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SUMMARY 
 
The reactions and factors participating during oxygenic photosynthesis in higher 

plants, algae and photoautotrophic bacteria are well known and understood. The high 

complexity of the photosynthesis reaction center subunits in the thylakoid membrane 

longs for a highly structured and organized assembly process. Several assisting 

factors have been described, which play important roles during biogenesis, which 

concerning its spatial organization is less understood. TPR proteins contribute to 

numerous steps during complex assembly and thylakoid biogenesis, by acting on 

RNA, protein or pigment level. 

The present work aims to elucidate the function of two TPR proteins from the 

cyanobacterium Synechocystis sp. PCC6803 (Synechocystis). 

The first one is the already described PratA factor, a periplasmic protein which 

was shown to interact with the C-terminal extension of the PSII core protein D1. 

Furthermore, the finding that the precursor of D1 accumulates in the absence of 

PratA, suggested a supporting role of PratA for the CtpA protein during the essential 

proteolytic processing of the C-terminal extension. To further characterize PratA and 

its interaction with D1 several molecular and biochemical approaches were carried 

out. The data, achieved by Yeast Two-Hybrid and GST-pulldown analyses, show that 

PratA interacts with the soluble C-terminus of the precursor as well as the mature D1 

protein, indicating a different function of PratA from that stated earlier. Furthermore, 

the results suggest the existence of a novel membrane subfraction, to which 20 % of 

PratA is associated, due to its interaction with D1. This special membrane 

subfraction, which is neither plasma- nor thylakoid membrane, was analyzed in more 

detail. It seems that a connecting region between both membranes exists, where we 

propose several initial steps of thylakoid biogenesis in Synechocystis occur.  

The second protein investigated in this work is the former undescribed TPR 

protein encoded by ORF slr1644, named Pitt. A systematic Yeast Two-Hybrid 

approach suggested an interaction between Pitt and the light-dependent 

protochlorophyllide oxidoreductase (POR) (Sato et al. 2007). The present work 

carries out the initial characterization of Pitt, concerning its possible role in 

photosynthesis. Analysis of the phenotype in a pitt-mutant reveals clear defects in the 

photosynthetic performance compared to wildtype cells. In addition, the resulting data 

validate the interaction of Pitt and POR and show that in the absence of Pitt the POR 
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content as well as the chlorophyll synthesis is reduced in the respective mutant. 

Finally, in a pitt-mutant pD1 accumulates in the special membrane subfraction, as 

also shown for a pratA-mutant, suggesting also for Pitt a role during assembly of 

photosynthetic complexes. 

The present study gives insights in the mechanisms underlying the spatial 

organization of thylakoid membrane biogenesis in Synechocystis and reveals the 

roles of two TPR proteins during complex assembly with respect to polypeptide 

subunits and pigments, respectively. 
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ZUSAMMENFASSUNG 
 
Die Abläufe der Photosynthese in höheren Pflanzen, Algen und photoautotrophen 

Bakterien sind weitestgehend aufgeklärt und die wichtigsten beteiligten Faktoren sind 

ausführlich beschrieben. Der Assemblierungsprozess der Untereinheiten der 

photosynthetischen Reaktionskomplexe in der Thylakoidmembran ist höchst komplex 

und verlangt einen strukturierten und organisierten Ablauf. An der Biogenese sind 

zahlreiche unterstützende Faktoren beteiligt, wobei jedoch die räumliche 

Organisation dieser Prozesse nicht aufgeklärt ist. TPR Proteine sind an vielen Stufen 

der Komplex-Assemblierung und der Biogenese der Thylakoidmembran beteiligt, 

sowohl auf RNA- und Protein- als auch auf der Ebene der Pigmentsynthese.  

In der vorliegenden Arbeit sollten die Funktionen zweier TPR Proteine aus 

dem Cyanobakterium Synechocystis sp. PCC6803 (Synechocystis) untersucht 

werden.  

Das erste Protein ist das bereits beschriebene PratA Protein, ein 

periplasmatisches Protein, das mit der C-terminalen Extension des PSII Kern-

Proteins D1 interagiert. Die Tatsache, dass das Vorläuferprotein von D1 in der 

Abwesenheit von PratA akkumuliert, deutet auf eine unterstützende Funktion von 

PratA, während der essentiellen proteolytischen Prozessierung der Extension durch 

CtpA hin. Um PratA genauer zu charakterisieren und die Interaktion mit D1 zu 

bestätigen, wurden verschiedene molekulare und biochemische Versuchsansätze 

durchgeführt. Hefe-2-Hybrid- und „GST-Pull-Down“-Analysen zeigen, dass PratA mit 

dem löslichen C-Terminus sowohl des Vorläufer- als auch des maturen D1 Proteins 

interagiert, was auf eine abweichende als bisher vermutete Funktion von PratA 

schließen lässt. Weiterhin deuten die Ergebnisse darauf hin, dass etwa 20 % von 

PratA durch die Interaktion mit D1 an eine bisher unbekannte Membranfraktion 

assoziiert ist. Untersuchungen dieser Fraktion, die weder Plasma- noch 

Thylakoidmembran ist, werfen die Idee einer Verbindungsregion zwischen beiden 

Membrantypen auf, in der anfängliche Prozesse der Thylakoidmembran Biogenese 

in Synechocystis abzulaufen scheinen.  

Das zweite in dieser Arbeit untersuchte TPR Protein ist das bisher 

unbeschriebene, durch den Leserahmen slr1644 kodierte Protein, genannt Pitt. Ein 

umfassender Hefe-2-Hybrid Ansatz weist auf eine Interaktion zwischen Pitt und der 

licht-abhängigen Protochlorophyllid-Oxidoreduktase (POR) hin (Sato et al. 2007). Die 
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vorliegende Arbeit zielt darauf ab, eine erste Charakterisierung von Pitt bezüglich 

einer möglichen photosynthetischen Funktion durchzuführen. Phenotypische 

Untersuchungen der pitt-Mutante zeigen deutliche Beeinträchtigungen der 

photosynthetischen Aktivität im Vergleich zum Wildtyp. Zusätzlich bestätigen die 

Daten die Interaktion zwischen Pitt und POR und dass in Abwesenheit von Pitt 

sowohl der POR-Gehalt als auch die Chlorophyll Neusynthese reduziert sind. 

Schließlich, akkumuliert in der pitt-Mutante, wie auch in der pratA-Mutante, pD1 in 

der der „neuen“ Membranfraktion, was ebenfalls für Pitt eine Funktion während der 

Assemblierung der photosynthetischen Komplexe nahe legt.  

In der vorliegenden Arbeit wird die Funktion zweier TPR Proteine bei der 

Assemblierung der Protein- und Pigmentuntereinheiten in die Photosynthese-

Komplexe untersucht. Die Ergebnisse liefern Erkenntnisse über die räumliche 

Organisation, die der Biogenese der Thylakoidmembran in Synechocystis zugrunde 

liegt. 
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INTRODUCTION 
 
Photosynthesis 
The prerequisite for evolution of life on earth as we know it today was oxygenic 

photosynthesis. This essential process utilizes light energy to produce chemical 

energy on which all higher life on earth depends. Cyanobacteria invented this 

process 2.8 billion years ago and thus changed life on Earth to a maximum extent 

(Xoing & Bauer 2002). In the course of evolution, an ancestor of nowadays 

cyanobacteria was taken up by a primitive eukaryotic host cells and differentiated to 

the photosynthetic plastid, called chloroplast, of recent algae and higher plants. Even 

today cyanobacteria provide up to 30 % of the oxygen production on Earth per year 

and therefore are very important organisms for our ecosystem. 

Photoautotrophic organisms absorb light energy, build up a proton gradient 

across the membrane and finally produce ATP. In further steps the ATP is used to 

produce sugar from carbon dioxide which is reduced to carbohydrate in the Calvin 

cycle. Especially sugars are used as energy and storage source for photoautotrophic 

organisms. The electrons needed for building up the proton gradient derive from the 

splitting of water and as a by-product oxygen is produced and released to the 

atmosphere. The formula for the photosynthesis occurring in plants, algae and 

cyanobacteria is as followed: 

 

         6CO2 + 6H20 --> 6O2 + C6H12O6 + 6H2O 

 

The resulting carbohydrates provide the energy for respiration of all heterotrophic 

organisms and furthermore, it is an important source as fossil fuel for energy delivery 

for mankind. 

 

 

The light reactions of photosynthesis which comprise capture of light energy, water-

splitting, electron transport chain, proton gradient and production of ATP occur at a 

specialized membrane system, called thylakoid membrane. This membrane 

compartment in chloroplasts and cyanobacteria owes its name the greek word 

thylakos, meaning something like „sack“, due to its ultrastructure (Menke 1962). The 

thylakoid membranes enclose the thylakoid lumen. This membrane compartment 
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exhibits some ultrastructural differences between cyanobacteria and chloroplasts. 

While in cyanobacteria thylakoids are homogeneous arranged in 3 to 8 membrane 

bilayers, the membranes in chloroplast are organized in grana stacks and stromal 

lamella. Despite those structural differences thylakoid membranes of both house four 

big multi-subunit complexes, the photosystem I and II (PSI and PSII), cytochrome b6f 

complex and the ATP-synthase (shown in Figure 1). 

 
Figure 1: Model of the thylakoid membrane with embedded multi-subunit complexes PSII, cytochrome 

b6f, PSI and ATPase. Additionally, the soluble electron carrier plasocyanin (Pc) and Ferredoxin (Fd) 

and the ferredoxin-NADP+ oxidoreductase (FNR) are shown (Nelson & Yocum 2006, modified). 

 

 

Light energy is absorbed by a chlorophyll a-dimer, called P680, embedded in PSII. 

Electrons are released into the electron transport chain and transferred to 

plastoquinone A (QA). Then plastoquinone B (QB) is reduced and builds up the 

plastoquinone pool in the membrane. After that electrons are transferred to the 

luminal carrier plastocyanin via the cytochrome b6f-complex (Kurisu et al. 2003; 

Stroebel et al. 2003). The next complex PSI is composed of 12 subunits. The major 

subunits are the proteins PsaA and PsaB, which share similar structure with the PSII 

core proteins D1/D2, indicating a common ancestor of both. Light-energy is captured 

by a chlorophyll pair, called P700, in PSI. This multi-subunit complex takes up the 

reduced plastocyanin and passes the electrons over to the stromal located 

ferredoxin. Electrons are then transferred to the ferredoxin-NADP+ oxidoreductase 

(FNR) (Saenger et al. 2002; Golbeck 2003). This enzyme drives the reduction of 
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NADP to NADPH. The fourth membrane-bound complex, the ATP-synthase, uses 

the proton-motive force, due to charge separation and electron transport to 

synthesize ATP. Finally, ATP is used in the photosynthetic dark reaction, where 

carbon dioxide is fixed to generate sugars.  

 

 

 

Photosystem II 
The multi-protein complex PSII, which is active as a dimer in the thylakoid 

membrane, provides the reactions occurring at the thylakoid membrane with 

electrons by splitting water and is therefore unique and absolutely necessary. 

The PSII consists of at least 19 protein subunits and numerous co-factors, for 

example 35 to 40 chlorophylls and 8 to 12 carotenoids (Ferreira et al. 2004; 

Nickelsen et al 2007). The first crystals of PSII, generated from T. elongatus, 

delivered the first X-ray model of PSII (Zouni et al. 1998; Zouni et al. 2000). Today 

there are several structures of PSII available in a 3.7 to 3.0 A resolution (Fromme et 

al. 2002; Loll et al. 2005). All structural data provide insights into the structure of the 

core of PSII with the proteins D1 and D2 and additionally their antenna membrane 

proteins CP47 and CP43. Furthermore the characteristics of the water-splitting 

apparatus with the proteins PsbO, PsbP and PsbQ could be investigated.  

The antenna associated to PSII captures the light energy and directs it to the 

reaction center (RC) where the electron transport chain is located. Antenna proteins 

in thylakoids of chloroplast are membrane-bound protein complexes, called light-

harvesting complexes (LHC); on the other hand the light energy in cyanobacteria is 

absorbed by so called Phycobilisomes. These phycobilisomes are membrane 

attached proteins, which constitute to about 40 % of the dry mass of a cyanobacterial 

cell (Hankamer et al. 2001; Anderson & Toole 1998). 
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Figure 2: Structure and subunit composition of cyanobacterial PSII. The electron flow occurring at PSII 

is depicted with black arrows (Hankamer et al. 2001). 

 

 

The core proteins D1 and D2 provide the energy conversion process with all needed 

redox active cofactors (Barber 2008). In detail, the exited P680 (4 chlorophylls in the 

center of the D1/D2 proteins) primary electron donor, provides the electrons to 

pheophytin (pheo) and plastoquinone (QA) and finally to QB. The resulting electron 

gap in P680 is filled by an electron derived from the redox active Tyrosin Z of the D1 

protein (D1-Tyr161, YZ). The Tyrosin Z for its part is supplied by electrons from the 

water-splitting manganese-cluster, which consists of four Mn atoms and one Ca 

atom. The oxygen-evolving-complex (OEC) is located at the luminal side of PSII and 

drives the conversion of water into electrons and oxygen as a by-product (Barber & 

Murray 2008). But the mechanism of water oxidation and the exact structure of the 

OEC are still under debate. 
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Photosystem II reaction-center protein D1 
The above described reactions, especially the high redox potential of P680 and the 

creation of reactive oxygen species, cause severe photodamage on the components 

of PSII. The core protein D1 is affected in highest degree, because it harbours the 

majority of the functional sites for the electron chain (Barber & Andersson 1992). 

The psbA gene product D1 is synthesized as a precursor protein (pD1) with a 

C-terminal extension of 8-16 amino acids for most photoautotrophic organisms, 

except a few species (for a review see Satoh & Yamamoto 2007). This extension on 

the C-terminus seems to play a protective role against oxidative damage during 

assembly of the core protein into the PSII complex (Kuvikova et al. 2005). Albeit it 

could be shown that it is not a necessary feature of the D1 protein for the viability of 

the cells; mutants without this extension are also able to assemble fully functional 

PSII. In long-term mixed-culture approaches, otherwise, in which the fitness of 

extension-less mutants was compared to control strains, it turned out that especially 

under high-light conditions the presence of the extension enhances the fitness of the 

wild-type strain (Ivleva et al. 2000). 

During maturation of PSII the D1-extension is posttranslational cleaved off by 

a C-terminal peptidase, called CtpA as shown in Figure 3 (Shestakov et al. 1994).  

 

 
 

Figure 3: Membrane topology of the D1 protein. A-E mark the five transmembrane domains of the 

protein and furthermore the location of the N- and C-terminus are shown. The C-terminus is magnified 

and the cleavage-site for the CtpA protease is indicated. 
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The CtpA protein is soluble or loosely membrane-associated in the lumen of 

thylakoids (Bowyer et al. 1992; Fujita et al. 1995). Interestingly, in Synechocystis sp. 

PCC6803 (hereafter referred to as: Synechocystis) it is exclusively located at the 

plasma membrane and it was proposed that the periplasmic PratA factor supports 

CtpA in the D1-processing reaction (Zak et al. 2001; Klinkert et al. 2004). This led to 

new ideas concerning the location of complex assembly as discussed later.  

The processing is an essential event in the cells. In the absence of the CtpA 

protease, pD1 is incorporated in the PSII complex, which on the one hand mediates 

electron transfer reactions, but is not able to catalyze water oxidation (Anbudurai et 

al. 1994). Today, the need of a processed D1 protein for attachment/assembly of the 

manganese-cluster to photosystem II is approved in general (Nixon et al. 1992; 

Cohen et al. 2007). 

 

 

The core protein D1 is prone to extensive oxidative damage and has to be replaced 

by a newly synthesized copy. The light-induced turnover of this protein is intensively 

studied since decades in different organisms (Mattoo et al. 1981; Wettern & Ohad 

1984; Ohad et al. 1985; Hoffman-Falk et al. 1983). During this repair cycle the PSII 

complex is disassembled, and specific proteases have access to the photodamaged 

D1 protein. After monomerization, it has been shown that Mn atoms, extrinsic PSII 

subunits of the OEC and CP43 are released during the repair process (Andersson & 

Styring 1991; Nixon et al. 2005). The damaged D1 protein then undergoes a 

conformational change and the stromal located DegP2 protease cuts D1 into a 23 

kDa and a 10 kDa fragment. The 23 kDa fragment is then further degraded by the 

FtsH-protease, while DegP1, DegP5 and DegP8 cleave D1 fragments exposed to the 

luminal side. An alternative model is discussed, which proposes that FtsH alone is 

able to degrade damaged D1 protein (Adam & Clarke 2002; Huesgen et al. 2009). 

