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1. Summary 

Controlling centrosome numbers is crucial for proper bipolar spindle assembly and genomic 

stability. While defective centrosome duplication in S phase often leads to the formation of 

monopolar spindles, the assembly of excessive numbers of centrioles fosters multipolar 

mitoses. In either case, chromosome segregation is likely to be impaired and the probability of 

subsequent aneuploidy increases. Several kinases have been implicated in centrosome 

duplication, including members of the Cdk and Plk families. Recently, we and others could 

show that Polo-like kinase 4 (Plk4) is fundamental to this process (Habedanck et al., 2005; 

Bettencourt-Dias et al., 2005; Kleylein-Sohn et al., 2007; Rodrigues-Martins et al., 2007; Peel 

et al., 2007). This present study aims at unraveling how Plk4 itself is controlled by upstream 

signals.  

First, we set out to identify phosphorylated residues on Plk4 via mass spectrometry. 

We show that Plk4 is a highly phosphorylated protein throughout the cell cycle and identify 

several phosphorylated residues on this kinase. Next, we present a biochemical and functional 

characterization of the corresponding Plk4 phosphorylation site mutants in the context of 

centriole biogenesis. 

Second, based on the finding that Drosophila Plk4 is degraded by the 26S proteasome 

dependent on the E3 ubiquitin ligase SCF
Slimb 

(Rogers et al., 2009; Cunha-Ferreira et al., 

2009b), we show that Plk4 levels in human cells are tightly controlled by the homologues 

SCF
βTrCP 

complex. Moreover, we prove that βTrCP binding is dependent on a phosphorylated 

consensus binding motif in Plk4 and provide evidence that autophosphorylation activity of 

Plk4 is required for its own controlled destruction.  

Thus, we propose that active Plk4 constantly primes itself for degradation in order to 

restrain its own activity at the centrosome. 
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2. Introduction 

Since the centrosome has been discovered by van Beneden and Boveri in the second half of 

the 19
th

 century (Van Beneden, 1883; Boveri, 1887), this cellular organelle has fascinated cell 

biologists due to its complex and intriguing nature. In 1914, Theodor Boveri formulated his 

remarkable hypothesis that centrosomal abnormalities are linked to aneuploidy and 

tumorigenesis (Boveri, 1914), foreseeing experimental evidence that has been obtained many 

decades later (Lingle et al., 1998; Pihan et al., 1998; Carroll et al., 1999).  

With the advent of sophisticated microscopic and molecular biology techniques, the 

structure as well as the functions of this organelle have extensively been studied. The 

centrosome functions as the major Microtubule Organizing Center (MTOC) in interphase 

where it actively orchestrates numerous microtubule (MT)-dependent processes, such as cell 

shape, mobility, polarity and adhesion, as well as intracellular transport and the positioning of 

organelles (Bornens, 2008). When cells enter mitosis, the duplicated centrosome becomes a 

key player in proper bipolar spindle assembly by virtue of its MT nucleation capacity. 

In addition to its role in organizing MTs, the centrosome is also pivotal to the process 

of ciliogenesis, in that the mature centriole of the centrosome templates the formation of the 

axoneme of cilia and flagella. 

Despite this recent progress, many aspects in centrosome biology remain mysterious. 

In particular, the process of centriole duplication and its regulation are only incompletely 

understood. The interphase centrioles must duplicate exactly once per cell cycle in a strict 

one-per-one ratio of pre-existing to newly-formed centrioles (Nigg, 2007), as any numerical 

aberration fosters the formation of monopolar or multipolar spindles (reviewed in Godinho et 

al., 2009). In fact, many tumors are characterized by excess numbers of centrosomes (Kramer 

et al., 2005; Lingle et al., 1998; Giehl et al., 2005; Pihan et al., 1998). This clearly 

demonstrates the requirement for a tight regulation of the centrosome duplication cycle – both 

in conjunction with the cell cycle and with regard to centriole copy number control. 

In the following, we will present the current knowledge on centrosome structure and 

function, followed by an overview over the centrosome (duplication) cycle and its regulation. 

Finally, we will end the introductory part with a discussion on the role of the ubiquitin-

proteasome system in cell cycle and centrosome cycle regulation. 
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2.1. Structure of the centrosome 

As the cellular environment is highly unfavorable for any spontaneous MT nucleation, 

templated nucleation mechanisms evolved where γ-tubulin-containing multiprotein ring 

complexes (γTuRCs) accelerate the polymerization of tubulin dimers to dynamic MTs (Zheng 

et al., 1995). The centrosome is the primary MTOC in animal cells that orchestrates this 

dynamic MT array, mainly through a concentration of γTuRCs within the cell. 

The centrosome is a non-membranous organelle of about 1 µm in diameter that is 

usually found in close proximity to the nucleus (Fig. 1) (Doxsey, 2001). Despite its small size, 

the centrosome is of remarkable complexity. Its center is comprised of two loosely tethered 

centrioles, barrel-shaped structures with a nine-fold radial symmetry built of highly stable MT 

blades. These centrioles are embedded into an electron-dense, amorphous protein matrix 

referred to as pericentriolar material (PCM) (Doxsey, 2001; Azimzadeh & Bornens, 2007). 

There is an intimate relationship between centrioles and their surrounding PCM: While loss of 

centrioles leads to the dispersal of the PCM and thus to a loss of centrosome integrity 

(Bobinnec et al., 1998), the PCM has vice versa been shown to be fundamental to the 

formation and stabilization of newly forming procentrioles (Fig. 2) (Dammermann et al., 

2004; Loncarek et al., 2008). 

 

Fig. 1:  Schematic diagram depicting the centrosome consisting of two centrioles in their 
surrounding PCM.  In each triplet, the most internal tubule is called the A-tubule, the following 

one is the B-tubule and the most external one is the C-tubule. At its distal end, the centriole consists 

of doublets (adapted from Bettencourt-Dias & Glover, 2007). 
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The canonical centriole is a complex cylindrical structure with an outer wall formed 

by MT triplets (Bornens, 2002; Song et al., 2008b). However, variations on this scheme have 

occurred over the course of evolution, exemplified by centrioles from flies and worms 

displaying MT doublets and singlets, respectively (Pelletier, 2004; Callaini et al., 1997). 

Centriolar MTs dictate a polarization along the proximo-distal axis, with the MT minus ends 

forming its proximal end (Bornens, 2002). Post-translational modifications, such as 

polyglutamylation (Bobinnec et al., 1998; Janke et al., 2005), and additional structural 

proteins, such as tektins and ribbon proteins (Hinchcliffe & Linck, 1998; Steffen & Linck, 

1988), are thought to account for the remarkable stability of centriolar MTs which withstand 

even harsh detergent and cold treatments. In addition, centrioles possess further structural 

features on their insides, including intraluminal spokes, filaments or tubes (Pelletier et al., 

2006; Nakazawa et al., 2007; Hiraki et al., 2007). 

Although the two centrioles share an overall similar architecture, they are structurally 

and functionally distinct in that only the older one is fully mature (Azimzadeh & Bornens, 

2007). Mature centrioles are characterized by two sets of nine appendages at their distal ends 

(distal and subdistal appendages) (Paintrand et al., 1992), thought to be involved in anchoring 

MTs and in docking of centrioles at the plasma membrane during ciliogenesis (Azimzadeh & 

Bornens, 2007). Characteristic proteins present at appendages are ε-tubulin, ninein, Odf2, 

Cep170 or Cep164 (Chang et al., 2003; Mogensen et al., 2000; Ishikawa et al., 2005; 

Guarguaglini et al., 2005; Graser et al., 2007). 

The PCM has long been characterized only as amorphous, electron-dense material. 

With the development of highly sensitive protein identification techniques, in particular mass 

spectrometry, it has been shown that this matrix consists of more than one hundred different 

proteins, many of them carrying large coiled-coil regions known to mediate protein-protein 

interactions primarily in structural and motor proteins  (Andersen et al., 2003).  

 

2.2.  Functions of the centrosome 

2.2.1. The centrosome as MTOC 

The architecture of the interphase MT array depends not only on the dynamic instability of 

MTs themselves (Mitchison & Kirschner, 1984), but also on a balance between MT 

nucleation, MT release and MT anchoring at the centrosome (Bornens, 2002). Central to these 

processes is the PCM with its principal components belonging to the pericentrin and 

AKAP450 family of coiled-coil proteins (Moritz, 2004; Bornens, 2002). It constitutes a 

binding matrix for the γTuRC, that mediates the nucleation of MTs (Zheng et al., 1995), and 
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for regulatory proteins, such as the MT severing protein katanin which drives the release of 

MTs into the cytoplasm (Bartolini & Gundersen, 2006). But also the mature centriole plays a 

role in MT organization, in that released MTs might be re-captured and subsequently 

anchored at the subdistal appendages, an activity known to depend on the protein ninein 

(Mogensen et al., 2000). In addition, re-captured MTs may also be anchored within the PCM, 

however in close association with the mother centriole and dependent on the concerted action 

of the MT-associated protein EB1 with the dynactin subunit p150
Glued

 (Askham et al., 2002).  

 

 

 

In preparation for mitotic spindle formation, the MT nucleating capacity of the 

centrosome dramatically increases, a process referred to as centrosome maturation (Palazzo et 

al., 2000; Bornens, 2002). The two kinases Plk1 and Aurora A have been implicated in this 

process, opposed mainly by the phosphatases PP1 and PP4 (reviewed in Blagden & Glover, 

2003; Trinkle-Mulcahy & Lamond, 2006). Work in Drosophila has shown that Polo (Plk1) 

activates Abnormal Spindle Protein (ASP) and promotes the increased recruitment of γTuRCs 

(Gonzalez et al., 1998; do Carmo Avides et al., 2001), while in human cells, Plk1 has been 

shown to regulate Nlp, a centrosomal protein involved in γTuRC binding and MT nucleation 

(Casenghi et al., 2003; Casenghi et al., 2005). In addition, Aurora A phosphorylates (and 

Fig. 2: Functions of centrioles. Centrioles are the core structures for the formation of centrosomes 

as well as motile and immotile (primary) cilia. Parental centrioles are depicted in light brown and 

engaged procentrioles in blue. For details, see text. 
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thereby recruits) the conserved centrosomal protein D-TACC, that in turn together with other 

factors accelerates the nucleation of MTs (Giet et al., 2002; Barros et al., 2005; Peset et al., 

2005; Brittle & Ohkura, 2005; Brouhard et al., 2008). 

 

2.2.2. Centrioles as templates for primary cilium formation 

Centrioles are structurally equal to and interconvertible with basal bodies (Dutcher, 2003). 

Cilia are membrane-bounded, centriole-derived projections protruding from the cell body that 

contain a MT cytoskeleton, the ciliary axoneme. Mammalian ciliary exonemes are constituted 

by a cylindrical array of nine doublet MTs that extend from the A and B MTs of each of the 

nine triplet MT blades of the basal body (Fig. 3) (Satir & Christensen, 2007; Fliegauf et al., 

2007). They are formed in two major patterns: 9+2, in which the nine MT doublets surround a 

central pair of singlet MTs, and 9+0, in which this central pair is missing. Ciliary motility is 

depended on the structure of the axoneme: While 9+2 cilia usually contain axonemal dyneins 

(motor proteins) that confer the ability of ciliary beating, 9+0 cilia are lacking these motors 

and are therefore non-motile (Satir & Christensen, 2007). In addition, non-motile cilia 

(referred to as primary cilia) are usually solitary and found on virtually all cell types within 

the mammalian body (except for blood cells), whereas motile cilia often occur in bundles of 

up to several hundreds, usually on differentiated epithelial cells (Fliegauf et al., 2007).  

In contrast to the majority of other organelles, cilia are only assembled when cells exit 

from the cell cycle into a quiescent and/or differentiated state; vice versa, re-entry into the cell 

cycle from G0 phase requires a preceding ciliary resorption (Quarmby & Parker, 2005). 

Proteins localizing to centrosomes/basal bodies may in principle be involved in ciliogenesis, 

ciliary maintenance and/or resorption. In particular, proteins forming the appendages of the 

mature centriole are suggested to anchor the centriole at the plasma membrane, as deletion of 

Odf2, a protein indispensable for the formation of distal and subdistal appendages, also 

prevented cilia formation in a mouse knock-out model (Ishikawa et al., 2005). 

Motile cilia are usually required to move extracellular fluids or particles. For instance, 

multi-ciliated epithelial cells in the respiratory tract are required for mucociliary clearance, a 

process in which a thin mucus layer is moved towards the pharynx in order to clear inhaled 

pathogens and other foreign bodies from the respiratory system (Kollberg et al., 1978; Moller 

et al., 2006). Furthermore, flagellar mobility is required for sperm cells to propel through the 

female reproductive system.  
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In contrast to these active functions of motile cilia, primary cilia are usually thought to 

mediate sensing of various environmental cues. They have been shown to play important roles 

in development, in particular in the establishment of left-right asymmetry (Nonaka et al., 

1998), as well as in the adult where the processing of mechanical and chemical signals is 

required for proper organ and tissue function. For example, flow-induced passive bending of 

cilia on kidney epithelial cells is required for mechanosensation of fluid flow in the nephron, 

and perturbance of this mechanosensory function is a cause of polycystic kidney disease 

(Praetorius & Spring, 2005).  

It is therefore not surprising that ciliary defects have been causally linked to several 

pleiotropic disorders, such as Bardet-Biedl syndrome (BBS), Almstrom syndrome (ALMS), 

oral-facial-digital syndrome type I (OFD1), and others (Badano et al., 2006; Hildebrandt & 

Zhou, 2007; Zariwala et al., 2007).  

 

Fig. 3: Structure of a motile cilium with a 9+2 axoneme. MT doublets forming the 9+2 axoneme 

emanate from the A and B MTs of each of the nine triplet MT blades of the basal body. The 

remaining PCM is shaded darker orange around the basal body. The ciliary membrane is continuous 

with the plasma membrane but contains specific signaling molecules. Adapted from Fliegauf et al. 

(2007). 
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2.3. The centrosome cycle 

In many aspects, the canonical centrosome duplication cycle is reminiscent of the DNA 

replication cycle (Fig. 4). Prior to mitotic cell division, the single centrosome needs to be 

faithfully duplicated in order to ensure proper bipolar spindle assembly and error-free 

segregation of chromosomes. With the exception of some specialized cell types and 

developmental stages in which centrioles are formed de novo (Dirksen, 1991; La Terra et al., 

2005; Marshall et al., 2001), centriole duplication usually initiates next to a pre-existing 

centriole, i.e. centrosome duplication occurs in a semi-conservative fashion (Sluder, 2004). 

Based on morphological changes that have been observed by electron microscopy, the 

centrosome cycle has been broken down into four distinct steps: centriole disengagement, 

centriole duplication (with elongation), centrosome maturation and centrosome separation 

(Sluder, 2004; Chretien et al., 1997; Kuriyama & Borisy, 1981; Alvey, 1985; Kochanski & 

Borisy, 1990; Paintrand et al., 1992; Vorobjev & Chentsov Yu, 1982) (Fig. 4). 

 

 

 

Fig. 4:  Schematic view of the centrosome cycle in relation to the cell cycle. Mature centrioles 

are shown in brown, procentrioles in dark blue, the hypothetical linker protein required for 

maintenance of engagement in red, and the PCM in gray. Distal and subdistal appendages are 

represented in darker brown, and the flexible tether connecting parental centrioles until the onset of 

mitosis is shown as winding black lines. 
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In cycling somatic cells, centriole duplication is initiated at the G1/S transition by the 

formation of a procentriole at the proximal base of each of the two existing (= parental) 

centrioles. Parental centrioles and their progeny are engaged in an orthogonal manner, with 

the procentriolar lumen facing the wall of the parental centriole. As cells further progress 

through S and G2 phases, these procentrioles elongate to full size, strictly maintaining their 

intimate orthogonal arrangement. Until late G2, tethering of the two centriole pairs ensures 

that the duplicated centrosome still functions as one single MTOC. Centrosome maturation in 

G2 is accompanied by a dramatic increase in MT nucleation capacity, the recruitment of 

additional centrosomal proteins and the acquisition of distal and subdistal appendages by the 

younger parental centriole (reviewed in Palazzo et al., 2000). 

With the onset of mitosis, the flexible tether between the two parental centrioles is 

severed in response to phosphorylation of linker proteins such as C-Nap1 and rootletin (Bahe 

et al., 2005; Yang et al., 2006; Mayor et al., 2000); as a consequence, the two engaged 

centriole pairs separate and initiate the formation of the mitotic spindle. 

Upon exit from mitosis, the centrosome duplication cycle closes with the 

disengagement of the two inherited centrioles and the establishment of the flexible and highly 

dynamic tether instead. 

 

2.3.1. Centriole biogenesis 

A putative templating mechanism holds considerable appeal for explaining how centriole 

duplication is initiated by coordinated recruitment of centriolar proteins to a specified site at 

the parental centriole wall (Delattre & Gonczy, 2004). Careful electron microscopic studies in 

mammalian cells have revealed a filamentous corona forming around the proximal walls of 

parental centrioles and electron-dense material protruding into the proximal half of the 

elongating centriole (Anderson & Brenner, 1971; Sorokin, 1968). Moreover, a characteristic 

fibrous structure displaying ninefold symmetry (termed cartwheel) has been proposed to serve 

as a scaffold for the assembly of centriolar MTs in some species (Anderson & Brenner, 1971; 

Beisson & Wright, 2003; Cavalier-Smith, 1974; reviewed in Alvey, 1986). Strikingly, the 

cartwheel is able to self-assemble in vitro in a mixture of solubilized basal body components, 

strongly suggesting that intrinsic properties of its molecular components dictate the ninefold 

symmetry of the centriole/basal body (Gavin, 1984). 

Interest in this putative scaffolding structure has recently been revived by the 

identification of the first cartwheel-associated molecule, the coiled-coil protein Bld10p, that 
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plays a crucial role in centriole/basal body assembly in Chlamydomonas (Matsuura et al., 

2004).  

Another study from the same group identified a second protein of the cartwheel, 

CrSas6 (Nakazawa et al., 2007). This homologue of the C. elegans SAS-6 protein (see below) 

is part of the central hub. Null mutants fail to assemble this part of the cartwheel, yet 

occasionally they are able to form basal bodies with aberrant numbers of MT triplet blades, 

again demonstrating a pivotal role for the cartwheel in the establishment of the centrioles' 

ninefold symmetry (Nakazawa et al., 2007).  

 

2.3.2. Centriole biogenesis pathways in C. elegans and human cells 

Genetic studies and RNA interference screens have identified a core module of five 

centrosomal proteins as being required for centrosome duplication in C. elegans: SPD-2, 

ZYG-1, a complex of SAS-6/SAS-5 and SAS-4 (Kemp et al., 2004; O'Connell et al., 2001; 

Leidel et al., 2005; Dammermann et al., 2004; Delattre et al., 2004; Leidel & Gonczy, 2003; 

Pelletier et al., 2006) (Fig. 5a). Upon entry of the sperm, SPD-2 becomes recruited to the 

paternal centrioles in a Cdk2-dependent manner (Cowan & Hyman, 2006). SPD-2 recruitment 

itself is required for the subsequent centriolar localization of all other components 

downstream in the cascade (Delattre et al., 2006; Pelletier et al., 2006). ZYG-1 recruits a 

complex of the coiled-coil proteins SAS-6 and SAS-5 which in turn are required for the 

accumulation of SAS-4. In an elegant structural study using electron tomography, the authors 

revealed that upon recruitment of the SAS-6/SAS-5 complex, the formation of a central tube 

is initiated. Dependent on the localization of SAS-4 thereafter, centriolar singlet MTs were 

observed to assemble along the outer wall of this tube (Pelletier et al., 2006).  

Studies in other organisms have meanwhile proven that the above described core 

module of nematode centriole duplication proteins has been conserved through evolution, as 

orthologues of SPD-2, ZYG-1, SAS-4 and SAS-6 (with the notable exception of SAS-5) have 

been identified in flies and humans (Bettencourt-Dias & Glover, 2007) (Fig. 5b). Although 

both Drosophila and humans lack an obvious homologue of ZYG-1 in their genomes, two 

studies independently identified human Plk4 (also known as Sak) and the homologous 

Drosophila Plk4 as likely functional analogues of ZYG-1 (Bettencourt-Dias et al., 2005; 

Habedanck et al., 2005). 
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Subsequently, Plk4-induced overduplication of centrioles has been used as an elegant 

tool in the delineation of a centriole biogenesis pathway in human cells (Kleylein-Sohn et al., 

2007) (Fig. 5b). After induction of Plk4 overexpression, the human proteins HsSas-6, CPAP 

(the human homologue of SAS-4), Cep135 (the homologue of Chlamydomonas Bld10p), and 

γ-tubulin were rapidly recruited to the centrosome. While HsSas-6 exclusively localized to the 

nascent procentrioles, CPAP and Cep135 could additionally be detected in the proximal 

lumen of parental centrioles. Interestingly, three recent studies independently describe a role 

Fig. 5: The entriole biogenesis pathway is highly conserved.   (a) Centriole biogenesis in 

C. elegans. In S phase, procentrioles start to assemble next to each parental centriole by the 

formation of a central tube. In a Sas-4-dependent manner, 9 singlet MT are subsequently assembled 

onto the central tube.  (b) Centriole biogenesis in human cells. Similarly to C. elegans, procentriole 

formation initiates in S phase dependent on the proteins HsSas-6, CPAP, Cep135 and γ-tubulin. 

During elongation, tubulin dimers seem to be added underneath a distal cap constituted by CP110. 

Adapted from Kleylein-Sohn et al. (2007). 

a) 

b) 



INTRODUCTION 

 - 12 - 

for CPAP in the elongation of centrioles, hinting at a conserved function of SAS-4/CPAP in 

modulating centriolar MTs (Schmidt et al., 2009; Tang et al., 2009; Kohlmaier et al., 2009).  

In summary, the protein module originally discovered in C. elegans appears to represent a 

highly conserved centriole assembly pathway (Bettencourt-Dias & Glover, 2007). As the key 

players in this process have now largely been determined (Kleylein-Sohn et al., 2007), it will 

be important to unravel their respective functions and interactions on a molecular level. 

