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Zusammenfassung
Der kosmische Mikrowellenhintergrund (cosmic microwave background, CMB) entḧalt eine

Fülle von Informationenüber die Eigenschaften unseres Universums. In dieser Dissertation
entwickeln wir neue Techniken, mit welchen wir anhand des CMB fundamentale Fragen der
Kosmologie er̈ortern.

Dunkle Energie – falls sie existiert – hinterlässt charakteristische Spuren im CMB, den
so genanntenintegrierten Sachs-Wolfe(ISW) Effekt. Man kann diesen schwachen Effekt
über seine Kreuzkorrelation mit der großräumigen Materieverteilung (large-scale structure, LSS)
detektieren. Wir entwickeln eine optimale Methode zur Detektion des ISW-Effekts, basierend auf
Temperatur- und Polarisationsdaten des CMB, die sich von der bisher verwendeten Methode in
zwei fundamentalen Punkten unterscheidet: Wir halten die LSS und einen Teil der primordialen
Temperaturfluktuationen fest, anstattüber verschiedene Realisierungen zu mitteln, wie es für
die Standardmethode der Fall ist. Für ein ideales Szenario ist die ISW-Detektion mit unserer
Methode um 23% signifikanter als mit der Standardmethode. Für Polarisationsdaten derPlanck
Surveyor-Mission wird diese Erḧohung mindestens 10% betragen, wobei der limitierende Faktor
die Kontamination durch Vordergrundemission unserer Galaxie ist.

Der beobachtete CMB ist fast perfekt isotrop, was als Evidenz für die Isotropie unseres
Universums gilt. Allerdings wurden in der Temperaturkartedes Wilkinson Microwave
Anisotropy Probe(WMAP) Satelliten Anomalien gefunden, die die statistische Isotropie der
Temperaturfluktuationen in Frage stellen. Wir versuchen zuverstehen, ob diese Anomalien
zufällige Fluktuationen sind oder ihren Ursprung in einer bevorzugten Richtung haben, die der
Geometrie des primordialen Universums intrinsisch ist. Dafür berechnen wir den Teil der WMAP-
Polarisationskarte, welcher nicht mit der Temperaturkarte korreliert ist, und verwenden diese
Karte als statistisch unabhängigen Test f̈ur die so genannteaxis of evil. Letztere stellt eine
ungeẅohnlicheÜbereinstimmung der bevorzugten Richtungen des Quadrupols und des Oktopols
der Temperaturkarte dar. In der unkorrelierten Polarisationskarte stimmt die Achse des Quadrupols
mit deraxis of evilüberein, die Achse des Oktopols jedoch nicht. Allerdings haben wir auf Grund
des hohen Rauschanteils in der WMAP-Polarisationskarte eine Unsicherheit von ca. 45◦ in den
Achsen, f̈ur welche die Wahrscheinlichkeit, dass wir unser Ergebnis in einem isotropen Universum
durch Zufall erhalten, ca. 50% beträgt. Wir erhalten daher keinen Hinweis für oder gegen eine
bevorzugte Richtung im primordialen Universum. Für Planckerwarten wir eine Verbesserung der
Unsicherheit in den Achsen auf 10◦ − 20◦, je nachdem, wie gut Vordergrundemissionen von der
Polarisationskarte entfernt werden können. Unsere Technik angewandt aufPlanck-Daten wird uns
daher als m̈achtiges Instrument dienen, um den Ursprung der CMB-Anomalien zu verstehen.

Anstatt wie oben beschrieben bestimmte Merkmale des CMB zu analysieren, k̈onnen wir
den CMB auch dazu verwenden, mehrere kosmologische Parameter gleichzeitig einzugrenzen.
Die Werte der kosmologischen Parameter, die mit WMAP bestimmt wurden, haben diëAra
der Pr̈azisionskosmologie eingeleitet und können als der größte Erfolg der Mission betrachtet
werden. In solchen Studien zur Parameterbestimmung ist dergeschwindigkeitsbestimmende
Schritt normalerweise die Auswertung der Likelihood-Funktion. Um dieses Problem zu umgehen,
haben wir daher eine auf dünnen Gittern basierende Interpolation der WMAP-Likelihood-
Funktion entwickelt und implementiert, die um Größenordnungen schneller auszuwerten ist als
die urspr̈ungliche Likelihood-Funktion. Unsere Methode ist eine konkurrenzf̈ahige Alternative zu
anderen Ans̈atzen f̈ur die Steigerung der Effizienz von Parameterbestimmung.
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Abstract

The cosmic microwave background (CMB) provides us with a wealth of information about the
properties of our Universe. In this PhD work, we develop and apply new techniques for studying
fundamental problems of cosmology using the CMB.

Dark energy, if it exists, leaves a characteristic imprint in the CMB temperature fluctuations,
the so-calledintegrated Sachs-Wolfe(ISW) effect. This small effect can be detected via its cross-
correlation with the large-scale structure (LSS). We derive an optimal method for ISW detection
using temperature and polarization data of the CMB which differs from that usually used in
two fundamental ways: we keep the LSS distribution and a partof the primordial temperature
fluctuations fixed, rather than averaging over different realisations as done in the standard method.
For an ideal scenario, we obtain an overall enhancement of the detection significance of 23 per cent.
For polarization data from thePlanck Surveyormission, this enhancement will be at least 10 per
cent, where the limiting factor will be the contamination byGalactic foregrounds.

The CMB is observed to be almost perfectly isotropic, which is considered strong evidence
for the isotropy of the Universe. However, some anomalies have been found in the temperature
map of theWilkinson Microwave Anisotropy Probe(WMAP), which seem to question the statistical
isotropy of the temperature fluctuations. In order to understand whether these are due to chance
fluctuations or to a preferred direction intrinsic to the geometry of the primordial Universe, we
compute the part of the WMAP polarization map which is uncorrelated with the temperature map,
and use it as a statistically independent probe of the so-called axis of evil. The latter is an unusual
alignment between the preferred directions of the quadrupole and the octopole in the temperature
map. We find that the axis of the quadrupole of the uncorrelated polarization map aligns with the
axis of evil, whereas the axis of the octopole does not. However, due to the high noise-level in the
WMAP polarization map, we have an uncertainty of about 45◦ in our axes. With this uncertainty,
the probability of at least one axis aligning by chance in an isotropic Universe is around 50 per cent.
We therefore do not obtain evidence for or against a preferred direction intrinsic to the primordial
Universe. ForPlanck, we expect the uncertainty in the axes to go down to 10◦−20◦, again depending
on how well the foregrounds can be removed from the map. Our technique applied toPlanckdata
will thus serve as a powerful means to understand the origin of the CMB anomalies.

Instead of studying particular features in the CMB maps as described above, we can also use
the CMB to constrain several cosmological parameters simultaneously by sampling the parameter
space. The parameter constraints obtained by WMAP marked the beginning of precision cosmology
and were the biggest success of the mission. In such parameter sampling studies, the main
bottleneck is usually the evaluation of the likelihood. We have thus implemented a sparse-grids
based interpolation of the WMAP likelihood surface as a shortcut for the likelihood evaluation. This
is orders of magnitude faster to compute than the original likelihood. Our method is a competitive
alternative to other approaches for speeding up parameter sampling.
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Introduction

For hundreds of years, cosmology had been more of a metaphysical field than a scientific discipline.
However, in the course of the last century, great progress has been made in understanding the
origin and nature of our Universe. The basics for all modern-day cosmology have been laid
by Einstein in the early twentieth century, when he formulated his General Theory of Relativity
(Einstein 1916). Then, in 1929, Edwin Hubble discovered theexpansion of the Universe (Hubble
1929), which should revolutionise the field of cosmology, given that most cosmologists at that time,
including Einstein, had favoured a static Universe. Hubblerealised that many of the faint nebulae
in the night sky are galaxies outside our Milky Way, and that most of these galaxies are moving
away from us with a recession velocity proportional to theirdistance from the Earth. This was
interpreted as an overall expansion of space. After Hubble’s discovery, cosmology was dominated
by two different schools, one of which supported the idea that the Universe has originated in a
Big Bang (Lemâıtre 1931), whereas the other school favoured the so-calledSteady State model
(Bondi & Gold 1948), according to which the Universe did not have a beginning, but has always
existed and expanded as it does now. The end of the Steady State model was marked by the
discovery of the cosmic microwave background (CMB) by Arno Penzias and Robert Wilson in
1965 (Penzias & Wilson 1965; Dicke et al. 1965). The CMB had been predicted to exist in the Big
Bang model by Gamow, Alpher and Herman in 1948 (Gamow 1948; Alpher & Herman 1948) but
lacked a natural explanation in the Steady State model. In the late nineties, Riess et al. (1998) and
Perlmutter et al. (1999) measured the redshift-distance relation of supernovae of type Ia and found
that the expansion of the Universe is accelerating rather than decelerating as previously thought.
This led cosmologists to postulate some unknown medium named dark energy, which pervades the
Universe and drives the accelerated expansion of space.

The first full-sky map of the small temperature fluctuations of the CMB were obtained by the
COBE satellite in the early nineties (Wright et al. 1992). These fluctuations are created by physical
processes in the early (and late) Universe, which depend on the parameters of the cosmological
model and can thus be used to infer information about the latter. With the precise analysis of the
CMB by theWilkinson Microwave Anisotropy Probe(WMAP) satellite and various balloon-based
experiments, together with observations of other cosmological probes, we are now able to constrain
the cosmological parameters with an accuracy on the level ofa few per cent (Komatsu et al. 2009).
This has lead to a widely accepted cosmological model, the so-called concordance model orΛCDM
model. We expect to obtain even stronger constraints on the cosmological parameters from the
Planck Surveyormission, which has been launched in May 2009 and will measurethe CMB with
unprecedented accuracy within the next year.

However, even though we seem to be converging towards a consistent picture of our Universe,
there remain many questions yet to be answered. We lack a theoretical understanding of three
essential ingredients of theΛCDM model: dark matter, dark energy, and inflation. Therefore, great
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effort is put into developing theoretical models and finding observational evidence for them. Even
the most fundamental assumption of cosmology, the homogeneity and isotropy of the Universe, is
the subject of some doubts triggered by observations of the CMB (de Oliveira-Costa et al. 2004;
Eriksen et al. 2007). We can hope to find answers to these unresolved questions in the information
contained in cosmological signals such as the CMB. However,the signals encoded in data from
cosmological observations are subject to various uncertainties, ranging from detector noise to the
complex and imperfect signal transmission by the cosmological processes themselves. A crucial
step in understanding our Universe is thus the harvesting ofthe information content of cosmological
data.

In this PhD work, we study specific aspects of the CMB related to both the question of dark
energy and the isotropy of the Universe. Both of these studies rely on similar techniques of
combining CMB temperature and polarization data using their cross-correlation. This permits us to
infer more information about the respective problem than previous studies, provided data of high
quality are available. The signature of dark energy in the CMB causes a small coupling between
CMB and large-scale structure data. We derive a technique toconsistently treat this coupling in
cosmological parameter estimation studies. In order to make such parameter estimations more
efficient in general, we finally develop and implement a novel likelihood reconstruction method
based on the technique of sparse grids.

The integrated Sachs-Wolfe effect

The first part of this work is devoted to developing new techniques to detect theintegrated Sachs-
Wolfe(ISW) effect in the CMB temperature fluctuations. The ISW effect is a probe of the existence
of dark energy (or modified gravity), and can in principle provide us with information about the
dark-energy related cosmological parameters. It can be detected via its cross-correlation with the
LSS (Ho et al. 2008; Giannantonio et al. 2008), but the measurement of this cross-correlation signal
is made difficult by confusion with chance correlations of the primordial CMB fluctuations with the
LSS.

The optimal methods for ISW detection developed in this workare designed to infer the
maximum amount of information about the ISW effect that the data have to offer, thus reaching
a higher detection significance than previously existing methods. As a first step, we keep the
realisation of the LSS distribution fixed when trying to detect the ISW, rather than averaging over it
as it is done in existing methods. This allows for an enhancement of the detection significance for
surveys going to relatively high redshifts. As a subsequentstep, we extend this method to include
CMB polarization data, which are used to fix a part of the primordial temperature fluctuations in
the analysis. Roughly speaking, we remove from the temperature map those structures that are also
encoded in the polarization data, and search for the ISW effect in the remaining temperature map,
which is now uncorrelated with polarization. Given that theISW effect is not significantly imprinted
in the polarization, we thereby remove variance from the data, which is only a nuisance to the ISW
detection. This also considerably enhances the detection significance at small redshifts.

For an ideal scenario, we expect an enhancement of the detection significance by 16 per cent
for low redshift surveys such as the SDSS galaxy sample, and by about 23 per cent for surveys
ranging to higher redshifts of about 2. For currently available CMB and LSS data, we estimate
the improvement of the detection significance of our method as compared to the standard one to
be at most 5 per cent. The main reason for that is the low signal-to-noise ratio of the polarization
data from WMAP. However, soon thePlanck Surveyormission will provide us with polarization
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measurements of much higher quality than the WMAP data. A very crude estimate yields an
improvement of the detection significance forPlanckof at least 10 per cent, where the limiting
factor is how well foregrounds can be removed from the polarization data.

In order to include the information contained in the ISW effect in cosmological parameter
estimation, we derive the joint likelihood for cosmological parameter estimation for CMB and LSS
data, which consistently includes the coupling between thetwo data-sets introduced by the ISW
effect. Using this likelihood instead of assuming that the likelihoods for CMB and LSS data are
independent will result in small changes in the constraintson the dark-energy related parameters.

Anomalies in the CMB

In the second part of this work, we study the so-calledaxis of evil, a strong alignment between the
preferred directions of the quadrupole and the octopole in the CMB temperature map. This axis
has been found in recent years as one of several direction-dependent phenomena in the CMB that
seem to question the isotropy of the Universe (de Oliveira-Costa et al. 2004; Abramo et al. 2006;
Land & Magueijo 2007). It is strongly under debate whether these anomalies are simply due to
chance fluctuations in the CMB temperature map, if they can beblamed on local structures or on
systematics in the measurement, or whether they are actually due to a preferred direction intrinsic
to the geometry of the primordial Universe. We can shed more light on this question by probing the
anomalies with a statistically independent data set.

Since both the temperature and polarization fluctuations have their physical origin in the
primordial gravitational potential, we expect the polarization data to show similar peculiarities as
the temperature, provided they are due to some preferred direction intrinsic to the geometry of
the primordial Universe. However, since the polarization is not statistically independent of the
temperature, anomalies due to chance fluctuations in the temperature can also manifest themselves
in the polarization map. We suggest to split the polarization map into a part which is correlated
with the temperature map, and an uncorrelated part, analogously to what we have done with the
temperature map in the optimal method for ISW detection. Theuncorrelated part of the polarization
serves as a statistically independent probe of the anomalies described above.

We compute this map for the WMAP data, and use it to search for the axis of evil. We find
that, within our measurement precision, the axis of the quadrupole of this map aligns with the axis
of evil, whereas the axis of the octopole does not. However, due to the high contamination of the
WMAP polarization data with detector noise and Galactic foregrounds, the uncertainty in our axes
is of the order of 45◦. With such an uncertainty, the probability of at least one axis being aligned
with the axis of evil within its error bar just by chance amounts to about 50 per cent in an isotropic
universe. ForPlanckdata, a crude estimate yields an uncertainty in the axes of only 10◦ - 20◦. With
Planck, we will thus have a powerful test to probe the axis of evil andother CMB anomalies in
polarization.

Parameter sampling

As we have indicated before, there is a variety of physical processes that have imprinted their
signatures in the CMB and other cosmological data-sets suchas the LSS and the redshift-distance
relation of supernovae of type Ia. The ISW effect we study in the first part of this work is one
example of such a process. We can therefore use cosmologicaldata in order to simultaneously
constrain the cosmological parameters that have determined the appearance of one or more of these
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imprints. To this end, we have to define a likelihood, which measures how well the data fit to
the theoretical prediction for given values of the parameters, and multiply it by an adequate prior
distribution in order to obtain the probability distribution of the parameters conditional on the data,
the so-calledposterior distribution.

Analysing the posterior distribution is not always easy, since changes in the observables typically
do not reflect variations of one particular parameter, but rather depend on a combination of certain
parameters of interest. Therefore, a set of parameters has to be determined simultaneously and
preferentially with several data-sets in combination. Usually, we are dealing with cosmological
models consisting of at least 6 parameters, for which we infer the mean and variance by sampling
the parameter space using Markov Chain Monte Carlo (MCMC) simulations. For yielding reliable
parameter estimates, MCMCs have to evaluate the posterior distribution (and thus the likelihood)
for about 50,000 - 500,000 points in parameter space for a 6-9dimensional cosmological model.
However, the evaluation of the likelihood of the cosmological parameters is very expensive and is
thus the main bottleneck in the parameter sampling process.Therefore, fast methods to evaluate
the likelihood are becoming of increasing importance, especially in the light of thePlanck Surveyor
mission, which will soon provide us with a huge amount of datathat we have to handle.

In the third part of this work, we therefore develop and implement a method to speed up the
evaluation of the likelihood by interpolating the likelihood surface using a technique based on sparse
grids. We show that projecting our interpolation with MCMCsreproduces the one-dimensional
posterior distributions for the cosmological parameters almost perfectly, running in only a fraction
of the time it takes to run them on the full likelihood. Using our interpolation, the main bottleneck in
parameter sampling studies is now the MCMC algorithm itselfrather than the likelihood evaluation.
In speed and accuracy, our interpolation method is comparable to approaches of fitting the likelihood
surface with polynomials or neural networks, while overcoming some of the drawbacks of the latter.
These are, for example, the danger of creating unphysical wiggles if the polynomial degree is chosen
too high with respect to the number of available training points, or the comparably long training time
required for neural networks. Thus, our approach is a competitive alternative to existing approaches
to accelerate parameter estimation (Fendt & Wandelt 2007; Auld et al. 2008).

This thesis is organised as follows. We start by introducingthe basic concepts of modern
cosmology in chapter 1 and the necessary basics of statistical inference in chapter 2. Chapter 3
is devoted to our work on the ISW effect, whereas chapter 4 describes the project on the axis of evil.
In chapter 5, we present the work on the acceleration of cosmological parameter estimation using
sparse grids. Concluding remarks and a short outlook are given in chapter 6.



Chapter 1

Cosmology

This chapter is devoted to introducing the fundamental concepts of modern cosmology as a
necessary background for this PhD work. We first explain the basics of Einstein’s General Relativity
in section 1.1, then derive the basic equations for modern cosmology from the Einstein equations
in section 1.2. In section 1.3, we briefly describe the cosmological concordance model. We
explain in detail the cosmic microwave background radiation in section 1.4, and briefly outline
other observational probes of the Universe in section 1.5.

1.1 Basics of General Relativity

In this section, we give a brief introduction to the General Theory of Relativity (GR). For a good
and detailed discussion of General Relativity, the reader is referred to Misner et al. (1973).

Einstein’s General Theory of Relativity is currently the best description of the laws of gravity
that we have. It is based on the idea that spacetime is not justa static background, a framework in
which the laws of physics can be described, but spacetime is actually influenced by the matter that
lives in it. Matter curves spacetime, that is, it changes itsgeometry. The geometry of spacetime, in
turn, determines how the matter moves through it. We call thequantity that encodes the geometry
of spacetime the metric tensor,gµν. It defines the infinitesimal spacetime-intervaldsbetween two
neighbouring points in spacetime with coordinate distances dxµ via the relationds2 = gµνdxµdxν.
Throughout this work, Greek indices are used as spacetime-indices running from 0 to 3, over one
time-dimension and 3 spatial dimensions, whereas Latin indices are used as spatial indices that run
from 1 to 3. We also use Einstein’s sum convention, accordingto which indices that occur as upper
and as lower index in a term are summed over.

From the first and second derivatives of the metric we can construct the Riemann tensor,

Rµ
νλρ
≡
∂Γ
µ
νρ

∂xλ
−
∂Γ
µ

νλ

∂xρ
+ Γ

µ

λα
Γανρ − Γ

µ
ραΓ
α
νλ , (1.1)

which describes the curvature of spacetime. Here, we have defined the Christoffel symbols

Γ
µ

νλ
≡ 1

2
gµα

[
∂gαν
∂xλ
+
∂gαλ
∂xν
− ∂gνλ
∂xα

]
. (1.2)

Note that upper/lower indices are called contravariant/covariant indices, and can be converted into
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one another by applying the metric tensor:vµ = gµνvν. Contracting the Riemann tensor over the first
and third index yields the Ricci tensor:

Rµν ≡ Rλµλν , (1.3)

the contraction of which with the metric represents a scalarcurvature, which is called the Ricci
scalar:

R≡ gµνRµν . (1.4)

Given the above definitions, we can now define the Einstein tensor,

Gµν ≡ Rµν −
1
2
δ
µ
νR, (1.5)

whereδµν is the Kronecker symbol. The Einstein tensor plays a centralrole in General Relativity.
We have now defined the necessary quantities describing the geometry of spacetime. The matter

distribution in spacetime is described by the energy momentum tensorTµν , which we require to be
divergence-free with respect to the covariant derivative,in order to impose generalised energy and
momentum conservation:

Tµν;µ = 0 , (1.6)

where the covariant derivative is defined as

Tµ
ν;λ ≡

∂Tµν
∂xλ
+ Γ

µ

αλ
Tαν − ΓανλT

µ
α . (1.7)

The fundamental equations relating the Einstein TensorGµν and the energy-momentum tensor
Tµν are the Einstein equations:

Gµν = 8πG Tµν , (1.8)

where we have set the speed of light toc = 1, a convention which we will use throughout this work.

1.2 Basics of cosmology

The evolution of the Universe as a whole is described by the General Theory of Relativity, which
we have introduced in the last section. Let us now derive the basic equations of cosmology from
the Einstein equations. For a more thorough introduction tomodern cosmology, see, for example,
Coles & Lucchin (2002), Dodelson (2003), or Peacock (1999).

The basic assumption in cosmology is the so-called cosmological principle, which states that the
Universe is homogeneous and isotropic on large scales. Thisconsiderably simplifies the structure
of the metric. The most general metric in a homogeneous and isotropic universe is the Robertson-
Walker metric, for which an infinitesimal spacetime interval ds is given by

ds2 = −dt2 + a(t)2
( dr2

1− Kr2
+ r2dθ2 + r2 sin2 θ dφ2

)
, (1.9)

where,r, θ, andφ are spherical coordinates on a constant-time hypersurface. The variablet denotes
the universal time,a(t) is the overall expansion parameter of space, the so-calledscale factor, and
K is called curvature parameter. The curvature parameter canhave the values 0, 1 and -1, for which
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the metric describes a spatially flat, closed or open universe, respectively. The spatial coordinates
r, θ andφ are called comoving coordinates, because the time-dependent part is factored out. We
can substitute the time coordinate in the Robertson-Walkermetric by theconformal timeη using the
definition

dt = a(η) dη , (1.10)

so that the metric becomes

ds2 = a(η)2
(
− dη2 +

dr2

1− Kr2
+ r2dθ2 + r2 sin2 θdφ2

)
. (1.11)

The various matter componentsα of the Universe can be described by the energy momentum
tensor of a perfect fluid with the coordinates of the Robertson-Walker metric being fixed to the fluid
elements. For baryonic matter, the rest frame of those fluid elements corresponds to the one of the
galaxies, if one averages out the proper motion of the individual galaxies. The energy momentum
tensor of a perfect fluid is

T µ(α)ν = (ρα + pα)u
µuν + pαδ

µ
ν , (1.12)

whereρα andpα denote the energy density and pressure of the componentα, anduµ ≡ dxµ

dλ is the 4-
velocity of the fluid, which is defined as the derivative of thespacetime-coordinatexµ with respect to
the proper timeλ of the fluid (in the rest frame of the fluid,ds2 = −dλ2). Since the fluid is at rest in
our coordinate system, the spatial componentsui of the 4-velocity vanish. For the zero-components
of the 4-velocity, we obtainu0u0 = uµuµ = dxµ

dλ
dxµ
dλ =

ds2

dλ2 = −1, so that the energy momentum tensor
of the fluid becomes

T µ(α)ν = diag(−ρα, pα, pα, pα) . (1.13)

The total energy momentum tensor is then just the sum over thecomponents,

Tµν =
∑

α

T µ(α)ν = diag(−ρ, p, p, p) , (1.14)

whereρ ≡ ∑
α ρα and p ≡ ∑

α pα are the total energy density and pressure of the matter in the
Universe.

Inserting the Robertson-Walker metric, eq. (1.9), and the total energy momentum tensor, eq.
(1.14), into the Einstein equations yields the first and second Friedmann equation for the scale
factora(t):

ȧ2 =
8πG

3
ρa2 − K , (1.15)

ä = −4πG
3

(ρ + 3p) a . (1.16)

In this work, we use the dot to denote a derivative with respect to the universal timet, whereas
the prime denotes the derivative with respect to the conformal time η. From the first Friedmann
equation, eq. (1.15), it is easy to show that the curvature parameter K vanishes if the energy density
is equal to the critical density

ρcrit ≡
3

8πG
ȧ2

a2
. (1.17)

We define the density parameters for the constituents of the Universe as the present ratio of their
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energy density to the critical density,

Ωα ≡
ρα,0

ρcrit,0
, (1.18)

where the subscript 0 indicates that we refer to the variableat the present timet0. We will use this
convention throughout the work. A flat universe (i.e. a universe with vanishing curvature) is thus
equivalent toΩ ≡ ∑

αΩα = 1.

In the course of the last years, there has been increasing evidence for the Universe being
remarkably flat. This evidence comes mainly from measurements of the the cosmic microwave
background by WMAP Komatsu et al. (2009), combined with observations of supernovae of type
Ia (Riess et al. 1998; Perlmutter et al. 1999). There is also astrong theoretical motivation for a flat
universe from the theory of inflation, which we will briefly discuss in section 1.3.3.

Instead of working with the two Friedmann equations, we can replace the second Friedmann
equation, eq. (1.16), by the continuity equation

ρ̇ + 3
ȧ
a

(ρ + p) = 0 , (1.19)

which can easily be derived fromTµ0;µ = 0 with the aid of the Christoffel symbols given in
Appendix A of Kodama & Sasaki (1984). The continuity equation also holds for the various matter
components of the Universe separately, if they are not explicitely coupled to other components.

It is convenient to express the pressurepα as a function ofρα in the equation of state (EoS),

pα = wα ρα , (1.20)

wherewα is called the equation of state parameter, and has the value 1/3 for radiation (including all
relativistic particle species), and 0 for cold dark matter and baryons. Using the equation of state, we
can write the continuity equation for the components as follows:

ρ̇α + 3
ȧ
a

(1+ wα)ρα = 0 . (1.21)

Integrating this equation, we find the following scaling behaviour for a constantwα:

ρα = ρα,0 a−3 (1+wα) , (1.22)

where we have adopted the conventiona0 ≡ 1. We will use this convention throughout the work.

In order to complete this section about cosmology, let us nowintroduce some important
cosmological quantities which will be used in this work. Consider two astronomical objects, one of
which is sitting in the origin of our coordinate system. Theproper distance dp between these two
objects is defined as the integral over the spacetime interval dswith dt = dθ = dφ = 0 at timet:

dp ≡ a(t)
∫ robj

0

dr
√

1− Kr2
. (1.23)

The recession velocity of these two objects from one anotheris

vp ≡
d
dt

dp =
ȧ
a

dp . (1.24)
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Eq. (1.24) is called theHubble law, and the quantity

H(t) ≡ ȧ
a

(1.25)

is is the so-calledHubble parameter. It is convenient to define the dimensionless quantityh by

H0 ≡ h× 100 km s−1 Mpc−1 , (1.26)

whereH0 is the present value of the Hubble parameter. From recent experiments, astronomers have
determinedh = 0.72± 0.05 (Komatsu et al. 2009).

The inverse of the Hubble parameter,1
H(t) , is called theHubble radiusor Hubble horizon, and

represents the upper limit of the size of regions being in causal contact at time t. This quantity is
important in the theory of cosmological structure growth, since it defines the largest scale on which
cosmological perturbations can still grow. On scales outside the Hubble horizon, perturbations are
frozen in time. Perturbations on scales much smaller than the Hubble horizon are calledsubhorizon
modes.

Theredshift z, which is defined by

1+ z≡ 1
a(t)
, (1.27)

is a measure of how much the wavelength of radiation, emittedby a source at timet, has been
stretched by the expansion of the Universe since the light has been emitted. It is closely connected
to the distance between the emitting source and the Earth. However, the exact relation between
redshift and distance depends on the expansion history of the Universe. One of the main challenges
of modern cosmology is to obtain information about the expansion history by observing this relation.

1.3 The cosmological concordance model

1.3.1 Constituents

During the last ten years, theory and observations have converged to yield a consistent model of our
Universe, the so-calledconcordance model. We believe that our Universe is spatially flat and that
it consists of dark energy (∼70%), cold dark matter (CDM,∼25%), baryons (∼ 5%), and radiation
and neutrinos (∼10−3%).

It is noteworthy that the baryonic matter, which is the matter we can actually observe in form
of galaxies and gas, only contributes about 5% to the total energy content of the Universe. 95% of
the constituents of the Universe are not directly observable, and their existence can only be inferred
from their gravitational impact. This is somewhat suspicious, and it could actually be a hint that the
laws of physics as we know them, in particular the General Theory of Relativity, have to modified
on cosmological scales.

Cold dark matter is thought to consist of heavy (and thus non-relativistic) particles, which do not
or hardly interact with baryons and photons, and thus do not emit light from which we could observe
it. The concept of cold dark matter explains the flat rotationcurves of galaxies, the mass of galaxy-
clusters obtained from dynamical estimates, the formationof the LSS from small initial fluctuations
at the time of last scattering, and gravitational lensing observations. Candidates for dark matter
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particles are so-called weakly interacting massive particles (WIMPs), the most promising candidate
for which is the lightest supersymmetric particle, the neutralino. Attempts to explain the observed
behaviours listed above by modifying the laws of gravity rather than by introducing dark matter
includemodified Newtonian gravity(MOND) (Milgrom 1983), andTensor-vector-scalar gravity
(TeVeS) (Bekenstein 2004). However, these theories suffer from some difficulties as shown, for
instance, by Feix et al. (2008), Klypin & Prada (2009), and Mavromatos et al. (2009).

Dark energy has been postulated in order to explain the observed accelerated expansion of the
Universe discovered by Riess et al. (1998) and Perlmutter etal. (1999). We will explain dark energy
and its observational evidence in detail in section 1.3.2.

1.3.2 Dark energy

An accelerated expansion of the Universe as observed by Riess et al. (1998) and Perlmutter et al.
(1999) cannot be obtained with normal matter (i.e. baryons and dark matter) in a Friedmann-
Robertson-Walker cosmological model, as can be easily shown. During an accelerated expansion,
the second time derivative of the scale factora is by definition positive, ¨a > 0. Considering the
second Friedmann equation, eq. (1.16),

ä = −4πG
3

(ρ + 3p) a ,

it becomes clear that ¨a > 0 only if the effective equation of state (EoS) parameterw ≡ p
ρ

of the

total energy content of the universe is smaller than−1
3. But all known forms of matter including

dark matter havewα ≥ 0 and can thus only decelerate the expansion. Therefore, if the accelerated
expansion is to be explained by some exotic form of energy, the latter is required to have a negative
pressure such that the total EoS parameterw < −1

3. Such an exotic form of energy was postulated
after the observations of Riess et al. (1998) and Perlmutteret al. (1999), and it was nameddark
energy.

In addition to explaining the accelerated expansion, dark energy can account for the missing
mass which is necessary to reach the critical density. Measurements of the CMB combined with
observations of supernovae of type Ia provide strong evidence of our Universe being spatially flat.
As we have seen in section 1.2, the total energy density in a flat universe is necessarily equal to the
critical density. But the matter we actually observe by emitted light (baryonic matter) and by its
gravitational impact (dark matter) only accounts for about30% of the critical density. This makes
it necessary to postulate some form of energy which accountsfor the missing 70% of the critical
density. Dark energy naturally accounts for this missing mass.

Another evidence for the existence of dark energy, which is independent of the observations
described above, is the integrated Sachs-Wolfe (ISW) effect in the CMB, which we will explain in
detail in section 1.4.3. Chapter 3 of this work is devoted to developing optimal methods for the
detection of the ISW effect.

There are several different theoretical models for dark energy, or rather, for explaining the
observations described above. Some models postulate the existence of an exotic form of energy
while leaving General Relativity unchanged, whereas others modify the laws of gravity. In
the following, we briefly describe the most common models andindicate how they could be
distinguished by observations.
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parameter WMAP WMAP 5 year explanation
5 year ML +BAO+SN Mean

ΩΛ 0.751 0.721± 0.015 density parameter of dark energy
Ωm 1−ΩΛ 1−ΩΛ density parameter of matter (dark+ baryonic)
Ωbh2 0.02268 0.02265± 0.00059 density parameter of baryonic matter× h2

h 0.724 0.701± 0.013 Hubble constant
τ 0.089 0.084± 0.016 optical depth to last scattering
ns 0.961 0.960± 0.014 spectral index of the primordial power spectrum
σ8 0.787 0.817± 0.026 Fluctuation amplitude at 8/h Mpc

Table 1.1: Table of the main cosmological parameters of the flatΛCDM model as given by Komatsu et al.
(2009), table 1. The values of the parameters in the second column are the maximum likelihood values
for the 5 year WMAP data, which are used in the analysis in chapter 4. The values in the third column
are the mean values from combining the 5 year WMAP data with measurements of the baryon acoustic
oscillations and supernovae of type Ia. These values are used in chapter 3.

The cosmological constant

One possible candidate for dark energy is thecosmological constantΛ, which was originally
introduced by Einstein in order to obtain a static universe (Einstein 1917). The Einstein equations
with the cosmological constant read

Gµν + Λδ
µ
ν = 8πG Tµν . (1.28)

After Hubble discovered the distance-redshift relation ofgalaxies, which was interpreted as an
overall expansion of the Universe, Einstein called the ideaof the cosmological constant “the biggest
blunder in my life” . However, now the discussion aboutΛ has been revived by the apparent
accelerated expansion of our Universe. Instead of adding the Λ-term to the left hand side (the
geometrical part) of the Einstein equations, one can equivalently include it in the energy momentum
tensor. In this picture, the cosmological constant corresponds to the vacuum energy density of the
Universe and has the constant EoS parameterwΛ = −1.

