
Hierarchical Graphs as Organisational

Principle and Spatial Model Applied to

Pedestrian Indoor Navigation

Edgar-Philipp Sto�el

München, 2009

Hierarchical Graphs as Organisational

Principle and Spatial Model Applied to

Pedestrian Indoor Navigation

Edgar-Philipp Sto�el

Dissertation

zur Erlangung des akademischen Grades des
Doktors der Naturwissenschaften

an der Fakultät für Mathematik, Informatik und Statistik
der Ludwig–Maximilians–Universität München

vorgelegt von

Edgar-Philipp Stoffel
aus Bukarest

München, den 21. April 2009

Erstgutachter:
Prof. Hans Jürgen Ohlbach (Ludwig–Maximilians–Universität

München)
Zweitgutachter:

Prof. Mike Rosner (University of Malta)
Tag der mündlichen Prüfung:

2. Juni 2009

C O N T E N T S

i Preliminaries 1

1 Introduction 3

1.1 Motivation . 3

1.2 Goals and Addressed Questions 4

1.2.1 Contributions 6

1.2.2 Issues not Covered 7

1.3 Organisation of this Thesis 7

2 Background 9

2.1 Challenges of Pedestrian Indoor Navigation . . . 9

2.1.1 Motivation: Characteristics of Indoor Environ-
ments . 9

2.1.2 General Modelling Principles 12

2.1.3 Evaluating and Adapting Existing Approaches
. 14

2.1.4 Summary 18

2.2 Context Information and Cost Functions 19

2.2.1 The Context of Wayfinding 19

2.2.2 Examples for Indoor Environments 20

2.2.3 Using Formal Ontologies 21

2.2.4 Multi-criteria Path Finding 22

2.2.5 Summary 25

3 Fundamentals of Hierarchical Graphs 27

3.1 Motivation: From Graphs to Hierarchical Graphs 27

3.2 Basic Definitions and Terminology 32

3.2.1 Preliminary Considerations 32

3.2.2 Three Approaches to Hierarchical Graphs 33

3.2.3 Further Definitions and their Classification 37

3.2.4 Important Questions for Spatial Applications
. 39

3.3 Hierarchical Path Finding 40

3.4 Summary . 44

ii Core Design with Data Structures and Algorithms 47

4 Conceptual Design of a Hierarchical Graph System 49

4.1 Top-Level System Architecture 49

4.1.1 Rationale: Distributed, Heterogeneous Spatial
Networks 49

4.1.2 Hierarchical Organisation via Mediators . 53

4.1.3 Context-Adaptive Path Finding in a Hierarchy56

4.2 Basic Operations and Consistent Construction of Hier-
archical Graphs . 60

4.2.1 Hierarchisation via Node Refinement . . . 61

4.2.2 Basic Operations for Hierarchical Graphs 62

4.2.3 Maintaining a Consistent Hierarchy . . . 63

4.2.4 Consistent Path Finding over Multiple Levels
. 65

v

Table of Contents

4.2.5 Consistency of the Basic Operations 70

4.2.6 Derivation of Other Useful Operations . . 74

4.3 Summary . 77

5 Applying Hierarchical Graphs to Indoor Environments 79

5.1 Why Hierarchical Graphs for Navigation in Buildings?
. 80

5.2 Overview . 82

5.3 Modelling Aspects and Construction of the Hierarchy
. 83

5.3.1 Interpretation of Floor Plans 83

5.3.2 The Underlying Geometric Model 85

5.3.3 Basic Mapping to a Flat Graph 98

5.3.4 Hierarchisation 101

5.3.5 The Third Dimension 103

5.3.6 Summary 110

5.4 Further Enhancements of the Hierarchy 111

5.4.1 Insufficiency of the Basic Model for Real Navi-
gation Problems 111

5.4.2 Geometric Decomposition of Complex Regions
. 118

5.4.3 Extracting Meaningful Subgraphs from a Dual
Region Graph 123

5.4.4 Summary 133

5.5 Application: Query Processing Using the Hierarchy
. 134

5.5.1 Using the Hierarchical Structure for Path Find-
ing . 134

5.5.2 Principles and Versatile Methods for Deriving
Route Descriptions 139

5.6 Scenarios for Pedestrian Indoor Navigation . . . 148

5.7 Summary . 150

6 Status Review and Evaluation 151

6.1 Overview on the Implementation 151

6.2 Evaluation of the Hierarchy on Real Floor Plan Data152

iii Conclusion 157

7 Related Work 159

7.1 Use of Hierarchies for Modelling Spatial Networks 159

7.2 Indoor Navigation and Wayfinding 162

7.2.1 General Issues 162

7.2.2 Systems and Approaches 165

8 Summary and Future Work 169

8.1 Results . 169

8.2 Conclusion . 170

8.3 Directions for Future Research 170

A Ontology for Context Information 173

Bibliography 195

Index 214

vi

L I S T O F F I G U R E S

Figure 1 Overlaying a Floor Plan with a Graph [BM05]
. 6

Figure 2 Motion in Road Networks vs. Indoor Environ-
ments . 11

Figure 3 Visibility Graph 15

Figure 4 Simplifying a Generalized Voronoi Diagram [Wal04]
. 17

Figure 5 Unnatural Route Descriptions with Generalised
Voronoi Diagrams [Whi06] 17

Figure 6 Illustration of the Internet topology (from Wikipedia)29

Figure 7 Nested Packages in UML Class Diagrams 30

Figure 8 Exemplary Hierarchical Graph 32

Figure 9 Three Approaches for Defining Hierarchical
Graphs [Ste99] 36

Figure 10 Example for Illustrating Different Methods of
Hierarchical Path Finding 41

Figure 11 Refinement Search in an Abstract Graph . 42

Figure 12 Auxiliary Graph between Border Nodes . 44

Figure 13 OpenLS Information Model [Ope] 53

Figure 14 Hierarchical Graph System with a Mediator 54

Figure 15 Generalisation to Multiple Levels of Mediators
. 56

Figure 16 Excerpt from the Ontology Modelling Context
Information 58

Figure 17 Example for a Hierarchic Node Refinement Func-
tion . 62

Figure 18 Coherent Paths across Multiple Levels of a Build-
ing . 66

Figure 19 Path Consistency for Border Nodes with Subor-
dinate Graphs 68

Figure 20 Basic Operations Exemplified on a Hierarchy
. 71

Figure 21 Merge Two Graph Systems 74

Figure 22 Connect Two Nodes in Different Graphs . 75

Figure 23 Partition a Graph by Creating a Subgraph 76

Figure 24 Hierarchical Graph of a Building 81

Figure 25 Indoor Navigation: System Design with Com-
ponents . 82

Figure 26 Example for Two Planar Floor Plan Graphs 87

Figure 27 Implicit Regions Enclosed by Edges 87

Figure 28 Circular Corridor R0 with Inner and Outer Bound-
ary . 88

vii

List of Figures

Figure 29 Exemplary Floor Plan with Regions in Different
Meshes . 89

Figure 30 Strategy for Choosing the Next Boundary Line
. 90

Figure 31 Algorithm for Finding Polygons in a Floor Plan
Graph . 92

Figure 32 Flexible Room Dividers 95

Figure 33 Problematic Cases for Polygonisation . . . 95

Figure 34 Transforming the Problematic Cases into Valid
Polygon Models 97

Figure 35 Dual Region Graph for a Floor Plan 99

Figure 36 Door-to-Door Graph as Alternative 99

Figure 37 Refining the Interior Structure of a Library 103

Figure 38 Connections among Floors and Mezzanines in
a Hierarchical Graph 104

Figure 39 Different Types of Staircases 107

Figure 40 Integrating Floor Plans 108

Figure 41 Two Different Hierarchisations with Floors and
Wings . 108

Figure 42 Separate Towers on the same Floor Level . 109

Figure 43 Train Station: Separate Platforms Connected by
a Transit Area 110

Figure 44 Example of a Manually Overlaid Floor Plan 111

Figure 45 A Maze as an Example for a Complex Spatial
Region . 112

Figure 46 Implicit Intersection of Corridors 113

Figure 47 Circular Corridor due to Inner Obstacle . 114

Figure 48 Implicit Boundary between Hall and Corridor
. 114

Figure 49 An Atrium from Multiple Perspectives . . 115

Figure 50 Problem: Segmented Corridor 116

Figure 51 Human Perception goes beyond Explicit Spatial
Information (from Wikipedia) 119

Figure 52 Different Classes of Non-Convex Corners 120

Figure 53 Exemplary Decomposition of a Complex Region
into Convex Parts 121

Figure 54 Extreme Cases of Decomposed Regions . 122

Figure 55 Typical Structure of a Floor Plan (Excerpt) 125

Figure 56 Wayfinding with Articulation Points 127

Figure 57 Hierarchisation via Articulation Points . . 129

Figure 58 Hierarchisation of an Entire Floor 130

Figure 59 Multi-Level Decomposition of a Floor Plan 131

Figure 60 Finding Paths over Two Floors 136

Figure 61 Using a Two-Level Hierarchisation for Path Find-
ing . 138

Figure 62 Determining the Coherent Boundaries of a Re-
gion . 142

Figure 63 Egocentric Directions 143

Figure 64 Using the Decomposition 146

viii

List of Figures

Figure 65 Distribution of Node Degrees in Real Floor Plan
Data . 154

Figure 66 Hierarchisation on Real Floor Plan Data . . 155

Figure 67 Eight Basic Relations between Regions Accord-
ing to Cohn [CBGG97] 162

Figure 68 Traces of Pedestrian Movement in the Tate Gallery [Dur07]164

Figure 69 Virtual Walk Through a Building with Yamamoto [Sta,
MS07] . 166

ix

List of Figures

x

L I S T O F TA B L E S

Table 1 Comparing Different Graph Representations 19

Table 2 Architecture of a Couple of Online Route Plan-
ners [Was07] 52

xi

List of Tables

xii

A B S T R A C T

In this thesis, hierarchical graphs are investigated from two different
angles – as a general modelling principle for (geo)spatial networks
and as a practical means to enhance navigation in buildings. The top-
ics addressed are of interest from a multi-disciplinary point of view,
ranging from Computer Science in general over Artificial Intelligence
and Computational Geometry in particular to other fields such as
Geographic Information Science.

Some hierarchical graph models have been previously proposed by
the research community, e.g. to cope with the massive size of road
networks, or as a conceptual model for human wayfinding. However,
there has not yet been a comprehensive, systematic approach for
modelling spatial networks with hierarchical graphs. One particular
problem is the gap between conceptual models and models which can
be readily used in practice. Geospatial data is commonly modelled
- if at all - only as a flat graph. Therefore, from a practical point
of view, it is important to address the automatic construction of
a graph hierarchy based on the predominant data models. The
work presented deals with this problem: an automated method for
construction is introduced and explained.

A particular contribution of my thesis is the proposition to use
hierarchical graphs as the basis for an extensible, flexible architecture
for modelling various (geo)spatial networks. The proposed approach
complements classical graph models very well in the sense that their
expressiveness is extended: various graphs originating from different
sources can be integrated into a comprehensive, multi-level model.
This more sophisticated kind of architecture allows for extending
navigation services beyond the borders of one single spatial network
to a collection of heterogeneous networks, thus establishing a meta-
navigation service. Another point of discussion is the impact of the
hierarchy and distribution on graph algorithms. They have to be
adapted to properly operate on multi-level hierarchies.

By investigating indoor navigation problems in particular, the guid-
ing principles are demonstrated for modelling networks at multiple
levels of detail. Complex environments like large public buildings
are ideally suited to demonstrate the versatile use of hierarchical
graphs and thus to highlight the benefits of the hierarchical approach.
Starting from a collection of floor plans, I have developed a systematic
method for constructing a multi-level graph hierarchy. The nature
of indoor environments, especially their inherent diversity, poses an
additional challenge: among others, one must deal with complex,
irregular, and/or three-dimensional features. The proposed method
is also motivated by practical considerations, such as not only finding
shortest/fastest paths across rooms and floors, but also by providing
descriptions for these paths which are easily understood by people.
Beyond this, two novel aspects of using a hierarchy are discussed:
one as an informed heuristic exploiting the specific characteristics of

xiii

Abstract

indoor environments in order to enhance classical, general-purpose
graph search techniques. At the same time, as a convenient by-
product of this method, clusters such as sections and wings can be
detected. The other reason is to better deal with irregular, complex-
shaped regions in a way that instructions can also be provided for
these spaces. Previous approaches have not considered this problem.

In summary, the main results of this work are:

• hierarchical graphs are introduced as a general spatial data
infrastructure. In particular, this architecture allows us to in-
tegrate different spatial networks originating from different
sources. A small but useful set of operations is proposed for
integrating these networks. In order to work in a hierarchical
model, classical graph algorithms are generalised. This finding
also has implications on the possible integration of separate
navigation services and systems;

• a novel set of core data structures and algorithms have been
devised for modelling indoor environments. They cater to
the unique characteristics of these environments and can be
specifically used to provide enhanced navigation in buildings.
Tested on models of several real buildings from our university,
some preliminary but promising results were gained from a
prototypical implementation and its application on the models.

xiv

Z U S A M M E N FA S S U N G

In dieser Arbeit werden hierarchische Graphen auf zwei verschiedene
Gesichtspunkte hin untersucht – zunächst einmal als generelles
Prinzip zur Modellierung von (geographisch-)räumlichen Netzen
und des weiteren als praktisches Hilfsmittel um Navigation inner-
halb von Gebäuden zu verbessern. Die angesprochenen Themen
haben multidisziplinäre Aspekte, die von der Informatik im All-
gemeinen über die Künstliche Intelligenz und Computergeometrie
im Speziellen bis hin zu anderen Gebieten wie die Raumbezogene
Informationswissenschaft reichen.

Obwohl einige Modelle von hierarchischen Graphen bereits in
der Forschungsgemeinde vorgeschlagen wurden, z.B. um mit der
enormen Größe von Straßennetzen zurecht zu kommen, oder als
konzeptionelles Modell für die menschliche Navigation, gibt es noch
keinen umfassenden systematischen Ansatz um räumliche Netze
mittels hierarchischer Graphen zu modellieren. Ein spezielles Prob-
lem besteht darin, den Unterschied zwischen konzeptionellen Mod-
ellen und praktisch einfach verwendbaren Modellen zu überbrücken.
Räumliche Informationen werden – wenn überhaupt – in Form von
flachen Graphen modelliert. Demzufolge ist es aus praktischer Sicht
bedeutend, den automatischen Aufbau einer Hierarchie von Graphen
anzusprechen die auf vorherrschenden Datenmodellen gründet. Die
vorliegende Arbeit befasst sich mit diesem Problem: es wird eine
automatische Methode zum Aufbau vorgestellt und erklärt.

Ein spezieller Beitrag meiner Arbeit ist der Vorschlag, hierarchis-
che Graphen als Grundgerüst für eine flexible, erweiterbare Ar-
chitektur zu verwenden um verschiedene (geographisch-)räumliche
Netze zu modellieren. Der vorgeschlagene Ansatz ergänzt klassische
Graphenmodelle auf elegante Weise, im Sinne daß ihre Ausdruck-
skraft erweitert wird: verschiedene Graphen die aus verschiedenen
Quellen stammen können zu einem umfassenden Modell mit unter-
schiedlichen Abstraktionsgraden eingegliedert werden. Diese aus-
geklügelte Architektur ermöglicht es, Navigationsdienste über die
Grenzen eines einzelnen räumlichen Netzes hinweg zu erweitern
zu einer Ansammlung von verschiedenartigen Netzen. Somit wird
ein Meta-Navigationssystem aufgebaut. Ein weiterer Aspekt ist die
Auswirkung der Hierarchie auf Graphenalgorithmen. Diese müssen
angepasst werden, um auf einer mehrschichtigen Hierarchie richtig
zu funktionieren.

Durch die spezielle Untersuchung von Navigationsproblemen in-
nerhalb von Gebäuden werden die Grundprinzipien zur Model-
lierung von Netzen auf verschiedenen Abstraktionsebenen erarbeitet.
Komplizierte Umgebungen wie große öffentliche Gebäude sind bestens
dafür geeignet, die flexible Einsatzweise von hierarchischen Graphen
aufzuzeigen, und somit die Stärken des hierarchischen Ansatzes
zu unterstreichen. Angefangen mit einer Sammlung von Grund-
rissen habe ich eine systematische Methode entwickelt, um eine

xv

Abstract

mehrschichtige Graphenhierarchie aufzubauen. Der Charakter von
Gebäuden, insbesondere die inhärente Vielfältigkeit, stellt eine weit-
ere Herausforderung dar: man muss sich unter anderem mit kom-
plexen, unregelmäßigen und/oder dreidimensionalen Merkmalen
befassen. Die vorgeschlagene Methode ist auch auf praktischen Über-
legungen begründet, so z.B. nicht nur die kürzesten/schnellsten Wege
über Räume und Geschoße hinweg zu finden, sondern auch Beschrei-
bungen dieser Wege bereitzustellen, die für den Menschen ein ver-
ständlich sind. Darüber hinaus werden zwei neue Aspekte bzgl. der
Benutzung einer Hierarchie angesprochen: zum einen die Hierarchie
als informierte Heuristik, die die besonderen Merkmale vom Inneren
von Gebäuden ausnutzt und klassische Allzweck-Suchverfahren auf
Graphen verbessert. Dabei werden zusätzlich automatisch Cluster
wie verschiedene Bereiche in einem Gebäude oder Gebäudeflügel
erkannt. Der andere Grund besteht darin, besser mit unregelmäßi-
gen, komplex gearteten Räumen umzugehen, damit Beschreibungen
auch für diese Räume bereitgestellt werden können. Frühere Ansätze
haben dieses Problem nicht berücksichtigt.

Die Hauptergebnisse der Arbeit sind folgende:

• zunächst werden hierarchische Graphen als allgemeine räum-
liche Dateninfrastruktur eingeführt. Insbesondere ermöglicht
es uns diese Architektur, verschiedene räumliche Netze aus ver-
schiedenen Quellen zusammenzuführen. Eine kleine nützliche
Menge an Operationen wird vorgeschlagen um diese Netze
zu integrieren. Um auch in einen hierarchischen Modell zu
funktionieren werden klassische Graphenalgorithmen erweitert.
Dieser Befund hat auch Folgen für die mögliche Integration von
getrennten Navigationssystemen und -diensten.

• danach werden eine neue Reihe von zentralen Datenstrukturen
und Algorithmen für das Modellieren von Gebäudeinneren
entwickelt. Sie gehen auf die besonderen Merkmale dieser
Umgebungen ein und können dazu genutzt werden um die
Navigation in Gebäuden zu verbessern. Aufgrund von Tests auf
einigen Modellen realer Gebäude unserer Universität wurden
erste vielversprechende Ergebnisse mit einem Prototypen und
dessen Anwendung auf den Modellen erzielt.

xvi

L I S T O F P U B L I C AT I O N S

publications in connection with this thesis

• Edgar-Philipp Stoffel, Korbinian Schoder, and Hans Jürgen
Ohlbach: Applying Hierarchical Graphs to Pedestrian Indoor Navi-
gation. In Proceedings of 16th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems
(ACM GIS 2008), Irvine, California (5th - 7th November 2008),
Organization: ACM, LNCS, ISBN 978-1-60558-323-5 © Springer-
Verlag

• Sebastian Mieth, Florian Fuchs, Edgar-Philipp Stoffel, and Di-
ana Weiß: Reasoning on Geo-Referenced Sensor Data in Physical
Infrastructures. In Proceedings of the Workshop "Semantic Web
meets Geospatial Applications" at the 11th AGILE International
Conference on Geographic Information Science (AGILE 2008),
Girona, Spain (5th - 8th May 2008), Organization: AGILE ©
Springer-Verlag

• Edgar-Philipp Stoffel and Hans Jürgen Ohlbach: Versatile Route
Descriptions for Pedestrian Guidance in Buildings - Conceptual Model
and Systematic Method. In Proceedings of 11th AGILE Interna-
tional Conference on Geographic Information Science (AGILE
2008), Girona, Spain (5th - 8th May 2008), Organization: AGILE,
LNGC, May 2008, ISBN 978-3-540-78945-1 © Springer

• Edgar-Philipp Stoffel, Bernhard Lorenz, and Hans Jürgen Ohlbach:
Towards a Semantic Spatial Model for Pedestrian Indoor Navigation.
In Proceedings of 1st International Workshop on Semantics and
Conceptual Issues in Geographical Information Systems (SeCo-
GIS 2007), Auckland, New Zealand (5th - 9th November 2007),
LNCS 4802, 328-337, November 2007, ISBN 978-3-540-76291-1 ©
Springer

• Bernhard Lorenz, Hans Jürgen Ohlbach, and Edgar-Philipp
Stoffel: A Hybrid Spatial Model for Representing Indoor Environ-
ments. In Proceedings of 6th International Symposium on Web
and Wireless Geographical Information Systems (W2GIS 2006),
Hong Kong, China (4th - 5th December 2006), LNCS 4802, 328-
337, December 2006, ISBN 978-3-540-76291-1 © Springer

• Hans Jürgen Ohlbach, Mike Rosner, Bernhard Lorenz, and
Edgar-Philipp Stoffel: NL Navigation Commands from Indoor
WLAN fingerprinting position data.
REWERSE Deliverable A1-D7, see http://rewerse.net/

xvii

http://rewerse.net/

Zusammenfassung

other publications

• Christian Hänsel, Hans Jürgen Ohlbach, and Edgar-Philipp
Stoffel: L-DSMS - A Local Data Stream Management System.
Additional Information: www.pms.ifi.lmu.de/rewerse-wga1/
ldsms/publications. In Software Architecture, Proceedings
of the Second European Conference on Software Architecture
(ECSA 2008), Paphos, Cyprus (29th September - 1st October
2008), LNCS 5292, 298-305, ISBN 978-3-540-88029-5 © Springer-
Verlag

achievements

• “Best Fast Forward Presentation” Award at the 16th ACM
SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (ACM GIS 2008) for presenting
the poster “Applying Hierarchical Graphs to Pedestrian Indoor
Navigation”

xviii

www.pms.ifi.lmu.de/rewerse-wga1/ldsms/publications
www.pms.ifi.lmu.de/rewerse-wga1/ldsms/publications

S U P E RV I S I O N O F S T U D E N T W O R K

diploma theses

• Korbinian Schoder: Indoor Route Planning for Humans - Concep-
tual Design and Prototpye, 2008.

• Sebastian Mieth: Reasoning on Location-Related Sensor Data in
Infrastructure Networks, supervised together with Florian Fuchs
and Diana Weiss, 2008.

• Alexei Poupychev: Entwicklung eines Frameworks zur Simulation
von beweglichen Objekten in Schienennetzen, supervised together
with Florian Fuchs and Diana Weiss, 2008.

• Martin Wassermann: Konzeption und Realisierung eines Web
basierten Mediatorsystems für Graphenalgorithmen über verteilte
geographische Netze, 2007.

• Volker Iden: A Language and a Framework for Rule-Based Modifica-
tion of Semantic Models, 2007.

• Matthias Schmeisser: PlanML: A Markup Language for Navi-
gational Planning, supervised together with Bernhard Lorenz,
2006.

• Christian Bode: An Ontology-based Repository for Web Services,
supervised together with Bernhard Lorenz, 2006.

• Andreas Heindel: Nutzung von Indoor-Positionierungsdaten zur
mobilen Wegeplanung, supervised together with Bernhard Lorenz,
2006.

project theses

• Alexei Poupychev: Implementing Heuristic Algorithms for the
Travelling Salesman Problem, 2007.

• Boris Ridnyk: Implementing an Editor for Indoor Navigation Models,
2007.

• Martin Wassermann: Extending the TransRoute Graph Visualisation
System, supervised together with Bernhard Lorenz, 2006.

• Volker Iden: An Ontology of Persons and Vehicles for Movement in
Geospatial Networks, 2006.

• Christian Hänsel: TMC-KML Verkehrsdatenservice für den Google
Earth Client, supervised together with Bernhard Lorenz, 2006.

xix

Supervision of Student Work

xx

Part I

P R E L I M I N A R I E S

1I N T R O D U C T I O N

“We shape our buildings, and afterwards our buildings shape
us.” – Winston Churchill

1.1 Motivation . 3
1.2 Goals and Addressed Questions 4
1.3 Organisation of this Thesis 7

1.1 motivation

Navigation systems have become an indispensable part of modern
society. They help us find our way from virtually any location A

to any other location B. The spatial knowledge contained in these
digital maps are especially useful for getting around in foreign or
unfamiliar places. In large metropoles for instance, driving can be
highly complex given the amount of one-way streets, traffic restric-
tions, etc.

Beyond this, the value associated with spatial data and knowledge Value of Spatial
Data and Knowledgeis immense: Not only are spatial data/knowledge widely used in

commercial applications, as in the traditional field of Geographic
Information Systems (GISs), but they have also found their way into
applications in the private sector. The provision of location-based
services, along with their consumption on small electronic devices
(such as PDAs and mobile phones) is a prominent example for this
development. Apart from this, digital globes and precise models
of the real world are now available over the World Wide Web for
everybody. One can explore distant, unknown places in these virtual
environments in a short time from one’s desktop.

In these digital world models, urban areas are among the most com- Urban Areas and
Indoor
Environments

plicated environments because of their patchwork character – they
are multi-modal, heterogeneous environments which consist of large
networks of streets, various systems for public transportation, and
last but not least indoor environments. As to be pointed out in the
next chapters, the latter environments are the most interesting ones
from a research perspective:

Within this thesis, the underlying principles, methods, and data struc-
tures are investigated for pedestrian navigation in indoor environments.

Notably, computer-assisted guidance of people inside buildings has Importance of Indoor
Navigationbecome a new and active field of research. This development has

been spurred to a large extent by the technological advances made

3

introduction

in recent years – mobile devices are now available which work to-
gether with dedicated positioning technologies in buildings (such as
W-LAN fingerprinting [ORLS06], RFID [BP00], active badges [Pri05],
etc.). All these technologies have been making consistent progress.
In addition, there is a growing need for applications which assist
humans in wayfinding especially in medium and large scale indoor
environments. Quick and reliable guidance for finding one’s way in a
timely manner is not only needed in transit structures like airports or
train stations, but also in museums, hospitals, large office complexes,
etc. This includes not only everyday situations and tasks, but also
extraordinary situations such as emergencies and evacuation where
quick action is particularly required.

Research on indoor navigation is multi-disciplinary and involvesResearch on Indoor
Navigation several directions: it can be roughly subdivided into research on po-

sitioning systems which locate users/devices in buildings [ORLS06,
BP00, Pri05], general data modelling and system architecture [CW01,
GM03], path finding methods and techniques from Artificial Intelli-
gence [dBvKOS00, CB00], research on human spatial cognition [RW99,
WM03a] and wayfinding with landmarks [RW02, EB04], and finally
user interfaces and methods for presenting spatial information in
an appealing manner [RM04, DGP05]. However, in contrast to the
plethora of existing, ready-to-use systems for car navigation, practi-
cal systems for guiding pedestrians around cities and buildings are
scarce to find. Most of them are still at the stage of development.
Although some prototypical systems exist which are e.g. employed
in museums as guides, these systems mostly constitute of specialised
solutions made for one or a few particular buildings only.

No universal and comprehensive system for pedestrian guidanceResearch Challenges
and indoor navigation yet exists. This is due to a number of diffi-
culties. First of all, there are substantial differences to navigation in
outdoor environments. Notwithstanding their smaller size, indoor
environments can be quite complex, especially with regard to the
third dimension (multiple floor levels) and fully two-dimensional
spaces (such as large halls etc.). Public buildings, such as museums,
exhibition halls, airports, hospitals, universities or even ‘ordinary’
office buildings are often experienced as complex environments. The
underlying data models and methods of outdoor navigation cannot
be simply adopted. A different representation has to be chosen,
taking into account the above mentioned issues that make indoor
environments special. Then, there are a great number of different
positioning systems, all making use of complementary aspects/infras-
tructures (for an overview, cf. Ohlbach et al. [ORLS06]). Furthermore,
there are no standards, which makes integration a difficult task.

1.2 goals and addressed questions

The research questions addressed in this thesis pertain to the design
issues of an indoor navigation system for pedestrians. However,
the reader should not expect to find a ready implementation of a

4

1.2 goals and addressed questions

complete indoor navigation system at the end of the thesis. In fact the
focus is on conceptual issues: modelling the geometry of a floor plan,
dealing with the third dimension, and similar problems are discussed
here. Since the quality of an assistive system primarily depends on
the way knowledge is internally represented, the underlying design
with data models and algorithms should be well thought out. The
general principles underlying such a system design are outlined in
this work. Three topics are considered to be of particular importance:

1. Integration,

2. Automation,

3. Suitability for Humans.

integration. Navigation systems are, generally speaking, spe-
cialised solutions for a particular application domain such as
road networks, public transportation, etc. They work rather
well in their respective domain, but on the other hand, they
are restricted to this domain. There is no concept of a universal
system which integrates all these different kinds of networks
into a meta-navigation system. The latter would enable users to
plan across the different domains seamlessly.

Following this line of thought, a navigation system for the inte-
rior of a building should be designed in such a way that it can
be easily integrated with other outdoor networks. The underly-
ing data model should be generic and the system architecture
flexible enough to allow for diverse other spatial networks to
be integrated into the system.

This flexibility is required for representing a number of more
complex environments, including large malls which contain a
number of different shops, building complexes on a premise
which are connected by an underground system of tunnels or
bridges, or hotels as in Las Vegas which also consist of built-in
casinos. Moreover, train stations or airports are important hubs,
i.e. transit points for changing the modality of transport. They
are embedded in different networks.

automation. Digital models of a building are for the most part
available in form of floor plans, e.g. originating from CAD
systems. However, there is an inherent problem with this kind
of data representation: while such models concentrate mainly
on geometric aspects, the navigation structure is not directly
represented in them. Thus, it has to be constructed or derived.
Most indoor models use some graph-based representation for
this purpose [FMW05]. How can these graphs be derived in
general? An ad hoc solution, which is often employed, consists
of manually overlaying a graph structure on different regions
(see Fig. 1).

However, constructing such a model by hand is not only tedious
but also error-prone. Besides, what are the criteria for setting

5

introduction

Figure 1: Overlaying a Floor Plan with a Graph [BM05]

nodes and edges? Since there is no unique graph representation,
i.e. several mappings to a graph are possible, choosing a cer-
tain modelling may seem arbitrary. All in all, this situation is
unsatisfactory. Instead, a systematic method to derive a graph
structure is preferable. It should adhere to clearly defined cri-
teria. Then, floor plans could be interpreted in an automated
manner and the navigation structure derived from them.

suitability for humans . For the acceptance of a navigation sys-
tem, it is crucial that the users’ needs are catered for. This is
especially important with indoor navigation systems which are
designed for pedestrians. First, this concerns issues such as the
way instructions are being presented to people (e.g. in form
of maps with arrows, or verbal instructions etc.). Thus, path
finding alone is insufficient for an indoor navigation system.
Paths should be described and represented in a meaningful way
so that directions are easy to follow and critical waypoints are
passed. The second issue concerns context information, includ-
ing personal preferences into path finding. Not all paths are
feasible for all users. There could be access restrictions, personal
preferences, etc. which have to be taken into account. Users
should be able to specify their own criteria for path finding.

1.2.1 Contributions

Hierarchical graphs are proposed in this thesis as the basis for anHierarchical Graphs
as Core of an Indoor
Navigation System

extensible, flexible architecture for modelling various (geo)spatial
networks, above all indoor environments. This concerns, from a con-
ceptual point of view, data organisation and maintenance of multiple
representations. The different representations can be either distin-
guished by their granularity (one representation being the abstraction
of another one) or by the fact that different types of networks/envi-
ronments are involved. Hierarchical graphs allow for modelling all
these aspects. Therefore they are proposed in this work as the basic
data structure at the core of an indoor navigation system. The rest of
this thesis introduces hierarchical graphs in a formal way and then
discusses the suitability of this model, investigating to what extent a
hierarchical graph system fulfills the above mentioned goals of

• integrating different networks into one representation,

• providing methods for an automatic model construction,

6

1.3 organisation of this thesis

• and finally enhancing pedestrian navigation in buildings.

Although all three aspects are explored at appropriate depth, the
emphasis in this work lies on the second aspect: It is shown how a
hierarchical graph model (comprising multiple levels) can be auto-
matically constructed from a given set of floor plans. Automation has
a notable practical impact since it renders unnecessary the tedious
work of manually constructing digital navigation models.

1.2.2 Issues not Covered

Within the scope of this thesis, not all aspects of indoor navigation
could be addressed. Indoor navigation is a very broad and complex
field, inherently multi-disciplinary. The focus in this work is there-
fore on the general (high-level) system architecture, data structures
and -models, methods for automation and corresponding algorithms
which constitute the core functionality. Complementary aspects on
a lower technical level, such as indoor positioning systems, are not
further addressed here. Since there are a variety of different position-
ing systems, choosing the ‘right’ one is a difficult task. Also, new or
enhanced technologies are likely to be developed. The goal pursued
here is to abstract from a particular positioning technology as far
as possible, so that the general system and functionality remains
independent from changing technologies.

1.3 organisation of this thesis

This thesis is organised into three parts and eight chapters. Each chap-
ter can be read on its own, since cross-references between different
chapters are made explicit where this is necessary for comprehension.
Each part builds on the the previous parts. In detail, the structure of
this thesis looks as follows:

Chapter 2 presents the basic concepts of pedestrian indoor navi-
gation. Here the particular characteristics of indoor environments are
discussed which make navigation a challenging task. Existing models
for navigation in buildings are highlighted and compared, revealing
their individual strengths and weaknesses. Moreover, the role of
context information is discussed, and how it can be incorporated into
the models.

Chapter 3 introduces hierarchical graphs by first showing their use in
various domains and applications. Then different formalisations of
hierarchical graphs are highlighted to give a clearer understanding.
Differences and commonalities of different definitions are pointed
out. The terminology used in the subsequent part of this thesis is
introduced. The first part ends here.

The next part constitutes the main part of the thesis. It starts with
Chapter 4, where the general design issues of a hierarchical graph
system are addressed. The aspect of integration is covered first

7

introduction

and foremost: A mediator-based architecture is presented which al-
lows for integrating different graphs (which can also be modelled at
different levels of detail) from different sources into a comprehen-
sive system. The system architecture which has been prototypically
implemented is explained here. Then it is illustrated how context
information can be integrated in this architecture. A versatile set
of operations is provided for incrementally creating a hierarchical
graph out of flat graphs. Notably, a distributed architecture is consid-
ered where these flat graphs can be physically situated on different
machines (sources). To the best of the author’s knowledge, this is a
novel aspect which has not been considered so far. The details of the
operations which can be performed on hierarchical graphs are first
formally defined and then discussed with regard to their consistency.
The notion of consistency is formalised as well.

Chapter 5 builds on this general architecture and applies hierarchical
graphs to the modelling of indoor environments. The addressed
issues are twofold: First a systematic method is described which en-
ables one to automatically create a multi-level graph hierarchy from
floor plans. It starts from a floor plan’s geometry. Different aspects of
hierarchisation are discussed here. However, the main thrust is the
goal of automation. Then selected examples show how the obtained
hierarchical model can be exploited for concrete navigation problems
in buildings. This concerns not only path finding, but also the means
and concepts which are necessary for the (automatic) generation of
human-oriented route descriptions. The descriptions can be obtained
by exploiting the hierarchical graph representation. Specific algo-
rithms are suggested for this purpose.

Chapter 6 wraps up the main part by pointing out and reviewing the
progress of implementation concerning the different components/-
modules. A preliminary evaluation of a hierarchisation method is
shown here, and further criteria for evaluation are elaborated.

In the final part of the thesis, related work is presented in Chap-
ter 7. This includes not only topics such as hierarchical graph models
(albeit for other spatial networks mainly), but also systems for indoor
navigation and human wayfinding in general. Finally, Chapter 8

concludes the thesis. The main results are summarised and directions
for future research are pointed out.

8

2B A C K G R O U N D

This chapter presents the basic concepts of pedestrian indoor naviga-
tion, along with a general notion of context information for wayfin-
ding. The special characteristics of indoor environments (in contrast
to outdoor spatial networks) are highlighted first, together with the
implied requirements for a pedestrian navigation system. Then a
number of existing graph-based models for navigation in buildings
are compared, revealing their complementary strengths and weak-
nesses. The suitability of these models is investigated especially with
regard to pedestrian indoor navigation. This involves not only means
for finding shortest/fastest etc. paths, but also for describing these
paths to human wayfinders. Moreover, different ways of represent-
ing context information are discussed. It is pointed out, in general,
how these criteria can be reflected in so-called cost functions, that is
optimisation goals for path finding in graphs.

2.1 Challenges of Pedestrian Indoor Navigation 9
2.2 Context Information and Cost Functions . . . 19

2.1 challenges of pedestrian indoor navigation

2.1.1 Motivation: Characteristics of Indoor Environments

Car navigation systems are an indispensable aid for travelling nowa-
days. They have reached the stage of maturity and have become
a mass product: The navigation problems encountered in this do-
main have been analysed in considerable detail. Consequently, plenty
of solutions are available for delivering turn-by-turn instructions to
drivers. Due to the simplicity and efficiency of these techniques,
they are employed on a large scale, for example in commercial car
navigation systems or traffic information systems.

The key to the success of these systems lies in the underlying data Turn-by-turn
Instructions from
Spatial Networks

model: Graphs are a convenient model for many environments which
people travel through. In a geographical context, the basic mapping
of spatial networks to a graph structure is often straightforward. Take
for example the street network of a city: nodes simply represent in-
tersections and edges represent road segments. Given that the spatial
orientation of an edge in the network determines the course of mo-
tion along the edge, it is a fairly simple task to provide turn-by-turn
instructions. It would be indeed desirable to apply this technique
to other domains like indoor environments, expecting that it would
work equally well there.

9

background

Unfortunately, it turns out that navigation problems in large buildingsParticularities of
Indoor
Environments

are conceptually quite different from those problems encountered
in street networks (see e.g. [GM03]). The crux of the matter lies in
the topological structure of indoor environments; it is much more
diverse than the topological structure of road or railway networks.
The following points illustrate the aspects which distinguish indoor
environments from ordinary spatial networks:

diversity vs . uniformity of shape . Roads and tracks have stan-
dard properties like width, number of lanes, et cetera.1 The
network structure is clearly defined and regular: every junc-
tion is a decision point, and road segments are linear. Large
metropoles often show a mesh or grid pattern. Although archi-
tects of buildings adhere to general principles, they are given
more freedom in designing a building. Depending on the in-
tended function of rooms, they can vary considerably in size, in
their amount of connections to other rooms or in their shape.
All sorts of different room shapes can occur in floor plans.
Particularly large rooms can be unique with regard to their
irregular shape and their multitude of connections. Because of
this, a systematic treatment of indoor environments is difficult.

free vs . confined movement. Especially in large halls and com-
parable sorts of open space, pedestrians can move freely. There
is no guarantee that they will stick to a preconceived path net-
work laid over a floor plan. This makes the design of a suitable
navigation system more challenging. Pedestrian motion is less
restricted than, say, the motion of vehicles within a network (for
instance cars or tramways). Not only are vehicles mostly bound
to lanes/rails, but drivers also have to obey traffic regulations,
e.g. speed limits or turn restrictions. Driving a car, one is not
allowed to turn just anywhere; manœuvres such as reversing
the direction are often not permitted or practically not even
possible. Note that restrictions, although pertaining to access,
can also be found in buildings. The typical division into public
and private areas is a prime example. Fig. 2 contrasts a large
room in an indoor environment to a junction in a road network.

granularity. Pedestrians move at a much slower pace than, for
example, automobiles. Consequently their perspective of the
environment is richer in details. This in turn means that the
features of a building have to be modelled at a finer granularity
(for example, comprising the niches of a room or places where
items can be stored).

hierarchy vs . network . Features like roads and railways can
be boiled down to one-dimensional path structures. This is
very convenient for providing turn-by-turn instructions. On the
other hand, it is much more difficult to extract path structures
from buildings because they exhibit genuine two- and three-
dimensional structures: Except for corridors, stairs, or doors,

1 however, in different countries, there can of course be different norms, such as for
the width of rail tracks

10

2.1 challenges of pedestrian indoor navigation

A

C

B D

A

B
C

D

N
a
c
h
 o

b
e
n

Nach oben

Nach oben

Nach oben

Nach oben

Figure 2: Motion in Road Networks vs. Indoor Environments

no evident navigational structures are present in buildings. The
dominant theme is rather a hierarchy, with layers of nested
regions.

One factor responsible for the particular difficulty of navigation in Open vs. Closed
Spacesbuildings is the coexistence of two different types of spaces – open

spaces and closed spaces2: Timpf and Rüetschi [RT04] have pointed to
this distinction in their analysis of Swiss railway stations. While they
argue that network space (i.e. closed space) is mediated by maps,
e.g. to represent train connections between cities, they also point to
the fact that open space (which is called scene space) is composed
of individual regions. Train stations are a good example due to the
typically large dimensions of halls and lobbies.3 A vast number of
different ways are conceivable for crossing these open spaces. In
contrast, corridors, stairs, and other linear features fall into the first
category of closed spaces. They represent a network structure with an
implicit direction to move in. Therefore they are less difficult to deal
with. However, it is problematic to draw a quantitative distinction
line between the two types of spaces. Because the transition is based
on human perception of space, it seems rather fuzzy.

Unsurprisingly, there several correct ways for overlaying a floor Coexistence of
Various Graph
Representations

plan with a graph. Franz et al. [FMW05], for example, present a se-
ries of different representations from a multidisciplinary standpoint.
It is arguable what should be represented by a node or an edge,
respectively: e.g. consider the concrete possibilities of mapping a
corridor to a node, to a sequence of connected nodes, or rather to
an (hyper)edge. Things get even more complex when we consider,
for example, halls with a rather irregular shape or three-dimensional
features across floors. Which representation should be chosen? A
simple answer to these questions cannot be given. Rather, it should
be decided ad hoc which representation fits best: every model has its

2 not to be understood in the sense of public vs. private space, but rather referring to
the degree of freedom for pedestrians moving in these spaces

3 comparable examples from outdoors are navigation in deserts with no roads or
steering a boat across a lake.

11

background

individual advantages and drawbacks. We shall go into more detail
in the following and compare different models proposed in literature
from the perspectives of path finding and giving route directions.

2.1.2 General Modelling Principles

The preceding points have shown that modelling indoor environ-
ments is not trivial. Indoor navigation is indeed a large research
field which involves many different aspects. Among these, there are
for example diverse positioning technologies ranging from W-LAN
fingerprinting [ORLS06] to touch-sensitive areas. Quite a wide range
of alternative solutions have emerged in recent years. We do not cover
these technical aspects further in this thesis, but concentrate instead
on the general modelling principles because the latter constitute a
solid, common foundation for any system to be implemented (also in
the future, given that technology evolves constantly and the perfect
system is yet to come). For a more detailed list and discussion of
positioning technologies, cf. Ohlbach et al. [ORLS06].

Before we begin with a thorough evaluation of different models
of indoor environments, we must first define the fundamental prop-
erties of a graph representation. The main criteria considered in
particular are threefold:

1. the basic representation of the environment (2D and/or 3D).

2. the facilitation of path finding in the environment.

3. the means to derive meaningful route descriptions.

environment. First and foremost, the basic representation com-
prehends a mapping of different architectural features to nodes
or edges in a graph structure. Notice that nodes and edges
can carry completely different semantics in different models (e.g.
a door could be represented either by an edge or by a node,
depending on whether general access between rooms is consid-
ered or rather waypoints along a path). It is important to make
clear the semantics in the respective model. A representation
could merely reflect the environment, but it could additionally
comprise a more or less sophisticated model of human wayfind-
ing behaviour, e.g. represent certain locations inside a region
which are visually or otherwise salient.

Granularity is another important aspect to consider, since itModelling Aspects
determines which features are actually relevant for the model
and which ones can be omitted. For a more pragmatic point
of view, there are further aspects of interest like the modelling
effort (expressed in time and space complexity), the possibility
of automation (i.e. how much manual intervention is necessary
during the modelling process), and finally the expressiveness of
the model (i.e. what sort of knowledge can be derived from it).
It is all these things that make up the characteristics of a model.

12

2.1 challenges of pedestrian indoor navigation

path finding . Concerning the suitability of a model for path find-
ing, we have to reconsider the role of geometrical distance vs.
topological distance. The accurate modelling of distance is
crucial in domains such as robot navigation (e.g. for driving
safely past or along a wall), since small deviations can result
in undesired consequences. However, different criteria play
a role for human indoor navigation: determining the absolute
shortest path (by precision of centimetres) is not of the utmost
importance. A path which is almost as short as the optimal one
can still qualify as ‘good enough’, as long as no alternative path
is substantially faster.4 An abstract path that approximates a
geometric path (within a certain range) might be sufficient.

Let us assume that the geometrical shortest path passes through
an office or lecture hall. In this case, it may not be appropriate
at all to choose this path. Life in a society imposes additional
restrictions on path finding.

Among others, restrictions due to physical, legal, social, and
temporal conditions must be considered [Rau01, HEH03]. In Restrictions
this particular example, the doors to the office could be closed,
or going through the lecture hall would disturb ongoing courses
or examinations. It would be sensible to have a concept reflect-
ing the separation of public as opposed to private rooms. In
all these cases an alternative path through a corridor would
be preferred, even though it is not the geometrically shortest
path. These examples suggest that for a realistic application,
many different factors have to be taken into account. It would
be desirable to have a generic, flexible approach which allows
for specifying more sophisticated and realistic cost criteria be-
yond a simple optimisation goal as distance. In this respect, a
symbolic approach for path finding could complement a purely
numeric optimisation. Section 2.2.5 discusses this topic in more
detail.

route descriptions. The generation of human-oriented route de-
scriptions for guidance in public buildings is still an open, active
field of research. Compared to path finding, this problem is
much more sophisticated; it involves a handful of techniques
from various disciplines, such as natural language genera-
tion [DGP03, Miz04], qualitative spatial representations [SMR06]
and reasoning [ZF96, CH01] and many more.

Route descriptions pose additional requirements to the model:
First, a set of different attributes and labels needs to be pro- Meaningful Labels

and Qualitative
Spatial Relations

vided which can then be turned into their linguistic counterpart.
Formal knowledge representation systems, such as ontologies,
could define a vocabulary for the key concepts which are re-
ferred to in expressions. Second, reasoning needs to be con-
ducted pertaining to the spatial relations of rooms and paths
through 2D/3D space. Not all of these properties can be hard

4 a qualitative measure of distance, such as that proposed in Hernández et al. [HCF95]
can help to define the appropriate meaning of substantially shorter / faster in an
application.

13

background

coded in the model, since this would take up a combinatorial
amount of space. The fact that indoor environments are much
less confined than other domains aggravates this problem. Thus,
it is vital to build the model in a clever way that facilitates the
derivation of essential knowledge for route descriptions.

The styles and forms of route descriptions are quite endless
– there is room for plenty of variety. The so-called process of
spatial chunking plays a prominent role in this respect, since it
defines the essential criteria for the contraction of route descrip-
tions. Relevant aspects for chunking in indoor environments
could be, besides the wayfinder’s level of familiarity with the
environment, the arrangement of spaces into higher-order con-
cepts like sections, wings, floors, et cetera.

Various studies have investigated the form of textual/verbal
instructions for indoor environments [MSK06]. Scarce evidence
can be found in literature [Miz04, SMR06, MSK06] for a system-
atic method of generating human-oriented route descriptions in
indoor environments. Most systems rely on a simple graphical
interface, where the environment or parts of it are depicted in
a map-like manner. However, the conciseness of verbal route
descriptions and their dimensionless nature speak in favour
of them. Note that they can also be used in combination with
traditional graphical interfaces, enhancing this form of repre-
sentation.

2.1.3 Evaluating and Adapting Existing Approaches

Multi-disciplinary
Viewpoint With the general modelling principles made clear, we can now exam-

ine for the domain of indoor environments the suitability of existing
approaches, i.e. how far they meet the postulated criteria from the
previous section. Remarkably, most of the approaches originate from
the field of Artificial Intelligence, especially from robot motion plan-
ning. There are of course also models from the domain of architecture,
although their focus lies mainly on the aspects of design and con-
struction rather than on wayfinding. A notable exception is the work
of Passini [Pas84, Pas96], where wayfinding is accredited a central
role. In recent years, valuable contributions have also been made in
the field of cognitive science and psychology, particularly on the way
people organise space and solve problems in space.

In our analysis, we concentrate predominantly on the approaches
for robot motion planning, because of their strong algorithmic back-
ground. However, we incorporate as well some key ideas flavoured
by the other domains into our reflections.

For motion planning applications, so called roadmaps [Lat90] are theRoadmap
most commonly used solution for finding paths through 2D space. A
roadmap is an one-dimensional discretisation of a higher-dimensional
environment into a geometrically anchored graph structure. This
way, a two-dimensional structure of regions can be mapped to differ-

14

2.1 challenges of pedestrian indoor navigation

ent locations or representative places within the regions. Two basic
classes of roadmaps can be distinguished, namely visibility graphs
and Voronoi diagrams:

visibility graphs [Nil69], first proposed by Nilsson in 1969, es-
tablished as a standard method for robot path planning [dBvKOS00].
The underlying idea is simple: nodes represent the convex cor-
ners of a region, including the corners of all obstacles, and
additionally all portals/entries to the region. Two nodes are
considered as mutually visible if their direct connection does
not intersect any of the region’s boundaries. Thus, an edge
joins a pair of nodes which can see each other. Fig. 3 depicts an
exemplary visibility graph for an indoor environment:

Figure 3: Visibility Graph

Visibility graphs facilitate the precise steering of a robot, because
distance and angles are modelled accurately (provided that data
quality is sufficient). The obtained geometric paths are optimal
in terms of distance. However, the style of the directions for
guiding people along a path is quite different from the style of
the instructions for controlling a mobile robot: Humans cannot
follow instructions like ‘the next door is at an angle of 134◦

and a distance of 9.2 metres’ (measurements could be imprecise,
anyway).

Apparently, the spatial relations utilised in the instructions first
need to be translated into a qualitative representation. For this Proposed Adaptation
purpose, the outgoing edges of a node could be e.g. stored in
a list sorted according to increasing angles and distance to the
node. The circular order determined by this representation can
be used for an enhanced communication of the spatial relations:
this is beneficial for the production of statements like ‘take the
second door to your right’.5 In order to distinguish between the
left hand- and right hand side, we additionally need a reference
orientation at the respective node. For portals, it could be
the direction perpendicular to the respective wall since this is
the expected course of movement through the portal (when

5 for paths in indoor environments, it generally makes more sense to refer to relative,
egocentric directions (‘front’, ‘back’, ‘left’, ‘right’) rather than to absolute cardinal
directions (North, South, West, East).

15

background

entering a room). This method is particularly well-suited for
convex spaces with no obstacles.

Local navigation rules, such as the circumvention of obstacles,
are basically present in the model, but it is difficult to turn themInherent Limitations
into an appropriate description referring to the obstacles (‘pass
between the two obstacles’). The main problem is that points,
and not higher-level objects (such as obstacles) are related to
each other. In order to solve this problem, nodes need to be
annotated as belonging to the same obstacle, or being of a
common type, e.g. ‘door’. Non-convex corners only play a role
for locations which are not mutually visible (otherwise, they do
not appear in paths).

A major disadvantage of visibility graphs is the amount of
space required for storing nodes and edges: Primarily in convex
spaces with no obstacles, the number of possible combinations
is quadratic (a complete graph Kn with n nodes has n(n−1)

2
edges). All these edges are explicitly modelled, which is an
overhead.

A possible remedy is to remove all direct connections between
portals, so that only paths of length 2 and above need to be
stored. However, caution is required for the paths going through
the corners of an obstacle: if these paths were removed informa-
tion for moving around the respective obstacle would be lost.
For all pairs of non-connected portal nodes, mutually visibility
would be implicitly assumed. This would result in something
what could be called ‘invisibility graph’ [BHHKM04]. Note that
different sets of mutually visible nodes can emerge from this
contraction. Since these sets may well overlap, their representa-
tion is, in general, subtle [AAAS94].

generalised voronoi diagrams [ÓSY87] are a logical exten-
sion of traditional Voronoi diagrams beyond point sets. They
have been devised for guiding robots safely along a characteris-
tic path, called medial axis, of a 2D space. The medial axis is,
more formally, understood as the set of points equidistant to the
two closest boundaries6 (cf. the left hand part of Fig. 4). As such,
the medial axis can contain both straight and parabolic edges;
the construction is rather sophisticated and consequently takes
considerable time. It has been be shown [CB00] that the medial
axes meet at common nodes and are arranged in a tree-like
structure.

Certainly not all branches of this tree are equally important:
For path planning, e.g. it is convenient to cut off all branches
that lead to convex corners [Wal04, Whi06]. The result of this
simplification step is depicted on the right hand part of Fig. 4:
The remaining nodes are intersections of different medial axes
(these can be, for example, the two opposite sides of portals).

6 imagine the inflation of a large balloon in a room until it touches two walls: the
centre of the balloon is located right on the medial axis.

16

2.1 challenges of pedestrian indoor navigation

Figure 4: Simplifying a Generalized Voronoi Diagram [Wal04]

As opposed to visibility graphs, Generalised Voronoi Diagrams
are quite well-suited for route descriptions. This is especially
the case for closed spaces: Consider, for example, the shape
around two obstacles. Valid paths are represented concisely.

However, open spaces are clearly the weak spot of Generalised
Voronoi Diagrams. This sort of situation is indicated in Fig. 5, on
the bottom left and right. Consider the left hand path marked
by dashed lines:

Figure 5: Unnatural Route Descriptions with Generalised Voronoi
Diagrams [Whi06]

Before the destination is actually reached, the path goes into
the opposite direction. This zig-zagged course seems quite Illustrating the

Difficulties for
Open Spaces

erratic: While a direct connection of near-by portals would
be expected, paths are distorted towards the middle of the
open space. Hence the medial axis does not represent a typical
path taken by a person. It is evident that these geometrical
paths are not suitable for direct translation into route directions.
Imagine the (automatically generated) output of a guidance
system based on this kind of representation: this would lead
to an awkward description like “go left, then turn right” (the
question is just where to turn, because of the lack of landmarks),
where something similar to “take the second door to your
right” would be expected instead. The particular cause for this
phenomenon is the bias of paths on the medial axis towards the
centre of the open space.

A possible way to deal with this problem is to introduce an addi-
tional step of path relaxation [Whi06]: intermediate waypoints
of a path are removed consecutively, as long as the shortened
path stays within the boundaries. This way, zig-zagged sections
of a path are simplified as far as possible.

17

background

A more abstract representation for the spatial configuration of rooms
is often used in architecture, with so called access graphs. They can
be conveniently extracted from planar drawings such as floor plans:
they are simply the dual planar graph of the drawing. A dual planar
graph represents regions as nodes (i.e. whole rooms, corridors) and
connections between regions as edges (e.g. portals).

Unlike their geometrical counterpart, access graphs are qualitative,
i.e. they merely model the topological relations between different
regions. In this kind of representation, distance is rarely considered.
It cannot be defined in a context-sensitive manner (e.g. to distinguish
whether we go from room A to room B through portal p1 or p2), but
only as a reasonable approximation such as the Euclidean distance
between the centroids of spaces. If the inner structure of regions is
intricate, this approach has limitations.