 

2.3.3. Regulation of centriole duplication 

2.3.3.1. Synchronization of the chromosome and centrosome duplication cycle 

It has long been noticed that centriole duplication is strictly limited to S phase of the cell 

cycle when cells prepare for subsequent cell division by duplicating their genetic content. 

However, the exact molecular mechanisms of this synchronization remain largely obscure.  

Procentriole formation coincides with the rise of Cdk2 activity at the beginning of  

S phase, and consequently, studies in Xenopus egg extracts as well as in mammalian tissue 

culture cells demonstrated a requirement for Cdk2/Cyclin-E in procentriole biogenesis 

(Hinchcliffe et al., 2001; Matsumoto et al., 1999; Lacey et al., 1999). Additionally, 

Cdk2/Cyclin-A has been shown to be essential for the re-duplication of centrioles in S phase-

arrested cells (Meraldi et al., 1999). However, although Cdk2 activity seems to be generally 

required for centriole duplication, a direct requirement at the centrosome seems unlikely in 

light of the findings that Cdk2 and Cyclin-E knockout mice are viable and show no obvious 

defects in centriole duplication (Berthet et al., 2003; Geng et al., 2003; Ortega et al., 2003). 

Thus, a mechanistic explanation for the requirement of Cdk2 activity is still missing, and 

meanwhile it remains likely that Cdk2 activity is necessary to advance the cell into a certain 

cell cycle window (i.e. S phase) in which cytoplasmic conditions are permissive for centriole 

duplication (Sluder, 2004). 

 

2.3.3.2.  Once and only once – licensing centrioles for duplication 

With the exception of some cancer cell lines that accumulate centrioles by successive rounds 

of duplication when cell cycle progression is blocked in S phase (Balczon et al., 1995; 

Meraldi et al., 1999), most cells prevent centriole re-replication in prolonged S phase, 

including HeLa cells (Loncarek et al., 2008). Obvious similarities between centriole 

duplication and DNA replication prompted the speculation that centriole re-duplication might 

normally be prevented through a licensing mechanism in analogy to DNA replication 

(reviewed in Tsou & Stearns, 2006a; see also Blow & Dutta, 2005; Hook et al., 2007; Diffley, 
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2001). Here, the licensing step corresponds to the loading of mini chromosome maintenance 

(MCM) helicases onto DNA in order to unwind the DNA for further replication. This 

assembly of pre-replicative complexes (preRCs) requires low Cdk activity and thus can take 

place only in a short window of the cell cycle between the end of mitosis and late G1 phase. 

The firing of those preRCs, however, requires the high Cdk activity of the following S phase. 

As Cdk activity remains high from S phase until the end of mitosis, re-licensing is prevented 

until the next cell cycle is entered (Hook et al., 2007; Blow & Dutta, 2005; Diffley, 2001).  

Wong and Stearns (2003) tested the hypothesis of an analogous mechanism in elegant 

cell fusion experiments, generating hybrid cells by fusing G1 and S phase cells or G1 and G2 

cells, respectively. The authors could show that G1 (i.e. unduplicated) centrioles readily 

initiated procentriole formation in S phase cytoplasm, while G2 (i.e. engaged) centriole pairs 

did not; this was not due to an inhibitory effect of the cytoplasm as within the same 

cytoplasm, G1 centrioles were found to duplicate, and G2 centrioles did not. These findings 

led the authors to propose a centriole-intrinsic block to reduplication once the formation of a 

procentriole had been initiated (Wong & Stearns, 2003).  

Supporting experimental evidence could be obtained recently by laser ablation studies 

in HeLa cells (Loncarek et al., 2008). Although these cells – in contrast to CHO and U2OS 

cells – possess a stringent control to prevent reduplication in prolonged S phase, parental 

centrioles depleted for their engaged procentriole by a focused laser beam (repeatedly) 

initiated a new round of procentriole formation within the S phase block (Loncarek et al., 

2008). This finding goes well in line with the above-mentioned hypothesis that centriole 

engagement imposes an intrinsic block to reduplication. 

Recently, the same group proposed a mechanistic explanation for this intrinsic block 

(Tsou & Stearns, 2006b). Their experiments suggest a role for separase in the disengagement 

of centrioles upon exit from mitosis, constituting the proposed (temporally separated) 

licensing step for subsequent centriole duplication in S phase. It has been put forward that 

separase – directly or indirectly – could catalyze the cleavage of a yet-to-be identified protein 

that 'glues' the two engaged centrioles together, reminiscent of cohesin functioning in 

duplicated sister chromatid cohesion (Nigg, 2006). 
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Despite the obvious attractiveness of such a scenario, this hypothesis cannot explain certain 

observations (Nigg, 2007; Loncarek & Khodjakov, 2009): First, in hydroxyurea-induced 

centriole re-duplication in CHO cells (Balczon et al., 1995), centrioles disengage first before 

they continue to duplicate another time (Loncarek et al., 2008), yet in S phase separase is kept 

inactive by securin. Second, during ciliogenesis, procentrioles formed in vicinity of parental 

centrioles also become disengaged in interphase when separase should not be active (Dirksen, 

1991). And third, individual engaged centriole pairs disengage asynchronously in S phase-

arrested cells, at least arguing against a global activation of separase at that point (Loncarek et 

al., 2008). Recent data suggests that Cep76 might serve as a 'sensor' to prospect for the 

presence of a procentriole at the parental centriole (Tsang et al., 2009).  

 

  

Fig. 6: Controls that govern the centriole duplication cycle. In order to keep centrosome numbers 

constant, cells adhere to two conceptually different modes of control: cell cycle control and centriole 

copy number control. While cell cycle control seems to be regulated by a licensing event in analogy 

to DNA replication (that is, disengagement of duplicated centrioles), copy number control is exerted 

by the tightly regulated activity of the kinase Plk4. Violation of either rule leads to centrosome 

amplification, yet via fundamentally different mechanisms. Adapted from Nigg (2007). 
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2.3.3.3. One procentriole per parental centriole – copy number control exerted by Plk4 

It appears somewhat counterintuitive that exactly one – and only one – procentriole forms 

orthogonally to the cylindrical base of a parental centriole. It has been speculated that 

centrioles carry an intrinsic asymmetry, or that a site at the wall of the cylinder pre-defines the 

place where a new procentriole emerges (Jones & Winey, 2006; Tsou & Stearns, 2006a). 

Such a scenario would fit well with the above described licensing model, in that the existing 

procentriole would simply block the formation of further progeny by occupying the required 

assembly site. Unfortunately, such an explanation appears too simple and cannot explain 

apparent deviations from the one-to-one ratio, where two to nine procentrioles were found to 

assemble on one parental centriole cylinder (Dirksen, 1991; Loncarek et al., 2008).  

Considerable progress towards the understanding of the mechanism of centriole copy 

number control has been achieved with the identification of Polo-like kinase 4 (Plk4) as a key 

regulator of this process in both human cells (Habedanck et al., 2005) and flies (Bettencourt-

Dias et al., 2005). [For a summary of our current knowledge about this kinase, please refer to 

section 2.5]. 

Centrosomal localization had first been reported for mouse Plk4 (Hudson et al., 2001). 

Subsequently, overexpression studies in human cells and flies established that excess Plk4 

drives the formation of supernumerary centrioles (Habedanck et al., 2005; Bettencourt-Dias et 

al., 2005), while the depletion or mutational inactivation of this kinase abolishes centriole 

duplication, leading to a progressive loss of centrioles in vertebrate and invertebrate cells 

(Habedanck et al., 2005; Kleylein-Sohn et al., 2007; Bettencourt-Dias et al., 2005). 

Moreover, the spermatids of Drosophila plk4 mutants lack basal bodies and are therefore 

unable to form flagella (Bettencourt-Dias et al., 2005). These observations are reminiscent of 

the functions that have been assigned to the kinase ZYG-1 in C. elegans (O'Connell et al., 

2001), and despite the lack of any obvious sequence similarity between these two proteins, it 

appears plausible that Plk4 represents the functional homologue of ZYG-1 in vertebrate cells 

(Habedanck et al., 2005). Most strikingly, excess Plk4 can trigger the de novo centriole 

biogenesis pathway in unfertilized Drosophila eggs (Peel et al., 2007; Rodrigues-Martins et 

al., 2007).  

Of particular interest in this context was the finding that overexpression of Plk4 in 

human cells caused the apparent recruitment of 'electron-dense material' around the proximal 

walls of parental centrioles (Habedanck et al., 2005). In a subsequent study, these electron-

dense spots were shown to represent early-stage procentrioles that eventually develop into full 

centrioles (Kleylein-Sohn et al., 2007; discussed in detail in section 2.3.2). In addition to 
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Plk4, overexpression of HsSas-6 also leads to the formation of multiple procentrioles around 

the proximal wall of parental centrioles (Strnad et al., 2007). These observations clearly argue 

against a pre-defined site of centriole assembly, and rather suggest that, in principle, the 

maximal number of procentrioles might be dictated only by spatial constraints (Kleylein-Sohn 

et al., 2007). 

Yet, how cells control the formation of just one procentriole per parental centriole 

remains mysterious. It has been hypothesized that one of the required components might be 

limiting in the assembly process, such that the rapid outgrowth of one centriole would inhibit 

the formation of further progeny (Strnad & Gonczy, 2008). Although such mechanisms might 

indeed be in place, this hypothesis cannot solely explain that Plk4 is able to trigger the 

formation of multiple procentrioles when all other components are present at endogenous 

levels (i.e. Plk4 (activity) would be the limiting factor), while also excessive HsSas-6 can 

initiate this phenotype despite endogenous levels of Plk4 (i.e. HsSas-6 would be the limiting 

factor). 

Another idea (Nigg, 2007) is based on the fact that Plk4 kinase activity at the 

centrosome is strictly required for the initiation of procentriole assembly (Habedanck et al., 

2005), suggesting that Plk4 might phosphorylate one (or more) protein(s) at the assembly site. 

Such a localized phosphorylation would then trigger the rapid outgrowth of one procentriole, 

once the cytoplasmic conditions become permissive for centriole assembly. In such a 

scenario, Plk4 activity is expected to be balanced by a counteracting phosphatase in order to 

prevent the simultaneous outgrowth of multiple centrioles (Nigg, 2007). 

A recent elegant study brought up a new aspect for controlling procentriole numbers 

(Loncarek et al., 2008). The authors overexpressed pericentrin, a large coiled-coil protein of 

the PCM, that itself is not involved in centriole duplication (Doxsey et al., 1994), in S phase-

arrested CHO cells. As a consequence, the PCM around the parental centrioles was 

significantly enlarged. Interestingly, this condition also resulted in the formation of numerous 

procentrioles within the PCM, albeit without the typical orthogonal orientation and in varying 

distance to the parental centrioles (Loncarek et al., 2008).  

Despite this encouraging progress, the molecular mechanisms underlying centriole 

copy number control still remain obscure. It will be of central importance to unravel Plk4's 

putative substrate protein(s) at the centrosome and to elucidate if/how its kinase activity is 

regulated in order to allow the formation of exactly one procentriole per parental centriole. 
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2.3.3.4. Canonical versus de novo centriole formation 

While semi-conservative duplication of resident centrioles represents the most common 

pathway in somatic cells, some specialized cell types are known to assemble centrioles de 

novo. Many ciliated cells, for instance in the vertebrate respiratory tract, assemble 200-300 

basal bodies, each of which nucleates a motile cilium. Predominantly, these basal bodies are 

formed de novo around fibrous granules in the cytoplasm, the so-called deuterosomes 

(Sorokin, 1968). However, a minor fraction of basal bodies is also formed in close vicinity to 

parental centrioles, and the arrangement of these forming basal bodies appears to be quite 

similar to procentriole arrangements formed after overexpression of Plk4 or HsSas-6  

(Kleylein-Sohn et al., 2007; Strnad et al., 2007). Moreover, the mouse zygote (in contrast to 

most other mammals) does not receive a paternal centriole pair from the sperm, so that the 

first embryonic divisions occur acentrosomal. However, during the blastomere stage of 

embryonic development, each cell assembles the correct number of centrioles apparently de 

novo, and thereafter these centrioles continue to duplicate in the canonical way (Szollosi et 

al., 1972). 

These studies have led to the view that the predominant mechanism of duplication in 

somatic cells requires pre-existing centrioles as templates, while de novo formation was 

believed to be restricted to specialized cell types only (Beisson & Wright, 2003; Hagiwara et 

al., 2004). Recent experiments, however, have questioned such a clear distinction between 

these two pathways. For instance, de novo centriole assembly can be induced in vertebrate 

cycling somatic cells if all resident centrioles are removed by microsurgery (Khodjakov et al., 

2002) or ablated by a focused laser microbeam (Uetake et al., 2007), albeit at the expense of a 

loss over numerical control of newly formed centrioles. Moreover, both pathways seem to 

rely on common molecular requirements: If progression into S phase is blocked, the de novo 

re-formation of centrioles after ablation is prevented (Uetake et al., 2007), and de novo 

centriole biogenesis has been shown to similarly require the conserved canonical module of 

centrosomal proteins in Drosophila and mammalian cells, namely Plk4, Sas-6 and Sas-

4/CPAP (Peel et al., 2007; Rodrigues-Martins et al., 2007). It is noteworthy in this context 

that driving centriole overduplication by overexpression of Plk4 or HsSas-6 does not initiate 

the de novo pathway in cells with resident centrioles (Kleylein-Sohn et al., 2007), although 

overexpression of Plk4 in unfertilized (= acentriolar) Drosophila eggs is sufficient to 

assemble large numbers of centrioles de novo (Rodrigues-Martins et al., 2007). 

As induced de novo assembly in somatic cells seems to escape the stringent numerical 

control characteristic of the canonical pathway, it will be important to clarify how even a 
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single centriole in the cytoplasm is able to suppress de novo centriole assembly (Loncarek & 

Khodjakov, 2009). 

 

2.4.  Proteolysis at the centrosome 

2.4.1.  The ubiquitin-proteasome system 

Virtually all cellular processes are regulated by a complex network involving transcription, 

translation, posttranslational modifications and degradation of regulatory key proteins. Most 

regulated protein degradation is carried out by the ubiquitin-proteasome-system which is 

therefore crucial in the maintenance of cellular homeostasis (Hochstrasser, 1996; Hershko & 

Ciechanover, 1998). 

Ubiquitin-dependent proteolysis occurs following the covalent attachment of a 

multiubiquitin chain to a specific substrate protein. Such modified proteins are then targeted 

to the 26S proteasome, a barrel-shaped multi-subunit protease complex that breaks down 

proteins in an ATP- and ubiquitin-dependent manner (Pickart & Cohen, 2004; Finley, 2009). 

In order for target proteins to be recognized and degraded by the 26S proteasome, the small 

76 amino acid protein ubiquitin becomes activated and covalently attached to the substrate by 

the sequential action of three enzymes (Fig. 7), termed E1 (ubiquitin-activating enzyme), one 

of several E2s (ubiquitin-conjugating enzymes), and finally one of many E3s (ubiquitin-

ligases) (Hershko & Ciechanover, 1998). Within this cascade, E3 ligases are by far the most 

diverse and complex group of enzymes (reviewed in Nakayama & Nakayama, 2006). 

Ubiquitin contains a C-terminal glycine residue that is capable of forming an 

isopeptide bond with an acceptor lysine side chain on either the substrate protein or other 

ubiquitin molecules in order to generate a multiubiquitin chain. It becomes activated in an 

ATP-dependent reaction to form a thioester bond with a cysteine in the active site of the E1 

enzyme. Once activated, the ubiquitin moiety is trans-esterified to a cysteine residue within 

the active center of an E2 enzyme, and this E2 complex in turn is incorporated into a large, 

multi-subunit protein complex termed E3 ligase (Fig. 7) (Hershko & Ciechanover, 1998). E3 

ligases then facilitate the ubiquitination of the target protein, either by coordinating substrate 

and E2 enzyme to enable ubiquitin transfer, or by actively catalyzing the ubiquitin transfer 

themselves (Nakayama & Nakayama, 2006) (for further details on E3 ligases, see below). 
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2.4.2. Ubiquitin-dependent protein degradation regulates cell cycle progression 

In order to maintain genetic and functional integrity, cycling cells must progress uni-

directionally through the phases of the cell cycle. This is mediated by highly regulated events 

at each phase transition with a particular emphasis on the irreversibility of each of these 

transitions (Reed, 2003). In principle, this regulatory network is built of phosphorylation 

(mainly by Cdks and Plk1) and rapid protein degradation (especially of cyclins E, A and B). 

The major driving force through the initial events of late G1, S and M phases largely derives 

from the activation of the broad-spectrum Cdks by an increasing concentration of their 

respective cyclin. In this regard, the cell has to deal with an intrinsic problem: An increasing 

cyclin accumulation would inevitably translate into a (slowly) increasing Cdk activity, being 

incompatible with a sharp and rapid phase transition (Reed, 2003). To prevent this, Cdk 

inhibitors keep the activity of Cdk-Cyclin complexes in check, and in most cases, these Cdk 

inhibitors themselves have to be inactivated via protein degradation in order to allow for a 

rapid cell cycle phase transition (Nakayama & Nakayama, 2005). 

The best-studied example for such an inhibitory release is the protein p27
Kip

. G0/G1 

pools of Cdk2/Cyclin-E are kept inactive through the formation of the ternary complex 

Cdk2/Cyclin-E/p
27Kip

 (Coats et al., 1996). However, at the G1/S transition, p27
Kip

 becomes 

degraded in an SCF
Skp2

-dependent manner (a specific E3 ligase, see below), so that rising 

Cdk2/Cyclin-E activity can promote entry into S phase (Sutterluty et al., 1999; Tsvetkov et 

al., 1999; reviewed in Chu et al., 2008). 

Besides p27
Kip

 as the major inhibitor of Cdk2 at the G1/S transition, related proteins 

have been described to be additionally involved (e.g. p21
Cip

, p57, and p130), and data suggest 

that their SCF
Skp2

-mediated degradation is also required for proper Cdk2/Cyclin-E activation 

(Nakayama & Nakayama, 2005). Similarly, the G2/M transition, which is mainly driven by 

Cdk1/Cyclin-B, requires controlled proteolysis under normal circumstances. Again, the 

forming Cdk1/Cyclin-B complexes need to be initially inhibited and then rapidly activated, 

resulting in a sharp and rapid G2/M transition (Pomerening et al., 2005). Cdk1/Cyclin-B 

activity is reversibly inhibited by phosphorylation of the glycine-rich loop (G-loop) of 

Cdk1/Cyclin-B through the kinases Wee1 and Myt1 (Watanabe et al., 1995; Liu et al., 1997; 

Booher et al., 1997). Wee1 has subsequently been shown to be a target of the E3 ligase 

SCF
βTrCP

, after phosphorylation by both Plk1 and Cdk1/Cyclin-B, which leads to Wee1 

destruction and thereby to an activation of Cdk1/Cyclin-B (Watanabe et al., 2004), aided by a 

positive feedback loop. 
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Although the destruction of Wee1 is required to silence the inhibitory phosphorylation 

of the G-loop of Cdk1/Cyclin-B, also the resident phosphorylation has to be rapidly removed. 

To this end, the cell activates the phosphatase Cdc25A that dephosphorylates and thereby 

activates Cdk1/Cyclin-B. This phosphatase itself is also a target of SCF
βTrCP

, both in S phase 

(to prevent premature Cdk1/Cyclin-B activation) and after DNA damage (to halt cell cycle 

progression for DNA damage repair to occur) (Busino et al., 2003; Jin et al., 2003).  

Another prominent example is the required proteolytic destruction of securin in order 

to liberate and activate the protease separase at anaphase onset (Ciosk et al., 1998). In contrast 

to the aforementioned degradation of Cdk inhibitors by SCF
Skp2

 or SCF
βTrCP

, destruction of 

securin is mediated by another E3 ligase, the anaphase-promoting complex/cyclosome 

(APC/C) in its Cdc20-bound form (Cohen-Fix et al., 1996). Upon satisfaction of the spindle 

assembly checkpoint, the APC/C co-factor Cdc20 associates with the APC/C complex, 

thereby forming an E3 ligase active towards securin (reviewed in Peters, 2006; Acquaviva & 

Pines, 2006). Liberated separase, in turn, can then cleave the cohesin subunit Scc1 in order to 

promote sister chromatid separation and anaphase onset (Nasmyth, 2001).  

In addition to securin degradation, the activity of Cdk1/Cyclin-B needs to be abolished 

upon silencing of the spindle assembly checkpoint at metaphase, in order to allow exit from 

mitosis and the establishment of G1 phase. This is achieved by a concerted degradation of 

Cyclin-B (and similarly Cyclin-A) through APC/C
Cdc20

 and subsequently APC/C
Cdh1

, as Cdk1 

stripped off cyclins is inactive (Murray & Kirschner, 1989). Another cyclin to be timely 

degraded is Cyclin-E, as dysregulation of Cyclin-E turnover has been shown to induce 

chromosomal instability (Spruck et al., 1999). Cyclin-E has been found to be degraded in an 

SCF
Fbw7

-dependent manner (also known as SCF
Cdc4

) (Koepp et al., 2001; Moberg et al., 2001; 

Strohmaier et al., 2001). 

These examples, albeit simplified and by no means exhaustive, impressively illustrate 

the importance of ubiquitin-mediated proteolysis in cell cycle progression. 

 

2.4.3. Structure and function of the E3 ligases SCF and APC/C 

In order to carry out the above described functions in the regulation of the cell cycle and the 

plethora of other cellular functions assigned to E3 ubiquitin ligases, an extraordinary degree 

of specificity and versatility has to be achieved. This is provided by the existence of 500-1000 

different E3 ligases that are at present categorized into four major classes, depending on the 

presence of specific structural motifs: HECT-type, RING-finger-type, U-box-type, and  

PHD-finger-type E3 ligases (see Fig. 7) (Nakayama & Nakayama, 2006).  
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RING-finger-type E3 ligases comprise the largest group and are further subdivided into 

families, amongst them the largest subfamily of Cullin-based E3 ligases, including the 

aforementioned members SCF and APC/C (Fig. 7) (Nakayama & Nakayama, 2006). As a 

general scheme, Cullin-based E3 ligases are composed of a RING-finger protein, a scaffold 

protein, an adaptor protein and a receptor protein, the latter conferring most of the substrate 

specificity to the complex (Fig. 8a). In case of the SCF complex (Skp1-Cul1-F-box protein), 

the scaffolding function is provided by Cul1 that forms a core complex with Skp1 and Rbx1 

(dark blue in Fig. 8b); Rbx1 itself binds the E2 conjugating enzyme with the activated 

ubiquitin moiety, while Skp1 bridges to the F-box/substrate complex (Fig. 8b) (reviewed in 

Cardozo & Pagano, 2004). 

