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1 Introduction 

1.1 The origin of cancer 

The approximately 30 billion cells within a healthy human body exist in a complex 

organization based on mutual dependency and shared control mechanisms. Multiplication 

of cells is carefully regulated ensuring that each tissue maintains a size and architecture 

adapted to the needs of the organism. Cells in which these exquisite controls break down 

start to grow in an unleashed fashion and eventually form a cell mass called “tumor”. 

While some tumors do not cause serious health problems, those which spawn cells that 

metastasize throughout the body cause cancer disease 1. Two key differences between 

cancer and other genetic diseases have been dogmatized: in the majority of cases, cancer 

disease is caused by somatic mutations while other genetic diseases are caused 

exclusively by mutations occurring in the germ-line 2. In addition, an individual cancer 

does not result from a single mutation but rather follows the “multi-hit” concept where 

each mutation drives a new step towards malignant transformation 2. Dependent on the 

type of cancer, 3-20 mutations appear to be required to complete this process 2,3. Two 

sorts of genes turned out to be critical in the supervision of cellular proliferation and 

growth control: proto-oncogenes represent cell cycle accelerators while tumor suppressor 

genes can be considered as breaks which restrict cell growth 4. Their de-regulation plays 

an important role in the development and progression of cancer disease. Since the subject 

of this thesis is the regulation and function of two prominent transcription factors 

involved in tumorigenesis, p53 and c-MYC, they are introduced in the following 

chapters. 

1.2 The tumor suppressor p53 

   The fame of the intensively studied protein p53 originates from its function as a tumor 

suppressor in human and other mammals 5,6. First identified in 1979 as an associated 

protein of papovavirus SV40 large T antigen 7,8, p53 was initially claimed to harbor 

oncogenic activity. Within the following ten years genetic and functional data provided 

compelling evidence that wild-type p53 functions as a tumor suppressor by inhibiting cell 
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proliferation and transformation 9-12. Mutations in evolutionary conserved codons of p53 

occur with a high frequency in diverse types of human cancer 13. Baker et al. found that 

75% of colorectal carcinoma harbor a mutated p53 allele 14 and show a concomitant 

deletion of the wild-type p53 allele 15. Furthermore, they demonstrated that wild-type p53 

is able to suppress the growth of human colorectal carcinoma cells 15. The oncogenic 

features were caused by point-mutations in the p53 expression vectors which were 

generated from sequences derived from cancer cells 16. Of those tumors that retain wild-

type p53, a large number inactivate p53 function by other mechanisms, such as 

de-regulation of upstream or downstream signaling pathways 17. 

1.2.1 Functional domains of the p53 protein 

1.2.1.1 The N-terminal domain (NTD) 

   The p53 tumor suppressor gene encodes for a protein of 393 amino acids and is 

structurally organized in four functional domains (Figure 1). As a transcription factor, 

p53 possesses a bipartite transactivation domain18 (TAD; amino acids 1-40 and 43-73) 

which, together with a proline-rich SH3 target-region (amino acids 60-97), forms the 

NTD 19. This domain is devoid of tertiary structures and largely misses secondary 

structural elements 20,21 which is a typical feature of most “acidic” TADs 22,23. Short 

patches of the p53 TAD domain can form defined local sub-structures, such as “induced 

helices”, with their formation being dependent on the nature of the bound partner protein, 

as e.g. MDM2 24,25. A nuclear export sequence (NES) is located within the NTD (amino 

acids 11-27) and collaborates with the C-terminal NES (see section 1.2.1.3) to achieve 

nuclear export of p53 26. This export signal is inactivated by post-translational 

modifications of the NTD 26 which occur when p53 is activated.  

1.2.1.2 The DNA binding domain (DBD) 

   The central sequence-specific DNA binding domain (DBD) of p53, generally 

designated as “core domain” (amino acids 102-292), is critical for the DNA binding 

capacity of the p53 transcription factor (Figure 1). The core domain specifically 

associates with DNA fragments consisting of two decameric “half-site”-recognition 

sequences 5`-Pu-Pu-Pu-C-(A/T)-(T/A)-G-Py-Py-Py-3` (Pu=A/G, Py=T/C) separated by a 
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spacer region spanning up to 13 bp 27. Binding of p53 to DNA occurs in a cooperative 

manner with four core domains occupying one DNA response element 28. 

   According to International databases 29,30, more than 90% of the tumorigenic mutations 

of p53 localize to the core domain. While a large subset of these p53 mutations occurs 

rather infrequent, eight of them, the so-called “hot-spot” mutations, account for 

approximately 30% of the documented p53 core domain mutations 19 (see also Figure 1). 

These hot spot mutations either affect amino-acids directly contacting DNA or change the 

overall conformation of the DBD, indicating that the DNA-binding function of p53 is 

essential for tumor suppression. 

1.2.1.3 The C-terminal domain (CTD) 

   The p53 C-terminal region harbors the tetramerization domain (TD, amino acids 326-

355). The tetrameric form of p53, which consists of a dimer of dimers 31-33, represents its 

active state 34. A nuclear export sequence (NES, amino acids 340-351) is located within 

the TD and mediates nuclear-cytoplasmic shuttling 35. While this domain is exposed on 

the protein surface when p53 exists in its monomeric state, the NES is buried beneath the 

surface upon p53 oligomerization resulting in nuclear retention 35. 

   The negative auto-regulatory domain (RD) at the extreme C-terminus of p53 is 

connected to the TD through a basic linker region, which contains a bipartite nuclear 

localization signal (NLS) that mediates the nuclear import of p53 36. The RD (amino 

acids 369-393) has been implicated in auto-inhibition of p53 DNA-binding function 37,38. 

Since a direct binding of the RD to the DBD was so far not detectable 39, it remains 

enigmatic by which mechanism the RD exerts its inhibitory effect on the sequence-

specific DNA-binding capacity of p53 40-42. 
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1.2.2 Regulation of p53 by E3-ligases 

   In regularly proliferating cells, the function of the p53 tumor suppressor has to be kept 

in check to allow normal growth and development. A prerequisite for this regulation is 

the extremely short half-life of p53 (~6-20 min) which results in very low amounts of 

functional p53 protein 43. Under normal conditions, p53 is effectively degraded by the 

ubiquitin-dependent proteasomal pathway 5. The oncoprotein MDM2 (Mouse Double 

Minute 2, also termed HDM2 in humans) represents the best studied inhibitor of p53 

function 44. The RING-finger domain of the MDM2 E3-ligase is necessary to promote 

ubiquitination and proteasomal degradation of p53 and also catalyzes self-ubiquitination 

of MDM2 45. The embryonic lethality caused by MDM2 knockout in mice is completely 

rescued by inactivation of p53 46,47 illustrating the critical role for MDM2 in 

p53-regulation. Besides regulation of p53 protein-turnover, the mere physical association 

with MDM2 shields the N-terminal transactivation domain of p53 and decreases 

transactivation by p53 44. Since MDM2 is a direct transcriptional target of p53, both genes 

constitute a negative feedback loop 48,49. Human tumors and tumor cell lines express 

excessive levels of oncogenic MDM2 50,51 rendering activated p53 insufficient to fulfil its 

 

 

Figure 1. Functional domains of p53 

The N-terminal transactivation domain (NTD) contacts the transcriptional 
machinery. The DNA binding domain (DBD or “core domain”) is affected by 
95.1% of naturally occuring p53 mutations. The positions of “Hot-spot” mutations 
located in the DBD are indicated. The tetramerization domain (TD) and the 
regulatory region (RD) form the C-terminal domain (CTD) of p53 which also 
harbors sequence motifs that regulate p53 localization. (Adapted from Ref. 1) 
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tumor-suppressive task. A naturally occurring polymorphism in the MDM2 promoter 

(SNP309) leads to an increased level of MDM2 and is associated with accelerated tumor 

formation in both sporadic and hereditary cancer 52. 

   MDM2 catalyzes the addition of single ubiquitin (Ub) moieties to a cluster of 6 lysine 

residues in the C-terminus of p53 53,54. Mono-ubiquitination of p53 by low levels of 

MDM2 leads to nuclear export and cytoplasmic degradation of p53, whereas increased 

MDM2 levels catalyze poly-ubiquitination and proteasomal degradation of p53 in the 

nucleus 55. Furthermore, efficient poly-ubiquitination of p53 requires association with a 

so-called “E4-ligase” factor p300/CBP 56. p300/CBP also plays a well established role in 

acetylation and transcriptional activation of p53 57. In addition, other MDM2-interacting 

proteins support p53 poly-ubiquitination or enhance the efficiency of its proteasomal 

degradation, as e.g. YY1 58,59, PACT 60 and gankyrin 61. Gankyrin in turn is able to 

interact with the S6 proteasomal ATPase 62 and might therefore recruit p53 to its 

destruction machinery. 

   Recently performed mouse knock-in experiments provided evidence that MDM2 might 

not be the only non-viral mediator of p53 proteasomal degradation 63,64. In support to this 

finding, further E3-ubiquitin ligases were shown to promote proteasomal degradation of 

p53, such as Pirh2 65, COP1 66, MULE/ARF-BP1 67, E6-AP 68, CHIP 69 and Synoviolin 70. 

Pirh2 and COP1 represent direct p53 target genes 65,66 and consequently are components 

of negative feedback loops which limit p53 activity (see Figure 2). 

   Although the p53-binding protein PARC possesses E3-ligase activity, it does not 

inactivate p53 by ubiquitination but rather via sequestration in the cytoplasm 71. PARC 

was proposed to function as a cytoplasmic scaffold for mono-ubiquitinated p53 with 

poly-ubiquitination of p53 being catalyzed by a so far unidentified E4-ligase 72. CHIP is 

speculated to represent this cytoplasmic E4-ligase for p53 since it interacts with the 

RING-IBR-RING domain of Parkin 73 and a similar motif can be found in PARC. As an 

atypical p53 E3-ligase, E4F1 oligo-ubiquitinates p53 at residues distinct from MDM2 

target sites and exerts a positive effect on p53 activity 74. 
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   An additional layer of complexity in the regulation of p53 by ubiquitination came with 

the identification of de-ubiquitinating (DUB) enzymes. HAUSP (Herpesvirus Associated 

Ubiquitin-Specific Protease) de-ubiquitinates MDM2 and this might be required to 

maintain sufficient amounts of MDM2 in a cell to keep the activity of p53 low in 

unstressed cells 75,76. The DAXX protein enforces the interaction between HAUSP and 

MDM2, thereby preventing auto-ubiquitination of MDM2 and, as a consequence, 

augmenting p53 degradation 77. However, HAUSP can also de-ubiquitinate p53 and 

MDMX 78,79. Another DUB enzyme, USP2a, de-ubiquitinates MDM2 80 but its role in 

regulating the p53 pathway in normal cells and cancer has not been determined. 

PARC
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Figure 2. Regulation of p53 degradation by E3-ligases 
 
MDM2 mono-ubiquitinates p53 in the nucleus and nuclear p53-Ub can undergo poly-
ubiquitination by MDM2, COP1, Pirh2, E6-AP or MULE. Several factors (YY1, PACT, p300, 
gankyrin) support MDM2-mediated poly-ubiquitination of p53. The de-ubiquitinating enzyme 
(DUB) HAUSP acts on MDM2 thereby supporting degradation of p53 but can also, especially 
when in complex with DAXX, de-ubiquitinate and consequently activate p53. Alternatively, 
MDM2 can favor nuclear export of p53 and the cytoplasmic E3-ligases MDM2, Pirh2, COP1, 
CHIP or Synoviolin lead to further poly-ubiquitination of p53 and cytoplasmic degradation via 
the proteasome. PARC sequesters p53 in the cytoplasm and could serve as a molecular 
scaffold for p53-poly-ubiquitination presumably facilitated by one of the depicted cytoplasmic 
E3-ligases. Ub: ubiquitin. 
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1.2.3 Neddylation and sumoylation of p53 

   Although ubiquitination represents the most intensively studied protein modification of 

p53, the ubiquitin-like proteins SUMO-1 and Nedd8 can also be conjugated to p53 which 

is catalyzed by specific E3-ligases. Initially, MDM2 was found to neddylate the CTD of 

p53 at 3 lysine residues (Lys370,372,373), which can also be subject to MDM2-mediated 

ubiquitination 81 and this leads to p53 inhibition. A component of a SCF complex, 

FBXO11, promotes neddylation of p53 at Lys320 and Lys321 and thereby inhibits p53 

function 82. 

   Two initial studies demonstrated that sumoylation at K386 of p53 results in increased 

transcriptional activity of p53 83,84. Several factors have been described to participate in 

sumoylation of p53, including the PIAS family members PIAS1, PIASxβ and PIASy 85-88 

but data from these studies concerning the functional consequences of p53 sumoylation 

were rather conflicting 89,90. Recent reports provided evidence that sumoylation activates 

p53 function thereby promoting p53-mediated senescence and apoptosis 91,92. 

Interestingly, the SUMO-specific protease SUSP4 removes SUMO-1 from MDM2 

thereby promoting self-ubiquitination of MDM2 and indirectly stabilization of p53 93. 

1.2.4 MDMX: another key player in p53 regulation 

   Besides MDM2, MDMX (also known as MDM4) represents another key regulator of 

p53 and MDMX-amplification and/or over-expression has been reported for diverse 

tumors 94. Similar to MDM2, loss of MDMX results in embryonic lethality, which is 

rescued by knockout of p53 95-97. As a structural relative to MDM2, MDMX harbors an 

N-terminal p53 binding domain and a C-terminal RING-finger domain 98 but lacks 

E3-ligase activity 99,100. In contrast to MDM2, MDMX does not represent a 

transcriptional target of p53 98 and functions mainly by direct inhibition of p53`s 

transcriptional activity and independent of MDM2 function 101-103. However, a complex 

between C-terminal mutant MDM2, whose E3-ligase function was rendered inactive, and 

MDMX retains E3-ligase activity indicating that MDMX can directly contribute to 

E3-function despite harboring an inactive RING-finger domain 104,105. 
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1.2.5 Signaling to p53 

   Under circumstances, that make it necessary for cells to unleash the activity of p53, 

which has also been called the “Guardian of the genome” 106, the brakes on p53 must be 

released to liberate its tumor-suppressive power. For this purpose, cells possess a diverse 

battery of monitoring systems able to receive environmental and intracellular stress 

signals and several pathways exist which transmit these signals to p53 5.  

   While there is a steadily growing list of these monitoring systems whose signals can be 

integrated by p53 107, the best studied alarm systems respond to DNA damage and the 

inappropriate activation of proto-oncogenes (see Figure 3). 

1.2.5.1 Activation of p53 by DNA damage 

   The primary transducers during the response to damaged genomic DNA belong to the 

family of PI3-kinase-related proteins with ATM (Ataxia Telangiectasia Mutated) and 

ATR (ATM and Rad3-related) representing central mediators 108. The ATM protein 

kinase is primarily activated by DNA double strand breaks (DSBs), phosphorylates and 

thereby activates key effector proteins, as e.g. the kinase CHK2 109. Both, ATM and 

CHK2 phosphorylate p53 110. ATR senses UV-light-induced DNA damage and DSBs 

but also responds to stalled replication forks 111. Once activated, ATR passes the signal 

to CHK1 112 leading to various modifications of the p53 protein 113. Although ATM and 

ATR are generally thought to act independently of one another, there is strong 

experimental evidence that ATM is required for rapid activation of ATR after ionizing 

radiation-mediated DSBs 114,115. 

1.2.5.2 Post-translational modifications modulate p53 activity 

   Once activated by DSBs, ATM/CHK2 and/or ATR/CHK1 lead to massive 

phosphorylation of p53 at its N- and C-terminal domains 116,117. Phosphorylation of Ser15 

and Ser20 of human p53 disrupts its interaction with MDM2 118,119. In addition, MDM2 

phosphorylation by ATM impairs MDM2 activity 120. The combination of p53 and 

MDM2 phosphorylation causes activation of p53 transcriptional activity. Besides this, 

DNA damage-mediated activation of ATM reduces the binding affinity of HAUSP to 

MDM2 121 and disrupts the MDM2/DAXX/HAUSP ternary complex 77 leading to 
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MDM2 auto-ubiquitination. Concomitantly, the p53-HAUSP interaction is enforced and 

the resulting de-ubiquitination increases the amount and activity of p53 77. ATM 

phosphorylates the E3-ligase COP1 which promotes self-degradation of COP1 and the 

disruption of this negative feedback loop contributes to stabilization of p53 122. In 

contrast to MDM2 and COP1, the mechanism which might disrupt the Pirh2/p53 

negative feedback loop after DNA damage is currently unknown. Regulation of Pirh2 

was shown to occur in a cell cycle-dependent manner via its phosphorylation by 

Calmodulin-dependent kinase II (CaMKII) and phosphorylation of Pirh2 abrogates its 

E3-ligase activity towards p53 123. 

   Besides these examples, additional kinases are known to phosphorylate p53 and 

MDM2 upon genotoxic stress 124. The complexity is further increased by the 

interdependence of specific phosphorylation events 125. E.g. casein kinase I (CKI) 

requires prior phosphorylation of p53 Ser6 or Ser15 to accomplish phosphorylation of 

Ser9 or Thr18 126,127. Stress-activated PI-3 kinase members phosphorylate MDM2 and this 

supports its auto-ubiquitination 128. As a consequence, the half-life of MDM2 in stressed 

cells drops to ~5 min which represents another important contribution to activation of 

p53 128. 

   Acetylation of p53 has been implicated in an elevated specific DNA-binding 

capacity 113,129,130. The histone acetyltransferases (HATs) CREB binding protein 

(CBP)/300 and p300/CBP-associated factor (PCAF), which interact with p53 through its 

N-terminus, acetylate the C-terminus of p53 at Lys372, Lys373, Lys381 and Lys382 

(p300/CBP) and Lys320 (PCAF) 124,131,132. Acetylation of p53 is also involved in its 

stabilization, since p300/CBP and MDM2 compete with each other in targeting the same 

lysine residues of p53 for acetylation and ubiquitination, respectively 133. Similarly, 

MDMX may block p300-mediated acetylation of p53 96,134. A complete activation of p53 

after genotoxic stress is considered to occur by a phosphorylation-acetylation cascade 132 

since phosphorylation of several serine residues at the N-terminus of p53 was 

demonstrated to enhance the interaction of p53 with CBP/p300 and PCAF 131,135. Histone 

deacetylases (HDACs) are able to antagonize the activation of p53 136: e.g. HDAC1 

deacetylates p53 137. Also the human Sir2 homolog, SIRT1, was shown to de-acetylate 
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p53 138,139, however, different functional consequences of p53 de-acetylation by the 

NAD+-dependent deacetylase SIRT1 have been reported 138,140. 

   In addition to phosphorylation and acetylation, many reports highlight the role of other 

post-translational modifications for the regulation of p53 activity, as methylation, 

glycosylation, ribosylation and O-GlcNAcetylation 124,141-144. 

1.2.5.3 Relevance of p53 post-translational modifications 

   A model which emphasizes the importance of post-translational modification events 

for p53 function is not supported by results obtained with mutant p53 knock-in mice 145. 

From these approaches it becomes more and more obvious that modification events of 

conserved p53 sites do not represent “on-off” - switches but rather serve to fine-tune p53 

activity under different circumstances 145. Approaches using transgenic mice rather point 

to MDM2 and MDMX as major regulators of p53 and ongoing efforts aim to evaluate 

the importance of recently identified p53-associated proteins, such as the E3-ligases 

Pirh2 and COP1 65,146. 

1.2.5.4 Activation of p53 by oncogenes 

   A second important pathway which leads to p53 activation is triggered by 

hyperproliferative signals emanating from oncogenic proteins such as c-MYC 147,148, 

Ras 149, E2F 150, E1A 151, v-Abl 152 and β-catenin 153. Activation of the p53 network in 

these scenarios may be mediated by p14ARF (ARF) 154. ARF, which is encoded by an 

alternative reading frame of the p16/INK4a locus 155, interacts with MDM2 thereby 

alleviating the inhibitory p53-MDM2 interaction 156-158. Interestingly, a similar mode of 

p53 activation involves the ribosomal L11 protein and this occurs after cellular stress 

caused by disordered ribosomal biogenesis 159. ARF further inhibits the ubiquitin-ligase 

activity of ARF-BP1/MULE towards p53 and this leads to stabilization of p53 67. ARF-

deficient mice develop tumors 160-162, however, at a lower frequency than p53 knock-out 

mice 163,164 demonstrating that abrogation of ARF-mediated oncogene-signaling to p53 

contributes to cancer progression. 
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   While the role of ARF in mediating activation of p53 after oncogenic stress is well 

established in mice, activation of oncogenes in human cells may result in activation of 

p53 via ARF-independent routes. For example, in human fibroblasts it was observed that 

activation of c-MYC does not increase ARF mRNA and protein levels and silencing of 

ARF by RNA interference (RNAi) has no effect on p53 activation due to de-regulated 

c-MYC 165. Others showed that inactivation of ARF by RNAi enhances cell growth in a 

p53-dependent manner but has a minor tumorigenic effect 166. In addition, human 

epithelial cells which are the origin of the most common type of human tumors, the 

carcinoma, do not show induction of ARF after activation of oncogenes 167,168. Oncogene 

MDM2

Pirh2 COP1

ARF

ATMATR
CHK2CHK1

• γ-irradiation
• UV-irradiation
• Genotoxic drugs
• Reactive oxygen species
• Telomere erosion

DNA 
damage

Hypoxia
Ribosomal stress

Nutrient deprivation

Oncogene 
activation

CaK
II

MULE

p300
PCAF

Ac

 
 
Figure 3. Activation of the p53 tumor suppressor protein 
 
Multiple stress signals are integrated into the activity of the p53 protein. Especially after DNA 
damage, p53 is subjected to various post-translational modifications, such as phosphorylation 
(P) or acetylation (Ac) which disrupt the interaction with its major negative regulator MDM2 
(indicated by a red cross). Activated ATM targets COP1 for self-ubiquitination and degradation 
and the cell cycle regulated kinase CaKII phosphorylates Pirh2 thereby disrupting the negative 
feed-back loops that control p53 (red crosses). After oncogenic stress, ARF not only interferes 
with the MDM2/p53 feedback loop but also abolishes the negative influence of the E3-ligase 
ARF-BP1/MULE (depicted as MULE) on p53. Upon ribosomal stress, L11 interacts with MDM2 
thereby alleviating the inhibitory p53-MDM2 interaction. Taken together, these events are able 
to unleash the tumor-suppressive capacity of p53. Ub: ubiquitin-modification. 
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activation was recently shown to provoke the formation of reactive oxygen species (ROS) 

and inappropriate firing of replication origins, which ultimately results in DNA damage 

and activation of p53 169,170,171-174. Therefore, a more complex inter-connection between 

the DNA damage and oncogenic signaling pathways seems likely. 

1.2.6 Relevance of p53 activation for tumor suppression 

   An important issue, which emerged from the observation that p53 can be activated by 

various stress signals, is the relative importance of these pathways for the tumor 

suppressive function of p53. A constitutive activation of 53BP1 and CHK2 has been 

observed in human cancer pointing to a permanent activation of the DNA damage 

signaling pathway 175. Since these factors act upstream of p53, their constitutive 

activation might be linked to the high frequency of p53 mutations in cancer. Activation of 

the ATM/ATR-regulated DNA damage network occurs early in tumorigenesis and the 

resulting activation of p53 in early hyperplastic and pre-cancerous lesions was shown to 

counteract tumor establishment 176,177. In striking contrast to these observations, two 

independent studies have shown that p53 is unable to prevent tumorigenesis in the 

absence of ARF, which responds to oncogene activation but not DNA damage 178,179. The 

data from Christophorou et al. indicate that only in a scenario when most cells have 

recovered from DNA damage, p53 might become beneficial by driving the elimination of 

the few cells that have aquired oncogene-activating mutations 179. However, since several 

recent reports revealed that activation of oncogenes leads to induction of DNA damage 

independent of ARF 176,177, the future will undoubtly bring new answers to this important 

question. 

1.2.7 Pathways downstream of activated p53 

   Once p53 has been activated by one of the stress signals described above, it specifically 

binds to DNA thereby inducing the expression of adjacent genes that are mainly involved 

in four processes: reversible and irreversible (senescence) cell cycle arrest, apoptosis, 

maintenance of genomic integrity and inhibition of vascularization 5. 
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1.2.7.1 Cell cycle arrest and senescence 

An early discovered consequence of p53 activation in almost all mammalian cell types is 

cell cycle arrest which is mediated by p53 target genes, such as p21 180, 14-3-3σ 181, 

GADD-45 182 and REPRIMO 183. By engaging this set of target genes, p53 stops 

proliferation of damaged cells which provides time to repair DNA damage and prevents 

mutations from being transmitted to daughter cells. Senescence, an irreversible type of 

cell cycle arrest, permanently blocks proliferation 184. It may be caused by telomere 

erosion (so-called replicative senescence), but also by extrinsic forms of stress and is then 

referred to as “premature senescence” 184. p53-mediated senescence is considered as 

important as apoptosis for the tumor-suppressive function of p53, however, it is currently 

not fully understood, which p53 target genes contribute to the onset of senescence that 

may occur after activation of p53 185. pRb activation via the CDK inhibitor p21 might 

represent one route of p53-mediated senescence since disruption of p21 by homologous 

recombination is able to bypass senescence in human diploid fibroblasts 186. However, 

disruption of p21 fails to bypass senescence in mouse cells 187. Furthermore, human cells 

can undergo senescence without activity of pRb or its family members which points to 

alternative, pRb-independent routes of p53-mediated senescence 188. 

1.2.7.2 Apoptosis 

   When DNA damage exceeds the repair-capacity of a cell, p53 initiates a set of genes to 

promote programmed cell-death 189. The intrinsic apoptosis pathway involves a variety of 

p53 transcriptional targets. The Bax protein, a proapoptotic member of the Bcl-2 protein 

family, represents the prototypic mediator of p53-driven apoptosis 190. The proteins 

encoded by the more recently identified pro-apoptotic p53 target genes NOXA 191, 

PUMA 192 and p53AIP1 193 are also located at mitochondria and promote the release of 

cytochrome C by mitochondrial outer membrane permeabilization (MOMP). The relative 

contribution of these mediators to p53-mediated apoptosis seems to be cell 

type-dependent. Additional p53-induced genes have been implicated in the apoptotic 

response, e.g. PERP 194,195 and SCOTIN 196. However, the exact mechanisms by which 

these factors promote apoptosis are currently unknown. Within the extrinsic apoptotic 

pathway, initiated outside of cells through pro-apoptotic cell surface receptors (also 
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called death receptors), p53 triggers the expression of the receptor ligand Fas/Apo-1 197 

and the transmembrane trail receptor killer/DR5 198. Along with the p53 target gene 

PIDD 199, these proteins activate the initiator caspase 8 and the BH3-only protein Bid to 

drive the release of cytochrome C from mitochondria. Cytochrome C cooperates with 

APAF-1, which is encoded by another p53 target gene 200, to form a structure designated 

as “apoptosome” and this causes activation of caspase 9 and subsequently caspase 3 

leading to apoptosis 189. 

1.2.7.3 Cell cycle arrest or apoptosis ? 

   The decision as to whether p53 mediates cell cycle arrest or apoptosis depends on the 

cellular background, external or internal survival factors, and the type and severity of 

cellular stress 201. Two main working hypothesis as to how p53 makes the choice between 

cell cycle arrest and apoptosis have been put forward: (1) the quantitative model suggests 

that growth arrest genes contain high-affinity binding sites for p53 while low-affinity 

binding sites might be located in promoters of apoptosis-promoting genes. While this 

model is supported by the observation that highly increased p53 activity favors apoptosis 

over cell cycle arrest 202, p53 binding regions located in pro-apoptotic target gene 

promoters do not in all cases display a low affinity towards p53 203. Interestingly, 

differences in the composition of transcription-initiation complexes at the promoters of 

pro-apoptotic versus cell cycle arrest-mediating p53 target genes were detected 204. While 

basal levels of p53 coordinate the assembly of a poised RNA polymerase II initiation 

complex at core promoters of growth arrest genes thereby lowering the treshold required 

for a p53 response, core promoters of pro-apoptotic genes show a lower degree of pre-

bound initiation complexes under non-stressed conditions and require a higher and 

prolonged activation of p53 to allow their expression 204. (2) Selective activation of p53 

due to interaction with specific co-activators represents the basis for the qualitative 

model: for example, the product of the Wilms tumor suppressor gene, WT1, associates 

with p53 and interferes with its pro-apoptotic activity while p53-dependent cell cycle 

arrest remains unaffected 205. A similar effect has been ascribed to the tumor suppressor 

protein BRCA1 206. The proteins ASPP1 and ASPP2 (for Apoptosis Stimulating Protein 

of P53) shift the binding affinity of p53 towards promoters of pro-apoptotic genes 207 and 
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this effect can be reverted by a highly conserved inhibitor of p53 mediated apoptosis, 

iASPP 208. Similarly to the ASPP proteins, JMY interacts with p300 thereby enhancing 

the ability of p53 to drive the expression of apoptotic genes such as BAX 209 and the co-

activator STAT1 supports p53-mediated induction of BAX, NOXA and FAS 

expression 210. CHK2, in contrast to ATM, is dispensable for p53-mediated growth arrest 

upon DNA damage but is required for p53-mediated apoptosis 211. p53 ubiquitinated by 

E4F1 triggers a transcriptional program that favors a p53-mediated cell cycle arrest 

versus p53-mediated apoptosis 74.  

1.2.7.4 DNA repair 

   p53 preserves genomic integrity by regulating processes such as DNA repair and 

recombination as well as chromosomal segregation 212,213. For example, p53 enhances 

nucleotide excision repair by inducing the genes encoding for p48DDB2 214 and xeroderma 

pigmentosum group c (XPC) protein 215 as well as the p53R2 subunit of ribonucleotide 

reductase 216. p53 has also been implicated in base excision repair 217-219. 

1.2.7.5 p53 as an anti-angiogenic factor 

   The ability to provoke neo-vascularization liberates tumors from proliferative 

constraints and the resulting change in tumor behaviour has been termed “angiogenic 

switch” 220. p53 transactivates the anti-angiogenic thrombospondin gene TSP1 221 which 

encodes a secreted protein that remodels the cellular matrix 222. Loss of p53 function 

leads to a substantial decrease in Tsp-1 level within the extra-cellular matrix and 

increases the likelihood of new blood vessels being recruited to the tumor. In addition to 

TSP1, p53 transactivates the anti-angiogenic factors brain-specific angiogenesis 

inhibitor 1 (BAI1) 223 and ephrin receptor A2 224,225. The pro-angiogenic factors 

VEGF 226, bFGF 227, and COX-2 228 represent direct targets for p53-mediated 

transcriptional repression. Furthermore, p53 inhibits the hypoxia-sensing system by direct 

binding to HIF-1α which is consequently targeted for degradation 229 and thereby 

prevents the production of new blood vessels. 
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1.2.7.6 p53: more than meets the eye 

   Recently published data provide clear evidence for wider reaching effects of 

p53-mediated transactivation 6. p53 was demonstrated to promote autophagy via 

interference with the survival promoting mTOR pathway 230. In addition, the “Damage 

Regulated Autophagy Modulator” DRAM, a lysosomal protein and activator of macro-

autophagy, whose expression is reduced in human tumors, was recently identified as a 

transcriptional target of p53 231. 

   Interestingly, p53 was recently shown to regulate the expression of microRNAs 

mi-R34a, mi-R34b and mi-R34c, which contribute to p53-mediated apoptosis, senescence 

and cell cycle arrest. 232-237 

   p53 may also have a role in the response to nutrient deprivation: low levels of glucose 

lead to activation of p53 by a pathway which engages AMP activated Kinase (AMPK) 

culminating in p53-phosphorylation and cell cycle arrest 238. Loss of this checkpoint 

allows tumor cells to proliferate abnormally under nutrient-restricted conditions and 

thereby confers a critical growth advantage. 

   p53 induces the transcription of SCO2 (Synthesis of Cytochrome C Oxidase II) which 

is required for assembly of the cytochrome C oxidase (COX) complex 239. Restoration of 

SCO2 expression in p53-deficient tumors is able to restore mitochondrial respiration 239. 

Therefore, p53 inactivation might contribute to the metabolical change of tumor cells 

from oxidative phosphorylation to glycolysis-based energy production, also known as the 

“Warburg effect” 240. 

   Furthermore, p53 induces TIGAR 241 (Tp53-Inducible Glycolysis and Apoptosis 

Regulator). The outcome of TIGAR activity is an elevated glutathion level which serves 

as a scavenger for reactive oxygen species (ROS). The protein products of additional p53 

target genes, such as sestrins 242 and ALDH4 243 act to lower intracellular ROS levels. 

This function of p53 seems to prevent DNA damage. 

   Skin melanocytes and keratinocytes use melanin for protection against UV-irradiation. 

The production of melanin is orchestrated by α-MSH (melanocyte stimulating hormone) 

and pro-opiomelanocortin (POMC), a multicomponent precursor unit from which MSH 

originates by proteolytic cleavage 244. p53, activated by sun exposure, transactivates the 

POMC gene in keratinocytes thereby enhancing MSH production 245. Decreased POMC 
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expression due to mutation of p53 may therefore explain the increase in skin cancer 

caused by inactivation of p53 246. 

 
   Finally, there is an ongoing debate about the role of p53 in life span regulation. While 

constitutive, hyperactive p53 provokes a premature ageing phenotype in mice 247, there is 

evidence that this is not the physiological function of p53 since mice containing an 

additional copy of p53 (“p53-super mice”) display increased tumor protection without 

life-span reduction 248. The same is true for mice expressing low levels of MDM2 or 

elevated ARF levels and consequently increased amounts of p53 protein 249,250. 

Interestingly, mice with elevated, but normally regulated ARF and p53 (“super ARF/p53 
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Figure 4. Downstream pathways activated by p53 
 
After activation of p53, which is triggered by various incoming signals, p53 can elicit a multitude 
of cellular responses which involve different sets of target genes. Best characterized are p53-
mediated cell cycle arrest and apoptosis with the decision between these two outcomes being 
dependent on the cellular background and the presence of different co-factors. p53 can also 
promote DNA repair after moderate DNA damage or enables cells to respond to nutrient 
deprivation by regulating genes of the metabolic pathway. p53 has a geno-protective role by 
mediating the removal to metabolically generated reactive oxygen species. p53 also protects 
against UV exposure by influencing the melanin production in skin. 
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mice”) exhibit a strong resistance against cancer and a reduced level of ageing-related 

DNA damage 251. Therefore, p53 may have a function in the protection against cellular 

ageing. 

   In conclusion, p53 may serve to protect cells from genomic damage but may also 

eliminate cells that were damaged to severely. For that reason, a model was proposed in 

which, dependent on the stress level, p53 is able to switch from a role as a cellular 

protector to an executioner 252. 

 

1.3 The proto-oncogene c-MYC 

1.3.1 c-MYC is activated in human neoplasia 

   In 1979, the first c-MYC gene was discovered as the transforming gene (v-MYC) carried 

by the MC29 myelocytomatosis virus, a descendant of avian leukosis virus (ALV) 253. 

From this initial finding it took another 3 years until the cellular proto-oncogene c-MYC 

was implicated in human cancer due to its translocation in Burkitt`s lymphoma 

(BL) 254,255. In BL, the c-MYC locus on 8q24.21 is constitutively activated by enhancer 

sequences of immunoglobulin genes due to a chromosomal translocation. As a 

consequence, c-MYC expression becomes independent from physiological signals 256,257. 

Rearrangements of the c-MYC proto-oncogene are also common in other types of 

hematopoietic malignancies, such as acute lymphoblastic leukemia 258 (ALL), multiple 

myeloma 259 (MM) and primary plasma cell leukemia 260 (PCL). Further studies revealed 

c-MYC is also over-expressed in human tumors that have not undergone translocations of 

the c-MYC locus. In these cases, stabilization of c-MYC mRNA 261,262 or increased 

translation of c-MYC mRNA due to a mutated internal ribosomal entry site 263 can lead to 

increased protein levels of c-MYC. Phosphorylation sites located within the N-terminal 

domain of c-MYC modulate its transforming potential 264,265 and their mutation in cancer 

compromises degradation of c-MYC 266. c-MYC negatively auto-regulates its own 

expression and this mechanism is lost in transformed and tumor derived cell lines 267,268. 

