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Summary 

 

 

This thesis entails the results of three research projects. These have focused on 

the influence of diversity, demography and structure in the divergence (i.e. the 

speciation process) of four wild tomato species.  

 

In the first project, using coalescent simulations, we studied the impact of three 

different sampling schemes on patterns of neutral diversity in structured 

populations. Specifically, we evaluated two summary statistics based on the site 

frequency spectrum (Tajima’s D and Fu and Li’s D) as a function of migration 

rate, demographic history of the entire metapopulation and the sampling 

scheme. Using simulations, we demonstrate strong effects of the sampling 

scheme on Tajima’s D and Fu and Li’s D statistics, particularly under species-

wide expansions. Under such scenarios, the effects of spatial sampling may 

persist up to very high levels of gene flow (Nm > 25). This suggests that 

validating the assumption of panmixia is crucial if robust demographic 

inferences are to be made from local or pooled samples.  

 

For the second project, we investigated how selection acts in four species of 

wild tomatoes (S. habrochaites, S. arcanum, S. peruvianum, and S. chilense) 

using sequence data from eight housekeeping genes. Our analysis quantified 

the number of adaptive and deleterious mutations, and the distribution of fitness 

effects of new mutations (its mean and variance) taking into account the 

demography of the species. We found no evidence for adaptive mutations but 

very strong purifying selection in coding regions of the four species. More 

interestingly, the four species exhibit different strength of purifying selection in 

non-coding regions (introns). Taking into account the results from the first 

project, we also highlighted the utility of analyzing pooled samples and local 

samples from a metapopulation in order to measure selection and the 

distribution of fitness effects. 

 

Finally, the third project deals with the estimation of nucleotide diversity and 

population structure in S. habrochaites and S. arcanum. We also compared 
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these results to those of S. peruvianum and S. chilense. We found that S. 

arcanum and S. habrochaites present lower diversity levels than S. peruvianum 

and S. chilense. Our neutrality tests have not revealed any particular pattern, 

leading us to conclude that the loci sequenced for the present study have not 

evolved under strong positive selection, although they show a distinctive pattern 

of purifying selection (second project). We also tested the demography of all 

four species and found a strong expansion after a bottleneck in the recent past 

for S. peruvianum and a similar statistically significant pattern for S. arcanum, 

even though the signal seemed weaker in this case. Additionally, we found 

moderate levels of population sub-structure in these species, similar to previous 

results found in S. peruvianum and S. chilense. Still, regardless of the levels of 

population structure, we found at least two (Rupe and San Juan from S. 

arcanum) populations collected in the field that could actually be considered as 

a single deme. We also expanded these population structure analyses to gain 

insight into the phylogenetic relations between the four species in order to 

contribute to the taxonomical treatment of the Solanum section Lycopersicon 

from a population genetics perspective. Thus, we found a clear differentiation 

between S. arcanum and S. peruvianum based on all polymorphic sites.  
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Introduction 

 

 

Divergence population genetics (DPG) is concerned with how speciation events 

occur. To draw conclusions on the history of populations and species, DPG 

uses molecular data through a population genetics approach (Avise 1989). The 

idea that species might evolve, i.e. that current species have arisen from 

previous ones, was already under discussion at the time Darwin published his 

evolutionary theory (Darwin 1859). However, he was the first to offer a 

mechanism for this to take place. According to Darwin’s theory, individuals more 

suited to the environment are more likely to survive and more likely to 

reproduce. This slow process results in populations that adapt to the 

environment over time, and ultimately form new species. The underlying genetic 

basis for the adaptive trait does not arise because of the environment; the 

genetic variant pre-exists in the population and becomes subsequently selected 

because it provides the bearer of that variant a fitness advantage.  

 

In this thesis, we focus specifically on a group of phylogenetically closely related 

species (Figure 1) of the wild tomato species complex and apply the DPG 

approach. Wild tomatoes inhabit a vast range of climatic (e.g. 50mm to over 4m 

annual precipitation), biogeographical and environmental habitats. They are 

natural to North-west South America ranging from Ecuador to Chile along the 

western Andes. Additionally, one species is endemic to the Galapagos Islands. 

They are indeed found in temperate deserts as well as wet tropical rainforests, 

and each species seems to have a particular geographical distribution within 

this environmental diversity (Rick 1973; Rick et al. 1978; Rick et al. 1979; Taylor 

1986; Peralta & Spooner 2001). Classical common-garden studies document 

the presence and magnitude of a variety of morphological and physiological 

differences within and between species (reviewed in Taylor 1986). Considering 

the geographical and geological structure (e.g. sea-level to 3000m elevation) 

characteristic of their natural range due to a dynamic recent geological history 

(Young et al. 2002) and the unique environment of islands, it is sound to say 

abiotic ecological conditions play a critical role in these species’ phenotypic 

evolution and speciation. Many researchers have indeed identified traits that are 
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putative adaptive responses to species’ habitats in wild tomatoes (e.g., Rick 

1973; Rick et al. 1976; Patterson et al. 1978; Rick et al. 1978; Vallejos 1979; 

Bloom et al. 2001; Nakazato et al. 2008). 

 

In the following sections of this introduction, I will give a brief overview of the 

theoretical framework underlying the present study (i.e. Coalescence Theory). 

Then I will introduce some concepts related to how new species originate (i.e. 

Speciation). Afterwards, the effects of Spatial Structure on Populations will be 

described. Finally, the system we are using (i.e. Wild Tomatoes) will be 

introduced and the Scope of this Thesis will be presented. 

 

1. Coalescence Theory 

 

Polymorphisms in DNA occur due to mutation. All copies of a specific DNA site 

in a species are related to each other and descend from a common ancestor. 

This process can be visualized through a genealogical tree. Polymorphism at 

such site is due to mutations occurring on the branches of the genealogical tree 

and the frequency of each sequence variant (allele) is equal to the proportion of 

branches that inherits the allele. Therefore, the history of the descent of 

lineages (i.e. the process that gave rise to the tree) as well as the mutational 

history are reflected in the pattern of polymorphism. For example, if we would 

sequence a DNA region from a number of randomly chosen individuals and find 

no polymorphism, we could conclude the region is under purifying selection. 

Another option would be to consider that the individuals are unusually closely 

related. To make a decision we could make assumptions about the process that 

gave rise to the data (see more about this example below). 

 

1.1. Why use the Coalescent? 

One can use a phylogenetic method to determine the pattern of descent 

between the different species, i.e. the process of species evolution also known 

as speciation (Mayr 1942), which is a tree-like process. Since DNA sequence 

evolution recapitulates the evolution at the phenotypic level, nowadays it is only 

needed to analyze DNA sequence to draw conclusions about the evolution of 

species. Only a single DNA sequence from each species would be needed to 
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build a gene tree, since typically the gene tree is assumed to represent the 

species tree.  

 

However, this approach is incomplete in studying recent speciation events, 

since the diversity within species is ignored. For example, the same approach 

cannot answer questions about the demographic scenarios under which 

species have evolved. In such case, we might find ourselves dealing with 

migration between populations or with a population history that is not tree-like. 

Furthermore, using different genes might produce different trees (Rosenberg & 

Nordborg 2002). Researchers have thus to consider a different strategy to infer 

the genealogy of populations from estimated trees. The tree then becomes of 

no interest itself, but a way to estimate the parameters of the random 

genealogical process that has given rise to each possible sampled sequence. 

Therefore, in order to look into the demographic history of a species 

researchers use a genealogical approach also called the “Coalescent 

approach”, rather than a phylogenetic one.  

 

Going back to the example at the beginning of this section, using the coalescent 

we could simulate many random repetitions of the evolutionary process. If the 

fraction of the random genealogical and mutational histories that could give rise 

to the observed data is small, we could conclude that our assumptions cannot 

explain the pattern. Hence, the interpretation of data depends on the genealogy 

of the sequences, which is unknown. Because of this, we treat the genealogy as 

random as well as we do mutation. Just as mutations occur differently across 

runs of evolution (Luria & Delbrück 1943), if evolution were repeated, samples 

from different ‘runs’ of evolution would have different genealogical trees. 
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Figure 1 Map of West South America showing the distribution of four wild tomato species: S. 
habrochaites (purple), S. arcanum (yellow), S. peruvianum sensu stricto (light salmon) and S. 
chilense (light blue). Note the overlap in distribution. 
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1.2. The Standard Neutral Model 

To be able to answer such questions using a genealogical approach, a simple 

population model has been first proposed. Two authors (Wright 1931; Fisher 

1930) independently described what has come to be the standard simple 

population model. The Wright-Fisher model (hereafter WF model or standard 

neutral model) assumes a single population of constant size that has persisted 

for a very long time (for mathematical purposes, an infinite amount of time). 

Additionally, the model also assumes that individuals are mating randomly 

within the population (panmixia). Other two conditions of the model are non-

overlapping generations (i.e. individuals die after reproducing) and a random 

number of offspring (which follows a Poisson distribution). Under these 

circumstances, the population is well represented by its effective population size 

(Ne). The effective population size (Wright 1938) is defined as the size of an 

ideal population (such as that described by the WF model), that undergoes the 

same amount of genetic drift as the real population under consideration.  

 

1.3. Deviations from Neutrality 

Real observed populations from which we sample DNA of various individuals, 

almost never meet the conditions of the Wright-Fisher model. The evolutionary 

forces shaping the observed genetic diversity are of course natural selection 

acting on a population, but also demography, i.e. random population size 

changes. However, one can distinguish these forces based on genome wide 

polymorphism data. In fact, demographic factors act independently from natural 

selection and can shape the genetic variation across the entire genome by 

affecting the effective population size of the population or species. Such 

processes are presumed to increase of decrease nucleotidic diversity in all loci 

at the same rate. Some generic examples of demographic factors include 

events that randomly change population sizes and species localities such as 

bottlenecks, habitat fragmentation and range expansion. These changes lead to 

random loss or gain in the spatial distribution of taxa, resulting in increasing or 

decreasing numbers of individuals in the population. Natural selection on the 

other hand, acts either by eliminating deleterious alleles, fixating advantageous 

ones or maintaining polymorphisms when each allele is advantageous under 



 - 8 - 

different conditions. This, of course, takes place throughout many generations 

in which individuals with better-adapted alleles have higher fitness. Therefore, 

natural selection acts on each gene individually, instead of acting on the whole 

genome. 

 

1.4. Defining the Coalescent 

Thus, the coalescent is a genealogical approach, which comes as a natural 

extension of the classic population-genetics theory and models such as that 

discussed above (Nordborg 2001). It was discovered independently by several 

authors (Malecot 1973; Malecot 1975; among others) in the 1970’s although the 

definite treatment came from (Kingman 1982). In the coalescent, sampled 

lineages, randomly “pick” their parents in the previous generation. Every time 

two lineages pick the same parent, they are said to coalesce. This is assumed 

to happen in the simplest case in the absence of selection, and eventually all 

sampled lineages coalesce into one single lineage called the most recent 

common ancestor (MRCA) of the sample. The time it takes for all sampled 

lineages to coalesce depends on the size of the population (the bigger the size 

of the population, the longer it takes). This means the coalescent can handle 

different demographic scenarios. For example, the coalescence can be 

modeled to fit a range expansion with subsequent subdivision, in which the time 

to the MRCA would be longer than if the population had recently undergone a 

bottleneck.  

 

1.5. The Frequency Spectrum 

As it is computationally difficult to keep full track of entire sequences, data are 

usually summarized by essential information derived from the simulated 

coalescent tree. Commonly used statistics include Tajima’s D, the population 

mutational parameter (θ), the effective population size (Ne), the frequency of 

each polymorphic site in the sample, among others. The distribution of the 

frequencies of all polymorphic sites in a sample is thus described as the number 

of singletons, doubletons, etc., in a sample. This distribution is formally called 

the Site Frequency Distribution or Frequency Spectrum (FS) when applied to a 

single population or species and, the Joint Frequency Spectrum (JFS) when 

applied to two species or populations (Figure 2), taking into account the 
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frequency of each allele in each population. The shape of such distribution 

provides qualitative information on the processes involved in the history of the 

sample by comparing to the expected FS under the classic WF model (Hey & 

Machado 2003; Braverman et al. 1995; Fu & Li 1993). Demographic processes 

affect the FS. For example, past population growth (e.g. range expansions) 

results in an excess of low-frequency alleles when compared with neutral 

expectations (Nei et al. 1975). Tajima (1989) confirmed this conclusion and 

examined other effects of such demographic processes on the FS.  

 

1.6. The Effect of Recombination 

Besides mutation, another factor to take into account in the coalescent is 

recombination. Recombination allows two physically linked genes to exchange 

the alleles to which they are connected. This in turn allows linked sites to have 

different genealogical trees. Thus, a sample of recombining sequences can be 

seen as a “walk through tree space” (Wiuf & Hein 1999). As one “walks” from 

one end to the other of a sequence, one finds himself in different trees. The 

trees, however, only change gradually. This happens because each 

recombination event only affects a subset of the branches of the tree, changing 

only the topology of this section of the tree. Recombination, thus, has profound 

effects on the coalescent (Figure 3), in that the coalescent with recombination 

does not generate a random tree, but rather a random graph (Nordborg & 

Tavare 2002; Hudson 1983; Griffiths & Marjoram 1996). This complication is, 

however, readily incorporated into the model. The extent to which the histories 

of different sites are correlated depends on the recombinational distance 

between them, which is a function of the frequency with which recombination 

occurs between the two of them. The further away two loci are located, the 

highest the recombinational rate between them. As recombination approaches 

infinity, the genealogies of such loci are conditionally independent, given the 

historical demography of the group under consideration. This is particularly 

important in outbreeding plant species, where reduced recombination rates are 

not observed along the whole genome but only in certain regions, such as 

around centromeres.  
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Apart from mutation and recombination, many other factors can be included in 

the model (Nordborg 2001). Some phenomena, such as variation in 

reproductive success, age structure, seed banks (Kaj et al. 2001) and skewed 

sex ratios, change only the rate of coalescence (Rosenberg & Nordborg 2002). 

Other factors such as population structure or fluctuation in population size, 

however, also change the shape of genealogical trees. The only factor that 

causes real, although not insurmountable (Kaplan et al. 1988; Neuhauser & 

Krone 1997; Slatkin 2001), difficulties is selection. By definition, under selection, 

some genotypes reproduce more than others, which means that, going back 

through time, lineages do not randomly pick parents. In the current study, we do 

not use coalescence methods with selection. 

 

1.7. The Coalescent and Summary Statistics 

Summary statistics are the result of functions applied to a data set, which 

represents much of the information in the data. For a set of DNA sequences, 

one commonly used summary statistic is S, which represents the number of 

variable sites in the sample. Summary statistic methods make no use of the 

genealogy that underlies a data set. They begin, not with an evolutionary tree, 

but by summarizing some aspect of the data. However, the coalescent can be 

used to calculate summary statistics. The advantage of this is that summary 

statistics are often easier to use to fit models to data than would be the case 

with the data itself. For example, the difference between the average number of 

pairwise differences in a DNA sequence sample and the total number of 

observed mutations that is predicted by the basic coalescent model is just in the 

neutrality test based on Tajima's D statistic (Tajima 1989). Thus, the coalescent 

can be used to design statistical tests of models of evolution. It is often possible 

to show mathematically how departures from the standard model, such as those 

caused by population structure or selection (Nordborg 2001), affect the test 

statistic, which makes it possible to interpret the observed deviation.  

 



 - 11 - 

 
Figure 2 Hypothetical Joint Frequency Spectrum. The X-axis represents the relative frequency 
of any given allele in population 1. The Y-axis represents the relative frequency of the same 
allele in population 2. The intensity of the square represents the number of alleles at a given 
frequency in populations 1 and 2.  

 
Figure 3 Ancestral recombination graph. Recombination events are represented by closed 
circles. The topology of the tree is thus affected by presenting less external branches than 
expected without recombination. Adapted from Griffiths & Marjoram (1996). 
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1.8. The Coalescent and Likelihood 

In most cases, to calculate model parameters, researchers use coalescent 

simulations going backwards into time from the present (when the sample is 

collected). Therefore, it is as a simulation tool that the coalescent is most widely 

used (Hudson 1990; Nordborg 2001). Additionally, samples that are simulated 

under various models can be combined with data to test hypotheses. The 

canonical approach to do this, developed mainly by Hudson and colleagues 

(Hudson 1990; Kreitman 2000; Nielsen 2001), can be described as follows. If a 

pattern of polymorphism in a data set is found, one might want to know whether, 

for example, it is the result of a neutral process or if it is the result of selection. 

To do this one could simulate several possible datasets under the same null 

model (which in this case should not include selection) and calculate summary 

statistics from them. One can then compare the distribution that is obtained 

from the simulated data, to the values that are obtained from one’s sample. If 

one’s sample values are very rarely seen in our simulations, the null model can 

be rejected. If the null hypothesis (such as neutral evolution) is rejected, one 

can propose an alternative hypothesis to explain the observed pattern, such as 

selection or a more complex demographic history of the populations. 

 

A well-known example of using coalescent simulations to test a hypothesis is 

provided by Takahata et al. (2001). The hypothesis tested in their study was the 

multiregional model of the origin of humans (Mountain & Cavalli-Sforza 1994). 

The approach they used was to simulate data to be compared with data from 

ten human loci. Their model included migration between three subpopulations 

— African, European and Asian — followed by their divergence. They simulated 

many genealogies and for each, they determined the position of the MRCA. In 

the empirical data, nine out of ten loci had an African ancestor (and the tenth 

locus had only a single polymorphic site). This pattern was found to be highly 

unlikely under the investigated multiregional model, unless the African 

population size was much larger than the Asian and the European. Therefore, 

they rejected the multiregional model and favored an out-of-Africa origin for 

humans. 
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Coalescent simulations can also be useful in study design, for example, to 

determine the number of loci, or the sampling scheme that need to be used for 

testing a given hypothesis. Additionally, simulated samples help to evaluate the 

performance of new statistical tests (Wakeley 1996). This is especially true 

when methods are developed before the appropriate data to which they can be 

applied are available. In this case, coalescent simulations conveniently provide 

data sets on which new methods and their statistical power can be tested. This 

approach can be valuable whether or not the proposed tests are based on 

coalescent theory (Pritchard et al. 2000). Finally, one of the most remarkable 

aspects of the coalescent is that it allows full likelihood analysis of evolutionary 

models (Stephens et al. 2001). In theory, all one needs to do is evaluate the 

likelihood equation (Felsenstein, 1988) for our data and for our favorite models: 

( | , ) ( , )
G

L P D G µ P G α=∑  

where L is the likelihood (the probability of the data given the parameters), D is 

the data (typically DNA sequences), µ is the collection of parameters in the 

mutation model and α is the collection of parameters (such as population sizes 

and migration rates) for the population process. The tree or genealogy, G, is a 

so-called nuisance parameter, which we remove by averaging the likelihood 

over all possible values (Hey & Nielsen 2007). In the event that features of G (or 

G itself) are of interest, it is more natural to treat them as random variables than 

as parameters to be estimated (Donelly and Tavare, 1995).  