F-box proteins finally dictate substrate specificity to the SCF complex. The F-box 

(named after its discovery in Cyclin-F; Bai et al., 1996) is usually found in the N-terminal 

part of the protein, while in the C-terminus, other protein-protein interaction domains can be 

found, the most common of which are leucin-rich repeats (LRRs) and tryptophane/aspartate 

(WD40) repeats (Kipreos & Pagano, 2000). Thus, the common classification distinguishes 

three classes of F-box proteins: FBXW with a WD40 domain; FBXL with a LLR domain, and 

Fig. 7:  Overview of the ubiquitin-proteasome-pathway. The small protein ubiquitin is activated 

in an ATP-dependent manner by the ubiquitin-activating enzyme (E1). From there, ubiquitin is 

transferred to the ubiquitin-conjugating enzyme (E2), that, in most cases, attaches the ubiquitin 

moiety to the target protein in a large complex, the ubiquitin ligase (E3). Subsequently, the 

polyubiquitinated protein is degraded by the 26S proteasome. Depicted in blue are the four major 

classes of E3 ligases, with the largest subfamily (Cullin-based E3s) therein shown in purple. 

Adapted from Nakayama & Nakayama (2006). 
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FBXO with either another or no further (identified) domain (Cenciarelli et al., 1999; Winston 

et al., 1999).  

There is a clear conceptual difference between SCF-type and other ligases, such as 

APC/C, with regard to substrate recognition, namely activation of the ligase (APC/C) versus 

activation of the substrate (SCF) (Reed, 2003). APC/C activation is thought to occur through 

a concerted phosphorylation of core subunits by Cdk1/Cyclin-B and Plk1 (Golan et al., 2002; 

Rudner & Murray, 2000), and is also regulated by the availability of its co-factors Cdh1 and 

Cdc20 (Kramer et al., 2000). Once activated, APC/C readily recognizes a constitutive degron 

on its target proteins, usually either a KEN-box or a D-box (Kraft et al., 2005; Glotzer et al., 

1991; Pfleger & Kirschner, 2000). In contrast, SCF-type ligases require the prior 'activation' 

of their substrate proteins, in most cases via phosphorylation of a degron motif 

(phosphodegron), that in turn is recognized by the substrate-binding domain of the F-box 

protein (Skowyra et al., 1997). Such a mechanism allows a versatile regulation of substrate 

degradation, as the required phosphorylation itself might be subject to complex temporal and 

spatial regulation.  

The three best-studied human F-box proteins, βTrCP, Skp2 and FBW7 (Cdc4), 

catalyze the degradation of various key proteins in cell cycle regulation, as already outlined 

above (see Fig. 8a). The βTrCP family is highly conserved, including Drosophila Slimb 

(Jiang & Struhl, 1998) and Xenopus βTrCP (Spevak et al., 1993). Prominent targets of 

βTrCP-mediated degradation include Emi1/2 (Erp1), Wee1, and Cdc25A/B, as well as the 

signaling cascade components β-catenin and IκBα (reviewed in Frescas & Pagano, 2008). It is 

therefore not surprising that βTrCP has been implicated in cancer biogenesis owing to 

deregulated proteolysis of its substrates (Frescas & Pagano, 2008). 
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a) 

b) 

Fig. 8:  Detailed schematic of the structure of SCF and APC/C E3 ligases.  (a) Both SCF and 

APC/C E3 ligases are composed in a similar manner, with an invariable core of RING-finger-, 

scaffold- and adaptor proteins, and a more variable receptor protein that confers substrate specificity 

to the complex. Known targets in the context of cell cycle progression are listed underneath each 

complex. Adapted from Nakayama & Nakayama (2006).  (b) Detailed view of an SCF E3 ligase in 

complex with a substrate protein. The core module (dark blue) brings E2 and substrate protein into 

close vicinity for the ubiquitination to occur. Adapted from Frescas & Pagano (2008). 
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2.4.4. Proteolysis at the centrosome 

A growing body of evidence suggested SCF-dependent proteolysis to be important for faithful 

centriole duplication (Freed et al., 1999; Wojcik et al., 2000; Murphy, 2003; Guardavaccaro 

et al., 2003; Duensing et al., 2007; Piva et al., 2002; Gstaiger et al., 1999; Nakayama et al., 

2000). Components of the SCF complex have first been detected at the centrosome of 

mammalian cells (Freed et al., 1999; Gstaiger et al., 1999). Antibodies to Skp1 as well as to 

Cul1 stained centrosomes in all phases of the cell cycle, with an increasing recruitment of 

Skp1 to the mitotic spindle pole. Localization of these SCF components was neither 

dependent on MT, nor did it require cell cycle progression, as newly formed centrioles in  

S phase-arrested CHO cells also stained positive for Skp1 (Freed et al., 1999). Moreover, 

immunoelectron microscopy determined the majority of Skp1 to localize to the PCM, while a 

minor fraction was also found to be centriolar, presumably at the appendages. Functional 

studies, according to the experimental system established by Lacey et al. (1999), suggested a 

requirement for Skp1, Cul1 and the proteasome in the initial disorientation of G2 centrioles 

that normally precedes the initiation of centriole duplication. Due to this observation, the 

authors proposed a requirement of SCF-dependent proteolysis for the centriole duplication 

process (Freed et al., 1999). 

Another study identified the F-box protein Slimb (supernumerary limbs) as a negative 

regulator of centriole duplication in Drosophila (Wojcik et al., 2000). Slimb has originally 

been identified as a regulator of hedgehog signaling in Drosophila (Jiang & Struhl, 1998; 

Theodosiou et al., 1998), and is the homologue of the human F-box protein βTrCP. Slimb 

mutant flies were found to contain multiple (2-17) centrosomes in diploid neuroblasts, 

suggesting that division failures, often responsible for supernumerary centrosomes (Nigg, 

2002), cannont account for this phenotype. Furthermore, the distribution of the typical 

centrosomal marker proteins centrosomin (CNN), ASP and CP190 together with an overall 

intact centrosome morphology led the authors to conclude that Slimb deletion might foster 

centrosome amplification via the initiation of repeated rounds of centrosome re-duplication 

(Wojcik et al., 2000). Similarly, the SCF-component SkpA in Drosophila (Skp1 in mammals) 

has been implicated in centrosome duplication, as SkpA mutant flies also show 

supernumerary centrosomes in a large proportion of diploid neuroblasts (Murphy, 2003). 

Moreover, the author demonstrated that the centrosome amplification phenotype is 

independent of Cyclin-E accumulation, which is characteristic of SkpA-deficient cells, and 

that the extra centrosomes function as nucleation-competent MTOCs during spindle formation 

(Murphy, 2003). 
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The analysis of βTrCP
-/-

 null mutant mice revealed a surprisingly mild phenotypic 

manifestation (Guardavaccaro et al., 2003). However, detailed analysis showed 

approximately half of the males to be sterile, as a consequence of severely impaired 

spermatogenesis. Interestingly, FACS analysis of βTrCP
-/-

 MEFs revealed normal progression 

at G1/S transition and subsequently through S and G2 phase, but a prolonged M phase 

thereafter. This effect is presumably owing to delayed APC/C activation through the 

persistence of the APC/C inhibitor Emi1, in turn leading to a delay in cyclin-A and -B 

degradation and thus to a delayed exit from mitosis. Strikingly, 20% of βTrCP
-/-

 MEFs 

contained supernumerary centrosomes and 10% of cells were found to form multipolar 

spindles (Guardavaccaro et al., 2003). 

Studies on human osteosarcoma cells (U2OS) provided the first insight into the 

mechanism of how multiple centrosomes might arise in cells deficient for properly regulated 

protein degradation (Duensing et al., 2007). Cells treated with the proteasome inhibitor Z-

L3VS were shown to contain rosette-like arrangements of procentrioles around parental 

centrioles, a distinct phenotype reminiscent of that seen after overexpression of either Plk4 

(Habedanck et al., 2005) or HsSas-6 (Strnad et al., 2007). As the induction of this bona fide 

centriole overduplication was – expectedly – dependent on Plk4 (see next chapter), this study 

lent support to the idea that the previously identified SCF-dependent centrosome 

amplification phenotypes might arise directly from a misregulated centriole biogenesis 

pathway rather than indirectly from defects in cell cycle progression (Duensing et al., 2007). 

Finally, two very recent studies in Drosophila deliver an elegant explanation for the 

above-described phenotypes (Cunha-Ferreira et al., 2009b; Rogers et al., 2009). Slimb mutant 

flies – known to display supernumerary centrosomes (Wojcik et al., 2000) – were investigated 

for their mechanism of centriole overduplication by immunoelectron microscopy. Both 

groups identified rosette-like procentriole arrangements around parental centrioles, the 

phenotype that had been extensively described previously (Kleylein-Sohn et al., 2007). 

Consequently, both groups found the levels of endogenous (Cunha-Ferreira et al., 2009b) or 

overexpressed (Rogers et al., 2009) Plk4 to be elevated in Slimb mutant cells, indicative of 

defective Plk4 degradation. Moreover, the authors established a direct biochemical interaction 

between Slimb and Plk4, as was predicted for a direct effect on Plk4 (Cunha-Ferreira et al., 

2009b; Rogers et al., 2009). This work for the first time described how – in Drosophila – cells 

prevent excess Plk4 activity. However, important questions remain to be answered in this 

context. For instance, as Slimb-mediated degradation of Plk4 requires the conserved DSGIIT 

degron to be doubly phosphorylated, the identity of the kinase(s) responsible remains to be 
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elucidated; this might lead to the identification of signaling pathways that regulate centrosome 

duplication. Furthermore, the timing of degradation is still unknown. It will be important to 

learn whether continuous degradation of Plk4 is required or whether rapid proteolysis at a 

defined stage in the cell cycle is necessary to prevent excessive centriole formation. And 

finally, research in vertebrates will have to prove that this mechanism of regulation has been 

conserved in evolution.  

 

2.5.  Plk4 – the most divergent member of the family of Polo-like kinases 

Mouse Plk4 was first identified in a screen to search for proteins regulating sialylation in 

mammalian cells using a murine cDNA library (Fode et al., 1994). The cDNA of the human 

homologue was separately isolated by a PCR-based search for novel kinases involved in 

cancer development (Karn et al., 1997). In both cases, primary sequence analysis revealed 

that Plk4 is the structurally most divergent member of the polo-like kinase family. However, 

neither of these studies provided any insights into the function of this kinase. The plk4 gene is 

located on chromosome 4 in humans and on chromosome 3 in mice (Hammond et al., 1999; 

Swallow et al., 2005), and the chromosomal region 4q28 has been implicated in frequent 

rearrangements and loss in human tumor cells, particularly in hepatocellular carcinomas 

(Hammond et al., 1999).  

Like in the other polo-like kinase family members, the kinase domain of Plk4 is found 

in the N-terminus, spanning residues 12 to 265. It is most closely related to those of other Plk-

family members, in particular to Plk2 (Fode et al., 1994), and shares common ancestry with 

other serine/threonine kinases. However, the catalytic center in subdomain VI-B (according to 

Hanks & Quinn, 1991) differs significantly from other serine/threonine kinases. Within this 

subdomain, threonine
138

 in the sequence 
134

HRDLTLS
140

 is found in a position normally 

occupied by a lysine in the vast majority of serine/threonine kinases, including all other 

members of the polo family, and tyrosine kinases carry an alanine (A; receptor tyrosine 

kinases) or an arginine (R; soluble tyrosine kinases) instead. Hence, this residue is considered 

a key residue in discriminating genuine serine/threonine from tyrosine kinases (Hanks et al., 

1988; Lindberg et al., 1992). Mutation of this lysine in serine/threonine kinases severely 

diminishes kinase activity (Taylor et al., 1993). 

The kinase domain of Plk4 is followed by an extensive C-terminal region of >500 

amino acids and a single polo box at the very C-terminal end. The Plk4 polo box is equally 

related to both polo boxes 1 and 2 of Plk1 (Fode et al., 1994) and, together with the loosely 

defined cryptic polo box, was described to act as a dimerization domain (Leung et al., 2002; 
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Habedanck, 2006). It exists as an intermolecular homodimer when crystallized (Leung et al., 

2002), while the Plk1 polo boxes 1 and 2 dimerize intramolecularly to form the 

phosphopeptide binding polo box domain (PBD) (Elia et al., 2003; Cheng et al., 2003). This 

difference affects the positioning of certain residues, such that the Plk4 polo box dimer 

structure contains internal amino acids that are located externally on the Plk1 polo box fold. 

Furthermore, the typical PBD cleft formed by Plk4 lacks a clear positive charge on the 

surface, and residues directly responsible for the phosphopeptide binding function of the Plk1 

PBD are not conserved in the Plk4 primary sequence, suggesting that this functionality might 

also not be conserved; in fact, no phosphopeptides have been identified to date that would 

bind to the Plk4 polo box. 

Three putative PEST motifs have been identified in Plk4, with one being located close 

to the kinase domain and the other two further downstream near the polo box (Yamashita et 

al., 2001). PEST motifs are sequences rich in proline (P), glutamic acid (E), serine (S) and 

threonine (T) residues that are thought to be responsible for the proteolytic degradation of 

short-lived proteins (Rogers et al., 1986). Indeed, Plk4 has been reported to have a short half-

life of approximately 2-3 h (Fode et al., 1996), and deletion of these sequences was reported 

to result in increased stability of the corresponding overexpressed Plk4 mutant (Yamashita et 

al., 2001); furthermore, the involvement of ubiquitination and the anaphase-promoting 

complex (APC/C) in regulating ectopic Plk4 had been reported early on (Fode et al., 1996), 

similar in this regard to Plk1 (Lindon & Pines, 2004). However, as discussed above, recent 

work in Drosophila revealed that Plk4 becomes degraded in an SCF
Slimb

-dependent manner, 

with Slimb binding to a highly conserved DSGxxT motif downstream of the C-terminal 

kinase domain (Rogers et al., 2009; Cunha-Ferreira et al., 2009a).  

Reports on plk4 expression indicate that this kinase is cell-cycle regulated at the 

transcript level in patterns comparable to other Plk family members (Fode et al., 1996). 

Studies using cultured cells and Northern blot analysis revealed that Plk4 mRNA levels are 

low in quiescent cells and in early G1 (Fode et al., 1996), increase from late G1 to S and G2, 

and reach a plateau in M phase. Likewise, when mice were subjected to partial hepatectomy, 

Plk4 transcripts in regenerating liver tissue increase from late G1 to S phase, reaching their 

highest level during G2/M (Ko et al., 2005). Furthermore, a study on the levels of Plk4 in 

samples of colorectal cancer (Macmillan et al., 2001) revealed elevated transcript levels in 

tumor tissue when compared to adjacent normal intestinal cells.  

Hints as to the importance of Plk4 in cell proliferation have been gained from mouse 

knockout experiments (Hudson et al., 2001; Ko et al., 2005). Plk4
-/-

 mouse embryos arrest 
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shortly after gastrulation, with an increase in mitotic cells containing partially segregated 

chromosomes. Explants from these embryos also arrested in anaphase and telophase after a 

few cell divisions, with a concomitant 20-fold increase in apoptotic cells and, consequently, 

the cellular phenotype of these embryos was described as a late mitotic delay (Hudson et al., 

2001). The lethality of Plk4 deficiency revealed that Plk4 is essential to the development of a 

complete organism, and stands in stark contrast to the viability of Plk2
-/-

 mice (Ma et al., 

2003). Analysis of Plk4
+/-

 mice has further revealed a potential role for Plk4 in tumorigenesis 

(Ko et al., 2005). These mice grew normally to adulthood, but developed tumors over time, 

most notably in lung and liver tissue. When Plk4
+/-

 mice were subjected to a partial 

hepatectomy to stimulate growth of tissue, increased numbers of liver cells with aberrant 

multipolar spindles were observed. Regenerating liver tissue showed altered regulation of 

cyclins D, E and B and reduced levels of p53 and p21
Cip

, suggesting that cells are subject to a 

cell cycle delay. In particular, levels of cyclin-B were reduced and extended during prolonged 

mitosis. Similarly, Plk4
+/-

 MEFs displayed increased numbers of centrosomes, abnormal 

spindles as well as slower growth. Taken together, these data suggest that Plk4 

haploinsufficiency results in abnormal mitotic progression and carcinogenesis. 
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3. Aims of this thesis 

Work from our lab and others has demonstrated that Plk4 is pivotal to the process of centriole 

duplication. However, despite 15 years of research on this kinase, its precise mode of action at 

the centrosome still remains incompletely understood. In particular, no physiological substrate 

has been identified to date, and the regulation of Plk4 kinase activity remains largely 

unknown. Thus, the aim of this thesis was to identify positive as well as negative regulatory 

input into Plk4 by upstream signaling pathways in the context of centriole biogenesis. 
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4. Results 

The results of this thesis are grouped into three parts. First, I briefly describe the major tools 

that I generated in order to address the fundamental question of how Plk4 itself is regulated at 

the centrosome. Second, I explore if Plk4 is regulated by post-translational modifications (i.e. 

phosphorylation), as commonly found for many protein kinases. And third, I investigate 

whether Plk4 activity might be regulated by targeted proteolysis via the human F-box protein 

βTrCP. 

 

4.1. Generation and characterization of stably transfected U2OS cells 

Human Plk4 and its homologues in other species are extremely low abundant enzymes. 

Despite intensive research, there is currently no antibody available that allows for the 

detection of the endogenous protein on Western blots, and immunoprecipitations (IPs) have 

never yielded sufficient amounts of endogenous protein for a thorough and reproducible 

analysis of posttranslational modifications via mass spectrometry. For this reason, we 

generated transgenic U2OS cell lines that stably harbor the cDNA of human myc-tagged Plk4 

under control of a tetracyclin-inducible CMV promoter.  

 

4.1.1. Generation of stable cell lines 

We transfected early-passage U2OS TRex cells (Invitrogen) with either myc-Plk4
 
wildtype 

kinase (Plk4
WT

) or the catalytically inactive (kinase-dead) mutant D154A (Plk4
D154A

) 

(Habedanck et al., 2005). After two weeks of antibiotic selection with geneticin, growing 

colonies were seperately picked and subsequently examined for their myc-Plk4 expression 

before and after addition of tetracyclin. Based on minimal basal expression without addition 

of tetracyclin ('leakiness') and moderate expression after tetracyclin-induction, the clones B6 

(Plk4
WT

) and D2 (Plk4
D154A

) were chosen for further analysis.  



RESULTS 

 - 31 - 

 

 

As shown in Fig. 9, the tagged protein could be detected after 24 h of induction and 

accumulated over the next 48 h. While immunofluorescence (IF) microscopy staining against 

the myc tag revealed that in case of the B6 clone, virtually all cells expressed Plk4
WT

 after 

induction, only <30% of cells in the D2 population expressed Plk4
D154A

 (not shown), 

accounting for the differences in protein levels seen in Fig. 9. 

 

4.1.2. Procentriole formation in clones B6 and D2 

As excess Plk4 has been shown to promote overduplication of centrioles, B6 or D2 cells were 

stained with antibodies against the myc tag and the centrosomal protein CP110, an early distal 

marker of centrioles (Kleylein-Sohn et al., 2007), respectively. In contrast to proximal marker 

proteins, distal CP110 staining allows for the detection of engaged procentrioles early in the 

centriole biogenesis pathway. After 16 h of induction in an aphidicolin-induced S-phase 

arrest, about 80% of B6 (Plk4
WT

) cells contained two myc-Plk4-positive dots that were 

surrounded by either a halo- or a rosette-like staining using the antibody against CP110 (Fig. 

10 and Fig. 11b). Extensive subsequent analysis by high-resolution IF and immuno-electron 

microscopy could show these arrangements to be composed of two central mature centrioles 

engaged with multiple procentrioles in a configuration resembling petals on a flower 

(Kleylein-Sohn et al., 2007), as had been suggested earlier (Habedanck et al., 2005).  

Fig. 9:  Stable clones U2OS-TRex B6 and D2 express the myc-tagged protein after addition of 

tetracyclin. Cells of each clone were grown in the presence of the selection antibiotic geneticin and 

induced with 1 µg/ml tetracyclin for the indicated times. Cells were lysed and 60 µg of total protein 

were loaded onto each lane. Presence of myc-Plk4 was probed with αmyc-antibody, equal loading 

was verified by probing the blot for alpha-tubulin.  



RESULTS 

 - 32 - 

 

In transient overexpression experiments with Plk4, Habedanck and colleagues could 

show that the evoked centriole overduplication is dependent on Plk4 kinase activity. While 

the wildtype kinase readily caused overduplication in about 80% of transfected cells, kinase-

dead Plk4
D154A

 did so in only 30%, yet significantly above background (<10%) (Habedanck et 

al., 2005); as this effect could be suppressed by preventing cell cycle progression, the authors 

hypothesized that Plk4
D154A

 induces supernumerary centrosomes by causing occasional cell 

division failures. However, to our surprise, we found about 75% of induced cells in the D2 

cell line (expressing kinase-dead Plk4
D154A

) to contain engaged, rosette-like procentriole 

Fig. 10:  Induction of both myc-Plk4
WT

 and myc-Plk4
D154A

 causes centriole overduplication.   
Clones B6 and D2 were arrested in S phase with aphidicolin for 24 h prior to induction with           

1 µg/ml tetracyclin for 16 h. Cells were stained with antibodies against the myc tag (green) and 

CP110 (red) in order to visualize engaged centriole/procentriole arrangements in induced cells. 

Bar = 5 µm.  

 



RESULTS 

 - 33 - 

arrangements, equal to the B6 cells (Fig. 10). This result was unexpected and could not be 

explained by the above-mentioned hypothesis.  

 

4.1.3. Plk4
D154A

 cannot rescue the depletion of endogenous Plk4 

Since RT-PCR confirmed that indeed the D154A mutation was present in the induced 

construct (not shown), we decided to perform rescue experiments in order to clarify whether 

kinase activity is necessary for Plk4-mediated centriole overduplication. 