After removal of the D1 fragments, a newly synthesized copy of the D1 protein is 

inserted and finally the complex reassembles all subunits and cofactors and gains 

back its active dimeric form (Barber & Andersson 1992; Nixon et al. 2005; Huesgen 

et al. 2009).  
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Chlorophyll synthesis 
The function of oxygenic photosynthesis not only depends on the supply of 

polypeptides for the complex subunits, the synthesis and incorporation of pigments is 

indispensable, too. Chlorophylls are the major pigments in PSII. They belong to the 

family of cyclic tetrapyrroles. In photosynthetic organisms the synthesis of chlorophyll 

is performed via a common tetrapyrrole biosynthetic pathway (Vavilin & Vermaas 

2002). The precursor for all tetrapyrroles is 5-aminolevulinic acid (ALA), which is 

synthesized from glutamate in the C5-pathway (Beale 1999). In the course of several 

enzymatic reactions protoporphyrin IX (Proto-IX) is synthesized out of eight 

molecules ALA. The incorporation of Mg2+ finally leads to the chlorophyll synthesis 

branch (Chew & Bryant 2007). The binding of a monoethylester to Mg-proto-IX, 

which is performed by the Mg-protoporphyrin-IX methyltransferase under the 

presence of NADPH and oxygen forms protochlorophyllide (PChlide) (Porra 1997). 

The final steps of chlorophyll synthesis, namely the reduction of protochlorophyllide 

to chlorophyllide by the membrane-associated NADPH-PChlide oxidoreductase 

(POR) is the most studied reaction in this pathway. While in angiosperms the 

reaction is exclusively catalyzed in a light-dependent manner (Masuda et al. 1994), in 

cyanobacteria, algae and non-vascular plants an additional structural unrelated 

enzyme, the light-independent POR (DPOR) drives the reduction of PChlide in the 

dark (Armstrong 1998). The POR belongs to the family of short-chain alcohol 

dehydrogenases and catalyzes the trans addition of hydrogen from NADPH across 

the C17-C18 double bond in the D ring of PChlide (Baker 1994). Finally, the 

esterification of the resulting chlorophyllide with a phytyl by the chlorophyll synthase 

completes the chlorophyll a synthesis (Ruediger et al. 1977). At least for plants, it is 

shown that the biosynthesis of chlorophyll from glutamate takes place exclusively in 

the chloroplast. Most enzymes are either bound to the envelope or are soluble in the 

stroma. An exception is the last step; the esterification is located to the thylakoid 

membrane (Joyard et al. 1998). 
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(A)                                                                      (B) 

   

 
      
Figure 4: Chlorophyll synthesis pathway. (A) Complete pathway from glutamate to chlorophyll a. 

Incorporation of Mg leads to the chlorophyll branch, while incorporation of Fe to the heme branch. (B) 

Detailed view on the reaction performed by the POR and DPOR (encoded by chlL, N, B), respectively 

(Suzuki & Bauer 1995). 

 

 

 

Biogenesis of thylakoid membranes 
The assembly of the multi-subunit complexes must follow a concerted fashion of 

polypeptide and pigment subunits together with several trans-acting factors. These 

factors are not part of the fully assembled complexes, but are transiently bound to 

specific subunits during their assembly steps. Factors for both active complexes (PSI 

and PSII) are described and studied to a huge extent. 

 

 

 

Assembly factors of PSI 
For the cyanobacterial PSI the trans-acting factors Ycf4, Ycf3 and Ycf37 have been 

described recently. In the chloroplast of green algae and higher plants the factor Ycf4 

was shown to be essential for stable accumulation of PSI (Boudreau et al. 1997; Ruf 

et al. 1997). The cyanobacterial homologue of the plastid-encoded factor was 
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identified in Synechocystis. It is encoded by the open reading frame sll0226, and also 

seems to be involved in PSI assembly in the cyanobacterium (Wilde et al. 1995). 

Astonishingly, in the absence of this protein fully active PSI complexes are formed in 

Synechocystis. This discrepancy between cyanobacterial and chloroplast Ycf4 

protein might be due to a functional shift during evolution. Just recently, it was shown 

that in Chlamydomonas reinhardtii Ycf4 together with COP2 and several PSI 

subunits build a large complex of 1500 kDa that seems to represent a scaffold for 

PSI assembly (Ozawa et al. 2009). 

The assembly factor Ycf3 belongs to the family of the so-called 

tetratricopeptide repeat proteins (for detail, see chapter “TPR proteins and 

photosynthesis”). It is an essential thylakoid membrane associated protein in C. 

reinhardtii and N. tabacum (Boudreau et al. 1997; Ruf et al. 1997). Interestingly, the 

PSI subunits PsaA and PsaD directly interact with the Ycf3 protein and temperature 

shift experiments revealed a function in assembly and not in stability of photosystem I 

(Naver et al. 2001). The cyanobacterial homologue is essential for PSI functionality, 

but in contrast to the chloroplast-encoded Ycf3 protein in Synechocystis it is 

associated to the plasma membrane, indicating a role during initial steps of complex 

assembly (Zak et al. 2001). 

A second TPR protein, containing three TPR units, involved in biogenesis of 

cyanobacterial PSI is encoded by the open reading frame slr0171. In contrast to 

Ycf3, the Ycf37 protein does not exhibit essential functions in Synechocystis (Wilde 

et al. 2001). In a deletion mutant of Ycf37 a decrease of the trimeric PSI form is 

visible, but no significant effect on the photosynthetic activity could be estimated 

(Duehring et al. 2006). Recently, it was shown that in Synechocystis three 

monomeric forms of PSI exist, the complete one, the PsaL/PsaK-less and the 

monomer lacking the PsaK protein. Duehring and co-workers provide evidence that 

the subunit PsaK is incorporated as one of the last subunits into PSI (Duehring et al. 

2007). The same is true for PsaK in C. reinhardtii (Hippler et al. 2002). Interestingly, 

both novel PSI monomers are missing in an ycf37-mutant, raising the idea that Ycf37 

protein is involved in the latest steps of PSI assembly. The fact that, in contrast to the 

proteins Ycf3 and Ycf4, Ycf37 is exclusively associated to the thylakoid membrane 

supports its role as a trans-acting factor in the late steps of PSI formation. 
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Assembly factors of PSII 
The photosystem II holds a greater complexity than PSI and thus, more factors 

important during assembly are described and studied. 

One well studied factor is the luminal HCF136. This factor is essential for PSII 

activity in A. thaliana (Meurer et al. 1998). It was shown that HCF136 is part of an 

early PSII complex, consisting at least of D2 and cyt-b559 (Pluecken et al. 2002). 

The cyanobacterial homologue (slr2034) in Synechocystis is associated to this 

precomplex in vivo, too and there is some evidence that it is involved in the 

incorporation of newly synthesized pD1 protein into this complex. Komenda and co-

workers showed in Yeast Two-Hybrid experiments that the HCF136 factor interacts 

with the precursor form of the D1 protein before its assembly to the precomplex and 

that in the absence of the factor HCF136 the pD1 is quite unstable. Furthermore, 

they found that HCF136 is also important for stability of PSII after assembly and 

replacement of damaged D1 during the repair cycle, indicating a dual role for the 

HCF136 protein in the early assembly and the repair of PSII (Komenda et al. 2008). 

A further TPR-protein which acts as a biogenesis factor of thylakoid 

membranes is the PratA factor, encoded by slr2048 in Synechocystis (Klinkert et al. 

2004). In a pratA-mutant the content of PSII is reduced, but cells are still viable. The 

mutant cells accumulate a high amount of the unprocessed form of the pD1 protein, 

suggesting a role for PratA protein in the maturation of the D1 protein and a 

supporting function of the CtpA protein is discussed. Intriguingly, the periplasmic 

PratA protein was shown to directly interact with pD1 in vitro, supporting the idea that 

early steps of biogenesis occur at the plasma membrane. 

Furthermore, the Oxa1 homologue of Synechocystis Slr1471p interacts with 

the pD1 as well (Ossenbuehl et al. 2006). It belongs to the family of Oxa1/Alb3/YidC 

proteins which appear to be involved in the integration and assembly of membrane 

complexes. In Synechocystis this protein is essential for thylakoid biogenesis 

(Spence et al. 2004) and further studies revealed a function for correct membrane 

integration, folding and assembly of pD1 to the early PSII complex (Ossenbuehl et al. 

2006). 

The complete and correct assembly of PSII depends on another protein, called 

Psb27. It is a bacterial lipoprotein and was detected in PSII complexes of 

Synechocystis (Roose & Pakrasi 2004). This factor is associated to the luminal side 

of PSII and is important for assembly of the Mn4-cluster to PSII during de novo and 
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repair cycle synthesis (Nowaczyk et al. 2006; Roose & Pakrasi 2007). Recent studies 

presented a model in which the Psb27 protein prevents the binding of the luminal, 

extrinsic PSII subunits PsbO, PsbU, PsbV and PsbQ to allow efficient access of 

manganese, calcium and chloride atoms to the Mn4-cluster. After complete assembly 

of the cluster Psb27 protein disassembles and the missing subunits attach to PSII 

(Roose & Pakrasi 2007; Cormann et al. 2009). 

A factor, also detected in substantial amounts during PSII preparations is the 

Psb28 protein (Kashino et al. 2002). Contrarily, in recent structural studies of 

cyanobacterial PSII this protein was not identified (Ferreira et al. 2004; Loll et al. 

2005). Nevertheless, it could be shown that Psb28 protein is part of the PSII complex 

lacking CP43 (RC47) in Synechocystis (Dobáková et al. 2009). In addition, Psb28 is 

not essential for photosynthetic activity, but in pulse-labelling experiments a retarded 

synthesis of the CP47 protein and interestingly, the PsaA and PsaB proteins was 

obvious. These findings indicate a role of the Psb28 protein for both PSII and PSI as 

well. Additionally, in the psb28-mutant an accumulation of intermediates during 

chlorophyll synthesis, especially protoporphyrin IX methylester, was shown. Taken 

together, a participation of the Psb28 protein for synthesis of chlorophylls and/or 

chlorophyll-binding proteins CP47 and PsaA/PsaB is possible (Dobáková et al. 

2009). 

A further protein detected in the analysis of PSII preparations was Psb29 

(Kashino et al. 2002). This conserved 22 kDa protein is involved in PSII biogenesis in 

Synechocystis and A. thaliana. Its inactivation led to increased sensitivity to high-light 

and a lower PSII efficiency in both organisms (Keren et al. 2005). Thus, indicating a 

conserved function during evolution of photosynthetic organisms. Furthermore, 

caused by either incomplete assembly during biogenesis or incorrect disassembly 

during the repair cycle of PSII, the proximal antenna proteins accumulated (Keren et 

al. 2005). However, the exact function of the Psb29 protein still has to be elucidated. 

The GUN4 protein of Synechocystis has been shown to be important for 

chlorophyll synthesis and assembly of photosynthetic complexes (Sobotka et al. 

2008). This protein belongs to the family of porphyrin-binding proteins, activating the 

Mg-chelatase, which drives one of the first steps in the chlorophyll synthesis branch. 

In higher plants several GUN proteins (genome uncoupled) have been identified and 

seem to be involved in retrograde-signaling from plastid to nucleus (Susek et al. 

1993). GUN4 related proteins are unique for photoautotrophs. Studies in 
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Synechocystis show that the GUN4 protein is essential for photoautotrophic growth 

(Wilde et al. 2004). Mutants are characterized by a decreased chlorophyll synthesis 

and incomplete assembly of both photosystems. The major deficiency was visible for 

PSII, due to a decreased accumulation of CP47 protein, which is affected by changes 

in the availability of chlorophyll in highest degrees (Sobotka et al. 2008). This study 

suggests, as already stated earlier (e.g. He & Vermaas 1998), a dependence of 

proper PSII assembly on the presence of pigments. 

A more general factor involved in PSII assembly is MapA. The MapA protein is 

a methionine aminopeptidase (MetAP) important for the essential cleavage of the N-

terminal methionine residue from newly synthesized proteins. This N-terminal 

excision (NME) pathway occurs in all kingdoms of life (Giglione et al. 2003). Most 

bacteria exhibit one map gene encoding a MetAP, in Synechocystis, there are even 

three, encoded by mapA, mapB and mapC. Activity assays revealed that the MapC 

protein is the major MetAP, while the MapB and MapA proteins displayed no or only 

a moderate activity, respectively (Atanassova et al. 2003). The MapA protein offers a 

specialized function during stress conditions. This protein is proposed to be important 

for the synthesis of functional photosynthetic complexes, if cells are exposed to 

nitrogen-starvation or high-light stress (Drath et al. 2009). It has already been shown 

that upon inactivation of the MetAP in the green algae C. reinhardtii the assembly of 

PSII was impaired (Giglione et al. 2003). Site-directed mutagenesis of the MapA 

protein in Synechocystis revealed an alteration in the QB binding pocket, even under 

non-stress conditions. This observation suggests a conformational change in the D1 

protein or another PSII subunit, which indirectly affects the QB pocket (Drath et al. 

2009). First biochemical approaches indicate an incomplete assembly and 

accumulation of free CP47 protein (Schottkowski, Forchhammer, Nickelsen, 

unpublished results). 

 
 
 
Spatial organization of thylakoid biogenesis in cyanobacteria 
Today a lot of structural data of the photosynthesis complexes is available (Nelson & 

Ben-Shem 2004). Even subunits and actions occurring along the thylakoid 

membrane are elucidated quite well. Otherwise, less is known about the spatial 

organization of thylakoid biogenesis. Of course, fully functional complexes are 
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integrated in the thylakoid membrane of cyanobacteria, but several recent studies 

provide evidence that the early steps of biogenesis may occur at the cyanobacterial 

plasma membrane.  

Efficient separation techniques (sucrose density centrifugation in combination 

with aqueous two-phase partitioning) helped to yield pure plasma and thylakoid 

fractions and it was shown that the protein CtpA is present in the plasma membrane 

fraction, exclusively (Zak et al. 2001). As the CtpA protein is essential for the 

maturation of pD1 and thus for proper assembly of the oxygen-evolving-complex to 

PSII, this early step of biogenesis cannot occur in the thylakoids (Zak et al. 2001). In 

addition the complex subunits D2, cytochrome b559, PsaA and PsaB are found not 

only in the thylakoids but also in the plasma membrane fraction. The above 

mentioned assembly factors Ycf3 and Ycf4 are also located in the plasma membrane 

exclusively. Finally, contamination of cytoplasmic membrane preparations with 

thylakoids could be excluded because the PSII antenna proteins CP43 and CP47 are 

detected in the thylakoid fraction merely (Zak et al. 2001). 

A further piece of evidence provides the study of the PratA factor (Klinkert et 

al. 2004). In proteomic analyses it was shown that PratA is present in the periplasmic 

space of Synechocystis and also the signal peptide of the protein suggest a transport 

of the PratA protein across the plasma membrane to the periplasm via the Sec-

pathway (Fulda et al. 2000). The presence of the PratA protein in the periplasm was 

verified and a direct interaction with the pD1 protein was shown (Klinkert et al. 2004). 

Due to its location, the interaction has to occur at the plasma membrane during early 

steps of PSII assembly. 

Pakrasi and co-workers prepared pure plasma and thylakoid membrane 

fraction and found partially assembled chlorophyll-containing PSII in the plasma 

membrane which can undergo light-induced charge separation and contains a 

functional electron acceptor side, but not a functional donor side (Zak et al 2001; 

Keren et al. 2005). For the complete assembly of the Mn4-cluster the presence of the 

thylakoid membrane protein CP43 and the contribution of necessary ligands to the 

OEC are required (Keren et al. 2005). 
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Summerization of the just depicted facts leads to the following model for the 

assembly pathway of cyanobacterial photosystem II (see Figure 5). 

 

            

 
Figure 5: Schematic model describing the distribution of PSII subunits in plasma and thylakoid 

membrane. Details are given in the text. 

 

 

The assembly starts with a precomplex in the plasma membrane, consisting of at 

least pD1/D1/D2 and cytochrome b559, which is in line with observation made in 

higher plants (Komenda et al. 2004; Zak et al. 2001; van Wijk et al. 1997). This PSII 

precomplex already contains the P680 chlorophyll and correct folded QA and QB 

binding pockets and thus, exhibits photochemical competence (Keren et al. 2005). 

During biogenesis the C-terminal extension of the pD1 protein exposed to the 

periplasm is cleaved by CtpA, which is a prerequisite for the assembly of the Mn4-

cluster (Roose & Pakrasi 2004). Finally, the complex has to be transported to the 

thylakoids, where the last steps of biogenesis, the assembly of the missing subunits, 

e.g. CP43/CP47 and the OEC can occur. 
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Managing of the protein-complex transport from the plasma to the thylakoid 

membrane still needs to be elucidated. Today two major possibilities are discussed. 

On the one hand a vesicle transport might be imaginable. Such vesicles occur in 

chloroplasts of A. thaliana and are proposed to present transport vesicles (for a 

review see Vothknecht & Soll 2005). However, this observation seems to be 

restricted to land plants. In contrast, the vesicle-inducing protein in plastids 1 (VIPP1) 

is found in both, higher plants and cyanobacteria. In the absence of VIPP1 the 

vesicle transport disappeared and thylakoids in both organisms are reduced and 

unorganized drastically. This might indicate a connection between this transport 

system and thylakoid biogenesis (Aseeva et al. 2007; Fuhrmann et al. 2009). 

On the other hand proteins may be transported from one to the other 

membrane by lateral fusions of both membrane systems. If these connections exist in 

cyanobacteria, they are hard to detect. Contradictory results propose either 

thylakoids as a discontinuous, separate membrane compartment with no connection 

to the plasma membrane in Synechocystis (Spence et al. 2003; Liberton et al. 2006) 

or both membrane systems to have occasional physical connections (van de Meene 

et al. 2006).  

