Dissertation

zur Erlangung des Doktorgrades der Fakultät für Biologie der Ludwig-Maximilians-Universität München

Characterization of the *gun* phenotype under photo-bleaching conditions

Vorgelegt von

Christian Voigt

Erstgutachter: Prof. Dr. Dario Leister Zweitgutacher: Prof. Dr. Peter Geigenberger

<u>Summary</u>

Protein complexes involved in biochemical processes of organelles are composed of subunits encoded in the organelles and the nucleus. To guarantee energysaving assembly and efficient functioning of such protein complexes, a proper regulatory network is required. The anterograde control of the nucleus over the organelles is extensive and the principal parameters are known. It is also accepted that organelles send information about their developmental and metabolic state to the nucleus ('retrograde signaling') in order to adapt nuclear gene expression. But, the nature of the molecules that relay information to the nucleus is still unclear. In a mutant screen, designed to find factors involved in retrograde signaling in A. thaliana, the genomes uncoupled (gun) mutants were identified more than 15 years ago. Under photo-bleaching conditions induced by norflurazon (NF), an inhibitor of carotenoid biosynthesis, the expression of the nuclear localized gene encoding photosystem II chlorophyll a/b-binding protein (LHCB1.2) is suppressed in wild-type plants. In the gun mutants, this suppression is less pronounced. Since four out of the five known gun mutants are affected in the tetrapyrrole biosynthesis pathway, it was suggested that tetrapyrroles are involved in retrograde signaling. However, recent studies have cast doubt on that theory. In this thesis the performance of photo-bleached gun mutants was characterized in more detail. A before unknown phenotype of NF-treated gun mutants is described which is not due to NF resistance. In comparison to NF-treated wild-type seedlings the gun2-5 mutants affected in tetrapyrrole biosynthesis showed an enhanced growth capability, carotenoid enrichment, less anthocyanin accumulation and they retained plastome-encoded proteins. Replacement of NF by other inhibitors of carotenoid biosynthesis (such as amitrole) revealed that the growth and pigmentation phenotype is not coupled to the LHCB1.2 mRNA accumulation phenotype. Furthermore, it is shown that no simple correlation between any single metabolite, pigment or reactive oxygen species and LHCB1.2 expression exist. The observed heme accumulation caused by NF treatment is also not related to the LHCB1.2 de-repression phenotype. Application of abscisic acid (ABA) to NF-treated wild-type plants was sufficient to increase LHCB1.2 mRNA levels, but ABA is not involved in GUNdependent signaling associated with tetrapyrrole biosynthesis. It is discussed that more natural conditions are necessary to uncover the regulatory network of GUN signaling.

Zusammenfassung

Zusammenfassung

Plastidäre Proteinkomplexe bestehen aus verschiedenen Untereinheiten, welche entweder in den Plastiden oder in dem Zellkern kodiert werden. Exakte Zusammensetzung als auch Funktionsweise solcher Proteinkomplexe erfordern daher ein präzises regulatorisches Netzwerk. Mit Hilfe bestimmter Faktoren, von denen viele bekannt sind, übt der Zellkern starken Einfluss auf die Plastiden aus (,anterograde control'). Plastiden senden andererseits Informationen über ihren aktuellen Zustand an den Zellkern (,retrograde signaling'), um dessen Genexpression an deren Bedürfnisse anzupassen. Wie diese Informationen vermittelt werden ist noch unbekannt. Auf der Suche nach Faktoren, welche an dem plastidären Signal beteiligt sind, wurden vor mehr als 15 Jahren die sogenannten genomes uncoupled (gun) Mutanten identifiziert. Werden Pflanzen (A. thaliana) photooxidativen Stress ausgesetzt, z. B. durch die Applikation von Norflurazon (Inhibitor der Carotenoidbiosynthese), ist die Expression von dem im Kern lokalisierten Gen welches das Photosystem II Chlorophyll a/b Bindeprotein kodiert (LHCB1.2) stark vermindert. Diese Reaktion ist in den gun Mutanten gestört. Vier von fünf dieser Mutanten sind in der Tetrapyrrolbiosynthese beeinträchtigt. In aktuellen Studien konnte jedoch gezeigt werden, dass keine Verbindung zwischen der Anreicherung von Tetrapyrrolen und der LHCB1.2 Expression besteht. In der vorliegenden Arbeit wurde das spezifische Verhalten photooxidativ geschädigter gun Mutanten genauer untersucht. Ein bisher unbekannter Phänotyp konnte identifiziert werden. Die gun Mutanten, welche bei der Tetrapyrrolbiosynthese beeinträchtigt sind, wachsen im Vergleich zu Wildtyppflanzen besser auf Norflurazon, synthetisieren einige Carotenoide, akkumulieren weniger Anthocyanine und enthalten mehr plastidär kodierte Proteine. Eine mögliche Norflurazonresistenz konnte ausgeschlossen werden. Die Verwendung von anderen Inhibitoren der Carotenoidbiosynthese (z.B. Amitrol) zeigt, dass der Wachstumsphänotyp nicht mit dem LHCB1.2 Expressionsphänotyp korreliert. Darüberhinaus steht weder ein Metabolit, Pigment oder reaktives Sauerstoffmolekül noch die Anreicherung von Häm mit der LHCB1.2 Expression in Verbindung. Zugabe von Abscisinsäure zu Norflurazon behandelten Wildtyppflanzen führt ebenfalls zu einer erhöhten Expression von LHCB1.2, allerdings unabhängig von dem GUN-spezifischen Effekt. Die Notwendigkeit natürlichere Bedingungen als Grundlage für die Erforschung des regulatorischen GUN-Netzwerkes zu verwenden wird diskutiert.

Contents

Summary		II
Zusammenfassung		III
Conte	nts	IV
Abbre	eviations	VI
1.	Introduction	1
1.1.	Photosynthesis and the origin of plastids	1
1.2.	The complex signaling network in plant cells	2
1.3.	Tetrapyrrole biosynthesis in higher plants	6
1.4.	Tetrapyrroles as signaling molecules	8
1.5.	Aims of the thesis	12
2.	Material & Methods	13
2.1.	Material	13
2.2.	Methods	13
2.2.1.	Plant material, growth conditions and inhibitor treatments	13
2.2.2.	Nucleic acid extraction	14
2.2.3.	Northern blot analysis	14
2.2.4.	cDNA synthesis and real-time RT-PCR	15
2.2.5.	Protein isolation and Western blotting	16
2.2.6.	Determination of metabolic levels	16
2.2.7.	Heme measurements	17
2.2.8.	Pigment analysis	17
2.2.9.	Lipid extraction and thin layer chromatography	18
2.2.10	. Plant images	18
3.	Results	27
3.1.	Novel mutants of tetrapyrrole biosynthesis	27
3.1.1.	Screen for homozygous mutants	27
3.1.2.	Homozygous mutants have no gun phenotype	29
3.2.	NF-grown gun seedlings exhibit a distinct growth phenotype	31
3.3.	Growth phenotype is not correlated with LHCB1.2 de-repression	32
3.4.	The gun mutants are not resistant to NF	37

3.5.	Nuclear-encoded photosynthetic proteins are not present in NF		
	treated plants while some plastome-encoded proteins are		
	retained in gun mutants	38	
3.6.	Alterations in heme levels do not explain the gun phenotype	40	
3.7.	gun specific phenotypes are not present when grown under		
	low-light	42	
3.8.	Altered accumulation of reactive oxygen species did not reveal an		
	explanation	44	
3.9.	Lipid composition is affected by NF treatment	46	
3.10.	Several metabolic processes are altered in NF-treated plants	47	
3.11.	The pigmentation phenotype is due to carotenoid enrichment	51	
3.12.	Involvement of abscisic acid in retrograde signaling	53	
3.13.	De-repression of LHCB1.2 is age-dependent, not affected by day		
	length and photo-bleached plants retain ability to green	56	
4.	Discusssion	58	
4.1.	No new gun mutants could be isolated	58	
4.2.	A newly observed pigmentation phenotype reveals insights into		
	the complex interplay between biochemical processes in plastids	59	
4.3.	Accumulation of tetrapyrroles does not correlate with LHCB1.2		
	expression	62	
4.4.	The gun mutants in the light of metabolic signaling	63	
4.4.1.	No correlation between expression of ROS marker genes and gun		
	specific de-repression of LHCB1.2 mRNA accumulation	66	
4.4.2.	Redox and metabolic state is not linked to gun specific phenotypes	68	
4.4.3.	Abscicic acid acts in retrograde signaling but independent of GUN	69	
Refere	ences	71	
Ackno	owledgements	83	
Curri	Curriculum vitae 84		
Declaration / Ehrenwörtliche Versicherung 86			

Abbreviations

A. thaliana	Arabidopsis thaliana
ABA	abscisic acid
ABI4	ABA-insensitive 4
ADP	adenosine diphosphate
aKG	a-ketoglutarate
ALA	5-aminolevulinic acid
AMP	adenosine monophosphate
atABC1	ATP-binding-cassette protein
ATP	adenosine triphosphate
AtpB	β subunit of ATP synthase
BSA	bovine serum albumin
C. reinhardtii	Chlamydomonas reinhardtii
cDNA	complementary deoxyribonucleic acid
ChlD	D subunit of Mg-chelatase
ChlH	H subunit of Mg-chelatase
ChlI	I subunit of Mg-chelatase
chlm	Mg-proto methyltransferase
СРТА	2-(4-chlorophenylthio)triethylamine hydrochloride
crd1	Mg-protoME cyclase subunit
СТР	cytidine triphosphate
Cyt b_6/f	cytochrome b_{6}/f
D	dark
DGDG	digalactoglycerolipids
DNA	deoxyribonucleic acid
DP	dipyridyl
DTT	dithiothreitol
ECL	electrochemiluminescence
EDTA	ethylene diamine tetraacetic acid
EMS	ethyl methane sulfonate
Ex	executer

Fe-proto	iron protophorphyrin
FLU	negative regulator of chlorophyll biosynthesis ($flu - flu$ orescent)
fwp	forward primer
F16P	fructose-1.6-bisphosphate
F6P	fructose-6-phosphate
GTP	guanosine triphosphate
gun	genomes uncoupled
GUS	β-glucuronidase
G1P	glucose-1-phosphate
G6P	glucose-6-phosphate
HCl	hydrochloric acid
HEMA	gene encodes glutamyl tRNA reductase
HPLC	high performance liquid chromatography
HSP70A	heat-shock protein 70A
HXK	hexokinase
hy1/2	phytochrome-deficient long hypocotyl mutants 1 and 2
H ₂ O	water
h * Ս	light energy
Lhca3	photosystem I type III chlorophyll a/b-binding protein
Lhcb1	photosystem II type I chlorophyll a/b-binding protein
LHCB	encoding photosystem II chlorophyll a/b-binding protein
lin2	lesion initiation 2
LL	low-light
LP	left primer
Mg	magnesium
MGDG	monogalactoglycerolipids
Mg-proto	magnesium protoporphyrin
Mg-protoME	Mg-proto methyl ester
МОТ	malate/oxaloacetate translocator
mRNA	messenger RNA
MS	Murashige and Skoog
M6P	mannose-6-phosphate

NaCl	sodium chloride
NADH	nicotinamide adenine dinucleotide
NADPH	nicotinamide adenine dinucleotide phosphate
Na ₂ HPO ₄	disodium phosphate
NaH ₂ PO ₄	sodium phosphate
NaOH	sodium hydroxide
NEP	nuclear encoded polymerase
NF	norflurazone
NGE	nuclear gene expression
NH ₄ OH	ammonium hydroxide
n.d.	not detected
OGE	organellar gene expression
PAGE	polyacrylamide gel electrophoresis
PBD	porphobilinogen deaminase
PCR	polymerase chain reaction
PEP	phosphoenolpyruvate
PEP	plastid encoded polymerase
PetB	cytochrome b_6 subunit of cytochrome b_6/f
PORA	Protochlorophyllide reductase A
POR-OX	overexpressing PORA
PPR	pentatricopeptide repeat
PQ	plastoquinone pool
ProtoIX	protoporphyrin IX
PsaB	photosystem I reaction centre protein B
PsbD	photosystem II D2 protein
PSI	photosystem I
PSII	photosystem II
PVDF	polyvinylidene fluoride
RbcL	large subunit of RubisCO
RBCS	gene encodes small subunit of RubisCO
RNA	ribonucleic acid
ROS	reactive oxygen species

RP	right primer
rpm	revolutions per minute
rRNA	ribosomal RNA
RT-PCR	reverse transcription PCR
RubisCO	ribulose-1,5-bisphosphate carboxylase/oxygenase
rwp	reverse primer
SD	standard deviation
SDS	sodium dodecyl sulphate
SigE	sigma factor E
STN7	thylakoid-associated serine-threonine protein kinase
T-DNA	transferred DNA
Tetpy	tetrapyrrole
TPT	triosephosphate translocator
Tris	tris (hydroxymethyl) aminomethane
tRNA	transfer RNA
TTP	thymidine triphosphate
UDP	uridine diphosphate
UDP-Glc	UDP glucose
WT	wild-type
Xantho	xanthophylls
2CPA	encoding 2-Cys peroxiredoxin-A
3PG	3-phosphoglycerate
³³ P-dCTP	³³ P radioactive labelled dCTP

Units

°C	degree Celsius
g	gram
h	hour
m	meter
mg	milligram
min	minute
ml	millilitre
mM	millimolar
nM	nanomolar
nm	nanometer
nmol	nanomolar
pmol	picomolar
S	second
v	volume
W	weight
μg	microgram
μl	microlitre
μΜ	micromolar
μmol	micromolar

1. Introduction

1.1. Photosynthesis and the origin of plastids

Energy is essential for life on earth. Heterotrophic organisms get their energy from organic molecules which were generated by autotrophic organisms using either sun light as energy source (photosynthesis) or oxidizing inorganic molecules (chemosynthesis). During photosynthesis the absorbed light energy is used to produce organic molecules out of carbon dioxide and water. Moreover, in this process oxygen is produced as a by-product, the second necessary compound for life of heterotrophic organisms, hence for human beings. Therefore, photosynthesis summarized in the following equation, is the most important process of life.

$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + h * \upsilon \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2 \qquad \Delta \text{G}_0 = +2872 \text{ kJ}$$

Photosynthesis takes place in the plastids of higher plants and algae or in unicellular free-living photosynthetic bacteria. It is generally accepted that plastids evolved from endosymbionts more than one billion years ago. An ancient eukaryotic cell absorbed a unicellular free-living bacterium that was able to perform photosynthesis (Mereschkowsky, 1905; Martin and Kowallik, 1999; Cavalier-Smith, 2000; Brinkman et al., 2002; Martin et al., 2002; Dyall et al., 2004; Reyes-Prieto et al., 2007). Like mitochondria, which are thought to derive from an alpha-protobacterial ancestor (Gray et al., 2001; Dyall et al., 2004), plastids are separated from the cytosol by a membrane system and contain their own genome. Therefore, plant cells possess three different compartments which contain genetic information. In the circular and polyploid genome of plastids (plastome) from higher plants 100 to 120 genes are present coding for subunits of complexes involved in photosynthesis or protein translation and for tRNAs and rRNAs (Sugiura, 1992). However, most proteins required in plastids are encoded in the nucleus of the cell. Thus, genes were transferred during evolution from the plastid to the nucleus (Martin and Herrmann, 1998; Martin et al., 1998; Abdallah et al., 2000; Timmis et al., 2004). Proteins encoded by the nuclear genome contain a specific transit peptide to facilitate transport across the membranes surrounding the plastid (Jarvis and Soll, 2001; Leister, 2003; Reyes-Prieto et al., 2007). Moreover, many protein complexes involved in the biochemical processes of plastids, especially in

photosynthesis, are composed of subunits encoded in both the plastids and the nucleus (Race *et al.*, 1999; Leister, 2003; Figure 1.1.). Thus proper assembly of protein complexes and function of photosynthesis requires a tight regulation of nuclear and plastid gene expression, which is dependent on a precise signaling network.

Figure 1.1: Composition of the photosynthetic apparatus in the thylakoid membrane (taken from Leister, 2003). The protein complexes photosystem II (PSII), cytochrome b_6/f (Cyt b_6/f), photosystem I (PSI) and the ATP synthase consist of nuclear encoded (marked red) and plastid encoded proteins (marked green).

1.2. The complex signaling network in plant cells

During evolution a complex interplay between the three genetically distinct compartments has been established consisting of three signaling routes (depicted in Figure 1.2.; reviewed inter alia in Leister, 2005; Bräutigam *et al.*, 2007; Pogson *et al.*, 2008; Woodson and Chory, 2008). Anterograde control mediates the control over the organelles by the nucleus. Information about the status of the organelles is transmitted by the so-called retrograde signal. The crosstalk between chloroplasts and mitochondria is made possible by complex metabolic exchange but can also affect nuclear gene expression (Pesaresi *et al.*, 2006). Last but not least all sources of signaling depend on the environmental conditions enabling fast adaptation processes in response to environmental changes.

Figure 1.2: An overview of genome co-ordination between the nucleus and intracellular organelles (Woodson and Chory, 2008). The function of organelles is controlled by the nucleus (anterograde control or signaling), while the organelles send information to the nucleus in order to adapt nuclear gene expression to their current status (retrograde signaling). To optimize the complex metabolic interdependencies crosstalk between chloroplasts and mitochondria exists, which are also connected to the nucleus. Moreover, environmental conditions affect nuclear gene expression, as well as the functional activities of organelles, and thus affect both the anterograde and retrograde signaling.

Anterograde control is mainly due to the fact that the nucleus encodes almost all plastid proteins. Optimal performance of processes in plastids, like photosynthesis (see above), require appropriate expression of nuclear encoded components. Moreover, nuclear encoded proteins are involved in regulation of processes such as protein transport, assembly of multi protein complexes or biosynthesis of tetrapyrroles (summarized in Bräutigam *et al.*, 2007; Tanaka and Tanaka, 2007; Woodson and Chory, 2008). Furthermore, organellar gene expression is under control of nuclear encoded components. Transcription in plastids is mediated by two different polymerases. One of

them is encoded in the nucleus (NEP, nucleus encoded polymerase), while the genes for the core subunits of the second one are localized in plastids (PEP, plastid encoded polymerase). However, the transcription of PEP core subunits is performed by the NEP, and therefore also under nuclear control (Hess and Börner, 1999; Liere and Maliga, 2001). Additional nuclear encoded sigma factors are responsible for promoter specificity and transcript initiation of PEP (Isono *et al.*, 1997; Allison, 2000; Fujiwara *et al.*, 2000; Shiina *et al.*, 2005). In summary, nuclear control over the plastid is extensive and the principal functioning of anterograde control has been established.

The opposite is true for retrograde or plastid signaling. The concept that plastids are a source of specific signaling molecules that transmit information to the nucleus was developed 20 years ago (Taylor, 1989). But already 10 years earlier experiments with albostrians and Saskatoon mutant lines of Hordeum vulgare indicated the existence of such signals (Bradbeer et al., 1979). These mutant lines developed in response to a recessive nuclear mutation either white or white-striped leaves which contained disrupted plastids. In the white parts of those leaves a reduction in the activity as well as in the expression of nuclear encoded plastid-localized proteins was observed that could be linked to the impairment of plastids (Bradbeer et al., 1979; Hess et al., 1994). Further experiments using mutations or inhibitors, such as norflurazon, chloramphenicol or lincomycin, specifically affecting pigment biosynthesis or protein synthesis in chloroplasts, could strengthen the hypothesis that specific metabolites or nucleic acids travel from plastids to the nucleus as signaling molecules (Mayfield and Taylor, 1984; Oelmuller et al., 1986; Oelmuller and Mohr, 1986). After several years of research it seems to become clear that multiple retrograde signaling pathways exist (reviewed for example in Goldschmidt-Clermont, 1998; Brown et al., 2001; Rodermel, 2001; Surpin et al., 2002; Gray et al., 2003; Leister, 2005; Nott et al., 2006; Bräutigam et al., 2007; Pogson et al., 2008; Woodson and Chory, 2008). The signals have been assigned to four different sources: tetrapyrrole biosynthesis, protein synthesis in plastids, the redox state of plastids and the pool of reactive oxygen species (Beck, 2005; Bräutigam et al., 2007; Kleine et al., 2009). However, the exact nature of the proposed signaling pathways is still unknown.

The complexity in the coordination of gene expression between nucleus and organelles is not only due to the existence of the different compartments, but also the

Figure 1.3: Complexity of coordination and communication between plastids and nucleus (Bräutigam *et al.*, 2007). Illustration of the 'gene copy number problem': nuclear localized genes are encoded by a single gene while plastid encoded genes are present in up to 10000 copies since cells contain many plastids and the plastome is highly polyploid. Moreover, special needs of plastids can differ among them dependent on their localization.

so-called 'gene copy number problem' (Figure 1.3.; Bräutigam *et al.*, 2007). While there is only one nucleus, normally containing one genome, cells harbor up to 100 plastids. Additionally the plastome is polyploid i.e. each plastid includes up to 100 identical plastomes and therefore several copies per gene, resulting theoretically in a 10000-fold higher gene copy number than in the nucleus. In order to maintain the stoichiometry of protein complexes consisting of nuclear and plastid encoded subunits, the transcription rate has to be adapted. Additionally, single plastids differ in their functional state dependent on their localization in the cell. Plastids in the neighborhood of different tissue cells have differential needs to those near to the environment resulting in diverse strength of retrograde signals or even unequal signals (Figure 1.3.). It is questionable if each signal is processed separately by the nucleus or if they are integrated into a coarse signal leading to a more general or averaged response (Bräutigam *et al.*, 2007). Following Occam's razor, i.e. simplest explanation tends to be the best one, the second possibility seems to be more likely because it is the simpler one. The first one would assume that the nucleus can localize the origin of each signal and that the response is directed back to the source of the corresponding signal. No evidence for this kind of communication has yet been found.

1.3. Tetrapyrrole biosynthesis in higher plants

Tetrapyrroles are key-biomolecules that are cofactors of apoproteins involved in photosynthesis (chlorophyll), respiration and oxygen metabolism (heme), assimilation of nitrogen and sulphur (siroheme) as well as photoreception (phytochromobilin). All four compounds are synthesized by a common pathway starting with glutamyl tRNA (Figure 1.4.; Cornah *et al.*, 2003; Moulin and Smith, 2005). The enzymatic steps of this pathway are well known as are the important points of regulation (Von Wettstein *et al.*, 1995; Reinbothe and Reinbothe, 1996; Matsumoto *et al.*, 2004; Tanaka and Tanaka, 2007; Masuda, 2008). The need for a tight regulation is obvious since the four products have to be assembled with their corresponding apoproteins and the required amount differs strongly between them. Moreover, intermediates of the pathway are phototoxic, thus accumulation of them must be prevented (Moulin and Smith, 2005).

