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Ludwig–Maximilians–Universität München
Max–Planck–Institut für Physik, München

Zweitgutachter: Priv.–Doz. Dr. Ralph Blumenhagen
Max–Planck–Institut für Physik, München

Tag der mündlichen Prüfung: 28.07.2009
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Zusammenfassung vii

Zusammenfassung

Diese Dissertation befasst sich mit einem Forschungsgebiet in der String Theorie
genannt String Phänomenologie, in welchem die Verbindung zwischen String The-
orie und der bekannten Hochenergiephysik untersucht wird. Drei Themengebiete,
welche für solch eine Verbindung wichtig sind, werden in dieser Arbeit genauer
behandelt.

Das erste Gebiet befasst sich mit der Konstruktion von String Theorie Modellen
im Kontext von sogenannten Typ IIB Orientifolds mit Orientifold Drei- und
Sieben-Ebenen. Wir untersuchen eine wichtige Konsistenzbedingung für solche
Konstruktionen, die sogenannte Tadpole Kürzungsbedingung, und verifizieren,
dass chirale Anomalien durch den verallgemeinerten Green-Schwarz Mechanis-
mus gekürzt werden.

Das zweite Gebiet dieser Arbeit befasst sich mit nicht-perturbativen Effekten in
Typ II String Konstruktionen, sogenannten D-Brane Instantonen. Wir disku-
tieren den Instanton Kalkül, leiten das sogenannte Affleck-Dine-Seiberg Super-
potential in String Theorie her und entwickeln unter Berücksichtigung eines re-
alistischen Teilchenphysik Sektors eine chirale Null-Moden Bedingung für den
Beitrag von D-Brane Instantonen zum Superpotential.

Im dritten Gebiet dieser Arbeit diskutieren wir Moduli Stabilisierung in Typ IIB
String Kompaktifizierungen. Wir erklären das sogenannte KKLT Szenario sowie
das Large Volume Scenario; und wir konstruieren und untersuchen ein Modell
für das Large Volume Scenario in welchem die chirale Null-Moden Bedingung
berücksichtigt wird.

Obwohl die drei Themengebiete dieser Dissertation etwas verschieden voneinan-
der sind, existiert jedoch zwischen ihnen kompliziertes Zusammenspiel mit vielen
Wechselbeziehungen. Um diese Zusammenhänge zu studieren, wurden die einzel-
nen Gebiete genau untersucht und miteinander verknüpft. Dies hat zu neuen Re-
sultaten, wie zum Beispiel der oben erwähnten chiralen Null-Moden Bedingung,
geführt.
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Summary ix

Summary

This thesis is concerned with a branch of research in String Theory called String
Phenomenology which aims for a better understanding of the connection between
String Theory and Particle Physics. In particular, in this work we cover three
topics which are important in order to establish this connection.

The first topic is about String Theory model building in the context of so-called
type IIB orientifolds with orientifold three- and seven-planes. After giving a brief
overview, we work out in detail an important consistency condition for String
Theory constructions, the so-called tadpole cancellation condition, and we verify
explicitly that chiral anomalies are cancelled via the generalised Green-Schwarz
mechanism.

The second topic is concerned with so-called D-brane instantons which are non-
perturbative effects in type II String Theory constructions. We recall the instan-
ton calculus for such configurations, we derive the so-called Affleck-Dine-Seiberg
superpotential in String Theory and we develop an important constraint, a chi-
ral zero-mode constraint, for instanton contributions in the presence of a realistic
Particle Physics sector.

The third topic is about moduli stabilisation in type IIB string compactifications.
More concretely, we review the so-called KKLT as well as Large Volume Scenario,
and we construct and study a model for the latter scenario where the constraint
mentioned above has been taken into account explicitly.

Although the three topics studied in this thesis are slightly different in nature,
there is nevertheless a complex interplay between them with many interrelations.
In order to uncover these connections, a detailled study of each individual subject
has been performed which has led to new results such as the chiral zero-mode
constraint.
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Chapter 1

Introduction

1.1 Why String Theory?

A Brief History of Unification in Physics

In order to approach the question why one should study String Theory, let us
consider the illustration shown in figure 1.1 and briefly review how in the past
unification has led to a better understanding of physics [1].

� Even though the interplay between Electricity and Magnetism had already
been investigated and partially formulated by Ørsted, Ampère and Faraday,
it was Maxwell who brought the theory of Electromagnetism into its final and
complete form. In particular, in 1862 he published a set of equations, later
called Maxwell equations, which allowed him to derive the electromagnetic
wave equation in 1864.

From this example we see that the unified theory of Electromagnetism has led
to novel insight into physics, namely the prediction of electromagnetic waves.

� In applying the concept of Galilean Relativity to the theory of Electromag-
netism, in the years 1904 and 1905, Lorentz, Poincaré and Einstein formulated
Special Relativity which is a refinement of the Galilean principle. Further-
more, Einstein emphasised that in the context of Special Relativity the speed
of light is universal and so he argued against the notion of absolute space and
time.

Here we see again that unifying different physical ideas has led to a better
understanding of physics.
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Figure 1.1: Illustration of how unification in physics has led to novel insight [2,3].

� In 1900, by combining the notion of entropy with the concept of electromag-
netic waves, Planck was able to derive the spectral radiance of electromagnetic
radiation emitted by a black body for all frequencies. However, in order to do
so, he had to require the energy to be quantised which eventually led to the
development of Quantum Mechanics by Heisenberg, Schrödinger and others.

From this perspective, the development of Quantum Mechanics is therefore
linked to the combination of Thermodynamics and Electromagnetism.

� In 1927, it was Dirac who started the process of unifying Quantum Mechanics
and Special Relativity by developing a relativistic description of the electron.
During the 1940s, following the work of Dirac and others, Feynman, Dyson,
Schwinger and Tomonaga invented renormalisation which gave rise to the
formulation of Quantum Electrodynamics being the first example of a modern
Quantum Field Theory.

Subsequent work of many other physicists then culminated in the so-called
“Standard Model of Particle Physics” which is a Quantum Field Theory de-
scribing very successfully the electromagnetic as well as the weak and strong
nuclear interactions.

� To finish our review of unification in physics, we note that in 1916 Einstein
published his theory of General Relativity where he combined the idea of
Special Relativity with Newtonian Gravity. The resulting theory provides a
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very accurate description of the gravitational interaction and so again, the
unification of different physical concepts has led to a better understanding of
nature.

Towards a “Theory of Everything”

In view of figure 1.1, there is one final step to be done, namely the unification of
Quantum Field Theory, in particular the Standard Model of Particle Physics, and
General Relativity to a so-called “Theory of Everything”. As suggested by the pre-
vious examples, such a step is expected to provide us with a deeper understanding
of the original theories as well as to give us novel insight into physics.

But let us be more precise about why we are interested in a better understanding
of General Relativity and Quantum Field Theory, hopefully in terms of a unified
theory.

� General Relativity is a classical theory valid at very large distances. However,
solutions to this theory, in particular black hole solutions, generically contain
singularities which signal an inconsistency at very small scales. Thus, a theory
of Quantum Gravity resolving these singularities is necessary.

� Quantum Field Theories on the other hand feature infinities at many in-
stances. Nevertheless, it is possible to extract sensible information from cer-
tain Quantum Field Theories after regularisation and renormalisation. Al-
though this formalism is extremely successful, however, it does not provide us
with a satisfactory understanding of Quantum Field Theory.

� In certain situations, nature is well-described neither in terms of a Quan-
tum Field Theory nor General Relativity but demands a unified description.
Examples for such situations are the early universe after the big bang, and
phenomena at non-negligible curvature in the vicinity of black holes.

Coming back to figure 1.1, although the final step to a unified theory of quantum
physics and gravity is highly desirable, it is an extremely difficult task. One of the
reasons is that Quantum Field Theory and General Relativity are very different in
nature. In particular, the former describes physics on very small scales in terms
of probabilities while the latter is a classical and deterministic theory important
only at very large scales. As one can imagine, a framework incorporating these
two concepts is rather difficult to develop.

But there are approaches towards a unification of Quantum Field Theory and Gen-
eral Relativity. For example, a natural attempt is to quantise gravity as a Quantum
Field Theory of metric fluctuations around a fixed background. However, usually
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this leads to ultra-violet divergencies 1 and it turns out that the resulting the-
ory is non-renormalisable. Thus, such a formulation is not a fundamental theory.
More promising candidates are Loop-Quantum Gravity being a quantum theory
of space-time, and String Theory to which we turn now.

Bosonic String Theory

After having motivated why unifying Quantum Field Theory an General Relativ-
ity is a worthwhile task, we will now explain why String Theory is a promising
candidate for such a unified theory.

We begin by stating the action for the theory of the so-called bosonic string. Con-
sider a two-dimensional world-sheet Σ parametrised by coordinates σα = (σ1, σ2)
where σ1 denotes the world-sheet space coordinate and σ2 ∈ R is world-sheet
time. The metric on Σ we call hαβ. Next, we introduce bosonic fields Xµ(σ1, σ2)
on this world-sheet with µ = 0, . . . , d − 1. These fields are maps from Σ into a
d-dimensional target space whose metric we denote by gµν . Furthermore, the Xµ

can be interpreted as the position of a string in this space which is illustrated
in figure 1.2. Choosing then gµν = ηµν with ηµν the flat Minkowski metric, the
so-called Polyakov action reads

S = − T

2

∫
Σ

d2σ
√
−deth hαβ ∂αX

µ ∂βX
ν ηµν , (1.1)

where T = (2πα′)−1 stands for the tension of the string and α′ is related to the
fundamental length scale of a string as ls = 2π

√
α′. Finally, we observe that for

Σ being an infinite cylinder the action describes a closed string, while for Σ being
an infinite strip (1.1) describes an open string.

The action (1.1) can be taken as the starting point for the study of bosonic String
Theory and we will now highlight some important features thereof. (For a more
detailed introduction to String Theory, we ask the reader to consult the standard
textbooks [7–14].)

� Upon quantising the theory given by (1.1), the fields Xµ are promoted to op-
erators. The corresponding Fourier modes are interpreted as vibration modes
of the string and carry quantum numbers of the d-dimensional Poincaré group.
They can thus be interpreted as particles in the target space.

1A possible exception is so-called N = 8 supergravity which is expected to be finite in the
ultra-violet [4–6].
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two-dimensional
world-sheet Σ

d-dimensional
target space

σ1

σ2

Xµ

−−−−−→

X0

X1

X2

Figure 1.2: Illustration of a two-dimensional closed string world-sheet Σ mapped
via Xµ into a d-dimensional target space the string is moving in.

Therefore, particles in String Theory arise as different excitations of a string
and from this point of view, String Theory is a unified theory since all particles
have the same origin.

� In the spectrum of closed strings, one always finds a massless spin two particle.
Further analysis then shows that the latter can be identified with the graviton
which is the gauge field of the gravitational interaction. Therefore, String
Theory naturally contains gravity.

� As one can verify, at the classical level the action (1.1) is invariant under
Weyl rescalings hαβ(σ) → e2Λ(σ) hαβ(σ). At the quantum level, however, this
symmetry in general is anomalous. Requiring the Weyl symmetry to also be
a symmetry of the quantum theory leads to a constraint on the dimension of
the target space-time. In particular, the bosonic string has vanishing Weyl
anomaly only in d = 26 space-time dimensions.2

Of course, we experience four rather than 26 space-time dimensions. But
let us note that this situation is changed to d = 10 for the superstring to be
considered below. More importantly, we would like to highlight the remarkable
feature of String Theory to require a specific number of space-time dimensions
for its consistency.

2Two comments are in order. First, requiring the theory to be unitary also leads to d = 26
for the bosonic string. Second, the vanishing of the Weyl anomaly only gives a constraint on the
total central charge of the Conformal Field Theory (CFT) defined by (1.1). Partially replacing
the free boson CFT by a more abstract theory with the correct central charges also gives a
consistent String Theory. However, in this case the geometric interpretation of the target space
is usually lost. Examples for such constructions are the Gepner models.
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� Upon generalising the Polyakov action (1.1) to curved backgrounds via ηµν →
gµν and including other background fields, the vanishing of the Weyl anomaly
leads to Einstein’s equation for the target space metric. This shows that String
Theory incorporates General Relativity. However, there are corrections to
Einstein’s equation related to the string length encoded in α′, which become
important at small scales.

� In String Theory, the fundamental objects are not point-like but have a finite
size typically implying the absence of ultra-violet divergencies in the theory.
Therefore, String Theory is expected to provide a consistent theory of Quan-
tum Gravity.

Furthermore, due to their finite size, strings are not able to probe space-time
up to arbitrary small scales because the resolution in scattering experiments is
given by the size of the probes. Therefore, in some sense, space-time in String
Theory is discretised and from this point of view, singularities of space-time
are avoided.

In conclusion, we have motivated why bosonic String Theory is a promising starting
point for a unified theory of Quantum Field Theory, respectively Particle Physics,
and General Relativity.

Superstring Theory

However, the bosonic string exhibits a number of problems which demand for
further development. In particular, bosonic String Theory contains a tachyon in
the spectrum and thus the ground state is unstable. In addition, the spectrum
does not contain objects which transform as spinors of the 26-dimensional Lorentz
group implying the absence of fermionic degrees of freedom in the target space.

To remedy these shortcomings, one considers Superstring Theory, which is a super-
symmetric extension of the bosonic string including fermionic degrees of freedom
on the world-sheet [15,16]. 3 This leads to a space-time supersymmetric theory with
fermionic fields in the target space [17–21] and, as we mentioned previously, the
vanishing of the Weyl anomaly now fixes the space-time dimension to be d = 10.

However, there is not only one Superstring Theory but several constructions are
possible. Well below the characteristic energy scale of a string, Ms = (α′)−

1
2 , these

Superstring Theories are described by supergravity theories and can be charac-
terised by the latter. Although the supergravity theories capture only the massless

3Supersymmetry is a symmetry which relates bosonic and fermionic degrees of freedom. That
is, for every boson in the theory there exists a fermion, its so-called superpartner, and vice versa.
Also possible are extended supersymmetries with more than one superpartner for each field.
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excitations of the string and genuine string effects important at energy scales Ms

are neglected, one can still learn much about Superstring Theory.

As it turns out, there are five stable and consistent Superstring Theories leading to
a supersymmetric theory in the target space. We briefly list these possibilities [11].

Type I String Theory is a theory of open and closed unoriented superstrings
in a ten-dimensional target space-time. Its low energy effective description is
an N = 1 Super Yang-Mills theory with gauge group SO(32) coupled to type
I supergravity.

Type IIA and type IIB String Theories are theories of closed oriented
superstrings in ten dimensions. Their low energy effective descriptions are
type IIA respectively type IIB supergravity in d = 10.

Heterotic String Theory is a combination of the bosonic string in the left-
moving and the superstring in the right-moving sector of a closed string.
Space-time is ten-dimensional and the allowed gauge groups are Spin(32)/Z2

as well as E8 × E8. The low energy theories are N = 1 Super Yang-Mills
theories coupled to type I supergravity.

Furthermore, there are two non-supersymmetric and unstable theories, type 0A
and type 0B – and there exist two theories related to String Theory which are
however no String Theories in the strict sense.

M-Theory is the strong coupling limit of type IIA Superstring Theory with
eleven-dimensional Poincaré invariance.

F-Theory is a geometric description of type IIB Superstring Theory which
is formulated in a formal twelve-dimensional space-time (compactified on a
torus) [22].

The remarkable observation made in the mid-nineties of the last century is that
all these formulations of Superstring Theory are related via various dualities. The
known Superstring Theories can therefore be regarded as different limits of a more
fundamental, possibly unique theory yet to be fully discovered.

Open Strings and D-Branes

When discussing the world-sheet action (1.1) for the bosonic string, we already
mentioned that a world-sheet Σ with the topology of an infinite strip describes an
open string. In the target space, the endpoints of the open string are confined to
hypersurfaces which are called D-branes (see figure 1.3) and, as it turns out, in
addition to strings also D-branes are fundamental objects of the theory.
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(a) Open string with both end-
points on the same D-brane

(b) Open string stretched be-
tween different D-branes

Figure 1.3: Illustration of open strings and D-branes.

Let us remark that similar to the reflection of ordinary waves, the endpoints of
an open string lead to an identification of the left- and right-moving sector of the
string. Therefore, D-branes do not exist for the heterotic String Theories due to
their left-right asymmetry. Since we are interested in open strings in the following,
we are going to focus on type I respectively type II String Theories.

Let us now collect some properties of open strings and D-branes. A summary of
this discussion can be found in figure 1.4.

� The dynamics of the massless degrees of freedom originating from open strings
with both endpoints on the same brane is described by a pure Super Yang-
Mills Theory living on the world-volume of the D-brane. For a stack of N
coincident D-branes, the corresponding gauge group is U(N). 4 Therefore,
gauge theories in String Theory have a geometric origin.

� There are not only open strings with both endpoints on the same stack of
D-branes, but open strings can also stretch between different stacks. As it
turns out, in the case of intersecting branes with open strings localised at the
intersection locus, it is possible to obtain chiral matter.

More concretely, for two intersecting stacks of N1 and N2 D-branes, so-called
chiral matter transforming in bi-fundamental representations of the gauge
group U(N1) × U(N2) is counted by a certain topological invariant. We will
be more precise about this point in section 4.2.

� In general, D-branes are allowed to intersect multiple times. Each (topo-
logically invariant) intersection will give rise to one copy of chiral matter

4When considering an orientifold projection to be explained below, also gauge groups SO(2N)
and Sp(2N) are possible. Furthermore, in F-theory more general gauge groups are allowed.
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1) A stack of D-branes
giving rise to the gauge
group U(3)

2) A stack of D-branes
giving rise to the gauge
group U(2)

3) open strings stretched
between two different
stacks transforming as
(3, 2) of U(3)× U(2)

4) A second intersection
of the U(2) stack with the
U(3) stack

5) A second copy of the
(3, 2) representation

Figure 1.4: Illustration of intersecting branes, in particular, of the geometric inter-
pretation of gauge groups, bi-fundamental representations and family replication.

transforming in bi-fundamental representations which goes under the name of
family replication.

To summarise, gauge theories in String Theory can be realised by open strings
whose endpoints are confined to D-branes. The latter provide a geometric under-
standing of the origin of gauge groups, chiral matter and family replication.

We furthermore mention that open strings can join to form closed strings and so
a theory of open strings necessarily comes with the closed string sector containing
the graviton. Therefore, in String Theory gauge theories and the gravitational
interaction are closely tied together.

Some Concluding Remarks

At this point, we hope that we could convince the reader of the advantages of a
unified theory of Quantum Field Theory and General Relativity, and why String
Theory is a promising candidate for such a “Theory of Everything”. To finish this
section, let us briefly highlight some achievements and open problems of String
Theory.

Over the years, String Theory has advanced to a very complex and rich theory
with a variety of subfields and directions of specialisation. We will comment on
some of them.

� For instance, people study Topological String Theory and String Field Theory
with the aim of a better understanding of the theory on a formal and funda-
mental level. Related to this point are mathematical questions in the realm
of Conformal Field Theory and Algebraic Geometry.
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The results obtained in this branch of String Theory have influenced several
other fields of research. For instance, the discovery of mirror symmetry in
String Theory became of interest for mathematicians who further developed
this idea. Similarly, people studying Conformal Field Theory have benefited
much from the interaction with String Theorists.

We also mention the remarkable observation that by counting microstates in
String Theory, the classical thermodynamical entropy of BPS black-holes can
be reproduced [23].

� Another important field of research in String Theory is related to the
AdS/CFT correspondence [24,25]. This correspondence is a conjecture about
the duality between String Theory on Anti-de Sitter spaces (AdS) and cer-
tain Conformal Field Theories (CFTs). As such, it may provide a way for an
understanding of Quantum Gravity.

In addition, the AdS/CFT correspondence provides a tool to study strongly
coupled Field Theories or certain condensed matter systems in terms of String
Theory. In this way, for instance, it may help to gain a better analytic control
over the QCD sector of the Standard Model.

� Another area of research within String Theory is concerned with the connec-
tion between String Theory and Particle Physics, and goes under the name of
String Phenomenology.

Ideas originating from this branch have influenced for instance people inter-
ested in Physics Beyond the Standard Model where the concepts of (large)
extra dimensions [26] or brane worlds [27–29] are now accepted scenarios.

However, although there has been and there is progress in the understanding of
String Theory, some questions are still without a satisfying answer. We will briefly
comment on some of these.

� As we have emphasised, String Theory incorporates General Relativity. But
in its present form, gravity is described as fluctuations of the graviton around
a constant background and thus only provides a perturbative description of
the gravitational interaction.

� The five Superstring Theories are mostly studied in a perturbative regime.
However, it is surely needed to understand these theories also in the non-
perturbative regime, which hopefully leads to a better understanding of the
underlying formulation of String Theory.

� Even though there are only five Superstring Theories, they allow for a great
number of solutions. It is hard to estimate this number but let us quote the
famous results 101500 and 10500 which appeared in [30] and [31], respectively.
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It is not a conceptual problem of String Theory to have a huge number of
solutions. In the case of Quantum Field Theories, for instance, one can con-
struct an infinite number of theories – on the other hand, in String Theory
the number of solutions is expected to be finite [32].

One of the main challenges in String Phenomenology is to find a solution of
String Theory which describes our world. Presently, however, the theory does
not predict or single out a specific vacuum. This is no conceptual problem of
String Theory – similarly, it is no conceptual shortcoming of Quantum Field
Theory to not predict the Standard Model, nor of General Relativity not to
predict the precise form of our solar system.

� We finally remark on the falsifiability of String Theory. In principle, String
Theory is a falsifiable theory because if we perform an experiment at the string
scale, we can test whether String Theory is correct. It is again not a conceptual
but only a practical shortcoming not being able to do such experiments. 5

1.2 String Phenomenology

As we have mentioned in the previous section, String Phenomenology is a branch
of research in String Theory which is concerned with establishing a connection
between String Theory and Particle Physics.

String Theory
in d=10

−−−−→ Particle Physics
in d=4

In the present section, we are now going to be more precise about what we mean
with “Particle Physics” and we will explain how this connection can be achieved.
(For recent reviews on this subject, see for instance [34,35].)

What Do We Mean With “Particle Physics”?

A very successful theory describing the electromagnetic as well as the weak and
strong nuclear interactions of our world is the so-called Standard Model of Particle
Physics. This theory has been tested by various means up to a high accuracy and

5Two comments are in order. First, in our universe energies of the order of the string scale
may be reached and thus astrophysical data might provide a possibility to test String Theory.
Second, if the string scale is close to the electroweak scale then indeed the LHC could measure
String Theory effects. (For a recent and very specific analysis of this point see for instance [33].)
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the only missing point is the discovery of the Higgs boson to hopefully be made
by the LHC.

However, despite its great success, the Standard Model is not regarded as a fun-
damental theory but rather as an effective one. Some of the reasons for this point
of view are the following.

� The Standard Model does not include gravity and thus is no fundamental
theory. It is an effective theory valid when the gravitational interaction can
be neglected.

� There is no explanation why space-time should be four-dimensional. Of course,
we experience only four space-time dimensions but a fundamental theory
should address this point.

� The Standard Model contains more than 20 free parameters which have to be
measured. A fundamental theory is expected to have much less arbitrary
parameters. Furthermore, the origin of the Standard Model gauge group
SU(3) × SU(2) × U(1) as well as that of the three families of quarks and
leptons is not clear.

