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Preface:

Myeloid lineage commitment to form either the granulocytes or

monocytes is one of the crucial regulatory mechanism which, if disrupted

leads to various forms of leukaemia. C/EBPα is an important transcription

factor that regulates the granulocytic lineage decision. Absence of C/EBPα

leads to complete loss of mature granulocytes. c-jun has been well studied

and its role is elucidated in various regulatory mechanisms viz. cell

proliferation, apoptosis, cell cycle and differentiation. In hematopoietic

system, c-jun’s role has been shown to be important for

monocyte/macrophage lineage decision. This report has taken the studies

further in elucidating the mechanism by which C/EBPα governs the fate of

hematopoietic progenitor cells. To drive granulocytic differentiation,

C/EBPα represses c-jun expression and function. These findings are also

implicated in leukaemia where a reciprocal expression of C/EBPα and c-jun

is observed. The data presented here provides a model to understand the

myeloid regulatory mechanism controlled by transcription factors and

cofactors.
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2. Introduction

2.1. C/EBP

C/EBPα was the first member cloned in the C/EBP family transcription

factors. C/EBPα, previously termed C/EBP, was identified originally as a heat-

stable protein present in soluble extract of rat liver nuclei and having sequence-

specific DNA binding activity (1,2,3). Purified C/EBPα selectively recognized

CCAAT homologies and enhancer core sequences, implying that it might be a

transcriptional regulatory protein (2). Expression pattern of C/EBPα mRNA are

similar in the mouse and human with measurable levels in liver, adipose,

intestine, lung, adrenal gland, peripheral blood mononuclear cells, and placenta

(7,8). In liver and adipose, highest levels of C/EBPα mRNA are detected only in

differentiated tissue (7,8). Autoregulation of C/EBPα mRNA occurs by different

mechanisms in the mouse and in humans:

a). The murine C/EBPα promoter directly binds C/EBPα within 200 base pairs

of the transcriptional start resulting in 3-fold activation (9).

b). Autoregulation of the human C/EBPα promoter occurs by C/EBPα-induced

binding of USF, a ubiquitously expressed transcription factor, to its upstream

site within the C/EBPα promoter (10).

2.1.1. Member of C/EBP family

The CCAAT/enhancer-binding proteins (C/EBPs) encompass a family of

transcription factors with structural as well as functional homologies (11). Since

the cloning of the family’s original member, C/EBPα, five other C/EBPs have

been identified that interact with each other and transcription factors in other
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protein families to regulate mRNA transcription. The six C/EBP proteins are

designated as C/EBPα, β, γ, δ, ε and CHOP 10 (4,5,6). Similarities between

C/EBP family members suggest an evolutionary history of genetic duplications

with subsequent pressure to diversify. The resulting family of proteins varies in

tissue specificity and transactivation ability. The pleiotropic effects of C/EBPs

are in part because of tissue- and stage-specific expression, leaky ribosomal

reading, post-transcriptional modifications, and variable DNA binding

specificities. These mechanisms result in variable amounts of the C/EBP

isoforms, available to dimerize and bind to cognate sites in different tissues (11).

Each isoform, however, shows distinct but overlapping patterns of tissue-or

stage- restricted expression. Modifications of a transcription factor, such as by

phosphorylation, glycosylation, and reduction-oxidation, affects its binding

activity and function (12). For example, phosphorylation of the DNA-binding

domain of C/EBPα, containing Ser 299 in the basic region of the basic leucine

zipper structure, which is the phosphorylation site by protein kinase C results in

an attenuation of DNA binding (13,14).

CCAAT/enhancer-binding protein (C/EBP) family members are among the

bZIP transcription factors, and they bind to specific DNA sequences as dimers.

The basic leucine zipper (bZIP) regions of C/EBP isoforms show high

similarity, and some cis-elements are recognized by each of the C/EBP isoform.

Recent work with mice genetically altered to abolish expression of C/EBPs

underscores the role these factors play in normal tissue development and cellular

function, cellular proliferation and functional differentiation.

2.1.2. Domains of C/EBP

The prototypic C/EBP, like many transcription factors, is a modular protein,

consisting of an activation domain, a DNA-binding basic region, and a leucine-

rich dimerization domain.
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2.1.2.1. The activation domain:

Domains responsible for transcriptional activation and/or repression are

located in the N-terminal end of the protein. Two isoforms of C/EBPα are

generated from its mRNA by a ribosomal scanning mechanism (15,16). The

full-length protein is 42 kDa and contains three transactivation domains (TEI-

III) (17-19). TEI and TEII mediated cooperative binding of C/EBPα to TBP

(TATA-binding protein) and TFIIB, two components of the RNA polymerase II

basal transcriptional apparatus (18).A fraction of ribosomes ignore the first two

AUG codons and initiate translation at the third AUG, 351 nucleotides

downstream of the first AUG (15,16). This shorter 30-kDa protein retains its

dimerization and DNA-binding domains; however, it possesses an altered

transactivation potential compared with the 42-kDa isoform (15,16). TE-III

contains a negative regulatory domain, the function of which is alleviated when

C/EBPα is bound to the albumin promoter (17).

2.1.2.2. The leucine zipper domain:

The dimerization domain, aptly termed the “leucine zipper”, is a heptad of

leucine repeats that intercalate with repeats of the dimmer partner, forming a

coiled coil of alpha-helices in parallel orientation (20-22). Leucine zipper (LZ)

dimerization segment contribute to DNA-binding specificity by determining

which subunits form stable dimers, and by appropriately positioning the basic

region helices over the binding site (23). A high resolution x-ray structure shows

that the leucine zipper of yeast GCN4 is a parallel, two-stranded coiled-coil (24).

The primary sequence of the leucine zipper is a repeating heptad (a-b-c-d-e-f-g)

with hydrophobic and apolar residues predominating at positions a and d, and

polar and charged amino acids dominating the other positions of the repeat.

Apolar a and d residues face the interior of the coiled-coil and form an extensive

van der Waals surface (23). Leucines at position d and position d’ of the
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apposing subunit pack in a side-by-side arrangement, forming layers that

alternate with those formed by the alternate hydrophobic residues at positions a

and a’ of the heptad repeat. The neighbouring e and g residues shield the

hydrophobic dimer interface from solvent, completing the knobs-in-holes

packing arrangement of helices in a coiled-coil. Charged residues frequent the e

and g positions, sometimes forming intrahelical or interhelical salt bridges that

contribute to dimer stability. Residues along the interior of the coiled-coil

(positions a, d, e, and g) provide most of the stability and specificity of leucine

zipper dimerization. Despite the marked conservation of LZ sequences within

the bZIP family, the dimerization preferences of these proteins are distinct and

varied. Residues e and g of the LZ heptad repeat are particularly important in

this regard. These residues may influence dimer stability by shielding residues a

and d from solvent and/or by participating in electrostatic interactions with other

surface residues (23).

Vision and co-workers (21) note that two alternative, interhelical salt bridges

involving residues e and g are possible. They term electrostatic interactions

between positions e and the succeeding g’ of the apposing subunit ‘i+2’ salt

bridges, and the interaction between g and the succeeding e’, ‘i+5’ salt bridges.

In the case of C/EBP and closely related proteins, consideration of potential

attractive and repulsive i+5 electrostatic interactions is a useful predictor of

dimerization potential. Moreover, the stability of the C/EBP homodimer can be

modulated by changing the identities of e and g residues in a manner consistent

with an ‘i+5 rule’ for dimerization specificity.

Formation of heterodimers within a transcription factor family has been well

described, and there is now increasing evidence that transcription factor from

different families, containing similar as well as unrelated DNA-binding

domains, form composite regulators (25).

Cell type specificity of activation of the albumin promoter by C/EBPα is

determined, to a large extent, by its leucine zipper, which appears to have a
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negative regulatory function in the context of the albumin promoter that is

especially pronounced in the nonhepatic HeLa cell line compared with HepG2a

hepatoma cells. These results suggest cell-type specific cooperation with other

transcription factors as a basis for differential activation of genes by C/EBPα in

different cell types (26,27).

2.1.2.3. The DNA-binding domain:

C/EBP dimerization is a prerequisite to DNA binding. DNA binding

specificity, however, is determined by the DNA contact surface, the “basic”

region of approximately 20 amino acids, upstream of the leucine zipper,

specifically by 3 amino acids lying along the protein-DNA interface (28). The

bZIP domain comprises a carboxyl-terminal dimerizatioin segment and an

amino-terminal DNA-binding segment (the basic region) consisting of two

extended alpha-helices rich in basic residues (23). Residues along the ‘inner’

surface of the basic region helix contact the edges of base-pairs in the major

groove, while neighbouring residues contact the phosphodiester backbone of the

binding site (23). Alignment of the avian retroviral binding sequences with the

published binding sites for C/EBPα in two CCAAT boxes and in the simian

virus 40, polyoma, and murine sarcoma virus enhancer suggested

TKNNGYAAK (K=T or G, and Y=C or T) as a consensus sequence for binding

of C/EBPα (29). Transcription factors sharing a common DNA-binding motif

may associate as homodimers or heterodimers with distinct DNA-binding and

transcriptional activities. These alternative, dimeric combinations of proteins

explain the regulatory potential of each family. In both GCN4/DNA complexes,

the bZIP dimer is composed of two smoothly curving alpha-helices, associated

in a coiled-coil (the leucine zipper) that spans the carboxyl-terminal thirty

residues of each subunit. The overall appearance of the bZIP is that of an alpha-

helical fork (23). The bZIP subunits diverge at the amino-terminus of the leucine
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zipper and position a relatively straight basic region helix in the major groove

over each half-site, where it contacts the edges of base-pairs and the

phosphodiester backbone (23).

2.1.3. C/EBP  in hepatocytes

2.1.3.1. C/EBP -deficient animal hepatic phenotypes:

Coordinate expression of specific C/EBP isoforms is essential for normal

hepatic synthetic activity and response to injury (11); however, C/EBPα is the

predominant nuclear signal regulating terminal hepatocyte differentiation and

function (11). Elimination of C/EBPα in targeted mouse knockout models

results in profound derangement of liver structure and function. C/EBPα -/-

mice have disturbed hepatic architecture with acinar formation, resembling

proliferative or pseudoglandular hepatocellular carcinoma (30,31). c-Myc and c-

jun mRNAs are induced consistent with a proliferative liver (30). Metabolic

derangements are pronounced with an impairment of hepatic glycogen storage,

and the majority of mice die soon after birth because of hypogylcemia (30,31).

Known targets of C/EBPα have decreased expression at birth, including

albumin, glycogen synthase, phosphoenolpyruvate carboxykinase, and glucose-

6-phosphatase (31).

2.1.3.2. Hepatocyte proliferation following partial hepatectomy is accompanied

by profound changes in C/EBP expression patterns (32-34). C/EBPα:C/EBPβ

heterodimers are replaced by increased amounts of C/EBPβ homodimers during

the early G1 period after partial hepatectomy. C/EBPα mRNA decreases

following partial hepatectomy (35,36). Necessary downregulation of C/EBPα

expression during liver regeneration may be mediated by the increased binding

of C/EBPβ homodimers to the C/EBPα promoter, normally transactivated by

α:β heterodimers in the non-proliferative state (36).
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2.1.3.3. Studies of the interplay of different C/EBP factors on the promoters of

several AP (acute phase) genes in hepatocytes have shown that at steady state

the majority of DNA-protein complexes contain various forms of C/EBPα

homodimers and C/EBPα: C/EBPβ heterodimers. Upon AP induction, however,

the amount of complexes containing C/EBPα is dramatically reduced, replaced

by C/EBPβ and δ (37).

The duality of C/EBPα function in mediating cell cycle arrest and hepatic

metabolism is clearly demonstrated in the C/EBPα knockout mouse.

2.1.4. C/EBP  in adipocytes

2.1.4.1. C/EBP -deficient animal adipose phenotype:

Adipocytes grown in tissue culture and in animal models lacking C/EBPα

fail to accumulate lipids (31). Uncoupling protein is responsible for uncoupled

mitochondrial respiration and heat generation and is a marker for differentiation

of brown adipose tissue. C/EBPα deficient mice have minimal levels of

uncoupling protein expression at 2 h postpartum, which increases to 60% that of

control mice by 32 h postpartum (31).

Gene transcription of fatty acid synthase, GLUT4, and 422/aP2 is unaltered

in white adipose tissue of the C/EBPα-deficient mouse, which is inconsistent

with transcriptional data from 3T3-L1 cell lines (31,38,39). Redundant

transcriptional elements operative in the animal model may regulate the fatty

acid synthesis pathway, compensating for the lack of C/EBPα.

2.1.4.2. Preadipocyte differentiation into functional adipocytes results from a

highly regulated cascade of C/EBP isoform expression. C/EBPα expression

increases during late phase of differentiation. Abrogation of C/EBPα expression,

either by antisense interactions or hydrocortisone administration, prevents
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terminal adipocyte differentiation (5,15).

2.1.4.3. Ectopic expression of C/EBPα in 3T3-L1 cells arrests mitotic growth.

C/EBPα interacts with known regulators of cell cycle progression; it activates

transcription and induces post-transcriptional stabilization of p21 (WAT-1/CIP-

1/SDI-1) protein, an inhibitor of cyclin-dependent kinase (40-42). Additionally,

c-Myc and C/EBPα share a reciprocal relationship, balancing proliferation

versus growth arrest via C/EBPα-transactivated expression of gadd45 (growth

arrest-associated gene), a target of p53 tumor suppressor protein at G1 (43,44).

2.1.4.4. Transient modulation of C/EBP levels in response to insulin and

dexamethasone suggests a dynamic role in adipocyte metabolism (45). Insulin

treatment decreased DNA-binding of C/EBPα while increasing nuclear C/EBPβ

and C/EBPδ binding. Insulin also induced rapid dephosphorylation of C/EBPα

and represses C/EBPα expression, modulating adipocyte gene transcription.

Another target gene of C/EBPα, the obese gene, may be similarly regulated.

2.1.5. C/EBP  in hematopoiesis:

Pluripotent hematopoietic stem cells combine a capacity for self-renewal

with the ability to differentiate along any one of at least eight possible lineages

(46). Understanding the molecular processes underlying self-renewal and

differentiation in the hematopoietic system is important for our appreciation

both of similar developmental processes and of the genesis of leukemias, in

which this balance becomes deregulated. Precursor cells divide and differentiate

from the pluripotent hematopoietic stem cell and proceed to committed stem

cells, which provide lineage-restricted progenies.

2.1.5.1. C/EBP -deficient animal hematopoietic phenotypes:
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Profound abnormalities of the hematopoietic system are seen in C/EBPα

deficient mice (47). Mice deficient in C/EBPα display an early block in the

maturation of granulocytes. Peripheral blood and bone marrow smears show

only myeloblastic cells of the myeloid lineage. The G-CSF receptor expression

is undetectable in these cells, suggesting a loss of G-CSF signal-directed

maturation (47). In transient assays, C/EBPα contributes to tissue-specific

expression of G-CSF and GM-CSF receptors  (48-50) and neutrophil elastase

(51,52). Evidence suggests that C/EBPα play an early, pivotal role in the

granulocytic lineage.

2.1.5.2. Polymorphonuclear neutrophils (PMN):

PMNs are short-lived non-mitotic cells generated in large numbers in the

bone marrow through a highly controlled process of myelopoiesis, where

C/EBPα plays a central role (53). Polymorphonuclear neutrophils (PMNs) play

a crucial role in host defence by phagocytosing and killing invading

microorganisms. Mature PMNs are incapable of cell division, and their

sustained generation by bone marrow at impressive numbers (10E11 cells per

day in a normal adult) is the result of a highly controlled, yet incompletely

understood, process of myelopoiesis. During maturation, PMNs acquire their

granule products, which equip the activated PMNs to kill microorganisms.

2.1.5.2.1. Development of PMN granules:

CCAAT enhancer-binding proteins (C/EBP) play a role in PMN

development, by inducing transcription of granule protein coding genres, either

by direct binding to the promoters of the corresponding genes or by activating

transcription of the granulocyte colony-stimulating factor receptor (G-CSFR)

(53). Myelopoiesis in C/EBPα-knockout mice fails to proceed beyond the

myeloblast stage; whereas transfection of C/EBPα in U937 promonocytic cells
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induces PMN differentiation and synthesis of PMN granule proteins (47).

C/EBPα works in concert with CCAAT displacement protein, a negative

regulator that must be downregulated to allow expression of proteins confined to

PMN-specific granules. Differences in timing of granule protein synthesis

during maturation of PMN precursors results in formation of granule subsets

with different protein content. One of these organelles is the secretory vesicle

created by endocytosis late during PMN maturation. This organelle is

particularly rich in receptors and provides the plasma membrane with receptors

promoting attachment to activated endothelium (53).

2.1.5.2.2. Clearance of apoptotic PMNs:

Many of the daily produced neutrophils undergo apoptosis before leaving

the bone marrow. Apoptotic neutrophils can be removed by macrophages (in

which case, neutrophils are anonymously degraded) or by dendritic cells

(leading to antigen presentation and autoimmunity). Anti-apoptotic signals

generated by growth factors and cytokines can increase the number of

neutrophils by prolonging the PMN life span (about 8 h after leaving the bone

marrow), and accelerating neutrophil maturation (53).

2.1.5.2.3. One of the major decisions leading to PMN generation is made by

stem cells committed to the myeloid lineage; genes coding for granule proteins

are turned on to synthesize the granule constituents that will endow the PMN

with its battery of microbicidal proteins. The high heterogeneity of PMN

granules is due to the continued formation of granules from the myeloblast to

the segmented PMNs, where granules are filled with proteins formed at a

particular stage of PMN maturation. Mature PMNs are fully equipped with an

NADPH oxidase and an arsenal of harmful agents stored in granules, ready to be

used to destroy phagocytosed microorganisms. These cells constitute unique and

perfect weapons to fight infection, and play a major role in the host organism’s
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surveillance system against foreign invaders and in acute inflammation. In vitro

and in vivo studies have revealed a great deal of cross-talk and complexity, as

well as pleiotropic effects of signalling molecules and receptors in the

differentiation stages of PMN differentiation and activation. Recent

developments in the characterization of the molecular pathways involved in

PMN differentiation and activation are providing a new basis for the treatment

of infection and inflammation (53).