The first step of regulation is the synthesis of 5-aminolevulinic acid (ALA), which is regulated by hormones, the circadian clock, sugars and light via phytochrome and cryptochrome action (Reinbothe and Reinbothe, 1996; McCormac and Terry, 2002a; Moulin and Smith, 2005). Moreover, the glutamyl tRNA reductase, one enzyme of this step, is inhibited by heme (Vothknecht *et al.*, 1998). This is in accordance with the observation that mutants disturbed in phytochromobilin synthesis, with enhanced accumulation of heme, display reduced ALA synthesis, while plants affected in heme biosynthesis accumulate protoporphyrin IX (ProtoIX) indicating normal or even enhanced synthesis of ALA (Papenbrock *et al.*, 2001). Additionally, FLU, a negative feedback regulator of chlorophyll biosynthesis (mutants impaired in FLU accumulate protochlorophyllide when grown in the dark), has been shown to act as a regulator of ALA synthesis, independently of heme and able to bind to glutamyl tRNA reductase (Meskauskiene *et al.*, 2001; Goslings *et al.*, 2004). Altogether, feedback mechanisms of the two major branches (the chlorophyll- and the heme-branch) prevent accumulation of toxic intermediates.

Figure 1.4: Tetrapyrrole biosynthesis pathway in higher plants (Moulin and Smith, 2005). Starting from glutamyl tRNA four end-products (chlorophyll, heme, phytochromobilin and siroheme) are synthesized which have to be assembled with their appropriate apoproteins (boxed). In addition to specific feedback mechanisms within tetrapyrrole biosynthesis it is suggested that intermediates are involved in retrograde signaling (for details see text).

Another important step of control is the branch point between the chlorophyll and the heme biosynthesis pathway (Figure 1.4.). The two competing chelatases incorporate either magnesium (Mg-chelatase; chlorophyll-branch) or iron (Fe-chelatase; heme-branch) into ProtoIX. Although both reactions are similar, the two enzymes are quite different. While Mg-chelatase consists of three different subunits (ChlH, ChlI and ChlD), which are assembled into a hexameric ring structure, a process consuming ATP (Masuda, 2008), Fe-chelatase acts as a monomer or homodimer without any cofactor (Cornah *et al.*, 2003). Additionally, Fe-chelatase is inhibited by ATP, thus regulation between both enzymes is in part due to ATP availability. During the day the ATP level is higher thus Mg-chelatase will be more active while in the dark the opposite is the case (Walker *et al.*, 1997). This is just one part of the regulatory mechanism of tetrapyrrole biosynthesis evolved in higher plants.

Except for the steps of heme biosynthesis that were also found in mitochondria (Cornah *et al.*, 2003), tetrapyrrole biosynthesis takes exclusively place in plastids while the products are localized either in all cellular compartments (heme, siroheme), or in the cytosol and nucleus as it is the case for phytochromobilin, the chromophor of phytochrome. Only chlorophyll acts solely in the plastid. Accordingly, the final products or even intermediates (in the case of potential heme biosynthesis in mitochondria) have to be transported out of the plastid. Until now nothing is known about the nature of such transport processes. The only candidate protein suggested to export ProtoIX from the chloroplast (atABC1; Moller *et al.*, 2001) was re-evaluated and found to be involved in iron-sulfur cluster assembly and regulating iron homeostasis (Xu *et al.*, 2005).

1.4. Tetrapyrroles as signaling molecules

First evidence that tetrapyrrole intermediates could be involved in retrograde signaling was obtained from experiments with *Chlamydomonas reinhardi*. Blocking chlorophyll biosynthesis by feeding α,α -dipyridyl yielded in accumulation of magnesium-protoporphyrin IX methyl ester (Mg-protoME) followed by a reduction of *LHCB* (nuclear encoded gene for photosystem II chlorophyll a/b-binding protein) mRNA accumulation. The reduction of *LHCB* mRNA accumulation was not observed when inhibitors of chlorophyll biosynthesis prior to magnesium-protoporphyrin (Mg-proto) formation were used (Johanningmeier and Howell, 1984). In subsequent studies the expression of *HSP70* (encodes for heat-shock protein 70) was used as a reference as it is induced either by heat-shock or by light (Kropat *et al.*, 1995). In mutants defective

Introduction

in Mg-proto formation the induction of this gene by light was disrupted while feeding of Mg-proto or Mg-protoME was sufficient for induction even in dark grown wild-type plants (Kropat et al., 1997). Moreover, feeding of protoporphyrin IX (ProtoIX), protochlorophyllide and chlorophyllide failed to induce this light specific induction. More detailed analysis revealed that externally applied ProtoIX, contrary to Mg-proto, was transported to the plastids where it was converted into Mg-proto (Kropat et al., 2000). When kept in the dark, the accumulated Mg-proto is retained in the plastids therefore it is not able to induce HSP70 expression. It was concluded that light is necessary for Mg-proto release from the plastid for its proper function (Kropat et al., 2000). Further research identified specific promoter elements inducible not only by light and Mg-proto but also by heme (von Gromoff et al., 2006; von Gromoff et al., 2008) and it was shown that the gene coding for glutamyl tRNA reductase (HEMA) responds to feeding of Mg-proto and heme (Vasileuskaya et al., 2005). This is in accordance to known feedback mechanisms in tetrapyrrole biosynthesis. As most evidence was obtained by feeding experiments of chemical compounds, direct evidence for an in vivo signaling pathway is still missing.

The first genetic screen for mutants specifically affected in retrograde signaling was performed in Arabidopsis thaliana (Susek et al., 1993). The screen was based on the fact that norflurazon (NF; an inhibitor of carotenoid biosynthesis that causes plastid disruption) inhibits the light-dependent induction of nuclear encoded photosynthesis genes like LHCB (Oelmuller and Mohr, 1986). Transgenic plants were generated harboring a construct containing a hygromycin resistance gene and a β-glucuronidase reporter gene (GUS), both under control of the full-length LHCB1.2 promoter. Plants were mutagenized with ethyl methane sulfonate (EMS) and screened for hygromycin resistance and for GUS activity in photo-bleached conditions caused by NF. Five different mutant lines were selected in which the LHCB1.2 promoter was still active. These were named gun (for genomes uncoupled) (Susek et al., 1993). With the exception of gun1, which encodes a nucleic-acid-binding chloroplast protein (Koussevitzky et al., 2007), all gun mutants were found to be affected in tetrapyrrole biosynthesis (Mochizuki et al., 2001; Larkin et al., 2003). Whereas gun2 and gun3 are allelic to the known photomorphogenic mutants hyl and hy2 required for phytochromobilin synthesis (Parks and Quail, 1991; Mochizuki et al., 2001), gun5 is affected in the gene encoding the H subunit of Mg-chelatase (Mochizuki *et al.*, 2001) and *gun4* in an before unknown gene. Biochemical analysis revealed that the protein GUN4 is able to bind ProtoIX and Mg-proto and thus is thought to be needed for regulation of Mg-chelatase activity (Larkin *et al.*, 2003; Davison *et al.*, 2005; Verdecia *et al.*, 2005; Adhikari *et al.*, 2009). Taken together, it is obvious that tetrapyrrole biosynthesis is connected to retrograde signaling in *A. thaliana*.

Early analysis of the gun mutants indicated that the H subunit of Mg-chelatase was responsible for the de-repressed expression of LHCB1.2 after NF treatment because mutations in the I subunit of Mg-chelatase did not result in a gun phenotype although other parameters, like the content of tetrapyrroles, were comparable to those seen in gun5 (Mochizuki et al., 2001). ProtoIX and Mg-proto/Mg-protoME levels in untreated plants display no differences between wild-type and gun5 mutant plants. Moreover, after NF-treatment it was not possible to detect ProtoIX or Mg-proto/Mg-protoME neither in wild-type nor in mutants. Hence, a possible involvement of tetrapyrrole intermediates as signaling molecules was ruled out (Mochizuki et al., 2001). Recent experiments with Synechocystis sp. PCC 6803 support this initial idea (Osanai et al., 2009). It could be shown that the H subunit of Mg-chelatase inhibited the transcription activity of sigma factor SigE by direct interaction thereby preventing SigE dependent gene expression. However, in A. thaliana another theory became dominant. Contrary to experiments described above, where Mg-proto was not detectable after NF treatment, it could be shown that Mg-proto accumulates more than 10-fold in NF-treated wild-type seedlings compared to untreated seedlings (Strand et al., 2003). The increase was smaller in gun2 and gun5 mutants, suggesting that accumulation of Mg-proto correlates with the repression of LHCB1.2. Additionally, NF-grown gun2 and gun5 plants were treated for 8 h with dipyridyl (DP; Fe-chelatase inhibitor known to increase Mg-proto levels) in order to elevate the levels of Mg-proto and its methyl ester. Indeed, this was sufficient to prevent the de-repression phenotype suggesting that Mg-proto accumulation is responsible for the LHCB1.2 repression (Strand et al., 2003). To rule out possible toxic effects of DP an additional inhibitor was used (S23142; inhibitor of protoporphyrinogen oxidase), repressing the accumulation of Mg-proto. Indeed, the gun phenotype was again visible in gun2 and gun5 seedlings treated with NF, DP and S23142 but conflicting to this not in wild-type seedlings in which Mg-proto formation was also inhibited by S23142. Altogether, the obtained results were inconsistent, hence a coherent explanation is missing. Even thought that Mg-proto could be visualized in the cytosol during stress conditions i.e. NF-treatment (Ankele *et al.*, 2007) it is still questionable how, and when it is transferred out of the plastid.

Compared to gun mutants affected in tetrapyrrole biosynthesis strong evidence exists that gunl is disturbed in another signaling pathway. The double mutant lines gun1 gun4 and gun1 gun5 showed a synergistic effect on LHCB1.2 de-repression while their chlorophyll content was similar to the single mutants gun4 and gun5, respectively (Mochizuki et al., 2001). Cluster analysis of genes expressed differentially in NFtreated gun mutants compared to NF-treated wild-type plants (obtained by microarray analysis) pointed out that gun1 showed a different gene expression profile than gun2 and gun5 which clustered together (Strand et al., 2003). In addition to this, the expression of *HEMA1* is predominantly controlled by the gun1 pathway, whereas LHCB1.2 expression is affected by both pathways (McCormac and Terry, 2004) and repression of LHCB1.2 by lincomycin, an inhibitor of plastid translation, is suppressed in gun1 but not in the other gun mutants (Gray et al., 2003; McCormac and Terry, 2004). On the other hand, recent analysis of global gene expression response to NF showed a similar pattern between a new gun1 allele (gun1-9) and gun5 (Koussevitzky et al., 2007). This emphasizes that GUN1 could be involved in two or more proposed signaling pathways. Koussevitzky et al. (2007) proposed a model in which the tetrapyrrole dependent, the plastid translation dependent and the redox dependent pathway converge in the plastids upstream of GUN1 and that GUN1 is required for generating or transmitting a unknown signal to the nucleus which is common to all three pathways. To resolve the conflicts between the obtained results more data will be necessary.

Therefore, it is necessary to establish exact and reproducible methods to determine the amount of the most important tetrapyrrole biosynthesis intermediates in order to investigate if there is a direct link of endogenous tetrapyrrole accumulation to retrograde signaling. This is difficult to accomplish as the levels of intermediates are very low, owing to their phototoxic behavior, and high levels of chlorophyll interfere in currently used methods (Moulin and Smith, 2005). However, in the course of this thesis two groups independently solve these technical challenge. The obtained result clearly

showed that the accumulation of tetrapyrrole intermediates (except from the Fe-branch, which were not investigated) did not correlate with the expression of *LHCB1.2* in *A. thaliana* (Mochizuki *et al.*, 2008; Moulin *et al.*, 2008).

1.5. Aims of the thesis

The initial goal was to isolate mutants for all enzymes of the tetrapyrrole biosynthesis pathway in order to test them for their capability to exhibit the *gun* phenotype. The expression pattern of the reference gene *LHCB1.2* and the specific tetrapyrrole composition of the mutants determined after separation by reverse-phase HPLC should be correlated. Since the accumulation of ProtoIX, Mg-proto and Mg-protoME did not correlate to *LHCB1.2* mRNA accumulation, as it was published recently (Mochizuki *et al.*, 2008; Moulin *et al.*, 2008), we focused mainly on the characterization of norflurazon treated *gun* mutants in order to find an explanation for the *gun* specific de-repression of *LHCB1.2* mRNA accumulation.

It was intended to investigate whether heme accumulates after norflurazon treatment and if such an accumulation could be linked to the *LHCB1.2* de-repression phenotype.

The strong photo-oxidative damage caused by norflurazon treatment was planned to characterize in detail with the main focus on differences between wild-type plants and *gun* mutants. To this intent, protein, metabolite, lipid and pigment compositions were determined, as well as the expression pattern of marker genes specific for reactive oxygen species and the redox-state of plastids. Furthermore, phytoene levels were analyzed in norflurazon treated wild-type and *gun* seedlings to evaluate if the *gun* mutants are to some degree resistant to the inhibitor.

In a third approach we tested if different growth conditions would reveal information about the specific behavior of the *gun* mutants compared to wild-type plants. Thereby we also investigated if norflurazon can be replaced by other inhibitors of carotenoid biosynthesis such as amitrole, flurochloridone and CPTA.

2. Material & Methods

2.1. Material

Standard chemicals (analytical grade) used in this work were purchased from Applichem (Darmstadt, Germany), Duchefa (Haarlem, Netherlands), Roth (Karlsruhe, Germany), Serva (Heidelberg, Germany) and Sigma-Aldrich (Steinheim, Germany). Radioactive labeled dCTP was obtained from Hartmann-Analytik (Braunschweig, Germany). For western analyses primary antibodies from Agrisera (Vänas, Sweden) and secondary antibodies from GE Healthcare (Munich, Germany) and Sigma-Aldrich (Steinheim, Germany) were used.

2.2. Methods

2.2.1. Plant material, growth conditions and inhibitor treatments

The gun1, gun2, gun4 and gun5 mutants were obtained from Joanne Chory (Susek *et al.*, 1993; original designated gun1-1, gun2-1, gun1-4 and gun0-6). The other lines, described in Table 2.1, were identified in the SIGnAL database (Alonso *et al.*, 2003). T-DNA insertions were confirmed by PCR using the primers listed in Table 2.2. After stratification (2 days at 4°C in the dark) seedlings were grown on Murashige and Skoog medium (MS medium; Murashige and Skoog, 1962; Sigma-Aldrich, Schnelldorf, Germany) containing 1.5% (w/v) sucrose and 0.3% (w/v) gelrite for 6, 10 or 12 days at 22° C under continuous light conditions (100 µm0l m⁻² sec⁻¹).

For photobleaching experiments, seedlings were grown on MS medium supplemented with 0.5 μ M (or 5 μ M) norflurazon (Sigma-Aldrich, Steinheim, Germany), 100 μ M amitrol (Sigma-Aldrich, Steinheim, Germany), 100 μ M flurochloridon (Sigma-Aldrich, Steinheim, Germany) or 15 μ M (or 45 μ M) CPTA (2-(4-chlorophenylthio)triethylamine hydrochloride; obtained from Ralph Bock), respectively. The effect of ABA on photo-bleached seedlings was tested by adding different concentrations to MS medium containing 0.5 μ M norflurazon. For the ABA germination assay plants were grown on MS medium without sucrose containing different concentrations of ABA (Choy *et al.*, 2008).

Additionally different experiments with altered growth conditions were performed. To test the effect of light, plants were grown under low-light conditions (10

Material & Methods

 μ mol m⁻² sec⁻¹), as well as in the dark. A dark-light cycle of 12 h was used to analyze a potential influence of the circadian rhythm.

To obtain seeds plants were transferred to soil in the greenhouse after 12 days of growth on MS plates.

2.2.2. Nucleic acid extraction

For DNA isolation leaf tissue was homogenized in 400 μ l extraction buffer containing 200 mM Tris/HCl (pH 7.5), 25 mM NaCl, 25 mM EDTA and 0.5% (w/v) SDS. After centrifugation for 3 minutes at 13.000 rpm, DNA was precipitated from the supernatant by the use of 300 μ l isopropyl alcohol. After 5 minutes of centrifugation at 13.000 rpm the obtained pellet was washed with 70% (v/v) ethanol, centrifuged again (3 minutes at 13.00 rpm) and dried. The DNA was resolved in distilled water.

For total RNA isolation frozen plant tissue was grounded in liquid nitrogen and affiliated in 1 ml TRIZOL (Invitrogen, Carlsbad, California). After centrifugation for 10 minutes (13.000 rpm) and additional incubation at room temperature for 5 minutes 500 µl chloroform was added to the supernatant. Further 5 minutes of incubation on ice and centrifugation for 15 minutes at 13.000 rpm led to a clear phase separation. RNA was precipitated from the aqueous phase by adding 400 µl isopropyl alcohol, incubating 10 minutes at room temperature and centrifugation at 13.000 rpm for 10 minutes. The obtained pellet was washed with 70% (v/v) ethanol, centrifuged for further 5 minutes at 7.500 rpm and dried. RNA was resolved in RNase free water. Concentration and purity of RNA samples were determined spectroscopically using a GeneQuant *pro* RNA/DNA Calculator (GE Healthcare, Munich, Germany). Isolated RNA was stored at -80°C until further use.

2.2.3. Northern blot analysis

Northern blotting and hybridisation of probes were performed using standard procedures (Sambrook and Russel, 2001). 10 μ g of total RNA were denatured for 5 minutes at 65°C and separated on an 1.2 % agarose gel, blotted on nylon membrane (Roche, Grenzach-Wyhlen, Germany) and hybridised for 16 hours at 62 °C (hybridisation buffer: 1.8 % (w/v) NaH₂PO₄ x H₂O; 6.6 % (w/v) Na₂HPO₄ x 2 H₂O; 7 % (w/v) SDS; 1 % (w/v) BSA; 1 mM EDTA) with cDNA probes labeled with ³³P-dCTP

14

using random hexamer primer and Klenow Fragment (New England Biolabs, Hertfordshire, United Kingdom). After washing three times (20 minutes at 62 °C; washing buffer: 1 % (v/v) SDS; 0.4 % (v/v) 0.5 M EDTA; 8 % (v/v) Na-P [74.4 % (v/v) 0.5 M Na₂HPO₄ x 2 H₂O and 25.6 % (v/v) 0.5 M NaH₂PO₄ x H₂O]) the filters were exposed to a phosphorimager screen and analysed by a Typhoon Variable Mode Imager (GE Healthcare, Munich, Germany) using ImageQuant version 5.2 (GE Healthcare, Munich, Germany).

Following primer combinations were used to generate specific cDNA probes: *Actin 1 (At2g37620)*, forward primer: 5'- TGCGACAATGGAACTGGAATG -3', reverse primer: 5'- GGATAGCATGTGGAAGTGCATACC -3'; *LHCB1.2* (*AT1G29910*), forward primer: 5'- TCAGCTGATCCCGAGACATTC -3', reverse primer: 5'- CTCTGGGTCGGTAGCAAGACC -3'

2.2.4. cDNA synthesis and real-time RT-PCR

cDNA was prepared from 1 μ g of total RNA using the iScript cDNA Synthesis Kit (Bio-Rad, Munich, Germany) according to the manufacturer's instructions. cDNA was diluted 30-fold, and 2 μ l of the diluted cDNA was used in a 20- μ l iQ SYBR Green Supermix reaction (Bio-Rad, Munich, Germany). Reactions were performed in triplicate for expression analysis of genes affected by T-DNA insertions in corresponding mutant lines or in duplicate for ROS and metabolic marker genes. Thermal cycling consisted of an initial step at 95°C for 3 min, followed by 40 cycles of 10 s at 95°C, 30 s at 55°C and 10 s at 72°C. Afterwards a melting curve was recorded. RT-PCR was monitored by using the iQ5 Real-time PCR Detection System (Bio-Rad, Munich, Germany). Baseline and threshold adjustments were performed according to the manufacturer's instructions. Investigated genes and corresponding primers are listed in Table 2.3. The relative abundance of transcripts was normalized to the constitutive expression levels of ubiquitin-protein ligase-like protein mRNA (*At4g36800*), actin1 mRNA (*At2g37620*) and 18S rRNA (*At3g41768*). The data were analyzed using LinRegPCR (Ramakers *et al.*, 2003) and according to Pfaffl (2001).

2.2.5. Protein isolation and Western blotting

Proteins from 6-day-old plants were homogenized in 2xSDS protein buffer (62.5 mM Tris/HCl (pH 6.8); 20% glycerin; 4% SDS; 100 mM DTT; 0.05% bromophenol blue), incubated for 7 minutes at 75°C and centrifuged for 15 minutes at 13.000 rpm. The amount of proteins in the supernatant was quantified by amidoblack staining (Schaffner and Weissman, 1973). For that purpose 5 µl of each protein extract were used. After addition of 195 µl water and 800 µl staining solution (10 % acetic acid, 90 % methanol and small amount amidoblack) solved material was centrifuged for 12 minutes at 13.000 rpm. The obtained pellet was washed in 1 ml washing solution (10 % acetic acid and 90 % methanol), mixed and centrifuged again for 12 minutes at 13.000 rpm. Air dried pellet was resolved in 1 ml 0.2 M NaOH. Extinction was measured at 615 nm and data were calibrated using a BSA calibration curve.

Proteins were then separated by vertical electrophoresis via 12% SDSpolyacrylamide gels and transferred to PVDF (polyvinylidene fluoride) membranes (Millipore, Billerica, USA) using a semi-dry blotter (Bio-Rad, Munich, Germany) according to Towbin *et al.* (1979). For protein transfer a current corresponding to 0.8 mA cm⁻² was applied. Used cathode buffer contain 0.025 M Tris (pH 9.4), 40 mM glycine and 10 % methanol and the anode buffers contain 0.025 M Tris (pH 10.4) or 0.3 M Tris (pH 10.4), respectively, and 10 % methanol. Subsequently, filters were incubated with specific primary and corresponding secondary antibodies. Detection was done using Pierce Fast Western Blot Kit (Thermo Scientific, Rockford, USA).

2.2.6. Determination of metabolic levels

Phosphorylated intermediates of the central carbohydrate metabolism were determined from neutralized perchloric acid extracts of plants in a fluorescence microtiter plate reader as established by Haeusler *et al.* (2000). Carboxylic acid contents were determined from the same extracts according to Schneidereit *et al.* (2006).

For spectrophotometric determination of glucose-6-phosphate, fructose-6-phosphate and ATP an enzymatic assay was performed using in series glucose-6-phosphate dehydrogenase, phosphoglucose isomerase and, after addition of glucose, hexokinase (as described and referenced in Dietz and Heber (1986)). Metabolite amounts were calculated from changes in NADH-absorbtion at 340 nm.

