
beam splitting ratios. This is irrelevant for the possibility of a Bell violation, though.
More incisive with this respect is the inherent visibility reduction as represented by the
factor sinc2[π/2] = 0.41, which rules out the possibility of a Bell violation even in the
case of optimum overlap, E(tm, tm)≈ 1. This reduction is an inevitable consequence of

5For (4.21) this is true up to an irrelevant constant phase. Anyway, the dichotomization functions can
be redefined freely by adding arbitrary phases.



38 CHAPTER 4. HEDGEHOG-RABBIT ENTANGLEMENT

the dichotomization of the fringe pattern. I will show below how post-selection can be
used to overcome this constraint.

The envelope function (4.28) captures the overlap of the early slow and late fast
wave packets. Evaluated at the meeting times, it corresponds to E(tm, tm) = 〈S|F〉. Since
the envelope function directly influences the visibility of the fringe pattern, we should
strive for parameters that optimize the overlap 〈S|F〉, which is mainly determined by
an interplay of the velocity difference vf− vs and the momentum widths σp,s and σp,f.
In particular, the momentum uncertainties should not be smaller than the momentum
difference.

For the Gaussian wave packets (4.2), the envelope function (4.28) can be evaluated
analytically, yielding

E(tm +∆t1, tm +∆t2) =
2pf ps

p2
f + p2

s
exp
[
− σ2

τ2h̄2
(pf− ps)4

p2
f + p2

s
(∆t2

1 +∆t2
2)
]
. (4.29)

This can be used to compare the analytic result (4.27) with the numerical evaluation
of (4.18) for the parameters (4.10) and using (4.2) and (4.20), which reveals excellent
agreement and thus verifies the validity of the approximations. Note that for the parame-
ters (4.10), the envelope function (4.29) takes the value E(tm, tm) = 0.99, demonstrating
optimum overlap.

4.4 Post-selection

By investigating the dichotomic joint probability (4.27) we found that, in spite of the
structural similarity with Bell correlations, the inherent visibility reduction due to the
factor sinc2[π/2] spoils its ability to violate a Bell inequality. The reason for this fac-
tor can be traced back to the fact that, no matter what is the phase relation between the
chessboard pattern and the fringe pattern, there is always a finite probability to detect
each dichotomic outcome at a given pair of measurement times, which can be seen by
inspecting Figure 4.3 (a). We can mitigate this and increase the visibility by narrowing
the “+1” and “−1” bins, as shown in Figure 4.3(b). This implies the introduction of a
third measurement outcome, “0”, which is disregarded in the correlation analysis. For-
mally, this corresponds to a post-selection procedure, which means that we have to rely
on the fair sampling assumption in order to validate the violation of a Bell inequality. Let
me emphasize, though, that we have the complete sampling at hand, the post-selection
being only a matter of the interpretation of the gained data. Moreover, we can reinter-
pret the same data according to different, phase shifted dichotomization functions. Then
each position measurement contributes to the correlation for appropriate phase choices.
In this sense, the fair sampling requirement can be considered to be weakened.6

6Since we have the complete sampling at hand, it should in principle be possible to prove the validity of
the fair sampling assumption; this would be a desirable goal for a future investigation, and it would quash
the suspicion that the Bell violation is based on post-selecting a biased sample [92–94]. At this point, the
transparency of the applied post-selection prescription may suffice as a justification.
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4.4.1 Post-selected correlation function

The post-selection can be taken into account by choosing the dichotomization functions
according to

χ+(x) =
1
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. (4.30)

The parameter p ∈ [0,1] denotes the post-selected fraction, hence p = 1 corresponds to
including all measurement outcomes, as was the case above. We can repeat the steps
leading from (4.18) to (4.27) using (4.30), the validity of all assumptions is untouched
by the exchange of the dichotomization functions. The only modification takes place
when determining the periodic integrals in the interference term of (4.23), which now
read
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(4.31)

=
1
4

sinc2
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2
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σ1σ2 cos[ϕ].

With this, the joint probability to detect Particle 1 at a position that has been assigned
to the outcome σ1 and to detect Particle 2 at a position that has been assigned to the
outcome σ2 reads

P(σ1,σ2|t1, t2) =
1
4

p2
{

1+σ1σ2E(t1, t2)sinc2
[

π

2
p
]

cos
[
ω(∆t1 +∆t2)−φ

′]} . (4.32)

By choosing p < 1, we can increase the fringe contrast which is still limited by the
envelope function. Assuming E(tm, tm)≈ 1 (as it was the case for the Gaussian envelope
(4.29) when evaluated with the parameters (4.10)), a choice of p < 0.63 supports the
violation of a Bell inequality. Note that (4.32) is not normalized for p < 1,

∑
σ1,σ2=±1

P(σ1,σ2|t1, t2) = p2 < 1.

Normalizing to post-selected events, we get

P(ps)(σ1,σ2|t1, t2) =
1
4

{
1+σ1σ2E(t1, t2)sinc2

[
π

2
p
]

cos
[
ω(∆t1 +∆t2)−φ

′]} . (4.33)

This is our final result, showing that it is possible to regain Bell correlations in the HRE
scenario that are strong enough to violate a Bell inequality, given the parameters are
chosen appropriately (and accepting post-selection). In Chapter 8 I will demonstrate
that the Feshbach dissociation scenario permits to generate HRE states that fulfill these
requirements.

4.4.2 Summary

To conclude this part, the HRE scenario establishes an alternative for the demonstration
of nonclassical correlations in the motion. In contrast to the DTE scenario, the corre-
spondence to the spin-based Bell test is only revealed on the level of correlations. The
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measurement times take the role of the “in plane” Bell control parameters, whereas there
is no obvious analogue for “out of plane”-measurements. A post-selection procedure
ensures sufficient fringe contrast as required for the violation of a Bell inequality. This
takes the fair-sampling assumption as a basis, however, by redefining the dichotomiza-
tion prescription all measurements can contribute to a Bell violation.

The idea of abandoning the interferometers simplifies the experimental setup consid-
erably, but this comes at the cost of a required phase stability over the whole extent of the
experiment and a high spatial and temporal measurement accuracy. In Chapter 8 I will
argue that laser illumination of the dissociated atoms in the overlap regions indeed pro-
vides the required resolution [91]. This way, the HRE state represents a complementary
approach, interesting on its own, based on a genuine matter wave state with no photonic
analogue.
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Chapter 5

A proposed experiment based on
ultracold atoms

In the previous chapters I introduced two classes of dissociation states and exposed their
potential to cause nonlocal correlations. Both the DTE and the HRE states share a
very similar, simple generation protocol within the conceived dissociation scheme: a
sequence of two dissociation pulses delocalizes each atom into a superposition of con-
secutive wave packets, such that the wave packets are entangled in the dissociation times.
Hence, choosing similar parameters, both states are amenable to the same experimental
setup, which permits us to treat them at the same time.

In the following chapters I will argue that it is possible to realize these states within
a scenario based on the dissociation of ultracold Feshbach molecules is possible and
indeed seems to be favorable. The advantages are obvious: A Bose-Einstein conden-
sate (BEC) as a source provides initial states of excellent reproducibility, and atoms
propagating at velocities of cm/s can be optically guided and suitably detected by laser
illumination. The resolution of the corresponding de Broglie wave lengths, which are
on the order of micrometers, does not pose outstanding experimental challenges. And a
time separation τ on the order of seconds results in spatial separations between the early
and late wave packets on the order of centimeters, rendering their delocalization truly
macroscopic. Apart from its fundamental relevance, such a centimeter-scale delocal-
ization is also important for practical reasons in the DTE scenario, since the separation
between the early and the late wave packets determines the size of the interferometers
and should thus not be too small.

In this chapter, I work out a concrete experimental setup that provides the frame for
the DTE and the HRE Bell test, respectively. The analysis of the Feshbach dissociation
dynamics, which will be given in the following chapter, then enables us to investigate
their viability in detail in the Chapters 7 and 8, respectively.

5.1 Experimental setup: overview

Molecular Bose-Einstein condensate

We consider a BEC of Feshbach molecules in an optical dipole trap, which can be es-
tablished by two perpendicularly crossing laser beams, see Figure 5.1 a). Producing
molecular BECs (mBEC) and tuning the interactions via Feshbach resonances is nowa-
days routine [23–31, 34], and the use of their controlled dissociation for spectroscopic
purposes has been demonstrated experimentally [32, 33], as well.
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Figure 5.1: a) Setup for generating pairs of motionally entangled pairs of atoms by
dissociation of Feshbach molecules. Initially a BEC of approximately 102 Feshbach
molecules resides in a trap constituted by two crossing laser beams. An externally con-
trolled magnetic field induces dissociation of on average one molecule per trial and thus
generates a pair of entangled atoms counter-propagating along the laser guide at a veloc-
ity on the order of 1cm/s. The asymptotic two-atom state in the laser guide is determined
by the trap and guide geometry and by the shape of the dissociation pulse, see Chapter
6. When desired, the atoms can be detected conveniently by laser illumination; in the
HRE scenario this would be in the overlap region, in the DTE scenario after the passage
of Mach-Zehnder interferometers (not shown). b) The dissociation pulse promotes the
initially trapped molecules to a pair of counter-propagating atoms. The lasers are chosen
such that the trap laser potential can be overcome easily with the energy supply from the
magnetic field sweep, whereas the atoms are transversally frozen in the ground state due
to h̄ωG > Ekin.
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To be specific, I suggest to use a BEC produced from a 50:50 spin mixture of
fermionic 6Li. Such a fermionic mixture is favorable compared to bosonic ingredients,
since huge lifetimes of more than 10s can be achieved due to the Pauli blocking of detri-
mental 3-body collisions [25]. This makes truly macroscopic time separations τ between
the two dissociation pulses conceivable, and we may choose τ = 1s from now on. It has
been demonstrated that the molecular 6Li BEC can be prepared efficiently and with near-
perfect purity [25], and the comparatively small mass of lithium reconciles reasonable
propagation velocities, on the order of 1cm/s, with resolvable de Broglie wave lengths,
on the order of 10µm.

Extraction of an atom pair

The weak trap laser creates an elongated longitudinal trap within the wave guide pro-
duced by the strong guiding laser. The preparation is arranged such that only a small
number of molecules, on the order of 102, remains in the BEC at the end, such that one
may neglect interactions between different molecules. The molecules can then be con-
sidered to be in a product state with the center of mass motion given by the ground state
of the trap, whereas the relative motion describes a bound molecular state. The latter can
be turned into a Feshbach resonance by varying the external magnetic field, which allows
one to dissociate the atoms in a controlled way. By applying one or several appropriately
chosen dissociation pulses, a single molecule dissociates into two counter-propagating
atoms on average, and we post-select the single-dissociation events.

The pulses are chosen to provide the atoms with a kinetic energy sufficiently large
to overcome the trap potential in longitudinal direction, but still below the threshold to
get beyond the ground state transversally, see Figure 5.1 b). This way we may end up
with two dissociated atoms, counter-propagating with a relative velocity of 1cm/s along
the guiding laser axis, whose two-particle state is determined by the initial state of the
molecule and the dissociation pulse shape, as I will demonstrate in the next chapter. In
particular, by applying a sequence of two appropriate dissociation pulses, one then can
generate DTE and HRE states, respectively. Their detailed elaboration will be given in
Chapters 6, 7 and 8.

DTE and HRE states

After the completion of the dissociation sequence, and for our chosen time separation
of τ = 1s between the early and the late dissociation pulse, the corresponding early and
late wave packets of each particle are envisaged to propagate at a velocity of 5mm/s
(in the case of the HRE scenario, the early wave packets are slightly slower), separated
by a distance of 5mm on each side. This constitutes a truly macroscopic delocalization
of each atom. Immediately after the dissociation process, the widths of the early and
late single-particle wave packets turn out to be on the order of about 100 µm, as we
will see in the Chapters 7 and 8. Their narrow momentum distributions guarantee that
these wave packet extensions are not appreciably modified during the propagation to the
measurement sites if the propagation time does not exceed about 10s, which corresponds
to the aspired distance on the order of 10cm between the measurement sites. The early
and late wave packets are thus spatially still sufficiently distinct when arriving at the
interferometers for the switches to be applicable in the DTE scenario.
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Detection

The final detection of the atoms can be achieved with laser illumination. In the HRE
scenario this would be in the overlap region of the fast and the slow wave packet, in the
DTE scenario the measurement would be done after passing the Mach-Zehnder inter-
ferometers, whose implementation will be discussed in Chapter 7. Such a fluorescence
detection of the slow, strongly confined atoms can be done with single particle resolu-
tion [91], such that it is easy to disregard the cases of too many atom pairs in the process.
For a start, we stick to the simple post-selection procedure; in a more refined setup it is
conceivable to use a specially prepared optical lattice where each site is occupied by at
most one molecule [95].

5.2 Trap and guide parameters

I now show that the above described laser setting is experimentally viable for an aspired
relative velocity between the counter-propagating atoms of vrel = 1cm/s and an overall
extension of the setup on the order of 10cm.1 The corresponding de Broglie wave length
λrel = 12.4µm, which sets the scale for the fringe patterns, is in compliance with viable
stability requirements for the setup.

5.2.1 Gaussian laser beams

We assume that both lasers can be described by Gaussian beams, then the field intensity
as a function of the distance z from the beam center and of the radial distance from the
beam axis r is given by [96]

I(r,z) =
2P

πw(z)2 exp
(
−2

r2

w(z)2

)
, (5.1)

where P denotes the laser power. The beam width or spot size w(z) follows from w(z) =
w0
√

1+(z/z0)2 and takes its minimum, the beam waist w0, at the beam center z = 0.
The Rayleigh length z0 = πw2

0/λ describes the characteristic curvature scale of the beam.
Mediated by their polarizability αLi the lithium atoms encounter the potential [97]

U(r,z) =−2παLi

c
I(r,z). (5.2)

We take the potential, or more precisely the atomic polarizability, to be independent
of the distance between the atoms. This corresponds to assigning to the molecules the
doubled polarizability, αLi2 = 2αLi, which is justified for the weakly bound Feshbach
molecules. For lithium atoms the static polarizability reads αLi,0 = 24.33Å

3
, where

static means that the laser frequency is far off any atomic transition. In fact, tuning the
laser frequency ν close to such a transition enhances the polarizability according to

αLi = αLi,0
E2

r

E2
r − (hν)2 , (5.3)

where Er denotes the corresponding resonance energy [98]. On the one hand, a large
polarizability reduces the required laser power, on the other hand, it enhances the detri-
mental scattering of photons, as we will see below. We choose a wave length of λ = 1µm

1In the HRE scenario the mentioned relative velocity may be assigned to the fast wave packets. However,
the slow wave packets are taken to be only marginally smaller, such that all results are applicable to them,
too.
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for both lasers, which lies in the vicinity of the lithium resonance Er = 1.848eV and thus
results in a polarizability of αLi = 44.25Å

3
.

We arrange the two perpendicular lasers such that they cross at their waists, hence
locating the BEC in the region of highest intensity. Evaluated at the beam center and
using the Gaussian intensity profile (5.1), the potential (5.2) reads

U(r,0) =−4PαLi

cw2
0

exp
(
−2

r2

w2
0

)
, (5.4)

yielding the trap depth U0 = 4PαLi/cw2
0. The harmonic approximation of the potential,

U(r,0)≈−U0 +(m/2)ω2r2, provides the trap frequency

ω =
4

w2
0

√
PαLi

cm
. (5.5)

This frequency applies also to the molecules, since the factor 2 in mass is compen-
sated by the same factor in polarization. The consistency of the approximation requires
that σx,G/w0,G� 1 and σx,T/w0,T� 1, where σx,G =

√
h̄/2ωGm and σx,T =

√
h̄/4ωTm

describe the position uncertainties of the (Gaussian) ground states of the harmonic po-
tentials. In the case of the trap laser the relevant position uncertainty is set by the center
of mass state with M = 2m.

So far we have constrained us to radially symmetric beams. In case of the trap laser
it turns out to be preferable to choose an elliptic beam in order to keep the required laser
power low. Generalizing the potential (5.4) to the elliptic case,

U(x,y,0) =− 4PαLi

cw0,xw0,y
exp

(
−2

x2

w2
0,x
−2

y2

w2
0,y

)
, (5.6)

we can infer the trap depth U0 = 4PαLi/cw0,xw0,y, and the resulting trap frequencies read
ωx = (4/w2

0,x)
√

PαLiw0,x/cmw0,y and ωy = (4/w2
0,y)
√

PαLiw0,y/cmw0,x.

5.2.2 The guiding laser

In the following a viable set of parameters will be specified that admits the aspired ex-
perimental implementation. With respect to the guiding laser, we have to keep in mind
that it connects the two detection regions, thus serving as an atom guide which must
compensate the gravitational force. Moreover, it should be chosen sufficiently strong
that the transverse motion of the atoms remains frozen in the ground state, since only
then an effectively one-dimensional description of the atomic motion can be used.

To this end, we take the guiding laser to be operated at a power of PG = 32.85W
with a waist of w0,G = 216 µm, such that the resulting potential has the trap depth
U0,G/kB = 30 µK. It thus is strong enough to compensate gravitation, which can be
seen by comparing the force exerted by the laser, F(r) = −U ′(r,0), to the gravitational
force, mg. Evaluated at its maximum, the optical force reads Fmax = 2U0 exp(−1/2)/w0,
which compares to the gravitational force as Fmax/mg≈ 24. An estimate of the number
of bound states, on the other hand, follows from the classical phase space volume Φ for
the Hamiltonian H(x, p) = p2/2m−U0,Gexp(−2x2/w2

0,G), whose bound regime H < 0
is limited by

Φ =
∫ ∫

H<0
dxdp =

∫
∞

−∞

dx
∫ pmax(x)

−pmax(x)
dp = 4w0

√
πmU0,G/2, (5.7)
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where pmax(x) =
√

2mU0,G exp(−x2/w2
0,G). The number of bound states can then be es-

timated as Nb,G = Φ/2π h̄ = 3325, showing that the ground state indeed is deeply bound.
The implied transverse trap frequency of ωG/2π = 300Hz, on the other hand, guaran-
tees that the desired dissociation velocity of vrel = 1cm/s does not lead to transversal
excitations, since the corresponding single-particle kinetic energy Ekin remains below
the required excitation energy, h̄ωG/Ekin = 1.4. The use of the harmonic approximation
is justified by the smallness of the ratio σx,G/w0,G = 0.008� 1.

The resulting Rayleigh length of about z0,G = 15cm sets the scale for the maximum
extension of the whole setup. The required 15s to traverse this distance are not at risk
due to photon scattering, since the scattering rate R = I0σ/hν following from the laser
intensity I0 = 2P/πw2

0 and the Rayleigh cross section σ(ν) = (8π/3)(2πν/c)4α2
Li(ν)

evaluates for the guiding laser as RG = 0.05s−1, which permits the overall duration of a
single experiment to reach 20 s.