In most solid tumors, gene amplification accounts for aberrant expression of c-

MYC 269,270. E.g. amplification of c-MYC occurs in 20-30% of breast carcinomas and is 

related to poor prognosis 271-274. Viral promoter insertion also accounts for increased 
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expression of c-MYC in human tumors 275 and activating mutations in upstream 

regulators, such as PDGF 276,277 or Notch1 278,279 contribute to c-MYC activation. In colon 

carcinoma, mutations affecting the Wnt/APC/β-catenin pathway activate the expression 

of c-MYC 280-282. 

1.3.2 Regulation of the c-MYC proto-oncogene 

   Soon after c-MYC had been implicated in tumorigenesis, its expression in different cell 

types turned out to be strongly related to mitogenic signaling and proliferation 283,284. 

c-MYC levels are very low in quiescent cells 285. However, a rapid increase of c-MYC 

mRNA and protein occurs when cells are exposed to mitogens 285,286. After this initial 

peak, c-MYC levels gradually decline to remain at a basal level in cycling cells 287,288. 

c-MYC levels rapidly increase in response to serum stimulation 285 or mitogenic signals 

such as lipopolysaccharides 283 and platelet-derived growth factor (PDGF) 283,284. Early 

findings pointed to a strict requirement of Src kinases for induction of c-MYC by 

PDGF 289. It turned out that PDGF-stimulated, Src-dependent phosphorylation of Vav2, a 

guanine nucleotide exchange factor (GEF) and the consequent activation of a Rac-

dependent pathway mediates induction of c-MYC 290. In addition, the NOTCH1 and Wnt 

signaling pathways act as positive regulators of c-MYC 279-281. In contrast, transforming 

growth factor beta (TGF-β)  leads to repression of c-MYC via Smad proteins in human 

skin keratinocytes and mammary epithelial cells 291,292. Another co-factor essential for 

TGF-β-mediated repression of c-MYC is C/EBPβ which is commonly inactivated in 

human cancer due to activation of its inhibitor LIP 293.  

   The short half-life of c-MYC protein (15-30 min)294,295 allows a stringent control of 

c-MYC activity. Degradation of c-MYC protein is ubiquitin-dependent and catalyzed by 

the 26S proteasome 266,296. Several E3-ligases have been implicated in targeting c-MYC 

for proteasomal degradation, such as SCF E3-ligase complexes containing the F-box 

proteins Skp2 297 or Fbw7/hCDC4 298,299. The ubiquitin-specific protease USP28 

associates with c-MYC indirectly via Fbw7 and USP28-mediated de-ubiquitination may 

cause stabilization of c-MYC in human tumors 300. 



Introduction 

20 

 
   The Ras effector pathway controls c-MYC stability 301 via modification of two 

functionally opposing phosphorylation sites 302. Upon growth-factor stimulation, Ser-62 

phosphorylation stabilizes c-MYC presumably via ERK 302. Ser-62 phosphorylation of 

c-MYC is a prerequisite for phosphorylation at Thr-58, which is catalyzed by glycogen 

synthase kinase 3 beta (GSK3β)302. Phospho-Thr58 represents a binding site for the 
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Figure 5: Regulation of c-MYC. 
 
A multitude of upstream signaling pathways tightly control c-MYC mRNA and protein level. 
Stimulation of PDGF influences c-MYC protein turnover via two routes: In cycling cells, the 
Ras/Raf/MEK/ERK pathway stabilizes c-MYC via phosphorylation at Ser62, while PI3K/Akt 
signaling promotes phosphorylation of c-MYC at Ser58 through GSK3β culminating in c-MYC 
degradation. The E3-ligases Fbw7 and Skp2 ubiquitinate c-MYC thereby targeting it for 
proteasomal degradation. While the concerted action of Pin1/PP2A favors ubiquitination of 
c-MYC by Fbw7, CBP-mediated c-MYC acetylation counteracts its ubiquitination. PDGF-
mediated Rac-signaling exerts a positive effect on c-MYC mRNA expression. Activation of the 
Frizzled receptor by Wnt triggers recruitment of Dishevelled leading to inhibition of GSK3β 
and as a result, unphosphorylated β-catenin (β-cat) is not longer degraded, accumulates in 
the cytosol, translocates to the nucleus and complexes with the transcription factor TCF4 to 
activate c-MYC. Activation of Notch1 by its ligands Delta or Jagged targets Notch1 for 
proteolytic cleavage and the released intracellular domain of Notch1 (N1-TAD) translocates to 
the nucleus, where it interacts with members of CSL transcription factors and induces c-MYC 
expression. Finally, TGF-β leads to repression of c-MYC via a complex containing Smad3/4, 
E2F4/5, DP1 and p107. An essential co-factor of TGF-β-mediated repression of c-MYC, 
C/EBPβ, is inactivated by LIP, which is commonly over-expressed in tumors and augments c-
MYC expression. U: ubiquitin, P: phosphate group, Ac: acetyl group.  
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E3-ligase Fbw7/hCDC4, which promotes ubiquitination and degradation of 

c MYC 298,299. After mitogenic stimulation, the increased activity of the Ras-PI(3)K/Akt 

pathway leads to phosphorylation of GSK3β which consequently gets inactivated and 

thereby facilitates stabilization of c-MYC 303. Subsequently, Akt activity declines, which 

favors the degradation of c-MYC. Phosphorylation of c-MYC at Thr-58 generates a 

binding site for the prolyl isomerase PIN1 and modification of P59 by PIN1 allows 

recruitment of protein phosphatase 2A (PP2A) to c-MYC 304. PP2A in turn catalyzes the 

de-phosphorylation of c-MYC at Ser-62 which promotes ubiquitination and proteasomal 

degradation of c-MYC 304. Another example for regulation of c-MYC by post-

translational modification is its acetylation by CREB binding protein (CBP) which 

interferes with ubiquitination and, as a consequence, stabilizes c-MYC 305. 

1.3.3 c-MYC acts as a transcription factor 

   The c-MYC gene consists of three discrete exons and encodes for a protein of 439 

amino acids (64 kDa) 306. Due to alternative translation-initiation from an upstream non-

AUG (CUG) and a downstream AUG start site, two additional isoforms of c-MYC with 

distinct N-termini occur in cells 307,308. The C-terminal region of c-MYC contains a 

leucine zipper (LZ) and a helix-loop-helix motif (HLH) which are common to a class of 

related transcription factors 309,310. Via its HLH-LZ-dimerization motif c-MYC 

selectively heterodimerizes with the bHLH-LZ transcription factor MAX 311,312. The 

c-MYC/MAX heterodimer activates transcription via binding to the E-box consensus 

sequence CA(C/T)GTG in the vicinity of target gene promoters 313,314.  

   The N-terminus of c-MYC functions as a transactivation domain 315 and can be 

subdivided into smaller, evolutionary conserved regions: c-MYC homology boxes 

(MycBox) I and II have been implicated in c-MYC-mediated cellular transformation 316, 

apoptosis 317 and inhibition of differentiation 318. MycBox III and MycBox IV are also 

necessary for cellular transformation and MycBox III has been implicated in c-MYC-

mediated apoptosis and transcriptional repression 319 whereas MycBox IV, besides 

affecting c-MYC-induced apoptosis and G2 arrest, modulates DNA binding by 

c-MYC 320. While the transactivation domain of c-MYC, which contains MycBox I 

and II, is critical for c-MYC-induced proliferation 321, the relative contribution of 
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MycBox III and IV motifs to cellular proliferation driven by c-MYC is a subject of 

ongoing research 322. The observation that MycBox I is dispensable for transactivation 

but required for cellular transformation 315 indicates that c-MYC may have transcription-

independent functions. 

1.3.4 Transactivation of c-MYC target genes 

   Transcriptional activation by c-MYC involves the association of the c-MYC/MAX 

heterodimer with co-factors and their recruitment to target gene promoters 322 323. c-MYC 

is able to recruit histone acetyltransferase (HAT) activity 324 to promoters of target genes 

via association with TRRAP (TRansformation/tRanscription domain-Associated 

Protein) 325,326. c-MYC-mediated target gene activation is associated with an increase in 

histone H3 and histone H4 acetylation in the respective promoter region 327,328. The 

evolutionary conserved TRRAP protein directly binds to MycBox II and association with 

TRRAP is essential for c-MYC-mediated transformation 324. TRRAP itself represents a 

component of the highly conserved protein complex SAGA 

(SPT/ADA/GCN5/Acetyltransferase), which is involved in transcriptional regulation and 

contains the histone acetyltransferase GCN5 329,330. In addition, TRRAP represents the 

core component of the H2A/H4 histone acetylase TIP60 complex which also contains the 

ATPases TIP48 and TIP49 324,331. c-MYC further recruits the SWI-SNF complex via 

direct association of MycBox II with the SNF5 homolog INI1/hSNF5 332. This 

multiprotein complex activates transcription by chromatin-remodelling in an ATP-

dependent manner 333. However, MycBox II is not required for transactivation of all 

c-MYC target genes and further mechanisms exist by which c-MYC can achieve 

transactivation 334. The HATs CBP and p300 associate with the C-terminus of c-MYC 

and are recruited to promoters of c-MYC target genes 305. Alltogether, the above 

mentioned co-factors promote transcription by chromatin-remodelling and histone 

acetylation which opens the DNA-nucleosome structure 335. Thereby, this modification of 

the so-called “histone code” facilitates the access of proteins to chromatin and the 

formation of transcriptional complexes at gene promoters 336.  

   Besides recruitment of HAT activity, c-MYC promotes efficient transcription 

elongation via the positive transcription elongation factor b (p-TEFb) 337. Recruitment of 
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p-TEFb by c-MYC/MAX leads to C-terminal phosphorylation of RNA-Polymerase II and 

promoter clearance 337-339. The serine/threonine kinase PIM1 associates with the 

c-MYC/MAX dimer via MycBox II and catalyzes phosphorylation of histone H3 at Ser10 

thereby enhancing the transcriptional capacity of c-MYC 340. Finally, ubiquitination and 

protein turnover of c-MYC has been implicated in its transcriptional activity 341 and the 

SCF E3-ligase component Skp2 augments transactivation by c-MYC 297,342. Similarly, the 

HectH9 ubiquitin ligase, which ubiquitinates c-MYC at multiple sites, is able to augment 

the transcriptional activity of c-Myc 343. 

   In contrast to c-MYC, the ubiquitously expressed MAX protein can form homo-dimers 

to directly contact DNA 312 but MAX homodimers lack transactivation activity 344. MAX 

heterodimerizes with other bHLH-LZ transcription factors, e.g. Mad1 345, 

Mxi1(Mad2) 346, Mad3 347, Mad4 347, Mnt (Rox) 348 and Mga 349. These MAX-containing 

heterodimers recruit histone-deacetylases (HDAC) to E-box promoters by direct 

association with the co-repressor SIN3 350,351. The HDAC-catalyzed removal of 

acetylated histone-tails closes the conformation of chromatin and results in gene 

repression 352. c-MYC, which is highly expressed in proliferating, non-differentiated 

cells, is down-regulated when cells undergo arrest or terminal differentiation whereas the 

expression of Mad/Mnt factors is being induced 353. The process of terminal 

differentiation of human promyelocytic leukemia cells is accompanied by a switch from 

c-MYC/MAX to Mad/MAX heterodimers 354. 

1.3.5 c-MYC-mediated target gene repression 

   Initial studies revealed that c-MYC is able to repress the adenoviral late promoter 

(AdMLP) 355. Also the differentiation-specific factors c/EBPα and serum albumine are 

repressed by c-MYC 356. This effect is dependent on so-called initiator (Inr) elements, 

which are 17 bp pyrimidine-rich motifs 356,357. With the exception of the p27KIP1 

promoter 358, c-MYC does not directly contact the DNA of promoters in repressed target 

genes 359,360. Instead, c-MYC is recruited to these promoters by binding to other, 

promoter-associated proteins such as MIZ1 361, YY1 362, Sp1 363, GTF2I (TFII-I) 355 and 

NF-Y 364 which transactivate gene expression. c-MYC interferes with the function of 

these transcription factors or blocks the access to essential co-factors. In case of MIZ1, 
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c-MYC competes with binding of the transcriptional co-activator p300 to MIZ1 at the Inr 

element 359. Alternatively, TIP48 and TIP49 may be involved in the transcriptional 

repression through the c-MYC-MIZ1 complex 365. Another study suggested that c-MYC 

recruits the co-repressor DNA methyltransferase Dnmt3a, which is required for de novo 

DNA methylation 366, to promoters of target genes via association with MIZ1 367. 
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Figure 6: c-MYC target gene regulation.  
 
c-MYC-MAX heterodimers transactivate target genes by binding to E-box elements and 
recruitment of several co-activators. These co-activators include the ATPases TIP48 and 
TIP49 (not shown), histone acetyltransferases such as GCN5, TIP60, CREB binding protein 
(CBP) and p300. GCN5 and TIP60 are indirectly associated with c-MYC through TRRAP 
which directly binds to MycBox II, a conserved element in the c-MYC transactivation domain. 
Other co-activators interacting with MycBox II are the serine/threonine kinase PIM1, positive 
transcription elongation factor b (p-TEFb) and the chromatin-remodelling complex SWI/SNF. 
Association with E3-ligases SCF-Skp2 or HectH9 are additional mediators of target gene 
activation by c-MYC. Mad/MAX or Mnt/MAX heterodimers antagonize transactivation by 
c-MYC through competing with c-MYC/MAX at target gene promoters and recruitment of 
histone deacetylases (HDAC) via SIN3. c-MYC/MAX heterodimers inhibit the activating 
transcription factor MIZ1 by blocking its access to p300 and recruitment of the DNA 
methyltransferase Dnmt3a. The ATPases TIP48 and TIP49 have also been implicated in c-
MYC/MAX-mediated transcriptional repression. RNA Pol II: RNA polymerase II (adapted 
from Ref. 323) 
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1.3.6 The c-MYC target gene network 

   Multiple aspects of c-MYC biology are closely linked to its ability to transactivate and 

repress target genes 322. Expression array analyses, serial analysis of gene expression 

(SAGE) and analysis of c-MYC DNA binding sites revealed a large number of RNA 

Polymerase II (Pol II) regulated genes whose expression is influenced by c-MYC 368-371. 

However, recent reports have demonstrated that the profound effect of c-MYC on cellular 

growth and proliferation is due to its ability to influence transcription by all three nuclear 

RNA polymerases 372,373. In addition, c-MYC has been implicated in the regulation of 

microRNAs 374,375. A cluster of six microRNAs (= mir-17-92) located at chromosome 13 

is directly induced by c-MYC and limits translation of E2F1 374. Interestingly, the mir-17-

92 polycistron has also been characterized as a human oncogene 375, promotes tumor 

angiogenesis 376 and blocks differentiation of lung progenitor cells 377. 

   The genes regulated by c-MYC are involved in metabolic processes, cellular adhesion, 

organization of the cytoskeleton, cell cycle regulation, mitochondrial homeostasis, 

protein biosynthesis and DNA repair 256. Alltogether, c-MYC may regulate up to 15% of 

all genes present in the human genome 256. However, only a fraction of these genes is 

responsive to c-MYC in all cell types analyzed 378. Whether these genes are direct targets 

of c-MYC or respond indirectly to secondary events triggered by c-MYC activation is 

unknown in most cases. A direct c-MYC target gene is defined as a gene whose promoter 

is bound by c-MYC/MAX complexes which trigger its expression in the absence of de 

novo protein biosynthesis 379. There is compelling evidence that the combined actions of 

multiple genes regulated by c-MYC contribute to the effects of c-MYC activation on cell 

cycle progression since a genome-wide screen revealed that the slow proliferation 

phenotype of c-MYC-deficient RAT1 cells can only be rescued by c-MYC or N-MYC, 

but not any other single cDNA 380. 

1.3.7 Biological consequences of c-MYC activation 

   Hanahan and Weinberg suggested that six essential alterations in cellular behaviour 

caused by distinct genetic alterations in cancer cells collectively account for malignant 

growth: self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, 

evasion of programmed cell death, limitless replicative potential, sustained angiogenesis, 



Introduction 

26 

and tissue evasion and metastasis 381. Notably, oncogenic activation of c-MYC has been 

experimentally linked to all of these processes 382. 

1.3.7.1 c-MYC and cellular proliferation 

   c-MYC activation is sufficient for induction of DNA synthesis and promotes cell cycle 

re-entry in quiescent fibroblasts 383,384. Targeted deletion of c-MYC in embryonic stem 

cells leads to retarded embryonic growth and development, which culminates in 

embryonic lethality 385. This effect highlights the role of c-MYC in normal growth 

control and development. During development, c-MYC expression can be detected in a 

variety of tissues and correlates with proliferation, while downregulation of c-MYC leads 

to cell cycle arrest and onset of differentiation 386-388. A critical role for c-MYC in cell 

cycle control became also obvious in c-MYC-deficient rat fibroblasts which show a 

reduced proliferation rate and cell cycle defects in the G1 phase, as delayed 

phosphorylation of the retinoblastoma protein (pRb) 389. 

1.3.7.2 c-MYC-mediated regulation of the cell cycle 

   The decision between quiescence and proliferation is made in the G1 phase of the cell 

cycle at the so-called “restriction point” (R) 390,391. This decision is governed by the 

phosphorylation state of the pRb protein: hypophosphorylated pRb obstructs passage 

through the R point while hyperphosphorylated pRb allows entry into S phase. c-MYC 

affects this important stage of the cell cycle at various levels: CCND2 (Cyclin D2) and 

CDK4 (Cyclin dependent kinase 4) are direct c-MYC target genes 392,393. As a 

consequence of c-MYC activation, the CDK inhibitors p21 and p27KIP1 are sequestered in 

Cyclin-D-CDK4 complexes 392,394, which augments Cyclin-E-CDK2 activity. Thr187 

phosphorylation of p27KIP1 by Cyclin-E-CDK2 is a prerequisite for dissociation of 

p27KIP1 from Cyclin-E-CDK2 395 and SCF-Skp2 E3-ligase-mediated ubiquitination and 

proteasomal degradation of p27KIP1 396,397. The SCF-Skp2 components CUL1 and CKS 

are directly induced by c-MYC 368,398. p27KIP1-free Cyclin-E-CDK2 complexes are 

accessible to an activating phosphorylation by Cyclin-Activating Kinase (CAK) 399, 

which is activated by c-MYC via a newly described post-transcriptional mechanism 400. 
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In addition, c-MYC- and E2F-mediated transactivation of the CDC25A phosphatase 

stimulates CDK2 activity 401,402. c-MYC also leads to CDK activation via repression of 

the CDK inhibitors p21, p27KIP1, p15INK4B, and p16INK4A 403,404. Once activated, Cyclin-E-

CDK2 and Cyclin-D-CDK4 catalyze hyper-phosphorylation of the pocket proteins 

pRb 405, p107 and p130 406 and the released E2F transcription factors associate with DP1 

leading to expression of various genes essential for cell cycle progression 405. c-MYC 

furthermore activates a dominant-negative antagonist of Rb family members, Id2, and 

thereby increases E2F activity 407. c-MYC is also able to directly induce expression of the 

genes encoding the transcription factors E2F1 369, E2F2 408 and E2F3 409. Others provided 
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Figure 7: c-MYC and cell cycle entry at the G1/S boundary. 
 
c-MYC activates cyclin-dependent kinases (CDKs) mandatory for G1/S progression by 
inducing Cyclin D2 and CDK4 and repression of CDK inhibitors p15Ink4b, p21 and p27KIP1. 
Increased CDK activity and the following hyperphosphorylation of the Retinoblastoma protein 
(pRb) liberates E2F which launches a transcriptional program that drives cell cycle 
progression through S phase. Besides direct transcriptional modulation of the CDK 
machinery, c-MYC activates CDK2 by promoting the degradation of p27KIP1 and via the 
CDC25A phosphatase which de-phosphorylates CDKs. Inactivation of pRb may also be 
achieved by c-MYC via activation of Id2, an inhibitor of pRb family members. Furthermore, 
E2F1-3 represent direct targets of the c-MYC proto-oncogene. Adapted from Ref. 1. 
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evidence that c-MYC drives G1/S progression independent of E2F activity and via direct 

regulation of Cyclin-E-CDK2 function 410. 

1.3.7.3 c-MYC and differentiation 

   Early findings revealed a role of c-MYC in blocking terminal differentiation in diverse 

cell types, as adipocytes or myoblasts 411,412. During differentiation, expression of c-MYC 

is down-regulated by SWI/SNF-complexes 413 and C/EBPα 414 and, as a consequence, 

differentiation-promoting genes, which are repressed by c-MYC, are up-regulated, such 

as p15Ink4b 359, p21 415, C/EBPα 416 and H-ferritin 417. The down-regulation of c-MYC is 

accompanied by a switch from c-MYC/MAX to Mad/MAX heterodimers bound to 

chromatin 354 and, as a consequence, target genes, which have de-differentiating 

functions, are down-regulated. c-MYC plays an important role in the maintenance of 

undifferentiated, proliferative progenitor cells in the intestinal epithelium 281,418. 

Unexpectedly, enforced expression of c-MYC promotes differentiation of skin epidermal 

cells 419. The ability of c-MYC to reduce adhesive interactions between stem cells 

presumably causes this differentiation-promoting effect in skin epidermal cells 420. 

Similarly, activation of c-MYC causes down-regulation of integrins and N-cadherin in 

hematopoietic stem cells (HSCs), which leads to premature exit of HSCs from the stem 

cell niche and differentiation 421. Furthermore, c-MYC represses E-cadherin via a post-

transcriptional mechanism, which reduces cellular adherens and promotes transformation 

of mammary epithelial cells 422. Notably, the detachment of cell-cell contacts plays a 

critical role in tumor invasion and metastasis 423. 

1.3.7.4 c-MYC and apoptosis 

   Ectopic expression of c-MYC was found to promote apoptosis in murine hematopoietic 

cells 424 and in mouse fibroblasts 317. Survival factors, like the serum cytokines insulin-

like growth factor (IGF) or platelet-derived growth factor (PDGF), suppress 

c-MYC-induced apoptosis independently of their cell cycle promoting capacity 425. 

c-MYC also sensitizes cells to apoptosis after treatment with genotoxic drugs 317 and 

enhances the cytotoxicity of TNF-α 426,427, CD95 428 and various other stimuli 429. 

c-MYC-induced apoptosis is mediated by the tumor suppressor p53 147. This effect is at 
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least in part mediated by the induction of ARF, an inhibitor of the p53-specific E3-ligase 

MDM2 430. In addition, c-MYC is able to stimulate cytochrome C release from 

mitochondria in an ARF- and p53-independent manner 431. This process is essential for 

Bax oligomerization and activity 432,433. Furthermore, c-MYC mediates cytochrome C 

release by inducing the BH3-only protein BIM 434 and repression of the anti-apoptotic 

factors Bcl-XL and Bcl-2 435,436. Apoptosis might also be provoked via induction of DNA 

damage: activation of c-MYC by the c-MYC-ER system was shown to provoke DNA 

damage in normal human fibroblasts (NHF) via generation of reactive oxygen species 

(ROS) 170. In contrast, generation of DNA double strand breaks by a tet-regulatable 

c-MYC allele in NHFs and normal murine lymphocytes was demonstrated to occur in the 

absence of ROS generation 437. Interestingly, ectopic expression of c-MYC leads to 

elevated activity of replication origins culminating in activation of a DNA damage 

response 169. Several other oncogenes were also shown to provoke DNA damage via 

inducing replication stress 172,173. 

1.3.7.5 c-MYC influences cell growth and vascularization 

   c-MYC is able to promote cell growth independent of cellular proliferation and this can 

be attributed to its ability to enhance protein biosynthesis 438,439. A profoundly increased 

synthesis of new proteins is one of the first events which occur after mitogenic 

stimulation. Ribosomal assembly is a tightly regulated process that requires coordinated 

transcription mediated by all three RNA polymerases 440,441. Besides regulating Pol II-

mediated gene expression, c-MYC enhances the Pol I-mediated transcription of 

ribosomal RNAs via binding to rDNA and association with the Pol I-specific factor 

SL1 372,442,443. c-MYC also activates Pol III transcription and enhances the expression of 

transfer RNAs and 5S ribosomal RNA by direct association with TFIIIB 373 and via 

recruitment of the co-factors TRRAP and GCN5 which leads to acetylation of 

histone H3 444. The gene encoding the ribosomal protein L11 is a direct transcriptional 

target of c-MYC and negatively regulates c-MYC function at target gene promoters and 

therefore L11 and c-MYC constitute a negative feedback loop 445. L11 might act as a 

sensor of aberrant ribosomal biogenesis and presumably maintains homeostasis during 

ribosome assembly by regulating c-MYC activity. Finally, c-MYC induces the expression 
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of PES1, BOP1 and WDR12 whose protein products form a stable complex which is 

involved in rRNA processing 446-448. 

   c-MYC is also involved in the process of vascularization 449: c-MYC increases the 

mRNA-turnover of the anti-angiogenic factor Tsp-1 450 and is required for the expression 

of vascular endothelial growth factor (VEGF) 449. 

 

   Immortalization of cells is another hallmark of c-MYC activation 451,452 and c-MYC 

cooperates with the RAS oncogene in cellular transformation 453. Interestingly, c-MYC 

mutants still able to transactivate target genes while lacking the repressive potential due 

to deletion of MycBox II are unable to block cellular differentiation and do not cooperate 

with Ras in cellular transformation 356,379. A mutant c-MYC protein, carrying a deletion 

of the N-terminal MycBox I, is defective for cellular transformation despite retaining 

transcriptional activity 319. This observation raised the possibility that c-MYC contributes 

to oncogenic transformation via non-transcriptional pathways. Indeed, c-MYC interacts 

with components of the DNA replication machinery, as e.g. MCM2-7, Cdc6, ORC and 

Cdt1 proteins 169,454. c-MYC was recently shown to promote DNA replication by a 

non-transcriptional mechanism 169. Notably, activation of c-MYC leads to enhanced DNA 

replication accompanied by DNA damage 169,455 and the resulting genomic instability, 

which is a feature of c-MYC-overexpressing cancer cells 456, might contribute to 

tumorigenesis. However, the exact mechanism through which c-MYC directly enhances 

DNA replication is currently unknown. 

1.3.8 c-MYC in tumor maintenance and progression 

   Transgenic mouse models have provided a direct link between c-MYC and 

tumorigenesis: constitutively de-regulated expression of c-MYC under control of the 

tissue specific mouse mammary tumor virus (MMTV) promoter leads to accelerated 

development of mammary adenocarcinoma 457,458. When expression of c-MYC is brought 

under control of the immunoglobulin (Ig) -µ or the Ig-κ enhancer, mice develop 

lymphoma early after birth 459,460. Further insight came from approaches using 

conditional c-MYC alleles in transgenic mice: in pancreatic β-cell oncogenesis, the 

oncogenic potential of c-MYC is counterbalanced by apoptosis 382. When c-MYC-
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induced apoptosis was blocked by co-expression of Bcl-XL, the complete c-MYC 

oncogenic program, which leads to progression into angiogenic, invasive tumors, was 

uncovered 382. Similarly, mouse model systems employing conditional c-MYC alleles 

under control of tissue specific promoters have been used to study tumor development in 

hematopoietic cells 461, mammary gland 462, liver cells 463 and skin 464. 

   An important conclusion, which emerged from these studies, was dependence of the 

tumor cells on sustained activation of an oncogenic pathway, also termed “oncogene 

addiction” 465,466. The first hint that c-MYC-induced tumorigenesis might be reversible 

came from a study focusing on hematopoietic tumor development 461. It is now clear that 

the consequences of c-MYC inactivation are dependent on the type of tumor. Brief 

inactivation of c-MYC is sufficient to allow sustained regression of osteogenic sarcomas 

accompanied by differentiation into mature osteocytes 467. Others showed that 

inactivation of c-MYC causes regression of invasive hepatocellular carcinoma 463. 

Interestingly, loss of c-MYC provoked differentiation of liver tumor cells into normal 

hepatic lineages and a concomitant loss of tumor marker expression 463. However, 

restoration of c-MYC function leads to an immediate restoration of the neoplastic 

capacity in this system, showing that c-MYC inactivation causes “tumor dormancy” with 

cells retaining a latent potential to become cancerous 463. In contrast, only a small number 

of c-MYC-induced mammary carcinomas undergo transient tumor regression after 

inactivation of c-MYC and a rapid tumor recurrence was observed upon re-activation of 

c-MYC 468. In most cases mammary carcinomas induced by c-MYC rapidly progress to a 

state which is independent of c-MYC activation 468. While activation of secondary 

oncogenic pathways, such as KRAS2 activation, were suggested to be responsible for this 

escape of mammary carcinomas from c-MYC-dependence 462, later studies showed that 

this accounts only for a minor fraction of these tumors 468. A mechanism potentially 

responsible for the escape of c-MYC-induced tumors from their addiction is 

c-MYC-mediated genomic instability 467 which eventually causes inactivating mutations 

in tumor suppressor genes or activates alternative oncogenic pathways. Since the 

recurrence of tumors after c-MYC inactivation due to secondary events may represent a 

major problem during therapeutic oncogene inactivation 469, recent efforts aim to develop 

strategies to override the mechanisms of tumor escape from oncogene-dependence 470,471. 
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1.4 Aim of the study 

   The first goal of this study was to comprehensively identify p53-interacting proteins 

using an improved tandem affinity purification (TAP) approach 472, called “iTAP” 473, in 

combination with Multidimensional Protein Identification Technology (MudPIT) 474, 

which is a highly accurate and sensitive mass-spectral method. Newly identified p53 

interactors should then be subjected to functional analyses in order to determine their 

relevance for the DNA damage/p53 response. 

   In parallel the characterization of novel c-MYC target genes was performed. Although 

several genome-wide studies to identify c-MYC target genes have been reported 

previously, none of these was performed in human epithelial cells, which are highly 

relevant for cancer formation. Therefore, the first step of this study was the establishment 

of a conditional c-MYC expression system in breast epithelial cells. Subsequently, a 

global analysis of c-MYC-regulated genes was planed. Ultimately, cancer-relevant 

c-MYC target genes should be functionally characterized in detail. 
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2 Materials 

2.1 Chemicals and Reagents 

 
Compound 
 

Supplier 
 

1 kb DNA ladder Invitrogen GmbH, Karlsruhe 
10 bp DNA ladder Invitrogen GmbH, Karlsruhe 
100 bp DNA ladder Carl Roth GmbH & Co, Karlsruhe 
4-Hydroxytamoxifen (4-OHT) SIGMA-ALDRICH, St.Louis, MD, USA 
5-bromo-2`-deoxyuridine (BrdU) Roche Diagnostics GmbH, Mannheim 
AccuGel 19:1 (40% acrylamide for DNA gels) National Diagnostics, Georgia (USA) 
AccuGel 37.5:1 (30% acrylamide for protein 
gels) 

National Diagnostics, Georgia (USA) 

Adriamycin (Doxorubicin) SIGMA-ALDRICH, St.Louis, MD, USA 
Agarose PEQLAB Biotechnologie GmbH, Erlangen 
Albumin bovine serum, fatty acid free SIGMA-ALDRICH, St.Louis, MD, USA 
Ammonium peroxodisulfate (APS) Bio-Rad Laboratories GmbH, Munich 
Ampicillin Roche Diagnostics GmbH, Mannheim 
Bacto® agar Becton Dickinson GmbH, Sparks, USA 
Bacto® tryptone Becton Dickinson GmbH, Sparks, USA 
Bacto® yeast extract Becton Dickinson GmbH, Sparks, USA 
Bromphenol blue SIGMA-ALDRICH, St.Louis, MD, USA 
Calmodulin affinity resin Stratagene GmbH, Heidelberg 
Chloramphenicol SIGMA-ALDRICH, St.Louis, MD, USA 
Chloroquine diphosphate SIGMA-ALDRICH, St.Louis, MD, USA 
Complete mini protease inhibitor cocktail Roche Diagnostics GmbH, Mannheim 
Complete mini protease inhibitor cocktail, 
EDTA-free 

Roche Diagnostics GmbH, Mannheim 

Coomassie G250 SERVA Electrophoresis GmbH, Heidelberg 
DABCO (1,4-Diazabicyclo[2,2,2]octane) SIGMA-ALDRICH, St.Louis, MD, USA 
DAPI (2-(4-Amidinophenyl)-6-indolecarb- 
   amidine dihydrochloride) 

SIGMA-ALDRICH, St.Louis, MD, USA 

Deoxynucleotides triphosphate (dNTPs) ABgene Deutschland, Hamburg 
Diphtheria Toxin  SIGMA-ALDRICH, St.Louis, MD, USA 
Dithiothreitol (DTT) SIGMA-ALDRICH, St.Louis, MD, USA 
DMSO SIGMA-ALDRICH, St.Louis, MD, USA 
Doxycycline hydrochloride SIGMA-ALDRICH, St.Louis, MD, USA 
Ethidium bromide Carl Roth GmbH & Co, Karlsruhe 
Etoposide SIGMA-ALDRICH, St.Louis, MD, USA 
Fetal bovine serum (FBS) Invitrogen, Carsbad, CA (USA) 
Fluoromount G SouthernBiotech, Birmingham, AL, USA 
Freund's adjuvant incomplete SIGMA-ALDRICH, St.Louis, MD, USA 
FuGENE®6 transfection reagent Roche Diagnostics GmbH, Mannheim 
Geneticin® (G418) Invitrogen GmbH, Karlsruhe 
Glycogen from mussels Roche Diagnostics GmbH, Mannheim 
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Compound 
 

Supplier 
 

Herring sperm carrier DNA Promega GmbH, Mannheim 
HiPerFect Transfection Reagent Qiagen GmbH, Hilden, Germany 
Hygromycin B (HygB) Invitrogen GmbH, Karlsruhe 
ICI 182,780 (Fulvestrant) Tocris Biosciences, Missouri, USA 
IgG SepharoseTM 6 Fast Flow Amersham Biosciences, Uppsala, Sweden 
Imidazole (1,3-Diaza-2,4-cyclopentadiene) SIGMA-ALDRICH, St.Louis, MD, USA 
Kanamycin SIGMA-ALDRICH, St.Louis, MD, USA 
Lipofectamine™ 2000 Invitrogen GmbH, Karlsruhe 
Liquid DAB+ (3,3`-diaminobenzidine) 
chromogen 

DakoCytomation, Carpinteria, CA, USA 

Mayer's hematoxylin Merck KGaA, Darmstadt 
MG132 (N-carbobenzoxyl-Leu-Leu-leucinal) Axxora, San Diego, CA, USA 
N,N,N′,N′-Tetramethylethylenediamine SERVA Electrophoresis GmbH, Heidelberg 
N-Ethylmaleimide SIGMA-ALDRICH, St.Louis, MD, USA 
Nickel-nitrilotriacetic acid (Ni-NTA) agarose QIAGEN GmbH, Hilden 
Nonidet-P40 (NP40) SIGMA-ALDRICH, St.Louis, MD, USA 
PageRuler™ prestained protein ladder Fermentas GmbH, St. Leon-Rot 
Paraformaldehyde Merck KGaA, Darmstadt 
Phenol /C/I for RNA extraction Promega GmbH, Mannheim 
Phorbol 12-myristate 13-acetate (TPA) Alexis Biochemicals, Lausen, Switzerland 
Phosphatase inhibitor cocktail 1 SIGMA-ALDRICH, St.Louis, MD, USA 
Protein A-Sepharose 4B, Fast Flow, from 
Staphylococcus aureus 

SIGMA-ALDRICH, St.Louis, MD, USA 

Protein G SepharoseTM 4 Fast Flow Amersham Biosciences, Uppsala, Sweden 
Puromycin dihydrochloride SIGMA-ALDRICH, St.Louis, MD, USA 
Roti®-Phenol/chloroform/isoamylalcohol 
(25/24/1) for DNA extraction 

Carl Roth GmbH & Co, Karlsruhe 

Skim milk powder Fluka Chemie AG, Buchs (CH) 
Sodium dodecyl sulfate (SDS) Carl Roth GmbH & Co, Karlsruhe 
Sodium orthovanadate SIGMA-ALDRICH, St.Louis, MD, USA 
SulfoLink® coupling gel Pierce Biotechnology Inc., Rockford (USA) 
Target Retrieval Solution (TRS), pH 6.1 DakoCytomation, Carpinteria, CA, USA 
TE-buffer for molecular biology Eurobio, Les Ulis (France) 
Tetracycline SIGMA-ALDRICH, St.Louis, MD, USA 
TiterMax® Gold Adjuvant SIGMA-ALDRICH, St.Louis, MD, USA 
Transforming growth factor recombinant 
human (rhTGF-β1) 

