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Zusammenfassung
Man erwartet für das nächste Fusionsexperiment ITER, dass neo-klassische Tear-
ing Moden (NTMs) einen sehr negativen Effekt auf den Einschluss des Plas-
mas haben werden. Diese resistiven Instabilitäten hängen mit dem Auftreten
von magnetischen Inseln zusammen, die experimentell durch lokalen Elektron-
Zyklotron Stromtrieb (ECCD) kontrolliert werden können. Die Stabilisierung
und der Zerfall der Inseln kann mit Hilfe der so-genannten modifizierten
Rutherford-Gleichung beschrieben werden. In dieser Arbeit werden die theo-
retischen Vorhersagen der modifizierten Rutherford-Gleichung für das Ab-
nehmen der Inselbreite mit den experimentellen Werten verglichen, um die
zwei freien, maschinen-unabhängigen Parameter der Gleichung zu bestim-
men. Auf der Grundlage der Datenbanken von NTM-Stabilisierungsentladungen
an ASDEX Upgrade und an JT-60U soll im Rahmen eines Multi-Maschinen-
Benchmarks die benötigte Stabilisierungsleistung für ITER extrapoliert werden.
Die experimentellen Ergebnisse an beiden Maschinen werden in ihrer Konsis-
tenz überprüft und unter Einbeziehung einer Sensitivitätsanalyse werden die bei-
den freien Parameter der modifizierten Rutherford-Gleichung bestimmt. Dabei
wird zum ersten mal die Asymmetrie der Insel mit in Betracht gezogen und der
Effekt des ECCD auf die marginale Phase der Mode quantifiziert. Es wurde
gefunden, dass vor allem der radiale Versatz des ECCD gegenüber der Insel
und Überstabilisierung der Mode die entscheidenden Grössen bei der NTM-
Stabilisierung und Modellierung sind. Als das wichtigste Ergebnis dieser Ar-
beit liefert die Extrapolation der Stabilitätsexperimente von ASDEX Upgrade
und JT-60U, dass an ITER 10 MW ECCD-Leistung ausreichen um grosse NTMs
zu stabilisieren, solange der ECCD-Strahl perfekt auf den O-Punkt der Insel
trifft. Das grosse Verhältnis zwischen der saturierten Inselbreite und der ECCD-
Depositionsbreite, das an ITER erwartet wird, erfordert einen kleinen radialen
Versatz zwischen ECCD und der Insel von maximal 2-3 Zentimetern und im-
pliziert, dass man nur wenig ECCD-Leistung bei moduliertem Stromtrieb, ver-
glichen mit kontinuierlichem Stromtrieb, spart.





Abstract
In the next fusion device ITER the so-called neoclassical tearing modes (NTMs)
are foreseen as being extremely detrimental to plasma confinement. This type of
resistive instability is related to the presence in the plasma of magnetic islands.
These are experimentally controlled with local electron cyclotron current drive
(ECCD) and the island width decay during NTM stabilisation is modelled using
the so-called Modified Rutherford equation. In this thesis, a modelling of the
Modified Rutherford equation is carried out and simulations of the island width
decay are compared with the experimentally observed ones in order to fit the
two free machine-independent parameters present in the equation. A systematic
study on a database of NTM stabilisation discharges from ASDEX Upgrade and
JT-60U is done within the context of a multi-machine benchmark for extrapolating
the ECCD power requirements for ITER. The experimental measurements in both
devices are discussed by means of consistency checks and sensitivity analysis and
used to evaluate the two fitting parameters present in the Modified Rutherford
equation. The influence of the asymmetry of the magnetic island on stabilisation
is for the first time included in the model and the effect of ECCD on the marginal
island after which the mode naturally decays is quantified. The effect of radial
misalignment and over-stabilisation during the experiment are found to be the
key quantities affecting the NTM stabilisation. As a main result of this thesis, the
extrapolation to ITER of the NTM stabilisation results from ASDEX Upgrade and
JT-60U shows that 10 MW of ECCD power are enough to stabilise large NTMs as
long as the O-point of the island and the ECCD beam are perfectly aligned. In
fact, the high ratio between the island size at saturation and the deposition width
of the ECCD beam foreseen for ITER is found to imply a maximum allowable
radial misalignment of 2-3 cm and little difference in terms of gained performance
between modulated ECCD and continuous ECCD.
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Chapter 1

Introduction

1.1 Thermonuclear fusion
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Figure 1.1: The fusion reaction
D2
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1 → He4

2 + n1
0 has by far

the largest cross-section at rel-
atively low energies.

The controlled nuclear fusion of hydrogen isotopes
in a plasma is one of the most promising energy
resources for the future allowing for very high effi-
ciency and higher environmental safety conditions
compared to nuclear fission. In a laboratory, the re-
action that offers the best energetics for thermonu-
clear fusion is one in which the nuclei of deuterium
(D) and tritium (T) fuse to yield an α-particle and a
neutron releasing 17.6 MeV of energy per reaction:

D2
1 + T3

1 → He4
2 + n1

0 (1.1)

At low energies, the cross section for fusion is small
due to the Coulomb barrier preventing the nu-
clei of the reactants to approach each other close
enough to fuse. This repulsive force is eventually
overcome as the kinetic energy of the nuclei increases. Actually the Deuterium-
Tritium reaction can occur even before the Coulomb barrier is overcome because
of quantum mechanical tunneling. In a commercial fusion reactor, the neutrons
produced by these reactions will be used to breed tritium from lithium, which
is very abundant on earth, via interactions with the wall. The α-particle heating
provides an increasing fraction of the total heating and when adequate confine-
ment conditions are provided, plasma temperature can be mantained against the
energy losses above mentioned solely by α-particle heating contribution. If this is
the case, the plasma is said to be in an ”ignited” state. The progress towards ig-
nition is expressed in terms of a parameter, the triple product nTτE, which brings
out most clearly the requirements on density n, temperature T and on energy
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fusion product obtained in several tokamaks.

confinement time τE (the ratio of the energy stored in the plasma to the heat loss
rate) leading to the following condition for ignition:

nTτE > 3·1021m−3keV s (1.2)

for values of Te ranging between 10 ÷ 20 keV. The condition would be reached
for example by n = 1·1020 m−3, Te = 10 keV and a confinement time τE = 3 s. In
a laboratory, the most feasible approach for confining a plasma is magnetic con-
finement. In general magnetic configurations of fusion interest are toroidal to
avoid end-losses and, among them, the tokamak configuration has proven to be
so far the most successful device in improving the desired fusion plasma condi-
tions. For a tokamak, the principal magnetic field is the toroidal field. In order
to have an equilibrium in which the plasma pressure is balanced by the mag-
netic forces (e.g Lorentz force), it is also necessary to have a poloidal magnetic
field. This field is mainly produced by the current in the plasma itself, which
flows in the toroidal direction. This current is produced by induction, the plasma
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acting as the secondary winding of a transformer. It serves also for plasma build-
up and ohmic heating. The induction of current dictates that operation needs
to be pulsed. During the discharge, the plasma, due to its electrical resistance,
is heated by the Joule (ohmic) dissipation of the current flowing through it but
in addition other forms of heating as neutral beam injection NBI [Stäbler(2003)]
are often employed to raise the temperature. The toroidal magnetic field, on the

Transformer coils

Coils for plasma shaping

Toroidal field coils

magnetic surfaces

Helical field lines

Figure 1.3: Tokamak concept: the axisymmetric toroidal field is produced by poloidal
currents in a set of magnetic coils surrounding the plasma. A central solenoid is used
to produce a time-varying poloidal magnetic flux which induces a toroidal loop voltage,
and due to plasma resistivity, a plasma current.

other hand, is produced by currents in coils linking the plasma, as shown in fig-
ure 1.3. Over the past decades a number of medium and large size tokamaks like
ASDEX Upgrade, Tore Supra and JET in Europe, JT-60U in Japan, TFTR and DIII-
D in the USA and many others have been operated to investigate the physics
aspects of fusion plasma physics. The improvement in fusion performance in
these large experimental devices is mainly due to their increased size and power
capability, to the exploration of new operational regimes, and to the progress in
understanding basic physics processes. Typically the energy confinement times
for these devices are proportional to ∝ 1

2r2
p where rp is the mean minor radius

of the plasma [Wesson(1997)], since on larger devices particles and energy re-
quire more time to diffuse away from the core region of the plasma and thus to
reduce the confinement. Comparative studies of plasma behaviour and perfor-
mance among these devices have made a fundamental contribution to the devel-
opment of the physics basis for the design of ITER, (International Thermonuclear
Experimental Reactor). For the main fusion devices the improvement towards
ignition in terms of the fusion product nTτE is shown in figure 1.2 and it is ex-
pected that the ITER device will come close to reach ignition. ITER will be the
next generation tokamak, which will have to prove deuterium-tritium burning
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with substantial α-particle heating (Q = Pfus/Paux ≥ 10) and a fusion power of
about 0.4-0.8 GW is expected to be produced during the burn time of about 1000
s. For the purpose of this thesis experimental data from ASDEX Upgrade and
JT-60U has been investigated since these two devices contribute significantly to
the extrapolation for ITER prediction in terms of size and performance and above
all in terms of similar shape. As figure 1.4 shows, these two devices contribute in
terms of size to build a step ladder towards ITER as their aspect ratio Rmaj/a lies
in both cases around 3 (see table 1.1).

Table 1.1: Main descriptive parameters for ASDEX Upgrade, JT-60U and ITER

Device Major Radius Minor radius Toroidal Field Plasma current Heating Power
Rmaj [m] a [m] BT[T] I [MA] P[MW]

ASDEX Up 1.65 0.5 3.9 1.0-1.4 28
JT-60U 3.4 1 4.2 2.5-5 58
ITER 6.2 2.0 5.3 15 ∼ 100
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Figure 1.4: Poloidal cross-sections of ASDEX Upgrade, JT-60U and ITER tokamaks. AS-
DEX Upgrade and JT-60U have increasing size and an aspect-ratio Rmaj/a similar at the
ITER cross-section shape and therefore their results can be extrapolated for predicting
ITER performance.

1.2 The q and the β parameter as important parame-
ters in stability

In a tokamak equilibrium the magnetic force balances the plasma pres-
sure: ~j × ~B = ∇p (as shown in chapter 2) and this requirement leads
to a set of nested magnetic surfaces on which ~j and ~B are constant.

flux surfaces

Each of these surfaces is characterized by its own value of magnetic
flux and called flux surface [Wesson(1997)]. On these surfaces one
can define the safety factor q. This name is due to the role it lays in
determining the stability. In general, greater stability corresponds
to higher values of q. In an equilibrium configuration each mag-
netic field line has a value of q and follows a helical path around

the torus on its own magnetic surface. In cylindrical approximation, the defini-
tion of the q-value for a field line is the following:

q = lim
Ntor→∞

Ntor

Npol
(1.3)
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where Ntor denotes the number of times a magnetic field line goes around a torus
”the long way” (toroidally) for the number of times Npol a magnetic field line goes
around a torus ”the short way” (poloidally). For example, a safety factor equal
to 1 corresponds to a magnetic surface with field lines joining up on itself after
exactly one rotation around the torus. In stability analysis, magnetic surfaces
with rational values of the safety factor q become very important. If the field
line joins up on itself after m toroidal turns, the safety factor reads q = m

n where
n and m are integers. Perturbations are easily excited on these surfaces since the
field lines do not cover these surfaces ergodically. These flux surfaces are called
resonant surfaces and the mode numbers (m,n) characterise the helicity of the
standing waves which can occur as a consequence of the perturbation. An other
important parameter is β defined as

β =
2µ0p

B2 =
plasma pressure

magnetic field pressure
(1.4)

which characterizes the basic properties of the plasma. It represents the efficiency
of the plasma confinement since it measures how much kinetic pressure (p = nkT,
which in turn is related to the fusion power by the factor ∼ (nT)2), can be con-
fined by a given magnetic pressure (which is a cost for the reactor). In principle,
one would like to have β as large as possible, but its maximum value is usually
limited in tokamak devices by the onset of various kind of MHD instabilities. Of-
ten, the normalised parameter βN is used in order to measure how close one is to
the limit set by ideal MHD (the Troyon limit βmax,ideal ∼ I/aBT):

βN =
β[%]

I[MA]/(a[m] · B[T])
(1.5)

where a is the minor radius of the plasma, B is the main magnetic field, I is the
total plasma current.

1.3 Tearing Mode instability

An (m,n)-tearing mode is a resistive MHD instability characterized by a he-
lical perturbation current on a resonant surface with q = m/n in a toka-
mak plasma. For a classical tearing mode the perturbation current is due
to an unfavourable equilibrium current profile parametrized by the so-called
∆′ [Rutherford(1973)] which is a measure for the available magnetic energy
to drive the instability. The associated perturbation of the magnetic system
leads to reconnection of the flux surfaces and hence the formation of the so-
called magnetic islands. Due to the resulting reduced radial heat insulation
the pressure profile p inside the island is flattened. An important conse-
quence is a loss of confined energy since heat and particles are moved to-
wards the outside of the plasma. This is also observed by a drop in β.
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NTM develops in the plasma, it lowers
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appears from the plasma and the βN can
be recovered.

When the drive of the tearing instability is
due to the loss of the current which is pro-
portional to the pressure of the plasma, the
tearing mode is called Neoclassical Tear-
ing Mode (NTMs). As the NTM is trig-
gered due to a small seed island generated
by some initial perturbation (e.g. sawtooth
crash) the β limit is reached and degraded.
Because of toroidicity effects, which will
be clarified in chapter 2, this may lead to
further island growth although the seed is-
land should be classically stable. Figure
1.5 shows a m = 3, n = 2 mode, forming
three islands in the poloidal cross-section.
If an island is formed at a rational surface
with a high pressure gradient, the pressure
gradient flattens in the island, as shown in
fig. 1.5. The most common NTM instabili-
ties are found at the q values 1.5 and 2, for
m = 3, n = 2 and for m = 2, n = 1 respec-
tively. (3,2) NTMs determine a loss of con-
finement of about 10%− 30% (soft-β limit).
The (2,1) NTMs (hard-β limit), which occur
at lower densities, can lead even to disruptions, that is the plasma confinement
is suddenly destroyed. The typical value of βN , at which these resistive modes
appear is in the range 1.5-2.5 in discharges similar to those expected in the ITER
plasma scenarios with high confinement (H-mode) [Editors(1999)]. The ideal βN
limit for ITER scenarios is 3.5-4, and it will require βN ≥ 2 to be able to ignite.
However, this value is exactly in the range where the resistive modes can appear
and limit the operational βN below 2 and this is why it is important for projecting
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ITER performance to be able to predict their behaviour. Therefore, stabilisation
methods are studied to control NTMs by reducing their mode amplitude until
the magnetic islands totally disappear and the β value recovers (as shown in
figure 1.6). These methods are based on driving appropriate electrical currents
through the plasma [Zohm(2001)]. Direct control on NTMs is obtained by inject-
ing rf waves, mainly with Electron Cyclotron Current Drive (ECCD) injected at
the resonant surface of interest to substitute the loss of current inside the island
with an externally applied one. In ASDEX Upgrade and JT-60U, typically, the
(3,2) NTM is completely suppressed at ECRH power of roughly 10% of the total
heating power. The (2,1) NTM can also be completely suppressed, but the power
requirement is higher for this mode than for the (3,2) NTM since the current drive
efficiency at larger minor plasma radius is reduced due to the lower temperature.
ECCD is foreseen to be used for NTM stabilisation also in ITER and therefore
extrapolation studies are needed to predict how much power will be required in
ITER for this purpose. At present, ∼ 20 MW of Electron Cyclotron Heating power
(PECRH) are installed for NTM stabilisation.

1.4 Aim of this work

As already mentioned, ITER will be operating in a plasma scenario in which
NTMs are predicted to be present and for which it will be necessary to provide
an efficient scheme to control them. In view of this, theoretical and experimen-
tal efforts are constantly made to validate the present understanding on NTM
physics and to actively control the presence of NTMs during the plasma opera-
tions. NTMs are a non-linear process which include magnetic reconnection phe-
nomena and a complete fully-consistent theoretical description is still missing.
Indeed, the large scale-processes involved in the evolution of the NTM can be
well described by resistive MHD theory, whereas small-scale effects require at
least a 2-fluid description of the plasma or even a full kinetic theory. The exper-
iments carried out in the past years mainly focused on three aspects of the NTM
physics:

• the study of the physics that seeds the NTMs [Günter(1998)].

• the observation of the phenomenology of the NTMs [Meskat(2001)]

• the study of the stabilisation of the NTMs by means of external applied
current drive [Gantenbein(2000)], [Nagasaki(2003)]

A link between theory and experiment is to be found in the so-called Rutherford
Equation [Rutherford(1973)] which is a non-linear equation describing the time
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evolution of the magnetic island of width W associated to the NTM. The Ruther-
ford Equation consists of different terms (so-called ∆-terms) which describe dif-
ferent physical mechanisms affecting the island width evolution. Originally, the
Rutherford Equation described only the effect of the modification of the equi-
librium current profile due to the presence of the island (∆′ effect) and later, as
more and more physics underlying the evolution of the NTMs has been under-
stood, other ∆-terms have been added to obtain the Modified Rutherford Equa-
tion. These terms can’t be calculated analytically for a real shaped plasma and are
derived using mainly cylindrical or simplified toroidal approximations. In addi-
tion, the saturated phase of the NTM can be relatively well described in terms of
β dependency whereas the physics at small island size, which is crucial for un-
derstanding how NTMs can be triggered and controlled before they become too
large in the plasma, is very much under debate and new terms at small island size
have been introduced in the Rutherford Equation. As a consequence, some free
coefficients need to be introduced in front of each ∆-term of the Modified Ruther-
ford equation in order to account for real shape and possible missing physics.
To evaluate these free coefficients and to determine the importance of each ∆-
term in the equation the comparison with the experimental time evolution of the
magnetic island W(t) is necessary. This type of analysis is very sensitive to the
quality of local measurements, to fitting of kinetic profiles, experimental set-ups,
plasma conditions, etc. The first attempt to model the experimental observation
of the NTMs with the Rutherford Equation took place in 1995 [Chang(1995)] and
is shown in figure 1.7 and since then, in principle, the approach to study NTMs
has not changed although it has been favoured by the availability of better di-
agnostics, a larger parameter space, larger sets of data and new terms at small
island size. The aim of this work has been to test the Modified Rutherford Equa-

Figure 1.7: First observation and modelling of NTMs with the Modified Rutherford equa-
tion for a TFTR (4,3) NTM.
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tion against experimental data by attempting to differentiate this analysis from
the past works [Buttery(1999)], [Zohm(2001)], [Sauter(2002)], [Reimerdes(2002)],
[Hayashi(2004)], [LaHaye(2006)] by:

• validating the terms present in the Modified Rutherford Equation and by
checking how consistent are the fitting parameters over a relatively large
database of discharges analysed.

• building up a robust methodology for the analysis of the NTM experiments.

• developing a cross-machine comparison between ASDEX Upgrade and JT-
60U in order to be able to consistently extrapolate the results to ITER

Therefore, the open questions which are investigated in this thesis are

1. whether the experimental NTM evolution during ECCD stabilisation is
fully described with the Modelled Rutherford equation

2. what are the main issues which arise when doing a cross-machine bench-
mark for the NTM stabilisation with ECCD in view of ITER

3. what is the prediction for the amount of power required to stabilise NTMs
with ECCD in ITER

The experimental data has been collected both at ASDEX Upgrade and JT-60U
and it covers the whole range of experimental studies on NTMs mentioned above.
This makes it a complete database for extrapolating to ITER the ECCD power re-
quirements in the most consistent way. The work discussed in this thesis has
been conducted at the ASDEX Upgrade tokamak experiment, at the Max-Planck-
Institut für Plasmaphysik (IPP) in Garching (Germany) and fruitful collaboration
with JT-60U. It is organised as follows: the derivation of the Modified Ruther-
ford equation with only two free parameters tested in this work is presented in
chapter 2. In chapter 3, the plasma parameters and the measurements required
for the analysis are presented whereas in chapter 4 an overview of the experi-
mental discharges taken both from ASDEX Upgrade and from JT-60U is given. In
chapter 5 the method used for the fitting of the Modified Rutherford equation is
introduced and the fitting analysis is carried out. In chapter 6, the error on the
results of chapter 5 is quantified and discussed by using a probabilistic approach.
Finally, in chapter 7, the predictions for ITER are carried out and in chapter 8 the
work is summarised and conclusions are given.



Chapter 2

Modelling of the experimental
behaviour of Neoclassical Tearing
Modes

Tearing Modes are due to the rise of a current in the plasma which perturbs the
equilibrium magnetic field line configuration. As a consequence of this, magnetic
reconnection of the flux surfaces takes place which leads to the formation of mag-
netic islands. In fact, in presence of this perturbation, the ideal magnetic island
topology of nested flux surfaces breaks and the typical island structure forms on
the q = m/n resonant surface. In this way, the island structure can be seen as
a closed helical flux tube closing on itself after going m times around the torus
while going n times in the poloidal direction. Inside the island, each field line
makes a large radial excursion, creating a shortcut for the radial transport of en-
ergy and particles. This effect is due to the presence of finite resistivity in small
regions of the plasma, leading to the modification of magnetic field line topol-
ogy which can only be explained within the context of the resistive MHD model
[Freidberg(1987)]. The basic description of this phenomenon is carried out in a
cylindrical configuration using a helical coordinate system, which follows the ge-
ometry of the perturbation. The modification of the equilibrium current of the
system by the perturbation leads the so-called Classical Tearing Modes and their
dynamics is described with the Rutherford Equation. In a toroidal configuration,
on the other hand, new effects due to the geometry of the system arise, such
as neoclassical transport processes or trapped particle orbits, which create other
type of currents in the plasma, responsible for the so-called Neoclassical Tearing
Modes. Their dynamics is described by a modified form of the Rutherford Equa-
tion, which takes into account these effects. Since Neoclassical Tearing Modes are
actively controlled and stabilised with ECCD, the dynamics of the Neoclassical
Tearing Mode during the stabilisation process is especially considered. In this
chapter, first the topology of magnetic islands is reviewed and then the evolu-
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tion of the magnetic island is described. The classical Rutherford equation and
its modified version are introduced once neoclassical transport effects such as the
presence of banana orbits and the bootstrap current are presented. The second
part of the chapter deals with the modelling carried out in this work for the mod-
ified Rutherford equation mainly focusing on the physical issues which will be
addressed in chapter 5 via comparison with the NTM stabilisation experiments.

2.1 Resistive MHD and magnetic reconnection

A magnetically confined plasma can be described as a conducting fluid. The
magneto-hydro-dynamic MHD model is basically a combination of Maxwell’s
equations and conservation equations for the mass, the momentum and the en-
ergy in the fluid. The conservation law for energy can be substituted by the equa-
tion of state for the pressure and the momentum conservation is an extension of
the Navier Stokes equation to magnetised fluid. The electromagnetic variables
are the electric field ~E, the magnetic field ~B, and the current density~j. The fluid
variables are the mass density ρ, the fluid velocity ~v and the pressure p. The term
d
dt = ∂

∂t + ~v · ∇ is the convective derivative in the fluid. Since the electron mass
is small me

mi
<< 1 the momentum of the fluid is mainly carried by the ions. The

single-fluid approach, for a hydrogen system, is based on the following assump-
tions: ni = ne = n, ~vi = ~v , ~j = en(~vi − ~ve) where ~vi and ~ve are the ion velocity
and the electron velocity, respectively. In addition, we define a total pressure as
p = pe + pi, where pe = kBneTe and pi = kBniTi are the electron and ion pressure
respectively. In an ideal approach the resistivity η is neglected whereas in the
resistive approach it is taken into account. In this case, the equations underlying
the model are:

∂ρ
∂t + ∇ · (ρ~v) = 0 (mass conservation) (2.1)

ρ d~v
dt =~j × ~B −∇p (momentum equation) (2.2)

d
dt(

p
ργ ) = 0 (adiabatic equation) (2.3)

~E +~v × ~B = η~j (Ohm’s law) (2.4)

∇× ~E = − ∂~B
∂t (Faraday’s law) (2.5)

∇× ~B = µ0~j (Ampères’s law) (2.6)

∇ · ~B = 0 (absence of magnetic charges) (2.7)

The presence of finite resistivity η in equation 2.4 has important consequences on
the magnetic field line structure since it leads to non-conservation of the mag-
netic flux (which is valid in the ideal MHD case). In particular, if the system is
perturbed, the presence of finite resistivity allows the magnetic energy around a
resonant layer to be released via the modification of the field line topology. This
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process leads to the so-called magnetic reconnection phenomena which is shown
schematically in figure 2.1.

r = rres r = rres r = rres

Figure 2.1: Formation of a magnetic island due to field line reconnection around a res-
onant layer in which plasma resistivity is not negligible: starting from an unperturbed
system (left), a small perturbation near the rational surface (center) can lead to reconnec-
tion of the magnetic field lines (right).

