
Web-based technology for storage and

processing of multi-component data in

seismology

–

First steps towards a new design

zur Erlangung des Doktorgrades der Fakultät für Geowissenschaften

der Ludwig-Maximilians-Universität München

vorgelegt am 16. September 2009 von

Robert Barsch

1. Gutachter: Prof. Dr. Heiner Igel

2. Gutachter: Prof. Dr. Hans-Peter Bunge

Tag der mündlichen Prüfung: 21.12.2009

Summary

Seismic databases and processing tools currently available are mainly limited to classic three-

component seismic recordings and cannot handle collocated multi-component, multi-disciplinary

datasets easily. Further, these seismological databases depend on event-related data and are not able

to manage state of the art continuous waveform data input as well. None of them allows for

automated request of data available at seismic data centers or to share specific data to users outside

one institute. Some seismic databases even depend on licensed database engines, which contradicts

the open source character of most software packages used in seismology.

This study intends to provide a suitable answer to the deficiencies of existing seismic databases.

SeisHub is a novel web-based database approach created for archiving, processing, and sharing

geophysical data and meta data (data describing data), particularly adapted for seismic data. The

implemented database prototype offers the full functionality of a native XML database combined

with the versatility of a RESTful Web service. The XML database itself uses a standard relational

database as back-end, which is currently tested with PostgreSQL (http://www.postgres.org) and

SQLite (http://www.sqlite.org). This sophisticated structure allows for the usage of both worlds: on

the one hand the power of the SQL for querying and manipulating data, and one the other hand the

freedom to use any standard connected to XML, e.g. document conversion via XSLT (Extensible

Stylesheet Language Transformations) or resource validation via XSD (XML Schema). The actual

resources and any additional services are available via fixed Uniform Resource Identifiers (URIs),

where as the database back-end stores the original XML documents and all related indexed values.

Indexes are generated using the XPath language and may be added at any time during runtime. This

flexibility of the XML/SQL mixture introduced above enables the user to include parameters or

results as well as meta data from additional or yet unknown monitoring techniques at any time.

SeisHub also comprises features of a “classical seismic database” providing direct access to

continuous seismic waveform data and associated meta data. Additionally, SeisHub offers various

access protocols (HTTP/HTTPS, SFTP, SSH), an extensible plug-in system, user management, and

a sophisticated web-based administration front-end. The SeisHub database is an open source

project and the latest development release can be downloaded via the project home page

http://www.seishub.org.

The SeisHub database has already been deployed as central database component within two

scientific projects: Exupéry (http://www.exupery-vfrs.de), a mobile Volcano Fast Response System

(VFRS), and BayernNetz, the seismological network of the Bavarian Seismological Service

(Erdbebendienst Bayern; http://www.erdbeben-in-bayern.de).

http://www.postgres.org/
http://www.erdbeben-in-bayern.de/
http://www.exupery-vfrs.de/
http://www.seishub.org/
http://www.sqlite.org/

Acknowledgements

During the past few years as a PhD student at the Department of Earth and Environmental

Sciences, Geophysics, LMU Munich, I have been given a lot of advice and support from various

people around me. Without their kind and helpful input I would not have been able to finish this

thesis, and I am very happy to express my gratitude towards them in this section.

First, I would like to express my deepest gratitude towards the people who provided scientific

and financial support to made this thesis possible. I would like to thank my advisers Prof. Dr.

Heiner Igel and Dr. Joachim Wassermann who initiated this project and supervised my work over

the past three years. Financial support was granted by the German Research Foundation (DFG).

Further, I especially like to thank Prof. Dr. Hans-Peter Bunge for giving me the opportunity and

ongoing support to work in Munich. I also would like to express my gratitude towards the

following people: Paul Käufl, Moritz Beyreuther, Lion Krischer, Dr. Jens Oeser, Sven Egdorf, and

Prof. Dr. Rocco Malservisi.

During the past few years in Munich many people crossed my way, but only a few left a lasting

impression. I really like to thank those people for just being around all this time and enriching my

life: my “beloved” flat mates Marv and Markus (finally I may have time to look for my own

apartment), all the “nerds” in my RPG groups (especially Frank, Tom, Marcus, Andi, and Andrea),

Vonni & friends, Sandra, Tobi, Richie and Anita.

Last but by no means least, I like to thank my parents, my grandmas, my brother and his family,

my cousins and all other close relatives for their never-ending encouragement and ongoing support.

ix

Table of Contents

Acknowledgements..VII

List of Figures..xi

Listings..xii

List of Tables..xiii

List of Abbreviations..xiv

1 General Introduction..1

2 Introduction to XML and Web Technologies...5

2.1 Extensible Markup Language (XML)..7

2.1.1 XML Essentials...7

2.1.2 Advantages of XML..10

2.1.3 Criticism on XML...12

2.1.4 XML Extensions..12

2.1.5 XML Schemas: Validation & Data Binding...15

2.1.6 Extensible Stylesheet Language Transformation (XSLT)..17

2.2 Web Services...19

2.2.1 Big Web Services...21

2.2.2 RESTful Web Services..22

2.2.3 Supplementing Technologies...24

2.3 XML Databases...26

3 SeisHub: A Web-based Database for Seismology..27

3.1 What is SeisHub?..29

3.2 Why XML?..30

3.3 Technical Details...31

3.3.1 Environment..32

3.3.2 Services...34

3.3.3 Components/Plug-ins...37

3.4 XML Database & RESTful Web Service...41

3.4.1 Resources..41

3.4.2 Indexing...43

3.4.3 Package & Resource Types..45

3.4.4 Mapper..47

3.5 Waveform Database...48

x

3.5.1 Standard for the Exchange of Earthquake Data (SEED)..48

3.5.2 Synthetic waveform data...51

3.5.3 ArcLink...52

3.5.4 SEEDFileMonitor..53

3.5.5 Waveform Mapper...56

3.6 ObsPy..58

3.7 Extreme Programming (XP)..65

3.8 Future Extensions..68

4 Scientific Application of SeisHub..71

4.1 Exupéry - Volcano Fast Response System...73

4.2 Bavarian Seismological Network (BayernNetz)..78

5 Conclusions...81

References..I

Appendix...XI

A.1 SeisHub Installation Guide..XIII

A.2 Configuration File seishub.ini...XV

A.3 SOAP Example..XIX

A.4 Supplementary CD-ROM..XXI

Curriculum Vitae..XXIII

xi

List of Figures

Figure 2-1: CSS applied on a XML document...15

Figure 2-2: The XSLT transformation process...17

Figure 2-3: SVG image after transformation from a XML document using XSLT..........................18

Figure 2-4: Protocol layering of RESTful and Big Web services...19

Figure 2-5: Schematic work-flow of a Big Web service using the HTTP transport protocol...........21

Figure 2-6: Schematic work-flow of a RESTful Web service..24

Figure 2-7: Classic web model vs. Ajax model..25

Figure 3-1: Basic technical architecture of SeisHub..29

Figure 3-2: Schema of SeisHub's modular architecture...31

Figure 3-3: SeisHub's component browser...34

Figure 3-4: Web-based administration interface for managing SeisHub services............................37

Figure 3-5: Web-based administration interface for SeisHub plug-ins...39

Figure 3-6: Seismic station XML resource in a simple XHTML format..46

Figure 3-7: Beach ball plots for a Moment Tensor solution and the best Double Couple................60

Figure 3-8: Plotted waveform data using the ObsPy module obspy.imaging...................................61

Figure 3-9: Plots of original seismogram and simulated waveform using obspy.signal...................64

Figure 4-1: Data layer selection panel of Exupéry's web-based GIS front-end................................75

Figure 4-2: Two activated georeferenced satellite-based data layers...76

Figure 4-3: Seismic station network quality layer during the Azores field test................................77

xii

Listings

Listing 2-1: Excerpt of a Dataless SEED file...7

Listing 2-2: Excerpt of a XML-SEED file...8

Listing 2-3: A general XML example file..9

Listing 2-4: XML example containing fictional cities...13

Listing 2-5: XML example containing categorized bookmarks using the XLink technology..........14

Listing 2-6: Cascading style sheet example...14

Listing 2-7: XML example file for the XSLT technology..17

Listing 2-8: XSLT document to generate a SVG image...18

Listing 2-9: JSON example containing fictional cities..25

Listing 3-1: Interface declaration ISSHCommand of the SSH service..38

Listing 3-2: Example plug-in extending the SSH service..38

Listing 3-3: Creating a named seismic station XML resource...41

Listing 3-4: Creating a unnamed seismic station XML resource...42

Listing 3-5: Updating a seismic station XML resource..42

Listing 3-6: Retrieving a seismic station XML resource..42

Listing 3-7: Deleting a seismic station XML resource...42

Listing 3-8: Retrieving meta information of a seismic station XML resource.................................43

Listing 3-9: Retrieving indexed values of a seismic station XML resource.....................................43

Listing 3-10: Uploading a invalid seismic station XML resource..45

Listing 3-11: Retrieving the content of the package “seismology” in the JSON format..................46

Listing 3-12: Retrieving a seismic station XML resource in a simple XHTML format...................46

Listing 3-13: Retrieving waveform data using the ObsPy module obspy.seishub............................57

Listing 3-14: Reading a MiniSEED file from disk using the ObsPy module obspy.mseed..............59

Listing 3-15: Generating two beach ball plots using the ObsPy module obspy.imaging..................60

Listing 3-16: Retrieving and plotting seismograms using the ObsPy module obspy.arclink............61

Listing 3-17: Generating a XML-SEED document for station Manzenberg....................................62

Listing 3-18: Retrieving multiple seismograms from SeisHub..62

Listing 3-19: Retrieving zeros, poles, and the gain from SeisHub...63

xiii

List of Tables

Table 2-1: Examples of XPath expressions ...13

Table 2-2: REST's data elements...22

Table 2-3: HTTP methods and description ...23

Table 3-1: SeisHub interfaces implementable by plug-ins...39

xiv

List of Abbreviations

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BayernNetz Bavarian Seismological Network

BGR Bundesanstalt für Geowissenschaften und Rohstoffe

BLOB Binary Large Object

BOM Byte Order Mark

CA Certificate Authority

CDATA Character Data

CERN European Organization for Nuclear Research

CGI Common Gateway Interface

CPAN Comprehensive Perl Archive Network

CSS Cascading Style Sheets

DinSAR Differential Interferometric Synthetic Aperture Radar

DLL Dynamic Link Library

DMC Data Management Center

DOAS Differential Optical Absorption Spectrometer

DTD Document Type Definition

EIDAC European Integrated Data Center

FDSN International Federation of Digital Seismograph Networks

GBSAR Ground Based Synthetic Aperture Radar

GEOFON Geoforschungsnetz

GeoTIFF Georeferenced Tagged Image File Format

GIANT Graphical Interactive Aftershock Network Toolbox

GIS Geographic Information System

GPS Global Positioning System

GSE Group of Scientific Experts

GUI Graphical User Interface

HDD Hard Disk Drive

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

IEC International Electrotechnical Commission

INGV Istituto Nazionale di Geofisica e Vulcanologia

IPGP Institut de Physique du Globe de Paris

xv

IRIS Incorporated Research Institutions for Seismology

ISO International Organization for Standardization

JSON JavaScript Object Notation

KML Keyhole Markup Language

LMU Ludwig-Maximilians-Universität

NCSA National Center for Supercomputing Applications

NERIES Network of Research Infrastructures for European Seismology

NetDC Networked Data Centers

OASIS Organization for the Advancement of Structured Information Standards

ORFEUS Observatories and Research Facilities for European Seismology

ORM Object Relational Mapper

PEP Python Enhancement Proposal

PinSAR Polarimetric Interferometric Synthetic Aperture Radar

PITSA Programmable Interactive Toolbox for Seismological Analysis

PNG Portable Network Graphics

PyPI Python Package Index

RDB Relational Database

RDBMS Relational Database Management System

RELAX NG Regular Language for XML Next Generation

REST Representational State Transfer

RPC Remote Procedure Call

RSS Really Simple Syndication

SAC Seismic Analysis Code

SDS SeisComP Data Structure

SEED Standard for the Exchange of Earthquake Data

SFTP SSH File Transfer Protocol

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SSH Secure Shell

STS Steiner Triple Systems

SVG Scalable Vector Graphics

SVN Subversion

TCP/IP Transmission Control Protocol/Internet Protocol

TDD Test-driven development

URI Uniform Resource Identifier

URL Uniform Resource Locator

USGS United States Geological Survey

xvi

UTC Coordinated Universal Time

UTF Unicode transformation format

VFRS Volcano Fast Response System

W3C World Wide Web Consortium

XHTML Extensible Hypertext Markup Language

XLink XML Linking Language

XML Extensible Markup Language

XP Extreme Programming

XPath XML Path Language

XSD W3C XML Schema Definition Language

XSLT Extensible Stylesheet Language Transformation

1 General Introduction

Chapter 1 General Introduction 3

The data volumes in observational and computational seismology are rapidly expanding. This

development occurs partly due to ever increasing continuous data of global, regional, and local

permanent station density, large scale experiments, and the increasingly important options to

generate simulation data that should be stored with the same priority as observations. Furthermore,

seismology is moving on beyond data reduction towards complete waveform processing and

simulation. It is commonly accepted in the seismological community that the suite of databases and

processing tools that were developed in the past decade is now rather outdated and requires novel

approaches.

Current seismic databases and processing tools are mainly limited to classic three-component

seismic recordings and cannot handle collocated multi-component, multi-disciplinary data, which

play an increasingly important role in many fields of Earth sciences, easily. Examples are ground

motion recordings combined with atmospheric observations (e.g., precipitation, pressure,

temperature), other motion components (rotational motions, tilt, strain) or instrumental

characteristics (accelerometer, GPS). Further, seismological databases mainly depend on event-

based datasets not able to handle state of the art continuous waveform data input as well as

classical seismic data. None of them allows for automated request of data available at seismic data

centers or to share specific data to users outside one institute. Finally, some seismic databases even

depend on licensed database engines, which contradicts the open source character of most software

packages used in seismology.

The points indicated above suggest that it is time to reconsider the software requirements for

seismic databases and processing tools from scratch. The software package SeisHub developed

during this study aims to overcome many of the deficiencies on the database side. SeisHub is a

novel web-based database prototype closely linking data archiving, distribution, and waveform

processing with strong emphasis on the field of seismology. However, SeisHub is absolutely not

limited to seismological datasets and may be applied in any other field of Earth sciences, mainly

because of its very modular architecture, and the possibility to store and index additional or yet

unknown data at any time.

SeisHub is written in the Python programming language, and builds on modern, standardized,

and open source communication (HTTP-based Web service) and database (XML database interface

on top of a relational database) technologies in order to be flexible enough to cope with current and

future requirements. The general introduction in this chapter is followed by Chapter 2, which

gives a compact introduction to the most important XML specifications and technologies used

frequently during this study. Further sections cover the topics of Web services and XML databases

in detail.

Chapter 1 General Introduction 4

The insights of the second chapter are applied in chapter 3 in order to introduce core classes

and implementation details of SeisHub. The chapter starts with the modular, extensible architecture

of SeisHub outlining the concept of services and the underlying component system. Furthermore,

the XML database, its elements, and the usage of the associated Web service are explained. Another

section covers the real-time indexing of a file-based seismic waveform archive, discusses synthetic

seismograms, and gives a preview of recent developments of real-time waveform distribution on a

European level. The chapter concludes with an excursion into Extreme Programming, a modern

software development approach used during this study, and introduces ObsPy, a newly developed

seismological Python package featuring a consistent interface for reading, writing, processing, and

imaging seismograms of different standards. The open source library ObsPy is closely connected to

SeisHub, but may also be used as standalone product by any observational seismologist.

Chapter 4 highlights two scientific projects in which SeisHub has been applied successfully as

central database component. The first application is Exupéry, a mobile Volcano Fast Response

System (VFRS) that can be deployed for volcanic monitoring in case of a volcanic crisis or

volcanic unrest anywhere in the world. Within Exupéry, SeisHub handles various multi-disciplinary

data types, such as event-related and continuous data, ground-based measurements and satellite

data, time series, images and models (3D). The second application of SeisHub is BayernNetz, the

seismological network of the Bavarian Seismological Service (Erdbebendienst Bayern). SeisHub is

currently running parallel to, but will in the future replace the existing event-based seismic

database system.

This thesis concludes in chapter 5 by summarizing the achieved results and major contributions

for the seismological community. It will close with ideas for future research or developments in the

field of seismic databases.

2 Introduction to XML and Web Technologies

Chapter 2 Introduction to XML and Web Technologies 7

Introduction. The Internet has revolutionized the way the world accesses and shares

information. Although it had evolved since the 1960s, the largest impact in its history was the

development of the so called World Wide Web (commonly known as the Web) by Tim Berners-Lee

and Robert Caillau at the European Organization for Nuclear Research (CERN) in 1991 combined

with the release of the first non prototype web browser Mosaic by the National Center for

Supercomputing Applications (NCSA) in 1993. The Internet's core components HTTP and HTML

are in use on almost every computer nowadays, but several new standards and technologies have

emerged over the last decade to fill gaps which cannot be covered by HTML and HTTP. This

chapter helps the reader to become familiar with the most important Web and XML technologies,

which will frequently appear in this study. Both technology trees are broad topics discussed in

countless articles and books. This chapter will not cover every detail of each specification, but

gives a brief overview of the most relevant aspects.

2.1 Extensible Markup Language (XML)

The Extensible Markup Language is a vendor-neutral, standardized, general-purpose framework

for defining custom markup languages tailored for any kind of information. Markup is hereby

defined as additional information appended to a document to enhance its meaning so that it

identifies document elements and how they relate to each other [Ray 2001, p. 2]. In contrast to

HTML, in XML there is no fixed set of tags or elements. Instead, XML allows developers to invent

their own XML language which meeting their needs. The development of XML was started by the

World Wide Web Consortium (W3C) in 1996, which resulted in an official W3C recommendation

(synonymous with standard) in February 1998 [W3C 2008]. In a remarkably short period, XML

has become the “lingua franca” for marking up traditional datasets and exchanging structured

information among the Internet [Melton & Buxton 2006, p. xix].

2.1.1 XML Essentials

XML novices tend to have a hard time understanding XML by simply describing it verbally,

therefore an example will be given how XML is applied. The following lines are taken from a so

called Dataless SEED file – an standard format for seismological time series and linked meta data.

Only a subset of this file defined as “Station Identifier Blockette” [IRIS 2009a] is presented.

Listing 2-1: Excerpt of a Dataless SEED file (dataless.seed.BW_MANZ).

000003S 0500096MANZ 049.9861980012.10830000635.00003000
Manzenberg,Bavaria, BW-Net~0013210102005,340~~NBW
…

1

2

3

Chapter 2 Introduction to XML and Web Technologies 8

Any person who is familiar with the (partly binary) SEED file format may recognize the content of

listing 2-1 as meta information for a specific seismological station – in this case Manzenberg,

Bavaria (“MANZ”) of the Bavarian Seismological Network (“BW”). Data values for latitude,

longitude, elevation, network code etc. can be extracted by applying knowledge of the underlying

structure. People without that expertise have to rely on some form of documentation of the format.

The next example shows another representation of the above station information above in a

XML markup called the XML-SEED format. Both file formats (SEED and XML-SEED) will be

discussed in chapters 3.5.1 and 3.6 in more detail.

Listing 2-2: Excerpt of a XML-SEED file (dataless.seed.BW_MANZ.xml).

Obviously, this dataset is very verbose, but much more readable, and therefore understandable for

humans, which has been achieved by structuring data into a hierarchical tree and by adding

descriptive tags around each single data value. This simple transformation process from a more or

less obscured dataset to some general self-describing, human-readable text is called marking up

data.

<?xml version="1.0" encoding="UTF-8"?>
<xseed version="1.0">
…
 <station_control_header>
 <station_identifier blockette="050">
 <station_call_letters>MANZ</station_call_letters>
 <latitude>+49.986198</latitude>
 <longitude>+12.108300</longitude>
 <elevation>+635.0</elevation>
 <site_name>Manzenberg,Bavaria, BW-Net</site_name>
 <network_identifier_code>1</network_identifier_code>
 <word_order_32bit>3210</word_order_32bit>
 <word_order_16bit>10</word_order_16bit>
 <start_effective_date>2005-12-06</start_effective_date>
 <end_effective_date></end_effective_date>
 <update_flag>N</update_flag>
 <network_code>BW</network_code>
 </station_identifier>
…
 </station_control_header>
</xseed>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Chapter 2 Introduction to XML and Web Technologies 9

XML itself consists primarily of five basic items: elements, attributes, processing instructions,

comments and entities. For understanding the basic structure of a XML documents, the following

more general example will be used.

Element. The combination of opening tag, text and closing tag is called an element, e.g.

“<tag>text</tag>”. Empty elements have no data included, e.g. “<tag></tag>“ or as a

shortcut “<tag />”. Elements may be nested within another element without overlapping. There

must be only one root element in the whole document, in the document above “<example>”.

Attribute. Elements may either have none, one or multiple attributes, additional information

supplementing an element. A single attribute consists of a name, an equal sign and the value given

inside apostrophes or double-quotes, e.g. “id="test"” or “style='bold'”. Attributes must be

placed in the start-tag and no attribute may appear more than once per tag.

Processing instructions. Text delimited with “<?” and “?>” contains processing instructions

for applications. A very common instruction is the XML declaration shown in the first line of the

example above. It reveals the used document encoding and XML version.

Comment. Any text delimited by “<!--” and “-->” is meant to be a human-readable

annotation and will be ignored by any XML parser or tool.

Entity. Certain problematic characters such as the greater-than and less-than characters are

illegal within the text values and must be escaped in a so called entity form, otherwise a XML

parser could not distinguish between describing tags and contained data. An entity starts with an

Listing 2-3: A general XML example file.

<?xml version="1.0" encoding="UTF-8"?>
<example>
 <tag>Hello World!</tag>
 <tag></tag>
 <tag />
 <tag id="test" style='bold'>Text</tag>
 <!-- comment -->
 <tag>23 < 46</tag>
 <tag>
 <![CDATA[
 function add(x, y) {
 return x + y;
 }
]]>
 </tag>
</example>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Chapter 2 Introduction to XML and Web Technologies 10

ampersand followed by a name and a semicolon, e.g. “<” or “"”. XML also provides the

option to store data without using entities by using a character data (CDATA) section. Everything

within a “<![CDATA[“ and “]]>” will be interpreted as a text only section by any XML parser.

Nested CDATA sections are not possible.

XML documents are commonly classified into two major categories: document-centric and

data-centric XML. One can imagine document-centric XML resources as textual documents such

as a Microsoft Word or OpenOffice Writer document, where the order of elements matters. Data-

centric XML documents are often used as interchange format between application; reordering the

elements does not change the meaning of the document itself.

The next two sections elaborate key advantages and common criticism about XML. Further

sections will introduce established XML extensions and provide an insight into the huge topics of

validation, data binding and transformation of XML documents.

2.1.2 Advantages of XML

Well-formedness. The XML specification defines that any XML document must follow a set of

minimum syntax requirements. A well-formed XML document must start with the XML

declaration1, may have only one single root element, other elements must nest properly within each

other etc. Syntactical correctness does not imply that the containing data are valid, but it guarantees

that every XML processor can read this document without errors. Non well-formedness is also a

typical indicator for an incomplete or incorrect transmission of a XML document.

Application neutrality. As shown before, a human, may read data with a simple text editor, if

necessary. However, machine readability is more important – a document in XML format allows

tools to process the data in a standardized way. Using a binary format binds the user to a specific

application domain within the lifetime of the data, whereas using XML, a standard syntax with

verbose descriptions of contained data, allows easier application of the content into other domains.