2.1.5.3. Lineage commitment decisions presumably involve modulations of

regulatory circuits already active in precommitted cells and there are now

various lines of evidence suggesting that this regulatory environment is

unusually complex (46). For instance, the emergent haematopoietic lineages

appear to be characterised not by unique transcription factors but by unique

combinations of factors, each of which may occur singly in a number of lineages

(54). Evidence that this combinatorial feature may extend back to multipotent

progenitors has come both from preliminary studies of expression patter and

from the multilineage defects resulting from null mutations of a number of

transcription factors that are expressed only in a subset of mature cell types (55).

Complexity does not necessarily indicate chaos and it is reasonable to assume

that hierarchies and cross-talk between the transcription factors co-expressed in

multi-potent progenitors co-ordinate commitment and differentiation and may

also be involved in maintenance of the multipotent state (46). The analysis of

regulatory sequences and their DNA-binding proteins has in some cases

confirmed regulatory connections directly. Direct protein-protein interaction

probably provides an important means of coordination during normal

differentiation. Most notably, a combination of C/EBPα and PU.1 appears to be

instrumental in directing expression of the granulocyte-specific genes G-CSF

receptor (48), neutrophil elastase (52), and myeloperoxidase (56). In the latter

study, priming for low level activity of the MPO gene in multipotent cells is



20

thought to be maintained by C/EBPα, whereas upregulation during granulocyte

differentiation is associated with replacement by C/EBPβ and δ isoforms that

translocate to the nucleus from a pool initially present in the cytoplasm (56). The

succession of C/EBP isoforms binding to the MPO enhancer suggests a basis for

the lineage-specific upregulation of a gene cohort from the multiplicity of genes

expressed at low levels in the multipotent state (46).

2.1.6. C/EBP  in other systems:

C/EBPs role in the function of other organ systems is only beginning to be

elucidated. A significant percentage of C/EBPα-deficient mice succumb to

respiratory defects soon after birth (30). Histologic examination of C/EBPα-

deficient lungs shows hyperproliferation of type 2 pneumocytes (30).

C/EBPα expression is temporally correlated with the appearance of

surfactant A protein and is not present in A549 cells, a cell line that does not

express surfactant proteins (57).

Normal ovarian physiology is dependent upon both C/EBPα and C/EBPβ.

Rat ovarian follicles express C/EBPα in a cell-, time-, and hormonally specific

manner (58). Attenuation of C/EBPα expression results in decreased

responsiveness to exogenous gonadotropins and decreased ovulation rate (58).

In squamous cell carcinomas, the expression of C/EBPα was greatly

diminished.

2.1.7. C/EBP  in Acute Myeloid Leukemia (AML):

Some types of acute leukemia, especially those associated with

chromosomal translocations, involve blocks in differentiation at specific stages

of hematopoiesis (59). The transcription factor C/EBPα is required for

neutrophil differentiation, suggesting its function may be disrupted in acute

myeloid leukemia (AML) (47).
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2.1.7.1. The highest percent of mutations were found in patients with M2 AML,

a myeloblastic leukaemia characterized by an early block in neutrophil

differentiation (59). It has been reported that loss of C/EBPα expression or

function in leukemic blasts, suggesting that a reduction in its activity contributes

to a block in myeloid cell differentiation (60,61). In these leukemic cells,

C/EBPα function was disrupted either through mutation of one allele of the

CEBPA gene or transcriptional repression (60). CEBPA mutations were

observed in leukemic cells lacking any chromosomal translocations (60). These

mutations resulted in truncated forms of C/EBPα proteins that retained the

DNA-binding domain. Unexpectedly, these proteins failed to bind DNA, but

inhibited DNA binding by wild-type C/EBPα, suggesting that these mutants act

as dominant inhibitors. However, further studies are needed to determine the

reasons that these proteins fail to bind DNA while the murine counter-parts are

capable of DNA-binding, and to determine how these proteins act at sub-

stoichoimetric levels.

2.1.7.2. The t(8;21) creates a fusion protein between the amino-terminal DNA

binding domain of the acute myeloid leukaemia-1(AML1) transcription factor

and the eight-twenty-one (ETO) corepressor, suggesting that repression of

AML1 target genes stimulates leukemogenesis (62,63). Moreover, the t(8;21)

fusion causes an early block in granulocytic differentiation, and C/EBPα levels

were reported to be unaffected in these leukemias (47). Therefore, these fusion

proteins (also inv (16)) can act independently of C/EBPα. The different

phenotypes associated with these translocations suggest that AML-1/ETO has a

‘modifier’ effect that causes the down-regulation of C/EBPα and blockade at a

distinct stage of differentiation (59). Differentiation blocks are thought to

contribute to tumorogenesis, along with mutations that affect cellular
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proliferation, inactivate cell-cycle checkpoints, and block apoptosis. Thus, the

loss of C/EBPα could represent one ‘hit’ in multi-step leukemogenesis (59). The

observation that C/EBPα function can be deregulated by two separate

mechanisms highlights the importance of this factor. Disrupting C/EBPα

activity by either creating dominant negative forms or repressing its

transcription may have the same effects, both leading to a block in myeloid

progenitor-cell differentiation. The importance of C/EBPα in cell growth and

differentiation suggests it may play a role of a tumour suppressor.

2.1.7.3. The mutations in the C/EBPα locus upon screening 408 patient samples

can be divided into 4 classes concerning their effect on the predicted protein

(64):

2.1.7.3.1. Termination of translation by introducing a nonsense codon; (The

nonsense mutations would introduce termination codons before the bZIP

domains. This would create polypeptides that are unable to localize to the

nucleus, dimerize, and bind to the DNA)

2.1.7.3.2. Alteration of amino acid sequence by introducing a missense codon;

(the mutation of Arg305Pro occurs in the fork region of bZIP domain)

2.1.7.3.3. Frame-shift by either deletion or duplication of nucleotides and an

eventual termination; and

2.1.7.3.4. Inframe deletion or duplication that removes or inserts additional

amino acid residues. (The inframe deletion and insertion mutations occur within

the first conserved leucine finger)

Comparison of the predicted amino acid sequences of 11 bZIP family

members reveals conservation between the basic and leucine zipper regions and
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the exact spatial register or phasing between these regions, referred to as the

fork. The phasing is important for a continued α-helical structure that progresses

from the zipper into the basic region. The basic region starts exactly 7 amino

acid residues amino-terminal to the first leucine zipper. When the phasing

between these regions is altered by insertion or deletion of 2-, 4-, 5- or 6- amino

acid residues, sequence-specific DNA-binding is eliminated although

dimerization is reported to still occur via the leucine zippers.

These mutants did not attenuate transcriptional activation by wild-type

C/EBPα. This may be due to a lack of heterodimerization between the wild type

and mutant forms of C/EBPα. The data from this study are consistent with a

model in which the mutations disrupt the dimerization interface formed by the

leucine zipper and the proteins are unable to homodimerize or heterodimerize

and bind to DNA (64).

2.1.8. C/EBP  regulates monocytic lineage commitment:

Ectopic expression of C/EBPα could prevent 12-O-tetradecanoylphorbol-13-

acetate (TPA) induced monocytic differentiation of bipotential myeloid

progenitor cells (67). In addition, TPA treatment of HL60 cells led to a decrease

of C/EBPα mRNA levels by approximately 90% (67).

Recent reports indicate that C/EBPα exerts effects inhibiting growth and gene

expression independent of DNA-binding (65,66):

The C/EBPα protein interacts with the p21 and CDK2 proteins, resulting in

decreased CDK2 activity and inhibition of cell proliferation (65).

The C/EBPα protein disrupts E2F complexes in several cell lines, and this

correlates with C/EBPα-mediated growth arrest. Interaction of C/EBPα with

E2F appears to be the mechanism by which it downregulates c-myc expression

during granulocytic differentiation (66).

These protein-protein interactions appear to involve several regions of the
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C/EBPα protein, including the bZIP domain. Perhaps the duplication and

deletion mutations in the bZIP domain may affect these interactions, thereby

contributing to leukemogenesis (65).
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2.2. c-jun:

The AP-1 transcription factor complex owes its initial definition to a fortuitous

convergence of tumour virology and transcription research (68-70). AP-1 has

been described as a 12-O-tetradecanoyl-phorphol-13-acetate (TPA) inducible

transcription factor activity that addresses specific sequences in the enhancer of

the metallothionien gene and in the 72-base pair repeat of the simian virus 40

enhancer region (68-70). Jun was found as a novel oncoprotein encoded by a

cellular insert in the genome of avian sarcoma virus 17 (ASV17), an acutely

oncogenic retrovirus isolated from a spontaneous tumour in chicken (71). The

two findings became linked by the discovery of homology between Jun and the

yeast transcriptional regulator GCN4 (72).

A second important step in the definition of AP-1 came with the discovery that

the Fos-associated protein p39 is the product of the cellular jun gene. This

finding identified cellular Fos as a partner of Jun and as another component of

the AP-1 complex (73,74).

Cloning of the cellular Jun gene showed it to be without introns and with an

atypical TATA box (75,76). The human jun gene is located on chromosome 1 at

region p31-32 (77).

The mammalian AP-1 proteins are homodimers and heterodimers proteins that

belong to the Jun (c-Jun, JunB and JunD), Fos (c-Fos, FosB, Fra-1 and Fra-2),

Jun dimerization partners (JDP1 and JDP2) and the closely related activation

transcription factors (ATF2, LRF1/ATF3 and B-ATF) subfamilies (78-82).

c-Jun protein can form stable dimers that bind AP-1 DNA recognition elements

(5’TGAG/CTCA-3’), also known as TREs [phorbol 12-O-tetradecanoate-13-

acetate (TPA) response elements] based on their ability to mediate

transcriptional induction in response to the phorbol ester tumour promoter TPA

(68). However, Fos proteins do not form stable dimers but can bind DNA by

forming heterodimers with Jun proteins that are more stable than Jun: Jun

dimmers (83,84). Heterodimerization with c-Fos further increases c-Jun’s
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transcriptional capacity through formation of more stable dimers, while

heterodimerization with JunB attenuates it (85,86).

2.2.1. Cellular transformation.

The transforming activity of c-Jun and c-Fos suggests that AP-1 complexes

containing these components are involved in stimulation of cell proliferation

(87). Deregulated expression of Jun and Fos proteins can induce transformation

in-vivo (88). Interestingly, antisense oligonucleotides specific for c-fos or c-jun

were found to inhibit the proliferation of mouse fibroblasts and erythroleukemia

cells (89-91).

Differential expression of AP-1 proteins in response to extracellular stimuli was

suggested as one of the major mechanisms that modulate AP-1 activity (85).

Identification of c-Fos and c-Jun, the mammalian homologues of the retroviral

oncoproteins v-Fos (92) and v-Jun (93), as components of AP-1 immediately

linked AP-1 to cellular growth control and neoplasia.

Several lines of evidence suggest that AP-1 transmits signals from activated Ras

to the nucleus in transformed cells. In non-immortalized rat embryo fibroblasts

(REF) overexpression of mammalian or avian c-Jun was insufficient for

induction of transformation (86). However, Ha-ras induced transformation of

immortalized mouse fibroblasts requires c-Jun expression (94). Fos further

enhanced the transforming capacity of c-Jun, whereas JunB attenuated it (86).

These differences are consistent with higher DNA binding and transcriptional

activity of c-Jun: c-Fos heterodimers in comparison to c-Jun: JunB

heterodimers. Furthermore, by providing survival and growth promoting signals,

Ha-Ras may suppress the effect of c-Jun-induced growth inhibitors or activators

of apoptosis such as TGFβ (95) or Fas ligand (96).

2.2.2. Apoptosis and senescence.

Apoptosis or programmed cell death is commonly used to eliminate damaged or



27

non-essential cells during development, to maintain tissue homeostasis or to

eliminate oncogene-expressing cells in adult organisms (97).

AP-1 transcription factors have also been implicated in the control of cell death

and survival (87). Among growth regulators, AP-1 is somewhat unusual

because, in addition to being responsive to growth factors, it is also upregulated

by genotoxic stresses, such as UV or alkylating agents that cause growth arrest

and/or cell death. Furthermore, the consequence of AP-1 activation seems to be

cell type specific. While it may promote apoptosis in some cell types, it is

required for the survival of others. Of course, given the many different forms of

AP-1, its exact functions are likely to be dependent on its composition post

translational modifications and presence of interacting factors (87).

AP-1 can trigger either pro- or anti-apoptotic signals depending on the dimer

composition, the cell type or the death-inducing treatments (97).

2.2.2.1.c-Jun:pro-apoptotic gene:

c-jun expression is induced in response to treatments, which frequently triggers

apoptosis, among them UV, ionising radiation, hydrogen peroxide and tumour

necrosis factor α (TNFα) (98-100).

c-jun and c-fos expression is upregulated in lymphocytes that undergo

apoptosis in response to IL6 depletion and c-jun or c-fos antisense

oligonucleotides protect these cells from death response (101,102).

Amino-terminal phosphorylation of c-Jun is also required for ceramide-

induced apoptosis of myeloid or lymphoid tumour cell lines and neuronal stress-

induced apoptosis in vivo (103).

Inducible c-Jun protein transmits an apoptotic death signal to immortalized

fibroblasts that can be antagonized by Bcl-2. This pro-apoptotic effect is specific

for c-Jun (104).

Increased c-Jun activity mediates apoptosis in neurons, after removal of

survival factors. Moreover, c-Jun accumulates in neurons undergoing apoptosis
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by hypoxia in vivo. Studies using PC12 pheochromocytoma cells and cultured

neuronal cells showed that inhibition of c-Jun activity with a dominant negative

mutant that lacks the c-Jun N-terminal activation domain or by neutralizing

antibodies, can protect the cells from apoptosis induced by withdrawal of nerve

growth factor (NGF) or chronic depolarisation (105-108). Ectopic expression of

c-Jun can induce apoptosis in sympathic neurons as well as in mouse fibroblasts,

Syrian hamster embryo (SHE) cells and a human colorectal carcinoma (RKO)

cell line (102,104,106).

An essential question is how does AP-1 mediate its proapoptotic effects in

those cases where it is positively involved in the process. One possibility is that

AP-1 directly activates the transcription of genes, whose products can trigger

apoptosis. Indeed, several reports suggest that AP-1 induces expression of the

Fas-ligand (FasL) gene (96,107,109). Another possibility is that AP-1 has a

homeostatic function that reacts to changes in growth and environmental

conditions to adjust the gene expression profile in a way that allows the cell to

adapt to the new environmental conditions to adjust the gene expression profile

in a way that allows the cell to adapt to the new environment. However, after

excessive environmental stress, a conflict may arise between the AP-1 regulated

program and other stress activated gene expression programs that may cause a

catastrophe that culminates in cell death (87).

2.2.2.2.c-Jun: anti-apoptotic gene

c-Jun -/- embryos exhibit higher rates of apoptosis in liver than control

animals (110), and c-Jun is not essential for programmed cell death and axon

growth in the retina (111). Moreover, in Jurkat cells, AP-1 is not increased

during Fas-mediated cell death although Fas cross-linking leads to Ras induction

and JNK activation (112). Furthermore, AP-1 regulates the murine anti-

apoptotic Bcl-3 gene, which acts as a survival factor for T cells in the absence of

growth factors (113). The dominant negative c-Jun mutant could reduce
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apoptosis in human monoblastic leukemia cells after exposure to various DNA

damaging agents (103). The role of c-Jun in apoptosis is thus complex, mostly

cell-type specific and depends on the nature of the death-inducing signal.

In contrast to apoptosis induced by survival factor withdrawal or genotoxic

stress, AP-1 does not promote apoptosis during normal development. In vivo

observations suggest that AP-1 proteins may in fact have a protective role during

embryonic development, as c-Jun deficient embryo exhibit massive increase in

liver cell apoptosis, which may be the cause of their lethality.

One current hypothesis to explain these apparent contradictory results links

c-Jun containing AP-1 dimers to de novo protein synthesis. Hence, it has been

shown that active pro-apoptotic machinery pre-exists in the cells. AP-1 activity

would be required for apoptosis in cells in which the death effectors are present

in limiting amounts and in which protein synthesis is required to initiate the

apoptotic suicide program (80).

2.2.3. Cell cycle.

Several lines of evidence suggest that the Jun and Fos proteins are important

targets for mitogenic signal transduction pathways. First, the AP-1 binding

sequence was originally identified as a TPA responsive element (TRE) and was

shown to respond to the tumour promoter, TPA. Treatment of cultured cells with

mitogenic agents resulted in a strong increase in AP-1 binding to a TRE

sequence. Upon serum stimulation, many quiescent cells displayed an increase

in c-jun, junB and fos mRNAs. Based on their rapid, high and transient

transcriptional upregulation in response to mitogenic agents, these agents were

defined as ‘immediate early genes’ or ‘competence genes’ and encode products

necessary for entry into G1 and S phases of the cell cycle.

Protooncogenes frequently participate in the regulation of cell proliferation

through signal transduction pathways that convert extra-cellular stimuli into

gene expression programs. Many of these genes are also activated during G0 to
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G1 transition when quiescent cells are stimulated by mitogens to re-enter the cell

cycle. Based on this study, the AP-1 proteins were classified into three

subgroups according to their expression patterns (114):

1. c-Jun, JunD and Fra2 are expressed in cycling mouse fibroblasts and are

only mildly induced upon serum addition to the growing cells. When cells

become quiescent upon serum starvation, c-Jun level decreases and JunD level

increases. Upon serum-induced re-entry into the cycle, c-Jun is strongly

stimulated.

2. The basal levels of JunB, c-Fos, FosB and dFosB protein is low in cycling

mouse fibroblasts but strongly and rapidly increases after serum stimulation.

3. Fra1 is the only member of the third group. Undetectable in cycling cells,

Fra1 stimulation following serum addition is delayed to later time points and

shown to be transcriptionally activated by c-Jun/c-Fos dimers.