2.2.7. Heme measurements

According to Thomas and Weinstein (1990), free heme was isolated from approximately 20 mg liquid nitrogen ground plant material by adding five times 1 ml acetone containing 10 mM NH₄OH. The heme content was determined using a chemiluminescent-based method described in Masuda and Takahashi (2006). 25 μ l of isolated material was incubated for 30 minutes together with 75 μ l of 100 mM Tris-HCl (pH 8.4) containing 25 nM horseradish peroxidase (Biozyme Laboratories, Blaenavon, South Wales, U.K.). After addition of luminol (50 μ l ECL1) and hydrogen peroxide (50 μ l ECL2) from Pierce Fast Western Blot Kit (Thermo Scientific, Rockford, USA) and further incubation for 30 minutes luminescence was measured (10 seconds initiation time) using a Tecan Safire2 microplate reader (Tecan Group, Männedorf, Switzerland).

2.2.8. Pigment analysis

Liquid nitrogen frozen plant material was homogenized in 1 ml acetone and centrifuged for five minutes at 12.000 rpm. Carotenoids and chlorophylls were monitored at 440 nm after separation by reverse-phase HPLC (LiChroCART 4-4 and LiChroCART 250-4, Merck, Darmstadt, Germany) according to Farber *et al.* (1997). Solvent A (acetonitril, methanol and 0.1 M Tris/NaOH (pH 8.0); 87:10:3) run for 9 minutes at a flow-rate of 2 ml per minute before a gradient to solvent B (methanol and hexane; 4:1) was set for 3.5 minutes. After five more minutes separation was done and all pigments determined at their specific retention time: neoxanthin (3.2 min), violaxanthin (4.2 min), antheraxanthin (6.3 min), lutein (9.3 min), zeaxanthin (10.3 min), chlorophyll b (13.3), chlorophyll b (13.9) and β -caroten (16.8 min). Specific conversion factors were used to determine the concentration of the pigments (Farber *et al.*, 1997).

For phytoene determination 30 mg liquid nitrogen ground plant material was homogenized in 2 ml methanol containing 6% potassium hydroxide and incubated for 20 minutes at 60°C. After addition of 1 ml 10% dieethyl ether in hexane and 1 ml saturated sodium chloride the upper phase was collected and the lower one was extracted a second time with 1 ml 10% dieethyl ether in hexane. Collected product was evaporated and dissolved in 120 μ l acetone. Pigments were separated by reverse-phase HPLC on a GROM-SIL 120 ODS-5 ST C18 column (Alltech Grom, RottenburgHailfingen, Germany) by an isocratic flow in acetonitrile, methanol and isopropyl alcohol (85:10:5) at a flow-rate of 120 μ l per minute. Phytoene was monitored at 296 nm (absorption maxima at 275 nm, 285 nm and 297 nm; Herber *et al.* (1972); Giuliano *et al.* (1986)).

2.2.9. Lipid extraction and thin layer chromatography

Plants were ground in liquid nitrogen, solved in 1 ml dichlormethane and methanol (1:2) and centrifuged for 10 minutes at 13.000 rpm. After collecting the supernatant the pellet was extracted a second time in 300 μ l dichlormethane and centrifuged again for 10 minutes at 13.000 rpm. Afterwards 450 μ l 0.1 M sodium chloride were added to the combined extract and centrifuged for 5 minutes at 13.000 rpm. The resulting aqueous phase was collected, washed with 200 μ l dichlormethane and centrifuged for further 5 minutes at 13.000 rpm. Both organic phases were combined, evaported with gaseous nitrogen and stored at -20°C until separation. Whenever possible, probes were kept dark during the process of isolation.

For thin layer chromatography samples were dissolved in 50 μ l acetone loaded on an TLC Aluminum backed plate (Silicia Gel 60 F254, Merck, Darmstadt, Germany) and separated by a mixture of chloroform, methanol and water (65:25:4). According to De Santis-Maciossek *et al.* (1999) the chromatogram was sprayed with a ferrous sulfate/potassium permanganate solution and incubated for 20 minutes at 100°C.

2.2.10. Plant images

Images from plants were taken by a SteREO Lumar.V12 connected to an AxioCam MRc using AxioVision 4.7 software (Carl Zeiss, Munich, Germany).

Table 2.1: List of investigated T-DNA insertion lines selected from the SIGnALdatabase (Alonso *et al.*, 2003).

300-UTR3, 300 base-pair untranslated region from the 3' mRNA end to the last codon of translation; 300-UTR5, 300-UTR from the 5' end to the first codon of translation

Gene	Protein	Mutation	Mutant line	Insertion site ¹
AT1G58290	Glutamate tRNA reductase	hema1-1	SALK_053036.54.60.x	exon 3
		hema1-2	SALK_067622.41.75.x	300-UTR3
AT1G69740	ALA dehydratase	alad1-1	SALK_016544	intron 5
		alad1-2	SAIL_81_A04.v1	1000-promoter
AT5G14220	Protogen oxidase	ppo1-1	SALK_060822.50.90.x	exon 3
		<i>ppo1-2</i>	SALK_119885.49.55.x	exon 2
AT4G01690	Protogen oxidase	ppo2-1	SALK_017634	exon 9
		<i>ppo2-2</i>	SALK_143057.56.00.x	exon 7
AT5G13630	Mg-chelatase H-subunit	chlh-1	SALK_062726.54.50.x	exon 1
		chlh-2	AL754413	exon 3
AT3G59400	GUN4	gun4-2	SALK_026911.46.85.x	exon
		gun4-3	SALK_134687.40.35.x	300-UTR3
AT4G25080	Mg-proto methyl transferase	chlm-1	SALK_110265.54.80.x	300-UTR5
		chlm-2	BX546974	-
		chlm-3	FLAG_340C02	exon 2
AT3G56940	Mg-protoME oxidative	crd1-1	SALK_009052.47.55.x	300-UTR5
	cyclase 4-vinyl reductase	crd1-2	AL764967	exon 1
AT5G26030	Ferrochelatase	fc1-1	SALK_150001.42.45.x	300-UTR5
		fc1-2	AL756537	exon 3
AT3G09150	Phytochromobilin synthase	gun3-2	SALK_027641.19.40.n	1000-promoter
		gun3-3	SALK_104923.54.75.x	intron 1
		gun3-4	FLAG_255C02	1000-promoter
AT2G26670	Heme oxygenase	gun2-2	SALK_147500.54.50.x	300-UTR3
		gun2-3	AL763127	exon 1
AT5G63570	GSA amino transferase	gsal-1	SALK_079035.23.50.x	exon 2
		gsal-2	SALK_089320	exon 2
AT5G08280	PBG deaminase	hemc-1	SALK_040880	exon 5
		hemc-2	SALK_021519.56.00.x	300-UTR5
AT2G26540	Urogen III synthase	hemd-1	SALK_065522.48.85.x	exon 2
		hemd-2	SALK_147103.18.00.x	intron 4
AT2G40490	Urogen III decarboxylase	heme2-1	SAIL_574_B06	300-UTR5
		heme2-2	SAIL_355_D11	intron 3

AT3G14930	Urogen III decarboxylase	heme1-1	SALK_067370.19.95.x	exon 3
		heme1-2	SALK_107425.37.30.x	300-UTR5
AT1G03475	Coproporphyrinogen III	cpo-1	SALK_025589.49.40.x	exon 1
	oxidase	cpo-2	SALK_072155.55.75.x	intron 7
AT5G54190	Protochlorophyllide	pora-1	SALK_022639.28.45.x	exon 3 / 5
	reductase	pora-2	SALK_036137.56.00.x	1000-promoter
AT4G27440	Protochlorophyllide	porb-1	SALK_060191.43.55.x	exon 4
	reductase ²			
AT1G03630	Protochlorophyllide	porc-1	SALK_141477.22.00.n	300-UTR5
	reductase ²			
AT3G51820	Chlorophyll synthetase	chlg-1	SALK_112733.14.95.x	exon 6
		chlg-2	SALK_134433.51.80.x	exon 14
AT1G44446	Chlorophyll a oxygenase	cao-1	SALK_024295.33.50.x	exon 7 / 8
		cao-2	SALK_085897.49.80.x	exon 6

¹ Based on SIGnAL database (Alonso *et al.*, 2003); ²TP39 & TP42 not available

Table 2.2: List of primer's used for confirmation of T-DNA insertions.LP, gene specific left primer; RP, gene specific right primer

Mutant line	Primers (5' – 3')
hema1-1	LP – CTGAATGGCCAAGAGCTATTG
	RP – AACCTCTGGAGAAGCTTGAGG
hema1-2	LP – AATCTTAACCAAGTTTGATCAGCC
	RP – TATCAACAAGAAAACAACGAGAGC
alad1-1	LP – GAGACTTGTCCCTCAAAAGCC
	RP – AGAATTCAACAGGGGATGAGG
alad1-2	LP – GTACGGGATCTTGATTCCTCC
	RP – TAGTCGAAGGAAAGCTGCAAG
<i>ppo1-1</i>	LP – TCTACCTTAGATTGGGTAGAGAGC
	RP – ATTGTTGCAGATAGCAATGGC
<i>ppo1-2</i>	LP – GTTTGTGTTCGAACTTTAATGTGC
	RP – TGAAGATTCTAAAGCACGTTTGAC
<i>ppo2-1</i>	LP – AGCCAACAACTCCGTTTTAGC
	RP – CGCAAGGAGTTGAAACATTAGG
<i>ppo2-2</i>	LP – TGGTGGAAGCATAATAGGTGG
	RP – TGCGGAATCAAAACAAAAGAG
chlh-1	LP – TTCCCACTCTTGCGTAATGAC
	RP – AAGACGCCAACATCTTCATTG
chlh-2	LP – TCGATGTTCCTTACCTTGTGG
	RP – ATTGGGAATGTTCCCGATAAG
gun4-2	LP – TCAAACCTGAGCCATAAGTGAC
	RP – AAGGAGAAAGACATCAGAAGCTG
gun4-3	LP – CTCTGCTTCTTCCACCTCCTC
	RP – AGGTGCAGCTTTCTTGAACAG
chlm-1	LP – ATAATTGAATCGAAGAAGCTCACC
	RP – ACACACGCTCACATAAACATACAC
chlm-2	LP – TTGTTACTTGTATAATACTCT
	RP – GTACAGAAGGATATTCGACTC
chlm-3	LP – TGCATGCAGGGTATAGTAACAAAG
	RP – CTACTTCTCTAGGCTCATCGAAGC
crd1-1	LP – TCAAGCATAACGTAGACAAGGAAC
	RP – TACCAGAATGGTCTGGATATCACC
crd1-2	LP – CTGTTGTCGGAATTATTTTTCC
	RP – GAAGATCTCAGCCACAACAGG

_

fc1-1	LP – TGACTTTAATTAGTGAACGAAAACAAAG
	RP – GTCATAGACTCTCCGAAAGATCTCTC
fc1-2	LP – TCTGGGTTCAATCCTCTAACG
	RP – ACATAGCCTCGCCTTTGGTAC
gun3-2	LP – TGAAGATTTAAAAGCAAGCATTTG
	RP – TGGTAGAAAACAATTTTTCTATTTTAATG
gun3-3	LP – TGGATTCACCAGTCAATTTCC
	RP – AGAGAGTGTCCGAGGAAGGAG
gun3-4	LP – AGCAATCAGTTTGTACTGCTGAAG
	RP – AAATTCTTTTATTTTAGTTGGATAAACAC
gun2-2	LP – TGAGTTTGCTTATGTATTGGAAAAAG
	RP – GTTGATGCTTCATTGACTCTTCTTAG
gun2-3	LP – GCAAACTCAGTTTTTAATTACGAGC
	RP – TCAAACCATGGCGTATTTAGC
gsa1-1	LP – TTTCAGATCAAAGATGTCGGC
	RP – ATCACGTCTACCACCGTATGC
gsa1-2	LP – TTAAATTTCACACAAATTCCATGC
	RP – GTCTTTAGTAAGCTGGCGTAAACC
hemc-1	LP – TTTATTGCCTTTTGCAGGTTG
	RP – GAAGATCGGAGGAAATGAAGC
hemc-2	LP – CCAAATTCGCAAGAACAAAAC
	RP – TTCGGGTTTTCTGTTCAACAG
hemd-1	LP – TTGAAGATGCACAGATTGCAG
	RP – CTCTGAGCAAACCAGTTTTCG
hemd-2	LP – TTGTCTACTAAGTGTAACGACGGC
	RP – GGAATGTGTTGCTAGTGAGTTCAC
heme2-1	LP – AAATGTTGAAGGAACTAAAGCAGG
	RP – TATAGCTTCTGCAGAACAAACTCG
heme2-2	LP – CATTTTGATGAAGTTTTTGGTGAG
	RP – AGAAAGTGTAAATGGAGCTCCAAC
heme1-1	LP – AGCAGGAAGCGGAGAGAATAG
	RP – TCCAGTTTTGGGTCACTTCAC
heme1-2	LP – TTGATGAGAACGTTTAAGAGCAAG
	RP – CAATCTATTCCACAAGCTCACAAG
cpo-1	LP – CTGTGAAGCAGGGTTTTCTTG
	RP – GGGAGAGATTCATTACCGAGC
cpo-2	LP – TGGGCTGATCACTGTTTCTTC
	RP – ATTGGTGTTTACAGAATGCGC

pora-1	LP – TCATGTGCTCCGTAAAAGTCC
	RP – ATTGCAACGACTGGTTTGTTC
pora-2	LP – AACAACAAAACCGTCACCAAC
	RP – CATCTTTGCGGACAGAGAAAG
porb-1	LP – TCCAATGAACAAGATCAAGGC
	RP – TGATTGATGGAGGAGATTTCG
porc-1	LP – AATTGGGCTCAAAAAGGTTTC
	RP – TGGCTGTAACTGTCTGTGCAC
chlg-1	LP – AGGTTTGCCAAAAGAGTACCC
	RP – TACAAAACCAGTCACTTGGCC
chlg-2	LP – AAACTGCAAAATGGATATGCG
	RP – AACAAAAACATTCTGAAAGCAGAG
cao-1	LP – GCTGAAGAAACTTTCGATTGG
	RP – AGGTATGATCTGGATTTGGCC
cao-2	LP – TGTTTGCTCCGTTTAACATCC
	RP – TCACTGCAGATCTCAAGCATG

Table 2.3: List of primer's used for real-time PCR.

fwp, forward primer; rwp, reverse primer

Gene	Description	Primers (5' – 3')		
Loading control				
At4g36800	ubiquitin-protein ligase-like	fwp - CTGTTCACGGAACCCAATTC		
	protein	rwp - GGAAAAAGGTCTGACCGACA		
At2g37620	actin 1	fwp - TTCACCACCACAGCAGAGC		
		rwp - ACCTCAGGACAACGGAATCG		
At3g41768	18S rRNA	fwp - TCAACTTTCGATGGTAGGATAGTG ¹		
		rwp - CCGTGTCAGGATTGGGTAATTT ¹		
LHCB1.2				
At1g29910	light harvesting chlorophyll	fwp - CCGTGAGCTAGAAGTTATCC		
	a/b binding protein 1.2	rwp - GTTTCCCAAGTAATCGAGTCC		
ROS marker genes				
At2g43510	defensine-like protein	fwp - CTTAGTCATTTCCGATGTGCC		
Ū.	L L	rwp - GCATCTTCCACCTTTAGCTC		
At1g10585	bHLH transcription factor	fwp - AAACTCAGTATTCGTTCACTGG		
		rwp - GACATATGATAGCCTGGGCT		
At1g17170	glutathione S-transferase	fwp - CGAGTACATAGACGAGACTTGG		
		rwp - GTATTTCGATTAACTCCTTGGCTG		
At1g26380	FAD-linked oxidoreductase	fwp - TGTCGCTAACAAATTCCCTG		
		rwp - ATTATCTCCATCAGCTCATCGG		
At5g13080	AtWRKY75	fwp - GTTCCCTAGGAGTTACTATAGGTG		
		rwp - CATTTGAGTGAGAATATGCTCG		
At4g34410	AP2 domain transcription	fwp - CGTCTTCAGTTTCATCTCCT		
	factor	rwp - TCATCATATTCATCCACTCCTC		
AtCg01050	NADH dehydrogenase ND4	fwp - CTTCTTCTAACGACCTACGCT		
		rwp - AAGTCCATCTATTCCCATTCTCC		
At3g01140	AtMYB106	fwp - GCGCTTACAGAACCTAAACAG		
		rwp - CATGGCGATATGATCATGATCAG		
At4g23290	serine/threonine kinase - like	fwp - GGATACGCTGTTTCTAGGAG		
	protein	rwp - GATCATCCGTAGCATCATCTG		

Marker genes for different metabolic processes

At1g77490	tAPX	fwp - AAACCTGAGACAAAGTACACGA
		rwp - CTCTGCATAGTTCTTGAATGAAGG

At5g52570	beta-carotene hydroxylase	fwp - AAATGAAGGGAGGTGAAGTG		
		rwp - CTCTTGGTTTGTGATGTGAC		
At5g17230	phytoene synthase	fwp - ATGACCTTGATGTGAAGAAACC		
		rwp - TACACCAAACGTAGATTGCC		
At5g67030	zeaxanthin epoxidase	fwp - CTATGTGACCGATAACGAAGGA		
		rwp - GATTACTTTCACCCTAAACGCC		
At1g08550	putative violaxanthin de-	fwp - TCAAGATGACTGGTATATCCTG		
	epoxidase	rwp - GTTCTGGTATAATGCTATTGGG		
At3g02730	thioredoxin f1	fwp - GTACACTCAATGGTGTGGTC		
		rwp - CTTCCTTGACAACCTTGTTATCC		
At3g15360	thioredoxin m4	fwp - CGTCGAAGTACCAAATCTGTC		
		rwp - GAATTTGAACTTCCCTGCGA		
At1g50320	thioredoxin x	fwp - AAGCCTTATCTCAGGAATATGG		
		rwp - TGAAGAGAATGAAATGCGGT		
At2g41680	putative thioredoxin	fwp - TCTTGTTGAATTTCACCAGCC		
	reductase	rwp - TTTCTAAGAGCATACTGTCCCT		
At3g26060	putative peroxiredoxin	fwp - ATCTTTGCCAAGGTTAACAAGG		
		rwp - GAGTCTCTGAAAGCACAAGC		
At2g25080	putative glutathione	fwp - TAATTCCTCAGCAACCTTTCTC		
	peroxidase	rwp - CATCAATGTCCTTAACGGTG		
At5g04140	ferredoxin-dependent	fwp - GAGTATCATTCAAACAACCCAGAG		
	glutamate synthase	rwp - TCACGGAGGACATTAACAGG		
At1g58290	glutamyl-tRNA reductase	fwp - GCAGCTGATCGATATACAAAGG		
		rwp - CGGTTACAAGTACTAAGCACAG		
At4g25080	mg-protoporphyrin IX	fwp - GTCTCTGCTTCCGATATTTCTG		
	methyltransferase	rwp - ATTCCGTCTGCTTTGTTCTG		
ABA and GA3 marker genes				
At5g52310	responsive to dessication	fwp – GGAGCTGAGCTGGAAAAAGAATTTGAT		
	29a (RD29a)	CAGAAG ²		
		rwp – CCAATCTGAAGTTTCTCGGCAACCA		
		TATCAG ²		
At1g20440	cold-regulated 47 (COR47)	fwp – GAAAAGACCGAGGAAGATGAGGAGAA		
		CAAGCC ²		
		rwp - CCTCGGGATGGTCATGCTCCACCACAC		
		TCTCCG ²		
At4g02780	ent-copalyl diphosphate	fwp - AATGACAGGAACATGAGATTGG		
	synthetase 1 (GA1)	rwp - TGTGGGTGAAGAAGTTAGTTAGG		

Genes affected by T-DNA insertion			
At1g58290	Glutamate tRNA reductase	fwp - CCTGTTGAGATGCGTGAGAA	
		rwp - CAGCTGAGCTAACCGAAACC	
At2g40490	Urogen III decarboxylase	fwp - TCTCATCTACCAAGTCATGCC	
		rwp - TTGATAACTCTTCATGTACCTCCC	
At3g14930	Urogen III decarboxylase	fwp - GTTACTCCTCGGGATTATCGT	
		rwp - AAAGTGGATCGGAAGAGGAG	
At5g14220	Protogen oxidase	fwp - CGCATAATGAAACGCAGAGA	
		rwp - GACAGACACGGGTTCACCTT	
At5g13630	Mg-chelatase H-subunit	fwp - TGTGGCAGTACCACTGGTGT	
		rwp - CTCACGGACTCCCATTTTGT	
At3g59400	GUN4	fwp - TCCCTCAAACAACCCACTTC	
		rwp - GGCGTTTCATCGTTAAGCTC	
At4g25080	Mg-proto methyl transferase	fwp - GTAACTCCACGGAGCAGAGC	
		rwp - CAGAGACGATTGCTCCTTCC	
At3g56940	Mg protoME oxidative	fwp - TCTGCCTCTCGGTTTATGTG	
	cyclase 4-vinyl reductase	rwp - CAACCATTCTATCCAGTTTCCT	
At5g54190	Protochlorophyllide	fwp - CCTTCAAGCTGCTTCTTTGG	
	reductase A	rwp - TCTGTTCCCTCTTGCATCTC	
At4g27440	Protochlorophyllide	fwp - TGCATTTAGACTTAGCCTCGT	
	reductase B	rwp - AATGTATTCGTGTTCCCGGT	
At1g03630	Protochlorophyllide	fwp - CCATCAAGGAACAGAGAAGAC	
	reductase C	rwp - GCTAAACCTAAACCAGACGA	
At5g26030	Ferrochelatase	fwp - TTTGCAAGCGAAGAACATTG	
		rwp - GGCCAACACGACTCTGGTAT	
At2g26670	Heme oxygenase	fwp - GGGTTTTGTGGAGGAGATGA	
		rwp - CCACCAGCACTATGAGCAAA	
At3g09150	Phytochromobilin synthase	fwp - TCTTTGACTTTGCGGGTTTC	
		rwp - CTCCTTTGCCTTTGCTTCAC	

¹ Taken from Ankele *et al.*, 2007; ²Taken from Sanchez *et al.*, 2004
3. Results

3.1. Novel mutants of tetrapyrrole biosynthesis

Except for GUN1 (Koussevitzky *et al.*, 2007), all GUN proteins were found to be involved in different steps of tetrapyrrole biosynthesis (Mochizuki *et al.*, 2001; Larkin *et al.*, 2003). In order to investigate whether inactivation of further steps in the tetrapyrrole pathway also result in a *gun* phenotype, T-DNA insertion lines for all enzymes of the pathway were analyzed. For each enzyme, two or three independent lines were identified from the SIGnAL database (Alonso *et al.*, 2003), and seeds were obtained from public seed stocks. Genes and the corresponding mutant lines are listed in Table 2.1., together with the predicted location of the T-DNA insertion.