2.2 The magnetic island topology

φ

θ

η
α

r

z

R

Figure 2.2: Approximation of a torus
to a cylinder and helical angle α

The study of the magnetic island topology
and of the island evolution generally make
use of the observation that a realistic toroidal
description of the problem can be obtained
by bending a cylinder into a torus as shown
in figure 2.2. In this way a large aspect-ratio
approximation r/R << 1 (that is B2

z >> B2
θ)

can be adopted and a helical coordinate sys-
tem (r,µ,η) together with the helical angle
α = θ − n/mφ can be introduced. The dis-
tance from the resonant surface is defined as
x = r − rres and the poloidal angle θ remains
unchanged as in the cylindrical coordinate
system and the equilibrium magnetic field is
independent of the poloidal angle θ. In pres-
ence of an island, the helical flux ψhel consists of an equilibrium part ψ0, and a
perturbation ψ1:

ψhel(r,η) = ψ0(r) − ψ1(r,α) (2.8)
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where the equilibrium helical flux ψ0 is assumed to depend only on the radial
coordinate and is approximated to a parabola

ψ0 = ψ0(rres) +
1
2

Bθ0
q′

q
(r − rres)2 (2.9)

centered at the resonant surface r = rres; this is obtained by Taylor expanding to
the second-order equation of the helical magnetic field Bhel

1 ' Bθ0(1 − q(r)
qres

) at
r = rres and noticing that in general the shear rq′/q is a positive quantity. The

−π −π/2 0 π/2 π
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0.5

r−
r s [a

.u
]

X−point

O−point

Flux Surfaces Ω

Figure 2.3: The magnetic island contours are defined via the the normalised flux function
Ω, the center of the island is called O-point whereas the last closed surface is called the
separatrix on which the magnetic field lines cross in the so-called X-point.

helical perturbation ψ1 has the form ψ1(r,α) = ψ1(r)cos α, assuming that only
one harmonic of the perturbation is dominant. However, the radial component
of the helical perturbation is assumed constant ψ1(r) = ψ1 = const, since far away
from the resonant surface its effect is negligible compared to the effect of ψ0 '
(r− rres)2. In general, magnetic islands are characterized by their width W, which
is the maximum radial expansion of the island structure. The point where the
minimum of the perturbation current flows is the island O-point whereas the
point of where the maximum value of the disturbance current flows is the X-point
as indicated in figure 2.3. The last closed surface is the separatrix. At the X-point
of the island r − rres = 0 and α = −π,π so that ψhel = ψ1 whereas at the O-point
of the island r − rres = W

2 and α = 0 giving ψhel = 1
2

q
q′ (

W
2 )2 − ψ1. By equating these

two equations, the island width turns out to be proportional to the square root

1Bhel = ∇ψhel × êη '∇ψhel × êz and (Br, Bµ, Bη) = ( m
r

∂ψhel
∂α ,− ∂ψhel

∂r ,0)
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of the perturbation size and to the shear ψ′′
0 = q′/q at the resonant surface of the

magnetic field W = 4
√

ψ1
ψ′′

0
which can be re-written in terms of magnetic field:

W = 4

√
Brq′
qBθ

(2.10)

By dividing ψhel to ψ1, the normalized flux surface Ω is introduced as

Ω = 8
(r − rres)2

W2 − cosα (2.11)

whose contours, shown in figure 2.3, depict two distincts type of curves: Ω = 1
defines the separatrix of the island, −1 < Ω < 1 defines flux surfaces inside the
island and Ω > 1 defines the flux surfaces outside the island. Because of the shape
of the helical flux function, the magnetic island has a symmetrical shape.

2.2.1 Asymmetric island geometry
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Figure 2.4: Shape of the modelled asymmetric island in dependance of the asymmetry
factor γ: γ = 1 corresponds to a fully symmetrical island whereas for γ = 0.7, γ = 0.5 and
γ = 0.3 the island shrinks on one side and becomes more and more asymmetrical.

Although most of the NTM studies are carried out assuming symmetrical islands,
experimentally it is observed that magnetic islands have an asymmetric shape
[Meskat(2001)] as figure 3.7 of chapter 3 shows. In this work, a simple model for
describing an asymmetric island is used which defines the flux function Ω as:

Ω =

{
8x2

W2 − cos α if x ≤ 1
8x2

γ2W2 − cosα if x > 1
(2.12)
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where the symmetry factor γ < 1 is introduced for ’shrinking’ one side of the
island as shown in figure 2.4. By introducing γ, the asymmetrical island W∗ can
be expressed in terms of the symmetrical island W using the relation:

W∗ =
W
2

(1 + γ) (2.13)

2.3 The island evolution equation

The various types of currents flowing in the plasma (and its boundary) all influ-
ence the dynamics of magnetic islands. The natural stability of magnetic islands
is determined by the equilibrium toroidal current profile. On the other hand, the
evolution of magnetic islands is governed by the perturbed helical currents in
the island region. In general, to describe the dynamics of a tearing mode in the
plasma it is sufficient to apply the Ohm’s law (equation 2.4) and the Ampére’s
law (equation 2.6) to the perturbed flux function ψ1 along the magnetic field lines.
Along the helical direction, in fact, due to the Ohm’s law, an electric field Eη is
induced associated with the changing in time of ψ1:

∂ψ1

∂t
= Eη =

1
σ

jη − (~v × ~B)η (2.14)

and by assuming that in the resistive layer (~v × ~B)η is negligible compared to
1
σ jη , ψ1 results to vary in time because of the currents flowing along the helical
magnetic field lines:

∂ψ1

∂t
= Eη =

1
σ

jη (2.15)

In addition, jη can be evaluated making use of the the Ampére’s law (∇× ~B)η =
µ0 jη by integrating over the island width W:

µ0 jη =
1

W
(B1µ(rres − W/2) − B1µ(rres + W/2))

=
1

W
(ψ′

1(rres − W/2) − ψ′
1(rres + W/2)) =

ψ1

W
∆′(W) (2.16)

By writing r in terms of Ω, by using 2.15 for a thin island and by isolating the
cos α-Fourier component, the general form of the magnetic island evolution equa-
tion can be written as:

ψ1∆′(W) = µ0

∫ ∞

−1
dΩ

∮
dα jη < cos α >Ω (2.17)

where < cos α >Ω is averaged over the flux function Ω with the flux averaging
operator

< X(Ω,α) >Ω=

∮
dα X(Ω,α)√

Ω+cosα∮
dα 1√

Ω+cosα

(2.18)
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The parameter ∆′ (’delta prime’), which appears in equation 2.17, is defined as

∆′ =
dψ1
dr |rres+ W

2
− dψ1

dr |rres−W
2

ψ1
(2.19)

and it defines the radial jump of the magnetic field perturbation B1µ across the
resistive layer where magnetic field lines reconnect [Rutherford(1973)]. It is a
direct measure for the total perturbed parallel current within the island as one
can interpret ∆′ as a measure for the free energy available in the plasma to drive a
tearing mode; in fact, the change of magnetic energy in the presence of an island
is given by [Hegna(1994)]:

δWmag = −1
4

rresψ2
1∆′ (2.20)

so that a positive ∆′ means that the plasma is in a lower, more favourable energy
state. The value of ∆′ is a property of the plasma equilibrium (toroidal current
profile) and has to be evaluated by matching the ideal MHD solution for ψ1 for
the region 0 < r < rres + W

2 to the solution for rres − W
2 < r < ∞ which in general

will give a jump in dψ1
dr . In cylindrical geometry, the perturbed flux ψ1 is calculated

with the tearing mode equation [Furth(1963)]:

d2ψ1

dr2 +
1
r

dψ1

dr
−
(

m2

r2 +
dj/dr

Bθ(r)(1 − nq(r)/m)

)
ψ1 = 0 (2.21)

whose solution is shown in figure 2.5. This equation must be in general solved
numerically for a given current profile j(r) and value of q(a) to determine ∆′.
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Figure 2.5: Solution of equation 2.21 for finding the perturbed flux ψ1 in cylindrical geom-
etry: the kick present at 0.6 a indicates the region of discontinuity at the resonant surface
due to magnetic reconnection.
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2.4 The ’classical’ Rutherford equation

Equation 2.17 tells us how much current is flowing in the island but does not
directly reveal how the island evolves in time. The time evolution only becomes
evident if the mechanisms responsible for the perturbed parallel current jη are
specified. In the case of the classical tearing modes only the contribution of the
Ohmic current is determining the evolution of the island that is jη = jOhm. In
this case, the island evolution equation 2.17 reduces to the classical Rutherford
equation for the island evolution [Rutherford(1973)]:

τs

rres

dW
dt

= rres∆′(W) (2.22)

where τs = µ0r2
res

1.22ηNC
is the resistive time and 1.22 is the numerical integration factor

obtained when integrating equation 2.15. In this case, a positive ∆′ means a grow-
ing island as expected from the interpretation of ∆′ as the available free energy.
If ∆′ is negative, the island is naturally stable; no island will develop. For small
islands, ∆′ is usually considered independent of W, so that the Rutherford equa-
tion predicts unstable islands to grow exponentially. In case of larger islands (W
in the order of a), instead, the toroidal current distribution is considerably altered
and hence a dependence of ∆′ on W is expected which can be approximated by
writing:

∆′(W) = ∆′
0

(
1 − W

Wsat

)
(2.23)

where Wsat is the saturated island width (which can be experimentally deter-
mined).

2.5 Transport in a torus: banana orbits and the boot-
strap current

In a toroidal plasma configuration, effects due to toroidicity modify both the par-
ticle and the heat transport properties of the plasma. In this case, transport is
called ’neoclassical’ in contrast to the ’classical’ transport effects in a cylindrical
plasma. In fact, what characterises transport in a torus is the presence of classes of
passing and trapped particles due to the poloidal nonuniformity of the magnetic
field (B ∝ 1

R ). The trapped particles on the outer side of the torus, exhibit banana
orbits as shown in figure 2.6 of typical width Wb = ε1/2ρpi. These are typically
several centimeters wide for ions where

ρpi =
vth

ωci
=
√

2mikTi(rres)
eBpol(rres)

(2.24)
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Figure 2.6: Physical mechanism for the bootstrap current generation

is the ion poloidal gyroradius for a given ion temperature Ti and mass mi and
with about ε1/2 of the particles which are being trapped into such orbits. In ad-
dition, a toroidal plasma is characterised by the presence of the so-called boot-
strap current. The bootstrap current arises from the differences in diffusion and
momentum exchange between electrons and ions and passing and trapped parti-
cles. The heuristic derivation [Peeters(2000)] of the bootstrap current density jBS
carried by passing electrons can be obtained by considering the electron charge
−e times the fraction of trapped particles ε1/2 times the typical parallel velocity
ε1/2vth where vth is the thermal speed times the difference in electron density
across the banana width Wb

dn
dr times a ’frictional’ factor for passing electrons col-

liding with ions and trapped electrons νee/ενei ≈ ε−1. This results in:

jBS ≈ 1.46
ε1/2

Bpol

p
Lp

(2.25)

where
1

Lp
=

1
Ln

+
1

LT
(2.26)

and

Ln =
n
∇n

, LT =
T
∇T

(2.27)

are the gradient length scales involved for density and temperature where ∇n =
dn
dr and ∇T = dT

dr are the spatial derivatives for density and temperature respec-
tively. The bootstrap current density turns out to be proportional to the pressure
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gradient (more precisely the dependency on the density gradient ∇n is a fac-
tor 2 larger than on the temperature gradient ∇T [Perkins(2003)]); it increases
with larger plasma pressure and can become a significant fraction of the total
parallel current density jtot at high β. For example, for βN = 2 it is of the order
jBS/jtot ≈ 20%.

2.6 The modified Rutherford equation

In case of neoclassical tearing modes, the induced ohmic current jOhm is not the
only one contributing to the perturbed parallel current jη : other currents which
flow in the island region alter the evolution equation and need to be taken into
consideration such that jη = jOhm + jother. The main currents which are known
to affect the island evolution are the bootstrap current jBS, the current generated
by tokamak curvature jPS, the polarisation current jpol and the externally injected
current jECCD. Therefore, a modified Rutherford equation having the form

τs

rres

dW
dt

= rres∆′(W) + rres∆′
BS + rres∆′

GGJ + rres∆′
pol + rres∆′

ECCD (2.28)

is built up starting from equation 2.17 as an extension of equation 2.22 where each
∆′-term is introduced to describe each of these additional currents affecting the
evolution of magnetic islands. 2

2.6.1 ∆′: modification of the equilibrium current profile

As already mentioned in section 2.3, the parameter ∆′ is introduced to quantify
the radial jump across the resistive layer of the magnetic field and to link it to
the perturbation current which enhances the growth of the tearing mode via the
Ampére’s law. It arises when matching the inner and outer solutions of the tear-
ing mode equation 2.21. For a pure classical tearing mode, it has to be positive
for the mode to be unstable. In the case of neoclassical NTMs, instead, the ∆′ can
also be negative, that is a system which is unstable to NTMs, does not necessarily
have to be unstable to classical tearing modes. A rough estimate of the value of
∆′ can be obtained assuming the perturbed flux ψ1 to be exponentially decaying
in the vacuum region at the edge of the plasma (ψ1 ≈ 1

rm ) which is valid especially
for large values of m. In this case, the value for ∆′ which is obtained:

rres∆′ =
dψ1
dr |rres+ − dψ1

dr |rres−
ψ1

= −2m (2.29)

2the effect of jPS has been first investigated by Greene, Glasser, Johnson. Therefore, the ∆′-term
referring to it has the subscript GGJ
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However, based on numerical simulations, the value

rres∆′ = −m (2.30)

is considered to be more realistic. In both cases, equations 2.30 and 2.29 have to
be considered as very much simplified approximations just indicating the ∆′ to
be negative in case of neoclassical tearing modes. In the simulations, which will
be presented in chapter 5 and 7, in case of a (3,2) NTM island a more precise fit
[Yu(2004)] which has been used is:

rres∆′ = −1.97
rres

a
(1 + 23.1

W
a

) (2.31)

which is calculated using a non-linear cylindrical code which solves the MHD
equations and includes the bootstrap current in equation 2.4. For a (2,1) NTM
island rres∆′ = −m has been initially adopted and successively, for some cases,
in order to get consistent results between (3,2) NTMs and (2,1) NTMs a value of
rres∆′ has been set which is closer to rres∆′ = −1. One would expect that since
the (2,1) NTM is closer to the vacuum than the (3,2) NTM, equation 2.29 should
apply. On the other hand, given the uncertainty in the estimation of ∆′ (the ∆′ is
usually determined using numerical codes built on a cylindrical geometry which
do not take into account toroidal effects at all) and considering the more unstable
nature of the (2,1) NTMs, it seems also reasonable to have a scenario in which ∆′
is closer to being positive (> 0) and therefore is less stabilising for the mode.

2.6.2 ∆′
BS: missing of the bootstrap current inside the island

The main mechanism which underlies the growth of the NTMs is related to the
fact that when the pressure gradient flattens in the island region due to enhanced
transport of particles and heat towards the edge of the plasma, it leaves a ’hole’ in
the bootstrap current profile since, as already mentioned in section 2.5, the boot-
strap current is proportional to the pressure gradient (jBS ∝ dp/dr). For negative
dp
dr < 0 and positive shear dq

dr > 0, this current perturbation opposes the induced
current jOhm in the island and, therefore, it is destabilising and this is the reason
why even islands with negative ∆′ < 0 can be destabilised. The bootstrap term at
large island size is modelled as follows [Fitzpatrick(1995)]:

rres∆′
BS = 9.25

√
ε

β′

s
rres

W
(2.32)

By substituing β′ = −( q
ε )2 µ0rres p′

B2
z

, Bz = qRBθ
r and Lp = p

p′ it becomes:

rres∆′
BS = 4.63rres

√
εβp

Lq

Lp

1
W

(2.33)
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and by using equation 2.25 to express jBS one gets:

rres∆′
BS = 6.34rresµ0Lq

jBS

Bθ

1
W

(2.34)

Equation 2.34 suggests that whenever the ∆′
BS dominates over the ∆′, the island

growth rate may always be positive. In addition, by considering the saturated
phase (when dW/dt = 0), one can get a first estimate of the saturated island size

Wsat as Wsat ≈ ∆′
BS

∆′ and observe that in the large island limit the following linear
scaling is valid:

Wsat ∝ βp ∝ jBS (2.35)

However, equation 2.34 does not fully consistently describe the experimental
findings: the W−1 dependence would always imply the existence of destabilised
NTMs whereas experimentally it is observed that NTMs are destabilised only
above a certain threshold island width. So a ’seeding’ island Wseed of sufficient
width is needed. Seeding islands can be provided by any coincidental distortion
of the plasma, for instance by the error field of a sawtooth precursor, fishbone
or some turbulence. One physical mechanism which can explain this threshold
at small island physics is provided by considering that incomplete flattening of
the pressure profile inside the magnetic island can occur below a critical width
Wd [Fitzpatrick(1995)] when perpendicular transport χ⊥ across the (small) island
dominates over parallel transport χ‖:

Wd = 5.1

√
RmajLqq

m
(

χ⊥
χ‖

)1/4 (2.36)

Above this critical island width, in fact, the electron temperature can be consid-
ered a flux function. In equation 2.36, several quantities are used which are de-
fined as follows:

• χSp = 26.4
√

πT5/2
e ε2

0
2meε3/2lnΛne

is the Spitzer conductivity from the classical transport
theory [Wesson(1997)]

• L‖ = RmajLq
4nW is the so-called connection length [Meskat(2001)]

• χ⊥ = χGB = 3.25
√

Ti
B2

T

1
a

√
A

Z2 is the Gyro-Bohm model for perpendicular heat

conductivity 3

• χ‖ = χSp√
1+(3.16 380

L‖ )
is the modified parallel heat conductivity [Meskat(2001)]

3the transport scaling is gyro-Bohm, i.e., local ion heat diffusivity scales as χGB ∝
ρpi
a χB where

χB ∼ cT/eB
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By considering the limit to the modified parallel heat conductivity, the values
calculated with the formula 2.36 agree well with the experimental observation
that Wd ≈ 2 − 3 cm. An other physical mechanism which affects the small island
physics is provided by those particles which drift inside the banana orbits and
therefore give a contribution to the increase of the bootstrap current inside the
island [Poli(2002)]. This is significant when the island width W is of the order
of the banana width Wb which has been introduced in section 2.5 and whose
formula is repeated here:

Wb = ε1/2ρpi (2.37)

Therefore, by taking these two mechanisms into account at small island width
the ∆′

BS term is corrected and becomes:

rres∆′
BS = rres

6.34
2

µ0Lq
jBS

Bpol
(

W
W2 + W2

d
+

W
W2 + 28W2

b
) (2.38)

2.6.3 ∆′
GGJ: effect of the tokamak curvature

The effects of magnetic field curvature can be stabilising for neoclassical tearing
modes as first pointed by Glasser, Greene and Johnson [Glasser(1975)] so that it
is often called the GGJ effect and it is indicated as ∆′

GGJ in the modified Ruther-
ford equation. The magnetic island associated to the NTM bends or curves the
field lines in such a way to increase magnetic energy; in terms of currents affect-
ing the evolution of the mode, this effect can be seen as related to the so-called
Pfirsch-Schlüter current, which also depends on the pressure gradient jPS ∝ dp

dr

[Wesson(1997)] and which, for a typical pressure profile dp
dr < 0, is enhanced and

exerts a stabilising effect on the NTM. Large aspect-ratio approximation predicts
that ∆′

GGJ ≈ DR/W which has the same W−1 dependence as the bootstrap term.
In toroidal geometry the resistive interchange parameter DR [Shafranov(1967)]

is approximated as DR = − 2p′(1−q2)q2

rB2
z q′2 and it results to be a factor (ε/q)2 smaller

the ∆′
BS term. The curvature term is only dominant at small island width and it

depends on the pressure profile, hence to the β. In particular, there is an island
width thereshold provided by the Wd island below which the pressure and cur-
vature dominate over ∆′ [Lütjens(2001)]. Therefore, the following form for the
∆′

GGJ is used in the modified Rutherford equation:

rres∆′
GGJ =

µ0rresDR√
W2 + 0.65W2

d

(2.39)
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2.6.4 ∆′
pol: effect of the polarisation current

�
�� ���

� �� ���

An other current which affects the island evolution equation
is the so-called polarisation current which is a consequence
of different response to a rotating island of ions and electrons
[Smolyakov(2004)]: in fact, if one considers an island propagat-
ing at frequency ω in the frame of plasma flow, a time varying
field results since the electrons respond faster to this electric
field than do the ions, thus a polarisation current jpol results. It
is still very much under debate whether this current is stabilis-
ing or destabilising since it depends on the sign of ω. Both the-
oretical calculation and experimental measurements of ω are
difficult and in general a simplified (stabilising) form for this term has been taken
by modelers:

∆′
pol ≈ rresβp(

Lq

Lp
ρpi)2 1

W3 (2.40)

In case of the polarisation term, the threshold for the magnetic island width to
grow is given by:

Wpol ≈ (
Lq

Lp
)1/2Wb (2.41)

2.6.5 ∆′
ECCD: effect of externally applied current for stabilisation

As it will be shown in more detail in chapter 4, during an NTM stabilisation ex-
periment Electron Cyclotron Current Drive (ECCD) is injected in the magnetic is-
land present in the plasma in order to replace the missing bootstrap current with
EC driven current. The modelling of the externally applied current to counter-
act the loss of jBS inside the island follows the same approach as the other terms
included in the Modified Rutherford Equation (using equation 2.17 and insert-
ing in it a current density contribution to jη). The effect of injecting an external
current in the island region has been modeled in a cylindrical approximation as
[Giruzzi(1999)]:

∆′
ECCD =

16∆′

nsqa

IECCD

Ip

a2

W2 ηECCD (2.42)

where m and n are the poloidal and toroidal mode number, qa is the safety factor
at the plasma surface, s = rres

q′
q is the shear on the resonant surface. By using

equation 2.29, the poloidal current expressed as Ip = 2πrres
µ0

Bθ, the ECCD current

IECCD = 2π3/2rres
d
2 jECCD and the full deposition width d at 1

e of the injected gaus-
sian profile, equation 2.42 takes the form

rres∆′
ECCD = −32µ0rresLq

√
π

d
2

jECCD

Bθ

1
W2 ηECCD (2.43)
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This term is describing only the effect due to the injection of the ECCD current
flowing in the helical direction (the (m,n) component).

2.6.6 The efficiency function ηECCD

In equation 2.43 the function ηECCD is introduced to model the efficiency of the
ECCD injection in stabilising the NTM. The ηECCD function is defined in such a
way that it is 1 in case the injected current is a δ-function injected in the O-point
of the island. The ECCD current can be injected as a continuous (DC) current
(plotted in figure 2.7) or a modulated (AC) one in phase with the rotation of the
O-point of the island. The ηECCD is determined by averaging the ECCD current
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Figure 2.7: ηECCD function characterising the efficiency of ECCD current injection for
continuous case (DC) plotted versus W

d and normalised radial misalignment xmis/d: for
W
d >> 1 and xmis

d = 0 the ηECCD = constant ∼ 0.37 whereas for larger values of xmis it can
even become negative indicating destabilisation.

density written in the form

jECCD = jECCD,0 e−C( x−xmis
d )2

(2.44)

with x = r − rres and xmis = rdep − rres, C = 4ln2 and jECCD,0 is calculated from
the total ECCD current IECCD.
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The analytical formula for the ηECCD is [Hegna and Callen(1997)]:

ηECCD =

∫ ∞
−1 dΩS(Ω)J(Ω)∫ ∞

−1 dΩJ(Ω)
(2.45)

where the functions S(Ω) and J(Ω) are in case of a symmetrical island:

S(Ω) =
∮

dα
cos α√

Ω + cos α
(2.46)

J(Ω) =

∮
dαM(τ)

jECCD,0e−C(x−xmis)2/d2

√
Ω + cos α∮

dα 1√
Ω+cosα

(2.47)

and the integration extends from:

−π < α < π for Ω > 1 (outside the island)

−cos−1(−Ω) < α < cos−1(−Ω) for − 1 < Ω < 1 (inside the island)

The quantity S(Ω) accounts for the projection of the current injected in the island
which allows for the island to develop whereas J(Ω) is the flux surface averaged
current source. M(τ) describes the modulation of the source with τ being the
fraction of a period the source is on. In case of 50% modulation, the injected
power PECRH is halved in comparison with the case of continous injection and
this is a major benefit in terms of minimisation of the PECRH injected for NTM
stabilisation. However, in this work, mainly experiments with continuous injec-
tion have been analysed since for modulation a very limited database has been
available. The difference between DC injection and modulated one is dominant
when W

d < 1 due to the functional difference (≈ W
d versus ≈ (W

d )2) between mod-
ulation and continuous injection which favours the modulated scenario in terms
of efficiency. On the other hand, when W

d >> 1 and xmis = 0, both modulated
and continuous injection efficiencies tend to a constant value which is at around
∼ 0.35 ÷ 0.4. In the case of a large misalignment, the ηECCD can become negative
(and therefore destabilising) as figure 2.7 shows.

2.6.7 The efficiency function ηECCD for an asymmetrical island

To evaluate the efficiency function in case of an asymmetrical island determined
by the relation 2.13 and whose orbits are described by equation 2.12 the integrals
present in equation 2.45 have to be computed in two distinct regions 1 and 2
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where the symmetric/asymmetric shape is assumed respectively, e.g:

region 1 0 < α < π for Ω > 1 (outside the island)
0 < α < cos−1(−Ω) for − 1 < Ω < 1 (inside the island)

region 2 −π < α < 0 for Ω > 1 (outside the island)
−cos−1(Ω) < α < 0 for − 1 < Ω < 1 (inside the island)

In this case S(Ω) has two contributions which can be summed up together as:

S(Ω) = S1(Ω) + S2(Ω) =

= (
1
γ

+ 1)
∮

dα
cos α√

Ω + cos α

whereas the flux-averaged function J(Ω) in case of an asymmetrical island is the
current flowing in region 1 and region 2 normalised over the arc length of the
island which is dα = dα1 + dα2 so that J(Ω) reads:

J(Ω) =

∫
1

jECCDdα +
∫

2
jECCDdα∫

1 dα +
∫

2 dα
(2.48)

=
M(τ)jECCD,0(

∫
1

dα
e−C( W

d )2(
√

Ω+cosα
8 − xmis

W )2

√
Ω + cos α

+
∫

2
dα

e−C( W
d )2(γ

√
Ω+cosα

8 − xmis
W )2

γ
√

Ω + cos α
)

( 1
γ + 1)

∮
dα 1√

Ω+cosα

The efficiency of the ECCD injection expressed by the ηECCD is expected to be
smaller in case of an asymmetrical island. To clarify this statement, it is useful to
consider the simplified case in which the island and the ECCD beam are perfectly
aligned: for a symmetric island rotating with respect to the ECCD beam, the cur-
rent will always be injected by the same amount inside the island no matter on
which side of the island it faces; on the other hand for an asymmetric island, some
of the current which is injected on the smaller side will be lost compared to the
symmetric case and therefore ECCD will be less efficient. As far as the difference
between continuous injection and modulation is concerned, it is expected that
because during modulation the ECCD beam is in phase with the O-point of the
island, the difference between symmetrical and asymmetrical case is less promi-
nent that in the continuous injection case. The results of the integration for ηECCD
considering an asymmetric island with γ = 0.5 are plotted in figure 2.8. In order
to consistently compare the ηECCD for different values of γ the island width W for
the asymmetric case (γ < 1) needs to be re-scaled by a factor 1+γ

2 . In the case of
an asymmetrical island, ηECCD is smaller than in the symmetric case by a factor 2
and 1.2 in the range W

d ≤ 1 for continuous and modulated injection respectively.
On the other hand, this difference disappears for W

d >> 1.
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Figure 2.8: Behaviour of the efficiency function ηECCD for γ = 1 (symmetric island) and
γ = 0.5 with perfect alignment xmis = 0 in the case of continuous injection (left) and 50%
modulation (right). The ηECCD decreases if the island is asymmetric. However for W

d >> 1
this effect tends to be less prominent and ηECCD → 0.3÷ 0.4 for both the cases γ = 0.5 and
γ = 1. In the range W

d ≤ 1 the analytical limits for ηECCD are ≈ 0.16W
d for modulation and

≈ 1
8(W

d )2 for continuous injection for a symmetric island. In this range ηECCD decreases
when assuming an asymmetrical island with γ = 0.5 by roughly a factor 2 and 1.2 for
continuous and modulated injection respectively.