However, access graphs are complementary to the other geometricDuality
approaches, i.e. they can be combined. This would yield a two-level
hierarchy of graphs, where several nodes of the finer-grained graph
(which belong to the same region) are comprised as a single node
in the dual planar graph. This sort of combination is particularly
appealing, since it allows instantly addressing different subgraphs
that form one region. Apart from doors, the labels and types of
regions are also frequently used in route descriptions.

2.1.4 Summary

The preceding evaluation revealed that it is, to some degree, possible
to adapt existing roadmap methods from robot indoor navigation.
However, some intermediate steps are necessary for the transition
from robot to human indoor navigation and there are further diffi-
culties to deal with. The core problem is that a model for pedestrian
navigation serves a different purpose than a model suitable for steer-
ing a robot: ideally, it should encode qualitative spatial relations so
that meaningful descriptions can be derived from this model. Visibil-
ity graphs and generalised Voronoi diagrams, two common models
for robot navigation, have been investigated for their suitability as a
pedestrian navigation model. Each of the presented methods has its
individual strengths and weaknesses for specific kinds of spaces. The
main results of the analysis are summarised in Table 1:

None of the examined approaches performs well in all situations
where route descriptions need to be generated. The main problem is
the limited flexibility of the models. If possible, it would be desirable
to put together the complementary strengths of the approaches into
a single, comprehensive model.

18

2.2 context information and cost functions

Model Semantics Type Construction
Time

Suitability for Path Finding
and Descriptions

Nodes Edges

visibility
graphs convex

cor-
ners,
portals

mutual
visibil-
ity

geometric O(n2) [Wel85],
O(n log n)
for sparse
graphs [GM91]

	 complete graph, O(n2)
space
	 no common (sub)paths
⊕ accurate distance

Generalised
Voronoi
Diagrams

portals,
where
axes
meet

medial
axes

geometric O(n2 log n

a) [ÓSY87]
(a is the inverse
Ackermann’s
function)

⊕ more concise,
O(n) space
⊕ spatial relations derivable
(to some degree)
	 too much clearance in
open spaces

dual planar
graphs regions portals topologic directly ex-

tractable from
floor plans

⊕ most compact
⊕ no superimposed net-
work, just reflects environ-
ment
	 distance, if any, approxi-
mated
	 coarse, i.e. no relation be-
tween portals

Table 1: Comparing Different Graph Representations

2.2 context information and cost functions

This section discusses the role of context information for human
wayfinding. More specifically, examples are illustrated for indoor
environments. Possible representations of context information are
explained and, more importantly, it is shown how context information
can be involved in the process of finding a certain path in a graph.

2.2.1 The Context of Wayfinding

The word ‘context’, being inherently vague, leaves room for a variety Distinguishing
Different Meanings
of the Word
‘Context’

of different interpretations in different domains (e.g. in Human
Computer Interaction, context stands for device properties, users’
skills and knowledge, etc.) – it thus needs clarification. However,
giving a precise definition of ‘context’ is a difficult task.

In literature various definitions of context can be found (see e.g. [Dey01,
Dou04]). These definitions are, for the most part, very general: con-
text is regarded as something relative, defined in terms of a specific
situation or task. In the scope of this thesis, we try to narrow down
the meaning of context information. We define context strictly in
terms of wayfinding:

19

background

With context information, we mean any piece of information
from and about the surrounding environment (including the
wayfinder) which is relevant for wayfinding tasks in this
environment. Such factors are above all the characteristics
and preferences of human wayfinders, as well as the physical,
social, temporal and operational conditions of the current
environment. Basically, context information comprehends the
set of conditions which can have an influence on wayfinding
decisions in a concrete situation. The set is by no means
exhaustive because it is virtually impossible to enumerate all
conceivable criteria of influence. The degree up to which this
information is encoded depends on the specific requirements
of an application.

Still, context can mean a variety of different things such as local
traffic conditions, occupancy of rooms, departure times fixed in train
schedules, etc. There is a great deal of flexibility for capturing the
knowledge of a particular application domain. On the other hand, this
working definition ensures that context comprehends every property
which can be formally represented and processed.

2.2.2 Examples for Indoor Environments

In the specific case of indoor environments, we can give some typicalWhat ‘Context’
Means for Indoor
Environments

examples for context information and analyse what should/could be
taken into account for path finding. Consider the following list of
examples:

• weather conditions (snowfall, storm opposed to sunshine etc.)
could determine a preference for partial paths either staying
within roofed parts of a building or going through an interior
court/garden (even if this entails a detour). Likewise, one
normally prefers to take the elevator instead of stairs to reach
the upper floors of a skyscraper,

• more importantly, a handful of social restrictions have to be
kept in mind by human wayfinders: one may not enter, for
instance, a library with a coat and backpack but must lock them
away first. It is likely that one does not choose a path going
through the office of some employees, nor through a lecture hall,
laboratory, patient’s room, operating room, etc. (even though
these could be shortcuts for a path finding algorithm from a
purely geometrical point of view),

• comprising access restrictions can also be a significant require-
ment for a navigation model: entering certain parts of a building
may require a key, security check or other form of identification
and/or authorisation. For example, laboratories and certain
facilities within airports are only accessible for a defined group
of people. Context is understood in this sense as the role of the
wayfinder when we mind the distinction between public spaces
and private spaces (‘staff only’),

20

2.2 context information and cost functions

• the individual situation of the wayfinder has to be taken into
account too: rooms on different floors have to be reachable
via ramps and elevators for persons in a wheelchair. When
travelling with small children and/or heavy luggage, it is much
easier to take an elevator instead of stairs, although they may
be nearer,

• from a practical viewpoint there are, of course, temporal restric-
tions to keep in mind, such as closing times for shops in a mall,
parts of a building which are open only on certain weekdays,
hours, or seasons,

• moreover, there are physical restrictions. As such, the trans-
portation of bulky objects to a location inside the building (due
to dimensions) should to be well planned. They may not fit into
an elevator, or a staircase may be too narrow for moving the
object around the corner.

The above list provides a pragmatic scheme for the classification
of context information into a few broad categories. Most of these
pertain to some form of common-sense knowledge, which can be
traditionally encoded in formal ontologies (see next paragraph). We
do not claim that incorporating all these exemplary conditions would
yield a ‘perfect’ navigation system for a building:

First, context is non-exhaustive. A domain model is inevitably a
drastic simplification of reality. This means that it is always possible
to find some special case or detail which has not yet been modelled
so far. There are also inherently vague or subtle notions, such as
certain weak preferences which are very difficult to express formally
in an optimisation criterion (e.g. more complicated cases for the first
example). Of course, the more factors are taken into account, the
more realistic the final result may be.

Moreover, context is highly subjective. One particular application
or query alone may not require all features to be taken into account,
but only a subset.

So the gist of this reflection is to provide a navigation system which
offers a flexible framework for specifying and incorporating context
information into its path finding modules, rather than trying to model
every possible aspect in a hard-wired manner. The framework should
be ideally designed in a way that extensions with further context
information can be made when required.

2.2.3 Using Formal Ontologies

In the field of ubiquitous computing, remarkable efforts towards a Modelling Context
Information with
Formal Ontologies

comprehensive user model have been made, e.g. in the user mod-
elling ontology called GUMO [HSB+

05, Hec05]. Formalisations like
these are a first step towards dealing with context information. They
can be used for the subsequent processing of context information
in path finding and -selection. Note that in general, the creation of
formal ontologies for a particular application domain is a complicated

21

background

undertaking; it usually requires expert knowledge and a considerable
amount of time and effort. However, once it has been completed, a
number of applications can ideally profit from the common knowl-
edge base created.

In the following, we summarise different approaches for path finding
which include a more sophisticated treatment of context information.
The intention is to relate knowledge representing context in a generic
way with the behaviour of path finding components.

2.2.4 Multi-criteria Path Finding

Path finding is, in the simplest case, performed over a graph G = (N, E)Cost Functions
with a single, total cost function c : E 7→ R to optimise. The cost
function c assigns each edge e ∈ E a numeric value v ∈ R indicat-
ing the cost or weight associated with the respective edge. In the
spatial domain, this measure of cost is usually the geometric dis-
tance covered. This classical version of the shortest path problem has
been profoundly studied for several decades, with a lot of efficient
algorithms proposed for this purpose. The most commonly applied
solutions are Dijkstra’s famous shortest path algorithm [Dij59] for
non-negative costs and the Bellman-Ford algorithm [Bel58, JF62] for
the general case where costs can be negative as well. Improvements in
the running time could be gained in many practical cases by an intelli-
gent use of advanced data structures, such as Fibonacci heaps [FT87].

An excellent introduction and overview of different families of genera-
lised shortest path problems is given in Pallottino and Scutellà [PS97]:
as it is argued, realistic applications often require more than a simple
cost function – they need to consider not only one, but a couple of
different criteria simultaneously [MP08] which may interplay. This
class of problems is generally called multi-criteria shortest path prob-
lems [Dia79, Lou83]. The traditional algorithms therefore need to be
adapted as far as this is possible. However, there are already some
cases where a single criterion cannot be specified with a simple cost
function such as defined above:

context-sensitive cost functions are more expressive: they ad-
ditionally allow one to assign costs for traversing a node, for
example a crossing in a street network. These functions are
called context-sensitive because, depending on the choice of
incoming and outgoing edge, the costs can vary (think for ex-
ample of turn restrictions or penalties for left turns where the
particular choice does make a difference). They are in general
of the form c : E× E 7→ R. Note that they do not cover the
complete set E× E, but are partial functions defined only for
incident edges (of a common node). Thus, a cost matrix with
pairs of incident edges would have to be stored in every node.
A major disadvantage of this solution is that existing algorithms
cannot be applied ad hoc – they need to be adapted.

An alternative solution would be to construct the dual graph,Modelling via Dual
Graph

22

2.2 context information and cost functions

which naturally expresses relations between edges in the primal
graph as edges in the corresponding dual representation.7 The
GIS community has recently debated this approach for navi-
gation in road networks which requires more elaborate cost
functions, such as minimum turn angles [Win01, DK03]. It is
more appealing, since traditional algorithms can be applied to
the dual graph without any need for modification.

The context encoded in this kind of cost functions is mainly spatial,
although it reflects some legal restrictions pertaining to traffic regula-
tions. More generally, a single edge could have different modalities, for
example representing the suitable means of transport, or the group
of persons possessing special access privileges (such as a key, an ID
card, or something similar). These aspects can be represented as
attributes of the corresponding node or edge in the graph. A cost
function can evaluate these attributes and map them to a numeric
value (for example, a cost function would yield a value of ∞ if access
were not permitted). Time-dependent properties (e.g. schedules of
trains) can be difficult to evaluate [PS97], for example if waiting times
are considered and different connections have different speeds (say,
there are express trains which can overtake others). In these cases,
optimisation can be quite challenging. Some particular problems in
this connection are very complex and still call for further investiga-
tion. They are not discussed in more detail in the present work.

We now return to the remaining question of how to deal with multi-
criteria problems. This issue is complex, too. The general opti- Dealing with

Multiple Criteriamisation problem involving multiple criteria was first studied by
Vincke [Vin74]. It has been applied to the shortest path problem
by Dial [Dia79] and Hansen [Han79]. Beyond this, it has received
considerable attention in various other fields including game theory,
economics, and decision theory [Vin92].

In the multi-criteria case, a cost function c : E 7→ Rn does not
yield a scalar value. Instead, the result becomes a cost vector con-
sisting of n > 2 individual cost components for each criterion:

~vmult =

v1

v2
...

vn

.

An inherent problem emerges with this extension: it is not always
possible to compare composite costs which differ in different compo-

nents (e.g. two cost vectors like
(
3
4

)
and

(
5
2

)
). Note that there is no

total ordering among these cost vectors, as opposed to the scalar case.
Rather, two non-dominated or Pareto-Optimal solutions exist.

A path pa is said to dominate another path pb if, for the corre- Dominance relation
sponding cost vectors va and vb, the following property holds:

7 Edges in the original graph correspond to nodes in the dual graph. Nodes in the
original graph correspond to the set of all their pairs of incident edges. Each pair in
the set is an edge in the dual graph.

23

background

∀i ∈ 1 . . . n : vai
> vbi

.

Dominance induces only a partial order among paths. Intuitively,
a non-dominated path cannot be further improved in one cost com-
ponent i without degenerating at least some other component j. The
resulting family of solutions reflects a weaker sort of optimality –
it forms an equilibrium of so-called Pareto-optimal solutions. In the
absence of a total ordering relation, the number of alternative solu-
tions is quite large: As shown for the case of two criteria [Han79],
the number of efficient, non-dominated paths grows exponentially
with the number of nodes |N| in the graph (the complexity is O(2|N|)).NP-completeness of

multi-criteria path
finding

Therefore, already the bicriterion shortest path problem lies in NP.
There are several ways for coping with this problem:

aggregation into a composite cost function. The simp-
lest conceivable solution is to aggregate all criteria into one
global cost function (i.e. reducing the vector of all costs to a
scalar value). This can be done, for example, by forming a
linear combination of all criteria in terms of a weighted sum:

vmult =

n∑
i=0

αivi. Within the sum, the coefficients αi ∈ [0 . . . 1]

determine the relative importance of the respective criterion
i (e.g., if all αi were 1, then all criteria would be equally im-
portant). Other sorts of conversions are also possible, e.g. a
product would be employed instead of a sum if asked for the
probabilities of failure or a certain quality of service. While this
method allows one to deal with multi-criteria problems in the
same way as single-criteria problems, it suffers from serious
drawbacks:

• this method needs profound knowledge of the domain, or
a considerable amount of experimentation to determine
the weight factors αi accordingly.

• it produces one single solution, contrary to the nature of
the problem: the aggregated meta-criterion tends to be
somewhat artificial. Therefore, it may not be acceptable for
decision makers, or even counter-intuitive when conflicting
criteria are considered.

Notice that ‘acceptable’ is an ultimately subjective notion. In
place of a single compromise solution, several alternatives
should therefore be offered from which expert decision makers
carefully assess the appropriateness for the given problem.

determining the pareto-optimal solutions . Another app-
roach is to accept the complex nature of the problem and to
determine the family of Pareto-optimal solutions in a hope-
fully efficient manner. For this purpose, extensions of the A∗

heuristic to multi-criteria search [SCCW91, MdlC05] have been
proposed. Furthermore, genetic algorithms [FF95, MW06] have
been devised and used to compute Pareto-optimal solutions for
practical instances of multi-criteria problems. An important idea

24

2.2 context information and cost functions

in this respect is to reduce the cardinality of the solution set by
means of clustering algorithms. The clusters represent selected
parts of the solution space and hence make the choice consider-
ably easier for the decision maker. Multi-criteria shortest path
problems can also be reformulated and solved by means of soft
constraint logic programming, as recently shown in Bistarelli et
al. [BMR02].

ranking of solutions via preference. If more information
is available about the involved cost criteria, problem solving
can be facilitated substantially: This is the case, for example,
when user preferences come into play [AW00]: the notion of
preference among different criteria can be used for focussing
search. That is, if one cost criterion, deemed less important
than another one, is violated it may still be tolerable to accept
this solution. Such an approach is proposed, e.g. in Alechina
et al. [AL01], where the ranking between different cost criteria
is defined as a partial order relation. This relation is then
combined with the dominance relation.

2.2.5 Summary

As has been pointed out, context information can be encoded by
means of cost functions in a variety of different ways. Admittedly,
choosing the ‘right’ kind of modelling for an actual application do-
main is a very complicated task – it requires profound knowledge
of the domain. It is up to a couple of true domain experts to check
the applicability and rightness of a certain model, or else user stud-
ies have to be conducted in order to evaluate and give feedback
on the chosen criteria for complex cost functions. Studies for dif-
ferent wayfinding criteria have been conducted among others by
Golledge [Gol95b, Gol95a] and Hochmair [HR02, Hoc04].

It is consequently wiser to leave the task of specifying correct cost
criteria to domain experts. Our philosophy is a different one: since
cost criteria can be very subjective, in the sense of preferences which
do not commonly apply to all persons, but only to a certain group or
individual, there should also be a means to specify them in a flexible
way as different cost functions. The goal is to provide a pragmatic
framework for specifying and applying different cost functions for
different users. They could, for example, exclude certain paths for
certain users only, while more general cost functions apply to other
users.

Although the expressiveness of this language is important, one should
not neglect another issue which is equally important: specifying
cost functions should be a difficult task (and ideally supported by
graphical tools, too) given that domain experts are often not or only
insufficiently familiar with information technology. Section 4.1.3
presents, among others, a solution based on SWRL rules [Ide07] and
the notion of treating cost functions as proper objects which can act

25

background

as parameters for path finding algorithms, following the strategy
design pattern [GHJV95]. The advantage gained by using SWRL is that
rules can be comfortably edited a graphical editor, thus keeping the
technological burden on domain experts rather low.

26

3F U N D A M E N TA L S O F H I E R A R C H I C A L G R A P H S

This chapter presents hierarchical graphs – the main data structure
which this thesis concentrates on. The versatile use of hierarchical
graphs in various domains and applications is highlighted. Then a
set of formal definitions is provided to clarify the different notions
and meanings of hierarchical graphs. To acquire a general under-
standing, various notions of hierarchical graphs as given in literature
are compared, trying to distill common properties. Along with the
various definitions of hierarchical graphs, an introduction of the most
relevant terminology used in the subsequent part of this thesis is
provided.

The chapter concludes with the implications of using hierarchical
graphs for the spatial domain as a basis of a comprehensive naviga-
tion system. Implications are discussed from two complementary
points of view, i.e. an interior and an exterior perspective: the interior
perspective concerns an appropriate system design (with algorithms
and data structures/organisation in mind). The exterior perspective
is adopted by users, who pose location- and network-related queries
to the system (asking, e.g., for the shortest path).

3.1 Motivation: From Graphs to Hierarchical Graphs27
3.2 Basic Definitions and Terminology 32
3.3 Hierarchical Path Finding 40
3.4 Summary . 44

3.1 motivation: from graphs to hierarchical graphs

Graphs are a well-established and universal formalism for repre-
senting a plethora of different environments, systems, components, Graphs are

Ubiquitousstructures and many more. They can be used for nearly every appli-
cation to model objects and relationships among these objects. It is
indeed very easy to find examples of graph models:

• Geographic Information Systems (GISs) are general-purpose
systems that cover a broad spectrum of spatially referenced
objects. Among others, they provide graph-based models for
spatial networks like transportation infrastructures [MS01].

• in traditional computer science, compilers use parse trees as
intermediate representation for ultimately generating machine
instructions from a piece of code written in higher-level pro-
gramming languages.

These are just two arbitrary examples picked from the (virtually
endless) list of applications which retrieve, process or make use of
graph-structured data in any form. There are many other examples;

27

fundamentals of hierarchical graphs

these include not only models of real world networks like social
networks, phone call representations, biochemical pathways, proteins
and molecules, but also more generic forms of knowledge representa-
tion, e.g. mind maps, semantic networks, or conceptual graphs.1 All
these examples essentially use graph-based representations for their
purposes.

However, in some cases the expressiveness provided by graphs turnsRationale: Beyond
Graphs out to be insufficient. Complex applications have very specific re-

quirements which cannot be met by standard graph representations.
The latter need to be enhanced into more elaborate forms of represen-
tation in order to meet these strict requirements. To give an example,
one major reason is that graphs, with growing size and complexity,
at some point become impractical to handle. Dealing with massive
amounts of information cannot be just done in an ad hoc manner.
A comprehensive evaluation, for instance of a complex biochemical
pathway like the citric acid cycle in the human metabolic system,
would be more difficult to conduct without any prior clustering or
grouping of data. Likewise, the need to shift from graphs to hierar-
chical graphs arises for systems which organise large collections of
heterogeneous data.

In all these respects, hierarchical graphs offer an enhanced meansEnhanced
Representation for modelling very large and complex structures at several levels of

granularity. What, in a nutshell, is to be understood as a hierarchical
graph? Hierarchical graphs can be intuitively thought of as an exten-
sion of graph representations. They can, for example, be obtained
by imposing a hierarchical structure on a graph, e.g. a particular
decomposition of the graph into several subgraphs [Ste99]. The re-
sulting data structure is more expressive since it allows individually
addressing every part or subgraph within the graph. In case the par-
titioning into subgraphs is recursive, i.e. subgraphs can encompass
other subgraphs on their own, it follows that the resulting hierarchy
consists of multiple abstraction levels. Supplementing this informal
introduction, the following section accounts for a formal definition of
hierarchical graphs and discusses further issues pertaining to these.
However, this brief explanation should be sufficient for the moment
to get a rough idea of what hierarchical graphs are and understand
the argument.

In order to gain a more comprehensive insight into the range and
applicability of hierarchical graphs, consider the following exam-Motivating

Examples ples. They illustrate specific situations which call for an enhanced
representation offered by hierarchical graphs:

computer networks and social networks . The Internet, due
to its enormous size and importance for today’s life, is probably
one of the prime examples for a graph structure. Its structure ba-
sically consists of numerous Web pages (represented as nodes)
and edges called hyperlinks for navigating between different

1 cf. http://conceptualgraphs.org/

28

http://conceptualgraphs.org/

3.1 motivation: from graphs to hierarchical graphs

pages. Figure 6 gives an impression of the overall composition
and topology of the Internet:

Figure 6: Illustration of the Internet topology (from Wikipedia)

Without breaking down the entire network into different do-
mains and sub-domains, it would be quite difficult to get a
clearer picture of its topology, let alone to estimate its dimen-
sions while it is constantly expanding.

But not only the analysis of the network would be hampered.
Imagine a network of these dimensions without a hierarchical
organisation: sending data packets from one computer to an-
other one would not be feasible, because routing algorithms
simply would not scale to meet these dimensions. In other
words, communication via the Web would not be possible the
way it is done today.

Notably, hierarchy has been a key issue in the design of the In-
ternet. One example instantly springs to mind: Among others, Hierarchical

Network Routingthe Domain Name System (DNS) provides a human-friendly,
hierarchical naming scheme for locating and addressing com-
puters which participate in the Internet. Humans can memorise
a grouping of different resources and/or machines more easily
under a common domain name, compared to a handful of plain,
differently-looking IP addresses.

The decentralised nature of the Internet becomes especially ap-
parent when we consider routing between different domains
(a.k.a. inter-domain routing): Rather than being a single system,
the Internet consists of a patchwork of Autonomous Systems2

(ASes). In order to be able to send and receive data packets
across systems’ borders, hierarchical routing protocols like the
Border Gateway Protocol (BGP) have been devised. They ex-
plicitly take advantage of the hierarchical network organisation
for routing [KK77]: the next machines (hops) on the way to the

2 cf. for example http://www.caida.org/analysis/topology/as_core_network/

for a recent analysis of the higher-level topology

29

http://www.caida.org/analysis/topology/as_core_network/

fundamentals of hierarchical graphs

destination machine are chosen according to their connecting
path in the hierarchy (this can be extracted from the prefix or
postfix of the name).

With the advent of the so-called Web 2.0, the social aspect of the
Internet has gained increasing importance. Likewise, we haveSocial Networks
graphs for modelling individual people and their relationships
to other people. Network analysis in this field is predominantly
preoccupied with drawing conclusions, such as detecting shared
connections (which could stand for friendship or business con-
tact) or people who span bridges across different communities,
and other interesting patterns [BCP03]. Clusters play an im-
portant role in this respect. The same repertoire of network
analysis techniques also applies more or less to telephone call
graphs as well as other forms of social networks.

Figure 7: Nested Packages in UML Class Diagrams

software engineering. Graph-based formalisms can be found
throughout the history of software engineering for various
aspects of specifying complex systems: For example, rela-
tional data can be conveniently described by means of entity-
relationship (ER) diagrams. In the object-oriented programmingDiagrams for System

Design paradigm, the dependencies, inheritance relations, and associa-
tions between different classes are graphically represented in
UML class diagrams [RJB04].3 The latter are used to model,
accompanied by UML state charts, the composition and current
state of a system more accurately. Note that nested states are al-
lowed in state charts and also packages in UML class diagrams
can be nested (see Fig. 7). To complement the modelling of static
aspects of a system, Petri nets and activity diagrams, among
others, are used for better describing the dynamic behaviour
and interaction of components.

Even though not all of the systems are necessarily large and
thus difficult to handle, hierarchical graphs still have the ad-Separation of

Concerns vantage that single components, modules and programs can
be represented individually. The separation of a system into
smaller, meaningful components (by applying the principle of
divide and conquer) constitutes a core principle of successful
large scale software design. Hierarchy is a very useful concept
for expressing and, more importantly, organising this additional
information in a convenient manner.

3 Unified Modelling Language

30

3.1 motivation: from graphs to hierarchical graphs

One of the greatest achievements in this area are modules and
components. They allow for encapsulating programs or, more Information Hiding
generally, put forth the principle of information hiding: differ-
ent views on the same information are provided, e.g. based
on access rights (think of the common access modifiers public,
protected, and private in contemporary programming lan-
guages like Java). Depending on the type of a component, it
may only be accessed via its interfaces without further insight
(black box component), or else the detailed interior structure may
be revealed to exterior modules (white box component). This
distinction is important, among others in software testing where
both kinds of components need to be treated in their own right
and checked somewhat differently.

visualisation. Human-friendly navigation and exploration of large-
scale, complex data is becoming more and more important, es-
pecially with the previous examples in mind. The visual way of
conveying information to people can play a major role in getting
them to understand the essential meaning therein. Therefore, a
well organised graphical layout can help people considerably
to interact even with large amounts of data.

Researchers in fields such as Human Computer Interaction
have devoted their efforts to a better understanding of these
issues [Nas01]. Visualisation has also been a key issue in the
graph drawing community [Ead96] and has gained considerable
attention beyond.

Hierarchical graphs are ideally suited in this respect [EF96,
YWR03, Rai04]: They allow for visually abstracting large net- Exploration via

Folding and
Unfolding

works by collapsing subgraphs to a single node and, vice versa,
expanding a complex node to reveal its interior graph structure
if needed. This technique is particularly appealing because it
resembles the way humans inherently organise and deal with
information [HJ85] by making abstractions.4 Folding and un-
folding makes dynamic navigation possible within the graph,
at multiple levels of detail.

In the above examples it is more appropriate to utilise hierarchical Practical Concerns
graphs instead of ordinary graphs. Hierarchical graphs are also es-
pecially useful under practical considerations: For large networks,
despite the mostly ‘good’ polynomial complexity of basic network
algorithms (e.g. shortest path computation), the performance of these
algorithms may still be unfeasible in practice. The response time for
simple queries may be unacceptable, or even worse, the entire net-
work may be too large to fit into the system’s memory. To tackle this
problem, it is necessary to improve the way the data is organised. A
hierarchical representation is preferable under these circumstances: it

4 While computers are quite useful for storing and representing massive amounts of
information, people face difficulties when it comes to understanding and memorising
all this information. However, they adopt abstraction as a key strategy to cope with
these massive amounts of information: only those pieces of information need to
be memorised which are really relevant for a given task (or, at least, those which
provide a rough estimation of the overall structure). Everything else can be omitted.

31

fundamentals of hierarchical graphs

allows breaking down one large graph into smaller, more manageable
pieces that fit into the working memory.

Even if the size of the graphs is comparatively small, it may still
be beneficial to use a hierarchical representation. If subgraphs rep-Intuitive

Representation resent meaningful abstractions akin to human conceptualisations,
they can facilitate navigation tasks for people. Also, if similar graph
queries are posed repeatedly, the hierarchy could help to select only
the relevant parts affected by the query. The hierarchy could, hence,
act as an index structure for obtaining a speed-up on these types of
queries.

3.2 basic definitions and terminology

3.2.1 Preliminary Considerations

What is a hierarchical graph?

Since there are different opinions on this matter, it is difficult to give
a precise answer: on the one hand, hierarchical graphs are intuitive
to understand informally (see Fig. 8). However, their formalisation is
rather intricate because they can be defined in various ways. Despite
a remarkable number of approaches in literature to formalise hierar-
chical graph structures [PL94, FCE95, SM95, JHR98, Ste99], there is
no consensus on a generally accepted definition. When considering a
suitable formalisation for hierarchical graphs, one has to be aware of
certain small subtleties implied by the definitions.

Before dealing with the intricacies of the mathematical definitionsFirst Impression
in detail, let’s first try to get an impression of what hierarchical
graphs typically look like. For this purpose, consider the prototypical
example of a hierarchical graph depicted in Fig. 8:

env

leaf4

clust
leaf2

leaf1

env

clust

leaf2

leaf1 leaf4

leaf3

leaf3

outNode
outEdge

Hierarchy

Base

graph

Legend:

Figure 8: Exemplary Hierarchical Graph

We can see that the (sub)graphs leaf1 to leaf4 together already
bear the content of the entire graph env. However, there is still an

32

3.2 basic definitions and terminology

additional clustering (clust) of leaf2 and leaf3. Apart from this,
the hierarchy is quite simple. Some nodes in the subgraphs have
also connections to nodes in other subgraphs; they are referred to as
outNodes in the legend of Fig. 8, and the respective edges between
two such nodes are called outEdges.

Note that the same information on the hierarchical graph can be Two Different Levels
visualised and thus conveyed in (at least) two different ways – on the
left hand side as an inclusion diagram in the plane (where the sub-
graphs are represented as areas enclosing their respective nodes and
edges), and on the right hand side as a three-dimensional, pyramidal
tree structure (where the subgraphs, too, are represented by nodes
in the tree and inclusion between different subgraphs is represented
by tree edges). There are two distinct levels. We should therefore be
careful not to confuse the nodes and edges in the tree, which are on the
meta-level of the hierarchy and essentially describe subgraphs and
their interrelations, with ordinary nodes and edges in the subgraphs
themselves.

3.2.2 Three Approaches to Hierarchical Graphs

As previously suggested, various definitions of hierarchical graphs
can be found in literature, however all with a slightly different scope
and a different view. In order to gain a common understanding of
hierarchical graphs, we now need to systematically analyse common-
alities and differences among these definitions. In the following, the
main characteristics are illustrated that underlie the most commonly
found definitions:

graph morphism/transformation. Hierarchical graphs are,
generally speaking, a series of different graphs at different levels
of detail or granularity. Two graphs of subsequent levels l and
(l + 1) are linked together in the sense that the nodes at the
higher abstraction level (l + 1) correspond to subgraphs at the
lower abstraction level l. In other words, the two graphs (let’s
call them Gl and Gl+1) can be obtained from each other by
either refining certain nodes in Gl+1 to subgraphs of Gl, or,
the other way around, by abstracting subgraphs at level l to
nodes at level (l + 1). Apparently, one can define mappings or
rules that explicitly state how such a transformation process is
carried out:

Definition 3.2.1 (Hierarchical Graphs via Graph Morphism/-
Transformation). Given a graph Gl = (Nl, El), we can obtain
the hierarchical graph Gl+1 of the next coarser level (l + 1)

by applying a series of so-called graph morphism functions ml.
These functions map subgraphs Sl = (Ns ⊂ Nl, Es ⊂ El) of Gl

to nodes of Gl+1:
ml : sl ∈ Sl 7−→ nl+1 ∈ Nl+1}. The graph morphism functions
ml are required to be bijective, which ensures a direct one-to-one
correspondency between subgraphs sl and nodes nl+1.

33

fundamentals of hierarchical graphs

Note that the definition only tells us how to obtain nodes of the
next level graph Gl+1, but what about the edges of Gl+1?

By choosing certain subgraphs of Gl to be coarsened, the graphImplicit Edges
morphism ml already implies (although it is not made explicit)
how to treat edges: we can distinguish between internal edges
of a subgraph and external edges (the outEdges in Fig. 8) which
cross the borders of the subgraph. The latter kind of edges
are, for this reason, also referred to as boundary-crossing edges.
With this additional information in mind, there is a natural way
of defining edges for the higher-level graph Gl+1 – for every
internal edge el within a subgraph sl (connecting two nodes in
sl), there is no corresponding edge in Gl+1.

However, all external edges leading out of the subgraph sl

to another subgraph rl are represented as edges in Gl+1 be-
tween the nodes ml(sl) and ml(rl) (which are the images of
the subgraphs sl, resp. rl in ml).

In the most general form of definition, different subgraphs of GlOverlapping
Subgraphs? may principally overlap. However, in many cases, definitions

are more restricted for practical reasons: either the overlapping
part of subgraphs Sli ∩ Slj may only contain nodes, but no
edges [JHR98], or overlapping is prohibited completely [Rai04].
Even if there are no overlaps between subgraphs, one does not
lose expressiveness: it is possible to represent any overlapping⋂

n Sln of a number of subgraphs Sln in Gl explicitly, by an
additional subgraph (the intersecting nodes and edges are re-
moved from the involved subgraphs Sln, then). There can be
2|subgraphs| combinations, though.5 Anyway, all definitions
require that the partitioning into subgraphs is complete, i.e.
covers the entire graph Gl (or else information on the most
detailed graph would be lost in the higher levels of coarsening).

Summarising, the function ml can be used to obtain a coars-Construction of a
Hierarchical Graph ening of a graph Gl+1, whereas its inverse counterpart m−1

l

describes the backward mapping which can be interpreted as
refinement operation of a higher-level node. Together, the two
functions are expressive enough to fully cover the relationships
among graphs of different abstraction levels. There is a direct
consequence: This viewpoint allows us to construct hierarchical
graphs in a bottom-up manner, beginning with a detailed base
graph G0 (which is initially flat). The construction can be per-
formed by recursively applying different coarsening functions
ml to some subgraphs of Gl (an example for a multiple appli-
cation of coarsening would be mn(mn−1(. . . (m0) . . .))). Once
the hierarchy is defined, it can be navigated top-down, from the
coarsest representation, by refining nodes to reveal their match-
ing subgraphs in the next lower level. For applications which
allow for visually navigating through a hierarchical graph by
means of folding and unfolding, this kind of definition is an
ideal starting point.

5 This is the reason for explicitly representing overlaps as separate subgraphs. Other-
wise, all overlaps have to be computed during processing.

34

3.2 basic definitions and terminology

node partitioning . Alternatively, a hierarchy of graphs can be
defined via a (recursive) partitioning, e.g. over the node set of a
base graph. Partitioning also yields different subgraphs. This
technique is, for example, convenient when we have certain
clusters of nodes or at least a scheme (according to some spe-
cific criteria) for obtaining such a clustering. All knowledge
pertaining to the hierarchical organisation is held separately
from the ordinary graphs. It is encoded in the partitioning itself:

Definition 3.2.2 (Node Partitions, Induced Subgraphs). Given
a base graph G = (N, E), a hierarchy is defined by a (recursive)
partitioning P = P1, P2, . . . , Pk of the graph’s node set into k

different node partitions Pi ⊂ N. Each of these partitions induces
a subgraph Si. Especially, this subgraph comprehends all nodes
of Pi and all internal edges of Pi, that is edges connecting pairs
of nodes which both lie in Pi: Si = (Pi ⊂ N, Ei ⊂ E)|Ei =

{(ns, nt)|ns, nt ∈ Pi}.

This view of a graph hierarchy is pretty similar to the one Pros and Cons
suggested on the left hand side of Fig. 8 – subgraphs are equiv-
alent to node partitions. Each subgraph/partition represents
a selected portion of the base graph. Partitions and partitions
of partitions form the levels of the hierarchy. The root is the
coarsest subgraph which is not part of any other subgraph. The
level of a partition is intuitively understood as its depth w.r.t.
the root.

Note that partitioning is understood in a strict mathemati-
cal sense here (jointly exhaustive, pairwise disjoint partitions).
More precisely, the partitions cover all nodes, and there is no
overlap at nodes for different partitions (otherwise, we would
not obtain a strictly tree-shaped hierarchy). Note that not all
edges are covered by the partitions: there are some edges be-
tween nodes in different partitions. They do not belong to any
partition, but are only modelled in the base graph.6 As we shall
see, these special nodes of a partition Pi which possess also
edges to other partitions are of interest for path finding. They
are called border nodes: Nb(Pi) = {nb ∈ Pi|∃e = (nb, nj) ∈
E ∧ nj ∈ Pj 6= Pi}.

The strength of the previous definition of node partitions lies
in the explicit distinction between hierarchy and graphs: while
the hierarchy is described completely by the partitioning into
subgraphs and does not resort to any form of nodes or edges for
representation, the graphs alone can contain nodes and edges.
However, on the downside, it is not clear where to place the
edges that connect different partitions other than in the base
graph. Particularly in the case of multi-level, recursive partition-
ings, situations are conceivable where an edge simultaneously

6 There are also alternative definitions of partitions covering all edges. However, they
result in overlapping partitions which we want to avoid.

35

fundamentals of hierarchical graphs

connects different partitions of different abstraction levels. Al-
though everything is encoded in the base graph, it may not be
feasible to represent the entire base graph (e.g. due to its size
or other concerns of a practical nature) only for these edges. A
separate encoding of the subgraphs would be preferable in this
case, but where do we then put the edges which span across
different partitionings?

equivalence classes . All nodes in one partition are considered
equivalent under some clustering criterion. Hence, an alterna-
tive formalisation of the partitions is also possible by means of
equivalence relations:7

Definition 3.2.3 (Node Equivalence). We assume that a base
graph G = (N, E) is given, together with k binary equivalence
relations ∼1, . . . , ∼k⊂ (N×N). Two nodes ns, nt ∈ N belong
to the same class iff they are k-equivalent, i.e. ns ∼k nt (infix
notation).

From this definition, it is easy to obtain the aforementioned
partitions: Assigning the set of internal edges Ei of a subgraph si

to the relation ∼i makes the equivalence class coincide with the
corresponding node partition Pi that is associated with si. Note
that we do not only need one equivalence relation, but indeed
k relations to describe all of the k different node partitions
accordingly. So this is just another way for defining hierarchical
graphs, but in essence the expressiveness is the same as for
partitions and graph morphisms.

Equivalence classes prove their usefulness when constructing
a hierarchy: they can serve as a similarity criterion for the
clustering of previously unknown or unrelated data. On the
other side, the explicit statement of equivalence between nodes
might lead to a vast number of relations, which is not the
optimal choice from a storage point of view.

In short, all three presented formalisations – albeit different – are
equally expressive in the end [Ste99]. As Fig. 9 suggests, it is fairly
easy to move from each formalisation to the other ones:

Figure 9: Three Approaches for Defining Hierarchical Graphs [Ste99]

However, choosing the ’right’ style of formalisation which suits one
particular application best is highly dependent on the characteristics

7 by definition, an equivalence relation is reflexive, symmetric, and transitive.

36

3.2 basic definitions and terminology

of the application and its specific requirements. The bottom line
is that subgraphs can be regarded as a primitive to the construction
of a graph hierarchy, irrespective of the way these subgraphs are
actually obtained (be it from partitioning, equivalence relations, or
graph morphism). Common to all these definitions is the fact that the
hierarchy can be constructed from a base graph in a top-down manner.

3.2.3 Further Definitions and their Classification

There is yet another handful of definitions for hierarchical graphs
which are similar, but in other ways different from those previously
given. All rely on a common basic formalisation using nodes to
describe both subgraphs and nodes appearing in subgraphs. Besides
this different approach to formalisation, the main difference lies in the
way a hierarchy can be constructed according to these definitions. So
let’s have a closer look at these definitions: First, there is a particular
concern regarding the nomenclature of hierarchical graphs. It is
mainly due to the coexistence of multiple names, all suggesting
similar notions of a hierarchy:

• nested graphs [PL94],

• compound graphs [SM95],

• clustered graphs [FCE95].

The last two types of hierarchical graphs, compound- and clustered
graphs, have a common formalisation as a basis which departs only
at one point. The common formalisation looks like this:

Definition 3.2.4 (Hierarchy as Tree). Given a graph G = (N, EG), we
can additionally define a hierarchy as a tree T = (N, ET) spanning
over the same set of nodes N. This essentially means that some nodes
in G are subgraphs which may contain other nodes in G. Notice
that the relation ET of tree edges represents inclusion, so it must be
directed.

Alternatively, the entire information can also be represented in just
one graph if we properly distinguish between the two kinds of edge
relations: EG stands for node adjacency and ET for hierarchic inclu-
sion (these are two semantically different notions). This results in a
particularly succinct notation for hierarchical graphs, where every-
thing is encoded in one graph.

Albeit succinct, this notation is rather irritating because it mixes
two conceptually different levels and forces them into one sole repre-
sentation: on the one hand, we have the meta-level of the hierarchy
(the tree T), with subgraphs and relations among subgraphs. On
the other hand, there are the ordinary nodes which are leaves in
the hierarchy (i.e. they have no more descendants in T). Both are
represented as nodes in N (the same node set is shared by both G

and T). As this example suggests, a strict separation between the
hierarchical structuring itself and the individual graphs is preferable.

37

fundamentals of hierarchical graphs

This representation is, notably, more expressive than the previous
ones. The underlying reason is that adjacency edges (EG) can be
defined in a variety of different ways: more precisely, for every pair
of nodes in N, irrespective of a node in N being a subgraph or a
proper node, we can define an edge (also across different hierarchy
levels!). However, this representation has an inherent problem: there
is no uniform way to model edges. Determining the actual meaning
of edges can thus cause trouble. In particular, the question arises
whether a higher-level edge between two subgraphs should be ex-
plicitly defined if it can be derived from existing lower-level edges
which connect nodes in the two subgraphs. The answer depends on
the precise type of hierarchical graph.

Clustered graphs and compound graphs both share in principle
the common definition from above. They differ, however, in the
restrictions imposed on edges:

• Clustered graphs are a special subclass of compound graphs.
They allow edges (EG) only between leaves of T , i.e. nodes
which do not have further subgraphs.

• In contrast, compound graphs are more general, offering more
freedom for defining edges: any two nodes in G can be con-
nected by an edge e ∈ EG as long as they are unrelated in the
hierarchy (i.e. no descendants or ancestors in T).

Consequently, clustered graphs are semantically equivalent to theIntricacies of Coarse
Edges definitions given in section 3.2.2 because the boundary crossing con-

nections between nodes in different subgraphs appear only at the leaf
level (i.e. in the base graph). The problem with compound graphs is
that not all connections between subgraphs have an according edge
at the leaf level. We call these edges coarse edges. In a sense, these
coarse edges are inaccurate or vague connections if they exist only on
an abstract level between subgraphs, without reference to the most
detailed nodes (i.e. leaves). We essentially lose information with
this way of modelling, since it is not specified where exactly this edge
leads into the subgraph (see also Sect. 4.2.4). This has tremendous
implications for path finding across different hierarchy levels: we do
not know where an abstract path continues in the subgraph, thus
cannot relate it to a concrete path running inside the subgraph.

Nested graphs [PL94] are yet another formalisation for hierarchi-
cal graphs, based on simple equations:

Definition 3.2.5 (Hierarchy as Nested Graphs). We can define a
hierarchy as a set of graphs, i.e. equations of the form G = (N, E).
Different graphs Gi = (Ni, Ei) and Gj = (Nj, Ej) can be related by
means of defining a nesting Gi := nj for an nj ∈ Nj.

The definition of nested graphs is appealing from a pragmatic point
of view: in practice, there are often a set of independent graphs to be
connected (instead of just one base graph to be split). This assumption

38

3.2 basic definitions and terminology

is realistic for geospatial networks (cf. Sect. 4.1.1). Compared to the
previous definitions, nested graphs allow only edges between nodes
in the same graph, that is siblings in the hierarchy. For nested graphs,
in turn, the same problem applies as for compound graphs: there
are coarse edges, on an abstract level, which have no corresponding
nodes as leaves.

3.2.4 Important Questions for Spatial Applications

Remember that our primary attention is not focused on a theoretical Practical Stance
discussion of various formalisms for defining hierarchical graphs. We
are instead more interested in dealing with hierarchical graphs from
a practical viewpoint. Therefore implementation issues are the first
priority in our considerations. Our goal is to model networks from
the spatial domain – first and foremost indoor environments – by
means of hierarchical graphs.

First of all, it has proven useful for indoor environments to choose a
special kind of graph for modelling, namely a multigraph:

Definition 3.2.6 (Multigraph). A multigraph Gm = (N, Em) has a
set of nodes N and a multiset of edges. For each pair of nodes
n1, n2 ∈ N, there is a separate set of edges En1×n2 ∈ Em. Each edge
e ∈ En1×n2 is called multiedge.

This definition comprises a generalisation of graphs, allowing several
parallel edges between a pair of nodes. Each multiedge is distin-
guishable from the others. It is convenient to use these multigraphs
instead of ordinary graphs as a basis for forming a graph hierarchy,
because they are more expressive. In the next chapters, it is shown
why this modelling makes sense for geospatial networks, especially
indoor environments. In respect of the hierarchy, a question emerges
to reflect on:

How can a hierarchical graph structure be constructed, stepwise?

Related to this question is also the point what a hierarchical data Implications for
System Designstructure should look like and which basic operations should be

supported for its construction and further manipulation. Therefore
our definition should orient towards usability and provide easy-to-
implement operations on a hierarchical graph. These aspects are
covered in Chapter 4 in more detail. We especially need a consistent,
versatile representation of a hierarchical graph structure which can
be updated and manipulated in many different ways.

For this purpose though, one has to become aware of one important Particularities of
Spatial Networksfact: dealing with (geo)spatial networks, the above made assumptions

for obtaining a hierarchical graph are not realistic; they often do not
hold:

1. we usually do not have a hierarchical structure a priori.

39

fundamentals of hierarchical graphs

2. neither do we have one comprehensive base graph from which
the hierarchy can be constructed in a top-down manner. The
starting point is more often a set of ordinary flat graphs which
are unrelated (see Sect. 4.2).

This view however goes beyond the simple hierarchisations in whichTop-Down vs.
Bottom-Up
Construction

one base graph is recursively split into different subgraphs. The
simple hierarchisations used in the previous definitions do not apply
in this specific situation where we lack a single base graph to start
from. In fact the opposite is the case: instead of partitioning one large
graph into pieces (top-down construction), one has to assemble this
graph first from a number of smaller graphs (bottom-up construction).
Each of these smaller graphs appear as independent fragments in the
large graph. The main focus of this approach is on integration.

The flexible construction and maintenance of a consistent hierar-Need for Extensions
chy is a little more sophisticated than in the previously discussed
cases. We need to understand hierarchical graphs in a broader sense
so that they can be constructed in more difficult situations as well, i.e.
in absence of a base graph. How can, for example, different spatial
networks be integrated seamlessly into a larger system if this system
involves many different spatial networks (a typical case in an urban
environment)? This problem is tackled in the next chapter, where
the idea of using hierarchical graphs as a geospatial world model is
explained.

3.3 hierarchical path finding

Shortest path algorithms in graphs are among the most well-studied
problems in Computer Science and Artificial Intelligence. Thousands
of scientific articles have been published that build on Dijkstra’s note
from 1959 [Dij59]. Variants of this algorithm are often used in practice.
They work rather efficiently, that is in O(n× log n) time (with n being
the number of nodes in the graph) given a smart use of advanced
data structures like Fibonnaci heaps [FT87].

However, in very large and complex systems, such as Geographic
Information Systems (GISs) for traffic and traveller information, there
has been a need for improving the performance for queries over
graphs of massive size. Pragmatic considerations speak in favour of
using hierarchical graphs as underlying navigation model: for this
purpose, the large graphs have been partitioned into a set of smaller
fragments. The organisational structure behind this was a hierarchy.
Experiments conducted e.g. by Jing et al. [JHR98] and Shekhar et
al. [SFG97] could show a gain in the processing time of shortest path
queries by using hierarchical graphs instead of ordinary graphs.

We now want to present some of the different algorithms for hi-
erarchical path finding and their general idea. Roughly, hierarchical
path finding algorithms can be subdivided into three main categories:

• classic refinement search,

40

3.3 hierarchical path finding

• hierarchical A?,

• hierarchical optimisation with (partial) materialisation of costs.

Each of the three families of algorithms has its particular strengths
and weaknesses. In order to compare them, we consider the following
set of criteria: optimality states whether the algorithm is guaranteed
to find an optimal path with respect to a given cost function, complete-
ness states whether the algorithm terminates (at all) on different sorts
of input graphs, heuristic expresses, if necessary, the dependency of
the algorithm on a particular heuristic, pre-processing explains if the
algorithm can be run instantly, or else what form of pre-processing is
required, and finally parallelisation describes the number of sub-tasks
and -paths which can be computed in parallel.

We illustrate the principal ideas of the subsequent algorithms on
a simple example:

2

5

1 2

3 4 6

3 4

5
3

2
41

2
2 1 2

2

3
4

1

f

2

a q

n

m l

ki

h
j

g

pb
c

d

f

o

e

y

x
3

4

2

3

3

r

4s1

s2

s6

s5

s3

s4

Legend: start/destination node boundary-crossing edge

 node in subgraph shortest path from a to n

 border node in subgraph subgraph

Figure 10: Example for Illustrating Different Methods of Hierarchical
Path Finding

3.3.0.1 Refinement Search

Refinement search is the most classical form of hierarchical planning.
It was proposed in the early days of AI research by Sacerdoti [Sac73].
The underlying idea is very simple:

It assumes that a problem space (in our case, a base graph) is de- Basic Idea
scribed at successive levels of abstraction. In Fig. 10, this is just one
additional level of subgraphs. The motivation of this approach is to
solve problems by looking at their most abstract description first: the
algorithm finds a solution (i.e. path) in the simpler abstract descrip-
tion, and then refines it to several problems which have to be solved
in the next level of detail, and so on. This process is repeated until a
solution is found in the original problem space. The abstract graph
where refinement search starts for the concrete example is depicted
in Fig. 11 below.
On the one hand, we have the advantage that refinenemt search Pros
pre-selects a number of promising candidates for abstract solutions.

41

fundamentals of hierarchical graphs

s1

s2

s3

s6

s5

s4

(5)

(6)
(4)

(3)

(5)

(2)

(4)

(3)

(3)
(2)

(1)

Figure 11: Refinement Search in an Abstract Graph

Unpromising alternatives are pruned already in the early stages of
search. In practice, this can accelerate search considerably because
when we exclude abstract nodes, we exclude whole subgraphs at once.
Besides this, solving partial problems at one particular abstraction
level can be done in parallel. These solutions need to be combined in
the order of the coarser solution.

On the other hand, refinement search relies on the fundamentalCons
property that search is conducted monotonically: that is, once an ab-
stract solution (path) has been determined, it is refined immediately
(in the example of Fig. 11, the abstract solution is s1, s6, s5). This
choice influences all subsequent steps. They cannot be changed later
on, when it should become apparent that there is a better solution
for the problem (like the path a,c,e,q through s2). So essentially,
there is no backtracking from a finer abstraction back to a coarser
abstraction. This way, refinement search cannot guarantee finding
optimal solutions: there is a trade-off of reduced processing time
against the quality of solutions. For practical purposes, the found
solutions could still be good enough. Refinement search instead
makes use of a heuristic which assesses costs to abstract solutions.
Usually, a heuristic works well if the weight of one is assigned to
every abstract edge [HMZM96]. Solutions may well be suboptimal
in case that the heuristic costs of an abstract solution (path) turn
out to be underestimated. The algorithm’s overall performance and
thus the quality of the final solution very much depends (besides the
heuristic’s significance) on the way the problem is decomposed and
abstractions are formed. Moreover, refinement search is unfortunately
not even complete – there can be certain graphs with corresponding
abstractions where the algorithm would need to backtrack because
no solution can be found for a subproblem (although the abstract
path is valid). An example are subgraphs which are not internally
connected and therefore cannot be traversed (if the connection from
b to g were removed in s2, for instance). This issue has to be handled
in a pre-processing step where the abstractions (subgraphs) of the
problem are formed. One could allow for instance only subgraphs
which form connected components as valid abstractions. Still, the
problem remains unsolved for dynamic cost functions, when costs
depend on a particular user group or role (e.g. no traversal of edges
typed ‘stairs’ for persons in a wheelchair or nodes of type ‘laboratory’
for non-scientists).

42

3.3 hierarchical path finding

3.3.0.2 Hierarchical A?

Hierarchical A? [HPZM96] is another way of hierarchical path finding.
It differs from refinement search in one important aspect: backtrack-
ing is allowed. Search is however performed just in the base graph
so that there are no advantages of parallelisation whatsoever. The
algorithm is therefore not hierarchical in a strict sense; the hierar-
chy is merely exploited for obtaining a good heuristic. So like its
non-hierarchic variant, it uses an admissible heuristic [HNR68] to
guide search (by underestimating the remaining distance to the goal
node). Unlike refinement search, an optimal solution is found and
the algorithm is complete.

In the hierarchical case, this estimate is defined as the shortest dis-
tance of the abstraction of the current node to the abstraction of the
goal node. It can be calculated from the abstract graphs. Abstract
edge weights are set to one, so that they do not overestimate the
actual weights in any case. It has proven useful in practice to cache
the heuristic function for the same goals. As shown by Holte et
al. [HPZM96], hierarchical A? outperforms blind search (i.e. search
in the original base graph without hierarchisation), although in some
cases only marginally.

3.3.0.3 Hierarchical Optimisation with Materialisation

Finally, there is also hierarchical optimisation which makes use of
materialisations of partial solutions. These algorithms have been
proposed among others by Jing et al. [JHR98] and Shekhar [SFG97].
They provide optimal solutions, but require a remarkable amount of
pre-processing for this purpose: First an auxiliary graph is created at
every level of the hierarchy, beginning from the most detailed graphs.
This auxiliary graph consists of all border nodes of the respective
subgraph, their boundary crossing edges, plus abstract edges for pairs
of border nodes of the same subgraph if they are internally connected
(i.e. there exists an internal path in the respective subgraph). Their
weights are thus of the shortest paths between border nodes. These
have been previously calculated by a normal all-pairs shortest-path
algorithm in the subgraph. An example of such an auxiliary graph is
shown in Fig. 12:
Additionally, for every node a routing table is stored. It contains
the next node on the shortest path to all other nodes in the same
subgraph and the corresponding costs to get there. This table is called
‘encoded path view’ [JHR98]. It is hierarchical because edge weights
of abstract levels depend on the shortest paths at more detailed levels.
There is no use of a heuristic. However, with this massive amount of
pre-computation, some limitations of the approach become apparent:
if, for example, some edge weights can only be determined at runtime
(in case a particular query with context information is posed) or the
weights change due to some constraints, all preprocessing cannot be
done or was in vain. Notwithstanding, some limited possibilities of
adjusting paths for changed weights exist in the approach of Jing. But

43

fundamentals of hierarchical graphs

s3

s2

s1

s4

s5

s6

3

3 2

4

5

3

4

2

2
2

4

6

2
4

1

3

4

3
1

5

6
1

Figure 12: Auxiliary Graph between Border Nodes

with an increasing number of changes, the preprocessed structure
becomes more and more inappropriate for queries.

3.4 summary

For the reasons laid out in Section 3.1, graphs can be extended to
hierarchical graphs; the latter provide additional means for group-
ing/clustering nodes and edges. Knowledge representation with
hierarchical graphs is consequently more rich and diverse compared
to ordinary graphs. There are a couple of different definitions for
hierarchical graphs in literature. They have been discussed in the
preceding sections, along with the main criteria for comparing them.
Summarising, the additional expressiveness of hierarchical graphs
stems from the (repeated) clustering or partitioning of a base graph
into different subgraphs. This can be achieved by applying a particu-
lar decomposition for this base graph.

Two classic arguments speak in favour of using a hierarchical graph
representation:

1. scalability and efficiency when dealing with very large graphs
(principle of divide and conquer),

2. additional value for human-friendly manipulation and naviga-
tion in large graph structures (even for smaller graphs, adding
meaningful clustering information can be helpful).

In addition to these arguments, there is a novel aspect to con-
sider:

3. integration of spatial networks.