 

Unfortunately, this is not easy in practice, because summing over all possible 

genealogies turns out to be exceedingly difficult. A promising alternative is to 

use approximate methods based on summary statistics (Tavare et al. 1997; 

Weiss & von Haeseler 1998; Pritchard et al. 1999; (Wall 2000). Instead of 

numerically evaluating the equation above, the full data set is replaced by a set 

of summary statistics. Data are then simulated using various parameter values, 

and each simulation is accepted or rejected according to how good the 

summary statistics of the simulated data are compared to the real data. For a 

given set of parameter values, the likelihood is then approximated by the 

proportion of simulations that are accepted. This summary-statistic approach 

has great potential for the inference of parameters under models for which 

complete evaluation of the equation is intractable. Important for its success is 
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the extent to which values of summary statistics capture the information in full 

data sets. Careful choices of such statistics will be needed for likelihood 

computations in complex models. Typically, the use of such summary statistics 

is at the heart of the ABC (Approximate Bayesian Computation) methods. 

 

1.9. The Coalescent in our Study 

In the present study, we are first interested in the neutral process of evolution 

and how they shape the diversity observed. The second part of the thesis will 

deal with the speciation process between the various species of the wild tomato 

clade. As a starting point, the isolation model (Wakeley & Hey 1997) will be 

used to estimate historical population parameters. Using the observed 

polymorphism, four population parameters will be estimated: θ for S. arcanum, θ 

for S. habrochaites, θ for the ancestral population, and the scaled speciation 

time τ (see e.g., (Stadler et al. 2008). To analyze this model we will use 

coalescent simulations (Hudson 1990). Thus, we will be able to see what the 

model can tell us about speciation of the species studied. We will also be able 

to assess the utility of the model in explaining the observed patterns of 

polymorphism.  

 

Given the fact that previous studies in our group (Arunyawat et al. 2007; Stadler 

et al. 2008) have provided us with sequence data for other two wild tomato 

species, we will analyze four species (i.e. S. peruvianum, S. chilense, S. 

arcanum and S. habrochaites). Thanks to this, many pairwise comparisons can 

be done. These will be carried out using the original isolation model. Thus, we 

will be able to evaluate several speciation scenarios by comparing different 

pairs of species (e.g. sympatric vs. allopatric). Additionally, we will be able to 

test the hypothesis of speciation between S. arcanum and S. peruvianum which 

used to be regarded as a single species taxon (see below). The large amount of 

data made available by this project and U. Arunyawat’s doctoral thesis 

combined with the statistical tools developed in our department, will allow us to 

get a better idea of the population genetics of wild tomatoes.  
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2. Speciation 

 

2.1. The Concept of Species 

Before discussing the speciation process, we shall define the concept of 

species. Even though it was Darwin who advanced the concept of the evolution 

of species (intrinsically related to that of speciation), the concept of species was 

already being debated. In his seminal work, Darwin (1859) himself wrote about 

the difficulties associated with the definition of species. It took almost a century 

until Mayr (1942) introduced a new use of the concept when it came to defining 

a species. Instead of focusing on trying to find a definition of the concept of 

species that could satisfy all researchers and be used in all cases, Mayr 

elevated several different approaches to species identification to the level of 

concept.  

 

While the general concept of species is hard to define, the definition of species 

in plants has its own intricacies (Rieseberg & Willis 2007). Some botanists even 

doubt the existence of plant species because of the evidence for interspecific 

hybrids (Arnold 1997); and the impossibility to readily assort phenotypic 

variation into discrete categories in some plant groups (Mishler & Donoghue 

1982). Moreover, some had claimed that populations are the most inclusive 

reproductive unit instead of species, because gene flow between populations of 

the same species can be very low. Recent works seem to contradict these 

claims. Rieseberg et al. (2006) used morphometric data from more than 200 

plant genera to demonstrate that discrete clusters of morphologically similar 

individuals occur within most sexual plant lineages and that these clusters 

correspond closely to groups with significant post-pollination reproductive 

isolation. Furthermore, the same study concludes that interspecific hybridization 

is not the primary cause of poorly defined species boundaries. Additionally, 

molecular population genetics studies (Morjan & Rieseberg 2004) imply that 

earlier direct estimates of migration rates were too low and that actual migration 

rates do not differ, on average, from those of animals. What is more, both 
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theoretical (Whitlock 2003) and empirical work (McDaniel & Shaw 2005) further 

indicates that even in species with low gene flow, populations may evolve in 

concert through the spread of advantageous alleles.  

 

 

2.2. Reproductive Isolation 

Thus, for the present work, we use the biological species concept (i.e. 

considering a species a set of actually or potentially interbreeding populations 

capable of creating fertile offspring). It is clear from this definition that different 

species cannot freely cross and produce fertile progeny. This is due to the 

existence of multiple reproductive barriers isolating them. Reproductive isolation 

is mediated by two kinds of reproductive barriers: pre-zygotic and post-zygotic. 

Pre-zygotic barriers can be further classified in pre-pollination and post-

pollination. Pre-pollination barriers (called pre-mating barriers in animals) limit 

the transfer of gametes (i.e. pollen) from one species to the other (Kaneshiro 

1980). Some pre-pollination barriers (mechanical, ecogeographic and temporal) 

are also found in animal species, while pollinator isolation is exclusively found in 

plants. As for post-pollination barriers, typical examples include con-specific 

pollen precedence (the advantage of con-specific pollen over non con-specific 

pollen in fertilizing eggs) and gametic incompatibilities (failure of non con-

specific pollen to fertilize eggs). Finally, examples of post-zygotic barriers are 

hybrid inviability, hybrid sterility and hybrid breakdown (sterility or reduction of 

fertility in subsequent generations).  

 

It is of particular importance to estimate the relative contribution of different 

reproductive barriers in limiting gene flow among contemporary populations and 

to determine the order and speed with which they arose. All else being equal, 

pre-zygotic barriers will contribute more to isolation than post-zygotic barriers 

(Ramsey et al. 2003). Among the former, ecogeographic, pollinator and mating 

system isolation are the most important among plants. For example, Rieseberg 

et al. (2006) used artificial crosses to test the contribution of pre- and post-

zygotic barriers to isolation between two species. The production of hybrid 

seeds (overcoming pre-zygotic barriers) and fertility of first generation hybrids 

(overcoming post-zygotic barriers) were measured. However, since the effect of 
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pre-zygotic barriers forcefully precedes the effect of post-zygotic barriers, 

reduced hybrid seed production is found to contribute 75% of the total isolation 

caused by both barriers.  

 

As for the speed and the order in which barriers arise, there is not much known 

yet. Although individual reproductive barriers can arise rapidly, most plant 

species remain separated by numerous barriers. This implies that complete 

speciation typically requires many thousands of generations. The main 

exceptions to this are hybrid and polyploid speciation. Fully isolated polyploid 

species may arise in one or two generations, and diploid or homoploid hybrid 

species may achieve isolation in as few as 60 generations (Ungerer et al. 1998) 

Other genetic studies on post-pollination barriers have focused on self-

incompatibility (SI) mechanisms. SI mechanisms prevent the pollen of an 

individual from pollinating its own eggs in some hermaphroditic species. Early 

observations have shown that SI species are less compatible in interspecific 

crosses than self-compatible (SC) species. Thus, SI may also contribute to 

interspecific incompatibilities, as confirmed in a study by (Bernacchi & Tanksley 

1997). In this study using a cross between Solanum lycopersicum, and S. 

habrochaites, a SI locus was found to co-localize with a detected inter-specific 

incompatibility QTL and that crosses between SC species fail after 

transformation with a SI gene from a SI species. Another study (Igic & Kohn 

2001) concludes that diversification of genes that contribute to SI appears to 

result from frequency-dependent selection. Interestingly, other plant 

reproductive proteins appear to be under positive selection as well, including 

candidates for species-specific recognition between pollen and stigma. 

 

As for post-zygotic barriers, chromosomal rearrangements may be another 

cause of them. However, according to population genetics theory, strongly 

underdominant chromosomal rearrangements (those that reduce the fitness of 

heterozygotes) cannot fix in a population because of their negative effect on 

fitness, unless the population were small and inbred. Weakly underdominant 

rearrangements are more easily established but contribute little to reproductive 

isolation. In contrast with underdominant chromosomal rearrangements, the 

Bateson-Dobzhansky-Muller (BDM) model accounts for the accumulation of 
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interspecific incompatibilities in genes without loss of fitness (i.e. divergence 

without initial isolation). According to this model, in the course of time, 

geographically isolated or neighboring populations may accumulate distinct 

mutations. These mutations are compatible with the ancestral genotype but are 

incompatible between populations. Generally, these incompatibilities involve 

two or more loci, although it is theoretically possible that they result from 

accumulation of independent mutations in a single locus. The effect of these 

incompatibilities can be hybrid inviability or hybrid weakness. The latter is often 

manifested as necrosis in developing seedlings or adult plant tissue, similar to 

the phenotype of hypersensibility responses to pathogen attacks (Bomblies & 

Weigel 2007). These observations suggest that hybrid weakness may also 

result from the accumulation of mutations in pathogen resistance genes, which 

diverge in different populations in response to selection pressure exerted by 

pathogens. 

 

While the BDM model describes how natural selection can play only an indirect 

role in the evolution of reproductive barriers, by bringing about trait changes that 

inadvertently prevent gene flow between diverging populations, the concept of 

speciation by reinforcement is the opposite: under reinforcement, natural 

selection directly favors the evolution of barriers to mating between incipient 

species. This model, like the BDM model, imagines two highly diverged 

populations that have accumulated some degree of genetic incompatibility while 

isolated from each other. Nonetheless, because genetic differentiation between 

the groups is incomplete, when they co-occur in sympatry, less fit hybrids can 

be formed. Natural selection will thus act directly to ‘reinforce’ the partial 

isolation between two groups by favoring traits that reduce inter-type mating. 

Although the frequency of speciation by reinforcement continues to be debated, 

there is recent solid theoretical as well as empirical support for this mode of 

speciation in a few well-described cases (Servedio & Noor 2003). 

 

2.3. Speciation and the Wakeley-Hey Model 

Reproductive isolation is thus not the cause of speciation but a consequence; 

resulting from divergence between species, which in turn is the result of either 

diversifying selection, genetic drift or a combination of both. The evolution of 
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reproductive isolation based on several or many loci is what (Mayr 1963) refers 

to “as gradual speciation”. Considering the geographic setting in which it can 

take place it can be classified in three modes of speciation: allopatric speciation, 

parapatric speciation and sympatric speciation. Allopatric speciation is the 

evolution of reproductive isolation between populations separated by a 

geographic barrier, which prevents interspecific gene flow. It can be further 

divided into allopatric speciation by vicariance and peripatric speciation. In 

allopatric speciation by vicariance, a physical barrier divides a widespread 

species into two populations which diverge through time. Peripatric speciation is 

also known as founder’s effect speciation, by which a localized colony diverges 

from an ancestral species which remains almost unchanged. In opposition to 

allopatric speciation, sympatric speciation is the evolution of reproductive 

barriers between subsets of a single initially randomly mating population. An 

intermediate mode of speciation is parapatric speciation, in which neighboring 

populations of a widespread species, between which there is limited gene flow; 

diverge by adaptation to different environments. Studying these modes of 

speciation and their consequences on the observable genetic diversity is at the 

heart of evolutionary biology. 

 

A model often used to look into divergence between populations or species is 

the Wakeley-Hey isolation model (Wakeley & Hey 1997), which allows 

estimating historical population parameters. The underlying model (Figure 4) 

includes one ancestral population or species which at some point in the past 

divided in two extant populations or species. As populations diverge from each 

other, new mutations particular to each of the new populations arise. However, 

there is also a certain amount of shared polymorphism reminiscent of the pre-

divergence period. Comparing polymorphism between the two extant species, 

segregating sites can be classified into four mutually exclusive categories:  

1) sites that share polymorphisms in both species (Ss),  

2) sites monomorphic in one but polymorphic in the second one (S1),  

3) sites monomorphic in the second species but polymorphic in the first 

one (S2), and  

4) sites showing fixed differences between species(Sf).  
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The best way to directly observe these polymorphisms is using the JFS (see 

above). Wakeley and Hey (1997) calculated the expectations for each of these 

four categories of polymorphism given the set of parameters summarizing the 

divergence process, namely the time from divergence (τ) and the population 

mutational parameter (θ) for both extant populations as well as the ancestral 

one (θ1, θ2, θa). Wakeley and Hey derive thus a statistical method to infer those 

parameters using the JFS with sequence data from the two extant species or 

populations. This model can also be used when there is gene flow between the 

diverging populations. Here, the question arises of how can divergence occur 

with gene flow between populations? The general answer to the puzzle is that 

divergence can happen at some genes, even if there is gene flow for other 

genes. Such a process occurs as follows: F1 hybrids between species carry a 

full set of genes from each species, but F2 backcross hybrids do not. Thus, it is 

possible for some genes to pass between species through F2 backcross 

hybrids depending on which genes they carry.  

 

Unfortunately, to make things more complicated, when one population 

separates into two, genetic variation can still be shared for some period of time 

even in the absence of gene flow (Avise 1975; Pamilo & Nei 1988; Hey 1991). 

Genealogies are more likely to coalesce within species if divergence times are 

longer (Wakeley & Hey 1997). If the sizes of both populations are large, and 

gene trees are deep within populations, then genealogies and genetic variation 

might be shared at some genes for very long periods of time, possibly even 

after the populations have diverged and become reproductively isolated 

species. This means that it is possible to sequence a copy of a gene from one 

species and find that it is more similar to a gene from a closely related species 

than it is to another copy of the gene from the same species. This will happen 

simply by chance if the populations separated only recently, even if there is no 

gene flow. Thus, an important challenge is to determine whether or not genetic 

variation that is shared by both populations is simply a remnant of variation in 

the common ancestor or if it is due to gene flow after the population started to 

separate.  
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Figure 4 The Wakeley-Hey isolation model. θA, θ1 and θ2 are the population mutational 
parameter for the ancestral population and for extant populations 1 and 2, respectively. τ is the 
time from divergence. 
 

 
Figure 5 A hypothetical genealogy with three demes showing the scattering phase 
(characterized by local coalescent events) and collecting phase (where only one lineage is 
present in each deme). 
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To handle this problem, one looks then at different genes between the two 

populations studied. A history of divergence with gene flow is generally 

indicated if there is variance among genes for divergence, such that the 

variation in divergence among the different genes is greater than expected 

under a model without gene flow (Wakeley & Hey 1997). Although gene flow is 

considered to be a homogenizing process that prevents divergence, very recent 

results in insects (Turner et al. 2005; Shaw 2002; Emelianov et al. 2004) and 

the Hawaiian silversword (Lawton-Rauh et al. 2007a; Lawton-Rauh et al. 

2007b), indicate that some gene flow continues to occur despite ecological and 

physiological speciation among taxa. These findings seem to suggest that gene 

flow is a common feature of the early stages of the divergence process. These 

results using population genetic methods contradict early views that gene flow 

is rare or non-existent between populations that continue to diverge and 

become species (Mayr 1963). However, it is maybe too soon to appreciate just 

how frequently divergence and speciation happen with, and without, gene flow 

(Hey 2006). 

 

3. Spatial Structure of Populations 

 

While we might not be sure just how often speciation or divergence occurs 

under gene flow, it is generally considered that by far the most likely, and most 

explicable, form of speciation occurs when populations diverge from each other 

while separated by an external barrier to gene flow, such as simple physical 

distance. It is generally recognized that most, if not all, species are found in 

fragmented habitats with populations separated by physical distance rather than 

as a unique panmictic population (Olivieri et al. 1990). This is described usually 

as a metapopulation, i.e. the network of demes or populations connected with 

each other by migration of individuals or gametes. When isolated from each 

other, populations accumulate genetic changes, which can be adaptive or not 

as genetic differences can also accumulate purely through random sampling 

processes (genetic drift). One way or the other, spatially isolated populations in 

a given species can present distinct patterns of polymorphism, i.e. population 

structure. Spatial structure of populations has important consequences on 



 - 23 - 

neutral as well as selected genetic diversity (Tellier et al. 2005) as selection and 

random process differ from that of a single panmictic population.  

 

3.1. Models of Population Structure 

There are several models used to theoretically study the influence of spatial 

structure within a studied species. The island model of migration (Wright 1940) 

considers a mainland population with migration to one or more island 

populations. Island models can vary widely in numbers of populations, sizes of 

populations and rates of gene flow. They are useful for understanding the 

effects of small population size and limited gene flow on rates of genetic drift 

and levels of divergence between island populations. Another prevalent model 

is the Stepping-stone model (Kimura & Weiss 1964). Unlike the island model, 

this one specifically includes a spatial element, only allowing adjacent 

populations to exchange genes with each other. Stepping-stone models can be 

one-dimensional, two- or three-dimensional. The isolation by distance model 

(Malecot 1969; Wright 1943) is a stepping-stone model taken to the extreme. In 

this model, every individual is restricted in the distance that its genes can travel 

(usually a short distance on average but see Wingen et al. 2007). If a population 

is evenly distributed over a landscape and movement per generation covers a 

short distance on average, then individuals are much more closely related to 

nearby individuals than to distant individuals. Finally, since population structure 

can vary both spatially and temporally (Hedrick 2006), the metapopulation 

model (Wade & McCauley 1988; Slatkin 1977), takes into account not only 

structure in space but also in time, i.e. the founding and extinction of entire 

populations. In this model a metapopulation is composed of several demes 

which can change in size, divide in new demes or disappear as time goes by. 

Note that metapopulation structure with limited gene flow increases the effective 

size of the metapopulation compared to a single panmictic population with 

identical number of individuals (Laporte & Charlesworth 2002). However, 

extinctions and recolonizations are shown to decrease the effective size of the 

metapopulation by increasing the probability of identity by descent (Wang & 

Caballero 1999).  
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3.2. The Effects of Structure 

The aforementioned spatial and temporal shifts in population structure lead to 

changes in the probability of gene flow among populations. Such changes in 

gene flow impact the rate of random versus non-random association among 

polymorphisms (linkage disequilibrium, LD). Because population structure can 

have such a strong effect on the patterns of polymorphism and LD, research 

has focused on distinguishing demography from natural selection. For example, 

surveys of nucleotide diversity in the wild ancestor of maize, Zea mays ssp. 

parviglumis, have revealed significant population genetic structure (Moeller et 

al. 2007). This influenced observed patterns of nucleotide polymorphism 

depending strongly on the geographic region from which subpopulations were 

sampled, probably due to the demographic history of subpopulations in those 

regions. Overall, these results suggest that explicitly accounting for population 

structure may be important for identifying loci that have been targets of 

selection.  