R&D Systems, Minneapolis, USA 

Trichloroacetic acid, 6.1 M SIGMA-ALDRICH, St.Louis, MD, USA 
Triton X-100 Carl Roth GmbH & Co, Karlsruhe 
Trizma®base SIGMA-ALDRICH, St.Louis, MD, USA 
Tween® 20 SIGMA-ALDRICH, St.Louis, MD, USA 
Urea Fluka Chemie AG, Buchs (CH) 
Water-Molecular biological grade Eurobio, Les Ulis (France) 
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2.2 Enzymes 

Enzyme 
 

Supplier 

Antarctic Phosphatase (5 U/µl) New England Biolabs GmbH, Frankfurt 
DNAse I, RNAse-free (10 U/µl) Roche Diagnostics GmbH, Mannheim 
FIREPol® DNA polymerase (5 U/µl) Solis BioDyne, Tartu, Estonia 
Pfu DNA polymerase (2-3 U/µl) Promega GmbH, Mannheim 
Platinum® Taq DNA polymerase (5 U/µl) Invitrogen GmbH, Karlsruhe 
VentR

® DNA polymerase (2 U/µl) New England Biolabs GmbH, Frankfurt 
Restriction endonucleases (3-50 U/µl) Fermentas GmbH, St. Leon-Rot 
 New England Biolabs GmbH, Frankfurt 
RNAse A SIGMA-ALDRICH, St.Louis, MD, USA 
T4 DNA ligase (400 U/µl) New England Biolabs GmbH, Frankfurt 
T4 DNA polymerase (3 U/µl) New England Biolabs GmbH, Frankfurt 
TEV protease, recombinant (10 U/µl) Invitrogen GmbH, Karlsruhe 
Trypsin (10×), phenol-red free Invitrogen GmbH, Karlsruhe 
Trypsin-EDTA (1×) Invitrogen GmbH, Karlsruhe 

2.3 Antibodies 

2.3.1 Primary antibodies 

Antibody 
anti- 

species/isotype dilution 
for WB 

dilution for 
IF (IHC) 
[FACS] 

Supplier / 
Reference 

AP4 (N-17) goat polyclonal IgG 1:150 — Santa Cruz 
Biotechnology Inc., 
Santa Cruz (USA) 

AP4 (HPA001912) rabbit polyclonal, 
monospecific IgG 

— (1:125) Atlas Antibodies AB, 
AlbaNova University 
Center, Stockholm 
(Sweden) 

p53 (C-terminus) 
 

goat polyclonal IgG 1:1,000 1:100 This work 

p53 (DO-1) monoclonal mouse 
IgG2a 

1:1,000 — Santa Cruz 
Biotechnology Inc., 
Santa Cruz (USA) 

p53 (1801) monoclonal mouse 
IgG1 

1:1,000 — Santa Cruz 
Biotechnology Inc., 
Santa Cruz (USA) 

p21WAF1 (Ab-11) monoclonal mouse 
IgG2b 

1:1,000 — NeoMarkers, 
Fremont, CA, USA 

p21WAF1 (SX118) monoclonal mouse 
IgG1κ 

— (1:50) DakoCytomation, 
Carpinteria, CA, 
USA 

p15Ink4b (C-20) rabbit polyclonal 
IgG 

1:200 — Santa Cruz 
Biotechnology Inc., 
Santa Cruz (USA) 
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Antibody 
anti- 

species/isotype dilution 
for WB 

dilution for 
IF (IHC) 
[FACS] 

Supplier / 
Reference 

p-Chk2-(Thr 68)-R polyclonal rabbit 
IgG 

1:500 — Santa Cruz 
Biotechnology Inc., 
Santa Cruz (USA) 

β-actin rabbit polyclonal 
IgG 

1:1,000 — SIGMA-ALDRICH, 
St.Louis, MD, USA 

α-tubulin (DM 1A) mouse monoclonal 
IgG1 

1:1,000 — SIGMA-ALDRICH, 
St.Louis, MD, USA, 

c-MYC (N-term) rabbit monoclonal 
IgG 

1:10,000 (1:50) Epitomics, 
Burlingame, CA 
(USA) 

c-MYC (N-262) rabbit polyclonal 
IgG 

1:500 1:50 Santa Cruz 
Biotechnology Inc., 
Santa Cruz (USA) 

BrdU, FITC-
conjugated (set 
including isotype 
control) 

mouse monoclonal 
IgG1κ 

— [1:10] BD Biosciences 
Pharmingen, San 
Diego, CA, USA 

GFP (FL) rabbit polyclonal 
IgG 

1:500 – Santa Cruz 
Biotechnology Inc., 
Santa Cruz (USA) 

Rb (G3-245)  monoclonal mouse 
IgG1 

1:400 — BD Biosciences 
Pharmingen, San 
Diego, CA, USA,  

Ki67 (MIB1) monoclonal mouse 
IgG1κ 

— (1:60) DakoCytomation, 
Carpinteria, CA, 
USA 

Cul7 (clone SA12) mouse monoclonal 
IgG1κ 

1:100 — Gift from James 
DeCaprio 475 

anti-ER (H222) rat polyclonal IgG — 1:50 Gift from Goeffrey 
Greene 

2.3.2 Secondary antibodies 

Antibody Species 
(origin) 

Dilution for 
WB 

Dilution for IF Supplier 

Anti-goat IgG 
(H+L)-HRP 
conjugate 

Donkey 1:10,000 — Jackson ImmunoResearch 
Laboratories Inc., West 
Grove, PA (USA) 

anti-mouse IgG 
HRP-conjugate 

Goat 1:10,000 — Promega GmbH, 
Mannheim 

anti-rabbit IgG 
HRP-conjugate 

Goat 1:20,000 — SIGMA-ALDRICH, 
St.Louis, MD, USA 

Anti-rabbit IgG 
Cy3-conjugate 

Sheep — 1:1,000 SIGMA-ALDRICH, 
St.Louis, MD, USA 

Anti-rabbit IgG 
(H+L) – FITC 
conjugate 

Donkey — 1:100 Jackson ImmunoResearch 
Laboratories Inc., West 
Grove, PA (USA) 
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Antibody Species 
(origin) 

Dilution for 
WB 

Dilution for IF Supplier 

anti-mouse IgG 
(H+L) - Alexa-
Fluor 594 
conjugate  

Goat — 1:500 Invitrogen GmbH, 
Karlsruhe 

anti-rabbit IgG 
(H+L) - Alexa-
Fluor 488 
conjugate 

Goat — 1:500 Invitrogen GmbH, 
Karlsruhe 

2.4 Disposables and kits 

Product 
 

Supplier 

AEC substrate kit for peroxidase Vector Laboratories Inc., Burlingame, CA 
(USA) 

Assistent-coverslip (12 mm, round) Schubert&Weiss, Munich 
0.45 µm Millex-HA filter units Millipore GmbH, Schwalbach 
0.22 µm Millex-GV filter units Millipore GmbH, Schwalbach 
96-well white polystyrene microtiter plate Corning GmbH, Kaiserslautern 
3MM Whatman® filter paper Whatman GmbH, Dassel 
Amicon® Ultra-15 centrifugal filter devices Millipore GmbH, Schwalbach 
BigDye® terminator v3.1 sequencing mix Applera Deutschland GmbH, Darmstadt 
Costar® Spin-X tubes Corning GmbH, Kaiserslautern 
Dual-Luciferase® Reporter Assay System Promega GmbH, Mannheim 
Luciferase 1000 Assay System Promega GmbH, Mannheim 
Imject® Maleimide Activated mcKLH Kit Pierce Biotechnology Inc., Rockford (USA 
Immobilon-P PVDF Transfer Membrane Millipore GmbH, Schwalbach 
LightCycler® Fast Start DNA Master 
   SYBR Green Kit 

 
Roche Diagnostics GmbH, Mannheim 

LightCycler® capillaries (20 µl) Roche Diagnostics GmbH, Mannheim 
Pierce ECL Western blotting substrate Pierce Biotechnology Inc., Rockford (USA) 
Poly-Prep chromatography columns (0.8x4 cm) Bio-Rad Laboratories GmbH, Munich 
QIAGEN Plasmid Maxi Kit QIAGEN GmbH, Hilden 
QIAGEN Plasmid Maxi Kit QIAGEN GmbH, Hilden 
QIAquick Gel Extraction Kit QIAGEN GmbH, Hilden 
QIAquick PCR Purification Kit QIAGEN GmbH, Hilden 
QuikChange® II Site-Directed Mutagenesis Kit Stratagene, La Jolla, CA (USA) 
Reverse-IT™ 1st Strand Synthesis Kit ABgene Germany, Hamburg 
RNAgents® total RNA isolation kit Promega GmbH, Mannheim 
RNeasy® Mini Kit (50) QIAGEN GmbH, Hilden 
QIAshredder™ (50) QIAGEN GmbH, Hilden 
Rotilabo® 1.5 ml cuvettes Carl Roth GmbH, Karlsruhe 
SafeSeal Tips® Premium (30, 100, 200, 
   1000 µl) 

Biozym Scientific GmbH, Hessisch Oldenforf 

Tissue culture plastic ware Corning GmbH, Kaiserslautern 
Nunc GmbH & Co. KG, Wiesbaden 
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Product 
 

Supplier 

Tissue culture plastic ware Greiner bio-one, Frickenhausen 
BD Falcon, Franklin Lakes, New Jersey (USA) 

VECTASTAIN® Elite ABC Kit Vector Laboratories Inc., Burlingame, CA 
(USA) 

Western Lightning® Western Blot 
   Chemiluminescence Reagent Plus 

PerkinElmer GmbH, Cologne 

 

2.5 Laboratory equipment 

Device Supplier 
Axiovert 200M fluorescence microscope 
Axioskop 40 microscope 

Carl Zeiss GmbH, Oberkochen 
Carl Zeiss GmbH, Oberkochen 

Axiovert 25 microscope Carl Zeiss GmbH, Oberkochen 
Biofuge® Pico Heraeus Instruments GmbH, Osterode 
Biofuge® Primo Heraeus Instruments GmbH, Osterode 
BioPhotometer Eppendorf, Hamburg 
CoolSNAP™-HQ CCD camera Photometrics, Tucson (USA) 
DC500 camera  Leica Microsystems GmbH, Wetzlar 
FACSCalibur™ System BD Biosciences, California (USA) 
Fisherbrand FT-20E/365 transilluminator Fisher Scientific GmbH, Schwerte 
GeneAmp® PCR System 9700 Applied Biosystems, Foster City (USA) 
Gene-Pulser ® electroporator Bio-Rad Laboratories GmbH, Munich 
HyperHAD CCD camera Sony Electronics Inc., Tokyo (Japan) 
IDA Gel documentation system Raytest GmbH, Straubenhardt 
Incubator for mammalian cell culture Heraeus Sepatech GmbH, Osterode 
Joey™ Gel casting system peqlab Biotechnology GmbH, Erlangen 
KAPPA ImageBase software KAPPA opto-electronics GmbH, Gleichen 
KODAK Image Station 440CF Eastman Kodak Company, Rochester (USA) 
KODAK Molecular Imaging Software Eastman Kodak Company, Rochester (USA) 
LC Carousel Centrifuge Roche Diagnostics,Mannheim 
LightCycler® System for Real-Time PCR Roche Diagnostics,Mannheim  
Mastercycler® personal system (PCR) Eppendorf, Hamburg 
Megafuge® 1.0R Heraeus Instruments GmbH, Osterode 
MetaMorph® software Universal Imaging, Downingtown (USA) 
MicroLumatPlus LB96V luminometer EG&G Berthold, Bad Wildbad 
Mini Trans-Blot® cell system Bio-Rad Laboratories GmbH, Munich 
Mini-PROTEAN® electrophoresis system Bio-Rad Laboratories GmbH, Munich 
Multiphor II Electrophoresis unit Amersham Biosciences, New Jersey (USA) 
ND-1000 Spectrophotometer NanoDrop Technologies, Detroit (USA) 
Neubauer counting chamber Carl Roth GmbH & Co, Karlsruhe 
Penguin™ Water-Cooled Dual-Gel 
Electrophoresis System 

peqlab Biotechnology GmbH, Erlangen 

Tissue culture Lamin Air® Heraeus Sepatech GmbH, Osterode 
Vario 18 low vacuum pump Medela AG, Baar (Switzerland) 
Z1™ series Coulter counter® Coulter electronics, Beds (UK) 
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2.6 Oligonucleotides 

2.6.1 Oligonucleotides for cloning 

Primer Sequence ( 5`-3`) 
p53 TAPn Fwd ATCGTCGACGGTATGGAGGAGCCGCAGTCAG 

p53 TAPn Rev GCAGGTACCGGTTTATCAGTCTGAGTCAGGCCCTT 

p53 TAP Fwd ATCGGTACCATCACCACCATGGAGGAGCCGCAGTCAG 

p53 TAP Rev ATCAGATCTCCACCACCGTCTGAGTCAGGCCCTTCT 

p53 3 point  CCTCACCACGAGCTGCCC

  

p53 shRNA Fwd GCGGATCCCCGTTGGCCTGCACTGGTGTTATCAAGAGAA

p53 shRNA Rev CGCTCGAGTTTCCAAAAAGTTGGCCTGACTGGTGTTTC 

HA×3-Fwd CGGGATCCGGAGATCTCGGTTACCCATATGACGTTCCAGAC

HA×3-Rev GCAGCTAGCACCTTATTATCACGAATTCGAAGCGTAGTCAGGTACATCGTA 

  

AP4-Fwd GGATCCGGAACCATGGAGTATTTCATGGTGCCCA 

AP4-Rev CGTCTAGATCCGGGAAGCTCCCCGTCCCCCGACG 

AP4-ER-Rev GCGGATCCGCGGGAAGCTCCCCGTCCCCCGACG 

  

Cul7 mi-Fwd TGCTGTTGACAGTGAGCGAAACTGGAGCTGGAGTTCAGTATAGTGAAGCCACAGATG

Cul7 mi-Rev TCCGAGGCAGTAGGCACAACTGGAGCTGGAGTTCAGTATACATCTGTGGCTTCAC 

AP4 mi-Fwd 1 TGCTGTTGACAGTGAGCGCAGCTCAGCAAGGCAGCCATTCTAGTGAAGCCACAGATG

AP4 mi-Rev 1 TCCGAGGCAGTAGGCAAAGCTCAGCAAGGCAGCCATTCTACATCTGTGGCTTCAC

AP4 mi-Fwd 2 TGCTGTTGACAGTGAGCGCAGTGATAGGAGGGCTCTGTAGTAGTGAAGCCACAGATG

AP4 mi-Rev 2 TCCGAGGCAGTAGGCAAAGTGATAGGAGGGCTCTGTAGTACATCTGTGGCTTCAC

  
p21 mutA3-Fwd GAACTCGGCCAGGCTGAGCTTGCTCGGCG 

p21 mutA3-Rev CGCCGAGCAAGCTCAGCCTGGCCGAGTTC 

p21 mutA4-Fwd GTCATCCTCCTGATCTTTTGAATTCCATTGGGTAAATCCTTGC 

p21 mutA4-Rev GCAAGGATTTACCCAATGGAATTCAAAAGATCAGGAGGATGAC 

  
miR30 XhoI Fwd CAGAAGGCTCGAGAAGGTATATTGCTGTTGACAGTGAGCG 

miR30 EcoRI 
Rev 

CTAAAGTAGCCCCTTGAATTCCGAGGCAGTAGGCA 

 

2.6.2 Oligonucleotides used for colony-PCR and sequencing 

Primer Sequence (5`-3`) 
CMV-Fwd GCTGGTTTAGTGAACCGTCAG 

CMV-Fwd (pBI) GCTCGTTTAGTGAACCGTCAG 

Bgh reverse (for pcDNA3 vectors) TAGAAGGCACAGTCGAGG 

T7 promoter primer TAATACGACTCACTATAGGG 

pMT-1 promoter primer GTCACCACGACTTCAACGTC 

TMP Fwd (for miRNA containing plasmids) CTCGACTAGGGATAACAG 

TMP Rev (for miRNA containing plasmids) CATGCTCCAGACTGCCTT 

CBP-Fwd TTCATAGCCGTCTCAGCAGC 

p53 Fwd1 CCTACCAGGGCAGCTACGG 
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Primer Sequence (5`-3`) 
p53 Fwd2 TAGTGTGGTGGTGCCCTATG 

p53 Rev1 CCAGTGTGATGATGGTGAG 

p53 Rev2 CTTGGCTGTCCCAGAATGC 

pUC19 Fwd GCTGCAAGGCGATTAAGTTGG 

pUC19 Rev CATGATTACGCCAAGCTGGC 

EBNA Sfi (rev) AATCAAGGGTCCAACTC 

 

2.6.3 Oligonucleotides used for real-time quantitative PCR 

Primer Sequence (5`-3`) melting 
temp. 
(°C) 

Reference 

Cul7-LC-Fwd GAACTCAACTCGGTGAATGTGA 61 This work 
Cul7-LC-Rev GAACCATGTAGAAGAGGCGTG 61 This work 
AP4-LC-Fwd GCAGGCAATCCAGCACAT 59 This work 
AP4-LC-Rev GGAGGCGGTGTCAGAGGT 59 This work 
rat-ap4-Fwd CTTCCTCCCACCACATCAAT 60 This work 
rat-ap4-rev  TGCGGACAGACTTCACGATA 60 This work 
p21-LC-Fwd GGCGGCAGACCAGCATGACAGATT 60 476 
p21-LC-Rev GCAGGGGGCGGCCAGGGTAT 60 476 
DKC-Fwd CGGCTGGTTATGAAAGAC 55 Gift from Antje Menssen 455 
DKC-Rev TGGTCGCAGGTAGAGATG 55 Gift from Antje Menssen455 
MAD2-Fwd CCTGGAAAGATGGCAGTTTG 58 Gift from Antje Menssen455 
MAD2-Rev GTAAATGAACGAAGGCGGACT 58 Gift from Antje Menssen455 
PHB-Fwd CAGGTGGCTCAGCAGGAAGC 58 Gift from Antje Menssen 370 
PHB-Rev TGAAGTGAATTTTACCTTTATTTCC 58 Gift from Antje Menssen 370 
β-actin Fwd TGACATTAAGGAGAAGCTGTGCTAC 55-61 Gift from Henrike Koerner 477 
β-actin Rev GAGTTGAAGGTAGTTTCGTGGATG 55-61 Gift from Henrike Koerner 477 
rat EF1α-Fwd CACACGGCCCACATAGCAT 58 Gift from Dimitri Lodyguin 
rat EF1α-Rev CACGAACAGCAAAACGACCA 58 Gift from Dimitri Lodyguin 

2.6.4 Oligonucleotides for quantitative ChIP analyses 

Primer sequence (5`-3`) Melting temp 
(°C) 

Position rel. to 
transcriptional 
start site (+1) 

AP4 intron 1 Fwd GAGGTGGGCGTTCTACGG 60 +1550 
AP4 intron 1 Rev GGTTGGGCAGGAGTGTCTAC 60 +1790 
AP4 intron 6 Fwd TCTCAGTGGTTCGTCCCTGT 60 +14760 
AP4 intron 6 Rev GGAGGCGGTGTCAGAGGT 60 +14861 
p21 promoter Fwd TGTGTCCTCCTGGAGAGTGC 59 -324 
p21 promoter Rev CAGTCCCTCGCCTGCGTTG 59 -218 
p21 intron 1 Fwd AACAAGGGTTTGCGTTTCTG 59 +2146 
p21 intron 1 Rev TCGGGAGTTCAAGACAGGAC 59 +2310 
16q22 Fwd 477 CTACTCACTTATCCATCCAGGCTAC 58-60 --- 
16q22 Rev 477 ATTTCACACACTCAGACATCACAG 58-60 --- 
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2.7 Expression plasmids 

2.7.1 Standard expression vectors 

Vector 
 

Properties Promoter Reference / Supplier 

pUC19SfiI AmpR, pUC19 with 
modified MCS flanked 
by SfiI sites 

none Gift from Georg 
Bornkamm 478 

pSport1-AP4 
IRATp970D057D 

AmpR T7 RZPD, Berlin 

pSuper AmpR H1 (Pol III promoter) 479 
pRetroSuper 
(pRS) 

AmpR H1 (Pol III promoter) 480 

pRTS-1 AmpR, Luciferase; 
monomeric red 
fluorescent protein 
(mRFP) 

Tet-responsive element 
with flanking, 
bidirectional CMVmin 

Gift from Georg 
Bornkamm 478 

pcDNA3TM AmpR CMV Invitrogen GmbH, 
Karlsruhe 

pCMV-Gal AmpR, β-galactosidase CMV Gift from Bert 
Vogelstein 

pMK10tTA tTA-IRES-NeoR, AmpR β-Actin Gift from Bert 
Vogelstein 481 

pCEP4 AmpR, NeoR CMV Gift from Bert 
Vogelstein 180 

pRL-CMV Renilla luciferase, 
AmpR 

CMV Promega GmbH, 
Mannheim 

peYFP-N1 eYFP, KanR, NeoR CMV Clontech 
Laboratories Inc., 
Mountain View (USA) 

pBS1539 TAPc, AmpR None Cellzome AG, 
Heidelberg 

pBpuro c-
mycER™ 

AmpR 5`-long terminal repeat 
(LTR) 

384 

pBI AmpR Tet-responsive element 
with flanking, 
bidirectional CMVmin 

Clontech 
Laboratories Inc., 
Mountain View (USA) 

pIRES-hrGFP-2a AmpR, 3×HA CMV Stratagene, La Jolla, 
CA (USA) 

LMP AmpR, eGFP 5`-long terminal repeat 
(LTR) 

Gift from Gregory 
Hannon 482 

pSM2c-NonS 
Expression 
ArrestTM 

(Cat-no. 
RHS1703) 

AmpR, non silencing 
microRNA fragment  

U6 (Pol III promoter) Open Biosystems, 
Huntsville, AB, 
(USA) 
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2.7.2 Generated expression vectors 

Plasmid 
 

Properties Cloning strategy / Reference 

pMYC-HA-TAP c-MYC-HA-TAP, 
KanR, NeoR 

Gift from Heike Koch, unpublished 

pCEP4-p53 AmpR, NeoR, wild 
type p53 

Gift from Bert Vogelstein 180 

pp53-TAP p53-TAP, KanR, 
NeoR 

This work: PCR-amplified (p53-TAP Fwd and Rev) 
p53 (template pCEP4-p53) cut with BglII-KpnI 
inserted into KpnI-BamHI cut pMYC-HA-TAP 

pBI-YFP AmpR Gift from Anne Benzinger, unpublished 
pBI-YFP-p53-
TAP 

AmpR, C-terminal 
TAP-tagged p53 

This work: NotI-KpnI (blunt) fragment of pp53-TAP 
inserted into EcoRV-cut pBI-YFP 

pp53nostop p53-ORF without 
stop-codon; KanR, 
NeoR 

This work: 3-point ligation of PCR-amplified (p53 
3 point Fwd and p53-TAP rev) p53 C-terminal 
fragment restricted with BssSI-BglII and KpnI-BssSI 
p53 N-terminal fragment (from pCEP4-p53) with 
KpnI-BglII peYFP-N1 

pp53-HA×3 p53-HA×3; KanR, 
NeoR 

This work: PCR-amplified (HA-Fwd and Rev) 
HA×3 (template pIRES-hrGFP-2a) cut with BglII-
NheI inserted into BglII-NheI pp53nostop 

pMT1-p53-HA×3 p53- HA×3; AmpR, 
R 

This work: KpnI-NheI (blunt) fragment from pp53-
HA×3 inserted into EcoRI-BsrGI (blunt) pU265 

pcDNA3-p53-
HA×3 

AmpR, p53-HA×3 This work: EcoRI fragment from pMT1-p53-HA×3 
into EcoRI-restricted pcDNA3 vector 

pcDNA3-VSV VSV, AmpR Gift from Ru Zhang, unpublished 
pcDNA3-p53-
VSV 

AmpR, p53-VSV This work: BglII fragment from pMT1-p53-HA×3 
into BamHI-restricted pcDNA3-VSV 

pSUPER-p53i AmpR, p53-shRNA 
encoding region 

This work: PCR-aligned (p53 shRNA Fwd and Rev) 
p53sh-cDNA fragment cut with BamHI-XhoI 
inserted into BglII-XhoI pSUPER 

pRS-p53i AmpR, p53-shRNA 
encoding region 

This work: EcoRI-XhoI fragment of pSUPER-p53i 
inserted into EcoRI-XhoI pRetroSuper (pRS) 

pCR3.1-Flag-Cul7 AmpR, N-terminal 
Flag-tagged Cul7 
encoding fragment 

Gift from Zhen-Qiang Pan 483 

pCR3.1-Flag AmpR, Flag-
encoding region 

This work: cut pCR3.1-Flag-Cul7 with BamHI-NotI 
(blunt) and subsequently with SalI. Re-ligation of 
BamHI-NotI (blunt) fragment. 

pcDNA3-Fbx29-
HA 

AmpR, Fbx29-HA 
encoding fragment 

Gift from James DeCaprio 484 

pMT107 AmpR, His-tagged 
ubiquitin  

Gift from Stefan Müller 485 

pUC19SfiI-
FlagCul7 

AmpR, Flag-Cul7 
encoding fragment 

This work: NdeI-NotI fragment from pCR3.1-Flag-
Cul7 inserted into NdeI-NotI restricted pUC19SfiI 

pRTS-1-Flag-Cul7 AmpR, Flag-Cul7 This work: SfiI fragment from pUC19SfiI-FlagCul7 
inserted into SfiI cut pRTS-1 vector 

pRTS-1empty AmpR This work: cut with SfiI (blunt) and re-ligation 
pU265 AmpR, p53-eCFP Gift from Uri Alon 486 
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Plasmid 
 

Properties Cloning strategy / Reference 

pMT1-p53-TAPc AmpR, p53-TAP This work: BamHI-NotI (blunt) fragment from 
pp53-TAP inserted into EcoRI-BsrGI (blunt) U265 

LMP-Cul7miRNA AmpR, Cul7miRNA 
encoding fragment 

This work: Ligation of EcoRI-XhoI Cul7miRNA 
fragment (see Methods) into EcoRI-XhoI LMP 
vector 

pUC19SfiI-
Cul7miRNA 

AmpR, Cul7miRNA 
encoding fragment 

This work: Ligation of BglII-AgeI fragment of LMP-
Cul7miRNA into BamHI-AgeI restricted pUC19SfiI 
plasmid 

pUC19SfiI-NonS AmpR, Non-
silencing microRNA 
encoding region 

This work: Ligation of BglII-AgeI fragment of LMP-
NonS into BamHI-AgeI restricted pUC19SfiI 
plasmid 

pEMI-
Cul7miRNA 

AmpR, Cul7miRNA 
encoding fragment 

This work: ligation of SfiI fragment from 
pUC19SfiI-Cul7miRNA into SfiI site of pRTS-1 

pEMI-1-NonS 
miRNA 

AmpR, Non-
silencing microRNA 
encoding region 

This work: ligation of SfiI fragment from 
pUC19SfiI-NonS into SfiI site of pRTS-1 

pcDNA3-AP4-
VSV 

AmpR; AP4-VSV This work: PCR amplified (AP4-Fwd and -Rev) 
AP4 (template: pSport1-AP4) restricted with 
BamHI-XbaI inserted into BamHI-XbaI pcDNA3-
VSV 

pUC19SfiI-AP4-
VSV 

AmpR; AP4-VSV This work: BamHI-NotI fragment from pcDNA3-
AP4-VSV into BamHI-NotI pUC19SfiI 

pRTS-1-AP4-VSV AmpR; AP4-VSV, 
mRFP 

This work: SfiI fragment from pUC19SfiI-AP4-VSV 
into SfiI pRTS-1 

pRTS-1-c-MYC AmpR; AP4-VSV, 
mRFP 

Gift from Georg Bornkamm 

pRSM pMT1-promoter; 
AmpR 

This work: pRetroSuper cut with BglII-EcoRI 
(removes H1 promoter) ligated with BamHI-EcoRI 
fragment (pMT1-promoter) of U265 

pRSM-AP4-VSV pMT1-promoter; 
AmpR; AP4-VSV 

This work: Ligation of BamHI-XhoI (blunt) 
fragment from pcDNA3-AP4-VSV into EcoRI 
(blunt) pRSM 

pSHUMI-AP4mi1 AP4 microRNA1; 
miR30 flanking 
regions 

This work: Ligation of EcoRI-XhoI AP4-miRNA1 
fragment (see Methods) into EcoRI-XhoI cut 
pSHUMI 

pSHUMI-AP4mi2 AP4 microRNA2; 
miR30 flanking 
regions 

This work: Ligation of EcoRI-XhoI AP4-miRNA1 
fragment (see Methods) into EcoRI-XhoI cut 
pSHUMI 

pEMI-1-AP4mi1 AmpR, AP4 
miRNA1 encoding 
fragment 

This work: ligation of SfiI fragment from pSHUMI-
AP4mi1 into SfiI site of pRTS-1 

pEMI-1-AP4mi2 AmpR, AP4 
miRNA2 encoding 
fragment 

This work: ligation of SfiI fragment from pSHUMI-
AP4mi2 into SfiI site of pRTS-1 

pBABE-AP4-ER AP4-ER fusion gene This work: PCR-amplified (AP4-Fwd AP4-ER-Rev) 
BamHI restricted AP4 cloned into BamHI linearized 
pBpuro c-mycER™ 
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Plasmid 
 

Properties Cloning strategy / Reference 

pAdTrack-AP4-
VSV 

AmpR, GFP, AP4-
VSV 

This work: Ligation of KpnI-XhoI fragment (from 
pcDNA3-AP4-VSV) with KpnI-XhoI-restricted 
pAdTrack vector 

pAd1-AP4-VSV AmpR, GFP, AP4-
VSV 

This work: PmeI linearized pAdTrack-AP4-VSV 
and Adeasy-1 plasmid: Recombination as described 
in Methods section XXX 

pAdeasy-1-GFP AmpR, GFP Gift from Dimitri Lodyguin 
p234 (pGL3) AmpR, wt p21 

promoter 
Gift from Carme Gallego 487 

p237 (pGL3) AmpR, mutant p21 
promoter (mA3+A4) 

Gift from Carme Gallego 487 

p238 (pGL3) AmpR, mutant p21 
promoter (mA2-A4) 

This work: Site directed mutagenesis; see Methods 
section 

p239 (pGL3) AmpR, mutant p21 
promoter (mA1-A4) 

This work: Site directed mutagenesis; see Methods 
section 

2.8 Bacteria strains 

Strain Genotype Supplier 
E. coli BJ5183 EC endA sbcBC recBC galK met thi-1 bioT 

hsdR (Strr) 
Qbiogene, Heidelberg, 
Germany 

E. coli XL1-Blue endA1 gyrA96 hsdR17 lac-
 recA1 relA1 supE44 thi-1 [F' lacIq Z 
∆M15, proAB, Tn 10, TetR] 

Stratagene GmbH, Heidelberg

E. coli PirPlus™ 
DH10βF`DOT 

mcrA ∆(mrr-hsdRMS-mcrBC) φ80lacZ-
∆M15 ∆lacX74 deoR recA1 endA1 
ara∆139 ∆(ara,leu)7697 galU galKλ- rpsL 
nupG λ- tonA umuC::pir116-frtF’(lac+ 
pro+ ∆oriT::Tc) 

Open Biosystems, Huntsville, AL, 
USA 

2.9 Eukaryotic cell lines 

Strain 
 

Genotype Source / Reference 

293 A human embryonic kidney cell line 
transformed with adenovirus type 5 (E1A/E1B) 

Gift from Axel Ullrich 

293T A human embryonic kidney cell line 
transformed with adenovirus type 5 (E1A/E1B) 
and harboring the temperature sensitive gene for 
SV40 large T antigen 

Gift from Volker-
Scherhammer 

911 A human embryonic retinoblast cell line 
transformed with adenovirus type 5 (base pairs 
79-5789, E1-deleted adenovirus) 488 

Gift from Bert 
Vogelstein 489 

Phoenix A (PhoA) An amphotropic retroviral producer cell line 
based on 293T cells stably selected with 
constructs capable of producing gag-pol and 
envelope proteins 490 

Gift from Axel Ullrich 
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Strain 
 

Genotype Source / Reference 

MCF-7 A human breast cancer cell line (estrogen-
receptor positive) 

Gift from Axel Ullrich 
 

MCF-7i MCF-7 cell line stably infected with 
pRetroSuper-p53shRNA based retroviruses 

This work 

MCF-7i-p53-TAP MCF-7i cell line stably transfected with pMT1-
p53-TAPc 

This work 

MCF-7-PJMMR1 MCF-7 cell line stably transfected with pRTS-1-
c-MYC (+ mRFP) 

This work 

MCF-7-MR1 MCF-7 cell line stably transfected with pRTS-1 
(+mRFP) 

This work  

MCF-7 EMI-Cul7 
microRNA 

MCF-7 cell line stably transfected with pEMI-
Cul7-miRNA 

This work  

MCF-7 EMI non-
silencing 

MCF-7 cell line stably transfected with pEMI-1-
NonS miRNA 

This work 

MCF-7 RTS-1-
Cul7 

MCF-7 cell line stably transfected with pRTS-1-
Flag-Cul7 

This work 

DLD1 A human colorectal adenocarcinoma cell line 
with mutant p53 (S241F)  

Gift from Axel Ullrich 

DLD1-tTa A DLD-1 tet-off cell line expressing the 
tetracycline-controlled transactivator (tTA) 

Gift from Bert 
Vogelstein 481 

DLD1-tTa-p53.A2 DLD1-tTa cells harboring a tet-inducible wild-
type p53 allele 

Gift from Bert 
Vogelstein 481 

DLD1-tTA-
p53TAP 

DLD1-tTa cells stably transfected with pBI-
YFP-p53-TAPc 

This work 

H1299 A human non-small cell lung cancer cell line 
deficient for p53 

Gift from Dirk Eick 

U-2OS A human osteosarcoma cell line Gift from Reinhard 
Fässler  

U-2OS pEMI and 
pRTS-1 cell pools 

U-2OS cell pools stably transfected with the 
indicated pRTS-1 or pEMI episomal expression 
vectors  

This work 

HaCaT Human transformed keratinocytes deficient for 
p53 491 

Gift from Axel Ullrich 

HaCaT-AP4-ER HaCaT cells stably infected with pBABE-AP4-
ER based retroviruses 

This work 

HDF Human primary diploid fibroblasts Clonetics Inc., San 
Diego (USA) 

HDF-c-MYC Human primary diploid fibroblasts 
immortalized by ectopic c-MYC expression 

Gift from Carla 
Grandori 

HDF-htert Human primary diploid fibroblasts 
immortalized by ectopic htert expression 

Gift from Carla 
Grandori 

HDF-c-MYC-ER 
(clone A1C1) 

Human primary diploid fibroblasts stably 
expressing c-MYC-ER 

Gift from Antje 
Menssen 

H1299 A human non-small cell lung cancer cell line 
carrying a homozygous deletion of p53 

Gift from Dirk Eick 

U-937 A human myelo-monoblastic cell line with 
mutant p53 

Gift from Axel Ullrich 
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Strain 
 

Genotype Source / Reference 

U-937 Ctrl clone1 A human myelo-monoblastic cell line with 
mutant p53 

Gift from Lars-Gunnar 
Larsson 415 

U-937-pRSM U-937 cells stably infected with pRSM based 
retroviruses 

This work  

U-937-pRSM-AP4 U-937 cells stably infected with pRSM-AP4-
VSV based retroviruses 

This work 

Rat1A-myc-ER c-myc-deficient Rat1A (H015.19 389) cells 
stably selected for expression of a c-myc-ER 
fusion construct 

Gift from Dirk Eick 492 

 

2.10 Stock solutions, buffers and culture media 

Solution 
 

Ingredients 

ChIP SDS-buffer 50 mM Tris/HCl, pH 8.0 
 100 mM NaCl 
 5 mM EDTA, pH 8.0 
 0.5% SDS 
  
ChIP IP-buffer 25 mM Tris/HCl, pH 8.0 
 1% (v/v) TritonX-100 
 0.2% (w/v) SDS 
 0.02% (w/v) NaN3

  
ChIP LiCl/detergent buffer 10 mM Tris/HCl, pH 8.0 
 250 mM LiCl 
 1 mM EDTA 
 0.5% (v/v) NP-40 
 0.5% (w/v) sodium deoxycholate 
 0.02% NaN3

  
  