International language support. XML supports the full Unicode Standard, a consistent digital

representation of the world's alphabets (including ideograph and symbol collections) written today,

by design. The current version 5.1 of the Unicode Standard consists of more than 100,000 unique

characters and symbols [Maier et al. 2009, p. 157]. Unicode itself will not be written directly into a

XML document; instead, every document must declare its encoding at the beginning of the

document. There are three Unicode transformation format (UTF) algorithms defined for mapping

Unicode characters into a sequence of bytes [Korpela 2006, pp. 293-303].

1 This is valid since XML version 1.1, before it was optional.

Chapter 2 Introduction to XML and Web Technologies 11

• UTF-8: variable length encoding from 1 to 4 bytes per character covers Latin based

languages effectively.

• UTF-16: uses either 2 or 4 bytes per character.

• UTF-32: uses always 4 bytes per character; therefore it is very easy to process and handle;

usable if disk or memory space is no concern and a lot of “uncommon” characters are used.

All three encoding forms represent the same character repertoire and can safely be transformed into

each other. UTF-16 and UTF-32 encodings require an additional Byte Order Mark (BOM) in front

of the XML declaration.

XML allows the usage of other standard encoding such as ISO/IEC 8859. For compatibility reasons

developers should stay with UTF, preferably UTF-8, which is also the default encoding for XML if

none is declared.

Platform neutrality. A XML parser needs to be able to process a well-formed XML document

in any given byte order (little or big endian) or encoding. The XML standard also takes care of

handling of whitespace characters, e.g. the common problem of line breaks in text files on different

operating systems (Macintosh CR2 only, Unix/Linux LF3 only, Windows CR followed by LF). This

ensures that any XML document may be written and processed on every computer platform and

operating system.

Well supported. XML technologies are omnipresent nowadays: every XHTML conform web

page and every news feed relying on the RSS or Atom format are in fact XML documents. There

are countless XML based micro formats and markup languages used in (web) applications.

Unsurprisingly, there are lots of XML tools, frameworks and libraries for almost every platform

and programming language available, both open source and commercial.

Hierarchical structure. The basic syntax of XML allows developers to easily create their own

markup language; they are not limited to standard sets of tags and may extend their language later

if needed, knowing that all XML technologies will continue to work with it. One specialty of XML

is the option to nest elements within other elements. This allows easy object serialization, a quite

common application for XML.

Open standard. As already stated at the beginning of this chapter: XML is an open, vendor-

neutral, fee-free standard, a point which cannot be stressed enough, especially for a general

exchange format.

2 Carriage return, ASCII character 0x0D or '\r'
3 Line feed, ASCII character 0x0A or '\n'

Chapter 2 Introduction to XML and Web Technologies 12

2.1.3 Criticism on XML

Verbosity. XML documents are generally larger as a binary format containing the same data,

mainly because XML is a plain text format with additional describing tags. This is particularly true

for large redundant datasets such as tabular results from a relational database (RDB) or time series

such as seismograms. Verbosity also results in larger processing times and occupation of more disk

space. Although disk space is not an issue anymore today, web developers still have to keep track

on the amount of data which is sent over the network. Fortunately, modern communication

protocols such as HTTP allow to “compress data on the fly, saving bandwidth as effectively as a

binary format” [Bos 2003].

Hierarchical structure. People used to working with data stored in a relational format may

have a hard time mapping data into a nested, hierarchical structure of a XML document. In fact,

XML is ill suited for large sets of normalized tabular data, for it actually encourages people to use

non-relational structures (which is another related criticism). Developers need to overcome the

temptation to map every piece of information into a single XML document and should use the

advantage of interlinking between different resources, e.g. linking to the compact, binary form of

time series, but inserting descriptive meta information within the actual XML document.

2.1.4 XML Extensions

The XML specification itself would not have its popularity as a standard exchange format if it

was not for many supporting technologies layered above the XML core. This section will briefly

introduce the common extensions XML Path Language (XPath), XML Linking Language (XLink),

Cascading Style Sheets (CSS), and XML namespaces introduced through various recommendations

from the W3C.

XPath. The XML Path Language is the standard technique to query for portions of a single

XML document using a path like syntax, called XPath expression [W3C 1999a]. Such expressions

are evaluated by simply traversing the hierarchical element tree from the top node down to the leafs

and extracting the relevant values. The XPath language plays a key role in many other XML related

extensions such as XSLT (chapter 2.1.6) or XML schemas (chapter 2.1.5).

In order to demonstrate the basic usage of this technology, table 2-1 visualizes a selection of XPath

expressions, their actual meanings and the results after the expressions are applied on the XML

document shown in listing 2-4. The latter contains some arbitrary names and number of inhabitants

of fictional cities.

Chapter 2 Introduction to XML and Web Technologies 13

Listing 2-4: XML example containing fictional cities.

XPath Expression Meaning of the

XPath expression

Return values

/cities/city/name Select all <name> elements that

are children of <city> nodes of

the root element <cities>.

<name>Springfield</name
>
<name>Gotham
City</name>
<name>Bielefeld</name>

//@id Return values of all attributes

named “id”.

1
2
3

//city[@id="2"] Select <city> nodes that have

the attribute “id” set to “2”.

<city id="2">
 <name>Gotham
City</name>
 <pop>8274527</pop>
</city>

sum(//city[@id<3]/pop) Return sum of all inhabitants for

cities with “id” less than “3”.

8281919

count(//city[pop<50000
0])

Count number of cities with less

than “500000” inhabitants.

2

Table 2-1: Examples of XPath expressions applied on listing 2-4.

XLink. The XML Linking Language is an attribute based syntax to hyperlink other resources in

XML documents [W3C 2001a]. The XLink specification defines unidirectional (simple) link types,

similar to links used in HTML/XHTML documents among the Internet, and bi- and

multidirectional links (extended type).

<?xml version="1.0" encoding="UTF-8"?>
<cities>
 <city id="1">
 <name>Springfield</name>
 <pop>7392</pop>
 </city>
 <city id="2">
 <name>Gotham City</name>
 <pop>8274527</pop>
 </city>
 <city id="3">
 <name>Bielefeld</name>
 <pop>324912</pop>
 </city>
</cities>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Chapter 2 Introduction to XML and Web Technologies 14

The example 2-5 contains multiple <page> elements containing simple XLink hyperlinks by

adding the two attributes xlink:href, pointing to a web page, and xlink:type="simple",

declaring it as an unidirectional link type.

Listing 2-5: XML example containing categorized bookmarks using the XLink technology.

XML namespaces. In addition to XLink, the last example also incorporates the XML

namespaces technology. XML languages of different application domains often need to be

combined in a single document. In order to prevent naming collisions of element tags or attributes

with identical identifiers, the concept of namespaces has been introduced. XML namespaces were

first introduced by the W3C in 2006 as an extension [W3C 2006] and has now even been included

into the XML core specification since version 1.1.

In the example above the namespace “xlink” is declared by the reserved XML attribute

“xmlns”and the URI “http://www.w3.org/1999/xlink”. In this manner, any node or

attribute starting with the identifier “xlink” followed by a colon and the actual node name belong

to the same application domain.

CSS. Cascading Style Sheets is a language to describe the presentation layout of a XML

document [W3C 2009]. CSS is widely used to style up web pages written in HTML/XHTML, but

are not limited thereto. Attaching the style sheet in listing 2-6 to the XML document above results

in a standard browser into a formated output similar to figure 2-1.

Listing 2-6: Cascading style sheet example.

<?xml version="1.0" encoding="UTF-8"?>
<bookmarks xmlns:xlink="http://www.w3.org/1999/xlink">
 <page xlink:href="http://www.python.org"
 xlink:type="simple">Python</page>
 <page xlink:href="http://www.seishub.org"
 xlink:type="simple">SeisHub</page>
 <page xlink:href="http://www.postgres.org"
 xlink:type="simple">PostgreSQL</page>
</bookmarks>

page {
 display: block;
 border: 1px dashed black;
 margin: 5px;
 padding: 10px;
 background-color: #F0F0F0;
}

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

Chapter 2 Introduction to XML and Web Technologies 15

Figure 2-1: CSS applied on a XML document.

2.1.5 XML Schemas: Validation & Data Binding

XML itself is a toolkit allowing everyone to generate their own semantically rich markup

language. This flexibility results, as intended, in many different types of XML languages and

documents. But how does an application know if a class of XML document fits the markup it

understands? Similar to human languages, there is a need for some sort of grammar or formal rules

to enforce the designated syntax. This gap is filled by XML schema definition languages (XML

schemas) which are usually provided as an extra document supplementing the original XML

markup language. XML schemas are used to formalize a set of custom rules to constrain a XML

document and enforce a specific vocabulary within the hierarchical structure. Additionally, it may

be used to dictate the expected data types of elements.

XML schemas are used for two major application fields:

1. Validation, the automated verification of content of any XML document by simply

applying one or multiple XML schemas (as long the schema language is understood), and

2. Data binding, essentially the idea to use the data type information of each element to

automatically create mappings from XML documents to structures (usually objects or RDB

tables) within an application.

In the past few years, dozens of XML schema definition languages have been designed. Today’s

most popular schema languages are DTD, XML Schema, RELAX NG, and Schematron. The

following sections briefly describe those formats. It should be noted that only the last three

schemas are relevant for this study. However, as DTD is the oldest XML schema language, it will

be mentioned as well.

Document Type Definition (DTD). Document Type Definition is XML's native schema

definition language directly included in the XML core, addressing the document-centric XML

approach. Nowadays its popularity is passing as DTD is using a non-XML syntax; therefore an

additional DTD parser is needed to extract the information. Also, it has no XML namespaces

integration and almost no support for distinguishable data types contrary to the concept of data

binding [Melton & Buxton 2006, p. 87; Daconta et al. 2003, p. 39]. Nevertheless, DTD is still

Chapter 2 Introduction to XML and Web Technologies 16

widely used as it is one of the easiest schema languages to apply, partly because of its limited

capabilities.

XML Schema Definition Language (XSD or XML Schema). Shortly after the first release of

the XML core specification was approved, the W3C started to create the next generation schema

language in order to simplify schema generation and to tackle the drawbacks of DTD summarized

above. The XML Schema language became an official W3C recommendation on May 2001

comprised of the three separated parts: Primer [W3C 2004b], Structure [W3C 2004c] and

Datatypes [W3C 2004d]. Although the resulting specification succeeds in its given design goals to

support data types and XML namespaces, it is widely criticized as a highly complex specification

[Melton & Buxton 2006, pp. 100-101; Taylor & Harrison 2008, p. 55; Møller & Schwartzbach

2006, pp. 114-115]. Despite this issue, XML Schema is seen as the industry standard, basically

because it is ratified by W3C, integrated in many applications and XML tools, and much of its

complexity can be faced by using proper tools for schema generation.

Regular Language for XML Next Generation (RELAX NG). RELAX NG is an ISO/IEC

certificated schema language which was developed within the Organization for the Advancement of

Structured Information Standards (OASIS) as an alternative to W3C XML Schema in 2001

[ISO/IEC 19757-2]. It has been designed with the goal of simplicity and high readability of the

format. RELAX NG itself addresses only validation, but within this field it is often considered as

easier to understand and technically superior to W3C XML Schema [Evjen et al. 2007, p. 211;

Taylor & Harrison 2008, p. 55], but unfortunately it lacks the support of major software vendors

[Daconta et al. 2003, p. 39]. RELAX NG does not directly specify data typing, instead it allows the

usage of external data type definitions such as the W3C XML Schema Datatypes approach.

Schematron. Schematron is an open source XML validation tool primary using a list of XPath

expressions. If a document passes all XPath expressions in this list, it will be considered as valid.

This simple, but powerful rule-based approach differs from the three grammar-based concepts

introduced above. Schematron is an ISO/IEC certificated schema language [ISO/IEC 19757-3].

It should be noted that schema generation from the scratch can be an utterly complex process

even for experienced users. Developers usually rely on some graphical XML schema editor such as

Altova XMLSpy4, Oxygen XML Editor5, or Liquid XML Studio XSD Editor6. Those tools

commonly use an instance of an XML document to automatically create a fitting schema. More

complex and complete XML documents deliver better schemas. The resulting schema may then be

adapted to their needs within the editor.

4 http://www.altova.com/de/xmlspy/xml-schema-editor.html
5 http://www.oxygenxml.com/xml_schema_editor.html
6 http://www.liquid-technologies.com/XmlStudio/Free-Xsd-Editor.aspx

http://www.liquid-technologies.com/XmlStudio/Free-Xsd-Editor.aspx
http://www.oxygenxml.com/xml_schema_editor.html
http://www.altova.com/de/xmlspy/xml-schema-editor.html

Chapter 2 Introduction to XML and Web Technologies 17

2.1.6 Extensible Stylesheet Language Transformation (XSLT)

One of the most impressive features of the XML technology tree is the Extensible Stylesheet

Language Transformation (XSLT) standard, a specification introduced by the W3C in 1999 to

convert XML document into another document of even completely different media types [W3C

1999b]. XSLT itself is a functional programming language expressed in XML. Ordinary XML tools

may be used to manipulate XSLT documents. The following figure illustrates the basic process

flow to produce an output document using a XSLT processor.

Figure 2-2: The XSLT transformation process [mod. from Jones & Drake 2002, p. 126].

It should be noted that there is a significant difference between CSS, introduced in chapter

2.1.4, and the XSLT technology. Cascading Style Sheets simply define look and feel of elements of

a markup language, whereas XSLTs are used to transform XML documents into complete new

representations not necessarily bound to a XML markup. Resulting documents of a XSLT processor

may either be XML-based documents, e.g. XHTML or Scalable Vector Graphics (SVG) images, or

plain text-based documents such as tab-delimited text files or SQL statements.

The next two listings contain a simple XML document and a transformation style sheet. The

latter is used to convert the XML resource into a SVG graphic (essentially another XML

document), which can be viewed in any modern web browser as indicated in figure 2-3.

Listing 2-7: XML example file for the XSLT technology.

XSLT
 Processor

Source
XML

Document

Source
XML

Document

XSLT
Document

XSLT
Document

Trans-
f ormed
Output

Trans-
f ormed
Output

<?xml version="1.0" encoding="UTF-8"?>
<chart>
 <item>112.98</item>
 <item>43.23</item>
 <item>12.98</item>
 <item>74.00</item>
 <item>12.98</item>
</chart>

1

2

3

4

5

6

7

8

Chapter 2 Introduction to XML and Web Technologies 18

Listing 2-8: XSLT document to generate a SVG image.

Figure 2-3: SVG image after transformation from a XML document using XSLT.

Conversion between different document formats of the same category can be very advanced

using the XSLT technology. Instead of converting any format into any other format, which requires

up to n*(n-1) different conversion procedures, an intermediary XML document format can be used.

XSLT style sheets converting from and into this intermediary format will limit the number of used

conversions to 2*n [Buxmann et al. 2003]. New formats can be added at any time with two new

style sheets, allowing to convert from and into every other supported format connected to the

intermediary format.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/2000/svg">
 <xsl:template match="/chart/item">
 <rect stroke="none" x="50" height="30" fill="blue">
 <xsl:attribute name="width">
 <xsl:value-of select="." />
 </xsl:attribute>
 <xsl:attribute name="y">
 <xsl:value-of select="position()*18-18" />
 </xsl:attribute>
 </rect>
 <xsl:text>
</xsl:text>
 <text x="10" font-size="12">
 <xsl:attribute name="y">
 <xsl:value-of select="position()*18" />
 </xsl:attribute>
 <xsl:value-of select="." />
 </text>
 </xsl:template>
 <xsl:template match="/chart">
 <svg width="100%" height="100%" version="1.1">
 <xsl:apply-templates />
 </svg>
 </xsl:template>
</xsl:stylesheet>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Chapter 2 Introduction to XML and Web Technologies 19

2.2 Web Services

There are numerous definitions for Web services in the literature or among the Internet, each

slightly different from one another. The World Wide Web Consortium delivered in 2004 the

following definition for Web services [W3C 2004a]:

A Web service is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable format

(specifically WSDL [Web Services Description Language]). Other systems interact with the

Web service in a manner prescribed by its description using SOAP-messages [Simple Object

Access Protocol], typically conveyed using HTTP with an XML serialization in conjunction

with other Web-related standards.

This definition actually covers only the initial, service-orientated concept of Web services, which is

closely coupled to the XML-based SOAP (Simple Object Access Protocol) messaging framework

standardized by the W3C [W3C 2007a; W3C 2007b; W3C 2007c]. Such Web services are

essentially network-accessible endpoints to Remote Procedure Calls (RPCs) exposed to the clients

via a single Uniform Resource Identifier (URI) [Berners-Lee et al. 2005]. Interfacing between Web

service and client is achieved using SOAP messages on top of an arbitrary transport protocol such

as SMTP or more commonly HTTP as ubiquitous communication protocol in the Web [Graham et

al. 2004, pp. 112-114]. If the latter is used as transport protocol, messaging is handled only via the

HTTP POST method (see figure 2-4). Because of the vast amount of additional standards

supplementing SOAP-based Web services – currently more than 80 specifications partly

complementing, overlapping, or competing with each other [Wikipedia 2009] – those are also

labeled with the “not entirely kind, but fairly mild nickname: Big Web services” [Richardson &

Ruby 2007, p. 299].

Figure 2-4: Protocol layering of RESTful (l) and Big Web services (r.) [mod. from Pautasso et al. 2008].

Multiple Resource URIs Single Endpoint URI

Application

HTTP
POST

HTTP
GET

HTTP
PUT

HTTP
DELETE

Application

HTTP
POSTSMTP

SOAP

...

XHTMLJSONXML ...XML

RESTful Web service Big Web service

Chapter 2 Introduction to XML and Web Technologies 20

Recent definitions of Web services include a fundamental different approach based on the REST

(Representational State Transfer) architectural style introduced by Roy Fielding in his dissertation

[Fielding 2000]. This style follows the resource-orientated structure of the Internet, considering

data bound to a specific URI as an unique resource. Communication with such resources is done

via a fixed set of operations. Web services implementing Fielding's architectural style on top of the

HTTP protocol are called RESTful Web services. Instead of wrapping options and parameters for a

remote procedure call into a XML-based SOAP message, RESTful Web services facilitate the

standard HTTP methods GET, PUT, POST, and DELETE (see figure 2-4 and table 2-3) on fixed

URIs to communicate with a service. It is the responsibility of the Web service to map the

combination of HTTP method and URI to a specific functionality within the application. The

RESTful approach has got quite popular within the last few years as it allows requesting XML-

based data with standard HTTP without the need to apply an additional message layer – essentially

the more “natural” way the Internet has been used for decades.

Finally, there are countless RPC-REST hybrid Web services which take paradigm of both

worlds and combine them, e.g. presenting the data in REST style, but modifications are achieved

using RPC methods. Also, Web services using only the HTTP GET method for resource or

application interaction are often named “GETful” Web services [Davis 2008]. However, the author

considers any application or software component reachable via a fixed URI over the Internet and

providing services for other client applications as a Web service.

Most Web services are not built communicate directly with humans using a web browsers as

client. Instead, Web services benefit from the principles, ideas and especially standards of the

Internet allowing them to establish interaction between different (web) applications. Whatsoever,

web browsers are great testing and demonstration clients for Web services. Although the name may

imply it, Web services actually do not necessarily need to run via the Internet. The term “web”

refers to the technology and standards used. In fact, many of today's Web services are deployed in

an Intranet environment or run as local services. Similar to the relationship between web servers

(e.g. Apache HTTP Server7) and web browsers, underlying software or hardware details are not

relevant for the network interfacing process between server and client. Both may be written in any

programming language offering basic HTTP networking support, but they do not have to know

about the implementation and deployment details of their counterparts.

As mentioned above, Web services can roughly be categorized into two basic categories: Big

(SOAP-based) and RESTful Web services. Both groups will be discussed within the following two

subsections. RESTful Web service will be covered in more detail as it is used within this study. The

chapter will be concluded by supplementing technologies for Web services.

7 http://httpd.apache.org

http://httpd.apache.org/

Chapter 2 Introduction to XML and Web Technologies 21

2.2.1 Big Web Services

As indicated above, Big Web services are software components which can be evoked usually at

a single URI over the network. Communication with such a Web service is done via SOAP

messages, basically XML documents wrapping the actual content, processing instructions, error

messages, etc. The basic work-flow for a Big Web services using HTTP as transport protocol can

be seen in figure 2-5 (using data from example 2-4). SOAP is essentially another RPC

specification, similar to CORBA8 (Common Object Request Broker Architecture) or Microsoft's

DCOM9 (Distributed Component Object Model), but built on top of the XML technology tree.

Figure 2-5: Schematic work-flow of a Big Web service using the HTTP transport protocol. Communication

is completely realized using the HTTP POST method and SOAP messages.

The functionality of Big Web services is described through a XML document written in the Web

Services Description Language (WSDL) [W3C 2001b]. Such a WSDL document specifies at what

URL the service is accessible, the available transport protocols, the arguments expected by the Web

service, and which data will be returned [Buxmann et al. 2003]. WSDL service descriptions can be

registered by their service provider within a central UDDI (Universal Description, Discovery and

Integration) directory [OASIS 2004]. The idea of such directory was to allow end users or services

to discover and even deploy Web services meeting their needs. However, automatic Web service

deployment (on global scale) proved as not realizable as there is no standardized way to describe

the functionality of a service [Kulchenko & Ray 2002, pp. 5-6].

8 http://www.omg.org/corba/
9 http://msdn.microsoft.com/en-us/library/ms878122.aspx

HTTP Client Web Service Interface Server Application

HTTP POST /soap/endpoint

return getPopulation(1)<soap><getPopulation id="1" /></soap>

HTTP OK (200)
<soap><result>7392</result></soap>

return getCityName(3)

HTTP POST /soap/endpoint

HTTP OK (200)
<soap><result>Bielefeld</result></soap>

<soap><getCityName id="3" /></soap>

return getCityName(50)

HTTP POST /soap/endpoint

HTTP OK (200)
<soap><error>No such city</error></soap>

<soap><getCityName id="50" /></soap>

7392

"Bielefeld"

Exception("No such city")

http://msdn.microsoft.com/en-us/library/ms878122.aspx
http://www.omg.org/corba/

Chapter 2 Introduction to XML and Web Technologies 22

In order to briefly demonstrate the concepts discussed above, a trivial “Hello” Web service

offered by the Faculty of Computer Science, University Vienna will be used as an example. The

service endpoint is reachable via http://almighty.pri.univie.ac.at/~mangler/helloService.php

offering the RPC method “sayHelloTo” which accepts an arbitrary string as input element and

returns “Hello“ and the given input text. The corresponding WSDL document specifying this

service can be found at http://almighty.pri.univie.ac.at/~mangler/helloService.wsdl (see Appendix

A.3). As one can see, a WSDL document can be very complex, even for such simple task. On the

other hand, they are detailed enough to automatically create a user interface, e.g. using tools like

the web-based Generic SOAP Client (http://www.soapclient.com/soaptest.html) or by the

application soapUI (http://www.soapui.org). Such generated clients can never cope with the

requirements of a real user interface, however, they may be used to understand or test the

functionality of Web services and to inspect the actual SOAP messages. The transmitted SOAP

messages for the request (containing the string “TEST”) and the corresponding response (“Hello

TEST”) are shown in Appendix A.3. Manual handling of such messages can be minimized by using

SOAP libraries mapping between message entities and program variables.