Progression through the cell cycle is tightly controlled by the sequential

activation of a genetic program including the synthesis of the cyclins and the

activation of the cyclin-dependent kinases (cdk) (97). c-Jun and JunB or JunD

display opposite effects on cell cycle progression. While c-Jun is a strong

transcriptional activator of cyclin D1, JunD is a weak positive activator and

JunB even an inhibitor of this promoter (82,115-117). Increasing the abundance

of JunB or JunD relative to c-Jun decreases cyclin D1 transcription. The

temporal changes in AP-1 composition and activity during the M-G1 transition

may constitute an interesting way of controlling cell cycle progression. The cell

cycle dependent variation in Jun protein levels constitutes a novel reciprocal link

between the cell cycle machinery and a transcription factor.

Ras transformation increases the cyclin D1 protein level, a major regulator of

the G1/S transition previously identified as an AP-1 target gene (118,119).

Increased cyclin D1 expression in Ras-transformed cells shortens their G1

phase. Moreover, overexpression of cyclin D1 in immortalized fibroblasts

accelerates G1 progression and decreases serum requirement for growth (120).
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Thus, transformation by Ras leads to accumulation and activation of AP-1

transcription factor that in turn increases cyclin D1 protein level and accelerates

G1 progression. AP-1-mediated induction of cyclin D1 explains how changes in

AP-1 composition mimic in part the proliferative effects of activated Ras

(115,121).

AP-1 activity is also required for serum stimulated cell cycle re-entry of

serum-starved cells. Another study suggests that c-Jun might also have a role in

allowing UV irradiated cells to re-enter the cell cycle from the G2/M interphase

(122). Interestingly, c-Jun expression levels do not significantly change during

the cell cycle, but the protein undergoes transient N-terminal phosphorylation as

cells proceed from G2 to M that persists until the cells complete mitosis (121). It

is not clear however, whether these changes result in cell cycle dependent

regulation of AP-1 transcriptional activity.

Fibroblasts lacking a single Jun protein, with the exception of JunB, exhibit

significantly altered growth properties. The most severe defects are exhibited in

c-jun -/- fibroblasts, which can be passed only once or twice in culture before

they exhibit a pseudo-senescent phenotype and their cell cycle transit time

increases dramatically (82,123,124). Reintroduction of c-Jun into such cells

results in increased proliferation, indicating that the proliferation defect is

indeed due to the absence of c-Jun.

Many AP-1 binding sites have been characterized in promoters or enhancers

of cellular genes encoding enzymes involved in tissue remodelling, like

collagenase and stromelysin, in cell cycle controlling genes such as cyclin D1 or

c-jun itself, in cytokine encoding genes like IL-2 (78).

2.2.4. Domains of c-Jun.

The dimerization, DNA binding, and transactivation domains of Jun are

modular, exchangeable for functionally equivalent domains from other proteins.

Such ‘cut and paste’ operations within the bZIP family usually preserve the
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basic activity of the protein.

2.2.4.1. Dimerization: Importance of a partner

The Jun protein can form homodimers, though heterodimers with Fos are

more stable and have a higher affinity for the DNA target sequence (83,125-

127). Dimerization is a prerequisite for DNA binding of AP-1 members (83,127)

Dimerization of Jun and Fos enhances their nuclear translocation (128).

Dimerization requires the C-terminal region of Jun (129,130). This domain

contains five heptad repeats of leucines forming an amphipathic helix that upon

dimerization takes up a coiled coil confirmation with the leucines aligned along

the contact surface. This dimerization domain is referred to as a leucine zipper

(22). A given leucine zipper pairs with a limited set of specific leucine zipper

partners; the specificity is dictated by the non-leucine residues of the zipper.

The consensus DNA binding sequence for AP-1 dimers is TGACTCA

(69). Jun can also form dimers with bZIP proteins from outside the AP-1

complex. These dimerization partners include some members of the CREB/ATF

proteins (the consensus DNA-binding sequence being TGACGTCA, is referred

to as CRE). It bears close resemblance to the AP-1 target sequence. The binding

of c-Jun: ATF2 heterodimers to divergent AP-1 sites within the c-jun promoter

results in its transcriptional activation. Heterodimers of Jun and certain ATF

proteins are able to recognize the CRE sequence, whereas heterodimers of Jun

and Maf bind equally well to the AP-1 and CRE consensus (131-134). Thus,

dimerization with diverse partners can function as a modulator of target gene

specificity. Dimerization is a prerequisite for DNA binding.

2.2.4.2. DNA binding: Importance of an address

The basic region, serving as DNA contact surface, is located immediately

N-terminal to the leucine zipper. This characteristic arrangement of DNA

binding and dimerization domains is found in numerous transcriptional

regulators and gave them the family name ‘bZIP proteins’ (135).
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The consensus DNA binding sequence for AP-1 dimers is TGACTCA, it

is referred to as TPA-response element (TRE) (69). The TRE consensus

sequence of the AP-1 family is a minimal shared target of the various AP-1

dimers, but not all combinations bind to the TRE with the same affinity (136).

Mutations in the Jun DNA binding domain that eliminate interaction with the

TRE lead to a complete loss of oncogenicity; mutations that preserve TRE

recognition may cause a reduction in oncogenicity (137).

The DNA binding domain of a transcription factor determines the spectrum

of genes that are controlled by that protein. The dimeric structure and that

different dimerization partners can significantly modulate the specificity of

DNA targeting. DNA binding of Jun is also affected by interactions of the

transactivation domain with regulatory proteins such as JAB-1 (136).

2.2.4.3. Transactivation.

The N-terminal half of Jun contains the major transactivation domain. The

important regulatory phosphorylation sites of Jun are Ser63 and Ser73 near the

N terminus (138). JNK connects c-Jun to incoming signals, responding to

mitogens, stress signals, and genotoxic substances. JNK-mediated

phosphorylation of c-Jun at serines 63 and 73 is required for two principal

functions of the protein: transcriptional activation and co-transformation of

mammalian cells in conjunction with Ras (139,140). N-terminal phosphorylation

is also essential for transformation by Fos and for c-jun-dependent apoptosis.

The delta domain (amino acids 34-60 of c-Jun) is critical for the

regulation of transcriptional activation by c-Jun.

2.2.5. c-Jun regulation and regulated genes

Transcription factors are the ultimate recipients of incoming signals and

convert the signals into patterns of gene expression. Transformation is induced

by corrupting the transcriptional regulation of specific target genes that are then
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expressed at higher or lower levels in transformed cells.

In vitro, dimers formed by Jun and Fos bind with the highest affinity to an

asymmetric heptanucleotide recognition sequence TGA(C/G)TCA (AP-1) and

with slightly lower affinity, to a symmetric octanucleotide TGACGTCA (CRE)

(73,126). The AP-1 site is a ubiquitous regulatory element that is found in a

wide range of promoter and enhancer regions. Since the AP-1 site and variants

thereof occur with a high frequency in the genome, it is unlikely that Fos-Jun

family proteins regulate all genes that contain AP-1 recognition sequences.

Conversely, many genes that are bona fide regulatory targets of Fos-Jun family

proteins do not contain consensus AP-1 recognition sequences within their

control regions (141).

In natural promoter and enhancer regions, the sequences of AP-1

regulatory elements often deviate from the optimal recognition sequence. This

variation in recognition sequences may contribute to the differential functions of

different Jun-Fos family dimers at various regulatory elements (141). The

weaker binding affinities of Jun-Fos family members at these non-consensus

recognition sites may also impose a requirement for interactions with other

transcription factors.

Several mechanisms that may contribute to the cell type specificity of Jun-

Fos family proteins can be envisioned. These include differential post-

translational modifications, selective dimerization between different family

members and interactions with other regulatory protein. The first two

mechanisms modulate the activities of Jun-Fos proteins, but they have mostly

indirect effects on selection of the genes that are regulated by Jun-Fos family

proteins in a particular cell type. Interactions with other transcription factors can

modify the regulatory specificities of Jun-Fos family proteins in a cell or tissue

specific manner. Thus, Jun-Fos proteins have to be considered in the broad

context of dynamically changing protein-protein interactions on and off DNA

(141).
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Jun-Fos interacting proteins can be subdivided into four groups:

1.structurally related basic region-leucine zipper proteins;

2.unrelated DNA binding proteins;

3.transcriptional coactivators that do not bind DNA directly; and

4.structural components of the nucleus.

In many cases, either the functional significance or the structural basis of

the interaction remains to be investigated. Nevertheless, it is clear that

interactions among many structurally divergent protein families can contribute

to the functional specificity of Jun-Fos family proteins (141).

Among the genes that are differentially expressed in Jun-transformed

cells, there is a group whose deregulation is essential for inducing and

maintaining the neoplastic cellular phenotype, the oncogenic effector genes and

a presumably larger group whose differential expression is of no consequence to

the growth behaviour of the cell, the innocent bystanders (142).

Phosphorylation of AP-1 proteins further modulates their activity and

provides another route for extracellular stimuli to regulate AP-1 activity. AP-1

was identified as a transcription factor that contributes to basal gene expression

as well as TPA-inducible gene expression (143,144).

Many other stimuli, most notably serum (145,146), growth factors (146-

148) and oncoproteins, such as v-Src or Ha-Ras (78) are also potent inducers of

AP-1 activity.

The findings that growth factors and tumour promoters induce AP-1

activity, and c-Jun and c-Fos are encoded by protooncogenes immediately

suggested that AP-1 activity is likely to be important in growth control as well

as play a key role in transformation.

In addition, the response to proinflammatory cytokines (TNFα (98) and

IL-1 (149,150)), as well as the finding of AP-1 target genes such as collagenase

(68) and IL-2 (150) suggested that AP-1 is also likely to be involved in

inflammation and innate immune response. Several mechanisms account for



36

stimulation of AP-1 activity by growth factors, proinflammatory cytokines, and

UV radiation (143).

The most important mediator of the growth factor response is likely to be

the ERK MAP kinase (MAPK) cascade, which through phosphorylation of

ternary complex factors (TCFs) (151) causes induction of fos genes, whose

products then heterodimerize with Jun proteins to form more stable AP-1

dimers. Through AP-1 site in the c-jun promoter, these newly formed Jun: Fos

heterodimers can lead to increased c-jun transcription (152).

Erk activation may also contribute to c-jun induction through MEF2

proteins, another group of transcription factors that bind to the c-jun promoter.

Jun interacts with numerous other transcription factors, and this

transcriptional cross talk modulates the activities of Jun and its partners (153).

The following are some examples:

The glucocorticoid receptor interferes with Jun activity, but under certain

conditions can also exert an enhancing effect (154-157). The inhibition of Jun

induced by the glucocorticoid receptor affects oncogenic transformation.

A potentially highly significant interaction takes place between Jun and

various SMADs, components of the TGFβ−signalling pathway. This interaction

enhances transcription from AP-1 binding sites and interferes with

transactivation from SMAD binding sites (158-161).

TGFβ can also enhance c-Jun expression (162).

Expression of transcriptional regulator called nuclear factor 1 (NF-1)

strongly interferes with Jun-induced transformation in chicken embryo

fibroblasts (CEF) (163).

A particularly interesting example of cross-talk is the interaction of Jun

and Stat3 that involves both physical association of the proteins and binding to

closely spaced sites on specific promoters (164).

Important interactions also take place between Jun and the transcription

factor NFAT (nuclear factor of activated T-cells) family. NFAT proteins are
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critical in the regulation of cytokine and other immune response genes (165-

166). Dominant negative Jun inhibits NFAT transcriptional activation and

interferes with the control of IL-2 expression (167).

Jun also binds to human papilloma virus type 16 protein E7. This

association enhances AP-1 activity and may be part of the mechanism by which

HPV transforms cells (168).

As part of the UV response, Jun interacts with p53, stimulating the

activation of the mismatch repair enzyme MSH2 (169).

Jun also plays a part in the oncogenic transformation induced by the v-Rel

oncoprotein. Rel belongs to the NF-kB family of transcriptional regulators

(170). c-Jun is upregulated in Rel-transformed cells, and dominant negative Jun

strongly interferes with transformation of avian lymphoid cells and of chicken

embryo fibroblasts.

Negative modulation of Jun also occurs through binding to bZIP proteins,

e.g. the Jun dimerization protein JDP2 (79).

The interaction of Jun/Fos dimers with promoter sequences is strongly

influenced by the SWI/SNF chromatin-remodelling complex (171).

The response to proinflammatory cytokines and UV radiation, on the

other hand, are mostly dependent on two other MAPK cascades, JNK and p38

(143). A major role in c-jun induction by UV is played by the JNKs as they

phosphorylate and enhance the transcriptional activity of two major players in c-

jun expression, c-Jun itself, and ATF-2 (143).

Cyclin D proteins are regulators of G1 to S phase transition that bind to

the CDK4 cyclin dependent kinase and increase its kinase activity, thereby cause

the phosphorlyation and inactivation of the retinoblastoma (Rb) tumour

suppressor protein. The human cyclin D1 gene regulatory sequences contain two

AP-1 binding sites to which several AP-1 proteins (including cJun, JunB, c-Fos

and ATFs) were shown to bind. However, cyclin D1 overexpression in c-jun -/-

MEFs could restore only 25-30% of the DNA synthesis induced by c-Jun. Thus,
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suggesting that other c-Jun target genes are likely to be involved in its growth

promoting activity (82,121,172,173).

Another important c-Jun target gene is p53 (122,124). p53 is a negative

growth regulator (174,175). c-Jun is a negative regulator of both p53 expression

and its ability to activate target gene transcription. The basal level of p53

expression is higher in c-jun -/- fibroblasts that in wild-type counterparts and

stable expression of c-Jun in c-jun -/- cells reduce the level of p53 expression

(124). Most importantly, the removal of p53 from c-jun -/- cells completely

suppresses their proliferative defects (124). c-jun -/- cells express higher levels

of p53 regulated gene products, especially p21, whereas cells that  express c-Jun

constitutively express very low levels of p53 target genes. By repressing p53-

mediated p21 induction, high levels of c-Jun prevent UV induced growth arrest

and channel most of p53 activity towards the induction of apoptosis (122).

Another AP-1 regulated gene coding for FasL was suggested to provide

an explanation to the proapoptotic capacity of c-Jun. c-jun -/- fibroblasts, that

are relatively resistant to apoptosis induced by UV radiation and alkylating

agents, are also impaired in FasL expression (109). FasL expression is induced

by DNA damaging agents including topoisomerase II inhibitors and UV

irradiation, agents that activate JNK (96).

The biological function of AP-1 was initially restricted to the transmission

of growth-promoting signals. Stimulation of different transcription programs

and genes encoding Jun and Fos protein underwent similar, but not identical,

regulation in response to various stimuli. The expression of jun and fos gene

products is temporally modulated suggesting that the AP-1 composition vary in

the cell as a function of time and stimulus but also according to the cellular

differentiation state and its environment (97).

The c-jun gene is expressed in many different cell types at low levels and

its expression is enhanced in response to many stimuli including TPA (in a

protein-kinase C-dependent manner), growth factors (EGF, NGF, FGF), UV
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irradiation, or cytokines (176,177).

The c-jun promoter region is highly conserved between mouse, rat and

human The 200 nucleotides upstream of the murine and human transcription

initiation site share 94% identity (178). The c-jun promoter contains potential

binding sites for several transcription factors, including SP-1 (179), NF-cjun

(Nuclear factor-cjun) (180), CTF (CCAAT Transcription factor) and AP-1 itself

(152).

Induction of c-jun expression by serum, phorbolester, or TGFβ is

mediated through a TRE-like site in the proximal region of the c-jun regulatory

sequences. This TRE sequence differs from the consensus TRE by one base pair

insertion. It is preferentially recognized by a c-Jun/ATF2 heterodimer rather

than a conventional c-Jun/c-Fos AP-1 dimer (181).

In the distal part of the c-jun promoter, a second AP-1 site also mediates

the c-jun responsiveness to TPA or insulin treatment and growth factor

stimulation (182,183).

The distal AP-1 site also binds c-Jun/ATF2 heterodimers. As ATF-2 alone

cannot confer TPA-inducibility of c-jun, the c-jun gene is thus upregulated by its

own product. Despite its inducible expression, most cell types contain a certain

basal level of c-Jun protein before stimulation and the TRE site in its promoter is

constitutively occupied (152,179).

Following exposure to stimuli, the N-terminal Jun Kinases (JNK),

members of the MAPK family, is activated leading to the rapid phosphorylation

of pre-existing c-Jun and ATF-2 proteins (184). Phosphorylation of c-Jun on

residues Ser63 and Ser73, located within its transactivation domain, potentiates

its transactivation properties by recruiting the coactivator protein, CBP, a

histone acetylase, thereby enhancing c-jun transcription (185). Thus, stimulation

of AP-1 activity in response of JNK-mediated stimuli (such as UV irradiation,

ras activation, NGF removal or TNFα treatment) proceeds through two distinct

steps: endogenous basal c-Jun protein is first activated by post-translational
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modifications and the phosphorylated form of c-Jun induces subsequently its

own transcription by a positive auto-regulatory loop.

2.2.6. c-Jun phenotype

Besides the standard indicators of oncogenicity, such as multilayered

growth on solid substrate, growth in low serum concentration, anchorage-

independence, and tumorogenicity, Jun also induces more subtle changes.

Jun-expressing cells show increase motility and invasiveness (186,187).

In mammary epithelial cells, Jun induces the loss of polarity (188). Although it

is clear that the growth promoting functions of Jun can be stimulated by a

variety of exogenous and endogenous factors, it is not known whether these

factors merely cause a gain of Jun function or whether they provide

complementary and independent activities that are qualitatively distinct from

that of Jun.

Jun phenotype has been dissected and correlated with preferential binding

of Jun to specific bZIP proteins (189). Mutated Jun that selectively dimerizes

with members of the Fos family induces anchorage- but not growth factor-

independence, while a mutated Jun that preferentially associates with ATF2

causes growth factor-independence but fails to support colony formation in

nutrient agar. Combining the two mutants in the same cell leads to a fully

transformed phenotype, indistinguishable from that induced by wild type Jun.

These data probably reflect the different spectra of target genes and hence of

genetic programs addressed by Jun-Fos and Jun-ATF2 dimers (189).