 

 
 

TPR proteins and photosynthesis  
Several important cofactors for the biogenesis of thylakoid membranes belong to the 

family of so-called tetratricopeptide-repeat-protein (TPR). These proteins consist of 

3-16 tandem-repeats of 34 conserved amino acids (D’Andrea & Regan 2003). There 

is a high homology in one motif concerning size and hydrophobicity and eight amino 

acids are highly conserved. One TPR pattern forms two anti-parallel α-helices and 

the tandem array of motifs generates a helical structure with an amphipatic character 

(Sikorski et al. 1990; Blatch & Laessle 1999). The first TPR protein was identified in 

yeast; here it plays a role in the cell division cycle (Sikorski et al. 1990, Hirano et al. 

1990). Today it is known, that TPR proteins mediate protein-protein interactions and 

are often associated to multi-protein complexes. They function as a chaperone, in the 

cell-cycle, in transcription, splicing and protein transport in the different organelles 

(Goebl & Yanagida 1991). TPR proteins are ubiquitous and are present in bacteria, 
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fungi, plants, insects, animals and humans (Blatch & Laessle 1999). The organization 

of the TPR domains is given in Figure 6.  

 

 

 
Figure 6: (A) Primary structure of one TPR motif. Blue and red lines indicate the two α-helices. Red 

numbers represent highly conserved amino acids. (B) Secondary structure of one and (C) tertiary 

structure with three TPR motifs (Blatch & Laessle 1999). 

 

 

Besides the abovementioned TPR proteins, several more are described as factors 

involved in thylakoid membrane biogenesis (Tab. 1). Here they do not only mediate 

protein-protein interaction but also affect the stability of RNA. It was shown that in 

absence of specific factors, the transcripts of PSII subunits are rapidly degraded. 

This is true for the TPR proteins Nac2, Mbb1 and Hcf107 (Boudreau et al. 2000; 

Vaistij et al. 2000; Felder et al. 2001).  

Another TPR protein, namely LPA1, is proposed to be involved in PSII 

assembly of de novo synthesized subunits in A. thaliana (Peng et al. 2006), but the 

homologue in C. reinhardtii REP27 seems to be important during the repair cycle and 

not the de novo synthesis of PSII (Park et al. 2007). This contrast suggests that the 

function of TPR proteins during evolution may change. 

The factor FLU in A. thaliana, which contains two TPR motifs, regulates by 

interacting with enzymes of the tetrapyrrol synthesis pathway, the production of 

pigments (Meskauskiene et al. 2001). Taken together, the functions and targets of 
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TPR proteins in photoautotrophic organisms vary, but most of them have in common 

that they act during thylakoid membrane biogenesis. 

 
Table 1: Overview of described TPR proteins from photoautotrophic organisms involved in thylakoid 
biogenesis.      
 
FACTOR TARGET ORGANISM REFERENCE 
Mbb1 psbB RNA stability C. reinhardtii Vaistij et al. 2000 

Hcf107 psbH RNA stability A. thaliana Felder et al. 2001 

Nac2 psbD RNA stability C. reinhardtii Boudreau et al. 2000 

Ycf3 

 

PSI assembly 

 

C. reinhardtii 

N. tabacum 

Boudreau et al. 1997 

Ruf et al. 1997 

Ycf37 PSI assembly Synechocystis 

A. thaliana 

Wilde et al. 2001 

Stockel et al. 2006 

PratA PSII assembly Synechocystis Klinkert et al. 2004 

LPA1 PSII assembly A. thaliana Peng et al. 2006 

REP27 PSII repair C. reinhardtii Park et al. 2007 

FLU 

 

chlorophyll 

biosynthesis 

A. thaliana 

 

Meskauskiene et al. 

2001 

 
 

 

 

Synechocystis sp. PCC6803 as a model organism 
The prokaryote Synechocystis sp. PCC6803 belongs to the phylum of cyanobacteria, 

which ancestors have been the former free-living endosymbiont and nowadays 

chloroplast of higher plants and algae. Synechocystis is a gram-negative bacterium 

and its genome, which exists in 7-12 copies per cell, was the first fully sequenced 

(Kaneko et al. 1996) and comprises 3.5 Mbp, sequence data and additional info are 

available on the Kazusa homepage (http://genome.kazusa.or.jp/cyanobase). The 

proteome is encoded by 3.317 open reading frames and till today there are 143 

proteins with known functions in photosynthesis and respiration (Kaneko & Tabata 

1997). In addition to its fully sequenced genome, Synechocystis has a lot of 

advantages as a model organism. It is amenable of spontaneous transformation with 

exogenous DNA and this DNA recombines homologous, thus target-oriented 

mutations can be produced. Effects of mutations in important genes responsible for 



                                                                                                                        INTRODUCTION 

                                                                         - 22 -  

example the electron transport chain or assembly of photosystems can be studied 

because Synechocystis cells can grow with a doubling-rate of 12-15 h 

heterotrophically with sugar as a carbon source in the medium (Rippka et al. 1979; 

Grigorieva & Shestakov 1982). All the facts mentioned above point out the role of 

Synechocystis as one of the most important model organisms for studying 

photosynthetic functions and complex structure. Regarding the close relation to 

chloroplasts, findings obtained by studying Synechocystis help to understand 

photosynthesis in cyanobacteria and algae and higher plants as well. 
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Aims of this work 
TPR proteins exhibit essential or at least important functions during complex 

assembly and/or thylakoid membrane biogenesis in photosynthetic organisms. The 

present study tries to reveal the precise roles of two further TPR proteins encoded in 

the genome of the photosynthetic cyanobacterium Synechocystis. 

To investigate the functions of TPR proteins in Synechocystis they were 

systematically inactivated by site-directed mutations. According to the resulting 

phenotypes, estimated by means of low-temperature chlorophyll fluorescence and 

oxygen-evolution, mutants were chosen for further characterizations which had 

defects in the photosynthetic performance. 

(1) The first described was the PratA factor, which interacts, as already 

published with the precursor of the D1 protein and was suggested to support the 

protease CtpA during maturation of D1. (i) The interaction between PratA and pD1, 

(ii) the localization of this interaction and (iii) the role of PratA during thylakoid 

biogenesis was investigated in detail in the present study. The results will hopefully 

reveal insights into the spatial organization concerning the initial steps of thylakoid 

membrane biogenesis. 

(2) The second part of this work deals with a so far uncharacterized TPR 

protein encoded by the ORF slr1644 in Synechocystis. The phenotype in the 

respective mutant showed clear deficits in the photosynthetic performance and 

furthermore a systematic Yeast Two-Hybrid approach revealed an interaction 

between 1644p and the light-dependent protochlorophyllide oxidoreductase (POR) 

(Sato et al. 2007). Analyses in the study focused on (i) verification of the interaction, 

(ii) characterization of the 1644p protein and its function during chlorophyll synthesis 

and (iii) its localization and distribution within the membrane portion. Knowledge of 

this factor will elucidate the processes of photosynthesis complex assembly 

concerning not only polypeptide subunits, but also pigment incorporation. 
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RESULTS 

 

This following part is arranged into two parts, which represent two independent 

studies already published in international peer-reviewed journals. For section I and II, 

I summarize the results and conclusions and state on the authors’ contributions to 

each publication.  

 

 

Section I: Schottkowski M., Gkalympoudis S., Tzekova N., Stelljes C., Schuenemann 

D., Ankele E., Nickelsen J. (2009) Interaction of the periplasmic PratA factor and the 

PsbA (D1) protein during biogenesis of photosystem II in Synechocystis sp. 

PCC6803. J. Biol. Chem. 284, 1813-1819 

 

 

This work addresses the characterization of the TPR-protein PratA from 

Synechocystis and its role in the assembly process of PSII. We applied mainly 

molecular and biochemical approaches to further elucidate the exact function of 

PratA. Data from Yeast Two-Hybrid analyses clearly show that PratA not only 

interacts with pD1, but also with the mature protein. Furthermore, the specific binding 

regions of PratA on the C-terminus of the D1 protein were estimated. The interaction 

with the membrane protein D1 suggests a D1-dependent membrane association of 

PratA, which indeed could be shown. 2D-PAGE analysis of either membrane or 

soluble protein fractions revealed the existence of two different PratA-complexes – 

one is located in the periplasm with the size of 200 kDa and constitutes to about 80 

% of the PratA-pool, the second one was found in the membrane fraction and 

migrates in the range of 70 kDa. This complex is absent on a 2D-PAGE with D1-

deletion strain material, indicating again the D1-dependence. These observations let 

us propose that the 70 kDa complex consist of PratA and D1. As PratA is usually 

exclusively located to the periplasm, we tried to localize the PratA/D1-complex with 

respect to its membrane-type. Therefore we used a sucrose-density centrifugation 

approach with two consecutive gradients and finally the results clearly substantiate 

the existence of a specialized membrane fraction, neither plasma nor thylakoid 

membrane, which is marked by the presence of PratA (PDM = PratA-defined 

membrane). Additional visualization experiments showed that in the absence of 
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PratA a CFP-tagged D1 protein accumulates in the periphery of the cell, supporting 

the idea that PratA is important for processes of early assembly of PSII. Our 

conclusion is that PratA is located to a novel membrane region, which might 

represent a specific site where early steps of thylakoid membrane biogenesis occur 

and which connects plasma- and thylakoid membrane in Synechocystis. 

 

 

My contributions to this work are the membrane isolation and solubilization 

experiment, the 2D-PAGE- and the sucrose-gradients analyses as well. C. Stelljes 

generated the mutants and performed the Yeast Two-Hybrid analysis. The peptide-

scan and the GST-pull-down assay were done by S. Gkalympoudis, and N. Tzekova 

together with E. Ankele contributed the microscopic work. The manuscript was 

written by me and J. Nickelsen, who also revised the final version. 

 

 

 

Section II: Schottkowski M., Ratke J., Oster U., Nowaczyk M., Nickelsen J. (2009) 
Pitt, a novel tetratricopeptide repeat protein involved in light dependent chlorophyll 

biosynthesis and thylakoid membrane biogenesis in Synechocystis sp. PCC 6803. 

Mol. Plant 2, 1289-1297 

 

 

In this study initial characterization of the TPR protein encoded by ORF slr1644, 

named Pitt during the investigations, is performed by applying bioinformatical, 

biophysical, molecular and biochemical approaches. The sequence analysis of Pitt 

revealed the presence of Pitt-related membrane proteins amongst several 

photoautotrophic organisms, while none was found in non-photoautotrophs, 

indicating a conserved function for photosynthesis. After inactivation of the Pitt gene, 

a clear defect in the photosynthetic performance was visible. Further, we were able 

to verify data obtained in yeast, which suggested an interaction in vitro between Pitt 

and the light-dependent protochlorophyllide oxidoreductase (POR). This finding was 

supported by the fact that Pitt and POR co-migrate to a substantial amount on native 

gels. Interestingly, we could show that in the absence of Pitt the POR content is 

reduced to about 35 % of wild-type level, again suggesting an interaction between 
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them in vivo. This led to the hypothesis, that in a pitt-mutant the synthesis or stability 

of chlorophyll might be affected. And indeed, our data clearly show a retarded light-

depending chlorophyll synthesis in the respective mutant. The membrane 

sublocalization of Pitt seems to depend on the biogenesis factor PratA; and as 

already shown for the absence of PratA, in a pitt-mutant the precursor of the D1 

protein accumulates in the PDM subfraction. We conclude that Pitt is involved in 

initial steps during assembly of protein/pigment complexes in the course of thylakoid 

membrane biogenesis. 

 

 

For this work I performed the sequence analysis of Pitt, the generation of the 

complemented strain, the characterization of Pitt as a membrane protein, the semi-

quantitative Western analysis for estimation of the POR accumulation and the 2D-

PAGE studies. In addition, I contribute the assay for chlorophyll synthesis and the 

sucrose-gradient analysis was carried out by me, as well. J. Ratke generated the pitt-

mutant, produced the antiserum and did the Yeast Two-Hybrid analysis. Measuring 

of photosynthetic parameters, like O2-evolution and 77k fluorescence, was done by 

M. Nowaczyk. J. Nickelsen and I wrote the manuscript and it was finally revised by J. 

Nickelsen. 
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Section I:  
 

Interaction of the periplasmic PratA factor and the PsbA (D1) protein during 

biogenesis of photosystem II in Synechocystis sp. PCC6803. (2009) by 

Schottkowski M., Gkalympoudis S., Tzekova N., Stelljes C., Schuenemann D., 

Ankele E., Nickelsen J. J. Biol. Chem. 284, 1813-1819 
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The biogenesis of photosynthetic complexes is assisted by a
growing number of trans-acting factors in both chloroplasts and
cyanobacteria. We have previously shown that the periplasmic
PratA factor from Synechocystis sp. PCC 6803 (Synechocystis
6803) is required for adequate C-terminal processing of the
PsbA (D1) subunit of photosystem II (PSII) supporting the idea
that the early steps of PSII assembly occur at the plasma mem-
brane. Here we report on the molecular analysis of the interac-
tion between PratA and the D1 protein. Both yeast two-hybrid
and glutathione S-transferase pulldown assays revealed that
PratA binds to the soluble forms of both mature and precursor
D1 C-terminal regions. In agreement with that finding, the
binding region wasmapped to amino acid positions 314–328 of
D1 by applying a peptide-scanning approach. Approximately
10–20% of the soluble PratA factor was found to be associated
with membranes in a D1-dependent manner. Sucrose density
gradient centrifugations allowed the identification of a specific
membrane subfraction that contains both PratA and D1 and
which might represent a transfer and/or connecting region
between plasma and thylakoid membrane. Imaging data
obtained with enhanced cyan fluorescent protein-labeled D1
protein in wild-type and pratA mutant backgrounds further
supported this notion.

Photosystem II (PSII)2 mediates water oxidation and ini-
tiates electron flow during light reactions of photosynthesis
in cyanobacteria and in chloroplasts of eukaryotes. Cya-
nobacterial PSII has been characterized in great detail at the
structural level (1–4). However, much less is known about
the stepwise biogenesis of this molecular machine, which
contains at least 19 protein subunits as well as a complex set
of cofactors (5–7). In the prokaryotic model organism Syn-
echocystis PCC sp. 6803 (hereafter Synechocystis 6803), sev-
eral proteins have recently been identified that associate

transiently with PSII, and inactivation of these leads to
severe defects in PSII activity. Such proteins represent good
candidates for putative assembly factors.
The protein Slr1471p (OXA1/Alb3/YidC homologous), for

instance, has been shown to interact directly with the D1 pro-
tein during integration of the latter into the thylakoid mem-
brane (8). The lumenal factor YCF48 (HCF136) is required for
both efficient assembly and repair of PSII (9, 10), and the
11-kDa lipoprotein Psb27 has been implicated in facilitating
assembly of the manganese cluster of PSII (11, 12). Finally, the
22-kDa Psb29 protein is apparently necessary for accurate bio-
genesis of the inner antennae of PSII (13).
We have previously shown that the tetratricopeptide

repeat protein PratA is involved in the biogenesis of PSII:
loss of PratA function affects the maturation of the reaction-
center protein D1 (14). In almost all photoautotrophic orga-
nisms, D1 is synthesized as a precursor with a C-terminal
extension that must be removed to allow assembly of the
manganese cluster at the lumenal side of PSII. In Synecho-
cystis 6803, this extension consists of 16 amino acids, which
are processed in a two-step fashion (15, 16). The precise
contribution of the extension to photosynthetic perform-
ance is still under debate, but recent analyses of site-directed
mutants have revealed that it has a photoprotective function
(17, 18). Intriguingly, PratA is a periplasmic protein that was
previously shown to interact directly with the soluble C-ter-
minal portion of D1 in yeast two-hybrid studies (19, 14, 20).
This finding strongly supports the idea that the early steps in
photosystem biogenesis in cyanobacteria take place at the
plasma membrane and not in the thylakoids (21, 22). How-
ever, recent ultrastructural analyses have failed to unambig-
uously solve the long-standing question of whether or not a
direct connection exists between plasma and thylakoid
membranes; such a link would establish a continuum
between the periplasm and the thylakoid lumen (23, 24).
Here, we report on the molecular details of the D1-PratA

interaction. Based on two-hybrid studies in yeast and in vitro
assays, we mapped the binding region of PratA on the D1 C
terminus. Furthermore, we show that PratA forms part of a
complex that also contains the D1 protein. Intriguingly, this
complex is apparently not localized to the main thylakoid frac-
tion but is enriched in a specific membrane subcompartment.
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“advertisement” in accordance with 18 U.S.C. Section 1734 solely to indi-
cate this fact.
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EXPERIMENTAL PROCEDURES

Yeast Two-hybrid Analysis—Protein interaction studies in
yeast were performed using theMATCHMAKER LexA system
(Clontech, see Ref. 14). Cloning of the PratA gene (slr2048) into
the yeast expression vector pJG4-5 and of a DNA fragment
encoding the last 68 amino acids of the pD1 protein into
pEG202 has been described previously (14). The coding
sequence for the C-terminal segment of mD1, which lacks the
16-amino acid extension found in pD1, was amplified by PCR
and subsequently inserted into pEG202 via primer-derived
EcoRI and XhoI restriction sites. Site-directed mutagenesis of
the sequence encoding the C-terminal region of D1 was carried
out using the QuikChange kit (Stratagene).
GST Pulldown Assays—GST pulldown assays were per-

formed with recombinant proteins expressed in Escherichia
coli. After amplification by PCR, the coding region of the PratA
gene, excluding the transit sequence (14), was cloned into the
EcoRI andXhoI sites of the expression vector pGEX-4T-1. GST
fusion protein was expressed in E. coli BL21 cells. His-tagged
PratA protein was produced in E. coliM15 cells (Qiagen) after
PCR amplification of the same region and subsequent insertion
into the SalI and PstI sites of the vector pQE31. Fragments
encoding either the C-terminal segment of pD1 (68 amino
acids) or mD1 (52 amino acids) were cloned into the EcoRI and
XhoI restriction sites in pGEX-4T-1. GST fusion proteins were
bound to glutathione-Sepharose 4B (GE Healthcare) for 3 h.
The Sepharose beads were then incubated with a mixture of
His-tagged PratA protein and GST protein alone for 1 h with
gentle rotation, washed five times with washing buffer (20 mM

HEPES, pH 7.5, 500 mM NaCl, 1% Tween 20) and finally resus-
pended in SDS loading buffer. After 10 min at 98 °C samples
were subjected to SDS-PAGE and subsequently analyzed by
Western blotting.
Peptide Scanning—To map the binding site(s) for PratA in

the C-terminal portion of D1, pentadecameric peptides were
synthesized (jpt Technologies, Berlin), which overlapped by 12
amino acids and covered the C-terminal 68 amino acids of pD1,
and aliquots (5 nmol) of each were immobilized on a filter
membrane (PepSpotsTM membrane, jpt Technologies). Subse-
quently, themembranewas incubated at 4 °C overnight with 20
�g of His-tagged-PratA protein. Bound PratA was localized
using the �PratA antibody (25).
Membrane Isolation and Solubilization—For preparation of

soluble and non-soluble protein fractions, equal amounts of
wild-type and TD41 cells were harvested and resuspended in
500 �l of breaking buffer (50 mM Tris/HCl, pH 7, 20 mM

MgCl2, 20 mM KCl). Cells were then mechanically disrupted
with glass beads (0.25–0.5 mm diameter) in a mini-bead-
beater (Glen Mills), using three 20-s bursts. After centrifu-
gation for 1 min at 15,000 � g, the supernatant was loaded
onto a 1 M sucrose cushion and centrifuged for 30 min at
94,000 � g. The supernatant containing all soluble proteins
was collected, and the pellet with membrane-bound proteins
was resuspended in breaking buffer containing 5% Triton
X-100. Finally the protein fractions were subjected to SDS-
PAGE and immunoblotting.