5.2.3 The trap laser

The second laser beam intersects the guiding laser perpendicularly, creating an elongated
dipole trap for the BEC within the laser guide. The trap must be sufficiently shallow to
be overcome with reasonable magnetic field pulses. Moreover, the resulting longitudi-
nal ground state |ψT〉, which is supposed to determine the center of mass state of the
trapped molecules, should correspond to a sufficiently narrow momentum distribution,
guaranteeing that dispersion-induced distortion between the early and late wave packets
still admits the feasibility of the Bell tests. This demands a comparatively small trap fre-
quency. Specifically, for an atomic propagation velocity of 5mm/s, the trap frequency
should not greatly exceed ωT/2π = 0.25Hz, corresponding to a ground state size of
σx,T ≈ 40 µm.

We thus combine a reasonable trap depth of U0,T/kB = 50nK (this corresponds to a
molecular trap depth of 100nK) with the required trap frequency of ωT/2π = 0.25Hz.
The trap depth sets the scale for the temperature of the BEC and is on the order of the
kinetic energy, U0,T/Ekin = 2.5. By employing an elliptic laser beam with waist ratio
wx,T/wy,T = 10, the required laser power can be kept reasonably low, at PT = 13.1W,
implying a longitudinal beam waist of w0,T = 1.1cm. The corresponding photon scat-
tering rate of RT = 10−4s−1 does not impose any limitations, and the estimated number
of bound states, Nb,T = 6650, together with the validity of the harmonic approximation,
σx,T/w0,T = 0.004� 1, justifies the existence of the Gaussian ground state |ψT〉.

Summary Concluding, we have seen that an optical setup with ultracold atoms can
provide the experimental frame for the conceived DTE and HRE scenarios. The possi-
bility to extract usable DTE and HRE states with the desired relative velocity of vrel =
1cm/s will be shown in the Chapters 7 and 8.
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Chapter 6

Feshbach dissociation dynamics

We know from Chapters 3 and 4 that appropriate descriptions of the DTE and HRE
scenarios require a detailed knowledge of the underlying two-atom states. Let me re-
mind the reader that the question whether the DTE or HRE Bell test is successful or not
depends crucially on the ability to provide dissociation states with sufficiently peaked
momentum distributions, since only then the resulting fringe patterns are usable. At this
point, it is not yet clear whether the conceived Feshbach dissociation scheme can pro-
vide such states at all, or how one should choose the shape of the dissociation pulses in
order to optimize the resulting momentum distributions. I therefore proceed to discuss in
some detail the dissociation of a Feshbach molecule exposed to an externally controlled,
time-varying magnetic field in the trap and guide setting presented in the last chapter.

More precisely, I develop the coupled-channel formalism required to determine the
asymptotic (i.e. for large interatomic distances and times long after the dissociation pro-
cess) dissociation state under these general conditions. Based on the then established
relation between the applied magnetic field pulse and the resulting momentum distribu-
tion, we find that square-shaped magnetic field pulses optimize the spectrum with respect
to its sharpness. The employment of sequences of such pulses to generate viable DTE
and HRE states will be examined in the subsequent chapters.

So far, the theory of Feshbach molecules has mainly been concerned with an accu-
rate description of the molecules in the bound regime and its vicinity, where the atoms
interact strongly. For instance, the universal properties of the molecular state at constant
magnetic field in the vicinity of a Feshbach resonance were investigated in great detail,
as well as the association and dissociation behavior under a linear magnetic field sweep,
with emphasis on the converted fraction (see [99–101] and Refs. therein). However, we
are interested in the Feshbach dissociation state for a more general time behavior of the
magnetic field. While in the interaction regime of the atoms one is then left with nu-
merical methods [102], the restriction to the asymptotic situation comes with significant
simplifications that permit us to evaluate the generated dissociation state analytically.

6.1 Coupled-channel formulation

The dynamics of Feshbach molecules are appropriately described by the coupled-channel
approach. After a short introduction to Feshbach resonances, I formulate the time-
dependent coupled-channel equations and reduce them to an integro-differential equa-
tion for the closed-channel amplitude and an associated equation for the background
channel state. In the relevant case of the dissociation of a single molecule out of a dilute
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mBEC, where interactions between the molecules and statistical effects do not play a
role, these single molecule dynamics yield an adequate description of the experimental
situation.

6.1.1 Feshbach resonances

Let us consider a system that consists of several degrees of freedom, say, its motional de-
gree(s) of freedom and (discrete) internal degree(s) of freedom, such as spin. One speaks
of a Feshbach resonance, when the bound motion of a given internal configuration decays
by coupling to the unbound motion of another internal configuration into the continuum.
This situation is appropriately formalized in a coupled-channel approach, where each
internal configuration is assigned to a channel, and transitions between the different con-
figurations are described by the coupling of the channels. The closed channel describes
the bound configuration, and the background (open) channel the unbound one. The state
|ψ〉 of the system can then be decomposed according to |ψ〉= |φcl〉|cl〉+ |φbg〉|bg〉, and
the Hamiltonian reads:

Htot = Hcl|cl〉〈cl|+Hbg|bg〉〈bg|
+W |bg〉〈cl|+W †|cl〉〈bg|, (6.1)

where W denotes the coupling between the channels. A Feshbach resonance occurs,
when the bare bound state |φres〉 of the closed channel, Hcl|φres〉 = Eres|φres〉, is (nearly)
degenerate with the continuum states of the background channel, see Fig. 6.1a). In
general, there a more than two channels and several bound states in each channel, giving
rise to a multitude of Feshbach resonances. However, we are only interested in a narrow
energy range in the vicinity of the background channel dissociation threshold. It is then
legitimate to restrict us to two channels, if the resonances are sufficiently well isolated.

In our case, the system consists of two alkali atoms, where the relevant players are
the two nuclei (with nonvanishing spins) and the two valence electrons. Ultimately, we
are interested in the motion of the nuclei, reflecting the dissociation of the atoms. The
separation of the time scales of the electronic and the nuclear motion, which guarantees
that the electrons adjust instantaneously to any change of the nuclear alignment, makes
it possible to apply the Born-Oppenheimer approximation. There, the state of the two
electrons is determined for given positions of the nuclei, which are considered as mere
parameters. The resulting electronic energy (as a function of the positions of the nuclei)
gives rise to an effective Schrödinger equation for the nuclei, where they move in an
effective potential that is composed of the inter-nuclear interaction and the electronic
energy.

Typically, the combined Coulomb interaction of the nuclei and the electrons yields
a binding potential at small interatomic distances, its bound states corresponding to vi-
brations. For this, it is important to realize that the spatial wave function of the electrons
is intimately correlated to their spin configuration, which is at small interatomic dis-
tances, where the spins interact strongly, given either by the singlet or a triplet state. In a
triplet state, the spatial state component of the electrons has to be antisymmetric to guar-
antee an overall antisymmetric two-particle wave function, say, in first approximation(
|1s〉1A|1s〉2B−|1s〉1B|1s〉2A

)
/
√

2, which means that they avoid each other, thereby reducing
their Coulomb repulsion. Here, |1s〉 j

X denotes the the electronic ground state of the jth
electron at the atom X . In contrast, if the spins form a singlet, the electrons do not avoid
each other in the correspondingly symmetric spatial state

(
|1s〉1A|1s〉2B + |1s〉1B|1s〉2A

)
/
√

2,
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Figure 6.1: a) A Feshbach resonance emerges when a bound state of the (bare) closed-
channel configuration, suitably labeled |φres〉, couples to the continuum of the back-
ground channel. b) By applying an external magnetic field, different Zeeman levels
of two alkali atoms can be tuned such that a bound state of one configuration crosses
the dissociation threshold of a second one, giving rise to a Feshbach resonance. c) A
time-varying magnetic field B(t) can be used to trigger the controlled dissociation of
the closed-channel bound state C(t)|φres〉 into the background channel continuum. The
resulting dissociation state |φbg〉 is then determined by the magnetic field pulse shape.

and the Coulomb repulsion generally reduces the depth of the inter-atomic potential as
compared to the triplet potential.

In order to understand the occurrence of a Feshbach resonance, we must have a
closer look at the spins of the valence electrons and the nuclei. When the atoms are far
apart, they do not interact and the single-atom Hamiltonians include [103]

ahf

h̄2 ~s ·~i+~B · 2µe~s−µN~i
h̄

, (6.2)

entailing the hyperfine interaction of the nuclear spin i and the electronic spin s and their
coupling to an external magnetic field. In absence of the magnetic field, they couple
to produce the hyperfine levels of total angular momentum ~f =~s +~i, yielding the total
angular momentum quantum number to be either f = i− 1/2 or i + 1/2. We take the
quantum numbers { f1,m f1 , f2,m f2} to specify the channels of the two-atom system.

When the atoms are nearby, the electron spins become uncoupled from the nuclear
spin and couple strongly to one another. The corresponding interaction term Hss ∝~s1 ·~s2,
which is diagonalized by the singlet and triplet states of the total electronic spin S =
s1 + s2, does not commute with the hyperfine interaction, hence giving rise to the cou-
pling of different channels at small interatomic distances. Physically, the transition be-
tween the channels corresponds to spin flips of the nuclear and electronic spins of one
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of the atoms. The dominance of Hss in this region renders the singlet and triplet states
valid approximations of the energy eigenstates there, coming with the above mentioned
channel-dependent Born-Oppenheimer potentials.

Switching on a homogeneous magnetic field results in the Zeeman splitting of the
levels corresponding to different m f . This can be used to tune the energetic gap of differ-
ent levels such that a bound motional state of one spin configuration, then referred to as
closed channel, coincides with the dissociation threshold of a second configuration, the
background channel, see Fig. 6.1b). The interchannel coupling at small distances then
gives rise to a Feshbach resonance. Even more, the tunability of the resonance position
gives us a handle to trigger the controlled dissociation of the bound state into the contin-
uum. As depicted in Fig. 6.1c), depending on whether we tune the resonance below or
above the background channel dissociation threshold, we can decide whether we wish
the molecules to remain bound or to dissociate at a given energy. Note that in general
the “closed channel” supporting the bound state does not coincide with a single chan-
nel according to our channel definition, but rather is represented by a superposition of
several of them, which lie energetically close and all couple strongly to the background
channel.

6.1.2 Stationary Feshbach scattering theory

Usually, when one talks about a Feshbach resonance, one has a (stationary) scatter-
ing situation in mind, where the existence of a quasibound state is reflected, e.g., in a
resonance-enhanced scattering phase in the asymptotic wave function of the two col-
liding atoms. Let us assume that the magnetic field B is fixed at an appropriate value
supporting a Feshbach resonance in the continuum of the background channel. The
coupled-channel equations describing the stationary scattering states can be written as

(E−Hbg)|φbg〉 = W |φcl〉 (6.3)

(E−Hcl)|φcl〉 = W †|φbg〉. (6.4)

For the moment, let us neglect the confining lasers. The center of mass motion and the
relative motion then decouple and we can focus on the relative motion. In this case, the
closed channel and the background channel Hamiltonian read

Hcl(B) =− h̄2

m
~∇2

rel +Vcl(|~xrel|,B), (6.5)

and

Hbg =− h̄2

m
~∇2

rel +Vbg(|~xrel|), (6.6)

respectively, where m denotes the atomic mass. The channel potentials Vcl(|~xrel|,B) and
Vbg(|~xrel|) differ in general, reflecting the above mentioned dependence on the spin con-
figuration. In compliance with [100], the background channel dissociation threshold
defines the zero of energy, E = 0. Then only the closed-channel potential Vcl(|~xrel|,B)
depends on the external magnetic field B, such that at B = Bres the closed-channel bound
state |φres〉, Hcl(B)|φres〉 = Eres(B)|φres〉, which gives rise to the resonance, coincides
with the background channel dissociation threshold. The off-diagonal elements W de-
note the energies associated with the spin exchange interaction and provide the inter-
channel coupling. As usual, we assume W to be diagonal in position (i.e. indepen-
dent of momentum) and to depend only on the interatomic distance |~xrel| from now on,
W ∗(|~xrel|) = W (|~xrel|) [100].
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The coupled-channel equation (6.3) can formally be solved in terms of the back-
ground channel Green’s function, which is defined according to Gbg(z) = (z−Hbg)−1.
We choose the bare energy eigenstate |φ (+)

~p 〉 with incoming plane wave boundary con-
ditions as a homogeneous solution,

〈~xrel|φ (+)
~p 〉 ∼

|~xrel|→∞

1
(2π h̄)3/2

[
ei~p·~xrel/h̄ + fbg(ϑ , p)

eip|~xrel|/h̄

|~xrel|

]
, (6.7)

where (E−Hbg)|φ (+)
~p 〉= 0 and E =~p2/m. The scattering amplitude fbg(ϑ , p) comprises

the scattering at the background channel potential Vbg(|~xrel|) and depends on the scatter-
ing angle, which is determined by cosϑ = ~p ·~xrel/(p|~xrel|). For the dressed background
channel scattering state we then get

|φbg〉= |φ (+)
~p 〉+Gbg(E + i0)W |φcl〉, (6.8)

where the infinitesimal positive imaginary part of the argument of the Green’s function
ensures that the scattered part is described by outgoing waves. Using this to replace |φbg〉
in (6.4) and noting W = W †, one obtains for the closed channel

|φcl〉=
1

E−Hcl−WGbg(E + i0)W
W |φ (+)

~p 〉. (6.9)

This, in turn, can be substituted back into (6.8), yielding

|φbg〉= |φ (+)
~p 〉+Gbg(E + i0)W

1
E−Hcl−WGbg(E + i0)W

W |φ (+)
~p 〉. (6.10)

We can already see at this stage that there should occur a resonance in the scattering. In
order to make this transparent, one applies the single-resonance approximation, which
replaces the inverse operator on the right-hand side by its dominant matrix element as
given by the resonance state |φres〉,

1
E−Hcl(B)−WGbg(E + i0)W

→ |φres〉
1

E−Eres(B)−∆E(E)+ iΓ(E)/2
〈φres|, (6.11)

with the resonance width

Γ(E)/2 =−Im〈φres|WGbg(E + i0)W |φres〉 (6.12)

and the energy shift

∆E(E) = Re〈φres|WGbg(E + i0)W |φres〉. (6.13)

This is possible, since we restrict us to energies in the vicinity of the background channel
dissociation threshold, where |φres〉 is by assumption the only closed-channel eigenstate
that is energetically close. The resonance width can be determined in terms of back-
ground channel energy eigenfunctions, Hbg|ε〉bg = ε|ε〉bg,

Γ(E)/2 = −Im∑
ε

|〈φres|W |ε〉|2

E− ε + i0

= π ∑
ε

δ (E− ε)|〈φres|W |ε〉bg|2. (6.14)
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Specializing to the scattering states |φ (+)
~p 〉, one obtains

Γ(E)/2 = π

∫
d3 p′δ (E− p′2/m)|〈φres|W |φ (+)

~p′ 〉|
2

= 4π
2mp|〈φres|W |φ (+)

~p 〉|
2

= γ(E)p/h̄,

where we used the rotational symmetry of the matrix element and introduced the reduced
width

γ(E) = 4π
2mh̄|〈φres|W |φ (+)

~p 〉bg|2. (6.15)

Note that Γ(E) vanishes at zero momentum. With (6.11), one obtains for the dressed
background channel scattering state

|φbg〉= |φ (+)
~p 〉+

〈φres|W |φ (+)
~p 〉

E−Eres(B)−∆E(E)+ iΓ(E)/2
Gbg(E + i0)W |φres〉. (6.16)

Similarly to (6.7), (6.16) can be written asymptotically as

〈~xrel|φbg〉 ∼
|~xrel|→∞

1
(2π h̄)3/2

[
ei~p·~xrel/h̄ + f (ϑ , p)

eip|~xrel|/h̄

|~xrel|

]
. (6.17)

This time the scattering amplitude gets an additional contribution due to the coupling of
the channels. From the asymptotic behavior of the Green’s function,

〈~xrel|Gbg(z)|~x′rel〉 ∼
|~xrel|→∞

−m(2π h̄)3

4π h̄2
eip|~xrel|/h̄

|~xrel|

[
φ

(−)
~p (~x′rel)

]∗
, (6.18)

where φ
(−)
~p (~x′rel) = [φ (+)

−~p (~x′rel)]
∗ is the background channel continuum energy state with

incoming spherical wave boundary conditions [87], one derives [100]

f (ϑ , p) = fbg(ϑ , p)− m(2π h̄)3

4π h̄2

〈φres|W |φ (+)
~p 〉〈φ

(−)
~p |W |φres〉

E−Eres(B)−∆E(E)+ iΓ(E)/2

= fbg(ϑ , p)− h̄
2p

Γ(E)/2
E−Eres(B)−∆E(E)+ iΓ(E)/2

. (6.19)

We find that the coupling between the channels gives rise to a Breit-Wigner resonance
in the scattering characterized by its position at ER(B) = Eres(B)+∆E(ER) and the res-
onance width Γ(ER). Γ/h̄, in turn, describes the decay rate of the resonance state into
the background channel continuum. In the limit of vanishing momentum the scattering
amplitude reduces to the s-wave scattering length [87],

f (ϑ , p) ∼
p→0
−a, (6.20)

which yields in our case

a(B) = abg−
γ(0)/2

Eres(B)+∆E(0)
. (6.21)

The degeneracy of a bound vibrational level with the scattering threshold is thus accom-
panied by a singularity of the s-wave scattering length. The scattering length describes
the spatial displacement of a scattered wave packet due to the scattering source as com-
pared to the free case.
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6.1.3 Time-dependent coupled-channel equations

A proper treatment of the DTE and HRE scenarios must consider the time-dependent
coupled-channel equations, which are now formulated. In doing so, I also account for
the laser potentials, which is required for a complete and coherent description of the
dissociation setting. As a novelty, I must therefore include the center of mass motion
of the two atoms. Apart from that, the notation and the conventions from [100] are
adopted as far as possible. Like in the previous section, we assume that the magnetic field
remains always in the vicinity of a single Feshbach resonance, allowing us to restrict the
description to two channels: the closed channel of the energetically more favorable spin
configuration supporting the molecular bound state, and the background channel, where
the dissociated atoms are asymptotically free.