ChIP Buffer 500 50 mM HEPES, pH 7.5 
 500 mM NaCl 
 1 mM EDTA 
 0.1% (w/v) sodium deoxycholate 
 0.5% (v/v) NP-40 
 0.02% (w/v) NaN3

  
ChIP Mixed Micelle Buffer 20 mM Tris/HCl, pH 8.0 
 150 mM NaCl 
 0.5 mM EDTA, pH 8.0 
 5.2% (w/v) sucrose 
 1% TritonX-100 
 0.2% SDS 
 0.02% NaN3
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Solution 
 

Ingredients 

  
ChIP Elution buffer 50 mM Tris/HCl, pH 8.0 
 10 mM EDTA 
 1% (w/v) SDS 
  
Coomassie blue staining solution 10% (v/v) acetic acid 
 50% (v/v) methanol 
 0.25% (v/v) Coomassie G250 
  
Coomassie blue destaining solution 15% (v/v) acetic acid 
 45% (v/v) methanol 
  
Coomassie blue drying solution 20% Ethanol 
 2% glycerol 
  
DNA loading buffer (10×) 20% (v/v) Ficoll® 400 
 1 mM EDTA (pH 8.0) 
 0.25% (w/v) bromphenol blue 
 or 0.15% (w/v) cresol red 
  
IP lysis buffer 25 mM Tris/HCl (pH 8.0) 
 150 mM NaCl 
 10 mM MgCl2

 0.5% Nonidet P-40 (NP-40) 
 2 mM sodium orthovanadate 
 1 mM DTT 
 1 mM NaF 
 50 units /ml DNase I, RNase free 
 complete mini protease inhibitors 
 0.25% (w/v) phosphatase inhibitor cocktail I 
  
  
  
IP-washing buffer Tris /HCl (pH 8.0) 
 150 mM NaCl 
 10 mM MgCl2 
 0.5% NP-40 
  
dNTP-mix 10 mM of each dATP, dCTP, dGTP, dTTP 
  
HBS (2×) 274 mM NaCl 
 10 mM KCl 
 1.5 mM Na2HPO4 × 2 H2O
 42 mM HEPES pH 7.5 
 0.2% (w/v) dextrose 
 pH 6.95 
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Solution 
 

Ingredients 

Laemmli-buffer (2×) 100 mM Tris/HCl (pH 6.8) 
 10% (w/v) SDS 
 50% (v/v) glycerol 
 0.05% (w/v) bromphenol blue 
 10% (v/v) β-mercaptoethanol 
  
LB-agar 1% (w/v) bacto® tryptone 
 0.5% (w/v) bacto® yeast extract 
 1% (w/v) NaCl 
 pH 7.2 
 1.2% (w/v) bacto® agar 
  
LB-medium 1% (w/v) bacto® tryptone 
 0.5% (w/v) bacto® yeast extract 
 1% (w/v) NaCl 
 pH 7.2 
  
LB×2 low salt medium 2% (w/v) bacto® tryptone 
 1% (w/v) bacto® yeast extract 
 1% (w/v) NaCl 
 pH 7.2 
  
phosphate buffered saline (PBS) 13.7 mM NaCl 
 2.7 mM KCl 
 80.9 mM Na2HPO4 
 1.5 mM KH2PO4 (pH 7.4) 
  
PTS-buffer 13.7 mM NaCl 
 2.7 mM KCl 
 80.9 mM Na2HPO4 
 1.5 mM KH2PO4 (pH 7.4) 
 0.5 % Tween 20 
 2% fetal bovine serum (FBS) 
  
PCR-buffer (10×) 670 mM Tris/HCl (pH 8.8) 
 166 mM (NH4)2SO4 
 67 mM MgCl2 
 100 mM β-mercaptoethanol 
  
RIPA lysis buffer 50 mM Tris/HCl, pH 8.0 
 250 mM NaCl 
 1 mM EDTA 
 1% NP40 
 0.1% (w/v) sodium dodecylsulfate (SDS) 
 0.5% (w/v) sodium deoxycholate 
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Solution 
 

Ingredients 

SDS-PAGE Lower Tris (4×) 1.5 M Tris-base 
 0.4% (w/v) SDS 
 pH 8.8 
  
SDS-PAGE Upper Tris (4×) 500 mM Tris-base 
 0.4% (w/v) SDS 
 pH 6.8 
  
Semi-Dry Anode I buffer 0.3 M Tris at pH 10.4 
Semi-Dry Anode II buffer 25 mM Tris at pH 10.4 
Semi-Dry Anode III buffer 25 mM Tris at pH 9.4 
 40 mM ε-aminocaproic acid 
  
  
TAE-buffer (10×) 400 mM Tris-acetate 
 10 mM EDTA 
 pH 8.0 
  
TAP Calmodulin binding buffer 10 mM Tris/HCl, pH 8.0 
 250 mM sodium chloride 
 1 mM magnesium-acetate 
 1 mM imidazole 
 2 mM CaCl2

 0.1% (v/v) NP40 or TritonX-100 
 10 mM β-mercaptoethanol 
  
TAP Calmodulin elution buffer 10 mM Tris/HCl, pH 8.0 
 250 mM sodium chloride 
 1 mM magnesium-acetate 
 1 mM imidazole 
 2 mM EGTA
 0.1% (v/v) NP40 or TritonX-100 
 10 mM β-mercaptoethanol 
  
TAP lysis buffer 25 mM Tris/HCl, pH 8.0 
 150 mM NaCl 
 10 mM MgCl2 
 0.5% NP40 (v/v) or 0.1% (v/v) TritonX-100 
 2 mM sodium orthovanadate 
 1 mM DTT 
 1 mM NaF 
 50 units /ml DNaseI, RNase free (Roche) 
 0.25% (v/v) phosphatase inhibitor cocktail 1 
  
TAP IPP150 washing buffer 10 mM Tris/HCl, pH 8.0 
 150 mM NaCl 
 0.1% (v/v) NP40 or TritonX-100 
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Solution 
 

Ingredients 

  
TAP TEV-cleavage buffer 10 mM Tris/HCl, pH 8.0 
 150 mM NaCl 
 0.1% (v/v) NP40 or TritonX-100 
 0.5 mM EDTA 
 1 mM DTT 
  
TBS (Tris-buffered saline) (10×) 100 mM Tris/HCl, pH 7.4 
 150 mM NaCl 
  
TBS-T (1×) 10 mM Tris/HCl, pH 7.4 
 15 mM NaCl 
 0.1% (v/v) Tween20 
  
TE-buffer (10×) 100 mM Tris/HCl, pH 8.0 
 10 mM EDTA 
  
Transfer-buffer (25×) 300 mM Tris/HCl, (pH8.3) 
 2.4 M glycine 
  
Tris-Glycine-SDS buffer (10×) 250 mM Tris/HCl, pH 7.5 
 192 mM glycine 
 1% (w/v) SDS 
  
TSS-buffer 1% (w/v) bacto® tryptone 
 0.5% (w/v) bacto® yeast extract 
 100 mM NaCl 
 10% (v/v) PEGMW3000/3350

 5% (v/v) DMSO 
 50 mM MgCl2 
 pH 6.5 
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3 Methods 

3.1 Bacterial cell culture 

3.1.1 Propagation and storage of Escherichia coli (E.coli) strains 

Bacterial E.coli strains used for plasmid-replication were cultured by agitation in liquid 

LB-Medium in case of XL1-blue and BJ5183 EC or in liquid LB×2-low salt medium for 

PirPlus™DH10βF`DOT strain. To isolate DNA from a single clone, bacteria were 

cultivated on LB-agar plates. In general, bacterial cultivation was done in a 37°C room 

overnight. The selection for antibiotic–resistant progeny cells was achieved by addition 

of 100 µg/ml ampicillin, 50 µg/ml kanamycin, or 25 µg/ml chloramphenicol dependent 

on the resistance cassette provided by the introduced plasmid vector. For the generation 

of permanent bacterial cultures for storage (“glycerol stocks”), 500 µl of bacterial liquid 

culture was added to an equal volume of 87% (w/v) sterile glycerol, mixed carefully and 

transferred to a -85°C freezer. 

3.1.2 Preparation of Calcium-competent E.coli XL1-blue cells 

   Starting from a glycerol stock, a 5 ml over-night culture supplemented with 10 µg/ml 

tetracycline was diluted 1:50 in liquid LB-medium and grown to an OD600 of 0.4. After 

cooling on ice for 15 min, cells were centrifuged at 4000×g for 15 min and resuspended 

in 1/10 volume of ice-cold TSS-buffer. Sterile glycerol was added to a final concentration 

of 20% (v/v) and 100-200 µl aliquots were shock-frozen using liquid nitrogen and stored 

at -80°C. 

3.1.3 Transformation of competent bacteria 

After thawing 100-200 µl calcium-competent bacterial aliquots on ice, 100-500 ng 

plasmid-DNA or 1/2 of a ligation reaction was added to the cells and mixed carefully. 

Hereafter, bacteria were incubated on ice for 30 min followed by a 75 sec thermo-shock 

at 42°C and placed on ice for another 2 min. Next, 1 ml LB-medium not containing any 

antibiotics was added and bacteria were placed in a rotation wheel in a 37°C room for 

1 hr to allow recovery of cells and expression of the introduced resistance marker. 
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Finally, an appropriate amount of the transformation mixture was plated on nutrient agar 

containing the respective antibiotics in order to obtain separated bacterial clones. 

3.2 Molecular biological standard methods 

3.2.1 Purification of plasmid DNA from E.coli 

   5-250 ml liquid LB-medium containing the respective antibiotics were inoculated with 

bacterial clones from LB-agar plates or with a pipette-tip of a glycerol stock and cultured 

for 14-20 hrs overnight with agitation at 37°C. In case of small-scale preparations (5 ml 

bacterial culture volume), plasmid-DNA was isolated using the QIAprep Spin Miniprep 

Kit (Qiagen) according to the manufacturer`s protocol. For transfection experiments 

requiring larger amounts of plasmid-DNA, the DNA was isolated from bigger culture 

volumes (100 ml and 250 ml for high and low copy number plasmids, respectively) with 

the QIAGEN Plasmid Maxi Kit according to the manufacturer's protocol. Since the 

small-scale purification method yields DNA of better quality leading to a higher 

transfection efficiency compared to the large-scale protocol, it was used preferentially. 

3.2.2 Enzymatic restriction-digestion and dephosphorylation of DNA 

   0.3-1.0 µg of plasmid-DNA was used for analytical purposes, while 1-10 µg DNA was 

subjected to restriction-digestion in preparative applications. In case the DNA fragment 

was generated by polymerase chain reaction (PCR), the amplified products were 

separated from the template DNA by agarose gel electrophoresis and extracted from the 

gel prior to restriction-digest. In general, enzymatic digestions were performed in the 

reaction buffer recommended by the manufacturer and in the presence of 10 µg/ml BSA 

(NEB) in reaction volumes ranging from 20-100 µl. The temperature, time and amount of 

enzyme were adapted to the specific application. A simultaneous restriction approach 

with two different enzymes was performed only in case the buffer system provided 

optimal reaction conditions for each of them. Blunt end fragments were generated by 

addition of 100 µM dNTPs and 8 U T4 DNA polymerase and incubation of the reaction 

mixture at 12°C for 15 min. 
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   In order to avoid self-ligation of digested vectors during ligation, DNA was 

5`-dephosphorylated using 10 U antarctic phosphatase at 37°C for 2× 20 min and 

subsequent heat-inactivation of the enzyme for 10 min at 65°C. 

3.2.3 DNA ligation 

   Ligation of sticky ends was performed by combination of 10-20 ng linearized and de-

phosphorylated vector-DNA with 30-100 ng of DNA to be inserted. This roughly equaled 

a molar vector to insert ratio of 1:3-1:20, dependent on the length of vector and insert 

DNA fragments. The ligation mixture furthermore contained 1/10 volume of 10× T4 

ligase reaction buffer and 400 U T4 DNA ligase in a 10 µl total volume. The reaction 

time was adapted for each special application ranging from 2 hrs at RT to overnight 

incubation at 16°C. 

   In case of blunt end ligations or ligation mixtures containing the linearized episomal 

vectors pRTS-1 478 and pEMI 493, the reaction mixture was supplemented with 

1/10 volume of 10×PEG4000 (NEB) and the ligation was performed in a 20 µl total 

volume overnight at 16°C. 

3.2.4 Amplification of DNA by the polymerase chain reaction (PCR) 

   The standard PCR reaction was performed in a 25 µl scale and each reaction contained 

2.5 µl 10x PCR-buffer (166 mM (NH4)2SO4, 670 mM Tris/HCl (pH 8.8), 67 mM MgCl2, 

100 mM β-mercapto-ethanol), 1.5 µl dNTP-mix (10 mM of each dATP, dCTP, dGTP and 

dTTP), 1.5 µl DMSO, 5 U DNA-Polymerase, 1 ng (analytical reaction) or 100-500 ng 

(preparative reaction) template DNA and 20 µM oligonucleotides (“primers”). For 

amplification reactions requiring high-fidelity DNA synthesis, Platinum® Taq DNA 

polymerase was mixed 1:1 with Pfu DNA polymerase. All other PCR reactions were 

performed using the FIRE-Pol® DNA polymerase (Solis BioDyne). In an alternative 

high-fidelity PCR approach the Phusion®-DNA-Polymerase (NEB) was used according 

to the manufacturer`s instructions. 

   The following exemplary PCR procedure was carried out in a GeneAmp® PCR System 

9700 cycler (Applied Biosystems) or a Mastercycler® personal system (Eppendorf) and 
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the exact settings were adapted to the specific reaction with respect to amplification-

product length and melting-temperature of the oligonucleotide primers: 

Initial denaturing:   96°C for 5 min 

20-40 cycles:   Denaturing: 96°C for 30 sec 

Annealing for 30 sec at 50-60°C (Depending on the melting 

temperature of the applied oligonucleotide-primers). 

Extension:    45 sec per kb of product length at 72°C 

Final extension step:   72°C for 2-4 min 

Sample cool-down to 25°C 

   The PCR products were separated by agarose gel electrophoresis and purified as 

described in section 3.2.5. 

3.2.5 Analysis and purification of DNA fragments by agarose gel 
electrophoresis 

For preparation of agarose gels, 0.8-2.5% (w/v) agarose powder was melted in 1×TAE 

buffer in a microwave, cooled down to ~ 50°C and supplemented with 0.5 µg/ml 

ethidium bromide. 1/10 of 10× DNA loading buffer was added to DNA samples and 

horizontal electrophoresis was carried out at 50 to 110 V (dependent on the electrode 

distance of the used electrophoresis chamber) for 30-60 min. For preparative approaches, 

electrophoresis was done at 30-40 V for 1.5-2.5 hrs to reach a more efficient separation 

of DNA fragments. By comparison with a DNA ladder of known composition, the size 

and the position of DNA fragments was determined with an UV transilluminator (300-

400 nm wavelength) (IDA Gel Documentation system) and recorded for documentation. 

When DNA fragments were separated for subsequent isolation and ligation, the bands 

were visualized using a Fisherbrand FT-20E/365 transilluminator. Isolation and 

purification of the respective DNA fragments from agarose gel pieces - excised from the 

gel with a sterile surgical blade - was performed with the QIAquick Gel Extraction Kit 

(Qiagen) according to the manufacturer`s protocol. 
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3.2.6 DNA sequencing 

For sequencing of protein- or microRNA-encoding DNA fragments integrated into 

plasmid or viral vectors, 300-1000 ng DNA was supplemented with 5 pmol 

oligonucleotide primer, 1.5 µl BigDye® Terminator v3.1 Sequencing Mix (Applera) and 

1 µl 5× BigDye® Sequencing Buffer (Applera) and mixed in a total volume of 10 µl. 

Amplification was carried out using the following PCR parameters: 

Initial denaturing:   96°C for 2 min 

30 cycles:   Denaturing: 96°C for 20 sec 

Annealing for 10 sec at 50°C 

Extension: 4 min at 60°C 

Sample cool-down to 25°C 

Processing of the reaction mixture and DNA sequencing was done by the Core-Facility of 

the Max-Planck Institute of Biochemistry. 

3.3 Generation of microRNA-encoding DNA fragments 

The DNA fragments encoding specific microRNAs were generated in a two-step PCR: 

3 µM of each mi-Fwd and mi-Rev primer were annealed and extended in an one-step-

PCR reaction containing 10 µl PCR-buffer×10, 10 µl dNTPs (10 mM each) and 5 U 

platinum DNA polymerase in a total volume of 100 µl using the following reaction 

conditions: 

Initial denaturing:    96°C for 5 min 

1 cycle:    Denaturing: 96°C for 30 sec 

Annealing for 30 sec at 48”C° 

Extension: 72°C for 4 min 

Final extension step:    72°C for 2-4 min 

Sample cool-down to 25°C 

The reaction products were separated by vertical polyacrylamide gel electrophoresis 

(PAGE) using a 12% gel, the appropriate band was sliced out from the gel, reduced to 

small pieces, transferred into a 1.5 ml reaction tube and supplemented with 300 µl 
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300 mM sodium acetate, pH 4.8. After vortexing thoroughly, elution of DNA from the 

gel was achieved by diffusion at 65°C for 15 min. For purification, the suspension was 

transferred into a SpinEx tube (Costar) and centrifuged at 16,060×g for 1 min. Next, 

DNA was concentrated by ethanol precipitation and 10% of the extension-reaction 

product was applied to the second PCR reaction which furthermore contained 1 µM of 

the universal miR30-XhoI/EcoRI primers, 10 µl 10× PCR-buffer, 2 µl dNTPs (10 mM 

each) and 2 U Vent-DNA-polymerase (NEB) in a total reaction volume of 100 µl. The 

following reaction parameters were chosen: 

Initial denaturing:   96°C for 5 min 

25 cycles:   Denaturing: 96°C for 30 sec 

Annealing for 30 sec at 54°C° 

Extension: 75°C for 30 sec 

Final extension step: 75°C for 10 min 

Sample cool-down to 25°C 

The resulting amplification product was purified using the Qiagen Gel-Extraction Kit, the 

elution volume was chosen to 45 µl. 5 µl of this reaction was stored for analyses and the 

remaining PCR product was cut with XhoI and EcoRI. After purification by PAGE, 

elution from the gel and ethanol-precipitation (done as decribed for the first PCR step), 

the restricted miRNA-fragment was inserted into pSHUMI vector 493 that already 

contained the flanking miR30 regions. SfiI fragments from pSHUMI containing the 

complete microRNA cassette were inserted into pRTS-1 478 thereby creating pEMI-

microRNA vectors. 

3.4 Real time quantitative PCR (RT-qPCR) 

   Total RNA was isolated using the Total RNA Isolation System (Promega, Madison, 

USA). cDNA was generated from 1-1.5 µg total RNA per sample using anchored oligo-

dT primers (Reverse-iT First Strand Synthesis; ABgene). RT-qPCR was performed by 

using the LightCycler (Roche) and the FastStart DNA Master SYBR Green 1 kit (Roche 

Applied Science) essentially according to the manufacturer`s protocol. Primer pairs were 

tested using a logarithmic dilution of cDNA to generate a linear standard curve (crossing 
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point [CP] plotted vs. log of template concentration) and the primer pair efficiency was 

calculated as follows: Efficiency E = 10(-1/slope) or the efficiency was estimated to 1.9. 

RT-qPCR reactions using β-actin primers served for normalization in case of cDNAs 

whereas genomic DNA for qChIP analyzes was normalized to 16q22 primers. For data 

analyzes, the second-derivative maximum method was used and induction of cDNA or 

enrichment of a genomic locus was calculated according to Pfaffl 494 using the following 

equation: 

 

 

3.5 Site directed mutagenesis 

   Starting from pGL3b reporter plasmids containing wild type or mutant p21 promoter 

(gift from Carme Gallego (Universitat de Lleida) 487), CAGCTG sequences were mutated 

using the QuikChange II site directed mutagenesis kit (Stratagene) according to the 

manufacturer using specific primer pairs (see Materials section) 

3.6 Mammalian cell culture 

3.6.1 Cultivation of human and rodent cell lines 

DLD1-tTA and HCT116 colorectal cancer cells and their derivatives were maintained in 

McCoy’s 5A medium (Invitrogen) containing 10% fetal bovine serum (FBS). HaCaT 

keratinocytes, MCF-7 breast cancer cells, U-2OS osteosarcoma cells, H1299 non-small 

cell lung cancer cells, 911 transformed human retinoblasts and human diploid fibroblasts 

(HDF) and their derivatives were maintained in high glucose Dulbecco`s modified Eagles 

medium (DMEM, Invitrogen) containing 10% fetal bovine serum (FBS). For HDF cells 

stably expressing a c-MYC-ER fusion protein, phenol-red free medium was applied since 

phenol-red in tissue culture is a weak estrogen 495. HEK293 human epithelial kidney 

cells, HEK293T cells and the Phoenix A amphotropic packaging cell line were 

maintained in DMEM containing 5% FBS. c-myc-deficient Rat1A (H015.19 389) cells 

stably selected for expression of a c-myc-ER fusion construct (Smoxy, 492) were 

maintained in phenol-red free, high glucose DMEM containing 8 % fetal bovine serum. 
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U-937 myelomonoblastic cells and their derivatives were cultured in RPMI medium 

(Invitrogen) supplemented with 10 FBS.  

   All media were further supplemented with 100 U/ml penicillin and 100 µg/ml 

streptomycin and cell lines were maintained at 37°C in a humidified atmosphere at 37°C. 

Cells were passaged every 2-4 days in order to avoid confluency of the cultures. 

3.6.2 Cryo-preservation of mammalian cells 

   For cryo-preservation, subconfluent, exponentially growing cells were trypsinized, 

pelleted by centrifugation at 300×g for 5 min, and resuspended in 50% FBS, 40% growth 

medium and 10% (v/v) DMSO. Aliquots in cryo-vials were stored at -80°C for up to 

6 months or, for long term storage, transferred into a liquid nitrogen tank. For recovery, 

cells were rapidly thawed in a 37 C water bath and transferred to a 15 ml tube of pre-

warmed growth medium. Cells were pelleted by centrifugation to remove DMSO and 

resuspended in the respective growth medium for further cultivation. 

3.6.3 Transient and stable transfection of eukaryotic cells 

   HEK293 and HEK293T cells were transfected by calcium-phosphate transfection: cells 

were pre-treated with 30 µl/ml FBS and 10 µl/ml of 2 mM chloroquine diphosphate for 

30 min at 37°C. For transfection of one 6-well, 1-1.5 µg DNA was diluted in 110 µl 

0.1× TE buffer and supplemented with 16 µl 2 M CaCl2 and 125 µl 2×HBS. After 

incubation for 15 min at RT the formed precipitates were added dropwise onto cells. 

H1299 cells were transfected using a modified calcium-phosphate transfection protocol: 

for one 12-well, 0.5 µg DNA + 1 µg carrier-DNA (here: pUC19 vector) was diluted in 

85 µl water and supplemented with 10 µl 10×HBS and 5 µl 2 M CaCl2. After 15 min the 

formed precipitates were added to cells. 

   DLD1-tTa cells were transfected using Lipofectamine™ 2000 (Invitrogen) according to 

the manufacturer and all other cell lines were transfected with FuGENE®6 reagent 

(Roche) according to the manufacturer`s protocol using OptiMEM®I medium 

(Invitrogen). Transfection of siRNAs into MCF-7 and DLD1-tTA-c-MYC-HA cells was 

performed using HiPerFect reagent (Qiagen). For transfection of one 12-well, 150 ng 

siRNA (MCF-7) or 375 ng siRNA (DLD1-tTA) was diluted in 75 µl OptiMEM®I 
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medium and supplemented with 5 µl HiPerFect® reagent. After brief vortexing and 

incubation for 10 min at RT, siRNA-containing complexes were added to cells. 

   Except for approaches using FuGENE®6 and HiPerFect® reagents, medium was 

exchanged 5-6 hrs after transfection with complete growth medium. Analyses were 

performed 24-48 hrs after transfection. For generation of stable cell lines, cells were split 

1:5 to 1:10 one day after transfection and growth medium was supplemented with an 

appropriate selection marker after additional 24 hrs. Limiting dilution was used for 

generation of single clones. 

3.6.4 Retroviral infection 

   The packaging cell line Phoenix A was transfected with retroviral expression vectors 

using a calcium-phosphate protocol and growth medium without antibiotics to enhance 

the production of recombinant retroviruses. For one 6 cm plate, 8 µg retroviral vector was 

used. 9-12 hrs after transfection, growth medium was replaced and cells were cultured 

overnight in the absence of antibiotics. Next, retrovirus-containing supernatants were 

passed through 0.45 µm filters (Millipore) and supplemented with 8 µg/ml polybrene 

(hexadimethrin-bromide). The cationic polymer polybrene increases the efficiency of 

infection by shielding the negatively charged cell surface which facilitates the access of 

virus particles to cells 496. The sterile filtered virus-containing supernatant was applied to 

cells and infection was repeated four times in 4 hr intervals. 24 hrs after transfection, 

cells were split 1:10 and selected with the appropriate selection marker for 10-14 days. 

3.6.5 Generation of recombinant adenoviruses and infection of target 
cells 

   The adenoviral vector AdGFP-AP4-VSV was constructed by ligation of AP4-VSV 

cDNA into the plasmid pAdTrack-CMV, which is used for production of GFP-expressing 

viruses 489, followed by electroporation together with the Adeasy-1 plasmid 489 and 

recombination in E. coli (BJ5183 EC, Qbiogene) in a total volume of 25 µl using a Bio-

Rad Gene Pulser device (settings: 25 µF; 200 Ω; 2500 V). After recombination, 1 ml LB 

was added to bacteria and cells were grown at 37°C for 1 hr in antibiotic-free medium. 

25 µl and 50 µl of the bacterial suspension were plated on kanamycin (50 µg/ml) LB-agar 

plates which yielded 10-50 colonies after overnight incubation at 37°C. The smaller 
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colonies which should represent recombinants 489 were isolated and grown in 5 ml LB-

medium containing 50 µg/ml kanamycin. Clones were screened for the presence of 

pAdeasy-1 + insert by restriction digestion with PacI and XhoI. Plasmid DNA originating 

from positive clones was transformed into XL1-blue cells for amplification. Viral 

production and amplification was performed in 911 cells 488. After calcium-phosphate 

based transfection of 911 cells in a 10 cm cell culture dish using PmeI-linearized 

pAdeasy-1-AP4-VSV plasmid, cells were monitored for GFP expression and collected 

2 – 3 days after transfection by scraping off dishes. Supernatants and scraped cells were 

pelleted in 50 ml collection tubes prior to removing all but 5 ml of supernatant. Viral 

lysate was generated by three cycles of freezing in an ethanol/dry-ice bath and rapid 

thawing at 37°C. After sterile filtration (0.45 µm; Millipore), 1.5 ml viral lysate served 

for infection of 1×107 911 cells in a 10 cm dish. This process was repeated with 

increasing amounts of cells for high titer virus generation and finally, 4-6×108 packaging 

cells in sixteen 15 cm cell culture dishes were infected. After 3 days, cells were harvested 

and viruses were purified by CsCl banding. The minimal amount of virus needed to reach 

a more than 90% infection efficiency was determined by monitoring GFP signals with 

fluorescence microscopy. 

   24 hrs after seeding into 12-well plates, HCT116 cells were incubated with adenovirus 

for 12 hrs. HaCaT cells were infected in serum free medium with adenovirus for 3 hrs 

and an equal amount of medium containing 20% FBS was added for additional 8 hrs 

before infection medium was replaced by fresh medium. 

3.6.6 Proliferation assay 

   MCF-7-PJMMR1 and –MR1 cells were seeded into 6 well plates starting with 3*104 

cells per 6-well as determined by trypan blue staining and a cell counting chamber. 24 hrs 

later, cells were treated with 1 µg/ml ICI182,780 and 1 µg/ml doxycycline was added 

additional 30 hrs later to induce ectopic c-MYC expression. Cells were harvested by 

rinsing two times with Hanks balanced salt solution (HBSS, Invitrogen) and subsequent 

trypsinization. The cell number was determined with a Z1 Coulter Particle Counter 

(Beckmann Coulter). All experiments were performed in biological triplicates and every 

sample was counted at least three times. 
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3.6.7 Transient reporter assays based on mammalian cells 

   H1299 non-small cell lung cancer cells were transfected using FuGene Reagent 

(Roche) in 12-well plates with 15 ng Renilla luciferase control reporter plasmid pRL, 

600 ng firefly luciferase reporter constructs containing either wild type or mutant p21 

promoter sequences 487, 20 nM pcDNA-AP4-VSV or an equimolar amount of pcDNA3 

backbone. For p53-mediated p21 reporter activation, 400 ng firefly luciferase reporter 

constructs containing either wild type or mutant p21 promoter sequences, 250 nM 

pcDNA-AP4-VSV or an equimolar amount of pcDNA3 backbone and 0, 50 or 200 nM 

pCEP4-p53 or equimolar amounts of pCEP4 backbone were used. Firefly and Renilla 

luciferase activities were measured 36 hrs after transfection with the Dual-luciferase 

assay (Promega). Firefly activity was normalized to Renilla luciferase activity to control 

for transfection efficiency. 

   HCT116 p53-/- cells in 12-wells were transiently transfected with 400 ng of BDS2-3* 

reporter construct 181, 20 ng expression plasmid for renilla luciferase pRL-CMV 

(Promega), wild type p53 expression plasmid and pCR3.1-Flag-Cul7 483 expression 

vector. Control cells were infected with an equimolar amount of pCR3.1-Flag plasmid. 

Cells were harvested 48 hrs after transfection and activities of firefly and renilla 

luciferase were measured consecutively using the Dual-Luciferase reporter assay system 

(Promega). 

   HCT116 p53-/- cells in 6-wells were transiently transfected with 1000 ng of BDS2-3* 

reporter construct 181, 500 ng pCMV-β-Gal, 200 ng pCEP4-p53 equimolar amounts of 

vector backbone. 200 ng pBI-YFP-TAPn-p53 or pBI-YFP-p53-TAP or equimolar 

amounts of pBI-YFP vector were transfected in combination with 200 ng pMK-tTa 

plasmid in order to provide the tet-responsive transactivator in trans. Cells were harvested 

48 hrs after transfection and activities of firefly luciferase and β-galactosidase were 

measured consecutively using the β-Galactosidase Enzyme Assay System (Promega). 

3.7 Protein analysis and purification 

3.7.1 Generation of goat polyclonal antibodies 

In the course of this study, a goat polyclonal anti-HA antibody raised against the peptide 

H-CYPYDVPDYASL-OH (#1452) and a goat polyclonal anti-p53 antibody raised 
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against the peptide H-CGQSTSRHKKLMFKTEGPDSD-OH (#1467), representing the 

C-terminal 20 amino-acids of p53, were generated. Peptides were synthesized by the 

Core-Facility of the Max-Planck Institute of Biochemistry. 

3.7.1.1 Conjugation of peptides to carrier protein 

The peptides containing a sulfhydryl-group at their N-terminus were coupled to KLH 

(keyhole limpet hemocyanine) using the Imject® Maleimide Activated mcKLH Kit 

(Promega) according to the manufacturer`s protocol. Here, 2 mg of peptide were coupled 

with 2 mg of activated KLH for 2.5 hrs prior to purification of the conjugate using D-Salt 

Cross-linked Dextran Gel Filtration Columns. 500 µl fractions were collected and the 

absorbance at 280 nm was determined to identify the samples containing the KLH-

coupled peptide. The respective fractions were combined, sterile filtered and stored in a 

-20°C freezer until further usage. 

3.7.1.2 Immunization of goats 

   Goats were immunized by injection of 1 ml of a 1:1 emulsion prepared with 0.5 mg 

peptide-KLH conjugate (~500 µl) and Titermax® Gold Adjuvant (Sigma). Prior to the 

first injection, 50 to 100 ml pre-immune serum were taken and stored at -80°C. 40 days 

later, the second injection (“boost”) was done using a 1:1 emulsion of 0.5 mg protein-

conjugate with Freund`s Adjuvant incomplete (Sigma). 14 days after this boost, test-

blood was analyzed for the presence of functional antibodies. 20 days after taking test-

blood, the next boost was performed and the 3rd and 4th boosts yielded high titer 

antibodies. Test-blood was taken from the animals usually 11-14 days after 

immunization. For serum isolation, test blood was kept at 4°C over-night and centrifuged 

at 3000×g for 2× 20 min at 4°C. The supernatant, which represents the serum, was 

collected and stored at -20°C until affinity purification. 

3.7.1.3 Affinity purification of polyclonal antibodies 

   Polyclonal anti-HA and anti-p53 antisera were affinity purified using the SulfoLink® 

Coupling Gel (Pierce). To immobilize the respective peptide (epitope) to the gel matrix, 

2 mg peptide were dissolved in 2 ml de-gassed coupling buffer (50 mM Tris/HCl, pH 8.5, 

5 mM EDTA) and mixed with 2 ml (bed volume) SulfoLink® coupling gel slurry, that 
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had been equilibrated with coupling buffer, in Poly-Prep® chromatography columns 

(Bio-Rad). After incubation for 15 min by head-over-tail rotation and additional 30 min 

without rotation, the columns were washed carefully with coupling buffer and 

subsequently incubated with 3 ml of freshly made 50 mM L-Cystein-HCl in coupling 

buffer for 15 min by head-over-tail rotation and additional 30 min without rotation in 

order to block free sulfhydryl-groups on the gel matrix. After this, the column was 

washed carefully with 1 M NaCl and finally with Storage Buffer (PBS + 0.05 % (w/v) 

NaN3). 

   For affinity purification of polyclonal antibodies, 2 ml peptide-coupled SulfoLink® 

coupling gel slurry was incubated with 20 ml antiserum and 25 ml PBS over-night at 4°C 

by slow head-over-tail rotation. Next, the gel matrix was spun down by centrifugation at 

200× g for 5 min at 4°C and washed twice with PBS, 500 mM NaCl before transfer into a 

fresh Poly-Prep® chromatography column. Further washing of the column was 

performed until the flow-through did not contain detectable amounts of protein as 

determined by Ponceau S staining of 1 µl samples spotted on nitrocellulose membrane. 

Antibodies bound to the gel-matrix-immobilized peptides were eluted with 0.2 M acetic 

acid, pH 2.7, 500 mM NaCl and collected to 500 µl fractions which were immediately 

neutralized by addition of 100 µl 1 M Tris, pH 8.8. Antibody-containing fractions were 

identified by Ponceau S staining of 1 µl samples spotted on nitrocellulose membrane, 

combined and the buffer was changed to PBS by repeated dilution and concentration 

using Amicon® Ultra-15 tubes (cut-off: 30,000 Dalton; Millipore). Subsequent to protein 

concentration measurement (A280-detection), antibodies were mixed with 1 volume of 

87% sterile glycerol and stored in 50 µl aliquots at -20°C. 

3.7.2 Preparation of whole cell lysates from mammalian cells 

   To obtain whole cell lysates (WCL) from exponentially growing or arrested cells, cells 

were washed with ice-cold PBS and lysed on ice for 10-15 min using RIPA lysis buffer 

containing protease inhibitors. Lysates were centrifuged at 16.060×g for 20 min at 4°C to 

remove cellular debris. The protein concentration of the supernatant with determined 

using a Bradford assay reagent at OD595 standardized to a BSA dilution series. WCL 
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were immediately subjected to PAGE and western blot analysis, stored at -20°C 

overnight or, in case of long term storage, transferred to a -80°C freezer. 

3.7.3 Polyacrylamide gel electrophoresis (PAGE), Western blotting and 
Immunodetection of proteins 

   Due to the high resolution that can be achieved by discontinuous electrophoresis, the 

SDS-containing, discontinuous Tris/HCl-Glycin buffer system described by Laemmli 497 

was applied in this thesis. Dependent on the analyzed protein size window, 6% to 12% 

polyacrylamide separation gels were prepared and overlaid with a 4% stacking gel. 30-

80 µg of protein were supplemented with an equal volume of 2× Laemmli-buffer and 

denatured at 95°C for 5-10 min prior to loading on the gel. To estimate the protein sizes 

after electrophoretic separation, a stained protein marker (PageRuler™ prestained protein 

ladder, Fermentas) was used. Electrophoresis was performed at 80-130 V in a vertical 

Mini-PROTEAN®-electrophoresis system with Tris-Glycin-SDS buffer. In order to 

visualize protein bands after electrophoresis as a control for equal loading, gels were 

stained using Coomassie blue staining solution with subsequent destaining with 

Coomassie blue destaining solution. 