� Another issue in the Standard Model is the so-called hierarchy problem. More
concretely, if the Standard Model is valid up to an energy scale Λ then quan-
tum corrections to the mass of the Higgs boson turn out to be of order Λ2. But
for the Higgs mechanism to generate the correct masses for other Standard
Model particles, the renormalised Higgs mass should be of the order of a few
hundred GeV.

Therefore, the bare Higgs mass has to be fine-tuned to a high degree such
that the quantum corrections of order Λ2 lead to a Higgs mass of the right
magnitude. Furthermore, it is not clear why the electroweak scale respectively
the Higgs mass is so much smaller than the natural cutoff scale of the theory
being for instance the Planck scale.

� It is not clear why the electroweak sector of the Standard Model violates the
CP symmetry, and why the sector of strong interactions does not seem to do
so. In particular, the CP violating term in the QCD Lagrangian has to have
a prefactor which is unnaturally small.

� The Standard Model does not make appropriate contact with cosmology. In
particular, there is no candidate for dark matter nor is there an explanation
for dark energy respectively the small positive cosmological constant.

Let us emphasise that the items listed here do not disqualify the Standard Model
as a very successful effective theory. These points rather indicate that it is not a
fundamental description of nature.
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There are a number of approaches to overcome some of the issues mentioned above.
We will list some of them.

� In the so-called Technicolor Theories [36, 37], the Higgs field responsible for
electroweak symmetry breaking is replaced by fermion condensates. In this
way, the hierarchy problem is avoided. However, some of the simpler techni-
color models are not in agreement with experiment.

� A second idea to improve the Standard Model is to introduce a new symmetry
between bosons and fermions, supersymmetry, which led to the development
of the so-called Minimal Supersymmetric Standard Model (MSSM) to be dis-
cussed below.

� A third approach is the following. When running the gauge couplings of
the Standard Model to higher energies, they pairwise meet in three different
points. However, when considering the MSSM instead of the Standard Model,
all three gauge couplings unify at an energy of around 1.2×1016 GeV suggest-
ing a so-called Grand Unified Theory (GUT). In this approach, the Standard
Model gauge group is a subgroup of the GUT group, for instance SU(5) [38] or
SO(10) [39]. Furthermore, GUTs predict relations among masses and gauge
couplings thereby reducing the number of arbitrary parameters.

However, in GUTs one assumes that from the weak to the GUT scale, these
are 14 orders of magnitude, no new physics changing the running of couplings
occurs. Also, Grand Unified Theories generically predict proton decay which
is not observed by experiment.

Let us now be more precise about the Minimal Supersymmetric Standard Model as
it will be important for our following discussion. We list some interesting features
of this theory but also point out some of its problems.

� The MSSM provides a solution to the hierarchy respectively fine-tuning prob-
lem since in contrast to the Standard Model, each particle has a superpartner
whose contribution cancels the first order quantum corrections to the Higgs
mass. As a consequence, the fine-tuning of the bare Higgs mass is avoided.

� In order to explain the stability of the proton, R-parity is introduced. This
implies that the lightest supersymmetric particle is stable, and it turns out
that it is a natural candidate for dark matter.

� At low energies, we do not observe the superpartners of ordinary matter.
Therefore, supersymmetry has to be broken, preferably at a scale of a few
TeV, which may be verified by the LHC.

� However, despite some promising features, the MSSM suffers from certain
drawbacks. For instance, the number of arbitrary parameters has been in-
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creased from around 20 in the Standard Model to over 120 for the MSSM.

Furthermore, the MSSM exhibits the so-called µ problem described in the
following. The mass parameter of the Higgs doublets, usually denoted by µ,
is crucial for giving vacuum expectation values to the Higgs fields which in
turn give masses to the matter fields. Therefore, µ should be of the order of
the electroweak scale which is several orders of magnitude smaller than the
natural cutoff scale being for instance be the Planck scale.

To conclude, the MSSM is a promising extension of the well-tested Standard Model
of Particle Physics addressing some of the problems of the latter. However, the
MSSM still is not a fundamental description of nature.

The Task of String Phenomenology

In the previous paragraph, we have illustrated that the Standard Model of Particle
Physics is a very successful theory describing our world at low energies, but also
that it is only an effective description. In order to solve some of its problems,
we concentrated on the Minimal Supersymmetric Standard Model and explained
some of its features. Following this approach, we can refine the illustration at the
beginning of this section as follows. 6

String Theory
in d=10

String−−−−−−−−→
Phenomenology

MSSM
in d=4

←− Standard Model

In order to make contact between String Theory defined in a ten-dimensional
space-time and the MSSM in four dimensions, two basic problems have to be
addressed. One is to go from ten to four dimensions which is usually achieved via
compactification, and the other is to engineer a low energy theory resembling the
MSSM or some extension thereof. 7

Finally, although our forthcoming discussion in this work is applicable to all five
Superstring Theories, let us make clear that

In the following, we focus on type II Superstring Theories.

6This is of course an oversimplified picture expressing the personal viewpoint of the author.
There are also attempts to construct the Standard Model, or some other extension thereof,
directly. However, in recent years people have focused on connecting String Theory to the
MSSM or some GUT extension. This may change when the LHC provides new experimental
data.

7Note that String Theory seems to have many solutions which exhibit properties of the MSSM
(see for instance [40–42]). However, a more detailed analysis of these models together with a
better understanding of String Theory may change this picture.



1.2 String Phenomenology 17

(a) (b) (c) (d)

Figure 1.5: Illustration of a compactification from two dimensions to one dimen-
sion. In (a) one can see two uncompactified directions, in (b) one direction is rolled-
up and in (c) the radius of the circle is decreased. When as in (d) the radius is small
enough, the cylinder appears as a line.

Compactification and Moduli Stabilisation

Let us continue by addressing the question of how to go from ten dimensions to a
four-dimensional space-time. Usually, this is achieved by compactifying six spatial
dimensions and making them very small such that they have escaped our detection
so far. An illustration of this idea can be found in figures 1.5. 8

Next, we observe that there are many different ways to compactify six flat di-
mensions. To illustrate this point, let us consider two dimensions where, among
others, we can choose the sphere, the torus and orbifolds thereof. In higher dimen-
sions things are much more complicated as there are many more possibilities to
choose a compact space. We note that this situation precisely corresponds to one
of the problems in String Theory: in ten dimensions there are only five Superstring
Theories which, however, exhibit an enormous number of four-dimensional vacua.

Nevertheless, not every six-dimensional compactification manifold, henceforth also
called internal space, is allowed. In order to obtain the right amount of supersym-
metry in four-dimensions, this manifold has to be a so-called Calabi-Yau three-
fold. 9

Let us now turn to the low energy effective action describing String Theory com-
pactifications on Calabi-Yau manifolds. In particular, the size and the shape of the
compactification space are encoded in its metric. Since in supergravity theories the

8Let us mention that there are alternative ideas to deal with a higher-dimensional space-
time. For instance, in the DGP scenario [29] our world is realised on a brane embedded in
a five-dimensional space and gravity is modified on short distances to be concentrated on the
brane. Another approach, as mentioned before, is to replace the six-dimensional free boson CFT
by a more abstract Conformal Field Theory which however makes the geometric interpretation
ambiguous.

9An n-dimensional Calabi-Yau manifold is a complex Kähler manifold with vanishing first
Chern class, or equivalently, with SU(n) holonomy.
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metric is a dynamical field, upon compactification the parameters corresponding
the size and shape are promoted to fields in the four-dimensional theory. More
concretely, the size of the internal manifold is encoded in the so-called Kähler mod-
uli while the shape is encoded in the so-called complex structure moduli. However,
in the low energy effective theory, these a priori massless fields are unwanted for
the following reasons.

� First, the presence of massless particles in the early universe can modify the
abundances of hydrogen and helium during that time and thereby destroy
the very successful predictions of Big Bang Nucleosynthesis [43]. Therefore,
moduli have to acquire a mass.

� Second, many quantities of the low energy effective theory such as gauge
and Yukawa couplings depend on the moduli but should be fixed. Therefore,
moduli fields have to acquire a mass.

� Finally, moduli generically give rise to so-called fifth forces. The experimental
bound on the masses of such fields is m > 10−4 eV [44,45].

The process of giving a mass to the moduli and thereby fixing their value goes
under the name of moduli stabilisation and is a central topic of this thesis.

As we will explain in the course of this work, for the purpose of moduli stabilisation
not only a perturbative description is needed but also non-perturbative effects,
invisible to perturbation theory, have to be taken into account. An example for the
latter are instantons in Euclidean Yang-Mills theory which are (anti-)self dual finite
action solutions of non-perturbative nature (see for instance [46] and references
therein). In String Theory, such non-perturbative effects originate for instance
from so-called D-brane instantons which we will study in some detail in chapters
5 and 8.

Model Building

Another task to be performed when connecting String Theory to Particle Physics is
to construct models which reproduce the MSSM or some extension thereof. Since
we are focussing on type II String Theories, this is done by placing D-branes in
the compact space such that their intersections give rise to the desired spectrum
and properties in the four-dimensional theory.

However, engineering the MSSM is not easily achieved because there are a number
of constraints to be satisfied. Some of these conditions are the following.

� The so-called tadpole cancellation conditions have to be satisfied. From a
geometric point of view, these conditions resemble the fact that in a compact
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space the overall charge has to vanish. (We will be more precise about this
interpretation in footnote 1 of chapter 2.)

� The tadpole cancellation conditions correspond to the cancellation of the topo-
logical charges of D-branes. However, D-branes are actually classified by K-
theory [47] which leads to additional constraints [48].

� Further restrictions arise from the supersymmetry conditions of D-branes
which ensure their stability.

� We also require the low energy effective theory to be free of anomalies. In
String Theory, chiral anomalies are taken care of by the Green-Schwarz mech-
anism [49] provided the tadpole cancellation conditions are satisfied. We will
discuss this point in section 7.2 in detail. Furthermore, also the so-called
Freed-Witten anomalies have to vanish [50] which we discuss in section 4.5.

In addition to the String Theory consistency conditions, a number of phenomeno-
logical constraints have to be satisfied in order for a model to describe our world.
Let us list some of them.

� There are some obvious properties which have to be ensured such as the
correct gauge group, the right number of generations of matter and the absence
of exotic matter. Since for instance the rank of the total gauge group is
constrained by the tadpole cancellation conditions, these features are usually
not easily achieved.

� Next, the gauge and Yukawa couplings of the low energy theory have to be
in a phenomenologically viable regime. However, since for example the gauge
couplings are related to the size of the D-brane in the compactification space,
this property depends on how moduli are stabilised.

� We finally note that supersymmetry of the low energy theory has to be broken
in the region of a few TeV in order to be phenomenologically acceptable. As
we will explain, this generically is in tension with the correct order of the
gauge couplings of the D-branes. An interesting solution to this issue is the
so-called LARGE Volume Scenario which will be discussed in chapter 6.

To conclude, String Theory models have to satisfy a number of consistency condi-
tions which make it non-trivial to construct a viable model of Particle Physics.
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1.3 Overview

We close this introductory chapter by providing an overview on the structure of this
thesis. In particular, this work is organised in five parts containing the following
topics.

Part I - Introduction to String Theory

Part II - Introduction at a technical level providing the necessary
notation, developping the required background material
and recalling known results from the literature

Part III - Presentation of the author’s original work consisting of the
following three topics which have been published in the
papers [51–53]

� Model Building Constraints for Type IIB Orientifolds
with O3- and O7-Planes

� D-Brane Instantons

� Moduli Stabilisation in the LARGE Volume Scenario

Part IV - Summary and Outlook

Part V - Appendices

Let us emphasise that this work is concerned with three somewhat different topics
which are however linked in many instances (please see figure 1.6). A detailed
study of these connections has led for instance to the discovery of an important
constraint on moduli stabilisation in the presence of an MSSM sector which we
are going to discuss in section 8.2.

After this general overview, let us now give a more detailed outline of this thesis.

� In chapter 2, we introduce compactifications on orientifolds of Calabi-Yau
three-folds and we summarise the effective action for the closed as well as for
the open sector of type IIB String Theory.

In chapter 3, we present some basic features of N = 1 supergravity theories.

� In chapter 4, we discuss model building constraints in the context of type
IIB String Theory with O3- and O7-planes. In particular, we summarise the
rules for computing the chiral spectrum, we explain the generalised Green-
Schwarz mechanism for the cancellation of chiral anomalies, we comment on
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Type IIB Sugra

� Kähler potential
� Kähler metric
� Moduli fields
� Flux superpotential

Model Building

� Supersymmetry conditions
� Chiral spectrum
� Tadpole cancellation
� Green-Schwarz mechanism

D-Brane Instantons

� Instanton calculus
� Instanton zero-modes
� Chiral zero-mode constraint

Moduli Stabilisation

� KKLT
� LVS
� Implications of includ-

ing an MSSM sector

Figure 1.6: Overview on the interplay between the topics discussed in this work.
The subjects mentioned here will be explained in due course, and we ask the reader
to come back to this figure during his or her reading.

the supersymmetry conditions for D7-branes and we remark on the Freed-
Witten anomaly as well as on the so-called K-theory constraints.

Next, in chapter 5, we introduce so-called D-brane instantons and explain the
instanton calculus developed in [54] as well as some generic features thereof.

In chapter 6, we discuss moduli stabilisation in the context of type IIB ori-
entifolds with O3- and O7-planes. More concretely, we present the so-called
KKLT scenario [55] and explain some of the problems of this approach. Then,
we discuss in detail the so-called LARGE™ Volume Scenario 10 [56, 57] which
is an advancement of the KKLT setup.

� In chapter 7, we derive the tadpole cancellation conditions for type IIB ori-
entifolds with O3- and O7-planes, discuss in detail the generalised Green-
Schwarz mechanism in this context and compute so-called Fayet-Iliopoulos
terms. These results are based on the paper [53].

10The notation “LARGE” has been introduced by J. Conlon, F. Quevedo and collaborators
in order to emphasise that the volume under consideration is not only large, but exponentially
large.
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In chapter 8 we use the D-brane instanton calculus explained previously to
derive the Affleck-Dine-Seiberg superpotential in String Theory, and we illus-
trate an important constraint for the stabilisation of moduli in the presence
of an MSSM sector. This chapter is based on the papers [51] and [52].

Finally, in chapter 9 we reconsider moduli stabilisation in the context of type
IIB String Theory with O3- and O7-planes being very careful about introduc-
ing an open string sector. In particular, we present a concrete example for
a LARGE Volume Scenario where the constraint developed in chapter 8 has
been taken into account. This discussion is based on the paper [52].

� In chapter 10, we summarise the results presented in this work and give an
outlook for future directions of research.



Part II

Prerequisites





Chapter 2

Orientifold Compactifications and
Effective Actions

Let us begin the main part of this work by establishing the prerequisites and
basic principles needed for the sequel. In particular, in this chapter we introduce
compactifications of String Theory on orientifolds of Calabi-Yau manifolds, and
we summarise the effective action for the closed as well as for the open sector of
type IIB String Theory.

2.1 Orientifold Compactifications

From Ten to Four Dimensions

Throughout this work, we are going to focus on type IIB String Theory com-
pactified from ten dimensions to four-dimensional Minkowski space on a real six-
dimensional manifold X

R9,1 −→ R3,1 ×X . (2.1)

The most general ansatz for the metric which preserves four-dimensional Poincaré
invariance, in a common convention, reads

ds2 = e2A(y)ηµν dx
µdxν + e−2A(y)gmndy

mdyn , (2.2)

where xµ with µ = 0, . . . , 3 are coordinates in R3,1 while ym with m = 1, . . . , 6
parametrise the compactification manifold X . The factor e2A(y) is called the warp
factor which in String Theory can describe the back-reaction of fluxes on the
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h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

(a) General complex three-manifold

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

(b) Calabi-Yau three-fold

Figure 2.1: Hodge diamonds for a general and a specific complex three-manifold.

manifold X [58]. However, since we will be interested in volumes of internal space
X which are large compared to the string scale, it turns out that the warp factor
can be neglected and the metric (2.2) factorises into two independent parts. This
will be our assumption for the following.

The low energy effective theory of type II String Theories is usually formulated in
terms of type II supergravities in ten dimensions which have 32 supercharges. In
order to obtain N = 2 supersymmetry in four dimensions with eight supercharges,
the compact space has to break some of the supersymmetries. In particular, X has
to be a Calabi-Yau three-fold which is a complex Kähler manifold with vanishing
first Chern class, or equivalently with exact SU(3) holonomy.

Some of the topological data of a Calabi-Yau three-fold can be summarised in the
so-called Hodge diamond shown in figures 2.1. (For more details see for instance
[59].) There, hp,q are the dimensions of the Dolbeault co-homology groups Hp,q

∂
(X ),

and we see that for Calabi-Yau three-folds there are only two non-trivial numbers,
namely h2,1 and h1,1. Furthermore, we note that a Calabi-Yau three-fold X is
endowed with

a so-called Kähler form J of degree (1, 1) ,

a unique holomorphic three-form Ω3 of degree (3, 0) .

Orientifold Projection

For our purpose, the situation described in the previous paragraph is not satisfac-
tory yet because in view of String Phenomenology, we are not interested in N = 2
supersymmetry in d = 4 but rather in the N = 1 case. In addition, eventually we
want to introduce D-branes in order to engineer gauge theories. Since D-branes
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carry certain topological charges which have to be cancelled in a compact space,
a source of negative charge with respect to the D-branes is needed. 1,2

One therefore considers a so-called orientifold projection which in the present case
takes the form Ω(−1)FLσ with Ω the world-sheet parity operator and FL the left-
moving space-time fermion number. (In equation (2.12) below, we will be more
precise about these operators.) In the case of type IIB String Theory, σ is a
holomorphic involution on X and we choose its action on J and Ω3 as

σ∗J = +J , σ∗Ω3 = −Ω3 . (2.3)

From the latter relation we see that σ leaves invariant an even number of holo-
morphic coordinates and so the fixed loci of σ on X can be points and complex
two-dimensional submanifolds. In addition, σ acts trivially on the four-dimensional
part and thus leaves R3,1 invariant.

The fixed loci of the orientifold projection are called orientifold planes and usually
carry negative topological charges with respect to the D-branes. In the present
case, these are O3- and O7-planes where 3 respectively 7 denote the number of
spatial dimensions of the orientifold plane. Note that it is always understood that
O-planes occupy the time direction.

In passing, we mention that for type IIB String Theory also the action σ∗Ω3 = +Ω3

is possible which gives rise to O9- and possibly to O5-planes. However, we do not
consider this choice here.

(Co-)Homology

In order to prepare for our forthcoming discussion, we finish this section by es-
tablishing some notation on a more technical level. The holomorphic involution σ
introduced in the previous paragraph gives rise to a splitting of the co-homology
groups Hp,q

∂
(X ) into the even and odd eigenspaces of σ∗ (here we mainly follow [60])

Hp,q

∂
(X ) = Hp,q

∂+
(X )⊕Hp,q

∂−(X ) . (2.4)

1This is analogous to the following situation. Take a positron e+ carrying one unit of positive
electric charge. In a non-compact space, the flux lines starting at e+ can escape to infinity and
there is no conceptual problem. However, it is not possible to place a single positron in a compact
space since the flux lines cannot escape to infinity and are not allowed to intersect. One has to
introduce one unit of negative charge at which the flux lines can end, i.e. the overall charge in a
compact space has to vanish.

2We do not introduce anti-branes which have opposite charge with respect to the D-branes
but would break supersymmetry and could render a brane configuration unstable.
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Basis for Co-Homology Basis for Homology Indices

{ωI} ∈ H1,1

∂
(X ) {ΣI} ∈ H2(X ,Z) I = 1, . . . , h1,1

{ωi} ∈ H1,1

∂+
(X ) {Σi} ∈ H2+(X ,Z) i = 1, . . . , h1,1

+

{ωı̂} ∈ H1,1

∂−(X ) {Σı̂} ∈ H2−(X ,Z) ı̂ = 1, . . . , h1,1
−

{σI} ∈ H2,2

∂
(X ) {γI} ∈ H4(X ,Z) I = 1, . . . , h1,1

{σi} ∈ H2,2

∂+
(X ) {γi} ∈ H4+(X ,Z) i = 1, . . . , h1,1

+

{σı̂} ∈ H2,2

∂−(X ) {γı̂} ∈ H4−(X ,Z) ı̂ = 1, . . . , h1,1
−

{[ακ], [βλ]} ∈ H3
+(X ,R) {ακ, βλ} ∈ H3+(X ,Z) κ, λ = 1, . . . , h2,1

+

{[ακ̂], [βλ̂]} ∈ H3
−(X ,R) {ακ̂, βλ̂} ∈ H3−(X ,Z) κ̂, λ̂ = 0, . . . , h2,1

−

Table 2.1: Summary of our notation for basis of (co-)homology groups.

The dimensions of these spaces will be denoted by hp,q± for which the following
relations can be determined [60]

h1,1
± = h2,2

± , h3,0
+ = h0,3

+ = 0 , h0,0
+ = h3,3

+ = 1 ,

h2,1
± = h1,2

± , h3,0
− = h0,3

− = 1 , h0,0
− = h3,3

− = 0 .
(2.5)

Next, we introduce a basis for each of the co-homology and corresponding homol-
ogy groups which we have summarised in table 2.1. Note in particular, we use i
and κ for the σ-even groups and ı̂ respectively κ̂ for the σ-odd parts. Furthermore,
the index I = 1, . . . , h1,1 runs over both the σ-even and σ-odd subspaces.

Let us now turn to the third (co-)homology group of X . We choose our basis of
H3(X ,Z) in such a way that the Poincaré duals {[α...], [β...]} satisfy∫

X
[ακ] ∧ [βλ] = l6s δ

λ
κ ,

∫
X

[ακ̂] ∧ [βλ̂] = l6s δ
λ̂
κ̂ , (2.6)

and all other combinations vanishing. Note that our conventions are such that
each p-form has dimension lps where ls denotes the string length. For the even
respectively odd (1, 1)- and (2, 2)-co-homology groups, we choose basis such that
the only non-trivial relations are of the following form∫

X
ωi ∧ σj = l6s δ

j
i ,

∫
X
ωı̂ ∧ σ̂ = l6s δ

̂
ı̂ . (2.7)

Finally, the basis of four- and two-cycles shown in table 2.1 can be defined as the
appropriate Poincaré duals of ωI respectively σI , that is [γI ] = ωI and [ΣI ] = σI .
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More concretely, this means that∫
γi

σj = l4s δ
j
i ,

∫
Σi
ωj = l2s δ

i
j ,∫

γı̂

σ̂ = l4s δ
̂
ı̂ ,

∫
Σı̂
ω̂ = l2s δ

ı̂
̂ .

(2.8)

2.2 Effective Action for the Closed String Sector

After having introduced an orientifold projection as well as our notation for the
(co-)homology of the compactification manifold, we now turn to an effective field
theory description of the closed sector of type IIB String Theory compactifications.
In particular, we are going to explain how the dimensional reduction of type IIB
supergravity on a Calabi-Yau three-fold is performed, summarise the resulting
spectrum and comment on turning on background fluxes.