Jun is a strong inhibitor of cellular differentiation. Myoblasts can be

induced to fuse into multinucleated, postmitotic myotubes and to differentiate

into muscle tissue that shows spontaneous contraction in cell culture. Expression

of v-Jun in such myoblasts keeps the cells cycling, interferes with cell fusion,

and prevents synthesis of muscle-specific proteins (190,191).

In avian chondrocytes, c-Jun is expressed during the early, immature
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phases of development and is downregulated when the cell matures and

expresses differentiation-specific markers, such as alkaline phosphatase.

Overexpression of c-Jun in this cell system significantly retards differentiation

and blocks the retinoic acid induced expression of alkaline phosphatase (192).

Jun is also active in lens differentiation. Overexpression of Jun in lens

epithelial cells retards the formation of lentoid bodies and reduces levels of beta

A3/A1 crystallin mRNA. A transdominant negative Jun enhances differentiation

and alpha a crystalline expression (193).

In NIH3T3 cells, overexpression of Jun triggers programmed cell death

(104). This occurs in the presence or absence of growth factors; it requires the

bZIP and transactivation domains of Jun, suggesting apoptosis depends on

transcriptional regulation. Overexpression of c-Jun induces apoptosis in

endothelial cells (194). This process is preventable by a dominant negative Jun

mutant.

Dominant negative Jun interferes with Jun-dependent transactivation and

oncogenic transformation (195,196). Since Jun functions at the nuclear end of

certain mitotic signals, dominant negative Jun interferes with upstream elements

of such signals which include several oncoproteins : receptor tyrosine kinases,

cytoplasmic tyrosine kinases, Ras, and Raf. Transformation by these

oncoproteins is blocked by dominant negative Jun, and overexpression of the

dominant negative mutant in cells already transformed by these oncoproteins

forces reversion to the normal phenotype (197,198).

2.2.7. in vivo functions.

Inactivation of Jun and Fos family members generate various phenotypes

spanning from embryonic lethality to post-natal survival associated with growth

retardation or behavioural defects (97). Disruption of c-jun, junB or fra1 results

in embryonic death whereas embryos lacking either junD, c-fos or fosB genes

develop normally to birth.
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c-jun deficient embryos die at 13.5 days from impaired hepatogenesis

(116, 117). These embryos exhibit massive apoptosis in hepatoblasts and

erythroblasts lineages and present malformation in the heart outflow tract (110).

The specificity and differences of the biological functions of each jun

gene is also reflected by their differential expression patter during

embryogenesis. c-Jun mRNA is detected throughout organogenesis in restricted

cell populations within developing cartilage, gut and the central nervous system

(97). AP-1 members are involved in various processes including hepatogenesis,

spermatogenesis, and vascularization.

However, the lack of major defects in three AP-1 knockout mice suggests

that a genetic redundancy may exist among some members of the AP-1 multi-

gene family.

In conclusion, the AP-1 transcription factors are considered immediate-

early response genes and are thought to be involved in a wide range of

transcriptional regulatory processes linked to cellular proliferation and

differentiation (199-206). A combination of in vitro and in vivo molecular

genetic approaches has provided evidence to suggest that AP-1 transcription

factors play multiple roles in functional development of haematopoietic

precursor cells into mature blood cells along most, if not all, of the

haematopoietic cell lineages. This includes the monocyte/macrophage,

granulocyte, megakaryocyte, mastocyte and erythroid lineages (200,206,207).

The c-jun protooncogene encodes for the transcriptional activator protein AP-1.

c-jun is a member of the early-response gene family-genes that are rapidly and

transiently activated in response to proliferative stimuli. Among the AP-1

members, c-jun is unique in its ability to positively regulate cell proliferation

and to induce partial macrophage like morphology in U937 cells (208). TPA

treatment of HL-60 and other human myeloid leukaemia cell lines like U937 is

associated with the appearance of c-jun transcript (145,200,203,209). The level

of c-jun expression is regulated by both transcriptional and posttranscriptional
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mechanisms. Among important regulatory elements previously identified in the

c-jun promoter, there are two AP-1 sites, a proximal AP-1 site (pAP-1) located

between bp-71, bp-64 and a distal AP-1 site (dAP-1) located between bp-190

and bp-183 in the c-jun promoter (152,210,211). Importantly, c-jun is

autoregulated by its product Jun/AP-1 (152).
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2.3.C/EBP and c-jun members’ interaction in hematopoiesis

The prevention of commitment: striking a balance

It is obviously important to balance stem cell commitment with sufficient

self-renewal to maintain hematopoiesis throughout life. Moreover, for this, the

formation of transcription factor complexes from different families has become

a major area of interest. The resulting mixed complexes provide a means to

integrate different signalling pathways. One possibility for association of

transcription factors with related DNA-binding domains to interconnect

pathways is by selective heterodimerization between two transcription factors

that share a common dimerization motif. The resulting heterodimer is often

imbued with properties that are distinct from those of either homodimer. For

example, a c-jun/ATF-2 heterodimer juxtaposes members of the AP-1 and ATF

families. The resulting heterodimer has a preferred specificity for the CRE/ATF

element and confer TPA responsiveness to a CRE reporter (132).

Heterodimers between AP-1 and C/EBP members are present in the case

of jun/fos and NF-IL6, also known as C/EBPβ (204). NF-IL6 is part of the

interleukin (IL)-6 signal transduction pathway and can bind to both NF-IL6 and

AP-1 sites. NF-IL6 associates with jun or fos through their respective bZIP

domains (204). Consequently, DNA binding and activation from a NF-IL6 site

is reduced. The bZIP region of NF-IL6 (C/EBPβ) isoforms mediates a direct

association with the bZIP regions of Jun and Fos (to a lesser extent) in vitro

(204). It was shown that NF-IL6-2 transactivation capacity is reduced in

presence of c-jun. However, the N-terminal transactivation domain of NF-IL6-1

seems to be important in regulating the repressional effect by c-jun. However,

the effect of this NF-IL-6-c-jun interaction on c-jun/AP-1 DNA binding capacity

was not addressed (204).

ATF-2, another member of the AP-1 family also has cross-family

dimerization capacity with C/EBP family protein (213). ATF-2-C/EBPα

interaction diminishes transactivation capacity of C/EBPα through the C/EBP
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consensus DNA-binding sites whereas this heterodimer complex could

transactivate through chimeric DNA-binding site. However, the effect of this

interaction on ATF-2 transactivation or DNA binding capacity was not

addressed. Interaction between members of the ATF and C/EBP families has

been described for C/ATF and C/EBPβ (212). The C/ATF-C/EBPβ heterodimer

shows DNA-binding specificities distinct from those of the respective

homodimers. It acts preferentially on a subclass of asymmetric CRE sequences

as found in the promoter of the proenkephalin gene. C/ATF is closely related to

AT-4, which has also been shown to heterodimerize with a member of the

C/EBP family, IGEBP1 or C/EBPγ (21).

CHOP, a member of the C/EBP family (lacking the N terminal

transactivation domain) acts as a dominant inhibitor of C/EBPα. CHOP interacts

with c-jun via the leucine zipper domain of CHOP. CHOP-c-jun synergizes to

activate transcription from an AP-1 site (214).
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2.4. Model for C/EBP  and c-Jun regulation in myeloid differentiation-

Commitment and differentiation:

Indeed, though the lineage choice is downstream, bipotent

(granulocyte/macrophage) progenitors can indeed be influenced by myeloid

growth factors and signalling events, as well as by single transcription factors. In

general, the available data are consistent with haematopoietic lineage

commitment being an essential intrinsic process, in which lineage choice is

dependent on attainment of a threshold level of important transcriptional

regulator(s). These would subsequently feed back to consolidate activation of a

specific cohort of genes and inactivation of others. The degree to which lineage-

specific growth factors can impinge on these decisions may well increase with

progressive development of the multipotent cell.

Here we propose that the proliferation arrest (215) and granulocytic

lineage commitment function of C/EBPα (67,215) involves inactivating c-jun

function via attenuation of its DNA binding activity. Inactivation of c-jun might

be important for the multifunction of C/EBPα i.e. to drive granulocytic

differentiation, block monocytic lineage commitment and for proliferation

arrest.
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3. METHODS

3.1. Transfection.

3.1.1.Transfection of adherent cells using lipofectamine plus reagent.

1. The day before transfection, trypsinize and count the cells, plating them

so that they are 50-80% confluent the day of transfection.

2. Pre-complex the DNA with the PLUS reagent: dilute DNA inot serum-

free dilution medium. Mix PLUS reagent before use, add to DNA, mix

again, and incubate at room temperature for 15 min.

3. Dilute LIPOFECTAMINE Reagent into serum-free medium in a second

tube; mix.

4. Combine pre-complexed DNA (from step 2) and diluted

LIPOFECTAMINE (from step 3); mix and incubate for 15 min at room

temperature.

5. While the complexes are forming, replace medium on the cells with

serum-free transfection medium.

6. Add the DNA-PLUS-LIPOFECTAMINE Reagent complexes to each well

containing fresh medium on cells (from step 5). Mix complexes into the

medium gently; incubate at 37ºC at 5% CO2 for 3 h.

7. After 3 h incubation, increase volume of medium to normal volume; add

serum to bring the final concentration to that of normal growth medium.

8. Assay cell extracts for reporter gene activity 24-48 h after the start of

transfection, depending on the cell type and promoter activity. The same

procedure can be used to transfect DNA for stable expression: Instead of

harvesting the culture, passage into fresh culture medium 1 day after the

start of transfection and at 2 days add the appropriate antibiotic to select

for expression of the transfected antibiotic-resistance gene.
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3.1.2.Transfection of suspension cells

3.1.2.1. Effectene protocol

1. Split the cells the day before transfection.

2. On the day of transfection, harvest cells by centrifugation, remove the

medium, and wash the cells once with PBS in a 10 ml Falcon tube.

3. Seed 1.5-3.5 x 106 cells (depending on the cell type) per well in 6 well

plate in 2 ml growth medium containing serum and antibiotics.

4. Dilute 1 µg DNA dissolved in TE buffer pH 7 with the DNA-

condensation buffer, Buffer EC, to a total volume of 150 µl. Add 10 µl of

Enhancer and mix well.

5. Incubate at room temperature for 5 min.

6. Add 25 µl of Effectene Reagent to the DNA-Enhancer solution. Mix well

by pipetting up and down 5 times.

7. Incubate the samples for 10 min at room temperature to all transfection-

complex formation.

8. Add 500 µl growth medium (containing serum and antibiotics) to the tube

containing the transfection complexes. Mix by pipetting up and down

twice then immediately and the transfection complexes dropwise onto the

cells in the 6 well plates. Gently swirl the plates to ensure uniform

distribution of the complexes.

9. Incubate the cells with the transfection complexes under their normal

growth conditions for an appropriate time (usually 24-48 h) for maximal

expression of the transfected genes.

10.Assay for expression of the transfected genes using the Dual luciferase

assay system.

3.1.2.2. Electroporation:

1. Use 1 x 107 cells per cuvette.

2. Spin cells at 1000 rpm for 5 min.
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3. Discard supernatant medium and resuspend cells in fresh growth medium

(containing serum and antibiotics).

4. Spin again at 1000 rpm for 5 min.

5. Resuspend cell pellet in 400 µl of growth media (containing serum and

antibiotics).

6. Add DNA to final concentration of 10-20 µg per cuvette.

7. Electroporate. (Using prestandardized conditions for each cell line).

8. Keep at cells at room temperature for 10 min.

9. Transfer cells to 100 mm Petridishes with 10 ml growth medium and

incubate at 37ºC.

10. Depending on the cell line and expression of the transfected gene, spin

down the cells at 1000 rpm for 5 min.

11. Wash with 10 ml PBS and give one more round of spin.

     12.Proceed with assay to detect the transfected gene.

3.1.3 Dual luciferase assay

3.1.3.1. Solutions: (Promega Kit)

1. Lysis buffer: Prepare 1X lysis buffer from the 5X concentrate using

distilled water. The buffer can be stored at 4ºC for one month.

2. Luciferase Assay Reagent II (LAR II): Resuspend Luciferase Assay

Substrate in 10 ml Luciferase Assay buffer. Make 1 ml aliquots. The

aliquots can be stored at –20ºC for one month or –70ºC for one year.

3. Stop & Glo Reagent: Transfer 200 µl of Stop & Glo Substrate Solvent to

the dried Stop & Glo powder. This 50x solution is stored at –20ºC. While

using, always keep on ice. Prepare 1x solution using Stop & Glo buffer.

1x should be prepared fresh.
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3.1.3.2.Protocol:

1. Wash the cell with PBS.

2. Lyse the cells in 20-500 µl of lysis buffer, depending on the amount

of cells.

3. Take 20 µl of the lysate.

4. Add 100 µl of LAR II and measure the Firefly luciferase.

5. Add 100 µl of Stop & Glo, vortex, and measure the Renilla

luciferase.

Firefly luciferase activities were normalized to the Renilla luciferase

values of pRL-null (232,233). The fold promoter activity was calculated as the

ratio between the promoter and promoter plus C/EBPα, assigning a value of 1

for the promoter alone. Results are given as mean +S.E.M. of atleast three

independent experiments.
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3.2. Northern blot analysis.

3.2.1.RNA preparation:

1. Thaw RNA on ice.

2. Take required µg (10-30 µg). (If needed lyophilise for ~20 min.)

3. Add 15-20 µl of RNA loading buffer. Mix well and pulse spin.

4. Incubate at 70ºC for 10 mins.

5. Transfer to ice for 5 min and then spin down.

3.2.2.RNA gel electrophoresis:

1. Carefully load RNA samples prepared as described above into the

respective wells of the RNA gel.

2. Load 0.2 Kb RNA ladder at one end of the gel.

3. Run gel overnight at 35-40 V in 1X MOPS.

4. Once the run is complete, take a photo of the gel under UV light with

different exposure time. Place a scale along the side of the gel to use for

calculating the size of the desired RNA.

3.2.3.RNA transfer:

1. Cut the gel area to be transferred to a membrane: from the loading wells

and including the dye front of the gel. Also, mark an orientation of the

gel to identify the loading pattern of the samples.

2. Cut the Hybond N+ (from Amersham Biosciences) membrane of same

dimensions (and same orientation mark) as the gel.

3. Cut Whatman filter paper of similar dimensions. Soak in DEPC water

until ready to use.

4. Wash the gel in DEPC water.

5. Set up the transfer in the following sequence:

Tray with 10X SSC

Glass plate covered with filter paper soaking in the tray

solution.
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RNA gel

Hybond N+ membrane

Whatman filter paper: 3X

Stack of blotting paper.

Glass plate

Weight (enough to keep the blotting paper pressed to the

Whatman filter paper.

6. Let the transfer proceed overnight (or at least 16 hrs.)

7. After transfer, wash membrane in 5X SSC for 1 min. Air-dry at room

temperature for 5 mins.

8. UV crosslink the RNA onto the nylon membrane.

9. Store dry till ready for hybridisation.

3.2.4. Hybridisation:

3.2.4.1. Prehybridization

1. Prewarm Church-Gilbert buffer to 60ºC.

2. Prehybridize the membrane in Church-Gilbert buffer at 60ºC for 2-4 h.

3.2.4.2.Probe labelling:

1. Dilute the DNA to be labelled to a concentration of 2.5-25 ng in 45 µl of

sterile water or 10 mM TrisHCl pH 8.0, 1mM EDTA.

2. Denature the DNA sample by heating to 95ºC for 5 min.

3. Centrifuge briefly to bring the contents to the bottom of the tube.

4. Add the denatured DNA to the labelling mix and reconstitute the mix by

gently flicking the tube until the blue colour is evenly distributed.

5. Centrifuge briefly.

6. Add 5 µl of Redivue [γ-32P] dCTP and mix by gently pipetting up and

down 4-6 times.

7. Centrifuge briefly.

8.  Incubate at 37ºC for 60 min.
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3.2.4.3. Probe purification:

1. Take Nick column (Amersham) and remove the solution from inside (by

gravity).

2. Add 3 ml of TE and wash the same way.

3. Place 50 µl of the labelled probe in the centre of the column.

4. Add 400 µl, 400 µl, and 100 µl of TE and collect these fractions.

5. Measure the counts in each fraction.

6. Take appropriate amount from the second fraction that is equivalent to

30X106 DPM.

7. Incubate at 95ºC for 10 min.

8. Cool on ice for 5 min.

9. Pulse spin and it is ready to be used for hybridisation.

3.2.4.4. Hybridisation:

1. Add the purified probe from above to prewarmed fresh hybridisation

buffer.

2. Discard the prehybridisation buffer from the membrane.

3. Transfer the labelled buffer to the membrane.

4. Keep for hybridisation at 55-65ºC overnight.

5. Proceed for washing the next day.

3.2.5. Washing:

1. Prewarm the washing buffer to 55-65ºC.

2. Remove the radioactive hybridisation buffer from the membrane tubes.

3. Add wash buffer to membrane and give first wash for 15 min.

4. Measure the counts and depending on that set the number of washes and

wash time.

5. After final wash, air dry the membrane, wrap in saran-wrap and expose

to 32P sensitive film at –80ºC.

6. Develop the autoradiograph and decide if more or less exposure time is

required for good signal.
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3.2.6. Reagents:

3.2.6.1.RNA loading buffer:

50% Formamide

15% Formaldehyde

10% 10X MOPS

10% Bromophenol Blue.

5 µl of Ethidium bromide per 1ml of the buffer

3.2.6.2.RNA gel composition:

4 gm Agarose

300 ml DEPC water

Boil until agarose melts.

Cool to 50-60ºC in water bath.

Add 40 ml 10X MOPS

67 ml Formaldehyde (37% stock)

* Mix under fume hood.

* Pour into casting tray.

* Leave it to solidify for ~1 h.

3.2.6.3.Church-Gilbert buffer:

1M NaH2PO4 100 ml

1M Na2HPO4 400 ml

Bring to pH 7.2 using these 2 solutions only.

20% SDS 350 ml

100 mM EDTA 10 ml

DEPC H2O to 1 litre.

3.2.6.4.Wash buffer:

1X SSC

0.1% SDS
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3.3.Immunoblotting:

3.3.1.Sample preparation

1. Aliquot equal concentration of the samples to be loaded. Keep on ice.

2. Add equal amount of 2X loading dye. If the sample volume is in excess,

use 6X-loading dye.