B6 and D2 cells were depleted for 24 h with siRNA duplexes directed against Plk4 

(complementary to the 3' untranslated region [3'UTR], so only targeting the endogenous 

mRNA), HsSas6 as a positive control (Leidel et al., 2005), and firefly luciferase (GL2) as a 

negative control (Elbashir et al., 2001). Depleted cells were then arrested in S phase by the 

DNA polymerase α/δ inhibitor aphidicolin for 8 h, before cells were induced for Plk4
WT

 or 

Plk4
D154A

 expression, respectively, for 16 h in the continued presence of aphidicolin. Finally, 

cells were fixed and stained for myc-Plk4 and the distal marker CP110 in order to score 

induced cells with a halo- or rosette-like procentriole configuration.  

As summarized in Fig. 11, both wildtype and kinase-dead Plk4 readily evoked the 

characteristic centriole overduplication phenotype in the GL2 control. However, while the 

induced wildtype kinase still caused the same extent of rosette formation in cells depleted for 

the endogenous protein, kinase-dead Plk4
D154A

 was unable to induce overduplication. And 

finally, irrespective of Plk4 kinase activity, neither construct was able to induce rosette 

formation in cells depleted for the protein hSas6, which is an essential key player in the 

centriole biogenesis pathway downstream of Plk4 (Kleylein-Sohn et al., 2007). Taken 

together, these data suggest that kinase-dead Plk4
D154A

 is unable to cause centriole 

overduplication in cells lacking the endogenous kinase. Although the exact molecular 

mechanism accounting for this effect remains to be clarified, we will discuss a potential 

explanation in the context of βTrCP-mediated Plk4 degradation later on (see 5.3).  
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a) 

b) 

Fig. 11:  Plk4
D154A

 cannot rescue the depletion of the endogenous kinase.   (a) Clones B6 and 

D2 were transfected for 24 h with siRNA duplexes targeting endogenous Plk4, hSas6 as positive 

and firefly luciferase (GL2) as negative control. Cells were then arrested in S phase by aphidicolin 

for 8 h prior to 16 h of induction of protein expression with tetracyclin. IF staining with antibodies 

against the myc tag (green) and CP110 (red) reveals engaged centrioles in induced cells. 

Bar = 5 µm.  (b) Histogram showing the percentage of induced cells containing rosette-like 

procentriole arrangements. Results are from three independent experiments counting 100 cells for 

each condition; error bars denote standard deviations. 
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4.2. Regulation of Plk4 via phosphorylation 

As kinases are predominantly regulated via phosphorylation (Newton, 2003; Nolen et al., 

2004), we set out to identify phosphorylated residues within Plk4 by means of mass 

spectrometric (MS) analyses. Subsequent mutational studies were performed to investigate 

the influence of each posttranslational modification on the known properties of Plk4 – 

subcellular localization, kinase activity, homodimerization, and its propensity to promote 

centrosome overduplication.  

 

4.2.1. Identification of phosphorylated residues on Plk4 

4.2.1.1. Identification of phosphorylation sites on overexpressed Plk4 

In order to identify phosphorylated residues on Plk4, we immunoprecipitated overexpressed 

myc-tagged Plk4 from human cells (transient overexpression in 293T cells and induced 

expression in the B6 cell line) that were either growing asynchronously, arrested in S phase 

by a double thymidine block or arrested in prometaphase by a nocodazole block. 

Immunoprecipitates were then separated by SDS-PAGE and stained with Coomassie Blue. 

The band representing myc-Plk4 was excised from the gels and subjected to protease 

digestion with either trypsin or elastase, respectively. Fig. 12a shows a representative 

Coomassie Blue staining of immunoprecipitated full-length myc-Plk4. 

 

4.2.1.2. Identification of phosphorylation sites in the recombinant kinase 

In parallel, bacterially expressed Plk4 was analyzed. As the full-length protein was 

completely insoluble as a GST- or 6xHis-tagged fusion protein, we generated various C-

terminal truncations fused to GST in order to yield sufficient amounts of recombinant protein. 

The following fragments all contain the kinase domain plus varying C-terminal extensions: 

aa 1-430: This fragment represents an extended form of the kinase domain  

(aa 1-265), encompassing all of the highly homologous sequences further downstream (i.e. N-

terminal of the highly variable linker region of Plk4 (Habedanck, 2006)). 

aa 1-608: This fragment lacks the C-terminal polobox including the 'cryptic polobox' 

(Leung et al., 2002) of human Plk4, which, based on secondary structure prediction 

algorithms (PsiPred server, www.expasy.ch; McGuffin et al., 2001), encompasses aa 609-

970. 

aa 1-889: Our attempt at purifying GST-fusions of Plk4 revealed that deleting the very 

C-terminal single polobox (aa 890-970) was sufficient to yield a soluble GST-fusion protein. 
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These truncations were affinity purified, allowed to autophosphorylate in vitro in presence of 

ATP, and finally separated by SDS-PAGE as described above (Fig. 12b). Prior to mass 

spectrometry analysis, phosphorylated peptides were enriched via metal ion affinity 

chromatography on TiO2 columns.  

 

 

 

While only a limited set of phosphorylation sites could be repeatedly identified on the 

immunoprecipitated protein (see below), the bacterially expressed C-terminal truncations of 

Plk4 were phosphorylated to a surprisingly high extent (Fig. 12). 

 

4.2.2. Analysis of phosphorylation sites from the recombinant kinase 

4.2.2.1. Tyrosine phosphorylation 

With tyrosines Y177 and Y394, not only serines and threonines were identified among the 

phosphorylated residues. As tyrosine phosphorylation does not occur in bacteria, these 

residues must reflect Plk4 autophosphorylation, identifying Plk4 as dual specificity kinase, at 

least in vitro. 

To investigate this aspect in more detail, we subjected the above-shown truncations, 

this time including aa 1-430 in its kinase-inactive form (D154A), together with hMPS1 and 

Plk1 for comparison, to an in vitro kinase assay in presence of (γ-
32

P)ATP. 

a) b) 

Fig. 12: Representative experiments for mass spectrometric analysis of Plk4 phosphorylation.   
(a) myc-Plk4 was immunoprecipitated from asynchronously growing 293T cells and separated via 

SDS-PAGE. The band containing myc-Plk4 was excised and digested with trypsin or elastase, 

before phosphorylated peptides were enriched on TiO2 metal ion affinity columns. Subsequently 

identified phosphorylation sites are depicted next to the gel. *immunoglobulin heavy chain.  

(b) GST-Plk4 fusion proteins of different lengths were purified from E. coli, allowed to autophos-

phorylate in vitro and subsequently analyzed as described above. Identified sites are listed on the 

right, with sites chosen for further analysis (see below) depicted in red.  

* 
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Autophosphorylation activity was monitored via autoradiography; in parallel, 
1
/10 of the 

reaction mixture was immunoblotted with an antibody specific for the phosphorylated form of 

tyrosines (4G10). As seen in Fig. 13a, all active Plk4 fusions were strongly phosphorylated on 

tyrosines, as expected from the previous MS analysis. In contrast, Plk4
D154A

 showed no 

reactivity to this antibody, clearly demonstrating that phosphorylated tyrosines were 

generated by Plk4 autophosphorylation. Mutational analyses of recombinant Plk4 aa 1-265 

revealed that within this fragment, Y177 is the only phosphorylated tyrosine, as Plk4
Y177F

 – 

although it retained autophosphorylation activity – does not show any signal with the 4G10 

antibody (Fig. 14, lower panel). We also noted that despite substantial tyrosine 

autophosphorylation, no substrate tyrosine phosphorylation was detected when using Cep135 

as an exogenous substrate. It should be pointed out that hMPS1 kinase reacted weakly with 

the 4G10 antibody, although it had been shown previously that hMPS1 is a dual specificity 

kinase in vitro (Mills et al., 1992). Plk1, in contrast, did not display any tyrosine 

phosphorylation. 

In stark contrast to the above results, myc-Plk4 immunoprecipitated from 

asynchronously growing 293T cells did not display detectable tyrosine phosphorylation (Fig. 

13b), questioning the prediction that endogenous Plk4 acts as a dual specificity kinase in vivo. 
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4.2.2.2. Mutational analyses of identified residues within the kinase domain 

The following list summarizes the major properties of the phosphorylation sites chosen for 

mutational analyses, based on homology to well-defined sites of other protein kinases. 

T138: This residue lies in the catalytic center of Plk4’s kinase domain, close to the 

catalytic base aspartate
136

 (D136). Virtually all serine/threonine kinases carry an invariant 

lysine (K) at this position (including Plks 1-3), while tyrosine kinases carry an alanine (A; 

receptor tyrosine kinases) or an arginine (R; cytoplasmic tyrosine kinases) instead. Hence, this 

residue is considered a key residue in discriminating genuine serine/threonine from tyrosine 

kinases (Hanks et al., 1988; Lindberg et al., 1992). Mutation of this lysine in serine/threonine 

kinases severely diminishes kinase activity (Taylor et al., 1993). Interestingly, the atypical 

feature of Plk4 (in contrast to Plks 1-3) of carrying a phosphorylatable threonine at this 

position is conserved in all Plk4s examined and can even be found in the kinase ZYG-1 in  

C. elegans, which is only considered a functional homologue of Plk4, due to a lack of 

significant sequence homology and due to the lack of a detectable polobox.  

a) b) 

Fig. 13:  Plk4 autophosphorylates on tyrosines in vitro but not in vivo.   (a) Recombinant GST-

Plk4 fusion constructs, GST-hMPS1 and His-Plk1 were allowed to autophosphorylate in vitro in the 

presence of (γ-
32

P)ATP. The reaction mixtures were separated by SDS-PAGE, stained with 

Coomassie Blue, dried and exposed to film. 
1
/10 of the reaction mixture was immunoblotted with α-

phospho-tyrosine antibody (4G10) to visualize tyrosine autophosphorylation. Kinase-dead Plk4
D154A

 

(aa 1-430) serves as negative control. See also Fig. 14 for further details.  (b) Myc-Plk4 was 

immunoprecipitated from asynchronously growing 293T cells and probed for phosphorylated 

tyrosines (lower panel). pY, phosphotyrosine. 
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T170: Based on homology to Plk1 threonine
210

, this residue is expected to be the main 

phosphate acceptor in the activaton loop of Plk4. Phosphorylation of T210 in the activation 

loop increases Plk1 activity and is thought, by analogy to other protein kinases, to result in 

stabilization of the activation loop in a conformation in which important active site residues 

are properly positioned for substrate binding and catalytic activity (Nolen et al., 2004). 

Y177: Tyrosine
177

 is – in addition to T170 – another residue in the activation loop (i.e. 

N-terminal of the highly conserved APE motif of protein kinases) found to be phosphorylated. 

For the group of mitogen activated protein kinases (MAPKs), it is well established that a 

double phosphorylation of a threonine and tyrosine (TXY motif) within their activation loop 

is required for full activity; hence, the upstream activators of these kinases belong to the 

growing class of kinases with a proven dual specificity in vivo (Dhanasekaran & Premkumar 

Reddy, 1998). 

 

We mutated the above-listed residues to either alanine or aspartate (or phenylalanine 

and glutamate), in order to generate non-phosphorylatable or phosphomimetic mutants, 

respectively. The mutated, GST-fused kinase domains were purified from bacteria and 

subjected to an in vitro kinase assay in presence of (γ-
32

P)ATP. As an exogenous substrate, 

we used GST-Cep135 aa 648-1145 that had been purified in two steps, with the second 

involving a denaturing gel purification (whether or not Cep135 is also a bona fide Plk4 

substrate in vivo was not further addressed in the context of this thesis, but will be of 

considerable interest in the future). 

As shown in Fig. 14, the wildtype kinase domain phosphorylated itself as well as the 

substrate Cep135, albeit showing a less prominent retarded mobility compared to larger 

wildtype truncations (compare to Fig. 13). In contrast, the D154A mutant appeared 

completely inactive. Surprisingly, the T170V unphosphorylatable mutant appeared to be 

active, while its supposedly phosphomimetic counterpart T170D displayed no enhanced 

activity. This finding suggests that Plk4 might not be activated in analogy to Plk1, going in 

line with the notion that phosphorylated T170 has never been detected on the 

immunoprecipitated protein (see below). 

Mutating the residue Y177 in the activation loop to phenylalanine (F) slightly 

enhanced kinase activity, while the phosphomimetic glutamate (E) mutation rendered the 

kinase domain completely inactive. The phosphotyrosine Western blot clearly demonstrates 

that within aa 1-265 this tyrosine is the only one to be phosphorylated, as all active mutants 

except for Y177F react with the α-phosphotyrosine antibody. Together with the finding that 
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on the immunoprecipitated kinase from 293T cells, no phosphotyrosine could be detected  

(Fig. 13b), it therefore appears questionable whether tyrosine autophosphorylation of Plk4 

exists in vivo. 

Finally – and most surprisingly – mutating T138 to alanine significantly enhanced 

kinase activity compared to the other active mutants. In contrast, introduction of the 

phosphomimetic negative charge was not tolerated at this position with regard to substrate 

phosphorylation, and autophosphorylation was also reduced. In case of the well-studied 

serine/threonine kinase PKA, mutating the corresponding invariant lysine to an alanine 

completely abolished kinase activity, as has been found for many other kinases as well (Gibbs 

& Zoller, 1991).  

 

 

 

 

4.2.3. Functional characterization of phosphorylation sites from overexpressed Plk4 

Fig. 15 summarizes all repeatedly identified phosphorylation sites and depicts their position 

relative to the functional domains within Plk4.  

Fig. 14:  Mutational analysis of putative phosphorylation sites in the kinase domain of Plk4. 

GST-fused Plk4 kinase domains (aa 1-265) carrying the indicated mutations were purified from 

bacteria and eluted from beads. 1 µg of each kinase domain was then subjected to an in vitro kinase 

assay with GST-Cep135 (aa 648-1145) as substrate. Substrate- and autophosphorylation was 

monitored by autoradiography (middle panel). In parallel, crude bacterial lysates were immuno-

blotted with α-phosphotyrosine antibody (4G10) to visualize tyrosine autophosphorylation (lower 

panel). Kinase-dead Plk4
D154A

 serves as negative control.   
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Interestingly, only one phosphorylation site has been identified in the kinase domain 

of Plk4 immunoprecipitated from 293T cells. Based on homology to Plk1 threonine
210

, we 

expected to find threonine
170

 (T170) within the activation loop of the kinase domain among 

the phosphorylated residues, as phosphorylation within this loop is required for full activity of 

a plethora of kinases (Nolen et al., 2004). However, although the unphosphorylated peptide 

could be detected and although this residue was found to be phosphorylated in the 

recombinant kinase, we never found this residue to be phosphorylated in the 

immunoprecipitated protein. Instead, we found serine
22

 among the phosphorylated peptides, 

which is located within the G-loop of the small lobe of the kinase domain. This loop is 

responsible for proper ATP positioning and the actual phosphotransfer (Hanks & Hunter, 

Fig. 15:  Summary of all repeatedly identified phophorylation sites of immunoprecipitated Plk4.   
(a) The schematic depicts all sites (red) and their position relative to the functional domains within 

Plk4. Schematic drawn to scale.  (b) The table summarizes the major properties of all sites. The 

residues found to be phosphorylated are underlined in the tryptic peptides. Abbreviations: CamKII, 

Calmodulin-dependent kinase II. Chk, checkpoint kinase. Cdk, Cyclin-dependent kinase. Ck, Casein 

kinase. MAPK, Mitogen activated protein kinase. GSK3β, Glycogen synthase kinase 3β.   

* for details, see text (section 4.2.3.1). 

regulation* 
site tryptic peptide 

possible 

consensus 

within 

domain S/G1 M/S 

S22 KGSFAGVYR Plk4 
G-loop of 

kinase domain 
n.d. n.d. 

S401 KTYTMERCHSAEMLSVSK CamKII, Chk - n.d. n.d. 

S499 KTTEYDSISPNR Cdk1/2 - 1.4 5.3 

S592 RSITSPLVAHR Ck1 - 1.7 4.2 

S665 RPPSPTDNISR MAPK 
'cryptic' 

polobox 
3 1 

S817 KALSPPPSVDSNYPTR GSK3β 
'cryptic' 

polobox 
2.6 1.25 

 

a) 

b) 
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1995). At a similar position, double phosphorylation of a threonine and tyrosine residue of the 

cell cycle master regulator Cdk1 by the kinases Wee1 and Myt1 abolishes activity in G2 in 

order to prevent premature entry into mitosis (Watanabe et al., 1995; Liu et al., 1997; Booher 

et al., 1997). 

 

4.2.3.1. Regulation of the phosphorylation sites over the cell cycle 

Having identified a set of phosphorylation sites on the immunoprecipitated protein, we asked 

whether these sites could be regulated in accordance to the cell cycle. To address this 

question, we used the technique of Stable Isotope Labeling of Aminoacids in Cell Culture 

(SILAC) combined with mass spectrometry analysis. In this setup, cells are grown in media 

containing the amino acids lysine (K) and arginine (R) in either their normal form ('light'), or 

isotope-labelled with 
13

C/
15

N ('heavy'). As in each case the corresponding other form of the 

amino acids is not present in the culture medium, cells incorporate arginine-U-
13

C6-
15

N4 and 

lysine-U-
13

C6-
15

N2 to virtually 100% into their proteins. Subsequent mass spectrometry 

analysis can distinguish the origin of a peptide based on its different molecular mass. Most 

strikingly, this technique also allows for a relative quantification of the peptides, setting the 

stage for quantitative analyses of post-translational modifications under various conditions.  

We grew three different cultures of HeLa S3 cells, all of which were equally 

transfected with myc-Plk4 (two cultures labeled with 'light' amino acids, one culture labeled 

with the 'heavy' counterparts). The 'heavy' culture was then synchronized in S phase by a 

double thymidine block, while the other two sets were synchronized in G1 phase (release from 

a noscapine block) or mitosis (treatment with noscapine), respectively. Efficiency of 

synchronization was monitored by immunoblotting total cell extracts with antibodies against 

Cyclin-B1 (mitosis) or Cyclin-E (S phase), respectively (Fig. 16a). Subsequently, equal 

amounts of total cell extracts were mixed ([G1 + S phase] or [S phase + mitosis]) prior to 

immunoprecipitation of myc-Plk4 with αmyc antibody (Fig. 16b). Myc-Plk4 was excised 

from the gel and processed for mass spectrometry analysis as described above (section 

4.2.1.1).  

The analysis identified the sites S499, S592, S665 and S817 in both 

immunoprecipitations, allowing for a relative quantification. As noted in the table of Fig. 15b, 

sites S499 and S592 appeared to be upregulated upon entry into mitosis by 5.3-fold and 4.2-

fold, respectively, fitting well with their sequence matching the consensus sequence of cyclin-

dependent kinases. In contrast, S665 phosphorylation was upregulated 3-fold upon entry into 

S phase, but remained unchanged throughout the following mitosis. 
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4.2.3.2. All phosphorylation site mutants localize to the centrosome 

The identified residues were mutated to either alanine (A) or aspartate (D), in order to 

generate non-phosphorylatable or phosphomimetic mutants, respectively. As a first step, these 

mutants were transiently overexpressed in U2OS cells and analyzed for their subcellular 

localization. Fig. 17 documents the correct centrosomal localization of all myc-tagged 

mutants in the presence of the endogenous kinase, including Plk4
WT

 for comparison. Similar 

results were obtained when the endogenous protein was depleted by siRNA duplexes 

targeting the 3'UTR of the cellular Plk4 mRNA, and when the mutants were expressed as 

FLAG-tagged fusion proteins (not shown).  

 

a) b) 

Figure 16.  Mass spectrometric SILAC analysis of Plk4 phosphorylation.  (a) 293T cells were 

grown in cell culture media containing 'heavy' or 'light' amino acids lysine and arginine, 

respectively. Cells were transfected with myc-Plk4 and subsequently synchronized in G1 phase,      

S phase, or mitosis. Successful synchronization was verified by immunoblotting the extracts for the 

cell cycle markers cyclin B1 and E.  (b) Equal amounts of total cell extracts were mixed (G1 + S or 

S + M) and subjected to immunoprecipitation with αmyc-antibody. Immunoprecipitated Plk4 

(arrows) was analyzed for the presence of phosphorylated residues as described earlier (section 

4.2.1.1). See table (Fig. 15b) for the regulation of the identified phosphorylation sites.  
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4.2.3.3. Kinase activity of phosphorylation site mutants 

Next, we asked whether kinase activity was influenced by the diverse mutations. To this end, 

we expressed the myc-tagged Plk4 mutants in 293T cells for 24 h, immunoprecipitated them 

with αmyc ProteinG beads, washed the beads extensively and subjected them to an in vitro 

kinase reaction in presence of (γ-
32

P)ATP. As no genuine substrates for Plk4 have been 

identified so far, and as the commonly used model substrates MBP, casein and histone H1 

were not phosphorylated above background (Habedanck, 2006), autophosphorylation was 

used as a readout for Plk4 kinase activity. As shown in Fig. 18, all mutants but Plk4
S22D

 (and 

Plk4
D154A

 as negative control) displayed autophosphorylation activity to an extent 

indistinguishable from the WT protein. As predicted from the position of S22 in the G-loop of 

Plk4’s kinase domain, the phosphomimetic Plk4
S22D

 mutation almost completely abolished 

Fig. 17: All phosphorylation site mutants localize to the centrosome. U2OS cells were 

transfected with the indicated Plk4 mutants in order to assess their ability to localize to the 

centrosome. As visualized by co-staining with centrosomal markers CP110 (distal) and Cep135 

(proximal), all phosphorylation site mutants of Plk4 localize to the centrosome. See also section 

4.2.3.5 on centriole overduplication. Bar: 5 µm. 
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kinase activity as judged by autophosphorylation, while the unphosphorylatable Plk4
S22A

 

mutation appeared indistinguishable from the WT protein.  

 

 

 

4.2.3.4. Homodimerization of phosphorylation site mutants 

Previously, it had been shown that mouse Plk4 is capable of self-association, with the C-

terminal polo-box domain being required and sufficient for dimerization (Leung et al., 2002). 