 

Furthermore, the partitioning of sequence variation among subpopulations (i.e. 

structure), can have important effects on statistical tests of the neutral 

equilibrium (NE) model based on a single panmictic unit, even when the 

majority of polymorphism is harbored within populations (Moeller et al. 2007). In 

particular, species-wide samples (i.e. collected throughout the whole species 

range) may often contain an excess of rare variants because multiple 

subpopulations each contain singleton polymorphisms (Hammer et al. 2003). 

Similar to the patterns identified in Z. mays ssp. parviglumis (Moeller et al. 

2007), molecular population genetic studies in humans have suggested that 

sampling across multiple subpopulations influences the estimates of the extent 

and pattern of nucleotide polymorphism (Ptak & Przeworski 2002). Thus, when 

nucleotide variation is structured among subpopulations, the sampling strategy 

clearly influences the estimation of population genetic parameters and 

inferences about natural selection and demographic history (Stadler et al. 

2009). In short, disentangling the effects of demographic history from those of 

positive selection under population structure is much harder than previously 

assumed. 
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To better understand the effect of the sampling strategy on the estimation of 

population parameters, it is necessary to look into the coalescent process of a 

metapopulation. When the number of demes in the metapopulation is large, the 

genealogy of a sample includes two phases, called the scattering phase and the 

collecting phase (Wakeley 1999). The scattering phase comprises the very 

recent history of the sample, during which coalescence occurs mainly locally in 

each deme. Recent migration events are shown by migrants coalescing in their 

deme of origin during this phase. At the end of the scattering phase, i.e. the 

start of the second, and much longer, collecting phase, one finds every lineage 

is present only in one deme. Migration events then move lineages from deme to 

deme, until a pair of lineages fall into the same deme, at which time they can 

coalesce. Note that the collecting phase can be characterized as a Kingman 

coalescent type of process (Wakeley 2000). 

 

The ability to break the genealogy into these two parts, and to consider them 

separately, depends only on the number of demes being large. When this is 

true, the time spent in the scattering phase can be ignored because the 

collecting phase dominates the history (Wakeley 1998). The parameters that 

determine the pattern of genetic variation in a sample are, in addition to the size 

of each deme and the number of demes, the rates of migration and 

extinction/recolonization and the founding-propagule sizes for each sampled 

deme (Wakeley & Aliacar 2001). One of the objectives of this thesis is to study 

how the sampling strategy reveals the pattern of genetic variation detected in a 

metapopulation. For example, in comparison to species-wide samples, local 

samples (and to a lesser extent, pooled samples) are influenced by the 

scattering phase of the coalescent process, resulting in shorter external 

branches in proportion to the whole coalescence tree and hence lower 

proportions of singletons within each deme. This has consequences for using 

inference methods to detect selection. For example, the sampling scheme 

impacts Fu and Li’s D more than it does Tajima’s D. 

 

Now that the theoretical background and the basic key evolutionary questions 

are presented, I will describe our study system of the wild tomato data, and then 

describe in more details the precise questions addressed in this thesis. 
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4. Wild Tomatoes 

 

Solanum Sect. Lycopersicon is a relatively small monophyletic clade within the 

large and diverse Solanaceae family (D'Arcy et al. 1979). It consists of 13 

closely related species or subspecies including the domesticated tomato, 

Solanum lycopersicum (formerly L. esculentum) (Spooner et al. 2005; Peralta et 

al. 2005). Most of these species are limited in distribution to a small area in 

western Peru, Chile, and Ecuador (Rick 1976). Only Solanum lycopersicum var. 

esculentum, the domesticated tomato, and S. lycopersicum var. cerasiforme, its 

small-fruited feral putative congener, are found outside this narrow range, being 

common throughout many parts of the world, especially in Mesoamerica and 

the Caribbean (Rick 1976). Historical and linguistic studies suggest that the 

cultivated tomato was most likely selected from wild forms of cerasiforme 

(Jenkins 1948; Rick 1976); however, phylogenetic/diversity studies based on 

isozymes and DNA polymorphism have not clarified this issue (Rick & Fobes 

1975; Rick et al. 1974; Williams & St. Clair 1993; Miller & Tanksley 1990). 

 

All members of the clade are closely related diploids (2n =24) (Nesbitt & 

Tanksley 2002; Peralta & Spooner 2001; Rick et al. 1979) that share a high 

degree of genomic synteny (Chetelat & Ji 2007). Rick (1963) tested through 

cross experiments whether there were any interbreeding barriers within the S. 

peruvianum complex. His results showed that they are to some degree 

intercrossable (Rick 1979). Breeding systems vary from allogamous self-

incompatible to facultative allogamous and self-compatible to autogamous and 

self-compatible (Rick 1963; Rick 1979; Rick 1986). The self-incompatibility 

system in tomatoes is gametophytic and controlled by a single, multiallelic S 

locus (Tanksley & Loaiza-Figueroa 1985). 

 

4.1. Isolation and Incompatibility in Tomatoes 

The Solanum sect. Lycopersicon group contains species with both allopatric 

and sympatric components to their distribution ranges (T. Nakazato, D. Warren, 

and L. C. Moyle, unpublished data). Nonetheless, there are very few reports of 

natural hybridization among wild tomatoes (Taylor 1986), despite decades of 
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field collections and observations. This observation suggests that non-

ecological barriers are also potentially important in isolating wild tomato 

species. Within the Solanaceae in general, some of the strongest post mating 

reproductive isolating barriers appear to occur at the stage of pollen–pistil 

incompatibility (De Nettancourt 2001; Hancock et al. 2003; McCormick 1998), 

and interspecific crosses suggest pollen–pistil interactions could act to isolate 

wild Solanum sect. Lycopersicon species (e.g., Hogenboom 1972). Several 

studies have examined the genetic basis of pollen and seed sterility between 

the cultivated tomato and each of several wild congeners (e.g., S. habrochaites: 

Moyle & Graham 2005; S. pennellii: Moyle & Nakazato 2008). Overall, these 

studies indicate that individual hybrid incompatibility QTL appear to be 

recessive (or at most additive), that a relatively modest number of QTL underlie 

hybrid incompatibility, and that there are roughly comparable numbers of pollen 

and seed sterility QTL (i.e., within the same order of magnitude) (Moyle & 

Nakazato 2008).  

 

BDM factors also can also play a role in causing hybrid weakness or inviability 

in this clade. Hybrid weakness is often manifested as necrosis in developing 

seedlings or adult plant tissue, similar to the phenotype of pathogen attacks 

(Bomblies & Weigel 2007). Tomato lines with resistance gene (Cf-2) from S. 

pimpinellifolium exhibit autonecrosis of mature leaves, but no autonecrosis was 

observed when complementary gene (RC3) from S. pimpinellifolium was also 

introduced (Krüger et al. 2002). These observations imply that hybrid weakness 

may result from changes in pathogen resistance genes, which diverge in 

response to selection pressure exerted by pathogens.  

 

4.2. Taxonomical Treatment 

There has been a lot of debate about the taxonomy of tomatoes since Linnaeus 

(1753) treated them as part of the genus Solanum, alongside potatoes. A year 

later Miller (1754) recognized tomatoes as a separate genus (Lycopersicon). 

The latter has been the predominantly accepted view up to the present. 

Recently, molecular data have been used to analyze phylogenetic relationships 

between the former genus Lycopersicon and genus Solanum (Olmstead et al. 

1999; Bohs & Olmstead 1999). Based on this evidence and their own data, 
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Spooner et al. (2005; 1993) have proposed that species formerly belonging to 

Lycopersicon be included in genus Solanum sect. Lycopersicon. This new 

taxonomical treatment coincided with the breakup of L. peruvianum into four 

Solanum species (Peralta et al. 2006). The description of a new wild tomato 

species on the Galapagos Islands (Darwin et al. 2003) led to the breakup of L. 

cheesmanii into S. cheesmaniae and S. galapagense. The following table 

summarizes the changes in taxonomic treatment: 

 

Lycopersicon Name Solanum Classification 
S. cheesmaniae 

L. cheesmanii 
S. galapagense 

L. chilense S. chilense 
L. chmielewskii S. chmielewskii 
L. esculentum S. lycopersicum 
L. hirsutum S. habrochaites 
L. parviflorum S. neorickii 
L. pennellii S. pennellii 

S. arcanum 
S. corneliomuelleri 
S. huaylasense 

L. peruvianum 

S. peruvianum 
L. pimpinellifolium S. pimpinellifolium 

 

Though much evidence supports the inclusion of former genus Lycopersicon 

into Solanum, the division of S. peruvianum into four species is arguable. So 

far, a new formal description has only been published for S. arcanum and S. 

huaylasense (Peralta et al. 2005). Additionally, in a classic study, Rick (1963) 

concluded that it is most reasonable to classify accessions putatively belonging 

to S. corneliomuelleri as part of S. peruvianum.  
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Figure 6 Rick’s (1979) polygon scheme showing crossability results; the width of connecting 
bands indicates the amount of seed produced by crosses, and dashed lines indicate crosses 
that failed to produce hybrids. Adapted from Rick (1979). Names in italics correspond to the 
taxonomical treatment used in our study and are only shown for species used in our study. In 
the case of S. peruvianum, the graph shows populations presently assigned to S. peruvianum 
sensu stricto as well as S. peruvianum sensu lato. Therefore, we don’t use an oval to indicate 
this species (as we do with S. arcanum, S. chilense and S. habrochaites) to avoid 
misunderstandings.  
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5. Scope of this thesis 

 

5.1. Previous Research 

Past studies from our group focused on the effect of the mating system and 

recombination on single nucleotide polymorphism (Roselius et al. 2005) as well 

as testing the isolation model of speciation, particularly the assumption of 

divergence without gene flow (Stadler et al. 2005). Thus, it was concluded that 

the evolution of Solanum sect. Lycopersicon has been dominated by 

demographic processes. A high effective population size, despite small census 

size was also noticed, suggesting the presence of soil seed banks and 

extensive population structure (Roselius et al. 2005). Weak evidence of post-

divergence gene flow from S. chilense to S. peruvianum was also found 

(Stadler et al. 2005), leading to more detailed studies of these two species. 

Arunyawat et al. (2007) discovered that population structure was an important 

demographic factor shaping the patterns of nucleotide diversity within and 

among populations in wild tomatoes. In addition, results from Arunyawat et al. 

(2007) contradict the breakup of Solanum peruvianum in the latest taxonomical 

treatment. According to their analyses, populations from Canta (Peru) putatively 

belonging to S. corneliomuelleri were the least differentiated when compared to 

S. peruvianum sensu stricto. Finally, Stadler et al. (2008) confirmed that 

divergence between S. peruvianum and S. chilense took place under residual 

gene flow in both directions either under a parapatric mode of speciation or 

through a period of secondary contact. This study also detected a population (or 

range) expansion for S. peruvianum and estimated the effective population size 

for S. chilense as similar to that of the ancestral species from which both 

diverged. For the present study, we analyze the sequence of the same loci as 

Arunyawat et al. (2007) in two new species: S. arcanum and S. habrochaites 

(see below for details). 

 

Solanum sect. Lycopersicon is ideal for integrating genomic tools and 

approaches into ecological and evolutionary research. Wild species within 

Lycopersicon span broad morphological, physiological, life history, mating 

system, and biochemical variation, and are separated by substantial, but 
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incomplete post-mating reproductive barriers, making this an ideal system for 

genetic analyses. This is matched by many logistical advantages, including 

extensive historical occurrence records for all species in the group and publicly 

available germplasm for hundreds of known wild accessions (Moyle 2008). Due 

to their recent origin, the clear phenotypic distinction between species, their 

diversity of mating systems and the well-known genetics of the cultivated 

tomato (Stadler et al. 2005), wild tomato species are a good speciation model. 

 

5.2. Objectives 

The aim of this thesis is to study the population history and speciation process 

in closely related plant species, using wild tomato as a model system. We are 

interested in studying population structure and range expansion in the four wild 

tomato species (S. peruvianum, S. chilense, S. habrochaites and S. arcanum). 

The study uses a set of eight DNA loci obtained in the four species and various 

coalescent tools. The study is composed of three projects, each addressing 

specific questions:  

 

As explained in this introduction, the sampling strategy is of prime importance 

when doing statistical inference of evolutionary processes. Our work is 

concerned with estimates of species-wide and population specific demographic 

history based on summary statistics. Particularly, it becomes important to know 

the joint impact of population subdivision and the sampling scheme on the site 

frequency spectrum in populations which are not at demographic equilibrium. 

The first project deals with a theoretical work assessing the effect of the 

sampling strategy on summary statistics and parameter estimation of species 

wide expansion.  

 

The second project looks for signatures of selection in eight reference loci. 

These eight loci have been used in previous studies from our group. Results so 

far, have not shown any significant evidence of strong selection, and thus these 

loci have been considered as a good reference for studying neutral evolutionary 

processes. The aim of the second chapter is to confirm that in the four species 

studied by our group so far, these loci can still be regarded as reference loci, 

i.e. to measure to which degree their evolution is neutral. 
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As mentioned in this introduction, previous studies have demonstrated the 

existence of moderate population structure in wild tomatoes, and possible 

existence of seed banks and range expansion. In the third project, we reveal if 

such pattern also exists in other species of the tomato complex, i.e. S. 

habrochaites and S. arcanum. This involves first, to define precisely what a 

population is. Thus, we investigate if each sampled populations is an 

interbreeding community, and its degree of isolation from other populations. 

Then, we study the population and species history for each species.  

 

As highlighted in this introduction, wild tomato species are a complex of closely 

related species in which regular taxonomical changes occur. This is due to 

insufficient definition of species’ ecological habitats and a lack of species 

definition from a population genetics point of view. Previous results from our 

group seem indeed hard to reconcile with the new suggested taxonomical 

treatment. A first specific question also addressed in the third project is thus 

whether population genetics data support the subdivision of former S. 

peruvianum sensu lato into S. arcanum and S. peruvianum sensu stricto.  



 - 33 - 

Materials and Methods 

 

 

This thesis covers three research projects. Therefore, this section and that 

describing the results are divided in three sub-sections. The first section of this 

chapter describes the methods used for the first research project of this thesis. 

These included modeling and simulating data to test our hypothesis. The 

second and third projects analyze molecular data. Therefore, they share the 

same plant material and sequencing methodologies which will only be 

described for the second project. 

 

First Project 

 

1. Coalescent simulations under two models of population structure 

 

All patterns of sequence diversity were generated using the coalescent 

simulation software ms (Hudson 2002) to model the following evolutionary 

scenario. At the time of sampling, the population consists of I demes, each 

containing N0 diploid individuals. For the first set of simulations, the subdivided 

population is at equilibrium with constant population size. Along every line 

mutations accumulate at rate µ, and θ = 4N0 µ. We chose to simulate mainly 

with a fixed value of θ = 1 (for simulations implementing 100 demes) rather than 

with a fixed number of segregating sites S or choosing different θ’s for different 

simulation scenarios to obtain realistic values of S and/or π. Simulating with a 

fixed S has been shown to yield inaccurate results under non-equilibrium 

demography (Ramos-Onsins & Rozas 2002), and the critical values for Tajima’s 

D and Fu and Li’s D depend not too strongly on θ. Moreover, the effects we 

describe in our results are orders of magnitude larger than what could be 

generated by choosing a different θ or fixing S. 

 

The demes exchange (haploid) migrants under either an island model or a two-

dimensional stepping-stone model at rate m, and we consider a broad range of 

gene flow: 0.1 ≤ 4N0m ≤ 100. Under the island model an ancestral line in deme j 

switches its location to deme i at rate m/(I - 1). Under the stepping-stone model, 
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we assume that I = a2; i.e., the population is arranged in a square lattice of a x a 

demes and we assume periodic boundary conditions. This means that the 

migration rate is m/4 if i = (i1, i2) and j = (j1, j2) are neighboring demes and 0 

otherwise. Here, i and j are neighbors if |(i1 - j1)mod a| + |(i2 - j2)mod a| = 1. In 

other words, an individual at location (a, i2) can migrate to (1, i2) and one at (i1, 

a) can migrate to (i1, 1) and vice versa. We modified ms to be able to efficiently 

sample sequences from randomly chosen demes rather than fixed demes. 

Specifically, in each iteration the modified version of ms shuffles the entries in 

the sample configuration array inconfig at the beginning of the function 

segtre_mig (Hudson 2002). The C code of this program is available from 

http://guanine.evolbio.mpg.de/sampling. 

 

2. Implementing range expansions under population subdivision 

 

For an additional set of coalescent simulations, we assume that the structure in 

the population was created some time τ in the past (τ is measured in units of 

4N0 generations), i.e., before time τ the population was panmictic and of size 

NA. This scheme ought to be plausible under range expansions, e.g., as 

exemplified by migration out of Africa by both humans and Drosophila 

melanogaster and subsequent colonization of expansive areas, or temperate-

zone populations expanding from glacial refugia, or following a speciation event 

such as that inferred for the two wild tomato species S. peruvianum and S. 

chilense (Stadler et al. 2005; Stadler et al. 2008). Moreover, this is essentially a 

generalized ‘‘isolation with migration’’ (IM) model of divergence with a large 

number of extant demes (Hey & Nielsen 2004; Nielsen & Wakeley 2001; 

Wilkinson-Herbots 1998). Looking forward in time, at time τ the ancestral 

population splits into I demes of equal size and in equal proportions. The 

‘‘expansion factor’’ for the total population at time τ is thus given by 

 

β = I x N0/NA 

 

Note that a value of β = 1 implies constant population size in the sense that a 

panmictic population at time τ in the past split into I demes each of size N0 (= 

NA/I), without changing the total census size of the entire, now subdivided 
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population. This particular scenario can be seen as a form of ‘‘range 

fragmentation,’’ albeit without decline in total population size. 

 

 

3. Sampling schemes and descriptors of diversity and differentiation 

 

Simulated samples of total size n (20 in our numerical examples) from the 

structured population were implemented as local, pooled, or scattered. Local 

samples contain n sequences from a single island; i.e., only one arbitrarily 

chosen deme is sampled. Pooled samples contain several lines each from 

several demes (we take five lines from each of four demes in our simulations). 

Scattered samples encompass single sequences from each of n different 

demes, i.e., only one sequence per sampled deme. 