Hierarchical graphs are not only a convenient means/heuristic for
accelerating the computation of shortest paths in large graphs or a
better visualisation of these large graphs. The inverse case is also
possible: different (sub)graphs can be merged together to compose

44

3.4 summary

a larger graph. The next chapter explains how hierarchical graphs
can be additionally used as a common basis for the integration of
heterogeneous spatial networks.

45

fundamentals of hierarchical graphs

46

Part II

C O R E D E S I G N W I T H D ATA S T R U C T U R E S
A N D A L G O R I T H M S

4C O N C E P T U A L D E S I G N O F A H I E R A R C H I C A L
G R A P H S Y S T E M

4.1 Top-Level System Architecture 49
4.2 Basic Operations and Consistent Construction of

Hierarchical Graphs 60
4.3 Summary . 77

In this chapter, the general design issues of a hierarchical graph sys-
tem are addressed for a practical point of view together with their
theoretical underpinnings. One particular requirement is the integra-
tion of different graphs from different domains and data sources (e.g.
representing different kinds of spatial networks). It is assumed that
the data sources are distributed over the Web. A comprehensive sys-
tem architecture is proposed for this purpose and a proof of concept
implementation is presented, too. The system centres on hierarchical
graphs. The notion of a mediator is introduced for handling the
information flow between different elements (graphs) in the system.
Hence the overall system can be regarded as a general toolkit for
managing a set of heterogeneous, distributed graphs. A versatile set
of operations is provided for incrementally creating a hierarchical
graph out of flat graphs. Last but not least, different options are
explored for incorporating context information into the system ar-
chitecture (for path finding under varying conditions and constraints).

In Chapter 5, the introduced basic operations are used when applying
hierarchical graphs to the concrete domain of indoor environments.
Nevertheless, the concepts defined in this chapter are general enough
to be easily applied to other domains as well: For example, one can
integrate any conceivable kind of networks which can be represented
as (hierarchical) graphs, e.g. indoor environments with a street net-
work and/or a railway system, street networks with a railway system,
etc.

4.1 top-level system architecture

4.1.1 Rationale: Distributed, Heterogeneous Spatial Networks

Imagine a navigation system which can provide detailed answers to Exemplary Query
queries like “How do I get from the lecture in room D1.13 of the university
building to my grandfather in room 134 in the surgical care unit of the Red
Cross hospital?”

The basic problem can be boiled down to a shortest path planning Why the Query is
Difficult to Answerproblem, which has been well studied for graphs. However, this

problem tends to be much more complicated in practice:

In the domain of geospatial information processing, one is espe- Distributed
Networks

49

conceptual design of a hierarchical graph system

cially confronted with the aspect of data organisation. In order to
answer the query one has to determine its scope – which networks are
relevant for answering the query? Solving the path problem sketched
above involves knowledge of both buildings and the intermediate
road network. Therefore our navigation system has to consider these
networks. However, geospatial data (including spatial networks) are
usually distributed; there is no central organisation. Data pertaining
to different networks are proprietary. They are usually owned by
different companies or organisations: the government which operates
the street networks of a city, public transport companies, various
airlines and railway companies, the owner of a particular building,
et cetera. This means, in our concrete example, that all three spatial
networks pertain to different organisations. They are maintained in
separate graphs/systems, independent of each other.1

It is, thus, inevitable to integrate these distributed spatial networks toAdvantages of
Distribution answer domain-crossing queries in the style of the above mentioned

query. Even if data were not kept separately for the above reasons,
distribution is beneficial from another, practical point of view: it
would not be feasible to have all graphs represented in one single
system. In a large application, e.g. comprehending the major cities
of Europe, the total size of all graphs would certainly exceed the
memory capacity of a single system. Instead, the graphs should
be organised in a way that they are loaded according to need, i.e.
whenever a graph is deemed relevant for answering a query. The
above mentioned query for example, requires only the networks of
one city (a small fraction of the complete system); there is no need to
plan a trip across different cities. So we can prune all other networks
for the processing of this particular query.

Distribution is, by virtue of these practical considerations, a cen-Processing with
Hierarchical Graphs tral aspect to be taken into account. Among others, it also affects

the design of a suitable path finding algorithm: we can only apply
a classical graph algorithm on an individual graph. For composing
a path across different networks, several partial results need to be
combined. Note that the partial results can only be locally optimal –
they do not consider the other parts. However, there is also an ad-
vantage: they can be potentially computed in parallel given that the
graphs are distributed. We can make use of a family of algorithms
and techniques specifically designed for hierarchical graphs. They are
more sophisticated than in the flat case. Examples include refinement
search [HMZM96] or hierarchical planning [Sac73]. The details of
these hierarchical path finding techniques are laid out in Sect. 3.3. In
Sect. 5.5, we illustrate the basic concepts on the concrete example of
indoor environments.

Second, even if we employ a suitable path finding algorithm, theRoute Descriptions
resulting paths still need to be explained in a way that is comprehen-
sible to people (e.g. in form of verbal instructions and/or graphics).

1 only large commercial companies can afford to collect vast amounts of data over
years and bring them together with great effort.

50

4.1 top-level system architecture

This is a problem on its own. It is important to give human wayfind-
ers guidance and lead them along a path. Plans in form of qualitative
route descriptions are also appealing from the perspective of data
owners: They may not be willing to reveal all details of a network (i.e.
one should not be able to reconstruct the network by posing a large
number of overlapping queries and subsequent path integration).
Because of the substantial differences of individual domains (indoor
vs. outdoor, public vs. private transport, etc.), specific techniques
might be applied for each kind of network. Giving practical path
descriptions is more sophisticated than just path finding, although it
is very specific for the kind of network considered.

For the time being, a universal navigation system for answering Status Quo
such domain-crossing queries does not exist. Diverse factors are
responsible for this:

Considering each system on its own, specialised solutions are avail-
able, e.g. for automobiles or other kinds of outdoor spatial networks.
However, integration between the different systems is lacking for
the most part (due to the inherent diversity and distribution of data
discussed before).

Another reason is that pedestrian indoor navigation is still a major
research challenge. It seems as though indoor environments cannot
be handled just in the same way as outdoor environments. To date
there is no unique, generally accepted representation of an indoor
environment, but a variety of different representations prevail (see
Sect. 2.1). Under these circumstances, integration is quite a demand-
ing task.

Consequently, none of the existing systems is capable of planning
across all three different networks of the example (two of which are in-
door environments). For outdoor networks though, there are simple
approximations for working around integration problems if a com-
mon global spatial positioning and reference system like WGS − 84

is employed. One can estimate a path in a foreign network only by
its Euclidean distance if internal data is not available or accessible. In
any case, the core of the problem today lies in this inherent distribu-
tion. That is also the reason for plans being mostly restricted to one
network and/or domain only.

Consider for example existing online route planning systems (a selec- Online Route
Plannerstion can be seen in Table 2): Their architecture can be roughly divided

into the three components of user interface, core application system,
and digital map data. This three-tier architecture follows a common
pattern for Web-based information systems. These route planners are
specialised, but standalone systems relying mostly on a flat graph
structure. Especially, they are not designed to work together with
other route planning systems.
It is striking that different Web pages essentially use the same ap- Preliminary

Analysisplication core. Furthermore, comprehensive map data is difficult to
find – only few companies provide digital map data. The interest
of data owners is to protect their data. All these factors impede the

51

conceptual design of a hierarchical graph system

User Interface / Web Page Core Application System Provider of Digital Map
Data

map24.com MapSolute Europa Technologies, Tele
Atlas, NAVTEQ

www.meinestadt.de mapsuite Tele Atlas
Route Planner of aral.de MapPoint NAVTEQ
www.maps.google.com Google Maps API Tele Atlas

Table 2: Architecture of a Couple of Online Route Planners [Was07]

design of a generic system. In an ideal architecture the same kind
of components would adhere to the same interface. They would be
replaceable, so we would consequently have a much more flexible
architecture.

In recent years the Open Geospatial Consortium (OGC) has putOpenLS – Towards
Standardisation some major efforts into the integration of geographic Web services

for navigation and location-based services, predominantly with the
OpenLS initiative (see [Ope]). The OpenLS is, as the name suggests,
a set of open standards that specifies common interfaces for this pur-
pose. Specifically, Part 6 is dedicated to the specification of navigation
services and the exchange of location information (the details are
shown in Fig. 13). It is to a large extent inspired by the domain of
car navigation, for which the most elements are specified. But there
has been growing interest for human outdoor navigation as well
with the availability of mobile devices and upcoming location-based
services, so that walkways and means of public transport are also
taken into account. In the specification, different requirements are
stated by means of use cases. They are then converted into an XML
schema with abstract data types. This schema is destined to be used
as a standard protocol between different components implementing
a navigation service. However, the internal processing has to be
implemented for each component individually.

Although the approach certainly reveals good points, it is somewhatReview
dominated by the theme of car navigation or, more generally, outdoor
scenarios. Nonetheless, it is worthwhile investigating to what extent
the standard can be adopted for the purpose of indoor navigation.
This cannot be done in an ad hoc way, but requires further adjustment:

The defined concepts do not yet cover indoor environments. However,
we could use the generic, high-level concepts in the specification and
extend them. To give a concrete example, the RouteSegmentCategoryType
would have to be extended to include rooms, corridors, and other in-
door structures. Moreover, the RouteCostModelType and CostCriteria

would have to be subclassed in order to define specific criteria ap-
plying to indoor environments. Ideally, this would result in an on-
tology/taxonomy for the elements of a building specifically tailored
for navigation. Depending on the level of detail, this extension could
probably be realised with a manageable effort.

52

4.1 top-level system architecture

Figure 13: OpenLS Information Model [Ope]

However, there is a more acute problem. The style of giving in- Can OpenLS be
Adopted for Indoor
Environments?

structions in indoor environments is usually more complicated and
does not necessarily match with the simple turn-by-turn instructions
suited for car navigation. This fact is, among others, backed up by
Hansen et al. [HKR06], who have extended the OpenLS specification
for providing cognitively more adequate route descriptions, e.g. with
a special technique spatial chunking. The extension is ergo called
‘Cognitive OpenLS’. A further, related point of criticism is that the
semantics of navigation can only be covered to a part with such a
schema specification. A proper ontology as means of knowledge
representation would be a more adequate solution.

It therefore makes sense to reconsider the suitability of OpenLS only
after having investigated the characteristics and complexity of route
instructions for indoor environments. So the question is deferred to
future work.

4.1.2 Hierarchical Organisation via Mediators

With a hierarchical graph architecture, however, the lack of integration Building the
Foundations for a
Meta Navigation
System

between separate networks can be overcome. In this chapter, the nec-
essary foundations are explained for realising such a meta navigation
system (which plans across the borders of a single domain/graph).
The goal is to provide a system capable of managing several different
networks side by side. These networks are distributed in a physical
sense: they can be separately stored on different, possibly remote
machines. For the system design this means that there is not a single
instance controlling the entire data. Rather, we stick to the principle
of ‘divide and conquer’: each network/graph can be seen as an inde-

53

conceptual design of a hierarchical graph system

pendent unit encapsulating its own data. There is also a component
for each graph that manages queries to it. Hence, we are dealing
with a distributed architecture – each component is responsible for a
certain part of the overall work.

But this alone is not enough: each component operates withoutMediator for
Coordinating
Distributed
Networks

detailed knowledge of any other parts. For linking together different
networks (e.g. to answer queries across different networks), a central
component is required.2 We call this coordinating component the
mediator. The mediator comprises an integrated computational rep-
resentation of distributed networks. Each of these networks can be
accessed via an Unique Resource Identifier (URI). Moreover, the me-
diator plays a central role in query processing: the mediator accepts
queries from users (or other systems), then delegates subtasks to the
corresponding components (networks), composes the partial results,
and finally delivers the result to the user/system. A prototypical
example of this high-level architecture is illustrated in Fig. 14. As a
prerequisite, the partial results of the single graph systems should be
compatible for they have to be combined. The final result delivered
by the mediator is a concatenation of such partial results with linking
elements between networks (see Fig. 14).

Mediator

Graph Mediator

Graph System

Query Query Query

Graph System Graph System

Graph

Data

Graph

Data

Graph

Data

1

2
3

4

User User
System

G3

G2
G1

Figure 14: Hierarchical Graph System with a Mediator

In a mediator, we internally employ an abstract multigraph represen-Looking inside a
Mediator tation: each managed network/graph is abstracted to a node, and

each individual connection across different networks is abstracted to

2 In this sense, our approach is not truly distributed (only the graphs are). Alterna-
tively one could let different graph systems communicate directly with each other,
without the relay through a central component. However, in this constellation
search would correspond to a blind (i.e. uninformed) search in a large graph. The
advantage of a hierarchy is that it can be used as an heuristic for guiding search. We
therefore favour the hierarchical approach here.

54

4.1 top-level system architecture

an edge.3 For seamless navigation between different networks, it is
essential to know where these connections lead into the respective
networks (i.e. to which nodes). That is why a set of border nodes are
published by each network before the latter is added to the mediator.
In a way these border nodes can be seen as public interfaces of a
network: they state where external connections to other networks
are possible. A formal definition of border nodes is given in the
following, in Sect. 4.2.4. Note that before adding a network to the me-
diator, it also makes sense to check whether the network is internally
connected.4 If this is not the case, the graph could be split into its
connected components, each becoming a node in the abstract graph
of the mediator.

In the work of Martin Wassermann [Was07] supervised by the author, Proof of Concept
Implementationsuch an architecture has been prototypically implemented for a two-

level hierarchy with one mediator as a proof of concept. For technical
details regarding the implementation in Java (such as establishing
communication between mediators and networks via RMI), the inter-
ested reader may consult the diploma thesis of Wassermann.

In order to be extensible to multiple levels, the mediator needs to Extension to
Multiple Levelsbe transparent in the following sense: it has to behave like a nor-

mal graph system to the outside, offering the same interface as any
ordinary graph system which connects to the mediator. This way, dif-
ferent mediators can be integrated into another, high-level mediator
on top of them. The system on the top right of Fig. 14 could thus
again be a mediator which delegates its queries to the underlying
networks and mediators. The desirable extension into a multi-level
architecture is sketched below in Fig. 15:
Each mediator is responsible for coordinating a certain number of Information Hiding

via Mediatorsnetworks. The internal details of a network remain however under
the control of the respective network. This is a classical example
for the principle of information hiding : each mediator asks its
graph systems, not knowing whether they are recursively subdivided
by another mediator into different graph systems. Although the
mediator has no internal knowledge of its governed networks, it
has instead an overview of connections between different networks
(see Fig. 14). This knowledge is important for composing the partial
results of the individual networks. So communication is only required
between a network/mediator and its superordinate mediator (and not
directly between different ‘sibling’ networks). In general, a top-level
mediator has to wait for the deepest branch to finish (which takes the
longest time for processing, cf. Fig. 15) until the final result can be
composed and delivered. There is on the other hand the advantage

3 Note that there can be multiple connections between two networks (e.g., an under-
ground station usually has several exits to surrounding streets). Each individual
connection is represented by one edge.

4 This is a useful property for navigation; otherwise a continuous path through the
network (between different border nodes) is not guaranteed to exist. A more detailed
path search inside the detailed graph may find out that the graph is not internally
connected. This may entail backtracking in a coarser graph, because of the false
initial assumption.

55

conceptual design of a hierarchical graph system

System

Graph Mediator

Graph Mediator

Graph System Graph System

Graph

Data

Graph

Data

Graph Mediator

Graph System Graph System Graph System

Graph

Data

Graph

Data

Graph

Data

Graph System

Graph

Data

User User

Graph Mediator

Graph System Graph System

Graph

Data
Graph

Data

Query
1

2
2

2

3 3 3 3 3 3
4 4

4

4

4

4 4
5 5

6

5

3

7

8

Figure 15: Generalisation to Multiple Levels of Mediators

that computations of different partial results are usually done in
parallel.

In summary, the mediator supports the following tasks:

• it manages a set of networks which are distributed in a trans-
parent manner,

• it provides the means for creating connections between different
networks,

• it provides an infrastructure for communication and data ex-
change with the networks,

• it delegates queries to its managed networks and provides an
uniform interface for the results.

Now we want to take a step back and highlight the details of such
a mediator architecture, above all how the architecture can be realised
with hierarchical graphs. The first issue is how cost functions can be
generalised as to include context information (cf. Sect. 2.2.5) and the
implications for path finding algorithms operating on a hierarchy of
graphs.

4.1.3 Context-Adaptive Path Finding in a Hierarchy

As discussed in Sect. 2.2.5, different persons may have different pref-
erences, access rights or requirements. This knowledge is subsumed

56

4.1 top-level system architecture

under the general notion of context information. We now want to
take these different factors into account for path finding, more pre-
cisely for adapting paths so that they adhere to all these criteria.
Conversely, those paths which do not fulfill the specified criteria
should be excluded from the final result. For this purpose, context
information needs to be encoded in the graph structure and referred
to in the path queries.

The first goal is to provide a convenient means for specifying context
information. In Sect. 2.2.5 it has been identified as an important
requirement that domain experts and users can easily express context
information and related conditions. Here one has to distinguish be-
tween a so called user profile stating the general abilities, preferences
and description of a user on the one hand and on the other hand,
a more detailed representation of the underlying concepts of graph
elements (including, e.g., the type of nodes and edges and other
properties). For the reasons presented in Sect. 2.2.3, the preferred
choice was to use a formal ontology language (more precisely OWL5)
for modelling. Beside this, there is plenty of tool support for creating
and managing OWL ontologies, e.g. with free graphical editors like
Protégé.6

In student work under the direction of the author [Ide06], such an
ontology has been implemented (see Appendix A): there are basi-
cally three main concepts (representing persons, nodes, and edges
in different transport networks) with a set of related properties. For
the sake of simplicity, these properties are henceforth referred to as
key-value pairs. Instances of these concepts describe a particular
user or graph element (i.e. node/edge) together with their properties.
Graph elements can be associated with properties such as different
points of interest (nodes and edges of a certain type etc.) which can
be used for determining relevance in a particular context/application.
We write u.k = v for an instance u of a user whose property named
k has the value v, likewise e.k = v for an instance e of an edge, and
n.k = v for an instance n of a node. To get an impression of this
ontology, an excerpt of some concepts is displayed in Fig. 16 below:
With the help of this ontology, one can now specify simple constraints
stating whether traversal through a certain graph element is gen-
erally possible/permitted, or only on certain conditions (“ do not
go through the laboratory section, or any lecture hall while there are
courses” or “do not use fire emergency doors in normal situations”).
Common-sense knowledge, as shown in the two previous examples,
is an important factor for path finding in a realistic application. It
thus needs to be taken into account.

The cost functions we are looking for are different from the ones
presented in Sect. 2.2.5: Although several factors may play a role in
determining whether a certain graph element affords movement, they
are not combined by means of numeric operations (as in aggregated

5 Web Ontology Language by the W3C, see http://www.w3.org/TR/owl-features/

6 available at http://protege.stanford.edu/

57

conceptual design of a hierarchical graph system

Figure 16: Excerpt from the Ontology Modelling Context Information

cost functions), but rather on a symbolic level. As an example, one
can state that the cost to traverse a graph element is simply its geomet-
ric distance or required time if access is permitted. This is one simple
optimisation goal. Determining whether access is permitted can be
boiled down to the evaluation of boolean constraints7. Those can be
expressed by making use of the properties defined in the ontology
for the graph elements and user profiles (and forming conjunctions):
BC =

∧∗ (C.k θ value) with an operation θ like >, =, < of integers,
isSubstring for strings, etc. The key k can be a property from a con-
cept C which is either a graph element or a user profile. Note that
keys from different concepts can be mixed in conjunctions. It may
happen that a considered graph element N/E does not have a specific
key N.k/E.k stated in a constraint BC. We adopt the open world
assumption in this case, meaning that BC is completely ignored for
this graph element.

Let us give a few concrete examples for such constraints: the con-
straint (N.type = office) ∧ (U.dayTime > 9am) ∧ (U.dayTime <

8pm) would model typical opening hours, (U.wheelChairFriendly =

true) ∧ (E.type = stairs) the incompatibility of stairs for persons in
a wheelchair, and (N.type = laboratory) ∧ (U.group = scientist)

accordingly restricted access to a laboratory. There is a prototypical
implementation [Ide07] of these boolean constraints as SWRL rules for
the proposed hierarchical graph system.8 Our decision of using SWRL

is yet again based on existing tool support – there is a plug-in for
Protégé which facilitates the creation of ontologies considerably.

So much for the specification of boolean constraints. Now let us
turn our attention to their evaluation. For the proposed system de-
sign there are three different ways of dealing with context information
in form of boolean constraints:

• one can evaluate all boolean constraints on different graphs
prior to path finding. Nodes and edges which do not fulfill the

7 yielding the distinct truth values true or false
8 SWRL stands for Semantic Web Rule Language. It is a standard recommended by the

W3C (see http://www.w3.org/Submission/SWRL/).

58

4.1 top-level system architecture

given set of criteria are filtered out right from the beginning.
Path finding is then performed on a reduced, query-specific
version of the original graph.

• one can make the design of path finding algorithms more
generic, i.e. by providing an interface for injecting boolean
constraints into the core part where the next visited nodes are
determined. In other words, this enables us to employ different
strategies for traversing a graph (not only depth- vs. breath first
search, but also based on context information as a parameter).
The idea adheres to the strategy design pattern [GHJV95]. Eval-
uation of conditions then happens on-the-fly (or lazy), while an
instance of a path finding algorithm is actually running. This
way only the behaviour of iterators over a graph are changed;
the structure of the graph remains the same.

• one can ignore the constraints at first and perform path finding
as usual. Then, in a post-processing step, the constraints are
evaluated: if the resulting path should violate some constraints,
the solution can be locally corrected by replanning or be pruned.

The first option has been prototypically implemented by a student
under the supervision of the author [Ide07]. It has the disadvantage
of working with several copies of the original graph. Such a copy has
to be held for every query or instance of a path finding algorithm. In
a true multi-user system, this circumstance may prove to be counter-
productive.

The second option is more complicated. It requires modifying the be-
haviour of path finding algorithms to some extent, implying a change
deeper in the algorithm. However, it is conceptually more elegant:
instead of a query-specific graph, we obtain a query-specific algorithm
which traverses the graph (and even a user-specific algorithm adher-
ing to the imposed user constraints). The idea of interchangeable al-
gorithms is in accordance with the strategy design pattern [GHJV95]:
it provides a general interface for a certain algorithm/problem and
allows one to select from several concrete algorithms (implementing
this interface) in a flexible way, at runtime. One can realise different
views and traversals of the same graph without actually modifying
it. However this approach also has some drawbacks: Apparently
it requires the highest implementation effort. In practice, not every
available graph system (e.g. from a third party) is designed to provide
such a generic interface although it would be desirable. We have
nevertheless foreseen this variant and implemented it as part of the
mediator-based architecture.

With many constraints the third option becomes, in general, quite
inefficient – in the worst case, a complete replanning would be neces-
sary to fix all violated constraints (e.g. if the optimal solution goes
through an unaccessible subgraph as a private wing). This problem
is alleviated if constraints are considered, too, in the abstract graphs.

59

conceptual design of a hierarchical graph system

Our approach considers not only nodes and edges in one graph,
but rather in a hierarchy where abstract nodes can have subgraphs
describing their content. This allows us to specify constraints for
whole subgraphs (“do not go through the library”), which is very
convenient. Otherwise hierarchical path finding is more difficult in
the presence of constraints: an abstract path, which is assumed to
be traversable through a refined node, could actually turn out to
be interrupted (by a closed door, incompatible network or similar
constraint). We would thus need to backtrack and replan at a higher
level graph. However, this is not foreseen in classic refinement search
(see Sect.3.3): it proceeds in a monotonous manner from coarse to
fine graphs. One could, instead, use an algorithm for hierarchical
optimisation. The only problem is that pre-processed data structures
cannot be used anymore – they are static and do not cater for any
specific constraints (which are known at query time).

4.2 basic operations and consistent construction of hi-
erarchical graphs

How is the incremental construction of hierarchical graphs carried
out in a mediator-based system? This topic is considered here from
the beginning:

Initially there is no hierarchical graph in the system, but rather a
distributed collection of flat graphs (one for each network) originating
from different sources. The assumption is that the graphs are neither
arranged in a hierarchy nor related in any other way. Yet we want to
bring these graphs together. An abstract hierarchical graph represen-
tation (like in the mediator) which links the networks must first be
constructed – incrementally – from this loose collection of graphs.

It is vital to provide a set of basic operations for creating and ma-
nipulating a hierarchical graph structure in an incremental manner.
In particular, one has to ensure that the hierarchical graph remains
consistent after each operation. This can be done by checking in-
tegrity constraints before an operation is applied.

From a more general viewpoint, we want to complement the classical
view of hierarchical graphs and bring in a novel aspect:

classical view (top-down). A hierarchy can be obtained by
recursively partitioning a base graph into different subgraphs
(and forming again subgraphs of these subgraphs). We start
with one base graph containing the whole information of the
network structure. This is the classical application of a hierarchy
for large networks, for example street networks. The sheer size
of these networks necessitates a subdivision in order to better
handle them.

novel aspect (bottom-up). A hierarchy can be obtained by uni-
fying different distributed networks (which come from differ-
ent data sources/-providers) and providing additional edges

60

4.2 basic operations and consistent construction of hierarchical graphs

between elements in different networks, so called boundary
crossing edges. The approach caters for the integration of dif-
ferent networks, such as multi-modal transport and pedestrian
networks in an urban environment. One could profit from this
representation to enhance multi-modal route planning [Hoc08]
(e.g. by using the hierarchy as an heuristic). So far, this as-
pect of distribution has been neglected to a large degree by the
research community. However, we argue that it is important
from a practical point of view: it allows for a flexible construc-
tion of a hierarchy even if we start with several unrelated base
graphs. This particular approach is employed in the mediator
architecture.

We want to generalise and cover the construction in both cases. Let
us now consider the details of the construction:

4.2.1 Hierarchisation via Node Refinement

First, it makes sense to formally define a basic operation for hierar-
chisation. In Sect. 4.2.6 it is shown that no other operations (besides
the common operations on flat graphs) are required for realising the
essential operations of a mediator-based graph system. The follow-
ing definition serves as a formal basis for constructing hierarchical
graphs:

Definition 4.2.1 (Node Refinement Function ρGr , Root Graph Gr,
Node Refinement Operation NR(nc, Gf)). Let Γ = {G1, .., Gn} be a
set of multigraphs9 and Gr ∈ Γ a so called root graph. A (hierarchic)
node refinement function ρGr : Nc → Γ \ Gr maps a node nc ∈ Nc

with Gc = (Nc, Ec) ∈ Γ to another graph Gf 6= Gc ∧ Gf ∈ Γ \

Gr.10 The image Gf = ρGr(nc) is the subordinate graph of nc and,
conversely, the nodes nc are superordinate node of Gf.

A node refinement operation NR(nc, Gf) makes one assignment
of the form Gf := ρGr(nc), i.e. NR(nc, Gf) iff Gf := ρGr(nc).

We conceptually distinguish between the static function ρGr which Static vs. Dynamic
Aspectsdescribes all current mappings of nodes to graphs and the dynamic

operation NR(nc, Gf) which adds a concrete mapping of exactly one
node to one subordinate graph to ρGr . In an intuitive way, the node
refinement function ρGr can be understood as defining ‘nestings’ for
finer-scaled graphs Gf into superordinate nodes nc (i.e. the entire
graph Gf is collapsed to a coarse representation as one node nc).
These superordinate nodes nc, in turn, pertain to coarser graphs Gc.
From this perspective, the pairs of graphs Gf and Gc are indirectly
related via a node refinement function. So we can naturally interpret
the node refinement function as a binary relation ≺ between two
different graphs Gf and Gc. The example illustrated in Fig. 17 shows

9 Remember from Def. 3.2.6 in Sect. 3.2.4 that multigraphs permit several parallel
edges between the same pair of nodes. When referring to graphs from here on,
we mean the more general concept of multigraphs. As it turns out, multigraphs
are suited for our modelling purposes – whereas simple graphs are insufficient (cf.
Sect. 4.2.4 for concrete examples).

10 The root graph Gr is excluded from the images of ρGr
to avoid cyclic references.

61

conceptual design of a hierarchical graph system

n1

G0:

G1:

n2

n3

G2:

ρG (n2) = G2

ρG (n3) = G3

G1

G3:

G0

G2

G3

:

ρG (n1) = G1
0

0

0

Figure 17: Example for a Hierarchic Node Refinement Function

this connection. Here, the hierarchy is a tree, but what about ‘genuine’
graphs? This topic is discussed in the subsequent section.

Definition 4.2.2 (Hierarchy Relation ≺, Meta Graph M). Let Γ =

{G1, .., Gn} be a set of multigraphs. The hierarchy relation ≺ ⊂ Γ × Γ

is defined for a pair of graphs Gf, Gc ∈ Γ as:
Gf ≺ Gc iff there is a node nc ∈ Nc with an image Gf in the
hierarchic node refinement function, i.e. Gf = ρGr(nc). Gc is then
called superordinate graph and Gf subordinate graph, respectively.
With ≺, we can define an abstract meta graph M for representing the
relations between different graphs in Γ : M = (Γ ,≺).11

4.2.2 Basic Operations for Hierarchical Graphs

One can distinguish between four basic operations θ for hierarchical
graphs:

• insert/remove a multigraph Gi to/from the hierarchy (this
corresponds to adding/removing a node Gi in M),

• make/undo a node refinement operation NR(nc, Gf) (this cor-
responds to creating/removing an edge (Gf, Gc) in M),

• insert/remove a node ni in a graph Gi ∈ Γ ,

• insert/remove an edge ei in a graph Gi ∈ Γ .

The first two operations concern whole graphs; therefore they affectClassification
the meta level of M whereas the latter two operations are applied
locally inside a specific graph Gi. None of these operations can be

11 The meta graph M is not a multigraph due to the existential quantification in the
definition of ≺. It is however a directed graph, because the order of graphs in ≺
is significant (Gf ≺ Gc has a completely different meaning compared to Gc ≺ Gf).
The relation ≺ is, in general, asymmetric (see Sect. 4.2.3). We thus write (Gf, Gc)

for the edge representing Gf ≺ Gc in this particular order.

62

4.2 basic operations and consistent construction of hierarchical graphs

performed arbitrarily in a hierarchical graph. The structure of the
hierarchy, even for the local operations on a graph Gi, has to be taken
into consideration. We need to investigate the related integrity con-
straints (i.e. preconditions) for applying each operation. For the four
basic operations from above, the results are summarised in Sect. 4.2.5.

One can keep record of every node refinement operation (and other Use of M

operations as well) and construct the meta graph M in parallel. As
we shall see in the next sections, M is quite useful for checking in-
tegrity constraints. For this reason, a node refinement operation
NR(nc, Gf) should additionally add an edge (Gf, Gc) to M. Apart
from NR(nc, Gf), there are also other dynamic operations that have
to be taken into consideration:

4.2.3 Maintaining a Consistent Hierarchy

The required properties for ρGr and ≺ are now analysed:

The hierarchic node refinement function ρGr must be injective to Injectivity of ρGr

avoid situations where Gf ≺ Gc although Gc has two node re-
finements for Gf (involving two different nodes of Gc).12 A graph
Gf ∈ ρGr thus always has a unique superordinate node. In Fig. 17, for
example, no further node may be refined to G1, because G1 already
has n1 as superordinate node – any additional operations of the form
NR(n, G1) would have to be rejected, hence. In general, it makes
sense to check this condition before applying a new node refinement
operation NR(nc, Gf). This is a first example of an integrity con-
straint.

Moreover, ρGr needs to be surjective: there may not be graphs Surjectivity of ρGr

Gf /∈ ρGr – except for the root graph Gr – which have no corre-
sponding superordinate node in another graph.13 Intuitively, every
graph apart from the root has to be linked into the hierarchy; there
are no ‘loose’ graphs whatsoever.

This implies that the hierarchic node refinement function ρGr must be
a bijection (that is, a one-to-one correspondence). We impose further
conditions ensuring consistency also on the relation ≺:

By definition, Gf 6= Gc for all mappings ρGr(nc) = Gf in a node Properties of ≺
refinement function. The relation ≺ is, as a result, irreflexive. Fur-
thermore, it does not make sense that the relation ≺ is symmetric
(from Gf ≺ Gc we would then conclude that Gc ≺ Gf). This would
be contrary to the purpose of the relation ≺, which is to impose an
ordering on graphs (when a graph Gf has a superordinate node nc

in another graph Gc, it is considered smaller than Gc).

12 Generally, a function f is called injective iff f(a) = f(b) ⇒ a = b.
13 a function is called surjective iff for all images y, an x with f(x) = y exists.

63

conceptual design of a hierarchical graph system

Although the relation ≺ is not transitive per se,14 we can never-
theless define an artificial extension ≺? for the transitive hull of the
hierarchy relation. The desired ordering on graphs can be obtained
by means of the transitive hull ≺?.

Before performing another hierarchic node refinement operationImplications
NR(nc, Gf), one needs to make sure that the resulting hierarchy re-
mains a linear ordering (in the above sense, w.r.t. ≺?). Otherwise the
operation NR(nc, Gf) has to be rejected in general because it would
lead to an inconsistent state of the meta graph M.

The following situations describe, importantly, inconsistent states
of the meta graph due to a lack of order among graphs:

1. there are cycles of the form Gf ≺ . . . ≺ Gf,

2. a graph Gf has two (or more) different superordinate graphs
Gc1

and Gc2
, i.e. Gf ≺ Gc1

and Gf ≺ Gc2
.

This means that, for the concrete example of Fig. 17, one is stuck:Illustration
no more nodes may be refined to a graph until a new graph has
been added. Since the application of a node refinement operation
NR(nc, Gf) can be interpreted as adding an edge Gf ≺ Gc in the
meta graph (written as (Gf, Gc)), there is an intuitive way to check
its consistency with the meta graph:

Definition 4.2.3 (Consistent Meta Graph, -Operation). Let Γ = {G1,
.., Gn} be a set of multigraphs with a hierarchy relation ≺ and M =

(Γ ,≺) the corresponding meta graph. M is consistent iff M is a tree.
An operation θ is consistent iff the following condition holds:

M is consistent ⇒ M′ after applying θ is consistent.

A node refinement operation θ = NR(nc, Gf) for Gc, Gf ∈ Γ is there-Consistent Node
Refinement
Operations

fore consistent iff M′ = (Γ ,≺ ∪ (Gf, Gc)) remains consistent. How-
ever, the first basic operation, namely adding a graph Gi to Γ , may
not be applied alone. The reason is that ρGr would not be surjective
after the operation and thus M not consistent. The operation must
be done together with a node refinement operation concerning the
graph Gi, to ensure that M remains a tree. So it is in fact a composite
operation (see Sect. 4.2.5).

Likewise, we may only remove a node ni in Gi if there is no subordi-Other Operations
nate graph Gf = ρGr(ni) (for the same reasons). If the graph Gf and
the node ni were removed simultaneously we could also remove Gf

from ρGr and consequently the edge (Gf, Gi) in M. This is another
composite operation (which is consistent, however). With the tree
property of M, we can finally complete the definition of hierarchical
graphs:

Definition 4.2.4 (Root, Leaf, (k-level) Hierarchical Graph). Let Γ =

{G1, .., Gn} be a set of multigraphs with a hierarchy relation ≺ and a
consistent meta graph M = (Γ ,≺).

14 we cannot conclude Gf ≺ Gi from Gf ≺ Gc and Gc ≺ Gi because of the injectivity
property of ρGr

.

64

4.2 basic operations and consistent construction of hierarchical graphs

A graph Gr in Γ is called root iff it has no superordinate graph.
Conversely, a graph Gl in Γ is called leaf iff it has no subordinate
graphs. A node n ∈ N in a graph G = (N, E) ∈ Γ is likewise a leaf iff
it has no subordinate graphs. For a graph Gi ∈ Γ , let k be the length
of the path in M from the root of Gi to Gi. Then Gi is called (k-level)
hierarchical graph.

4.2.4 Consistent Path Finding over Multiple Levels

So far we have defined hierarchical graphs to establish a structural
correspondence between graphs at different levels of the hierarchy.
This correspondence is however insufficient in practice. The defined
graphs are not yet feasible for path finding across different levels.
What is still missing is the information that links together graphs of
two different levels in the sense of having coherent paths:

Let ρGr be a node refinement function and ρGr(nc) = Gf with nc as Motivation for
another Form of
Consistency

a node in Gc. Assume that a graph algorithm traverses Gc in search
of a shortest/fastest path. It enters the node nc through an edge es

and then leaves nc via another edge ee. This is one elementary step.
Now one could profit from the graph Gf – being a more detailed
representation of nc – to give a more precise path between es and
ee. In general this path consists of several steps (some intermediate
nodes in Gf). The sequence of nodes in Gf can be given in place of
the atomic step ‘go through nc’ as a more detailed description. For
this, we need to know where the corresponding path in Gf starts
and ends. This exactly is the problem: the edges es and ee in the
coarse graph Gc are in a way indefinite, for it is unknown where
they lead into the detailed graph Gf. They are only explicit edges in
the coarse graph Gc while in fact these edges should be at multiple
levels. Otherwise, we cannot switch between different abstraction
levels during path finding.

To clarify this idea, let us consider a concrete example: Fig. 18 extends Example
the previous hierarchic node refinement function given in Fig. 17. A
hierarchical graph is depicted which models a building at several
levels of detail. The root graph, G0, represents the complete building.
Its nodes (among whom are n1 and n2) represent constituent floors.
The edges of G0 represent individual staircases that connect different
floors. At this point it becomes apparent why we need multigraphs –
namely for modelling a set of parallel connections between two floors.

In particular, we are now interested in knowing where the two edges
es and ee leading/incident to n1 continue in the subordinate graph
G1. These are, from a practical viewpoint, the transition points from
one network to another network (between two floors in this example).

For this purpose, we need to look into G1 and determine two cor- Border Nodes
responding nodes, ns and ne (the two rooms/corridors/sections on
the floor G1 where the respective stairs are leading to). We call these
special nodes border nodes. They are the start- and end points of the
more detailed interior path through G1 (illustrated as colored nodes

65

conceptual design of a hierarchical graph system

n1

G0:

G1:

n2

nb1

nb4

n3

nb2

nb3

nb5

G2:

G3:

τ (n1) = nb1ei

τ (n2) = nb2ej

Building

Floor

Floor

Library

el

el

ei
ej

ek

el

em

τ (n2) = nb2ek

τ (n2) = nb3
τ (n3) = nb5

τ (n1) = nb4

em

Figure 18: Coherent Paths across Multiple Levels of a Building

in Fig. 18). In general, the nodes of G1 represent rooms, corridors or
different sections within the floor. The node n3 for instance, repre-
sents a separate library section on this floor which has its own graph
G3 associated as a detailed model. Edges in G1 and G3 represent
traversable openings on common boundaries, such as doors. Since
there could be more than one connection between two rooms/cor-
ridors/sections, multigraphs are, again, the preferred choice. We
examine the details of modelling indoor environments with hierar-
chical graphs in the next chapter.

Back in our abstract formalisation, we need to relate for all map-
pings ρGr(nc) = Gf within a node refinement function the specific
start and end nodes ns, ne of interior paths in Gf with the edges
es, ee in Gc incident to nc. This allows us to substitute an abstract
path through a node nc with an interior path through the subordi-
nate graph Gf. It therefore makes sense to specify another kind of
mapping for linking paths at different levels:

Definition 4.2.5 (Path Linking Function τec , Border Nodes, Path
Linking Operation PL(ec, na, nb)). Let Γ = {G1, .., Gn} be a set of
multigraphs with a node refinement function ρGr .
For every edge ec in a graph Gc ∈ Γ we define a path linking func-
tion τec : N → N where N is the set of all nodes in all graphs in Γ , i.e.
N = {n | n ∈ N with G = (N, E) ∈ Γ }:15

τec(nc) :=

nb ∈ Nf if nc ∈ Nc and nc is incident to ec and

nc has a subordinate graph Gf = ρGr(nc),
undefined otherwise.

The assigned node nb in the subordinate graph Gf is called border
node. The function τec is partial because all non-incident nodes have

15 The general definition with N is convenient because we need to extend the function
later.

66

4.2 basic operations and consistent construction of hierarchical graphs

no corresponding border node as image.
The related dynamic operation is called path linking operation
PL(ec, nc, nb). It assigns for an edge ec in Gc and a node nc a
border node nb in Gb (i.e. τec(nc) := nb) if nc is in Gc and inci-
dent to ec and there exists a subordinate graph Gf = ρGr(nc) and
Gb = Gf, i.e. Gb ≺ Gc.16

The set of all path linking functions τec with ec ∈ Ec and Gc =

(Nc, Ec) ∈ Γ is denoted as T without index.

A handful of exemplary path linking functions, τei
, τej

, . . . τem are
depicted in Fig. 18 above. In particular, it is possible to assign the
same border node to two (or more) different edges (like nb2 in Fig. 18

for the blue edges ej and ek incident to n2; the two edges represent
stairs that lead into the same room on the floor G2). The edge el,
for instance, links nodes at two different levels: on the one hand,
the nodes n1 and n2 in G0 (two different floors); on the other hand,
also the nodes nb4 = τel

(n1) and nb3 = τel
(n2) which belong to

different graphs, G1 and G2 (two rooms in different floors).

For ensuring coherent paths across different hierarchy levels, one has Implications for NR

to specify or adapt for each node refinement operation NR(nc, Gf)

(that is, every new edge in M) the corresponding path linking func-
tions for each edge incident to nc. However, the path linking func-
tion makes common operations like adding/removing edges on flat
graphs more complicated for hierarchical graphs: when adding for
example, a new edge ec = (nc1, nc2) in a graph Gc, one should keep
this in mind. One has to check whether the two involved nodes
nc1 and nc2 have a subordinate graph Gfi as a node refinement (i.e.
whether a graph Gfi exists with ρGr(nci) = Gfi). If there are such
subordinate graphs Gf1 and/or Gf2, additional border nodes nbi

need to be specified via two/one additional path linking operation(s)
PL(ec, nci, nbi).

In summary, the definition of a path linking function has an impact
on the basic operations on potentially all hierarchy levels – including
also the meta graph M.

However, one problem still remains in the face of a true multi-level Special Case
hierarchy: What happens if we specify a border node nb = τec(nc)

which in turn has a subordinate graph? The subordinate graph of
the border node would still lack the connection to the concerned
edge ec. An example for such a problematic situation is pictured in
Fig. 19: While the red edge em to the library node n3 in the graph
G1 is a regular door, the stairs el leading into the floor n1 also have
n3, the library, assigned as border node. Because of this we need an
additional assignment for el to a more detailed border node inside G3

(to the green node nb6 in the library). The corresponding recursive
path linking operation PL′(el, n3, nb6) is indicated in Fig. 19 by the
lowest, dark green arrow.
In general we need to take into account a possible recursion of border Recursive Border

Nodes
16 These preconditions ensure correct assignments, so that the resultant function τec is

indeed a path linking function.

67

conceptual design of a hierarchical graph system

n1

G0:

G1:

n3

nb6

G3:

Building

Floor

Library

nb1

nb5

ei

em

τ (n1) = nb1ei

τ (n1) = n3el

el

recursive for n3:

τ' (n3) = nb6el

τ (n3) = nb5em

Figure 19: Path Consistency for Border Nodes with Subordinate
Graphs

nodes within subordinate graphs of border nodes. This can lead to a
cascading list of border nodes for path linking functions in hierarchical
graphs. We have to extend the notion of a path linking function to
meet this special requirement:

Definition 4.2.6 (Recursive Path Linking Function τ′ec
, Recursive

Path Linking Operation PL′(ec, nb, ns)). Let ρGr be a node refine-
ment function and τec a path linking function. A path linking func-
tion τec : N → N can be extended to a recursive path linking func-
tion τ′ec

: N → N in the following manner:

τ′ec
(nc) :=

τec(nc) if nc ∈ Nc,
nbb ∈ Nf if nc ∈ τ′ec

and nc has a subordinate
graph Gf = ρGr(nc),

undefined otherwise.
The nodes nbb are termed recursive border nodes.
The corresponding operation is called recursive path linking oper-
ation PL′(ec, nb, nbb). It assigns for an edge ec in Gc and a node
nb in Gb a recursive border node nbb in Gbb: τec(nb) := nbb. The
operation can only be applied if nb is in τ′ec

and a subordinate graph
Gf = ρGr(nb) and Gbb = Gf exists.17

The set of all recursive path linking functions τ′ec
with ec ∈ Ec and

Gc = (Nc, Ec) ∈ Γ is accordingly denoted as T′ without index.

The definition of τ′ec
is recursive. The basis (where nc ∈ Nc) isExplaining the

Recursion equivalent to τec . In short the recursion scheme can be explained
this way: Say there is a subordinate graph Gf given as an image
ρGr(nb) of the border node nb = τ′ec

(nc). A further border node
nbb = τ′ec

(nb) has to be specified within this graph Gf and so forth
(τ′ec

(τ′ec
(. . . τ′ec

(nc) . . .))), until a leaf node has been reached in the

17 These conditions ensure merely correct assignments for τ′ec
. For the resultant func-

tion τ′ec
to be a recursive path linking function, however, all necessary assignments

must have been made.

68

4.2 basic operations and consistent construction of hierarchical graphs

hierarchy which has no more subordinate graphs. This is exactly the
fixed point where the function τ′ec

stops ‘growing’.

To obtain a recursive path linking function τ′ec
, a corresponding Constructing τ′ec

Incrementallyset of i recursive path linking operations PL′i(ec, nold
i , nnew

i) have
to be applied. This happens in a ‘coarse-to-fine’ manner, beginning
from nodes nold

1 := nc in Gc which are incident to ec. A border
node nnew

1 := τec(n
old
1) is assigned to each of these nodes by means

of a path linking operation PL(ec, nold
1 , nnew

1) and a subsequent re-
cursive operation PL′(ec, nold

1 , nnew
1).18 We continue with another

recursive path linking operation PL′i+1(ec, nold
i+1 := nnew

i , nnew
i+1) in

the same way: nold
i+1 is substituted by the previous value nnew

i , and
a new node in the graph ρGr(n

new
i) is specified for nnew

i+1 (if such a
graph exists). In case there is no subordinate graph ρGr(n

new
i), the

operation PL′i+1 is not necessary anymore. We are then finished with
the branch starting from nold

1 .

Although simple, the rationale behind the recursion is crucial from a Edges between
Leavespractical respect: we need to have sufficient information for connecting

all leaves in the hierarchy (in terms of Def. 4.2.4), so that we can always
give the most detailed paths possible. This leads to an enhanced,
even more strict notion of consistency for an operation θ:

Definition 4.2.7 (Path-Consistent Edge, -Operation). Let θ be a con-
sistent operation and ec be an edge in the graph Gc. The edge ec

is path-consistent iff there is a corresponding recursive path linking
function τ′ec

. An operation θ is path-consistent iff all edges ec of
all graphs Gc = (Nc, Ec) ∈ Γ which are path-consistent before the
application of θ remain path-consistent after the operation, and any
new edges are also path-consistent.

Thus, the path-consistency of all edges can be seen as an invariant Problems
for an operation θ. A node refinement operation NR(nc, Gf) is path-
consistent iff all incident edges ec of nc remain path-consistent after
the operation (all other edges are not affected by NR(nc, Gf) anyway).
However, if nc has some incident edges ec, then the node refinement
operation alone is not path-consistent. So we have to supplement
such a node refinement operation NR(nc, Gf) with an according
set of recursive path linking operations PL′i(ec, nold

i , nnew
i) for all

incident edges ec. This way we can ensure path-consistency. Further
operations which are critical w.r.t. path-consistency are, for example:

• removing any node ni which has a subordinate graph Gf =

ρGr(ni),

• removing/adding any edge ec incident to a refined node nc in
a graph Gc.

18 assuming that PL(ec, nold
1 , nnew

1) is applicable, i.e. there is a subordinate graph
ρGr

(nold
1). Otherwise no more recursive path linking operations are needed to

make sure that τ′ec
is a recursive path linking function.

69

conceptual design of a hierarchical graph system

4.2.5 Consistency of the Basic Operations

The previous definitions of ρGr and τ′ec
serve as a formal basis forRelaxing the

Conditions defining consistency criteria for the other basic operations (apart
from node refinement) as well: One could require that an operation
θ may only be applied if it is consistent and additionally also path-
consistent. However, this requirement may be a bit too rigid in prac-
tice, because the flexibility for defining operations would be limited
to path-consistent operations only. Note that simple node refinement
operations, for instance, were not allowed with this rigid notion of
path-consistency. We may want to build some complex operations Θ

from a sequence of basic operations θ1 . . . θn. So it is reasonable to
relax the conditions of consistency for composite operations: a com-
posite operation Θ as a whole may well be (path-)consistent, without
its constituent operations being necessarily (path-)consistent. In other
words, the intermediate states of a composite operation are allowed
to be inconsistent as long as the final outcome is (path-)consistent
again. However caution is required insofar as we are dealing with
a distributed system – different (sub)graphs can be constructed in
parallel. Consequently there may be problems with concurrency, espe-
cially if a composite operation Θ is interrupted during an inconsistent
intermediate state θi. To avoid this problem, composite operations
are also implemented as atomic (i.e. not interruptible) operations.
This guarantees consistency while constructing the hierarchical graph
in parallel.

Now let us have a closer look at the modalities for creating a hi-
erarchical graph system:

Definition 4.2.8 (Hierarchical Graph System G). Let Γ = {G1, .., Gn}

be a set of multigraphs, ρGr a corresponding node refinement func-
tion, and T′ the set of all recursive path linking functions for all edges
in all graphs Gi ∈ Γ .
The triple G := (Γ , ρGr , T′) defines a hierarchical graph system.

By successively adding new graphs into the hierarchical graph systemConstruction of
Hierarchical Graphs
from the very
Beginning

and establishing connections between these graphs, one can create
hierarchical graphs. Typically one begins with an empty system
where there are no graphs in Γ except for a root graph Gr. The root
graph is, initially, also empty. The pertinent meta graph M has Gr as
sole node. So M is consistent by definition. Since there are no edges
in Gr, one does not need to worry about path-consistency either. Now
we want to populate the system by adding new graphs in a sequential
manner, creating nodes and edges in an individual graph, etc. These
operations are the basis for the further manipulation of hierarchical
graphs:

add a node in a graph . Let Gi = (Ni, Ei) be the multigraph in
Γ before the operation. Then G′

i = (Ni ∪ {n}, Ei) is the resulting
graph. Adding a node is the simplest of all basic operations
because it has no side effects: M remains the same, i.e. M′ = M.
So the operation is consistent. It is also path-consistent because

70

4.2 basic operations and consistent construction of hierarchical graphs

it does not change any existing edges and does nor create new
edges which could not be path-consistent. Ergo, this operation
can be applied safely at any time.

make a node refinement operation. Path consistency gener-
ally requires that a node refinement operation NR(nc, Gf) is
accompanied by a corresponding series of recursive path link-
ing operations: if nc has incident edges ec, one has to specify
a set of recursive path linking operations PL′i(ec, nold

i , nnew
i)

for all such ec (where nold
1 := nc is the starting point, as laid

out before). These individual operations together constitute a
composite operation.

Likewise, one has to perform an additional series of recursive Intricacies
path linking operations PL′i(e, nold

i , nnew
i) for all edges e with

nold
1 = nc ∈ τ′e and specify a border node nnew

1 = nb in Gf.
Consider the example of Fig. 20: the edge el falls into this
second category for the node refinement operation NR(n3, G3),
because n3 = τ′el

(n1); therefore the additional operation PL′(el,
n3, nb6) is required.

If applied correctly, the sequence of operations θ = NR(nc, Gf), Final Result
PL′i(e, nold

i , nnew
i) is both consistent and path-consistent. The

whole operation can fail due to a resulting inconsistency of the
meta graph M or an incorrect or incomplete specification of
recursive path linking operations thereafter. Any effects made
so far have to be undone in this case. In case of success, an edge
(Gf, Gc) is permanently added to M. For composite operations
it is particularly useful to see, in case of an error, which of its
constituent operations failed.

n1

G0:

G1:

n2

nb1

n3

nb2

nb3

nb5

G2:

G3:

ei ej

ek

el

nb6

add/remove edge ek

remove node n1

add graph G3

NR(n3, G3)

composite:

(affects ei, el, G1, G3)

remove graph G1

em

Figure 20: Basic Operations Exemplified on a Hierarchy

add a new graph to the hierarchy. Whenever adding a new
graph Gi into the hierarchy, one has to mind the following sit-
uation: ρGr would not be surjective anymore because the new
graph Gi is unrelated (M would have to be a tree spanning

71

conceptual design of a hierarchical graph system

over Gi, too). So the operation, per se, is not consistent. In
consequence of this, we can only add new graphs Gf one by
one to the hierarchy while maintaining consistency. It is not
possible to construct a sub-tree involving several graphs and
then add this complete sub-tree to the graph system en bloc.
Nevertheless, this kind of operation is required among oth-
ers for bringing graph systems of two mediators together. We
define a composite operation for this purpose (see Sect. 4.2.6).

We have to link the new graph Gi immediately to some otherIncluding Node
Refinement graph Gc in Γ , i.e. create an additional edge (Gi, Gc) in M,

via an appropriate node refinement operation NR(nc, Gi). But
again we are dealing with a composite operation. It essentially
relies on the node refinement operation. As a result all the
intricacies indicated above have to be taken into account for
ensuring path consistency. In the example of Fig. 20, the graph
G3 is added to the hierarchy via the node refinement operation
NR(n3, G3). The edges em and el refer to the node n3. Thus,
they are critical for path-consistency.

Note that the order of operations is important here: one firstOrder of Operations
and Parameters has to add a node nc in the coarse graph Gc before adding

a new subordinate graph Gi (if Gc is empty, the hierarchy
cannot be extended simply because there is no node in Gc to
be refined). For practical purposes, one could provide a more
convenient operation which adds a graph Gi without explicitly
stating a node nc: one could add Gi by specifying only the
superordinate graph, Gc. The effect is that a new node nc

would be created in Gc as default behaviour. The operation
NR(nc, Gi) can be performed subsequently. Given that nc has
no incident edges yet, path-consistency is not a problem in this
case. Similarly, if the graph Gi is added without any parameters,
it is assumed that the root graph Gr is its superordinate graph.
So an according node nc is created in the root graph which is
refined to Gi.

undo a node refinement operation. As a counterpart, we
can undo a node refinement operation NR(nc, Gf) as well:
First, the mapping Gf := ρGr(nc) is removed from ρGr and
the edge (Gf, Gc) from M. Then, for all edges e in all graphs
(including those incident to nc), the recursive border nodes
starting with τ′e(nc) are all removed from τ′e.

However, this operation would result in an inconsistent metaRecursive
Application graph M since Gf (together with its sub-tree) becomes loose. So

we have to remove the problematic graph Gf completely from
the hierarchy. Before Gf is actually removed, another measure
must be taken: the undo operation is recursively applied on
all nodes nf in Gf which have subordinate graphs Gff – the
corresponding operations NR(nf, Gff) are undone, each. All
subordinate graphs of Gf are then removed prior to Gf itself.
One has to keep in mind that these intermediate operations
are inconsistent. However, once the complete sub-tree rooted
at Gf has been removed, M is again consistent. Edges with

72

4.2 basic operations and consistent construction of hierarchical graphs

missing path linking functions have all been removed with the
graphs. Consequently the composite operation as a whole is
path-consistent.