Work in our lab could further specify that the polo box alone (aa 889-970) is dispensable for 

this process, while upstream residues between aa 610-888 (of human Plk4) mediate 

homodimerization (Habedanck, 2006). Yet, the functional significance of Plk4 

homodimerization remains unclear.  

We asked whether the identified phosphorylation sites might be involved in the 

dimerization process. To this end, we co-transfected 293T cells with FLAG- and myc-tagged 

phosphorylation site mutants, performed IPs with αFLAG agarose beads and tested the FLAG 

immunoprecipitates for the presence of co-immunoprecipitated myc-tagged mutants. In 

contrast to the investigated kinase activities, no difference to the WT protein could be 

detected for any of the phosphorylation site mutants (Fig. 19). This finding demonstrates that 

Fig. 18: Kinase activity of all phosphorylation site mutants. In vitro autophosphorylation assay 

with immunoprecipitated Plk4. 293T cells were transfected with the respective mutant forms of 

myc-Plk4 and the appropriate empty vector for 16 h. After immunoprecipitation, myc-Plk4 bound 

to αmyc-ProtG beads was assayed for autophosphorylation in a conventional in vitro kinase assay 

in presence of (γ-
32

P)ATP. Autophosphorylation activity was detected by autoradiography, while 

successful immunoprecipitation was monitored by immunoblotting the exposed membrane with 

αmyc-antibody. Kinase-dead Plk4
D154A

 and empty vector transfection serve as negative control. 
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neither kinase activity nor one of the identified phosphorylation sites is required for 

homodimerization. 

 

 

 

 

4.2.3.5. Centriole overduplication evoked by Plk4 phosphorylation site mutants 

Finally, we investigated the mutants’ propensities to cause centriole overduplication in U2OS 

cells. We transfected the myc-tagged phosphorylation site mutants into asynchronously 

growing U2OS cells for 48 h, fixed the cells and stained them with antibodies against the myc 

tag, the distal end capping protein CP110, and the proximal centriolar protein Cep135 for 

immunofluorescence analysis (Fig. 17). As predicted from their subcellular localization and 

kinase activities (Figs. 17, 18), all mutants but Plk4
S22D

 caused centriole overduplication to an 

extent comparable to Plk4
WT

 (Fig. 20). The kinase-inactive mutant Plk4
S22D

 only promoted 

overduplication in about 30% of transfected cells, significantly above background but similar 

to the kinase-dead Plk4
D154A

 control.  

Fig. 19:  Mutation of the identified phosphorylation sites does not interfere with homo-
dimerization.  FLAG- and myc-tagged Plk4 phosphorylation site mutants were co-overexpressed 

in 293T cells. Subsequently, FLAG immunoprecipitates were tested for the presence of co-

immunoprecipitated myc-tagged mutants.   
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As the overexpressed Plk4 mutants are likely to form heterodimers with the 

endogenous protein, we set out to test their propensity to promote overduplication in cells 

depleted of the endogenous kinase. Unfortunately, in all conditions tested, it was not possible 

to achieve a reasonable degree of depletion together with a satisfying transfection efficiency. 

Further studies into this direction will therefore require the generation of inducible stable cell 

lines (see Fig. 11), ideally making use of a predefined single genomic integration site in order 

to circumvent clonal variations between the different stable cell lines (e.g. FlpIn system, 

Invitrogen). 

In summary, none of the identified phosphorylation sites, except for S22, seem to be 

of major importance for either localization, kinase activity, homodimerization, or Plk4’s 

propensity to promote centriole overduplication. However, as S22 phosphorylation negatively 

influences kinase activity and hence reduces centriole overduplication to a level similar to the 

kinase-dead control, this residue requires further investigation. It will be important to see 

whether its phosphorylated form also exists on the endogenous kinase and, if so, to learn 

about its precise regulation. 

 

 

 

Fig. 20:  Centriole overduplication evoked by Plk4 phosphorylation site mutants. Myc-tagged 

Plk4 phosphorylation site mutants were transfected into asynchronously growing U2OS cells for 

48 h. Overduplication of centrioles in transfected cells was scored by IF microscopy analysis with 

αmyc- and αCP110-antibodies. Blue bars indicate percentage of cells with more than 4 centrioles. 

Data from three independent experiments, n = 100 cells each; error bars denote standard deviations. 
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4.3. βTrCP-mediated degradation of Plk4 

Recently, two studies reported that Drosophila Plk4 is bound by the ubiquitin ligase SCF
Slimb

, 

leading to its degradation by the 26S proteasome (Cunha-Ferreira et al., 2009b; Rogers et al., 

2009). As a key finding, both studies demonstrated that controlled destruction of Plk4 is 

necessary to prevent the formation of supernumerary centrioles, for the first time unraveling 

one way of how a cell prevents excess Plk4 activity to arise. However, several important 

questions remain unanswered in this context. For instance, as SCF
Slimb

-mediated degradation 

of Plk4 requires the conserved DSGIIT phosphodegron to be doubly phosphorylated, the 

identity of the responsible kinase(s) remains to be elucidated. Furthermore, the timing of 

degradation is still unknown. It will be important to learn whether continuous degradation of 

Plk4 is required or whether rapid proteolysis at a defined stage in the cell cycle is necessary to 

prevent centriole formation. And finally, research in vertebrates will have to prove that this 

mechanism of regulation has been conserved in evolution. 

 

4.3.1. βTrCP downregulation causes centriole overduplication 

Since in our group we established that excessive Plk4 evokes a readily detectable rosette-like 

procentriole arrangement (Habedanck et al., 2005; Kleylein-Sohn et al., 2007), we decided to 

make use of this assay in testing whether human Plk4 might be regulated similar to 

Drosophila Plk4. 

First, we explored the effect of downregulating the human homologue of the 

Drosophila F-box protein Slimb, βTrCP, on centrosome duplication. As shown in Fig. 21a, 

siRNA duplexes targeting βTrCP1/2, but not the unspecific control siRNAs, significantly 

increased the proportion of cells with overduplicated centrioles, from <10% to about 40% of 

all cells. Moreover, staining with an antibody against the distal centriolar marker protein 

CP110 revealed a significant number of cells containing a halo- or rosette-like configuration 

of procentrioles typically seen after Plk4 overexpression (Fig. 21b), strongly suggesting that 

depletion of βTrCP1/2 generates excess Plk4 activity at the centrosome, rather than fostering 

multiple rounds of centriole re-duplication.  
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Next, we explored whether this observation might be due to the stabilization of Plk4 

itself. To this end, we depleted βTrCP1/2 for 72 h in HeLa cells or in the U2OS-B6 cell line 

inducible for myc-Plk4
WT

 expression (see section 4.1); in the latter case, we induced myc-

Plk4
WT

 expression for the last 24 h of the experiment. As shown in Fig. 22a, downregulation 

a) 

b) 

Fig. 21:  Downregulation of βTrCP by RNAi causes bona fide centriole overduplication via a 
rosette-like procentriole arrangement.   (a) Asynchronous U2OS cells were treated for 72 h with 

siRNA duplexes against βTrCP1/2 or an unspecific control (GL2). IF microscopy analysis of 

centriole numbers was performed by staining against Plk4 (green), CP110 (red), and Cep135 

(blue). Data from three independent experiments, n = 100 cells for each condition. Error bars 

denote standard deviations.  (b) Representative pictures of cells treated as described above. Note 

the halo- and rosette-like procentriole arrangement revealed by CP110 staining (middle and bottom 

row). Compare to Fig. 10. Bar = 5µm. 
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of βTrCP1/2 stabilized induced myc-Plk4
WT

 in the U2OS-B6 cell line; however, no signal for 

endogenous Plk4 could be detected in HeLa lysates.  

Vice versa, simultaneous overexpression of myc-Plk4
WT

 with either FLAG-βTrCP or 

the empty FLAG vector as control clearly demonstrated that the Plk4 kinase was degraded in 

the presence of this F-box protein (Fig. 22b). 

 

 

 

 

 

4.3.2. Biochemical interaction between Plk4 and βTrCP 

4.3.2.1. Plk4 and βTrCP interact directly in co-immunoprecipitation assays 

To further establish that the observed effect is a direct consequence of βTrCP-mediated Plk4 

degradation, we examined whether these two proteins are able to interact biochemically. We 

co-transfected either FLAG-βTrCP with myc-Plk4
WT

 or FLAG-Plk4
WT

 with myc-βTrCP, 

immunoprecipitated with αFLAG agarose beads and probed the extensively washed 

immunocomplexes for the presence of myc-tagged protein (Fig. 23).  

Fig. 22:  βTrCP levels regulate Plk4 protein stability.   (a) U2OS-B6 cells (see section  4.1) and 

HeLa cells were transfected with siRNA duplexes against βTrCP, Plk4 as a positive control or an 

unspecific sequence (GL2) as negative control for 72 h. In case of the B6 cell line, myc-Plk4
WT

 

expression was induced during the last 24 h of the experiment. Total cell extracts were then 

immunoblotted with a polyclonal antibody against Plk4. Note that no signal for endogenous Plk4 

could be detected in HeLa lysates.  (b) Myc-Plk4
WT

 and FLAG-βTrCP or empty FLAG vector were 

co-transfected into 293T cells for 24 h; total cell extracts were then immunoblotted to monitor myc-

Plk4
WT

 levels and FLAG-βTrCP expression.  

a) b) 
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As expected, both proteins strongly associated in vivo. Interestingly, βTrCP seemed to 

preferentially bind the highly phosphorylated fraction of Plk4 (Fig. 23, middle panel, lane 2), 

consistent with the idea that βTrCP binding requires double phosphorylation of the DSGxxT 

motif (Cardozo & Pagano, 2004). Whether or not this putative phosphorylation is (solely) 

responsible for the remarkable retardation of the band will be addressed below (Fig. 26).  

 

4.3.2.2. Interaction between Plk4 and βTrCP is dependent on phosphorylation 

Having established that βTrCP interacts with a subfraction of Plk4 that is presumably highly 

phosphorylated, we set out to prove that this interaction is indeed phosphorylation-dependent. 

As summarized in Fig. 24, we co-overexpressed myc-Plk4
WT

 together with FLAG-βTrCP and 

subsequently immunoprecipitated this complex from total cell extracts that had been 

incubated with or without lambda phosphatase in order to globally remove protein 

phosphorylation. Probing the immunocomplexes with an antibody against the myc-tag 

revealed that the characteristic retarded mobility of myc-Plk4
WT

 had been abolished (Fig. 24, 

top panel, lanes 5 and 6), consistent with our earlier findings that active Plk4 is a highly 

phosphorylated protein in vitro and in vivo (Fig. 15). Clearly, dephosphorylation of myc-Plk4 

Fig. 23:  βTrCP binds directly to Plk4. 293T cells were co-transfected with Plk4 and βTrCP as 

indicated, and immunoprecipitations were performed using αFLAG antibody. Immunocomplexes 

were probed for the presence of co-immunoprecipitated myc-tagged protein (middle panel).  
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prevented efficient association with βTrCP in vivo (Fig. 24, bottom panel, lanes 5 and 6), in 

line with the concept that βTrCP’s substrate-binding WD40 domain is specific for a 

phosphorylated form of a binding motif. 

 

 

 

4.3.2.3. Interaction between Plk4 and βTrCP is dependent on the DSGHAT motif 

Next, we asked whether this interaction is mediated through binding to the conserved 

284
DSGHAT

289
 motif in the N-terminal part of Plk4. To this end, we mutated serine

285
 and 

threonine
289

 to either alanines or aspartates in order to generate an unphosphorylatable or 

phosphomimetic mutant, respectively. As revealed by co-overexpression and co-

immunoprecipitation studies performed as described above, neither Plk4
S285A/T289A

 nor 

Plk4
S285D/T289D

 associated with FLAG-βTrCP (Fig. 25, middle panel, lanes 1-3). Interestingly, 

mutation of these residues had no visible effect on Plk4’s retarded mobility, indicating that 

other sites also contribute to this physical property. Together with the previous finding that 

the interaction is phosphorylation-dependent (Fig. 24), we conclude that (double) 

phosphorylation of the conserved DSGHAT motif is required for proper βTrCP-mediated 

degradation of Plk4. The fact that the phosphomimetic Plk4
S285D/T289D

 mutant did not bind 

βTrCP might reflect that in this context the serine-to-aspartate mutation does not mimic the 

structural requirements close enough to allow βTrCP binding – thus, in our further 

experiments we decided to work only with the unphosphorylatable Plk4
S285A/T289A 

mutant. 

 

 

Fig. 24:  Interaction of βTrCP and Plk4 is dependent on phosphorylation. 293T cells were 

transfected with myc-Plk4
WT

 and FLAG-βTrCP or empty FLAG vector for 24 h. Total cell extracts 

were incubated with or without lambda phosphatase prior to immunoprecipitation of myc-Plk4
WT

 

using αmyc-antibody. FLAG-βTrCP co-immunoprecipitation was monitored by immunoblotting 

with αFLAG antibody (lower panel).  
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4.3.3. Mass spectrometric analysis of Plk4 co-immunoprecipitated with βTrCP 

As the previous results suggested that βTrCP-bound Plk4 is highly phosphorylated (Fig. 23, 

lane 1), we decided to analyze this Plk4 subfraction via mass spectrometry for the presence of 

phosphorylated residues. From 293T cells co-transfected with myc-Plk4
WT

 and FLAG-βTrCP, 

the latter was immunoprecipitated and, after extensive washing, immunocomplexes were 

separated by SDS-PAGE. The band representing co-immunoprecipitated myc-Plk4
WT

 was 

excised and digested with either trypsin or elastase, in order to enhance peptide coverage. To 

our surprise, in addition to the well-known sites S22, S401, S499, S592, S665, and S817  

(Fig. 15), we identified another 13 sites to be phosphorylated (Fig. 26a). However, no peptide 

revealing the phosphorylation state of the DSGHAT motif could be detected (see paragraph 

below).  

Among those additional 13 sites, serine
282

 lies remarkably close to the DSGHAT 

motif. In another study, the authors identified a serine residue at a similar position in the 

βTrCP substrate protein REST to be phosphorylated (Westbrook et al., 2008). The authors 

demonstrate that the S1027A mutation of this residue weakens the interaction between REST 

Fig. 25:  Interaction of βTrCP and Plk4 is dependent on the conserved DSGHAT motif. 293T 

cells were co-transfected for 24 h with the respective myc-Plk4 constructs and FLAG-βTrCP or 

empty FLAG vector as indicated. FLAG-βTrCP was immunoprecipitated from total cell extracts 

with αFLAG antibody, and immunocomplexes were tested for the presence of myc-tagged proteins 

by immunoblotting with αmyc-antibody.  
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and βTrCP, concluding an active involvement of this phosphorylation into controlled REST 

degradation.  

Thus, we decided to test a potential involvement of serine
282

 into βTrCP binding by a 

functional analysis of Plk4
S282A

 and Plk4
S282D

 mutants. Not only the unphosphorylatable 

S282A mutation seemed to significantly weaken the interaction between Plk4 and βTrCP 

(Fig. 26b), but also the supposedly phosphomimetic S282D mutant bound βTrCP to a lesser 

extent. The latter suggests that, again, the serine-to-aspartate mutation does not mimic a 

phosphorylation close enough to restore functionality. This analysis indicates that 

phosphorylation of S282 is likely to be involved in the process of Plk4 degradation. However, 

compared to the mutation of the canonical phosphodegron, the substitution of this site did not 

show the same drastic effect; it remains to be elucidated whether this site might therefore be 

involved in fine tuning of the degradation process.  

 

Since no peptide spanning the DSGHAT motif could be detected in this mass 

spectrometric analysis, we decided to mutate residues glycine
277

 and isoleucine
294

 to arginine 

and lysine, respectively. Tryptic digest of Plk4
G277R/I294K

 was expected to yield a peptide 

spanning the DSGHAT motif that is of suitable molecular mass for detection by mass 

spectrometry. Unfortunately, although the unphosphorylated peptide was found in the 

corresponding analysis (not shown), the (singly or doubly) phosphorylated phosphodegron 

peptide could still not be identified. 
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a) 

b) 

Fig. 26:  Mass spectrometric analysis of myc-Plk4
WT

 co-immunoprecipitated with βTrCP.    
(a) 293T cells were co-transfected with myc-Plk4

WT
 and FLAG-βTrCP for 24 h. FLAG-βTrCP was 

immunoprecipitated from total cell extracts, and successful co-immunoprecipitation was verified by 

Western blotting (left panel). Immunocomplexes were separated by SDS-PAGE and stained with 

Coomassie Blue (right panel). Co-immunoprecipitated myc-Plk4
WT 

was excised from the gel and 

processed for mass spectrometric analysis of phosphorylation sites as described earlier (see 4.2.1.1). 

Identified sites are depicted to the right, with previously characterized phosphorylation sites shown 

in light grey.  (b) Myc-Plk4
S282A

 and myc-Plk4
S282D

 were co-transfected with FLAG-βTrCP as 

described above and tested for their ability to associate with FLAG-βTrCP. The position of S282 

relative to the DSGHAT motif is shown below. White asterisks denote immunoglobulin light and 

heavy chains. 
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4.3.4. Plk4 kinase activity is required for its own βTrCP-mediated degradation 

4.3.4.1. Kinase-dead Plk4
D154A

 and Plk4
S22D

 fail to bind to βTrCP  

Plk4 has been placed on top of a highly conserved assembly pathway leading to the formation 

of new centrioles (Bettencourt-Dias et al., 2005; Habedanck et al., 2005; Kleylein-Sohn et al., 

2007). Despite this recent progress, the molecular details still remain mysterious. As the 

identification of βTrCP-mediated Plk4 degradation shed first light on the upstream regulation 

of this kinase (Cunha-Ferreira et al., 2009b; Rogers et al., 2009), the stage is now set for the 

identification of the kinase(s) responsible for the phosphorylation of Plk4’s DSGHAT motif. 

In order to obtain first indications, we decided to test all generated phosphorylation 

site mutants identified in the first part of this thesis (Fig. 15) for their capability to interact 

with βTrCP. We performed co-immunoprecipitation studies according to the previous 

experiments, by immunoprecipitating FLAG-βTrCP and probing the complexes for the 

presence of myc-Plk4 phosphorylation site mutants (Fig. 27a). Surprisingly, all of the tested 

mutants were unaffected in βTrCP binding, except for the kinase-dead Plk4
D154A

 and the 

similarly inactive Plk4
S22D

 mutant. To further confirm that catalytic activity of Plk4 is 

required for proper association with βTrCP, we repeated the co-immunoprecipitation 

experiment by switching FLAG and myc tag on the two proteins. Fig. 27b confirms that Plk4 

catalytic activity is indeed required for proper Plk4 degradation. 
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a) 

b) 

Fig. 27:  Plk4 phosphorylation site mutants reveal a requirement of Plk4 kinase activity for 
βTrCP binding.   (a) Myc-tagged Plk4 phosphorylation site mutants were co-overexpressed with 

FLAG-βTrCP in 293T cells for 24 h. FLAG-immunoprecipitates were then tested for the presence 

of co-immunoprecipitated myc-tagged mutants by immunoblotting with αmyc-antibody.  (b) 293T 

cells were co-transfected with Plk4 and βTrCP as indicated, and immunoprecipitations were 

performed using αFLAG antibody. Immunocomplexes were probed for the presence of co-

immunoprecipitated myc-tagged protein. 
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4.3.4.2. Kinase-dead Plk4
D154A

 is stabilized equally to the Plk4
S285A/T289A

 degron mutant 

As a consequence of βTrCP binding, Plk4 is supposed to be degraded by the 26S proteasome 

(Cunha-Ferreira et al., 2009b; Rogers et al., 2009). Since the previous experiments 

demonstrated the requirement of Plk4 catalytic activity for association with βTrCP, the 

kinase-dead Plk4
D154A

 mutant would be predicted to have a prolonged half-life in comparison 

to Plk4
WT

, similar to the unphosphorylatable Plk4
S285A/T289A

 degron mutant. To test this 

prediction, we transfected FLAG-tagged Plk4
WT

, Plk4
D154A

 or Plk4
S285A/T289A

 into 293T cells 

for 16 h, blocked translation at timepoint 0 h by the addition of 25 µg/ml cycloheximide, and 

monitored the decay of Plk4 over the following 8 h by Western detection. Fig. 28 clearly 

shows that Plk4
WT

 becomes rapidly degraded during the first 4 h, consistent with a previous 

report that determined its half-life to be 2-3 h (Fode et al., 1996). In contrast, both Plk4
D154A

 

as well as Plk4
S285A/T289A

 displayed no detectable decay over this time course, clearly 

demonstrating that Plk4 kinase activity is pivotal to its own targeted proteolysis.  

 

 

 

 

4.3.4.3. Binding deficiency of kinase-dead Plk4
D154A

 can be rescued by active Plk4 in vivo 

Having established that Plk4 catalytic activity is required for controlled Plk4 proteolysis, the 

fundamental question arises if it is also sufficient for this process. First, we tried to address 

this question in vivo. We overexpressed myc-Plk4
WT

 or myc-Plk4
D154A

 - or the degron mutant 

myc-Plk4
S285A/T289A

 as control - in 293T cells, and captured the overexpressed protein by 

αmyc ProteinG beads. After extensive washing, the immunocomplexes were incubated with 

in vitro-translated, 
35

S-labelled FLAG-βTrCP, washed again extensively and finally separated 

by SDS-PAGE (Fig 29). Successful binding of 
35

S-FLAG-βTrCP was monitored via 

Fig. 28:  Kinase-dead Plk4
D154A

 is stabilized equally to the Plk4
S285A/T289A

 degron mutant.   

FLAG-tagged Plk4
WT

, Plk4
D154A

 or Plk4
S285A/T289A

 were transfected into 293T cells for 16 h prior to 

blocking further translation with 25 µg/ml cycloheximide (CHX) at timepoint t = 0 h. Four and 

eight hours later, cells were lysed and total cell extracts were probed for FLAG-tagged proteins 

with αFLAG-antibody. 
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autoradiography, while efficient immunoprecipitation was controlled by Western blot 

detection of myc-tagged proteins. Lanes 8-10 recapitulate our previous findings: Plk4
WT

 

efficiently bound 
35

S-FLAG-βTrCP, while neither the degron mutant Plk4
S285A/T289A

 nor 

kinase-dead Plk4
D154A

 were able to pull down 
35

S-FLAG-βTrCP. In contrast, when myc-

Plk4
D154A

 was overexpressed together with a FLAG-tagged, active mutant of Plk4, that itself 

cannot bind to βTrCP (FLAG-Plk4
S285A/T289A

), the binding deficiency of Plk4
D154A

 could be 

fully restored. This finding demonstrates that – in cells – overexpression of an active form of 

Plk4 is sufficient to render the binding-deficient Plk4
D154A

 binding-competent. However, it 

cannot be excluded at this point that an additional kinase might be involved whose function in 

degrading Plk4 is in turn dependent on Plk4 autophosphorylation. In vitro experiments will 

ultimately be required to distinguish between these two scenarios.  

