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Abstract

Major efforts in quantum information science are devoted to the development of methods
that are superior to the one of classical information processing, for example the quantum
computer or quantum simulations. For these purposes, superposition and entangled states
are considered a decisive resource. Furthermore, since the early days of quantum mechan-
ics, entanglement has revealed the discrepancy between the quantum mechanical and the
everyday life perception of the physical world. This combination of fundamental science
and application-oriented research makes the realization, characterization, and application
of entanglement a challenge pursued by many researchers.

In this work, the observation of entangled states of polarization encoded photonic
qubits is pushed forward in two directions: flexibility in state observation and increase
in photon rate. To achieve flexibility two different schemes are developed: setup-based
and entanglement-based observation of inequivalent multi-photon states. The setup-based
scheme relies on multi-photon interference at a polarizing beam splitter with prior po-
larization manipulations. It allows the observation of a family of important four-photon
entangled states. The entanglement-based scheme exploits the rich properties of Dicke
states under particle projections or loss in order to obtain inequivalent multi-photon en-
tangled states. The observed states are characterized using the fidelity and entanglement
witnesses.

An increase in photon rate is crucial to achieve entanglement of higher photon numbers.
This holds especially, when photon sources are utilized that emit photons spontaneously. To
this end, a new photon source is presented based on a femtosecond ultraviolet enhancement
cavity and applied to the observation of the six-photon Dicke state with three excitations.

The implemented schemes not only allow the observation of inequivalent types of en-
tanglement, but also the realization of various quantum information tasks. In this work,
the four-photon GHZ state has been used in a quantum simulation of a minimal instance
of the toric code. This code enables the demonstration of basic properties of anyons, which
are quasiparticles distinct from bosons and fermions. Further, the six-photon Dicke state
has been applied for quantum metrology: It allows one to estimate a phase shift with a
higher precision than by using only classical resources.

Altogether, a whole series of experiments for observing inequivalent multi-photon en-
tangled states can now be substituted by a single experimental setup based on the designs
developed in this work. In addition to this new approach of photon processing, a novel pho-
ton source has been implemented, paving the way to realizations of applications requiring
higher photon numbers.
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Zusammenfassung

Ein Schwerpunkt der Quanteninformation liegt bei der Entwicklung von Methoden, die
klassischer Informationsverarbeitung überlegen sind, zum Beispiel der Quantencomputer
oder Quantensimulationen. Dafür werden Überlagerungszustände und verschränkte Zustän-
de als entscheidende Ressource betrachtet. Des weiteren hat Verschränkung seit den
Anfängen der Quantenmechanik Widersprüche zwischen der quantenmechanischen und der
alltäglichen Wahrnehmung der physikalischen Welt aufgezeigt. Die Verbindung von ange-
wandter und grundlagenorientierter Forschung macht die Realisierung, Charakterisierung
und Anwendung der Verschränkung zu einer Herausforderung, die viele Forscher verfolgen.

In dieser Arbeit wird die Realisierung verschränkter Zustände von polarisationskodier-
ten photonischen Qubits hinsichtlich zweier Aspekte weiterentwickelt: Flexibilität bei
der Zustandsherstellung und Erhöhung der Photonenzählrate. Um Flexibilität zu er-
reichen, werden zwei Schemen vorgestellt: aufbaubasierte und verschränkungsbasierte Her-
stellung verschiedener Zustände. Dem aufbaubasierten Schema liegt Mehrphotoneninter-
ferenz an einem Strahlteiler mit vorheriger Polarisationsmanipulation zugrunde. Dadurch
wird die Beobachtung einer Familie von Vierphotonen-Zuständen ermöglicht. Das ver-
schränkungsbasierte Schema hingegen nutzt die Eigenschaften von Dickezuständen bei
Projektion oder Verlust von Teilchen aus, um verschiedene Zustände zu erhalten. Die
beobachteten Zustände werden durch ihre Güte und Verschränkungszeugen charakterisiert.

Eine Steigerung der Photonenzählrate ist für Mehrphotonenexperimente notwendig,
insbesondere wenn Lichtquellen eingesetzt werden, die spontan Photonen emittieren. Zu
diesem Zweck wird eine neue Photonenquelle präsentiert, die auf einem Femtosekunden-
resonator im ultravioletten Spektralbereich basiert und für die Beobachtung eines Sechs-
photonen-Dickezustands verwendet wird.

Die implementierten Schemen erlauben neben der Beobachtung unterschiedlicher Ver-
schränkungsarten auch die Realisierung verschiedener Quanteninformationsaufgaben. In
dieser Arbeit wird der Vierphotonen-GHZ-Zustand für eine Quantensimulation eines mini-
malen Toriccode angewandt. Dieser Code ermöglicht die Demonstration grundlegender
Eigenschaften von Anyonen, die Quasiteilchen darstellen, die sich von Bosonen und Fer-
mionen unterscheiden. Der Sechsphotonen-Dickezustand wird für die Quantenmetrologie
verwendet: Er erlaubt eine Phasenänderung mit größerer Genauigkeit zu messen als mit
klassischen Mitteln allein möglich ist.

Alles in allem können verschiedene Experimente zur Beobachtung verschränkter Photo-
nenzustände basierend auf den in dieser Arbeit entwickelten Schemen durch einen einzigen
Aufbau ersetzt werden. Zusätzlich wurde eine neuartige Photonenquelle implementiert,
die die Realisierung von Anwendungen ermöglicht, die höhere Photonenzahlen benötigen.
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Chapter 1

Introduction

The development of quantum mechanics in the early 20th century led to a paradigm shift
in the field of physics. Quantum mechanics introduced, amongst others, quantization of
energy as well as complementarity. The latter occurs for example in the duality of the wave
and particle behavior of both, light and matter. The great success of quantum mechanics
is evidenced by an accurate description of natural phenomena and led for example to the
invention of the semiconductor transistor and the laser. These two inventions, besides
others, enable nowadays the rapid processing of information. However, information, which
has a huge impact on human society, is still encoded using classical means. Only towards
the end of the 20th century it has been discovered that by exploiting particular features
of quantum mechanical systems like superposition states a more powerful information
processing is possible. This has initiated a new research field, called quantum information
science [1].

Quantum mechanical states can be on one hand applied for information tasks, while
on the other hand they have initiated fundamental questions about the relationship of
quantum mechanics to our everyday life. Already in 1935 Erwin Schrödinger illustrated in
his famous cat paradox a quantum mechanical superposition state with the unimaginable
example of a cat being dead and alive at the same time [2]. Such a state of a macroscopic
object has never been observed. In contrast, in the microscopic world superposition states
of photons or atoms indeed occur and have been prepared and observed. For which object
size the transition from the microscopic to the macroscopic world occurs is still under
intense research [3].

Superposition states between many particles can be even more “non-classical” as evi-
denced by entangled states. Essentially, for an entangled state only the state of the entire
system is well defined, whereas each separate particle is in a completely unknown state.
Albert Einstein, Boris Podolsky, and Nathan Rosen were puzzled by these states and iden-
tified in 1935 that the assumption of quantum mechanics as a complete theory leads to a
contradiction with a predetermination of physical reality or, in other words, with a local and
realistic description of nature [4]. Locality imposes space-like separation of measurement
events or, more specifically, that the result of a measurement on one system is indepen-
dent of operations performed on another system with which it has interacted in the past.
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“Reality” is understood in the sense that measurement results can be described by prede-
termined, hidden variables. Only 30 years later in 1964 John Bell [5] could formulate an
experimentally testable condition of this question based on a local and realistic description
of measurement results. Based on these assumptions John Bell derived an inequality that
is violated by some quantum mechanical entangled states. Indeed, subsequent experiments
give strong evidence of this violation [6–9] and, therefore, imply that the quantum mechan-
ical description of the world excludes locality and realism to hold at the same time. For
particular entangled states this violation becomes even more conclusive for an increasing
number of particles [10].

Nowadays, superposition and entangled states of many particles are studied in quan-
tum information with respect to their fundamental implications and possible applications.
This has lead to different research areas of quantum information [1, 11, 12], amongst these
are quantum simulation [13], quantum computation [14, 15], quantum communication [16–
18], and quantum metrology [19]. These research fields exploit superposition or entangled
states of many particles in order to improve classical information processing. Different
physical systems are employed for their implementation and can be roughly distinguished
into atomic, molecular and optical (AMO) and solid state-based systems, see the recent
Nature Insight [20] and Science Feature [21] articles. AMO systems include for example
photons [22–24], trapped ions [25], atoms in optical lattices [26] or in optical cavities [27], or
nuclear spins of molecules [28, 29]. Solid state systems can be based on quantum dots [30],
superconducting elements [31], or color centers in diamond [32]. The necessary encoding
of information can be achieved in two different ways depending on the available degrees
of freedom of the system: in discrete degrees of freedom like polarization of photons or
internal atomic states, or alternatively, by using continuous variables like the electric field
quadrature components or the collective atomic spin. The variety of experimental imple-
mentations has rapidly increased, as each and every system exhibits its advantages and
drawbacks. Current benchmarks that characterize the usefulness of a system for quantum
information processing are for example its susceptibility to decoherence or its scalability
[33]. Hybrid approaches promise to combine advantages of several systems, for example the
storage of information by using trapped ions and the transmission of information by using
photons. Currently, the highest number of individually addressable entangled particles is
around ten: two entangled superconducting qubits [34, 35], three entangled carbon nuclear
and electronic spins in diamond [32], six entangled photons [36–40], eight entangled ions
[41], twelve nuclear spins of a molecule [29]. This experimental status reflects the difficulty
in creating and controlling superposition states of many particles with unprecedented ac-
curacy and shows that it is still a long way towards entanglement of hundreds of particles.
This poses the question if the latter can ever be achieved, as it is still an open issue at
which system size coherence disappears and induces the transition from a quantum to the
classical world.

In this work photons are the chosen physical system for the experimental implementa-
tion of particular quantum information tasks. Information is encoded in the polarization
degree of freedom yielding a two-level system, called qubit. Photons are the most success-
ful physical system for the observation of multi-partite entanglement and proof-of-principle
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demonstrations of a diversity of quantum information applications so far [23]. This is due
to the fact that for photons virtually no decoherence takes place and single qubit operations
are easy to implement with high accuracy. However, the major drawback of photons, their
practically non-existent interaction with each other due to the smallness of the non-linear
coupling, prevents a simple implementation of two-qubit gates. However, in 2001 Emanuel
Knill, Raymond Laflamme, and Gerard Milburn have shown that despite this drawback
linear optical quantum computation based on photons can be implemented efficiently by
using single photon sources, linear optical elements and photon number resolving detectors
[42]. The necessary non-linearity is shifted into the detection process [43]. An improved
scheme requiring less physical resources [44] has been discovered based on a combination of
the latter scheme and the measurement-based quantum computation model [45]. The latter
model reduces quantum computation to the creation of a suitable multi-partite entangled
state and subsequent single qubit measurements [46].

To date, true single photon sources for the realization of scalable implementations of
linear optical quantum computation schemes or for multi-partite entanglement creation
are still under development [47–49]. Instead, the probabilistic process of spontaneous
parametric down conversion (SPDC) is widely applied to create the necessary photons
[50]. In addition, one can directly exploit the photonic quantum correlations created by
the SPDC source itself [51, 52]. Subsequent processing with linear optical elements and
conditional detection allows one to observe the desired quantum states or to implement
proof-of-principle demonstrations of quantum information applications.

In this work, the observation of entangled photonic states is pushed forward in two
directions: flexibility [38, 53–55] (the corresponding publications are displayed in this work
as publ. P3.1, P3.2, P5.1, and P5.2), and an increased rate in the available photons [56]
(see publ. P5.4). Furthermore, multi-photon entangled states are applied for a quantum
simulation of anyonic features [57] (see publ. P4.1) and also for precision measurements.

The current approach to multi-photon state observation requires for each and every
state a specific SPDC source and tailored linear optical setup [58–61]. It is demonstrated
in this work that this is not necessary. Rather, by using the same experimental setup
the observation of an entire family of four-photon, highly entangled states is achieved by
changing a single, easily accessible parameter [53] (see publ. P3.1). The scheme is based on
multi-photon interference of an entangled state at a beam splitter with prior polarization
manipulations [54] (see publ. P3.2). The family of four-photon entangled states consists
of inequivalent types of entangled states, amongst these are the four-photon Greenberger
Horne Zeilinger (GHZ) state [62–64], the four-photon symmetric Dicke state with two
excitations [65] and a rotationally invariant state [59]. Though these states have been
realized before [59, 64, 65], they can now be observed in a single experimental setup.
Additionally, new states are identified that might find potential applications in the future.
In the context of measurement-based quantum computation the universality of particular
entangled states has been studied [66]. It was found that two-dimensional cluster states
are a universal resource, whereas one-dimensional cluster states, GHZ states, and Dicke
states are not. However, these states can outperform classical states for particular quantum
information tasks, which is made use of in this work.
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One of these tasks is the application of the GHZ state for a quantum simulation of
anyons [57] (see publ. P4.1). Anyons are particles in the two-dimensional space, whose
statistics range continuously from bosonic to fermionic [67, 68] and are expected to be
detected in the fractional quantum Hall effect [69]. However, due to the continuous presence
of interactions in these systems this is rather difficult and has not been clearly demonstrated
so far [70, 71]. Alternatively, abstract spin lattice systems like the toric code allow the
realization of anyons as quasiparticle excitations [72, 73]. It turns out that the GHZ state
is the ground state of a minimal instance of the toric code. In a quantum simulation thereof,
particular anyonic features and their statistical property are demonstrated by performing
local operations on the GHZ state.

To entangle even more photons, a common approach is to use higher order SPDC emis-
sions or multiple SPDC sources [36, 52]. However, higher photon numbers are emitted with
exponentially decreasing rate resulting in an increase in measurement time for acquiring
sufficient statistical data. Therefore, in this work it is demonstrated that the pump power
for the SPDC process can be raised by using an ultraviolet (UV) enhancement cavity
around the non-linear crystal [56, 74, 75] (see publ. P5.4).

This photon source is applied to the observation of the six-photon entangled symmetric
Dicke state with three excitations [38, 39] (see publ. P5.1). Dicke states are an important
group of states in quantum information, studied theoretically [76–81] and experimentally
[38, 39, 41, 65, 82]. Initially they have been analyzed in the context of enhanced light
emission from a cloud of atoms [83]. The implemented six-photon Dicke state possesses
remarkable properties, for example a high entanglement persistency against qubit loss [77].
Most importantly, it can be used to obtain inequivalent classes of entanglement of a lower
qubit number by means of projective measurements [55] (see publ. P5.2), which has already
been identified for its four-qubit pendant [65]. Thus, these states constitute a rich resource
of other highly entangled states allowing, in a different way than realized with the four-
photon family experiment, a flexible generation of states. For example, observations of
five-photon states and the four-photon W state that have not been observed in a linear
optical system so far become possible. Tailored entanglement witnesses are used to prove
entanglement for any of these states [81] (see publ. P5.3). Further, the six-photon Dicke
state can be applied for certain quantum communication protocols and also for quantum
metrology [19]. For the latter application it can be shown that the Dicke state outperforms
classical schemes of phase estimation, for the same amount of available resources [84, 85].

The thesis is structured as follows. In chapter 2 an overview of the necessary theoretical
and experimental tools to describe, characterize and experimentally observe entangled
photonic quantum states is given. In chapter 3 the flexible observation of four-photon
entangled states is presented. The application of the GHZ state for the simulation of a
minimal instance of the toric code is explained in chapter 4. Finally, in chapter 5 the
high power SPDC photon source and its application to the observation of the six-photon
Dicke state is described, along with the utilization of the Dicke state for phase estimation.
Chapters 3, 4 and 5 also include the relevant publications as reprints.



Chapter 2

Multi-partite entanglement

The following chapter describes the theoretical and experimental foundations for charac-
terizing, analyzing, and realizing multi-photon entanglement. In section 2.1, the basic
notation for the description of multiple qubits is introduced [1]. A formal definition of
entanglement is given along with its interpretation as a non-classical property of quantum
mechanical states. The experimental characterization of quantum states relies on mea-
surement outcomes yielding information about the observed states. The measurements
can be performed with the aim of determining the state’s correlations. The latter can be
used to distinguish between different entangled states, as it has been discovered that for
more than two qubits different types of entanglement exist. Some possibilities to classify
entanglement will be presented.

In an experiment the entanglement of an observed state has to be proven [86–88]. In
section 2.2 criteria will be described for detecting a state as entangled. These criteria
should be robust against noise, as experimental imperfections result in the observation of
mixed states. As a next step one would like to quantify the amount of entanglement. For
that purpose only a few entanglement measures exist, which will also be discussed.

Finally, the standard tools for an experimental implementation of entangled states
using photonic qubits [23] are discussed in section 2.3. To this end, a photon source
and linear optical elements for photon manipulation are commonly employed. The most
suitable source for multi-photon entanglement is based on a spontaneous process in a χ(2)-
nonlinear crystal, namely spontaneous parametric down conversion (SPDC). This source
delivers 2n photons in its nth order emission. The photons are fed into a linear optical
network consisting of beam splitters (BSs) and phase shifters. The desired multi-photon
entangled states are observed under the condition of detecting a well-defined number of
photons in particular spatial modes, thus, selecting a particular spontaneous parametric
down conversion (SPDC) emission order. Polarization analysis is performed in each mode
to reconstruct the observed state completely or to give partial information, for example,
whether the state has been entangled or how well it has been prepared.

This chapter can be used as a reference in order to acquire the basic information for
chapters 3, 4 and 5, which describe experimental implementations of particular entangled
quantum states and their applications.
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2.1 Classifications of quantum states

The basic notation for a qubit and its measurement will be introduced, followed by the
extension to multiple qubits and their characterization by means of correlations. The
experimental determination of correlations constitutes a suitable means to characterize
states. A state of multiple qubits can be entangled, meaning that it is impossible to write
it as a product state between states of the individual subsystems. This property of quantum
states leads to non-classical features like a violation of Bell inequalities.

Subsequently, different classifications of quantum states are presented. A first approach
is to distinguish states according to their level of separability. This turns out to be insuffi-
cient, as already in the three-qubit case different types of genuine tri-partite entanglement
exist. In particular, the criterion of equivalence under stochastic local operations and
classical communication (SLOCC) identifies different entanglement classes for three-qubit
states and already infinitely many classes of four-qubit states. Thus, other distinguishing
criteria have to be considered as well. For example, classifying the set of symmetric states
or grouping states according to their phenomenology are such criteria. The latter yields,
among others, two important groups of states, the graph states and Dicke states, which
are relevant for this work.

In the following, two-dimensional systems between N parties in the Hilbert space H =
H1 ⊗H2 ⊗ ...HN of dimension 2N are considered, whereby each Hi = C2.

2.1.1 Qubit notation and entanglement

In this work, the notation of polarization-encoded qubits is used. A pure state of a photonic
qubit, which constitutes a two level system, is described up to a global phase as [1]

|ψ(θ, φ) 〉 = cos
θ

2
|H 〉+ eiφ sin

θ

2
|V 〉, (2.1)

where H (V ) denotes the horizontal (vertical) polarization of a photon, θ ∈ [0, π] and
φ ∈ [0, 2π). The state |ψ(θ, φ) 〉 can be represented by a vector on the Bloch sphere
(fig. 2.1). A mixed state, that means a state with classical statistical distribution over
pure states, is described by its density matrix

ρ =
∑

i

pi |ψ(θi, φi) 〉〈ψ(θi, φi) | , (2.2)

which is the mixture of pure states |ψ(θi, φi) 〉 with probabilities pi ≥ 0 and
∑

i pi = 1.
A pure state can also be regarded as an eigenvector of an observable σ̂(θ, φ) along a

particular basis direction, which is given as

σ̂(θ, φ) = sin θ cos φ σ̂x + sin θ sin φ σ̂y + cos θ σ̂z, (2.3)

where σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
and σ̂z =

(
1 0
0 −1

)
are the Pauli spin matrices.

Their eigenvectors define the x-, y- and z-axes of the Bloch sphere and are labeled as

σ̂x |± 〉 = ± |± 〉,



2.1 Classifications of quantum states 7

x y

z

Figure 2.1: A pure state |ψ(θ, φ) 〉 can be represented as a point (θ, φ) on the surface
of the three-dimensional Bloch sphere. This point is given by the vector (x, y, z) =
(cos φ sin θ, sin φ sin θ, cos θ). The following points correspond to the eigenvectors of the
Pauli spin matrices: (π

2
, 0), (π

2
, π) for σ̂x, (π

2
, π

2
), (π

2
, 3π

2
) for σ̂y and (0, 0), (π, 0) for σ̂z.

σ̂y |R 〉 = + |R 〉 and σ̂y |L 〉 = − |L 〉,
σ̂z |H 〉 = + |H 〉 and σ̂z |V 〉 = − |V 〉. (2.4)

The eigenvectors |± 〉 = 1/
√

2( |H 〉± |V 〉) describe the diagonal ±45 ◦ polarization state
of photons and |R 〉 = 1/

√
2( |H 〉 + |V 〉) ( |L 〉 = 1/

√
2( |H 〉 − |V 〉)) the right (left)

circular polarization state (fig. 2.1).
The result of a measurement of the observable σ̂(θ, φ) for a particular state ρ is denoted

as p±(θ, φ). It is calculated using the projector

P̂+(θ, φ) = (11 + σ̂(θ, φ))/2 = |ψ(θ, φ) 〉〈ψ(θ, φ) | and (2.5)

P̂−(θ, φ) = (11− σ̂(θ, φ))/2 = |ψ(θ, φ) 〉〈ψ(θ, φ) | (2.6)

onto that observable with ψ(θ, φ) orthogonal to ψ(θ, φ), i.e., 〈ψ(θ, φ) | ψ(θ, φ) 〉 = 0.
For the state ρ one obtains p±(θ, φ) = Tr[P̂±(θ, φ)ρ] [1], which simplifies to p±(θ, φ) =
〈ψ | P̂±(θ, φ) |ψ 〉 for a pure state ρ = |ψ 〉〈ψ | .

A state describing multiple qubits is given by the sum of tensor products between basis
vectors of the individual subsystems, e.g., for a two-qubit pure state between system 1 and
2 one obtains

|ψ(cHH , cHV , cV H , cV V ) 〉12 = cHH |HH 〉+ cHV |HV 〉+ cV H |V H 〉+ cV V |V V 〉, (2.7)

with complex coefficients cij, the normalization condition |cHH |2+|cHV |2+|cV H |2+|cV V |2 =

1 and the shorthand notation |HH 〉 = |H 〉1⊗ |H 〉2 (the abbreviation |H 〉⊗N = |H 〉1⊗
|H 〉2⊗ ...⊗ |H 〉N is also used later on). States can occur that are impossible to write as
a simple tensor product of individual subsystems [89]

|ψ 〉12 6= |φ 〉1 ⊗ |ξ 〉2 (2.8)

or for mixed states

ρ12 6=
∑

i

pi(ρ1)i ⊗ (ρ2)i. (2.9)
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Such states are called entangled. An example are the four Bell states

|ψ± 〉 = ( |HV 〉 ± |V H 〉)/
√

2 and |φ± 〉 = ( |HH 〉 ± |V V 〉)/
√

2. (2.10)

In contrast, states that can be written as |ψ 〉12 = |φ 〉1 ⊗ |ξ 〉2 or ρ12 =
∑

i pi(ρ1)i ⊗ (ρ2)i

are product states and called separable.
This rather simple mathematical definition of entanglement has deep consequences in

the context of quantum mechanics and its interpretation as well as for using entangle-
ment as a resource for quantum information applications. The term entanglement (“Ver-
schränkung”) was coined by Erwin Schrödinger [2] in 1935 shortly after the work of Albert
Einstein, Boris Podolsky and Nathan Rosen [4] questioning the completeness of quantum
mechanics based on peculiar features of entangled states. That work was taken on by John
Bell about 30 years later, who succeeded in formulating a criterion to test that question
[5]. Assuming a local and realistic description of measurement results just as required
by Einstein-Podolsky-Rosen, bounds on these results can be formulated. Nowadays these
bounds are called Bell inequalities. The requirement of locality imposes space-like sep-
aration (in the sense of special relativity) of measurement events. More specifically, the
result of a measurement on one system should be independent of operations performed on
another system with which it has interacted in the past. “Reality” is understood in the
sense that measurement results can be described by predetermined, hidden variables. Ac-
cording to the quantum mechanical description, however, Bell inequalities can be violated
by entangled states. Thus, a discrepancy exists between a local-realistic and the quantum
mechanical description of the physical world. However, to date no definitive answer to
the question, whether the view onto the physical world is non-local and/or non-realistic
has been found. Experimental and theoretical research to answer that question is still
ongoing [90–95]. For philosophical implications and ongoing debates the interested reader
is referred to refs. [96–102]. In this work, the focus is put on the experimental realization
of entanglement, its characterization and application in quantum information. A Bell in-
equality is also applied in an experiment (see section 2.2 for theoretical background and
section 5.2 for a particular implementation).

The complete characterization of a quantum state is given by its density matrix ρ.
Amongst others, it can be written as a function of the correlations Tµ1,...,µN

(ρ) of the

correlation tensor T̂ (ρ) that are defined as

Tµ1,...,µN
(ρ) = Tr[ρ(σ̂µ1 ⊗ σ̂µ2 ⊗ ...⊗ σ̂µN

)], (2.11)

with σ̂µn ∈ {σ̂0, σ̂x, σ̂y, σ̂z} and σ̂0 = 11. In other words, correlations are the expectation
values of all possible combinations of Pauli spin matrices and the identity with the state ρ.
A single tensor product of Pauli spin matrices σ̂µ1 ⊗ σ̂µ2 ⊗ ...⊗ σ̂µN

is called measurement
setting.

In an experiment one determines Tµ1,...,µN
from the counting statistics of N combined

detector clicks, whereby the detectors are set to detect a specific photonic polarization
corresponding to a specific Pauli basis setting, see section 2.3.2. The full derivation of how
to calculate the correlations from the detector clicks can be found in refs. [103, 104].
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Having determined the experimental Tµ1,...,µN
(ρexpt) one can reconstruct the experimen-

tal density matrix ρexpt by

ρexpt =
1

2N

∑
µ1,...,µN

Tµ1,...,µN
(ρexpt) · (σ̂µ1 ⊗ σ̂µ2 ⊗ ...⊗ σ̂µN

). (2.12)

However, due to the limited counting statistics the reconstructed density matrix could be
non-physical, i.e., exhibit negative eigenvalues. This can be accounted for by determining a
physical density matrix, which resembles the experimental data most, by using for example
a maximum likelihood fit, see refs. [65, 103]. Due to the exponential growth of the number
of correlations with N (for photonic experiments all combinations of σ̂x, σ̂y, σ̂z have to be
measured in order to reconstruct ρexpt, hence the increase grows as 3N), it is desirable to
avoid the necessity of gathering the complete information of a state. Powerful methods
have been developed to give partial information, e.g., if a state was entangled or how well
it was prepared. This is outlined in section 2.2.

2.1.2 Classifications

Levels of separability For an N -qubit system different levels of separability can be
distinguished by partitioning the state into k disjoint subsets [fig. 2.2(a)]. A state ρ is
called k-separable if there exists a convex decomposition of ρ according to [87, 105]

ρ =
∑

i

pi ⊗k
n=1 (ρSn)i, (2.13)

where each state ⊗k
n=1(ρSn)i is a tensor product of k density matrices for some partition

(αk)i using the notation αk = {S1, ..., Sk}, which denotes a partition of the qubits numbered
by {1, ..., N} into k disjoint non-empty subsets with k ≤ N . The most important levels
of separability are the following: The highest hierarchy level consists of genuinely N -qubit
entangled states, i.e., states that do not factorize at all (k = 1), which corresponds to
ρ 6= ∑

i pi ⊗k
n=1 (ρSn)i for k ≥ 2. The next level are two-separable states (which are

called bi-separable states in the following) ρ =
∑

i pi ⊗2
n=1 (ρSn)i, i.e., states that can be

factorized once. Finally, the N -separable states (also called fully-separable states) complete
the hierarchy. It is useful to introduce finer classifications than only the distinction of
different levels of separability as different types of genuine N -qubit entanglement exist.

SLOCC A finer classification of pure states is achieved by the stochastic local operations
and classical communication (SLOCC) criterion, which groups states according to SLOCC
equivalence classes. SLOCC allows a wider class of operations than local unitary (LU)1

and local operations and classical communication (LOCC) alone. LOCC includes any pos-
sible local operation acting on each qubit with additional classical communication between

1A unitary operator Û satisfies Û†Û = 11 and, thus, preserves the scalar product. A local unitary
operation for N qubits is given as a single tensor product of unitaries acting on each subsystem as Û =
Û1 ⊗ Û2 ⊗ ...⊗ ÛN .
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{1,23} {2,13} {3,12}

{1,2,3}

GHZ W

genuinely
tri-partite
entangled

bi-separable

fully-separable
b)

{1,2}

entangled

separable
c)a)

fully-separable

{1,23}

{1,2,3}

{123}

1 2 3

1 23

123

bi-separable

genuinely entangled

Figure 2.2: (a) Pictorial representation of the relevant types of separability for this work:
fully- and bi-separable states and genuinely entangled states. SLOCC classifications: (b)
For two qubits only two SLOCC classes exist, the entangled and the separable states.
(c) The classification of three qubits is much richer. Two inequivalent classes of genuine
tri-partite entangled states exist, followed by the bi-separable and fully-separable classes.

parties holding the qubit [106–108]. For the equivalence of states under SLOCC the task is
to transform a certain state into another one with non-zero probability. If this is achieved,
then two states are called SLOCC equivalent [107, 109, 110]. The criterion of SLOCC is
appealing as, by definition, each SLOCC equivalent state can be used for similar quantum
information applications.

Applying that criterion to a system of two qubits yields two different SLOCC classes
[106–108], the class of entangled states represented by one of the Bell states and the class
of separable states, e.g., |ψ 〉sep = |φ 〉1 |ξ 〉2 (the split is written in shorthand notation in
the following as {1, 2}) [fig. 2.2(b)]. For three qubits in a pure state six inequivalent classes
can be distinguished [107] [fig. 2.2(c)]. Two classes of genuinely tripartite entangled states
exist, the Greenberger Horne Zeilinger (GHZ) class and the W class, of which

|GHZ3 〉 = ( |HHH 〉+ |V V V 〉)/
√

2 and

|W3 〉 = ( |HHV 〉+ |HV H 〉+ |V HH 〉)/
√

3 (2.14)

are representative states. These states can be distinguished by the 3-tangle τ3 [111], which
is a measure of three-qubit correlations and described in section 2.2. For GHZ-type states
0 < τ3 ≤ 1, whereas for W-type states τ3 = 0. The next hierarchy level are bi-separable
states, whereby the three different partitions {1, 23}, {2, 13} and {3, 12} exist. Finally, the
fully-separable states {1, 2, 3} complete the three-qubit SLOCC classification. Essentially,
the three-qubit classification for mixed states identifies the same classes [112].

Extending the SLOCC classification to four qubits results in infinitely many SLOCC
classes [109, 113, 114]. The reason is that the number of real parameters for the SLOCC
criterion grows like 6N , whereas a generic N -qubit pure state is described by 2(2N −
1) real parameters [107], i.e., for N = 4 SLOCC provides 24 parameters, whereas 30
would be necessary. Nevertheless, four-qubit states can be grouped into different families
of entangled states containing each infinitely many SLOCC inequivalent states. Where
ref. [109] discovered nine families of four-qubit states, ref. [114] found eight families based
on an inductive classification scheme. Hence, alternative or additional classification criteria
are necessary and are discussed in the following.
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Phenomenological classification Another means to structure entangled states is to
group them according to characteristic properties. For example these might consist of
operational criteria such as the generation of entanglement, or the definition of the states
as eigenstates of certain operators. In the following, the graph states [115, 116] and the
Dicke states [77, 83] will be discussed as both groups of states are not only relevant for this
work but also find wide application in the context of quantum information. Many other
groups of states exist (for example the maximally mixed states [117]), which will not be
discussed here.

A graph state |g 〉 is characterized by a mathematical graph g(E, V ), whereby an edge E
signifies an Ising-type next neighbor interaction, and a vertex V is a qubit [fig. 2.3(a)]. This
definition directly implies a recipe to create these states experimentally. Each graph state
|g 〉 can be defined by its stabilizing operators Si, i.e., the state is a common eigenvector
to all stabilizing operators with eigenvalue +1,

Si |g 〉 = + |g 〉 ∀ i. (2.15)

The set of all Si defining |g 〉 is called stabilizer [116]. Graph states can be equivalent
under LU operations and graph transformation rules. Applying these rules yields for two
and three qubits in each case a single graph state, namely the state |φ+ 〉 and |GHZ3 〉 ,
respectively. Generally, the states

|GHZN 〉 = ( |H 〉⊗N + |V 〉⊗N)/
√

2 (2.16)

are graph states that are defined by star-shaped graphs [fig. 2.3(a)]. The GHZ states are
known as maximally entangled states and useful for a multitude of applications, such as
secret-sharing [118], dense-coding [119], as a minimal toric code state [57], and for an all
versus nothing violation of local realism [10, 62, 63]. For four qubits two different graph
states are found, the |GHZ4 〉 state and the four-qubit cluster state |C4 〉 = ( |HHHH 〉+
|HHV V 〉+ |V V HH 〉− |V V V V 〉)/2 [fig. 2.3(a)]. The latter state belongs to a subgroup
of graph states called cluster states [45, 46]. It was found that cluster states are the resource
for performing one-way quantum computation [45, 46, 60], an alternative computation
model to the well known circuit model [1]. Particular graph states can be used for quantum
error correction, which exploits their description via stabilizing operators [120]. For graph
states of more qubits the reader is referred to ref.[116]. For this work only graph states up
to four qubits are relevant and appear in chapters 3, 4 and 5.

Another group of states are the Dicke states [77, 83]. They are common eigenstates of
the total spin operator squared, Ĵ2

N , and the spin operator component in the z-direction,
ĴN,z. Thereby,

Ĵ2
N = Ĵ2

N,x + Ĵ2
N,y + Ĵ2

N,z and ĴN,i = 1/2
∑

k

σ̂k
i , (2.17)

with, e.g., σ̂3
i = 11 ⊗ 11 ⊗ σ̂i ⊗ 11 ⊗ 11 ⊗ 11 for N = 6 qubits and i ∈ {x, y, z} (~ is set to

unity). Dicke states have first been investigated with respect to light emission from a cloud
of atoms [83]. In this context it has been found that atoms in a highly correlated state,
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graph states of up to 4 qubits

Dicke states of 4 qubits
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next-neighbor
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Figure 2.3: (a) All inequivalent graph states up to four qubits are shown, whereby a vertex
is a qubit and an edge represents a two-qubit interaction. The states |GHZN 〉 can always
be represented by star-shaped graphs. (b) All symmetric Dicke states with maximal total
spin for four qubits are schematically displayed, whereby red circles correspond to the
number of excitations. The states |WN 〉 ≡ |D(1)

N 〉 are the N -qubit versions of the three-

qubit |W3 〉 ≡ |D(1)
3 〉 state. The state |W 4 〉 is the spin flipped counterpart to |W4 〉.

a so-called Dicke state, emit radiation more strongly than when they are independent.
Recently, Dicke states have found attention in the context of quantum information, both
theoretically [55, 77, 78, 80, 121, 122] as well as experimentally [41, 65, 82, 123]. In this
work the subgroup of Dicke states with maximal Ĵ2

N is relevant. These states are symmetric
under permutation of particles and can be written as

|D(l)
N 〉 =

(
N
l

)−1/2 ∑
i

Pi( |H⊗(N−l)V ⊗l 〉), (2.18)

where
∑

iPi(...) means the sum over all distinct symmetric permutations Pi and l is the
number of excitations, i.e., vertically polarized photons [fig. 2.3(b)]. More details are found
in chapter 5, whereby the experimental implementation of some symmetric Dicke states of
up to six qubits is discussed.

Classification of symmetric N-qubit states Recently, a classification of symmetric
N -qubit pure states2 has been carried out [125]. Many of the states for which applications
have been found are symmetric, and thus play an important role in quantum information.

2Another study of symmetric states with the goal to determine maximally entangled symmetric states
can be found in ref. [124].
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Symmetric states can be grouped according to their degeneracy configuration and their
diversity degree dg [125], see below. Any symmetric state can be written as

|ψS 〉 =
N∑

k=0

ck |D(k)
N 〉 = NS

∑

1≤i1 6=... 6=iN≤N

|εi1 , ..., εiN 〉 (2.19)

with ck complex coefficients3, the normalization factor NS, |εi 〉 = αi |+ 〉 + βi |− 〉 and
|αi|2+ |βi|2 = 1. The degeneracy configuration is the list of numbers of identical4 |εi 〉. The
diversity degree is the dimension of that list. For dg ≤ 3 states belong to a single SLOCC
class [125]. Using that classification and considering the three-qubit case, three different
families can be identified, the fully-separable class (dg = 1), the W class (dg = 2) and the
GHZ class (dg = 3), which recovers the result from the SLOCC analysis apart from the
classes of bi-separable states. For the four-qubit case five families of symmetric states are
identified, of which four belong each to a single SLOCC class and one to a continuous set of
SLOCC inequivalent states. Canonical states are |D(0)

4 〉 (dg = 1), |D(1)
4 〉 ≡ |W4 〉 (dg =

2), |D(2)
4 〉 (dg = 2), ( |D(0)

4 〉 + |D(2)
4 〉 )/√2 (dg = 3) and ( |GHZ4 〉 +µ |D(2)

4 〉 )/
√

1 + |µ|2
(dg = 4) with complex µ 6= ±1/

√
3. As this classification restricts to symmetric states it

yields a reduction in the number of different families for N qubits compared to the SLOCC
criterion.

Other classification schemes For a detailed description of other classification schemes
(for example the local entanglability of multi-partite entangled states [126] or multidimen-
sional determinants [127]) the reader is referred to the special literature.

2.2 Entanglement detection and measures of entan-

glement

In this section basic methods with the aim of detecting entanglement are described. Criteria
to rule out full-separability are presented as well as criteria to prove genuine N -qubit
entanglement. It is also important to give a quantitative estimate of the entanglement
contained in a state. To this end entanglement measures have been developed, of which
some are presented. While many measures exist for the bi-partite case, only a few are
known for multi-partite states. This can partly be attributed to the appearance of different
types of genuine N -qubit entanglement for N > 2. Excellent review articles concerning
the detection and quantification of entanglement can be found in refs. [86–88, 128].

2.2.1 Entanglement detection

The following criteria can be used to detect entanglement or even genuine N -qubit entan-
glement.

3Only here the k excitations are represented by |− 〉 and not by |1 〉.
4 |εi 〉 and |εj 〉 are identical, if and only if αiβj − αjβi = 0.
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Positive partial transposition A well known criterion to decide whether a given state
is entangled is to consider the partial transposition of that state [129]. A density matrix
of two qubits labeled 1 and 2 can be written as

ρ =
∑

i,j∈{H,V }

∑

k,l∈{H,V }
ρij,kl | i 〉〈 j | 1 ⊗ |k 〉〈 l | 2. (2.20)

The partial transpose with respect to one qubit, e.g., qubit 1, is defined as

ρT1 =
∑

i,j∈{H,V }

∑

k,l∈{H,V }
ρji,kl | i 〉〈 j | 1 ⊗ |k 〉〈 l | 2 (2.21)

and accordingly for qubit 2. A state is said to have a positive partial transposition (PPT)
if its partial transposition has only non-negative eigenvalues, i.e., if ρT1 ≥ 0 and ρT2 ≥ 0,
and thus describes a physical state. This holds for all separable states. If the partially
transposed state exhibits at least one negative eigenvalue, the state is entangled. The
opposite is only valid for 2 × 2 and 2 × 3 dimensional systems, whereby a PPT implies
that ρ is separable. In higher dimensions so-called bound entangled states exist [130, 131],
which have a PPT, but are entangled. The partial transposition can be interpreted as
local time reversal on one subsystem [132], and thus separable states lead to physical states
upon this operation in contrast to entangled states. Furthermore, the partial transposition
is a positive but not completely positive map5. It was shown that any such map can
be used for entanglement detection [133]. Most importantly entanglement witnesses (see
below) are also connected with positive maps. Evaluating the PPT criterion requires the
determination of the complete density matrix, and thus its derivation from experimental
data scales exponentially with N . Hence, other criteria are necessary that significantly
reduce the number of measurement settings.

Entanglement witness The method of entanglement witnesses [133, 134] is now rou-
tinely used in entanglement detection [41, 65, 135] for excluding full-separability or prov-
ing genuine N -qubit entanglement. It can best be envisaged when considering that (bi)-
separable states form a convex set (fig. 2.4). Hence, operators Ŵ exist for which Tr[Ŵρ(bi−)sep]

≥ 0 ∀ Ŵ that fulfill 〈ψ | (bi−)sepŴ |ψ 〉(bi−)sep ≥ 0 for all (bi-)separable states |ψ 〉(bi−)sep

[133]. In other words, the set of (bi-)separable states can be bounded by hyperplanes de-
scribed by the set of operators Ŵ . Exactly these hyperplanes correspond to entanglement
witnesses, which yield a positive expectation value for all (bi-)separable states. Hence, as
soon as for a particular Ŵ one finds Tr[Ŵρ] < 0, the state ρ is entangled. A commonly
used witness operator is the projector-based witness of the form

Ŵ = α11⊗N− |χ 〉〈χ | with α = max |ψ 〉
(bi−)sep

|〈ψ(bi−)sep | χ 〉|2, (2.22)

5An operator is called positive if and only if it is Hermitian and has non-negative eigenvalues. A map
Θ̂ is called completely positive if and only if 11⊗ Θ̂ is positive on any finite-dimensional system.
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Figure 2.4: The convex sets of separable (sep), bi-separable (bi-sep) and genuinely N -
qubit entangled states (n-ent) are shown. An optimal (Ŵ1) and a non-optimal witness
(Ŵ2) detect a state as entangled for Tr[Ŵiρ] < 0, for example for the target state |χ 〉. Its
genuinely N -qubit entanglement can only be proven by Ŵbi−sep.

which is constructed with respect to an entangled target state |χ 〉. Thus, Tr[Ŵρ′] ≥ 0
does not imply that ρ′ is separable, rather, another witness Ŵ ′ might exist for which
Tr[Ŵ ′ρ′] < 0. The optimality of a witness can be defined in the following way. The
witness Ŵ1 is finer than Ŵ2, if the entanglement of ρ detected by Ŵ2 is also detected by
Ŵ1, but not necessarily vice versa [136]. Hence, a witness is optimal if no finer witness exists
(fig. 2.4). While witnesses are linear operators, improved witnesses for the bi-partite case
can be formulated by considering non-linear extensions [137]. These non-linear witnesses
detect more entangled states, and thus can be finer than any linear witness. However,
the generalization of non-linear witnesses to multi-partite systems still remains an open
problem.

In general, the determination of witness operators needs fewer measurement settings
than the determination of the density matrix. It was even shown that for certain graph
[138] or Dicke states [121] entanglement witnesses exist that require only two measure-
ment settings independent of the number of particles. Such particular witnesses exploit
symmetries in these states. However, in general the decomposition of witness operators
into locally measurable observables is a nontrivial task [139, 140]. Particular examples of
witness operators are given in chapters 3, 4 and 5.

Bell inequality Bell inequalities are derived assuming a local-realistic description of
measurement results. Thus, they give bounds on measurement outcomes for certain
measurement settings assuming that the outcomes can be described by a local hidden
variable (LHV) model, and thus are predetermined and independent of the measurement
itself. Entangled states exist that violate such a Bell inequality. This was first realized by
John Bell [5] giving an experimentally testable formulation of the long posted Einstein-
Podolsky-Rosen paradox [4]. Though Bell inequalities are constructed in the LHV space,
from a quantum mechanical point of view they can be considered as non-optimal entan-
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glement witnesses [141]. If a Bell inequality is violated, it reveals that the measurement
results cannot be described by a LHV model and at the same time detects entanglement
as, by definition, separable states can be described by a LHV model. Bell inequalities can
be footed on probabilities [142] and also on correlations [143]. The latter will be used in
this work in section 5.2, whereby a Bell inequality is applied. While not being essential
for entanglement detection one has to keep in mind that certain requirements have to be
fulfilled in order to prove a rejection of a LHV model by an experimental violation of a
Bell inequality, e.g., the measurements have to be space-like separated and the ratio of
detected to non-detected events has to exceed a critical value. Loopholes exist for exper-
iments that do not fulfill such criteria (in the above examples the locality and detection
loophole). Then, a description of the measurement results with LHV models exploiting
these loopholes [144, 145] is possible and would explain the violation of the Bell inequality.
A completely loophole-free experiment [8, 9] has not been performed to date, and thus still
remains an experimental challenge, see refs. [100, 146].

Spin squeezing inequalities Entanglement detection can also be based on spin squeez-
ing inequalities by considering the collective angular momentum components [121, 147,
148]. Generally, a state is called spin squeezed [149] if for the uncertainty relation

(∆Jz)
2 · (∆Jy)

2 ≤ 1

4
|〈Ĵx〉|2, (2.23)

with the variance (∆Ji)
2 = 〈Ĵ2

i 〉 − 〈Ĵi〉2 one observes (∆Jz)
2 < 1

2
|〈Ĵx〉|. Hence, a smaller

variance (spin-squeezed) in one direction implies a larger one in an orthogonal direction
(anti-squeezed). Spin squeezing was observed for example in systems of atomic clouds
[150, 151] or trapped atoms in optical lattices [152, 153]. In these systems in order to
detect entanglement it is favorable to read-out collective observables (e.g. 〈Ĵi〉, 〈Ĵ2

i 〉),
since addressing the system as a whole is much simpler than individually addressing single
particles. In addition to this continuous variable application, spin squeezing inequalities
are also useful to detect entanglement in qubit systems [65, 81, 121]. This will be applied in
this work, see chapters 3 and 5. To this end, the collective observables are decomposed into
local measurements. Recently, the generalization of different spin squeezing inequalities,
which had been constructed for different physical implementations and applications, has
been carried out [147, 148]. This full set of spin squeezing inequalities for N qubits reads
[147, 148]

〈Ĵ2
x〉+ 〈Ĵ2

y 〉+ 〈Ĵ2
z 〉 ≤ N(N + 2)/4, (2.24)

(∆Jx)
2 + (∆Jy)

2 + (∆Jz)
2 ≥ N/2, (2.25)

〈Ĵ2
i 〉+ 〈Ĵ2

j 〉 −N/2 ≤ (N − 1)〈Ĵ2
k 〉, (2.26)

(N − 1)[(∆Ji)
2 + (∆Jj)

2] ≥ 〈Ĵ2
k 〉+ N(N − 2)/4, (2.27)

with i, j, k all permutations of x, y, z. These eight inequalities define a polytope in the three
dimensional (〈Ĵ2

x〉, 〈Ĵ2
y 〉, 〈Ĵ2

z 〉) space, whereby states outside the polytope are entangled, see
fig. 3.4 in chapter 3 for the polytope of N = 4.
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Correlation criterion A simple geometrical criterion to exclude full-separability based
on correlations was introduced in ref. [154]. If for a scalar product ~s · ~e < ~e · ~e holds,
then ~s 6= ~e. In principle, one can identify ~s with the set of separable states and ~e with an
entangled state and the scalar product is defined in the correlation space. More specifically,
the latter is given by a special scalar product only running over ji ∈ {1, 2, 3} corresponding
to σ̂x, σ̂y, σ̂z and defined as

(X̂N(ρ), ŶN(ρ)) =
3∑

j1,...,jN=1

Xj1,...,jN
(ρ)Yj1,...,jN

(ρ). (2.28)

The X̂N(ρ) and ŶN(ρ) are identified with the correlation tensor T̂ (ρ) of an N -qubit state
ρ with components Tµ1,...,µN

(ρ). Then, the aforementioned inequality can be formulated as

Tmax
n := maxT̂prod

N
(T̂ prod

N (ρsep), T̂N(ρ)) < (T̂N(ρ), T̂N(ρ)) =: ||T̂N(ρ)||2 (2.29)

with T̂ prod
N (ρsep) the correlation tensor of all fully-separable states ρsep. This inequality

only holds if ρ is entangled. It was shown that Tmax
n ≤ 1 [154]. Hence, as soon as the

sum of squared correlations
∑

j1,...,jN
(Tj1,...,jN

(ρ))2 exceeds unity, the state is entangled.
This criterion is very appealing because successive correlation measurements can be used
to detect entanglement, starting with a minimum of two (see chapter 3). In terms of the
number of measurement settings and their flexibility this criterion is favorable compared
to most other entanglement detection criteria described so far. However, a generalization
of this criterion for proving genuine N -partite entanglement has still to be carried out.

Density matrix element criterion Recently, new entanglement criteria to detect gen-
uine N -qubit entanglement have been developed in terms on bounds on the diagonal ele-
ments ρi,i and off-diagonal elements6 ρi,j with i 6= j of the density matrix ρ [155]. These
criteria apply to any state and can be optimized for particular states. For example, in
the case of three qubits the off-diagonal element ρ1,8 is bounded as a function of diagonal
elements like |ρ1,8| ≤ √

ρ2,2ρ7,7 +
√

ρ3,3ρ6,6 +
√

ρ4,4ρ5,5. Violation of that bound, which is
maximal for the state |GHZ3 〉 , implies genuine three-qubit entanglement. For other states
a local change of the basis might be necessary. Further, any bi-separable three-qubit state
fulfills

|ρ2,3|+ |ρ2,5|+ |ρ3,5| ≤ √
ρ1,1ρ4,4 +

√
ρ1,1ρ6,6 +

√
ρ1,1ρ7,7 + (ρ2,2 + ρ3,3 + ρ5,5)/2. (2.30)

Bounds have been explicitly given for the four-qubit states |GHZ4 〉 , |D(1)
4 〉 and |D(2)

4 〉
[155]. To evaluate the inequalities from experimental data, in general, the complete density
matrix has to be known. However, diagonal elements of a density matrix can be measured
with a single measurement setting. For particular cases, off-diagonal elements can be mea-
sured with only a few settings reducing the experimental effort considerably, for example
for the states |GHZN 〉 [156], or estimated for the states |D(1)

N 〉 .
6Here, the elements ρi,j of the density matrix are written in shorthand notation using i ∈ {1, 2, . . . , 2N}

corresponding to HH . . .H, HH . . . V, . . . , V V . . . V and similarly for j. For example for two qubits one
has i ∈ {1, 2, 3, 4} corresponding to HH, HV, V H, V V .
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Other criteria Further criteria to detect entanglement include, amongst others, the
reduction criterion, the range criterion, the matrix realignment criterion, the majorization
criterion and the usage of covariance matrices. As these criteria are not applied in this
work the interested reader is referred to review articles [87, 88].

2.2.2 Entanglement measures

An entanglement measure E(ρ) quantifies the amount of entanglement of a state ρ. This
basic idea was introduced first in the context of quantum communication protocols. Con-
sider for example the teleportation protocol [157, 158]. The Bell state |ψ− 〉 is the resource
to teleport an unknown state from one location to another one using two additional bits of
classical communication. The usefulness of any state for that protocol can be quantified by
asking how many copies of that state are necessary in order to retrieve n Bell states. This
defines an entanglement measure, called the distillable entanglement [87, 128]. Another
question could be, how many Bell states does one need in order to synthesize n copies of
an arbitrary state. This is quantified by the entanglement cost [87, 128].

While these two measures are operational and difficult to compute in the general case
(i.e. for mixed states), another approach is to demand that an entanglement measure
conforms with certain requirements. Two basic requirements should be fulfilled [87], namely

(i) E(ρsep) = 0 for separable states ρsep and

(ii) monotonicity, which means E(ΛLOCCρ) ≤ E(ρ), i.e., E(ρ) can only decrease under
LOCC (ΛLOCC).

While the first requirement appears naturally, the second one goes along with the observa-
tion that entanglement cannot be created by LOCC. Further requirements can be useful,
but are not necessary [87];

(iii) E(ρ) is invariant under LU operations,

(iv) convexity: E(
∑

k pkρk) ≤
∑

k pkE(ρk), and

(v) additivity: E(ρ⊗n) = nE(ρ), where ρ⊗n means n copies of the state ρ.

In general, a specific entanglement measure fulfills not all of these requirements.
In the following, the most important entanglement measures are summarized. Some of

these can be used to quantify the amount of entanglement created in an experiment. Note,
here the difficulty lies with mixed states. A measure E( |φ 〉) for pure states |φ 〉 can be
extended to mixed states via the convex-roof extension [159]:

E(ρ) = inf
pk, |φk 〉

∑

k

pkE( |φk 〉), (2.31)

where ρ =
∑

k pk |φk 〉〈φk | and the optimization is done over all possible decompositions.
For only a few measures the optimization can be done analytically.
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Maximal singlet fraction and fidelity The maximal singlet fraction is not a measure
in the aforementioned sense, but it quantifies the usefulness of a state for teleportation [160].
It denotes the maximal fidelity with a singlet (or Bell state) under any trace preserving
LOCC:

MSF(ρ) = max
LOCC

〈ψ− |ΛLOCCρΛLOCC† |ψ− 〉. (2.32)

The maximal singlet fraction can be used to calculate the maximal achievable teleportation
fidelity ftele using the state ρ as

ftele = (d ·MSF(ρ) + 1)/(d + 1) (2.33)

with d = 2 for qubits.
In general, the fidelity Fσ(ρ) quantifies the overlap of a state ρ with another state σ

and is defined as [1, 161]

Fσ(ρ) = Tr[

√√
σρ
√

σ]
2

. (2.34)

For pure states σ =| ψ 〉〈ψ | this equation reduces to Fψ(ρ) = 〈ψ | ρ |ψ 〉. In this work,
the state |ψ 〉 resembles the target state and ρ the observed state of the experiment. The
fidelity can be applied for a comparison between different physical systems realizing multi-
partite entangled states.