Based on (6.1), the channel Hamiltonians now read as

Hcl = − h̄2

2m
~∇2

1−
h̄2

2m
~∇2

2 +Vcl(|~x1−~x2|,B(t))

+VT(~x1)+VT(~x2)+VG(~x1)+VG(~x2), (6.22)

and

Hbg = − h̄2

2m
~∇2

1−
h̄2

2m
~∇2

2 +Vbg(|~x1−~x2|)

+VT(~x1)+VT(~x2)+VG(~x1)+VG(~x2). (6.23)

Here VT(~xi) and VG(~xi) denote the trapping and guiding laser potential, respectively (VG
may contain a linear shift due to the gravitational potential, as well). We keep the conven-
tion to define the zero of total energy in absence of the laser potentials by the background
channel dissociation threshold, fixing the center of mass to be at rest. As before, then
only the closed-channel potential Vcl(|~x1−~x2|,B(t)) depends on the external magnetic
field B(t), describing an overall shift with respect to the background channel dissociation
threshold. The off-diagonal elements W only affect the relative motion and thus remain
unchanged.

For the following it is useful to reformulate the Hamiltonian in center of mass (cm)
and relative (rel) coordinates, ~xcm = (~x1 +~x2)/2 and ~xrel =~x1−~x2, respectively, with
total mass M = 2m and reduced mass µ = m/2. The closed-channel Hamiltonian then
reads as

Hcl = − h̄2

2M
~∇2

cm−
h̄2

2µ

~∇2
rel +Vcl(|~xrel|,B(t))

+VT(~xcm +~xrel/2)+VT(~xcm−~xrel/2) (6.24)

+VG(~xcm +~xrel/2)+VG(~xcm−~xrel/2),

and similar for Hbg with Vcl(|~xrel|,B(t)) replaced by Vbg(|~xrel|). Note that the center of
mass motion is only indirectly affected by changes in the homogeneous external mag-
netic field B, due to the presence of the trapping potentials. Writing

|Ψtot(t)〉= Φcl(~xcm,~xrel, t)|cl〉+Φbg(~xcm,~xrel, t)|bg〉,

we can infer from the time-dependent Schrödinger equation the coupled channel equa-
tions

ih̄∂t |Φcl(t)〉 = Hcl(B(t))|Φcl(t)〉+W |Φbg(t)〉 (6.25)

ih̄∂t |Φbg(t)〉 = Hbg|Φbg(t)〉+W |Φcl(t)〉.
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It is reasonable to assume the transverse motion of the atoms to be constrained to the
region of validity of the harmonic approximation of the guiding laser potential, and the
harmonic approximation to be applicable also for the trap laser potential in the closed
channel. We then can write (adopting cylindrical coordinates)

VG(~x1)+VG(~x2) = −U0,G +
m
2

ω
2
Gρ

2
1 −U0,G +

m
2

ω
2
Gρ

2
2 (6.26)

VT(~x1)+VT(~x2) = −U0,T +
m
2

ω
2
Tz2

1−U0,T +
m
2

ω
2
Tz2

2.

The harmonic approximation comes with the virtue not to couple the center of mass and
relative motion,

VG(~x1)+VG(~x2) = −2U0,G +
M
2

ω
2
Gρ

2
cm +

µ

2
ω

2
Gρ

2
rel (6.27)

VT(~x1)+VT(~x2) = −2U0,T +
M
2

ω
2
Tz2

cm +
µ

2
ω

2
Tz2

rel.

The initial bound state can therefore be taken to be separable with respect to its center
of mass and relative motion. Of course, the harmonic approximation for the trap laser
potential breaks down when the dissociated atoms leave the trap. Then, the center of
mass motion ceases to be bound by the trap potential but rather undergoes a free prop-
agation resulting in a dispersive broadening on the spot. So, even though initially only
the relative motion is affected by changes in the external magnetic field, its effective
coupling in the background channel to the center of mass also couples the motion of the
latter indirectly to the external magnetic field.

6.1.4 Single-resonance approximation

As in the stationary case, it is legitimate [100] to take the relative motion of the closed-
channel state component to be proportional to the underlying bare resonance state |φres〉,
which is defined by[

− h̄2

2µ

~∇2
rel +Vcl(|~xrel|,B(t))

]
φres(~xrel) = Eres(B(t))φres(~xrel). (6.28)

Note that the time-dependent external magnetic field affects only its energy, which is
taken to vanish at the resonance, Eres(Bres) = 0, such that Eres describes the energetic
offset of |φres〉 from the background channel dissociation threshold.

Since the laser potentials vary weakly over the extent of |φres〉, this resonance state
remains a valid approximation even in the presence of the trap. We assume that |φres〉
is spherically symmetric and thus supports an s-wave resonance. If we further take into
account that the center of mass motion of the closed channel is completely determined
by the longitudinal and transversal trap ground states |ψT〉 and |ϕcm

0,0〉, respectively, we
can write

Φcl(~xcm,~xrel, t) = C(t)ψT(zcm)ϕcm
0,0(ρcm)φres(~xrel), (6.29)

where

[− h̄2

2M
~∇2

cm +2VT(zcm)+2VG(ρcm)]ψT(zcm)ϕcm
0,0(ρcm)

= [−2U0,T + h̄ωT/2−2U0,G + h̄ωG]ψT(zcm)ϕcm
0,0(ρcm). (6.30)
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In the single-resonance approximation (extended by the trapped center of mass motion)
(6.29), the spatial shape of the closed channel state component is not affected by the
external magnetic field and therefore time independent. The closed-channel amplitude
C(t) therefore captures the complete effect of the time-varying magnetic field. Using the
single-resonance approximation (6.29) and introducing the abbreviation Ucl =−2U0,T +
h̄ωT/2−2U0,G + h̄ωG, we can thus rewrite the coupled-channel equations (6.25) as

ih̄∂tC(t) = [Eres(B(t))+Ucl]C(t)+ 〈ψT|〈ϕcm
0,0 |〈φres|W |Φbg(t)〉 (6.31)

(ih̄∂t −Hbg)|Φbg(t)〉= C(t)W |ψT〉|ϕcm
0,0〉|φres〉. (6.32)

6.1.5 Formal Green’s solution

Mimicking the stationary approach, we interpret the right-hand side of (6.32) as a source
term for the background channel state component |Φbg(t)〉. This time we must use the
time-dependent Green’s function of the background channel Gbg(t, t ′), which satisfies

(ih̄∂t −Hbg)Gbg(t, t ′) = δ (t− t ′).

If we further make use of the connection between the (retarded) Green’s function and
the time evolution operator Ubg,

Gbg(t, t ′) =
1
ih̄

Ubg(t, t ′)Θ(t− t ′),

we can write the background channel state component as

|Φbg(t)〉=
1
ih̄

∫ t

−∞

dt ′C(t ′)Ubg(t, t ′)W |ψT〉|ϕcm
0,0〉|φres〉. (6.33)

In our scenario, the boundary conditions prohibit a homogeneous solution. Physically,
this reflects the fact that the closed channel is the only source for the background chan-
nel, in particular there are no further sources at infinity (e.g. incoming and scattered
particles). A closed equation for the closed-channel amplitude C(t) arises from inserting
the formal solution (6.33) into (6.31), which yields

[ih̄∂t −Eres(B(t))−Ucl]C(t) (6.34)

=
1
ih̄

∫ t

−∞

dt ′C(t ′)〈ψT|〈ϕcm
0,0 |〈φres|WUbg(t, t ′)W |ψT〉|ϕcm

0,0〉|φres〉.

With (6.33) and (6.34) we arrived at a decoupled set of equations that divides the deter-
mination of the background channel dissociation state into two parts, first solving (6.34)
for C(t), and then using the solution in (6.33) for the calculation of |Φbg〉. The dynamics
of the closed-channel amplitude C(t) is explicitly driven by the external magnetic field
B(t), reflected in the left-hand side of (6.34). The bare background channel Hamiltonian
Hbg, on the other hand, does not depend on the external magnetic field, which will al-
low us in Section 6.2 to expand the right-hand side of (6.33) in terms of its (time- and
coupling-independent) energy eigenfunctions. The right hand side of (6.34) describes
the back action of the background channel state component on the dynamics of C(t) due
to the coupling W . A solution to (6.34) will be given in Section 6.3.

As a last remark, I note that it might seem suggestive to first solve the time-indepen-
dent coupled-channel equations for a stationary magnetic field B, and then to take the
corresponding static decay rate to describe the dissociation in the time-dependent case
B(t), as it was done in [32]. However, we will see below that this quasi-stationary
approach is not sufficient for our purposes.
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6.2 Asymptotic dissociation state

The formal expression (6.33) describes the background channel state component in full
generality. In the DTE and HRE scenarios, however, we only need to know the dis-
sociation state for large interatomic distances and for times long after the dissociation
process. Moreover, the relevant dissociation states are sharply peaked in the ultracold
regime, in the sense that the width of the momentum distribution is much smaller than
its average momentum, because only then are they useful with respect to further interfer-
ometric processing. The above restrictions admit significant simplifications that permit
us to provide an analytic expression for the dissociation state in the asymptotic regime.

6.2.1 Large time limit

As a first step, we expand the background channel time evolution operator Ubg(t, t ′) in
an appropriate energy eigenbasis of the background channel Hamiltonian.

Ubg(t, t ′) = e−iHbg(t−t ′) = ∑
E

e−iE(t−t ′)/h̄|E〉bg〈E|bg, (6.35)

where Hbg|E〉bg = E|E〉bg; adequate quantum numbers for our setup will be specified
below. Note that the involved vectors are two-particle states. As mentioned above, this
representation is only possible for the bare background Hamiltonian, which does not
depend on the external magnetic field. Since at large interatomic distances only the
continuum states survive, we can drop the bound states in (6.33) for large |~xrel| and get

〈~xcm,~xrel|Φbg(t)〉 ∼
|~xrel|→∞

1
ih̄ ∑

E>Ubg

∫ t

−∞

dt ′C(t ′)e−iE(t−t ′)/h̄〈E|bgW |ψT〉|ϕcm
0,0〉|φres〉

×〈~xcm,~xrel|E〉bg. (6.36)

The sum over the energy eigenstates takes into account that the zero of energy is defined
in absence of the confining lasers, whose presence shifts the (longitudinal) continuum
threshold by an offset Ubg = −2U0,G + 2h̄ωG. We arrange the dissociation such that
after its completion the magnetic field persists at a base value B0 below the dissociation
threshold. The closed-channel amplitude then shows a simple time dependence in the
large time regime, C(t) = C0exp(−iE0t/h̄), such that for times long after the completion
we can replace the upper integration boundary by infinity without modifying the value of
the integral for energies above the dissociation threshold. This allows us to interpret the
integration over t ′ as the Fourier transform C̃(ω) =

∫
∞

−∞
dt exp(iωt)C(t) of the closed-

channel amplitude C(t), yielding

〈~xcm,~xrel|Φbg(t)〉 ≈
|~xrel|→∞

t→∞

1
ih̄ ∑

E>Ubg

e−iEt/h̄C̃(E/h̄)〈E|bgW |ψT〉|ϕcm
0,0〉|φres〉

×〈~xcm,~xrel|E〉bg. (6.37)

We thus find that the asymptotic dissociation state can be interpreted as evolving in the
background channel with the initial state in energy representation given by C̃(E/h̄)×
〈E|bgW |ψT〉|ϕcm

0,0〉|φres〉. We will see that this expression describes two counter-propaga-
ting atoms with well-defined momenta if C̃(ω) is peaked at an energy in the ultracold
regime. The corresponding wave functions then have de Broglie wavelengths and spatial
extensions on the order of micro- to millimeters, all being features desired for applica-
tions such as the DTE and HRE Bell tests.
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6.2.2 Quantum numbers

Note that the energy eigenvalues in (6.35) are highly degenerate; in order to single out
a unique energy basis, we choose as asymptotically well-defined, commuting observ-
ables the complete set p̂cm, p̂rel and H⊥, where H⊥ denotes the transversal Hamiltonian.
Assuming harmonic transversal confinement, we can write

∑
E>Ubg

|E〉bg〈E|bg = ∑
ncm

G ,mcm
G

nrel
G ,mrel

G

∫
∞

−∞

dpcm

∫
∞

−∞

dprel|pcm,ncm
G ,mcm

G , prel,nrel
G ,mrel

G 〉bg

×〈pcm,ncm
G ,mcm

G , prel,nrel
G ,mrel

G |bg. (6.38)

Here nG = 0,1, . . . denotes the radial occupation number and mG = −nG, . . . ,nG the
corresponding angular momentum quantum number. Since we assume that W |φres〉
is spherically symmetric (s-wave resonance), W |ψT〉|ϕcm

0,0〉|φres〉 is both cylindrically
symmetric and symmetric under exchange of the two particles, hence only the states
|pcm,n,0, prel,n,0〉 sharing these symmetries can be occupied.

If we take C̃(E/h̄) to be peaked at a sufficently low energy and if the laser guide is
chosen appropriately, we can ensure that only the transversal ground state is energetically
accessible. In this single-mode regime we have

〈~xcm,~xrel|Φbg(t)〉

≈
|~xrel|→∞

t→∞

1
ih̄

∫
∞

−∞

dpcm

∫
∞

−∞

dprel e−i(Ubg+p2
cm/2M+p2

rel/2µ)t/h̄ C̃
(

Ubg + p2
cm/2M + p2

rel/2µ

h̄

)
×〈pcm,0,0, prel,0,0|bgW |ψT〉|ϕcm

0,0〉|φres〉〈~xcm,~xrel|pcm,0,0, prel,0,0〉bg.

(6.39)

Even if taking C̃(E/h̄) to be sharply peaked in energy, it still admits the whole class of
degenerate eigenstates that fall into that energetic region. As I show next, the matrix ele-
ment 〈pcm,0,0, prel,0,0|bgW |ψT〉|ϕcm

0,0〉|φres〉 effects a further restriction of the accessible
eigenstates, yielding the physically appropriate description of the situation.

6.2.3 Asymptotic center of mass motion

The main effect of the longitudinal trap is to correlate the motion of the interatomic
distance with the center of mass, since the center of mass evolution is confined for small
interatomic distances, while it is free for distances beyond the size of the trap. For a
sufficiently peaked energy distribution this merely results in a global time delay for the
start of the free center of mass propagation, which may be neglected at the time scales
of the asymptotic regime. The longitudinal center of mass motion can thus be described
by the momentum eigenstates |pcm〉, that is by

|pcm,0,0, prel,0,0〉bg ≈ |pcm〉|ϕcm
0,0〉|prel,0,0〉bg.

Here |prel,0,0〉bg denotes the eigenstates of the Hamiltonian for the relative motion,
which still contains the traps and the interatomic potential Vbg. The dissociation state



58 CHAPTER 6. FESHBACH DISSOCIATION DYNAMICS

then reads

〈~xcm,~xrel|Φbg(t)〉

≈
|~xrel|→∞

t→∞

1
ih̄

∫
∞

−∞

dpcm

∫
∞

−∞

dprele−i(Ubg+p2
cm/2M+p2

rel/2µ)t/h̄C̃
(

Ubg + p2
cm/2M + p2

rel/2µ

h̄

)
×〈pcm|ψT〉〈prel,0,0|bgW |φres〉〈zcm|pcm〉〈ρcm|ϕcm

0,0〉〈~xrel|prel,0,0〉bg. (6.40)

The matrix element 〈pcm|ψT〉, given by the longitudinal harmonic trap ground state of
the center of mass motion in momentum representation, guarantees that the center of
mass motion remains centered at vanishing momentum, as required by momentum con-
servation in the dissociation process. Since we take the energy to be in the ultracold
regime of the background channel potential Vbg, the matrix element 〈prel,0,0|bgW |φres〉
is practically constant and does not impose any further structure on the momentum dis-
tribution of the dissociation state.

6.2.4 Connection to spectroscopy

I now give an estimate of the matrix element 〈prel,0,0|bgW |φres〉 in terms of spectro-
scopically available quantities such as the width of the Feshbach resonance and the
background channel scattering length. A natural basis of energy eigenstates is provided
by the scattering states |φ (+)

~p 〉, where [p̂2
rel/2µ +Vbg(r)]|φ (+)

~p 〉= p2/(2µ)|φ (+)
~p 〉 [100]. It

describes the scattering in the relative motion in absence of the confining laser potentials,
with an incoming plane wave with momentum ~p as boundary condition.

In order to relate 〈prel,0,0|W |φres〉 to the spectroscopically available matrix element
〈φ (+)

~p |W |φres〉, we note that the spatial extension of the longitudinal trap is much larger
than the support of the channel coupling W |φres〉. This scale separation permits one to
approximate the effect of the longitudinal trap by a mere energy shift,

〈prel,0,0|bgW |φres〉 ≈ 〈prel + pT,0,0|w/oTW |φres〉, (6.41)

where |prel,0,0〉w/oT denotes the background channel energy eigenstates of the relative
motion without the trap potential (without loss of generality prel > 0). The momentum
shift pT is related to the trap depth by U0,T = p2

T/2µ . Inserting the identity in terms of
the basis |φ (+)

~p 〉, we can rewrite the matrix element as

〈prel + pT,0,0|w/oTW |φres〉=
∫

d3 p〈prel + pT,0,0|w/oTφ
(+)
~p 〉〈φ

(+)
~p |W |φres〉. (6.42)

The matrix element 〈prel + pT,0,0|w/oTφ
(+)
~p 〉 can be evaluated for a vanishing back-

ground channel potential, Vbg(r) ≡ 0, since the scattering due to Vbg should not result
in a substantial modification of the overlap. We thus have

〈prel + pT,0,0|w/oTφ
(+)
~p 〉 ≈ 〈prel + pT|pz〉〈ϕ rel

0,0|px〉|py〉 (6.43)

= δ (prel + pT− pz)
1√

h̄ωGµπ
e−(p2

x+p2
y)/2µ h̄ωG .

Insertion into (6.42) yields 〈prel + pT,0,0|w/oTW |φres〉≈
√

4πµ h̄ωG〈φ (+)
0 |W |φres〉, where

we use that prel + pT still lies in the ultracold regime such that W |φres〉 cannot be resolved
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and hence 〈φ (+)
~p |W |φres〉 ∼= 〈φ (+)

0 |W |φres〉. This is justified given that prel is mainly deter-
mined by C̃. With (6.41) we thus obtain the desired connection to the spectroscopically
availabe quantity 〈φ (+)

0 |W |φres〉,

〈prel,0,0|bgW |φres〉 ≈
√

4πµ h̄ωG〈φ (+)
0 |W |φres〉. (6.44)

According to stationary Feshbach scattering theory [100]

|〈φ (+)
0 |W |φres〉|2 =

4π h̄2

m(2π h̄)3 abg µres ∆Bres, (6.45)

with abg being the background channel scattering length, ∆Bres the resonance width, and
µres the difference between the magnetic moments of the Feshbach resonance state and
a pair of asymptotically separated noninteracting atoms. (6.45) follows directly from
(6.15) and (6.21) if one identifies the resonance width with ∆Bres = γ(0)/(2abgµres).