Type IIB Supergravity Action

As we have mentioned previously, the low energy limit of the closed sector of
type IIB String Theory in ten dimensions can be formulated in terms of type IIB
supergravity. The bosonic field content of this theory reads as follows. There is the
metric g, the dilaton φ, the Neveu Schwarz-Neveu Schwarz (NS-NS) two-form B2

with field strength H3 = dB2, and the Ramond-Ramond (R-R) p-form potentials
Cp with generalised field strengths

F̃p = dCp−1 −H3 ∧ Cp−3 . (2.9)

Note that in type IIB supergravity, the potentials Cp appear for p = 0, 2, 4 and

the duality relation F̃5 = ? F̃5 has to be imposed by hand. Here and in the
following, the symbol ? denotes the usual Hodge-?-operator in ten dimensions (see
for instance [59]).

However, in order to deal with D-branes, it turns out to be useful to employ the
democratic formulation of type IIB supergravity [61] where the potentials Cp for
p = 6, 8, 10 subject to the duality relations

F̃p = (−1)
p+3

2 ? F̃10−p (2.10)

are included as well. With (2κ2
10)−1 = 2π l−8

s , where ls again denotes the string
length, and R the ten-dimensional Ricci curvature scalar, the bosonic part of this
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type IIB (pseudo-)action reads [61]

SIIB =
1

2κ2
10

∫ [
e−2φ

(
R ? 1 + 4 dφ ∧ ?dφ− 1

2
H3 ∧ ?H3

)
− 1

4

∑
p=1,3,5,7,9

F̃p ∧ ?F̃p
]
.

(2.11)

Orientifold Projection

Next, we consider the orientifold projection. The action of Ω(−1)FL on the fields
appearing in (2.11) is determined to be of the following form [62,63,60]

Ω (−1)FL g = + g , Ω (−1)FL B2 = −B2 ,

Ω (−1)FL φ = + φ , Ω (−1)FL Cp = (−1)
p
2 Cp .

(2.12)

For later reference, let us now split the NS-NS two-form B2 on X into parts which
are even respectively odd under the holomorphic involution σ

B
(6)
2 = B+

2 +B−2 , σ∗B±2 = ±B±2 , (2.13)

where (6) denotes the components of B2 in the internal space X . Taking into
account the action of Ω(−1)FL given in (2.12), we see that B+

2 is allowed to only
take discrete values in order to be invariant under the full orientifold projection.
On the other hand, B−2 is invariant under Ω(−1)FLσ and remains as a continuous
field in the low energy theory.

Dimensional Reduction

In order to go from the ten-dimensional to a four-dimensional effective action, we
perform a Kaluza-Klein reduction on the compact manifold X and keep only the
massless modes. That means, we expand the fields appearing in the action (2.11)
in terms of the co-homology introduced in table 2.1 and evaluate the integration
over X . 3 This will lead to to an N = 2 supersymmetric theory in four-dimensions,

3Let us illustrate this procedure for a massless ten-dimensional scalar field Φ. Employ-
ing the notation given in (2.2), Φ(x, y) satisfies �10Φ(x, y) = 0 and the ten-dimensional
d’Alembert operator splits into a four-dimensional part and the six-dimensional Laplace op-
erator, i.e. �10 = �4 + ∆6. We then expand Φ(x, y) into eigenfunctions ψa(y) of ∆6 as
Φ(x, y) =

∑
a φa(x)ψa(y). Denoting the (discrete) ∆6 eigenvalues of ψa(y) by λa, the ten-

dimensional Klein-Gordon equation from above becomes �4φa + λaφa = 0 for each a in which
λaφa appears as a four-dimensional mass term. The d = 4 massless modes correspond to
harmonic functions satisfying ∆6ψa = 0 which are in one-to-one correspondence with the co-
homology of X . The remaining modes have quantised masses proportional to the inverse size of
X , and for X sufficiently small, these can be integrated out.
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Type of Multiplet Multiplicity Notation Description

gravity multiplet 1 gµν originating from the d = 4 part of
the ten-dimensional metric

vector multiplet h2,1
+ V κ originating from the reduction of

C4 on σ-even three-cycles in X

chiral multiplet h2,1
− U κ̂ complex structure moduli encoded

in Ω3 – originating from the d = 6
part of the ten-dimensional metric

chiral multiplet h1,1
+ Ti Kähler moduli – defined in (2.15)

chiral multiplet h1,1
− Gı̂ G-moduli – defined in (2.16)

chiral multiplet 1 τ = i S axio-dilaton – defined in (2.14)

Table 2.2: Spectrum of the N = 1 supergravity theory originating from the dimen-
sional reduction of the type IIB supergravity action on orientifolds of Calabi-Yau
three-folds [63,60,64].

which is broken to N = 1 via the orientifold projection. Since it is not a central
part of this work, we do not perform this reduction explicitly but only summarise
in table 2.2 the resulting spectrum. The detailed analysis can be found in [60,65].
The definition of the axio-dilaton τ = iS, the moduli Gı̂ and the Kähler moduli
Ti appearing in this table read

τ = C0 + i e−φ = i S , (2.14)

Ti =
1

l4s

∫
γi

(
1

2
e−φJ ∧ J + i C4 + i B−2 ∧ C2 +

i

2
τ B−2 ∧B−2

)
, (2.15)

Gı̂ =
1

l2s

∫
Σı̂

(
C2 + τ B−2

)
, (2.16)

where {γi} ∈ H4+(X ,Z) and {Σı̂} ∈ H2−(X ,Z) are the basis of four- respectively
two-cycles introduced in table 2.1, and B−2 had been introduce in (2.13).

Two comments are in order here. First, there are two common notations for the
axio-dilaton: τ usually denotes the ten-dimensional complex field while the four-
dimensional modulus is denoted by S. We will employ both notations, depending
on the context. 4 Second, in the presence of an open string sector with D-branes,

4Let us remark that there are also a number of different conventions used for the relation
between the ten- and four-dimensional axio-dilaton. Also common is for instance τ = i S [35].
However, in the present work, the results have been made consistent with (2.14).
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the definition of the moduli above is modified in order to account for the additional
structure [66,67]. This has however no effect for our following discussion.

Background Fluxes

Let us finally observe that we are allowed to turn on background fluxes in X , that
is, we can have non-vanishing VEVs for the field strengths [58]

F3 = dC2 and H3 = dB2 . (2.17)

Because of the Dirac quantisation condition, the corresponding fluxes F 3 and H3

are quantised. Furthermore, since we perform an orientifold projection Ω(−1)FLσ,
there are some subtleties due to the involution σ on X [68, 69]. Although these
issues can be dealt with, here we stay on firm grounds and impose the following
quantisation conditions

1

l2s

∫
ακ̂

F3 = 2fκ̂ ∈ 2Z ,
1

l2s

∫
βλ̂
F3 = 2f λ̂ ∈ 2Z ,

1

l2s

∫
ακ̂

H3 = 2hκ̂ ∈ 2Z ,
1

l2s

∫
βλ̂
H3 = 2hλ̂ ∈ 2Z ,

(2.18)

with κ̂, λ̂ = 0, . . . , h2,1
− . Note that because F3 and H3 are odd under Ω(−1)FL ,

we only turn on flux through cycles {ακ̂, βλ̂} odd under the orientifold projection.
Using then (2.18) and (2.6), we can express the fluxes F 3 and H3 in the following
way

F 3 =
2

ls

(
f λ̂
[
αλ̂
]
− fκ̂

[
βκ̂
])

, H3 =
2

ls

(
hλ̂
[
αλ̂
]
− hκ̂

[
βκ̂
])

. (2.19)

2.3 Effective Action for the Open String Sector

After having discussed some aspects of the low energy theory corresponding to the
closed sector of type IIB String Theory, we now turn to the open sector and provide
an effective field theory description of D-branes and O-planes. For concreteness,
we focus on type IIB orientifolds with O3- and O7-planes but our discussion readily
extends to other configurations.
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D3- and D7-Branes

As we have explained in section 2.1, the fixed loci of the orientifold projection
Ω(−1)FL σ are called orientifold planes and for the choice (2.3), these are O3-
and O7-planes usually carrying negative R-R and NS-NS charges. Therefore, as
we will see in detail in section 7.1, we have to introduce D7-branes as well as
a combination of D3-branes and background flux. Note that here, similarly to
orientifold Op-planes, the p in Dp-brane denotes the number of spatial dimensions
of the brane and the time direction is always included. These objects are thus
(p+ 1)-dimensional.

In order to preserve four-dimensional Poincaré invariance, the D-branes have to
be space-time filling, that is they occupy R3,1. For the D3-branes this implies
that they are point-like in the compact space X , and for the D7-branes it means
they wrap a four-dimensional submanifold of X . Furthermore, in order to preserve
supersymmetry [70,71,67], the D7-branes have to wrap

holomorphic four-cycles ΓD7 in X , (2.20)

which are also called divisors. Let us remark that for type IIB orientifolds with
O3- and O7-planes, we could also introduce Dp-branes for p 6= 3, 7. However, the
presence of such branes is highly restricted by the tadpole cancellation condition
to be discussed in section 7.1, and such branes preserve supersymmetry only under
special conditions. For most of the time we neglect this possibility and only come
back to this point in section 7.3.

Gauge Flux on D7-Branes

The D7-branes of interest to us are not only specified by a choice of divisor ΓD7

in X but in addition by a choice of open string gauge flux F . However, in order
to preserve four-dimensional Lorentz invariance, we consider gauge flux F only in
the internal space X and so we make the following ansatz for the total open string
field strength F

F = F + F . (2.21)

Here, F = dA denotes the field strength of the gauge field A in R3,1 while F stands
for the flux components in X . Note that in general F is matrix valued and so we
can expand F as

F =
∑
A

FA TA , (2.22)
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where {TA} is a basis of representation matrices. We will be more precise about
this point later. Next, because F is not gauge invariant, we define

F = −i
(
l2s F + 2πϕ∗B2 1

)
, (2.23)

which is the gauge invariant open string field strength. In (2.23), ls denotes again
the string length, B2 is the NS-NS two-form and ϕ∗ is the pull-back from X to the
divisor ΓD7 the D7-brane is wrapping. Note that we will also employ the notation

F = −i
(
l2s F + 2πϕ∗B

(6)
2 1

)
(2.24)

for the components of F in X , and again for later reference, we define the following
expression which will turn our to play an important role in the sequel

F+
= −i

(
l2s F + 2π ϕ∗B+

2 1
)
. (2.25)

Furthermore, we note that similar to closed sector background fluxes, also the
gauge fluxes have to be quantised properly. Denoting by c1(KΓD7

) the first Chern
class of the canonical class of ΓD7 (see for instance [59]), the quantisation condition
reads [50,72]

iF+

2π
− ϕ∗B+

2 +
1

2
c1

(
KΓD7

)
∈ H2

(
ΓD7,Z

)
, (2.26)

where H2(ΓD7,Z) denotes the second co-homology group of ΓD7. This quantisation
condition can have important consequences for instance in the case c1(KΓD7

) 6= 0
[72], but it will not play a crucial role in this work.

Finally, we observe that the open string field strength F in (2.21) is odd under the
non-geometric part Ω(−1)FL of the orientifold projection, that is

Ω (−1)FL F = −F , Ω (−1)FL F = −F . (2.27)

Curvature Two-Form

Before presenting the effective action for D-branes and O-planes, we have to in-
troduce one more piece of notation. In particular, the total curvature two-form of
the tangent bundle of R3,1 × X we will denote by R, which splits into R and R
defined on R3,1 respectively X . For dimensional reasons, we then define

R = l2s R = l2s
(
R +R

)
. (2.28)

Furthermore, for a Dp-brane wrapping a manifold ΓDp in X we denote the re-
striction of R to the tangent bundle of R3,1 × ΓDp by RT while the restriction to
the normal bundle is usually denoted by RN . The same notation also applies to
orientifold planes.
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Effective Action

We are now ready to write down the effective action for Dp-branes and Op-planes.
The kinetic terms for the gauge fields on the D-brane are encoded in the so-
called Dirac-Born-Infeld (DBI) action and a corresponding version also exists for
orientifold planes. The bosonic part of these actions reads [73,74,35] 5

SDBI
Dp = −µp

∫
Dp

dp+1ξ e−φ

√
−det

(
(ϕ∗g)ij +

iFij
2π

)
,

SDBI
Op = −Qp µp

∫
Op

dp+1ξ e−φ
√
−det

(
(ϕ∗g)ij

)
,

(2.29)

where ξi with i = 0, . . . , p are coordinates on the Dp-brane respectively Op-plane,
φ is the dilaton introduced previously and the integration is over the (p + 1)-
dimensional manifold the Dp-brane respectively Op-plane is wrapping. Further-
more, (ϕ∗g)ij and Fij in (2.29) are matrices in the basis {ξi} with i = 0, . . . , p,
and we have defined the tension µp as well as the charge Qp as

µp =
2π

lp+1
s

, Qp = −2p−4 . (2.30)

Next, we turn to the Chern-Simons action of the Dp-branes and Op-planes. These
have been determined to take the following form [76–81] (see also [35])

SCS
Dp = −µp κp

∫
Dp

ch (F) ∧

√
Â(RT )

Â(RN)
∧
⊕
q

ϕ∗Cq ,

SCS
Op = −Qp µp κp

∫
Op

√
L(RT/4)

L(RN/4)
∧
⊕
q

ϕ∗Cq ,

(2.31)

where, ϕ∗ denotes again the pull-back from X to the manifold the D-brane re-
spectively O-plane is wrapping and RT , RN stand for the restrictions of R to the
tangent and normal bundle of this manifold. The definition of the Chern character
ch(F), the Â-genus and Hirzebruch polynomial L used in (2.31) can be found in
appendix A. Furthermore, the sums in (2.31) run over q = 0, 2, 4, 6, 8, 10 and we

5Strictly speaking, the D-brane DBI action is only valid for a single D-brane with resulting
U(1) gauge theory. For stacks of D-branes with non-abelian gauge theories, a more involved
version has to be employed [75].
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have introduced the signs 6

κp = ±1 . (2.32)

In the present case with O3- and O7-planes, it turns out that these have to be
chosen as

κ7 = +1 , κ3 = −1 . (2.33)

6These signs have already appeared in [82] where they were crucial in order to obtain the
correct matching between the tadpole cancellation conditions of type IIB orientifolds with O9-/
O5-planes and the anomaly cancellation condition of the heterotic string. Similarly, as we will see
in section 7.1, here the signs are important to match the D3-brane tadpole cancellation condition
with F-theory.



Chapter 3

N = 1 Supergravity Description

In this chapter, we will summarise some features of N = 1 supergravity theories
in four dimensions. In particular, in section 3.1 we explain how the corresponding
action can be characterised solely in terms of a Kähler potential K, a holomorphic
superpotential W , gauge kinetic functions fab and possible Fayet-Iliopoulos terms
ξa [83, 84]. In section 3.2, we then focus on type IIB orientifold compactifications
with O3- and O7-planes and derive some results needed in the following.

3.1 Generalities

Let us begin with the general form of a N = 1 supergravity action in four space-
time dimensions. Denoting by ?4 the four-dimensional Hodge-?-operator, the ac-
tion takes the following general form

S = Skin. −
∫

R3,1

(
VF + VD

)
?4 1 , (3.1)

where for convenience we have set Planck scale to MPl = 1. In the action (3.1)
Skin. denotes the kinetic part while the expressions VF and VD stand for the F-
respectively D-term potential which we discuss in turn.

The F-Term Potential

The F-term potential VF is computed in terms of the holomorphic superpotential
W , the Kähler potential K and the Kähler metric G as

VF = eK
(
GαβDαW DβW − 3

∣∣W ∣∣2) , (3.2)
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where a summation over repeated indices is understood. Here and in the following,
α runs over all holomorphic fields of the theory while β labels the anti-holomorphic
ones. Furthermore, the so-called Kähler covariant derivative DαW is computed as

DαW = Fα = ∂αW +KαW , Kα = ∂αK , (3.3)

where ∂αK denotes the derivative of the Kähler potential K with respect to the
field labelled by α. Also, the matrix Gαβ denotes the inverse of the Kähler metric
Gαβ which is computed from the Kähler potential K in the following way

Gαβ = ∂α∂β K . (3.4)

The D-Term Potential

After having discussed the F-term potential, we now turn to the D-term potential
VD. Denoting by Re(fab) the real part of the inverse of the gauge kinetic function
fab, the D-term potential is written as

VD =
1

2
Re
(
fab
)
DaDb , (3.5)

where again a summation over repeated indices is understood and where a, b label
the gauge groups present in the theory. Furthermore, Da denotes the auxiliary
D-fields which satisfy GαβX

β

a = i∂αDa with Xα
a the corresponding holomorphic

Killing vectors [84, 85].

In the case of linearly transforming scalars and diagonal gauge kinetic function
fab = fa δab, the D-term potential can be expressed as

VD =
∑
a

1

8 Re
(
fa
)(KαT aφα + h.c.

)2

, (3.6)

with Kα the derivative of the Kähler potential K with respect to fields φα, and T a

the representation matrices of the gauge symmetry.

Furthermore, let us also note that for an U(1) symmetry the D-term Da can be
shifted by a Fayet-Iliopoulos (FI) term ξa. (We will compute such FI terms in
section 7.2.4.) With Qm

a the U(1)a charges of the canonically normalised matter
fields Φm, the D-term potential can then be expressed as

VD =
∑
a

1

2 Re
(
fa
) (∑

m

Qm
a

∣∣Φm

∣∣2 − ξa)2

. (3.7)
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3.2 Type IIB Orientifolds with O3-/O7-Planes

After having given a general introduction to the action of N = 1 supergravity
theories, in this section we are now going to specialise to (the closed sector of)
type IIB orientifold compactifications with O3- and O7-planes.

3.2.1 The Kinetic Part

The kinetic terms in the action (3.1) will not be of importance for our following
discussion, but for completeness we present the general form of the bosonic part

Skin. = − 1

2κ2
4

∫
R3,1

(
R(4) ?4 1 + 2GαβDM

α ∧ ?4DM
β

+ Re
(
fκλ
)
dV κ ∧ ?4dV

λ + Im
(
fκλ
)
dV κ ∧ dV λ

)
.

(3.8)

In this expression, R(4) stands for the four-dimensional Ricci curvature scalar,
κ2

4 = M−2
Pl , Mα = (U κ̂, Ti, G

ı̂, S) denotes the scalar components of the chiral
multiplets given in table 2.2, and DMα stands for an appropriately covariantised
derivative of these moduli. Note also, although not a kinetic term, in (3.8) we
have included dV κ ∧ dV λ.

3.2.2 The Kähler Potential and the Kähler Metric

Notation for the Kähler Sector

Let us begin our discussion of the Kähler potential by introducing some notation.
In particular, the triple intersection numbers kIJK of a Calabi-Yau manifold X in
the basis {ωI} introduced in table 2.1 are defined in the following way

1

l6s

∫
X
ωI ∧ ωJ ∧ ωK = kIJK , I, J,K = 1, . . . , h1,1 , (3.9)

where I = i, ı̂ collectively labels the σ-even and σ-odd basis elements of H1,1

∂
(X ).

However, due to the splitting under the holomorphic involution σ, we find

kijk̂ = 0 , kı̂̂k̂ = 0 , (3.10)
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since the triple intersection number have to be invariant under σ. Next, because
the Kähler form J is even under the holomorphic involution, we expand J in the
following way

J = tiωi , i = 1, . . . , h1,1
+ , (3.11)

where Einsteins sum convention is understood. We furthermore define the volume
of an σ-even basis four-cycle γi ∈ H4+(X ,Z) as follows

τi =
l−4
s

2

∫
γi

J2 =
1

2
kijkt

jtk , (3.12)

and we express the overall volume of the compactification manifold X as

V =
l−6
s

3!

∫
X
J3 =

1

6
kijk t

itjtk =
1

3
τi t

i . (3.13)

Now, in order to bring the Einstein-Hilbert term of the low energy effective action
originating from String Theory compactifications into its standard form, one has
to scale J by e−φ/2 where φ is the dilaton. The resulting action is said to be in
Einstein frame, and the quantities defined above take the following form with the
hat indicating the new frame

t̂i = e−
φ
2 ti , τ̂i = e−φτi , V̂ = e−

3
2
φ V . (3.14)

Notation for the Complex Structure Moduli

Let us now collect some notation which will become relevant for the complex
structure moduli U κ̂. In particular, we denote a basis of σ-odd (2, 1)-forms on X
as

{χκ̂} ∈ H2,1

∂−(X ) , κ̂ = 1, . . . , h2,1
− , (3.15)

and a basis for H1,2

∂−(X ) is obtained from (3.15) via complex conjugation. As it

turns out, the basis {χκ̂} can be computed from the holomorphic three-form Ω3

in the following way [86,87]

χκ̂ = DU κ̂ Ω3 = ∂U κ̂ Ω3 +
(
∂U κ̂KCS

)
Ω3 , (3.16)

where the Kähler potential for the complex structure moduli U κ̂ takes the form

KCS = − log

(
− i

l6s

∫
X

Ω3 ∧ Ω3

)
. (3.17)
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Finally, for later reference let us define the matrix

M
κ̂λ̂

=
1

l6s

∫
X
χκ̂ ∧ χλ̂ . (3.18)

Note that here we have restricted ourselves to the σ-odd part of the third co-
homology group since we are interested in the complex structure moduli for orien-
tifold compactifications. However, these expression have their origin in compact-
ifications without an orientifold projection where the index κ̂ runs over the full
co-homology group H2,1

∂
(X ) respectively H1,2

∂
(X ). For a more detailled discussion

of this subject, see for instance [86,87].

Kähler Potential

We are now ready to state and discuss the Kähler potential for type II string
compactifications. In particular, in [60, 64, 88] the Kähler potential has been de-
termined to take the following form

K = − log
(
S + S

)
− 2 log

(
V̂ +

ξ̂

2

)
− log

(
− i

l6s

∫
X

Ω3 ∧ Ω3

)
. (3.19)

Note that the dependence of (3.19) on complex structure moduli solely resides in
the holomorphic three-form Ω3, i.e.

Ω3 = Ω3

(
U κ̂
)
. (3.20)

Furthermore, we have written the overall volume V of the compactification mani-
fold in Einstein frame which depends in a complicated way on the Kähler moduli
Ti, and for h1,1

− 6= 0 also on the moduli Gı̂ as well as on the axio-dilaton S

V = V
(
Ti
∣∣Gı̂, S

)
. (3.21)

Finally, in (3.19) we have included α′-corrections to the Kähler potential [88] which
are characterised by

ξ̂ =
ξ

g
3/2
s

, ξ = − ζ(3)χ(X )

2 (2π)3
, (3.22)

where ζ(z) denotes the Riemann ζ-function, χ(X ) stands for the Euler number of
the internal manifold X and gs = eφ is the string coupling. We also mention that
there are string loop-corrections to the Kähler metric [89–92], which will however
not be include here.
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First Derivative of the Kähler Potential

After having given the expression for the Kähler moduli, let us now display the
explicit results for the derivatives of (3.19) with respect to the moduli defined in
(2.14), (2.15) and (2.16) which will be needed in section 7.2.4 when computing
Fayet-Iliopoulos terms. The derivatives read (see also the appendices of [65] and
[93])

∂K
∂S

= − 1

2

e−
φ
2

V̂ + ξ̂
2

(
e

3
2
φ
(
V̂ + 2 ξ̂

)
+

1

2

1

l6s

∫
X

(
B−2
)2 ∧ J

)
,

∂K
∂Gı̂

= − 1

2

e−
φ
2

V̂ + ξ̂
2

(
i

l4s

∫
γı̂

B−2 ∧ J
)
,

∂K
∂Ti

= − 1

2

e−
φ
2

V̂ + ξ̂
2

1

l2s

∫
Σi
J .