 

A commonly used statistic to quantify population structure from patterns of 

diversity within and among local populations is FST (e.g., Hudson et al. 1992). In 

particular, if the number of demes is large and the population is in equilibrium, 

 

E[FST] = 1/(1 + 4N0m) 

 

(e.g., Wright 1951), and thus migration rates can, in principle, be estimated from 

observed values of FST (but see Whitlock & McCauley 1999 for numerous 

caveats and Jost 2008 for a more fundamental critique of FST-based estimates 

of differentiation and gene flow). In our simulations, FST can be computed only 

under the ‘‘pooled’’ sampling scheme. We used the formula FST = 1 - πw/πb, 

where πb is the ‘‘average’’ number of differences for pairs of sequences taken 

from different demes, and πw is the average number of differences for pairs 

sampled within demes. The average here means only the average over all pairs 

of sequences, and not over all simulation runs. Thus, for every simulation run, 

we recorded exactly one FST value. For the stepping-stone model, we used the 

same computations; i.e., FST does not take isolation by distance into account. 

 

To describe sequence diversity patterns, we focus on the site frequency 

spectrum, as summarized by statistics such as the widely used Tajima’s D 
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(Tajima 1989) and Fu and Li’s D (Fu and Li 1993). For clarity, we denote these 

distinct D statistics as DT and DFL, respectively. Using these particular summary 

statistics enables us to perform power analyses to reject the standard neutral 

model. Moreover, we chose to include DFL because the singleton class 

appeared to be the major reason for the lower/ more negative DT values in 

pooled vs. local samples of wild tomatoes (Arunyawat et al. 2007). The 

statistical package R was used to drive our modified version of ms and to 

compute these statistics from its output; the corresponding R scripts are 

available at http://guanine. evolbio.mpg.de/sampling. 

 

Second Project 

 

1. Plant Samples and Sequencing 

 

Samples were collected in Peru by T. Staedler, T. Marczewski and C. Merino in 

two separate collection trips (2004 and 2006). Four to five populations per 

species were used: Ancash, Canta, Otuzco, Contumaza, and Lajas for S. 

habrochaites; and Otuzco, Rupe, San Juan, and Cochabamba for S. arcanum. 

From each population six individuals were collected except for Otuzco (seven 

individuals for S. habrochaites and 8 for S. arcanum), Ancash (four individuals) 

and San Juan (five individuals). The population samples and geographic 

locations are summarized in Table 1. Voucher specimens have been deposited 

at the herbarium of the Universidad Nacional Mayor de San Marcos (USM, 

Lima, Peru).  

 

Population Coordinates Climate Census Population Size 

Ancash 09°31’S, 7°53’W dry-mesic n.a. 
Canta 11°31'S, 76°41'W mesic ++ 
Cochabamba 06°29'S, 78°54'W dry-mesic ++ 
Contumaza 07°22'S, 78°48'W dry-mesic ++++ 
Lajas 06°33'S, 78°46'W dry-mesic ++ 
Otuzco 07°56'S, 78°36'W mesic +++ 
Rupe 07°17'S, 78°49'W dry + 
San Juan 07°17'S, 78°33'W dry-mesic ++ 

Table 1 Collection sites and description. Plus symbols (+) are used to express approximate 
relative population sizes. 
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Collected leaves were dehydrated in sealable plastic bags using silica gel. 

When the collection trip ended, they were transported to the lab where genomic 

DNA was isolated using the DNeasy Plant Mini Kit (Qiagen GmbH, Hilden, 

Germany). At least five individuals (10 alleles) per population were sequenced 

for each of eight unlinked reference loci used in previous studies (CT093, 

CT208, CT251, CT066, CT166, CT179, CT198, and CT268; Arunyawat et al. 

2007; Roselius et al. 2005; Stadler et al. 2008; Stadler et al. 2005). These loci 

correspond to anonymous, single-copy cDNA markers originally mapped by 

(Tanksley et al. 1992). Putative functions are proposed for all these loci (see 

Table 2; modified from Roselius et al. 2005). The loci were not chosen, 

however, on account of their function but based on the fact that they are located 

in regions of certain recombination rates as estimated by Stephan & Langley 

(1998), based on recombination nodes (RN), following the work of Sherman & 

Stack (1995).  

 

Locus Chromosome Length 
(bp) 

Putative encoded protein RN 

CT066 10 1346 Arginine decarboxylase 0.93 
CT093 5 1415 S-adenosylmethionine decarboxylase proenzyme 0 
CT166 2 2673 Ferredoxin-NADP reductase 1.61 
CT179 3 995 Tonoplast intrinsic protein D-type 1.97 
CT198 9 779 Submergence induced protein 2-like 2.1 
CT208a 9 1767 Alcohol dehydrogenase, class III 0 
CT251a 2 1779 At5g37260 gene 0.46 
CT268a 1 1887 Receptor-like protein kinase 2.33 
Table 2 Chromosome location, putative function, and recombination rate (RN) of sequenced 
loci. Locus designations refer to particular EST sequences that have been integrated into longer 
‘‘tentative contigs’’ in the TIGR Plant Transcript Assemblies (http://plantta.jcvi.org/cgi-
bin/plantta_release.pl). The length per locus is given across the total alignment of all five tomato 
species (without outgroup), including indels. 
a From Baudry et al. (2001). 
 

Each locus was initially sequenced with the same PCR primers that were used 

for amplification of each locus. PCR primers and conditions are deposited at 

http://www.zi.biologie.unimuenchen.de/evol/Downloads.html. To resolve 

haplotype phase, i.e. to confirm linkage between each pair of SNP alleles in 

each individual, two independent strategies were used. On the one hand, allele-

specific primers anchoring in polymorphic sites were used as previously 

described (Stadler et al. 2005). To this end, primers were either designed based 

on direct sequencing of PCR product, or taken from previous studies 
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(Arunyawat et al. 2007). In this way, we have used overlapping sequences from 

different primers to confirm the presence of SNPs as well as establish the 

phase between each of them. On the other hand, due to technical difficulty (e.g. 

SNPs being located in a region unsuitable for primer design) we have also used 

cloning. In this approach, PCR products were inserted into a plasmid and 

cloned. After screening colonies by PCR with the original PCR primers to 

confirm presence of the target sequence, the plasmid was extracted and 

sequenced using plasmid primers. 

 

2. Statistical tests of neutrality 

 

Two types of sampling schemes are used. The pooled sample refers as the 

combined sequences from all populations for a given species, and the 

population sample refers to a separate analysis of the four to five populations 

per species (Stadler et al. 2009). We calculate Ka/Ks and πa/πs ratios for 

synonymous and non-synonymous sites. The McDonald-Kreitman test 

(McDonald & Kreitman 1991), as well as the calculation of the proportion of 

adaptive substitutions α (Smith & Eyre-Walker 2002; Bierne & Eyre-Walker 

2004) are applied to pooled samples. Both tests are based on a comparison of 

the divergence between two species, taking into account the rate of 

synonymous and non-synonymous substitutions. S. lycopersicoides was used 

as an outgroup for CT093 and CT268, S. ochranthum was used for all other 

loci. All statistical analyses are applied using DnaSP v. 5.0 (Librado & Rozas 

2009) and SITES (Hey Lab, Department of Genetics, Rutgers University). α is 

computed using the DoFE software (Smith & Eyre-Walker 2002; Bierne & Eyre-

Walker 2004). 

 

3. Site frequency spectrum and purifying selection 

 

We calculate a simplified version of the SFS comprising three categories (Fay 

et al. 2001). The minor allele at each polymorphic SNP is called rare if its 

frequency is below 5%, intermediate if the frequency is higher than 5% and 

lower than 20%, and common if its frequency is higher than 20%. These 

categories of SNP frequency are calculated for the pooled sample (40 to 62 
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sequences per species). For population samples, however, as we have only 12 

sequences per population, two classes of polymorphic sites are used: low 

frequency (f<20%) grouping singletons and doubletons, and common frequency 

(f>20%).  

 

When classifying the SNPs we used the outgroup specified above to determine 

the frequency of the derived state. We allowed for multiple hits and calculated 

the frequency of all derived states. If one site is polymorphic within the species 

and different from the outgroup, it is also considered as a multiple hit. 

 

The dataset is partitioned into three categories of sites: synonymous (S), non-

synonymous (NS) and non-coding (NC) polymorphic sites. For each category, 

the two or three classes of the simplified SFS are computed. Under simplified 

assumptions, NS and NC sites fall into three classes: neutral, slightly 

deleterious and strongly deleterious (Fay et al., 2001). Neutral NS or NC sites 

are responsible for all common SNPs in the SFS and a proportion of rare and 

intermediate SNP classes. Slightly deleterious mutations account for the excess 

of rare frequency polymorphism, as well as a small fraction of the intermediate 

frequency SNPs. Strongly deleterious mutations are assumed here to rarely rise 

to detectable frequency (Fay et al. 2001). The amount of non-synonymous and 

non-coding SNPs in each class is compared to that observed for the 

synonymous ones. The synonymous sites are assumed to be neutral and their 

SFS is thus only determined by past demographic events and metapopulation 

structure. Under purifying selection, an excess of rare-frequency polymorphisms 

in NS or NC sites in comparison to the amount of rare-frequency 

polymorphisms in synonymous sites is thus expected. On the other hand, 

similar frequencies of common SNPs are expected for the various classes 

reflecting the neutral evolution of common SNPs (Fay et al. 2001).  

 

The amount of polymorphism S*, NS* and NC* are computed for each 

frequency class, rare, intermediate, and common, where * denotes the ratio of 

the number of SNPs per total number of sites (Fay et al. 2001). The proportion 

of non-synonymous sites NS* is calculated as 1 minus the number of fourfold 

degenerate sites divided by the total number of coding sites using DnaSP v 5.0  
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(Librado & Rozas 2009). We calculated NS*, S*, and NC* for all polymorphic 

sites and for only private polymorphisms for each species. Calculations were 

made using either Microsoft Office Excel 2003 or R scripts (R Development 

Core Team 2005). 

 

4. Purifying selection on shared polymorphisms among species 

 

The distribution of ancestral deleterious mutations shared among species is 

computed using the pooled sample. The aim is to determine if metapopulation 

structure in the ancestral and incipient species favors the maintenance of 

deleterious mutations. The SFS is computed for the shared polymorphic S*, 

NS*, and NC* sites for each of the six possible pairwise comparisons of 

species. Correlations are analyzed for the amount of shared polymorphism in S* 

sites with the amount of NS* and NC* sites for rare, intermediate, and common 

alleles. The amount of shared polymorphic sites S* between species is 

supposed to be inversely proportional to the divergence time between species 

(following results in Hey & Wakeley 1997), and depends also on the population 

size of the two species, levels of introgression between them (Hey & Wakeley 

1997), and the metapopulation structure of each species. Positive correlations 

between S* and NS* (and NC*) are expected as pairs of species with short 

divergence (high S*) would also exhibit higher rates of shared NS* or NC*. 

Correlating the shared S* and shared NS* (NC*) allows us to control for 

different mutation rate and divergence time between pairs of species. 

 

Linear regressions are calculated between S* and NC* and NS* found for all 

pairwise species comparisons. If NC and NS sites evolve neutrally, one expects 

a regression line with equation S*=NC* (or S*=NS*). The linear regression 

analysis is performed using the lm command of the statistics software R (R 

Development Core Team 2005). 

 

5. Quantifying purifying selection and demography for each species 

 

For each species we concatenated all loci using all polymorphism data (shared 

and private among species) and calculated the distribution of fitness effects 
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(DFE) for the NS and NC sites by comparing with synonymous sites (data not 

shown). This is realized using the maximum-likelihood method by (Eyre-Walker 

& Keightley 2009), which infers demographic, DFE parameters and α 

simultaneously using all information in the SFS. As previous work reveals 

evidence for species expansion in S. peruvianum and S. chilense (Arunyawat et 

al. 2007), we need to take into account demographic expansion to estimate the 

DFE and α. This method is available on Keightley’s web-server 

(http://homepages.ed.ac.uk/eang33/).  

 

The demographic model is a simple one-step population size change from N1 

ancestral population size to N2, the present effective population size, assumed 

to be at equilibrium between mutation, selection and drift. The population 

expansion (N1 <N2) or contraction (N1 >N2) occurs t generations ago. Each 

deleterious mutation has a different fitness coefficient s, which is assumed to be 

drawn from a gamma distribution with shape parameter b and mean parameter 

N2E(s) (Keightley & Eyre-Walker 2007). It is also assumed that there is a class 

of neutral sites at which mutant alleles have no effect on fitness. For diploid 

organisms, the fitness of the wild-type, heterozygote mutant, and homozygote 

mutant genotypes are 1, 1-s/2, and 1-s respectively (Keightley & Eyre-Walker 

2007). In a second step, α, the rate of positively selected mutations, is 

estimated for coding regions (Eyre-Walker & Keightley 2009). The demography 

and the DFE parameters are thus used to predict the expected number of 

substitutions due to deleterious mutations. The difference between this 

expected number and the observed number of substitutions gives an estimate 

of α (Eyre-Walker & Keightley 2009). The number of polymorphisms and 

substitutions for NS, S and NC sites are calculated using S. lycopersicoides as 

an outgroup for CT093 and CT268, and S. ochranthum for all other loci. The 

parameters estimated are thus N2, t, E(s), b, and f0 which is the proportion of 

sites that have never experienced a mutation (invariant sites) assuming the 

ancestral population size N1=100. α is estimated for coding regions and is 

compared to the results obtained with the method of Bierne & Eyre-Walker 

(2004; data not shown). 
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The model assumes that all sites are unlinked, which is in agreement with 

previous studies revealing that S. peruvianum and S. chilense show high 

recombination rates (Stephan & Langley 1998; Arunyawat et al. 2007). The 

model further assumes that all sites have the same mutation rate and no 

multiple hits occur. We correct for multiple hits by calculating the number of 

substitutions and polymorphisms using the DnaSP conservative criteria (Nei & 

Gojobori 1986). The demographic parameters (N2, t) are estimated using the 

site frequency spectrum for synonymous sites and non-coding sites. This 

dataset has the maximum number of polymorphic sites, thus the highest 

statistical power to infer parameters. Note that demographic and DFE 

parameters are calculated for the pooled sample of each species, taken here as 

representative of the whole species. 

 

6. Purifying selection and metapopulation structure 

 

Our objective here is to investigate for each species the effect of 

metapopulation structure on the strength of selection against the deleterious 

mutations. We test if the strength of selection at the population level is identical 

to the strength of selection estimated for the whole species using the DFE (see 

above).  

 

In a metapopulation with low migration and weak to strong purifying selection, 

an excess of low-frequency alleles (f<20%) private to each population is 

expected when comparing sites under selection and synonymous sites. This 

results in higher population differentiation (FST) for NS (NC) sites compared to S 

sites between populations. This occurs because purifying selection prevents 

deleterious alleles to rise to high frequency at which they are likely to migrate 

among demes (Fay et al., 2001; Whitlock, 2003). Synonymous sites are used 

here to reflect the demography and the metapopulation structure of each 

species. 

 

Genetic differentiation between populations of a given species is estimated 

using FST per polymorphic SNP given as output from the BayeScan program by  
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(Foll & Gaggiotti 2008). We compare the distribution of FST values for all 

polymorphic SNPs for each species for each type of site (S, NS, NC). Due to 

the non-normal distribution of FST values, non-parametric statistical tests are 

used to compare the FST distribution for the different types of sites. The effect of 

the type of site (NC, S or NS) on distribution of FST is evaluated using a one-

way Kruskal-Wallis test. If the effect of the type of site is significant (at 5%), 

pairwise Wilcoxon tests determine which type of site has higher FST values (R 

Development Core Team 2005). 

 

We use then the program BayeScan by Foll & Gaggiotti (2008) to detect outlier 

SNPs that deviate from the expected distribution of FST values. In the approach 

developed by (Foll & Gaggiotti 2008) the posterior probability that a locus is 

under selection is estimated assuming an island model of metapopulation. A 

locus may or may not be under selection. For both models, a Bayes Factor (BF) 

is calculated, which indicates the model that fits the data best. The program 

BayeScan calculates the FST for every SNP, and estimates the posterior 

probability of a SNP to be under the effect of selection.  

Finally, to test the possibility of heterogeneous levels of purifying selection in 

space, we calculate NS*/S* and NC*/S* ratios for each population of each 

species, using only the private polymorphic sites for that population. This allows 

us to study how selection acts within a population, taking into account only the 

scattering phase of the metapopulation coalescent (Wakeley & Aliacar 2001). 

Note that these ratios are very weakly biased by demography as single 

populations show only a weak signature of the species-wide demography 

(Stadler et al. 2009). 

 

Third Project 

 

1. Estimation of Nucleotide Diversity and Neutrality Tests 

 

Levels of nucleotide diversity are estimated using θ (Watterson 1975). The 

average number of pairwise differences, π (Nei 1987), is also estimated. We 

also calculate πbetween by performing pairwise comparisons between sequences 

coming from different collection sites (among populations) and different species 
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(among species). Thus, we obtain a better assessment of the species-wide 

nucleotide diversity within each species and an unbiased estimation of 

nucleotide divergence between species, respectively. We then test for 

deviations from neutrality using Tajima's D statistic (Tajima 1989). Negative 

values of Tajima's D indicate an excess of low-frequency polymorphisms, while 

positive values indicate an excess of intermediate-frequency polymorphisms, 

both of which could be explained by either selection or demography acting on 

the tested locus. In order to further test if deviations from neutrality are due to 

selection or demography, we applied the R2 test (Ramos-Onsins & Rozas 2002) 

using multilocus concatenated data (of silent polymorphism). This test detects 

population growth in the recent past, which Tajima's D is unable to differentiate 

from selection. Significance of this test is assessed by coalescent simulations 

using population parameters from the data (α ≤ 0.05). Values under the lower 

critical value are considered significant and indicative of a population expansion 

in the recent past. We performed the test on S. arcanum and S. habrochaites as 

well as previously published data (Arunyawat et al. 2007) of S. peruvianum and 

S. chilense to offer a reference framework. Since locus CT198 presents a 

mutant allele with a premature stop codon, to avoid bias in the summary 

statistics, we remove alleles carrying the stop codon mutation in the calculation 

of all summary statistics for this locus. All estimations are performed as 

implemented in the DnaSP software (Librado & Rozas 2009). 

 

2. Population Structure 

 

In order to assess whether the distribution of haplotypes might follow a 

geographic pattern, haplotype networks are built. To this end, we use Sneato 

software (The McDermott Center for Human Growth and Development, 

University of Texas Southwestern Medical Center). This software generates a 

minimum spanning tree depicting relations among biological sequences, such 

as DNA, using Prim’s algorithm. This allows us to visualize the distance 

between haplotypes (as mutational steps) and the number of copies of each 

haplotype in a minimum spanning network. 
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We also estimated the extent of population differentiation calculating FST 

(Hudson et al. 1992) performing pairwise comparisons between populations of 

the same species as well as between populations from two different species. 