3. Mix well and boil to 95ºC for 5 min.

4. Cool on ice, centrifuge briefly and now the sample is ready for loading.

3.3.2.Western blotting procedure

1. Prepare gel apparatus.

2. Pour in running gel, and then add isopropanol. Allow gel to polymerise

and then remove the organic top phase with filter paper.

3. Pour in stacking gel and insert comb. Avoid bubbles formation.

4. Insert apparatus into tank and fill with 1X Tank Buffer.

5. Wash wells using a pipette and the 1X Tank Buffer.

6. Load samples, and run gel at 110 Volts for 1 h.

3.3.3.Western immunoblot procedure

1. Pre-soak the nitrocellulose membrane in methanol until it is completely

wet (generally 30 sec is enough).

2. Transfer membrane to transfer buffer until ready to use. Keep the buffer

cold before use.

3. Separate glass plates and place one piece of filter paper on gel.

4. Order of layering for protein transfer:

Black panel of transfer apparatus

Sponge

Filter paper

Gel

Nitrocellulose membrane

Filter paper
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Sponge

White panel of transfer apparatus

5. Place transfer apparatus in tank so that black panel is against the black

of apparatus.

6. Place ice pack and stir rod in the tank.

7. Fill tank with Transfer buffer.

8. Run at 100 Volts for 90 min. Replace ice pack to maintain cold tank.

3.3.4.Chemiluminescence analysis

1. Blot the membrane for 1 h at room temperature in 5% non-fat skim milk

powder in TBST (termed Blotto).

2. Wash 3 x 5 min with 2.5% Blotto.

3. Incubate with primary antibody (1:5000) in 2.5% Blotto overnight at

4ºC with constant agitation.

4. Wash 3 x 5 min with 2.5% Blotto.

5. Incubate with secondary antibody HRP (1:10,000) in 2.5% Blotto for 1-

2 h at room temperature.

6. Wash 3 x 5 min 2.5% Blotto and 2 x 5 min in TBST.

7. Detect using 1:1 ratio luminol/oxidant for 1 min, blot dry on filter paper

and expose for 30 sec to get an idea as to optimise the result.

3.3.5.Reprobing with another antibody.

1. Wet nitrocellulose membrane thoroughly in methanol.

2. Rinse in d.H2O.

3. Strip in 10-50 ml of Strip Buffer at 60ºC for 30-40 min with constant

agitation.

4. Wash 2 x 10 min in TBST at room temperature.

5. Block and probe at mentioned above.

3.3.6.Reagents
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1. 2X Loading dye:

2.5 ml 0.5M Tris pH 6.8

4.0 ml 10% SDS

2.0 ml glycerol

1.0 ml 2-mercaptoethanol

Pinch of bromophenol blue

Final volume to 10 ml with distilled water

2. Protein gel recipies:

10% Running gel (10 ml) Stacking gel (5 ml)

d.H20 2.8 ml d.H20 3.0 ml

Acrylamide mix 3.0 ml Acrylamide mix 0.65 ml

1.5 M Tris pH 8.8 3.8 ml 0.5 M Tris pH 6.8 1.25 ml

10% SDS 0.1 ml 10% SDS 0.05 ml

10% APS 0.2 ml 10% APS 0.05 ml

TEMED 5.0 µl TEMED 5.0 µl

* Add TEMED only when ready to pour, and shake after adding TEMED.

* Use freshly prepared APS.

* This recipe will make two gel plates.

3. 4X Tank Buffer

48 g Tris base

230.4 g Glycine

16 g SDS

* Bring volume up to 4 litres with distilled water and set pH to 8.5

* For 1X, use 500 ml 4X Tank Buffer and bring volume up to 2 lit.

4. Transfer Buffer

3 g Tris

14.1 g glycine

1 g SDS

200 ml methanol
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* Dissolve Tris, glycine and SDS in water before adding methanol.

* Make up volume to 1 litre with d.H2O.

5. 10X TBS

121 g Tris

176 g NaCl

* Dissolve salts in 1.6 litre d.H2O.

* Adjust to pH 8.0 with conc. HCl and make up to 2 litre.

6. TBST

200 ml of 10X TBST pH 8.0

0.5 ml TWEEN-20

* Make up to 2 litre with d.H2O.

7. Strip Buffer

0.7 ml 2-mertaptoethanol (14 M)

2 gm SDS

1 M Tris pH 6.8

* Make volume to 100 ml with d.H2O
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3.4. GST PULL DOWN ASSAY

3.4.1 GST-Fusion protein:

1. Grow bacterial culture in 10 ml LB with appropriate antibiotics

overnight.

2. Incoulate the above 10 ml culture in 100 ml LB and grow at 37ºC for 2-

3 h.

3. Add IPTG to final concentration of 0.5 mM.

4. Grow bacterial culture for another 3-5 h.

5. Centrifuge the bacteria.

6. Resupend the bacterial pellet in 10 ml of NETN lysis buffer.

7. Sonicate at maximum setting (40-50 Duty Cycle; 20 Volts), 3-5 times,

0.7 min each time on ice to prevent overheating.

8. Centrifuge at 14,000 rpm for 5 min.

9. Transfer the supernatant (lysate) to new tube.

10. Add 0.5-1 ml of prehydrated Glutathione cross-linked agarose beads

(beads volume). Pre-wet beads in PBS, wash thrice in same buffer and

store at 4ºC with an equal volume of the buffer on top of the beads.

11. Rotate the lysate plus beads at 4ºC for 3-5 h.

12. Wash the beads 4-5 times in NETN wash buffer and centrifuge at 2,000

rpm for 5 min at 4ºC. These beads can be now stored in the same buffer

at 4ºC.

3.4.2. in vitro protein-protein interaction analysis:

1. in vitro translate the interacting protein of interest with 35S-labeled

Methionine.

2. Incubate the in vitro translated protein with GST-fusion protein and rock

the samples at 4ºC for 2-3 h.

3. Wash beads three times with the same buffer.



60

4. After final wash, resuspend beads in the SDS sample loading buffer,

boil for 5 min, centrifuge briefly.

5. Load the supernatant to SDS-PAGE.

6. Autoradigraph the gel.

3.4.3. Reagents:

1. NETN lysis buffer

20 mM Tris

200 mM NaCl

1 mM EDTA

0.5 % NP40

1 mM DTT

1% Triton X-100

+Protease inhibitors

2. NETN wash buffer

20 mM Tris

200 mM Nacl

1 mM EDTA

+Protease inhibitors
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3.5. Coimmunoprecipitation assay:

3.5.1. Preparation of Nuclear extracts

1.1.1. Protocol:

1. Centrifuge 1x 10E7 cells at 1000 rpm for 5 min.

2. Wash cell pellet twice in 5 ml ice cold PBS.

3. Resupsend cell-pellet in 1 ml ice cold PBS and transfect to eppendorf

tube. Centrifuge briefly to bring the cells to the bottom of the tube.

Remove PBS completely.

4. Resuspend cell pellet in 100 µl of Buffer A. Incubate on ice for 10-15

min with occasional tapping.

5. Pellet the nuclei by centrifugation at 2000 rpm for 5 min at 4ºC. The

supernatant cytoplasmic fraction can be snap frozen in liquid nitrogen

and stored at –80ºC.

6. Resuspend the nuclei in 50 µl of ice cold Buffer C. Mix thoroughly.

7. Break open the nuclei by incubation in liquid nitrogen followed by

incubation at 37ºC. Repeat thrice.

8. Centrifuge the nuclear extract at 13,000 rpm for 15 min at 4ºC.

9.  Aliquot the nuclear extract supernatant, snap freeze in liquid nitrogen

and store at –80ºC.

3.5.2. Coimmunoprecipitation

1. Incubate the nuclear extract with 40 µl of protein A-Agarose beads and 2

ug specific antibody in 500 µl of coIP buffer.

2. Rock at 4ºC for 3 h.

3. Spin down the protein-A-agarose bound protein complex at 4ºC and 2000

rpm for 5 min.

4. Wash the beads complex with coIP buffer for 3-5 times.

5. After final wash, denature proteins by sample loading buffer and run a

SDS-PAGE.
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6. Immunoblot using antibody directed against the interacting partner.

3.5.3. Reagents

1. Buffer A

Components          Stock Final (100 ml)

20 mM Tris pH 8.0 1 M 2 ml

10 mM NaCl 5 M 0.2 ml

3mM MgCl2 1 M 0.3 ml

0.1% NP40 10% 1 ml

10% glycerol 100% 10 ml

0.2 mM EDTA 0.5 M 0.04 ml

0.4 mM PMSF 10 µl

1µg/ml antipain 10 µl

1µg/ml leupeptin 10 µl

Sterile water to make final volume to     100 ml

2. Buffer C

Components          Stock Final (100 ml)

20 mM Tris pH 8.0 1 M 2 ml

400 mM NaCl 5 M 8 ml

20% glycerol 100% 20 ml

1 mM DTT 1 M 0.1 ml

0.4 mM PMSF 10 µl

1µg/ml antipain 10 µl

1µg/ml leupeptin 10 µl

Sterile water to make final volume to  100 ml

3. coIP buffer

50 mM Tris.HCL pH 7.5

150 mM NaCl
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1 mM EDTA

5% Glycerol

0.25% NP-40

+ Proteinase inhibitors
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3.6. Electro-Mobility-Shift-Assay (EMSA):

3.6.1 Probe stock

1. Add 20 µg of Oligo A and Oligo B each to a final volume of 100 µl in

1X Annealing buffer. The final concentration of the oligo is now 0.4

µg/µl.

2. Boil the oligo mix to 95ºC for 5 min in water bath.

3. Cool to room temperature slowly.

4. Dissolve 10 µl of the oligo mix in 70 µl of 1X annealing buffer. This

stock will now have 50 ng/ µl ds-oligo concentration.

5. Store the oligo stocks at –20ºC.

3.6.2 Probe labelling

 1 µl 50 ng/ul ds oligo stock

4 µl 5X Forward reaction buffer ( Gibco)

5 µl γ-32P ATP (50 µCi)

8 µl d.H2O

2 µl T4 Polynucleotide kinase

* Incubate at 37ºC for 60 min.

* Use Gibco Quickspin column to purify the labelled oligo. Briefly,

centrifuge the column at 1,000 rpm for 2 min. Add the labelled probe

and centrifuge again at 2,700 rpm for 5 min.

* Store the labelled probe at –20ºC until futher use.

3.6.3. Gelshift reaction

1. Cast a 4.8% native polyacrylamide gel.

2. Meanwhile prepare the reaction mix. One can use in vitro translated

protein or nuclear extract as the source of protein binding to the oligo

probe. A short example of a typical reaction mix is as follows:

a) Probe alone

b) Probe + protein
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c) Probe + protein + 200X cold oligo competitor

d) Probe + protein + specific antibody

e) Probe + protein + non specific antibody

f) Probe + protein + 200X cold oligo comp. + specific

antibody

3. Make the binding reaction master mix which consists of 2 µl of

poly.dI.dC and 4 µl of 1X BBS buffer and d.H2O to 20 µl for every

reaction.

4. Sequence of adding the reaction components should always be: BBS

buffer->poly.dI.dC->d.H2O->protein->cold comp.->probe->antibody.

5. Incubate the probe with protein for 30 min on ice, and then incubate

with the anibody for further 30 min on ice.

6. Load the samples and run the gel at 155 Volts until the dye 2/3rd of the

gel (usually take 5-7 h).

7. Vacum dry the gel.

8. Develop an autoradiograph with first 2 h exposure at –80ºC. Depending

on the results, decide on better exposure time.

3.6.4. Reagents

1. 10X Annealing buffer

10 mM Tris pH 7.5

10 mM MgCl2

50 mM NaCl

1 mM DTT

2. 4.8% Polyacrylamide gel

6 ml 1:19 bis:acrylamide (40%)

5 ml 10X TBE

0.5 ml 10% APS

38.5 ml d.h2O
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0.035 ml TEMED

* Mix and cast a 1 mm thick gel and insert an appropriate comb. Allow to

polymerise.



67

3.7. Retroviral transduction

Retroviral transduction was performed as described by Grignani et al.

(234)

3.7.1. Viral particles production

1. Grow the Phoenix retroviral producing cell line in DMEM plus 10%

FBS. Every 6 months do a 14 day selection with 1 µg/ml Hygromycin

and 1 µg/ml Diphteria Toxin.

2. Transfection - DAY O: Split cells into 10 cm dishes at 2 x 106 cells in

the DMEM growth medium.

3. Transfection – DAY 1: Transfect each 10 cm dish with 5 µg of DNA

using Lipofectamine-Plus reagent and protocol (Promega).

x µl DNA (5 µg) + medium = 125 µl

20 µl PLUS reagent + medium = 125 µl

30 µl LIPO reagent + medium = 250 µl

Medium to cells = 2 ml

Total transfection volume = 2.5 ml

4. After 3 h add 2.5 ml of 20% FBS medium.

5. 12 h post transfection, replace the transfection medium with regular

DMEM growth medium, and incubate for further 12 h.

6. Trypsinize cells, wash in PBS and resuspend in 5 ml growth medium.

7. Plate 1:10 from 5 ml.

8. After 24 h, start selection with the appropriate antibiotics.

9. Replace the selection medium with regular growth medium for viral

particle harvest.

10. After 2-3 days, collect the medium, centrifuge at 1000 rpm for 5 min.

11. Aliquot and store at –80ºC.

3.7.2.Viral titre estimation

1. Plate NIH3T3 cells in 6 well plate at 5 x 10E4 cells per well per 2 ml
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medium.

2. 24 h post-plating, remove medium and replace with increasing volume

of the viral medium (aliquot ranging from 125 µl to 1 ml of the viral

medium).

3. 48 h post-infection count GFP positive cells under UV light microscope

and compute the titre value for that batch of viral medium.

3.7.3.Retroviral transduction

1.DAY 1: 1 x 107 of cells to be transduced are centrifuged at 1000 rpm for

5 min.

2.Resuspend the cells in 2.5 ml of the viral medium for 1-2 h; spin down

after adding 8ug/ml of Polybrene (Sigma) for 3 h.

3.Resuspend in regular growth medium and incubate under normal growth

conditions for the cells.

4.Repeat step b & c for DAY 2 and DAY 3.

5.DAY 4: sort for GFP positive cells or start selection using appropriate

antibiotic.

6.Proceed for further analysis of the transduced cells.
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3.8. FACS ANAYLSIS:

1. 106 were washed twice in washing buffer (PBS, 0.1% [wt/vol] NaN3, 1%

FBS)

2. Resuspend cells in 100 µl of washing buffer with 2 µl of the respective

antibody.

3. Incubate at room temperature for 30 min.

4. Remove non-bound antibody by washing in 10 volumes of the wash

buffer.

5. Resupend cells in 1 ml of the buffer and proceed for FACS analysis.

6. Minimum of 104 cells were analysed by flow cytometery. (CD15 PE

(clone H198), its isotype control IgM κPE (clone G155-228), CD 11b PE

(clone ICRF44) and its isotype control IgG1 κPE (clone MOPC-21) were

purchased from BD Biosciences.)
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3.9. REAL TIME PCR:

Real-time quantitative PCR was performed using the light cycler

technology (Roche Diagnostic) as described previously (235).

3.9.1. RNA isolation

1. Centrifuge the appropriate number of cells for 5 min at 300 x g. Discard

supernatant, completely removing all the media.

2. Disrupt cells by addition of Buffer RLT. Ensure β-ME is added to

Buffer RLT before use. Add 350 µl of Buffer RLT for cell number up to

5 x 106.

3. Pipette lysate directly onto a QIAshredder column (Quiagen) sitting in

the 2-ml collection tube, and centrifuge for 2 min at maximum speed to

homogenize.

4. Add 1 volume of 70% ethanol to the homogenized lysate, and mix well

by pipetting.

5. Apply up to 700 µl of sample, including any precipitate which may have

formed, to an RNeasy mini spin column sitting in a 2-ml collection tube,

and centrifuge for 15 sec at ~8,000 x g.

6. Pipette 700 ul Buffer RW1 onto the RNeasy column, and centrifuge for

15 sec at ~8,000 x g.

7. Transfer RNeasy column into a new 2-ml collection tube. Pipette 500 µl

Buffer RPE onto the RNeasy column, and centrifuge for 15 sec at

~8,000 x g to wash.

8. Pipette 500 µl Buffer RPE onto the RNeasy column. Centrifuge for 2

min at maximum speed to dry the RNeasy membrane.

9. Transfer RNeasy column into a new 1.5 ml collection tube, and pipette

30-50 ul of RNase-free water directly onto the RNeasy membrane.

Centrifuge for 1 min at ~8,000 x g to elute.

3.9.2. Real time PCR
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1. 2 µl of cDNA template was used for the real time PCR.

2. For amplification of the housekeeping gene Glucose-6-phosphate

dehydrogenase (G6PD), the primers used were: forward 5’CCG GAT

CGA CCA CTA CCT GGG CAA C 3’ and reverse 5’ GTT CCC CAC

GTA CTG GCC CAG GAC CA 3’.

3. The primers for c-jun amplification were: forward 5’GCA TGA GGA

AAC GCA TCG CTG CCT CCA AGT ’3 and reverse 5’GCG ACC

AAG TCC TTC CCA CTC GTG CAC ACT ‘3.

4. G6PD plasmid was serially diluted from 1ng to 100 fg and 2 µl of the

plasmid dilution was used for standard curve plotting.

5. The Real Time PCR was performed using 2 µl of master mix (Light

Cycler FastStart DNA Master SYBR Green I, Roche Diagnostics).

6. PCR protocol for each sample was:

(i) Denaturation: 10 min at 95ºC.

(ii) Amplification: 95ºC 10 sec denaturation

64ºC 10 sec annealing

72ºC 25 sec extension

Fluorescence of SYBR Green I was measured after each amplification

cycle at 530 nm by F1 channel.

7. Melting curve analysis was performed by cycles of denaturation at 95ºC

for 0.1 sec followed by annealing the samples at 65ºC for 10 sec to

confirm the PCR product. Fluorescence at 530 nm by F1 channel was

monitored by measurement at every 0.2ºC temperature increment.