Entanglement of formation The entanglement of a pure state can be measured by the
reduced von Neumann entropy

S(ρ1) = −Tr[ρ1 log2 ρ1], (2.35)

where

ρ1 = Tr2[ρ12] =
∑

m∈{H,V }

∑

i,j∈{H,V }

∑

k,l∈{H,V }
| i 〉〈 j | 1 ⊗ 〈m | k 〉〈 l | m 〉2 (2.36)

denotes the partial trace over subsystem 2 and ρ12 =|ψ 〉〈ψ | is a pure state. This measures
the local mixedness7, because maximally entangled states (Bell states) are maximally mixed
when only one subsystem is considered, whereas a subsystem of a separable pure state is
pure. The entanglement of formation EF (ρ) [162] is defined via the convex-roof extension
of S(ρ1) as

EF (ρ) = inf
pk, |φk 〉

∑

k

pkS((ρ1)k), (2.37)

i.e., the least probable reduced von Neumann entropy of any ensemble of pure states
realizing ρ. EF (ρ) can be interpreted in terms of the minimal number of Bell states
necessary to build a copy of the state ρ [162]. It has been found that EF (ρ) can be
computed analytically for bi-partite mixed states via the concurrence.

7The linear entropy 4/3(1−Tr[ρ2]) is another entropic measure for the local mixedness, with Tr[ρ2] the
purity of ρ.
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Concurrence The concurrence is defined as

C( |ψ 〉) =
√

2(1− Tr[ρ2
1]) = 〈ψ | Θ̂ |ψ 〉, (2.38)

where Θ̂ψ = (σ̂y ⊗ σ̂y)ψ
∗ is an anti-unitary transformation and ∗ denotes the complex

conjugation [163]. The expression 〈ψ | Θ̂ |ψ 〉 finds an interpretation as the fidelity of a state
|ψ 〉 to its universal8 spin flipped counterpart. For the Bell states a universal spin flip on
both qubits always yields the same Bell state, whereas for separable states an orthogonal
state is obtained. Thus, the concurrence can quantify the amount of entanglement. An
analytical expression for the concurrence for mixed states has been found [164]:

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), (2.39)

where the λi are the eigenvalues in decreasing order of the matrix
√

ρ

√
Θ̂ρΘ̂. It has been

shown that C(ρ) can be used to calculate the entanglement of formation for two qubits as

EF (ρ) = h((1 +
√

1− C(ρ)2)/2), (2.40)

where h(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function. Note, C(ρ)2

is sometimes denoted as tangle τ(ρ). The concurrence can also be measured directly for
two qubits, without determining the density matrix, by a measurement on two copies of a
pure state [165–168]. If these two copies are not ideal, i.e., in a mixed state, then a lower
bound on the concurrence can be estimated [169, 170]. Recently, the latter idea has been
implemented and discussed in refs. [171, 172].

Negativity The violation of the PPT criterion can be quantified via the negativity [173,
174]

N (ρ) = (||ρT1||1 − 1)/2 =
∑

λi<0

λi (2.41)

with the trace norm of an operator Â defined as ||Â||1 = Tr[
√

Â†Â] and where the λj are
the eigenvalues of ρT1 (see eq. 2.21). While the negativity is convex, it is not additive.
However the logarithmic negativity [174]

EN (ρ) = log2 ||ρT1||1 = log2 (2N (ρ) + 1) (2.42)

is additive, but not convex. Note, negativity and concurrence can be used in experiments
to quantify the amount of entanglement as they are easily computable for mixed states.
To this end, however, the determination of the density matrix is required.

The tripartite negativity [175, 176] is an extension of negativity to the three-qubit case
and is defined as the geometric mean of the negativities for all bi-partitions [175],

N3(ρ) = (N{1,23}(ρ)N{2,13)}(ρ)N{3,12}(ρ))1/3. (2.43)

8The operations σ̂x or σ̂y do not flip |+ 〉 ↔ |− 〉 or |R 〉 ↔ |L 〉, respectively, but σ̂yψ∗ does.
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This can be used to quantify the amount of W type entanglement in a three-qubit state as
it is a measure of the residual bi-partite entanglement. Below, the 3-tangle is considered,
which, in contrast, quantifies the amount of GHZ type entanglement in a three-qubit pure
state.

3-tangle For pure three-qubit states the 3-tangle, τ3( |ψ 〉), is a measure of entanglement
[111]. It is defined as [111, 177]

τ3( |ψ 〉) = 4|d1 − 2d2 + 4d3| with (2.44)

d1 = c2
HHHc2

V V V + c2
HHV c2

V V H + c2
HV Hc2

V HV + c2
V HHc2

HV V ,

d2 = cHHHcV V V cHV V cV HH + cHHHcV V V cV HV cHV H + cHHHcV V V cV V HcHHV

+cHV V cV HHcV HV cHV H + cHV V cV HHcV V HcHHV + cV HV cHV HcV V HcHHV ,

d3 = cHHHcV V HcV HV cHV V + cV V V cHHV cHV HcV HH ,

where the cijk with i, j, k ∈ {H, V } denote the coefficients of a state |ψ 〉 in the computa-
tional basis. For pure states the monogamy relation

(C1|23( |ψ 〉))2 = (C12(ρ12))
2 + (C13(ρ13))

2 + τ3( |ψ 〉) (2.45)

holds. It states that the entanglement between subsystem 1 and subsystems {2, 3} is
distributed in three forms, namely as entanglement between subsystem 1 and 2, be-
tween subsystem 1 and 3 and tri-partite entanglement between all 3 subsystems. The
3-tangle can be used to distinguish between the W and GHZ classes of pure states,
as 0 < τ3( |GHZclass 〉 ) ≤ 1 and τ3( |Wclass 〉) = 0. To further rule out bi-separability
(τ3( |φbi−sep 〉) = 0), one has also to calculate the local entropy of each pair in order to
demonstrate W type entanglement [107]. Recently, in the work of refs. [177–179] an exten-
sion of τ3 to a family of mixed three-qubit states was achieved. This family is composed
of rank two mixed states of the form ρ(p) = p |GHZ3 〉 〈GHZ3 | + (1 − p) |W3 〉〈W3 | .
Further, one can decide on analytical grounds for any rank two three-qubit mixed state
ρ = p |ψ 〉〈ψ | + (1− p) |χ 〉〈χ | if it has vanishing τ3 or not.

Geometric measure of entanglement The geometric measure of entanglement [180,
181], EG( |ψ 〉), quantifies the minimal distance of |ψ 〉 to the set of fully-separable states
|φ 〉sep. It is defined for pure states as

EG( |ψ 〉) = 1− sup |φ 〉
sep

|〈φsep | ψ 〉|2, (2.46)

as one minus the maximal overlap with pure fully-separable states. Most importantly, the
geometric measure can be estimated from experimental data [182–184] yielding a lower
bound on EG(ρ) for the mixed state ρ. To this end, consider for example the special case
of an entanglement witness of the form Ŵ = α11− |ψ 〉〈ψ | to detect entanglement in the
vicinity of |ψ 〉, where α = |〈φsep | ψ 〉|2 denotes the maximal overlap with fully-separable
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states and EG( |ψ 〉) for the pure state |ψ 〉 is known. The Legendre transform ÊG(rŴ)
[182] is used to estimate EG(ρ):

ÊG(rŴ) =

{
rα for r ≥ 0[√

(1− r)2 + 4rEG( |ψ 〉) + 2αr − r − 1
]
/2 for r < 0,

Then, an optimization is performed over all r such that

EG(ρ) ≥ supr{r · Tr[ρŴ ]− ÊG(rŴ)}, (2.47)

where Tr[ρŴ ] is the experimentally determined expectation value of Ŵ .

Robustness The robustness [185] of an entangled state ρ quantifies by how much it
can be mixed with a separable state σsep such that the overall state is still entangled,
i.e., the maximal p in ρmix = (1 − p)ρ + pσsep. In this work, robustness will be used in
order to evaluate the noise tolerance for various entanglement detection criteria, where, for
simplicity σsep is assumed to be white noise 11⊗N/2N . Alternatively, the critical visibility
νcrit = (1− p) is considered.

This completes the methods for detecting and quantifying entanglement.

2.3 Experimental observation using photons

The necessary experimental methods to observe entanglement using polarization-encoded
photonic qubits are discussed in the following. To this end, a photon source delivering a
certain number of photons is required. A source that is widely used in photonic quantum
information experiments is based on the non-linear process of spontaneous parametric
down conversion (SPDC). In this process, basically 2n low energy photons (mostly in
the infrared (IR)-wavelength region) are created by probabilistic down conversion of n
higher energy photons (mostly in the UV-wavelength region). In particular cases one can
directly make use of the quantum correlations between the photons created by the source
[51, 186]. However, the probabilistic production of photons demands high pump powers to
achieve sensible count rates for acquiring sufficient statistical data. Therefore, the pump
power is concentrated in ultrashort pulses. Another photon source applied in multi-photon
entanglement experiments is a strongly attenuated weak coherent beam, i.e., faint laser
pulses, used for example in combination with SPDC sources.

Subsequently, the photons are manipulated by linear optical elements. This includes
for example interference of photons or polarization manipulations and finally, a distribu-
tion into a well defined number of spatial modes. Polarization analysis in each mode is
performed in order to acquire information about the multi-photon states. The desired
multi-photon states are observed under the condition of detecting a single photon in each
of the spatial modes [42, 43], see for example fig. 3.1. This condition selects a subspace
of the complete space of all possible photon distributions in the linear optical setup. In
general, this method of state observation works only probabilistically.
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2.3.1 Photon sources

Two distinct approaches to realizing photon sources for quantum information process-
ing exist, namely sources based on spontaneous, non-linear processes and deterministic
sources. Both approaches should ideally fulfill the following requirements: the creation of
a particular number of photons in well defined spatial, spectral, temporal and polarization
modes at sufficient production rates. These requirements are demanding and, so far, no
photon source exists fulfilling all these requirements at the same time in a satisfactory way
[47–49]. However, this would be necessary to implement scalable linear optical quantum
computing based on single photon sources, linear optical elements and photon number re-
solving detectors, as has been described in ref. [42]. Hence, current photon sources allow
for the demonstration of proof-of-principle implementations without claiming scalability.
To date, entanglement between at most six photons has been observed [36–39], which is
basically limited by low production rates and low detection efficiency in current linear
optical experiments.

Probabilistic sources are based on spontaneous processes like SPDC or spontaneous
four-wave mixing (SFWM). SPDC photon sources are the workhorse for most experi-
ments in optical quantum information processing. To name just a few, SPDC sources are
used as heralded single photon sources for quantum cryptographic applications [16], for
demonstrating the violation of Bell inequalities [8, 51, 187], for multi-photon entanglement
experiments [36, 53, 58, 65, 188, 189], and proof-of-principle demonstrations of applications
[60, 158, 190, 191]. For the observation of 2N -partite entangled photonic states, one uses
the simultaneous but probabilistic photon pair emission from N SPDC sources or the Nth
higher order emission from a single SPDC source, which is described in the following, see
also fig. 3.1.

Ideally, one would like to use deterministic sources delivering single photons on demand.
These can be realized in various physical systems [47–49], for example, nitrogen vacancy
centers in diamond [192], quantum dots [193], single atoms in a cavity [194] and molecules
[195]. However, so far, the production rates are too low and often the experimental effort
is too high, for example a cryogenic environment or intricate laser systems are necessary.
Hence, these sources are not yet suitable for multi-photon entanglement experiments.

Spontaneous parametric down conversion The SPDC is a non-linear χ(2) process of
non-inversion symmetric crystals, whereupon to first order two photons, called signal and
idler, are created by probabilistic down conversion of a pump photon. It can be described
by considering that the presence of an electric field E inside a crystal induces a polarization
P. In an anisotropic medium the polarization Pi along a particular direction depends on
the three components i, j, k, l ∈ {x, y, z} of the electric field expressed in a power series
[196]

Pi(E) = ε0(
∑

j

χ
(1)j
i Ej +

∑

j,k

χ
(2)j,k
i EjEk +

∑

j,k,l

χ
(3)j,k,l
i EjEkEl + ...), (2.48)
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with ε0 the dielectric constant. The electric susceptibilities χ(m) of order m are, in the
general case, tensors. They are of strength χ(1) ≈ 1, χ(2) ≈ 10−10 cm/V and χ(3) ≈
10−17 cm2/V2, i.e., the coupling of the electric field with the crystal decreases rapidly with
(m). The term proportional to χ(2) is responsible for three-wave mixing (three photon in-
teraction) used for sum- and difference-frequency conversion, second harmonic generation,
and SPDC, whereupon the latter can only be understood when quantizing the relevant
fields as it represents a spontaneous process. The term proportional to χ(3) describes four-
wave mixing responsible for the non-linear refractive index and SFWM. The following
description is restricted to the process of SPDC.

Energy and momentum conservation must be fulfilled between the three interacting
waves, hence,

~ωp = ~ωs + ~ωi + ∆E and ~kp = ~ks + ~ki + ~∆k (2.49)

with ∆E = 0 and ∆k = 0. Thereby, ωm with m ∈ {p, s, i} denotes the frequency
of pump, signal and idler waves and the absolute value of the wave vector is given as
|km| = ωmn(ωm)/c, where n(ωm) is the refractive index and c the speed of light. The
condition ∆k = 0 is called phase-matching (only in that case the SPDC process yields
a considerable emission) and can be reached in naturally occurring crystals by using the
effect of birefringence, for example, in negative (ne < no), uniaxial crystals, whereby a spe-
cial direction called the optical axis exists. The plane containing the optical axis and the
incident wave vector is called the principal plane. Light polarized perpendicular (parallel)
to that plane is called ordinary, o (extraordinary, e). To achieve ∆k = 0 one exploits that
the refractive index for ordinarily polarized light does not depend on the propagation direc-
tion, whereas for extraordinarily polarized light it does. Then, two types of phase-matching
can be distinguished: type I and type II. For type I (type II) phase-matching the pump
is an e-wave and the signal and idler are o-(e- and o-) waves. Furthermore, depending on
the relative orientation of the momentum vectors, collinear (kp‖ks‖ki) and non-collinear
(kp,ks,ki arbitrary directions fulfilling momentum conservation) phase-matching might
occur. This is achieved, for example, by tuning of the crystal tilt, which changes the an-
gle θ between the incident wave and the optical axis and as a result ne(θ). In this work
collinear [fig. 2.5(a)] and non-collinear type II [fig. 2.5(b)] phase-matching in β-barium-
borate (BBO) crystals (β-BaB2O4, negative uniaxial) is used with a pump wave length
at 390 nm. The degenerate case is considered, i.e., whereby the wavelength of the down
converted signal and idler fields are equal and twice that of the pump field.

In the following the appearance of higher order terms in the SPDC process is discussed,
which can directly be used for multi-photon entanglement experiments [52, 197]. SPDC
is a non-classical process induced by fluctuations of the vacuum field. To this end, the
interaction Hamiltonian [50]

ĤI =

∫

V

dV Ê(+)
p Ê(−)

s Ê
(−)
i + h.c. (2.50)

is considered, where h.c. denotes the Hermitian conjugate. A single mode description of
each electric field operator Ê(±) is sufficient to illustrate the appearance of higher order
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Figure 2.5: (a) The degenerate signal and idler photons in type II collinear SPDC are
emitted in two cones that intersect along one line. Coupling into a single mode fiber
defines the spatial mode a. (b) For type II non-collinear SPDC the cones intersect along
two lines, defining modes a and b.

SPDC emissions. However, a multimode treatment, which considers a superposition of
modes represented by monochromatic plane waves, is necessary for a proper calculation of
the spatial, spectral and intensity distribution of the SPDC field. This is not the aim here
and the interested reader is referred to the special literature on SPDC in general [198–201]
and pulsed pump SPDC in particular [202–204]. Another assumption is the utilization of
the proper polarizations, thus, the vector notation is dropped. The pump can be treated
classically as a plane wave with a complex field amplitude

Ê(+)
p = E0;pe

i(kpx−ωpt) (2.51)

with E0;p denotes the amplitude of the pump field. This simplification is possible because
the interaction χ(2) is very weak such that few pump photons are down converted (on the
order of 10−10). In contrast, the signal and idler fields have to be quantized by using the
electric field operators,

Ê
(−)
s,i = E0;s,iâ

†e−i(ks,ix−ωs,it) (2.52)

with the E0;s,i incorporate the parameters from field quantization, and Ê
(+)
s,i = (Ê

(−)
s,i )†,

where Ê
(−)
s,i corresponds to photon emission described by the creation operator â† and

Ê
(+)
s,i to photon annihilation described by the annihilation operator â. The label a denotes

the spatial mode of the photons. With the integration in eq. 2.50 taken over
∫

V
dV one

essentially obtains the phase-matching condition, see for example refs. [50, 205] (for a very
long crystal with a large surface and a plane wave pump with a coherence time longer
than the crystal length and infinite transversal extent, the phase-matching condition is
essentially given by a δ-function yielding eq. 2.49). Assuming that the result is known
and given as κ with κ ∝ |E0;p|χ(2), then, for collinear (cl) and non-collinear (ncl) type II
phase-matching one obtains the Hamiltonians [50, 206]

ĤI,cl = i~κclâ
†
H â†V + h.c., (2.53)

ĤI,ncl = i~κncl(â
†
H b̂†V − â†V b̂†H) + h.c. (2.54)



26 2. Multi-partite entanglement

For type II collinear SPDC photons of orthogonal polarization are created in a single spatial
mode a [fig. 2.5(a)]. In contrast, for type II non-collinear SPDC the photons are created
in two spatial modes a and b [fig. 2.5(b)], with a superposition of having a horizontally
polarized photon in mode a and a vertically polarized photon in mode b or vice versa9.

To derive the state vector of the down converted fields one usually applies first order
perturbation theory, approximating

|ψ 〉cl = e−
i
~

∫
dtĤI,clt |vac 〉 (2.55)

as |ψ 〉cl ≈ (1− i
~
∫

dtĤI,clt) |vac 〉 and accordingly for |ψ 〉ncl with |vac 〉 the vacuum state.
However, continuing the expansion of the exponential to higher orders is necessary as these
are used in the following experiments. A detailed derivation can be found in appendix A
according to refs. [52, 206]. The result is

|ψ 〉cl =
1

cosh τcl

∞∑
n=0

tanhn τcl

n!
(â†H â†V )n |vac 〉

=
1

cosh τcl

∞∑
n=0

tanhn τcl |nH , nV 〉a (2.56)

|ψ 〉ncl =
1

cosh2 τncl

∞∑
n=0

tanhn τncl

n!
(â†H b̂†V − â†V b̂†H)n |vac 〉

=
1

cosh2 τncl

∞∑
n=0

tanhn τncl

·
n∑

m=0

(−1)m |mH , (n−m)V 〉a |(n−m)H ,mV 〉b, (2.57)

with τcl ∝ κclt ∝ |E0;p|χ(2)t and |nH , nV 〉a denotes n horizontally and n vertically polarized
photons in mode a and accordingly for the non-collinear case.

These states illustrate that an SPDC source emits in its nth order emission 2n photons
generated from the conversion of n pump photons. By selecting the first order emission
of a type II non-collinear SPDC, one obtains the Bell state |ψ− 〉 directly from the SPDC
source [51]. Higher order emission in combination with BSs can also be used for a simple
observation of entangled, rotationally symmetric states [40, 59], see section 3.1.

Approximating tanh τ ≈ τ for τ ¿ 1 yields a count rate ∝ τ 2n ∝ (|E0;p|χ(2))2n for the
nth order emission (see appendix A). Hence, the count rate depends on the pump power
P0;p according to

τ 2n ∝ |E0;p|2n ∝ (P0;p)
n. (2.58)

For conventional non-linearities and pump powers the probability to simultaneously gen-
erate n photon pairs is rather low. Therefore, the common approach is to concentrate the
pump energy in short pulses to increase this probability per pulse.

9The phase between the two possibilities can easily be changed by a phase shifter in one of the spatial
modes.
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The experiments discussed in chapters 3 and 4 use the second order emission (n = 2)
of a type II non-collinear SPDC source, i.e., the state

|ψ 〉ncl,2 ∝ tanh2 τncl

2 cosh2 τncl

(â†H b̂†V − â†V b̂†H)2 |vac 〉 (2.59)

=
tanh2 τncl

cosh2 τncl

( |0H , 2V 〉a |2H , 0V 〉b − |1H , 1V 〉a |1H , 1V 〉b + |2H , 0V 〉a |0H , 2V 〉b).

The selection of the second order emission, i.e., four photons of the state of eq. 2.57, is
performed by detecting exactly four photons in the linear optical setup. Further, for the
experiment described in chapter 5 the third order emission of a type II collinear SPDC
source is used,

|ψ 〉cl,3 ∝ tanh3 τcl

6 cosh τcl

(â†H â†V )3 |vac 〉 =
tanh3 τcl

cosh τcl

|3H , 3V 〉a. (2.60)

To select this state exactly six photons have to be detected.
The aforementioned description was based on a single mode treatment of SPDC. In

order to use the SPDC photons for quantum information purposes it is sufficient that they
are spatially, spectrally and temporally indistinguishable [207]. Spatial indistinguishability
is achieved by coupling the SPDC emission into single mode fibers [208] that inherently
only allow the propagation of the TEM00 mode. Due to the different propagation direc-
tions for extraordinary and ordinary light in a birefringent crystal, transversal walk-off
between the signal and idler photons occurs. This is partly compensated by using a half-
wave plate (HWP) switching horizontal and vertical polarization followed by a half as thick,
non-pumped BBO crystal [51, 205]. It is known that the spectra of idler and signal photons
are different in a pulsed pumped type II process, originating essentially from the difference
in their group velocities and the broadband pump [209–211]. Therefore the photons are
spectrally filtered by using an interference filter of a certain bandwidth or a thin optical
crystal could be used, both reducing the photon count rate. Different group velocities also
imply temporal distinguishability. This is compensated by the HWP and the additional
BBO crystal mentioned previously [51, 205]. Finally, observing higher order emissions re-
quires that the photons are not emitted as multiples of distinguishable pairs. This requires
that the information about their creation time (within the coherence or pulse length of the
pump) has to be washed out [212, 213]. This is also facilitated by the interference filter,
which broadens the coherence length of the SPDC photons such that it is impossible to
acquire information about their exact creation time. Note, in principle a strong cw-pump
can also be used to observe higher order emissions. However, the condition of temporal
indistinguishability then demands strong filtering of the SPDC emission [214], and thus
a drastic reduction in count rate. A systematic study of the most appropriate parameter
set (pump pulse duration, pump wavelength, filter bandwidth) for an ideal multi-photon
SPDC source is still missing.

Weak coherent beam Many applications in quantum information require single pho-
tons. A source delivering single photons and matching in all degrees of freedom already



28 2. Multi-partite entanglement

generated SPDC photons can be realized by another SPDC process and very weak pump-
ing. The detection of one photon, e.g., the signal, heralds the presence of the other photon,
e.g., the idler [207].

An attenuated coherent beam can be employed to approximate a single photon source,
which can also match SPDC photons [215]. This has the advantage of a tunable production
rate of photons. The state of a coherent beam is given as [50]

|ψ 〉w = e−|τw|
2/2 ·

∞∑
n=0

(τw)n

n!
(ŵ†

j)
n |vac 〉, (2.61)

where ŵ†
j is the creation operator of a photon with polarization j in spatial mode w,

τw = |τw|eiφw , |τw|2 is the mean photon number, and |τw|2e−|τw|2 is the probability for the

photon state |1 〉. Hence, for sufficiently low pump powers the probability |τw|4e−|τw|2/2
of the undesired state |2 〉 is very low. Thus, a weak coherent beam can approximate a
single photon source. However, the Poissonian counting distribution of |ψ 〉w will always
introduce two-photon terms acting as noise [55, 216].

Experimental implementation In order to pump the SPDC process ultrashort pulses
are required. Pump pulses with a central wavelength of 390 nm are used resulting for the
degenerate case in down converted photons at 780 nm. The wavelength has been chosen
such that high efficiency detectors can be employed in the experiments. To create the UV
pump pulses, first a titanium:sapphire (Ti:Sa) oscillator is pumped by a 10W cw-diode
pumped solid state laser at 532 nm. The oscillator delivers 130 fs pulses centered at 780 nm
with an average power of 2W and a repetition rate of 80.8MHz. Subsequently, these
IR photons are up converted in a 3mm thick lithium-triborate (LBO) crystal via second
harmonic generation to ultraviolet (UV) pulses with a central wavelength of 390 nm and
an average power between 560 -800mW. The UV pulses are focused into a BBO crystal.
For the experiments described in chapters 3 and 4 a 2mm thick, uncoated BBO crystal in
type II non-collinear configuration is pumped with the UV pump beam having a waist of
200µm. For the experiment described in chapter 5 a femtosecond UV enhancement cavity
around a 1mm thick, anti-reflection coated BBO crystal has been implemented in order
to enhance the UV pump power to up to 7 W. The details of that setup are described in
chapter 5.10

2.3.2 Photon processing

For multi-photon entanglement experiments the desired photonic quantum states are usu-
ally not directly observed in the emission of the SPDC source itself. The photons are further
processed by linear optical elements like BSs and phase shifters. Linear refers to passive

10The cw-diode pumped solid state laser is a 10W Millenia R©XS by Spectra Physics R©, the Ti:Sa oscillator
is a Tsunami R© by Spectra Physics R©. The uncoated BBO crystals are bought at Foctek R©, whereas the
coated BBO crystals at Newlight Photonics R©.
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optical elements that conserve the photon number, i.e., no non-linear photon conversion
takes places. This allows interference of photons, but no direct photon-photon interaction.
However, two-qubit interactions are required to, e.g., create graph states. This problem
is circumvented by implementing the non-linearity in the detection process [42, 43]. The
photons are distributed in a well-defined number of spatial modes, which corresponds to
the particle number of the entangled state. Only under the condition of observing a single
photon in each of these modes, the desired multi-photon states are observed. However,
due to the usage of BSs, the distribution of the photons into spatial modes works only
probabilistically, and thus results in a non-unit probability to observe the desired states.

At the same time a state is observed it is also destroyed. This drawback could be cir-
cumvented by a non-destructive photonic filter [217–219], which lets pass a certain number
of photons, or by measuring the photon number non-destructively (for example through
a quantum non-demolition measurement [220–222]) in each spatial mode. These schemes
would preserve the polarization properties of photons and yield information about the pho-
ton number in each mode. However, to date, such measurements are in practice infeasible
to perform for multi-photon experiments.

BS

PBS
APD

APD
a) b)

Figure 2.6: (a) Pictorial representation of a beam splitter (BS) with input modes a and
b and output modes c and d. (b) A polarization analysis projects onto the eigenstates of
σ̂(θ, φ) by using a half-wave plate (HWP), a quarter-wave plate (QWP), and a polarizing
beam splitter (PBS) with photon detection using avalanche photo diodes (APDs).

Beam splitters BSs distribute or mix photons in spatial modes and can be polarization
dependent or independent. A BS is a four port device with two input modes denoted as
a and b and two output modes denoted as c and d [fig. 2.6(a)]. A lossless BS is assumed
with real transmittance T ∈ R and real reflectance R ∈ R such that T + R = 1. The
transformation for a BS for the annihilation operators can be written as [223]

â →
√

T ĉ + i
√

Rd̂ and b̂ →
√

T d̂ + i
√

Rĉ, (2.62)

or equivalently it can be formulated in matrix form as

(
ĉ

d̂

)
= ÛBS(T )

(
â

b̂

)
=

( √
T i

√
R

i
√

R
√

T

)(
â

b̂

)
. (2.63)
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The BS introduces a phase shift of eiπ/2 upon reflection, which ensures its unitarity [224].
A commonly used BS is ÛBS(

1
2
) = (11 + iσ̂x)/

√
2 (50:50 BS). Further, the annihilation op-

erators and transmittances can depend on the polarization, which can be incorporated by
considering an additional subscript. For example, a PBS transmits only horizontal polar-
ization and reflects only vertical polarization. This can be described by ÛBS,H(1) acting on

horizontally polarized photons and ÛBS,V (0) acting on vertically polarized photons. Math-
ematically, this corresponds to the tensor product between the spatial and polarization
modes.

Phase shifters Further elements include phase shifters, which can rotate polarization
states or simply change the phase between two polarization states. Here, horizontal and
vertical polarization is used as polarization basis. The most commonly used phase shifts
are λ/2 (HWP) and λ/4 (QWP) implemented by zero-order, uniaxial birefringent crystals,
whose optical axis and the horizontal polarization enclose the angle θ. Their transforma-
tions are given by [225]

HWP(θ) =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
= sin 2θσ̂x + cos 2θσ̂z, (2.64)

QWP(θ) =

(
cos2 θ − i sin2 θ (1 + i) cos θ sin θ
(1 + i) cos θ sin θ −i cos2 θ + sin2 θ

)

=
1

2
((1− i)11 + 2(1 + i) cos θ sin θσ̂x + (1 + i) cos 2θσ̂z) . (2.65)

In particular, HWP(0) = σ̂z, HWP(22.5 ◦) = (σ̂x + σ̂z)/
√

2 (so-called Hadamard trans-
formation) and HWP(45 ◦) = σ̂x. An arbitrary unitary transformation acting on the po-
larization states of photons can be implemented by two QWPs and a HWP in the order
QWP(θ1), HWP(θ2), and QWP(θ3) with appropriate chosen angles θ1, θ2 and θ3. In some
cases only a phase shift between horizontal and vertical polarization is necessary. This can
simply be implemented by varying the thickness of a birefringent crystal via rotating it
around its optical axis, which is perpendicular to the horizontal polarization. This can be
represented by

PS(φ) =

(
i cos (φ/2) + sin (φ/2) 0

0 i cos (φ/2)− sin (φ/2)

)

= i cos (φ/2)11 + sin (φ/2)σ̂z. (2.66)

Experimentally, a pair of birefringent yttrium-vanadate (YVO) crystals is used. Their
optical axes are oriented perpendicular to each other to compensate dispersion effects [104].
Then, only the difference in crystal thickness causes the phase shift. In the experiment the
PS(φ) is used to compensate undesired phase shifts introduced by BSs.

Polarization analysis and data acquisition Finally, in order to analyze the polar-
ization state of the photons a HWP, QWP and PBS are used [fig. 2.6(b)]. While the
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PBS projects the photons onto horizontal and vertical polarization, i.e., the eigenvectors
of σ̂z, the combination of HWP and QWP rotates any incoming polarization onto the lat-
ter two polarizations up to a global phase. The overall transformation projects onto the
eigenvectors of σ̂(θ, φ). In particular, to measure the projector onto the most commonly
used bases σ̂x, σ̂y and σ̂z, the following angles have to be set QWP(0 ◦)HWP(22.5 ◦),
QWP(45 ◦)HWP(0 ◦) and QWP(0 ◦)HWP(0 ◦). This can be easily verified by calculating

σ̂z = (QWP(θ2)HWP(θ1)) σ̂(θ, φ) (QWP(θ2)HWP(θ1))
† (2.67)

with σ̂(π/2, 0) = σ̂x, σ̂(π/2, π/2) = σ̂y, and σ̂(0, 0) = σ̂z, respectively. For an arbitrary
polarization setting θ1 and θ2 have to be calculated.

The probabilities p±(θ, φ) of a particular polarization basis setting correspond to a
local measurement setting of σ̂(θ, φ) and are used to calculate the single qubit correlation
Tσ̂(θ,φ)(ρ) = Tr[ρσ̂(θ, φ)] = p+(θ, φ)−p−(θ, φ). The probabilities p±(θ, φ) can be determined
by the relative frequencies of the measured counts at the output ports of the PBS. To
analyze multi-photon states, each spatial mode is equipped with a polarization analysis.
Combined data yield the correlations Tµ1,...,µN

(ρ), for details see refs. [103, 104].
For photon counting silicon APDs are used, which have a detection efficiency of about

55% at a wavelength of 780 nm. To take the difference in detector efficiency of the de-
tectors at each PBS output port into account, the measured counts in each PBS output
are corrected by the relative detector efficiency. Errors on the data are deduced by Gaus-
sian error propagation from Poissonian counting statistics and errors on the independently
determined relative detector efficiencies [104]. The detection signals are fed into a coinci-
dence unit capable of registering all possible coincidences between all detectors. For the
experiments described in chapters 3 and 4 (chapter 5) 8 (12) detectors have been used
in order to detect the polarization states of four (six) photons. Two different types of
coincidence units have been used, an asynchronous and a synchronous version. The asyn-
chronous coincidence unit [226] opens a coincidence window of about 8 ns, which is smaller
than the pulse separation of 12 ns, upon registering a click from any channel and registers
all possible additional detector clicks. However, it is capable of registering a maximal rate
of 1MHz only, which was not sufficient for the six photon experiment. To this end a new
coincidence unit has been developed based on a field programmable gate array (FPGA)
controlled logic, which is described in appendix D. This unit samples detector clicks with
the repetition rate of the laser, and thus has a maximal detection rate of 80.8MHz.11

In this chapter the necessary theoretical and experimental tools to describe, character-
ize, and observe photonic entangled states have been presented. Now, particular experi-
mental implementations are discussed.

11The manufacturers for the optical components used in the experiments are: 50:50 BS (Newport R©),
PBS (Linos R©), HWP and QWP (Foctek R©, CeNing R©), YVO crystals (Foctek R©, CeNing R©). The detectors
are SPCM-AQ4C modules from Perkin Elmer R©. Both coincidence logic units are home-made [226] (see
appendix D).
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Chapter 3

Observation of a family of
four-photon entangled states

The combination of SPDC photon sources with linear optical elements is the most success-
ful method to date for the observation of multi-partite entanglement. This is evidenced
by the fact that the diversity of observed entangled states is largest for that physical im-
plementation, see for example refs. [36–39, 53, 58–60, 64, 65, 82, 189]. However, so far
for each and every state a new experimental setup had to be designed. In this chapter a
scheme for observing a multitude of different four-photon entangled states in a single setup
and its experimental implementation is presented [53] (see publ. P3.1). This is achieved
by varying a single, easily accessible experimental parameter. In principle, the scheme is
extendable to arbitrary photon numbers, yet due to current technological limits is only in
immediate reach for six photons [54] (see publ. P3.2).

In section 3.1 the flexible state observation is described. Essentially, this scheme is
based on the combination of multi-photon interference of an entangled input state at a
beam splitter and prior polarization manipulations. A detailed description of the exper-
imental implementation is outlined in publ. P3.1 and P3.2. Here, an overview of multi-
photon interference and its application for multi-photon entanglement observation, a short
summary of the implementation of the four- and six-photon family and the experimental
verification of four-photon interference is given. In section 3.2 important states of the
family of four-photon entangled states along with the detection of their entanglement are
presented. To this end different criteria are applied to exclude full-separability and to prove
genuine four-photon entanglement based on the methods described in section 2.2. These
methods can be compared with respect to the necessary number of measurement settings
and the robustness against white noise. Finally, in section 3.3 the properties of the states
contained in the family are examined in order to stimulate new applications. The analysis
of the properties and the comparison of various tools to detect entanglement (apart from
proving genuine four-photon entanglement) go beyond publ. P3.1 and P3.2.
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3.1 Multi-photon interference

Multi-photon interference for SPDC experiments In a quantum mechanical de-
scription of the phenomenon of interference it is known that, if different possibilities lead to
exactly the same physical situation, then the corresponding amplitudes add up coherently
and not the probabilities of each possibility. This potentially leads to an enhancement or
suppression of the total probability of the corresponding measurement outcome.

Generally, interference phenomena connected with a single detection event such as
Young’s double slit experiment1 are called one-photon interference or second-order inter-
ference. The intensity depends on the product of two electric field operators,

∝ 〈Ê(−)(x)Ê(+)(x)〉. (3.1)

In contrast, two-photon interference or fourth-order interference occurs, whenever a simul-
taneous double detection event leads to interference. This is proportional to

〈Ê(−)(x1)Ê
(−)(x2)Ê

(+)(x2)Ê
(+)(x1)〉. (3.2)

The generalization to N -photon interference is straightforward [227]. A coincident mea-
surement scheme exploiting two-photon interference was first suggested by Hanbury Brown
and Twiss to determine the apparent angular size of distant stars [228]. Another striking
example for two-photon interference occurs at a 50:50 BS, where a single photon enters each
input port. The two incident photons leave the BS only bunched, either both at the one or
the other output port, but never at different output ports due to destructive interference.
This experiment was first performed by C. Hong, Z. Ou and L. Mandel [229]. Generally,
one-photon interference shows oscillations on the order of the wavelength. In contrast,
two-photon interference exhibits a dependence on the order of the coherence length of the
interfering photons and is usually measured as a dip in the two-photon count rate.

Since the observation of the Hong-Ou-Mandel (HOM) dip many experiments were per-
formed to show the different nature of one- and two-photon interference, see for example
ref. [230]. Two-photon interference is now widely applied in quantum information pro-
cessing, for example for the creation of entanglement between two distant atoms through
interference of emitted photons at a BS [79, 231–236], for the observation of multi-photon
entangled states through interference of photons at BSs [36, 64, 158, 188, 189] or for the
enhancement of phase sensitivity beyond the classical limit [237, 238].

In the following multi-photon interference between 2N photons is referred to in an
even stricter sense, namely it is required that all 2N photons interfere at a single BS
[223]. For example, N photons impinge on the BS from each input mode [85]. Then,
interference occurs if the photons are indistinguishable [212, 213]. Such experiments have

1Thomas Young performed at the beginning of the 19th century the well known double slit experiment,
whereby coherent light originating from two close positions interferes, resulting in a modulation of the light
intensity in the transversal plane behind the slit. At that time the experimental result was interpreted as
light behaving like a wave. Nowadays one knows through quantum mechanics of the duality between the
wave and particle description of light.
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been performed with four [197, 238, 239] and six photons [240, 241], whereby the input
state to the BS was a product state. In this work it is demonstrated that the usage of multi-
photon interference is of additional benefit for multi-photon state observation by exploiting
entangled multi-photon states as input for the BS and prior polarization manipulations.
At first, the progress in multi-photon entanglement observation is recapitulated. Note, as
has been described in section 2.3, all these experiments rely on the conditional detection
of 2N photons in 2N spatial modes.

Historically, it was first demonstrated that two-photon entangled states can be created
directly from the source without the need for interference [51]. The first order type II
non-collinear SPDC emission was used that directly emits a Bell state (see eq. 2.57). The
next experimental step was the realization of various four-photon experiments, among
these were the demonstration of the teleportation2 [158] and entanglement swapping [242]
protocols. Following these experiments, the observation of the three photon GHZ state
[58, 187] has been performed motivated by its all versus nothing violation of LHV models
[62, 63]. For that state, the second order emission of a type II source was exploited2.

Generally, photon processing in SPDC-based experiments can be divided into three
major experimental schemes:

(i) interferometric overlap of single photons or of single photons from entangled Bell
states at BSs (relying on two-photon interference) [fig. 3.1(a)],

(ii) symmetric distribution of photons via BSs (without utilizing any interferometric over-
lap) [fig. 3.1(b), (c)],

(iii) interferometric overlap of multiple photons at BSs (multi-photon interference) (fig. 3.2).

The observation of N -partite GHZ states relies on scheme (i). Fusing single photons
from entangled Bell pairs at PBSs allows the synthesis of arbitrarily large GHZ states [215,
243, 244] [fig. 3.1(a)]. This method was used to observe four- [64], five- [188] and six-photon
GHZ states [36] and can also be applied for synthesizing one- and two-dimensional cluster
states by inserting HWPs in front or after the PBSs [244], for example for a six-photon
cluster state [36]. Instead of a PBS, a partially polarizing BS enabled one to observe a
four-photon cluster state [189]. All these experiments required multiple interferometrically
stable (on the order of the coherence length of the photons), mode matched overlaps of
photons, which for large photon numbers complicates the optical alignment and stability.

Scheme (ii) is performed without the need for interference and exploits higher order
SPDC emissions in combination with subsequent symmetric distribution of photons using
polarization independent BSs. Along that line, higher order SPDC emissions of a non-
collinear type II source can be used (eq. 2.57). The photons of the Nth order emission
created in modes a and b are distributed by polarization independent BSs into 2N spa-
tial modes [fig. 3.1(b)], yielding the 2N qubit, rotationally symmetric state [245]. This

2In principle, only three photons are necessary for the teleportation protocol or the observation of the
GHZ state. The fourth photon merely serves as a trigger photon.
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Figure 3.1: (a) Fusion of single photons from N Bell pairs at PBSs allows the observation
of 2N -partite |GHZ2N 〉 states, and with additional HWPs, also cluster states. (b) The
symmetric distribution of the Nth order non-collinear type II SPDC emission leads to
the observation of 2N -partite entangled, rotationally symmetric states. (c) In contrast,
the symmetric distribution of the Nth order collinear type II SPDC emission leads to the
observation of 2N -partite entangled symmetric Dicke states with N excitations, |D(N)

2N 〉 .

scheme was used to observe the four-photon [59] and recently also the six-photon rota-
tionally symmetric states [40]. By using a collinear type II source and subsequent photon
distribution, symmetric Dicke states can be observed [fig. 3.1(c)], which has been realized
for two [123], four [65] and recently six photons [38, 39]. The latter experiment is described
in chapter 5. These experiments are based on conditional detection of 2N photons in 2N
separate spatial modes and have the advantage of inherent stability and simplicity as no
interferometric overlaps are necessary. However, the probability to observe the desired
state is lower compared to scheme (i) due to the utilization of BSs (see also footnote 11 of
appendix C.3).

Finally, in scheme (iii) higher order SPDC emissions in combination with interferometric
overlaps are utilized. For example, the observation of the four-photon cluster state can
also be realized by using the indistinguishability of second order and two first order SPDC
emissions through overlap at PBSs [60].

However, the aforementioned experiments are not flexible, as for each quantum state a
new linear optical setup had to be built. In refs. [53, 54] (publ. P3.1 and P3.2) a method has
been presented to design a linear optical network, where, by changing an easily adjustable
experimental parameter, an entire family of four-photon entangled states can be observed.
This scheme is in principle extendable to arbitrary photon numbers. In the following, a



3.1 Multi-photon interference 37

short summary of the required experimental steps to observe the family of entangled states
is given, details are outlined in publ. P3.1 and P3.2.

At the heart of the experiment is the interference of the Nth order type II non-collinear
SPDC emission (eq. 2.57) on a BS with prior polarization manipulations at the BS in-
put modes. The BS output modes are divided into 2N spatial modes by polarization-
independent BSs in order to observe the desired 2N -partite entangled states. The exper-
imental implementation of the scheme for N = 2 can be found in ref. [53] (publ. P3.1)
and its extension to N = 3 in ref. [54] (publ. P3.2). The limit for higher N is set by
the low count rate of current SPDC sources and noise originating from undesired higher
order emissions (see appendix C). This scheme can be attributed to the last type of SPDC
experiments.

UV pump pulses
~130fs, 0.6W, 390nm, 81MHz

type II non-collinear
SPDC

BBO

PBS

HWP( )g

HWP
QWP

50:50 BS

1) photon source

2) polarization manipulation

3) multi-photon interference

5) symmetric distribution

6) polarization analysis
conditional detection

APD

4) polarization-flip

HWP( /4)p

IF-filter
pinhole

YVO4

a b

c d

e f g h

Figure 3.2: Schematic experimental setup for the observation of the family of states
|Ψ4(α) 〉 = α(γ) |ψ+ 〉 ⊗ |ψ+ 〉+

√
1− α(γ)2 |GHZ′4 〉.

In ref. [54] (publ. P3.2) the interference at various types of BSs is considered. It turns
out, that the simplest and most powerful one is the interference at a PBS. The four-photon
experiment can be divided into the following stages (fig. 3.2):

(1) Photons from the 2nd order SPDC emission3 [∝ (â†H b̂†V + â†V b̂†H)2 |vac 〉] are emitted
into spatial modes a and b,

(2) subsequent polarization rotation in mode a with a HWP(γ),

(3) interference of photons in mode a and b on a PBS,

3Here, a phase of ei·0 = 1 between the two terms is considered, see also footnote 9 of section 2.3.
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(4) polarization-flip in its output mode c using a HWP(π/4),

(5) symmetric distribution into four spatial modes labeled with e, f , g and h and

(6) conditional detection.

Following the formalism described in section 2.3.2 one can easily calculate that the following
family of states is observed [53, 172] (publ. P3.1),

|Ψ4(α) 〉 = α(γ) |ψ+ 〉 ⊗ |ψ+ 〉+
√

1− α(γ)2 |GHZ′4 〉, (3.3)

with |ψ+ 〉 = 1/
√

2( |HV 〉+ |V H 〉),
|GHZ′4 〉 = 1/

√
2( |HHV V 〉+ |V V HH 〉),

the amplitude

α(γ) = (2 cos 4γ)/
√

48p4(γ), (3.4)

and the observation probability

p4(γ) = (5− 4 cos 4γ + 3 cos 8γ)/48, (3.5)

and γ ∈ [0, π
4
]. Hence, states with α ∈ [−1/

√
3, 1] can be observed. The observation of the

six-photon family is carried out along similar steps [54] (publ. P3.2): third order SPDC
emission, HWP(γ) in mode a, interference at a PBS and subsequent distribution into six
spatial modes4. One obtains the states

|Ψ6(γ) 〉 = β(γ) |GHZ−6 〉+ δ(γ)( |W 3 〉 ⊗ |W 3 〉 − |W3 〉 ⊗ |W3 〉), (3.6)

with |GHZ−6 〉 = 1/
√

2( |H 〉⊗6 − |V 〉⊗6),

and

β(γ) = 2(sin 2γ)2/
√

7 + 4 cos 4γ + 5 cos 8γ, (3.7)

δ(γ) = −(1 + 3 cos 4γ)/(
√

2
√

7 + 4 cos 4γ + 5 cos 8γ),

β(γ)2 + 2δ(γ)2 = 1.

The state observation probability is given as

p6(γ) =
2

81
(cos γ sin γ)2(7 + 4 cos 4γ + 5 cos 8γ). (3.8)

The experimental implementation of the four-photon family of states (eq. 3.3) will be
discussed in the following. The six-photon family (eq. 3.6) is in experimental reach by
using the SPDC source described in chapter 5 in a non-collinear arrangement.

4Here, a polarization-flip in one of the PBS output modes is not considered.
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Experimental four-photon interference Before characterizing the states |Ψ4(α) 〉,
the observation of four-photon interference is demonstrated. For that purpose the state
obtained for α = −

√
1/3 (γ = π/4) is considered

|Ψ4(π/4) 〉 =
√

1/3 |ψ+ 〉 ⊗ |ψ+ 〉 −
√

2/3 |GHZ′4 〉 ≡ |Ψ−
4 〉, (3.9)

i.e., the four-photon, rotationally symmetric state. Due to the state’s symmetry, the same
structure is obtained when transformed to the ±-basis,

√
1/3 |ψ+ 〉⊗ |ψ+ 〉−

√
2/3 |GHZ′4 〉.

In general, it remains invariant under any local unitary transformation acting identically
on each qubit.

To observe the state |Ψ−
4 〉 four photons have to add coherently. To this end, the tem-

poral overlap between modes a and b is varied by changing the distance between the output
coupler in mode a and the PBS. If the temporal modes of a and b are distinguishable,
the state of the four photons behind the PBS is essentially an incoherent mixture of the
polarization states |H 〉 and |V 〉 [246]. Thus, a measurement in the ±-basis results in
equal probabilities for each possible four-photon event. For example, the event {+−−−}
is observed with the probability 1/(24). In contrast, for a coherent overlap the state |Ψ−

4 〉
is observed, whose amplitude for the term |+−−−〉 is zero. This is shown in fig. 3.3(a),
where the temporal overlap between modes a and b is changed. The expected decrease in
count rate for {+ − −−} is observed and a visibility of V4 = 0.794 ± 0.038 is determined
from a Gaussian fit [229]. Its full width at half maximum (FWHM) is B4 = (93± 8) µm.

To distinguish four- from two-photon interference the four-photon dip is compared to
a two-photon dip. The latter can be observed by detecting two photons originating from
the first order SPDC emission. Again, the case γ = π/4 is considered with an ideal state
|ψ− 〉 observed for example in modes e and h. In this case, a transformation to the ±-basis
yields no contribution for the event {−−}. In contrast, an incoherent overlap results in
a probability of 1/22 for that event. This can be interpreted as HOM-type interference
and is shown in fig. 3.3(b). The visibility of V2 = 0.885 ± 0.003 is higher than V4. The
simple assumption that the four-photon visibility can be estimated from the two-photon
visibility squared (V2)

2 = 0.783 ± 0.004 corresponds closely to the observed V4. The
non-ideal visibility is attributed to higher order SPDC emissions (see appendix C) and a
remaining degree of distinguishability by spatial and spectral mode mismatch at the PBS.
The FWHM of the two-photon dip is B2 = (135 ± 1) µm. The coherence length5 of the
photons is given as lc =

√
2B2 = (191 ± 2) µm [229], which corresponds closely to the

interference filter bandwidth6 of lc,IF = 200 µm. For the four-photon case the coherence

5Here, the definition of the coherence length follows [229]: the measured FWHM of the two-photon
dip is identical to the coherence length divided by

√
2. In [229] it is derived that the two-photon count

rate is proportional to e−(∆ωδτ)2 if the spectral function of a single photon is proportional to e−(∆ωτ)2/2,
where ∆ω is a frequency bandwidth (for example a filter bandwidth) and δτ is the two-photon arrival time
difference at the BS. The FWHM of these two functions differs by a factor of

√
2.

6The interference filters have approximately a FWHM of ∆λIF = 3nm centered at λIF = 780 nm
corresponding to a coherence length of lc,IF = λ2

IF/∆λIF = 200 µm. The old interference filter exhibits a
Gaussian spectral shape (L.O.T. Andover ANDV7351, ∆λIF = 3.1 nm yielding lc,IF = 195 µm), the new
one a rectangular spectral shape (Semrock R© Maxline R© 780-3, ∆λIF = 2.8 nm yielding lc,IF = 220 µm).
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length is calculated as lc = (
√

2)2B4 = (186± 16) µm yielding a similar result. Hence, the
difference in the FWHM can be used to distinguish four- from two-photon interference.

At a later stage the two-photon visibility has been improved to V2 = 0.959±0.004 with
lc = 234± 3µm [fig. 3.3(c)] by using pinholes behind the PBS to improve the spatial mode
overlap and an interference filter with higher transmission and rectangular spectral shape.
The higher transmission increases the overall detection efficiency and at the same time
reduces noise (see appendix C for details). All further data presented in this chapter are
measured with that configuration. The data used for chapter 4 have been measured with
the Gaussian shaped interference filter. In the following, prominent states of |Ψ4(α) 〉 and
the detection of their entanglement is discussed.
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Figure 3.3: (a) Four-photon interference observed for the event {+−−−} compared to (b)
two-photon interference observed for {−−}. The higher visibility and FWHM for the latter
case can be clearly observed. (c) Using pinholes and an interference filter with rectangular
spectral shape improves the visibility compared to (b).

3.2 Entanglement detection

Important states of the family |Ψ4(α) 〉 Now, it is demonstrated that the family
|Ψ4(α) 〉 contains important and well known states that are useful for different quantum
information applications [see refs. [53, 172] (publ. P3.1)] :

• α = 0 (γ = π/8): The four-photon GHZ state is obtained. This state is widely
applied in quantum information. GHZ sates are well known for their all versus
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nothing violation of LHV models, which can be demonstrated by so-called Mermin
inequalities for arbitrarily large GHZ states [10]. Further, GHZ states find many
more applications, for example for secret-sharing [118]. Recently, it has been shown
that the four-qubit GHZ state is the ground state of a minimal instance of the toric
code model [57], which is discussed in chapter 4.

• α = ±
√

1/3 (γ = 0.098π and γ = π/4): For α = ±
√

1/3 the four-photon states
|Ψ±

4 〉 are observed. These states can be transformed into each other by a LU trans-
formation. The state |Ψ−

4 〉 has the remarkable property that it is invariant under
any LU transformation acting identically on each qubit. It can form one of the two
basis states for decoherence-free communication [247]. Further, the state itself and
the state obtained after projection of one qubit find an application for telecloning
[248, 249].

• α =
√

2/3 (γ = π/12): The four-photon symmetric Dicke state with two excitations

|D(2)
4 〉 is observed for this value. It is useful for telecloning [249] and open desti-

nation teleportation [188]. Further, it can be used to obtain via a single projective
measurement states of the two inequivalent classes of tri-partite entanglement [107],
which has been discovered in ref. [65]. These properties will be elaborated on in more

detail in chapter 5, where the observation of the six-photon Dicke state |D(3)
6 〉 is

discussed, which exhibits similar properties.

• α = 1 (γ = 0): The state |ψ+ 〉 ⊗ |ψ+ 〉 is the only bi-separable state of the family.
It can be transformed into the singlet state |ψ− 〉 ⊗ |ψ− 〉 via LU transformations.
Together with the state |Ψ−

4 〉 it forms a basis for decoherence-free communication.
Furthermore, |ψ+ 〉 ⊗ |ψ+ 〉 can also be used to obtain the states |GHZ3 〉 or |W3 〉
via gate operations acting on two of its qubits [250, 251].