FST estimation is performed using DnaSP software, which estimates the number 

of effective migrants among populations (Hudson et al. 1992). The objective is 

to investigate whether divergence between populations is greater than diversity 

within populations. In addition, we also quantify levels of differentiation within 

and between species in a hierarchical analysis of molecular variance (AMOVA, 

Excoffier et al. 1992) as implemented in Arlequin (Excoffier et al. 2005). This 

analysis allows us to test the hierarchical structure we have defined in our 

dataset, i.e. that several populations belong to a single species.  

 

Another way of analyzing the difference between the geographic and genetic 

definitions of populations is to use Principal Coordinates Analysis (PCoA). This 

method is suitable to analyze high-dimensional data, i.e. data with a high 

number of variables. To do this, a dissimilarity matrix (i.e. a Euclidian distance 

matrix) is calculated from the data. Then, eigenvectors and Eigen values are 

calculated. The eigenvectors are used as axes on which to project the data 

points. Since Eigen values measure the amount of data variance explained by 

the eigenvectors, the Eigen values are used to rank the eigenvectors and select 

which ones to use for the graphic representation of the dataset, i.e. which ones 

explain the biggest part of the variance in the data. The analysis is applied to 

multilocus genotypic unphased data as implemented in DARwin (Perrier & 

Jacquemoud-Collet 2006).  

 

Additionally, we used the software STRUCTURE (Pritchard et al. 2000) to infer the 

presence of distinct populations, i.e. single panmictic units, in our data and 

compare these to the geographic definition of populations from which 

individuals were collected. For such simulations we used a running set-up 

similar to that used by (Evanno et al. 2005): an admixture model with K putative 

populations from were the admixed populations draw their alleles, allele 

frequencies independent among populations and 106 iterations for the burn-in 

period as well as for the parameter estimation. Thus, our null hypothesis is that 

our data points aggregate into groups that resemble the populations from where 
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samples were taken. Otherwise, finding more population units than sampled 

would indicate that a cryptic reproductive structure occurs within each 

population. On the contrary, finding less panmictic units than populations 

sampled would indicate high rates of gene flow or too recent divergence 

between the sampled populations.  

 

In order to assess which value of K better fits our data, we follow the guidelines 

by (Evanno et al. 2005). Since STRUCTURE estimates the likelihood of each K 

value used for the simulations, we select K generating the maximum likelihood. 

 

3. Divergence between Species  

 

The latest revised taxonomical treatment of wild tomatoes led to the breakup of 

L. peruvianum into four Solanum species (Peralta et al. 2006), two of which are 

S. peruvianum and S. arcanum (the others being S. huaylasense and S. 

corneliomuelleri). In order to evaluate evidence supporting the split of S. 

arcanum from S. peruvianum, two methods already described (see above) are 

used specifically on data for these two species.  

 

Although the STRUCTURE model assumes that loci are independent within 

populations (which is not the case for sequence data given that STRUCTURE 

considers each nucleotide as a locus), STRUCTURE will perform well as long as 

recombination is significantly high so that LD does not dominate the regions 

under analysis. LD can also affect the analysis when data are not phased, i.e. 

one does not know the full haplotype of individuals. This is the case in our 

dataset, as for the various loci we cannot assign sequences from different loci 

to a given chromosome and sequences are arbitrarily assigned as “a” or “b” at 

each locus. This leads STRUCTURE to interpret each “a” allele at a different locus 

as linked with each other. To investigate whether this might have a strong effect 

on the results of our simulations, we perform a second set of random 

simulations with the same parameters, to check for reproducibility of the results. 

The second set of estimations is performed on a “randomized” set, where 

alleles were randomly renamed as “a” or “b”, creating random phase in the data. 
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Additionally, we use πbetween to estimate the divergence between species. For 

this, we follow the same procedure formerly used by (Arunyawat et al. 2007), 

i.e. we include all pairwise comparisons of sequences from different species 

and exclude pairwise comparisons within the same species. We include in our 

comparisons both S. chilense and S. habrochaites to offer a reference 

framework. Thus, we calculate πbetween for silent, synonymous, and all sites for 

all 6 possible pairwise comparisons among our 4 species and use these data to 

calculate the net number of nucleotide differences (Wakeley 2000). 
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Results 

 

 

Following the format of the Materials and Methods section, the Results section 

is also divided in three sub-sections, named First Project, Second Project, and 

Third Project.  

 

First Project  

 

Our coalescent simulations yield results for levels of nucleotide diversity; 

summary statistics based on the site frequency spectrum; and population 

differentiation under both equilibrium and non-equilibrium demographic history, 

all obtained for three different sampling schemes: local, pooled, and scattered. 

All our findings are consistent between the island model and the stepping-stone 

model, and in this section we focus on quantitative results obtained under 

stepping-stone spatial structure; results for the island model are not presented 

here. 

 

1. The site frequency spectrum under population subdivision 

 

The simplest demographic scenario we analyzed is an equilibrium population 

subdivided into 100 demes; i.e., we first focus on the effects of population 

structure per se without any past changes of population size. As expected, 

characteristics of the site frequency spectra depend strongly on the sampling 

scheme. For the stepping-stone model of population structure, Figure 7 shows 

the simulation results under various levels of gene flow. For a migration rate of 

4N0m = 10, local samples produce values of Tajima’s DT (Fu and Li’s DFL) that 

are significantly different from values expected under the standard neutral 

model (two-tailed test, P < 0.05) in 16% (39%) of all cases, while scattered 

samples give significant results in only 6% (7%) of all simulations. In particular, 

we see that local samples generate values for both statistics that are higher 

than expected for samples from panmictic populations, reflecting a site 

frequency distribution skewed toward intermediate-frequency mutations; this 

result mirrors the recent work of (De & Durrett 2007). 
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For migration rates (in units of 4N0m) between ~2 and ~50, pooled samples 

exhibit site frequency spectra that are broadly intermediate between those of 

local and scattered samples. The differences in sample genealogies (as 

reflected in estimates of DT and DFL) gradually diminish with higher levels of 

gene flow, but some differences among sampling schemes are still apparent at 

fairly high migration rates (e.g., 4N0m > 50 for DT and 4N0m ~100 for DFL; 

Figure 7). Importantly, pooling data from several subpopulations does not 

generate negative values of DT or DFL without an expansion of the total 

population. These observations also hold for the island model, albeit with 

smaller discrepancies between the summary statistics for scattered samples 

and those for the two other sampling schemes (i.e., a less pronounced skew 

toward intermediate frequency mutations for both pooled and local samples; 

data not shown). For lower levels of gene flow (~4N0m < 2), the site frequency 

spectra of local samples gradually shift towards the standard neutral model’s 

expectations, while those of pooled samples yield increasingly positive values of 

both DT and DFL under decreasing levels of migration. We checked our 

simulations of this equilibrium model against analytical results showing that 

local samples ought to be invariant for the level of nucleotide diversity, π, 

irrespective of the level of symmetrical interdeme migration in an island model 

(Strobeck 1987; Slatkin 1987). For both models of population structure, we 

found approximately invariant mean p-values for local samples over the entire 

range of simulated migration rates (data not shown). 

 

2. The impact of population/range expansions on the site frequency 

spectrum 

 

Next, we considered scenarios of (range) expansions under concomitant 

establishment of subdivision of the total species range, as described in the 

materials and methods section. In particular, we simulated a single ancestral 

population that at time τ before the present experienced a fragmentation into I 

demes, where the total number of individuals across the subdivided population 

could vary from NA (the number of individuals in the single ancestral population, 

in which case the expansion factor β = 1) to 100 x NA (equivalent to β = 100).  
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Figure 7 Averages of Tajima’s DT (A) and Fu and Li’s DFL (B) under three sampling schemes as 
a function of levels of gene flow. We simulated an equilibrium stepping-stone model with I = 100 
islands; the simulations were carried out without recombination. Every plotted point is based on 
1000 independently generated data sets. Standard errors of the means are indicated by vertical 
lines. 
 

 

 

 

Figure 8 Averages of Tajima’s DT (A) and Fu and Li’s DFL (B) under species-wide expansion (β 
= 10, τ = 2) as a function of migration rates between demes. We simulated a stepping-stone 
model with 100 demes without recombination. Every plotted point is based on 1000 
independently generated data sets; error bars represent standard errors. 
 

 

A B 

A B 
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Under a steppingstone model with a 10-fold population expansion 8N0 

generations in the past, local samples still exhibit values of DT and DFL that 

would be expected under the neutral standard model conditions, as long as 

gene flow is fairly low (Figure 8); these findings are consistent with simulation 

results by Ray et al. (2003). 

 

Scattered samples, however, contain a clear signal of the species-wide 

expansion at any level of gene flow. The reason is that the coalescent of 

scattered samples almost behaves like a neutral one with a population size 

proportional to the number of demes. Hence, this coalescent picks up the signal 

of expansion as in the panmictic case. The same should hold for any sampling 

scheme under sufficiently high migration, but Figure 8 shows that even under 

high levels of gene flow (4N0m = 100), the site frequency spectrum of local 

samples is still different from that of pooled and scattered samples. Moreover, 

the simulation results plotted in Figure 8 were obtained under a 10-fold 

expansion, and we may expect discrepancies between local and scattered 

samples to extend to even higher migration rates with higher expansion factors 

(see Figure 9). Again, DT and DFL values obtained for pooled samples are 

intermediate between those of local and scattered samples except for very low 

migration rates (~4N0m < 0.5), similar to the case of equilibrium subdivided 

populations (Figure 7 and Figure 8). These simulation results imply that both 

local and pooled samples may be expected to underestimate the extent of any 

species-wide (range) expansion to various degrees, depending on levels of 

gene flow connecting the demes and the age and magnitude of the expansion. 

The latter aspect, however, is influenced by our choice of simulating an 

instantaneous expansion followed by a period of constant population size until 

the time of sampling; an exponential expansion scheme until the present would 

yield higher detectability of expansion from local and pooled samples. 

 

We point out that quantitative details of our simulation results for the three 

sampling schemes depend to some extent on our choice of sampling 20 

sequences distributed over one (‘‘local’’), four (pooled), and 20 demes 

(‘‘scattered’’), respectively.  
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Figure 9 Averages of Tajima’s DT (A) and Fu and Li’s DFL (B) as functions of the expansion 
factor β (with fixed migration rate and time of expansion), with the power of these statistics 
evaluated in the top part of each plot (right Y-axis; power was assessed at a level of P = 0.05). 
The same simulation scheme as in Figure 8 was used. 
 

 

 

 

 

 

Figure 10 The power of Tajima’s DT (A) and Fu and Li’s DFL (B) as a function of the expansion 
time τ (with fixed migration rate and expansion factor). The same simulation scheme as in 
Figure 8 was used; power was assessed at a level of P = 0.05. 
 

 

A B 
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Generally speaking, decreasing the number of sequences sampled per deme 

and/or increasing the number of demes that sequences are sampled from shifts 

the site frequency spectrum more toward that of scattered samples, reflecting 

the diminished impact of the scattering phase of the coalescent process on 

such samples. The exact numerical composition of local and pooled samples 

also affects the migration rate at which the expected DT and DFL values for 

pooled samples drop below those for local samples (see Figure 7 and Figure 8). 

 

3. Power of DT and DFL to detect expansion under different sampling 

schemes and expansion times 

 

Illustrated by an intermediate level of interdeme migration (4N0m = 10), we 

assessed the power of the test statistics DT and DFL under a range of expansion 

factors and times of expansion. For the three sampling schemes, Figure 9 

summarizes the power of DT and DFL assuming an expansion time of t = 8N0 

generations ago. The low power of local samples to detect significant 

departures from the standard neutral model regardless of the magnitude of the 

species-wide expansion is striking; qualitatively, this is consistent with results by 

Ray et al. (2003). Even if the species-wide expansion was 100-fold, local 

samples deviate from the standard neutral model expectations in only 8% (for 

DT) and 12% (for DFL) of all cases under these conditions. In sharp contrast, 

scattered samples deviate from standard neutral expectations in 98% (99%) of 

all cases for β = 100.  

 

Next, we illustrate the effect of the timing of the expansion for a fixed 10-fold 

expansion and a migration rate of 4N0m = 10. Under these conditions, 

expansion times in the approximate range 1 < τ < 15 can be detected in 

principle, but again with striking differences in power exhibited by local vs. 

scattered samples (Figure 10). The shape of the curves in Figure 10 can be 

explained intuitively: if τ is very small (i.e., establishment of population structure 

was very recent), samples appear to be drawn from a panmictic population of 

constant size. On the other hand, if τ is very large, samples appear to be drawn 

from an equilibrium subdivided population and hence the expansion cannot be 

detected. Under the island model, all results are qualitatively the same but with 
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even smaller power to reject stable population size for local samples (at most 

10% less power; data not shown). As these power assessments are based on 

simulated sample genealogies of single loci, the actual power available with 

empirical multilocus data would be correspondingly higher. 

 

All simulation results appear to depend only weakly on the number of demes, as 

long as I >> n. However, an increase in the number of demes carries important 

connotations, as the genealogical signatures of past expansions remain 

detectable for longer time periods than with fewer demes. For example, 

simulating with a constant ratio τ/I = 0.02 (i.e., equivalent to τ = 2 for I = 100, τ = 

10 for I = 500, etc.) under otherwise equal demographic conditions, we obtained 

fairly constant but sampling-specific estimates of DT and DFL (data not shown). 

One interpretation is that the effective population size is proportional to I but 

depends on the sampling scheme. These observations imply approximately 

equal detectability of expansions (for a given sampling scheme) over a large 

range of I and thus the dependency of ‘‘relevant’’ τ -values on I. This latter effect 

is a direct consequence of lengthening the collecting phase of the coalescent 

process with increasing numbers of demes in the total population. 

 

Second Project 

 

1. Ka/Ks ratios and McDonald-Kreitmen tests 

 

Taking divergence between species (or to an outgroup) into account, the Ka/Ks 

ratios are lower than one for all species and all loci (data not shown). Loci 

CT166 and CT208 contain zero or few non-synonymous SNPs, indicating that 

they are under strong purifying selection. The McDonald-Kreitman test does not 

show significant departure from neutrality, except for two marginally significant 

cases (data not shown). At locus CT066 in S. habrochaites, a higher silent 

diversity than expected is observed (Fishers exact test, P < 0.05). A higher non-

synonymous diversity than expected is detected for CT198 in S. arcanum 

(Fishers exact test, P < 0.05). The latter may hint at positive selection. 
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2. Pooling effect and purifying selection 

 

The pooling of several population samples shows an excess of low-frequency 

(derived) variants at synonymous polymorphic sites (Table 3). This is because 

the pooled sample for synonymous sites is primarily affected by species-wide 

demographic events such as population size expansion (Stadler et al. 2009). 

Very negative Tajima’s DT values at synonymous (S) sites for S. peruvianum 

and S. arcanum indicate strong expansion as opposed to S. chilense and S. 

habrochaites (Table 3; see average across loci).  

 

With the exception of S. arcanum, DT values of all sites are smaller than those 

of synonymous sites for most loci (and for the average across loci), whereas 

silent sites exhibit values that are on average close to those of synonymous 

sites or only slightly smaller (Table 3). Thus comparison of S and silent sites 

(S+NC) indicates that non-coding regions exhibit a slight excess of low-

frequency polymorphisms at the species level (except in S. arcanum).  

 

Species Sites CT066 CT093 CT166 CT179 CT198 CT208 CT251 CT268 

Average 

across 

Locia 

synonymous -0.485 -1.436 -1.879* -0.659 -0.205 -0.981 -0.392 -0.527 -0.726 

silent -0.485 -1.680 -1.674 -0.655 -0.792 -1.129 -0.781 -0.527 -0.954 
S. 

peruvianum 
all sites -0.561 -1.688 -1.683 -0.755 -0.783 -1.149 -0.938 -0.797 -1.052 

synonymous -0.293 -0.49 -0.560 0.010 -0.858 -1.480 0.746 0.808 0.056 

silent -0.293 -0.858 0.006 -0.634 -1.099 -0.410 0.097 0.808 -0.163 S. chilense 

all sites -0.661 -1.400 -0.103 -0.714 -1.075 -0.410 -0.246 0.065 -0.497 

synonymous -0.225 -1.360 -1.164 -0.241 -0.147 0.210 0.133 0.214 -0.256 

silent -0.225 -1.623 -1.444 -1.198 0.202 -0.654 0.231 0.214 -0.423 
S. 

habrochaites 
all sites -0.389 -1.773 -1.480 -1.184 0.19 -0.654 -0.624 -0.140 -0.675 

synonymous 0.190 -1.717 -1.041 0.502 -1.44 -0.938 -0.753 -1.286 -0.812 

silent 0.190 -1.718 -0.240 0.347 -0.268 -1.775 -0.894 -1.286 -0.795 S. arcanum 

all sites 0.032 -1.820 -0.240 0.237 -0.207 -1.775 -0.964 -1.108 -0.814 

Table 3 Values of Tajima’s DT per locus and per species for the pooled samples. SNPs are 
grouped by categories: synonymous, silent sites (non-coding and synonymous), and all sites. 
na: non applicable (absence of coding region or non-synonymous sites). * significance level of 
P<0.05 a Weighted average across 8 loci.  
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All polymorphic sites (S+NC+NS) show a smaller DT than silent sites, indicating 

that purifying selection acts on coding regions by keeping NS deleterious 

mutations at low frequency (except in S. arcanum). Few comparisons, however, 

do not follow this trend because some loci (CT066 and CT268) have only 

coding region or have only one NS site (CT208 in S. peruvianum). 

 

3. Ancestral polymorphism and deleterious mutations 

 

The distribution of polymorphism between pairs of species indicate that most of 

the shared polymorphisms are high-frequency variants (f > 20%) for all types of 

sites (S*, NS* and NC*). This is reflected in the scale of the y and x axes of 

Figure 11b (common polymorphisms) having a ten fold difference compared to 

that of Figure 11a (rare and intermediate polymorphisms). Not surprisingly, very 

few rare shared NS sites are found in species comparisons because since the 

time of divergence, selection keeps deleterious mutations at low frequency, and 

they are subject to elimination by drift in one or both species. The five other 

regressions remaining for intermediate and common NS sites, as well as NC 

sites show regression slopes significantly different from 1 (P <0.001) (Figure 

11). Purifying selection is thus acting in coding regions on NS mutations and in 

non-coding regions. 

 

Similar regression slopes are found for NS* as a function of S* for intermediate 

and common frequencies, indicating that non-synonymous SNPs shared among 

species are neutral (or very mildly deleterious; Figure 11). The slope of the 

regression for NS* as function of S* is 0.137 for intermediate and 0.132 for 

common-frequency SNPs, indicating that approximately 87% of the shared non-

synonymous SNPs between species are under purifying selection. 

 

Selection against deleterious mutations in coding regions is stronger than in 

non-coding regions as the comparisons of NC* and S* have higher regression 

slopes than NS* and S* (Figure 11). The rationale being that for a given shared 

amount of S* between two species higher amounts of shared NC* than NS* are 

found because purifying selection is weaker at NC sites than NS sites. 