2.7 The modelling of Modified Rutherford Equation

In order to model NTM stabilisation experiments, a Modified form of the Ruther-
ford equation is proposed in this work which includes the terms:

1. the ∆′ (equation 2.31 or 2.30) which is a stabilising term

2. the ∆′
BS (equation 2.38) which is the main destabilising term

3. the ∆′
GGJ (equation 2.39) which is a stabilising term mainly relevant at small

island width

4. the ∆′
ECCD (equation 2.43) which describes the stabilising external injection

of the ECCD beam inside the island to counteract the loss of bootstrap cur-
rent.

By considering the physics which is included in these terms, some characteristic
features of this model can be already envisaged. In particular,

• the threshold island Wseed allowing the NTM to grow will be of the order of
some averaged value between Wd and Wb
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• the Wsat will be Wsat ∼ ∆′
BS+∆′

GGJ
∆′

• the stabilisation term ∆′
ECCD will take into account the mere helical (m,n)

component of the ECCD injected current.

In this model, for the sake of simplicity, some physical mechanisms are inten-
tionally not included such as the polarisation term ∆′

pol, which is not taken into
account because of its high uncertainty, the additional stabilising effect of the lo-
cal heating of the ECCD [Hegna and Callen(1997)] and the stabilising effect of
the (0,0) component of jECCD [Pletzer and Perkins(1999)]. As far as the ∆′

pol is
concerned, the type of analysis which will be carried out in the following chap-
ters does not intrinsically require a clear discrimination between the different
seeding processes allowing for the NTM evolution; as far as the additional sta-
bilising effects of ECCD are concerned, instead, there is experimental evidence
that effects due to heating are small [LaHaye(2006)] whereas the stabilising ef-
fect of the (0,0) component of jECCD is only modelled for thin islands (W

d << 1)
which is not fully consistent with the experimental set-up of a real experiment.
However, neglecting these terms implies that the results for NTM stabilisation
will have to be considered as upper limits of the possible power requirements
predictions. The coefficients in the terms 2.31, 2.34, 2.39 and 2.43 have been de-
rived in cylindrical geometry with large aspect-ratio expansion and, therefore, for
realistic comparison with the experiments, the model for the Modified Ruther-
ford Equation proposed in this work introduces two fitting parameters csat and
cstab to account for deviations mainly due to the geometry and other physics
possibly not covered in the modeled terms. In particular, the coefficient csat
is introduced in front of the β-dependent terms ∆′

BS + ∆′
GGJ and the coefficient

cstab is introduced in front of the ∆′
ECCD term. Considering these assumptions,

the Modified Rutherford Equation studied in this work has the following form:

τs

rres

dW
dt

= −1.97
rres

a
(1 + 23.1

W
a

) (2.49)

+csat

[
rres

6.34
2

µ0Lq
jBS

Bpol
(

W
W2 + W2

d
+

W
W2 + 28W2

b
)− rres6.35µ0DR√

W2 + 0.65W2
d

]

− cstab32
√

πµ0rresLq
jECCD

Bpol

d
2

ηECCD

W2

The coefficients csat and cstab can be determined from analysing NTM stabilisa-
tion experiment as described in detail in chapter 4 and chapter 5. If the physics
included in equation 2.49 is enough complete to describe the experimental obser-
vations, these coefficients are expected to be of the order of unity and are expected
to be independent from the size and the parameters of the different devices.
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2.8 The Modified Rutherford Equation and its phase
diagram

The Modified Rutherford Equation 2.49 is a non-linear equation which can, at
first, be solved analytically. The behaviour of the stationary solutions can be stud-
ied by setting the growth rate dW

dt to zero and solving the resultant for the island
width W in dependance of the β and by considering the phase diagram (W, dW

dt )
as the one plotted in figure 2.9. Usually, the island associated to the NTM grows
till it reaches its saturated value Wsat. The marginal value after which the mode
naturally decays away is reached either by ramping down the sustaining power
(NBI) and lowering the βp till it gets to the marginal value βp,marg or by injecting
ECCD current till it gets to the βp,marg,ECCD value. In both cases, as the marginal
island width Wmarg (related to βp,marg) or Wmarg,ECCD (related to βp,marg,ECCD) is
reached the mode is to be considered stabilised. The model (2.49) can be simpli-
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Figure 2.9: Phase diagram of the magnetic island width evolution and its stationary
points: the NTM starts to grow (dW/dt > 0) as a wide enough seed island Wseed forms
in the plasma at a certain value of βp indicated as βp,onset (blue curve). The solid lines
sketch the typical time evolution of an NTM during the experiment, while these curves
move with the evolution of βp.

fied in order to study the characteristics of the stable and unstable solutions of
the MRE which affect the evolution of the NTM as shown in figure ??. Due to the
large error bars in the experimental measurements it is not possible to discrim-
inate between the dominating small island width effects in the MRE, so that to
simplify (2.49) we choose to neglect the Wb term (usually Wd is 2-3 times bigger
than Wb) and the curvature term ∆′

GGJ. In this way, (2.49) can be written in terms
of βp as:

τs

rres

dW
dt

= −c1 + c2βp
W

W2 + W2
d
− c3

1
W2 (2.50)
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where c1 = rres∆′, c2 = rres
√

εLq/Lp and c3 = 16
√

πdLqjECCD
µ0rres
Bpol

ηECCD are abbre-

viations for the local quantities present in the rres∆′, rres∆′
BS and rres∆′

ECCD term
respectively and csat and cstab are set to 1. In order to analytically recover the
solutions of (2.50), the functions f and g are defined:

f (W) = −c1 + c2
βmargW

W2 + W2
d

(2.51)

g(W) = −c1 + c2
βmargW

W2 + W2
d
− c3

W2 (2.52)

and the derivative over W is carried out:

f ′(W) = c2βmarg
−W2 + W2

d

(W2 + W2
d)2

(2.53)

g′(W) = c2βmarg
−W2 + W2

d

(W2 + W2
d)2

+
2c3

W3 (2.54)

f and g are equation (2.50) with no ECCD and with ECCD term, respectively.
Marginal stabilisation obtained by simply lowering the β (ramp-down experi-
ments) is given by the conditions f = 0 and f ′ = 0 for W = Wmarg:

f (Wmarg) = −c1 + c2
βmargWmarg

W2
marg + W2

d
= 0 (2.55)

f ′(Wmarg) = c2βmarg
−W2

marg + W2
d

(W2
marg + W2

d)2
= 0 (2.56)

On the other hand, marginal stabilisation obtained by injecting ECCD current
fulfills the conditions g = 0 and g′ = 0 for W = Wmarg,ECCD:

g(Wmarg,ECCD) = −c1 + c2
βmarg,ECCDWmarg,ECCD

W2
marg,ECCD + W2

d
− c3

W2
marg,ECCD

= 0 (2.57)

g′(Wmarg,ECCD) = c2βmarg,ECCD
−W2

marg,ECCD + W2
d

(W2
marg,ECCD + W2

d)2
+

2c3

W3
marg,ECCD

= 0 (2.58)

From (2.55) and (2.56) the following relations between the marginal island width
Wmarg, Wd and βmrg are obtained:

Wmarg = Wd (2.59)

c1 =
βmarg

2Wmargc2
(2.60)

These describe the natural decay of the mode as the βp drops. On the other hand,
a third solution Wmarg,ECCD, to which βp,marg,ECCD corresponds, is found when
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the ECCD term is taken into account. In fact, from (2.58) the following relation
can be recovered:

c3 = −
βmarg,ECCDW3

marg,ECCD

2

W2
marg − W2

marg,ECCD

(W2
marg + W2

marg,ECCD)2
c2 (2.61)

By substituting (2.59) and (2.61) in (2.57) one obtains:

c2(−
βmarg

2Wmarg
+

βmarg,ECCDW

W2
marg + W2

marg,ECCD
+

βmarg,ECCDWmarg,ECCD(W2
marg − W2

marg,ECCD)

(W2
marg + W2

marg,ECCD)2
) = 0

(2.62)
Since c2 6= 0, the term into brackets of (2.62) has to be zero and the relation be-
tween βmarg and βmarg,ECCD can be recovered:

βmarg,ECCD

βmarg
=

(W2
marg + W2

marg,ECCD)2

WmargWmarg,ECCD

1
3W2

marg + W2
marg,ECCD

(2.63)

Equation (2.63) can be re-written in a more compact form as:

β0 =
(W2

0 + 1)2

W0(W2
0 + 3)

(2.64)

by defining β0 = βmarg,ECCD/βmarg and W0 = Wmarg,ECCD/Wmarg. The resulting
function is plotted in figure 2.10 using the typical local ASDEX Upgrade parame-
ters for (3,2) NTM c1 = −3, rres = 0.24 m, Bpol = 0.28 T, Lp = −0.3 m, ε = 0.14,
d = 0.03 m, Wd = 0.025 m and ηECCD = 0.4. Equation (2.64) indicates that if
no ECCD has to be applied, the marginal island size is Wmarg,ECCD = Wmarg
and consequently βp,marg,ECCD = βp,marg. But if jECCD is injected, since c3 > 0,
Wmarg,ECCD > Wmarg and therefore βp,marg,ECCD > βp,marg. The result is quite gen-
eral and device-dependent parameters are not necessary. On the other hand,
device-dependent parameters affect the degree of increment of β0. This implies
that during a stabilisation experiment with ECCD, saturated islands need to be re-
duced to a value Wmarg,ECCD which is larger than the marginal island Wmarg. The
function for estimating how much βmarg,ECCD changes with respect to βmarg when
jECCD is injected for partial stabilisation, instead, can be obtained from (2.60) and
(2.61) as:

β0 =
c3

c1

1
W2

d

W2
0 + 1)2

(W2
0 − 1)W3

0
(2.65)

In contrast to (2.64), β0 depends on c3 and therefore the amount of jECCD injected
is not univocally determined.



2.8. The Modified Rutherford Equation and its phase diagram 45

1 2 3 4 5

1

2

3

4

5

βm
ar

g,
E

C
C

D
/β

m
ar

g

Wmarg,ECCD/Wmarg

Figure 2.10: The marginal island width and the marginal β value with ECCD are larger
than those without ECCD

2.8.1 Power requirements limits for the stabilisation of NTMs

Additional information can be gained by the modelled Rutherford equation 2.49
when written in the form [Zohm(2007)]:

τs

rres

dW
dt

= rres∆′ + csat6.34rres
µ0Lq

Bθ
jBS fGGJ

1
W

− cstab32
√

π
µ0rresLq

Bθ

d
2

jECCDηECCD
1

W2

This form of equation 2.49 neglects the small island terms and parametrises the

curvature term with fGGJ = 1− 1.37( q2−1
q2 )Lq

(rres)1/2

R3/2 . Therefore, studying the prop-
erties of equation 2.66 provides the upper limits for the power requirements for
the stabilisation in terms of the fitting parameters csat and cstab. The requirement
for complete stabilisation can be obtained by setting equation 2.66 to zero and
dividing it by the ∆′

BS term. In this way one obtains:

− W
Wsat

+ 1 − 5.05
√

π
cstab

fGGJcsat

d
W

jECCD

jBS
ηECCD = 0 (2.66)

where Wsat = ∆′
BS/∆′ has been used. In the case of small deposition profile ex-

periments d << Wmarg and therefore, both for modulation and continuous drive,
ηECCD ∼ 0.4. In this case, the root of equation 2.66 is such that by postulating
unconditional stability the following condition has to be fulfilled:

d jECCD

Wsat jBS
>

1
14

fGGJ
csat

cstab
(2.67)

On the other hand, when d > Wmarg, the ηECCD behaves differently in case of mod-
ulation and continuous injection. For the modulated case, as figure 2.8 shows
ηECCD ∼ 0.16W

d whereas for the continuous case ηECCD ∼ 1
8(W

d )2 for a symmet-
rical island or ηECCD ∼ 0.13(W

d ) and ηECCD ∼ 1
16(W

d )2 for an asymmetrical is-
land with γ = 0.5. Since in ITER a relatively high-β will be achieved such that
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Wsat >> Wmarg, by applying also this assumption, the figure of merit for modu-
lation which is obtained is:

jECCD

jBS
> 0.7 fGGJ

csat

cstab
SYMMETRICAL ISLAND (2.68)

jECCD

jBS
> 0.9 fGGJ

csat

cstab
ASYMMETRICAL ISLAND (2.69)

whereas in the case of continuous injection, it becomes:

jECCD

jBS
> 0.9 fGGJ

csat
cstab

d
W SYMMETRICAL ISLAND (2.70)

jECCD

jBS
> 1.8 fGGJ

csat
cstab

d
W ASYMMETRICAL ISLAND (2.71)

In the design of the ITER ECCD system for NTM stabilisation the figure of merit
Λ = jECCD/jBS has been adopted and in particular the value Λ = jECCD

jBS
> 1.2

[Pletzer and Perkins(1999)] has been used as requirement for complete stabili-
sation in case of modulation and Λ = jECCD

jBS
> 1.6 in case of continuous injec-

tion. In our case, the figure of merit obtained by using the modelled Ruther-
ford equation 2.49 ranges between 0.6 <

jECCD
jBS

< 0.8 for 50% modulation and be-

tween 0.8 <
jECCD

jBS
< 1.6 in case of continuous injection when assuming fGGJ ∼ 0.9,

csat/cstab ∼ 1 and considering as lower and upper boundary the symmetrical and
asymmetrical case respectively.



Chapter 3

Measurements

The comparison between the experimental behavior of NTM during the stabi-
lization experiments with ECCD and the theoretical model provided by equation
2.49 requires the determination of many different plasma quantities . These can
be either measured directly from the experiment or can be calculated a posteriori
with tools such as numerical codes and specific softwares. In this chapter, the
tools and the techniques used to measure the parameters needed for the analysis
which follows are presented both for ASDEX Upgrade and JT-60U tokamaks. In
general, the measured quantities need to be obtained in the core of the plasma
0 < r/a < 0.8 where the NTMs develop; nevertheless, in this work, edge mea-
surements are also considered mainly for consistency as they do not have a direct
impact on the results. For two (3,2) NTM discharges (#18036 with βN ∼ 2.2 for
ASDEX Upgrade and #41666 with βN ∼ 1.5 for JT-60U) the profiles which have
been measured and used for the analysis are presented. In each plot the mea-
sured quantities are normalised in a way to be able to compare them in terms of
machine independent parameters since if q(r) and βp(r) are the same the NTM
physics is expected to be the same (leading to the same fitting coefficients csat and
cstab). At the edge of the plasma the following relation is approximately valid:

q95 = s
a2BT

Rmaj Ip
(3.1)

where s is a numerical factor indicating how different the plasma shape is among
the discharges. By accounting for this relation, it is useful to normalise the mag-
netic field Bpol and the bootstrap current density jBS by the factors a

Rmaj

BT
q95

and
BT

Rmajq95
respectively; the resistivity ηNC, on the other hand, can be normalised to

T3/2
e

Zeff
where Te is the local value of the electron temperature profile since, as it will

be shown later in the chapter, it depends on Zeff

T3/2
e

. In each plot the dotted verti-

cal lines indicate the mode position at which the local value needed in equation
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2.49 has been taken which are r/a ∼ 0.49 for #41666 and r/a ∼ 0.51 for #18036
respectively. In general, for fitting the free coefficients csat and cstab the plasma
quantities which need to be measured are the following:

1. the kinetic profiles: the electron density ne (ni ≈ ne is assumed), the elec-
tron temperature Te, the ion temperature Ti and their gradient lengths Lne,
LTe,LTi

2. the safety factor profile q and its gradient length Lq

3. the saturated magnetic island width Wsat and its radial position in the
plasma rres

4. the experimental magnetic island evolution W(t)

5. the toroidal magnetic field BT and the local poloidal magnetic field Bpol

6. the bootstrap current density jBS

7. the ECCD current density jECCD and the deposition width d

8. the neoclassical resistivity ηNC

However, before determining these quantities, the plasma equilibrium for each
discharge has to be taken into account and a proper mapping between the flux
surfaces and the natural coordinates of each diagnostic needs to be done.

3.1 Plasma equilibrium reconstruction and mapping

In a tokamak, the plasma equilibrium is determined in terms of poloidal magnetic
flux ψ by solving the so-called Grad-Shafranov (GSE) equation [Freidberg(1987)]:

−∆∗ψ = µ0R2 p′(Ψ) + FF′(Ψ) (3.2)

where the pressure p and the poloidal current F are functions of ψ alone. The
Grad-Shafranov equation is a non-linear elliptic PDE which is solved by speci-
fying the functions p = p(ψ) and F = F(ψ), together with boundary conditions
or externally imposed constraints on ψ, and then inverting equation 3.2 to de-
termine the flux surfaces ψ = ψ(R,z) = const. For ASDEX Upgrade, equilibrium
reconstruction is carried out using CLISTE. The CLISTE code [McCarthy(1999)]
finds a numerical solution to the Grad-Shafranov equation 3.2 for a given set of
poloidal field coil currents and limiter structures by varying the free parameters
in the parameterisation of the p′(ψ) and FF′(ψ) source profiles which define the
toroidal current density profile jφ so as to obtain a best fit in the least squares
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Figure 3.1: Plasma equilibrium at JT60 (left) and ASDEX Upgrade (right) for two of
the considered discharges: for similar aspect ratio Rmaj/a, the plasma is slightly more
elongated for the ASDEX Upgrade case and has a smaller triangularity

sense to a set of experimental measurements. In the case of the present analy-
sis, the experimental measurements have included external magnetic data and
kinetic data [McCarthy(2001)] from AUGPED (described in section 3.3.7) and for
one discharge (#22186) also data available from MSE diagnostic (described in sec-
tion 3.3.6). In addition, the safety factor on axis has been constrained to q = 1,
since in the considered discharges there is evidence of the presence of sawteeth
or fishbones. For JT-60U discharges, equilibrium reconstruction is carried out
in a similar way, using FBEQUequilibrium solver [Azumi(1980)] which accounts
for the magnetic signal for the boundary conditions at the edge and which con-
straints q = 1 in the core of the plasma. The coordinate system which is commonly

used at ASDEX Upgrade and which is used on most profile plots is ρpol =
√

ψ−ψ0
ψs−ψ0

,
where ψ0 is the flux at the magnetic axis and ψs is the value of ψ at the separatrix
(last closed surface). The normalization is such that ρpol = 0.0 at the magnetic axis
and ρpol = 1.0 at the separatrix. At JT-60U, on the other hand, the mapping quan-

tity mostly used is ρv =
√

V
2πRmaj

with ρv = 0 at the magnetic axis and ρv = 1.0

at the separatrix. The square root, in both cases, is introduced to transform the
resulting coordinate, which is about proportional to the cylindrical volume, to a
more linear behavior across the radius. The minor radius a, the major radius Rmaj,
the radius at the resonant surface of the NTM rres and the inverse aspect-ratio ε
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are calculated as follows:

a =
Rmax − Rmin

2
(3.3)

Rmaj =
Rmax + Rmin

2
(3.4)

rres = rN = R − RMAG (3.5)

ε =
rres

RMAG
(3.6)

where RMAG is the radius at magnetic axis, Rmax and Rmin are the major radius
at the high field side of the plasma (HFS) and at the low field side (LFS) of the
plasma at the midplane, rN is the so-called rNeuhauser coordinate with R being
the major radius of the intersection of the corresponding flux surface where the
NTM is sitting with a horizontal line through the magnetic axis on the LFS. In
figure 3.1, the similar plasma shapes used for NTM stabilisation experiments at
ASDEX Upgrade and JT-60U are plotted and the above mentioned coordinates
are indicated. As mentioned in the introduction, ASDEX Upgrade and JT-60U
are characterised by very similar aspect ratio (Rmaj/a = 3.3 and Rmaj/a = 3.1 re-
spectively). In the case shown in figure 3.1, the elongation k of the plasma is
higher at ASDEX Upgrade (k ≈ 1.7 versus k ≈ 1.6) with a smaller triangularity
δ at the separatrix compared to JT-60U (δ ≈ 0.04 versus δ ≈ 0.17). A mapping
between ρpol ↔ a and ρv ↔ a has been applied to ASDEX Upgrade and JT-60U
respectively and consequently to the coordinate rN.

3.2 Poloidal magnetic field Bpol and toroidal magnetic
field BT

The poloidal magnetic field Bpol is the averaged value over each flux surface and
is calculated with the cylindrical formula:

Bpol =
√

B2
z + B2

R (3.7)

where Br and Bz are calculated from CLISTE using the flux matrix ψ given by :

BR = − 1
R

∂ψ

∂z
Bz =

1
R

∂ψ

∂R

As figure 3.2 shows, the profile shape at the edge is quite different for JT-60U and
ASDEX Upgrade. This is mainly due to the fact that the bootstrap current flowing
in the plasma is especially influencing the total toroidal current at the edge for a
higher pressure gradient p′. As it will be addressed in the following sections, the
ASDEX Upgrade kinetic profiles are systematically more peaked at the edge than
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Figure 3.2: Typical poloidal magnetic field profile Bpol normalised to a
R

BT
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for JT-60U
(#41666 with βN ∼ 1.5) and ASDEX Upgrade (#18036 with βN ∼ 2.2). The dotted lines in-
dicate the local value measured at the resonant surface position of the NTM. The ASDEX
Upgrade profile has a more peaked shape towards the edge than the JT-60U one due to
the typically steeper pressure profiles in this region at ASDEX Upgrade which affect the
bootstrap current contributing to the total current profile shape.

at JT-60U and, therefore, the diamagnetic effects at the edge become more evident
as in the case of Bpol. The value of toroidal magnetic field BT, instead, is taken at
the magnetic axis RMAG and measured from the current ITF in the toroidal field
coils.

3.3 Kinetic profiles: Te, Ti, ne

3.3.1 Electron Cyclotron Emission (ECE)

The ECE diagnostic determines electron temperatures by radiometry of electron
cyclotron emission from the fusion plasma. Hot electrons in the plasma gyrate
around field lines with cyclotron frequency ωc = eB

m , where e is the elementary
charge, B the magnetic field, and me the electron mass. At the 2nd harmonic of the
electron cyclotron frequency, the plasma usually emits locally like a blackbody
source as long as optical thickness is sufficiently high. Then the intensity of the
cyclotron radiation is a direct measure of electron temperature given by :

I(ω) =
ω2Te

8π2c2 (3.8)
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Since the magnetic field (and consequently the emission frequency f = 2πωc) de-
pends on the radius, the power spectrum represents a radial electron temperature
profile. A limit to this diagnostic which can affect high density discharges is due
to the high density limit which leads to a cut-off condition. In fact, in the case of
second harmonic absorption, a critical electron density can be reached

nX2
crit = 1.94 · 1019 · B2 [m−3T−2] (3.9)

such that the accessibility of the resonant location from the outside of the plasma
is blocked. In this case the emission in the cut-off density interval drops to a
low value and the measurement is not representative for Te anymore. At ASDEX
Upgrade, the ECE diagnostics provides the electron temperature over the whole
plasma cross-section with a time resolution of approximately 32 kHz. The radial
resolution of each channel is about 0.01 m and the distance between the channels
is 0.01-0.03 m [Suttrop(1996)]. At JT-60U the ECE diagnostics is equipped with
48 channels having a temporal resolution of 20 µs and a spatial one of 1.2 cm
[Isayama(2001)].