2.2.2 RESTful Web Services

The REST architectural style considers a resource as basic element of information in a

distributed hypermedia system, which is referenced by a globally unique resource identifier. Clients

and server retrieving or manipulating such resources communicate over an uniform interface

exchanging purely representations of resources. The REST approach is basically a “big picture” of

the Internet [Costello 2009] and a guide for “design and development of the architecture for the

modern Web” [Fielding 2000, p. 4], but actually not restricted to the Internet or HTTP. Table 2-2

summarizes REST data elements and their complementing elements in the Web.

Data Element Modern Web Example
Resource The indented conceptual target of hypertext reference

Resource identifier Uniform Resource Locator (URL)

Representation HTML document, JPEG image

Representation meta data Media type, last-modified time

Table 2-2: REST's data elements [mod. Fielding 2000, p. 88].

The REST architectural style and the Internet share the following constraints and characteristics

stated by Fielding [2000, pp. 76-78]:

• Client-server architecture. A separation of concern using a unified interface effectively

allows each component to evolve independently.

http://www.soapui.org/
http://www.soapclient.com/soaptest.html
http://almighty.pri.univie.ac.at/~mangler/helloService.wsdl
http://almighty.pri.univie.ac.at/~mangler/helloService.wsdlo

Chapter 2 Introduction to XML and Web Technologies 23

• Stateless interaction. Each request from clients to the server contain all necessary

information to understand the request. No information about the client (state) is stored on

the server.

• Cacheable resources. Stateless communication allows caching to improve network

efficiency. Server responses may be marked as cacheable or non-cacheable.

• Uniform resource interface. Interaction with resources is done via a uniform generic

interface, such as GET, POST, PUT, DELETE for HTTP [RFC 2616, c. 9].

• Addressable resources. The system is comprised of named resources defined by uniform

resource identifier, such as URL for the Internet.

• Interconnected resource. Resources are interconnected using hyperlinks allowing to

navigate between resources.

• Layered system. Immediate components such as proxy or cache servers, load balancers,

etc., can be layered between clients and resources.

Web services implementing those REST principles and using HTTP as transport protocol are

called RESTful Web services. Functionality of such services is exposed via resources on fixed

URIs and the four HTTP methods as seen in table 2-3. A basic work-flow for requesting a RESTful

Web service is shown in figure 2-6 (again using data from listing 2-4). As can be seen, HTTP status

codes [RFC 2616, c. 10] are used within the response. A RESTful service client knows instantly

about the status of its request without the need to look into the content of the response.

HTTP Method Description
GET Retrieve a representation of a known resource.

POST Create a new, dynamically named resource.

PUT Modify a known resource. It is not used for resource creation.

DELETE Remove a known resource.

Table 2-3: HTTP methods and description [mod. RFC 5023].

Similar to WSDL, description languages for RESTful Web services have been proposed, like the

more recent Web Application Description Language (WADL) [Hadley 2009]. However, the best

form of service description is given via well-written human-readable API documentation, proven

by many successful services such as Google Maps API10 or Amazon Web services API11.

10 http://code.google.com/intl/en-EN/apis/maps/documentation/
11 http://aws.amazon.com/documentation/

http://aws.amazon.com/documentation/
http://code.google.com/intl/en-EN/apis/maps/documentation/

Chapter 2 Introduction to XML and Web Technologies 24

Figure 2-6: Schematic work-flow of a RESTful Web service. Communication is realized by applying

different HTTP methods and HTTP status codes.

2.2.3 Supplementing Technologies

This chapter includes a few techniques used in common browsers in order to interact with Web

services: Ajax and JSON (JavaScript Object Notation).

Ajax. It has been stated before that Web services are not built to communicate directly with a

human. The end user is not supposed to call URIs with certain parameters (RESTful style) in a

browser or even manually generate SOAP messages for a Big Web service. However, modern

browsers are nowadays able to behave like full-fledged desktop applications dynamically and

moreover asynchronously interacting with Web services (see figure 2-7). Any such client-side

technology communicating with a Web service is summarized as Ajax. Most prominent

representatives of Ajax are JavaScript (the standard programming language within browsers),

Adobe Flash (browser plug-in), and Java applets (Java programs executed within the browser). The

HTTP Client Web Service Interface Server Application

HTTP POST /city/bielefeld

createCity(“bielefeld”, XML_DOC)<city><name>Bielefeld</name><pop>324912</pop></city>

HTTP Created (201)

return getCity(“bielefeld”)

HTTP GET /city/bielefeld

HTTP OK (200)
<city><name>Bielefeld</name><pop>324912</pop></city>

HTTP PUT /city/bielefeld

modifyCity(“bielefeld”, XML_DOC)<city><name>Bielefeld</name><pop>300000</pop></city>

HTTP OK (200) / No Content (204)

return getCity(“munich”)

HTTP GET /city/munich

HTTP Not Found (404)

<cities xmlns:xlink="http://www.w3.org/1999/xlink">
 <city xlink:href="/city/bielefeld" />
 <city xlink:href="/city/springfield" />
 <city xlink:href="/city/gotham-city" />
</cities>

return getCities()

HTTP GET /city

HTTP OK (200)

NotFoundException()

XML_DOC

["bielefeld", "springfield", "gotham-city"]

Chapter 2 Introduction to XML and Web Technologies 25

term Ajax is originally derived from the acronym AJAX (Asynchronous JavaScript and XML), but

as the technique is not fixed to JavaScript, XML, and asynchronous request anymore, this term had

been decommissioned [Richardson & Ruby 2007, pp. 315-316]. Ajax is the driving technology

behind the success of many dynamically rich, interactive web applications such as Google Maps

(http://maps.google.de), YouTube (http://www.youtube.com), or the new seismic data portal

prototype developed by the Network of Excellence of Research and Infrastructures for European

Seismology (NERIES; http://193.52.21.80/jetspeed/portal/).

Figure 2-7: Classic web model (l.), where the user had to refresh the full page manually (synchronous

communication) vs. Ajax model (r.) supporting partial web page updates by the browser (asynchronous

communication) [Wei 2005].

JSON. JavaScript Object Notation is a data serialization format originally declared within the

JavaScript programming language [ECMA 1999]. It is a language-independent, text-based format

supporting simple data types including associative arrays. Today it is often used as a lightweight

alternative to XML for data exchange with Web services. Many RESTful Web services offer both

JSON and XML-based results. For such services, JSON is commonly applied by Ajax applications

as it avoids the more time intensive parsing process of XML-based results. A simple example for

the JSON format is given in listing 2-9 showing the same content of a XML document introduced

before (listing 2-4).

Listing 2-9: JSON example containing fictional cities.

{
 "city": [
 { "id": "1", "name": "Springfield", "pop": "7392" },
 { "id": "2", "name": "Gotham City", "pop": "8274527" },
 { "id": "3", "name": "Bielefeld", "pop": "324912" }
]
}

1

2

3

4

5

6

7

http://193.52.21.80/jetspeed/portal/
http://www.youtube.com/
http://maps.google.de/

Chapter 2 Introduction to XML and Web Technologies 26

2.3 XML Databases

Standard databases applying the relational database model [Codd 1970] use tables to store

information. Each data field is represented by a column, while datasets are stored in different rows

of the table. Additionally, such database system allows the database developer to define relations

between two fields of different tables. Storing hierarchically XML documents in a standard

relational database is rather problematic because of their irregular structure. The need for databases

specialized on handling such XML resources emerged with today's increased usage of XML

documents as a common data exchange format. Databases able to directly store and index such

documents are commonly called XML databases. There are two major groups of XML databases:

native and XML-enabled databases.

XML-enabled databases. In XML-enabled databases, XML documents are transferred into the

internal database structure of a traditional database [Bourret 2009] such as tables and fields of a

relational database. The transfer process requires mapping from a document specific schema, e.g.

using XML Schema, into a database specific schema. This approach depends on heavily structured

data and is therefore better suited for data-centric XML documents (see also chapter 2.1.1).

Native XML databases. Semi-structured or document-centric XML resources are better

handled by databases using the whole unmodified XML resource as a fundamental storage unit,

similar to files in a file system. The underlying database model (relational, object-orientated, etc.)

is not relevant for native XML databases.

Additionally, most XML databases offer XPath for querying resources or collection of

resources, but many other standards and technologies like XQuery (XML Query Language) [W3C

2007d], XUpdate (XML Update Language) [Laux & Martin 2000], SQL/XML (SQL extension for

using XML combined with SQL) [ISO/IEC 9075-1], or XML:DB API (or XAPI) [Staken 2001] are

also supported. Common XML technologies for document validation (XML schemas) and

transformation (XSLT) as introduced throughout this chapter are usually also used directly within

the XML database systems.

SeisHub, the database system developed by the author, was built on the concept of a native

XML database. This concept allows storing of completely flexible data structures using XML

resources, which was a major goal of this project. The next chapter will elaborate the native, web-

based database SeisHub in more detail.

3 SeisHub: A Web-based Database for

Seismology

Chapter 3 SeisHub: A Web-based Database for Seismology 29

Introduction. The general points and issues raised in the first chapter illustrate the urgent need

of a newly designed database structure in seismology. SeisHub, a prototype of a web-based, native

XML database developed by the author, aims to be a suitable answer to overcome many of the

deficiencies of existing databases. This chapter will briefly introduce the basic concepts of SeisHub

and give a comprehensive insight into the architectural and implementation details of its core

classes. Further sections will familiarize the reader with the two underlying database concepts for

handling XML resources and seismic waveform data. The chapter concludes with related topics:

ObsPy, a vital dependency partly developed for SeisHub within this study, and a short excursion

into Extreme Programming, a modern software development approach used throughout the whole

project. The two projects Exupéry and Bavarian Seismological Network (BayernNetz) and related

datasets are used multiple times as examples throughout the whole chapter. Both projects will be

discussed in detail in the following chapter “Scientific Application of SeisHub”.

3.1 What is SeisHub?

SeisHub is a novel web-based database approach created for archiving, processing and sharing

geophysical data and meta data (data describing data), particularly adapted for seismic data. It

mainly offers the full functionality of a native, document-centric XML database coupled with the

versatility of a HTTP(S)-based RESTful Web service. The XML database itself uses a standard

relational database as back-end, currently tested with PostgreSQL12 and SQLite13. This

sophisticated structure (see also figure 3-1) allows the usage of both worlds: the power of the SQL

for querying and manipulating data and any standard connected to XML, e.g. document conversion

via XSLT or resource validation via XML schemas.

Figure 3-1: Basic technical architecture of SeisHub.

12 http://www.postgres.org
13 http://www.sqlite.org

Browser Script SSH Client

C
lie

nt
s

SFTP Client

S
ei

sH
ub

Waveform
Archive RDBMS

HTTP(S) SFTP SSH ...

...

...

HDD

Internet / Intranet

http://www.sqlite.org/
http://www.postgres.org/

Chapter 3 SeisHub: A Web-based Database for Seismology 30

SeisHub further incorporates features of a “classical seismic database” providing direct access to

continuous seismic waveform data and associated meta data. Waveform data is handled via the file

system, as storing huge amounts of binary and compressed data directly into a relational database is

viewed as not very efficient, due to additional database overhead (e.g. requesting time) and

limitations (e.g. database size limits).

3.2 Why XML?

The most pressing drawback of current seismic databases is the rigidity of their data structure.

As an example, classical Relational Database Management Systems (RDBMS) require a well

thought, predefined database schema – a formal definition of tables, fields in each table and

relationships between fields and tables – before actually storing any data. Later modifications of

this underlying structure, except for simple addition of new fields or tables, is usually difficult to

achieve. It requires a person with detailed knowledge of the underlying database system and the

used programming language. One could start to create a database schema which fits all possible

datasets expected in the near future, but this schema would be outdated as soon as new information

has to be incorporated. This deficiency conflicts with the goal of a flexible, future-proof concept

for storing collocated, multi-component, multi-disciplinary data within the same database system.

SeisHub chooses to follow a different approach by offering characteristics of a native XML

database using whole XML documents as fundamental unit of storage. The actual XML resources

are saved unmodified in a single Binary Large Object (BLOB) database field, and only preselected

parts of the document are used as search indexes. This allows using the given document structure

defined by the resource provider themselves. The documents can be limited or extended from the

document provider at any time without necessarily touching the underlying database, e.g.

modifying the database schema.

Another reason to work with XML documents as basic storage elements is indicated in the

second chapter: XML technology plays nowadays an increasing, if not the leading role as standard

exchange language. This also applies in the field of seismology. Best examples for this are the two

proposed standards XML-SEED14, a XML representation of SEED volumes [Tsuboi et al. 2004]

and QuakeML15, at the current state a XML description of seismic events [Schorlemmer et al.

2004]. Using standardized XML documents as storage and exchange resources reduces effectively

the number of data format conversion, which is usually not a trivial procedure. Even if conversion

from one XML document format into another is required, XSLT as introduced in chapter 2.1.6

offers a unified way to solve that issue.

14 http://www.jamstec.go.jp/pacific21/xmlninja/
15 http://www.quakeml.org

http://www.quakeml.org/
http://www.jamstec.go.jp/pacific21/xmlninja/

Chapter 3 SeisHub: A Web-based Database for Seismology 31

3.3 Technical Details

SeisHub has a modular architecture consisting of a single core class, labeled environment, a

handful of distinct services, and many components, also called extensions or plug-ins. The

environment object takes care of all start-up procedures, e.g. parsing the configuration file,

initializing the connection to the database back-end, and managing all available components.

Services are classes implementing either a single network protocol, e.g. HTTP, or processes which

have to be called periodically such as a file monitor. Plug-ins are extending one or multiple services

with either an URL-based resource such as another administration web page for the HTTP service,

or further functionalities, e.g. a new command for the SSH service. It should be noted that not all

services offer interfaces for extensions.

Figure 3-2: Schema of SeisHub's modular architecture.

SeisHub itself is written in Python16 [Van Rossum et al. 1990], an object-oriented, open source,

high level programming language available for all major operating systems. Among others, Python

is known for its remarkable simple and readable syntax, partly because of its unique indentation

style – using white spaces as block delimiter - and its large, comprehensive standard library

providing tools for all kind of tasks, commonly referred to as “batteries included” [Lutz 2006, p.

91; Martelli et al. 2005, p. 526]. It has been chosen by the author as the preferred programming

language after excellent experiences with the popular web-based Python products Trac17, Zope18

and Plone19. SeisHub also relies on a few additional Python modules, nevertheless the number of

external dependencies has been kept as low as possible. Most external modules will be introduced

in detail throughout the next sections.

16 http://www.python.org
17 http://trac.edgewall.org
18 http://www.zope.org
19 http://www.plone.org

Service

Environment

Service Service Service

Plug-in Plug-in Plug-in Plug-in Plug-in Plug-in

http://plone.org/
http://www.zope.org/
http://trac.edgewall.org/
http://www.python.org/

Chapter 3 SeisHub: A Web-based Database for Seismology 32

For better comprehension of the whole chapter, it may be beneficial to have a SeisHub server

instance installed and running by now using the SeisHub Installation Guide in Appendix A.1. Web

addresses (URL) in the following images and examples referring to the default host “localhost” and

port “8080” must be adapted to the particular setup, if modified. The running server can be tested

by calling SeisHub's web-based management interface which is reachable with any standard

browser via http://localhost:8080/manage/. The entry point of the RESTful XML resource

repository can be found under http://localhost:8080/xml/20.

Additionally, it should be noted that actually two separate SeisHub processes are spawned using

the start-up script in trunk/bin. The main process (using process file

trunk/seishub/seishub.tac) includes all services and extensions described throughout this

chapter. The secondary process (using trunk/seishub/seedmon.tac) is limited to the

waveform archive crawling service by disabling all services except SEEDFileMonitor (see chapter

3.5.4). This split into two processes allows better resource usage for multiple processors. It also

enables SeisHub to have two file crawlers running in parallel: one is optimized for processing

recent files more often, the other one for walking the whole data archive over time. The actual

crawling process and the associated SEEDFileMonitor service will be covered in section 3.3.2, and

more specifically in section 3.5.

The next three subchapters give a short introduction to core elements of SeisHub: environment,

services and components in general. Further sections within this chapter look into a few specific

components such as packages, resource types, and mappers.

3.3.1 Environment

The environment class21 trunk/seishub/env.py is initialized exactly once at the start-up of

a SeisHub server and shared with every single service and extension. A SeisHub environment

consists of a configuration handler env.config, a logging system env.log, a relational database

manager env.db, a XML catalog handler env.catalog, a package handler env.registry, a

component manager env.compmgr, a resource tree env.tree, and an user management handler

env.auth.

env.config. The configuration handler parses and manages the central configuration file

trunk/conf/seishub.ini. Most options which are changeable via the administrative interface

will be stored into this file. Services and plug-ins may define their own options providing default

values, e.g. the HTTP service needs a port which defaults to 8080 if no port is defined. Unset

20 For better browsing experience the format option may be used: http://localhost:8080/xml?format=xhtml.
21 Internally named as “the class that rules them all”.

http://localhost:8080/xml
http://localhost:8080/manage
http://localhost:8080/xml?format=xhtml

Chapter 3 SeisHub: A Web-based Database for Seismology 33

options with default values will automatically be created at server startup. There is no initial

configuration file delivered with SeisHub, instead, the configuration file will be created with all

default values when the server is started the first time. A full list of all possible configuration

options currently available is given in Appendix A.2.

env.log. The logging handler is used to collect and primary filter log messages using the log

level defined in SeisHub's configuration file.

env.db. This is the central database manager connecting SeisHub with the relational database

back-end. The manager itself is sported by SQLAlchemy22, a Python SQL toolkit and Object

Relational Mapper (ORM) supporting many major databases, such as SQLite, PostgreSQL,

MySQL, Oracle, MS-SQL, Firebird, MaxDB, MS Access, Sybase, Informix, and DB2. The

database manager is able to access SeisHub's resources via classical SQL queries or by using the

more “pythonic”23 way of ORM – here, tables and relations are mapped into Python objects. The

default database is set within the [db] section of SeisHub's configuration file. If no database is

preset, SQLite will be used. SQLite is a file-based, transactional SQL database engine, which is a

standard module of Python version 2.6 and above. However, it should be replaced by PostgreSQL

in a productive server environment, because SQLite has a low level of concurrency allowing only a

single process to write into the database at the same time, which results into a performance loss.

But it is the perfect choice for evaluating SeisHub as it prevents installation of an extra database

system, which can be a quite taxing procedure.

env.catalog. The catalog handler gives an object-orientated way of managing SeisHub's

XML resources by offering various object-orientated helper methods.

env.registry and env.compmgr. The component manager detects and initializes SeisHub

components/plug-ins and passes new or modified components to the registry class. The registry

takes care of synchronizing all component options with SeisHub's internal database.

env.tree. The resource tree is a hierarchical representation of activated components such as

packages, resource types, and mappers. Essentially the same tree structure is used within the HTTP

and the SFTP services. The tree structure is automatically extended (or reduced) by activating (or

deactivating) plug-ins. Building up the resource tree only once at startup or on explicit request

increases the overall performance dramatically. The actual resource tree is visualized in the

component browser panel at http://localhost:8080/manage/components/browse-components.

22 http://www.sqlalchemy.org
23 The term “pythonic” is a rather vague concept. Faassen 2005 suggests to start up a Python interpreter and type

“import this” to see one possible perspective.

http://localhost:8080/manage/components/browse-components
http://www.sqlalchemy.org/

Chapter 3 SeisHub: A Web-based Database for Seismology 34

Figure 3-3: SeisHub's component browser.

env.auth. SeisHub includes a basic user management in order to protect the usage of services

and resources from untrusted sources. User data and authentication information are stored in a

separated SQLite database situated at trunk/db/auth.db, which will automatically be created if

no such file exists. The default login name and password are “admin” (without the quotes) and

should be changed immediately for any productive system. The env.auth handler gives a helper

interface to validate authentication requests or manipulate existing user information. The actual

authentication routines are implemented within the service modules using protocol specific

authentication standards, e.g. Basic Authentication [RFC 2617] for the HTTP protocol and the key-

based Secure Shell Authentication [RFC 4252] for SSH and SFTP. A web-based interface for the

user management is given at http://localhost:8080/manage/admin/permission-users/.

3.3.2 Services

Services are core classes to handle all network or time-based events within SeisHub such as a

basic resource requests from a HTTP client or a periodically call of a function. The current

implementation of all services can be found at the trunk/seishub/services/ directory. They

are syntactically complex classes tightly coupled with the Twisted24 networking library, an open

source framework for building network applications in Python. At its core, Twisted is an

asynchronous and event-based networking framework. Both techniques optimize the usage of

available resources and effectively reduce the need of threads [Fettig 2005, p. xiii]. Python has an

excellent and remarkable easy support for threads, but its implementation is known as not truly

24 http://twistedmatrix.com

http://twistedmatrix.com/
http://localhost:8080/manage/admin/permission-users/

Chapter 3 SeisHub: A Web-based Database for Seismology 35

thread safe – only one single thread is ever executed at any time managed through a single shared

lock, called the global interpreter lock (GIL) [Lutz 2006, pp. 183-185]. Therefore, highly threaded

Python applications suffer performance issues compared to asynchronous single-thread

programming as Twisted provides. A comprehensive insight into this programming art is given by

the Twisted core documentation [Twisted 2008].

Despite their complexity, services incorporate the component system stated above, which

significantly simplify the creation of extensions. Plug-in developers do not have to know to much

about the underlying network protocol and its implementation details anymore. Instead they write a

new plug-in by inheriting from a single base class, choosing the interface classes of services they

want to extend and providing only the desired functionality with a few lines of source code. The

components system and the generation of extensions will be discussed in more detail in the next

section. However, for the sake of completeness, service relevant interface classes are listed within

this section

The following services are currently available in SeisHub: HTTP/HTTPS, SFTP, SSH,

SEEDFileMonitor, and Manhole.

HTTP/HTTPS. This is the main service of SeisHub implementing the network protocols HTTP

(default port 8080) and its secure variant HTTPS (default port 8443) deployed by the RESTful Web

service and the web-based management interface. This core component of SeisHub should not be

disabled.

The management interface allows easy configuration of SeisHub via a standard web browser. New

management web pages can be added by writing extensions using one of the following Interfaces:

IAdminPanel, IAdminStaticContent, or IAdminTheme. Examples for all current panels can

be found in the trunk/seishub/packages/admin/web directory.

The RESTful Web service contains all elements of the resource tree provided to the clients in a

XML representation. Both the Web service and the representation format are discussed in chapter

3.4. The resource tree itself can be extended by creating new plug-ins implementing the IPackage,

IResourceType, or IMapper interface classes. All three interfaces will be covered in detail

within chapters 3.4.3 and 3.4.4.

Further, it is possible to add whole disk-based directories into the resource tree by using the [fs]
section in SeisHub's configuration file (see Appendix A.2). Those directories may additionally

contain specific Python scripts with the file extension “.rpy”, which are directly executed by a

request returning any results to the RESTful Web service. This feature is similar to CGI programs

commonly used in standard web servers. An example script can be found at

trunk/seishub/processor/tests/data/filesystem/scripts/test.rpy.

Chapter 3 SeisHub: A Web-based Database for Seismology 36

Any client activity using the HTTP or HTTPS protocol is logged into separate access log files

which can be found in the log directory trunk/logs.

SFTP. A convenient way to access SeisHub's resources tree is the integrated SFTP server. The

same hierarchical structure reachable via the RESTful Web service is hereby mapped into a virtual

file system. Plug-ins extending the resource tree (as described in the paragraph above) will also be

applied to the virtual file system. The SFTP service is yet an experimental service, as every client

tested by the author so far slightly differs from one other and a consistent implementation is

therefore difficult to achieve. However, it massively simplifies uploading, downloading, and

managing of XML resources, which is especially true for file operations on multiple documents. It

should be noted that accessing very large XML repositories (single directories with a huge amount

of resources) will eventually result into a timeout error, depending on the client settings. This

service should be disabled in a productive environment because of its experimental nature.