6.2.5 Asymptotic relative motion

Finally, let us approximate the basis states |prel,0,0〉bg in the asymptotic regime zrel→∞,
where the scattering states differ from the longitudinally free energy eigenstates only in
a scattering phase ϕsc(prel),

〈~xrel|prel,0,0〉bg ∼
zrel→∞

eiϕsc(prel)〈zrel|prel〉〈ρrel|ϕ rel
0,0〉. (6.46)

The phase ϕsc(prel) has two contributions, stemming from Vbg and VT. Since we are in the
ultracold regime of Vbg, its contribution is a linear shift given by the background channel
scattering length abg. The contribution from VT, on the other hand, can be linearized due
to our requirement that the energy be sharply peaked, because the width of the energy
distribution is then small compared to the characteristic energy scale of the trap potential.
The latter is determined by the trap depth U0,T and is thus on the same order of magnitude
as the kinetic energy after dissociation. This situation is similar to the scattering of
a narrow wave packet with spread ∆E at a broad resonance with width Γ, ∆E � Γ

[87]. Confinement-induced resonances [104] due to the guide potential are negligible
provided the ground state size a⊥= (h̄/mωG)1/2 greatly exceeds the background channel
scattering lenght, a⊥� abg.

As described by a linear scattering phase, the potentials thus merely effect an overall
spatial displacement of the generated dissociation state. Physically, this shift stems from
the faster propagation of the particles in the trap region. Since we are mainly interested in
the structure of the generated dissociation state, we can safely neglect this displacement
and approximate

〈~xrel|prel,0,0〉bg ≈
zrel→∞

〈zrel|prel〉〈ρrel|ϕ rel
0,0〉. (6.47)

6.2.6 Canonical dissociation state

Putting this all together, the asymptotic dissociation state reads as

〈~xcm,~xrel|Φbg(t)〉 ≈
|~xrel|→∞

t→∞

1
ih̄

√
4πµ h̄ωG〈φ (+)

0 |W |φres〉
∫

∞

−∞

dpcm

∫
∞

−∞

dprel (6.48)

× e−i(Ubg+p2
cm/2M+p2

rel/2µ)t/h̄C̃
(

Ubg + p2
cm/2M + p2

rel/2µ

h̄

)
〈pcm|ψT〉

×〈zcm|pcm〉〈ρcm|ϕcm
0,0〉〈zrel|prel〉〈ρrel|ϕ rel

0,0〉.
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Normalizing the spectrum with

‖C̃‖2 =
∫

∞

−∞

dpcm

∫
∞

−∞

dprel|C̃
(
Ubg/h̄+ p2

cm/2Mh̄+ p2
rel/2µ h̄

)
|2|〈pcm|ψT〉|2 (6.49)

and introducing the abbreviation

Cbg =
1
ih̄

√
4πµ h̄ωG〈φ (+)

0 |W |φres〉‖C̃‖, (6.50)

we can express the dissociation state in canonical form,

|Φbg(t)〉 ≈
|~xrel|→∞

t→∞

CbgU (0)
z,t |Ψz〉|ϕcm

0,0〉|ϕ rel
0,0〉. (6.51)

Here U (0)
z,t = exp[−i(p̂2

cm/2M + p̂2
rel/2µ +Ubg)t/h̄] is the free longitudinal time evolu-

tion operator, and the longitudinal state component |ψz〉 is defined by the momentum
representation

〈pcm|〈prel|Ψz〉=
C̃
(
Ubg/h̄+ p2

cm/2Mh̄+ p2
rel/2µ h̄

)
‖C̃‖

〈pcm|ψT〉. (6.52)

The dissociation probability is given by |Cbg|2, which can be expressed in terms of the
above mentioned spectroscopic quantities using (6.45),

|Cbg|2 =
ωGabgµres∆Bres

π h̄2 ‖C̃‖2. (6.53)

It is mainly controlled by the applied magnetic field pulse which determines ‖C̃‖2. We
now focus on choices of the resonance width ∆Bres and the magnetic field pulse such
that the dissociation probability is on the order of a few percent.

Taking Eqs. (6.51), (6.52) and (6.53) together, we have found the desired expression
for the asymptotic dissociation state. It is characterized by the trap geometry and, most
importantly, by the Fourier transform of the closed-channel amplitude C̃(ω), which is in
turn determined by the applied magnetic field pulse sequence. In order to answer what
kind of states can be generated, we thus have to determine the dynamics of the closed
channel amplitude C(t).

6.3 Closed-channel amplitude dynamics

In the previous section we found that the momentum representation (6.52) of the asymp-
totic dissociation state is mainly determined by the Fourier transform C̃(ω) of the closed-
channel amplitude. In order to determine the generated state for a given magnetic field
pulse sequence, we thus have to determine the dynamics of the closed-channel amplitude
C(t) as determined by equation (6.34).

6.3.1 Separation of decay and driving dynamics

Let me rewrite the integral equation (6.34) as

[ih̄∂t −Eres(B(t))−Ucl]C(t) =
∫ t

−∞

dt ′ f (t− t ′)C(t ′), (6.54)



6.3. CLOSED-CHANNEL AMPLITUDE DYNAMICS 61

with the kernel

f (τ) =
1
ih̄
〈ψT|〈ϕcm

0,0 |〈φres|WUbg(τ)W |ψT〉|ϕcm
0,0〉|φres〉 (6.55)

=
1
ih̄ ∑

E
e−iEτ/h̄|〈E|bgW |ψT〉|ϕcm

0,0〉|φres〉|2,

where we used the decomposition of the background channel time evolution operator
(6.35). The right-hand side of Eq. (6.54) describes the effect of the coupling between the
channels on the closed-channel amplitude. It is quadratic in the interchannel coupling W
and hence, for a weak coupling and sufficiently short dissociation windows, its effect is
expected to yield a small correction to the unperturbed dynamics given by the left-hand
side. Physically, we expect it to describe the decay of the closed-channel amplitude
due to the escaping wave packet in the background channel. The kernel (6.55) may be
viewed as the time-dependent overlap between the “initial state” W |ψT〉|ϕcm

0,0〉|φres〉 and
its evolved version Ubg(τ)W |ψT〉|ϕcm

0,0〉|φres〉, which vanishes at large times due to the
propagation in the background channel. It does not depend on the external magnetic
field B(t).

The kernel (6.55) is expected to drop off on a microscopic (“memory”) time scale tm,
which can be roughly estimated from the spatial width ∆x of the closed-channel bound
state |φres〉. Denoting the corresponding momentum uncertainty by ∆p, one obtains the
drop-off time scale tm = m∆x2/h̄ from ∆ptm/m = ∆x and the uncertainty relation. The
spatial width of the closed-channel bound state |φres〉 is on the order of the closed-channel
scattering length, with typical values on the order of ∆x ≈ 100a0. Taking the mass of
lithium atoms (6Li) one thus gets the estimate tm ≈ 10ns, which should be compared
to the inverse decay rate of the resonance, which is much greater in our case. Given
this shortness of tm, one might consider taking the limit tm→ 0, which is equivalent to
setting f (τ) ∝ δ (τ), but it will become clear below that this approximation is too crude
and cannot even qualitatively account for the correct decay behavior.

In order to separate the anticipated decay from the unitary dynamics due to the left-
hand side, we switch over to a “comoving frame” defined by

C(t) = C0(t)D(t), (6.56)

where the uncoupled closed-channel amplitude C0(t) follows by definition from

[ih̄∂t −Eres(B(t))−Ucl]C0(t) = 0, (6.57)

which implies

C0(t) = C0(t0)exp
(
−i
∫ t

t0
dt ′[Eres(B(t ′))+Ucl]/h̄

)
. (6.58)

Applying the ansatz (6.56) on (6.54) and using (6.57) and (6.58), one finds that the
evolution of the coupling dynamics is governed by

ih̄∂tD(t) =
∫ t

−∞

dt ′D(t ′) f (t− t ′)exp
(

i
∫ t

t ′
dt ′′[Eres(B(t ′′))+Ucl]/h̄

)
. (6.59)

Since D(t) is driven only by the coupling between the two channels, we expect it to vary
slowly for sufficiently small interchannel coupling W , such that it can be considered
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constant to good approximation on the time scale tm of nonvanishing kernel f (t − t ′).
This allows us to pull D(t) out of the integral, leading to

∂tD(t) = α(t)D(t),

with the (in general complex) coupling coefficient

α(t) =
1
ih̄

∫ t

−∞

dt ′ f (t− t ′)exp
(

i
∫ t

t ′
dt ′′[Eres(B(t ′′))+Ucl]/h̄

)
. (6.60)

By writing
α(t) =−Γ(t)/2− i∆E(t)/h̄, (6.61)

we make explicit that the real and imaginary parts of α(t) describe the decay rate Γ(t)
and an energy shift ∆E(t), respectively, as induced by the coupling between the two
channels. Below, we will see that they coincide with their stationary counterparts (6.13)
and (6.14) in the appropriate limit.

6.3.2 Decay dynamics

One can evaluate the coupling coefficient (6.60) further in the case of sufficiently smooth
steering of the magnetic field, such that the resonance energy varies slowly on the scale
of the drop-off time tm,

d
dt

Eres(t) tm�
h̄
tm

. (6.62)

In the vicinity of the resonance Bres one can linearize,

Eres(t) = µres(B(t)−Bres), (6.63)

leading to
d
dt

B(t)� h̄
t2
mµres

. (6.64)

This assumption allows one to approximate the integral in the exponent of (6.60) as∫ t

t ′
dt ′′[Eres(B(t ′′))+Ucl]/h̄≈ [Eres(B(t))+Ucl](t− t ′)/h̄. (6.65)

Using (6.65) we can rewrite the coupling coefficient (6.60) as

α(t) =
1
ih̄

∫
∞

−∞

dt ′Θ(t− t ′) f (t− t ′)ei [Eres(B(t))+Ucl] (t−t ′)/h̄. (6.66)

This can be read as the Fourier transform of the product of f (τ) and the Heaviside step
function Θ(τ), implying

α(t) =− i
2h̄

f̃
(

Eres(B(t))+Ucl

h̄

)
+

1
2π h̄

P
∫

∞

−∞

dω

ω
f̃
(

Eres(B(t))+Ucl

h̄
−ω

)
,

(6.67)
where P denotes the Cauchy principal value. Making use of (6.55), the Fourier trans-
form f̃ (ω) =

∫
∞

−∞
dt eiωt f (t) of the kernel reads

f̃ (ω) =
2π

ih̄ ∑
E

δ (ω−E/h̄)|〈E|bgW |ψT〉|ϕcm
0,0〉|φres〉|2. (6.68)
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We thus find the decay rate according to (6.61) to be given by

Γ(t) =
2π

h̄ ∑
E

δ (Eres(B(t))+Ucl−E) |〈E|bgW |ψT〉|ϕcm
0,0〉|φres〉|2, (6.69)

and the coupling-induced energy shift by

∆E(t) = ∑
E

P

(
1

Eres(B(t))+Ucl−E

)
|〈E|bgW |ψT〉|ϕcm

0,0〉|φres〉|2. (6.70)

Equation (6.69) shows that a nonvanishing decay rate is obtained only when Eres(t)+Ucl
matches a background channel energy eigenvalue. In particular, the gap in the spectrum
between the dissociation threshold and the highest excited bound state explains why
decay occurs only when the resonance energy lingers above the continuum threshold.
(We always stay off-tuned from bound states of Vbg.) This also explains why the naive
approximation for the kernel, f (τ) ≈ f0 δ (τ), is not applicable; since the Fourier trans-
form of δ (τ) is constant, it cannot distinguish energies above and below the continuum
threshold and thus predicts an unphysical decay below the threshold.

Note that (6.69), which coincides with the decay rate (6.14) of the corresponding
Feshbach resonance in the stationary scattering situation for constant magnetic field,1

may also be viewed as a generalized version of Fermi’s Golden rule, where the decay
rate is determined by the instantaneous resonance energy Eres(B(t)), which in turn is
externally controlled via the magnetic field B(t). This coincidence is not accidental, of
course, since the limit of a slowly varying magnetic field (6.64) admits both interpreta-
tions. The condition (6.64) quantifies the applicability of this approximation.

Let me now use the results of the preceding section by specifying the energy eigen-
basis according to (6.38). Assuming again that the resonance state energy Eres(B(t))
only sweeps over energies in the vicinity of the background channel continuum thresh-
old, remaining in the ultracold energy regime, below the first excited transversal state
and off-tuned from the highest excited bound state of Vbg, we can write

∆E(t) = |〈prel = 0,nrel
G = 0,mrel

G = 0|bgW |φres〉|2
∫

∞

−∞

dpcm

∫
∞

−∞

dprel (6.71)

×P

(
1

Eres(B(t))+Ucl−Ubg− p2
cm/2M− p2

rel/2µ

)
|〈pcm|ψT〉|2

and

Γ(t) =
2π

h̄
|〈prel = 0,nrel

G = 0,mrel
G = 0|bgW |φres〉|2

∫
∞

−∞

dpcm

∫
∞

−∞

dprel (6.72)

×δ (Eres(B(t))+Ucl−Ubg− p2
cm/2M− p2

rel/2µ)|〈pcm|ψT〉|2.

I have omitted transitions into bound states of the longitudinal trap; they are negligi-
ble given the pulse sweeps sufficiently fast over the corresponding energies. Moreover,
one can arrange the dissociation pulse B(t) such that the offset of the resonance state
energy from the background channel continuum threshold greatly exceeds the trap state
momentum uncertainty σp,T for most of the time, Eres(B(t))+Ucl−Ubg� σ2

p,T/2M. In
that case the integrals are dominated by prel� pcm, and we can evaluate them with the
approximation

|〈pcm|ψT〉|2 ≈ δ (pcm). (6.73)

1Up to a factor h̄, which translates between the decay width with dimension of an energy and the decay
rate with dimension of a frequency.



64 CHAPTER 6. FESHBACH DISSOCIATION DYNAMICS

This yields a vanishing energy shift, ∆E(t) = 0, since the principal value integration
cancels. For the decay rate, on the other hand, we find

Γ(t) =
2ωGabgµres∆Bres

h̄

√
2µ

Eres(B(t))−2U0,T + h̄ωT/2− h̄ωG
(6.74)

×Θ(Eres(B(t))−2U0,T + h̄ωT/2− h̄ωG),

where we substituted |〈prel = 0,nrel
G = 0,mrel

G = 0|bgW |φres〉|2 = ωGabgµres∆Bres/π , as
well as Ubg =−2U0,G +2h̄ωG and Ucl =−2U0,T + h̄ωT/2−2U0,G + h̄ωG. As expected,
we find that the decay rate (6.74) is nonvanishing only for magnetic field values that lift
the resonance state above the (longitudinal) background channel continuum threshold.
The offset −2U0,T + h̄ωT/2− h̄ωG in the step function gives the energy to be provided
in addition to the free dissociation threshold. There, the trap depth to be overcome by
both atoms is reduced by the closed-channel center of mass ground state energy h̄ωT/2,
while the transversal relative motion, tightly bound in the closed channel, must make the
transition to the transversal ground state of the guide. The square root pole stems from
the one-dimensional density of state and does not lead to appreciable effects as long as
the pulse sweeps sufficiently fast over it.

In summary, we find, under appropriate conditions concerning the dissociation pulse,
that the decay dynamics of the closed-channel amplitude is described by

∂tD(t) =−Γ(t)
2

D(t), (6.75)

with the decay rate Γ(t) given by (6.74). Noting the formal solution

D(t) = D(t0)exp
(
−
∫ t

t0
dt ′Γ(t ′)/2

)
, (6.76)

the overall closed-channel amplitude C(t) then follows from C(t) = C0(t)D(t), with the
uncoupled closed-channel amplitude C0(t) given by (6.58). For the asymptotic dissoci-
ation state as described in Section 6.2 we ultimately need to know the Fourier transform
of the closed-channel amplitude, which is given by the convolution of the Fourier trans-
forms of C0(t) and D(t),

C̃(ω) =
1

2π

∫
∞

−∞

dω̄C̃0(ω̄)D̃(ω− ω̄). (6.77)

In the limiting case of strong interchannel coupling or long-lasting, slowly varying
dissociation pulses, the kinetic energy distribution of the dissociated atoms, denoted by
n(E), is determined by the decay dynamics D(t) alone. In this quasi-stationary situation
one may take the dissociation to occur monoenergetically, at the momentary resonance
energy, by writing n(E)dE = Γ(t) |D(t)|2 dt. For a monotonically increasing pulse en-
ergy Eres (t) the inverse t(E) exists (defining Ėres (E) = ∂tEres(t(E))), and also the decay
rate (6.74) can be viewed as a function of energy. Since D(t) decays exponentially it
then follows that the energy distribution is given by

n(E) = − d
dE

exp
(
−
∫ E

E0

Γ(E ′)
Ėres (E ′)

dE ′
)

. (6.78)

This kind of quasi-stationary approach was used in [32] for the case of a linear field
sweep, Ėres = const, and the above formula is consistent with their treatment when eval-
uated in absence of confining lasers.
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On the other hand, in the case of a sudden magnetic field jump to a constant value
B0 + ∆B above the threshold (which can be considered a square-shaped pulse in the
limit of infinite pulse duration), the Fourier transform C̃0(ω) gets sharply peaked at
Eres(B0 + ∆B), as will be shown below. The function C̃(ω) then reduces to C̃(ω) ≈
D̃(ω−Eres(B0 +∆B)/h̄), with D̃(ω) a Lorentzian according to D(t) ∝ exp(−Γ(Eres(B0 +
∆B))t/2), which recovers the corresponding situation in [99].

However, in the following we are interested in the case where a magnetic field pulse
dissociates on average only a single molecule out of the BEC. This implies that the
decay of D(t) can be neglected compared to the dynamics of C0(t), such that the Fourier
transform C̃(ω) is essentially given by C̃0(ω). I will therefore focus on the uncoupled
closed-channel amplitude C0(t), from now on, and in particular on magnetic field pulses
that result in a sharply peaked momentum distribution, as required for interferometric
purposes. The following section is devoted to magnetic field pulses that optimize C̃0(ω)
with that respect. Equation (6.77) shows that any non-negligible decay of the closed
channel amplitude then merely results in an undesired smearing of the spectrum.

6.4 Optimal magnetic field pulse

Having established that the asymptotic dissociation state is essentially determined by the
Fourier transform of the closed-channel amplitude C(t), whose dynamics were analyzed
in the previous section, we proceed to characterize the magnetic field pulse shape that is
optimal in terms of providing wave packets with well-defined momentum. To this end,
we can restrict to the case of a single dissociation pulse. The generalization to sequences
of pulses is straightforward, essentially yielding their superpositions. A detailed elabo-
ration of a sequence of two dissociation pulses will be given in the following chapter. In
addition, as explained above, we may confine ourselves to the case of negligible deple-
tion of the BEC, where the closed-channel amplitude C(t) is well approximated by the
uncoupled component C0(t), whose dynamics is given by (6.57) and (6.58).