3.3.2 Thomson scattering diagnostic

Standard laser scattering measurements are based on Thomson scattering of
monochromatic light on free electrons. The geometry is chosen in such a way
that the wave vector k = ki ⊥ ks (where subscript i denotes the incident and s the
scattered radiation) satisfies kλD � 1 ( λD is the Debye-shielding length) and thus
the light is scattered on uncorrelated free electrons. With a Maxwellian velocity
distribution characterized by the temperature Te of the electrons, a continuous
spectrum around the primary laser frequency

Is ∝
√

me

2πTe
nee−meω2/(2k2Te) (3.10)

is observed from which the electron temperature can be derived. The scatter-
ing intensity Is is proportional to the number of scattering centers and therefore
to the electron density. This diagnostics therefore gives local information about
electron density and temperature. In this work, it has been used for determin-
ing both electron density and temperature profiles at JT-60U and electron density
profiles at ASDEX Upgrade. ASDEX Upgrade is equipped with a Thomson sys-
tem featuring 16 vertical channels with 5-6 YAG laser beams each which acquire a
full radial profile (∆R = 3 − 4 cm) every 8.3 ms [Murmann(1992)]. At JT- 60U the
Thomson scattering system consists of a Ruby Laser system with spatial resolu-
tion of 22 mm with measurements obtained every 0.02-2 s and a YAG laser system
which consists of 14 spatial measuring points in the plasma available every 0.2 ms
[Yoshida(1999)].
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3.3.3 Lithium beam diagnostic

The principle of the lithium beam diagnostic is based on the injection of a colli-
mated beam of neutral Li-atoms directed to the plasma axis. Beam energy and
electron density in the plasma determine the penetration depth. With energies of
some 10 KeV it is of order of 2-5 cm. In electronic collision the beam atoms are
excited

Li(E0) + e− → Li ∗ +e− (3.11)
Li∗ = Li(2p) → Li(2s) + h̄ω (3.12)

and the intensity of the resonance line ( 670.8 nm) from 2p to 2s transition is
being detected perpendicular to the beam. Arrays of detectors allow for the si-
multaneous observation along the beam. The intensity reflects almost directly the
electron density, which can be determined in this way in the edge region of the
plasma. In this work, this diagnostic has ben used for fitting density profiles at
ASDEX Upgrade. In ASDEX Upgrade the time resolution is usually restricted to
several milliseconds for one profile due to insufficient signal-to-noise ratio. The
spatial resolution of about 5 mm is determined by the fiber optics used to trans-
fer the emitted light to the photomultipliers for acquisition of the emission profile
[Fischer(2008)].

3.3.4 Interferometry diagnostic

A method for electron density measurements which is widely used is the laser
interferometry. Its functioning principle is based on the fact that the refractive
index depends on the electron density via the plasma frequency. The measure-
ment is done by comparing the optical path difference between a microwave sig-
nal through the plasma and one through free space which can easily be deduced
from the phase difference of the two signals given the following relation:

φ =
2π

λ

∫ z2

z1
(NV − N(z))dz ∝

∫ z2

z1
n(z)dz for ω >> ωp (3.13)

The integral quantity determined in this way is the line density [m−2] which re-
quires deconvolution algorithms to be converted into profile information [m−3].
In this work, interferometer data is used in both machines as an additional con-
sistency check for the profiles of electron density measured by the Thomson scat-
tering diagnostic. At ASDEX Upgrade, a far-infrared (DCN) laser interferometer
is used with a time resolution of 300 µs and sampling rate of 10-20 kHz for mea-
suring the line integrated electron densities along several horizontal and vertical
lines of sight [McCormick(1997)]. At JT-60U a FIR laser interferometer and CO2
laser interferometer are used with a time resolution of 5 ms and 5 µs- 1 ms respec-
tively [Kawano(1996)], [Fukuda(1989)].
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3.3.5 Charge Exchange Recombination Spectroscopy (CXRS)

The CXRS diagnostic makes use of the line emitted by impurity carbon ions that
undergo a charge exchange reaction with the neutral particles of the Neutral
Beam Injectors (NBI). Therefore, CXRS is only available when NBI is on. The
Doppler-width of the spectral line at wavelength λ emitted in the de-excitation
process then reflects the ion temperature of the plasma bulk ions since the system
can be considered to be in thermal equilibrium. In this work, the CXRS diag-
nostics has been used to measure ion temperatures both at ASDEX Upgrade and
at JT-60U. At ASDEX Upgrade, the ion temperature profile is measured with the
core diagnostics CEZ and CHZ (the first is focused on source 3 of the NBI and
the second on source 8 of the NBI). It is available with a resolution ∆t ∼ 50ms,
∆r ∼ 3 − 4 cm [Meister(2001)]. At JT-60U it is available when source 14 of NBI
is on and it is characterised by a spatial resolution of 0.8/1.5 cm every 16.7 ms
[Koide(2001)].

3.3.6 Motional Stark effect diagnostic (MSE)

The motional Stark effect (MSE), which measures the internal local poloidal mag-
netic field, is an important method for the determination of the total current den-
sity jTOT. The MSE diagnostic relies on the splitting of the high energy (60 keV)
neutral beam Balmer line (D), as a result of the strong motional E = v × B electric
field produced in the rest frame of the neutral deuterium atoms. Since Deuterium
exhibits a linear and thus very strong Stark effect, compared to the Zeeman-effect,
the line spectrum is dominated by the motional stark effect. At ASDEX Upgrade
a 10-channel MSE diagnostic [Wolf(1997)], using the modulation technique and
observing one of the 2.5 MW, 60 keV neutral ion heating beams is in use. The
diagnostic measures the direction of polarization of the emitted radiation to de-
termine the magnetic field pitch angle , with a resolution of 3 ms. The measured
MSE polarisation angles are included in the equilibrium reconstruction which
allows the number of free parameters of the inferred current or q-profiles to be
increased to the extent that even non-monotonic q-profiles can be represented. At
JT-60U, the MSE diagnostics consists of 10 channels with 10-15 cm spatial resolu-
tion and 10 ms temporal resolution [Fujita(1997)].

3.3.7 Profile reconstruction procedure at ASDEX Upgrade

This data analysis makes use of a database which has been collected over a wide
time range (from discharge #12000 to #22000); therefore when dealing with the
kinetic profiles most attention was at fitting the profiles making use of empirical
knowledge of certain diagnostics peculiarities, calibration errors and by getting
the most information from similar but better diagnosed discharges. To do this,
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Figure 3.3: Kinetic profiles for ASDEX Upgrade: the electron temperature profile is fitted
using ECE diagnostic (left), the ion temperature profile is fitted using CXRS data (center)
and the density profile (left) is fitted by combining Thomson scattering data (up to ρpol =
1.0) , Lithium beam data (starting from ρpol = 0.93) and by matching the integrated values
of the 5 interferometry channels data.

the ”AUGPED” software (a tool created by L.D. Horton) has been used, which is
an IDL based program initially written for the purpose of determining pedestal
properties. It applies a modified hyperbolic tangent fit to the combined data of
several edge and core density and temperature diagnostics and it gives the pos-
sibility to improve the resultant global profile. AUGPED reads the data of many
ASDEX Upgrade diagnostics (Te, Ti,ne) along with their natural coordinate. It
also uses a selectable magnetic equilibrium and maps data to the common coor-
dinate, in general the normalized poloidal magnetic flux radius ρpol. It can do
arbitrary radial shifts of each individual data set before applying the mapping.
The profiles are always plotted with ρpol, but internally the program uses a real
space coordinate on the outer midplane (unit: m) for the shifts. The time range for
the profiles to be fitted has been ∆t = 100 ms during a stable phase of the plasma.
This relatively large time window is used to reduce the random errors on the sin-
gle time measurements. The density profile has ben fitted by combining as many
diagnostics as possible: in general, the Lithium Beam diagnostic information at
the edge with the Thomson scattering in the core give a reliable density profile
in terms of shape but not in terms of absolute value. This, instead, has been
calibrated by shifting the data points of the Thomson diagnostics up or down
so to match the integrated signal of the 5 channels of the inteferometer (DCN).
The ion temperature profile has been fitted for the analyzed discharges with no
edge measurements available. Therefore, the profile has been fitted by assuming
for the edge a fixed pedestal width of 0.02 m which is an averaged value found
at ASDEX Upgrade for the pedestal width of electron temperature profile using
ECE in the core and Thomson scattering in the edge. As already mentioned, for
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high density discharges and a given magnetic field ECE can be in cut-off. In AS-
DEX Upgrade discharges, cut-off is present on the LFS when ne > 6 · 1019m−3 and
BT ≤ 2.0 T; in this case the electron temperature profile has been taken as clos-
est estimate at a later time window in the same discharge with a phase of lower
density or even from a similar discharge.

3.3.8 Profile reconstruction procedure at JT-60U

At JT-60U a third order polynomial function has been used to fit the kinetic pro-
files and the software SLICE has been used for this purpose. SLICE gives the pos-
sibility of adding or deleting data points to improve the fit. The choice of a third
order polynomial is reasonable giving the fact that the number of data points
from the Thomson diagnostic (which is the main diagnostic used for electron tem-
perature and electron density) and the CXRS diagnostics for the ion temperature
is not high and the fitted profile is smooth. The profiles have been fitted using
one set of data for each time acquisition. In addition for the electron density mea-
surements the absolute values have also been calibrated using the interferometer
data (nelcu2).
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Figure 3.4: kinetic profiles for JT-60U plotted versus the volume averaged minor radius
R0: the electron temperature profile and the density profile (left) are fitted by using Thom-
son scattering diagnostic whereas the ion temperature profile is fitted using CXRS data
(center).

3.3.9 Characteristic gradient lengths: LTe, LTi, Lne

The gradient lengths are defined using equations 2.27 and the spatial derivatives
are calculated over the minor radius a. The value of the gradient lengths enter
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Figure 3.5: Gradient lengths of the the kinetic profiles for JT-60U and AUG. The local
value of gradient length Lne is the most delicate profile to determine since the density
profile is in general not stiff as in the case of the electron and ion temperature profiles.
The absolute value of Lne interpolated at the resonant surface of the mode (dotted lines) is
larger at ASDEX Upgrade than at JT-60U by almost a factor 2 and this is in agreement with
the observation that for lower collisionality (JT-60U case) the density profile is expected
to be more peaked.

in the Modified Rutherford equation via the curvature term ∆′
GGJ (introduced in

section 2.39) through the dependency on p′ of the resistive interchange parame-
ter DR. They also affect the calculation of the bootstrap current density profile jBS
and, therefore, their stiffness is very important. In general, the electron temper-
ature Te and the ion temperature Ti have stiff profiles in both ASDEX Upgrade
and JT-60U as shown in figure 3.3 and figure 3.4. The electron density, instead,
is flatter for ASDEX Upgrade than JT-60U and this is consistent with the fact that
for lower collisionality ν∗ ∝ ne

T2
e

(JT-60U case) higher density peaking is expected
[Angioni(2003)]. As a consequence, the density gradient Lne at JT-60U is expected
to be characterised by higher values than in ASDEX Upgrade. In figure 3.5, the
gradient lengths profiles of the kinetic measurements are shown normalised to
the minor radius: the gradient lengths for electron and ion temperature have
similar profiles whereas a difference between ASDEX Upgrade and JT-60U is ev-
ident in the local absolute value of the density gradient length Lne which has
almost a factor 2 difference and is larger for ASDEX Upgrade. In addition, one
also should take into account that the method to calculate the derivatives of the
profiles also affects the determination of the gradient lengths; at ASDEX Upgrade
the hyperbolic tangent fit applied to the edge of the kinetic profiles determines
steeper profiles in this region whereas in JT-60U, due the polynomial fit applied
to the data, the fitted profile are characterised by more ’wiggles’ throughout the
minor radius.
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3.4 Safety factor profile q and its gradient length Lq
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Figure 3.6: Safety factor profile and the gradient length Lq for JT-60U and ASDEX Up-
grade discharge: the local value at the mode position (from the ECE measurement) is
indicated in coloured dotted lines (blue for JT-60U and red for AUG) whereas the value
of the mode position with respect to the q = 1.5 surface (from the equilibrium) is indicated
in black dotted lines.

The safety factor profile q has been determined relying on the Motional-Stark-
effect (MSE) diagnostic at JT-60U whereas for ASDEX Upgrade it has been eval-
uated using the equilibrium reconstruction from CLISTE. In general, the shape
of the reconstructed q-profile at the edge it’s robustly measured because of the
constraint provided by magnetic data although important information from dia-
magnetic effects and fast particles contributions may be missing. In the core its
information is more limited although the presence of some q = 1 surface activity
such as sawteeth or fishbones for some discharges suggests that the central value
of q can’t be so far away from q(0) = 1. As in the case of the kinetic profiles,
the shape of the q-profile affects mostly the accuracy in the determination of its
gradient length Lq as shown in figure 3.6. At ASDEX Upgrade the q-profile is
steeper towards the edge and its gradient length varies sharply. This steepness
introduces a larger discrepancy between the mode position measured from ECE
and the one given from the equilibrium both indicated in figure 3.6; in JT-60U,
on the other hand, in the range 0.3 < r/a < 0.7 the gradient length Lq changes
only slightly and the mode position from ECE is in better agreement with the one
provided by the equilibrium.
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3.5 Determination of saturated island size Wsat and
mode position
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Figure 3.7: Electron temperature profile for #22186 together with the contour plot which
nicely shows the (2,1) magnetic island chain ant the asymmetric shape of the magnetic
island: the O-point of the island is at R = 1.96 m which corresponds to rres = 0.25 m

The structure of magnetic islands is experimentally observed by the electron tem-
perature profile measured by electron cyclotron emission diagnostic (ECE). In
fact, due to the helicity of the magnetic eld lines the toroidally rotating plasma
seems to rotate in the poloidal cross section and thus the temperature profile of
the perturbed plasma ideally gives a sine signal outside the island and a peri-
odic signal with flat phases inside the island corresponding to a sine signal with
harmonics. Therefore, a clear flattening of temperature profile is visible and it is
enough to determine the width and the position of the magnetic island width as
one period in time corresponds to the helical angle range of one island. Figure 3.7
shows the global temperature profile for discharge #22186 (AUG) with the visible
local flattening due to the presence of a (2,1) magnetic island. For well resolved
measurements, the contour plot of the raw signal (R, Te) is already enough for
establishing how wide is the island width. Nevertheless, in case the island width
is not well resolved an other method is used [Fitzpatrick(1995)] which is to re-
cover the amplitude of the temperature perturbation T̃e determined by the island
and characterized by two maxima indicating the X-point of the island and by
the phase jump at the resonant position O-point of the island. This is achieved
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Figure 3.8: Fast Fourier Transform analysis for discharge #17977 at ASDEX Upgrade:
the electron temperature profile (left) where the flattening due to a (3,2) NTM is visible.
The amplitude perturbation T̃e obtained with the FFT analysis is plotted below it and it
shows that together with the (3,2) island also a coupled (2,2) is present (channels 32-37)
[Meskat(2001)]. On the right the projection on the minor radius of the ECE channels gives
a saturated island width Wsat = 0.05 m. Below the phase jump shows that the O-point of
the island is located at channel 26.

by using a Fast-Fourier-Transform (FFT) filter at the frequency of the NTM. The
information from the first dominant harmonic of the mode is enough for deter-
mining its width and position. In general, the location of the mode rres is the
position of the O-point of the island and is established directly from contour plot
(as in figure 3.7) or by localising the position of the phase jump in the T̃e/Te plot
(as in figure 3.8). In the measurements, the O-point is not symmetrical within
the island whereas in the Modified Rutherford equation the island width is as-
sumed to be symmetrical. This, as it will be shown in chapter 5, has important
consequences on the results of this analysis. At ASDEX Upgrade, the standard
data acquisition system of the ECE diagnostic has a sample frequency of 32 kHz
which is far too low for resolving the signal of a (3,2) NTM which has a frequency
typically in the range 15-25 kHz. For ASDEX Upgrade, the FFT analysis men-
tioned above together with the contour plot and the local electron temperature
profile behaviour have been used for determining the island width and position.
For the (2,1) NTMs the island structure looks very clear from the contour plot,
but for the (3,2) NTM this is not always the case since the frequency is higher
and the ECE data during the experiments has been detected with a sample ev-
ery 32 KHz and therefore not enough time resolution is available for this data.
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Figure 3.9: Island width measurement at JT-60U for #41666: on the left the FFT analysis
for the saturation time t = 7.5s and on the right the evolution in time of the T̃e signal
during stabilisation phase with ECCD which occurs at t ∼ 8.7 s

A first estimate can be given by looking directly at the temperature profiles. For
JT-60U discharges, the determination of the island width at saturation has also
been done by using the FFT analysis as shown in figure 3.9. For some discharges,
since the electron temperature profile from ECE is not available, the flattening of
Ti has been used as indicative width of the magnetic island. Figure 3.9 shows on
the top the amplitude perturbation T̃e/Te obtained with the FFT analysis (in this
case T̃e is divided by the averaged Te profile to avoid calibration errors) and on
the bottom the same signal evolving in time towards zero during the stabilisation
experiment. Also in the case of JT-60U discharges, the measured magnetic islands
have an asymmetrical shape.
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3.6 The experimental time evolution of the magnetic
island width W(t)

The time derivative of the magnetic field Ḃ(t) can be measured locally with a
loop of magnetic coils positioned around the plasma, called Mirnov coils. The
diagnostic measures the voltage V = −dΦ

dt where Φ is the linking flux. Since the
equilibrium current changes very slowly compared to the mode rotation veloc-
ity, the Mirnov coils in general detect only perturbation currents and therefore
they are useful to detect instabilities in the plasma such as NTMs. Indeed, dur-
ing an experiment the presence of an NTM is noticed not only by the drop in
β but also by looking at the spectrogram obtained with the Mirnov coil signal
as shown in figure 3.10. By making measurements with coils located in differ-
ent positions around the plasma it is also possible to identify the mode number
(m,n). At ASDEX Upgrade, the (3,2) and (2,1) NTMs are easily recognizable by
looking at the dominant frequencies in the spectrogram as the frequency of the
(3,2) lies in the range 10-20 KHz and the (2,1) lies below 6-7 KHz. AT JT-60U,
the NTM is also identified with the Mirnov coils and often the mode number is
cross-checked using the toroidal velocity vT measurement which, to a first ap-
proximation, is related to the mode frequency and the toroidal mode number n
by the formula f ∼ vTn

2πRmaj
. The crucial feature of this diagnostic for the purpose

of this work is that it provides an almost direct observation of the experimental
island width evolution W(t). In fact, according to the island model described in
chapter 2, the island width W is proportional to the square root of the amplitude
of the perturbed magnetic eld W ∝

√
Bθ(rres) which in practice can be isolated by

filtering the signal at the NTM mode frequency f. An important point, though, is
that from the magnetic measurements detected outside the plasma alone neither
the position of the mode nor the spatial mode structure can be resolved. Even
more difficult is the investigation of coupled modes, resonant at different mag-
netic surfaces. Nevertheless a rough estimate of the island width can be obtained
by considering that magnetic perturbations, in a cylinder, fall off with distance
Bθ(rcoil) = Bθ(rres)( rres

rcoil
)m+1 [Zohm(1990)] where Bθ(rcoil) is the value of the per-

turbation field measured at the position of the detecting coil and Bθ(rres) is the
value of the perturbation where the mode is located. Therefore, the relation

W ∼ C
√

Bθ(rres) ∼ C
√

Bθ(rcoil)(
rcoil

rres
)m+1 (3.14)

is valid and can be used to approximately scale the measured island width W(t)
from one discharge where the island width measurement is available from ECE
diagnostic (to get the calibration factor C) to other similar discharges for which
the island width measurements by ECE are not available. In order to scale prop-
erly the island width value, though, an offset needs to be subtracted to the exper-
imental W(t) resulting from the background noise of the Mirnov coil signal and
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this is a main source of error in the final estimate of the island width W. Indeed,
a comparison has been carried out for the ASDEX Upgrade database between the
values of Wsat obtained by direct measurement with ECE for each discharge and
by the values obtained using the Mirnov coil signal calibrated to the best ECE
measurement available for one discharge and they do not differ for more than
40% (see section 4.3.2).
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Figure 3.10: The NTM frequency of (3,2) NTM together and its harmonics for discharge
#18036 in the frequency spectrum obtained with the Mirnov coil diagnostics. Below Ḃθ

signal and W(t) ∝
√

Ḃθ/ f for discharge #18036 at ASDEX Upgrade obtained by filtering
the signal at the mode frequency f ∼ 15KHz. An offset (dotted line) is subtracted due to
the noise of the Mirnov diagnostic
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Figure 3.11: Bootstrap current density profile jBS for ASDEX Upgrade and JT-60U dis-
charges together with the gaussian profile of the injected jECCD current density of width
d for discharge #18036 (left) with βN ∼ 2.2 and discharge #41666 (right) with βN ∼ 1.5
both normalised to BT

Rmajq95
. The jBS is steeper at the edge for AUG because of steeper

pressure gradient. The local jBS is higher for ASDEX Upgrade than for JT-60U as the
bootstrap current density mainly depends by the value of the β, which is larger for AUG
discharge. The jECCD current is characterised by a Gaussian profile and the mismatch
between the mode location (blue dotted line) and the injection location (red dotted line)
indicates the presence of a possible misalignment between the center of the island and
the ECCD beam.

In this study in order to determine the bootstrap current density jBS, two trans-
port codes have been used, ASTRA [Pereverzev(1991)] which is the main tool for
transport studies in ASDEX Upgrade and ACCOME [Tani(1992)], which is the
main tool for transport studies at JT-60U. They are codes for predictive and inter-
pretative transport modelling and for processing experimental data. ASTRA in-
corporates a system of two-dimensional equilibrium equation, one-dimensional
diffusion equations for densities and temperature of different plasma compo-
nents and a variety of other modules describing additional heating, current drive
and other non-diffusive processes in tokamak plasmas. The transport coefficients
can be specified in the code or also given externally. In our case, the calculation
of the bootstrap current density jBS has been done in both machines using the
Hirshman and Sigmar model [Hirshman and Sigmar(1977)] for a multi-species
plasma with carbon as only impurity. Zeff is assumed constant and equal to 2.5
in JT-60U and it is determined by comparing the neutron emission rate with the
experimental one. In ASDEX Upgrade, Zeff is set equal to 2 and it is a value taken
from Bremsstrahlung measurements (discharge #17797)[Meister(2004)]. Figure
3.11 shows that in ASDEX Upgrade the bootstrap is more peaked at the edge
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than at JT-60U and this is an effect due to the density gradient in the edge re-
gion of the plasma which is steeper at ASDEX Upgrade than at JT-60U. Usually,
in order to determine the ECCD current density jECCD and its deposition width
d the beam-tracing technique for drawing the propagation of the EC beam with
a Gaussian cross-section in cold plasma is adopted. In this work, for ASDEX
Upgrade discharges the EC deposition parameters have been calculated by the
TORBEAM code [Poli(2001)] and in JT-60U by the ECH code [Suzuki(2002)]. In
the linear theory the fraction of the absorbed EC power in the plasma is

Pabs

P0
= 1 − e−

∫
αds (3.15)

where α = 2k” is the absorption coefficient and the integral is over the beam path
s. The absorption of the EC beam propagating in the plasma begins when a part
of its phase front satisfies the wave-particle resonance condition:

ω − nωce

γ
= v‖k‖ (3.16)

The absorption profile is then determined according to equation 3.15 from the
local values of the absorption coefficient α and the geometry of the beam in the
resonant region. Therefore, EC deposition parameters such as jECCD and d are
sensitive to many factors: magnetic field B and equilibrium, plasma density ne
and electron temperature Te , which are flux functions, and a variety of geomet-
rical factors such as launching angles, launcher position and initial shape of the
beam. In general, the ECCD current density had the following dependency:

jECCD ∼ PECRHTe

ne

1
rresd

(3.17)

where PECRH is the injected ECRH power and d the deposition width. The depo-
sition width d depends mainly on the electron temperature d ∝

√
Te because of

relativistic effects due to the Doppler shift and on the geometric width of the in-
jected beam, which is mainly depending on the experimental set-up of the ECRH
system. In figure 3.11 the typical gaussian deposition profile for the ECCD cur-
rent density jECCD is indicated for both ASDEX Upgrade and JT-60U. The centre of
the deposited current calculated with the two codes results to be slightly shifted
compared to the mode location, indicating a possible misalignment between the
island and the injected ECCD beam.

3.8 Neoclassical Resistivity ηNC

The neoclassical resistivity is in general a function of Zeff, trapped particle fraction√
ε and it depends mainly on T−3/2

e [Wesson(1997)]:

ηNC ∼ Zeff

T3/2
e

(1 − ε1/2)2 (3.18)
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Both at ASDEX Upgrade and JT-60U it has been calculated numerically (with AS-
TRA and Topics code [Hayashi(2004)] respectively) using as neoclassical trans-
port coefficients those provided by [Hirshman and Sigmar(1977)]. In general, the
resistivity in ASDEX Upgrade is smaller than in JT-60U as the electron tempera-
ture is 1-2 times higher at JT-60U for a similar position r/a ∼ 0.5 of the mode in
the plasma. In figure 3.12 the neoclassical resistivity profiles normalised to the
local electron temperature Te and the Zeff are shown. As a consequence, the re-
sistive time τs ∼ r2

res/ηNC is larger at JT-60U than at ASDEX Upgrade due to the
increased size of the machine.
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Figure 3.12: Neoclassical resistivity profile for ASDEX Upgrade and JT-60U normalised

to T3/2
e

Zeff
: the normalised resistivity is in both JT-60U and ASDEX Upgrade almost constant

and the small difference between the two profiles is due to the realistic geometry adopted
in the codes to calculate ηNC





Chapter 4

NTM stabilisation experiments with
Electron Cyclotron Current Drive

As described in chapter 2, the dominant mechanism which allows for the growth
of the NTMs in the plasma is the missing of the bootstrap current within the
magnetic island. A well established technique to control NTMs is by replacing
the missing bootstrap current density jBS with an externally injected one. This is
provided by exploiting the interaction between electromagnetic waves and the
plasma, which can become resonant and transfer energy to each other. In par-
ticular, by using Electron Cyclotron Resonance Heating (ECRH) the energy of
electromagnetic waves is transferred to the electrons of the plasma when its fre-
quency is equal to a harmonic of the electron cyclotron frequency ωc = eB

m . If
the injection of the electromagnetic wave is oblique with respect to the resonant
layer a current density jECCD is generated in the region where the resonance takes
place. This scheme is referred to as Electron Cyclotron Current Drive (ECCD).
The occurrence of an NTM is called NTM destabilisation. If the NTM amplitude
can be decreased by using ECCD till its disappearance , the mode is completely
stabilised. In this chapter, the ECRH systems and the experiments for stabilising
(3,2) and (2,1) NTMs with ECCD at ASDEX Upgrade and at JT-60U used for this
analysis are presented.