The cosmological model that contains about 70% vacuum energy density, 25% cold dark matter,
5% baryons and 10−3% radiation and neutrinos is referred to asΛCDM model. TheΛCDM model
fits surprisingly well to observations of the CMB, the matterdistribution in the Universe, and
the distance-redshift relation of supernovae of type Ia. Being the simplest cosmological model
comprising dark energy, it is the model which is most widely used by cosmologists. In this work
we will use theΛCDM model with parameter values given by Komatsu et al. (2009), table 1, which
are listed in Table 1.1.

Dynamical scalar fields

Instead of considering dark energy to be vacuum energy density, it is also possible to obtain the
behaviour of dark energy from dynamical scalar fields. Dynamical scalar fields are fields which are
not just sitting in the ground state of their potential, as itis the case for vacuum energy, but the field
has started out in some non-equilibrium state and then evolves according to its equations of motion.
The main potentially observable difference to the cosmological constant is that the EoS parameter
of the dynamical models evolves with time. In principle, it is possible to observe such an evolution,
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for example by measuring the redshift dependence of the so-called baryon acoustic oscillations
in the matter power spectrum, which will be introduced in section 1.5.2. There is a wide range
of models for dark energy using dynamical scalar fields, including quintessence (Wetterich 1988;
Peebles & Ratra 1988), k-essence (Armendariz-Picon et al. 2001), and phantom energy (Caldwell
2002), just to name a few of them.

Other

In what we have described above, we have implicitely assumedthat Einstein’s General Theory
of Relativity is the correct theory to describe our Universeon cosmological scales. This is not
necessarily true, and in fact General Relativity has only been confirmed on scales up to solar system
scales. There are attempts to reproduce the observations described above by changing the laws of
gravity on large scales rather than by introducing dark energy. One example is represented by scalar
tensor theories (Hwang 1990a,b). These can, however, be reformulated in terms of GR theories in
which a scalar field, possibly representing dark energy, interacts universally with all matter fields.

Another, highly controversial, approach to circumvent dark energy is to use backreactions
of inhomogeneities in the Universe on the background expansion (Buchert 2008; R̈as̈anen
2004; Martineau & Brandenberger 2005; Kolb et al. 2008; Kasai et al. 2006). An inhomogeneous
Universe may on average evolve differently from a homogeneous solution of Einstein’s laws of
gravity. This could result in an apparent acceleration of the expansion of space.

Yet another idea of explaining the apparent acceleration isthe hypothesis that our observed
Universe can be described by a Lemaı̂tre-Tolman-Bondi model, which is a spherically symmetric
but inhomogeneous dust Universe. Such a model can in principle mimic an accelerated expansion
(Enqvist 2008), but in order to preserve the observed isotropy of the CMB, we would presumably
need to be placed quite close to the centre of such a structure, violating the Copernican principle
(Caldwell & Stebbins 2008). One particular scenario which has been investigated is that we live in a
giant void, with a larger Hubble rate inside than out (Tomita2001). However, it was shown recently
that a giant void is not necessary in order to circumvent darkenergy in a Lemâıtre-Tolman-Bondi
model, but a large hump would do the job as well (Célérier et al. 2009).

1.3.3 Inflation

There is yet another poorly understood but essential component of the cosmological concordance
model, the so-calledinflationary phaseof the very early Universe, about 10−35safter the Big Bang.
This inflationary period was supposedly a phase of rapid and accelerated expansion, in which the
Universe was blown up by a factor of 60e-folds within a fraction of a second. This exponential
expansion is thought to be driven by one or more scalar fields (sometimes called theinflaton field),
as suggested by Alan Guth and Andrej Linde (Guth 1981; Guth & Weinberg 1983; Linde 1982).
Without inflation, we lack a natural explanation for why our Universe should be spatially flat to such
a high degree, which is commonly referred to as theflatness problem. In addition, in a Friedmann-
Robertson-Walker Universe without inflation, there is no reason why the CMB should be isotropic,
since the different regions from which we observe the CMB cannot have been in causal contact by
the time when they emitted the radiation. This problem is called thehorizon problem. Inflation
solves both the flatness problem and the horizon problem withthe same mechanism: The Universe
we observe is just a tiny patch of the pre-inflationary Universe, which has been blown up by a factor
of aboute60 by inflation. This implies that the observed Universe is spatially flat, as can be easily
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seen from dividing eq. (1.15) bya2:

( ȧ
a

)2

=
8πG

3
ρ − K

a2
. (1.29)

The inflaton field has an EoS parameter close to−1, and thusρ ≈ const, see eq. (1.19). Therefore,
since the scale factora is growing with time, the curvature term in the differential equation,K/a2,
eventually becomes negligible compared to the constant density term. The horizon problem is
solved by the fact that the different regions we observe in the CMB radiation were all part ofthe
same pre-inflationary patch and thus in thermodynamic equilibrium before inflation.

Furthermore, the theory of inflation naturally explains thepresence of small inhomogeneities
in the early Universe: During inflation, quantum fluctuations of the inflaton field get blown up
to cosmological scales and act as seeds for the formation of cosmological structures. The power
spectrum of these initial fluctuations is predicted to be nearly scale-invariant. This has been
confirmed by observations of the CMB and can thus be considered the first observed ‘prediction’
of inflation. The seeds for structure formation are furthermore predicted to be close to Gaussian,
but to exhibit small non-Gaussianities that depend on the specific model of inflation. Observations
of the CMB roughly confirm the Gaussianity of the fluctuations, apart from certain non-Gaussian
features that still lack an explanation (Vielva et al. 2006;Ayaita et al. 2009). The detection of small
primordial non-Gaussianities of the type predicted by inflation could be a handle to distinguish
between the different inflationary models. Furthermore, there is a chance ofdetecting relics of
gravitational waves created during the inflationary phase in the so-called B-mode of the CMB
polarization fluctuations, which will be introduced in section 1.4.4. Being the first direct evidence
for an inflationary period, such a detection would be one of the greatest successes of modern
cosmology.

1.4 The cosmic microwave background

In this section, we introduce the cosmic microwave background radiation (CMB), which is one
of the richest sources of information about our Universe that we have. The analysis of different
aspects of the CMB will be the main focus of this work. The integrated Sachs-Wolfe (ISW) effect,
for which we will develop new detection methods in chapter 3,is explained in detail in section 1.4.3.
Other secondary effects on the CMB, which we could in principle apply our methodsto, are briefly
described.

1.4.1 Origin of the CMB

After the Big Bang, the matter in the Universe was extremely hot and dense, and it successively
became cooler and less dense as the Universe expanded. Due tothese high temperatures, the
hydrogen in the early Universe was ionised, and baryons and photons were tightly coupled via
Thomson scattering of the CMB photons by the free electrons.Baryons and photons thus formed
the so-calledbaryon-photon fluid. Approximately 400,000 years after the Big Bang, the Universe
had become cool enough for the free protons and electrons to combine and form neutral hydrogen, a
process which is referred to asrecombination. After recombination, the photons could no longer get
scattered by free electrons, and thus baryons and radiationdecoupled. Since then, the photons have
been free streaming through the Universe, and can nowadays be observed as the CMB. We measure



26 Cosmology

the CMB radiation in the microwave band, because the wavelength of the photons has been stretched
by the expansion of the Universe. We denote the time when the photons have been scattered for the
last time the time oflast scattering(ls). The corresponding surface on our backwards lightcone
is referred to as the surface of last scattering. It has a redshift of zls ≈ 1100. The CMB features
an almost perfect blackbody-spectrum, which tells us that the baryons and photons have been in
thermal equilibrium at last scattering.

1.4.2 Temperature anisotropies

The CMB is almost isotropic over the whole sky. There are, however, small temperature-
anisotropies of the blackbody-spectrum of∆T

T0
∼ 10−5, most of which originate in density

fluctuations in the baryon-photon-fluid before last scattering. Others, the so-calledsecondary
effects, are imprinted in the CMB after last scattering. For notational simplicity, we redefine
T(n̂) ≡ T(n̂)−T0

T0
, whereT0 denotes the average CMB temperature of 2.725 K, andn̂ is the direction

on the sky.
The temperature anisotropiesT(n̂) can be expanded in spherical harmonicsYlm:

T(n̂) =
∑

l,m

aT
lmYlm(n̂) . (1.30)

Here, theaT
lm are the expansion coefficients, which are defined by

aT
lm ≡

∫

S
dΩT(n̂) Y∗lm(n̂) , (1.31)

where the integral is taken over the whole sphereS and the star denotes complex conjugation. We
can define the autocorrelation function of the temperature distribution as

〈T(n̂)T(n̂′)〉P(T |p) =
∑

l,l′,m,m′
〈aT

lmaT∗
l′m′〉Ylm(n̂)Y∗l′m′(n̂′)

=
∑

l

2l + 1
4π

CT
l Pl(n̂ · n̂′) , (1.32)

where the average is to be taken over an ensemble of different realisations ofT given the
cosmological parametersp, i.e. over the probability distributionP(T |p). The power spectrumCT

l of
the temperature anisotropies is defined by

〈aT
lmaT∗

l′m′〉 = δll ′δmm′C
T
l , (1.33)

where we have assumed statistical isotropy of the temperature fluctuations.Pl(x) are the Legendre
polynomials, which we have introduced into the equation by using the addition theorem for spherical
harmonics,

l∑

m=−l

Ylm(n̂)Y∗lm(n̂′) =
2l + 1

4π
Pl(n̂ · n̂′) . (1.34)

Since we only observe one CMB, we will never be able to obtain the average over different CMB
realisations in order to measure the power spectrum. We are therefore forced to assume the ‘ergodic
hypothesis’ that the average over different directions in the sky gives the same result as an ensemble
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Figure 1.1: Temperature power spectrum of aΛCDM universe with the current best-fit values of
the cosmological parameters as given by Dunkley et al. (2009), togetherwith the WMAP 5 year
measurements.

average. This leads to the problem ofcosmic variance: it is not possible to obtain a good spatial
average over large-scale fluctuations, since we simply don’t have enough of these patterns to average
over. As a straightforward calculation shows, the minimal error with which we can measure the
CMB power spectrum from one sky is given by

√
〈
(
ĈT

l −CT
l

)2〉 =
√

2
2l + 1

CT
l , (1.35)

whereĈT
l ≡ 1/(2l + 1)

∑
m |aT

lm|2 is the power spectrum estimated from our CMB realisation, and
the average has to be taken over an ensemble of CMB realisations. This cosmic variance is a
fundamental limit on the estimation of the power spectrum, which becomes large for lowl.

For a given cosmological model, we can calculate the theoretical CMB power spectrum by
solving the coupled system of perturbation equations for baryons, dark matter, photons and
neutrinos. These perturbation equations comprise the linearised Einstein equations, generalised
energy-momentum conservation for baryons and dark matter,and the Boltzmann equation for
photons as well as the collisionless Boltzmann equation forneutrinos. A detailed derivation of these
equations can be found in Durrer (2001). The temperature power spectrum has been measured with
high precision by different experiments (Nolta et al. 2009; Masi et al. 2007; Reichardt et al. 2009;
Sievers et al. 2009). In Fig. 1.1, we plot the temperature power spectrum of aΛCDM universe
with the current best-fit values of the cosmological parameters, as given by Dunkley et al. (2009),
together with the WMAP 5 year measurements, which are almostcosmic variance limited for very
low l.

The most prominent feature of the CMB spectrum are the acoustic peaks, which originate at the
time before last scattering when baryons and photons are still tightly coupled and form the baryon-
photon fluid. Dark matter, which is not coupled to the photons, had already started to clump and
form potential wells well before last scattering. The radiation pressure from the photons resists the
gravitational compression of the fluid into these potentialwells and sets up acoustic oscillations



28 Cosmology

in the fluid. The frequency of a mode with wavelengthλ is given byν = cs

λ
, cs being the sound

speed. Therefore, the modes with shorter wavelengths have time to oscillate more often before
last scattering than the longer wavelength modes. Considerthe ‘zero-mode’,λ0, for which there
has been just enough time to go through half an oscillation before last scattering. It is the longest
wavelength mode that is at the maximum of its oscillation at last scattering. Therefore, it leads to
the first acoustic peak in the CMB-spectrum. Half of the wavelength of this mode is equal to the
distanceds which sound can travel before last scattering, as one can easily see: ds =

1
2ν0

cs =
1
2λ0.

This distance is commonly referred to as thesound horizonat last scattering. The mode with half
the wavelength of the zero-mode oscillates twice as fast andtherefore undergoes one full oscillation
before last scattering. At last scattering, it will also be at the maximum of its oscillation and
corresponds to the second peak of the spectrum. The other peaks are due to higher harmonics
of the zero-mode.

On large scales, i.e. for smalll’s, the power spectrum is dominated by the Sachs-Wolfe (SW)
and the integrated Sachs-Wolfe (ISW) effect. Both are related to the gravitational redshift a photon
experiences when climbing out of a gravitational potentialwell. At last scattering, the CMB photons
are sitting in potential wells and on potential hills created by the density fluctuations of dark matter.
When the photons are set free at last scattering, they have toclimb out of the wells, or fall off the
hills, and thus get red- or blueshifted, respectively. Thisis referred to as the Sachs-Wolfe effect.
The integrated Sachs-Wolfe effect will be explained in detail in section 1.4.3.

1.4.3 Secondary anisotropies

The temperature anisotropies we have explained in the last section are primordial anisotropies
originating at the surface of last scattering. However, thematter inhomogeneities the photons pass
through on their way towards us, leave imprints on the CMB fluctuations in various ways. These
imprints are called secondary effects. The most important secondary effects are the ISW effect, the
Rees-Sciama (RS) effect, the thermal and kinetic Sunyaev-Zel’dovich (SZ) effects, and gravitational
lensing. We describe these effects in the following.

The integrated Sachs-Wolfe effect

In section 1.4.2, we have explained the SW effect as the gravitational redshift of photons that have
to climb out of potential wells at the surface of last scattering. The same happens when the CMB
photons pass through gravitational wells or hills on their way to us. If the gravitational potential of
a cosmic matter structure is static, the net frequency shiftfor a photon travelling through it is zero.
However, if the depth of the potential changes in time the red- and blueshift no longer cancel, and
the photon experiences a net frequency shift. On smaller scales, the frequency shifts from changing
potentials average out, because the photon passes through many small overdense and underdense
regions on its way to us. On the largest scales, however, the photon will only pass through few
potential wells and hills, and there will remain a net frequency shift, the ISW effect, which can be
observed on the large angular scales of the CMB. On those scales, cosmological structure growth
can still be described by linear perturbation theory.

In an Einstein-de Sitter universe, i.e. a flat matter dominated universe, the gravitational potentials
are constant on linear scales, and thus no ISW effect can be observed. However, in a universe
which contains dark energy, gravitational potentials decay with time and give rise to an ISW effect.
The same holds if the apparent acceleration of the Universe is not caused by dark energy, but is a
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consequence of modified gravity, which we have introduced insection 1.3. Curvature of space also
causes gravitational potentials to decay, but as we said before there is strong evidence against such
a curvature, so that the ISW effect is considered to be a probe of dark energy or modified gravity.

On non-linear scales, on which the matter fluctuations are decoupled from the background
expansion, gravitational potentials grow due to the matterinfall into potential wells. This non-
linear ISW effect is called Rees-Sciama (RS) effect. It is quite small since the matter flow velocities
causing the changing potential are well below 1 per cent.

The temperature anisotropies coming from the integrated Sachs-Wolfe effect are given by

Tisw(n̂) = 2
∫ η0

ηls

Ψ′ (η, (η0 − η) n̂) dη . (1.36)

Recall thatη denotes the conformal time and the prime stands for the derivative with respect to the
latter. ηls andη0 denote the conformal time at last scattering and the presentepoch, respectively,
andn̂ is the direction on the sky.Ψ is the gauge invariant Bardeen potential (Bardeen 1980), which
coincides with the Newtonian gravitational potential in the Newtonian gauge1 used in this work.
Note that the integral in the above equation has to be taken along the backwards light cone.

In Newtonian gauge,Tisw can be obtained by applying a suitably constructed linear operatorQ
to the present matter density contrastδm(η0):

Tisw = Q δm(η0) . (1.37)

The matter density contrast is defined asδm(x) ≡ [
ρm(x) − ρ̄m

]
/ρ̄m, whereρm(x) denotes the density

of matter in the Universe at positionx, and ρ̄m is the background matter density. Eq. (1.37) can
be verified by using the perturbation equations derived by, e.g., Kodama & Sasaki (1984) or Durrer
(2001): In order to obtain the expression for the operatorQ in the subhorizon-limit, let us look at
the Poisson equation

∆Ψ =
3H2

0

2
(1+ z)Ωmδm , (1.38)

where∆ denotes the Laplace operator in comoving coordinates. Fromthe Poisson equation, we
obtain

Ψ′(k, η) =
3H2

0Ωm

2k2
H(η) (1− f (η)) D(η) δm(k, η0) , (1.39)

wheref ≡ d ln δm/d ln a is the growth function,D(η) ≡ δm(k, η)/δm(k, η0) denotes the linear growth
factor,k stands for the absolute value ofk, and we define Fourier transformed quantities as

δm(k, η) =
∫

d3x eik·x δm(x, η) , (1.40)

with the inverse transformation

δm(x, η) =
1

(2π)3

∫
d3k e−ik·x δm(k, η) . (1.41)

The expression for the operatorQ can then be obtained by Fourier transforming eq. (1.39) and

1For a detailed explanation of the gauge freedom in linear perturbation theory, and a definition of Newtonian gauge, see
Kodama & Sasaki (1984).
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Figure 1.2: CMB and ISW power spectrum of aΛCDM universe with the current best-fit values of the
cosmological parameters as given by Dunkley et al. (2009).

inserting it into eq. (1.36). Note, though, that we have not used the subhorizon-limit in this work,
as eq. (1.37) is valid on superhorizon-scales as well.2 In Fig. 1.2, we compare the power spectrum
of the ISW effect with the one of the CMB. Note that the ISW effect only significantly contributes
to the total CMB power spectrum at the lowest multipoles.

The Sunyaev-Zel’dovich effect

The Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zeldovich 1972) is the interaction of CMB photons
with ionised gas in galaxy clusters and filaments. We distinguish between the thermal and the kinetic
SZ effect. In both cases, the relatively cool CMB photons undergo inverse Compton scattering by
free electrons of the X-ray gas in the cluster, i.e. the photons get kicked to higher or lower energies
while the electrons lose or gain energy.

In the case of the thermal SZ effect, the energy kick of the CMB photon is taken from the
thermal energy of electrons in clusters. Since the temperature in clusters is much higher than the
temperature of the CMB photons, the photons are on average up-scattered in energy. This causes a
deviation of the photon energy distribution of the CMB from the blackbody spectrum. Therefore,
the thermal SZ effect can be separated from the primordial CMB by using its spectral signature.
The thermal SZ effect leaves an imprint on the CMB spectrum at very small scalesand might even
dominate it atl > 2000.

In the case of the kinetic SZ effect, the energy change of the scattered photon comes from the
bulk motion of the ionised gas. The kinetic SZ effect does not destroy the blackbody spectrum

2The correct formula forQ in Newtonian gauge, which also holds on superhorizon-scales, can be obtained by differentiating
and Fourier transforming the expression

Ψ(k, η) = exp

(
−

∫ η

0
p (k, η′) dη′

) ∫ η

0

H2
0 Ωm

2Ha2
D(k, η′) δm(k, η0) exp


∫ η′

0
p(k, η′′) dη′′

 dη′ ,

and inserting it into eq. (1.36), instead of the expression forΨ(k, η) in the subhorizon-limit, eq. (1.39). Here, we have defined
p(k, η) ≡ k2+3a2H2

3aH and the linear growth factorD(k, η) ≡ δ(k,η)
δ(k,η0) , which in general depends on the Fourier modek.



1.4 The cosmic microwave background 31

shape of the CMB but only changes its temperature. Therefore, it cannot be distinguished from the
primordial CMB signal without additional information about the distribution of the clusters which
create the SZ effect. The kinetic SZ signal of clusters is typically several times smaller than their
thermal SZ effect.

Gravitational lensing

According to Einstein’s General Theory of Relativity, the curvature of spacetime determines how
massive particles and light rays propagate through space. The resulting deflection of light by
gravitational potentials is calledgravitational lensing. Einstein’s prediction of the deflection angle
of starlight which gets deflected by the sun has been confirmedby Arthur Eddington’s measurements
during a solar eclipse in 1919 (Dyson et al. 1920), and was oneof the great successes of general
relativity.

The CMB photons are subject to gravitational lensing when travelling through the
inhomogeneous gravitational field of the large-scale structure (LSS) on their way from the last
scattering surface to us. This causes a change in size and shape of the warm and cold patches in
the CMB temperature fluctuations, and also affects the polarization of the CMB, which we will
introduce in the next section. The effect of gravitational lensing manifests itself in the CMB power
spectra by smoothing out sharp features in the latter. Theseeffects contribute about 1 per cent to the
CMB power spectra atl ∼ 400, and become larger than the primordial fluctuations atl & 3000.

1.4.4 CMB polarization

Thomson scattering, which is the dominant process that couples photons to free electrons before last
scattering, creates linear polarization of the CMB photons. In the following, we give an intuitive
explanation of this process. For a thorough discussion of CMB polarization, the reader is referred
to Durrer (2001) or Zaldarriaga & Seljak (1997).

We consider a linearly polarized incoming wave with polarization direction̂ǫ′, which is scattered
into an outgoing wave with polarization directionǫ̂ (the polarization direction is defined as the
direction in which the electric field oscillates). The differential Thomson scattering cross section
for this process is given by Jackson (1975)

dσ
dΩ
=

3σT

8π
|ǫ̂′ · ǫ̂| , (1.42)

whereσT is the total Thomson cross section. For an unpolarized incoming beam, this leads to
a differential cross section which is independent of the scattering angleθ if ǫ̂ is perpendicular to
the scattering plane, and proportional to cos2(θ) if ǫ̂ lies in the scattering plane. If the incident
photons come in isotropically from all directions, there isno net polarization of the scattered
photons. However, if the intensity of the incoming radiation exhibits a quadrupole moment in
the rest frame of the scattering electron, Thomson scattering leads to some linear polarization of the
outgoing beam. This can be intuitively understood by considering two incident light beams coming
in from directions separated by 90◦ (cf. Fig. 1.3). From the mathematical derivation (Durrer 2001;
Zaldarriaga & Seljak 1997), it becomes clear that among all incident multipoles the quadrupole is
the only source of polarization of the outgoing beam.

Due to the process described above, the CMB photons leaving the surface of last scattering
are linearly polarized to a certain degree. After recombination, nearly all of the free electrons and
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Figure 1.3: Two unpolarized light beams are coming in from directions separated by 90◦. The light
beam coming in from the left has a higher intensity, as indicated by the longer polarization vectors. The
outgoing light beam is linearly polarized to a certain degree.

protons have combined to form Hydrogen, and thus the probability of the photons getting scattered
is very low. Only during the epoch of reionization atz ∼ 10− 20, there are again free electrons
created by ionising photons from the first supernovae, and about 10 per cent of the CMB photons
get scattered again. The free-streaming of the photons coming from the last scattering surface has
enhanced the quadrupole incident on the scattering electrons at reionization (Zaldarriaga 1997).
Therefore, the re-scattering of CMB photons during reionization creates additional polarization on
large scales.

Let us now introduce the mathematical framework used to describe linear polarization on
a sphere, which has been developed by Zaldarriaga & Seljak (1997). Consider a coordinate
system with the z-direction pointing towards us along the line of sight. The electric field of
a monochromatic electromagnetic wave travelling in z-direction is of the formE = E0 ei(kz−ωt),
wherek andω are wave-vector and frequency, respectively.E0 ≡ (Ex

0 ǫ̂(x) + Ey
0 ǫ̂(y)) is the complex

amplitude of the electromagnetic wave, withǫ̂(x) andǫ̂(y) being the unit vectors inx andy direction,
respectively. We can characterise a linearly polarized monochromatic wave by the three Stokes
parameters I, Q, and U, which are defined as

I ≡ |Ex|2 + |Ey|2 , (1.43)

Q ≡ |Ex|2 − |Ey|2 , (1.44)

U ≡ E∗xEy + ExE
∗
y , (1.45)

whereI is proportional to the total intensity of the wave, Q encodesthe polarized intensity in the
directions ofǫ̂(x) and ǫ̂(y), and U describes the polarized intensity in the directions inclined by 45◦

to that.I is related to the temperature of the CMB introduced in section 1.4.2 by3

δT
T
=

1
4
δI
I
. (1.46)

3Note that we had redefinedT(n̂) ≡ T(n̂)−T0
T0

in section 1.4.2, which we have ignored in eq. (1.46) for clarity.
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Since the Stokes parameters depend on the chosen coordinatesystem, they are not well suited for
describing polarization on the full sphere (Zaldarriaga & Seljak 1997). However, the combinations

Q± iU , (1.47)

where i denotes the imaginary unit, transform as spin-2 quantitiesunder rotation around the z-
axis. They can therefore be expanded in spin-weighted spherical harmonics,sYlm(n̂), with the index
s= ±2:

(Q+ iU )(n̂) =
∑

l,m

a2,lm 2Ylm(n̂) ,

(Q− iU )(n̂) =
∑

l,m

a−2,lm −2Ylm(n̂) , (1.48)

where the expansion coefficients can be obtained from the following equations:

a2,lm ≡
∫

dΩ 2Y
∗
lm(n̂)(Q+ iU )(n̂) ,

a−2,lm ≡
∫

dΩ −2Y
∗
lm(n̂)(Q− iU )(n̂) . (1.49)

Instead of working with the coefficients a±2,lm, it is convenient to introduce their linear
combinations, the so-called E and B modes:

aE
lm ≡ −1

2
(a2,lm + a−2,lm) , (1.50)

aB
lm ≡ i

2
(a2,lm − a−2,lm) . (1.51)

Under parity transformations, the E mode remains unchangedwhereas the B mode changes sign, in
analogy to electric and magnetic fields.

With the above definitions, we can fully characterise the statistics of CMB fluctuations by the
following four power spectra:

〈aT
lmaT∗

l′m′〉 = CT
l δll ′δmm′ , (1.52)

〈aT
lmaE∗

l′m′〉 = CT E
l δll ′δmm′ , (1.53)

〈aE
lmaE∗

l′m′〉 = CE
l δll ′δmm′ , (1.54)

〈aB
lmaB∗

l′m′〉 = CB
l δll ′δmm′ . (1.55)

Note that theT B and EB cross power spectra vanish in a universe symmetric under parity
transformation, because B has the opposite parity of T and E.

In Fig. 1.4, we plot the theoretical TE cross power spectrum for the WMAP 5 year best fit
cosmological model, together with the values measured by WMAP. In Fig. 1.5, we plotCT

l andCE
l

for comparison. Note that the power contained in CMB polarization fluctuations is about a factor
of 100 less than the power contained in the temperature fluctuations. Nevertheless, the polarization
of the CMB contains valuable information about our Universe. The E-mode can be used to obtain
information about the epoch of reionization, and the B mode,which contains only a fraction of
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Figure 1.4: TE cross power spectrum of aΛCDM universe with the current best-fit values of the
cosmological parameters as given by Dunkley et al. (2009), together withthe values observed by WMAP.
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the power of the E-mode, is considered to be a smoking gun for detecting primordial gravitational
waves created during inflation.

The currently available full-sky polarization data from WMAP are highly contaminated by
detector noise and Galactic foregrounds. However, thePlancksatellite, which has been launched
in May 2009, will soon provide us with full-sky polarizationdata of unprecedented accuracy.
WhereasPlanckwill presumably only detect the E-mode fluctuations, the next generation of CMB
experiments, such as PolarBeaR4 or CMBPol5 are designed to measure the B-mode as well. Given
that inflation is at present merely a hypothesis without any observational evidence, measuring the
primordial gravitational waves would be a tremendous success for the standard model of cosmology,
in which inflation plays a crucial role.

1.5 Other observational probes of the Universe

In addition to the CMB explained in the last section, there are a number of other observational
probes that are used to infer information about our Universe. In the following, we briefly introduce
the most important probes and discuss the constraints that can be obtained from their analysis.

1.5.1 The luminosity distance-redshift relation

The relation of the distance of astronomical objects to their redshift encodes information about
the geometry and expansion history of the Universe. The proper distance to an object as defined
in section 1.2 corresponds to the distance measured by a chain of rulers at a fixed timet. It is
not possible to determine the proper distance by observation, because we observe astronomical
objects through their light, which takes a certain time to reach us. Therefore, we have to rely on
observationally motivated distance measures to characterise the distance to astronomical objects.

An important distance measure is the so-called luminosity distancedL, which is defined such as
to preserve the Euclidean inverse-square law for the diminution of light:

dL ≡
√

L
4π f
. (1.56)

Here,L is the absolute luminosity emitted by the source at time t andcomoving coordinate distance
r, and f is the flux we observe at timet0.

The area of a sphere centred on the source and passing throughthe position of the observer
at time t0 is just 4πr2, as can be easily seen from the Robertson-Walker metric, eq.(1.9). In an
expanding Universe, the diminution of light is proportional to an additional factor ofa2, due to the
redshift of the single photons and to the dilution of the number of photons:

f =
L

4πr2
a2 , (1.57)

from which we readily obtain

dL =
r
a
. (1.58)

4http://bolo.berkeley.edu/polarbear/index.html
5Baumann et al. (2008),http://cmbpol.uchicago.edu
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Expanding the scale factora in a Taylor series aroundt0 and integrating the Robertson-Walker
metric for a light ray (for whichds2 = 0), it is quite straightforward to obtain the relation between
the distance coordinate r and the redshift z (Coles & Lucchin2002):

r =
1

H0

[
z− 1

2
(1+ q0)z

2 +O(z3)

]
, (1.59)

whereq0 is called the deceleration parameter, which is defined as

q0 ≡ −
ä(t0)
ȧ(t0)2

. (1.60)

Inserting this relation into eq. (1.58), we obtain the luminosity distance-redshift relation

dL =
1

H0

[
z+

1
2

(1− q0)z
2 +O(z3)

]
. (1.61)

If the absolute luminosityL of an object and thusdL is known, the distance-redshift relation
given in eq. (1.61) can be used to infer information about theHubble parameterH0 and the
deceleration parameterq0. Examples for astronomical objects of known absolute luminosity, the
so-calledstandard candles, are certain variable stars (Cepheids), and supernovae of type Ia. In
case of the supernovae of type Ia, an empirical relation has been found between the shape of the
light-curve emitted by the supernova and its absolute luminosity. Up to present times, however,
we still lack a theoretical understanding of this relation.Nevertheless, supernovae of type Ia are
considered reliable standard candles, and have been used todetermine the deceleration parameter
of the Universe by Riess et al. (1998) and Perlmutter et al. (1999), with the surprising result that the
expansion is actually accelerating rather than decelerating (cf. section 1.3.2).

1.5.2 Angular distances

In analogy to the luminosity distance introduced in the lastsection, we can define the so-called
angular diameter distancedA. It is defined in such a way as to preserve the variation of the angular
size of an object in Euclidean space. LetDs be the proper (physical) diameter of a source placed
at coordinate r at time t, and∆θ the angle on the sky subtended by the source. We then define the
angular diameter distance to be

dA ≡
Ds

∆θ
. (1.62)

From the Robertson-Walker metric, eq. (1.9), we obtain the relation

Ds = ar∆θ , (1.63)

which we insert into eq. (1.62) in order to obtain

dA = ar . (1.64)

Just as for the luminosity distance, we can again expand the expression for the angular diameter
distance, eq. (1.64), in a Taylor series in z. For astronomical objects of known physical diameter,
the so-calledstandard rulers, we can then use the angular diameter distance to infer the Hubble
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parameter and the deceleration parameter.
The potentially most powerful standard ruler is the baryon acoustic oscillations (BAOs) in the

power spectra of the CMB and the matter distribution. The BAOs originate in the oscillations
of the baryon-photon plasma at the time before last scattering. We have already described these
oscillations and the imprint they leave in the CMB spectrum in section 1.4. We have also explained
that the physical scale of the first peak in the CMB spectrum isgiven by the sound horizon at last
scattering. The BAOs are visible not only in the spectrum of the CMB, but also in the matter power
spectrum, which can in principle be measured up to a redshiftof about 7 or higher from the galaxy
and quasar distributions and from 21cm observations. By determining the BAO scale at different
redshifts, it is thus in principle possible to actually measure the expansion history of the Universe.
Therefore, BAOs are considered to be among the most promising future sources of information
about dark energy.

1.5.3 Weak lensing

In section 1.4.3, we have already introduced gravitationallensing as a secondary effect on the CMB.
Just like the CMB photons, also the light emitted from galaxies gets deflected by gravitational
potentials it passes through, resulting in a distortion andmagnification of the observed galaxy
images. Since gravitational lensing is sensitive to anything that creates a gravitational potential,
it can be used to obtain maps of the projected dark matter distribution and to determine the dark
matter power spectrum. This is done by analysing gravitational lensing in the weak lensing regime,
in which the distortions of the galaxy images can be described by a complex field calledshear.

Obtaining the shear from the elliptical distortion of galaxy images involves taking the mean
over a large sample of galaxies, in order to average out the intrinsic shapes of the galaxies. At
present, weak lensing measurements therefore still suffer from a high noise-level. Nevertheless,
once there are enough galaxies to average over, weak lensingmeasurements provide a potentially
very powerful tool to map our Universe.

1.5.4 Primordial nucleosynthesis

Within the first three minutes after the Big Bang, the light elements deuterium,3He, 4He and7Li
have formed from Hydrogen during primordial nucleosynthesis (Big Bang nucleosynthesis, BBN).
The relative abundance of these elements after BBN depends on the baryon content of the Universe.
This allows us to obtain bounds on the density parameter of baryons,Ωb, by comparing the observed
abundances of the light elements with predictions of BBN computations.
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Chapter 2

Statistical inference

Note: Section 2.3 of this chapter is taken from Enßlin et al. (2009), to which I have contributed as
a second author, but which was primarily the work of Torsten Enßlin.

Modern-day cosmology heavily relies on the use of probability theory. Cosmological models
make predictions of the statistical properties of cosmological signals such as the CMB, which
we compare to the statistical properties of the observed signal. In this chapter, we give a brief
introduction to the basic concepts of Bayesian inference used in this PhD work. For a more thorough
treatment, please refer to Bolstad (2004), Robert (2001), or Gelman et al. (2004).