6.4.1 Dimensionless formulation

We start by switching to a more convenient representation. Since the resonance state
energy Eres(B(t)) is proportional to the magnetic field B(t) in the vicinity of the Feshbach
resonance, see (6.63), it is sufficient to investigate the dependence on Eres(B(t)). We
rewrite the integrand in the exponent of (6.58) as

Eres(B(t))+Ucl = E0 +∆EP(t/T ), (6.79)

where P(t/T ) describes a pulse with unit height; E0 denotes the base value, and ∆E
and T characterize the height and the width of the pulse, respectively. Introducing the
dimensionless energy ε = ∆ET/h̄ and the phase function

φ(t/T ) =
∫ t/T

t0/T
dt̃P(t̃)+φ0, (6.80)

we can write the Fourier transform of C0(t) as

e−iE0t0/h̄

C0(t0)
C̃0(ω +E0/h̄) =

∫
∞

−∞

dteiωte−iεφ(t/T ). (6.81)
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Given the pulse function P(t̃) is positive and has a compact support, the phase function
φ(t) undergoes a monotonic ascent interpolating between two constant levels. If the
pulse is also symmetric, P(−t̃) = P(t̃), the constant of integration φ0 can be chosen such
that the phase function φ(t) is antisymmetric, φ(−t) = −φ(t). The constant prefactor
on the left-hand side of (6.81) is irrelevant and will be neglected from now on.

6.4.2 Gaussian magnetic field pulse

We now ask for phase functions φ(t) that yield a well-behaved spectrum C̃0(ω). A
natural starting point is to consider the spectrum resulting from a Gaussian-shaped pulse
function P(t̃). In this case, as for most other pulses, the integral on the right-hand side
of (6.81) cannot be calculated exactly. But asymptotic expansion techniques can be
applied if we take the dimensionless energy ε to be large, ε � 1. This is a justified
assumption in realistic scenarios. An estimate with µres ≈ 10−2µB, ∆B = 100mG (where
B(t) = B0 +∆BP(t/T )) and T = 100ms yields ε = 103.

The Gaussian pulse leads to the error function,

φ(t̃) = erf(t̃),

whose analyticity admits a uniform asymptotic expansion [105], which is capable of han-
dling stationary points both lying on the real axis and in the complex plane. Neglecting
the irrelevant prefactor on the left hand side of (6.81), the result reads

C̃0(ω +E0/h̄)
T

= 2πi
a0

ε1/3 Ai(ε2/3
γ

2), (6.82)

with the coefficients

γ =

 i
(3

2

[
erf(α)− ωT

ε
α
])1/3

, ωT
ε

< 2√
π

−
(3

2

[
ωT
ε

α− erfi(α)
])1/3

, ωT
ε

> 2√
π

, (6.83)

and

a0 =

 −i(
3
2 [erf(α)−ωT α/ε])1/6

(ωT α/ε)1/2 , ωT
ε

< 2√
π

−i(
3
2 [ωT α/ε−erfi(α)])1/6

(ωT α/ε)1/2 , ωT
ε

> 2√
π

, (6.84)

where

α =


√
− ln

(√
π

2
ωT
ε

)
, ωT

ε
< 2√

π√
ln
(√

π

2
ωT
ε

)
, ωT

ε
> 2√

π

. (6.85)

A brief derivation of (6.82) is given in Appendix A.4. Numerical analysis verifies ex-
cellent agreement with the exact result for large ε . Figure 6.2 shows a plot of the corre-
sponding spectrum for ε = 100. It clearly does not exhibit a well-behaved peak structure,
but rather shows contributions from all energies covered by the pulse sweep. The oscil-
lating structure can be understood as due to the interference between the contributions
from the ascending and the descending slope of the pulse.
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Figure 6.2: Fourier transform C̃0(ω) of the uncoupled closed-channel amplitude, here
evaluated for a Gaussian magnetic field pulse with the dimensionless energy ε = 100.
In the plot the numerically exact result is indistinguishable from the asymptotic evalua-
tion as given by Eq. (6.82). As described in Section 6.2, C̃0(ω) essentially determines
the momentum distribution of the asymptotic dissociation state, see Eq. (6.52). One
observes that the spectrum does not exhibit a narrow peak-structure as one would re-
quire for atoms propagating with well-defined momenta. Rather, the spectrum exhibits
contributions from all energies the pulse sweeps over. The oscillations stem from the
interference between the contributions of the ascending and the descending slope of the
pulse.

6.4.3 Square-shaped magnetic field pulse

A clearer and more general insight into the relation between the pulse and the corre-
sponding spectrum can be obtained by retreating to the stationary phase approximation.
This comes at the cost of losing the spectrum in the tail region where the stationary
points of the exponent in (6.81) leave the real axis. On the other hand, also nonanalytic
functions can now be treated. For the sake of simplicity, we consider symmetric pulses,
P(−t̃) = P(t̃). In stationary phase approximation, we then get from (6.81)

C̃0(ω +E0/h̄)
T

=

√
8π

ε|P′(t̃ω)|
cos
[
ωTt̃ω − εφ(t̃ω)+

π

4

]
, for ωT/ε < φ

′′
max, (6.86)

where t̃ω denotes the positive (dimensionless) stationary point, which is implicitly de-
fined by φ ′(t̃ω) = ωT/ε . A brief derivation of (6.86) can be found in Appendix A.3.
Since t̃ω corresponds to the instant at which the pulse sweeps over the frequency ω , it
is manifest from (6.86) that the corresponding contribution to the spectrum is the more
suppressed the faster the pulse sweeps over the corresponding energy, as one expects
physically.

Aiming at a spectrum that is well-peaked at a specific energy, we thus must strive for
magnetic field pulses that sweep as fast as possible over the region of undesired energies
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Figure 6.3: Fourier transform C̃0(ω) of the uncoupled closed-channel amplitude com-
ponent for a square-shaped magnetic field pulse with dimensionless energy ε = 100. In
contrast to the Gaussian pulse spectrum, it exhibits a pronounced peak at ωT = ε . To-
gether with the connection (6.52) between C̃(ω) and the asymptotic dissociation state,
this proves the capability of the scheme to provide relatively well-defined atom mo-
menta, even though there is no way to tailor arbitrary dissociation states. In particular,
sequences of such pulses then can serve to generate highly nonclassical motionally en-
tangled states. (Since E0 < 0 the pole at ωT = 0 does not affect the asymptotic behavior
of the atoms.)

and then rest at a plateau determined by the desired energy. The (idealized) optimal
pulse with that respect is a square-shaped pulse,

P(t̃) = Θ(t̃ +1/2)Θ(t̃−1/2), (6.87)

for which (6.81) can be calculated directly, yielding

C̃0(ω +E0/h̄)
T

= 2π cos
(

ε

2

)
δ (ωT )+ sinc

(
ωT − ε

2

)
P
(

ε

ωT

)
. (6.88)

The pole at ωT = 0 can be traced back to the fact that the pulse function (6.87) is non-
vanishing only on a finite time interval. For E0 < 0, which corresponds to an asymptotic
magnetic field in the bound regime, this pole lies at a negative energy irrelevant for
the shape of the dissociation state, as was shown in Section 6.2. For our purposes it
is thus legitimate to restrict the discussion to positive frequencies with ω + E0/h̄ > 0.
A plot of (6.88) for ε = 100 is shown in Figure 6.3. As anticipated, the spectrum ex-
hibits a pronounced peak at ωT = ε , whose width is characterized by the pulse duration
T . According to (6.52), the corresponding dissociation state therefore exhibits a nar-
row momentum distribution, which renders it useful for the implementation of DTE and
HRE states.
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Discussion

This concludes the search for the optimal magnetic field pulse shape. As indicated in
the stationary phase calculation (6.86), by sweeping as fast as possible over undesired
energies one singles out a momentum distribution peaked at the desired energy. This has
been verified numerically for a large variety of pulse forms. (Idealized) square-shaped
pulses thus optimize the spectrum with respect to its sharpness. In particular, it is now
clear that smoothening the edges of the square shape inevitably enhances the undesired
ripples in the region of the energies swept over, contradicting the naive expectation that
they stem from the nondifferentiable ansatz (6.87) for the pulse.

More generally, we found that the nature of Feshbach dissociation dynamics puts
strong limitations on the possible range of states that can be generated. It is in general
not possible to find a pulse shape so as to generate a specified dissociation state. On the
other hand, as was demonstrated in [35] and will be elaborated in the following chapters,
the combination of a sequence of two dissociation pulses yields a promising perspective
to generate highly nonclassical motionally entangled two-atom states–the DTE and HRE
states–with the capacity to violate a Bell inequality.
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Chapter 7

Dissociation-time entanglement in
the Feshbach scenario

We have now all at hand to complete the description of the DTE scenario and to see
whether a Bell violation is possible or not in the Feshbach dissociation scheme. In
Chapter 5 I outlined the geometry of the experimental setup, and in the previous chapter
the asymptotic form of the Feshbach-induced dissociation state was derived within this
setting. Based on this preliminary work, I proceed to specialize to a double square-pulse
dissociation state and determine the corresponding two-particle momentum distribution.
After describing a possible implementation of the subsequent Mach-Zehnder interfer-
ometers, I determine the corresponding DTE fringe pattern based on the general results
in Chapter 3. For an appropriate choice of parameters, the possibility of a Bell violation
can be answered affirmatively.

7.1 Extraction of a DTE atom pair

Let me briefly recapitulate the course of the DTE scenario. Starting from a BEC of
diatomic Feshbach molecules, which resides in an optical dipole trap, a sequence of
two short magnetic field pulses dissociates a single atom pair, such that each atom is
delocalized into two consecutive, macroscopically distinct wave packets, as depicted in
Figure 7.1 a). The atoms propagate along the laser guide, where subsequent switched
Mach-Zehnder interferometers serve to rejoin the early and the late wave packets on each
side; the resulting interference in the output ports gives rise to nonlocal correlations, as
was elaborated in Chapter 3. In Chapter 5, on the other hand, we saw that a setup with an
overall extension on the order of 10cm and atomic velocities of vrel = 1cm/s is possible
as far as the laser parameters are concerned. I now complement this feasibility study
from the point of view of the state generation within the Feshbach dissociation scheme.

To this end, let us proceed by deriving the asymptotic form of the two-particle state
that is generated by a double pulse sequence in the described setup, allowing us to ver-
ify that it has the DTE structure (3.2) as described in Chapter 3. In particular, we can
then specify the corresponding momentum spectrum, which plays a crucial role for the
feasibility of the Bell test. Below in Section 7.3, this result is used to demonstrate ex-
plicitly that the resulting DTE state can violate a Bell inequality, despite of wave packet
dispersion.
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Figure 7.1: a) Experimental setup for the DTE Bell test. It starts with a 6Li2 Bose-
Einstein condensate of about 102 molecules in an optical dipole trap. A sequence of
two short magnetic field pulses, as shown in b), dissociates on average one molecule
per shot into a pair of counter-propagating atoms. The resulting two-particle state cor-
responds to a superposition of two subsequent dissociations, where each atom is delo-
calized into two consecutive wave packets that are separated by a distance of 5mm. The
two atoms propagate in opposite directions along the laser guide and eventually enter
switched, asymmetric Mach-Zehnder interferometers that are implemented by two more
laser beams crossing the guide in a triangular arrangement at small angles. These sec-
ond lasers are switched on after the early wave packets have passed the first crossing, but
before the late wave packets arrive. An additional perpendicular, blue-detuned blocking
laser beam, which is not depicted in the figure, may be used to support the deflection
of the late wave packets. This way, the early wave packets have to take the long paths,
whereas the late ones are directed into the short paths, as depicted in c). If the path
length differences cancel the distance between the early and the late wave packets, they
interfere and the joint probability of detection in the output ports of the interferometers
exhibits a fringe pattern as a function of the path length difference variation. Correlations
of the single-particle detection events thus have the potential to violate a Bell inequality.
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Feshbach dissociation state

In the previous chapter we found that after an arbitrary magnetic field pulse sequence
(close to an isolated resonance) the dissociated part of the state, |Φbg(t)〉, is described,
for low energies, at positions far from the dissociation center, and at large times, by the
asymptotic form (6.51)

|Φbg(t)〉 ∼Cbg|ϕcm
0,0〉|ϕ rel

0,0〉U
(0)
z,t |Ψz〉. (7.1)

Here U(0)
z,t denotes the free (two-particle) propagator in the longitudinal direction, while

the transverse motion is frozen in the harmonic ground state, |ϕcm
0,0〉 and |ϕ rel

0,0〉, resp., of
the guiding laser beam. The longitudinal part of the two-particle state, expressed in the
basis of the center of mass and relative momenta pcm and prel, is determined by (6.52)

〈pcm, prel|Ψz〉=
C̃(p2

cm/4mh̄+ p2
rel/mh̄+2ωG)

‖C̃‖
〈pcm|ψT〉, (7.2)

where C̃(ω) is the Fourier transform of the closed-channel probability amplitude C(t),
C̃(ω) =

∫
∞

−∞
dteiωtC(t). The Gaussian ground state of the trap laser |ψT〉 reflects the

trapping of the molecules before the dissociation. I substituted Ubg = 2h̄ωG in (7.2),
neglecting the energy offset−2U0,G, which can be absorbed by a redefinition of the zero
of energy. The quantity ‖C̃‖ normalizes the spectrum according to (6.49), while the
dissociation probability |Cbg|2 can be estimated by (6.53).

As was argued in the previous chapter, assuming a narrow resonance width and short
pulse durations, such that on average only a single molecule dissociates out of the BEC,
we can neglect the decay of the closed-channel amplitude C(t) and restrict us to the
uncoupled closed-channel amplitude C0(t). In a time-dependent magnetic field B(t) its
dynamics follows from (6.58)

C0(t) = C0(t0)exp
(
− i

h̄

∫ t

t0
dt ′[Eres(B(t ′))−2U0,T + h̄ωG]

)
. (7.3)

Note that I have substituted Ucl =−2U0,T + h̄ωG, neglecting the comparatively small trap
ground state energy h̄ωT/2 and the irrelevant offset −2U0,G. Let me remind the reader
that the resonance energy Eres(B(t)) = µres(B(t)−Bres) is measured with respect to the
background channel continuum threshold, whereas the trap laser potential depth U0,T
and the transverse trap frequency of the guiding laser ωG cause an additional energy
offset that has to be overcome in the dissociation process. C0(t0) indicates the proba-
bility amplitude for the two particles to be found in the resonance state at some initial
time t0 well before the dissociation pulses take place. Since we can assume that the
magnetic field before t0 has remained well below the resonance Bres, the corresponding
background channel component is negligible and we can safely set C0(t0) = 1 from now
on.

Balanced double dissociation pulse

A DTE atom pair is extracted from the BEC by applying a sequence of two short square
pulses in the external magnetic field, as shown in Fig. 7.1 b). We found in the last
chapter that such square-shaped pulses optimize the momentum distribution with respect
to its width. The pulse height must be chosen such that the desired dissociation velocity
of vrel = 1cm/s is accomplished. To this end the pulses have to provide not only the
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corresponding kinetic energy but also the energy required to overcome the longitudinal
trap depth U0,T and to reach the transversal ground state in the relative motion. The
pulse duration, on the other hand, controls the width of the generated wave packets and
the dissociation probability. For a sequence of two square pulses, each of height ∆B and
duration T , separated by the time τ ,

B(t) = B0 +∆Bθ

(
t + τ +

T
2

)
θ

(
−τ +

T
2
− t
)

+∆Bθ

(
t +

T
2

)
θ

(
T
2
− t
)

, (7.4)

the Fourier transform of (7.3) can be evaluated analytically, yielding

C̃0(ω) =
T µres∆Bsinc [(ω−µres[B0 +∆B−Bres]/h̄+2U0,T/h̄−ωG)T/2]

h̄ω−µres[B0−Bres]+2U0,T− h̄ωG
(7.5)

×
{

exp(−iωτ)+ exp
(

i
h̄
[2U0,Tτ−µres∆BT + µres(Bres−B0)τ− h̄ωGτ]

)}
,

where we have neglected an irrelevant global phase. Here, B0 stands for the magnetic
field base value before and after the pulses, and Bres indicates the resonance position.
Comparing (7.5) with the single pulse result (6.88), we confirm that on the level of the
dissociation state the double pulse yields the superposition of the single pulse states,
where the early wave packet undergoes a free time evolution in the period τ of the pulse
separation. Note that we omitted the delta-function term, which only contributes at ener-
gies below the continuum threshold and hence does not affect the asymptotic dissociation
state. It is now helpful to introduce the mean energy of the relative motion

p2
0

m
= µres(B0 +∆B−Bres)−2U0,T− h̄ωG, (7.6)

as well as the characteristic width

∆p2 =
2mh̄

T
, (7.7)

and the pulse energy p̄2/m = µres∆B. The dissociated state (7.2) thus takes the form

‖C̃0‖〈pcm, prel|Ψz〉=〈pcm|ψT〉
T p̄2sinc[

(
p2

cm/4+ p2
rel− p2

0
)
/∆p2]

p2
cm/4+ p2

rel− p2
0 + p̄2 (7.8)

×
{

exp
(
−i
[

p2
cm

4mh̄
+

p2
rel

mh̄

]
τ

)
+ exp(iφτ)

}
,

where the relative phase between the early and the late dissociation component is given
by

φτ = [2U0,Tτ−µres∆BT + µres(Bres−B0)τ]/h̄+ωGτ. (7.9)

The DTE state

The desired dissociation velocity of vrel = 1cm/s is obtained for a narrow, sufficiently
isolated resonance (resonance width ∆Bres = 1mG and µres = 0.01µB) by applying a
pulse duration of T = 60ms and a pulse height of B0 +∆B−Bres = 200mG. The chosen
pulse duration reconciles a small dissociation probability with the tight restrictions on
the momentum distribution as imposed by dispersion, since the momentum spectrum
(7.8) is sharply peaked at (pcm, prel) = (0,±p0), with p0/m = 5mm/s, for our choice of
parameters. This is confirmed by considering the ratios σp,T/p0 and ∆p/p0, where σp,T
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denotes the momentum uncertainty exhibited by the longitudinal trap ground state |ψT〉.
In the harmonic approximation σp,T =

√
h̄ωTm, this yields the ratio σp,T/p0 = 0.024,

while the pulse duration T = 60ms implies ∆p/p0 = 0.11.
We can exploit the smallness of these ratios in order to calculate the normalization

‖C̃0‖2 according to (6.49)

‖C̃0‖2 =
∫

∞

−∞

dpcm

∫
∞

−∞

dprel

∣∣∣∣C̃0

(
p2

cm

4mh̄
+

p2
rel

mh̄
+2ωG

)∣∣∣∣2 |〈pcm|ψT〉|2. (7.10)

For this, we can focus on a single-pulse contribution, since in the limit τ � T the spec-
trum (7.8) represents the superposition of two spatially distinct dissociation states, which
contribute equally to the norm. Within the range σp,T where 〈pcm|ψT〉 is non-negligible,
the Feshbach contribution C̃0(p2

cm/4mh̄+ p2
rel/mh̄+2ωG) to the right-hand side of (7.8)

is only weakly dependent on the center-of-mass momentum pcm, which permits to re-
place pcm by its mean value pcm = 0. The remaining integral over the relative mo-
mentum prel can be evaluated in good approximation by linearizing its argument in the
vicinity of p0. Setting p2

rel− p2
0 ≈ 2p0(prel− p0) within the region of non-negligible

C̃0(p2
rel/mh̄+2ωG) thus yields

‖C̃0‖2 =
2πT 2∆p2

p0
(7.11)

for the double pulse. With this, and acknowledging that the momentum dependent phase
factor on the right-hand side of (7.8) effects a free time evolution, we end up with a
longitudinal asymptotic wave packet of the form

|Ψz〉=
(

U(0)
z,τ + eiφτ

)
|Ψ0〉/

√
2. (7.12)

Clearly, it has the structure (3.2) of a DTE state, being the superposition of an early and
a late dissociation contribution, and the free time evolution of the early state component
effecting a dispersion-induced distortion with respect to the late state component. The
inferred single-pulse momentum spectrum reads

〈pcm, prel|Ψ0〉=
√

p0 p̄2sinc
[(

p2
cm/4+ p2

rel− p2
0
)
/∆p2

]
√

π∆p
(

p2
cm/4+ p2

rel− p2
0 + p̄2

) 〈pcm|ψT〉, (7.13)

which is plotted in Fig. 7.2 for our choice of parameters. Let me note that the trap
ground state is determined by

〈pcm|ψT〉=

√√
(2/π)σx,cm

h̄
exp
[
−
(

σx,cm pcm

h̄

)2
]
, (7.14)

where the position uncertainty follows from σx,cm =
√

h̄/(2ωTM). As anticipated, the
spectrum (7.13) is sharply peaked at (pcm, prel) = (0,±p0). In compliance with (3.3), the
state |Ψ0〉 describes a pair of symmetrically counterpropagating particles, in the sense
that each particle can propagate in both directions, provided the other particle takes the
opposite direction.