3.1.1. Screen for homozygous mutants

Lines that were supposed to harbor T-DNA insertions in the genes coding for ALA dehydratase, PBG deaminase and coprogen oxidase were not germinating in our hands (indicated by a X in Figure 3.1.), although mutants affected in PBG deaminase and coprogen oxidase were previously described (Ishikawa *et al.*, 2001; Strand *et al.*, 2003). This could be due to decreased seed vitality or embryo lethality caused by a total lack of the respective protein. Some other mutations in our screen could only be obtained in the heterozygous state (thin face in Figure 3.1.), either because homozygous seedlings were lethal or plants were not able to produce seeds. However, for some lines homozygous mutants could be obtained (underlined in Figure 3.1.). Only those lines were used for further analyses.

To confirm the effect of the inserted T-DNA in the mutant lines the expression level of the respective genes were monitored in 6-day-old plants by real-time PCR and compared to the level in wild-type plants (Table 3.1.). While in most mutant lines the expression of the corresponding gene was indeed reduced (*hema1-2, heme1-2, ppo1-1, chlm-1, chlm-3, crd1-1, porb-1, fc1-1* and *gun3-4*), the expression was not altered in one line (*gun2-2*) and even higher in four of them (*heme2-1, gun4-3, pora-2* and *porc-1*). Analyses of the original *gun* mutants reveal that the *gun4* mutant showed an even stronger expression, *gun2* exhibited a reduced transcript accumulation and the expression level was not altered in *gun5* (Table 3.1.). However, gene mutations in EMS (ethyl methane sulfonate) mutant lines (original *gun* mutants) is caused by base-pair and

Figure 3.1: Schematic overview of the tetrapyrrole biosynthesis pathway in higher plants. For all enzymatic steps (indicated by arrows) two or more T-DNA insertion lines were analyzed. Some lines could only be isolated as heterozygous (thin face) and others were not viable (X). Only the homozygous lines (underlined) were used for further analysis. Also the known *gun* mutants used in this work are shown (bold face).

Table 3.1: Relative transcript abundance in mutant lines compared to wild-type plants. Plants were grown for 6 days under continuous light (100 μ mol m⁻² s⁻¹). Data for indicated genes were obtained in triplicate by real-time PCR analysis and normalized to the expression level of ubiquitin-protein ligase-like protein mRNA (*At4g36800*).

Marto at Karo	a	Ratio to WT	
Mutant line	Gene	level	
hema1-2	AT1G58290	0.63	
heme2-1	AT2G40490	2.2	
heme1-2	AT3G14930	0.2	
ppo1-1	AT5G14220	0.04	
gun4	AT3G59400	3.01	
gun4-3	AT3G59400	3.2	
gun5	AT5G13630	1.07	
chlm-1	AT4G25080	0.03	
chlm-3	AT4G25080	0.25	
crd1-1	AT3G56940	0.11	
pora-2	AT5G54190	3930	
porb-1	AT4G27440	0.46	
porc-1	AT1G03630	1.95	
fc1-1	AT5G26030	0.095	
gun3-4	AT3G09150	0.04	
gun2	AT2G26670	0.04	
gun2-2	AT2G26670	1.08	

thus aminoacid substitution and is not necessarily coupled to changes in the transcription rate. Moreover, T-DNA insertions (new tetrapyrrole biosynthesis mutants) can result in non-functional mRNA without changes in the expression of the gene.

3.1.2. Homozygous mutants have no gun phenotype

Insertion lines were grown in the presence of norflurazon (NF) for 6 days under continuous white light (100 μ mol m⁻² sec⁻¹) and real-time PCR analysis was performed to determine *LHCB1.2* expression levels (Figure 3.2.). After NF treatment the expression of the nuclear encoded gene *LHCB1.2* was strongly reduced in wild-type

plants compared to untreated seedlings (Figure 3.2.; Oelmuller et al., 1986; Oelmuller and Mohr, 1986). This response is known to be affected in the gun mutants (Susek et al., 1993; Mochizuki et al., 2001), as it is visible for the controls gun1 and gun5, as well as for a new gun2 allele gun2-2. Those three mutants showed a higher expression of LHCB1.2 after NF treatment than wild-type plants, but the expression was also reduced when compared to untreated wild-type plants (Figure 3.2.). The expression of gun2 was not altered in gun2-2 (Table 3.1.), therefore the observed LHCB1.2 mRNA derepression phenotype provide an indication that the detected gun2 mRNA was affected by the inserted T-DNA and that the amount of functional GUN2 was decreased. However, none of the other novel mutant lines of the tetrapyrrole biosynthesis pathway exhibited this LHCB1.2 de-repression phenotype. Among those, lines gun4-3 and gun3-4 were identified for which a de-repression was suggested, due to the proposed affection of the same alleles as in the known gun mutants. As the insertion site was either downstream (gun4-3) or upstream (gun3-4) of the gene (see Table 2.1.) it seems that the expressed mRNA were functional in both cases and that the reduced gun3 expression in gun3-4 (Table 3.1.) was still enough for proper development. It is noteworthy, that the

Figure 3.2: Real-time PCR analysis of *LHCB1.2* expression in seedlings grown in the presence of NF for 6 days under continuous light (100 μ mol m⁻² s⁻¹). The results were set relative to the expression level of wild-type grown without NF and normalized to the expression level of *ACTIN1*. Reactions were performed in triplicate. Bars indicate standard deviations.

T-DNA knockout lines for Mg-protoporphyrin methyltransferase (*chlm-1*) and a subunit of Mg-protoporphyrin methylester cyclase (*crd1-1*), did not show the de-repression phenotype, confirming previous data (Mochizuki *et al.*, 2008). To summarize, no novel *gun* mutants with a defect in tetrapyrrole biosynthesis could be identified by this strategy.

3.2. NF-grown gun seedlings exhibit a distinct growth phenotype

When grown under continuous light of 100 μ mol m⁻² s⁻¹, all *gun* mutant lines exhibited a pale green phenotype but with different severity (Figure 3.3; Mochizuki et al., 2001). While gun2 showed the strongest phenotype, the two mutant lines affected directly in chlorophyll biosynthesis (gun4 and gun5) were less pale suggesting that the mutation had only a weak effect. Although the GUN1 protein is not involved in chlorophyll biosynthesis, the gun1 mutant also displayed a light pale green phenotype. More surprisingly, the mutant lines also showed a different phenotype in the presence of NF (Figure 3.3.). This phenotype was not visible after two days but was clearly observable after 6 days and even more pronounced after 10 and 12 days. After 6 days anthocyanin accumulation was clearly visible in wild-type and gun1 seedlings while in the other gun mutants this accumulation was largely decreased or not visible. Moreover, gun2, gun4 and gun5 plants seemed to grow better and showed a stronger leaf pigmentation phenotype. In gun4 and gun5 mutants this growth phenotype was more severe after 10 and 12 days while gun2 stopped to grow after 6 to 8 days. Also wildtype seedlings showed less anthocyanin accumulation after 10 and 12 days while in gunl it was still visible. Taken together, the gun mutants which are affected in tetrapyrrole biosynthesis seemed more vigorous than wild-type plants and exhibited a yellowish leaf coloration. In contrary the gun1 seedlings seemed to be more fragile than wild-type plants and accumulated more anthocyanin indicated by the purple coloration of leaves. This suggests that the distinct growth and leaf coloration phenotypes of gun2, gun4 and gun5 are not strictly coupled to the de-repression of LHCB1.2 transcription observable after NF treatment. Moreover, the T-DNA insertion lines affected at different stages of tetrapyrrole biosynthesis did not exhibit this growth phenotype as shown for 6-day-old plants in Figure 3.4. The seedlings of all investigated lines behaved similar to wild-type seedlings.

Results

Figure 3.3: Images of plants grown in the absence or presence of NF (+ NF) for 2, 6, 10 or 12 days under continuous light (100 μ mol m⁻² s⁻¹).

3.3. Growth phenotype is not correlated with LHCB1.2 de-repression

To investigate the relationship between the growth or pigmentation phenotype and *LHCB1.2* mRNA expression, we first tested if carotenoid biosynthesis inhibitors other than NF can mimic its function as a GUN-dependent repressor of *LHCB1.2*

Figure 3.4: Images of T-DNA insertion lines affected in the tetrapyrole biosynthesis pathway grown for 6 days under continuous light (100 μ mol m⁻² s⁻¹) in the absence or presence of NF (+ NF).

expression. For that, three different inhibitors were used (see also Figure 3.5): flurochloridone, amitrole and CPTA (2-(4-chlorophenylthio)triethylamine hydrochloride). Flurochloridone is a phytoene desaturase inhibitor (Pallett *et al.*, 1998), whereas amitrole inhibits lycopene cyclization (Agnolucci *et al.*, 1996) and thus acts downstream of NF by blocking the biosynthesis of δ - and γ -carotenes which are the precursors of α - and β -carotenes, respectively. CPTA also inhibits lycopene cyclization

Figure 3.5: Schematic overview of the carotenoid biosynthesis pathway in plants. The different steps in chloroplast carotenoid biosynthesis are indicated by arrows. Note that in flowering plants the xanthophylls violaxanthin and neoxanthin are the precursors of xanthoxin, which is exported to the cytosol and there converted to ABA. The specific target sites of carotenoid biosynthesis inhibitors used in this work are indicated.

but in contrast to amitrole it affects only the biosynthesis of γ -carotenes (Al-Babili *et al.*, 1999). Additionally the concentration of NF was elevated to exclude the possibility that the amount was too low for complete inhibition.

When Northern blot analyses were performed on RNA isolated from wild-type and *gun* seedlings treated with either NF (0.5 μ M or 5 μ M), amitrole, fluorchloridone or CPTA (either 15 μ M or 45 μ M) and grown under continuous white light (100 μ mol m⁻² s⁻¹), similar differences between wild-type and *gun* seedlings in respect to *LHCB1.2*

mRNA levels were observed under all photo-bleaching conditions (Figure 3.6.). In contrast to non-photo-bleaching conditions where *LHCB1.2* mRNA was present in large amounts in all genotypes, the destruction of plastids using carotenoid biosynthesis

Figure 3.6: *LHCB1.2* mRNA levels in wild-type (WT) and *gun* seedlings, grown on MS plates without carotenoid biosynthesis inhibitors or supplemented with either 0.5 μ M or 5 μ M NF, 100 μ M amitrole, 100 μ M flurochloridone or 15 μ M respectively 45 μ M CPTA, were determined by Northern blot analyses. The *ACTIN1* mRNA level served as loading control. Seedlings were grown for 6 days under continuous light (100 μ mol m⁻² s⁻¹). Note that *gun2* was missing when experiments with 45 μ M CPTA were performed.

inhibitors resulted in a strong decrease of *LHCB1.2* mRNA accumulation. This reaction on nuclear gene expression was somehow affected in *gun* mutants irrespective of which inhibitor was used. Therefore, *LHCB1.2* mRNA was more abundant after inhibition of carotenoid biosynthesis in *gun* mutants compared to wild-type seedlings but in all genotypes lower than in green plants.

We then asked if the characteristic NF-related growth or pigmentation phenotype observed in the three gun mutants with defects in the tetrapyrrole biosynthesis pathway (gun2, gun4 and gun5) also appeared upon treatment with the other inhibitors of carotenoid biosynthesis. Indeed, amitrole and flurochloridone caused seedlings to display strong photo-oxidative damage while in the case of CPTA this was the case when supplemented with 45 μ M CPTA but only to slight extent when 15 μ M CPTA were given (Figure 3.7.). In the presence of amitrole, anthocyanin accumulation occurred in wild-type and all gun seedlings, whereas seedlings of all genotypes completely lacked pigmentation when grown in the presence of flurochloridone. Furthermore, seedlings grown on medium containing amitrole or flurochloridone were delayed in development. In contrast to seedlings grown on NF, they did not evolve first true leaves (Figures 3.3. and 3.7.). Contrary to amitrole and flurochloridone, CPTA failed to induce complete photo-oxidative damage, but only at a concentration of 15 µM (Figure 3.7.). Under this condition only the phenotypes of wild-type, gun1 and gun5 seedlings were affected which is in line with the reduced LHCB1.2 mRNA levels seen in these three genotypes when compared to the transcript level of gun2 and gun4 seedlings (Figure 3.6.). It seemed that photo-destruction is less pronounced in gun2 and gun4 mutants resulting in a higher expression of LHCB1.2 mRNA. However, higher concentrations of CPTA (45 µM CPTA) were sufficient to induce photo-oxidative damage in all genotypes (Figure 3.7.) resulting in LHCB1.2 mRNA levels comparable to these seen when other inhibitors were used (Figure 3.6.).

Summarizing, it can be stated that the effects of NF on *LHCB1.2* mRNA expression in wild-type and *gun* seedlings can be mimicked by other carotenoid biosynthesis inhibitors. However, only after NF treatment the perturbation of tetrapyrrole biosynthesis in *gun2*, *gun4* and *gun5* result in a distinctive growth and leaf pigmentation phenotype.

Figure 3.7: Images of seedlings grown on plates supplemented with different inhibitors of carotenoid biosynthesis (100 μ M amitrole, 100 μ M flurochloridone, 5 μ M NF, 15 μ M CPTA or 45 μ M CPTA) for 6 days under continuous light of 100 μ mol m⁻² s⁻¹. Note that *gun2* was not available for experiments with 45 μ M CPTA.

3.4. The gun mutants are not resistant to NF

Norflurazon is an inhibitor of phytoene desaturase, which has its target site at the desaturation step from phytoene to ζ -carotene (Figure 3.5.; Bartels and McCullou, 1972). In a screen for EMS (ethyl methane sulfonate)-mutagenized Arabidopsis plants with altered sensitivity to inducers of oxidative stress, seven strains were isolated that showed a certain degree of resistance to NF (Ezhova *et al.*, 2001). To investigate whether the higher *LHCB1.2* mRNA expression in the *gun* mutants or the growth phenotype of the mutants could be due to a resistance to NF, phytoene levels were determined in wild-type and *gun* plants. In the absence of NF, phytoene was not detectable in any of the genotypes (data not shown), while after NF treatment enhanced phytoene levels were detectable in WT plants, as well as in the *gun* mutant lines, as to

be expected in the case of a block in the reactions downstream of phytoene (Figure 3.8.). In *gun1* and *gun2*, the amount of phytoene was not as high as in wild-type plants (only 40% or 80%, respectively), whereas phytoene concentrations in *gun4* and *gun5* exceeded the wild-type values. These data suggested that the *gun* mutants are not generally resistant to NF. Furthermore, differences in the accumulation of phytoene caused by NF treatment could not be linked to any of the *gun* specific phenotypes.

Figure 3.8: Phytoene level in NF-treated WT and *gun* seedlings grown for 6 days under continuous light of 100 μ mol m⁻² s⁻¹. Phytoene was separated by reverse-phase HPLC and monitored at 296 nm. Phytoene was not detectable in seedlings grown in the absence of NF. Bars indicate standard deviations from two replicates.

3.5. Nuclear-encoded photosynthetic proteins are not present in NF treated plants while some plastome-encoded proteins are retained in *gun* mutants

To test whether the effect of NF on *LHCB1.2* mRNA accumulation in the *gun* mutants also affected the abundance of the corresponding protein, Western analysis was performed. Also a putative effect of NF on the accumulation of other photosynthesis related proteins was studied. Total protein was isolated from WT and *gun* seedlings grown in the absence or presence of NF, and subjected to immunoblot analyses with

Figure 3.9: Western blot analysis of WT and *gun* seedlings. Proteins were extracted from seedlings grown in the absence (- NF) or presence of NF (+ NF) for 6 days under continuous light (100 μ mol m⁻² s⁻¹), fractionated by SDS-PAGE and blotted to a PVDF membrane (15 μ g protein was loaded). Filters were probed with antibodies specific for the proteins indicated on the right side of the panels.

RbcL, large subunit of RubisCO; AtpB, β subunit of ATP synthase; PetB, cytochrome b_6 ; PsbD, photosystem II D2 protein; PsaB, photosystem I reaction centre protein B; Lhca3, photosystem I type III chlorophyll a/b-binding protein; Lhcb1, photosystem II type I chlorophyll a/b-binding protein

antibodies specific for representative proteins of the light-harvesting complexes (Lhca3 and Lhcb1), subunits of photosystem I (PSI) (PsaB), photosystem II (PSII) (PsbD) and the cytochrome b_6/f complex (PetB), as well as the β -subunit of ATPase (AtpB) and RbcL, the large subunit of RubisCO (Figure 3.9.). Although repression of *LHCB1.2* mRNA accumulation caused by photo-oxidative damage was attenuated in the *gun*

mutants, no Lhcb1 protein was detectable in wild-type or in the mutants. This suggests that there is no physiological relevance for the remaining *LHCB1.2* mRNA. Furthermore, the absence of most tested proteins in NF-treated WT and *gun* seedlings provided additional evidence for the severe photo-oxidative damage affecting plastids during NF treatment, and clearly showed that the remaining thylakoids (Susek *et al.*, 1993; McCormac and Terry, 2004) must be devoid of photosynthetic activity.

Interestingly, while AtpB and RbcL could be detected in NF-treated wild-type plants only in tiny amounts, a marked increase in their abundance was observed in NF-treated *gun* seedlings when compared to wild-type (to a less extent in *gun1*; Figure 3.9.). This indicates that translation of some plastome-encoded proteins continued in the *gun* mutants even after the photo-oxidative damage caused by NF treatment. The observation of an interplay between translation of plastome-encoded proteins and GUN signaling is compatible with the finding that the translation inhibitor lincomycin has the same effect as NF on *gun1* mutants (Gray *et al.*, 2003; Koussevitzky *et al.*, 2007), and might possibly explain how perturbations in tetrapyrrole metabolism (in *gun2, gun4* and *gun5*) and a defective nucleic acid binding protein (*gun1*) can similarly affect plastid signaling. Moreover, the differences of AtpB and RbcL amounts between the genotypes reflect the visible growth phenotype.

Under untreated conditions the levels of the tested proteins were not altered in gun1, gun4 and gun5 seedlings compared to wild-type, whereas in gun2 mutants the core subunits of photsystem I and II, as well as PetB of the cytochrome b_6/f complex were present in higher amounts. The mutant line gun2 showed the strongest phenotype (pale green) under normal growth conditions (Figure 3.3.), therefore the higher amounts of photosynthesis related proteins could be due to feedback regulation caused by affected capability to perform photosynthesis.

3.6. Alterations in heme levels do not explain the gun phenotype

Because the proteins GUN2–5 are all involved in tetrapyrrole biosynthesis (Mochizuki *et al.*, 2001; Larkin *et al.*, 2003), it was thought that intermediates of chlorophyll biosynthesis could function as signal molecules (Strand *et al.*, 2003; Ankele *et al.*, 2007). Testing this hypothesis revealed that in *A. thaliana* accumulation of tetrapyrroles of the Mg-branch did not correlate with *LHCB1.2* expression (Mochizuki

et al., 2008; Moulin *et al.*, 2008). Still it appeared possible that tetrapyrroles of the Febranch could be involved in signaling processes. Accordingly, heme was postulated to act as a plastid-derived regulator of nuclear gene expression in the green alga *C. reinhardtii* (von Gromoff *et al.*, 2008). In principle, *gun4* and *gun5* mutants should accumulate protoporphyrin IX (Proto IX), the precursor of both Mg-proto IX and Feproto IX i.e. heme (Figure 3.1.). Actually it could be shown that Proto IX accumulates in *gun5* mutants (Mochizuki *et al.*, 2008). This accumulation of Proto IX could, in turn, lead to an increase in biosynthesis of tetrapyrroles of the heme branch. Similarly, a block of the steps following heme biosynthesis, as it is the case for the *gun2* and *gun3* mutants, should also lead to a rise in heme levels.

To test if heme is somehow involved in retrograde signaling in *A. thaliana*, we determined heme levels in the *gun* mutants, as well as in wild-type seedlings, grown for 6 days on MS medium without or supplemented with NF (Figure 3.10.). Heme levels

Figure 3.10: Relative heme amount in WT and *gun* seedlings grown for 6 days on MS plates in the absence (- NF) or presence of NF (+ NF) under continuous light (100 μ mol m⁻² s⁻¹). Heme was measured using a horseradish peroxidase-based assay. Data were obtained in triplicate. Bars indicate standard deviations.

were quantified by chemiluminescence, based on the incorporation of heme derived from the extracted plant material into externally supplied horseradish peroxidase apoenzyme, with concomitant reconstitution of enzyme activity (Masuda and Takahashi, 2006). In the absence of NF, heme was barely detectable in seedlings of wild-type, *gun1* and *gun5* plants, while in *gun2* and *gun4* mutants very low levels were detectable (Figure 3.10.). However, in the presence of NF, heme levels were markedly increased in all seedlings. Heme levels were similar in wild-type, *gun4* and *gun5* seedlings, whereas its amount was slightly higher in *gun1* plants and lower in *gun2* mutants. Therefore, it is not possible to attribute the increased *LHCB1.2* mRNA levels in the *gun* mutants or their specific growth phenotype to an accumulation of heme.

3.7. gun specific phenotypes are not present when grown under low-light

The standard light intensities applied in this work caused strong photo-oxidative damage to the plants after NF treatment (Figure 3.3.). To elucidate the effect of NF on *LHCB1.2* mRNA accumulation and the different growth phenotypes under weak photo-oxidative or even non-photo-oxidative conditions, plants were exposed to low-light intensities (10 μ mol m⁻² s⁻¹) or were grown without light. No effect of NF was visible when plants were grown in the dark (Figure 3.11.), indicating that NF indeed acts specifically as an inhibitor of carotenoid biosynthesis. The fact that a phytoene desaturase mutant (*pds3*) showed the same effects as wild-type plants treated with NF (Qin *et al.*, 2007) and that plants existed which were resistant to NF (Chamovitz *et al.*, 1991; Ezhova *et al.*, 2001) underline the notion that the inhibitor acts specifically. Additionally, no differences could be observed between wild-type and *gun* seedlings. All plants showed a pale-green or yellowish coloration. Coloration was also visible in NF treated plants where carotenoid biosynthesis is known to be blocked. In this case the detectable coloration most likely came from pigments already stored in the seeds.

Exposure to continuous low-light was already sufficient to photo-bleach seedlings treated with NF (Figure 3.11.). In contrast to plants grown under higher light intensities, seedlings grown under low-light completely lacked pigmentation. Neither anthocyanin accumulation, explainable by reduced photo-oxidative damage, nor the yellowish pigmentation were visible. Moreover, the accumulation of *LHCB1.2* mRNA in seedlings grown under low-light conditions (10 μ mol m⁻² s⁻¹) varied from those seen

Figure 3.11: Images of wild-type and *gun* seedlings grown in the absence or presence of NF (+ NF) for 6 days either under low-light (LL; 10 μ mol m⁻² s⁻¹) or without light (D; dark).