   After separation, proteins were transferred onto Immobilon-P PVDF-membranes 

(Millipore) either by using the Trans-Blot® cell system (Bio-Rad) with a constant voltage 

of 100 V for 75-120 min at 4°C and transfer buffer pre-chilled to 4°C or by semi-dry 

blotting using the Multiphor II Electrophoresis unit (Amersham) with a constant current 

of 0.8 mA/cm2 (~50 mM per MINI-gel) for 60-100 min at RT in a 3-buffer system 

(Anode I, II and cathode transfer buffer). After transfer, membranes were incubated in 

10% (m/v) skim milk / TBS-T for 1-2 hrs at RT in order to block non-specific binding 

sites. Primary antibodies were diluted in TBS-T buffer and applied to the membranes for 

1 hr at RT or over-night at 4°C. Antibodies specific for β-actin or α-tubulin served as a 

control for equal loading. Next, membranes were washed for 5 min with TBS, 10 min 

with TBS-T and another 5 min with TBS before incubation with an appropriate 

secondary antibody conjugated to horseradish peroxidase for 30-45 min at RT. After 

washing twice for 10-30 min (dependent on the primary antibody) with TBS-T buffer and 

once with TBS for 2-5 min, proteins were visualized using ECL Western blotting 

substrate (Pierce) or Western Lightning® Western Blot Chemiluminescence Reagent Plus 
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(PerkinElmer) as a substrate for horseradish peroxidase and signals were recorded with a 

CCD camera (Kodak 440CF imaging system). 

3.7.4 Silver staining 

   Subsequent to electrophoretic separation of proteins, polyacrylamide gels were 

incubated for 2× 30 min in 50% (v/v) methanol/12% (v/v) acetic acid followed by 

3× 20 min in 50% (v/v) ethanol. After incubation in 200 mg/l Na2S2O3, gels were washed 

twice in H2O and stained for 20 min in AgNO3-solution (2g/l AgNO3, 375 µl/l 

formaldehyde) at 4°C. After washing with water for 1 min, silver stains were developed 

for 5-10 min in Na2CO3-solution (60 g/l Na2CO3, 5 mg/l Na2S2O3, 250 µl/l 

formaldehyde), washed briefly with H2O followed by 10 min incubation in 5% (v/v) 

acetic acid. Developed gels were stored at 4°C in 1% (v/v) acetic acid or air dried. 

3.7.5 Tandem affinity purification (TAP) 

   The TAP method takes advantage of two consecutive affinity purification steps which 

increases the specificity when compared to standard immuno-precipitation methods. The 

TAP approach used in this study is based on a special affinity tag (“TAP-tag”), which 

consists of calmodulin-binding protein (CBP), a TEV (tabacco edge virus) protease 

cleavage site and two repeats of a minimal domain of Staphylococcus areus protein A (“Z 

domain”), which binds to IgG 472. A schematic presentation of the four experimental 

steps of the TAP procedure is depicted in Figure 8. 

   For TAP, 6× 108 MCF-7i-p53-TAP cells (corresponding to 10× 500 cm2 plates) were 

treated with 100 µM zinc chloride for 6 hrs to induce expression of the TAP-tagged p53 

and for 3.5 hrs with 20 µM of the topoisomerase II inhibitor etoposide to provoke a DNA 

damage response and consequently the activation and stabilization of the TAP-tagged 

p53 protein. Hereafter, cells were washed with 100 ml ice-cold PBS (phosphate buffered 

saline) per 500 cm2 plate and lysed in TAP lysis buffer supplemented with protease 

inhibitors (complete mini, EDTA-free, Roche) for 20 min rotating at 4°C. Samples were 

cleared by centrifugation at 13,000 rpm for 20 min in a table centrifuge at 4°C and pellets 

were resuspended in 300 µl fresh TAP lysis buffer and subjected to 4 freeze-thaw cycles 
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(liquid nitrogen, 37°C water bath), centrifuged at 13,000 rpm for 20 min at 4°C and the 

soluble fractions were combined. 

 
Cell lysates corresponding to ~160 mg of protein were incubated with 500 µl of IgG 

sepharose beads (Amersham Biosciences) for 2.5 h at 4°C with head-over-tail rotation. 

Beads were collected using chromatography columns (Polyprep, Bio-Rad) and washed 

twice with 10 ml TAP IPP150 washing buffer and once with 10 ml TAP tobacco etch 

virus (TEV) cleavage buffer. For TEV cleavage 300 units of TEV protease (Invitrogen) 

in 3.0 ml TEV cleavage buffer were added to the sample and incubated for 2.5 hrs at 4°C 

by head-over-tail rotation. The resulting eluate was directly transferred to a fresh column 
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Figure 8. The tandem affinity purification (TAP) approach: 
 
In the first step, the fusion protein (here: p53-TAP) and associated complexes are recovered 
from cellular extracts by selective binding to an IgG-affinity matrix. After washing, addition of 
TEV protease serves to release the bound protein complexes. In the second affinity step, the 
first eluate is incubated with calmodulin-coated beads in a calcium-containing buffer system. 
The second washing step removes TEV protease and contaminants which remained after the 
first affinity step. Finally, the tandem affinity purified material is eluted by addition of EGTA. 
(Adapted from Ref. 500) 
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containing 400 µl equilibrated calmodulin affinity resin (Stratagene) in 7 ml TAP 

calmodulin binding buffer, supplemented with CaCl2 to 2 mM and incubated for 2.5 hrs 

at 4°C. After 3 times washing with 10 ml TAP calmodulin binding buffer, proteins were 

released by calcium chelating using 1.2 ml of TAP elution buffer. For precipitation of the 

eluted protein complexes, the elution fractions were supplemented with 0.015% (w/v) 

sodium deoxycholate and 1/5 volume of 6.1 M trichloroacetic acid (TCA), incubated for 

2 hrs at -20°C and centrifuged at 13,000 rpm for 20 min at 4 C in a table centrifuge. The 

protein precipitates were washed twice with -20°C cold acetone and air-dried at RT for 

10 min. 

3.7.6 Multidimensional protein identification technology (MudPIT) 

   The MudPIT approach was developed for identification of proteins from complex 

mixtures without the necessity to separate proteins by gel electrophoresis. Two 

chromatography steps interfaced back to back in fused silica capillaries represent the 

basis of the MudPIT procedure. While a strong cation exchange column with high 

loading capacity is used in the first dimension, a reverse phase chromatography column is 

applied in the second dimension which allows for further peptide separation and 

removing of salt. The eluted peptides are injected into the mass spectrometer by 

electrospray-ionization (ESI) and fragments are analyzed to obtain protein sequence data. 

   MudPIT analyses were performed by Aaron Bailey in the laboratory of John Yates III. 

(Department of Cell Biology, The Scripps Research Institute, San Diego, USA). The 

precipitated p53-TAP-associated proteins underwent trypsin digestion prior to analyzes 

by LC/LC/MS/MS according to published protocols 498. Approximately 1 µg of protein 

was used for a 12-step LC/LC/MS/MS experiment on a LCQ Classic (ThermoElectron, 

San Jose, CA). The obtained MS/MS spectra were automatically assigned to proteins by 

SEQUEST 27 using a non-redundant mammalian data base (May 2003 release, NCBI). 

The SEQUEST outputs were further analyzed by DTASelect with the filter settings: 

XCorr: +1 ions, 1.8; +2 ions, 2.5; +3 ions, 3.8; ∆CN, 0.08; only half or full tryptic 

peptides were considered and all subset proteins were removed (the “-o” option in 

DTASelect). Proteins with two or more peptides that passed the DTASelect filter were 

considered real hits. 
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3.7.7 Indirect immunofluorescence labeling 

   Cells grown on glass slides were washed 3 times with PBS and fixed in 4% 

paraformaldehyde/PBS for 10 min at RT. After rinsing three times with PBS, cells were 

permeabilized in 0.2% (v/v) Triton X-100 for 20 min and blocked in 100% FBS for 1 hr 

at RT in order to block non-specific binding sites. Slides were incubated with primary 

antibodies in IF-buffer (PBS, 0,05% Tween20, 50% FBS) for 1 hr at RT and washed 

3 times for 5 min with washing buffer (PBS, 0,05% Tween20). Subsequently, slides were 

incubated with secondary antibodies diluted in IF-buffer for 30 min at RT and washed 

two times using washing buffer. After incubation with 1 µg/ml DAPI in PBS for 2 min, 

slides were washed additional 3 times for 5-10 min with washing buffer and mounted in 

Fluoromount (Southern Biotech) solution. Images were acquired using Axiovert 200M 

microscope equipped with a CoolSNAP™-HQ CCD camera and the MetaVue® software 

package (Universal Imaging). 

3.7.8 Tissue sections and immunohistochemistry 

   Twelve cases of sporadic colorectal carcinoma were retrieved from the archives of the 

Institute of Pathology (LMU Munich). All carcinomas were WHO grade 2 or 3. None of 

the patients had received cancer therapy prior to surgical resection of the lesions. For 

IHC, biopsies from diagnostic colonoscopies were used to ensure that the tumor tissue 

had been immediately fixed in neutral 4% buffered formalin. Colon sections of 4 µm 

thickness from formalin-fixed, paraffin-embedded tissue were deparaffinized for 

2× 5 min in xylene followed by rehydration with solutions of decreasing ethanol 

concentration (100%-70%). After washing in tap water, sections were boiled for 

2× 15 min in TRS solution pH 6.1 (DakoCytomation) in a microwave for antigen 

retrieval. After cooling down for 20 min at RT, quenching of endogenous peroxidase 

activity was achieved by incubation of tissue sections in 7.5% H2O2. The staining 

procedure was done using the VECTASTAIN® Elite ABC Kit (Vector) essentially 

according to the manufacturer`s protocol. After pre-blocking for 30 min in 1% horse 

serum, sections were incubated with a 1:125 dilution of anti-AP4 (Atlas antibodies) 

antibody or, for an isotype control, polyclonal rabbit-anti-mouse IgGs (Sigma) in PBS 

supplemented with 10% horse serum and 0.05% Tween20 for 1 hr at room temperature. 
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After washing twice for 5 min with buffer (PBS, pH 7.5, 0,05% Tween 20), tissue 

sections were incubated with biotinylated horse-anti-rabbit antibodies (Vector) diluted 

1:50 in PBS supplemented with 2% horse serum and 0,05% Tween20 for 30 min at RT. 

The streptavidin/peroxidase system combined with exposure to DAB+ (3,3`-

diaminobenzidine) chromogen (DakoCytomation) was used for visualization according to 

the manufacturer`s protocol. Counterstaining was performed with Mayer`s hematoxylin 

(Merck) for 20 sec prior to mounting of sections in an aqueous mounting medium 

(Aquatex, Merck). Staining of consecutive sections with antibodies directed against p21 

(DakoCytomation), Ki67 (DakoCytomation) and c-MYC (Epitomics) was performed 

using the LSAB2 System-HRP (DakoCytomation) detection system. The 

streptavidin/peroxidase system combined with exposure to AEC (β-amino-9-ethyl-

carbazole) reagent (Zytomed) for 10 min was used for visualization. Images were 

captured on a Zeiss Axioskop 40 microscope coupled to a Leica DC500 camera. 

3.7.9 Co-immunoprecipitation 

For immunoprecipitation (IP) of exogenous proteins, H1299, MCF-7 and HEK293 cells 

were transfected by using a calcium phosphate method and processed 24 hrs after 

transfection. IP of exogenous and endogenous proteins was carried out starting from cells 

grown in 14 cm cell culture plates. Cells were lysed on ice with 400 µl IP-lysis buffer. 

After sonication of whole cell lysates (WCL) (Sonifier: Bandelin HD70 Sonoplus; 

5 pulses with 50% intervals, power setting: MS72D) cellular debris was removed by 

centrifugation at 16.060×g for 20 min at 4°C. 1-3 mg of pre-cleared WCL were incubated 

with specific antibodies or an IgG-control (serum or affinity purified IgGs) for 3 hrs at 

4°C in a rotation wheel. All further centrifugation steps were performed at 2,000 rpm for 

1 min at RT in a table centrifuge. For recovery of antibody-bound proteins, 25 µl of 

Protein G-Sepharose beads were added for an additional 2 hrs. After washing 3 times 

with IP washing buffer, beads were transferred into a fresh reaction tube, washed once 

more and proteins were eluted from beads by addition of 30 µl 2× Laemmli buffer and 

boiling for 10 min at 95°C. Finally, proteins were separated by SDS-PAGE and subjected 

to Western blot analysis. 
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3.7.10 Chromatin immunoprecipitation (ChIP) assay 

   U-2OS and MCF-7 cells and their derivatives were cultured in 14 cm plates. For cross-

linking, formaldehyde was added to a final concentration of 1%. After 4 min (MCF-7) or 

5 min (U-2OS) cross-linking at RT, the reaction was stopped by addition of glycine at a 

final concentration of 0.125 M followed by incubation for 2 min. Fixed cells were 

washed twice using TBS buffer and harvested in ChIP-SDS-buffer supplemented with 

protease inhibitors. Cells were pelleted by centrifugation at 300× g for 5 min at 4°C and 

resuspended in 2 ml ChIP-IP-buffer supplemented with protease inhibitors. Chromatin 

was sheared by sonication (Sonifier: Bandelin HD70 Sonoplus, power setting: MS72D) 

for 4 times (MCF-7) or 5 times (U-2OS) 20 sec to generate DNA fragments with an 

average size of 500-700 bp. For each immunoprecipitation, 2 ml of lysate was pre-cleared 

by addition of 30 µl pre-blocked (0.4 mg/ml BSA fatty acid free, Sigma; 1.5 mg/ml 

sheared hering-sperm DNA in PBS) protein A sepharose beads. Lysates were incubated 

for 20 hrs at 4°C with a polyclonal c-MYC antibody (sc-764, Santa Cruz) or rabbit anti 

mouse IgG (M-7023, Sigma) in case of MCF-7-PJMMR1 derived lysates or a 

monoclonal anti-VSV antibody (hybridoma clone P5D4) or Protein G-purified mouse 

IgG from mouse pre-immune serum (S-7273, Sigma) for lysates from AP4-VSV-

expressing U-2OS cells. The bound protein-DNA complexes were recovered by addition 

of pre-blocked protein A sepharose beads (60 µl per 2 ml lysate) and incubation for 2 hrs 

at 4 C by head-over-tail rotation. After centrifugation at 1000× g for 1 min, samples were 

washed once in the following order of ChIP buffers for 1 min at RT: Mixed Micelle 

buffer, Buffer 500, LiCl/Detergent buffer and finally TE-buffer. Elution was carried out 

by addition of 100 µl freshly prepared ChIP elution buffer, careful mixing and incubation 

for 10 min at 65°C. After washing of bead matrix with 150 µl ChIP elution buffer the two 

eluate fractions were combined and incubated overnight at 65°C for crosslink-removal. 

Next, samples were supplemented with one volume of ChIP-proteinase K solution and 

incubated for 45 min (ChIP-gDNA) or 4 hrs (input gDNA) at 37°C. Purification was 

performed by Phenol/Chloroform/Isoamylalcohol extraction. The resulting aqueous phase 

was supplemented with 1/10 volume of 4 M LiCl and 20 µg glycogen and subjected to 

ethanol precipitation for 30 min at -20°C. After centrifugation for 15 min at 4°C in a table 

centrifuge, the precipitated DNA fragments were washed twice with 70% ethanol and air-
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dried for 10 min at RT. The DNA pellets were reconstituted with 50 µl ddH2O (80 µl for 

input gDNA), 0.2 mg/ml RNase was added and the samples were incubated for 30 min at 

37°C. The quality and size distribution of the sheared DNA was analyzed by agarose gel 

electrophoresis (1.2% gel) using 10-20 µl of the input gDNA. Prior to RT-qPCR 

analyses, ChIP-DNA was further purified using the PCR purification kit (Qiagen) 

according to the manufacturer`s protocol. Purified DNA was first analyzed by 

amplification of a genomic fragment from chromosome 16q22 that did not contain any E-

boxes up to 3 kb up- and downstream. This amplification product was used to control for 

equal DNA input in the RT-qPCR reactions. For analysis of c-MYC binding to the AP4 

locus equal amounts of DNA were analyzed by RT-qPCR with a primer pair flanking two 

E-boxes (CACGTG) in the first intron of the human AP4 gene. A second primer pair 

spanning a fragment in intron 6 of AP4 was used to control for specificity. For analysis of 

AP4 binding to the proximal p21 promoter, a primer pair flanking an E-box (CAGCTG) 

was used. A second primer pair spanning a fragment in intron 1 of p21 was used to 

control for specificity. 

3.8 DNA content analysis by FACS 

   5×104 U-2OS or 5×105 U-937 cells were plated into T25 cell culture flasks. 5×104 

MCF-7 cells were plated into T25 cell culture flasks or, for analyses after siRNA 

transfections, MCF-7 cells were seeded into 12-well plates. Floating cells and trypsinized 

cells were collected by centrifugation at 1.200 rpm (300×g) for 7 min, fixed with ice-cold 

70% ethanol and stored 2 hrs to several days on ice. After washing with PBS, cells were 

incubated with FACS solution (PBS, 0.1% Triton X100, 60 µg/ml propidium iodide (PI), 

0.5 mg/ml DNase free RNase), which had been passed through 0.22 µm sterile filter units 

(Millipore), at room temperature for 30 min. DNA content was determined by detection 

of propidium iodide fluorescence by flow cytometry (FACSCalibur, Becton-Dickinson). 

3.9 BrdU labeling for detection of de novo DNA synthesis 

   DNA synthesis was monitored by measuring incorporation of the artificial thymidine 

nucleotide analog 5-bromo-2`-deoxyuridine (BrdU)(Roche) into de novo synthesized 

DNA. After treatment of U-937 cells with TPA and zinc sulfate, 10 µM BrdU was added 
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for 30 min at 37°C. Next, cells were harvested by trypsinization and centrifuged at 300×g 

for 5 min. After washing two times with PBS, fixation was achieved by addition of ice-

cold 70% ethanol and incubation for at least 30 min at -20°C. Fixed cells were 

resuspended in 0.1 mg/ml pepsin in 2 M HCl and incubated for 30 min at RT. After 

centrifugation at 500×g, neutralization was achieved by resuspending the cells in 0.1 M 

Na2B4O7 at RT for 5 min. Cells were washed once with each PBS and PTS buffer and 

subsequently resuspended in 60 µl PTS+6 µl anti-BrdU-FITC antibody (BD Pharmingen) 

or an appropriate isotype control IgG and incubated for 30 min at RT in the dark. Next, 

cells were washed twice with PTS and resuspended in 500 µl PTS + 0.5 mg/ml RNaseA 

(Sigma) + 50 µg/ml propidium iodide. After incubation for 30 min at RT or 2-3 hrs at 

4°C cells were analyzed by flow cytometry (FACSCalibur, Becton-Dickinson). 

3.10 Microscopy 

   Phase contrast pictures of living cells were captured using an Axiovert 25 microscope 

equipped with a HyperHAD CCD camera and KAPPA ImageBase software. Images of 

stained sections were captured with Axioskop 40 microscope connected to a Leica 

DC500 camera and Adobe Photoshop CS2 software. Fluorescence microscopy of living 

cells expressing mRFP and of fixed cells stained with antibodies was carried out by using 

an Axiovert 200M microscope, and pictures were taken from a CoolSNAP™-HQ CCD 

camera and documented using Metamorph® software. 
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4 Results I 

4.1 Proteomic identification of p53-associated proteins 

   Widely used approaches to study p53-associated proteins are co-immunoprecipitation 

of endogenous proteins and epitope-tagging. While co-immunoprecipitation suffers from 

cross-reactivities of the applied antibodies, classical epitope-tags (e.g. Flag-, HA-, VSV-, 

Myc- or Strep-tag) only allow for a single-step purification under one defined condition 

which leads to high background and obscures low abundant, specific interactions. This 

drawback of affinity-based purification methods has been overcome by utilizing two 

consecutive purification steps: the so-called “tandem affinity purification” (TAP) strategy 

(see Figure 8, Methods section) was originally developed in yeast with the intention to 

rapidly purify protein complexes with their composition being analyzed by mass 

spectrometry 472,499,500. For the recovery of physiological protein complexes, the TAP-tag 

permits purification under mild, close to native conditions 472. Therefore, the tandem-

affinity-purification (TAP) approach was chosen to isolate native p53-containing protein 

complexes. 

4.1.1 Generation of a p53-TAP fusion construct 

   In order to test the functionality of tagged p53 protein, a TAP-tag consisting of 

calmodulin-binding protein (CBP) and two copies of protein A epitopes was fused to the 

p53 N- or C-terminus. In transient reporter assays performed in p53-deficient HCT116 

cells 501, expression of the C-terminal TAP-tagged p53 fusion protein (p53-TAP) 

increased luciferase activity, which was under control of three tandem-arranged p53 

binding sites derived from the 14-3-3σ gene promoter (pBDS2×3, 181), almost 60-fold, 

while a N-terminal fusion construct only gave rise to ~25-fold reporter activation 

(Figure 9A). As a positive control, wild type p53 under control of a stronger, full-length 

CMV promoter (pCEP4-p53) was used that led to a more than 200-fold increase of 

luciferase activity. The C-terminal fusion protein was chosen for the following analyses. 

To further elucidate the functional activity of p53-TAP at promoters of endogenous target 

genes, an inducible DLD1 colon carcinoma cell line was generated by transfection of 
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DLD1-tTa cells 481 with a pBI-YFP-p53-TAP vector harboring a bi-directional promoter. 

In this cell line, expression of p53-TAP and YFP is under control of a tet-responsive 

element (“tet-off” system). A cell clone was isolated by limiting dilution and showed a 

tight regulation of p53-TAP by doxycycline (Figure 9B). DLD1 cells carry a mutant form 

of endogenous p53 (p53 S241F, 502) that is unable to transactivate target genes 503. As a 

consequence, expression of the p53 target gene p21 180 was hardly detectable and 

expression of p21 did not increase in response to DNA damage in this cell line (Figure 

9B). After washing out doxycycline, expression of p53-TAP was rapidly induced and 

caused a strong induction of p21 demonstrating the functionality of the p53-TAP fusion 

protein (Figure 9B). 
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Figure 9. Functional characterization of the TAP-tagged p53 protein 
 
A, Transient reporter assay using HCT116 p53-/- cells transfected with BDS2×3 reporter 
plasmid harboring 3 tandem-arranged p53 binding sites derived from the 14-3-3σ  promoter 
and either wild-type p53 (wt, pCEP4 backbone) or plasmids expressing N- or C-terminal TAP-
tagged p53 (pBI-YFP backbone), or equimolar amounts of the respective vector controls. 
Relative luciferase activity is depicted as the relative expression normalized to 
β-galactosidase activity. Two independent experiments (series 1 and 2) are shown. 
B, DLD1-tTA-p53-TAP cells after removal of DOX (induction of p53-TAP) for the indicated 
periods were treated with etoposide for 8 hrs as indicated and whole cell lysates were 
analyzed by Western blotting and subsequent immunodetection using antibodies specific for 
p53, p21 and, for normalization, β-actin. p53 S241F: endogenous mutant p53 expressed in 
DLD1 colon cancer cells. 
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4.1.2 Generation of a cellular system for identification of p53 interactors 

   While the originally described TAP procedure - optimized for proteomic analyses in 

yeast - is in principle easily adaptable to studies performed in higher eukaryotes, one 

main obstacle needed to be overcome: in contrast to yeast, which allows substitution of 

the endogenous gene of interest for the gene encoding the TAP-tagged counterpart by 

homologous recombination, this cannot be achieved in the human system. Since the 

endogenous protein might be preferentially incooperated into protein complexes thereby 

limiting the sensitivity of the TAP approach, Forler et al. sought to mimic the situation in 

yeast and developed the so-called “iTAP” strategy 473. This technique combines the TAP 

approach with double-stranded RNA interference (RNAi) directed against the 

corresponding endogenous gene. Cell lines harboring mutant, and therefore functionally 

inactive p53, are only suitable for the iTAP method at first sight. As an example, the 

endogenous mutant p53 variant in DLD1 colorectal cancer cells is not functional with 

respect to its transactivation potential but it still comprises wild type conformation 503. 

Therefore it was likely that this p53 mutant would strongly compete with the TAP-tagged 

version of p53 for endogenous interactors. In addition, mutant p53 in DLD1 cells was not 

amenable to RNAi-mediated down-regulation (data not shown), presumably due to the 

increased protein half-life compared to wild-type p53 504. This can be explained by the 

fact that mutant p53 is no longer able to maintain the regulatory feedback loops which 

negatively act on its stability 504. 

   In order to meet the demands of the iTAP purification, a MCF-7 breast cancer cell line 

(MCF-7i) was generated by retroviral infection: the used retroviral vector (based on 

pRetroSuper 480) encoded a short hairpin RNA (shRNA) directed against the 3’-non-

translated region (3’-UTR) of p53. As a result, the levels of endogenous p53 were 

significantly reduced (Figure 10A). The knockdown of endogenous p53 led to a delayed 

increase of p53 and induction of p21 after DNA damage (Figure 10B). p53-TAP was 

stably expressed in this cell line under control of a truncated zinc-inducible promoter 

(MT∆156 486) which allowed expression of p53-TAP at a level similar to endogenous p53 

(data not shown) thereby favoring the recovery of physiological p53-containing protein 

complexes rather than artificial complexes that might result from the strong over-

expression of the bait protein. Induction of p21 after activation of p53-TAP and the 
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accumulation of the p53-TAP protein in response to DNA damage (Figure 10C) as well 

as the nuclear localization of the fusion protein (Figure 10D) indicated that the TAP-tag 

did not interfere with the physiological function and regulation of ectopic p53. 

 

4.1.3 iTAP/MudPIT analysis of p53-associated proteins 

   Subsequently, the optimal time-point for TAP purification of p53-associated proteins 

was determined (data not shown). Finally, the p53-TAP allele was induced in MCF-7i-
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Figure 10. Establishment of a breast cancer cell line for iTAP purification 
 
A, Detection of endogenous p53 and β-actin protein by Western blot analysis in MCF-7 cells 
stably expressing a p53-specific short hairpin RNA (shRNA) directed against the p53 3’-non-
translated region (3`-UTR) (MCF-7i) and control infected cells (MCF-7-MOCK). 
B, MCF-7i and MCF-7-MOCK cells were treated with 20 µM etoposide for the indicated 
periods. Expression of p53, p21 and, for normalization, β-actin, was analyzed by Western blot 
analysis. 
C, Detection of p53-TAP, p21 and β-actin expression by Western blot analysis in MCF-7i-p53-
TAP cells. p53-TAP was induced by addition of 150 µM ZnCl2 for the indicated periods. Non-
induced cells and cells over-expressing p53-TAP were treated with 20 µM etoposide as 
indicated. 
D, Indirect immunofluorescence detection of p53-TAP in MCF-7i-p53-TAP or, as a control, 
parental MCF-7i cells 6 hrs after addition of 150 µM ZnCl2 using a rabbit-anti-goat-Cy3 
antibody directed against the Protein A present in p53-TAP.  
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p53-TAP cells by addition of zinc chloride for 6 hrs and the topoisomerase II inhibitor 

etoposide was added 3.5 hrs prior to cell lysis and subsequent TAP purification. This 

duration of etoposide treatment reflects the earliest time point at which a stabilization and 

functional activation of p53-TAP was detectable (data not shown) and was chosen to 

avoid interference with the accumulation of endogenous p53 protein (see also Figure 

10B). In order to yield sufficient amounts of co-purified proteins for mass-spectral 

analyses, each TAP purification was started using ~6x 108 cells which roughly 

corresponded to 160 mg total protein. 1% of the final eluate was subjected to Western 

blot analyses in order to detect p53-TAP (prior to purification) and p53-CBP (after 

purification) or gels were silver stained to control for the presence of p53-CBP and co-

purified proteins (Figure 11). 

 

   Multidimensional protein identification technology (MudPIT) allows the identification 

of peptides in highly complex mixtures of TAP-eluates without the need for gel-

electrophoretic separation 474. Thereby, the peptide detection sensitivity is greatly 

p53-CBP

anti-p53 (DO-1) silver stain

70 kD
70 kD

p53-CBP
*

 
 
Figure 11. p53 protein in input and eluate fractions of an iTAP purification 
 
50 µg of input protein and 1% of the final eluate were subjected to Western blot analysis or a 
silver staining. In case of immunodetection, an antibody against p53 was used to detect p53-
TAP (*) or p53-CBP which had undergone proteolytic cleavage by TEV protease during the 
iTAP procedure. In the silver stain, the strongest signal matches the molecular weight of p53-
TAP with additional, weaker bands representing putative interaction partners of p53. 
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enhanced. Precipitated eluates from the iTAP experiments were subjected to MudPIT 

analyses by Aaron Bailey in the laboratory of John Yates III. (Department of Cell 

Biology, The Scripps Research Institute, San Diego, USA). In brief, TCA-precipitated 

TAP-eluates were digested by trypsin, the peptide spectra were detected by MudPIT 

analysis and peptide sequences were determined and evaluated by SEQUEST 2.7 

software using a non-redundant mammalian database. 

 

4.1.4 Putative p53 interactors identified by the iTAP/MudPIT approach 

   In the 4 performed TAP purifications, peptides corresponding to Cul7 were the most 

frequent besides those corresponding to the previously characterized p53 binding proteins 

MDM2 49, PARC 71, HSP70 505 and MDMX 98(Table 1). 11 additional putative p53 

interactors were identified less frequently and/or with lower sequence coverage (data not 

shown). All other identified proteins were regarded as co-purified background, as they 

are generally detected during TAP-tag purifications 454,506(data not shown). For Cul7, 15 

peptides were identified covering almost 20% of the amino acid sequence of the 193 kD 

Cul7 protein (data not shown). While one of these peptides could be assigned to both 

PARC and Cul7, 14 peptides exclusively matched to Cul7. Besides Cul7, only the PARC 

protein and p53 itself were detected in all 4 independent iTAP/MudPIT analyses. MDM2 

protein 
identification by 

MudPIT

RefSeq 
Accession 

No. 

TAP 
I

TAP 
II

TAP 
III

TAP 
IV

Biological function / functional domain

sequence coverage (%)

p53       NP_000537 37.7 12.2 32.6 53.4 Transcription factor, tumor suppressor
MDM2* NP_002383 20.5 ----- 12.7 37.6 E3 ubiquitin ligase /Ring finger domain

MDM4 / MDMX* NP_002384 ----- ----- ----- 12.9 Negative regulator of p53 activity
HSP70* NP_005336 9.7 9.1 ----- 22.3 Heat shock protein
PARC* NP_055904 14.7 6.1 3.8 13.2 Parkin-like ubiquitin ligase /Ring finger domain
Cul7 NP_055595 16.3 4.9 4.9 10.2 component of SCF7 ubiquitin ligase

 
 
Table 1. p53-associated proteins identified in 4 iTAP/MudPIT analyses 
 
Shown are exemplary results obtained from 4 iTAP/MudPIT analyses of p53-associated 
proteins. The proteins represented here are the most significant p53 interactors according to the 
number of identified peptides, sequence coverage and consistency in the four purifications. 
*known p53 interactors.  
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and HSP70 were detected in 3 out of 4 TAP purifications. From this observation it can be 

inferred that Cul7 presumably has an exceptionally high affinity towards p53 when 

compared to all other p53 interacting proteins. Cul7 is highly homologous to the PARC 

protein, which has been previously described as a negative regulator of p53 function 71. 

The N-terminal domain of PARC which is required for association with p53 71 shows 

approximately 60% sequence identity with Cul7 (Figure 12). 

 

 

 

 

4.2 Cul7: a novel inhibitor of p53 activity 

4.2.1 p53 interacts with Cul7 in vivo 

   To validate the association between p53 and Cul7, both proteins were ectopically 

expressed in p53-deficient H1299 non-small cell lung cancer cells. In a co-

immunoprecipitation approach, the precipitation of Flag-tagged Cul7 specifically co-

precipitated the HA-tagged p53 protein (Figure 13A) and a specific interaction between 

the two putative interactors was also confirmed in an inverse co-immunoprecipitation 
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Figure 12. Schematic comparison of PARC and Cul7 protein domain structure 
 
CPH: domain conserved in Cul7, PARC and HERC protein. DOC: DOC (DOC1/APC10) domain 
which shows striking similarity to APC10/DOC1, an essential subunit of the APC/C (Anaphase 
promoting complex/cyclosome). CCH: C-terminal Cullin homology domain; RING: RING finger 
domain; IBR: In Between RING Fingers domain. 
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using HA-tagged p53 as the bait protein (Figure 13A; lower panel). The same result was 

obtained with HEK 293 cells using a VSV-tagged version of p53 (Figure 13B). 

 
   More important, immunoprecipitation with p53-specific antibodies identified an 

association with endogenous Cul7 in the breast carcinoma cell line MCF-7 which 

expresses wild type p53 but, as expected, not in p53-deficient H1299 cells (Figure 14). 

The association between endogenous p53 and Cul7 was more pronounced 4 hrs after 

generation of DNA damage by addition of the topoisomerase II inhibitor etoposide 

(Figure 14). Co-precipitation of endogenous p53 with Cul7 was also observed in the 
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Figure 13. Interaction between ectopic Cul7 and p53 proteins cells. 
 
A, H1299 cells were transfected with constructs encoding HA-tagged p53 and Flag-tagged 
Cul7. Western blot analysis of whole cell extracts (WCL) and immunoprecipitates (IP; 
obtained using HA-specific, Flag-specific or mouse pre-immune serum (IgG) ). 
B, Co-immunoprecipitation of VSV-tagged p53 and Flag-tagged Cul7 in 293 cells. Western 
blot analysis of whole cell extracts (WCL) and immunoprecipitates (IP; obtained by VSV-
specific antibodies) using Flag- or VSV-specific monoclonal antibodies. 
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osteosarcoma cell line U-2OS (data not shown) suggesting that Cul7 interacts with p53 in 

a cell type-independent manner. 

 

4.2.2 Cul7 protein and mRNA accumulate after DNA damage 

   Since the association between Cul7 and p53 was enhanced after treatment of cells with 

the genotoxic drug etoposide (Figure 14), Cul7 mRNA and protein levels were analyzed 

after DNA damage. Interestingly, endogenous Cul7 protein significantly accumulated in 

MCF-7 cells as early as 10 hrs after treatment with etoposide and reached a maximum 

level after 24 hrs (Figure 15A). A similar increase of Cul7 protein was observed in the 

osteosarcoma cell line U-2OS and also in the p53-negative cell line H1299 (Figure 15A). 

Concomitant with elevated Cul7 protein level, genotoxic stress provoked an elevation of 

Cul7 mRNA in MCF-7 and U-2OS cells (Figure 15B). In contrast, the p53-negative cell 

line H1299 showed no increase of Cul7 mRNA 14 hrs after treatment of cells with 

etoposide (Figure 15B). 
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Figure 14. Interaction of endogenous p53 and Cul7 proteins in MCF-7 cells 
 
Co-immunoprecipitation of endogenous p53 and Cul7 in MCF-7 and H1299 cells. Whole cell 
extracts (WCL) and immunoprecipitates (IP; obtained with p53-specific antibodies (DO-1 
and 1801) or mouse pre-immune serum (IgG)) were subjected to Western blot analysis 
using Cul7-specific monoclonal and p53-specific polyclonal (from goat; self-made) 
antibodies. *specific signal for Cul7. 
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   This p53-dependency suggested that CUL7 might be a p53 target gene. However, 

activation of a tet-regulated p53 allele in DLD1-tTa (clone p53.A2) and H1299 cells did 

not affect Cul7 mRNA expression, whereas p21 mRNA was induced as expected 

(Figure 16A and data not shown). In addition, DNA damage provoked an increase of 

Cul7 protein in HCT116 colon cancer cells deficient for p53 with similar kinetics as in 
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Figure 15. Increase of Cul7 mRNA and protein in response to DNA damage. 
 
A, Detection of Cul7 protein levels in MCF-7, U-2OS and H1299 cancer cell lines by Western 
blot analysis. The respective cell lines were treated with etoposide (20 µM) for the indicated 
periods. 
B. Analysis of Cul7 mRNA expression. MCF-7 cells were treated with etoposide for the 
indicated periods. Total RNA was isolated from the indicated cell lines and cDNA was analyzed 
by RT-qPCR (real-time quantitative PCR) (left panel). 14 hrs after treatment of MCF-7, U-2OS 
and H1299 cell lines with etoposide, RNA was isolated and analyzed by RT-qPCR (right panel). 
The determination was performed in biological triplicates. Error bars represent standard 
deviations.  
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cells expressing wild type p53 (Figure 16B). The Cul7 mRNA was not significantly 

affected by DNA damage in these two cell lines (Figure 16C). 