Membranes for solubilization assays (50 �g of protein) were
prepared as described (26), sedimented by centrifugation and
washed twice in 5 mMHEPES, pH 7.6. The samples were resus-
pended in 20-�l aliquots of HEPES buffer, to which 20 �l of 5
mM HEPES, pH 7.6 (control), 0.2 M Na2CO3, 4 M urea, or 2 M
NaCl was added. After a 30-min incubation on ice and centrif-
ugation for 15 min with 18,000 � g at 4 °C the supernatants
were collected and the pellets were washed twice in HEPES
buffer. All samples were then subjected to SDS-PAGE and ana-
lyzed by immunoblotting.
Two-dimensional PAGE—For blue native (BN)-PAGE,

membranes (500 �g of protein (26)) were sedimented by cen-
trifugation (30 min, 15,000 � g, 4 °C) and resuspended in 50 �l
of ACA buffer (750 mM �-aminocaproic acid, 50 mM Bis-Tris,
pH 7.0, 0.5mMEDTA). After addition of freshly prepared�-do-
decylmaltoside (10%w/v) to a final concentration of 1.5% (w/v),
membrane proteins were solubilized for 35 min on ice. After
removal of insolublematerial by centrifugation, 8�l of 5%Coo-
massie solution (750 mM �-aminocaproic acid, 5% Coomassie
Brilliant Blue) was added to each supernatant, and the samples
were loaded onto a 4.5–12% BN gel. Electrophoresis was per-
formed at 50 V at 4 °C overnight, replacing the blue cathode
buffer with fresh, colorless buffer a third of the way through the
run, as described previously (27). For the second dimension, a
single lane of the BN-PA gel was washed in solubilization buffer
(66 mM Na2CO3, 2% SDS (w/v), 0.67% �-mercaptoethanol) for
20 min and then placed on top of a 12.5% SDS gel containing 4
Murea. Electrophoresis was carried out at 20mA for 30min and
then at 4 mA overnight. Subsequently, gels were stained with
Coomassie or electroblotted onto nitrocellulose-membranes
and probed with various antibodies.
For first-dimension colorless native (CN)-PAGE, Coomassie

dye was omitted from samples and cathode buffer. Soluble pro-
teins (500 �g) were mixed with 0.001% Ponceau S and electro-
phoretically separated as reported before (28).
Separation of Synechocystis Membranes—Equal amounts of

cells from each strain in the early exponential growth phase
were harvested by centrifugation for 10min, washed with 5mM
Tris buffer, and resuspended in buffer I (10 mM Tris, 1 mM
phenylmethylsulfonyl fluoride, 600 mM sucrose, 5 mM EDTA,
0,2% lysozyme). The suspension was shaken for 2 h at 30 °C and
subsequently washed twice in buffer II (20mMTris, 1mMphen-
ylmethylsulfonyl fluoride). Cells were disrupted by passing
them twice through a French Press at 1200 p.s.i. DNase I (20�l)
was added, and, after incubation for 15 min at 4 °C, cell debris
was sedimented at 4 °C (4500� g, 10min). The supernatantwas
adjusted to 50% sucrose by adding 80% sucrose in 10mMTris. A
10-ml sample of this solution was overlaid with 8 ml of 39%
sucrose, 6 ml of 30% sucrose, and 8 ml of 10% sucrose (all in 10
mM Tris, 1 mM phenylmethylsulfonyl fluoride). After centrifu-
gation at 4 °C for 17 h at 135,000 � g the gradient was fraction-
ated into five fractions containing 10% (I), 30% (II), or 50% (V)
sucrose. The part containing 39% sucrose was divided into two
separate fractions (III and IV) for obtaining a higher resolution
in this region of the gradient. The samples were concentrated
via ultrafiltration (Millipore) and then separated by SDS-PAGE,
blotted onto nitrocellulose membrane, and finally probed with
various antibodies.
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Fraction number V was diluted with 5 mM Tris buffer to a
sucrose concentration of 20% and then centrifuged at 4 °C on a
linear (30% to 60%) sucrose gradient for 17 h at 135,000� g. After
fractionation, proteins were subjected to immunodetection.
Construction of Strains Expressing eCFP-D1 Fusion Proteins

and Confocal Microscopy—For tagging the D1 protein with
enhanced cyan fluorescent protein (eCFP), both the promoter
and the coding region of the psbA2 gene (slr1311) from Syn-
echocystis 6803 were PCR separately amplified from wild-type
genomic DNA. The eCFP coding region was amplified from
plasmid p2GWC7 (29) and inserted via appropriate primer-
derived restriction sites into the N terminus of the psbA gene.
The fusion gene was then inserted into the SmaI site of the
conjugation vector pVZ322 (30) giving rise to plasmidN-eCFP-
D1. Wild-type and pratA mutant cells were each conjugated
with this plasmid by following the protocol of (30). Conjugants
were then suspended in 0.3%Gelrite� (w/v) (Serva) and applied

to coverslips for fluorescence microscopy. Confocal images
were acquired with a TCS-SP5 confocal laser scanning system
equippedwith an invertedmicroscope (Leica) and an 63� glyc-
erol immersion objective (numerical aperture, 1.3). For the spe-
cific detection of eCFP and chlorophyll, excitation wavelengths
were set to 480 nm and 670 nm, respectively.

RESULTS

PratA Interacts with theMature D1 Protein—We have previ-
ously shown that the soluble, periplasmic tetratricopeptide
repeat protein PratA from Synechocystis 6803 is involved in the
biogenesis of PSII (14). The analysis of pulse-labeled proteins
had suggested that the C-terminal processing of the reaction-
center proteinD1 is affected by a pratAmutation. In agreement
with this finding, a direct interaction between the solubleC-ter-
minal 68 amino acids of the D1 precursor (pD1) and PratA was
documented using a yeast two-hybrid system (14) (Fig. 1).
To test whether PratA binding is specific for the precursor

form of the D1 protein, we have now analyzed a version that
lacks the C-terminal extension characteristic of the precursor
using the same two-hybrid approach in yeast. As shown in
Fig. 1A, PratA also recognizes the C-terminal segment of the
mature D1 (mD1), suggesting that the 16-amino acid exten-
sion present in the precursor is not required for binding of
PratA. Instead, the 52 amino acids retained in mD1 appear to
contain the crucial determinants that mediate the D1-PratA
interaction.
Previous attempts to demonstrate this interaction using in

vitro approaches yielded ambiguous results (14). However,
optimization of the conditions used for GST pulldown assays
has now allowed us to confirm the specific interaction of theD1
protein and PratA also in vitro (Fig. 1B). Sepharose-boundGST
alone failed to capture recombinant His-tagged PratA protein.
In contrast, matrix-boundGST fused to the C-terminal portion
of either the precursor or thematureD1 interactedwith recom-
binant PratA, and PratA could subsequently be eluted from the
matrix material under denaturing conditions (Fig. 1B). As a

negative control, E. coli proteins
from a strain containing no recom-
binant PratA protein were always
analyzed in parallel. No signals were
obtained in these cases. Taken
together, the data thus strongly sug-
gest that PratA specifically recog-
nizes the C-terminal sequence that
is common to pD1 and mD1.
Mapping of the PratA Binding

Region in the C-terminal Segment of
D1—To determine the one or more
regions that mediate this interac-
tion, a peptide scan was performed
based on immobilized, penta-
decameric peptides with 12-amino
acid overlaps and covering the
entire C-terminal segment of pD1.
Recombinant PratA protein was
incubated with the PepSpotsTM
membrane bearing the whole pep-

FIGURE 1. PratA binds the mature D1 protein. A, yeast two-hybrid anal-
ysis with strains that express PratA fused to the Gal4 activation domain
together with the DNA-binding domain of Gal4, either alone or fused to
the C-terminal region of pD1 or mD1. B, association of PratA with the
C-terminal region of either pD1 or mD1 fused to GST. GST-containing
complexes were recovered and co-eluting recombinant PratA protein was
detected with an �PratA antiserum. “�/�” indicates the presence of
recombinant PratA. As a negative control, GST alone was also tested for
the capacity to bind PratA.

FIGURE 2. PratA binds to a site within the C-terminal region of D1. A, sequence of the C-terminal 68 residues
of D1 (positions 293–360). Nineteen pentadecameric peptides (with 12-amino acid overlaps) representing the
entire segment were synthesized, dotted onto a PepSpotsTM membrane, and tested for the ability to bind
PratA. The PratA-binding peptides 1 and 8 (B) are boxed, and the single �-helix present in the C-terminal region
is indicated by the overline. The CtpA processing site is marked with an arrow. B, peptide blot incubated with
recombinant PratA protein and subsequently with �PratA antibody to detect bound PratA. C, yeast two-hybrid
analysis as in Fig. 1A, but with altered versions of the D1 C-terminal segment from which peptide 1 or 8 was
deleted or amino acid T316 was mutated as indicated.
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tide set, and subsequent decoration with the �PratA antibody
revealed that PratA specifically binds to peptide No. 8, corre-
sponding to positions 314–328 of the D1 protein (Fig. 2, A and
B). Peptide No. 1 (positions 293–307) was also recognized by
PratA, although the signal was less pronounced. We then ana-
lyzed mutant versions of the D1 C terminus that lacked either
peptide 1 or 8 in the yeast two-hybrid system.Deletion of amino
acids 293–307 had only a limited impact on yeast growth, sug-
gesting that these positions make only a minor contribution, if
any, to PratA-D1 complex formation (Fig. 2C). In contrast,
when residues 314–328 were deleted, no interaction between
PratA and the D1 segment was observed (Fig. 2C). This indi-
cates that the region represented by peptide 8 indeed contains
essential determinants that are strictly required for recognition
of PratA. It is intriguing that, based on available structural data
of crystallized PSII, this D1 region forms an �-helical structure
(4). Furthermore, peptides 7 and 9, each of which overlaps pep-
tide 8 by 12 amino acids, exhibited no detectable PratA binding
at all, suggesting that the entire helix and/or its left and right

borders are required for recognition by PratA. To substantiate
this hypothesis, we replaced the threonine at position 316 with
a glycine, because alignments of D1 sequences from various
organisms revealed that Thr-316 is the only highly conserved
amino acid at the left end (Ile-Gly-Thr) of the helix region.
Yeast two-hybrid analysis indeed revealed that the T316G
mutation is sufficient to prevent PratA binding completely
(Fig. 2C).
PratA Forms Part of Two Different Protein Complexes—Be-

cause an association with the D1 protein should result in a
membrane localization of the otherwise soluble PratA protein,
we measured the amounts of PratA present in soluble and
membrane fractions of broken Synechocystis 6803 cells (Fig.
3A). In the wild-type, �10–20% of PratA was found to co-
sediment with the membrane fraction in three independent
experiments. In contrast, in the triple psbA deletion strain
TD41, which fails to accumulate any D1 protein (31), only
minute amounts of PratA were found to be associated with
membranes, supporting the idea of a PratA-D1 interaction (Fig.
3A). The nature of the membrane association of PratA was
examined further by testing the effects of various potential sol-
ubilizing agents (Fig. 3B). Treatment of membranes with 1 M
NaCl did not release PratA from themembrane, suggesting that
non-ionic interactions play a crucial role for its localization.
This was confirmed by the finding that 0.1 M Na2CO3 or 4 M
urea was capable of solubilizing substantial amounts of PratA
protein (Fig. 3B).

To analyze the membrane-associated and soluble forms of
PratA in more detail, two-dimensional gel electrophoresis of
protein subfractionswas performed.When themembrane frac-
tion was analyzed by two-dimensional BN-SDS-PAGE, PratA
was detected together with unassembled D1 protein in the

70-kDa range (Fig. 4A). In addition,
smaller amounts of PratA material
formed a faint smear toward higher
molecular mass regions (�100 kDa,
Fig. 4A). However, various PSII core
complexes, such as RCa, RC47, and
RCC (32), did not contain any
detectable PratA protein. These
data are consistent with the idea
that a membrane-associated D1-
PratA complex forms very early
during the biogenesis of PSII.When
the TD41 strain was similarly ana-
lyzed, no PratA protein was
detected in the membrane fraction,
again indicating that the membrane
association of PratA is solely medi-
ated via the D1 protein (Fig. 4A,
compare also Fig. 3B). Two-dimen-
sional CN-SDS-PAGE of soluble
proteins from the two strains
revealed a different picture (Fig. 4B).
In wild-type cells, the soluble PratA
form is found in a complex of �200
kDa. Subsequent analysis of the
psbA deletion strain TD41 revealed

FIGURE 3. PratA is membrane associated. A, membrane (M) and soluble (S)
protein fractions were prepared from wild-type Synechocystis 6803 (WT) and
the psbA deletion strain TD41, and separated by ultracentrifugation, sub-
jected to Western blotting, and incubated with the antibodies indicated on
the right margin. B, samples of the membrane fraction from the wild type were
treated with the indicated chemicals, and separated into pellet (M) and super-
natant (S) fractions by centrifugation. These fractions were then probed with
�PratA antibodies.