When the dissociation sequence is completed, and for our chosen time separation of
τ = 1s between the dissociation pulses, the early and late wave packets of each particle
propagate at a velocity of 5mm/s, separated by a distance of 5mm on each side. Imme-
diately after the dissociation process, the widths of the early and late single-particle wave
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Figure 7.2: Momentum distribution |〈pcm, prel|Ψ0〉|2 for a single Feshbach dissociation
pulse with pulse duration T = 60ms, magnetic field base value Bres−B0 = 200mG and
pulse height ∆B = 400mG. Assuming a longitudinal trap depth of U0,T/kB = 50nK
and a transverse trapping frequency of ωG/2π = 300Hz this yields the dissociation
velocity p0/m = 5mm/s. The upper plot shows the momentum distribution in the
pcm = 0 plane on a logarithmic scale. As required, the distribution exhibits sharp peaks
at (pcm, prel) = (0,±p0), corresponding to symmetrically counterpropagating particles.
The lower logarithmic contour plot focuses on the vicinity of the (pcm, prel) = (0,+p0)
peak, including the dependence on the center of mass momentum pcm. The width in
prel is characterized by ∆p2 = 2mh̄/T , with (∆p/p0)2 = 0.012; the width in pcm is es-
sentially determined by the momentum uncertainty σp,T of the longitudinal trap laser
ground state |ψT〉, which follows from the trap frequency ωT/2π = 0.25Hz, yielding
σp,T/p0 = 0.024.
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packets are on the order of about 200 µm. This follows from a Gaussian best fit on the
momentum distribution (7.13) (which yields the general relation σp,rel ≈ 2.4µ h̄/(p0T ))
and the Heisenberg uncertainty relation. The narrow momentum spectra of the wave
packets guarantee that these extensions are not appreciably modified during the prop-
agation to the interferometers if the propagation time does not exceed about 10s. The
early and late wave packets are thus still sufficiently separated when arriving at the in-
terferometers for the switches to be applicable.

The dissociation probability for the double pulse sequence follows from Eqs. (6.53)
and (7.11). It depends, apart from the shape of the magnetic field pulses, on the res-
onance parameters ∆Bres and µres, on the guiding laser trapping frequency ωG, and on
the background channel scattering length abg. For our parameters and a generic value
of abg = 100a0, we get |Cbg|2 ≈ 0.04, which confirms the assumed small dissociation
fraction and thus justifies a posteriori the omission of the decay of the closed-channel
amplitude in (7.3).

We rely on post-selection in order to guarantee that only one atom pair per shot enters
the interferometers. This is unproblematic, since the final fluorescence detection of the
slow, strongly confined atoms can be done with single particle resolution [91], such that
it is easy to disregard the cases of multiple atom pairs in the process. For a start, we
stick to this simple post-selection procedure; in a more refined setup it is conceivable
to use a specially prepared optical lattice where each site is occupied by at most one
molecule [95].

7.2 Interferometers and measurements

Since each atom in a DTE state is described by two spatially distinct, propagating
wave packets, which correspond to the early and the late dissociation times, the use
of switched, asymmetric Mach-Zehnder interferometers can serve first to endow these
wave packets with additional relative phases and then to rejoin them. In detail, the early
wave packets propagate through the long arms of the interferometers, whereas the late
ones are directed through the short arms, see Fig. 7.1 c). If the detour of the early wave
packets is chosen appropriately, they rejoin the late ones in the final beam splitters. The
joint probability for detecting the particles in the output ports of the two interferometers
then exhibits a fringe pattern under variation of either path length difference similar to
Bell correlations. Let me remind the reader that in the DTE scenario the only relevant in-
formation required to extract these correlations is the output port combination where the
atoms are detected. This information can be obtained by simple position measurements,
without the need of a particular spatial or temporal resolution.

The interferometers may be implemented by two more red-detuned laser beams
crossing the guide in a triangular arrangement at small angles, see Fig. 7.1. The path
length differences must compensate the 5mm distance between the early and late wave
packets of each particle. The variations of the path length differences required for the
implementation of the Bell control parameters must be on the order of the de Broglie
wave length λrel = 12.4µm and can be achieved by shifting the crossing point of the two
lasers or by inclining the mirror angles. The additional laser beams are switched on only
after the early wave packets have passed the crossing points, but before the late ones ar-
rive there. The crossings of the beams then act as beam splitters, while the required atom
mirrors may be realized using evanescent light fields or blue-detuned laser beams per-
pendicular to the interferometer planes [106, 107]. Such perpendicular blocking beams
at the crossing point of the first beam splitters could also support the full deflection of the
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late wave packets into the short arms. This way, the early wave packets pass through the
long arms, whereas the late wave packets are deflected into the short arms, as depicted
in Fig. 7.1 c). Note that a simplified setup could do without the switching, replacing the
switches by ordinary beam splitters, at the cost of 50% post-selection. The possibility to
implement the switches with slow material particles, on the other hand, would avoid the
drawback of a local hidden variable model, which photonic time-bin entanglement Bell
tests have been suffering from [88, 89].

The particle detections in the output ports may be implemented by resonant laser
beams crossing the guiding lasers behind the final beam splitters, as sketched in Fig. 7.1
a). They effect fluorescence detection with near unit efficiency and with single particle
resolution [91]. As I argued in Chapter 3, it is natural from an experimental point of view
to implement the detection by time-of-arrival measurements. This implies that one waits
for the atoms to arrive at the continuously switched-on lasers. These are chosen suffi-
ciently intense to detect the atoms at their passage with near unit efficiency, but without
causing reflection of the wave packets [82–86]. In contrast to genuine position mea-
surements, such time-of-arrival measurements do not require to illuminate a significant
region in the output ports.

7.3 The DTE Bell test

In this section I demonstrate explicitly that the DTE state defined by (7.12) and (7.13),
when subjected to the interferometric transformation, produces an experimentally re-
solvable fringe pattern that violates a Bell inequality.

DTE correlation function

In Chapter 3 we found that the joint probability for detecting a pair of counterpropagating
atoms in a particular output port combination labeled by σ1, σ2 (σi =±1) follows from

Pdte(σ1,σ2|`1, `2)

=
1
4

[
1+σ1σ2Re

{
e−iφτ

∫
∞

−∞

dpcm

∫
∞

−∞

dprel|〈pcm, prel|Ψ(+)
0 〉|

2 (7.15)

×exp
(

i
pcm(`1 + `2)

2h̄
+ i

prel(`1− `2)
h̄

− i
τ(p2

cm/4+ p2
rel)

mh̄

)}]
.

In contrast to (3.17), it is convenient to evaluate the integrals in center of mass and rel-
ative coordinates. In accordance with (3.12), the two-particle momentum distribution
|〈pcm, prel|Ψ(+)

0 〉|2 derives from the symmetric distribution |〈pcm, prel|Ψ0〉|2 by restrict-
ing each particle to propagate into a particular direction, say, particle 1 into positive
direction and particle 2 into negative direction. Hence we have

|〈pcm, prel|Ψ(+)
0 〉|

2 = 2θ(prel)|〈pcm, prel|Ψ0〉|2,

where the additional factor 2 is imposed by normalization. If the two-particle momentum
distribution |〈pcm, prel|Ψ0〉|2 is sufficiently well-behaved and the path length differences
`1, `2 are chosen such that the early and late wave packets overlap in the output ports,
the detection probability (7.15) reveals a fringe pattern under variation of `1 and `2. It is
remarkable that the quality of this fringe pattern is only affected by the free time evolu-
tion between the early and the late dissociation, whereas any subsequent time evolution
does not have any effect, despite of the ongoing broadening of the wave packets.



7.3. THE DTE BELL TEST 79

-150 -100 -50 0 50 100 150
0.0

0.1

0.2

0.3

0.4

0.5

p0D{�Ñ

P
dt

eH
Σ

1
=

+
,Σ

2
=

+
È{

1
=

{
0

+
D

{
,{

2
=

-
{

0
L

-150 -100 -50 0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

p0D{�Ñ

vi
si

bi
lit

y

Figure 7.3: Joint probability Pdte(σ1,σ2|`1, `2) for detecting a pair of counter-
propagating atoms in the output port combination σ1 = +1 and σ2 = +1 under variation
of the path length difference `1. At the outset, `1 and `2 are chosen such that optimum
overlap of the early and the late wave packets is achieved in the output ports of the
beam splitters. The upper plot shows the resulting fringe pattern as it would be seen by
the experimenter. The characteristic length for its period is set by the de Broglie wave
length of the relative motion, λrel = 12.4µm. The finite range of the envelopes reflects
the decreasing wave packet overlap with increasing offset ∆` from the optimum overlap
value. The lower plot highlights the corresponding fringe visibility. The dashed line
marks the visibility threshold that has to be exceeded in order to violate a Bell inequal-
ity. A sufficient number of fringes exceeds the threshold to manifest the corresponding
violation.

For the single pulse momentum spectrum (7.13) of the DTE state (7.12) the joint
detection probability (7.15) can be evaluated numerically. The resulting fringe pattern
for the output port choice σ1 = +1 and σ2 = +1 under variation of `1 can be seen in Fig.
7.3. Specifically, we choose `1 = `0 + ∆` and `2 = −`0, where `0 = τ p0/m defines the
optimum overlap path length difference canceling the separation between the early and
the late wave packets. The variation of `2 or combinations of `1 and `2 would of course
yield similar fringe patterns. The (constant) relative phase φτ is neglected since it only
results in a phase shift of the fringe pattern, while the upper and lower envelope remain
unaffected.

Inspecting Fig. 7.3, we can identify several generic features of the DTE fringe pat-
tern. As it was the case for the Gaussian momentum distribution (3.20), the charac-
teristic length for its period is set by the de Broglie wave length of the relative motion
λrel = h/p0, indicating that the propagation-induced phase variation of the wave packets
is responsible for their interference. In our case, we get λrel = 12.4µm. This means that,
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in order to be able to detect the fringe pattern, the interferometers have to be kept stable
by about 1µm.

The finite envelope size of the fringe pattern, on the other hand, can be traced back
to the unavoidable offset from the optimum wave packet overlap when varying the path
length differences. Interference cannot occur if the wave packets miss each other in the
output ports. Indeed, the width of the fringe pattern, which is of about 200µm, matches
approximately the initial position spread of the single-particle wave packets. Minor
modifications to this can be traced back to the dispersion-induced distortion between the
early and the late wave packets. We find that the envelope contains a sufficient number
of fringes, which is in accordance with the Gaussian condition (3.21).

Possibility to observe a Bell violation

In Fig. 7.3 one observes an overall visibility reduction, which prevents the fringe pat-
tern to vary with its maximum amplitude of 0.25 even in the case of optimum overlap.
This was identified in Chapter 3 to be a genuine effect of the dispersion-induced dis-
tortion between the early and the late wave packets. Let me remind the reader of our
insight that, if the early and late wave packets were identical up to displacement, the
visibility should not be affected, independently of their shape, see also [36]. Taking the
dispersion-induced distortion into account, only sufficiently well-behaved single-pulse
momentum distributions guarantee the required fringe contrast. Indeed, the Gaussian
analysis (3.20) revealed that the overall visibility is sensitive to the characteristic dis-
persion times Tcm = 2mh̄/σ2

p,cm and Trel = mh̄/2σ2
p,rel. The resulting fringe pattern can

exceed the visibility threshold 1/
√

2 as required for violating a Bell inequality only if
these are at least on the order of the pulse separation time τ , τ/Tcm . 1 and τ/Trel . 1,
compare with (3.22). For our choice of τ and vrel, this translates into the condition
that the center-of-mass and relative motion momentum spreads σp,cm and σp,rel be small
compared to the average (relative) momentum p0, (σp,cm/p0)2 . 2mh̄/τ p2

0 ≈ 10−3 and
(σp,rel/p0)2 . mh̄/2τ p2

0 ≈ 10−4. As shown above, the momentum spreads are charac-
terized in our case by σp,T/p0 = 0.024 and (∆p/p0)2 = 0.012. This yields indeed a
momentum distribution that is sufficiently well peaked to violate a Bell inequality, as
can be seen in the lower plot in Fig. 7.3. I emphasize that the potential violation sustains
over a sufficient number of fringes to be resolvable in experiment.

Another viable approach to attain the expected fringe pattern is to fit the given (suf-
ficiently well-behaved) momentum distribution with a Gaussian. This permits one to ap-
ply the above mentioned Gaussian analysis from Chapter 3, as was done in [35]. How-
ever, for spectra of the form (7.13) such a least square fit has the tendency to slightly
overestimate the accessible visibility. A more conservative procedure than least square
fitting would define the fit as an upper envelope of the corresponding momentum distri-
bution. We note that the second momenta of the momentum distribution resulting from
(7.13) are not useful for characterizing the widths of the peaks, while the Gaussian fitting
procedure yields a comparatively good approximation in our context.

A final remark should be made on the relative phase φτ between the early and late
state component. As can be seen in (7.15), it also enters the joint detection probability
and hence influences the fringe pattern. It was neglected in the numerical investigation
since it only effects a phase shift of the fringe pattern. Of course, this assumes that φτ

remains constant from shot to shot, while an uncontrolled variation of φτ already on
the order of 100mrad would spoil the fringe pattern. In our Feshbach calculation φτ is
determined by (7.9). Hence, we have to require that the magnetic field pulses can be
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kept stable and are reproducible from shot to shot with a relative accuracy of 10−5. This
seems to be the most restrictive condition on the proposed experiment; surely it is not
easy to achieve this accuracy, but it should be doable.

Conclusions Summarizing, I demonstrated that the implementation of the DTE Bell
test within the Feshbach dissociation scheme is possible. Assuming viable experimental
conditions, a double square-pulse dissociation state was shown to be capable of violating
a Bell inequality. The setup allows one to reach macroscopic distances between the two
measurement devices on the order of 10 centimeters. Remarkably, not only the two
atoms are separated on a scale of several centimeters, but also the early and the late
wave packets are separated by a distance of 5mm on each side. The experiment would
thus manifest both delocalization and entanglement in the macroscopic regime.



82 CHAPTER 7. DISSOCIATION-TIME ENTANGLEMENT IN THE FESHBACH SCENARIO



83

Chapter 8

Hedgehog-rabbit Bell test in the
Feshbach scenario

Following a line of arguments similar to the DTE case, I now discuss the generation of a
HRE state in the Feshbach dissociation scenario. The HRE state generation protocol is
distinguished from the DTE prescription by employing an unbalanced pulse sequence.
Building on the results from Chapter 4, the corresponding Feshbach dissociation state
is shown to exhibit Bell correlations with sufficient fringe contrast to support a Bell
violation when subjected to position measurements in the overlap region and their a
posteriori post-selection.