 
In agreement with these data, the Cul7 promoter region was not responsive to p53 in a 

transient reporter assay (data not shown), which implicates that the increase of Cul7 

mRNA observed in a subset of cell lines after DNA damage is not dependent on p53 

activity and might be mediated by an unknown factor. 
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Figure 16. Induction of Cul7 is independent of p53 activity.  
 
A, RT-qPCR analysis of p21 and Cul7 mRNA levels after induction of wild-type p53 in 
DLD1-tTa-p53.A2 cells by removal of DOX for the indicated periods. Fold induction 
represents the average of two independent experiments. Expression of β-actin was 
detected for normalization. 
B, Detection of Cul7 protein levels in p53-deficient and wild-type HCT116 colon cancer cell 
lines by Western blot analysis. Cells were treated with 20 µM etoposide for the indicated 
periods. Detection of β-actin was used for normalization. 
C, Analysis of Cul7 mRNA expression in wild-type and p53-deficient HCT116 colon cancer 
cell lines by RT-qPCR analyses. 14 hrs after treatment with etoposide total RNA was 
isolated from the indicated cell lines and analyzed by RT-qPCR. The determination was 
performed in biological triplicates. Error bars represent standard deviations. 
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4.2.3 Cul7 induction upon DNA damage is caffeine-sensitive 

The xanthine alkaloid compound caffeine is an inhibitor of phosphatidylinositol 3-kinase-

related kinases (PIKK) such as ATM and ATR 507 which represent key components of the 

DNA damage response network. 5 mM caffeine was added to p53-negative H1299 cells 

45 min prior to etoposide treatment and this effectively blocked the accumulation of Cul7 

protein (Figure 17A). Detection of threonine 68-phosphorylated CHK2 (Chk2-Thr68P), 

whose formation is a sign of efficient activation of CHK2 by ATM 508, served to control 

for caffeine-mediated inhibition of ATM (Figure 17A). Similar results were obtained in 

the breast cancer cell line MCF-7 (Figure 17B). Here, abrogation of ATM/ATR signaling 

also interfered with stabilization of p53, as was expected 509. In the absence of DNA 

damage, caffeine treatment had no significant effect on Cul7 expression level (data not 

shown). This excludes that other side-effects of this compound, such as the reported 

suppression of the proinflammatory cytokine TNF-α via the cyclic AMP/protein kinase A 

pathway 510, impinge on the expression of Cul7. Caffeine also prevented the increase of 

Cul7 mRNA after DNA damage (Figure 17C). However, down-regulation of ATM 

and/or ATR by RNA interference using different siRNAs directed against each ATM and 

ATR had no obvious effect on the induction of Cul7 protein by DNA damage (data not 

shown). Caffeine has been demonstrated to affect other PIKK kinases besides ATM and 

ATR 507. Therefore, other PIKK family members are presumably involved in the 

induction of Cul7 mRNA and protein during the DNA damage response.  
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4.2.4 Increased p53 activity and G1 arrest after knockdown of Cul7  

   In order to study the effect of Cul7 knockdown on p53 activity, the pEMI (plasmid for 

Episomal MIcroRNA expression) vector system 493 for conditional microRNA expression 

was employed. This system was established in collaboration with my colleague Alexey 

Epanchintsev and allows the conditional knockdown of essential proteins. MCF-7 cell 

lines stably harboring pEMI constructs mediating the conditional expression of Cul7-

specific microRNAs and mRFP from a bidirectional promoter, were generated via 
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Figure 17. Cul7 induction after DNA damage is caffeine-sensitive. 
 
A, B Detection of Cul7 protein in MCF-7 cells expressing wild type p53 and p53-deficient 
H1299 cells by Western blot analysis. Cells were treated for the indicated periods with 20 µM 
etoposide alone or in combination with 5 mM caffeine. Caffeine was added 45 min prior to 
etoposide. 
C, RT-qPCR analysis of Cul7 mRNA levels after treatment of cells with etoposide. Cells were 
pre-treated with 5 mM caffeine 45 min prior to addition of 20 µM etoposide for 14 hrs. The 
determination was performed in biological triplicates. Error bars represent standard deviations. 
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limiting dilution. A cell line displaying homogenous induction of mRFP 48 hrs after 

addition of DOX to the medium is shown in Figure 18A. The maximum knockdown of 

Cul7 was detectable 3 days after induction of microRNA expression whereas a non-

silencing microRNA had no effect on the level of Cul7 protein (Figure 18B). 

 
Interestingly, the p21 protein level increased as a consequence of pEMI-mediated Cul7 

knockdown in untreated and in DNA damaged cells (Figure 18B). The amount of p53 

protein was not significantly affected by the down-regulation of Cul7. Induction of a 

non-silencing microRNA in a control cell line did not affect p53 and p21 protein 
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Figure 18. Effects of acute Cul7 knockdown 
 
A, MCF-7 cell lines with inducible expression of mRFP and Cul7-microRNA (MCF-7-EMI-Cul7-
microRNA) were compared to cells expressing a non-silencing microRNA (MCF-7-EMI-non-
silencing). 72 hrs after addition of DOX (500 ng/ml) mRFP expression and cell morphology 
were analyzed by life cell microscopy (magnification 200x). 
B, Down-regulation of Cul7 enhances transactivation of p21 by p53. Western blot analysis of 
Cul7, p53 and p21 protein levels in MCF-7 EMI-Cul7-microRNA cells and the control cell line 
MCF-7-EMI-non-silencing. 500 ng/ml DOX was added for 72 hrs and cells were treated with 
etoposide (20 µM) for the indicated periods. 
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expression (Figure 18B). The effect of Cul7 ablation on p21 expression was also 

observed with pools of U-2OS cells containing pEMI-vectors (Figure 19), thereby ruling 

out clonal effects. 

 

 

 
 

   After down-regulation of Cul7 by conditional microRNA expression, MCF-7 cells 

displayed an increase in size and showed an altered morphology which is indicative of a 

cell cycle arrest. This observation was in line with the induction of the CDK-inhibitor 

p21 after Cul7 ablation (Figure 18 and 19). The DNA content of these cell populations 

was analyzed by flow cytometry revealing that MCF-7 cells with a knockdown of Cul7 

showed an increased fraction of cells in G1- and a decrease of cells in S-phase 

(Figure 20). When cells exhibiting a knockdown of Cul7 were treated with etoposide, an 

increase of cells arrested in the G1 phase was obvious when compared to cells expressing 

a non-silencing microRNA. Cells without microRNA induction or cells expressing a non-

silencing microRNA showed a more pronounced increase in the 4N DNA content after 

DNA damage which is indicative for a predominant G2/M-arrest (Figure 20). 

 
 

Figure 19. Effects of conditional Cul7-knockdown in U-2OS cells 
 
U-2OS cell pools with inducible expression of Cul7-microRNA (U-2OS EMI Cul7 miRNA) and 
cell pools expressing a non-silencing microRNA (U-2OS EMI Non-silencing) were treated 
with 100 ng/ml DOX for the indicated periods. Cul7, p21 and, for normalization, β-actin 
expression levels were analyzed by immunoblotting. d: days 
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   To test whether the effects of Cul7 down-regulation were dependent on p53 activity, 

MCF-7-pEMI-Cul7-microRNA cells were transfected with p53-specific or non-silencing 

short interfering RNAs (siRNAs) prior to induction of a Cul7-specific microRNA 

(Figure 21A). The down-regulation of p53, though incomplete, partially rescued the 
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Figure 20. Cul7 ablation augments G1 arrest in MCF-7 cells 
 
DNA content analysis by flow cytometry after knockdown of Cul7 in MCF-7 cells. Cells were 
treated with 500 ng/ml DOX for 72 hrs. DNA damage was induced by addition of etoposide 
(20 µM). MCF-7 cells with and without induction of Cul7-specific or a non-silencing microRNA 
were treated with etoposide for the indicated periods. The experiment was repeated twice and 
representative results are provided. The given %-cell cycle distributions are average results of 
two independent experiments. 2N: G1 phase, 4N: G2/M phase.  
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effect of Cul7 knockdown as indicated by an increased proportion of cells that were 

arrested in G2/M and a decrease of cells arrested in G1 after DNA damage when 

compared to the control experiment performed with cells transfected with a non-silencing 

siRNA (Figure 21B). Taken together, these results show that Cul7 limits the activity of 

the tumor suppressor protein p53. 

 

4.2.5 Ectopic expression of Cul7 inhibits p53 function 

   Since the Cul7 mRNA and protein levels increased in response to DNA damage, the 

consequences of ectopic Cul7 expression on endogenous p53 and p21 protein levels were 

studied. For this purpose, MCF-7 cells stably expressing Cul7 under control of the 

pRTS-1 episomal vector system were generated. Induction of ectopic Cul7 expression by 

addition of DOX inhibited the increase of p53 and p21 levels after etoposide treatment 

(Figure 22A), whereas treatment of a control cell line with DOX did not influence p53 

and p21 expression (Figure 22B). In line with this observation, co-expression of Cul7 led 
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Figure 21. p53 knockdown rescues the effect of Cul7 ablation on the DNA damage 

response. 
 
A, Concomitant knockdown of Cul7 and p53 in MCF-7 cells. MCF-7 EMI-Cul7-microRNA cell 
line was transfected with p53-specific (p53si) or non-silencing (NonS) siRNAs. 20 hrs later, 
Cul7 knockdown was induced by addition of DOX for 72 hrs. Cul7, p53 and, as a control for 
equal loading, β-actin protein levels were analyzed by Western blotting. 
B, DNA content analysis by flow cytometry after Cul7 and p53 knockdown in MCF-7 cells. The 
MCF-7-EMI-Cul7-microRNA cell line was transfected with p53-specific or non-silencing siRNAs. 
20 hrs later, Cul7 knockdown was induced by addition of 500 ng/ml DOX 48 hrs prior to 
etoposide treatment for the indicated periods. The %-cell cycle distributions are average results 
of three independent experiments. 
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to a reduction in p53 transactivation activity by ~30% in a transient reporter assay 

performed in p53-deficient HCT116 cells (Figure 22C). 

 
   Next, the biological consequences of the reduced p53 activity observed after ectopic 

expression of Cul7 was studied in cells exposed to genotoxic drugs. When MCF-7 cells 

ectopically expressing Cul7 were treated with the DNA damaging agent adriamycin, a 

topoisomerase II inhibitor, the presence of ectopic Cul7 provoked an increase in 

apoptosis as early as 24 hrs after addition of adriamycin (Figure 23A,B). This effect 

presumably resulted from an inability of cells to stably arrest due to impaired p53/p21 

signaling (Figure 22A). Taken together, the presented results imply that Cul7 modulates 

the stabilization and function of p53 during the DNA damage response. 
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Figure 22. p53 accumulation and activity is inhibited by Cul7. 
 
A, Western blot analysis of MCF-7 cells stably transfected with a pRTS-1 episomal expression 
vector encoding Flag-Cul7 or B, pRTS-1-Luciferase (pRTS-1-Ctrl) vector. Cul7 expression was 
induced by addition of 500 ng/ml DOX for 48 hrs. Cells were treated with etoposide (20 µM) for 
the indicated periods. 
C, Transient reporter assay using HCT116 p53-/- cells transfected with wild-type p53 (wt), 
BDS2×3 reporter plasmid with 3 tandem arranged p53 binding sites derived from the 14-3-3σ 
promoter and Cul7 expression plasmids or equimolar amounts of vector controls. Relative 
luciferase activity is depicted as the fold induction normalized to renilla luciferase activity.  
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Figure 23. Cul7 sensitizes MCF-7 cells to genotoxic drugs 
 
A, Analysis of MCF-7 cells stably transfected with pRTS-1-Flag-Cul7 (cell lines Cul7-1 and 
Cul7-2) or pRTS-1-Luciferase (Luc-1 and Luc-2) by microscopy. Cells were induced with 
1 µg/ml DOX for 30 hrs prior to treatment of cells with adriamycin for the indicated periods. 
B, Determination of the sub-G1 fraction (equivalent to apoptotic cell fraction) of MCF-7-RTS-1 
cell lines by flow cytometry. Cells were induced with 1 µg/ml DOX 30 hrs prior to treatment 
with adriamycin for the indicated periods. Luc-1: MCF-7-RTS1-Luciferase cell line. Cul7-1 and 
Cul7-2: MCF-7 cell lines stably transfected with pRTS-1-Flag-Cul7.  
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4.2.6 Cul7/Fbx29 does not exhibit E3-ligase activity towards p53  

   The SCF7 E3-ligase complex contains the F-box protein Fbx29 483, which recruits the 

substrates for ubiquitination. For that reason it was analyzed whether Fbx29 is able to 

form a ternary complex with p53 and Cul7. In a co-precipitation approach with 

ectopically expressed proteins performed in H1299 cells, p53 associated with Fbx29 in a 

Cul7-dependent manner (Figure 24). Similar results were obtained for endogenous p53 in 

MCF-7 cells ectopically expressing Cul7 and Fbx29 (data not shown). Furthermore, 

ectopic Fbx29 was co-precipitated with p53 in a Cul7-dependent manner (data not 

shown). 

 

 

 
 

In line with the inability of p53 to directly associate with Fbx29, p53 does not serve as a 

substrate for Cul7/Fbx29-mediated ubiquitination/degradation: ectopic expression of 

Cul7 in combination with Fbx29 did not promote ubiquitination of p53 in vivo 
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Figure 24. Cul7 recruits Fbx29 to p53 
 
H1299 cells were transfected with plasmids encoding epitope-tagged versions of p53, Cul7, 
and Fbx29 as indicated. Western blot analysis of whole cell extracts (WCL) and 
immunoprecipitates (IP; obtained with a HA-specific antibody) using antibodies specific for 
Flag-, HA-, or VSV-tags. For WCL, expression of α-tubulin served as a loading control. 
* specific signal for Flag-tagged Cul7. 
 
This experiment was performed by Dr. Berlinda Verdoodt. 
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(Figure 25). The same result was obtained when MG132 was added (data not shown). 

This compound inhibits the proteasomal activity and enhances the sensitivity of the in 

vivo ubiquitination assay. As a positive control, the E3-ligase MDM2 was co-expressed 

which, as expected, led to an efficient mono- and poly-ubiquitination of p53 (Figure 25). 

These results suggest that other mechanisms than increased ubiquitination and subsequent 

proteasomal degradation are responsible for the inhibition of p53 by Cul7. 
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Figure 25. In vivo ubiquitination assay for p53 in H1299 cells. 
 
Cells were transfected with pMT107 (His-tagged ubiquitin 485), pcDNA3-p53-VSV, and 
plasmids expressing MDM2 or Fbx29 + Cul7, as indicated. : background signal originating 
from anti-VSV antibody. Bottom: Western blot analysis of whole cell lysate using p53 
antibody (DO-1). 
 
This experiment was performed by Dr. Berlinda Verdoodt essentially as described in 511 
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5 Results II 

5.1 AP4: a c-MYC inducible repressor of p21 

5.1.1 Episomal, conditional expression of ectopic c-MYC in MCF-7 
breast cancer cells 

   In order to identify genes which are regulated by c-MYC in breast epithelial cells, a 

MCF-7 breast carcinoma cell line stably expressing a doxycycline (DOX) -inducible 

c-MYC allele was generated using a recently described EBV-based vector system. The 

plasmid pRTS-1478 contains all elements for tetracycline-regulated gene expression and 

episomal propagation (Figure 26A). The Tet Repressor-KRAB fusion protein (tetR B/E-

KRAB) provides tight repression in the absence of DOX 512. In the presence of DOX the 

optimized transcriptional activator (rtTA2s-M2) 513 transactivates a bidirectional 

promoter which drives mRFP (monomeric red fluorescent protein 514) and c-MYC gene 

expression. 

   After transfection with a pRTS-1 vector encoding c-MYC, several MCF-7 breast cancer 

cell lines showing tight regulation of the mRFP and c-MYC alleles by DOX were 

obtained by limiting dilution. One of these clones showed a very rapid and almost 

homogeneous inducibility of ectopic c-MYC and was therefore chosen for further 

analysis (MCF-7-PJMMR1). As detected by Western blot analysis, an increase of ectopic 

c-MYC protein was detected as early as 6 hrs after addition of 1 µg/ml DOX 

(Figure 26B). After serum starvation (0.05% FBS), endogenous c-MYC was hardly 

detectable via indirect immunofluorescence (Figure 26C). Addition of DOX for 48 hrs 

led to a strong induction of ectopic c-MYC along with the fluorescent marker gene mRFP. 

As expected, the over-expressed c-MYC protein localized exclusively to the nucleus 

(Fig. 26C). The enhanced rtTA2s-M2 transactivator furthermore gives rise to a rapid and 

homogeneous induction of c-MYC leading to a high percentage of cells having a 

significant expression of ectopic c-MYC early after treatment with DOX (data not 

shown). This characteristic was an essential prerequisite for studying genes directly 

regulated by c-MYC in this cellular system. 
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5.1.2 Characterization of MCF-7-PJMMR1 cell line 

   As a hormone-dependent cell line, MCF-7 serves as a model system for studying 

consequences of c-MYC over-expression in estrogen receptor (ER) positive breast cancer 

disease. For this kind of breast cancer, hormonal therapy turned out to be a very 

beneficial treatment. One downstream mechanism responsible for the anti-proliferative 

effect of the anti-estrogen ICI182,780/Fulvestrant (ICI) is a marked down-regulation of 
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Figure 26. Conditional expression of c-MYC in MCF-7 breast cancer cells  
 
A, Schematic representation of the c-MYC encoding plasmid pRTS-1-c-MYC. The episomal 
plasmid pRTS-1 allows the stringent regulation of gene expression due to the combined 
expression of a Tet Repressor-KRAB fusion protein (tetR B/E-KRAB) and a doxycycline-
sensitive reversed tetracycline-controlled transcription activator (rtTA2s-M2). The bidirectional 
promoter Ptetbi-1 drives conditional expression of a mRFP marker gene along with c-MYC 
expression. EBNA: Epstein Barr virus nuclear antigen 1, tetO: tetracycline responsive 
element, mRFP: monomeric red fluorecence protein.  
B, Western blot analysis of c-MYC protein. MCF-7-PJMMR1 cells were maintained in 
complete medium and 1 µg/ml doxycycline was added for different periods after pre-treatment 
of cells with ICI182,780/Fulvestrant (ICI) for 60 hrs. Total protein lysates were subjected to 
Western blot analysis and immunostained using antibodies directed against c-MYC (sc-764, 
Santa Cruz) and, as a loading control, β-actin. *specific signal representing c-MYC protein.  
C, Indirect immunofluorescence detection of c-MYC in MCF-7-PJMMR1 cell line. Cells were 
treated with 1 µg/ml doxycycline for 48 hrs subsequent to 36 hrs serum starvation (0.05% 
FBS). Immunostaining of c-MYC protein was done using a c-MYC antibody (sc-764, Santa 
Cruz) followed by anti-rabbit FITC antibody to visualize nuclear protein localization.  
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the ER target gene c-MYC 515. Here, c-MYC levels also decreased upon ICI-treatment of 

MCF-7 cells (Figure 27A). The reduction of endogenous c-MYC protein due to ICI-

treatment was accompanied by a cell cycle arrest in the G1/G0 phase (Figure 27B). 

Activation of ectopic c-MYC by addition of DOX induced re-entry into S phase in the 

presence of ICI (Figure 27B). The proportion of cells in S-phase increased from 9% to 

25% as early as 24 hrs after induction of c-MYC and this was accompanied by an increase 

of cells in the G2 phase. Two days after induction of ectopic c-MYC, the cell cycle profile 

resembled exponentially proliferating MCF-7 cells. Ectopic c-MYC was also able to 

promote entry into S-phase in serum-deprived MCF-7-PJMMR1 cells, though to a minor 

extent (data not shown). 

   
In order to determine, whether ectopic expression of c-MYC is able to antagonize the 

inhibition of proliferation by ICI (Figure 28A), ICI was added 30 hrs prior to addition of 

DOX. 48 hrs after treatment with DOX, the c-MYC-inducible MCF-7-PJMMR1 cell line 

showed proliferation in the presence of ICI to a similar degree as cells not arrested by 

addition of ICI (Figure 28A, left panel), whereas the control cell line MCF7-R1, which 
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Figure 27. c-MYC triggers G1/S progression in ICI-arrested MCF-7 cells. 
 
A, c-MYC downregulation in response to ICI182,780 (ICI) treatment. MCF-7 cells were treated 
with 1 µM ICI for 48 hrs and 72 hrs, respectively. Whole protein lysates were subjected to 
Western blot analyzes and immunostained with c-MYC and β-actin antibodies. E: 
exponentially proliferating cells, ICI: cells arrested by ICI treatment. 
B, c-MYC triggers S phase re-entry in ICI-arrested MCF-7 cells. MCF-7-PJMMR1 cells grown 
in complete medium were treated with 1 µg/ml ICI for 72 hrs. Untreated, exponentially 
proliferating cells served as a control. Ectopic expression of c-MYC was triggered by addition 
of 1 µg/ml doxycycline for the indicated periods. DNA content of 5,000 cells was measured by 
flow cytometry, excluding cell doublets. 
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only expresses mRFP after DOX treatment, did not respond with increased proliferation 

(Figure 28A, right panel). Furthermore, ectopic c-MYC reversed the increase in size and 

the changed morphology of ICI-arrested MCF-7 cells (Figure 28B). These results show 

that expression of ectopic c-MYC is sufficient to antagonize the anti-proliferative effects 

of ICI in all phases of the cell cycle. 

 

5.1.3 AP4 mRNA and protein expression is induced by c-MYC 

   In order to identify genes regulated by c-MYC in human epithelial cells, a triplicate 

microarray analysis 12 hrs after activation of an inducible c-MYC allele was performed in 

G1-arrested breast cancer cell line MCF-7 (data not shown). This approach revealed that 

AP4 is amongst the 25 most highly induced genes upon c-MYC activation in a clinically 
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Figure 28. c-MYC promotes proliferation of ICI-arrested MCF-7 cells. 
 
A, (left panel), Proliferation of MCF-7-PJMMR1 and (right panel), MCF-7-MR1 cells after pre-
treatment with 1 µM ICI for 30 hrs followed by induction with 1 µg/ml DOX for the indicated 
periods. Cell number was determined using a cell counter (Beckmann Coulter) and the 
experiment was performed in biological triplicates. Error bars indicate standard deviations. 
B, 96 hrs after ICI treatment, the morphology of MCF-7-PJMMR1 (left panel) and MCF-7-MR1 
(right panel) cells with or without treatment with DOX for 66 hrs was analyzed by life cell 
microscopy (magnification: 200×).  
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relevant scenario (data not shown) which is c-MYC-mediated alleviation of an 

ICI-mediated cell cycle arrest. Thereby, a 3.4-fold induction of AP4 mRNA after c-MYC 

activation was observed (data not shown). The increase of AP4 mRNA after c-MYC 

activation in this cell line was confirmed by real-time quantitative PCR (RT-qPCR) 

(Figure 29A) and also occurred on the protein level (Figure 29B). The magnitude of AP4 

mRNA induction 12 hrs after activation of c-MYC was similar to that of known c-MYC 

target genes, such as MAD2 455, Dyskerin (DKC; 516) and Prohibitin 370 (Figure 29C). 
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Figure 29. Induction of AP4 mRNA and protein by c-MYC in MCF-7 cells 
 
(A) Quantification of AP4 mRNA after c-MYC activation. MCF-7-PJMMR1 cells were treated with 
ICI182,780 (ICI) for 60 hrs prior to c-MYC activation by addition of doxycycline (DOX) for the 
indicated periods and RNA was subjected to real-time quantitative PCR (RT-qPCR) analysis.  
(B) AP4 protein expression after c-MYC activation. Protein lysates were prepared at the 
indicated time-points. Expression of c-MYC, AP4 and, as a control for equal loading, β-actin was 
detected by immunostaining. 
(C) MCF-7-PJMMR1 cells were treated with ICI182,780 for 60 hrs followed by c-MYC induction 
by addition of DOX for 12 hrs. Expression of AP4, MAD2, DKC and Prohibitin was determined 
by RT-qPCR analysis and normalized to β-actin. Measurements were performed in triplicates. 
Error bars indicate standard deviations  
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   AP4 mRNA and protein were also induced after activation of a c-MYC-ER (estrogen 

receptor) fusion protein 384 in serum starved human diploid fibroblasts (HDF; 

Figure 30A,B). The ER domain used in this thesis has been rendered unresponsive to 

estrogen and responsive to 4-hydroxythamoxifen (4-OHT) by site directed 

mutagenesis 517. In the absence of 4-OHT, the c-MYC-ER fusion protein is held in a 

mainly cytoplasmic, latent form due to association with the chaperone HSP-90 518, while 

hormone addition leads to dissociation from this inhibitor and shuttling of c-MYC-ER to 

the nucleus. c-MYC-ER-mediated induction of AP4 mRNA also occurred in the presence 

of the translation inhibitor cycloheximide (CHX) (Figure 30C), which was added 

30 minutes prior to treatment of cells with 4-OHT for 6 hrs. In this case, cells were not 

serum-deprived but were grown to confluency for 48 hrs prior to 4-OHT treatment in 

order to down-regulate endogenous expression of c-MYC via contact inhibition 519. This 

shows that c-MYC was able to induce transcription of AP4 in the absence of de novo 

protein biosynthesis suggesting that induction of AP4 by c-MYC is presumably direct and 

not a consequence of cell cycle re-entry which occurs after activation of c-MYC. An 

increase of AP4 expression was also observed in HDF immortalized by constitutive 

expression of c-MYC, but not in HDF immortalized by ectopic htert expression when 

compared to HDFs which had not been immortalized (Figure 30D). 
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Figure 30. AP4 mRNA and protein expression is responsive to c-MYC in human diploid 
fibroblasts (HDF). 
 
A, Quantification of AP4 mRNA after activation of c-MYC. HDF-c-MYC-ER cells were serum 
deprived for 48 hrs. After addition of 4-OHT, total RNA was isolated at the indicated time-
points from biological triplicates. Expression of AP4 mRNA was determined by RT-qPCR 
analyses. Error bars indicate standard deviations.  
B, AP4 protein expression after c-MYC activation. Protein lysates were prepared from HDF-
c-MYC-ER cells at the indicated timepoints. Expression of AP4 and, as a control for equal 
loading, β-actin was determined by immunoblotting. 
C, HDF-c-MYC-ER cells were grown to confluency and treated with either 4-OHT, 
cycloheximide (CHX) or CHX 30 min prior to treatment with 4-OHT for 6 hrs or left untreated 
(w/o). Expression of AP4 and, for normalization, β-actin mRNA was determined by RT-qPCR 
analysis. Measurements were performed in triplicates. Error bars indicate standard errors.  
D, Expression of AP4 in human diploid fibroblasts (HDF) stably expressing an ectopic c-MYC 
allele (HDF c-MYC; 20, passage 20; 78, passage 78) compared to HDF (HDF) and HDF 
stably over-expressing htert (HDF htert). Protein lysates were prepared and expression of 
c-MYC, AP4 and β-actin was determined by immunoblotting. 
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5.1.4 AP4 is an evolutionary conserved, direct c-MYC target gene 

   Next it was determined whether the induction of AP4 mRNA and protein by c-MYC is 

conserved in other species. Therefore, a c-myc-ER fusion protein was activated by 

addition of 4-OHT in serum deprived RAT1 fibroblasts. Activation of c-myc-ER rapidly 

induced expression of ap4 mRNA and protein (Figure 31A,B) indicating that AP4 

induction by c-MYC is evolutionary conserved. 

 

   In line with these observations the first genomic intron of human AP4 contains a cluster 

of four canonical c-MYC binding sites (CACGTG) two of which are conserved in the 

ap4 genes of mouse and rat (Figure 32A). 
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Figure 31. AP4 is an evolutionary conserved c-MYC target gene 
 
A, RAT1-myc-ER cells were serum deprived for 48 hrs. RNA was isolated at the indicated 
timepoints after treatment with 200 nM 4-OHT and analyzed for ap4 expression by RT-qPCR 
analysis. EF1α expression was used for normalization.  
B, Analysis of ap4 protein expression in serum deprived RAT-myc-ER cells after addition of 
200 nM 4-OHT for the indicated periods by immunoblotting. β-actin expression served as a 
control for equal loading. 
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   Chromatin-immunoprecipitation (ChIP) allows to determine whether a given protein 

binds to or localizes to a specific DNA sequence. After in vivo cross-linking of 

chromatin-associated proteins to genomic DNA (gDNA), the gDNA is sheared to obtain 

fragments which are then isolated by immunoprecipitation using specific antibodies. 

Afterwards, crosslinking can be removed and the DNA can be analyzed by PCR or 

RT-qPCR to determine the enrichment of specific gDNA fragments. 
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Figure 32. c-MYC binds to the first genomic intron of AP4 
 
A, Comparison of the mouse, rat and human AP4 promoter region. “+1” indicates the 
transcription start site. “amp” indicates PCR-amplicons used for qChIP analysis with their 
positions relative to the transcription start site. Arrows indicate the approximate positions of 
canonical c-MYC binding sites (CACGTG). The positions of these sites relative to the 
transcription start site (“+1”) are +660, +1262, +1645 and +1766 for human AP4, +560 and 
+1620 for the mouse Tcfap4 and +666 and +1725 for the rat Tcfap4, respectively.  
B, Detection of c-MYC at the AP4 promoter. MCF-7-PJMMR1 cells were treated with 
doxycycline (DOX) for 12 hrs to achieve induction of ectopic c-MYC. Chromatin was cross-
linked and subjected to qChIP analysis with c-MYC-specific and, as a control, rabbit IgG 
antibodies. RT-qPCR analysis was performed with primers flanking two of the four canonical 
E-boxes in the first AP4 intron (“ampA”; see also Figure 31A) or a control primer pair (“ampB”) 
localized in the last intron of AP4. For normalization, a fragment from chromosome 16q22 not 
containing E-boxes was used. The experiment was performed in triplicates. Error bars indicate 
standard deviations. 
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In a quantitative chromatin immunoprecipitation (qChIP) analysis, precipitation with a 

c-MYC-specific antibody resulted in an enrichment of a DNA fragment (ampA) 

containing two of the four E-boxes in the first intron of AP4, whereas a DNA fragment 

(ampB) located ~13 kbp downstream of the transcriptional start site in intron 6 of AP4 

was not enriched (Figure 32A,B). This result demonstrates that c-MYC localizes to the 

first intron of AP4. Together with results described above, these findings provide strong 

evidence that c-MYC directly induces transcription of the AP4 gene. 

5.1.5 Induction of AP4 contributes to cell cycle progression 

   To determine whether induction of AP4 is necessary for c-MYC-mediated S-phase 

entry, AP4 expression was down-regulated by AP4-specific siRNAs. In cells transfected 

with non-silencing small interfering RNAs (siRNAs), c-MYC activation for 22 hrs 

increased the fraction of cells in S-phase from ~7% to ~16% in the presence of ICI 

(Figure 33A). Interestingly, siRNA-mediated down-regulation of AP4 significantly 

decreased the proportion of cells re-entering the cell cycle after c-MYC activation 

(Figure 33A). Therefore, the induction of AP4 contributes to the c-MYC-mediated cell 

cycle re-entry in the presence of ICI. 

   As the CDK inhibitor p21 is known to mediate the G1-arrest induced by ICI 520, it was 

analyzed next whether the expression of p21 can be modulated by AP4. Indeed, down-

regulation of AP4 by RNA interference using two siRNAs targeting different regions of 

the AP4 mRNA resulted in an increased p21 protein level in MCF-7 cells (Figure 33B) 

when compared to cells transfected with a non-silencing control siRNA. This finding 

suggests that the elevated p21 level caused the negative effect of AP4 knockdown on 

c-MYC-mediated cell cycle re-entry. Induction of AP4 by c-MYC is therefore 

presumably necessary for c-MYC to promote efficient cell-cycle re-entry of MCF-7 cells 

in the presence of ICI. 
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   Serum-restimulation of arrested (0.05 % FBS) MCF-7 cells rapidly induced the 

expression of endogenous c-MYC followed by an increase of AP4, whereas expression of 

p21 strongly declined (Figure 34A). siRNA-mediated down-regulation of AP4 increased 

p21 levels and prevented repression of p21 after serum addition (Figure 34B). Taken 

together, these results suggest, that the induction of AP4 by c-MYC is required for the 

down-regulation of p21 expression which occurs when MCF-7 cells re-enter the cell 

cycle after mitogenic stimulation. 
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Figure 33. Requirement of AP4 induction for c-MYC-mediated cell cycle re-entry 
 
A, Flow cytometric analysis of ICI182,780 (ICI) treated MCF-7-PJMMR cells after siRNA 
mediated down-regulation of AP4. c-MYC was activated by addition of DOX for 22 hrs. The 
depicted diagram shows the percentage of cells in S-phase after treatment with ICI alone or in 
combination with c-MYC over-expression (ICI+MYC). The experiment was performed in 
duplicates. The standard error is depicted.  
B, MCF-7 cells were transfected with two different siRNAs targeting AP4 or a non-silencing 
control siRNA (NonS). Expression of AP4, p21 and, as a control for equal loading, β-actin was 
detected by immunoblot analysis.  
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5.1.6 AP4 represses p21 mRNA and protein 

   The previous observations suggested that AP4 may directly regulate the expression of 

p21. Therefore, it was tested whether ectopic expression of AP4 is sufficient to down-

regulate the expression of p21 in pools of U-2OS cells expressing AP4 from an inducible 

episomal vector. Already 9 hrs after induction of ectopic AP4 expression, p21 protein 

levels began to decrease and were almost undetectable by 24 hrs (Figure 35A), whereas 

addition of DOX did not affect expression of p21 in cells harboring an empty episomal 

vector (Figure 35B). Moreover, expression of p21 mRNA decreased after activation of 

AP4 (Figure 35C). This indicates that the down-regulation of p21 by AP4 might be 

mediated through direct repression of the p21 gene. In line with these data, conditional 

expression of two different microRNAs (miRNA) directed against the AP4 mRNA using 

a recently described episomal vector system (pEMI 493) led to an accumulation of p21 

protein (Figure 35D). This result is in agreement with the elevation of p21 expression 

observed after transfection of AP4-specific siRNAs (Figure 33B). Induction of a non-

silencing miRNA had no effect on p21 expression levels (Figure 35D). 
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Figure 34. Requirement of AP4 induction for mitogen-mediated repression of p21 
 
A, MCF-7 cells were serum deprived (0.05% FBS) for 48 hrs, re-stimulated with 10% serum for 
the indicated periods and analyzed by immunoblotting for expression of AP4, p21 and, as a 
control for equal loading, β-actin.  
B, MCF-7 cells were transfected with siRNAs targeting AP4 (AP4si1 and AP4si2) or a non-
silencing siRNA (NonS). 36 hrs later cells were serum starved for 30 hrs. After restimulation with 
10% FBS-containing medium for the indicated periods, cell lysates were subjected to 
immunoblot analysis.  
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   The expression of p21 is regulated by p53-dependent and -independent mechanisms 521. 