2.1 Notation

Most of the random variables we will be dealing with in this work, including certain cosmological
signals and detector noise, can be approximately describedby a Gaussian distribution. For
simplifying the notation, we therefore define

G(χ,C) ≡ 1
√
|2πC|

exp

(
−1

2
χ†C−1χ

)
(2.1)

to denote the probability density function of a Gaussian distributed vectorχ with zero mean. By
‘vector’ we generally mean a vector in function space (i.e. afield), for example the value of the
CMB temperature fluctuations as a function of position on thesphere. The covariance matrix,C, is
defined as

C ≡ 〈χχ†〉G(χ,C) ≡
∫
Dχ (χχ†)G(χ,C) , (2.2)

where the integral has to be taken over all possible field configurations ofχ. We usually work with
pixelised quantities, in which case this translates to an integral over all pixels i,

Dχ ≡ ΠNpix

i=1 dχi . (2.3)

Note that in general the covariance matrix depends on the cosmological parametersp, which is not
explicitly stated in our notation. A daggered vector or matrix denotes its transposed and complex
conjugated version, as usual. Hence, given two vectorsa andb, a b† must be read as the tensor
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product, whereasa† b denotes the scalar product.

2.2 Bayesian inference

The Bayesian approach to probability theory (Bayes 1763) isto interpret missing knowledge as
probabilistic uncertainty. It is therefore better suited for cosmological problems than the frequentist
interpretation of probability as relative frequency of occurrence, since we have no possibility to
do a cosmological ‘experiment’ many times in a row. Bayesianstatistics can furthermore be used
to assign probabilities to the values of the parameters of our statistical models, and even to the
underlying models themselves. Thus, Bayesian inference isthe method best adapted to constrain
cosmological parameters, and it is also widely used in othercontexts in cosmology. In this work,
we sometimes talk about asample of universes, in order to visualise the uncertainty of our signal
in question. We understand this as ahypotheticalsample of universes, though, which does not
necessarily have to exist.

Let us consider a signals which we are interested in and which represents some specificaspect
of the physical state of our Universe, for example the fluctuations of the CMB radiation or the matter
distribution in the Universe. Since the signal does not contain the full physical state of the Universe,
any degree of freedom which is not present in the signal but influences the data will be received as
probabilistic uncertainty, or shortly noise.

In order to infer information about the signal from the data,we need to specify a statistical model
describing our state of knowledge about the signalbeforethe data are observed. This knowledge
can be taken from theory, or from previous measurements of data containing information about the
signal. The corresponding probability distribution,P(s), which we assign to the signal is called the
prior distributionor simply theprior.

Our state of knowledge about the signalafter the data have been measured is described by
the posterior distributionor posterior, P(s| d). This is the probability distribution of the signal
conditional on the measured data. Usually, we can not easilywrite down a model for the posterior.
It is much more straightforward to define the so-calledlikelihood for the signal from theoretical
modelling, i.e. the probability distribution of the data given the signal,L(s) ≡ P(d | s). From the
prior and the likelihood we then obtain the posterior via Bayes’ Theorem:

P(s| d) =
P(d | s)P(s)
P(d)

, (2.4)

where the normalisation,

P(d) ≡
∫
DsP(d | s)P(s) , (2.5)

is called theevidence. The posterior is the key quantity from which we deduce information about
our signals. The evidence also plays a central role in Bayesian inference, since it is used to assign
probabilities to the statistical models in Bayesian model selection.

2.3 Information field theory

Throughout this work, we make the assumption that all the processes we are dealing with are well
described by Gaussian probability distributions, which holds very well for everything done in this
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thesis. However, the work on the ISW detection presented in chapter 3 can be extended to other
secondary effects in the CMB, for which the assumption of Gaussianity is rather poor. This can be
done using the mathematical framework ofinformation field theory(IFT) presented in Enßlin et al.
(2009). In this section, we give a brief introduction to the general framework of IFT.

Let us assume we want to infer information about a signals from its posterior distribution
P(s| d) via Bayesian inference. This is very straightforward as long as the posterior is Gaussian,
but it quickly becomes very difficult for non-Gaussian posteriors. IFT provides us with approximate
solutions of all moments of a non-Gaussian distributed signal, provided that the prior of the signal as
well as the likelihood are known or can at least be Taylor-Fréchet-expanded around some reference
field configurationt. Then Bayes’ Theorem permits us to express the posterior as

P(s| d) =
P(d | s)P(s)
P(d)

≡ 1
Z

e−H[s] , (2.6)

where we have introduced the Hamiltonian

H[s] ≡ Hd[s] ≡ − log[P(d, s)] = − log[P(d | s)P(s)] . (2.7)

Let us also define the partition functionZ ≡ Zd as

Z ≡ P(d) ≡
∫
DsP(d | s)P(s) =

∫
Ds e−H[s] . (2.8)

It is extremely convenient to include a moment generating function into the definition of the partition
function

Zd[J] ≡
∫
Ds e−H[s]+J†s . (2.9)

This meansP(d) = Z = Z[0], but also permits us to calculate any moment of the signalfield via
Fréchet-differentiation of eq. (2.9),

〈s(x1) · · · s(xn)〉P(s|d) =
1
Z

δn Zd[J]
δJ(x1) · · · δJ(xn)

∣∣∣∣∣
J=0
, (2.10)

where the average is taken over the posterior distribution of the signal.

Of special importance are the so-called connected correlation functions or cumulants

〈s(x1) · · · s(xn)〉cP(s|d) ≡
δn logZd[J]
δJ(x1) · · · δJ(xn)

∣∣∣∣∣
J=0
, (2.11)

which are corrected for the contribution of lower moments toa correlator of ordern. For example,
the connected mean and dispersion are expressed in terms of their unconnected counterparts as:

〈s(x)〉cP(s|d) = 〈s(x)〉P(s|d) ,

〈s(x) s(y)〉cP(s|d) = 〈s(x) s(y)〉P(s|d) − 〈s(x)〉P(s|d) 〈s(y)〉P(s|d) , (2.12)

where the last term represents such a correction. For Gaussian random fields all higher order
connected correlators vanish:

〈s(x1) · · · s(xn)〉cP(s|d) = 0 (2.13)
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for n > 2, but are in general non-zero for non-Gaussian random fields.
The assumption that the Hamiltonian can be Taylor-Fréchet expanded in the signal field permits

us to write

H[s] =
1
2

s†D−1 s− j†s+ H0 +

∞∑

n=3

1
n!
Λ

(n)
x1...xn

sx1 · · · sxn , (2.14)

where repeated coordinates are thought to be integrated over. The first three Taylor coefficients have
special roles. The constantH0 (not to be confused with the Hubble parameter introduced in chapter
1) is fixed by the normalisation condition of the joint probability density of signal and data. IfH′d[s]
denotes some unnormalised Hamiltonian, its normalisationconstant is given by

H0 = log
∫
Ds

∫
Dd e−H′d[s] . (2.15)

OftenH0 is irrelevant unless different models or hyperparameters are to be compared.
We call the linear coefficient j information source. This term is usually directly and linearly

related to the data. The quadratic coefficient, D−1, defines the information propagatorD(x, y),
which propagates information about the signal aty to locationx, and thereby permits us, e.g., to
partially reconstruct the signal at locations where no datawas taken. Finally, the anharmonic tensors
Λ(n) create interactions between the modes of the free, harmonictheory. Since this free theory will
be the basis for the full interaction theory, we first investigate the caseΛ(n) = 0.

2.3.1 Free theory and the Wiener filter

A very simple and widely used data model specifying the relation between signal and data is the
model

d = Rs+ n , (2.16)

where the data are given by a linearresponse matrix Rapplied to the signal plus an additive noise
termn. For precise definitions ofR andn, the reader is referred to Enßlin et al. (2009). For the free
theory, we assume both the signal prior and the noise distribution to be Gaussian, i.e.P(s) = G(s,S)
andP(n) = G(n,N), with the signal and noise covariancesS ≡ 〈ss†〉P(s) andN ≡ 〈nn†〉P(n).

Since the noise is just the difference of the data to the signal-response,n = d−R s, the likelihood
is given by

P(d | s) = P(n = d − R s| s) = G(d − R s,N) , (2.17)

and thus the joint distribution of signal and data for the Gaussian theory is

P(s,d) = [P(d | s)P(s)]

= [G(d − R s,N)G(s,S)] . (2.18)

This leads to the Hamiltonian

HG[s] = − log[P(d | s)P(s)]

=
1
2

s†D−1s− j†s+ HG0 , (2.19)

with
D =

[
S−1 + R†N−1R

]−1
(2.20)
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being the propagator of the free theory and

j = R†N−1d (2.21)

the information source. Finally,

HG0 =
1
2

d† N−1 d +
1
2

log(|2πS| |2πN|) (2.22)

has absorbed alls-independent normalisation constants. We prove eq. (2.19)in Appendix A.1.

The partition function of the free field theory,

ZG[J] =
∫
Ds e−HG[s]+J†s

=

∫
Ds exp

{
−1

2
s†D−1s+ (J + j)†s − HG0

}
, (2.23)

is a Gaussian path integral, which can be calculated exactly, yielding

ZG[J] =
√
|2πD| exp

{
+

1
2

(J + j)†D(J + j) − HG0

}
. (2.24)

The explicit partition function permits us to calculate viaeq. (2.11) the posterior mean of the signal,
i.e. the expectation of the signal given the data:

srec = 〈s〉P(s|d) =
δ logZG

δJ

∣∣∣∣∣
J=0
= D j

=
[
S−1 + R†N−1R

]−1
R†N−1

︸                           ︷︷                           ︸
FWF

d . (2.25)

The last expression shows that the posterior mean is given bythe data after applying a generalised
Wiener filter, srec = FWF d, which has first been derived by Wiener (1950). We callsrec the
Wiener reconstructionof the signal, hence the index ‘rec’. The propagatorD(x, y) describes how
the information on the density field contained in the data at locationx propagates to positiony:
srec(y) =

∫
ddx D(y, x) j(x).

In Appendix A.1, we explicitely derive the signal posterior, which is

P(s| d) = G (s− srec,D) . (2.26)

From eq. (2.26), we readily see that the real signals virtually fluctuates around the reconstruction
srec with the covarianceD, due to remaining uncertainties. The propagator is thus also called the
Wiener variance. The Wiener reconstruction is often used to reconstruct thematter distribution in
the Universe from galaxy catalogues, and to obtain maps of the CMB fluctuations from time-ordered
data.
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2.3.2 Interacting information fields

In the previous section, we have introduced the free theory,corresponding to a Gaussian posterior
distribution. A non-Gaussian signal or noise, a non-linearresponse, or a signal dependent noise
create anharmonic terms in the Hamiltonian. These describeinteractions between the eigenmodes
of the free Hamiltonian.

We assume the Hamiltonian can be Taylor expanded in the signal fields, which permits us to
write

H[s] =
1
2

s†D−1 s− j†s+ HG0︸                      ︷︷                      ︸
HG[s]

+

∞∑

n=0

1
n!
Λ

(n)
x1...xn

sx1 · · · sxn

︸                        ︷︷                        ︸
Hint[s]

. (2.27)

Repeated coordinates are thought to be integrated over. In contrast to eq. (2.14), we have now
included perturbations which are constant, linear and quadratic in the signal field, because we are
summing fromn = 0. This permits us to treat certain non-ideal effects perturbatively. For example,
if a mostly position-independent propagator gets a small position dependent contamination, it might
be more convenient to treat the latter perturbatively and not to include it into the propagator used in
the calculation. Note further, that all coefficients can be assumed to be symmetric with respect to
their coordinate-indices.1

Since all the information about any correlation function ofthe fields is contained in the partition
sum and can be extracted from it, only the latter needs to be calculated:

Z[J] =
∫
Ds e−H[s]+J†s

=

∫
Ds exp

−
∞∑

n=0

1
n!
Λ

(n)
x1...xn

sx1 · · · sxn

 e−HG[s]+J†s

= exp

−
∞∑

n=0

1
n!
Λ

(n)
x1...xn

δ

δJx1

· · · δ
δJxn


∫
Ds e−HG[s]+J†s

= exp
[
−Hint[

δ

δJ
]
]

ZG[J] . (2.28)

There exist well-known diagrammatic expansion techniquesfor such expressions (e.g. Binney et al.
1992). The expansion terms of the logarithm of the partitionsum, from which any connected
moments can be calculated, are represented by all possible connected diagrams build out of lines

( ), vertices (with a number of legs connecting to lines, like, , , , ...) and without
any external line-ends (any line ends in a vertex). These diagrams are interpreted according to the
following Feynman rules:

1. Open ends of lines in diagrams correspond to external coordinates and are labelled by
such. Since the partition sum in particular does not depend on any external coordinate, it

1This meansDx y = Dy x andΛ(n)
xπ(1)...xπ(n)

= Λ
(n)
x1...xn with π any permutation of{1, . . . ,n}, since even non-symmetric coefficients

would automatically be symmetrized by the integration over all repeated coordinates. Therefore, we assume in the following
that such a symmetrization operation has been already done, or we impose it by hand before we continue with any perturbative
calculation by applying

Λ(n)
x1...xn

7−→ 1
n!

∑

π∈Pn

Λ(n)
xπ(1)...xπ(n)

.

This clearly leaves any symmetric tensor invariant ifPn is the space of all permutations of{1, . . . ,n}.
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is calculated only from summing up closed diagrams. However, the field expectation value
srec(x) ≡ 〈s(x)〉P(s|d) = d logZ[J]/dJ(x)|J=0 and higher order correlation functions depend
on coordinates and therefore are calculated from diagrams with one or more open ends,
respectively.

2. A line with coordinatesx′ andy′ at its end represents the propagatorDx′ y′ connecting these
locations.

3. Vertices with one leg get an individual internal, integrated coordinatex′ and represent the
term jx′ + Jx′ − Λ(1)

x′ .

4. Vertices withn legs represent the term−Λ(n)
x′1...x

′
n
, where each individual leg is labelled by one

of the internal coordinatesx′1, . . . , x′n. This more complex vertex-structure, as compared to
QFT, is a consequence of non-locality in IFT.

5. All internal (and therefore repeatedly occurring) coordinates are integrated over, whereas
external coordinates are not.

6. Every diagram is divided by its symmetry factor, the number of permutations of vertex legs
leaving the topology invariant, as described in any book on field theory (e.g. Binney et al.
1992).

Then-th moment ofs is generated by taking then-th derivative of logZ[J] with respect toJ, and
then settingJ = 0. This correspond to removingn end-vertices from all diagrams. For example, the
first four diagrams contributing to a signal reconstruction(srec ≡ 〈s〉P(s|d)) are

= Dxy jy

= −1
2

DxyΛ
(3)
yzu Dzu

= −1
2

DxyΛ
(3)
yuz Dzz′ j z′ Duu′ ju′

= −1
2

DxyΛ
(4)
yzuv Dzu Dvv′ jv′ . (2.29)

Here, we have assumed that any first and second order perturbation was absorbed into the data
source and the propagator, thusΛ(1) = Λ(2) = 0. Repeated indices are assumed to be integrated (or
summed) over. The Feynman diagrams are to be interpreted as computational algorithms and can
be implemented using existing map-making codes or linear algebra packages for the information
propagator and vertices.

In Enßlin et al. (2009), we have shown the utility of IFT on twoexamples: The derivation of
a Bayesian estimator for the non-Gaussianity in the CMB, andthe non-linear reconstruction of a
Gaussian signal with Poissonian noise in one dimension. Thelatter serves as a one-dimensional toy
model for the LSS distribution measured from galaxy counts.

2.4 Parameter sampling

In section 2.3, we have assumed that we have an analytic form of the posterior distribution
P(s| d), or at least an analytical approximation to the latter given by the Taylor expansion of the
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Hamiltonian. However, this is not always the case, since sometimes we can only compute the
likelihood numerically. We cannot use IFT to infer information about our signal in these cases. In
this section, we explain cosmological parameter estimation as an example of such a problem, and
introduce the concept ofparameter sampling, which we can use to address it.

The cosmological data we observe are created by complicatedphysical processes, which leave
characteristic imprints on the data. The corresponding physical processes can be theoretically
described by an adequate model, which ususally depends on several cosmological parametersp.
By comparing the predictions of such a model with observations, we can thus infer information
about the cosmological parameters from the data. However, usually we have to constrain several
parameters simultaneously, since their effects on the data are often degenerate. The considered
cosmological parameter spaces typically have between 6 and12 dimensions.

In order to obtain constraints on our cosmological parameters, we use Bayes’ Theorem, eq.
(2.4), with the cosmological parametersp being the signal:

P(p |d) =
P(d | p)P(p)
P(d)

. (2.30)

As already mentioned, the likelihoodP(d | p) often does not have an analytic form, but needs to be
evaluated numerically. In the case of the CMB, for instance,evaluating the likelihood implies
running a Boltzmann code such asCMBFAST (Seljak & Zaldarriaga 1996),CAMB (Lewis et al.
2000), or CMBEASY (Doran 2005) to calculate the power spectrum, which is then fed into a
likelihood code. Since we lack an analytic form of the likelihood and thus of the posterior, we
need a representation of the latter in parameter space, fromwhich we can compute the posterior
mean values and variances of the cosmological parameters. The usual way of doing so is to run
Markov Chain Monte Carlo simulations, which we will describe briefly in section 2.4.1.

2.4.1 Markov Chains and the Metropolis Algorithm

Markov Chain Monte Carlo (MCMC) simulations (Chib & Greenberg 1995; Gamerman 1997; Neal
1993) are used to draw samples from a probability distribution. The statistical properties of the
distribution, such as its mean and variance can then be estimated from the sample. Usually, one
wishes to sample the posterior distribution of the (cosmological) parameters,P(p | d), but the
technique can equally well be used to sample any other probability distribution. MCMCs are
especially well-suited for high-dimensional problems, because the computational effort increases
only linearly with the number of parameters.

The samples are drawn by running a Markov Chain, which is defined as a sequence of random
variables (in our case points in parameter space) chosen by arandom process such that a given
element of the sequence,pi, depends solely on the previous element,pi−1. The aim is to choose the
next point in the chain based on the previous point such that the distribution of the points becomes
stationary, withP(p | d) being the stationary distribution, in the limit of the number of points going
to infinity.

One possibility of implementing such a process is the Metropolis-Hastings (M-H) algorithm
(Metropolis et al. 1953), which we briefly introduce in the following. For a given pointpi in the
chain, the M-H algorithm draws a point ˜p from a proposal distributionq(p̃ | pi). The proposed point
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is accepted, i.e.pi+1 ≡ p̃, with the transition probability

a(pi , p̃) = min

{
q(pi | p̃) P(p̃ | d)
q(p̃ | pi) P(pi | d)

, 1

}
. (2.31)

In practise, this is implemented by drawing a uniformly distributed random variableu from [0,1],
accepting the proposed point if

q(pi | p̃) P(p̃ | d)
q(p̃ | pi) P(pi | d)

> u , (2.32)

and rejecting it otherwise. If ˜p is rejected, we retain the old point and setpi+1 ≡ pi. If the proposal
distribution is symmetric,q(p̃ | pi) = q(pi | p̃), the algorithm is called the Metropolis algorithm
(Metropolis et al. 1953). The Metropolis algorithm is used in the MCMC driver ofCMBEASY

(Doran & Müller 2004).
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Chapter 3

Optimal methods for detecting the
integrated Sachs-Wolfe effect

Note: Sections 3.2-3.4 and section 3.7 of this chapter, as well as appendix B.1 and A.1, have been
published in Frommert et al. (2008). The bulk of section 3.5 and appendix B.2 have been published
in Frommert& Enßlin (2009a). Section 3.6 has been added.

3.1 Introduction

As we have seen in section 1.4.3, the integrated Sachs-Wolfeeffect (Sachs & Wolfe 1967) is an
important probe of the existence and nature of dark energy (see also Crittenden & Turok 1996)
and the nature of gravity (see Lue et al. 2004; Zhang 2006b). However, the detection of the ISW
signal is a challenging task, for it is much smaller than the primordial temperature fluctuations in
the CMB, which originate at the time of last scattering. We can try to detect the ISW effect via
its cross-correlation with the large-scale structure (LSS). Such a correlation exists, since the ISW
effect is created by the interaction of CMB photons with the gravitational potential of the LSS. The
primordial temperature fluctuations of the CMB, on the otherhand, should be uncorrelated with
the LSS distribution. In recent years, substantial effort has been made to detect the ISW effect via
cross-correlation of the CMB temperature fluctuations withLSS surveys, such as optical galaxy and
quasar surveys1, radio surveys2, and X-ray surveys3.4

Thestandard methodfor detecting the cross-correlation between the LSS and theCMB, which
has been used by the studies mentioned above, involves comparing the observed cross-correlation
function with its theoretical prediction for a given fiducial cosmological model. The theoretical
prediction is by construction an ensemble average over all possible realisations of the universe given
the fiducial parameters, i.e. over all possible realisations of the primordial CMB, which originates
at the surface of last scattering, and all realisations of the local matter distribution. Assuming
ergodicity, this second ensemble average can also be thought of as an average over all possible

1Sloan Digital Sky Survey, Adelman-McCarthy et al. (2008), Two-Micron All-Sky Survey, Jarrett et al. (2000)
2NRAO VLA Sky Survey, Condon et al. (1998)
3High Energy Astrophysics Observatory, Boldt (1987)
4Such cross-correlation studies have, for example, been done by Boughn et al. (1998), Boughn & Crittenden (2004),

Boughn & Crittenden (2005), Afshordi et al. (2004), Rassat et al. (2007), Raccanelli et al. (2008), McEwen et al. (2007),
Pietrobon et al. (2006), Fosalba et al. (2003), Fosalba & Gaztañaga (2004), Vielva et al. (2006), Liu & Zhang (2006), Ho et al.
(2008) and Giannantonio et al. (2008), just to name a few of them.
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positions of the observer in the Universe (’cosmic mean’). The specific realisations of both the LSS
and the primordial temperature fluctuations of the CMB in ourUniverse thus contribute to the error
budget of the detection. We estimate the contribution of these two sources of uncertainty to the total
variance in the detected signal under the simplifying assumption that there is no shot noise in the
galaxy distribution. The contribution of the LSS to the total uncertainty, which we refer to aslocal
variance, amounts to about 11 per cent in the case of an ideal LSS surveygoing out to about redshift
2 and covering enough volume to include the large scales relevant for the ISW. We will show that
this local variance leads to a biased detection significancein the standard method for ISW detection.

In this chapter, we present new methods for the detection of the ISW effect, which reduce
both sources of uncertainty mentioned above by working conditional on the LSS distribution and
on the measured CMB polarization. The method which only operates conditional on the LSS
distribution, without using polarization data, will be referred to as theoptimal temperature method.
The conditionality on the LSS implies that the signal-to-noise ratio or detection significance in the
optimal temperature method depends on the specific realisation of the LSS in our Universe. Note
that we use the two expressionssignal-to-noise ratioanddetection significanceas synonyms. On
average, the detection significance is about 7 per cent higher than for the standard method, due to
the reduction of local variance. Here, we have assumed a perfect galaxy survey covering all of the
relevant volume. In addition to reducing local variance, wecan reduce the variance coming from
the primordial temperature fluctuations of the CMB by inferring information about the latter from
CMB polarization data. The resulting method is called theoptimal polarization method. Note that,
of course, the optimal polarization method uses not only polarization data but also temperature data.
The latter reaches a detection significance of up to 8.5, which is about 16 per cent higher than the
standard one for shallow LSS surveys such as the SDSS main galaxy sample, and about 23 per cent
for a full-sky survey reaching out to a redshift of 2. Again, these estimates hold for ideal (noiseless)
data. Unfortunately, for currently available CMB and LSS surveys, the detection significance of our
optimal polarization method is not notably above the standard one, which is mainly due to the high
contamination of the WMAP polarization data by detector noise and Galactic foregrounds. A very
crude estimate for data from thePlanck Surveyormission promises an enhancement of detection
significance of at least 10 per cent for the optimal polarization method as compared to the standard
method.

Many of the cross-correlation studies mentioned above haveattempted to constrain
cosmological parameters using a likelihood function for the cosmological parametersp given the
observed cross-correlation function between CMB temperature fluctuations and LSS data. Just
like the detection significance, these parameter estimatessuffer from biasing due to local variance.
Furthermore, to our knowledge, there is no straightforwardway of combining the likelihood
function for the cross-correlation with the likelihoods for CMB and LSS data so far. In this chapter,
we derive the correct joint likelihood functionP(T,P, δg | p) for cosmological parameters, given
the CMB temperature and polarization mapsT and P and the LSS dataδg, from first principles
for the linear LSS formation regime. This joint likelihood consistently includes the coupling
between the two data-sets introduced by the ISW effect, which so far has been neglected in analyses
deriving cosmological parameter constraints by combiningCMB and LSS data (Tegmark et al.
2004; Spergel & et al 2007). For parameter sampling studies using our likelihood, we expect
small changes of the dark-energy related parameters with respect to studies neglecting the coupling
between the data-sets.

This chapter is organised as follows. We start by explainingthe different stochastic processes
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that are relevant for the measurement of the ISW effect in section 3.2. In section 3.3, we review the
standard method for detecting the ISW effect via cross-correlation and estimate the contribution of
the local variance to the total variance of the detected signal. Section 3.4 is devoted to presenting the
optimal temperature method of ISW detection we developed, and to comparing it to the standard
method, whereas in section 3.5, we present the optimal polarization method and compare it to
the other two methods. In section 3.6, we estimate the improvement we obtain from the optimal
polarization method for currently available data. We discuss the role of the biasing effect due to local
variance in parameter constraints and derive the joint likelihood functionP(T,P, δg | p) in section
3.7. Concluding remarks are given in section 3.8.

3.2 Stochastic processes

In order to understand the methods for ISW detection introduced in this chapter, it is necessary to
be familiar with the different stochastic processes that need to be considered. We introduce those
processes in the following.

3.2.1 Realisation of the matter distribution

During inflation, the matter density perturbations have been created from quantum fluctuations of
the inflaton field. This stochastic process is believed to have been close to Gaussian (Mukhanov
2005), permitting to write down the probability distribution for the matter density contrast given the
cosmological parametersp as

P(δm | p) = G(δm,Sm) , (3.1)

where the covariance matrixSm ≡ 〈δmδ†m〉P(δm | p), depends on the cosmological parametersp. The
average〈..〉P(δm | p) is defined as ensemble average over the different realisations ofδm, the index
P(δm | p) explicitly states which probability distribution the average has to be taken over. Given
homogeneity and isotropy, we note that the Fourier transformation ofS is diagonal:

〈δm(k)δm(k′)∗〉P(δm | p) = (2π)3δ(k − k′)P(k) , (3.2)

whereP(k) is the power spectrum,δ(..) denotes the Dirac delta function, and the star is used for
denoting complex conjugation.

The stochastic process due to the inflationary quantum fluctuations created the angular
fluctuations in the CMB, that is, the primordial temperaturefluctuations originating from the surface
of last scattering at redshiftz= 1100, as well as the integrated Sachs-Wolfe effect imprinted by the
more local matter distribution atz < 2. Throughout this work we will assume that the primordial
fluctuations and the ISW effect are stochastically independent, which is a safe assumption, given that
they are associated with matter perturbations of very different wavelengths that are spatially well
separated, so that very little intrinsic cross-correlation can be expected (Boughn et al. 1998). In fact,
for notational convenience we will use the symbolδm to only denote the local matter distribution
at z < 2. The joint probability distribution forTisw = Q δm (cf. eq. (1.37)) and the primordial
temperature fluctuationsTprim then factorises

P(Tisw,Tprim | p) = P(Tisw | p)P(Tprim | p) , (3.3)
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with
P(Tisw | p) = G(Tisw,Cisw) , (3.4)

and
P(Tprim | p) = G(Tprim,Cprim) , (3.5)

where we have defined the angular two-point auto-correlation function for the fluctuationTX (X
being ’isw’ or ’prim’)

CX ≡ 〈TXT†X〉P(TX | p) . (3.6)

Again, given homogeneity and isotropy,CX is diagonal in spherical harmonics space

〈aX
lmaX ∗

l′m′〉P(TX | p) = CX
l δll ′ δmm′ , (3.7)

whereCX
l is the angular power spectrum of the quantityX, and we have used the expansion

coefficients ofTX into spherical harmonicsYlm,

aX
lm ≡

∫

S
dΩTX(n̂) Y∗lm(n̂) , (3.8)

where the integral is taken over the sphere. Given that the joint distribution P(Tisw,Tprim | p)
factorises into two Gaussian distributions, the sumT = Tisw + Tprim, which denotes the temperature
fluctuation of the CMB, is again Gaussian distributed

P(T | p) = G(T,CT) , (3.9)

with
CT = Cisw +Cprim . (3.10)

Given the cosmological parameters, the angular power spectra CT
l , Cisw

l , and Cprim
l can all be

calculated usingCMBFAST (http://ascl.net/cmbfast.html, Seljak & Zaldarriaga (1996)),
CAMB (http://camb.info, Lewis et al. (2000)), orCMBEASY (www.cmbeasy.org, Doran
(2005)). In particular,Cisw can be obtained from the three-dimensional matter covariance matrix
Sm by

Cisw = QSmQ† , (3.11)

where we have used that linear transformations of Gaussian random variables are again Gaussian
distributed, with the covariance matrix transformed accordingly (see also Cooray 2002a).

3.2.2 CMB detector noise

From CMB detectors, we do not read off the actual CMB temperature fluctuationsT as defined in
the last section, but a temperature where the detector noiseTdet has been added. Again, this can be
modelled as a Gaussian random process,

P(Tdet) = G(Tdet,Cdet) , (3.12)

whereCdet denotes the detector noise covariance. This process is independent of the process that
created the CMB fluctuationsT, such that if we redefineT ≡ T +Tdet to be the temperature we read
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off our detector, we obtain
P(T | p) = G(T,CT) , (3.13)

whereCT ≡ Cprim +Cisw +Cdet now includes the covariance of the detector temperature.

However, in most of this work we will neglect the detector noise in the CMB temperature
(Cdet ≈ 0), since the ISW is only present on the largest angular scales, where the dominant source
of noise is cosmic variance (Afshordi 2004). However, if needed, the detector noise can be easily
included by just substitutingCprim → Cprim + Cdet. The only part where we explicitely include
the temperature detector noise will be in section 3.7, wherewe derive the joint likelihood for the
cosmological parameters, given CMB and LSS data, since in this likelihood we also include smaller
angular scales.

3.2.3 Shot noise

Unfortunately, the matter distribution is not directly known, and we have to rely on LSS catalogues
from which we can try to reconstruct it. A process to be considered when working with such
catalogues is the stochastic distribution of the galaxies,which only on average follows the matter
distribution. Since the galaxies are discrete sources fromwhich we want to infer the properties of
the underlying matter overdensity field, we have to deal withshot noise in the galaxy distribution.
More specifically, we assume the observed numberNg(xi) of galaxies in a volume element∆V(xi)
at a discrete positionxi to be distributed according to a Poisson distribution

P(Ng(xi) | λ(xi)) =
λ(xi)Ng(xi)e−λ(xi)

Ng(xi)!
. (3.14)

Here,λ(x) denotes the expected mean number of observed galaxies within ∆V(x), given the matter
density contrast,

λ(x) = w(x) nr
g∆V [1+ bδm(x)] . (3.15)

In the above equation,nr
g ≡ Ng

r, tot/V denotes the cosmic mean galaxy density, withNg
r, tot being

the total number of galaxies in the volumeV. Note that we have added an index ’r ’ to stress that
these are the actual (real) number of galaxies present in∆V, not the observed number of galaxies
Ng, which can be smaller due to observational detection limits. The windoww(x) ≡ Φ(x) m(n̂)
denotes the combined selection functionΦ(x) and sky maskm(n̂) of the survey, andb the galaxy
bias, which in general depends on redshift, scale, and galaxy type. The variance in the observed

number of galaxiesNg(x) within ∆V(x) is thenσ2
g(x) ≡ 〈

(
Ng(x) − λ(x)

)2〉Ng = λ(x). Here, we have
used the indexNg on the average to indicate the average over the Poisson distribution in eq. (3.14).

If the average number of galaxiesλ(x) is large, the Poisson distribution is well approximated
by a Gaussian distribution aroundλ(x). For simplicity we will use the Gaussian approximation
throughout this work. Furthermore we will ignore the dependence of the noise onδm(x) by using
σ2

g(x) = w(x) nr
g∆V instead of the correct noise termσ2

g(x) = λ(x), for the latter would require a
non-linear and iterative approach. Such an approach is beyond the scope of this paper, but is also
irrelevant for the main finding of this work. However, see Enßlin et al. (2009) for a better handling
of the Poisson noise and bias variations.

Since the cosmic mean galaxy densitynr
g is not known, we have to estimate it from the observed
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galaxy counts by

nr
g∆V ≡

Ntot
g

∑Npix

i=0 w(xi)
, (3.16)

whereNtot
g is the total number of observed galaxies and the sum goes overall the pixels in our

volume.

With the above-mentioned simplifications, we can now work with the following linear data
model. First we define the observed galaxy density contrast at positionx to be

δg(x) ≡
Ng(x) − w(x) nr

g∆V

nr
g∆V

, (3.17)

which is the convention used in Kitaura et al. (2009). Note that this definition differs from the one
usually used in cross-correlation studies by a factor ofw(x) (see, e.g., Pogosian et al. 2005). We
then write

δg = Rδm+ ǫ , (3.18)

whereǫ(x) is the additive noise-term that originates in the Poissonian distribution ofNg(x), andR
is the linear response operator. In the simplest case,R(xi, x j) ≡ b w(xi) δi j , but in generalR maps
the continuous space in whichδm lives onto the discrete pixel space of our dataδg, and it can also
include the mapping from redshift-space onto comoving coordinate space. In the latter case, the
matter density contrastδm would have to be read as a density contrast in redshift space.

Gravitational lensing introduces a magnification bias in the observed galaxy density contrast, as
described by Loverde et al. (2007). In our data model, it is straightforward to take this effect into
account by letting

Rδm(n̂, z) ≡ w(n̂, z)[bδm(r(z) n̂, z) + 3Ωm H2
0 (2.5 s(z) − 1)

×
∫ z

0
dz′

1
H(z′)

r(z′)(r(z) − r(z′))
r(z)

(1+ z′) δm(r(z) n̂, z′)] , (3.19)

wherer(z) is the comoving distance corresponding to redshiftz, and the slopesof the number count
of the source galaxies is defined as

s≡ d log10 N(< m)

dm
, (3.20)

with m being the limiting magnitude andN(< m) being the count of objects brighter thanm.
Note that in order to get the correct formula for the magnification bias term in 3 dimensions, we
used the Dirac delta function as the normalised selection function used by Loverde et al. (2007),
W(z, z′) ≡ δ(z− z′).