8.1 Extraction of a HRE atom pair

As pointed out in Chapter 4, the generation protocol for the HRE state is almost identical
to that of the DTE state. A slight enhancement of the second dissociation pulse supplies
the corresponding wave packets with a larger kinetic energy, enabling them to catch up
with the preceding ones, see Figure 8.1. Position measurements in the overlap region on
each side were shown to reveal nonlocal correlations, whose suitable dichotomization
admits the formulation of a Bell test. I demonstrated the successful feasibility of the
latter for Gaussian wave packets described by the parameters (4.10),

τ = 1s, σ ≈ 50 µm,

vf = 0.5cm/s, vs = 0.45cm/s. (8.1)

We thus assume that these parameters are expedient candidates for the Feshbach sce-
nario, as well. Here σ denotes the initial single-particle position uncertainty. Since these
parameters are close to those of the DTE scenario, we can apply the same laser setup
as presented in Chapter 5.1, where laser guiding of atoms with the nearby velocities vf
and vs was shown to be possible. Moreover, the resulting meeting point xm = 4.5cm
and meeting time tm = 9s satisfy the experimental limitations due to the finite Rayleigh
length and photon scattering. The position uncertainty of the initial Gaussian center of
mass state |ψT〉 is determined by the trap laser and reads σx,T =

√
h̄/4ωTm≈ 40 µm. It

remains to be shown that the corresponding Feshbach dissociation state describing the
relative motion with σx,rel ≈ 50 µm is sufficiently well-behaved to support the required
fringe contrast.
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Figure 8.1: Generation of a HRE state in the Feshbach dissociation scenario. A sequence
of two unbalanced, square-shaped magnetic field pulses, as shown in b), delocalizes each
atom into two consecutive wave packets, such that the followers (“rabbits”), which are
endowed with a larger kinetic energy, eventually catch up with the preceders (“hedge-
hogs”). The pulse parameters in b) yield wave packets that propagate with vs = 4.5mm/s
and vf = 5mm/s, respectively. Together with the resulting meeting point xm = 4.5cm and
time tm = 9s, these parameters are in compliance with the experimental frame presented
in Chapter 5. Position measurements in the overlap region on each side reveal nonlo-
cal correlations, whose suitable dichotomization admits their interpretation in terms of a
Bell test. To this end, the measurement times take the role of the Bell control parameters.
The square-shaped pulses yield momentum spectra that are sufficiently well-behaved to
support the fringe contrast required for a Bell violation.
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Unbalanced double dissociation pulse

We want to determine the Feshbach HRE state as produced by a sequence of two unbal-
anced square-shaped magnetic field pulses. In the previous Chapter we already found the
Feshbach dissociation state for the balanced case. The reader is referred to this chapter
for a short summary of the relation between applied magnetic field pulse and resulting
asymptotic dissociation state. Generalizing to the situation depicted in Figure 8.1 b),
a sequence of two dissociation pulses of duration Ts and Tf and height ∆Bs and ∆Bf,
respectively,

B(t) = B0 +∆Bsθ

(
t + τ +

Ts

2

)
θ

(
−τ +

Ts

2
− t
)

+∆Bfθ

(
t +

Tf

2

)
θ

(
Tf

2
− t
)

, (8.2)

one obtains for the Fourier transform of the (uncoupled) closed-channel amplitude in
close analogy to (7.5)

C̃0(ω) =
Tsµres∆Bssinc [(ω−µres[B0 +∆Bs−Bres]/h̄+2UT/h̄−ωG)Ts/2]

h̄ω−µres[B0−Bres]+2UT− h̄ωG

×exp(−iωτ)

+
Tfµres∆Bfsinc [(ω−µres[B0 +∆Bf−Bres]/h̄+2UT/h̄−ωG)Tf/2]

h̄ω−µres[B0−Bres]+2UT− h̄ωG

×exp
(

i
h̄
[2UTτ−µres∆BsTs + µres(Bres−B0)τ− h̄ωGτ]

)
. (8.3)

Introducing again the mean energy p2
0,s/m = µres(B0 + ∆Bs− Bres)− 2UT− h̄ωG, the

characteristic width ∆p2
s = 2mh̄/Ts and the pulse energy p̄2

s/m = µres∆Bs, and similar
for p0,f, ∆pf and p̄f, with ∆Bs and Ts replaced by ∆Bf and Tf, the dissociated state now
reads as

〈pcm, prel|Ψz〉 = 〈pcm|ψT〉
Ts p̄2

s sinc
[(

p2
cm/4+ p2

rel− p2
0,s

)
/∆p2

s

]
‖C̃0‖(p2

cm/4+ p2
rel− p2

0,s + p̄2
s )

(8.4)

×exp
(
−i
[

p2
cm

4mh̄
+

p2
rel

mh̄

]
τ

)

+〈pcm|ψT〉
Tf p̄2

f sinc
[(

p2
cm/4+ p2

rel− p2
0,f

)
/∆p2

f

]
‖C̃0‖(p2

cm/4+ p2
rel− p2

0,f + p̄2
f )

exp(iφτ).

The relative phase between the early and the late dissociation component is given here
by

φτ = [2UTτ−µres∆BsTs + µres(Bres−B0)τ]/h̄+ωGτ. (8.5)

As expected, the state superposes structurally similar wave packets of different veloci-
ties.

Pulse parameters

The aspired state properties (8.1) can be obtained by choosing the pulse parameters

B0 +∆Bs−Bres = 192mG, B0 +∆Bf−Bres = 200mG,

Ts = 30ms, Tf =
vf

vs
Ts = 33ms. (8.6)
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The pulse durations are chosen such that they yield equal dissociation probabilities for
the early and late state component. In addition, the momentum spectra are sharply
peaked at (pcm, prel) = (0,±p0,s) and (pcm, prel) = (0,±p0,f), with p0,s/m = 4.5mm/s
and p0,f/m = 5mm/s, respectively. The center of mass uncertainty σp,T/p0,f = 0.024
remains unchanged as compared to the DTE scenario, since we choose the same trap
laser parameters, and the corresponding ratio for the slow component is modified in-
significantly to σp,T/p0,s = 0.027. The uncertainties in the relative motion now amount
to ∆pf/p0,f = 0.15 and ∆ps/p0,s = 0.17, which is due to the approximate halving of the
pulse durations as compared to the DTE protocol. The smallness of these ratios admits
to calculate the normalization ‖C̃0‖2 following the same reasoning as in Chapter 7. One
thus obtains

‖C̃0‖2 = πT 2
s ∆p2

s/p0,s +πT 2
f ∆p2

f /p0,f, (8.7)

in analogy to (7.11). Since the chosen pulse durations yield equal dissociation probabil-
ities for both pulses, this can be rewritten as

‖C̃0‖2 = 2πT 2
s ∆p2

s/p0,s = 2πT 2
f ∆p2

f /p0,f. (8.8)

HRE state

The dissociation state (8.4) describes the superposition of two wave packets, where the
momentum dependent phase factor on the right-hand side effects a free time evolution.
We thus can write

|Ψz〉=
(

Û
(0)
z,τ |ΨS〉+ eiφτ |ΨF〉

)
/
√

2. (8.9)

Properly normalized, the early slow state component in momentum representation reads
as

〈pcm, prel|ΨS〉=
√p0,s p̄2

s sinc
[(

p2
cm/4+ p2

rel− p2
0,s

)
/∆p2

s

]
√

π∆ps

(
p2

cm/4+ p2
rel− p2

0,s + p̄2
s

) 〈pcm|ψT〉, (8.10)

and similar for |ΨF〉, with p0,s, ∆ps and p̄s replaced by p0,f, ∆pf and p̄f. These momen-
tum distributions are structurally similar to the DTE case depicted in Figure 7.2. The
expressions (8.9) and (8.10) clearly reproduce the structure of the HRE state (4.1). The
dissociation probability for the parameters (8.6) is approximately halved as compared to
the DTE case, |Cbg|2 ≈ 0.02, which stems from the halving of the pulse durations. This
can be compensated by doubling the number of condensed molecules or by choosing a
wider resonance.

In order to get an estimate of the position uncertainty in the relative motion, one
may determine a Gaussian best fit on the momentum distribution (8.10) and then use the
Heisenberg uncertainty relation. The thus obtained general relation

σp,rel,s ≈ 2.4
µ h̄

p0,sTs
, (8.11)

and similar for σp,rel,f, then yields σx,rel,s ≈ 56 µm and σx,rel,f ≈ 70 µm for the pulse
parameters (8.6). This confirms, in combination with σx,T ≈ 40 µm, the approximate
reproduction of the HRE parameters (8.1).

8.2 The HRE Bell test

In the following, we investigate the HRE scenario when applied to the Feshbach disso-
ciation state (8.9) and (8.10).
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Position correlations

In Chapter 4 we determined the joint probability density P(x1,x2|t1, t2) to detect atom 1
at position x1 when measuring at time t1 and atom 2 at position x2 when measuring at
time t2 for a general HRE state, compare with (4.8). The HRE state was characterized by
the two-particle momentum representations Ψ̃S(p1, p2) and Ψ̃F(p1, p2) of the early slow
and late fast state components. Specializing to the Feshbach dissociation state (8.10),
we must transform from the center of mass and relative coordinates to single-particle
coordinates using pcm = p1 + p2 and prel = (p1− p2)/2, respectively; with this we can
identify Ψ̃S(p1, p2) = 〈pcm, prel|ΨS〉, and similar for Ψ̃F(p1, p2).

Remember that (4.8) was derived under the assumption that the wave packets are
detected in the dispersion-dominated regime, where they are essentially determined by
their momentum distribution, irrespectively of their initial spatial shape. For Gaussian
wave packets it was shown by comparison with the exact result that this constitutes an
excellent approximation for the parameters (8.1). Since the Feshbach dissociation state
(8.10) reproduces these parameters fairly well, it is legitimate to transfer the validity of
(4.8) to this state.

The resulting spatial fringe pattern is shown in Figure 8.2. The seemingly Gaussian
shape of its envelope stems from the center of mass trap state; however, we will find that
the dichotomic two-particle correlations are strongly influenced by the non-Gaussian
relative motion. Linearization in the vicinity of the meeting point xm = vfτ/(vf/vs−1) =
4.5cm and the meeting time tm = τ/(vf/vs− 1) = 9s predicts the spatial period λhre =
h/(pf− ps) = 137 µm and the temporal period Thre = h/(p2

f /2m− p2
s/2m) = 29ms. The

former can be confirmed by inspection of Figure 8.2, the latter by inspection of Figure
8.3 b).

Dichotomic correlation function

In order to come up with Bell correlations, we introduced in Chapter 4 a prescription
that assigned to each position measurement outcome a dichotomic value, adopting the
periodic structure of the spatial fringe pattern, see Figure 8.2. The joint probability to
detect atom 1 at a position that has been assigned to the dichotomic value σ1 when
measuring at t1 and to detect atom 2 at a position that has been assigned to σ2 when
measuring at t2 can then be written as

P(σ1,σ2|t1, t2) =
∫

dx1

∫
dx2χσ1(x1)χσ2(x2)P(x1,x2|t1, t2), (8.12)

where the appropriate dichotomization functions χσ (x) are determined by (4.30). This
definition of the dichotomization functions includes the possibility to disregard a fraction
p− 1 < 1 of the position measurement outcomes, where p denotes the post-selected
fraction. In principle, we can evaluate (8.12) numerically for the Feshbach dissociation
state (8.10), as will be done below; however, a deeper insight into the correlation function
is gained by making use of the scale separation (the envelope varies slowly over the
extent of a spatial period) and the local linearizability of the fringe pattern. This permits
one to derive the analytic expression (4.33) for the correlation function (normalized on
the post-selected fraction),

P(ps)(σ1,σ2|t1, t2) =
1
4

{
1+σ1σ2E(t1, t2)sinc2

[
π

2
p
]

cos
[
ω(∆t1 +∆t2)−φ

′]} , (8.13)

which makes the analogy with the Bell correlation function manifest. The validity of
these assumptions for our set of parameters can be confirmed by inspection of Figure 8.2.
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Figure 8.2: Joint detection probability density (4.8) for the Feshbach dissociation state
(8.10), conditioned on one atom being detected at the meeting point and at the meeting
time. This is superimposed by the corresponding dichotomization function (4.30) with
p = 1 (truncated at 0.0005). Although the single-particle spatial fringe pattern seems to
be dominated by the Gaussian center of mass state, the non-Gaussian relative motion in
(8.10) strongly influences the two-particle correlations. The length scale of the fringe
pattern is accurately reproduced by the linear prediction λhre = h/(pf− ps) = 137µm =
3.4σx,cm, as expected. Interference patterns on that scale can be resolved conveniently,
e.g., with laser illumination. The extent of the envelope ∆xmax, on the other hand, which
is on the order of ∆xmax ≈ 102σx,cm ≈ 4mm, determines the region to be illuminated.
From the plot we can confirm the slow variation of both the spatial period (local lin-
earizability) and the envelope as compared to the wave length (scale separation). The
analytic expression of the dichotomic correlation function (8.13) is based on these two
assumptions. The superimposed dichotomization function (4.30) is chosen to adopt the
periodic structure of the fringe pattern; in spite of the rather small variation of the spa-
tial period, such an adaptive dichotomization is required in order to maintain the phase
relation over the entire extent of the envelope.
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The visibility of the fringe pattern is controlled, aside from the post-selection parameter
p, by the envelope function E(t1, t2), which describes the overlap of the early slow and
late fast wave packets, compare with (4.28).

Bell violation

The structural similarity between the dichotomic correlation function (8.13) and the Bell
correlation function (2.7) permits one to interpret the HRE scenario in terms of a Bell
test. In order to establish a Bell violation it is required that the visibility of the fringe pat-
tern exceeds the threshold value 1/

√
2≈ 0.71, which can only be achieved when taking

post-selection into account, p < 0.63, even in the case of optimum overlap, E(tm, tm)≈ 1.
In fact, for the dissociation state (8.10) the envelope function (4.28) evaluates at the meet-
ing time as E(tm, tm) ≈ 0.85, which is certainly well above 1/

√
2. However, it requires

to post-select to a fraction with p < 0.46. Remarkably, the Gaussian states (4.2) yielded
E(tm, tm)≈ 1 for similarly chosen parameters, compare with (4.29). The visibility reduc-
tion regarding the dissociation state hence reflects the influence of its less well-behaved
non-Gaussian relative motion.

Figure 8.3 a) shows the envelope function (4.28) evaluated for the dissociation state
(8.10) as a function of the measurement time. It exhibits a plateau over a range of about
2s in the vicinity of the meeting time, and hence covers a multitude of temporal peri-
ods Thre = 29ms, which enables the experimenter to sweep over several fringe maxima
without significant loss of contrast. Remember that she controls the measurement times
and thus can ensure to remain close to tm. Figure 8.3 b) compares the analytic corre-
lation function (8.13) with the direct numerical evaluation of (8.12) for the dissociation
state (8.10). The good agreement of their contrast confirms the validity of the under-
lying assumptions (scale separation and local linearizability), whose applicability was
already indicated in Figure 8.2. The discrepancy in the phase can be traced back to the
redefinition of the phase of the dichotomization functions in the derivation of (8.13).

8.3 Implementation of position measurements

The feasibility of the HRE Bell test is based on the experimental ability to perform
position measurements with an accuracy sufficient to resolve the spatial fringe pattern,
whose scale is determined by λhre = 137 µm. Available technology suggests to employ
laser illumination for the implementation of the position measurements, see Figure 8.1.
The detection of emitted fluorescence photons with CCD cameras admits a spatial reso-
lution on the order of 10 µm [91]. This resolution also accounts for the random walk the
atoms undergo due to the photon absorption- and emission-induced momentum kicks.
The spatial extent of the envelope of the fringe pattern, on the other hand, determines
the required region of illumination. From Figure 8.2 we can estimate the width of the
envelope to be ∆xmax ≈ 100σx,cm = 4mm, which sets the scale for the beam waist.

Note that the finite resolution of the position measurements effects a coarse-graining
of the detected fringe pattern, which diminishes the fringe contrast and hence has ulti-
mately the potential to threaten the Bell violation. However, coarse-graining on the level
of less than 10% of the period λhre renders this effect marginal. The resolution of the
temporal period of the fringe pattern, Thre = 29ms, on the other hand, does not pose any
experimental challenge.
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a)

b)

Figure 8.3: a) Envelope (4.28) of the correlation function (8.13) evaluated for the Fesh-
bach dissociation state (8.10) as a function of the measurement time. It exhibits a
plateau at approximately 0.85, which is sufficiently well above the Bell threshold value
of 1/

√
2≈ 0.71. Since the period of the fringe pattern, Thre = 29ms (compare with b)) is

much smaller than the envelope width of about 2s, the experimenter can probe a multi-
tude of fringes without loss of contrast, the measurement times being under her control.
In combination with moderate post-selection of a fraction of p < 0.46 of the measure-
ment outcomes, the structural similarity of the HRE correlation function (8.13) to the
Bell correlation function thus renders the violation of a Bell inequality in the Feshbach
scenario possible. b) Comparison of the analytic correlation function (8.13) (squares)
with the direct numerical evaluation of (8.12) for the dissociation state (8.10) (circles).
One finds that the analytic expression reproduces the form of the fringe pattern accu-
rately, thus confirming the validity of the underlying approximations. The relative phase
shift stems from the deliberate redefinition of the phase of the dichotomization functions
in the derivation of (8.13). As expected, the period of the fringe pattern matches the
linear prediction Thre = 29ms.
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Summary

I demonstrated the experimental feasibility of the HRE Bell test in the Feshbach dis-
sociation scheme with the prospect to achieve a Bell violation. In contrast to the DTE
scenario, the HRE scenario needs not to employ interferometers and is based on a gen-
uine matter wave state that does not have a photonic analogue. A successful HRE Bell
test requires phase stability over the whole extent of the experiment, which is approx-
imately 10cm. However, this is not problematic for fringe distances on the order of
100 µm. Like in the DTE scenario, the magnetic field pulses should be reproducible
from shot to shot with a relative accuracy of 10−5, which is not easy, but doable.
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Chapter 9

Conclusions

9.1 Summary

I presented two complementary scenarios to detect Bell correlations in the motion of
material particles, bridging the gap between a nonclassicality test formulated for non-
trivially related dichotomic observables and a continuous variable system that only has
position measurements easily at its disposal. Both proposals are based on the gradual
dissociation of ultracold Feshbach molecules and they feature macroscopic delocaliza-
tions of the atomic states. By giving a full account of these scenarios, including the
coupled-channel description of the Feshbach dissociation, the optically guided disper-
sive propagation, interferometric processing and the final position measurements by laser
illumination, I demonstrated in both cases the potential to violate a Bell inequality un-
der experimentally viable conditions that would admit delocalizations and interatomic
separations on the order of centimeters.

The dissociation-time entanglement (DTE) scenario superposes macroscopically
distinct wave packets of equal velocity and relies on single-particle interferometry to
accomplish the Bell correlations. It is shown that conclusive nonlocal correlations are
achieved within a range of tolerance as imposed by dispersion. By tracing them back
to the coherence properties between the early and late wave packets as a whole means
that only port-selective measurements are needed, requiring neither prominent spatial
nor temporal resolution. The asymmetric Mach-Zehnder interferometers can be imple-
mented with laser beams, where the slow velocities of the ultracold atoms admit the
easy realization of switches, in contrast to photonic time-bin entanglement. In addition,
the nearly one hundred percent detection probability does not come into conflict with
the detection loophole, outperforming the poor detection efficiency for photons. The
implied first closure of the detection loophole at macroscopic separations would be a
huge step forward with respect to a loophole-free refutation of local realism. Finally,
since only single-particle interference has to be performed, the interferometers on the
opposite sides do not have to be kept stable with respect to each other, which permits the
experimenter to put them easily at large distances.

Hedgehog-rabbit entangled (HRE) states, on the other hand, are genuine matter
wave states superposing wave packets of differing velocities. Position measurements
in the overlap regions on both sides and their appropriate dichotomization replace the
interferometers, requiring instead a higher spatial and temporal measurement resolution
and phase stability between the measurement sites. The necessary post-selection relies
on the fair sampling assumption; by redefining the measurement assignments, however,
the whole sample can be involved in a Bell violation.
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According to the Feshbach dissociation scheme, both the DTE and the HRE states
are generated by applying sequences of two magnetic field pulses. Hence, no compli-
cated manipulation of the molecular state is required, the only experimental demand is
to keep the molecules trapped in a controlled way and to carry out the magnetic field
pulses with sufficient accuracy.