 

 

 

 

 

 

 

 

 

 

Fig. 29:  Binding deficiency of kinase-dead Plk4
D154A

 can be rescued by active Plk4 in vivo. 
FLAG- and myc-tagged constructs were overexpressed in 293T cells as indicated above. Immuno-

precipitated myc-Plk4 – still bound to the beads – was then incubated with in vitro-translated 
35

S-FLAG-βTrCP to allow protein association. Subsequently, immunocomplexes were separated by 

SDS-PAGE; successful immunoprecipitation was verified by immunoblotting with αmyc-antibody 

(upper panel), and presence of 
35

S-FLAG-βTrCP was detected via autoradiography (middle panel).  
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4.3.5. N-terminal truncations of Plk4 cause centriole overduplication as visualized by 

rosette-like procentriole arrangements 

In the previous section, we provided evidence that trans-autophosphorylation of Plk4 

represents a key step in the βTrCP-mediated proteolytic degradation of Plk4. To corroborate 

this finding, we asked whether preventing trans-autophosphorylation of endogenous Plk4 

would interfere with its degradation. To this end, we first transfected different truncation 

mutants of Plk4 (Fig. 30a) into 293T cells and determined their capability to dimerize with the 

full-length protein (as described in section 4.3.2.4) (Fig. 30b). It has been shown earlier that 

the C-terminal region of Plk4 contains the sequences that mediate the homodimerization with 

the full-length protein (Habedanck, 2006; Leung et al., 2002). Consistent with this, we 

observed that Plk4
aa1-889

, Plk4
aa265-970

, and Plk4
aa609-970

 all readily bound to full-length FLAG-

Plk4, while the N-terminal part Plk4
aa1-608 

failed to do so (Fig. 30b). We then transfected 

Plk4
aa1-608

, Plk4
aa609-970

, and Plk4
aa265-970 

into U2OS cells and stained them with antibodies 

against the myc tag and the centriolar proteins CP110 and Cep135/ CAP350. As summarized 

in Fig. 30c, Plk4
aa265-970

 and Plk4
aa609-970

 were able to cause centriole overduplication, as 

visualized by the formation of a rosette-like procentriole arrangement, albeit to a low degree. 

Of note, the C-terminus Plk4
aa609-970

 was only weakly detectable at the centrosome, yet it 

evoked the distinct phenotype of rosette-like procentriole arrangements. In contrast, the N-

terminal part of Plk4 did not localize to the centrosome and did not cause centriole 

overduplication.  

We therefore conclude that the truncation mutants Plk4
aa609-970

 and Plk4
aa265-970

 bind to 

endogenous Plk4 and prevent its trans-autophosphorylation, in turn leading to a stabilization 

of the endogenous kinase and to centriole overduplication. 
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Fig. 30:  N-terminal truncations of Plk4 are able to cause centriole overduplication as 

visualized by the formation of rosette-like procentriole arrangements.   (a) Schematic depicting 

the truncation mutants of Plk4 that were used in this experiment. Drawn to scale.  (b) Dimerization 

assay of Plk4 truncation mutants. Full-length FLAG-Plk4 and myc-tagged Plk4 truncation mutants 

were co-overexpressed in 293T cells. Subsequently, FLAG immunoprecipitates were tested for the 

presence of co-immunoprecipitated myc-tagged truncation mutants. Red asterisks indicate that 

myc-Plk4
aa1-608 

cannot be detected in the immunoprecipitates.  (c) U2OS cells were transfected with 

myc-Plk4
aa1-608

, myc-Plk4
aa609-970

 and myc-Plk4
aa265-970

 for 48 h. Cells were fixed and stained with 

α-myc-antibody to identify transfected cells, for CP110 to detect centrioles with engaged pro-

centrioles, and for Cep135 or CAP350 as proximal centriolar markers. Bar: 5 µm. 
 

a) b) 

c) 



DISCUSSION 

 - 62 - 

5. Discussion 

Plk4's cellular functions have long remained mysterious, and only recent studies demonstrate 

that this kinase is pivotal in the process of centriole biogenesis (Cunha-Ferreira et al., 2009a; 

Bettencourt-Dias & Glover, 2009). However, no physiological substrate of Plk4 has yet been 

identified, and with the regulation of Drosophila Plk4 being dependent on its degradation, the 

first and only hint towards upstream regulatory mechanisms has been proposed very recently 

(Cunha-Ferreira et al., 2009b). We therefore set out to investigate, first, whether Plk4 might 

be regulated by phosphorylation. We identified numerous phosphorylation sites on overex-

pressed Plk4 and analyzed whether they are implicated in any of Plk4's centrosome-associated 

functions. As a second approach, we investigated whether Plk4 might be regulated, in analogy 

to Drosophila Plk4, via regulated proteolysis.  

 

5.1. Kinase activity of endogenous Plk4 is strictly required for centriole 

biogenesis 

When Plk4 was first shown to be a master regulator of centriole biogenesis (Habedanck et al., 

2005; Bettencourt-Dias et al., 2005), the experiments revealed a requirement for Plk4 kinase 

activity to exert its functions in this process (Habedanck et al., 2005). However, it was 

noticed that transiently overexpressed kinase-inactive Plk4
D154A

 caused about 30% of 

centriole overduplication, compared to 80% in case of the wildtype protein but only 5% in 

untransfected control samples (Habedanck et al., 2005). 

In principle, supernumerary centrosomes might arise via different routes (Meraldi et 

al., 2002; Nigg, 2002; Sluder, 2004; Nigg, 2007), namely aborted mitosis or cytokinesis, cell 

fusion, centrosome fragmentation, centriole re-duplication during prolonged S phase, and 

finally bona fide centriole overduplication by generating more than one procentriole adjacent 

to each mother centriole. To investigate this further, Habedanck et al. (2005) suppressed cell 

cycle progression by an aphidicolin-induced S phase block. While the wildtype kinase still 

caused excessive overduplication, the Plk4
D154A

-induced overduplication was suppressed to 

the levels of the untransfected control. This led the authors to conclude that Plk4
D154A

 might 

cause occasional division failures by a dominant-negative mode of action, fitting well with the 

observation that reduced Plk4 levels in heterozygous Plk4
+/-

 mice also showed centrosome 

amplification (Ko et al., 2005). 

Staining of induced B6 (WT) and D2 (D154A) cells, however, argue against the 

explanation that kinase-dead Plk4 evokes overduplication solely via division failures. D2 cells 

were found to contain a high degree of parental centrioles surrounded by the typical halo- or 
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rosette-like arrangement of procentrioles. These structures have extensively been 

characterized in the corresponding B6 cell line and shown to constitute near-simultaneously 

formed procentrioles around parental centrioles, notably in an engaged configuration 

(Kleylein-Sohn et al., 2007). In fact, this phenotypic manifestation of Plk4 overexpression 

proved invaluable in the delineation of the centriole assembly pathway in human cells, 

unraveling that the C. elegans core module identified before (reviewed in Strnad & Gonczy, 

2008) is conserved also in humans (Kleylein-Sohn et al., 2007). We therefore believe that 

centriolar rosettes induced by the expression of Plk4
D154A

 represent bona fide centriole 

overduplication. In order to assess whether this effect depends on the endogenous wildtype 

kinase, we depleted the endogenous protein by RNAi and induced overexpression thereafter. 

Strikingly, expression of the wildtype kinase in B6 cells caused centriole overduplication 

irrespective of the presence or absence of endogenous Plk4, while Plk4
D154A

-induced rosette 

formation was completely abolished when endogenous Plk4 was missing. As expected, 

neither construct induced overduplication in HsSas-6-depleted cells, recapitulating the 

established requirement of this protein in the assembly pathway downstream of Plk4 

(Dammermann et al., 2004; Habedanck et al., 2005; Kleylein-Sohn et al., 2007). We therefore 

conclude that Plk4
D154A

 modulates endogenous Plk4 in a yet-to-be-identified way; one 

hypothesis will be discussed later in the context of ßTrCP-mediated Plk4 degradation. The 

notion that Plk4
D154A

 influences endogenous Plk4 goes in line with the observation that Plk4 

is a homodimer (or oligomer) in vivo (Habedanck, 2006) and that homodimerization does not 

depend on kinase activity (Fig. 19).  

Another potential explanation is based on the fact that an enlargement of the PCM is 

sufficient to induce centriole overduplication in vertebrate cells (Loncarek et al., 2008); of 

note, the formation of extra centrioles upon overexpression of pericentrin (i.e. PCM 

enlargement) appears to be similar to the de novo pathway in that centriole biogenesis is 

initiated in local densities throughout the PCM rather than orthogonally to the proximal base 

of a pre-existing centriole (Loncarek et al., 2008). Along the same lines, Song and colleagues 

reported that the C. elegans proteins SZY-20 and ZYG-1 have opposing effects on 

centrosome size (Song et al., 2008a), extending on the intimate relationship between 

centrioles and their surrounding PCM (Bobinnec et al., 1998; Dammermann et al., 2004). The 

authors propose that ZYG-1 functions in PCM recruitment and thus positively influences 

centrosome size, while SZY-20 antagonizes the recruitment of centrosomal proteins, 

including ZYG-1, SPD-2 and SPD-5 (Song et al., 2008a). Thus, albeit clearly speculative, we 

cannot rule out the possibility that the pronounced accumulation of Plk4
D154A

 to the 
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centrosome influences centrosome duplication via increasing centrosome size. Yet, as in all 

scenarios investigated Plk4 is required for centriole biogenesis (Habedanck et al., 2005; 

Bettencourt-Dias et al., 2005; Rodrigues-Martins et al., 2007), such an effect of Plk4
D154A

 

would still require the endogenous Plk4 to be present.  

 

5.2. Phosphorylation site analysis 

As most kinases are predominantly regulated via phosphorylation/dephosphorylation (Hunter, 

2000; Shi et al., 2006), we asked whether Plk4 could be regulated in an analogous way. An 

unbiased approach of mutating all conserved serine/threonine/tyrosine residues within Plk4 

was not feasible, because the 970 aa protein Plk4 contains too many residues that are highly 

conserved. Thus, we set out to determine phosphorylation sites present on Plk4 in different 

stages of the cell cycle, followed by mutational analyses. Endogenous Plk4 is an extremely 

low abundant enzyme within the cell (Habedanck et al., 2005; Bettencourt-Dias et al., 2005), 

reflected by the fact that despite more than 15 years of research, there is no antibody available 

to date that would allow for the detection of endogenous Plk4 on Western blots, or 

immunoprecipitation of appropriate amounts of kinase for efficient mass spectrometric 

analysis of post-translational modifications. Thus, we were dependent on the analysis of over-

expressed Plk4 immunoprecipitated from human cells and included an analysis of putative 

autophosphorylation sites on the in vitro autophosphorylated, recombinant kinase. 

 

5.2.1. Phosphorylation sites from the recombinant kinase 

GST-Plk4 isolated from E. coli was phosphorylated to a surprisingly high extent (Fig. 12b). 

Therefore, we chose conserved sites within the kinase domain for further analysis, based on 

the well-defined general architecture of protein kinases. Most surprisingly, we detected 

tyrosine autophosphorylation of Plk4 upon expression in bacteria. Tyrosine phosphorylation 

upon expression of apparent serine/threonine kinases in bacteria has been the foundation for 

the identification of so-called dual specificity kinases (Lindberg et al., 1992), however, this 

behaviour does not necessarily reflect an actual dual specificity in vivo. Although 

recombinant Plk4 was substantially tyrosine-autophosphorylated in vitro, we did not detect 

any tyrosine phosphorylation in its exogenous substrate protein Cep135 (Fig. 14), nor could 

we confirm tyrosine autophosphorylation to be present on the overexpressed kinase immuno-

precipitated from human cells. We therefore conclude that Plk4 might not act as a dual 

specificity kinase in mammalian cells. However, as tyrosine autophosphorylation could not be 

detected on Plk1 and has never been reported for any Plk-family member, we emphasize that 
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Plk4 in this regard behaves significantly differently from Plks 1-3. This notion substantiates 

the finding that the preferred substrate consensus sequence of Plk4 is significantly different 

from Plk1 (Leung et al., 2007), and that despite partially overlapping localizations, the set of 

substrates is likely to be distinct (Barr et al., 2004).  

In vitro dual specificity of Plk4 might be explained by an atypical feature within the 

kinase domain, namely the substitution of a near-invariant lysine with a threonine (T138) 

close to the catalytic base. While virtually all serine/threonine kinases carry this near-invariant 

lysine, only tyrosine kinases differ from this scheme by showing either an alanine or an 

arginine substitution (Taylor et al., 1993); hence, this residue is considered to be fundamental 

in the determination of the preferred phospho-acceptor residue. Intriguingly, and in marked 

contrast to Plks 1-3, this rare and atypical feature within Plk4's kinase domain is conserved in 

all homologues examined, and can also be found in C. elegans ZYG-1. Moreover, mutation of 

T138 to an alanine in Plk4 did not interfere with kinase activity. In light of these findings, it 

will be important to learn more about the architecture of Plk4's kinase domain from a crystal 

structure, and to determine endogenous substrate phosphorylation sites in order to refine its 

proposed consensus sequence. 

 

5.2.2. Phosphorylation sites from the overexpressed protein 

In contrast to the recombinant protein, overexpressed Plk4 showed only a limited set of 

repeatedly identified phosphorylation sites. Unfortunately, all identified sites were present in 

all phases of the cell cycle, as SILAC-mediated quantification could only show moderate up- 

and downregulations upon cell cycle transitions (table in Figs. 15, 16). Interestingly, during 

the course of this work another study surveyed the global changes of protein kinase 

phosphorylation upon S/M transition (Daub et al., 2008). The authors determined an 

overlapping set of phosphorylation sites to the ones presented here – notably on the 

endogenous Plk4 protein – and revealed an upregulation of all sites but S401 upon entry into 

mitosis. These data fit well with the regulation determined in the context of this thesis, and 

further validate that overexpressed Plk4 seems to be regulated similarly to the endogenous 

protein. Upregulation of sites in mitosis might reflect increasing regulatory input into Plk4, 

however, as outlined below, these sites do not seem to be major regulatory sites in the context 

of centriole biogenesis.  

We mutated the identified sites to either alanine or aspartate, in order to mimic 

unphosphorylated or phosphorylated residues, respectively, and analyzed the mutants for 
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Plk4's known centrosomal properties, namely centrosomal localization, homodimerization, 

(auto)phosphorylation activity, and its propensity to promote centriole overduplication.  

As a general mechanism, phosphorylation is well known to be required for the proper 

subcellular localization of numerous proteins. For instance, the human kinesin-related motor 

protein Eg5 needs to be phosphorylated at T927 by Cdk1/Cyclin-B in order to be properly 

targeted to the centrosome via binding to the dynactin subunit p150
Glued

 (Blangy et al., 1995; 

Blangy et al., 1998). A non-phosphorylatable T927A mutant does not associate with 

centrosomes, and as a consequence of impaired localization, the duplicated centrosome does 

not separate in prophase and causes the formation of a monopolar spindle (Blangy et al., 

1995; Blangy et al., 1998). Moreover, centrosome cohesion is regulated by the timely 

dissociation of the proximal centriolar proteins C-Nap1 and its interactor Rootletin (Mayor et 

al., 2002; Bahe et al., 2005). Both proteins are phosphorylated by the centrosomal kinase 

Nek2, and data suggest Ned2-dependent phosphorylation is required for timely dissociation 

prior to centrosome separation at the beginning of mitosis.  

In order to investigate whether one of the identified phosphorylation sites could be 

involved in subcellular localization of Plk4, we overexpressed all myc-tagged mutants in 

U2OS cells. Unfortunately, all mutants readily localized to the centrosome as apparent from 

immunofluorescence stainings against the myc tag and the centrosomal proteins CP110 and 

Cep135 (Fig. 17). As Plk4 is known to dimerize (or oligomerize) in vivo (Leung et al., 2002; 

Habedanck, 2006), we repeated the experiments in cells that were depleted of endogenous 

Plk4 prior to overexpression (see also below). As a consequence of depletion, many cells 

appeared to contain only a single centriole (Habedanck et al., 2005), yet all mutants were 

found to readily localize to these single centrioles shortly after transfection (not shown). We 

therefore conclude that none of the phosphorylation sites is involved in Plk4's subcellular 

localization, even in the absence of the endogenous protein. Of note, it has been reported 

previously that mouse Plk4, in addition to the centrosome, localizes to the nucleoli and the 

cleavage furrow (Hudson et al., 2001; Martindill et al., 2007); however, subsequent studies 

did not confirm such a localization in human cells or Drosophila (Habedanck et al., 2005; 

Bettencourt-Dias et al., 2005). In line with this, none of the phosphorylation site mutants were 

ever observed at either the nucleoli or the cleavage furrow/midbody in the context of this 

work. 

As mentioned above, Plk4 is known to dimerize in vivo (Leung et al., 2002; 

Habedanck, 2006). To investigate a possible interference of the mutations with Plk4's 

dimerization abilities, we co-overexpressed FLAG- and myc-tagged mutants in 293T cells, 
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immunoprecipitated via the FLAG tag and tested the immunocomplexes for dimerized Plk4. 

The experiment revealed that all mutants dimerized with each other (Fig. 19) and also with 

co-overexpressed Plk4
WT

 (not shown). Notably, the kinase-dead Plk4
D154A

 mutant (and also 

inactive Plk4
S22D

, see below) were equally capable of self-association despite their lack of 

activity, demonstrating that autophosphorylation is not required for this process.  

We next asked whether one of the phosphorylation sites could be regulatory to Plk4's 

kinase activity. Predominantly, kinases are activated by (auto)phosphorylation within their 

activation loop (Nolen et al., 2004). Usually, activation loop phosphorylation leads to a 

structural rearrangement, stabilizing the activation segment in a conformation that allows 

proper substrate positioning and phosphate transfer (Nolen et al., 2004). However, some 

kinases are known to be active independently of such a phosphorylation (Nolen et al., 2004), 

and data presented in this thesis indicate that Plk4 might belong to the latter group (Fig. 14). 

In addition to activation loop phosphorylation, other structural rearrangements dependent on 

phosphorylation have been reported to affect kinase activity. For instance, 

Calcium/Calmodulin-dependent kinase II (CamKII) exists in an autoinhibited state, where a 

C-terminal regulatory domain blocks substrate and ATP binding sites. Release from 

autoinhibition through binding of Ca
2+

/Calmodulin induces catalytic activity, resulting in an 

immediate regulatory trans-autophosphorylation that renders the Ca
2+

/Calmodulin off-rates to 

be magnitudes lower and thus positively feeds back on further kinase activation (Griffith, 

2004). 

In lack of a bona fide endogenous substrate to test the activity of immunoprecipitated 

Plk4 from human cells (Habedanck, 2006), we used the extent of autophosphorylation as a 

readout for kinase activity (Fig. 18). While the WT kinase and all phosphorylation site 

mutants, except for Plk4
S22D

, displayed strong autophosphorylation activity and a 

correspondingly pronounced retarded mobility in SDS-PAGE, Plk4
D154A

 and Plk4
S22D

 

appeared to be completely inactive. D154 is a residue of the critical and highly conserved 

DFG motif within protein kinase activation segments that aids in the proper positioning of 

Mg
2+

-ATP for phosphate transfer (Nolen et al., 2004). Mutation of this residue is widely used 

to render kinases inactive as a proper control in the elucidation of biological functions. In 

contrast, S22 is positioned within the G-loop of the small lobe of the kinase domain. With a 

following phenylalanine in the +1 position (see table in Fig. 15b), it minimally corresponds to 

the consensus motif proposed by Leung et al. (2007), and indeed S22 has also been detected 

as phosphorylated residue in the recombinant kinase, suggesting that it may represent an 

autophosphorylation site.  
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Finally, we tested the Plk4 phosphorylation site mutants for their ability to promote 

centriole overduplication. When transiently overexpressed in U2OS cells, myc-Plk4
WT

 caused 

centriole overduplication in about 80% of all transfected cells (Habedanck et al., 2005), and 

similarly, overexpression of Drosophila Plk4 induced supernumerary centrosomes, even de 

novo in the unfertilized egg (Peel et al., 2007; Rodrigues-Martins et al., 2007). As predicted 

from their subcellular localizations and kinase activities, all mutants, except for Plk4
D154A

 and 

Plk4
S22D

, readily caused centriole overduplication to an extent similar to the wildtype kinase. 

Plk4
S22D

 was expected to behave like the kinase-dead Plk4
D154A

 control, owing to its abolished 

kinase activity, and indeed both proteins caused overduplication in only about 30% of 

transfected cells (Fig. 20). A putative mechanism for this elevated background 

overduplication will be discussed below (see section 5.3). 

Taken together, we conclude that none of the phosphorylation sites identified in this 

study is significantly involved in the known centrosomal processes catalyzed by Plk4. 

However, we emphasize at this point that, for technical reasons, no classical rescue 

experiments could be conducted. The reason for this is that levels of endogenous Plk4 are 

extremely low (Habedanck et al., 2005; Bettencourt-Dias et al., 2005), so that any detectable 

overexpression is likely to deliver a multiple of the endogenous protein. Furthermore, Plk4 

levels within the cell are well balanced and fine-tuned, reflected by the fact that Plk
+/-

 mice 

are haploinsufficient for tumor suppression (Ko et al., 2005) and that centriole numbers are 

tightly correlated with Plk4 activity (Habedanck et al., 2005; Kleylein-Sohn et al., 2007; 

Bettencourt-Dias et al., 2005; Cunha-Ferreira et al., 2009b; Rogers et al., 2009). In 

conjunction with different kinetics of the RNAi-mediated depletion and the CMV-driven 

expression of the transfected mutant, it appears impossible to restore physiological levels of 

mutant proteins at the depleted centrosome. For this reason, we cannot exclude that we might 

have missed a subtle role of one of the phosphorylation sites in the regulation of Plk4.  