From the Poisson distribution in eq. (3.14), we see that〈δg〉Ng = Rδm, and thus with the above
simplifications the noiseǫ is Gaussian distributed around zero

P(ǫ | p) = G(ǫ,Nǫ) , (3.21)
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with the noise covariance matrix

Nǫ(xi, x j) ≡ 〈ǫ(xi) ǫ(x j)〉Ng =
w(xi)

nr
g∆V

δi j . (3.22)

3.3 Standard cross-correlation method

In this section, we briefly review the standard method for detecting the cross-correlation of the CMB
with the projected galaxy density contrast, which was first described by Boughn et al. (1998), but
see for example also Ho et al. (2008) and Giannantonio et al. (2008)). Note that we use the word
galaxy density contrast for convenience, but the method is of course the same when working with
other tracers of the LSS.

3.3.1 Description

The theoretical cross-correlation function of two quantities X(n̂) andY(n̂) on the sky is defined in
spherical harmonics space as

CX,Y
l ≡ 〈aX

lmaY∗
lm 〉all . (3.23)

The average in the above definition is an ensemble average over all possible realisations of the
universe with given cosmological parameters, i.e. overP(δm, δg,T | p). This is indicated by the
index ’all’ on the average. We will denote the abstract cross-correlation function as a vector in
Hilbert space byξX,Y to simplify the notation. This can be understood as a vector in pixel space
or as a vector inalm-space. Only when evaluating the expressions we derive, we will choose the
representation of the abstract vectorξX,Y in spherical harmonics space, (ξX,Y)lml′m′ = CX,Y

l δll ′δmm′ .
In the following we will work with the cross-correlation function of the projected galaxy density
contrast with the CMB temperature fluctuations,ξg,T , in order to reproduce the standard approach
in the literature.

The observed projected galaxy density contrastδ
proj
g for a redshift bin centred around redshiftzi

in a given direction̂n on the sky is

δ
proj
g (n̂, zi) =

∫
dz W(z, zi) δg(n̂, z)

=

∫
dzW(z, zi) [Rδm(n̂, z) + ǫ(n̂, z)] , (3.24)

whereW(z, zi) denotes the normalised selection function that defines theith bin, andδg is given by
eq. (3.17). Note that in many cross-correlation studies thenormalised selection functionΦ(x) of the
survey is used to define the bin. However, since later on we will consider a perfect galaxy survey
covering all the redshift range relevant for the ISW, we needto introduce the additional narrow
selection functionW(z, zi) defining the bin.

If the LSS survey and the CMB map cover the full sky, it is convenient to define an estimator for
the cross-correlation function of the projected galaxy density contrast with the CMB in spherical
harmonics space (Rassat et al. 2007),

Ĉg,T
l ≡ 1

2l + 1

∑

m

Re
(
ag

lmaT ∗
lm

)
, (3.25)
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whereag
lm andaT

lm are the expansion coefficients of the observedδ proj
g andT into spherical harmonics

as defined in eq. (3.8). The hat has been added to discriminatethe estimator of the cross-
correlation function from its theoretical counterpartCg,T

l . In the case that the experiments cover
only a part of the sky, one has to take into account the effects of mode-coupling when working
in spherical harmonics space. In this case it is therefore more straightforward to define other
estimators for the cross-correlation function, such as averages over the sphere in real space (see,
e.g., Giannantonio et al. 2008) or quadratic estimators as in Afshordi et al. (2004). However, for the
statement we will make in this work the actual definition of the estimator is not relevant, and we
find the one defined in spherical harmonics space the most convenient to work with, since a closely
related quantity also appears within the framework of the optimal detection method presented later
on in section 3.4. Again we use the abstract notationξ̂g,T for the estimator of the cross-correlation
ξg,T . In order to keep the notation simple, we will from now on understand ξ̂g,T and ξg,T as
being vectors in spherical harmonics-space as well as in bin-space, containing the cross-correlation
functions for all the different bins.

In the literature, the probability distribution of the above-defined estimator̂ξg,T around the
theoretical cross-correlation functionξg,T is usually approximated by a Gaussian,

P
(̂
ξg,T | p

)
= G

(̂
ξg,T − ξg,T ,Ccc

)
, (3.26)

where the covariance matrix of the cross-correlation estimator is defined as

Ccc ≡ 〈
(̂
ξg,T − 〈̂ξg,T〉all

) (̂
ξg,T − 〈̂ξg,T〉all

)†〉all . (3.27)

The first question usually addressed in the above-mentionedcross-correlation studies is whether
a non-zero cross-correlation function can be detected at all. To this end one assumes a fiducial
cosmological model, which is used to predict the theoretical cross-correlation function and
covariance matrixCcc. In this chapter, we use the flatΛCDM model with parameter values given
by Komatsu et al. (2009), table 1:Ωbh2 = 0.02265,ΩΛ = 0.721, h = 0.701, ns = 0.96, τ =
0.084, σ8 = 0.817. The covariance matrix is usually estimated by Monte Carlo simulations (see
Cabŕe et al. (2007) for an overview), or analytically as in Afshordi et al. (2004). The analytical
prediction is possible in the case that the joint probability distribution for the projected galaxy
density contrast and CMB given the cosmological parameters, P(δ proj

gi , δ
proj
g j ,T | p), is Gaussian,

which is valid in the framework of linear perturbation theory. Here we have used the indexgi
to denote the projected galaxy density contrast of bini. Then the covariance matrix in spherical
harmonics space can be expressed in terms of two-point correlation functions as

Ccc
l (i, j) =

1
(2l + 1) fsky

[
Cgi,T

l Cg j,T
l +Cgi,g j

l CT
l

]
, (3.28)

where we have used the auto-correlation power spectrum for the CMB, as defined in eq. (3.7).Cgi,g j
l

contains by definition the power coming from the underlying matter distribution plus the shot noise.
Note that, in principle,CT

l in the above formula also includes detector noise, which we neglect here
as discussed in section 3.2.2.fsky is the fraction of the sky covered by both, the galaxy survey
and the CMB experiment. In the following, we will assumefsky = 1 whenever we go to spherical
harmonics space.

Putting an amplitude or fudge factorAcc in front of the theoretical cross-correlation function
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ξg,T by hand, one can now find out whether it is possible to detect a non-zeroAcc. The index ’cc’
on the amplitude indicates that it is the amplitude of the cross-correlation function. Of course this
amplitude should be one in the fiducial model. However, even if the data are taken from a universe in
which the underlying cosmology is the fiducial model we will in general not estimate the amplitude
to be one. This is due to the different sources of stochastic uncertainty or noise in the estimate of
Acc, which we have described at length in section 3.2. The likelihood for the amplitude given the
cosmological parameters reads

P
(̂
ξg,T |Acc, p

)
= G

(̂
ξg,T − Accξ

g,T ,Ccc

)
. (3.29)

A commonly used estimator of the amplitudeAcc is the maximum likelihood amplitude

Âcc =
ξg,T † C−1

cc ξ̂
g,T

ξg,T † C−1
cc ξ

g,T

=

∑
l(2l + 1)

∑
i, j C

gi,T
l (Ccc

l )−1(i, j) Ĉg j,T
l∑

l(2l + 1)
∑

i, j C
gi,T
l (Ccc

l )−1(i, j) Cg j,T
l

, (3.30)

where in the second line we have used the representation of the cross-correlation functions in
spherical harmonics space. The maximum likelihood amplitude is an unbiased estimator (if the
underlying probability distribution is Gaussian), hence for the fiducial model we have for the
average over all cosmic realisations

〈Âcc〉all = 1 , (3.31)

since〈Ĉgi,T
l 〉all = Cgi,T

l by definition of the latter quantity. Note that here we have assumed that the
data are taken in a universe where the underlying cosmology is actually the fiducial model. This
will be assumed in the rest of this work as well.

The variance in̂Acc is given by

σ2
cc ≡ 〈

(
Âcc− 〈Âcc〉all

)2〉all

=
(
ξg,T † C−1

cc ξ
g,T

)−1

=


∑

l

(2l + 1)
∑

i, j

Cgi,T
l (Ccc

l )−1(i, j) Cg j,T
l


−1

. (3.32)

In the standard literature, an estimated significance is given to the detection of the amplitude,
the estimated signal-to-noise ratio


Ŝ
N


2

cc

≡

Âcc

σcc


2

=

(∑
l(2l + 1)

∑
i, j C

gi,T
l (Ccc

l )−1(i, j) Ĉg j,T
l

)2

∑
l(2l + 1)

∑
i, j C

gi,T
l (Ccc

l )−1(i, j) Cg j,T
l

. (3.33)

However, since the real signal isAcc = 1, the actual signal-to-noise ratio or detection significance is
given by (S

N

)2

cc
≡ 1
σ2

cc
=

∑

l

(2l + 1)
∑

i, j

Cgi,T
l (Ccc

l )−1(i, j) Cg j,T
l , (3.34)

and is therefore independent of the data.
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3.3.2 Analysis of error-contributions

In this section, we analyse the different sources of noise that contribute to the total variancein eq.
(3.32). In order to simplify this task, we assume that there is no shot noise in the galaxy distribution,
that is, we setǫ = 0 in eq. (3.18), which means that the galaxies trace the matter distribution
perfectly. Furthermore, we work with the ideal case that we have a galaxy survey that covers the
whole sky and goes out to redshift 2. With these two assumptions, we have a perfect knowledge of
the matter distributionδm relevant for the ISW effect.

For sufficiently narrow bins, the integration kernels for ISW and galaxy density contrast are
approximately constant over the bin and henceaisw(i)

lm = const(i)× agi
lm. In eqs (3.30), (3.32), and

(3.34), we can therefore substitute every indexgi by the index isw(i), since the constant factor
cancels out. Now, if one uses the ISW kernel, working with several narrow bins that cover the
whole volume relevant for the ISW effect is equivalent to working with only one bin covering
the same volume. This is because the ISW integrated over the whole relevant volume is exactly
the information about the ISW effect contained in the CMB. Thus, one does not gain anything by
working with bins if using the correct kernel. We outline theproof for this in Appendix B.1. In what
follows, we therefore consider only one bin, which significantly simplifies the form of eqs (3.30),
(3.32), and (3.34).

Furthermore, we note that, since the ISW effect is uncorrelated with the primordial CMB
fluctuations, we haveCisw,T

l = Cisw
l . The index ’all’ now indicates an average over the

probability distributionP(Tisw,Tprim | p) = P(Tisw | p)P(Tprim | p) (cf. section 3.2). Under the above
assumptions, eq. (3.30) for the estimated amplitude reads

Âcc =

∑
l(2l + 1)

Ĉisw,T
l

Cisw
l +CT

l

∑
l(2l + 1)

Cisw
l

Cisw
l +CT

l

, (3.35)

with the variance (eq. 3.32)

σ2
cc =


∑

l

(2l + 1)
Cisw

l

Cisw
l +CT

l


−1

, (3.36)

and the signal-to-noise ratio in eq. (3.34) simplifies to

(S
N

)2

cc
=

∑

l

(2l + 1)
Cisw

l

Cisw
l +CT

l

. (3.37)

The signal-to-noise ratio as a function of the maximum summation indexlmax for our fiducial model
is depicted in the top panel of Fig. 3.1, for which we have modified CMBEASY in order to obtain
Cisw

l andCT
l . There are contributions to the signal-to-noise up to roughly l = 100. Note, though, that

our assumptions of Gaussianity of the matter realisationδm and the assumption ofQ being a linear
operator do not hold on small scales where structure growth has become non-linear. However, this
issue will not be addressed here and it will not affect our main results, which are due to advantages
of our method on the very large scales, which are most affected by cosmic variance.

The above estimator for the amplitude is only unbiased when averaging over the joint
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distribution

〈Âcc〉all ≡ 〈〈Âcc〉prim〉isw = 1 . (3.38)

Here, we indicate averages overP(Tprim | p) and P(Tisw | p) by the indices ’prim’ and ’isw’,
respectively. This means that both the primordial CMB fluctuations and the realisation of the local
matter distribution are included in the error budget. We call the latter the local variance, indicating
that it originates in the realisation of the matter distribution in our observed Universe. Let us now
estimate the contribution of the local variance to the totalvariance of̂Acc. To this end, we split the
variance in eq. (3.36) into two parts

σ2
cc ≡ 〈〈

(
Âcc− 1

)2〉prim〉isw

= 〈〈
(
Âcc− 〈Âcc〉prim

)2〉prim〉isw

+〈
(
〈Âcc〉prim − 1

)2〉isw

≡ σ2
prim + σ

2
loc , (3.39)

where we have defined the contributions to the variance coming from primordial CMB fluctuations
and the local variance asσ2

prim andσ2
loc, respectively. Both can be easily calculated, and the second

contribution turns out to be

σ2
loc = 2

∑
l(2l + 1) (Cisw

l )2

(CT
l +Cisw

l )2

(∑
l(2l + 1)

Cisw
l

CT
l +Cisw

l

)2
. (3.40)

In the bottom panel of Fig. 3.1, we plot the relative contribution of the local to the total variance,
σ2

loc/σ
2
cc, against the maximuml that we consider in the analysis for our fiducial cosmological

model. For a maximum multipolelmax = 100, this relative contribution amounts to

σ2
loc

σ2
cc
≈ 11%. (3.41)

This estimate agrees with Cabré et al. (2007), who compare different error estimates for the standard
cross-correlation method. They compare what they call the MC1 method, which only takes into
account the variance in the CMB and ignores the variance in the galaxy overdensity, with their
MC2 method, which includes also the variance in the galaxy overdensity. Both methods rely on
performing Monte Carlo (MC) simulations of the CMB, and of the galaxy overdensity in the case
of MC2, and the simulations used to compare the different error estimates have converged with an
accuracy of about 5 per cent, as stated in the paper. The result is that, compared to the MC2 method,
the MC1 method underestimates the error by about 10 per cent,which agrees well with our estimate.

In eq. (3.39), we have seen that the contributions to the variance of the measured amplitude of
the cross-correlation come from primordial temperature fluctuations (σ2

prim) as well as the specific

realisation of the LSS in our Universe (σ2
loc). In the following two sections, we will show that it

is possible to reduce bothσ2
loc andσ2

prim by working conditional on available information about

the LSS and the primordial temperature fluctuations. We willstart with reducingσ2
loc in the next

section.
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Figure 3.1: Comparison of the average signal-to-noise ratio and varianceof the optimal method with
the ones of the standard method forzmax = 2. Top panel: Average signal-to-noise ratio of the optimal
method (solid) and signal-to-noise ratio of the standard method (dashed) versus the maximal multipole
considered in the analysis.Middle panel: Relative improvement of the average signal-to-noise ratio
in the optimal method.Bottom panel: Average relative improvement of the variance in the optimal
method (solid) and relative contribution of the local variance to the total variance in the standard method
(dashed).

3.4 Optimal temperature method

In the last section, we have seen that the local variance contributes about 11 per cent to the total
variance in the standard method for ISW detection, which is quite a considerable contribution. The
reason is, that the ISW effect is created by the decay of the gravitational potential coming from
the structures on the largest scales, i.e. from structures that have not yet undergone significant
gravitational collapse and are still not decoupled from theexpansion of the Universe. These largest
scales are most affected by cosmic variance. Therefore, when comparing the observed (local) cross-
correlation function to its cosmic mean value, the realisation of the matter distribution in our vicinity
acts as a source of systematic noise in the estimation of the cross-correlation, thus leading to a biased
detection significance, due to cosmic variance.

From the surveys mentioned above, the local matter distribution is known to a certain degree,
and hence the local variance can be reduced by working conditional on that information. We present
a generic technique of how to include the knowledge of the matter distribution into the detection of
the ISW via cross-correlation, thus reducing the sources ofnoise to the unknown part of the matter
distribution and the primordial CMB fluctuations. We define the systematic noise that comes from
the known part of the matter distribution as bias, for it can be removed by working conditional
on the LSS data. The method presented here is referred to as the optimal temperature method, in
contrast to thestandard methodfor ISW detection described above and theoptimal polarization
methodexplained below.
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The main idea of the optimal temperature method is to create an ISW template from a Wiener
filter reconstruction of the LSS. We then estimate the amplitude of that template in the CMB data,
using a maximum likelihood estimator. Since we assume everything to be Gaussian distributed, this
maximum likelihood estimator is equivalent to the estimator we obtain from an optimal matched
filter approach. Our amplitude estimate is unbiased alreadywhen averaging conditional on the
observed galaxy density contrast,δg. Since we work conditional on the LSS, the variance in the
estimated amplitude and the signal-to-noise ratio both depend on the actual realisation of the matter
in the Universe. For an ideal LSS survey, we show that the average variance in the detected
amplitude is reduced by 13 per cent in the optimal temperature method. As we show in this
section, in the framework of the optimal temperature methodit is straightforward to correct for the
magnification bias due to gravitational lensing, as described by Loverde et al. (2007). Furthermore,
there is no need to estimate the covariance matrix by Monte Carlo simulations as in the standard
method. This saves time and increases the accuracy of the method.

Note that a different attempt to make the detection of the ISW unbiased by therealisation
of the local matter distribution was made by Zhang (2006a). It involves comparing CMB-
galaxy and lensing-galaxy cross-correlation functions, and thus relies on nowadays still-difficult
lensing measurements. Another work which does not suffer from local variance is by
Herńandez-Monteagudo (2008). He implements an optimal matchedfilter in spherical harmonics
space, and finds by numerical comparison that it always performs better than or equally well as the
standard method. However, Hernández-Monteagudo (2008) works directly on the sphere, without
using a Wiener filter reconstruction of the LSS, and is therefore slightly sub-optimal in exploiting
the available three-dimensional information on galaxy positions.

In principle, the idea of working conditional on the LSS datacan also be used to decrease
the variance of the detection of other secondary effects on the CMB, such as the kinetic Sunyaev-
Zel’dovich effect, the Rees-Sciama effect or gravitational lensing. However, in our derivation we
assume a Gaussian data-model, which is very well suited for the ISW effect, because the very
large scales on which the ISW effect is created are still Gaussian. The assumption of Gaussianity
breaks down on smaller scales, though, due to non-linear structure growth. For the detection of
secondary effects on non-linear scales, our method would therefore need to be modified to account
for the non-linearities. This is possible using information field theory presented in section 2.3 and
in Enßlin et al. (2009), however, it is beyond the scope of this work, and we leave the extension of
our methods into the non-Gaussian regime for future work.

3.4.1 Derivation of the posterior distribution

Let us first ask the question what the observed galaxy densitycontrast tells us about the matter
distributionδm. The data model in eq. (3.18) is the same as the one in eq. (2.16), and signal and
noise are Gaussian distributed, cf. eqs (3.1) and (3.21). Wetherefore obtain the posterior distribution

P(δm | δg, p) = G(δm− Dm j,Dm) , (3.42)

where we have defined the Wiener variance

Dm ≡ (R†Nǫ
−1R+ Sm

−1)−1 , (3.43)
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and the response over noise weighted data

j ≡ R†Nǫ
−1δg . (3.44)

From eq. (3.42), we can directly read off the posterior mean of the matter distributionδm,

δrec
m ≡ Dm j = (R†Nǫ

−1R+ Sm
−1)−1R†Nǫ

−1δg . (3.45)

This is the Wiener filter applied to the galaxy-overdensity (Wiener 1950; Zaroubi et al. 1995;
Zaroubi 1995; Fisher et al. 1995; Erdoğdu et al. 2004; Kitaura & Enßlin 2008). We call this
estimator areconstructionof the matter distribution from the galaxy survey, thus the symbolδrec

m .

With this knowledge of the matter distribution, let us now find the posterior distribution for
T = Tisw + Tprim + Tdet, given the observed galaxy density contrastδg. The probability distribution
for Tisw, obtained from the one forδm, eq. (3.42), reads5

P(Tisw | δg, p) = G(Tisw − Tτ,QDmQ†) , (3.46)

where we have defined the ISW template

Tτ ≡ Q δrec
m . (3.47)

Since the uncertainty in the reconstructed matter distribution is not related to the primordial
CMB fluctuations (cf. section 3.2.1), the joint probabilitydistribution forTisw, Tprim, andTdet given
δg factorises:

P(Tisw,Tprim,Tdet | δg, p) = P(Tisw | δg, p)P(Tprim | p)

P(Tdet | p) . (3.48)

Note that in the above equation we have used the fact that the primordial CMB fluctuations do
not depend on the galaxy distribution. We now again use the fact that the sum of stochastically
independent Gaussian distributed random variables is again Gaussian distributed with the sum of
the covariance matrices. We then obtain the posterior distribution forT, given the LSS data:

P(T | δg, p) = G(T − Tτ,C∆T) . (3.49)

Here, we have used the probability distributions forTprim andTdet, eqs (3.5) and (3.12), and the
covariance matrix for the total noise is

C∆T ≡ 〈∆T∆T†〉 = QDmQ† +Cprim +Cdet , (3.50)

where we have defined∆T ≡ T − Tτ, and the average has to be taken over the distribution given
in eq. (3.49). As we have already said before, we will neglectthe detector noise in the rest of this
section (Cdet ≈ 0) and only include it when deriving the likelihood in section 3.7.

5note that we again use that linear transformations of Gaussian distributed random vectors are again Gaussian distributed,
cf. eq. (3.11)
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3.4.2 Estimation of the ISW amplitude

We can now ask the same question as before, namely if it is at all possible to detect a non-zero
amplitudeAτ that we put in front of our ISW template in eq. (3.49). Again, we can write down the
likelihood function for the amplitude

P(T |Aτ, δg, p) = G(T − AτTτ,C∆T) , (3.51)

and estimate the amplitude by a maximum likelihood estimator

Âτ =
T†C−1

∆TTτ

Tτ†C−1
∆TTτ

=

∑
l(2l + 1)

ĈTτ,T
l

C∆T
l

∑
l(2l + 1)

ĈTτ
l

C∆T
l

, (3.52)

where we have assumedfsky = 1 in the second step, and defined the estimatorĈTτ
l of the ISW power

spectrum analogous to the cross-correlation estimator in eq. (3.25):

ĈTτ
l ≡

1
2l + 1

∑

m

|aTτ
lm|

2 . (3.53)

This maximum likelihood amplitude is again an unbiased estimator, but now with respect to the
probability distribution conditional onδg,

〈Âτ〉cond= 1 , (3.54)

where the index ‘cond’ on the average denotes an average overthe distributionP(T |Aτ, δg, p).

In other words, we have eliminated the noise component coming from the realisation of the
known part ofδm, thus reducing the sources of noise to the unknown part ofδm and the primordial
CMB fluctuations. The variance in̂Aτ is

σ2
τ ≡ 〈

(
Âτ − 〈Âτ〉cond

)2〉cond

=
(
Tτ
†C−1
∆TTτ

)−1
=


∑

l

(2l + 1)
ĈTτ

l

C∆T
l


−1

, (3.55)

(again we have assumedfsky = 1 in the second step), and we obtain the signal-to-noise ratio for a
full-sky analysis

(S
N

)2

τ
≡ 1
σ2
τ

=
∑

l

(2l + 1)
ĈTτ

l

C∆T
l

. (3.56)

Note that the error estimate (and hence the signal-to-noiseratio) of the optimal temperature method
depends on the concrete LSS realisation, and how well it is suited to detect the ISW effect. In a
universe where by chance the local LSS does/does not permit a good ISW detection, the error is
small/large, as it should be.

We would like to point out that in our method there is no need toestimate the covariance
matrices from Monte Carlo simulations, since for a given setof cosmological parameters, the matter
covariance matrix (power spectrum)Sm can be calculated analytically using the fitting formula
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provided by Bardeen et al. (1986), since it is still linear onthe scales we are interested in.Cprim can
be obtained from Boltzmann codes such asCMBEASY, and the noise covarianceNǫ can be estimated
from the data.

3.4.3 Comparison of signal-to-noise ratios and biasing

In order to compare our method to the standard one, let us now again make the simplifying
assumption that there is no shot noise in the galaxy distribution, and that we have a perfect galaxy
survey, as we did in section 3.3.2. At the end of this section,we will approximately look at the
effects of a galaxy survey that is incomplete in redshift, i.e. that goes out to a maximal redshift
zmax < 2. For the perfect survey, the shot noise covariance matrixNǫ is zero, and hence the posterior
for δm in eq. (3.42) is infinitely sharply peaked around the reconstructionδrec

m (eq. 3.45), which turns
into

δrec
m = (R†Nǫ

−1R)−1R†Nǫ
−1δg

= R−1δg . (3.57)

Here,R−1 should be read as the pseudo-inverse ofR, e.g. as defined in terms of Singular Value
Decomposition (see Press et al. (1992) and Zaroubi et al. (1995)).

The posterior forδm in eq. (3.42) is therefore now a Dirac delta function

P(δm | δg, p) = δ(δm− R−1δg) , (3.58)

which makes our ISW template exact, and the noise covariancematrix due to the error in the
reconstruction is zero,QDmQ† = 0, thus leaving us withC∆T = Cprim = CT − Cisw. Since our
perfect LSS survey covers the complete volume relevant for the ISW effect, our template is now
equal to the ISW-temperature fluctuations,Tτ = Tisw. We can then substitute all indicesτ in eqs
(3.52)-(3.56) by the index isw, and the estimated amplitudebecomes

Âτ =

∑
l(2l + 1)

Ĉisw,T
l

CT
l −Cisw

l

∑
l(2l + 1)

Ĉisw
l

CT
l −Cisw

l

, (3.59)

with the variance

σ2
τ =


∑

l

(2l + 1)
Ĉisw

l

CT
l −Cisw

l


−1

, (3.60)

and the signal-to-noise ratio
(S
N

)2

τ
=

∑

l

(2l + 1)
Ĉisw

l

CT
l −Cisw

l

. (3.61)

As we mentioned before, the variance, and thus the signal-to-noise ratio of the optimal
temperature method, depend on the actual realisation of thematter distribution in our observed
Universe. In Fig. 3.2, we plot the probability distributionof our signal-to-noise ratio forlmax = 100
andzmax = 2, which we have inferred from the distribution ofTisw using the central limit theorem
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Figure 3.2: Probability distribution of the signal-to-noise ratio in the optimal temperature method (solid)
for lmax = 100 andzmax = 2. The vertical line (dashed) shows the signal-to-noise ratio of the standard
method for comparison.

for (S/N)2
τ, and from that deriving the distribution for(S/N)τ.

6 We have also checked the validity
of the central limit theorem in this case by comparing with the correct probability distribution
of the signal-to-noise ratio given by an expansion into Laguerre polynomials as derived, e.g., in
Castãno-Mart́ınez & López-Bĺazquez (2007). The probability distribution is such that the signal-to-
noise ratio can easily differ by∆ (S/N)τ ≈ 1 for two different realisations of the matter distribution.

The mean signal-to-noise ratio,(S/N)av
τ ≡ 1/

√
σ2
τ, av ≡ 1/

√
〈σ2
τ〉isw, increases withlmax as it did

for the standard method. For everylmax, we compare the mean signal-to-noise ratio of the optimal
temperature method to the signal-to-noise ratio of the standard method (cf. eq. 3.37) in the top
panel of Fig. 3.1, again forzmax = 2. Note that in our formula for the signal-to-noise ratio, eq.
(3.61), there is now a minus sign betweenCT

l andCisw
l , in contrast to the signal-to-noise ratio of the

standard method in eq. (3.37), which has a plus sign instead.Thus we take advantage of the LSS
instead of moving it into the error budget. The absolute enhancement of the signal-to-noise ratio
in our method is therefore independent oflmax, since the main advantage of working conditional on
the LSS arises on the very large scales, where the contribution of the ISW to the CMB is highest.
The average relative improvement of the signal-to-noise isdepicted in the middle panel of Fig. 3.1.
It amounts to about 7 per cent forlmax = 100. In the bottom panel of Fig. 3.1, we compare the mean
relative improvement (σ2

cc − σ2
τ, av)/σ

2
cc of the variance in the optimal temperature method with the

contribution of the local to the total variance in the standard method. The variance is reduced by
about 13 per cent in the optimal temperature method, as compared to the standard method.

Note that the maximal average signal-to-noise ratio we can hope for when trying to detect the
ISW via cross-correlation, given a perfect LSS survey, is(S/N)av

τ ≈ 7.3, with a variance as depicted
in Fig. 3.2. Hence, if we are lucky and live in an environment that allows for a high signal-to-noise
ratio, we can maximally obtain a detection significance of about (7.5− 8)σ.

Let us now look at the effect of an incomplete galaxy survey. Incomplete galaxy surveys can be
treated generically with our method, because the dark matter field, and thus the ISW effect, are split

6This will provide accurate results for multipolesl ≫ 1, however, is a coarse approximation in the regimel ∼ 1.
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Figure 3.3: Average signal-to-noise ratio of the optimal temperature method (solid) and signal-to-noise
ratio of the standard method (dashed) versuszmax for lmax = 100.

into a known part (the reconstruction) and an unknown part (an additive noise term uncorrelated with
the reconstruction). However, for now we only want to give a rough estimate of the consequences
of an incomplete survey. Therefore, we introduce a sharp cut-off in redshift,zmax, and we simply
redefineTisw ≡ Tisw(< zmax) to be the part of the ISW effect created atz< zmax. The part of the ISW
that has been created atz > zmax is then considered part of the primordial temperature fluctuations
Tprim. The power-spectraCisw

l andCprim
l are redefined accordingly. With this redefinition, we have

introduced a correlation between what we consider the ISW effect and primordial fluctuations,
which we would not have if we had used the reconstruction for redefiningTisw. However, for
getting the picture, we ignore this subtlety for the moment.7

In Fig. 3.3, we plot the signal-to-noise ratio of the standard method together with the average
signal-to-noise ratio of the optimal temperature method versuszmax for lmax = 100, where we have
used the above-described redefinition ofCisw

l in eqs (3.61) and (3.37). With decreasing maximal
redshift of the LSS survey, the total signal-to-noise ratioin both methods goes down, as does its
relative enhancement of the optimal temperature method as compared to the standard one. The
relative contribution of the local to the total variance in the standard method goes down with
decreasing survey depth as well.

Currently available full-sky LSS surveys (which effectively cover about 70-80 per cent of the
sky after masking out the galaxy, see Giannantonio et al. (2008)) are either very shallow in redshift
(Two-Micron All-Sky Survey, Jarrett et al. (2000)), or theyhave an uncertain redshift distribution
which results in a large uncertainty in the ISW template (NRAO VLA Sky Survey (Condon et al.
1998), High Energy Astrophysics Observatory (Boldt 1987)). The SDSS luminous red galaxy
(LRG) sample covers a redshift range up toz ∼ 0.7, and the QSO sample even reaches out to
z ∼ 2.5. However, the SDSS only covers about a quarter of the sky, and thus at most a quarter of
the ISW-relevant volume. Even with future surveys such as EUCLID8, we will effectively (after
masking out the galaxy) only observe an area of about 20,000 deg2, which is roughly half of the

7The ratio of this neglected coupling to the template strength gets large for smallzmax. Our estimates are therefore less
accurate in this regime.

8http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
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sky. We would thenon averagestill only obtain an enhancement of the detection significance by at
most 3.5 per cent.

However, as we stated in section 3.3.2, the amplitude-estimate of the standard method is biased
when the averaging is performed conditional on the galaxy-dataδg, due to local variance. This leads
to an over- or underestimation of the detection significance, since the estimated amplitude is used
when estimating the signal-to-noise ratio from the data. Aswe have shown, the contribution of the
local to the total variance of the estimator is quite small, about 11 per cent for an ideal galaxy survey
and even smaller for a shallower survey or a survey that covers only a fraction of the sky. We thus
expect the biasing effect in general to be quite weak. However, we could be unlucky and live in an
unlikely realisation of the matter distribution, given thepower spectrum, which would enhance the
effect of the biasing.

With the method we presented in this section, the local variance effect is reduced. If we knew
the local matter distribution perfectly, we would not be affected by local variance at all, as we
have shown. Unfortunately, we have to rely on reconstructions of the matter distribution from LSS
surveys, which suffer from shot noise and the effects of mask and selection function. However,
the reconstruction treats mask and selection function in anoptimal way, and extracts the maximum
amount of information from the LSS data which can then be usedin the ISW detection.

3.5 Optimal polarization method

With the optimal temperature method introduced in section 3.4, we were able to reduce the low
redshift cosmic variance effect in the estimate of the ISW amplitude, i.e. we reduced the noise
coming from the specific realisation of LSS in our Universe,σ2

loc. However, in both the standard
method and the optimal temperature method, the main source of uncertainty in the detection of the
ISW effect comes from chance correlations of primordial CMB fluctuations with the LSS,σ2

prim

(cf. section 3.3.2). In this section, we show howσ2
prim can be reduced by including polarization data

in the analysis. CMB polarization is correlated with the temperature fluctuations, and can thus be
used to obtain information about the latter. We use the observed E-mode polarization map, which
we translate into a temperature map using the TE cross-powerspectrum. The obtained temperature
map is then subtracted from the observed temperature map, and thus no longer contributes to the
noise budget of the detected signal. In other words, we perform our amplitude estimate of the
ISW template conditional on the part of the temperature fluctuations which is correlated with the
polarization map.

Again we work with a Gaussian data model, as before when deriving the optimal temperature
method. This assumption is very well-suited for the ISW effect. Usinginformation field theory
(Enßlin et al. 2009), it is possible to extend the optimal polarization method into the non-Gaussian
regime, in order to use it for detecting secondary effects on smaller scales, but again we leave those
extensions for future work.

Using polarization data to reduce the noise in the detectionof secondary effects was first
proposed by Robert Crittenden, following a suggestion of Lyman Page (Crittenden 2006). He
already derived the uncorrelated temperature power spectrum, which we show in Figure 3.4, and
roughly estimates the improvement of the signal-to-noise ratio for ISW detection to be around 20
per cent, which we confirm with our calculations.
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3.5.1 Uncorrelated temperature maps

In order to use the information contained in the polarization data in our analysis, we enlarge our
data vectord to include the observed polarization mapP:

d ≡
(

T
P

)
, (3.62)

where the polarization mapP contains the maps of the StokesQ andU parameters,

P ≡
(

Q
U

)
. (3.63)

As we have seen in chapter 1, we represent the polarization inspherical harmonics space in terms
of the so-called E and B modes, and thus

ad
lm ≡



aT
lm

aE
lm

aB
lm


. (3.64)

In principle, it is possible that the secondary effect we are looking for is also present as a small
signal in the polarization data. If the temperature anisotropies created by the secondary effect
exhibit a quadrupole component at the time of reionization,this quadrupole will be re-scattered
by free electrons and create a polarization signal (Zaldarriaga 1997). However, for the ISW this
effect has been proved to be small (Cooray & Melchiorri 2006). Itshould also be small for the RS
effect, lensing and the kinetic SZ effect, the highest contributions of which are on relatively small
scales and are mostly created after reionization. Thus, as afirst approximation we assume that the
polarization data do not carry any signal of the effect we want to detect. Given the signal template
for the temperature,Tτ, our signal templateτ is then

τ ≡
(

Tτ
0

)
,

aτlm ≡


aTτ

lm
0
0

 , (3.65)

and the data model becomes

d =

(
T
P

)
=

(
Tτ + ∆T
P

)
, (3.66)

with ∆T ≡ T − Tτ as before. The observed polarization map,P = Pcmb+ Pfg + Pdet, consists of the
cosmological polarization signalPcmb, residual Galactic foregrounds after foreground removalPfg,
and the detector noisePdet. Assuming again Gaussianity, we can write down the likelihood

P(d | τ, p) = G(d − τ, C̃) , (3.67)
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where the covariance matrix̃C is

C̃ ≡ 〈(d − τ)(d − τ)†〉cond=

(
C∆T C∆T,P

CP,∆T CP

)
, (3.68)

with

C∆T ≡ 〈∆T∆T†〉cond, (3.69)

C∆T,P ≡ 〈∆T P†〉cond, (3.70)

CP ≡ 〈PP†〉cond, (3.71)

and we have redefined the index ‘cond’ to denote the average over the probability distribution in eq.
(3.67).