(3.23)

Kähler Metric

Next, we turn to the Kähler metric computed from the Kähler potential (3.19).
In particular, for the case of interest in the following, namely h1,1

− = 0, the exact
results are summarised in appendix B, while for the situation h1,1

− 6= 0 we would
like to refer the reader to [93]. Using these expressions, we can summarise the
generic form of the Kähler metric computed from (3.19) as

h1,1
− = 0 : Gαβ =

 GUU 0 0
0 GTT GT,S

0 GST GSS

 ξ→0−−−−→

 ~ 0 0
0 ~ 0
0 0 ~

,

h1,1
− 6= 0 : Gαβ =


GUU 0 0 0

0 GTT GTS GTG

0 GST GSS GSG

0 GGT GGS GGG

 ξ→0−−−−→


~ 0 0 0
0 ~ ~ ~
0 ~ ~ ~
0 ~ ~ ~

,
(3.24)

where we have indicated generically non-vanishing terms in the limit ξ → 0 by ~.
As we see from (3.24), in the case of vanishing α′-corrections the Kähler metric
simplifies for h1,1

− = 0 but not for h1,1
− 6= 0.

As we just mentioned, the explicit form of the Kähler metric involving Ti and S
for the case h1,1

− = 0 can be found in appendix B. Here, we only recall the following
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important result

KTi G
TiT j KT j = 3 + 3 ξ̂

V̂2 + 7 V̂ ξ̂ + ξ̂2(
V̂ − ξ̂

)(
2V̂ + ξ̂

)2 , (3.25)

where Einsteins sum convention is understood. Note that in the limit of vanishing
α′-corrections, that is ξ = 0, the right hand side of equation (3.25) is a constant.

Let us finally turn to the Kähler metric for the complex structure moduli. As we
have mentioned in a previous paragraph, the dependence of K on U κ̂ resides in the
holomorphic three-form Ω3. Employing then equation (3.16) together with (3.18),
we compute

G
U κ̂U

λ̂ = ∂
U κ̂
∂
U
λ̂ K = −

M
κ̂λ̂

1
l6s

∫
X Ω3 ∧ Ω3

. (3.26)

3.2.3 The Superpotential

After having discussed the Kähler potential as well as the Kähler metric for type
IIB orientifolds with O3- and O7-planes, we now turn to the superpotential.

The Gukov-Vafa-Witten Superpotential

We begin with the so-called Gukov-Vafa-Witten superpotential which describes
the effect of background fluxes in the framework of an N = 1 supergravity ac-
tion. More concretely, as we explain in detail in appendix C, the fluxes for F3

and H3 introduced at the end of section 2.2 give rise to a potential in the effec-
tive four-dimensional action which can be described by the Gukov-Vafa-Witten
superpotential [94, 95,58,88,96,60]

WGVW =

∫
X

Ω3 ∧G3 , G3 = F 3 − iS H3 . (3.27)

This superpotential turns out to be crucial for moduli stabilisation and we come
back to this expression in chapter 6.

Non-Renormalisation Theorems

Let us next observe that the Ramond-Ramond potentials, as the name suggests,
are not invariant under gauge transformations: Cp → Cp + dΛp−1 where Λp−1
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is a (p − 1)-form. Upon dimensional reduction, we then see from (2.14), (2.15)
and (2.16) that the moduli S, Ti and Gı̂ can be shifted. Since in particular the
superpotential at the perturbative level has to be invariant under such shifts, only
the combinations 1 (

S + S
)n
,

(
Ti + T i

)n
, (3.28)

for n ∈ Z can appear inW . But, since the superpotential is a holomorphic quantity,
the only allowed value for the exponent is n = 0 which usually corresponds to tree-
level contributions.

However, it is known that there are non-perturbative contributions to the super-
potential which break the shift symmetry to a discrete subgroup. In particular,
the allowed non-perturbative terms in the superpotential are of the form

Wnp = Wnp

(
e−Ti , e−S

)
. (3.29)

Some of these contributions originate from so-called D-brane instantons which we
will study in detail in chapter 5.

3.2.4 The Gauge Kinetic Function

Although in this section we have focused on the closed sector of type IIB orientifold
compactifications with O3- and O7-planes, let us conclude with a discussion of the
gauge kinetic functions corresponding to the gauge theories on D3- respectively
D7-branes.

As we have seen schematically already in equation (3.8), the real and imaginary
part of the gauge kinetic function fab appear in the action as

S ∼
∫

R3,1

(
Re
(
fab
)
F a ∧ ?4F

b + Im
(
fab
)
F a ∧ F b

)
+ . . . , (3.30)

where F a denotes the field strength of the gauge theory labelled by a.

Let us investigate such terms for space-time filling D3-branes. In particular, per-
forming an expansion of the square root in the DBI action (2.29) and writing out
the Chern-Simons action (7.4), by comparing with (2.14) we can identify

fD3 = S . (3.31)

1Two comments are in order. First, here we have not included the moduli Gı̂ for which
the discussion is somewhat more involved. Second, as we have seen for the Gukov-Vafa-Witten
superpotential, in case S is combined with H3 and F3 in an appropriate way, the shift symmetry
of S can be interpreted as a subgroup of the SL(2,R) symmetry of type IIB supergravity.
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For space-time filling (supersymmetric) D7-branes, the discussion is more involved
and utilises the D7-brane supersymmetry conditions to be discussed in section 4.4.
We thus only quote the result which can be verified by employing the techniques
developed during this work. For a D7-brane wrapping a four-cycle

ΓD7 = mI
D7 γI ∈ H4

(
X ,Z

)
, (3.32)

where {γI} is the basis of four-cycles introduced in table 2.1 and mI
D7 ∈ Z are the

wrapping numbers, the corresponding gauge kinetic function can be expressed as

fD7 = mi
D7 Ti + . . . . (3.33)

The additional terms indicated by the ellipsis are due to the open string gauge flux

F+
, gravitational terms originating from the Â-genus in (7.4), and from terms of

the form mı̂
D7

∫
γı̂

(C4 + C2 ∧ B−2 + . . .) with {γı̂} the σ-odd four-cycles. However,
such contributions will not be of importance here.
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Chapter 4

Aspects of String Theory Model
Building

In this chapter, we are going to present an overview on aspects of String Theory
model building in the context of type IIB orientifold compactifications with O3-
and O7-planes [35, 97]. In particular, we state the rules for computing the chi-
ral spectrum, we explain the cancellation of chiral anomalies via the generalised
Green-Schwarz mechanism, comment on supersymmetry conditions for D7-branes,
present the Freed-Witten anomaly cancellation condition and discuss K-theory
constraints.

4.1 Overview

As we have already mentioned in the introduction, when constructing models in
String Theory, a number of strong consistency conditions has to be satisfied. In
the first section of this chapter, we will briefly summarise some of them.

� We begin with the tadpole cancellation conditions. Concerning the notation,
the name tadpole is due to the fact that when these conditions are not satisfied,
tadpole diagrams will appear in the effective low energy field theory which give
rise to divergences.

From a geometric viewpoint, as explained in footnote 1 of chapter 2, the
tadpole cancellation conditions are equivalent to the cancellation of charges
in a compact space. On the other hand, from an effective field theory point of
view, satisfying the tadpole cancellation conditions amounts to solving (part
of) the equations of motion. In section 7.1, we will study this question in
detail in the context of type IIB orientifolds with O3- and O7-planes.
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� In the next section of the present chapter, we are going to briefly state and ex-
plain the rules for computing the chiral spectrum originating from intersecting
D7-branes with gauge flux. Note that since the chiral spectrum is counted by
the index of the Dirac operator, via the Atiyah-Singer index theorem [98–100],
it is related to certain topological quantities characterising the D-branes and
O-planes.

� In section 4.3, we explain on general grounds how chiral anomalies are can-
celled via the generalised Green-Schwarz mechanism [49, 101–105]. In section
7.2, we then study this mechanism in detail for type IIB String Theory with
O3- and O7-planes.

� In section 4.4, we will be more precise about the supersymmetry conditions
for D7-branes with gauge flux,

� in section 4.5 we present the so-called Freed-Witten anomaly cancellation con-
dition [50], and finally

� in section 4.6, we turn to the global SU(2) anomaly known from Field Theory
[106] in the context of String Theory.

Note that this list of String Theory constraints relevant for model building is surely
not complete. In addition, there are for instance phenomenological conditions to
be satisfied when engineering models reproducing the MSSM (or some extension
thereof). Among these, there are the presence of precisely three generations, the
absence of exotic matter and ensuring the correct values for the gauge couplings
and the generation of Yukawa couplings. However, such issues will not be discussed
here.

4.2 Chiral Spectrum

Let us now turn to the computation of the chiral spectrum in the context of type
IIB orientifolds with D3-branes and D7-branes endowed with gauge flux.

Note that in this case, chiral matter will not originate from D3-branes because, as
explained previously, chiral matter is related to topological quantities which are
invariant under deformations of the geometry. Since the (generic) D3-branes under
consideration are point-like in the internal space, they can always be moved away
from other D3- or D7-branes thus making open strings stretched between those
branes massive. Since under such changes of the geometry chiral matter would
disappear, D3-branes do not give rise to the latter.
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Representation Multiplicity

(Na, Nb) Iab

(Na, Nb) Ia′b

Sa
1
2
(Ia′a − 2 IO7a)

Aa
1
2
(Ia′a + 2 IO7a)

Table 4.1: Formulas for determining the chiral spectrum. Here (Na, Nb) denotes a
bi-fundamental representation of the gauge group Ga×Gb while Sa and Aa stand for
the symmetric respectively anti-symmetric representation of the gauge group Ga.

Gauge Group

Let us now discuss the possible gauge groups. We denote the gauge group on a
stack of N D7-branes without gauge flux by G, which for type II constructions
usually is U(N) or Sp(2N) respectively SO(2N) in case the D-brane is invariant
under the orientifold projection. If we turn on gauge flux F with structure group
H ⊂ G, then the observable gauge group H is the commutant of H in G, that is

H =
{
h ∈ G : hh = hh ∀ h ∈ H

}
. (4.1)

Rules for Computing the Chiral Spectrum

The rules for computing the chiral spectrum for type IIB orientifolds with D3- and
D7-branes are summarised in table 4.1. The chiral index Iab used in this table is
defined in the following way [107–109,35,97]

Iab =
1

l6s

∫
X

(
ch1

(
ϕ∗Fa

)
ND7a

−
ch1

(
ϕ∗F b

)
ND7b

)
∧
[
ΓD7a

]
∧
[
ΓD7b

]
, (4.2)

where ch1(ϕ∗F) denotes again the first Chern class of ϕ∗F defined in (A.1), and
ND7a is the number of D7-branes in the stack a. Note that the somewhat unusual
factors of N−1

D7 are due to the fact, that we are counting representations. 1 Then,
employing our definitions (2.13) and (2.25), we see that B−2 cancels out in (4.2)

1The chiral number of massless excitations between two D7-branes a and b is counted by the
index Ĩab = 1

l6s

∫
X

(
ch1

(
ϕ∗Fa

)
ch0

(
ϕ∗Fb

)
− ch0

(
ϕ∗Fa

)
ch1

(
ϕ∗Fb

))
∧
[
ΓD7a

]
∧
[
ΓD7b

]
, which in

the present case reduces to (4.2) when counting representations.
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F

F

F

(a) Anomaly Diagram
F

F

F
A(2)

B(0)

(b) Green-Schwarz Diagram

Figure 4.1: Anomaly and Green-Schwarz diagrams.

and so, as expected, only the quantised flux F+
contributes to the chiral index

Iab =
1

l6s

∫
X

(
ch1

(
ϕ∗F

+

a

)
ND7a

−
ch1

(
ϕ∗F

+

b

)
ND7b

)
∧
[
ΓD7a

]
∧
[
ΓD7b

]
. (4.3)

4.3 The Generalised Green-Schwarz Mechanism

After having discussed how to determine the chiral matter content of a D-brane
configuration, let us now turn to chiral anomalies. In particular, in type II String
Theory constructions with D-branes, chiral anomalies originating from diagrams
such as in figure 4.1(a) are cancelled via the generalised Green-Schwarz mechanism
[49,101–105].

The key observation for this mechanism to work is that in four dimensions a two-
form A(2) and a scalar B(0) are dual to each other via the Hodge-?-operation

dA(2) ∼ ?4 dB(0) . (4.4)

Then, if there are couplings in the four-dimensional action of the form

tr
(
F
)
A(2) and tr

(
F 2
)
B(0) , (4.5)

one can construct diagrams which cancel the chiral anomalies. An example of
such a Green-Schwarz diagram can be found in figure 4.1(b), and we discuss this
mechanism in great detail in section 7.2 for type IIB orientifolds with O3- and
O7-planes.

4.4 Supersymmetry Conditions

We now turn to the supersymmetry conditions for the D7-branes [70, 71,67].
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D-Term Condition

In the absence of matter fields for the D7-branes, or in the case of vanishing VEVs
for these, in general the FI term in the D-term (3.7) is non-zero and supersymmetry
is broken. Therefore, in order to preserve supersymmetry, the Fayet-Iliopoulos
term has to vanish which leads to the following condition [70,71,67](

J ∧ ch1

(
F
) )∣∣∣

ΓD7

= 0 . (4.6)

Calibration Condition

However, in addition to (4.6), there are further constraints on a D7-brane to pre-
serve supersymmetry. In particular, the D7-brane has to satisfy a calibration
condition [71,67] which reads 2

d4ξ

√
det

((
ϕ∗g(6)

)
ij

+
iF ij
2π

)
=

1

2
e−iθ

(
J − F

2π

)
∧
(
J − F

2π

)
. (4.7)

Note that we employed the notation introduced below (2.29) as well as in equation
(2.23), and that g(6) denotes the part of the metric g in the internal space which
is then pulled-back to the four-cycle the D7-brane is wrapping. Furthermore, the
constant θ is a phase parametrising the unbroken supersymmetry. In the presence
of an orientifold plane, as it turns out, in order for a D7-brane to respect the same
supersymmetry as the former we have to require θ = 0. Together with (4.6), the
calibration condition (4.7) then becomes

d4ξ

√
det

((
ϕ∗g(6)

)
ij

+
iF ij
2π

)
=

1

2

(
J ∧ J +

F
2π
∧ F

2π

)
. (4.8)

4.5 Freed-Witten Anomaly Cancellation

In addition to the chiral anomalies discussed above, in String Theory also the so-
called Freed-Witten anomaly [50] has to be cancelled. This cancellation amounts
to the requirement that the NS-NS field strength H3 restricted to the D-brane has
to be equal to the third Stiefel-Whitney class W3 of the manifold the D-brane is
wrapping

H3

∣∣∣
D-brane

= W3

(
D-brane

)
. (4.9)

2Note that in the case of non-abelian gauge flux, here and in (4.8) appropriate traces have to
be included.
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However, since in this work we are concerned with D7-branes wrapping divisors in
a Calabi-Yau three-fold, it turns out that the third Stiefel-Whitney class is always
vanishing [72] and so we arrive at

H3

∣∣∣
D-brane

= 0 . (4.10)

Note finally, neglecting possible source terms such as lower-dimensional D-branes,
equation (4.10) is just the Bianchi identity for the gauge invariant open string field
strength F defined in (2.24). That is

0 = dF = −i
(
l2s dF + 2πϕ∗dB

(6)
2 1

)
= −2πi ϕ∗H3 1 . (4.11)

4.6 K-Theory Constraints

To conclude this chapter, let us briefly discuss the so-called K-theory constraints.
In particular, also in String Theory the global SU(2) anomaly known from field
theory [106] has to vanish. As it turns out, the vanishing of this anomaly is related
to the fact that D-branes are not classified completely in terms of (co-)homology
but rather in terms of K-theory [107, 47]. In a compact space, also the Z2-valued
K-theory charges not captured by (co-)homology have to be cancelled which then
is related the cancellation of the SU(2) anomaly.

These additional constraints can be detected via the probe-brane argument of [48].
More concretely, the cancellation of global Sp(2N) anomalies translates into the
requirement that the number of four-dimensional chiral fermions transforming in
the fundamental representation of some Sp(2N) factor has to be even. Taking
then a probe D7-brane invariant under the orientifold projection carrying a Sp(2)
gauge group, the condition for a model to be free of such anomalies reads∑

D7a

ND7a ID7probe D7a ∈ 2 Z , (4.12)

where Iab denotes the chiral index defined in equation (4.3), ND7a is the again
the number of D7-branes in the stack a and the sum is over all such stacks. If
this condition is satisfied for all probe D7-branes, also the K-theory charges are
cancelled.



Chapter 5

D-Brane Instantons

In this chapter, we are now going to discuss D-brane instantons in type II String
Theories. The contribution of such instantons to terms in the superpotential will
be important in chapter 6 when studying moduli stabilisation, and for a recent
review on this subject we would like to refer the reader to [110].

5.1 Prerequisites

Setup and Notation

We begin by describing our setup for the study of D-brane instantons. As men-
tioned in the beginning of chapter 2, we consider compactifications of type II String
Theory from ten to four dimensions on an orientifold of a Calabi-Yau three-fold
X . However, instantons are usually studied in euclidean space so we perform a
Wick rotation and obtain

R9,1 −→ R4 ×X . (5.1)

For such compactifications of type II String Theory to four dimensions, in analogy
to D-branes, a Dp-brane instanton E is an object which is point-like in R4 and
wraps a (p + 1)-dimensional submanifold ΓE in X . Furthermore, these euclidean
D-brane instantons are also called Ep-instantons where E stands for euclidean and
the p indicates the dimension of the submanifold in X .
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Instanton Action and Supersymmetry Conditions

The action corresponding to D-brane instantons is very analogous to the DBI and
Chern-Simons action (2.29) respectively (2.31) for D-branes introduced in section
2.3. In particular, the only difference is that the integration is now only over the
cycle ΓE the instanton is wrapping in the internal space X . We therefore write

SDBI
Ep = −µp

∫
Ep

dp+1ξ e−φ

√
det

((
ϕ∗g
)
ij

+
iFij
2π

)
, (5.2)

SCS
Ep = −µp κp

∫
Ep

ch (F) ∧

√
Â(RT )

Â(RN)
∧
⊕
q

ϕ∗Cq , (5.3)

where the quantities used above are defined in the same way as for the a Dp-brane.
As it turn out, the signs κp important here are κ(−1) = +1 and κ3 = −1.

Next, in order for the Ep-instantons to be supersymmetric, the same conditions as
for D-branes apply. In particular, for E3-brane instantons, as explained in section
4.4, the flux FE on an instanton is restricted by (4.6) and the four-cycle cycle ΓE
wrapped by the instanton has to be calibrated as stated in equation (4.8).

Let us now define the combined DBI and Chern-Simons action for a Dp-brane
instanton in the following way

SEp = SDBI
Ep − iSCS

Ep . (5.4)

Specialising then to type IIB orientifolds with O3- and O7-planes, we see that
the action for an E(−1)-instanton is proportional to the axio-dilaton modulus S
defined in equation (2.14)

SE(−1) = −2π S . (5.5)

On the other hand, the action of a single supersymmetric E3-instanton with
F+

E = 0 wrapped on a σ-even four-cycle γi is related to the Kähler modulus Ti
defined in (2.15) as follows 1

SE3 = −2π

(
Ti + i

l4s
24

χ(γi) C0

)
. (5.6)

1The additional term proportional to the Euler number χ(γi) of the four-cycle γi is due to
the gravitational terms in the Chern-Simons action usually not included in the definition of the
Kähler moduli.
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Instanton Zero-Modes

A subject important for this chapter are so-called instanton zero-modes. These
can be thought of as massless excitations of open strings with at least one endpoint
on the instanton. Let us discuss them in turn.

� The universal instanton zero-modes originate from strings with both end-
points on the same instanton and excitations in the four-dimensional space
R4. The bosonic ones are usually denoted by xµ with µ = 0, . . . , 3 and de-
scribe the position of the instanton in R4. These zero-modes correspond to
the four Goldstone bosons arising from the breakdown of four-dimensional
translational invariance due to the instanton. Furthermore, in general there
are four fermionic zero-modes associated with the breaking of the N = 2
supersymmetry in the bulk of the compactification manifold to N = 1 on
a (supersymmetric) instanton. These zero-modes are usually denoted by Θα

and τ α̇ with α, α̇ = 1, 2 [111,110].

Note that if a single instanton is invariant under the orientifold projection
and carries a would-be O(1) gauge group, the τ α̇ zero-modes are projected out
and one is left only with the Θα modes corresponding to half of the N = 1
superspace [112–115,111].

� Next, there can be so-called moduli zero-modes which arise from strings with
both endpoints on the same instanton and excitations in the internal space X .
These zero-modes correspond to deformations of the cycle ΓE the instanton is
wrapping as well as to Wilson lines along this cycle. Note that the deformation
modes are counted by co-homology classes of the form H0(ΓE , N) with N the
normal bundle of ΓE , while Wilson line moduli are encoded in H1,0

∂
(ΓE). A

cycle without these moduli zero-modes is called rigid.

For a single instanton not invariant under the orientifold projection, usually
each deformation leads to a complex bosonic zero-mode as well as to four
fermionic zero-modes.

� We now turn to the so-called charged instanton zero-modes. These arise as
massless excitations of strings with one endpoint on the instanton and the
other endpoint on a D-brane.

The chiral number of such zero-modes, that is say the number of left-handed
minus the number of right-handed modes, is counted in a similar way as chiral
matter between D-branes. In particular, in the case of type IIB orientifolds
with O3- and O7-planes, in analogy to section 4.2, the chiral charged zero-
modes between an E3-brane instanton and a D7-brane are counted by

Za E =
1

l6s

∫
X

(
ch1

(
ϕ∗F

+

a

)
− ch1

(
ϕ∗F

+

E
))
∧
[
ΓD7a

]
∧
[
ΓE
]
. (5.7)
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Note that if there are only fermionic charged zero-modes present, in particular
if there are only chiral or vector-like intersections between the instanton and
a D-brane, these zero-modes are usually denoted by λ.

� Finally, let us mention that when multiple instantons are considered, there
can be instanton zero-modes between different instantons. These are counted
again in a similar way as matter between D-branes but we will not discuss
such configurations here.

Gauge vs. String Instantons

To conclude this introductory section, we comment on the distinction between
so-called gauge and string instantons.

� In particular, if an Ep-instanton is located directly on top of a stack of D(p+4)-
branes, the effect of this instanton in String Theory reproduces the effect of
an ordinary gauge instanton in the four-dimensional theory originating from
the D-branes. Such D-brane instantons are thus called gauge instantons, and
we will study this point in detail in section 8.1.

� However, from the String Theory point of view, an instanton directly on top
of a D-brane is a very special situation. A general Ep-instanton in String
Theory is wrapping some cycle in X and will give rise to effects in the four-
dimensional theory which usually cannot be understood from a pure field
theoretical viewpoint. Therefore, Ep-instantons not on top of a D-brane are
often called string instantons.

5.2 Instanton Calculus

In this section, we are going to explain how to compute the contribution of a D-
brane instanton to terms in the superpotential. For more details, please consult
the original article [54] as well as the review [110].