  

5.3. βTrCP-mediated degradation of Plk4 

Protein kinases, once activated, can be downregulated through a variety of mechanisms, 

including phosphorylation/dephosphorylation and regulated proteolysis (Hunter, 2007). In 

fact, the activation-dependent degradation of protein kinases is an emerging theme 

(comprehensively reviewed in Lu & Hunter, 2009). This has been shown for the first time 

with regard to protein kinase C (PKC) degradation, as inhibition of PKC activity abolished its 

polyubiquitination and subsequent proteolysis (Lu et al., 1998). 
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Long-standing evidence suggested that SCF-dependent proteolysis is involved in the 

regulation of the centriole duplication cycle, as Skp1 and Cul1 were found to localize to the 

centrosome (Freed et al., 1999) and the SCF components Skp2, Drosophila SkpA and 

Drosophila Slimb/human βTrCP appeared to regulate centrosome numbers (Nakayama et al., 

2000; Murphy, 2003; Wojcik et al., 2000; Guardavaccaro et al., 2003). With the identification 

of Plk4 as a centrosomal target of the F-box protein Drosophila Slimb, a mechanism has been 

presented that for the first time establishes a direct link between SCF-dependent proteolysis 

and the centriole duplication cycle (Rogers et al., 2009; Cunha-Ferreira et al., 2009b). The 

core centriole duplication machinery has been well conserved throughout evolution 

(Bettencourt-Dias & Glover, 2007), but despite this conservation, some regulatory 

mechanisms are likely to be different between evolutionary distant organisms like C. elegans, 

Drosophila and humans. Accordingly, different roles have been proposed for certain key 

proteins, e.g. for SPD-2/Cep192. While SPD-2 in C. elegans is clearly involved in the 

biogenesis cascade upstream of ZYG-1 (Kemp et al., 2004; Dammermann et al., 2004), 

Drosophila SPD-2 is not required for centriole duplication (Dix & Raff, 2007), and for 

humans, evidence has been reported for both scenarios (Zhu et al., 2008; Gomez-Ferreria et 

al., 2007).  

We therefore set out to determine whether human Plk4 might be regulated via 

proteolytic degradation in analogy to Drosophila Plk4. We first depleted the mammalian 

homologue of Slimb, βTrCP, via RNAi. In mammals, two distinct paralogues of βTrCP are 

expressed, but these two forms are indistuinguishable in their biochemical properties (Frescas 

& Pagano, 2008). Although preferences towards βTrCP1 or 2 have been reported for some 

substrates (e.g. Seo et al., 2009), in most cases βTrCP1 and 2 are considered redundant 

(Frescas & Pagano, 2008). We therefore targeted βTrCP with siRNA duplexes that recognize 

both paralogues (Guardavaccaro et al., 2003) in order to circumvent βTrCP redundancy  

(Fig. 21). In the further course of this discussion, we will thus only refer to βTrCP. We 

detected centriole overduplication in about 45% of all βTrCP-depleted cells, consistent with 

previous studies that reported centrosome overduplication in βTrCP
-/-

 mouse embryonic 

fibroblasts (MEFs) and in Drosophila Slimb-mutant neuroblasts (Guardavaccaro et al., 2003; 

Wojcik et al., 2000). Most strikingly, we detected rosette-like procentriole arrangements 

around parental centrioles when we stained cells with antibodies to CP110, a distal centriolar 

cap protein. This phenotype was equal to cells overexpressing Plk4 (compare Figs. 10 and 

21), and has been shown previously to represent multiple procentrioles engaged with a 

parental centriole (Kleylein-Sohn et al., 2007). In Drosophila, Slimb RNAi has been shown 
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by immunoelectron microscopy to induce a similar phenotype, and here the authors reported a 

dependency on Plk4 (Cunha-Ferreira et al., 2009b). Overexpression of the coiled-coil 

duplication protein HsSas-6 has also been shown to cause a similar phenotype (Strnad et al., 

2007). However, HsSas-6 proteolytic regulation was found to depend on APC/C
Cdh1

 (Strnad et 

al., 2007), and Slimb RNAi in Drosophila did not interfere with DSas-6 levels (Cunha-

Ferreira et al., 2009b). We also noted that in βTrCP-depleted cells that formed a halo- or 

rosette-like procentriole arrangement, the IF signal for endogenous Plk4 was consistently 

elevated compared to control cells (Fig. 21b). Similarly, Cunha-Ferreira et al. (2009b) and 

Rogers et al. (2009) reported an increase of IF staining intensity for endogenous Plk4 levels at 

the centrosome. Exploiting the total levels of overexpressed Plk4 protein revealed a slight 

increase in protein levels in the absence of βTrCP (Fig. 22a); conversely, levels of 

overexpressed Plk4 were markedly decreased when βTrCP was co-overexpressed (Fig. 22b). 

Together, we conclude that βTrCP depletion causes a stabilization of endogenous Plk4, in 

turn leading to the near-simultaneous formation of multiple procentrioles around parental 

centrioles. 

As Plk4 contains a conserved binding motif for βTrCP just C-terminal of its kinase 

domain, we asked whether Plk4 is a direct target of the F-box protein βTrCP. In retrospect, 

the majority of so-called PEST instability sequences (stretches rich in prolin, aspartate, serin 

and threonine, bounded by basic residues; Rogers et al., 1986) in reality represents 

phosphodegrons (Hunter, 2007). An earlier study demonstrated a PEST sequence  

C-terminal to Plk4's kinase domain, that contains the conserved DSGHAT motif investigated 

here, to be involved in Plk4 turnover (Yamashita et al., 2001). Our co-immunoprecipitation 

assays (Fig. 23) go well in line with the two studies on the interaction of these two proteins in 

Drosophila (Rogers et al., 2009; Cunha-Ferreira et al., 2009b), establishing that human 

βTrCP binds Plk4 directly in order to target it for degradation. This result provides a 

mechanistic explanation for the finding that proteasome inhibition evokes a procentriole 

overduplication phenotype similar to the one observed here, in line with the notion that the 

described effect was dependent on Plk4 (Duensing et al., 2007). 

βTrCP is known to bind its targets through a conserved DSGxxS/T motif (Skowyra et 

al., 1997), although exceptions from this scheme have been reported, e.g. for Wee1 

(Watanabe et al., 2004). We therefore assessed whether βTrCP binding to Plk4 occurs solely 

via its conserved DSGHAT motif, and whether the interaction is dependent on 

phosphorylation of Plk4. Mutation of the two conserved phosphoacceptor residues in the 

phosphodegron completely abolished the interaction of the two proteins. However, as the 
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supposedly phosphomimetic S285D/T289D mutation did not restore binding to βTrCP, we 

confirmed the requirement of prior degron phosphorylation by phosphatase treatment. Here, 

substantial dephosphorylation of Plk4, as apparent from its abolished retarded mobility, also 

prevented association of βTrCP, clearly indicating that targeting Plk4 for SCF
βTrCP

-mediated 

proteolysis requires the conserved phosphodegron to be phosphorylated, similar to what has 

been reported in Drosophila (Cunha-Ferreira et al., 2009b; Rogers et al., 2009).  

Moreover, we identified another phosphorylated residue (S282) in the pool of Plk4 

complexed with βTrCP (Fig. 26). Two independent studies reported the βTrCP-mediated 

degradation of the transcription factor REST (Westbrook et al., 2008; Guardavaccaro et al., 

2008), yet with conflicting data on the identity of the involved phosphodegron. Westbrook 

and colleagues determined a phosphorylation site similarly upstream of the phosphodegron as 

S282 presented here, and mutational analyses suggested this site to be involved in βTrCP 

binding. Here, the identified residue S282 also appeared to be involved in binding, yet the 

mutation only weakened the interaction in contrast to the classical phosphodegron double-

mutation. Of note, S282 was also found as autophosphorylation site in the analysis of the 

recombinant protein (Fig. 22b), raising the possibility that an autophosphorylation event 

might be involved in Plk4's degradation process (see below).  

We have firmly established that human Plk4 is degraded in an SCF
βTrCP

-dependent 

manner, and our findings thus highlight the remarkable degree of conservation within the 

centriole biogenesis pathway between such distant organisms as humans and flies. The fact 

that all investigated Plk4 homologues, including ZYG-1, contain the DSGxxT motif lends 

support to the assumption that this mechanism of Plk4 regulation has been preserved in 

evolution. Yet, with the identification of βTrCP-mediated degradation, we just know how 

regulatory input impinges upon Plk4 activity, but we still lack information on the signaling 

pathways that control this process. Thus, the stage is now set for the identification of the 

kinase(s) responsible for degron phosphorylation. 

When we tested all generated Plk4 phosphorylation site mutants (Fig. 15) for their 

ability to be recognized by βTrCP, we discovered that both Plk4
D154A

 and Plk4
S22D

 failed to 

bind (Fig. 27). This is unlikely to arise from a general misfolding of the kinase domain, as 

these mutations are expected to alter significantly different structures within the kinase 

domain. We therefore conclude that an autophosphorylation event might be necessary for 

proper degradation of Plk4. In support of this, kinase-dead Plk4
D154A

 was stabilized equally to 

the phosphodegron mutant Plk4
S285A/T289A

 (Fig. 28).  
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Having established that autophosphorylation of Plk4 is required for its proper 

degradation, we additionally could show that this defect could be rescued by simultaneous co-

overexpression of active Plk4
WT 

in vivo (Fig. 29). Thus, our data strongly argue in favor of an 

important autophosphorylation site to be missing on Plk4
D154A

 for βTrCP recognition, and 

suggest that this putative site is likely to be autophosphorylated in trans. Similar to our 

findings, the degradation of PKCη was also found to depend on trans-autophosphorylation 

(Kang et al., 2000). The inactive PKCη wildtype kinase exists in an autoinhibited state where 

a C-terminal pseudosubstrate sequence folds back and blocks the kinase domain. While in this 

conformation PKCη was not degraded, activation of the kinase or mutation of the 

pseudosubstrate sequence resulted in rapid proteolytic degradation. Interestingly, a pseudo-

substrate mutant that additionally carried a kinase-inactivating mutation (i.e. that adopted the 

same open conformation as the activated wildtype kinase) was not degraded, suggesting that 

after activation an autophosphorylation event has to occur. Moreover, simultaneous 

overexpression of active PKCη restored the degradation of the mutant. 

So far, we have not been able to experimentally determine whether or not this 

proposed autophosphorylation event is also sufficient for Plk4 degradation. Further 

experiments will have to address whether active, dephosphorylated Plk4
WT 

(that looses its 

phosphodegron for βTrCP binding, see Fig. 24) can restore its own phosphodegron in vitro, or 

whether the activity of another kinase is additionally required for this process. In most cases 

investigated, the double phosphorylation of a DSGxxT degron is carried out by two different 

kinases, providing an elegant 'AND logic gate' for the integration of different signaling 

pathways (Hunter, 2007). Taken together, we hypothesize that (continuous?) trans-auto-

phosphorylation of active Plk4 initiates its own degradation, either dependent or independent 

of another kinase (Fig. 31).  
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This model elegantly reconciles the strict requirement for Plk4 kinase activity for 

centriole duplication (see Fig. 11b) with the unexpected finding that kinase-dead Plk4
D154A

 

(Fig. 10) as well as N-terminal Plk4 truncations (Fig. 30) are able to trigger bona fide 

centriole overduplication. As dimerization of Plk4 is independent of its kinase activity (see 

Figs. 19 and 30b), a subfraction of overexpressed Plk4
D154A

 (or Plk4
aa265-970

 or Plk4
aa609-970

) is 

expected to form heterodimers with the endogenous kinase. In such heterodimers, endogenous 

Plk4 is not autophosphorylated in trans and consequently not recognized by βTrCP. Thus, the 

stabilized endogenous Plk4 eventually accumulates and triggers the formation of rosette-like 

procentriole arrangements (schematically summarized in Fig. 31).  

Fig. 31:  Model for the autophosphorylation-dependent proteolytic degradation of Plk4.    
(a) In normal cells, homodimers of active endogenous Plk4 (constantly?) autophosphorylate in 

trans. This leads to the phosphorylation of the DSGHAT phosphodegron of Plk4, either dependent 

or independent of a second kinase, and finally to the proteolytic destruction of active Plk4 through 

the 26S proteasome.  (b) In cells overexpressing a kinase-dead mutant of Plk4 (e.g. Plk4
D154A

, 

depicted in light green), heterodimers with the endogenous kinase (dark green) are expected to 

form. In this scenario, trans-autophosphorylation of the endogenous kinase is blocked and βTrCP 

fails to bind. As a consequence, endogenous Plk4 is stabilized and accumulates to levels sufficient 

to induce bona fide centriole overduplication. 
 

a) 

b) 
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According to this scheme, we further propose that Plk4 degradation takes place in 

early S phase (or continuously), as no cell cycle progression through late S, G2 and M phases 

is required for Plk4
D154A

 to induce overduplication (Fig. 11). 

 

In summary, these data pave the way towards the beginning of a mechanistic 

understanding of Plk4 regulation by controlled proteolysis. It will be of central importance to 

determine whether Plk4 autophosphorylation is not only required but sufficient for 

degradation, and to identify further players (notably a potential second kinase) in the process. 

In light of the emerging view that supernumerary centrosomes are not only a consequence but 

potentially also a cause of tumorigenesis (Nigg, 2002; Castellanos et al., 2008; Basto et al., 

2008; Ganem et al., 2009), the necessity to unravel the complex regulation of centrosome 

biology may also contribute to a better understanding of cancerogenesis. 
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6. Materials and Methods 

Chemicals and materials 

All chemicals were purchased from Merck, Sigma-Aldrich Chemical Company (St Louis, MO), 

Fluka-Biochemika (Switzerland), or Roth, unless otherwise stated. Growth media components for  

E. coli were from Difco Laboratories or Merck. The Minigel system was purchased from Bio-Rad and 

the Hoefer SemiPHor Blotting system from Pharmacia-Biotech. Tabletop centrifuges were from 

Eppendorf. 

 

Plasmid construction 

All cloning procedures were performed according to standard techniques as described in Molecular 

Cloning, A Laboratory Manual, 2nd editition, Sambrook, J., Fritsch, E.F., Maniatis, T., Cold Spring 

Harbor Laboratory Press 1989 and Current Protocols in Molecular Biology, Wiley, 1999. Restriction 

enzyme reactions were carried out as specified by the supplier (Fermentas) and ligation reactions were 

done using T4 DNA Ligase (NEB). Extraction of DNA from agarose gels and preparation of plasmid 

DNA was performed using kits from QIAGEN according to the manufacturer’s instructions. For PCR 

reactions, the Pfu DNA polymerase PCR System was used as recommended by the manufacturer 

(Promega) and reactions were carried out in a RoboCycler Gradient 96 (Stratagene). All PCR products 

were checked by sequencing at Medigenomix (Martinsried, Germany). 

Human Plk4 cDNA was constructed by Dr. Robert Habedanck (Habedanck, 2006). Sequence 

mutations were inserted by using the Stratagene QuickChange site-directed mutagenesis kit according 

to the manufacturer’s instructions (for primers, see below). 

 

Antibody Production 

A Plk4 fragment spanning residues 888-970 was expressed as a GST-tagged fusion protein in E. coli 

and purified under denaturing conditions. Polyclonal antibodies were raised at Charles River 

Laboratories (Romans, France). Antibodies were affinity-purified using GST-tagged antigen bound to 

Affigel (Biorad) according to standard protocols. 

 

Cell culture and transfections 

All cells were grown at 37°C in a 5% CO2 atmosphere. HeLa, U2OS or HEK293T cells were cultured 

in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% heat-inactivated fetal calf 

serum and penicillin-streptomycin (100 µg/ml, Gibco-BRL, Karlsruhe, Germany).  

Cells adherent on acid treated glass coverslips were transiently transfected using FuGene (Roche 

Diagnostics, Mannheim, Germany) according to the manufacturer’s protocol. 

Tetracycline-inducible cell lines expressing myc-tagged Plk4
WT

 and Plk4
D154A

 were generated by 

transfection of U2OS-TRex cells (Invitrogen). Stable transformants were established by selection for 
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two weeks with 1 mg/ml G418 (Invitrogen, Carlsbad, CA) and 50 µg/ml hygromycin (Merck, 

Darmstadt, Germany) after which colonies were picked and tested for Plk4 expression by 

immunofluorescence and by Western blot analysis. Cell lines were induced to express Plk4 by adding 

1 µg/ml tetracycline to the growth medium. 

 

siRNA-mediated protein depletion 

Proteins were depleted using siRNA duplex oligonucleotides (Dharmacon Research Inc, Lafayette, 

CO and Qiagen, Hilden, Germany). siRNA target sequences are listed below. Oligoduplexes targeting 

luciferase were used as control (GL2, Elbashir et al., 2001). Transfections were performed using 

Oligofectamin (Invitrogen, Carlsbad, CA) according to the manufacturer's protocol; in case of rescue 

experiments (see below), the transfection mix was replaced with fresh medium after 6h in order to 

improve cell viability. 

RNAi rescue experiments were performed using the inducible stable cell lines U2OS-B6 (Plk4
WT

), 

U2OS-D2 (Plk4
D154A

) and U2OS-B3 (Plk4
D154A

, not shown). Cells were depleted for endogenous Plk4 

or HsSas6 (as positive control) for 24h as described above. Cells were then arrested in S phase by the 

addition of 1.6 µg/ml aphidicolin for 8h prior to induction of protein expression for 16h. 

 

Cell extracts, immunoprecipitations and immunoblotting 

For immunoprecipitations of epitope-tagged overexpressed proteins, HEK293T cells were plated to 

approx. 50% confluency in 10 cm cell culture dishes. 24h later, cells were transfected as described 

above with 5 µg of plasmid DNA. For co-immunoprecipitations, 3 µg of plasmid encoding FLAG-

tagged protein and 2 µg of plasmid encoding myc-tagged protein were mixed and transfected as 

described above. After transfection, cells were trypsinized and collected, washed with PBS and lysed 

on ice for 20 min in lysis buffer (50mM Tris-HCl pH 7.4, 0.5% NP40, 150mM NaCl, 1mM DTT, 5% 

glycerol, 50mM NaF, 1mM PMSF, 25mM β-glycerophosphate, 1mM vanadate, Complete Mini 

protease inhibitor cocktail (Roche Diagnostics, Mannheim, Germany)). Lysates were cleared by 

centrifugation for 15 min at 16,000 g, 4°C, and incubated with proteinG beads bearing epitope-tag 

targeting antibodies (mouse monoclonal 9E10 αmyc; mouse monoclonal M2 αFLAG affigel (Sigma, 

Steinheim, Germany)) for 2h at 4°C. Immunocomplexes bound to beads were washed three times with 

(Co-)IP wash buffer (50mM Tris-HCl pH 7.4, 0.5% NP40, 300mM NaCl, 1mM DTT, 5% glycerol, 

50mM NaF, 1mM PMSF, 25mM β-glycerophosphate, 1mM vanadate). Beads carrying bound proteins 

for use in in vitro kinase assays were treated as described below. Otherwise, immunoprecipitated 

proteins were eluted into Laemmli buffer, separated by SDS-PAGE and transferred to PVDF 

membranes using a Hoefer semi-dry blotting apparatus (Amersham Biosciences, Little Chalfont, UK). 

For Western blot analysis, membranes were incubated for 30 min in blocking buffer (5% low-fat dry 

milk in PBS, 0.1% Tween-20). All antibody incubations were carried out in blocking buffer overnight 

at 4°C. Membranes were probed with indicated antibodies in blocking buffer, followed by incubation 
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with HRP conjugated goat anti-mouse or anti-rabbit antibodies (Jackson Immunoresearch). Signals 

were detected by enhanced chemoluminescence using ECL reagents (Amersham Biosciences, Little 

Chalfont, UK).  

To assay protein degradation kinetics, 293T cells were transfected with the respective plasmids for 

16h. In order to globally shut off translation, 25 µg/ml cycloheximide was added to the cells (t = 0 h). 

At timepoints 0h, 4h, and 8h, one plate of transfected cells was lysed and total cell extracts were 

immunoblotted for the overexpressed protein as described above.  

 

Purification of the recombinant Plk4
aa1-265

 kinase domain 

The GST-tagged WT and D154A mutant of Plk4
aa1-265

 was expressed in E. coli BL 21 RIL codon + 

(Invitrogen). To express the protein, a starter culture of transformed bacteria was grown overnight 

under ampicillin selection and diluted 1:10 with fresh medium in the morning. The culture was grown 

to OD600 = 0.6 and expression of the recombinant protein was induced with 1mM IPTG at 30°C for 3h. 

Cells were then pelleted by centrifugation, lysed in buffer (20mM Tris-HCl pH7.4, 0.5% NP40, 

150mM NaCl, 1mM DTT, 5% glycerol, 5mM PMSF) by sonication and centrifuged to remove debris. 

The lysate was then incubated with glutathione coated beads (Amersham) for 1h to allow binding of 

expressed protein. After three washing steps with lysis buffer and one washing with elution buffer 

without glutathione, GST-tagged Plk4
aa1-265

 was then eluted by incubating beads in elution buffer 

(50mM HEPES pH 7.5, 100mM NaCl, 10mM MgCl2, 10mM glutathione, 5% glycerol, 1mM DTT).  

 

In vitro kinase assays 

Following immunoprecipitation, tagged Plk4 immunocomplexes were washed three times with lysis 

buffer and once with Plk4 kinase buffer (50mM HEPES pH 7.0, 100mM NaCl, 10mM MgCl2, 5% 

glycerol, 1mM DTT). Alternatively, 1 µg of recombinant GST-tagged Plk4
aa1-265

 kinase domain was 

used as enzyme. Kinase reactions were carried out for 30min at 30°C in Plk4 kinase buffer 

supplemented with 10µM ATP and 2µCi of (γ-
32

P)-ATP (Hartmann). Kinase reactions were stopped 

by addition of sample buffer and heating at 95°C for 5 minutes. Proteins were then separated by SDS-

PAGE and transferred to PVDF membranes in the case of immunoprecipitated kinase. Alternatively, 

when recombinant proteins were used, SDS-PAGE gels were stained by Coomassie Blue followed by 

drying on filter paper. 
32

P incorporation was visualized by autoradiography. 