FIGURE 4. PratA-containing complexes. A, membrane fractions obtained from wild-type, pratA, and TD41
strains were solubilized with 1.2% �-dodecylmaltoside, separated by two-dimensional-BN-SDS-PAGE, and
immunoblotted. PratA and D1 were then localized using the respective antibodies. A representative two-
dimensional gel loaded with a wild-type extract and stained with Coomassie is shown at the top. B, similar
analysis of soluble proteins, which were separated by two-dimensional CN-SDS-PAGE. The Coomassie-stained
gel at the top shows the pattern obtained after separation of a wild-type extract by CN-PAGE.
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that neither the size nor the amount of this complex is altered in
the absence of the D1 protein (Fig. 4B). This is in striking con-
trast to the behavior of the smaller, membrane-associated com-
plex. Thus, two PratA complexes that differ in size and local-
ization exist in Synechocystis cells. Whether these complexes
are functionally related remains to be elucidated.
Repeated attempts to immunoprecipitate the PratA-D1

complex were initiated to confirm its presence in vivo. How-
ever, presumably due to the low abundance of the complex,
evidence for the presence of neither PratA nor D1 in various
precipitates remained equivocal (data not shown).
The PratA-D1 Complex Is Localized to a Membrane

Subcompartment—All the data presented above strongly sug-
gest that a PratA-D1 complex is formed in vitro and in vivo. But
is this complex associated with the plasma membrane or the
thylakoid membrane system in Synechocystis 6803? To answer
this question, we employed sucrose density gradient centrifu-
gation to separate the two membrane types. Initial centrifuga-
tion through a step gradient allowed the partial purification of
the plasma membrane, as judged by the immunodetection of
the plasma membrane marker NrtA (Fig. 5A). However, NrtA
was detectable in all fractions, including that containing the
thylakoid membranes (Fig. 5A, fraction V). This indicates that
the latter one is still significantly contaminated with plasma
membrane material. PratA was mainly found in fraction II and
in the thylakoid fraction V, whereas D1 was only detectable in

fraction V, even after overexposure
of films. We did not further analyze
the PratA-containing fraction II,
because the main focus of the work
was on the characterization of the
native D1-PratA complex, which
must be localized in the crude thyla-
koid fraction V of the gradient. To
further resolve the membrane mix-
ture present in this fraction, it was
subjected to a second centrifugation
through a linear 30% to 60% sucrose
gradient (Fig. 5B). This resulted in a
clear separation of PratA (Fig. 5B,
fractions 1–6) from the chlorophyll-
containing thylakoid membrane
fractions, which contained most of
the mature mD1 protein (Fig. 5B,
fractions 7–14). In contrast to mD1,
the precursor pD1 protein exhibited
a different distribution on the linear
sucrose gradient. Roughly similar
amounts of pD1 were detected in
the PratA-containing fractions 3–7
and the thylakoid fractions 11–13.
The inner antenna protein PsbBwas
identified only in thylakoid fractions
7–14. However, due to the lower
sensitivity of the antibody used, we
cannot exclude the possibility that
minor amounts of PsbB are also
present in fractions 1–6. Hence, the

data strongly suggest that PratA is not associatedwith thylakoid
membranes per se, but rather with a distinct membrane sub-
fraction, which co-migrates with thylakoids during centrifuga-
tion through the step gradient (Fig. 5A). NrtA again showed a
distribution throughout thewhole gradient (Fig. 5B). It remains
unclear whether this really reflects the sedimentation of the
plasma membrane or might represent a special feature of NrtA
during sucrose gradient centrifugation. However, no absolute
co-fractionation of PratA and neither NrtA nor PsbB was
observed in these experiments strongly suggesting that PratA
marks a specific membrane subcompartment of Synechocystis
6803 cells. To answer the question whether the PratA form in
fractions 1–6 of the linear gradient indeed represents themem-
brane-associated one two-dimensional-BN-SDS-PAGE was
carried out on material from fraction 1 (Fig. 5B). The results
demonstrated that indeed the smaller membrane-associated
PratA complex of 70 kDa was present in this fraction (Fig. 5C).
Whenmembranes from the pratAmutant were fractionated in

the same way, a moderate but significant shift of mD1 material
toward the top of the gradient was observed (Fig. 5B, compare
lanes 4–7 fromWT and pratA). In contrast, both NrtA and PsbB
exhibited the same sedimentation behaviors irrespective of its
source. The latter finding indicates that only a PSII subfraction
that does not contain appreciable amounts of PsbB is affected by
the pratA mutation. The strongest impact due to the absence of
PratA was detectable for both the amount and the distribution of

FIGURE 5. Cellular sublocalization of PratA. A, total cellular proteins were centrifuged through a sucrose step
gradient, fractionated into five portions containing 10% (I), 30% (II), 39% (III and IV), and 50% (V) sucrose and
subjected to Western analysis with the indicated antibodies (see “Experimental Procedures”). B, the material
from fraction V in A was then centrifuged on a second linear sucrose gradient (30 – 60%), and fractions were
analyzed as in A using the indicated antibodies. C, the material from fraction 1 at the top of the second gradient
was analyzed by two-dimensional BN-SDS-PAGE as in Fig. 4A.
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D1 precursor protein. The specific membrane fractions (1–6)
showed a strong accumulation of pD1, whereas pD1 was missing
in the chlorophyll-containing fractions (7–14). Taken together,
these data suggest that, in the pratAmutant, an early intermediate
in PSII assembly is at least partially retained in a membrane sub-
fraction with which the wild-type PratA protein would normally
associate. Furthermore, the data underline the formerly described
pD1-processing phenotype of the pratAmutant (14).
PratA-mediated D1 Localization—The data presented in the

previous section suggest that the PratA-D1 complex is localized
to a special membrane subcompartment, which forms an inter-
mediate between the plasma membrane and the thylakoid
membrane systems. This subcompartment could therefore
represent a structural connection between the plasma and thy-
lakoid membranes (23). This would in turn imply that biogen-
esis of the PSII core starts in the plasma membrane, as has
previously been postulated (21). If this is true, one may specu-
late that PratA is involved in some way in the transfer of the D1
protein from the plasma membrane to the thylakoid mem-
brane. To test this possibility, we used conjugation to construct
strains that express an N-terminally eCFP-tagged D1 protein,
in addition to the endogenous D1 protein, either in a wild-type
or pratA genetic background. As depicted in Fig. 6A the
D1-eCFP fusion protein is expressed abundantly in the conju-
gated wild-type (WTK) and at a reduced rate in the pratA
mutant (pratAK) background. In non-conjugated cells the spe-
cific eCFP signal was undetectable. D1 protein accumulation
was slightly compromised in conjugated lines suggesting that
the tagged D1 version competes to some extent with endoge-
nous D1 (Fig. 6A).

The eCFP-tagged D1 protein could be visualized by fluores-
cence in the wild-type and pratA conjugant lines. As expected
from the Western analysis a weaker signal was obtained in
pratAK. To assess whether the eCFP-D1 fusion protein reaches
the thylakoid membrane, we monitored chlorophyll autofluo-
rescence at an emission wavelength of 670 nm. In the wild-type
background, the eCFP emission coincided perfectly with the
chlorophyll autofluorescence, thus confirming colocalization

of the eCFP-D1 fusion protein and the thylakoid membranes
(Fig. 6B). This indicates that the eCFP tag does not interfere
with insertion of the fusion protein into PSII precomplexes. In
the pratAmutant, in contrast, eCFP emission did not colocalize
with thylakoids to the same extent. Instead, it was mainly local-
ized to the periphery of cells and did not show complete coin-
cidence with the chlorophyll fluorescence (Fig. 6B). Although
the autofluorescence is visible throughout the cell, with the
exception of the cytosolic compartment, eCFP in the pratA
mutantwas restricted to a narrow sphere at the periphery of the
cells, whichmay possibly colocalize with the plasmamembrane
(Fig. 6B). This may indicate accumulation of D1 fusion protein
in the plasma membrane or the membrane subcompartment
identified by our cell fractionation studies. As expected, eCFP
emission could not be detected in non-conjugated wild-type
cells (negative control, Fig. 6B). Taken together, these data pro-
vide an additional piece of evidence that the PratA factor might
be involved in the transfer of newly synthesized D1 protein
from the plasmamembrane to the thylakoidmembrane system.

DISCUSSION

Interaction of PratA andD1—Wepreviously suggested that the
periplasmic tetratricopeptide repeat protein PratA is involved in
the C-terminal processing of the D1 protein. However, here we
demonstrate, using the yeast two-hybrid system as well as GST
pulldownassays, that theC-terminal extensionof theD1protein is
dispensable for PratA recognition. This is consistent with our
mappingof thePratAbinding site to the�-helixbetweenpositions
314–328 (peptide 8, see Fig. 2A) of the mature D1, and with the
fact that alteration of the conserved threonine at position 316 of
D1 into a glycine completely prevents binding of PratA. Because
membrane association of PratA is mediated by non-ionic interac-
tions, it remains to be seen what the precise determinants for D1
recognition by PratA are. Nevertheless, one can conclude from the
peptidescanningdatathat, inadditiontoThr-316,oneormoreamino
acids from the opposite end of the helix (positions 326–328) are also
required for efficient PratAbinding.
In light of these new findings, the D1-processing phenotype

of the pratAmutant might be interpretable simply as a second-
ary effect of a perturbation in the PSII assembly process. For
instance, C-terminal D1 maturation has been shown also to be
affected in mutants lacking distinct subunits of PSII, i.e. PsbH,
PsbB, or PsbEFLJ (33). Furthermore, yeast two-hybrid analyses
have provided no evidence for a direct interaction of PratAwith
the C-terminal D1 protease CtpA (data not shown). Thus, the
precise molecular function of PratA remains to be dissected.
PratA Forms Part of at Least Two Protein Complexes—Two-

dimensional BN-SDS-PAGE revealed that themembrane-asso-
ciated and soluble forms of PratA are found in complexes that
differ significantly in size. The soluble 200-kDa complex is not
affected by the absence of the D1 protein. In contrast, forma-
tion of the 70-kDamembrane-associated complex is dependent
on D1, and its relatively small size suggests that it represents a
very early intermediate in PSII assembly that contains at least
theD1 protein in addition to PratA. The Synechocystishomolog
of HCF136/YCF48 has also recently been shown to interact
with the D1 precursor protein and the C-terminal processing
intermediate iD1, but not with the mature D1 protein, during

FIGURE 6. Localization of eCFP-tagged D1 protein in Synechocystis 6803.
A, Western analysis of eCFP-D1 and D1 accumulation in indicated strains by
using respective antibodies. The Coomassie-stained gel is shown as loading
control. B, wild-type (WT) and pratA cells conjugated with plasmid N-eCFP-D1
(WTK and pratAK) and suspended in 0.3% Gelrite were layered on slides, and
fluorescence images were taken at excitation wavelengths of 480 nm (eCFP)
and 670 nm (chlorophyll). Chlorophyll autofluorescence is shown in red and
eCFP fluorescence in blue. The merged images show the distribution of both
signals. White scale bars represent 1 �m.
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the early phase of assembly (10). However, no direct interaction
betweenHCF136 and PratA could be detected in the yeast two-
hybrid system (data not shown), suggesting that the two factors
may interact only transiently or not at all.
Localization of the PratA-D1 Complex—Based on cell fraction-

ation experiments it had earlier been proposed that the first steps
in de novo assembly of PSII and PS I take place at the cytoplasmic
membrane and not on the thylakoids of Synechocystis 6803 (21,
22). For PSII, the D1 and D2 proteins, as well as cytochrome b559
subunits,were showntobepresent inplasmamembrane fractions,
whereas the PsbB and PsbC subunits were exclusively detected in
thylakoids (21, 34). Furthermore, thePSII subunits in the cytoplas-
mic membrane accumulated in inside-out rather than right-side-
outvesicles, indicatingaheterogeneousorganizationof theplasma
membrane (35). This suggests that discrete regions of the plasma
membrane harbor sites at which assembly of PSII is initiated (35).
Interestingly, in chloroplasts of the green alga Chlamydomonas
reinhardtii, distinct membrane subfractions around the pyrenoid
have been identified as being sites of de novo assembly of PSII,
whereas D1 repair synthesis was found to occur throughout the
entire thylakoid membrane system (36).
Here, using a two-step cell fractionation procedure, we iden-

tified amembrane subfraction inwhich PratA specifically accu-
mulates together with substantial amounts of the precursor
pD1 protein. PsbB was not detected in appreciable amounts in
these fractions, which is consistent with the abovementioned
data suggesting that PsbB is absent from plasma membranes
(21, 34). Therefore, it is obviously tempting to speculate that
this subfraction represents membrane regions at which initial
steps in PSII assembly occur. This idea is further supported by
the finding that pD1 accumulation significantly increases in
these fractions in the absence of PratA. Extensive additional
work will be required to characterize this cellular compartment
in greater detail. It will be important to test how its proteomic
composition is organized andwhether other factors involved in
thylakoid membrane biogenesis accumulate there.
Localization of an eCFP-taggedD1 protein at the cell periphery

in a pratA� genetic background further supports the idea that
PratA is involved in processes related to the preassembly of PSII
core complexes at specific sites within the plasma membrane
and/or in the transfer of complexes from these sites to the thyla-
koidmembrane.However, the localizationeffectwasnot verypro-
nounced, probably due to the fact that the pratAmutation leads
not to a fully fledged PSII� phenotype but only to a reduction of
PSII levels to 25% of the wild-type value. Hence, pratA� cells can
still grow photoautotrophically, and all steps in photosystem bio-
genesis, including membrane transfer processes, can in principle
occur, albeit at reduced rates. Future work will try to establish an
inducible imaging system that will allow us to monitor D1-eCFP
fluorescence with high temporal resolution.
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28. Schägger, H., Cramer, W. A., and von Jagow, G. (1994) Anal. Biochem.

217, 220–230
29. Karimi, M., de Meyer, B., and Hilson, P. (2005) Trends Plant Sci. 10,

103–105
30. Zinchenko, V. V., Piven, I. P., Melnik, V. A., and Shestakov, S. V. (1999)

Russ. J. Genet 35, 228–232
31. Nixon, P. J., Trost, J. T., and Diner, B. A. (1992) Biochemistry 31,

10589–10871
32. Komenda, J., Reisinger, V., Müller, B. C., Dobakova, M., Granvogl, B., and

Eichacker, L. A. (2004) J. Biol. Chem. 279, 48620–48629
33. Komenda, J., Tichy, M., and Eichacker, L. (2005) Plant Cell Physiol. 46,

1477–1483
34. Bergantino, E., Brunetta, A., Touloupakis, E., Segalla, A., Szabo, I., and

Giacometti, G. M. (2003) J. Biol. Chem. 278, 41820–41829
35. Srivastava, R., Battchikova, N., Norling, B., and Aro, E.-M. (2006) Arch

Microbiol. 185, 238–243
36. Uniacke, J., and Zerges, B. (2007) Plant Cell 19, 3640–3654

PratA-D1 Complex Formation

JANUARY 16, 2009 • VOLUME 284 • NUMBER 3 JOURNAL OF BIOLOGICAL CHEMISTRY 1819

 at U
B

M
 B

ibliothek G
rosshadern on M

arch 3, 2009 
w

w
w

.jbc.org
D

ow
nloaded from

 

http://www.jbc.org


                                                                                                                                   RESULTS 

                                                                         - 35 -  

Section II: 
 

Pitt, a novel tetratricopeptide repeat protein involved in light dependent chlorophyll 

biosynthesis and thylakoid membrane biogenesis in Synechocystis sp. PCC 6803. 

(2009) by Schottkowski M., Ratke J., Oster U., Nowaczyk M., Nickelsen J. (2009) 

Mol. Plant 2, 1289-1297 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Molecular Plant • Pages 1–9, 2009 RESEARCH ARTICLE

Pitt, a Novel Tetratricopeptide Repeat Protein
Involved in Light-Dependent Chlorophyll
Biosynthesis and Thylakoid Membrane Biogenesis
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ABSTRACT Biogenesis of photosynthetic pigment/protein complexes is a highly regulated process that requires various

assisting factors. Here, we report on the molecular analysis of the Pitt gene (slr1644) from the cyanobacterium Synecho-

cystis sp. PCC 6803 (Synechocystis 6803) that encodes a membrane-bound tetratricopeptide repeat (TPR) protein of for-

merly unknown function. Targeted inactivation of Pitt affected photosynthetic performance and light-dependent

chlorophyll synthesis. Yeast two-hybrid analyses and native PAGE strongly suggest a complex formation between Pitt

and the light-dependent protochlorophyllide oxidoreductase (POR). Consistently, POR levels are approximately threefold

reduced in the pitt insertion mutant. The membrane sublocalization of Pitt was found to be dependent on the presence of

the periplasmic photosystem II (PSII) biogenesis factor PratA, supporting the idea that Pitt is involved in the early steps of

photosynthetic pigment/protein complex formation.

Key words: Synechocystis; TPR protein; POR; thylakoid membrane; chlorophyll.

INTRODUCTION

Light-driven photosynthetic electron flow in cyanobacteria,

eukaryotic algae, and plants is mediated by the major com-

plexes of the thylakoid membrane—photosystems I and II

(PS I and PS II) and the cytochromeb6f complex. While the over-

all structure of this machinery is now well understood at high

resolution (Nelson and Ben-Shem, 2004), relatively little is

known about the biogenesis of its constituent multisubunit

complexes and their co-factors, namely chlorophylls, carote-

noids, and iron–sulfur clusters.

Recently,onegroupofproteins containingso-calledTPR(tet-

ratricopeptide repeat) domains has attractedmuchattention in

the context of the biogenesis of the thylakoid membrane

system. Typically, a TPR domain consists of multiple copies

(3–16) of a degenerate motif that comprises 34 amino acids

forming two amphipathic a-helices. The crystal structure of

TPR domains shows that these form right-handed superhelices

that can serve as a platform to facilitate protein–protein inter-

actions (for review, see D’Andrea and Regan, 2003). Proteins

containing TPR domains are found in all kingdoms of life,

and have been shown to participate in a variety of different

functions, ranging from cell division and RNA metabolism to

protein transport and neurogenesis. Several TPR proteins in-

volved in thylakoid membrane biogenesis in chloroplasts have

been identified, which act by controlling either posttranscrip-

tional steps of chloroplast gene expression (Boudreau et al.,

2000;Vaistijetal., 2000;Saneetal.,2005)ortheassembly/stability

of photosystems I and II (Peng et al., 2006; Park et al., 2007;

Boudreau et al., 1997; Ruf et al., 1997; Stöckel et al., 2006). Also

in the cyanobacterium Synechocystis 6803, the TPR protein

Ycf37wasshowntoberequiredforcorrectformationofPSI(Wilde

etal.,2001;Dühringetal.,2007).Moreover,PSIIassemblydepends

on the so-called PratA TPR-factor, which has been postulated

to mark a subcompartment connecting plasma and thylakoid

membranes in which biogenesis of photosynthetic complexes

takes place (Klinkert et al., 2004; Schottkowski et al., 2009).
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In addition, negative regulation of light-dependent chloro-

phyll synthesis has been shown to be dependent on the TPR

protein Flu in Arabidopsis thaliana (Meskauskiene et al.,

2001). Via its TPR domains, Flu directly interacts with, and

thereby inhibits, glutamyl tRNA reductase, the key enzyme

in the early stages of aminolevulinic acid (ALA) synthesis

and, thus, the entry point for tetrapyrrole synthesis

(Meskauskiene and Apel, 2002). In flu mutants, the photosen-

sitizer protochlorophyllide (Pchlde) accumulates in the dark,

and rapid bleaching ensues upon transfer of such plants into

the light, due to the generation of reactive oxygen (for review,

see Kim et al., 2008). These mutants grow normally in contin-

uous light because Pchlde is rapidly converted into chlorophyl-

lide (Chlde) by the light-dependent protochlorophyllide

oxidoreductase (POR) and, thus, cannot accumulate.