Correlation Functions in the Instanton Background

We begin by discussing correlation functions in the instanton background [54]. In
particular, the correlator involving n fields Φi in the (single) instanton background
is computed in the following way〈

Φ1 . . .Φn

〉
inst.

=

∫
d
{

zero-modes
}
eSEp+Z′0

∑
conf.

∏
ampl.

〈
Φ̂
〉disc

2×λ

〈
Φ̂
〉1−loop

. (5.8)
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λ λ̃

Φx1x2 Φxk−1xk

. . .

Φclosed

x1 xk

E

(a) Disc Amplitude

E D-brane

Φclosed

Φ

Φ

(b) One-Loop Amplitude

Figure 5.1: Example for a disc and a one-loop amplitude in the context of the
D-brane instanton calculus. Please note the labels of the boundaries E , x1 and xk
for the disc amplitude, and E respectively “D-brane” for the one-loop amplitude.

Note that this formula, as we will point out below, is already adjusted to the
computation of holomorphic quantities such as the superpotential (see also section
3.2.3). Let us now explain how (5.8) is meant to be understood.

� We begin with the disc amplitude at the right of equation (5.8). The symbol

Φ̂ stands for the following combination of vertex operators

Φ̂ = Φx1 x2 · Φx2 x3 · . . .Φxk−2 xk−1
· Φxk−1 xk · Φclosed , (5.9)

where Φxi xi+1
in the case xi 6= xi+1 is a boundary changing vertex operator

and the (xi, xi+1) labels the boundaries. Such operators correspond to bi-
fundamental matter between D-branes xi and xi+1. In the case xi = xi+1, the
operator does not change the boundary of the disc and describes for instance
D-brane moduli. Furthermore, note that also closed string vertex operator
insertions in the interior of the disc are possible.

Next, the subscript “ 2×λ ” indicates that in addition to the vertex operators Φ̂
precisely two charged instanton zero-modes have to be inserted. The reason
for having two such zero-modes is given by the assignment of a factor of√
gs to each of the λ and the fact that a disc amplitude carries a factor of

g−1
s . Since the superpotential is holomorphic, it cannot solely depend on

gs = S+S
2

which explains the two charged zero-modes for the disc amplitude
since g−1

s ·
√
gs ·
√
gs = 1. However, instanton moduli zero-modes do not carry

factors of gs and could therefore be inserted as well.

An example for a disc amplitude in the context of the D-brane instanton
calculus can be found in figure 5.1(a).
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� We now turn to the one-loop amplitudes. These are cylinder or Möbius strip
diagrams with one boundary the instanton under consideration and the other
boundary a D-brane respectively an orientifold plane. The symbol Φ̂ is defined
in a similar way as for the disc diagram suitable adapted to the present case.

Note that for the one-loop amplitudes, no charged instanton zero-modes are to
be inserted. The reason is that these amplitudes carry a factor of g0

s , and for
the superpotential to be holomorphic, no further dependence on gs originating
for instance from the λ’s is allowed. But, similarly as for the disc amplitude,
moduli zero-modes can be inserted.

An example for a one-loop amplitude can be found in figure 5.1(b).

� The sum and the product in (5.8) are to be understood as follows. The sum
is over all possible combinations of how the fields Φi can be distributed over
factors of disc amplitudes and factors of one-loop amplitudes. However, each
of the Φi has to appear precisely once.

� The exponential term in (5.8) contains the instanton action SEp which corre-
sponds to the vacuum disc amplitude of the instanton [116]. The symbol Z ′0
denotes the sum of all vacuum one-loop amplitudes involving the instanton,
that is the sum over all annulus diagrams with boundary at the instanton and
a D-brane as well as the Möbius strip amplitudes. The prime indicates that in
these amplitudes the massless states, i.e. the zero-modes, have to be removed
since these are taken care of explicitly.

Let us also mention that the exponential originates from a sum over all possible
products of vacuum amplitudes with appropriate symmetry factors of 1/n!
included [116].

� Finally, the integral in (5.8) is over all instanton zero-modes. Note that in
the case of fermionic zero-modes, the integral is only non-vanishing if these
zero-modes are absorbed in disc or one-loop diagrams.

From the correlation functions given in equation (5.8), one can now construct
the instanton generated terms in the superpotential. Let us however emphasise
that one has to check whether the disc and one-loop diagrams are actually non-
vanishing. In most cases, this is only possible if a CFT description is available.

Discussion of Instanton Zero-Modes

We now discuss in some detail how to deal with instanton zero-modes. As just
mentioned, we have to absorb them in disc and one-loop diagrams and integrate
over them. We explain how this can be achieved for each type of zero-modes in
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turn.

� We start with the universal zero-modes. The bosonic modes xµ and the two
fermionic ones Θα give rise to the N = 1 superspace integration measure∫

d4x d2Θ (5.10)

which is needed for contributions to the superpotential. However, the addi-
tional modes τ α̇ require a different treatment.

In the case of a gauge instanton, the τ α̇ modes can be absorbed in disc dia-
grams and the integration gives rise to the fermionic ADHM constraints known
from field theory [117–120]. In the case of a single instanton directly on top of
a single brane (sometimes called Petersson instanton), a configuration which
does not correspond to a proper gauge instanton, the additional fermionic zero-
modes can also be absorbed [121]. Furthermore, the τ α̇ zero-modes might get
lifted by background fluxes [111,122].

However, especially for string instantons, in the following we will assume that
the instanton is invariant under the orientifold projection and carries a would-
be O(1) gauge group. As mentioned earlier, in this case the τ α̇ zero-modes
are projected out.

� Next, we turn to the moduli zero-modes. These are usually hard to absorb but
can be lifted, i.e. become massive, by flux or curvature on the moduli space
(see [110] and references therein). In the following we will simply assume that
the instanton wraps a rigid cycle meaning that the moduli zero-modes are
absent.

� Finally, as mentioned above, the charged zero-modes have to be absorbed in
disc or one-loop diagrams. In the case of a gauge instanton, there usually
are 4n bosonic charged zero-modes and 2n fermionic ones where n ∈ Z+.
Roughly speaking, the fermionic zero-mode integration leads to a factor of the
form

∏
i Φi in front of the exponential where Φi are certain matter fields, while

the bosonic integration gives a factor of (
∏

i Φi)
−2 [51]. Thus, the schematic

form of the generated term in the superpotential originating from a gauge
instanton reads 2

Wgauge ∼
1∏
i Φi

eSEp . (5.11)

We will be much more precise about gauge instantons in section 8.1.

2Note that (5.11) is a very schematic expression in the α′ → 0 limit. The precise form of the
contribution of course depends on the specific setup under consideration.



60 5. D-Brane Instantons

On the other hand, string instantons usually have no bosonic charged zero-
modes and so their contribution to the superpotential takes the schematic
form

Wstring ∼
∏
i

Φi e
SEp . (5.12)

Concluding Remarks

Before closing this chapter, there are two main points we would like to emphasise
to the reader.

� First, as stated in equation (5.6), the instanton action of a E3-instanton wrap-
ping some basis four-cycle γi is proportional to the corresponding Kähler mod-
ulus Ti. Therefore, as already stressed in (3.29), in the context of type IIB ori-
entifolds with O3- and O7-planes, Kähler moduli will appear as exponentials
in the non-perturbative superpotential. This observation will be important in
chapter 6 when discussing moduli stabilisation.

� Second, for a non-vanishing contribution of an instanton to the superpoten-
tial, one has to carefully absorb the instanton zero-modes. As we will show
in section 8.2, this can lead to interesting structures for terms in the superpo-
tential.



Chapter 6

Moduli Stabilisation

In this chapter, we turn to the discussion of moduli stabilisation in the context of
type IIB String Theory compactifications with O3- and O7-planes. In particular,
in section 6.1 we explain the so-called KKLT scenario [55] and in section 6.2,
following the work of [56, 57], we present the so-called LARGE Volume Scenario
(LVS) which is an extension of the KKLT construction.

6.1 The KKLT Scenario

We start with the discussion of a scenario developed by Kachru, Kallosh, Linde
and Trivedi (KKLT) [55] and thereby introduce the concepts needed also for the
LARGE Volume Scenario to be studied in section 6.2.

6.1.1 General Analysis

Assumptions

Before actually getting started, let us make clear our assumptions for this section.
In the end, we comment on relaxing these.

� We do not take into account α′-corrections to the Kähler sector of the Kähler
potential (3.19), that is we set ξ = 0. In view of equation (3.22), neglecting
these corrections does not mean we are considering manifolds with vanishing
Euler characteristic but rather that we work at tree-level in α′.

� We assume that a manifold and an orientifold projection can be chosen such
that h1,1

− = 0. From table 2.2, we then see that there are no Gı̂-moduli present.
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� We basically neglect the open sector of type IIB orientifold compactifications.
In particular, we ignore the presence of an MSSM-like sector engineered by
D-branes.

Background Fluxes

As mentioned at the end of section 2.2, in general we are allowed to turn on
background fluxes in the internal manifold X , that is we can have non-vanishing
VEVs for the field strengths F3 = dC2 and H3 = dB2 [58]. In equation (3.27), we
stated the so-called Gukov-Vafa-Witten superpotential [94, 95,58,88,96,60]

WGVW =

∫
X

Ω3 ∧G3 , G3 = F 3 − iS H3 , (6.1)

which describes such flux compactifications from a four-dimensional point of view.
Note that by abuse of notation, G3 denotes the complex conjugate of G3 while F 3

and H3 stand for the real fluxes originating from F3 respectively H3. For later
reference, let us then compute the F-terms corresponding to this superpotential.
In particular, we find

FU κ̂ =

∫
X
χκ̂ ∧G3 ,

FS = − 1

S + S

∫
X

Ω3 ∧G3 ,

FTi = KTi WGVW . (6.2)

Moduli Stabilisation: Step I

We are now ready to discuss the first step of moduli stabilisation in the KKLT
Scenario. From (3.24) we recall the form of the Kähler metric for h1,1

− = 0 in the
case ξ = 0. Suppressing the indices on the fields, we have the following block-
diagonal matrix

Gαβ =

 GUU 0 0
0 GSS 0
0 0 GTT

 . (6.3)

Computing the F-term potential (3.2) by using equation (3.25) with ξ = 0, we see
that VF possesses a so-called no-scale property and can be brought into the form

VF = eK
(
GUUFUFU +GSSFSF S + GTTKTKT

∣∣WGVW

∣∣2 − 3
∣∣WGVW

∣∣2 )
= eK

(
GUUFUFU +GSSFSF S

)
. (6.4)
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Note that this expression is positive semi-definite and does not depend on the
Kähler moduli Ti. The minimum of (6.4) is reached when all F-terms FU and
FS are vanishing. From (6.2), we infer that this is the case when the (1, 2)- and
(3, 0)-components of G3 are vanishing, i.e.

G1,2
3 = G3,0

3 = 0 . (6.5)

The way to interpret this result goes as follows [55]. First, one chooses some
quantised fluxes F 3 and H3 in G3. Since the distinction between holomorphic
and anti-holomorphic coordinates depends on the complex structure, the potential
(6.4) will fix the complex structure moduli U κ̂ and the axio-dilaton S in such a
way that the G3-flux has vanishing (1, 2)- and (3, 0)-components. For a generic
choice of flux, usually all moduli U κ̂ and S can be stabilised in this way. (For
reviews see for instance [123,124,35,125].)

Although not verified explicitly, this will be our assumption in the following and
the value of the Gukov-Vafa-Witten superpotential in the minimum will be denoted
by W0

WGVW

∣∣∣
min.

= W0 . (6.6)

Moduli Stabilisation: Step II

After the complex structure moduli and the axio-dilaton have been stabilised via
fluxes, we now turn to the Kähler moduli. But, as we can see from (6.4), the Ti
do not appear in the F-term potential and therefore no mass term for these fields
is generated.

However, so far we have only considered tree-level contributions to the superpo-
tential. As explained around equation (3.29) in section 3.2.3, due to their shift
symmetry, the Kähler moduli appear in W via non-perturbative effects. As we
have seen in chapter 5, these can originate from D-brane instantons wrapping
four-cycles in X , but also from gaugino condensates on a stack of D7-branes also
wrapping four-cycles

ΓΛ = mi
Λγi , mi

Λ ∈ Z , (6.7)

where {γi} is again a basis of H4+(X ), mi
Λ are the corresponding wrapping numbers

and Λ labels the non-perturbative contributions. The generic form of such terms
then reads

Wnp =
∑

Λ

AΛ(U) e−aΛTΛ with TΛ = mi
ΛTi , (6.8)
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where we utilised equation (5.6). The prefactor AΛ contains the one-loop ampli-
tudes mentioned in equation (5.8) which depend only on the complex structure
moduli U κ̂, and the coefficients aΛ in the exponent read

aΛ =
2π

N
, N ∈ Z+ . (6.9)

Note that for D-brane instantons, N is usually one but in the case of gaugino
condensates, N indicates the rank of the gauge group.

Our next step is to stabilise the Kähler moduli. More concretely, we treat U κ̂ and
S as fixed, and combine W0 defined in (6.6) with the small corrections (6.8) to

W = W0 +
∑

Λ

AΛ(U) e−aΛTΛ . (6.10)

Since now the superpotential also depends on the Kähler moduli, we have to
reconsider (6.4). Taking into account that the F-terms for U and S are vanishing,
we find for the scalar potential as well as for its derivative that

VF = eK
(
GTTFTF T − 3

∣∣W ∣∣2 ) , (6.11)

∂TVF = eK
(
DT

(
GTTFTF T

)
− 3FTW

)
, (6.12)

where DT denotes the Kähler covariant derivative introduced in (3.3) with respect
to the Kähler moduli T . Note that the explicit form of (6.11) can be obtained by
setting ξ = 0 in equation (B.10). From equation (6.12), we infer that the potential
has an extremum if all F-terms for the Kähler moduli are vanishing, i.e.

FT = 0 . (6.13)

Of course, we furthermore have to check that this solution really is a minimum
but let us for the moment assume this is indeed the case.

When stabilising all moduli via vanishing F-terms, the F-term potential in the
minimum takes the following form

VF

∣∣∣
min.

= eK
(

0− 3
∣∣W ∣∣2 ) ' −3 eK

∣∣W0

∣∣2 ≤ 0 . (6.14)

In conclusion, in the KKLT Scenario the complex structure moduli U κ̂ and the
axio-dilaton S are stabilised via G3-flux, and the Kähler moduli are stabilised via
non-perturbative effects. The minimum is a supersymmetric AdS minimum.
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Uplift

However, experimental data [126, 127] suggests that we are living in a de Sitter
vacuum with a positive cosmological constant. In order to go from an Anti-de
Sitter to a de Sitter vacuum, one can for instance add anti-D3-branes in a strongly
warped region of the compactification manifold. An explicit example of such a
region is a so-called Klebanov-Strassler throat [128] generated by background F 3

and H3 fluxes which leads to an uplift potential of the form

Vuplift '
1

V̂2

(
e−

2π
3gs

K
M

)4

, (6.15)

where V is again the overall volume of the compactification manifold, gs is the
string coupling and K,M ∈ Z are certain flux quanta. However, also other uplift
mechanisms, for instance via D-terms, are possible.

6.1.2 An Example

Let us now illustrate the ideas presented above for a simple toy model. In par-
ticular, we focus on a manifold with a single Kähler modulus T , i.e. we assume
h1,1

+ = 1 (in addition to h1,1
− = 0). For the overall volume of the compactification

manifold X this implies

V̂ =
(
τ̂
) 3

2 , (6.16)

where τ̂ = Re (T ) and where we have set a possible proportionality constant to one.
Furthermore, we assume that by a generic choice of G3-flux, all complex structure
moduli U κ̂ as well as the axio-dilaton S have been stabilised in a supersymmetric
way.

We will now be more precise about the Kähler modulus. As we have mentioned
above equation (6.13), an extremum of the potential (6.11) is reached when the F-
term for T is vanishing. In order to compute FT , let us display the superpotential
in the present case as well as the first derivative of the Kähler potential with
respect to T

W = W0 +A e−aT , W0 ∈ R , A ∈ R ,

KT = − 3

T + T
.

(6.17)

Note that we have assumed W0 and A to be real which simplifies our discussion
but does not change the general result. The vanishing of the F-term for the Kähler
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modulus then reads

0 = FT ' −aA e−aT −
3

T + T
W0 . (6.18)

The solution to this equation (and its complex conjugate) cannot be expressed in
a closed form but can be written as

Im (T ) = 0 , τ̂ e−a τ̂ = − 3W0

2 aA
, (6.19)

where again Re (T ) = τ̂ . Therefore, via (6.19) the Kähler modulus is stabilised in
a supersymmetric way.

However, note that in order for the supergravity description to be valid, effects
of the order of the string scale have to be neglected which means that we are
considering volumes τ � 1. Furthermore, to trust the non-perturbative effects we
have to ensure that a τ̂ > 1. By comparing with the last expression in (6.19), we
see that this implies ∣∣W0

∣∣� 1 , (6.20)

which can be achieved by a certain fine-tuning of the background fluxes. 1 We
remark that the prefactor A for the instanton contributions is assumed to be of
order one.

To finish the discussion of our toy model, let us plot the potential in the situation
where the complex structure moduli and axio-dilaton have been stabilised via
FU = FS = 0 and where Im(T ) = 0. The resulting expression can for instance be
determined with the help of equation (B.10) for ξ = 0 and reads

VF ∼
4 a2A2

3

e−2aτ̂

τ̂
+ 4 aA e−aτ̂

τ̂ 2
W , (6.21)

where we have set the constant prefactor originating from eK to one. In figure
6.1(a) the potential for certain specific values of the parameters m, A and W0 can
be found. We see that there is indeed a minimum of the potential at τ̂ |min. ' 16.82
with value V |min. ' −5 × 10−20. In figure 6.1(b), the uplift potential (6.15) has
been included which leads to a minimum at τ̂ |min. ' 16.88 with value V |min. '
+6× 10−22.

1However, the landscape of String Theory vacua [31, 129, 41, 42] exhibits many solutions for
FU = FS = 0 leading to very many distinct values for W0. Therefore, in the String Theory
landscape points with |W0| � 1 can indeed be found which avoids the fine-tuning of W0.
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(a) KKLT potential (6.21)
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Figure 6.1: In figure 6.1(a), the KKLT potential (6.21) for a specific choice of
parameters is shown. In figure 6.1(b), the result for the uplift potential (6.15) added
to (6.21) can be found.

6.1.3 Discussion

After having explained the basic strategy of the KKLT Scenario and having pre-
sented a simple toy model, let us now discuss this approach in some more detail.

� We recall that we have first stabilised the complex structure moduli U κ̂ and
the axio-dilaton S via the Gukov-Vafa-Witten superpotential (6.1), but have
ignored the contribution (6.8) from non-perturbative effects. In a second step,
treating U κ̂ and S as fixed, we stabilised the Kähler moduli with the help of
(6.8).

However, as it has been pointed out for instance in [130,131], such a two-step
procedure is not always justified because also the non-perturbative effects
depend via the prefactor A(U) on U κ̂.

� We have explicitly neglected α′-corrections to the Kähler potential K, that
is we have set ξ = 0 in (3.19). As a consequence, the F-term potential ex-
hibits a no-scale structure removing the dependence of the Kähler moduli in
(6.4). When taking into account α′-corrections, the Kähler metric contains
off-diagonal terms (see (3.24)) which render the two-step procedure, especially
for the axio-dilaton, ambiguous.

� In our explicit toy model, we have seen that in order to obtain a reliable min-
imum for the Kähler moduli, we have to fine-tune the contribution from the
fluxes (6.20). This observation can also be made in more general constructions
with more than one Kähler modulus and may be regarded as a disadvantage
of the KKLT construction.
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� By assumption, we have only considered the closed string sector and neglected
an open sector with D-branes possibly realising the MSSM. It is usually as-
sumed that the open sector is independent of the closed sector and that the
MSSM can be engineered after the moduli have been stabilised. However, in
section 8.2 we will see that this statement is not true since there is an complex
interplay between the open and closed sector.

In particular, when the MSSM is realised via D-branes, at least one of the
Kähler moduli does not appear in the superpotential via non-perturbative
effects. Therefore, a KKLT scenario with h1,1 = 1 is not possible. We will be
much more precise about this point in chapter 9.

� We have assumed that h1,1
− = 0 implying the absence of the moduli Gı̂. When

considering h1,1
− 6= 0, we can see from (3.24) that the Kähler metric becomes

much more complicated – even in the case of ξ = 0. This situation has been
analysed in [93].

� Finally, the uplift procedure is slightly ambiguous. Because of the anti-D3-
branes, supersymmetry is broken explicitly and so it is a priori not clear if the
resulting theory can be described in terms of N = 1 supergravity. However,
a careful analysis reveals that effectively the anti-D3-branes can be described
by non-linear supersymmetry transformations [132].

But there are alternative possibilities. For instance, in [133] it was analysed
under which conditions de Sitter vacua can be realised. It turns out that when
more general contributions to the superpotential are considered, de Sitter
vacua can be obtained without an explicit uplift potential.

In summary, the KKLT Scenario is a crucial step towards the stabilisation of all
moduli which is important for phenomenology. However, this scenario features a
number of drawbacks which ask for improvement.

6.2 The LARGE Volume Scenario

To remedy some of the shortcomings of the KKLT Scenario, we now turn to the
so-called LARGE Volume Scenario [56,57] and discuss this construction in detail.
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6.2.1 General Analysis

Assumptions

Before we start, let us first make clear our assumptions for the LARGE Volume
Scenario and point out the differences to the KKLT approach.

� In contrast to KKLT, we take into account α′-corrections to the Kähler po-
tential K. In particular, we assume that the Euler number of the compact-
ification manifold X is non-vanishing. Furthermore, as we will explain, we
assume χ(X ) < 0.

� We assume that a manifold and an orientifold projection can be chosen such
that h1,1

− = 0 implying the absence of the Gı̂-moduli. A discussion of the
LARGE Volume Scenario for h1,1

− 6= 0 can be found in [93].

� We basically neglect the open sector of type IIB orientifolds compactifications,
that is we ignore the presence of an MSSM-like sector engineered by D-branes
meaning that the D-term potential vanishes VD = 0. However, in chapter
9, we explicitly consider an open sector and study its implication for moduli
stabilisation.

� Finally, we also make a more technical assumption about the overall volume
of the compactification manifold X . In particular, we assume that V can be
expressed in terms of the four-cycle volumes τi in the following way

V = ηb

(
τb

) 3
2 −

h1,1
+∑
ı̃=2

ηı̃
(
τı̃
) 3

2 , ηb, ηı̃ ∈ R+ . (6.22)

Note that we have singled out the τ1 = τb volume where b stands for big.
As we can see from (6.22), τb can take any large value while the remaining
four-cycle volumes τı̃ are bounded due to the requirement that V has to be
positive. Manifolds for which the volume can be expressed in this way have
been called swiss-cheese manifolds [134, 45, 91] since τb can be thought of as
describing the overall volume of the cheese while, due to the minus sign, the
τı̃ describe small holes.

In the course of our discussion, we will explain why this form of the volume
is necessary for the LARGE Volume Scenario, and in the end we comment on
generalisations of (6.22).