SSH. The SSH service (default port 5001) is an experimental secure interface to a terminal

based management console. It does not offer access to the actual XML resources like the SFTP

service above. Instead, it implements a set of commands for the administration of the SeisHub

server. Typing “help” into the command line lists all currently available key words. As this service

is experimental and not considered as integral part of SeisHub, the current number of commands is

limited. New commands can be introduced by writing a plug-in using the ISSHCommand interface

class as demonstrated in trunk/seishub/packages/admin/ssh/general.py.

SEEDFileMonitor. The SEEDFileMonitor service periodically crawls any given directory for

MiniSEED files and synchronizes them with SeisHub's internal database. The crawling process

itself and the associated database structure will be introduced in chapter 3.5 and more specifically

in section 3.5.4. As this service is a purely seismological extension for SeisHub, it may be disabled

safely in any non-seismological environment.

Manhole. This service provides remote access to an interactive, administrative Python Shell

through SSH (default port 5002). It allows the user to introspect and manipulate Python objects

inside of a running SeisHub instance. The Manhole service is the perfect debugging environment,

and, as the name already implies, it should never be activated in a productive mode.

SFTP, SSH and Manhole services are using key-based authentication protocols. SeisHub will

automatically generate an unique set of public and private keys for each service at the initial start-

up if no keys exist. The same procedure applies for the web server certificate of the HTTPS

service. All created keys and certificates can be found within the trunk/conf/ directory. It should

Chapter 3 SeisHub: A Web-based Database for Seismology 37

be noted that modern browsers explicitly warn about and even block pages using self-signed25

HTTPS certificates, which is actually the correct behavior to ensure secure data transaction in the

Internet. For a public, productive, multi-user environment it may become handy to provide a valid

HTTPS certificate signed by a trusted certificate authority (CA). However, most browsers also

offer the possibility to permanently accept such self-signed certificates.

Each service has its own unique configuration section within SeisHub's initialization file

trunk/conf/seishub.ini. Possible setup options are summarized in Appendix A.2.

Figure 3-4: Web-based administration interface for managing SeisHub services.

Services and therefore linked plug-ins can be activated or deactivated at any time during the

runtime of a server. Please note that by deactivating a service, it will not terminate immediately as

long as a single client is still connected. Instead it will shut down after a certain grace period.

Figure 3-4 shows the corresponding web-based service administration interface, which is reachable

by calling http://localhost:8080/manage/admin/services in a browser.

3.3.3 Components/Plug-ins

Components are Python classes extending one or multiple services with new functionalities.

Extension points are declared in interface classes. An example of an interface declaration for the

SSH service can be seen in listing 3-1 taken from trunk/seishub/packages/interfaces.py.

An interface class is basically a template or documentation of expected methods and attributes for a

plug-in extending SeisHub. Any plug-in implementing an interface class promises to provide all

specified methods and attributes.

25 A certificate which is signed by its own creator.

http://localhost:8080/manage/admin/services

Chapter 3 SeisHub: A Web-based Database for Seismology 38

Listing 3-1: Interface declaration ISSHCommand of the SSH service.

Listing 3-2 demonstrates how a new SSH command “Demo” is implemented in SeisHub using the

interface description above. Please note that a component developer does not need to know about

the underlying SSH protocol. Instead he has to provide the command keyword and basic

functionality within the method “executeCommand” - here simply writing some messages back to

the SSH client.

Listing 3-2: Example plug-in extending the SSH service with the keyword “Demo”.

A plug-in may also implement multiple interfaces within the same class by providing methods and

attributes of all used interface declarations. Components can be enabled or disabled during run-time

using the web-based administration page at http://localhost:8080/manage/admin/plug-ins as seen in

figure 3-5.

from seishub.core import Interface, Attribute

class ISSHCommand(Interface):
 """
 Interface for adding commands to the SSH service.
 """

 command_id = Attribute("""
 The SSH command.
 """)

 def executeCommand(request, args):
 """
 Processes a command line.

 Request object and a list of arguments are given.
 """

from seishub.core import Component, implements
from seishub.packages.interfaces import ISSHCommand

class MyDemoCommand(Component):
 implements(ISSHCommand)

 command_id = "Demo"

 def executeCommand(self, request, args):
 msg = "You just called DEMO with %d arguments" % len(args)
 request.writeln(msg)
 request.writeln("Try again!")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

11

12

http://localhost:8080/manage/admin/plug-ins

Chapter 3 SeisHub: A Web-based Database for Seismology 39

Figure 3-5: Web-based administration interface for SeisHub plug-ins.

All possible extension points for components are briefly summarized in the next table. Please

refer to trunk/seishub/packages/interfaces.py for a full description of each interface.

Examples using those interfaces can be found within the trunk/seishub/packages directory.

Service(s) Interface Description
HTTP/HTTPS IAdminPanel Extends the web-based administration interface with a

new panel.

IAdminTheme Adds a new CSS-based layout for the management

pages.

IAdminStaticContent Adds static content, e.g. images.

SSH ISSHCommand Adds a new SSH command.

HTTP/HTTPS

SFTP

(RESTful

Web service)

IPackage Defines a new package for the XML repository.

IResourceType Defines a new resource type for the XML repository.

IMapper Defines a procedure addressable on a fixed URI within

the resource tree.

All ISQLView Creates a fixed SQL View within the relational

database back-end.

All IProcessorIndex Creates a programmable index type.

Table 3-1: SeisHub interfaces implementable by plug-ins.

Chapter 3 SeisHub: A Web-based Database for Seismology 40

Another feature of the implemented component architecture is the integration of the Python

packaging management systems “distutils” and “setuptools” within SeisHub. Distutils26 is the

standard way to build and install Python packages within a Python instance. Setuptools27 is a

powerful package distribution library which automates the find, download, install, and upgrade

process of packages and dependencies by using a simple command line management tool called

“easy_install”. The latter accepts either plain URLs (supported protocols are HTTP, FTP, SVN)

pointing to Python packages or it searches those in the central Python Package Index28 (PyPI), a

web-based package repository similar to CPAN29 for Perl. Packages are usually shared in a single-

file directly importable distribution format, called Python Eggs (file extension “.egg”). A Python

Egg is created for a specific target platform and can directly be used without the need for any

additional compilers. Another distribution format are plain packed Python source files.

SeisHub automatically searches at start-up for any modules in the Python system path and the

trunk/plugins directory for Python modules implementing any interfaces from SeisHub. If such

a module is found, it will automatically be available within SeisHub and can be activated via the

web-based management interface. A plug-in developer can distribute extensions for SeisHub using

PyPI. Moreover, any SeisHub operator can easily search for new or update existing plug-ins by

using the tool “easy_install”.

26 http://docs.python.org/library/distutils.html
27 http://pypi.python.org/pypi/setuptools/
28 http://pypi.python.org/pypi/
29 http://www.cpan.org

http://www.cpan.org/
http://pypi.python.org/pypi/
http://pypi.python.org/pypi/setuptools/
http://pypi.python.org/pypi/setuptools/

Chapter 3 SeisHub: A Web-based Database for Seismology 41

3.4 XML Database & RESTful Web Service

This chapter concentrates on the XML database component of SeisHub explaining the concept

of resources and the associated indexing process of such XML documents. Additional sections

introduce the three main components packages, resource types, and mappers. All elements will be

explained further by using examples applied via the RESTful Web service interface.

3.4.1 Resources

As stated earlier, the fundamental storage units (for all non waveform data) are valid XML

documents (also called resources). In order to create or modify data in SeisHub, one has to upload a

whole XML document to the server using a supported network protocol. Each stored resource has

got an unique Uniform Resource Locator (URL), which consists of the root of the XML repository

(server host, port, and the fixed folder name “xml”, e.g. http://localhost:8080/xml/), a resource

specific package, resource type, and resource name. The resource name is either set by the

uploading application or automatically generated by SeisHub. Package and resource type are both

explained in the next chapter, but can for now be imagined as sub-folders used to further structure

the storage of XML resources. As an example, one of SeisHub's build-in transformations style

sheets (XSLT document) named “seishub_stylesheet_resourcelist_xhtml.xslt” can be found in the

package “seishub” within the resource type “stylesheet”. Altogether this resolves into the URL

http://localhost:8080/xml/seishub/stylesheet/seishub_stylesheet_resourcelist_xhtml.xslt.

SeisHub's RESTful Web service allows creating (HTTP POST), modifying (HTTP PUT),

downloading (HTTP GET), and deleting (HTTP DELETE) of XML resources (see table 2-3,

chapter 2.2.2). The following paragraphs will briefly demonstrate each method on a XML-based

seismic station resource “dataless.seed.BW_MANZ.xml” using the program cURL, a platform

independent command line tool for transferring files with URL syntax [Stenberg et al. 2009].

Please make sure both resource type “station” and package “seismology” are enabled within the

web-based management screen in order to reproduce the following examples.

Listing 3-3: Creating a named seismic station XML resource.

The command above uploads the local file “dataless.seed.BW_MANZ.xml” into the resource type

“station” within the package “seismology”, and under the resource name “MANZ”. The option “-

u” is used for submitting a user name (“admin”) and password (“admin”), and the parameter “-v”

curl -v --data-binary @dataless.seed.BW_MANZ.xml -u admin:admin
 -X POST http://localhost:8080/xml/seismology/station/MANZ

1

http://localhost:8080/xml/seishub/stylesheet/seishub_stylesheet_resourcelist_xhtml.xslt
http://localhost:8080/xml

Chapter 3 SeisHub: A Web-based Database for Seismology 42

generates a more verbose output. Calling the program once should upload the XML document

under the stated URL and returns a HTTP status code 204 (OK).

Please note how the server responses with a status code 403 (Forbidden) complaining that the

resource already exists, if the same command above is called again. Also be aware that if the POST

method is used without defining an actual name (as shown in listing 3-4), the resource name will

automatically be generated and revealed in the “Location” header field of the response message.

Listing 3-4: Creating a unnamed seismic station XML resource.

In order to modify a resource, the HTTP PUT method is used. Listing 3-5 shows how to update an

existing resource with new data.

Listing 3-5: Updating a seismic station XML resource.

Fetching and deleting of resources using their URL is shown in listing 3-6 and 3-7. Of course one

could also use any modern browser to view the created resource by calling the URL of the resource

http://localhost:8080/xml/seismology/station/MANZ, or see the overview of all possible stations

via http://localhost:8080/xml/seismology/station/. Viewing or removing a non-existing resource

will result in a HTTP status code 404 (Not Found). Python examples interfacing with SeisHub's

RESTful Web service can be found in the directory trunk/contrib/restscripts.

Listing 3-6: Retrieving a seismic station XML resource (“-X GET“ is actually optional).

Listing 3-7: Deleting a seismic station XML resource.

Using only resource names to identify such XML resources is rather useless in any database

system. Therefore, every resource creation or modification triggers the indexing system of

SeisHub, which will be elaborated in the next section. However, resources should be labeled with

feasible resource names in order to ease the handling, similar to file names in the file system.

curl -v --data-binary @dataless.seed.BW_MANZ.xml -u admin:admin
 -X POST http://localhost:8080/xml/seismology/station/

curl -v --data-binary @dataless.seed.BW_MANZ.xml -u admin:admin
 -X PUT http://localhost:8080/xml/seismology/station/MANZ

curl -v -u admin:admin
 -X GET http://localhost:8080/xml/seismology/station/MANZ

curl -v -u admin:admin
 -X DELETE http://localhost:8080/xml/seismology/station/MANZ

1

1

1

1

http://localhost:8080/xml/seismology/station/
http://localhost:8080/xml/seismology/station/AAA

Chapter 3 SeisHub: A Web-based Database for Seismology 43

3.4.2 Indexing

Indexing in computer science refers to the process of extracting and storing certain identifiers of

a dataset for fast lookup of those values in order to retrieve the original dataset in a very time-

efficient way. In a classical RDBMS certain table fields are marked as an index field, which is

handled privilegedly within the database compared to other fields. SeisHub, as a XML database,

chooses a different approach: XML documents as the fundamental unit of storage, are saved

unmodified in a single Binary Large Object data field accompanied by some meta data like file

size, creation time, or the user identifier of the creator. XML documents are indexed by extracting

predefined data elements using XPath expressions of the document and storing them separately

from the resource itself. Additionally, the database can store values, which are gained by XPath

specific processing functions like calculating the minimum, maximum, sum, or average of a

number of values or counting certain elements within the document (see also chapter 2.1.4). All

indexed values may later be used for data queries. The index process itself is immediately started

after the first upload of a XML resource or every time a document is modified.

Meta information of any resource stored within SeisHub can be fetched by appending “/.meta”

to the resource URL. Using “/.index” instead reveals all indexed values of this resource. Both

requests are demonstrated using the example resource uploaded in the chapter before. The option

“-o” followed by a file name stores the fetched document in the file system.

Listing 3-8: Retrieving meta information of a seismic station XML resource.

Listing 3-9: Retrieving indexed values of a seismic station XML resource.

Indexes are bound to a resource type either hard-coded in the resource type component itself or

may be added or removed during runtime via the web interface. This flexibility allows adding of

new index parameters at any time, but requires a reindexing of all resources of this resource type,

which may need a while for big collections of resources. Indexes are always connected to a single

data type. SeisHub basically stores indexed data in type-specific SQL tables in order to increase

performance at database operations. For example, all indexed values of the datetime30 data type are

collected in a single SQL table called “default_datetime_index”. Further supported data types are

30 Data type for a date and time combination.

curl -v -u admin:admin -o meta.out
 http://localhost:8080/xml/seismology/station/MANZ/.meta

curl -v -u admin:admin -o index.out
 http://localhost:8080/xml/seismology/station/MANZ/.index

1

1

Chapter 3 SeisHub: A Web-based Database for Seismology 44

boolean, text, float, date, and integer. Each index table contains mainly four columns: a document

identifier pointing to the original XML document, the index identifier pointing to the actual index

definition, the indexed value, and its document position allowing to distinguish between multiple

entries within the same document.

Querying values using the database structure above is complicated for developers as indexes are

distributed among multiple tables. Therefore, SeisHub creates for each single resource type an

additional SQL View, basically a virtual table, containing all indexes of one resource type. Those

tables are labeled as “/package/resourcetype” within the relational database and can be seen via the

management interface calling http://localhost:8080/manage/catalog/db-query.

Each row of such a virtual table represents the cross product of all indexed values of a single XML

resource. This works perfectly for values extracted only once within a document. However, any

XPath expression found more than once within the same document will result in multiple rows.

This procedure is imperfect for storing and indexing large series of values such as time series

because this would result in huge SQL Views. This problem is not restricted to SeisHub – in fact it

makes no sense at all to index each value of a time series within a database. However, in order to

solve this problem, one could either index values which occur only once within the document or

use the features of XPath to extract certain search parameters such as the minimum and maximum

of a time series.

An issue which might occur are values bound to shared elements, e.g. data of multiple channels

within a single station resource. SeisHub allows the definition of grouping elements (XPath

expression of a parent element) for contained elements. All data found within such grouped

elements will be represented in a single line in the SQL View table, e.g. for the example above, a

single row per channel per station. Please be aware that grouping is a complex, time intensive

process within the database and should be avoided if possible, especially grouping over multiple

levels. The latter should better be separated into multiple resource types interconnected with the

XLink technology.

One last restriction to the indexing process is linked to XML namespaces. SeisHub at the current

state completely ignores such namespaces. Resource providers should try to avoid XML

namespaces for elements which are going to be indexed. Validation schemas restricting documents

of a resource type can further ensure that uploaded documents fulfill this requirement.

http://localhost:8080/manage/catalog/db-query

Chapter 3 SeisHub: A Web-based Database for Seismology 45

3.4.3 Package & Resource Types

Packages and resource types are components used to further structure XML resources into

categories. Both components behave like virtual containers having its own unique URL comparable

to directories on a file system. A package always consists of resource types, and the latter are used

for the actual resources. The root of the whole XML repository containing all available packages

can be seen via http://localhost:8080/xml/. A specific package is accessed by combining the

repository root with the package name, e.g. http://localhost:8080/xml/seishub/ for the built-in

package “seishub”. The same applies for resource types and XML resources.

Packages and resource types are components and can be activated or deactivated on demand via the

plug-in manager. By disabling a package, all connected resource types are disabled as well.

Disabling a resource type prevents access to contained XML resources.

Next to their structural function, packages and resource types are also used to associate

validation schemas (resource type only), transformation style sheets and indexes (resource type

only; see chapter 3.4.2). Those may be defined directly into the actual component class or

generated interactively via the web-based management interface. The latter should be used for

testing purposes and be hard-coded afterwards into the plug-in class. Otherwise they will not be

available for any new SeisHub instance using this component.

Validation schemas associated with a resource type are always applied on resource creation or

modification requests within this resource type. SeisHub supports the following XML-based

schema languages: XML Schema (XSD), RELAX NG, and Schematron (see chapter 2.1.5).

Resource validation is started before the indexing process and includes all defined schemas. If a

single schema validation fails, the request will be canceled and an appropriate error message is sent

back to the client. One may upload arbitrary XML documents, if no validation schema is defined.

XML schemas essentially restrict upload and storage of XML documents.

The example of uploading station resources above already used a XML Schema in order to validate

a uploaded XML document. Uploading an invalid document, like shown in listing 3-10, will result

in the HTTP status code 409 (Conflict) associated with a full error message why the validation

process aborted the upload process.

Listing 3-10: Uploading a invalid seismic station XML resource.

curl -v --data-binary @index.out -u admin:admin
 -X POST http://localhost:8080/xml/seismology/station/NOXML

1

http://localhost:8080/xml/seishub/
http://localhost:8080/xml

Chapter 3 SeisHub: A Web-based Database for Seismology 46

Transformation style sheets can either be applied before upload or more commonly at the

retrieval of a resource. Style sheets are evoked by appending the “format” option combined with a

short style sheet specific label to the request URL. It is also possible to build up a transformation

chain by adding multiple format parameters to the resource URL. Beside the basic XML output

format, all packages and resource types support the transformation into XHTML (format=xhtml)

and JSON (format=json). The latter is used by the Ajax scripts within the web-based management

interface. Unknown formats are ignored within SeisHub.

Fetching of the content of the “seismology” package in the JSON format is shown in listing 3-11.

Listing 3-11: Retrieving the content of the package “seismology” in the JSON format.

The “station” resource type of the package “seismology” has an associated style sheet labeled as

“map”. This transforms a XML station resource into a XHTML document containing a table with a

few station information such as latitude, longitude, elevation, channels, etc., and embeds a small

map showing the location of the station. Listing 3-12 retrieves this representation for the uploaded

station example used before and figure 3-6 shows the resulting file “xslt-map.html” viewed in a

standard browser (or via http://localhost:8080/xml/seismology/station/MANZ?format=map).

Listing 3-12: Retrieving a seismic station XML resource in a simple XHTML format.

Figure 3-6: Seismic station XML resource in a simple XHTML format.

curl -v -u admin:admin -o xslt-seismology.json
 http://localhost:8080/xml/seismology/?format=json

curl -v -u admin:admin -o xslt-map.html
 http://localhost:8080/xml/seismology/station/MANZ?format=map

1

1

http://localhost:8080/xml/seismology/station/XXX?format=map

Chapter 3 SeisHub: A Web-based Database for Seismology 47

3.4.4 Mapper

Mappers are Python classes accessible via a user-defined, fixed URL and one of the four HTTP

methods. Those classes may be used for writing a full featured RESTful resource interface or more

commonly for simply querying the internal database and returning a formated output (similar to a

GETful approach). Mappers are important for a purely HTTP-based access of data within SeisHub,

where a direct SQL connection to the relational database back-end is not possible or not wanted.

Generally, direct access of the back-end should be prevented for security and stability reasons.

Instead, well defined “questions” or database queries, and the expected output format are to be

defined beforehand and implemented within a mapper class. Mappers are components, which again

can be enabled or disabled during runtime.

A simple GETful mapper situated at http://localhost:8080/seismology/station/getList is used to

demonstrate the concepts of a mapper. By calling the URL above in a browser, it is possible to

retrieve a XML document containing indexed information of all station resources. However, the

mapper class evaluates additional parameters given to the URL in order to further filter this output

list, e.g. “network_id”, “station_id”, “start_datetime”, “end_datetime” etc., or to generate a specific

output format, here allowing XML (default), XHTML (format=xhtml) or JSON (format=json). In

order to fetch all station resources within the seismic network BayernNetz formated in the JSON

format, append “?network_id=BW&format=json” to the URL above.

Please note that the implementation of the actual database query and formating of the output is

up to the developer of the mapper. He may rely on the catalog functions of the central environment

object (see 3.3.1) or call SQL directly on the database back-end to retrieve data. However, he is

able to request data from other existing web services or mappers. The same is true for the output of

data: he may rely on internal style sheets registered within SeisHub or external style sheets

reachable via an URL in order to transform the result.

However, this freedom comes with a price. Mapper developers have to make sure that all incoming

parameters are securely mapped to database queries avoiding huge querying times or even worse

SQL injections, an exploiting technique to pass SQL commands over the URL into the database

query. SeisHub operators should always check mapper classes from unknown sources before using

them in their own server instance.

http://localhost:8080/seismology/station/getList

Chapter 3 SeisHub: A Web-based Database for Seismology 48

3.5 Waveform Database

Another main component of SeisHub is the waveform database, which automatically observes

any given directory and its subdirectories for seismological waveform data in the MiniSEED or full

SEED standard. Although there are various file formats in seismology, SEED has been chosen as

the default format for time series within SeisHub. Several reasons for this decision will be given by

introducing the SEED standard within the following section. This chapter will also discuss the

usage of SEED for synthetic seismograms and will give a preview of recent developments of real-

time waveform distribution on a European level. The chapter concludes with technical

implementation details of the waveform database.

3.5.1 Standard for the Exchange of Earthquake Data (SEED)

SEED is an standard format for long term archiving and data exchange of digital seismological

data introduced by the FDSN31 (International Federation of Digital Seismograph Networks). The

full SEED format and its two subsets: Data Only SEED (MiniSEED) and Dataless SEED formats

are elaborated in full complexity in the SEED Reference Manual [IRIS 2009a]. Dataless SEED

contains solely headers and meta information of time series, e.g. instrument responses. MiniSEED,

as the complement of Dataless SEED, includes the actual digital waveform data enclosed by a

minimal set of header information necessary to process this data. Both can essentially be combined

to or split from a full SEED volume by applying the recommendations in Appendix G of the

reference manual.

SEED volumes are divided into one or more contiguous blocks of fixed length, which are called

logical records. Typical sizes are 512 bytes for real-time data minimizing processing latency and

4096 bytes for archiving purposes to reduce the file sizes. Each record starts with a record sequence

number followed by one or multiple blockettes, data structures consisting of an identifier, size, and

a sequence of data fields specific to this blockette. The actual digital time series data is distributed

in a compressed form in a specific blockette (identifier 1000) complemented by other blockettes

containing additional meta data like start and end time, sampling rate, quality information, etc. This

basic layout allows efficient usage of SEED volumes for sequential media such as magnetic tapes,

and random access media like magnetic and optical disks. It also effectively reduces the processing

time for data distribution of MiniSEED volumes, as cutting and merging of data can be done at

record basis without unpacking the contained data.