4.1 Electron Cyclotron Resonance Heating system at
ASDEX Upgrade

In ASDEX Upgrade the ECRH system which has been used for the analysed NTM
stabilisation experiments consists of 4 gyrotrons (sources for generating electro-
magnetic waves ) working at 140 GHz. At the usual value of the toroidal mag-
netic field |BT| ≈ 2.5 T, this corresponds to the second harmonic X-mode of the
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Figure 4.1: Poloidal cross-section of ASDEX Upgrade with ECCD beam injection for dis-
charge #18036

EC wave which is launched into the plasma from the low field side (LFS) of the
equatorial mid-plane as shown in figure 4.1. In the usual ASDEX Upgrade diver-
tor configuration, the magnetic axis is accessible when the beams are launched at
a poloidal angle θ ≈ 10◦. A further change of θ in the range ±32◦ displaces the EC
absorption vertically along the resonance layer, which can also be shifted radially
by changing the toroidal magnetic field BT. By changing the toroidal launching
angle φ in the range ±30◦ the EC beam can be launched obliquely to produce
current drive (co-or ctr-ECCD). All gyrotrons are able to deliver PECRH = 0.5 MW
for 2 s, of which 0.4 MW are absorbed by the plasma. At the end of each trans-
mission line a steerable mirror allows the launching of the focused beam in the
desired poloidal and toroidal directions. However, the steerable mirror is fixed
at the beginning of each experiment and can only be actively changed between
discharges; therefore to optimise the oblique injection in the plasma a linear scan
of about 20% of the BT field characterises the experiments.

4.2 Electron Cyclotron Resonance Heating system at
JT-60U

In JT-60U the ECRH system consists of four gyrotrons which heat at the funda-
mental O-mode or in the 2nd harmonic X-mode with a frequency of 110 GHz and
inject from the low field side (LFS) of the plasma. The resonance condition is
reached at BT ≈ 1.7 T in the O-mode case and at BT ≈ 3.7 T in the X-mode case.
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The total injection power PECRH reaches 3 MW. In JT-60U the toroidal injection
angle φ is kept fixed whereas the poloidal injection angle θ can be slightly varied
for profile control by changing the position of the mirror by 2-3 degrees. Fig.4.2 il-
lustrates a typical poloidal cross-section of JT-60U and the position of the injected
ECCD beams on the resonant surface.
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Figure 4.2: Poloidal cross-section of JT-60U with beam injection for discharge 41666

4.3 NTM stabilisation experiments with ECCD

In a typical NTM stabilisation experiment, an NTM is destabilised and a satu-
rated mode (of width Wsat and dw/dt ≈ 0) is allowed to form. Subsequently, the
ECCD power PECRH is applied which generates a highly localised current in the
region where the resonant surface is located. If the necessary criteria for stabili-
sation such as having enough PECRH and having a not too large radial misalign-
ment xmis = rdep − rres between the ECCD beam deposition radius and the radius
at the resonant surface of the island are fulfilled then the NTM is stabilised and
the plasma confinement can be recovered. As already mentioned, two different
approaches are used to hit the resonant surface in the two devices. At ASDEX
Upgrade, a scan of the toroidal magnetic field BT of about 0.2 T is made to hit the
resonant surface, starting on one side of the island. This corresponds to a radial
shift ∆R of about 10 cm in 2 s [Maraschek(2004)]. At JT-60U, instead, the hitting
position of the ECCD beam is optimised from discharge to discharge. With the
help of the electron temperature radial profile, the amplitude and the phase at
the mode frequency allow for the identification of the resonant surface location
so that the mirror of the ECCD system is consequently tilted for better alignment
[Isayama(2003)]. It typically takes several 100 ms to stabilise an NTM during the



72 4. NTM stabilisation experiments with Electron Cyclotron Current Drive

BT scan whereas in discharges with a constant optimised magnetic field the sta-
bilisation typically takes less than 100 ms. The selection of the discharges used in
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Figure 4.3: Typical time slices for NTM stabilisation experiments for #18036 with βN ∼ 2.2
(AUG) and for #41666 with βN ∼ 1.5 (JT-60U): the NBI power PNBI is increased till the
NTM is destabilised. Then, once the mode is triggered the PNBI is stepped down to a
level for which the available PECRH power is enough to effectively suppress the mode.
As a consequence βN increases. In ASDEX Upgrade (left), the resonance surface is hit by
scanning the toroidal field BT whereas in JT-60U (right) the mirror angle is slightly varied
(1-2 degrees) during the discharge so to optimise the ECCD position of injection.

this work is done based on various criteria: first of all, the necessary data for the
analysis has to be available in particular the electron temperature measurement,
the electron density measurement and a good equilibrium profile in order to be
able to produce a reasonable β profile. Secondly, the Mirnov coil signal W ∼√

Bθ

has to clearly show a decay during the stabilisation without major unclear be-
haviours in order to compare it to the simulation obtained with the Modified
Rutherford equation. Some information on misalignment xmis is required either
from the magnetic field scan or from the increase of local temperature profile
due to ECCD. In addition, it was useful to work with similar discharges done
preferably in sequence to get trends and consistent measurements. In order to
understand how much do the discharges which are analysed and compared at
JT-60U and ASDEX Upgrade differ among themselves in terms of geometry and
shape, table 4.1 resumes the global plasma parameters which have been set dur-
ing the experiment together with the geometrical factor s (introduced in chapter
3) for the five different sets of NTM stabilisation discharges. The difference in the
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value of s between the two machines is about 20% whereas within ASDEX Up-
grade and JT-60U database the difference in the geometrical set-up among (3,2)
and (2,1) NTMs discharges is below 10% .

NTM Ip [MA] BT [T] a2

Rmaj
q95 s

(2,1) NTM AUG 0.8 1.85 0.14 4.4 14.2
(2,1) NTM - a JT-60U 1.5 3.7 0.19 3.9 8.3
(2,1) NTM - b JT-60U 0.85 1.7 0.19 3.5 10.0

(3,2) NTM AUG 0.8 2.1 0.14 4.8 12.5
(3,2) NTM JT-60U 1.5 3.7 0.19 3.75 8.0

Table 4.1: Global parameters set for the NTM discharges and resulting shaping factor s

4.3.1 NTM stabilisation experiments at ASDEX Upgrade
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Figure 4.4: Value of the profile averaged β p
versus βN interpolated at the time tsat when
the NTM saturates (and measurements are
taken) for ASDEX Upgrade discharges: the
(2,1) NTMs is characterised by lower β con-
sistently with the fact that they are located
more towards the outside of the plasma.
The clear linear trend verifies that these dis-
charges have similar plasma shape and q95.

The NTM stabilisation experiments of
ASDEX Upgrade used in this work
are done in standard H-mode scenario,
with Ip = 0.8 MA and BT ≈ 2.0 T for the
(3,2) NTM or BT ≈ 1.85 T for the (2,1)
NTM and conventional monotonic q-
profiles [Maraschek(2004)]. The more
detailed difference of ASDEX Upgrade
discharges in terms of plasma shape
and q95 is reported in figure 4.4 where
the value of the profile averaged βp
versus βN interpolated at the time tsat
when the NTM saturates shows a clear
linear trend confirming the similarity
in the plasma shape. The short high
power phase during which the NTM is
triggered is done with PNBI ≈ 10 − 20
MW. For the (2,1) NTM this reduction
of PNBI is necessary due to finite avail-
able ECCD power. For the (3,2) NTM
the available PECRH is sufficient to always stabilise the mode but the βN needs
not to be greater than 2.3 as this would bring the mode in its FIR regime
[Günter(1998)] for which a description with the Modified Rutherford equation
would not be fully consistent due to mode coupling and different physics mech-
anisms to be accounted for. The value of marginal βN for the (3,2) case is
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βNmarg < 1.8 (#17057) whereas for the (2,1) case it is βNmarg < 1.2 (#15416). For the
(3,2) NTM the typical q95 is around 4.8 whereas the (2,1) NTMs a lower q95 ≈ 4.4
has been used in order to be able to hit the resonant surface of the mode with the
available ECCD set-up in terms of magnetic field and positioning of the ECCD
beam. When the (2,1) NTMs are triggered they are usually locked for a certain
time, that it they couple to the wall and stop rotating. However by the reduced
NBI power, since the local βp is reduced and Wsat ∼ βP holds, the mode gets
smaller and starts to rotate again.
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Figure 4.5: The maximal βN/(PECRH/PNBI) as a function of (IECCD/d)/(PECRH
Te
ne

) for
AUG discharges; the dashed lines guide the eye to the three groups of discharges: on the
left the (3,2) large deposition profile (blue), in the middle the (3,2) NTM small deposition
profile (blue) which have the highest increase of βN after stabilisation, on the right the
(2,1) NTM discharges with small deposition profile which do not show an increase of β N
due to lower Te and therefore lower efficiency of ECCD.
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With this scenario, the (3,2) NTM could be stabilised at a maximal βN ≈ 2.4 with
PNBI = 12.5 MW (#19232). For the (2,1) NTM a maximal βN ≈ 1.9 with PNBI ≈ 6.25
MW and PECRH = 1.8 MW could be achieved (#19454). The higher required ECRH

Table 4.2: Descriptive parameters for the (3,2) NTMs (in blue) and the (2,1) NTMs (in
red) discharges of ASDEX Upgrade

# PNBI [MW] PECRH [MW] θ [deg] φ [deg] jECCD[MA/m2] d [m]
12257 10 0.9 10 15 0.087 0.061
13631 10 1.2 10 15 0.167 0.071
15308 10 1.5 10 12 0.192 0.048
17975 10 1.1 10 20 0.070 0.17
17977 10 1.1 10 15 0.135 0.08
18036 10 1.1 10 12 0.236 0.051
18690 10 1.5 10 8 0.442 0.0184
18691 10 0.75 10 5 0.456 0.01
19229 10 1.3 10 7 0.432 0.021
19230 10 1.1 10 3 0.600 0.007
19232 12 1.1 10 5 0.700 0.01
21133 10 1.1 10 5 0.389 0.016
16999 6.25 1.8 10 12 0.150 0.042
19283 6.25 1.3 10 5 0.315 0.0074
19454 10 1.3 10 5 0.327 0.0066

power for the (2,1) NTM, together with the lower achievable βN can be explained
by the reduced ECCD current drive efficiency at lower temperatures Te and the
reduced βNmarg compared to the (3,2) NTM [Maraschek(2003)]. The NTM stabil-
isation experiments at ASDEX Upgrade are done with a deposition width of the
ECCD beam d which can vary depending on the toroidal launching angle φ as
mentioned before. Two different regimes have been used in the modelling of the
Rutherford Equation: the case of a large deposition profile, where the deposition
width d > Wsat and the case of a small deposition profile where d < Wsat. In both
cases, the Wmarg was estimated to be of the order of Wd that is ≈ 2 − 2.5 cm in
agreement with the value established once the Mirnov coil signal is calibrated
from Wsat. In table 4.2, the important parameters for analysing the efficiency of
the ECCD stabilisation are shown for (3,2) NTMs and the (2,1) NTMs (indicated
in red in the table): for large toroidal launching angles φ, the current density
jECCD decreases and the deposition width is large > 4 cm, therefore part of the
IECCD is injected also outside the island. The highest value of current density,
instead, is reached at φ ≈ 5◦. In the case of small toroidal launching angle, the
calculated deposition width given from TORBEAM results in a very small value
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Figure 4.6: TORBEAM calculations for the jECCD and d values for ASDEX Upgrade dis-
charges: the black points indicate the original output of TORBEAM for each discharge
and the black line is the fitted polynomial function underlying these. The blue points are
the corrected values for the discharges with small deposition profile which are assumed
to have a minimum realistic deposition width larger than d = 0.02 cm. The blue line is
the polynomial fit obtained by assuming a deposition width d of about 2 cm for the dis-
charge #19230 with the smallest d. The arrow indicates the shift towards more realistic
values of jECCD and d for the small deposition profile discharges.

≤ 1 − 2 cm. Almost a factor 2 difference in the value of deposition width d is
obtained for #21133 and #19454 due to the more external mode position of the
(2,1) NTM. A detailed transport analysis [Kirov(2002)] with ASTRA on the local
effects of ECCD deposition on temperature profiles showed that the deposition
width can’t be smaller than about 2 cm. Therefore, taking this value as a lower
limit for d, in the simulations of the NTM stabilisation with the Modified Ruther-
ford equation 2.49 the values for jECCD and d have been modified in order to take
this into account. In particular, the deposition widths smaller than 2 cm have
been re-scaled (and consequently also jECCD since equation 3.17 is valid) so that
2 cm be the minimum possible value for the deposition width. This re-scaling is
consistent with the values provided by TORBEAM for larger deposition profiles
and is shown in figure 4.6: the strong peak in case of d < 0.02 cm that relates jECCD
and d becomes smaller as d is corrected to realistic values. Nevertheless, for the
large deposition cases the dependance of jECCD versus d provided by TORBEAM
remains unchanged.
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4.3.2 Comparison between Wsat from ECE and Wsat from Mirnov
coils

In chapter 3, the method used to measure the saturated island width Wsat has
been described which relied on ECE measurement of the electron temperature
flattening when the NTM and therefore the magnetic island becomes very large
and saturates. In addition, it has been mentioned that the measurement of the
magnetic field perturbation (Ḃθ detected using the Mirnov coil diagnostic) is a di-
rect experimental observation of the island width evolution W(t). Therefore, an
other way of estimating the island width at saturation for discharges which do
not have ECE data available, is to calibrate their Mirnov coil signal Bθ with the
Mirnov coil signal of some discharge for which instead the value of Wsat is clearly
measured by using the cylindrical approximation This exercise has been done for
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Figure 4.7: Comparison between the values for Wsat determined via ECE and those deter-
mined with calibration from Mirnov coils; discharge #19454 is used for calibration with
ECE: for the oldest discharges the ECE measurement underestimates by ∼ 30% the value
obtained by calibrating to the Mirnov coil whereas for the newest ones the ECE mea-
surement overestimates the value from the Mirnov coil calibration by the same amount.
Although no clear trend could be found by using this approximative method to establish
the island width size, it confirmed that the range in which Wsat lies with ECE measure-
ment is consistent when using the Mirnov coil calibration.

the ASDEX Upgrade discharges in order to double check the consistency of the
measurements with ECE, which in the case of (3,2) NTMs with f ∼ 16 Khz are just
at the Niquist frequency and are less accurate than other cases. For direct com-
parison the measurements from a poloidal coil (C09 − 01) situated on the LFS at
(R,z) = (2.5,0.14) m have been used and the good island width measurement for
discharge #19454 has been taken to calibrate the signal and proper offset has been
subtracted. The error on the evaluation of the saturated island width is larger
with this technique as more sources of error appear: the formula 3.14 comes from
a cylindrical calculation; in addition, when calibrating to the Mirnov coil signal
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the estimate of the offset directly affects the evaluation of the absolute value of
the island width Wsat. Nevertheless, the estimate of the island width Wsat is con-
sistent within 30% − 40% between the two methods. Figure 4.7 shows the ratio
between the island width Wsat measured with ECE and the one calibrated from
Mirnov coil signal: for the oldest discharges the ECE measurement underesti-
mates by ∼ 30% the value obtained by calibrating to the Mirnov coil whereas for
the newest ones the ECE measurement overestimates the value from the Mirnov
coil calibration by the same amount. This may be due to slight changes in time of
the diagnostic systems (ECE or Mirnov).

4.3.3 NTM stabilisation experiments at JT-60U

Table 4.3: Descriptive parameters for the (3,2) NTMs (in blue) and the (2,1) NTMs (in red)
discharges of JT-60U

# PNBI [MW] PECRH [MW] φ [deg] θ [deg] jECCD [MA/m2] d [m]
41647 11.2 2.6 23.6 21.9 0.27 0.1
41650 16 1.2 23.4 20.9 0.15 0.09
41652 16 2.5 23.4 20.9 0.28 0.09
41666 20 2.6 23.6 21.9 0.23 0.01
41671 23 2.0 23.6 21.9 0.15 0.11
41695 22 2.6 23.6 21.9 0.25 0.12
46367 11.5 0.6 22.8 16.9 0.029 0.09
46368 11.5 0.9 22.8 16.9 0.041 0.09
47788 6.0 1.45 22.1 13.0 0.046 0.07
47793 6.0 0.9 22.1 13.2 0.03 0.07
47796 6.0 0.55 22.1 13.2 0.014 0.07

The NTM stabilisation experiments from JT-60U under investigation in this work
are selected from recent JT-60U experimental campaigns and are standard H-
mode scenario with conventional monotonic q-profile. The (3,2) NTM discharges
are done with Ip = 1.5 MA and BT = 3.7 T at q95 = 3.5 and their marginal βNmarg
is is about 0.9. For these discharges, up to 2.7 MW of PECRH is injected to stabilise
the mode [Isayama(2003)] using the ECRH system in fundamental O-mode. The
Wmarg is small compared to the deposition width d and the marginal island ob-
tained from Wd ∼ 1.5 − 2 cm from the formula and the island decay prediction
are consistent. Of the five (2,1)-NTM discharges, #46367 − #46368 are done with
Ip = 1.5 MA, BT = 3.7 T with q95 ≈ 4.0. The NBI power is increased up to 25
MW to trigger the mode at βN = 2.0 and then lowered till βN ∼ 1. The marginal
βNmarg for these discharges is 0.4 and the ECCD resonance is reached using the



4.3. NTM stabilisation experiments with ECCD 79

fundamental O-mode. The other three (2,1) NTM discharges #47788, #47793 and
#47796, instead, are done with Ip = 0.85 MA, BT = 1.7 T with q95 = 3.5 with
βNmarg = 0.9 and using the 2nd harmonic of the X-mode resonance. These dis-
charges were set and run remotely from Garching [Ozeki(2008)] and were done
to study the marginal ECCD power requirement for NTM stabilisation. So from
one discharge to the other, after having optimised the injection angle to θ = 13.2◦,
the PECRH was reduced till the mode was marginally stable. This was achieved in
#47796 where only PECRH = 0.5 MW has been injected. A characteristic of the (2,1)
NTM stabilisation discharges at JT-60U which we analysed is the co-presence of
a (3,2) NTM mode with the (2,1) NTM as the spectrogram in figure 4.8 shows and
as verified by calculation the rotation frequency of the mode using CXRS toroidal
velocity. In particular, the two modes do not seem to be coupled as the (2,1) NTM
has a frequency f ∼ 5 kHz and the (3,2) NTM has a frequency f ∼ 13 kHz. The
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Figure 4.8: spectrogram of #46367: Co-existance of a (3,2) NTM and a (2,1) NTM: the two
modes are coupled creating a beat wave with ω = (ω32 + ω21)/2 ∼ 8.5 kHz

optimised angles for ECCD stabilisation at JT-60U discharges are such that the
ECCD current injected is characterised by a large deposition profile d as table 4.3
indicates whereas the experimental decay evolution suggests that the marginal
island width at stabilisation measures roughly Wmarg,ECCD ≈ Wsat/2.
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4.4 Consistency of the scaling between ASDEX Up-
grade and JT-60U

As mentioned in chapter 2, the fitting coefficient csat is expected to be a constant
value among all the discharges. One of the most important aspects in order to
robustly evaluate this coefficient is to understand how the measured quantities
are consistently related to each other. In general, the local values are calculated at
the mode position inferred from the ECE measurement, which is at about ∼ 0.4−
0.5a for the (3,2)-NTMs and ∼ 0.6 − 0.7a for the (2,1)-NTMs in both machines.
Once the mode position is estimated, all the plasma parameters required for the
Modified Rutherford Equation are determined by interpolating the profiles at this
position in the plasma. The calculated value of the radius at the resonant surface
rres m is ≈ 0.25 m for (3,2)-NTMs and ≈ 0.3 m for the (2,1)-NTMs at ASDEX
Upgrade and ≈ 0.35− 0.4 m for (3,2)-NTMs and ≈ 0.6 m for (2,1)-NTMs at JT-60U.
The local electron density at ASDEX Upgrade is in the usual H-mode scenario
used for NTMs’ experiments ne ≈ 5.5 · 1019 m−3 and the local electron temperature
Te and the ion temperature Ti are ≈ 1.5 − 2 keV. In JT-60U, the electron density
is lower than at ASDEX Upgrade and it is in the range ne = 2 − 3 · 1019 m−3, the
electron temperature is in the range Te ≈ 1 − 4 keV and ion temperature is in the
range Ti ≈ 1 − 6 keV. In general, as far as the kinetic profiles are concerned (as
shown in chapter 3), local values are smaller for the (2,1)-NTMs than for the (3,2)-
NTMs since the (2,1)-NTM resonant surface lies more outside than the (3,2)-NTM
one. The absolute values for the gradient lengths are Lne ≈ 1− 2 m ,LTe ≈ 0.3− 0.4
m ,LTi ≈ 0.2 − 0.3 m in both machines. The absolute value of the gradient length
Lq of the safety factor q at ASDEX Upgrade is ≈ 0.3 m for the (3,2)-NTM and ≈ 0.2
m for the (2,1) NTM whereas in JT-60U it is in both types of NTMs Lq ≈ 0.5 m (the
safety factor profile is systematically less steep towards the edge in comparison
with ASDEX Upgrade as discussed in chapter 3). The resistive time τs lies in the
range 1 − 1.5 s at ASDEX Upgrade whereas in JT-60U it is higher for the (3,2)
NTMs τs ≈ 8 − 9 s and lower for the (2,1) NTMs ≈ 3 s.

4.4.1 Linearity among βp, Wsat and jBS

One of the main trends which has been analysed is the linear intrinsic dependence
among the island width at saturation Wsat, the local βp and the local value of the
bootstrap current density jBS which has been mentioned in chapter 2 and how
this dependence is fulfilled given the independent measurements of the kinetic
profiles, island width at saturation and the poloidal magnetic field. This trend
is important since it gives an idea of how strong the assumption Wsat >> Wmarg
applies to our database. This would mainly make the analysis more independent
of the small island physics and therefore the determination of csat more robust.
In chapter 3, the measurements for the saturated island width Wsat, the quanti-
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ties that enter in the calculation of the local βp = 2µ0<p>

B2
pol

and in the calculation of

the local bootstrap current density jBS ∼ ε1/2 p
Bpol

(ne
n′

e
+ Te

T′
e
) have already been pre-

sented. In figure 4.9, the normalised saturated island width Wsat/a vs. the local
βp , the normalised saturated island width Wsat vs. the local bootstrap current
density jBS calculated from ASTRA are shown in the first, second and third plot
respectively. The dependency of Wsat/a versus the local βp and the local jBS is
different for the (2,1) NTMs and (3,2) NTMs both at ASDEX Upgrade and JT-60U
and this is due to the fact that the island width is also influenced by the local shear
present at the resonant surface. The trend in the linear scaling is very clear for the
(2,1) NTM discharges: the (2,1) NTMs under analysis are very large, are posi-
tioned more towards the edge of the plasma and therefore their profiles clearly
show the effect of the presence of the associated magnetic island (e.g clear flat-
tening in the pressure profile). On the other hand, the linear scaling for the (3,2)
NTM discharges is less conclusive: the values of jBS are affected by the plasma
equilibration during the relaxation times of the plasma profiles in the transport
simulations and no clear linear scaling is found between βp and jBS. In addition,
for ASDEX Upgrade discharges with a higher β (> #18690) the island width at
saturation Wsat is on average smaller than in JT-60U for the same local βp and jBS;
this may be due to different reasons:

• the discharges under question are characterised by a frequency f ∼ 16 KHz
just below the sampling frequency of the ECE diagnostic leading to a higher
uncertainty in the measurement of Wsat.

• the condition Wsat
Wmarg

>> 1 which underlies the dependency Wsat ≈ βp/∆′ is

not entirely valid since in these discharges Wsat
Wmarg

= 2 ÷ 3 and an indication
is given by the comparison with the Mirnov coil plotted in figure 4.7 which
shows that for these discharges Wsat may have been overestimated when
measured directly with ECE.

• the (3,2) NTM discharges at JT-60U whose island size varies sharply with
βp and jBS have a wider range of variation of the PNBI power at which the
mode saturates and this leads to clearer differences in the kinetic profiles
and in the magnetic island width.
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Figure 4.9: Scaling consistency among the normalised saturated island width Wsat/a
and the local βp, the normalised saturated island width Wsat/a and the local bootstrap
current density jBS, the local βp and the local bootstrap current density jBS for (3,2) NTMs
at AUG (blue stars) and at JT-60U (blue dots) and (2,1) NTMs at AUG (red stars) and
(2,1) NTMs at JT-60U (red dots). The linear trend is very clear in case of the (2,1) NTMs
whereas for the (3,2) NTMs it is less conclusive. However, for some discharges of ASDEX
Upgrade Wsat of the (3,2) NTM is determined with less accuracy. The (2,1) NTMs are also
more easily measurable since they are larger and sit more outside towards the edge of the
plasma. In addition, the values of jBS are slightly dependent on the time evolution of the
current diffusion during the transport simulations. Also, differences in the kinetic profile
determination (the database collects discharges which were run over a time of 5 years)
and differences in the local plasma characteristics (for the same βN) should be taken into
account.



Chapter 5

Fitting of csat and cstab

The type of analysis applied to the set of NTM stabilisation experiments with
ECCD described in chapter 4 in order to evaluate the two fitting coefficients csat
and cstab is done in the following steps:

a) the required plasma parameters at tsat are measured

b) the coefficient csat is calculated

c) the calculated csat is inserted in the Modified Rutherford equation 2.49 and
the ∆′

ECCD term is ’switched’ on

d) the required plasma parameters at tECCD are measured

e) the coefficient cstab is evaluated by integrating the dW
dt and by matching the

experimental time evolution W(t) from the Mirnov coil signal

In chapter 2 and 3, points a and d have been addressed. In the following chapter,
instead, points b, c and e, that is the technique adopted for fitting of csat and cstab
together with the fitting results are presented and discussed.