Themembrane-associatedPORenzymebelongs to thefamily

of single-subunit short-chain alcohol dehydrogenases that usu-

ally form oligomers, and it has been studied extensively with

regard to its catalytic activity (for an overview, see Heyes and

Hunter,2005).Theenzymecatalyzesthetransadditionofhydro-

gen from NADPH across the C17–C18 double bond in the D ring

of Pchlde. This reaction requires light, which causes the active

site of the enzyme to adopt a more favorable conformation

(Sytinaetal.,2008).Higherplantscontainatleastthreedifferent

POR genes. The genomes of algae and cyanobacteria each har-

bor only a single POR gene, but encode an additional, structur-

ally unrelated Pchlde reductase (LiPOR) consisting of three

subunits, which mediates the light-independent conversion

of Pchlde into Chlde (Gomez Maqueo Chew and Bryant, 2007).

In the course of a systematic evaluation of TPR proteins in

cyanobacteria, we analyzed the open reading frame (ORF)

slr1644 from Synechocystis 6803, the product of which includes

five TPR units. Here, we show that this protein, named Pitt, is

required for efficient photosynthesis, and affects chlorophyll

synthesis both at the level of POR accumulation and thylakoid

membrane formation.

RESULTS

Sequence Analysis, Generation, and Characterization of

a pitt Mutant

ORF slr1644 from Synechocystis 6803 encodes a protein of 290

amino acids that contains five consecutive TPR units. Further-

more, the segment between positions 16 and 38 is predicted to

form a transmembrane helix, suggesting that the product of

ORF slr1644 is a membrane protein (Figure 1A). Based on

the data presented below, the protein was named Pitt (POR-

interacting TPR protein). Protein BLAST searches revealed

Pitt-related TPR proteins containing an N-terminal transmem-

brane domain amongst several photoautotrophs. However, in

the genomes of non-photosynthetic organisms like E.coli,

Yeast, or mice, no Pitt-like factors were identified.

To analyze the function of Pitt, we cloned and disrupted

ORF slr1644 by inserting a kanamycin resistance cassette into

the unique HindIII site located 388 bp downstream of the AUG

start codon (Figure 1B). After transformation of wild-type cells

with this construct, complete segregation of the mutated gene

was confirmed by PCR analysis (Figure 1C). The complete ab-

sence of the Pitt protein in the mutant was verified by Western

analysis using an a-Pitt antibody that had been raised in rabbit

(Figure 2A). Fractionation of total cellular proteins from the

wild-type into soluble and insoluble phases revealed that Pitt

is indeed associated with membranes (Figure 2B). The nature

of the membrane association was examined further by testing

the effects of various potential solubilizing agents. Treatment

of membranes with either 0.1 M Na2CO3, 4 M urea, or 1 M

NaCl failed to release Pitt from the membrane whereas it

was solubilized in the presence of the non-ionic detergent Tri-

ton X-100. This suggests that Pitt is indeed an integral mem-

brane protein (Figure 2C).

The pitt mutant grew at only about 60% of the wild-type

rate under photoautotrophic conditions, but at a similar rate

to wild-type when cultured in the presence of 5 mM glucose

(Table 1). Thus, the loss of Pitt appeared to significantly affect

photosynthetic performance, and, indeed, light-dependent

oxygen evolution in the mutant was found to be reduced to

one-third of the wild-type level (Table 1). When fluorescence

emission spectra were measured at low temperature (77 K),

a moderate decrease in chlorophyll emission from PS I at 725

nm was observed, suggesting that the ratio of PSII to PSI is

altered in the mutant relative to the wild-type (Figure 3A).

However, levels of various PSII and PSI subunits were not sig-

nificantly affected, as indicated by semiquantitative Western

analyses (Figure 3B). Rough estimations after densitometrical

scanning of observed signals revealed a reduction of PSI levels

standardized to the RbcL signal of only 10% in pitt as com-

pared to the wild-type. Therefore, the pitt mutation appar-

ently has only a minor effect on the PSI/PSII stoichiometry,

suggesting that inactive PSII or PSI complexes accumulate in

pitt.

Pitt Interacts with POR

Previous systematic two-hybrid studies in yeast had identified

Pitt as a putative interaction partner of the light-dependent

POR (Sato et al., 2007). To verify this interaction, the Pitt

and POR coding regions were independently analyzed using

a yeast two-hybrid approach based on the LexA system

(Klinkert et al., 2004). As shown in Figure 4, the interaction be-

tween the soluble C-terminal part of Pitt containing the TPR

domain and POR in yeast could be confirmed. When the same

region of the Pitt gene was inserted into both bait and

prey vectors, no interaction-dependent growth of cells was

detected (Figure 4). This demonstrates that the Pitt TPR do-

main does not interact with itself, at least in the yeast system.

Obviously, more detailed biochemical investigations are re-

quired to answer the question of the Pitt oligomerization sta-

tus in vivo.

Further characterization of the Pitt/POR complex was

achieved by means of 2-D BN/SDS–PAGE (Figure 5). The two

proteins co-migrate, at least partly, under native conditions,
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suggesting that they form one or more complexes in the

60–140-kDa size range. While most of the POR enzyme is asso-

ciated with the material of higher molecular weights, more

than 50% of Pitt appears as free protein in the 35-kDa range

(Figure 5). Strikingly, when the pitt mutant was similarly

analyzed, a reduction in the POR signal was apparent. Further-

more, most of the residual POR enzyme in pitt cells was found

in smaller complexes in the range of 40–100 kDa (Figure 5). To

further estimate the reduction of POR in pitt, semiquantitative

Western analyses with different amounts of total cellular pro-

teins were performed (Figure 6). Densitometrical evaluation of

signal intensities from three independent experiments

revealed a reduction in the POR level in pitt by 70 6 2% as

compared to the wild-type. Taken together, these data suggest

that Pitt is required for the stable accumulation of POR and, in

addition, is involved in the organization of high-molecular-

weight POR complexes.

Light-Dependent Chlorophyll Synthesis Is Affected in the

pitt Mutant

The drastic effect on POR accumulation and organization ob-

served in pitt cells raised the question of whether chlorophyll

synthesis is affected in the mutant. Since Synechocystis 6803

harbors a second, light-independent and POR-unrelated sys-

tem for chlorophyll synthesis, cells were grown under LAHG

(light-activated heterotrophic growth) conditions and, upon

transfer to light, chlorophyll accumulation was followed by

absorption measurements as previously described (He et al.,

1998). The data shown in Figure 7 indicate that light-

dependent chlorophyll synthesis is indeed significantly re-

duced in pitt cells.

In order to confirm that these effects were directly due to

the loss of Pitt, the wild-type Pittgene (including its promoter),

on an autonomously replicating plasmid, was reintroduced in-

to the mutant by conjugation (Zinchenko et al., 1999). In the

Figure 1. Structure and Inactivation of the Pitt Gene.

(A) The amino acid sequence of the Synechocystis sp. Pitt (GI:16331053) was aligned with those of related proteins from Thermosynecho-
coccus elongatus (GI:22298738), Gloeobacter violaceus (GI:37523831), Physcomitrella patens (GI: 168029761), Oryza sativa (GI: 222636850),
and Arabidopsis thaliana (AT4G39470 and AT1G78915). Black and gray boxes indicate conserved and related amino acids, respectively.
Transmembrane domains are underlined and the five TPR domains in Pitt are each marked by converging arrows.
(B) Strategy for constructing donor plasmids with inactivated Pitt. Directions of transcriptions are indicated by open arrows. The solid arrows
represent the primers used for PCR-based segregation analysis of WT and pitt DNA (C).
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resulting strain (named repitt), Pitt accumulation (Figure 2A)

and chlorophyll synthesis (Figure 7) were restored. These

results indicate that the effects observed in pitt cells are en-

tirely attributable to the absence of solely the Pitt protein.

Membrane Sublocalization of Pitt

We have recently shown that a membrane subcompartment

exists in Synechocystis 6803, which is defined by the PratA

factor involved in PSII biogenesis (Klinkert et al., 2004;

Schottkowski et al., 2009). This subcompartment has been pro-

posed to represent connection/transfer sites between the

plasma and the thylakoid membrane systems at which the ini-

tial steps in the biogenesis of photosynthetic complexes—at

least partly—take place. To localize Pitt more precisely within

the different membrane fractions, Synechocystis 6803 mem-

branes were subjected to two consecutive rounds of sucrose

gradient centrifugation, exactly as described previously

(Schottkowski et al., 2009). Fractionation on the second linear

gradient separates PratA from thylakoid fractions, and both

Pitt and POR were found mainly in thylakoid fractions 7–14

as defined by the co-fractionation of the thylakoid marker

PsbB (Schottkowski et al., 2009). However, some Pitt material

was also found in the lighter, PratA-containing fractions 2–6,

whereas weaker POR signals were detected in fractions 5 and 6

(Figure 8).

Intriguingly, in the pratA mutant line, a dramatic effect on

the distribution of POR and, to a lesser extent, Pitt was ob-

served (Figure 8). Here, both proteins accumulate in the lighter

fractions that are defined by PratA in the wild-type. This is sim-

ilar to the situation previously found for pD1 (the precursor of

the D1 protein of PSII), suggesting that not only the matura-

tion of D1, but also chlorophyll synthesis/insertion might take

place in the membrane system defined by PratA (Figure 8;

Schottkowski et al., 2009). When membranes from the pittmu-

tant were analyzed, minor amounts of POR were found to be

shifted toward PratA fractions (Figure 8). Unexpectedly, how-

ever, the distributions of pD1 on both the pratA and the pitt

gradients were similar (Figure 8). This suggests that, like PratA,

Pitt is involved in the migration of PSII precomplexes to thyla-

koid membranes.

DISCUSSION

Pitt Is an Interaction Partner for POR

Several lines of evidence strongly suggest that the TPR protein

Pitt interacts with the light-dependent POR enzyme in Syne-

chocystis 6803. (1) Two independent yeast two-hybrid studies

have now indicated that the two proteins bind to each other

(Sato et al., 2007; Figure 4); (2) electrophoretic fractionation

of cyanobacterial membranes on BN-PA gels reveals partial

co-migration of Pitt and POR; (3) formation of POR-containing

complexes is specifically affected in the pitt mutant; (4) the

overall level of POR in pitt cells is reduced about threefold

compared to the wild-type, suggesting that Pitt is involved

in the stabilization of POR. Although the two-hybrid data

indicate that the two polypeptides interact directly in yeast,

the interaction of the native proteins appears to be rather

transient, because only a subfraction of Pitt is organized in

high-molecular-weight complexes (Figure 5). Moreover, re-

peated attempts to immunoprecipitate POR using aPitt antise-

rum yielded inconclusive results, which is consistent with the

notion that Pitt/POR complexes are short-lived in vivo (data

not shown).

Pitt Is Required for Efficient Light-Dependent Chlorophyll

Synthesis

The pitt mutation clearly affects accumulation of POR and, in

agreement with this observation, rates of light-dependent

Figure 2. Pitt is a Membrane Protein.

(A) Western analysis of wild-type (WT), mutant (pitt) and comple-
mented mutant (repitt) cells using an aPitt antiserum. As a loading
control, the blot was probed with an aRbcL antibody.
(B) Total (T), membrane (M), and soluble (S) protein fractions (30 lg
protein) of wild-type (WT) cells were immunodecorated with the
indicated antibodies.
(C) Samples of the membrane fraction from the wild-type (WT)
were treated with the indicated compounds, and separated into
membrane (M) and soluble (S) fractions by centrifugation.

Table 1. Different Photosynthetical Parameters of WT and pitt.

Strain
Rel.
growth +a

Rel.
growth –b PSI/PS IIc Chlorophylld

O2
evolutione

WT 1 1 12.6 6 1.2 0.7 6 0.06 100%

pitt 1.3 6 0.1 1.8 6 0.1 9.5 6 0.8 0.7 6 0.03 30 6 9%

a Relative increase in doubling time in the presence of glucose
(rel. growth = 1 corresponds to 14.2 6 1.1 h).
b Relative increase in doubling time in the absence of glucose
(rel. growth = 1 corresponds to 26.0 6 0.4 h).
c Ratio (peak areas) of 77 K chlorophyll fluorescence at 725 nm
(PS I) and at 695 nm (PS II); see also Figure 3A.
d Chlorophyll content in mg ml�1 culture at OD750 = 1.
e Light-dependent oxygen production (100% corresponds to
170.6 6 9.0 lmol O2 per mg chl and h in the presence of glucose).
All measurements include three independent repetitions.
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chlorophyll synthesis decline in pitt cells (Figure 7). In Arabi-

dopsis thaliana, another TPR protein, named Flu, has previ-

ously been shown to regulate the early steps of chlorophyll

synthesis by binding to, and thereby inhibiting, glutamyl tRNA

reductase (Meskauskiene and Apel, 2002). Therefore, we

tested whether Pitt—in addition to its role in determining

POR levels—might directly regulate POR activity. We assayed

POR activity in vitro, using recombinant Pitt and POR proteins

expressed in E. coli according to Klement et al. (1999). Under

the conditions employed, POR activity was independent of the

absence or presence of Pitt, suggesting that Pitt does not in-

fluence POR activity per se (data not shown). Obviously, this

does not rule out the possibility that Pitt is involved in modu-

lating POR enzyme activity, because other necessary factors

might be lacking in the in vitro system and/or experimental as-

say conditions might have to be optimized. Indeed, BN–PAGE

revealed POR/Pitt complexes of higher molecular weight that

might contain additional subunits (Figure 5). More detailed

studies will be required to answer this question definitively.

Does Pitt Have Other Functions?

Solubilization experiments indicated that Pitt is an integral

membrane protein that is likely to be anchored to the lipid bi-

layer via its N-terminal transmembrane domain (Figures 1

and 2). In contrast, POR is a peripheral membrane protein that

is attached to membranes via its C-terminal domain (Klement

et al., 1999; Aronsson et al., 2003; for a recent review, see

Belyaeva and Litvin, 2007). Thus, attachment of POR to the

membrane system could be a consequence of its interaction

with Pitt. However, this scenario seems unlikely, since fraction-

ation experiments showed that membrane association of the

residual POR was not altered in the pitt mutant (data not

shown). These data do not exclude the possibility that Pitt

might facilitate localization of POR to distinct membrane sub-

compartments. In chloroplasts, POR can be localized to stromal

thylakoids and/or the inner chloroplast envelope (Masuda and

Takamiya, 2004).

Other possible roles for Pitt can also be envisaged, for in-

stance in the spatial organization of chlorophyll synthesis

and the biogenesis of chlorophyll-containing protein com-

plexes. The pitt mutant exhibits a clear defect in photosyn-

thetic activity at moderate light levels (Table 1). In contrast,

deletion of the POR gene (slr0506) in Synechocystis 6803 has

no obvious phenotypical consequences (Cyanobase: http://

a.kazusa.or.jp/annotations/2741). This suggests that Pitt has

additional, POR-independent functions in photosynthesis, al-

though it should be noted here that in the cyanobacterium

Plectonema boryanum, a light-dependent decrease in photo-

synthetic growth rate was observed in a POR deletion strain

(Fujita et al., 1998). One such function might be to localize

POR for the insertion of pigments into chlorophyll-binding

proteins during their assembly into complexes. This idea is sup-

ported by the finding that substantial amounts of Pitt are

Figure 3. Accumulation of Photosynthetic Complexes in pitt.

(A) Low-temperature fluorescence emission spectra of whole cells
of indicated strains are shown after excitation of chlorophyll at
435 nm. Spectra were normalized to the emission maxima at
685 nm.
(B) Total proteins of wild-type (WT) and pitt were probed with in-
dicated antibodies.

Figure 4. Interaction of Pitt and POR.

Yeast two-hybrid analysis of Pitt fused to the DNA-binding domain
of LexA (Pitt–DBD) and either POR or Pitt fused to the activation
domain of LexA (POR–AD and Pitt–AD, respectively). Autoactiva-
tion of Pitt–DBD by AD alone can be excluded (see first panel).

Figure 5. 2-D BN/SDS–PAGE of Synechocystis Membranes.

Membrane fractions from wild-type (WT) and pitt mutant strains
were solubilized with b-dodecylmaltoside, fractionated by 2-D
BN/SDS–PAGE and blotted. Pitt and POR were detected with the ap-
propriate antibodies. A representative 2-D gel loaded with wild-
type (WT) proteins and stained with Coomassie is shown at the
top. Asterisks indicate unspecific cross-reactions of the aPOR anti-
body.