31 http://www.fdsn.org

http://www.fdsn.org/

Chapter 3 SeisHub: A Web-based Database for Seismology 49

MiniSEED has been widely used as the default exchange format for continuous waveform data by

many major seismological organizations and Data Management Centers (DMC), e.g. IRIS32

(Incorporated Research Institutions for Seismology), GFZ33 (Geoforschungszentrum Potsdam), and

ORFEUS34 (Observatories and Research Facilities for European Seismology) [Ahern 2000; Shapira

2007; Eck & Sleeman 2008, p. 3; GFZ 2008]. Many analyzing tools used by seismologists are able

to handle MiniSEED data, e.g. Seismic Handler35 [Stammler 1993; Stammler & Walther 2009],

SEISAN [Havskov & Ottemöller 2000], or SeisGram2K36 [Lomax 1991]. Moreover, MiniSEED is

directly used within SEEDLink, a robust TCP/IP based transfer protocol introduced in the real-time

data acquisition and processing system SeisComP (Seismological Communication Processor) [IRIS

2009d; Hanka et al. 2000; Heinloo 2001]. SEEDLink is also utilized via plug-ins in other major

real-time data management and processing systems as in Earthworm [Johnson et al. 1995] or

Antelope [BRTT 2009]. A few commercial available data loggers are even recording directly into

the MiniSEED format [Havskov et al. 2007].

SEED supports several other earthquake related data streams next to the common classical records

of seismometers such as tilt meter and rotational sensors. However, SEED is also perfectly suitable

for other geophysical observations based on time series, such as weather or environmental sensors,

gravimetric or magnetic field data. Different data streams are distinguishable from each other by

using standardized network, station, location, and channel identifier within the SEED blockettes,

which will be discussed next.

Network code. The network code consists of two alphanumeric characters identifying the

network operator, e.g. “BW” for the Bavarian Seismological Network (see chapter 4.2). All official

seismic network codes are assigned by the FDSN archive (IRIS DMC) to ensure uniqueness to

seismological data streams [IRIS 2009a, Appendix J; IRIS 2009b].

Station code. The station identifier may consist of a maximum of five letters or numbers

(without spaces in between) referring to a station name in a seismic network, like “MANZ” for

station Manzenberg of the BayernNetz. Station names should be unique within their network.

Additionally, most seismic broadband station names are often registered with the International

Registry of Seismic Stations37 (IR) to ensure a global unique identifier of this station [Shapira

2007]. This practice became questionable with the rapid increasing number of stations within the

last decade and has been faced by a new proposal from the IASPEI38 (International Association of

Seismology and Physics of Earth Interior) working group on station codes [IASPEI 2008].

32 http://www.iris.washington.edu
33 http://www.gfz-potsdam.de
34 http://www.orfeus-eu.org
35 http://www.seismic-handler.org
36 http://alomax.free.fr/seisgram/SeisGram2K.html
37 http://www.isc.ac.uk/IR/index.html
38 http://www.iaspei.org

http://www.iaspei.org/
http://www.isc.ac.uk/IR/index.html
http://alomax.free.fr/seisgram/SeisGram2K.html
http://www.seismic-handler.org/
http://www.orfeus-eu.org/
http://www.gfz-potsdam.de/
http://www.iris.washington.edu/

Chapter 3 SeisHub: A Web-based Database for Seismology 50

Traditionally, station identifiers are often associated with the geographical area where the station is

situated [Shapira 2007].

Location name. A location code may contain two alphanumeric values to identify a single

device connected to a station. Many SEED tools known to the author accept as location code either

no value at all, or only integer values starting with “00”.

Channel name. Channel naming is used to identify seismic and auxiliary data streams by

applying exactly three alphanumeric characters. FSDN suggests for seismic data the following

conventions for each letter in Appendix A of the SEED manual.

• The first letter specifies the sampling rate and response band of an instrument, e.g. “B” for

broadband seismometers (sampling rate between 10 and 80 Hz, corner frequency >= 10

seconds), or “E” for an extremely short period device (sampling rates from 80 to 250 Hz,

corner frequency < 10 seconds).

• The second letter identifies the family to which an instruments belongs, like “H” for a high

gain seismometer or “G” for a gravimeter.

• The last letter indicates the physical orientation of the channel, such as “Z”, “N”, or “E” for

the vertical, north-south, or east-west components of traditional seismic devices.

Please note that FDSN usage conventions are only a subset of the actual SEED definitions and are

not required for a valid SEED volume. However, it is recommended to stay within this conventions

for data exchange of seismic waveform data [IRIS 2009a, p. 204].

A sequence of network, station, location, and channel identifier as introduced above, combined

with the year and day of year are commonly used to label the actual SEED volumes in the file

system. Archived MiniSEED data within the BayernNetz follow the SeisComP Data Structure

(SDS) definition introduced with SeisComP and SEEDLink [GFZ 2009]. Other combinations can

be seen in file-based MiniSEED archives directly accessible via the Internet, e.g. ORFEUS

waveform archive at ftp://www.orfeus-eu.org/pub/data/continuous/.

ftp://www.orfeus-eu.org/pub/data/continuous/

Chapter 3 SeisHub: A Web-based Database for Seismology 51

3.5.2 Synthetic waveform data

One task of this study was to enable the joint storage and combined access of observational and

synthetic waveform data within the same database. Although SEED is able to store any arbitrary

1D time series with a fixed sampling rate, there is no official FSDN convention or recommendation

for synthetic seismograms. In fact, the current edition (January 2009) of the SEED reference

manual explicitly states that SEED was not designed “[…] for the exchange of processed (e.g.,

filtered) data or synthetic data (e.g., created by computer modeling). While such use is possible, we

will not support it.” [IRIS 2009a, p. 8].

Extending SEED with additional fields for synthetic waveforms is no option as this will cease

the level of interoperability with standard SEED tools. However, the author strongly recommends

that the location field is used to solve this shortcoming. Location identifiers are generally rarely in

use, but fully compatible with the existing standard and derived tools. Computationally generated

seismograms can essentially be seen as data received from an additional (virtual) device which

would even match the original SEED specification. Depending purely on the location identifier for

synthetics would also cover the FDSN channel naming convention, basically allowing the storage

of the synthetic output of a simulation run under different sampling rates and instrument

orientations. Within the BayernNetz, a location identifier code of equal and more than “90” is

suggested by the author, reserving nine more slots for further simulation algorithms or “virtual

instruments”.

It should be noted that the remarks and suggestions above only apply to the actual physical

storage and distribution of computational generated seismograms in the MiniSEED format. The

handling of synthetics within a database system such as SeisHub is a completely different story.

Querying synthetic waveform data distinguishable from standard observational data requires either

the exact knowledge of the location code or must be handled by an additional database structure.

Preferably, this structure also offers further fields for additional information such as used program

code and models, parameters, responsible persons, etc. For SeisHub this is essentially done by

simply adding new fields into the XML station resources (see chapter 4.2). Also, please be aware

that every new network, station, and location combination requires its own new XML station

resource. Providing synthetics at geographical positions not actually covered by an existing station

also requires the generation of a new (virtual) station name and associated station resource. There is

no official naming convention for such virtual stations.

Chapter 3 SeisHub: A Web-based Database for Seismology 52

3.5.3 ArcLink

ArcLink is a distributed data request protocol usable to access archived waveform data in the

MiniSEED or SEED format and associated meta information as Dataless SEED files. It has been

originally founded within the German WebDC initiative of GEOFON (Geoforschungsnetz) and

BGR39 (Bundesanstalt für Geowissenschaften und Rohstoffe) [Hanka & Kind 1994; WebDC 2009].

ArcLink has been designed as a “straight consequent continuation” [Hanka & Saul 2008, p. 159] of

the NetDC concept [Casey & Ahern 1999] originally developed by the IRIS DMC. Instead of

requiring waveform data via E-mail or FTP requests, ArcLink offers a direct TCP/IP

communication approach. A prototypic web-based request tool is available via the WebDC

homepage at http://www.webdc.eu.

Recent development efforts within the NERIES40 (Network of Excellence of Research and

Infrastructures for European Seismology) project focuses on extending the ArcLink network to all

major seismic data centers within Europe [WebDC 2009] in order to create an European Integrated

Data Center (EIDAC). Currently (September 2009) there are four European data centers

contributing to this network: ORFEUS, GFZ, INGV (Istituto Nazionale di Geofisica e

Vulcanologia), and IPGP (Institut de Physique du Globe de Paris). Also, the IRIS data center has

already expressed its interest to implement ArcLink in order to allow unified data access on a

global scale [ORFEUS 2009]. Additionally, the Seismological Observatory Fürstenfeldbruck,

Department of Earth and Environmental Sciences, Geophysics, LMU Munich has been extending

this network since 2006 by a passive ArcLink node serving waveform and meta data from the

BayernNetz. Please note that a working group within the NERIES project recently introduced a

SOAP-based Web service “Seismolink41” which offers alternative access to the ArcLink

infrastructure [Spinuso 2009]. Providing ArcLink via a Web service using standard HTTP as

transport protocol eliminates firewall problems which might occur with ArcLink's default port

(18001).

SeisHub supports the ArcLink protocol in order to handle seismic waveform requests not

available within the local waveform archive (see next section). Such requests are rerouted to an

ArcLink server and the results are used to update SeisHub's internal waveform database and fulfill

the original client request. Interacting with the ArcLink server is done via the newly developed

obspy.arclink module of the ObsPy library further discussed in chapter 3.6. Access to ArcLink

via SeisHub is given with the waveform mapper shown in section 3.5.5.

39 http://www.szgrf.bgr.de
40 http://www.neries-eu.org
41 WSDL document http://orfeustest.knmi.nl/wsdl/seismolink/seismolink.wsdl (see chapter Fehler: Referenz nicht

gefunden)

http://orfeustest.knmi.nl/wsdl/seismolink/seismolink.wsdl
http://www.neries-eu.org/
http://www.webdc.eu/
http://www.szgrf.bgr.de/

Chapter 3 SeisHub: A Web-based Database for Seismology 53

3.5.4 SEEDFileMonitor

SEEDFileMonitor is a service of SeisHub to automatically search file-based archives for SEED

or MiniSEED volumes and to keep those files synchronized with the relational database back-end.

The actual waveform directories among various other crawling options are specified within the

[seedfilemonitor] section of SeisHub's configuration file (see Appendix A.2). Please note that

SEEDFileMonitor does not need to know about the directory structure of the archive, as it will

automatically crawl all included subdirectories of the specified paths. To increase performance, the

search process can be restricted in the configuration to certain files using an Unix-style file name

pattern, e.g. “BW.EH?.*.mseed” for all files starting with “BW.EH”, followed by a single character

and a dot, and ending with the file extension “.mseed”. Be aware that the filename of the SEED

volume is not used to extract information about network, location, station, or channel codes.

Instead, those identifiers are retrieved directly from the SEED volume. However, after indexing the

SEED volume the filename is linked to this data.

Technically, the file crawler may be seen as two parallel running infinite loops42. The first loop

keeps searching for new or modified files within the archive and stores the resulting file names into

a list. The latter is used by a second loop responsible for processing and indexing the given files.

Indexing is done using the obspy.seed submodule of the ObsPy library developed within this

study and introduced in detail in chapter 3.6. However, the following data are extracted for each

SEED file and directly stored as a single record in the database table “default_miniseed” of

SeisHub's database back-end:

• absolute path and filename of the SEED volume,

• network, station, location, and channel identifiers,

• start and end time of the contained waveform data,

• total number of gaps (missing SEED data records) and overlaps (records with reoccurring

time stamps) within the volume,

• total number of all data quality flags (set for each single data record) for detection of (1)

station dependent amplifier saturation, (2) digitizer clipping, (3) spikes, (4) glitches, (5)

missing or padded data, (6) telemetry synchronization error, (7) possible charging digital

filter, or (8) questionable time tag [IRIS 2009a, pp. 98-99], and

42 SeisHub uses an event-driven approach as briefly discussed in chapter 3.3.2, therefore it is actually one single loop
for all services within SeisHub, and methods are called periodically after a certain time interval. This may sound
similar but results into a completely different implementation.

Chapter 3 SeisHub: A Web-based Database for Seismology 54

• statistics (minimum, maximum, average, median and upper and lower quantile) about data

timing quality, a vendor specific value given in percentage taking clock quality and data

flags into account [IRIS 2009a, p. 114]. High timing qualities mean generally good overall

data quality. Timing quality is set for each single SEED data record and calculated over the

whole volume if supplied by the data logger at all.

There are a few restrictions to the crawling and indexing process.

1. A single SEED volume needs to contain only one network, station, location, and channel

code, otherwise the file will be ignored.

2. Each SEED file is treated in a single database entry pointing to the original file, regardless

if the same network, station, location, channel, start- and end-time combination already

exists. The uniqueness of waveform data within the database has to be assured within the

file system. Please note that the SEEDFileMonitor is able to follow symbolic links

(symlink) within the directory structure. Nevertheless, circular symbolic links within the

crawling directories needs to be avoided altogether.

3. It was chosen to neglect time information for each gap and overlap into the database, as

this would require a single database entry for each contiguous dataset.

The latter could be exploited by SEED volumes containing a huge number (n) of gaps by

generating countless entries (n+1) in the database back-end. A typical MiniSEED volume covering

a single channel for 24 hours and sampled at a frequency of 200 Hz can easily contain over 40,000

single SEED data records. This would result in a worst case scenario over 40,000 entries for just

one single file.

Further, please be aware of the configuration flag “keep_files” (disabled by default) within

the configuration section of the SEEDFileMonitor. Normally, SeisHub assumes that if a SEED

volume is found as removed from the file system, it may also safely delete the associated database

entry. This behavior works perfectly for small, decentralized waveform archives situated on the

local hard drives of the SeisHub server. However, the capacity of hard drives is restricted.

Moreover, common file archives on random access media are usually accessible via network-based

data storage systems such as Network-attached Storage (NAS) or Storage Area Network (SAN)

solutions. The author strongly recommends to enable the flag above for such environments. This

guarantees that no database entry is automatically deleted if files are not reachable because of

network problems. If really needed (for instance after manually deleting files from the archive), the

flag can be set manually for a few minutes. The deletion/clean-up process will be finished within

this time from the file crawler (depending on the archive size).

Chapter 3 SeisHub: A Web-based Database for Seismology 55

This leads to another point: indexing a waveform archive for the first time needs time. A single

MiniSEED volume of approximately 20 MB file size uses up to 1.5 seconds for processing and

indexing within the database. Depending on the size of the waveform archive, indexing the whole

archive may need several hours or even days. Indexing will be resumed if SeisHub is stopped and

restarted for any reason. The initial indexing could be further optimized by starting more processes

focusing purely on the indexing task (see chapter 3.3). However, this is only recommended for

computers with multiple cores.

At the current state, SeisHub only handles waveform files in the SEED or MiniSEED formats.

From the technical point of view there is no reasons not to integrate other waveform formats like

SAC [Goldstein 1998] or GSE2 [GSE 1997] (both are actually already supported within the ObsPy

library). However, the following considerations must be taken into account for such extension.

• Streaming support for many other waveform formats is limited, which would result in

significant longer processing times for cutting or merging of data of such formats. Here,

the full digital waveform data has to be extracted and processed – a time consuming

procedure compared to the handling of streams working on record basis.

• Both formats SAC and GSE2 in their current versions do not support network and location

identifier which are required within SeisHub. Workarounds could be either defaulting to

some preset values or extracting network and location names from the corresponding file

name or from an extra configuration file.

• Typical SEED features like timing and data quality information would not be available

within the database.

Generally it is a good idea to keep all files within the waveform archive in a single data format

in order to reduce the common issues of format conversions. SEED seems the most obvious choice

amongst all available waveform formats, partly because it is the standard format for archiving data

at the Seismological Observatory Fürstenfeldbruck at the Department of Earth and Environmental

Sciences, Geophysics, LMU Munich. However, as elaborated within the previous pages, it is also

the default exchange and archiving format of many major international data centers and it is used in

standard exchange protocols and services like SEEDLink and ArcLink. Staying with one format in

SeisHub also further reduces the complexity of the already quite large (but powerful) software

package. Nevertheless, the SeisHub client delivered with the ObsPy library offers the possibility of

to store the requested waveform data into SAC or GSE2 format.

Chapter 3 SeisHub: A Web-based Database for Seismology 56

3.5.5 Waveform Mapper

The waveform mapper within the “seismology” plug-in of SeisHub unifies the request interface

for locally archived seismograms and the retrieval of globally distributed waveform data via the

ArcLink protocol. As mentioned in chapter 3.4.4, mappers are plug-ins for SeisHub extending the

RESTful Web service. The waveform mapper at the current state offers only a HTTP GET method

to the client, therefore seismograms can only be requested from SeisHub. Upload, modification or

deletion of waveform data via a Web service is questionable and so far not supported.

The waveform mapper is bound to http://localhost:8080/seismology/waveform/getWaveform.

After a HTTP GET request approaches the mapper, SeisHub checks the internal database if any

data files are available for the required network, station, location, and channel combination during

the requested time span. If files are found, they will be merged into a single MiniSEED volume and

sent back to the requesting client. However, if no data could be found at all, the mapper will try to

fetch the seismograms directly from the ArcLink network. Any waveform data resulting from such

a request will be forwarded to the requesting client, but additionally stored by SeisHub in the

trunk/data/arclink directory. Repeated requests to the ArcLink network can be avoided by

allowing the waveform crawler service to index already downloaded data from the arclink
directory.

The functionality of SeisHub's waveform mapper will be demonstrated using for now the purely

URL-based Web service interface reflecting its web-based nature. As an example: retrieving

waveform data for all available channels (“*”) of the seismic station Manzenberg (“MANZ”) of the

BayernNetz network (“BW”) for the first 62.505 seconds of year 2008 would resolve into the

following URL:

http://localhost:8080/seismology/waveform/getWaveform?start_datetime=2008-01-

01T00:00:00.000000Z&network_id=BW&station_id=MANZ&channel_id=*&end_datetim

e=2008-01-01T00:01:02.505000Z.

The server's response after calling this URL is a single MiniSEED file containing three seismic

channels (“EHZ”, “EHE”, “EHN”), each with a sampling rate from 200 Hz and 12502 data

samples. Essentially one can now play with the parameters “start_datetime”, “end_datetime”,

“network_id”, “station_id”, “location_id”, and “channel_id” to retrieve locally available or

remotely accessible waveform data. Please refer to the WebDC web front-end at

http://www.webdc.eu/arclink/query for the complete list of possible network, station, and channel

combinations within the ArcLink network.

http://www.webdc.eu/arclink/query
http://localhost:8080/seismology/waveform/getWaveform?start_datetime=2008-01-01T00:00:00.000000Z&network_id=BW&station_id=MANZ&channel_id=EH*&end_datetime=2008-01-01T00:00:01.000000Z
http://localhost:8080/seismology/waveform/getWaveform?start_datetime=2008-01-01T00:00:00.000000Z&network_id=BW&station_id=MANZ&channel_id=EH*&end_datetime=2008-01-01T00:00:01.000000Z
http://localhost:8080/seismology/waveform/getWaveform?start_datetime=2008-01-01T00:00:00.000000Z&network_id=BW&station_id=MANZ&channel_id=EH*&end_datetime=2008-01-01T00:00:01.000000Z
http://localhost:8080/seismology/waveform/getWaveform

Chapter 3 SeisHub: A Web-based Database for Seismology 57

Please note that in the URL string above, option “location_id” is not set. Missing parameters are

usually automatically replaced with default values within the mapper, in this case all streams with

an arbitrary location code are retrieved.

An alternative method requesting the same waveform data as above is shown in listing 3-13. It

essentially shows a simple Python program using the obspy.seishub module of the ObsPy

library. This module offers a basic Application programming interface (API) directly

communicating with the waveform mapper. Please refer to chapter 3.6 for more information about

this very convenient request method.

Listing 3-13: Retrieving waveform data using the ObsPy module obspy.seishub.

Processing of seismograms is time and memory intensive, therefore the waveform mapper had

to be restricted to ensure an acceptable overall performance of the SeisHub server. Please be aware

of the following restrictions if working with the waveform mapper.

1. The maximal time span is limited to six hours – a larger time span request will

automatically be truncated.

2. The mapper assumes that a SeisHub server is either responsible for a single station, or, if

not, it fetches the related data via the ArcLink network. Routing of a request to an ArcLink

server is therefore only started if no data at all can be found within the local waveform

archive. This approach is problematic for queries using wildcards in any parameter.

Theoretically, any such request must be redirected to an ArcLink server searching for

possible new seismograms. However, this is no option because wildcards are often used in

standard requests, and an additional ArcLink request would significantly increase the

processing time (especially if for some reason the ArcLink server is not reachable). The

author recommends not to use wildcards for retrieving seismograms which are not

available via the local waveform archive.

3. Wildcards are not allowed for network and station codes.

from obspy.core import UTCDateTime
from obspy.seishub.client import Client
c = Client("http://localhost:8080")
start = UTCDateTime(2008, 1, 1, 0, 0, 0, 0)
end = start + 62.505
st = c.waveform.getWaveform("BW", "MANZ", "", "*", start, end)
st.write("output.mseed", format="MSEED")
print st

1

2

3

4

5

6

7

8

Chapter 3 SeisHub: A Web-based Database for Seismology 58

3.6 ObsPy

ObsPy43 is an open source, platform independent, modular software package for seismological

observatories initiated by Moritz Beyreuther, Lion Krischer, and the author in 2008 at the

Department of Earth and Environmental Sciences, Geophysics, LMU Munich. ObsPy is written in

the Python programming language and offers a wide spectrum of sophisticated tools for working

with seismic data such as waveform, inventory or event based data. A main feature is a consistent

interface for reading, writing, processing, and plotting seismograms of different standards, such as

SAC [Goldstein 1998], GSE2 [GSE 1997], MiniSEED and full SEED [IRIS 2009a].

One of its design goals was to keep the number of external dependencies as low as possible. For

performance reasons, however, ObsPy directly depends on NumPy44, a convenient, space-saving,

and very fast array manipulation package for Python. Although most functionalities are

implemented in Python, a few time critical subroutines, e.g. unpacking binary waveform data, are

handled via external shared C libraries, e.g. in Linux/Unix named shared objects (*.so) and in

Windows known as Dynamic Linked Libraries (DLL). It is possible to access these libraries via

Python's native foreign function module ctypes45 without writing additional external header files.

As pre-compiled shared libraries can be distributed within Python packages, this approach even

eliminates the need for an installed compiler and other build tools on the target system. This is

especially important for the Windows operating system, as compiler tools are usually not part of a

standard installation, but instead must be downloaded and installed manually.

Many submodules were directly influenced by the development of SeisHub and most of the

ObsPy's core classes are now standard dependencies of SeisHub. The following modules are

mainly created for or are required dependencies of SeisHub: obspy.core, obspy.mseed,

obspy.imaging, obspy.arclink, obspy.xseed, and obspy.seishub. Further modules of

ObsPy are obspy.gse2, obspy.signal, obspy.sac and obspy.wav, which will not be

covered in detail within this study.

Module obspy.core. The core module is required by all other modules of ObsPy. It provides

a convenient class for handling and manipulating UTC-based dates and times by extending

Python's DateTime object. The module also offers standardized interfaces and methods for

waveform (streams and traces), events, and inventory data.

43 http://www.obspy.org
44 http://numpy.scipy.org
45 http://docs.python.org/library/ctypes.html

http://docs.python.org/library/ctypes.html
http://numpy.scipy.org/
http://www.obspy.org/

Chapter 3 SeisHub: A Web-based Database for Seismology 59

Module obspy.mseed. This module is primary a Python wrapper around libmseed46, a fast C

library framework for manipulating and managing SEED volumes (see chapter 3.5.1) written and

maintained by Chat Trabant (IRIS). Additionally, the module offers several sophisticated functions

to retrieve quality information from SEED files such as the number of gaps and overlaps or

statistics about data quality and timing issues provided.