These states are well known in quantum information and have already been indepen-
dently implemented experimentally [59, 64, 65, 252]. However, the states |Ψ4(α) 〉 contain
for all other values of α states that have not been observed so far. Additionally, each state
belongs to a different SLOCC class [53, 172], because |Ψ4(α) 〉 can be attributed to the
class Gabcd of SLOCC inequivalent states of the four-qubit classification of ref. [109]. The
states in the Gabcd class are given by

Gabcd =
a + d

2
( |0000 〉+ |1111 〉) +

a− d

2
( |0011 〉+ |1100 〉)

+
b + c

2
( |0101 〉+ |1010 〉) +

b− c

2
( |0110 〉+ |1001 〉), (3.10)

with {a, b, c, d} ∈ C and a non-negative real part. A parameter comparison with eq. 3.3
yields

a = −d =
√

(1− α2)/2

b = α

c = 0.
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Surprisingly, when considering the correlations Ti,j,k,l(Ψ4(α)) with i, j, k, l ∈ {0, x, y, z}
the aforementioned states occur at crossing points of different correlations [53, 172] (see
fig. 2 of publ. P3.1). Three more crossing points can be identified for:

• α = ±
√

1
6
(3−√3) (γ = 0.1034π and γ = 0.174π): These two states can be trans-

formed into each other via a LU transformation and therefore can be considered as
a single new state.

• α =
√

1/2 (γ = 0.091π): This state is an equal superposition of the |GHZ′4 〉 and
the |ψ+ 〉 ⊗ |ψ+ 〉 part.

• α =
√

1
6
(3 +

√
3) (γ = 0.076π): Though this state looks similar to the one observed

for α =
√

1
6
(3−√3), both are SLOCC inequivalent.

So far, applications or special properties for the latter states are still missing. In the fol-
lowing the verification of entanglement for |Ψ4(α) 〉 is described. The aforementioned nine
states are selected for an experimental analysis, which can be regarded as a representative
choice for the family |Ψ4(α) 〉.

Excluding full-separability To rule out full-separability, criteria are applied that have
been presented in section 2.2. Further, they are analyzed with respect to their robustness
against white noise. The correlation criterion, the method of entanglement witnesses and
the spin squeezing inequalities are applied to exclude full-separability. All criteria have
the major advantage of requiring dramatically fewer measurement settings compared to a
full state tomography [for the implemented measurement settings and achieved counting
statistics see appendix B, for a tomography of the states observed for α = 0 ( |GHZ′4 〉),
α = −

√
1
6
(3−√3), α = −

√
1/3 ( |Ψ−

4 〉), and α = 1 ( |ψ+ 〉⊗ |ψ+ 〉) see fig. 3 in publ. P3.1].

Correlation criterion For |Ψ4(α) 〉 one obtains independent of α

Tx⊗4(Ψ4(α)) = Ty⊗4(Ψ4(α)) = Tz⊗4(Ψ4(α)) = 1. (3.11)

Hence, already two correlations are sufficient in order to prove entanglement as
[Tx⊗4(Ψ4(α))]2 + [Ty⊗4(Ψ4(α))]2 = 2 > Tmax

n with Tmax
n ≤ 1 the maximal value for

fully-separable states. Experimentally, the values depicted in fig. 3.4(a) have been
determined, thereby proving entanglement. Evaluating the robustness to white noise7

yields a critical visibility of νcrit = 1/2 independent of α [fig. 3.4(e)]. The criterion
requires minimally only two measurement settings, yet, compared to the following
criteria it does not give always the best noise robustness.

7Here, the critical visibility is defined as the maximal νcrit for which maxT̂prod
N

(T̂ prod
N (ρsep), νcritT̂N (ρ)) <

(νcritT̂N (ρ), νcritT̂N (ρ)) holds. The robustness to white noise would increase if all three perfect four-qubit
correlations are used. A critical visibility of 1/3 would be achieved. Further, an even lower critical visibility
can be reached. For example, for α = 0 ( |GHZ′4 〉) the visibility reduces to 1/9 when all nine perfect GHZ
four-qubit correlations are used.
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Figure 3.4: Detection of entanglement for the states |Ψ4(α) 〉: (a) The correlation criterion
excludes full-separability for values larger than 1. (b) The fidelity has to be larger than
csep(α) to exclude full-separability or larger than cbi−sep(α) to detect genuine four-photon
entanglement using projector-based witnesses (eq. 3.12). (c) The expected [EG( |Ψ4(α) 〉)]
and experimentally estimated [EG(ρ)] geometric measure of entanglement. (d) Spin-
squeezing polytope for four qubits in the (〈Ĵ2

x〉, 〈Ĵ2
y 〉, 〈Ĵ2

z 〉) space. The straight line is the
expected result for the states |Ψ4(α) 〉, the red points the experimentally determined val-
ues. (e) Critical visibilities νcrit for the states ρmix = νcrit |Ψ4(α) 〉〈Ψ4(α) |+(1−νcrit)11⊗4/24

such that the corresponding criterion detects ρmix still as entangled. The curves are shown
for the (i) correlation criterion, (ii) witness excluding full-separability, (iii) spin-squeezing
inequalities and (iv) witness to detect genuine four-photon entanglement.
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Entanglement witness An entanglement witness excluding full separability for the fam-
ily |Ψ4(α) 〉 is

Ŵsep = csep(α)11⊗4− |Ψ4(α) 〉〈Ψ4(α) | . (3.12)

Its expectation value is given by Tr[Ŵsepρ] = csep(α)−FΨ4(α)(ρ). Hence, as soon as the
fidelity FΨ4(α)(ρ) > csep(α) [253], the experimental states are proven to be entangled.
The values depicted in fig. 3.4(b) have been determined from the measurements. All
states fulfill FΨ4(α)(ρ) > csep(α) and therefore are entangled. The robustness against
white noise is shown in fig. 3.4(e). For all states this criterion tolerates more noise
than the correlation criterion. However, the determination of the fidelity requires,
depending on the particular value of α, at most 21 measurement settings, compared
to only two for the correlation criterion.

Geometric measure of entanglement The witness’s measurement data allow the es-
timation of a lower bound on the geometric measure of entanglement by using the
optimization method described in section 2.2. The result EG(ρ) is shown in fig. 3.4(c)
and compared with the geometric measure EG( |Ψ4(α) 〉) for the pure states. While
the estimated values are lower than the theoretically expected ones, qualitatively,
their dependence on α is reproduced. Furthermore, the highest value is found for
the state |ψ+ 〉 ⊗ |ψ+ 〉, which is a bi-separable state. One has to keep in mind that
this measure quantifies the distance to fully-separable states. Obviously the state
|ψ+ 〉 ⊗ |ψ+ 〉 is further apart than any four-photon entangled state of the family.
This shows that genuine four-qubit entanglement compared to another type of en-
tanglement of a four-qubit state does not necessarily imply the largest value for the
geometric measure of entanglement.

Spin squeezing inequalities The spin-squeezing inequalities can also be used to detect
entanglement. All fully-separable states lie within a polytope in the (〈Ĵ2

x〉, 〈Ĵ2
y 〉, 〈Ĵ2

z 〉)
space [fig. 3.4(d)] given by the corner points [147, 148]

Ax = {(4, 1, 1), (1, 4, 1), (1, 1, 4)},
Bx = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} (3.13)

for 〈Ĵx〉 = 〈Ĵy〉 = 〈Ĵz〉 = 0, which holds for |Ψ4(α) 〉. The observed expectation

values 〈Ĵ2
i 〉 for |Ψ4(α) 〉 are shown as a straight line. Clearly, all states lie outside

the polytope except for α = 0 ( |GHZ′4 〉), which touches the polytope at the point
(0, 1, 1). The values determined for the experimentally observed states lie outside the
region of full-separability. For some states that criterion is more robust against white
noise than the correlation criterion [fig. 3.4(e)] and requires only three measurement
settings.

The particular criterion one chooses for data evaluation depends on the actual experiment.
One has to decide if the number of measurement settings or the robustness against white
noise is more important. The described experiment profited from stability and high count
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rates. Therefore, a comparison of the criteria in an experimental setting has been possible.
That might not always be the case.

Another important aspect is the available measurement time and the related question
of how to use this time efficiently: are few or many measurement settings in a given amount
of time more suitable to yield a small error on the expectation value of a certain operator.
This has been considered in ref. [172] for a selection of four-qubit operators. Generally, the
error scales as A/

√
N , where N is the number of counts collected per measurement setting

and is expected to be the same for all required measurement settings. The factor A depends
on the actual operator and its decomposition in measurement settings, but is independent
of N . The factor A has been found to differ about 25% between the considered operators
in ref.[172]. Hence, for experiments reaching a low count rate operators are preferable,
which have a small value of A.

Proving genuine four-photon entanglement Genuine four-photon entanglement can
be proven based on, among others, the method of entanglement witnesses, Bell inequalities
and the newly developed density matrix element criterion. In this work, the former criterion
is applied as the latter one will still be optimized for the states |Ψ4(α) 〉, details will be
found in ref. [254].

Entanglement witness An entanglement witness proving genuine four-photon entangle-
ment is analogous to the aforementioned witness, but the bound on the fidelity be-
comes stricter: FΨ4(α)(ρ) > cbi−sep(α) [53] (publ. P3.1), which is depicted in fig. 3.4(b).
All experimentally observed states are genuine four-photon entangled, except for the
bi-separable state |ψ+ 〉 ⊗ |ψ+ 〉. Their robustness against white noise is worse than
for the witness Ŵsep [fig. 3.4(e)]. This is due to the fact that the space of bi-separable
states is larger than the one of the fully-separable states. The evaluation of both wit-
nesses requires the same number of measurement settings.

Bell inequalities For the states |GHZ′4 〉, |D(2)
4 〉 and |Ψ−

4 〉 characteristic Bell inequal-
ities based on four-qubit correlations are known [10, 255]. Thereby, a characteristic
Bell inequality for a state |ψ 〉 yields the highest violation of a LHV model only
for the state |ψ 〉. At the same time it can be used to prove genuine four-qubit
entanglement. Similar to witness operators the maximal value achieved for any bi-
separable state can be calculated in order to obtain a bound for the characteristic
Bell inequality. Surpassing this bound proves genuine N -qubit entanglement. This
is explained in detail in refs. [172, 255] and therefore will not be repeated here (for

the state |D(2)
4 〉 see also section 5.2).

To summarize, full-separability has been excluded and genuine four-photon entangle-
ment has been proven for a variety of different entangled states by applying various entan-
glement detection methods. This can be regarded as a comparison of different entanglement
criteria in the experimental setting, which might be useful to decide on the applicability
of a criterion for a particular physical implementation.
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3.3 Entanglement properties

In the following, a short overview of some entanglement properties worth studying is pre-
sented. These properties include the achievable entanglement after projection of photons
and the remaining entanglement after loss of photons. The former is called entanglement
connectedness and the latter entanglement persistency [46, 76, 256]. The family of states
|Ψ4(α) 〉 with α ∈ [0, 1] is considered (the states obtained for α ∈ [−1/

√
3, 0] are LU

equivalent to the states with α ∈ [0, 1/
√

3]).

Projective measurements An arbitrary projective measurement (section 2.1) can be
described by the application of the projector P̂+(2θ, φ) = |ψ(2θ, φ) 〉〈ψ(2θ, φ) | = (11 +
σ̂(2θ, φ))/2. Applying a projection on photons 1 or 2 (3 or 4) of the state |Ψ4(α) 〉 yields
the same state due to the particular permutational symmetry of |Ψ4(α) 〉. The obtained
state is denoted as |ψ234 〉( |ψ123 〉):

|ψ234 〉 = cos θ |W t 〉+ e−iφ sin θ |Wt 〉, (3.14)

|ψ123 〉 = Ŝ24 |ψ234 〉,
with |Wt 〉 =

√
1− α2 |V HH 〉+ α/

√
2( |HHV 〉+ |HV H 〉),

|W t 〉 =
√

1− α2 |HV V 〉+ α/
√

2( |V HV 〉+ |V V H 〉).

Thereby, Ŝ24 is the swap operator8 exchanging photons 2 and 4, and thus |ψ234 〉 and
|ψ123 〉 are LU equivalent.

To analyze these states the 3-tangle is chosen (see section 2.2, for GHZ-class states:
0 < τ3( |GHZclass 〉 ) ≤ 1). Fig. 3.5(a) shows the 3-tangle for the states |ψ234 〉 and α ∈ [0, 1],
θ ∈ [0, π/2] and φ = 0 [τ3( |ψ234 〉) is independent of φ]. The maximal value τ3( |ψ234 〉) = 1
is obtained for α = 0 and θ = π/4. This corresponds to a projective measurement on
the state |GHZ′4 〉 in the + basis and yields the three-photon GHZ state, |GHZ′3 〉 =
1/
√

2( |HV V 〉 + |V HH 〉), which has maximal 3-tangle. A local maximum τ3( |ψ234 〉) =
1/3 is obtained for α =

√
2/3 and θ = π/4 corresponding to a measurement on the state

|D(2)
4 〉 in the + basis and yields a so-called G-state |G 〉 = ( |W3 〉 + |W 3 〉)/

√
2 [257],

a superposition of two three-photon W states. In ref. [55, 104] (publ. P5.2) an explicit
probabilistic transformation is given that increases the 3-tangle to unity for this state.

Remarkably, for α =
√

2/3 and θ = π/2, which corresponds again to a measure-

ment on the state |D(2)
4 〉 , yet, in the V -basis, the three-photon W state is obtained

(τ3( |Wclass 〉) = 0). Hence, both inequivalent classes of tri-partite entanglement can be

accessed via projective measurements on |D(2)
4 〉 . This has been highlighted and exper-

imentally demonstrated in ref. [65]. Note, a further projective measurement can lead to
two-photon entangled states, for example |ψ+ 〉.

8The swap operator Ŝij exchanges qubits i and j and is given by Ŝij = 1/2(11i ⊗ 11j + σ̂x;i ⊗ σ̂x;j +
σ̂y;i ⊗ σ̂y;j + σ̂z;i ⊗ σ̂z;j).
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Figure 3.5: (a) 3-tangle for states obtained of |Ψ4(α) 〉 after a single projective measure-
ment P̂+(2θ, φ) = |ψ(2θ, φ) 〉〈ψ(2θ, φ) | with φ = 0. (b) Concurrence for two-photon
mixed states ρ34 (black) and ρ14 (red) obtained after loss of two photons of |Ψ4(α) 〉.

Photon loss Loss of photons 1 or 2 (3 or 4) of the states |Ψ4(α) 〉 results formally in
the same state, denoted as ρ234 (ρ123):

ρ234 = 1/2( |Wt 〉〈Wt | + |W t 〉〈W t | ), (3.15)

ρ123 = Ŝ24ρ234Ŝ
†
24.

The mixed states ρ234 and ρ123 are LU equivalent and of rank two with purity Tr[(ρ234)
2] =

1/2 independent of α. It has been shown that, though the 3-tangle is defined for pure
states, for any rank two mixed state it can be decided on analytical grounds if it has
vanishing 3-tangle or not [177–179]. For the states of eq. 3.15, the 3-tangle is zero as it is
zero for the pure states in the decomposition of the mixed states ρ234. The pure states of
the decomposition can each be transformed into W states with τ3 = 0 via local filtering on
a single photon (formally equivalent to SLOCC).

A loss of a further photon results in two-photon mixed states. Due to the permutational
symmetry of the states |Ψ4(α) 〉 two different scenarios can be identified, (i) loss of photons
{1, 2} or (ii) {2, 3}. The remaining cases are equivalent to these two, namely (i) {3, 4} or
(ii) {1, 3}, {1, 4}, {2, 4}. The state after loss of photons {1, 2} is given as

ρ34 = α2 |ψ+ 〉〈ψ+ | + (1− α2)/2( |HH 〉〈HH | + |V V 〉〈V V | ). (3.16)

Hence, one obtains a mixture between an entangled state and correlated noise. This type
of state has been shown to exhibit so-called “hidden” non-locality, see ref. [258]. The state
obtained after loss of photons {2, 3} is

ρ14 = (2− α2 − 2
√

2α2 − 2α4)/4 |ψ− 〉〈ψ− | + (2− α2 + 2
√

2α2 − 2α4)/4 |ψ+ 〉〈ψ+ |
+α2/4( |HH 〉〈HH | + |V V 〉〈V V | ). (3.17)

To analyze these states the concurrence is chosen, whose result is shown in fig. 3.5(b). For
the states ρ34 the concurrence increases monotonically from 0 to 1 for α > 1/

√
2, which
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corresponds to one of the new states of the family. For α < 1/
√

2 the concurrence is zero.
The highest value is obtained for α = 1, i.e., a loss of photons {1, 2} of |ψ+ 〉 ⊗ |ψ+ 〉
results in the maximally entangled state |ψ+ 〉. For the states ρ14 the behavior is different.
Between 0 < α <

√
8/3 a non-zero concurrence is obtained with the highest value at

α =
√

1/3 (loss of two photons from |Ψ+
4 〉). For all other values of α the concurrence

is zero. An equal value for the concurrence of ρ34 and ρ14 is found for α =
√

2/3, which

corresponds to a loss of two photons of the symmetric Dicke state |D(2)
4 〉 .

When three photons are lost from the states |Ψ4(α) 〉, the remaining photon is max-
imally mixed for all α, i.e., its von Neumann entropy is equal to one. This property
is characteristic for the class Gabcd of four-qubit entangled states of the classification in
ref. [109].

The observation of an entire family of four-photon entangled states in a single setup
allows, on one hand, a study of different methods of entanglement detection and entan-
glement properties as a function of a single experimental parameter. This has not been
possible before. On the other hand, the flexible observation of different entangled states
allows one to perform different applications. One of the resulting states, namely the GHZ
state, can be used for a simulation of anyonic features, which is discussed in the follow-
ing chapter. The four-photon family of states has also been applied for evaluating the
usefulness of different states for the quantum minority game, see refs. [172, 259].
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A single linear-optical setup is used to observe an entire family of four-photon entangled states. This

approach breaks with the inflexibility of present linear-optical setups usually designed for the observation

of a particular multipartite entangled state only. The family includes several prominent entangled states

that are known to be highly relevant for quantum information applications.
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Multipartite entanglement is a vital resource for numer-

ous quantum information applications such as quantum

computation, quantum communication, and quantum met-

rology. So far, the biggest variety of multipartite entangled

states was studied using photonic qubits (e.g., [1–6]). As

there is no efficient way of creating entanglement between

photons by direct interaction, entangled photonic states are

generally observed by a combination of a source of en-

tangled photons and their further processing via linear-

optical elements and conditional detection. Based on this

approach, experiments were designed for the observation

of a single, e.g., [1–5], or two [6] multipartite entangled

state(s).

Here we break with this inflexibility by designing a

single linear optics setup for the observation of an entire

family of four-photon entangled states. The states of the

family are conveniently chosen by one experimental pa-

rameter. Thereby, states that differ strongly in their entan-

glement properties are accessible in the same experiment

[7]. We demonstrate the functionality of the scheme by the

observation and analysis of a selection of distinguished

entangled states.

The family that can be observed experimentally is given

by the superposition of the tensor product of two Bell states

and a four-qubit GHZ state:

 j	��i � ���j �i 
 j �i �
����������������������

1ÿ ���2
q

jGHZi; (1)

where j �i � 1=
���

2
p

�jHVi � jVHi� and jGHZi �
1=

���

2
p

�jHHVVi � jVVHHi� [8,9]. We use the notation

for polarization encoded qubits, where, e.g., jHHVVi �
jHie 
 jHif 
 jVig 
 jVih, jHi and jVi denote linear hori-

zontal and vertical polarization, respectively, and the sub-

script denotes the spatial mode of each photon. Here the

real amplitude ���, with j���j � 1, is determined by a

single, experimentally tunable parameter , which is set by

the orientation of a half-wave plate (HWP). Thus, we are

able to change continuously from the product of two Bell

states over a number of interesting genuinely four-partite

entangled states to the four-qubit GHZ state. According to

the four-qubit SLOCC (stochastic local operations and

classical communication) classification in Ref. [10], the

family j	��i is a subset of the generic family Gabcd of

four-qubit entangled states. Note that j	��i represents a

different class of SLOCC equivalent states for each value

of j���j.
The experimental setup that allows a flexible observa-

tion of the family j	��i is depicted in Fig. 1. Four photons

originate from the second-order emission of a spontaneous

parametric down-conversion (SPDC) process [11] in a

2-mm-thick �-barium borate (BBO) crystal arranged in a

noncollinear type II configuration. The crystal is pumped

by UV pulses with a central wavelength of 390 nm and an

average power of 600 mW obtained from a frequency-

doubled Ti:sapphire oscillator (pulse length 130 fs). The

four photons are emitted into two spatial modes a and b
[12]:

 1=�2
���

3
p

���ayHbyV�2 � �ayVbyH�2 � 2ayHa
y
Vb

y
Hb

y
V�jvaci; (2)

FIG. 1 (color online). Schematic experimental setup for the

observation of the family j	��i. For details, see the text.
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where my
j is the creation operator of a photon having

polarization j in mode m and jvaci is the vacuum state.

A HWP and a 1-mm-thick BBO crystal compensate walk-

off effects. The spatial modes a and b are defined by

coupling the photons into single mode (SM) fibers.

Spectral selection is achieved by 3 nm FWHM interference

filters (IF) centered around 780 nm. A HWP in mode a
transforms the polarization of the photons. The orientation

of the optical axis  of this HWP is the tuning parameter

of the family. Subsequently, the modes a and b are over-

lapped at a polarizing beam splitter (PBS) with its output

modes denoted by c and d. A HWP oriented at �=4 behind

the PBS transforms the polarization of the photons in mode

c from H�V� into V�H�. Subsequently, the modes c and d
are split into the output modes e, f and g, h, respectively,

via polarization-independent beam splitters (BS).

Birefringence of the beam splitters is compensated by a

pair of perpendicularly oriented birefringent yttrium-

vanadate (YVO4) crystals. Finally, the polarization state

of each photon is analyzed with a HWP, a quarter-wave

plate (QWP), and a PBS. The photons are detected by fiber-

coupled single photon detectors and registered by a multi-

channel coincidence unit.

Under the condition of detecting one photon of the

second-order SPDC emission in each spatial output

mode, the family of states j	��i is observed, where the

amplitude ��� depends on the HWP angle  via ��� �
�2 cos4�=

���������������

48p��
p

, with  2 �0; �
4
�. This occurs with a

probability p�� � �5ÿ 4 cos4� 3 cos8�=48 (Fig. 2).

Only for a few states of the family is a dedicated setup

known [2–5]. For these particular cases, the respective

state is observed with equal or higher probability. Here,

however, we profit from the flexibility to choose various

entangled states using the same setup.

Let us illustrate the described state observation scheme

by examining the action of the HWP together with the

PBS. We note that only the case where two photons are

found in each spatial mode c and d behind the PBS,

respectively, can lead to a detection event in each of the

four output modes e, f, g, and h. First, we consider a HWP

oriented at  � 0. This setting leaves the polarization of

each photon unchanged. Each of the first two terms of

Eq. (2) results in four photons in the same spatial mode

behind the PBS and, thus, does not contribute to a fourfold

coincidence in the output modes. However, the last term of

Eq. (2) yields two photons in each mode behind the PBS,

whose state is / cyHcyVdyHdyV jvaci. A symmetric distribution

of these photons leads to the observation of a Bell state in

modes e, f and in modes g, h, respectively: j	�0�i �
j �i 
 j �i. Conversely, the last term of Eq. (2) can be

suppressed by interference when the HWP is oriented at

 � �=8 transforming H=V into � polarization [j�i �
1=

���

2
p

�jHi � jVi�]. Then two photons in each mode c and d
can originate only from the first two terms of Eq. (2) and

result in the state / ��cyHdyH�2 � �cyVdyV�2�jvaci directly

behind the PBS. This yields the GHZ state in the output

modes. Continuous tuning of the HWP in the range  2
�0; �=8� and  2 ��=8; �=4� leads to any superposition of

the states j �i 
 j �i and jGHZi and, thus, to the obser-

vation of the entire family of states.

This family contains useful states, which, moreover,

differ strongly in their entanglement properties. For ex-

ample, the well-known GHZ state [jGHZi � j	��=8�i,
i.e., � � 0] [2] belongs to the graph states [13] and finds

numerous applications in quantum information, e.g., [14].

The entanglement of the symmetric Dicke states [15] is

known to be very robust against photon loss. Out of these

states we observe with � �
��������

2=3
p

the state jD�2�
4
i �

j	��=12�i [3]. Remarkably, this state allows one to obtain,

via a single projective measurement, states out of each of

the two inequivalent classes of genuine tripartite entangle-

ment [3,16]. The states j	ÿ
4
i � j	��=4�i (� � ÿ

��������

1=3
p

)

[4] and j ÿi 
 j ÿi [17] [that are equivalent under local

unitary (LU) operations to j	�
4
i � j	�� 0:098��i (� �

��������

1=3
p

) [5] and j �i 
 j �i � j	�0�i (� � 1), respec-

tively] are invariant under any action of the same LU

transformation on each qubit, and, therefore, they form a

basis for decoherence-free communication [18].

To characterize the family of states, we consider the

correlations of j	��i. Out of all 256 correlations Tijkl

FIG. 2 (color online). The upper panel shows the dependence

of the amplitudes ��� (solid curve) and
����������������������

1ÿ ���2
p

(dashed

curve) on the tunable parameter  for the family j	��i. Also

the probability p�� (dotted curve) to observe the states j	��i
is shown. The lower panel shows the modulus of the correlations

jTijklj for the family j	��i: (i) Tiiii, with i 2 f0; x; y; zg;
(ii) T0z0z, Txyxy; (iii) T00zz, Txxyy; (iv) Tijij; and (v) Tiijj, with i 2
f0; zg, j 2 fx; yg. In order to obtain all 40 correlations, the

following permutations starting from a normal ordering

(1,2,3,4) are necessary: �1; 2� $ �3; 4�, �1� $ �2�, and �3� $ �4�.
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[19] in the standard basis, the family j	��i exhibits at

most 40 that are nonzero. The modulus of these correla-

tions jTijklj shows five distinct dependencies on , which

are shown in Fig. 2. Interestingly, one finds the aforemen-

tioned states at the crossing points of some correlations.

Consequently, we can identify other distinguished states

at the remaining four crossing points. These are found at

 � 0:076� (� � �1=6�3�
���

3
p

��1=2),  � 0:091� (� �
��������

1=2
p

),  � 0:1034� (� � �1=6�3ÿ
���

3
p

��1=2), and  �
0:174� (� � ÿ�1=6�3ÿ

���

3
p

��1=2). We label them for brev-

ity by jSai, jSbi, jSc�i, and jScÿi, respectively.

We select these nine states for an experimental charac-

terization. As the setup is stable and delivers the states with

a reasonable count rate, we are able to perform state

tomography on jGHZi, jScÿi, j	ÿ
4 i, and j �i 
 j �i of

the selected set. The full tomographic data set was obtained

from 81 different analysis settings for each state [3].

Because of the different probabilities to observe these

states, we varied the total measurement time between

54 hours for j	ÿ
4 i and 202.5 hours for jGHZi with count

rates of 23.2 and 4:9 minÿ1, respectively, without any

realignment during each measurement run. The resulting

density matrices are displayed in Fig. 3. The population

and coherence terms for a GHZ state are clearly visible in

Fig. 3(a). In Fig. 3(b), in addition to the GHZ part, the

population and coherence terms of the j �i 
 j �i com-

ponent appear. The (negative) coherence terms show that

indeed a coherent superposition of both parts is achieved.

The same structure is visible in Fig. 3(c) with an increased

j �i 
 j �i part. Finally, in Fig. 3(d), the GHZ part has

disappeared completely. This clearly illustrates that we are

able to tune the relative weight between the states j �i 

j �i and jGHZi coherently, instead of only mixing them.

Next we focus on the quality of the states and on proving

their entanglement. As a measure of the former, we evalu-

ate the fidelity F	�� � h	��j�expj	��i for the observed

states �exp, where at most 21 measurement settings are

required for the determination of F	�� [20]. To perform

these measurements for the remaining five states, the total

measurement time ranged from 45.5 hours for jSai up to

112 hours for j	�
4 i, with count rates of 4.1 and 1:6 minÿ1,

respectively. The fidelities for all states are depicted in

Fig. 4. We find high fidelities ranging from 0.75 up to

0.93. Obviously, the fidelity shows a dependence on .

We emphasize that this behavior is not caused by a differ-

ent optical alignment for each state; rather, it can be

qualitatively attributed to different effects. Higher-order

emissions of the SPDC, which can lead to additional four-

fold coincidences, reduce the fidelity. For the actual ex-

perimental parameters (pair generation probability and

coupling and detection efficiencies), we calculated that

the fidelity for  � 0; �=4 would be reduced by about

1%, while a reduction of up to 8% would be found for

states around j	�
4 i. Furthermore, the fidelity of the ob-

served states relies on the indistinguishability of the SPDC

photons [21] and on the quality of interference. While for

 � 0; �=4 the PBS acts in the computational basis as a

polarization filter only, for all other  imperfect interfer-

ence is relevant [22] and, thus, leads to an additional

reduction of the fidelity. Considering these effects, the

question arises whether the fidelity of particular states is

higher when these states were observed with dedicated

linear optics setups. For example, the states jD�2�
4 i and

j	ÿ
4 i were recently observed with fidelities of F

D�2�
4

�
0:844� 0:008 [3] and F	ÿ

4
� 0:901� 0:01 [4], respec-

FIG. 3 (color online). The real part of experimental density

matrices for the states (a) jGHZi, (b) jScÿi, (c) j	ÿ
4 i, and

(d) j �i 
 j �i. For the states j	ÿ
4 i and jGHZi, the imaginary

part has a peak at the off-diagonal element jHHHHihVVVVj of

0.06 and 0.08, respectively, representing a slight imaginary phase

between the terms jHHHHi and jVVVVi. Otherwise, noise on

the real and imaginary parts is comparable.

FIG. 4. Experimentally determined fidelities of nine distin-

guished states from the family j	��i � ���j �i 
 j �i �
����������������������

1ÿ ���2
p

jGHZi. The minimal fidelity for proving genuine

four-qubit entanglement is depicted as a solid curve.
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tively. Here we achieved 0:809� 0:014 and 0:932�
0:008, respectively, comparable with the dedicated

implementations.

Finally, for proving genuine four-partite entanglement

of the observed states, we apply generic entanglement

witnesses W	�� [4,23]. Their expectation value depends

directly on the fidelity: Tr�W	���exp� � c�� ÿ F	��,
where c�� is the maximal overlap of j	��i with all

biseparable states. A fidelity larger than c�� (solid curve

in Fig. 4) detects genuine four-qubit entanglement of �exp.

We find that all experimental fidelities, except F	�0�, of

course, are larger than c��, thus proving four-qubit en-

tanglement. For the biseparable entangled state j	�0�i, we

apply the witness given in Ref. [24] on each pair and find

ÿ0:466� 0:006 and ÿ0:461� 0:006, respectively, de-

tecting the entanglement of each pair.

In summary, we are able to observe an entire family of

highly entangled four-photon states with high fidelity by

using the same linear optics setup. For this purpose, a

single SPDC source and one overlap on a PBS were

sufficient. This is a clear improvement compared to pre-

vious dedicated linear optics realizations, where basically

only one state could be observed. The general principle of

commonly manipulating multiphoton states followed by

interferometric overlaps at linear-optical components, of

course, can be easily extended: For example, one can use

the six-photon emission from the SPDC source and the

presented setup or replace the PBS with a BS. Both enable

the observation of different families of states [25]. Even if

the weak photon-photon coupling does not allow the de-

sign of simple quantum logic gates, the utilization of

higher-order emissions from an SPDC source together

with multiphoton interference will enable further flexible

experiments, each with numerous different and highly

relevant multipartite entangled states.
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Abstract—Spontaneous parametric downconversion in combi-
nation with linear optics was successfully used to observe a variety
of multiphoton entangled states. Yet, experiments performed so
far lacked flexibility, as each of the various setups was useful for
only a particular multiphoton entangled state. In this paper, we
describe how, by using multiphoton interference, one can observe
entire families of multiphoton entangled states in the very same
linear optical setup. Our method thus goes beyond the commonly
used two-photon interference and turns out to be a very useful tool
for state observation. We will discuss the interference of four and
six photons at different types of beam splitters and show which
families of entangled states are observable. The benefits of this ap-
proach are demonstrated in a four-photon interference experiment
by observing a variety of highly entangled multiphoton states.

Index Terms—Frequency conversion, interference, nonlinear
optics, parametric devices, ultrafast optics.

I. INTRODUCTION

M
ULTIPARTITE entanglement is an important nonclas-

sical resource for applications of quantum information.

In principle, many physical systems are well suited for exper-

imental realizations of multipartite entangled quantum states.

So far, photonic qubits allowed observations of the biggest
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variety of multipartite entangled states. In order to describe and

categorize all these quantum states, among others, the crite-

rion of equivalence under stochastic local operations and clas-

sical communication (SLOCC) was introduced [1]– [4]. It has

already been shown [2] that for four qubits infinitely many

SLOCC-inequivalent four-qubit entangled pure states exist. This

classification is quite useful for multiparty quantum communi-

cation applications, where each SLOCC-inequivalent state has

the potential to lead to a particular nonclassical application.

Hence, a flexible method to observe—and finally to apply—

many SLOCC-inequivalent states is surely desirable.

To observe multiphoton entangled states, usually, a combina-

tion of spontaneous parametric downconversion (SPDC) with

linear optical elements is used. To this end, indistinguisha-

bility of photons originating from different SPDC sources or

emissions is required in order to achieve multiphoton inter-

ference [5], [6] enabling the observation of entangled states.

However, most earlier experiments relied on enforced indisti-

gushability of just two photons [7]–[9]. In this paper, we will

demonstrate how four- and six-photon interference is of ad-

ditional benefit as it allows one to observe whole families of

entangled quantum states in a single setup. This breaks with

the common approach to design a particular linear optical ex-

periment for each quantum state. Besides possible applications

in quantum communication, multiphoton interference was also

proposed to be a useful tool to entangle distant atoms [10]–[16],

or to improve precision measurements [17]– [21]. Previously,

it was studied with respect to photon bunching and multipath

interference at a beam splitter (BS) [22]–[25] as a generalization

of the Hong–Ou–Mandel effect [26].

We will discuss, in Section II, the interference of four and

six photons on different types of BSs and analyze the poten-

tial of these cases with respect to the observation of SLOCC-

inequivalent entangled states. In Section III, we describe a par-

ticular experimental implementation using four-photon inter-

ference at a polarizing BS, which was recently performed by

us [27], with special emphasis placed on the analysis of the

entanglement of the various states. Finally, in Section IV, we

summarize our main findings.

II. MULTIPHOTON ENTANGLEMENT VIA MULTIPHOTON

INTERFERENCE

In the following, we will discuss how multiphoton interfer-

ence can be used to observe various multipartite entangled states.

We will study four- and six-photon interference at different kinds

1077-260X/$26.00 © 2009 IEEE
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Fig. 1. Schematic experimental setup for using four-photon interference at
a central BS to observe families of entangled four-photon states. BSs having
different transmittances for horizontal (Th ) and vertical (Tv ) polarization are
used as the central BS (shown on the right). The polarization analysis of the
photon states in modes e, f, g, h is performed with an HWP and a QWP in front
of a PBS.

of BSs. This approach will be shown to be superior to conven-

tional state observation schemes relying also on linear optics,

most of which served to observe a single state only. With our

method, it is possible to observe a multitude of different and

relevant multipartite entangled states in a single linear optical

setup.

The general experimental scheme to achieve this is as follows

(Fig. 1). We start with a photon source that delivers 2n photons

to two spatially distinct modes (labeled a and b), such that n
photons occupy each spatial mode. Such a source is given by a

type-II noncollinear SPDC that generates in its nth order emis-

sion 2n photons. Next, we will change the polarization state

of the photons via a half-wave plate (HWP) in mode a (we

will, additionally, also consider an HWP in mode b). A similar

approach was pursued in a recent experiment, where an HWP

at the beginning of the optical setup was used to continuously

vary between three photon states out of the same entanglement

class [28]. Subsequently, the photons interfere at a BS with a

certain transmittance Th (Tv ) for horizontally (vertically) po-

larized photons. Its output modes (labeled c and d) are split by

polarization independent BSs into 2n modes that have an equal

output probability. Under the condition of having a single pho-

ton in each of the 2n modes, we observe the desired states. In

the following, we will discuss the cases n = 2 and n = 3, and

thus, the interference of four and six photons, respectively.

A. Four-Photon Interference

Let us start with the interference of four photons at a BS. To

this end, we consider four photons of the second-order SPDC

emission, which are in the state [29] (to assure indistinguisha-

bility of photons coming from different SPDC pairs, one must

use filters of spectral width narrower than that of the pulsed

pump [5], [6])

∝ (ah
†bv

† + av
†bh

†)2 |vac〉
= [(ah

†bv
†)2 + (av

†bh
†)2 + 2ah

†av
†bh

†bv
†] |vac〉 (1)

where mi
† denotes the creation operator of a photon in mode

m having polarization i and |vac〉 is the vacuum state. Here

and in the following, we neglect all higher order emissions,

and thus, implicitly assume low conversion efficiency, e.g., due

to a weak pump beam. The influence of high conversion ef-

ficiency on the state quality, in particular, for low detection

efficiency, is known [30], [31] and strongly depends on the

particular parameters, which will be subjected to further inves-

tigation. The HWP in mode a transforms the polarization state

of the photons according to ah
† → cos (2γ)ah

† + sin (2γ)av
†

and av
† → sin (2γ)ah

† − cos (2γ)av
†, where γ is the orienta-

tion of the optical axis with respect to the polarization of the

impinging photons. Subsequently, the photons interfere on a BS

with the transmittances Th and Tv , where we assume a lossless

BS, i.e., Th + Rh = 1 and Tv + Rv = 1 hold, with Ri being

reflectance of the BS. The BS transforms the photon state from

input mode a to the superposition ai
† →

√
Tici

† + i
√

1 − Tidi
†

and from input mode b to bi
† →

√
Tidi

† + i
√

1 − Tici
†, where

c and d are the output modes of the BS and i =
√
−1.

1) Arbitrary BS: We first use a central BS with Th and Tv

arbitrary, before we focus on three particular parameter sets.

Splitting its two output modes into four final modes by two

polarization independent BSs (Th = Tv = 1/2) yields the states

in modes e, f, g, h (up to normalization, for the notation of

states, see Table I)

abs |GHZ ′
4〉 + bbs |ψ+ 〉 ⊗ |ψ+ 〉

+ cbs |HHHH〉 + dbs |V V V V 〉
− ebs( |V HHH〉 + |HV HH〉
− |HHV H〉 − |HHHV 〉)
− fbs( |V V V H〉 + |V V HV 〉
− |V HV V 〉 − |HV V V 〉) (2)

where each amplitude depends on the three parameters γ, Th ,

and Tv in the following way:

abs =
1√
2
(Tv − Rh − 2ThTv

+ (Tv − Rh − 2ThTv − 4
√

RhThRvTv ) cos 4γ)

bbs = 2

(

√

RhThRvTv +

(

1

2
− Tv +

√

RhThRvTv

+ Th(−1 + 2Tv )

)

cos 4γ

)

cbs = (6RhTh − 1)(sin 2γ)2

dbs = (6RvTv − 1)(sin 2γ)2

© 2009 IEEE.  Reprinted, with permission, from IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 

Multiphoton Interference as a Tool to Observe Families of Multiphoton Entangled States, Witlef Wieczorek, Nikolai Kiesel, Christian Schmid, Wieslaw Laskowski, Marek Zukowski, and Harald Weinfurter



3.4 Publications 55

1706 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

TABLE I

VARIOUS MULTIPARTITE ENTANGLED STATES THAT ARE CONTAINED IN DIFFERENT FAMILIES OF STATES, WHERE EACH FAMILY CAN BE OBSERVED WITH A

SINGLE SETUP

ebs =
1

2
(
√

RhRv − 3Th

√

RhRv

+ 2
√

ThTv − 3T
3/2
h

√

Tv ) sin 4γ

fbs =
1

2
(
√

RhRv (1 − 3Tv ) +
√

ThTv (2 − 3Tv )) sin 4γ.

(3)

These states appear in several entanglement families of the

four-qubit SLOCC classification introduced recently [2], [4].

To obtain a clearer insight into these states, we will discuss the

following three particular BSs in more detail.

2) Polarizing Beam Splitter: By using a polarizing beam

splitter (PBS) with Th = 1 and Tv = 0, the family of states

|Ψ4(γ)〉 = a4(γ) |GHZ4〉 + b4(γ) |ψ+ 〉 ⊗ |ψ+ 〉 (4)

with

a4(γ) =

√
2(1 − cos 4γ)

√

5 − 4 cos (4γ) + 3 cos 8γ

b4(γ) =
(2 cos 4γ)

√

5 − 4 cos (4γ) + 3 cos 8γ
(5)

and a4(γ)2 + b4(γ)2 = 1 is obtained [27] [Fig. 2(a)]. The states

|Ψ4(γ)〉 form a superposition of the well-known |GHZ4〉 state,

a highly entangled four-qubit state, and a product of two Bell

states, a biseparable state.By using the SLOCC classification

of [2], we can attribute the family |Ψ4(γ)〉 to the generic en-

tanglement class Gabcd of four-qubit entangled states. States

of this class form a continuous set of SLOCC-inequivalent

Fig. 2. Amplitudes. (a) a4 (γ) (solid) and b4 (γ) (dashed) for the family of
states |Ψ4 (γ)〉. (b) a6 (γ) (solid) and b6 (γ) (dashed) for |Ψ6 (γ)〉. Further, (a)
p4 (γ) and (b) p6 (γ) denote the probability of each state to be observed in the
corresponding linear optical setup (dotted).

states, i.e., for each particular value of γ ∈ [0, π/8], we obtain

an SLOCC-inequivalent state [27] with a probability p4(γ) =
(5 − 4 cos (4γ) + 3 cos (8γ))/48 [Fig. 2(a)]. Recently, we ac-

complished the experimental realization of |Ψ4(γ)〉 [27], which

will be discussed in Section III in more detail.
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At this point, let us highlight the well-known states of the

family

γ = 0 → |ψ+ 〉 ⊗ |ψ+ 〉

γ =
π

12
→ |D(2)′

4 〉

γ =
1

2
arctan

1√
2
→ |Ψ+

4 〉

γ =
π

8
→ |GHZ4〉

γ =
π

4
→ |Ψ−′

4 〉. (6)

The states |ψ+ 〉 ⊗ |ψ+ 〉 and |Ψ+
4 〉, |Ψ−′

4 〉 are local unitary

(LU) equivalent to |ψ−〉 ⊗ |ψ−〉 and |Ψ−
4 〉, respectively, which

are the two basis states for decoherence-free communication of

a qubit [32]. The state |D(2)′
4 〉 is LU equivalent to |D(2)

4 〉,
which belongs to the family of Dicke states [33]. A remarkable

property of |D(2)
4 〉 is that it allows to obtain by a single projec-

tive measurement states out of the two inequivalent three-qubit

SLOCC entanglement classes [1], [34]. The state |GHZ4〉 is a

graph state [35] and can be used for numerous applications, e.g.,

for multiparty quantum secret sharing [36], dense coding [37],

and simulating anyonic statistics [38]. While all of these states

have been previously realized in dedicated linear optical se-

tups [7], [34], [39]–[41], now, it is possible to observe all of

them in a single setup only.

Finally, the usage of an additional HWP(δ) in mode b in front

of the PBS adds another tuning parameter δ. However, it turns

out that the angle dependence changes simply into γ → γ + δ,

resulting in the same states as before.

3) 50:50 BS: Another commonly used BS is given by Th =
Tv = 1/2. There, we obtain the states (up to normalization)

4
√

2(cos γ)2(sin γ)2 |GHZ4〉

− (1 + 3 cos 4γ)/
√

2 |GHZ ′
4〉

+ 2(cos 2γ)2 |ψ+ 〉 ⊗ |ψ+ 〉. (7)

Let us mention particularly interesting states of this family

γ = 0 → |Ψ−
4 〉

γ =
π

8
→ 1√

2
( |φ−〉 ⊗ |φ−〉 + |ψ+ 〉 ⊗ |ψ+ 〉)

γ =
1

4
arccos

(

− 1

3

)

→ |Ψ+
4 〉

γ =
π

6
→

√

3

4
|GHZ4〉 +

√

1

4
|D(2)

4 〉

γ =
π

4
→ |φ+ 〉 ⊗ |φ+ 〉. (8)

The states given for γ = 0, γ = (1/4) arccos (−1/3), and

γ = π/4 are LU equivalent to states of the family |Ψ4(γ)〉.
However, for other values of γ, we find different states, e.g.,

the state 1/
√

2( |φ−〉 ⊗ |φ−〉 + |ψ+ 〉 ⊗ |ψ+ 〉) (γ = π/8) is a

superposition of two biseparable states and
√

3/4 |GHZ4〉 +

√

1/4 |D(2)
4 〉 (γ = π/6) is a superposition of all distinct per-

mutations of an even number of vertically polarized photons.

When we additionally use an HWP(δ) in mode b in front of

the 50:50 BS, the states

∝
√

2(sin 2(γ + δ))2( |GHZ4〉 − |GHZ ′
4〉)

+ 2(cos 2(γ + δ))2 |ψ+ 〉 ⊗ |ψ+ 〉
+ (sin 4(γ + δ))( |W 4〉 − |W4〉) (9)

are obtained. New states can be observed compared to using only

one HWP. For example, terms with an odd number of vertically

polarized photons ( |W 4〉 − |W4〉) also appear now.

4) CPHASE BS: Another well-known BS is given by Th = 1
and Tv = 1/3. It was used in combination with two attenuation

BSs of reversed splitting ratio (Th = 1/3 and Tv = 1) to con-

struct an all-optical controlled phase gate (CPHASE) [42]–[44].

When the CPHASE is used as the central overlap BS, one ob-

tains the states

acp |GHZ ′
4〉 + bcp |ψ+ 〉 ⊗ |ψ+ 〉

+ ccp(− |HHHH〉 + 3 |V V V V 〉)
+ dcp( |V HV V 〉 + |HV V V 〉

− |V V V H〉 − |V V HV 〉)

+
dcp

3
( |V HHH〉 + |HV HH〉

− |HHV H〉 − |HHHV 〉) (10)

with acp = −
√

2(cos 2γ)2 , bcp = −(cos 4γ), ccp = (sin 2γ)2 ,

and dcp = 3/2 sin 4γ. These states have a similar complexity to

the states observed with an arbitrary BS.

An additional HWP(δ) in mode b leads to the states

acp2 |GHZ ′
4〉 + bcp2 |ψ+ 〉 ⊗ |ψ+ 〉

+ ccp2(− |HHHH〉 + 3 |V V V V 〉)
+ dcp2( |W4〉 + 3 |W 4〉) (11)

with acp2 = −
√

2(cos 2(γ + δ))2 , bcp2 = cos 4(γ + δ), ccp2 =
(sin 2(γ + δ))2 , and dcp2 = sin 4(γ + δ).

We can also directly use the four output modes of the atten-

uation BSs instead of distributing two of the four output modes

via two 50:50 BSs. Then, we obtain

cos 4γ |V HV H〉 + 2(sin 2γ)2 |HHHH〉
+ sin 4γ(− |V HHH〉 + |HHV H〉). (12)

Note that qubits in modes f and h can be factored from the

aforementioned state

|HH〉 ⊗ (cos 4γ |V V 〉 + 2(sin 2γ)2 |HH〉

+
√

2 sin 4γ |ψ−〉) (13)

(we changed the qubit order into f, h, e, g). This comes from the

fact that the attenuation BSs reflect only H polarized photons.
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Fig. 3. Schematic experimental setup for using six-photon interference at a
PBS to observe a family of entangled six-photon states in modes e, f, g, h, k, l.

B. Six-Photon Interference

Extending the level of interference further, let us consider

six-photon interference. In Section II-A, the most successful

approach to observe a family of states was to use interference

at a polarizing BS [27]. Therefore, we will examine in the fol-

lowing the interference of the third-order SPDC with the photon

state (ah
†bv

† + av
†bh

†)3 |vac〉 at a PBS too. Again, before the

photons interfere, their polarization state is changed with an

HWP(γ) in mode a (additionally, we also consider an HWP(δ)

in mode b). The output modes of the PBS are split into six spatial

modes by four polarization independent BSs (see Fig. 3).

Using the experimental layout described before, one obtains

the family of states

|Ψ6(γ)〉 = a6(γ) |GHZ−
6 〉

+ b6(γ)( |W 3〉 ⊗ |W 3〉 − |W3〉 ⊗ |W3〉) (14)

where

a6(γ) =
2(sin 2γ)2

√
7 + 4 cos 4γ + 5 cos 8γ

b6(γ) = − 1 + 3 cos 4γ√
2
√

7 + 4 cos 4γ + 5 cos 8γ
(15)

and a(γ)2 + 2b(γ)2 = 1 [see Fig. 2(b)]. We observe these

states with a probability of p6(γ) = (2/81)(cos γ sin γ)2(7 +
4 cos 4γ + 5 cos 8γ) [Fig. 2(b)]. Let us highlight two states that

are well known to be useful for quantum information

γ = arccos

√

(3 +
√

3)

6
→ |GHZ−

6 〉

γ =
π

4
→ |Ψ+

6 〉. (16)

The state |GHZ−
6 〉 is a graph state and could be already ob-

served experimentally in a dedicated linear optical setup [9].

With the described method, it is not only possible to observe

this state but also the entire family |Ψ6(γ)〉. For example, the

state |Ψ+
6 〉 can be used for telecloning. It is LU equivalent (the

necessary local transformation is σz ⊗ σz ⊗ σz ⊗ 1⊗ 1⊗ 1)

to the telecloning state described in [45] for M = 3 recipients,

where 2M = 6 qubits are necessary. An LU-equivalent state

of |Ψ+
6 〉 was recently observed using a different configuration,

without the central BS [46].

Finally, we note that the usage of an additional HWP(δ) in

mode b in front of the PBS leads to the family of states

|Ψ′
6(γ)〉 = a6(γ) |GHZ6〉

+ b6(γ)( |W 3〉 ⊗ |W 3〉 + |W3〉 ⊗ |W3〉) (17)

which is LU equivalent to the family |Ψ6(γ)〉.

III. EXPERIMENTAL REALIZATION OF A FAMILY OF

FOUR-PHOTON ENTANGLED STATES

Let us now move to the experimental realization of one of the

presented schemes. We implemented the interference of four

photons at a PBS using as a photon source the second-order

emission of a noncollinear type-II SPDC process. The general

layout of the experiment was described in Section II-A and

Fig. 1, which leads to the observation of the family of states [see

Section II-A2 and Fig. 2(a)]

|Ψ4(γ)〉 = a4(γ) |GHZ4〉 + b4(γ) |ψ+ 〉 ⊗ |ψ+ 〉. (18)

A. Experimental Setup

A frequency-doubled Ti:sapphire laser emits femtosecond

UV pulses with a repetition rate of 81 MHz and a power

of 600 mW at 390 nm. The UV pulses pump a 2-mm-thick

β-barium borate (BBO) crystal, which is cut for type-II non-

collinear SPDC (see Fig. 1). Its second-order emission yields

the desired four photons necessary for the interference at the

PBS. Walk-off effects in the BBO crystal due to birefringence

are compensated by an HWP flipping the polarization state of

each photon and a 1-mm-thick BBO crystal [47]. The spatial

modes a and b are defined by coupling the SPDC emission into

single-mode fibers. In mode a, an HWP(γ) is placed before the

photons in modes a and b interfere at the PBS. Interference

filters centered around the degenerate wavelength of 780 nm

with a full-width at half-maximum of 3 nm are placed in out-

put modes c and d (not shown in Fig. 1) to define the spectral

modes of the SPDC photons. Further, in mode c, an additional

HWP is placed (not shown in Fig. 1), which flips the polar-

ization of the photons. Subsequently, each mode is split by a

polarization independent BS, whose birefringence is compen-

sated by a pair of birefringent, perpendicularly oriented yttrium

vanadate crystals in each output mode (not shown in Fig. 1).

Finally, the polarization state of each photon is analyzed with

an HWP and quarter-wave plate (QWP) in front of a PBS. The

outputs of the PBS are coupled into multimode fibers, which

guide the photons to silicon avalanche photodiodes (APDs).

The detection signals are fed into a coincidence unit capable
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Fig. 4. Recorded counts in the computational basis for the states |ψ+ 〉 ⊗
|ψ+ 〉, |D(2)

4 〉, |Ψ+
4 〉, |GHZ ′

4 〉, and |Ψ−
4 〉. Clearly, the different contri-

butions of the |GHZ ′
4 〉 and |ψ+ 〉 ⊗ |ψ+ 〉 terms are observable. Open bars

without error show expected counts.

of registering all 28 = 256 possible detection events between

all eight detectors. The errors on following data are deduced

from Poissonian counting statistics and errors on independently

determined relative detection efficiencies.

Under the condition of detecting a single photon in each mode

e, f, g, h, the family of states

|Ψ4(γ)′〉 = a4(γ) |GHZ ′
4〉 + b4(γ) |ψ+ 〉 ⊗ |ψ+ 〉 (19)

is observed. Note that the family |Ψ4(γ)′〉 differs (by an LU

operation) from |Ψ4(γ)〉, i.e., by a polarization flip in modes

e, f , which is performed by the additional HWP in mode c.