70 6. Moduli Stabilisation

The LARGE Volume Limit

As the name of the present section suggests, we are interested in configurations
where the overall volume V of the compactification manifold is very large compared
to the string scale. This will allow us to perform an expansion of various quantities
in powers of 1/V̂ since

1

V̂
� 1 . (6.23)

We are also going to assume that the real part of the Kähler moduli Ti exhibits
the following approximate scaling with the overall volume V

τ̂b ∼ V̂
2
3 , aı̃ τ̂ı̃ ∼ log V̂ , ı̃ = 2, . . . , h1,1

+ , (6.24)

where aı̃ ∼ 2π
N

. Let us however emphasise that these assumptions about V and the
scaling of τ̂i are only made to simplify our presentation of the LARGE Volume Sce-
nario. Later, (6.23) and (6.24) will arise as dynamical solutions when minimising
the F-term potential.

Superpotential and F-Terms

Let us now turn to the superpotential. Similarly to the KKLT construction, we
turn on background G3-flux giving rise to the Gukov-Vafa-Witten superpotential
(6.1). Furthermore, we consider non-perturbative contributions to the superpoten-
tial arising from D-brane instantons or gaugino condensates. However, since the
limits (6.23) and (6.24) imply τb � τı̃, the non-perturbative effects corresponding
to τb can be neglected compared to τ̂ı̃. The full superpotential therefore reads

W = WGVW +Wnp '
∫
X

Ω3 ∧G3 +
∑

Λ

AΛ

(
U
)
e−aΛTΛ , (6.25)

where we explicitly exclude the big modulus τb in TΛ, i.e.

TΛ =

h1,1
+∑
ı̃=2

mı̃
Λ Tı̃ . (6.26)

Let us now consider the F-term potential. In particular, using the limits (6.23)
and (6.24) as well as the Kähler metrics given in (3.26) and (B.8), we find that

GUU FU FU ∼ O
(
V̂ 0
)
, GST FS F T ∼ O

(
V̂−1

)
,

GSS FS F S ∼ O
(
V̂ 0
)
, GTT FT F T − 3

∣∣W ∣∣2 ∼ O (V̂−1
)
.

(6.27)
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Moduli Stabilisation I: Complex Structure Moduli and Axio-Dilaton

After having determined the scalings (6.27), we can now write down the F-term
potential at leading order in 1/V̂ . We find

VF = eK
(
GUU

[
FGVW

]
U

[
FGVW

]
U

+GSS
[
FGVW

]
S

[
FGVW

]
S

)
+ O

(
V̂−3

)
,

(6.28)

where we used that eK ∼ V̂−2 and where the subscript “GVW” indicates that only
the flux superpotential is used to compute the F-term. Note that this expression is
similar to (6.4) obtained in the KKLT Scenario. However, here we have a controlled
expansion making this form stable against α′-corrections.

Now, similarly to the KKLT case, we minimise the F-term potential which fixes
the complex structure moduli U κ̂ and the axio-dilaton S via the vanishing F-terms
computed from the Gukov-Vafa-Witten superpotential, this time at leading order
in 1/V̂ . For the following, we now treat these as fixed and use

FU = 0 + O
(
V̂−1

)
, FS = 0 + O

(
V̂−1

)
. (6.29)

Finally, as before, we denote WGVW in this minimum by W0.

Moduli Stabilisation II: Kähler Moduli

Next, we employ (6.29) and determine the scalar F-term potential at order 1/V̂3.
Utilising the exact computation (B.10) for FU = FS = 0 and performing the limit
V̂ � 1 with the superpotential

W ' W0 +
∑

Λ

AΛe
−aΛTΛ , (6.30)

we find the following expression

VF =
gs
2
%

[
− 4

V̂

∑
Λ,∆

V̂ol
(
ΓΛ ∩ Γ∆

)
aΛAΛ a∆A∆ e−aΛTΛ−a∆T∆

+
2

V̂2

∑
Λ

V̂ol
(
ΓΛ

)
aΛ

(
AΛe

−aΛTΛ W 0 + c.c.
)

+
3

4

ξ̂

V̂3

∣∣W0

∣∣2 ]
+O

(
V̂−4

)
,

(6.31)
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with Λ,∆ labelling the non-perturbative contributions to the superpotential and
where we have defined the quantities

1

%
= − i

l6s

∫
X

Ω3 ∧ Ω3 , V̂ol
(
ΓΛ ∩ Γ∆

)
= mi

Λm
j
∆ kijk t̂

k ,

V̂ol
(
ΓΛ

)
= τ̂Λ = mi

Λ τ̂i .

(6.32)

Note that the latter two relations denote the volumes (in Einstein frame) of the
intersection of two four-cycles ΓΛ and Γ∆ respectively the volume of the four-cycle
ΓΛ.

After having determined the F-term potential at order 1/V̂3 with the complex
structure moduli and the axio-dilaton stabilised, let us make a rough estimate
about the stabilisation procedure. We will be much more precise in the following
paragraph when discussing an explicit example.

� First, for simplicity we assume that V̂ol
(
ΓΛ ∩ Γ∆

)
∼ δΛ∆ which removes the

dependence of Im (T ) from the first line in (6.31).

� Then, we see that Im (T ) only appears in the second line of (6.31). Minimising
this term with respect to the imaginary part of the Kähler moduli will fix these
such that(

AΛe
−aΛTΛ W 0 + c.c.

)
−→ − 2 e−aΛτ̂Λ

∣∣AΛW0

∣∣ . (6.33)

� Finally, we employ the scaling (6.24) in the resulting potential which leads to
the following generic form

VF ∼ −
σ

V̂3

√
log V̂ − log V̂

V̂3
+

ξ̂

V̂3
, (6.34)

where we have neglected all numerical prefactors but have been careful about
the signs of the three terms. In particular, we have defined

σ = sign
[

V̂ol
(
ΓΛ ∩ Γ∆

) ]
. (6.35)

� In figures 6.2 we have plotted the potential (6.34) for the choices σ = ±1
and ξ̂ = ±2. We see that for {σ, ξ̂} = {+1,+2} there is a minimum for small
values of V̂ , and that for {σ, ξ̂} = {−1,+2} there is a minimum at large values
of V̂ . The other two possibilities do not give rise to a minimum.
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Figure 6.2: Plot of the potential (6.34) for different choices of σ and ξ̂. Please note
the different ranges in these plots.

Summary

Let us now briefly summarise our findings of this subsection.

� We have a assumed that volume of the compactification manifold has a swiss-
cheese structure and we have neglected non-perturbative effects corresponding
to the big modulus. In this way, we can identify τb with V .

� We have assumed (and later verified) that the overall volume V̂ can be sta-
bilised at very large values. This allowed us to perform an expansion of the
F-term potential in orders of 1/V̂ .

� At leading order in 1/V̂ , the complex structure moduli and the axio-dilaton
can be stabilised by the vanishing of the F-terms computed from the Gukov-
Vafa-Witten superpotential.

� At subleading order in 1/V̂ , after taking into account FU = FS = 0, we have
computed the resulting scalar potential in (6.31). Using then the scaling (6.24)
and some simplifying assumptions, we were able to deduce the dependence of
VF on V .
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� Leaving open some signs, we plotted this dependence and found that there
is a minimum of VF for two choices of V . One corresponds to small and the
other to large values of V . However, in order to obtain this minimum we have
to assume

χ(X ) < 0 , V̂ol
(
ΓΛ ∩ Γ∆

)
< 0 . (6.36)

Note that the second requirement is satisfied for swiss-cheese manifolds (6.22)
with instantons on the small cycles. This justifies our assumptions from the
beginning of this section.

6.2.2 An Example

After having explained the LARGE Volume Scenario on a general level, let us now
present an explicit example where these ideas are realised. We expect however
that the same features are present also in more general constructions.

Setup

The standard example primarily studied in the literature [56] is the Calabi-Yau
manifold P[1,1,1,6,9][18] which has a co-dimension three Z3-singularity [135–137]. Its
resolution introduces a second Kähler modulus Ts so that the volume becomes 2

V =
1

9
√

2

(
τ

3
2

b − τ
3
2

s

)
(6.37)

where the subscript in τs stands for small. Note that the only way to make V
large is to take τb large, the other choice would lead to a negative volume V
which is not well-defined. The non-trivial Hodge numbers for this manifold are
(h1,1, h2,1) = (2, 272), and we assume that an orientifold projection can be chosen
such that h1,1

+ = 2, h1,1
− = 0. The Euler number of this space is found as

χ(X ) = χ
(
P[1,1,1,6,9][18]

)
= −540 , (6.38)

implying that the first requirement from (6.36) is satisfied.

In the limit we are interested in, namely V � 1, non-perturbative contributions
involving τb can be neglected and only τs will play a role. Assuming that the

2More concretely, the hypersurface P[1,1,1,6,9][18] can be seen as a T2 fibration over P2, and
the small divisor with volume τs is P2. The big divisor with volume τb is a linear combination
of P2 and π∗(l) where the latter denotes the pull-back of the class of a line l in P2 [135,72].



6.2 The LARGE Volume Scenario 75

complex structure moduli and the axio-dilaton have been stabilised via the Gukov-
Vafa-Witten superpotential at order 1/V̂2, and denoting the latter in the minimum
by W0, we have

W ' W0 +A e−aTs , (6.39)

where we have set the wrapping number ms in the exponent to one. Of course,
in view of chapter 5, here we have assumed that there exists an E3-instanton for
which all zero-modes can be absorbed leading to a non-vanishing contribution,
respectively that there exists a stack of D-branes with gaugino condensation. But,
since in our particular example the small cycle is rigid and we do not take into
account matter D7-branes, E3-brane instantons generically will contribute to the
non-perturbative superpotential. 3

The F-Term Potential for the Kähler Moduli

With this information about the compactification manifold and the non-pertur-
bative contribution to the superpotential, from (B.10) we can now determine the
F-term potential for the Kähler moduli. To do so, with the help of (B.4) we
compute

V̂ol
(
Γs ∩ Γs

)
= kssk t̂

k =
1

2

(
∂2V̂
∂τ 2

s

)−1

= −6
√

2
√
τ̂s , (6.40)

and see that the second requirement from (6.36) is satisfied. The F-term potential
at order 1/V̂3 is then determined to be of the form

VF =
gs
2
%

[
24
√

2 a2
∣∣A∣∣2 √τ̂s

V̂
e−2aτ̂s + 2 a

τ̂s

V̂2

(
A e−aTs W 0 + c.c.

)
+

3

4

ξ̂

V̂3

∣∣W0

∣∣2].
(6.41)

Next, since the imaginary part of Ts appears only in the second term of (6.41), the
minimum of VF is reached when this term is as negative as possible which fixes
the axion Im (Ts). The potential then reads

VF =
gs
2
%

[
λ a2

∣∣A∣∣2 √τ̂s

V̂
e−2aτ̂s − 4 a

∣∣A∣∣ ∣∣W0

∣∣ τ̂s

V̂2
e−aτ̂s +

3

4

ξ̂

V̂3

∣∣W0

∣∣2] , (6.42)

where in order to generalise our discussion in the next paragraph, we have intro-
duced a constant λ which in the present case reads

λ = 24
√

2 . (6.43)

3The reason why the small cycle is rigid can be understood with the help of footnote 2. In
particular, as mentioned before, the small divisor is P2 which is indeed rigid.
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Analytic Analysis

Let us now perform an analytical analysis of the potential (6.42). In particular,
we are interested in the minima of VF (τ̂s, V̂). Note that we have performed the
change of variables τ̂b → V̂ and that the axion Im (Tb) does not appear in VF . We
come back to this point in the next subsection.

In any case, setting to zero the derivative of the F-term potential (6.42) with
respect to V̂ leads to the following expression

V̂ =
4
∣∣W0

∣∣√τ̂s

λ a
∣∣A∣∣ ea τ̂s

1±

√
1− 9 ξ̂ λ

64 τ̂
3/2
s

 . (6.44)

Computing the derivative of the F-term potential with respect to τ̂s and imposing
it to vanish gives to the following result

0 = V̂

(
4
∣∣W0

∣∣√τ̂s

λ a
∣∣A∣∣ ea τ̂s

)−1 (
1− 4 aτ̂s

)
− 2

(
1− aτ̂s

)
. (6.45)

Employing then (6.44) and observing that in order for our description of non-
perturbative effects to be viable we have to require aτ̂s � 1, we find the minimum
of the F-term potential (6.42) at values

τ̂s

∣∣
min.
'

(
3λ ξ̂

16

)2/3

, V̂
∣∣
min.
'

2
∣∣W0

∣∣√τ̂s

λ a
∣∣A∣∣ eaτ̂s . (6.46)

Some Numbers

Let us finally come back to our explicit example P[1,1,1,6,9][18] from the beginning.

In this case, we have λ = 24
√

2 and the Euler number is χ = −540. Choosing
then for instance

a = 2π ,
∣∣A∣∣ = 1 ,

∣∣W0

∣∣ = 10 , gs =
3

4
, (6.47)

and using (3.22) for ξ̂, we obtain a minimum of the F-term potential at values (in
string frame)

τs

∣∣
min.
' 4.11 , V

∣∣
min.
' 2.56× 1014 . (6.48)

Here we see that indeed the volume V of the compactification space is not only
large, but exponentially large. In figure 6.3, we have plotted the F-term potential
(6.42) for the values (6.47) (and % = 1) confirming our previous analysis.
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V

τs

VF

Figure 6.3: Plot of the F-term potential (6.42) for the example P[1,1,1,6,9][18] with
values (6.47) and % = 1 in the vicinity of the minimum. This plot agrees with the
estimated values (6.48), and the value of the potential in the minimum is VF

∣∣
min.
'

−4× 10−44.

6.2.3 Discussion

To conclude this section, let us now summarise the main features of the LARGE
Volume Scenario.

Aspects of Moduli Stabilisation

� We have seen that in contrast to the KKLT scenario, for the LVS we have
a controlled expansion in 1/V̂ which allows us to first stabilise the complex
structure moduli and the axio-dilaton, and then to study the stabilisation of
Kähler moduli.

� In the LARGE Volume Scenario, we have included α′-corrections to K which
are crucial for the stabilisation of Kähler moduli. Therefore, our analysis does
not rely on the no-scale property of VF .

� Note furthermore, in order to find a viable minimum, we did not need to
fine-tune the contribution to W0 from fluxes. In particular, in our example we
have chosen W0 = 10.

� Also, we have explicitly neglected an MSSM sector in our first simple example.
However, due to a constraint to be developed in section 8.2, the moduli sta-
bilisation procedure will be modified when taking into account such a sector.
We will study this point in chapter 9.
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� We have not performed the analysis of the LARGE Volume Scenario for the
case h1,1

− 6= 0 which can however be found in [93].

� Although we have not discussed this point, the uplift from the AdS minimum
in the LVS to a de Sitter minimum is usually achieved in the same way as for
the KKLT Scenario.

� One of the requirements to obtain a minimum in a LARGE Volume Scenario
is the swiss-cheese property (6.22) of the compactification manifold. In the
beginning, not many of such manifolds where known but recent work has
provided several new examples [52,72,138].

Furthermore, in [139] it has been analysed from a general point of view under
which conditions a minimum in a LVS can be obtained. The result is that
one essentially needs one blow-up cycle originating from a singularity and
one Kähler modulus, or a combination of thereof, which can become very
large. In particular, the large combination will be stabilised by the procedure
introduced here but each of the components may need a different stabilisation
mechanism. Finally, in [139] it was also analysed how Kähler moduli can be
stabilised via string loop corrections to the Kähler potential.

� Let us also point out that in the LARGE Volume Scenario the overall volume
V ↔ Re (Tb) of the compactification manifold is stabilised via perturbative
effects. However, the corresponding axion Im (Tb) does not appear in the F-
term potential and therefore is not stabilised. But, taking into account for
instance non-perturbative effects also for the large cycle, this axion will appear
in the potential and thus has the chance to be fixed. Although we did not
perform an explicit analysis of this point, in the following we will assume that
also Im (Tb) can be stabilised.

Phenomenological Aspects

Let us now turn to the phenomenological properties of the LARGE Volume Sce-
nario. Since this work is more concerned with String Theory consistency conditions
and mechanisms for moduli stabilisation, we do not discuss this topic in detail.
However, we nevertheless would like to make a few comments.

� First, since the LVS minimum does not rely on the vanishing of the Kähler
moduli F-terms, in general supersymmetry will be broken. The gravitino mass
is given by

m3/2 = eK/2
∣∣W ∣∣ ' ∣∣W0

∣∣
V

MPl , (6.49)
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where MPl = 2.4 × 1018 GeV is the Planck mass. Note that for our example
from above, neglecting numerical prefactors, we find m3/2 ∼ 100 TeV which
indicates that supersymmetry can be broken in a phenomenological viable
regime.

In addition, let us consider adding D-branes realising the MSSM to our setup.
We are not allowed to wrap MSSM branes on the large cycle with volume τb

since this would lead via

1

g2
∼ Vol

(
Γ
)
∼ τ , (6.50)

with τ the volume of the cycle Γ wrapped by the D-brane, to an unacceptable
small gauge coupling. 4 On the other hand, placing the MSSM branes on the
small cycles Γı̃, in our example with τs ' 4.11, leads to gauge couplings in an
phenomenological acceptable regime.

In summary, in the LARGE Volume Scenario it is possible to obtain low-scale
supersymmetry breaking and realistic values for the MSSM gauge couplings.
For other type II constructions, this is usually much harder to achieve.

� Second, let us mention that the string scale is computed in the following way

mstring ∼
1√
V
MPl , (6.51)

which for our example from above leads to mstring ' 1011GeV. However, by
arranging different values for the parameters, one can easily obtain the string
scale at the GUT scale, which seems to be disfavoured by a recent finite
temperature analysis [141], or for a string scale in the TeV regime.

� Finally, let us mention that due to the exponential large volume of the com-
pactification manifold, some of the physics on the small cycles can be studied
from a local perspective [142]. Furthermore, utilising the scalings (6.24), soft
supersymmetry breaking terms have been worked out in [134, 57] and their
collider signatures have been determined in [143].

4However, in [140] it has been shown that D-branes on the large four-cycle can lead to inter-
esting patterns of global symmetries and hyperweak interactions.
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Part III

Developments





Chapter 7

The Generalised Green-Schwarz
Mechanism

In part III of this thesis, we are going to present some of the original work of the
author [51–53] which is mainly concerned with the three topics Model Building
Constraints for Type IIB Orientifolds with O3- and O7-Planes, D-Brane Instan-
tons, and Moduli Stabilisation in the LARGE Volume Scenario.

In the first chapter of part III, we study the generalised Green-Schwarz mechanism
for type IIB orientifolds with O3- and O7-planes. In particular, we derive the
tadpole cancellation conditions in this context, we determine the chiral anomalies
and check in detail that the latter are cancelled via the Green-Schwarz mechanism,
and we compute Fayet-Iliopoulos terms for D7-branes.

7.1 Tadpole Cancellation Conditions

In the first section, we will study the tadpole cancellation conditions for orientifolds
of type IIB String Theory with O3- and O7-planes. As we will see, in order to
satisfy these conditions, we have to introduce D7-branes as well as a combination
of D3-branes and background flux.

However, before getting started, let us remark that such systems can also be de-
scribed via a certain orientifold limit [144] of F-theory [22]. In particular, especially
the D3-brane tadpole cancellation condition to be determined below has a corre-
sponding expression in F-theory.
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7.1.1 Variation of the Action

Closed String Sector

From an effective Field Theory point of view, satisfying the tadpole cancellation
conditions corresponds to solving (part of) the equations of motion. In order to
determine the latter, we recall from (2.11) the effective action for the closed sector
of type IIB String Theory in the democratic formulation

SIIB =
1

2κ2
10

∫ [
e−2φ

(
R ? 1 + 4 dφ ∧ ?dφ− 1

2
H3 ∧ ?H3

)
− 1

4

∑
p=1,3,5,7,9

F̃p ∧ ?F̃p
]
.

(7.1)

In the following, we will focus on the equation of motion for the Ramond-Ramond
fields C8, C6 and C4 and so we calculate the variation of (7.1) with respect to these
fields

δC4SIIB =
1

4κ2
10

∫
δC4 ∧

(
+dF̃5 −H3 ∧ F̃3

)
,

δC6SIIB =
1

4κ2
10

∫
δC6 ∧

(
−dF̃3 +H3 ∧ F̃1

)
,

δC8SIIB =
1

4κ2
10

∫
δC8 ∧

(
+dF̃1

)
.

(7.2)

Since we only turn on fluxes for F3 and H3, the term H3 ∧ F̃1 vanishes. For the
first line in (7.2), we employ (2.19) and (2.6) to calculate

1

l4s

∫
X
H3 ∧ F̃3 =

1

l4s

∫
X
H3 ∧ F 3 = 4

(
hκ̂ f

κ̂ − hλ̂ fλ̂
)

= −4Nflux ∈ 4Z , (7.3)

where the minus sign has been chosen for later convenience.

Open String Sector

Let is now turn to the open string sector. The DBI action (2.29) for Dp-branes and
Op-planes does not depend on the Ramond-Ramond fields C8, C6 or C4 and so the
variation of SDBI with respect to the latter vanishes. However, the Chern-Simons
action (2.31) for D-branes and O-planes does depend on the R-R potentials Cp



7.1 Tadpole Cancellation Conditions 85

which we recall for convenience

SCS
Dp = −µp κp

∫
Dp

ch (F) ∧

√
Â(RT )

Â(RN)
∧
⊕
q

ϕ∗Cq ,

SCS
Op = −Qp µp κp

∫
Op

√
L(RT/4)

L(RN/4)
∧
⊕
q

ϕ∗Cq .

(7.4)

As we already mentioned, the definition of the Chern character, the Â-genus and
the Hirzebruch polynomial L can be found in appendix A. In addition, in this
appendix we have outlined the calculation leading to the following expressions

D3 :

√
Â(RT )

Â(RN )
=

(
1 + 1

96

(
l2s
2π

)2

tr
(
R2
)

+ . . .

)
,

D7 :

√
Â(RT )

Â(RN )
=

(
1 + 1

96

(
l2s
2π

)2

tr
(
R2
)

+ . . .

)
∧
(

1 + l4s
24
c2

(
ΓD7

)
+ . . .

)
,

O3 :
√
L(RT /4)
L(RN/4)

=

(
1− 1

192

(
l2s
2π

)2

tr
(
R2
)

+ . . .

)
,

O7 :
√
L(RT /4)
L(RN/4)

=

(
1− 1

192

(
l2s
2π

)2

tr
(
R2
)

+ . . .

)
∧
(

1− l4s
48
c2

(
ΓO7

)
+ . . .

)
.

(7.5)

Note that R is defined on R3,1 and that the four-form c2 is defined on X . Also, we
have only shown the terms relevant for the integrals in the Chern-Simons actions.

With the help of (7.5), we can now compute the variation of the actions (7.4) with
respect to C4, C6 and C8. We find

δC4SCS
D3 = +µ3

∫
R3,1

δC4ND3 ,

δC4SCS
O3 = +µ3

∫
R3,1

δC4

(
−1

2

)
,

δC4SCS
D7 = −µ7

∫
R3,1

δC4 ∧
∫

ΓD7

(
ch2

(
F
)

+ l4s ND7

c2

(
ΓD7

)
24

)
,

δC4SCS
O7 = −µ7

∫
R3,1

δC4 ∧
∫

ΓO7

l4s
c2

(
ΓO7

)
6

,

(7.6)

with ND3 = ch0

(
FD3

)
and ND7 = ch0

(
FD7

)
denoting the number of D3- respec-

tively D7-branes on top of each other. Furthermore, Γ is again the holomorphic
four-cycle wrapped by the D7-branes and O7-planes in the compact space, and F
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stands for the part of F in X . In a similar way as above, we compute the variation
of the Chern-Simons actions with respect to C6 as follows

δC6SCS
D7 = −µ7

∫
R3,1×ΓD7

(
ϕ∗δC6

)
∧ ch1

(
F
)
, δC6SCS

O7 = 0 , (7.7)

and the variation with respect to C8 is found to be

δC8SCS
D7 = −µ7

∫
R3,1×ΓD7

(
ϕ∗δC8

)
ND7 , δC8SCS

O7 = −µ7

∫
R3,1×ΓO7

(
ϕ∗δC8

) (
−8
)
.