To clarify this idea, let us take a look at a concrete example: Intuition
Supposed that we want to undo the node refinement operation
NR(n1, G1) in Fig. 20. This would entail that NR(n3, G3) also
has to be undone. The mappings τ′ei

(n1), τ′el
(n1), τ′el

(n3),
and τ′em

(n3) are therefore removed (note that τ′el
(n2) stays

unaffected, though). The graph G3 is removed afterwards, so
that the edge em becomes path-consistent again. In a final step,
the graph G1 is removed, so that the edges ei and el become
path-consistent once more.

remove a graph from the hierarchy. This operation is al-
ready covered by the previous case of undoing a node refine-
ment operation NR(nc, Gi). It basically means the same in a
system with a consistent meta graph M.

remove a node in a graph. This operation extends, in the most
complicated case, the previous ones. First one has to find
out whether the node ni to be removed in Gi has a subordi-
nate graph Gf. If this is true, the node refinement operation
NR(ni, Gf) is undone as laid out before. Otherwise this step
is just skipped. The composite operation is consistent and
path-consistent to this point. We can now remove all incident
edges of ni in the graph Gi (cf. the following operation) and
subsequently ni itself.

remove an edge in a graph . Suppose we want to remove the
edge ei = (n1, n2) in a multigraph Gi ∈ Γ . The meta graph
M stays intact anyway, so consistency is not an issue for this
operation. If any of the edge’s incident nodes n1 and/or n2

has a subordinate graph Gf1/2, the edge removal operation has
to be carried out with caution to secure path-consistency: in
this case we need to remove the appropriate (recursive) path
linking functions τ

(′)
ei

entirely from T(′). The edge ei can be
safely removed then.

Consider an example for illustration: the edge ek shall be Illustration
removed from the hierarchical graph depicted in Fig. 20. All
that needs to be done in the run-up to this operation is the
removal of the (recursive) path linking function τ

(′)
ek

from T(′).
The same applies of course to the removal of any other edge,
such as el or em.

add an edge in a graph . Likewise, before adding a new edge
ei = (na, nb) to the multigraph Gi ∈ Γ , one has to check
whether any node na, nb incident to ei has a subordinate graph.
If this is the case, one has to specify along with the addition of
the edge an appropriate set of recursive path linking operations
PL′k(ei, nold

k , nnew
k). They start from nold

1 := na/nb. The
composite operation in turn works in an ‘all-or-nothing’ manner.
Reasons for failure can be an incomplete set of path linking

73

conceptual design of a hierarchical graph system

operations. Unchanged, the meta graph M remains consistent.
Since correct recursive path linking operations yield a path-
consistent state, the final state after the composite operation is
applied is path-consistent.

4.2.6 Derivation of Other Useful Operations

Having defined the consistency of the basic operations, hierarchical
graphs can be incrementally constructed in a correct manner. These
basic operations are complete insofar as a hierarchical graph system
can be realised with them. In spite of that, this set of operations
may not always be convenient for creating or modifying hierarchical
graphs.

To improve the usability, one could derive further composite opera-Need for
Supplementary
Operations

tions which facilitate typical, recurring interactions with a hierarchical
graph system. These additional operations can be seen as syntactic
sugar. In the following passage, a preliminary list of useful operations
is compiled. The list is non-exhaustive. In fact it can be extended with
more operations if there is a specific requirement for these operations.
The basic operations serve as building blocks for composing new
operations, such as:

• merging two graph systems G1 = (Γ1, ρGr1
, T′1) and G2 = (Γ2,

ρGr2
, T′2),

• connecting two nodes ni and nj which belong to different
graphs Gi and Gj,

• defining a new subgraph Gsub in a graph G (for partitioning
G).

As it turned out, these operations are particularly useful in two re-Requirements
spects: first, in a mediator-based architecture and second, for creating
hierarchical graphs that represent indoor environments.

G4

G0

G2

G5

:

:

G6

G1

1

2

G3

add the sub-tree to
12

Figure 21: Merge Two Graph Systems

merge two graph systems . This operation is a generalisation of
the ‘add graph’ operation. Instead of adding just one graph, we
add a whole sub-tree M2 to M1.

74

4.2 basic operations and consistent construction of hierarchical graphs

Let G1 = (Γ1, ρGr1
, T′1) and G2 = (Γ2, ρGr2

, T′2) be two graph
systems. The corresponding meta graphs are M1 and M2. The
two graph systems can be merged into one graph system G =
(Γ1 ∪ Γ2, ρGr1

∪ ρGr2
, T′1 ∪ T′2) by selecting a node n1 in a graph

G1 ∈ Γ1 for which we perform the node refinement operation
NR(n1, Gr2) (with the root Gr2 of M2).

n1

G0:

G1:

n2

nb1

n3

nb4

nb2

nb3G2:

connect the two nodes n3 and n4

in the graphs G1, G2:

n4

new edgeG0

G2G1

G3

G3:

= LCA(G1, G2)

Figure 22: Connect Two Nodes in Different Graphs

connect two nodes in different graphs . Instead of creat-
ing a new edge e in a higher-level graph together with a recur-
sive path linking function τ′e, we may want to directly specify
lower-level nodes ni and nj, pertaining to different graphs Gi,
Gj, which should be connected by that edge (see Fig. 22). This
generalised operation obviates the need to specify a set of re-
cursive path linking operations.19 They can be directly derived
from the hierarchy of graphs. The new operation is thus just a
more comfortable way of specifying a new abstract edge e in a
high-level graph.

Let ni and nj be two nodes of two different graphs Gi, Gj ∈ Γ . Where the Edge is
CreatedWe want to connect them by an edge. This edge however has to

be created in a graph further up the hierarchy. The two nodes
appear instead somewhere in the recursive path linking function
of this edge. Where the edge is actually created depends on
the two nodes’ position in the hierarchy: given that M is a tree,
we can determine the graph GLCA which is the least common
ancestor of Gi and Gj in M. Note that this could be one of the
graphs themselves, if it occurs on the path of the other graph to
the root. The new edge e is created in this graph GLCA.

Concerning the new recursive path linking functions τ′e, we go Defined Path
Linking Functions

19 only some though, in case ni or nj are not leaves

75

conceptual design of a hierarchical graph system

down the path again from GLCA to Gi and Gj. The graphs on
the path are Gk = ρGr(nk). The nodes nk are superordinate
nodes of these graphs. We start with n1 in GLCA by setting
τ′e(n1) = n2 where n2 = ρGr(n1). We continue setting τ′e(nk)

= nk+1 this way until nk+1 equals to ni respectively nj. Only if
ni or nj have subordinate graphs, we need further assignments
of recursive border nodes until leaf nodes are hit.

n2

n6

n4

n3

n7

n8

n5

n1
G:

create new subgraph Gsub in G defined by

the partition Npart (composite operation Θ):

nsub
n6

n7
n8

n5

G:

e4,8 e3,8

e2,5

e3,6

e
3,7

n2

n4

n3

n1G1:
Gsub:

G1:

Θ
Npart

Figure 23: Partition a Graph by Creating a Subgraph

partition subgraph . Supposed we have a graph G in a hierar-
chical graph system. Now we want to partition this graph
internally by creating a new subgraph Gsub (see Fig. 23). This
is the classic use for hierarchical graphs. For this purpose, one
has to substitute in G the subgraph by a new node nsub. That
node is then refined to the subgraph Gsub. More precisely, the
realisation of this composite operation looks as follows:

The subgraph of G = (N, E) is given by a node partitionSimple Copy
Npart ⊂ N. We create a new graph Gsub with the nodes
of Nsub as node set by copying all nodes in the partition to
Gsub (not a deep copy, though, since subordinate graphs etc.
are not considered at first). To obtain a consistent meta graph M,
the new graph Gsub is linked to the hierarchy by creating a new
node nsub in G and a subsequent node refinement operation
NR(nsub, Gsub). It establishes the connection (Gsub, G) in M.
For all edges e = (n1, n2) ∈ E with n1, n2 ∈ Npart (i.e. internal
edges of the subgraph), we likewise create corresponding edges
ecopy = (n1copy, n2copy) in Gsub (not a deep copy either). So
far, these operations are all path-consistent.

The goal now is to replace the nodes and edges of G in the
partition Npart by the new graph Gsub, respectively nsub as
superordinate node. Two things need to be done to achieve this
goal:

76

4.3 summary

First we have to redirect for all n ∈ Npart any mappings of the Correcting Nodes
form ρGr(n) = Gf to ρGr(ncopy) = Gf. Thus the corresponding
hierarchy relation edges (Gf, G) in M have to be redirected to
(Gf, Gsub) as well. In general, this intermediate step is consis-
tent, but not path-consistent for ρGr and T′ do not correspond
anymore. By changing the node refinement function, we also
need to readjust the corresponding (recursive) path linking func-
tions. In Fig. 23 for instance, the edge e1,2 = (n1, n2) becomes
temporarily inconsistent after linking G1 to Gsub.

This path-inconsistency is corrected in the second step: All Correcting Edges
edges e = (n1, n2) ∈ E with n1 ∈ Npart and n2 ∈ N \ Npart

are redirected to e = (nsub, n2) with a simultaneous adjustment
of the (recursive) path linking function: the mapping τ

(′)
e (n1) =

nb becomes τ
(′)
e (nsub) = n1copy and τ

(′)
e (n1copy) = nb. The

same change of the path linking function of course applies to all
other edges e in higher-level graphs Gc 6= G with τ

(′)
e (n1) = nb

as well. For these edges, the node n1 in G plays the role of
a border node. The path linking functions are adjusted in all
these cases.

Additionally, the mappings in the (recursive) path linking Moving Path
Linking Functions
for Internal Edges

functions τ
(′)
e for all internal edges e = (n1, n2) ∈ E with

n1, n2 ∈ Npart are all adopted in new (recursive) path linking
functions τ

(′)
ecopy. The only modification is that appearances

of n1 and n2 are replaced by n1copy and n2copy, respectively.
After this, the original (recursive) path linking functions τ

(′)
e

can all be removed from T(′). Such an example is the internal
edge e1,2 = (n1, n2) of the graph G in Fig. 23: the function τ

(′)
e1,2

is affected. Its entire contents are copied to τ
(′)
e1,2copy

before it is

deleted. So τ
(′)
e1,2copy

(n1copy) in the new function corresponds

to the former value τ
(′)
e1,2(n1) of the old function.

Now the nodes and induced edges of the partition Npart have
been completely replaced by their copies in Gsub, with incident
edges and node refinements all redirected. The nodes and
induced edges of the partition Npart are now isolated in G. All
that remains to be done is to remove them from G.

Creating a subgraph is a very useful operation. Note that it can for Merging Two
Graphs via the
Operation

example be used to merge two different graphs Gi and Gj which
are siblings (i.e. have a common superordinate graph Gc): The
corresponding nodes ni/j in the graph Gc with ρGr(ni/j) = Gi/j are
put together. They form a new subgraph in Gc.

4.3 summary

This chapter introduced a system architecture based on the central
concept of a hierarchical graph. In particular, it has been proposed
for the integration of distributed spatial networks. The first section
motivated the need for such a system. To handle the information flow

77

conceptual design of a hierarchical graph system

between distributed elements in the system, the notion of a mediator
has been developed. The representation of context information has
been discussed together with the resulting constraints that affect path
finding. Three different options have been explored for incorporating
context information into the path finding process, including an analy-
sis of their respective strengths and weaknesses. Two of them have
been realised in an initial implementation of the system architecture.

Besides the practical aspects of the system, this chapter also explained
the theoretical issues of a hierarchical graph system. Some basic con-
cepts like meta graph or hierarchical relation have been formally
defined together with a set of basic operations (e.g. node refinement).
These operations serve as primitives in the incremental construction
of a hierarchical graph. The consistency of this construction process
has been investigated in particular.

Now that the general design issues of a hierarchical graph system
have been covered, we can focus our attention on the concrete mod-
elling of indoor environments. The following chapter explains how
these environments fit into the proposed hierarchical graph model.

78

5
A P P LY I N G H I E R A R C H I C A L G R A P H S T O I N D O O R

E N V I R O N M E N T S

5.1 Why Hierarchical Graphs for Navigation in Build-
ings? . 80

5.2 Overview . 82

5.3 Modelling Aspects and Construction of the Hier-
archy . 83

5.4 Further Enhancements of the Hierarchy . . . 111

5.5 Application: Query Processing Using the Hierar-
chy . 134

5.6 Scenarios for Pedestrian Indoor Navigation . 148

5.7 Summary . 150

In this chapter a closer look is taken at the specific application domain
of indoor environments. The focus is on pedestrian navigation in
buildings because these are the most interesting environments from
a research point of view. Unlike outdoor networks, they have not
been treated in a systematic way. There is no standard model for
navigation in indoor environments (see Chap. 2).

Two aspects are mainly investigated: firstly, how a graph hierarchy
can be automatically created for indoor environments and secondly,
how this hierarchy can be exploited to guide path finding and pro-
duce human-oriented route descriptions. A pragmatic method is
described to obtain a hierarchical graph model of a building. The
method starts from a given set of floor plans (see Section 5.3). The
generated model serves as a basis for a human-centered navigation
assistance system.

In Section 5.1 the general benefits of a hierarchical representation
are briefly explained. Section 5.2 gives an overview of what a com-
plete system architecture looks like, which is more wide-ranging and
goes beyond the prototypical implementation achieved in this work.
The next section (5.3) looks at the details of the transformation of
a geometry-based representation into a multi-level, versatile graph
structure. Further aspects and arguments for extending this initial
hierarchy are discussed in Sect. 5.4. There, two new algorithms are
proposed which are motivated by practical navigation problems.

For generating meaningful route descriptions in particular, it is
useful to maintain some parts of the geometry so that spatial relations
can be derived. Featuring both geometry and graph structure, the
proposed model is hybrid. The benefits of using such a hybrid model
are discussed and illustrated by concrete examples. In Section 5.5
the hierarchical model is applied to concrete navigation problems in
buildings. Section refsec:scenarios gives an outlook by presenting
three possible scenarios for using such a system. The chapter ends
with a conclusion in Sect. 5.7.

79

applying hierarchical graphs to indoor environments

5.1 why hierarchical graphs for navigation in buildings?

First of all one may well ask why it makes sense to apply hierarchical
graphs for navigation in buildings. There are several arguments in
favour of hierarchical graphs:

The first impression is that efficiency plays rather a minor role becauseSpeed-Up
Necessary? the graphs are relatively small compared to large traffic networks

outdoors. However, for ‘lively’ environments such as airports, mu-
seums, etc., this is not necessarily the case: they are frequented by
many people so that many queries are likely to be posed within short
amounts of time. Efficient data organisation and query processing
therefore become significant questions for navigation tasks in these
environments. Building up a hierarchy does not pay off so much for
just one query, but for many resembling queries (whenever recompu-
tations of the same partial results can be avoided). The hierarchy can
be seen as an index structure; as such it has to be computed only once.

Moreover, hierarchical graphs provide a richer model: In fact, manyRicher Model
spatial planning problems can be thought of hierarchically. Human in-
door navigation is an excellent example for demonstrating the virtues
of applying hierarchical planning. Consequently navigation tasks
can be carried out at several levels of detail, from a coarse, high-level
plan (determining the main course, i.e. which floors and stairways
to take) to detailed plans (determining local choices, e.g. between
several doorways or for the circumvention of obstacles). The resulting
advantages are that path finding and the subsequent description of
paths can be structured in a way which strongly resembles the way
people solve spatial problems (i.e. to provide ‘meaningful’ route
descriptions).

Last but not least, a hierarchical graph model alleviates the inte-Integration with
other Networks gration with other spatial networks into a comprehensive geospatial

world model. An architecture like the mediator-based architecture
proposed in the previous chapter can be employed for this purpose.

To be more precise, let us consider some typical examples for in-Exemplary Route
Descriptions door route descriptions given by people: If you are at the first floor

of a large building, and you ask someone how to get to a particular
room, the explanation may well start with “Go to the third floor ...”.

What is essentially behind this is a two-level (or, in general, multi-
level) hierarchical model of the building. An example is depicted in
Fig. 24.

The upper hierarchy level consists of all floors, while the lower levelHierarchical
Planning models the topology of each floor. In addition, the hierarchy shown

in Fig. 24 also has an intermediate level defined by wings. Navigation
between different floors usually consists of the steps “go to the lift
(staircase etc.)”, “go to the target storey”, and “navigate the target storey".
This is a typical case of hierarchical planning as it has been inves-

80

5.1 why hierarchical graphs for navigation in buildings?

Floor 1

Floor 2

Floor 2Floor 1

Border Nodes Wings

Nodes Floors

Figure 24: Hierarchical Graph of a Building

tigated in Artificial Intelligence for decades [Sac73]. Therefore the
intention of our model is to support hierarchical planning, namely by
providing hierarchical graphs.

The primary use for a graph hierarchy is of course the represen- Structuring Indoor
Spacestation of different floor levels in a building. Other use cases may

necessitate a more detailed representation comprising different wings
or sections of a building (as in Fig. 24). Together, floors, wings, and
their constituent rooms and corridors yield a hierarchy of four levels
(if the building as a whole is considered as the root). Depending
on the intended application, it could make sense to subdivide some
rooms or corridors further, e.g. to better cope with their complex
structure. The resulting hierarchy would then have five or more
levels. One can profit from this richer structure too for giving route
descriptions at several levels of detail [DGP03, Tom07]. If necessary
a wayfinder may refine an abstract description and see its individual
steps. This kind of interaction is very convenient compared to flat,
static instructions which are standard.

However, extensions should also be considered in the other direction: Integration with
Other Networksthere may also be further levels above the level of floors. If we want

to represent not only a single building, but the whole campus of a
university (or another similar complex consisting of many buildings)
for instance, or buildings scattered over the city, each building would
be represented as a node in the graph one level above the level of
floors. The edges in the graph at the ‘building level’ represent walk-
ways or streets. More generally, this aspect concerns the integration
of separate graph models of a certain detail level into a graph model
with a higher level of abstraction.

A further use of hierarchical graphs can be the representation of Containment
areas which are contained within each other. As an example, think
of the vegetable section in a hypermarket. The vegetable section
may be subdivided into areas with salad, cucumbers, carrots, etc. In
the hierarchical graph model we would have a node for the entire
vegetable section at some level n, and this node refers to the graph of
the salad, cucumber etc. areas at level n − 1.

The hierarchy may also reflect the underlying data organisation. Maps at Different
Detail Levels

81

applying hierarchical graphs to indoor environments

For example, one could have a library modelled as one room in a
floor plan. In a second floor plan however, the internal details of the
library may be modelled. We could link these two representations
via node refinement in a hierarchical graph. Since the library is a
special part of a building, this separation may be useful knowledge.
For path finding e.g., one would explore the internals of the library
only if necessary. The whole library could also be marked as ‘private’
or ‘staff only’ – this is an elegant way for excluding it from general
path search.

5.2 overview

This chapter explains the basic principles and methods necessary for
an indoor navigation system based on a hierarchy of graphs. Before
going into the details for solving individual subtasks, let us give an
impression of what a complete system could actually look like. In
Fig. 25, a possible system design is sketched:

Figure 25: Indoor Navigation: System Design with Components

Note that the complete architecture shown in Fig. 25 is more wide-Current Status
ranging than the work that has actually been carried out in the course
of this thesis: not all components have been implemented due to the
limited time for this research. Nonetheless, the above diagram is well
suited to give a big picture, illustrating the functionality and interde-
pendecies of individual components. As such, it can be regarded as
guideline for future implementations of the remaining components
(see Chap. 6 and 8 for a comprehensive overview). In the present
work, we concentrate on the components marked in green. They have
also been implemented.

On the left hand side, we have the basic data and input for theComponents
system. The results are shown on the right hand side. Floor plans
form the basis, together with additional domain and user knowledge
which can be linked to the floor plans (such as Points of Interest etc.).
The output of the system is twofold: we have routes which represent
paths along the graph model and descriptions of these paths. So one
can distinguish between a component for providing paths and one
for providing their descriptions. Therefore, a modular architecture
is proposed. The hierarchical graph model is of course the central

82

5.3 modelling aspects and construction of the hierarchy

element in this architecture. It serves as a reference for both compo-
nents. The general model has been discussed in Sect. 4.

The emerging question is: how can a hierarchical model be con-
structed from the original data? This task is carried out in the data
importer and decomposition modules. We therefore start with the
details of these components.

5.3 modelling aspects and construction of the hierar-
chy

5.3.1 Interpretation of Floor Plans

The first step towards a comprehensive, automated data processing Addressed Questions
method concerns data acquisition. This is a practical but nonetheless
important issue because the basic data format is the starting point
for all further considerations: How is an indoor environment represented,
and how can advanced navigation tasks be carried out based on this repre-
sentation? (i.e., which spatial relations are available or can be derived
from it?) It may be necessary to enrich the basic structure. What kind
of information is required for this purpose and how can a graph structure
be – automatically – constructed?

Data acquisition for indoor environments is unfortunately more prob- Indoor vs. Outdoor
lematic than modelling, for example, outdoor spatial networks. The
crucial difference lies in the type of data available: Aerial images (e.g.
provided by satellites) facilitate the automatic detection of an entire
transportation network (such as a highway system). The modelled
road segments and intersections already represent the desired navi-
gational structure. By contrast, the primary source of data for indoor
environments is a collection of floor plans. Therefore they are the
starting point for our considerations.1

The problem with floor plans is that they are centered on a building’s Floor Plans are
Complexgeometry. Thus one can not directly make use of a graph structure for

giving navigational advice. From the original floor plan data, such a
graph has to be derived first. As discussed in Sect. 2.1 there is not
one unique representation for the interior of a building, but instead
several different kinds of graph structures can be used for navigation.
It is arguable which one to choose, although a minimum set of as-
sumptions on the walking behavior of people would be helpful.

Conceptually, floor plans can be seen from two different perspec-
tives:

architect’s perspective . From the point of view of an architect,
floor plans document the structural aspects and the shape of

1 Alternative approaches are also thinkable, especially in the field of robot navigation:
Autonomous robots can, e.g., acquire knowledge of their environment via sensors.
For this purpose, 180◦ or, more recently, 360◦ laser scanners are employed. However,
the geometry reflects the structure of the floor plan, so this is just another method
for obtaining floor plan data (without prior knowledge of it).

83

applying hierarchical graphs to indoor environments

a building. They are technical drawings (blueprints), mainly
serving as an aid for construction. Additionally, they can be
enriched by diverse architectural symbols and measurements.
This makes automatic image processing particularly difficult.
We therefore concentrate on ‘pure’ floor plan data without
any symbols or measurements. It is assumed that a vector-
based representation is available. This representation can, e.g.
originate from a CAD system or a manual drawing with another
similar tool.

wayfinder’s perspective . Floor plans are, on the other hand,
frequently used as maps of buildings for both visitors and occu-
pants. Examples include emergency- and evacuation plans or
you-are-here (YAH) maps. They are shown on strategic points
of a building to aid human wayfinders. Since we address human
indoor navigation, our focus is on this second aspect – floor
plans are primarily considered as maps. So we have to move
from the purely geometry-based model towards a qualitative
form of representation more akin to people’s understanding of
a map. In order to get to such a map representation we have
to interpret floor plans. For a computer system however, this
implies making sense of the low-level geometric concepts and
deriving high-level navigational knowledge from them (similar
to the way humans look at maps and reason).

We propose a systematic method for interpreting floor plans for
navigation. It consists of the following individual steps:

• scan floor plans on paper (preliminary step),

• vectorise each floor plan (e.g. with a CAD system or similar
tool),

• extract a flat, basic graph structure from each floor plan for
navigation,

• connect different floor plans and create a hierarchical graph.

For our further considerations it is assumed that a set of floor plans
of the environment is available in a vector-based format (these data
originate e.g. from a CAD application). Since non-proprietary CAD
systems are scarce to find, we decided to use a similar system de-
vised for modelling buildings. It is called Yamamoto [SH06]: Initially
started as a student project, the system has been developed further
as an open source project at the university of Saarbrücken.

Nonetheless, it is sensible to represent the basic elements of a floor
plan in a very simple, general form (independent of a particular CAD
system/tool). For the systematic method we hence need to address
the issues of:

1. finding an appropriate geometric representation

2. deriving an interpretation of the included geometric configura-
tions in terms of a flat graph.

84

5.3 modelling aspects and construction of the hierarchy

In the following sections, we adhere to this simple method and
explain the basic steps for converting the geometric representation
naturally occurring in floor plans to a basic graph structure. In
Sect. 5.4, we then describe our experiences with this method and the
resulting graph model when it is actually applied to real floor plans.

5.3.2 The Underlying Geometric Model

This section presents the underlying geometric model from a vec-
torised floor plan. Before we focus our attention on the resulting
navigation problems, this basic data model is explained. The geomet-
ric model serves as a reference for the hierarchical model, and at the
same time as an ontology for spatial elements of a building. To define
an ontology for wayfinding in buildings one has to understand the
structure of buildings first, including the resulting free space where
people can move and of course boundaries and other obstacles.

5.3.2.1 Planar Floor Plan and Dual Regions

We start with a vectorised, yet very primitive floor plan in the begin-
ning – this model consists only of boundary lines and their respective
end points. Even the basic spatial regions (enclosed areas) are left
implicit. In other words, we assume that only a planar graph is avail-
able. This abstraction is convenient because it allows us to consider
floor plans in a formal way, without any preference for a particular
system or format:

Definition 5.3.1 (Planar Floor Plan Graph). A planar floor plan
graph Gf = (Nf, Ef := Eb ∪ Eo) is an undirected graph with a pla-
nar embedding in a two-dimensional spatial reference system.2 We
differentiate between two types of edges: the first edge type, Eb,
represents a straight-line boundary segment. The second type, Eo,
represents an opening between two such boundary segments.3 Nodes
n = (x, y) ∈ Nf demarcate the end points of both edge types. Vice
versa, the edges e = (na, nb) ∈ Ef represent the lines nanb.

For planar graphs the following properties are known [Die00]:

• no two line segments cross each other, i.e. edges intersect only
at their end points4

• there are regions implicitly bounded by edges (in literature,
they are termed ‘faces’), including the infinite exterior face. An
edge generally separates two faces.

Our intention is to derive the implicit regions from the floor plan
graph and use them for further processing. They should be ideally
represented in a standard way, so that manipulation with both simple
and advanced algorithms is facilitated. Polygons (in the sense of

2 Note that the reference system does not to need be global (such as WGS-84). It can
be local, i.e. adopt the dimensions of the scanned drawing.

3 This can be, for example, a door (see Fig. 26)
4 a reasonable assumption if the floor plan has been vectorised properly

85

applying hierarchical graphs to indoor environments

Computational Geometry; see also Def. 5.3.3 in Sect. 5.3.2.2) are such
a suitable representation.

Since planar floor plan graphs (with their included regions) are
very abstract, one may need to extend this formalism with more
concrete concepts. If for example a navigation application requires
distinguishing between different types of regions (say between ramps
and stairs for persons in a wheelchair), one should be able to annotate
these regions with the respective types/concepts. Our intention is to
provide a basic model which is extensible in this respect.

The distinction between two edge types is drawn for practical reasons:
whereas both delimit the boundaries of a region, only the second
type, Eo, represents (in an abstract manner) any connection on the
boundary that allows us to move from one region to another. In the
literature these special elements are also referred to as gateways [RT05]
or exits [HL04]. The other type, Eb, represents hard/impenetrable
boundaries. Examples include not only physical boundaries like
walls, but any other form of division like height difference (think of
loges in a theatre, or platforms in a train station).

It is even foreseen that entries to ramps, staircases or elevators are
modelled as openings. Staircases and elevators are special regions
(they have to be explicitly annotated as such). They play a major role
in connecting different floor plans. In Sect. 5.3.4, this special case is
discussed in more detail.

With the two different edge types, we already have a small ontology
that carries the basic semantics of navigation. To include more sophis-
ticated constraints like opening hours or access restrictions, it makes
sense to allow additional annotations for edges in Eo. This topic is
further discussed in Sect. 5.5. However, the basic categorisation into
Eo tells us which edges on the boundary are generally traversable for
a human wayfinder.

To get an impression of concrete models with planar floor plan
graphs, consider the two examples shown in Fig. 26:

Both floor plan graphs are valid representations of the same archi-
tectural elements, albeit on different scales. The essential difference
is that in the first graph walls have a certain thickness, whereas in
the second graph this thickness is idealised to a line. So walls and
doors are either modelled as proper regions with boundaries or as
boundary segments alone (depending on the choice of scale). Instead
of stipulating a certain way of modelling, there is more flexibility if
both models are allowed. We therefore want to take into account both
ways of modelling.

The corresponding enclosed regions of the previous example, ex-
cept for the outer face, are depicted in Fig. 27. Notice that walls and
doors are additional regions in the example with the finer scale.

86

5.3 modelling aspects and construction of the hierarchy

1 2

Figure 26: Example for Two Planar Floor Plan Graphs

R1
R1R2

R3

R3 R3

R3R3

R3
R2

R4

R3 R2

R2
R5

R6

R7

Figure 27: Implicit Regions Enclosed by Edges

How can we characterise these regions more specifically (e.g. to keep
walls and ordinary rooms apart)? One just has to take a look at
the included boundary types for this purpose: if there are only Eb

boundary segments (no openings), the regions can neither be entered
nor left. Generally speaking these regions qualify as obstacles. Walls
with a certain thickness or other non-enterable objects fall into this
category. The other kind of regions have some walkable connections
of type Eo to the outside or to neighbouring regions (in the sense of
navigation). These regions could be rooms, stairs, doors or ramps.

Now we are interested in a method to determine these implicit faces
and their relations from a given planar floor plan graph, that is deriv-
ing the so-called dual graph.5 Resembling examples for this sort of
graphs are Region Adjacency Graphs [LOS06, PG96], although there
is usually only one type of edges.

For our purposes it makes sense to extend this notion to two edge
types: from a dual perspective, one or more shared edges of type
Eb are considered as one neighbouring relation (external connection)
between two faces/regions. In contrast, each edge of type Eo is
considered as one transition relation (path connection) between two
faces/regions (meaning that there can be, in general, multiple path
connections between two regions). The resulting graph structure is

5 the nodes in this graph are regions and edges represent the existence of connections
between regions.

87

applying hierarchical graphs to indoor environments

presented in Sect. 5.3.3, where we go into more details regarding
these relations.

Notably, the faces in a floor plan graph may have both outer and
inner boundaries (e.g. when other regions are contained in them). An
example is shown in Fig. 28:

outer boundary

inner boundaryRo

Figure 28: Circular Corridor R0 with Inner and Outer Boundary

This case can occasionally be found in real floor plans, for example
of airports (where there are individual duty-free shops in the de-
parture or waiting area), universities (with circular hallways around
some lecture rooms) or other large buildings with similar features. In
the example of Fig. 28, the common outer boundary of two regions
constitutes the inner boundary of the containing region. So when
determining the boundaries of a region one also has to look out for a
possible nesting. In general, the nesting can be recursive.

To identify this problematic constellation, it would be ideal to have
the outer boundaries of regions represented as polygons. One could
then use a standard algorithm from Computational Geometry, e.g. to
detect whether points of one polygon lie in the interior of another
polygon (with a simple ray crossing method).

5.3.2.2 Deriving Regions from the Floor Plan Graph

As basic topological relations we only have cases in which

1. regions share boundaries (Eb with or without Eo),

2. regions are nested in one another (i.e. share some inner bound-
ary),

3. regions are disconnected (none of the above relations holds).6

All other topological relations [EF91] are not relevant for our consid-
erations of floor plan graphs.7

Consequently we can see the major parts of a floor plan graph (with
the relations of point 1) in an intuitive way as a connected mesh of
polygons:

6 overlapping is not possible because of the planarity condition (i.e. all edges intersect
at their end points only).

7 for example, tangential containment is not considered here because the larger region
would not be minimal.

88

5.3 modelling aspects and construction of the hierarchy

Definition 5.3.2 (Mesh in a Floor Plan Graph.). A mesh in the context
of a floor plan graph Gf is a connected component Gm of the graph
Gf, i.e. all nodes and edges which can be reached from a given start
node m ∈ Nf. All regions bounded exclusively by edges in Gm are
called regions in the mesh Gm (see the example in Fig. 29).

Regions in Mesh 1:boundary

exterior boundary Mesh 2:

Mesh 3:

Figure 29: Exemplary Floor Plan with Regions in Different Meshes

Definition 5.3.3 (Polygon (Computational Geometry)). A polygon
P := C1, C2, .., Cz>3 in the sense of Computational Geometry is a se-
quential list of distinct corners Ci∈1..z = (xi, yi)

8 where neighbouring
corners are connected via boundary lines. Moreover, the tail Cz is
linked to the head C1. All corners are ordered counter-clockwise
(ccw). Two conditions are crucial for polygons:

1. no corner Ci may appear repeatedly in the list (i.e. two bound-
ary lines may not touch each other, except if they are neigh-
boured),

2. no pair of boundary lines CiCi+1 and CjCj+1 (with i 6= j) may
cross each other, i.e. there may not be any intersection points
Cx := CiCi+1 ∩ CjCj+1 outside the list of corners.

Polygons correspond to elementary cycles in the floor plan graph.
These are all minimum cycles which do not contain any other cycle.
The principal idea is to traverse the planar floor plan with a simple
graph search algorithm and determine these minimum cycles. The
algorithm can proceed in a mesh from one region to another via their
shared boundary (an edge in the floor plan graph). To determine all
regions, one just needs to make sure that every edge is visited exactly
twice (in possibly opposite directions), for two different cycles/re-
gions.

Despite the fact that edges in the floor plan graph are undirected,
a traversal by a graph algorithm does naturally impose an order
on the edges. We therefore distinguish between two conceptually
different notions:

• an undirected edge ef = AB in a floor plan graph,

8 indices are calculated modulo z

89

applying hierarchical graphs to indoor environments

• two directed traversals (visits) of the edge, represented by the
vectors −→e1 =

−→
AB, −→e2 =

−→
BA (they correspond to the ordered list of

points A, B respectively B, A).

We refer to the latter also as directed edge, in contrast to the undi-
rected counterpart in a floor plan graph. An apt concatenation of
these directed edges should result in the polygons which correspond
to the minimal regions.

basic algorithm . In planar floor plan graphs regions are not
explicitly represented. Nonetheless, a surrounding set of edges pos-
itively defines a region. An algorithm is therefore needed which
automatically determines all regions enclosed in a floor plan. Poly-
gons are an ideal representation for these regions because they are the
basic data structure used in Computational Geometry. The purpose
of the following algorithm is to obtain a set of polygons for a given
floor plan graph:

Generally, when we start going through the floor plan graph from any
directed edge

−→
AB, there are several adjoining edges BC1, .., BCn ∈ Ef

(with Ci 6= A) where we can continue. We have to decide which of
these edges is the next in the counter-clockwise order of the currently
constructed polygon.9 The special case where no consecutive edge
BCi exists (i.e. node B being a dead end in the floor plan graph) can
of course also occur. This problem is deferred for the moment, since
it complicates understanding the basic idea of the algorithm. It is
covered along with other special cases in the next section.

The strategy for choosing the next directed edge
−−→
BCi along the poly-

gon’s boundary is a core component in the processing of a floor plan
graph, yet very simple. It is sketched in Fig. 30:

φ1

inside

outside

(current edge, oriented ccw)

φ2

φ3

min

A B

C1

C2

C3

Figure 30: Strategy for Choosing the Next Boundary Line

Assuming we are currently at the directed edge
−→
AB, the point Ci on

the next directed edge
−−→
BCi is part of the polygon iff we choose BCi

9 the order of the polygon is only counter-clockwise if the first edge is also oriented in
this direction. However, this condition can be ensured quite easily (see below).

90

5.3 modelling aspects and construction of the hierarchy

such that the angle ϕi =](ABCi) (enclosed between
−→
AB and

−−→
BCi)

is minimal. In Fig. 30, the minimum angle is depicted by the green
sectors.

The intuition is to find the leftmost point Ci as defined in Com-
putational Geometry (the interior of a polygon is normally to the left
of a counter-clockwise oriented edge

−−→
BCi on the polygon’s boundary).

By selecting the minimum angle we ensure that the respective edge
BCi forms a minimum cycle in Gf in the sense that no other region
is enclosed: if we took another point Cj instead, we would not obtain
the minimum region (in some cases not even a polygon at all) because
the edge BCi would be enclosed in it. However, by definition an edge
separates exactly two regions.

Instead of using trigonometric functions – which are quite expensive
in terms of computation – there is a much simpler and elegant solu-
tion without actually calculating the angle. We can resort to means
of Computational Geometry (see Alg. 1):

Algorithm 1: Find Next Directed Edge

Input: A directed edge
−→
AB in an underlying floor plan graph Gf.

Output: The leftmost directed edge
−−→
BCi with the minimum angle

ϕi =](ABCi).
let C1, .., Cn denote the list of nodes adjacent to B (without A) ;1

choose the first point C1 as leftmost point Cmin ;2

for j = 2 to n do3

test whether the next point Cj is located to the left of
−−−−→
BCmin,4

i.e. whether
(Cmin.x − B.x)(Cj.y − B.y) − (Cmin.y − B.y)(Cj.x − B.x) > 0;
if Cj is to the left of

−−−−→
BCmin then Cj becomes the new leftmost5

point Cmin (otherwise it remains Ci) ;
end6

return
−−−−→
BCmin7

One can go through the entire list of nodes C1, .., Cn and compare
each element with Cmin, the best candidate so far. The next edge
with the minimum angle can be determined efficiently this way, in
linear time (w.r.t. the list of adjacent nodes). If we choose, in place
of the minimum angle, the edge with the maximum angle (illustrated
by the red sectors in Fig. 30) and start from an edge on the exterior
boundary of a mesh, we obtain the largest, outermost polygon that
encloses all other edges and regions in the mesh. This is particularly
useful for determining the nesting between different meshes. Conse-
quently we can generalise the traversal through a floor plan graph
and provide a convenient method for constructing minimum and
maximum polygons (see Alg. 2):

In order to detect the outer boundary of a mesh, we need an appro-
priate starting parameter for the directed edge

−→
AB which is already

on this boundary. One could for example find this edge by con-

91

applying hierarchical graphs to indoor environments

Algorithm 2: Construct the Minimal/Maximal Polygon

Input: A directed edge
−→
AB in an underlying floor plan graph Gf,

an optimisation parameter minOrMax.
Output: A polygon PA,B starting with A, B and describing the

minimum/maximum region from it.
add A, B to PA,B ;1

nextEdge =
−→
AB ;2

repeat3

nextEdge := find next directed edge
−−−→
CbCc from nextEdge4

with minOrMax angle ;
if nextEdge !=

−→
AB then add Cc to PA,B ;5

until nextEdge =
−→
AB ;6

return PA,B ;7

necting the lowest rightmost node nlr in the mesh with the leftmost
node nal adjacent to it. Note that this has to be done in reverse or-
der (i.e. B := nlr and A := nal) for obtaining counter-clockwise order.

Finally, we can put together the individual pieces into a compre-
hensive algorithm (see Alg. 3 below). It constructs polygons for all
implicit regions in a given floor plan graph, plus for the exterior
boundaries of all meshes:
Let us take the previous floor plan of Fig. 29 as a concrete example.
Fig. 31 illustrates the individual steps of the algorithm on this floor
plan graph. The sequence of steps can be directly read from their
numbering.

1. startnal nlr

7. start

1.

1.1.

2.

6. start

2.

2.

3.

3.

3.

4.

4.

4.

2.
3.

1.

3.

3.

3.

4.
5. 5.

5.

6.

6.

8.

8.8.

9.

9.9.

10.

10.10.

Figure 31: Algorithm for Finding Polygons in a Floor Plan Graph

The way the algorithm works can be explained intuitively: Every
undirected edge ef in a floor plan graph has a counter visited(ef).
It keeps track of the number of times ef has been traversed by the
algorithm so far. Accordingly, there is lastVisit(ef) as corresponding
directed edge of the last traversal.

The algorithm starts with the extreme (outermost) directed edge
start on the exterior boundary of a mesh (line 3) and finds this com-

10 the operation flip on a directed edge
−→
AB simply yields its reverse edge

−→
BA.

92

5.3 modelling aspects and construction of the hierarchy

Algorithm 3: Find Regions in a Floor Plan Graph
Input: A planar floor plan graph Gf = (Nf, Ef).
Output: A set R of polygons, one for every region enclosed in Gf

and a set O of polygons describing the exterior
boundaries of all meshes in Gf.

Let R and O be empty and visited(ef) = 0 for all ef in Ef ;1

while there is an edge e ∈ Ef with visited(e) = 0 do2

start := lowest, rightmost directed edge −−−−→nalnlr of all3

non-visited edges ;
borderOfMesh := constructPolygon(start, MAX) ;4

add borderOfMesh to O ;5

foreach undirected edge ef corresponding to a directed edge −→em in6

borderOfMesh do lastVisit(ef) = −→em, visited(ef)++ ;
while there is an undirected edge ef in Ef with visited(ef) = 1 do7

if ef appears in borderOfMesh then −→em = lastVisit(ef)8

else −→em = flip(lastVisit(ef)) ;
109

Poly := constructPolygon(−→em, MIN) ;10

add Poly to R ;11

foreach undirected edge ef corresponding to a directed edge −→em12

in Poly do lastVisit(ef) = −→em, visited(ef)++ ;
end13

end14

return (R, O) ;15

plete boundary first (borderOfMesh, line 4). Every edge there is
visited once (line 6). Since the first directed edge start is oriented
counter-clockwise, all other edges on the exterior boundary are, too.
Then the algorithm proceeds further from a mesh’s outside to regions
in the inside.

The inner while-iteration (line 7-13) is understood in the following
sense: Until a mesh Gm has been completely discovered, there are
still some edges in the mesh which have been visited just once. In
other words the number of visits is a direct indicator for the overall
progress of the algorithm. Now each of these edges is the starting
point for detecting a minimal polygon Poly (see line 10).

Edges visited once are, initially, the edges on the exterior border
of the mesh. Later, as the algorithm proceeds through the individ-
ual regions in the inside of the mesh, the remaining edges ei with
visited(ei) = 1 indicate that an inner region has not been explored yet.
In a second visit the edges are traversed in reverse order, unless they
are on the exterior border.

As soon as the exploration of a mesh is finished, the outer while-
iteration (cf. line 2-14) comes into play: if there is a further mesh in
the floor plan graph, none of its edges have yet been visited (due to
the lack of direct connection between different meshes). Fig. 31 for
instance, features three different meshes.

The algorithm relies on the topological property that an edge di-
vides space into two half-regions. Consequently if an edge has been

93

applying hierarchical graphs to indoor environments

visited twice, all its neighbouring regions have been taken into ac-
count. The algorithm is therefore complete in this regard.11 Indeed,
each edge is visited twice in the end. So this means for the time
complexity that it amounts to no more than O(2 Ef) (i.e. linear in
the number of edges), despite the two nested while-iterations rather
indicating quadratic complexity at first glance. In terms of space,
the number of visits and the order during the last visit have to be
basically stored for every edge.

However, there is an additional time complexity of O(N degavg

log(degavg))12 in the pre-processing step of Alg. 1. This is the com-
plexity required for sorting the incident edges of every node in
counter-clockwise order (in order to determine the next edge within
a polygon).

In student work supervised by the author, a first version of this
algorithm has been implemented along with the basic geometrical
model.

enhancements. The basic algorithm presented so far is not
suitable for any arbitrary kind of floor plan graphs yet. We have
encountered some specific problems in connection with the creation
of polygons – for some cases occurring in real floor plans there is
no corresponding representation as a polygon. Before we present a
systematic categorisation of these problematic cases let us first give
some concrete examples:

Consider again the floor plan graphs depicted in Fig. 26. In the
coarse graph one edge is ‘sagging’ in the sense of being oriented
towards the interior the region (i.e. the edge has the same face on
both sides). Similar situations can frequently be found in muse-
ums. Although not explicit, these kinds of free-standing walls often
subdivide a room (cf. Sect. 5.4.1 for more examples of this specific
phenomenon).

A further example for problematic ‘thin’ walls are room dividers
(see Fig. 32). They serve as architectural elements in various cultures,
for instance in Spain and Japan. Note that they can be moved, which
allows for a flexible subdivision of a room.13 It therefore makes sense
to model them separately from the static structure.

If there were such an inwards-oriented edge of type Eo (opening), it
would be considered as self-connection of the region. Modelling an
inwards-oriented wall in this way leads to tremendous problems for
the basic version of Alg. 1: it stalls because there is no consecutive
directed edge

−−→
BCi to continue; the current directed edge

−→
AB is a dead

end (this case has been previously omitted).

11 It is however not complete for all floor plan graphs (i.e. it does not accept all kinds
of floor plan graphs as input). In the next section counterexamples are shown. How
they can be processed is also discussed there.

12 Here degavg is the average number of incident edges per node.
13 They can, e.g., dock into other elements.

94

5.3 modelling aspects and construction of the hierarchy

Figure 32: Flexible Room Dividers

As a simple remedy we could extend the algorithm by allowing a
sort of backtracking for such situations: the edge AB would be visited
again in reversed direction. This can be technically implemented by
no longer excluding node A from the list of next candidates (i.e. the
flipped edge

−→
BA is a feasible alternative to choose from14.).

However, an error still arises when we want to create the resulting
polygon: the inwards-oriented edge appears twice in the representa-
tion as a polygon, while the definition of a polygon (cf. Def. 5.3.3)
prohibits any repeating elements.

In order to obtain a proper polygon, these two opposing edges
would have to be represented separately. Therefore the points A, B
could be shifted slightly into a new edge between A′, B′. Next, an
edge could be created between B and B′ (and between A′ and A

as well) to avoid repetitions and points with the same coordinates.
Every edge having the same region on both sides could in this way
be replaced by a small region that represents this boundary.

These two examples give an idea of the problems encountered. In gen-
eral, neither edges nor single nodes may occur repeatedly in polygon
representations. A classification of problematic cases is shown below
in Fig. 33. We assume that the basic algorithm has been extended
with backtracking:

(A)

(B)

(C)

(D)

Figure 33: Problematic Cases for Polygonisation

Case (A) shows a single node being traversed twice (marked red).
Similarly, the bridge edge described in case (B) is traversed twice

14 For correctly determining the minimum/maximum angle in the presence of A,
choose as an angle of

−→
BA 360◦ and not 0◦

95

applying hierarchical graphs to indoor environments

(also in red). Note that in contrast to the case of one inwards-oriented
edge, these constellations cannot be discovered immediately after the
first traversal through the node/edge. Case (C) is a sequence of
several inwards-oriented edges and case (D) a complex combination
of the previous cases.

To avoid this kind of problem it is feasible to choose a fine-scaled
modelling which takes into account the thickness a priori (like on the
left hand side of Fig. 26). With a coarse-scaled model however, we
basically have two options for processing:

• one approach is to relax the conditions for a polygon insofar
as to allow loops (repetitions of nodes and edges). This means
that the same boundary segment may appear twice in one poly-
gon, although in opposite directions. Corners can even appear
several times. The resulting list of corners is then of course
not a polygon in the strict sense of Computational Geometry.
Notwithstanding the oddity of the resulting data structure it
seems to be useful since the angle between two coinciding
boundary lines is well-defined.15

Our first intuition is that this extension does not affect stan-
dard algorithms from Computational Geometry such as line
intersection. However, a formal proof would be necessary to
underpin this assumption (and ensure a safe use of all basic
algorithms). So one must be careful and check the conditions
of every algorithm properly before using it.

• an alternative is to recognise problematic situations in a floor
plan graph and transform them into a valid polygon model.
Ideally we want to identify these problems on the fly, i.e. while
going through the floor plan graph and fix them. For this pur-
pose the previous algorithms have to be extended (as indicated
above). It is generally not sufficient to have a look-ahead of just
one (peeking the next element), but the problematic situations
may arise within a given window, as in cases (A) and (B) of
Fig. 33. Therefore, detecting these problematic situations has its
own price in terms of efficiency: every time a directed edge is to
be added to the polygon, one has to check whether it has been
already visited in reverse direction, or at least one of its nodes.
This entails not only an augmented memory consumption, but
also a worse – quadratic – processing time in the number of
edges Ef. This is a typical case of a trade-off: additional expres-
siveness is bought at the cost of time complexity.

In summary, one can either make sure that only fine models of floor
plan graphs are accepted as correct input, or one has to take into
account a more sophisticated processing for recognising and handling
the problematic cases. The idea of transforming the floor plan graph
which has been sketched above on the example of Fig. 26 can be
summed up succinctly:

From a practical point of view this means the following:

15 the angle between these opposing boundary lines is 360◦.

96

5.3 modelling aspects and construction of the hierarchy

1 unit 1 unit

1
 u

n
it

1 unit

1
 u

n
it

1 unit

1
 u

n
it

1 unit

(A)

(B)

(C)

(D)

Figure 34: Transforming the Problematic Cases into Valid Polygon
Models

• if a node is encountered for the second time in the current poly-
gon it has to be split into two nodes so that it does not occur
repeatedly in the polygon. To close a possible interior region,
the two nodes are connected (see Fig. 34, (A)).

• if an edge AB is encountered twice – in opposing directions
−→
AB

and
−→
BA – during the creation of one polygon, simply create a

new edge B′A′ for the second traversal. Then, replace the edge
AB by the polygon ABB′A′A (see Fig. 34, (B)).

The new edge B′A′ is shifted by the least possible amount (i.e.
basic unit of the spatial reference system) to the right of the first
edge

−→
AB. Then, B is connected to B′ and A′ to A so that the

enclosed wall is modelled as a polygon too. A′ is used instead
of A for connecting to the next boundary segment AC.

If AC, again, has been visited once, A′ is moved one unit further
so that it does not happen to be on AC (see Fig. 34, (C)).

A repeated application of these simple concepts is shown in Fig. 34,
part (D). Repeated shifting may cause smaller errors with the orien-
tation of the new edges (see (C) and (D)). However, this is almost
inevitable when we give walls a certain thickness. We could also shift
the original points, but it would be more complicated.

Also, care is required with the creation of new polygons: if, for
example, the replaced point A is on the exterior boundary of a mesh,
one has to set the counter visited for the new connecting edge A′A
on the exterior boundary to one.

In summary, we can also deal with non-polygon structures and
transform them into valid polygon models. Note that this extension
does not come for free – there is a trade-off for the additional ex-
pressiveness: in order to determine whether nodes and edges are
encountered twice during the construction of a polygon, one has to

97

applying hierarchical graphs to indoor environments

maintain a list of previously visited nodes and edges during this
process (with an additional space complexity of O(Nf + Ef)). For
each possible expansion of the polygon, one has to check whether the
respective node and edge have already been encountered and proceed
in a manner as described above. The task of checking whether the
current node and edge are in this list increases time complexity to
O(Nf + Ef) for each step. Thus the overall time complexity amounts
to O(2 Ef (Nf + Ef)), losing linear time for polygon construction.

5.3.3 Basic Mapping to a Flat Graph

Now that we have a polygon representation for all regions in a
floor plan graph, we can shift the focus from modelling a building’s
structure to modelling wayfinding in a building. First, we can define a
mapping to the corresponding dual region graph of a floor plan graph.
The dual region graph serves as a basis for elementary navigation
tasks such as path finding:

Definition 5.3.4 (Dual Region Graph). Given are a planar floor plan
graph Gf = (Nf, Ef := Eb ∪ Eo), a set R of polygons for every region
enclosed in Gf (such as provided by Alg. 3), and a set O of polygons
for the exterior boundaries of all meshes in Gf. A dual region graph
GR = (R, ER) is an undirected multigraph whose nodes are polygons
P ∈ R. Edges in GR are all openings eo = (na, nb) ∈ Eo shared
by two different polygons Pi and Pj (i.e. the end nodes na and nb

appear in both polygons: Pi = ..na, nb, .. and Pj = ..nb, na, ..).

Note that there can be more than one edge between two regions, in
case that Pi and Pj share several openings on their common bound-
ary. That is why the dual region graph is defined as a multigraph
instead of an ordinary graph. The above definition covers the basic
topological relation of adjacency between two polygons. Adjacency is
simply defined as sharing an edge of type Eo (opening). The intention
behind a region graph is the following:

• regions represent areas of walkable space (the interior of poly-
gons),

• they are delimited by physical boundaries (the contours of
polygons),

• openings (of type Eo) on the boundary allow us to move from
one region to another.

As discussed in Sect. 4.1.3, it is possible to annotate the regions andAnnotation with
Context Information edges in the dual graph with context-specific information (e.g. for

modelling stairs, main entries, ramps, etc.). This context-specific
information is stored in an ontology, with the elements in the dual
region graph linking to the corresponding instances of the ontology.
One can primarily use the dual region graph to perform path finding,Room-to-Room vs.

Door-to-Door
Navigation

on a room-to-room basis. This kind of path finding is more abstract
than, for example, door-to-door path finding (e.g. by means of visibil-
ity graphs, see Sect. 2.1.3) because the purely topological properties

98

5.3 modelling aspects and construction of the hierarchy

8

Figure 35: Dual Region Graph for a Floor Plan

of regions (their ordering in a traversal and possible alternatives)
are considered before looking at the actual geometric distance at all.
As a result we do not need to calculate all geometric distances, but
only those for regions appearing in an abstract path between origin
and destination. The representation with dual region graphs is also
much more succinct: If we have, say, a region with n openings to
other regions, all internal combinations between these openings –
a total of n(n−1)

2 – would have to be explicitly modelled as edges
in a door-to-door graph (see Fig. 36). This representation becomes
especially awkward and inefficient for large regions which possess
many openings. Therefore we opt for the more compact representa-
tion with dual region graphs. Distances between openings are only
implicitly modelled (namely as Euclidean distances); they can be
extracted from the underlying geometric representation if necessary.
Polygons therefore supplement the description of paths by providing
geometric details within a region.

Figure 36: Door-to-Door Graph as Alternative

Nevertheless, two important aspects are still missing in the above
definition of a dual region graph (see also the red dashed edges in
Fig. 35):

1. the connections along the inner boundaries of regions: when-
ever a polygon (or, more generally, a mesh of polygons) is
contained in the interior of another polygon, there are no edges
for connecting the containing region to the regions in its interior,

2. the connections on the boundary of the entire floor plan to
the exterior: these are all openings on the floor plan’s outer
boundary leading out of the respective floor/building.

In the floor plan shown in Fig. 35, for example, we would expect the Example

99

applying hierarchical graphs to indoor environments

three red dashed edges (leading to the inner rooms, respectively to
the exterior face ‘∞’) and the node ‘∞’ to be part of the region graph
too. Thus, for the complete construction of a suitable region graph for
navigation, one has to take into account the containment of regions as
well as connections to the exterior. Fortunately, Algorithm 3 provides
the necessary means for constructing these additional edges: one
can analyse the polygons in O describing the outer boundaries of all
meshes and sort them w.r.t. to containment (the details are explained
in the next section).

The resulting flat graph, as shown in Fig. 35, would correctly modelReflections
the topology of a floor plan. However, our intention is to model
not only one isolated floor plan, but a couple of different floor plans
(which make up the whole building) and outdoor spatial networks,
too. So let us reconsider the role of these additional elements in a
hierarchical world model:

The second kind of connections are of particular interest for inte-Integration with
Other Networks:
‘∞’ is Superfluous

gration with other maps or spatial networks. All openings which are
edges to the infinite outer face represent potential connections to the
outside or to other buildings (tunnel, bridge, etc.). Consequently the
regions in Gf featuring an opening to the exterior slip into the role of
border nodes in a hierarchical graph environment (see next section).
We can mark them as such. It does not make sense to model the
exterior face as an artificial node in a dual region graph given that
it is just a placeholder for one or several connecting outdoor spatial
networks.