To show the power of the experimental setup, we choose

five known states of the family |Ψ4(γ)′〉, namely |ψ+ 〉 ⊗
|ψ+ 〉, |D(2)

4 〉, |Ψ+
4 〉, |GHZ ′

4〉, and |Ψ−
4 〉 (with γ = 0, γ =

π/12, γ = (1/2) arctan (1/
√

2), γ = π/8, and γ = π/4, re-

spectively), and record for each state the counts in the compu-

tational basis. This demonstrates that we are able to observe

different states in a single experimental setup simply by chang-

ing the angle setting of HWP(γ). Fig. 4 shows the 16 possible

measurement outcomes for these five states. Open bars show

the theoretically expected coincidences, with the scaling chosen

such to give the same sum of counts. Clearly, a good agreement

between experiment and theory is found. Deviations originate

from higher order emissions of the SPDC that give undesired

contributions. Additionally, an imperfect interference at the PBS

further adds noise. Nevertheless, a clear transition between the

states |ψ+ 〉 ⊗ |ψ+ 〉 and |GHZ ′
4〉 can be observed.

B. Detecting the Entanglement

Let us now discuss the detection of different degrees of entan-

glement for the observed states. First, we want to exclude that

any of the states is separable. Further, we want to show that the

expected four-partite entanglement is also found in the observed

states.

A simple criterion to exclude separability was recently intro-

duced in [48]. It is based on the correlations of a state. In our

case, we have to consider the correlation tensor T̂ of a four-qubit

state ρ with

ρ =
1

16

3∑

µ1 ,...,µ4 =0

Tµ1 ,...,µ4
(σµ1

⊗ σµ2
⊗ σµ3

⊗ σµ4
) (20)

where σµn
∈ {1, σx , σy , σz} is the σµn

th Pauli matrix of the nth

qubit (with σ0 = 1) and Tµ1 ,...,µ4
∈ [−1, 1] are the components

of the correlation tensor T̂ . The values Tµ1 ,...,µ4
are given by the

expectation value Tµ1 ,...,µ4
= Tr[ρ(σµ1

⊗ σµ2
⊗ σµ3

⊗ σµ4
)].

For fully separable states, it holds that

Tmax
4 ≥

∑

j1 ,...,j4

T 2
j1 ,...,j4

(21)

where Tmax
4 is the maximal value of the four-qubit correla-

tion function and is given by Tmax
4 = max	o1 ⊗	o2 ⊗	o3 ⊗	o4

(T̂ , 	o1 ⊗
	o2 ⊗ 	o3 ⊗ 	o4), with 	on = (T

(n)
x , T

(n)
y , T

(n)
z ) being a 3-D unit

vector describing a pure state of the nth qubit [48].

The detection of entanglement can be very simple. As soon

as the sum of squared correlations
∑

j1 ,...,j4

T 2
j1 ,...,j4

(22)

exceeds unity, our experimental states are entangled [48].

Fig. 5 shows the correlations T1,1,1,1 ≡ Tx⊗4 , T2,2,2,2 ≡ Ty⊗4 ,

and T3,3,3,3 ≡ Tz⊗4 . When we sum the squares of, e.g., Tx⊗4

and Tz⊗4 , we find that for all states, (Tx⊗4 )2 + (Tz⊗4 )2 > 1,

and thus, all states are entangled. The same is found for

(Tx⊗4 )2 + (Ty⊗4 )2 . Hence, we conclude that the experimental

states contain at least some entanglement.

Now, let us demonstrate that the experimental states ex-

hibit the expected genuine four-partite entanglement. Note

that the state |ψ+ 〉 ⊗ |ψ+ 〉 is a biseparable state, i.e., a

product of two entangled pairs, and thus, is the only state

that is not genuine four-partite entangled. To show genuine

n-partite entanglement, we use the method of entanglement

witnesses [49]. Generally, an entanglement witness that de-

tects a genuine four-partite entangled state |ξ〉 is given by

the operator Wξ ,α = α1⊗4 − |ξ〉〈 ξ | . Thereby, the constant

α is the maximal overlap of |ξ〉 with all biseparable states

(B-S), i.e., α = max |φ〉∈B-S |〈φ|ξ〉|2 . This construction guaran-

tees that Tr[(Wξ ,α )ρB-S ] is positive for all biseparable states

ρB-S , but negative for |ξ〉. The power of entanglement wit-

nesses stems from the fact that their expectation value is also

negative for states close to |ξ〉. Hence, a negative expec-

tation value Tr[(Wξ ,α )ρexp ] = Tr[(α1⊗4 − |ξ〉〈 ξ | )ρexp ] =
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Fig. 5. Experimental correlations Tx⊗4 , Ty⊗4 , and Tz⊗4 for the states

|ψ+ 〉 ⊗ |ψ+ 〉, |D
(2)
4 〉, |Ψ+

4 〉, |GHZ ′
4 〉, and |Ψ−

4 〉 (expected value is 1).

From these, the values of (Tx⊗4 )2 + (Ty⊗4 )2 and (Tx⊗4 )2 + (Tz⊗4 )2 are
deduced, which allow to demonstrate entanglement, if either of these values
exceeds unity. All states fulfill this condition, and thus are entangled.

TABLE II

DETECTION OF GENUINE FOUR-PARTITE ENTANGLEMENT VIA ENTANGLEMENT

WITNESSES

α − 〈 ξ | ρexp |ξ〉 = α − Fξ (ρexp) < 0 will signal genuine four-

partite entanglement of the experimental state ρexp , where

Fξ (ρexp) is the fidelity of state ρexp with respect to |ξ〉. Hence,

by measuring the fidelity, one can directly compute the expec-

tation value of the corresponding entanglement witness.

Entanglement witnesses that detect the states |D
(2)
4 〉, |Ψ+

4 〉,
|GHZ ′

4〉, and |Ψ−
4 〉 have already been constructed. The cor-

responding witnesses are given by W
D

( 2 )
4 ,2/3

in [34] and [50],

WΨ+
4 ,3/4 in [51], WGH Z ′

4 ,1/2 in [52], and WΨ−
4 ,3/4 in [51], re-

spectively. To determine their expectation values, we measured

the fidelity of the corresponding state (see [27] for details). The

result is shown in Table II. We see that all experimental states

are four-partite entangled as the expectation values of the cor-

responding witnesses are below zero.

Hence, we could indeed show that selected states of the family

|Ψ4(γ)′〉 are not only entangled, but also genuine four-partite

entangled. We again stress that all these states are SLOCC-

inequivalent and that, so far, different experimental setups were

necessary to observe each state.

IV. CONCLUSION

We have shown how multiphoton interference at different

types of BSs can be used to observe different families of multi-

photon entangled states. The photons were generated by higher

order emissions of an SPDC source. The combination of po-

larization rotations in the BS input modes with multiphoton

interference at polarization-dependent BSs provides the nec-

essary ingredients for the powerful scheme we presented. We

implemented one particular case experimentally that allowed us

to observe an entire family of four-photon entangled states. Our

method opens the way for flexible linear optical experiments in

the future and surely can also be applied in other areas of quan-

tum information, e.g., for linear optical quantum computing.
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Chapter 4

Four-qubit entanglement for
revealing anyonic features

It is well known that in the three-dimensional space only two types of indistinguishable
particles can be observed, namely bosons and fermions. In two dimensions new types of
particles can occur: anyons. These acquire upon particle exchange any possible statistical
phase, in contrast to the behavior of bosons and fermions, which acquire a phase factor
of +1 and −1, respectively. In this chapter the observation of anyonic features is de-
scribed based upon a quantum simulation of a minimal instance of the toric code [57] (see
publ. P4.1). To this end, section 4.1 and 4.2 give an introduction to anyons and the toric
code, while section 4.3 focuses on the experimental implementation presented in ref. [57]
(see publ. P4.1).

The occurrence of anyons as new types of particles in the two-dimensional space [67, 68]
is explained in section 4.1. The realization of anyons is only possible in two-dimensional
systems. So far, systems in the fractional quantum Hall regime [260], an effect appearing in
two dimensions, are the most likely candidates for the observation of anyons in a physical
system, and thus deserve attention. Besides being interesting from a fundamental point
of view anyons can find applications in topological quantum computing, which is also
elaborated on. Another possibility to realize anyons is given by abstract two-dimensional
spin lattice systems. One of these is the toric code [73], which is presented in section 4.2. A
minimal subsystem thereof is sufficient to simulate basic anyonic features by studying the
evolution of the anyonic wave function [261, 262]. In order to realize this instance of the
toric code four-photon entanglement is used that has been observed with the experimental
setup described in chapter 3. Basic anyonic features like creation and annihilation of
anyonic quasiparticles as well as their mutual statistics can be demonstrated based on a
four-qubit GHZ state [57] (see publ. P4.1), which is discussed in section 4.3.
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4.1 Anyons, the quantum Hall effect, and topological

quantum computation

Appearance of anyons in two-dimensional systems With the concept of indistin-
guishable particles quantum theory lays the basis for a fundamental understanding of physi-
cal phenomena such as metallic conduction, super fluidity, and Bose-Einstein condensation.
Two types of indistinguishable particles are observed in three-dimensional space, bosons
and fermions. Bosons and fermions are distinguished by their spin, bosons are integer spin
particles and fermions are half-odd-integer spin particles. The spin of a single particle
determines the statistics of an ensemble of indistinguishable particles, the so-called spin-
statistics theorem [263, 264]. The statistical behavior is inferred from symmetry, namely
the transformation of the wave function under exchange of particles. While the wave func-
tion of two bosons acquires a phase factor of +1 upon exchange, the one for two fermions
obtains a phase factor of −1. This exchange behavior can also be understood in terms of
the topology of the space dimension [265]. A closed path in the three-dimensional rotation
group SO(3) that begins at the identity and ends at 4π can be smoothly contracted to a
trivial path, see fig. 4.1 (even if it encloses a particle). Hence, a rotation by 4π can be
represented by the identity and is equivalent to two successive particle exchanges. Conse-
quently, a single particle exchange can have the eigenvalues +1 and −1 corresponding to
bosonic and fermionic statistics, respectively. In contrast, a closed path in two dimensions
is not necessarily contractible to a trivial path (fig. 4.1). Hence, any statistical phase factor
θ can be acquired when exchanging two indistinguishable particles in two dimensions:

ψ(r1, r2) → eiθψ(r2, r1). (4.1)

A second exchange, which is equivalent to a loop of one particle around the other, leads
to ψ(r1, r2) → e2iθψ(r1, r2). For bosons and fermions only the values θ = 0 and θ = π
would be possible. Particles with other values of θ are called anyons [67, 68]. Furthermore,
special types of anyons can not only acquire any statistical phase factor but also a unitary
transformation of their wave function upon exchange, which will be of importance for
topological quantum computation discussed briefly later on. The former anyons are called
Abelian, the latter non-Abelian anyons.

Anyons were first discussed as a theoretical concept appearing for composite particles
made up from a particle with charge q and a magnetic flux tube with flux Φ0 [67, 68]
(labeled as e and m in fig. 4.1). When one of these composite particles circulates around
another one, then it acquires a phase of eiqΦ0 due to the Aharonov-Bohm effect [266].
Consequently, upon exchange they would acquire a statistical phase of qΦ0/2 and exhibit
fractional statistics. The phase of eiqΦ0/2 would be also acquired by simply moving a single
electric charge around a magnetic flux, which corresponds to a rotation of the composite
particle. This evolution emerges in the toric code, which will be described in section 4.2.

A system supporting anyons can be created by artificially confining particle movement
from three to two dimensions. An example is the fractional quantum Hall effect (QHE),
which will be discussed briefly in the following [267–270]. Alternatively, two-dimensionality
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3 dimensions
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Figure 4.1: Schematic representations of the braiding of two indistinguishable particles.
In a three-dimensional space a loop (1) of one particle around the other is contractible to
a trivial loop (2). In contrast, in two dimensions this is not the case. Loops (1) and (2)
are not topological equivalent, i.e., it is impossible to deform them continuously into each
other (as one particle would cross the other one).

is also found in certain abstract spin lattice systems [73, 271], whereupon the implemen-
tation described in section 4.3 is based. For this purpose, the toric code will be discussed
in section 4.2.

Quantum Hall effect and anyons The QHE [260, 272] is the quantum version of the
classical Hall effect, whereby electrons accelerated in the x direction by an electric field
are deflected in the y direction by a magnetic field applied perpendicular to the x − y
plane (fig. 4.2). Confining carrier movement in the z direction essentially leads to the
QHE. It is observed in a layered heterostructure that forms an electron gas confined in the
two-dimensional plane x − y and appears at very low temperatures under high magnetic
fields in samples of high electron mobility. Due to the high magnetic field, the electron is
forced into circular orbits that are quantized into Landau levels separated by the cyclotron
energy.

The QHE is characterized by vanishing longitudinal (Rxx) and constant transversal
(Hall) resistance (Rxy) [267] (fig. 4.2). The Hall resistance shows pronounced steps at

Rxy =
h

e2

1

ν
, (4.2)

where h/e2 ≈ 25.813 kΩ is the quantum of resistance and is used as a practical unit for
resistance in calibrations [272, 273]. The dimensionless parameter ν is the Landau level
filling factor: the ratio of the electron density to the magnetic flux density or, equivalently,
the number of electrons per flux quantum (Φ0 = h/e). It can take integer values ν =
1, 2, 3, ... describing the integer QHE [272], but also fractional values ν = p/q with p, q
integer for the fractional QHE [260].

The integer QHE is a single particle effect of non-interacting electrons resulting from
complete filling of Landau levels and additional pinning of electrons at defects. In contrast,
the fractional QHE is a many-body effect resulting from the strong interaction of many
electrons due to the magnetic field [267]. The interacting electrons have a charge smaller
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Figure 4.2: Hall resistance Rxy = Vy/Ix and longitudinal resistance Rxx = Vx/Ix for a
two-dimensional electron system at a temperature of 85 mK as a function of the magnetic
field B, taken from [267]. Numbers give the filling factor ν. The inset shows a schematic
of the sample.

than that of the sum of individual electrons. This system can be described by the for-
mation of composite quasiparticles with attached flux quanta. Excitations of the ground
state are additional or missing flux quanta resulting in a missing or additional fractional
charge; for ν = 1/3 it is a third of the electron charge. Exactly such an excitation is an
anyon [274–277] exhibiting fractional statistics. While the fractional charge was confirmed
experimentally [278, 279], a clear-cut experimental evidence for the statistical properties
of such an excitation is still missing. Such experiments would realize a closed path of a
group of anyons around an island of anyons in an Aharonov-Bohm-like interferometer and
yield interferometric oscillations [280, 281]. However, the difficulty in such a realization lies
with the continuous presence of interactions in the samples and the unambiguous interpre-
tation of the experimental results, which can originate from topology as well as dynamical
interactions [70, 71].

Non-Abelian anyons are expected to appear as excitations in fractional Quantum Hall
states, for example for ν = 5/2. The first step in testing this theoretical expectation re-
cently succeeded in confirming their fractional charge of e/4 [282]. However, the statistical
nature of these anyons [283–285] has not been experimentally revealed so far. Other two-
dimensional solid state systems realizing fractional charges and with that anyons consist
of superconducting films on top of a two-dimensional electron gas [286]. In the following it
is outlined why so much interest lies in the realization of anyons. To this end, a quantum
information point of view will be taken again.

Topological quantum computation with anyons Anyons are on one hand interest-
ing from a fundamental point of view. They are new types of particles in two spatial
dimensions exhibiting fractional statistics. On the other hand, they also find powerful ap-
plications in the field of topological quantum computing [69, 73, 265, 271, 287, 288]. In the
mathematical field of topology the properties of spatial configurations that are unaltered
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by elastic deformations are studied. Hence, topological states of matter are intrinsically
stable to local deformations. This results in a robustness against local errors as they are
topologically protected, i.e., local perturbations do not change the topology of the system.
It was shown that they can realize quantum computation that is intrinsically fault-tolerant
[69, 265, 289]. This is in contrast to other schemes of quantum computation, for example
the circuit model [1] or the one-way quantum computer [45], where additional quantum
error correction [1] is required to compensate for intrinsic errors in the quantum hardware
to reach fault tolerance.

Topological quantum computation on the basis of anyons is possible if at least three
basic requirements of quantum computation are fulfilled: proper initialization of qubits,
implementation of unitary evolution and measurement to read out the computational re-
sult [1]. Indeed, such schemes were developed using certain types of non-Abelian anyons
[265, 289, 290]. Thereby, three anyons are necessary to encode one logical qubit. The
unitary operations are implemented by braiding anyons, i.e., moving anyons around each
other, which yields a unitary matrix. Finally, the computational result is read out by a
non-Abelian anyon that acts as a test particle and circulates all other anyons that carry
the information, or by fusing anyons. All these procedures take place in a subspace of
the total Hilbert space, namely the degenerate ground state with a fixed number of quasi-
particles. This subspace is separated from the excited states by an energy gap, and the
computation is thus protected from errors. Topological quantum computing is based on
non-local qubits (non-Abelian anyons) and non-local gates (braiding anyons), and is thus
intrinsically protected from local errors.

The implementation of topological quantum computation is based on the realization of
non-Abelian anyons. The fractional quantum Hall system is the most studied experimental
system so far [69], but far from being used for that purpose yet. Alternative systems include
spin lattice systems [73, 271]. The toric code [73] is one of these and will be discussed in
the following section 4.2. While the toric code defined on a square lattice supports only
Abelian anyons, a more complex version of the toric code is the honeycomb lattice [271]
supporting also non-Abelian anyons.

4.2 Toric code

The toric code is a spin lattice system [72, 73]. It belongs to the broader class of surface
codes mapped onto surfaces with different topologies. The following description follows
mainly the seminal works of Alexei Kitaev (refs. [72, 73]). The toric code can be defined
on a k × k two-dimensional lattice on a torus [fig. 4.3(a)]. Qubits are placed on the edges
and are connected via two types of four-qubit interactions. A vertex, i.e., a star of four
edges, is defined by the operator Âs, while a plaquette, i.e., four edges facing each other,
is defined by B̂p, with

Âs = ⊗j∈sσ̂
(j)
x , B̂p = ⊗j∈pσ̂

(j)
z . (4.3)

The tensor product runs over all four qubits on the respective edges [fig. 4.3(b)]. Alterna-
tively, one can regard the toric code as consisting of alternating s and p plaquettes arranged
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in a chessboard manner with qubits placed at the vertices, which is depicted in fig. 4.3(b)
as a gray lattice. This will be used in section 4.3, whereby a minimal subsystem of the
toric code is considered. The operators Âs and B̂p are Hermitian and commute with each
other as they have zero or two qubits in common. Their eigenvalues are ±1. The sum
taken over all plaquettes defines the Hamiltonian of the toric code

Ĥ = −
∑

s

Âs −
∑

p

B̂p. (4.4)

As the operators Âs and B̂p commute with the Hamiltonian and also with each other, the
system is exactly solvable with its ground state |ξ 〉 given by [291]

|ξ 〉 ∝ ⊗s(11 + Âs) |00...0 〉, (4.5)

where σ̂z |0 〉 = |0 〉. Thus, Âs |ξ 〉 = |ξ 〉 and B̂p |ξ 〉 = |ξ 〉 for all s, p. In the context of
quantum error correction these operators can therefore be regarded as commuting stabi-
lizing operators (see eq. 2.15) of the toric code ground state as they simultaneously define
it with eigenvalue +1.

Local excitations in the toric code are created by applying local operations on single
qubits. By the application of a single σ̂z operation, the eigenvalue of the neighboring
two s vertices turns from ±1 to ∓1 [fig. 4.3(c)], which can be checked by applying the
corresponding Âs operators on the respective vertices. Accordingly, applying σ̂x on a qubit
changes the eigenvalue of the neighboring two p plaquettes from ±1 to ∓1 [fig. 4.3(c)].
These excitations are interpreted as quasiparticles. The former is called an e quasiparticle,
whereas the latter is called an m quasiparticle, which can take the role of an electric charge
and a magnetic flux, respectively. Finally, applying a σ̂y operation simultaneously creates
two e and two m particles on the neighboring vertices and plaquettes. The combination
of e and m is labeled ε. Fusion rules determine the outcome of quasiparticles that are
created at similar lattice sites. They are the following: 1 × e = e, 1 ×m = m, 1 × ε = ε,
e × e = 1, m × m = 1, ε × ε = 1, e × m = ε, e × ε = m and m × ε = e, where 1 is
the vacuum state corresponding to no quasiparticle at the corresponding lattice site. For
example, applying σ̂z on a qubit and on a neighboring qubit creates two e quasiparticles
on the same s plaquettes and two e quasiparticles at distant s plaquettes. The former two
e quasiparticles annihilate due to the fusion rule e × e = 1, while the latter ones can be
envisaged to be connected by a string, see fig. 4.3(c).

More generally, quasiparticles can be moved on the lattice using string operators defined
as

Ŝz(t) = ⊗j∈tσ̂
(j)
z , Ŝx(t

′) = ⊗j∈t′σ̂
(j)
x , (4.6)

which apply the corresponding local rotations on the qubits along path t or t′ [fig. 4.3(c)].
The string operators Ŝz(t) and Ŝx(t

′) commute with all Âs and B̂p, except for two lattice
sites. These are the endpoints of a non-closed path, and thus create each a single quasi-
particle [fig. 4.3(c)]. Hence, every combination of an even number of quasiparticles on the
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Figure 4.3: (a) The toric code defined on a torus. The green marked area is considered in
(b)-(d). (b) Two types of interactions define s vertices and p plaquettes. Alternatively, one
can consider alternating s and p plaquettes on the gray lattice. (c) Pairwise quasiparticles
e and m are created via σ̂z and σ̂x operations on single qubits, respectively. Strings Ŝz(t)
and Ŝx(t

′) move anyonic quasiparticles along the torus. (d) A loop around an unpopulated
plaquette cancels. In contrast, a loop around a plaquette populated with an e quasiparticle
yields a statistical phase factor of−1 revealing the anyonic phase factor of θ = π/2 (eq. 4.1).
For the experimental implementation a single s vertex (marked green) is considered. (e)
A single s plaquette can host the circulation of a m around an e quasiparticle.

toric code is allowed1. However, when a string forms a loop around unpopulated plaque-
ttes or vertices the endpoints fall on the same lattice site, and thus two quasiparticles are
annihilated due to the fusion rules [fig. 4.3(d)]. The loop is said to be contractible.

Having defined quasiparticles on the lattice, one can now consider their mutual statis-
tical phase. Assuming the creation of an e quasiparticle at an s vertex with qubit labels
1, 2, 3, 4 by applying σ̂z on the first qubit [fig. 4.3(d) and (e)] yields

|Ψ 〉initial = σ̂(1)
z |ξ 〉. (4.7)

1This holds if one considers periodic boundary conditions occurring for example for the topology of a
torus.
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Now an m quasiparticle is transported around e, which is described by the string operator
Ŝx(4321) = σ̂

(4)
x σ̂

(3)
x σ̂

(2)
x σ̂

(1)
x = Âs,

|Ψ 〉final = Ŝx(4321) |Ψ 〉initial = Ŝx(4321)σ̂(1)
z |ξ 〉 = −σ̂(1)

z Ŝx(4321) |ξ 〉 = −σ̂(1)
z Âs |ξ 〉

= − |Ψ 〉initial. (4.8)

Hence, moving an m around an e quasiparticle, i.e., braiding these quasiparticles, results
in a statistical phase of −1 acquired by the global wave function. As the phase for fermions
or bosons would not change upon such a process, m and e behave as anyonic quasiparticles
with respect to each other. Note, performing only an exchange of m and e yields no well
defined statistical phase as the wave function describing that state is distinguishable, be-
cause the quasiparticles are distinguishable. In contrast, a full loop of one particle around
the other results in indistinguishable initial and final spatial positions and therefore in the
acquisition of a well-defined statistical phase. The statistical phase of an e quasiparticle
with respect to another e quasiparticle is derived analogously and results in bosonic behav-
ior, which also holds for m quasiparticles. However, an ε quasiparticle exhibits a fermionic
statistical phase as eq. 4.8 can also be interpreted in terms of rotating an ε quasiparticle
by 2π [292].

The interest in the toric code relies on the realization of anyonic quasiparticles. The
fractional quantum Hall system is the only physical system known so far exhibiting a
topological state of matter with anyonic particle excitations. However, due to the high
experimental effort no conclusive result about the statistical nature of the expected any-
onic quasiparticles could be stated so far. Hence, the toric code is an appealing alternative
system realizing a topologically ordered state with anyonic quasiparticle excitations. In
addition to this fundamental interest, its possible application as an error correcting code
[73] is conceivable. An alternative to the toric code as a square lattice is the honeycomb
lattice, which is a surface code with a hexagonal lattice and the additional benefit of sup-
porting non-Abelian anyonic quasiparticles [271]. This allows the realization of topological
quantum computation based on a surface code [271].

The experimental implementation of surface codes in general and the described minimal
realization of an instance of the toric code in particular is the topic of the next section.

4.3 Minimal implementation

Recently, several theoretical proposals were put forward for the implementation of surface
codes in real physical systems. Large scale schemes aiming at the implementation of the
Hamiltonian were suggested based on the system of ultra cold atoms or molecules trapped
in optical lattices [293]. A number of proposals for different experimental schemes have
been developed − for example, trapped polar molecules with the spin represented by a
single valence electron of the molecule [294], trapped ultra cold atoms with the effective
spin given by two hyperfine atomic ground states [295], trapped atoms or molecules with a
read-out of anyonic braiding through global operations [296] and, finally, trapped atoms or
molecules with a read-out performed by another particle species [297]. Although none of
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these schemes have been implemented experimentally to date, the necessary experimental
techniques of trapping ultra cold atoms are available.

Other theoretical work was focusing on the study of minimal instances of surface codes
[261, 262, 298], which is also the topic here. The aim of this work is to demonstrate
anyonic features based on the evolution of the relevant wave functions. Such schemes
avoid the experimental implementation of a surface code Hamiltonian as for example the
necessary four-body interactions Âs and B̂p in the toric code are difficult to realize. Rather,
the relevant wave functions are created without the need of the toric code Hamiltonian.
However, the lack of a Hamiltonian, which would provide the necessary energy gap to
excited states not used for the actual computation, prevents the protection of the qubits
from noise. Thus, such an implementation is not suitable for exploiting the topological
nature of the code for fault-tolerant quantum computation.

In ref. [262] a single plaquette of the honeycomb lattice consisting of six qubits was
considered to show basic anyonic features and also to reveal their mutual statistical phase
via an interference experiment. In contrast, ref. [261] considered toric code states made up
of N qubits created from graph states of 2N qubits via appropriate single qubit measure-
ments. A system of six qubits was identified to show anyonic statistics and was recently
implemented experimentally [37] simultaneously to the implementation described in this
work [57] (publ. P4.1). A system of nine qubits was shown to be capable to demonstrate
the robustness of the statistical phase for different braiding paths.

In this work, the implementation of a minimal instance of the toric code is pursued.
Inspired by ref. [262] a single plaquette of the toric code made up of four qubits is consid-
ered. Basic anyonic features and also their mutual statistical phase can be demonstrated
[57] (publ. P4.1) on a single s plaquette (now this nomenclature is chosen instead of s
vertex).

Following eq. 4.5, the ground state of such a system is given by

|ξ 〉 =
1√
2
(11⊗4 +⊗j∈sσ̂

(j)
x ) |0000 〉 =

1√
2
( |0000 〉+ |1111 〉) = |GHZ4 〉 , (4.9)

where j ∈ {1, 2, 3, 4} labels the qubits in a counterclockwise order. This state is the well
known four-qubit GHZ state, which has already been implemented using photons [64] and
atoms [299, 300]. Here this state is employed with the specific aim of simulating anyonic
behavior in a minimal version of the toric code, which has not been done before. Note
that the four-qubit GHZ state can be defined by a Hamiltonian that is the sum over
the GHZ state’s stabilizing operators, which are σ̂⊗4

x = Âs and B̂p′ = σ̂
(i)(j)
z with i 6=

j ∈ {1, 2, 3, 4}. The former stabilizer represents the s plaquette and the stabilizers B̂p′ ∈
{σ̂(1)(2)

z , σ̂
(2)(3)
z , σ̂

(3)(4)
z , σ̂

(4)(1)
z } can be interpreted as neighboring four p plaquettes, which are

only represented by links. Due to this non-periodic minimal instance of the toric code, this
system is described by open boundary conditions. The presence of an e quasiparticle is
detected by the plaquette operator Âs, whereas the presence of m quasiparticles is detected
by the eigenvalue of the four B̂p′ ∈ {σ̂(1)(2)

z , σ̂
(2)(3)
z , σ̂

(3)(4)
z , σ̂

(4)(1)
z }.

The experimental implementation is based on the setup described in chapter 3, whereby



72 4. Four-qubit entanglement for revealing anyonic features

for α = 0 the four-qubit GHZ state is observed2. The GHZ state and all other states
obtained by local operations have to be analyzed. These states are of the form

|GHZφ
4 〉 =

1√
2
( |HHHH 〉+ eiφ |V V V V 〉), (4.10)

in the notation of polarization encoded qubits. Specifically, one obtains, for example,
|ξ 〉 = |GHZ0

4 〉, σ̂
(i)
z |ξ 〉 = |GHZπ

4 〉 and Ŝx(1234) |ξ 〉 = |GHZ0
4 〉, which correspond to the

ground state, an anyonic quasiparticle and a loop around an unpopulated plaquette, respec-
tively. In order to determine the phase φ of |GHZφ

4 〉 a correlation function measurement
is performed [299]:

ĉxy(γ) = σ̂(γ)⊗4 with σ̂(γ) = (cos γ)σ̂y + (sin γ)σ̂x, (4.11)

which corresponds to a measurement along the x − y plane of the Bloch sphere (for the
implemented measurement settings see appendix B). For |GHZφ

4 〉 its expectation value
shows an oscillation, whose angular displacement depends on φ,

〈ĉxy(γ)〉 = V cos (4γ + φ), (4.12)

with a period of one quarter of 2π, a unique signature of four-qubit GHZ entanglement.
The visibility of this oscillation V is 1 for pure GHZ states. For a general state it equals
twice the element ρHHHH,VVVV = Tr[|HHHH〉〈VVVV|ρ] of the corresponding density matrix
ρ. The visibility is obtained from the experimental data by a weighted least squares fit
to a Fourier decomposition of 〈ĉxy(γ)〉 considering only even components up to order 4 as
only these components can originate from physical states [246]:

〈ĉxy(γ)〉 =
2∑

k=0

ak cos(2k · γ) + bk sin(2k · γ). (4.13)

The parameters ak and bk are in correspondence with elements of a physical density matrix,
whereby a combination of a2 and b2 determines V and φ [246]. Additionally, genuine four-
qubit entanglement is proven by using an entanglement witness based on the fidelity,
whereby a value larger than 0.5 is sufficient [138]. The fidelity can be derived from the
visibility V together with the populations PHHHH and PVVVV, which are determined from
a measurement in the z basis. The fidelity is given by

F = 〈GHZφ
4 |ρ|GHZφ

4〉 = (V + PHHHH + PVVVV)/2. (4.14)

For all measurements fidelity values in excess of 0.73 have been achieved, proving entan-
glement (see Table 1 of publ. P4.1).

In the following, several evolutions on the minimal toric code system consisting of a
single s plaquette are described together with the results of the correlation measurements

2Here, the polarization-flip behind the PBS (step 4 in fig. 3.2) is not necessary. Hence, the HWP(π/4)
is left out.



4.3 Minimal implementation 73

0 4p

Angle  4g

2p

Correlation cá ñxy

0

1

-1b)

c)

d)

0

1

-1

0

1

-1

Correlation cá ñxy

e)

f)

g)

0

1

-1

0

1

-1

0

1

-1

(i)

(ii)

(iii)

(i)

(ii)

(iii)

0 4p

Angle  4g

2p

0

1

-1

(i) (ii)

(iii)

0

1

-1a)

h)

Figure 4.4: Pictorial representations of the s plaquette and measured correlation functions,
whereby the phase φ of the state |GHZφ

4〉 is determined by analyzing the correlation function
〈ĉxy(γ)〉 (see eq. 4.11 and eq. 4.13, the experimentally determined values of φ are given
in Table 1 of publ. P4.1). (a) Ground state |ξ 〉. (b) Generating an e-type anyonic state
|GHZπ

4 〉 by a σ̂z operation. (c) A second σ̂z operation removes the anyon from the plaquette
and elongates the string giving back the |GHZ0

4 〉 state. (d) A third σ̂z operation creates
an anyon, connected with the string already traversing the plaquette. (e) Performing an
s plaquette loop on an empty plaquette and (f) first creating an anyon on the plaquette
(i), performing the loop (ii), and removing the anyon from the plaquette again (iii) yield
identical final states up to a global phase factor. (g) The global phase is revealed by
superimposing the two aforementioned evolutions proving anyonic statistics as a |GHZφ

4〉
state with φ = π is observed. (h) An alternative path for the anyon e that gives the same
phase.

shown in fig. 4.4 (for details see publ. P4.1). Their aim is to show basic anyonic features and
the mutual statistical phase of anyons. To this end, (a) the ground state has been verified,
(b) the population of the plaquette with an e quasiparticle, (c) the fusion rule e×e = 1, and
(d) the creation of a string have been demonstrated, and (e) a loop around an unpopulated
plaquette has been performed. Most importantly, the statistical phase between an e and
m quasiparticle should be revealed. Although the loop around a populated plaquette (f)
yields the statistical phase of −1 between e and m quasiparticles in theory, it is given as an
unobservable global phase factor in the experiment. Hence, an interference measurement
was performed for two different paths (g) and (h), superimposing the evolutions of a loop
around (e) an unpopulated and (f) a populated plaquette. Thereby, the difference of the
otherwise unobservable global phase shifts for these two evolutions becomes a relative phase
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shift.
In particular, all evolutions are given by

• (a) ground state [ |ξ 〉 = |GHZ0
4 〉, fig. 4.4(a)],

• (b)-(d) creation of one anyonic quasiparticle [σ̂
(1)
z |ξ 〉 = |GHZπ

4 〉, fig. 4.4(b)], two

anyonic quasiparticles that form a string [Ŝz(31) |ξ 〉 = σ̂
(3)
z σ̂

(1)
z |ξ 〉 = |GHZ0

4 〉,
fig. 4.4(c)] and a quasiparticle connected to the string [σ̂

(4)
z Ŝz(31) |ξ 〉 = |GHZπ

4 〉,
fig. 4.4(d)],

• (e)-(f) loop around an unpopulated [Ŝx(1234) |ξ 〉 = |GHZ0
4 〉, fig. 4.4(e)] and popu-

lated plaquette [σ̂
(4)
z Ŝx(1234)σ̂

(4)
z |ξ 〉 = − |GHZ0

4 〉, fig. 4.4(f)],

• (g)-(h) two types of interference measurements [(σ̂
(4)
z )1/2Ŝx(1234) (σ̂

(4)
z )−1/2 |ξ 〉 =

−i |GHZπ
4 〉, fig. 4.4(g) and (σ̂

(1)
z )1/2Ŝx(1234) (σ̂

(3)
z )−1/2 |ξ 〉= −i |GHZπ

4 〉, fig. 4.4(h)].

Only the interference measurement transforms the global phase shift of −1 into a relative
and observable phase factor resulting in the |GHZπ

4 〉 state. If the statistical phase shift of
−1 had not occurred, |GHZ0

4 〉 would have been observed as final state.
To summarize, in the simulation of a single plaquette of the toric code system basic

anyonic features as well as their mutual statistical phase have been demonstrated. An
extension to scalable systems such as ultra cold atoms or molecules in optical lattices [293–
297] is necessary to exploit the power of anyons for topological quantum computation in
the future.
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Abstract. Anyons are quasiparticles in two-dimensional systems that show

statistical properties very distinct from those of bosons or fermions. While their

isolated observation has not yet been achieved, here we perform a quantum

simulation of anyons on the toric code model. By encoding the model in the

multi-partite entangled state of polarized photons, we are able to demonstrate

various manipulations of anyonic states and, in particular, their characteristic

fractional statistics.
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2

1. Introduction

In three spatial dimensions, only two types of statistical behaviors have been observed dividing

particles into two groups: bosons and fermions. If one is restricted to two-dimensional systems

the situation changes. There, anyons [1] can appear, which exhibit fractional statistics that

ranges continuously from bosonic to fermionic. Anyons are responsible for the fractional

quantum Hall effect [2] and it has been demonstrated that they could be realized as quasiparticles

in highly entangled many-body systems. Formally, the properties of anyons are described by

two-dimensional topological quantum field theories [3] that dictate their trivial dynamical, but

complex statistical behavior. In general, it is expected that such topological quantum field

theories come into effect at low energies of highly correlated many-body systems, such as

quantum liquids [4]. However, the observation of anyonic features requires high population

in the system’s ground state, high purity samples and, above all, the ability to separate the

anyonic effects from the dynamical background of the strongly interacting system. In spite

of significant experimental progress [5], the fractional statistics of anyons has not yet been

conclusively confirmed due to the complexity of these systems [6].

To demonstrate characteristic anyonic features, we employ here a different strategy. We

simulate the toric code model [7] in a quantum system without the continuous presence of

interactions [8]. The toric code is a two-dimensional topological lattice model, where anyons

are spatially well localized. Recently, several proposals showed how the toric code could

possibly be implemented on extended lattices of qubits enabling one to employ anyonic states

for, e.g. protected quantum computation [9]. While such a quantum computational scheme

requires large systems, here we show that a number of anyonic properties can be demonstrated

by considering four-partite entangled Greenberger–Horne–Zeilinger (GHZ) states [10]. These

states are dynamically encoded in the polarization of photons, rather than produced via

cooling [8]. This provides the additional advantage of being subject to negligible decoherence

due to the weak coupling of photons to the environment. Polarized photons as qubits are a well

understood and controllable quantum optical system that has already allowed observation of the

four-qubit GHZ state [11]. Here we employ this system to simulate anyonic behavior.

2. Toric code model

2.1. Hamiltonian and ground state

The anyonic model under consideration is based on the toric code proposed by Kitaev [7]

and is described in detail in tutorial introductions [12]. This system can be defined on a

two-dimensional square lattice with interacting qubits placed at its vertices. To facilitate the

description of the interactions, let us split the lattice into two alternating types of plaquettes

labeled by p and s, as in figure 1. The defining Hamiltonian is

H= −

∑

p

σ
z
p,1σ

z
p,2σ

z
p,3σ

z
p,4 −

∑

s

σ
x
s,1σ

x
s,2σ

x
s,3σ

x
s,4, (1)

where the summations run over the corresponding plaquettes and the indices 1, . . . , 4 of the

Pauli operators, σ
z and σ

x , enumerate the vertices of each plaquette in a counter-clockwise

fashion. Each of the s- or p-plaquette interaction terms commute with the Hamiltonian as

well as with each other. Thus, the model is exactly solvable and its ground state is explicitly

New Journal of Physics 11 (2009) 083010 (http://www.njp.org/)
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Figure 1. The toric code lattice with qubits at the vertices of a square lattice

with two types of plaquettes. Light blue and red plaquettes correspond to the

s- and p-plaquettes, respectively. Qubit rotations enable manipulations of anyons

on neighboring plaquettes. (a) Application of σ z on a single qubit yields two

e-type anyons placed at the neighboring s-plaquettes, where the string passes

through the rotated qubits. Similarly, m anyons are created on p-plaquettes by

σ x rotations. (b) Two σ x rotations create two pairs of m-type anyons. If one

anyon from each pair is positioned on the same plaquette then they annihilate,

thereby connecting their strings. (c) When a part of a string forms a loop around

unpopulated plaquettes, the loop cancels (dashed). (d) Here we restrict to one

s-plaquette and four neighboring p-plaquettes. Anyon e is produced by a σ z

on qubit 1 (blue), |e〉 = σ z
1 |ξ〉. This system can support the circulation of an m

around an e anyon.

given by [13]

|ξ〉 =
∏

s

1
√

2
(1 + σ x

s,1σ
x
s,2σ

x
s,3σ

x
s,4)|00. . .0〉, (2)

with σ z|0〉 = |0〉. The state |ξ〉 represents the anyonic vacuum state and it is unique for systems

with open boundary conditions.

2.2. Anyonic quasiparticles

Starting from this ground state one can excite pairs of anyons connected by a string on the lattice

using single qubit operations. More specifically, by applying σ z on some qubit of the lattice a

pair of so-called e-type anyons is created on the two neighboring s-plaquettes (figure 1(a))

and the system is described by the state |e〉 = σ z|ξ〉. An m pair of anyons lives on the

p-plaquettes and is obtained by a σ x operation. The combination of both creates the composite

quasiparticle ε with |ε〉 = σ zσ x |ξ〉 = iσ y|ξ〉. Two equal Pauli rotations applied on qubits of the

same plaquette create two anyons on this plaquette. The fusion rules (1 × 1 = e × e = m × m =
ε × ε = 1, e × m = ε, 1 × e = e, etc, where 1 is the vacuum state [12]) describe the outcome

New Journal of Physics 11 (2009) 083010 (http://www.njp.org/)
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4

from combining two anyons. In the above example, if two anyons are created on the same

plaquette then they annihilate. This operation also glues two single strings of the same type

together to form a new string, again with a pair of anyons at its ends (figure 1(b)). If the string

forms a loop, the anyons at its end annihilate each other, thus removing the anyonic excitation.

In the case that only a part of the string forms a loop, the string gets truncated (figure 1(c)).

For non-compact finite systems, such as the one we consider here, a string may end up at the

boundary describing a single anyon at its free endpoint.

2.3. Anyonic statistics

Anyonic statistics is revealed as a nontrivial phase factor acquired by the wavefunction of

the lattice system after braiding anyons, i.e. after moving an m anyon around an e anyon

(figure 1(d)) or vice versa. Consider the initial state |9ini〉 = σ z
1 |ξ〉 = |e〉. If an anyon of type m

is assumed to be at a neighboring p-plaquette it can be moved around e along the path generated

by successive applications of σ x rotations on the four qubits of the s-plaquette. The final

state is

|9fin〉 = σ x
1 σ x

2 σ x
3 σ x

4 |9ini〉 = −σ z
1 (σ x

1 σ x
2 σ x

3 σ x
4 |ξ〉) = −|9ini〉. (3)

Such a minimal loop, which vanishes the moment it is closed, is analogous to the application

of the respective interaction term Cs = σ x
s,1σ

x
s,2σ

x
s,3σ

x
s,4 (or C p = σ z

p,1σ
z
p,2σ

z
p,3σ

z
p,4) of the

Hamiltonian. This operator has eigenvalue +1 for all plaquettes of the ground state |ξ〉, whereas

it signals an excitation, e.g. |9ini〉, with eigenvalue −1, when applied to the plaquette where an

anyon resides. However, equation (3) is much more general, as the actual path of the loop is

irrelevant. It is the topological phase factor of −1, which reveals the presence of the enclosed

anyon. Alternatively, we can interpret (3) as a description of twisting ε, the combination of

an e and an m-type anyon, by 2π . The phase factor of −1 thereby reveals its 4π -symmetry,

characteristic for half spin, fermionic particles [14]. Note that the e(m) anyons exhibit bosonic

statistics with respect to themselves [7].

3. Experimental implementation

3.1. Minimal instance of the toric code model

As this two-dimensional system is well suited for demonstrating characteristic anyonic features,

the question arises how big the lattice has to be. It turns out that four qubits of a single

s-plaquette represent the minimal unit of the toric code model [15]. In this case, the four

neighboring p-plaquettes are represented only by their corresponding links. Hence, while the

presence of an e anyon is detected by the plaquette operator Cs, the presence of m anyons is

detected by the eigenvalue of the four C ′
p = σ z

p,iσ
z
p, j operators that correspond to the adjacent

links of the p-plaquettes. Consequently, the product determining the ground state (equation

(2)) reduces to only one factor for the single s-plaquette resulting in a four-qubit GHZ state,

|ξ〉 = (|0000〉 + |1111〉)/
√

2. This is an eigenstate of the relevant Cs and C ′
p operators with

eigenvalue +1. An eigenvalue −1 for any of these operators denotes the presence of the

corresponding anyon.
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Figure 2. (a) The experimental set-up for the observation of the anyonic vacuum

state of the toric code model, the demonstration of anyonic features and the

verification of anyonic statistics. The photons are created in a 2 mm thick β

barium borate (BBO) crystal, which is pumped by femtosecond ultraviolet (UV)

pulses. Walk-off effects are compensated for by a HWP and a 1 mm thick BBO

crystal. For the observation of the anyonic states, we are interested in the second-

order emission of the SPDC [16], initially emitted in the two spatial modes a and

b: ∝ |2H〉a|2V〉b + |2V〉a|2H〉b + |HV〉a|HV〉b. The photons are further processed

by a HWP in mode b, which transforms |H〉 into |+〉 and |V〉 into |−〉 (with

|±〉 = (|H〉 ± |V〉)/
√

2 ). The state |ξ〉 is observed behind the PBS and the BSs

under the condition of detecting a photon in each of the four modes 1, 2, 3 and 4

(average count rate: 2.8 min−1). The local operations (LO) for the demonstration

of anyonic features are implemented by operation specific HWPs and quarter-

wave plates (QWPs). The polarization state of each photon is analyzed (PA) with

a HWP and a QWP in front of a PBS. (b) Measurement outcomes of |ξ〉 on the

basis σ z
i for each qubit.

3.2. State implementation

In our simulation, the qubits supporting the anyonic states are encoded in the polarization of

single photons propagating in well-defined spatial modes. This means that for the anyonic

vacuum and for all obtained final states our system is of the form |GHZφ〉 = (|H1H2H3H4〉 +

eiφ|V1V2V3V4〉)/
√

2. The indices (omitted in the following) label the spatial mode of each

photon, i.e. they represent the position of the qubit as in figure 1(d), and H (V) denote

linear horizontal (vertical) polarization, representing a logical 0 (1). To obtain such four-

photon entangled states, the second-order emission of a non-collinear type-II spontaneous

parametric down conversion (SPDC) process [17], yielding four photons in two spatial modes, is

overlapped on a polarizing beam splitter (PBS) and afterwards symmetrically split up into four

spatial modes by two polarization-independent beam splitters (BS), see figure 2(a) [18]. Prior

New Journal of Physics 11 (2009) 083010 (http://www.njp.org/)
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6

to the second-order interference at the PBS the polarization of two of the photons is rotated by

a half-wave plate (HWP). Under the condition of detecting one photon in each spatial mode we

observe the desired states.

As we are interested in the vacuum |ξ〉 = |GHZ0〉 and the anyonic state |e〉 = σ z
i |ξ〉 =

|GHZπ〉, the successful simulation and demonstration of anyonic features relies on a careful

distinction and characterization of these two orthogonal GHZ states. This comprises the

confirmation of genuine four-partite entanglement and a method to reveal the phase φ. For

this purpose, state analysis is performed by measuring the correlation, cz, in the σ z
i basis

for each qubit and the correlation function cxy(γ ) = σ1(γ ) ⊗ σ2(γ ) ⊗ σ3(γ ) ⊗ σ4(γ ) with

σi(γ ) = [(cosγ )σ
y

i + (sinγ )σ x
i ] [19]. This measurement is ideally suited to prove the coherent

superposition of the terms |HHHH〉 and |VVVV〉 and to determine their relative phase φ. It is

obtained from a measurement of all qubits along the same direction in the x–y-plane of the Bloch

sphere. For a GHZ φ state, its expectation value shows an oscillation, 〈cxy(γ )〉 = V cos (4γ + φ),

with a period of one-quarter of 2π . This is a unique signature of four-qubit GHZ entanglement.

The visibility of this oscillation V is 1 for pure GHZ states. For a general state it equals twice

the element ρHHHH,VVVV = Tr(|HHHH〉〈VVVV|ρ) of the corresponding density matrix ρ.

To analyze the performance of the set-up, first, the observation of the state |ξ〉 = |GHZ0〉 is

confirmed. Figure 2(b) shows all possible measurement outcomes on the σ z
1 σ z

2 σ z
3 σ z

4 basis, where

the expected populations of |HHHH〉 and |VVVV〉 are clearly predominant with probabilities

of PHHHH = (41.2 ± 3.4)% and PVVVV = (39.6 ± 2.7)%, respectively, close to the expected

PHHHH = PVVVV = 50%. We find a correlation of 〈cz〉 = 0.908 ± 0.047. The population of other

terms is caused by noise arising from higher-order emissions of the down conversion and a

remaining degree of distinguishability of photons at the PBS. The dependence of 〈cxy(γ )〉 for

the state |ξ〉 is displayed in figure 3(a) from which we infer a visibility V of (68.3 ± 1.1)%.

This value is obtained from a weighted least squares fit to a Fourier decomposition of 〈cxy(γ )〉

considering only even components up to order 4: 〈cxy(γ )〉 =
∑2

k=0 ak cos(2k · γ ) + bk sin

(2k · γ ). Only these components can originate from physical states. From the phase of the

correlation function we deduce the phase of the GHZ0 state to be φ = (0.02 ± 0.01)π , close

to the expected value of 0.

The visibility V together with the populations PHHHH and PVVVV allow further to determine

the fidelity F = 〈GHZ|ρ|GHZ〉 = (V + PHHHH + PVVVV)/2. We obtain a value of (74.5 ± 2.2)%

(for measurement data see also table 1). The fidelity is not only important for an estimation

of state quality but also can be applied to verify genuine four-partite entanglement, an essential

element in the presented toric code model. With a proper entanglement witness a fidelity greater

than 50% is sufficient [20]. The experimentally observed fidelity is clearly above this bound, i.e.

it is of high enough quality to allow for the demonstration of the anyonic properties.

3.3. Anyonic manipulations and detection of anyonic statistics

We start by analyzing the state change under the creation (and annihilation) of anyons, thereby

demonstrating the characteristic fusion rules. Applying σ z
1 in mode 1 creates an e-type anyon

on the s-plaquette resulting in a GHZπ state, figure 3(b). This is clearly proven by the phase

φ = 1.02π of the correlation function. A further application of σ z
j on any other mode, say j = 3,

changes the state of the plaquette according to e × e = 1, and the anyon is moved away from

the s-plaquette under investigation. These two σ z rotations represent a string connecting two

anyons, which traverses the particular plaquette without influencing its state, as confirmed by the

New Journal of Physics 11 (2009) 083010 (http://www.njp.org/)
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Figure 3. Pictorial representations of various evolutions of anyons, together with

the correlation function 〈cxy〉. The phase of 〈cxy〉 directly gives the phase φ

of |GHZφ〉. (a) The vacuum state, |ξ〉. (b) Generating an e-type anyonic state

|e〉 = |GHZπ〉 by a σ z operator. (c) A second σ z removes the anyon from the

plaquette and elongates the string resulting in the GHZ0 state. (d) A third σ z

creates another pair of anyons, connected with the string already traversing

the plaquette. (e) Moving an m anyon around an empty s-plaquette or (f) first

creating an e anyon on the plaquette (i), performing the loop (ii), and removing

the e anyon from the plaquette again (iii) give identical final states up to a global

phase factor. (g) The global phase, π , is revealed by superimposing the two above

evolutions, thereby clearly proving anyonic statistics. (h) An alternative path for

the anyon e that gives the same fractional statistical phase, π .

observation of the initial GHZ0 state (φ = 0.01π , figure 3(c)). A further σ z
j rotation on one of the

remaining vertices, e.g. j = 4, creates an e occupation on the plaquette. Thus, the observation

of GHZπ (φ = 1.03π , figure 3(d)) demonstrates the nontrivial version of the 1 × e = e fusion

rule. Alternatively, this can be seen as demonstrating the invariance of an anyonic state, when a

string traverses the plaquette.

To detect the major feature of anyons, their nontrivial statistical phase acquired when

moving one anyon around the other, we employed an interference measurement, which makes

their overall phase factor visible (see (3) and figure 1(d)). Let us study the two evolutions

separately. The first is to create a pair of two m anyons, move one of them around the empty

s-plaquette and then annihilate them. This evolution is equivalent to having a string ending up at

a p-plaquette with an m anyon at its endpoint and circulating that anyon around the s-plaquette.

New Journal of Physics 11 (2009) 083010 (http://www.njp.org/)
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Table 1. Experimental measurement data of the anyonic states.