Figure 3.12: Real-time PCR analysis of *LHCB1.2* mRNA expression in WT and *gun* seedlings grown for 6 days under continuous low-light (LL) conditions (10 μ mol m⁻² s⁻¹) in the absence or presence of NF (+ NF). Reactions were performed in triplicate and results were normalized to the expression level of *At2g37620* coding for *ACTIN1*. Bars indicate standard deviations.

in seedlings grown under 100 μ mol m⁻² s⁻¹ (Figure 3.12.). The typical de-repression of *LHCB1.2* mRNA accumulation caused by photo-oxidative damage was lost in wild-type and *gun* seedlings, whereas in *gun* mutants mRNA levels were slightly lower as in wild-type plants. This points out that the specific *gun* phenotypes are somehow linked to effects of strong photo-oxidative stress.

3.8. Altered accumulation of reactive oxygen species did not reveal an explanation

Photo-oxidative damage induced by inhibitors of carotenoid biosynthesis is caused by reactive oxygen species (ROS) produced as toxic by-products during photosynthesis. ROS are normally quenched by carotenoids (Frosch et al., 1979; Apel and Hirt, 2004; Krieger-Liszkay, 2005). Beside this it has been proposed that ROS were somehow involved in retrograde signaling processes (Pesaresi et al., 2007; Fernandez and Strand, 2008; Kleine et al., 2009). Moreover, it was previously speculated that perturbations in tetrapyrrole biosynthesis might lead to localized ROS production (Moulin et al., 2008). Our finding that the characteristic de-repression of LHCB1.2 mRNA accumulation in NF-treated gun mutants does not occur in low-light conditions (Figure 3.12.) promoted us to investigate the expression of ROS marker genes. Thus, the steady-state transcript levels of genes, that have been described either as general oxidative stress response markers, or as being specifically regulated by hydrogen peroxide, superoxide or singlet oxygen (Gadjev et al., 2006), in NF-treated wild-type and mutant plants were analyzed using real-time PCR and compared to data from untreated wild-type plants (Table 3.2.). As loading control, the expression of three different genes (UBIQUITIN, ACTIN1 and 18S rRNA) was used. In Table 3.2. only the values normalized to the expression of UBIQUITIN are shown.

In NF-treated wild-type seedlings, one of the five general oxidative stress response marker genes (bHLH transcription factor, At1g10585) was down-regulated, while the other four (defensine-like protein, At2g43510; glutathione S-transferase, At1g17170; FAD-linked oxidoreductase, At1g26380 and AtWRKY75, At5g13080) were up-regulated (Table 3.2.). This is consistent with the induction of photo-oxidative stress by NF. Compared to wild-type, these marker genes exhibited very similar expression patterns in the four *gun* mutant lines. The overall up-regulation in NF-treated wild-type and *gun* seedlings was also visible for the marker gene specific for singlet oxygen (AP2)

Table 3.2: The expression of ROS marker genes in NF-treated wild-type and *gun* seedlings grown for 6 days under continuous light (100 μ mol m⁻² s⁻¹) related to the expression in untreated wild-type seedlings. Data were obtained in duplicate using real-time PCR and normalized to the expression of *UBIQUITIN*. The three rows represent three independent experiments.

Gene	Description	WT	WT + NF	<i>gun1</i> + NF	<i>gun2</i> + NF	<i>gun4</i> + NF	<i>gun5</i> + NF
Specific for all ROS							
	Defensine like		1.39	3.58	1.34	2.20	0.84
At2g43510	Defensine-like	1	1.24	2.13	1.66	1.62	1.09
	protein		2.38	2.84	3.47	2.31	1.59
	bHLH		0.48	1.08	1.25	0.96	1.10
At1g10585	transcription	1	0.38	0.79	1.11	1.34	0.17
	factor		0.48	0.60	1.17	0.46	1.15
	Glutathione S-		1.88	6.59	2.20	2.04	1.25
At1g17170	transferase	1	1.85	2.88	1.97	4.54	1.09
	transferuse		1.65	2.78	1.15	1.60	0.77
	FAD-linked		0.41	0.91	2.81	4.31	2.90
At1g26380	oxidoreductase	1	2.57	1.59	8.09	43.87	1.17
	Oxfuoreductase		9.04	12.06	20.75	79.02	19.15
	AtWRKY75	1	1.54	2.53	5.83	2.59	1.11
At5g13080			1.88	1.42	2.68	12.47	1.16
			1.22	1.25	2.62	1.84	1.84
Specific for singlet oxygen							
	AP2 domain		12.59	20.08	10.43	4.28	1.47
At4g34410	transcription	1	1.69	10.34	5.45	178.8	15.03
	factor		16.97	10.24	21.68	20.48	7.40
Spee	cific for superoxide						
	NADH		0.18	0.12	2.13	0.74	0.83
AtCg01050	dehydrogenase	1	1.05	0.24	2.53	18.70	1.83
0	ND4		2.01	0.18	4.69	3.20	3.06
At3g01140	AtMYB106	1	0.77	2.40	3.30	0.63	1.19
			1.55	1.89	2.34	11.97	1.37
			13.20	12.89	20.07	6.96	11.55
Specific for hydrogen peroxide							
	Serine/threonine		0.17	0.04	0.19	0.18	0.32
At4g23290	kinase - like	1	0.20	0.04	0.10	0.04	0.10
	protein		0.47	0.06	0.21	0.42	0.39

domain transcription factor, At4g34410) and for one marker gene specific for superoxide (AtMYB106, At3g01140) (Table 3.2.). With respect to superoxide generation, these data were in accordance with the previous finding that superoxide generation was not altered in gun mutants relative to WT plants (Strand et al., 2003). In contrast to that, the expression of the second marker gene specific for superoxide, which is encoded in the plastid (NADH dehydrogenase ND4, AtCg01050), was not markedly affected in NF-treated wild-type plants, but down-regulated in gun1 mutants and upregulated in gun2, gun4 and gun5 seedlings (Table 3.2.). This expression pattern reflects the visible phenotype. It suggests that in the tetrapyrrole biosynthesis mutants, plastids and their capability to perform transcription were less affected than in wild-type and gun1 seedlings. Furthermore, transcripts of the marker gene specific for hydrogen peroxide stress (serine/threonine kinase like protein, At4g23290) were strongly downregulated in all NF-treated genotypes (Table 3.2.). Taken together, the data do not support the idea that a general decrease or increase in a particular ROS molecule can be made responsible for differences between wild-type and gun seedlings with respect to LHCB1.2 mRNA accumulation or the specific growth phenotype when grown on MS plates supplemented with NF.

3.9. Lipid composition is affected by NF treatment

Besides its photo-oxidative effect, NF does also affect the plastid lipid composition of plants (Abrous *et al.*, 1998; Di Baccio *et al.*, 2002). To test whether this reaction is influenced in the *gun* mutants, lipids were extracted from wild-type and *gun* seedlings grown in the absence or presence of NF and separated using thin layer chromatography (Figure 3.13.). As expected, in NF-treated plants some lipid bands were missing compared to untreated plants (Figure 3.13.; three blue bands above MGDG). However, this is the case for both wild-type and mutant plants. The two most prominent lipids in plastids, monogalactoglycerolipids (MGDG) and digalactoglycerolipids (DGDG), were present in all genotypes, while the amount of MGDG was lowered in *gun1* grown on NF. This result did not correlate with the investigated phenotypes - *LHCB1.2* mRNA accumulation and the growth phenotype. In plants grown under non-photo-bleaching conditions some lipid bands were lowered in their intensity in *gun2* and were more prominent in *gun4* (Figure 3.13.).

Figure 3.13: Total lipid extract from plants grown for 6 days under continuous light (100 μ mol m⁻² s⁻¹) on MS plates without (- NF) or supplemented with NF (+ NF). Lipids were separated by thin layer chromatography and visualized using ferrous sulfate/potassium permanganate solution incubated for 20 minutes at 100°C. MGDG, monogalactoglycerolipids; DGDG, digalactoglycerolipids

3.10. Several metabolic processes are altered in NF-treated plants

Additionally to the proposed retrograde signaling pathways connected to plastid translation, ROS or tetrapyrrole biosynthesis, some indications exist that the organellar redox poise or alterations within the redox poise are involved in retrograde signaling. Also metabolic components produced in plastids could be responsible for signaling processes (for review see Baier and Dietz, 2005; Bräutigam *et al.*, 2007; Kleine *et al.*, 2009). In order to investigate whether changes in metabolic processes could be connected to the specific phenotypes seen in the *gun* mutants during photo-oxidative damage, we analyzed the expression levels of marker genes for a broad range of metabolic processes (Table 3.3.). We also measured the amount of several metabolic components in plants grown for 6 days in the absence or presence of NF (Table 3.4.).

Table 3.3: Real-time PCR analyses of the expression of marker genes for different metabolic processes in 6-day-old NF-treated wild-type and *gun* seedlings. Values were obtained as in Table 3.2. and presented in relation to untreated wild-type seedlings.

Gene	Description	WT	WT + NF	<i>gun1</i> + NF	<i>gun2</i> + NF	<i>gun4</i> + NF	<i>gun5</i> + NF
Marker genes for different metabolic processes							
At1g77490			0.12	0.11	0.22	0.20	0.21
	tAPX	1	0.20	0.07	0.47	0.15	0.36
_			0.54	0.25	1.28	0.74	1.19
	Die		0.03	0.16	0.38	0.14	0.22
At5g52570	Beta-carotene	1	0.02	0.14	0.23	0.10	0.07
	nydroxylase		0.03	0.12	0.44	0.08	0.18
			0.12	0.34	0.44	0.20	0.35
At5g17230	Phytoene synthase	1	0.11	0.17	0.22	0.08	0.12
			0.72	0.79	0.92	0.45	0.89
			0.37	0.63	1.48	0.73	0.94
At5g67030	Zeaxanthin epoxidase	1	0.24	0.36	0.77	0.58	0.47
			0.88	0.49	1.44	0.66	0.96
	Dutativa vialavanthin da		0.28	0.48	0.96	0.44	0.77
At1g08550	Putative violaxantinii de-	1	0.30	0.25	0.55	0.12	0.28
	epoxidase		1.87	1.18	3.12	1.07	2.22
			0.08	0.08	0.14	0.16	0.24
At3g02730	Thioredoxin f1	1	0.18	0.14	0.32	0.30	0.32
			0.44	0.27	0.59	0.31	0.75
	Thioredoxin m4	1	0.08	0.07	0.56	0.20	0.35
At3g15360			0.13	0.10	0.43	0.18	0.26
			0.45	0.33	0.95	0.63	1.08
	Thioredoxin x	1	0.21	0.28	0.47	0.30	0.45
At1g50320			0.19	0.29	0.55	0.35	0.40
			0.54	0.48	1.04	0.52	0.88
	Dutative thioredoxin		0.36	0.74	0,81	0.58	0.60
At2g41680	reductase	1	0.66	0.77	1.32	0.64	1.03
			0.77	0.87	1.75	0.72	1.64
	Putative peroxiredoxin	1	0.12	0.09	0.32	0.17	0.27
At3g26060			0.07	0.04	0.19	0.07	0.20
			0.31	0.27	0.58	0.36	0.88
	Putativa dutathiona	1	0.49	0.42	2.36	0.77	1.32
At2g25080	nerovidase		0.22	0.22	0.90	0.19	0.26
	peroxidase		0.50	0.36	1.36	0.50	1.10
At5g04140	Ferredoxin-dependent		0.24	0.50	1.28	0.46	1.00
	glutamate synthase	1	0.48	0.45	1.01	0.01	0.31
	giutumate synthuse		0.62	0.47	1.44	0.49	1.16
At1g58290	Glutamyl-tRNA reductase		0.16	0.30	1.18	0.31	0.59
		1	0.19	0.23	0.75	0.05	0.23
			0.71	0.78	2.49	0.51	0.90
	Magnesium-		0.21	0.21	0.98	0.35	0.54
At4g25080	protoporphyrin IX	1	0.17	0.19	0.82	0.33	0.32
Ŭ	methyltransferase		0.29	0.24	1.31	0.36	0.51

Real-time PCR was performed to investigate the expression level for several marker genes in NF-treated wild-type and mutant seedlings compared to untreated wildtype plants. Again three different genes were used for loading control (UBIQUITIN, ACTIN1 and 18S rRNA). The overall picture for all genes tested was similar between wild-type and gun seedlings in the presence of NF: compared to non-photo-bleached wild-type plants the transcript levels were strongly down regulated (Table 3.3.; values normalized to UBIQUITIN are shown). This indicates that photo-oxidative damage of plastids by NF affects overall metabolic processes. This was the case for genes involved in processes either directly affected by NF (carotenoid biosynthesis: beta-carotene hydroxylase, At5g52570; phytoene synthase, At5g17230; zeaxanthin epoxidase, At5g67030; putative violaxanthin de-epoxidase, At1g08550) or indirectly caused by photo-oxidative stress (ROS detoxification and redox poise: tAPX, At1g77490; thioredoxin f1, At3g02730; thioredoxin m4, At3g15360; thioredoxin x, At1g50320; putative thioredoxin reductase, At2g41680; putative peroxiredoxin, At3g26060; putative peroxidase, At2g25080; ferredoxin-dependent glutamate glutathione synthase, At5g04140; or tetrapyrrole biosynthesis: glutamyl-tRNA reductase, At1g58290; Mgproto IX methyltransferase, At4g25080).

Unexpectedly, measurement of metabolites like phosphorylated intermediates of the central carbohydrate metabolism, citric acid cycle intermediates and nucleotides revealed no marked differences between NF-treated and untreated plants irrespective of the genotype, although the amount of some metabolites like the investigated nucleotides were to slight extent lower in plants treated with NF (Table 3.4.). Furthermore, comparison between wild-type and *gun* mutants did not show for any of the measured metabolites a correlation with the *LHCB1.2* mRNA accumulation phenotype visible after NF treatment. Here three major observations have to be mentioned. First, many metabolites were less abundant in untreated *gun2* seedlings compared to the other untreated plants. This is in accordance with the strong pale green phenotype of the mutant line. However, when plants were treated with NF the differences between *gun2* and the other genotypes were less pronounced. Second, the comparison of NF-treated genotypes revealed that in *gun1* some metabolites, mainly citric acid cycle intermediates (e.g. a-ketoglutarate, malate and succinate) were more abundant than in the other seedlings, again suggesting that GUN1 protein is involved in other regulatory processes. **Table 3.4:** Metabolites isolated from wild-type and *gun* seedlings grown for 6 days in the absence (- NF) or presence of NF (+ NF). Measurements were performed according to Haeusler *et al.* (2000) and Schneidereit *et al.* (2006) . Mean values (\pm SD) resulted from three independent experiments. Values in parentheses were measured by a different enzymatic assay according to Dietz and Heber (1986). Values correspond to nmol/g fresh weight.

n. d., not determined; aKG, a-ketoglutarate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; ATP, adenosine triphosphate; F6P, fructose-6-phosphate; F16P, fructose-1.6-bisphosphate; G1P, glucose-1-phosphate; G6P, glucose-6-phosphate; M6P, mannose-6-phosphate; PEP, phosphoenolpyruvate; UDP, uridine diphosphate; UDP-Glc, UDP glucose; 3PG, 3-phosphoglycerate

	Wild-type	gun1	gun2	gun4	gun5
- NF					
Phospho	rylated intermedia	ntes			
G1P	7.1 ± 1.6	12.4 ± 7.7	13.3 ± 1.7	13.2 ± 5.5	17.1 ± 4.1
G6P	123.5 ± 18.6	156.5 ± 9.8	91.2 ± 11.7	112.9 ± 0.9	149.4 ± 13.3
(G6P)	151.1 ± 19.2	117.5 ± 34.9	117.2 ± 8.1	137.1 ± 8.4	117.0 ± 16.6
F6P	9.9 ± 1.4	20.9 ± 23.2	n. d.	15.5 ± 14.0	13.8 ± 2.6
(F6P)	39.9 ± 1.8	29.7 ± 2.8	29.4 ± 21.3	32.0 ± 4.8	33.2 ± 14.5
F16P	2.7 ± 0.9	5.3 ± 1.0	1.7 ± 0.9	4.4 ± 1.2	6.5 ± 0.2
M6P	12.5 ± 2.9	23.0 ± 5.2	18.0 ± 1.4	20.6 ± 4.2	28.3 ± 3.7
3PG	70.7 ± 5.3	96.3 ± 30.1	44.6 ± 6.7	73.9 ± 18.7	117.1 ± 9.1
UDP-Glc	58.2 ± 17.5	79.7 ± 19.1	46.5 ± 13.3	71.2 ± 16.2	101.7 ± 11.6
PEP	12.1 ± 1.1	13.1 ± 3.8	8.9 ± 1.3	11.9 ± 2.6	16.0 ± 2.3
Pyruvate	7.1 ± 4.5	20.5 ± 17.6	6.9 ± 3.2	13.8 ± 2.3	10.5 ± 10.0
Citric ac	id cycle intermedia	ates			
aKG	9.0 ± 2.9	14.2 ± 7.5	4.1 ± 2.6	12.9 ± 3.8	6.7 ± 5.8
Citrate	195.1 ± 48.6	362.5 ± 110.6	95.6 ± 22.5	219.0 ± 74.0	247.1 ± 34.2
Fumarate	88.4 ± 19.2	78.1 ± 22.2	35.0 ± 12.9	45.5 ± 4.0	41.2 ± 8.9
Malate	192.0 ± 53.0	211.2 ± 31.3	90.4 ± 8.2	142.4 ± 6.2	145.2 ± 21.9
Succinate	57.7 ± 15.6	53.1 ± 3.3	35.3 ± 7.7	32.3 ± 1.3	35.0 ± 8.9
Nucleoti	des				
AMP	5.1 ± 1.2	7.2 ± 2.6	5.9 ± 1.3	7.0 ± 2.3	9.1 ± 1.2
ADP	19.6 ± 4.5	26.9 ± 5.9	17.8 ± 1.6	26.4 ± 5.5	32.0 ± 3.5
(ATP)	65.6 ± 13.0	48.3 ± 12.0	32.9 ± 9.6	80.2 ± 11.7	59.6 ± 25.7
UDP	5.9 ± 1.7	9.1 ± 2.8	5.6 ± 0.8	7.1 ± 1.9	11.6 ± 1.4

+ NF						
Phosphorylated intermediates						
G1P	13.2 ± 1.2	23.4 ± 3.1	14.6 ± 2.7	16.3 ± 4.4	16.1 ± 6.2	
G6P	84.4 ± 15.8	200.0 ± 17.5	84.8 ± 13.1	101.6 ± 3.5	117.3 ± 32.8	
(G6P)	126.8 ± 38.8	207.4 ± 67.2	82.6 ± 0.1	113.4 ± 14.7	70.3 ± 18.6	
F6P	17.5 ± 9.2	32.4 ± 13.0	n. d.	21.3 ± 12.0	13.7 ± 9.0	
(F6P)	26.7 ± 3.8	44.2 ± 4.6	23.8 ± 13.0	24.4 ± 17.3	30.4 ± 7.0	
F16P	2.3 ± 1.5	12.5 ± 2.4	1.6 ± 0.5	3.9 ± 0.2	6.4 ± 1.9	
M6P	10.7 ± 0.6	23.7 ± 2.0	16.1 ± 1.8	18.6 ± 3.5	19.1 ± 6.8	
3PG	30.7 ± 8.4	49.7 ± 4.3	36.2 ± 11.7	49.0 ± 10.3	52.0 ± 19.0	
UDP-Glc	70.5 ± 8.7	86.1 ± 5.1	53.0 ± 11.8	87.6 ± 12.2	94.1 ± 32.5	
PEP	6.4 ± 0.7	6.8 ± 0.8	8.1 ± 1.8	9.2 ± 2.0	9.1 ± 3.7	
Pyruvate	4.6 ± 2.0	9.7 ± 6.0	9.03 ± 4.1	7.6 ± 1.6	6.7 ± 3.9	
Citric acid cycle intermediates						
aKG	4.8 ± 2.3	15.1 ± 12.1	4.6 ± 1.3	8.1 ± 0.9	5.8 ± 2.0	
Citrate	102.6 ± 50.8	194.1 ± 26.4	67.6 ± 27.0	81.7 ± 11.3	203.4 ± 82.5	
Fumarate	11.9 ± 1.9	14.4 ± 2.2	11.0 ± 13.2	9.7 ± 0.1	10.5 ± 2.5	
Malate	69.0 ± 25.7	264.7 ± 40.8	56.4 ± 25.4	59.2 ± 12.1	81.9 ± 18.3	
Succinate	47.4 ± 19.8	89.6 ± 11.2	40.0 ± 5.2	31.4 ± 12.5	40.0 ± 7.1	
Nucleoti	des					
AMP	1.6 ± 0.1	2.5 ± 0.4	3.9 ± 2.5	3.7 ± 1.4	3.4 ± 1.7	
ADP	8.2 ± 1.6	12.2 ± 2.1	16.8 ± 2.8	15.9 ± 2.6	19.8 ± 6.6	
(ATP)	33.5 ± 8.1	21.4 ± 12.8	37.3 ± 14.0	59.6 ± 12.7	36.4 ± 3.8	
UDP	4.8 ± 1.0	3.5 ± 3.4	1.9 ± 2.9	8.3 ± 1.8	9.4 ± 6.0	

Third, AMP, ADP and, to a less extent, ATP accumulated more in NF-treated *gun2*, *gun4* and *gun5* seedlings than in wild-type and *gun1*, which is in correlation with the pigmentation or growth phenotype described above (3.2. and Figure 3.3.). Taken together, it can be stated that plants were able to use the supplemented sucrose to produce the metabolites needed to grow under photo-bleaching conditions.

3.11. The pigmentation phenotype is due to carotenoid enrichment

It was shown that several processes - synthesis of plastid-encoded proteins (Figure 3.9.), alteration of the expression of one plastid localized superoxide specific marker gene (i.e. NADH dehydrogenase ND4; Table 3.2.) and to a weaker extent the

accumulation of nucleotides (Table 3.4.) - were correlated with the pigmentation or growth phenotype observed in NF-treated *gun2*, *gun4* and *gun5* mutants. Those correlations could not explain the visible pigmentation phenotype. Therefore, we tried to measure chlorophyll fluorescence using pulse amplitude modulation technique and 77K fluorescence emission spectroscopy in NF-treated plants. However, it was not possible to measure any fluorescence in photo-bleached seedlings (data not shown). Hence, we determined the amount of several pigments. To this end, leaf pigments were isolated from 6-day-old NF-treated plants, separated by reverse-phase HPLC and monitored. In NF-grown wild-type and *gun* mutants, chlorophyll a and b, antheraxanthin, zeaxanthin and α -carotene were below the detection level while neoxanthin, violaxanthin and lutein were barely detectable in WT plants and not detectable at all in *gun1* seedlings to some extent, thus explaining the leaf coloration of these genotypes after NF treatment. As expected, this accumulation was much lower than in untreated plants (data not shown).

Table 3.5: Pigment levels in NF-treated WT and *gun* mutants grown for 6 days under continuous light of 100 μ mol m⁻² s⁻¹. Pigments were separated by reverse-phase HPLC and monitored at 440 nm. The results are reported in pmol/mg fresh weight. Mean values of at least three independent experiments \pm SD are shown. Chlorophyll a, chlorophyll b, antheraxanthin, zeaxanthin and α -carotene could not be detected in seedlings grown in the presence of NF.