 

Microscopic techniques 

Immunofluorescence microscopy was carried out as described (Meraldi et al., 1999). Briefly, cells 

were fixed on coverslips in -20°C methanol for at least 5 minutes before incubation in blocking buffer 

(2% BSA in PBS). After rehydration in PBS, cells were incubated with primary antibodies in blocking 

buffer for 1 hour at room temperature, followed by staining with Alexa-Fluor conjugated goat 

secondary antibodies (Molecular probes). DNA was visualized by staining with DAPI (200 ng/ml). 
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Coverslips were mounted onto glass slides using mounting medium (phenylenediamine in 90% 

glycerol). Slides were analyzed using a Zeiss Axioplan II microscope with Apochromat 63x and 

100x/1.4 n.a. oil immersion objectives and images were taken using a CoolSNAP HQ CCD camera 

(Photometrics, Tuczon, AZ) and Metaview (Visitron Systems GmbH, Puchheim, Germany) software 

followed by processing with Adobe Photoshop CS2 (Adobe Systems, Mountain View, CA). 

 

Mass spectrometry 

Proteins isolated by (co-)immunoprecipitation were prepared for mass spectrometric analysis as 

previously described. Briefly, for 1D-gel electrophoresis, proteins were separated on a NuPAGE Bis-

Tris gel (4-12%) from which the spacers between the lanes had been removed to achieve maximal 

loading capacity. The separated proteins were stained with Coomassie Blue and bands were excised 

and in-gel digested using trypsin or elastase (Promega, sequencing-grade). Peptides were desalted and 

concentrated using C18 extraction tips. 

All analyses were kindly performed by Dr. Roman Körner and his group (Max-Planck Institute of 

Biochemistry, Martinsried, Germany). 

 

SILAC media 

DMEM high glucose medium deficient in amino acids arginine and lysine was supplemented with 5% 

dialyzed FCS, penicillin-streptomycin (100µg/mL), and either unlabeled L-arginine.HCl and L-

lysine.HCl (SILAC light), L-arginine-U-
13

C6HCl and L-lysine-
2
H4.2HCl (SILAC medium), or  

L-arginine-U-
13

C6-
15

N4.HCl and L-lysine-U-
13

C6-
15

N2.HCl (SILAC heavy) at concentrations of 42 

µg/mL (arginine) and 72 µg/mL (lysine). Supplemented amino acids were from Cambridge Isotope 

Laboratories. Media were kept at 37°C before use. 

 

Titansphere enrichment of phosphopeptides 

Phosphopeptides were enriched using TiO2 columns as described previously with minor modifications. 

Approximately 3 µl of Titansphere (GL Sciences, Japan) suspension (100 mg/ml re-suspended in 80% 

acetonitrile in Milli-Q water/2% TFA) were placed on top of home-made C8 (Empore, 3M) STAGE 

Tips in 200 µl GELoader (Eppendorf) pipette-tips. The columns were washed twice with 40 µl of LA1 

solution (80% acetonitrile/0.2% TFA + 300 mg/ml of lactic acid as a modifier). Dried samples were 

reconstituted in LA2 solution (80% acetonitrile/2% TFA + 300 mg/ml of lactic acid as a modifier), 

loaded on TiO2 columns, and slowly passed through twice. The TiO2 columns were washed with the 

following solutions: 40 µl of LA1 solution, 40 µl of 80% acetonitrile/0.2% TFA and 40 µl of water. 

Flow-through fractions were collected and analyzed separately for the determination of protein ratios. 

Phosphorylated peptides bound on the TiO2 were eluted slowly with 60 µl of freshly prepared 0.6% 

ammonium hydroxide and 30 µl of 80% acetonitrile/0.2% TFA. Phosphopeptide enriched eluates were 

immediately acidified with 12 µl of 5% formic acid (FA) and dried in a SpeedVac concentrator. The 
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phosphopeptide samples and the flow-through samples were desalted and purified on C18 STAGE 

columns and resuspended in 5 µl of 0.5% FA for online nanoLC-Orbitrap analysis. 

 

Mass spectrometry analysis 

Desalted Titansphere-eluates (enriched for phosphopeptides) and flow-through fractions (non-

phosphorylated peptides) were analyzed by online C18 reversed-phase nanoscale liquid 

chromatography tandem mass spectrometry on a NanoAcquity UPLC system (Waters) connected to an 

Orbitrap (Thermo Electron) equipped with a nanoelectrospray ion source (Proxeon). The mass 

spectrometer was operated in data-dependent mode for software controlled switching between MS 

survey and MS/MS fragmentation.  

Desalted samples were loaded by the NanoAcquity autosampler directly onto a 13-cm pulled 

fused-silica capillary packed with ReproSil-Pur C18-AQ (Dr. Maisch GmbH) 3-µm reversed-phase 

material at a flow of 350 nl/minute for 30 minutes. This fritless capillary column had an internal 

diameter of 75 µm and a tip opening of 8 µm (NewObjective). Peptides were then separated by a 

stepwise 90-minutes gradient of 0–100% between buffer A (2% ACN, 0.5% formic acid) and buffer B 

(80% ACN, 0.5% formic acid) at a flow rate of 200 nL/minutes. Orbitrap full scan MS spectra (from 

m/z 350-1500) were acquired by the Orbitrap at a resolution of 60,000 and the five most intensive ions 

were fragmented in the linear ion trap using collision-induced dissociation. Fragmented target ions 

selected for MS/MS were dynamically excluded for 60s. The total cycle time was approximately 1.5 s. 

Other Orbitrap parameters were: spray voltage, 2.3 kV; no sheath and auxiliary gas flow; ion transfer 

tube temperature, 170 °C; normalized collision energy using wide band activation mode and 

multistage activation mode, on; collision energy for MS2, 35%; MS2 selection threshold, 250 counts; 

activation q, 0.25; activation time, 30 ms. 

 

Data analysis 

MaxQuant (version 1.0.12.5) was used for identification and quantitation of phosphopeptides. A 

peptide false discovery rate (FDR) specification of 0.01 was used, whereas the precursor mass 

tolerance was set to 7 ppm, and refined during MaxQuant processing as described(Cox & Mann, 

2008). To account for differences in protein levels, all determined phosphopeptide ratios were 

normalized by the measured ratios of the corresponding proteins. For the determination of protein 

levels, at least two unmodified peptides were required. Otherwise, MaxQuant default parameters were 

used. Data were searched against IPI_human (version 3.48) using MASCOT (version 2.204). Results 

were filtered using Mascot Score ≥ 12 and phosphorylation site localization probabilities ≥ 75% as 

criteria.  
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Gene Target sequence Internal oligo# 

hSas-6 5’-CTAGATGATGCTACTAAGCAA-3’ 295 

Plk4 5’-CTGGTAGTACTAGTTCACCTA-3’ 302 

Plk4 3’UTR 5’-NNCTCCTTTCAGACATATAAG-3’ 141/142 

βTrCP1/2* 5’-AAGTGGAATTTGTGGAACATC-3’ 488 

 

*Guardavaccaro et al. (2003) 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Name 
Dept 

number 
Purpose sequence (5' > 3') 

oJW2 3920 CTTGGTAAAGGAGCATTTGCTGGTGTCTACAGAGC 

oJW3 3921 
mutagenesis S22A 

GCTCTGTAGACACCAGCAAATGCTCCTTTACCAAG 

oJW4 3922 CTTGGTAAAGGAGACTTTGCTGGTGTCTACAGAGC 

oJW5 3923 
mutagenesis S22D 

GCTCTGTAGACACCAGCAAAGTCTCCTTTACCAAG 

oJW6 3924 GAACGATGTCACGCAGCAGAAATGCTTTCAGTGTCC 

oJW7 3925 
mutagenesis S401A 

GGACACTGAAAGCATTTCTGCTGCGTGACATCGTTC 

oJW8 3926 GAACGATGTCACGACGCAGAAATGCTTTCAGTGTCC 

oJW9 3927 
mutagenesis S401D 

GGACACTGAAAGCATTTCTGCGTCGTGACATCGTTC 

oJW10 3928 TTAAGAAGCATTACAGCTCCGTTGGTTGCTCACAGG 

Number Antigen Made in Dilution Comment Distributor/reference 

738 human Cep135 rabbit 1:2000 a.p. 
Kleylein-Sohn et al., 

2007 

689 human Plk4 rabbit 1:500 a.p. 
this work; Kleylein-

Sohn et al., 2007 

DM1A α-tubulin mouse  1:5000 a.p. Sigma 

36-298-4 human Plk1 mouse 1:3 
hybridoma 

supernatant 
(Yamaguchi et al., 2005) 

9E10 myc tag mouse  1:6 
hybridoma 

supernatant 
(Evan et al., 1985) 

M2 FLAG tag mouse 1:1000 a.p.  Sigma 

HE-12 
human  

cyclin-E 
mouse undiluted 

hybridoma 

supernatant 

Kindly provided by  

J. Bartek (Danish 

Cancer Society, 

Copenhagen 

V152 
human  

cyclin-B1 
mouse 1:1000 a.p. Millipore 

766.2 human CP110 rabbit 1:1000 a.p. Schmidt et al. (2009) 

4G10 phophotyrosine mouse 1:1000 a.p. Sigma 

Table 1: siRNA duplexes used in this study. 

Table 2: Antibodies used in this study. a.p., affinity-purified. 

Table 3: Primers used for mutagenesis of Plk4. 
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oJW11 3929  CCTGTGAGCAACCAACGGAGCTGTAATGCTTCTTAA 

oJW12 3930 TTAAGAAGCATTACAGATCCGTTGGTTGCTCACAGG 

oJW13 3931 
mutagenesis S592D 

CCTGTGAGCAACCAACGGATCTGTAATGCTTCTTAA 

oJW14 3932 GATAGACCACCCGCACCTACTGACAACATC 

oJW15 3933 
mutagenesis S665A 

GATGTTGTCAGTAGGTGCGGGTGGTCTATC 

oJW16 3934 GATAGACCACCCGACCCTACTGACAACATC 

oJW17 3935 
mutagenesis S665D 

GATGTTGTCAGTAGGGTCGGGTGGTCTATC 

oJW18 3936 CCTAAGGCCTTAGCACCTCCTCCTTCTGTGG 

oJW19 3937 
mutagenesis S817A 

CCACAGAAGGAGGAGGTGCTAAGGCCTTAGG 

oJW20 3938 CCTAAGGCCTTAGACCCTCCTCCTTCTGTGG 

oJW21 3939 
mutagenesis S817D 

CCACAGAAGGAGGAGGGTCTAAGGCCTTAGG 

oJW26 5181 GAATATGACAGCATCGCCCCAAACCGGGACTTCCAGGG 

oJW27 5182 
muatgenesis S499A 

CCCTGGAAGTCCCGGTTTGGGGCGATGCTGTCATATTC 

oJW28 5183 GAATATGACAGCATCGACCCAAACCGGGACTTCCAGGG 

oJW29 5184 
muatgenesis S499D 

CCCTGGAAGTCCCGGTTTGGGTCGATGCTGTCATATTC 

oJW30 4353 CTTGGTAAAGGAGAATTTGCTGGTGTCTACAGAGC 

oJW31 4354 
mutagenesis S22E 

GCTCTGTAGACACCAGCAAATTCTCCTTTACCAAG 

oJW37 4809 TGTGGAACTCCTAACGAAATTTCACCAGAAATTGCC 

oJW38 4810 
mutagenesis Y177E 

GGCAATTTCTGGTGAAATTTCGTTAGGAGTTCCACA 

oJW39 4811 TGTGGAACTCCTAACTTCATTTCACCAGAAATTGCC 

oJW40 4812 
mutagenesis Y177F 

GGCAATTTCTGGTGAAATGAAGTTAGGAGTTCCACA 

oJW41 4813 CTACACCGGGACCTCGCACTTTCTAACCTCCTACTG 

oJW42 4814 
mutagenesis T138A 

CAGTAGGAGGTTAGAAAGTGCGAGGTCCCGGTGTAG 

oJW43 4815 CTACACCGGGACCTCGATCTTTCTAACCTCCTACTG 

oJW44 4816 
mutagenesis T138D 

CAGTAGGAGGTTAGAAAGATCGAGGTCCCGGTGTAG 

oJW45 4845 CATGAAAAGCACTATGTATTATGTGGAACTCC 

oJW46 4846 
mutagenesis T170V 

GGAGTTCCACATAATACATAGTGCTTTTCATG 

oJW64 6025 GAAGACTCAATTGATGCTGGGCATGCCGCAATTTCTACTGC 

oJW65 6026 

mutagenesis  

S285A / T289A GCAGTAGAAATTGCGGCATGCCCAGCATCAATTGAGTCTTC 

oJW66 6027 GAAGACTCAATTGATGACGGGCATGCCGACATTTCTACTGC 

oJW67 6028 

mutagenesis 

S285D / T289D GCAGTAGAAATGTCGGCATGCCCGTCATCAATTGAGTCTTC 

oJW79 6084 TTAGGAACTGTGGAAGACGCAATTGATAGTGGGCATGCC 

oJW80 6085 
mutagenesis S282A 

GGCATGCCCACTATCAATTGCGTCTTCCACAGTTCCTAA 

oJW81 6086 TTAGGAACTGTGGAAGACGACATTGATAGTGGGCATGCC 

oJW82 6087 
mutagenesis S282D 

GGCATGCCCACTATCAATGTCGTCTTCCACAGTTCCTAA 

oJW91 6133 ACAAAAAGTAAAGATTTACGAACTGTGGAAGACTCAATTG 

oJW92 6134 
mutagenesis G277R 

CAATTGAGTCTTCCACAGTTCGTAAATCTTTACTTTTTGT 

oJW93 6135 GCCACAATTTCTACTGCAAAGACAGCTTCTTCCAGTACC 

oJW94 6136 
mutagenesis I294K 

GGTACTGGAAGAAGCTGTCTTTGCAGTAGAAATTGTGGC 

oHR41 1575 CATGAAAAGCACTATGACTTATGTGGAACTCC 

oHR44 1583 
mutagenesis T170D 

GGAGTTCCACATAAGTCATAGTGCTTTTCATG 
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Name Insert Vector 

pJW 3 N-myc-Plk4 FL D154A  pcDNA3.1-3xmyc-TO 

pJW 4 N-myc-Plk4 WT FL pcDNA3.1-3xmyc-TO 

pJW 14 N-myc-Plk4 WT aa1-608 pcDNA3.1-3xmyc-TO 

pJW 18 N-FLAG-Plk4 WT aa1-608  pcDNA3.1-NFLAG-TO 

pJW34b N-GST-Plk4 aa1-265  S22A pGEX-5X-2 

pJW 35 N-GST-Plk4 aa1-265  S22D pGEX-5X-2 

pJW 38 N-myc-Plk4 FL S22A pcDNA3.1-3xmyc-TO 

pJW 39 N-myc-Plk4 FL S22D pcDNA3.1-3xmyc-TO 

pJW 40 N-myc-Plk4 FL S401A pcDNA3.1-3xmyc-TO 

pJW 41 N-myc-Plk4 FL S401D pcDNA3.1-3xmyc-TO 

pJW 42 N-myc-Plk4 FL S592A pcDNA3.1-3xmyc-TO 

pJW 43 N-myc-Plk4 FL S592D pcDNA3.1-3xmyc-TO 

pJW 44 N-myc-Plk4 FL S665A pcDNA3.1-3xmyc-TO 

pJW 45 N-myc-Plk4 FL S665D pcDNA3.1-3xmyc-TO 

pJW 46 N-myc-Plk4 FL S817A pcDNA3.1-3xmyc-TO 

pJW 47 N-myc-Plk4 FL S817D pcDNA3.1-3xmyc-TO 

pJW 48 N-FLAG-Plk4 FL S22A pcDNA3.1-NFLAG-TO 

pJW 49 N-FLAG-Plk4 FL S22D pcDNA3.1-NFLAG-TO 

pJW 50 N-FLAG-Plk4 FL S401A pcDNA3.1-NFLAG-TO 

pJW 51 N-FLAG-Plk4 FL S401D pcDNA3.1-NFLAG-TO 

pJW 52 N-FLAG-Plk4 FL S592A pcDNA3.1-NFLAG-TO 

pJW 53 N-FLAG-Plk4 FL S592D pcDNA3.1-NFLAG-TO 

pJW 54 N-FLAG-Plk4 FL S665A pcDNA3.1-NFLAG-TO 

pJW 55 N-FLAG-Plk4 FL S665D pcDNA3.1-NFLAG-TO 

pJW 56 N-FLAG-Plk4 FL S817A pcDNA3.1-NFLAG-TO 

pJW 57 N-FLAG-Plk4 FL S817D pcDNA3.1-NFLAG-TO 

pJW 58 N-FLAG Plk4 WT aa1-889  pcDNA3.1-NFLAG-TO 

pJW66 N-myc-Plk4 WT aa1-750  pcDNA3.1-3xmyc-TO 

pJW67 N-myc-Plk4 WT aa1-778  pcDNA3.1-3xmyc-TO 

pJW70 N-myc-Plk4 WT aa609-970 pcDNA3.1-3xmyc-TO 

pJW73 N-FLAG-Plk4 WT aa1-750  pcDNA3.1-NFLAG-TO 

pJW74 N- FLAG-Plk4 WT aa1-778  pcDNA3.1-NFLAG-TO 

pJW77 N- FLAG-Plk4 WT aa609-970  pcDNA3.1-NFLAG-TO 

pJW83 N-myc-Plk4 FL S499A  pcDNA3.1-3xmyc-TO 

pJW84 N-FLAG-Plk4 FL S499A  pcDNA3.1-NFLAG-TO 

pJW85 N-myc-Plk4 FL S499D  pcDNA3.1-3xmyc-TO 

pJW86 N-FLAG-Plk4 FL S499D pcDNA3.1-NFLAG-TO 

pJW87 N-myc-Plk4 FL S22E  pcDNA3.1-3xmyc-TO 

pJW88 N-FLAG-Plk4 FL S22E  pcDNA3.1-NFLAG-TO 

pJW94 N-GST-Plk4 aa1-430  WT pGEX-5X-2 

pJW95 N-GST-Plk4 aa1-430  D154A pGEX-5X-2 

Table 4: Plasmids relevant to this study. 
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pJW98 N-GST-Plk4 aa1-608  WT pGEX-5X-2 

pJW100 N-GST-Plk4 aa1-608  D154A pGEX-5X-2 

pJW101 N-GST-Plk4 aa609-970 pGEX-5X-2 

pJW108 N-GST-Plk4 aa1-889  WT pGEX-5X-2 

pJW109b N-GST-Plk4 aa1-889  D154A pGEX-5X-2 

pJW111 N-GST-Plk4 aa1-265  T170V pGEX-5X-2 

pJW112 N-GST-Plk4 aa1-265  T170D pGEX-5X-2 

pJW113 N-GST-Plk4 aa1-265  Y177F pGEX-5X-2 

pJW114 N-GST-Plk4 aa1-265  Y177E pGEX-5X-2 

pJW115 N-GST-Plk4 aa1-265  T138A pGEX-5X-2 

pJW116 N-GST-Plk4 aa1-265  T138D pGEX-5X-2 

pJW167 N-myc-Plk4 D154A aa1-750  pcDNA3.1-3xmyc-TO 

pJW168 N-myc-Plk4 D154A aa1-778 pcDNA3.1-3xmyc-TO 

pJW169 N-FLAG-Plk4 D154A aa1-750  pcDNA3.1-NFLAG-TO 

pJW170 N-FLAG-Plk4 D154A aa1-778  pcDNA3.1-NFLAG-TO 

pJW185 N-myc-Plk4 FL S285A/T289A pcDNA3.1-3xmyc-TO 

pJW186 N-myc-Plk4 FL S285D/T289D pcDNA3.1-3xmyc-TO 

pJW187 N-FLAG-Plk4 FL S285A/T289A pcDNA3.1-NFLAG-TO 

pJW188 N-FLAG-Plk4 FL S285D/T289D pcDNA3.1-NFLAG-TO 

pJW189 N-myc-Plk4 D154A aa1-608 pcDNA3.1-3xmyc-TO 

pJW190 N-myc-Plk4 D154A aa1-889 pcDNA3.1-3xmyc-TO 

pJW191 N-FLAG-Plk4 D154A aa1-608 pcDNA3.1-NFLAG-TO 

pJW192 N-FLAG-Plk4 D154A aa1-889 pcDNA3.1-NFLAG-TO 
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7. Abbreviations 

All units are abbreviated according to the International Unit System. 

aa: amino acid(s) 

ATP: adenosine 5´-triphosphate 

βTrCP: β-transducin repeat containing protein  

BSA: bovine serum albumin 

Cep: centrosomal protein 

CHX: Cycloheximide 

DAPI: 4´,6-diamidino-2-phenylindole 

DTT: dithiothreitol 

ECL: enhanced chemiluminescence 

EDTA: ethylenedinitrilotetraacetic acid 

EGFP: enhanced green fluorescent protein 

EM: electron microscopy 

FCS: Fetal calf serum 

GFP: green fluorescent protein 

HCl: hydrochloric acid 

HEPES: N-2-Hydroxyethylpiperazine-N`-2-ethane sulfonic acid 

IgG: Immunoglobulin G 

IF: Immunofluorescence 

IP: Immunoprecipitation 

IPTG: isopropyl-beta-D-thiogalactopyranoside 

mAb: monoclonal antibody 

MS: mass spectrometry 

MT: microtubule 

MTOC: microtubule organising centre 

pAb: polyclonal antibody 

PCM: pericentriolar material 

PBS: Phosphate-buffered saline 

PCR: Polymerase chain reaction 

Plk4: Polo-like kinase 4 

PMSF: phenylmethylsulfonyl fluoride 

pY: phosphotyrosine 

RNA: Ribonucleic Acid 

RT: room temperature; reverse transcription 

SAK: Snk/Fnk akin kinase 

SDS-PAGE: Sodium dodecylsulfate polyacrylamid gelelectrophoresis 

SILAC: Stable isotope labelling of amino acids in cell culture  

siRNA: small interference Ribonucleic Acid 

SPB: Spindle Pole Body 

UTR: untranslated region (of mRNA) 

WB: western blot 

WT: wild-type 
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