Approximately 52% of the non-coding sites can be estimated as being under 
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purifying selection (one minus the slope of the common NC* regression). There 

is an excess of NC* shared polymorphisms for the comparison S. peruvianum-

S. arcanum (Figure 11a). When this point is removed, the regression equation 

for NC*and S* for intermediate-frequency sites becomes y=0.578x-0.067 (R2 = 

0.942), whose slope is then not different from the other regressions slopes for 

NC* and S* (Figure 11). Such a high amount of NC sites shared between S. 

peruvianum and S. arcanum (Figure 11a) at intermediate polymorphism 

frequency could indicate recent introgression between these two species at one 

or several introns. 

 

4. Distribution of fitness effects 

 

Estimates of the demographic parameters reveal that two out of four species 

have undergone expansion. The strongest expansion is found for S. 

peruvianum with a 10-fold expansion (Table 4, N2/N1=10), in accordance with 

the negative DT at synonymous sites (Table 3). S. arcanum exhibits a 3-fold and 

very recent expansion. S. habrochaites shows evidence for a very recent 

expansion (barely negative DT in Table 3). However, S. chilense shows a 10-

fold expansion that occurred much further in the past (3.5 times older) than for 

S. peruvianum (Table 4). The signature of expansion in this species is thus not 

detectable by DT (Table 3).  

 

One minus the ratio NC*/S* indicate the percentages of sites under selection in 

non-coding regions: 64, 29, 30, and 35% for S. peruvianum, S. chilense, S. 

habrochaites, and S. arcanum, respectively. For non-coding sites, the DFE has 

a negative mean for all species (−NeE(s)), confirming that negative purifying 

selection is the main force acting on the evolution of these intronic sequences. 

The strength of purifying selection is weak in S. habrochaites, S. chilense, and 

S. peruvianum [−NeE(s) is between 2 and 340], which is several orders of 

magnitude lower than in S. arcanum (Table 4). The value of −NeE(s) given for 

S. arcanum being very large, we do not think that such measure is realistic and 

meaningful. However, from the distribution of fitness effect of mutations, it is 

clear that new mutations in S. arcanum are either neutral or very strongly 

deleterious, indicative of a huge variance of the DFE. The shape of the 
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distribution of fitness effects for non-coding sites is a negative exponential for all 

species, meaning that most of the mutations have very mildly deleterious effects 

(0> NeE(s)> −1) (Table 4). However, the exponential DFE in S. arcanum 

exhibits a majority of very mildly deleterious mutations (58%) but also 36% of 

strongly deleterious fitness effects (−NeE(s)>100). Note that S. peruvianum and 

S. chilense have a very similar DFE that is substantially different from that of S. 

arcanum. 

 

 S. peruvianum S. chilense S. habrochaites S. arcanum 

N2/N1 10 10 8.79 3.07 

t/N1 8.27 26.83 0.031 2.21 

−NeE(s) (mean effective  

selection intensity) 
337 79.5 2.73 *nqr 

b (shape of gamma 

distribution) 
0.072 0.079 0.448 0.02 

f0 (proportion of invariants 

sites) 
0.61 0.81 0.84 0.8 

LogL (log likelihood) -2593 -1877 -1139 -1865 

0 – 1 (very mildly 

deleterious) 
0.565 0.603 0.478 0.582 

1 – 10 0.102 0.12 0.462 0.027 

10 – 100 0.119 0.139 0.06 0.029 

Proportion 

of mutants 

in −NeE(s) 

range >100 (very 

strongly 

deleterious) 

0.214 0.138 0 0.362 

Table 4 Analysis of the demographic and DFE parameters for the non-coding sites (Keightley & 
Eyre-Walker 2007). The ratio of current and ancestral effective population size (N2/N1) and the 
ratio of time of expansion (t/N1). The proportion of mutants within certain range of selection 
coefficients is given as intervals of NeE(s). Coefficients of NeE(s) between 0 and 1 represent 
very mildly deleterious mutations, and for >100 mutations with very strong deleterious effects on 
fitness. *nqr: non quantitatively relevant. The mean NeE(s) given has a value greater than 109 
which is not quantitatively relevant as a population genetics parameter. 
 

In coding regions, the strength of purifying selection is more homogeneous 

among species and very similar between S. peruvianum, S. habrochaites, and 

S. arcanum. The percentage of sites under purifying selection for coding 

regions are 90, 87, 91, and 89%, respectively, for S. peruvianum, S. chilense, 

S. habrochaites, and S. arcanum. The selection coefficients −NeE(s) for NS 
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sites are several orders of magnitude larger than for NC sites except for S. 

arcanum (Table 5). Most new NS mutations have highly deleterious effects on 

fitness (Table 5). However, S. chilense show selection coefficients [NeE(s)= 

−318] that are several orders of magnitude weaker than for the other three 

species [NeE(s)>2×104]. Note that S. arcanum has experienced a similar 

strength of selection (and DFE) as S. peruvianum despite having a smaller 

effective population size. Note that in general, the log-likelihood values of the 

parameter estimates are lower for S. peruvianum than for other species. 

 

 S. peruvianum S. chilense S. habrochaites S. arcanum 

−NeE(s) (mean effective 

selection intensity) 
18.5×105 318 2.19×104 1.65×105 

b (shape of gamma 

distribution) 
0.138 0.38 0.164 0.157 

f0 (proportion of invariants 

sites) 
0.62 0.63 0.92 0.78 

LogL (log likelihood) -2246 -1890 -1073 -1446 

0 – 1 (very 

mildly 

deleterious) 

0.109 0.087 0.155 0.121 

1 – 10 0.041 0.122 0.071 0.053 

10 – 100 0.057 0.277 0.104 0.076 

Proportion 

of mutants 

in −NeE(s) 

range >100 (very 

strongly 

deleterious) 

0.793 0.514 0.67 0.75 

Table 5 Analysis of the DFE parameters for the non-synonymous sites (Keightley & Eyre-
Walker 2007). 
 

The proportion of adaptively driven substitutions (α) is negative or very close to 

zero in S. arcanum, and S. habrochaites similar to values found by the method 

of Bierne & Eyre-Walker (2004; data not shown). Discrepancies are found in 

estimates of α for S. peruvianum and S. chilense between the two methods 

(data not shown). Note, however, that all confidence intervals obtained by 

maximum likelihood with the DoFE software of Bierne & Eyre-Walker (2004) 

comprise α values found by the method of (Eyre-Walker & Keightley 2009), and 

are centered around zero. This indicates that these eight housekeeping genes 

do not show evidence for strong positive selection. 
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Figure 11 Amount of shared polymorphic sites for the six pairwise comparisons between 
species. The three frequency classes are rare (SNP frequency <5%, diamonds), intermediate 
(5%<SNP frequency<20%, rectangle), and common (SNP frequency>20%, triangle). The 
proportion of non-coding polymorphic sites (NC*) is in black, and non-synonymous sites (NS*) in 
grey. Regression equations and R2 are indicated. A. The rare NC* as a function of S* 
(y=0.534x+0.04; R2 =0.19) indicated by the black long dashed line. The intermediate NC* as a 
function of S* (y=0.725x-0.03; R2 =0.36) is denoted by the black short dashed line, and the 
intermediate NS* as a function of S* (y=0.137x-0.02; R2 =0.94) by the grey short dashed line. 
The pairwise comparison between S. peruvianum and S. arcanum is highlighted for 
intermediate NC* (per/arc). B. The common NC* as a function of S* (y=0.481x+2.28; R2 =0.55) 
is denoted by the black short dashed line, and the common NS* as a function of S* 
(y=0.132x+0.69; R2 =0.88) by the grey short dashed line. Pairwise comparisons between S. 
chilense (or S. peruvianum) with S. arcanum and S. habrochaites are shown respectively as 
chil/arc and chil/hab (and per/arc and per/hab). 
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FST for S. peruvianum by type of site
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FST for S. habrochaites per type of site
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FST for S. arcanum per type of site
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Figure 12 Boxplot of FST distribution for each polymorphic site (SNP) for non-coding, 
synonymous, and non-synonymous sites. FST values that are more than 1.5 times the 
interquartile range from the nearest quartile are displayed as diamonds. For more than 3 times 
the interquartile range, they are displayed as crosses. The mean of the distribution is indicated 
by a full black rectangle.  
The three pairwise Wilcoxon tests to determine which type of site have higher FST values are 
indicated. The P-values are corrected (divided by 3 following a Bonferroni correction) and 
significance levels are indicated as follows: * P-value <0.1; *** P-value <0.001; ns =non-
significant. A for S. peruvianum, B for S. chilense, C for S. habrochaites, and D for S. arcanum. 
 

C 
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5. Purifying selection and metapopulation structure 

 

Differences in FST between synonymous and NC or NS sites are due to the 

effect of purifying selection increasing the number of low frequency 

polymorphisms, which will be found as private polymorphism in one population, 

and increase differentiation among populations (FST). For all species the 

distribution of FST depends the types of site (NC, S or NS) with highly significant 

P-values (P<0.001), S. arcanum having the highest P-value (P=0.00027; Figure 

12). However, not all pairwise comparisons show differences between the 

distributions of the types of sites in the four species. In S. peruvianum, FST 

values for synonymous sites are lower than for non-synonymous but not 

different from non-coding sites (Figure 12a). In S. chilense and S. habrochaites, 

all pairwise comparisons show higher FST distributions for NC and NS sites 

compared to S sites, with NC sites being intermediate between low FST at S 

sites and high at NS sites (Figure 12b, c). This indicates that in these species 

there is an excess of private polymorphism (thus high FST) at NC and NS sites 

compared to synonymous sites. Finally, in S. arcanum no significant difference 

could be detected between NS and S sites (Figure 12d). NS and NC sites have 

a lower mean FST value compared to synonymous sites only in S. arcanum. 

Note that the power of these non-parametric tests is low, especially due to the 

non-normal (highly skewed) distributions of FST  values. Using BayeScan on 

polymorphic SNPs with frequency higher than 5% (in the species) reveals a 

clear pattern for differences in the Fst distribution between types of sites in S. 

chilense. Such a pattern was not observed in any of the three other species, 

where all FST values where similar for S, NC and NS sites (data not shown). 

 

The selection pressure acting on NS or NS sites can be observed at the 

population level when calculating the ratios NS*/S* and NC*/S* for private 

polymorphisms for each population. Low ratios would indicate high levels of 

purifying selection, and high ratios (> 1) would show weak selection or relaxed 

selective constrains. Species with higher effective population size (S. 

peruvianum and S. chilense) do not show strong variation of these ratios among 

populations (data not shown). This tends to indicate that levels of purifying 
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selection are homogeneous among populations in these two species. However, 

in S. arcanum and S. habrochaites variable ratios are observed for several 

different populations, mainly showing a noticeable excess (up to six times) of 

NC or NS sites compared to the number of S sites. Whether this reflects 

variability in the strength of selection among populations, or random effects of 

drift cannot be assessed here due to small sampling sizes. 

 

Third Project 

 

1. Estimation of Nucleotide Diversity and Neutrality Tests 

 

Diversity levels measured through Watterson’s θ (Watterson 1975; Figure 13) 

are similar to those found in S. peruvianum and S. chilense (Stadler et al. 

2008). Similarly, π (Nei 1987; Figure 14) shows levels of diversity per locus 

corresponding to those estimated through θw. Note that the Cochabamba 

population of S. arcanum exhibits no polymorphism at two loci (CT066 and 

CT198). Also noteworthy, θW values for the pooled sample (i.e., all populations 

from a species analyzed together as a single population) in S. arcanum show 

higher values than any single populations from the species. S. habrochaites 

shows a similar, although less evident, tendency. This indicates that private 

alleles are found in each population due to limited gene flow among demes. By 

pooling populations of the species, high amount of private polymorphisms will 

contribute to increase significantly θW. This is not the case for π, because 

pairwise comparisons take into account the frequency of alleles. In short, by 

pooling all populations from a species, an excess of low-frequency 

polymorphism is created.  

 



 - 65 - 

 

0.0000

0.0021

0.0042

0.0063

0.0084

0.0105

0.0126

0.0147

0.0168

0.0189

Ancash 0.0026 0.0004 0.0027 0.0100 0.0081 0.0031 0.0020 0.0041

Canta 0.0023 0.0014 0.0020 0.0067 0.0019 0.0027 0.0014 0.0028

Otuzco 0.0042 0.0027 0.0021 0.0144 0.0126 0.0057 0.0019 0.0053

Contumaza 0.0025 0.0018 0.0080 0.0074 0.0101 0.0057 0.0004 0.0048

Lajas 0.0003 0.0005 0.0017 0.0048 0.0151 0.0027 0.0015 0.0039

Pooled Habrochaites 0.0036 0.0033 0.0069 0.0153 0.0118 0.0049 0.0032 0.0064

Otuzco 0.0074 0.0066 0.0104 0.0114 0.0180 0.0073 0.0122 0.0053

Rupe 0.0071 0.0031 0.0088 0.0130 0.0161 0.0064 0.0048 0.0048

San Juan 0.0063 0.0017 0.0065 0.0124 0.0119 0.0078 0.0058 0.0043

Cochabamba 0.0000 0.0011 0.0062 0.0112 0.0000 0.0027 0.0058 0.0012

Pooled Arcanum 0.0081 0.0074 0.0149 0.0129 0.0170 0.0123 0.0132 0.0069

CT066 CT093 CT166 CT179 CT198 CT208 CT251 CT268

 
Figure 13 Watterson’s Theta values per population and locus for S. habrochaites and S. 
arcanum. Habrochaites and Arcanum indicate the pooled sample (see text) of all populations of 
each species.  
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Figure 14 Average number of pairwise differences per population and locus for S. habrochaites 
and S. arcanum. Habrochaites and Arcanum indicate the pooled sample (see text) of all 
populations of a species.  
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Figure 15 Tajima’s D values per population for S. habrochaites across all loci analyzed. ‘Pooled 
Habrochaites’ refers to the pooled sample (see text). 
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Figure 16 Tajima’s D values per population for S. arcanum across all loci analyzed. ‘Pooled 
Arcanum’ refers to the pooled sample (see text). 
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Differences between loci are visible. Locus CT198 presents the highest degree 

of diversity, while locus CT093 shows the lowest. Diversity levels are largely 

affected by the locus and to a lesser degree by the species. This reflects 

different selective pressures per locus, i.e. loci under selective constraints 

would show less diversity than those under more relaxed conditions. Since 

there is a clearly stronger locus effect on diversity (than, for example, a species 

effect), we can hypothesize that this reflects differences in selective pressures 

between loci. 

 

Tajima’s D (Tajima 1989) test results are shown per population (Figure 15 and 

Figure 16) and per species ( 

Figure 17). Most values do not significantly deviate from the standard neutral 

model, exceptions being the Canta population from S. habrochaites (for loci 

CT208, CT251 and CT268); the Otuzco population from S. arcanum (for locus 

CT208). Another population with a particular pattern is the Cochabamba 

population from S. arcanum. This population shows positive (although not 

significant, except in the case of CT268) values for all loci except CT066 and 

CT198, where no polymorphism is found. There is no particular locus exhibiting 

recurrent evidence of non-neutral values. Again, the pooled sample is 

informative (see above). For S. arcanum, a significantly negative value of 

Tajima’s D is found for locus CT093. The distribution of the values for S. 

arcanum and S. habrochaites is in agreement with that found for S. chilense 

and S. peruvianum in previous studies (Arunyawat et al. 2007). 

 

More intriguing yet is locus CT198. This locus presents a mutant allele with a 

premature stop codon at position 245 (located in the last third of the second 

exon, see Figure 19). The mutant allele presents much less polymorphism than 

“wild type” alleles although this locus present the highest amount of nucleotide 

diversity from all loci analyzed (also in S. peruvianum and S. chilense). 

However, coalescent simulations used to test the number of haplotypes (Nei 

1987) showed no departure from neutral expectations (data not shown).  
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Figure 17 Tajima’s D values per locus averaged across all populations in each species. 
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Figure 18 Results of the R2 test for population expansion. The red lines show the lower limit of 
the 95% confidence interval evaluated using coalescent simulations. Values under this limit are 
considered significant.  
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Figure 19 Image showing part of the alignment of polymorphic sites of a few alleles. Above the 
horizontal line is the mutant allele presenting the premature stop codon (highlighted in yellow). 
Note the lack of polymorphism in the mutant allele compared to the “wild type”. 
 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

S. arcanum 0.46 0.30 0.29 0.13 0.73 0.24 0.25 0.20

S. habrochaites 0.53 0.35 0.40 0.27 0.74 0.03 0.44 0.32

CT066 CT093 CT166 CT179 CT198 CT208 CT251 CT268

 
Figure 20 AMOVA FST values per species and locus.  
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Figure 21 Bar plot for S. arcanum produced by STRUCTURE with K = 3, which obtained the 
maximum likelihood value.  
 

 

 
Figure 22 Bar plot for S. habrochaites produced by STRUCTURE with K = 3, which obtained the 
maximum likelihood value.  
 

 

 

 Rupe San Juan Cochabamba 

Otuzco 0.20 0.23 0.33 

Rupe   0.02 0.24 

San Juan     0.26 

Table 6 Pairwise FST averaged across all loci for S. arcanum. 
 

 

 

  Canta Otuzco Contumaza Lajas 

Ancash 0.14 0.25 0.25 0.33 

Canta   0.29 0.25 0.26 

Otuzco     0.15 0.25 

Contumaza       0.14 

Table 7 Pairwise FST averaged across all loci for S. habrochaites. 
 

Otuzco Rupe San Juan Cochabamba 

Canta Lajas Contumaza Otuzco Ancash 
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The mutant allele is found in all populations of S. habrochaites except Ancash 

and in only one population of S. arcanum, namely Otuzco. It is worth mentioning 

that Otuzco is the only collection site where both species were collected 

simultaneously since their sampling populations are sympatric at this location. 

Furthermore, the mutant allele is never present in homozygous state, which 

would be in agreement with the mutation’s rendering the allele non-functional. 

This, however, would be in contradiction with the high frequency in which it is 

found (14-50% in each population, 35% species-wide).  

 

Interestingly, locus CT198 presents the highest level of population structure as 

determined by AMOVA FST (Figure 20). This might indicate very low levels of 

gene flow between populations at this locus. This, in turn, might explain how the 

mutant allele (potentially deleterious) may have been preserved within 

populations due to smaller effective population sizes, making genetic drift 

stronger than purifying selection. However, average FST estimates of all within-

species pairwise population comparisons, including and excluding the mutant 

alleles (data not shown), produced very low values for this locus. Still, the FST 

value of the comparison between wild type and mutant alleles was very high 

(0.78), clearly implying that mutant and wild type alleles are highly differentiated 

from each other. Additionally, locus CT198 presents positive Tajima’s D values 

in every single population and a non-significant value for R2 (data not shown). 