Schottkowski et al. d Pitt-Dependent Chlorophyll Synthesis | 5

http://a.kazusa.or.jp/annotations/2741
http://a.kazusa.or.jp/annotations/2741


present in a lighter membrane subfraction that is defined by the

PSII biogenesis factor PratA (Schottkowski et al., 2009). More

strikingly, in a pratA mutant, both POR and Pitt are shifted to-

wards these lighter membrane fractions, as is pD1, the precursor

of the D1 protein (Figure 8). As previously hypothesized, this

suggests a perturbation of membrane flow to the thylakoids

from biogenesis sites where the initial steps in photosynthetic

complex assembly, including pigment insertion, occur

(Schottkowski et al., 2009; Keren et al., 2005). The dependence

of POR and Pitt localization upon PratA argues that they act to-

gether, in a concerted fashion, during PSII precomplex assembly.

Moreover, the shift in the distribution of POR material in the

pitt mutant is less pronounced than that seen in pratA, further

substantiating a potential role for Pitt in the spatial organiza-

tion of chlorophyll synthesis and/or pigment insertion into

proteins. Surprisingly, membrane localization of pD1 was signif-

icantly affected in pitt cells, suggesting that Pitt is also involved

in the assembly of PSII. Whether this represents a direct or more

indirect effect remains to be elucidated.

In conclusion, the available data do not yet allow us to as-

sign a precise molecular function to Pitt, but the effects of its

loss, its binding to POR, and its membrane sublocalization per-

mit us to propose that the protein is involved in early steps in

the biogenesis of photosynthetic protein/pigment complexes.

METHODS

Sequence Analysis of Pitt

Basic local alignment search was performed with the protein-

blast software on the NCBI homepage. Resulting amino acid

sequences were aligned using MUSCLE (www.phylogeny.fr;

Dereeper et al., 2008). The corresponding TPR-repeats were

calculated with the free TPRpred software of the MPI Tübingen

(http://toolkit.tuebingen.mpg.de/tprpred) and the prediction

of the transmembrane domains was performed with SOSUI

(http://bp.nuap.nagoya-u.ac.jp/sosui/).

Generation and Growth of Strains

Synechocystis 6803 wild-type and mutant strains were grown

on solid or in liquid BG 11 medium containing 5 mM glucose (if

not otherwise noted) at 30�C at a continuous photon irradi-

ance of 50 lE m�2 s�1. The insertion mutant pitt was gener-

ated by PCR amplification of the wild-type Pitt gene using

the primer pair slr1644/5 (GTGGCAACTTCTAGGACACA) and

slr1644/3 (TTATTCTGACTTGAGGATGGG), and subsequent clon-

ing of the resulting fragment into the Bluescript pKS vector. A

kanamycin resistance cassette was then inserted into the

unique HindIII restriction site in Pitt, and wild-type cells were

transformed with the construct as described. For complemen-

tation of the resulting mutant pitt, the Pitt gene, including its

Figure 6. Levels of POR Are Reduced in the pitt Mutant.

Western analysis of different amounts of protein extracts (100%
correspond to 120 lg protein) from wild-type (WT) and pitt cells
using the aPOR antiserum. As a loading control the blot was immu-
nodecorated with aRbcL antiserum.

Figure 7. Chlorophyll Synthesis in pitt Cells.

Cells were grown under LAHG conditions and, at timepoint 0, cells
were shifted to continuous illumination. Chlorophyll amounts of
three independent experiments were measured at the given time-
points and the ratio of chlorophyll a (in mg) per cell density was
plotted in relation to time. WT, solid line; repitt, dashed line; pitt,
dotted line.

Figure 8. Membrane Sublocalization of Pitt.

Fractionation of cell material from fraction V (Schottkowski et al.,
2009) on a linear 30–60% sucrose gradient. After fractionation, pro-
teins were subjected to Western analysis with the indicated anti-
bodies. POR signals in the pitt mutant were overexposed to
enable visualization of qualitative POR distribution throughout
the gradient.

6 | Schottkowski et al. d Pitt-Dependent Chlorophyll Synthesis

www.phylogeny.fr
http://toolkit.tuebingen.mpg.de/tprpred
http://bp.nuap.nagoya-u.ac.jp/sosui/


own promoter, was amplified using the primers co1644-for

(GTCGACTGTTAAACTCCCTGGC) and co1644-rev (GTCGACT-

TATTCTGACTTGAGGATGG), and cloned into the single XhoI

site of the vector pVZ321, which replicates autonomously in

Synechocystis 6803 (Zinchenko et al., 1999). Transfer of this

construct into pitt cells via conjugation was performed as de-

scribed (Zinchenko et al., 1999).

Antibody Production and Western Analysis

For antibody production, the Pitt reading frame without

the N-terminal transmembrane region (amino acid positions

38–290) was amplified using the oligonucleotides THslr1644-a

(GGATCCGAATTCTTGTGGCAACCCCGTCCCGC) and THslr1644-b

(GTCGACTTCTGACTTGAGGATGGGGG). The resulting DNA frag-

ment was inserted into the vector pDrive (Qiagen), sequenced

andfurther subclonedintotheBamHIandSalI sitesof theexpres-

sion vector pGex-4T-1. Expression of the GST fusion protein in

Escherichia coli BL21 and affinity purification on Glutathione

Sepharose 4B (GE Healthcare) were performed in accordance

with the manufacturer’s instructions. A polyclonal antiserum

was raised in rabbit (Biogenes). Protein extracts were prepared

from Synechocystis 6803 and Western analyses were carried

out as previously reported (Wilde et al., 2001). The pD1 antibody

was raised against the last 16 amino acids of the pD1 protein

(Allakhverdiev et al., 2002).

Measurements of Chlorophyll Fluorescence and Oxygen

Evolution

Fluorescence emission spectra at 77 K were determined with

an SLM-Aminco Series 2 luminescence spectrometer as de-

scribed previously (Klinkert et al., 2004). Measurements of ox-

ygen evolution during illumination with saturating white light

were performed using a Clark-type oxygen electrode (Hansa-

tech) at 30�C.

Yeast Two-Hybrid Analysis

Protein interaction studies in yeast were performed using the

MATCHMARKER LexA system (Clontech). A PCR fragment con-

taining the POR coding region was ligated into the pJG4-5 vec-

tor. The coding sequence for the mature form of Pitt (lacking

33 amino acids at the N-terminus including the putative transit

sequence) was amplified by PCR and subsequently inserted in-

to pEG202 via primer-derived restriction sites. Interaction stud-

ies were performed as described earlier (Klinkert et al., 2004).

Cell Fractionation

Total cellular proteins were prepared from 50-ml cultures in

the exponential growth phase. Cells were harvested by centri-

fugation and re-suspended in breaking buffer (50 mM Tris/HCl

pH 7, 20 mM MgCl2, 20 mM KCl) supplemented with 0.5%

Triton X-100. Cells were broken with glass beads in a mini-

beadbeater (Glen Mills), using three 20-s bursts separated by

1-min periods on ice. The suspension was centrifuged for

1 min at 15 000 g and the protein concentration in the super-

natant was measured. Finally, the samples were fractionated

on SDS gels, blotted, and probed with various antibodies.

For separation into membrane and soluble protein frac-

tions, wild-type cells were petleted by centrifugation, re-

suspended in breaking buffer w/o detergent, and broken with

the help of glass beads as described above. Total cellular pro-

teins were adjusted to 1 M sucrose and centrifuged at 94 000 g

for 30 min. The pellet was solubilized with breaking buffer

containing 0.5% Triton X-100. Equal amounts of soluble and

membrane proteins were then subjected to Western analysis.

Membrane sublocalization of Pitt and POR was performed

precisely as reported previously (Schottkowski et al., 2009).

Solubilization of Membrane Proteins

Wild-type membranes for solubilization assays (50 lg protein)

were sedimented by centrifugation and washed twice in 5 mM

HEPES pH 7.6. Pellets were re-suspended in 20 ll of HEPES

buffer and 20 ll of 5 mM HEPES pH 7.6 (as control), 0.2 M

Na2CO3; 4 M urea; 2 M NaCl or 0.5% Triton X-100 was added.

After a 30-min incubation on ice and centrifugation for 15 min

at 18 000 g at 4�C, the supernatants were collected and the

pellets were washed twice with HEPES buffer. All samples were

fractionated by SDS–PAGE and analyzed by immunoblotting.

2D BN/SDS–PAGE

Preparation of membranes (corresponding to 500 lg mg pro-

tein) for blue native (BN)–PAGE in the first dimension was per-

formed according to Dühring et al. (2006). Further steps were

carried out as described (Schottkowski et al., 2009).

Chlorophyll Biosynthesis

Strains were grown under LAHG (light-activated heterotrophic

growth) conditions (Smart et al., 1991) for 10 d in complete

darkness, and exposed to light (5 lE m�2 s�1) for 15 min each

day. They were then grown in continuous light (20 lE m�2 s�1)

and chlorophyll a absorption was monitored at different time-

points (Moran, 1982). Finally, chlorophyll a content was calcu-

lated on a per-cell basis.
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DISCUSSION 
 
TPR proteins in Synechocystis 
The genome of Synechocystis encodes, depending on search parameter, 22-26 TPR 

proteins, which have been identified by sequence analysis. Compared to e.g. A. 

thaliana, with 326 encoded TPR proteins, this is a relative small amount. Therefore 

Synechocystis is the perfect model for systematic analysis of their function. The 

present study elucidated the function of PratA (Section I) and Pitt (Section II). Both 

factors are important during thylakoid membrane biogenesis. While PratA directly 

interacts with the D1 protein of PSII (Figure 1 & 2, Section I) and is therefore 

associated to a membrane subfraction to a substantial amount (Figure 5, Section I), 

Pitt indirectly influences the chlorophyll synthesis by interacting with the POR (Figure 

4 & 6, Section II). Inactivation of Pitt therefore leads to a retarded chlorophyll 

synthesis (Figure 7, Section II). Pitt-homologues are found in several 

photoautotrophic organisms hence one may speculate that Pitt and its homologues 

share similar functions in different organisms (Figure 1, Section II). Besides the 

already mentioned Ycf3 and Ycf37 biogenesis factors, another TPR protein 

(slr0151p) might be involved in biogenesis of the thylakoid membrane. The protein is 

encoded in the so-called Pap-operon (PSII-assembly-protein). During purification of 

PSII, all encoded proteins were identified as PSII-associated. It was shown that these 

proteins have binding domains for chlorophyll and billin and are part of a PSII 

precomplex, suggesting a function for cofactor delivery to PSII during assembly 

(Wegener et al. 2008). 

Inactivation of further, yet uncharacterized TPR proteins led to impaired 

photosynthetic performance, indicating that more TPR proteins from Synechocystis 

might be important for proper functionality of the photosystems (Shao & Nickelsen, 

unpublished results). 
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Thylakoid biogenesis occurs at the cyanobacterial plasma membrane 
Where the initial steps of complex assembly and thylakoid membrane biogenesis in 

cyanobacterial cells occur is still under a strong debate. The present study provides 

intriguing data that the plasma membrane houses the first steps of thylakoid 

formation, namely assembly of the first PSII precomplex and the maturation of the D1 

protein. Combining already published and novel experimental data, the importance of 

the plasma membrane to initiate thylakoid biogenesis is supported: 

(1) The usually periplasmic TPR protein PratA interacts with the precursor 

protein of D1 (Klinkert et al. 2004). The present data reveals the presence of two 

different PratA populations. The majority of the PratA protein forms a soluble 

periplasm-located 200 kDa complex (Figure 3A & 4B, Section I), whereas a minor 

amount of PratA is part of a membrane-associated complex (Figure 3A & 4A, Section 

I). This complex is located in a non-thylakoid membrane fraction which is mediated 

by the interaction with a D1 subpopulation (Figure 3, Section I). The distribution of 

thylakoid membranes is indicated by the presence of the CP47 protein, the PSII 

antenna protein, which is restricted solely to the thylakoids (Figure 5, Section I). 

(2) The enzyme CtpA, which is indispensable during maturation of the PSII 

core protein D1, is exclusively located in pure plasma membrane preparations (Zak 

et al. 2001). 

 

                             
Figure 7: Model of how the periplasmic PratA and the plasma membrane protein CtpA interact with the 

D1 protein. Shown is the outer membrane (orange), the plasma (brown) and the thylakoid membranes 

(green). 
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(3) To a certain amount, core subunits of both, photosystem I and II are found at the 

plasma membrane, for instance the proteins D1, D2, PsaA and PsaB. Furthermore, 

several assembly factors (Ycf3 and Ycf4) but not the antenna proteins CP43 and 

CP47 are located exclusively at the plasma membrane. 

(4) A PSII precomplex is formed at the plasma membrane, which consists of 

the proteins pD1/D1, D2 and cytochrome b559. It was shown that this isolated 

precomplex has photochemical competence (Keren et al. 2005) 

It seems that not the complete plasma membrane harbours a biogenesis 

apparatus for the photosynthetic complexes, but that these important actions occur at 

specialized, biogenesis-initiating regions present in this membrane system 

(Srivastava et al. 2006). During preparation of plasma membrane fractions the 

existence of a heterogeneous distribution of proteins in the membrane became 

obvious. Different vesicles were formed– one kind is characterized by proteins like 

NrtA, a peripheral lipoprotein, and VIPP1. Both proteins accumulated in right-side-out 

(RSO) vesicles. In contrast the inside-out (ISO) vesicles contained high amounts of 

the pD1, D1 and PsaD proteins. Indicating that ISO vesicles represent regions of the 

plasma membrane where biogenesis of thylakoid proteins occurs (Srivastava et al. 

2006).  

 

 

 

Place of pigment synthesis 
Several pieces of data provide satisfying insights in the spatial organization of 

chlorophyll synthesis in chloroplasts of higher plants. All enzymes necessary for the 

pigment synthesis pathway till the conversion of protochlorophyllide to chlorophyllide 

are located in the chloroplast envelope (for review see Joyard et al. 1998). Therefore 

it is likely that the POR is associated to the envelope, too. But there are other studies 

suggesting that POR is also located to the thylakoid membrane (Masuda & Takamiya 

2004). As POR is not an intrinsic membrane protein, which depends on anchors 

facilitating its membrane association (Teakle & Griffiths 1993; Rowe & Griffiths 1995), 

it might be possible that the POR associates to both membranes depending on 

preparation techniques. The last step of the chlorophyll synthesis, the conversion of 

chlorophyllide to chlorophyll, appears at the thylakoids, this is due to the association 
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of the responsible enzyme, the chlorophyll synthase, with those membranes (Joyard 

et al. 1998). 

The understanding of the spatial organization in cyanobacteria is not that 

advanced compared to higher plants. It was shown that in the cyanobacterium A. 

nidulans precursors of chlorophyll, protochlorophyllide and chlorophyllide as well as 

the POR are found in preparations of plasma membranes (Peschek et al. 1989). This 

is in accordance with the situation in higher plants, as PM and envelope share 

functional and structural relation. Moreover, this study revealed the existence of 

chlorophyll only in the thylakoids, which would fit to the localization of the chlorophyll 

synthase at the thylakoids in chloroplasts. 

The present work shows that the POR is mainly located to the thylakoid 

membrane in Synechocystis (Figure 8, Section II), which is consistent with a study in 

higher plants. 

Taken together we conclude that not only the biogenesis of polypeptide 

subunits of the photosynthetic apparatus, but also at least initial steps of the 

chlorophyll synthesis pathway occur at the plasma membrane of cyanobacteria. 

 

 

 

De novo assembly vs. repair cycle 
All these data support the role of the plasma membrane as compartment of initial 

steps of thylakoid formation. Despite there are still concerns about this model. The 

HCF136 factor from Synechocystis which was shown to interact with the pD1 protein 

and therefore might be important for thylakoid membrane biogenesis is associated to 

the thylakoid and not the plasma membrane (Dobáková et al. 2009). Furthermore, 

the authors state that the repair cycle of photosystem II is also affected by the 

absence of HCF136. This could imply that HCF136 is only involved in the repair cycle 

and that the de novo assembly of photosystems and their repair cycle occur at 

different regions in cyanobacteria. Data from studies with green algae showed that 

this is also true for chloroplasts of C. reinhardtii. Here specific regions for de novo 

assembly around the pyrenoid are found, while repair seems to occur distributed over 

the stroma thylakoids throughout the cup-shaped chloroplast (Uniacke & Zerges 

2007). 
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Figure 8: Model of the PSII repair cycle. Dimeric PSII disassembles to the RC47 complex, damaged 

D1 is replaced by a new synthesized precursor copy, processed and finally the reassembly of 

cofactors and low-molecular weight subunits occurs (Nixon et al. 2004). 

 

 

The repair of PSII in Synechocystis depends on several proteases, which degrade 

the damaged D1 protein. The protease FtsH was shown to be located at the 

thylakoid membrane and furthermore the exchange of the D1 protein occurs in a 

partially disassembled photosystem II, called RC47 (Komenda et al. 2006; Dobáková 

et al. 2009). The small complex RC47 still contains the antenna protein CP47 and as 

CP47 has never been detected in plasma membrane preparations, the repair cycle, 

in contrast to de novo PSII assembly, has to be localized in the thylakoid 

membranes. 