5.1 Determination of csat

csat is the coefficient included in the Modified Rutherford equation 2.49 account-
ing for the uncertainty in the cylindrical assumptions underlying the theoretical
model for the NTMs and for possible missing physics at saturation which is not
included in the Modified Rutherford equation. It is calculated by considering
equation 2.49 and by setting dW/dt = 0 and W = Wsat when the ECCD current is
not yet injected in the plasma, that is ∆′

ECCD = 0. Therefore, the equation which
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needs to be solved is:

csat =
−∆′

∆′
BS + ∆′

GGJ
= (5.1)

= −∆′/

(
6.34

2
µ0Lq

jBS

Bpol
(

Wsat

W2
sat + W2

d
+

Wsat

W2
sat + 28W2

b
)− 6.35µ0DR√

W2
sat + 0.65W2

d

)

where ∆′ = −1.971
a(1 + 23.1W

a ) in the case of (3,2) NTMs and ∆′ = −m/rres in
the case of (2,1) NTM. The fitting results for the determination of csat using the
collected database of discharges from ASDEX Upgrade and JT-60U are shown in
figure 5.1.
The two important results are that:

• csat has a mean value 0.81 ± 0.13 and is found to be a constant value of the
order of unity for both ASDEX Upgrade and JT-60U discharges

• csat is found to be independent over a large range of values in which the
determining plasma parameters such as βp, jbs, Lq and Wsat are measured

These results confirm the theoretical expectations presented in chapter 2 al-
though, given the type of measurements involved, the scatter in the value of csat
is quite large. One has to consider that in equation 5.1, the dominant competing
effects are the modification of the equilibrium current profile (modelled by ∆′ at
the numerator) and the missing of the bootstrap current density (modelled by ∆′

BS
at the denominator). Therefore, csat is mainly a measure of the uncertainty on the
strength of these two mechanisms since at saturation for Wsat >> Wmarg all the
other small island effects are negligible. As already discussed, the effect of ∆′ is
mostly unknown in the Rutherford equation since the cylindrical approximation
which is used in the model does not take into account possible important effects
due to toroidicity. The main difference between (3,2) NTMs and (2,1) NTMs in
the model is the linear dependence of ∆′ on the island width W. This effect is
included for the modelling of the (3,2) case but not in the (2,1) case. This is, how-
ever, a small difference since for a (3,2) NTM, rres∆′(Wsat) = −3.33 which only
affects rres∆′ by ∼ 10% at saturation so that, in principle, the uncertainty on rres∆′
is entering in csat as a constant value for all the discharges. For example, the (2,1)
NTM discharges for ASDEX Upgrade have consistent values of csat if the value
of rres∆′ is set to rres∆′ = −1. This value is somehow unexpected as closer to the
vacuum the cylindrical approximated formula 2.29 is assumed to be more valid.
On the other hand this could be questioned by the fact that for very strong (2,1)
NTMs, as in this case, even the ∆′ may start being close to be destabilising as the
bootstrap current density inside the island is almost totally missing. In addition,
for some references where similar analysis was carried out [Petty(2004)] the value
of ∆′ for (2,1) NTM has also been set to values close to unity (rres∆′ ≈ −1.3). At
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JT-60U, instead, the (2,1) NTM discharges are fitted with rres∆′ = −2 but, as men-
tioned in chapter 4, these discharges are characterised by a co-existance between
a (2,1) and a (3,2) NTM, so that the discrepancy in rres∆′ between the two de-
vices needs to be considered in light of the fact that at ASDEX Upgrade the (2,1)
NTM is very unstable whereas at JT-60U the present mode coupling is not fully
considered when using the simplistic cylindrical approximation for rres∆′. The
other source of error for csat comes from the ∆′

BS term and this basically reflects
the uncertainty in the linear scaling between Wsat, jBS and βp, which, as already
discussed in chapter 4, is very robust for the (2,1) NTMs and has a less clear trend
for the (3,2) NTMs. As figure 5.1 shows, in fact, for some (3,2) NTMs discharges
of ASDEX Upgrade (blue stars) the range in which csat changes is quite large com-
pared to the small range of variation for Wsat. On one hand, this is the effect of
the uncertainty on the island width measurement and from the physics point of
view it can indicate that for these discharges the assumption Wsat >> Wmarg does
not fully apply and that small island physics plays a stronger role for these shots.
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Figure 5.1: Determination of csat for the complete database from ASDEX Upgrade and
JT-60U discharges: the calculated values of csat lie in the range 0.5 ÷ 1 and show to be
independent over a large range of values for the normalised quantities jBS/j, Wsat/a,
Lq/a and βp. This is very clear for the (2,1) NTMs discharges of ASDEX Upgrade (red
stars) which are the best diagnosed ones. On the other hand, for some (3,2) and (2,1)
NTM discharges, the scatter in the values of csat is quite large and this mainly reflects the
uncertainty in the linear scaling among Wsat, jBS and βp (discussed in chapter 4) and the
theoretical uncertainty in the model for ∆′.
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5.2 Determination of cstab: integration of the Modi-
fied Rutherford equation

cstab is the coefficient in equation 2.49 to consider the uncertainty in the mod-
elling of the ECCD stabilisation term ∆′

ECCD and it mainly accounts for toroidal
corrections to the cylindrical derivation [Giruzzi(1999)], [Morris(1992)]. It can be
calculated from the Modified Rutherford Equation once csat has been evaluated
and by switching on the ∆′

ECCD term:

cstab =
τs

rres
dW
dt − ∆′ − csat(∆′

BS + ∆′
GGJ)

∆′
ECCD

(5.2)

The determination of cstab using equation 5.2 has two take into account two main
aspects:

• the decay rate can be different from zero dW
dt ≤ 0 since the condition

dW/dt = 0 is only valid in case of marginal stabilisation

• it is necessary to make some assumptions on the experimental value of the
radial misalignment xmis = rdep − rres (which enters via the efficiency func-
tion η(W/d, xmis) as mentioned in chapter 2) and on the marginal island
width Wmarg,ECCD after which the mode decays spontaneously

Useful information on xmis and Wmarg,ECCD can be gained from the experimental
island width evolution W(t) provided by the Mirnov coil signal, as described
in chapter 3. Therefore, the approach used for determining the fitting coeffi-
cient cstab has been to simulate the island width time evolution by integrating
the Modified Rutherford equation dW

dt = (rres/τs)(∆′ + ...) by setting the values
of (cstab, xmis,Wmarg,ECCD) which best allow the matching between the simulated
curve and the experimental one. The integration of the Modified Rutherford
equation W(t) =

∫ tsat
tECCD

dW
dt dt is done numerically using a Runge-Kutta integra-

tion over the decay time ∆ t = |tECCD − tsat| during which the island from its sat-
urated value Wsat shrinks to zero because of the injection of ECCD. The numerical
scheme adopted for simulation of the island evolution in time is presented in fig-
ure 5.2 where the cases of fixed misalignment (JT-60U) or misalignment changing
in time (ASDEX Upgrade) are described.



88 5. Fitting of csat and cstab

0.01 0.02 0.03 0.04
−0.1

−0.05

0

0.05

0.1

0.15

0.2

W [m]

dW
/d

t [
m

/s
]

 

 

3.2 3.4 3.6 3.8 4 4.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time [s]

x  m
is

/d
misaligned => aligned => misaligned

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

W/d

η  E
C

C
D

3.2 3.4 3.6 3.8 4 4.2
0

0.01

0.02

0.03

0.04

0.05

0.06

time [s]

W
 [m

]

1
3

2

4

 no ECCD

ECCD fixed x = 0 cm  mis  

 ECCD slow scan
 ECCD fast scan

ECCD fixed x = 1 cm mis

a) b)

c) d)

Figure 5.2: Simulation of the island time evolution during ECCD injection for a fixed
value of cstab and different misalignment. In (a) the phase diagram (dW/dt,W) is ob-
tained with the Modified Rutherford equation 2.49 in case of no ECCD injection (red
curve) and in the cases when ECCD is switched on and the mode starts to be controlled
(other curves). For the 4 different cases of radial misalignment xmis the behaviour of the
ηECCD during the stabilisation is shown in (c) and the consequent simulated island width
decay is shown in (d). The magenta and cyan curves are the cases in which xmis is set
constant to 0 or 1 cm whereas the blue and the green curves are the cases in which xmis
is varied linearly in time from an initial value xmis0 with a certain velocity v. In case the
velocity of the scan is too fast, the mode first decreases but once the resonant surface of
the mode is largely overcome starts to increase again and the ηECCD becomes negative.
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5.3 Fitting of cstab at ASDEX Upgrade

ASDEX Upgrade discharges for NTMs’ stabilisation with ECCD are characterised
by a linear ramp of the toroidal magnetic field BT which scans the plasma
till it crosses the resonant surface of the NTM where the radial misalignment
xmis = rdep − rres becomes zero. This experimental method for hitting the res-
onant surface is modelled in the Modified Rutherford equation by assuming a
linear change in time of the radial misalignment xmis(t) = xmis0 − vdt starting
from an initial value xmis0 and evolving in time with a certain velocity v which is
related to the velocity of the magnetic field scan. In the simulations of the NTM
stabilisation process, the initial value of the radial misalignment is estimated for
each discharge by calculating with TORBEAM at each time point the shifting ra-
dial position of position of the injection r of the ECCD beam till rdep = rres. The
resonant surface of the mode during the scan of BT is found at BT ∼ −1.8 ÷ 1.85
T for the (2,1) NTMs and at BT ∼ −2.1 ÷ 2.15 T for the (3,2) NTMs. The ve-
locity of the scan is set for all discharges to v = 0.05 m/s and it corresponds
to a radial scan through the plasma of ∆r ≈ 10 cm during the 2 s in which the
ECCD is on and the magnetic field ramp is changed of the amount ∆BT = |0.2|
T [Maraschek(2004)]. The determination of cstab for the ASDEX Upgrade dis-
charges is characterised by a difference in the experimental evolution of the mag-
netic island width W(t) between the discharges with large deposition profile of
the ECCD beam (d > 4 cm) and those with small deposition profile (d < 4 cm).
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Figure 5.3: Island width decay in case of small (blue) and
large (red) deposition profiles of ECCD injection beam at
ASDEX Upgrade: during the ECCD phase, for the small
deposition profile case (#21133) the mode remains satu-
rated for longer time before it decays as the ECCD needs
to be well inside the island to be effective.

In particular, the dis-
charges for NTM stabili-
sation with large deposi-
tion profile of the ECCD
(corresponding to toroidal
injection angle between
10◦ < φ < 15◦ in table 4.2)
are characterised by an
experimental slower de-
cay of the magnetic island
width W(t) compared
to the small deposition
experiments where, as
figure 5.3 shows, for a
long time during ECCD
injection, the island
width stays constant till
it rapidly decays. This
effect is expected since in
case of large deposition
profile experiments the
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stabilisation mechanism can happen earlier as the relative distance between the
O-point of the island and the ECCD beam is smaller. Instead, in case of small
deposition profile experiments, the ECCD beam needs to be well inside the
island before it can become effective. Indeed, as mentioned in chapter 2, as the
ECCD beam overlaps the island, an initial phase in which the ECCD is negative
should take place and a destabilising effect should be visible from the Mirnov
coils and this is not observed.

5.4 Fitting of cstab at JT-60U

JT-60U discharges for NTM stabilisation with ECCD are characterised by
large deposition width profiles d ≈ 7 ÷ 10 cm and by a fixed ECCD loca-
tion of injection (the slight variation due to the mirror tilting described in
4 is only 2 − 3%) so that in the simulations the value of the radial mis-
alignment xmis is set to a constant value. Most of the (3,2) NTM simula-
tions have been carried out assuming the misalignment to be xmis = 2 cm.
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Figure 5.4: Fitting of the (3,2) NTM exper-
imental evolution (#41647 with cstab = 1.2,
xmis = 0.02 cm). In JT-60U mode decay oc-
curs as soon as ECCD is switched on due to
optimised injection position

In the case of both the (3,2) NTM and
(2,1) NTM discharges, the value xmis =
2 cm is partially supported by the
electron temperature profile measure-
ments during the ECCD phase which
show a local increase of the tempera-
ture 2 cm away from the O-point of
the magnetic island for #41666 and this
is an upper limit to the possible val-
ues for misalignment for which com-
plete stabilisation still occurs in the
simulations. In addition, for the (2,1)
NTM discharges, the experimental is-
land width signal from the Mirnov
coils shows a rapid decay at a value
of the marginal island width Wmarg
which significantly deviates from the
values calculated by using the Wd or
Wb models which give values of the or-
der of 1.5-2.5 cm; therefore, for these cases, Wmarg is set to a realistic value of half
of the saturated island width Wmarg ∼ Wsat/2.
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5.5 cstab: comparison between ASDEX Upgrade and
JT-60U discharges
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Figure 5.5: Initial fitting results for cstab plotted versus jECCD
jBS

(left) and xmis0
d (right) ob-

tained considering a symmetrical island (γ = 1) and by assuming for JT-60U discharges
a radial misalignment xmis = 2 cm. Three different trends are found for the value of
cstab among the discharges: a group of discharges (A) characterised by an upper value
cstab = 1.25, a group (B) characterised by an intermediate value around cstab = 0.75 and a
group of discharges (C) characterised by a lower value for cstab between 0.25 ÷ 0.5.

The fitting results for cstab at ASDEX Upgrade and at JT-60U applying the fitting
technique outlined in section 5.2 are presented in figure 5.5, in which the results
for cstab are plotted versus two important parameters jECCD

jBS
and xmis0

d . As men-
tioned in chapter 2, these two figures of merit give an idea of how optimised
is each of the NTM stabilisation experiments with ECCD in terms of amount of
ECCD current used to stabilise the NTM and misalignment xmis present during
stabilisation. The first observation from figure 5.5 is that cstab is characterised by
three different constant values for three groups of discharges:

• group A with cstab = 1.25

• group B with cstab = 0.75

• group C with cstab = 0.25÷ 0.5

The discharges that belong to group A are the (2,1) NTM discharges (#46) from
JT-60U stabilised with the fundamental O-mode of the ECRH, the (3,2) NTM sta-
bilisation discharges of JT-60U (#41) and one discharge from ASDEX Upgrade
(#17977); group B is formed by the ASDEX Upgrade discharges #12257, #13631,
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#18691, #19283 and the (3,2) NTM discharge #41652 from JT-60U; group C, in-
stead, is formed by the (2,1) NTMs discharges (#47) stabilised with 2nd harmonic
of X-mode at JT-60U and the ASDEX Upgrade discharges (> #18) characterised
by a high ratio jECCD

jBS
and small deposition profile Wsat

d > 1. The discharges be-
longing to group B are the best optimised ones over the whole database as they
have a low ratio jECCD

jBS
and small misalignment xmis for a given Wsat

d . However, the
discrepancy among the values of cstab in figure 5.5 is quite large and in order to
understand what are the main reasons for the large scatter in the values of cstab
among the groups of discharges indicated above, various aspects which affect
the determination of cstab are analysed and their importance in the evaluation of
a consistent cstab over the database is weighted in the following sections.

5.5.1 cstab: dependency on geometry effects

In this section, the geometry effects which may play a role in the evaluation of
cstab are investigated. In general, the two major geometric effects which arise dur-
ing stabilisation and which are not covered in the stabilisation term in equation
2.49 are:

1) the real asymmetric shape of the magnetic island described by introducing
the asymmetry factor γ in the evaluation of the efficiency function ηECCD

2) the difference in the value of the island width Wsat between the low-field
side (LFS) (where the island width is measured by ECE) and the high-field
side (HFS) (where the current to stabilised the NTM is injected during the
experiment)

The first point has been already introduced in chapter 2 and affects the efficiency
function in a way that stabilisation will be less effective the more the island has
an asymmetric shape. An estimate of the real asymmetric shape of the magnetic
island suggests that a factor γ = 0.5 can be considered as a good approximation
for the island shape. The second point, instead, deals with the fact that, both
at ASDEX Upgrade and JT-60U, although the stabilisation with ECRH occurs on
the HFS, the measurement of the island width by ECE occurs on the LFS. There-
fore, in the calculation of the efficiency function ηECCD the saturated island width
which needs to be taken into account is the one on the HFS. In order to give an
estimate of the island width on the HFS Wsat,HFS, the difference in the projection
on the mid-plane of the two limiting flux surfaces of the island width measured
at the LFS Wsat,LFS is related to the island width on the HFS by a factor f:

Wsat,HFS

Wsat,LFS
= f (5.3)
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If one assumes that the β-dependence comes from the Shafranov shift, as the β
value increases, the ’density’ of the contour lines of the equilibrium will increase
and the factor f will be larger. As an example, figure 5.8 and figure 5.7 show for
ASDEX Upgrade and JT-60U that for a βN = 1.8 and βN = 1.5 the island width
measured on the HFS is a factor f ≈ 1.5 and f ≈ 1.2 larger than on the LFS. In table
5.1, for two ASDEX Upgrade discharges and two JT-60U discharges, the values
of the island widths at LFS and HFS are listed together with the factor f and since
in ASDEX Upgrade the discharges have a higher β-value, the conversion factor
f is larger. In order to account for this geometric effect in the fitting of cstab, the
mean values f = 1.55 and f = 1.25 from table 5.1 are set for ASDEX Upgrade and
JT-60U discharges respectively.

Table 5.1: Factor f between island size on LFS and HFS
discharge Wsat,LFS Wsat,HFS f
18036 (3,2) 0.06 0.09 1.5
19454 (2,1) 0.09 0.14 1.6
41666 (3,2) 0.11 0.13 1.2
46368 (2,1) 0.12 0.15 1.3
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Figure 5.6: Fitting results for cstab obtained considering for the calculation of the effi-
ciency function ηECCD the island width measured on the HFS Wsat,HFS and an asymmet-
rical island (γ = 0.5): the discrepancy among the ASDEX Upgrade discharges improves
whereas the JT-60U discharges show no clear change due to geometric factors such as
asymmetry of the magnetic island and difference in HFS-LFS estimate of Wsat.

The estimate of cstab by taking into account the real shape asymmetry and the
HFS factor is shown in figure 5.6: the scatter in the value of cstab among the AS-
DEX Upgrade discharges decreases as for discharge #17977 cstab changes from
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1.25 to about 0.8 and the (3,2) NTM discharges lying at around cstab = 0.75 shift
towards cstab = 0.5. On the other hand, the JT-60U discharges are not affected so
much by the change in the value of the efficiency function given a more realis-
tic island width measure since the increased efficiency due to a larger Wsat,HFS

d is
counteracted by the loss of efficiency due to asymmetry.
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Figure 5.7: Measurement of the factor f for discharge #41666 at JT-60U: for βN = 1.5 and
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Figure 5.8: Measurement of the factor f for discharge #19454 at ASDEX Upgrade: for
βN = 1.8 and (2,1) NTM the island width on the HFS is 14 cm whereas on the LFS it is
9 cm. The contour plot of the island shows the asymmetry between the two sides of the
island.
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5.5.2 cstab: dependency on radial misalignment and over-
stabilisation

The fit for cstab obtained considering the geometric corrections still presents a
considerable scatter over the whole database of discharges. However, once the
geometric effects have been accounted in the fit for cstab, the only two other pos-
sible reasons for the discrepancy in its values are that:

3) the ratio jECCD/jBS, in case of small deposition profile discharges Wsat
d > 1

is far away too high to clearly be able to isolate the value of cstab indepen-
dently from it

4) the value of radial misalignment xmis which is considered for the fit is es-
timated with a high uncertainty and small changes of its value can largely
affect the evaluation of cstab

In ASDEX Upgrade, as mentioned in chapter 4, the radial misalignment is ro-
bustly measured since the linear change in the toroidal magnetic field BT is di-
rectly proportional to the shift in the radial position of the ECCD beam and,
therefore, point 4 is not expected to be relevant. On the other hand, indication
that point 3 may influence the determination of cstab is provided by noticing that
for ASDEX Upgrade figure 5.5 and 5.6 show that:

• the discharges with lowest cstab are those characterised by a value of jECCD
jBS

>

1 given a misalignment of about 2-3 cm (see table A.1 in the Appendix)

• the discharge with highest value of cstab is #17977 which is only marginally
stabilised during the experiment and is characterised by jECCD

jBS
= 0.7, very

poor initial alignment xmis = 0.05 m and a large deposition profile Wsat
d < 1

(figure A.1 in the Appendix). This indicates that for the discharges with
smaller misalignment xmis < 0.05 cm and W

d > 1 the marginal value jECCD
jBS

will lie well below 0.7.

In general, for JT-60U discharges the misalignment is a much more unknown
quantity than in ASDEX Upgrade and for the fitting of cstab an initial value xmis =
2 cm has been considered. However, the very rapid decay of the mode as ECCD
is switched on indicates that the misalignment can be even smaller. In addition,
in figure 5.5 and 5.6 some other aspects need to be considered:

• the two series of (2,1) NTM stabilisation experiment differ very much in
terms of results for cstab although among these there are two discharges
which are only marginally stabilised (#46367 and #47796) since the ratio
jECCD

jBS
has been explicitly lowered in order to study ECCD marginal power

requirements
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• one of the (3,2) NTM discharges from JT-60U has a lower cstab value com-
pared to the other (3,2) NTM discharges and is characterised during the
stabilisation by a drop of the ECRH power which affects the length of sta-
bilisation (figure A.5 in the Appendix)

The first point is an indication that these discharges may be characterised by a
different value of misalignment xmis (e.g assuming 2 cm for all of them may be
too simplistic). The second point, instead, suggests that also in the JT-60U case,
although not as much as in the ASDEX Upgrade case, over-stabilisation for the
(3,2) NTM discharges plays a role in the determination of cstab. Given these ar-
guments, in order to improve the discrepancy of cstab among the discharges, it is
reasonable to assume:

• a misalignment xmis ≈ 0 cm for the JT-60U discharges which have cstab > 0.8
in figure 5.6

• a ratio jECCD
jBS

= 0.5 for the ASDEX Upgrade discharges which have cstab < 0.5
in figure 5.6

The fit for cstab is carried out again under these conditions and the result is plotted
in figure 5.9. By assuming perfect alignment for the JT-60U discharges with initial

c

1.20 0.5 1 1.5 2 2.5
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

j
 ECCD

/j
 BS

 

st
ab

 

 

(2,1) NT JT−60U
(3,2) NTM JT−60U
(2,1) NTM AUG
(3,2) NTM AUG

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

x
 mis0

/d

c st
ab

j
 ECCD

/j
 BS

 set to marginal value ~0.5

x
 mis0

 set to 0 cm

Figure 5.9: Fitting results for cstab obtained by considering for the calculation of the effi-
ciency function ηECCD the island width measured on the HFS Wsat,HFS and an asymmetry
factor γ = 0.5 and by accounting for over-stabilisation in case of ASDEX Upgrade and
smaller misalignment for group C for JT-60U discharges.

high values of cstab, stabilisation efficiency improves and cstab results to be smaller
by a factor 0.7-0.8. In addition, by considering the effect of over-stabilisation for
the ASDEX Upgrade discharges, the points with cstab < 0.5 shift up leading to



98 5. Fitting of csat and cstab

a smaller scatter in the ASDEX Upgrade database. A large discrepancy still re-
mains between the (2,1) NTM discharges of JT-60U: these are, however, the most
difficult discharges to analyse as mode coupling is present and one could even
argue that for the first set of discharges the (3,2) was stabilised and for the sec-
ond set the (2,1) was stabilised due to different resonance location of the ECCD
injection. Last but no least, the geometry effects, the assumptions on misalign-
ment and over-stabilisation have been treated here quite schematically whereas
for each discharge these effects should be weighted differently. In general, some
important observations related to the fitting cstab are the following:

• at ASDEX Upgrade the initial misalignment can initially be larger than at
JT-60U (xmis0/d ≤ 1.0).

• at JT-60U it has to be less than half of the saturated island width xmis/d ≤ 0.6
cm to be stabilising in agreement with ref. [Nagasaki(2003)]

• for ASDEX Upgrade there is a systematical difference between small depo-
sition profiles and large deposition profile discharges which translates into
a different behavior in time of the mode stabilisation (Mirnov signal)

• the value of the marginal island width Wmarg is consistent with Wd or Wb
model for all the discharges except for the (2,1) NTM discharges of JT-60U.
However these are characterised by the co-existance of (2,1) and (3,2) NTM,
therefore the Modified Rutherford equation may be incomplete (an addi-
tional term related to the coupling should be included).

• the ratio jECCD/jBS which marginally stabilises the NTM is ∼ 0.3 ÷ 0.6 for
Wsat/Wmarg ≈ 2 − 3 in both ASDEX Upgrade and JT-60U.

• the mean value of cstab calculated over the whole database is:

cstab = 0.68 ± 0.22 (5.4)



Chapter 6

Error analysis for csat and cstab

In chapter 5, the fitting coefficients csat and cstab have been calculated for a set
of NTM stabilisation discharges from ASDEX Upgrade and JT-60U. The value
of these fitting coefficients depends on many plasma parameters which are cor-
related among themselves and are deteriorated with measurement uncertainty.
Therefore, the question arises on how consistently one can give an estimate of the
uncertainty on csat and cstab. In order to approach this problem, an error analysis
using a probabilistic method which generalises the standard error propagation
technique is developed. The main focus is to investigate how do the measure-
ments on the experimental quantities affect the evaluation of csat and cstab in the
Modified Rutherford equation. The numerical tool which has been developed
is able to give together with the fitting coefficients of the Modified Rutherford
equation also their standard deviation in the most consistent way.