(7.8)

7.1.2 Tadpole Cancellation Conditions

Combining the results from the previous subsection, we can now determine the
tadpole cancellation conditions for type IIB orientifolds with D3- and D7-branes.
However, due to the orientifold projection Ω(−1)FLσ, we have to take into account
the orientifold planes as well as the orientifold images of the D-branes. Denoting
these images by a prime, the schematic form of the full action reads

S =
1

2

(
SIIB + S ′IIB +

∑
a,a′

SCS
D7a +

∑
i

SCS
O7i

+
∑
b,b′

SCS
D3b

+
∑
j

SCS
O3j

)
. (7.9)

In order to be more concrete later, using (2.12) and (2.27), we determine the data
for an orientifold image of a Dp-brane as follows

Γ′Dp = Ω (−1)FLσ ΓDp = (−1)
p+1

2 σ ΓDp ,

F+′
= Ω (−1)FLσ∗F+

= −σ∗F+
,

(7.10)

where in particular ΓD7 is a divisor in X while ΓD3 is a point in X corresponding
to a D3-brane.

D7-Brane Tadpole Cancellation Condition

The equations of motion for C8 are obtained by setting to zero the variation of
(7.9) with respect to C8. Using (7.2) and (7.8), we compute

0 =
1

2

2π

l8s

∫
R3,1×X

δC8 ∧

[
dF̃1 −

∑
D7a,D7a′

ND7a

[
ΓD7a

]
−
∑
O7i

(
−8
)[

ΓO7i

]]
, (7.11)
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where ND7a is the total number of D7-branes with gauge flux F a wrapping the four-
cycle ΓD7a , and [Γ] stands for the Poincaré dual of the four-cycle Γ in X . Since

the variations δC8 are arbitrary and dF̃1 is exact, in co-homology the expression
above can be written as∑

D7a

ND7a

(
[ΓD7a ] + [Γ′D7a ]

)
= 8

∑
O7i

[ΓO7i ] , (7.12)

which is known as the D7-brane tadpole cancellation condition. Note that from
this equation we see that if there are O7-planes present, we are forced to introduce
D7-branes into our setup.

D5-Brane Tadpole Cancellation Condition

Employing (7.2) and (7.7) as well as the basis of (1, 1)-forms {ωI} ∈ H1,1

∂
(X )

introduced in table 2.1, the equations of motion originating from C6 are found to
be of the following form

0 =
∑
D7a

(∫
ΓD7a

ch1

(
Fa
)
∧ ωI +

∫
Γ′D7a

ch1

(
F ′a
)
∧ ωI

)

=
∑
D7a

∫
X

(
ch1

(
ϕ∗Fa

)
∧ [ΓD7a ] + ch1

(
ϕ∗F

′
a

)
∧
[
Γ′D7a

])
∧ ωI

(7.13)

where the prime denotes again the Ω(−1)FLσ image and ϕ∗F is the push-forward
of F from the D7-brane to the Calabi-Yau manifold X .

Note that (7.13) is not trivially vanishing which can be seen by utilising the relation∫
X
σ∗ωI ∧ σ∗ωJ ∧ σ∗ωK =

∫
X
ωI ∧ ωJ ∧ ωK . (7.14)

In particular, recalling from (2.27) that F is odd under Ω(−1)FL , we can rewrite
equation (7.13) as

0 =
∑
D7a

ch1

(
ϕ∗Fa

)
∧ [ΓD7a ] ∧

(
ωI − σ∗ωI

)
, (7.15)

which is a non-trivial constraint if h1,1
− 6= 0.

However, the D5-brane tadpole cancellation condition is not yet satisfying (here
we follow [72]). In order to explain this point, let us recall from our discussion
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below equation (2.13) that F contains B−2 which takes continuous values. Since
the tadpole cancellation conditions usually involve only discrete quantities, the
dependence on B−2 should disappear. And indeed, using the definition of the
Chern character (A.1) as well as (2.13) and (2.25), we compute

ch1

(
ϕ∗Fa

)
= ch1

(
ϕ∗F

+

a

)
+ND7 B

−
2 . (7.16)

Employing then the D7-brane tadpole cancellation condition (7.12), we find for
the B−2 terms in (7.13) that∑

D7a

∫
X

(
ND7a B

−
2 ∧ [ΓD7a ] +ND7a B

−
2 ∧

[
Γ′D7a

])
∧ ωI

= 8
∑
O7i

∫
X

[ΓO7i ] ∧B−2 ∧ ωI = 8
∑
O7i

∫
ΓO7i

ϕ∗B−2 ∧ ωI .
(7.17)

The final step is to observe that since the orientifold planes are pointwise invariant
under the involution σ, there are no odd two-cycles on ΓO7, that isH2−(ΓO7,Z) = 0.
Because B−2 is in H1,1

∂−(X ), we see that in this case ϕ∗B−2 = 0 and so the integral

(7.17) vanishes. The D5-brane tadpole cancellation condition therefore contains
only discrete quantities and reads

0 =
∑
D7a

(
ch1

(
ϕ∗F

+

a

)
∧ [ΓD7a ] + ch1

(
ϕ∗F

+′
a

)
∧
[
Γ′D7a

])
∧ ωI . (7.18)

D3-Brane Tadpole Cancellation Condition

Let us finally study the equation of motion for C4 which is obtained by setting
to zero the variation of (7.9) with respect to C4. Employing (7.2) and (7.6), we
compute

0 =
1

2

2π

l4s

∫
R3,1

δC4 ∧

[
1

l4s

∫
X

(
dF̃5 −H3 ∧ F̃3

)
+

∑
D3b,D3b′

ND3b −
∑
O7i

NO3i

2

− 1

l4s

∑
D7a,D7a′

∫
ΓD7a

(
ch2

(
Fa
)

+ l4s ND7a

c2

(
ΓD7a

)
24

)
−
∑
O7j

∫
ΓO7j

c2

(
ΓO7j

)
6

]
.

(7.19)

By the same arguments as for the D5-brane tadpole, the dependence of (7.19) on
B−2 should vanish. In order to see this, we employ the definition (A.1) to obtain

ch2

(
F
)

= ch2

(
F+)

+ ch1

(
F+) ∧ (ϕ∗B−2 )+

ND7

2

(
ϕ∗B−2

)2
, (7.20)
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which we use to calculate∑
D7a,D7a′

∫
ΓD7a

ch2

(
Fa
)

=
∑

D7a,D7a′

∫
ΓD7a

[
ch2

(
F+

a

)
+ ch1

(
F+

a

)
∧
(
ϕ∗B−2

)]
+

1

2

∑
D7a

∫
X

(
B−2
)2
ND7a

(
[ΓD7a ] + [Γ′D7a ]

)
=

∑
D7a,D7a′

∫
ΓD7a

ch2

(
F+

a

)
. (7.21)

In going from the second to the third line, we utilised the D5-brane tadpole can-

cellation condition to observe that the terms involving ch1(F+
) have to vanish,

and for the cancellation of the expressions containing (B−2 )2, we used the same
reasoning as in (7.17).

Next, following [145] (see also [146]), D7-branes on the orientifold space can have
double-intersection points and can therefore be singular. 1 Thus, the definition of
the corresponding Euler characteristic

χ
(
Γ
)

=

∫
Γ

c2

(
Γ
)

(7.22)

is ambiguous. However, as has been explained in [147,145], the Euler characteristic
of an appropriate blow-up Σ of the singularity minus the number npp of pinch-
points,

χo
(
Γ
)

= χ
(
Σ
)
− npp , (7.23)

leads to the correct result. We will denote the physical Euler characteristic of [147,
145] by χo(Γ), which reduces to the usual Euler characteristic (7.22) for smooth
D7-branes.

Employing equation (7.3) for the background fluxes and denoting the total number
of D3-branes by ND3 as well as the total number of O3-planes by NO3, we deduce
from (7.19) the D3-brane tadpole cancellation condition to be of the form

ND3 + 2Nflux =
NO3

4
+

1

l4s

∑
D7a

∫
ΓD7a

ch2

(
F+

a

)
+
∑
D7a

ND7a

χo(ΓD7a

)
24

+
∑
O7j

χ
(
ΓO7j

)
12

.

(7.24)

1An example for such a singularity is the complexified Whitney umbrella given by the equation
x2 = z y2 with x, y, z ∈ C [145].
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Note that in general, in order to satisfy this equation we have to introduce a
combination D3-branes and background flux.

Relation to F-Theory

To conclude this section, let us illustrate how the D3-brane tadpole cancellation
condition is related to F-theory. In particular, we see that by placing four D7-
branes without gauge flux on top of a single O7-plane, equation (7.24) becomes

ND3 + 2Nflux =
NO3

4
+
χ
(
ΓO7

)
4

. (7.25)

For this solution, the lift to F-theory is given by the Calabi-Yau four-fold Y =
(X × T2)/Z2 where the Z2 action is realised by the holomorphic involution σ on
the Calabi-Yau three-fold X together with the action z → −z on the two-torus.
Blowing up the four Z2 singularities originating from the fixed points of Z2 on T2

and gluing in P1s, the Euler characteristic of Y is computed as

χ(Y) =
1

2

(
χ
(
X × T2

)
− 4χ

(
ΓO7

)
− 4NO3

)
+ 4χ

(
P1
)
χ
(
ΓO7

)
+ 4χ

(
P1
)
NO3

= −2χ
(
ΓO7

)
− 2NO3 + 8χ

(
ΓO7

)
+ 8NO3

= 24

(
NO3

4
+
χ
(
ΓO7

)
4

)
, (7.26)

where we used that χ(T2) = 0 as well as that χ(P1) = 2. Employing this result we
see that, in agreement with the F-theory result [148], we can write equation (7.25)
as

ND3 + 2Nflux =
χ(Y)

24
. (7.27)

7.2 The Generalised Green-Schwarz Mechanism

In this section, we are first going to determine the chiral anomalies arising in a
general configuration of intersecting D7-branes with gauge flux, and then explic-
itly check that via the generalised Green-Schwarz mechanism indeed the chiral
anomalies are cancelled.
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7.2.1 Chiral Anomalies

The anomaly coefficients for the chiral anomalies are expressed in terms of the
cubic Casimir A(r), the index C(r) and the U(1) charge Q(r) where r denotes a
particular representation. For SU(N), these quantities are summarised in table 7.1
and the discussion for SO(2N) and Sp(2N) gauge groups can be found in appendix
D. More concretely, the cubic non-abelian, the mixed abelian-non-abelian, the
cubic abelian and the mixed abelian-gravitational anomalies are calculated via the
following formulas (see for instance [149])

ASU(ND7a )3 =
∑
r

A(r) ,

AU(1)a−SU(ND7b
)2 =

∑
r

Qa(r)Cb(r) ,

AU(1)a−U(1)2
b

=
∑
r

Qa(r)Q
2
b(r) dim(r) ,

AU(1)a−G2 =
∑
r

Qa(r) dim(r) .

(7.28)

Cubic Non-Abelian Anomaly

For the computation of the cubic non-abelian anomaly, we focus on the D7-brane
labelled by a and calculate using (4.3)

ASU(ND7a )3

=
∑
D7b

ND7b

(
Iba + Ib′a

)
− 8

∑
O7i

IO7i a

= − 1

l6s

∫
X

ch1

(
ϕ∗F

+

a

)
ND7a

∧ [ΓD7a ] ∧
(∑

D7b

ND7b

(
[ΓD7b ] + [Γ′D7b

]
)
− 8

∑
O7i

[ΓO7i ]

)
+

1

l6s

∫
X

∑
D7b

(
ch1

(
ϕ∗F

+

b

)
∧ [ΓD7b ] + ch1

(
ϕ∗F

+′
b

)
∧
[
Γ′D7b

])
∧ [ΓD7a ] .

(7.29)

Here, the prime again denotes the Ω(−1)FLσ image and the sums run over all D7-
branes b respectively all O7-planes. Employing the D7-brane tadpole cancellation
condition (7.12), we see that the first line in (7.29) vanishes. For the vanishing
of the second line, we use the D5-brane tadpole cancellation condition (7.18) to
arrive at

ASU(ND7a )3 = 0 . (7.30)
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F F S S A A

dim(r) N N N(N+1)
2

N(N+1)
2

N(N−1)
2

N(N−1)
2

Q(r) +1 −1 +2 −2 +2 −2

C(r) 1
2

1
2

N+2
2

N+2
2

N−2
2

N−2
2

A(r) +1 −1 N + 4 −(N + 4) N − 4 −(N − 4)

Table 7.1: Group theoretical quantities for SU(N) where F stands for the funda-
mental, S for the symmetric and A for the anti-symmetric representation (see for
instance [149]).

Mixed Abelian-Non-Abelian Anomaly

Next, we consider the mixed abelian-non-abelian anomaly. Along the same lines
as above, we compute

AU(1)a−SU(ND7b
)2 =

1

2
δab

(∑
D7c

ND7c

(
Icb + Ic′b

)
− 8

∑
O7i

IO7i b

)
− ND7a

2

(
Iab − Ia′b

)
= −ND7a

2

(
Iab − Ia′b

)
, (7.31)

where we used, similarly as for the cubic non-abelian anomaly, the tadpole cancel-
lation conditions (7.12) and (7.18) for the vanishing of the first term.

Cubic Abelian Anomaly

For the cubic abelian anomaly, we find

AU(1)a−U(1)2
b

=
ND7a

3
δab

(∑
D7c

ND7c

(
Icb + Ic′b

)
− 8

∑
O7i

IO7i b

)
−ND7a ND7b

(
Iab − Ia′b

)
= −ND7a ND7b

(
Iab − Ia′b

)
, (7.32)

where the pre-factor 1
3

is due to the additional symmetry in the case a = b, and
we again used the tadpole cancellation conditions (7.12) and (7.18).
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Mixed Abelian-Gravitational Anomaly

From (7.28), we finally determine the mixed abelian-gravitational anomaly of a
D7-brane a. Employing the tadpole cancellation condition (7.12), we obtain

AU(1)a−G2 = ND7a

(∑
D7b

ND7b

(
Iba + Ib′a

)
− 2

∑
O7i

IO7i a

)

= ND7a

(∑
D7b

ND7b

(
Iba + Ib′a

)
− 8

∑
O7i

IO7i a

)
+ 6ND7a

∑
O7i

IO7i a

= 6ND7a

∑
O7i

IO7i a . (7.33)

7.2.2 Green-Schwarz Couplings

After having determined the chiral anomalies in a general configuration of in-
tersecting D7-branes with gauge flux, let us now compute the couplings in the
four-dimensional theory which, as explained in section 4.3, are used to cancel the
anomalies via the generalised Green-Schwarz mechanism.

Dimensional Reduction of R-R Potentials

In particular, in the present context the two-forms A(2) and scalars B(0) introduced
above equation (4.4) are obtained from a dimensional reduction of the R-R p-form
potentials Cp and the duality (4.4) is provided by (2.10). To see this in more
detail, we perform a dimensional reduction of C2, C4 and C6 on the Calabi-Yau
manifold X

C2 = CI ωI + D0

C4 = CIσ
I + DI∧ωI + . . .

C6 = DI∧σI + . . .
(7.34)

where CI respectively CI are four-dimensional scalars and DI as well as D0,DI
are two-forms in R3,1. The ellipsis indicate that there are further terms coming
for instance from the reduction of Cp on three-cycles and from the reduction on
X . However, these terms will not be of relevance here. Let us also note that from
(2.10), we obtain

dCI = − ?4 dDI ⇒ CI ↔ −DI
dCI = + ?4 dD

I ⇒ CI ↔ +DI
(7.35)



94 7. The Generalised Green-Schwarz Mechanism

where ?4 is the Hodge-?-operator in four dimensions. The relative sign between
these two dualities will be important in the following.

Some Technical Details

We now turn to the couplings (4.5) which are contained in the Chern-Simons
actions of the D-branes and O-planes. To determine these, we expand the divisor
wrapped by a D7-brane a as

ΓD7a = mI
a γI , mI

a ∈ Z , (7.36)

where {γI} is the basis of four-cycles introduced in table 2.1. Next, since here we
are considering gauge groups U(N) for which the corresponding algebra satisfies
u(N) ' u(1)× su(N), we write the four-dimensional open string field strength F
as

F = f 1 +
∑
A

FA TA , (7.37)

where f denotes the abelian and FA stands for the non-abelian part. For the anti-
symmetric representations matrices TA of the gauge group in the fundamental
representation, we have

tr
(
TA
)

= 0 , tr
(
TATB

)
=

1

2
δAB , (7.38)

where the latter relation reflects the usual choice of normalisation. Concerning
the gauge flux F on the D7-branes, we make the simplifying assumption to only
consider U(1) gauge fluxes on the D7-branes which are diagonally embedded into
U(ND7) in the following way

F = f 1ND7×ND7
. (7.39)

Let us emphasise that our forthcoming discussion relies on this choice of flux and
its embedding. For a different structure group H = U(1) or embedding into
G = U(ND7), the calculations become slightly more involved.

Then, using (7.39) and (7.37) together with (7.38), we can evaluate some quantities
needed in the following

ch1

(
F
)

= N

(
l2s
f + f

2π
+ ϕ∗B2

)
,

ch2

(
F
)

=
1

2

[
l4s

8π2

∑
A

FAFA +N

(
l2s
f + f

2π
+ ϕ∗B2

)2
]
,

ch3

(
F
)

=
1

6

[
3l4s
8π2

∑
A

FAFA
(
l2s

f

2π
+ ϕ∗B2

)
+N

(
l2s
f + f

2π
+ ϕ∗B2

)3
]
.

(7.40)
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Determining the Green-Schwarz Couplings

Given these expressions, we can now identify the Green-Schwarz couplings. In
particular, the tr

(
F
)

terms are obtained from the D7-brane action and read

SCS
D7 = −µ7 κ7

∫
D7

[
ch1

(
F
)
∧ C6 + ch2

(
F
)
∧ C4

]
+ . . .

= −2π

l4s

∫
R3,1

l2s
2π

ND7 f ∧
[
DI mI +

1

l4s
DI ∧

∫
ΓD7

(
l2s
2π

f + ϕ∗B+
2

)
∧ ωI

]
+ . . .

(7.41)

where the ellipsis denote further couplings not of importance here. The relevant
terms involving tr

(
F 2
)

read

SCS
D7 = −µ7 κ7

∫
D7

[
ch2

(
F
)
∧ C4 + ch3

(
F
)
∧ C2

]
+ . . .

= −2π

l4s

∫
R3,1

1

2

(
l2s
2π

)2
(

1

2

∑
A

FAFA +ND7 f
2

)
∧ (7.42)

∧
[
CI m

I +
1

l4s
CI
∫

ΓD7

(
l2s
2π

f + ϕ∗B+
2

)
∧ ωI

]
+ . . . .

The tr
(
R2
)

couplings are contained in the D7-brane action and can be determined
using (7.5) to be of the following form

SCS
D7 = −µ7 κ7

∫
D7

1

96

(
l2s
2π

)2

tr
(
R2
)
∧
(

ch0

(
F
)
C4 + ch1

(
F
)
∧ C2

)
+ . . .

= −2π

l4s

∫
R3,1

1

96

(
l2s
2π

)2

tr
(
R2
)
∧ (7.43)

∧
[
ND7 CI m

I +
1

l4s
ND7 CI

∫
ΓD7

(
l2s
2π

f + ϕ∗B+
2

)
∧ ωI

]
+ . . . ,

while from the O7-plane action, we infer the terms

SCS
O7 = −µ7 κ7Q7

∫
O7

(
− 1

192

(
l2s
2π

)2

tr
(
R2
))
∧ C4 + . . .

= −2π

l4s

∫
R3,1

1

24

(
l2s
2π

)2

tr
(
R2
)
CI m

I + . . . .

(7.44)

A summary of the couplings relevant for the generalised Green-Schwarz mechanism
in the present context can be found in table 7.2, where we employed again the
notion of Chern characters.
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fa −DI :
l2s
2π

ND7a m
I
a ,

fa −DI :
l2s
2π

1

l4s

∫
ΓD7a

ch1

(
F+

a

)
∧ ωI ,

f 2
a − CI :

(
l2s
2π

)2
1

2

1

l4s

∫
ΓD7a

ch1

(
F+

a

)
∧ ωI ,

f 2
a − CI :

(
l2s
2π

)2
ND7a

2
mI
a ,

F2
a − CI :

(
l2s
2π

)2
1

4ND7a

1

l4s

∫
ΓD7a

ch1

(
F+

a

)
∧ ωI ,

F2
a − CI :

(
l2s
2π

)2
1

4
mI
a ,

R2 − CI :

(
l2s
2π

)2
1

96

1

l4s

∑
a,a′

∫
ΓD7a

ch1

(
F+

a

)
∧ ωI ,

R2 − CI :

(
l2s
2π

)2
1

96

(∑
a,a′

ND7a m
I
a + 4

∑
O7i

mI
O7i

)
.

Table 7.2: Summary of couplings relevant for the generalised Green-Schwarz mech-
anism in the context of type IIB orientifolds with D3- and D7-branes. Note that in
F+ only the diagonally embedded U(1) flux (7.39) is turned on.

7.2.3 Green-Schwarz Diagrams

In this subsection, we now explicitly compute the Green-Schwarz diagrams illus-
trated in figure 4.1(b) and verify that these indeed cancel the chiral anomalies
determined in section 7.2.1.

Cubic Non-Abelian Anomaly

For the cubic non-abelian anomaly, we see that there are no couplings of the form
F−DI or F−DI contained in the Chern-Simons actions (7.4). We therefore cannot
construct the corresponding Green-Schwarz diagrams and so

AGS
SU(ND7)3 = 0 . (7.45)

This is expected since the cubic non-abelian anomaly (7.30) vanishes due to the
tadpole cancellation conditions and does not need to be cancelled.
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Mixed Abelian-Non-Abelian Anomaly

Next, we consider the mixed abelian-non-abelian anomaly. The schematic form of
the diagrams to be evaluated is

fa −DI − CI − F2
b , fa −DI − CI − F2

b ,

fa −DI − CI − F2
b′ , fa −DI − CI − F2

b′ ,
(7.46)

and with the help of the couplings shown in table 7.2, we compute

AGS
U(1)a−SU(ND7b

)2 =

(
l2s
2π

)3

ND7a m
I
a

(
−1
) 1

4ND7b

1

l4s

∫
ΓD7b

ch1

(
F+

b

)
∧ ωI

+

(
l2s
2π

)3
1

l4s

∫
ΓD7a

ch1

(
F+

a

)
∧ ωI

(
+1
) 1

4
mI
b

+
(
b → b′

)
=

1

2

(
l2s
2π

)3
ND7a

2

(
Iab − Ia′b

)
(7.47)

where we have used (4.3) as well as mI
a ωI =

[
ΓD7a

]
. We also utilised that

Iab′ = −Ia′b (7.48)

which is verified by employing (7.14) and noting that F+
is odd under Ω(−1)FL .