Phase φ Fidelity F

Vacuum state

|ξ〉 (0.02 ± 0.01) · π (74.5 ± 2.2)%

Creation of a single e-type anyon

σ z
1 |ξ〉 (1.02 ± 0.01) · π (74.9 ± 2.8)%

σ z
2 |ξ〉 (1.00 ± 0.01) · π (74.2 ± 2.7)%

σ z
3 |ξ〉 (1.01 ± 0.01) · π (76.5 ± 3.2)%

σ z
4 |ξ〉 (0.97 ± 0.02) · π (76.2 ± 3.7)%

String passing through the s-plaquette

σ z
1 σ z

2 |ξ〉 (0.02 ± 0.01) · π (77.4 ± 2.8)%

σ z
1 σ z

3 |ξ〉 (0.01 ± 0.01) · π (77.3 ± 2.5)%

σ z
1 σ z

4 |ξ〉 (−0.01 ± 0.01) · π (76.3 ± 2.6)%

String passing through the s-plaquette populated with an anyon

σ z
2 σ z

4 |e〉 (1.02 ± 0.01) · π (75.2 ± 2.4)%

σ z
3 σ z

4 |e〉 (1.03 ± 0.01) · π (76.7 ± 2.7)%

σ z
1 σ z

4 |e〉 (1.02 ± 0.02) · π (74.5 ± 3.1)%

Loop around an unpopulated s-plaquette

Cs |ξ〉 (−0.02 ± 0.02) · π (76.6 ± 3.4)%

Loop around a populated s-plaquette followed by annihilation of the anyon

(σ z
4 )Cs(σ

z
4 )|ξ〉 (−0.01 ± 0.01) · π (76.8 ± 2.8)%

Interference procedure to reveal anyonic statistics

(σ z
1 )1/2Cs(σ

z
1 )−1/2|ξ〉 (1.03 ± 0.01) · π (76.1 ± 3.0)%

(σ z
2 )1/2Cs(σ

z
2 )−1/2|ξ〉 (0.99 ± 0.01) · π (73.5 ± 3.6)%

(σ z
3 )1/2Cs(σ

z
3 )−1/2|ξ〉 (1.01 ± 0.01) · π (75.2 ± 3.0)%

(σ z
4 )1/2Cs(σ

z
4 )−1/2|ξ〉 (1.00 ± 0.01) · π (75.8 ± 2.5)%

(σ z
1 )1/2Cs(σ

z
3 )−1/2|ξ〉 (1.00 ± 0.01) · π (78.7 ± 3.2)%

The obtained loop operator Cs , obviously, does not change the vacuum state and, thus, results

in GHZ0 (φ = −0.02π , figure 3(e)). Alternatively, we (i) create an e anyon on the plaquette,

(ii) encompass it with the loop of an m anyon and (iii) remove it again (figure 3(f)). The

whole evolution is, in analogy to (3), described by σ z
4 (σ x

1 σ x
2 σ x

3 σ x
4 )σ z

4 |ξ〉 = −|ξ〉 = −|GHZ0〉.
The correlation function determines faithfully the angle φ = −0.01π (figure 3(f)), but is

blind to the characteristic overall phase factor. This, finally, can be observed by (i) first

generating the superposition e−iπ/4(|ξ〉 + i|e〉)/
√

2 of having an anyon e on the plaquette or

not by the unitary operation (σ z
i )−1/2; (ii) moving the m anyon around this superposition gives

e−iπ/4(|ξ〉 − i|e〉)/
√

2, the superposition of the above evolutions and (iii) the application of the

inverse rotation (σ z
i )1/2 makes the phase difference visible resulting in −i|e〉 = −i|GHZπ〉. The

observed value of φ = 1.00π (figure 3(g)) clearly proves the phase acquired by the braiding

and therefore the anyonic statistics4. To reinforce the observation of the obtained fractional

phase, we perform an additional interference experiment with an alternative path. Now, the

4 Note that during the braiding evolution no dynamical phases are generated as there is no Hamiltonian present

and the Pauli rotations are performed with zero order wave plates, thus, adding insignificant erroneous phases.
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superposition of an e anyonic state and the ground state is generated in the s-plaquette by

rotating one qubit and it is removed by rotating another qubit, as seen in figure 3(h). If we move

an m anyon around the plaquette in between the two steps, we observe again the characteristic

phase shift of −1.

4. Conclusions

Our results show that we can create, manipulate and detect the toric code states by encoding

them in a simple physical system. In our quantum simulation, we demonstrated several of

the fusion rules and we provided supporting evidence for the fractional statistics of the toric

code anyons. Multiqubit toric code states are known to be useful for novel types of quantum

error correction [21]. Extending our experimental results presented here to larger, scalable

quantum systems [22, 23] will enable the application of the toric code for quantum information

processing in the future [24].

Note added. With the completion of this work we became aware of a similar experimental

implementation, closely resembling [8], that was simultaneously performed [25].
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Chapter 5

Symmetric entangled Dicke states of
up to six photons

Dicke states [77, 83] are an important group of states in quantum information. They have
recently appeared in the context of SLOCC classifications [107, 109] in the form of the W

( |D(1)
N 〉 ) states, whose entanglement was identified as highly persistent against photon loss

[77, 107, 256]: a property that applies to other Dicke states as well. Such other important

members are symmetric Dicke states of N qubits with N/2 excitations ( |D(N/2)
N 〉 ) which

have recently been the focus of experimental implementations [38, 39, 65] (see publ. P5.1).
In particular, these states allow one to obtain SLOCC inequivalent states of a lower qubit
number via projective measurements [55] (see publ. P5.2). This method makes them a
resource for quantum information applications. In the following the implementation of a
six-photon symmetric Dicke state with three excitations ( |D(3)

6 〉 ) and Dicke states derived
thereof are described.

To obtain a sufficiently high rate of multi-photon events a new SPDC photon source
has been developed based on a femtosecond ultraviolet (UV) enhancement cavity [56]
(see publ. P5.4). The cavity enhances the femtosecond UV pump pulses necessary for
the SPDC process to achieve a sufficiently high six-photon count rate and is described in
section 5.1. The photons generated in a type II collinear SPDC process are distributed
by polarization-independent beam splitters (BSs) into six spatial modes. A simultaneous
six-fold detection event in these modes signals in principle the observation of the state
|D(3)

6 〉 . In section 5.2 the detection of entanglement and properties of the state |D(3)
6 〉

are described focusing on qubit projections and qubit loss. This description reflects the
results obtained in publ. P5.1, P5.2 and P5.3. General results for arbitrary Dicke states
|D(m)

N 〉 are also given. It is shown that these properties are connected with applications
of Dicke states in quantum information. Phase estimation in particular is described in
section 5.3 as it plays an important role for precision measurements [19, 301]. Here, phase

estimation relies on characteristic correlation functions of the state |D(3)
6 〉 . This analysis

goes beyond the mentioned publications.
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5.1 High power SPDC photon source based on a fem-

tosecond UV cavity

In the following the photon source and linear optical setup required for the observation of
the six-photon entangled Dicke state |D(3)

6 〉 are described. The experimental setup follows
one of the general schemes of SPDC experiments, namely the one of symmetric photon
distribution [see section 3.1 and fig. 3.1(c)]. In addition, a UV enhancement cavity has
been implemented to increase the power of the femtosecond UV pump pulses for the SPDC
process. This was necessary to achieve reasonable six-photon count rates as the following
estimation will show.

The count rate cψ of a desired N -partite photonic state |ψ 〉 is proportional to the
photon generation rate for N photons (for low pump powers given as τNfr with fr =
80.8 · 106 s−1 the laser repetition rate, see eq. 2.58, eq. 2.56 and appendix A), the overall
detection efficiency1 for N photons (ηN

det) and the probability of observing the state in the
linear optical setup (pψ):

cψ ∼ τNfrη
N
detpψ. (5.1)

The four-photon |D(2)
4 〉 experiment described in refs. [65, 104] has employed a typical

laser system (see section 2.3) without enhancing the UV pump power by using additional
means. Following values have been achieved: τ 2 = 0.034, ηdet = 0.1 and p

D
(2)
4

= 0.08,

yielding a four-photon count rate of c
D

(2)
4

≈ τ 4frη
4
detpD

(2)
4

= 0.75 s−1, which is in good

agreement with the measured rate of 1 s−1. To observe the six-photon Dicke state |D(3)
6 〉

with the same pump laser system a rate of c
D

(3)
6

= τ 6frη
6
detpD

(3)
6

= 0.00005 s−1 would be

expected (with p
D

(3)
6

= 0.0154, see below) corresponding to approximately 5 counts per

day, which is much too low a count rate for acquiring sufficient statistical data. Increasing
the pump power by a factor of 10 increases the six-photon rate by a factor of 103 = 1000
(as τN ∝ (P0,p)

N/2 with N = 6, see section 2.3 eq. 2.58), which would result in 3 counts
per minute yielding a sensible count rate for performing six-photon entanglement studies.
This has motivated the design of a new SPDC photon source.

Theoretical considerations A suitable pump source for multi-photon SPDC experi-
ments provides a high average pump power, which means in other words a high energy
per pulse at high repetition rates (compare eq. 5.1). For enhancing the UV pump power
different approaches are possible (for further approaches see [302]):

(i) an external UV enhancement cavity operating with the same repetition rate as the
laser source [74, 75, 303–305] (this has resulted in a maximal average UV power of
about 7 W [56] and is described in the following),

(ii) a frequency doubled, amplified Ti:Sa laser system working in the kHz regime [306]
(average UV power of about 0.1 W) or

1This includes the coupling efficiency ηc and the efficiency of the photon detectors ηd, thus ηdet = ηcηd.
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(iii) a frequency doubled, chirped-pulse Ti:Sa oscillator system with subsequent pulse
compression with repetition rates up to 10MHz [307] (average UV power of about
1 W).

Here, the implementation of an external cavity resonant for the UV around a BBO crystal is
described. This has the advantage of keeping the repetition rate of the original pulses of the
Ti:Sa laser compared to using, for example an amplified Ti:Sa laser system. Further, using
the cavity the highest average pump power for the stated approaches has been achieved.
An alternative approach to the aforementioned cases would be to increase the repetition
rate of the pump source, which will not be discussed here.

Enhancement cavities are commonly utilized in the continuous wave regime, where they
find many applications, for example to increase the conversion efficiency of second harmonic
generation in non-linear crystals. For the ultrashort pulsed regime (< 200 fs) enhancement
cavities have also been used for non-linear frequency conversion [303] and more recently
have been applied for generating higher harmonics in a gas jet [74, 75, 304]. However,
the implementation of an enhancement cavity for ultrashort pulses is more demanding.
This can be illustrated by considering the frequency domain picture of a coherent train of
ultrashort pulses (fig. 5.1), which is described by a frequency comb ωn = nωr +ωceo, where
ωr = 2πfr is the repetition angular frequency and ωceo is the carrier envelope offset angular
frequency. Both frequencies lie in the radio-frequency regime (∼ 100MHz), and thus for
visible light, the mode number n is of order 105...107.

The internal mode spectrum of the cavity has to match the external frequency comb
of the laser pulses, i.e., the pulses have to be in phase after each cavity round trip to add
up coherently. For continuous wave lasers this condition would be much simpler as only a
single frequency mode has to match. If the following conditions are fulfilled phase coherent
addition of pulses is guaranteed:

(i) the inverse cavity round trip time c/Lcav corresponds to the repetition frequency fr

of the laser pulses,

(ii) the offset frequency ωceo of the laser frequency comb is appropriately set to match
the resonance frequencies of the cavity,

(iii) the pulse shape inside the cavity is preserved, which means that dispersion2 inside
the cavity has to be minimized in order to obtain equidistant modes.

Conditions (i) and (ii) can be set during the experiment, for example, by changing the cavity
length and the amount of dispersion inside the Ti:Sa oscillator, respectively. Condition (iii)
can be realized by using, for example, chirped mirrors [309] to compensate for dispersion
effects caused by media inside the cavity and the cavity mirrors.

The overall power enhancement PE(ω) relating the intra-cavity power to the external
power is given by [310, 311]

PE(ω) =
|tIC(ω)|2

1 + |r(ω)|2 − 2|r(ω)| cos φ(ω)
, (5.2)

2Dispersion results in the acquaintance of a frequency dependent phase.
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Fourier transformation

Figure 5.1: Schematic representation of the time and frequency domain picture of ultrashort
pulses, associated by a Fourier transformation (adapted from [308]). A train of ultrashort
pulses corresponds to a frequency comb. The pulse separation Tr and the carrier envelope
offset phase ∆φceo in the time domain correspond in the frequency domain to the repetition
angular frequency ωr and the carrier envelope offset angular frequency ωceo. The angular
frequency ωc denotes the center of the frequency comb.

where tIC(ω) denotes the frequency-dependent transmittance (for the field) of the in-
put coupling mirror, r(ω) = rIC(ω)rcavity(ω) the overall reflectance of all optical com-
ponents inside the cavity [given as rIC(ω) of the input coupling mirror and rcavity(ω) in-
corporates all other cavity mirrors and loss through air or a non-linear crystal] and φ(ω)
the frequency dependent round-trip phase. Assuming a certain intrinsic intra-cavity loss
[1 − |rcavity(ω)|2] and neglecting absorption the so-called impedance matching condition
[TIC,max = |tIC(ω)|2 = 1 − |rcavity(ω)|2] has to be fulfilled in order to achieve the maximal
possible power enhancement PE,max(ω) = 1/TIC,max (for the cosine taking multiples of 2π)
[311].

In general, the phase φ(ωn) can be written for the nth component of the frequency
comb as a Taylor series around a fixed frequency ωc as

φ(ωn) = φ(ωc) + φ′(ωc)(ωn − ωc) + ∆φ(ωn), (5.3)

where ∆φ(ωn) includes group delay dispersion (GDD) and higher order dispersion effects.
The terms φ(ωc) and φ′(ωc)(ωn − ωc) can be set experimentally by the cavity length and
the offset frequency of the driving laser, and thus fulfill conditions (i) and (ii). Then,
∆φ(ωn) determines the maximal achievable enhancement corresponding to condition (iii).
Different contributions add to the phase φ(ωn), for example air, mirrors and a crystal inside
the cavity: φ(ωn) = kair(ωn)Lcav,air + φmirror(ωn) + kcrystal(ωn)lcrystal.
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Figure 5.2: Schematic experimental setup of the UV enhancement cavity and the obser-
vation of the symmetric, six-photon entangled Dicke state |D(3)

6 〉 . The cavity consists of
four mirrors: the input coupler (MIC), two curved mirrors [MC1,PZT1 mounted on a piezo-
electric transducer (PZT) and a dichroic mirror MC2] and a mirror mounted on another
PZT (MPZT2). The reflected signal is spectrally dispersed (not shown) and directed to a
polarization lock. The feedback signal is fed to PZT1 and PZT2. The optical character-
ization of the cavity consists of a spectrometer, a CCD camera and a photo diode. The
generated SPDC photons are behind walk-off compensation (HWP and additional BBO
crystal) coupled into a single mode fiber (SM) and guided to the linear optical setup for

the observation of the state |D(3)
6 〉 . The setup consists of five BSs (BS1−5) distributing

the photons equally into six spatial modes a, b, c, d, e, and f . Finally, polarization analysis
(PA) is performed in each of the modes [bandpass filter (RG), interference filter of 3 nm
FWHM (IF), YVO4-crystals for compensation of phase shifts introduced by BSs].

Experimental implementation The cavity has been implemented as a four mirror
bow-tie ring cavity with a total length of Lcav = c/fr ≈ 3.7m (fig. 5.2). Its input coupler has
a transmission3 of |tIC(ω)|2 = 0.025, which closely corresponds to the impedance-matching
condition. The remaining three mirrors are highly reflective3 at 390 nm (> 0.9998), of
which two mirrors are curved with a radius of curvature of −800mm (concave). The
curved mirrors have a separation of 0.98m fulfilling the condition of a stable cavity [312]
and create at their mid point a 100 µm waist, where the BBO crystal is placed. One curved
mirror is dichroic: it transmits 780 nm light in order to be transparent for the generated
SPDC photons.

Here, the GDD of air4 is ∼ 190 fs2, of a 1 mm thick BBO crystal5 ∼ 190 fs2 and of all
mirrors3 in total < 20 fs2. The expected loss for air6 is 0.001, for the BBO crystal7 0.025 and
for the three mirrors3 0.0006, yielding a total loss of 0.0266, and thus a maximal power
enhancement of PE,max = 1/0.0266 = 38 neglecting dispersion. Considering dispersion8

3Specification of mirror manufacturer (Layertec).
4Calculated from the Sellmeier equation taken from [313, 314].
5Calculated from the Sellmeier equation taken from [315].
6Estimated from [316].
7Experimentally measured, including losses due to reflection.
8The mirror dispersion has been neglected. Including mirror dispersion changes the calculated power
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Figure 5.3: (a) Shown is the calculated power enhancement for the experimental parameters
given in the text as a function of the wavelength. (b) The intra-cavity UV spectrum
(dashed, blue) is slightly smaller than the external UV spectrum (solid, black) due to
intra-cavity dispersion.

according to eq. 5.2 yields the spectrally resolved power enhancement shown in fig. 5.3(a)
along with the external UV spectrum Pext(λ) and the calculated intra-cavity spectrum
Pcav(λ) = Pext(λ) ·PE(λ) [fig. 5.3(b)]. Then, a wavelength-averaged power enhancement of
33 is obtained.

Experimentally, a power enhancement of up to 13 has been reached giving a maximal
intra-cavity power of 7 W [56]. The reduced value compared to the expected power en-
hancement can be attributed to spatial and spectral mode filtering of the cavity. Only a
part of the original UV beam matches the cavity mode and can contribute to the intra-
cavity field. For continuous operation of the cavity its length is actively stabilized by a
polarization lock [317, 318]. The drift of ωceo of the Ti:Sa laser occurs on long time scales
(hours). For achieving maximal intra-cavity power over this time scale, the prism insertion
inside the Ti:Sa laser (changing ωceo) has been adjusted by a servo motor to equalize it
with the offset frequency of the cavity.

The BBO crystal is placed at the intra-cavity focus and arranged in collinear type II
configuration. The generated SPDC photons are emitted collinearly with the UV pump
beam and coupled out of the cavity by the dichroic mirror into a single mode fiber. To
observe the Dicke state |D(3)

6 〉 the photons are symmetrically distributed into six spatial
modes (fig. 5.2). Under the condition of detecting a single photon of the third order

SPDC emission in each spatial mode the state |D(3)
6 〉 is observed. This occurs with a

probability 0.0126 (slightly lower than the expected value of p
D

(3)
6

= 5/324 ≈ 0.0154 due

to asymmetries in the BS splitting ratios). Further, by conditioning the detection on

two or four photons the states |D(1)
2 〉 or |D(2)

4 〉 can also be observed, respectively. For
the following measurements a UV pump power of at most 5.3 W has been used in order
to reduce the contribution of higher order SPDC noise (see appendix C). With this UV
intra-cavity pump power we achieved a six-photon count rate of about 3.6min−1.

enhancement by less than 1%.
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5.2 Entanglement detection, properties, and applica-

tions

In section 3.2 various methods to exclude full-separability and to detect genuine four-qubit
entanglement for states of the family |Ψ4(α) 〉 (eq. 3.3) have been examined. Here the

focus is on the detection of genuine N -qubit entanglement of the state |D(3)
6 〉 and states

derived thereof (see publ. P5.1 and P5.3). Further, properties of arbitrary Dicke states

|D(m)
N 〉 are elucidated by considering the projection of photons or the loss of photons (see

publ. P5.1 and P5.2). In particular, these properties are analyzed for the state |D(3)
6 〉

and are associated with possible applications, whereby telecloning and open destination
teleportation will be described. The application of the state |D(3)

6 〉 for phase estimation
based on correlation functions is discussed in section 5.3.

Entanglement detection To detect genuine N -qubit entanglement of the state |D(3)
6 〉

and the states derived thereof the methods of entanglement witnesses and Bell inequalities
are used (for the implemented measurement settings see appendix B). Note, the recently
developed density matrix element criterion [155] can also be constructed to detect six-qubit

entanglement for |D(3)
6 〉 [319], but will not be applied here.

Entanglement witnesses In section 3.2 the projector-based witness has been applied
(for its definition see section 2.2) to detect entanglement. For the Dicke states

|D(N/2)
N 〉 and |D(1)

N 〉 general expressions for the projector-based witnesses have been
found [41, 121, 135]:

Ŵ =
N

2(N − 1)
11⊗N − |D(N/2)

N 〉 〈D(N/2)
N | , and (5.4)

Ŵ =
N − 1

N
11⊗N − |D(1)

N 〉 〈D(1)
N | , (5.5)

respectively. Hence, as the condition F
D

(N/2)
N

(ρ) > N/(2(N −1)) (see section 3.2) has

to hold in order to prove genuine N -qubit entanglement for |D(N/2)
N 〉 , for the case

N = 6 the fidelity of the experimental state has to be larger than 0.6. Experimentally
a value of 0.654± 0.024 has been achieved, thus proving entanglement for the exper-
imental realization of |D(3)

6 〉 (tab. 5.1). However, the determination of the fidelity
would require 183 measurement settings. By exploiting the permutation symmetry
of |D(3)

6 〉 21 measurement settings are already sufficient, for details see refs. [38, 81]
(publ. P5.1 and publ. P5.3).

From the projector-based witnesses Ŵ one can derive other witnesses Ŵ ′ that require
less measurement setting [81] (publ. P5.3). The new witnesses Ŵ ′ have to fulfill the
condition Ŵ ′−βŴ ≥ 0 meaning that the expectation value for all bi-separable states
remains positive. A useful ansatz for Dicke states is to design witnesses based on the
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state |Ψ 〉 fidelity FΨ(ρ) minimal FΨ(ρ) to prove
N -qubit entanglement

|D(3)
6 〉 0.654± 0.024 0.6 [38]

|D(1)
4 〉 0.619± 0.043 0.75 [41]

|D(2)
4 〉 0.682± 0.022 0.66 [65, 121]

( |D(1)
4 〉 + |D(3)

4 〉 )/√2 0.528± 0.042 0.5 [138]

Table 5.1: Fidelity of the state |D(3)
6 〉 and the states derived thereof. The minimal fidelity

to prove genuine N -qubit entanglement is also stated.

spin operators ĴN,l, of which Dicke states are eigenvectors:

Ŵ ′ = c011
⊗N +

∑

l=x,y,z

N∑
n=1

cln(ĴN,l)
n. (5.6)

The definition of the spin operators ĴN,l given in eq. 2.17 is used. The parameters c0

and cln can be found by numerical optimization with respect to the aforementioned
condition and, for example, maximal robustness against a particular form of noise
on top of the expected state |D(m)

N 〉 . The advantage of this type of witness is that
it requires maximally only three measurement settings, namely all qubits measured
along σ̂x, σ̂y and σ̂z and it can be used to estimate the fidelity [81] (publ. P5.3). For

the state |D(3)
6 〉 particular witnesses are given in refs. [38, 81] (publ. P5.1 and P5.3),

which have also been successfully used to detect entanglement of the experimentally
observed states.

The simplest form of a witness operator for the states |D(N/2)
N 〉 (N even) and for

|D((N±1)/2)
N 〉 (N odd) is

Ŵ ′′ = αbi−sep,N11⊗N − ÔN with ÔN = (ĴN,x)
2 + (ĴN,y)

2, (5.7)

where αbi−sep,N is the maximal value for N -qubit bi-separable states (see tab. 5.2).
This witness requires only two measurement settings and has been applied in the
experiments of refs. [38, 65].

Bell inequalities For the states |D(N/2)
N 〉 characteristic Bell inequalities (see section 3.2)

have been found for the cases N = 4 and N = 6 [172, 255, 320]. They have the form

B̂
D

(N/2)
N

= b
D

(N/2)
N

(σ̂x ⊗ M̂N−1,xz + σ̂y ⊗ M̂N−1,yz), (5.8)

with M̂N−1,ij being (N − 1)-qubit Mermin operators [10]. For N = 6 one has

b
D

(N/2)
N

=
4

5
,



5.2 Entanglement detection, properties, and applications 93

state |Ψ 〉 αρ = Tr[ÔNρ] minimal αbi−sep,N to prove
N -qubit entanglement

|D(3)
6 〉 11.440± 0.148 11.0179 [38, 81]

|D(3)
5 〉 8.213± 0.143 7.87235 [38, 81]

( |D(2)
5 〉 − |D(3)

5 〉 )/√2 8.221± 0.188 ”
ρ5 8.219± 0.073 ”

|D(2)
4 〉 5.696± 0.199 5.232 [65, 121]

ρ4 5.423± 0.043 ”

Table 5.2: Experimentally determined values for the operator ÔN . A value above αbi−sep,N

is sufficient to prove genuine N -qubit entanglement for the state |D(3)
6 〉 and states derived

thereof, see eq. 5.7. Note, for the state |D(1)
4 〉 a witness according to eq. 5.6 has been

used: Ŵ ′
D

(1)
4

= 5.5934 · 11⊗4 − Ô4 + 1.47(Ĵ2
4,z − 2Ĵ4,z). The experimentally obtained value

was 〈Ŵ ′
D

(1)
4

〉 = −0.624± 0.170. For details see refs. [38, 81, 121] (publ. P5.1 and P5.3).

M̂5,ij =
1

16

(
−

∑

l

Pl(σj ⊗ σj ⊗ σi ⊗ σi ⊗ σi)

+
∑

l

Pl(σj ⊗ σj ⊗ σj ⊗ σj ⊗ σi) + σ⊗5
i

)
, (5.9)

and the maximal value 〈B̂
D

(3)
6
〉 = 1 is obtained for |D(3)

6 〉 . In contrast, the maximal

value for any LHV model is 0.4. For any SLOCC equivalent state to a six-qubit GHZ
state the maximal value would be 0.85. Experimentally, a value of 0.43 ± 0.02 has
been determined, which is sufficient to exclude an LHV model, but insufficient to
exclude GHZ-type entanglement of the experimentally observed state.

Projective measurements and loss In section 3.3 entangled states have been charac-
terized with respect to projective measurements and qubit loss. Here the same lines are
followed as these properties are connected with particular applications of Dicke states.

Projective measurements In order to analyze the states obtained from projective mea-
surements a Dicke state |D(m)

N 〉 is rewritten in the following way [77, 321]

|D(m)
N 〉 = (Cm

N )−1/2
[
(Cm

N−1)
1/2 |H 〉 ⊗ |D(m)

N−1 〉 + (Cm−1
N−1)

1/2 |V 〉 ⊗ |D(m−1)
N−1 〉

]

(5.10)

with the binomial coefficient Cm
N =

(
N
m

)
(for m = 0 and N = m the coefficients

are set to 0). In particular for |D(N/2)
N 〉 (N even) one obtains

|D(N/2)
N 〉 = ( |H 〉 ⊗ |D(N/2)

N−1 〉 + |V 〉 ⊗ |D(N/2−1)
N−1 〉 )/

√
2. (5.11)
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Hence, by projective measurements one can obtain superpositions of Dicke states
[55] (for details of the following discussion see section IIb in publ. P5.2). Focusing

on the state |D(3)
6 〉 = ( |H 〉 ⊗ |D(3)

5 〉 + |V 〉 ⊗ |D(2)
5 〉 )/√2 and a single projec-

tive measurement the SLOCC inequivalent states |D(3)
5 〉 (projection onto |H 〉) and

( |D(2)
5 〉 − |D(3)

5 〉 )/√2 (projection onto |− 〉) can be obtained. By a subsequent
projective measurement, for example, the genuinely four-qubit SLOCC inequivalent
entangled states |D(1)

4 〉 (projection onto |V V 〉), |D(2)
4 〉 (projection onto |HV 〉)

and ( |D(1)
4 〉 + |D(3)

4 〉 )/√2 (projection onto |LR 〉) can be realized. Surprisingly, the
latter state, a superposition of two Dicke states, is LU equivalent to the four-qubit
|GHZ4 〉 state. The result of a further projective measurement is outlined in detail
in ref. [55] (see section IIb in publ. P5.2). Projective measurements have been per-
formed to obtain the aforementioned states with the aim to prove genuine N -qubit
entanglement and determine the achieved fidelity [38] (see tab. 5.1 and publ. P5.1).
Note that projector-based witnesses are for the current experimental parameters not
sufficient to prove N -qubit entanglement. For proving this, the witnesses in eq. 5.6
and eq. 5.7 can be applied (see tab. 5.2 and publ. P5.1).

It is likely that generally the states |D(N/2)
N 〉 for arbitrary even N are a rich resource

of SLOCC inequivalent states of a lower qubit number, as has been demonstrated for
N = 4 [65] and in this work for N = 6 [38, 55] (publ. P5.1 and P5.2). This opens

up the opportunity of obtaining a state |D(m)
N ′ 〉 required for a particular application

by projecting qubits of a suitable state |D(N/2)
N 〉 (with N ′ < N). This method is

appealing as it requires no gate operations.

Photon loss A loss of k qubits of the state |D(m)
N 〉 results in the mixed state [77]

ρN−k = (Cm
N )−1

k∑
j=0

Cj
kC

m−j
N−kρD

(m−j)
N−k

, (5.12)

with ρ
D

(m−j)
N−k

= |D(m−j)
N−k 〉 〈D(m−j)

N−k | . The coefficients have to be set to zero for the

cases N < k, m < j and N − k < m − j. In comparison to states obtained after
projection of qubits from |D(m)

N 〉 , a loss of qubits results in mixtures of Dicke states

with fixed coefficients. For example, losing k = N − 2 qubits of the state |D(N/2)
N 〉

(N even) results in the two-qubit mixed state

ρ2 =
N

2(N − 1)
ρ

D
(1)
2

+
N − 2

4(N − 1)
(ρ

D
(0)
2

+ ρ
D

(2)
2

). (5.13)

The coefficient of ρ
D

(1)
2

turns out to be equal to the maximal singlet fraction (see

section 2.2), which is closely related to a state’s application for quantum telecloning

as described below. Focusing on the state |D(3)
6 〉 one obtains after loss of photons

the states

ρ5 = (ρ
D

(2)
5

+ ρ
D

(3)
5

)/2,
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ρ4 = 3/5ρ
D

(2)
4

+ (ρ
D

(1)
4

+ ρ
D

(3)
4

)/5,

ρ3 = 9/20(ρ
D

(1)
3

+ ρ
D

(2)
3

) + (ρ
D

(0)
3

+ ρ
D

(3)
3

)/20,

ρ2 = 3/5ρ
D

(1)
2

+ (ρ
D

(0)
2

+ ρ
D

(2)
2

)/5. (5.14)

It is a remarkable property of |D(3)
6 〉 that all of these states are genuinely N -qubit

entangled as can be proven by the witnesses of eq. 5.7, which is also found for exper-
imentally observed states (tab. 5.2). Hence, loss of qubits from the states |D(N/2)

N 〉
results still in entangled states, a property that has also been found for the states
|D(1)

N 〉 [76, 77, 107, 256] reflecting their high entanglement persistency against qubit
loss. This is in sharp contrast to the GHZ states, which do not exhibit such en-
tanglement persistency and result in a separable state upon loss of only a single
qubit.

The communication protocol for telecloning [249] can be performed with |D(3)
6 〉 rely-

ing on the particular structure of the reduced two-qubit state of eq. 5.13. Telecloning,
whereby a single state is teleported to N receivers [fig. 5.4(a)], can be seen as the
generalization of teleportation (N = 1). N receivers and one sender share a genuinely
(N +1) multi-partite entangled state. Similar to teleportation, the sender performs a
Bell state measurement on one qubit of the shared resource state and the state to be
teleported. The result is communicated to all receivers. In contrast to teleportation,
the fidelity cannot be unity as the no-cloning theorem [322] forbids cloning with unit
fidelity for N > 1. The maximal achievable fidelity of N symmetric output states
with one input state is limited to ftele = (2N +1)/(3N) [323]. It can be reformulated
in terms of the maximal singlet fraction as ftele = (2MSF(ρ) + 1)/3 (see eq. 2.33)
[160]. Hence, a high value of MSF(ρ) results in a high value of the telecloning fidelity.

The states |D((N+1)/2)
N+1 〉 [with (N + 1) even] have a maximal singlet fraction of

MSF(D
((N+1)/2)
N+1 ) = (N + 1)/(2N) (see eq. 5.13 and [39]), resulting in the maxi-

mal possible cloning fidelity. The state |D(3)
6 〉 allows to perform 1 → 5 telecloning.

For the experimentally observed state a MSF(ρ) = 0.57 ± 0.01 averaged over all
possible loss channels has been determined, which is close to the expected 0.6. This
would yield a telecloning fidelity of ftele,expt = 0.71±0.01 (compared to the theoretical
value of 0.73) when using the experimental state as telecloning channel still yielding
a value above the classical threshold of 2/3 [17].

However, in a closer examination for the resource states |D((N+1)/2)
N+1 〉 telecloning

depends on the input state [65]. This is due to the fact that the two-qubit mixed
state of eq. 5.13 is composed of a Bell state and a non-white noise fraction. Only
the admixture of white noise would allow state-independent cloning. This can be
circumvented when restricting the set of possible input states to the x − y plane
of the Bloch sphere, namely to |ψ(φ) 〉in = ( |H 〉 + eiφ |V 〉)/√2 [fig. 5.4(b)]. This
type of cloning is called phase-covariant. Theoretically, the maximal phase-covariant
cloning fidelity is ftele,phase = [1 + (N + 1)/(2N)]/2 [324, 325], which is higher than
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Figure 5.4: (a) Schematic representation of telecloning using the state |D(3)
6 〉 as resource.

The sender (Alice) receives one photon of |D(3)
6 〉 and performs a Bell state measurement

with the initial state |ψ 〉in. She communicates the result to the five receivers (Bob, Charlie,
Dave, Ed, Fred), who perform a unitary transformation on their respective photons of

|D(3)
6 〉 to retrieve an optimal phase-covariantly or averaged cloned state. (b) For phase-

covariant telecloning the input state |ψ(φ) 〉in is restricted to the x− y plane of the Bloch
sphere.

ftele. The states |D(2)
4 〉 and |D(3)

6 〉 reach this maximal value.

A perfect teleportation channel (i.e. the Bell state |ψ+ 〉 = |D(1)
2 〉 ) for a single

receiver and the sender can be obtained if the remaining (N − 1) receivers agree

to project the state |D((N+1)/2)
N+1 〉 onto (N − 1)/2 times |H 〉 and (N − 1)/2 times

|V 〉. Then, the state |D(1)
2 〉 is obtained with a probability of MSF(D

((N+1)/2)
N+1 ) =

(N + 1)/(2N) and can be used as a resource for perfect teleportation. As any of the
receivers can be the chosen one, the application is called open destination teleporta-
tion [188]. The choice can even be made after the Bell state measurement for state
teleportation has been performed.

5.3 Phase estimation

Phase estimation is a topic of quantum metrology [19]. One major goal is to beat the
shot noise limit (SNL) limiting the precise determination of a phase in an interferometer to
1/
√

N with N as the utilized number of photons in the measurement [19]. An improvement
in phase precision would be of additional benefit for, e.g., the sensitivity of gravitational
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wave detectors [326]. To this end, optimized measurement strategies can be devised as well
as particular correlated states turn out to be more powerful than uncorrelated, classical
resources such as coherent light. Here, the applicability of the states |D(N)

2N 〉 (the notation

is now changed to |D(N)
2N 〉 instead of writing |D(N/2)

N 〉 with N even) for phase estimation
is discussed. To this end, correlation functions along great circles on the Bloch sphere are
characterized as these turn out to be connected with phase estimation. Finally, the phase
sensitivity is estimated for the experimentally observed state |D(3)

6 〉 . This goes beyond
the author’s publications of this chapter.

Correlation function Correlation functions along arbitrary directions on the Bloch
sphere reveal characteristic properties of the states |D(N)

2N 〉 . To this end, the 2N -qubit
correlation functions defined as

ĉij(γ)⊗2N = [(cos γ)σ̂i + (sin γ)σ̂j]
⊗2N , (5.15)

with i, j taking all distinct permutations of x, y, z are considered (see also eq. 4.11 of
section 4.3). They correspond to a simultaneous measurement of each qubit along the i− j

great circle of the Bloch sphere. One obtains for the states |D(N)
2N 〉 [85, 321]

〈ĉxz(γ)⊗2N〉
D

(N)
2N

= 〈ĉyz(γ)⊗2N〉
D

(N)
2N

=
N∑

k=0

(−1)k(Ck
N)2(cos γ)2N−2k(sin γ)2k, (5.16)

〈ĉxy(γ)⊗2N〉
D

(N)
2N

= 1. (5.17)

The former result is simply the Legendre polynomial PN(cos 2γ).
It turns out that the correlation functions along the x−z and y−z planes are useful for

phase estimation, which is discussed below. The constant value of unity obtained for the
plane x− y indicates the applicability of the states |D(N)

2N 〉 for secret-sharing [38, 39, 118].
Secret sharing is a task where a message is split to several subsystems (receivers) and all
subsystems have to cooperate to retrieve this common message, for details see ref. [118].

In general, the correlation function along any direction on the Bloch sphere is given as

〈(sin θ cos φ σ̂x + sin θ sin φ σ̂y + cos θ σ̂z)
⊗2N〉

D
(N)
2N

= −1NPN(cos 2θ), (5.18)

where θ ∈ [0, π] is the polar angle with the z axis and φ ∈ [0, 2π) is the azimuthal angle
in the x − y plane. Thus, the value of the general correlation function is independent of
φ. Note, here the usual spherical coordinates with angles θ, φ are used. Thus, a direct
comparison with the definition of the correlation function of eq. 5.16 is possible if the
replacement i ↔ j for θ ↔ γ is done. Now, the notation is again switched back to the
angle γ.

For N = 3 corresponding to the state |D(3)
6 〉 the general correlation function on the

Bloch sphere is displayed in fig. 5.5(a). One obtains from eq. 5.16 (see fig. 5.6)

〈ĉxz(γ)⊗6〉
D

(3)
6

= P3(cos 2γ) =
1

8
(3 cos 2γ + 5 cos 6γ), (5.19)
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Figure 5.5: Correlation function 〈(sin θ cos φ σ̂x + sin θ sin φ σ̂y + cos θ σ̂z)
⊗6〉 for the states

(a) |D(3)
6 〉 and (b) |GHZ6 〉 +. While for the state |D(3)

6 〉 the correlation function exhibits
the same dependence on θ for any great circle parallel to the σ̂z axis, this symmetry is not
found for the state |GHZ6 〉 +. However, the |GHZ6 〉 + state shows a cos 6θ dependence

with unit visibility along the y−z plane of the Bloch sphere, whereas |D(3)
6 〉 has a reduced

visibility of 5/8.

which is according to eq. 5.18 found for any longitude, i.e. for any great circle parallel to
the z axis. The term proportional to cos 6γ is known to be characteristic for the state
|GHZ6 〉 [299] (see fig. 5.6 and eq. 5.26 below). For |D(3)

6 〉 the oscillation with 6γ has a
reduced visibility of 5/8. In general, correlation functions along great circles parallel to

the z axis of |D(N)
2N 〉 possess this 2N -fold periodicity. This can be seen by examining the

states |D(N)
2N 〉 in, for example, the ±-basis [85]:

T̂ ⊗2N
xz |D(N)

2N 〉 =
N∑

k=0

(−1)N−k

√
Ck

2kC
N−k
2N−2k

(
1

2

)2N

|D(2k)
2N 〉 , (5.20)

with T̂xz = (σ̂x + σ̂z)/
√

2. The sum contains the superposition

( |D(0)
2N 〉 + |D(2N)

2N 〉 )/
√

2 ≡ |GHZ2N 〉 , (5.21)

i.e., the 2N -qubit GHZ state with a probability of CN
2N/22N . For example, for N = 3 it

occurs with a probability of 5/8 corresponding exactly to the prefactor of cos 6γ. Generally,
the GHZ fraction decreases with increasing N and yields the 2N -fold periodicity.

Experimentally, the correlation functions 〈ĉxz(γ)⊗6〉 and 〈ĉyz(γ)⊗6〉 have been measured
and are depicted in fig. 5.6(a) and (b) (for the implemented measurement settings see
appendix B). The expected oscillation is observed with a reduced visibility. This can
be attributed mainly to the influence of higher order SPDC emissions (as described in
appendix C.3). A fit considering this noise can account for the reduced visibility (see
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Figure 5.6: Experimentally determined correlation functions for (a) 〈ĉxz(γ)⊗6〉 and (b)
〈ĉyz(γ)⊗6〉 (eq. 5.15). For comparison, as red curve the expected correlation function for

the ideal state |D(3)
6 〉 and as black curve the function cos 6γ are shown. The colored curves

are functions fitted to the data points assuming a mixture of the ideal state with higher
order SPDC noise, for details see appendix C.3. Two sets of measurements have been
performed: (i) (black dots, blue curve), (ii) (black dots, green curve) are data points which
have been recorded with a UV pump power of 5.3 W as has been done for all data in this
chapter so far. The other data set (iii) (light blue dots, light blue curve), (iv) (light green
dots, light green curve) has been recorded with a decreased UV pump power of 2− 2.3 W.
It is clearly visible that the negative influence of higher order emissions is smaller for the
latter measurements.

fig. 5.6). Two sets of measurements have been performed. One data set has been recorded
with a pump power of 5.3 W, and another one with a pump power of 2−2.3 W. The increase
in visibility for the latter data set is clearly seen in fig. 5.6 and can be attributed to lower
noise contribution of higher order emissions.

Phase estimation Different proposals for phase estimation in a Mach-Zehnder interfer-
ometer have been put forward to beat the SNL and reach the ultimate Heisenberg limit of
1/N in precision spectroscopy: phase squeezed coherent states of light at both input ports
of a standard Mach-Zehnder interferometer [326, 327], Fock states with an equal number
of photons at both inputs (so-called twin-Fock state) [84, 85], correlated fermion beams at
both inputs [328], and a general treatment of fermions and bosons entering the interfer-
ometer [329, 330]. Other studies focused onto particular states useful for interferometry in
general: spin squeezed atomic states [331], so-called NooN states [237], and robust states
against noise [332, 333].

Generally, a phase γ is determined from the measurement of an observable Ô. Then,
the standard deviation ∆γ on γ can be calculated via error propagation [328]

∆γ =
∆O

|∂〈Ô〉
∂γ
|
, (5.22)

with the variance (∆O)2 = 〈Ô2〉 − 〈Ô〉2. One can define the improved sensitivity S com-



100 5. Symmetric entangled Dicke states of up to six photons

0.5

1

1.5

2

2.5

0 p/2
Angle g

p

Heisenberg limit

SNL

0Im
p
ro

v
e
d
 s

e
n
s
it
iv

it
y

(i)

(iii)

(ii)

(iv)

Figure 5.7: Improved phase sensitivity using the state |D(3)
6 〉 . The black line marks the

Heisenberg limit, the dashed gray line the SNL and the red curve is the expected improved
sensitivity S when using |D(3)

6 〉 , see eq. 5.28. The blue and green curves are sensitivity
curves from experimental, fitted data (compare fig. 5.6). The set of measurements (i) and
(ii) do not surpass the SNL limit. However, the light blue and green curves for the set of
measurements (iii) and (iv) surpass this limit. This has been achieved by decreasing noise
from higher order SPDC emissions.

pared to the shot noise limit SNL = 1/
√

N as [334]

S2 = (SNL/∆γ)2. (5.23)

Here, the observable Ô is given by the 2N -qubit correlation function ĉij(γ)⊗2N as defined
in eq. 5.15. One obtains for the variance with N = 1

(∆cij(γ))2 = 〈ĉij(γ)2〉 − 〈ĉij(γ)〉2 = 1− 〈ĉij(γ)〉2, (5.24)

as ĉij(γ)2 = [((cos γ)2+(sin γ)2)11+cos γ sin γ(iσ̂k−iσ̂k)] = 11. The same holds for arbitrary
N . Hence, the improved sensitivity for 2N particles is given as

S2 =
1

2N

1

1− 〈ĉij(γ)⊗2N〉2
∣∣∣∣
∂〈ĉij(γ)⊗2N〉

∂γ

∣∣∣∣
2

. (5.25)

It is known that the Heisenberg limit can be reached using GHZ states [237], which
with respect to interferometry applications are also often called NooN states. NooN states
are a superposition of N photons occupying one mode and another one, whereby the mode
could be given in the polarization or spatial degree of freedom [335]. For an illustration, the
phase shift between |± 〉 polarization is considered. The correlation function of a 2N -qubit
GHZ state

|GHZ2N 〉 ± = ( |+ 〉⊗2N ± |− 〉⊗2N)/
√

2 (5.26)

along the y − z plane is 〈ĉyz(γ)⊗2N〉GHZ±2N
= ∓ cos (2Nγ). For the standard deviation one

obtains ∆γ = sin 2Nγ/(2N sin 2Nγ) = 1/(2N). Thus, the improved sensitivity evaluates
to S = 1/

√
2N · 2N =

√
2N and yields a

√
2N fold improvement for a GHZ state cor-

responding exactly to the Heisenberg limit. However, phase estimation along other basis
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directions, for example 〈ĉxz(γ)⊗2N〉 and 〈ĉxy(γ)⊗2N〉, does not reach the Heisenberg limit,
see fig. 5.5(b).

For the calculation of the improved sensitivity S for the states |D(N)
2N 〉 the derivative

∂〈ĉij(γ)⊗2N〉
D

(N)
2N

∂γ
=

N∑

k=0

4k − 2N + 2N cos 2γ

sin 2γ
(−1)k

·(Ck
N)2(cos γ)2N−2k(sin γ)2k (5.27)

is required. For the case N = 3 one obtains an improved sensitivity for phase estimation
along any great circle parallel to the z axis of the Bloch sphere of

(S
D

(3)
6

)2 =
12(3 + 5 cos 4γ)2

87 + 80 cos 4γ + 25 cos 8γ
. (5.28)

This function is depicted in fig. 5.7. For particular values of γ the SNL can be beaten, but
the Heisenberg limit is not reached. Using the fit of the experimental values (see fig. 5.6),
the expected phase sensitivity can be calculated. However, this value is even lower than
the SNL for the first set of measurements (i) and (ii). This can be attributed to higher
order SPDC noise (see appendix C), which can be reduced by decreasing the UV pump
power on the cost of a lower six-photon count rate. The result is displayed in fig. 5.7 as
the set (iii) and (iv) of measurements, which clearly surpass the SNL.

Finally, it is worth recalling that the states |D(N)
2N 〉 have been obtained from a symmet-

ric distribution of N horizontally and N vertically polarized photons initially in a single
spatial mode m, i.e., of the state |NH , NV 〉m from the Nth order collinear type II SPDC
emission. This state is equal to the twin-Fock state |N, N 〉a,b, which can be used as input
state of modes a and b of a Mach-Zehnder interferometer. Its usefulness for phase estima-
tion has been discussed in refs. [84, 85], where the derivation of eq. 5.16 and eq. 5.20 can
be found.

To conclude, symmetric Dicke states of N qubits with N/2 excitations are straightfor-
ward to observe using collinear type II SPDC and subsequent symmetric photon distribu-
tion. The entanglement of these states has a high robustness against qubit loss and is an
ideal resource for obtaining other interesting quantum states. Further, many applications
can be performed with symmetric Dicke states making them an ideal object for future
experimental investigations.

5.4 Publications
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We report on the experimental observation and characterization of a six-photon entangled Dicke state.

We obtain a fidelity as high as 0:654 0:024 and prove genuine six-photon entanglement by, amongst

others, a two-setting witness yielding!0:422 0:148. This state has remarkable properties; e.g., it allows

obtaining inequivalent entangled states of a lower qubit number via projective measurements, and it

possesses a high entanglement persistency against qubit loss. We characterize the properties of the six-

photon Dicke state experimentally by detecting and analyzing the entanglement of a variety of multipartite

entangled states.

DOI: 10.1103/PhysRevLett.103.020504 PACS numbers: 03.67.Bg, 03.65.Ud, 03.67.Mn, 42.50.Ex

Multipartite entangled states have been intensively

studied during recent years. Still, the experimental realiza-

tion of entangled states of more than four particles imposes

a considerable challenge, and only a few experiments have

yet demonstrated such states [1,2]. So far, many experi-

ments have focused on the observation of graph states [3]

like the Greenberger-Horne-Zeilinger (GHZ) states or the

cluster states [1], which are, e.g., useful for one-way

quantum computation [4]. Dicke states form another im-

portant group of states, which were first investigated with

respect to light emission from a cloud of atoms [5] and

have now come into the focus of both experimental real-

izations [2,6–8] and theoretical studies [9–12]. W states

[13], a subgroup of the Dicke states, first received attention

triggered by the seminal work on three-qubit classification

based on stochastic local operations and classical commu-

nication (SLOCC) by Dür, Vidal, and Cirac [13]. Recently

it turned out that other symmetric Dicke states also offer

important features. Particularly, by applying projective

measurements on a few of their qubits, states of different

SLOCC entanglement classes are obtained [8,12]. These

Dicke states can act as a rich resource of multipartite

entanglement as required for quantum information

applications.

In our Letter we experimentally implement and analyze

a symmetric six-qubit entangled Dicke state. The entangle-

ment of the Dicke state results from symmetrization and

cannot be achieved in a simple way by pairwise interaction,

in contrast to, e.g., GHZ states. In order to efficiently

characterize the experimentally observed state, we devel-

oped optimized methods to determine the fidelity, detect

entanglement, and characterize further properties. In par-

ticular, we analyze representatives from the variety of

multipartite entangled states obtained after projection or

loss of qubits.

Generally, Dicke states are simultaneous eigenstates of

the total angular momentum, J2
N ¼ J2

N;x þ J2
N;y þ J2

N;z, and

the angular momentum component in the z direction, JN;z,

where JN;i ¼ 1

2

P

k*k
i with, e.g., *3

i ¼ 1 $ 1 $ *i $ 1 $
1 $ 1 for N ¼ 6 qubits, i 2 fx; y; zg and *i the Pauli spin

matrices. A subgroup of the Dicke states is symmetric

under permutation of particles and given by

jDðlÞN i ¼
N
l

! "!1=2X

i

P iðjH$ðN!lÞV$liÞ; (1)

where
P

iP ið. . .Þmeans the sum over all distinct symmetric

permutations and l is the number of excitations in the usual

notation of polarization encoded photonic qubits. In our

experiment we focus on the symmetric six-qubit Dicke

state with three excitations,

jDð3Þ
6
i ¼ ð1=

ffiffiffiffiffiffi

20
p

Þ
X

i

P iðjHHHVVViÞ: (2)

To realize the necessary 20 permutations, three horizon-

tally and three vertically polarized photons in a single

spatial mode are distributed by polarization-independent

beam splitters into six modes, where j Dð3Þ
6
i is observed

under the condition of detecting a single photon in each of

these modes. This scheme can be seen as a continuation of

experiments on Dð1Þ
2

[6] and Dð2Þ
4

[8] and obviously can be

extended to higher even photon numbers.

The experimental observation of jDð3Þ
6
i (Fig. 1) is

achieved by utilizing a novel source of collinear type II

spontaneous parametric down-conversion (SPDC) based

on a femtosecond UV-enhancement resonator [14]. The
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resonator allows pumping of the SPDC crystal with femto-

second pulses with an average UV power of 5.3 W at a

repetition rate of 81 MHz [14]. The SPDC photons are

coupled out of the cavity by a dichroic mirror transparent at

780 nm, are spatially filtered by a single-mode fiber, and

are subsequently distributed in free space by polarization-

independent beam splitters. Asymmetry in the splitting

ratios of the beam splitters reduces the probability of

registering jDð3Þ
6

i (0.0126 compared to the optimal value

of 5=324 $ 0:0154, yielding a six-photon count rate of 3.7

events per minute), but does not influence the state quality.

For all data the errors are deduced from Poissonian count-

ing statistics and errors of independently determined rela-

tive detector efficiencies.

The first characteristic feature of the state jDð3Þ
6

i is its

structure in the z, x, and y bases (Fig. 2); i.e., when

analyzing the photons in the six outputs all either along

jH or Vi, j%i ¼ ð1=
ffiffiffi

2
p

ÞðjHi % jViÞ (linear polarization

under 45() and jL or Ri ¼ ð1=
ffiffiffi

2
p

ÞðjHi % ijViÞ (left or

right circular polarization), which, in our notation, are

the eigenvectors of +z, +x, and +y, respectively. For the

z basis [Fig. 2(a)] we find the pronounced 20 terms that are

expected for jDð3Þ
6

i. However, we also detect coincidences

for HHVVVV, HHHHVV, and permutations thereof.

These originate from higher orders of the SPDC process,

in particular, from the fourth order emission, where, due to

the finite detection efficiency, two of these photons can get

lost and the remaining six photons will be registered as a

sixfold detector click in the output modes. Thus, jDð3Þ
6

i is
mixed with highly colored noise, which exhibits different

types of entanglement itself depending on the loss type.

Insight into the coherence between the observed co-

incidences can be obtained from measurements in the x

[Fig. 2(b)] and y [Fig. 2(c)] bases. The state jDð3Þ
6

i trans-
forms in these bases to

ffiffiffiffiffiffiffiffi

5=8
p

jGHZ)
6

i þ
ffiffiffiffiffiffiffiffiffiffiffi

3=16
p

ðjDð4Þ
6

i ) jDð2Þ
6

iÞ with jGHZ)
N i ¼ ð1=

ffiffiffi

2
p

Þ +
ðj0i,N ) j1i,NÞ and 0 ¼ fþ; Lg, 1 ¼ f/; Rg. We observe

the GHZ contribution as pronounced coincidence counts

for the left- and rightmost projector. The residual counts

from other terms [insets of Figs. 2(b) and 2(c)] make the

decisive difference to a GHZ state as they are in a super-

position with the GHZ terms. Apart from this, noise on top

of all counts is also apparent. Most importantly, while the

GHZ state shows its two terms only in a single basis, we

observe these features now for two bases, which is directly

related to the symmetry of jDð3Þ
6

i.
A quantitative measure, indicating how well we pre-

pared jDð3Þ
6

i experimentally, is given by the fidelity

F
Dð3Þ

6

ð/Þ ¼ TrðjDð3Þ
6

ihDð3Þ
6

j/Þ. Its determination would re-

quire 183 correlation measurements in the standard Pauli

bases. However, employing the permutational symmetry of

FIG. 2 (color online). Experimentally measured coincidences for the bases (a) z, (b) x, and (c) y with eigenvectors jH or Vi, j%i, and
jL or Ri, respectively. Theoretical predictions are shown as pale gray bars normalized to the total number of coincidences. The insets

in (b) and (c) are magnified views of a part of all coincidences, where for clarity expected counts are shown next to experimental ones.