The obspy.mseed module is a required dependency for the file crawler of the SEED waveform

database extension of SeisHub. The performance of reading and processing of waveform data is of

utmost importance as the file crawler constantly synchronizes incoming real time waveform data

with the SeisHub database.

The following basic Python script reads a MiniSEED file named “test.mseed” from hard disk

into a stream object containing all available traces including header information and the unpacked

data samples. The function obspy.read() is provided by the obspy.core module introduced

above and may be used to import any waveform file supported by ObsPy. The actual file format is

either given as an additional parameter or will be auto-detected by checking the first few bytes of

the file. It is also possible to import multiple files into a single stream by providing a Unix style

pathname pattern as first parameter.

Listing 3-14: Reading a MiniSEED file from disk using the ObsPy module obspy.mseed.

The script simply returns information about all contained traces within the MiniSEED volume,

particularly network, station, location, and channel identifier, start and end date, number of samples

and sampling rate.

Module obspy.imaging. The obspy.imaging module is a collection of standard graphic

routines such as plotting waveform data as spectrograms or seismograms, or imaging fault-plane

solutions as beach ball plots [Fowler 2005, pp. 130-140]. All plotting functions directly rely on

pylab/matplotlib47, a powerful, open source 2D plotting library for Python capable of producing

high quality figures with a syntax almost identical to MATLAB.

Most routines were initially created for the Exupéry project and are required by SeisHub's

“seismology” plug-in.

46 http://www.iris.washington.edu/pub/programs/libmseed-2.3.tar.gz
47 http://matplotlib.sourceforge.net

import obspy
st = obspy.read("test.mseed")
print st

1

2

3

http://matplotlib.sourceforge.net/
http://www.iris.washington.edu/pub/programs/libmseed-2.3.tar.gz

Chapter 3 SeisHub: A Web-based Database for Seismology 60

The following example creates two beach ball plots using the moment tensor and the best double

couple solutions calculated by the USGS for the 2004 Sumatra earthquake [USGS 2004].

• Moment Tensor:

Mrr = 0.91, Mtt =-0.89, Mff = -0.02, Mrt = 1.78 , Mrf = -1.55, Mtf = 0.47;

• Double Couple (only using one nodal plane):

Strike = 274°, Dip = 13°, Slip = 55°.

Listing 3-15: Generating two beach ball plots using the ObsPy module obspy.imaging.

The Python program in listing 3-15 results into two PNG graphic files, similar to the two images in

figure 3-7.

Figure 3-7: Beach ball plots for a Moment Tensor solution (l.) and the best Double Couple (r.) for the

2004 Sumatra earthquake [USGS 2004] using the ObsPy module obspy.imaging.

Module obspy.arclink. This module simplifies requesting waveform, response, and

inventory data from any ArcLink server (see chapter 3.5.3). At the current state, ArcLink serves

continuous waveform either as full SEED or MiniSEED. Please note that the waveform request is

not restricted to event based data. Inventory information may be requested as Dataless SEED or in

an ArcLink specific XML format.

SeisHub uses ObsPy's ArcLink module within the waveform mapper to fulfill seismogram data

requests not available via the local waveform archive.

The next example illustrates how to request and plot 30 minutes of all three broadband channels

(“BH*”) of station Fürstenfeldbruck (“FUR”) of the German Regional network (“GR”) for an seismic

event around 2009-08-20 06:35:00 (UTC).

from obspy.imaging.beachball import Beachball
mt = [0.91, -0.89, -0.02, 1.78, -1.55, 0.47]
Beachball(mt, size=300, linewidth=2, color='#777777',
 file='obspy.imaging.beachball.1.png')
np1 = [274, 13, 55]
Beachball(np1, size=300, linewidth=2, color='#333333',
 file='obspy.imaging.beachball.2.png')

1

2

3

4

5

6

7

Chapter 3 SeisHub: A Web-based Database for Seismology 61

Listing 3-16: Retrieving and plotting seismograms using the ObsPy module obspy.arclink.

Waveform data fetched from an ArcLink node is converted into an ObsPy stream object. The

seismogram is truncated by the client to the actual requested time span, as ArcLink internally cuts

SEED files for performance reasons on record base in order to avoid uncompressing the waveform

data (see also chapter 3.5.1). The output of example 3-16 is shown in figure 3-8.

Module obspy.xseed. This module is a converter from Dataless SEED volumes into the

XML-SEED format, and vice versa. XML-SEED is a proposed XML markup standard for SEED

volumes [Tsuboi et al. 2004]. Additionally, a modified XML-SEED version has been created

(labeled as version “1.1”) to overcome minor shortcomings of the original standard like typos in tag

names, missing blocks of the specification, and inconsistent handling of some data fields. Both

versions are not directly compatible, but can be transformed into each other applying the parser to

read one format and export into another format.

Figure 3-8: Plotted waveform data using the ObsPy module obspy.imaging.

from obspy.core import UTCDateTime
from obspy.arclink.client import Client
c = Client()
start = UTCDateTime(2009, 8, 20, 6, 35, 0, 0)
st = c.getWaveform("GR", "FUR", "", "BH*", start, start + 60*30)
st.plot()

1

2

3

4

5

6

Chapter 3 SeisHub: A Web-based Database for Seismology 62

The module obspy.xseed is used within the “seismology” plug-in of SeisHub to generate XML

resources for seismic stations. The next example shows how to generate such XML-SEED

document from a given Dataless SEED file “dataless.seed.BW_MANZ” containing meta data of

of station Manzenberg. Listings 2-1 and 2-2 in the XML Essentials chapter already showed

excerpts of the input file and the resulting XML document.

Listing 3-17: Generating a XML-SEED document for station Manzenberg using module obspy.xseed.

Module obspy.seishub. The SeisHub module is a client implementation for easy interaction

with a SeisHub Web service instance. It provides classes and methods for retrieving seismic events,

stations, and waveform data using the mappers provided within the “seismology” plug-in of

SeisHub.

The next example retrieves exactly 10.5 seconds of all available seismograms of the BayernNetz

(“BW”) at the beginning of the year 2008 from a remote SeisHub server instance running at

http://teide.geophysik.uni-muenchen.de:8080. Afterwards, every single trace of each available

station, location and channel combination will be stored on the hard disk as a separated seismogram

file in the GSE2 standard format. It should be noted that the actual conversion to the GSE2 format

is done on client side.

Listing 3-18: Retrieving multiple seismograms from SeisHub using the ObsPy module obspy.seishub.

from obspy.xseed import Parser
p = Parser()
p.parseSEEDFile("dataless.seed.BW_MANZ")
xml_doc = p.getXSEED()
fp = open("dataless.seed.BW_MANZ.xseed", 'w')
fp.write(xml_doc)
fp.close()

from obspy.core import UTCDateTime
from obspy.seishub.client import Client
c = Client("http://teide.geophysik.uni-muenchen.de:8080")
start = UTCDateTime(2008, 1, 1, 0, 0, 0, 0)
st = c.waveform.getWaveform("BW", "*", "*", "*",
 start, start + 10.5)
for tr in st:
 filename = '%s.%s.%s.%s.gse2' % (tr.stats.network,
 tr.stats.station,
 tr.stats.location,
 tr.stats.channel)
 tr.write(filename, format="GSE2")

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

9

10

11

12

http://teide.geophysik.uni-muenchen.de:8080/

Chapter 3 SeisHub: A Web-based Database for Seismology 63

A second example 3-19 fetches waveform, poles, zeros, and gain for a certain seismic station

(BW.RJOB..EHZ) on a given time span from the same SeisHub server. Poles and zeros are then

used to simulate the seismogram with a Wood-Anderson seismometer [NMSOP 2002, c. 11, p. 43]:

• poles: -6.2832 – 4.7124i, -6.2832 + 4.7124i,

• zeros: 0.0 + 0.0i, 0.0 + 0.0i, and

• gain: 1 / 2.25.

Listing 3-19: Retrieving zeros, poles, and the gain from SeisHub and simulating a Wood Anderson

seismometer using the ObsPy modules obspy.seishub and obspy.signal.

from obspy.core import UTCDateTime
from obspy.seishub.client import Client
from obspy.signal import seisSim
import obspy, pylab as pl
PAZ of Wood-Anderson seismometer
PAZ_WA = {
 'poles': [-6.2832 - 4.7124j, -6.2832 + 4.7124j],
 'zeros': [0.0 + 0.0j, 0.0 + 0.0j],
 'gain': 1. / 2.25
}
fetching PAZ and waveform via SeisHub
c = Client("http://teide.geophysik.uni-muenchen.de:8080")
start = UTCDateTime(2008, 10, 28, 8, 30, 0)
st = c.waveform.getWaveform("BW", "RJOB", "", "EHZ", start,
 start + 180)
paz = c.station.getPAZ("BW", "RJOB", start)
df = st[0].stats.sampling_rate
simulating instrument
data = seisSim(st[0].data, df, paz,
 inst_sim=PAZ_WA, water_level=600.0)
plotting using matplotlib
T = pl.arange(0, len(st[0])/df, 1/df)
pl.subplot(211)
pl.plot(T, st[0].data, 'k')
pl.title(st[0].getId() + ' ' + str(st[0].stats.starttime))
pl.ylabel(paz['name'])
pl.subplot(212)
pl.plot(T, data, 'k')
pl.ylabel('Wood Anderson')
pl.xlabel('Time [s]')
pl.savefig('obspy.seishub.paz.png', dpi=300)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Chapter 3 SeisHub: A Web-based Database for Seismology 64

For in-depth theoretical background for inverse and simulation filtering of digital seismograms,

please see Scherbaum [2007, pp. 137-164]. The simulation method seisSim itself and the

graphical output via pylab/matplotlib was written by Moritz Beyreuther (lines 18-31). However, the

example program tries to emphasize on data retrieval (lines 11-17) using the SeisHub server. The

program results into graph 3-9 containing two seismograms showing the original waveform

recorded with an Streckeisen STS-2 seismometer and the Wood-Anderson simulated seismogram.

Figure 3-9: Plots of original seismogram (Streckeisen STS-2) and simulated waveform (Wood-Anderson)

using obspy.signal and matplotlib. Scherbaum 2007

All modules of the ObsPy package are supporting setuptools48. Moreover, ObsPy modules

considered stable are additionally registered with the Python Package Index49 (PyPI).

The actual source code, an auto-generated API documentation, basic installation instructions

and a comprehensive tutorial may be found at the ObsPy homepage (http://www.obspy.org). The

library is open source software and contributions enhancing its functionality are more than

welcome.

48 http://pypi.python.org/pypi/setuptools/
49 http://pypi.python.org/pypi/

http://www.obspy.org/
http://pypi.python.org/pypi/
http://pypi.python.org/pypi/setuptools/

Chapter 3 SeisHub: A Web-based Database for Seismology 65

3.7 Extreme Programming (XP)

The development process of SeisHub and ObsPy were both heavily driven by the principles of

Extreme Programming. The XP approach is a relatively new software development methodology

introduced by Kent Beck in 1999. Beck originally described the goals of XP by four basic

concepts50: simplicity, communication, feedback, and courage [Beck 1999, pp. 32-36].

Simplicity. Traditional theories state that “software becomes increasingly expensive to change

over the lifetime of a project” [Burke & Coyner 2003, p. 11]. XP encourages simplicity in software

design and coding in order to minimize the cost of change. This means that programmers should

use the simplest possible design that fulfills the desired requirements. Extra functionality can be

added later, if there is an actual need for it. Simplicity is viewed as the heart of XP because it

affects all other concepts significantly.

Communication. This concept can be split between code documentation and communication

between developers and/or end users.

Code communicates best to programmers when the concept of simplicity is applied. Supporting

techniques are source code comments and self-documenting51 code. A critical part of code

documentation are unit tests which show the design of a individual class, method or function

effectively by exposing functionality via concrete examples. XP requires that the major part of the

source code is covered by unit tests.

Communication between developers and end users should be done on a regular basis sharing and

validating ideas and further project requirements.

Feedback. XP relies on small working steps and short release cycles in order to receive

immediate feedback on the current project status. End users may evaluate each newly developed

feature and can easily interfere or influence further development.

Direct feedback on the quality of code is retrieved via unit tests. Programmers write unit tests for

all programming logic that could possibly break. Also, existing software flaws are best

communicated by unit tests that proves the failure of a certain piece of code.

Concrete feedback works together with communication and simplicity. The more feedback you

have, the easier it is to communicate. Simple code means more and faster feedback in form of

functional tests by a tester or even the end user.

50 Beck refers to them as “values”, similar to long term social goals of human societies, which often conflict to short
term individual goals.

51 Also known as self-describing source code. Basically a loose set of rules to ensure readable programs, such as human
understandable variable names or clean structured source code.

Chapter 3 SeisHub: A Web-based Database for Seismology 66

Courage. Basically, developers and end users inexperienced with XP need courage to go for

some of the involved XP practices, as e.g. pair programming or test-driven development seem to

slow down the initial development progress. Programmers also need courage to take time to try out

different approaches and as well be able throw code away for the sake of simplicity. Overall it will

improve the cost of change.

Beck derives more general principles and finally concrete practices from the four concepts.

None of the principles and practices are completely new – as a matter of fact most are as old as

programming itself and its techniques have been proven over decades, especially for the

management strategies even for centuries [Beck 1999, p. 9]. The innovation of XP is picking the

best practices of other methodologies and combining them.

The following XP practices introduced by Beck have been successfully applied during the SeisHub

project:

• The Planning Game: The scope of the next release is constantly changed to the current

need. A ticketing system has been used to reorder and prioritize identified short term tasks

in order to reach long term goals.

• Simple design: Following the concept of simplicity, the system has to be designed as

simple and elegant as possible. This is harder than it sounds, as elegant simple code needs

experience and effort. Also, SeisHub is “only” a prototype produced by a very small team

of programmers in a limited time frame. A lot of potential for simplification is probably left

and code optimization is a continuing task.

• Comments: Source code comments and self-documenting code are key factors for the

readability of code. Frankly, software without it is plain useless.

• Unit tests: SeisHub and ObsPy have a huge test coverage52, currently containing over 380

unique test cases mostly applying multiple tests per case. Most software bugs detected have

been documented as an own test case in order to prevent recurrence of the same specific

issue.

• Test-driven development (TDD): This technique takes the practices of unit tests to a more

extreme level. It specifies that test cases defining the desired functionality must be written

before actually implementing the source code. Most core routines of SeisHub have been

designed with TDD.

• Refactoring: The source code has been constantly restructured and its design improved in

order to fit the concept of simplicity or add further flexibility.

52 Compared with other geophysical software projects known to the author.

Chapter 3 SeisHub: A Web-based Database for Seismology 67

• Pair programming: Many parts of SeisHub and ObsPy have been written by two or more

programmers together directly reviewing each others work. Weekly sprints53 ensure face-

to-face communication between developers which increases the overall productivity and

motivation.

• Collective ownership: Any developer can change any code at any time. Additional, all

source code of SeisHub (http://www.seishub.org) and ObsPy (http://www.obspy.org) have

been publicly available in the Internet from the very beginning of each project.

• Coding standards: Techniques like pair programming and collective ownership require a

standardized coding convention between all parties involved. Like most Python projects,

SeisHub and ObsPy adhere to the PEP 8: Style Guide for Python Code [Rossum & Warsaw

2001], PEP 257: Docstring Conventions [Goodger & Rossum 2001], and Epytext Markup

Language [Loper 2008], an extension of Python's Docstring conventions.

In order to support the communication and feedback concepts and related practices of XP, in

2006 the author introduced the web-based project managing software Trac54 and the version control

system Subversion55 at the Department of Earth and Environmental Sciences, Geophysics, LMU

Munich. Both software packages are nowadays standard development tools used in many major

software projects at the geophysics section of the department. Trac offers a sophisticated issue

tracking system, a documentation wiki and a source code browser in one unified web front-end.

Trac itself is written in Python, has a very modular layout and is therefore highly customizable.

Many plug-ins have been written by the author to improve Trac for a multi-user, multi-project

environment56. The plug-in architecture of Trac highly inspired the component system of SeisHub.

Extreme Programming proved as an extremely valuable and effective software development

technique, once every developer involved adapted the practices stated above. Especially test-driven

development increased the overall readability and validness of source code. The author strongly

recommends to implement XP practices in all future scientific software projects, even for projects

with only a single developer.

53 A brief, intense software development gathering focusing mostly on a single issue.
54 http://trac.edgewall.org
55 http://www.subversion.org
56 http://svn.geophysik.uni-muenchen.de/trac/tracmods/

http://svn.geophysik.uni-muenchen.de/trac/tracmods/
http://www.subversion.org/
http://www.trac.org/
http://www.obspy.org/
http://www.seishub.org/

Chapter 3 SeisHub: A Web-based Database for Seismology 68

3.8 Future Extensions

SeisHub has undergone a long developing process due to the rather complex project topic and

the very limited manpower actually committed to the project. As already implied in the first chapter

of this work: SeisHub is primary a software prototype exploring and demonstrating web-based

technologies to handle seismological data. Unfortunately not every idea having emerged over the

last years could be implemented so far. This section will cover features which are still missing or

need major improvement in future additions.

Insufficient user management. SeisHub offers only a rudimentary user management restricting

access to all protected resources through a simple user name and password combination. Although

multiple users (and passwords) may be created, all get the same access rights granted within

SeisHub. A sophisticated user management is not a trivial task, it has to be elaborated on real use

cases. The latter are missing for now, but are needed to solve all questions of scope, such as: On

what level should SeisHub be restricted - service, components or even each single resource? Do

granted rights inherit from parent resources underlying objects? Is a plain URL-based restriction of

resources feasible? Is a group or role based middle layer necessary? There is no way to implement

a solution which covers all possible scenarios mentioned above. For now, the implemented user

management fulfills the requirement for a basic protection of resources. However, this is

definitively a weak point of SeisHub, which should be improved once there are specific needs for

it.

Data sharing. A very unique feature of SeisHub would be the possibility to share automatically

or on request data amongst different SeisHub servers. This idea arose in a very early development

stage of SeisHub and some technical details related to this topic are already solved and

implemented. Examples are the (for now completely disabled) heartbeat service sharing a list of

running SeisHub instances, or the (yet unused) origin field in the meta data section of every XML

resource to reflect the real source of a document. SeisHub's architecture certainly offers the

possibility to explore this feature.

Limited database support. One of SeisHub's early design goals to support every SQL database

able to interface with the SQLAlchemy library has not been reached, because a few dialect specific

features had to be used within this project. One example is the PostGIS57 spatial database extension

for PostgreSQL required by the Exupéry project (see chapter 4.1). However, this is negligible for

GIS independent projects. More restricting is the missing support for SQL Views in SQLAlchemy,

which must be added manually for each SQL dialect used. There are also other minor issues related

57 http://postgis.refractions.net

http://postgis.refractions.net/

Chapter 3 SeisHub: A Web-based Database for Seismology 69

to the automated creation of unique primary keys. Finally it was decided for now to support only

the databases SQLite and PostgreSQL in order not to downgrade development progress. Supporting

more databases later on is possible assuming there is an actual need for it within the seismological

community.

Limits on the database back-end. At the start of the project in 2006 native XML databases

were rather rare and mostly not open source software. The situation has eased as many new open

source projects focusing on this topic appeared over the last few years. A significant amount of

brainstorming and development time has been used for the correct and fast implementation of XML

to SQL mapping within SeisHub. Still there are some unsolved issues with the current

implementation, such as the limited XML namespace and grouping support for indexes as

mentioned in chapter 3.4.2. Developers of future versions of SeisHub should try to improve these

issues. Additionally, they should carefully watch the XML database market and even consider

changing the database back-end at one point. This certainly invalidates part of this study, on the

other hand the benefit of using a community supported open source native XML database tested

and improved by many people may outweigh the drawbacks. However, such a decision would

result in numerous changes of SeisHub's core components connected to data handling. It also

conflicts with the goal of having a plain SQL database back-end working behind the scene.

Fast waveform previews. The waveform indexing process could also be used to generate an

additional file of each daily SEED volume containing minimal and maximal values at a very low

frequency, e.g. every 60 seconds. Those files could be used in a GUI or web-based front-end for a

fast preview of seismic events over multiple channels and large time spans.

4 Scientific Application of SeisHub

Chapter 4 Scientific Application of SeisHub 73

Introduction. SeisHub's ability to process, store, and distribute collocated multi-component,

multi-disciplinary data has already been proven by the two geophysical projects: Exupéry, a

decision support system for a mobile volcano monitoring system, and BayernNetz, the

seismological network of the Bavarian Seismological Service (Erdbebendienst Bayern). Both

projects and relevant plug-ins developed for SeisHub will be introduced throughout the following

two chapters.

4.1 Exupéry - Volcano Fast Response System

SeisHub's first real application as database is Exupéry58, a mobile Volcano Fast Response

System (VFRS) that can quickly be deployed for volcanic monitoring in case of a volcanic crisis or

volcanic unrest anywhere in the world [Hort & Zakšek 2008]. The primary goals of the Exupéry

project are providing a stable communication basis for stations in the field and an expert system

collecting data from various sources into a centralized database that allows scientists and local

authorities to assess the data through one unified web-based GIS interface [Bernsdorf et al. 2009].

Field data is hereby collected via a relatively new distributed wireless network approach based on

mesh nodes creating a self-organized multi-point to multi-point network. This technology is used

for communication with established ground-based standard volcanic monitoring techniques, such

as:

• seismology using multiple three-component broadband instruments,

• ground deformation via GPS sensors and a IBIS-L59 Ground Based Synthetic Aperture

Radar (GBSAR) device,

• remote sensing of areal SO2 distribution accompanied by measurements of SO2 and BrO

flux, and

• plume speed using the dual-beam Miniature Differential Optical Absorption Spectrometer

(Mini-DOAS).

A novelty of the Exupéry project is the direct integration of satellite-based observations like

(satellite names in brackets):

• areal mapping of ground deformation using DInSAR (Differential Interferometric

Synthetic Aperture Radar) and PInSAR (Polarimetric Interferometric Synthetic Aperture

Radar) methods (Envisat, ERS1,2, ALOS, TerraSAR),

• wide area degassing signatures, especially SO2 (GOME-2), and

58 http://www.exupery-vfrs.de
59 http://www.idscompany.it/page.php?f=179&id_div=4

http://www.idscompany.it/page.php?f=179&id_div=4
http://www.exupery-vfrs.de/

Chapter 4 Scientific Application of SeisHub 74

• detection of thermal activity via infrared imaging (AVHRR, GOES, MODIS, ASTER).

The system also includes an automatic alert level estimation in order to characterize the activity

state of the volcano. The alert level is directly incorporated into the GIS, supporting scientists and

local authorities allowing to improve the decision making process in the case of a volcanic unrest.

Exupéry involves researchers of nine different research institutions allover Germany and is

funded by the German Ministry for Education and Research (BMBF) within the Geotechnologien60

project [Zakšek 2008]. The project is divided into five work packages among the project partners.

One of the work packages, supervised by Joachim Wassermann (Department of Earth and

Environmental Sciences, Geophysics, LMU Munich) and Klaus Stammler (BGR), focuses on the

expert system containing the central geophysical database (SeisHub), the GIS interface (developed

by Jena-Optronik GmbH61), and the alert level estimation (Moritz Beyreuther, Department of Earth

and Environmental Sciences, Geophysics, LMU Munich).

Although the development of SeisHub was not directly initiated by Exupéry, many architectural

decisions were strongly influenced by its database requirements. The project offered an ideal and

realistic test scenario as the demanded centralized geophysical database had to handle all kinds of

data categories:

• event-based and continuous data,

• stationary, ground-based measurements and satellite data,

• time series, images (2D), and models (3D).