8. The concentration of G6PD from samples was calculated using the

G6PD standard curve. The concentration of c-jun was also calculated

with reference to the G6PD standard curve.

9. The estimated concentration of c-jun was normalized to the G6PD

concentration from the same sample to get the quantitative value for c-

jun mRNA from each sample.
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3.10. in vitro translation

(USING TNT COUPLED RETICULOCYTE LYSATE SYSTEM):

1. Remove the reagents from storage at –70ºC. Immediately place the TNT

RNA Polymerase on ice. Rapidly thaw the TNT Reticulocyte Lysate and

place on ice. Thaw other components at room temperature and store on

ice.

2. DNA is prepared using the Quiagen DNA amplification protocol.

3. Assemble the reaction components, appropriate for the label being used,

in an eppendorf tube. After all the components are added, gently mix the

lysate by pipetting and stirring the reaction with the pipette tip. If

necessary, centrifuge briefly to return the sample to the bottom of the

tube.

Component Std. Reaction

[35S]methionine cold reaction

TNT Rabbit Reticulocyte lysate 25 µl 25 µl

TNT Reaction buffer 2 µl 2 µl

TNT RNA Polymerase (SP6, T3 or T7) 1 µl 1 µl

Amino acid mixture, minus leucine, 1 mM   - 1 µl

Amino acid mixture, minus methionine 1 µl 1 µl

[35S]methionine 4 µl                      -

RNasin Ribonuclease Inhibitor (40u/ µl) 1 µl 1 µl

DNA template (0.5 µg/µl) 2 µl 2 µl

 ----  ----

Nuclease-free water to a final volume of 50 µl          50 µl

4. Incubate the translation reaction at 30ºC for 90 min.
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5. Analyse the results of translation either by running SDS-PAGE and

developing autoradiograph for [35S] labelled samples, or by immuno-

blotting with specific antibody directed against protein of interest.
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3.11.DNA amplification

3.11.1.DNA MINIPREP (QIAGEN KIT PROTOCOL)

1. Resuspend pelleted bacterial cells in 250 µl of Buffer P1 and transfer to

eppendorf tube. Ensure that Rnase A has been added to Buffer P1.

2. Add 250 µl of Buffer P2 and gently invert the tube 4-6 times to mix. Do

not let the lysis reaction to proceed for more than 5 min.

3. Add 350 µl of Buffer P3 and invert the tube immediately by gently 4-6

times.

4. Centrifuge for 10 min.

5. Apply the supernatants from the step 4 to the QIAprep column.

6. Centrifuge 30-60 sec. Discard the flow-through.

7. Wash QIAprep spin column by adding 750 µl of Buffer PE and centrifuge

30-60 sec.

8. Discard the flow-through, and centrifuge for an additional 1 min to

remove residual wash buffer.

9. Place QIAprep column in a clean 1.5 ml eppendorf tube. To elute DNA,

add 50 µl of Buffer EB or water to the center of the QIAprep column, let

stand for 5 min, and centrifuge for 1 min.

3.11.2.MAXI PREP (QUIAGEN KIT)

1. Pick a single colony from a freshly streaked selective plate and inoculate

a starter culture of 2-5 ml LB medium containing the appropriate selective

antibiotic. Incubate for ~8 h at 37ºC with vigorous shaking (~250 rpm).

2. Dilute the starter culture 1/500 into selective LB medium. Grow at 37ºC

for 12-16 h with vigorous shaking (~250 rpm).

3. Harvest the bacterial cells by centrifugation at 6000 x g for 15 min at 4ºC.

4. Resuspend the bacterial pellet in 10 ml of Buffer P1.

5. Add 10 ml of Buffer P2, mix gently but thoroughly by inverting 4-6

times, and incubate at room temperature for 5 min.
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6. Add 10 ml of chilled Buffer P3, mix immediately but gently by inverting

4-6 times, and incubate on ice for 20 min.

7. Centrifuge at ~20,000 x g for 30 min at 4ºC. Remove supernatant

containing the plasmid DNA promptly.

8. Equilibrate a QIAGEN-tip 500 by applying 10 ml Buffer QBT, and allow

the column to empty by gravity flow.

9. Apply the supernatant from step 7 to the QIAGEN-tip and allow it to

enter the resin by gravity flow.

10. Wash the QIAGEN-tip with 2 x 30 ml Buffer QC.

11. Elute DNA with 15 ml of Buffer QF.

12. Precipitate DNA by adding 10.5 ml (0.7 volumes) room temperature

isopropanol to the eluted DNA. Mix and centrifuge at 15,000 x g for 30

min at 4ºC. Carefully decant the supernatant.

13. Wash DNA pellet with 2 ml of 70% ethanol and centrifuge at 15,000 x g

for 10 min. Carefully decant the supernatant without disturbing the pellet.

14. Air-dry the pellet for 5-10 min, and redissolve the DNA in a suitable

volume of buffer TE or water.



76

3.12.Whole cell lysate (RIPA)

3.12.1.Solutions

RIPA Lysis Buffer:

Final Stock For 100 ml

1% (w/w) NP40 10% 10 ml

0.5%/w/v) Na. Deoxycholate 5% 10 ml

0.1%(w/v) SDS 10% 1 ml

0.15 M NaCl 5 M 3 ml

5mM EDTA 0.5 M 1 ml

50 mM Tris pH 8.0 1 M 5 ml

Sterile water 70 ml

+ Phosphatase inhibitors

10 mM Na. Pyrophosphate

50 mM Na. Floride

0.2 mM Na. Vanadate

+ Proteinase Inhibitors

1 mM PMSF

10 µg/ml Pepstatin A

10 µg/ml Leupeptin A

10 µg/ml Aprotinin

10 µg/ml Antipain

10 µg/ml Chymostatin

3.12.2.Protocol

1. Spin cells at 1000 rpm for 5 min at 4ºC.

2. Wash in 10 ml ice cold PBS twice.

3. Resupend in 1 ml ice cold PBS and transfer to 1.5 ml eppendorf tube.

Centrifuge briefly.
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4. Decant PBS completely and resupend the cell-pellet in 20-100 µl of

RIPA buffer depending on the cell number.

5. Keep on ice for 30 min with occational vortexing.

6. Centrifuge at 13,000 rpm for 30 min at 4ºC.

7. Aliquot the supernatant, snap freeze in liquid nitrogen and store at

–80ºC.
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3.13. Cell culture

3.13.1.Human myeloid U937 cells stably transfected with a zinc inducible

C/EBPα construct (U937 α#2) or vector alone (U937EV) have been

described previously (67).

3.13.1.1.Cells were cultured in RPMI 1640 medium supplemented with 10%

foetal calf serum, 1% L-glutamine (Gibco), 1% PenStrep (Gibco) and

850µg/ml of G418 (Gibco).

3.13.1.2.C/EBPα expression from the metallothionine promoter was induced

upon adding 100µM ZnSO4 (Sigma).

3.13.2.Human promyelocytic HL-60 cells (DSMZ no. ACC 3) were grown in

RPMI 1640 media containing 10% FBS, 1% PenStrep (Gibco) and 1%

L-glutamine (Gibco).

3.13.3.CV-1 (CCL-70), NIH 3T3 (ACC 59), 293 clone constitutively expressing

the proteins encoded by E1A (293E1A), CHO (CCL-61), 293T and

phoenix-A cells were maintained in DMEM (Gibco) supplemented with

10% FBS, 1% Penstrep and 1% L-Glutamine.

3.13.4.HeLa cells were grown in RPMI 1640 supplemented with 10% FBS, 1%

Penstrep and 1% L-Glutamine.



79

3.14.Plasmids

3.14.1.A human c-jun promoter bp-1780/+731 construct was generated by

amplifying the c-jun promoter fragment along with XhoI half sites at

each end from human genomic DNA and ligated into pGL3 basic vector

(Promega) XhoI site.

3.14.2.A series of 5’ deletions were generated as mentioned in reference 47. The

bp-79/+170 human c-jun promoter construct, bp-79/+170 AP-1/CRE

mutant and pGL2 basic vector were a gift from Dr. Vedekis (216).

3.14.3.The pcDNA3 C/EBPα construct was generated by releasing a BamHI/

EcoRI fragment of rat C/EBPα cDNA from the pUC18 vector and

ligating this fragment into pcDNA3 (Invitrogen).

3.14.4.The reporter construct p(C/EBP)2TK contains two consensus C/EBPα

binding sites linked in tandem and cloned into pTK81 luciferase.

3.14.5.AP-1 x7 luciferase reporter construct containing seven repeats of AP-1

DNA binding sites was purchased from Stratagene.

3.14.6.Gal-4 (1-147), Gal-4 Tel and Gal-4 DNA binding domain in eukaryotic

expression vector SGS424 were kindly provided by Dr. Bohlander,

Göttingen.

3.14.7.C/EBPα∆BR (lacking the basic region) and C/EBPα∆LZ (lacking the

leucine zipper domain) were a kind gift from Dr. Friedman (22,40,217).

3.14.8.c-jun∆RK (DNA binding domain deletion) and c-jun∆LZ (leucine zipper

domain deletion) have been described in reference 218.
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3.15.May-Grünwald-Giemsa staining:

1. Spin down cells to be stained onto a glass slide.

2. Dip the slides in May-Grünwald solution for 7 mins.

3. Wash the slides in staining buffer.

4. Dip the slides in diluted Giemsa solution for 30-40 mins.

5. Wash the slides in staining buffer.

6. Air dry the slides and observe under microscope

7. Reagents:

a. Undiluted May-Grünwald solution (with fixative).

b. Diluted Giemsa solution:

37.5 ml Giemsa in 500 ml of staining buffer pH 6.8
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3.16. Transformation Mutagenesis Protocol:

Clontech Transformer Site-Directed Mutagenesis kit was used for

constructing the required mutatants. Here is a brief description of the protocol:

3.16.1 Denaturation of plasmid DNA and annealing of primers to the DNA

template.

1. Pre-warm a water bath to boiling (100ºC).

2. Set up the primer/plasmid annealing reaction in a 0.5 ml eppendorf

tube as follows:

10X Annealing buffer 2.0 µl

Plasmid DNA (0.05 µg/µl) 2.0 µl

Selection primer (0.05µg/µl) 2.0 µl

Mutagenic primer (0.05 µg/µl) 2.0 µl

Adjust with water to a total volume of 20 µl. Mix well and centrifuge

briefly.

3. Incubate at 100ºC for 3 min.

4. Chill immediately in an ice water bath for 5 min. Centrifuge briefly.

3.16.2 Synthesis of the mutant DNA strand.

1. To the primer/plasmid annealing reaction add:

10X Synthesis buffer 3.0 µl

T4 DNA polymerase (2-4 units/µl) 1.0 µl

T4 DNA ligase (4-6 units/µl) 1.0 µl
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Sterile water 5.0 µl

2. Mix well and centrifuge briefly. Incubate at 37ºC for 1-2 hr.

3. Stop the reaction by heating at 70ºC for 5 min. Cool the tube to room

temperature.

3.16.3 Primary selection by restriction digestion.

1. Add 1µl of the selection unique enzyme and incubate the tube at 37ºC

for 1-2 hr.

2. After the primary restriction digestion, heat the mixture to 70ºC for 5

min.

3.16.4 First transformation

1. Preheat a heating block or water bath to 42ºC.

2. Add 5-10 µl of the plasmid/primer DNA solution from above step to

100 µl of competent BMH 71-18 mutS cells and incubate on ice for 20

min.

3. Transfer to 42ºC for 1 min.

4. Immediately add 1 ml of LB medium (without antibiotic) to each tube.

5. Incubate at 37ºC for 60 min with shaking at 220 rpm.

6. Add 4 ml of LB medium containing the appropriate selection

antibiotic. Incubate the culture at 37ºC overnight with shaking at 220

rpm.

7. Isolate the plasmid DNA using Quiagen mini prep kit.

3.16.5 Selection of the mutant plasmid



83

1. To 100 ng of the isolated plasmid, add 10-20 units of the selection

unique enzyme with the appropriate buffer supplied along with the kit.

2. Adjust the final volume to 20 µl with sterile water.

3. Mix well. Incubate at 37ºC for 2 hr.

4. Add additional 10 units of the appropriate restriction enzyme, and

continue incubation at 37ºC for another 1 hr.

3.16.6 Final transformation

1. Use 5.0 µl of the digested plasmid DNA (approximately 25 ng) for

transformation as described above.

2. After transformation, immediately add 1 ml of LB medium (without

antibiotics).

3. Incubate at 37ºC for 60 min with shaking at 220 rpm.

4. Perform a serial dilution as follows in order to obtain several different

concentrations of cells.

a. Place 111 µl of the transformed cells into a fresh tube (labelled

1X)

b. Remove 11 µl from tube 1X and add to a fresh tube containing

99 µl of LB broth (labelled 0.1X); mix contents of tube 0.1X.

c. Remove 10 µl from tube 0.1x and add to a fresh tube containing

90 µl of LB broth (labelled 0.01X); mix contents of the tube

0.01X.
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d. If colour conversion is expected as a result of transformation,

add:

40 µl of 20 mg/ml X-gal solution

10 µl of 20 nM IPTG solution

e. Mix well and spread each suspension evenly on LB plates

containing the appropriate antibiotic for selection of

transformants.

3.16.7 Characterization of mutant plasmids

1. In case of transformations using the control pUC19M plasmid, the

efficiency of mutagenesis is estimated by the number of blue (mutated)

colonies divided by the total number of blue and white (unmutated)

colonies. An efficiency rate of 70-90% is expected if the mutagenesis

is performed successfully.

2. For mutagensis experiments that do not involve a visible phenotype,

such as colony colour, resistance to another antibiotics, or

hybridisation to a particular DNA probe, it is necessary to isolate the

plasmid DNA to characterize the mutation.

3. Depending on the type of mutation generated (such as large deletion),

the putative mutant plasmids may be screened by digestion with

appropriate restriction enzymes.

4. The mutations should be further verified by directly sequencing the

mutagenized region(s).
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1.17. Immunofluorescence:

1. HeLa cells were plated on glass coverslips and transfected with

the respective DNA plasmids using lipofectamine transfection

protocol.

2. 24 hr post transfection, cells were washed in PBS and fixed with

3% paraformaldehyde for 10 min followed by incubation in 2%

glycine for 15 min.

3. Cells were permeablized with 0.2% Triton X100 for 10 min. Cells

were blocked in 0.2% BSA for 15 min followed by incubation in

the primary antibody (1:100 dilution) for 1 hr.

4. 1:100 dilutions for FITC and 1:500 dilution for Cy3 was used for

secondary antibody.

5. After incubation of the cells with secondary antibody for 1 hr.,

cells were washed, dried and mounted on coverslip.

6. Fluorescence for the respective secondary antibody was observed

using Leica Confocal microscope.
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4.RESULTS:

4.1. Reciprocal C/EBPα and c-jun expression.

4.1.1. C/EBP  knockout mice model

The macrophage colony-stimulating factor (M-CSF), required for growth

and differentiation of mononuclear phagocytes (macrophages) regulates c-jun

expression, which suggests that expression of this gene could contribute to

nuclear signaling mechanisms that regulate a specific program of monocyte

differentiation (219). Reciprocal expression pattern of C/EBPα and c-jun has

been mentioned before in other cell types (30), but was not investigated in

detail.
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Figure 1A: Reciprocal expression of C/EBPα and c-jun. Northern blot analysis showing

the expression of c-jun in day 19 fetal livers from C/EBPα +/+, +/- and -/- fetus, adult

mouse brain and peritoneal macrophage. Northern blot analysis was performed as

described in methods. Briefly, total RNA (10 g) for each sample was electrophoresed,

transferred, and hybridized with -32P-labeled c-jun 1.1 Kb BamHI-EcoRI cDNA

fragment and G6PD control fragment. Densitometric quantification ratio of c-jun/G6PD

is shown below.

In C/EBPα heterozygous and homozygous knockout mice, we

investigated the level of c-jun expression in fetal liver compared to expression in

wild type adult macrophages (Fig. 1A).



88

Consistent with previous publications, high level of c-jun mRNA was

detected in adult macrophages. In addition, various groups (220,221) had

observed that induction of macrophage differentiation by LPS, TNFα, IFNγ or

IL-1 was associated with decrease in C/EBPα expression. In comparison to wild

type C/EBPα mice, high c-jun expression was observed in heterozygous mice

whereas the maximum expression was observed in the homozygous, suggesting

that the expression is controlled by both alleles of C/EBPα.

4.1.2. Myeloid cell line model

In the U937 cell line model with inducible C/EBPα expression, the

decrease in c-jun mRNA level is reciprocal to the increase in C/EBPα

expression as seen in Fig. 1B and 1C. c-jun protein level decreases between 0 to

4 hrs of C/EBPα induction (Fig. 1C).
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Figure 1B: Reciprocal expression of C/EBPα and c-jun. U937  and U937 EV cell

lines were induced with 100 M of zinc sulphate and total RNA was collected at 0, 4, 8,

12 and 16 hrs. cDNA from 1 g total RNA was used for real time PCR using c-jun and

G6PD specific primers.
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Figure 1C: Reciprocal expression of C/EBPα and c-jun. Western blot analysis showing

the expression of c-jun and C/EBPα in protein extracts from U937  and U937 EV

cell lines at 0, 4, 8, 12 and 24 hrs time points. Immunodetection was performed using c-

jun and C/EBPα specific antibody. in vitro translated C/EBPα was used as a positive

control. -tubulin expression from the same blot is shown as a loading control.



91

4.2. C/EBPα downregulates c-jun promoter activity.

4.2.1. Adherent cell lines

To investigate the ability of C/EBPα as a negative regulator of c-jun

expression, we first asked the question whether it was through transcriptional

regulation of the c-jun promoter. Human c-jun promoter (216) bp-1780 to

bp+731 in pGL3 basic luciferase vector was cotransfected with C/EBPα

expression vector in various non-myeloid cell lines (Fig. 2A).