Besides p53, other factors as e.g. IRF-1 have been shown to induce p21 after DNA 

damage in a p53-independent manner 522. Therefore, p53-deficient cells still show a 

minor induction of p21 after DNA damage 501. Infection of p53-deficient HCT116 

colorectal cells with an adenovirus encoding AP4 decreased basal p21 levels and 

prevented the p53-independent induction of p21 following DNA damage, whereas a 

control virus had no significant effect on p21 (Figure 36). These results imply that the 

repression of p21 expression by AP4 occurs via a p53-independent mechanism. 
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Figure 35. AP4 downregulates p21 mRNA and protein 
 
A, Expression levels of AP4-VSV, p53, p21 and β-actin proteins were detected by immunoblot 
analysis after induction of a conditional AP4 allele in U-2OS cells.  
B, U-2OS cells harboring an empty pRTS-1 vector were subjected to the same analysis.  
C, Quantification of p21 mRNA after activation of AP4 in U-2OS cells by RT-qPCR analysis. 
Expression of p21 was normalized to β-actin mRNA expression.  
D, Expression levels of AP4, p21 and α-tubulin proteins were determined by immunoblot 
analysis after induction of two different microRNAs targeting AP4 mRNA (AP4mi1 and AP4mi2) 
or a non-silencing control miRNA (NonS) in U-2OS cells. 
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5.1.7 AP4 occupies E-box sequences in the p21 promoter 

   Interestingly, the p21 promoter contains 4 putative AP4-binding motifs in the vicinity 

of its transcriptional start site (Figure 37A). By qChIP analysis it was confirmed that AP4 

occupies this region of the p21 promoter in vivo (Figure 37A,B): U-2OS cell pools were 

either treated with DOX for 16 hrs in order to induce expression of ectopic AP4-VSV or 

were left untreated. Upon DOX treatment, precipitation with a VSV-specific antibody 

resulted in an enrichment of a DNA fragment (ampC) containing one of the four E-boxes 

(CAGCTG) in the proximal p21 promoter, whereas a DNA fragment (ampD) located 

~2.2 kbp downstream of the transcriptional start site in intron 1 of p21 was not enriched 

(Figure 37A,B). In the absence of AP4-VSV expression, no enrichment of ampC or 

ampD was detectable (Figure 37A,B). To determine the relevance of the CAGCTG 

motifs in the p21 promoter region for AP4-mediated repression of p21, transient reporter 

assays in H1299 cells were performed using p21 promoter constructs which harbor 

different combinations of wild type or mutated AP4 binding sites (Figure 38A). 
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Figure 36. AP4 mediated reduction of p21 is independent of p53 activity 
 
p53-deficient HCT116 colon cancer cells were infected with the indicated viruses or were left 
uninfected (Non-Inf.) for 24 hrs and etoposide was added for the specified times. Cellular 
extracts were subjected to immunoblot analysis with antibodies against VSV, GFP, p21 and , 
as a control for equal loading, β-actin.  



Results 

108 

While AP4 expression dramatically reduced the activity of a wild type p21 reporter 

construct, mutation of the two proximal AP4 binding sites A3 and A4 was sufficient to 

largely alleviate the repressive effects of AP4 (Figure 38B). Mutation of one or two 

additional AP4 binding sites further abolished the repressive effect of AP4. Therefore, 

binding of AP4 to the E-box motifs is essential for the repression of p21 by AP4. Since 

removal of two motifs relieved the repression in a non-linear fashion, the 4 AP4 binding 

sites presumably act synergistically. Alternatively, the proximity of the sites A3 and A4 

to the transcriptional start site (+1) may allow AP4 to directly block the access of the 

RNA-polymerase II complex to the p21 promoter. 
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Figure 37. AP4 binds to the p21 promoter in vivo 
 
A, The proximal promoter region of the human p21 gene contains four AP4 binding sites 
(CAGCTG). “+1” indicates the transcription start site. “amp”: PCR-amplicons used for qChIP 
analysis with their position relative to the transcription start site. p53 binding sites (p53BDS) 
and their positions are indicated. The approximate positions of 4 putative AP4 binding sites 
(arrows) and the initiator (Inr) element (TCAGTTCCT) (filled square) are indicated and their 
precise positions relative to the transcription start site of p21 is depicted in Figure 38A.  
B, qChIP analysis of AP4 at the p21 promoter. AP4 was induced by addition of DOX for 16 hrs 
in U-2OS RTS1-AP4 cells. Genomic DNA co-precipitated with anti-VSV or, as a control, mouse 
IgG antibody was analyzed by RT-qPCR. For normalization a fragment on chromosome 16q22 
not containing E-boxes was used.  
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5.1.8 AP4 interferes with the DNA damage/p53/p21 pathway 

   Since the protein product of p21 represents a central mediator of cell cycle regulation 

by the tumor suppressor protein p53, the potential involvement of AP4 in the DNA 

damage response was studied. Treatment of MCF-7 cells with the topoisomerase II 
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Figure 38. AP4 represses p21 by binding to E-boxes 
 
A, Schematic presentation of putative AP4 binding sites (A1-A4) and their precise position 
in the p21 promoter region relative to the transcriptional start site (+1). Wild type and mutant 
p21 promoter constructs used in transient reporter assays are depicted. Mutated AP4 
binding sites are represented in bold and underlined. The Inr element (TCAGTTCCT) 
localizes to position +8 to +16 relative to the transcriptional start site (“+1”). luc: ORF 
encoding the firefly luciferase.  
B, Determination of p21 reporter activity in H1299 cells transfected with plasmids encoding 
the indicated cDNAs. Cells were transfected with 600 ng of wild type or the indicated mutant 
p21 reporter plasmids, 20 ng of pcDNA3-AP4-VSV plasmid or equimolar amounts of 
pcDNA3-VSV backbone. Shown are the median expression values and standard errors of 
two independent transfection experiments. Wt, mA3+4, mA2-4 and mA1-4: reporter 
plasmids encoding for the p21 promoter sequence with wild type or mutated AP4 binding 
sites 3+4, 2-4 or 1-4 (see also Figure 38A).  
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inhibitor etoposide reduced c-MYC and AP4 protein levels, while p53 and p21 levels 

were increased after DNA damage (Figure 39A). The down-regulation of AP4, which 

was presumably caused by the decrease in c-MYC expression, may be a prerequisite for 

the induction of p21 by p53 after DNA damage. 
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Figure 39. AP4 suppresses induction of p21 by DNA damage/p53 
 
A, AP4 is down-regulated by DNA damage. MCF-7 cells were treated with etoposide and cell 
extracts were obtained at the indicated time-points. Expression of the indicated proteins was 
determined by immunoblotting.  
B, Ectopic AP4 was induced in U-2OS cells for 12 hrs by addition of DOX. Then etoposide 
was added for the indicated periods. Expression of Retinoblastoma protein (Rb), AP4-VSV, 
p21 or β-actin was analyzed by immunoblotting.  
C, p21 reporter activity was determined in H1299 cells transfected with the indicated plasmids. 
Increasing expression of p53 was achieved by transfection of 0, 50 or 200 ng plasmids 
(indicated as      ). Shown are the median expression values and standard errors of two 
independent transfection experiments. p21 prom. mA3+4: reporter plasmid encoding p21 
promoter sequence with mutated AP4 binding sites 3+4 (see also Figure 38A). 
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   In order to test this hypothesis, AP4 was ectopically expressed in U-2OS cell pools 

stably transfected using the episomal vector pRTS-1 478. Due to the ectopic expression, 

AP4 was rendered largely resistant to down-regulation following DNA damage. Ectopic 

AP4 strongly interfered with p53-mediated transactivation of p21 after DNA damage and, 

as a consequence of the alleviated CDK-inhibition by p21, prevented the formation of 

active, hypophosphorylated retinoblastoma protein (pRb) (Figure 39B). Furthermore, 

AP4 efficiently suppressed the p53-mediated induction of a p21 promoter construct in a 

transient reporter assay (Figure 39C). This inhibitory effect of AP4 on the p21 promoter 

could be circumvented by mutation of the two putative AP4 binding sites A3 and A4 in 

the p21 promoter sequence. From these results it can be concluded that suppression of 

p53-mediated induction of p21 by AP4 is mediated via direct binding of AP4 to 

CAGCTG sequences located in the p21 proximal promoter region and not by interfering 

with p53 function. 

   On the cellular level, the simultaneous treatment of U-2OS cells with etoposide and 

ectopic expression of AP4 resulted in apoptosis as evidenced by the accumulation of 

sub-G1 cells (cells with a DNA content smaller than 2N) as was analyzed by flow 

cytometry (Figure 40A,B). In this scenario, the AP4-mediated repression of p21 might 

prevent the induction of cell cycle arrest after genotoxic stress and the continued cell 

cycle progression in the presence of DNA damage may result in apoptosis. 



Results 

112 

 

5.1.9 TGF-β-mediated induction of p21 is suppressed by AP4 

   Constitutive expression of c-MYC blocks the induction of p21 by all members of the 

TGF-β superfamily 523. Therefore, it was determined whether AP4 is able to prevent 

TGF-β/Smad-mediated induction of p21 and may represent a candidate mediator of 

resistance to TGF-β signaling caused by de-regulation of c-MYC. HaCaT cells, a human 

keratinocyte-derived cell line, have been reported to respond with induction of p21 after 

TGF-β treatment 524. Expression of AP4 in this cellular background was achieved by 
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Figure 40. AP4 sensitizes cells to apoptosis  
 
A, DOX was added to U-2OS RTS1-AP4 or U-2OS RTS1-Ctrl cells for 12 hrs. Then cells were 
treated with etoposide for the indicated periods and analyzed by flow cytometry. The diagram 
depicts the fraction of cells with sub-G1 DNA content, which corresponds to cells undergoing 
apoptosis. The experiment was performed in triplicates. Standard deviations are depicted.  
B, AP4 was induced by doxycycline for 12 hrs prior to treatment of cells with etoposide for 
48 hrs. Then cells were analyzed by flow cytometry. Depicted are exemplary histograms 
representing 10,000 cells. 2N: cells in G1, 4N: cells in G2/M. 



Results 

113 

infection using an adenovirus encoding AP4 and GFP. Ectopic expression of AP4 

efficiently suppressed the increase of p21 protein following exposure to TGF-β while the 

induction of the p15Ink4b protein was not affected (Figure 41A). Infection with a control 

virus expressing GFP had no effect on the induction of p21 by TGF-β (Figure 41A and 

data not shown). Ectopic AP4 also reduced the TGF-β-mediated induction of p21 mRNA 

when compared to cells infected with a control adenovirus (Figure 41B). 

 

   To validate these results and to exclude any effects potentially caused by the adenoviral 

infection procedure, HaCaT cells stably expressing a fusion of AP4 and the hormone 

binding domain of the oestrogen receptor (ER) were generated. As expected, after 

addition of 4-OHT the AP4-ER fusion displayed more pronounced nuclear localization 

(Figure 42A). Activation of AP4-ER strongly interfered with the TGF-β-mediated 
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Figure 41. AP4 interferes with TGF-β-mediated induction of p21 
 
A, HaCaT cells were infected with adenoviruses encoding AP4 and GFP or GFP alone. 24 hrs 
later cells were treated with human, recombinant TGF-β for the indicated periods. Expression 
of AP4-VSV, p21, p15Ink4b and β-actin was determined by immunoblotting.  
B, Quantification of p21 mRNA in HaCaT cells infected with adenoviruses encoding either AP4 
and GFP, or GFP alone. 24 hrs after infection, cells were treated with human recombinant 
TGF-β for 6 hrs. p21 and, for normalization, β-actin mRNA expression was determined by 
RT-qPCR analyses. The experiment was performed in duplicates. Standard errors are 
depicted.  
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induction of p21 (Figure 42B). Taken together, these data demonstrate that AP4 interferes 

with the TGF-β/Smad-mediated repression of the CDK inhibitor p21. However, 

repression of p21 by AP4 was not able to alleviate a TGF-β-mediated cell cycle arrest in 

HaCaT cells (data not shown) 

 

5.1.10 AP4 interferes with cell cycle arrest during differentiation 

   Human U-937 myelomonoblastic cells 525 undergo differentiation after treatment with 

12-O-tetradecanoylphorbol-13-acetate (TPA) 526,527. Ectopic expression of v-myc prevents 

TPA-induced differentiation 528. Interestingly, c-MYC may achieve this by interfering 
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Figure 42. AP4-ER activation interferes with TGF-β-mediated induction of p21 
 
A, HaCaT cells stably selected for expression of a AP4-ER fusion protein were treated with 
200 nM 4-OHT for 3 hrs or left untreated. Subcellular localization of AP4-ER was detected by 
immunostaining using an anti-ER antibody. Indirect immunofluorescence was detected by 
fluorescence microscopy. 
B, HaCaT cells stably infected with a retrovirus encoding AP4-ER were treated with 4-OHT for 
12 hrs or left untreated before TGF-β was added for the indicated periods. Expression of p21 
and β-actin was determined by Western blot analyzes.  
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with the induction of p21 expression 415. Treatment of U-937 cells with TPA reduces the 

expression level of endogenous AP4 (Figure 43A), presumably due to down-regulation of 

c-MYC expression (data not shown). Therefore it was determined whether expression of 

AP4 mimics the effect of ectopic v-myc in this scenario. To achieve a moderate 

expression of ectopic AP4, U-937 cells harboring an AP4 allele under control of a 

truncated metallothionein-1 promoter 529 were generated by retroviral infection. In the 

presence of zinc, ectopic AP4 interfered with TPA-mediated induction of p21 when 

compared to control-infected cells (Figure 43B). 

 

   In addition, cells ectopically expressing AP4 failed to stably arrest in G1 upon TPA 

treatment and rather underwent apoptosis (Figure 44A). Furthermore, ectopic expression 

of AP4 increased the fraction of U937-cells which retained the ability to perform de novo 

DNA synthesis upon TPA treatment as exemplified by increased incorporation of the 

artificial thymidine nucleotide analog 5-bromo-2`-deoxyuridine (BrdU) (Figure 44B). 

Taken together, these data provide evidence that AP4 interferes with the cycle cycle 

arrest which accompanies terminal differentiation of monoblastic cells presumably by 

downregulation of p21. 
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Figure 43. Effect of ectopic AP4 on p21 induction during myoblast differentiation 
 
A, U-937 cells were treated with 10 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) for 
24 hrs and expression of AP4, p21 and, as a control for equal loading, β-actin was determined 
by immunoblotting.  
B, U-937 RSM-AP4 or RSM-Ctrl cell pools were treated with 10 nM TPA and 100 µM zinc 
sulfate for the indicated periods. Expression of AP4, p21 was determined by immunoblotting. 
Expression of β-actin was used as a control for equal loading.  
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5.1.11 AP4 expression pattern in human colon and colorectal cancer 
specimen 

   Immunohistochemical analyses revealed that the expression of AP4 protein is restricted 

to the base of human colonic crypts which are populated by non-differentiated stem cells 

and highly proliferative progenitor cells as evidenced by the expression of the 
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Figure 44. AP4 promotes cell cycle progression of cells undergoing differentiation 
 
A, U-937 RSM-AP4 or RSM-Ctrl cells were treated with 10 nM TPA and 100 µM zinc sulfate 
for the indicated periods and cells were analyzed by flow cytometry. The experiment was 
repeated twice and exemplary histograms representing 15,000 cells are provided. The % cell 
cycle distributions are average results of two independent experiments. 2N: cells in G1, 4N: 
cells in G2/M. 
B, U-937 RSM-AP4 or RSM-Ctrl cells were treated with 10 nM TPA and 100 µM zinc sulfate 
for the indicated periods and de novo DNA synthesis (BrdU incorporation) was determined by 
flow cytometry. The percentages of BrdU-incorporation represent mean values of three 
independent experiments. Error bars are depicted and represent standard deviations.  
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proliferation marker Ki67 and the absence of p21 expression (Figure 45). In the 

differentiated upper parts of colonic crypts, expression of AP4 was not detectable 

(Figure 44). The expression pattern of AP4 is similar to the reported pattern of c-MYC 

expression in these compartments 281,282. As would be expected from a repressor of the 

p21 gene, expression of AP4 inversely correlated with the expression of p21 which 

increased towards the tips of the crypts that contain terminally differentiated cells 530,531 

(Figure 45). 

 

 

   Consistent with a role of AP4 downstream of de-regulated, oncogenic c-MYC, primary 

colorectal carcinomas present in biopsies obtained from 12 patients showed a strong 

expression of AP4 which correlated with expression of c-MYC and Ki67 protein in all 

cases analyzed (Figure 46-48). In small adenomas, which retain a crypt-like architecture, 

the frequency of Ki67-positive cells was increased and extended to the surface epithelial 

layer (Figure 46, lower panel). Similarly, expression of c-MYC and AP4 was extended to 

more distal areas of the crypt (Figure 46, lower panel). Furthermore, expression of p21 

AP4 p21Ki67

 
 
Figure 45. In vivo expression of AP4, Ki67 and p21 in normal human colonic crypts 
 
A section of an endoscopic biopsy derived from normal colon area. Consecutive paraffin 
sections were stained with antibodies directed against Ki67, AP4 or p21. Arrows indicate 
positive cells. (magnification :  200×) 
 
Staining of tissue sections for Ki67 and p21 was performed by Andrea Sendelhofert from the 
Institute of Pathology, LMU, Munich 
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was mainly limited to the surface and the compartmentalization of p21 and Ki67 

expression was partially lost in this stage of crypt transformation as has been described 

before by Polyak et al. 530. However, the mutual exclusion of c-MYC/AP4 and p21 

expression was preserved in small adenomas. Taken together, these in vivo expression 

data suggest that AP4 may represent a mediator of the effects that activation of c-MYC 

has on the organismal level. The strict correlation between AP4 and c-MYC expression in 

human colorectal tumors further indicates that AP4 might contribute to the oncogenic 

effects caused by de-regulation of c-MYC in human cancer disease. 
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Figure 46. In vivo expression of AP4, c-MYC, Ki67 and p21 in colorectal cancer 
 
Sections of endoscopic biopsies derived from primary tumors of two patients are depicted. 
Consecutive paraffin sections were stained with antibodies directed against c-MYC, Ki67, AP4 or 
p21. With colorectal carcinoma biopsies from 10 additional patients identical results were obtained 
(Figure 47 and 48). A, small adenoma (dysplastic), T, tumor. (magnification: 200×) 
 
Staining of tissue sections for c-MYC, Ki67 and p21 was performed by Andrea Sendelhofert from 
the Institute of Pathology, LMU, Munich. 
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Figure 47. In vivo expression of AP4, c-MYC, Ki67 and p21 in colorectal cancer 
 
Sections of endoscopic biopsies derived from primary tumors of five patients are depicted. 
Consecutive paraffin sections were stained with antibodies directed against c-MYC, Ki67, AP4 
or p21. (magnification 200×) 
 
Staining of tissue sections for c-MYC, Ki67 and p21 was performed by Andrea Sendelhofert 
from the Institute of Pathology, LMU, Munich.  
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Figure 48. In vivo expression of AP4, c-MYC, Ki67 and p21 in colorectal cancer 
 
Sections of endoscopic biopsies derived from primary tumors of five patients are depicted. 
Consecutive paraffin sections were stained with antibodies directed against c-MYC, Ki67, AP4 
or p21. (magnification 200×) 
 
Staining of tissue sections for c-MYC, Ki67 and p21 was performed by Andrea Sendelhofert 
from the Institute of Pathology, LMU, Munich. 
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6 Discussion 

6.1 iTAP/MudPIT analysis of p53-associated proteins 

   The iTAP purification and mass-spectral analysis of p53-associated proteins described 

here revealed Cul7 as a putative p53 interacting protein. With respect to the number of 

identified peptides, sequence coverage and consistency in four independent experiments, 

Cul7 was considered to exhibit an outstanding binding affinity towards p53 when 

compared to all other co-purified proteins. Since the p53/Cul7 interaction was readily 

confirmed by co-immunoprecipitation of endogenous proteins, which is the current “gold 

standard” for describing novel protein-protein interactions, the main focus of this project 

was to determine its role in the regulation and/or function of p53. 

6.1.1 Cul7: a component of modular E3-ligases 

   Several members of the superfamily of cullin-ring ligases (CRLs) are involved in 

ubiquitin-dependent proteolysis 532 thereby regulating a huge number of cellular 

processes, including glucose-sensing, circadian rhythms, limb patterning and DNA 

replication. CRLs belong to the class of multisubunit E3 ligases and were first described 

11 years ago 533. A main feature of these enzymes is their modular composition with the 

subunits being assembled on a cullin scaffold 534,535. The name “cullin” was derived from 

the ability of each family member to “cull” or sort specific substrates for 

ubiquitination 533. Seven cullins, CUL1, 2, 3, 4A, 4B, 5 and 7, have been identified until 

now in human cells 532. In contrast to single-subunit E3-ligases, such as MDM2 and 

PARC, cullin-based E3-ligases lack a catalytical domain and need to associate with the 

Rbx1 protein which contributes a RING-domain essential for E3-ligase activity 536-538. In 

the classical model describing Cul1-based SCF complexes 539, substrate receptors, so 

called F-box proteins 535, are recruited by the adaptor protein Skp1, whose C-terminus 

binds to the F-box motif of these substrate recognizing units.  

   Cullin 7 (Cul7) was originally discovered as a 185 kD protein (p185) associated with 

the large T antigen of simian virus 40 (SV40) 540. The carboxy-terminus of Cul7 harbors 

a BH3 domain and ectopic expression of Cul7 was shown to promote apoptosis in 

NIH3T3 cells 541. However, this is in contrast to more recent findings showing that 
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inactivating Cul7 mutations negatively affect cell proliferation in vivo 542 and elevated 

expression of Cul7 increases the proliferation rate of human cancer cell lines 543. Later, 

Cul7 was characterized as a central component of an SCF-ROC1 E3-ligase complex 

(SCF7), consisting of Skp1, Cul7, Fbx29 and Rbx1 483. Association with this complex is 

required for cellular transformation by the SV40 large T antigen 475,544. Unlike Cul1, 

which is able to interact with Skp1 in the absence of Fbx29 545, Cul7 associates 

exclusively with a preformed Skp1-Fbx29 complex 483. Recently, Cul7 and Cul1 were 

shown to assemble a heterodimeric E3-ligase complex which contains two Rbx1 

subunits, one bound to Cul7 and Cul1, respectively 546. The formation of this complex is 

dependent on Fbx29, that bridges Cul7 and Cul1-Skp1, thereby presumably conferring 

substrate specificity to this multisubunit E3-ligase 546. The work of Tsunematsu and 

colleagues further revealed, that the interaction of Cul7 with Fbx29 occurs 

independently of the F-box-domain of Fbx29 while the F-box motif is essential for 

association of Fbx29 with Cul1 via Skp1 546. The identity of physiological substrates 

targeted by Cul7-containing E3-ligase complexes for proteasomal degradation remains 

unknown. 

6.1.2 Cul7: a negative modulator of p53 activity 

   This thesis revealed that the E3-ligase component Cullin 7 (Cul7) is induced by 

genotoxic stress in a caffeine-sensitive manner and negatively regulates p53 activity 

presumably by direct interaction. The acute down-regulation of endogenous Cul7 by a 

conditional RNA interference approach led to increased p21 protein levels in MCF-7 

breast cancer cells which augmented a DNA damage-induced G1-arrest in a p53-

dependent manner. Knockdown of Cul7 had no significant influence on the p53 protein 

level suggesting that Cul7 acts by limiting the transcriptional activity of p53 rather than 

by affecting its protein turnover. A similar mode of p53 inhibition has been reported for 

MDMX 101,103, which directly interacts with p53 thereby inhibiting p53-mediated 

transactivation of target genes 94. Similar to the observed effect of Cul7 knockdown on 

p53 activity, MCF-7 cells with reduced MDMX expression due to RNA-interference 

display elevated expression of p21 and reduced proliferation capacity but retain 

unaltered levels of p53 protein 547. 
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   In agreement with the positive effect on p53 function after Cul7 ablation, accumulation  

and activity of p53 following DNA damage was compromised by ectopic expression of 

Cul7. Disruption of p53 function was previously described to sensitize human cancer 

cells to apoptosis induced by genotoxic drugs 548. Especially the p53/p21 axis was shown 

to be critical for a sustained cell cycle arrest after DNA damage 501. In line with Cul7 

acting as a negative regulator of p53 function, ectopic expression of Cul7 increased the 

apoptotic fraction of MCF-7 cells upon exposure to genotoxic drugs presumably by 

preventing the establishment of a stable, p53-mediated cell cycle arrest. 

   Since the substrate recognizing component of the SCF7 E3-ligase, Fbx29, did not 

directly interact with p53, but was recruited to p53 in a Cul7-dependent manner, it 

seemed unlikely that p53 represents a target for ubiquitination by the SCF7 complex. In 

addition, ectopic expression or acute knockdown of Cul7 did not affect the protein level 

of p53 in exponentially proliferating cells, suggesting that Cul7 does not target p53 for 

ubiquitin-dependent proteasomal degradation. Previously, a Cul7-mediated mono- and 

di-ubiquitination of p53 has been observed in vitro using immunoprecipitated complexes 

of Cul7 and ectopic p53 from H1299 cells 543. However, the biochemical consequences 

of this p53 modification remained elusive 543. Here, a ubiquitination of p53 by 

Cul7/Fbx29 in vivo was not detectable. Since several E3-ligases have been shown to 

mono- and di-ubiquitinate p53 45,65,66,69,70, it is possible that immunoprecipitates of 

Cul7/p53 complexes contain other E3-ligases responsible for the in vitro ubiquitination 

of p53 observed by Andrews et al. 543. The lack of poly-ubiquitination activity of Cul7 

towards p53 in vivo, which was confirmed by others 543, makes it highly unlikely, that 

Cul7 represents the long-sought cytoplasmic E4-like enzyme which was postulated to 

poly-ubiquitinate p53 exported from the nucleus leading to its cytoplasmic degradation 

by the 26S proteasome 44. 

   During this thesis, a direct interaction between ectopic p53 and Cul7 was also reported 

by others 543,549,550 which confirms findings presented. The association of Cul7 with p53 

was shown to occur between the conserved CPH domain of Cul7 and the 

oligomerization domain of p53 550 which is relevant for its activation. Kaustov et al. 

demonstrated that the CPH domain of Cul7 preferentially binds to an extended surface of 

the p53 tetramer 550 and in line with these observations, genotoxic stress augmented the 
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interaction of endogenous p53 and Cul7 presumably by increasing the proportion of p53 

tetramers. This might also explain, why ectopic Cul7 specificially interfered with 

activation of p53 in response to DNA damage when increased levels of p53 favor the 

formation of p53-tetramers. Since genotoxic stress and inhibition of nuclear export by 

leptomycin B did not lead to nuclear localization of Cul7 protein (data not shown), Cul7 

may associate with p53 in the cytoplasm. Interestingly, the p53-targeting E3-ligases 

Pirh2 and COP1 localize to the nuclear and cytoplasmic compartment 551,552 but where 

they act on p53 is currently unknown. In the cytoplasm, Cul7 could be involved in 

controlling the oligomerization status of p53. Tetrameric p53 is less efficiently imported 

into the nucleus than its monomeric form 553. Andrews et al. showed that mutations 

targeting the p53 export signal decreased the p53/Cul7 association, whereas the 

p53/Cul7 interaction was augmented in case of mutations abrogating the nuclear import 

of p53 543. However, according to their observations, Cul7 does not sequester p53 in the 

cytoplasm 543. Thus, the exact mechanism by which Cul7 inhibits the activity of p53 

remains to be determined. 

6.1.3 PARC: a close relative of Cul7 

   Cul7 is highly homologous to PARC (PARkin-like, Cytoplasmic, p53 binding protein) 

which was demonstrated to negatively regulate p53 by cytoplasmic sequestration 71. 

While ablation of PARC leads to nuclear re-localization of cytoplasmic p53 in human 

neuroblastoma- and osteosarcoma-derived cells, recent reports do not support this model 

of PARC function in mice 554 and modulation of PARC does not alter p53 localization in 

hepatoblastoma-derived cell lines 555. These findings suggest that sequestration of p53 

by PARC to the cytoplasmic compartment occurs in a cell-line- and species-dependent 

manner. In their regions of homology, PARC and Cul7 show a sequence identity of up to 

60% (see Figure 11). Cul7 and PARC contain a CPH domain which is conserved in 

Cul7, PARC and HERC proteins 549 and the HERC domain containing protein HERC2 is 

proposed to serve as an E3-ligase 483,556. In addition, the two proteins harbor a DOC 

(DOC1/APC10) domain which is located in the central region of Cul7 and shows 

striking similarity to APC10/DOC1, an essential subunit of the APC/C (Anaphase 

Promoting Complex/Cyclosome) 557. This domain composition together with the 
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presence of a CH (Cullin homology) domain suggested that PARC and Cul7 might 

function as E3-ubiquitin ligases and this enzymatic activity was previously confirmed 

for both of them 71,483. As discussed before, p53 did not serve as a substrate for 

Cul7/Fbx29-mediated ubiquitination in vivo and others reported that PARC does not 

target p53 for ubiquitination 71. However, PARC is discussed to provide a cytoplasmic 

scaffold for p53 poly-ubiquitination by other cytoplasmic E4-ligases 72. Since Cul7 

interfered with the stabilization of p53 in response to DNA damage one could speculate 

that Cul7, when bound to p53 after genotoxic stress, might serve as a scaffolding factor 

to allow other E3-ligases to ubiquitinate p53 leading to its proteasomal degradation in 

the cytoplasm. However, Cul7 is not able to promote MDM2-mediated poly-

ubiquitination of p53 in vivo 543 suggesting other mechanisms might be responsible for 

the effect of Cul7 on p53 after DNA damage. 

6.1.4 Role of Cul7 in normal proliferation and cell growth 

   PARC and Cul7 were demonstrated to form homodimers but are also able to 

heterodimerize with each other 554. Nevertheless, the two proteins have non-overlapping 

functions since knockout of PARC in mice has no effect on viability 554, whereas the 

knock-out of Cul7 in mice is post-natal lethal and accompanied by intrauterine growth 

retardation, vascular abnormalities and lungs with failure in inflation and restriction of 

the alveolar space 484. In this scenario, Arai et al. identified FAB68/glomulin, whose 

inactivation can be found in patients suffering from inherited glomuvenous 

malformation 558, as a binding partner of the SCF7 complex but FAB68 does not serve as 

a substrate for SCF7-mediated ubiquitination 484. However, the reported phenotype of 

Cul7 knock-out mice 484 suggests that Cul7 plays a non-essential role in mammalian 

development, which would be consistent with a function as a checkpoint component as 

suggested by this thesis. The presented data further imply that deregulation of p53 

activity might at least in part account for the reduced proliferation of Cul7-deficient 

mouse embryo fibroblasts derived from these knock-out mice 484. p53 may also 

contribute to the post-natal lethality observed after deletion of Cul7 484. Similar 

phenotypes have been observed in mice deficient for other negative regulators of p53, 

such as MDM2 and MDMX 46,47,97. In the future it will be important to determine, to 
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which extent the phenotype of Cul7-deficient mice can be rescued by inactivation of 

p53. 

   In a recent study, mutations within the Cul7 gene were identified as the cause of the 

3-M syndrome, an autosomal-recessive form of dwarfism characterized by pre- and post-

natal growth retardation 542. This observation is in line with a positive role of Cul7 in 

unperturbed cell proliferation and according to results presented here, it is possible that 

the increase in p53 activity, which may result from mutated, non-functional Cul7, 

contributes to the 3-M syndrome. However, 50% of the identified Cul7 mutations in 3-M 

syndrome are located within its cullin domain responsible for Rbx1-binding and two 

mutations, R1445X and H1464P, were demonstrated to impair the ability of Cul7 to 

efficiently associate with Rbx1 and compromise the ubiquitin-ligase activity of immuno-

precipitated Cul7 complexes 542. For that reason, it is likely that also other, p53-

independent functions, which involve ubiquitination of as yet unidentified substrates by 

Cul7-containing E3-ligase complexes, contribute to the 3-M syndrome phenotype. 

   Interestingly, Fbx29 is extremely unstable in Cul7 knock-out mice 484 and undetectable 

in MEFs depleted of Cul7 by RNA interference 546 suggesting that Cul7 acts in a 

chaperone-like mode and stabilizes Fbx29 by scaffolding the SCF7 complex. Since an 

incomplete knockdown of p53 partially rescued the effect of Cul7 ablation on a 

DNA damage/p53-mediated cell cycle arrest, it can be excluded, that the consequences 

of Cul7 ablation observed here are caused by Fbx29-specific, p53-independent effects. 

In addition, Fbx29 protein is specifically expressed in the placenta and, to a lower extent, 

in mouse embryos, whereas it is undetectable in adult tissues 546. In contrast, expression 

of Cul7 was found in a large spectrum of adult tissues originating from mice and 

humans 484,542. In contrast to the Cul7 knock-out phenotype, Fbx29-deficient mice show 

abnormalities which are restricted to the placenta 546 suggesting that the organismal 

function of Cul7 in adult tissues is not related to Fbx29-mediated substrate-recognition 

and -ubiquitination. The consequences of Cul7 expression and inactivation on p21 

expression, cell cycle arrest and sensitization of cells towards apoptosis following DNA 

damage observed here are therefore presumably due to the inhibitory association of p53 

and Cul7. 
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6.1.5 Regulation of Cul7 level by genotoxic stress 

   In contrast to PARC and other cullin family members, Cul7 does not serve as a 

substrate for neddylation 559,560 and the regulatory mechanisms underlying Cul7 activity 

remained speculative. The data presented here provide the first evidence, that the level of 

Cul7 is positively regulated by the DNA damage response pathway. Inhibition of PIKK 

family members by caffeine prevented the increase of Cul7 mRNA and protein after 

DNA damage. Therefore, a model can be suggested in which PIKK kinases not only 

activate p53 in response to genotoxic stress but also increase the level of its negative 

modulator Cul7. Negative feedback loops represent a common mode of p53 

regulation 44. Several negative regulators of p53, e.g. MDM2, COP1 and Pirh2, are 

encoded by target genes of p53 48,65,66. However, since induction of Cul7 mRNA and 

protein due to genotoxic stress does not require p53 activity, the p53/Cul7 feedback loop 

may involve one or several additional components. Interestingly, cullin proteins have 

been recently implicated in the negative regulation of the DNA damage response as 

ATR-mediated phosphorylation marks CHK1 for ubiquitination by SCF E3-ligase 

complexes which contain Cul1 and Cul4a thereby limiting the duration of ATR-CHK1 

signaling after genotoxic or replicative stress 561. Similarly, the elevated levels of Cul7 

caused by genotoxic stress may limit the activity of p53 thereby allowing cells to re-

enter the cell cycle after DNA damage has been repaired. 

6.1.6 Implication of the Cul7/p53 interaction for cancer therapy 

   In summary it was demonstrated here that p53 interacts with Cul7 in vivo and the 

induction of Cul7 after DNA damage attenuates the activation of p53 (Figure 49). 

Increasing efforts are being made to inhibit the association of p53 with negative 

regulators in order to restore its tumor-suppressive capacity in cancer cells which retain 

wild type p53 562-564. Anti-sense oligonucleotides directed against MDM2 were 

demonstrated to activate p53 and consequently suppress tumor growth in xenograft 

models 565. More recently, small molecule inhibitors of the MDM2-p53 interaction, 

designated as nutlins, were generated 566 which exhibit p53-dependent activity in several 

cellular model systems 566,567. Moreover, reactivation of p53 in mouse tumor models was 

shown to provoke a dramatic response in spontaneous and experimental tumors. 
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Dependent on the tumor type, p53-restoration led to apoptosis (lymphoma) or cell cycle 

arrest with features of senescence (sarcomas) 568,569.  

 
The observed tumor regression by restoration of p53 legitimates the ongoing effort to 

treat human tumors by means of p53-based cancer therapies. In the future it will be 

important to determine if and to which extent Cul7 is over-expressed in tumors that 

retain wild type p53 and whether Cul7 contributes to inactivation of the p53 pathway in 

this scenario. With regard to the data presented here, it is likely that the pharmacological 

modulation of the Cul7/p53 interaction or of Cul7 may allow to sensitize tumor cells 

expressing wild-type p53 to genotoxic agents used in cancer therapy. 
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Figure 49: Cul7 is induced by DNA damage and inhibits p53 activity 
 
In the model proposed here, genotoxic stress disrupts the well described p53/MDM2 
feedback-loop (indicated by a red cross) but concomitantly increases the expression level 
of Cul7 via a caffeine-sensitive event. Cul7 associates preferentially with active, tetrameric 
p53 (red) and negatively modulates its function (blue). By disruption of the 
DNA damage/p53/p21 pathway, Cul7 alleviates a p21-mediated cell cycle arrest thereby 
sensitizing cells to p53-independent apoptosis after treatment with genotoxic drugs. It is 
possible that Cul7 limits p53 activity in order to allow re-entry into the cell cycle after cells 
have recovered from DNA damage. 
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6.2 AP4 is a c-MYC-responsive gene in human carcinoma  

   In recent years, several genome-wide studies have been performed to identify c-MYC-

regulated genes by means of microarray analyses 368,371,516,570-573, serial analysis of gene 

expression (SAGE) 370, and large scale identification of c-MYC binding sites using 

chromatin-immunoprecipitation (ChIP) 369,574,575. Except for a work performed in the 

laboratory of Gerard I. Evan, that analyzed c-MYC de-regulated genes in rat pancreatic 

β-cells 573, none of these studies was performed in epithelial cells which are the origin of 

carcinomas, the most common type of human tumors. In the western world, carcinomas 

are responsible for more than 80% of cancer-related deaths. Since cell type-specific 

differences in gene regulation by c-MYC are supposed to exist 378, it is important to 

determine which genes are induced by c-MYC in cells of epithelial origin. 