By using block-wise inversion of the covariance matrixC̃, it is possible to rewrite the likelihood
as a product of the part of the temperature map which is uncorrelated with polarization, and a
polarization part. To this end, let us define the uncorrelated temperature map and covariance

Trec
uncorr ≡ T −C∆T,PC−1

P P

= T − Trec
corr ,

Cuncorr ≡ C∆T −C∆T,PC−1
P CP,∆T

= C∆T −Ccorr , (3.72)

where we have introduced the definitions

Trec
corr ≡ C∆T,PC−1

P P ,

Ccorr ≡ C∆T,PC−1
P CP,∆T . (3.73)

We have added the index ‘rec’ ofTrec
corr andTrec

uncorr to indicate that under certain assumptionsTrec
corr

actually corresponds to a Wiener reconstruction of the polarization map, translated to a temperature
map. We prove this in appendix C.1. Effectively, what we have done is the following. We have
a polarization mapP, which is correlated with the temperature fluctuations∆T via C∆T,P. That is,
the polarization map contains information about the temperature map, which we can translate into
the part of the temperature map which is correlated with the polarization, using the prescription
Trec

corr ≡ C∆T,PC−1
P P. This correlated part of the temperature map is subtracted from the observed

one, in order to obtain the part of the temperature map which is uncorrelated with the polarization,
Trec

uncorr.

With the above definitions, the likelihood becomes

P(d | τ, p) = P(T |P,Tτ, p)P(P | p)

= G(Trec
uncorr− Tτ,Cuncorr)G(P,CP) , (3.74)

as we prove in Appendix B.2. Now, our goal is to find the signal templateTτ in the CMB data.
The polarization part of the above likelihood,G(P,CP), does not depend on the signal template,
nor does the uncorrelated temperature part explicitely depend onP. In other words, the observed
polarization map does not contain relevant information anymore after introducing the uncorrelated
temperature fluctuations. Thus, we can marginalise over it,and continue only with the likelihood of
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the uncorrelated temperature map

P(Trec
uncorr|Tτ, p) ≡ G(Trec

uncorr− Tτ,Cuncorr) . (3.75)

The uncorrelated temperature map,Trec
uncorr, fluctuates around our signal templateTτ only with the

varianceCuncorr, which is smaller than the full varianceC∆T of the observed temperature map. This
reduced variance is the uncertainty going into our signal detection problem now, rather than the
full variance of the original temperature fluctuations. Note that it is straightforward to derive
the factorised likelihood also for the case that we do have a non-zero signal templatePτ for the
polarization part. In that case, the covariance matrixC̃ is slightly changed, as well as the definitions
of the uncorrelated temperature map and covariance matrix,and we can no longer neglect the
polarization part of the likelihood. Please refer to Appendix B.2 for details.

In multipole space, only the E-mode,aE
lm, is correlated with the temperature fluctuations,

whereas the B-mode is not (cf. section 1.4.4). In the isotropic case, transformingTrec
corr andCcorr

into multipole space results in

aTrec
corr

lm =
C∆T,E

l

CE
l

aE
lm ,

CTrec
corr

l =

(
C∆T,E

l

)2

CE
l

, (3.76)

where we have definedC∆T,E
l ≡ 〈a∆T

lm aE∗
lm 〉, and the corresponding quantities forTrec

uncorr andCuncorr

are

aTrec
uncorr

lm = aT
lm − aTrec

corr

lm ,

Cuncorr
l = C∆T

l −CTrec
corr

l , (3.77)

with C∆T
l ≡ 〈a∆T

lm a∆T∗
lm 〉. Note that if isotropy does not hold, for example, if we cut out a part of

the sky by applying a mask or if we have inhomogeneous noise, the covariance matricesCcorr and
Cuncorr are no longer diagonal in spherical harmonics space.

In the next section, we estimate by how much the variance in the detection of secondary
signals can actually be reduced by working conditional on the correlated part of the temperature
fluctuations. We will perform this estimate for an ideal scenario, where we have noiseless data.

3.5.2 Reduction of variance

We now attempt to get a feeling for the reduction of the variance in the detection of secondary
signals, obtained from including polarization data. We look at the best case scenario, in which we
have full-sky polarization maps, and there is no contamination of the CMB polarization signalPcmb

by foregrounds or detector noise. Note that we are still far from this scenario with our currently
available polarization data. The WMAP satellite has provided us with full-sky polarization maps,
but since WMAP was primarily designed to measure temperature fluctuations, the detector noise
in the polarization data is very high. Even more problematicis the contamination of the CMB
polarization by synchrotron and dust emission from our Galaxy. Therefore, the WMAP team has
masked out about 25 per cent of the sky, but even in the remaining parts of the sky the Galactic
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foregrounds dominate over the CMB signal. In chapter 4, we will obtain the correlated and
uncorrelated temperature maps for the WMAP data, and have a look at the noise contamination.
With the Planck mission (Tauber 2000), the detector noise will be reduced bya considerable
amount, however, lots of work has still to be done in order to understand and remove the Galactic
foregrounds. Therefore, our estimate of the reduction of variance has to be understood as an upper
limit of what we can gain from polarization data.

As in section 3.4, let us put an amplitude in front of the signal template in eq. (3.75), and estimate
it from the data using a maximum likelihood estimator:

Âτ =
Trec

uncorr
†C−1

uncorrTτ
Tτ†C−1

uncorrTτ
=

∑
l(2l + 1)

Ĉ
Trec

uncorr,Tτ
l

Cuncorr
l

∑
l(2l + 1)

ĈTτ
l

Cuncorr
l

. (3.78)

Here, the last expression is in spherical harmonics space. The variance of̂Aτ is now

σ2
τ =

(
Tτ
†C−1

uncorrTτ
)−1
=


∑

l

(2l + 1)
ĈTτ

l

Cuncorr
l


−1

, (3.79)

and thus the signal-to-noise ratio becomes

(S
N

)2

pol
= Tτ

†C−1
uncorrTτ =

∑

l

(2l + 1)
ĈTτ

l

Cuncorr
l

=
∑

l

(2l + 1)ĈTτ
l

C∆T
l −

(
C∆T,E

l

)2
/CE

l

. (3.80)

Note that we have used the index ‘pol’ to indicate that this isthe signal-to-noise ratio one obtains
when using the polarization data to reduce the variance. Comparing the signal-to-noise ratio in
eq. (3.80) with the one in eq. (3.56), we see that by includingthe information contained in the

polarization data, we reduce the variance in every mode by the term
(
C∆T,E

l

)2
/CE

l .

Let us now get an impression of how much the variance gets reduced for the different multipoles.
To this end, we neglect the detector noiseEdet and the foreground noiseEfg

9 (note that we have
neglected the detector and foreground noise for the temperature data, too), which allows us write

C∆T,E
l ≈ CT,Ecmb

l −CTτ,Ecmb

l (3.81)

C∆T
l ≈ CT

l − 2CT,Tτ
l +CTτ

l (3.82)

CE
l ≈ CEcmb

l . (3.83)

We furthermore neglect the cross-termCTτ,Ecmb

l . For the ISW effect, we have verified numerically
that it is negligible, as shown in Fig. 3.5. For the kinetic SZeffect and the RS effect, the template
itself is so small that we can also certainly neglectCTτ,Ecmb

l . Then, the uncorrelated temperature

9In reality, Galactic E-mode foregroundsEfg are likely to be the limiting factor in the improvement of the detection
significance coming from including polarization data. We comment on this atthe end of this section.
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Figure 3.4: Reduction of the variance in the detection of secondary temperature signals by using the
information contained in polarization data. Shown are the CMB temperature power spectrumCT

l

(solid), and the template-free part of the uncorrelated temperature powerspectrumCT
l −

(
CT,Ecmb

l

)2
/CEcmb

l
(dashed), together with the part of the CMB power spectrum coming from the correlated part of the

temperature fluctuations which we infer from the polarization map,
(
CT,Ecmb

l

)2
/CEcmb

l (dotted).

power spectrum defined in eq. (3.77) becomes

Cuncorr
l ≈ CT

l − 2CT,Tτ
l +CTτ

l −

(
CT,Ecmb

l

)2

CEcmb

l

. (3.84)

In Fig. 3.4, we plot the template-free part of the uncorrelated temperature power spectrum,

CT
l −

(
CT,Ecmb

l

)2
/CEcmb

l (note that we have not included the template-dependent terms−2CT,Tτ
l andCTτ

l
in the plot), which gives us an impression of how the variancecoming from primordial temperature
fluctuations is being reduced by including polarization data. The variance will be further reduced
by working conditional on the signal templateTτ, which is encoded in the terms−2CT,Tτ

l andCTτ
l ,

and already described in section 3.4. We also plot the original CMB power spectrumCT
l and the

difference to the uncorrelated one for comparison. We have assumed a flatΛCDM model with
the parameter values given by Komatsu et al. (2009), table 1 (Ωbh2 = 0.02265,ΩΛ = 0.721, h =
0.701, ns = 0.96, τ = 0.084, σ8 = 0.817), and usedCMBEASY (Doran 2005) for obtaining the
respective spectra.

In Fig. 3.6, we plot a realisation of the original temperature mapT (top panel), the uncorrelated
temperature mapTrec

uncorr (middle panel) and the correlated temperature map,Trec
corr, for comparison

(bottom panel). The realisations were created using theHEALPix package (Ǵorski et al. 2005).
Note that all of what we have done works equally well for reducing the polarization map when

trying to detect a secondary signal contained in the polarization data. One has to simply exchange
the roles ofT and P in the derivation. This was partly already done by Jaffe (2003), who used
the information contained in the CMB temperature map for predicting a polarization map from it.
The equivalent plot to Fig. 3.4 for this scenario is given in Fig. 3.7. The likelihood for the case
of simultaneously detecting a temperature templateTτ and a polarization templatePτ is derived in
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Appendix B.2.
In practice, the accuracy to which we can measure the polarization map is limited by Galactic

foregroundsPfg, the most important of which are synchrotron radiation and dust emission of the
Milky Way. Uncertainty in the measured polarization map makes the reduction of the temperature
power spectrum less efficient, because the power contained in the foreground noise,C

Efg

l , enhances

the observed E-mode power spectrumCE
l ≈ CEcmb

l + C
Efg

l + CEdet

l . In section 3.6, we estimate the
improvement of the signal-to-noise ratio for an ISW measurement for such a realistic scenario.

3.5.3 Application to the ISW effect

Let us now apply our method to the ISW effect. That is, our signal templateTτ is now an ISW
template which we obtain from a Wiener filter reconstructionof the LSS, as described in section
3.4. Again we assume the best-case scenario of having perfect (noiseless) LSS and CMB data. In
other words, we neglect detector noise and residual Galactic foregrounds, as well as the shot-noise
in the observed galaxy distribution, and assume that we havean ideal galaxy survey that covers the
whole sky and goes out to a redshift of at least two. Recall that our signal template is exact in that
case,Tτ = Ts ≡ Tisw, and the residual (T − Tisw) ≡ Tprim is simply given by the primordial CMB
fluctuations, which are created at the surface of last scattering (we have ignored other secondary
effects here). Since we assumeTisw to be uncorrelated with the primordial fluctuationsTprim, we
can writeCT,Tτ

l ≡ CT,isw
l = Cisw

l .
The signal-to-noise ratio for the detection of the ISW signal, eq. (3.80), then reduces to

(S
N

)2

pol
=

∑

l

(2l + 1)Ĉisw
l

Cprim
l −

(
Cprim,Ecmb

l

)2
/CEcmb

l

. (3.85)

As explained in section 3.4, the signal-to-noise ratio depends on the specific LSS realisation in our
Universe viaĈisw

l . Again, we can infer its probability distribution from the distribution ofTisw by
using the central limit theorem for the distribution of(S/N)2 and deriving the distribution forS/N
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Figure 3.6: Realisation of the original CMB temperature mapT (top panel), the uncorrelated temperature
mapTrec

uncorr (middle panel) and the difference between the two,Trec
corr, for comparison (bottom panel) in

µK. We have chosen the same colour range from−500µK to 500µK for all maps.
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Figure 3.7: Reduction of the variance in the detection of secondary polarization signals by using the
information contained in temperature data. Shown are the CMB E-mode power spectrumCEcmb

l (solid),

and the template-free part of the uncorrelated E-mode power spectrumCEcmb
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(
CT,Ecmb

l

)2
/CT

l (dashed),
together with the part of the CMB power spectrum coming from the correlatedpart of the E-mode

fluctuations which we infer from the temperature map,
(
CT,Ecmb

l

)2
/CT

l (dotted).

from that. We then average the signal-to-noise ratio over this probability distribution in order to
compare it to the signal-to-noise ratio of the standard method, eq. (3.37), and the average signal-
to-noise ratio of the optimal temperature method, eq. (3.61). Recall that the signal-to-noise ratio
obtained for the standard method is given by

(S
N

)2

cc
=

∑

l

(2l + 1)Cisw
l

CT
l +Cisw

l

. (3.86)

The cumulative signal-to-noise ratios versus the maximal multipole lmax used in the analysis are
plotted in Fig. 3.8. We see that including the polarization data in the analysis increases the signal-
to-noise ratio by 16 per cent as compared to the optimal temperature method, and by 23 per cent
as compared to the standard method. Note that we only included the linear ISW effect in Fig. 3.8.
Beyond a multipole of aboutl ≈ 100, non-linear effects start to play a crucial role (Cooray 2002b),
which could change the plot forl > 100. However, we see that for the linear ISW effect, there is
hardly any contribution from such high multipoles.

Let us now look at the enhancement of the signal-to-noise ratio for shallower LSS surveys.
We use the same approximation as in section 3.4, i.e., we introduce a sharp cut-off in redshift and
redefine everything beyond that redshift as primordial fluctuations. We plot the redshift-dependence
of the signal-to-noise ratios of the three methods in Fig. 3.9. We also plot the ratio of the signal-to-
noise of the optimal polarization method with the one of the standard method (solid) and with the
one of the optimal temperature method (dashed). Note that the enhancement of the signal-to-noise
ratio with respect to the optimal temperature method is almost constant in redshift. This is quite clear
from the fact that we have reduced theprimordial noise with the polarization data, and neither the
primordial noise nor the reduction of the latter depend on redshift. Therefore, the reduction of the
noise from including polarization data is always the same, independent of how deep in redshift our
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Figure 3.8: Comparison of the cumulative signal-to-noise ratios forzmax = 2. Top panel: Average
signal-to-noise ratio of the optimal polarization method (S/N)av
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maximal multipole considered in the analysis.Bottom panel: Ratio of the signal-to-noise of the optimal
polarization method with the one of the standard method (dotted) and with the one of the optimal
temperature method (dashed).

survey goes, and the signal-to-noise ratio is already significantly enhanced for currently available
surveys. For example, for a maximal redshift ofzmax ≈ 0.3, which is the maximal redshift for the
SDSS main galaxy sample, we have a better signal-to-noise byabout 16 per cent as compared to
the standard method. The additional enhancement for higherredshifts of our signal-to-noise ratio
with respect to the standard method comes from working conditional on the galaxy data, as we have
described in detail in section 3.4.

3.6 Improvement for currently available data

Let us now find out how much subtracting the correlated temperature map,Trec
corr, from the original

CMB temperature map would improve ISW measurements with currently available CMB and
LSS data. In chapter 4, we will computeTrec

corr and Trec
uncorr together with the covariance of the

correlated temperature map,Ccorr, for the WMAP data, and we will already use these results
here. We transform the covariance matrixCcorr to multipole space, which gives us the non-diagonal
matrix Ccorr

l,m,l′,m′ since our problem is not isotropic. This is due to the inhomogeneous noise in the
polarization map and the fact that we we have to mask out the Galactic plane in the polarization
data (cf. chapter 4). However, we only consider the diagonal, Ccorr

l,m,l,m, and take the average over all
multipole componentsm for every fixedl:

Ccorr
ll ≡ 1

2l + 1

∑

m

Ccorr
l,m,l,m . (3.87)
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Figure 3.9: Comparison of the signal-to-noise ratios versus the maximal redshift zmax of the galaxy
survey. Top panel: Average signal-to-noise ratio of the optimal polarization method (S/N)av

pol (solid),
of the optimal temperature method (S/N)av

τ (dashed) and signal-to-noise ratio of the standard method
(S/N)cc (dotted). Bottom panel: Ratio of the signal-to-noise of the optimal polarization method with
the one of the standard method (dotted) and with the one of the optimal temperature method (dashed).
We see that with polarization data included, the signal-to-noise is significantly enhanced even for low
redshifts.

In the upper panel of Fig. 3.10, we plot this ‘averaged power’of the observedTrec
corr together with

the theoretical power spectrum of the correlated temperature map,CTrec
corr

l ≈ (CT,Ecmb

l )2/CEcmb

l , and the
power in the CMB temperature fluctuations,CT

l . The theoretical power spectrum, (CT,Ecmb

l )2/CEcmb

l ,
is the upper limit of the reduction of the variance that we canobtain per multipole (cf. Fig. 3.4).
The ratioCcorr

ll /[(C
T,Ecmb

l )2/CEcmb

l ] is shown in the bottom panel of Fig. 3.10. For WMAP, this ratio is
around 50 per cent for the lowest multipoles and falls off to a value below 1 per cent abovel ≈ 10.

We now compute the signal-to-noise ratio we would obtain with the WMAP data for our
optimal polarization method and compare it to the one of the standard method. We do not create
an ISW template from LSS surveys to compute the correct signal-to-noise ratio, but we rather
perform a crude estimate in multipole space. To this end, we estimate the signal-to-noise ratio
of the optimal polarization method for WMAP data,(S/N)av

pol,WMAP, by simply substituting the term

(Cprim,Ecmb

l )2/CEcmb

l in eq. (3.85) byCcorr
ll . We plot the ratio of(S/N)av

pol,WMAP to the signal-to-noise
ratio of the standard method,(S/N)cc, for a given depth of the LSS survey in Fig. 3.11. This is
analogous to what is plotted in the bottom panel of Fig. 3.9. Note that we have again neglected
the shot-noise in the galaxy distribution. We see that for galaxy surveys withzmax . 0.6, we
do not gain more than 5 per cent in detection significance for WMAP. With currently available
data, our optimal polarization method and the standard method for ISW detection thus still yield
approximately the same detection significance. Given that the standard method has been applied to
all currently available LSS data sets (see Ho et al. 2008; Giannantonio et al. 2008, and references
therein), we decide not to proceed and apply our method to WMAP data.
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Figure 3.10: Reduction of the variance of ISW detection from including polarization data for WMAP
and for 2 limiting estimates forPlanck, which are explained in the text.Top panel: CT

l (dotted), the

theoretical reduction of variance per multipole, (CT,Ecmb
l )2/CEcmb

l (dashed), and the variance reduction
achieved by WMAP/Planck Ccorr

ll (solid). The three cases shown forCcorr
ll are: The estimate forPlanck

with the WMAP noise covariance scaled down by a factor of 1 per cent (upper thin line), the same for
a scale-factor of 10 per cent (middle line), and the estimate for WMAP (bottomthick line). Bottom
panel: The ratioCcorr

ll /((C
T,Ecmb
l )2/CEcmb

l ), which is roughly the ratio of the variance reduction achieved
by WMAP/Planckover the theoretically achievable reduction of variance per multipole. The three cases
shown are the same as in the top panel.
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a factor of 1 per cent (solid line,α = 0.9). ForPlanck, we will obtain an enhancement of the detection
significance of at least 10 per cent, even for the more conservative estimate.

However, thePlancksatellite (Tauber 2000), which was launched in May 2009, will provide
us with much more accurate polarization measurements than WMAP. Let us therefore do a similar
rough estimate of the potential improvement of ISW detection with Planckdata. We first need to
find a way to estimateCcorr

ll for Planck, which we attempt to do based on the polarization noise
covariance matrix of WMAP. ForPlanck, the Galactic foregrounds will certainly be the limiting
factor for the quality of the polarization data. We thus assume the detector noise to be negligible
in comparison to the residual foregrounds. We can furthermore expect the foreground removal for
Planckdata to be more accurate than the one for WMAP, due to the broader range of frequencies
covered byPlanck. In the following, we therefore assume the covariance due toresidual foregrounds
for Planckto be between 5 and 50 per cent of the one for WMAP. For the WMAP polarization data,
the foregrounds contribute about 20 per cent to the diagonalof the noise covariance matrixNP in
pixel space. In order to obtain a noise estimate for the two limiting cases of thePlanckforeground
removal, we do not change the shape of the total noise covariance,NP, but simply scale it down
with a factor of 1 per cent or 10 per cent, respectively. This will only give us a very crude estimate,
of course, since the covariance matrix of the residual foregrounds should differ strongly from the
detector-noise dominated covariance of WMAP. In particular, the contribution of the foregrounds
to the total noise covariance matrix of WMAP should depend onthe multipole, which we ignore
by just downscaling the total noise covariance. Nevertheless, for the very rough estimate we are
trying to obtain, this assumption should be good enough. We show the resulting power spectra and
their ratio in Fig. 3.10. The ratioCcorr

ll /[(C
T,Ecmb

l )2/CEcmb

l ] for the lowest multipoles is around 0.7
for the WMAP noise covariance scaled down by a factor of 10 percent, and around 0.9 for the
noise covariance scaled down by a factor of 1 per cent. For thehigher multipoles, this ratio falls
off quite rapidly, which is simply due to the fact that the WMAP polarization data contain so little
information at the higher multipoles. ForPlanck, we assume that the quality of the polarization data
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does not notably drop untill ≈ 100. That is, we assume a constant ratio

α ≡ Ccorr
ll /[(C

T,Ecmb

l )2/CEcmb

l ] , (3.88)

and we takeα to be 0.7 and 0.9, for the two limiting cases described above.For these two
cases, we again compute the signal-to-noise ratio of the optimal polarization method by substituting
(Cprim,Ecmb

l )2/CEcmb

l in eq. (3.85) byα (Cprim,Ecmb

l )2/CEcmb

l , and plot its ratio to the signal-to-noise ratio
of the standard method in Fig. 3.11. The improvement we obtain is already around 10 per cent for
low redshift surveys ofzmax ≈ 0.3 for the more conservative estimate. We can thus expect thatthe
improvement of the ISW detection significance for the optimal polarization method will be at least
10 per cent forPlanck, even with currently available LSS surveys.

3.7 Likelihood for cosmological parameters

Many of the above-mentioned cross-correlation studies, which use the standard method described
in section 3.3 to detect the ISW effect, attempt to constrain cosmological parameters using the ISW.
However, the biasing effect of the signal-to-noise ratio we have described in section 3.4.3 is of
course also present when moving from the pure detection of the ISW to the task of constraining
cosmological parameters. This problem can already be seen in the likelihood function for the
cosmological parameters of the standard method in eq. (3.26). The estimator of the cross-correlation
function,̂ξg,T , could be quite different from the theoretical prediction with the underlying parameter
values, just because we are living in an unlikely realisation of the matter distribution, given the
power spectrum. Then, the likelihood in eq. (3.26) would favour cosmological parameter values
for which the theoretical prediction of the cross-correlation function is closer to its estimator, thus
biasing the parameter estimates. Furthermore, to our knowledge, there is no straightforward way of
combining the likelihood from the cross-correlation in eq.(3.26) with the likelihoods for CMB and
LSS data, as e.g. given by Verde et al. (2003b), Percival et al. (2004) and Cole et al. (2005).

Usually, when combining CMB with LSS data for deriving constraints on cosmological
parameters, it is assumed that the two data-sets are stochastically independent, i.e. that
P(T,P, δg | p) = P(T,P | p)P(δg | p) (see, e.g. , Tegmark et al. 2004; Spergel & et al 2007;
Komatsu et al. 2009). But the ISW effect (and also other effects as, e.g., the Sunyaev-Zel’dovich-
effect) introduces a small stochastic dependence of the CMB data on the LSS data. That is, instead
of assuming that the joint likelihood factorises, one should consider

P(T,P, δg | p) = P(T,P | δg, p)P(δg | p) , (3.89)

in which we insert eq. (A.4) for the data model given in eq. (3.18), and eq. (3.74), obtaining

P(T,P, δg | p) = G(Trec
uncorr− Tτ,Cuncorr) G(P,CP) G(δg,RSmR† + Nǫ) , (3.90)

and we recall for convenience the definition ofTrec
uncorr andCuncorr, eq. (3.72),

Trec
uncorr ≡ T −C∆T,PC−1

P P

Cuncorr ≡ C∆T −C∆T,PC−1
P CP,∆T ,
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and ofTτ, eq. (3.47),

Tτ ≡ Q δrec
m .

Note that here the detector noiseTdet has to be included inCuncorr, because we also consider
higher multipoles, in which cosmic variance no longer dominates the uncertainty. Eq. (3.90) is
the generic expression for the joint likelihoodP(T,P, δg | p) for the cosmological parametersp,
given CMB and LSS data, consistently including the small coupling between the two data-sets
introduced by the ISW effect. The quantities depending on the cosmological parameters areC∆T ,
C∆T,∆P, C∆P, Q, R, Sm, and, in general,Nǫ . Multiplying the likelihood by a priorP(p) for the
cosmological parameters, one can then sample the parameterspace and derive constraints on the
cosmological parameters from the posterior distributionP(p |T,P, δg) ∝ P(T,P, δg | p)P(p). Note
that our likelihood function remains valid if galaxy bias variations, position dependent noise, and
other non-linear effects of galaxy formation are taken into account, as long as the variance of the
reconstruction,Dm ≡ 〈

(
δm− δrec

m
) (
δm− δrec

m
)†〉, is estimated consistently (see Enßlin et al. (2009) for

methods to treat such complications).
Using the joint likelihood given by eq. (3.90) in parameter sampling studies, rather than

assuming the likelihoods of CMB and LSS to be independent, can affect the constraints on dark-
energy related parameters. If the curvature of the Universeis set to zero in parameter estimation
studies, we do not expect a notable difference inΩΛ, sinceΩΛ = 1−Ωm andΩm is well constrained
by the acoustic peaks in the CMB. However, if the curvature isused as additional parameter,ΩΛ is
no longer fixed byΩm and thus sensitive to changes in the ISW effect. The constraints onΩΛ using
our likelihood should then differ from the ones obtained when neglecting the coupling between the
data-sets. The constraints on the EoS parameter of dark energy should change as well. Note that in
order to see such a difference, we will need a LSS survey that covers enough volume relevant for the
ISW effect. The ideal survey would be EUCLID, however, Ho et al. (2008) and Giannantonio et al.
(2008) claim to see effects in the parameter constraints when including information from the ISW
effect already when combining the currently available surveyslisted in section 3.4.3.

3.8 Conclusions

Due to the obscuration by primordial CMB fluctuations, the detection of the ISW effect and
other secondary effects in the CMB is a rather difficult task, and has to be performed by cross-
correlating the CMB temperature fluctuations with the large-scale structure. The standard method
for doing so compares the observed cross-correlation function to its theoretical prediction, which
is by construction an ensemble average over all realisations of the primordial CMB fluctuations
and matter distributions. Therefore, both the specific realisation of the primordial temperature
fluctuations and the LSS in our Universe act as sources of noise in the detection of secondary effects
in the CMB. In this chapter, we have derived methods for ISW detection which reduce both of these
sources of uncertainty by working conditional on the LSS distribution and on the CMB polarization
data.

First, we have presented a generic technique of how to include the knowledge of the matter
distribution into ISW detection in an optimal way, thus reducing the effect of the local variance.
This optimal temperature method requires a three-dimensional Wiener filter reconstruction of the
LSS, including an estimator of the full uncertainty covariance matrix of the reconstruction. Note
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that also other reconstruction techniques that provide an estimator of the uncertainty covariance can
easily be included into our method. The conditionality on the LSS data results in a dependence of the
variance in the detected signal on the specific realisation of the LSS in the observed Universe. The
average variance in the optimal temperature method is reduced by about 13 per cent as compared
to the standard method, in the case of an ideal LSS survey. This reduction of the noise translates
into an average enhancement of the signal-to-noise or detection significance by about 7 per cent
for the optimal temperature method. However, note that alsothe signal-to-noise ratio depends on
the actual realisation of the matter distribution. Therefore, even if the average enhancement of the
detection significance only amounts to 7 per cent, we could belucky (or unlucky) and live in an
unlikely realisation of the matter distribution given the power spectrum, so that the enhancement in
our Universe could be higher (or lower) than the average value. The fact that the standard method
for ISW detection does not work conditional on the LSS distribution causes the ISW estimate to be
biased by the latter. This effect becomes stronger the more unlikely the specific LSS realisation in
our Universe is.

We have then presented a way of reducing the noise coming fromprimordial temperature
fluctuations by simply subtracting from the temperature mapthe part which is correlated with
the polarization data. When doing so, only the uncorrelatedpart of the temperature fluctuations
contributes to the variance of the signal estimate. We calculated the achievable reduction in
primordial noise for perfect (noiseless) data, and obtained a signal-to-noise ratio of up to 8.5.
This corresponds to an enhancement of the signal-to-noise ratio by 16 per cent as compared to
our optimal temperature method, independent of the depth ofthe LSS survey. In comparison to the
standard method, the signal-to-noise ratio is enhanced by 23 per cent for a full-sky galaxy survey
which goes out to a redshift of at least two. For the upcoming polarization data from thePlanck
mission, a very crude estimate yields an enhancement of the detection significance of at least 10 per
cent. This depends strongly on the residual foregrounds present in the polarization maps. We would
like to point out that in our methods there is no need to estimate the covariance matrix by Monte
Carlo simulations, which safes time and increases the accuracy of the method (using 1000 Monte
Carlo simulations to estimate the standard covariance matrix of the cross-correlation function only
reaches an accuracy of about 5 per cent, as stated by Cabré et al. (2007)).

In order to consistently include the information encoded inthe ISW effect in cosmological
parameter estimation studies, we have derived the joint likelihoodP(T,P, δg | p) for the cosmological
parametersp, given CMB and LSS data, within the linear regime of structure formation. We expect
small changes in the dark-energy related cosmological parameters when using this joint likelihood
rather than assuming that the likelihoods of CMB and LSS datafactorise.

The variance reduction achieved with the presented methodswill significantly improve the
detection of all kinds of secondary effects on the CMB, for which a spatial signal template can
be constructed from non-CMB data. Note, however, that we have used a Gaussian approximation
for the uncertainty in the signal template, which may not be optimal for effects on smaller scales
such as the RS effect, the kinetic SZ effect, or gravitational lensing. The extension to non-Gaussian
data models is beyond the scope of this work, but can be done using the framework introduced
in section 2.3, which was developed in Enßlin et al. (2009). The work presented here stresses the
importance of accurate measurements of the LSS distribution and of CMB polarization fluctuations
even for signals that are not directly contained in these twodata-sets. ThePlanck Surveyormission,
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as well as more future experiments like PolarBeaR10 or CMBPol11 will soon allow us to benefit
from polarization for the detection of secondary CMB signals in the way presented here.

10http://bolo.berkeley.edu/polarbear/index.html
11Baumann et al. (2008),http://cmbpol.uchicago.edu
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Chapter 4

The axis of evil - a polarization perspective

Note: This chapter, as well as appendix C, have been submitted for publication in MNRAS
(Frommert& Enßlin 2009b).

4.1 Introduction

A major assumption of modern day cosmology is the cosmological principle, which states that
the Universe is homogeneous and isotropic on large scales. The observed isotropy of the Cosmic
Microwave Background (CMB) is one of the strongest evidences supporting the cosmological
principle.

However, in recent years, there have been claims of anomalies detected in the CMB
temperature map with considerable significance, which seemto break statistical isotropy of
the temperature fluctuations and thus to question the cosmological principle. Several groups
(de Oliveira-Costa et al. 2004; Abramo et al. 2006; Land & Magueijo 2007; Samal et al. 2008;
Rakíc & Schwarz 2007) claim to have found a strong alignment between the preferred axes of the
quadrupole and the octopole, which is commonly referred to as theaxis of evil. Others (Bernui
2008; Eriksen et al. 2007; Hoftuft et al. 2009) have found a significant power asymmetry between
the northern and southern ecliptic hemisphere, and some weaker anomalies have been found for
the low multipoles beyond the octopole (Copi et al. 2004; Land & Magueijo 2005; Abramo et al.
2006; Pereira & Abramo 2009). However, the existence of suchan isotropy breaking in the
CMB temperature map is strongly under debate, and also negative results have been published
(Souradeep et al. 2006; Magueijo & Sorkin 2007). The claims of the existence of a preferred
direction in the CMB temperature map have led to a discussionabout whether this is simply
due to a chance fluctuation in the CMB temperature map, if it can be blamed on local structures
or on systematics in the measurement, or whether it is actually due to a preferred direction
intrinsic to our Universe (Copi et al. 2007; Dolag et al. 2005; Maturi et al. 2007; Samal et al.
2009; Groeneboom & Eriksen 2009; Morales & Sáez 2008; Vielva et al. 2007; Inoue & Silk 2007;
Gao 2009; Ackerman et al. 2007; Copi et al. 2006; Schwarz et al. 2004; Hansen et al. 2004, 2009;
Prunet et al. 2005; Jaffe et al. 2005, 2006; Bernui et al. 2006; Wiaux et al. 2006).