Figure 2A: C/EBPα downregulates the c-jun promoter activity. Transient cotransfection

of a c-jun promoter reporter construct (bp-1780 to bp+731) and pGL3 with or without

C/EBPα in various cell lines such as CV.1, NIH3T3, 293E1A, CHO and HeLa. Solid

bars indicate the promoter alone values; whereas cotransfection with C/EBPα is shown

as open bars. pRL-0 Renilla luciferase construct was cotransfected to normalize for

transfection efficiency.
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The pGL3 basic luciferase reporter vector into which the c-jun promoter

was cloned served as vector alone control. Since we addressed the repressional

activity of C/EBPα, we also used the p(C/EBP)2TK promoter containing two

repeats of C/EBP consensus DNA binding site as a positive control for C/EBPα

transcriptional activity under the same experimental conditions in order to rule

out toxic effect of C/EBPα in transient transfection experiments (Fig. 2B).

Figure 2B: C/EBPα downregulates the c-jun promoter activity. Effect of transient

cotransfection of C/EBPα on the positive control p(C/EBP)2TK-luciferase reporter

construct indicating the transactivation capacity of C/EBPα in these cell lines. pTK-

luciferase reporter construct serves as negative control. Promoter alone values are

indicated as solid bars, whereas the fold promoter activities in presence of C/EBPα are

depicted in open bars.

These transient transfection experiments were carried out in various

fibroblast cell lines as shown in Fig. 2, to demonstrate that it was a general
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phenomenon and not cell line dependent. At least 8 fold c-jun promoter activity

downregulation in presence of C/EBPα was observed, whereas the

p(C/EBP)2TK promoter was transactivated about 10 fold upon transient

expression of C/EBPα.

4.2.2. U937 myeloid cell line

Dose-dependent c-jun promoter downregulation was also observed in

U937 myeloid cells in presence of C/EBPα (Fig. 2C)

Figure 2C: C/EBPα downregulates the c-jun promoter activity. 1 x 106 U937 cells per

well in 6 well plates were transfected with 0.55 g c-jun promoter construct (bp-1780 to

bp+731) or pGL3, with or without increasing concentrations of C/EBPα expression

plasmid and 0.05 g pRL-0. The cells were transfected using the effectene protocol

(Qiagen). The results are the mean of three independent experiments and error bars

represent the standard error of mean values for each set.

4.3.1. C/EBPα does not recruit a TSA-sensitive co-repressor complex.
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To address the possibility of C/EBPα mediated c-jun promoter

downregulation by recruiting co-repressors, transient transfection experiments of

the c-jun promoter were carried out with C/EBPα in the presence of Trichostatin

A (TSA), a potent inhibitor of histone deacetylase-corepressor complex

formation on an open transcription promoter machinery. Downregulation of c-

jun promoter activity by C/EBPα is retained even in presence of 100nM TSA

(Fig. 3A).

Figure 3A: C/EBPα does not recruit a TSA-sensitive co-repressor complex. Transient

cotransfection experiments in 293E1A cell line with the c-jun promoter construct and

C/EBPα in presence or absence of Trichostatin A (TSA) (100nM). pGal-4-luc with Gal-

4-TEL and TSA was used as a positive control for functionally active TSA.

TSA increases the c-jun promoter activity by itself. This could be because

TSA is known to increase histone H3 acetylation on c-jun associated
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nucleosomes (222). A positive control for TSA showing the loss in recruitment

of co-repressor complex by transcription factor TEL in presence of TSA was

also included.

4.3.2. C/EBPα blocks TPA induced c-jun promoter activity.

TPA, a potent inducer of monocytic differentiation in myeloid bipotential

Figure 3B: C/EBPα blocks TPA induced c-jun promoter activity. 1 x 106 U937 cells in 6

well plates were transfected with 0.55 g of c-jun promoter construct (bp-1780 to

bp+731) or pGL3, with or without 0.4 g of C/EBP  expression plasmid or empty vector,

and 0.05 g pRL-0. The cells were transfected using the effectene protocol (Qiagen). 12 h

post transfection, TPA (100nM) was added to the respective wells and further incubated

at 37ºC for 24-30 hrs. pRL-0 Renilla luciferase construct was cotransfected to normalize

for transfection efficiency. The results are the mean of three independent experiments

and error bars represent the standard error of mean values for each set.

cell lines has been known to increase c-jun expression (145). Radomska et al.

(67) had earlier demonstrated that C/EBPα can block TPA induced monocytic

differentiation in U937 myeloid cells. We, therefore, asked the question if
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C/EBPα could inhibit TPA induced monocytic differentiation capacity by

blocking c-jun expression and activity. As shown in Fig. 3B, human c-jun

promoter activity was downregulated by C/EBPα and, interestingly, TPA-

induced increase in the c-jun promoter activity was blocked by C/EBPα.
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4.4. Mapping of the region in the c-jun promoter that is important for

C/EBPα mediated promoter downregulation.

4.4.1. Since C/EBPα was not recruiting a TSA-sensitive co-repressor complex

to the c-jun promoter, we further asked whether C/EBPα could exert this

repressional activity via some specific transcription factor binding sites in the c-

jun promoter. Schematic presentation of various 5’ c-jun promoter deletion

constructs described by Wei et al. (217) are shown in Fig. 4A.

Figure 4A: c-jun promoter mapping to identify the region important for C/EBPα

mediated downregulation. Schematic presentation of various c-jun promoter 5’ deletion

constructs used for the transient transfection experiment.

4.4.2. These constructs were used for promoter mapping experiments in 293E1A

cells (Fig. 4B). As observed also by Wei et al., each 5’ deletion construct had

different transcriptional activity as compared to the longest (bp-1780/+731)

promoter construct (Fig.4B). As seen in Fig. 4B, the promoter activity of each c-

jun promoter deletion construct was downregulated by C/EBPα except for the
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Figure 4B: c-jun promoter mapping to identify the region important for C/EBPα

mediated downregulation. 1 x 104 293E1A cells per well in 24 well plate were transfected

with 0.25 g of 5’ c-jun promoter deletion constructs: bp-1780/+731; bp-953/+731; bp-

716/+731; bp-345/+731; bp-180/+731; bp-63/+731 and pGL3 with or without 0.2 g of

C/EBPα or empty vector and 0.05 g of pRL-0.

bp-63/+731 construct. This construct lacks most of the regulatory regions

identified so far. Since the bp-180/+731 c-jun promoter construct was still

downregulated by C/EBPα, we concluded that the site important for C/EBPα

mediated transcriptional downregulation should be between bp-180 to bp-63.
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Figure 4C: c-jun promoter mapping to identify the region important for C/EBPα

mediated downregulation. Effect of transient co-transfection of C/EBP  on the positive

control p(C/EBP)2TK-luciferase reporter construct indicating the transactivation

capacity of C/EBPα in this cell line.

In the same experiment, p(C/EBP)2TK was transactivated by C/EBPα (Fig. 4C).

4.4.3. Partial mapping of the c-jun promoter in U937 yielded similar results (Fig.

4D). The full length (bp-1780) and bp-180 c-jun promoter constructs were

downregulated by C/EBPα whereas the bp-63 construct was not.
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Figure 4D: c-jun promoter mapping to identify the region important for C/EBPα

mediated downregulation. 1 x 106 U937 cells per well in 6 well plates were transfected

with 0.55 g of 5’ c-jun promoter deletion constructs: bp-1780/+731; bp-180/+731; bp-

63/+731 and pGL3 with or without C/EBP  expression plasmid or empty vector, and

0.05 g pRL-0. The cells were transfected using the effectene protocol. pRL-0 Renilla

luciferase construct was cotransfected to normalize for transfection efficiency.

4.4.4. Schematic presentation of the c-jun promoter spanning the bp-180 to bp-

63 region (Fig. 4E) shows the binding sites for various transcription factors. This

region includes pAP-1 (proximal AP-1), CTF, and Sp-1 sites.
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Figure 4E: c-jun promoter mapping to identify the region important for C/EBPα

mediated downregulation. Schematic presentation of the c-jun promoter region between

bp-180 and bp-63. This region contains a proximal AP-1 site, CTF site and SP-1 site.
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4.5. C/EBP  does not bind to the CTF site in the c-jun promoter.

The CTF (C/EBP Transcription Factor) binding site in the c-jun promoter

has been identified. We first addressed if C/EBPα can bind to this site for

downregulating c-jun promoter activity. Using either U937 cells nuclear extract

(Fig. 5A) or in vitro translated C/EBPα (Fig. 5B), no binding to the CTF site

was observed. Moreover, mutating the CTF binding site also had no effect on

the transcriptional downregulation of the c-jun promoter (Fig. 5C).

Figure 5A: C/EBPα does not bind to the CTF site in the c-jun promoter. EMSA using

U937 nuclear extract can shift and supershift the control oligo (G-CSFR promoter

C/EBPα binding site), but no such shift or supershift specific for C/EBPα was observed

with the c-jun promoter CTF site.
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Figure 5B: C/EBPα does not bind to the CTF site in the c-jun promoter. EMSA using in

vitro translated C/EBPα protein can shift and supershift the control oligo (G-CSFR

promoter C/EBPa binding site), but no such shift or supershift specific for C/EBPα was

observed with the c-jun promoter CTF site.
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Figure 5C: C/EBPα does not bind to the CTF site in the c-jun promoter. Transient

transfection with mutated CTF binding site in the c-jun promoter along with C/EBPα.

The c-jun promoter activity downregulation for the wild type full length (bp-1780 to

bp+731) and mut.CTF full length c-jun promoter were compared in presence and

absence of C/EBPα.
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4.6. C/EBPα blocks the autoregulatory capacity of c-jun by preventing c-

jun from binding to the proximal AP-1 site in the c-jun promoter.

4.6.1. In transient transfections in U937 myeloid cells, c-jun transactivates its

own promoter – an autoregulatory mechanism that was identified by Angel et al.

(223). Our data (Fig. 6A) suggests that transactivation of the c-jun promoter by

c-jun is blocked in presence of C/EBPα.

Figure 6A: C/EBPα blocks the autoregulatory capacity of c-jun by preventing c-jun

from binding to the proximal AP-1 site in the c-jun promoter. Transient transfections in

U937 myeloid cells were performed using a bp-1780/+731 c-jun promoter construct,

pGL3 vector and 0.2 g C/EBPα expression plasmid and increasing concentrations of c-

jun expression plasmid (0.1 g and 0.2 g).

4.6.2. Based on results from the previous promoter mapping experiments and

TPA experiments, we decided to address the importance of the proximal AP-1

site in C/EBPα mediated c-jun promoter downregulation. We asked the question
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whether C/EBPα could block the transactivation capacity of c-jun through the

proximal AP-1 site in the c-jun promoter. Using the bp-79/+170 promoter (161)

containing only the proximal AP-1 site of the c-jun promoter (Fig. 6B), we

observed that the autoregulatory capacity of c-jun through the proximal AP-1

binding site was lost in presence of C/EBPα. Increasing the concentration of c-

jun could not overcome the block by C/EBPα.

Figure 6B: C/EBPα blocks the autoregulatory capacity of c-jun by preventing c-jun

from binding to the proximal AP-1 site in the c-jun promoter. bp-79/+190 and bp-

79/+190 mutated AP-1 site c-jun promoter constructs and pGL2 were transiently

transfected with 0.2 g C/EBPα expression plasmid and increasing concentrations of c-

jun expression plasmid.

4.6.3. Using an artificial AP-1 construct containing 7 repeats of the consensus

AP-1 site (Fig. 6C), similar results were obtained, indicating that C/EBPα

blocks autoregulation of c-jun by preventing latter from binding to the AP-1 site

in the c-jun promoter.
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Figure 6C: C/EBPα blocks the autoregulatory capacity of c-jun by preventing c-jun

from binding to the proximal AP-1 site in the c-jun promoter. AP-1 luciferase construct

containing seven repeats of an AP-1 binding site was used for transient transfection with

c-jun and C/EBPα in U937 myeloid cells.

4.6.4. The control experiment for the transactivation capacity of C/EBPα (Fig.

6D) suggested that c-jun could also partially suppress the transactivation

capacity of C/EBPα. This effect could be similar to C/EBPα-c-jun interaction

effect on former’s transcriptional activity (204).
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Figure 6D: C/EBPα blocks the autoregulatory capacity of c-jun by preventing c-jun

from binding to the proximal AP-1 site in the c-jun promoter. As positive control for the

transactivation capacity of C/EBPα, p(C/EBP)2TK construct and empty vector pTK

were used under similar experimental conditions as mentioned above. pRL-0 Renilla

luciferase construct was cotransfected to normalize for transfection efficiency. The

results are the mean of three independent experiments and error bars represent the

standard error of mean values for each set.

4.6.5. To understand how C/EBPα blocks the autoregulatory capacity of c-jun,

we determined the DNA binding capacity of c-jun to the proximal AP-1 site in

the presence of C/EBPα. In a band shift mobility assay using the bp-79 c-jun

promoter oligo probe, c-jun binding to the proximal AP-1 site was blocked by in

vitro translated C/EBPα, but not by reticulocyte lysate alone (Fig. 6E). Under

similar experimental conditions, C/EBPα could bind to CEBP consensus DNA

binding site in the G-CSFR promoter and the C/EBPα band shift was

supershifted in presence of C/EBPα specific antibody (Fig 5A, Fig. 5B).
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Figure 6E: C/EBPα blocks the autoregulatory capacity of c-jun by preventing c-jun

from binding to the proximal AP-1 site in the c-jun promoter. EMSA using -32P ATP

labeled bp-82/-53 c-jun promoter oligo spanning the proximal AP-1 site was performed

using in vitro translated c-jun (lanes 2-6,12-15) and C/EBPα (lanes 12,13,16,17) proteins,

rabbit reticulocyte lysate (lanes 7-11,14,15), c-jun specific antibody (lanes 3,6,8,11,13,15),

normal rabbit IgG (lanes 4,9), C/EBPα specific antibody (lane 17) and self unlabeled

competitor probe (lanes 5,6,10,11). Arrows show (1) the c-jun shifted band and (2) super

shifted higher band with c-jun specific antibody.
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4.7. C/EBP  and c-jun interact through their leucine zipper domains.

4.7.1. in vitro interaction

We then asked the question if c-jun could interact with C/EBPα. An in

vitro GST pull down assay (Fig. 7A, 7C) and an in vivo co-IP (Fig. 7D, 7E)

indicate that C/EBPα and c-jun interact in vitro and in vivo.

Figure 7A: C/EBP  and c-jun interact in vitro. GST-C/EBP  and GST+beads were

incubated with in vitro translated c-jun as described in methods.

Figure 7B: C/EBP  and c-jun interact in vitro. As positive control for GST-C/EBP , it

was incubated with in vitro translated C/EBP .
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Fig. 7B shows a control for GST-C/EBPα, which can form homodimers with in

vitro translated C/EBPα.

Figure 7C: C/EBP  and c-jun interact in vitro. GST-C/EBP  was incubated with 85 g

of U937 nuclear extract. Immunodetection was carried out using c-jun antibody. GST

and glutathione-agarose beads alone incubated with U937 nuclear extract to determine

the specificity of this interaction.

4.7.2. in vivo interaction
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Figure 7D: C/EBP  and c-jun interact in HL60 myeloid cells. Coimmunoprecipitation

assays from 85 g of U937 or 60 g of HL-60 nuclear extract were performed using

C/EBP , c-jun specific antibody or normal rabbit IgG.

Figure 7E: C/EBP  and c-jun interact in U937 myeloid cells. Coimmunoprecipitation

assays from 85 g of U937 or 60 g of HL-60 nuclear extract were performed using

C/EBP , c-jun specific antibody or normal rabbit IgG. Immunodetection was carried

out using C/EBP  or c-jun specific antibody. in vitro translated C/EBP  and c-jun were

included as positive controls.
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Figure 7F: C/EBP  and c-jun co-localize in HeLa cell nucleus. Respective plasmid DNA

was cotransfected in HeLa cells. FITC staining shows C/EBP  expression within the cell

nucleus. Cy3 staining denotes c-jun expression pattern in the same cells. Overlay of the

same confocal image shows the co-localization of C/EBP  and c-jun in HeLa cell

nucleus.
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4.8. C/EBP  and c-jun interact with their leuzine zipper domains.

4.8.1. in vitro c-jun interacting domain mapping

We further wanted to investigate which domain of C/EBPα and c-jun were

important for this interaction. GST pull down assay using GST-C/EBPα and in

vitro translated c-jun∆RK and c-jun∆LZ suggested that leucine zipper domain of

c-jun was required to interact with C/EBPα (Fig. 8A).

Figure 8A: C/EBPα and c-jun interact with their leuzine zipper domain. GST-C/EBPα

was incubated with 35S in vitro translated c-jun RK and c-jun LZ. GST plus beads

alone incubated with these in vitro translated proteins served as negative control.

4.8.2. in vivo c-jun interacting domain mapping

In addition, 293T cells were transfected with various combinations of c-

jun∆RK, c-jun∆LZ, C/EBPα∆BR, and C/EBPα∆LZ. Nuclear extracts from

these cells were used for coimmunoprecipitation assays with C/EBPα specific

antibody and control IgG. We observed that the leucine zipper domain of c-jun

was required for its interaction with C/EBPα (Fig. 8B).
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Figure 8B: C/EBPα and c-jun interact with their leuzine zipper domain. 293T cells were

transfected with c-jun RK, c-jun LZ, C/EBPα or mock, and 24 hr post-transfection

nuclear extract from these sets were used for coimmunoprecipitation assays using either

C/EBPα specific antibody or normal rabbit IgG. The samples were probed with c-jun

and C/EBPα specific antibodies.

4.8.3. in vivo C/EBP  interacting domain mapping

In addition, the leucine zipper of C/EBPα was required for its interaction

with c-jun (Fig. 8C). C/EBPα expression in the same experiment was

determined by immunodetection using C/EBPα specific antibody (Fig. 8B).
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Figure 8C: C/EBP  and c-jun interact with their leuzine zipper domain. 293T cells were

transfected with c-jun RK, c-jun LZ, C/EBP BR, C/EBP LZ and mock. 24 hrs

post-transfection, nuclear extracts from these sets were used for coimmunoprecipitation

assay using either C/EBP  specific antibody or normal rabbit IgG. The samples were

probed with c-jun specific antibodies. (C/EBP  blot – data not shown).
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4.9.Overexpression of c-jun blocks C/EBPα induced granulocytic

differentiation.