These very specific demands within the Exupéry project opened up new insights and ideas

which improved the overall outcome of SeisHub. The following components and extensions have

been created by the author for the Exupéry project:

• plug-in trunk/plugins/seishub.plugins.exupery including package “exupery“

and thirteen different resource types reflecting all possible data sources covered within this

project,

• various XSLT documents for format conversion of resource types (all GIS related),

• several mapper classes offering services for the GIS system,

• imaging routines for plotting fault-plane solutions (beach balls) and seismograms (see

chapter 3.6), and

60 http://www.geotechnologien.de
61 http://www.jena-optronik.com

http://www.jena-optronik.com/
http://www.geotechnologien.de/

Chapter 4 Scientific Application of SeisHub 75

• new base component interface class allowing to create user-defined SQL Views, primary

used for the non-standard, spatial database extension PostGIS62 for PostgreSQL needed by

the GIS system.

All resource type specific validation schemas were delivered by the BGR. Further many seismic

functionalities of the “seismology” package are also directly used and therefore tested within

Exupéry.

The close cooperation with the developers of the GIS system, as first real Web service client for

SeisHub's RESTful Web service, greatly influenced and enhanced the implementation design and

handling of server-side mapper classes. The front-end of the GIS system is a Flash63 application

embedded into a website. The Flash plug-in is available free of charge for all major browsers. The

GIS system is backed by the Java application server Apache Tomcat64 deploying the mature open

source software GeoServer [Garnett et al. 2009] able to handle standardized georeferenced datasets.

GeoServer has further been adapted to interface with the SeisHub database. The GIS system also

incorporates maps from the Google Maps Web service as default cartographic material.

Figure 4-1: Data layer selection panel “Add layer” of Exupéry's web-based GIS front-end (right) and the

estimated “Alter level” panel for the selected volcano and timespan (middle left).

Figures 4-1, 4-2, and 4-3 give a small impression of the layout and functionality of the web-

based GIS front-end. The combination of GeoServer and the Flash application are responsible for

preprocessing and rendering of all seen data. However, GeoServer frequently queries the SeisHub

database fetching data and/or meta-data of available resources, partly converting them into

62 http://postgis.refractions.net
63 http://www.adobe.com/de/products/flashplayer/
64 http://tomcat.apache.org

http://tomcat.apache.org/
http://www.adobe.com/de/products/flashplayer/
http://postgis.refractions.net/

Chapter 4 Scientific Application of SeisHub 76

GeoServer compatible formats, or accessing primary data directly via SQL statements. Those three

application fields will be examined briefly in the next paragraphs.

The first data layer in picture 4-2 displaying volcanic SO2 column densities is essentially given

from the data provider as image in the georeferenced Tagged Image File Format (GeoTIFF). A

GeoTIFF image may contain all kinds of information for exact spatial reference, however it cannot

cover additional details like measurement methods and devices, or secondary, derived information.

Such files are therefore always associated with an XML resource within SeisHub, providing the

required (meta-)data and pointing to the original GeoTIFF image on the local file system. Besides

fetching resources, GeoServer also uses that meta information to provide meaningful layer-based

setup dialogs for proper filtering of data, e.g. restricting date chooser to minimum and maximum

data values of all entries.

Figure 4-2: Two activated georeferenced satellite-based data layers: (1) volcanic SO2 column densities,

and (2) hypothetical volcanic trajectories of plumes.

The direct data conversion from stored XML resources into GeoServer compatible formats is

demonstrated in the second data layer of figure 4-2. The visualized hypothetical volcanic

trajectories are saved on daily basis as a XML resource in SeisHub basically containing a point

cloud of latitude, longitude, and height values complemented by additional meta information. The

point cloud of such resources can be transformed on request with a XSLT document into the

Keyhole Markup Language (KML) standard [OGC 2008]. KML is used directly within GeoServer,

but also may be viewed by any other products able to process such geospatial data.

GeoServer's direct access via SQL statements is shown for the seismic station layer in picture 4-3.

Data of each station is stored as an unique XML resource within SeisHub. In order to generate a

geospatical object layer which can be understood and processed by the GeoServer requires an

Chapter 4 Scientific Application of SeisHub 77

iteration over all XML station resources (or their indexes) which can be time consuming for large

datasets. Using the PostGIS extension combined with SQL Views reduces the processing time

significantly, as PostGIS can be handled from GeoServer very efficiently.

Figure 4-3: Seismic station network quality layer during the Azores field test (April – September 2009).

The Exupéry prototype including all necessary software components has been running at the

BGR in Hannover since spring 2009. Satellite data is automatically fetched via scripts from the

respective data providers and included into the database. Ground-based data storage and retrieval

has been tested only with sample data provided by the responsible data providers, due to the lack of

real data at this point. Additionally, a similar setup of the Exupéry prototype has been tested under

field conditions at the Azores since April 2009. This setup includes over 20 seismic stations, the

ground measurements of deformation and gas flux. Merely ground-based data could be collected

due to limited Internet bandwidth. All data retrieved at the Azores was synchronized at daily base

with the BGR setup.

SeisHub proved for the Exupéry project as a very stable geophysical database server and Web

service, as no major issues or bugs have occurred yet during the whole runtime. This is by far the

most important requirement for any server software. The concept of easy and fast extensibility by

adding new indexes, schemas, style sheets, mappers, and resource types has been applied by the

author and others many times. The setup process of SeisHub has been tested by various people

within the project several times and was reported as feasible. The GIS system and other client

programs made excessive use of SeisHub's Web service interfaces proofing its reliability. Last but

not least, SeisHub already seems to have an impact in the volcano community, as scientists with

similar projects show great interest in keeping things compatible or reducing the work and cost of

creating their own volcanological database.

Chapter 4 Scientific Application of SeisHub 78

4.2 Bavarian Seismological Network (BayernNetz)

BayernNetz is a modern seismological network of the Bavarian Seismological Service65

(Erdbebendienst Bayern), a cooperation between the Bavarian Environment Agency66 (Bayerisches

Landesamt für Umwelt) and the Department of Earth and Environmental Sciences, Geophysics,

LMU Munich. BayernNetz has been designed for monitoring local seismic activity in Bavaria and

bordering regions for events of a local magnitude (Richter magnitude) ML of 2.0 and above [Kraft

2006]. It currently (September 2009) consist of five broadband and eighteen short period

seismometer stations, which data is collected, archived and analyzed at the Geophysical

Observatory in Fürstenfeldbruck near Munich. Waveform data received from broadband stations

are additionally transmitted in real time to the European data center ORFEUS and BGR.

The hardware and software setup of BayernNetz for automated and continuous recording,

transferring and archiving of waveform data is state of the art and therefore well equipped for the

future. However, there is a growing deficit of software for analyzing and processing this data. The

current seismic database and processing GUI used on a daily base by the analyzing seismologists at

the observatory is the software package GIANT [Rietbrock 1996; Rietbrock & Scherbaum 1998].

The Graphical Interactive Aftershock Network Toolbox (GIANT) was written by Rietbrock during

his doctoral thesis in 1996 and is closely connected with Scherbaum's Programmable Interactive

Toolbox for Seismological Analysis (PITSA). GIANT uses the proprietary, embedded database

system “db_Vista” from Raima Corporation67 as a data back-end. The package also grants access to

various standard analysis programs such as HYPO71 [Lee & Lahr 1972; Lee & Lahr 1975] or

FOCMEC [Snoke et al. 1984].

GIANT proved over the last decade as a reliable database system for event-based waveform

processing, but it is rather ill-prepared for working with continuous multi-parameter datasets. A

major goal of this study was to create a flexible database able to serve event-related data structures

as well as continuous data streams. The SEEDFileMonitor service (see chapters 3.3.2 and 3.5) has

been developed in order to fulfill these requirements with SeisHub. Additionally, all needed

parametric data types and mappers are defined in the plug-in “seismology”. The latter is currently

able to handle automatically detected or manually reviewed seismic events, station information,

and event-based and continuous waveform data. All seismic data types and related mappers will

briefly be introduced within the next paragraphs.

65 http://www.erdbeben-in-bayern.de
66 http://www.lfu.bayern.de
67 http://www.raima.com

http://www.raima.com/
http://www.lfu.bayern.de/
http://www.erdbeben-in-bayern.de/

Chapter 4 Scientific Application of SeisHub 79

Seismic stations: Seismic network operators usually deliver station specific meta data either via

Dataless SEED files or via so-called response files (RESP) [IRIS 2009c], a derived ASCII format

of Dataless SEED. Both formats are not XML-based and therefore not directly deployable within

SeisHub. The XML-SEED converter introduced with the ObsPy library (chapter 3.6) allows for

generating standard XML-SEED documents from Dataless SEED files. These XML documents are

used in SeisHub as unique station resources stored within the resource type “station” in the package

“seismology”. Please be aware that the term seismic station is actually incorrect, as each XML-

SEED resource is restricted to describing a single seismic device using a unique combination of

network, station, and location codes (see chapter 3.5.1) during a certain time span, but may have

multiple channel codes declared. Also, any modification of the station setup such as replacing an

instrument, must be announced by a new XML-SEED document.

The complete overview of all available station resources within the database can be found at

http://localhost:8080/xml/seismology/station/68. XML station resources are child nodes of this

folder. The format option “map” may be used to retrieve a simple XHTML representation of a

station resource (see figure 3-6 for station Manzenberg, BayernNetz).

There are two station-specific mappers delivered in the “seismology” plug-in.

1. Mapper http://localhost:8080/seismology/station/getList returns a list of all indexed values

of each single seismic station within SeisHub used by the obspy.seishub client.

2. Mapper http://localhost:8080/seismology/station/dataless/XXX can be used to convert a

single station resource on the fly from the XML-SEED into the Dataless SEED format

using the obspy.xseed module.

The final part “XXX” has to be replaced by the actual resource name of a station XML resource,

e.g. “dataless.seed.BW_MANZ.xml” for station Manzenberg of the BayernNetz. All available

resource names can be seen either by the station overview or by using the first mapper.

Seismic events: Seismic events are currently stored in a custom, simplified XML dialect

derived from QuakeML. It is not 100% compatible with the currently available version of

QuakeML, as the latter is still under heavy development closely connected to the NERIES project

(see chapter 3.5.3). However, the transformation process from the internally used format into a

finalized, officially accepted QuakeML standard should not be difficult, as they are closely related.

Seismic event resources are generated either by the real-time processing system Earthworm (see

chapter 3.5.1) or are stored after a manual review of a seismic event using GIANT. Both

applications have been extended with a small upload program, which creates and transmits XML

resources to SeisHub. Unique identifiers used within Earthworm and GIANT are also applied to

68 For a user friendly output in a browser use the additional parameter “?format=xhtml”.

http://teide.geophysik.uni-muenchen.de:8080/seismology/station/getList
http://teide:8080/seismology/station/getList
http://teide:8080/xml/seismology/station/

Chapter 4 Scientific Application of SeisHub 80

generate unique resource names for the XML database. All stored XML-based event resources can

be browsed via http://localhost:8080/xml/seismology/event/. Similar to seismic station resources,

the option “map” can be used to retrieve a simple XHTML representation of a seismic event.

There are currently two event-specific mappers delivered in the “seismology” plug-in.

1. Mapper http://localhost:8080/seismology/event/getList returns a list of all indexed values

of each seismic event within SeisHub used by the obspy.seishub client.

2. Mapper http://localhost:8080/seismology/event/plotBeachball creates a graphical fault-

plane solution as beach ball plot by using the obspy.imaging module.

Waveform data: All seismic waveform data recorded within the BayernNetz are automatically

fetched, processed, and archived by the real-time data acquisition and processing system

SeisComP. Time series are hereby stored into a central file archive of daily, channel-specific

MiniSEED files (see also SDS, chapter 3.5.1). These waveforms are automatically indexed by

SeisHub using the SEEDFileMonitor service, which is elaborated in chapter 3.5.4. The mapper

unifying the request for archived seismograms and the retrieval of externally waveform data via the

ArcLink protocol is discussed in full detail in chapter 3.5.5.

A SeisHub instance has been running at the Geophysical Observatory Fürstenfeldbruck since

spring 2009. This setup is currently used parallel to the GIANT database back-end to evaluate its

features and eventually smooth the transition process to the new technology. The author currently

focuses on finding a suitable graphical processing tool (preferably based on Python) capable of

interconnecting with SeisHub. Please be aware that the latter was not part of this study. However,

first steps to solve this issue have been taken with the Exupéry GIS. Moreover, the author is in

close contact with the developers of the next generation of the seismic processing tool Seismic

Handler [Stammler & Walther 2009], who expressed great interest in incorporating the ObsPy

library and interfacing with SeisHub.

http://teide:8080/seismology/station/getList
http://teide:8080/seismology/station/getList
http://localhost:8080/xml/seismology/event/

5 Conclusions

Chapter 5 Conclusions 83

The object of this study was to develop a database prototype demonstrating and exploring web-

based technologies in the field of seismology. Designing such a novel database system from scratch

allows a developer to immediate many of the deficiencies of existing seismic databases outlined in

the general introduction of this thesis. SeisHub, the database approach introduced by the author,

offers a suitable, modern solution for the following known problems of currently deployed database

systems. In more detail, SeisHub

1. serves event-related data structures as well as continuous seismic data streams,

2. stores and distributes collocated multi-component, multi-disciplinary data,

3. handles quality information delivered within seismic data streams,

4. can import waveform data from neighboring seismological networks via the

ArcLink/WebDC approach,

5. can store data and models of computed synthetic waveforms for specific events or region

of interest,

6. has a modern, modular, platform independent software architecture, and

7. is completely based on standards and open source software.

Another achievement of this study is the foundation of the seismological library ObsPy for the

Python programming language. ObsPy offers a wide spectrum of sophisticated tools for working

with seismic data such as waveform, inventory or event-related data. Many submodules were

directly influenced by the development of SeisHub and most of the ObsPy's core classes are now

standard dependencies of SeisHub. Noteworthy modules developed by the author are:

1. obspy.arclink, a comprehensive ArcLink/WebDC client;

2. obspy.xseed, a format conversion tool between Dataless SEED and the XML-SEED

standard; and finally

3. obspy.seishub, a RESTful Web service client implementation able to interface with a

SeisHub server.

Certain features of the SeisHub database system and the ObsPy library are unique within the

seismological community and therefore emphasized again in the following paragraph.

1. SeisHub is able to process and distribute event-based and continuous seismic waveform

data as well as collocated multi-component, multi-disciplinary datasets within one single

database system. This is achieved by its flexible, modular database design and by using

XML resources as fundamental unit of storage for parametric datasets.

Chapter 5 Conclusions 84

2. Waveform data requested by a client and not available within the local waveform archive

can automatically be fetched by SeisHub from remote seismic data centers using the

ArcLink protocol. Results are directly incorporated into the local waveform database.

3. The obspy.xseed module of the ObsPy library offers the first open source, platform

independent conversion tool for Dataless SEED volumes into the XML-SEED standard

format, and vise versa.

The database structure designed within this study forms the nucleus for future developments.

Further steps will focus on the adaptation of a suitable graphical processing tool using SeisHub as a

data back-end. SeisHub's ability to manage observational as well as synthetic seismograms offers

entirely new ways of analyzing data, extracting (differential) travel times, identifying systematic

misfits in data, etc. Once such a processing tool is available, it will have a strong impact on the

practice of analyzing, processing, and interpreting of waveform data within seismology.

References

References III

[Ahern 2000] Ahern, T., Automated Data Handling within the IRIS DMS, IRIS DMS Electronic Newsletter,

vol. 2, no. 4.

[Beck 1999] Beck, K., Extreme Programming Explained: Embrace Change, Addison-Wesley Longman,

Amsterdam, ISBN 0-321-27865-8.

[Berners-Lee et al. 2005] Berners-Lee, T., R. Fielding, and L. Masinter, Uniform Resource Identifier (URI):

Generic Syntax, STD 66, RFC 3986, http://tools.ietf.org/html/rfc3986 (last accessed 15 September

2009).

[Bernsdorf et al. 2009] Bernsdorf S., R. Barsch, K. Zakšek, M. Beyreuther, M. Hort, and J. Wassermann,

Decision support system for the mobile volcano fast response system, Int. Journal of Digital Earth

(IJDE), submitted.

[Bos 2003] Bos, B., XML in 10 points, http://www.w3.org/XML/1999/XML-in-10-points.html (last accessed

15 September 2009).

[Bourret 2009] Bourret R., XML Database Products:XML-Enabled Databases,

http://www.rpbourret.com/xml/ProdsXMLEnabled.htm (last accessed 15 September 2009).

[BRTT 2009] BRTT: Boulder Real Time Technologies, Boulder Real Time Technologies,

http://www.brtt.com (last accessed 15 September 2009).

[Burke & Coyner 2003] Burke, E. M., and B. M. Coyner, Java Extreme Programming Cookbook, O'Reilly

Media, Inc., ISBN 978-0-596-00387-6.

[Buxmann et al. 2003] Buxmann P., E. Wüstner, R. Barsch, C. Rödel, and S. Schade, <x: act> -Ein

Webservice für die Konvertierung von XML-Dokumenten, Wirtschaftsinformatik, vol. 2, pp. 143-160.

[Casey & Ahern 1999] Casey R., and T. Ahern, Technical Manual for Networked Data Centers (NetDC)

Protocol, http://www.iris.edu/manuals/netdc/NETDC.htm (last accessed 15 September 2009).

[Codd 1970] Codd, E.F., A Relational Model of Data for Large Shared Data Banks, Communications of the

ACM , vol. 13, no. 6, pp. 377–387.

[Costello 2009] Costello, R. L., Building Web Services the REST Way, http://www.xfront.com/REST-Web-

Services.html (last accessed 15 September 2009).

[Daconta et al. 2003] Daconta, M. C., L. J. Obrst, and Smith K. T., The Semantic Web: A guide to the future

of XML, Web Services and Knowledge Management, Wiley Publishing, Inc., ISBN 0-471-43257-1.

[Davis 2008] Davis, S., Mastering Grails: RESTful Grails, http://www.ibm.com/developerworks/library/j-

grails09168/ (last accessed 15 September 2009).

References IV

[Eck & Sleeman 2008] Eck, T. van, and R. Sleeman, ORFEUS Activity Report 2007, http://www.orfeus-

eu.org/Documents/ORFEUS_report_2007.pdf (last accessed 15 September 2009).

[ECMA 1999] European Computer Manufacturers Association, ECMAScript Language Specification,

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf (last accessed 15

September 2009).

[Evjen et al. 2007] Evjen B., K. Sharkey, T. Thangarathinam, M. Kay, A. Vernet, and S. Ferguson,

Professional XML (Programmer to Programmer), John Wiley and Sons Ltd, ISBN 0-471-77777-3.

[Faassen 2005] Faassen, M., What is Pythonic?, http://faassen.n--tree.net/blog/view/weblog/2005/08/06/0

(last accessed 15 September 2009).

[Fettig 2005] Fettig, A., Twisted Network Programming Essentials, O'Reilly Media, Inc., ISBN 0-596-

10032-9.

[Fielding 2000] Fielding, R., Architectural Styles andthe Design of Network-based Software Architectures,

Dissertation, University of California, Irvine.

[Fowler 2005] Fowler, C. M. R., The Solid Earth: An Introduction to Global Geophysics, Cambridge

University Press, Cambridge, ISBN 0-521-89307-0.

[Garnett et al. 2009] Garnett, J. et al., GeoServer Webpage, http://geoserver.org (last accessed 15 September

2009).

[GFZ 2008] GFZ, GEOFON Data Archive Information, http://geofon.gfz-

potsdam.de/geofon/new/arc_inf.html (last accessed 15 September 2009).

[GFZ 2009] GFZ, SeisComP Data Structure (SDS) 1.0, http://geofon.gfz-

potsdam.de/geofon//seiscomp/SDS.html (last accessed 15 September 2009).

[Goldstein 1998] Goldstein, P. et al., SAC2000 User's Manual, http://www.iris.edu/manuals/sac/manual.html

(last accessed 15 September 2009).

[Goodger & Rossum 2001] Goodger, D., and G. van Rossum, Docstring Conventions,

http://www.python.org/dev/peps/pep-0257/ (last accessed 15 September 2009).

[Graham et al. 2004] Graham, S., D. Davis, S. Simeonov, G. Daniels, P. Brittenham, Y. Nakamura, P.

Fremantle, D. Koenig, and C. Zentner, Building Web Services with Java: Making Sense of XML,

SOAP, WSDL, and UDDI (2nd Edition), , ISBN 978-0672326417.

[GSE 1997] Group of Scientific Experts Third Technical Test, GSETT-3, Provisional GSE2.1, Message

Formats & Protocols, Operations Annex 3, May 1997,

References V

http://www.seismo.ethz.ch/autodrm/downloads/provisional_GSE2.1.pdf (last accessed 15 September

2009).

[Hadley 2009] Hadley M. J., Web Application Description Language (WADL),

https://wadl.dev.java.net/wadl20090202.pdf (last accessed 15 September 2009).

[Hanka & Kind 1994] Hanka, W., and R. Kind, The GEOFON Program, Annali di Geofisica, vol. 37, no. 5,

pp. 1060-1065.

[Hanka & Saul 2008] Hanka, W., and J. Saul, GEOFON and its Role in Earthquake Monitoring and Tsunami

Warning - In: Husebye, E. S. (Eds.), Earthquake Monitoring and Seismic Hazard Mitigation in Balkan

Countries, 151-162.

[Hanka et al. 2000] Hanka, W., A. Heinloo, and K.-H. Jaeckel, Networked Seismographs: GEOFON Real-

Time Data Distribution, ORFEUS Newsletter, vol. 2, no. 3.

[Havskov & Ottemöller 2000] Havskov, J., and L. Ottemöller, SEISAN earthquake analysis software,

Seismological Research Letters (SRL), 70, pp. 532-534.

[Havskov et al. 2007] Havskov J., L. Ottemöller, and R. L. P. Canabrava, SEISAN: Multiplatform

implementation of MINISEED/SEED, ORFEUS Newsletter, vol. 7, no. 2.

[Heinloo 2001] Heinloo, A., Seedlink: The Missing Link for Real-time Earthquake Monitoring, M.Sc.

Thesis, Tartu University, Estonia.

[Hort & Zakšek 2008] Hort, M., and K. Zakšek, Managing volcanic unrest: The mobile volcano fast

response system, Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic

Areas 2008, pp. 1-6.

[IASPEI 2008] IASPEI Working Group on Station Codes, Seismic Station Codes – New Coding Standards,

http://www.iaspei.org/commissions/CSOI/SNSC_draft_document.pdf (last accessed 15 September

2009).

[IRIS 2009a] IRIS Consortium, SEED Reference Manual - Standard for the Exchange of Earthquake Data,

SEED Format Version 2.4, http://www.iris.washington.edu/manuals/SEEDManual_V2.4.pdf (last

accessed 15 September 2009).

[IRIS 2009b] IRIS Consortium, Network codes, http://www.iris.edu/stations/networks.txt (last accessed 15

September 2009).

[IRIS 2009c] IRIS Consortium, EVALRESP Manual (V3.3.0) ,

http://www.iris.washington.edu/manuals/evalresp.htm (last accessed 15 September 2009).

References VI

[IRIS 2009d] IRIS Consortium, SeedLink, http://www.iris.edu/data/dmc-seedlink.htm (last accessed 15

September 2009).

[ISO/IEC 19757-2] ISO/IEC, Information technology - Document Schema Definition Language (DSDL) -

Part 2: Regular-grammar-based validation - RELAX NG,

http://standards.iso.org/ittf/PubliclyAvailableStandards/c037605_ISO_IEC_19757-2_2003%28E

%29.zip (last accessed 15 September 2009).