Besides this, the first kind of connections represents a special de-Containment as
Hierarchisation pendency as well: we know that in order to reach the contained

regions, one has to pass through the surrounding region first – it is an
intermediate goal for such paths. This special relation is not reflected
in a flat graph, but we could use a hierarchical representation for this
purpose. Modelling containment between different meshes is the first
opportunity for hierarchisation within a floor plan.

Note that there are two different notions of containment which haveTwo Notions of
Containment to be distinguished: on the one hand we have containment as a spa-

tial relation between two regions which describe different parts of a
building.16 This kind of containment is captured in the hierarchical
model. It is assumed that the structure of the building changes rarely,
so this relation is rather static (apart from furniture which can be
rearranged – these are obstacles at a fine detail level which must be
described in a navigation system for blind people). On the other
hand containment can also be understood as a relation between the
environment and persons or physical objects (such as books in a
shelf which are not obstacles for wayfinding). Obviously, this is not
a part-of relationship. The mapping is dynamic, because the loca-
tion of persons constantly changes while they are moving around.

16 in the sense that premises are inherently organised into constituent floors, sections,
rooms and so forth

100

5.3 modelling aspects and construction of the hierarchy

The presence and location of persons is therefore not encoded in
the graph structure itself, but annotated as attributes of the corre-
sponding nodes (regions) as explained in Sect. 4.1.3. This allows for
integrating a positioning system which could update the positional
attributes instead of changing the graph structure more easily.

5.3.4 Hierarchisation

In this section different forms of hierarchisations are explained for
indoor environments. They all make use of the operations defined
in the previous chapter. A set of flat region graphs as introduced in
the previous sections serves as a basis. We start with containment of
regions inside a floor plan. Ways of possible integration with other
floor plans, maps of detailed parts, etc. by means of a hierarchical
representation are shown. The principles and related problems are
illustrated by examples.

5.3.4.1 Nested Regions in a Floor Plan

Apart from coinciding boundaries there is another fundamental rela-
tion between spatial regions in a floor plan: they can be nested. This
aspect is common for environments like parking areas, libraries etc.
with many subdivisions inside a region. It calls for a hierarchical
representation.

Accordingly, the first step of hierarchisation pertains to nested regions
in a floor plan graph. Remember that after applying Algorithm 3

from Sect. 5.3.2.2 one obtains the set O of mesh boundaries besides
the set R of ordinary region boundaries. Now the challenge is to find
out the order in which mesh boundaries in O are contained in each
other. Let us formally introduce a relation for this purpose:

Definition 5.3.5 (Child Relation /). Let Gf be a planar floor plan
graph with a set of meshes MGf

(their outer boundaries are exactly
the polygons in O). A mesh Gc ∈ MGf

is child of another mesh
Gp ∈ MGf

, denoted as Gc / Gp, if

1. the polygon Pc describing its outer boundary is spatially con-
tained in the polygon Pp of the other mesh’s outer boundary
(i.e. it lies in the interior of Pp).

2. there is no other mesh Gi ∈ MGf
which has an outer boundary

Pi spatially contained in Pp and, in turn, contains Pc.

According to the planarity criterion for floor plan graphs, two differ- Remarks
ent meshes cannot overlap (because the intersection of two bound-
ary segments is always modelled as a node; by definition, the two
boundary segments would hence belong to the same mesh). From
Definition 5.3.5 and the spatial properties of containment, it follows
that the child relation / is both anti-symmetric and irreflexive. The
relation defines a partial ordering on spatial regions. Due to the
second condition the relation is not transitive. Now this ordering can
be used in practice to represent multiple levels in a hierarchy, covering

101

applying hierarchical graphs to indoor environments

the whole spectrum from coarser- to finer-granular spatial regions
in a floor plan. The second condition in the definition guarantees
that Pp is indeed the minimal polygon containing Pc. No other outer
boundary Pi of a mesh exists which contains Pc, unless it contains
Pa as well. In this sense, the child relation is just a stricter form of
containment, namely direct containment (representing containment
plus ordering).

This is how the implementation, i.e. determining instances of thisImplementation with
Computational
Geometry

relation, looks in practice: since all mesh boundaries are uniformly
represented as polygons, we can utilise standard techniques from
Computational Geometry to test containment for a pair of polygons.

Definition 5.3.6 (Interior, Crossing Number). interior(P) := all points
p = (x, y) with an odd crossing number. Here the crossing number
counts the number of times a ray starting from p (in any arbitrary
direction) intersects boundary segments of P.

The ray crossing method allows us to determine whether a point pRay Crossing
lies in the interior of a polygon P. We can use any point on the bound-
ary of a mesh for p. The boundary of a second mesh is the polygon
P. Sorting the set of all outer boundaries of meshes appropriate to /
takes O(|MGf

| log |MGf
|) time on average.

Having determined all child relations Gc / Gp this way, one canFinal
Hierarchisation:
Subgraph for Gc

also find out which of the regions R in the mesh Gp contains the
mesh Gc in an analogous manner. In the example of Fig. 35, the
region represented as a light blue node contains the mesh Gc with
the regions represented as orange, red, and yellow nodes. We can
hierarchise all regions in the contained mesh Gc: they form a new
subgraph which is spatially contained in the region R. A new node
substitutes this subgraph in the dual region graph (cf. the ‘partition
subgraph’ operation in Sect. 4.2.6). The regions in the mesh Gc which
have an opening on the outer boundary of Gc to the exterior region
R (we have determined that the exterior is in this context not the
global exterior, but locally the region R) become border nodes in this
subgraph. For the outermost meshes Gp in a dual floor plan graph
(where there exists no Go ∈ MGf

with Gp / Go), the regions which
have an opening on the outer boundary of Gp are connected to the
global exterior (i.e. represent connections to the artificial outer face
‘∞’). They likewise become border nodes.

5.3.4.2 Maps at Different Granularities

Apart from a given nesting of regions (which can be derived fromPartial Maps for a
Floor a floor plan graph), there are other use cases for hierarchisation to

model indoor environments.

Until now it was assumed that a floor plan is available which containsGeneralisation
all information to be modelled. This is not always the case: instead
of one plan for a particular floor, there may be different plans for
different parts of a floor. They could be modelled at different levels
of detail or granularity too.

102

5.3 modelling aspects and construction of the hierarchy

For example, one coarse map could be used to model a floor in Motivating
Examplesgeneral, whereas another, more detailed map focuses only a spe-

cific part (such as the interior of a library in a university building
or a special shop/restaurant in a large mall). The first example is
depicted in Fig. 37 below. In fact it is quite likely that the local struc-
ture of a library/shop is stored separately from the global layout of
the floor. For similar reasons this distribution is as stated in Sect. 4.1.1.

In the coarse graph the special part is represented just as a node – Benefits
this node is a black box due to the lack of knowledge on its internal
organisation. Hooking in a specific library plan containing the rows
of shelves, e.g. for different categories of books, would be convenient.
Hierarchical graphs are quite useful in this respect: the two plans
can be combined into just one representation while the structural
content of both is preserved. This facilitates a flexible construction of
a comprehensive model.

Let us illustrate the integration process using the concrete exam-
ple of the library:

Figure 37: Refining the Interior Structure of a Library

In the region graph Gl of the library part some nodes have been Hooking in a
Detailed Mapdetermined as border nodes (which would connect to the outer face

‘∞’ in case of a flat region graph). These are used in a node refinement
operation (see Sect. 4.2.1) which relates the library node nl in the
floor plan graph to the library graph Gl. In order to be compatible,
such a border node must exist in Gl for every edge incident to nl.

5.3.5 The Third Dimension

A larger building normally consists of several floors. So if we want Merging Floor Plans
to represent the whole building in one graph, we have to model the
transitions between different floors especially. However, it is challeng-
ing to model the third dimension. The main problem in practice is
simply that we do not have an explicit three-dimensional model of
the building (such models are difficult to obtain). Instead the starting
point is a collection of two-dimensional floor plans which must be
put together. The only three-dimensional objects possibly appearing

103

applying hierarchical graphs to indoor environments

in these plans (although only represented in two dimensions) are
vertical elements such as stairs, ramps, lifts or escalators. How does
this extended modelling work in general and in more interesting
cases where we encounter, for example, mezzanines or stairs which
fork or join at some point (see Fig. 38)? All in all, merging different
floor plans is an important subtask in the construction of an indoor
model.

At this point the advantages of a hierarchical graph model comeModelling with
Hierarchical Graphs into play: each region graph of a floor plan can be abstracted to

a node in a coarser graph (via a node refinement operation). An
example of such a coarse graph representing an entire building is
presented on the right hand side of Fig. 38. One can then create edges
in this coarse graph as connections among different floors. But we
are still missing the border nodes (cf. the definition in Sect. 4.2.4), i.e.
the regions where the new edges in the coarse graph lead into the
region graphs of the respective floor plans.

F1

Mc

Me

F2

Ma Mb

Md

F1

Ma

Mb

Mc

F2

Me

Md

up

down

down

upup

down down

up

down

Figure 38: Connections among Floors and Mezzanines in a Hierar-
chical Graph

In fact, all special three-dimensional elements within a floor’s re-Border Nodes
gion graph (these can be staircases, ramps, ladders, escalators, elevators
or even paternosters etc.) qualify as potential border nodes to other
floors. These vertical elements are modelled as regions in the dual
graph of the floor plan. They have to be explicitly annotated with
their type in order to be distinguished from the other, non-vertical
regions in the graph. Notice that in general, not all three-dimensional
elements necessarily have to connect to other floors: there might also
be exceptions where two regions on the same floor are connected by
a vertical element (think of a ramp, for example, in the middle of a
corridor or a short flight of a stairs leading to a balcony on the same
floor). In this case it is just a matter of ordinary spatial regions with
the corresponding type annotated. However, they do not adopt the
function of border nodes.

Apart from floors, one sometimes also encounters mezzanines (seeMezzanines
Fig. 38 where Ma, . . . , Me represent such). Mezzanines may have an
inner structure consisting of several regions. The same algorithms

104

5.3 modelling aspects and construction of the hierarchy

can be applied as for floors to obtain a dual region graph. In general,
the region graph of a mezzanine is somewhat smaller than the region
graph of an ordinary floor. Whether or not a mezzanine has to be
modelled explicitly depends on two factors:

• firstly, if it consists of just one region or more (in the former case
we speak of a landing – usually between stairs; such examples
are Mb and Mc in Fig. 38). Mezzanines with more than one
region are called composite.

• secondly, if the mezzanine has three or more connections to
other mezzanines/floors (like Mb and Md in Fig. 38). Then
it is a so-called decision point for navigation – the wayfinder
can choose among two or more alternatives to continue his/her
path.

Referring again to the example of Fig. 38, modelling the mezzanines
Ma and Me is unproblematic. They are both composite, but have
only one connection to another floor or mezzanine each. So they are
dead-ends. Whether or not to integrate them into the correspond-
ing floor / mezzanine (Ma to F2 and Me to Md) is just a matter of
taste.17 However, the other three mezzanines in the example are more
problematic, as we shall see:

We cannot model the connection from F1 to F2 through Mb as an Which Mezzanines
are Relevantedge in the coarse graph because three different stairs are involved.

This would require the use of a hyperedge as a ternary relation in
the coarse graph. In lieu thereof, we introduce Mb as new node in
the coarse graph. It has two parallel edges to F2 (leading to different
border nodes), and one to F1. As a result, solely the mezzanine
Mc can be omitted in the modelling of the environment in Fig. 38

because it is a single, non-composite region with two connections
only. The other two mezzanines, Mb and Md, have to be modelled
as nodes on their own (assuming that Me is also explicitly modelled).
They consequently appear in the coarse graph for the whole building.
From this simple example one can already recognise the main points
which matter for wayfinding:

The two floors F1 and F2 are composite spatial regions with a rich Hierarchical Path
Findinginternal structure. At the level of hierarchy we are now looking at,

it is sufficient to view floors as black boxes: When searching for a
path from a region r1 in the dual region graph F1 to another region
r2 in F2, three abstract paths from F1 to F2 can be found (two via
Mb and one via Mc). These three paths are then refined at each of
the floors’ region graphs, from the corresponding border nodes to
r1 / r2. These partial paths can be computed in parallel and then
subsequently combined into a final result.

5.3.5.1 Connecting Different Floor Plans

In order to know which region graphs potentially connect to other Partial Ordering

17 Note that there can also be small flights of stairs within the same floor, e.g. the start
of a corridor and similar.

105

applying hierarchical graphs to indoor environments

region graphs (by means of border nodes), a partial ordering relation
among floors is additionally required. This relation qualitatively
describes the height/level of the floors, or more precisely, the order in
which the floors are stacked upon each other. Since it is not necessary
to compare two floors in altitude – unless they are neighboured,
a partial order is sufficient for this purpose. For a concrete route
description, as in the example of Fig. 38, one does not need to know
whether Me is actually above or below F2 (this cannot be concluded
from the two facts ‘Md above F2’ and ‘Me below Md’ anyway). With
this additional knowledge, we can try to automate the integration of
different floor plans. The task is to determine which of the vertical
elements of neighbouring floors potentially match. There are basically
two different ways of doing this:

integration by spatial coordinates . One can overlay two
floor plans and create connections for all border nodes which
are above/below each other. The spatial coordinates of border
nodes can be exploited for this purpose (to determine an over-
lapping). This requires the two spatial reference systems of the
two floor plans being aligned.

However, they do not always coincide if we just take the dimen-Same Reference
Systems? sions of the scanned floor plans as a reference. There could

be rotations, use of different scales or parallel translations of
the coordinates in the spatial reference systems of the different
floor plans. These issues hamper integration. The problem can
be solved by bringing all floor plans into a common spatial
reference system. For each pair of floor plans one has to know
the correspondence of at least three points to transform them
into the common spatial reference system (rotation, translation
and scaling are operations which can be done by multiplying
all coordinates with a suitable transformation matrix18).

On the one hand, the manual effort for this method is limited
to bringing all floor plans to the common spatial reference sys-
tem. On the other hand, this method suffers from one crucial
problem: misaligned stairs which are not directly above or
below each other on the respective floors cannot be automati-
cally captured by a two-dimensional approach: The problem
is that even though a pair of stairway ends on different floors
could be matching (according to spatial proximity), it is still
not guaranteed that they really correspond. There could be the
case of crosswise stairs, thus the matching end belongs in fact
to some other stairs despite spatial distance. In other words,
the two-dimensional matching process is, in general, not deter-
ministic and cannot be automatised without knowledge of the
three-dimensional structures of the stairs.

18 The formulae are of the form

 x′

y′

1

 = M ·

 x

y

1

 where x, y are the coordinates

of the local reference system, M is a 3× 3 matrix, and x′, y′ are the new coordinates
of the common spatial reference system.

106

5.3 modelling aspects and construction of the hierarchy

integration by symbolic identifier . The alternative approach
is to label all stairs and other regions in different floor plans
that have vertical connections with the same symbolic identifier.
Although this method requires more manual work, it is far
more flexible and can cover complicated cases with misaligned
elements and also all sorts of distortions. In practice one can
also use a combination of both approaches, e.g. use the first one
as default unless there are identifiers which do not correspond.
Then, one only needs to specify the same identifiers in both
floor plans for the problematic cases.

5.3.5.2 The Role of Vertical Border Nodes

Now let us take a closer look at the different types of border nodes.
A preliminary classification of different staircase types is depicted in
Fig. 39. Note that this classification is fairly general. Most staircases
fall into the small set of these categories or are at least a combination
thereof. Similar shapes can also be found for escalators, elevators and
other three-dimensional elements.

Nach oben

N
a

c
h

 o
b

e
n

Nach oben

N
a

c
h

 o
b

e
n

Nach oben

N
ach obenN
ac

h
ob

en

St1 St2 St3 St4 St5

Nach oben DP

Figure 39: Different Types of Staircases

At first glance, the geometries of the stairs seem quite different: Classification
Whereas the staircase St2 is bounded in the inner part by itself due
to its winding structure, the staircase St4 is semi-open. It offers quite
a number of entry points at different angles. What all these exam-
ples have in common is the fact that they are closed to the lateral
(by boundaries such as rails, walls, or simply by a height difference
which cannot be overcome).

Notice an interesting aspect for navigation: the staircase types St1 Implications for
Navigationthrough St4 possess only one entry and one exit point, each. Since

these staircases afford movement only along their structure, their
geometry is totally irrelevant for wayfinding, despite its possible
complexity (e.g. zig-zag stairs with several non-branching landings).
However, the staircase type St5 shown in Fig. 39 is atypical: it has a
landing with three different flights of stairs branching off. Coming
from a certain direction, there is always an alternative for movement
from the landing. This consequently makes the landing a decision
point – the wayfinder has a choice on which branch to continue19.
Hence this landing cannot be combined with the stairs to a linear
structure. It has to be modelled as an individual region.
We want to illustrate this concept using a concrete example: Fig. 40 Example

19 A ‘branch’ in this sense does not necessarily have to be a vertical connection, e.g. of
the kind stairs, but it could also be a door leading to another region.

107

applying hierarchical graphs to indoor environments

N
a

c
h

 o
b

e
n

N
a

c
h

 o
b

e
n

ground

floor

--

b1
b2

b3

2
nd

 floor

1
st
 floor

1
st
 floor

N
a

c
h

 o
b

e
n

b1

N
a

c
h

 o
b

e
n

b2

b3

Figure 40: Integrating Floor Plans

shows a cross section through a floor, with b1, b2, and b3 being border
nodes. It is striking that the elevator b1 has two connections to other
regions on the first floor. Besides this, an elevator can of course
move up and down (escalators and paternosters can be modelled in a
similar way). This is modelled as a series of linear connections among
floors with the respective border nodes being regions similar to b1.
Following an abstract path in the coarse graph with these connections
can be wrapped up – it corresponds to the single instruction “take
the elevator to the nth floor”. The other vertical elements on the
first floor, namely b2 and b3, are landings of staircases which have
upwards and downwards connections (in the coarse graph) and an
ordinary connection to another region on the first floor. Unless there
are further branchings of stairs between two floors, the stairs can be
simplified to linear structures. They thus become edges in the coarse
graph.

5.3.5.3 Connected Components

The third dimension (and the other forms of hierarchisation as well)
implicate specific problems. As aptly pointed out by Duerr [BD05],
hierarchisations of certain buildings may not necessarily be unique.
Fig. 41 demonstrates such a case:

1 & H

2 & H

1&B

2 & A 2 & B

A B

H

1 2

1& A

A B H

1

2

floor level

building

wing/section

wing/section

building

floor level

1 2A BH

Lattice:

Hierarchy 1:
Hierarchy 2:

Figure 41: Two Different Hierarchisations with Floors and Wings

This particular example shows an attached part of a building, i.e. aExample 1
wing stretching over several floors. It intersects with more than one

108

5.3 modelling aspects and construction of the hierarchy

floor. The resulting hierarchy is not a tree but a lattice. Consequently
two different hierarchisation strategies are possible: either one mod-
els the wings first and then represents the several floors within the
building parts or conversely one decides to model the floors as most
abstract levels and then distributes wings and sections across floors
on the different floors.

Moreover, the hierarchy always depends on the concrete structure of Awkward
Navigationfloor plans. This structure however, does not necessarily reflect the

navigational structure. Some reorganisation may be required to obtain
a suitable navigation structure:

Consider the example of the building illustrated in Fig. 42. It has Example 2
three towers on the upper floor levels: in this particular case the sim-
ple subdivision into floors alone is not very practical – it has nothing
to do with the actual navigation in the building. Imagine for instance,
two rooms R1, R2 on the same floor, although in different towers. For
reaching R1 from R2 or vice versa, a detour through other floors is
required. It is apparently more sensible to consider the three towers
separately because they are disconnected on the upper floor levels. If
the region graph of a particular floor turns out to be disconnected, it
has to be broken down further into its connected components.

Figure 42: Separate Towers on the same Floor Level

This example is by no means unique. In train stations we might Example 3
encounter a very similar situation: the section where the trains arrive
and depart is typically divided into several platforms. Although all
platforms are on the same floor level, they are separated from each
other by rail tracks and it is forbidden to walk over these. In a number
of buildings the solution chosen by the architects is to introduce a
special transit area on another floor (e.g. a tunnel or bridge) which
connects all of these platforms. An example is depicted in Fig. 43.
To get from one platform to another (e.g. when changing trains for
transit) one has to take vertical connections such as escalators or a lift
and pass through the transit area.
Many other similar examples spring to mind, e.g. opera houses with Résumé
several balconies or building complexes connected by bridges. All
these examples suggest that the internal connectivity of graphs is
indeed a key point for the automated construction and use of a graph
hierarchy.

109

applying hierarchical graphs to indoor environments

transit

area

plat-

forms

P1 P2 P3

TA

Figure 43: Train Station: Separate Platforms Connected by a Transit
Area

5.3.6 Summary

The main contributions of this section, in a nutshell are:

• a simple geometric model for planar floor plan environments
has been proposed in Sect. 5.3.2.1. It is based on only three
primitives, namely spatial regions, their boundaries, and spe-
cial openings on their boundary. Modelling boundaries and
openings alone is sufficient: regions are implicitly defined; they
can be derived from the boundary structure (see Sect. 5.3.2.2).

• Sect. 5.3.3 and 5.3.4.1 explained a method to map the elements
of the geometric model to a dual graph structure. In this graph
structure regions are represented as nodes and openings as
edges between two regions.

• In general, the model needs to be computed only once.20 This is
very convenient, because it can be handled in a pre-processing
step. All static aspects are covered there.

• Different ways of hierarchisation have been investigated in
Sect. 5.3.4 for dealing with the three-dimensional structure of
buildings, integrating plans at different levels of granularity
and modelling containment of regions within a floor plan.

20 except for dynamic aspects which are subject to change, such as rearranged furniture

110

5.4 further enhancements of the hierarchy

5.4 further enhancements of the hierarchy

With the systematic method presented in the previous section, a
hierarchical graph structure can be constructed from a given set of
floor plans, step by step. This hierarchical graph serves as an aid for
indoor navigation tasks. Notably, in the single graphs of a floor plan,
every spatial region is represented by exactly one node, and every
opening on a region’s boundary by exactly one edge – thus, there is
a direct one-to-one correspondence between graph and floor plan.

5.4.1 Insufficiency of the Basic Model for Real Navigation Problems

The insufficiency of this basic hierarchical model for real navigation
tasks and guidance of pedestrians in buildings is to be demonstrated
in the following – some specific, yet relevant cases cannot be handled
properly. Practical experience has been gained from an analysis of
spatial regions in real buildings. Some spatial regions expose typical
features which make wayfinding more difficult. The problematic
cases encountered in this analysis are now highlighted and illustrated
by examples:

Figure 44: Example of a Manually Overlaid Floor Plan

Consider for instance the excerpt of a floor plan shown in Fig. 44. Difference to an
Intuitive GraphIt has been manually overlaid with a graph structure to facilitate

navigation. Remarkably, there is not always a one-to-one correspon-
dence between a node and a spatial region. The corridor structure
for example, has been divided into three nodes because of its length.
The same holds for the entrance hall, because of its irregular shape.
As it turns out, in this example nodes are used for describing parts
or reference positions within a spatial region. As these nodes have
been chosen by humans, one may be inclined to say their placement
is just arbitrary or random. However, this is not quite true. There are
some principles guiding such a decision. For example, all reference
nodes represent points which are visible from each other.

111

applying hierarchical graphs to indoor environments

Obviously, it is quite inconvenient and tedious to overlay a largeGetting behind the
Reasons set of floor plans manually with a graph structure. We therefore want

to alleviate this problem and propose a systematic method for obtain-
ing these nodes automatically. In conclusion, the approach presented
so far has some inherent limitations. For enhancing the basic model,
this means appropriately answering the question: “When should a
node for a spatial region be split?”. We now want to identify the
special cases that cause these problems and systematically analyse
them.

A maze like in Fig. 45 is the prototypical example for an environmentExample: Maze
which consists of only one spatial region but nevertheless is very
complex from the point of view of a wayfinder: one has to make
several decisions in the interior of the region to traverse it. These
decisions pertain to the question of how to continue a path through
the region. Some may lead to dead ends while others are ‘right’ for
the purpose of getting out of the labyrinth. Reference points where
decisions are made are highlighted in Fig. 45.

Figure 45: A Maze as an Example for a Complex Spatial Region

We can see that the special structure of this spatial region has anImplicit Decision
Points influence on the choice of paths: the free space where persons can

move is, to a large extent, delimited by interior walls. Notice that the
boundary is therefore highly irregular and non-convex. One particu-
lar problem besides limited freedom of movement is limited advance
visibility, e.g. due to walls obstructing sight. Thus a wayfinder has
to make uninformed decisions, without knowing whether a dead
end might be just around the corner or not. In a way this case is
similar to that of museums, although admittedly more extreme. The
structure and position of these walls have to be analysed in order to
give navigational advice. Because these walls do not end properly,
they can be continued in one’s imagination until they meet another
wall. These extended boundary lines can be thought of as additional
openings implied by the structure. Albeit not explicitly modelled,
their presence follows inherently from the shape of an interior wall.

This argument is supported by other research in this area: Bit-Hard vs. Soft
Boundaries tner [Bit01] for example, distinguishes ontologically between two

112

5.4 further enhancements of the hierarchy

kinds of boundary. The first are impenetrable, hard (bona-fide) bound-
aries like walls. They are explicitly modelled. However, as Bittner
argues, there is additionally a second kind of boundaries. These are
soft (fiat) boundaries. Notwithstanding their invisibility, they exist
and are often unconsciously passed by the wayfinder (unless they are
explicitly referred to in navigational instructions). Anticipating these
implicit decision points from the structure of a spatial region is a very
desirable property for an automated approach. In following section,
we take up the notion of soft boundaries developed by Bittner and
incorporate them into a geometric decomposition method for spatial
regions. The role of soft boundaries in the graph model is explained
there.

Apart from this, there are many further examples of problematic
situations:

DP DP

DP

DP

DPDP

Figure 46: Implicit Intersection of Corridors

• from the corridor system depicted in Fig. 46, only one spatial
region is extracted according to our basic approach. In spite of
this, a person would not intuitively classify this space as only
one region. One can easily see that the inner structure is rather
complex: there are several implicit intersections in this region.
They are found where perpendicular corridors cross each other
(marked by ‘DP’ in Fig. 46).

From a geometrical perspective, each intersection is described
by four non-convex corners. This implicit subdivision also
has consequences for a wayfinder: Generally speaking, several
instructions may be required for going through this complex
spatial region. Wayfinders have to make decisions at each inter-
section (labelled ‘DP’) because there is a choice how to continue
a path.21 These intersections could hence be suitable candidates
for landmarks [Lyn60, Gol99] in a path description.

• the example of Fig. 47 demonstrates that walkable space in the
interior of a spatial region can be delimited by inner obstacles
as well. These obstacles do not constitute the boundary of the

21 so even when their path continues straight ahead, this is already a decision.

113

applying hierarchical graphs to indoor environments

region itself. They are represented as independent polygons. In
particular, the ‘spatial region in spatial region’ constellation is
shown in Fig. 47:

C

DP DP

C

DP

C

DP DP

DP

DP C

DP

Figure 47: Circular Corridor due to Inner Obstacle

The circular structure results directly from the containment
(i.e. child relation) of spatial regions22 in the concrete exam-
ple. There are basically two ways for going around the obstacle.
Hence four corners are implicitly defined. Note that the inner
boundary may belong to a composite spatial region, e.g. if sev-
eral adjoining rooms are enclosed by the circular corridor. They
form a mesh. However, Algorithm 3 in Sect. 5.3.2.2 is capable
of handling this case as well: the outer while-iteration finds
all composite spatial regions which are meshes, i.e. connected
components, in a planar floor plan graph.

TR
TR

TR

TR

Figure 48: Implicit Boundary between Hall and Corridor

• Fig. 48 sketches a somewhat different constellation compared to
the previous example: again, we only have one spatial region.
But there is an implicit boundary between the large hall on
the left hand side and the narrow corridor structure on the
right hand side. The corridor seamlessly runs into the hall.
Thus the character of the space changes tremendously (namely
from open to closed space) without being explicitly modelled.
From the point of view of a wayfinder, this threshold would
again qualify as a suitable landmark [Lyn60, Gol99] for a path
description.

22 more precisely, their meshes

114

5.4 further enhancements of the hierarchy

• The next example is taken directly from a real building. It
shows an atrium from several perspectives (see Fig. 49). The
difficulty in this case is due mainly to the third dimension. It
lies in the automatic distinction between the central part and its
lateral wings:

Figure 49: An Atrium from Multiple Perspectives

While the central part rises very high (to the uppermost floor),
the ceiling height in the lateral parts is considerably lower.
There are actually several archways stacked upon each other.
On the ground floor however, the whole space is modelled as
one spatial region. People may not perceive it as one region
however, because of the drastic height difference. This aspect
should be reflected in the graph model for better guidance.

Yet again we have soft boundaries between the different parts.
They are not necessarily modelled but can be implicit. In this
case, arches and pillars delimit the separation of space. The
ceiling height is an important factor to consider in other build-
ings as well. Especially in churches it implicitly separates parts
of a large spatial region. Similar situations can be found in
large opera halls with balconies and other environments with
comparably large halls.

• Finally, another problem with regard to visibility can be a seg-
mentation and distortion of spatial regions like corridors. The
corridor structure in Fig. 50 highlights both aspects. Such a seg-
mentation may be performed for special reasons. Recognising

115

applying hierarchical graphs to indoor environments

a ‘main corridor’ structure, as required for an instruction like
“follow the main corridor until..” is not possible ad hoc. Several
spatial regions constitute the main corridor structure. In this
particular case they are separated by emergency fire doors.23

Nevertheless, it is perceived by people as just one long corridor
extending over several spatial regions.

A

C

B

Figure 50: Problem: Segmented Corridor

In contrast to the previous examples, the spatial regions rep-
resenting the segments are too small to capture the notion of
a main corridor. A grouping/clustering of adjoining spatial
regions would make sense in this case. Thus, the main corridor
could be modelled as a composite spatial region, i.e. subgraph,
consisting of several connected segments. Determining the
‘rank’ of the corridor, i.e. whether it qualifies as a main- or side
corridor, is another problem. Global knowledge of the entire
floor or even building is required for this purpose, including
all entries and exits. This rank may be determined by using a
global sort of navigational hierarchy for a building.

In the example of Fig. 50, there is in addition an implicit inter-
section in one region and, even more problematic, a distortion
in the corridor shape. The distortion may lead to wrong orien-
tations in path descriptions, because the spatial relations ‘left’
and ‘right’ are relative and change when the corridor is bent
to the left. An instruction may state that the door is on the left
hand side, whereas in reality it is on the right hand side. One
has to take into account that the orientation changes gradually
while walking along the curved corridor. Since curved shapes
are approximated by polygons and polylines, we generally have
a concave chain (see Def. 5.4.1) on one side.

Moreover, there can be ambiguous situations for descriptions:
for instance, when advised to “follow the (main) corridor till
the end” it may be unclear whether a corridor continues

– around an orthogonal corner or ends at the door in front
(see Fig.47).

23 Building such doors may be a requirement for long corridors to prevent the spread
of a fire.

116

5.4 further enhancements of the hierarchy

– to the left or to the right hand side at a Y-shaped fork (the
intersection in Fig. 50 is problematic in this respect).

Each of these cases describes an ‘end-of-corridor problem’ where
decision points are involved. Note that the continuation of a
linear feature along the line of sight may depend on the direc-
tion one comes from. In the example of Fig 50, the path from B

to A is clearly unproblematic (one may easily oversee C, which
is oriented to the back). However, this is not the case for the
opposite direction from A to B.

All in all there is an interesting link between human instructions
and the grouping of conceptual spaces. Investigations such as
performed by Look et al. [LKLS05] shed light into the nature of
route descriptions and explain the underlying spatial concepts
which can be extracted from a large set of descriptions. In
Chap. 7, research on this topic is laid out in more detail.

Concluding, there are some problematic cases for navigation which
are not yet covered by the hierarchical model defined so far. One of
the key issues is that automatically extracted spatial regions do not
always match with a human notion of a room or corridor, due to their
complex structure. Two different reasons are primarily responsible
for this complexity:

1. a spatial region has some non-convex corner (see Sect. 5.4.2) or
introversive, i.e. free-standing wall.

2. another child region is nested in it.

The special geometry of these regions entails some implicit open- Soft vs. Hard
Boundariesings. Unlike doors, these openings are not always explicitly modelled.

These new kind of openings are called soft boundaries [Bit01]. They
often fulfill the function of a landmark in a path description.24

The challenge now is to devise methods which cater for these complex Extension to
Hierarchical Graph
Construction

cases as well. An automated method inspired by a human’s under-
standing of space is particularly difficult to find. For this purpose, the
idea is to bring hierarchical graphs into play again: on the one hand,
complex spatial regions should be decomposed into meaningful parts
around inner landmarks. This would yield a more detailed graph for
navigating a region’s inner structure, but only if necessary. On the
other hand, several spatial regions should be grouped together if they
form a higher-level concept like a main corridor, section or wing. This
can be of use for giving concise path descriptions (referring to these
higher-level elements). By describing these structures as composite
subgraphs of spatial regions, we obtain an additional hierarchy level
between floors and basic spatial regions. So it makes sense to take

24 In contrast to outdoor environments, indoor areas often lack persistent landmarks
which are widely visible (such as television towers). Furniture, often subject to
change, is not appropriate for reference either. Instead, salient features in the
architecture qualify as natural landmarks. Note however, that inner landmarks have
a lower range in general. But on the other hand they are very specific for a local
decision.

117

applying hierarchical graphs to indoor environments

the dual graph model from a floor plan as a basis and adapt it into a
suitable hierarchical model by adding additional hierarchy levels for

• the interior of problematic regions (w.r.t. descriptions) with a
complex structure,

• subgraphs which represent coherent, meaningful parts of a floor
plan (such as sections or wings).

5.4.2 Geometric Decomposition of Complex Regions

Until now, the construction of the hierarchical model has reflectedMotivation
a building’s topology: this included aspects like the division into
different maps and floor plans as well as containment of different
regions. Nevertheless – as demonstrated by the previous examples –
an important aspect is still missing in the hierarchisation: few as-
sumptions have been made on how people move through a particular
region, i.e. paths inside a region. For practical navigation tasks, the
finest resolution of the hierarchy (that of leaf regions) can thus still be
too coarse. Sometimes several instructions are required to describe
paths through complex regions.25 Guidance through these regions
by reference positions and additional landmarks makes wayfinding
considerably easier for people. The bottom line is that the hierar-
chical representation needs to be extended, by an additional level
comprising more detailed graphs for the inner structure of complex
leaf regions.

Visibility graphs and Generalised Voronoi graphs (cf. Sect. 2.1.3) areCell Decomposition
valid approaches for dealing with this problem. The shortcomings
of both approaches – in particular with regard to route descriptions –
have been pointed out in Sect. 2.1.3. Instead a different solution is
proposed based on the regions’ geometry. It falls into the category
of exact cell decomposition methods [Lat90]. An earlier version of
the method presented has been proposed by the author in a research
paper [SLO07] but has been revised since then [OS08]. This decom-
position method fits nicely into the hierarchical graph model: First
and foremost all regions are represented as polygons. Note that the
polygons representing problematic regions expose certain characteris-
tics: they are either non-convex or contain another polygon in their
interior or both.

Definition 5.4.1 ((Non-)Convex Polygon, Concave Corner, -Chain).
A corner Cx of a polygon P enclosing an internal angle α(Cx) :=

](Cx−1CxCx+1) greater than 180◦(π) between the two boundary
segments Cx−1Cx, CxCx+1 is called concave/non-convex.26 A non-
convex polygon has at least one concave corner, otherwise the poly-
gon is convex. Concave chains are defined as maximum-length
sequences CxCx+1..Cx+k of k consecutive concave corners.

Whereas convex polygons are generally not so critical for route de-What
Non-Convexity
Means for
Navigation

25 According to the qualitative classification of spaces by Montello [Mon93], these
regions are medium spaces: people can only experience them by locomotion and
integration of multiple vantage points.

26 In general, angles α with 180◦ < α < 360◦ are called reflex angles.

118

5.4 further enhancements of the hierarchy

scriptions (cf. Sect. 5.5.2), one has to treat non-convex polygons
separately. The same applies to polygons with inner boundaries, i.e.
nested polygons in their interior. This is due to the fact that humans
cannot see (in advance) what lies beyond a corner. They must go
past/around the corner and reorient themselves to get a picture of
the remaining part of the region [Mon93]. E.g., there could be other
doors or openings around the corner. The respective corner is then
relevant – it can serve as a reference point in a path description,
indicating a required turn action.

Fortunately, Computational Geometry already provides a number Off-the-Shelf
Algorithms for
Decomposition?

of algorithms for decomposing non-convex polygons into a set of
convex polygons. Most of them are based on triangulation. After
applying one of these algorithms one obtains a set of convex poly-
gons which decompose a given non-convex polygon. However, it is
questionable whether the decomposed regions are indeed meaningful
units, feasible for path descriptions. Triangles and other decompo-
sitions can be rather arbitrary in shape; they often do not reflect
an intuitive decomposition. It is admittedly rather difficult to de-
fine the exact meaning of ‘intuitive’ for a human wayfinder (it can
depend on many factors such as gender, background knowledge,
spatial orientation skills, etc.). A pragmatic viewpoint is therefore
adopted in this thesis, stating that a decomposition is intuitive if it can
be used as a reference for path descriptions (see Sect. 5.5.2 for details).

Some basic principles or guidelines can nonetheless be found in Principles of Gestalt
Theoryother research areas like human spatial cognition and cognitive psy-

chology: One can assess the ‘intuitiveness’ of a certain decomposition
by adhering to principles of Gestalt theory [Wer23, Kof35], called
‘laws of perceptual organisation’. This theory considers the peculiari-
ties of human perception of spatial objects and shapes. It is largely
based on empirical studies and observations, investigating different
phenomena (see Fig. 51). Among these principles, two are particularly
interesting in connection with intuitive decompositions:

Figure 51: Human Perception goes beyond Explicit Spatial Informa-
tion (from Wikipedia)

• as the examples in Fig. 51 suggest, the human mind often fills
in missing information – by extending contour lines – in order

119

applying hierarchical graphs to indoor environments

to close uncompleted shapes (closure) and integrate them into a
larger composite shape,

• objects which are close together are perceived as one group
(proximity). In contrast, objects which are farther away are not
perceived as a coherent unit.

These principles can be exploited in practice, for a simple decomposi-Sketch of Practical
Application tion algorithm: first, non-convex corners Cx of a polygon P can be

classified according to the degree of their non-convexity (i.e., ranges
of the angle α(Cx)). Consider the examples in Fig. 52 for this pur-
pose: in the examples 1 and 2 we have what would be intuitively
understood as ‘corners’. The angle α(Cx) is around 270◦ in these
cases. According to the first principle one can extend the boundary
lines Cx−1Cx and CxCx+1 in the direction of Cx (indicated as black,
dashed arrows in Fig. 52), until another boundary line is hit.

Example 3 shows a somewhat different situation: the angles areConcave Chain
much smaller, ranging between 180◦ and 225◦. They appear in a
concave chain. Extending these lines would not be intuitive because
the more the angle converges towards 180◦, the less Cx becomes
apparent; it gradually loses the quality of a structural landmark. Just
around 180◦, Cx is in fact an arbitrary point on one continuous or
slightly curved wall which goes through Cx. Instead, the line per-
pendicular to Cx−1Cx+1 through Cx indicates a threshold or a soft
curve at this point. These lines are needed for practical purposes, to
describe gradual changes in the intrinsic orientation of the region (an
example is given in Fig. 50 in Sect. 5.4.1). Concave chains of such
reflex angles just above 180◦ often describe polygonal approximations
of curved shapes.

1
2 3

4 5

Figure 52: Different Classes of Non-Convex Corners

The other extreme case is shown in Fig. 52 as number 4, where thePerpendicular
Extension angle α(Cx) lies in the range between 315◦ and 359◦.27 Approaching

27 The case of 360◦ is excluded because we are dealing with proper polygons only (see
Sect. 5.3.2.2).

120

5.4 further enhancements of the hierarchy

359◦, the boundary lines fall together more and more. Thus, the
region enclosed between their extension and the other boundaries
of the polygon (between the grey arrows) has a smaller surface and
eventually would become a line (for this and other degenerate cases,
cf. Fig. 54). It makes sense to consider the lines perpendicular to
Cx−1Cx respectively CxCx+1 as well.

Finally, example 5 shows a polygon O as an obstacle within an- Convex Corners of
Obstaclesother polygon P. In this case, the convex corners of the inner polygon

O (obstacle) play a role. Should they be extended (gray arrows), or
rather the perpendicular be dropped (black arrow) to the correspond-
ing boundary lines of P? Since the perpendicular is shorter and the
surrounding polygon is the larger one, the second principle suggests
that the perpendicular is more intuitive.

In general, extension lines of different concave corners can potentially Interference of
Different Extension
Lines

interfere with each other. We want to avoid these situations because
the intersection of two such implicit lines is not obvious, thus cannot
be used as a landmark in route descriptions. Besides this, the inner
structure of a region is then fragmented into a lot of small pieces
which are rather difficult to describe (see Fig. 53). A simple strategy
is to first extend the lines of all non-convex corners ignoring intersec-
tions with other extension lines and then resolve these intersections
in the following way: for every pair of intersecting lines, remove the
longer one (depicted as red lines in Fig. 53). Note that the shorter
extension line is more plausible according to the second principle. If
too many extension lines have been removed this way, not all decom-
posed regions are convex. Then the remaining non-convex corners
(or convex corners of obstacles) are connected to opposite corners,
avoiding intersections with other extension lines.

2 qm0 qm
0 qm

2 qm

0 qm
0 qm

Figure 53: Exemplary Decomposition of a Complex Region into
Convex Parts

Essentially, the same algorithm as in Sect. 5.3.2.2 can be applied to a Interpretation of
Decomposed Regionssingle region (instead of a whole floor plan) once a decomposition

has been determined. The corresponding dual region graphs are
shown in Fig. 52 along with the geometry. They can be determined in
a similar fashion as described in Sect. 5.3.3. As a result decomposed
regions are represented as nodes and extension lines between two
such regions as edges. Apart from openings on boundaries, the exten-
sion lines are interpreted as a second kind of trespassable elements.

121

applying hierarchical graphs to indoor environments

The decomposed regions, nodes in the dual graph of the region’s
interior, serve as reference points inside the region. Junctions between
corridors and other examples were shown in the previous section.

In terms of visibility, there is an interesting relation with the dualVisibility and Dual
Graph graph. Two points pi and pj inside polygons Pi, respectively Pj

resulting from the decomposition are mutually visible only if their
direct connection PiPj intersects all extension lines which are edges
on the shortest path from Pi to Pj in the dual graph. Otherwise, some
extension line has to be crossed in order to see pj from pi (or vice
versa). While this property holds for every decomposition which is
convex, an intuitive decomposition has the additional advantage that
reference points and orientations – important for route descriptions –
can be fairly easily derived from the decomposed structure. Such a
method is outlined in Sect. 5.5.2.

However, the scale and relative size of some decomposed regions alsoReference Scale
has an influence on their interpretation and relevance for navigation.
Fig. 54 outlines some degenerate cases of decomposed regions. It
makes sense to use the size of the human body as a reference scale
for the length of extension lines: if an extension line is smaller than
this reference scale, it is not passable. However, some smaller objects
could be placed in it. Depending on the scale, a small niche in a
wall (depicted as red area on the top left of Fig. 54) could either
be enterable or not. Obstacles which are located too close to the
surrounding walls (bottom right of Fig. 54) likewise block the way
through a region.

Figure 54: Extreme Cases of Decomposed Regions

In general, if a floor plan is very rich in detail (with numerous
small niches, ornaments, and/or obstacles), the reference scale can
be utilised to drop all details which are not relevant for human
wayfinding tasks. This way the geometry can already be simplified
in a pre-processing step.

122

5.4 further enhancements of the hierarchy

5.4.3 Extracting Meaningful Subgraphs from a Dual Region Graph

5.4.3.1 Motivation: Practical Use

Remember that one of the primary incentives for hierarchisation is
to allow for hierarchical planning (cf. Sect. 5.1). If the structure of a
building is reflected in a hierarchy, this can be exploited for giving
route directions in a similar way as people do. To clarify the idea,
consider following verbal directions given by people:

• “In order to get to room D 1.14, you first have to reach the D section.
It is on the 1st floor. You can either use the stairs on your right, or
if you prefer taking the elevator go straight ahead towards the lobby.”

Looking at the prototypical example from above, several observations
can be made:

1. The hierarchical organisation of spaces inside a building is
often reflected in the naming scheme (building → 1st floor

→ D section → room D 1.14). Furthermore, it is employed by
people for giving directions.

2. There is also a correlated hierarchical order among decisions,
since wayfinding can be basically seen as spatial problem solv-
ing [Pas84]. As a consequence the wayfinding task can be
broken down into the subtasks of

• reaching the first floor,

• reaching the D-section within the first floor,

• and finally reaching room D 1.14 from the entrance of the
D-section.

The above line of thought seems to be quite intuitive for people,
as a common sense strategy for decomposing spatial prob-
lems. Particularly expert wayfinders seem to favour this sort of
wayfinding strategy [KTS03] due to its simplicity. The origins
of hierarchical planning date back to Sacerdoti [Sac73] (see also
the discussion of hierarchical path finding methods in Sect. 3.3).

For the automated processing of floor plans, there are a couple of Text-based Approach
things to keep in mind: Meaningful subgraphs of a dual region graph
can often be specified using annotations or labels of graph elements.
For example, all rooms starting with a prefix ‘D’ pertain to a section
or wing identified by this label. One can specify patterns as regular
expressions on the labels to extract such subgraphs.

However, not all structures which are useful for route descriptions Relevance of Nodes
can be characterised this way: the notion of a ‘main corridor’ for
instance, is usually not explicitly represented. It would be useful to
know which regions are more relevant for path finding and which
ones are deemed marginal. In other words, the main navigational
structure and -axes should be extracted automatically from a given
dual region graph of a floor plan. The challenge is to devise a method

123

applying hierarchical graphs to indoor environments

that automatically identifies the main- and subsidiary navigational
axes of an indoor environment and represents them in hierarchical
terms: regions with decreasing prominence should also appear in
decreasing levels of abstraction.

structural prominence vs . landmark . Many factors can be
found that influence the prominence of an element in the eyes of
a wayfinder and, as such, qualify it as a landmark: for example,
differentiation, singularity, and visual salience determine the
suitability as landmark. A peculiar or interesting feature which
stands out from the rest of the environment may qualify as
a landmark. Variations in illumination might also affect per-
ception. Note that these are mostly local properties. Without
being explicitly stated in the model, it is virtually impossible
to incorporate all these aspects. Therefore the notion of promi-
nence is understood here from a purely topological perspective,
complimentary to the classical notion of a landmark. Providing
a comprehensive account on the complex topic of landmarks
is beyond the scope of this thesis. The interested reader is
referred to existing work on the acquisition and selection of
landmarks [LTK02, Eli03, EB04, CT05], as well as on the use of
landmarks in route directions [RW02, RK04, KW05, HRK06].

Even if no labels for sections and building parts are provided by theMain Navigational
Axes original floor plan data or annotations (which sometimes occurs), one

can use the structural knowledge of navigational axes for instructions
and also restrict the search space of path finding algorithms. One
possibility is to resort to techniques from network analysis, but these
yield individual values for certain elements of the network and ad-
ditionally require a resource-intensive preprocessing. Formation of
subgraphs is not evident from this representation. Therefore, a novel
technique for forming subgraphs is proposed here. It fits nicely into
a hierarchical graph representation. The strengths and limitations of
this approach, along with suggestions for further enhancements are
discussed in the following passage.

5.4.3.2 Exploiting the Characteristic Structure of Floor Plans

Dual region graphs of floor plans are not just arbitrarily shaped
graphs – they show a characteristic pattern. The first step is to analyse
this pattern of connections between regions, in order to retrace the
fundamental wayfinding decisions implied by the structure. The
following excerpt of a floor plan (shown in Fig. 55) illustrates a
handful of structural phenomena which are characteristical for indoor
environments. Most building structures are usually arranged in a
similar manner. Chapter 6 gives an account of the results when the
method is applied to several floor plans of real buildings.
When we look more closely at the plan, several interesting character-
istics for wayfinding are revealed:

• the topological structure of the building in Fig. 55 is rather
sparse, notwithstanding the two large halls with a remarkable

124

5.4 further enhancements of the hierarchy

-

N
a
c
h
 o

b
e
n

Nach oben

Nach oben

Nach oben

Figure 55: Typical Structure of a Floor Plan (Excerpt)

number of 12, respectively 14 connections – the average degree
of a node (i.e. the average number of neighbours) is relatively
small,28

• there are rarely alternative choices for traversal. Even so, choice
appears mostly local (some parallel stairs or exits) since most
alternative paths eventually rejoin at a common region (such as
the two main halls in the floor plan of Fig. 55),

• whereas the main navigation structure should be public, some
rooms may have only private access (see Sect. 4.1.3). Let us
assume for instance, that the large room in the middle serves as
a lecture hall. Then paths should go around rather than through
the lecture hall. Another indication for private areas can be their
secluded position within the building (e.g., the room behind the
antechamber). If knowledge about the function of a particular
room is not available this may result in an unfeasible path. On
the other hand, when this knowledge is available the respective
alternative path can be cut off the branches of possible paths by
a path finding algorithm.

These characteristics lead to the main hypotheses for the hierarchisa-
tion of a dual region graph (forming subgraphs):

no backtracking . Floor plans usually contain a substantial num-
ber of dead-ends. All these regions have only one adjoining
region. For example, the rooms to the left and right of the
two corridors in Fig. 55 fall into this category: they are rather
secluded because they are only reachable from the respective
corridor. Regions which are dead-ends are ‘deepest’ in the hier-
archy in the sense of being merely destinations for wayfinders.

28 the average degree of a node is below 3 in the floor plans that have been investigated
in this thesis. For road networks, it typically ranges between 2 and 5.

125

applying hierarchical graphs to indoor environments

If we want to reach a particular destination, there is no need
to explore any other dead-ends at all. However, this would
be done by a naive graph algorithm.29 Knowing dead-ends in
advance prevents unnecessary exploration, i.e. backtracking for
a path finding algorithm.30

central skeleton. The previous example suggested that the topo-
logical structure of buildings is generally rather sparse. We can
conclude that the typical pattern of movement is not like mov-
ing from room to room arbitrarily, but more often going along
main corridors or large halls (figuratively: the skeleton [KTS03]
or ‘arteries’ of a building) before entering certain rooms. Obvi-
ously, some regions possess quite a number of connections to
other regions (e.g. the two large halls and corridors illustrated
in Fig. 55). They are also more central in the topological struc-
ture insofar as they play a major role in overcoming greater
distances and are (on average) more frequently used as inter-
mediate goals for paths. They are represented as colored nodes
in Fig. 55. Different wings and sections of a building might be
demarcated by these main elements.

Backed up by the two guiding principles, an algorithm is presented
which attempts to detect main corridors and halls automatically,
distinguishing them from ordinary rooms. It also creates subgraphs
of a dual region graph around relevant elements. A first version
of the algorithm has been presented by the author at the ACM GIS
conference [SSO08]. In the following passage, an improved version
of this algorithm is outlined.

5.4.3.3 Proposed Algorithm

The principal idea is to partition a dual region graph around ‘colored
nodes’: they express a certain degree of relevance in the graph. How
can these nodes be determined? A different measure of relevance
is proposed than a measure merely based on a node’s degree. It is
somewhat similar to betweenness centrality (see Chap. 7), but the
crucial difference is that one does not have to compute the paths
between all pairs of nodes to obtain the measure. A node of a dual
region graph in a hierarchy can be prominent for three different
reasons:

• it has a connection to the exterior,

• it represents a vertical connection to another floor,

• it is an articulation point in the dual region graph (see Fig. 56

and Def. 5.4.2 in the subsequent).

The first two points pertain to connection points for accessing otherAnalysing Criteria

29 A non-informed wayfinding strategy might unfortunately choose one of these rooms
and then have to backtrack. Even with using a heuristic such as A∗, this can happen
if the estimate of the Euclidean shortest distance suggests taking the dead-end.

30 The structure of a building is rather static, so it is feasible to pre-compute all
dead-ends.

126

5.4 further enhancements of the hierarchy

parts of a building or leaving the building. Note that they are not local
properties of a dual region graph. They have already been treated in
the hierarchisation as border nodes (cf. Sect. 5.3.4). Therefore, the
first two points are not considered here again. We concentrate on
the last point: Articulation points are a concept coming from graph
theory; let us briefly recall their definition:

Definition 5.4.2 (Articulation Point). A node nAP ∈ N of a con-
nected graph G = (N, E) is an articulation point iff the removal of
nAP from G (including all emanating edges) splits G into two or
more connected components.

We have already encountered articulation points earlier in Sect. 5.3.4.1 Previous
Occurrences of
Articulation Points

without being aware of it: nested regions in a dual graph are only
reachable through their surrounding region. Thus the surrounding
region is an articulation point in the dual graph. Furthermore, articu-
lation points can occasionally be found in the more abstract graphs
between different floors too: Example 2 in Sect. 5.3.5.3 illustrated a
building with three towers. The floor level right below the towers is
an articulation point and so are all levels of the towers except for the
uppermost.

CC

CC

CC

AP

Figure 56: Wayfinding with Articulation Points

Fig. 56 shows an articulation point (AP) that would split G into three Illustration by
Exampleconnected subgraphs (CC). Intuitively, articulation points impose a

tree-like decomposition on a graph.31 This property can be exploited
for path finding: if for example we want to go from the lower sub-
graph ‘CC’ to the subgraph ‘CC’ on the right hand side (indicated
by the two green arrows on the right hand side of Fig. 56), the node
AP must be passed – it is an intermediate goal. Additionally, the
entire left subgraph can be excluded for this path query. In a second
path query (left, lilac arrow in Fig. 56), we want to go from the upper
subgraph within the left subgraph to the lower one. Normally the
shortest path remains within the left subgraph (CC) unless going
through AP would be a shortcut. In any case, the other subgraphs
(CC’s) need not be explored for this query at all – they can be pruned
from search space.

Generally speaking, one can exclude all sub-trees from search which Heuristic
are not between origin and destination. They are, on a higher level,
dead-ends for this particular path query. Using this kind of hierarchy

31 They can also be seen as bottlenecks of pedestrian flows, since different wayfinders
with similar destinations all have to pass through them.

127

applying hierarchical graphs to indoor environments

makes graph search more intelligent: one takes advantage of knowl-
edge on the spatial organisation (informed search) to narrow down
search. Thus a decomposition around articulation points is a valuable
heuristic for guiding path search.

How can articulation points be found in practice? The basic al-Finding Articulation
Points gorithm is quite simple. Let us sketch the main idea: choose any

node nroot ∈ N as the root of a search tree. nroot is an articulation
point if it has two or more children, i.e. separate sub-trees with no
crossing edge between them. Any other node ntree 6= nroot in the
search tree is an articulation point if it has a child and some sub-tree
with no back edge to an ancestor of ntree. The proof of these proper-
ties together with a complete linear time algorithm can be found in
Tarjan [Tar72] and Gabow [Gab00].