	Neoxanthin	Violaxanthin	Lutein
WT	0.04 ± 0.03	0.08 ± 0.07	0.07 ± 0.06
gun1	0 ± 0	0 ± 0	0 ± 0
gun2	0.20 ± 0.11	0.61 ± 0.23	0.86 ± 0.36
gun4	0.09 ± 0.03	0.30 ± 0.03	0.33 ± 0.09
gun5	0.14 ± 0.02	0.40 ± 0.08	0.43 ± 0.10

3.12. Involvement of abscisic acid in retrograde signaling

Since neoxanthin and violaxanthin are precursors of xanthoxin which is exported to the cytosol and there converted into the plant hormone abscisic acid (ABA) (see also Figure 3.5.), which has been previously associated with plastid signaling (Baier *et al.*, 2004; Baier and Dietz, 2005; Koussevitzky *et al.*, 2007; Kim *et al.*, 2009; Kleine *et al.*, 2009), we investigated the effect of ABA on nuclear gene expression under our conditions. Thus, we tested the impact of ABA on NF-induced *LHCB1.2* de-repression. We used very low ABA concentrations (0.125; 0.25; 0.5 and 1 μ M) to test whether *LHCB1.2* expression in NF-treated wild-type seedlings could be rescued by ABA. Indeed, it seemed that in 6-day-old plants *LHCB1.2* mRNA expression could be gradually restored with increasing concentrations of ABA (Figure 3.14.). When compared with plants grown without ABA on NF, a concentration of 0.125 μ M ABA revealed no effect, the *LHCB1.2* mRNA level was doubled at a concentration of 0.25 μ M ABA and enhanced more than 5-fold when 1 μ M ABA was feeded.

The influence of ABA on the growth capability of photo-bleached plants was different to the effect of ABA on nuclear gene expression. With rising concentrations of ABA, the plants grow worse than without ABA on MS plates containing NF (Figure 3.15.). The whole plants, and most prominent the roots, were smaller. When supplemented with even higher concentrations of ABA (starting with 2.5 μ M), the germination rate was extremely reduced (data not shown). This again showed that effects on *LHCB1.2* mRNA accumulation could not be linked to a specific growth phenotype.

To investigate whether the *gun* mutants interfere in general, i.e. under nonphoto-bleaching conditions, with regulatory processes linked to ABA we determined the germination rate of wild-type and *gun* mutant seeds at increasing ABA concentrations on MS medium without sucrose. The results (Figure 3.16.) indicated that the germination sensitivity of *gun4* and *gun5* seeds was indeed increased compared to wildtype, whereas *gun1* and *gun2* actually showed decreased sensitivity to ABA during the first days after germination. This implies that there is no simple link between the mode of action of ABA and *gun* signaling.

Moreover, we tested the expression level of two genes known to be regulated by ABA (*rd29* and *cor47*; Sanchez *et al.*, 2004) and of one gene involved in the synthesis

Figure 3.14: Changes in *LHCB1.2* mRNA accumulation in response to elevated concentrations (as indicated) of supplemented ABA in photo-bleached wild-type seedlings. Plants were grown for 6 days under continuous light (100 μ mol m⁻² s⁻¹) in the presence of 0.5 μ M NF. Data were obtained in triplicate by real-time PCR, set relative to non-photo-bleached wild-type seedlings and normalized to the expression level of *ACTIN1*.

Figure 3.15: Pictures of NF-treated wild-type plants additionally supplemented with different concentrations of ABA (as indicated). Plants were grown on MS plates containing $0.5 \mu M$ NF.

of gibberellic acid, the antagonist of ABA, (*ga1*, Qin *et al.*, 2007) in wild-type and *gun* seedlings grown for 6 days in the absence or presence of NF. The expression pattern of these genes did not reveal any correlation with the investigated *LHCB1.2* mRNA derepression and growth phenotypes (data not shown).

Figure 3.16: Germination rate of wild-type and gun seedlings in response to ABA. Germination rate in different response to concentrations of ABA was determined by counting 80 120 plants to per experiment each day. Plants were stratified for two days. Plants were grown on MS plates without sucrose.

3.13. De-repression of *LHCB1.2* is age-dependent, not affected by day length and photo-bleached plants retain ability to green

Additional facts concerning the repression of *LHCB1.2* mRNA accumulation in photo-bleached seedlings: First, the differences between wild-type and *gun* seedlings in *LHCB1.2* mRNA repression were age dependent. When plants were grown for a longer time (e.g. 10 days) on MS plates containing NF, the levels of *LHCB1.2* mRNA were more similar between the genotypes than after 6 days (Figure 3.17.). During the work of this thesis plants were normally grown under continuous light, therefore it has to be noted that the specific down-regulated expression of *LHCB1.2* in response to photo-oxidative damaged plastids also occurred, irrespective of the day length, when plants were grown under dark-light cycle as it is shown for wild-type plants in Figure 3.18. Finally, it was possible to rescue photo-bleached seedlings of all genotypes by transferring them after 6 days on plates including NF to plates without NF (Figure 3.19.). This indicates that NF treatment did not result in a complete destruction of the plants.

Figure 3.17: Northern blot analysis of *LHCB1.2* mRNA accumulation in NF-treated wild-type and *gun* seedlings grown for 10 days under continuous light of 100 μ mol m⁻² s⁻¹. The *ACTIN1* mRNA level was used as loading control.

Figure 3.18: *LHCB1.2* mRNA level determined by Northern blot analysis from wildtype plants grown for 14 days under dark-light cycle (12 h / 12 h) in the absence (- NF) or presence of NF (+ NF). Plants were harvested at different time-points (as indicated) to test for an effect of the day length. The *ACTIN1* mRNA level served as a loading control.

Figure 3.19: Rescue of photo-bleached seedlings. Wild-type and *gun* seedlings were grown for 6 days on MS plates containing NF and then transferred to plates without NF. Plants are shown 2 or 6 days after the transfer.

4. Discussion

4.1. No new gun mutants could be isolated

In order to correlate the composition of tetrapyrroles to the expression level of *LHCB1.2* when treated with norflurazon (NF), we wanted to isolate mutants for all enzymes of the tetrapyrrole biosynthesis pathway. An identical approach was undertaken by two independent groups, who could clearly show that neither magnesium-protoporphyrin IX (Mg-proto) nor any other precursor of chlorophyll is linked to the expression level of *LHCB1.2* (Mochizuki *et al.*, 2008; Moulin *et al.*, 2008).

Moreover, beside one new allele for gun2 we could not isolate any new gun mutant line (3.1.). In most homozygous mutant lines analyzed the expression of the affected gene was down-regulated, while in some cases an over-expression could be observed (Table 3.1.). However, these expression studies yielded no information about the functionality of the detected transcripts. For example the *pora-2* mutant line showed a strong over-expression of the affected gene. The insertion was predicted to be in the last exon, while the used primers were designed to amplify a fragment at the 5' region of the gene. It is likely that the mRNA was truncated at the insertion site leading to a loss of PORA protein. The lack of the PORA protein could probably led to a feedback upregulated expression of its gene. To answer this question, Northern blot analysis would be the method of choice, making it possible to resolve differences in transcript sizes. However, we stopped following these analyses as we failed to identify any novel gun mutants among the investigated T-DNA insertion lines affected in enzymes of tetrapyrrole biosynthesis. In this respect our results confirmed the assumption of Mochizuki et al. (2008), that a general disturbance in the accumulation of tetrapyrrole intermediates does not automatically lead to the gun phenotype. But we cannot exclude the possibility that beside the known gun mutant lines even the inhibition of additional steps in the tetrapyrrole pathway can trigger a gun phenotype under appropriate conditions, since not all tested mutant lines were knock-out lines and we only analyzed mutants with defects that were compatible with photoautotrophic growth. Moreover, in previous reports novel gun mutants were described which were either affected in genes for porphobilinogen deaminase (*PBD* knockout), coproporphyrinogen III oxidase (*lin2*) and D subunit of Mg-chelatase (CHLD knockout) or over-expressing protochlorophyllide oxidoreductase A (POR-OX) (McCormac and Terry, 2002b; Strand

et al., 2003; McCormac and Terry, 2004). Compatible with our results, the homozygous knockout lines for PBD are incapable of photoautotrophic growth (Strand *et al.*, 2003).

4.2. A newly observed pigmentation phenotype reveals insights into the complex interplay between biochemical processes in plastids

When gun mutants were grown on plates supplemented with NF, the typical repression of LHCB1.2 mRNA accumulation, as known from wild-type plants, was attenuated. For more than 15 years the mutants were screened for this specific NF effect. A lot of studies, addressing this specific phenotype, were performed (e.g. Susek et al., 1993; Mochizuki et al., 1996; Vinti et al., 2000; Mochizuki et al., 2001; Larkin et al., 2003; Strand et al., 2003; McCormac and Terry, 2004; Ankele et al., 2007; Koussevitzky et al., 2007; Ruckle et al., 2007; Larkin and Ruckle, 2008; Mochizuki et al., 2008; Moulin et al., 2008). Surprisingly, none of this publications, except Mochizuki et al. (2001), recognized that the gun mutants affected in tetrapyrrole biosynthesis exhibited an additional phenotype. In contrast to wild-type and gun1 seedlings, those mutants grow slightly better on MS plates supplemented with NF and show a weak leaf pigmentation (3.2. and Figure 3.3.). By using different inhibitors of carotenoid biosynthesis (amitrole, flurochloridone and CPTA) we clearly demonstrated that the pigmentation phenotype is not coupled to the de-repression of LHCB1.2 mRNA accumulation (3.3. and Figures 3.6. and 3.7.). While the differences in LHCB1.2 expression between photo-bleached wild-type and gun seedlings were present independent of the used inhibitor, the pigmentation phenotype was visible only in NFtreated plants. Consequently, we tested whether the mutants were resistant to norflurazon by measuring the accumulation of phytoene. While undetectable in untreated plants, phytoene accumulated in all NF-treated seedlings with slightly reduced levels in gun1 and gun2 and even higher levels in gun4 and gun5 when compared to wild-type (Figure 3.8.). Hence it can be concluded that neither wild-type nor the gun mutants are resistance to NF.

Although the visible phenotype was not directly linked to retrograde signaling further analyses of it revealed new insight into the complex regulatory network of plastids. First of all, it could be shown that the weak pigmentation in the *gun* mutants was caused by enrichment of some carotenoids, namely neoxanthin, violaxanthin and lutein which were hardly detectable in NF-treated wild-type plants, not present in gun1 seedlings and elevated in gun2, gun4 and gun5 plants (3.11. and Table 3.5.). These results were difficult to explain since neoxanthin, violaxanthin and lutein are synthesized downstream of the NF-induced block in carotenoid biosynthesis. It could be speculated that the excess phytoene (relative to wild-type level) accumulated in gun4 and gun5 (see Figure 3.8.) is processed into carotenoids by an unknown route that bypasses the NF-induced block. For gun2, where a decrease (relative to wild-type level) in phytoene accumulation was associated with even higher levels (relative to gun4 and gun5) of neoxanthin, violaxanthin and lutein, a less efficient block in carotenoid biosynthesis by NF appears plausible. Whatsoever, it seemed that there exists a regulatory link between tetrapyrrole and carotenoid biosynthesis, although no other mutant of tetrapyrrole biosynthesis investigated in this work exhibited this phenotype (Figure 3.4.). Recently it could be shown that a block in carotenoid biosynthesis resulted in inhibition of genes involved in many processes including chlorophyll biosynthesis (Qin et al., 2007). Our data suggest that there exists a similar link from the tetrapyrrole biosynthesis to the carotenoid biosynthesis, because mutations in chlorophyll biosynthesis as in gun4 and gun5 trigger alterations in carotenoid biosynthesis when treated with NF. Moreover, in contrast to the known regulation of carotenoid biosynthesis e.g. via plastoquinone (Norris et al., 1995), this link seems not to be based on the regulation of phytoene desaturase, but to bypass the blocked phytoene desaturase reaction. Interestingly, neoxanthin and violaxanthin are the precursors of abscisic acid which by itself is thought to be involved in retrograde signaling (see below).

A further observation was that the accumulation of anthocyanin in NF-treated seedlings differed among the genotypes. While anthocyanin accumulation was higher in *gun1* compared to wild-type plants, it was lower in the other three *gun* mutants (Figure 3.3.). Two explanations of this effect appear to be feasible. Anthocyanins are known to protect plastids from photo-oxidative stress and photoinhibition induced by high light flux (Vanderauwera *et al.*, 2005; Kleine *et al.*, 2007). Therefore, anthocyanins might be produced in response to photo-oxidative stress caused by NF to protect the seedlings. One interpretation of the lower anthocyanin accumulation in *gun2*, *gun4* and *gun5* mutants could be that these genotypes experience less plastid dysfunction during NF

treatment or that they are less susceptible to stress. Another possibility could be that the induction of anthocyanin biosynthesis in response to photo-oxidative stress depends on plastid signals affected in *gun2*, *gun4* and *gun5* but not in *gun1*. In contrast to recent suggestions (Koussevitzky *et al.*, 2007; Woodson and Chory, 2008), this would support the idea that *gun1* is impaired in a different pathway. The observation that anthocyanin accumulation depends on the presence of GUN1 when seedlings are grown under 50 µmol m⁻² s⁻¹ blue light on lincomycin (Ruckle *et al.*, 2007) is not contradictory to our results, since lincomycin and norflurazon have different effects on the chloroplasts. However, the finding that several processes were less affected in plastids of *gun2*, *gun4* and *gun5* mutants than in the wild-type and *gun1*, e.g. synthesis of plastid-encoded proteins (3.5. and below), alteration of the expression of the superoxide specific plastid localized marker gene (i.e. NADH dehydrogenase ND4; 3.8.) and to a weaker extent the accumulation of nucleotides (3.10.), are more compatible with the hypothesis that *gun2*, *gun4* and *gun5* were to some degree less affected by NF

After NF treatment neither Lhcb1, Lhca3, PsaB, PsbD nor PetB were detectable in wild-type or gun seedlings (3.5. and Figure 3.9.), indicating that residual thylakoids (Susek et al., 1993; McCormac and Terry, 2004) were not functional anymore. Moreover, the lack of Lhcb1 in all genotypes argues against a physiological relevance of LHCB1.2 mRNA de-repression in the gun mutants. This is in accordance with the lack of chlorophylls in NF-treated seedlings (see 3.11. and Table 3.5.), that normally stabilize the light-harvesting proteins. However, the plastome-encoded proteins RbcL and AtpB were detectable at low levels in NF-grown wild-type seedlings, which is consistent with the finding that RbcL is still present in photo-bleached wheat leaves (La Rocca et al., 2004). Thus, the photo-oxidized plastids still maintained the ability to carry out protein synthesis. Surprisingly, RbcL and AtpB actually accumulate to a greater extent in the gun mutants, especially in gun2, gun4, and gun5. Again it is possible to link this observation to the ability of the gun mutants to grow better on NF than wild-type, or to a possible interplay between organellar gene expression (OGE) and gun signaling. Support for the latter possibility came from the observation that the repression of LHCB1.2 expression in response to inhibition of OGE requires the GUN1 protein (Gray et al., 2003; Koussevitzky et al., 2007). GUN1 is a specific PPR protein which is associated with sites of active transcription on plastid DNA (Koussevitzky et *al.*, 2007). PPR proteins are known to be involved in all processes of gene expression i.e. RNA transcription, editing, splicing, processing, stability and translation (Andres *et al.*, 2007; Pogson *et al.*, 2008). Working out how the lack of such a protein and a disturbance in tetrapyrrole biosynthesis, as in *gun2*, *gun4* and *gun5*, can yield in enhanced capacity of gene expression in NF-treated *gun* plastids will be an important step to understand the molecular mechanisms that lead to *gun* signaling.

Taken together, the findings related to the specific growth and pigmentation phenotype seen in *gun* mutants affected in tetrapyrrole biosynthesis provide an indication of a complex interplay between biosynthesis of tetrapyrroles and carotenoids, the accumulation of anthocyanins, as well as organellar gene expression. Differences are mainly due to the fact that *gun2*, *gun4* and *gun5* were not that strongly affected by NF than wild-type plants. However, it is not possible to clarify what could be the reason for this specific growth phenotype.

4.3. Accumulation of tetrapyrroles does not correlate with LHCB1.2 expression

After several years of conflicting results (reviewed in Pesaresi et al., 2007; Kleine *et al.*, 2009), recent analyses using more precise and reproducible methods to measure tetrapyrroles demonstrated that accumulation of Mg-proto is not connected to the LHCB1.2 mRNA accumulation. Thus, it is most likely that Mg-proto, or other chlorophyll precursors, are not involved in plastid-to-nucleus signaling in higher plants (Mochizuki et al., 2008; Moulin et al., 2008). Previously it was suggested that accumulation of Mg-proto is responsible for LHCB1.2 repression (Strand et al., 2003). To test this theory *in vivo*, two mutants of enzymes downstream of Mg-chelatase, *chlm* and *crd1*, were used as well as the double mutant *chlm crd1*. Actually, Mg-proto levels were elevated in those mutant lines but no effect on LHCB1.2 transcript abundance could be observed. Furthermore, double mutants between *chlm* and *gun* mutants were generated in order to elevate Mg-proto levels in the gun background. Those mutants (chlm gun1, chlm gun4 and chlm gun5) contained high levels of Mg-proto but the LHCB1.2 de-repression phenotype was still present suggesting that the gun specific derepression of LHCB1.2 is not caused by less Mg-proto accumulation (Mochizuki et al., 2008). In another study analyses of 16 different conditions in which seedlings were grown either under complete darkness or light/dark cycles, either untreated or treated
with NF, 5-aminolevulinic acid (ALA) or both revealed no correlation between *LHCB1.1* mRNA accumulation and the abundance of Mg-proto (Moulin *et al.*, 2008).

It was demonstrated that tetrapyrroles of the Mg-branch were not involved in signaling processes, but they had not tested tetrapyrroles of the Fe-branch although heme was suggested to be responsible for retrograde signaling in *C. reinhardtii* (von Gromoff *et al.*, 2008). Hence, we determined heme levels in wild-type seedlings and *gun* mutants grown on plates without or supplemented with NF. Interestingly, in the presence of NF, heme levels were higher than in untreated plants (3.6. and Figure 3.10.). This can be explained by an up regulated expression and thus activity of ferrochelatase I in response to oxidative stress (Singh *et al.*, 2002; Nagai *et al.*, 2007). A comparison between wild-type and *gun* seedlings revealed no correlation of heme levels with the de-repression of *LHCB1.2*, thus indicating that heme is also not involved in *gun* dependent signaling in *A. thaliana*. Additionally, the presence of heme indicates that tetrapyrrole biosynthesis still goes on in photo-damaged plastids.

While the assumption that tetrapyrroles were involved in retrograde signaling is not true for higher plants, evidence exists that it is the case in other photosynthetic organisms. For example in the green alga *C. reinhardtii* the expression of, amongst others, *HSP70* (encodes heat-shock protein 70) is known to be regulated by Mg-proto and heme (Kropat *et al.*, 1997; Kropat *et al.*, 2000; von Gromoff *et al.*, 2006; von Gromoff *et al.*, 2008). Furthermore, it was shown that tetrapyrroles can function as a cell-cycle coordinator in the red alga *Cyanidioschyzon merolae* (Kobayashi *et al.*, 2009). However, those results are mainly based on feeding experiments with chemical compounds. It has to be kept in mind that tetrapyrroles, namely Mg-proto, do not accumulate naturally in the cytosol. Moreover, accumulation of porphyrins is phototoxic thus generating radicals and singlet oxygen species (Keetman *et al.*, 2002; Moulin and Smith, 2005; Jung *et al.*, 2008), for which reason secondary effects cannot be ruled out. To discover the real nature of signaling processes, more natural conditions are required.

4.4. The gun mutants in the light of metabolic signaling

Beside, the finding that accumulation of tetrapyrroles does not correlate with *LHCB1.2* expression, new insights were obtained for other proposed retrograde

signaling pathways. For example the first component of a possible retrograde signaling pathway responsible for adjustment of photosystem stoichiometry in response to altered light quality was found (Bellafiore et al., 2005; Bonardi et al., 2005). When plants were shifted between light sources specifically absorbed by either photosystem I or photosystem II (Pfannschmidt et al., 1999a; Pfannschmidt et al., 1999b) mutants lacking STN7, a thylakoid localized protein kinase, were neither able to perform the short-term response i.e. state transition, nor the long-term response i.e. adjustment of the photosystem stoichiometry. Since the latter one requires regulatory changes in nuclear gene expression (NGE) and thus a signal from plastids to the nucleus, STN7 must be involved in such a retrograde signaling process. With respect to the proposed OGEdependent signaling pathway it was suggested that GUN1 is responsible for signal transduction (Koussevitzky et al., 2007). Actually, in contrast to wild-type as well as gun2 to gun5, the expression of LHCB and RBCS genes was maintained in gun1 seedlings when chloroplast protein translation was inhibited by lincomycin (Gray et al., 2003). Additionally it could be shown that plastid signals that depend on GUN1 were involved in photomorphogenesis (Ruckle and Larkin, 2009).

Although these findings were in line with proposed specific retrograde signaling pathways, for no factor described so far the real nature of action is known. Furthermore, it was not possible to identify a specific protein or other agent that acts directly as a messenger by traversing the chloroplast membrane and passing through the cytosol in order to modify NGE. The theory that Mg-proto is exported from the chloroplast to the cytosol under stress conditions (Ankele *et al.*, 2007), became questionable in the light of recent findings (see above). Consequently, we presented alternative interpretations without the need of specific signaling molecules, based on the fact that plastids communicate their metabolic state to the cytosol by exchanging various metabolites (Figure 4.1.; Kleine *et al.*, 2009). Hence, the metabolic composition in NF-treated *gun* mutants and wild-type plants was analyzed in order to test if such metabolic signaling is responsible for *gun* specific phenotypes. Not surprisingly after NF treatment the plants were affected in all processes tested.

Figure 4.1: Overview of stimuli for and putative components of plastid signaling (taken from Kleine *et al.*, 2009). Chloroplast processes that stimulate plastid signaling are indicated in green and their interactions by dashed lines. Chloroplast proteins associated with plastid signaling (Ex1, Ex2, STN7, GUN1) are shown in light green, next to the corresponding chloroplast process. Signaling molecules thought to transit through the cytosol are shown in blue. For more details see the original publication.

ABA, abscisic acid; Ex1/2: Executer 1/2; HXK, hexokinase; MOT, malate/oxaloacetate translocator; OGE, organelle gene expression; ROS, reactive oxygen species; tetpy, tetrapyrrole; TPT, triosephosphate translocator; xantho, xanthophyll.