The polarization fluctuations of the CMB, just as its temperature fluctuations, have their origin
in the primordial gravitational potential. The polarization should thus exhibit similar peculiarities
as the temperature, provided they are due to some preferred direction intrinsic to the geometry of
the primordial Universe. Note that this is not generic to every model creating anomalies in the
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map explanation eq. multipole (l,b) σ

Pcorr ”T → P” (4.13) quadr (−117◦,60◦) -
oct (−124◦,66◦) -

Prec
uncorr ”P− Pcorr” (4.16) quadr (−79◦,36◦) 42◦

oct (−17◦,0◦) 48◦

Trec
corr ”P→ T” (4.9) quadr (−73◦,42◦) 42◦

oct (−17◦,−19◦) 37◦

Trec
uncorr ”T − Trec

corr” (4.12) quadr (−107◦,42◦) 33◦

oct (−112◦,54◦) 10◦

Table 4.1: Axes and their uncertainties for the four different maps in Galactic coordinates. The large
errors are due to the effects of the mask, residual foregrounds and the detector noise in the WMAP
polarization data.

temperature map. For example, if the peculiarities in the temperature maps are due to a secondary
effect on the CMB such as the integrated Sachs-Wolfe effect, we would not expect them to be present
in the polarization maps (Dvorkin et al. 2008). The search for anomalies in the CMB polarization
map is still in its initial stage, due to the high noise-levelin the available full-sky polarization map
from the Wilkinson Microwave Anisotropy Probe(WMAP). Souradeep et al. (2006) have found
some evidence for anisotropies in the WMAP polarization data using the method proposed in
Basak et al. (2006). However, they state that the anisotropies are likely due to observational artifacts
such as foreground residuals, and that further work is required in order to confirm a possible cosmic
origin.

Given that the polarization map is correlated with the temperature map, it is not a statistically
independent probe of the anomalies which have been found in the temperature map. If the observed
anomalies were due to a chance fluctuation in the temperaturemap, this chance fluctuation could
also be present in the polarization map, due to the correlation between the two. Therefore, we
split the WMAP polarization map into a part correlated with the temperature map,Pcorr, and a part
uncorrelated with the latter,Prec

uncorr. We obtain the part of the polarization map which is correlated
with the temperature map by simply translating the temperature map into a polarization map, using
their cross-correlation. The part of the polarization map which is uncorrelated with the temperature
map serves as a truly independent probe of the above-mentioned anomalies. Chance fluctuations
in the temperature maps do not affect the uncorrelated polarization map, so that a detection of the
anomalies in the latter would be a hint to an actual cosmological origin of them. Note, though,
that this does not have the power to exclude residual foregrounds or systematics as potential origins
for the anomalies. Similarly, we split the WMAP temperaturemap into a part correlated with the
polarization map,Trec

corr, and an uncorrelated map,Trec
uncorr. If the anomalies detected in the CMB

temperature map are of genuine cosmological origin, they should be present in the correlated and
the uncorrelated parts of both the temperature and polarization map. For convenience, the four
resulting maps are summarised and briefly described in Table4.1.

We focus on using the uncorrelated polarization map to probethe axis of evil. In order to define
the preferred axis of the multipoles, we use a statistic proposed by de Oliveira-Costa et al. (2004),
which is the axis around which the angular momentum dispersion is maximised for a given multipole
l. We note that we have to mask out about 25 per cent of the sky in the WMAP polarization data in
order to reduce Galactic foregrounds. Furthermore, the polarization data are highly contaminated
by detector noise and residual foregrounds even outside themask. We therefore perform a Wiener
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filtering of the polarization data before determining the preferred axes, in order to reduce the noise
contained in the maps. However, we still expect a large uncertainty in the axes, which we obtain
by running Monte Carlo (MC) simulations conditional on the data. The uncertainty in our axes
amounts toσ ≈ 45◦.

We find that, for all four of the maps, the preferred axes of thequadrupole all point in the same
direction, within our measurement precision. However, thepreferred axis of the octopole of the
uncorrelated polarization map does not align with the one ofthe quadrupole. The same holds for
the correlated temperature map. In order to assess our result, we ask the following question. We take
the axes measured in the temperature map as given, and assumethat the axes of the uncorrelated
polarization map are distributed isotropically and independently of each other. We then ask how
likely it is that at least one of these axes lies such that the axis of the temperature map lies inside
its 1σ region. This probability amounts to about 50 per cent for currently available polarization
data. This high probability is due to the large uncertainties we have in the axes of the uncorrelated
polarization map. The main contribution of this uncertainty comes from the high noise-level in the
polarization data rather than from the mask. We can therefore hope that thePlanckpolarization data
(Tauber 2000) will yield much stronger constraints on the axes than the WMAP data.

Note that our approach to probing the axis of evil in polarization is phenomenological, since
not all theoretical models of the primordial Universe exhibiting anomalies in the CMB temperature
map show the same behaviour in the uncorrelated polarization map. We outline a more thorough
analysis, taking into account the predictions of the specific models for the uncorrelated polarization
map, in the conclusions of this chapter.

This chapter is organised as follows. In sections 4.2 and 4.3, we explain in detail the splitting of
the WMAP temperature and polarization maps, respectively.Section 4.4 is devoted to determining
the preferred axes for the quadrupole and octopole for our four maps. We conclude in section 4.5.

4.2 Splitting of the temperature map

In this section, we split the WMAP temperature map into a partcorrelated with the WMAP
polarization map,Trec

corr, and a part which is not,Trec
uncorr. To this end, we translate the polarization

map into the correlated part of the temperature map, using the cross-correlation between the two.
However, as we have already mentioned in the introduction, the WMAP polarization data are highly
contaminated by detector noise and Galactic foregrounds. The observed polarization map we use is
the linear combination of the maps of the Ka, Q, and V frequency bands (corresponding to 33, 41,
and 61 GHz), which is used for determining the low-l polarization likelihood in the 5 year WMAP
likelihood code (Hinshaw et al. 2009). By using the linear combination of the maps, we combine
the information from different frequency bands rather than using only the information contained in
a particular band. Therefore, the linear combination is less contaminated by noise than the original
maps per frequency band. We use the P06 mask (Page et al. 2007)to mask out the Galactic plane in
the polarization map. The linear combination maps for the Stokes Q and U parameters are shown
in Fig. 4.1 in Galactic coordinates.

In order to reduce the noise level, we perform a Wiener filtering of the observed polarization map
before translating it into the part of the temperature map which is correlated with the polarization
data. Similarly, we will perform a Wiener filtering of the part of the polarization map which is
uncorrelated with the temperature map, as we will describe in detail later on. Our data model for
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Figure 4.1: Observed polarization maps (linear combination of Ka, Q, and V band maps). Stokes Q map
(top panel) and Stokes U map (bottom panel).
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the observed polarization mapP, which contains the Stokes Q and U maps shown in Fig. 4.1, is

P ≡
(

Q
U

)
≡W

(
Pcmb+ Pdet+ Pfg

)
. (4.1)

Here,Pcmb is the intrinsic CMB polarization,Pdet andPfg denote the detector noise and residual
foregrounds, respectively, and we have introduced the window W in order to describe the mask.

Let us define the signal covariance matrix of the CMB polarization given the cosmological
parametersp,

SP ≡ 〈PcmbPcmb
†〉P(Pcmb | p) , (4.2)

and the noise covariance matrices for the detector noise andthe residual foregrounds:

Ndet ≡ 〈PdetPdet
†〉P(Pdet) ,

Nfg ≡ 〈PfgPfg
†〉P(Pfg) . (4.3)

The signal power spectrum (and thusSP) has been computed usingCMBEASY (Doran 2005) for
the Maximum Likelihood cosmological model from Dunkley et al. (2009): {Ωbh2 = 0.0227,ΩΛ =
0.751,h = 0.724, τ = 0.089,ns = 0.961, σ8 = 0.787}.

In order to derive the Wiener filter forP, let us define the noise,

n ≡W
(
Pdet+ Pfg

)
, (4.4)

for which the noise covariance is then

NP ≡ 〈n n†〉P(n) =W(Ndet+ Nfg)W† , (4.5)

where we have assumed thatPdet andPfg are uncorrelated. We take the total noise covariance,NP,
for the observed polarization map from the WMAP code. We further identifyPcmb with the signal
s, the maskW with the responseR, andP with the datad. With these definitions, we have translated
our data model, eq. (4.1), into the one given in eq. (2.16). Ifwe assume the noisen and the signal
Pcmb to be Gaussian distributed1, we therefore obtain the posterior distribution for the signal

P(Pcmb |P, p) = G
(
Pcmb− Prec

cmb,Dp

)
, (4.6)

with
Prec

cmb ≡ (S−1
P +W†N−1

P W)−1W†N−1
P P , (4.7)

which is the Wiener reconstruction of the polarization map,and

Dp ≡ (S−1
P +W†N−1

P W)−1 , (4.8)

which denotes the Wiener variance. We show the Stokes Q and U maps of the Wiener filtered
polarization mapPrec

cmb in the top panels of Fig. 4.2 and Fig. 4.3, respectively. Notethat only the low
l modes survive the Wiener filtering, whereas the higherl modes are strongly suppressed due to the
high noise-level they contain.

1The assumption of Gaussianity holds well for the detector noisePdet and the signalPcmb. For the residual Galactic
foregrounds, this assumption is probably less accurate.
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Figure 4.2: Stokes Q part of the following polarization maps:Top panel: Wiener filtered polarization
map, Prec

cmb. Middle panel: Part of the polarization map correlated with the temperature map,Pcorr.
Bottom panel: Part of the polarization map uncorrelated with the temperature map,Prec

uncorr. The colour
scale is the same in all maps.



4.2 Splitting of the temperature map 91

Figure 4.3: Stokes U part of the following polarization maps:Top panel: Wiener filtered polarization
map, Prec

cmb. Middle panel: Part of the polarization map correlated with the temperature map,Pcorr.
Bottom panel: Part of the polarization map uncorrelated with the temperature map,Prec

uncorr. The colour
scale is the same in all maps.
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We now split the WMAP temperature map into a part correlated with the polarization map,
Trec

corr, and a part uncorrelated with the latter,Prec
uncorr. We use the Wiener filtered polarization map

Prec
cmb, which is of resolution NSIDE=8, and the internal linear combination (ILC) temperature

map (Gold et al. 2009), which we have smoothed with a Gaussianbeam of FWHM=18.3◦ and
downgraded to the same resolution. Among the different WMAP temperature maps, the ILC
is the one for which the alignment of the low multipoles is least contaminated by Galactic
foregrounds (Gruppuso & Burigana 2009). When working on large scales, we can safely neglect
the detector noise in the temperature data (Afshordi 2004).Furthermore, we decide to neglect
residual foregrounds in the temperature map.

We translate the Wiener filtered polarization map,Prec
cmb, into the correlated part of the

temperature map, using the cross-correlation between the two:

Trec
corr ≡ ST,P S−1

P Prec
cmb , (4.9)

where the signal covariance matrices given the cosmological parameters,p, are defined as

SP,T ≡ 〈PcmbT
†〉P(T,Pcmb | p) , (4.10)

ST ≡ 〈T T†〉P(T | p) . (4.11)

The uncorrelated temperature mapTrec
uncorr is then obtained by simply subtractingTrec

corr from T:

Trec
uncorr≡ T − Trec

corr . (4.12)

In Appendix C.1, we prove thatTrec
corr andTrec

uncorr are indeed uncorrelated, and that the definitions
of Trec

corr in eq. (4.9) and in eq. (3.73) are equivalent. In other words,the splitting of the CMB
temperature map performed here is the same splitting that wehave already used in chapter 3 in
order to reduce the noise in ISW measurements.

We plotT, Trec
corr, andTrec

uncorr in the top, middle, and bottom panel of Fig. 4.4, respectively. Let us
first concentrate onTrec

corr, and try to assess whether some of its structures could come from Galactic
foregrounds rather than being intrinsic CMB fluctuations. Note that this is just meant to be a quick
glance on what we can immediately pick out by eye. ComparingTrec

corr with the overview over the
Galactic foregrounds published in Hinshaw et al. (2007), Fig. 7, makes us suspect that the warm
region in the middle of the northern hemisphere might be associated with the North Galactic Spur.
A part of this region is already masked out, but it is well possible that the mask should be bigger
in order to better mask out this foreground. One might also think that the big red blob on the right
hand side ofTrec

corr, close to the Galactic plane, could be due to the Gum Nebula. However, plotting
the two maps on top of each other reveals that the Gum Nebula lies further to the East than our red
blob. Therefore we exclude that the blob comes from that particular foreground.

Let us now compare the three mapsT, Trec
corr, andTrec

uncorr. In the northern Galactic hemisphere, all
maps look quite similar, apart from the hot region around theNorth Galactic Spur, which is more
prominent inTrec

corr than in the other two maps, and which we have already commented on. However,
in the western part of the southern hemisphere, we obtain a strong deviation ofTrec

corr from the ILC
map. In fact, the features inTrec

corr have the opposite sign to the structures in the ILC map. This
enhances the amplitudes of the features in the western part of the southern hemisphere inTrec

uncorr

as compared to the ILC map. In particular, the so-calledcold spot, which has been found to have
non-Gaussian characteristics by Vielva et al. (2004), turns out to be even colder inTrec

uncorr than in the
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Figure 4.4:Top panel: ILC map, smoothed with a beam of 18.3◦ and downgraded to a resolution of
NSIDE=8. Middle panel: Part of the temperature map which is correlated with the polarization map,
Trec

corr. Bottom panel: Part of the temperature map which is uncorrelated with the polarization map,
Trec

uncorr. The colour scale is the same in all maps.
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Figure 4.5: Thecold spot, which has been found to have non-Gaussian characteristics, is markedin the
ILC map shown here by a black circle.

ILC map. The cold spot, which we mark in the ILC map in Fig. 4.5 by a black circle, has later been
confirmed to have non-Gaussian characteristics by many others (see, e.g. , Martı́nez-Gonźalez et al.
2006; Cruz et al. 2006; Naselsky et al. 2007). It would be interesting to redo the above-mentioned
analyses of the cold spot with the high-resolution version of Trec

uncorr, in order to see whether the
significance of the non-Gaussian features is even higher in that map. A thorough analysis of the
characteristics of the cold spot is beyond the scope of this work, though, and we leave this exciting
question for future work. Lastly, we notice that on the largescales we are looking at, we have
much stronger deviations of the temperature towards the cold end of the temperature spectrum than
towards the warm end, for all three of the maps.

4.3 Splitting of the polarization map

We now split the WMAP polarization map into a part correlatedwith the WMAP temperature map,
Pcorr, and a part uncorrelated with that,Prec

uncorr. As before, we obtain the correlated polarization map
by simply translating the temperature map into a polarization map:

Pcorr ≡ SP,TS−1
T T , (4.13)

The Stokes Q and U maps ofPcorr are shown in the middle panels of Fig. 4.2 and Fig. 4.3,
respectively.

In order to obtain the uncorrelated map, we would like to subtractPcorr from Pcmb:

Puncorr≡ Pcmb− Pcorr . (4.14)

However, we do not knowPcmb because we only observeP, which is highly contaminated by noise.
SubtractingPcorr from the Wiener filtered polarization map,Prec

cmb, does not result in uncorrelated
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maps. We therefore subtractWPcorr from the observed polarization map,P:

Praw
uncorr ≡ P−WPcorr

= WPuncorr+ n , (4.15)

where the noisen is the same as in section 4.2. We then compute the Wiener reconstruction of the
signalPuncorr, with the data beingPraw

uncorr:

Prec
uncorr= [(SP − SP,TS−1

T ST,P)−1 +W†N−1
P W]−1W†N−1

P Praw
uncorr. (4.16)

Here, we have used the signal covariance

〈PuncorrPuncorr
†〉P(Pcmb,T | p)

= 〈PcmbPcmb
†〉 − 〈PcmbT

†〉S−1
T ST,P

−SP,TS−1
T 〈T Pcmb

†〉 + SP,TS−1
T 〈TT†〉S−1

T ST,P

= SP − SP,TS−1
T ST,P . (4.17)

Prec
uncorr given in eq. (4.16) is uncorrelated withPcorr, as we prove in Appendix C.2. The posterior of

Puncorr is given by
P(Puncorr|T,P, p) = G (

Puncorr− Prec
uncorr,Duncorr

)
, (4.18)

with the Wiener variance

Duncorr≡ [(SP − SP,TS−1
T ST,P)−1 +W†N−1

P W]−1 . (4.19)

Note that here we use the index “uncorr” to denote the uncorrelated polarization map, whereas in
section 3.5 this index referred to the uncorrelated temperature map.

We show the Stokes Q and U maps of the uncorrelated polarization map, Prec
uncorr, in the

bottom panels of Fig. 4.2 and Fig. 4.3, respectively. Note that the symbols for the correlated and
uncorrelated parts of temperature and polarization maps are listed and briefly explained in Table
4.1.

4.4 The axis of evil

We now search for the axis of evil in the four mapsPcorr, Prec
uncorr, Trec

corr, andTrec
uncorr. Note thatPcorr and

Trec
corr have of course the same axes as the original temperature and polarization maps,T andPrec

cmb,
respectively. To define the preferred axis, we use a statistic proposed by de Oliveira-Costa et al.
(2004), which has been introduced in order to quantify the preferred direction that can be picked
out in the smoothed temperature map by eye. When looking at the smoothed ILC map in Fig. 4.4,
most of the hot and cold blobs seem to be lying on the same plane. The quadrupole and octopole
extracted from the ILC map show the same behaviour (see, e.g., de Oliveira-Costa et al. 2004),
and the planes are roughly the same for the two multipoles. Inorder to quantify this alignment,
de Oliveira-Costa et al. (2004) came up with the following statistic. The temperature maps are
expanded into spherical harmonics, which are eigenfunctions of the square and the z-component of
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the angular momentum operatorL:

T(n̂) =
∑

l

Tl(n̂) ≡
∑

l,m

aT
lmYlm(n̂) . (4.20)

Then, for every multipolel, one determines the z-axiŝn for which the expectation value of the
z-component ofL, n̂ · L, is maximised:

〈Tl | (n̂ · L)2 |Tl〉 =
∑

m

m2 | aT
lm(n̂) | 2 , (4.21)

Here,aT
lm(n̂) denotes the spherical harmonic coefficientaT

lm obtained in a coordinate system with the
z-axis pointing inn̂-direction. We determine the axisn̂ by simply rotating the z-axis into every pixel
centre and checking for the maximum, which is well feasible at our resolution. Neighbouring pixel
centres in our map differ by approximately 7◦, but we will soon see that the uncertainties in our axes
are so large that it is sufficient to check only the pixel centres as potential z-axes. Wehave done
the same exercise allowing the axes to point to all pixel centres of NSIDE=16 instead of NSIDE=8,
and our results are robust under this change.

As we have already mentioned, the mask, residual foregrounds and detector noise in the
polarization data will result in an uncertainty in the preferred axes. The posterior distribution of
the real CMB polarization map,Pcmb, given the one we observe,P, is given by eq. (4.6).Pcmb

fluctuates around our Wiener reconstruction,Prec
cmb, with the Wiener varianceDP.

In order to obtain the uncertainties in the axes ofTrec
corr andTrec

uncorr, we have run Monte Carlo
(MC) simulations, drawing realisations ofPcmb from its posterior distribution. From these, we
obtain realisations of

Tcorr ≡ ST,P S−1
P Pcmb ,

Tuncorr ≡ T − Tcorr , (4.22)

for which we then determine the preferred axes. The uncertainty in the axes ofPrec
uncorr is obtained

similarly, using the posterior distribution ofPuncorr given in eq. (4.18). Note thatT and thusPcorr

are assumed to have no contributions from residual foregrounds or detector noise, and thus no
uncertainty in the preferred axes.

For drawing realisations from the probability distribution in eq. (4.6), we have computed the
Wiener varianceDP given in eq. (4.8). We have then computed the Cholesky factorisationL of DP,
which is a particular form of the square-root of a positive definite matrix:

DP = LL†. (4.23)

In order to obtain our realisation,Pcmb, we applyL to a mapnw of white noise, i.e. a map where the
temperature at every pixel is independently drawn from a Gaussian distribution with unit variance,
and add the mean valuePrec

cmb: Pcmb ≡ L nw + Prec
cmb. This results in a map which is drawn from the

distribution in eq. (4.6), as one can easily see:

〈(Pcmb− Prec
cmb)(Pcmb− Prec

cmb)
†〉P(nw)

= L 〈nwn†w〉P(nw) L† = LL† = DP. (4.24)
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Figure 4.6: Wiener realisation ofTcorr

An example of a Wiener realisation ofTcorr in shown in Fig. 4.6.2

We plot the axes and their uncertainties for the different maps in Figs 4.7 – 4.10. Both ends of
every axis are marked by a cross in the maps, and the colour coding counts how many times the
preferred axis came to lie on the respective pixels in 5000 MCsamples.

All axes and their standard deviationsσ, which we obtained from the MC simulations, are
summarised in Table 4.1. ForPcorr, and thus the ILC map, we reproduce the results from
de Oliveira-Costa et al. (2004) within our measurement precision: the axes of the quadrupole and
the octopole ofPcorr point in the same direction, which is roughly (l,b) ≈ (−120◦, 63◦), where
l andb denote Galactic longitude and latitude, respectively (de Oliveira-Costa et al. (2004) found
(l,b) ≈ (−110◦,60◦)). For Trec

uncorr, again both axes point in the same direction as the axes ofPcorr

within our measurement precision.
For Prec

uncorr, the preferred axis of the quadrupole has an angular distance to the average axis of
the ILC map of 37◦. That means that the latter lies inside its 1σ region. The same holds forTrec

corr

(and thusPrec
cmb), for which the axis of the quadrupole has an angular distance to the average axis of

the ILC map of 34◦. The axes of the octopole ofPrec
uncorr andTrec

corr, though, do not align with the axis
of evil. What can we learn from this result? The significance of the alignment between the axes of
the quadrupole and octopole in the temperature map has been assessed extensively in earlier works.
Here, we only look at the additional information we obtain from the axes ofPrec

uncorr. To this end, let
us take the preferred axis in the temperature mapT as given, and assume that the axes ofPrec

uncorr are
distributed isotropically over the sky and independently from each other. In Appendix C.3, we work
out the probability for at least one of the axes ofPrec

uncorr being such that the axis of the temperature
map is included in the 1σ region around it. This probability amounts to about 50 per cent, due to
the large 1σ regions we have.

In order to assess whether the mask or the noise in the WMAP polarization maps is the main

2We had to regularise the Wiener variances, eqs (4.8) and (4.19), by adding Gaussian noise in order to make them positive
definite. This is required by the Cholesky factorisation. However, since the noise was added mostly on small scales, the
quadrupole and octopole remained completely unaffected by this. In fact, our results remained unchanged under varying the
variance of the added Gaussian noise over 5 orders of magnitude.
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Figure 4.7: Preferred axis of the quadrupole (top panel) and the octopole (bottom panel) forPcorr and
thus for the ILC map. We reproduce the results of de Oliveira-Costa et al.(2004) within our measurement
precision. The axes of quadrupole and octopole point in the same direction, which has been named the
axis of evil.
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Figure 4.8: Preferred axis of the quadrupole (top panel) and the octopole (bottom panel) forPrec
uncorr. The

colour coding counts the number of MC samples whose axis came to lie on the respective pixel. The axis
of the quadrupole aligns with the axis of evil within our measurement precision, whereas the axis of the
octopole does not.



100 The axis of evil - a polarization perspective

Figure 4.9: Preferred axis of the quadrupole (top panel) and the octopole (bottom panel) forTrec
corr and

thus forPrec
cmb. The axis of the quadrupole aligns with the axis of evil within our measurementprecision,

whereas the axis of the octopole does not.
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Figure 4.10: Preferred axis of the quadrupole (top panel) and the octopole (bottom panel) forTrec
uncorr.

The axes of the quadrupole and the octopole both align with the axis of evil within our measurement
precision.
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source of uncertainty in the axes, we have determined the uncertainty with the amplitude of the
noise covariance matrix rescaled to 10 per cent of the original one. This yields an uncertainty of
about 20◦ in the axes. We have done the same exercise for the noise amplitude downscaled to 1 per
cent of the original one, which results in an uncertainty of 7◦ − 10◦ in the axes. This means that
the noise is actually the main source of uncertainty in our analysis rather than the mask. Soon, the
Planck Surveyormission (Tauber 2000) will provide us with polarization measurements that have
a noise-level which is significantly below the one in the WMAPdata. The main problem will then
be the contamination of the polarization data by Galactic foregrounds. In the WMAP polarization
data, the foregrounds contribute about 20 per cent to the diagonal of the noise covariance matrixNP

in pixel space. WithPlanck, we will be able to determine the foregrounds better than with WMAP,
due to the broader frequency range covered byPlanck. If we assume that the covariance due to
residual foregrounds forPlanckwill be between 5 and 50 per cent of the one for WMAP, we will
get the uncertainty on the axes down to about 10◦ and 20◦, respectively. With this, we will have a
powerful test to probe the axis of evil in polarization.

4.5 Conclusions

In the last few years, a preferred axis has been found in the CMB temperature map, posing a
challenge to the cosmological principle. This so-calledaxis of evildenotes the unusual alignment
of the preferred axes of the quadrupole and the octopole in the temperature map.

We have split the CMB temperature and polarization maps fromWMAP into a part correlated
with the respective other map, and an uncorrelated part. If the axis of evil were due to some preferred
direction intrinsic to the geometry of the primordial Universe, we would expect its signature to be
present in all four of these maps, although this is not true for all theoretical models creating an axis
in the temperature map. In particular, the part of the polarization map which is uncorrelated with
the temperature map serves as a statistically independent probe of the axis of evil. In order to reduce
the noise contained in the polarization maps, we have Wienerfiltered the maps before computing
the axes. We have then determined the preferred axes of the quadrupole and the octopole for the
four maps. In order to assess the uncertainty in the axes coming from the mask, detector noise
and residual foregrounds in the polarization maps, we have run MC simulations conditional on the
observational data.

For the part of the polarization map which is correlated withthe temperature map,Pcorr, we
find that the axes of quadrupole and octopole point in the samedirection, confirming earlier results
by de Oliveira-Costa et al. (2004). The part of the temperature map which is uncorrelated with the
polarization map,Trec

uncorr, exhibits the same alignment of the axes within our measurement precision.
For the part of the polarization map which is uncorrelated with the temperature map,Prec

uncorr, we find
that only the axis of the quadrupole aligns with the axis of evil, whereas the axis of the octopole does
not. The same holds for the correlated part of the temperature map,Trec

corr. We have computed the
probability that a rough alignment with the axis of evil, as we find it for the axis of the quadrupole
of Prec

uncorr, happens by chance if the axes are distributed isotropically. This probability amounts to 50
per cent for currently available polarization data, due to the large uncertainties in the axes. We are
thus looking forward to redoing this analysis with polarization maps fromPlanck, which will yield
much more significant results. Of course, similar analyses can be carried out for all other anomalies
that have been found in the CMB temperature maps. Note that, instead of working in pixel space as
we have done, one could implement the analysis in spherical harmonics space, which would help to
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separate the E modes we are working with from contamination by B modes.
The approach we have chosen here is a phenomenological approach, since in principle one

should take into account that different models causing anomalies in the temperature map predict
different signatures in the polarization map. Thus, for a more thorough analysis, one would need to
consider particular models of the primordial Universe creating anomalies in the temperature maps,
and compute the statistical properties of the uncorrelatedpolarization map for these. This can be
done by modifying a Boltzmann code such asCMBEASY or by simulations as in Dvorkin et al.
(2008). One can then try to find these predicted signatures inthe uncorrelated polarization map via
Bayesian model selection. Such an analysis would truly go beyond the usual a posteriori analysis of
finding anomalies in the temperature map, since we would use an actual model to make predictions
for the uncorrelated polarization map and then compare these predictions with observations. We
leave this promising analysis for future work.
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Chapter 5

Efficient cosmological parameter sampling
using sparse grids

Note: This chapter, as well as appendix D.1, will be submitted for publication in MNRAS. Section
5.2 as well as parts of the other sections have been written byDirk Pflüger.

5.1 Introduction

The main two bottlenecks in cosmological parameter estimation using the power spectrum of the
cosmic microwave background (CMB) are the calculation of the theoreticalCl-spectrum using
Boltzmann codes such asCMBFAST (Seljak & Zaldarriaga 1996),CAMB (Lewis et al. 2000), or
CMBEASY (Doran 2005) and the evaluation of the likelihood using the official WMAP likelihood
code1. There exist several methods to speed up the calculation of the power spectrum (Jimenez et al.
2004; Kaplinghat et al. 2002; Habib et al. 2007) or the WMAP likelihood functionL (Sandvik et al.
2004; Fendt & Wandelt 2007; Auld et al. 2008). These methods are based on different techniques,
such as analytic approximations, polynomial fits, and neural networks, which are all trained using a
set of training points, for which the real power spectra and likelihood values have to be calculated.
Once the codes are trained for a particular cosmological model, they can be used to evaluate the
power spectrum or the likelihood function in every subsequent parameter estimation run, which
significantly speeds up the Markov Chain Monte Carlo (MCMC) simulations used for parameter
estimation. Due to the ever-growing amount of available data, a fast evaluation of the likelihood
is becoming of increasing importance, especially when combining CMB data with data-sets whose
likelihood is less expensive to evaluate. ThePlanck Surveyormission (Tauber 2000) will be the
upcoming challenge in this respect.

We approximate the WMAP log-likelihood function lnL in the spirit of CMBfit (Sandvik et al.
2004) and Pico (Fendt & Wandelt 2007), which work with polynomial fits, and CosmoNet
(Auld et al. 2008), an approach based on neural networks. In contrast to the fitting functions
constructed therein, we introduce the technique ofsparse gridsin this context to construct an
interpolation of lnL, returning the exact function values at a set of sampling points.

Most straightforward interpolation techniques are based on sets of sampling points in each
dimension, typically based on (uniform) grid structures—consider, e. g., piecewised-linear or

1http://lambda.gsfc.nasa.gov/product/map/dr3/likelihood get.cfm
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piecewised-polynomial interpolation schemes. Unfortunately, grid-based methods are only feasible
in low-dimensional settings, as they suffer from the so-calledcurse of dimensionality: Spending
Ñ function evaluations or grid points in one dimension leads to Ñd grid points ind dimensions.
The exponential dependency on the dimensionality imposes severe restrictions on the number of
dimensions that can be handled. Sparse grids, as introducedby Zenger (1991), allow to overcome
the curse of dimensionality to some extent, at least for sufficiently smooth functions as it is the case
in our setting. Sparse grid interpolation is based on an a priori selection of grid points, requiring
significantly fewer grid points than conventional interpolation on a full grid, while preserving the
asymptotic error decay of a full-grid interpolation with increasing grid resolution up to a logarithmic
factor. This permits us to compute higher-dimensional interpolations and approximations than
before. A very good overview about sparse grids, discussinggeneral properties, can be found in
Bungartz & Griebel (2004).

The sparse grid technique is a completely general approach,not tailored to a single application,
and can therefore be used to interpolate any function which is sufficiently smooth. Additionally,
as it allows for arbitrary adaptive refinement schemes, the general, fast convergence rates can be
improved even further, by adapting to the special characteristics of the underlying target function.

We obtain excellent results, which are competitive to fitting procedures using polynomials
(Fendt & Wandelt 2007; Sandvik et al. 2004) or neural networks (Auld et al. 2008) in speed and
accuracy. Furthermore, we believe that the interpolation based on sparse grids has several
advantages over these approaches. First of all, we can use the results of sparse grid approximation
quality (Bungartz & Griebel 2004), guaranteeing the convergence of the interpolation towards the
original function with increasing number of grid points.

Second, once we have chosen the volume in which we want to interpolate the function in
question, the sparse grid structure itself determines a priori the location of potential sampling points
(which can additionally be refined in an adaptive manner a posteriori). This makes it unnecessary to
assemble a set of training points beforehand (by running MCMCs as it is done by Fendt & Wandelt
(2007), e.g.). The generation of the sampling points and theconstruction of the interpolant can be
strongly parallelised, which makes the sparse grid approach an ideal candidate for computational
grid projects such as the AstroGrid2. The time needed to construct the interpolant is determined
almost only by the time it takes to evaluate the likelihood atthe sampling points. We do not need
additional training time as in the case of Auld et al. (2008).

Furthermore, polynomial fits to a set of training points run the risk of creating unphysical
wiggles if the polynomial degree of the fitting function is chosen too high with respect to the amount
of training points available. Using the sparse grids approach, piecewise polynomials of low degree
are sufficient, as we are not fitting certain evaluation points, but rather interpolating a function.
Increasing the accuracy is therefore equivalent to evaluating at more sampling points.

Sparse grids are based on a hierarchical formulation of the underlying basis functions, which
can be used to obtain a generic estimate of the current approximation error while evaluating more
and more sampling points. This can be directly used as a criterion for adaptive refinement as well
as to stop further refinement.

Another advantage is that the projection of sparse grid interpolations can be done in a very fast
and simple way. This would make sparse grids in principle a good candidate for sampling posteriors
and projecting them directly, without having to use a MarkovChain approach in order to marginalise
the posterior. Given that MCMCs need to determine the pointssequentially and can therefore not

2http://www.d-grid.de/index.php?id=45&L=1
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be parallelised (apart from running several chains at the same time), it would be highly desirable to
find alternatives that can be run in parallel.

We have attempted to use sparse grids in order to substitute the MCMCs in cosmological
parameter estimations. In order to directly project the posterior distribution we would need to
sample the posterior rather than its logarithm. Since, in general, the logarithm of a probability
density function is considerably more well-behaved than the function itself, Sandvik et al. (2004),
Fendt & Wandelt (2007), and Auld et al. (2008) all operate in log-space to speed up the generation
of MCMCs instead. As the convergent phase of the interpolation with sparse grids sets in rather
late when interpolating Gaussian functions (and thus the WMAP likelihood, which is close to a
d-dimensional Gaussian), we restricted ourselves to the log-likelihood as well.

This chapter is organised as follows. First, we describe thebasics of sparse grids in section
5.2, introducing a modification of the standard sparse grid approach, thus adapting the latter to
our problem. In section 5.3, we then present the interpolation of the WMAP likelihood for two
different sets of parameters in both six and seven dimensions. Weshow that the results obtained
for regular (non-adaptive) sparse grids are already competitive to other approaches and demonstrate
how adaptive refinement can further improve the results. Section 5.4 finally concludes this chapter.

5.2 Basics of sparse grids

Standard grid-based approaches of interpolating a function f exhibit the curse of dimensionality,
a term going back to Bellman (1961): Any straightforward discretisation scheme which employs
Ñ grid points (or, equivalently, degrees of freedom) in one dimension leads tõNd grid points ind
dimensions. For reasonablẽN, the exponential dependency on the number of dimensions typically
does not allow to handle more than four-dimensional problems.