6.1 Error analysis for the Modified Rutherford Equa-
tion using a probabilistic approach

To determine the error on csat and cstab a probabilistic approach is applied which
makes use of the Bayesian Probability Theory (BPT) [Goldstein(2007)]. The Bayes
Theorem states that a posterior probability distribution of the event c given the
event B can be calculated by multiplying the prior probability distribution P(c)
by the likelihood P(B|c) that event B will occur if c is true and its formula is:

P(c|B) =
P(B|c)P(c)

P(B)
(6.1)

The likelihood is assumed to be a normal distribution having the form:

P(Bi|A) =
1√

2πσBi

exp
− 1

2 ( B−Bi
σBi

)2

(6.2)
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In this way, the joint probability can be calculated as:

p(B|A) = ∏
i

p(Bi|A) (6.3)

This method applied to the Modified Rutherford equation has several advantages
compared to a standard gaussian error propagation since the coefficients csat and
cstab have complex dependencies in the equation 2.49:

csat = csat(Wsat, Lq, jBS, jECCD.....)
cstab = cstab(WECCD, Lq, jBS, jECCD.....)

It also makes possible to consider the physics constraints and the correlations
present in the model and to make a sensitivity study on the model to identify
which are the most influencing quantities affecting their determination.

6.2 Application to the Modified Rutherford equation

The Bayesian theory is applied to the Modified Rutherford equation written in the
form of equation 2.49. b̄ is the set of measured data with uncertainties described
in chapter 4 and the parameters of interest c̄ are the fitting results of chapter 5
for csat and cstab. The quantities B̄ are the true quantities to be measured (e. g.
Wsat, Lq, jBS, etc.) which are unknown. The marginal probability distribution for
csat and cstab can be obtained by applying the marginalisation theorem and the
product rule of BPT:

p(c̄|b̄, σ̄) =
∫

dB̄p(c̄, B̄|b̄, σ̄) (6.4)

=
∫

dB̄
p(b̄|c̄, B̄, σ̄)p(c̄, B̄)

p(b̄, σ̄)

∝
∫

dB̄p(b̄|B̄, σ̄)p(c̄|B̄)p(B̄)

where the integral is done using a Monte-Carlo simulation (MC); the p(b̄|B̄, σ̄) is
the product the likelihood function 6.2 of all the measured quantities, the proba-
bility p(c̄|B̄) is given by the model which is used (the Modified Rutherford equa-
tion in this case) and P(B̄) gives the constraints characterising the quantities B̄.
This last term treats the complex dependencies among the various quantities,
it accounts for the physical constraints on each of them (positivity, thresholds,
etc...) and for the automatic propagation of errors for each quantity BN+1 which
depends on the quantity BN:

P(B1|B2, ....) ∗ P(B2|B3.....) ∗ P(BN) (6.5)
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In this way, the posterior probability distributions for csat and cstab is first calcu-
lated by applying the marginalisation theorem over each single discharge and in
a second phase it is calculated over all the discharges to get a unique value for csat
and cstab for the database. In this way, the probabilistic approach for the Modified
Rutherford equation consists of the following steps:

1. sample random values for B̄ from probability distributions p(d|B̄, σ̄) · p(B̄)
for individual discharges starting from the collected data b̄

2. calculate the marginal posterior probability distribution p(csat,cstab|d̄, σ̄) for
each single discharge

3. carry out a sensitivity study on the quantities B̄ present in the Modified
Rutherford equation

4. calculate the marginal posterior probability distribution p(csat,cstab|d̄, σ̄)
considering all the discharges simultaneously

5. calculate < csat >, < cstab > and ∆csat , ∆cstab
1 for each single discharge as well

as for all discharges together

As explained in chapter 5, the technique adopted to evaluate csat and cstab has
been to measure the necessary quantities B̄ present in equation 2.49 at two specific
time points tsat and tECCD. In order to build a numerical tool able to treat the
Modified Rutherford equation in a statistical way, the time points needed for the
analysis of equation 2.49 are labelled with i = 1,2 and the following quantities are
defined:

ξ0i = rres∆′ − τs

rres
(

dW
dt

)|ti (6.6)

ξ1i = rres(∆′
BS + ∆′

GGJ) (6.7)

ξ2i = rres∆′
ECCD (6.8)

where ξ2i can be calculated only in case i = 2 → t = tECCD as it only accounts for
the ∆′

ECCD term and dW
dt = 0 at t = tsat and dW

dt ≤ 0 at t = tECCD. Therefore, the
fitting of csat and cstab can be numerically expressed by re-writing equation 2.49
in the form:

0 = ξ0i + csatξ1i + cstabξ2i + ε (6.9)

where ε is the deviance from τs
rres

dW
dt = 0 and < ε >= 0, < ε2 >= σ2 where σ2 is

its variance. It is assumed to be σ = 0.01 for all the discharges which represents
roughly 10% of uncertainty in the evaluation of dW

dt . By assuming a normally

1∆csat =
√

< c2
sat > − < csat >2, ∆cstab =

√
< c2

stab > − < cstab >2
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distributed error, the fitting of csat and cstab corresponds to the minimisation of χ2

defined as:
1
2

χ2 =
1
2 ∑

i=1,2

(
ξ0i + csatξ1i + cstabξ2i

σi

)2

(6.10)

In order to minimise the χ2, the derivative with respect to csat and cstab has to be
0, that is:

∂ 1
2χ2

∂csat
= ∑

i

1
σ2

i
(csatξ1i + cstabξ2i + ξ0i)ξ1i = 0 (6.11)

∂ 1
2 χ2

∂cstab
= ∑

i

1
σ2

i
(csatξ1i + cstabξ2i + ξ0i)ξ2i = 0 (6.12)

(6.13)

By defining the following quantities:

β11 = ∑
i

ξ2
1i

σ2
i

, β02 = ∑i
ξ0iξ2i

σ2
i

, β12 = ∑
i

ξ1iξ2i

σ2
i

β22 = ∑
i

ξ2
2i

σ2
i

, β01 = ∑i
ξ0iξ1i

σ2
i

(6.14)

the system of equations to be solved simultaneously in order to determine csat
and cstab is:

csatβ11 + cstabβ12 = β01 (6.15)
csatβ12 + cstabβ22 = β02 (6.16)

which leads to the solutions

csat =
β01β22 − β02β12

β11β22 − β2
12

(6.17)

cstab =
β02β11 − β01β12

β11β22 − β2
12

(6.18)

In case no ECCD is applied (that is ξ2i = 0), csat can be determined simply as
csat = β01

β11
.

6.2.1 Randomisation of the measured quantities, physics bound-
aries,standard deviations

The quantities present in equation 2.49 which have been treated as a source of un-
certainty in the statistical analysis are the following: Wsat, WECCD, Te , Ti, ne, Lne,
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Figure 6.1: One of the physics boundary imposed in the error analysis calculation is that
the randomisation of jECCD and jBS would satisfy the condition jECCD

jBS
> 0.3 for which in

the present database is the marginal value which still allows for stabilisation.

LTe, Lq, jBS, jECCD, d, ηECCD and dW/dt at tECCD. The uncertainty on the quantities
Bpol, BT, εs,rres have been neglected because they are negligible compared to the
role played by the uncertainty on the quantities listed above. On the other hand,
in case of other quantities such as the radial misalignment xmis, which highly
affects the resulting cstab, the uncertainties are indirectly and more straightfor-
wardly accounted by considering the uncertainties on ηECCD and dW/dt|ECCD.
The effect of the statistical uncertainty of these quantities, however, is small since,
as mentioned in chapter 5, the technique to determine cstab has been to choose it
in such a way that the simulated W(t) evolution would overlap at its best the
experimental one and this method constraints quite strongly the shape of the de-
caying curve dW

dt |tECCD. In order to analytically recover cstab from equation 6.18,
WECCD is considered which is the maximum value of the curve dW/dt|tECCD used
to start the simulation but is not necessarily the same as the marginal island after
which the mode naturally decays Wmarg,ECCD.
Considering the 23 discharges taken into account, the 2 time points necessary for
the analysis and the 13 quantities which are considered within their uncertainty,
the number of uncertain model parameters in equation 2.49 is ≈ Ndischarges ∗ 2 ∗
13 ≈ 600. In the following statistical analysis each quantity has been randomised
50000 times, which is large enough to get the marginal probability distribution
smooth. A randomisation of 10000 times has been tested to be the lower limit for
the creation of smooth enough probability distributions. The physics boundaries
imposed on the randomisation of the involved plasma quantities are that all the
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quantities defined positive should stay positive (or those defined negative as in
the case of LTe or Lne or dW/dt|ECCD should stay negative), the deposition width
d has to have a minimum value of 2 cm, the minimum ratio jECCD/jBS for sta-
bilisation is ∼ 0.3 (as shown in figure 6.1) and that Wsat has to be larger than the
seed island size Wd or Wb. One of the main issues is to give a proper estimate
for the standard deviations; in general for the quantities measured directly from
a diagnostic the value given from the diagnostician is considered as the standard
deviation, as for example in the case of the kinetic profiles (for which σ ≤ 7% for
Ti and Te and σ ∼ 10% for ne both at ASDEX Upgrade and JT-60U have been as-
sumed). On the other hand, for the quantities which are an output of codes (such
as jBS or jECCD) or are calculated by doing derivatives (as the gradients Lq, Lne
or LTe) establishing what is the proper standard deviation is more complicated
since one should take into account the approximations in the model on which it
is based on, the numerical precision of the calculation etc. In this work, a value of
the standard deviations is considered which is a good compromise between be-
ing too optimistic and getting very small error bars (smaller than 5 − 10% uncer-
tainty) on the randomised quantities and being too pessimistic and getting very
large error bars (larger than 50 − 60% uncertainty). The differences between dis-
charges have not been accounted as in principle they have all been treated in the
same way, with the same measurements conditions. The values for the standard
deviations assumed for the statistical analysis are listed in table 6.1.

Table 6.1: Standard deviations σ given in percentage assumed for the statistical analysis

Lne Wsat, Lq, jBS jECCD, d ,ne, LTe, ηECCD, dW
dt |tECCD Te, Ti WECCD

20% 15% 10% 7% 5%
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6.3 Results of the error analysis

Given these standard deviations, the plots related to the determination of csat
and cstab discussed in chapter 5 are shown in figure 6.2 and figure 6.3. The uncer-
tainties calculated for csat and cstab are in the order of 30%; in particular, for the
evaluation of σ in the case of cstab, it has to be taken into account that the statistical
uncertainty in the value of the misalignment is accounted in dW/dt|tECCD ,ηECCD
and WECCD.
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Figure 6.2: Determination of the fitting coefficient csat for the database collected account-
ing for the standard deviations in Wsat, jBS, Lq and βp: the error bar on csat is obtained for
every discharge by randomisation of each quantity present in the Modified Rutherford
equation over a given range of uncertainty. The value of csat is given with a standard
deviation σcsat = 30% considering an uncertainty for Wsat, for Lq and jBS and βp of 15%.
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Figure 6.3: Determination of the fitting coefficient cstab for the database collected account-
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over a given range of uncertainty. The value of cstab is given with a standard deviation
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6.3.1 Sensitivity analysis
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Figure 6.4: Effect on the probability distribution for csat and cstab of each quantity present
in the Modified Rutherford equation which is randomised within its realistic statistical
uncertainty. The largest influence on csat is given by Wsat, jBS and Lq whereas the un-
certainty of Lne, which is quite large, has almost no effect since it enters explicitly in the
Modified Rutherford equation only in the small island physics term ∆ ′

GGJ. As far as cstab
is concerned, all the quantities have a similar influence on its value except dW/dt|tECCD

which is less affecting the width of the probability distribution function.

As mentioned in the section before, not all the quantities present in the Modified
Rutherford equation have been randomised over their uncertainty since their un-
certainty does not affect the evaluation of csat and cstab. Nevertheless, for the other
quantities considered in the statistical analysis it is convenient to study which
quantity has the most effect when doing the analysis. In order to carry out such
a sensitivity study only one relevant quantity at a time is considered by switch-
ing off the other quantities’ uncertainties. Statistically, this means to marginalise
the probability distribution over one of the crucial quantities given that the other
quantities have no uncertainty, as for example Lq:

p(csat,cstab|d̄) =
∫

d Lqp(csat,cstab, Lq|d̄) (6.19)
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The results of the sensitivity test are shown in figure 6.4 where each quantity is
randomised over the realistic the uncertainties listed in table 6.1, Wsat and jBS and
Lq are found to be the most crucial ones, whereas for cstab all the quantities affect
the evaluation in a similar way but the quantity dW/dt|tECCD which is less influ-
encing the width of the probability distribution with the given σ. Additionally,
it is interesting to notice, that some quantities like jBS and WECCD tend to shift
the center of the probability distribution towards the left as their uncertainty is
increased and this is due to the non-linear dependence of csat and cstab on these
quantities.

6.3.2 Posterior probability distribution (PDF) and consistency of
the data

The results obtained for the marginalised posterior probability distributions for
csat and cstab over a single discharge and over all the discharges are shown in
figure 6.5 and 6.6 respectively. The results show that:

• the PDF obtained for each single discharge is centred around a value which
agrees with the one calculated from the measured quantities

• the PDF obtained by marginalising over all the discharges is centred around
a value which is slightly different (csat = 0.64 and cstab = 0.62) than the mean
value found from the single discharge calculation (csat = 0.74 and cstab =
0.54)

• this difference increases if the standard deviations assumed in the randomi-
sation process also increase whereas if they are kept small, the overall PDF
accounting for the randomisation of all the discharges agrees with the sim-
ple mean value obtained in chapter 5; this suggests hat the non-linearity
of the Modified Rutherford equation plays an important role in the statis-
tical approach for establishing the error and also that for some quantities
a skewed probability distribution should better represent the distribution
of its values compared to the normal distribution which has been assumed
here.

• the standard deviation σ of the PDF for csat and cstab obtained marginalising
over all the discharges becomes smaller (σ = 10% ÷ 15%) compared to the
marginalisation over every single discharge (σ = 30% ÷ 40%)

• for both the PDF over a single discharge and over all the discharges there is
a clear correlation between csat and cstab
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which is slightly different than the simple arithmetic mean.





Chapter 7

Predictions for ITER

This final chapter deals with the predictions that can be made for ITER in terms
of power requirements for NTM stabilisation considering the results presented in
chapter 5 for the fitting coefficients of the Modified Rutherford equation 2.49. In
the first part of the chapter the relevance of NTMs and the ITER scenario in which
NTMs are foreseen as being demaging is described and the physics assumptions
for using the Modified Rutherford equation are clarified. Then, ITER predictions
for the amount of ECRH power necessary for stabilising NTMs are presented
both for (3,2) NTMs and (2,1) NTMs in case of continuous current injection, 50%
modulated injection considering first a symmetric island and then asymmetric
one.

7.1 NTMs in ITER

In considering simulations studies, the main difference between present-day de-
vices and ITER comes from the fact that ITER simulations cannot be constrained
by experimental measurements. Predictive models have to be used instead,
which implies that an essential step is the experimental validation of those mod-
els against tokamak discharges as close as possible to those expected in ITER. Pre-
dictions for several features are fairly accurate and well established (heat source,
neoclassical terms, ...). Conversely, models for the heat transport, density profile
shape are still questionable and their validation is the subject of an intense sci-
entific debate. At the present state, all ITER scenarios are based on the H-mode,
which implies transport models for both the pedestal and the core plasma. In
particular, the so-called reference scenario 2 is often used. This plasma scenario
is characterised by an H-mode plasma with an inductive current I = 15 MA with
a full bore plasma producing 400 MW of fusion power with Q = 10 for about
400 s. The performance of ITER with this plasma scenario is predicted using the
transport code ASTRA [Polevoi and Gribov(2002)] which has been already used
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in this work for calculating the transport quantities such as jBS and ηNC at ASDEX
Upgrade. The free boundary plasma equilibrium for ITER is calculated with PRE-
TOR code [Boucher(1992)] using the same current profile as the one used in the
ASTRA simulation. NTMs physics is expected to scale with the normalised local
ion poloidal gyroradius [Günter(1998)]

ρpi∗ =
ρpi

a
=

vth/ωci

a
=

√
2mikTi(rres)/eBpol(rres)

a
(7.1)

and since the ρpiITER ∼ 0.1− 0.2ρpiAUG, ITER baseline operation scenario lies deeply
into a metastable region in which NTMs can easily be excited. However, the mode
growth will be slow as the resistive time in ITER has a typical value τs ≈ 70 s and
therefore the detection of magnetic island that form during the discharge is ex-
pected to be addressable and stabilisation schemes are being prepared for this
purpose. In the plasma scenario 2 the other global parameters which are used in
the simulations are the toroidal magnetic field BT = 5.3 T, βN = 1.9, q95 = 3.1 and
Zeff = 1.7 (which is assumed to be a flat profile all over the plasma radius). The
position of the (3,2) NTM and (2,1) NTM are taken from the equilibrium calcula-
tion and indicate that the (3,2) NTM is located at ρp = 0.77 and the (2,1) NTM is
located at ρp = 0.87. Therefore, the mode positions are located more outside com-
pared to the values in JT60U and ASDEX Upgrade. The local values which are
needed in the Modified Rutherford equation 2.49 are calculated by interpolating
the output profiles built with ASTRA at the mode position. The neoclassical resis-
tivity profile is calculated using the σ from ASTRA and ηNC ≈ (jOhm/2πRmajU)−1

where U is voltage related to the ohmic current jOhm. The local flux-averaged
poloidal magnetic field is Bpol = 0.97 T for (2,1) case and Bpol = 1.07 T for the (3,2)
case.

NTM ρp Te Ti ne βp rres ηNC εs Lp Lq jBS
[keV] [keV] [1020 m−3] [m] [10−8 Ωm] [m] [m] [MA/m2]

(3,2) 0.77 7.6 7.4 1.0 1.4 1.3 2.1 0.2 -1.0 0.88 0.09

(2,1) 0.87 5.6 5.7 0.98 1.0 1.55 3.4 0.25 -0.9 0.87 0.07

Table 7.1: Local plasma parameters in ITER in case of (3,2) and (2,1) NTM
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Figure 7.1: Profiles of (a) electron and ion temperatures, (b) plasma electron density, (c)
bootstrap current density and ECCD current density and (d) safety factor q. The red and
blue dotted lines indicates the position of the (3,2) and (2,1) NTM determined from the
position of the q = 1.5 and q = 2 respectively. The profiles obtained from ASTRA describe
what is expected for ITER plasma scenario 2, which is the most likely to be highly affected
by the presence of NTM.
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7.2 NTM stabilisation in ITER
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Figure 7.2: Poloidal cross-section of ITER: in
color are highlighted the positions of the (2,1)
and (3,2) NTM (red and blue respectively) and
the ECCD injection beams corresponding to the
angles used in TORBEAM for the determination
of jECCD and d.

The ECRH system which is fore-
seen for ITER makes use of the
front steering system from the
upper port launcher antenna
from which a nominal amount
of PECRH = 20MW will be in-
jected in O-mode with 170 GHz
frequency using 24 gyrotrons
which will deliver 1-2 MW each
[Henderson(2007)]. The amount
of ECRH power necessary is
still very much under debate as
possibly other 20 MW of extra
PECRH are accounted to be added.
However, priority in the stabili-
sation scheme is given to control
the (2,1) NTM as this is predicted
to be the most damaging NTM.
Therefore, the optimisation of
the ECCD injection in terms of
injected current density jECCD and
deposition width d has been done
aiming at injecting the highest
possible amount of jECCD at the
resonant surface of the (2,1) NTM
with a small deposition width d.
The determination of jECCD and d
is carried out using the Torbeam
code and the results are shown
in figure 7.3. The Torbeam runs

were done using the settings foreseen for ITER which optimise the injection from
the upper launcher with front steering system: the toroidal angle β is fixed at
20◦ whereas the poloidal angle α is fixed to 53◦ and 43◦ for hitting the resonant
surface of the (3,2) and (2,1) NTM respectively as shown in figure 7.3. The
toroidal angle β has been fixed to such a value which allows for the maximum
injection of current density (such that jECCD > 1.2jBS) whereas the poloidal angle
α is chosen to be able to inject the current at the mode position. Under these
assumptions, the (2,1) NTM stabilisation is characterised by a deposition width
of about 2.5 cm and the (3,2) NTM stabilisation by a width of about 3.8 cm in
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agreement with the values given by [Ramponi(2008)](Table 2) with a ratio

jECCD

PECRH
= 14819 A/m2

MW for the (2,1) NTM (7.2)

jECCD

PECRH
= 12721 A/m2

MW for the (3,2) NTM (7.3)
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Figure 7.3: Results for Torbeam runs for determining the jECCD and d given the optimised
angles β = 20◦ and α = 43◦ (for the (2,1) NTM resonant surface) or α = 53◦ (for the (3,2)
NTM resonant surface). As the angles are fixed the deposition width does not change
and is d ≈ 0.038 m for the (3,2) NTM case and d = 0.025 m for the (2,1) NTM, for which
the ECCD injection has been optimised. The peak of the jECCD changes by and amount
jECCD
PECRH

= 14819 A/m2

MW for the (2,1) NTM and jECCD
PECRH

= 12271 A/m2

MW for the (3,2) NTM.

7.3 The Modified Rutherford equation and ITER

To study the amount of ECRH power which is necessary to use in order to
stabilise NTMs in ITER, different cases of stabilisation scenarios are analysed
and simulated using the Modified Rutherford equation 2.49 with csat = 0.81 and
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cstab = 0.68. Both the cases of a symmetrical island and an asymmetrical one with
γ = 0.5 are considered as one expects that the most realistic case will lie in be-
tween these two cases. These different cases are first run for continuous injection
and successively for modulated injection (50%). In the simulations the misalign-
ment is kept fixed during the discharge (similarly to JT-60U) given the design of
the ECRH system which is planned for ITER. Since the stabilising effect of the
simple heating due to ECRH and of jECCD on the equilibrium current profile via
changing ∆′ is not incorporated, what is obtained in this work are the upper limits
for the power required for stabilisation.

7.3.1 Determination of the saturated island size Wsat

First, in order to calculate the power requirements for ITER, the saturated island
width Wsat for (3,2) and (2,1) needs to be evaluated by inserting the value of csat
resulting from the multi-machine benchmark of chapter 5. In fact, considering
equation 2.50 this can be evaluated as:

Wsat = csat6.34 fGGJ
µ0LqjBS

Bpol(−∆′)
(7.4)

where ∆′ is set to ∆′ = − m
rres

. The results obtained using the global and local

0 0.1 0.2 0.3 0.4 0.5

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

island width W [m]

dW
/d

t [
m

/s
]

 

 

(3,2) NTM
(2,1) NTM

Wsat

Figure 7.4: Phase diagram for ITER saturated phase characterising the saturation (no
ECCD) obtained by assuming csat from benchmark between JT-60U and ASDEX Upgrade
and by neglecting the small island physics terms. By using the mean value csat = 0.81 ob-
tained in chapter 5, the (3,2) NTM has a saturated island size of Wsat ≈ 0.2 m whereas the
(2,1) NTM is found to have Wsat ≈ 0.3 m. This corresponds to 0.1a and 0.15a respectively.
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plasma parameters listed above are Wsat,32 ≈ 0.2 m and Wsat,21 ≈ 0.3 m. The island
size which are obtained are quiet large especially in case of (2,1) NTM; neverthe-
less these values have to be considered as upper limits of the real saturated island
width as they are calculated neglecting the stabilising small island width effects
such as Wb and Wd which lower of few centimetres the resulting saturated island
width as figure 7.4 shows. This large island size (∼ 0.15a) suggests that in ITER
the (2,1) NTM will easily lock to the wall. However, this will not be always the
case since, as already seen in ASDEX Upgrade, (2,1) NTMs may also initially lock
but spin up during the stabilisation when the maximum power is applied.

7.3.2 Stabilisation of (2,1) and (3,2) NTM

The saturated island size obtained from the fit with the Modified Rutherford
equation has quite a large value compared to the width of the ECCD deposi-
tion which is foreseen for the adopted ECRH stabilisation scheme. This indicates
that in ITER the operational scenario for ECCD stabilisation of a saturated (3,2) or
(2,1) NTM will be characterised by the conditions Wsat >> Wmarg and Wmarg ∼ d
mainly implying that both modulation and continuous drive of ECCD will re-
quire a very good alignment scheme between ECCD and the O-point of the is-
land. The simulation of the (3,2) and (2,1) NTM stabilisation is done assuming a
realistic asymmetric shape of the magnetic island with γ = 0.5. The general ob-
servations that can be done considering the (2,1) NTM stabilisation (figure 7.5)
and the (3,2) NTM stabilisation (figure 7.6) are mainly the following:

• the PECRH necessary to marginally stabilise a saturated (2,1) NTM is
PECRH = 10 MW and PECRH = 9 MW for DC injection and AC injection re-
spectively

• in the (2,1) NTM stabilisation the maximum allowable misalignment is
xmis

d = 0.5 for the DC injection xmis
d = 0.8 in the AC injection case

• the PECRH necessary to marginally stabilise a saturated (3,2) NTM is
PECRH = 10 MW and PECRH = 7 MW for DC injection and AC injection re-
spectively

• in the (3,2) NTM stabilisation the maximum allowable misalignment when
applying marginal PECRH is xmis

d = 0.4 in case of DC injection and xmis
d = 0.6

in case of AC injection;

• complete stabilisation occurs roughly in 30 s for both the stabilisation of
(2,1) and (3,2) NTMs and given the smaller island size for the (3,2) NTM the
stabilisation time will be shorter in this case
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In light of these observations, the two important conclusions for the stabilisation
for the (2,1) NTM and (3,2) NTM in ITER are that the available ECRH power is
enough to cope with large NTMs and in particular with the (2,1) NTM as long as
the misalignment is smaller than xmis/d ≤ 0.4 − 0.5 in case of DC injection and
xmis/d ≤ 0.6 − 0.8 for AC injection and that clear benefit from modulation only
occurs in the range W

d < 1. More power is necessary for stabilising the (2,1) NTM.
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Figure 7.5: Simulation of NTM stabilisation in ITER for (2,1) NTM. In the DC case (full
lines), PECRH = 10 MW is the minimum required ECRH power to stabilise the mode for
perfect alignment xmis/d = 0. In case of no perfect alignment, stabilisation is still possible
with maximum amount of ECRH power PECRH = 20 MW as long as xmis

d ≤ 0.5. In the
AC case (dash-dotted lines), PECRH = 9 MW is the minimum required ECRH power to
stabilise the mode for perfect alignment xmis/d = 0. In the AC case misalignment can
reach xmis

d = 0.8 for a maximum amount of available ECRH power PECRH = 20 MW.
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Figure 7.6: Simulation of NTM stabilisation in ITER for (3,2) NTM. In the DC case (full
lines), PECRH = 10 MW is the minimum required ECRH power to stabilise the mode for
perfect alignment xmis/d = 0. In case of no perfect alignment, stabilisation is still possible
with a maximum amount of ECRH power PECRH = 20 MW as long as xmis

d ≤ 0.4. In the
AC case (dash-dotted lines), PECRH = 7 MW is the minimum required ECRH power to
stabilise the mode for perfect alignment xmis/d = 0. In the AC case misalignment can
reach xmis

d = 0.6 and stabilisation is still possible for a maximum amount of ECRH power
PECRH = 20 MW.
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7.4 Benchmark with other ECRH power require-
ments’ predictions for ITER

It is interesting to compare the results presented in the above section with the
previous works [LaHaye(2006)] and [Sauter(2006)] which have pointed out the
marginal power requirements for NTM stabilisation in ITER. The different ver-
sions of the Modified Rutherford equation are the following:

A) τs
rres

dW
dt = rres∆′ + csat[rres

6.34
2 µ0Lq

jBS
Bpol

( W
W2+W2

d
+ W

W2+28W2
b
)− rres6.35µ0DR√

W2+0.65W2
d

]

−cstab16
√

πµ0rresLq
jECCD
Bpol

d ηECCD
W2

B) τs
rres

dW
dt = rres∆′ + rres∆′(1 − ∆τW)[ Wsat,∞W

W2+W2
marg

] + cjrres∆′(1 − ∆τW)Wsat,∞
d

jECCD
jBS

k2

C) τs
rres

dW
dt = rres∆′ + a2

jBS
j‖

Lq
W [1 − W2

marg

3W2 − k1
jECCD

jBS
] + rresδ∆′

where equation A is the one which has been considered throughout this
work, equation B is studied in ref.[Sauter(2006)] and equation C is studied in
ref.[LaHaye(2006)].