Noteworthy, haplotype networks for this locus show that mutant alleles are more 

closely related to S. habrochaites than to S. arcanum. Also, they show between 

one and three mutational steps between all versions of the allele, while wild 

type alleles show up to 17 mutational steps between them. Taken together, 

these results point to balancing selection and introgression of this allele from 

another species, but we need to take into account metapopulation dynamics 

before further assessing this locus. 
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Figure 23 PCoA for S. arcanum. Colors indicate population of collection: Otuzco, Rupe, San 
Juan and Cochabamba. The Y- and X-axes explain 28% and 25% of the variability of the data, 
respectively. 
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Figure 24 PCoA for S. habrochaites. Colors indicate population of collection: Canta, Otuzco, 
Contumaza, Lajas and Ancash. The Y- and X-axes explain 40% and 15% of the variability of the 
data, respectively. 
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2. Species expansion 

 

R2 statistic (Ramos-Onsins & Rozas 2002) is used to assess whether the 

species studied underwent a recent population size expansion. According to 

these results (Figure 18), S. peruvianum has undergone a recent population 

expansion. S. chilense and S. habrochaites, show no signature of this 

phenomenon. S. arcanum shows a significant value (p ≤ 0.05), although not as 

evident as that of S. peruvianum. Therefore, one can argue that the expansion 

in S. arcanum was weaker or it was not as recent as that of S. peruvianum.  

 

3. Population Structure in S. arcanum and S. habrochaites 

 

Haplotype networks fail to show any pattern in the distribution of haplotypes 

among populations (data not shown). This indicates a large amount of 

recombination as well as the presence of shared polymorphism between 

populations and species.  

 

Pairwise FST (Hudson & Slatkin 1992), shows population differentiation within 

species (Table 6, Table 7). Most remarkably, the Rupe and San Juan 

populations of S. arcanum show very little differentiation, indicating these 

populations could be considered as one interbreeding unit. This may be 

expected since these two populations are only separated by a distance of 28 

km, while all other populations sampled in this species are separated by 

distances ranging between 68 km to 161 km. We also evaluated an isolation by 

distance pattern by estimating the correlation of pairwise FST to geographic 

distance (data not shown). The correlation was found significant for S. arcanum 

with a correlation coefficient of r2=0.36. This was not the case for S. 

habrochaites. The caveat to this result is that one would need a much more 

extensive sampling in order to be able to draw conclusions about isolation by 

distance in this species. 

 

AMOVA FST (Excoffier et al. 1992), shows significant (p ≤ 0.01) levels of 

population differentiation (Figure 20) for S. arcanum at all loci. Similarly, S. 
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habrochaites shows significant values for all except one locus (CT208). Taken 

together, these results suggest that (as for diversity) population differentiation is 

largely locus-specific. Additionally, it is clear that, in general, S. arcanum has 

lower levels of population differentiation than S. habrochaites (except for one 

locus, namely CT208).  

 

While our AMOVA FST values are in general correlated with the average of 

pairwise population comparisons per locus (data not shown), this is not the case 

for locus CT198. In this case, AMOVA FST shows the highest values for both 

species when compared to all other loci. However, FST averages for this locus 

fall into the distribution of all loci.  

 

STRUCTURE analysis for each species shows that the maximum likelihood is 

reached for K = 3 for both species. This is surprising as we have sampled 4 to 5 

different populations. Thus, a physically distinct population in the field is not 

necessarily a panmicticly reproductive unit in genetic terms. However, previous 

results from our lab (Arunyawat et al. 2007) also showed moderate amounts of 

population structure in S. peruvianum and S. chilense. This means that our 

results are in accordance with previous findings on metapopulation structure for 

wild tomatoes. For this value of K the bar plots show very different results for 

each species.  

 

In the case of S. arcanum (Figure 21), the Otuzco cluster is composed mainly of 

alleles coming from two different putative populations. The Cochabamba cluster 

is made up exclusively of two populations, both present in Otuzco (one of them 

only present in one individual). Rupe and San Juan are a mixture of all three 

putative populations, where the one present only in one individual in Otuzco 

dominates all other populations. This result confirms what we found through 

FST: that Rupe and San Juan are genetically very similar to each other and may 

be considered as one population. Also, it is clear that Otuzco is the most 

dissimilar population when compared to the other three.  
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Figure 25 Bar plot for S. arcanum and S. peruvianum produced by STRUCTURE with K = 4.  
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Figure 26 PCoA using all polymorphic sites of S. peruvianum (gray), S. chilense (green), S. 
habrochaites (blue) and S. arcanum (orange). The Y- and X- axes explain 34% and 19% of the 
variability of the data, respectively. 
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Figure 27 PCoA using non-synonymous sites of S. peruvianum (gray), S. chilense (green), S. 
habrochaites (blue) and S. arcanum (orange). The Y- and X- axes explain 25% and 14% of the 
variability of the data, respectively. 
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Figure 28 PCoA using synonymous sites of S. peruvianum (gray), S. chilense (green), S. 
habrochaites (blue) and S. arcanum (orange). The Y- and X- axes explain 22% and 15% of the 
variability of the data, respectively. 
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For S. habrochaites, STRUCTURE results (Figure 22) show that the Ancash 

cluster is the least similar to all others (composed almost entirely of a single 

putative population). All other clusters, except Canta, are made up of the same 

2 putative populations. Thus, with the exception of Ancash and Canta (which 

share the same dominant putative population), a North-South gradient is 

observed, where the northernmost Lajas is almost completely made up of a 

single putative population, while the proportion of this is gradually replaced by 

the predominant putative population of Otuzco (southern-most in this group). 

This phenomenon might be explained by higher gene flow between the Otuzco, 

Cochabamba and Lajas populations, since they are located closer together 

(between 65 to 150 km away from each other) than Ancash and Canta (190 to 

590 km). 

 

Using PCoA, we can visually assess the degree of similarity between 

individuals and compare it with the populations from which they are collected. 

PCoA confirms the results from STRUCTURE. In the case of S. arcanum (Figure 

23), it clusters together Rupe and San Juan populations, which we have shown 

to be very similar to each other (see above). A North-South pattern can be 

observed on the Y-axis. As for S. habrochaites (Figure 24), the results are more 

complex. The Ancash population is clearly separated from all others, thus 

confirming that this population is most differentiated from all others. Otuzco, 

Contumaza and Lajas, are distributed along the Y-axis in a gradient that 

matches the one shown by STRUCTURE between Lajas and Otuzco.  

 

4. Divergence between Species  

 

PCoA results vary greatly depending on whether all sites or a subset of sites 

(synonymous, non-synonymous or silent) are used. Using all polymorphic sites 

(Figure 26), PCoA shows a very clear differentiation between S. peruvianum 

and S. arcanum. What's more, the closest species to S. peruvianum is S. 

chilense, according to this analysis. However, by performing the same analysis 

using only synonymous sites (Figure 28) S. peruvianum clusters closely with S. 

arcanum. Furthermore, by using non-synonymous sites to perform the analysis 

(Figure 27) PCoA cannot discriminate between S. peruvianum and S. arcanum. 
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This clearly indicates that non-coding regions within the sequenced loci are 

most similar between S. chilense and S. peruvianum, but quite divergent 

between S. peruvianum and S. arcanum. Arguably, one could assume that S. 

peruvianum and S. arcanum have evolved under the same selective pressures. 

This would mean that the difference between the plots obtained by using 

synonymous and non-synonymous sites might be explained as selection acting 

directly on non-synonymous sites and indirectly on synonymous sites linked to 

the former. 

 

STRUCTURE results for S. peruvianum and S. arcanum combined (Figure 25) 

show a maximum likelihood value at K=4. This means that the alleles present in 

S. peruvianum and S. arcanum are best explained as coming from four putative 

populations. These results (obtained using all polymorphic sites) confirm the 

clear differentiation between these two species since S. peruvianum is mostly 

comprised of two population which are different from those that mainly compose 

S. arcanum (Figure 25, red and blue in S. peruvianum, and green and yellow in 

S. arcanum). Furthermore, if one compares this graphic to that based 

exclusively on populations of S. arcanum (Figure 21), it is clear that the two 

putative populations present in Figure 25 refer to the two clusters visible in the 

former (i.e. the cluster for Otuzco and the cluster for Rupe, San Juan and 

Cochabamba). 

 

We also performed the same analysis using the whole dataset (i.e. all four 

species: S. peruvianum, S. chilense, S. habrochaites, and S. arcanum). 

Likelihood values were very similar for K≥4 (Figure 29). However, all bar-plots 

(Figure 30), regardless of the value of K (as long as K≥4) show 4 major putative 

populations composing the dataset, which exactly match the 4 species that 

compose the dataset. Furthermore, repeating the analysis using the randomized 

dataset (see Materials and Methods for details), reproduces the same exact 

results. Thus, we confirm that having the phase of sequence data, i.e. the 

labeling of alleles as “a” or “b”, does not have any effect on the results of 

STRUCTURE. These results also confirm the divergence between S. peruvianum 

and S. arcanum, which appear as two distinct species. However note that for 

K=4 or K=8, some hints for introgression (or ancestral polymorphism) can be 
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found between the two species, e.g. in Figure 30 A: yellow bars characteristic of 

S. peruvianum are found in S. arcanum. 

 

We get very different results if we look into πbetween (Figure 31). In this case, we 

get overall lower values using all sites and the highest values using 

synonymous sites. Still, it is worth mentioning that the S. arcanum-S. 

peruvianum comparison has the lowest values in all cases except when using 

synonymous sites to perform the analysis.  

 

The contrasting difference between πbetween results and those obtained using 

PCoA and STRUCTURE, might lie in the fact that πbetween is based on pairwise 

comparison, meaning it takes into account the frequency in which different 

alleles appear in each population. This can be interpreted as synonymous sites 

having a higher amount of shared polymorphism but in different frequencies 

within each S. peruvianum and S. arcanum. This is an important point, since 

gene flow would not only produce shared polymorphism but would also 

homogenize its frequency. 
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Figure 29 Likelihood values for the 4 species dataset (results in Figure 30). The likelihood of 
each K is computed for the real data and the randomized dataset to explore the effect of having 
unphased data.  
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Figure 30 Barplots of STRUCTURE analyses performed on all 4 species. Numbers denote 
species: 10-12 and 71, S. chilense; 23-26, S. peruvianum; 36-39 and 72, S. habrochaites; and 
40-43, S. arcanum. Note that although STRUCTURE software orders populations in numerical 
order (i.e. populations 71 and 72 are lumped at the right end of the graphic), they still clearly 
show the same features of the species to which they belong. Letters denote dataset and value 
of K: A, real data analyzed with K=4; B, randomized data (see text) analyzed with K=4; C, real 
data analyzed with K=8; and D, randomized data analyzed with K=8. Notice that all graphs have 
a single interpretation, i.e. that each species cluster is formed of a single putative ancestral 
population, with very few alleles coming from a different putative ancestral population. 
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Figure 31 πbetween values per site calculated for all possible pairwise comparisons among the 
four species analyzed: S. peruvianum, S. chilense, S. habrochaites and S. arcanum.  
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Discussion 

 

 

In this study, we have focused our observations on diversity, demography and 

structure. In the first, theoretical, project we used coalescent simulations to 

assess the effect of sampling on summary statistics. For the other two, 

empirical, projects we used sequenced data of eight EST-based reference loci 

from four wild tomato species (S. peruvianum, S. chilense, S. habrochaites and 

S. arcanum). For the second project, we used the distribution of fitness effects 

to estimate the amount of selection on these loci. For the third project, we have 

estimated diversity levels, performed neutrality tests and examined levels of 

population structure. Furthermore, using population genetics analysis we 

assess the current taxonomical treatment of S. peruvianum. Thus, we have 

gained insight into the evolution of recently divergent species taking into 

account metapopulation dynamics and its interplay with a species’ demography 

and their influence on the speciation processes.  

 

In the first project, using coalescent simulations, we studied the impact of three 

different sampling schemes on patterns of neutral diversity in structured 

populations. The three sampling schemes were: a scattered or species-wide 

sample (each sequence coming from a different deme), a local sample (all 

sequences coming from the same deme) and a pooled sample (equal number 

of sequences coming from different demes). Specifically, we evaluated two 

summary statistics based on the site frequency spectrum (Tajima’s D and Fu 

and Li’s D) as a function of migration rate, demographic history of the entire 

metapopulation and the sampling scheme. Using simulations implementing both 

finite-island and two-dimensional stepping-stone spatial structure models, we 

demonstrate strong effects of the sampling scheme on Tajima’s D and Fu and 

Li’s D statistics, particularly under species-wide expansions. Local samples 

(and to a lesser extent, pooled samples) are influenced by local, rapid 

coalescence events in the underlying coalescent process and hence show 

lower proportions of singletons. Under species-wide expansion scenarios, these 

effects of spatial sampling may persist up to very high levels of gene flow (Nm > 

25), implying that local samples cannot be regarded as being drawn from a 
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panmictic population. This suggests that validating the assumption of panmixia 

is crucial if robust demographic inferences are to be made from local or pooled 

samples.  

 

For the second project, we investigated how selection acts in the 

aforementioned species of wild tomatoes using sequence data from eight 

housekeeping genes. Our analysis quantified the number of adaptive and 

deleterious mutations, and the distribution of fitness effects of new mutations 

(its mean and variance) taking into account the demography of the species. We 

found no evidence for adaptive mutations and very strong purifying selection in 

coding regions of the four species. More interestingly, the four species exhibit 

different strength of purifying selection in non-coding regions (introns). This 

suggests that closely related species with similar genetic background, but 

occurring in different environments differ in the mean and variance of 

deleterious fitness effects. We also showed that variable selection in introns is 

also found among populations of a given species, suggesting local difference in 

the strength of purifying selection. Taking into account the results from the first 

project, we also highlighted the utility of analyzing pooled samples and local 

samples from a metapopulation in order to measure selection and the 

distribution of fitness effects. 

 

Finally, we estimated nucleotide diversity and population structure in S. 

habrochaites and S. arcanum and compared these results to those of S. 

peruvianum and S. chilense (Arunyawat et al. 2007) for the third project. First, 

we found that S. arcanum and S. habrochaites present lower diversity levels 

than S. peruvianum and S. chilense. Our neutrality tests have not revealed any 

particular pattern, leading us to conclude that the loci sequenced for the present 

study have not evolved under strong positive selection, although they show a 

distinctive pattern of purifying selection (second project). We also tested the 

demography of all four species and found a strong expansion after a bottleneck 

in the recent past for S. peruvianum and a similar statistically significant pattern 

for S. arcanum, even though the signal seemed weaker in this case. 

Additionally, we found moderate levels of population sub-structure in these 

species, similar to previous results found in S. peruvianum and S. chilense. Still, 
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regardless of the levels of population structure, we found at least two (Rupe and 

San Juan from S. arcanum) populations collected in the field that could actually 

be considered as a single deme.  

 

We also expanded these population structure analyses to gain insight into the 

phylogenetic relations between the four species in order to contribute to the 

taxonomical treatment of the Solanum section Lycopersicon from a population 

genetics perspective. Thus, we found a clear differentiation between S. 

arcanum and S. peruvianum based on all polymorphic sites. However, this 

pattern disappears if we perform similar analyses using only non-synonymous 

sites. This is an important point since different inferences about speciation may 

be concluded depending on whether coding or non-coding regions of the 

genome are used for such analyses.  

 

In this final chapter, I will discuss the demography of S. arcanum and S. 

peruvianum, the metapopulation structure of S. arcanum and S. habrochaites, 

the phylogenetic relations between S. arcanum and S. peruvianum and finally 

the discovery of a mutant allele in intermediate frequency at one locus in S. 

habrochaites and S. arcanum. 

 

1. Population structure of S. arcanum and S. habrochaites 

 

Structured populations are difficult to analyze. First, there is the problem of 

sampling from a structured population, which can bias estimation of population 

parameters (Stadler et al. 2009). As the results from the first project show, 

different sampling schemes from a structured population even under high levels 

of gene flow can significantly affect summary statistics estimation. This has to 

do with the fact that sampling within demes results in an overrepresentation of 

the scattering phase of the coalescent (i.e. the polymorphism that occurs within 

each deme). Second, population structure can have a direct effect on the 

effective population size as well as divergence levels between species. 

Structured populations present private polymorphism in each deme following 

two processes. First, due to random drift and low level of gene flow, some 

neutral mutations are private to demes reflecting the scattering phase of 
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metapopulation coalescence (Pannell & Charlesworth 1999; Wakeley & Aliacar 

2001). Second, due to small deme effective population sizes (making genetic 

drift stronger), purifying selection cannot eliminate weakly deleterious mutations 

effectively, and thus such mutations are found private to a deme at low 

frequency (Fay et al. 2001; Whitlock 2003). This phenomenon affects 

divergence, since it creates a higher species-wide diversity because of the 

excess of low-frequency polymorphism private to each deme. These effects 

have to be taken into account when interpreting divergence between species 

with known metapopulation structure.  

 

There are several ways of estimating population structure. The most extensively 

used is FST, a fixation index that measures the genetic differentiation among 

populations and is often expressed as the proportion of genetic diversity due to 

allele frequency differences among populations. This method has been 

criticized (Charlesworth 1998; Neigel 2002) but continues to be used as the 

standard measure of genetic differentiation and hence to asses population 

structure and levels of gene flow. An alternative strategy is to use πbetween as a 

measure of divergence between populations. It is the average number of 

pairwise differences between sequences belonging to different populations. 

Hence, it estimates the differentiation between populations and thus, assesses 

the levels of population structure, which has the advantage of not being 

sensible to high levels of diversity and directly comparing sequences, instead of 

allele frequencies. In our study, we use both as well as an analysis of molecular 

variance (AMOVA) analog of FST, plus PCoA and the software STRUCTURE (see 

Materials and Methods section for details). PCoA allows one to identify key 

components of population differentiation without assuming an evolutionary 

model (McVean 2009). Our PCoA results closely resemble those generated by 

STRUCTURE software simulations, which in turn also agree with our estimates of 

pairwise FST. 