Discussion

4.4.1. No correlation between expression of ROS marker genes and *gun* specific derepression of *LHCB1.2* mRNA accumulation

Reactive oxygen species (ROS) are normally produced as toxic by-products during photosynthesis (Frosch et al., 1979; Apel and Hirt, 2004; Krieger-Liszkay, 2005). For the understanding of signaling pathways dependent on the release of ROS the isolation of the *flu* mutant was a fruitful tool (Meskauskiene *et al.*, 2001). The corresponding protein (FLU) is a negative regulator of chlorophyll biosynthesis. Thus, mutants impaired in FLU accumulate protochlorophyllide when grown in the dark. When shifted from dark to the light the accumulated protochlorophyllide specifically generates singlet oxygen that acts as an activation signal for stress responses resulting in seedling lethality (op den Camp et al., 2003). Indeed, it could be shown that this response has a genetic cause by isolating second-site mutations in the *flu* background. The singlet oxygen dependent stress response and the changes in NGE require two proteins named EXECUTER1 and EXECUTER2. This was deduced from the triple mutant ex1/ex2/flu where an up-regulation of almost all genes, can be observed in single flu mutant, are suppressed (Wagner et al., 2004; Lee et al., 2007). Moreover, it could be shown that after release of singlet oxygen a distinct set of genes was activated when compared to those induced by superoxide or hydrogen peroxide. Thus, providing evidence for different ROS dependent signaling pathways which in part antagonize each other (Laloi et al., 2007). An additional screen for second-site mutants in the flu background was performed using a luciferase construct combined with the promoter of an singlet oxygen responsive gene. Eight mutants were found which either activate constitutively the reporter gene construct or abrogate the singlet oxygen specific upregulation, indicating that multiple singlet oxygen dependent signaling pathways exist (Baruah et al., 2009). Although it was not possible to show that ROS directly act as signaling molecules it is thought so for hydrogen peroxide (Mullineaux and Karpinski, 2002; Apel and Hirt, 2004; Mullineaux et al., 2006). However, the polar nature of hydrogen peroxide has to be considered which might limit its capability to cross hydrophobic membranes. Moreover, hydrogen peroxide is not exclusively produced in plastids hence, it is difficult to explain how it can act specifically in plastid-to-nucleus signaling (Kleine et al., 2009).

Discussion

The expression pattern of chosen ROS marker genes was strongly altered in response to NF treatment (3.8. and Table 3.2.). It has to be mentioned that the results for some marker genes varied quite strongly between independent experiments. Technical problems could basically be ruled out as an explanation, because the same samples were also used for the detection of metabolic marker genes (see 3.9 and Table 3.3.) where no such strong variation occurred. Therefore, it has to be biological in such a way that plants were so strongly affected by photo-oxidative damage that many signaling and regulation pathways were concerned. Even slight differences during development would lead to noticeable changes in such disturbed conditions. This effect is also known from experiments where carotenoid biosynthesis was investigated in greater detail (Berry Pogson, personal communication). Most genes tested showed a strong up-regulation while the marker gene specific for hydrogen peroxide was down-regulated (3.8. and Table 3.2.). These data do not support the hypothesis that altered ROS levels are responsible for the gun phenotype, because wild-type and gun seedlings behaved similar in this respect. The expression of only one superoxide specific gene differed among the genotypes. Its specific expression pattern and the fact that this gene is encoded in the plastome fit with the described pigmentation or growth phenotype (4.2.). Although we could not correlate the expression of ROS marker genes with the LHCB1.2 transcript abundance, it cannot be ruled out that transient changes in ROS levels might have occurred during NF treatment but remained undetected in our endpoint analyses. Detection of such transient changes has to be done in future analyses. For example seedlings can grow in the absence of NF before transferring them to plates supplemented with NF to get analyzed after defined periods. Another possibility could be to grow NF-treated plants under low-light conditions, where the LHCB1.2 expression is not repressed (3.7. and Figure 3.12.), before inducing the repression by higher light intensities. Beyond this the concentration of NF can be diminished to reduce the photooxidative stress. The same effect could be initiated using mutant lines with inducible lesions in genes encoding enzymes of carotenoid biosynthesis in the gun background. Summing up, a reduced artificial influence to the plants will lead to more precise information.

4.4.2. Redox and metabolic state is not linked to gun specific phenotypes

Carbohydrates are synthesized by photosynthesis but needed for many processes outside the plastids e.g. respiration in mitochondria. Changes in production level could be sensed in the cytosol leading to adaptation processes via regulation of NGE. Furthermore, sugar metabolism is a very dynamic process regulated in response to environmental conditions, interacting with plant hormones and most interestingly with changes in photosynthesis (for review see; Rolland et al., 2006). Recently it could be shown that a cytosolic localized hexokinase was actual involved in intracellular glucose dependent signaling processes. Interestingly those enzyme were also found in tiny amounts in the nucleus (Cho et al., 2006). Thus hexokinase-dependent glucose signaling processes could be responsible for modulations in NGE in response to altered photosynthetic capacity. Next processes that could be involved in retrograde signaling are based on redox signals generated by the photosynthetic electron transport chain. Redox regulation is known to be involved in carbon fixation, starch metabolism, lipid synthesis as well as amino acid synthesis (Geigenberger *et al.*, 2005), thus providing a link between photosynthesis and the metabolic state of plastids. Moreover the redox state of plastids is mediated to the cytosol by carbohydrate shuttles such as the malate/oxalacetate and the triose-phosphate shuttle (Heineke et al., 1991). In both cases a transfer of redox energy occurred between the chloroplastic NADPH and the cytosolic NADH system, hence can trigger information across cytosol to the nucleus.

The expression levels of all marker genes specific for metabolic processes tested were strongly down regulated in NF-treated plants, while no differences between wild-type and *gun* seedlings occurred (3.10. and Table 3.3.). The visualization of lipids resulted in the observation that NF had a strong effect on their composition, but again no genotype specific behavior to NF treatment was visible (3.9. and Figure 3.13.). Astonishingly the metabolites measured, like citric acid cycle intermediates, were not so strong affected suggesting that at least some processes were not disturbed (3.10. and Table 3.4.). These were in line with the observation that NF-treated plants can be rescued by transferring them to plates without inhibitor (Figure 3.19.). Furthermore, a possible effect of sucrose in the medium could be excluded by replacement via glucose or fructose (data not shown). Taken together, in our endpoint analyses no correlation with the *gun* specific phenotypes could be observed. To discover the involvement of

Discussion

redox and metabolic processes in plastids to the *gun* specific signaling, more natural conditions are required.

4.4.3. Abscicic acid acts in retrograde signaling but independent of GUN

Another prominent candidate, that was suggested to be involved in plastid-tonucleus signaling, the plant hormone abscisic acid (ABA), is produced from xanthophylls out of the plastids (see also 3.12. and Figure 3.5.). Production and availability of this hormone depends on the actual status of plastids. For example the xanthophyll-cycle, a redox reaction system between xanthophyll epoxidation and deepoxidation, is activated under excess light in order to dissipate excess energy. For this reaction reduced and protonated ascorbic acid is required which by itself needs NADPH for regeneration. If this regeneration cannot compensate for ascorbate oxidation than the xanthophyll-cycle gets uncoupled, violaxanthin accumulates, thus yield in production of ABA (for further information and more detail see; Baier and Dietz, 2005). Indeed, it could be shown that ABA is able to regulate gene expression. Beside the ABA mediated redox regulation of 2CPA, many ABA-responsive genes are known (Baier et al., 2004; Sanchez et al., 2004; Baier and Dietz, 2005). Moreover, a transcription factor involved in ABA signaling (ABI4) is thought to be part of the GUN1-dependent plastid signaling (Koussevitzky et al., 2007) and it was demonstrated that the H-subunit of Mg-chelatase (also affected in gun5) is able to bind ABA and thus mediating seed germination, postgermination growth and stomatal movement (Shen et al., 2006). Additionally, it was demonstrated that ABA supply can rescue impaired chloroplast development in Arabidopsis thaliana ex1/ex2 (executer) mutant seedlings by readjustment of gene expression (Kim et al., 2009).

In accordance to this, we have shown that application of low ABA concentrations to NF-treated wild-type plants resulted in a de-repression of *LHCB1.2* mRNA accumulation, as it is known from the *gun* seedlings (3.12. and Figure 3.14.). This points to a role for ABA as a positive regulator of photosynthetic related nuclear gene expression when present in small amounts (see also Kim *et al.*, 2009), contrary to the known function as a negative regulator when present in higher amounts (Penfield *et al.*, 2006; Koussevitzky *et al.*, 2007). However, two findings argue against an involvement of low ABA concentrations in GUN-dependent signaling associated with

Discussion

tetrapyrrole biosynthesis. Firstly, the addition of low concentrations of ABA to NFtreated wild-type plants goes along with a stronger impact on growth capability (Figure 3.15.). This is in contrast to the observed growth and pigmentation phenotype seen in NF-treated *gun2*, *gun4* and *gun5* seedlings (see 4.2.). If the *LHCB1.2* de-repression phenotype seen in the *gun* mutants would be caused by higher ABA concentrations compared to wild-type, they should also have more problems to grow. Since they behave the other way around it is obvious that GUN-dependent signaling is not related to ABA. Moreover, it was not possible to link the germination rate dependent on sensitivity to ABA to the *gun* genotypes (Figure 3.16.). While *gun1* and *gun2* were less sensitive to ABA, *gun4* and *gun5* were more sensitive, indicating that no direct connection exists. To elucidate possible interactions between ABA and GUN-dependent signaling in more detail it is necessary to measure directly the amount of ABA in NFtreated plants in order to correlate it to the *LHCB1.2* transcription rate.

In summary, our data provide new insights into the physiological effect of NF in wild-type and *gun* seedlings as well as into the specific performance of photo-bleached *gun* mutants. Although we were not able to elucidate the signaling pathway responsible for de-repression of *LHCB1.2* mRNA accumulation, we could show that there is no simple correlation between any single metabolite, pigment or ROS molecule on the one hand and gene expression on the other. Our results were obtained with endpoint studies. To get a more precise picture and to elucidate the primary reactions, future analyses have to concentrate to more early events by using less invasive conditions. Thus, it would be possible to distinguish what is the cause and what the consequences of the observed data. Moreover, for this purpose the complex interplay between tetrapyrrole and carotenoid biosynthesis, organellar gene expression, ABA signaling, the metabolic state of plastids and the age dependency of GUN-related retrograde signaling (Figure 3.17.) have to be taken into account. According to this, it would be possible to elucidate the complex signaling network between plastids and the nucleus.

70

References

Abdallah, F., Salamini, F. and Leister, D. (2000). "A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis." *Trends in Plant Science* **5**(4): 141-142.

Abrous, O., Benhassaine-Kesri, G., Tremolieres, A. and Mazliak, P. (1998). "Effect of norflurazon on lipid metabolism in soya seedlings." *Phytochemistry* **49**(4): 979-985.

Adhikari, N. D., Orler, R., Chory, J., Froehlich, J. E. and Larkin, R. M. (2009). "Porphyrins Promote the Association of GENOMES UNCOUPLED 4 and a Mg-chelatase Subunit with Chloroplast Membranes." *Journal of Biological Chemistry* **284**(37): 24783-24796.

Agnolucci, L., Dallavecchia, F., Barbato, R., Tassani, V., Casadoro, G. and Rascio, N. (1996). "Amitrole effects on chloroplasts of barley plants grown at different temperatures." *Journal of Plant Physiology* 147(5): 493-502.

Al-Babili, S., Hartung, W., Kleinig, H. and Beyer, P. (1999). "CPTA modulates levels of carotenogenic proteins and their mRNAs and affects carotenoid and ABA content as well as chromoplast structure in Narcissus pseudonarcissus flowers." *Plant Biology* **1**(6): 607-612.

Allison, L. A. (2000). "The role of sigma factors in plastid transcription." *Biochimie* 82(6-7): 537-548.

Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H. M., Shinn, P., Stevenson, D. K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C. C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D. E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W. L., Berry, C. C. and Ecker, J. R. (2003). "Genome-wide Insertional mutagenesis of Arabidopsis thaliana." *Science* **301**(5633): 653-657.

Andres, C., Lurin, C. and Small, I. D. (2007). "The multifarious roles of PPR proteins in plant mitochondrial gene expression." *Physiologia Plantarum* **129**(1): 14-22.

Ankele, E., Kindgren, P., Pesquet, E. and Strand, A. (2007). "In vivo visualization of Mg-ProtoporphyrinIX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast." *Plant Cell* **19**(6): 1964-1979.

Apel, K. and Hirt, H. (2004). "Reactive oxygen species: Metabolism, oxidative stress, and signal transduction." *Annual Review of Plant Biology* **55**: 373-399.

Baier, M. and Dietz, K. J. (2005). "Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology." *Journal of Experimental Botany* **56**(416): 1449-1462.

Baier, M., Stroher, E. and Dietz, K. J. (2004). "The acceptor availability at photosystem I and ABA control nuclear expression of 2-cys peroxiredoxin-alpha in Arabidopsis thaliana." *Plant and Cell Physiology* **45**(8): 997-1006.

Bartels, P. G. and Mccullou, C. (1972). "New inhibitor of carotenoid synthesis in higher plants: 4-chloro-5-(dimethylamino)-2-alpha,alpha,alpha,(trifluoro-m-tolyl)-3(2H)-pyridazinone (Sandoz 6706)." *Biochemical and Biophysical Research Communications* **48**(1): 16-&.

Baruah, A., Simkova, K., Apel, K. and Laloi, C. (2009). "Arabidopsis mutants reveal multiple singlet oxygen signaling pathways involved in stress response and development." *Plant Molecular Biology* **70**(5): 547-563.

Beck, C. F. (2005). "Signaling pathways from the chloroplast to the nucleus." *Planta* **222**(5): 743-756.

Bellafiore, S., Bameche, F., Peltier, G. and Rochaix, J. D. (2005). "State transitions and light adaptation require chloroplast thylakoid protein kinase STN7." *Nature* **433**(7028): 892-895.

Bonardi, V., Pesaresi, P., Becker, T., Schleiff, E., Wagner, R., Pfannschmidt, T., Jahns, P. and Leister, D. (2005). "Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases." *Nature* **437**(7062): 1179-1182.

Bradbeer, J. W., Atkinson, Y. E., Borner, T. and Hagemann, R. (1979). "Cytoplasmic Synthesis of Plastid Polypeptides May Be Controlled by Plastid-Synthesized Rna." *Nature* **279**(5716): 816-817.

Bräutigam, K., Dietzel, L. and Pfannschmidt, T. (2007). "Plastid-nucleus communication: anterograde and retrograde signalling in the development and function of plastids." Topics in Current Genetics. R. Bock. Berlin Heidelberg, Springer-Verlag. **19**.

Brinkman, F. S. L., Blanchard, J. L., Cherkasov, A., Av-Gay, Y., Brunham, R. C., Fernandez, R. C., Finlay, B. B., Otto, S. P., Ouellette, B. F. F., Keeling, P. J., Rose, A. M., Hancock, R. E. W. and Jones, S. J. M. (2002). "Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast." *Genome Research* **12**(8): 1159-1167.

Brown, E., Somanchi, A. and Mayfield, S. (2001). "Interorganellar crosstalk: new perspectives on signaling from the chloroplast to the nucleus." *Genome Biology* **2**(8): reviews1021.1 - reviews1021.4.

Cavalier-Smith, T. (2000). "Membrane heredity and early chloroplast evolution." *Trends in Plant Science* **5**(4): 174-182.

Chamovitz, D., Pecker, I. and Hirschberg, J. (1991). "The Molecular-Basis of Resistance to the Herbicide Norflurazon." *Plant Molecular Biology* **16**(6): 967-974.

Cho, Y. H., Yoo, S. D. and Sheen, J. (2006). "Regulatory functions of nuclear hexokinase1 complex in glucose signaling." *Cell* **127**(3): 579-589.

Choy, M. K., Sullivan, J. A., Theobald, J. C., Davies, W. J. and Gray, J. C. (2008). "An Arabidopsis mutant able to green after extended dark periods shows decreased transcripts of seed protein genes and altered sensitivity to abscisic acid." *Journal of Experimental Botany* **59**(14): 3869-3884.

Cornah, J. E., Terry, M. J. and Smith, A. G. (2003). "Green or red: what stops the traffic in the tetrapyrrole pathway?" *Trends in Plant Science* **8**(5): 224-230.

Davison, P. A., Schubert, H. L., Reid, J. D., Iorg, C. D., Heroux, A., Hill, C. P. and Hunter, C. N. (2005). "Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis." *Biochemistry* **44**(21): 7603-7612.

De Santis-Maciossek, G., Kofer, W., Bock, A., Schoch, S., Maier, R. M., Wanner, G., Rudiger, W., Koop, H. U. and Herrmann, R. G. (1999). "Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology, biochemistry and ultrastructure." *Plant Journal* **18**(5): 477-489.

Di Baccio, D., Quartacci, M. F., Dalla Vecchia, F., La Rocca, N., Rascio, N. and Navari-Izzo, F. (2002). "Bleaching herbicide effects on plastids of dark-grown plants: lipid composition of etioplasts in amitrole and norflurazon-treated barley leaves." *Journal of Experimental Botany* **53**(376): 1857-1865.

Dietz, K. J. and Heber, U. (1986). "Light and CO2 limitation of photosynthesis and states of the reactions regenerating ribulose 1,5-bisphosphate or reducing 3-phosphoglycerate." *Biochimica Et Biophysica Acta* **848**(3): 392-401.

Dyall, S. D., Brown, M. T. and Johnson, P. J. (2004). "Ancient invasions: From endosymbionts to organelles." *Science* **304**(5668): 253-257.

Ezhova, T. A., Soldatova, O. P., Mamanova, L. B., Musin, S. M., Grimm, B. and Shestakov, S. V. (2001). "Collection of Arabidopsis thaliana mutants with altered sensitivity to oxidative stress inductors." *Biology Bulletin* **28**(5): 449-458.

Farber, A., Young, A. J., Ruban, A. V., Horton, P. and Jahns, P. (1997). "Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants - The relationship between zeaxanthin conversion and nonphotochemical fluorescence quenching." *Plant Physiology* **115**(4): 1609-1618.

Fernandez, A. P. and Strand, A. (2008). "Retrograde signaling and plant stress: plastid signals initiate cellular stress responses." *Current Opinion in Plant Biology* **11**(5): 509-513.

Frosch, S., Jabben, M., Bergfeld, R., Kleinig, H. and Mohr, H. (1979). "Inhibition of Carotenoid Biosynthesis by the Herbicide San-9789 and Its Consequences for the Action of Phytochrome on Plastogenesis." *Planta* 145(5): 497-505.

Fujiwara, M., Nagashima, A., Kanamaru, K., Tanaka, K. and Takahashi, H. (2000). "Three new nuclear genes, sigD, sigE and sigF, encoding putative plastid RNA polymerase sigma factors in Arabidopsis thaliana." *Febs Letters* **481**(1): 47-52.

Gadjev, I., Vanderauwera, S., Gechev, T. S., Laloi, C., Minkov, I. N., Shulaev, V., Apel, K., Inze, D., Mittler, R. and Van Breusegem, F. (2006). "Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis." *Plant Physiology* **141**(2): 436-445.

Geigenberger, P., Kolbe, A. and Tiessen, A. (2005). "Redox regulation of carbon storage and partitioning in response to light and sugars." *Journal of Experimental Botany* **56**(416): 1469-1479.

Giuliano, G., Pollock, D. and Scolnik, P. A. (1986). "The gene *crt1* mediates the conversion of phytoene into colored carotenoids in *Rhodopseudomonas capsulata*." *Journal of Biological Chemistry* 261(28): 2925-2929.

Goldschmidt-Clermont, M. (1998). "Coordination of nuclear and chloroplast gene expression in plant cells." International Review of Cytology - a Survey of Cell Biology, Vol 177. **177:** 115-180.

Goslings, D., Meskauskiene, R., Kim, C. H., Lee, K. P., Nater, M. and Apel, K. (2004). "Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants." *Plant Journal* **40**(6): 957-967.

Gray, J. C., Sullivan, J. A., Wang, J. H., Jerome, C. A. and Maclean, D. (2003). "Coordination of plastid and nuclear gene expression." *Philosophical Transactions of the Royal Society of London Series B-Biological Sciences* **358**(1429): 135-144.

Gray, M. W., Burger, G. and Lang, B. F. (2001). "The origin and early evolution of mitochondria." *Genome Biol* 2(6): REVIEWS1018.

Haeusler, R. E., Fischer, K. L. and Fluegge, U.-I. (2000). "Determination of low-abundant metabolites in plant extracts by NAD(P)H fluorescence with a microtiter plate reader." *Analytical Biochemistry* 281(1): 1-8.

Heineke, D., Riens, B., Grosse, H., Hoferichter, P., Peter, U., Flugge, U. I. and Heldt, H. W. (1991). "Redox transfer across the inner chloroplast envelope membrane." *Plant Physiology* 95(4): 1131-1137.

Herber, R., Villoutr.J, Granger, P. and Maudinas, B. (1972). "Formation of All-Trans-Phytoene in Mucor-Hiemalis." *Biochimica Et Biophysica Acta* 280(1): 194-202.

Hess, W. R. and Börner, T. (1999). "Organellar RNA polymerases of higher plants." International Review of Cytology - a Survey of Cell Biology, Vol 190. **190:** 1-59.

Hess, W. R., Muller, A., Nagy, F. and Borner, T. (1994). "Ribosome-deficient plastids affect transcription of light-induced nuclear genes: genetic evidence for a plastid-derived signal." *Molecular & General Genetics* **242**(3): 305-312.

Ishikawa, A., Okamoto, H., Iwasaki, Y. and Asahi, T. (2001). "A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis." *Plant Journal* 27(2): 89-99.

Isono, K., Shimizu, M., Yoshimoto, K., Niwa, Y., Satoh, K., Yokota, A. and Kobayashi, H. (1997). "Leaf-specifically expressed genes for polypeptides destined for chloroplasts with domains of sigma(70) factors of bacterial RNA polymerases in Arabidopsis thaliana." *Proceedings of the National Academy of Sciences of the United States of America* 94(26): 14948-14953.

Jarvis, P. and Soll, M. (2001). "Toc, Tic, and chloroplast protein import." *Biochimica Et Biophysica Acta-Molecular Cell Research* 1541(1-2): 64-79.

Johanningmeier, U. and Howell, S. H. (1984). "Regulation of Light-Harvesting Chlorophyll-Binding Protein Messenger-Rna Accumulation in Chlamydomonas-Reinhardi - Possible Involvement of Chlorophyll Synthesis Precursors." *Journal of Biological Chemistry* **259**(21): 3541-3549.

Jung, S., Lee, H. J., Lee, Y., Kang, K., Kim, Y. S., Grimm, B. and Back, K. (2008). "Toxic tetrapyrrole accumulation in protoporphyrinogen IX oxidase-overexpressing transgenic rice plants." *Plant Molecular Biology* **67**(5): 535-546.