7.4.1 (2,1) NTM stabilisation with equation B

In equation B, the destabilising term is written as

rres∆′
BS = rres∆′(1 − ∆τW)[

Wsat,∞W
W2 + W2

marg
] (7.5)

(rres∆′)Wsat,∞ is an other way of expressing the destabilising term rres∆′
BS = aBScBS

where cBS = µ0rresLqjBS
Bpol

and aBS is the numerical coefficient to account for the uncer-

tainty in the model. The term (1 − ∆′
τW) takes into account the drop of confine-

ment due to the growth of the mode. This influences the value of the saturated
island width Wsat compared to the β-dependent one Wsat∞ ≈ aBScBS

−rres∆′ which, as al-
ready mentioned in chapter 2, is an upper value for Wsat. In ref.[Sauter(2006)]
the value for the fitting coefficient aBS and (1 − ∆τW) are not directly specified;
nevertheless the value for Wsat∞ = 32 cm is given for the (2,1) NTM case and the
value of the fitting coefficient can be recovered as aBS = Wsat,∞

cBS
≈ 3.4. The reference

considers a 25% of drop of confinement which translates into an effective island
at saturation of width Wsat = 24 cm. The threshold which allows for the island
to develop is given by χ⊥ model and here the results using Wd = 2 cm are con-
sidered for the comparison In the ∆′

ECCD term, the function k2 is k2 = 4( d
W )2ηfs
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where
ηfs =

6
(W

d )4 + 40
+

1
(W

d )2 + 10
(7.6)

is the efficiency function calculated in ref.[Sauter(2004)] which is shown in figure
7.7 together with ηECCD. This form of the efficiency function is calculated assum-
ing a current profile within the island to be a helical flux function and results to
be more stabilising than ηECCD. In the simulations carried out with equation B,
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Figure 7.7: Efficiency functions used in model A, B and C: A and C consider a box-
type current deposition profile resulting in ηECCD whereas B considers the current profile
within the island to be a helical flux function resulting in ηfs.

the values for the ECCD injection are the ones outlined in section 7.2 and the coef-
ficient cj = 0.5 is introduced in order to account for over-stabilisation. In this way,
the fitting coefficient which accounts for the uncertainty in the ∆′

ECCD term reads
cjaBS and it is halved in comparison with the coefficient present in the destabil-
ising term rres∆′

BS. The main result of ref.[Sauter(2006)] is that for a (2,1) NTM,
given a perfect alignment (xmis = 0), a power PECRH ≈ 13.3 MW is necessary for
marginal stabilisation either with CD or AC injection with jECCD

jBS
= 2.8.

7.4.2 NTM stabilisation with Equation C

Ref.[LaHaye(2006)] considers a unique fitting coefficient a2 for the destabilising
term and the stabilising one which is 2.8 and 3.2 for the (2,1) and (3,2) NTM re-
spectively with the corresponding saturated islands of width Wsat,21 = 25 cm and
Wsat,32 = 12.5 cm. The threshold for the island growth, in this case, is modelled via
the polarisation term with a marginal island size given by Wmarg = 1.4 cm in the
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case of the (2,1) NTM and Wmarg = 1.8 cm in case of the (3,2) NTM. In equation C
the quantities k1 relates to the efficiency function ηECCD as k1 = 4( d

W )ηECCD where
ηECCD is defined as in chapter 2. In the simulations done with equation C the val-
ues for the ECCD injection used consider a larger deposition width d(2,1) = 7.5

cm and d(3,2) = 11.1 cm with jECCD,(2,1) = 5300 [ A/m2

MW ], jECCD,(3,2) = 4800 [ A/m2

MW ].
In addition equation C also accounts for the stabilising effect of ECCD due to the
(0,0) component of the jECCD given in equation C by the term rresδ∆′. The main
result obtained in ref.[LaHaye(2006)] is that for a (2,1) NTM, given a perfect align-
ment (xmis = 0) cm, PECRH ≈ 12 MW is necessary for marginal stabilisation with
AC injection and jECCD

jBS
= 0.9 and in the (3,2) NTM case PECRH ≈ 15 MW is neces-

sary for marginal stabilisation with AC injection and jECCD
jBS

= 0.75. In addition, in
ref.[LaHaye(2006)] AC injection is much more efficient than DC injection due to
the larger values of the deposition width d which are used.

7.4.3 Comparison among ITER predictions of A, B and C

The predictions carried out for ITER using equation A, B and C indicate that
the available ECRH power and the planned experimental set-up will be able to
stabilise large saturated (2,1) and (3,2) NTMs. In fact, the results from equation
A, B and C indicate that the value for minimum required PECRH will range be-
tween 10-13 MW for the (2,1) NTM case and continuous injection. In general, the
three equations deal similarly with the major physics affecting the evolution of
the magnetic island associated to the NTM; on the other hand, each of them takes
into account other minor physics’ effects which have a different impact on the
results of the prediction for ITER. In figure 7.8 the phase diagrams obtained with
the three different models and numerical factors for the ITER prediction in case
of the (2,1) NTM stabilisation are shown. To discriminate among these different
contributions, equation A, B and C can be written in a simplified form:

A1) τs
rres

dW
dt = rres∆′ + csat6.34 fGGJ

rresµ0LqjBS
Bθ

1
W − cstab4

√
π

4µ0rresLqdjECCD
Bθ

ηECCD
W2

B1) τs
rres

dW
dt = −rres∆′ + aBS(1 − ∆τW) rresµ0LqjBS

Bθ

1
W − cjaBS(1 − ∆τW)

4µ0rresLqdjECCD
Bθ

ηfs
W2

C1) τs
rres

dW
dt = rres∆′ + a2

rresµ0LqjBS
Bθ

1
W − a2

4µ0rresLqdjECCD
Bθ

ηECCD
W2 + rresδ∆′

where the small island term is neglected leaving only the 1
W -dependance in the

destabilising term and j‖ ≈ Bpol
µ0rres

and the curvature term in A is parametrized
as fGGJ (see chapter 2). The coefficients which affect the destabilising term are
highlighted in red and these influencing the stabilisation term are highlighted in
green. The term highlighted in magenta is only present in equation C. In this
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Figure 7.8: Phase diagram of (2,1) NTM stabilisation considering equation A, B, C: the
saturated island size is Wsat = 30cm, Wsat = 32cm and Wsat = 25cm respectively. Equation
B, however, takes into account the confinement degradation affecting Wsat and corrects it
by a factor 0.75 leading to Wsat = 24 cm. Equation A has a smaller growth rate at satura-
tion (full lines) because it accounts for additional stabilising terms such as the ∆GGJ and
the Wb effect as well as the χ⊥ term (Wd); on the other hand, equation C has the highest
growth rate because it is characterised by the polarisation model. Marginal stabilisation
(dash-dotted lines) is achieved with 10 MW DC injection, 13.6 MW DC injection and 12
MW AC injection in A, B and C with Wmarg which varies depending on the threshold
model being Wsat

Wmarg
= 4 − 5 for C and Wsat

Wmarg
= 2 − 3 for A and B.

way, the differences among the equations affecting the power requirements are
isolated. In fact, in comparing the results one has to consider that:

- the amount of PECRH which is necessary to marginally stabilise the NTM
depends on the ratio between the red term and the green one in every equa-
tion

- the difference in the value of the saturated island Wsat depends on the fitting
coefficient at saturation of every equation
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Table 7.2: Numerical coefficients which need to be inserted in equation A1, B1 and C1 in
case of (2,1) NTM

A1 csat = 0.81 fGGJ = 0.9 cstab = 0.68

B1 aBS = 3.4 (1 − ∆τW) = 0.75 cj = 0.5

C1 a2 = 2.8 - a2 = 2.8

The numerical coefficients which need to be inserted in equation A1, B1 and C1
are listed in table 7.2 and by substituting these values in the respective equations,
the following correspondences apply in equation A1, B1 and C1 among the
highlighted quantities:

A1 B1 C1
csat6.34 fGGJ ⇔ aBS(1 − ∆τW) ⇔ a2

4.6 ⇔ 2.55 ⇔ 2.8
cstab4

√
π ⇔ cjaBS(1 − ∆τW) ⇔ a2

4.8 ⇔ 1.27 ⇔ 2.8

These correspondences are such that the ratio between the destabilising term
(red) and the stabilising one (green) is 1 for equation A1 and C1 whereas it is
0.5 for equation B1. The difference by a factor 1.2 and 1.5 in the value of the fit-
ting coefficient at saturation between A1 and B1 and A1 and C1 is reflected in
the evaluation of the saturated island size. On the other hand, although the is-
land size is larger for A, its coefficient at stabilisation (4.8) is as large as the one
at saturation. In equation A the asymmetric nature of the island is also taken
into account by using a factor γ = 0.5 in the efficiency function ηECCD but this,
as seen in chapter 5, does no have a deep impact on the power requirements. As
already mentioned, equation B uses a form of the efficiency function ηfs which is
much more stabilising than ηECCD and which provides for an additional stabilis-
ing effect. On the other hand, in equation B, if the ηECCD were taken into account
instead of ηfs the power requirements would increase to PECRH = 24 MW giving
jECCD

jBS
= 5. Ref.[LaHaye(2006)] uses a much smaller ratio jECCD

jBS
= 0.9 whereas in

this work and in ref.[Sauter(2006)] jECCD
jBS

= 2.5 and jECCD
jBS

= 2.8 are obtained; this is
explained by the fact that ref.[LaHaye(2006)] also takes into account the effect of
(0,0) component of jECCD which affects ≈ 25% of the stabilisation; if this term were
not taken into account, the requirement on the injected power would increase to
PECRH = 15 MW with jECCD

jBS
= 1.1. For equation A and equation B the threshold

island Wmarg is given by the χ⊥ model, whereas in equation C it is given by the
polarisation model and in this latter case the resulting normalised curve has a
higher growth rate and also Wsat

Wmarg,ECCD
= 2 − 3 compared to the cases A and B
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where the growth rate is smaller due to the χ⊥ assumption and in equation A
also because of the inclusion of the ∆′

GGJ term. In equation A and C the Wmarg is

quite large and is Wsat
Wmarg

= 2 − 3.





Chapter 8

Summary and Conclusion

The tokamak performance is often limited by the Neoclassical Tearing Modes
(NTMs) which are a type of resistive instability characterised by the presence in
the plasma of chains of so-called magnetic islands. The most detrimental NTMs
have helicities (3,2) and (2,1) where the (2,1) NTMs can even lead to disruptions
(dramatic events in which the plasma confinement is suddenly destroyed). Since
the onset of this instability scales with the normalised ion-gyroradius ρpi, in ITER
they are expected to be metastable and therefore a lot of effort is taken to be
able to experimentally control and stabilise them. The main mechanism underly-
ing the growth of an NTM is related to the existence in a toroidal plasma of the
bootstrap current jBS which is proportional to the pressure gradient dp

dr : when a
magnetic island forms because of some initial seeding process, the short-circuit
due to the reconnection of the magnetic field lines leads to a flow of particles and
heat towards the edge of the plasma which inevitably flattens the pressure pro-
file inside the island region causing a loss of bootstrap current and reinforcing
the magnetic island growth. Experimentally, NTMs are controlled by injecting
Electron Cyclotron Current Drive (ECCD) which is used to substitute with the
injected jECCD the bootstrap current jBS which is lost inside the island. The effi-
ciency of the ECCD injection will be inevitably related to how well aligned are the
injected ECCD beam and the magnetic island and the figure of merit for stabilisa-
tion is given in terms of ratio Λ = jECCD

jBS
relative to the ratio Wsat

Wmarg
. The behaviour

of NTMs during stabilisation experiments is studied using the Modified Ruther-
ford equation which describes the time evolution of the magnetic island width W.
In this thesis, the modelling of NTM stabilisation experiments has been carried
out by by merging together the recent results present in literature for the various
terms (∆′-terms) present in the Modified Rutherford equation contributing to the
physics underlying the NTM evolution and by inserting two free coefficients csat
and cstab to be determined by comparison with a large experimental database.
The two fitting parameters csat and cstab have been added to account for devi-
ations from cylindrical calculations and approximations in the model describing
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the NTM at saturation (csat) and at stabilisation (cstab) respectively. The dominant
effects taken into account are the destabilising effect of the missing of bootstrap
current jBS inside the island (∆′

BS term) and the counteracting stabilising effect of
the externally injected jECCD current (∆′

ECCD); in addition, other minor stabilising
effects have been included such as the effect of the tokamak curvature (∆′

GGJ term)
and the effect of the equilibrium current modification (∆′ term). In the Modified
Rutherford equation, the seed island necessary for the NTM to develop has been
modelled using both the incomplete flattening threshold Wd and the small sta-
bilising effect of the banana orbits Wb whereas the threshold due to the presence
of polarisation current Wpol has been neglected due to its high uncertainty in the
available models. However, in the simulations it has not been found necessary to
consider this term at all so that its effect can be considered small or at least compa-
rable to the effect of the other threshold mechanisms. The efficiency of the ECCD
injection has been calculated both for continuos (DC) and modulated (AC) injec-
tion and a model for describing the real asymmetric shape of the magnetic island
(done introducing an asymmetry factor γ) has been included in the averaging
procedure for calculating ηECCD. In addition the difference on the island size due
to the Shafranov shift between the high-field size (HFS) and low-field size (LFS)
has been considered. The modelled Rutherford equation has been used to get
different power requirement limits in case of large saturated island and small de-
position profile d of the ECCD injection which depend on the ratio csat

cstab
and which

are found to be consistent with the criterion adopted for ITER Λ > 1.2 ÷ 1.6; in
addition, a difference between the marginal island width due to lowering of β
and the marginal island width when jECCD is injected during stabilisation has
been analytically estimated leading to Wmarg,ECCD ∼ 1.5 ÷ 2 Wmarg. Since csat
and cstab are machine independent parameters describing only the physics of the
NTM and not depending on the size of the devices, a lot of effort has been spent
in the determination of a unique and consistent value for csat and cstab over a
multi-machine database of 30 successful NTM stabilisation discharges collected
both at ASDEX Upgrade and JT-60U. Due to the small number of modulation ex-
periments only experiments with continuos drive have been taken into account
characterised either by a large deposition profile of ECCD injection (Wsat

d ≤ 0) or
by small deposition profile (Wsat

d > 0). csat has been measured as at saturation
as csat = ∆′

∆′
BS+∆′

GGJ
whereas cstab has been measured by comparing the integrated

island W(t) =
∫ dW

dt dt with the island width decay observed during the stabili-
sation and proportional to the detected perturbed magnetic amplitude perturba-
tion. To measure the necessary plasma parameters in the two devices, the col-
lected database of discharges which were used to calculate csat and cstab has been
taken in the same parameter range. However, the experimental schemes to hit the
resonant surface of the NTM in ASDEX Upgrade and JT-60U have been modelled
differently as in ASDEX Upgrade the linear ramp of the main magnetic field BT
has been considered (radial misalignment xmis = rdep − rres changed linearly in
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time) and in JT-60U optimisation from discharge to discharge has been used (xmis
is kept fixed in each discharge). The coefficient csat is found to be constant over
a large range of the plasma parameters with a mean value 0.81 ± 0.12. Its consis-
tency among the discharges has been found mainly to be affected by the scaling
among βp, Wsat and jBS. In particular, for the (2,1) NTM case, very good linear
trends have been found whereas higher uncertainty has been obtained for the
(3,2) NTM mainly due to the fact that the (2,1) NTM has more prominent effects
which lead to easier measurements in terms of island widths, mode position etc..
In addition, the experimental regime which is investigated has Wsat

Wmarg
= 2 − 3 and

therefore the small island physics effects are not negligible. Large variation has
been found in the value for rres∆′ allowing for csat to be consistent: for the (2,1)
NTMs of ASDEX Upgrade, in fact, rres∆′ is set to the more unstable value (close
to being positive) rres∆′ = −1. In order to determine the second fitting coefficient
cstab, the values of the deposition width d provided by Fokker-Planck calcula-
tions resulted to be unrealistically small in case of the small deposition width dis-
charges of ASDEX Upgrade and therefore these values were re-scaled assuming
as a minimum allowable value d = 0.02 m. The first determination of cstab lead to
a systematic difference in its value among some groups of discharges. This is due
to mainly to the fact that in the experiment both over-stabilisation and not pre-
cisely known radial misalignment are present. Therefore, by correcting the values
of xmis and jECCD

jBS
the scatter among the values of cstab has been reduced. In this

way, the coefficient cstab resulted to be 0.68 ± 0.22. However, in the ∆′
ECCD term

only the effect of the injected helical component (m,n) of the current is taken into
account, whereas other possible minor stabilising effects as the ECCD pure heat-
ing and the effect of (0,0) have been neglected. The radial misalignment xmis in JT-
60U which allowed for simulations to overlap well with the experimental curves
was found between 0 < xmis

d < 0.6 whereas at ASDEX Upgrade even larger initial
misalignment is possible xmis

d ≤ 0.9 due to the linear ramp of the magnetic field
BT. The experimentally observed marginal island width Wmarg,ECCD was found to
be ≈ 0.02 − 0.03 m over the whole database; nevertheless, for the (2,1) NTM dis-
charges at JT-60U the experimental island width decay suggested a larger value of
the marginal island width related to the presence of a coupled (3,2) NTM. In gen-
eral, for NTMs characterised by a ratio Wsat/Wmarg ∼ 2÷ 3, the figure of merit for
marginal stabilisation resulted to be Λ ≥ 0.3 − 0.5. To study the effect of the un-
certainty on the different quantities present in the modified Rutherford equation
a sensitivity analysis has been carried out for understanding the major depen-
dencies in the MRE. The uncertainties of the quantities entering in the Modified
Rutherford equation have been set between 5% and 20% depending on the range
of variation found in the collected data. The analysis revealed that the value of
csat and cstab has an uncertainty of 30%. The most important quantities which
affect the precision with which the two fitting coefficients are determined are in
order Wsat, jBS and Lq. In addition, the statistical determination of csat and cstab is
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found to be consistent with their determination obtained by using the experimen-
tal data. The probability distribution functions for every single discharge and for
all the discharges together show a linear correlation between csat and cstab. These
results suggest that further steps in the error analysis of the Modified Rutherford
equation studies should focus on the assumptions of distribution functions alter-
native to the normal distribution for describing some of the quantities present in
the Modified Rutherford equation and on the direct inclusion of radial misalign-
ment as a possible source of error. To study the effect of ECCD in ITER, the mean
values obtained for csat and cstab have been inserted in the Modified Rutherford
equation. The saturated island width for the (2,1) NTM and (3,2) NTM has been
evaluated obtaining as upper values ∼ 0.15 a and ∼ 0.1 a respectively. The sim-
ulations with the Modified Rutherford equation have been carried out for both
DC and AC injection considering an asymmetric island with γ = 0.5. The sce-
nario 2 for ITER simulations has been used and the optimised angles of injection
which are planned in ITER ECRH system lead to deposition width d ≈ 0.025 m
for the (2,1) NTM case and d ≈ 0.04 m for the (3,2) case. The main results indicate
that in ITER, if the ECCD beam and the O-point of the magnetic island are per-
fectly aligned, a minimum amount PECRH = 9 − 10 MW and PECRH = 7 − 10 MW
is required to stabilise the (2,1) and the (3,2) NTM with AC and DC injection re-
spectively. The maximum allowable misalignment is found to be xmis

d ≤ 0.4 − 0.5
in case of DC injection and xmis

d ≤ 0.6− 0.8 for AC injection whereas given the val-
ues of d and jECCD and the obtained Wsat, a difference which amounts to 10% for
the required PECRH is found between AC and DC injection for marginal stabilisa-
tion. The obtained predictions for the ECRH power requirements are compared
with the predictions obtained with other forms of the Modified Rutherford equa-
tion and are found to be consistent with these. This confirms that NTM control
in ITER will be a feasible objective given the capabilities of the planned ECRH
system and that the challenging task will be in the optimisation of the alignment
(less than xmis

d ≈ 0.4 − 0.6) between the ECCD injection beams and the O-point of
the magnetic island.



Appendix A

Details on the analysed discharges
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Table A.1: Parameters used in the simulations for the analysed discharges including is-
land asymmetry factor γ, jECCD

jBS
(with the values used for the simulations accounting for

over-stabilisation in brackets) and normalised misalignment xmis
d . The times at which

measurements were taken tsat and tECCD are also listed together with the ratio Wsat
d and

Wsat
Wmarg

.

discharge tsat [s] tECCD [s] Wsat
d γ xmis0 [m] Wsat

Wmarg

jECCD
jBS

12257 3.1 3.9 0.8 0.5 0.026 2.1 0.54(0.5)
13631 2.1 2.9 0.6 0.5 0.042 2.2 0.86 (0.5)
15308 2.3 2.7 1.05 0.5 0.03 2.4 1.04(0.5)
17977 2.5 4.0 0.65 0.5 0.05 2.4 0.73
18036 2.5 3.8 1.2 0.5 0.038 2.5 1.19(0.5)
18690 2.5 3.3 1.3 0.5 0.023 2.1 1.1(0.5)
18691 2.5 3.1 1.6 0.5 0.013 2.1 1.37(0.5)
19229 2.5 3.3 2.0 0.5 0.027 2.0 1.32(0.5)
19230 2.5 3.3 1.8 0.5 0.019 2.1 2.0(0.5)
19232 2.5 3.4 1.9 0.5 0.018 2.3 1.64(0.5)
21133 2.5 3.1 1.35 0.5 0.024 2.0 1.05(0.5)
16999 2.7 3.4 1.7 0.5 0.02 2.7 1.39(0.5)
19283 2.5 3.0 3.1 0.5 0.015 3.0 1.0
19454 2.7 3.3 2.9 0.5 0.02 2.3 1.62(0.5)
41647 7.5 8.0 0.8 0.5 0.0 5.7 2.1
41652 7.4 8.7 0.9 0.5 0.0 6.0 1.7
41666 7.5 9.0 1.1 0.5 0.0 6.5 1.3
41695 7.5 9.5 1.3 0.5 0.0 7.5 1.4
46367 8.9 11.5 1.3 0.5 0.0 2.0 0.31
46368 8.9 11.1 1.35 0.5 0.0 2.0 0.37
47788 7.5 8.0 1.34 0.5 0.02 2.0 1.3
47793 7.5 8.2 1.52 0.5 0.02 2.0 0.9
47796 7.5 9.3 1.5 0.5 0.02 2.0 0.42
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Figure A.1: #12257,#13631,#15308,#17977: (3,2) NTM discharges characterised by a large
deposition profile d. #12257 starts roughly 1 s later but is very similar to #13631 and
#15308. #15308 has a higher jECCD

jBS
. Discharge #17977 has a (3,2) NTM which is almost

stabilised at 4 s when the ECCD is switched off so that the mode reappears again
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Figure A.2: #18036,#18690, #18691: (3,2) NTM discharge, very similar to #17977 with a
smaller initial misalignment xmis and more ECRH power. #18690, #18691 are (3,2) NTM
discharges with a small deposition profile, although #18691 has a smaller Wsat

d and almost
half of the injected ECRH power, it has a smaller initial misalignment and therefore it is
better optimised for NTM stabilisation than #18690
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Figure A.3: #19229,#19230,#19232,#21133: (3,2) NTM discharges with a small deposition
profile which therefore are characterised by an island width decay almost constant till
the ECCD beam gets inside the island. #19229 has the largest misalignment as the initial
value of BT is larger.
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Figure A.5: #41647, #41652,#41666, #41695: (3,2) NTM discharges characterised by a large
deposition width and similar misalignment. The discharges have slight different values
of NBI power and #41652 is characterised by drops in ECRH power during the stabilisa-
tion which make the stabilisation time longer.
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Figure A.6: #46367, #46368,#47788, #47793, #47796: (2,1) NTM discharges characterised
by a small ratio of jECCD/jBS and fine tuned values of injected ECRH power.
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