A coupled-channel formalism describes the asymptotic Feshbach dissociation state
for given magnetic field pulses. This is achieved in two steps: First, the background
channel dissociation state is expressed in terms of the closed-channel amplitude, whose
dynamics then are solved when exposed to a time-varying external magnetic field. The
relation between applied magnetic field pulse and resulting dissociation state reveals that
one faces strong limitations on the possibility to tailor a pulse shape so as to generate
a desired dissociation state. However, square-shaped magnetic field pulses, which opti-
mize the momentum distribution with respect to its sharpness, are shown to yield states
that are sufficiently well-behaved to admit Bell violations in both scenarios.

An experiment that delocalizes and entangles the motion of matter waves on a macro-
scopic scale would probe the validity of quantum mechanics (QM) in a hitherto un-
explored combination of parameter regimes and degrees of freedom that one usually
attributes to the classical realm. The violation of a Bell inequality would, on the one
hand, unambiguously verify both the entanglement and the delocalization of the states;
on the other hand, it would extend the refutation of a local realistic description to the mo-
tion of material particles, at scales that are in principle amenable to a direct perception
without any supplementary devices.

While such experiments must have been considered purely hypothetical in the early
days of QM, the recent progress in the manipulation of ultracold atomic systems has
brought them into experimental reach. Despite of the important contributions of photon
experiments to foundational issues and their great use for quantum information tech-
nologies, this step from photons to material particles seems highly desirable from a
fundamental point of view.

One might even think of a demonstration experiment, where only after the dissoci-
ation of the particles the experimenter makes the conscious decision whether she wants
to check the correlation of the emission times, by “looking” at the particles in front of
the interferometers (or before the overlap), or whether she wants to check the nonlocal
correlations, by “looking” at the particles behind of the interferometers (or in the overlap
region). This way, by performing such an experiment with proper, material particles and
on truly macroscopic scales on the order of centimeters, nonclassical quantum correla-
tions would be manifest for anyone who understands the basic concept of the position of
a particle, even for cocksure classical physicists or a layman who is ignorant of physics.

9.2 Outlook

Let me conclude by mentioning some possible ways to build upon the results of this
thesis. This is intended to demonstrate that its findings do not stand solitary, but can
serve as the starting point of a research program of its own, exploring the possibilities,
consequences and limitations of macroscopic entanglement in the motion of material
particles.

Naturally, it would be illuminating to investigate the influence of various sources of
decoherence. While the effect of scattering of off-resonant photons and the scattering of
background particles was already found to be controllable [35], it would be interesting
to check to what degree the present setups can be used to test possible unconventional
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collapse theories, which predict a loss of coherence in the motion of material particles,
e.g. due to purported quantum gravity effects, on the centimeter scale accessible for the
first time with the present measurement schemes.

Turning towards further applications of the DTE scenario, the established motional
implementation of the Bell experiment both on the state level and on the measurement
level implies that it can be used to transfer other quantum information strategies to the
motion of material particles, such as the teleportation of a qubit state [108, 109]. En-
coding qubits in spatially distinct wave packets thus permits general single-qubit state
processing to be based only on matter wave optics and subsequent position measure-
ments. This gives us a simple and robust method at hand for performing some of the
most relevant quantum tests in the motion of material particles.

In particular, the complete operational correspondence to the Bell state correlations
in the DTE scenario including also “out of plane”-measurements should admit to test
Leggett’s model of crypto-nonlocal realism in the motion. As mentioned in Chapter
2, Leggett introduced a nonlocal model to account for the measurement outcomes in the
spin Bell experiment [47]. It probes the idea that local properties should be describable
by pure states, whereas correlations between the two parties may be nonlocal, merely
restricted by the no-signaling condition. In the DTE scenario it would thus test whether
the early and the late wave packets of each particle behave in local measurements as
being in a pure superposition (more precisely, a classical mixture of such). Leggett
could derive an inequality that is met by his model, but violated by QM [47]. In con-
trast to the Bell test, a violation of Leggett’s inequality requires the implementation of
“out of plane”-measurements; moreover, it can only be achieved when the visibility of
the fringe pattern exceeds v ≈ 0.94 [49]. While the former is naturally provided in the
DTE scenario, the latter can only be achieved by either considerably decreasing the time
separation τ between the dissociation pulses (which implies down-scaling the interfer-
ometers), or by further sharpening the momentum distributions of the wave packets. A
thorough investigation to reassure the possibility of such a violation seems worthwhile.

The HRE scenario, on the other hand, might serve to test (a conservative interpre-
tation of) Bohmian mechanics. Bohm originally introduced his version of QM as a
means to explain the outcomes of position measurements (as described by Born’s rule)
by a classical probability distribution of realistically interpretable particle trajectories.
While he was able to establish complete equivalence with the predictions of QM on the
level of equal time measurements, it has been argued that measurements and correlations
involving different times could come into conflict with QM [110]; in particular, this is the
case if the correlations violate a Bell inequality [90]. Modern followers of Bohm’s theory
usually resolve this contradiction by adhering to a contextual interpretation of position
measurements, which necessarily requires to describe the measurement apparatus within
the theory in order to explain the emergence of measurement outcomes [51]. However,
this way the probability distribution of the trajectories loses its original interpretation to
describe the outcomes of position measurements, even at the level of equal time mea-
surements. If one insists on the conservative interpretation originally intended by Bohm,
the discrepancy between Bohmian and quantum mechanical predictions permits one to
test which theory is favored by nature. The HRE scenario seems to be perfectly suited for
such a comparison, since it has the measurement times as external control parameters,
which are thus freely choosable by the experimenter; moreover since it does not involve
any concepts besides the free time evolution of matter particles and position measure-
ments, it should not be too hard to determine the corresponding Bohmian trajectories.

A variant of the HRE scenario would implement time-of-arrival measurements in-
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stead of position measurements. With respect to the Bell test, this means that the detector
positions take the role of the control parameters. One expects that the resulting corre-
lation function would be similar to (4.33). A thorough investigation, however, should
take the measurement backaction into account, which potentially deformes the fringe
pattern [82–86]. One might suspect a trade-off between measurement backaction and
measurement resolution. The question whether this admits a Bell violation or not surely
deserves further, more detailed investigation, since time-of-arrival measurements would
constitute another fascinating possibility for the demonstration of nonclassicality in the
motion, aside from possible experimental amenities.

As a final example, let me mention that one might discard the restriction to the dis-
sociation of a single pair and consider the simultaneous dissociation of a multitude of
molecules in a multi-pair Bell setting [111–113]. Statistical effects due to the indis-
tinguishability of the particles then require a theoretical treatment of the dissociation
process beyond the single-molecule dynamics. To this end, one expects that the two-
body transition amplitude between molecular initial state and asymptotic dissociation
state, which follows from Eq. (6.51), may serve as an essential building block.

To get an idea of such a Bell test, let us consider the (oversimplified) bosonic N-
particle time-bin entangled state

|ΦN〉=
1

N!
√

N +1
(a†

Eb†
E +a†

Lb†
L)N , (9.1)

where aE annihilates a particle in the mode corresponding to the early dissociation time
and propagating to the left (similar for the other annihilation operators). In analogy to
(3.4), the Mach-Zehnder interferometers then effect a transformation onto modes in the
output ports (c± on the left side, d± on the right), a†

E → eiϕ1(c†
+ + c†

−)/
√

2 and a†
L →

(c†
+− c†

−)/
√

2 (and similar on the right side), in terms of which the scattered state |Φ′N〉
can be reformulated. One determines the probability to detect, say, n+

1 particles in the
(+)-port on the left side and n+

2 particles in the (+)-port on the right side according to

P(N)(n+
1 ,n+

2 |ϕ1,ϕ2) = |〈n+
1 ,N−n+

1 ,n+
2 ,N−n+

2 |Φ
′
N〉|2, (9.2)

with |n+
1 ,n−1 ,n+

2 ,n−2 〉 = (c†
+)n+

1 (c†
−)n−1 (d†

+)n+
2 (d†
−)n−2 |0〉/

√
n+

1 n−1 n+
2 n−2 . This joint detec-

tion probability can be dichotomized by defining a threshold number M 6 N, such that
detected particle numbers larger or equal to M are assigned to the outcome “+”. In the
case of M < N, one speaks of majority voting, M = N is denoted unanimous voting. We
thus get the dichotomic joint probability

P(N)(+,−|ϕ1,ϕ2) =
N

∑
n+

1 =M

M−1

∑
n+

2 =0

P(N)(n+
1 ,n+

2 |ϕ1,ϕ2), (9.3)

and corresponding expressions for the other three combinations. For the many-particle
TBE state (9.1) one finds that the resulting joint dichotomic probability indeed violates
the CHSH inequality for appropriate (N-dependent) choices of the ϕi and for all thresh-
old numbers M [112]. This demonstrates that a Bell violation in such a multi-pair Bell
setting is, in principle, possible. It is considerably more involved, but certainly not im-
possible, to determine the true many-particle Feshbach dissociation state (in the case
of 6Li2 for a mixture of fermionic species) and to verify its potential to violate a Bell
inequality when taking the dispersion-reduced visibility into account.



97

Appendix A

A.1 Free time evolution in the dispersion-dominated limit

To gain the desired expression for an arbitrary (one-dimensional) wave packet in the limit
where its shape is determined by its momentum distribution, we start by formulating the
time-evolved wave packet 〈x|ψ(t)〉, as emerged from its initial state 〈x|ψ(0)〉, mediated
by the free propagator K0(x,x′, t) =

√
m/2πih̄t exp[im(x− x′)2/2h̄t] [114],

〈x|ψ(t)〉 =
∫

∞

−∞

dx′K0(x,x′, t)〈x′|ψ(0)〉

=
√

m
2πih̄t

∫
∞

−∞

dx′eim(x−x′)2/2h̄t〈x′|ψ(0)〉. (A.1)

Since non-vanishing contributions to the integral are only expected in the vicinity of the
mean initial position x̄ = 〈ψ(t)|x̂|ψ(t)〉|t=0 for a localized wave packet, we reformulate
the square in the exponent accordingly,

(x− x′)2 = x2− x̄2−2(x− x̄)x′+(x′− x̄)2 (A.2)

which permits one to rewrite the wave packet as

〈x|ψ(t)〉 =
√

m
2πih̄t

eim(x2−x̄2)/2h̄t

×
∫

∞

−∞

dx′e−im(x−x̄)x′/h̄teim(x′−x̄)2/2h̄t〈x′|ψ(0)〉. (A.3)

We see that at sufficiently large times, t� mσ2
x /h̄, where σx denotes the initial position

uncertainty, the second exponential evaluates to unity in the region of non-vanishing
〈x|ψ(0)〉, such that one can approximate

〈x|ψ(t)〉 '
√

m
2πih̄t

eim(x2−x̄2)/2h̄t
∫

∞

−∞

dx′e−im(x−x̄)x′/h̄t〈x′|ψ(0)〉. (A.4)

The final expression is obtained by identifying the integral with the momentum repre-
sentation of the initial state,

ψ̃(p) = 〈p|ψ(0)〉=
∫

∞

−∞

dx〈p|x〉〈x|ψ(0)〉=
∫

∞

−∞

dx
1√
2π h̄

e−ipx/h̄〈x|ψ(0)〉, (A.5)

which yields

〈x|ψ(t)〉 '
√

m
it

eim(x2−x̄2)/2h̄t
ψ̃ (m(x− x̄)/t) . (A.6)
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A.2 Scale separation

Let χ(x) be an oscillating function with the period λ . If we split the integral

I =
∫

∞

−∞

dxχ(x)E(x) (A.7)

up into integrals over the wave length λ ,

I =
∞

∑
n=0

{∫ (n+1)λ

nλ

dxχ(x)E(x)−
∫ −(n+1)λ

−nλ

dxχ(x)E(x)
}

, (A.8)

and in addition assume that the envelope function E(x) varies slowly on the scale λ

(scale separation), we can pull the envelope function out of the integrals,

I ≈
∞

∑
n=0

{
E(nλ )

∫ (n+1)λ

nλ

dxχ(x)−E(−nλ )
∫ −(n+1)λ

−nλ

dxχ(x)
}

=
∞

∑
n=0

{
E(nλ )

∫
λ

0
dxχ(x)−E(−nλ )

∫ −λ

0
dxχ(x)

}
=

∞

∑
n=0
{E(nλ )+E(−nλ )}

∫
λ

0
dxχ(x). (A.9)

Note that the second and the third line use the periodicity of χ(x). The remaining Rie-
mann sum can be rewritten as integral according to

∫
∞

0
dxE(x)≈ λE(0)+λE(λ )+λE(2λ )+ . . . = λ

∞

∑
n=0

E(nλ ), (A.10)

yielding the final result

I ≈
∫

∞

−∞

dxE(x)
1
λ

∫
λ

0
dx′χ(x′). (A.11)

A.3 Stationary phase approximation

Stationary phase approximation states that in the limit of large λ the integral

I(λ ) =
∫ b

a
dt f (t)eiλΦ(t) (A.12)

gets its main contributions in the vicinity of the stationary points c j of the real, twice
differentiable function Φ(t). This suggests to expand Φ(t) to second order at the station-
ary points, and the real, integrable function f (t) to zeroth order. Extending the range of
integration to the entire real axis then yields

I(λ )∼∑
j

eiλΦ(c j) f (c j)

√
2π

λ |Φ′′(c j)|
ei(π/4)sgn(Φ′′(c j)), (A.13)

where we sum over all stationary points Φ′(c j) = 0, which are assumed to be isolated
[105].
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Evaluation for symmetric pulses We now consider the integral

C̃0(ω +E0/h̄)
T

=
∫

∞

−∞

dt̃eiε[(ωT/ε)t̃−φ(t̃)], (A.14)

with ε � 1. Taking φ(t̃) to be anti-symmetric and strictly monotonically increasing and
given that ωT/ε < φ ′′max (only if this is satisfied one finds two (real) saddle points ±t̃ω
of Φ(t̃) = (ωT/ε)t̃−φ(t̃)), one obtains

C̃0(ω +E0/h̄)
T

= ∑
σ=±

eiε[(ωT/ε)σ t̃ω−σφ(t̃ω )]

√
2π

ε|φ ′′(t̃ω)|
eiσπ/4

=

√
8π

ε|P′(t̃ω)|
cos
[
ωTt̃ω − εφ(t̃ω)+

π

4

]
, (A.15)

where we identified φ ′′(t̃) = P′(t̃) to render the influence of the pulse slope manifest.

A.4 Uniform asymptotic expansion

We adopt the notation from [105]. Consider a complex integral of the form

I(λ ,~α) =
∫

C
dzg(z)eλw(z;~α), (A.16)

where w(z;~α) and g(z) may denote analytic functions, λ be some large, real parameter,
and C the integration contour. ~α = (α+,α−), on the other hand, may represent two sad-
dle points of w(z;~α) lying in the vicinity of C. In the limit of large λ (λ→∞) one expects
the main contributions to the integral to stem from the passage at these saddle points. We
seek a uniform approximation of the integral that is valid even when the saddle points
are nearby or coincide, a situation where ordinary stationary phase approximation fails.
To this end, one substitutes z→ t = t(z), such that w(z;~α) = −(t3/3− γ2t) + ρ and
t(α±) =±γ . The existence of this transformation is guaranteed by the analyticity of w.
The parameters γ and ρ then follow from

4γ3

3
= w(α+;~α)−w(α−;~α), (A.17)

ρ =
1
2
{w(α+;~α)+w(α−;~α)}.

For large λ the integral thus reads as

I(λ ,~α)∼
∫

C1∩D̂~α

dtg(z(t))
dz
dt

eλ [−(t3/3−γ2t)+ρ], (A.18)

where the integration is constrained to the transformed integration contour C1 in the
vicinity of the transformed saddle points. Expanding

G0(t;~α) := g(z(t))
dz
dt

= a0 +a1t +(t2− γ
2)H0(t;~α), (A.19)

one can neglect the last term,

I(λ ,~α)∼ eλρ

∫
C1∩D̂~α

dt(a0 +a1t)e−λ (t3/3−γ2t), (A.20)
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since H0(t,~α) is regular at t =±γ . The coefficients are determined according to

a0 =
1
2
[G0(γ;~α)+G0(−γ;~α)], (A.21)

a1 =
1
2γ

[G0(γ;~α)−G0(−γ;~α)].

The required derivative dz/dt, on the other hand, follows from de l’Hospital’s rule,

ż2| t =±γ

z = α±

=
∓2γ

wzz(α±;~α)
; α+ 6= α−, (A.22)

ż3| t =±γ

z = α±

=
−2

wzzz(α+;~α)
; α+ = α−.

Using that Ai(x) = 1/(2πi)
∫

C1
exp(sx− s3/3)ds and Ai′(x) = ∂xAi(x) (the modification

of the integration contour from C1 ∩ D̂~α to C1 introduces an asymptotically negligible
error), one obtains

I(λ ,~α)∼ 2πieλρ [
a0

λ 1/3 Ai(λ 2/3
γ

2)+
a1

λ 2/3 Ai′(λ 2/3
γ

2)], (A.23)

which represents the first term in an algebraic expansion with respect to 1/λ . A detailed
proof is given in [105].

Evaluation for error function In our case we have

C̃0(ω +E0/h̄)
T

=
∫

∞

−∞

dt̃eεi[(ωT/ε)t̃−erf(t̃)], (A.24)

which allows us to identify w(z;β ) = i[β z− erf(z)], yielding the saddle points

α± =

{
±
√
− ln(

√
πβ/2),β < 2/

√
π

±i
√

ln(
√

πβ/2),β > 2/
√

π
. (A.25)

Since α−=−α+, w(−z)=−w(z) and g(z)≡ 1, one finds ρ = 0, a1 = 0, γ3 =(3/2)w(α+;β )
and a2

0 =−2γ/wzz(α+;β ) for α+ 6= α− (a3
0 =−2/wzzz(α+;β ) for α+ = α−), where we

choose the roots such that the final result is real.
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experiments and local realism. Phys. Rev. Lett., 83:2872–2875, 1999.

[89] A. Cabello, A. Rossi, G. Vallone, F. De Martini, and P. Mataloni. Proposed Bell
experiment with genuine energy-time entanglement. Phys. Rev. Lett., 102:040401,
2009.

[90] J. Kiukas and R. F. Werner. Maximal violation of Bell inequalities by position
measurements. arXiv:0912.3740v1, 2009.

[91] R. Bucker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann,
T. Schumm, and J. Schmiedmayer. Single-particle-sensitive imaging of freely
propagating ultracold atoms. New J. Phys., 11:103039, 2009.

[92] J. F. Clauser and A. Shimony. Bell’s theorem. experimental tests and implications.
Rep. Prog. Phys., 41:1881–1927, 1978.

[93] N. Gisin. Hidden quantum nonlocality revealed by local filters. Phys. Lett. A,
210:151 – 156, 1996.
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