Sparse grids are able to overcome this hurdle to some extent,requiring significantly fewer grid
points than a full grid, while preserving the asymptotic error decay of full grid interpolation with
increasing grid resolution up to a logarithmic factor. Sparse grids have originally been developed
for the solution of partial differential equations (Zenger 1991) and have meanwhile been applied
to various problems, see Bungartz & Griebel (2004) and the references cited therein. Recent
work on sparse grids includes stochastic and non-stochastic partial differential equations in various
settings (von Petersdorff & Schwab 2006; Ganapathysubramanian & Zabaras 2007; Widmeret al.
2008), as well as applications in economics (Reisinger & Wittum 2007; Holtz 2008), regression
(Garcke & Hegland 2009; Garcke 2006), classification (Bungartz et al. 2008; Garcke et al. 2001),
fuzzy modelling (Klimke et al. 2006), and more. Note that (non-adaptive) sparse grids are closely
related to the technique of hyperbolic crosses (Temlyakov 1993).

In this section, we provide a brief overview of sparse grids for interpolation. For a detailed
derivation of the characteristics of sparse grids, we referto Bungartz & Griebel (2004). We start
by formulating the interpolation on a conventional full grid using hierarchical basis functions, from
which we then derive the interpolation on a sparse grid by omitting the basis functions contributing
least to the interpolation.

5.2.1 General idea of interpolating a function on a full grid

We consider the piecewised-linear interpolation of a functionf : Ω → R which is given only
algorithmically, i.e., we have no closed form off but we can only evaluatef at arbitrary points
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Figure 5.1: One-dimensional piecewise linear interpolationu(x), dashed, of a functionf (x), solid, (left)
by a linear combination of hat basis functions (right).

using a numerical code. As we want to discretise our domain ofinterestΩ, we restrictΩ to a
compact sub-volume ofRd; here,Ω ≡ [0,1]d, thed-dimensional unit-hypercube. (For the standard
approach of sparse grids techniques, we only consider functions that are zero on the boundary of
the volume on which they are defined. This assumption will be dropped when we come to the
interpolation of the log-likelihood of WMAP.)

To construct an interpolantu of f , we discretiseΩ via a regular grid, obtaining equidistant grid
points xi, with mesh widthhn = 2−n for some discretisation or refinement leveln, at which we
evaluate and interpolatef . If we define a suitable set of piecewised-linear basis functionsϕi(x), we
can obtainu(x) from the space of continuous, piecewised-linear functionsVn by combining them
adequately as a weighted sum of basis functions, i.e.

f (x) ≈ u(x) ≡
∑

i

αiϕi(x)

with coefficientsαi. Fig. 5.1 sketches the idea for a one-dimensional example, using the standard
nodal basis.

The curse of dimensionality, encountered when using a full grid, can be circumvented by a
suitable choice of basis functions: We need a basis where therelevant information is represented by
as few basis functions as possible. Most basis functions canthen be omitted as they contribute only
little to the interpolation off , reducing a full grid to a sparse grid and allowing us to handle higher-
dimensional functions than before. A suitable basis can be found by a hierarchical construction as
introduced in the following section.

5.2.2 Hierarchical basis functions in one dimension

Sparse grids depend on a hierarchical decomposition of the underlying approximation spaces.
Therefore, and first considering only the one-dimensional case which we will later extend tod
dimensions, we use the standard hat function,

ϕ(x) = max(1− |x|,0) , (5.1)
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Figure 5.2: One-dimensional basis functionsϕl,i and corresponding grid pointsxl,i up to leveln = 3 in
the hierarchical basis (left) and the common nodal point basis (right).

from which we derive one-dimensional hat basis functions bydilatation and translation,

ϕl,i(x) ≡ ϕ(2l x− i) , (5.2)

which depend on a levell and an indexi, 0 < i < 2l. The basis functions have local support and are
centred at grid pointsxl,i = 2−l i, at which we will interpolatef . Introducing the hierarchical index
sets

I l ≡
{
i ∈ N : 1 ≤ i ≤ 2l − 1, i odd

}
, (5.3)

we obtain a set of hierarchical subspacesWl,

Wl ≡ span
{
ϕl,i(x) : i ∈ I l

}
. (5.4)

We can then formulate the space of piecewise linear functions Vn on a full grid with mesh widthhn

for a given leveln as a direct sum ofWl,

Vn =
⊕

l≤n

Wl , (5.5)

see Fig. 5.2. Note that all basis functions of the same subspaceWl have the same size, shape, and
compact support, that their supports are non-overlapping,and that together they cover the whole
domain.

The interpolationu(x) ∈ Vn can then be written as a finite sum,

u(x) =
∑

l≤n,i∈I l

αl,iϕl,i(x) , (5.6)

where the so-called (hierarchical) surplussesαl,i are uniquely indexed by the same level and index
as the corresponding basis functions.
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5.2.3 Higher-dimensional interpolation on a full grid

The basis functions are extended to thed-dimensional case via a tensor product approach,

ϕl,i(x) ≡
d∏

j=1

ϕl j ,i j (x j) , (5.7)

with the d-dimensional multi-indicesl and i indicating level and index for each dimension. The
other one-dimensional notations can be transferred to the arbitrary-dimensional case as well,
consider, e.g. , the index setI l,

I l ≡
{

i : 1 ≤ i j ≤ 2l j − 1, i j odd,1 ≤ j ≤ d
}
, (5.8)

the subspacesWl, the spaceVn of piecewised-linear functions with mesh widthhn in each
dimension,

Vn =
⊕

|l|∞≤n

Wl , (5.9)

leading to a full grid with (2n − 1)d grid points, and to the interpolantu(x) ∈ Vn,

u(x) =
∑

|l|∞≤n,i∈I l

αl,iϕl,i(x) . (5.10)

Here and later on, we need thel1-norm |l|1 =
∑d

j=1 l j and the maximum-norm|l|∞ = max1≤ j≤d l j

of multi-indices l. Fig. 5.3 shows some 2-dimensional examples for the basis functions of the
subspacesWl, which correspond to anisotropic sub-grids with mesh-width hl j in dimension j
characterised by the multi-indexl.

5.2.4 Sparse grids

Starting from the hierarchical representation ofVn by the subspacesWl, we can now select those
subspaces that contribute most to the overall solution of the full-grid interpolation in eq. (5.10).
If the function we want to approximate meets certain smoothness conditions—the mixed second
derivatives have to be bounded—this can be done a priori as we can derive bounds for the
contributions of the different subspaces. We then obtain the sparse grid space

V(1)
n ≡

⊕

|l|1≤n+d−1

Wl , (5.11)

leaving out those subspaces from the full grid spaceVn with many basis functions of small support.
(The exact choice of subspaces depends on the norm in which wemeasure the error; the result above
is optimal for both theL2 norm and the maximum norm.) Note that in the one-dimensionalcase,
the sparse grid space equals the full grid space.

Fig. 5.4 shows the selection of subspaces and the resulting sparse grid forn = 3, i.e. the
sparse grid spaceV(1)

3 . Compared to the full grid for the same discretisation leveln (the full
grid spaceV3 would also comprise the grey subspaces in Fig. 5.4), this reduces the number of
grid points (and therefore function evaluations and unknowns) significantly fromO(h−d

n ) = O(2nd)
to O(h−1

n (logh−1
n )d−1) – whereas the asymptotic accuracy deteriorates only slightly from O(h2

n) to
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Figure 5.3: Basis functions of the subspacesWl for |l|∞ ≤ 3 in two dimensions.

O(h2
n(logh−1

n )d−1), see Bungartz & Griebel (2004) for detailed derivations. Fig. 5.5 shows sparse
grids in two and three dimensions for leveln = 6 each.

Functions which do not meet the smoothness requirements or which show significantly differing
characteristics (comprising steep regions as well as flat ones, e.g.) can be tackled as well, if adaptive
refinement is used. The sparse grid structure defined in eq. (5.11) defines an a priori selection of grid
points which is optimal if certain smoothness conditions are met and no further knowledge about the
function in question is known or used. An adaptive (a posteriori) refinement can additionally select
which grid points in a sparse grid structure should be refinednext, due to local error estimation, e.g.
To refine a grid point, often all 2d children in the hierarchical structure are added to the current grid,
if they haven’t been created yet. Note that it usually has to be ensured that all missing parents have
to be created, as algorithms working on sparse grids depend on traversals of the hierarchical tree of
basis functions. If additional knowledge about the problemat hand is available, it can be used in the
criterion for adaptive refinement, allowing to better adaptto problem specific characteristics.

5.2.5 Extension to functions that are non-zero on the boundary

Up unto now we have only considered functions that are zero onthe domain’s boundaryδΩ. To
allow for non-zero values on the boundary, usually additional grid points located directly onδΩ
are introduced. For example, the one-dimensional basis on level one, containing onlyϕ1,1(x), is
extended by two basis functions with level 0 and indices 0 and1 restricted toΩ, namelyϕ0,0(x) and
ϕ0,1(x). They are then extended to thed-dimensional case as before, with the exception that the new
basis now contains basis functions on the modified level one with overlapping support.

Apparently, this approach results in many more grid points (and therefore expensive function
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V(1)
3

Figure 5.4: The two-dimensional subspacesWl up to l = 3 (h3 = 1/8) in each dimension. The optimal
selection of subspaces (black) and the corresponding sparse grid onlevel n = 3 for the sparse grid space
V(1)

3 . The corresponding full grid of level 3 corresponds to the direct sumof all subspaces that are shown.

Figure 5.5: Sparse grids in two and three dimensions for leveln = 6.
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Figure 5.6: Modified one-dimensional basis functionsϕl,i : constant on level 1 and “folded up” if adjacent
to the boundary on all other levels.

evaluations) than before. This shows quite nicely that it isnot sufficient to just consider the
asymptotic behaviour: asymptotically, nothing changes, but for very high dimensionalities we are
not able to even start to interpolate any more. Ind dimensions, the basis for the subspaceW1 for
example contains already 3d basis functions, rather than a single one. Especially in settings where
a very high accuracy close to the boundary is not required—which holds in our case—(or where an
adaptive selection of grid points is used in any case), it canbe advantageous to omit the grid points
on the boundary, and instead modify the basis functions to extrapolate towards the boundary of the
domain.

We modify the one-dimensional basis functions as follows: On level 1, we have only one degree
of freedom; the best guess towards the boundary is to assume the same value, leading to a constant
basis function. On all other levels, we extrapolate linearly towards the boundary, “folding up” the
uttermost basis functions. All other basis functions remain unchanged, yielding

ϕl,i(x) ≡



1 if l = 1∧ i = 1 ,
2− 2l · x if x ∈

[
0, 1

2l−1

]

0 else

 if l > 1∧ i = 1 ,


2l · x+ 1− i if x ∈
[
1− 1

2l−1 ,1
]

0 else

 if l > 1∧ i = 2l − 1 ,

ϕ
(
x · 2l − i

)
else

(5.12)

in one dimension, see Fig. 5.6. Thed-dimensional basis functions are obtained as before via a tensor
product of the one-dimensional ones.
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5.3 Interpolation of the WMAP likelihood surface

We now construct an interpolation of the logarithm of the WMAP likelihood, lnL, using sparse
grids. In order to adapt the problem to our interpolation approach, we first use a 6-dimensional
set of so-called normal parameters introduced in Sandvik etal. (2004), which are a transformation
of the usual cosmological parameters such that the major axes of the Gaussian align with the
coordinate axes. The logarithm of the likelihood is then well-approximated by a sum of one-
dimensional parabolas in the different parameters, a fact that we will take advantage of by using
the modified basis-functions described in eq. (5.12). For this set of normal parameters, we obtain
an accurate interpolation already for a comparably low refinement level. This is shown for the 6-
dimensional model as well as for a 7-dimensional extension,using the running of the spectral index
as an additional parameter.

However, as a subsequent step we demonstrate that the parameter transformation is not
essential for obtaining a good interpolation. By investingmore grid points, we obtain an accurate
interpolation as well when using directly the 6- and 7-dimensional standard parameter set, which
is usually used in cosmological parameter sampling. This approach shows the advantage of sparse
grids of being rather generic. Furthermore, we are not restricted to the parameter range in which the
transformation to normal parameters can be inverted.

5.3.1 Choice of basis functions

We use the modified basis functions as introduced in eq. (5.12), which are well-suited for our
problem. First, and as already indicated in section 5.2, theregion close to the domain’s boundary is
less important in our setting than the centre ofΩ: We will centre the domain of interest roughly at
the maximum of the log-likelihood function lnL and determine the boundary such that it includes
the region with (lnLmax− lnL) & 25, which we will refer to as the 25 log-likelihood region (see
section 5.3.3). Towards the boundaries of our intervals, the likelihood is then effectively zero and
thus no great accuracy is needed in these regions. Therefore, we do not want to spend too much
work onδΩ. Using the modified boundary functions, we extrapolate (d-linearly) towardsδΩ, see
the discussion of the modified basis functions above.

Second, the modifications are especially well-suited if thefunction to interpolate can be
separated into a sum of one-dimensional functions3. Assume that the likelihoodL was a perfect
product of one-dimensional Gaussians,

L(x) = c · e−a1(x1−µ1)2−...−ad(xd−µd)2
, (5.13)

centred at (µ1, . . . , µd)T . Then the interpolation of the log-likelihood lnL reduces tod one-
dimensional problems,

lnL(x) = ln c+
d∑

k=1

fk(xk) , fk(xk) = −ak(xk − µk)
2 , (5.14)

separating into a constant term plus a sum of functions that are constant in all directions but one.
Keeping in mind that the one-dimensional basis function on level 1,ϕ1,1(x), is constant (cf. Fig.

5.6), this simplifies the interpolation task. Thed-dimensional basis function on level1, ϕ1,1(x),

3In this case, the analysis of variance (ANOVA) would exhibit no terms coupling between the parameters.
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serves as an offset. (Only if (µ1, . . . , µd)T is the centre ofΩ, α1,1ϕ1,1(x) exactly expresses lnc.)
Additionally, it is sufficient to spend only grid points on the main axes of the sparse grid (level
1 in all dimensions but one) to approximate the remaining one-dimensional contributionsfk(xk)
arbitrarily well:

u(x) = α1,1ϕ1,1(x)︸      ︷︷      ︸
ln c

+

d∑

k=1


∑

lk,ik

αl,i ϕlk,ik(xk)
∏

1≤ j≤d, j,k

ϕ1,1(x j)


︸                                      ︷︷                                      ︸

fk(xk)

. (5.15)

Of course,L is not a perfect product of one-dimensional Gaussians; gridpoints that do not lie on
the sparse grid’s main axes account for the additional mixed(correlated) terms of lnL. Given that
in sparse grids a large amount of points lie on the main axes, this mechanism works very well—the
better, the less correlation between the different parameters exists.

In order to take as much advantage as possible of the effects described above, we introduce a
parameter transformation in the following section, for which the new parameters are less correlated.
However, the fact that the interpolation using the standardparameters—which have much stronger
correlations—works as well, spending just more grid points,will show that the sparse grid approach
does not depend on this argumentation: Sparse grids can makeuse of such properties but do not rely
on them.

5.3.2 Normal parameters

The set of cosmological parameters describing theΛCDM model consists of the Hubble constant,
h ≡ H0

100 km/(sMpc), the density parameter of vacuum energy,ΩΛ, the ones of baryons,Ωb, and of
matter (baryonic+ dark),Ωm, the optical depth to the last scattering surface,τ, the scalar spectral
index of the primordial power spectrum,ns, and the scalar initial amplitude,As. We will refer to
these parameters as cosmological parameters. For a more detailed description of the cosmological
parameters, we refer to Coles & Lucchin (2002). In the literature, there have been several attempts
to transforming these parameters into a set of parameters that mirror the various physical effects
on the CMB power spectrum (Hu et al. 2001; Kosowsky et al. 2002). In Chu et al. (2003), a set
of parameters is provided in which the likelihood-surface of the CMB is well approximated by
a multivariate Gaussian with the major axes aligned with thecoordinate axes. Here, we use the
parameters given by Sandvik et al. (2004), where the parameter set of Chu et al. (2003) is combined
with the other parameter sets mentioned, in order to bring the major axes of the likelihood surface
even closer to the coordinate axes. The new parameters are then {Θs,h2,h3, t,A∗,Z}, which we
refer to as normal parameters. When working with the latter,the logarithm of the likelihood is
well-approximated by a sum of one-dimensional parabolas inthe different parameters. The basis
functions introduced above are therefore ideally adapted to this problem. In the following, we repeat
the definitions of the normal parameters for convenience.

The first parameter of our set is the angle subtended by the acoustic scale

Θs ≡
rs(als)
DA(als)

180
π
, (5.16)

where the index ls denotes the time of last scattering,DA(als) stands for the comoving angular
diameter distance to the surface of last scattering (which we will come back to later), andrs(als) is
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the comoving sound horizon at last scattering,

rs(als) ≡
∫ tls

0

cs(t)
a(t)

dt . (5.17)

Here, cs(t) denotes the sound speed for the baryon-photon-fluid at timet, which is well
approximated by

cs(t)
2 ≈ 1

3
(1+ 3

ρb

ργ
)−1 , (5.18)

with the indexb standing for baryons and the indexγ for photons. Using the Friedmann equations
and ignoring the vacuum energy at last scattering,rs(als) can be shown to be (Sandvik et al. 2004;
Kosowsky et al. 2002)

rs(als) =
2
√

3

3H0
√
Ωm

√
als

Rls
ln

√
1+ Rls +

√
Rls + r lsRls

1+
√

r lsRls
, (5.19)

where

Rls ≡
3ρb(als)
4ργ(als)

= 30wb

( zls

103

)−1
, (5.20)

r ls ≡
ρr(als)
ρm(A∗)

= 0.042w−1
m

( zls

103

)
. (5.21)

The indexr stands for radiation, i.e.,ρr consists of the sum of photon and neutrino energy densities,
and the indexm is used for matter (baryons+ dark matter). We definewm ≡ Ωmh2 in the same way
aswb ≡ Ωbh2. The redshift at last scattering,zls, is well approximated by (Hu et al. 2001)

zls = 1048 (1+ 0.00124w−0.738
b )(1+ g1w

g2
m ) , (5.22)

g1 ≡ 0.0783w−0.238
b (1+ 39.5w0.763

b )−1 , (5.23)

g2 ≡ 0.560 (1+ 21.1w1.81
b )−1 . (5.24)

As already mentioned,DA(als) in eq. (5.16) denotes the comoving angular diameter distance to the
surface of last scattering and is given by

DA(als) =
c

H0

∫ 1

als

1√
ΩΛã4 + Ωm ã+ Ωr

dã . (5.25)

The second and third parameters in our set are the ratios of the second and the third peak to the
first peak in theCT

l spectrum of the CMB (Hu et al. 2001), where the tilt-dependence is factored out
(Page et al. 2003),

h2 ≡ 0.0264w−0.762
b exp

(
−0.476 [ln(25.5wb + 1.84wm)]2

)
, (5.26)

h3 ≡ 2.17

(
1+

( wb

0.044

)2
)−1

w0.59
m

(
1+ 1.63

(
1− wb

0.071

)
wm

)−1
. (5.27)

We use the tilt parameter given by Sandvik et al. (2004), which is a slightly modified version of the
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one in Chu et al. (2003) in order to minimise the correlation with wb:

t ≡
( wb

0.024

)−0.5233
2ns−1 . (5.28)

The amplitude parameter is

A∗ ≡
Ãs

2.95× 10−9
e−2τ

(
k
kp

)ns−1

w−0.568
m , (5.29)

wherekp = 0.05Mpc−1 denotes the pivot point. The normalisation factor of 2.95× 10−9 comes
in because we use the scalar amplitudeÃs of CMBEASY, which is defined as the primordial power
of the curvature fluctuations evaluated at the pivot point,Ãs ≡ ∆2

R(kp). It is related to the scalar

amplitudeAs of CMBFAST, which is used in Sandvik et al. (2004), byAs =
Ãs

2.95×10−9 (Verde et al.
2003a). Finally, we use the physical damping due to the optical depth to last scattering as our last
parameter:

Z ≡ e−τ . (5.30)

In order to construct the interpolation of the likelihood surface, we need the transformation
that maps the normal parameters back onto cosmological parameters. The reason for this is the
way we construct the interpolation: Our sparse grid algorithm chooses the normal parameters
where it wants to refine the grid, which we then need to transform into cosmological parameters
to run CMBEASY and the WMAP-likelihood code. Our technique of inverting the parameter
transformation is presented in appendix D.1.

5.3.3 Generation of test set and choice of interpolation range

For choosing the parameter range in which to construct the interpolation, we have run MCMCs
containing about 50,000 points at a temperature ofT = 3. That is, in the Metropolis algorithm
we choose the transition probabilitya(x, y) from a point x in the chain to a new pointy to be
a(x, y) ≡ min

{
(L(y)/L(x))

1
T , 1

}
. Using this transition probability withT = 1 results in the usual

Metropolis algorithm, whereas choosingT = 3 allows us to explore a larger parameter range than
with the regular algorithm. These chains covered a region reaching out to about 25 log-likelihoods
around the peak.

The optical depth to the last scattering surface,τ, which can be determined from the CMB
polarization, is not well-constrained by the WMAP polarization data due to their low signal-to-
noise ratio. Therefore, when running the MCMCs atT = 3, we had to restrictτ to the physically
meaningful rangeτ ≥ 0. This restriction corresponds toZ ≤ 1 for the normal parameters. In the case
of the normal parameters in 7 dimensions, we had to additionally restrict the intervals toh2 ≤ 0.52
andh3 ≥ 0.38, which is the range in which the parameter transformationis invertible. Furthermore,
we chose to restrict our set of points to be within the 25 log-likelihood region around the peak.

In order to roughly centre our intervals at the maximum of thelog-likelihood function, we have
determined the latter using a few runs of a simple simplex search.4 The interval boundaries were
then defined as the box centred at the maximum which contains all points of the above-described

4We were running several simplex searches and chose the result with thehighest value of the log-likelihood. The runs did
not all converge to exactly the same point, which we think was due to numerical issues (the log-likelihood was presumably not
completely convex, which could be dues to the dips we will mention in section 5.3.5).
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Figure 5.7: Absolute error of the interpolation with respect to the real log-likelihood in 6 dimensions for
an interpolation with a sparse grid of level 5 (left panel) and of level 6 (right panel) for normal parameters.

Figure 5.8: Absolute error of the interpolation with respect to the real log-likelihood in 7 dimensions for
an interpolation with a sparse grid of level 6 (left panel) and of level 7 (right panel) for normal parameters.

chains. Note that it is not important for the accuracy of the interpolation that the intervals are well-
centred at the maximum. Note further that we have also used this set of points as a test set for
comparing our interpolation with the real log-likelihood.

5.3.4 Results

We have interpolated the log-likelihood of the WMAP 5 year data in the 6-dimensional normal
parameter space described in section 5.3.2. The same has been done for a 7-dimensional model,
in which we have chosen the running of the spectral index of the primordial power spectrum,α, as
an additional parameter. Constructing the interpolation can be parallelised to an arbitrary degree,
according to the available computational resources.

For the 6-dimensional model, we plot the absolute error of the log-likelihood, (u− lnL), against
the negative WMAP log-likelihood, (− lnL), for the points in the test set in Fig. 5.7. We have used
an interpolation on a sparse grid of leveln = 5 (consisting of 2561 grid points) in the left panel, and
of leveln = 6 (consisting of 10625 grid points) in the right panel. One clearly sees the improvement
in accuracy when increasing the grid level fromn = 5 to n = 6. Fig. 5.8 shows the same plot
for the 7-dimensional model, for grid leveln = 6 (18943 grid points) in the left panel andn = 7
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(78079 grid points) in the right panel. We again see the improvement in accuracy with increasing
refinement level. However, the additional parameterα is quite strongly correlated with many of
the other parameters, whereas the correlations between thenormal parameters in 6 dimensions are
reduced to a minimum. We therefore have to increase the grid level by one in 7 dimensions, in
order to obtain results comparable to the 6-dimensional ones. In both figures, we note a systematic
negative offset of the interpolation with respect to the real function, which becomes less severe for
the higher refinement levels. This offset is due to the fact that we construct ad-linear interpolant of
a convex function, which systematically lies below the function. This could be easily coped with by
adding a small offset toα1,1 after the interpolation, or, even better, by using piecewise polynomial
instead of the piecewise linear basis functions. We leave the usage of piecewise polynomial basis
functions, which promise to be well-adapted to the log-likelihood, for future work.

Note that we have restricted the plot range to [-2,2], because only 0.1% or less of the points
lie outside this range.5 Almost all of these points lie in the corners ofΩ due to relatively strongly
correlated parameters. These are the regions in parameter space where the 25 log-likelihood range
around the peak extends to the interval boundaries. Due to the extrapolation we use close to the
boundaries (cf. the end of section 5.2), we obtain relatively large uncertainties in those regions,
which do not affect the one-dimensional projections of the likelihood function, though. The
uncertainties can be further reduced, spending (adaptively) more grid points in those regions, see
also the discussion about adaptivity in section 5.3.5.

For the 6-dimensional interpolation with a sparse grid of level 6, 2.5% of the test points have
an absolute error> 0.25 in the log-likelihood, and 0.03% of the test points have an absolute error
> 1. In 7 dimensions and for refinement level 7, the corresponding numbers are 9% and 0.5%,
respectively. This is a higher level of accuracy as reached by Pico (Fendt & Wandelt 2007), for
which about 90 per cent of the points in a region reaching out to 25 log-likelihoods around the
peak have been calculated with an absolute error below 0.25.However, we note that these numbers
for Pico are valid for a 9-dimensional parameter space, whereas we work in 6- and 7-dimensional
spaces and leave the extension to higher-dimensional models for future work. But we also note that
in all settings where a systematic offset in the interpolation error can be observed, it is sufficient to
reduce the offset to improve our results significantly, in particular for interpolations on lower levels
(see, e.g. , the scatterplot for the 6-dimensional model andgrid level 5, Fig. 5.7).

We have projected both the interpolation and the WMAP likelihood function using MCMCs
of about 150,000 points, and compare the results for the 6-dimensional model for grid level
n = 5 in Fig. 5.9. We reproduce the projected one-dimensional likelihood curves almost perfectly.
The results for the 7-dimensional model forn = 6 are shown in Fig. 5.10. Again, the one-
dimensional curves are reproduced with great accuracy. Thevisual comparison of our results with
the projected one-dimensional likelihoods obtained by CosmoNet (Auld et al. 2007, 2008) shows
that we reproduce the original curves of both the 6-dimensional and the 7-dimensional model with
a higher accuracy than the latter. Note also that our interpolation is constructed in a rather wide
region, encompassing about 25 log-likelihoods around the peak, whereas in Auld et al. (2008) the
region in which lnLwas fitted covers only 4σ around the peak for the combined likelihood of CMB
and LSS. This corresponds to a region of about 8 log-likelihoods around the peak for the combined
likelihood, and even less when using only the CMB likelihood.

Consider now the interpolation of the WMAP likelihood surface using directly the standard

5In 6 dimensions, the number of points outside this range is 0.02% (0.003%) for n = 5 (n = 6); in 7 dimensions, it is about
0.1% for both grid levels.
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Figure 5.9: Comparison of the one-dimensional projections of the 6-dimensional WMAP 5 year
likelihood (solid) and its interpolation (dashed) using a sparse grid of leveln = 5 (consisting of 2561
grid points) for normal parameters. The curves match almost perfectly.
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Figure 5.10: Comparison of the one-dimensional projections of the 7-dimensional WMAP 5 year
likelihood (solid) and its interpolation (dashed) using a sparse grid of leveln = 6 (consisting of 18943
grid points) for normal parameters.
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Figure 5.11: Absolute error of the interpolation with respect to the real log-likelihood in 6 dimensions
for an interpolation with a sparse grid of level 6 (left panel) and of level 7(right panel) for standard
parameters.

parameters, which are used by default when doing cosmological parameter sampling with the
MCMC driver fromCMBEASY (Doran & Müller 2004):{wm,wb, h, τ, ns, ln(1010As) − 2τ}, to which
we again addα as an additional parameter in the 7-dimensional case. Working with these parameters
has the advantage that we do not have to restrict ourselves tothe parameter range in which the
parameter transformation is invertible. However, the problem is now less adapted to our choice of
basis functions, due to the stronger correlations between the different parameters. We therefore pay
the price of having to increase the grid level by one in this case in order to reach an accuracy as good
as before. We show the absolute error of the log-likelihood,(u− lnL), against the negative WMAP
log-likelihood, (− lnL), for the 6-dimensional model for grid leveln = 6 (10625 points) andn = 7
(40193 points) in Fig. 5.11,6 and for the 7-dimensional one forn = 7 (87079 points) andn = 8
(297727 points) in Fig. 5.12,7 For the 6-dimensional (7-dimensional) interpolation witha sparse
grid of leveln = 7 (n = 8), the fraction of test points with absolute error> 0.25 in the log-likelihood
is 6% (20%), and 0.5% (2.5%) for an absolute error> 1. The one-dimensional projections for the
6-dimensional case for leveln = 6 and for the 7-dimensional case for leveln = 7 are presented in
Figs 5.13 and 5.14, respectively.

We have tested the evaluation time of our interpolation by evaluating a sparse grid interpolant
of level 6 in 6 dimensions for 2,000,000 points randomly chosen from withinΩ. On a conventional
desktop computer (Intel chipset, 2.8 GHz), this took about 92µs per point, including the random
generation of the point. In 7 dimensions on the same level we have twice as many grid points
and one dimension more, which doubles the evaluation time to189µs. For CosmoNet and Pico,
the evaluation of a 6-dimensional model is specified to take about 10µs and 250µs, respectively
(Auld et al. 2008). Note that we do not know on which hardware the evaluation times of CosmoNet
and Pico have been measured, which makes a comparison hardlypossible. Note further that our
code to evaluate a sparse grid function is not optimised for fast evaluation times and that there
is still room for improvement. In any case, for all of these codes the bottleneck in cosmological
parameter sampling is now the MCMC algorithm itself rather than the evaluation of the likelihood,
at least with the MCMC driver used here (Doran & Müller 2004).

Note that in 7 dimensions, we need significantly more grid points than in 6 dimensions, since the

6Here, about 0.3% (0.2%) of the points in the test set lie outside the chosenplot-range for the grid of leveln = 6 (n = 7).
7About 1% of the points in the test set lie outside the chosen plot-range for thegrid of both leveln = 7 and leveln = 8.
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Figure 5.12: Absolute error of the interpolation with respect to the real log-likelihood in 7 dimensions
for an interpolation with a sparse grid of level 7 (left panel) and of level 8(right panel) for standard
parameters.
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Figure 5.13: Comparison of the one-dimensional projections of the 6-dimensional WMAP 5 year
likelihood (solid) and its interpolation (dashed) using a sparse grid of leveln = 6 (consisting of 10625
grid points) for standard parameters.
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additional parameterα strongly correlates with the other parameters, and we thus need to increase
the grid level by one to obtain good results. As the storage requirements are rather low, this mainly
increases the number of evaluations that are needed for constructing the sparse grid interpolation.
As already stated before, though, the construction of the interpolation can be parallelised to an
arbitrary degree, according to available computational resources, so that this point should not be
an issue. To store the interpolant for a regular sparse grid in d dimensions for levell with N grid
points, we would only needN doubles for the coefficients and two integers to remember bothd
andl, leading to (N + 1)8 Bytes. For adaptively refined sparse grids, we additionally have to store
at least which grid points have been refined, requiring slightly more storage. For current hardware
architectures, the size of the memory is therefore not a limiting factor for our application.

5.3.5 Improvements with adaptive sparse grids

As it has already been mentioned, the log-likelihood is not aperfect sum of one-dimensional
functions. The different parameters contribute differently toL and correlate more or less with each
other. It is therefore reasonable, especially when using the standard parameters which correlate
more, to employ adaptivity, spending more grid points in critical regions and less grid points
elsewhere. In this section, we demonstrate the utility of adaptivity by showing some first results
as a proof of concept. As they can clearly be improved further, we leave a thorough study of
adaptive sparse grids for the interpolation of lnL for future work.

Employing adaptivity, one can attempt to either obtain better results fixing roughly the number
of grid points used, or to achieve a similar accuracy using less grid points. In the following, we
show results for the former, tackling the 7-dimensional example using the standard parameters on
level 7 with 78079 grid points presented above. We start witha regular sparse grid of some low level
and refine grid points, creating all 2d children in the hierarchical structure (if possible) each,until
the grid size exceeds 78000 grid points. In settings where the contributions of the dimensionalities
differ significantly, it can be useful to start with level 2 to allow dimensional adaptivity, neglecting
unimportant dimensions; here, the grid points on low levelswill be created in any case, so we can
start with a sparse grid on level 5, e.g., to save on the numberof adaptive steps.

Choosing a suitable refinement criterion, it can be determined whether to refine in a broad
way (close to regular sparse grids) or in a more greedy way in the sparse grid’s hierarchical tree
structure. It is reasonable to take the surplusses of the grid points into account as they contain the
local information about the functions, i.e., if the function has a high gradient locally. Furthermore,
they decay quickly with increasing level-sum in the convergent phase. The mere surplus-based
criterion, refining the grid points with the highest absolute value of the surplus first, is known to tend
to minimise theL2-norm of the error. As we do not spend grid points on the domain’s boundary, and
as we are extrapolating towards the boundary, the biggest surplusses per level can be found for the
modified basis functions which are adjacent to the boundary.A mere surplus-based criterion will
therefore only refine towards the boundary. This reduces theerror especially for sampling points
with a high error in the scatterplots, as they are located towards the boundary of the domain.

In the following, we theoretically derive a refinement criterion which is better suited to our
problem than the purely surplus-based one. In order to maximise the information our interpolation
contains about the real likelihood, we attempt to minimise the Kullback-Leibler distancedKL
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between the interpolation and the likelihood function,

dKL ≡
∫

ddxL(x) ln
L(x)

exp(u(x))

=

∫
ddxL(x) (lnL(x) − u(x)) , (5.31)

which is defined for two normalised probability distributionsL and exp(u). Let us now derive the
refinement criterion we obtain from minimisingdKL. Assume that we have already computed an
interpolationu(x) with N grid points, then the Kullback-Leibler distancedKL when evaluating the
function at an additional pointxN+1 is changed by

∣∣∣dnew
KL − dold

KL

∣∣∣ =
∣∣∣∣∣
∫

ddxL(x)
[
lnL(x) − unew(x) − lnL(x) + uold(x)

]∣∣∣∣∣

=

∣∣∣∣∣
∫

ddxL(x)
[
uold(x) − unew(x)

]∣∣∣∣∣

=

∣∣∣∣∣∣∣

∫
ddxL(x)


N∑

i=1

αiϕi(x) −
N+1∑

i=1

αiϕi(x)



∣∣∣∣∣∣∣

=

∣∣∣∣∣
∫

ddxL(x)
[
αN+1ϕN+1(x)

]∣∣∣∣∣ . (5.32)

If we refine the interpolation around the grid point that contributed most to the Kullback-Leibler
distance, we can hope to converge towards the minimum ofdKL fastest. In order to obtain a suitable
refinement criterion, we have to simplify the formula in eq. (5.32) considerably. We thus assume
the likelihoodL(x) as well as the basis functionϕN+1(x) to be locally constant onϕN+1’s support,
obtaining ∣∣∣dnew

KL − dold
KL

∣∣∣ ∼ VN+1L(xN+1) |αN+1| , (5.33)

whereVN+1 is the volume covered by the basis functionϕN+1 (i.e. its support), and we have used
ϕN+1(xN+1) = 1.