Especially in sparse graphs, like the dual region graphs of floorConnected
Articulation Points plans, many articulation points can be found. Most corridors and

hallways fall into this category, since they often have ‘attached’ rooms
which are only reachable through them. Note also that there is rarely
a single articulation point, but more often an entire chain or graph of
connected articulation points (like a segmented corridor or corridor
system). In case there are many articulation points, their relations
need to be examined too. This is useful to for example distinguish
between a main corridor and its peripheral wings if all are articula-
tion points. Therefore we distinguish between ordinary articulation
points and articulation points which have more than two articulation
points as neighbours. The latter are called decision points in this
context (among articulation points). The other articulation points can
be grouped into chains (all have two or less neighbours of their kind).

An example with a hierarchisation based on these concepts is pre-
sented in Fig. 57, on the previous excerpt of a floor plan. The corre-
sponding algorithm for hierarchisation can be explained as follows
(see Alg. 4):
The blue subgraphs in Fig. 57 are formed from chains of articula-Hierarchisation

around Chains and
Decision Points

tion points (line 4), merged with connected components (CC, white
subgraphs) which are only adjacent to articulations in this chain
(line 6). These CC’s can be considered as dead-ends generalised
to subgraphs. Likewise, such CC’s are merged into subgraphs of
decision points (line 5). The resulting subgraphs are shown in Fig. 57

as lilac subgraphs. If the decision point on the left hand side were
only an articulation point (say on a similar floor plan where the three
blue subgraphs with one articulation point and one dead-end did
not exist), each of the two parallel nodes below it would be classified
as a CC between two APChains (line 7).32 Ultimately, this would
result in merging the two chains into one large chain (with a local
choice of paths in between). However, none of the two lower chains in
Fig. 57 are merged with the right hand chain, because there is also a
connected subgraph between all three chains (the condition on line 7).

32 Neither is an articulation point, because one can go through the other one as well.

128

5.4 further enhancements of the hierarchy

Legend:

Articulation Point

Decision Point among

Articulation Points

Node

Connected Subgraph

of Articulation Points

Connected Subgraph

of Decision Points

Edge between Subgraphs

Edge

Base Graph:

Hierarchy

Level-1 Graph:

Connected Subgraph

of Ordinary Nodes

Figure 57: Hierarchisation via Articulation Points

Algorithm 4: Hierarchisation of a Dual Region Graph via Articu-
lation Points
Input: A dual region graph G = (N, E) from a floor plan.
Output: A coarser hierarchical graph H = (S, B) with subgraphs

s ∈ S of G as nodes and edges b ∈ B between subgraphs
according to the partitioning of G via articulation points.

find all articulation points (AP) of G;1

form subgraphs of connected articulation points;2

form subgraphs of connected components of ordinary nodes3

(CC);
split the connected articulation point subgraphs into decision4

points (DP) and chains of ordinary articulation points
(APChain);
merge all subgraphs CC which are connected to exactly one5

decision point DP with the subgraph of the decision point;
merge all CC which are connected to exactly one chain APChain6

with the subgraph of the chain;
for all CC which are connected to exactly two chains APChain17

and APChain2, merge the three subgraphs into one subgraph
APChain12, unless there is another CC subgraph which is
connected to APChain1, APChain2, and another chain ;
create a new graph H, with a node s for every resulting subgraph,8

and an edge b for every boundary-crossing edge between two
different subgraphs;
return H;9

129

applying hierarchical graphs to indoor environments

For larger and more complicated floor plans, it makes sense to applyMulti-Level
Hierarchisation this algorithm recursively, i.e. using the output of the first application

as input for the next application etc. (cf. the hierarchy level 1 graph
in Fig. 57). This methods yields successive hierarchy levels until the
original graph is condensed to a single node. Decision points in the
original graph can – but need not necessarily – become articulation
points in the next coarser graph. The same holds for connected com-
ponents between three or more chains.

Depending on the complexity of the floor plans, there can be moreNumber of Levels
or fewer levels in the hierarchy. The general idea of the presented
algorithm is to converge quite quickly, so that there is not an overhead
of too many hierarchy levels which represent only minor changes.
For example, it makes no difference whether a long corridor is repre-
sented as one region or segmented into several regions by intermedi-
ate doors (e.g. because of fire security measures). Both representa-
tions result in one chain of articulation points.

A hierarchisation for an entire floor is shown in Fig. 58. For brevity,Discovering the
Main Circulation
Structure with the
Algorithm

only the main navigational structure is indicated by different colors:
the yellow regions are part of chains, green regions indicate decision
points, blue regions dead-ends or connected components and red
regions connected components between several chains or decision
points. For more details on this and other examples, see Chap. 6 with
a comprehensive evaluation.

Figure 58: Hierarchisation of an Entire Floor

For the presented algorithm a proof-of-concept implementation hasAnimation of a Run
been successfully carried out. The implementation has been tested on
several floor plans of real buildings. As explained above, the results
of this study are shown in the next chapter. However we want to
make clear how the algorithm works on a more detailed example,
showing a prototypical run.

To give a first impression of this evaluation and to get a feeling
for the application of the algorithm (with its recursive behaviour),
consider Fig. 59. It illustrates an excerpt from an exemplary floor

130

5.4 further enhancements of the hierarchy

plan together with the individual steps of the algorithm when the
latter is applied to this floor plan. The diagram is to be read from left
to right and top to bottom:

Figure 59: Multi-Level Decomposition of a Floor Plan

The coloring scheme used in Fig. 59 is the same as for the previous ex- Illustrating the
Recursive Behaviourample of Fig. 57: orange nodes indicate articulation points and green

nodes indicate decision points which are defined in this context as a
special subset of articulation points (with three or more articulation
points as direct neighbours). The blue nodes represent ‘normal’ nodes
and those of connected components between articulation points. The
first row in Fig. 59 shows the floor plan together with the correspond-
ing graph structure. Articulation points (orange) and decision points
(green) are then determined and the corresponding subgraphs are
formed (left hand side of third row). Then the original graph is
simplified to a coarser graph which models the connections among
subgraphs (right hand side of third row). The coarser graph can
be obtained by simply replacing each subgraph by a representative
node. In this new graph, the process is repeated: articulation points

131

applying hierarchical graphs to indoor environments

are determined (left hand side of fourth row) and decision points (if
there are any). Again subgraphs are formed and the simplification to
a coarser graph is applied. This recursive process terminates when
there is only one subgraph left, i.e. the next simplification would
yield exactly one node.

There are of course possibilities to tune the parameters of the al-Factors Influencing
the Hierarchisation gorithm. This has an influence on how many hierarchy levels come

out: One could for example leave the subgraphs of connected com-
ponents and not merge them with subgraphs of articulation points.
However, this does not seem to be practical since the subgraphs then
become very small. Omitting the distinction between decision points
and normal articulation points is another option. The result is that the
hierarchy often converges quickly with only one level. A complicated
circulation system is thus represented as one connected subgraph
of articulation points, without the information on decision points.
By giving stairs and exits of the building the same status as articu-
lation points (which has been applied in the earlier version of the
algorithm [SSO08]), one obtains more decision points. Consequently
the hierarchy converges a little more slowly without any additional
gain for path finding on the particular floor.

Articulation points also offer advantages in combination with contextFurther Use
information: For example, one can immediately see which parts of
a building are not accessible by wheelchair. One just has to check
if all articulation points fulfill the related constraints (e.g. are not
of type stairs). In old buildings there can be long corridor systems
separated by small stairs. In combination with geometric criteria
(such as straight line of sight, stretched shape of regions, etc.), one
can interpret chains of articulation points as corridors.

Although the proposed algorithm is quite efficient, it is intendedDynamic Changes in
Floor Plans to be used in as a pre-processing step when the hierarchical graph

model is constructed. In this regard another question naturally comes
up: what about dynamic/incremental changes in the floor plan? This
is for example relevant when we want to model a building under
construction and provide navigation for it. In Sect. 4.2 we have es-
tablished a notion of consistency for the individual operations for
constructing a hierarchical graph. Since the hierarchisation method
employed in this algorithm depends on the structure of the floor plan
graph, it is naturally vulnerable to changes in the underlying graph
structure.

A naive solution would be to run the algorithm again and againPossible Solutions
each time there is a change in the floor plan graph. If there are fre-
quent changes and updates to the graph structure, this solution is not
feasible. A better idea is to store the knowledge on articulation points
and decision points used in the first run of the algorithm and check,
after each change in the floor plan, whether these assumptions still
hold. Note that there could also be new articulation points when an
edge is added or removed, and this change could also affect e.g. that

132

5.4 further enhancements of the hierarchy

former articulation points become decision points etc. In other words,
cascading updates are likely so that a compromise seems sensible
which consists of bundling changes/updates within a certain period
of time (day/week). This problem is interesting from both theory and
practice and certainly deserves further investigation in future work.

5.4.4 Summary

This section explained the necessity of enhancing the basic geometric
model which has been introduced in the previous section to meet
practical requirements and relevant cases which can occur in real
floor plans. Especially the simple one-to-one mapping to a graph
model turned out to be insufficient:

Sect. 5.4.1 presented a handful of examples from real floor plans
which cannot be properly handled with a straightforward mapping
to a graph structure. The sketched examples are not extremely rare
or exotic, but relevant in practice. A systematic analysis of these cases
has been carried out. The analysis revealed two main shortcomings
of the simple mapping method: on the one hand, there are cases in
which the mapping is too coarse (e.g. non-convex polygons). On the
other hand, there are cases where an intermediate abstraction level
is missing (such as the recognition of a bunch of connected regions
being a central/peripheral corridor structure).

In Sect. 5.4.2, a solution was proposed for handling the case of non-
convex polygons by a specific way of exact cell decomposition. Unlike
standard approaches from Computational Geometry, the proposed
solution is not based on triangulation. Rather, the method for per-
forming the decomposition takes into account what humans would
perceive as ‘intuitive’ decomposition. The method adheres to princi-
ples of Gestalt theory. The main idea is to derive meaningful spaces
by the division, and also the division lines themselves take up the role
of soft boundaries. Thus, the approach fits nicely into the hierarchical
model.

Sect. 5.4.3 covered the second aspect. An algorithm was presented
which can extract meaningful subgraphs (which roughly match to
concepts such as corridors and wings) from a flat floor plan graph.
The algorithm has been successfully implemented and beyond, there
is also a proof of concept on several floor plans which justifies the
soundness of the underlying assumptions. The idea behind the algo-
rithm is to use the topological structure of a floor plan for navigation:
since floor plans are rather sparse, their corresponding graphs can be
decomposed around articulation points. Not only does this second
decomposition imply a wayfinding strategy or heuristic, but it also
promotes the use of the resulting concepts (corridors, wings, etc.) as
landmarks, serving as references in route descriptions.

133

applying hierarchical graphs to indoor environments

5.5 application : query processing using the hierarchy

Having defined different means for hierarchisation, the possible em-Synopsis
ployment of the resulting hierarchical graph structure for practical
navigation tasks in buildings is now demonstrated. Apart from the
inherent advantages of a hierarchy from the point of view of a sys-
tem’s design, such as flexible integration of different networks, it is
also shown that common wayfinding issues can be handled with the
hierarchy:

path finding is the first aspect. It can be improved with an under-
lying hierarchisation (see Sect. 5.5.1). Despite the rather small
size of indoor graphs, performance can be an issue if many
path queries are posed, or queries involve a class of possible
destinations (e.g. any lecture room or emergency exit) rather
than one single destination. The conditions under which one
can exploit hierarchic graph structures (as opposed to flat graph
structures) are examined for this purpose.

route descriptions . The second aspect concerns route descrip-
tions and their generation from the hierarchical model, includ-
ing the regions’ geometry. The basic methods for this are ex-
plained in Sect. 5.5.2. Since dual region graphs are abstract
insofar as they describe regions as a whole, and not motion
through a region, a hierarchisation into convex sub-regions has
been proposed. Together with the geometries of the regions,
the possible use of this hierarchisation for deriving meaningful
route descriptions is shown. Moreover, the coarser hierarchi-
sations into building parts, sections, floors, etc. serve as a
convenient means for structuring several route instructions (this
process is called chunking).

5.5.1 Using the Hierarchical Structure for Path Finding

5.5.1.1 Overview of Supported Queries

In general, a complete navigation system to be used in practice should
support the following types of user queries [GNSW06]:

locator – Where am I? Where is object X? (generally, a Point Of
Interest) And, especially for pedestrian navigation: What is my
orientation?

proximity – Which persons/objects/Points Of Interest are close to
my current location? This notion also includes range queries:
Which ones are on the same floor/zone or within 50m?

wayfinding – How do I get from A to B the fastest/shortest way?

The first point refers to positioning technologies. This aspect is not
covered in this thesis, but the locations and current positions of
persons, objects, and/or POIs can be annotated as attributes in the

134

5.5 application: query processing using the hierarchy

graph structure, ensuring independence from a particular positioning
technology (cf. Ohlbach et al. [ORLS06] for an overview on diverse
indoor positioning systems and technology).

Within the proposed graph model, the term ‘near’ is understood
in the strict sense of walking distance, taking into account the con-
nections between regions via openings such as doors. An indoor
positioning system, such as W-LAN fingerprinting [ORLS06], can
be used to determine the current location of a user. This location is
represented as a point in the geometric model (if the spatial reference
systems are correctly mapped to each other). For assigning points of
interests to regions (e.g. stating that they are of type lecture hall or that
a friend/professor is currently in this room), the corresponding nodes
in the dual region graph can be annotated. Note that the semantics
of distance can be more elaborate with constraints, such as access
restrictions. They can be specified in a cost function, which is passed
on in the hierarchical graph system as a parameter to path finding
algorithms. Hence the hierarchical graph system serves as a flexible
framework for adapting general path finding methods to the view
and preferences of individual users.

However, one question is eminently important for pedestrian in- The Role of
Orientationdoor navigation. It is the question ‘What is my orientation?’: The

egocentric orientation of a wayfinder plays a crucial role in route
descriptions, because all landmarks on the way are usually described
from this perspective using qualitative spatial relations (left/right of
the wayfinder’s current position). Thus the spatial reference system
of a wayfinder is built around her/his orientation.

What are viable solutions to cope with this issue? One the one hand,
it is conceivable that spatial orientations of wayfinders are provided
by the currently employed indoor positioning system. Unfortunately,
many of these systems are not (yet) capable of determining a user’s
orientation because this is a technically sophisticated matter. Devices
like gyroscopes or accelerometers of high precision have to be em-
ployed for this purpose, coupled with other positioning technology
to achieve satisfying results in accuracy.

Therefore, for our system design, we cannot rely only on an un-
derlying positioning technology alone to provide us with information
on spatial orientation. If information is available from a positioning
system, we can gladly use it. But we need to consider as well the
case when we do not have any additional information on orientation
a priori. Apart from an interface to accept spatial orientations from
positioning systems, we need to make some basic assumptions in the
absence of this information. These assumptions should be kept as
minimal and unintrusive as possible. For this purpose we integrate
the concept of spatial orientation in our geometric model and use it
for deriving meaningful descriptions for regions. For example, when
going from one region to another one, an assumption is made that
the orientation at the moment of entry is perpendicular to the tra-

135

applying hierarchical graphs to indoor environments

versed portal/door. A methodology for deriving route descriptions
which employs spatial knowledge about such implicit orientations is
explained in Sect. 5.5.2 in more depth.

5.5.1.2 Path Finding Example with the Hierarchy

What is the concrete gain of the hierarchy in terms of path finding?
To investigate this issue more closely, consider Fig. 60: It shows a
complex building with two floors.

First Floor

Ground Floor

Figure 60: Finding Paths over Two Floors

A prototypical path finding problem over two floors is illustrated
in the example. Suppose the task is to find an optimal path from
the entrance hall on the ground floor to an office on the first floor
(both are marked yellow). One can solve this problem the traditional
way by performing a shortest path algorithm on the entire graph
spanning across the floors. However, each floor may be stored sepa-
rately, so that path finding methods are only available on the graphs
of floor plans. One can still argue that the graphs of floors can be
combined into one large graph. Although this works in the example,
constructing one large graph does not scale in general. Say we have
two building complexes instead of floors. This makes it difficult to
represent the complete unified graph in memory. Besides, buildings
from different authorities/owners may not always be combined for
reasons of data protection.

136

5.5 application: query processing using the hierarchy

However, we can think about a distributed approach with hierar-
chical graphs: Each floor is represented as a node in an abstract
graph (which represents the building), with edges as connections be-
tween floors. Each floor has a more detailed graph. Note that the start
and end nodes are generally in different graphs when multi-level hier-
archies of graphs are considered. So the first task is to find out which
graphs contain the start/end nodes. Instead of searching all graphs
in the hierarchy for contained nodes, it is feasible to use an index
structure like a hash table which maps node identifiers to the corre-
sponding graphs. Then one can find out the graph which is the least
common ancestor of the graphs containing start and end nodes. In
the example of Fig. 60, it is the graph representing the whole building.

Knowing that the two entrance halls and the office are on differ-
ent floors, one has to traverse some border nodes between the graphs
representing the two floors. This is reflected in the hierarchical graph
structure – on the coarsest level (the graph representing the whole
building), there are ten parallel edges between the nodes ‘ground
floor’ and ‘first floor’. Hence there are ten pairs of corresponding
border nodes (marked dark blue and magenta) in the dual region
graphs of the respective floor plans.

At first glance it seems as if the hierarchy could not provide much
of a gain here: computing all ten alternatives for connecting the
border nodes with the origin/destination on each floor is unfeasible
in practice, given that there are a substantial number of common
sub-paths. In this case, choosing the traditional modelling could pay
off, that is representing the graphs of different floor plans in one
large graph so that paths can be determined by a standard algorithm.
The underlying problem with the hierarchy is that a single-source
single-destination path problem can become a single-source multiple-
destination problem (between origin and border nodes) combined
with a multiple-source single-destination problem (between border
nodes and destination). In general, there are not too many connec-
tions between different floors, although large buildings like the one
in the current example can already be problematic. Hence, a naive
hierarchisation into floor levels alone is inappropriate in such cases.

The previous sections have shown that the hierarchisation of a build-
ing is more elaborate – it usually consists of more than just one level
within a floor plan. To avoid the repeated computation of common
subpaths between different boundary nodes, we have to further sub-
divide the graph structure of a floor. Algorithm 4, which has been
presented in Sect. 5.4.3.2, can be employed for this purpose: Fig 61

shows the next hierarchy level for the example as provided by Algo-
rithm 4.

One can perform abstract path finding in the graph below the floor
level (shown on the left hand side of Fig. 61). A simple cost function
is to give each abstract edge a weight of one, simply counting the
traversed nodes Si. In this case, the abstract shortest path goes from

137

applying hierarchical graphs to indoor environments

S01

S02

S03

S04

S05

S06 S07

S08

S09

S12

S13
S14

S15

S16 S17

S18

S19

S11

S01

S02

S04

S05

S03

S06

S09

S08

S07

S11

S12

S14

S15

S13

S16

S19

S18

S17

2x

3x

3x

2x

4x

2x2x

4x

Figure 61: Using a Two-Level Hierarchisation for Path Finding

S01 over S02 to S12 (through either of the three parallel edges between
S01 and S02 and either of the four parallel edges between S02 and
S12). This abstract path corresponds to 12 concrete paths. If there is
another hierarchy level, it can be used in the same manner to assess
which of these combinations is preferable.

The other abstract paths over S03, S04, S08, and S09 for reachingRefining Paths
the first floor are not further considered at this level because they
traverse more nodes. In general, this may lead to sub-optimal solu-
tions since the cost function in the abstract graph is different from the
geometric distance. However, there is a simple way for determining
whether a more optimal solution through a longer abstract path is
possible at all: one can assign for each traversal of an abstract node
an estimate of the Euclidean distance between its two border nodes.
In Fig. 61, these estimates are illustrated as brown dashed lines across
different Si. If the total length of a path at a more detailed level (such
as the shortest refined version of S01-S02-S12) exceeds the estimated
length of an alternative abstract path (e.g. S01-S02-S03-S13-S12), then
the alternative abstract path is a promising candidate worth being
refined. In the next hierarchic level, the corresponding shortest path
algorithm verifies whether the detour over S03 and S13 is indeed
shorter (as the initial estimation suggested). Then the estimate is cor-
rected with the new information gained from the finer hierarchy level.

It is worth noting that this method of estimating the lengths ofAdmissible Heuristic
abstract paths is ‘safe’ insofar as it can only underestimate the true

138

5.5 application: query processing using the hierarchy

distance (due to the properties of Euclidean distance), but never over-
estimate it. Thus it is clearly an admissible heuristic, just as it is used
in the A? algorithm [HNR68]. However, notice that this algorithm
is slightly different from the hierarchical A? algorithm discussed in
Sect. 3.3: whereas hierarchical A? performs on a flat graph (and uses
the hierarchy only in the heuristic itself), the approach of using a
heuristic here updates the cost functions in a true hierarchical graph
system (according to the heuristic estimate).

This example showed the subtleties and explored different options
for exploiting a hierarchy for path finding. In addition to the three
classic variants for hierarchical path finding presented in Sect. 3.3,
new ideas of using the hierarchy were brought in. Unfortunately,
within the limited time available for this work, it was not possible
to implement a path finding algorithm which makes use of all the
ideas mentioned above. Further research is necessary in this respect.
For the time being, we have stuck to a classic variant of hierarchical
optimisation with materialisation of costs: a simple version of the
algorithm presented by Jing et al. [JHR98] has been prototypically
implemented. It is optimal and makes heavy use of precomputed
shortest paths. Nonetheless, it would be interesting to study the
differences between several hierarchical path finding algorithms and
analyse under which conditions one performs better than the other
(and why). This topic remains for further studies building on this
work.

5.5.2 Principles and Versatile Methods for Deriving Route Descriptions

Guiding pedestrians in buildings is a challenging problem. How can
route descriptions be derived from a hierarchical indoor model, ide-
ally in an automatic way? For this purpose, the underlying principles
of giving route descriptions are first elucidated from a theoretical
point of view. Then – based on these principles – versatile methods
are presented for obtaining route descriptions from a floor plan’s
geometry and its subsequent hierarchisation. Parts of this section
were presented by the author in a research paper at the AGILE con-
ference [OS08].

5.5.2.1 From an Allocentric to an Egocentric Perspective

It is assumed that the basic hierarchical representation of the envi- Shifting
Perspectives:
Following Routes

ronment has been precomputed from the available geometric data
of a building’s blueprints according to the methods presented in
Sect. 5.3 and 5.3.4. This hierarchical model is initially allocentric:
The perspective is not centred on an individual navigating in the
environment, but rather on the environment itself (i.e. it is top-down,
from a bird’s-eye view). Information represented in such a model is
complete and can, in particular, be used at the stage of route planning
(as explained before in Sect. 5.5.1). Once a suitable path has been
determined through the building, we can switch perspectives; we can
take on that of the wayfinder, who tries to follow the suggested route.

139

applying hierarchical graphs to indoor environments

In this egocentric perspective, motion through every region on the
route has to be represented and described. The local structure of each
region has to be considered to this end, with the particular entry and
exit points which are fixed by the given path. They are represented
as openings on the region’s boundaries. Non-convex regions and re-
gions with inner obstacles require special treatment: Navigating these
regions can be too complicated without precise instructions to follow.
Additional information, e.g. in form of intermediate waypoints, may
be required for such regions with a complicated structure. The im-
plicit openings determined by the geometric decomposition method
described in Sect. 5.4.2 qualify as suitable intermediate waypoints. In
short, factors which have an influence on the complexity of giving
instructions are:

• the number and configuration of openings on a spatial region’s
boundary (e.g. some could be close to each other or on the
same boundary while others are more distant),

• the number and configuration of non-convex corners (with
limited advance visibility around them). Possibly, intermediate
decision points within the region are implied,

• the configuration of several openings pertaining to adjacent
regions (e.g. if they are in line or at different angles).

5.5.2.2 Preliminaries

The aim of this work is not to derive route descriptions which are so-
phisticated from a linguistic point of view (see Sect. 7.2.2 for different
models). Natural Language Generation is a complex topic beyond
the scope of this thesis. Instead, complementary to these methods,
general principles are discussed and versatile methods are elaborated
for deriving abstract descriptions from the underlying geometry (by
considering the spatial relations between openings). Note that the
following considerations are also helpful for the design of a linguistic
component which creates human-friendly instructions to be used in
the human-computer interface of an indoor navigation system.

A feasible approach for measuring the pragmatic information contentPrinciples
of route descriptions is to adopt an information-theoretic viewpoint.
This is explained in Frank [Fra03]: descriptions are considered to
be equivalent if they lead to identical actions. However, we do not
want to compare two different descriptions here, but to minimise the
ambiguity and imprecision of an individual description. This can be
measured with entropy too (in the sense of assigning probabilities for
spatial decisions):

It is assumed that a wayfinder is unfamiliar with the environment.Pragmatic
Information Content
of a Description

Consequently, without being given descriptions how to traverse re-
gions, the wayfinder has to make uninformed decisions (unless there
are some cues built into the environment, such as signs). What
does the situation look like for a wayfinder in a particular region
R? Each opening eo on the boundary of R constitutes a possibility

140

5.5 application: query processing using the hierarchy

for traversing the region in a different way (and continue through
another region). Thus a certain probability p(eo) that the opening eo

is chosen by the wayfinder can be assigned to each eo. As noticed by
Turner and Penn [TP02] and Richter et al. [RK04, HKR06], it seems as
though these probabilities are not evenly distributed and that there is
a bias to continue in the same direction (moving straight on). Still,
unspecific instructions such as ‘take the door straight ahead’, or ‘go
straight on/through the hall’ leave room for interpretation, especially in
constellations where several doors are right in front of the wayfinder
(see Fig. 63). Apart from this exception, one only needs to describe
motion through a region explicitly if a change of direction occurs.
The method to compress several instructions of the type ‘go straight
ahead’ into one instruction (‘continue straight ahead until ..’) is called
line-of-sight chunking [RK04] or, more generally, spatial chunking.

The spatial knowledge communicated in an instruction, telling e.g. Reducing Choices
with Spatial
Knowledge

whether the next door on the path is to the left, to the right, or in front of
the wayfinder, helps to reduce the number of choices for a wayfinder.
If the instruction is indeed precise and unambiguous, there is only
one choice implied by it. In practice it is often necessary to count
the openings on the same boundary in a particular order, e.g. for
instructions like ‘take the second door to your left’. Thus one has to
determine what people perceive as one coherent boundary (including
several openings) from a planar floor plan graph. This is described
in Alg. 5:

The algorithm starts from a corner Ci in the polygon which repre- Determining
Coherent Boundariessents the boundary of the region R and proceeds in counter-clockwise

direction (i.e. from i to (i + 1) mod n etc.). Although the list of cor-
ners is not cyclic, the traversal is cyclic due to the modulo operation.
If the internal angle α(Ci) of the corner Ci enclosed in the polygon
(see Def. 5.4.1 in Sect. 5.4.2) is around 180◦, i.e. α(Ci) = 180◦ ± δ

for a sufficiently small value δ (e.g. < 30◦), then the two boundary
segments Ci−1Ci and CiCi+1 are put together into one coherent
boundary b = Ci−1CiCi+1 and the algorithm continues in the same
way with Ci+1 and so on. This way further boundary segments are
collected into a coherent boundary b until, eventually, a corner Ci+n

is encountered with an interior angle α(Ci+n) above or below the
threshold. Note that boundary segments CiCi+1 correspond to edges
in the planar floor plan graph. Thus they can also be openings. Since
the starting point Ci can be in the middle of the coherent boundary b,
one needs to apply this method also from Ci in reverse direction, i.e.
clockwise, to collect further boundary segments which belong to b.
When this method is applied analogously to all remaining corners of
the polygon which are not in b, one obtains all coherent boundaries
of a polygon. Coherent boundaries b are ordered counter-clockwise,
so all openings on them can be counted fairly easily.

Consider the concrete example illustrated in Fig. 62: Example

In the example, openings are represented as line segments Bi and
ordinary boundaries as line segments Lj. Four angles are above the
threshold of δ, namely the angles between the line segments L3 and

141

applying hierarchical graphs to indoor environments

Algorithm 5: Determining the Coherent Boundaries of a Region
Input: A polygon P = C1C2 . . . Cn (a non-cyclic list of corners)

representing a region in a planar floor plan graph.
Output: A set B of connected line segments b which are

perceived as coherent boundaries.
δ := 30◦;1

mark all corners C1 . . . Cn as unfinished;2

while there are unfinished corners Ci do3

choose one corner Ci which is unfinished;4

create a new, empty line segment b;5

add C(i−1) mod nCi to b;6

mark C(i−1) mod n and Ci as finished;7

j := i mod n;8

while for the internal angle α(Cj): |180◦ − α(Cj)| < δ do9

add CjC(j+1) mod n to the tail of b ;10

mark Cj as finished ;11

j := (j + 1) mod n; // proceed counter-clockwise and12

cyclic

if j == i mod n then break;13

end14

j := (i − 1) mod n ;15

while for the internal angle α(Cj): |180◦ − α(Cj)| < δ do16

add C(j−1) mod nCj to the head of b;17

mark Cj as finished;18

j := (j − 1) mod n; // proceed clockwise and cyclic19

if j == (i − 1) mod n then break;20

end21

add the line segment b to B;22

end23

return B;24

B1
B2

B3

B5
B6

B7

B4

L1
L2

L3

L4

L5

L6L7L8L9

L10

L11

L12

Figure 62: Determining the Coherent Boundaries of a Region

142

5.5 application: query processing using the hierarchy

L4, L5 and L6, L10 and L11, and finally between L12 and L1. In
contrast, the angle between L8 and L9 is within the range. So are
all angles between Bi and Lj. As a result, there are four coherent
boundaries. They are separated by the corners marked in red.

Openings apparently play a major role for giving route directions. Introducing Beo

and Ω(Beo)They serve as waypoints on a path and are referred to in directions.
To better describe the spatial relations between different openings
of a region, for each opening eo a waypoint Beo is assigned which
is the geometric centre point of the edge eo in the planar floor plan
graph. Additionally, a reference orientation line Ω(Beo) is assigned
which goes through Beo and represents the intrinsic orientation of
the opening. By default, it is perpendicular to the edge eo. The
background to this is that the orientation of the wayfinder – at the
moment of entry through the opening eo – is represented by Ω(Beo).
This spatial knowledge is relevant for giving subsequent instructions
within the region, as detailed in the next sections.

5.5.2.3 Deriving Descriptions for Convex Regions

To begin with, let us have a look at convex regions because they are
generally easier to deal with. Say a routing algorithm has provided
a pair of openings ee and el through which a region R is entered,
respectively left. An example is shown in Fig. 63:

front

left
right

ω(B1)

B1

= B41st 2nd

sharp left sharp right

front

left

front right

B2

B3

= B5B6

B7

F

B1F
B 1

B 4

Figure 63: Egocentric Directions

Here, the openings on the region’s boundary are represented as Example
waypoints, numbered in counter-clockwise order from B1 = Bee

where the region is entered. We want to obtain a description of the
path from B1 = Bee to B4 = Bel

. How can this be accomplished? The
key idea for deriving descriptions is to partition the openings on the
region’s boundary into those which are to the left and those which
are to the right of the wayfinder’s orientation Ω(Bee) when entering
the region via the waypoint Bee (see Fig. 63). In addition, it is useful
to determine whether the opening el is in front or to the back of ee.
The complete algorithm for finding out the relation between ee and
el with a path through R is explained in Alg. 6:

143

applying hierarchical graphs to indoor environments

Algorithm 6: Deriving Route Descriptions for Convex Regions
Input: A convex region R, two openings ee, el on the region’s

boundary, and the set B of coherent boundaries of R.
Output: A textual route description descr for a path from ee to

el through R.
extend Ω(Bee) through Bee and determine the intersection point1

F with the region’s boundary ;
if the waypoint Bel

is to the left of
−−→
BeeF then direction := left;2

else direction := right;3

heading := undefined;4

if Bel
is on the same coherent boundary bF as F and bF 6= bee then5

heading := front;6

count := number of openings of the same type as el on the7

coherent boundary bF between F and Bel
;

descr := “take the <count + 1> <Bel
.type> to the front8

<direction>”;
end9

if Bel
is on the same coherent boundary bee as Bee and bF 6= bee then10

heading := back;11

count := number of openings of the same type as el on the12

coherent boundary bee between Bee and Bel
;

descr := “make a U-turn: turn <direction> and take the13

<count + 1> <Bel
.type> to your <direction>”;

end14

if heading == undefined then15

if bF == bee then // circular room with one smooth16

boundary

countF := number of openings of the same type as el on17

bF between F and Bel
;

countE := number of openings of the same type as el on18

bee between Bee and Bel
;

if countE 6 countF then ; // nearer to Bee than to F19

descr := “take the <countE + 1> <Bel
.type> to your20

<direction>”;
else descr := “take the <countF + 1> <Bel

.type> to the21

front <direction>”;
end22

else23

descr := “turn <direction>”;24

apply the algorithm recursively on the polygon defined by25

Bee , F, and all points which are to the left/right of
−−→
BeeF

(according to the value of direction), replacing ee by BeeF

as input value;
concatenate the resulting description to descr;26

end27

end28

return descr;29

144

5.5 application: query processing using the hierarchy

In the concrete example of Fig. 63, a line is created through Bee in Algorithm Applied
to the Examplethe direction Ω(Bee) and it is extended. The intersection point F of

this line with the region’s boundaries is determined. Then, a sim-
ple left test is performed for all openings w.r.t.

−−→
BeeF (lines 2,3): the

openings are sorted according to which side they lie. Thus, B2 to
B6 are all to the right (including Bel

= B4), while only B7 is to the
left of this line. The next step of the algorithm is to test whether B4

lies straight ahead. Therefore the coherent boundary which contains
F is considered (lines 5-9). In the example, B6, B5, and B4 are on
this boundary (in this order from F). The opening B4 is the third to
the front right. However, it would not be described this way, since
B6 is very close to F. B4 is the second opening if B6 is not counted.
It is also distinguished from B3, which is to the right of F, but not
on the same boundary. An opening is to the back of

−−→
BeeF (lines 10-

14) if it happens to be on the same coherent boundary as Bee . The
corresponding manoeuvre is a U-turn, either to the left or to the
right. Circular rooms are a special case (lines 16-22), where there
is exactly one coherent boundary for the whole region. Depending
on the proximity of Bel

to F or Bee (countF, respectively countE), a
suitable instruction is given. A simple left or right turn (lines 23-27),
e.g. from B1 to B7/B3 results in a turn action followed by a move
straight action. It can be determined by partitioning the left/right
hand side of

−−→
BeeF again.

In a preceding diploma thesis supervised by the author [Sch06], a Describing Actions
in a Formal
Language

general-purpose formal route description language, called PlanML has
been proposed for different kinds of spatial networks. This language
has an XML-based syntax for a unique representation of different
plans from different network types. A sample for the example of
Fig. 63 is shown below in PlanML syntax:

1 <plan>

<location id="R" type=" r e g i o n ">
3 <location id="B1" type=" open ing " />

<action id="B1B4">
5 <data>

<action -description >

7 Take the second door to the front right.

</action -description >

9 </data>

</action >

11 <location id="B4" type=" open ing " />

</location >

13 </plan> �
However, if we look more closely at the example, it turns out that
the language is too unspecific for indoor route descriptions. Addi-
tional constructs are needed: Besides the missing conceptualisation
of simple turn actions, a notion for counting the number of openings
is also required (see Alg. 6), as well as conceptualisations of complex
manoeuvres such as U-turns. Another option is to use the cognitive
OpenLS specification as proposed by Hansen et al. [HKR06] which
is more expressive and builds on a standard. Unfortunately, the

145

applying hierarchical graphs to indoor environments

integration with that formal route description language could not be
achieved within the given time. This topic is left for future work.

5.5.2.4 Deriving Descriptions for Non-Convex Regions

Compared to their convex counterparts, non-convex spatial regions33

are admittedly encountered more rarely in floor plans. Despite this,
handling these cases is extremely important in practice: Human
wayfinders are likely to get lost in complex regions like large halls or
branching corridor systems without guidance.

In Sect. 5.4.2, a geometry-based method has been introduced whichUsing the
Decomposition explains how to decompose non-convex regions in a specific way into

convex parts. The decomposition lines are not arbitrary, but guided
by the idea of extending architectural lines and closing incomplete
shapes. As a result, a finer-grained graph is obtained. It describes
convex sub-regions within the region separated by decomposition
lines. This decomposition can be exploited for giving directions
through non-convex regions. For an understanding of the basic idea,
consider the example illustrated in Fig. 64:

Ry
B
nBy

Bx

Rn

RxRx

S1

S2

S3

S4

B
n
B
x

Bpast12

By

S5 S6

Bn

Bpast67

Baround34

S7

Baround67

Rn

Rx

Ry

S1 S5 S6

S7S2

S3

S4

Baround21 ω(Bn)

Figure 64: Using the Decomposition

The starting point is a decomposition such as that obtained by the
method in Sect. 5.4.2. In the example of Fig. 64, the decomposi-
tion lines S1 to S6 (represented as purple edges) have been created
together with a corresponding fine-grained graph of sub-regions.
Supposed the task is to describe the paths through the region from
Bn to Bx and By (see Fig. 64): First, the fine-grained graph is used to
plan an abstract path through the region. The involved sub-regions
Rn, Rx, and Ry which are the start/end nodes of this path are marked
in blue. According to the number and position of decomposition lines,

33 including also those regions which have inner obstacles

146

5.5 application: query processing using the hierarchy

sub-regions on these paths can be classified into different categories:
the sub-region enclosed by S1, S2, and S5, for example has three in-
ternal connections. It is a T junction. The other sub-regions have only
two or one internal connection(s). The two regions enclosed by S3, S4,
respectively S5, S6 are almost orthogonal connections around corners.

We can now assess whether Bx and By are visible from Bn with- Determining
Visibilityout checking the intersections of the line of sight

−−−−−→
BnBx/y with the

region’s boundary (i.e. polygon): instead, all implicit boundaries Si

which are edges in the determined path from Rn to Rx/Ry are tested
for intersection with

−−−−−→
BnBx/y in the order of their appearance on the

corresponding paths.34 In the case of Bx, the order is (S1,S2,S3,S4),
and for By it is (S1,S5,S6). Although the line of sight

−−−→
BnBy inciden-

tally intersects S3, one does not need to determine this because the
path from Rn to Ry does not lead through the edge S3. If two open-
ings are mutually visible, then the corresponding path description
can be compressed by means of chunking.

Having determined the abstract path through the sub-regions, the Combining the
Descriptions of
Convex Sub-Regions

basic method for describing paths in convex regions can be applied
to each sub-region (considering the decomposition lines Si as special
kind of openings which are not referred to though). These partial
descriptions can be combined in the following manner: Care has
to be taken for very long coherent boundaries which stretch across
adjacent sub-regions – if there were, for example, more doors on the
upper boundary in Fig. 5.4.2 besides Bpast12, the counting of these
openings has to be done over the division of sub-regions. For longer
‘move forward’ sequences such as (Baround21, S1, S5, Bpast56), like-
wise, the individual instructions can be replaced by one single ‘go
straight ahead’ instruction. Optionally, reassuring cues such as ‘move
past the junction’ (referring to the region enclosed by S1, S2, S5) could
be given when the forward movement exceeds certain length. For
reaching By from Bn the corresponding description would be ‘Turn
right and go straight ahead’ (obtained from Rn), followed by ‘Pass the
junction’ (from the region enclosed by S1, S2, S5) and ‘Turn right [at
the corner]’ (referring to S5 and S6). The final instruction, ‘Take the
door straight ahead’, is obtained from Ry. In an analogous way, the de-
scription from Bn to Bx can be obtained. It contains the chunks ‘Turn
right [at the junction]’ (S1, S2, S5) and ‘Turn right [at the corner]’ (S3, S4).

Note that a similar technique can be applied for concatenating de- Route Instructions
in a Hierarchyscriptions of adjacent regions in a floor plan graph. For improving

the quality of these descriptions, it is helpful to refer to the type of
region if it is known. Especially transitions between different types
of regions (e.g. between a large hall and a corridor, or a room and
a corridor) could be incorporated in the descriptions. Thus, one
can enrich route descriptions with labels and types of regions. An

34 Note that this method is usually faster than checking intersections with all boundary
lines of the polygon, since there are fewer elements Si. Moreover, these Si are
already in the correct order, i.e. if the first line Si is not intersected, the others do
not need to be checked any more.

147

applying hierarchical graphs to indoor environments

additional frame for structuring several instructions into an abstract,
higher-order instruction is provided by the hierarchy levels of floors,
sections, wings, etc. such as determined by the other hierarchisation
algorithms. Folding and unfolding of abstract instructions is a conve-
nient feature of hierarchically organised instructions. This feature is
also an integral, built-in part of the PlanML language [Sch06] devised
by a diploma student of the author.

5.6 scenarios for pedestrian indoor navigation

In the previous sections the basic principles of a pedestrian indoor
navigation system were highlighted and a novel model based on
hierarchical graphs has been proposed. The implementation of a com-
plete, ready-to-use navigation system could not be finished within
the time of this research. Nonetheless, some prototypes exist for indi-
vidual components (see Chap. 6 for an overview). These components
need to be further developed and assembled into a complete naviga-
tion system. The previous sections have made clear which questions
are relevant for the design of such a system tailored to people’s needs.
The proposed algorithms can be used as guidelines for implementing
such a system. The following paragraphs give an idea on possible
scenarios where such a complete system can be useful. The general
importance of pedestrian indoor navigation should become apparent
and also the applicability of an automated system for pedestrian
guidance in other scenarios.

air travel . Increased numbers of plane movements in connection
with ever larger aircraft result in an increased load on an air-
port’s infrastructure. However, this problem cannot always
be met by structural expansion alone. Dynamic and efficient
guidance of passengers can to some extent counteract these
developments. Passengers are often under time pressure since
delays and short connections are common nowadays. This is
especially the case for international flights, where transits take
place at foreign airports. Increased and longer security checks
as well as fewer available ground staff for this purpose make
all aspects of air travel more demanding.

Automated assistance and guidance of people, e.g. via mo-
bile devices, could substantially help in a number of respects:
finding facilities such as information booths, departure gates,
baggage claims or parking lots could be assisted by route find-
ing applications. Changes and updates of all kinds (e.g. con-
cerning a certain flight or company) could be communicated
via Personal Digital Assistants (PDAs) or mobile phones in an
intelligent manner, i.e. only to those people actually affected by
the change. Moreover, indoor positioning and dynamic event
handling could aid the ground staff in locating passengers who
are late for departure. Paper tickets can be replaced by elec-
tronic counterparts and check-in can also be done electronically,

148

5.6 scenarios for pedestrian indoor navigation

e.g. using 2D-matrix-code sent via MMS to mobile phones35 to
reduce queues and waiting time.

healthcare. A similar situation can be found in large clinics or
hospitals. Modern hospitals often consist of complex infras-
tructures integrating all kinds of special units, employing a
wide range of experts, and implementing complex processes in
order to cater for the needs of patients. Patients and visitors
are normally neither familiar with the often large complexes,
nor with individual procedures. Factors such as time pressure
or exceptional stress aggravate problems of spatial orientation
within the underlying infrastructure.

Especially today, where human resources are scarce and must
be deployed with optimal efficiency, people can benefit from au-
tomated assistance. Locating not only certain premises but also
employees, who often move about in the building, is a recurring
task for both patients and staff. Active badge systems have
been devised to eventually replace beepers. Patients’ vital signs
could be monitored and their movements tracked for safety
reasons. People would not be confined to areas with constant
audiovisual supervision and thus staff could concentrate on
more important matters.

education. University life is dynamic in a number of ways: Stu-
dents have different assignments and lectures changing more or
less each semester. The general facilities are shared by a number
of different units and their staff. Changes to and exceptions
from schedules occur rather frequently – especially at the end
of semester when most examinations take place. Moreover,
university campuses are often larger complexes; they consist of
a number of different buildings. These buildings are sometimes
not even on the same or adjoining premises, but scattered across
different parts of a city. Finding certain staff or facilities can
therefore be a difficult task, especially for freshmen who are not
yet accustomed to this way of living.

Generally speaking, the tasks of managing the curricular and
extra-curricular activities, personal schedules, deadlines, and
other administrative concerns must all be carried out in a mo-
bile environment. The reason is that students, unlike staff, do
not have “offices” of any kind. Even staff have to conduct a
considerable part of their business outside of their offices. Web
information systems have become a valuable part of the infor-
mation infrastructure for universities, although few possibilities
of truly mobile access exist36. In this environment, information
systems could regularly send reminders for important deadlines
or schedule updates. Say a student wants to contact a professor,
then route finding algorithms could include additional infor-
mation such as time and location to provide a more adequate

35 http://www.heise.de/newsticker/meldung/70240

36 While there exists wireless LAN which can be accessed by laptop computers in
many places, we are looking towards smaller (therefore truly mobile) devices such
as PDAs and mobile phones.

149

applying hierarchical graphs to indoor environments

answer. Instead of visiting the office during consultation hours
for example, it could be easier to postpone the meeting until
the professor is lecturing in a room nearby. This would involve
knowledge of both the professor’s and the student’s schedule
and the respective locations.

5.7 summary

This chapter covered a broad range of different themes which come
up when a hierarchical graph model is being applied to indoor envi-
ronments.

Section 5.1 explained the general benefits of a hierarchical repre-
sentation for indoor environments and motivated them by examples.
In Section 5.2, the architecture of a complete system was sketched, il-
lustrating the interdependencies of individual components. However,
this complete architecture is more wide-ranging than the implemen-
tation which has been carried out in the course of this thesis (see
Chap. 6 in the following). Section 5.3 then gives a detailed discussion
of the individual steps required to extract a graph from floor plan,
and how a hierarchy can be created in this course. Different construc-
tion algorithms are introduced for achieving this task. The nesting of
spatial regions and problems in connection with the third dimension
are also discussed. Hierarchical graphs are proposed to model all
these aspects.

As discussed in Section 5.4, there were still many exceptions and
cases which could not be handled by the basic system. Floor plans
of real buildings were used for a survey and systematic analysis of
problematic cases. As a consequence of this, two concrete enhance-
ments were proposed for the basic system: first, a novel geometric
decomposition was introduced which produces convex and naturally
looking spaces within non-convex spaces. Then, an algorithm was
presented which recursively divided a floor plan graph around its
articulation points and extracted meaningful subgraphs such as corri-
dors, wings, or sections.

The following section further justified the use of hierarchical graphs
by analysing how queries can be processed in the presence of such
a hierarchy. First, queries were categorised an it was analysed how
they can be answered with the proposed system architecture. The
two aspects of path finding and generation of route descriptions
were mainly discussed there. A methodology for deriving route de-
scriptions from spatial regions was presented which is makes use of
implicit spatial orientations for the derivation of qualitative spatial
relations. It can be seen as a first step preceding natural language
generation. Finally, three scenarios of pedestrian indoor navigation
were illustrated in Section 5.6 to give an impression of the impact of
this research in future scenarios.

150

6S TAT U S R E V I E W A N D E VA L U AT I O N

6.1 Overview on the Implementation 151
6.2 Evaluation of the Hierarchy on Real Floor Plan

Data . 152

In this chapter an overview is given on the progress of implemen-
tation. Some basic components could be realised as first prototypes
in the scope of this thesis. As a prominent example, the algorithm
detailed in Sect. 5.4.3 was implemented and then tested on several
floor plans. The results are presented in Sect. 6.2. With an analysis
carried out on several floor plans of real buildings, we have not only
gained a first confirmation of the validity of our approach, but we
can also make statements about the expressiveness of our model and
compare it with other models. Note that a few components still need
to be completed. Even though their implementation is not complete,
the underlying ideas and principles were presented in this thesis. For
example, the process of generating route descriptions was brought
up without going into the details of the complex topic of natural
language generation. This is left for future work.

6.1 overview on the implementation

First, there are the components which consitute the core functionality Core Functionality
of the hierarchical graph system. They have been realised in Java.
Among others, loading and storing graphs is possible from an XML-
based representation, OWL ontologies, and a common graph drawing
format. An open source graph framework has been employed and
extended for the basic functionalities of a single graph. Of course,
the construction of hierarchical graphs is the most important aspect:
Different graphs are linked together in a mediator-based system (see
Sect. 4.1.2 for details). The mediator system has been prototypically
implemented for two levels of hierarchy. For path finding, a variant
of the hierarchical encoded path view [JHR98] has been implemented.
It makes use of massive precomputations of paths.

Context information is represented by means of ontologies which are Context Information
linked to nodes and edges of different graphs [Ide06, Ide07]. How-
ever, it turned out that the hierarchical encoded path views are not
compatible with a flexible evaluation of cost functions. The basic
graph algorithms have been generalised insofar as they now accept a
set of boolean constraints as parameters. This allows one to instanti-
ate a graph algorithm with a specific set of constraints (telling which
node and edge types are excluded from search). The underlying
graph does not need to be changed because the behaviour of the
algorithm can be altered in a generic way.

Moreover, there are the specific algorithms and data structures for

151

status review and evaluation

indoor environments: The systematic method presented in Sect. 5.3
has been implemented and applied to several floor plans. The map
modelling toolkit Yamamoto [SH06] developed at the university of
Saarbrücken served as a basis for creating vector-based geometries
of several floor plans. The basic algorithms for graph construction
have been applied to these geometries. Two floors of the same build-
ing were used for testing the hierarchisation in the third dimension.
Two enhancements were proposed in Sect. 5.4. The idea of geo-
metric decompositions in Sect. 5.4.2 has not yet been realised in a
suitable algorithm due to time restrictions. The implementation of
the other method for extracting meaningful subgraphs from a dual
region graph (see Sect. 5.4.3) has been carried out within this thesis.
Therefore, first results of an evaluation on floor plans are available.
They are presented in the next section. Concerning the methods for
applying the hierarchy (see Sect. 5.5), only some basic functionalities
have been implemented. Therefore, these methods could not yet be
exhaustively tested. This is left to future work.

6.2 evaluation of the hierarchy on real floor plan data

With the preceding analysis of real floor plans, we can make someAccuracy and
Expressiveness statements about the expressiveness of the proposed hierarchical

model. Although we have initially employed the Yamamoto editor
for creating the geometric models by means of overlaying an image
of a floor plan and drawing polygons, a few shortcomings of this
system became apparent: first it has a limited accuracy because im-
ages of floor plans are not allowed to be larger than 2048 × 2048

pixels.1 Thus, for an exemplary building of 200 metres for instance,
the maximum accuracy is roughly 10 centimetres per pixel. This may
not be sufficient in all cases because the angles in small rooms may
not be captured accurately enough. This mismatch could ultimately
lead to navigation errors due to wrong angles. Another, less dramatic
effect of the maximum resolution per pixel is that walls which are
thinner than 10 cm can only be represented as lines (and not as poly-
gons/obstacles).

Furthermore, our geometric data model is more expressive than
thus of Yamamoto which only accepts valid polygon models. Our
focus was to cover as many practical cases and instances of floor
plans as possible in a general model. We have relaxed the conditions
of polygons and can process more general, vector-based models. The
basic geometric model consists of floor plan graphs (see Sect. 5.3.2.1).
This model is quite expressive. For example, there is no way to model
thin Spanish walls (see Fig. 32 in Yamamoto and neither inwards-
oriented walls2 due to the combination of coarse maximum resolution
and required polygon model. Our approach also derives implicit
information from a floor plan graph (as explained in Sect. 5.3.2.2), for
example the nesting between different regions. This is not only the
case for room-in-room constellations and circular corridors, but also

1 This limitation is due to the resources used for 3d rendering.
2 frequently occurring in museums

152

6.2 evaluation of the hierarchy on real floor plan data

for any kind of obstacles inside rooms (like furniture). In general, the
nesting of regions can be recursive. This aspect has been neglected
in the Yamamoto system so far. In contrast, the strength of the Ya-
mamoto system clearly lies in the capabilities and functionality of its
graphical display. It has a 2d and 3d rendering engine which even
allows one to virtually walk through floor plan models.

Beyond this, the resulting hierarchical graph model is very flexi-
ble because it can model a number of different aspects which cannot
be captured in equal measure by a flat graph model. The different
steps of constructing the hierarchical model for indoor environments
have been laid out in Chapter 5. In particular, the hierarchisation
algorithm presented in Sect. 5.4.3 has been tested on several floor
plan models.

The floor plans that have been considered in this study showed the
distribution of node degrees in Fig. 65:3 The x-axis on the horizontal
marks the degree of a node (i.e. number of adjacent nodes). The y-
axis on the vertical marks the absolute frequency of nodes which have
the degree of the corresponding x-value. Thus, the resulting plots
display the distribution of node degree frequencies for the considered
graphs.

The charts in Fig. 65 illustrate that a considerable number of nodes
have only few connections to other nodes. In particular, regions with
a degree of 0 are obstacles. Regions with a degree of 1 dead-ends.
They are connected to articulation points. As a result this experimen-
tal data backs up one of the main hypotheses for the hierarchisation
algorithm presented in Sect. 5.4.3: the considered graphs of real floor
plans are indeed very sparse despite a remarkable variation in node
degrees.

Fig. 66 shows the results of the hierarchisation process on the previ-
ous floor plan data: The number of hierarchy levels ranges from one
to three. Therefore, Alg. 4 converges quite quickly without creating
too many hierarchy levels. The total overhead of the hierarchy is
small. Although these first results are promising, the hierarchisation
has to be tested on more models to achieve a more complete picture.

3 Note that the node degree in a multigraph is not defined as the number of incident
edges of a node, but as the number of adjacent nodes.

153

status review and evaluation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

LMU HGB EG

Frequency of
Degree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

5

10

15

20

25

30

35

40

45

50

55

60

65

LMU HGB 1OG

Frequency of
Degree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

10

20

30

40

50

60

70

80

90

Oett 67 1OG

Frequency of
Degree

0 1 2 3 4 5 6 7

0

5

10

15

20

25

30

35

40

45

50

Louvre Part 1OG

Frequency of
Degree

0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

100

110

Ther EG

Frequency of
Degree

Figure 65: Distribution of Node Degrees in Real Floor Plan Data

154

6.2 evaluation of the hierarchy on real floor plan data

Original
Graph (Dual
Region)

Hierarchy
Level-1
Graph

Hierarchy
Level-2
Graph

Hierarchy
Level-3
Graph

0

25

50

75

100

125

150

175

200

225

250

LMU HGB EG

#Nodes

#Edges

Original Graph
(Dual Region)

Hierarchy Level-1
Graph

Hierarchy Level-2
Graph

0

25

50

75

100

125

150

175

200

225
LMU HGB 1 OG

#Nodes

#Edges

Original Graph (Dual Region) Hierarchy Level-1 Graph
0

25

50

75

100

125

150

175

200

225

250

275

300

Oett67 1OG

#Nodes

#Edges

Original Graph
(Dual Region)

Hierarchy Level-1
Graph

Hierarchy Level-2
Graph

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Louvre Part 1OG

#Nodes

#Edges

Original Graph
(Dual Region)

Hierarchy Level-1
Graph

Hierarchy Level-2
Graph

0

20

40

60

80

100

120

140

160

180

200
Ther EG

#Nodes

#Edges

Figure 66: Hierarchisation on Real Floor Plan Data

155

status review and evaluation

156

Part III

C O N C L U S I O N

7R E L AT E D W O R K

This chapter presents work related to the diverse topics covered in
this thesis. This concerns, first and foremost, hierarchical graphs
and models/systems for indoor navigation. The general topic of
wayfinding and models of human wayfinding are also discussed
here.