Keetman, U., Mock, H. P. and Grimm, B. (2002). "Kinetics of antioxidative defence responses to photosensitisation in porphyrin-accumulating tobacco plants." *Plant Physiology and Biochemistry* **40**(6-8): 697-707.

Kim, C., Lee, K. P., Baruah, A., Nater, M., Gobel, C., Feussner, I. and Apel, K. (2009). "O-1(2)-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid." *Proceedings of the National Academy of Sciences of the United States of America* 106(24): 9920-9924.

Kleine, T., Kindgren, P., Benedict, C., Hendrickson, L. and Strand, A. (2007). "Genomewide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of arabidopsis to high irradiance." *Plant Physiology* **144**(3): 1391-1406.

Kleine, T., Voigt, C. and Leister, D. (2009). "Plastid signalling to the nucleus: messengers still lost in the mists?" *Trends in Genetics* **25**(4): 185-190.

Kobayashi, Y., Kanesaki, Y., Tanaka, A., Kuroiwa, H., Kuroiwa, T. and Tanaka, K. (2009). "Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells." *Proceedings of the National Academy of Sciences of the United States of America* **106**(3): 803-807.

Koussevitzky, S., Nott, A., Mockler, T. C., Hong, F., Sachetto-Martins, G., Surpin, M., Lim, I. J., Mittler, R. and Chory, J. (2007). "Signals from chloroplasts converge to regulate nuclear gene expression." *Science* **316**(5825): 715-719.

Krieger-Liszkay, A. (2005). "Singlet oxygen production in photosynthesis." *Journal of Experimental Botany* **56**(411): 337-346.

Kropat, J., Oster, U., Rudiger, W. and Beck, C. F. (1997). "Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes." *Proceedings of the National Academy of Sciences of the United States of America* **94**(25): 14168-14172.

Kropat, J., Oster, U., Rudiger, W. and Beck, C. F. (2000). "Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus." *Plant Journal* **24**(4): 523-531.

Kropat, J., Vongromoff, E. D., Muller, F. W. and Beck, C. F. (1995). "Heat shock and light activation of a *Chlamydomonas HSP70* gene are mediated by indepenent regulatory pathways." *Molecular & General Genetics* **248**(6): 727-734.

La Rocca, N., Barbato, R., Bonora, A., Valle, L. D., De Faveri, S. and Rascio, N. (2004). "Thylakoid dismantling of damaged unfunctional chloroplasts modulates the Cab and RbcS gene expression in wheat leaves." *Journal of Photochemistry and Photobiology B-Biology* **73**(3): 159-166.

Laloi, C., Stachowiak, M., Pers-Kamczyc, E., Warzych, E., Murgia, I. and Apel, K. (2007). "Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana." *Proceedings of the National Academy of Sciences of the United States of America* **104**(2): 672-677.

Larkin, R. M., Alonso, J. M., Ecker, J. R. and Chory, J. (2003). "GUN4, a regulator of chlorophyll synthesis and intracellular signaling." *Science* **299**(5608): 902-906.

Larkin, R. M. and Ruckle, M. E. (2008). "Integration of light and plastid signals." *Current Opinion in Plant Biology* **11**(6): 593-599.

Lee, K. P., Kim, C., Landgraf, F. and Apel, K. (2007). "EXECUTER1- and EXECUTER2dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana." *Proceedings of the National Academy of Sciences of the United States of America* 104(24): 10270-10275.

Leister, D. (2003). "Chloroplast research in the genomic age." Trends in Genetics 19(1): 47-56.

Leister, D. (2005). "Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis." *Gene* **354**: 110-116.

Liere, K. and Maliga, P. (2001). "Plastid RNA Polymerases in Higher Plants." Regulation of Photosynthesis. Eva-Mari Aro and Bertil Andersson. Dordrecht, Boston, London, Kluwer Academic Publishers. 11: 29-49.

Martin, W. and Herrmann, R. G. (1998). "Gene transfer from organelles to the nucleus: How much, what happens, and why?" *Plant Physiology* **118**(1): 9-17.

Martin, W. and Kowallik, K. V. (1999). "Annotated English translation of Mereschkowsky's 1905 paper 'Uber Natur und Ursprung der Chromatophoren im Pflanzenreiche." *European Journal of Phycology* 34(3): 287-295.

Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M. and Penny, D. (2002). "Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus." *Proceedings of the National Academy of Sciences of the United States of America* **99**(19): 12246-12251.

Martin, W., Stoebe, B., Goremykin, V., Hapsmann, S., Hasegawa, M. and Kowallik, K. V. (1998). "Gene transfer to the nucleus and the evolution of chloroplasts." *Nature* **393**(6681): 162-165.

Masuda, T. (2008). "Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls." *Photosynthesis Research* **96**(2): 121-143.

Masuda, T. and Takahashi, S. (2006). "Chemiluminescent-based method for heme determination by reconstitution with horseradish peroxidase apo-enzyme." *Analytical Biochemistry* **355**(2): 307-309.

Matsumoto, F., Obayashi, T., Sasaki-Sekimoto, Y., Ohta, H., Takamiya, K. and Masuda, T. (2004). "Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system." *Plant Physiology* **135**(4): 2379-2391.

Mayfield, S. P. and Taylor, W. C. (1984). "Carotenoid-deficient maize seedlings fail to accumulate light-harvesting chlorophyll a/b binding protein (LHCP) mRNA." *Eur. J. Biochem.* **144**: 79-84.

Mccormac, A. C. and Terry, M. J. (2002a). "Light-signalling pathways leading to the coordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana." *Plant Journal* **32**(4): 549-559.

Mccormac, A. C. and Terry, M. J. (2002b). "Loss of nuclear gene expression during the phytochrome A-mediated far-red block of greening response." *Plant Physiology* **130**(1): 402-414.

Mccormac, A. C. and Terry, M. J. (2004). "The nuclear genes Lhcb and HEMA1 are differentially sensitive to plastid signals and suggest distinct roles for the GUN1 and GUN5 plastid-signalling pathways during de-etiolation." *Plant Journal* **40**(5): 672-685.

Mereschkowsky, C. (1905). "Über Natur und Ursprung der Chomatophoren im Pflanzenreich " *Biol. Centralbl.* 25: 593-604.

Meskauskiene, R., Nater, M., Goslings, D., Kessler, F., Den Camp, R. O. and Apel, K. (2001). "FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana." *Proceedings of the National Academy of Sciences of the United States of America* **98**(22): 12826-12831.

Mochizuki, N., Brusslan, J. A., Larkin, R., Nagatani, A. and Chory, J. (2001). "Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction." *Proceedings of the National Academy of Sciences* **98**(4): 2053-2058.

Mochizuki, N., Susek, R. and Chory, J. (1996). "An intracellular signal transduction pathway between the chloroplast and nucleus is involved in de-etiolation." *Plant Physiology* **112**(4): 1465-1469.

Mochizuki, N., Tanaka, R., Tanaka, A., Masuda, T. and Nagatani, A. (2008). "The steadystate level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis." *Proceedings of the National Academy of Sciences* **105**(39): 15184-15189.

Moller, S. G., Kunkel, T. and Chua, N. H. (2001). "A plastidic ABC protein involved in intercompartmental communication of light signaling." *Genes & Development* **15**(1): 90-103.

Moulin, M., Mccormac, A. C., Terry, M. J. and Smith, A. G. (2008). "Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation." *Proceedings of the National Academy of Sciences* **105**(39): 15178-15183.

Moulin, M. and Smith, A. G. (2005). "Regulation of tetrapyrrole biosynthesis in higher plants." *Biochemical Society Transactions* **33**: 737-742.

Mullineaux, P. and Karpinski, S. (2002). "Signal transduction in response to excess light: getting out of the chloroplast." *Current Opinion in Plant Biology* **5**(1): 43-48.

Mullineaux, P. M., Karpinski, S. and Baker, N. R. (2006). "Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants." *Plant Physiology* **141**(2): 346-350.

Murashige, T. and Skoog, F. (1962). "A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures." *Physiologia Plantarum* 15(3): 473-&.

Nagai, S., Koide, M., Takahashi, S., Kikuta, A., Aono, M., Sasaki-Sekimoto, Y., Ohta, H., Takamiya, K. and Masuda, T. (2007). "Induction of isoforms of tetrapyrrole biosynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physiological functions in arabidopsis." *Plant Physiology* **144**(2): 1039-1051.

Norris, S. R., Barrette, T. R. and Dellapenna, D. (1995). "Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation." *Plant Cell* **7**(12): 2139-2149.

Nott, A., Jung, H. S., Koussevitzky, S. and Chory, J. (2006). "Plastid-to-nucleus retrograde signaling." *Annual Review of Plant Biology* 57: 739-759.

Oelmuller, R., Levitan, I., Bergfeld, R., Rajasekhar, V. K. and Mohr, H. (1986). "Expression of Nuclear Genes as Affected by Treatments Acting on the Plastids." *Planta* **168**(4): 482-492.

Oelmuller, R. and Mohr, H. (1986). "Photooxidative Destruction of Chloroplasts and Its Consequences for Expression of Nuclear Genes." *Planta* **167**(1): 106-113.

Op Den Camp, R. G. L., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C. H., Danon, A., Wagner, D., Hideg, E., Gobel, C., Feussner, I., Nater, M. and Apel, K. (2003). "Rapid induction of distinct stress responses after the release of singlet oxygen in arabidopsis." *Plant Cell* **15**(10): 2320-2332.

Osanai, T., Imashimizu, M., Seki, A., Sato, S., Tabata, S., Imamura, S., Asayama, M., Ikeuchi, M. and Tanaka, K. (2009). "ChlH, the H subunit of the Mg-chelatase, is an antisigma factor for SigE in Synechocystis sp PCC 6803." *Proceedings of the National Academy of Sciences of the United States of America* **106**(16): 6860-6865.

Pallett, K. E., Little, J. P., Sheekey, M. and Veerasekaran, P. (1998). "The mode of action of isoxaflutole I. Physiological effects, metabolism, and selectivity." *Pesticide Biochemistry and Physiology* **62**(2): 113-124.

Papenbrock, J., Mishra, S., Mock, H. P., Kruse, E., Schmidt, E. K., Petersmann, A., Braun, H. P. and Grimm, B. (2001). "Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants." *Plant Journal* 28(1): 41-50.

Parks, B. M. and Quail, P. H. (1991). "Phytochrome-deficient *hy1* and *hy2* long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis." *Plant Cell* **3**(11): 1177-1186.

Penfield, S., Li, Y., Gilday, A. D., Graham, S. and Graham, I. A. (2006). "Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm." *Plant Cell* **18**(8): 1887-1899.

Pesaresi, P., Masiero, S., Eubel, H., Braun, H. P., Bhushan, S., Glaser, E., Salamini, F. and Leister, D. (2006). "Nuclear photosynthetic gene expression is synergistically modulated by rates of protein synthesis in chloroplasts and mitochondria." *Plant Cell* **18**(4): 970-991.

Pesaresi, P., Schneider, A., Kleine, T. and Leister, D. (2007). "Interorganellar communication." *Current Opinion in Plant Biology* **10**(6): 600-606.

Pfaffl, M. W. (2001). "A new mathematical model for relative quantification in real-time RT-PCR." *Nucleic Acids Research* **29**(9).

Pfannschmidt, T., Nilsson, A. and Allen, J. F. (1999a). "Photosynthetic control of chloroplast gene expression." *Nature* **397**(6720): 625-628.

Pfannschmidt, T., Nilsson, A., Tullberg, A., Link, G. and Allen, J. F. (1999b). "Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants." *Iubmb Life* **48**(3): 271-276.

Pogson, B. J., Woo, N. S., Forster, B. and Small, I. D. (2008). "Plastid signalling to the nucleus and beyond." *Trends in Plant Science* **13**(11): 602-609.

Qin, G. J., Gu, H. Y., Ma, L. G., Peng, Y. B., Deng, X. W., Chen, Z. L. and Qu, L. J. (2007). "Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis." *Cell Research* 17(5): 471-482.

Race, H. L., Herrmann, R. G. and Martin, W. (1999). "Why have organelles retained genomes?" *Trends in Genetics* 15(9): 364-370.

Ramakers, C., Ruijter, J. M., Deprez, R. H. L. and Moorman, A. F. M. (2003). "Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data." *Neuroscience Letters* **339**(1): 62-66.

Reinbothe, S. and Reinbothe, C. (1996). "Regulation of chlorophyll biosynthesis in angiosperms." *Plant Physiology* **111**(1): 1-7.

Reyes-Prieto, A., Weber, A. P. M. and Bhattacharya, D. (2007). "The origin and establishment of the plastid in algae and plants." *Annual Review of Genetics* **41**: 147-168.

Rodermel, S. (2001). "Pathways of plastid-to-nucleus signaling." *Trends in Plant Science* **6**(10): 471-478.

Rolland, F., Baena-Gonzalez, E. and Sheen, J. (2006). "Sugar sensing and signaling in plants: Conserved and novel mechanisms." *Annual Review of Plant Biology* **57**: 675-709.

Ruckle, M. E., Demarco, S. M. and Larkin, R. M. (2007). "Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis." *Plant Cell* **19**(12): 3944-3960.

Ruckle, M. E. and Larkin, R. M. (2009). "Plastid signals that affect photomorphogenesis in Arabidopsis thaliana are dependent on GENOMES UNCOUPLED 1 and cryptochrome 1." *New Phytologist* **182**(2): 367-379.

Sambrook, J. and Russel, D. W. (2001). "Molecular Cloning: A Laboratory Manual.", Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press.

Sanchez, J. P., Duque, P. and Chua, N. H. (2004). "ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis." *Plant Journal* **38**(3): 381-395.

Schaffner, W. and Weissman, C. (1973). "Rapid, sensitive, and specific method for determination of protein in dilute-solutions." *Analytical Biochemistry* **56**(2): 502-514.

Schneidereit, J., Hausler, R. E., Fiene, G., Kaiser, W. M. and Weber, A. P. M. (2006). "Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism." *Plant Journal* **45**(2): 206-224.

Shen, Y. Y., Wang, X. F., Wu, F. Q., Du, S. Y., Cao, Z., Shang, Y., Wang, X. L., Peng, C. C., Yu, X. C., Zhu, S. Y., Fan, R. C., Xu, Y. H. and Zhang, D. P. (2006). "The Mg-chelatase H subunit is an abscisic acid receptor." *Nature* 443(7113): 823-826.

Shiina, T., Tsunoyama, Y., Nakahira, Y. and Khan, M. S. (2005). "Plastid RNA polymerases, promoters, and transcription regulators in higher plants." International Review of Cytology - a Survey of Cell Biology, Vol 244. 244: 1-68.

Singh, D. P., Cornah, J. E., Hadingham, S. and Smith, A. G. (2002). "Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under stress conditions reveals their different roles in haem biosynthesis." *Plant Molecular Biology* **50**(4-5): 773-788.

Strand, A., Asami, T., Alonso, J., Ecker, J. R. and Chory, J. (2003). "Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX." *Nature* **421**(6918): 79-83.

Sugiura, M. (1992). "The Chloroplast Genome." Plant Molecular Biology 19(1): 149-168.

Surpin, M., Larkin, R. M. and Chory, J. (2002). "Signal transduction between the chloroplast and the nucleus." *Plant Cell* 14: S327-S338.

Susek, R. E., Ausubel, F. M. and Chory, J. (1993). "Signal-Transduction Mutants of Arabidopsis Uncouple Nuclear Cab and Rbcs Gene-Expression from Chloroplast Development." *Cell* **74**(5): 787-799.

Tanaka, R. and Tanaka, A. (2007). "Tetrapyrrole biosynthesis in higher plants." *Annual Review of Plant Biology* 58: 321-346.

Taylor, W. C. (1989). "Regulatory interactions between nuclear and plastid genomes." *Annual Review of Plant Physiology and Plant Molecular Biology* **40**: 211-233.

Thomas, J. and Weinstein, J. D. (1990). "Measurement of Heme Efflux and Heme Content in Isolated Developing Chloroplasts." *Plant Physiology* **94**(3): 1414-1423.

Timmis, J. N., Ayliffe, M. A., Huang, C. Y. and Martin, W. (2004). "Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes." *Nature Reviews Genetics* 5(2): 123-U16.

Towbin, H., Staehelin, T. and Gordon, J. (1979). "Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications." *Proceedings of the National Academy of Sciences of the United States of America* **76**(9): 4350-4354.

Vanderauwera, S., Zimmermann, P., Rombauts, S., Vandenabeele, S., Langebartels, C., Gruissem, W., Inze, D. and Van Breusegem, F. (2005). "Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis." *Plant Physiology* **139**(2): 806-821.

Vasileuskaya, Z., Oster, U. and Beck, C. F. (2005). "Mg-protoporphyrin IX and heme control HEMA, the gene encoding the first specific step of tetrapyrrole biosynthesis, in Chlamydomonas reinhardtii." *Eukaryotic Cell* **4**(10): 1620-1628.

Verdecia, M. A., Larkin, R. M., Ferrer, J. L., Riek, R., Chory, J. and Noel, J. P. (2005). "Structure of the Mg-chelatase cofactor GUN4 reveals a novel hand-shaped fold for porphyrin binding." *Plos Biology* **3**(5): 777-789.

Vinti, G., Hills, A., Campbell, S., Bowyer, J. R., Mochizuki, N., Chory, J. and Lopez-Juez, E. (2000). "Interactions between hy1 and gun mutants of Arabidopsis, and their implications for plastid/nuclear signalling." *Plant Journal* 24(6): 883-894.

Von Gromoff, E. D., Schroda, M., Oster, U. and Beck, C. F. (2006). "Identification of a plastid response element that acts as an enhancer within the Chlamydomonas HSP70A promoter." *Nucleic Acids Research* **34**(17): 4767-4779.

Von Gromoff, E. D., Vasileuskaya, Z., Alawady, A., Meinecke, L., Grimm, B. and Beck, C. F. (2008). "Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas." *Plant Cell* **20**(3): 552-567.

Von Wettstein, D., Gough, S. and Kannangara, C. G. (1995). "Chlorophyll Biosynthesis." *Plant Cell* **7**(7): 1039-1057.

Vothknecht, U. C., Kannangara, C. G. and Von Wettstein, D. (1998). "Barley glutamyl tRNA(Glu) reductase: Mutations affecting haem inhibition and enzyme activity." *Phytochemistry* **47**(4): 513-519.

Wagner, D., Przybyla, D., Camp, R. O. D., Kim, C., Landgraf, F., Lee, K. P., Wursch, M., Laloi, C., Nater, M., Hideg, E. and Apel, K. (2004). "The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana." *Science* **306**(5699): 1183-1185.

Walker, C. J., Yu, G. H. and Weinstein, J. D. (1997). "Comparative study of heme and Mgprotoporphyrin (monomethyl ester) biosynthesis in isolated pea chloroplasts: Effects of ATP and metal ions." *Plant Physiology and Biochemistry* **35**(3): 213-221.

Woodson, J. D. and Chory, J. (2008). "Coordination of gene expression between organellar and nuclear genomes." *Nature Reviews Genetics* **9**(5): 383-395.

Xu, X. M., Adams, S., Chua, N. H. and Moller, S. G. (2005). "AtNAP1 represents an atypical SufB protein in Arabidopsis plastids." *Journal of Biological Chemistry* **280**(8): 6648-6654.

Acknowledgements

First of all I want to thank Prof. Dr. Dario Leister for funding my project and for the many good ideas he had especially in times of need where it was difficult to find the next way to go.

I am very grateful to Dr. Tatjana Kleine for supervising my work, the fruitful discussions we had as well as for her never ending confidence in me. It was a great opportunity to work with you on this sophisticated project.

Also I would like to thank Prof. Dr. Peter Geigenberger for writing the 'Zweitgutachten'.

I am very thankful to Dr. Ulrike Oster for introducing me to the analytical and chemical techniques used in my work and for her help during their performance. Her knowledge about pigments was a fruitful source for many questions I had.

I want to thank Prof. Dr. Peter Jahns for additional pigment analyses and Dr. Frederik Börnke for performing the metabolite measurements. Prof. Dr. Karl-Josef Dietz for the opportunity to stay some days in his lab to learn about the enzymatic assay for metabolite analyses and Petra Witte-Brüggemann for her help during the realization.

I am grateful to Elli for excellent technical assistance and for her never ending force to take a look to the cleanness of the lab. Thanks also to Angie for her excellent organization of the lab. Without you nothing would work as it is the case.

And to all colleagues of the group for the nice time we had, for giving critical advises when it was necessary, and fruitful discussions during the coffee breaks.

Thanks to Tatjana, Cordelia and Mathias for critical comments on the manuscript, especially to find the right words.

To my family and friends, who always believed in me, although I had not much time for them in the last three years.

Curriculum vitae

Persönliche Daten

Name:	Christian Voigt
Anschrift:	Leonrodstraße 43
	80636 München
Geburtsdatum und -ort:	26.02.1981 Weimar

Berufliche Erfahrung

01.2007 -	Wissenschaftlicher Mitarbeiter an der Ludwig-
	Maximilians-Universität München, Department I –
	Botanik, Doktorarbeit
	Betreuung von Abschlussarbeiten und Praktika

Berufliche Ausbildung

10.2000 - 12.2006	Studium der Biologie an der Friedrich-Schiller-
	Universität Jena
	Schwerpunktfächer Ökologie, Botanik, Genetik
	und Philosophie
	Diplomarbeit am Institut für Allgemeine Botanik
	und Pflanzenphysiologie

Schulische Ausbildung

08.1991 – 07.1999	Geschwister-Scholl-Gymnasium Bad Berka
08.1987 - 07.1991	Georgie-Dimmitroff-Oberschule Bad Berka

Curriculum vitae

Publikationen

Kleine, T., Voigt, C. and Leister, D. (2009). Plastid signalling to the nucleus: messengers still lost in the mists? *Trends in Genetics* **25**(4): 185-190.

Armbruster, U., Hertle, A., Makarenko, E., Zühlke, J., Pribil, M., Dietzmann, A., Schliebner, I., Aseeva, E., Fenino, E., Scharfenberg, M., Voigt, C., and Leister, D. (2009). Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome? *Molecular Plant*, published September 30.

Voigt, C., Oster, U., Börnke, F., Jahns, P., Dietz, K.J., Leister, D., and Kleine, T. (2009). In-depth analysis of the distinctive effects of norflurazon implies that tetrapyrrole biosynthesis, organellar gene expression and ABA cooperate in the GUN-type of plastid signaling. *Physiologia Plantarum* (submitted).

Declaration / Ehrenwörtliche Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung der angegebenen Hilfsmittel und Quellen angefertigt habe. Der Autor hat zuvor nicht versucht, anderweitig eine Dissertation einzureichen oder sich einer Doktorprüfung zu unterziehen. Die Dissertation wurde keiner weiteren Prüfungskommission weder in Teilen noch als Ganzes vorgelegt.

München, 10. Dezember 2009

Christian Voigt