   During this thesis, microarray analyses were performed using the human breast 

carcinoma cell line MCF-7. This approach revealed that AP4 is amongst the 25 most 

highly induced genes upon c-MYC activation in a clinically relevant scenario, which is 

c-MYC-mediated alleviation of an anti-estrogen mediated cell cycle arrest. Validation 

experiments clearly demonstrated that AP4 meets all requirements for a direct, conserved 

c-MYC target gene and was therefore chosen for further analyses. The biology of AP4 

and the functional consequences of AP4 induction by c-MYC on different cancer-relevant 

signaling processes will be discussed below. 

6.2.1 The transcription factor AP4 

   AP4 was initially identified as a cellular protein which activates late viral gene 

expression from the simian virus 40 (SV40) enhancer 576. The amino acid sequence of the 

ubiquitously expressed transcription factor AP4 characterized it as a member of the basic 

helix-loop-helix leucine-zipper (bHLH-LZ) subgroup of bHLH proteins (Figure 50) 

which recognizes the symmetrical DNA core sequence CAGCTG 577. While AP4 belongs 

to the class A of bHLH proteins, c-MYC is a member of class B and binds to 

CA(C/T)GTG core sequences 578. 

   Unlike other bHLH proteins, AP4 harbors two additional protein dimerization motifs 

which consist of the leucine repeat elements LR1 and LR2 (Figure 50). Due to these 

multiple protein-protein interaction surfaces AP4 forms homodimers but is not able to 
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undergo heterodimerization with other bHLH proteins 577. For various genes, AP4 

binding to promoter and enhancer regions has been reported 579-581. AP4 binds to the 

promoter of Caspase 9 and antisense RNA-mediated downregulation of AP4 has been 

shown to inhibit expression and activation of Caspase 9 581. However, ectopic expression 

of AP4 does not influence expression of Caspase 9 581 suggesting a role of AP4 in 

maintaining the basal expression level of this initiator caspase. Although AP4 was shown 

to activate transcription of SV40 576, recent studies reported AP4-mediated transcriptional 

repression of viral and cellular genes 579,580,582. A repressor complex containing AP4 has 

been described to downregulate expression of PAHX-AP1 in non-neuronal cells 579 and 

AP4 levels gradually decrease during development from the embryonic to adult brain 

suggesting that AP4 regulates the temporal expression of target genes during brain 

development 579. However, upstream pathways responsible for the regulation of AP4 and 

a role of AP4 in cell cycle regulation and tumorigenesis has not been described before. 

 

6.2.2 A c-MYC / AP4 / p21 cascade represses p21 

   Apart from activating a number of genes involved in cell cycle progression as e.g. 

CDC25A 401, the cyclins A2 583, -B1 370, -E 584, D2 327 and the Cyclin-dependent kinase 4 

(CDK4) 393, c-MYC mediates trans-repression of the cell cycle and growth arrest genes 

gas1 585, p15Ink4b 360, p21 586,587 and p27KIP1 358. The results of this thesis establish AP4 as 

HLH
60

B LZ1 TIV
100 151 179 264 28348 120

LZ2
1 338 AA

HDAC3

SMRT

geminin

AP4

HDAC1

 
 
Figure 49. AP4 domain structure and known interactors 
 
Within its N-terminal region, AP4 contains a basic region responsible for specific binding to 
DNA. AP4 forms homodimers via a tripartite interaction interface consisting of HLH, LZ1 and 
LZ2 domains. AP4 recruits HDAC3 via a geminin-SMRT complex 579 and directly associates 
with HDAC1 580 to mediate repression of target genes. A motif containing the amino acids TIV 
is evolutionary conserved, however, the function of this motif is unknown. B: basic region; 
HLH: helix-loop-helix; LZ: leucine zipper; HDAC: histone deacetylase; AA: amino acid. 



Discussion 

131 

a c-MYC-inducible repressor of the CDK inhibitor p21. Ectopic expression of AP4 

resulted in down-regulation of p21 mRNA and protein in several cellular systems and 

was mediated by binding to CAGCTG sites located in the proximal promoter region of 

p21. The down-regulation of p21 by c-MYC plays a critical role in the development of 

anti-estrogen resistance during breast cancer therapy 588,589, β-catenin/TCF4-mediated 

colorectal transformation 280-282 and differentiation of hematopoietic cells 415. Several 

studies have been undertaken to reveal the mechanistic basis of p21 repression by c-MYC 

and various mechanisms have been proposed 590: 

   One mode of p21 repression by c-MYC occurs via interference with the transcription 

factor MIZ1, which by itself acts as a transactivator of the p21 gene 591. MIZ1 binds to a 

so-called initiator element (Inr) close to the transcriptional start site of the p21 gene 415. 

MIZ1 is required for up-regulation of p21 in response to UV irradiation 591 and also plays 

role in the differentiation-mediated upregulation of p21 415. However, in unperturbed 

cells MIZ1 may not be required for p21 regulation since MIZ1-deficient mice display 

unaltered levels of p21 expression 592. In addition, siRNA-mediated knockdown of MIZ1 

does not decrease the expression of p21 in HepG2 cells 593. Others provided evidence that 

repression of p21 by c-MYC may be mediated via interactions with Sp1/Sp3 and 

independently of the Inr sequence 363. Furthermore, c-MYC is able to recruit the DNA 

methyltransferase Dnmt3a, which also functions as a corepressor, to the p21 promoter via 

association of c-MYC with MIZ1 367. Brenner et al. even suggested that DNA 

methylation is involved in c-MYC-mediated repression of p21 367. Therefore, it is 

conceivable that c-MYC employs different factors and mechanisms to downregulate p21 

expression in different cell types and under divergent physiological and patho-

physiological conditions. In contrast to constitutive expression of c-MYC 415, ectopic 

AP4 was only able to delay rather than completely abrogate the induction of p21 during 

differentiation of TPA-treated U-937 cells. In DLD1 colorectal cancer cells, partial 

down-regulation of AP4 by RNA interference was not sufficient to abrogate the 

repressive effect of conditional c-MYC activation on p21 (data not shown). Therefore, 

several pathways downstream of c-MYC might act synergistically or compensate for 

each other to fully control p21 expression. Future efforts should aim to determine the 

relative contribution of these various mechanisms to c-MYC-mediated p21 repression. In 
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addition it will be interesting to analyze, whether distinct modes of p21 repression by 

c-MYC are preferentially used in different cell types and after certain physiological 

stimuli. 

   The AP4 transcription factor forms a complex with geminin and the co-repressor 

SMRT which represses the human PAHX-AP1 gene through recruitment of histone 

deacetylase 3 (HDAC3) 579. Furthermore, AP4 directly associates with HDAC1 to 

mediate transcriptional repression of HIV1 580 (see Figure 50). Other studies provided 

evidence that AP4 may block access of the TATA-box binding protein (TBP) to the 

TATA box 580,594 thereby interfering with the assembly of the RNA-Polymerase II 

initiation complex at target gene promoters. Treatment of U-2OS cells with the HDAC 

inhibitor trichostatin (TSA) increased p21 levels (data not shown), which has been 

demonstrated before in different cellular systems 595. Interestingly, TSA treatment was 

not sufficient to relieve AP4-mediated repression of p21 (data not shown) suggesting that 

histone deacetylase activity may not be required to maintain p21 repression by AP4. In 

line with results presented here showing that AP4 contributes to the repression of p21 

after activation of c-MYC, c-MYC-induced repression of p21 was demonstrated to occur 

independently of histone deacetylase activity 586. 

   Since the bHLH-LZ domain and MycBox II were shown to be essential for c-MYC-

mediated repression of p21CIP1 415, other factors besides MIZ1, which binds the HLH 

domain of c-MYC 361, have been proposed to participate in c-MYC-mediated repression 

of p21 415. Since MycBox II is critical for transcriptional induction of many c-MYC 

target genes, as cyclin D2 327, AP4 is a good candidate for this proposed factor. 

Furthermore, AP4 efficiently repressed p21 and was critical for mitogen-mediated 

repression of p21. However, deletion of MycBox II affects the expression of most but not 

all c-MYC target genes 334. Whether a mutant c-MYC protein lacking the MycBox II 

domain is still able to transactivate AP4 remains to be determined. The c-MYC-

responsive region in the p21 promoter was mapped between –49 and +16 415 which 

overlaps with two of the four AP4 binding sites present in the p21 promoter. Mutation of 

these two sites had a strong effect on the responsiveness of the p21 promoter to 

repression by AP4. Since MycBox II is required for recruitment of TRRAP and HAT 

activity 324,327 it was speculated that TRRAP could also mediate trans-repression of 
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c-MYC target genes or that TRRAP or MycBox II might recruit different sets of 

transcriptional co-factors in a promoter-dependent manner 404. However, the identity of 

these co-factors and the mechanism of their recruitment to c-MYC responsive promoters 

remains elusive. c-MYC-induced AP4, when bound to its cognate sequences located in 

the p21 proximal promoter and therefore in the vicinity of the Inr element, might 

functionally cooperate with the MIZ1/c-MYC/TRRAP complex to achieve repression of 

p21. Nevertheless, the exact mechanism which AP4 uses to repress p21 requires further 

investigation. 

6.2.3 Role of AP4 in c-MYC-mediated anti-estrogen resistance during 
breast cancer therapy 

   The proto-oncogene c-MYC is amplified in 20-30% of breast cancer and several studies 

demonstrated that amplification of c-MYC is associated with a high proliferative capacity 

and poor prognosis in breast carcinoma 274,596-599. Amplification of c-MYC presumably 

represents an independent, powerful prognostic marker, which may even surpass the 

detection of Her2/neu amplification as a marker, which has been linked exclusively to 

steroid receptor-negative breast cancer disease 271,600. 

   c-MYC was shown to play a critical role in hormone-dependent and –independent 

breast tumor growth 601 and is associated with both hormone-independence and anti-

estrogen resistance in breast cancer 602. ICI182,780/Fulvestrant (ICI) is a specific 

steroidal estrogen antagonist which was shown to be devoid of estrogen agonist activity 

in preclinical models 603-605. Its value was also assessed clinically by administration 

before surgery as well as after failure of tamoxifen in patients with advanced breast 

cancer 605-607. Treatment with ICI represents an additional step in the “endocrine therapy 

sequence” of ER-receptor positive breast carcinomas but can only delay anti-estrogen 

resistance in these tumors and the necessity to start chemotherapy 608. However, 

activation of c-MYC is sufficient to overcome the antiproliferative effect of ICI 609, which 

could be reproduced with the MCF-7-PJMMR1 cell line as part of this thesis. This effect 

of c-MYC activation is mediated by repression of p21 588,589. Under these circumstances, 

c-MYC efficiently induced expression of AP4. More important, induction of AP4 by 

c-MYC was necessary to alleviate a cell cycle arrest in ICI-treated MCF-7 cells. AP4 

achieves this mitogenic effect presumably by decreasing the expression of p21 since 
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down-regulation of AP4 by RNA interference elevated the p21 level in this cellular 

background. It can be concluded that AP4 contributes to the mitogenicity of c-MYC in 

breast cancer cells and might represent an important mediator of anti-estrogen resistance 

downstream of activated c-MYC.  

6.2.4 Effect of AP4 on TGF-β signaling 

   TGF-β represents an anti-mitogenic cytokine and its anti-proliferative effect plays a 

major role in epithelial tissue homeostasis 610. In agreement, TGF-β provides a tumor 

suppressive effect at early stages of carcinogenesis mainly via growth inhibition 610. 

However, at progressed stages in tumorigenesis, when cancer cells have acquired 

mutations which inactivate anti-mitogenic TGF-β signaling pathways, TGF-β shows a 

tumor promoting potential 610,611. TGF-β favors epithelial-to-mesenchymal transition 

(EMT) of carcinoma cells leading to increased invasion and metastasis 612. 

Mechanistically, TGF-β-driven EMT is presumably mediated by loss of cellular adhesion 

molecules, activation of proteinases, immune-suppression and angiogenesis 613,614. 

   The cell cycle arrest caused by TGF-β can lead to terminal differentiation or promotes 

apoptosis 615. TGF-β signaling provokes cell cycle arrest in the G1-phase by inhibition of 

c-MYC expression 292,616. In addition, TGF-β induces the CDK inhibitors p15Ink4b 617 and 

p21 618 and downregulates the CDK-activating phosphatase CDC25A 619. Besides direct 

activation of p15Ink4b and p21 through TGF-β/Smad-responsive elements in their 

promoters 360,524, TGF-β is able to influence the repression of these CDK inhibitors by the 

c-MYC proto-oncogene 360,620. c-MYC in turn was shown to interact directly with Smad2 

and Smad3 which abrogates TGF-β signaling. As a result, a large subset of 

TGF-β-responsive genes is influenced by this mechanism in c-MYC-transformed 

tumors 621. Here, the protein product of the c-MYC target gene AP4 interfered with TGF-

β-mediated induction of p21 in HaCaT immortalized keratinocytes. This effect was 

achieved by AP4-delivery via adenoviral infection and was confirmed by 

4-OHT-mediated activation of an AP4-ER fusion construct in order to exclude side-

effects caused by the adenoviral infection procedure. However, AP4-mediated repression 

of p21 did not prevent the TGF-β-mediated cell cycle arrest (data not shown). 



Discussion 

135 

Hematopoietic cell lines lacking p21 were shown to arrest after TGF-β treatment 622. 

Furthermore, cells derived from p21 knock-out mice are still responsive to TGF-β 623,624 

as is also the case for cell lines derived from p15Ink4b-deficient mice 625. Attenuation of 

the growth inhibitory effect of TGF-β is only possible by simultaneous ablation of 

several pathways downstream of TGF-β signaling as was demonstrated for over-

expression of LIP, a potent inhibitor of TGF-β-mediated transcription regulation 293. 

These data imply that suppression of the CDK-inhibitor p21 alone is not sufficient to 

alleviate the cell cycle arrest caused by activation of TGF-β signaling. Presumably, the 

concomitant regulation of other genes by TGF-β, as p15Ink4b or CDC25A, is sufficient to 

mediate the cell cycle arrest in HaCaT keratinocytes. However, other processes 

downstream of TGF-β-mediated induction of p21, such as terminal differentiation 615, 

may be affected by elevated expression of AP4. 

   Abrogation of TGF-β signaling has been implicated in human colon cancer: mutations 

or loss of heterozygosity (LOH) which affect the TGF-β receptor mediator SMAD4 are 

found in familial juvenile polyposis (JPS), an autosomal dominant disease characterized 

by predisposition to gastrointestinal polyps and cancer 626,627. Since LOH (loss of 

heterozygosity) of SMAD4 occurs in invasive carcinomas but not in adenomas 626,628, 

inactivation of the TGF-β pathway likely happens at the transition to invasive cancer. 

Consistent with these earlier findings, conditional knock-out of TGF-β receptor II in mice 

does not give rise to spontaneous tumor formation but substantially enhances 

mutagen-induced carcinogenesis 629. This implies that inactivation of tumor-suppressive 

TGF-β signaling is only able to promote tumorigenesis subsequently to initiation-events, 

which may involve activation of oncogenic pathways. SMAD4, together with SMAD2 

and SMAD3 mediates the TGF-β-triggered induction of p21 via enhancement of Sp1 

affinity to the p21 promoter 523,630 which is blocked by ectopic expression of c-MYC 586. 

The observed abrogation of TGF-β/Smad/p21 signaling by AP4 might contribute to 

TGF-β pathway inactivation in colorectal carcinomas which retain expression of wild 

type SMAD4 and may contribute to the morphogenetic changes observed during colon 

cancer formation by antagonizing the TGF-β pathway 631. 
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6.2.5 Role of AP4 in the DNA damage response 

   The decline of AP4 levels after DNA damage might be a prerequisite for efficient 

induction of p21 by p53. The decrease of AP4 in this scenario is presumably caused by 

down-regulation of c-MYC upon treatment of cells with genotoxic drugs, as was already 

observed by Herbst et al. 319. Interestingly, the ubiquitin-specific protease USP28, which 

stabilizes c-MYC 300, has been implicated in the DNA damage response pathway 632. 

Recently, it was found that USP28 dissociates from Fbw7 after UV irradiation and this 

promotes degradation c-MYC after genotoxic stress 633. In addition to decreased protein 

stability, expression of c-MYC mRNA is repressed after DNA damage in a 

p53-dependent manner 634. 

   As p21 is a potent inhibitor of cyclin dependent kinases, its repression by AP4 may 

contribute to the ability of c-MYC to activate CDKs 635-637. AP4 in principle has this 

capability as it was able to block pRb hypophosphorylation after DNA damage. p21 plays 

a critical role in c-MYC-induced apoptosis 620 and c-MYC selectively abrogates the 

ability of p53 to induce p21 while p53-mediated induction of pro-apoptotic PUMA 

remains unaffected 620 which favors an apoptotic response over cell cycle arrest. 

Consistent with these data, AP4 interfered with p53-mediated transactivation of p21 and 

sensitized cells to apoptosis after treatment with genotoxic drugs used in cancer therapy. 

To which extent AP4 contributes to the accumulation of DNA damage downstream of 

activated c-MYC requires further investigation. 

   Due to its frequent inactivation in cancer and its potent anti-proliferative and pro-

apopotic effects, p53 is considered to be a powerful tumor suppressor 5. While loss or 

mutation of p53 results in increased resistance to apoptosis provoked by various 

genotoxic drugs 638, the loss of p53 function may also sensitize human cancer cells to 

apoptosis after DNA damage 548. There is increasing evidence that tumors which lack p53 

are even more sensitive to apoptosis than their wild-type p53-harboring 

counterparts 639,640. Especially the p53/p21 axis was demonstrated to be critical for 

sustained cell cycle arrest after DNA damage 501. Tumors which retain p21 were shown 

to undergo regrowth after IR exposure while tumor cells lacking p21 are completely 

erased by irradiation 641. Therefore, the AP4 status might predict the responsiveness of 

tumors which still express wild-type p53 to genotoxic drug- and irradiation-based cancer 
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therapy. The observation that AP4 was able to further repress the low, basal expression 

level of p21 in p53-negative colon cancer cells suggests that this might also hold true for 

p53-deficient tumors. 

6.2.6 Role of AP4 in differentiation 

   Several studies have shown that down-regulation of c-MYC is required for terminal 

differentiation of many cell types 411,467,642. For example, ectopic expression of c-MYC 

blocks TPA-induced differentiation of U-937 myelomonoblasts by repressing the CDK 

inhibitor p21 415,528. p21 itself plays an important role in monoblastic differentiation and 

supports survival of differentiated cells by maintaining a stable cell cycle arrest 643-645. In 

agreement with these findings, ectopic expression of AP4 prevented a stable G1 arrest and 

increased the apoptotic fraction of cells undergoing TPA-induced differentiation 

presumably by delaying the induction of p21. Furthermore, ectopic expression of AP4 

substantially increased the fraction of cells undergoing DNA synthesis in the presence of 

differentiation-inducing TPA. While this effect is likely due to repression of p21 by AP4 

and, as a consequence, increased CDK activity, it cannot be excluded that other as yet 

unidentified transcriptional targets contribute to the cell cycle promoting capacity of AP4 

in this scenario. 

   c-MYC is considered to play an important role in the homeostasis of hematopoietic 

cells 421,646 and alterations of c-MYC expression result in hematopoietic 

malignancies 257,647. Furthermore, c-MYC is required for proliferation and expansion of 

the most early and late progenitor cells in hematopoietic tissue 421. p21-deficient mice 

display elevated proliferation and absolute number of hematopoietic stem cells 

(HSCs) 648. In the future it will be interesting to reveal, which role repression of p21 by 

AP4 plays during c-MYC-regulated HSC maintenance and differentiation. Elucidation of 

the complete transcriptional program downstream of activated AP4 might help to clarify 

the importance of AP4 for proliferation and differentiation of hematopoietic cells. 

6.2.7 Role of c-MYC / AP4 / p21 in colonic differentiation and colorectal 
carcinoma 

   The colonic epithelium is shaped into crypts 649 with self-renewing stem cells being 

located at the bottom of these crypts 650. The more committed progenitor cells, so called 
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“transit-amplifying” cells, originate from asymmetric stem cell divisions, have a limited 

self-renewing capacity and reside in the bottom third of the crypts 631. As these cells 

migrate along the vertical crypt axis, they inevitably differentiate into the mature cell 

lineages (enterocytes, enteroendocrine cells and goblet cells) and are finally shed by 

apoptosis 631. In the normal adult colonic crypt, homeostasis is maintained by morphogen 

gradients which determine the cellular fate dependent on the relative position of a cell 

within a crypt 631. Signaling by Wnt ligands is most prevalent at the base of crypts where 

it induces a precursor-cell phenotype of intestinal epithelial cells 281. While Wnt activity 

decreases when cells migrate along the crypt axis, these cells start to produce the 

hedgehog (Hh) family member indian Hh (IHh) which triggers their differentiation 651. 

IHh furthermore restricts Wnt target gene expression to the base of the colonic crypt 

while increased TCF4 levels due to activated Wnt signaling downregulate IHh 

expression 651. Additional morphogens regulating the homeostasis of colonic epithelium 

belong to the protein families of TGF-β, fibroblast growth factor (FGF), epithelial growth 

factor (EGF), keratinocyte growth factor (KGF), TGF-α and amphiregulin 631. While the 

underlying mechanisms as to how these molecules maintain homeostasis in the adult 

colonic epithelium is poorly understood, the importance of morphogenic signaling in 

tissue homeostasis is supported by increasing evidence that mutations affecting these 

pathways represent “initiators” at different stages of tumorigenesis. 

   The adenomatous polyposis coli tumor suppressor is encoded by the APC gene and 

germline mutations in APC were first associated with familial adenomatous polyposis 

(FAP), an inherited colorectal cancer syndrome 652. Inactivating APC mutations were also 

shown to represent a key early event in the development of sporadic colorectal cancer 

(CRC) disease 653. Loss of APC function gives rise to constitutive activation of the 

β-catenin/TCF4 transcription complex 654. Soon after these revelations, c-MYC was 

identified as a target of the Wnt/APC/β-catenin/TCF4 pathway in vitro 280 and in normal 

colonic crypts in vivo 281. In normal colonic epithelium, c-MYC is able to promote self-

renewal of intestinal stem cells and is necessary for normal crypt morphogenesis 418. The 

data presented here show that AP4 expression in normal human colonic crypts is 

restricted to the non-differentiated, proliferative progenitor compartments. The 

expression pattern of AP4 correlates with the expression of c-MYC, which is 
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downregulated during differentiation 281 presumably due to decreasing levels of nuclear 

TCF4/β-catenin 651. As expected, the progenitor cell compartments of colonic epithelium 

were devoid of p21 expression which is restricted to the distal, differentiated areas of the 

crypts 281,530. The pattern of AP4 expression in normal colonic crypts is therefore 

consistent with a role of AP4 as a c-MYC-inducible repressor of p21 and the observation 

that AP4 interferes with up-regulation of p21 and cell cycle arrest during cellular 

differentiation.  

   Conditional APC knock-out mice provided the first in vivo evidence that inactivation of 

c-MYC represents an early event after loss of APC 282. Recently, Sansom et al. used the 

same transgenic model to demonstrate that parallel deletion of c-MYC and APC rescues 

the elevated proliferation and apoptosis displayed by APC-deficient crypts 655. Even more 

interesting, concomitant loss of c-MYC rescues abnormal cell migration and 

differentiation of APC-deficient colonic crypts and restores a normal crypt 

architecture 655. Biopsies from primary CRCs derived from 12 patients displayed a high 

expression of AP4 in compartments positive for c-MYC and Ki-67 expression. These 

regions were devoid of detectable expression of p21 which only occurred sporadically 

and in non-proliferative areas of the analyzed tumors. Down-regulation of p21 is a known 

phenomenon during colorectal carcinogenesis which is presumably caused by oncogenic 

activation of c-MYC 281,282,530.  

 

   The data obtained from immunohistochemistry suggest that AP4 contributes to the high 

proliferative capacity of activated c-MYC in tumor cells and AP4 might support a non-

differentiated state in normal and malignant tissues. However, the in vivo contribution of 

AP4 to tumor formation and progression requires further investigation. A possible 

approach would be to use conditional gene knock-out or RNA interference-based 

techniques to ask whether AP4-inactivation results in regression of c-MYC-driven tumors 

in mouse models. 
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   Taken together, this study revealed that AP4 is a critical new component of the c-MYC 

target gene network and for the first time provides evidence that c-MYC directly 

regulates the expression of a transcriptional repressor, AP4, to repress the CDK inhibitor 

p21. It is likely that AP4 coordinates a wider-ranging transcriptional program 

downstream of activated c-MYC. Future genome-wide studies will reveal the spectrum of 

AP4-deregulated genes and help to uncover which functional aspects of oncogenic 

c-MYC might be mediated by AP4.  
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Figure 51: AP4 represents a novel mediator of c-MYC-induced repression of p21 and 
interferes with a stable cell cycle arrest during genotoxic stress and differentiation. 
 
A, In this model, c-MYC, besides repressing p21 via inhibitory association with transcription 
factors MIZ1 and Sp1/Sp3 or recruitment of the co-repressor Dnmt3a, directly induces 
expression of AP4 whose protein product represents a transcriptional repressor. AP4 binds 
to CAGCTG sites located within the p21 proximal promoter region and acts as a repressor of 
p21. The tumor suppressor p53 and the cytostatic cytokine TGF-β (via Smad) induce p21 
through the indicated response elements. 
B, AP4 blocks the induction of p21 by the DNA damage/p53 and TGF-β/Smad pathways. 
The c-MYC/AP4/p21 cascade interferes with cell cycle arrest, blocks differentiation and 
sensitizes cells to genotoxic drug-mediated apoptosis. AP4 presumably plays a role in stem 
cell maintenance and –differentiation. TGF-β RE: TGF-β-responsive element. 
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7 Summary 

   In this study, Cul7 was identified as a new p53-interactor by an iTAP/MudPIT analysis. 

Cul7 mRNA and protein levels increased after DNA damage in several cell lines in a 

p53-independent and caffeine-sensitive manner, suggesting that members of the PIKK 

kinase family are responsible for Cul7-induction. Acute ablation of Cul7 by specific 

microRNAs augmented p53 activity culminating in elevated expression of p21 and cell 

cycle arrest in the G1 phase. Ectopic Cul7 prevented the establishment of a stable, 

p53/p21-mediated cell cycle arrest which ultimately resulted in an apoptotic response. 

Cul7 recruited the SCF7 E3-ligase subunit Fbx29 to p53. However, Cul7/Fbx29 did not 

target p53 for mono-or poly-ubiquitination in vivo. These results reveal a new aspect of 

p53 regulation: after DNA damage, the negative regulator Cul7 is induced concomitantly 

with p53 and limits p53 activity by direct association. 

   In the second part of this work, AP4 was established as a c-MYC-inducible repressor of 

p21. AP4 is a direct, evolutionary conserved c-MYC target gene. Downregulation of AP4 

by RNA interference led to accumulation of p21. AP4 itself mediates repression of p21 

via binding to CAGCTG motifs located in the p21 promoter. Induction of AP4 was 

required for c-MYC to overcome a p21-dependent cell cycle arrest and for down-

regulation of p21 after mitogen-stimulation of cells. AP4 interfered with induction of p21 

via the DNA damage/p53 and TGF-β/Smad pathways and also during differentiation. 

DNA damage and differentiation-promoting stimuli provoked a decline in AP4 levels and 

the ectopic expression of AP4 counteracted cell cycle arrest in these scenarios resulting in 

cell cycle progression, apoptosis or presumably block of differentiation. In colonic 

epithelium, expression of AP4 occurred in progenitor cell compartments, overlapped with 

expression of c-MYC and inversely correlated with expression of p21. AP4 and c-MYC 

were highly expressed in proliferative compartments of colorectal cancer. In conclusion, 

AP4 presumably represents an important mediator of the mitogenic and oncogenic 

functions of c-MYC. 
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9 Abbreviations 

53BP1  p53 binding protein 1 
ALDH4  Aldehyde dehydrogenase 4 
AMPK  AMP-activated protein kinase 
AP4  Activating enhancer-binding protein 4 
ap4  Murine AP4 homolog (also known as Tcfap4) 
APAF-1  Apoptotic protease activating factor 1 
APC  Anaphase promoting complex 
APS  Adenosine-5`phosphosulfate 
(i)ASPP  (inhibitor of) Apoptosis-stimulating protein of p53 
ATM  Ataxia telangiectasia mutated 
ATP  Adenosin-5`-triphosphat 
ARF  Alternative reading frame (of p16 locus) 
ATR   ATM and Rad3-related 
b  Basic region 
BAX  BCL2-associated protein 
bFGF  Basic fibroblast growth factor 
bp  Base pair 
Bcl-2  B-cell lymphoma 2 
Bcl-XL  B-cell leukemia-x long 
BL  Burkitt`s lymphoma 
BOP1  Block of Proliferation 1 
BRCA1  Breast cancer susceptibility gene 1 
BSA  Bovine serum albumin 
C/EBPα  CCAAT/enhancer binding protein alpha 
c-MYC  v-MYC avian myelocytomatosis viral oncogene homologue 
CAK  Cyclin-activating kinase 
CBP  CREB-binding protein 
CDK  Cycline-dependent kinase 
cDNA  Complementary DNA 
(q)ChIP  (quantitative) Chromatin immunoprecipitation 
CHIP  Carboxy terminus of HSP70p-interacting protein 
CHK  Checkpoint kinase 
CMV  Cytomegalovirus  
COP1  Constitutive photomorphogenic protein 1 
COX2  Cytochrome C oxidase 2 
CREB  cAMP-responsive element binding protein  
CTD  Carboxy-terminal domain 
CUL  Cullin 
Cy3  Cyanine 3 
DAPI  2-(4-Amidinophenyl)-6-indolecarbamidine-dihydrochloride 
DAXX  Death associated protein 6 
DBD  DNA binding domain 
DMEM  Dulbecco`s modified eagle medium 
DMSO  Dimethylsulfoxide 
dNTPs  2`-deoxynucleotide-5`triphosphate 
DR5  Death receptor 5 
DSB  DNA double strand break 
DTT  Dithiotreitol 
E6-AP  E6 protein (from HPV virus)-associated protein 
E-box  Enhancer box 
EBNA  Epstein-Barr virus nuclear antigen 
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EBV  Epstein Barr virus 
E.coli  Escherichia coli 
EDTA  Ethylenediamine-tetraacetic acid 
EGTA  Ethylene glycol-tetraacetic acid 
eGFP  Enhanced green fluorescent protein 
EMT  Epithelial to mesenchymal transition 
ER  Estrogen receptor 
ERK  Extracellular signal-regulated kinase 
Fas  F7-associated surface protein 
FBS  Fetal bovine serum 
FBX29  F-box and WD-40 domain protein 8 
FITC  Fluorescein isothiocyanate 
GADD45 Growth arrest and DNA damage-inducible 45 
gDNA  genomic DNA 
GFP  Green fluorescent protein 
GTP  Guanosine-5`-triphosphate 
GSK3β  Glycogen synthase kinase 3 beta 
HA  Hemagglutinin  
HAT  Histone acetyltransferase 
HAUSP  Herpesvirus-associated ubiquitin-specific protease 
HBSS  Hanks`balanced salt solution 
HDAC  Histone deacetylase 
HectH9  HECT, UBA and WWE domain containing 1 
HIF-1α  Hypoxia inducible factor 1 alpha 
HIS  Histidine 
HLH  Helix-loop-helix 
HPV  Human papillomavirus 
HRP  Horseradish peroxidase 
HSC  Hematopoietic stem cell 
HygB  Hygromycin B 
IBR  In between RING finger domain 
ID2  Inhibitor of DNA binding 2 
IHC  Immunohistochemistry 
IHh  Indian Hedgehog 
INI1  Integrase interactor 1 
Inr  Initiator 
IRES  Internal ribosome entry site 
kbp  Kilo base pair 
kD  Kilo Dalton 
KLH  Keyhole limpet hemocyanin 
LB  Luria Bertani 
LIP  Liver enriched protein 
LOH  Loss of heterozygosity 
LTR  Long terminal repeat 
LZ  Leucine zipper 
MAD  MAX dimerization protein 
MAPK  Mitogen-activated protein kinase 
MAX  MYC-associated factor X 
MCM  Minichromosome maintenance deficient 
MEK  Mitogen and extracellular signal regulated kinase 
mir-17  MicroRNA precursor mir-17 
MIZ1  MYC-interacting zinc finger protein 1 
MNT  Maintenance of lysogeny (MAX interacting protein) 
mRNA  Messenger RNA 
mTOR  Mammalian target of rapamycin 
MudPIT  Multidimensional protein identification technology 
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MDM2  mouse double minute 2 homolog 
MDMX  mouse double minute X homolog 
MXI  MAX interactor 1 
NF-Y  Nuclear transcription factor Y 
NLS  Nuclear localization signal 
NP40  Nonidet-P40 
NES  Nuclear export signal 
NLS  Nuclear localization signal 
NOXA  Stands for “damage” 
NTD  Amino-terminal domain 
OD  Optical density 
p53AIP1 p53-regulated apoptosis-inducing protein 1 
PAGE  Polyacrylamide gel electrophoresis 
PARC  p53-associated, parkin-like cytoplasmic protein 
PCAF  p300/CBP-associated factor 
p-TEFb  Positive transcription elongation factor 
p107  Retinoblastoma-like 1 
p130  Retinoblastoma-like 2 
p21  CDK inhibitor p21 
PBS  Phosphate buffered saline 
PCR  Polymerase chain reaction 
PDGF  Platelet-derived growth factor 
PES1  Pescadillo homolog 1 
PERP  p53 apoptosis effector related to Pmp22 
PI3K  Phosphoinositide-3-kinase 
PIAS  Protein inhibitors of activated STAT 
PIDD  p53-induced protein with a death domain 
PIKK  Phosphatidylinositol-3 kinase-like family of kinases 
Pirh2  p53-induced protein with a RING-H2 domain 
PP2A  Protein-phosphatase 2A 
POMC  Proopiomelanocortin 
pRB  Retinoblastoma protein 
Pu  Purine containing nucleotide 
PUMA  p53 upregulated mediator of apoptosis 
PVDF  Polyvinylidene difluoride 
Py  Pyrimidine containing nucleotide 
RAF  v-Raf-1 murine leukemia viral oncogene homologue 1 
RAS  Rat sarcoma viral oncogene homologue 
Rbx1  Ring box protein 1 (also known as Roc1) 
RD  Regulatory domain 
REPRIMO Stands for “stop/repress” 
RING  Really interesting new gene 
RNAi  RNA interference 
ROS  Reactive oxygen species 
rpm  Rotations per minute 
rRNA  Ribosomal RNA 
RT  Room temperature 
RT-qPCR Real-time quantitative PCR 
RZPD  German resource center for genome research 
SAGE  Serial analysis of gene expression 
SCF  SKP-Cullin-F-box 
SCO2  Synthesis of cytochrome C oxidase 
SDS  Sodium dodecyl sulfate 
SIN3  Switch insensitive 3 
SIRT1  Silent mating type information regulation 2 homolog 1 
SKP  S-phase kinase associated protein 
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SMAD4  Mothers against decapentaplegic homolog 4 
SP1/3  Specificity protein 1/3 
STAT  Signal transducers and activators of transcription 
SUMO  Small ubiquitin-related modifier 
SV40  Simian virus 40 
SWI/SNF Switch/sucrose non-fermenting 
T  Temperature 
T7  Enterobacteria phage T7 
TAD  Transactivation domain 
TAP  tandem affinity purification 
TBP  TATA binding protein 
TCA  Trichloroacetic acid 
TCF4  Transcription factor 4 
TD  Transactivation domain 
TEMED  Tetramethylethylenediamine 
htert  Human telomerase reverse transcriptase 
Tet  Tetracycline 
TEV  Tobacco etch virus 
TF  Transcription factor 
TGFβ  Transforming growth factor beta 
TIGAR  Tp53-induced glycolysis and apoptosis regulator 
TNFα  Tumor necrosis factor alpha 
TPA  12-O-tetradecanoylphorbol-13-acetate 
TP53  Tumor protein 53 
tRNA  Transfer RNA 
TRRAP  Transformation/transcription domain associated protein 
tTa  Tetracycline-controlled transactivator 
U  Units 
v/v  Volume per volume 
VEGF  Vascular endothelial growth factor 
VSV  Vesicular stomatitis virus  
w/v  Weight per volume 
WB  Western blot 
WDR12  WD repeat domain 12 
XPC  Xeroderma pigmentosum protein C 
YY1  Yin-Yang 1 
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