4.9.1. C/EBP  and c-jun expression in transduced cells.

Since earlier studies have shown that C/EBPα could block monocytic

lineage commitment, we addressed the effect of c-jun on C/EBPα induced

granulocytic differentiation. Retroviral transduction of C/EBPα and c-jun

expression vectors along with their empty vectors was performed in HL-60 cells.

Figure 9A: Overexpression of c-jun blocks C/EBP  induced granulocytic

differentiation. Real time PCR for c-jun and G6PD was performed for HL-60 cells

which were transduced with pMV7-c-jun-neo (lane 1 and 3), pMV7-neo (lane 2 and 4),

pMSCV-C/EBP -ires-EGFP (lane 3 and 4) and pMSCV-ires-EGFP (lane 1 and 2) to

estimate c-jun expression in each set.
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Figure 9B: Overexpression of c-jun blocks C/EBP  induced granulocytic

differentiation. GFP expression in HL-60 cells transduced with MSCV-ires-EGFP and

MSCV-C/EBP -ires-EGFP as analyzed by the fluorescence in FL1 channel.

Real time PCR for c-jun and G6PD was performed from pool of

transfected HL-60 cells with the respective DNAs for each set as shown in Fig.

9A. HL-60 cells transduced with pMV7-c-jun-neo showed 2 fold higher c-jun

mRNA levels as compared to the pMV7-neo vector alone. These two vectors

were transduced along with pMSCV-ires-GFP vector. However, when pMV7-c-

jun-neo and pMV7-neo vectors were transduced along with pMSCV-C/EBPα-

ires-EGFP, there was a marked decrease in c-jun mRNA. The basal level of c-

jun mRNA from set 2 decreases to almost its half in set 4 (in presence of

C/EBPα. A similar decrease from set 1 to set 3 was also observed.

However, the difference between set 3 and 4 is about 2 fold – same as the

difference observed from set 1 and 2. The low expression in set 3 and 4 may be

due to presence of C/EBPα (since C/EBPα decreases endogenous c-jun mRNA

level). GFP expression of the pMSCV-ires-EGFP vector and pMSCV-C/EBPα-

ires-EGFP vector was measured using FACS-analysis program (Fig. 9B).
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4.9.2. CD15 marker expression in transduced cells.

Expression of CD15, a marker for granulocytic differentiation from HL-

60 and U937 transduced cells was analyzed. As seen in Fig. 9C, CD15

expression increases in presence of C/EBPα transduction (left panels) and

pMV7-neo vector alone had no effect on C/EBPα induced granulocytic

differentiation (middle panels). The panels on the right shows the CD15

expression in HL60 and U937 cells transduced with MSCV-C/EBPα-ires-EGFP

and pMV7-c-jun-neo. As expected, a negative shift of the CD15 peak was

observed. This indicates that the increase in CD15 expression by C/EBPα was

blocked in presence of c-jun (Fig. 9C).
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Figure 9C: Overexpression of c-jun blocks C/EBP  induced granulocytic

differentiation. FACS analysis for CD15-PE from the HL-60 and U937 transduced cells

along with its isotype control.
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4.9.3. CD11b marker expression in transduced cells.

Similar results with CD 11b marker were also observed in HL-60 cells

(Fig. 9D).

Figure 9D: Overexpression of c-jun blocks C/EBP  induced granulocytic

differentiation. FACS analysis for CD11b-PE from U937 transduced cells along with its

isotype control.
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4.9.4. Morphology of the transduced myeloid cells.

In a similar experiment, cytospins from the transduced cells were made

and the cells were stained using the May-Grunwald-Giemsa staining protocol.

Figure 9E: Overexpression of c-jun blocks C/EBP  induced granulocytic differentiation.

Morphological analysis of the transduced cells (HL60 and U937).
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5. Discussion:

5.1.C/EBPα downregulates c-jun expression.

 In this study, we have investigated the role of C/EBPα as a negative

regulator of c-jun expression and transcriptional activity and its significance in

the myeloid lineage commitment. Inducers of monocytic differentiation such as

TPA, bryostatin 1, 1,25-dihydroxyvitamin D3, okadaic acid were shown to

increases c-jun activity by posttranslational events and increased synthesis

(152,200,207,209,224). Some reports also state that expression of c-fos, another

AP-1 member also increases on induction of monocytic differentiation.

However, the increase in c-fos mRNA was found to be transient and not myeloid

lineage specific (200,225). In addition, c-fos expression was not sufficient for

the process of macrophage differentiation (205,226). Mice lacking c-fos have

normal hematopoietic stem cells but exhibit altered B-cell differentiation due to

an impaired bone marrow environment (226,227). These findings suggest the

importance of c-jun in the myeloid differentiation program. Overexpression of

c-jun in bipotential myeloid cells leads to macrophage like morphology (208).

Using a C/EBPα inducible U937 cell line, we show that increase in C/EBPα

expression results in a significant decrease in the levels of endogenous c-jun

mRNA (Fig. 1B). c-jun protein level also decreases in the first 4 hrs of C/EBPα

expression (Fig. 1C). At the same time, no change in c-fos expression was

observed upon induction of C/EBPα expression (data not shown). The

reciprocal pattern of expression for C/EBPα and c-jun was observed in C/EBPα

knockout mice model and hepatocytes (Fig. 1A) (30,228). No detectable c-fos

level was observed in the fetal liver samples, whereas adult macrophage and

adult brain RNA samples showed a minimum c-fos expression (data not shown).

The C/EBPα protein negatively regulates the human c-jun promoter in transient

transfection assays in fibroblast as well as in myeloid cell lines (Fig. 2), thus

stating that it was a general phenomenon and not cell line specific.
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5.2.Mechanism of c-jun expression downregulation by C/EBPα through the

proximal AP-1 site of the c-jun promoter.

Results from Fig. 3 suggest that C/EBPα does not recruit TSA-sensitive

corepressor complexes to the c-jun promoter (Fig. 3A). Moreover, C/EBPα

blocks the TPA-induced transactivation of c-jun promoter (Fig. 3B). Promoter

mapping experiments (Fig. 4) suggested that region between bp-180 to bp-63 in

the c-jun promoter was responsible for C/EBPα mediated c-jun promoter

downregulation.  Important transcription factor binding sites in this region were

AP-1, CTF and SP-1 site. The CTF site has been shown to bind C/EBP

transcription factors. However, it is not clear which of the C/EBP member could

not bind to this site. C/EBPα was unable to bind to this CTF site (Fig. 5). This

ruled out the possibility of direct regulation of the c-jun promoter by C/EBPα.

The human c-jun promoter has 2 AP-1 sites to which c-jun homo/hetero-

dimer can bind. The proximal AP-1 site (pAP-1) in the promoter lies within the

bp-180 to bp-63 regions. Earlier studies with the human c-jun promoter

addressed the importance of the proximal AP-1 site in c-jun promoter to be

sufficient for a maximal response to various signals (phorbol-12-myristate-13-

acetate (TPA), serum, UV, E1A, and IL-1) (202,211). Using the human c-jun

promoter, we show that C/EBPα blocks the autoactivation capacity of c-jun

through the proximal AP-1 site (Fig. 6). On mutating this proximal AP-1 site,

C/EBPα was unable to downregulate the c-jun promoter activity anymore (Fig.

6B). As observed in the gelshift experiment (Fig. 6E), c-jun was unable to bind

to the proximal AP-1 site in the presence of C/EBPα. These results let to the

idea that C/EBPα and c-jun might interact.

This is the first report showing C/EBPα and c-jun interaction in myeloid

cells (Fig. 7). Furthermore, the leucine zipper domains of both proteins are

required for this interaction (Fig. 8). DNA binding experiments (Fig. 6E)

suggest that C/EBPα binding to c-jun inhibits latter from binding to its
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consensus AP-1 site in the c-jun promoter. This was also confirmed by transient

transfection experiments using the bp-79 c-jun promoter having only the

proximal AP-1 site (Fig. 6B). It still needs to be addressed if the C/EBPα-c-jun

interaction can block latter from binding to the AP-1 site in other c-jun regulated

promoters as well. We think that the presence of other interacting partners of

both these proteins (e.g. PU.1, AML-1, p300, C/EBPα etc.) might play an

important role for such interactions in a promoter specific context.
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5.3.Biological implication of C/EBPα-c-jun interaction in normal

myelopoiesis and leukemia.

Previous reports have addressed the indispensability of C/EBPα in driving

granulocytic differentiation, as well as its role in AML

(47,60,61,67,229,230,236). Results shown in Fig. 9 indicate the importance of c-

jun expression downregulation by C/EBPα in myeloid lineage commitment. If

c-jun expression was high at the time of lineage commitment, it could block

C/EBPα from committing these cells to the granulocytic lineage. c-jun is an

important regulator of TPA mediated or independent macrophage lineage

commitment (203,208). TPA induced monocytic differentiation was blocked by

C/EBPα (67,236). These reports gave a hint that block in c-jun expression by

C/EBPα was also necessary for preventing macrophage differentiation so as to

commit the cells to the granulocytic lineage. Here we report the functional

significance of the c-jun block by C/EBPα (Fig. 9). The normal granulocytic

differentiation capacity of C/EBPα, as observed by increase in the CD15 and

CD11b markers, was abolished upon overexpressing c-jun (Fig. 9). Thus,

C/EBPα needs to inhibit c-jun expression and function to regulate granulocyte

lineage specific genes. In addition, the morphological data (Fig. 9E) clearly

shows that in presence of c-jun, C/EBPα is unable to make granulocytes.

Concerning the importance of c-jun in myeloid-especially

monocyte/macrophage lineage, it has been earlier shown that c-jun can induce

partial macrophage like differentiation. Here, c-jun transduced cells do not show

a clear monocyte like morphology. This could either be due to insufficient level

of ectopic c-jun expression in the experiment performed, or, due to lack of

additional transcription factor(s) that could help in full monocyte lineage

commitment. Thus, C/EBPα needs to inhibit c-jun expression and function to

regulate granulocyte lineage specific genes.
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C/EBPα-c-jun interaction (Fig. 7,8) suggests that former might pull away

c-jun from its other interacting partners, thereby, inhibiting c-jun’s function.

E.g., c-jun interaction with C/EBPα in monocytic differentiation by TNFα

(231). Ubeda et al. (214) have reported that CHOP, a dominant negative

regulator of C/EBP family members, can interact with c-jun through its leucine

zipper domain. By such interaction, CHOP synergizes with c-jun to activate

transcription through AP-1/TRE site. In contrast to these findings, we observe

that the C/EBPα-c-jun interaction prevents c-jun from binding to the AP-1 site

in c-jun promoter. The C/EBPα-c-jun complex formation probably pulls away c-

jun from c-jun regulated genes.

Moreover, c-jun can also function as a co-activator of the PU.1

transcription factor important for the monocytic lineage (199). In presence of

higher C/EBPα expression and TPA, U937 myeloid cells were unable to

undergo macrophage differentiation (67,236). The explanation for this

observation could be that C/EBPα inhibits c-jun from performing its co-

activator role for PU.1 or from independent regulation of monocyte specific

genes. This could be either by preventing c-jun from binding to the AP-1 site in

the promoter, or by disrupting c-jun interaction with other transcription factors

important for monocytic lineage commitment.

Pabst et al. have recently reported the important role of C/EBPα in acute

myeloid leukemia (60,61). Dominant negative mutations in C/EBPα were

observed in AML FAB-M2 patient samples in the absence of the AML1-ETO

fusion protein. Higher c-jun mRNA levels in patient samples with C/EBPα

mutations as compared to samples without C/EBPα mutations has been

observed (data not shown). These results emphasize the importance of C/EBPα

in controlling c-jun expression/transcriptional activity in AML. When c-jun is

expressed in a deregulated manner, it has the potential to act as a protooncogene,

and thus lead to hyperproliferation of the leukemic blasts.
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The function of each transcription factor is differentiation stage

dependent. Concentration of the protein plays an important role in deciding the

cell fate, i.e. lineage commitment versus proliferation state. Few transcription

factors, e.g. PU.1, program the cell for a specific lineage depending on its

expression level. Similarly, c-jun could function either as a co-activator for PU.1

leading to differentiation or as a protooncogene causing proliferation. As

observed in AML blasts, c-jun might act as a hyperproliferating agent, or in case

of TPA induced macrophage differentiation c-jun might act as a transcription

factor driving partial macrophage differentiation. The C/EBPα-c-jun interaction

might disrupt the function of c-jun depending on the expression level of both

these proteins.
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5.4. Model for C/EBPα and c-jun regulation

In conclusion, we propose a model for the importance of C/EBPα in

blocking c-jun expression and c-jun transactivation capacity (Fig. 10).

Bipotential myeloid cells differentiate towards the granulocytic lineage upon

overexpression of C/EBPα whereas the same cells have the potential for

monocytic lineage commitment in presence of inducers such as TPA. TPA is

known to transactivate c-jun and increase its expression. One of the important

roles of c-jun is to act as a co-activator of transcription factor PU.1. c-jun on its

Figure 10A: Model for C/EBP  inactivating c-jun in granulocytic differentiation.

Diagrammatic representation of myeloid bipotential stem cells that can differentiate to

monocytes/macrophages on induction with TPA or become polymorphonuclear

neutrophils (PMN) on overexpression of C/EBP . TPA induction for macrophage

differentiation requires increase in c-jun expression and c-jun transcriptional activity. c-

jun acts as a co-activator of PU.1 leading to monocytic differentiation commitment.

C/EBP  blocks the expression and transcriptional activity of c-jun, thus preventing

TPA induced monocytic lineage commitment. At the same time, c-jun also blocks

C/EBP  driven granulocytic lineage commitment.
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own could also drive partial macrophage like differentiation. However, when

C/EBPα and c-jun interact through their leucine zipper domains, the former

prevents c-jun from functioning as a macrophage differentiation regulator. At

the same time, such interaction could also arrest C/EBPα driven granulocytic

lineage commitment (Fig. 10A).

Data so far suggests that this interaction blocks c-jun from binding to the

AP-1 site of its own promoter, thereby inhibiting its expression and

transcriptional activity (Fig. 10B). The significance of C/EBPα blocking c-jun

DNA binding capacity on other c-jun regulated genes still needs to be addressed.

Because of such sequestering of c-jun, C/EBPα might not only commit

bipotential myeloid cells to granulocytic lineage, but also prevent these

Figure 10B: Model for C/EBP  inactivating c-jun in granulocytic differentiation.

Schematic representation showing interaction between C/EBP  and c-jun via their

leucine zipper domains. This interaction prevents c-jun from binding to the proximal

AP-1 site in its own promoter. c-jun interaction with C/EBP  and block in binding to its

own promoter leads to downregulation of c-jun expression. This C/EBP -c-jun

interaction may lead to a block in monocytic lineage differentiation and proliferation.



131

cells from becoming monocytes/macrophages. We also suggest that the

C/EBPα-c-jun interaction might abrogate the protooncogenic role of c-jun in

causing proliferation.
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6.1.SUMMARY.

The transcription factor C/EBPα is crucial for the differentiation of

granulocytes. Conditional expression of C/EBPα triggers neutrophilic

differentiation and C/EBPα can block TPA induced monocytic differentiation of

bipotential myeloid cells. In C/EBPα knockout mice, no mature granulocytes

are present. A dramatic increase of c-jun mRNA in C/EBPα knockout mice

foetal liver was observed. c-jun, a component of the AP-1 transcription factor

complex and a co-activator of the transcription factor PU.1, is important for

monocytic differentiation. Here we report that C/EBPα downregulates c-jun

expression to drive granulocytic differentiation. Ectopic increase of C/EBPα

expression decreases c-jun mRNA level, and the human c-jun promoter activity

is downregulated 8 fold in presence of C/EBPα. C/EBPα and c-jun interact

through their leucine zipper domains and this interaction prevents c-jun from

binding to DNA. This results in downregulation of c-jun’s capacity to

autoregulate its own promoter through the proximal AP-1 site. Overexpression

of c-jun prevents C/EBPα induced granulocytic differentiation. c-jun expression

was higher in AML M2 patients with dominant negative C/EBPα mutations in

comparison to AML M2 patients without C/EBPα mutations. Thus, we propose

a model in which C/EBPα needs to downregulate c-jun expression and

transactivation capacity for promoting granulocytic differentiation.
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6.2.ZUSAMMENFASSUNG

Der Transkriptionsfaktor C/EBPα ist essentiell für die Differenzierung von

Granulozyten. Die konditionelle Expression von C/EBPα induziert die

neutrophile Differenzierung. Überdies kann C/EBPα die TPA-induzierte

Differenzierung von myeloiden Vorläuferzellen zu Monozyten blockieren. In

C/EBPα knockout Mäusen gibt es keine reifen Granulozyten. In der fötalen

Leber von C/EBPα knockout Mäusen konnte eine stark erhöhte Expression der

c-jun mRNA beobachtet werden. c-jun ist eine Komponente des AP-1

Transkriptionsfaktorkomplexes, ein Koaktivator des Transkriptionsfaktors PU.1

und ist wichtig für die Differenzierung von Monozyten. In dieser Arbeit zeigen

wir, dass C/EBPα die c-jun Expression herunterreguliert und somit die

Differenzierung von Granulozyten induziert. Die Überexpression von C/EBPα

reduzierte die c-jun mRNA Menge und die Aktivität des humanen c-jun

Promotors war in der Gegenwart von C/EBPα 8-fach herunterreguliert. C/EBPα

und c-jun interagieren über ihre Leucin-Zipper Domänen und diese Interaktion

verhindert die DNA-Bindung von c-jun. Dies resultiert in einer verminderten

Kapazität von c-jun, den eigenen Promotor über die proximale AP-1 Stelle zu

regulieren. Die Überexpression von c-jun blockiert die durch C/EBPα

induzierte granulozytäre Differenzierung. Die c-jun Expression war in AML-M2

Patienten mit dominant-negativen Mutationen in C/EBPα im Vergleich zu

AML-M2 Patienten ohne Mutationen in C/EBPα erhöht. Aufgrund dieser Daten

schlagen wir ein Modell vor, in dem C/EBPα die Expression und

Transaktivierungskapazität von c-jun herunterregulieren muß, um die

granulozytäre Differenzierung zu induzieren.
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