 

As reported for S. peruvianum and S. chilense (Arunyawat et al. 2007), we 

found moderate levels of population structure for S. habrochaites and S. 

arcanum. We have also found that populations sampled in the field do not 

necessarily correspond to isolated interbreeding units, even when the species 
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studied shows moderate levels of population structure. This is the case for two 

populations of S. arcanum (Rupe and San Juan) that show a pairwise FST value 

close to zero, similar patterns of allelic frequencies according to STRUCTURE and 

cluster together in PCoA. A similar, although more complex, phenomenon 

occurs in S. habrochaites where three populations (Otuzco, Contumaza and 

Lajas) show a gradient in the proportion of ancestry of three putative ancestral 

populations as depicted by STRUCTURE analysis. Lajas and Contumaza overlap 

in PCoA with Otuzco closest to them. Furthermore, the distribution of their allele 

frequencies as a gradient (in STRUCTURE) and their positioning along the Y-axis 

in PCoA match their geographical distribution along the North-South axis. This 

is also observed in S. habrochaites where populations are distributed along the 

Y-axis following their North-South geographical distribution. This is not 

surprising as it has been analytically shown that the spatial arrangement of 

populations on the first two principal components mimics the structure of the 

migration matrix (Novembre & Stephens 2008), which can be considered an 

approximation to the geographic distribution of the samples (although 

differences in sample sizes produce a distortion of the migration-space). 

Furthermore, a very similar method (Principal Components Analysis) has been 

previously used to find a close correspondence between genetic and 

geographic distances (Novembre et al. 2008).  

 

Still, PCoA results have to be interpreted with care, as the structure depicted by 

it can be the result of several different demographic processes. For this reason, 

we looked into the possibility that our data would fit an isolation by distance 

model by estimating the correlation of pairwise FST to geographic distance (data 

not shown). The correlation was found significant (p<<0.01) for S. arcanum with 

a correlation coefficient of R2=0.36. This was not the case for S. habrochaites. 

Our sampling, however, may not be extensive enough to test for such model. 

Furthermore, the distances between populations are not uniform between 

populations for S. habrochaites (Ancash and Canta are much further away from 

all other populations). This, in addition to the small amount of populations 

sampled, may be responsible for the lack of correlation between population 

differentiation and distance in this species. However, one can speculate about 

the spatial structure of S. habrochaites. An island model is not expected to fit 
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our data. Under this model, we would expect equal rates of gene flow between 

all analyzed populations regardless of the geographic distance between them. 

Under such scenario, we would expect STRUCTURE analysis to show equal 

proportions of the putative ancestral populations that are present in the other 

populations of the species. This pattern is not observed in our data. A better 

fitting model would be the stepping stone model. The main difference between 

this and that of isolation by distance lies in the property that the stepping stone 

model restricts gene flow to shorter distances which would translate into very 

strong differentiation between our sampling populations on opposite edges of 

the sampling range. In our case, STRUCTURE found that such pairs of 

populations still share common ancestry from at least one of the putative 

ancestral populations modeled by the software.  

 

Another interesting question is whether our data fits information on weakly 

defined morphotypes in S. arcanum as defined in the most recent taxonomical 

treatment of these species (Peralta et al. 2008). These morphotypes are similar 

to the races of S. peruvianum reported by Rick (1986) according to his inter-

fertility experiments (Figure 6). The recent taxonomical treatment that we follow 

here, re-groups these races based on morphological data. Cleary, genetic and 

morphologic data are not easy to integrate without some discrepancies which 

researchers have tried to reconcile in this latest new taxonomical treatment. 

According to this treatment (Peralta et al. 2008), S. arcanum is an extremely 

variable species, comprising four weakly defined morphotypes with discrete 

geographic ranges. The complex overlapping variability, especially in leaf 

morphology, prevents the recognition of these as formal taxa. These 

morphotypes are:  

1) Marañón, which grows in the Río Marañón Valley, includes the 

Chamaya-Cuvita and the Marañón races that Rick (1986) recognized as 

closely related based on their inter-fertility in experimental crosses. 

2) Humifusum, growing in Pacific drainages.  

3) Chotano, growing in the Río Chota Valley near Yamaluc in the 

Department of Cajamarca. According to the authors of the current 

taxonomical treatment, the ‘humifusum’ and ‘Chotano’ races also appear 

to be closely related based on data from inter-fertility experiments (Rick 
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1986) and molecular analyses (Peralta & Spooner 2001), and differ 

mainly in pubescence. 

4) Lomas, growing at the Lomas of Cerro Campana and Virú. These 

populations are incredibly variable from year to year; specimens 

collected in El Niño years have very large leaves, while those collected in 

drier seasons have smaller, more pubescent leaves with fewer leaflets 

with less lobed margins. The ‘Lomas’ populations are also quite variable 

in other characters, such as the inflorescence branching pattern. 

 

Using the geographic ranges given in the current taxonomical treatment 

(Peralta et al. 2008) as reference to compare the location of our sampled 

populations, we can assume that most populations of S. arcanum (except for 

Cochabamba) belong to the Humifusum morphotype, while Cochabamba most 

likely belongs to the Chotano morphotype. As expected, PCoA plots the 

Cochabamba population most distantly from the other three populations of the 

species. STRUCTURE analysis shows that one of the putative ancestral 

populations is completely missing in Cochabamba (Chotano), while it is present 

in small proportion in both Rupe and San Juan, and in an even larger proportion 

in Otuzco. This result is in agreement with the existence of incomplete 

reproductive barriers between this races/morphotypes, since apparently a whole 

gene pool has been prevented from introgressing into the Cochabamba 

population. 

 

2. Species wide expansion in S. peruvianum and S. arcanum 

 

As selection and demography can produce similar patterns in DNA 

polymorphism, neutrality tests showing deviations from the standard neutral 

model cannot directly be interpreted in terms of selection acting on a locus. 

Therefore, it is important to know the demography of a sample before drawing 

conclusions on whether or not it evolved under selection. Here, we have gained 

some insight into the demography of four species of wild tomatoes. Using a 

conservative approach (the use of “pooled samples” –see Materials and 

Methods section–), it is clear that demography has played an important role in 

the evolution of this group of species. Due to the conservative nature of our 
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estimates, we cannot discard the possibility that S. chilense and S. 

habrochaites have both undergone recent population expansion after a 

bottleneck. Furthermore, in the first project we re-examined the demography 

estimated in a previous study (Arunyawat et al. 2007). Comparing Tajima’s D 

estimates averaged across populations to those obtained from pooled samples, 

to results from simulations, we were able to determine expansion factors for 

both S. peruvianum (≥40-fold) and S. chilense (≤4-fold). These results are hard 

to reconcile with those obtained from the distribution of fitness effects which 

estimate expansion factors as 10-fold for S. peruvianum with the expansion 

occurring recently, and 10-fold in S. chilense with a much older expansion. A 

population with an expansion that took place long ago might have reached 

equilibrium and thus, might not show traces of the expansion (i.e., no negative 

Tajima’s D). The discrepancy between the different methods for estimating 

expansion suggests that the method by Keightley & Eyre-Walker (2007) is not 

reliable for estimating precisely past demographic events. It is also clear from 

our theoretical work using simulations (on the first project) that given Tajima’s D 

values are not sufficient to allow robust estimation of the expansion factor. As 

already mentioned (see above), our findings using the R2 test fail to detect 

expansion at S. chilense and S. habrochaites, though data from previous works 

(Arunyawat et al. 2007; Stadler et al. 2009) as well as our results in the second 

project indicate that these species actually underwent an expansion. Still, this 

test at least detects that the other two species analyzed (S. arcanum and S. 

peruvianum) have undergone a recent expansion after a bottleneck, even 

though this expansion might be underestimated due to our use of pooled 

samples. 

 

In conclusion, as reported in the second project of this thesis (Stadler et al. 

2009), we find that pooling together samples from different populations 

produces a much lower Tajima’s D value, than the average of the same 

populations. Negative Tajima’s D values for the pooled sample show an artificial 

excess of low-frequency polymorphism due to private alleles present at low 

frequency in each of the populations, which would point to lower levels of gene 

flow among populations than would be expected under weak population 

structure. This would also have a confounding effect on the detection of 
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purifying selection, since the latter would produce a similar signature. It is 

always the case that trying to distinguish between selection and demography 

poses a problem that can only be solved by using multilocus data to establish 

the demography of a species prior to trying to detect selection. This is one of 

the clear advantages of Eyre-Walker and Keightley’s distribution of fitness 

effects estimation, which uses multilocus data to model a population expansion 

(Eyre-Walker et al. 2006; Keightley & Eyre-Walker 2007; Eyre-Walker & 

Keightley 2009). 

 

Taken together, these findings highlights the importance of adequately planning 

the sampling for a study, according to the aims of the study and taking into 

account the effects the sampling might have on the population parameter 

estimation, before drawing conclusions from the results. Therefore, in order to 

obtain an appropriate estimate of the demography and avoid the effect of 

pooling populations to obtain a species-wide sample on summary statistics, it 

would make sense to collect only an allele per population from as many 

populations as possible from the distribution range of the species. This, 

however, is often not possible, since sample collection is a time-consuming 

activity requiring a certain level of expertise in the identification of a species, 

and extensive time traveling to find natural populations of the species. In the 

case of wild tomatoes, it is possible to use accessions from collections 

maintained at research facilities (e.g. TGRC University of Davis, USA).  

 

3. Relation between S. arcanum and S. peruvianum  

 

While the general concept of species is hard to define, several different 

approaches to species identification have been elevated to the level of species 

concept. From the point of view of population genetics, reproductive isolation 

(encompassing divergence, population differentiation and gene flow) is a key 

element in the definition of a species (following the so-called biological concept 

of species). However, for recently diverged species, such as wild tomatoes, 

where reproductive barriers are still incomplete, it may prove hard to apply such 

a concept. Therefore, systematists rely more on the morphological concept of 

species, in an attempt to grasp the underlying phylogenetic relations among 
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such species. The irony lies in the fact that divergence population genetics 

provides a framework for the study of the speciation of such species which 

ultimately would help solve the phylogenetic relations between them. With this 

motivation in mind, I try to contribute to the taxonomic treatment of this group of 

species using a population genetics approach. 

 

The latest taxonomic treatment split S. peruvianum sensu lato in four species, 

namely S. arcanum, S. corneliomuelleri, S. huaylasense and S. peruvianum 

sensu stricto (Peralta et al. 2008; Peralta et al. 2006; Peralta & Spooner 2005; 

Peralta et al. 2005; Peralta & Spooner 2001; Spooner et al. 2005). Therefore, a 

key question arising from our dataset is whether S. arcanum and S. peruvianum 

are more closely related to each other than to S. chilense and S. habrochaites, 

which would suggest that they actually constitute a single species. To this end, 

we analyze levels of divergence and population differentiation between these 

species using a suite of different methods. 

 

We analyzed all populations of the four species together. This analysis would fit 

a hierarchical island model (Excoffier et al. 2009) in which demes exchange 

more migrants within species than between species. Since Structure identifies 

groups of individuals corresponding to the uppermost hierarchical level, we 

would expect to estimate K= 4 clusters by Maximum Likelihood. Analysis of the 

four species together using STRUCTURE software showed almost identical 

likelihood values for  K ≥ 4 . At first glance, this may sound confusing. However, 

it has been reported (Pritchard et al. 2007; Evanno et al. 2005) that in most 

cases, once the real K is reached, its likelihood at larger values of K either 

reaches a plateau or continues increasing slightly. According to Pritchard et al. 

(on the accompanying documentation of the software), their estimation of K 

generally works well in datasets with a small number of discrete populations 

(between two and four). However, deviations from the STRUCTURE model such 

as isolation by distance or inbreeding may explain that the value of the model 

choice criterion continues to increase with increasing K. Therefore, we can pick 

K=4 as the real number of populations present in the data. Additionally, results 

from this analysis showed some degree of gene flow between species, since 
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each of them presented a small percentage of the other species putative 

ancestral population gene pool in their own. 

 

PCoA showed very different pictures of the relations between the S. 

peruvianum and S. arcanum when using different subsets of the data. It has 

been shown (McVean 2009) that for SNP data the projection of samples onto 

the principal component axes can be obtained directly from considering the 

average coalescent times between pairs of genomes. Thus, PCoA projections 

can be interpreted in terms of underlying processes, including migration, 

geographical isolation, and admixture. Furthermore, the same study 

demonstrates a link between PCA and Wright’s FST. Therefore, the differences 

in the distance between the relative positions of S. arcanum and S. peruvianum 

can be interpreted as differences in the coalescent time between coding and 

non-coding regions. This, still, is not easy to interpret. A sliding window analysis 

of the divergence between species (data not shown) failed to discover bias in a 

specific locus that would explain the differences between coding and non-

coding regions. Furthermore, non-synonymous sites seem to be driving this lack 

of divergence between S. arcanum and S. peruvianum, while the synonymous 

sites are dragged into this pattern through their linkage to the non-synonymous 

sites, since using only synonymous sites to perform PCoA shows a pattern 

intermediate between that of non-coding regions and non-synonymous sites 

(data not shown). Taken together, these results could be interpreted as 

supporting a hypothesis of non-coding regions evolving under strong divergent 

selection. It has been shown that non-coding regions can in fact present 

signatures of selection (Andolfatto 2005; Asthana et al. 2007; Boyko et al. 

2008). In a review, Servedio & Noor (2003) state that reinforcement includes 

some form of selection against interspecific mating. Traditionally this 

encompasses intrinsic genetic incompatibilities. Since coding regions cannot 

diverge more than purifying selection would allow, it would be plausible to 

consider non-coding regions to be under divergent selection to ensure 

incompatibility between closely related species in partial sympatry. To test 

whether the results from the PCoA are significant, it would be interesting to run 

STRUCTURE on the same subsets of the data that were used for this analysis.  

 



 - 97 - 

4. A non-functional mutant allele under positive selection? 

 

Locus CT198 bears high homology to genes encoding aci-reductone-

dioxygenase proteins, common to bacteria, plants and animals. The aci-

reductone-dioxygenase (ARD) family is involved in the methionine salvage 

pathway. Abiotic stresses in plants result in elevated levels of ethylene and 

polyamine. S-adenosylmethionine (SAM) is involved in the biosynthesis of 

polyamine and ethylene (Ravanel et al. 1998). The enzymatic reactions with 

SAM in ethylene and polyamine synthesis produce a byproduct, 5′-

methylthioadenosine (MTA) that can be recycled to methionine. This methionine 

salvage pathway is an ubiquitous biochemical pathway that maintains 

methionine levels, regenerates SAM, and eliminates MTA, thus allowing a high 

rate of ethylene and polyamine biosynthesis even when the pool of free 

methionine is small (Bleecker & Kende 2000; Ravanel et al. 1998; Schlenk 

1983). 

 

We found a stop codon in the coding region. Given the importance of this 

pathway, one expects these genes to be under purifying selection. The high 

frequency of the mutant allele, and the small amount of polymorphism 

associated with the allele suggest an on-going sweep. However, the fact that 

the mutant allele is found only in heterozygote state (indicative of the potentially 

deleterious effect of the mutation) is quite suggestive of balancing selection 

(heterozygote advantage). Furthermore, given that the mutation found at this 

locus renders the allele non-functional (which would have a deleterious effect 

on the fitness of the individual) one is forced to ask why the allele is still present 

in the population. There are two possible scenarios: the first considers that we 

are looking at a functional locus, in which case selection should be acting on the 

locus; the other scenario would be to assume we are looking at a pseudogene, 

in which case the presence of the allele might be explained by demography, 

considering a recent origin for the mutant allele (as to account for the lack of 

polymorphism in it).  

 

If locus CT198 is a single-copy functional gene, then tomatoes need to have an 

advantage from having a non-functional allele for this locus. It has been 
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reported (Yeh et al. 2001) that a protein exhibiting homology to submergence-

induced protein 2A (the protein putatively encoded by CT198) is capable of 

supporting hepatitis C virus replication in an otherwise non-permissive cell line. 

If the protein encoded by this locus has a different function (besides that 

described as part of the methionine salvage pathway) which would allow 

infection by a pathogen, one can theorize that like in the case of sickle cell 

anemia, having a deleterious allele can provide heterozygotes with the 

advantage of partial immunity to a pathogen. However, we cannot exclude at 

this point the possibility that CT198 is a multiple-copy gene and that at least a 

copy of the gene is non-functional and therefore not under selection. Still, that 

would not explain why there is so little polymorphism in the mutant allele. The 

lack of polymorphism in the mutant allele could only be explained (in this case) 

by a recent origin (or introgression) of the gene or being under strong purifying 

selection. In the case of a recent origin, we could explain that the lack of 

polymorphism is due to an ongoing sweep which would increase the frequency 

of this allele faster than recombination or mutation can introduce polymorphism 

around it. Purifying selection seems irreconcilable with a non-functional mutant 

allele in intermediate frequency. In order to determine whether we are in the 

presence of a paralog or mutant allele, we suggest sequencing the flanking 

regions of locus CT198. Comparison of the sequence of the flanking regions 

between the mutant allele and the wild type allele, would allow us to estimate 

the divergence between them. If the mutant and the wild type alleles belong to a 

single-copy gene, divergence between the flanking regions should be 

comparable between mutant and wild type alleles as within them. On the other 

hand, in the case of paralogs, we would expect to find more divergence 

between mutant and wild type alleles than within them.  
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Conclusions 

 

 

Although, in general, wild tomatoes and their relatives live in dry to very dry 

habitats (e.g., the Atacama Desert), they also occur in a great range of other 

habitats. Solanum habrochaites occurs in cloud forest habitats to elevations of 

3600m, but is also found in coastal areas and in dry forests on the western 

Andean slopes. S. arcanum inhabits dry habitats, occurring in the inter-Andean 

valleys subject to severe rain shadows (e.g., in the Valley of the Río Marañón), 

while S. chilense inhabits the extremely dry high-elevation deserts of the 

western Andean slope. Furthermore, several species are found in the unique 

lomas habitat along the Pacific coast of Peru and northern Chile (S. chilense, S. 

habrochaites, S. peruvianum, and some populations of S. arcanum).  

 

Given this wide range of habitats and the importance of abiotic conditions for 

plant growth, local adaptation for stress is expected between populations. Thus, 

it is likely that not only signatures of local adaptation would be found in their 

genomes at genes responsible for water stress tolerance (Dr. Camus-

Kulandaivelu, personal communication), but also differences in the strength and 

variance of purifying selection. Our study found differences in the strength of 

purifying selection between species as well as differences in the distribution of 

new mutations’ deleterious fitness effects within species, which might be 

correlated with more stressful or variable environments. 

 

Quantifying levels of selection and adaptation in recently diverged species 

requires taking into account the speciation process, the influence of 

demography and their spatial structure. A theoretical possibility for the analysis 

of such datasets from multiple species and populations is to integrate them in 

an Approximate Bayesian Computation framework coalescent simulation of 

speciation models. This would allow testing of complicated speciation models 

with metapopulation structure. However, such models are computationally very 

intensive and not developed yet.  
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Here we have established the utility of wild tomatoes as a model for studying 

population structure dynamics and the speciation process in recently diverged 

species. Our approach (divergence population genetics) has therefore proven 

useful in disentangling the phylogenetic relationship within this group and 

understanding the basis for species differentiation. A big gap remains though, in 

integrating these results with morphological data regarding these species.  
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