FIG. 1 (color online). Schematic experimental setup for the

observation of the Dicke state jDð3Þ
6

i. SPDC photons generated in

the 1 mm thick 0-barium borate (BBO) crystal inside the UV-

enhancement cavity pass a half-wave plate (HWP) and a 0.5 mm

thick BBO crystal to compensate beam walk-off effects. Their

spatial mode is defined by coupling into a single-mode (SM)

fiber. Spectral selection is achieved by a band-pass filter (RG)

and a 3 nm interference filter (IF) at 780 nm. Birefringence of

beam splitters BS1–BS5 (BS1–BS4 have a splitting ratio of

0:58:0:42 and BS5 of 0:52:0:48) is compensated for by pairs of

birefringent Yttrium-vanadate (YVO4) crystals in the six output

modes a, b, c, d, e, f. Polarization analysis (PAj) in each mode

is performed via a HWP and a quarter-wave plate (QWP) in front

of a polarizing beam splitter (PBS). The photons are detected by

single-photon avalanche photodiodes (APDs). The detection

signals of the 12 detectors are fed into a FPGA controlled

coincidence logic allowing histograming of the 212 possible

detection events between the 12 detectors.
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the state jDð3Þ
6 i leads to a reduction to only 21 measurement

settings [15,16]. We have determined F
Dð3Þ

6

¼ 0:654 %
0:024 with a measurement time of 31.5 h. This allows

the application of the generic entanglement witness [10]

hW gi ¼ 0:6 ' F
Dð3Þ

6

¼ '0:054 % 0:024 and thus proves

genuine six-qubit entanglement of the observed state

with a significance of 2 standard deviations (Fig. 4).

Proving entanglement based on witness operators can be

much simpler in terms of the number of measurement set-

tings, as due to the symmetry of jDð3Þ
6 i already the two

measurements x and y are sufficient [8,10,18]. The generic
form of such a witness is given by W Nð'Þ ¼ ' ( 1)N '
ðJ2N;x þ J2N;yÞ, where ' is obtained by numerical optimiza-

tion over all biseparable states. For the state jDð3Þ
6 i

W 6ð11:0179Þ [15] has a minimal value of '0:9821. In
our experiment we have obtained with the data shown in

Figs. 2(b) and 2(c) hW 6ð11:0179Þi ¼ '0:422 % 0:148,
i.e., after a measurement time of only 17.1 h a higher

significance for proving six-qubit entanglement compared

to the generic witness (Fig. 4). A different witness, allow-

ing additionally to estimate the fidelity and requiring three

measurement settings only, can be obtained by considering

higher moments of the J6;i operators and is given as W ¼
1:5 ( 1)6 'Pi¼x;y;z

P

3
j¼1 cijJ

2j
6;i [15], with cij ¼

ð'1=45; 1=36;'1=180;'1=45; 1=36;'1=180; 1007=360;
'31=36; 23=360Þ. Experimentally, using the three mea-

surements of Fig. 2 we obtain hW i ¼ '0:105 % 0:040

yielding also a quite accurate bound on the fidelity [15]

of F
Dð3Þ

6

+ 0:6 ' hW i=2:5 ¼ 0:642 % 0:016 (Fig. 4).

Another method to reveal entanglement and additionally

the nonclassical nature of a quantum state are Bell inequal-

ities. Introduced with the aim to exclude a local-realistic

description of measurement results [19,20], they recently

became important tools in quantum information process-

ing, e.g., for security analysis [21] or for state discrimina-

tion [22,23]. A Bell operator well suited for the latter task

is given by B̂
Dð3Þ

6

¼ 4
5
ð/x )M5 þ /y )M0

5Þ, whereM5 and

M0
5 are five-qubit Mermin operators [20,23,24]. The asso-

ciated Bell inequality, jhB̂
Dð3Þ

6

iavgj - 0:4, is maximally vio-

lated by the six-photon Dicke state (hB̂
Dð3Þ

6

i
Dð3Þ

6

¼ 1) and

much less, e.g., by any six-qubit GHZ state

(hB̂
Dð3Þ

6

iGHZ;max ¼ 0:85). This again is a consequence of

the symmetry of jDð3Þ
6 i. While an inequality based on any

of the two Mermin terms is maximally violated by a GHZ

state, the violation of their sum is only maximal for jDð3Þ
6 i

due to its symmetry and equal form in the x and y bases.

The experimental value of hB̂
Dð3Þ

6

iexpt ¼ 0:43 % 0:02 shows

that there is no local-realistic model describing this state,

yet due to the higher order SPDC noise, it is not sufficient

to discriminate against GHZ states.

The characteristic symmetry and entanglement of jDð3Þ
6 i

enables one to observe a wealth of five- and four-qubit

entangled states that can be obtained by projective mea-

surements or qubit loss [12]. When we project one of the

qubits onto cos1jVi þ sin1e'i4jHi, we first obtain super-

positions of five-qubit Dicke states, j<5ð1;4Þi ¼
cos1jDð2Þ

5 i þ sin1ei4jDð3Þ
5 i with 1, 4 real. These states

belong to two different SLOCC classes, one for the values

1 ¼ 0 or 1 ¼ 6=2 and the other one for the remaining

value range [12]. Figures 3(a) and 3(b) showmeasurements

in the z basis for a representative state of the two classes,

obtained by projecting a qubit either onto jHi
[j<5ð6=2; 0Þi ¼ jDð3Þ

5 i] or onto j'i [j<5ð6=4; 6Þi ¼
ð1=

ffiffiffi

2
p

ÞðjDð2Þ
5 i ' jDð3Þ

5 iÞ]. Figure 4 shows measured expec-

tation values of optimized entanglement witnesses for

detecting genuine N-qubit entanglement of these and the

following states. When a qubit of jDð3Þ
6 i is lost, one obtains

FIG. 4 (color online). Experimental results [dark gray (blue)]

and theoretical predictions (pale gray) are shown for the various

entanglement witnesses for different states (see text). Negative

values prove genuine N-partite entanglement.

FIG. 3 (color online). Experimentally measured coincidence

counts in the z basis [(a)–(e)] and x basis (f) for projections of

jDð3Þ
6 i to obtain (a)–(b) five- and (d)–(f) four-qubit entangled

states. (c) 75 obtained after a loss of a qubit from jDð3Þ
6 i. Each

measurement took 279 min. Theoretical predictions are shown as

pale gray bars normalized to the total number of coincidences.
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 5 ¼ 1

2
ð 

Dð2Þ
5

þ  
Dð3Þ

5

Þ, i.e., an equal mixture of jDð2Þ
5
i and

jDð3Þ
5
i [Fig. 3(c)]. Remarkably and in sharp contrast to the

case of losing a qubit from aGHZ6 state, this mixed state is

also genuine five-qubit entangled (Fig. 4). This fact now

clearly provides, after all, a criterion to definitely distin-

guish these two prominent states and demonstrates the

entanglement persistency [25] of jDð3Þ
6
i.

By means of a second projective measurement we obtain

a variety of SLOCC-inequivalent four-qubit states. In

Fig. 3 we exemplarily show coincidences for three of those

states. The state jDð2Þ
4
i [8] [Fig. 3(d)] is obtained by pro-

jection of one qubit onto jVi and another one onto jHi. By
projecting two qubits onto the same polarization (here jVi)
for the first time the four-photon W state [11,26], i.e.,

jDð1Þ
4
i, could be observed in a linear optics experiment

[Fig. 3(e)]. Both states are clearly genuine four-partite

entangled [8,27] as depicted in Fig. 4. We have determined

fidelities of F
Dð2Þ

4

¼ 0:682& 0:022 and F
Dð1Þ

4

¼0:619&
0:043 using optimized measurement settings [15,17].

Possible applications of jDð1Þ
4
i and jDð2Þ

4
i comprise, for

example, quantum telecloning, teleportation, and secret

sharing [8,9,28,29]. Most remarkably, one can also obtain

a four-qubit GHZ state, which is suitable for, e.g., secret

sharing [29]. As mentioned before, there is a strong GHZ

component in the state jDð3Þ
6
i. Considering the representa-

tion in the y basis [Fig. 2(c)], a projection of one photon

onto jRi and another one onto jLi filters out just this GHZ
component, but the remaining terms coherently superim-

pose to a four-qubit GHZ state, jGHZ'
4
i ¼ ð1=

ffiffiffi

2
p
Þ)

ðjDð1Þ
4
i þ jDð3Þ

4
iÞ ¼ ð1=

ffiffiffi

2
p
Þðjþi*4 ' j'i*4Þ. The fourfold

coincidence counts shown in Fig. 3(f) reveal the character-

istic GHZ structure. However, for this state a two-setting

witness measurement [30] resulted in a value of

hW GHZi ¼ '0:016& 0:162, which is not sufficient to

prove entanglement with the relevant significance and

can be attributed to the low fidelity of FGHZ ¼ 0:528&
0:042 and the asymmetric GHZ structure [Fig. 3(f)].

Altogether, we have experimentally demonstrated in this

Letter remarkable entanglement properties of the Dicke

state jDð3Þ
6
i. It exhibits a high symmetry with characteristic

correlations in various bases. As shown, this makes it a

perfect resource for observing a wealth of different

SLOCC-inequivalent states of a lower qubit number. The

novel setup presented here allows experiments with a

sufficient count rate and lays the foundations for demon-

strations of important applications of jDð3Þ
6
i, e.g., for phase-

covariant telecloning, multipartite quantum communica-

tion, or entanglement enhanced phase measurements.
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I. INTRODUCTION

Entangled states are an essential resource for quantum

information applications. Recently, the equivalence under

stochastic local operations and classical communication

sSLOCCd was successfully used to classify multipartite en-

tanglement f1–4g. This classification is particularly relevant

for evaluating the use of states for multiparty quantum com-

munication as states of the same SLOCC class can be em-

ployed for the same applications. Therefore, the experimen-

tal realization of different SLOCC-inequivalent states is

highly desirable.

So far, several SLOCC-inequivalent states have been re-

alized in various physical systems. The largest variety of

states was observed in experiments that rely on photonic

qubits se.g., Ref. f5gd. However, typical for this experimental

approach is its inherent inflexibility. The design of the nec-

essary optical network is especially tailored to the particular

state that should be observed. Consequently, once a particu-

lar network is built, it will not offer, in general, the choice

between different SLOCC-inequivalent states. Recently, a

linear optics experiment was performed that broke with this

inflexibility f6g by allowing the observation of an entire fam-

ily of SLOCC-inequivalent four-photon entangled states. Es-

sentially, this was achieved by multiphoton interference.

Here we show that projective measurements on sub-

systems can provide another means of preparing SLOCC-

inequivalent classes of entangled states f7g. It is well known
that atomic entangled states, even from different SLOCC

classes, can be remotely prepared by projective measure-

ments on photons f8,9g, which previously have been en-

tangled with the atoms—i.e., by a measurement of typically

half of the total multipartite entangled state. Here, in con-

trast, we focus on the property of certain symmetric multi-

partite entangled states that allow a more flexible preparation

of families of SLOCC-inequivalent types of entanglement by

projective measurements on small subsystems. The initial

n-qubit symmetric states can be observed in linear optics

setups that distribute n photons of a single spatial mode to n

different output modes. Subsequent projective measurements

on these n-qubit states will yield states belonging to different

SLOCC classes. We focus in the following on the case of

n=4 and 5 and demonstrate that our approach can be realized

by using a single linear optical setup only.

The paper is structured as follows. In Sec. II we discuss

the effect of projective measurements on particular symmet-

ric states. We begin our investigations with SLOCC-

inequivalent three-qubit states obtained from the four-qubit

symmetric Dicke state with two excitations uD4
s2dl f10–12g.

Further, we show how to obtain SLOCC-inequivalent four-

qubit entangled states like, e.g., the Greenberger-Horne-

Zeilinger sGHZd state uGHZ4l, W state uW4l, and even uD4
s2dl,

via projective measurements on five-qubit states, which are

given by superpositions of two symmetric Dicke states f13g.
In Sec. III we will discuss the experimental implementation

of the proposed schemes. We recapitulate the experiment of

Ref. f11g, which lead to the observation of uD4
s2dl and discuss

the feasibility of an extension in order to observe the five-

qubit states.

II. PROJECTIVE MEASUREMENTS ON PARTICULAR

SYMMETRIC STATES

In their seminal work, Dür et al. f2g discovered that only

two SLOCC-inequivalent classes of genuine tripartite

entanglement exist: the GHZ and W classes. Well-known

representatives of these classes are the states uGHZ3l
=1 /Î2suHHHl+ uVVVld and uW3l=1 /Î3suHHVl+ uHVHl
+ uVHHld, respectively. We utilize the notation for polariza-

tion encoded qubits throughout this work—e.g., uHHVl
= uHla ^ uHlb ^ uVlc and uHl or uVl mean linear horizontal sHd
or vertical sVd polarization of photons, respectively—and the

subscript denotes the spatial mode of each photon. In con-

trast to the three-qubit case, the SLOCC classification of

four-partite entangled states is much richer, containing infi-

nitely many SLOCC-inequivalent four-partite entangled

states f3,14g.
In the following we show that via projective measure-

ments on particular symmetric states, SLOCC-inequivalent

entangled states of a lower qubit number can be obtained. To

this end, we consider particular members of the family of

symmetric Dicke states f10g. Generally, a symmetric N-qubit

Dicke state with m excitations, denoted as uDN
smdl, is, again in

the notation of polarization encoded photonic qubits, the

equally weighted superposition of all possible permutations*witlef.wieczorek@mpq.mpg.de
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of N-qubit product states with m vertically and N−m hori-

zontally polarized photons.

A. Projections of the four-qubit Dicke state zD4
(2)‹

First, we aim at obtaining states from the two inequivalent

tripartite entanglement classes by applying projective mea-

surements on a four-qubit entangled state. The symmetric

Dicke state

uD4
s2dl = 1

Î6
suHHVVl + uHVHVl + uVHHVl + uHVVHl

+ uVHVHl + uVVHHld

turned out to be useful for this purpose f11g. Here, we will
analyze in more detail which three-qubit states can be ob-

tained.

Generally, an arbitrary projective measurement can be ex-

pressed by Psa8 ,e8dª ua8 ,e8lka8 ,e8u, with ua8 ,e8l=a8uHl
+b8eie8uVl sall parameters real and a8

2+b8
2=1d. The projec-

tion Psa8 ,e8d applied on uD4
s2dl leads to the three-qubit states

~ a8uD3
s2dl + b8e−ie8uD3

s1dl , s1d

which are arbitrary superpositions of the two entangled, sym-

metric three-qubit Dicke states sTable Id.
To analyze the entanglement of the states, we choose as a

suitable entanglement measure the three-tangle t3 f15g,
which distinguishes the W and GHZ class as only for GHZ-

type entangled states is t3 nonzero f2g. The solid line in Fig.
1 shows t3 for the states of Eq. s1d in dependence of u8

sa8=cos u8d. It is found that the three-tangle is zero for u8

=0,p /2 sa8=0,1d, which corresponds to a measurement in

the computational basis. There, we obtain states from the W

class: namely, uW3l;uD3
s1dl and uW̄3l=1 /Î3suVVHl+ uVHVl

+ uHVVld;uD3
s2dl, respectively. For all other values of u8,

t3Þ0, implying that these states belong to the GHZ class.

The maximal value of t3=1 /3 is obtained for u8=p /4, cor-

responding to a measurement in the s6d basis, where u6 l
=1 /Î2suHl6 uVld. For u8=p /4 and e8=0,p, one obtains the

G3 states f16g with uG3
+l= 1

Î2
suW̄3l+ uW3ld and uG3

−l= 1
Î2

suW̄3l
− uW3ld, respectively.

The G3 states can be transformed directly into the GHZ3
state, which has the maximal possible three-tangle t3=1, via
the stochastic local operations slocal filteringd

T+ =HH1
2
FS 1

Î3
+ iD1 + S 1

Î3
− iDszGJH ,

T− =HH1
2
FS 1

Î3
+ iDsx + iS 1

Î3
− iDsyGJH ,

where sx, sy, and sz are the Pauli spin matrices and H is the

Hadamard transformation, in the following way:

sT+ ^ T+ ^ T+duG3
+l = 1

3 uGHZ3l ,

sT− ^ T− ^ T−duG3
−l = 1

3 uGHZ3l . s2d

Though these operations perform the desired transformation,

they only do so with a success probability of 1 /9. Figure 1

shows the three-tangle when the operation T+ ^ T+ ^ T+ is

applied successfully to all states of Eq. s1d. For u8=p /4 the

three-tangle is indeed increased to its maximal value of t3
=1.

B. Projections of superpositions of five-qubit Dicke states

Extending the idea described before, SLOCC-inequivalent

four-partite entangled states can be obtained from suitable

five-qubit symmetric states via projective measurements.

Here we consider an arbitrary superposition of the two sym-

metric five-qubit Dicke states uD5
s2dl and uD5

s3dl:

uD5l = auD5
s2dl + beieuD5

s3dl . s3d

We note that these states can also be seen as a natural choice

as they are obtained via a single projective measurement on

the six-qubit Dicke state uD6
s3dl. The states uD5l belong to two

different SLOCC classes. The first class occurs for a=0 or

b=0, as the states uD5
s2dl and uD5

s3dl can be transformed into

each other by spin-flipping all qubits. The second class is

given for aÞ0 and bÞ0. The weighting and phase between

the terms of uD5l can be changed easily via the SLOCC op-

erations Tr
^5=Tr ^ Tr ^ Tr ^ Tr ^ Tr, with Tr= fs1+1 /rd1+ s1

−1 /rdszg /2 and rÞ0 complex. To obtain a new ratio of pa-

rameters ā / sb̄eiēd, r needs to be chosen as bāeie
/ sb̄aeiēd.

Note that this reasoning could also be applied for the states

of Eq. s1d.
A single projective measurement Psa8 ,e8d applied on uD5l

yields the four-qubit entangled states

TABLE I. Three-qubit states obtained by a single projective

measurement on the state uD4
s2dl; cf. Eq. s1d.

a8 b8 e8 State

cos u8 sin u8 e8 cos u8uD3
s2dl+e−ie8 sin u8uD3

s1dl

1 0 uD3
s2dl;uW̄3l

0 1 uD3
s1dl;uW3l

1

Î2
1

Î2
0 suD3

s1dl+ uD3
s2dld /Î2;uG3

+l

1

Î2
1

Î2
p suD3

s1dl− uD3
s2dld /Î2;uG3

−l

FIG. 1. Three-tangle t3 for the states of Eq. s1d without ssolid
lined and with sdashed lined application of the transformation T+

^ T+ ^ T+ swhere a8=cos u8 and e8=0d.
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uD4l ~ ab8e
−ie8uD4

s1dl + a8be
ieuD4

s3dl

+ saa8 + bb8e
ise−e8ddÎ6/4uD4

s2dl . s4d

These states are superpositions of all symmetric four-qubit

entangled Dicke states. In particular, these superpositions

contain the SLOCC-inequivalent family of states

msa ,a8 ,e ,e8duGHZ4l+nsa ,a8 ,e ,e8duD4
s2dl sfor details, see

f17gd, which forms according to the SLOCC classification by

Verstraete et al. f3g a subset of the four-qubit entangled ge-

neric family Gabcd. In the following we discuss prominent

SLOCC-inequivalent states of the family of Eq. s4d ssee also
Table IId.

Remarkably, we obtain a four-qubit GHZ4 state. This can

be easily seen when we consider the state uGHZ4
−l

=1 /Î2suHHHHl− uVVVVld under a Hadamard transforma-

tion H acting on each qubit:

uGHZ4
+l ; sH ^ H ^ H ^ HduGHZ4

−l =
1

Î2
suD4

s1dl + uD4
s3dld .

We get uGHZ4
+l when the amplitude of uD4

s2dl is zero and the
two remaining terms in Eq. s4d are equally balanced; i.e., the
conditions sid aa8=−bb8e

ise−e8d and siid ab8e
−ie8=a8beie

are fulfilled. This holds only for a=b=a8=b8=1 /Î2 and e
=−e8=p /2 or −e=e8=p /2. When we impose only condition

sid—i.e., the amplitude of uD4
s2dl is zero fwhich holds for a

=Î1−a8
2 and De=e−e8= s2n+1dp for nP h0,1 ,2 , . . . jg—a

continuous transition between the states uW4l sa=1d, uGHZ4
+l

sa=Î1 /2 and De=pd, and uW̄4l sa=0d can be achieved.
Further, three-qubit states are obtained by performing a

projective measurement Psa9 ,e9d on uD4l:

uD3l ~ ab8b9e
−ise8+e9duD3

s0dl + a8ba9e
ieuD3

s3dl

+ Ssab8a9e
−ie8d +Î6

4
saa8 + bb8e

ise−e8ddb9e
−ie9D

3Î3uD3
s1dl + Ssa8bb9e

ise−e9dd

+Î6

4
saa8 + bb8e

ise−e8dda9DÎ3uD3
s2dl . s5d

All permutation symmetric three-qubit states are included in

the states uD3l f18g. In particular, we note that a GHZ3 state
can be obtained directly without the need for local opera-

tions. To show this, we consider uGHZ3
−l=1 /Î2suHHHl

− uVVVld under a Hadamard transformation H acting on each

qubit:

uGHZ3
+l ; sH ^ H ^ HduGHZ3

−l =Î3

4
uD3

s1dl +Î1

4
uD3

s3dl .

The state uGHZ3
+l is obtained for a=b=a8=b8=1 /Î2, a9

=1, and e=−e8=p /2.

III. EXPERIMENTAL IMPLEMENTATION

The states uD4
s2dl and uD5l are permutation symmetric.

Hence, their experimental implementation can be achieved

via a symmetric distribution of photons. For the observation

of the state uD4
s2dl the necessary four photons originate from

the second-order emission of a collinear, type-II spontaneous

parametric down-conversion sSPDCd. For observing the

states uD5l, we will consider different experimental imple-

mentations, which are extensions of the uD4
s2dl setup.

A. Dicke state zD4
(2)‹

Figure 2 shows one of the possible setups for the states

uD5l. As can be seen, the setup for observing the state uD4
s2dl

is at the core of it. The state uD4
s2dl was observed after a

symmetric distribution of two horizontally and two vertically

polarized photons, initially in a single spatial mode s, onto

four spatial modes sa ,b ,c ,dd via three polarization-

independent beam splitters sBSd. The photons originate from
a b-barium borate sBBOd crystal in a type-II, collinear SPDC
process, which emits the state f19,20g

uCdcl = Î1 − uzdcu
2o

n=0

`
sizdcd

n

n!
ssH

†
sV

†dnuvacl , s6d

where s
i

† is the creation operator for a photon in mode s

having polarization iP hH ,Vj, uvacl is the vacuum state, zdc
= uzdcue

i2fdc with uzdcu=tanh t, and t depends on the pump

amplitude and the coupling between the electromagnetic

TABLE II. Four-qubit entangled states obtained from the states uD5l by a single projective measurement;
cf. Eq. s4d. In analogy to Eq. s3d, the states cos2 uuD4

s1dl−sin2 ue2ieuD4
s3dl belong to two SLOCC classes given

by sid u=0 or u=p /2 and siid uP s0,p /2d with e arbitrary.

a b e a8 b8 e8 State

1 0 1 0 uD4
s2dl

0 1 0 1 uD4
s2dl

1 0 0 1 uW4l;uD4
s1dl

0 1 1 0 uW̄4l;uD4
s3dl

1

Î2
1

Î2
p

2

1

Î2
1

Î2
−

p

2
uGHZ4

+l

cos u sin u e sin u cos u e−p cos2 uuD4
s1dl

−sin2 ue2ieuD4
s3dl
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field and the crystal st!1d. The probability to create a single
pair is s1− uzdcu

2duzdcu
2. Here, we are interested in the second-

order emission ~ss
H

†
s

V

†d2uvacl.
The BBO crystal was pumped by a frequency-doubled,

femtosecond, mode-locked Ti:sapphire laser. The spatial
mode s of the photons is defined by coupling into a single-

mode sSMd fiber. The photons pass an interference filter sIRd,
reducing their spectral distinguishability. The polarization

state of each photon is analyzed via a polarizing beam split-

ter sPBSd preceded by a half-wave plate sHWPd and quarter-
wave plate sQWPd. Finally, the photons are detected by fiber-
coupled single-photon detectors. The experimental state was

observed under the condition of detecting a photon in each of

the four spatial modes sa ,b ,c ,dd.
We found a fidelity of Fexpt= kD4

s2durexptuD4
s2dl

=0.84460.008 to the state uD4
s2dl. Using a generic entangle-

ment witness W f21g, where we use the shorthand notation

WsC ,ad=a1− uClkCu, with a=
2

3
and uCl= uD4

s2dl, genuine
four-partite entanglement of rexpt was verified:

TrfWsD4
s2d ,

2

3
drexptg=

2

3
−Fexpt=−0.17760.008. A value ,0 is

sufficient to prove genuine four-partite entanglement f21g.
Further, by using the state-discrimination method described

in f22g, we were able to exclude W- and cluster-type en-

tanglement for the experimentally observed state.

For demonstrating that we can experimentally access

states from both inequivalent tri-partite entanglement classes,

we performed a full-state tomography to reconstruct the den-

sity matrices of the respective states. A projection measure-

ment of the photon in mode d in the computational basis

yields the W3 states characterized by the density matrices

shown in Figs. 3sad and 3sbd. We calculated fidelities of

0.88260.015 and 0.83560.015 to the theoretical states uW3l

and uW̄3l, respectively. Their genuine tripartite entanglement
is verified via the entanglement witnesses WsW3 ,

2

3
d and

WsW̄3 ,
2

3
d f21g, where we determined values of

−0.21560.015 and −0.16860.015, respectively.

A measurement in the s6d basis yields G3 states, which

belong to the GHZ class. If we apply the corresponding

transformations fsee Eq. s2dg on the measured density matri-
ces, we indeed obtain GHZ3 states; see Figs. 3scd and 3sdd.

We determined fidelities of 0.71960.022 and 0.73360.024

to a GHZ3 state, respectively. An entanglement witness de-

tecting genuine tripartite entanglement of these states is

WsGHZ3 ,
1

2
d f21g. We find the negative values of

−0.21960.022 and −0.23360.024, respectively. A witness

that further excludes W-type entanglement is given by

WsGHZ3 ,
3

4
d f23g. The transformed GHZ3 states do not fulfill

the witness’s entanglement condition. However, by applying

local filtering operations on this witness f24g, we obtain val-
ues of −0.03360.026 and −0.02960.023, respectively,

which finally proves GHZ-type entanglement with a signifi-

cance of one standard deviation.

B. Towards zD5‹

1. Implementation

For observing the states uD5l, different implementations
are possible. One possibility is given by the application of a

projective measurement on the state uD6
s3dl ssee Sec. II Bd,

where the necessary six photons originate from the third-

order SPDC emission. However, when implementing the

state uD5l directly, only five photons are necessary and, thus,
a higher count rate should be possible. These five photons

can be obtained by superimposing the four photons from the

second-order SPDC emission with an additional photon. The

polarization of the additional photon determines the param-

eters a, b, and e in Eq. s3d. In the ideal case, the additional
photon is obtained from a single-photon source ssee, e.g.,
f25,26gd that acts on demand and matches the SPDC photons

spectrally, temporally, and spatially. However, to our knowl-

edge, no such source exists. Alternatively, a heralded SPDC

source f27g can be employed, which results in practice in low
count rates, since again six photons have to be detected in

total. Instead, we investigate whether the single-photon

s

FIG. 2. sColor onlined Schematic experimental setup for the

observation of the state uD4
s2dl sinnermost section, dashed framed.

The weak coherent beam, the 4:1 beam splitter as well as the de-

tection in an additional mode e are needed for the proposed experi-

mental implementation of the five photon states uD5l sdetails see
textd.

FIG. 3. sColor onlined Experimental density matrices for the

measured W3 sad and W̄3 sbd states. The density matrices for the

GHZ3 states of scd and sdd are calculated from the measured G3
+ and

G3
− states. Displayed is the real part of the corresponding density

matrix.
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source can be substituted by a weak coherent beam sWCBd
f28g—i.e., whether this simplification influences the state

quality.

This implementation is based on the setup used for ob-

serving the state uD4
s2dl described in Sec. III A sFig. 2d. The

WCB can be derived via a beam splitter fand additional at-

tenuation via optical density sODd filtersg from the Ti:sap-

phire laser, which also pumps the BBO crystal for the SPDC

process after a frequency-doubling stage. The polarization of

the WCB can be set arbitrarily via a polarizer, followed by a

HWP and QWP. These settings determine the parameters a,
b, and e in Eq. s3d. A delay line in the WCB allows one to

adjust the temporal overlap with the SPDC emission. The

photons of both sources are overlapped collinearly in the

BBO crystal and coupled in the same single-mode fiber.

They are symmetrically distributed onto the modes

sa ,b ,c ,d ,ed via a beam splitter with 4:1 splitting ratio and

further splitting as described in Sec. III A.

2. Weak coherent beam: Effects

The state of the WCB that substitutes the single-photon

source is f29g

uCwl = e−uzwu2/2o
n=0

`
szwdn

n!
sw j

†dnuvacl , s7d

where w j
† is the creation operator of a photon with polariza-

tion j in mode w, zw= uzwueifw, uzwu2 is the mean photon num-

ber, and uzwu2e−uzwu2 is the probability for the photon state u1l.
The photons of the WCB and SPDC originate from the same

laser—i.e., the Ti:sapphire laser—but travel different paths

before they are coupled into the same single-mode fiber. As

only their relative phase is relevant, we set for the following

considerations fdc=0, without loss of generality. In the ex-

periment the relative phase fluctuates without an active sta-

bilization of the relative delay of the WCB and SPDC pho-

tons. Further, the WCB compared to a real single-photon

source exhibits higher-order terms, resulting in multiple pho-

tons per pulse. We note that the phase dependence and the

higher-order terms have a much smaller influence if a her-

alded source is employed, of course, with the disadvantage

of requiring, effectively, a six-photon down-conversion ex-

periment.

We will now demonstrate effects caused by using the

WCB. First, we observe quantum interference, which occurs

when there are at least two indistinguishable possibilities that

lead to the same detection event. In our case this becomes

already observable when we consider only two photons.

There, the following two possibilities exist: Two photons

originate either from the SPDC emission or the WCB. To

show the interference let us assume a left circularly polarized

WCB, whose two-photon term is

~ e2ifwswL
†d2 = e2ifwswH

† − iwV
†d2/2

= e2ifwfswH
† d2 − swV

†d2 − 2iswH
†

wV
†dg/2. s8d

For a coherent overlap—i.e., w j
†
→s j

†—the last term of Eq.

s8d is identical with the first-order SPDC emission s~sH
† sV

†d.
Hence, for the twofold coincidence detection event HV, both

possibilities contribute and interfere in dependence on fw.

This is shown in Fig. 4sad. When we change the path differ-

ence between the photons of both sources, we observe an

oscillation in the coincidence count rate on the order of the

wavelength s,mmd, which is due to the change of fw. The

exact modulation is unresolved as fw was not actively stabi-

lized. The width of the envelope of that interference is on the

order of the coherence length of the photons s<100 mmd. It
indicates the spatial region for which the mode overlap is

different from zero.

Furthermore, we can observe bosonic enhancement sclon-
ing f30–32gd—i.e., stimulation of the SPDC emission—

which appears independent of the employed single-photon

source and enhances the total count rate. This enhancement

is visible for, e.g., a horizontally polarized WCB as input and

registration of a threefold coincidence of HHV, Fig. 4sbd.
The single-photon term of the WCB s~wH

† d and the first-

order emission of the SPDC s~sH
† sV

†d lead incoherently over-
lapped to ~wH

† sH
† sV

† uvacl= uHlwuHVls. In contrast, a coherent

superposition yields ~ssH
† d2sV

† uvacl=Î2uHHVls—hence, an

increase by a factor of 2 in the count rate due to the bosonic

enhancement f33g. This effect occurs on the order of the

coherence length of the photons s<100 mmd. In the experi-

ment we observe an enhancement of 1.5260.03. We at-

tribute the deviation from the expected value of 2 to higher-

order emissions of the WCB and SPDC, which add an offset

to the three-photon count rate.

3. Fidelity of the states zGHZ
4

+‹ and zW4‹

In the following we give a quantitative estimate of the

influence on the quality of the desired four-photon states

when a WCB is used instead of a single-photon source. To

this end two effects have to be considered leading to the

observation of imperfect states. First, the coherent superpo-

sition of different emission orders leads, in dependence on

fw, to the observation of a different pure state. Second,

higher-order emissions cause an admixture of correlated

FIG. 4. Coherence between the weak coherent beam and the

SPDC photons. sad Interference of the two possibilities how to ob-

tain an HV coincidence. sbd Enhanced emission scloningd due to the
bosonic nature of photons. The solid line shows a Gaussian fit to the

data points, giving an enhancement of 1.5260.03.
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noise. The first effect can be analyzed when considering all

terms from Eqs. s6d and s7d that contribute directly to five

photons syielding the state on which a projective measure-

ment is appliedd:

~ − uzdcu
2uzwueifww j

†ssH
†

sV
†d2/2

+ iuzdcuuzwu3ei3fww j
†3ssH

†
sV
†d/6 + uzwu5ei5fww j

†5
/120. s9d

Only the first term is necessary to observe the state uD5l. The
other terms significantly modify the desired state.

Exemplarily, we calculate the fidelity to the ideal GHZ4
+

and W4 states when the photons from Eq. s9d are symmetri-
cally distributed onto five spatial modes and the respective

projective measurement is performed. We obtain

FW4
= 1/f1 + uzwu4/s9uzdcu

2dg ,

FGHZ
4
+ = 1 −

1

2 + 36
uzdcu

2

uzwu4
− 12

uzdcu

uzwu2
coss2fwd

;

see Figs. 5sad and 5sbd. Both fidelities are better than .0.99

for uzwu,0.2, whereas for higher uzwu the fidelity decreases

rapidly. This is the case as with increasing uzwu the second

term of Eq. s9d grows relatively stronger than the first term

and, thus, spoils the state quality. Obviously the relative

phase fw becomes only relevant for FGHZ
4
+. There, the high-

est fidelity values are found for fw=p /2.

A second effect causes the admixture of correlated noise,

which reduces the fidelity. This admixture is produced by the

detection of additional fivefold coincidences that originate

from six or more photons shigher-order emissions from both

the SPDC and WCBd, where multiple photons are registered
by the same detector or some photons are not registered at

all. As this leads to additional noise, the quality of the ob-

served states is dependent on the photon detection efficiency.

For our setup we determined an efficiency for the photon

coupling to the single-mode fiber of hc< 1

3
and a detection

efficiency of hd< 1

3
. For calculating the fidelity in that case,

these loss channels are accounted for by additional beam
splitters with ancillary output modes f19g, where reflected
photons are lost and transmitted photons swith probability
hid correspond to detectable photons. We consider for this
calculation all photon terms of five photons fsee Eq. s9dg and
the next higher-order contribution from six photons, which
are obtained from the multiplication of Eqs. s6d with s7d. The
numerical results are shown in Figs. 5scd and 5sdd. The fidel-
ity of the state uW4l reaches its maximum of 0.776 for uzwu
=0.39 independent of fw. For larger uzwu the fidelity de-
creases due to the increase of the multiple-photon terms of
the WCB. For lower uzwu the fidelity decreases as the contri-
bution from the third-order SPDC emission constitutes the
major source of noise. The fidelity of the state uGHZ4

+l
reaches its maximum of 0.701 for uzwu=0.6. Again, it is phase
dependent with maximal values for fw=p /2. The depen-
dence on uzwu follows the same arguments as given for the W4

state.
The calculations show that the fidelity of each state is still

high enough to demonstrate, e.g., four-photon entanglement
via an entanglement witness, as for the state uW4l suGHZ4

+ld a
fidelity larger than 0.75 s0.5d is sufficient for this purpose
f24,34g. However, in the considerations so far, we neglected
other experimental imperfections, like spectral distinguish-

ability of photons. For pulsed type-II SPDC it is known that

the broad pump spectrum results in the generation of photons

with partial spectral distinguishability f35,36g, which leads to
an additional reduction in state fidelity. For example, the

state uD4
s2dl described in Sec. III A was observed with a fidel-

ity of Fexpt=0.84460.008 f11g. This fidelity value can be

partly ascribed to higher-order contributions of the SPDC

emission, which give a reduction in fidelity of about 9%

f37g. However, the missing 7% can be attributed to a remain-

ing degree of distinguishability of the SPDC photons and

nonideal optical components. It is reasonable to expect that

at least the same additional reduction of the fidelity in the

proposed implementation occurs. Then, the fidelity for the

state uW4l is below the threshold for proving four-partite en-

tanglement directly.

For this reason we suggest to use a sheraldedd single-

photon source instead of a WCB in order to achieve higher

fidelity values. The utilization of a single-photon source

avoids, on the one hand, noise from higher-order contribu-

tions of the WCB and therefore also phase dependence of the

state. On the other hand, even noise from the SPDC alone

would become negligible as the heralding signal from the

single-photon source serves as a trigger for a valid detection

event, and thus, the SPDC noise is suppressed. Alternatively,

one could realize the state uD6
s3dl with photons coming from

the third-order SPDC emission, however at the cost of intro-

ducing again SPDC higher-order noise. Both alternative

implementations demand new and stronger photon sources,

which are currently being developed.

IV. CONCLUSION

We have demonstrated possibilities for the observation of

SLOCC-inequivalent families of three- and four-qubit en-

FIG. 5. sColor onlined Calculated fidelity of W4 sad and GHZ4
+

sbd states when considering only five-photon contributions fEq. s9dg.
Calculated fidelity of W4 scd and GHZ4

+ sdd states when considering
also six-photon contributions. All calculations assume a strength of

the SPDC source of uzdcu=0.17, which we experimentally observed
for our setup.
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tangled states. They are based on the property of the states

uD4
s2dl and uD5l to allow access to different classes of quan-

tum states via projective measurements on single qubits.

We experimentally demonstrated that indeed all types of

three-qubit entangled states can be obtained from uD4
s2dl. We

presented a scheme how the states uD5l can be observed ex-

perimentally. As this requires the use of an additional photon,

it still poses a considerable challenge when reasonable count

rates are to be achieved. We could demonstrate that the most

simple approach—i.e., substituting the single photon by a

weak coherent beam—leads to a drastic reduction of the state

quality. Yet we identified two alternative possibilities to re-

alize the powerful scheme we presented, which both seem

achievable in the near future.

Altogether, our scheme is an alternative method f6,9g for
the observation of many different multipartite entangled

states. We are optimistic that sources for the observation of

the presented states will soon be available and that schemes

relying on the same kind of approach will allow the obser-

vation of many other interesting quantum states in the future.
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1. Introduction

Entanglement plays a central role in quantum mechanics and in quantum information

processing applications [1]. Moreover, it is also the main goal in today’s quantum physics

experiments aiming to create various quantum states [2]. For example, entanglement

has been realized with photonic systems using parametric down-conversion and conditional

detection [3]–[9], with trapped cold ions [10]–[12], in cold atomic ensembles [13], in cold

atoms in optical lattices [14] and in diamond between the electron and nuclear spins [15].

These experiments aimed at creating entangled states. Entanglement makes it possible for some

quantum algorithms (e.g. prime factoring, searching in a database) to outperform their classical

counterparts. Entangled particles are needed for quantum teleportation and other quantum

communication protocols. Moreover, the creation of large entangled states might lead to new

insights about how a classical macroworld emerges from a quantum microworld.

In a multi-qubit experiment, typically the full density matrix is not known, and only few

measurements can be made, yet one would still like to ensure that the prepared state is entangled.

One possibility is applying entanglement witnesses [16, 17]. These are observables that have a

positive expectation value for separable states, while for some entangled states their expectation

value is negative. Since these witness operators are multi-qubit operators, they typically cannot

be measured directly and must be decomposed into the sum of locally measurable operators,

which are just products of single-qubit operators [4, 18, 19].

For many quantum states, like the Greenberger–Horne–Zeilinger (GHZ, [20]) states and

the cluster states [21] such a decomposition of projector-based witness operators seems to be
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3

very difficult: the number of terms in a decomposition to a sum of products of Pauli matrices

increases rapidly with the number of qubits. However, practically useful entanglement witnesses

with two measurement settings can be constructed for such states [5, 22]. It also turned out that

there are decompositions of the projector for GHZ and W states in which the increase with the

number of qubits is linear [23].

However, optimal decomposition of an operator is a very difficult, unsolved problem.

Moreover, in general, it is still a difficult task to construct efficient entanglement witnesses for

a given quantum state. For that, typically we need to obtain the maximum of some operators for

product states. In most of the cases, we would like to detect genuine multipartite entanglement.

For that, we need to obtain the maximum of these operators for biseparable states, which is

again a very hard problem.

In this paper, our goal is to design witnesses that make it possible to detect genuine

multipartite entanglement with few measurements, and also to estimate the fidelity of an

experimentally prepared state with respect to the target state. Here three strategies are applied

to find an experimentally realizable witness. (i) The first strategy is based on measuring the

projector-based witness

W
(P) = const. ·1− |9〉〈9| (1)

for the detection of genuine multipartite entanglement. |9〉 is the target state of the experiment.

For reducing experimental effort, the aim is to find an efficient decomposition of the projector.

(ii) The second strategy is to find a witness that needs fewer measurements than the projector

witness, but the price for that might be a lower robustness against noise. The search for such a

witness can be simplified if we look for a witnessW such that

W −αW (P)
> 0 (2)

for some α > 0. Such a witness is guaranteed to detect genuine multi-qubit entanglement. The

advantage of this approach is that the expectation value ofW can be used to find a lower bound

on the fidelity. (iii) The third strategy is to find a witness independent from the projector witness.

In this case, one has to find an easily measurable operator whose expectation value takes its

maximum for the target state. Then, one has to find the maximum of this operator for biseparable

states. Any state that has an operator expectation value larger than that is genuine multipartite

entangled.

For the optimization of entanglement witnesses for small experimental effort and large

robustness to noise, we use semidefinite programming [24]–[29]. Our methods can efficiently

be used for multi-qubit systems with up to about 10 qubits. This is important, since there are

many situations where semidefinite programming could help theoretically, but in practice the

calculations cannot be carried out even for systems of modest size.

We use our methods to design witnesses detecting entanglement in the vicinity of

symmetric Dicke states. An N -qubit symmetric Dicke state with m excitations is defined

as [30, 31]

|D
(m)

N
〉 :=

(

N

m

)−1/2
∑

k

Pk(|11, 12, . . . , 1m, 0m+1, . . . , 0N 〉), (3)

where
∑

k
Pk(.) denotes summation over all distinct permutations of the spins. |D

(1)

N
〉 is

the well-known N -qubit W state. The witnesses we will introduce in the following have

already been used in the photonic experiment described in [32], aiming to observe a |D
(3)

6 〉
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state [32]8. We show that genuine multi-qubit entanglement can be detected and the fidelity

with respect to the above highly entangled state can efficiently be estimated with two and three

measurement settings, respectively. As a byproduct, we will also derive an upper bound for the

number of settings needed to measure any permutationally invariant operator. We show that

such operators can be efficiently measured even for large systems.

The structure of our paper is as follows. In section 2, we present the basic methods for

constructing witnesses. In section 3, we use these methods for constructing witnesses to detect

entanglement in the vicinity of a six-qubit symmetric Dicke state with three excitations. In

section 4, we present witnesses for states obtained from the above state by measuring some

of the qubits. In appendix A, we summarize the tasks that can be solved by semidefinite

programming, when looking for suitable entanglement witnesses. In appendix B, we summarize

some of the relevant numerical routines of the QUBIT4MATLAB 3.0 program package [34].

In appendix C, we present entanglement conditions for systems with 5–10 qubits that will be

relevant in future experiments.

2. Basic definitions and general methods

A multi-qubit quantum state is entangled if it cannot be written as a convex combination of

product states. However, in a multi-qubit experiment we would like to detect genuine multi-

qubit entanglement [35]: the presence of such entanglement indicates that all the qubits are

entangled with each other, not only some of them. We will now need the following definitions:

Definition 1. A pure multi-qubit quantum state is called biseparable if it can be written as the

tensor product of two, possibly entangled, multi-qubit states

|9〉 = |91〉⊗ |92〉. (4)

A mixed state is called biseparable, if it can be obtained by mixing pure biseparable states. If a

state is not biseparable then it is called genuine multi-partite entangled. In this paper, we will

consider witness operators that detect genuine multipartite entanglement.

Definition 2. While an entanglement witness is an observable, typically it cannot be measured

directly. This is because in most experiments only local measurements are possible. At each

qubit k we are able to measure a single-qubit operator Mk, which we can do simultaneously

at all the qubits. If we repeat such measurements, then we obtain the expectation values

of 2N − 1 multi-qubit operators. For example, for N = 3 these are M1⊗1⊗1, 1⊗M2⊗1,

1⊗1⊗M3, M1⊗M2⊗1, M1⊗1⊗M3, 1⊗M2⊗M3, M1⊗M2⊗M3. The set of single-qubit

operators measured is called the measurement setting [4] and it can be given as

{M1, M2, M3, . . . , MN }. When we consider an entanglement condition, it is important to know

how many measurement settings are needed for its evaluation.

Definition 3. Many experiments aim at preparing some, typically pure quantum state %. An

entanglement witness is then designed to detect the entanglement of this state. However, in real

experiments such a state is never produced perfectly, and the realized state is mixed with noise

as given by the following formula:

%noisy(pnoise)= (1− pnoise)% + pnoise%noise, (5)

8 For another experiment aiming to observe a six-qubit Dicke state see Prevedel et al [33]. See also the related

theoretical work of Campbell et al [33].
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where pnoise is the ratio of noise and %noise is the noise. If we consider white noise then

%noise = 1/2N . The noise tolerance of a witness W is characterized by the largest pnoise for

which we still have Tr(W%noisy) < 0.

In this paper, we will consider three possibilities for detecting genuine multi-qubit

entanglement, explained in the following subsections. Later, we will use these ideas to construct

various entanglement witnesses.

2.1. Projector witness

A witness detecting genuine multi-qubit entanglement in the vicinity of a pure state |9〉 can be

constructed with the projector as

W
(P)
9 := λ2

91− |9〉〈9|, (6)

where λ is the maximum of the Schmidt coefficients for |9〉, when all bipartitions are

considered [4]. For the states considered in this paper, projector-based witnesses are given

by [4, 12, 37]

W
(P)

D(N,N/2) :=
1

2

N

N − 1
1− |D

(N/2)

N 〉〈D
(N/2)

N |, (7)

W
(P)

D(N,1) :=
N − 1

N
1− |D

(1)

N 〉〈D
(1)

N |. (8)

These witnesses must be decomposed into the sum of locally measurable terms. For this

decomposition, the following observations will turn out to be very important.

Observation 1. A permutationally invariant operator A can always be decomposed as [45]

A =
∑

n

cna⊗N
n , (9)

where an are single-qubit operators, and such a decomposition can be straightforwardly

obtained.

Proof. Any permutationally invariant multi-qubit operator A can be decomposed as

A =
∑

n

cn

∑

k

Pk(Bn,1⊗ Bn,2⊗ Bn,3⊗ · · ·⊗ Bn,N )Pk, (10)

where Bn,m are single-qubit operators, cn are constants, and Pk are the full set of operators

permuting the qubits. For odd N , we can use the identity

∑

k

Pk(Bn,1⊗ Bn,2⊗ Bn,3⊗ · · ·⊗ Bn,N )Pk

= 2−(N−1)
∑

s1,s2,...=±1,

s1s2s3···sN=+1

(s1 Bn,1 + s2 Bn,2 + s3 Bn,3 + · · ·)⊗N . (11)
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Substituting (11) into (10), we obtain a decomposition of the form (9). Equation (11) can be

proved by carrying out the summation and expanding the brackets. Due to the s1s2s3 · · · sN = +1

condition, the coefficient of Bn,1⊗ Bn,2⊗ Bn,3⊗ · · ·⊗ Bn,N is 1. The coefficient of terms like

Bn,1⊗ Bn,1⊗ Bn,3⊗ · · ·⊗ Bn,N , that is, terms containing one of the variables more than once is

zero. For even N , a similar proof can be carried out using9

∑

k

Pk(Bn,1⊗ Bn,2⊗ Bn,3⊗ · · ·⊗ Bn,N )Pk

= 2−(N−1)
∑

s1,s2,...=±1,

s1s2s3···sN=+1

s1(Bn,1 + s2 Bn,2 + s3 Bn,3 + · · ·)⊗N . (12)

Next, we give two examples for the application of (11) and (12) for the decomposition of simple

expressions
∑

k

Pk(σx ⊗ σy)Pk =
1

2

{

(σx + σy)
⊗2− (σx − σy)

⊗2
}

, (13)

∑

k

Pk(σx ⊗ σy ⊗ σz)Pk =
1

4

{

(σx + σy + σz)
⊗3 + (σx − σy − σz)

⊗3 + (−σx − σy + σz)
⊗3

+(−σx + σy − σz)
⊗3

}

, (14)

where σk are the Pauli spin matrices. While the first example does not reduce the number of

settings needed, the second example reduces the number of settings from 6 to 4. ut

Next, we present a method to get efficient decompositions for permutationally invariant

operators.

Observation 2. Any N -qubit permutationally invariant operator A can be measured with at

most

LN =
2

3
N 3 + N 2 + 4

3
N (15)

local measurement settings, using (11) and (12).

Proof. We have to decompose first A into the sum of Pauli group elements as

A =
∑

i, j,m: i+ j+m6N

ci jm

∑

k

Pk(σ
⊗i
x ⊗ σ⊗ j

y ⊗ σ⊗m
z ⊗1

⊗(N−i− j−m))Pk, (16)

where ci jm are some constants. Then, such a decomposition can be transformed into another one

of the form (9), using (11) and (12). All of the settings needed are of the form {a, a, a, . . . , a}

where a = nxσx + nyσy + nzσz, nk are integer and 16
∑

k |nk|6 N . Simple counting leads to an

upper bound LN for the number of settings given in (15). Here we considered that (nx , ny, nz)

and (−nx ,−ny,−nz) describe the same setting. An even better bound can be obtained using that

(nx , ny, nz) and (cnx , cny, cnz) for some c 6= 0 represent the same setting. An algorithm based

9 A similar decomposition with continuous number of terms is of the form
∑

k Pk(B1⊗ B2⊗ . . .)Pk ∝
∫

φk∈[0,2π ]
[eiφ1 B1 + eiφ2 B2 + · · ·+ eiφN−1 BN−1 + e−i(φ1+φ2+···+φN−1) BN ]⊗N dφ1dφ2 · · · dφN−1. Such a construction has

been used for the N = 2 case in [48].
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on this leads to the bounds L′N = 9, 25, 49, 97, 145, 241, 337, 481, 625 for N = 2, 3, . . . , 10

qubits, respectively.

For the projector |D
(N/2)

N 〉〈D
(N/2)

N |, the decomposition to Pauli group elements contain only

terms in which each Pauli matrix appears an even number of times. Hence, all of the settings

needed are of the form {a, a, a, . . . , a} where a = 2nxσx + 2nyσy + 2nzσz, nk are integer and

16
∑

k |nk|6 N/2. For this reason, LN/2 and L′N/2 are upper bounds for the number of settings

needed to measure this operator.

Let us discuss the consequences of observations 1 and 2. They essentially state that

the number of settings needed to measure a permutationally invariant operator scales only

polynomially with the number of qubits. This is important since for operators that are not

permutationally invariant, the scaling is known to be exponential [36]. Moreover, even if we can

measure only correlation terms of the form a⊗N , we can measure any permutationally invariant

operator. ut

2.2. Witnesses based on the projector witness

We can construct witnesses that are easier to measure than the projector witness, but they are

still based on the projector witness. We use the idea mentioned in the introduction. IfW (P) is the

projector witness and (2) is fulfilled for some α > 0, thenW is also a witness. This is becauseW

has a negative expectation value only for states for whichW (P) also has a negative expectation

value. The advantage of obtaining witnesses this way is that we can have a lower bound on the

fidelity from the expectation value of the witness as

Tr(%|9〉〈9|)> λ2
9 −

1

α
Tr(W%). (17)

We will look for such witnesses numerically, such that the noise tolerance of the witness

be the largest possible. This search can be simplified by the following observation.

Observation 3. Since we would like to construct a witness detecting genuine multi-qubit

entanglement in the vicinity of a permutationally invariant state, it is enough to consider witness

operators that are also permutationally invariant.

Proof. Let us consider a witness operator that detects entanglement in the vicinity of a

permutationally invariant state % and its expectation value takes its minimum for %. Then, based

on (5), the witnessW detects entanglement if

pnoise >
Tr(W%)

Tr(W%)−Tr(W%noise)
. (18)

For a permutationally invariant state %, we have % = 1

NP

∑
k Pk%Pk, where NP is the number of

different permutation operators Pk . We assume that the same holds also for %noise. Let us define

the permutationally invariant operator W ′ = 1

NP

∑
k PkWPk. The operator W ′ is non-negative

on all biseparable states since

inf
%∈B

Tr(W%)=
1

NP

∑

k

inf
%∈B

Tr(WPk%Pk)6 inf
%∈B

Tr(W ′%), (19)

where B is the set of biseparable states. Hence, W ′ is a witness detecting genuine

multipartite entanglement. Since we have Tr(W%)= Tr(W ′%), and Tr(W%noise)= Tr(W ′%noise),
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the robustness to noise ofW ′ is identical to that ofW . Hence, it is sufficient to look for witnesses

that are permutationally invariant.

We will first consider measuring the {σx , σx , σx , σx , σx , σx} and {σy, σy, σy, σy, σy, σy}

settings, where σl are the Pauli spin matrices. This we call the two-setting case. Then we will

consider measuring also the {σz, σz, σz, σz, σz, σz} setting, which we call the three-setting case.