[ISO/IEC 19757-3] ISO/IEC, Information technology - Document Schema Definition Language (DSDL) -

Part 3: Rule-based validation - Schematron,

http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip (last

accessed 15 September 2009).

[ISO/IEC 9075-1] ISO/IEC, Information technology - Database languages - SQL - Part 1: Framework

(SQL/Framework), http://standards.iso.org/ittf/PubliclyAvailableStandards/c045498_ISO_IEC_9075-

1_2008.zip (last accessed 15 September 2009).

[Johnson et al. 1995] Johnson, C. E., A. Bittenbinder, B. Bogaert, L. Dietz, and W. Kohler, Earthworm: A

flexible approach to seismic network processing, IRIS Newsletter, vol. 14, no. 2, pp. 1-4.

[Jones & Drake 2002] Jones, C. A., and F. L. Drake, Jr., Python & XML, O'Reilly Media, Inc., ISBN 0-596-

00128-2.

[Korpela 2006] Korpela, J. K., Unicode Explained, O'Reilly Media, Inc., ISBN 0-596-10121-X.

[Kraft 2006] Kraft, T., A New Seismological Network for Bavaria and its Application to the Study of

Meteorologically Triggered Earthquake Swarms, Dissertation, Department of Earth and

Environmental Sciences, LMU Munich.

[Kulchenko & Ray 2002] Kulchenko P., and R. J. Ray, Programming Web Services with Perl, O'Reilly &

Associates, Inc., ISBN 0-596-00206-8.

[Laux & Martin 2000] Laux A., and L. Martin , XML:DB Initiative: XUpdate - XML Update Language,

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html (last accessed 15 September 2009).

[Lee & Lahr 1972] Lee, W. H. K., and J. C. Lahr, HYP071: A computer program for determining hypocenter,

magnitude, and first motion pattern of local earthquakes, Open File Report, U. S. Geological Survey,

100 pp.

[Lee & Lahr 1975] Lee, W. H. K. and J. C. Lahr, HYP071 (Revised): A computer program for determining

hypocenter, magnitude, and first motion pattern of local earthquakes, U. S. Geological Survey Open

File Report 75-311, 113 pp.

References VII

[Lomax 1991] Lomax, A. J., User Manual for SeisGram. In Digital Seismogram Analysis and Waveform

Inversion, http://alomax.free.fr/seisgram/SeisGram2K.html (last accessed 15 September 2009).

[Loper 2008] Loper, E., The Epytext Markup Language, http://epydoc.sourceforge.net/manual-epytext.html

(last accessed 15 September 2009).

[Lutz 2006] Lutz, M., Programming Python, O'Reilly Media, Inc., ISBN 0-596-00925-9.

[Maier et al. 2009] Maier, R., T. Hädrich, and R. Peinl, Enterprise Knowledge Infrastructures, Springer,

Berlin, ISBN 978-3-540-89767-5.

[Martelli et al. 2005] Martelli, A., A. M. Ravenscroft, and D. Ascher, Python Cookbook, O'Reilly Media

Inc., ISBN 0-596-00797-3.

[Melton & Buxton 2006] Melton, J., and S. Buxton, Querying XML - XQuery, XPath, and SQL/XML in

Context, Morgan Kaufmann, ISBN 1-55860-711-0.

[Møller & Schwartzbach 2006] Møller A., and M. I. Schwartzbach, An Introduction to XML And Web

Technologies, Addison-Wesley, ISBN 0-321-26966-7.

[NMSOP 2002] Bormann, P. (Ed.), IASPEI New Manual of Seismological Observatory Practice (NMSOP),

Volume 1, Geoforschungszentrum Potsdam, ISBN 3-9808780-0-7.

[OASIS 2004] OASIS Committee, UDDI Version 3.0.2, http://uddi.org/pubs/uddi_v3.htm (last accessed 15

September 2009).

[OGC 2008] Open Geospatial Consortium Inc., OGC KML, http://www.opengeospatial.org/standards/kml/

(last accessed 15 September 2009).

[ORFEUS 2009] ORFEUS, ORFEUS Annual Report 2008, http://www.orfeus-

eu.org/Documents/ORFEUS_Annual_Report_2008.pdf (last accessed 15 September 2009).

[Pautasso et al. 2008] Pautasso, C., O. Zimmermann, and F. Leymann, RESTful Web Services vs. Big Web

Services: Making the Right Architectural Decision, 2008, 805-814.

[Ray 2001] Ray, E.T., Learning XML, O'Reilly Media, Inc., ISBN 978-0-596-00046-2.

[RFC 2616] Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Hypertext

Transfer Protocol - HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt (last accessed 15 September 2009).

[RFC 2617] Franks J., P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart,

HTTP Authentication: Basic and Digest Access Authentication, http://www.ietf.org/rfc/rfc2617.txt

(last accessed 15 September 2009).

References VIII

[RFC 4252] Ylonen, T., and C. Lonvick, The Secure Shell (SSH) Authentication Protocol,

http://www.ietf.org/rfc/rfc4252.txt (last accessed 15 September 2009).

[RFC 5023] Gregorio J., and B. de hÓra, The Atom Publishing Protocol, http://tools.ietf.org/rfc/rfc5023.txt

(last accessed 15 September 2009).

[Richardson & Ruby 2007] Richardson L., and S. Ruby, RESTful Web Services, , ISBN 0-596-52926-0.

[Rietbrock & Scherbaum 1998] Rietbrock, A., and F. Scherbaum, The GIANT Analysis System (Graphical

Interactive Aftershock Network Toolbox), Seismological Research Letters (SRL), vol. 69, no. 1, pp.

40-45.

[Rietbrock 1996] Rietbrock, A., Entwicklung eines Programmsystems zur konsistenten Auswertung großer

seismologischer Datensätze mit Anwendung auf die Untersuchung der Absorptionsstruktur der Loma-

Prieta-Region, Kalifornien, Dissertation, LMU Munich.

[Rossum & Warsaw 2001] Rossum, G. van, and B. Warsaw, Style Guide for Python Code,

http://www.python.org/dev/peps/pep-0008/ (last accessed 15 September 2009).

[Scherbaum 2007] Scherbaum, F., Of poles and zeros. Fundamentals of digital seismology, Springer

Netherlands, ISBN 978-0-7923-6835-9.

[Schorlemmer et al. 2004] Schorlemmer D., A. Wyss, S. Maraini, S. Wiemer, and M. Baer, QuakeML - An

XML schema for seismology, ORFEUS Newsletter, vol. 6, no. 2.

[Shapira 2007] Shapira, A., New station code names, http://www.isc.ac.uk/stationcode/doc/avi0706.html

(last accessed 15 September 2009).

[Snoke et al. 1984] Snoke, J. A., J. W. Munsey, A. G. Teague, and G. A. Bollinger, A program for focal

mechanism determination by combined use of polarity and SV-P amplitude ratio data, Earthquake

Notes, vol. 55, no. 3, p. 15.

[Spinuso 2009] Spinuso, A., Webservices, http://neriesdataportalblog.freeflux.net/webservices/ (last accessed

15 September 2009).

[Staken 2001] Staken, K., XML Database API Draft, http://xmldb-org.sourceforge.net/xapi/xapi-draft.html

(last accessed 15 September 2009).

[Stammler & Walther 2009] Stammler K., and M. Walther, Seismic Handler, http://www.seismic-handler.org

(last accessed 15 September 2009).

[Stammler 1993] Stammler, K., SeismicHandler - Programmable multichannel data handler for interactice

and automatic processing of seismological analyses, Comp. Geosciences, vol. 19, no. 2, pp. 135-140.

References IX

[Stenberg et al. 2009] Stenberg D. et al., cURL and libcurl, http://curl.haxx.se/ (last accessed 15 September

2009).

[Taylor & Harrison 2008] Taylor, I. J., and A. Harrison, From P2P to Grids to Service on the Web: Evolving

Distributed Communities, Springer, ISBN 978-1-84800-122-0.

[Tsuboi et al. 2004] Tsuboi, S., J. Tromp, and D. Komatitsch, An XML-SEED Format for the Exchange of

Synthetic Seismograms, EOS Transactions of American Geophysical Union, suppl., SF31B-03.

[Twisted 2008] The Twisted Development Team, The Twisted Documentation,

http://twistedmatrix.com/projects/core/documentation/howto/book.pdf (last accessed 15 September

2009).

[USGS 2004] NEIC Web Team, USGS Fast Moment Tensor Solution,

http://neic.usgs.gov/neis/eq_depot/2004/eq_041226/neic_slav_q.html (last accessed 15 September

2009).

[Van Rossum et al. 1990] Van Rossum, G. et al., Python Language Website, http://www.python.org (last

accessed 15 September 2009).

[W3C 1999a] World Wide Web Consortium, XML Path Language (XPath), http://www.w3.org/TR/xpath

(last accessed 15 September 2009).

[W3C 1999b] World Wide Web Consortium, XSL Transformations (XSLT), http://www.w3.org/TR/xslt (last

accessed 15 September 2009).

[W3C 2001a] World Wide Web Consortium, XML Linking Language (XLink) Version 1.0,

http://www.w3.org/TR/xlink/ (last accessed 15 September 2009).

[W3C 2001b] World Wide Web Consortium, Web Services Description Language (WSDL) 1.1,

http://www.w3.org/TR/wsdl (last accessed 15 September 2009).

[W3C 2004a] World Wide Web Consortium, Web Services Glossary, http://www.w3.org/TR/ws-gloss/ (last

accessed 15 September 2009).

[W3C 2004b] World Wide Web Consortium, XML Schema Part 0: Primer Second Edition,

http://www.w3.org/TR/xmlschema-0/ (last accessed 15 September 2009).

[W3C 2004c] World Wide Web Consortium, XML Schema Part 1: Structures Second Edition,

http://www.w3.org/TR/xmlschema-1/ (last accessed 15 September 2009).

[W3C 2004d] World Wide Web Consortium, XML Schema Part 2: Datatypes Second Edition,

http://www.w3.org/TR/xmlschema-2/ (last accessed 15 September 2009).

References X

[W3C 2006] World Wide Web Consortium, Namespaces in XML 1.0 (Second Edition),

http://www.w3.org/TR/xml-names/ (last accessed 15 September 2009).

[W3C 2007a] World Wide Web Consortium, SOAP Version 1.2 Part 0: Primer (Second Edition),

http://www.w3.org/TR/soap12-part0/ (last accessed 15 September 2009).

[W3C 2007b] World Wide Web Consortium, SOAP Version 1.2 Part 1: Messaging Framework (Second

Edition), http://www.w3.org/TR/soap12-part1/ (last accessed 15 September 2009).

[W3C 2007c] World Wide Web Consortium, SOAP Version 1.2 Part 2: Adjuncts (Second Edition),

http://www.w3.org/TR/soap12-part2/ (last accessed 15 September 2009).

[W3C 2007d] World Wide Web Consortium, XQuery 1.0: An XML Query Language,

http://www.w3.org/TR/xquery/ (last accessed 15 September 2009).

[W3C 2008] World Wide Web Consortium, Extensible Markup Language (XML) 1.0 (Fifth Edition),

http://www.w3.org/TR/xml/ (last accessed 15 September 2009).

[W3C 2009] World Wide Web Consortium, Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)

Specification, http://www.w3.org/TR/CSS2/ (last accessed 15 September 2009).

[WebDC 2009] WebDC Initiative, European Integrated Data Archives - EIDA,

http://www.webdc.eu/webdc_arc_eu.html (last accessed 15 September 2009).

[Wei 2005] Wei, C. K., AJAX: Asynchronous Java + XML?,

http://www.developer.com/design/article.php/3526681 (last accessed 15 September 2009).

[Wikipedia 2009] Wikipedia, The Free Encyclopedia, List of Web service specifications,

http://en.wikipedia.org/wiki/List_of_Web_service_specifications (last accessed 15 September 2009).

[Zakšek 2008] Zakšek, K., Exupery-VFRS: Introduction, http://www.exupery-vfrs.de (last accessed 15

September 2009).

Appendix

Appendix XIII

A.1 SeisHub Installation Guide

The following section shows how to install SeisHub and associated components. It will not cover

the installation of a relational database back-end, like PostgreSQL. Please refer to the manual of the

preferred database.

For Linux and UNIX systems the author suggests to install SeisHub as a non-administrative user

applying a new, separate, local Python 2.6.x instance.

Installing Python on a Windows operating system is more complicated because development tools

like a C compiler are not part of a standard Windows distribution. Therefore many Python modules

using C extensions have to be delivered as binary package with an executable installer. The fastest,

most unproblematic way is to install Python and all extensions as the administrative system user.

Python

1. Download and uncompress the latest stable Python 2.6.x package for the used operating

system from http://www.python.org/download/. Windows user may just use the executable

installer and skip to the next subsection.

2. Run

./configure –prefix=$HOME
make
make install

3. Add $HOME/bin to the PATH environmental variable, e.g. in bash:

export PATH="$HOME/bin:$PATH"

4. Call python in command line. It should show the correct version number.

Easy Install

“Easy Install” is a powerful command-line based package management tool for Python. Like

CPAN for Perl, it automates the download, build, installation and update process of Python

packages.

1. Download http://python-distribute.org/distribute_setup.py.

2. Run

python distribute_setup.py

http://peak.telecommunity.com/dist/ez_setup.py
http://www.python.org/download/

Appendix XIV

Required Python extensions

1. Run separately and check for errors.

easy_install SQLAlchemy
easy_install Cheetah
easy_install pycrypto
easy_install Twisted
easy_install lxml
easy_install pyOpenSSL
easy_install numpy
easy_install obspy
easy_install obspy.xseed
easy_install obspy.arclink

2. Windows users need to install pywin32 (Python for Windows extension). Download and

install from http://sourceforge.net/projects/pywin32/.

Additional database bindings (optional)

SeisHub uses as default data back-end SQLite, which comes with Python 2.6.x. For PostgreSQL

are additional database bindings required.

• For a PostgreSQL database run

easy_install psycopg269

SeisHub

1. Either use the version delivered within this study or checkout the latest SeisHub version

from the subversion directory via

svn co https://svn.geophysik.lmu.de/svn/seishub/trunk

2. Go into trunk/bin and correct the directory paths in the start and stop shell scripts.

3. Start SeisHub.

69 Requires developer packages for PostgreSQL. Binary packages for Windows OS can be found at
http://www.stickpeople.com/projects/python/win-psycopg/.

http://sourceforge.net/projects/pywin32/

Appendix XV

A.2 Configuration File seishub.ini

Section [seishub]

Option Default value Description
host localhost Host IP of the server.
log_level DEBUG Logging level.
min_password_length 8 Minimal password length.

Section [db]

Option Default value Description
uri sqlite:///db/seishub.db Database URI.
verbose False Database verbosity.
pool_size 5 Number of connections to

allow in connection pool.
max_overflow 20 Number of connections to keep

open in the connection pool.

Section [web]

Option Default value Description
autostart True Enables HTTP/HTTPS service

on start-up.
http_port 8080 HTTP port number.
https_port 8443 HTTPS port number.
http_log_file 10 HTTP access log file.
https_log_file 5 HTTPS access log file.
https_pkey_file conf/https.pkey.pem70 Private key file.
https_cert_file conf/https.cert.pem70 Certificate file.
admin_theme magic Default administration theme.
default_pages index, index.htm,

index.html
Default index pages.

70 The path delimiter within the file string depends on the operating system.

Appendix XVI

Section [sftp]

Option Default value Description
autostart False Enables SFTP service on start-

up.
port 5021 SFTP port number.
public_key_file conf/sftp.public.key70 Public RSA key.
private_key_file conf/sftp.private.key70 Private RSA key.

Section [ssh]

Option Default value Description
autostart False Enables SSH service on start-

up.
port 5001 SSH port number.
public_key_file conf/ssh.public.key70 Public RSA key.
private_key_file conf/ssh.private.key70 Private RSA key.

Section [manhole]

Option Default value Description
autostart False Enables Manhole service on

start-up.
port 5001 Manhole port number.
public_key_file conf/

manhole.public.key70
Public RSA key.

private_key_file conf/
manhole.private.key70

Private RSA key.

Section [fs]
Every entry in this section will result into a own virtual directory mapped into the resource tree and

therefore available via the HTTP and SFTP service. As example one would write the line “test =
/temp/test” in order to map the physical directory “/temp/test” into the virtual directory

“/test”. Additional lines may be used to add further directories.

Appendix XVII

Section [seedfilemonitor]

Option Default value Description
autostart False Enables SEEDFileMonitor

service on start-up.
paths data Comma separated list of file

paths to scan for SEED files.
pattern *.*.*.*.*.*.* SEED file name pattern.
crawler_period 10 Path check interval in seconds.
scanner_period 5 File check interval in seconds.
crawler_file_cap 1000 Maximum files in watch list.
focus_on_recent_files True Scanner focuses on recent files.
keep_files False If set database entries won't be

removed if file is missing.

Appendix XIX

A.3 SOAP Example

WSDL Document

Downloaded via http://almighty.pri.univie.ac.at/~mangler/helloService.wsdl.

<?xml version="1.0"?>
<definitions
 name="helloService"
 targetNamespace="urn:helloService"
 xmlns:typens="urn:helloService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:helloService"/>
 </types>
 <message name="sayHelloToRequest">
 <part name="name" type="xsd:string"/>
 </message>
 <message name="sayHelloToResponse">
 <part name="greeting" type="xsd:string"/>
 </message>
 <portType name="helloServicePort">
 <operation name="sayHelloTo">
 <input message="typens:sayHelloToRequest"/>
 <output message="typens:sayHelloToResponse"/>
 </operation>
 </portType>
 <binding name="helloServiceBinding" type="typens:helloServicePort">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHelloTo">
 <soap:operation soapAction="urn:helloService/sayHelloTo"/>
 <input>
 <soap:body use="encoded" namespace="urn:helloService"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="urn:helloService"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
 <service name="helloServiceService">
 <port name="helloServicePort" binding="typens:helloServiceBinding">
 <soap:address
 location="http://almighty.pri.univie.ac.at/~mangler/helloService.php"/>
 </port>
 </service>
</definitions>

1

2
3
4
5
6
7
8
9

10

11

12
13

14

15
16
17

18
19
20

21

22
23
24
25

26

27

28

29

30

31
32
33
34

35
36
37
38

39

40

41

42
43
44
45

46

47

http://almighty.pri.univie.ac.at/~mangler/helloService.wsdl

Appendix XX

SOAP Request

Example SOAP message for RPC method “sayHelloTo” containing the string “TEST” for the Web

service situated at http://almighty.pri.univie.ac.at/~mangler/helloService.php.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:typens="urn:helloService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <mns:sayHelloTo xmlns:mns="urn:helloService"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <name xsi:type="xsd:string">TEST</name>
 </mns:sayHelloTo>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP Response

Example SOAP response of the RPC method “sayHelloTo” retrieved from the Web service situated

at http://almighty.pri.univie.ac.at/~mangler/helloService.php using the request above.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="urn:helloService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <ns1:sayHelloToResponse>
 <greeting xsi:type="xsd:string">Hello TEST</greeting>
 </ns1:sayHelloToResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

1

2
3
4
5
6
7
8
9

10

11
12

13

14

15

16

1

2
3
4
5
6
7
8

9

10

11

12

13

14

http://almighty.pri.univie.ac.at/~mangler/helloService.php
http://almighty.pri.univie.ac.at/~mangler/helloService.php

Appendix XXI

A.4 Supplementary CD-ROM

All source code developed within this thesis are included on the supplementary CD-ROM

discussed below and are also publicly available at the home pages of SeisHub

http://www.seishub.org and ObsPy http://www.obspy.org. The CD-ROM contains the following

files and folders.

File or directory Description
thesis.pdf This thesis in Portable Document Format (PDF).
thesis/ All images, Python programs, documents used throughout this study,

structured in subdirectories that correspond to the chapters of this thesis.
software/obspy/ Recent version of the ObsPy library.
software/seishub/ Recent version of SeisHub.

http://www.obspy.org/
http://www.seishub.org/

Curriculum Vitae

Curriculum Vitae

Persönliche Daten:

Name: Robert Georg Barsch

geboren: 02. Februar 1977 in Dresden

Staatsangehörigkeit: deutsch

Familienstand: ledig

Schulausbildung:

1983 – 1991 Klement-Gottwald-Oberschule Dresden Reick

1991 – 1993 Fritz-Löffler-Gymnasium Dresden-Südvorstadt

1993 – 1994 Austauschschüler Highschool Ladysmith/Wisconsin, USA

Juli 1994 Amerikanisches Highschool Diploma

1994 – 1996 Abitur Fritz-Löffler-Gymnasium Dresden Südvorstadt

Juni 1996 Allgemeine Hochschulreife

Zivildienst:

1996 – 1997 Zivildienst, Diakonie Hainichen (bei Dresden)

Studium:

1997 – 2004 Studium Geophysik an der TU Bergakademie Freiberg (TUBAF)

2000 – 2004 Parallelstudium Network-Computing an der TUBAF

August 2004 Diplom im Fach Geophysik

Thema: „Verifizierung der seismologischen Datenauswertung im

Vergleich von alternativen Bearbeitungssystemen“

Berufstätigkeit:

seit 1994 EDV Service Ingenieurbüro Barsch & Bergmann GmbH Dresden

1999 – 2000 Hilfswissenschaftler am Institut für Geophysik, TUBAF

2000 – 2003 Hilfswissenschaftler am Institut für Informatik, TUBAF

2001 – 2004 Inhaber und Betreiber der Webhosting Firma DOYOUWEB.DE

2002 – 2003 Hilfswissenschaftler am Institut für Wirtschaftsinformatik, TUBAF

2004 - 2006 Wissenschaftlicher Mitarbeiter am Department für Geo- und

Umweltwissenschaften, Geophysik, LMU München

seit Juni 2006 Doktorand am Department für Geo- und Umweltwissenschaften,

Geophysik, LMU München

	1 General Introduction
	2 Introduction to XML and Web Technologies
	2.1 Extensible Markup Language (XML)
	2.1.1 XML Essentials
	2.1.2 Advantages of XML
	2.1.3 Criticism on XML
	2.1.4 XML Extensions
	2.1.5 XML Schemas: Validation & Data Binding
	2.1.6 Extensible Stylesheet Language Transformation (XSLT)

	2.2 Web Services
	2.2.1 Big Web Services
	2.2.2 RESTful Web Services
	2.2.3 Supplementing Technologies

	2.3 XML Databases

	3 SeisHub: A Web-based Database for Seismology
	3.1 What is SeisHub?
	3.2 Why XML?
	3.3 Technical Details
	3.3.1 Environment
	3.3.2 Services
	3.3.3 Components/Plug-ins

	3.4 XML Database & RESTful Web Service
	3.4.1 Resources
	3.4.2 Indexing
	3.4.3 Package & Resource Types
	3.4.4 Mapper

	3.5 Waveform Database
	3.5.1 Standard for the Exchange of Earthquake Data (SEED)
	3.5.2 Synthetic waveform data
	3.5.3 ArcLink
	3.5.4 SEEDFileMonitor
	3.5.5 Waveform Mapper

	3.6 ObsPy
	3.7 Extreme Programming (XP)
	3.8 Future Extensions

	4 Scientific Application of SeisHub
	4.1 Exupéry - Volcano Fast Response System
	4.2 Bavarian Seismological Network (BayernNetz)

	5 Conclusions
	References
	Appendix
	A.1 SeisHub Installation Guide
	A.2 Configuration File seishub.ini
	A.3 SOAP Example
	A.4 Supplementary CD-ROM

	Curriculum Vitae