7.1 Use of Hierarchies for Modelling Spatial Net-
works . 159

7.2 Indoor Navigation and Wayfinding 162

7.1 use of hierarchies for modelling spatial networks

Hierarchies of graphs have been introduced and extensively inves- Classical
Applicationstigated in the fields of Computer Science and Artificial Intelligence

mainly because of their computational properties, i.e. to achieve
speed-up for path finding in very large graphs. It has been shown
that a hierarchical partitioning of large networks into smaller sub-
graphs can improve the average processing time for network-related
queries in practical applications [Sac73, Kno91, HMZM96, SFG97]. In
the geospatial domain the particular focus of this research has been,
for the most part, on road networks [JHR96, Liu96, HJR00]. These
networks offer plenty of commercial applications, such as car navi-
gation systems, traffic surveillance and control, traveller information
systems and many more.

Note that in all these cases, the hierarchisation is restricted to one Integration into a
Geospatial World
Model

type of spatial network. In this thesis however, a novel use case for
hierarchical graphs has been explained, namely for the integration of
diverse spatial networks. They can all be modelled by (hierarchical)
graph structures. To the best knowledge of the author, this use case
has been first proposed by Bry et al. [BLOR05]. In a nutshell, the
paper describes the following idea: unlike in traditional conceptual
modelling, where the co-existence of multiple representations gen-
erally indicates a design error, multiple representations are quite
normal for geographic information [PSZ06]: there can be different
maps of the same real world objects at different scales. At a smaller
scale, e.g. a building can be represented by a set of floor plans which
describe its interior structure. The same building can be represented –
at a larger scale – as a node connected by walkways or streets within
a city. This can be conveniently modelled in a hierarchical graph
structure. Notably, the Open Geospatial Consortium (OGC) has devel-
oped various standards for the interoperation of navigation systems
and services. At the core, there is the OpenLS initiative [Ope], which
aims at integrating different navigation systems (and thus leveraging

159

related work

location-based services and route finding). Although the focus is
mainly on car navigation and outdoor related scenarios, these ideas
can be used as general guidelines for the design of our indoor system.
However, a hierarchical structure of graphs was not foreseen in the
specification. This is a novel aspect.

Efficiency was the key issue investigated in classical research onCriteria for
Hierarchisation hierarchical graphs. However, little attention has been paid to the

problem of (automatically) constructing a hierarchy of graphs and
determining the relevant criteria for its construction: in most cases
the hierarchy was assumed to be given (e.g. by different districts of
a city) or artificially constructed (e.g. by planar graph separators).
Whether the hierarchy is plausible for people, i.e. it can be used in
communicating spatial knowledge and giving route instructions, has
not been examined in these cases. However, alternative criteria for
the hierarchisation of a city’s street network – which are more akin to
human conceptualisations of space – were presented in the Ph.D. the-
sis of Tomko [Tom07]: for example, the most prominent streets could
be determined by their betweenness centrality (see Sect. 7.2.1). Fur-
thermore, prominent landmarks were considered especially because
they define areas of influence around them.1 One can thus say that
a region is nearer to a particular landmark than to any other one.
The boundaries of these areas of influence around landmarks are
the edges of the Voronoi graph generated from the point set of land-
marks. This new kind of hierarchisation enhances the communication
of route knowledge and alleviates the descriptions of routes through
a city.

Another notable exception can be found in the work of Liu [Liu96].Meaningful
Partitions Here, a partitioning of road networks has been proposed which

makes use of the knowledge that roads are divided into different
classes/types: In fact, major roads and expressways often partition a
road network in a natural way, into different quadrants and triangles.
The key idea was that minor roads are often enclosed in such grids
formed by major roads. For abstract path planning, only the skeleton
of major roads needs to be considered [KTS03]. This phenomenon is
also exploited by experienced taxi drivers, e.g. in large metropoles
like Mexico City where it is virtually impossible for people to re-
member all street names. This is a typical case for problem solving
by abstraction. Kuipers et al. [KTS03] proposed a similar idea, with
the sole difference that boundaries (i.e. linear features such as long
roads, rivers or railway tracks) were used for the partitioning. If the
endpoints of a route lie on opposite sides of a boundary, it is evident
that the boundary has to be crossed eventually on the route. It is
therefore an intermediate goal for path finding. A similar heuristic
has been proposed in this thesis with articulation points for floor
plans.

The theoretical foundations of hierarchical graphs for spatial rep-Foundations of
Hierarchical
Representations

resentation were discussed in Stell [Ste99]. Moreover, Timpf and

1 Here, landmarks are considered to be point-like shapes.

160

7.1 use of hierarchies for modelling spatial networks

Frank [TF97] elaborated general principles for carrying out spatial
reasoning tasks with hierarchies. Montello [Mon93] classified spatial
environments according to their scale – from large ones which are
mediated by maps to smaller ones which can be experienced directly,
either through locomotion or visual perception. Each of these scales
makes up a different conceptual level in a spatial hierarchy. Kuipers
et al. [KBG+

00] proposed a ‘spatial semantic hierarchy’ formed by
different abstraction levels: it starts from the levels of sensory input,
over the causal level (consisting of views and actions), to a topological
level with paths, regions and places. The theory is quite general. As
such, it can be applied to both robots and humans. Moreover, Plümer
et al. [PG96] presented nested maps as hierarchical data structure for
spatial models. Nested maps are dual graphs which are hierarchi-
cally organised. However, only one edge type is considered in nested
maps (i.e. no distinction is drawn between boundaries and openings).
Consequently, this model cannot be adopted for indoor environments.

Maio and Rizzi [MR96] introduced in a theoretic work a layered Hierarchy for
Buildingsknowledge representation for navigation in buildings, explaining

how hierarchical planning can be performed. They also considered
the presence of different attributes in their path finding method.

Cagigas and Abascal [CA04] have proposed a hierarchical model System for a
Hospitalfor indoor environments for an automated guidance system control-

ling a wheelchair. Their system is called TetraNauta. The system was
applied to a large hospital building, consisting of several floor levels.
For path planning a variant of hierarchical A∗ was used and the cost
function included additional costs for turns (which require more time
for a wheelchair) and elevators for the third dimension. The primary
concern in this work was efficient path finding and devising suitable
cost functions for the wheelchair.

Hu and Lee [HL04] also presented a simple hierarchical model for Hierarchisation of a
Floor Planindoor environments. The third dimension was not addressed in

their work, though: the model considers only one floor plan. All
entries and exits of the floor are considered roots in this hierarchy.
Thus the hierarchy is also called ‘exit hierarchy’. The other nodes are
classified according to their closeness or depth from the roots. The
resulting hierarchy is the combination of search trees grown from
the exits of the floor. So it is, in general, not a tree-like structure
but rather a lattice [LL08], where children have several parents. The
duality of locations (regions) and exits is a prominent feature of this
model. However, it remains unclear whether the approach really
scales, because only toy examples were presented. It needs to be
studied further with larger and more complicated examples to give a
more realistic account.

161

related work

7.2 indoor navigation and wayfinding

7.2.1 General Issues

Pedestrian guidance requires other data sets than car navigation sys-Different Data Sets
tems, even in outdoor urban areas [CW01, SRK07]. The automated
creation of suitable data models is an inherent problem for pedes-
trian guidance. Elias [Eli07] has proposed a method for this purpose,
collecting data from different sources, integrating them and checking
their consistency. The issue of constructing a flat graph representa-
tion from a floor plan’s geometry has been addressed in Whiting
et al. [Whi06, WBT07]. A pragmatic approach is presented there.
It accounts for various features and also includes openings (called
portals) on the boundaries of regions. Among others, problematic
situations for graph construction could be identified (e.g. regions
which are connected to the exterior). For path finding, a standard
approach is adopted. They also considered non-convex regions, for
which a Delauney triangulation was performed. But there are also
non-standard decompositions considered in other work: Lien and
Amato [LA04], for example, perform an approximate convex decom-
position, relaxing the strict requirement of convexity. Slightly convex
angles are not necessarily decomposed. An interesting approach com-
bining geometric processing and image analysis has been explained
in Lefebvre and Hornus [LH03]: they outlined an automatic method
for detecting portals of regions and thus decomposing a region into a
so called Cell-and-Portal graph.

In the field of qualitative spatial reasoning, various calculi have been
devised for describing and deriving topological relations between
regions. Among the most prominent are the Region Connection Cal-
culus (RCC-8) by Cohn et al. [CBGG97] and the 9-intersection model
by Egenhofer et al. [EF91]. The different abstract relations between
regions are depicted in Fig. 67 (using the nomenclature of RCC-8).

DC(x, y) EC(x, y) PO(x, y) EQ(x, y)

TPP(x, y) NTPP(x, y)

TPP-1(x, y) NTPP-1(x, y)

Figure 67: Eight Basic Relations between Regions According to
Cohn [CBGG97]

Interestingly, the indoor environments we considered could not be
described by the relations of these calculi for two different reasons:

1. there is no multiplicity of relations between regions (for mod-
elling, e.g., two doors between two rooms),2

2 However, this is easy to represent this as multiedges in a dual region graph.

162

7.2 indoor navigation and wayfinding

2. there is only one type of connection (i.e. no distinction between
opening/portal and boundary).

For these reasons a more expressive ontology is needed to describe Ontologies and
Wayfindingindoor environments in a qualitative manner. In contrast to the

general-purpose calculi mentioned above, the work of Bittner [Bit01]
features a specific ontology for indoor environments. The ontology
provides a thorough background for classifying various boundary
types: for example, the boundaries of spatial regions and implicit
boundaries within the structure of a spatial region are conceptually
distinguished. In the work of Raubal et al. [RW99], a formal wayfind-
ing3 model is presented based on image schemata and affordances –
it describes the sequence of actions which can be performed in an
indoor environment, along with their preconditions. An airport envi-
ronment has been investigated in their studies. Human wayfinding
knowledge is internally represented as cognitive maps [Gol99]. These
maps encode human actions in (and interactions with) an environ-
ment, thus make up the essential ‘sense’ of location. Findings in
the research communities of spatial cognition and artificial intelli-
gence [HJ85, Voi03, WM03a, WM03b] suggest that cognitive maps
too, are organised in a hierarchy – topological and hierarchical mod-
els seem plausible to people.

The structure of a building is the result of a well-planned human Wayfinding in
Architectural Designcreation process. Thus it is interesting to see which criteria have

been considered in the course of a building’s design by its archi-
tects. Passini [Pas84, Pas96] was among the first to acknowledge
the important role of wayfinding in architectural design. In a re-
cent publication by Brösamle et al. [BH08], interviews have been
conducted with architects to analyse existing buildings, discover
problems related to wayfinding and propose solutions. It turned
out that architects can anticipate the flow of pedestrians in two differ-
ent ways: either by reasoning from an allocentric viewpoint about
flows and paths or by imagining egocentric walkthroughs. The
study tried to reveal the underlying assumptions of architects which
are only implicitly stated. Hoelscher et al. have also investigated
the correlation between architectural design and human wayfinding
behaviour [HMV+

04, HMV+
06]. They carried out various experi-

ments. Amongst others, wayfinding strategies could be identified
for multi-level buildings. These findings back up diverse hierarchi-
sations of floor plans, providing experimental support that wayfind-
ing behaviour is influenced by architectural design. Complemen-
tary to this, further experiments have been conducted by Wiener
et al. [WFR+

07] with a set of virtual indoor scenes. They investi-
gated the navigation behaviour of people and the relation to parts
of regions which are formed by coherent visibility (called ‘isovists’).

3 Notably, the notion of wayfinding comprises more than just path finding – human
wayfinding is the complete process of locomotion, orientation, spatial reasoning
and problem solving. The term has been coined by Lynch in ‘The Image of the
City’ [Lyn60] and is widely used ever since. In accordance with the viewpoint
of Passini, wayfinding can be considered as spatial problem solving and decision
making [Pas84, Pas96].

163

related work

Such findings play a role for the decomposition of non-convex re-
gions. The geometric layout of architecture was also studied by
Peponis et al. [PZC90, Pep97, PWR+

97], who proposed different
principles for decomposing spaces.

In order to gain information on the anticipated flow of pedestri-Flow Simulation
ans through a building, one can resort to techniques from the field of
graph theory, e.g. simulating flows starting from entries and diffusing
into the interior with a certain probability. Turner and Penn [TP02],
for example, propose an agent-based system which makes use of
Markov chains in a stochastic process, assigning probabilities to tran-
sitions. The simulation has been applied to the famous Tate Gallery
in London, see Fig. 68.

Figure 68: Traces of Pedestrian Movement in the Tate Gallery [Dur07]

Another possible approach in this field is to apply techniques ofNetwork Analysis
network analysis. These are, for example, employed in large social
networks. There are a series of various centrality measures which can
be used for this purpose [Sab66, Fre77]:

• degree centrality is simply the number of connections from a
given node. The problem with degree centrality is that it accounts
only for local prominence. For example, a long corridor with
many offices at one end of the building may be considered as
central merely due its large amount of connections.

• closeness centrality measures the mean geodesic distance (i.e.,
shortest path length) of a node to all other nodes in the network.
Intuitively, the nodes which are the least far away from all
others are considered central nodes.

• betweenness centrality of a node N is the relative frequency of
its occurrences within all shortest paths through the network
(for origins and destinations not including N). Note that there
are (n − 1)× (n − 2) paths possible since paths are generally
not symmetrical, but direction may be of importance. If a node
occurs in many shortest paths, it is likely that it also appears
as an intermediate goal for a particular path. Therefore, this
centrality value qualifies as a good indicator for importance in
terms of wayfinding.

164

7.2 indoor navigation and wayfinding

The work of Hendricks et al. [HEH03] is of particular theoretical Modalities
interest. They propose to structure the wayfinder’s environment in a
qualitative and cognitively plausible manner: there are compulsions
(must-goals) and barriers (avoid-goals) as primitives. An interesting
connection is created between the spatial structure and the implied
modalities for the wayfinder. Modalities can, for example, be expressed
in verbs such as ‘can’, ‘may’ or ‘must’ and their respective negations.
The separation into public and private spaces (cf. Sect.2.2.5) can
also be represented by modalities (‘may’ or ‘may not’). In our hier-
archisation, articulation points in a graph (see Sect. 5.4.3.2) can be
seen as must-goals/compulsions if they are on a path between origin
and destination. Obstacles are consequently avoid-goals, but also all
regions inaccessible due to access restrictions or other constraints (see
Sect. 4.1.3: physical: cannot, social/legal: may not).

7.2.2 Systems and Approaches

In addition to the TetraNauta system described in Sect. 7.1, there
are a couple of other research prototypes and interesting approaches
for indoor navigation systems specifically designed for pedestrian
guidance:

Merminod [GM03] has worked out the main components in the System of Merminod
et al.architecture of an indoor navigation system for pedestrians and pre-

sented a prototypical system. He outlined an approach based on
CAD databases for indoor maps from which a topological graph
structure (equivalent to flat dual region graphs) was extracted. Em-
phasis was put on the integration with indoor positioning systems,
implementing different map matching4 algorithms. A combination
of different sensors was used for positioning (including a gyroscope
for determining the user’s orientation, a digital magnetic compass
and a GPS receiver). These sensors have been integrated into a small
device. Moreover, constraints such as access restrictions have also
been considered. In the implementation, these are represented as
attributes which are attached to nodes and edges of the graph.

The Yamamoto [Sta, SH06] system has been developed as a map mod- The Yamamoto
Toolkitelling toolkit for indoor environments. With this tool one can create

vector-based representations of the floor plans of a building, overlay
them with a scanned image of the building and georeference the
map. It also offers an appealing graphical user interface with a 3D

rendering engine. One specific feature of the system is the so called
avatar view, which is an egocentric view for exploring the environ-
ment in 3D (shown in Fig 69). Maps of floor plans are stored in an
XML-based format. It was therefore convenient to use the Yamamoto
editor in this thesis for creating maps of indoor spaces.
Route instructions are also provided by Yamamoto in graphical
form [MS07]: Different arrows in the avatar view indicate the di-
rection to continue.

4 assigning the measured position to a digital map

165

related work

Figure 69: Virtual Walk Through a Building with Yamamoto [Sta,
MS07]

Moreover, Tsetsos et al. [TAK+
05, TAKH06] proposed a semanticOntoNav System

model for indoor environments based on ontologies. The system
is called OntoNav. It is ‘human-centered’ in the sense that personal
preferences are taken into account for path selection by rules. More
precisely, boolean constraints can be specified by means of SWRL

rules. Their idea of using ontologies for specifying context infor-
mation has been adopted in this thesis. However, one significant
improvement has been made compared to the original system of
Tsetsos et al.: context information is not evaluated after a path finding
algorithm has been applied, but instead before or during path finding
(cf. Sect. 4.1.3). Apart from this, the underlying geometry of floor
plans is an aspect neglected in the OntoNav system.

Another possibility for dealing with context information is presentedWiki for Context
Information in Whiting et al. [Whi06, WBT07]: the main idea is to let users specify

and share context information in a Wiki. This should make it easier
for people or groups to define their own knowledge relevant for path
finding.

Simple means for describing paths in a way comprehensible to peo-Route Descriptions
ple is another important matter for indoor navigation. For this pur-
pose, Dale et al. [DGP03, DGP05] have developed the Coral system
which resorts to techniques for Natural Language Generation (NLG).
Their system is however tailored for the simpler domain of road
networks. Improvements of the Coral system, together with an adap-
tation to indoor environments have been proposed by Mizzi and
Rosner [Miz04, RM04]. The quality of these route descriptions is due
to a preceding analysis of large corpora of textual route descriptions
given by people. Like in the Yamamoto system, a simple graphical
editor is provided for creating floor plans. These plans are, analo-
gously, stored in an XML representation. Although the generation
of route descriptions is elaborate from a linguistic point of view, the
considered geometry of floor plans is rather simple: only rectangular
shapes are allowed.

Following a similar direction of research, a route guidance grammar
has been presented by Prusi et al. [PKH+

05]. Another linguistic app-
roach for obtaining good route descriptions was presented by Look

166

7.2 indoor navigation and wayfinding

et al. [LKLS05]. However, a major drawback is that this approach is
not yet fully automated. The opposite direction was considered by
MacMahon et al. [MSK06]: from a given textual route description,
the task was to interpret these instructions and let an agent follow
them automatically in a virtual indoor environment. The idea to
combine Generalised Voronoi Graphs with orientation calculi for
route descriptions was put forth by Krieg-Brückner et al. [KBS06].
Richter and Klippel [RK04, RK06, Ric07] investigated different means
to structure route descriptions around landmarks and compress them
into a more concise representation (i.e. so called methods of spatial
chunking).

Complementary to the work presented in this thesis, a substan- Region Detection
tial body of research on region detection [RsMMSB05, sMMTJ+07,
PSN08] can be found both in the image processing and robotics com-
munities. The goal is to build a geometric model of a building and
subsequently a graph model from non-CAD data, mostly from sensor
data obtained by robots from laser scans. In the course of this process,
image data is also analysed and transformed into a vector-based
format which is more common for CAD systems. This aspect has
been left out in the discussions and ignored so far. However, the
interpretation of architectural drawings [LSM98] is somewhat more
sophisticated because symbols have to be distinguished from actual
geometry. For this reason we have left out the interpretation of draw-
ings and non-vector data on purpose. Instead we concentrated on
geometric models more akin to those obtained by CAD systems (i.e.
vector-based). Nevertheless, considering the detection of regions by
different means clearly broadens the spectrum of possible sources of
data to be fed into our system. Any drawing of a floor plan could
then be interpreted in an appropriate manner, resulting in a very
powerful system.

167

related work

168

8S U M M A RY A N D F U T U R E W O R K

8.1 Results . 169
8.2 Conclusion . 170
8.3 Directions for Future Research 170

In this chapter, the results presented in this thesis are summarised
and possible directions for future research building on this work are
suggested.

8.1 results

The previous chapters illustrated the construction of hierarchic graph
structures and their use for indoor navigation.

Summarising, the main results of this work are:

• In Chapter 4, hierarchical graphs were introduced as a generic
spatial data infrastructure. In particular, this architecture allows
for integrating different spatial networks which originate from
different sources. A small, but useful set of operations has
been proposed for integrating networks. The result is a highly
extensible system in which different graphs/networks can be
added for a more comprehensive navigation across different
networks. A prototypical implementation of this architecture
has been carried out as a proof-of-concept.

• In Chapter 5, a systematic method has been presented to auto-
matically obtain a hierarchical graph model from a set of floor
plans. Two novel aspects were discussed in this respect: Firstly,
the unique characteristics of indoor environments can be in-
corporated into the hierarchisation process to enhance classical
graph search techniques on flat graphs. The resulting hierarchy
can be used as an informed heuristic to reduce search space. At
the same time, elements in this hierarchy represent meaningful
subgraphs, such as sections or wings of a building. The algo-
rithm for constructing this hierarchy has been implemented and
its validity has been confirmed by a study of real floor plan data.
Secondly, the hierarchy can be exploited for giving directions
in irregular and complex-shaped regions. We have outlined a
method for deriving qualitative spatial relations from a region’s
geometry which can be used in this process.

Together, the proposed methods and algorithms describe the basic
principles of an indoor navigation system. Although most of the basic
methods for hierarchisation were implemented and could be tested
on several building models of the university with some promising
results (see Chapter 6), this is just a preliminary evaluation.

169

summary and future work

A comprehensive study in a realistic application context would be re-
quired to evaluate their performance in practice and propose further
enhancements and options for fine-tuning. Unfortunately this was
not possible within the limited time of this research. The presented
methods and algorithms can nevertheless be used as guidelines for
future research.

8.2 conclusion

Recapitulating, three main goals were set out in the introduction (see
Sect. 1.2). In the course of this thesis we have gained the following
insights on them:

The first goal of integration has been thoroughly explored in Chap-Integration
ter 4 with the proposal of a system architecture and a proof-of-concept
implementation. We have argued that hierarchical graphs are emi-
nently suitable for the purpose of integration.

Concerning the second goal of automation, Chapter 5 detailed aAutomation
systematic method for constructing a hierarchical graph from a set
of floor plans and showed problematic situations from a geometrical
or conceptual modelling perspective, including the third dimension.
Different floor plans of real buildings were analysed for this purpose.
Another important outcome was that automation can be only done
to a certain degree. We have discussed problematic cases and thus
the inherent limits of this automation process.

The third goal, the conception of a human-friendly system, has hadSuitability for
Humans a strong influence on various aspects of the system. Suitability for

humans is a key requirement for the design of a pedestrian indoor
navigation system. Thus it is reflected our system design: first, the
specification of context information and its integration into the path
finding process (see Sect. 4.1.3) can be seen as an important con-
tribution for improving navigation systems by making them more
flexible and adaptable. The idea is to better cope with individual
requirements of users. Moreover, two hierarchisation methods have
been proposed in Sect. 5.4 to meet the special requirements of pedes-
trian indoor navigation. They deal with the shortcomings of the first
version of our model which have come up by analysing a couple of
examples from real floor plans. As explained in Sect. 5.5, we can use
this hierarchy not only to enhance path finding, but – more impor-
tantly – to generate meaningful route descriptions from it. What is
still missing is an evaluation of route descriptions by human users to
reveal the strengths and weaknesses of our approach.

8.3 directions for future research

The work on a hierarchical graph system for indoor navigation is far
from finished. There are a number of possibilities for extending the
overall system and enhancing its individual components. Only the
main directions and ideas are presented here:

170

8.3 directions for future research

The geometric shapes of regions in floor plans could be evaluated Pattern Recognition
with various methods of pattern recognition. This way one could
automatically classify regions – according to their shape and dimen-
sions – into different classes. This method could be used not only
to distinguish between rooms, corridors and halls, but also in com-
bination with a geometric decomposition algorithm for non-convex
regions. In the latter case one could analyse different types of corners,
junctions and intersections. They are all regions resulting from a
geometric decomposition.

Moreover, one could use this classification of spaces and automat- Further Use of
Ontologiesically create concepts in an underlying ontology for the elements

of a building. These concepts can also be used as landmarks for
route descriptions. One could also specify in an ontology of building
elements which nestings of different region types are allowed (e.g.
rooms as parts of a floor or a section and not vice versa). This would
also ensure the semantic consistency of a hierarchical graph system.

Generating route descriptions is another challenging topic. The meth- Ontology-based
Route Descriptionsods and ideas presented in this thesis are just a starting point. They

can be further studied and extended. The ultimate goal is to obtain
a language or ontology for formal route descriptions, instead of a
simple XML representation. This language should encode different
actions of human wayfinders in a qualitative manner, so that these can
be easily transformed into verbal descriptions by using techniques of
natural language generation.

User studies would be needed to assess the general quality of route Evaluation of Route
Descriptionsdescriptions for this purpose. There are generally two possibilities:

one could conduct experiments for testing the descriptions in a real
environment. On the one hand this is more difficult to manage,
but on the other hand this situation is the most realistic. Another
option is to conduct the experiments in a virtual environment. The
Yamamoto system by Stahl et al. [Sta, SH06], which has been used
in this thesis for the creation of floor plan data, can also be used in
this respect: it offers an avatar view for a virtual walk through in an
indoor model (see Fig. 69 in Sect. 7.2.2). Thus one could also evaluate
instruction-following in this virtual environment.

Different algorithms for hierarchical optimisation could be studied on Hierarchical
Optimisationthe floor plans of a building and compared in a number of respects,

such as time consumption, number of expanded nodes during search,
robustness and ability to deal with dynamic changes in the graph.
The results and insights gained from such a thorough analysis could
be used to improve the hierarchisation process further in this respect.
But one could also exploit a hierarchical graph structure for a variety
of more complex problems. For example, the hierarchic structure
could be used as a heuristic for travelling salesmen problems inside
a building. This could be useful for planning a visit in a museum.
With limited time available, visitors can hardly manage to see every-

171

summary and future work

thing. Rather, a tour could be suggested which takes into account the
individual preferences of users and tries to maximise the coverage
of must-see goals. Moreover, different evaluation strategies for con-
straints and context information in a hierarchical graph structure can
be further investigated.

172

AO N T O L O G Y F O R C O N T E X T I N F O R M AT I O N

The specification of the ontology for context information presented
in Sect. 4.1.3 is shown below. It was created by a student under
the supervision of the author. For the complete implementation
details, interested readers can look up the related project and diploma
thesis [Ide06, Ide07].

1 Namespace: =<http://www.owl -ontologies.com/

Ontology1153678363.owl#>

Namespace: rdfs = <http: //www.w3.org /2000/01/rdf -schema#>

3 Namespace: owl11 = <http: //www.w3.org /2006/12/ owl11#>

Namespace: owl11xml = <http: //www.w3.org /2006/12/ owl11 -xml

#>

5 Namespace: Ontology1153678363 = <http://www.owl -ontologies

.com/Ontology1153678363.owl#>

Namespace: owl = <http: //www.w3.org /2002/07/ owl#>

7 Namespace: xsd = <http: //www.w3.org /2001/ XMLSchema#>

Namespace: rdf = <http: //www.w3.org /1999/02/22 -rdf -syntax -

ns#>

9

11 Ontology: <http://www.owl -ontologies.com/

Ontology1153678363.owl>

13 ObjectProperty: allowed_TransportationDevices

15 Annotations:

rdfs:comment ""
17 Domain:

DriverLicence

19 Range:

SelfPoweredTransportationDevice

21 Inverses:

driving_licence_needed

23

25 ObjectProperty: gender

27 Characteristics:

Functional

29 Domain:

Person_Basic_Data

31 Range:

Gender

33

35 ObjectProperty: owns_private_transp_vehicles

37 Domain:

Transportee_Possibilities

39 Range:

Private_Transportation

41

43 ObjectProperty: drives_TransportationDevice

173

ontology for context information

45 Characteristics:

Functional

47 Domain:

Driver

49 Range:

TransportationDevice

51

53 ObjectProperty: hasPossibilities

55 Domain:

Transportee

57 Range:

Transportee_Possibilities

59

61 ObjectProperty: position_target

63 Annotations:

rdfs:comment " g e o g r a p h i c a l p o s i t i o n o f the
Transpor tee ' s d e s t i n a t i o n "

65 Domain:

Transportee

67

69 ObjectProperty: driving_licence_needed

71 Characteristics:

Functional

73 Domain:

SelfPoweredTransportationDevice

75 Range:

DriverLicence

77 Inverses:

allowed_TransportationDevices

79

81 ObjectProperty: hasRestrictions

83 Annotations:

rdfs:comment " r e s t r i c t i o n s l i m i t i n g the Transpor tee
' s a v a i l a b l e / u s a b l e means o f t r a n s p o r t a t i o n "

85 Domain:

Transportee

87 Range:

Transportee_Restrictions

89

91 ObjectProperty: driver_licence

93 Domain:

Transportee_Possibilities

95 Range:

DriverLicence

97

99 ObjectProperty: user_transportation_preferences

101 Domain:

Transportee

103 Range:

Transportation_Preferences

105

174

107 ObjectProperty: person_basic_data

109 Characteristics:

Functional

111 Domain:

Person

113 Range:

Person_Basic_Data

115

117 ObjectProperty: relatedMeansOfTransportation

119 Annotations:

rdfs:comment "means o f t r a n s p o r t a t i o n a t r a n s p o r t e e
has a c c e s s to (does not mean tha t he can a l s o

use i t −> r e s t r i c t i o n s) . cou ld be used e . g . f o r
l o a d i n g the s e t o f p u b l i c t r a n s p o r t a t i o n d e v i c e s
i n t o a u s e r p r o f i l e depend ing on the c u r r e n t

c i t y the u s e r i s l o c a t e d . o r f o r s p e c i f y i n g the
exac t model o f the u s e r s p r i v a t e ca r . "

121 Domain:

Transportee

123 Range:

Mean_of_Transportation

125

127 ObjectProperty: available_TransportationDevices

129 Annotations:

rdfs:comment " T r an s p o r t a t i o nDe v i c e s a Tran spo r t e e
can use ; d e v i c e s cou ld be l i m i t e d depend ing on
the r e s t r i c t i o n c l a s s "

131 Domain:

Transportee_Restrictions

133 Range:

Mean_of_Transportation

135

137 ObjectProperty: can_transport_other_TransportationDevices

139 Annotations:

rdfs:comment " a v a i l a b i l i t y to t r a n s p o r t
T r an spo r t a t i o nDev i c e s , e . g . a t r a i n can
t r a n s p o r t a b i k e "

141 Domain:

TransportationDevice

143 Range:

TransportationDevice

145

147 ObjectProperty: uses_transport_network

149 Annotations:

rdfs:comment "which i n f r a s t r u c t u r e i s needed f o r
moving , e . g . road f o r c a r s "

151 Domain:

Mean_of_Transportation

153

155 ObjectProperty: homeaddress

Domain:

157 Person_Basic_Data

175

ontology for context information

159

ObjectProperty: position_current

161

Annotations:

163 rdfs:comment " g e o g r a p h i c a l p o s i t i o n o f the
Tran spo r t e e "

Domain:

165 Transportee

167

ObjectProperty: luggage_properties

169

Annotations:

171 rdfs:comment " t h i s p r o p e r t y c o n t a i n s a luggage
i n d i v i d u a l f o r each luggage i tem"

Domain:

173 Luggage_Restriction

Range:

175 Luggage

177

ObjectProperty: monthly_tickets_public_transport

179

Domain:

181 Transportee_Possibilities

Range:

183 Public_Transportation

185

DataProperty: cost_per_kilometer

187

Characteristics:

189 Functional

Domain:

191 Kinds_of_Transportation

Range:

193 float

195

DataProperty: cost_per_kilometer_additionalBasicPrice

197

Characteristics:

199 Functional

Domain:

201 Taxi

Range:

203 float

205

DataProperty: taxi_phone_number

207

Characteristics:

209 Functional

Domain:

211 Taxi

Range:

213 int

215

DataProperty: dimensions_height

217

Characteristics:

176

219 Functional

Domain:

221 Luggage

or TransportationDevice

223 Range:

int

225

227 DataProperty: mobilephone_number

229 Characteristics:

Functional

231 Domain:

Person_Basic_Data

233 Range:

int

235

237 DataProperty: dimensions_width

239 Characteristics:

Functional

241 Domain:

Luggage

243 or TransportationDevice

Range:

245 int

247

DataProperty: weight_kg

249

Characteristics:

251 Functional

Domain:

253 Luggage

or TransportationDevice

255 Range:

int

257

259 DataProperty: available_till_time

261 Characteristics:

Functional

263 Domain:

Public_Transportation

265 Range:

string

267

269 DataProperty: model_name

271 Characteristics:

Functional

273 Domain:

Automobile

275 Range:

string

277

279 DataProperty: maximum_luggage_height

281 Characteristics:

177

ontology for context information

Functional

283 Domain:

Mean_of_Transportation

285 Range:

int

287

289 DataProperty: free_stopping_point

291 Characteristics:

Functional

293 Domain:

Kinds_of_Transportation

295 Range:

boolean

297

299 DataProperty: maximum_luggage_weight

301 Characteristics:

Functional

303 Domain:

Mean_of_Transportation

305 Range:

int

307

309 DataProperty: available_from_time

311 Characteristics:

Functional

313 Domain:

Public_Transportation

315 Range:

string

317

319 DataProperty: vehicle_id

321 Characteristics:

Functional

323 Domain:

SelfPoweredTransportationDevice

325 Range:

string

327

329 DataProperty: transportation_preference

331 Characteristics:

Functional

333 Domain:

Transportation_Preferences

335 Range:

float

337

339 DataProperty: line_number

341 Characteristics:

Functional

343 Domain:

RailVehicles

178

345 or Bus

Range:

347 string

349

DataProperty: maximum_speed_kmh

351

Characteristics:

353 Functional

Domain:

355 Mean_of_Transportation

Range:

357 int

359

DataProperty: age

361

Characteristics:

363 Functional

Domain:

365 Person_Basic_Data

Range:

367 int

369

DataProperty: cost_per_hour

371

Characteristics:

373 Functional

Domain:

375 Kinds_of_Transportation

Range:

377 int

379

DataProperty: free_starting_point

381

Characteristics:

383 Functional

Domain:

385 Kinds_of_Transportation

Range:

387 boolean

389

DataProperty: capacity

391

Characteristics:

393 Functional

Domain:

395 Mean_of_Transportation

Range:

397 int

399

DataProperty: maximum_luggage_length

401

Characteristics:

403 Functional

Domain:

405 Mean_of_Transportation

Range:

407 int

179

ontology for context information

409

DataProperty: name_first

411

Characteristics:

413 Functional

Domain:

415 Person_Basic_Data

Range:

417 string

419

DataProperty: maximum_luggage_width

421

Characteristics:

423 Functional

Domain:

425 Mean_of_Transportation

Range:

427 int

429

DataProperty: dimensions_length

431

Characteristics:

433 Functional

Domain:

435 Luggage

or TransportationDevice

437 Range:

int

439

441 DataProperty: usable_for_disabled_persons

443 Characteristics:

Functional

445 Domain:

TransportationDevice

447 Range:

boolean

449

451 DataProperty: name_last

453 Characteristics:

Functional

455 Domain:

Person_Basic_Data

457 Range:

string

459

461 DataProperty: transportation_type

463 Characteristics:

Functional

465 Domain:

Transportation_Preferences

467 Range:

string

469

180

471 DataProperty: email_address

473 Characteristics:

Functional

475 Domain:

Person_Basic_Data

477 Range:

string

479

481 DataProperty: childseat

483 Characteristics:

Functional

485 Domain:

Bicycle

487 Range:

boolean

489

491 Class: BlindPerson

493 Annotations:

rdfs:comment " b l i n d pe r son "
495 SubClassOf:

Disabilities_Restriction ,

497 available_TransportationDevices only (Tram_new

or Bus

499 or

Pedestrian

or S_Train

501 or Tram_old

or U_Train

503 or Taxi)

505

507 Class: Tram_new

509 Annotations:

rdfs:comment "Tram with no s t a i r s an ent ry ,
d i s a b i l i t y f r i e n d l y ; "

511 SubClassOf:

Tram

513 DisjointWith:

Tram_old

515

517 Class: Young_children

519 Annotations:

rdfs:comment " bab i e s o r young c h i l d r e n who can not
t r a v e l a l on e "

521 SubClassOf:

Additional_Persons_Restriction ,

523 available_TransportationDevices only (Tram_new

or Bus

525 or Van

or Truck

527 or

PrivateCar

181

ontology for context information

or

Pedestrian

529 or S_Train

or Tram_old

531 or U_Train

or Taxi)

533

535 Class: UserPoweredTransportationDevice

537 Annotations:

rdfs:comment " T r an s po r t a t i o nDev i c e w i thout own
power source , d e v i c e must be powered by the u s e r
"

539 SubClassOf:

TransportationDevice

541

543 Class: Wheelchair

545 Annotations:

rdfs:comment "a Transpo r t e e who can not use h i s
l e g s and i s t i e d to an wh e e l c h a i r ; can use h i s
c a r o r van i f i t i s s p e c i a l p r epa r ed ; "

547 SubClassOf:

Disabilities_Restriction ,

549 available_TransportationDevices only (Tram_new

or Bus

551 or Van

or

PrivateCar

553 or

Pedestrian

or S_Train

555 or U_Train

or Taxi)

557

559 Class: Luggage

561 Annotations:

rdfs:comment " t h i n g s a t r a n s p o r t e e wants to move
from one po i n t to an o th e r (e x cep t o f a d d i t i o n a l
e s c o r t i n g pe r s on s or an ima l s which a r e not

t r a n s p o r t e d i n a cage) "
563

565 Class: Motorcycle

567 Annotations:

rdfs:comment "two−whee led road v e h i c l e d e s i gn ed f o r
c a r r y i n g one or two pa s s e n g e r s "

569 SubClassOf:

Private_Transportation

571 DisjointWith:

Truck ,

573 Van ,

Car ,

575 Pedestrian ,

Bicycle

182

577

579 Class: DriverLicence

581 Annotations:

rdfs:comment "Document needed f o r d r i v i n g a v e h i c l e
"

583

585 Class: Tram_old

587 Annotations:

rdfs:comment "Tram with s t a i r s an ent ry , d i s a b i l i t y
u n f r i e n d l y ; "

589 SubClassOf:

Tram

591 DisjointWith:

Tram_new

593

595 Class: EUDriver_C

597 Annotations:

rdfs:comment " european d r i v e r l i c e n c e f o r t r u c k s
(>3 ,5 t) "

599 SubClassOf:

DriverLicencePrivateTransport ,

601 allowed_TransportationDevices only Truck

603

Class: Gender

605

Annotations:

607 rdfs:comment "male or f ema l e "
EquivalentTo:

609 {Female , Male}

611

Class: SelfPoweredTransportationDevice

613

Annotations:

615 rdfs:comment " T r an s po r t a t i o nDev i c e which runs wi th
own power s ou r c e ; a l t e r n a t i v e name: v e h i c l e "

SubClassOf:

617 TransportationDevice

619

Class: Taxi

621

Annotations:

623 rdfs:comment "Car which a lways i n c l u d e s a d r i v e r
who a lways be l ong s to the ca r ; one to f o u r
a d d i t i o n a l p e r s on s can use t h i s v e h i c l e ; "

SubClassOf:

625 Car

627

Class: Mean_of_Transportation

629

Annotations:

631 rdfs:comment " t e c h n i c a l v iew on moving an o b j e c t (
pe r son and/ or l uggage) from one po i n t to ano the r
"

183

ontology for context information

633

Class: Person_Basic_Data

635

Annotations:

637 rdfs:comment " b a s i c i n f o rma t i o n s about a pe r son "

639

Class: DriverLicence_S_Train

641

Annotations:

643 rdfs:comment " l i c e n c e f o r S_Train d r i v e r "
SubClassOf:

645 DriverLicencePublicTransport ,

allowed_TransportationDevices only S_Train

647

649 Class: Kinds_of_Transportation

651 Annotations:

rdfs:comment " usage o f the Mean_of_Transportat ions "
653

655 Class: Bicycle

657 Annotations:

rdfs:comment "two−whee led
Use rPowe r edTranspo r t a t i onDev i c e f o r c a r r y i n g one
or two pe r s on s "

659 SubClassOf:

UserPoweredTransportationDevice

661 DisjointWith:

Truck ,

663 Van ,

Car ,

665 Pedestrian ,

Motorcycle

667

669 Class: RailVehicles

671 Annotations:

rdfs:comment " v e h i c l e s moving on r a i l s "
673 SubClassOf:

SelfPoweredTransportationDevice

675

677 Class: Escort_for_disabled_persons

679 Annotations:

rdfs:comment "a Person who gu i d e s a Tran spo r t e e or
s uppo r t s the Tran spo r t e e i n t r a n s p o r t a t i o n "

681 SubClassOf:

Additional_Persons_Restriction ,

683 available_TransportationDevices only (Tram_new

or Bus

685 or Van

or Truck

687 or

PrivateCar

184

or

Pedestrian

689 or S_Train

or Tram_old

691 or U_Train

or Taxi)

693

695 Class: Truck

697 Annotations:

rdfs:comment " road v e h i c l e d e s i gn ed f o r c a r r y i n g
one to t h r e e p a s s e n g e r s ; ma in l y d e s i gn ed f o r
c a r r y i n g l a r g e luggage ; "

699 SubClassOf:

RoadVehicles

701 DisjointWith:

Van ,

703 Car ,

Pedestrian ,

705 Bicycle ,

Motorcycle

707

709 Class: Transportation_Preferences

711 Annotations:

rdfs:comment " r a t i n g o f a s p e c i f i c
Mean_of_Transportat ion i f i t i s p r e f e r r e d or
d i s l i k e d ; "

713

715 Class: Transportee_Restrictions

717 Annotations:

rdfs:comment " p r o p e r t i e s t ha t r e s t r i c t u s i n g means
o f t r a n s p o r t a t i o n "

719

721 Class: S_Train

723 Annotations:

rdfs:comment " r a i l v e h i c l e f o r c i t y and suburban
conn e c t i o n s ; own r a i l w a y system , moves u s u a l l y
i n n e r c i t y underground and ou t e r c i t y ove rg round
"

725 SubClassOf:

RailVehicles

727 DisjointWith:

Tram ,

729 Bus ,

U_Train

731

733 Class: U_Train

735 Annotations:

rdfs:comment " r a i l v e h i c l e f o r c i t y c onn e c t i o n s ;
own r a i l w a y system , moves u s u a l l y i n n e r c i t y
underground ; "

737 SubClassOf:

RailVehicles

185

ontology for context information

739 DisjointWith:

Tram ,

741 Bus ,

S_Train

743

745 Class: DriverLicencePublicTransport

747 Annotations:

rdfs:comment " l i c e n c e f o r v e h i c l e s w i th maximum
cap a c i t y o f 10 pe r s on s and more ; v e h i c l e s be l ong
to the c l a s s o f Pub l i c_Tran spo r t a t i on "

749 SubClassOf:

DriverLicence

751

753 Class: Tram

755 Annotations:

rdfs:comment " r a i l v e h i c l e f o r i n n e r c i t y
c onn e c t i o n s ; r a i l w a y system a lways ove rg round
and u s u a l l y i n t e g r a t e d i n the urban s t r e e t
network ; has to f o l l ow the o f f i c i a l s t r e e t
t r a f f i c r u l e s ; "

757 SubClassOf:

RailVehicles

759 DisjointWith:

Bus ,

761 S_Train ,

U_Train

763

765 Class: EUDriver_B

767 Annotations:

rdfs:comment " european d r i v e r l i c e n c e f o r
au tomob i l e s (maximum 3 ,5 t) "

769 SubClassOf:

DriverLicencePrivateTransport ,

771 allowed_TransportationDevices only Automobile

773

Class: Transportee

775

Annotations:

777 rdfs:comment " Per sons who moves from one po i n t to
ano the r "

SubClassOf:

779 Person

781

Class: DriverLicence_Tram

783

Annotations:

785 rdfs:comment " l i c e n c e f o r tram d r i v e r (Tram_old and
Tram_new) "

SubClassOf:

787 DriverLicencePublicTransport ,

allowed_TransportationDevices only Tram

789

791 Class: Small_Luggage_Restriction

186

793 Annotations:

rdfs:comment "bags , sma l l ca se s , sma l l packages ,
<10kg"

795 SubClassOf:

Luggage_Restriction

797

799 Class: Person

801 Annotations:

rdfs:comment " i n d i v i d u a l human be ing "
803

805 Class: DriverLicence_U_Train

807 Annotations:

rdfs:comment " l i c e n c e f o r U_Train d r i v e r "
809 SubClassOf:

DriverLicencePublicTransport ,

811 allowed_TransportationDevices only U_Train

813

Class: Animal_Restriction

815

Annotations:

817 rdfs:comment " an ima l s which e s c o r t s a Transpor tee ,
u s u a l l y t i e d to the Tran spo r t e e w i th a cha i n ;
an ima l s i n cages be long to the c l a s s o f l uggage ;
"

SubClassOf:

819 Transportee_Restrictions ,

available_TransportationDevices only (Tram_new

821 or Bus

or Van

823 or Truck

or

PrivateCar

825 or

Pedestrian

or S_Train

827 or Bicycle

or Tram_old

829 or U_Train

or Taxi)

831

833 Class: TransportationDevice

835 Annotations:

rdfs:comment " a r t i f a c t d e s i gn ed to move an o b j e c t
from one l o c a t i o n to ano the r "

837 SubClassOf:

Mean_of_Transportation

839

841 Class: Pedestrian

843 Annotations:

rdfs:comment " Per sons wa l k i ng from one po i n t to
ano the r "

845 SubClassOf:

187

ontology for context information

Private_Transportation

847 DisjointWith:

Van ,

849 Truck ,

Car ,

851 Bicycle ,

Motorcycle

853

855 Class: Private_Transportation

857 Annotations:

rdfs:comment " p e r s o n a l de te rm ined t r a n s p o r t a t i o n ;
no t i c k e t s needed ; i f a v e h i c l e i s used , i t i s
u s u a l l y owned or r e n t by the t r a n s p o r t e e or one
o f h i s companies ; maximum cap a c i t y 8 pe r s on s + 1
d r i v e r "

859 SubClassOf:

Kinds_of_Transportation

861

863 Class: Emergency

865 SubClassOf:

Kinds_of_Transportation

867

869 Class: Transportee_Possibilities

871 Annotations:

rdfs:comment " a d d i t i o n a l means o f t r a n s p o r t a t i o n a
Transpo r t e e can use because o f l i c e n s e s , owning
v e h i c l e s o r t i c k e t s f o r Pub l i c_Tran spo r t a t i on ; "

873

875 Class: Driver

877 Annotations:

rdfs:comment " Tran spo r t e e who d r i v e s the
T r an s po r t a t i o nDev i c e which t r a n s p o r t s him"

879 SubClassOf:

Transportee

881

883 Class: Bus

885 Annotations:

rdfs:comment " road v e h i c l e d e s i gn ed f o r c a r r y i n g
about up to 80 pa s s e n g e r s ; f o u r o r s i x whee l s ; "

887 SubClassOf:

Public_Transportation

889 DisjointWith:

Tram ,

891 S_Train ,

U_Train

893

895 Class: Car

897 Annotations:

rdfs:comment " automob i l e f o r one to f i v e pe r sons ,
maximum luggage u s u a l l y l i m i t e d ; "

899 SubClassOf:

188

Automobile

901 DisjointWith:

Truck ,

903 Van ,

Pedestrian ,

905 Bicycle ,

Motorcycle

907

909 Class: Additional_Persons_Restriction

911 Annotations:

rdfs:comment " Per sons tha t a r e b ind to a
Tran spo r t e e ; T ran spo r t e e and a d d i t i o n a l Person
can not be d i v i d e d wh i l e t r a n s p o r t a t i o n ; "

913 SubClassOf:

Transportee_Restrictions

915

917 Class: EUDriver_A

919 Annotations:

rdfs:comment " european d r i v e r l i c e n c e f o r
mo to r c y c l e s "

921 SubClassOf:

DriverLicencePrivateTransport ,

923 allowed_TransportationDevices only Motorcycle

925

Class: Extralarge_Luggage_Restriction

927

Annotations:

929 rdfs:comment " e x t r a l a r g e packages , f u r n i t u r e , e t c .
"

SubClassOf:

931 Luggage_Restriction ,

available_TransportationDevices only (Truck

933 or Van)

935

Class: PrivateCar

937

Annotations:

939 rdfs:comment "Car which i s d r i v e n by the
Tran spo r t e e ; maximum fou r a d d i t i o n a l p e r s on s can
j o i n ; "

SubClassOf:

941 Car

943

Class: Luggage_Restriction

945

Annotations:

947 rdfs:comment " Tran spo r t e e wants to move luggage
from one po i n t to ano the r ; r e s t r i c t e d use o f
Mean_of_Transportat ion because o f the maximum
luggage s i z e which can be t r a n s p o r t e d ; "

SubClassOf:

949 Transportee_Restrictions

951

Class: Large_Luggage_Restriction

953

189

ontology for context information

Annotations:

955 rdfs:comment "more than 3 s u i t c a s e s , packages ove r
20kg , medium s i z e f u r n i t u r e "

SubClassOf:

957 Luggage_Restriction ,

available_TransportationDevices only (Van

959 or Truck

or

PrivateCar

961 or Taxi)

963

965 Class: Automobile

967 Annotations:

rdfs:comment " four−whee led road v e h i c l e d e s i gn ed
f o r c a r r y i n g about one to e i g h t p a s s e n g e r s "

969 SubClassOf:

RoadVehicles

971

973 Class: Van

975 Annotations:

rdfs:comment " automob i l e f o r two to f i v e e i gh t ,
maximum luggage much h i g h e r i n compar i son to a
ca r ; "

977 SubClassOf:

Automobile

979 DisjointWith:

Truck ,

981 Car ,

Pedestrian ,

983 Bicycle ,

Motorcycle

985

987 Class: Public_Transportation

989 Annotations:

rdfs:comment " p e r s o n a l d e t e rm i n a t i o n o f
t r a n s p o r t a t i o n i s l i m i t e d to a f i x e d s t a r t i n g /
endpo in t and t ime ; c a p a c i t y i s above 10 pe r s on s
and u s u a l l y more than 10 t r a n s p o r t e e s use the
same ob j e c t at the same t ime ; t r a n s p o r t e e needs
t i c k e t f o r u s i n g i t ; "

991 SubClassOf:

Kinds_of_Transportation

993

995 Class: EUDriver_D

997 Annotations:

rdfs:comment " european d r i v e r l i c e n c e f o r bus
d r i v e r "

999 SubClassOf:

DriverLicencePublicTransport ,

1001 allowed_TransportationDevices only Bus

1003

Class: Medium_Luggage_Restriction

190

1005

Annotations:

1007 rdfs:comment " s u i t c a s e s (up to 2) , packages (<20kg)
"

SubClassOf:

1009 Luggage_Restriction ,

available_TransportationDevices only (Tram_new

1011 or Bus

or Van

1013 or Truck

or

PrivateCar

1015 or

Pedestrian

or S_Train

1017 or Tram_old

or U_Train

1019 or Taxi)

1021

1023 Class: Disabilities_Restriction

1025 Annotations:

rdfs:comment " Tran spo r t e e who i s r e s t r i c t e d i n
u s i n g Means_of_Transportat ion because o f
p e r s o n a l d i s a b i l i t i e s ; "

1027 SubClassOf:

Transportee_Restrictions

1029

1031 Class: RoadVehicles

1033 Annotations:

rdfs:comment " v e h i c l e s moving on s t r e e t s "
1035 SubClassOf:

SelfPoweredTransportationDevice

1037

1039 Class: DriverLicencePrivateTransport

1041 Annotations:

rdfs:comment " l i c e n c e f o r v e h i c l e s w i th maximum
cap a c i t y o f 8 p e r s on s + d r i v e r ; v e h i c l e s be l ong
to the c l a s s o f P r i v a t e_Tran spo r t a t i o n "

1043 SubClassOf:

DriverLicence

1045

1047 Individual: User_2

1049 Types:

Transportee

1051 Facts:

relatedMeansOfTransportation Truck_1 ,

1053 relatedMeansOfTransportation Tram_old_1 ,

relatedMeansOfTransportation S_Train_1 ,

1055 relatedMeansOfTransportation PrivateCar_1 ,

relatedMeansOfTransportation Bus_1 ,

1057 relatedMeansOfTransportation U_Train_1 ,

relatedMeansOfTransportation Pedestrian_1 ,

191

ontology for context information

1059 relatedMeansOfTransportation Bicycle_1 ,

relatedMeansOfTransportation Tram_new_1 ,

1061 relatedMeansOfTransportation Van_1 ,

relatedMeansOfTransportation Motorcycle_1 ,

1063 relatedMeansOfTransportation Taxi_1 ,

user_transportation_preferences

Transportation_Preferences_User_2_u_train

1065

1067 Individual: User_1

1069 Types:

Transportee

1071 Facts:

relatedMeansOfTransportation Truck_1 ,

1073 relatedMeansOfTransportation Tram_old_1 ,

relatedMeansOfTransportation S_Train_1 ,

1075 relatedMeansOfTransportation PrivateCar_1 ,

relatedMeansOfTransportation Bus_1 ,

1077 relatedMeansOfTransportation U_Train_1 ,

relatedMeansOfTransportation Bicycle_1 ,

1079 relatedMeansOfTransportation Pedestrian_1 ,

relatedMeansOfTransportation Tram_new_1 ,

1081 relatedMeansOfTransportation Motorcycle_1 ,

relatedMeansOfTransportation Van_1 ,

1083 relatedMeansOfTransportation Taxi_1

1085

Individual: Truck_1

1087

Types:

1089 Truck

Facts:

1091 cost_per_kilometer 0.2f

1093

Individual: Tram_old_1

1095

Types:

1097 Tram_old

Facts:

1099 cost_per_kilometer 0.65f

1101

Individual: EUDriver_B_1

1103

Types:

1105 EUDriver_B

1107

Individual: Bicycle_1

1109

Types:

1111 Bicycle

Facts:

1113 cost_per_kilometer 0.0f

1115

Individual: Medium_Luggage_Restriction_1

1117

Types:

1119 Medium_Luggage_Restriction

192

1121

Individual: Escort_for_disabled_persons_1

1123

Types:

1125 Escort_for_disabled_persons

1127

Individual: Motorcycle_1

1129

Types:

1131 Motorcycle

Facts:

1133 cost_per_kilometer 0.06f

1135

Individual: Taxi_1

1137

Types:

1139 Taxi

Facts:

1141 cost_per_kilometer_additionalBasicPrice 2.1f,

cost_per_kilometer 1.5f

1143

1145 Individual: BlindPerson_1

1147 Types:

BlindPerson

1149

1151 Individual: Small_Luggage_Restriction_1

1153 Types:

Small_Luggage_Restriction

1155

1157 Individual: Young_children_1

1159 Types:

Young_children

1161

1163 Individual: S_Train_1

1165 Types:

S_Train

1167 Facts:

cost_per_kilometer 0.65f

1169

1171 Individual: PrivateCar_1

1173 Types:

PrivateCar

1175 Facts:

cost_per_kilometer 0.12f,

1177 model_name "BMW 320 i "

1179

Individual: Transportee_Possibilities_User_3

1181

Types:

1183 Transportee_Possibilities

193

ontology for context information

Facts:

1185 owns_private_transp_vehicles PrivateCar_1

1187

Individual: Extralarge_Luggage_Restriction_1

1189

Types:

1191 Extralarge_Luggage_Restriction

1193

Individual: Tram_new_1

1195

Types:

1197 Tram_new

Facts:

1199 cost_per_kilometer 0.65f

1201

Individual: Male

1203

Types:

1205 Gender

1207

Individual: Female

1209

Types:

1211 Gender

1213

Individual: User_3

1215

Types:

1217 Transportee

Facts:

1219 relatedMeansOfTransportation Truck_1 ,

relatedMeansOfTransportation Tram_old_1 ,

1221 relatedMeansOfTransportation S_Train_1 ,

relatedMeansOfTransportation Bus_1 ,

1223 relatedMeansOfTransportation PrivateCar_1 ,

relatedMeansOfTransportation U_Train_1 ,

1225 relatedMeansOfTransportation Pedestrian_1 ,

relatedMeansOfTransportation Bicycle_1 ,

1227 relatedMeansOfTransportation Tram_new_1 ,

relatedMeansOfTransportation Motorcycle_1 ,

1229 relatedMeansOfTransportation Van_1 ,

relatedMeansOfTransportation Taxi_1 ,

1231 hasRestrictions Wheelchair_1

1233

Individual: Animal_Restriction_1

1235

Types:

1237 Animal_Restriction

1239

Individual: Bus_1

1241

Types:

1243 Bus

Facts:

1245 cost_per_kilometer 0.65f

194

1247

Individual: Transportation_Preferences_User_2_u_train

1249

Types:

1251 Transportation_Preferences

Facts:

1253 transportation_preference 2.0f,

transportation_type "U_Train"
1255

1257 Individual: U_Train_1

1259 Types:

U_Train

1261 Facts:

cost_per_kilometer 0.65f

1263

1265 Individual: Wheelchair_1

1267 Types:

Wheelchair

1269

1271 Individual: Pedestrian_1

1273 Types:

Pedestrian

1275 Facts:

cost_per_kilometer 0.0f

1277

1279 Individual: Van_1

1281 Types:

Van

1283 Facts:

cost_per_kilometer 0.15f

1285

1287 Individual: Large_Luggage_Restriction_1

1289 Types:

Large_Luggage_Restriction �

195

ontology for context information

196

B I B L I O G R A P H Y

[AAAS94] Pankaj K. Agarwal, Noga Alon, Boris Aronov, and Sub-
hash Suri. Can visibility graphs be represented com-
pactly? Discrete & Computational Geometry, 12:347–365,
1994. (Cited on page 16.)