With eq. (5.33), we have derived an estimation of the contribution of a basis function todKL,
which is a reasonable refinement criterion in our setting. Inaddition to the surplus of the grid point,
|αN+1|, it takes into account the value of the likelihoodL(xN+1) at the grid point, and the volume of
the basis functionVN+1. The likelihood takes care of the fact that we would like to bemore accurate
where the likelihood is higher. The regions of very low likelihood are less interesting for us—the
likelihood being already very close to zero beyond a difference of about 20 log-likelihoods. The
volume factor, on the other hand, prevents the interpolation to refine too deeply (to very high grid
levels) locally in the parameter space. However, since thisusually only takes effect after several
refinement steps, and as we have restricted the number of gridpoints, we choose not to include the
volume factor but rather to refine several points at the same time, which addresses this issue in an
alternative way, and which will be discussed later on. We further choose to introduce a temperature
T again, which allows us to weight the likelihood with respectto the surplus and thus to influence
how much to refine close to the maximum. The refinement criterion we used in this study is thus

(L(xl,i)
Lmax

)1/T

|αl,i| , (5.34)
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Figure 5.15: Absolute error of the interpolation with respect to the real log-likelihood in 7 dimensions
for an interpolation with an adaptively refined sparse grid for standard parameters.

where we have divided the likelihood by its peak value,Lmax, (which we have already obtained
determining the interpolation domain) because the WMAP code returns the log-likelihood only up
to a constant offset, so that we do not know the correct normalisation ofL. ForT = 1, refinement
takes place only very close to the maximum asL decays quickly; a temperature ofT = 6 showed
to provide good results within the whole domain of interest.

Refining only one grid point per refinement step often causes adaptivity to get stuck in a single,
special characteristic of the function. Interpolating lnL with our choice of basis functions, all grid
points are likely to be created only in the direction where the log-likelihood decays fastest, or around
one of the local dips we will address later on. Refining more than one grid point at the same time
helps to circumvent such effects, resulting in a broader refinement scheme.

The Kullback-Leibler distancedKL can also be used to measure the quality of our interpolation:
The distance between the real likelihood and or interpolation should be as small as possible.
However, as we have already mentioned above, we do not know the normalisation of the WMAP
likelihood function. Therefore,dKL is not necessarily positive and thus looses its property of being
a useful measure of the ‘closeness’ of the two functions. We thus use a slightly modified version,

d̂KL ≡
∫

ddxL(x)| lnL(x) − u(x)| , (5.35)

as a measure of the quality of our interpolation, instead of the actual Kullback-Leibler distance.
It can be easily calculated from an MCMC withT = 1 obtained forL, by simply averaging the
sum of the absolute errors| lnL(xi) − u(xi)| over all points. Furthermore, we quote this value
averaged over a chain ofT = 3 (exploiting the interpolation domain better), which corresponds to∫

ddxL(x)
1
T | lnL(x) − u(x)|.

Fig. 5.15 shows the scatterplot for an adaptively refined sparse grid in 7 dimensions. Starting
from a regular grid of level 5, we refined 100 grid points each according to the refinement criterion
in eq. (5.34) withT = 6. Needing only about as much grid points (78551) as for the regular sparse
grid of level 7, Table 5.1 shows that we obtain results which are close to those of a regular sparse
grid of level 8 with almost 4 times as many grid points. We provide the Mean Squared Error (MSE)
as well aŝdKL for bothT = 1 andT = 3 chains for regular sparse grids of level 7 and 8, and for the
adaptively refined case. We also quote how many points exhibit an absolute error larger than 1 or
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err> 1, T=3 err> 0.25, T=3 MSE, T=1 MSE, T=3 d̂KL, T=1 d̂KL, T=3

level 7 4.2% 50.5% 0.087 0.532 0.256 0.354
level 8 2.3% 19.3% 0.017 0.210 0.091 0.193
adaptive 1.8% 23.6% 0.027 0.202 0.110 0.204

Table 5.1: Comparison of errors of regular sparse grids of level 7 andlevel 8, respectively, and an
adaptively refined sparse grid using approximately as many grid points as contained in the regular grid of
level 7. Shown are the number of points with an absolute error larger than 1or 0.25 in theT = 3 chains,
the MSE for chains ofT = 1 andT = 3, andd̂KL, which denotes the absolute value of the error averaged
over chains ofT = 1 andT = 3.

0.25 for theT = 3 chains. We do not show the histograms of the adaptively refined model, as the
histograms for both the regular grid on level 8 and the adaptively refined one, are very close to the
already very good results presented for level 7 above.

We would like to mention, that, due to numerical problems, the current version ofCMBEASY

produces local, unphysical and sometimes rather high dips.This problem is already known and
will be corrected in the next release. For stochastic approaches, this is not a big problem, though:
The dips are local and just cause some noisy evaluations. Butit poses a problem for numerical
approaches if a grid point hits a dip. Then it can happen, thatspending more grid points can
even deteriorate the results. For our regular grid in 6 dimensions using the standard parameters,
e.g., increasing the level from 7 to 8 caused a higher overallerror on the chain-data used for the
histograms, as especially two new basis functions close to the peak caused an error of up to 12 of
the log-likelihood for all evaluations affected by those basis functions.

Fortunately, dips can be detected automatically due to the hierarchical structure of the sparse
grid and the smoothness of lnL, using a criterion that is once more based on the surplusses.
Furthermore, it is not a severe problem when using adaptivity, as adaptivity localises the effects
of the dips automatically. One just has to take care not to spend too much grid points to compensate
for the dips.

The first adaptive results are promising, but there is still room for a lot of improvement. Even
better refinement criteria than those used so far could be employed. Using not only piecewise linear
functions, but rather piecewise polynomials, and applyingadaptivity in both the mesh-width and the
polynomial degree is very promising; especially the extrapolation properties towards the boundary
would be improved, and less grid points would be needed to obtain the same accuracies.

5.4 Conclusions

In this chapter, we have explored the utility of interpolating the WMAP log-likelihood surface using
sparse grids. We demonstrated that the results are excellent and competitive to other approaches
regarding speed and accuracy, and we discussed advantages over fitting the likelihood surface with
polynomials (Fendt & Wandelt 2007; Sandvik et al. 2004) or neural networks (Auld et al. 2008):

The interpolation based on sparse grids converges towards the exact function in the limit of the
grid level going to infinity. We can therefore reach an arbitrary accuracy by simply increasing the
amount of work we spend. In the case of a polynomial fit, this isnot guaranteed since increasing
the polynomial degree runs the risk of becoming unstable.

In order to construct the sparse grid interpolation, we do not need to sample a set of training



128 Efficient cosmological parameter sampling using sparse grids

points using MCMCs beforehand, since the sampling points are determined by the sparse grid
structure which is given a priori. Once we have chosen the volume of interest, the time for
constructing the interpolation is dominated by the evaluation of the likelihood function at the grid
points. We do not need additional training time as for neuralnetworks (Auld et al. 2008), for
example. Constructing the interpolation can thus be done almost arbitrarily in parallel, only limited
by the computational resources that are available.

The sparse grid technique is rather general and not restricted to certain classes of functions. In
particular, the choice of sampling points and basis functions is not tailored to a single problem as for
neural networks, where the properties of the network such asits topology and transfer functions have
to be chosen problem-specifically (often in a heuristic way). The sparse grid interpolation technique
as well as our extensions can therefore be readily applied toother problems in astrophysics and
cosmology, and will be useful in further tasks, where an accurate interpolation of a function is
needed.

The excellent performance of the sparse grid interpolationcan be further improved, leaving
future research to do: It can be applied to models with more than seven parameters by spending
more computational effort. Further modification of the basis functions, for example allowing for
a piecewise polynomial interpolation, promises better convergence rates and higher accuracies.
Adaptive refinement schemes, which take into account the characteristics of the interpolated
function, can be used to further increase the accuracy of theinterpolation, as we have already
demonstrated for a first example.



Chapter 6

Conclusions and outlook

In this PhD work, we have studied fundamental questions of modern cosmology by developing and
applying data analysis techniques that combine the CMB temperature data with its polarization data
and LSS measurements.

We have derived optimal methods for detecting the ISW effect, which serves as a probe of dark
energy and has the power to yield constraints on the dark-energy related cosmological parameters.
Our optimal methods for ISW detection extract more information about the ISW effect from the
CMB and LSS data than existing methods. Thus, compared to theusual method, the detection
significance of our optimal polarization method in an ideal scenario is 16 per cent higher for
low redshift surveys such as the SDSS galaxy sample and 23 percent for surveys going out to
a redshift of about 2. With currently available polarization data from WMAP, our method yields
approximately the same detection significance as existing methods, due to the high contamination
of the polarization data by noise and the low volume coverageof currently available LSS surveys.
However, with polarization data fromPlanck, our method will be significantly better than existing
methods, where the exact improvement depends on how well Galactic foregrounds can be removed.
A very crude estimate yields an improvement of the detectionsignificance of at least 10 per cent.
Note that the numbers quoted refer to the average detection significance reached with our method,
where the average is taken over all possible realisations ofthe LSS. The actual detection significance
reached with our methods depends on the specific realisationof the LSS in our Universe and can thus
be higher (or lower) than the average. Since the standard method does not keep the LSS fixed in the
analysis, but uses an average over all possible realisations, the specific realisation of the LSS causes
a biasing of the detection significance, which gets strongerfor more unlikely LSS realisations.

Our optimal method for ISW detection can be extended to the detection of other secondary
anisotropies, such as the kinetic Sunyaev-Zel’dovich effect, the Rees-Sciama effect or gravitational
lensing. This extension will require some additional work,since all secondary effects apart from
the ISW originate on smaller scales, on which the LSS has already undergone non-linear structure
growth and can thus no longer be described by a Gaussian distribution. The extension of our method
to a non-Gaussian posterior distribution can be done using the field theoretical techniques described
in section 2.3 and in Enßlin et al. (2009).

In the course of developing our optimal method for ISW detection, we have derived the
correct form of the joint likelihood of CMB and LSS data for cosmological parameter estimation,
consistently including the small coupling between the two data-sets introduced by the ISW effect.
Previously, in parameter sampling studies, it has usually been assumed that the joint likelihood
factorises into a product of the likelihoods of the respective data-sets. Once LSS surveys cover
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a large enough volume that we can create an ISW template containing most of the ISW signal,
using our likelihood instead will provide better constraints on the dark-energy related cosmological
parametersΩΛ and the equation of state of dark energy. The ideal survey forthis will be EUCLID,
which will measure the galaxy distribution for all of the accessible sky outside the Galaxy out
to a redshift ofz ∼ 2. However, even for currently available LSS surveys, Ho et al. (2008) and
Giannantonio et al. (2008) obtain an effect on cosmological parameter constraints when including
the information contained in the ISW effect in the analysis.

The second part of this work was devoted to understanding theorigin of the axis of evil, an
unusual alignment between the preferred directions of the quadrupole and the octopole in the CMB
temperature map. To this end, we have subtracted from the CMBpolarization data the fraction of
which is correlated with the temperature map, and checked for the axis of evil in the remaining
polarization map. This uncorrelated polarization map serves as a statistically independent probe
of the axis of evil and other anomalies present in the CMB temperature map, and can thus help
to assess whether these anomalies are just due to chance fluctuations in the temperature, or if they
have their origin in some preferred direction intrinsic to the geometry of the primordial Universe.
We find that the preferred axis of the quadrupole aligns with the axis of evil, whereas that of the
octopole does not. However, the contamination of the WMAP polarization data by detector noise
and Galactic foregrounds leaves us with a large uncertaintyin our results, such that we do not obtain
any evidence for or against a preferred direction intrinsicto our Universe. Nevertheless, with the
upcoming polarization data from thePlancksatellite, we will have a powerful tool to probe the axis
of evil of the CMB in polarization, thereby assessing the validity of the cosmological principle.

As we have already mentioned above, the method we proposed can be used to probe any
anomalies present in the CMB temperature map. Among such anomalies, there is a significant
power asymmetry between the northern and southern ecliptichemisphere in the multipole range
l ≈ 2 − 40, a strong lack of power in the quadrupole of the temperature map, and some weaker
anomalies in the low multipoles beyond the octopole. The analysis of the uncorrelated polarization
map ofPlanckwill shed more light on the origin on all of these anomalies.

Note that our studies of the axis of evil were phenomenological so far, since not all theoretical
models creating anomalies in the temperature map predict the same features for the uncorrelated
polarization map. In order to go beyond the phenomenological nature of these studies, it will
be necessary to consider particular models of the primordial Universe creating anomalies in the
CMB temperature maps, and compute the statistical properties of the uncorrelated polarization map
for these by modifying a Boltzmann code such asCMBEASY or by numerical simulations. Using
these signatures predicted for the uncorrelated polarization map, one can then compare the different
models with each other and with an isotropic Universe via Bayesian model selection. This will
permit us to truly go beyond the usual a posteriori analysis of CMB anomalies, and to fully exploit
the power of complete CMB data to assess how well the assumption of isotropy holds for our
Universe.

In both of the projects described above, the study of the ISW effect and the analysis of anomalies
in the CMB, we have studied the imprints of specific phenomenain the CMB. However, the main
power of the CMB lies in its ability to provide us with simultaneous constraints on the cosmological
parameters. Such parameter estimation studies usually rely on sampling the parameter space using
MCMC techniques. The main bottleneck in these studies is theevaluation of the likelihood of
the cosmological parameters, a problem which becomes increasingly serious with the ever-growing
amount of data we have to handle. In the third part of this work, we have therefore developed and
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implemented a sparse-grids based technique to interpolatethe WMAP likelihood surface, which
reduces the evaluation time of the likelihood to a fraction of a millisecond, thus significantly
speeding up MCMC sampling. In speed and accuracy, our interpolation technique is competitive
to previous attempts to fit the likelihood with polynomials or neural networks, while overcoming
some of the drawbacks of the latter. These include, for instance, the danger of creating unphysical
wiggles in the fit if the polynomial degree is chosen too high with respect to the number of available
training points, or the comparably long training time required for neural networks. Using our
technique to interpolate the likelihood surface ofPlanckwill significantly simplify the parameter
estimation process, especially when combiningPlanckdata with other data-sets whose likelihood
is less expensive to evaluate, as, for example, in the parameter sampling studies using the correct
joint likelihood for CMB and LSS data proposed above. Furthermore, our interpolation algorithm
is completely general and can be applied to any function which is sufficiently smooth. We can thus
use it to speed up the likelihood evaluation of any large data-set whose likelihood is expensive to
evaluate, and apply it to other problems where an accurate interpolation of a function is needed.

Closing words

With this thesis, we have made a tiny step forward on the ever-lasting path towards understanding
the world in which we live. Personally, I do not think that thebasic picture of cosmology that
we have now will be the last word in the history of cosmology, and that the remaining tasks are
now merely to better understand the ingredients of the latter. There have been times in the history
of physics, when we thought that the big picture is all set, as, for example, in 1874, when Max
Planck was advised not to study physics by the Munich physicsprofessor Philipp von Jolly, with
the statement that “in this field, almost everything is already discovered, and all that remains is to
fill a few holes.” Instead of filling holes, Planck formulatedthe quantisation of energy emitted by a
black body, which marked the beginning of quantum physics, thus revolutionising our view of the
world. I expect there will be yet many revolutions like the one initiated by Planck, and we should
be prepared to constant changes in our view of the world as we go along and try to understand the
Cosmos in which we live.
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Appendix A

A.1 Derivation of the Wiener filter

In this section, we will derive in detail the posterior distribution for the free information field theory,
eq. (2.26). We start from the data model given in eq. (2.16),

d = Rs+ n , (A.1)

and assume the signal prior and the noise distribution to be Gaussian. Note that we now explicitely
state the dependence of the probability distributions on the cosmological parametersp. Rewriting
the data model asn = d − Rsand inserting this into the noise distribution, we obtain

P(d | s, p) = P(d − R s| s, p)

= G(d − R s,N) . (A.2)

The joint probability distribution of signal and data,P(d, s| p) = P(d | s, p)P(s| p), is thus

P(d, s| p) = G(d − R s,N) G(s,S)

= G(s− D j,D) G(d,RS R† + N) , (A.3)

where we have used the definition of the propagator, eq. (2.20)

D ≡
(
R†N−1R+ S−1

)−1
,

and of the information source, eq. (2.21)

j ≡ R†N−1d .

We will prove the second step in eq. (A.3) in section A.1.1. The distribution in eq. (A.3) can be
trivially integrated overs in order to obtain the evidence

P(d | p) = G(d,RS R† + N) . (A.4)

Therefore the posterior distributionP(s| d, p) = P(s,d | p)/P(d | p) reads

P(s| d, p) = G(s− D j,D) , (A.5)
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where
srec ≡ D j =

(
R†N−1R+ S−1

)−1
R†N−1d , (A.6)

is the Wiener reconstruction of the signals.

A.1.1 Lemma 1

We now prove the expression for the joint probability distributionP(d, s| p) given in eq. (A.3). To
this end, we start with

P(d, s| p) = G(d − R s,N) G(s,S)

=
1

√
|2πN||2πS|

×exp

(
−1

2
(d − R s)†N−1(d − R s)

)

×exp

(
−1

2
s† S−1s

)
. (A.7)

Let us first rewrite the exponent

(d − R s)†N−1(d − R s) + s† S−1s

= s† D−1s− 2 j† s+ d† N−1 d

= (s− D j)†D−1(s− D j) − j†D j + d† N−1d

= (s− D j)†D−1(s− D j) + d†(RS R† + N)−1d , (A.8)

where we have used the definitions ofD and j, eqs (2.20) and (2.21), in the first step, then completed
the square in the second step, and we will separately prove the last step as Lemma 2 in the next
subsection. After doing that we will prove that

|2πN||2πS| = |2πD||2π(RS R† + N)| , (A.9)

which we name Lemma 3, allowing us to reformulate eq. (A.7) as

P(d, s| p) =
1√

|2πD||2π(RS R† + N)|

×exp

(
−1

2
(s− D j)†D−1(s− D j)

)

×exp

(
−1

2
d† (RS R† + N)−1d

)
, (A.10)

which is what we claimed in eq. (A.3).
Note that from the second line in eq. (A.8), and adding the contribution of the determinants in

eq. (A.7), we readily obtain the Hamiltonian of the free theory, eq. (2.19):

HG[s] = − log[P(d|s)P(s)]

=
1
2

s†D−1s− j†s+ HG0 , (A.11)
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with

HG0 =
1
2

d† N−1 d +
1
2

log(|2πS| |2πN|) . (A.12)

A.1.2 Lemma 2

In this subsection we prove that

j†D j − d† N−1d = −d† (RS R† + N)−1d . (A.13)

In order to simplify the notation, let us introduce

M ≡ R†N−1R. (A.14)

It can be easily seen that eq. (A.13) is equivalent to

N−1R(S−1+M)−1R† N−1−N−1 = −(RS R† + N)−1 (A.15)

by inserting the respective expressions forD and j. We start with eq. (A.15) and transform it into
an equation which is true.

N−1R(S−1 + M)−1R† N−1 −N−1=−(RS R† + N)−1

⇐⇒ RS R†N−1R(S−1 + M)−1R†N−1 + R(S−1 + M)−1R†N−1 − RS R†N−1 − 1 = −1

⇐⇒ RS[M(S−1 + M)−1 + (1+ MS)−1 − 1]R†N−1 = 0

⇐⇒ RS[MS(1+ MS)−1 + (1+ MS)−1 − 1]R†N−1 = 0

⇐⇒ RS[(1 + MS)(1+ MS)−1 − 1]R†N−1 = 0 . (A.16)

This equation is true, QED

A.1.3 Lemma 3

In the following we prove that

|2πN||2πS| = |2πD||2π(RS R† + N)| , (A.17)

which is equivalent to
|N||S| = |D||RS R† + N| , (A.18)
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for the factors of 2π cancel for matrices that operate on the same vector space. Let us write

|N||S|
|D| = |N||S||D−1|

= |N||S D−1|
= |N||S (S−1 + R†N−1R)|
= |N|exp

(
log |1+ S R†N−1R|

)

= |N|exp
(
Tr log(1+ SR†N−1R)

)

= |N|exp
(
Tr log(1+ RSR†N−1)

)

= |N|exp
(
log |1+ RS R†N−1|

)

= |N||RS R†N−1 + 1|
= |(RS R†N−1 + 1)N|
= |RS R† + N| . (A.19)

The crucial step here was to use the cyclic invariance of the trace Tr and to notice that this cyclic
invariance still holds for the trace of a logarithm, which can be easily verified using the Taylor
expansion of the logarithm.
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B.1 Proof of the equivalence of the number of bins

We now outline the proof that if one uses the correct kernel, i.e. the ISW kernel rather than the
kernel for the galaxy density contrast in the analysis, the estimated amplitudêAcc and the variance
σ2

cc are independent of the number of bins chosen, provided that all bins together cover the whole
volume relevant for the ISW effect. The proof here is done only for the variance, but followsthe
same scheme for the estimated amplitude. The total varianceσ2

cc one obtains when working with
N bins is given by eq. (3.32), where we have substituted the index gi by ISW(i), following the
argument of section 3.3.2:

σ2
cc =


∑

l

(2l + 1)
∑

i, j

Cisw(i),T
l (Ccc

l )−1(i, j)Cisw( j),T
l


−1

. (B.1)

We then use the form of the covariance matrix given by eq. (3.28) and the following relations that
only hold for the ISW kernel:

Cisw(i),T
l =

N∑

j=1

Cisw(i),isw( j)
l (B.2)

Cisw
l =

N∑

j=1

Cisw( j),T
l . (B.3)

Now we choose a fixed but arbitrary number of binsN, invert the covariance matrix and by inserting
the above relations we obtain

∑

i, j

Cisw(i),T
l (Ccc

l )−1(i, j)Cisw( j),T
l =

Cisw
l

Cisw
l +CT

l

. (B.4)

Inserting this into eq. (B.1), the resulting formula forσ2
cc is exactly what we obtain from one single

bin covering the whole volume relevant for the ISW effect. We have checked this explicitly for
N = 2− 5 and it is straightforward, though timely, to also check it for any other number of bins.
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B.2 Proof of the factorization of the likelihood

We now explicitely prove the factorization of the likelihood in eq. (3.67) into a reduced temperature
part and a polarisation part, as given in eq. (3.74). We will do this for the more general case that we
not only have a signal templateTτ for the temperature part, but also a non-zero templatePτ for the
polarisation part. In this case, the covariance matrix is

C̃ =

(
C∆T C∆T,∆P

C∆P,∆T C∆P

)
, (B.5)

instead of the simplified one given in eq. (3.68). Here,∆P and∆T are defined as∆P ≡ P− Pτ and
∆T ≡ T − Tτ, respectively. A block matrix

C̃ ≡
(

A B
C D

)
(B.6)

with A and D being invertible square matrices, can be blockwise inverted as given by the following
formula:

(
A B
C D

)−1

=

(
(A− BD−1C)−1 −(A− BD−1C)−1BD−1

−D−1C (A− BD−1C)−1 D−1 + D−1C (A− BD−1C)−1BD−1

)
. (B.7)

Let us define a a generalised version of the reduced temperature map and covariance matrix, which
we had introduced in eq. (3.72):

Trec
uncorr ≡ T −C∆T,∆P C−1

∆P∆P

Cuncorr ≡ A− BD−1C ≡ C∆T −C∆T,∆P C−1
∆P C∆P,∆T . (B.8)

Using these definitions and the blockwise matrix inversion,we first rewrite the exponent of
G(d − τ, C̃) in eq. (3.67):

(
∆T†,∆P†

)
C̃−1

(
∆T
∆P

)

= ∆T†C−1
uncorr∆T − ∆T†C−1

uncorrC∆T,∆P C−1
∆P∆P− ∆P†C−1

∆PC∆P,∆TC−1
uncorr∆T

+∆P†
(
C∆P +C−1

∆PC∆P,∆TC−1
uncorrC∆T,∆P C−1

∆P

)
∆P

= ∆T†C−1
uncorr∆T − ∆T†C−1

uncorr

(
C∆T,∆P C−1

∆P∆P
)
−

(
C∆T,∆P C−1

∆P∆P
)†

C−1
uncorr∆T

+∆P†C∆P∆P+
(
C∆T,∆P C−1

∆P∆P
)†

C−1
uncorr

(
C∆T,∆P C−1

∆P∆P
)

=
(
∆T −C∆T,∆P C−1

∆P∆P
)†

C−1
uncorr

(
∆T −C∆T,∆P C−1

∆P∆P
)
+ ∆P†C−1

∆P∆P

=
(
Trec

uncorr− Tτ
)†C−1

uncorr
(
Trec

uncorr− Tτ
)
+ ∆P†C−1

∆P∆P , (B.9)

where we have usedC†
∆T,∆P = C∆P,∆T , C†

∆T = C∆T , andC†
∆P = C∆P, and have completed the square

in the second last step. Similarly, using the factorizationof the determinant of a block matrix,

det

(
A B
C D

)
= |D| |A− BD−1C| , (B.10)
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we can rewrite the determinant of the covariance matrixC̃ as

|C̃| = |Cuncorr| |C∆P| . (B.11)

Inserting eqs (B.9) and (B.11) intoG(d − τ, C̃), allows us to write

G(d − τ, C̃) = G(Trec
uncorr− Tτ,Cuncorr)G(P− Pτ,C∆P) . (B.12)

In the case of the polarisation templatePτ being zero, this expression reduces to the one given in
eq. (3.74).
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Appendix C

C.1 Proof of vanishing correlation betweenTrec
corr and Trec

uncorr

We now prove that the two mapsTrec
corr andTrec

uncorr, into which we split the temperature mapT in
section 4.2, are indeed uncorrelated. Let us first look at thefollowing covariance matrices, which
we will need in the derivation:

CP ≡ 〈PP†〉P(P | p) =WSPW† + NP , (C.1)

where we have assumed thatPcmb is uncorrelated withPdet and Pfg, and we have inserted the
definition ofNP, eq. (4.5).

Since we neglect the detector noise and residual foregrounds in the temperature data, we obtain
for the covariance between temperature and polarization data

CT,P ≡ 〈T P†〉P(T,P | p) = 〈T Pcmb
†〉P(T,Pcmb | p)W

†

≡ ST,PW† , (C.2)

where we have assumed that detector noise and residual foregrounds in the polarization map are
uncorrelated with the CMB temperature map.

We now write

Trec
corr = ST,P S−1

P Prec
cmb

= ST,PS−1
P (S−1

P +W†N−1
P W)−1W†N−1

P P

= ST,P(1+W†N−1
P WSP)−1W†N−1

P P

= ST,PW†(1+ N−1
P WSPW†)−1N−1

P P

= ST,PW†(NP +WSPW†)−1P

= CT,PC−1
P P , (C.3)

where we have insertedPrec
cmb from eq. (4.7) in the first step. The third step can be easily verified

by using the geometric series for
(
1+W†N−1

P WSP

)−1
W†, which has a convergence radius of 1, and

is thus valid for|W†N−1
P WSP| < 1. In our case, this holds because our polarization data are noise-

dominated.1 Note that we have just proven that the Wiener reconstructionof Pcmb translated into a
temperature map, eq. (4.9), is equivalent toTrec

corr as given in eq. (3.73). We have proven it here for
a zero signal template,Tτ = 0, but the proof for a non-zero signal template can be done in the same

1By adding a smallǫ-term to the responseW, and thus making it invertible, the third step also holds generally.
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way.

Let us now look at

〈Trec
uncorrT

rec
corr
†〉P(T,P | p) = 〈TTrec

corr
†〉P(T,P | p) − 〈Trec

corrT
rec
corr
†〉P(T,P | p)

= 〈T P†〉P(T,P | p)(NP +WSPW†)−1WSP,T

−ST,PW†(NP +WSPW†)−1〈PP†〉P(P | p)

(NP +WSPW†)−1WSP,T

= ST,PW†(NP +WSPW†)−1WSP,T

−ST,PW†(NP +WSPW†)−1(NP +WSPW†)

(NP +WSPW†)−1WSP,T

= ST,PW†(NP +WSPW†)−1WSP,T

−ST,PW†(NP +WSPW†)−1WSP,T

= 0 , (C.4)

where we have inserted eqs (C.3), (C.1), and (C.2). This proves thatTrec
uncorr and Trec

corr are
uncorrelated. QED

C.2 Proof of vanishing correlation betweenPcorr and Prec
uncorr

For the splitting of the polarization map, we first prove thatthe unfiltered uncorrelated map defined
in eq. (4.15),Praw

uncorr, is uncorrelated withPcorr:

〈Praw
uncorrPcorr

†〉P(T,P | p) = 〈PPcorr
†〉P(T,P | p) −W〈PcorrPcorr

†〉P(T,P | p)

= 〈PT†〉P(T,P | p)S
−1
T ST,P

−WSP,TS−1
T 〈TT†〉P(T,P | p)S

−1
T ST,P

= WSP,TS−1
T ST,P −WSP,TS−1

T STS−1
T ST,P

= WSP,TS−1
T ST,P −WSP,TS−1

T ST,P

= 0 . (C.5)

From the above, we readily obtain that also the Wiener filtered uncorrelated map,

Prec
uncorr = [(SP − SP,TS−1

T ST,P)−1 +W†N−1
P W]−1

W†N−1
P Praw

uncorr,

is uncorrelated withPcorr:

〈Prec
uncorrPcorr

†〉P(T,P | p) = [(SP − SP,TS−1
T ST,P)−1 +W†N−1

P W]−1

W†N−1
P 〈Praw

uncorrPcorr
†〉P(T,P | p)

= 0 . (C.6)

QED
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C.3 Probability for chance alignment in an isotropic universe

We would like to assess whether the rough alignment of the axis of the quadrupole inPrec
uncorractually

provides us with some information about the axis of evil. We therefore compute the probability for
at least one of the axes ofPrec

uncorr aligning with the axis of the temperature map in an isotropic
universe. To this end, let us take the preferred axis in the temperature mapT as given, and assume
that the axes ofPrec

uncorr are distibuted isotropically over the sky and independently from each other.
We then work out the probability for at least one of the axes ofPrec

uncorrbeing such that the axis of the
temperature map is included in the 1σ region around it.

For simpliticy, we assume that the the 1σ regions are symmetric circles around the axes, with
radiusσ ≈ 45◦ for both the quadrupole and the octopole. The solid angleA spanned by such a 1σ
region is well approximated byA ≈ πσ2.2 The probability of at least one of the 1σ regions hitting
the axis of evil is just the solid angle spanned by the two 1σ regions divided by the solid angle of the
hemisphere, 2π. However, the solid angle spanned by the two 1σ regions depends on the overlap
B between them, it is 2A − B to avoid double counting of the overlapping area. Given the angular
separationα between the axes of the quadrupole and the octopole, the overlap can be computed as
follows:

B(α) = 2

σ2 arccos
(
α

2σ

)
− α

2

√
σ2 − α

2

4

 , (C.7)

which can be derived from the geometry of the problem in flat-sky approximation. We marginalize
the hitting probability over the overlapB(α), using the fact thatα is distributed asP(α) = sin(α)
(de Oliveira-Costa et al. 2004):

P(hit) =
∫ π/2

α=0
P(hit | B(α))P(α) dα

=

∫ π/2

α=0

2A− B(α)
2π

sin(α) dα ≈ 50%. (C.8)

2This flat-sky approximation differs from the actual value of the solid angle by 6 per cent.
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Appendix D

D.1 Inversion of the parameter transformation

In the following, we present a technique of inverting the parameter transformation of Sec. 5.3.2 to
compute the cosmological parameters given the normal parameters. The normal parameterh2 in
terms of cosmological parameters is given by

h2(wm,wb) = 0.0264w−0.762
b exp

(
−0.476[ln(25.5wb + 1.84wm)]2

)
. (D.1)

We solve this equation forwm as a first step:

wm(h2,wb) =

exp

±
[
− 1

0.476
ln

(
h2

0.0264
w0.762

b

)]1/2
 − 25.5wb


1

1.84
. (D.2)

Inconveniently, there exist two different solutions forwm(h2,wb), which complicates the inversion.
We now substitutewm in h3(wm,wb) (5.27) for (D.2) and thus obtainh3(h2,wb), which, of course,
has two solutions as well. An example of the two branches ofh3(h2,wb) for h2 = 0.45 is depicted
in Fig. D.1. We can calculate the critical point where only one solution exists using the condition

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9
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Figure D.1: The two branches ofh3 versuswb for h2 = 0.45.
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− 1
0.476

ln

(
h2

0.0264
w0.762

b

)
= 0 , (D.3)

as can be seen from (D.2). This condition gives us the following formulae for the parameter values
at the critical point:

wb,crit(h2) =

(
0.0264

h2

)1/0.762

, (D.4)

wm,crit(h2) =
(
1− 25.5wb,crit

) 1
1.84

, (D.5)

h3,crit(h2) = 2.17

(
1+

(wb,crit

0.044

)2
)−1

w0.59
m,crit

(
1+ 1.63

(
1− wb,crit

0.071

)
wm,crit

)−1
. (D.6)

The two parametersh2 andh3 can now be inverted towm andwb. For a givenh2, we expressh3

in terms ofh2 andwb, as described above. We then useh3,crit(h2) to choose the upper branch of
h3(h2,wb) if our givenh3 is bigger thanh3,crit(h2), and the lower branch if it is smaller. Using the
respective branch ofh3(h2,wb), we search numerically inwb until h3(h2,wb) matches the givenh3.
Substituting that value ofwb into equation (D.2), we readily obtain the value forwm.

Now it is straightforward to compute the values forns andAs from t andA∗. To obtainh from
Θs, we follow the procedure suggested by Kosowsky et al. (2002), expressingΘs in terms ofh in
terms ofh and then searching inh numerically untilΘs(h) matches the given value ofΘs.
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Castãno-Mart́ınez, A. & López-Bĺazquez, F. 2007, Test, 14, 397
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Vielva, P., Mart́ınez-Gonźalez, E., Barreiro, R. B., Sanz, J. L., & Cayón, L. 2004, ApJ, 609, 22
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