The constantly replacement of photodamaged PSII, especially of the D1 

protein, longs for incorporation of a newly synthesized copy of the reaction center 

protein D1. The maturation of the precursor pD1 depends on the enzyme CtpA, 

which is supposed to be exclusively located at the plasma membrane. This leads to 

another challenge: How is maturation of newly synthesized pD1 protein for repair of 

damaged PSII in the thylakoid membrane achieved? 
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Analyses of the mobility of protein complexes in thylakoid membranes revealed that 

complexes are normally completely immobile, but FRAP measurements provide 

evidence that they become mobile under certain conditions (Sarcina & Mullineaux 

2004; Sarcina et al. 2006). One could speculate that during photodamage these 

conditions exist. In that case, the partially disassembled RC47 complex becomes 

mobile and migrates to regions in the thylakoids, which are in close connection to the 

plasma membrane. Secondly the pD1 in RC47 gets in contact to the CtpA by 

unknown mechanisms and the pD1 is processed to its functional form. Finally RC47 

migrates back and active PSII will be formed by reassembly of missing subunits. 

Indeed, it was shown for Synechococcus that under intense red light PSII becomes 

mobile and the PSII fluorescence accumulates in the thylakoid membrane at specific 

regions close to the poles of the cell (Sarcina et al. 2006). This scenario reminds of 

the specific sites for biogenesis in the plasma membrane and leads to the idea that 

also the thylakoid membrane harbours specific sites for protein synthesis and/or 

maturation during the repair cycle. 

 

 

 

Morphology of the cyanobacterial internal membrane system 
To date the transport of protein complexes and pigments from the plasma to the 

thylakoid membrane in course of de novo assembly of photosynthesis complexes is 

lively discussed. 

There are two major alternatives: First, a vesicle transport from the place of 

initial biogenesis steps to the destination, where this material is needed. Second, 

connections between both membrane compartments which would allow a migration 

of complexes along the membrane or from the periplasm to the luminal space. 

Vesicles were observed in higher plants chloroplasts and were supposed to 

represent transport vesicles of lipids and/or proteins from the inner envelope to the 

thylakoids (Vothknecht & Soll 2005). In cyanobacteria so far only one species is 

described, in which vesicles are seen by electron tomography. As this 

cyanobacterium Microcoleus sp. is a very ancient species, a conserved presence of 

vesicles from cyanobacteria to higher plants might be possible (Nevo et al. 2007). 

The idea of vesicles is supported by the discovery of the vesicle-inducing protein in 

plastids 1 (Vipp1). This protein is essential for the formation of thylakoids in higher 
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plants and cyanobacteria. Deletion of Vipp1 in higher plants even prevented the 

formation of vesicles. In Synechocystis the Vipp1 homologue is located at the plasma 

membrane and despite its location influences the biogenesis of thylakoids (Westphal 

et al. 2001; Aseeva et al. 2007; Fuhrmann et al. 2009). These findings point out a 

functional connection between plasma and thylakoid membrane and the necessity of 

material transport from one to the other area. 

Numerous studies were carried out the last years to dismantle the real 

morphology of the intracellular membrane system in cyanobacteria to support or to 

deny the possibility that the plasma and thylakoid membrane are connected at 

specific sites (Kunkel 1982; Spence et al. 2003; Liberton et al. 2006; van de Meene 

et al. 2006; Nevo et al. 2007). However, the resulting data is not convincing because 

of its inconsistence. One study, in which ultrarapid freeze-fixation of Synechocystis 

cells facilitates excellent preservation of cellular structures, demonstrates that 

thylakoid membranes are separate and seem to be a closed compartment within the 

cell (Liberton et al. 2006). Simultaneously, the researchers state that they found no 

evidence for vesicle transport in Synechocystis. They conclude neither to exclude 

vesicle transport nor connectivity of both membranes, as membranes in 

cyanobacteria are a dynamic, depending on development and environment changing 

system. This was indeed observed for Synechocystis: perforations through several 

sheets of thylakoids are formed on demand to allow traffic of material throughout the 

whole cell (Nevo et al. 2007). 

Several studies provide good evidence for a connectivity of plasma and 

thylakoid membranes in several cyanobacteria, however there is a remaining lack of 

evidence for Synechocystis. The arrangement of intracellular membranes of 

Synechococcus sp. PCC7002 was analyzed and contacts at numerous points 

between both membranes are described (Nierzwicki-Bauer et al. 1983), yet this 

finding might provide evidence for connecting points, but as this cyanobacterium 

exhibits a very special membrane organization, a validation of membrane 

connections in cyanobacteria in general is still missing. However, already in 1982 

Kunkel found that in four cyanobacteria (A. cylindrical, D. violaceae, G. alpicola and 

P. minor) groups of thylakoids converge at peripheral cytoplasmic points. At these 

sites cylindric structures, named thylakoid centers (TC), were detected (Kunkel 

1982). These thylakoid centers are located within the cytoplasmic membrane and are 

associated with layers of thylakoids. From the peripheral border of those structures, 
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four to eight thylakoid membranes radiate to the inner part of the cell. A direct 

thylakoid-cytoplasmic membrane connection could not be shown, but a significant 

function of the TCs was suggested due to their location in the plasma membrane, 

structure and thylakoid attachment (Kunkel 1982). 

A recent study provides the first evidence for membrane connectivity in 

Synechocystis. By applying cryopreparation and electron tomography, which 

provides high-resolution 3-D data, it could be shown that thylakoid membranes 

converge along the plasma membrane and that at several connections thylakoid 

centers, associated to both plasma and thylakoid membrane, are present (van den 

Meene et al. 2006). These connections were proposed to be dynamic, transient 

fusions, which would allow transfer of materials from the cytoplasmic membrane to 

the thylakoids. 
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Figure 9: Thylakoid center in different cyanobacterial species. (A) EM-image of two thylakoid centers 

in P. minor with radiating thylakoid membranes (Kunkel 1982). Thylakoid center in Synechocystis: (B) 

EM-image and (C) electron tomography of the corresponding image (van de Meene et al. 2006). Black 

arrowheads indicate the TCs. 

 

 

The occurrence of TCs in several cyanobacteria point out their important, yet unclear 

role in biogenesis of thylakoids. In chloroplasts of spinach TC-like structures are 

present and it was suggested that they might perform transport from the inner 

envelope to the thylakoids (Carde et al. 1982). Similar suggestions were made for 

TCs in Synechocystis, where a transfer of PSI and PSII subunits from the 

cytoplasmic to the thylakoid membrane via this structure was proposed 

(Hinterstoisser et al. 1993). 

 

CB 

A 
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The present study provides additional strong evidence that indeed the membrane 

system in Synechocystis is a continuum, which allows transfer of proteins, pigments 

and lipids from the cytoplasmic to the thylakoid membrane. The present data shows 

that a special membrane subfraction exists which can be isolated as innate 

membrane fraction from plasma- and thylakoid membrane and might therefore 

represent the missing link between both. The PratA factor interacts with the luminal 

C-terminus of a D1 subpopulation which is to substantial amounts located in this 

novel PratA-defined membrane (PDM) compartment (Figure 2 & 5, Section I). 

Furthermore, we were able to detect a weak signal of pD1 in this region in wildtype 

cells, which accumulates significantly, when PratA is missing (Figure 5, Section I). 

This observation of accumulated pD1 is in line with earlier findings and might suggest 

an improper processing or assembly of D1 into new synthesized PSII (Klinkert et al. 

2004). In addition, CFP-tagged D1 protein accumulates in the periphery of cells in a 

pratA-mutant (Figure 6, Section I). Taken together the results indicate a function of 

PratA during transfer of subunits of PSII from the place of biogenesis to the thylakoid 

membranes, but still its exact function has to be elucidated. 

Likewise, Pitt and its interaction partner POR (Figure 4 & 5, Section II) are 

found to a certain amount in the PDM, while the majority is located at the thylakoid 

membrane, indicating that both proteins act in a concerted fashion during biogenesis 

of protein-pigment complexes (Figure 8, Section II). A shift of both factors to lower 

density sucrose fraction where PratA is found becomes obvious in the absence of 

PratA. This again is supporting the idea that PratA is involved in transfer of material 

or in organization of efficient transport (Figure 8, Section II). Interestingly, in the pitt-

mutant the pD1 protein behaves as in the pratA-mutant and seems to stick in the 

PDM (Figure 8, section II). The accumulation of pD1 might therefore just be seen as 

a secondary effect of inefficient PSII assembly, which is already described for 

inactivation of several PSII assisting factors, e.g. PsbH, PsbB or PsbEFLJ (Komenda 

et al. 2005). 

Very recent data revealed that the majority of CtpA is also present in the PDM 

(Rengstl & Nickelsen, unpublished results). This finding implies that the processing of 

pD1 does not occur in the cytoplasmic membrane but in the PratA-defined one, thus 

this membrane subfraction might be specialized in certain steps of thylakoid 

membrane biogenesis. This hypothesis is supported by the finding that in PratA-

defined gradient fractions also a chlorophyll precursor is present (Rengstl & 
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Nickelsen, unpublished results). This confirms earlier studies in which proto- and 

chlorophyllide were found to accumulate in the thylakoid centers in A. nidulans and 

Synechocystis, respectively (Peschek et al. 1989; Hinterstoisser et al. 1993).  

We were able to isolate the special membrane as a distinct fraction in sucrose 

gradients, also shown for TC (Hinterstoisser et al. 1993), which is neither plasma nor 

thylakoid membrane. If this novel PDM subfraction shares structural and/or functional 

similarity or even equality with the already described thylakoid center remains to be 

elucidated.  

 

 

 

Working model for the spatial organization of thylakoid biogenesis 
Based on the present data combined with earlier published facts, a working model of 

processes occurring at the internal membrane system in Synechocystis during 

thylakoid membrane biogenesis and complex assembly can now be drawn. 

We propose a model for the membrane system of Synechocystis with transient 

or permanent connecting regions between plasma and thylakoid membrane at 

certain points at the periphery of the cells. These connections are represented by a 

membrane fraction distinct from cytoplasmic membrane and the thylakoids, which 

can be isolated in a sucrose gradient. This special membrane subfraction is 

characterized by the presence of a minor part of the PratA factor (Figure 3A & 5, 

Section I), which seems to facilitate efficient transport/transfer of photosynthetic 

complex subunits to the thylakoids and/or to organize the connecting region. The 

majority of PratA is part of a periplasm-located 200 kDa complex, the function of 

which is still under investigation (Figure 4B, Section I). 

As initial steps of thylakoid membrane biogenesis occur in the novel PDM 

subfraction, we refer to this region as “biogenesis center” (BC). It is tempting to 

speculate that the ISO vesicles, which seem to represent regions of early thylakoid 

formation, share similarities with the PDMs.  

PratA interacts with unassembled pD1 at the PDM; therefore this interaction 

must be present before the assembly of the first PSII precomplex, consisting of the 

proteins D1, D2 and cytochrome b559. These core subunits are inserted into the 

membrane in a co-translational manner, but if they are inserted into the plasma 

membrane or into the PDM remains to be elucidated. Our data suggests that this 
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early complex is assembled in the biogenesis center and transported from there to 

the thylakoids where subsequently all missing subunits are assembled and finally the 

fully active photosystem II reaction center is connected to the OEC. The presence of 

the CtpA protein at the PDM indicates that the C-terminal extension of pD1 is cleaved 

immediately before or during transport from the BC to the thylakoids. Furthermore, 

the localization of CtpA raises new ideas regarding the mode of the repair cycle in 

Synechocystis, as discussed later. We believe that the discrepancy between the 

localization of CtpA at the plasma membrane in former studies or in the PDM fraction 

in the present work is due to different preparation procedures. It is possible that the 

PDM subfraction became associated to the cytoplasmic membrane during 

preparation, but through improved procedures we are now able to isolate it as innate 

membrane fraction.  

 

 

 
Figure 10: Working model of the spatial organization of thylakoid membrane biogenesis in 

Synechocystis. De novo assembly and the PSII repair cycle are differentially localized. Outer 

membrane (OM), plasma membrane (PM), thylakoid membranes (TM) and the PratA-defined 

membrane (PDM) are depicted. PDMs enclose the biogenesis center (BC), where early steps of 

thylakoid membrane biogenesis occur. For more details refer to the text. 

 

 

The spatial organization of chlorophyll synthesis in Synechocystis remains to be 

elucidated. The present data provides strong evidence for the localization of the light-

dependent POR, which drives one of the last steps of the chlorophyll synthesis 
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pathway. The Pitt protein together with the POR is mainly located in the thylakoid 

membrane, while a small amount is present in the PDM fraction (Figure 8, Section II). 

This together with yet unpublished data about accumulation of chlorophyll precursor 

in the PDM, indicate that the synthesis of chlorophyll might occur in or adjacent to the 

BC. Because already in the first precomplex of PSII chlorophyll is incorporated 

(Keren et al. 2005), one could suggest that either chlorophyll synthesis is not 

restricted to the area of the BC or a transport of chlorophyll throughout the 

membrane system is present.  

 

 

It seems likely that the repair cycle of PSII, which is constantly exposed to 

photodamage, appears separated from the de novo assembly of the photosynthetic 

complexes in Synechocystis. In our model the damaged PSII disassembles to a 

certain amount, then proteases degrade and remove the core protein D1 and a newly 

synthesized precursor copy of D1 is integrated into the RC47 complex, still located in 

the thylakoids. This idea is in accordance with an earlier study and also is supported 

by weak signals of pD1 in the thylakoid fractions (Jansén et al. 2002; Figure 5, 

Section I). During or after insertion of pD1 RC47 migrates through the thylakoid 

membrane towards the biogenesis center, where the CtpA protease is located. At the 

border of thylakoids to PDM the C-terminal extension of pD1 is exposed into the 

lumen and CtpA gets in contact to the extension, which is in turn cleaved. Thereafter 

the RC47 complex moves back to the thylakoids and the reassembly takes place, to 

gain back full functionality. 

 

 

The hypothesis of membrane continuity in Synechocystis raises more questions: if 

the membrane system is a continuum, are consequently the periplasm and the 

thylakoid lumen a contiguous compartment, too? One study provides evidence that 

this is not the case. GFP was engineered with a Tat-signal peptide and transported 

across the plasma membrane to the periplasm. The resulting GFP-fluorescence was 

solely present in the periplasm and a diffusion of GFP to the lumen was not obvious 

(Spence et al. 2003). This suggests that in the periplasm and thylakoid lumen, 

despite the connectivity of both respective membranes, a free and spontaneous 

diffusion of materials from one to the other compartment is not possible. One could 
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think about the presence of special “checkpoints” organizing the correct transport 

from periplasm to thylakoid lumen and vice versa. 

 

 

The present work helps to elucidate the long-time contrary discussed question 

concerning spatial organization of thylakoid membrane biogenesis by providing 

strong evidence for special biogenesis sites in Synechocystis. The possible existence 

of a biogenesis-initiating region (biogenesis center) is substantiated by the 

identification of specific biogenesis sites in the chloroplast of C. reinhardtii (Uniacke & 

Zerges 2007). These sites, called T-zone, are punctuate regions around the 

pyrenoid, to which membranes in different stages of thylakoid biogenesis are located. 

Those membranes are similar to chloroplast envelope, but associated with the 

thylakoids, light-activated RNA-binding proteins as well as translation factors.  

As a next step it would be highly fascinating to visualize connecting structures 

in Synechocystis. Therefore we would recommend Immuno-gold labelling of PratA 

and ultrastructure analysis by high-resolution microscopy. 
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List of abbrevations 
 

2D-PAGE  two dimensional polyacrylamid gelelectrophorese 

A  Ångström 

ALA  5-aminolevulinic acid 

ATP  adenosine triphosphate 

BC  Biogenesis center  

Ca  calcium 

CFP  cyan fluorescent protein 

CP47  PSII antenna protein CP47 

CP43  PSII antenna protein CP43 

C-termiuns  carboxyl terminus  

CtpA  carboxyl-terminal processing protease 

Cyt-b559  subunit cytochrome b559 of the cytochrome b6f-complex 

D1  PSII reaction center protein D1 

D2  PSII reaction center protein D2 

DPOR  light-independent protochlorophyllide oxidoreductase 

FRAP  fluorescence recovery after photobleaching 

GFP  green fluorescent protein 

GUN  genome uncoupled 

HCF  high clorophyll fluorescence 

kDa  Kilodalton 

Mg  magnesium 

Mn  manganese 

NADP  nicotinamide adenine dinucleotide phosphate 

N-terminus  amino terminus 

OEC  oxygen-evolving complex 

ORF  open reading frame 

PDM  PratA-defined membrane 

Pitt  POR-interacting TPR protein 

PM  plasma membrane 

POR  light-dependent protochlorophyllide oxidoreductase 

PratA  processing-associated TPR protein A 

PSI  photosystem I 
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PSII  photosystem II 

PCC  Pasteur culture collection 

pD1  precursor protein of D1 

QA  primary electron carrier in PSII 

QB  secondary electron carrier in PSII 

RC  reaction center 

RC47  reaction center lacking CP43 

TC  Thylakoid center  

TM  thylakoid membrane 

TPR  tertratricopeptide-repeat 

T-zones  translation zones 

VIPP  vesicle-inducing protein in plastids 1 

Ycf  hypothetical chloroplast ORF 
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