Due to observation 3, we consider only permutationally invariant witnesses. Such witnesses can

be written as

W(α0, {αln}) := α0 ·1 +
∑

l=x,y,z

N∑

n=1

αln

∑

k

Pk[σ⊗n
l ⊗1

⊗(N−n)], (20)

where the summation is over all distinct permutations, and α0 and αln are some constants. We

will consider a simpler but equivalent formulation

W(c0, {cln}) := c0 ·1 +
∑

l=x,y,z

N∑

n=1

cln J n
l , (21)

where c0, cln are the coefficients of the linear combination defining the witness and Jl are the

components of the total angular momentum given as

Jl =
1

2

N∑

k=1

σ
(k)

l . (22)

Here σ
(k)

l denotes a Pauli spin matrix acting on qubit (k).

Finally, if we consider detecting entanglement in the vicinity of |D
(N/2)

N 〉 states, then further

simplifications can be made. For this state and also for the completely mixed state all odd

moments of Jl have a zero expectation value. For any witness of the form (21), the maximum

for biseparable states does not change if we flip the sign of cln for all odd n. Hence, following

from an argument similar to the one in observation 3 concerning permutational symmetry, it is

enough to consider only even powers of Jl in our witnesses. ut

2.3. Witnesses independent from the projector witness

In general, we can also design witnesses without any relation to the projector witness. We can

use an easily measurable operator M to make a witness of the form

W := c1−M, (23)

where c is some constant. To make sure that (23) is a witness for genuine multipartite

entanglement, i.e. 〈W〉 is positive on all biseparable states, we have to set c to

c = max
|9〉∈B

〈M〉|9〉, (24)

where B is the set of biseparable states. The optimization needed for (24) can be done

analytically. For example, for the |D
(2)

4 〉 state a witness has been presented that detects genuine

four-qubit entanglement by measuring second moments of angular momentum operators [37].

However, analytical calculations become exceedingly difficult as the number of qubits increases.

The optimization can also be done numerically, but one cannot be sure that simple

numerical optimization finds the global maximum. (See appendix B for a reference to such

a MATLAB program.) Semidefinite programming is known to find the global optimum, but
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the optimization task (24) cannot be solved directly by semidefinite programming. Instead

of looking for the maximum for biseparable states, using semidefinite programming, we can

look for the maximum for states that have a positive partial transpose (PPT) [24, 38] (see

appendices A and B). This way we can obtain

c′ :=max
I

max
%>0,%TI>0

〈M〉%, (25)

for which c′ > c. The first maximization is over all bipartitions I . Thus, when putting c′ into

the place of c in (23), we obtain a witness that detects only genuine multipartite entanglement.

In many cases simple numerics show that c = c′. In this case, our witnesses are optimal in the

sense that some biseparable state gives a zero expectation value for these witnesses.

Finally, let us discuss how to find the operator M in (23) for a two- or a three-

setting witness, in particular, for detecting entanglement in the vicinity of |D
(N/2)

N 〉. Based on

section 2.2, we have to look for an operator that contains only even powers of Jl . Hence, the

general form of a two-setting witness with moments up to second order is

W
(I 2)

D(N,N/2) := cDN − (J 2
x + J 2

y ), (26)

where cDN is a constant10. The coefficients of J 2
x and J 2

y could still be different, however, this

would not lead to witnesses with a better robustness to noise.

For other symmetric Dicke states, based on similar arguments, a general form of a witness

containing moments of Jl up to second order such that it takes its minimum for |D
(m)

N 〉 is of the

form

W
(I 3)

D(N,m) := cq − (J 2
x + J 2

y ) + q(Jz −〈Jz〉|D(m)
N 〉

)2, (27)

where cq and q are constants. For the witnesses described in this section, the optimization

process is more time-consuming than for the witnesses related to the projector witness. Because

of that we presented witnesses of the above type that are constructed only with the first and

second moments of the angular momentum operators, and thus contain a few free parameters.

3. Witnesses for a six-qubit Dicke state with three excitations

In this section, we will consider entanglement detection close to a six-qubit symmetric Dicke

state with three excitations, denoted as |D
(3)

6 〉. There are several proposals for creating Dicke

states in various physical systems [40]–[43].

3.1. Witnesses based on the projector witness

3.1.1. Two-setting witness. Let us consider the two-setting case and define first the optimi-

zation problem we want to solve. We would like to look for the witnessW with the largest noise

tolerance that fulfills the following requirements:

1. W is a linear combination of certain basis operators Bk, that is,W =
∑

k ck Bk,

2. W −αW
(P)

D(6,3) > 0 with some α > 0.

10 Witnesses for the state |D
(3)

6 〉 are presented with the structure factor in [39]. In a sense, these witnesses are

written with collective quantities, after a site-dependent phase shift is applied.
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For the two-setting case we set {Bk} = {1, J 2
x , J 2

y , J 4
x , J 4

y , J 6
x , J 6

y }. The second condition makes

sure thatW is also a witness detecting genuine multipartite entanglement.

Note that any optimization algorithm can be used for looking forW . Even if we do not find

the global optimum, that is, the witness with the largest possible robustness to white noise,W is

still a witness detecting genuine multipartite entanglement. However, semidefinte programming

can be used to find the global optimum (see appendix A). The two-setting witness obtained this

way is

W
(P2)

D(6,3) := 7.75 ·1− 35

18
(J 2

x + J 2
y ) + 55

72
(J 4

x + J 4
y )− 5

72
(J 6

x + J 6
y ), (28)

which tolerates white noise if pnoise < 0.1391. Straightforward calculation shows thatW
(P2)

D(6,3)−

2.5W (P) > 0. Based on (17), (0.6−〈W
(P2)

D(6,3)〉/2.5) bounds the fidelity from below.

3.1.2. Three-setting witness. Similarly we can look for the optimal witness for the three-

setting case. The result is

W
(P3)

D(6,3) := 1.5 ·1− 1

45
(J 2

x + J 2
y ) + 1

36
(J 4

x + J 4
y )− 1

180
(J 6

x + J 6
y ) + 1007

360
J 2

z −
31

36
J 4

z + 23

360
J 6

z . (29)

White noise is tolerated if pnoise < 0.2735. It is easy to check that W is a witness as W
(P3)

D(6,3)−

2.5W (P) > 0.

Based on (17), the expectation value of this witness can be used to bound the fidelity

as F > 0.6−〈W
(P3)

D(6,3)〉/2.5=: F ′. Here we will demonstrate how well the fidelity estimation

works for our witness for noisy states. We consider first white noise, then non-white noise of

the form

%
(NW)

noisy := pD63|D
(3)

6 〉〈D
(3)

6 |+
1− pD63

2

(

|D
(2)

6 〉〈D
(2)

6 |+ |D
(4)

6 〉〈D
(4)

6 |

)

, (30)

with pD63 = 4/7, which is one of the relevant types of noise for the experiment of [32]. Note

that the noise contains the original state |D
(3)

6 〉〈D
(3)

6 |. The results are shown in figure 1. For the

non-white noise (30), the fidelity estimate based on the witness yields a very good estimate.

Note that it is also possible to design a witness for the largest possible tolerance to the

noise in (30). Due to the special form of the noise, the fidelity estimate turns out to be equal

to the fidelity. This is remarkable: the fidelity can be obtained exactly with only three local

measurements.

3.1.3. Measuring the projector-based witness. For measuring the projector-based witness (7)

for N = 6, one has to decompose the projector in an efficient way. The straightforward

decomposition into the weighted sum of products of Pauli spin matrices leads to a scheme that

needs 183 settings, since for all local operators all the permutations have to be measured. The

number of settings needed can be dramatically decreased if one is looking for a decomposition

of the form (9). Observation 1 makes it possible to decompose the projector in this way such

that only 25 settings are needed. We could further decrease the number of settings needed and

found the following decomposition:

64|D
(3)

6 〉〈D
(3)

6 | = −0.6[1] + 0.3[x ±1]− 0.6[x] + 0.3[y±1]− 0.6[y] + 0.2[z±1]− 0.2[z]

+0.2Mermin0,z + 0.05[x ± y±1]− 0.05[x ± z±1]− 0.05[y± z±1]

−0.05[x ± y± z] + 0.2[x ± z] + 0.2[y± z] + 0.1[x ± y]

+0.6Merminx,z + 0.6Merminy,z. (31)
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Figure 1. The fidelity F versus noise (solid) and the fidelity estimate F ′

versus noise (dotted), for the white noise (bottom two curves) and for the non-

white noise (30) (top two curves). For the fidelity estimate, the three-setting

witness (29) was used.

Here we use the notation [x + y]= (σx + σy)
⊗6, [x + y + 1]= (σx + σy + 1)⊗6, etc. The ± sign

denotes a summation over the two signs, i.e., [x ± y]= [x + y] + [x − y]. The Mermin operators

are defined as

Mermina,b :=
∑

k even

(−1)k/2
∑

k

Pk(⊗k
i=1σa ⊗N

i=k+1 σb), (32)

where σ0 = 1. That is, it is the sum of terms with even number of σa’s and σb’s, with the sign of

the terms depending on the number of σa’s. The expectation value of the operators Mermina,b

can be measured based on the decomposition [23]

Mermina,b =
2N−1

N

N
∑

k=1

(−1)k
[

cos

(

kπ

N

)

a + sin

(

kπ

N

)

b
]⊗N

. (33)

Hence, Merminx,z and Merminy,z can be measured with six settings. Mermin0,z, on the other

hand, needs only the measurement of the {σz, σz, σz, σz, σz, σz} setting. Knowing that [A],

[A + 1] and [A−1] can be measured with a single setting {A, A, A, . . . , A}, we find that 21

measurement settings are needed to measure |D(3)

6 〉〈D
(3)

6 | : x, y, z, x ± y, x ± z, y± z,
√

3x ±
z,
√

3z± x,
√

3y± z,
√

3z± y, and x ± y± z. The settings are also shown in figure 2(a)11.

3.2. Witness independent from the projector witness

So far we constructed witnesses that detected fewer states than the projector-based witness,

in return, they were easier to measure. When proving that they were witnesses, we used the

11 Note that [33] presents another decomposition that needs also 21 settings.
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Figure 2. (a) The measurement settings needed to measure the projector

to the six-qubit symmetric Dicke state with three excitations based on the

decomposition (31). A point at (x, y, z) indicates measuring xσx + yσy + zσz on

all qubits. ( ) Settings for Merminx,z, ( ) settings for Merminy,z, ( ) σx ± σy ± σz,

and ( ) rest of the settings. (b) Settings for the four-qubit Dicke state with

two excitations based on (37). ( ) ±σx , ±σy, ±σz, and ( ) σx ± σy, σx ± σz, and

σy ± σz.

Table 1. The list of entanglement witnesses presented in this paper, together

with the number of measurement settings needed to measure them and their

robustness to white noise. Top four lines: six-qubit witnesses. Bottom five lines:

four- and five-qubit witnesses.

Witness Number of settings Noise tolerance

W
(P)

D(6,3) 21 0.4063

W
(P3)

D(6,3) 3 0.2735

W
(P2)

D(6,3) 2 0.1391

W
(I 2)

D(6,3) 2 0.1091

W
(I 2)

D(5,2) 2 0.1046

W
(P)

D(4,1) 7 0.2667

W
(I 2)

D(4,1)(q = 1.47) 3 0.1476

W
(P)

D(4,2) 9 0.3556

W
(P3)

D(4,2) 2 0.2759

simple relation (2). Following the example of [37], we now look for a two-setting witness of the

form (26) for N = 6 that is independent from the projector witness. For determining cD6, we

need to compute the maximum of J 2
x + J 2

y for biseparable states for all the possible bipartitions.

As we have discussed in section 2.3, instead of looking for the maximum for states that are
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separable with respect to a certain bipartition, we can also look for the maximum for PPT states

(see appendix A). We obtain

cD6 := 11.0179. (34)

W
(I 2)

D(6,3) detects genuine multipartite entanglement if for white noise pnoise < 0.1091. Simple

numerical optimization leads to the same value for the maximum for biseparable states12. Hence

we find that our witness is optimal. Finally, the list of witnesses presented in this section are

shown in the top part of table 1.

4. Witnesses for states derived from |D
(3)
6 〉 via projections

By projective measurements of one or two of the qubits we can obtain several states that

are inequivalent under stochastic local operations and classical communication (SLOCC).

Surprisingly, these states still possess genuine multipartite entanglement [32, 44]. Next, we

discuss how to detect the entanglement of these states.

4.1. Witnesses for the superposition of five-qubit Dicke states

After measuring one of the qubits in some basis and post-selecting for one of the two outcomes,

one can obtain states of the form

%D5 := c1|D
(2)

5 〉+ c2|D
(3)

5 〉, (35)

where |c1|
2 + |c2|

2 = 1. For such states, the expectation value of J 2
x + J 2

y is maximal, thus a

witness of the form (26) for N = 5 is used to detect their entanglement. Both semidefinite

programing and simple numerical optimization leads to cD5 := 7.8723. Naturally, 〈W
(I 2)

D5 〉 is

minimal not only for states of the form (35), but for any mixture of such states.

4.2. Witness for the four-qubit W state

Now we will construct witnesses for a four-qubit W state, which is obtained from |D
(3)

6 〉 if two

qubits are measured in the σz basis, and the measurement result is +1 in both cases. We consider

a witness of the form (27) for N = 4 and m = 1. We try several values for q and determine cq

for the witnessWD(4,1)(q) as a function of q using semidefinite programming. For each witness

we also compute the noise tolerance. The results of these computations can be seen in figure 3.

It turns out, that the best witness is obtained for q = 1.47 and cq = 4.1234. It tolerates white

noise if pnoise < 0.1476.

4.3. Three-setting witness for the four-qubit Dicke state

A |D
(2)

4 〉 state can also be obtained from |D
(3)

6 〉, namely if the measurement outcomes are +1

and−1 for two consecutive σz measurements. For that case, we look for a three-setting witness,

based on the projector witness. For white noise, the result is

W
(P3)

D(4,2) := 2 ·1 + 1

6
(J 2

x + J 2
y − J 4

x − J 4
y ) + 31

12
J 2

z −
7

12
J 4

z . (36)

12 We used the maxbisep routine of the QUBIT4MATLAB V3.0 package [34] with parameters for accuracy

[30 000, 100 000, 0.0005]. See also appendix B.
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Figure 3. The noise tolerance of the witness W
(I 3)

D(1,4) given in (27) as a function

of the parameter q. The maximum is in the vicinity of q = 1.47.

The witness tolerates white noise if pnoise < 0.2759. It is easy to check thatW is a witness: one

has to notice that W
(P3)

D(4,2)− 3W
(P)

D(4,2) > 0, were W
(P)

D(4,2) is defined in (7). Thus, the fidelity can

be estimated from the measurement of the witness as F > 2/9−〈W
(P3)

D(4,2)〉/3.

4.4. Measuring the projector witness for the four-qubit Dicke state

We can also measure the projector witness W
(P)

D(4,2) =
2

3
1− |D

(2)

4 〉〈D
(2)

4 |. The method in

observation 1 gives the following decomposition for the projector

16|D
(2)

4 〉〈D
(2)

4 | =
2

3
([x] + [x ±1] + [y] + [y±1]) + 1

3
(8[z]− [z±1]− [x ± z]− [y± z])

+1

6
[x ± y]. (37)

The nine measurement settings are x, y, z, x ± y, x ± z and y± z, shown also in figure 2(b).

The list of witnesses presented in this section are given in the bottom part of table 1.

5. Conclusions

In summary, we presented general methods for constructing entanglement witnesses for

detecting genuine multipartite entanglement in experiments. In particular, we considered

projector-based witnesses and found efficient decompositions for them. Then, we constructed

two- and three-setting witnesses for symmetric Dicke states that were based on the projector

witness, as well as independent of the projector witness. We applied our methods to design

witnesses for the recent experiment observing a six-qubit symmetric Dicke state with three

excitations [32]. Our methods can be generalized for future experiments. As a first step, in

appendix C we list some entanglement witnesses for systems with 5–10 qubits. Moreover, recent

results on the symmetric tensor rank problem suggest that decompositions more efficient than

the one in observation 1 are possible, however, they involve complex algorithms [45]. Thus,

it would be interesting to look for better upper bounds for the number of settings used for

symmetric operators.
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Appendix A. Semidefinite programming used for obtaining witnesses

Here we summarize two optimization problems that are useful for designing entanglement

witnesses and can be solved with semidefinite programming. Both tasks are related to designing

witnesses that are easy to measure.

1. Semi-definite programming can be used to find the witness W with the largest noise

tolerance as explained in the beginning of section 3.1.1. The corresponding task can be

formulated as

minimize
∑

k

ckTr(Bk%noise),

subject to
∑

k

ckTr(Bk%)=−1,

∑

k

ck Bk −αW (P)
> 0,

α > 0.

(A.1)

Here % is the state around which we detect entanglement. %noise is the noise, not necessarily

white. The optimization is over α and the ck’s.

2. Semi-definite programming can be used to look for the maximum for PPT bipartite states.

This gives an upper bound on the maximum for biseparable states. In many cases, the two

coincide. The corresponding task can be formulated as a standard semidefinite program as

minimize −Tr(M%),

subject to % > 0,

Tr(%)= 1,

%TA > 0.

(A.2)

Here TA means partial transpose according to some groups of the qubits.

Appendix B. List of MATLAB subroutines

We summarize some of the MATLAB routines of the QUBIT4MATLAB 3.0 package that can

be used for the calculations necessary for designing entanglement witnesses. A full list of the

commands is given in [34].

The command decompose can be used to obtain a decomposition of a Hermitian operator

into the sum of products of Pauli spin matrices. Moreover, maxsep and maxsymsep can be
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used for getting the maximum for separable multi-qudit states and symmetric product states

for a Hermitian operator, respectively. The command maxbisep gives the maximum for states

that are biseparable with respect to some partitioning of the qubits. The command maxb gives

the maximum for all possible bipartitions. All these commands look for the maximum with a

simple optimization algorithm that is not guaranteed to find the global maximum, nevertheless,

it typically does find it. overlapb gives the maximum overlap of a state |9〉 and biseparable

states. It can be used to construct entanglement witnesses of the type (6).

For semidefinite programming, we used SeDuMi [46] and YALMIP [47]. Two subroutines

based on them are now in QUBIT4MATLAB 4.013. The command optwitness looks for the

best witness that can be composed linearly from a set of operators, while maxppt determines

the maximum of an operator expectation value for states with a PPT for some bipartitioning of

the qubits.

Appendix C. Witnesses for systems with 5–10 qubits

A three-setting witness based on the projector witness for the state |D
(4)
8 〉 is given by

W
(P3)

D(8,4) := 1.3652 ·1 +
∑

l=x,y,z

4
∑

n=1

cln J 2n
l , (C.1)

with

{cln} =





0.0038612 −0.0052555 0.0015016 −0.00010726

0.0038612 −0.0052555 0.0015016 −0.000107266

3.124 −1.07699 0.11916 −0.0038992



 . (C.2)

The noise tolerance for white noise is pnoise < 0.2578. For larger N , we can use the ansatz

W
(P3)

D(N ,N/2) := c1 ·1 + cxy{(σx +1)⊗N + (σx −1)⊗N + (σy +1)⊗N + (σy −1)⊗N }+

N/2
∑

n=1

czn J 2n
z .

(C.3)

For N = 10, the optimal coefficients are c1 = 1.3115, cxy =−0.0023069, and cz =

{3.4681,−1.2624, 0.16494,−0.0084574, 0.000146551}. White noise is tolerated if pnoise <

0.2404. The large noise-tolerance for the N = 10 case suggests that a robust three-setting

witness for |D
(N/2)

N 〉 might be constructed even for large N .

A three-setting witness independent of the projector witness for the N -qubit W state

is given by (27) for m = 1. For N = 5, we have c5 = 5.6242, q5 = 2.22, and the witness

tolerates white noise if pnoise < 0.0744. For N = 6, we have c6 = 7.1095, q6 = 3.13, and noise

is tolerated if pnoise < 0.0401.
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Ultraviolet enhancement cavity for ultrafast nonlinear optics
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Ultrafast ultraviolet light pulses became a key tool for spectroscopic studies, for example, of
molecular formation[1, 2], of carrier dynamics in semiconductors[3] and as source for nonclassical
states of light[4–13]. The power required for many nonlinear processes makes the use of ampli-
fier systems mandatory, a fact, which significantly reduces the available repetition rate and often
lengthens the experimental acquisition time. Here we adopt techniques, recently developed for the
infrared[14–16], to design an enhancement cavity for femtosecond ultraviolet pulses. More than 7 W
average ultraviolet power at 81 MHz repetition rate are now available to pump a nonlinear crystal
inside the cavity. We have characterised the cavity and demonstrated its applicability as powerful
source for entangled multi-photon states. This field-enhancement enables a new scale of experiments
in photonic quantum logic and in other areas of research, for example, to operate optical parametric
amplifiers at high repetition rates or to create high harmonic frequency combs[14–16].

PACS numbers:

Keywords:

Recent developments for generating infrared (IR) fre-
quency combs show that spectrally broad ultra-short
pulses can be enhanced in narrowband resonators, pro-
vided that they are phase coherent with each other[14–
17]. Then, in the time domain picture, a laser pulse
can add to the circulating field inside the resonator. In
the frequency domain this corresponds to the condition,
that the frequency-comb characterising a series of mode-
locked pulses[18] has sufficient overlap with the mode
spectrum of the cavity. The transfer of these methods to
the ultraviolet (UV), a frequency regime not yet tested
for femtosecond pulse enhancement, needs special care
due to the significantly higher dispersion of nonlinear
crystals and air, and due to higher demands on the qual-
ity of the optical components and the stability of the
setup.

An example for a nonlinear optics process in con-
stant need for higher pump powers is spontaneous para-
metric down conversion (SPDC), whereas n photon
pairs are available in its nth order emission, which is
widely applied for multi-photon entanglement experi-
ments. With typical systems using a frequency dou-
bled titanium-sapphire (Ti:Sa) mode-locked laser, with
an average pump power of 0.6W at about 80 MHz
repetition rate, a wavelength of around 400 nm and a
pulse duration between 100 and 150 fs, a series of ex-
periments on four-photon entangled states have been
performed[5, 7, 10, 12]. More recently, high-power os-
cillators providing about 1 W UV pump power allowed
six-photon experiments, but the count rates are rather
low and limit state analysis due to long measurement
times[6, 8, 13]. In contrast, increasing the pulse energy

∗roland.krischek@mpq.mpg.de

by several orders of magnitude, e.g., realised in amplified
femtosecond laser sources working in the kHz regime[19],
leads, at the expense of the repetition rate, to a very high
number of generated photon pairs per pulse. Yet, due to
the limited detection efficiency of the single photon detec-
tors, noise originating from higher order emissions fully
dominates and renders this approach unsuitable for stud-
ies of multi-partite entangled states. Other developments
in alternative sources are promising but not yet mature
enough for multi-photon entanglement generation[20–23]
(see supplementary information). In our work, we employ
for the first time a femtosecond UV enhancement cavity
with a nonlinear crystal inside to address a regime, in
which high multi-photon count rates allow an in-depth
state characterisation[9] and the observation of genuine
six-partite entanglement.

In the experiment, the output of a Ti:Sa laser, de-
livering 130 fs pulses centred at 780 nm with an average
power of 2 W and a repetition rate of fr = 81 MHz, is fre-
quency doubled by a 3 mm lithium triborate (LBO) crys-
tal, yielding an average power of 0.54W at 390 nm. Cru-
cial for multi-photon experiments is the stability of the
system on a time scale of days due to the long measure-
ment times necessary even with increased pump power.
We thus implement a pointing stabilisation, in which
two mirrors on piezoelectric transducers (PZTs) are con-
trolled by the error signals deduced from two quadrant
photodiodes and correct for position and direction fluc-
tuations originating in the laser and frequency doubling
unit. The femtosecond UV enhancement cavity is de-
signed as a bow-tie resonator with an input coupler of
97.5% reflectivity and a dichroic mirror to couple the
SPDC photons out of the cavity (see Fig.1 for details).

The cavity has to be stabilised to continuously match
the free running modes of the Ti:Sa laser. The charac-
teristic frequency comb spectrum fm = mfr + fCE de-
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pends on two parameters: the repetition frequency of the
pulses fr and the carrier-envelope offset fCE . First, we
equalise fr between the laser oscillator and the enhance-
ment cavity by actively adjusting the cavity length. To
this end, an error signal is generated via the Hänsch-
Couillaud-method[24]. This signal, resulting from inter-
ference between the cavity field leaking through the in-
put coupler and a component reflected directly thereof,
is spectrally selected to reduce the impact of the laser’s
spectral envelope instabilities. The error signal controls
two PZT driven mirror mounts, whereby the mirror on
PZT 1 compensates short term (max. 2 µm travel-range,
bandwidth < 10 kHz) and the mirror on PZT 2 long term
drifts (12µm, < 3Hz). Second, additional servo motors
steer the Ti:Sa laser wavelength and prism insertion to
keep its central wavelength at 780 nm and to optimise
the offset frequency fCE for maximising the intra cav-
ity power on a long-time scale (typical locking time of
24 h). Hence, no feedback signal, as, e.g., generated by
an f/2f interferometer[18], is required to control fCE of
the Ti:Sa laser. With this configuration we achieve dur-
ing long-time operation a UV power of PUV = 7.2±0.2W
inside the cavity (see Fig. 1b), which corresponds to an
overall power enhancement of 13.3±0.5. We estimate the
intra cavity pulse length to approximately 175 fs from an
interferometric autocorrelation measurement (see Fig. 1c
and methods).

Air and the nonlinear crystal, here β-barium borate
(BBO), cause dispersion inside the cavity, which distort
the resonant cavity modes away from being equidistant
in frequency and consequently change the resonant spec-
trum. The influence of dispersion is estimated by the
spectrally resolved power enhancement (Fig. 2a, blue
line), which results from dividing the intra-cavity spec-
trum (orange) by the external one in front of the res-
onator (black). The two spectra are similar, indicated by
the flat dependence of the power enhancement around
the centre wavelength, even without dispersion compen-
sation. Removing the crystal and consequently choosing
an input-coupler of 99% reflectivity decreases loss yield-
ing a UV power of 21±1W, i.e., a power enhancement of
almost a factor of 40, again with flat spectral dependence
(Fig. 2a, inset) due to the lower dispersion inside the cav-
ity. The similarity of both power enhancement curves can
be attributed to an increase in acceptance bandwidth of
the resonator for the case with a BBO crystal inside, since
the finesse decreases for higher loss. These measurements
are in good agreement with calculations[16] (Fig. 2b or-
ange and black line, respectively). Additionally, Fig. 2b
shows the expected cavity spectra for an evacuated cav-
ity and for a reduced crystal thickness with a broadband
spectrum as cavity input. Remarkably, in an evacuated
cavity with a 0.5mm thick crystal, pulses of a duration
down to 40 fs (corresponding to ∆λ = 3.9 nm) can be
enhanced without the need of dispersion compensation.

To illustrate the potential of this enhancement cavity
we use it as a new source for experiments on linear optics
quantum logic. To evaluate its performance, we analyse

the statistics of multi-photon events and the achieved en-
tanglement of two-, four-, and six-photon Dicke[25] states
(see supplementary information) depending on the intra
cavity UV pump power. For this purpose IR-photons
created inside the cavity are coupled into a single mode
fibre and a linear optics setup is used to distribute them
to six polarisation analysers (see methods). To evaluate
photon detection statistics and contributions from higher
order emissions we use this setup merely as a polarisation
sensitive photon number detector[26]. In the employed
type-II collinear SPDC process, which generates an equal
number of horizontally (H) and vertically (V) polarised
photons, the emission rate of n photon pairs for typical
pump powers is proportional to (PUV )n (see methods).
The experimentally measured count rates are shown in
Fig. 3 and divided up into two groups: the first one are
coincidences with an equal number of H and V polarised
photons (2) and thus, to a good approximation, propor-
tional to (PUV )n (solid lines in Fig. 3). All other possible
coincidences with an unequal number of H and V po-
larised photons (3) form the second group and can only
be due to an emission of (n+1) photon pairs followed by
photon loss (dashed lines in Fig. 3). Consequently, this
rate is proportional to (PUV )n+1. The decreasing dis-
tance between solid and dashed lines in Fig. 3 for higher
n shows clearly the increasing influence of higher order
emissions. In order to compare our count rates with other
state-of-the-art experiments we evaluate the yield of the
cavity source by estimating the number of six- and eight-
photon events at the output of the fibre (see methods).
For the pump power of PUV = 7.2W we obtain an ef-
fective six- and eight-photon count rate of 527 ± 6 and
3.9± 1.0 coincidences per minute, respectively. The six-
photon count rate is almost 2 orders of magnitude higher
than in any other state of the art experiment[6, 8], also
due to an improved collection efficiency caused by the ad-
ditional mode filtering of the cavity (Fig. 1d; see supple-
mentary information analysing the entanglement of the
observed quantum states depending on the pump power).

In this letter we have introduced a femtoscond UV en-
hancement cavity as a novel device in ultrafast nonlinear
optics. For the particular case of a 1 mm BBO crystal
inside the cavity, we have demonstrated its benefits by
significantly increasing the yield in multi-photon experi-
ments. UV pulses with an approximate duration of 175 fs
have been enhanced by an overall factor of 13 (or even
40 for the case without a crystal), which has resulted in
an improvement of the six-photon count rate by almost
two orders of magnitude. With an average circulating
UV power of more than 7 W and a pulse energy of about
100 nJ at a repetition frequency of 81 MHz this long-time
stable enhancement cavity is well suited for a series of
different applications in nonlinear optics for example as
an efficient source generating squeezed light inside the
cavity[27, 28], as a pump source for optical parametric
amplifiers used, e.g., to study molecular dynamics[1, 2],
or as a possible extension of recent developments for gen-
erating high harmonic far-UV light in a gas jet[14–16].
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FIG. 1: Schematic experimental setup. (a) A mode-locked titanium-sapphire (Ti:Sa) oscillator is pumped by a 10 W cw
laser at 532 nm generating laser pulses of 130 fs duration with an output spectrum centred at 780 nm and an average power
of 2 W. After frequency doubling by a lithium triborate (LBO) crystal the UV beam has an average power of 540 mW at
390 nm. A beam steering unit and mode matching optics prepare the input beam for the bow-tie cavity (inside orange dotted
line) with two focusing mirrors with a radius of curvature of −800mm, generating two beam waists of 100 µm and 330 µm,
respectively. A 1 mm thick β barium borate (BBO) crystal is placed at the smaller waist. Except for the input coupler
(R390nm = 97.5 %), all resonator mirrors are highly reflective (R390nm > 99.9%) at 390 nm and one is additionally highly
transmittive (T780nm > 99.5 %) for the SPDC photons at 780 nm, which are analysed in a linear optics setup. Inset (b) shows
the long-term stability of the cavity over several hours. In (c) the envelope of an interferometric auto-correlation signal is
shown. It is obtained by counting the number of four-photon coincidences in dependence on the delay between split UV pulses.
Inset (d) shows the transversal mode of the cavity, where we determined a beam quality of M2 = 1.15± 0.03. HWP, half wave
plate; QWP, quater wave plate; PZT, piezoelectric transducer; IC, input coupler; SM, single mode fibre; BS, non-polarising
beam splitter cube; PBS, polarising beam splitter cube; PA, polarisation analysis; APD, avalanche photo diode

APPENDIX A: SPDC PHOTON PREPARATION

AND ANALYSIS.

Photons collinearly emitted by the cavity pumped
SPDC are transmitted through a dichroic mirror with
R390 nm > 99.9% and T780 nm > 99.5%. To compensate
for walk-off effects between the horizontally and vertically
polarised photons emitted from the SPDC BBO crystal, a
half-wave plate together with another 0.5mm thick BBO
crystal are positioned outside the cavity. The SPDC pho-
tons are subsequently focused into a single mode fibre to
define their spatial mode. To achieve spectral selection,
a narrowband interference filter (∆λ = 3 nm) is placed
at the output of the fibre. After distributing the pho-
tons into six modes by polarisation independent beam
splitters the birefringence of these beam splitters is com-
pensated by pairs of perpendicularly orientated 200µm

thick birefringent yttrium-vanadate crystals (YVO4) (not
shown in Fig. 1). For each mode we choose the direction
of the polarisation analysis with half- and quarter-wave
plates and detect photons in the outputs of polarising
beam splitters using single photon avalanche photodi-
odes. The detection signals are evaluated by an FPGA
controlled coincidence logic which allows to simultane-
ously register any possible coincidence. To detect the
2n-fold coincidences we consider all possible combina-
tions between the twelve detectors. In order to com-
pare our count rates with other experiments we evaluate
the effective number of six- or eight-photon coincidences
at the output of the fibre taking all possible combina-
tions between the twelve detectors into account. For this
purpose, we divide the experimental count rates by the
probability to observe such events, which is calculated
to be 0.284 for six- and 0.065 for eight-photon events,
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FIG. 2: UV spectra and power enhancement. (a) Measured
intra cavity and external UV spectra with corresponding spec-
tral power enhancement for the case of a 1 mm BBO crystal
inside the cavity and an input-coupler of 97.5% reflectivity.
The spectrally resolved power enhancement is calculated by
scaling the cavity spectrum according to the power inside the
resonator and the external spectrum according to the power
measured in front of the input-coupler. The inset shows the
data for the empty cavity without a BBO crystal and an
input-coupler of 99% reflectivity. (b) Calculated cavity UV
spectra for different dispersion scenarios (using the specifica-
tions of the mirrors provided by the manufacturer). The first
curves correspond to our experiment: (i) orange, 1 mm BBO
crystal and air inside the cavity compared to (ii) black, the
external UV spectrum. The others are calculated for a broad-
band input spectrum and thus show the dependence of the
achievable power enhancement: (iii) azure, 1 mm BBO crys-
tal and air inside the cavity, (iv) dash-dotted blue, evacuated
cavity with a 1 mm BBO crystal, (v) dashed green, evacuated
cavity with a 0.5 mm BBO crystal. We assumed for these cal-
culations a total loss of 2.66% inside the cavity and an input
coupler of 2.5% transmittivity. The full-width-half-maximum
of the cavity spectrum increases for these cases from 1.1 nm
to 3.9 nm corresponding to sech-shaped pulse widths of 140 fs
down to 40 fs.

deviating slightly from the theoretical probabilities for
optimal beam splitters of 25

81
and 25

324
, respectively, due

to small asymmetries of the beam splitting ratios. The
coincidences for the calculation of the entanglement wit-
ness are corrected for the different relative detector ef-
ficiencies. The total error is determined from errors on
the independently measured relative detector efficiencies
and Poissonian counting statistics.
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FIG. 3: Count rate statistics depending on the average SPDC
pump power circulating in the cavity. The data shows the role
of 2n-detection events either with n horizontally (H) and n

vertically (V) detected photons (squares) originating predom-
inantly from a 2n-photon emission, or with unequal number
of H and V detections (diamonds) essentially due to a 2n+2-
photon emission with two photons lost. The solid and dashed
curves for n = 1 (black), n = 2 (orange) and n = 3 (blue) are
fits, which are proportional to (PUV )n or (PUV )n+1 (accord-
ing to the approximation of Eq. B1) for the rates with equal
or unequal number of H and V detections, respectively.

APPENDIX B: SPDC PHOTON STATISTICS.

For a type-II collinear SPDC process we obtain the
state[19]

|ΨSPDC 〉 =
√

1 − tanh2
τ

∞
∑

n=0

(tanh τ)n |V ⊗nH⊗n 〉,

(B1)
where |V ⊗nH⊗n 〉 represents n horizontally (H) and n

vertically (V) polarised photons emitted by the source,
and τ the coupling between in- and output fields, which
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depends linearly on the pump field amplitude, on the
nonlinearity of the crystal and on its length. From this
state one obtains the probability to create n photon pairs
per pulse with pn = (1− tanh2 τ)(tanh τ)2n and thus the
rate of emission of n pairs, cn, as cn = pnfr. For τ ¿ 1,
i.e., for low pump powers, we can approximate tanh τ ≈
τ , (1−tanh2 τ) ≈ 1 and thus pn ≈ τ2n. Hence, increasing
the pump power PUV , increases the rate of n photon pairs
according to cn ∝ (PUV )n. For high pump powers the
observed rate of the nth order emission is contaminated
by photons originating from higher order emissions due to
the limited detection efficiency, predominantly from the
(n + 1)th order emission and the loss of two photons. In
our case, we have τ ∈ [0.26, 0.46] and an overall detection
efficiency of about 14%. We apply the simple model cn ∝
(PUV )n in order to illustrate the trend for growing pump
powers. A more elaborate analysis is, e.g., described in
Ref. [29].

APPENDIX C: PULSE LENGTH

MEASUREMENT OF THE INTRA CAVITY UV

PULSES

Estimating the length of ultra short pulses can be done
by interferometric autocorrelation. The general idea is to
overlap two pulses with different time delays and subse-
quently measure the intensity of a signal derived form
a nonlinear process, e.g., second harmonic generation
(SHG). As applying SHG is quite problematic for UV
pulses, we instead profit from the nonlinear intensity de-
pendence of the second order SPDC emission. Therefore,
a Michelson interferometer is used in front of the cavity
to create two delayed pulses and measure the count rates
of four photon events as a function of the pulse delay.
The interferometric autocorrelation envelope provides an
approximate pulse duration of 175 fs, when assuming a
sech-shaped pulse. This value is slightly above the one
deduced from the spectrum (Fig. 2) as the setup has
been optimised for high entanglement visibility in the lat-
ter case. The contrast of the signal, being approximately
4 : 1 (compared to ideally 8 : 1), can be attributed to a
reduced interference visibility. We would also like to note
that there is no background noise on the offset outside
the interference region as random four-fold coincidences
have not been registered.

APPENDIX D: SUPPLEMENTARY

INFORMATION: ULTRAVIOLET

ENHANCEMENT CAVITY FOR ULTRAFAST

NONLINEAR OPTICS

1. Alternative multi-photon sources

Recently, promising methods have been developed to
generate multi-photon states. These methods are well
suited regarding the number of generated photons as

a function of the pump power, but the observation of
multi-photon polarisation entangled states imposes fur-
ther requirements, namely spectral, spatial and temporal
indistinguishability[30, 31]. So far, the highest number of
photon pairs for pulsed sources was obtained using spon-
taneous processes in waveguide structures[20] and pho-
tonic crystal fibres (PCF)[21–23]. Though these sources
are promising, their application for multi-photon entan-
glement studies has still to be proven. For example, the
PCF sources are usually operating in the non-degenerate
mode, resulting in different wavelengths for the signal
and idler photons. This prevents the use of signal and
idler photons for the same linear optics logic gates. Alter-
natively, working at telecom wavelengths for down con-
verted photons might simplify their generation due to
high available pump powers. However, in this case the
detection efficiency of about 10% for InGaAs-avalanche
diodes is still too low for multi-photon experiments. In
the future, these systems might profit from the develop-
ment of high-efficient cryogenic single photon detectors or
more elaborate waveguide and PCF structures. To date,
sources based on our approach are still the workhorses
for multi-photon entanglement studies.

2. Multipartite entanglement depending on the

intra-cavity UV pump power

In general, distributing 2n photons from the nth order
emission of a type II collinear SPDC process symmetri-
cally into 2n spatial modes allows to observe polarisation-
entangled multi-photon Dicke[25] states. Formally, these
states are described by

D
(n)
2n =

(

2n

n

)−
1

2 ∑

i

Pi( |V
⊗nH⊗n 〉 1,...,2n ), (D1)

where
∑

iPi(...) represents the sum over all distinct sym-
metric permutations of distributing 2n photons one in
each of 2n different output modes (1, ..., 2n). Here,

we are able to observe the states D
(1)
2 , D

(2)
4 and D

(3)
6 ,

whose genuine 2n-partite entanglement has been shown
recently experimentally[5, 8, 9, 32]. The high symmetry
of the Dicke states enables one to formulate entangle-
ment witnesses, which use the collective spin-component
in the x- and y-direction[33], W2n = J2

x,2n +J2
y,2n, where

Jx/y,2n = 1
2

∑

k σk
x/y with σx,y being the Pauli matrices

σ3
x = 11⊗2 ⊗σx ⊗ 11⊗(2n−3). The expectation value 〈W2n〉

is determined from a measurement of all photons in the
σx and all in the σy basis, which corresponds to polari-
sation analysis along ±45◦ linear and left/right circular
polarisation, respectively.

We evaluate the multipartite entanglement, which is
achieved with the cavity enhanced SPDC source us-
ing W2n[33]. Two-, four- and six-photon polarisation-
entangled Dicke states can be observed with the same
linear optics setup used to determine the photon statis-
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FIG. 4: Verification of multipartite entanglement. The ex-
perimental value 〈W2n〉 of the entanglement witness is plot-
ted as function of the UV pump power for the experimen-
tally observed two-, four- and six photon Dicke states. Gen-
uine 2n-partite entanglement is confirmed for 〈W2〉 larger
than 1.5 [33], 〈W4〉 larger than 5.23 [5] and 〈W6〉 larger than
11.0175 [9], respectively, indicated by the shading. The five
insets show the experimentally measured coincidences for po-
larisation analysis along the H/V linear polarisation for the
data indicated by the orange and blue circles. Reduction of
the entanglement for higher pump powers is caused by in-
creased noise from higher order emissions.

tics. Extending previous measurements on the six-
photon Dicke state[8, 9], here we focus on the change of
the observed entanglement depending on the pump power
(Fig. 4). All observed values are within the required
bound (shaded region) proving genuine multipartite en-
tanglement. However, for increasing pump power 〈W2n〉
decreases as the state is contaminated by coloured noise
from higher order contributions. The effect of this noise
can also be recognised by comparing the rates for anal-
ysis along H/V-direction for low and high pump powers
(insets in Fig. 4).
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T. W. A frequency comb in the extreme ultraviolet. Na-
ture 436, 234–237 (2005).

[16] Ozawa, A., Rauschenberger, J., Gohle, C., Herrmann,
M., Walker, D. R., Pervak, V., Fernandez, A., Graf, R.,
Apolonski, A., Holzwarth, R., Krausz, F., Hänsch, T. W.
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Chapter 6

Conclusions and outlook

This work introduced several new tools for quantum information experiments and applica-
tions using photonic qubits. A major focus has been the realization of flexible experimental
schemes, setup-based and entanglement-based, that allow the observation of different types
of entangled states in a single setup. In addition, a novel spontaneous parametric down
conversion (SPDC) source has been designed based on an ultraviolet (UV) enhancement
cavity to increase the number of photons available for photonic entanglement studies. The
characterization of the entangled states has been performed with new theoretical tools that
allow one to study characteristic entanglement properties with few measurement settings.
Most importantly, two of the observed entangled states have been applied for proof-of-
principle demonstrations of quantum information applications: the simulation of anyonic
features and the estimation of a phase shift with a sensitivity better than the shot noise
limit.

In general, the experimental implementation of multi-photon entanglement requires
photon sources, subsequent photonic manipulations in an optical network and conditional
detection [42]. This approach was successfully applied to the observation of a variety of
entangled states and for proof-of-principle demonstrations of applications [23]. However,
so far, for each and every application and quantum state a new experimental setup had
to be designed. In this work two different approaches have been described to break with
this inflexibility [38, 53–55] (see publ. P3.1, P3.2, P5.1 and P5.2). The first approach has
relied on a particular experimental arrangement, namely on multi-photon interference of an
entangled input state at a polarizing beam splitter with prior polarization manipulations
[53, 54] (see publ. P3.1 and P3.2). This approach has allowed the observation of an im-
portant family of four photon, highly entangled states, all with a fidelity ranging between
0.762± 0.011 and 0.932± 0.008. The second approach has been based on the properties of
particular entangled states, namely the behavior of symmetric Dicke states under particle
projections [55] (see publ. P5.2). It has been demonstrated that by using the six-qubit
entangled Dicke state with three excitations (implemented with a fidelity of 0.654± 0.024)
inequivalent types of entanglement of a lower qubit number can be achieved [38, 39] (see
publ. P5.1).

These two approaches consequently have been utilized for a photonic implementation of
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particular quantum information applications. The four-photon family of states mentioned
above contains many well known states. One of these, namely the Greenberger Horne
Zeilinger (GHZ) state [62–64], has been used for the simulation of anyonic statistics [57]
(see publ. P4.1). Anyons are new types of particles that appear in two-dimensional systems
besides the well known particle groups of fermions and bosons [67, 68]. In this work an
instance of the toric code has been implemented to demonstrate anyonic features and their
statistics [57] (see publ. P4.1). To this end, the evolution of the anyonic wave function upon
local operations has been studied. This simulation paves the way for a future utilization of
anyons in topological quantum information and has already stimulated many new proposals
[296, 298, 336]. The six-qubit entangled Dicke state can be used for phase estimation [19].
It surpasses classical means of phase estimation by beating the shot noise limit, which has
also been demonstrated experimentally. Remarkably, it has been found that the symmetric
Dicke states D

(N)
2N exhibit a phase sensitivity better than the shot noise limit along any

great circle parallel to the z axis of the Bloch sphere. This is not found, for example, for
GHZ states.

The multi-photon entangled states observed in this work have been characterized along
two major directions. First, their entanglement has been proven by using different theo-
retical tools. Second, their properties have been analyzed focusing on particle projections
and particle loss. The four-qubit family experiment has allowed the comparison of different
entanglement detection methods. It has been found that the methods differed in the neces-
sary measurement settings and their robustness against noise. Furthermore, for symmetric
Dicke states new entanglement witnesses have been developed, which exploit their permu-
tational symmetry [81] (see publ. P5.3). Some of these allow an estimation of the fidelity
of the observed states with only three measurement settings. Further characterization has
focused on particular properties of entangled states that turn out to be useful in quantum
information: It has been found that symmetric entangled Dicke states [77, 83] allow one
to obtain inequivalent types of entanglement of a lower qubit number by using projective
measurements. These states also exhibit a high robustness against particle loss. All this
clearly shows that Dicke states resemble another important group of states in quantum
information besides the well known GHZ states, cluster states or, more generally, graph
states [116].

In general, the observation of entanglement between an increasing number of photons
is demanding. The widespread utilization of probabilistic photon sources based on the
process of SPDC comes along with an exponentially decreasing amplitude for increasing
photon numbers. Therefore, in this work a new SPDC source has been implemented with
the goal to increase the UV pump power necessary for the production of SPDC photons
[56] (see publ. P5.4). Though the probabilistic nature of photon production still remains,
the available photon rate has been significantly increased. To this end, a femtosecond UV
enhancement cavity has been implemented increasing the available UV pump power from
∼ 1W for commercial laser systems to now up to ∼ 7W, which altogether has resulted in
an increase of the six-photon count rate by up to two orders of magnitude.

However, in spite of this dramatic increase in photon rate, for future implementations of
multiple photonic qubits further improvements have to be made. Two main technological
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issues are a challenge to current multi-photon experiments, the probabilistic production
of photons and the low detection efficiency. The development of reliable, deterministic
single photon sources is desirable: they are a major ingredient for scalable, linear optical
quantum computation [42]. To date, single photon sources still lack the suitability for
multi-photon entanglement implementations and, thus, probabilistic sources will still be
the workhorse for these studies. However, spontaneous sources always emit undesired
higher order photons, which yield noise on top of the desired states [55, 337]. An increase
in detection and coupling efficiency will drastically reduce measurement times and the
effects of SPDC noise. Still, silicon-based avalanche photo diodes are the most efficient
detectors in the visible to infrared wavelength regime. New developments can be expected
from superconducting detectors in the future [338, 339].

The number of entangled, individually addressable particles in different physical sys-
tems can be regarded as a useful measure to compare the photonic implementation of
multi-partite entanglement with other physical systems. At the same time this compar-
ison reflects the current status of the control over entanglement. Atomic, molecular and
optical systems lead, at the present time, with the achievements of entanglement between
eight trapped ions [41] or six photons [36–39]. Recently, high gate fidelities of larger than
99% [340] have been realized and new trap geometries based on microfabricated surface-
electrode traps [341] will surely increase the number of entangled ions in the near future.
The progress in photonic based entanglement studies depends crucially on the develop-
ment of efficient single photon sources and high efficiency detectors, as has been outlined
before. Recently, multi-partite entanglement has also been achieved in solid state-based
systems with microsecond long coherence times: three entangled carbon nuclear and elec-
tronic spins in diamond [32] or two entangled superconducting qubits [34, 35]. Increasing
the number of entangled qubits in both systems will demand for longer coherence times
and higher fidelities.

Which physical system will turn out to be the most appropriate for realizing entan-
glement between a huge number of individually addressable particles is still an open issue
[33]. Potentially, however, a combination of systems uniting fast operation, long distance
communication and long storage times, which are all important ingredients for a break-
through in quantum information processing and related future technological applications,
will be used.
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Appendix A

SPDC photon state

In this appendix the photonic states for non-collinear and collinear type II SPDC (see
eq. 2.57 and eq. 2.56) are explicitly derived. It begins with the Hamiltonians of eq. 2.53
and eq. 2.54 describing the SPDC process in a single mode treatment. The goal here is
to deduce the complete photonic quantum state. The derivation for non-collinear type II
SPDC can also be found in refs. [52, 206].

Commutation relations First, some rules and commutation relations for bosonic op-
erators â and b̂ are stated [50], where the indices i and j will take the role of the horizontal
(H) and vertical (V ) polarization modes. Further, |vac 〉 denotes the vacuum state, |n 〉
a state with n photons and â†â = n̂ is the photon number operator:

â† |n 〉 =
√

n + 1 |n + 1 〉
(â†)n |vac 〉 =

√
n! |n 〉

â |n 〉 =
√

n |n− 1 〉
â |vac 〉 = 0 |vac 〉 = 0

â†â |n 〉 = n |n 〉
[âi, âj

†] = δi,j

[âi, âj] = [âi
†, âj

†] = 0.

(â†)† = â

(âb̂)† = b̂†â†. (A.1)

A.1 Non-collinear type II SPDC

Hamiltonian The following Hamiltonian is assumed for a single mode treatment of a
non-collinear type II SPDC process (see eq. 2.54) [50, 206, 245]:

Ĥ = i~κ(â†H b̂†V − â†V b̂†H) + h.c. (A.2)
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where κ describes the coupling between the crystal and the pump field and depends linearly
on the latter and on the non-linearity χ(2) of the crystal. Using the time evolution operator
Û(t) = exp(−iĤt/~) the state vector |ψ 〉 is given as

|ψ 〉 = Û(t) |vac 〉 = exp(−iĤt/~) |vac 〉, (A.3)

where t is the time the pump propagates through the crystal and |vac 〉 is the vacuum
state. It is useful to define the ladder operators L̂+ and L̂−

L̂+ := â†H b̂†V − â†V b̂†H = (L̂−)† (A.4)

that describe the creation and annihilation of a photon pair of orthogonal polarizations in
two spatial modes a and b. The Hamiltonian and the time evolution operator can then be
rewritten as

Ĥ = i~κL̂+ − i~κ∗L̂−, (A.5)

Û(t) = exp (κtL̂+ − κ∗tL̂−). (A.6)

For the ladder operators L̂− and L̂+ the commutation relations and rules

[L̂−, L̂+] = L̂−L̂+ − L̂+L̂− = â†H âH + â†V âV + b̂†H b̂H + b̂†V b̂V + 2 =: 2L̂0[
L̂0, L±

]
= L̂0L̂± − L̂±L̂0 = ±L̂±

L̂− = (L̂+)†

L̂0 = (L̂0)
†

hold with the operator L̂0 defined as in eq. A.7. The commutation relations for the three
operators L̂−, L̂+, and L̂0 can be attributed to a SU(1,1) algebra [342]. For this algebra a
normal ordering of the operators can be used to rewrite eq. A.6 with the goal to order all
annihilation operators to the right hand side:

Û(t) = exp (κtL̂+ − κ∗tL̂−)

= exp (τ̂ tanh |τ |L̂+) · exp (−2 ln(cosh |τ |)L̂0) · exp (−τ̂ ∗ tanh |τ |L̂−), (A.7)

where τ := κt can be interpreted as overall interaction parameter and τ̂ = τ/(|τ |). Here,
τ̂ = κt/(|κt|) = 1.