[AL01] Natasha Alechina and Brian Logan. State Space Search
with Prioritised Soft Constraints. Appl. Intell., 14(3):263–
272, 2001. (Cited on page 25.)

[AW00] Rakesh Agrawal and Edward L. Wimmers. A Frame-
work for Expressing and Combining Preferences. In
Weidong Chen, Jeffrey F. Naughton, and Philip A.
Bernstein, editors, SIGMOD Conference, pages 297–306.
ACM, 2000. (Cited on page 25.)

[BCP03] Ronald Breiger, Kathleen M. Carley, and Philippa Patti-
son. Dynamic Social Network Modelling and Analysis:
Workshop Summary and Papers. J. Artificial Societies
and Social Simulation, 6(4), 2003. (Cited on page 30.)

[BD05] Christian Becker and Frank Dürr. On location models
for ubiquitous computing. Personal Ubiquitous Comput.,
9(1):20–31, January 2005. (Cited on page 108.)

[Bel58] Richard Bellman. On a routing problem. Quarterly
of Applied Mathematics, 16(1):87–90, 1958. (Cited on
page 22.)

[BH08] Martin Brösamle and Christoph Hölscher. Archi-
tects seeing through the eyes of building users.
In Spatial Cognition in Architectural Design, 2007.
http://www.sfbtr8.spatial-cognition.de/SCAD/

(last access on August 6, 2008.). (Cited on page 163.)

[BHHKM04] Ben-Moshe Boaz, Olaf Hall-Holt, Matthew J. Katz, and
Joseph S. B. Mitchell. Computing the visibility graph of
points within a polygon. In SCG ’04: Proceedings of the
twentieth annual symposium on Computational geometry,
pages 27–35, New York, NY, USA, 2004. ACM. (Cited
on page 16.)

[Bit01] Thomas Bittner. The Qualitative Structure of Built En-
vironments. In Fundamenta Informaticae, volume 46 (nr.
1–2), pages 97–128, 2001. (Cited on pages 112, 117,
and 163.)

[BKLM08] Thomas Barkowsky, Markus Knauff, Gérard Ligozat,
and Daniel R. Montello, editors. Spatial Cognition V:
Reasoning, Action, Interaction, International Conference

197

Bibliography

Spatial Cognition 2006, Bremen, Germany, September 24-
28, 2006, Revised Selected Papers, volume 4387 of Lecture
Notes in Computer Science. Springer, 2008. (Cited on
pages 209 and 211.)

[BLOR05] François Bry, Bernhard Lorenz, Hans Jürgen Ohlbach,
and Mike Rosner. A Geospatial World Model for the
Semantic Web. In François Fages and Sylvain Soliman,
editors, PPSWR, volume 3703 of Lecture Notes in Com-
puter Science, pages 145–159. Springer, 2005. (Cited on
page 159.)

[BM05] Juan Carlos Peris Broch and María Teresa Escrig Mon-
ferrer. Cognitive Maps for Mobile Robot Navigation:
A Hybrid Representation Using Reference Systems. In
Proceedings of the 19th International Workshop on Qualita-
tive Reasoning, pages 179–186, 2005. (Cited on pages vii
and 6.)

[BMR02] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi.
Soft Constraint Logic Programming and Generalized
Shortest Path Problems. J. Heuristics, 8(1):25–41, 2002.
(Cited on page 25.)

[BP00] Paramvir Bahl and Venkata N. Padmanabhan. RADAR:
An In-Building RF-Based User Location and Tracking
System. In Proceedings INFOCOM, pages 775–784, 2000.
(Cited on page 4.)

[CA04] Daniel Cagigas and Julio Abascal. Hierarchical Path
Search with Partial Materialization of Costs for a Smart
Wheelchair. J. Intell. Robotics Syst., 39(4):409–431, 2004.
(Cited on page 161.)

[CB00] Howie Choset and Joel Burdick. Sensor-Based Explo-
ration: The Hierarchical Generalized Voronoi Graph.
International Journal of Robotics Research, 19(2):96 – 125,
February 2000. (Cited on pages 4 and 16.)

[CBGG97] Anthony G. Cohn, Brandon Bennett, John Gooday, and
Nicholas Mark Gotts. Qualitative Spatial Representa-
tion and Reasoning with the Region Connection Calcu-
lus. In GeoInformatica, volume 1 (nr. 3), pages 275–316,
1997. (Cited on pages ix and 162.)

[CH01] Anthony G. Cohn and Shyamanta M. Hazarika. Qual-
itative Spatial Representation and Reasoning: An
Overview. Fundam. Inform., 46(1-2):1–29, 2001. (Cited
on page 13.)

[CT05] David Caduff and Sabine Timpf. The Landmark Spider:
Representing Landmark Knowledge for Wayfinding
Tasks. In Reasoning with Mental and External Diagrams:
Computational Modeling and Spatial Assistance, pages 30–
35. AAAI Press. Stanford, 2005. (Cited on page 124.)

198

Bibliography

[CW01] Barbara Corona and Stephan Winter. Datasets for pedes-
trian navigation services. In J. Strobl, T. Blaschke, and
G. Griesebner, editors, In Angewandte Geographische In-
formationsverarbeitung XIII. Proceedings of the AGIT Sym-
posium, Salzburg, Austria, pages 84–89, 2001. (Cited on
pages 4 and 162.)

[dBvKOS00] Mark de Berg, Marc van Kreveld, Mark Overmars, and
Otfried Schwarzkopf. Visibility Graphs: Finding the
Shortest Route. In Computational Geometry: Algorithms
and Applications, chapter 15, pages 307–317. Springer,
2000. (Cited on pages 4 and 15.)

[Dey01] Anind K. Dey. Understanding and using context. Per-
sonal Ubiquitous Comput., 5(1):4–7, 2001. (Cited on
page 19.)

[DGP03] Robert Dale, Sabine Geldof, and Jean-Philippe Prost.
Using Natural Language Generation for Navigational
Assistance. In Michael J. Oudshoorn, editor, ACSC,
volume 16 of CRPIT, pages 35–44. Australian Computer
Society, 2003. (Cited on pages 13, 81, and 166.)

[DGP05] Robert Dale, Sabine Geldof, and Jean-Philippe Prost. Us-
ing Natural Language Generation in Automatic Route
Description. Journal of Research and Practice in Informa-
tion Technology, 37(1), 2005. (Cited on pages 4 and 166.)

[Dia79] Robert B. Dial. A model and algorithm for multicriteria
route-mode choice. Transportation Research, 13B:311–316,
February 1979. (Cited on pages 22 and 23.)

[Die00] Reinhard Diestel. Graphentheorie. Springer, ISBN 3-540-
67656-2, 2000. (Cited on page 85.)

[Dij59] Edsger W. Dijkstra. A note on two problems in con-
nexion with graphs. Numerische Mathematik, 1:269–271,
1959. (Cited on pages 22 and 40.)

[DK03] Matt Duckham and Lars Kulik. “Simplest” Paths: Au-
tomated Route Selection for Navigation. In Kuhn et al.
[KWT03], pages 169–185. (Cited on page 23.)

[Dou04] Paul Dourish. What we talk about when we talk about
context. Personal and Ubiquitous Computing, 8(1):19–30,
2004. (Cited on page 19.)

[Dur07] Pelin Dursun. Space Syntax in Architectural Design. In
Ayse Sema Kubat, editor, Proceedings of the 6th Interna-
tional Space Syntax Symposium (Istanbul), pages 056/01–
56/12, 2007. (Cited on pages ix and 164.)

[Ead96] Peter Eades. Graph Drawing Methods. In Peter W.
Eklund, Gerard Ellis, and Graham Mann, editors, ICCS,
volume 1115 of Lecture Notes in Computer Science, pages
40–49. Springer, 1996. (Cited on page 31.)

199

Bibliography

[EB04] Birgit Elias and C Brenner. Automatic generation and
application of landmarks in navigation data sets. In
Proceedings of the 11th International Symposium on Spatial
Data Handling, pages 469–480. Springer. Berlin, 2004.
(Cited on pages 4 and 124.)

[EF91] Max J. Egenhofer and Robert D. Franzosa. Point Set
Topological Relations. International Journal of Geograph-
ical Information Systems, 5:161–174, 1991. (Cited on
pages 88 and 162.)

[EF96] Peter Eades and Qing-Wen Feng. Multilevel Visualiza-
tion of Clustered Graphs. In Stephen C. North, editor,
Graph Drawing, volume 1190 of Lecture Notes in Com-
puter Science, pages 101–112. Springer, 1996. (Cited on
page 31.)

[Eli03] Birgit Elias. Extracting Landmarks with Data Min-
ing Methods. In Kuhn et al. [KWT03], pages 375–389.
(Cited on page 124.)

[Eli07] Birgit Elias. Pedestrian Navigation - Creating a tailored
geodatabase for routing. In 4th Workshop on Positioning,
Navigation and Communication (WPNC ’07), Hannover,
Germany , pages 41–47, 2007. (Cited on page 162.)

[FCE95] Qing-Wen Feng, Robert F. Cohen, and Peter Eades.
Planarity for Clustered Graphs. In Paul G. Spirakis,
editor, ESA, volume 979 of Lecture Notes in Computer Sci-
ence, pages 213–226. Springer, 1995. (Cited on pages 32

and 37.)

[FF95] Carlos M. Fonseca and Peter J. Fleming. An Overview
of Evolutionary Algorithms in Multiobjective Optimiza-
tion. Evolutionary Computation, 3(1):1–16, 1995. (Cited
on page 24.)

[FKKB+
04] Christian Freksa, Markus Knauff, Bernd Krieg-

Brückner, Bernhard Nebel, and Thomas Barkowsky,
editors. Spatial Cognition IV: Reasoning, Action, Inter-
action, International Conference Spatial Cognition 2004,
Frauenchiemsee, Germany, October 11-13, 2004, RevisedSe-
lected Papers, volume 3343 of Lecture Notes in Computer
Science. Springer, 2004. (Cited on pages 209 and 212.)

[FMW05] Gerald Franz, Hanspeter Mallot, and Jan Wiener. Graph-
based Models of Space in Architecture and Cognitive
Science - a Comparative Analysis. In Proceedings of the
17th International Conference on Systems Research, Infor-
matics and Cybernetics, pages 30–38, 2005. (Cited on
pages 5 and 11.)

[Fra03] Andrew U. Frank. Pragmatic Information Content -
How to Measure the Information in a Route Description.

200

Bibliography

In Matt Duckham, M. Goodchild, and M. F. Worboys,
editors, Perspectives on Geographic Information Science
(Chap. 4), pages 47–68. Taylor & Francis, 2003. (Cited
on page 140.)

[Fre77] Linton C. Freeman. A set of measures of centrality
based on betweenness. Sociometry, 40(1):35–41, March
1977. (Cited on page 164.)

[FT87] Michael L. Fredman and Robert Endre Tarjan. Fibonacci
heaps and their uses in improved network optimization
algorithms. J. ACM, 34(3):596–615, 1987. (Cited on
pages 22 and 40.)

[Gab00] Harold N. Gabow. Path-based depth-first search for
strong and biconnected components. Information Process-
ing Letters, 74(3-4):107–114, 2000. (Cited on page 128.)

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns. Addison Wesley, Reading,
MA, 1995. (Cited on pages 26 and 59.)

[GM91] Subir Kumar Ghosh and David M. Mount. An Output-
Sensitive Algorithm for Computing Visibility Graphs.
SIAM J. Comput., 20(5):888–910, 1991. (Cited on
page 19.)

[GM03] Pierre-Yves Gilliéron and Bertrand Merminod. Personal
Navigation System for Indoor Applications. In Proceed-
ings of the 11th IAIN World Congress on Smart Navigation,
Systems and Services, Berlin, 2003. (Cited on pages 4, 10,
and 165.)

[GNSW06] Michael Grossniklaus, Moira C. Norrie, Beat Signer,
and Nadir Weibel. Putting Location-Based Services on
the Map. In James D. Carswell and Taro Tezuka, editors,
W2GIS, volume 4295 of Lecture Notes in Computer Science,
pages 1–11. Springer, 2006. (Cited on page 134.)

[Gol95a] Reginald G. Golledge. Defining the criteria used in path
selection. Technical Report UCTC No. 78, University
of California, Transportation Center, 1995. (Cited on
page 25.)

[Gol95b] Reginald G. Golledge. Path Selection and Route Pref-
erence in Human Navigation: A Progress Report. In
COSIT, pages 207–222, 1995. (Cited on page 25.)

[Gol99] Reginald G. Golledge. Human Wayfinding and Cog-
nitive Maps. In Wayfinding behavior: Cognitive mapping
and other spatial processes, pages 5–45. Baltimore: Johns
Hopkins University Press, 1999. (Cited on pages 113,
114, and 163.)

201

Bibliography

[Han79] Pierre Hansen. Bicriteria path problems. In Multiple
Criteria Decision Making Theory and Applications, volume
177 of Lecture Notes in Economics and Mathematical Sys-
tems, pages 109–127. Springer, 1979. (Cited on pages 23

and 24.)

[HCF95] Daniel Hernández, Eliseo Clementini, and Paolino Di
Felice. Qualitative Distances. In Andrew U. Frank and
Werner Kuhn, editors, Conference on Spatial Information
Theory - COSIT, volume 988 of Lecture Notes in Computer
Science, pages 45–57. Springer, 1995. (Cited on page 13.)

[Hec05] Dominik Heckmann. Ubiquitous User Modeling. PhD
thesis, Department of Computer Science, Saarland Uni-
versity, Germany, November 2005. (Cited on page 21.)

[HEH03] Michael D. Hendricks, Max J. Egenhofer, and Kathleen
Hornsby. Structuring a Wayfinder’s Dynamic Space-
Time Environment. In Kuhn et al. [KWT03], pages
75–92. (Cited on pages 13 and 165.)

[HJ85] Stephen C. Hirtle and J. Jonides. Evidence of hierarchies
in cognitive maps. Memory and Cognition, 13(3):208–217,
1985. (Cited on pages 31 and 163.)

[HJR00] YW Huang, N Jing, and E Rundensteiner. Optimizing
Path Query Performance: Graph Clustering Strategies.
Transportation Research C, 8(1–6):381–408, 2000. (Cited
on page 159.)

[HKR06] Stefan Hansen, Alexander Klippel, and Kai-Florian
Richter. Cognitive OpenLS Specification. Technical
Report 012-10, University of Bremen, SFB/TR 8 Spa-
tial Cognition, October 2006. (Cited on pages 53, 141,
and 145.)

[HL04] Haibo Hu and Dik Lun Lee. Semantic Location Model-
ing for Location Navigation in Mobile Environment. In
Mobile Data Management, pages 52–61. IEEE Computer
Society, 2004. (Cited on pages 86 and 161.)

[HMV+
04] Christoph Hölscher, T Meilinger, G Vrachliotis, M Broe-

samle, and M Knauff. Finding the Way Inside: Linking
Architectural Design Analysis and Cognitive Processes.
In C Freksa, M Knauff, B Krieg-Brückner, B Nebel,
and T Barkowsky, editors, Spatial Cognition IV, volume
3343 of LNCS, pages 1–23. Springer, 2004. (Cited on
page 163.)

[HMV+
06] Christoph Hölscher, T Meilinger, G Vrachliotis, M Broe-

samle, and M Knauff. Up the down staircase: Wayfind-
ing strategies in multi-level buildings. Journal of En-
vironmental Psychology, 26(4):284–299, 2006. (Cited on
page 163.)

202

Bibliography

[HMZM96] Robert C. Holte, T. Mkadmi, Robert M. Zimmer, and
Alan J. MacDonald. Speeding up Problem Solving by
Abstraction: A Graph Oriented Approach. Artif. Intell.,
85(1-2):321–361, 1996. (Cited on pages 42, 50, and 159.)

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths. Systems Science and Cybernetics, IEEE Transactions
on, 4(2):100–107, 1968. (Cited on pages 43 and 139.)

[Hoc04] Hartwig Hochmair. Towards a classification of route
selection criteria for route planning tools. In P. Fisher,
editor, Developments in Spatial Data Handling, pages 481–
492, Berlin, 2004. Springer. (Cited on page 25.)

[Hoc08] Hartwig Hochmair. Grouping of Optimized Pedestrian
Routes for Multi-Modal Route Planning: A Compar-
ison of Two Cities. In Proceedings of the 11th AGILE
International Conference on Geographic Information Science
(AGILE 2008), LNGC, pages 339–358. Springer, 2008.
(Cited on page 61.)

[HPZM96] Robert C. Holte, M. B. Perez, Robert M. Zimmer, and
Alan J. MacDonald. Hierarchical A*: Searching Abstrac-
tion Hierarchies Efficiently. In AAAI/IAAI, Vol. 1, pages
530–535, 1996. (Cited on page 43.)

[HR02] Hartwig Hochmair and Martin Raubal. Topologic and
Metric Decision Criteria for Wayfinding in the Real
World and the WWW. In Int. Symposium on Spatial Data
Handling, SDH’02, Ottawa, Canada, 2002. (Cited on
page 25.)

[HRK06] Stefan Hansen, Kai-Florian Richter, and Alexander Klip-
pel. Landmarks in OpenLS - A Data Structure for Cog-
nitive Ergonomic Route Directions. In Raubal et al.
[RMFG06], pages 128–144. (Cited on page 124.)

[HSB+
05] Dominik Heckmann, Tim Schwartz, Boris Brandherm,

Michael Schmitz, and Margeritta von Wilamowitz-
Moellendorff. GUMO - the General User Model Ontol-
ogy. In Proceedings of the 10th International Conference
on User Modeling, pages 428–432, Edinburgh, UK, 2005.
LNAI 3538: Springer, Berlin Heidelberg. (Cited on
page 21.)

[Ide06] Volker Iden. An Ontology of Persons and Vehicles
for Movement in Geospatial Networks. Project Thesis,
Institute for Informatics, University of Munich (LMU),
2006. (Cited on pages 57, 151, and 173.)

[Ide07] Volker Iden. A Language and a Framework for Rule-
Based Modification of Semantic Models. Diplomarbeit
/ Diploma Thesis, Institute for Informatics, University

203

Bibliography

of Munich (LMU), 2007. (Cited on pages 25, 58, 59, 151,
and 173.)

[JF62] Lestor R. Ford Jr. and D. R. Fulkerson. Flows in Networks.
Princeton University Press, Princeton, New Jersey, 1962.
(Cited on page 22.)

[JHR96] N Jing, YW Huang, and E Rundensteiner. Hierarchical
optimization of optimal path finding for transportation
applications. In MT Özsu and K Barker, editors, CIKM
’96 Proceedings / Information and Knowledge Management,
pages 261–268. ACM, 1996. (Cited on page 159.)

[JHR98] Ning Jing, Yun-Wu Huang, and Elke A. Rundensteiner.
Hierarchical Encoded Path Views for Path Query Pro-
cessing: An Optimal Model and Its Performance Evalu-
ation. IEEE Trans. Knowl. Data Eng., 10(3):409–432, 1998.
(Cited on pages 32, 34, 40, 43, 139, and 151.)

[KBG+
00] Benjamin Kuipers, Rob Browning, Bill Gribble, Mike

Hewett, and Emilio Remolina. The spatial semantic
hierarchy. Artificial Intelligence, 119:191–233, 2000. (Cited
on page 161.)

[KBS06] Bernd Krieg-Brückner and Hui Shi. Orientation Calculi
and Route Graphs: Towards Semantic Representations
for Route Descriptions. In Raubal et al. [RMFG06],
pages 234–250. (Cited on page 167.)

[KK77] Leonard Kleinrock and Farouk Kamoun. Hierarchical
Routing for Large Networks; Performance Evaluation
and Optimization. Computer Networks, 1:155–174, 1977.
(Cited on page 29.)

[Kno91] Craig A. Knoblock. Search Reduction in Hierarchical
Problem Solving. In In Proceedings of the Ninth National
Conference on Artificial Intelligence, pages 686–691, 1991.
(Cited on page 159.)

[Kof35] Kurt Koffka. Principles of Gestalt Psychology. Lund
Humphries, London, 1935. (Cited on page 119.)

[KTS03] Benjamin Kuipers, D Tecuci, and B Stankiewicz. The
Skeleton in the Cognitive Map: A Computational
and Empirical Exploration. Environment and Behavior,
35(1):80–106, 2003. (Cited on pages 123, 126, and 160.)

[KW05] Alexander Klippel and Stephan Winter. Structural
salience of landmarks for route directions. In Conference
on Spatial Information Theory - COSIT, pages 347–362.
Springer, 2005. (Cited on page 124.)

[KWT03] Werner Kuhn, Michael F. Worboys, and Sabine Timpf,
editors. Spatial Information Theory. Foundations of Ge-
ographic Information Science, International Conference,

204

Bibliography

COSIT 2003, Ittingen, Switzerland, September 24-28, 2003,
Proceedings, volume 2825 of Lecture Notes in Computer Sci-
ence. Springer, 2003. (Cited on pages 199, 200, and 202.)

[LA04] Jyh-Ming Lien and Nancy M. Amato. Approximate
convex decomposition of polygons. In SCG ’04: Proceed-
ings of the twentieth annual symposium on Computational
geometry, pages 17–26, New York, NY, USA, 2004. ACM.
(Cited on page 162.)

[Lat90] J. C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, Boston, MA, Decembre 1990. (Cited on
pages 14 and 118.)

[LH03] Sylvain Lefebvre and Samuel Hornus. Automatic Cell-
and-Portal Decomposition. Technical Report 4898, IN-
RIA, July 2003. (Cited on page 162.)

[Liu96] Bing Liu. Intelligent route finding: Combining knowl-
edge, cases and an efficient search algorithm. In Pro-
ceedings of the 12th European Conference on Artificial In-
telligence, pages 380–384, 1996. (Cited on pages 159

and 160.)

[LKLS05] Gary Look, Buddhika Kottahachchi, Robert Laddaga,
and Howard E. Shrobe. A location representation for
generating descriptive walking directions. In Robert St.
Amant, John Riedl, and Anthony Jameson, editors,
IUI, pages 122–129. ACM, 2005. (Cited on pages 117

and 167.)

[LL08] Dandan Li and Dik Lun Lee. A Lattice-Based Semantic
Location Model for Indoor Navigation. In Xiaofeng
Meng, Hui Lei, Stéphane Grumbach, and Hong Va
Leong, editors, MDM, pages 17–24. IEEE, 2008. (Cited
on page 161.)

[LOS06] Bernhard Lorenz, Hans Jürgen Ohlbach, and Edgar-
Philipp Stoffel. A Hybrid Spatial Model for Repre-
senting Indoor Environments. In Proceedings of the 6th
International Symposium on Web and Wireless Geograph-
ical Information Systems, volume 4295 of LNCS, pages
102–112. Springer, 2006. (Cited on page 87.)

[Lou83] Ronald Prescott Loui. Optimal Paths in Graphs with
Stochastic or Multidimensional Weights. Commun.
ACM, 26(9):670–676, 1983. (Cited on page 22.)

[LSM98] Josep Lladós, Gemma Sánchez, and Enric Martí. A
String Based Method to Recognize Symbols and Struc-
tural Textures in Architectural Plans. In GREC ’97:
Selected Papers from the Second International Workshop
on Graphics Recognition, Algorithms and Systems, pages
91–103, London, UK, 1998. Springer-Verlag. (Cited on
page 167.)

205

Bibliography

[LTK02] Paul U. Lee, Heike Tappe, and Alexander Klippel. Ac-
quisition of Landmark Knowledge from Static and Dy-
namic Presentation of Route Maps. KI, 16(4):32–34, 2002.
(Cited on page 124.)

[Lyn60] Kevin Lynch. The Image of the City. The MIT Press, June
1960. (Cited on pages 113, 114, and 163.)

[MdlC05] Lawrence Mandow and José-Luis Pérez de-la Cruz.
A New Approach to Multiobjective A* Search. In
Leslie Pack Kaelbling and Alessandro Saffiotti, editors,
IJCAI, pages 218–223. Professional Book Center, 2005.
(Cited on page 24.)

[Miz04] Doreen Mizzi. A Mobile Navigation Assistance System
Using Natural Language Generation. Diploma thesis,
Dept. of Computer Science and AI, University of Malta,
2004. (Cited on pages 13, 14, and 166.)

[Mon93] Daniel R. Montello. Scale and Multiple Psychologies
of Space. In COSIT, pages 312–321, 1993. (Cited on
pages 118, 119, and 161.)

[MP08] Dejian Meng and Stefan Poslad. A reflective context-
aware system for spatial routing applications. In
MPAC ’08: Proceedings of the 6th international workshop
on Middleware for pervasive and ad-hoc computing, pages
54–59, New York, NY, USA, 2008. ACM. (Cited on
page 22.)

[MR96] Dario Maio and Stefano Rizzi. Layered Knowledge Ar-
chitecture For Navigation-Oriented Environment Rep-
resentation. Technical Report CIOC-C.N.R. no. 108,
University of Bologna, 1996. (Cited on page 161.)

[MS01] Harvey J. Miller and Shih-Lung Shaw. Geographic In-
formation Systems for Transportation: Principles and Ap-
plications. Oxford University Press, 2001. (Cited on
page 27.)

[MS07] Stefan Münzer and Christoph Stahl. Providing individ-
ual route instructions for indoor wayfinding in complex,
multi-level buildings. In F. Probst and C. Keßler, editors,
Proceedings of the 5th Geographic Information Days, Mün-
ster, pages 241–246. IfGIprints, 2007. (Cited on pages ix,
165, and 166.)

[MSK06] Matt MacMahon, Brian Stankiewicz, and Benjamin
Kuipers. Walk the Talk: Connecting Language, Knowl-
edge, and Action in Route Instructions. In Proceedings
of the Twenty-First National Conference on Artificial Intel-
ligence and the Eighteenth Innovative Applications of Arti-
ficial Intelligence Conference - AAAI. AAAI Press, 2006.
(Cited on pages 14 and 167.)

206

Bibliography

[MW06] Peter Mooney and Adam C. Winstanley. An evolu-
tionary algorithm for multicriteria path optimization
problems. International Journal of Geographical Informa-
tion Science, 20(4):401–423, 2006. (Cited on page 24.)

[Nas01] Hugo A. D. Do Nascimento. A framework for human-
computer interaction in directed graph drawing. In In
the Proceedings of the Australian Symposium on Information
Visualisation, pages 63–69. Australian Computer Society,
Inc, 2001. (Cited on page 31.)

[Nil69] Nils J. Nilsson. A mobile automaton: An application
of artificial intelligence techniques. In IJCAI, pages
509–520, 1969. (Cited on page 15.)

[Ope] OGC OpenLS specification
http://www.opengeospatial.org/standards/ols

(last accessed on 9th October 2008). (Cited on pages vii,
52, 53, and 159.)

[ORLS06] Hans Jürgen Ohlbach, Mike Rosner, Bernhard Lorenz,
and Edgar-Philipp Stoffel. NL Navigation Com-
mands from Indoor WLAN fingerprinting position data.
REWERSE Deliverable A1-D7, Institute for Informat-
ics, Ludwig-Maximilians-Universität München, 2006.
(Cited on pages 4, 12, and 135.)

[OS08] Hans Jürgen Ohlbach and Edgar-Philipp Stoffel. Ver-
satile Route Descriptions for Pedestrian Guidance in
Buildings – Conceptual Model and Systematic Method.
In AGILE ’08 Online Proceedings, 2008. (Cited on
pages 118 and 139.)

[ÓSY87] Colm Ó’Dúnlaing, Micha Sharir, and Chee-Keng Yap.
Generalized Voronoi Diagrams for a Ladder: II. Efficient
Construction of the Diagram. Algorithmica, 2:27–59,
1987. (Cited on pages 16 and 19.)

[Pas84] Romedi Passini. Spatial Representations, a Wayfind-
ing Perspective. Environmental Psychology, 4(2):153–164,
1984. (Cited on pages 14, 123, and 163.)

[Pas96] Romedi Passini. Wayfinding design: logic, application
and some thoughts on universality. Design Studies,
17(3):319–331, 1996. (Cited on pages 14 and 163.)

[Pep97] John Peponis. Geometries of Architectural Description:
shape and spatial configuration. In Space Syntax, First In-
ternational Symposium Proceedings, pages 33.1–33.7, 1997.
(Cited on page 164.)

[PG96] Lutz Plümer and Gerhard Gröger. Nested Maps – a
Formal, Provably Correct Object Model for Spatial Ag-
gregates. In Proceedings of the 4th ACM International
Workshop on Advances in Geographic Information Systems,

207

Bibliography

pages 76–83. ACM Press, 1996. (Cited on pages 87

and 161.)

[PKH+
05] Perttu Prusi, Anssi Kainulainen, Jaakko Hakulinen,

Markku Turunen, Esa-Pekka Salonen, and Leena He-
lin. Towards Generic Spatial Object Model and Route
Guidance Grammar for Speech-based Systems. In
INTERSPEECH-2005, Proceedings of the 9th European Con-
ference on Speech Communication and Technology. Lisbon,
Portugal, pages 1917–1920. ISCA Archive, 2005. (Cited
on page 166.)

[PL94] Alexandra Poulovassilis and Mark Levene. A nested-
graph model for the representation and manipulation
of complex objects. ACM Transactions on Information
Systems, 12:35–68, 1994. (Cited on pages 32, 37, and 38.)

[Pri05] Nissanka B. Priyantha. The Cricket Indoor Location System.
PhD thesis, Massachusetts Institute of Technology, 2005.
(Cited on page 4.)

[PS97] Stefano Pallottino and Maria Grazia Scutellà. Shortest
Path Algorithms in Transportation models: classical
and innovative aspects. Technical Report TR-97-06, Uni-
versity of Pisa, 1997. (Cited on pages 22 and 23.)

[PSN08] Ingmar Posner, Derik Schröter, and Paul M. Newman.
Online generation of scene descriptions in urban envi-
ronments. Robotics and Autonomous Systems, 56(11):901–
914, 2008. (Cited on page 167.)

[PSZ06] Christine Parent, Stefano Spaccapietra, , and Esteban
Zimányi. Conceptual Modeling for Traditional and Spatio-
Temporal Applications: The MADS Approach. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006. (Cited
on page 159.)

[PWR+
97] John Peponis, J. Wineman, M. Rashid, S.H. Kim, and

S. Bafna. On the description of shape and spatial con-
figuration inside buildings: convex partitions and their
local properties. Environment and Planning B: Planning
and Design, 24(5):761–781, 1997. (Cited on page 164.)

[PZC90] John Peponis, C Zimring, and YK Choi. Finding the
Building in Wayfinding. Environment and Behavior,
22(5):555–590, 1990. (Cited on page 164.)

[Rai04] Marcus Raitner. Visual Navigation of Compound
Graphs. In János Pach, editor, Graph Drawing, volume
3383 of Lecture Notes in Computer Science, pages 403–413.
Springer, 2004. (Cited on pages 31 and 34.)

[Rau01] Martin Raubal. Ontology and epistemology for agent-
based wayfinding simulation. International Journal of Ge-
ographical Information Science, 15(7):653–665, 2001. (Cited
on page 13.)

208

Bibliography

[Ric07] Kai-Florian Richter. A Uniform Handling of Different
Landmark Types in Route Directions. In Stephan Win-
ter, Matt Duckham, Lars Kulik, and Benjamin Kuipers,
editors, COSIT, volume 4736 of Lecture Notes in Com-
puter Science, pages 373–389. Springer, 2007. (Cited on
page 167.)

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch.
Unified Modeling Language Reference Manual, The (2nd
Edition). Pearson Higher Education, 2004. (Cited on
page 30.)

[RK04] Kai-Florian Richter and Alexander Klippel. A Model
for Context-Specific Route Directions. In Freksa et al.
[FKKB+

04], pages 58–78. (Cited on pages 124, 141,
and 167.)

[RK06] Kai-Florian Richter and Alexander Klippel. Before or
After: Prepositions in Spatially Constrained Systems.
In Barkowsky et al. [BKLM08], pages 453–469. (Cited
on page 167.)

[RM04] Mike Rosner and Doreen Mizzi. Three Scenarios for
Navigational Advice Generation. In Anja Belz, Roger
Evans, and Paul Piwek, editors, INLG04 Posters: Ex-
tended abstracts of posters presented at the Third Interna-
tional Conference on Natural Language Generation, pages
36–40, 2004. (Cited on pages 4 and 166.)

[RMFG06] Martin Raubal, Harvey J. Miller, Andrew U. Frank, and
Michael F. Goodchild, editors. Geographic Information
Science, 4th International Conference, GIScience 2006, Mün-
ster, Germany, September 20-23, 2006, Proceedings, volume
4197 of Lecture Notes in Computer Science. Springer, 2006.
(Cited on pages 203 and 204.)

[RsMMSB05] Axel Rottmann, Óscar Martínez Mozos, Cyrill Stach-
niss, and Wolfram Burgard. Semantic Place Classifica-
tion of Indoor Environments With Mobile Robots using
Boosting. In in Proc. of the National Conference on Artifi-
cial Intelligence (AAAI, pages 1306–1311, 2005. (Cited on
page 167.)

[RT04] Urs-Jakob Rüetschi and Sabine Timpf. Modelling
Wayfinding in Public Transport: Network Space and
Scene Space. In Freksa et al. [FKKB+

04], pages 24–41.
(Cited on page 11.)

[RT05] Urs-Jakob Rüetschi and Sabine Timpf. Using Image
Schemata to Represent Meaningful Spatial Configura-
tions. In OTM Workshops, volume 3762 of LNCS, pages
1047–1055. Springer, 2005. (Cited on page 86.)

[RW99] Martin Raubal and Michael Worboys. A Formal Model
of the Process of Wayfinding in Built Environments.

209

Bibliography

In Proceedings of the International Conference on Spatial
Information Theory, volume 1661 of LNCS, pages 381–401.
Springer, 1999. (Cited on pages 4 and 163.)

[RW02] Martin Raubal and Stephan Winter. Enriching Wayfind-
ing Instructions with Local Landmarks. In Max J. Egen-
hofer and David M. Mark, editors, GIScience, volume
2478 of Lecture Notes in Computer Science, pages 243–259.
Springer, 2002. (Cited on pages 4 and 124.)

[Sab66] Gert Sabidussi. The centrality index of a graph. Psy-
chometrika, 31(4):581–603, December 1966. (Cited on
page 164.)

[Sac73] Earl D. Sacerdoti. Planning in a Hierarchy of Abstrac-
tion Spaces. In IJCAI, pages 412–422, 1973. (Cited on
pages 41, 50, 81, 123, and 159.)

[SCCW91] Bradley S. Stewart and III Chelsea C. White. Multiobjec-
tive A*. Journal of the ACM, 38(4):775–814, 1991. (Cited
on page 24.)

[Sch06] Matthias Schmeisser. PlanML: A Markup Language for
Navigational Planning. Diplomarbeit / Diploma Thesis,
Institute for Informatics, University of Munich (LMU),
2006. (Cited on pages 145 and 148.)

[SFG97] Shashi Shekhar, Andrew Fetterer, and Bjajesh Goyal.
Materialization Trade-Offs in Hierarchical Shortest Path
Algorithms. In Michel Scholl and Agnès Voisard, ed-
itors, SSD, volume 1262 of Lecture Notes in Computer
Science, pages 94–111. Springer, 1997. (Cited on pages 40,
43, and 159.)

[SH06] Christoph Stahl and Jens Haupert. Taking Location
Modelling to New Levels: A Map Modelling Toolkit for
Intelligent Environments. In Mike Hazas, John Krumm,
and Thomas Strang, editors, LoCA, volume 3987 of
Lecture Notes in Computer Science, pages 74–85. Springer,
2006. (Cited on pages 84, 152, 165, and 171.)

[SLO07] Edgar-Philipp Stoffel, Bernhard Lorenz, and Hans Jür-
gen Ohlbach. Towards a Semantic Spatial Model for
Pedestrian Indoor Navigation. In JL Hainaut and E Run-
densteiner, editors, ER ’07 Workshops / Advances in Con-
ceptual Modeling, volume 4802 of LNCS, pages 328–337.
Springer, 2007. (Cited on page 118.)

[SM95] Kozo Sugiyama and Kazuo Misue. A Generic Com-
pound Graph Visualizer/Manipulator: D-ABDUCTOR.
In Franz-Josef Brandenburg, editor, Graph Drawing, vol-
ume 1027 of Lecture Notes in Computer Science, pages
500–503. Springer, 1995. (Cited on pages 32 and 37.)

210

Bibliography

[sMMTJ+07] Óscar Martínez Mozos, Rudolph Triebel, Patric Jensfelt,
Axel Rottmann, and Wolfram Burgard. Supervised
semantic labeling of places using information extracted
from sensor data. Robot. Auton. Syst., 55(5):391–402,
2007. (Cited on page 167.)

[SMR06] Hui Shi, Christian Mandel, and Robert J. Ross. Interpret-
ing Route Instructions as Qualitative Spatial Actions.
In Barkowsky et al. [BKLM08], pages 327–345. (Cited
on pages 13 and 14.)

[SRK07] Annegret Stark, Marcel Riebeck, and Jürgen Kawalek.
How to Design an Advanced Pedestrian Navigation
System: Field Trial Results. . In Proceedings of the Fourth
IEEE Workshop on Intelligent Data Acquisition and Ad-
vanced Computing Systems: Technology and Applications
IDAACS September 6-8, 2007, Dortmund, Germany., pages
690–694, 2007. (Cited on page 162.)

[SSO08] Edgar-Philipp Stoffel, Korbinian Schoder, and Hans Jür-
gen Ohlbach. Applying Hierarchical Graphs to Pedes-
trian Indoor Navigation. In Walid G. Aref, Mohamed F.
Mokbel, and Markus Schneider, editors, GIS, page 54.
ACM, 2008. (Cited on pages 126 and 132.)

[Sta] Christoph Stahl. The Yamamoto Map Modelling
Toolkit., http://w5.cs.uni-sb.de/\simstahl/

yamamoto/index.html. (Cited on pages ix, 165, 166,
and 171.)

[Ste99] John G. Stell. Granulation for Graphs. In Christian
Freksa and David M. Mark, editors, COSIT, volume
1661 of Lecture Notes in Computer Science, pages 417–432.
Springer, 1999. (Cited on pages vii, 28, 32, 36, and 160.)

[TAK+
05] Vassileios Tsetsos, Christos Anagnostopoulos, Panayi-

otis Kikiras, Tilemahos Hasiotis, and Stathes Had-
jiefthymiades. A Human-centered Semantic Navigation
System for Indoor Environments. In Proceedings of the
IEEE/ACS International Conference on Pervasive Services
(ICPS’05), pages 146–155. IEEE Computer Society, 2005.
(Cited on page 166.)

[TAKH06] Vassileios Tsetsos, Christos Anagnostopoulos, Panayotis
Kikiras, and Stathes Hadjiefthymiades. Semantically
Enriched Navigation for Indoor Environments. Interna-
tional Journal of Web and Grid Services, 2(4):453–478, 2006.
(Cited on page 166.)

[Tar72] Robert Tarjan. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing, 1(2):146–160, 1972.
(Cited on page 128.)

[TF97] Sabine Timpf and Andrew U. Frank. Using Hierar-
chical Spatial Data Structures for Hierarchical Spatial

211

http://w5.cs.uni-sb.de/$sim $stahl/yamamoto/index.html
http://w5.cs.uni-sb.de/$sim $stahl/yamamoto/index.html

Bibliography

Reasoning. In Stephen C. Hirtle and Andrew U. Frank,
editors, Spatial Information Theory: A Theoretical Basis for
GIS, Proceedings of the International Conference COSIT ’97,
volume 1329 of Lecture Notes in Computer Science, pages
69–83. Springer, 1997. (Cited on page 161.)

[Tom07] Martin Tomko. Destination Descriptions in Urban Envi-
ronments. PhD thesis, Department of Geomatics, The
University of Melbourne, 2007. (Cited on pages 81

and 160.)

[TP02] Alasdair Turner and Alan Penn. Encoding Natural
Movement as an Agent-Based System: An Investigation
into Human Pedestrian Behaviour in the Built Environ-
ment. Environment and Planning B: Planning and Design,
29(4):473–490, 2002. (Cited on pages 141 and 164.)

[Vin74] Philippe Vincke. Problèmes multicritères. Cahiers du
Centre d’Etudes de Recherche Opérationnelle, 16:425–439,
1974. (Cited on page 23.)

[Vin92] Philippe Vincke. Multicriteria Decision-Aid. John Wiley
& Sons, New York, Chichester, 1992. (Cited on page 23.)

[Voi03] Horatiu Voicu. Hierarchical cognitive maps. Neural
Networks, 16(5-6):569–576, 2003. (Cited on page 163.)

[Wal04] Jan Oliver Wallgrün. Autonomous Construction of Hi-
erarchical Voronoi-Based Route Graph Representations.
In Freksa et al. [FKKB+

04], pages 413–433. (Cited on
pages vii, 16, and 17.)

[Was07] Martin Wassermann. Konzeption und Realisierung
eines Web basierten Mediatorsystems für Graphenal-
gorithmen über verteilte geographische Netze. Diplo-
marbeit / Diploma Thesis, Institute for Informatics,
University of Munich (LMU), 2007. (Cited on pages xi,
52, and 55.)

[WBT07] Emily Whiting, Jonathan Battat, and Seth Teller. Topol-
ogy of Urban Environments: Graph construction from
multi-building floor plan data. In Dong A, Moere VA,
Gero JS (eds.) Computer-Aided Architectural Design Futures
2007. vol XII, pages 115–128, 2007. (Cited on pages 162

and 166.)

[Wel85] Emo Welzl. Constructing the Visibility Graph for n-Line
Segments in O(n2) Time. Inf. Process. Lett., 20(4):167–171,
1985. (Cited on page 19.)

[Wer23] Max Wertheimer. Laws of Organization in Perceptual
Forms. Psychologische Forschung, 4:301–350, 1923. (Cited
on page 119.)

212

Bibliography

[WFR+
07] Jan M Wiener, Gerhard Franz, Nicole Rossmanith, An-

dreas Reichelt, Hanspeter Mallot, and Heinrich Bülthoff.
Isovist analysis captures properties of space relevant for
locomotion and experience. Perception, 36(7):1066–1083,
06 2007. (Cited on page 163.)

[Whi06] Emily Whiting. Geometric, Topological & Semantic
Analysis of Multi-building Floor Plan Data. Master’s
thesis, Massachusetts Institute of Technology, Depart-
ment of Architecture, May 2006. (Cited on pages vii, 16,
17, 162, and 166.)

[Win01] Stephan Winter. Weighting the Path Continuation in
Route Planning. In Walid G. Aref, editor, ACM-GIS,
pages 173–176. ACM, 2001. (Cited on page 23.)

[WM03a] Jan M. Wiener and Hanspeter A. Mallot. ’Fine-to-
Coarse’ Route Planning and Navigation in Regional-
ized Environments. Spatial Cognition and Computation,
3(4):331–358, Dez 2003. (Cited on pages 4 and 163.)

[WM03b] Jan M. Wiener and Hanspeter A. Mallot. Route
Planning in Hierarchically Structured Environments:
From Places to Regions. EuroCogSci, 2003. (Cited on
page 163.)

[YWR03] Jing Yang, Matthew O. Ward, and Elke A. Runden-
steiner. Hierarchical exploration of large multivariate
data sets. In Frits H. Post, Gregory M. Nielson, and
Georges-Pierre Bonneau, editors, Data Visualization: The
State of the Art, pages 201–212. Kluwer, 2003. (Cited on
page 31.)

[ZF96] Kai Zimmermann and Christian Freksa. Qualitative
Spatial Reasoning Using Orientation, Distance, and
Path Knowledge. Appl. Intell., 6(1):49–58, 1996. (Cited
on page 13.)

213

Index

214

I N D E X

A∗ algorithm, 126

9-Intersection Model, 162

Access restrictions, 10, 82

Adjacency, 98

Agent, 164

Allocentric perspective, 139

Angle, 91

Architect, 83

Architectural symbols, 84

Articulation point
∼ in a graph, 126

Atrium, 115

Autonomous systems, 29

Backtracking, 42, 126

Base graph, 34

BGP, see Border Gateway Proto-
col

Bijection, 63

Boolean constraint, 58

Border Gateway Protocol, 29

Border nodes, 35

Bottom-up, 60

Boundary
hard ∼, 113, 115

soft ∼, 113

CAD, see Computer Aided De-
sign, 84

Car navigation systems, 9

Ceiling height, 115

Centrality
betweenness ∼, 164

closeness ∼, 164

degree ∼, 164

Chain, 128

∼ of articulation points, 128

concave ∼, 118

Child relation, 101, 114

Closed space, 114

Clustered graph, 37

Coarsening
∼ of a graph, 33

Coarsening function, 34

Cognitive map, 163

Coherent boundary, 141

Common-sense knowledge, 21,
123

Component
Black box ∼, 31

White box ∼, 31

Compound graph, 37

Computational Geometry, 88,
89, 96, 119

Computer Aided Design, 5

Concave chain, 118

Containment, 81, 100, 101, 114

Context
∼ for wayfinding, 19

Context information, 19, 57, 151

Convex polygon, 143

Corner
convex ∼, 118

non-convex ∼, 113, 118

Cost function, 22

aggregated ∼, 24

composite ∼, 24

context-sensitive ∼, 22

time-dependent ∼, 23

Cost vector, 23

Crossing number, 102

Cycle
∼ in a graph, 89

elementary ∼, 89

Data owners, 51

Data sources, 49

Decision point, 113, 128

among articulation points,
128

Decomposition, 146

∼ of polygons, 119

Exact cell decomposition,
118

Degree
∼ of a node, 125

Delauney triangulation, 162

Digital globe, 3

Digital map data, 51

Distortion, 115

Distribution
∼ of data, 50

Divide and conquer, 30, 53

215

Index

DNS, see Domain Name Sys-
tem

Domain Name System, 29

Dominance, 23

Dual graph, 22, 87, 98, 161

Dual planar graph, 18

Duality, 18, 87, 98

Egocentric directions, 15, 143

Egocentric perspective, 140

Elevator, 104

Entity Relationship Diagrams,
30

Entropy, 140

Equivalence relations, 36

ER Diagrams, see Entity Rela-
tionship Diagrams

Escalator, 104

Evacuation plan, 84

Evaluation, 153

Exits, 161

Fibonacci heaps, 22

Floor plan, 82, 83, 85

∼ data, 83

extract of ∼, 124

Flow
∼ of pedestrians, 163

Generalised Voronoi Diagram,
16

Geographic Information System,
3, 27, 40

Geometry, 83

Geospatial data, 50

Geospatial world model, 80, 159

Gestalt theory, 119

GIS, see Geographic Informa-
tion System, see Geo-
graphic Information Sys-
tem

Graph
∼ planar, 85

sparse ∼, 124

Cell-and-Portal graph, 162

connected component, 89

Root graph, 61

Graph algorithm, 89

Graph morphism, 33

Graphs, 9

Guiding people, 3

Heuristic, 126, 128

Hierarchical graph, 53

Hierarchical graph system, 49,
53

Formal definition, 70

Hierarchical Planning, 41

Hierarchical planning, 50, 80

Hierarchisation, 101

Human computer interaction,
31

Human spatial cognition, 119

Hyperedge, 105

Implementation, 55, 151

Information hiding, 31, 55

Information theory, 140

Informed search, 128

Injective function, 63

Instruction, 116

Instructions, 50

Integration, 81

Integrity constraints, 60

Inter-domain routing, 29

Ladder, 104

Landmark, 113, 114, 124, 160

Lattice, 161

Least common ancestor, 75, 137

Line of sight, 147

Location-based services, 52

Map, 82

Map matching, 165

Markov chain, 164

Maze, 112

Mediator, 54, 80

Mesh
∼ of polygons, 88

Meta navigation system, 53

Mezzanine, 104

Modalities, 23

Multi-criteria shortest path, 22,
23

Multi-modal network, 3

Multi-modal networks, 61

Multigraph, 39, 54, 61, 98

Natural language generation,
13, 140, 166

Navigation system, 3, 49, 51

Nested graph, 38

Network analysis, 164

Node refinement, 61

216

Index

Non-convex region, 146

Obstacle, 113

Online route planners, 51

Ontology, 57, 166

∼ for user modelling, 21

Open Geospatial Consortium,
52

Open space, 114

Open world assumption, 58

OpenLS, 52, 159

Overlap
∼ in subgraphs, 34

OWL, see Web Ontology Lan-
guage, 151

Parallel computing, 50

Pareto-optimal, 24

Partial function, 66

Partitioning
∼ of nodes, 35

Paternoster, 104

Path
non-dominated ∼, 23

pareto-optimal ∼, 23

Path planning, 49

PDA, see Personal Digital Assis-
tant, see Personal Digi-
tal Assistant

Pedestrians
motion of ∼, 10

Personal Digital Assistant, 3,
149

Planar, 85

Point of interest, 57, 134

Polygon, 88

convex, 118

convex ∼, 118

non-convex ∼, 118, 119

Positioning technologies, 12

Precomputation, 126

Proof of concept, 55, 153

Qualitative, 51

Qualitative Spatial Reasoning,
162

Qualitative spatial reasoning,
13

Query, 49, 80

Ramp, 104

RCC, see Region Connection Cal-
culus

Recursive, 130

Reference orientation line, 143

Refinement Search, 41

Refinement search, 50

Region Connection Calculus, 162

Roadmap methods, 14

Route description, 143

Route descriptions, 51, 80, 166

Route directions, 123

Routing Table, 43

Scale, 122

reference scale, 122

Segmentation, 115

Semantic Web Rule Language,
25, 58

Shortest path, 22, 49

Simulation, 164

Skeleton, 126

Space
closed ∼, 11

open ∼, 11

Spatial chunking, 141, 167

Spatial network, 9

Spatial networks, 50

Spatial region
composite ∼, 114, 116

interior, 102

Staircases, 104

Surjective function, 63

SWRL, see Semantic Web Rule
Language, see Seman-
tic Web Rule Language

System architecture, 51

Three-tier ∼, 51

Tate Gallery, 164

Top-down, 37, 60

Topological Relations, 162

Topological relations, 88

Traffic regulations, 10

Train schedule, 23

Triangulation, 119, 162

Turn angle, 23

Turn-by-turn instructions, 9

UML, see Unified Modelling Lan-
guage

Unified Modelling Language,
30

Unique Resource Identifier, 54

Urban area, 3

217

Index

URI, see Unique Resource Iden-
tifier54

User modelling, 21

User profile, 57

Viewpoint
allocentric ∼, 163

egocentric ∼, 163

Visibility, 112, 113, 115

Visibility graph, 15

W-LAN, see Wireless LAN
W-LAN fingerprinting, 4, 12,

135

Wayfinder, 51, 84, 113

Wayfinding, 123, 163

∼ as spatial problem solv-
ing, 123, 163

∼ experts, 123

∼ in architectural design,
163

∼ modalities, 165

∼ strategy, 123

Waypoint, 143

Web Ontology Language, 57

Web services, 52

Wiki, 166

Wireless LAN, 149

You-are-here map, 84

218

Index

219

	i Preliminaries
	Introduction
	Motivation
	Goals and Addressed Questions
	Contributions
	Issues not Covered

	Organisation of this Thesis

	Background
	 Challenges of Pedestrian Indoor Navigation
	 Motivation: Characteristics of Indoor Environments
	 General Modelling Principles
	 Evaluating and Adapting Existing Approaches
	Summary

	Context Information and Cost Functions
	 The Context of Wayfinding
	Examples for Indoor Environments
	Using Formal Ontologies
	Multi-criteria Path Finding
	Summary

	 Fundamentals of Hierarchical Graphs
	Motivation: From Graphs to Hierarchical Graphs
	 Basic Definitions and Terminology
	Preliminary Considerations
	 Three Approaches to Hierarchical Graphs
	 Further Definitions and their Classification
	 Important Questions for Spatial Applications

	Hierarchical Path Finding
	Summary

	ii Core Design with Data Structures and Algorithms
	 Conceptual Design of a Hierarchical Graph System
	 Top-Level System Architecture
	 Rationale: Distributed, Heterogeneous Spatial Networks
	 Hierarchical Organisation via Mediators
	Context-Adaptive Path Finding in a Hierarchy

	 Basic Operations and Consistent Construction of Hierarchical Graphs
	Hierarchisation via Node Refinement
	 Basic Operations for Hierarchical Graphs
	 Maintaining a Consistent Hierarchy
	 Consistent Path Finding over Multiple Levels
	Consistency of the Basic Operations
	 Derivation of Other Useful Operations

	Summary

	 Applying Hierarchical Graphs to Indoor Environments
	 Why Hierarchical Graphs for Navigation in Buildings?
	Overview
	 Modelling Aspects and Construction of the Hierarchy
	 Interpretation of Floor Plans
	 The Underlying Geometric Model
	Basic Mapping to a Flat Graph
	Hierarchisation
	The Third Dimension
	Summary

	Further Enhancements of the Hierarchy
	 Insufficiency of the Basic Model for Real Navigation Problems
	 Geometric Decomposition of Complex Regions
	Extracting Meaningful Subgraphs from a Dual Region Graph
	Summary

	 Application: Query Processing Using the Hierarchy
	 Using the Hierarchical Structure for Path Finding
	 Principles and Versatile Methods for Deriving Route Descriptions

	 Scenarios for Pedestrian Indoor Navigation
	Summary

	Status Review and Evaluation
	Overview on the Implementation
	Evaluation of the Hierarchy on Real Floor Plan Data

	iii Conclusion
	Related Work
	Use of Hierarchies for Modelling Spatial Networks
	Indoor Navigation and Wayfinding
	General Issues
	Systems and Approaches

	Summary and Future Work
	Results
	Conclusion
	 Directions for Future Research

	Ontology for Context Information
	Bibliography
	Index