SPDC photon state Now the state |ψ 〉 = Û(t) |vac 〉 can be calculated using eq. A.7
and the abbreviations r := tanh |τ | and q := 2 ln(cosh |τ |):

|ψ 〉 = exp (rL̂+) · exp (−qL̂0) · exp (−rL̂−) |vac 〉︸ ︷︷ ︸
|vac 〉︸ ︷︷ ︸

exp (−q) |vac 〉

= e−q

∞∑

l=0

rl

l!
(L̂+)l |vac 〉.
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Using

(L̂+)l |vac 〉 =
l∑

m=0

l!(−1)m |mH , (l −m)V 〉a |(l −m)H , mV 〉b, (A.8)

one finally obtains the photon state of a non-collinear type II SPDC process as

|ψ 〉 = e−q

∞∑

l=0

rl

l!
(L̂+)l |vac 〉 = e−q

∞∑

l=0

rl

l∑
m=0

(−1)m |mH , (l −m)V 〉a |(l −m)H ,mV 〉b

=
1

cosh2 |τ |
∞∑

l=0

tanhl |τ | · (−1)m |mH , (l −m)V 〉a |(l −m)H ,mV 〉b. (A.9)

This state corresponds to the one given in eq. 2.57. Assuming |τ | ¿ 1, which holds for
example for low pump powers, the approximation tanh |τ | ≈ |τ | is valid and one obtains
as simplified SPDC photon state using also (1− |τ |2) ≈ 1

|ψ 〉 ≈
∞∑

l=0

|τ |l · (−1)m |mH , (l −m)V 〉a |(l −m)H ,mV 〉b. (A.10)

Normalization The state |ψ 〉 is normalized for | tanh2 |τ || < 1:

〈ψ | ψ 〉 = e−2q

∞∑

l′=0

rl′
l′∑

m′=0

(−1)m′
∞∑

l=0

rl

l∑
m=0

(−1)mδmm′

= e−2q

∞∑

l′,l=0

l′,l∑

m′,m=0

rl′+l(−1)2m

δmm′→l′=l
= e−2q

∞∑

l=0

l∑
m=0

r2l(−1)2m = e−2q

∞∑

l=0

r2l(l + 1)

using
∞∑

n=1

nqn−1 =
1

(1− q)2
, |q| < 1

= e−2q

∞∑

l=1

(r2)l−1l
|r2|<1
= e−2q 1

(1− r2)2

r=tanh |τ |,q=2 ln(cosh |τ |)
=

1

cosh4 |τ |
1

(1− tanh2 |τ |)2

=
1

cosh4 |τ |
1

(1/ cosh2 |τ | (cosh2 |τ | − sinh2 |τ |)︸ ︷︷ ︸
=1

)2

= 1.
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A.2 Collinear type II SPDC

Hamiltonian The following Hamiltonian is assumed for a collinear type II SPDC process
(see eq. 2.53) [50]:

Ĥ = i~κâ†H â†V + h.c. (A.11)

where κ describes the coupling between the crystal and the pump field. For collinear type
II SPDC the ladder operators L̂+ and L̂− are given as

L̂+ := â†H â†V = (L̂−)† (A.12)

describing the creation and annihilation of a photon pair of orthogonal polarization in a
single spatial mode a. For the ladder operators L̂− and L̂+ the commutation relations and
rules

[L̂−, L̂+] = L̂−L̂+ − L̂+L̂− = â†H âH + â†V âV + 1 =: 2L̂0[
L̂0, L±

]
= L̂0L̂± − L̂±L̂0 = ±L̂±

L̂− = (L̂+)†

L̂0 = (L̂0)
†

hold. Again, the commutation relations for L̂−, L̂+, and L̂0 can be attributed to a SU(1,1)
algebra [342], thus the time evolution operator can be rewritten as:

Û(t) = exp (κtL̂+ − κ∗tL̂−)

= exp (τ̂ tanh |τ |L̂+) · exp (−2 ln(cosh |τ |)L̂0) · exp (−τ̂ ∗ tanh |τ |L̂−), (A.13)

where τ := κt and τ̂ = τ/(|τ |). Here, τ̂ = κt/(|κt|) = 1.

SPDC photon state The state |ψ 〉 = Û(t) |vac 〉 can be calculated using eq. A.13 and
the abbreviations r := tanh |τ | and q := 2 ln(cosh |τ |):

|ψ 〉 = exp (rL̂+) · exp (−qL̂0) · exp (−rL̂−) |vac 〉︸ ︷︷ ︸
|vac 〉︸ ︷︷ ︸

exp (−q/2) |vac 〉

= e−q/2

∞∑

l=0

rl

l!
(L̂+)l |vac 〉.

Using

(L̂+)l |vac 〉 = l! | lH , lV 〉a, (A.14)
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one obtains the photon state of a type II collinear SPDC process as

|ψ 〉 = e−q/2

∞∑

l=0

rl

l!
(L̂+)l |vac 〉 = e−q/2

∞∑

l=0

rl | lH , lV 〉a

=

√
1− tanh2 |τ |

∞∑

l=0

tanhl |τ | · | lH , lV 〉a. (A.15)

This state corresponds to the one given in eq. 2.56 and is normalized for | tanh2 |τ || ¿ 1.
Assuming |τ | ¿ 1 one can make the approximation tanh |τ | ≈ |τ | and obtains as simplified
SPDC photon state using also

√
1− |τ |2 ≈ 1

|ψ 〉 ≈
∞∑

l=0

|τ |l · | lH , lV 〉a. (A.16)
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Appendix B

Measurement settings and counting
statistics

B.1 Measurement settings

Local measurement settings The following abbreviations for the Pauli spin matrices

σ̂x → X (B.1)

σ̂y → Y

σ̂z → Z

are used. As has been described in section 2.1 a single tensor product of Pauli spin matrices
σ̂µ1⊗ σ̂µ2⊗ ...⊗ σ̂µN

is called measurement setting, where σ̂µn ∈ {σ̂0, σ̂x, σ̂y, σ̂z} and σ̂0 = 11,
or more generally σ̂µn = σ̂(θ, φ) for any observable. This is abbreviated as, for example

σ̂x1 ⊗ σ̂x2 ⊗ ...⊗ σ̂xN
= XX . . . X︸ ︷︷ ︸

N−times

= X⊗N or, (B.2)

σ̂z1 ⊗ σ̂z2 ⊗ σ̂y3 ...⊗ σ̂yN
= ZZ Y . . . Y︸ ︷︷ ︸

(N−2)times

= ZZY ⊗N−2

Experimentally, a local observable σ̂µn = σ̂(θ, φ) is measured with a polarization analysis
consisting of a HWP(θ1), a QWP(θ2) and a PBS and has been described in section 2.3,
see also fig. 2.6 (for the relation between θ, φ and θ1, θ2 see eq. 2.67). The angles given in
tab. B.1 have to be set in order to measure particular observables.
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Measurement setting HWP(θ1) QWP(θ2)

X 22.5 ◦ 0 ◦

Y 0 ◦ 45 ◦

Z 0 ◦ 0 ◦

(X + Z)/
√

2 11.25 ◦ 0 ◦

(X − Z)/
√

2 33.75 ◦ 0 ◦

(Y + Z)/
√

2 11.25 ◦ 22.5 ◦

(Y − Z)/
√

2 56.25 ◦ 22.5 ◦

(X + Y )/
√

2 33.75 ◦ 22.5 ◦

(X − Y )/
√

2 11.25 ◦ −22.5 ◦

(X + Y + Z)/
√

3 2.4339 ◦ 72.3678 ◦

(X + Y − Z)/
√

3 24.9339 ◦ 72.3678 ◦

(X − Y + Z)/
√

3 20.0661 ◦ 107.632 ◦

(X − Y − Z)/
√

3 42.5661 ◦ 107.632 ◦

(cos π
8
)Y + (sin π

8
)X 39.375 ◦ 33.75 ◦

(cos 3π
8

)Y + (sin 3π
8

)X 28.125 ◦ 11.25 ◦

(cos 5π
8

)Y + (sin 5π
8

)X 16.875 ◦ −11.25 ◦

(cos 7π
8

)Y + (sin 7π
8

)X 5.625 ◦ −33.75 ◦

(Z +
√

3X)/2 15 ◦ 0 ◦

(Z −√3X)/2 75 ◦ 0 ◦

(
√

3Z + X)/2 7.5 ◦ 0 ◦

(
√

3Z −X)/2 82.5 ◦ 0 ◦

(Z +
√

3Y )/2 −15 ◦ 60 ◦

(Z −√3Y )/2 15 ◦ 120 ◦

(
√

3Z + Y )/2 −7.5 ◦ 75 ◦

(
√

3Z − Y )/2 7.5 ◦ 105 ◦

((1 +
√

3)X + (−1 +
√

3)Z)/(2
√

2) 18.75 ◦ 0 ◦

((−1 +
√

3)X + (1 +
√

3)Z)/(2
√

2) 3.75 ◦ 0 ◦

((1−√3)X + (1 +
√

3)Z)/(2
√

2) 86.25 ◦ 0 ◦

−((1 +
√

3)X + (1−√3)Z)/(2
√

2) 71.25 ◦ 0 ◦

((1 +
√

3)Y + (−1 +
√

3)Z)/(2
√

2) −18.75 ◦ 52.5 ◦

((−1 +
√

3)Y + (1 +
√

3)Z)/(2
√

2) −3.75 ◦ 82.5 ◦

((1−√3)Y + (1 +
√

3)Z)/(2
√

2) 3.75 ◦ 97.5 ◦

−((1 +
√

3)Y + (1−√3)Z)/(2
√

2) 18.75 ◦ 127.5 ◦

Table B.1: Measurement settings and corresponding settings of a HWP(θ1) and QWP(θ2)
in a polarization analysis (see fig. 2.6).
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Measurement settings for the four-photon family experiment In tab. B.2 the
measurement settings for the observables (for their definition see chapter 2) measured in
the four-photon family experiment and the experiment for revealing anyonic features are
summarized.

# Measurement Observable
setting

1 X⊗4 FΨ4(α)(ρ), Tx⊗4 , 〈Ĵ2
x〉, 〈ĉxy(π/2)〉

2 Y ⊗4 FΨ4(α)(ρ), Ty⊗4 , 〈Ĵ2
y 〉, 〈ĉxy(0)〉

3 Z⊗4 FΨ4(α)(ρ), Tz⊗4 , 〈Ĵ2
z 〉

4 Y Y XX FΨ4(α)(ρ)
5 ZZXX FΨ4(α)(ρ)
6 Y XY X FΨ4(α)(ρ)
7 XY Y X FΨ4(α)(ρ)
8 ZXZX FΨ4(α)(ρ)
9 XZZX FΨ4(α)(ρ)
10 Y XXY FΨ4(α)(ρ)
11 XY XY FΨ4(α)(ρ)
12 XXY Y FΨ4(α)(ρ)
13 ZZY Y FΨ4(α)(ρ)
14 ZY ZY FΨ4(α)(ρ)
15 Y ZZY FΨ4(α)(ρ)
16 ZXXZ FΨ4(α)(ρ)
17 XZXZ FΨ4(α)(ρ)
18 ZY Y Z FΨ4(α)(ρ)
19 Y ZY Z FΨ4(α)(ρ)
20 XXZZ FΨ4(α)(ρ)
21 Y Y ZZ FΨ4(α)(ρ)
22 ((cos π

8
)Y + (sin π

8
)X)⊗4 〈ĉxy(π/8)〉

23 ((Y + X)/
√

2)⊗4 〈ĉxy(π/4)〉
24 ((cos 3π

8
)Y + (sin 3π

8
)X)⊗4 〈ĉxy(3π/8)〉

25 ((cos 5π
8

)Y + (sin 5π
8

)X)⊗4 〈ĉxy(5π/8)〉
26 ((Y −X)/

√
2)⊗4 〈ĉxy(3π/4)〉

27 ((cos 7π
8

)Y + (sin 7π
8

)X)⊗4 〈ĉxy(7π/8)〉
Table B.2: Measurement settings for the four-photon family experiment and the experiment
for revealing anyonic features. The measured observables have been the fidelity FΨ4(α)(ρ),

the correlations Tx⊗4 , Ty⊗4 , Tz⊗4 , the spin components 〈Ĵ2
x〉, 〈Ĵ2

y 〉, 〈Ĵ2
z 〉 and the correlation

function 〈ĉxy(γ)〉. Note, for a four-qubit tomography all 34 = 81 possible combinations of
the settings X, Y and Z for four qubits have to be measured.
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Measurement settings for the six-photon Dicke experiment In tab. B.3, tab. B.4,
and tab. B.5 the measurement settings for the observables measured in the six-photon Dicke
experiment are summarized.

# Measurement Observable # Measurement Observable
setting setting

1 X⊗6 〈B̂
D

(3)
6
〉 17 XZZXXZ 〈B̂

D
(3)
6
〉

2 Y ⊗6 〈B̂
D

(3)
6
〉 18 XZXZXZ 〈B̂

D
(3)
6
〉

3 XZZZZX 〈B̂
D

(3)
6
〉 19 XXZZXZ 〈B̂

D
(3)
6
〉

4 XZZZXZ 〈B̂
D

(3)
6
〉 20 XZXXZZ 〈B̂

D
(3)
6
〉

5 XZZXZZ 〈B̂
D

(3)
6
〉 21 XXZXZZ 〈B̂

D
(3)
6
〉

6 XZXZZZ 〈B̂
D

(3)
6
〉 22 XXXZZZ 〈B̂

D
(3)
6
〉

7 XXZZZZ 〈B̂
D

(3)
6
〉 23 Y ZZZY Y 〈B̂

D
(3)
6
〉

8 Y ZZZZY 〈B̂
D

(3)
6
〉 24 Y ZZY ZY 〈B̂

D
(3)
6
〉

9 Y ZZZY Z 〈B̂
D

(3)
6
〉 25 Y ZY ZZY 〈B̂

D
(3)
6
〉

10 Y ZZY ZZ 〈B̂
D

(3)
6
〉 26 Y Y ZZZY 〈B̂

D
(3)
6
〉

11 Y ZY ZZZ 〈B̂
D

(3)
6
〉 27 Y ZZY Y Z 〈B̂

D
(3)
6
〉

12 Y Y ZZZZ 〈B̂
D

(3)
6
〉 28 Y ZY ZY Z 〈B̂

D
(3)
6
〉

13 XZZZXX 〈B̂
D

(3)
6
〉 29 Y Y ZZY Z 〈B̂

D
(3)
6
〉

14 XZZXZX 〈B̂
D

(3)
6
〉 30 Y ZY Y ZZ 〈B̂

D
(3)
6
〉

15 XZXZZX 〈B̂
D

(3)
6
〉 31 Y Y ZY ZZ 〈B̂

D
(3)
6
〉

16 XXZZZX 〈B̂
D

(3)
6
〉 32 Y Y Y ZZZ 〈B̂

D
(3)
6
〉

Table B.3: Measurement settings for the six-photon Dicke experiment. The measured
observable has been the Bell inequality 〈B̂

D
(3)
6
〉.
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# Measurement Observable
setting

1 X⊗6 F
D

(3)
6

(ρ), 〈Ĵ2
6,x〉, 〈Ĵ2

5,x〉, 〈ĉxz(0)⊗6〉
2 Y ⊗6 F

D
(3)
6

(ρ), 〈Ĵ2
6,y〉, F

(D
(1)
4 +D

(3)
4 )/

√
2
(ρ), 〈ĉyz(0)⊗0〉

3 Z⊗6 F
D

(3)
6

(ρ), 〈Ĵ2
6,z〉, 〈Ĵ2

5,z〉, 〈Ĵ2
4,z〉, 〈ĉxz(π/2)⊗6〉, 〈ĉyz(π/2)⊗6〉

F
D

(1)
4

(ρ), F
D

(2)
4

(ρ)

4 ZX⊗5 〈Ĵ2
5,x〉

5 ZY ⊗5 〈Ĵ2
5,y〉

6 XZ⊗5 〈Ĵ2
5,z〉

7 XY ⊗5 〈Ĵ2
5,y〉

8 ZZX⊗4 〈Ĵ2
4,x〉

9 ZZY ⊗4 〈Ĵ2
4,y〉

10 ZZ((X + Z)/
√

2)⊗4 F
D

(1)
4

(ρ), F
D

(2)
4

(ρ)

11 ZZ((X − Z)/
√

2)⊗4 F
D

(1)
4

(ρ), F
D

(2)
4

(ρ)

12 ZZ((Y + Z)/
√

2)⊗4 F
D

(1)
4

(ρ), F
D

(2)
4

(ρ)

13 ZZ((Y − Z)/
√

2)⊗4 F
D

(1)
4

(ρ), F
D

(2)
4

(ρ)

14 ZZ((X + Y )/
√

2)⊗4 F
D

(2)
4

(ρ)

15 ZZ((X − Y )/
√

2)⊗4 F
D

(2)
4

(ρ)

16 Y Y Z⊗4 〈Ĵ2
4,z〉, F

(D
(1)
4 +D

(3)
4 )/

√
2
(ρ)

17 Y Y X⊗4 〈Ĵ2
4,x〉, F

(D
(1)
4 +D

(3)
4 )/

√
2
(ρ)

18 Y Y ((Y + Z)/
√

2)⊗4 F
(D

(1)
4 +D

(3)
4 )/

√
2
(ρ)

19 Y Y ((Y − Z)/
√

2)⊗4 F
(D

(1)
4 +D

(3)
4 )/

√
2
(ρ)

Table B.4: Measurement settings for the six-photon Dicke experiment. The measured
observables for the state |D(3)

6 〉 have been: the fidelity F
D

(3)
6

(ρ) (continued in tab. B.5),

the correlation functions 〈ĉxz(γ)⊗6〉 and 〈ĉyz(γ)⊗6〉 (continued in tab. B.5), and different

witnesses using 〈Ĵ2
6,x〉, 〈Ĵ2

6,y〉, and 〈Ĵ2
6,z〉. For the five-qubit states |D(3)

5 〉 and ( |D(2)
5 〉 −

|D(3)
5 〉 )/√2 the observables 〈Ĵ2

5,x〉, 〈Ĵ2
5,y〉 and 〈Ĵ2

5,z〉 for determining different witnesses

have been measured. For the four-qubit states |D(1)
4 〉 , |D(2)

4 〉 and (D
(1)
4 + D

(3)
4 )/

√
2 the

observables 〈Ĵ2
4,x〉, 〈Ĵ2

4,y〉 and 〈Ĵ2
4,z〉 for determining different witnesses and their fidelities

F
D

(1)
4

(ρ), F
D

(2)
4

(ρ) and F
(D

(1)
4 +D

(3)
4 )/

√
2
(ρ), respectively, have been measured.
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# Measurement Observable
setting

1 ((X + Y )/
√

2)⊗6 F
D

(3)
6

(ρ)

2 ((X − Y )/
√

2)⊗6 F
D

(3)
6

(ρ)

3 ((X + Z)/
√

2)⊗6 F
D

(3)
6

(ρ), 〈ĉxz(π/4)⊗6〉
4 ((X − Z)/

√
2)⊗6 F

D
(3)
6

(ρ), 〈ĉxz(3π/4)⊗6〉
5 ((Y + Z)/

√
2)⊗6 F

D
(3)
6

(ρ), 〈ĉyz(π/4)⊗6〉
6 ((Y − Z)/

√
2)⊗6 F

D
(3)
6

(ρ), 〈ĉyz(3π/4)⊗6〉
7 ((X + Y + Z)/

√
3)⊗6 F

D
(3)
6

(ρ)

8 ((X + Y − Z)/
√

3)⊗6 F
D

(3)
6

(ρ)

9 ((X − Y + Z)/
√

3)⊗6 F
D

(3)
6

(ρ)

10 ((X − Y − Z)/
√

3)⊗6 F
D

(3)
6

(ρ)

11 ((
√

3Z + X)/2)⊗6 F
D

(3)
6

(ρ), 〈ĉxz(π/3)⊗6〉
12 ((

√
3Z −X)/2)⊗6 F

D
(3)
6

(ρ), 〈ĉxz(2π/3)⊗6〉
13 ((Z +

√
3X)/2)⊗6 F

D
(3)
6

(ρ), 〈ĉxz(π/6)⊗6〉
14 ((Z −√3X)/2)⊗6 F

D
(3)
6

(ρ), 〈ĉxz(5π/6)⊗6〉
15 ((

√
3Z + Y )/2)⊗6 F

D
(3)
6

(ρ), 〈ĉyz(π/3)⊗6〉
16 ((

√
3Z − Y )/2)⊗6 F

D
(3)
6

(ρ), 〈ĉyz(2π/3)⊗6〉
17 ((Z +

√
3Y )/2)⊗6 F

D
(3)
6

(ρ), 〈ĉyz(π/6)⊗6〉
18 ((Z −√3Y )/2)⊗6 F

D
(3)
6

(ρ), 〈ĉyz(5π/6)⊗6〉
19 ((1 +

√
3)X + (−1 +

√
3)Z)/(2

√
2) 〈ĉxz(π/12)⊗6〉

20 ((−1 +
√

3)X + (1 +
√

3)Z)/(2
√

2) 〈ĉxz(5π/12)⊗6〉
21 ((1−√3)X + (1 +

√
3)Z)/(2

√
2) 〈ĉxz(7π/12)⊗6〉

22 −((1 +
√

3)X + (1−√3)Z)/(2
√

2) 〈ĉxz(11π/12)⊗6〉
23 ((1 +

√
3)Y + (−1 +

√
3)Z)/(2

√
2) 〈ĉyz(π/12)⊗6〉

24 ((−1 +
√

3)Y + (1 +
√

3)Z)/(2
√

2) 〈ĉyz(5π/12)⊗6〉
25 ((1−√3)Y + (1 +

√
3)Z)/(2

√
2) 〈ĉyz(7π/12)⊗6〉

26 −((1 +
√

3)Y + (1−√3)Z)/(2
√

2) 〈ĉyz(11π/12)⊗6〉
Table B.5: Measurement settings for the six-photon Dicke experiment. The measured
observables for the state |D(3)

6 〉 have been (continued from tab. B.4): the fidelity F
D

(3)
6

(ρ)

and the correlation functions 〈ĉxz(γ)⊗6〉 and 〈ĉyz(γ)⊗6〉.
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B.2 Counting statistics

The counting statistics of the experiments are summarized in tab. B.6 and tab. B.7. These
consist of the achieved N -photon count rate, which is the sum of the rates obtained from
all possible N -photon detections in different spatial modes (2N possibilities). Further, the
coincidence rate in the H/V -,±- and L/R-bases as well as the observed visibilities are
given. The coincidence rate is calculated from all possible coincident detection events in
different spatial modes, for example for four spatial modes and the coincidence H : V 12
different possibilities contribute to the coincidence rate cH:V (the sign “:” means that it is
summed over HV and V H coincidences). The visibility VH/V is defined as

VH/V =
cH:V − (cHH + cV V )

cH:V + (cHH + cV V )
(B.3)

and accordingly for the bases ± and L/R. Note, for the determination of the visibility the
raw data is directly used without any background subtraction. The tab. B.6 summarizes
the results obtained for the four-photon family |Ψ4(α) 〉 experiment and tab. B.7 for the

|D(3)
6 〉 experiment.

α p4 c4[min−1] cH:V [s−1] VH/V

−
√

1
3

1
4

= 0.25 23.22 13500 0.982

−
√

1
6
(3−√3) 0.131 14.63 12900 0.981

0 1
24
≈ 0.042 4.91 10200 0.98√

1
6
(3−√3) 0.028 3.61 9700 0.974√

1
3

1
36
≈ 0.028 1.57 6300 0.976√

1
2

0.0286 3.45 8900 0.974√
2
3

1
32
≈ 0.031 2.79 7500 0.974√

1
6
(3 +

√
3) 0.035 4.08 8600 0.972

1 1
12
≈ 0.083 8.69 6900 0.969

Table B.6: Counting statistics for the four-photon family of states |Ψ4(α) 〉. Thereby, p4

denotes the theoretical probability to observe the state in the linear optical setup (eq. 3.5),
c4 is the averaged four-photon count rate, cH:V the coincidence rate for HV detections
(rounded to full 100 counts) and VH/V the observed visibility. Note, the ±- and L/R-bases
are not considered here as the two-photon states obtained for different α are different.
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# c6[min−1] cH:V [s−1] VH/V c+:+ + c−:− [s−1] V± cL:L + cR:R [s−1] VL/R

1 3.63 210000 0.835 217000 -0.891 212000 -0.884
2 0.52 128000 0.932 130000 -0.948 130000 -0.946

Table B.7: Counting statistics for the state |D(3)
6 〉 (settings X⊗6, Y ⊗6 and Z⊗6 with #1:

5.3 W UV pump power and #2: 2.3 W UV pump power). Thereby, c6 is the averaged
six-photon count rate, cH:V the coincidence rate for HV detections (rounded to full 1000
counts), VH/V the observed visibility and accordingly for the bases ± and L/R. The

probability to observe the state |D(3)
6 〉 in the linear optical setup was 0.0126.



Appendix C

SPDC higher order noise

In this appendix the higher order noise contribution that is observed on top of the desired
states is calculated. This contribution is shown to reduce the fidelity of the expected
state. Other known issues reducing the quality of photonic states are spatial, spectral and
temporal mode mismatch. These are neglected here and the interested reader is referred
to, for example, ref. [337].

The general scheme to observe multi-photon entangled states relies on conditional de-
tection: 2N photon clicks have to be detected in 2N spatial modes. Ideally, the clicks
originate only from the desired emission order of a SPDC process, i.e. the Nth order emis-
sion yielding 2N photons. However, higher order emissions, though they occur with a lower
generation rate, can also lead to detection patterns in 2N spatial modes when photons are
lost or multiple photons are detected in the same detector. In particular, the highest con-
tribution of undesired clicks originates from the (N + 1)th order SPDC emission, creating
2N +2 photons. Upon loss of two photons, the remaining 2N photons can also be detected
in 2N different spatial modes. Alternatively, multiple photons can be detected in the
same detector leading also to a 2N photon detection. Combinations of loss and multiple
detection events are also possible.

Generally, to reduce the influence of higher order noise the following technical issues
have to be addressed. Loss can be minimized by using high efficient photon detectors,
by optimizing the coupling efficiency of the SPDC photons into single mode fibers and
by minimizing loss at all utilized optical components. To date the most efficient single
photon detectors are silicon APDs, which have a quantum efficiency of up to 65%. Future
developments will strongly improve the quality of the observed photonic states. Multiple
detection events could be excluded by using photon number resolving detectors [343] in
the future. Coupling could be circumvented at all by realising the full experimental setup
consisting of the photon source, gates and the detection system in, for example, waveguide
structures and/or photonic chips. So far, this has only been demonstrated separately for the
SPDC photon source [344–346] and gates [347]. Such complete waveguide/photonic chip
setups for multi-photon entanglement studies are foreseeable in the near future. Finally,
for the experiments described in this work all optical components have been anti-reflection
coated for the SPDC photon wavelength of 780 nm, which yields minimal losses.
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C.1 Model

In this work, four- or six-photon entangled states have been observed in four or six spatial
modes, respectively. The most relevant noise comes from the next higher order emission,
i.e. the third or fourth order SPDC emission, respectively. To accurately calculate this
higher order contribution on top of the expected counts one has to consider photon loss
and multiple detection events. To take these into account, the experimental setup is
divided into different building blocks, which together yield a model of the experimental
setup. In each building block the photonic states are transformed by using optical elements.
This can be calculated by transforming the photonic creation and annihilation operators
appropriately. The required transformations of BSs, PBSs and wave plates have been given
in section 2.3.

In the model, photon loss is simulated by additional BSs. The transmitted mode t
of the BS gives useful photons and the reflected mode l contains lost photons [206] (see
eq. 2.62):

â → √
ηt̂ + i

√
1− ηl̂, (C.1)

where η is the transmission probability modeling the non-unit efficiency and a is the input
mode. The other input mode of the model BS is empty. In the experiment simple click
detectors are used, i.e. non-photon number resolving detectors. For this type of detector
the probability p to register a click if n photons are incident is given as [348]

p =
n∑

m=1

(
n
m

)
ηm

d (1− ηd)
n−m, (C.2)

whereby ηd is the efficiency of the detector. To obtain this probability in the operator
formalism, the amplitude for the operator t̂ in the final mode t is transformed according
to the usual bosonic relation

t̂n |n 〉 →
√

n! |vac 〉. (C.3)

This applies to all modes, i.e., the final detection modes at the output of the PBSs of the
polarization analysis and also to all loss modes.

The model of the experimental setup is divided into six building blocks (see fig. C.1):

(1) The calculation starts with the normalized SPDC photon states given in eq. 2.56 and
eq. 2.57, as derived in appendix A.

(2) To incorporate the non-unit coupling efficiency ηc a single BS is placed into each
emission mode of the SPDC process to model coupling loss into the loss mode lc (for
type II collinear SPDC: modes aH and aV , for type II non-collinear SPDC: modes aH ,
aV , bH , bV ).

(3) The linear optical network consisting of BSs, PBSs and phase shifters is implemented.
It is assumed that the optical elements do not introduce loss. Naturally, this does not
exactly correspond to the experimental situation. But this loss can be simply shifted
to the efficiency of the detectors.
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a b

c d
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6

Figure C.1: Model of the setup for the family |Ψ4(α(γ)) 〉 experiment to calculate higher
order contributions. The different building blocks are labeled with 1 to 6.

(4) The polarization analysis consisting of a HWP(θ1), a QWP(θ2) and a PBS is imple-
mented (see fig. 2.6). For each different analysis setting θ1 and θ2 (i.e. measurement
setting) the noise calculation is rerun.

(5) In each output of the PBS a BS is introduced accounting for the non-unit efficiency ηd

of the detector. The transmitted mode is assumed to be detected with unit detection
efficiency, whereas the reflected mode is the detector loss mode ld. The transformation
of eq. C.3 is applied.

(6) Finally, loss modes are traced out. This means if multiple possibilities exist leading
to the same detection event and if these possibilities can be distinguished by different
loss modes ld;i, their probabilities add incoherently. This accounts for the in principle
distinguishability of the photon loss modes. However, if multiple possibilities exist
leading to the same detection event and if these possibilities cannot be distinguished
by different loss modes, then their amplitudes add coherently.
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C.2 Higher order noise in the four-photon family ex-

periment

The aforementioned model is now applied to the experiment described in chapter 3. The
experimental parameters given in tab. C.1 have been determined1. These values have been
calculated from the observed count rates of coincidence ci,j = ηiηjτ

′frep and single detection
events si = ηi(1 − ηj)τ

′frep of detectors i and j (i, j ∈ {a, b, c, d, . . .}) [349], whereby ηi

denotes the total efficiency of detecting a photon2, τ ′ the generation probability of a photon
pair and frep the laser repetition rate. The parameters τ ′ and ηi can be calculated from

τ ′ =
1

frep

(si + ci,j)(sj + ci,j)

ci,j

, (C.4)

ηi =
ci,j

sj + ci,j

. (C.5)

The probability to generate a photon pair τ ′ is obtained from the probability of the term
with n = 1 of eq. 2.57, which allows to determine τ by solving

τ ′ =
(

tanh τ

cosh2 τ

)2

. (C.6)

The rates si and ci,j are corrected by the independently measured detector dark counts.
Note, this procedure for determining τ and η is only valid for small pump powers, where
higher order events on top of the observed two- and single photon rates are negligible.

Now, the influence of higher order events on the desired four-photon states can be cal-
culated. Here, only noise coming from the third order SPDC emission is considered, which
yields the strongest influence. Further, it is assumed that3 ηc = 1/3 and ηd is calculated
from the measured value of η. The result of the calculation4 is shown in fig. C.2(a) that
depicts the fidelity as a function of the angle γ, which determines the state in the family
|Ψ4(α(γ)) 〉 (see eq. 3.3 and eq. 3.4). Additionally, the experimentally observed fideli-
ties are shown (see fig. 3.4). Further, fig. C.2(b) shows the calculated and the measured
four-photon count rate.

1These values have been determined after completion of the measurement for the state observed for

α =
√

(3−√3)/6.
2This includes the coupling efficiency ηc, the efficiency ηd of the detector and the probabilistic photon

distribution using BSs pBS. The latter can also be determined in an independent measurement. Each BS
had a splitting ratio of 0.6:0.4, optimal would have been 0.5:0.5. Hence, the total efficiency is given as
η = ηcηdpBS = ηdetpBS.

3This assumption is necessary as only two equations are used to yield η and τ ′. One more equation
is required to determine ηc and ηd separately. This is done in section C.3. The value of ηc = 1/3 is an
estimate such that with the measured mean efficiency η = 0.084 the efficiency of the detector of ηd = 0.5
is obtained and, thus, ηdet = ηcηd = 0.167.

4The 24 = 16 possible outcomes in each of the 34 = 81 possible measurement bases dependent on τ
and γ for fixed efficiencies are calculated with a Mathematica R© 5.1 program. On a Intel R©Core

TM
2 Duo

CPU with 3 GHz and 8GByte Ram this takes about 12 hours.
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mode eV eH fV fH gV gH hV hH

η 0.139 0.105 0.091 0.075 0.057 0.057 0.071 0.079
η 0.084
ηdet 0.167
τ 0.056

Table C.1: Model parameters for the four-photon family experiment. The total efficiency η
is given for each mode, η denotes the averaged total efficiency over all modes, ηdet denotes
the averaged total detection efficiency over all modes and τ is the pair creation amplitude.
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Figure C.2: The four-photon and six-photon higher order contribution influencing (a) the
fidelity and (b) count rate are calculated and shown in comparison to the measured values
for the family |Ψ4(α(γ)) 〉 experiment. The theoretical curves reflect the trend of the data
points. The discrepancy for the fidelity curve is explained in the text.

Generally, the trend of the theoretical curves reflect the one of the experimental data
points and very good agreement is found for the count rate. However, a higher fidelity
value would be expected from the calculation. The gap can be attributed to four major
effects:

• A non-perfect spatial and spectral overlap of SPDC photons at the central PBS
(see fig. 3.2 and fig. 3.3) decreases the fidelity. The spectral mismatch is due to
the difference in spectral bandwidth of signal and idler photons in pulsed pump
SPDC [209–211], which is reduced by using narrow-band interference filters. Spatial
distinguishability comes from non-perfect alignment. For the measured states a mean
two-photon interference visibility of 0.97± 0.01 has been achieved.

• Pair distinguishability [212, 213], also reduced by using narrow-band interference
filters, further decreases the fidelity.

• Higher order SPDC emissions in addition to the third one would yield a further
reduction in fidelity.

• The determined parameters η and τ do not entirely reflect the real ones. This is due
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to the assumption that higher order contributions to two- and single photon count
rates have been neglected.

A more elaborate analysis could include these effects.

C.3 Higher order noise in the six-photon Dicke ex-

periment

The calculation of the higher order contribution to the six-photon state |D(3)
6 〉 proceeds

according to the steps given in section C.1. Here, focus is put on the next higher order
emission consisting of eight photons (see eq. 2.56). The parameters ηc, ηd and τ have
been determined by fitting the experimentally measured count rates to the theoretically
calculated ones5. The simple model of determining η and τ as described in section C.2 is
not applied. In contrast, three equations6 are used to determine ηc, ηd and τ : the two-
photon count rate7 cH:V of modes a and b (summed over all possible events in different
spatial modes), the four-photon count rate8 cH:H:V :V of modes a, b, c, and d (summed over
all possible events in different spatial modes) and the four-photon count rates9 cH:V :V :V

and cV :H:H:H of modes a, b, c, and d (summed over all possible events in different spatial
modes). For each coincidence count rate the contribution of the desired order and of the
next higher order emission has been calculated and fitted to the experimentally measured
count rates. Beam splitting ratios for BS1-BS4 of 0.58:042 and for BS5 of 0.52:048 have
been experimentally measured and used for the calculation. Using this procedure the
parameters given in tab. C.2 have been determined.

Using the determined parameters the expectation values given in tab. C.3 and the
counts in fig. C.3 have been calculated10. In general, the agreement of the simulated with
the measured data is quite well (by 10 − 20% difference, the six-photon count rate is
underestimated). The simulation model gives for all operators slightly better results. This
can be traced back to the following reasons:

• The main reason is the simplification to consider only the next higher order emission.
Additional consideration of ten-photon production would decrease the values further
and match the experimental data even better.

5Two simplifications are made: it is assumed that ηd is the same for all detectors and ηc is the same
for both polarization modes.

6In principle, another choice of coincidence events could be considered as well. However, this set turned
out to yield results resembling the experimental findings.

7cH:V = cHV + cV H
8cH:H:V :V = cHHV V + cHV HV + cV HHV + cV HV H + cV V HH + cHV V H
9cH:V :V :V + cV :H:H:H = cHV V V + cV HV V + cV V HV + cV V V H + cV HHH + cHV HH + cHHV H + cHHHV

10The 26 = 64 possible outcomes in each of the 36 = 729 possible measurement bases dependent on τ ,
ηc and ηd are calculated with a Mathematica R© 5.1 program. On a Intel R©Core

TM
2 Duo CPU with 3 GHz

and 8 GByte Ram this takes about 4 weeks!
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• Pair distinguishability [212, 213] also influences the values and is not considered in
the model.

• The efficiency ηd is different for each detector. Also, the coupling efficiency ηc could
be different for each polarization mode. Both has been neglected for simplicity.

Compared to the noise calculation of the four-photon family experiment in section C.2,
here the main noise component is definitely higher order SPDC noise as no interference
between photons is present. Thus, spatial mismatch of photons is absent due to coupling
into the same single mode fiber.

c6[min−1] τ ηc ηd ηdet = ηcηd c6,model [min−1]

3.6 0.34 0.41 0.37 0.15 3.0

Table C.2: Model parameters for the |D(3)
6 〉 experiment. The count rates are only given

for the Z⊗6 basis.

operator experimental simulation model noise model
value value value

fidelity F
D

(3)
6

(ρ) 0.654± 0.024 0.71 0.71

two-setting witness (eq. 5.7) −0.422± 0.148 −0.75 −0.69

Bell inequality 〈B̂
D

(3)
6
〉 (eq. 5.8) 0.43± 0.02 0.51 0.51

Table C.3: Modeled expectation values for the |D(3)
6 〉 experiment. The simulation model

is the one described in section C.1, the noise model is the assumption of the state ρ(p
D

(3)
6

)

given in eq. C.9.
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Figure C.3: Modeled and measured two-, four- and six-photon counts for the state |D(3)
6 〉

in the Z-basis. To calculate the parameters ηc, ηd and τ a fit of the model count rates
has been made to the measured rates of all possible HV , HHV V and HV V V /V HHH
coincidences.
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Simple theoretical noise model

The main noise contribution to the desired state |D(3)
6 〉 comes from eight photons of the

third order SPDC emission and subsequent loss of two photons, which yields detectable
six-photon events. This situation is similar to loss of two photons of the state |D(4)

8 〉 ,
which would be observed in a setup that splits the photons onto eight spatial modes.
Hence, a simple theoretical noise model has already been indirectly given with eq. 5.12 and
m = N/2 and k = 2:

ρN−2 = (C
N/2
N )−1

2∑
j=0

Cj
2C

N/2−j
N−2 ρ

D
(N/2−j)
N−2

, (C.7)

with ρ
D

(N/2−j)
N−2

= |D(N/2−j)
N−2 〉 〈D(N/2−j)

N−2 | . For the state |D(3)
6 〉 one sets N = 8 in the above

equation and obtains

ρ6 =
4

7
ρ

D
(3)
6

+
3

14
(ρ

D
(2)
6

+ ρ
D

(4)
6

). (C.8)

This result can also be calculated by counting the possible ways how two photons can be
lost from four horizontally and four vertically polarized photons. Then, the observed state
is a mixture of that state and the desired state |D(3)

6 〉 :

ρ(p
D

(3)
6

) = p
D

(3)
6

ρ
D

(3)
6

+ (1− p
D

(3)
6

)ρ6. (C.9)

Using the parameters given in tab. C.2 a value of p
D

(3)
6

= 0.32 has been determined.

The model of eq. C.9 can also be used to calculate various expectation values, which are
additionally stated in tab. C.3.

In section 5.3 this noise model has been applied to the correlation functions 〈ĉxz(γ)〉
and 〈ĉyz(γ)〉 [see fig. 5.6(a) and (b)]. The state of eq. C.9 yields the following correlation
function

〈ĉxz(γ)⊗6〉 =
1

224

(
(45 + 39p

D
(3)
6

) cos 2γ

−6(p
D

(3)
6
− 1)(3 + 5 cos 4γ) + 35(1 + 3p

D
(3)
6

) cos 6γ
)
, (C.10)

and similarly for 〈ĉyz(γ)〉. The measured data points have been fitted with this function.
The following values for p

D
(3)
6

have been determined [compare fig. 5.6(a) and (b)]: high

pump power: (i) 0.274, (ii) 0.226; low pump power: (iii) 0.588 and (iv) 0.596. This reflects
nicely that with lower pump power [cases (iii) and (iv)] the fraction of the desired state

|D(3)
6 〉 increases. The difference between the values obtained for the cases (i) and (ii) might

be assigned to the less accurate measurement of the correlation function 〈ĉyz〉, which is
due to the usage of QWPs, which are known to be less accurate than HWPs.
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Model applied to various pump power levels

The model described in section C.1 and section C.3 is now applied to a measurement of
the count rates for two-, four- and six-photon events as a function of intra-cavity UV pump
power, see [56] (publ. P5.4). The procedure is the same as outlined in section C.3 to yield
τ , ηc and ηd (fitted are two- and four-photon rates). The results are displayed in fig. C.4(a),
(b) and (c). Theoretically, with increasing UV pump power PUV the parameter τ increases
proportional to

√
PUV, which is resembled by the data points11. The efficiency ηdet = ηcηd

slightly decreases with increasing pump power. Its mean value is ηdet = 0.14.
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Figure C.4: (a) Fitted τ and ηdet for different UV pump powers. The dashed line is a fit
to τ with τ ∝ √

PUV. The mean value of the efficiency is ηdet = 0.14. (b) Measured and
calculated six-photon rates between modes a, b, c, d, e and f . (c) Measured and calculated
HV -, HHV V - and HHHV V V -count rates (all possibilities) as a function of UV pump
power.

11The count rate of a possible 8-photon experiment is estimated by cψ ∼ (ηdet tanh τ)8frpψ ≈ 2.6pψ/min
for τ ≈ 0.5, η ≈ 0.15 and fr = 81MHz. For a generic linear optical setup for the states |D(N/2)

N 〉 one
obtains p

D
(N/2)
N

= N !/NN (p
D

(4)
8

= 0.0024), for the states |GHZN 〉 one has pGHZN = 2−(N/2−1) for N

even (pGHZ8 = 0.125) and for the rotationally symmetric states |Ψ−N 〉 pΨ−N
= [(N/2)!/(N/2)(N/2)]2 for N

even (pΨ−8
= 0.0088). The corresponding linear optical setups are described in section 3.1.
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Appendix D

FPGA controlled coincidence logic

In this appendix the implementation of the FPGA controlled coincidence logic is shortly
described. It is divided into three parts:

• Preparation of input signals for the FPGA: transforming detector signals and the
master clock derived from the laser repetition frequency of 81 MHz,

• Processing of detector clicks by the FPGA: sampling of detector signals with laser
repetition frequency, creating a histogram of detector click patterns and signal prepa-
ration for universal serial bus (USB) transfer,

• Transfer of histogram: USB data transfer to a computer.

The FPGA is a Xilinx R©Virtex
TM

-4 XC4VLX25-FF668-10 mounted on a ML401 evaluation
platform provided by Xilinx R©. For the present implementation an input bus width of 12
detector signals (denoted as [11:0]) is used. This is sufficient for measuring the photonic
state of six qubits with 12 detectors. The names of the signals used in the following
description correspond to the names in the VHDL files of the actual implementation (date:
27.10.2008, main files are the project file main.prj, the main VHDL file main.vhd and the
constraints file main.ucf). The files were compiled using Xilinx R©ISE:10.1.03 (WebPACK).

Input signals

Detector signals: The detector signals are NIM standard, which are first converted to dif-
ferential ECL. With the MC100EPT25 chip they are further transformed to LVTTL,
which is required by the FPGA.

Laser repetition frequency: The Tsunami R© laser provides a PD monitor signal (peak-
to-peak (0± 0.36)V), which is the laser repetition frequency of about 81 MHz moni-
tored by a photo diode. This signal is transformed to a differential signal (peak-to-
peak (1.17±0.95) V) required by the ML401 evaluation platform (SMA DIFF CLK IN P).
It yields the master clock (clk1x inta) of the FPGA with 81 MHz.
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Processing by FPGA and transfer via USB

The processing of the input signals by the FPGA in order to transfer a histogram of the
detector click patterns via USB to a computer is done in the following steps (see also
fig. D.1):

Signal input: The detector signals GPIO HDR2 DATA in[11:0] are sampled on the rising
edge of clk1x inta yielding data to fifo[11:0]. Additionally, the logical OR of all
data to fifo[11:0] is computed to obtain a signal that announces the arrival of
newly sampled data. [file: iunit.vhd]

Signal buffer: The sampled detector signals data to fifo[11:0] are sent with clk1x inta

and upon new arrival of data (given by the logical OR of data to fifo[11:0]) into
a stage of two FIFO’s (asynchronous FWFT, synchronous STD), which are imple-
mented directly in the FPGA chip (bug fixed FIFO16: Virtex-4 4k deep × 4 wide
BlockRAM (a)synchronous FIFO, used as 1k×18, i.e. 1024 signal patterns can be
stored with an address width of 18 bits, address width of 12 bits is used). [file:
fifobuffer.vhd]

Signal histogram: The signals buffered in the FIFO stage are sent to a memory upon
rising edge with twice clk1x inta, i.e. 162MHz (clk2x inta). Thereby, the signal
pattern [11:0] yields the address of the memory (address memory[11:0]), whose
stored value is incremented by 1. This implements a histogram of the detector click
patterns. More specifically, the memory is realized outside the FPGA with a 9
Mbit pipelined SRAM (CY7C1354B) organized as 256k×36 (218 = 256k different
addresses can store each a number of 236 bit length. In the present implementation
only 212 = 4096 addresses with 232 bit length are used.) with a maximal frequency
of 166 MHz. Control signals coordinate the communication between the FIFO stage
and the memory. [files: historam.vhd, appnote zbtp.vhd]

Signal transfer: After a certain integration time (set externally by GPIO SW1[3:0] and
derived from clk2x inta) the data of the memory is put into a stage of 24 FIFO’s (23
synchronous FWFT, 1 asynchronous STD, used as 512×36, i.e. 512 signal patterns
can be stored with an address width of 36 bits, an address width of 32 bit is used in
the present implementation) and upon completion transferred to the USB chip with a
clock rate (GPIO HDR1 USB SLWR) of 81/16/4 = 1.265625MHz. For the utilized USB
chip (CY7C67300, external of the FPGA, transfers 16 bit in parallel) the signals are
divided into 212 = 4096 addresses times twice 16 bit (GPIO HDR1 USB Data[15:0])
yielding 4096·2 = 8kbit data, which is transferred to the USB chip. With a frequency
of 1.265625MHz this takes 6.473ms. [files: usb signal.vhd, fifobuffer usb.vhd]

Additional utilized primitives are digital clock managers provided by the FPGA (DCM ADV)
to stabilize clk1x inta and to generate clk2x inta and clkdv16x inta.
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Figure D.1: Schematic diagram for the programmed FPGA realizing a coincidence unit.
The signal names correspond to the ones in the VHDL files.
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Experimental Observation of Four-Photon Entanglement from Parametric Down-
Conversion, Phys. Rev. Lett. 90, 200403 (2003).

[60] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. As-
pelmeyer, and A. Zeilinger, Experimental one-way quantum computing, Nature 434,
169 (2005).

[61] B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist,
and A. G. White, Manipulating Biphotonic Qutrits, Phys. Rev. Lett. 100, 060504
(2008).

[62] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going beyond Bell’s Theorem, in
Bell’s Theorem, Quantum theory and Conceptions of the Universe, pp. 69–72 (Kluwer
Academic Publishers, 1989).

[63] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Bell’s theorem
without inequalities, Am. J. Phys. 58, 1131 (1990).

[64] J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, Experimental
Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation, Phys.
Rev. Lett. 86, 4435 (2001).
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Schuessler, F. Krausz, and T. W. Hänsch, A frequency comb in the extreme ul-
traviolet, Nature 436, 234 (2005).

[75] J. R. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, Phase-Coherent Frequency Combs
in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond En-
hancement Cavity, Phys. Rev. Lett. 94, 193201 (2005).

[76] W. Dür, Multipartite entanglement that is robust against disposal of particles, Phys.
Rev. A 63, 020303 (2001).

[77] J. K. Stockton, J. M. Geremia, A. C. Doherty, and H. Mabuchi, Characterizing
the entanglement of symmetric many-particle spin-(1/2) systems, Phys. Rev. A 67,
022112 (2003).

[78] A. Sen(De), U. Sen, M. Wiesniak, D. Kaszlikowski, and M. Żukowski, Multiqubit
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and A. Zeilinger, An experimental test of non-local realism, Nature 446, 871 (2007).

[91] C. Branciard, A. Ling, N. Gisin, C. Kurtsiefer, A. Lamas-Linares, and V. Scarani,
Experimental Falsification of Leggett’s Nonlocal Variable Model, Phys. Rev. Lett.
99, 210407 (2007).
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[212] M. Żukowski, A. Zeilinger, and H. Weinfurter, Entangling Photons Radiated by
Independent Pulsed Sources, Ann. N. Y. 755, 91 (1995).

[213] J. G. Rarity, Interference of Single Photons from Separate Sources, Ann. N. Y. 755,
624 (1995).

[214] M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, Entangling
independent photons by time measurement, Nat. Phys. 3, 692 (2007).

[215] J. G. Rarity and P. R. Tapster, Three-particle entanglement from entangled photon
pairs and a weak coherent state, Phys. Rev. A 59, R35 (1999).

[216] H.-X. Lu, J. Zhang, X.-Q. Wang, Y.-D. Li, and C.-Y. Wang, Experimental high-
intensity three-photon entangled source, Phys. Rev. A 78, 033819 (2008).

[217] K. Sanaka, K. J. Resch, and A. Zeilinger, Filtering Out Photonic Fock States, Phys.
Rev. Lett. 96, 083601 (2006).

[218] K. J. Resch, J. L. O’Brien, T. J. Weinhold, K. Sanaka, B. P. Lanyon, N. K. Langford,
and A. G. White, Entanglement Generation by Fock-State Filtration, Phys. Rev. Lett.
98, 203602 (2007).



188 BIBLIOGRAPHY

[219] R. Okamoto, J. L. O’Brien, H. F. Hofmann, T. Nagata, K. Sasaki, and S. Takeuchi,
An Entanglement Filter, Science 323, 483 (2009).

[220] W. G. Unruh, Analysis of quantum-nondemolition measurement, Phys. Rev. D 18,
1764 (1978).

[221] G. J. Milburn and D. F. Walls, Quantum nondemolition measurements via quadratic
coupling, Phys. Rev. A 28, 2065 (1983).

[222] C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-
M. Raimond, and S. Haroche, Progressive field-state collapse and quantum non-
demolition photon counting, Nature 448, 889 (2007).

[223] R. A. Campos, B. E. A. Saleh, and M. C. Teich, Quantum-mechanical lossless beam
splitter: SU(2) symmetry and photon statistics, Phys. Rev. A 40, 1371 (1989).

[224] A. Zeilinger, General properties of lossless beam splitters in interferometry, Am. J.
Phys. 49, 882 (1981).

[225] D. Kliger and J. Lewis (eds.), Polarized light in optics and spectroscopy (Academic
Press, 1990).

[226] S. Gaertner, H. Weinfurter, and C. Kurtsiefer, Fast and compact multichannel photon
coincidence unit for quantum information processing, Rev. Sci. Instrum. 76, 123108
(2005).

[227] R. J. Glauber, The Quantum Theory of Optical Coherence, Phys. Rev. 130, 2529
(1963).

[228] R. Hanbury Brown and R. Q. Twiss, Correlation between Photons in two Coherent
Beams of Light, Nature 177, 27 (1956).

[229] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals
between two photons by interference, Phys. Rev. Lett. 59, 2044 (1987).

[230] L. Mandel, Quantum effects in one-photon and two-photon interference, Rev. Mod.
Phys. 71, S274 (1999).
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von Mathematicaprogrammen verbracht. Nikolai danke ich insbesondere für seine
übersprühenden und inspirierenden Ideen und für die vielen hinterlassenen Plastik-
flaschen. Das letztere wird von Christian geteilt, der immer durch seine messerschar-
fen Einwände, sei es physikalischer oder sprachlicher Natur, zum Nachdenken anregte.
Roland und ich haben viel Neues auf dem Gebiet der Kurzpulsphysik dazugelernt.
Das gemeinsame Diskutieren über und Experimentieren an der Cavity waren sehr
bereichernd.

• Das Garchinger Team wird von Pavel Trojek (“Master of Down Conversion”) und
Daniel Richart kompletiert, die zur angenehmen Atmosphäre in Garching beitrugen.

• Die Cavity wäre niemals ohne tatkräftige Unterstützung von Akira Ozawa und Thomas
Udem entstanden. Dafür danke!

• Unsere Arbeitsgruppe beschränkt sich nicht nur auf Garching, sondern der Großteil
experimentiert an der LMU, wo dazu auch noch gefrühstückt wird. Dort möchte
ich vor allen Martin Fürst und Henning Weier für die Elektronikberatungen, Daniel
Schlenk für allerlei, Wenjamin Rosenfeld für Atomdiskussionen und Florian Henkel
für die Schrippen danken. Allen möchte ich für die angenehmen gemeinsamen Stun-
den bei der Grusi, auf Ringberg und beim Diskutieren danken.
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• Bei QCCC möchte ich Thomas Schulte-Herbrüggen für seine Organisation von und
Motivation bei unseren Seminaren und Workshops danken. Mit Christina Kraus, Rob
Fisher, Uwe Sander, Alexander Kubanek und weiteren QCCC Doktoranden hatte ich
viel Spaß beim gemeinsamen Gedankenaustausch.

• Unsere experimentelle Forschung steht im ständigen Kontakt mit der Theorie und
ihren Verfechtern. Für viele Diskussionen, Anregungen und Formeln will ich ins-
besondere WiesÃlaw Laskowski, Marek Żukowski (danke für die Wochen in Sopot und
Gdansk!), Otfried Gühne, Géza Tóth, Jiannis Pachos (“To be or not to be”), Thierry
Bastin und Enrique Solano danken.

• Das kritische Lesen des Manuskripts zu dieser Arbeit haben bravourös Nikolai, Rob,
Roland und Ermin Malić (dein Eis bekommst du noch!) gemeistert.

• Nancy und

• meinem Vater.

The end.

Life is like topography, Hobbes. There
are summits of happiness and success,
flat stretches of boring routine, and
valleys of frustration and failure.

Bill Watterson, Calvin and Hobbes:
Scientific progress goes “boink”.
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