Comparing finally the Green-Schwarz contribution (7.47) to the anomaly (7.31), we
see that up to a numerical prefactor, (7.47) cancels the mixed abelian-non-abelian
anomaly.

Cubic Abelian Anomaly

For the cubic abelian anomaly, we need to compute the following Green-Schwarz
diagrams

fa −DI − CI − f 2
b , fa −DI − CI − f 2

b ,

fa −DI − CI − f 2
b′ , fa −DI − CI − f 2

b′ .
(7.49)

Performing the same steps as for the mixed abelian-non-abelian anomaly, we arrive
at

AGS
U(1)a−U(1)2

b
=

1

2

(
l2s
2π

)3

ND7a ND7b

(
Iab − Ia′b

)
, (7.50)

and by comparing with (7.32), we see that the Green-Schwarz contribution cancels
the cubic abelian anomaly up to the same prefactor as for the mixed abelian-non-
abelian anomaly.
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Mixed Abelian-Gravitational Anomaly

Finally, the mixed abelian-gravitational anomaly is computed schematically as

fa −DI − CI −R2 , fa −DI − CI −R2 . (7.51)

Utilising the couplings shown in table 7.2 as well as the D5- and D7-brane tadpole
cancellation conditions, we find

AGS
U(1)a−G2 = −

(
l2s
2π

)3
1

96

[
ND7a

∑
b,b′

1

l4s

∫
ΓD7b

ch1

(
F+

b

)
∧
[
ΓD7a

]
− 1

l4s

∫
ΓD7a

ch1

(
F+

a

)
∧

(∑
D7b

ND7b

([
ΓD7a

]
+
[
Γ′D7b

])
+ 4

∑
O7i

[
ΓO7i

])]

= −
(
l2s
2π

)3
ND7a

8

∑
O7i

IO7i a . (7.52)

By comparing with (7.33), we see that up to a numerical prefactor, the contribution
from the Green-Schwarz diagrams (7.52) has the right form to cancel the mixed
abelian-gravitational anomaly.

7.2.4 Massive U(1)s and Fayet-Iliopoulos Terms

To conclude this section, let us comment on massive U(1) factors and Fayet-
Iliopoulos terms.

Massive U(1)s

Using the definition of Chern characters given in (A.1), from equation (7.41) we
can determine the Stückelberg mass terms for the gauge bosons on the D7-branes
to be of the following form

Smass = − 1

l2s

∫
R3,1

∑
a,a′

fD7a ∧

(
ND7am

I
aDI +

1

l4s
DI ∧

∫
ΓD7a

ch1

(
F+

D7a

)
∧ ωI

)

= − 1

l2s

∫
R3,1

∑
D7a

fD7a ∧
(
ND7a

(
mI
a −mI

a′

)
DI (7.53)

+
1

l4s
DI ∧

∫
ΓD7a

ch1

(
F+

D7a

)
∧
(
ωI + σ∗ωI

))
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where in going from the first to the second line we employed that the gauge field
is odd under Ω(−1)FL together with equation (7.14). We then define the following
two mass matrices for the gauge fields on the D7-branes

Mia =
1

l4s

∫
ΓD7a

ch1

(
F+

a

)
∧
(
ω + σ∗ω

)
i
, M ı̂

a = ND7a

(
ma −ma′

)ı̂
, (7.54)

with i = 1, . . . , h1,1
+ and ı̂ = 1, . . . , h1,1

− . Therefore, the massless (linear combina-
tions of) U(1) gauge fields on the D7-branes are those which are in the kernel of
the combined matrix

MIa =

[
Mia

δı̂ ̂M
̂
a

]
. (7.55)

Along the same lines as for the D7-branes, for the gauge fields on the D3-branes
we find that due to the orientifold images, there are no mass terms

Smass = − 1

l2s

∫
R3,1

∑
b,b′

fD3b ∧ D0 ND3b = 0 . (7.56)

Fayet-Iliopoulos Terms

Next, with the help of (7.54), we can determine the form of the Fayet-Iliopoulos
terms for the D7-branes. Observing that the mass matrices (7.54) correspond to
the holomorphic Killing vectors of the gauged isometry associated to Ti as well as
to Gı̂ and using the derivatives (3.23) of the Kähler potential, we can compute the
Fayet-Iliopoulos terms in the following way

ξa ∼ Mia
∂K
∂Ti
− iM ı̂

a

∂K
∂Gı̂

∼ − 1

2 l42

e−
φ
2

V̂ + ξ̂
2

(
2

∫
ΓD7a

ch1

(
F+

a

)
∧ J +

∫
ΓD7a−Γ′D7a

ND7a B
−
2 ∧ J

)

∼ − 1

l42

e−
φ
2

V̂ + ξ̂
2

∫
ΓD7a

ch1

(
Fa
)
∧ J ,

(7.57)

where a sum over repeated indices i and ı̂ is understood. Note that we employed
the definition (A.1) as well as (7.14) together with (2.3), and we have not been
careful with numerical prefactors.

Furthermore, in view of the D-term potential (3.7), in the case of vanishing VEVs
for the matter fields we see that the Fayet-Iliopoulos term (7.57) in general leads
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to a non-zero D-term potential and thus supersymmetry is broken. In order for
the D7-brane under consideration to preserve supersymmetry, the FI term (7.57)
has to vanish which reproduces the supersymmetry condition already stated in
equation (4.6) (

J ∧ ch1

(
F
) )∣∣∣

ΓD7

= 0 . (7.58)

7.3 D9- and D5-Branes for the O3-/O7-System

In the preceding sections of this chapter, we have studied the tadpole cancellation
conditions and the generalised Green-Schwarz mechanism for type IIB orientifolds
with D3- and D7-branes. However, it is possible to introduce also D9- and D5-
branes which modify the tadpole cancellation conditions and therefore also the
discussion for the chiral anomalies.

The reason for usually not considering D9- and D5-branes is that the orientifold
projection maps them to anti-D9- and anti-D5-branes which are supersymmetric
only at particular points in moduli space. Nevertheless, we can study the tadpole
cancellation conditions and the chiral anomalies for such D-brane setups which we
will do in some detail in the following.

7.3.1 Tadpole Cancellation Conditions

In order to determine the tadpole cancellation conditions, let us recall equation
(7.10) and be more concrete about how the orientifold projection acts on the
manifold a D9- or D5-brane is wrapping. In particular, we find

Γ′D9 = −ΓD9 , Γ′D5 = −σ ΓD5 , (7.59)

where ΓD9 = X is invariant under the holomorphic involution σ and ΓD5 is a two-
cycle in X wrapped by a D5-brane. Furthermore, note that we are also allowed to
turn on gauge flux FD9 and FD5 on the D9- respectively D5-branes which is odd
under Ω(−1)FL .

D9-Brane Tadpole Cancellation Condition

In a very similar way as in section 7.1, we can now compute the D9-brane tadpole
cancellation condition. The variation of the Chern-Simons action (7.4) with respect
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to C10 reads

δC10SCS
D9 = −2π

l10
s

κ9

∫
R3,1×X

δC10 ∧
[
ΓD9

]
∧ ch0

(
FD9

)
, (7.60)

where [ΓD9] is the Poincaré dual of ΓD9 in X , which is a zero-form, and the sign κ9

had been introduced in equation (2.32). Denoting the total number of D9-branes
with gauge flux F a by ND9a = ch0(FD9a), we find for the equation of motion
originating from C10 that

0 = κ9

∑
D9a

ND9a

([
ΓD9a

]
+
[
Γ′D9a

])
. (7.61)

D7-Brane Tadpole Cancellation Condition

For the D7-brane tadpole cancellation condition, we compute the variation of the
D9-brane Chern-Simons action with respect to C8 as

δC8SCS
D9 =− 2π

l10
s

κ9

∫
R3,1×X

δC8 ∧
[
ΓD9

]
∧ ch1

(
FD9

)
. (7.62)

Taking into account the orientifold images and combining (7.62) with the variations
of the D7-brane, O7-plane and bulk action (7.8) respectively (7.2), we find the
following tadpole cancellation condition

κ7

∑
a,a′

ND7a [ΓD7a ] + κ9

∑
b,b′

[
ΓD9b

]
∧ ch1

(
FD9b

)
= 8κ7

∑
O7i

[ΓO7i ] (7.63)

where the prime denotes the image under the orientifold projection Ω(−1)FLσ.
However, in its present form (7.63) still depends on the continuous fields B−2 which
is not desirable. But, writing out the first Chern character as

ch1

(
FD9

)
= ch1

(
F+

D9

)
+ND9B

−
2 , (7.64)

and noting that B−2 is even under Ω(−1)FLσ while [ΓD9] is odd, we see that the

dependence of (7.63) on B−2 vanishes. We can thus simply replace F → F+
in the

D7-brane tadpole cancellation condition above.
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D5-Brane Tadpole Cancellation Condition

Let us continue with the equation of motion for C6. The variation of the D9-brane
Chern-Simons action is computed as

δC6SCS
D9 =− 2π

l10
s

κ9

∫
R3,1×X

δC6 ∧
[
ΓD9

]
∧

(
ch2

(
FD9

)
+ l4s ND9

c2

(
X
)

24

)
, (7.65)

where we observed that the tangential bundle of a D9-brane is equal to the tan-
gential bundle of R3,1 × X . The contribution of a D5-brane to the equation of
motion of C6 is found to be

δC6SCS
D5 = −2π

l10
s

κ5

∫
R3,1×X

δC6 ∧
[
ΓD5

]
∧ ch0

(
FD5

)
, (7.66)

where [ΓD5] denotes the Poincaré dual of ΓD5 in X . Taking into account the orien-
tifold images and combining (7.65) as well as (7.66) with the variations computed
in (7.7) and (7.2), we arrive at

0 =

∫
X
ωI ∧

[
κ7

∑
a,a′

[
ΓD7a

]
∧ ch1

(
ϕ∗FD7a

)
+κ9

∑
b,b′

[
ΓD9b

]
∧
(

ch2

(
FD9b

)
+ l4s ND9b

c2

(
X
)

24

)

+κ5

∑
c,c′

[
ΓD5c

]
ND5c

] (7.67)

where {ωI} is again a basis of (1, 1)-forms on X . Since (7.67) still depends on B−2 ,
let us employ (7.16) to separate out the B−2 part from the first Chern character
and use the definition (A.1) to write the second Chern character as

ch2

(
FD9

)
= ch2

(
F+

D9

)
+ ch1

(
F+

D9

)
∧B−2 +

ND9

2

(
B−2
)2
. (7.68)

Utilising then the D7-brane tadpole condition (7.63), we see that the dependence

of (7.67) on B−2 vanishes, and so we can simply replace F → F+
in (7.67).

D3-Brane Tadpole Cancellation Condition

To finish our discussion of the tadpole cancellation conditions, let us turn to the
equation of motion for C4. The variation of the D9-brane Chern-Simons action is
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calculated as

δC4SCS
D9 = −2π

l10
s

κ9

∫
R3,1×X

δC4 ∧
[
ΓD9

]
∧
(

ch3

(
FD9

)
+ l4s

c2

(
X
)

24
∧ ch1

(
FD9

))
,

(7.69)

while for the D5-brane action we find

δC4SCS
D5 = −2π

l10
s

κ5

∫
R3,1×X

δC4 ∧
[
ΓD5

]
∧ ch1

(
ϕ∗FD5

)
. (7.70)

Taking into account the orientifold images and combining the two expressions
above with (7.6) as well as (7.2), we arrive at

4Nflux =
κ7

l6s

∑
a,a′

∫
X

[
ΓD7a

]
∧
(

ch2

(
ϕ∗FD7a

)
+ l4s ND7a

c2

(
ΓD7a

)
24

)

+
κ7

l6s

∑
O7i

∫
X

[
ΓO7i

]
∧
(
l4s
c2

(
ΓO7i

)
6

)

+
κ9

l6s

∑
b,b′

∫
X

[
ΓD9b

]
∧
(

ch3

(
FD9b

)
+ l4s ch1

(
FD9b

)
∧
c2

(
X
)

24

)
+
κ5

l6s

∑
c,c′

∫
X

[
ΓD5c

]
∧ ch1

(
ϕ∗FD5c

)
+
κ3

l6s

∑
d,d′

∫
X

[
ΓD3d

]
ND3d

+
κ3

l6s

∑
O3j

∫
X

[
ΓO3j

](
−1

2

)

(7.71)

where [ΓD3] = X denotes the Poincaré dual of ΓD3 in X . Note that we have
organised the appearing terms for later convenience. Similarly as in the previous
cases, the dependence of this tadpole cancellation condition on the continuous
fields B−2 should vanish. And indeed, using the definition (A.1), we can write the
third Chern character as

ch3

(
FD9

)
= ch3

(
F+

D9

)
+ ch2

(
F+

D9

)
∧B−2 +

1

2
ch1

(
F+

D9

)
∧
(
B−2
)2

+
ND9

3!

(
B−2
)3
,

(7.72)
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while for the first and second Chern character we use (7.64) respectively (7.68).
The terms in (7.71) involving B−2 can then be summarised as

1

l6s

∑
a,a′

∫
X
B−2 ∧

[
ΓD7a

]
∧ ch1

(
ϕ∗F

+

D7a

)
+
κ9

l6s

∑
b,b′

∫
X
B−2 ∧

[
ΓD9b

]
∧
(

ch2

(
F+

D9b

)
+ l4s ND9b

c2

(
X
)

24

)
+
κ5

l6s

∑
c,c′

∫
X
B−2 ∧

[
ΓD5c

]
ND5c ,

(7.73)

which cancel due to the D5-brane tadpole cancellation condition (7.67). In a very
similar way as in section 7.1, we see that the terms in (7.71) proportional to (B−2 )2

have to vanish due to the D7-brane tadpole cancellation condition (7.63). Finally,
using (7.72), we observe that the terms proportional to (B−2 )3 vanish, due to the

tadpole cancellation condition (7.61). In (7.71), we can therefore replace F → F+
.

7.3.2 Chiral Spectrum

After having explicitly determined the tadpole cancellation conditions for a com-
bined system of D9-, D7-, D5- and D3-branes, we will now formulate them in a
more compact way. This will allow us to infer the rules for determining the chiral
spectrum from the vanishing of the cubic non-abelian anomaly more easily.

Summary of Tadpole Cancellation Conditions

In order to express the tadpole cancellation conditions of the last subsection in
a unified way, following for instance [109] (see also [77, 78, 107]), we define the
charges 2

Q
(

ΓDp ,F
+

Dp

)
= κp

[
ΓDp

]
∧ ch

(
ϕ∗F

+

Dp

)
∧

√√√√ Â(RTDp

)
Â
(
RNDp

) ,
Q
(

ΓOp

)
= κp Qp

[
ΓDp

]
∧

√
L
(
RTDp

/4
)

L
(
RNDp

/4
) .

(7.74)

2Note that we actually have to formulate these expressions in terms of sheaves. A naive way
to compensate for this inaccuracy is to evaluate the Chern characters on the submanifold they
are defined on whenever possible.
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The quantities involved here had been introduced around equation (7.4), but let
us note once more that [Γ] denotes the Poincaré dual of Γ in X , the R-R charge
of the O-planes was Qp = −2p−4 and that the signs κp = ±1 had been introduced
in (2.32).

By comparing the charges (7.74) with the explicit tadpole cancellation conditions
(7.61), (7.63) and (7.67), we observe that the Dp-brane tadpoles for p = 9, 7, 5 can
be expressed in the following way

0 =
∑

Dq,Dq′

Q
(

ΓDq ,F
+

Dq

)
+
∑
Oq

Q
(

ΓOq

)∣∣∣∣
(9−p)−form

. (7.75)

In (7.75), the restrictions selects to the zero-, two- and four-form part, and the
sums in this and the following formulas run over all Dp-branes as well as over all
Op-planes. Concretely, this means∑

Dq,Dq′

=
∑
D9a

+
∑
D9a′

+
∑
D7b

+ . . .+
∑
D3d′

,
∑
Oq

=
∑
O7i

+
∑
O3j

. (7.76)

By comparing the charges (7.74) with the explicit form of the D3-brane tadpole
(7.71), we see that, using (7.3), this condition can be expressed as

−H3 ∧ F 3 =
∑

Dq,Dq′

Q
(

ΓDq ,F
+

Dq

)
+
∑
Oq

Q
(

ΓOq

)∣∣∣∣
6−form

. (7.77)

Rules for Determining the Chiral Spectrum

Let us now state the rules for computing the chiral spectrum in the present context.
These are inferred from the requirement that the cubic non-abelian anomaly should
vanish using solely the tadpole cancellation condition. For that purpose, following
for instance [109], we define

IDpDq =
1

NDpNDq

∫
X
Q
(

ΓDp ,F
+

Dp

)
∧Q

(
ΓDq ,−F

+

Dq

)
,

IOpDq =
1

NDq

∫
X
Q
(

ΓOp

)
∧Q

(
ΓDq ,−F

+

Dq

)
.

(7.78)

Note that here the prefactor is again due to the fact that we are counting represen-
tations instead of the chiral number of massless excitations. The multiplicities of
the bi-fundamental and the symmetric as well as anti-symmetric representations
in terms of these indices are given in table 7.3.
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Representation Multiplicity(
NDp, NDq

)
IDpDq(

NDp, NDq

)
IDp′Dq

SDp
1
2

(
IDp′Dp + 1

4

∑
Oq

IOqDp

)
ADp

1
2

(
IDp′Dp − 1

4

∑
Oq

IOqDp

)

Table 7.3: Rules for determining the chiral spectrum for a combined system of
D9-, D7-, D5- and D3-branes in the context of type IIB orientifolds with O3- and
O7-planes. The sums run over all O-planes as in equation (7.76).

7.3.3 Chiral Anomalies

The expressions in table 7.3 had been adjusted to the fact that the generalised
Green-Schwarz mechanism does not provide any terms to cancel the cubic non-
abelian anomaly. This anomaly therefore has to vanish due to the tadpole cancel-
lation conditions which we verify now. In particular, using (7.28) and table 7.1,
we compute

ASU(NDp)3 =
∑

Dq 6=Dp

NDq

(
IDqDp + IDq′Dp

)
+
(
NDp + 4

) 1

2

(
IDp′Dp + 1

4

∑
Oq

IOqDp

)
+
(
NDp − 4

) 1

2

(
IDp′Dp − 1

4

∑
Oq

IOqDp

)
=
∑
Dq

NDq

(
IDqDp + IDq′Dp

)
+
∑
Oq

IOqDp

=
1

NDp

∫
X

( ∑
Dq,Dq′

Q
(

ΓDq ,F
+

Dq

)
+
∑
Oq

Q
(

ΓOq

))
∧Q

(
ΓDp ,−F

+

Dp

)
.

(7.79)

Employing then the tadpole cancellation conditions (7.75) and (7.77) together
with the explicit form of the charges (7.74), we see that the anomaly (7.79) can
be simplified to

ASU(ND3)3 = ASU(ND5)3 = ASU(ND7)3 = 0 ,

ASU(ND9)3 = − κ9

ND9

∫
ΓD9

H3 ∧ F3
Freed-Witten

= 0 .
(7.80)
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For D9-branes, the cubic non-abelian anomaly vanishes due to the Freed-Witten
anomaly cancellation condition [50] shown in equation (4.10) which says that H3

restricted to a D-brane has to be zero.

Along the same lines as in section 7.2.1, we can determine the mixed abelian-non-
abelian, the cubic abelian and the mixed abelian-gravitational anomalies to be of
the following form

AU(1)Dp−SU(NDq)2 =
1

2
δDp,Dq ASU(NDp)3 − 1

2
NDq

(
IDpDq − IDp′Dq

)
,

AU(1)Dp−U(1)2
Dq

=
NDp

3
δDp,Dq ASU(NDp)3 − NDp NDq

(
IDpDq − IDp′Dq

)
,

AU(1)Dp−G2 = NDp ASU(NDp)3 − 3

4
NDp

∑
Oq

IOqDp .

(7.81)

We are not going to show that the dimensional reduction of the Chern-Simons ac-
tions (7.4) provides the required Green-Schwarz couplings to cancel these anoma-
lies. This can be done in a very similar way as in section 7.2.

7.3.4 Massive U(1)s and Fayet-Iliopoulos Terms

We finish this section with a discussion of massive U(1)s and the Fayet-Iliopoulos
terms. For the case of D7- and D3-branes, this has been done in section 7.2.4 so
here we will focus on the D5- and D9-branes. Furthermore, we will consider only
diagonally embedded abelian fluxes on the D5- and D9-branes in order to simplify
the discussion.

Focus on D5-Branes

To determine the couplings of the U(1) gauge bosons associated to the D5-branes
to the R-R p-form potentials Cp, let us expand the two-cycle the D5-brane is
wrapping as

ΓD5 = mD5 I ΣI , (7.82)

where {ΣI} denotes the basis of two-cycles introduced in table 2.1. Writing then
out the Chern characters as in equation (7.40), we obtain

Smass = −κ5

l2s

∫
R3,1

∑
a,a′

fD5a ∧
(
ND5aD

I ∧ 1

l2s

∫
ΓD5a

ωI +D0 ∧
1

l2s

∫
ΓD5a

ch1

(
F+

D5a

))
= −κ5

l2s

∫
R3,1

∑
a

fD5a ∧
(
ND5a

(
mD5a I +mD5a′ I

)
DI

)
, (7.83)
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where the term involving ch1(F+
) vanishes due to its orientifold image. The mass

matrix for the U(1) gauge bosons on the D5-branes therefore reads

MiD5a = ND5a

(
mD5a +mD5a′

)
i
. (7.84)

Recalling the derivative of the Kähler potential with respect to Ti given in equation
(3.23) and noting that (7.84) corresponds to the holomorphic Killing vectors of the
gauged isometry associated to Ti, we can determine the form of the Fayet-Iliopoulos
term of a D5-brane as

ξD5a ∼ MiD5a

∂K
∂Ti

= − 1

l2s

e−
φ
2

V̂ + ξ̂
2

∫
ΓD5a

ch0

(
FD5a

)
J . (7.85)

Note that in the case of vanishing VEVs for matter fields on the D5-brane or
in the absence thereof, the Fayet-Iliopoulos term (7.85) in general gives rise to a
non-vanishing D-term and so supersymmetry is broken. Only in the special case
when (7.85) is vanishing, that means the D5-brane wraps a cycle of zero volume
Vol(ΓD5) =

∫
ΓD5

J = 0, supersymmetry will be preserved.

Focus on D9-Branes

In order to study the mass matrix and Fayet-Iliopoulos terms for the D9-branes,
let us expand the R-R eight-form potential C8 in the following way

C8 = D0 ∧ dvolX . (7.86)

Writing out the fourth Chern character similarly as in (7.40), we can determine
the mass terms for the U(1) gauge bosons on the D9-branes as

Smass =− κ9

l2s

∫
R3,1

∑
a,a′

fD9a ∧

[
D0 ∧

[
ΓD9a

]
ND9a

+DI ∧
1

l6s

∫
ΓD9a

σI ∧ ch1

(
F+

D9a

)
+DI ∧ 1

l6s

∫
ΓD9a

ωI ∧

(
ch2

(
F+

D9a

)
+ l4s ND9a

c2

(
X
)

24

)

+D0 ∧
1

l6s

∫
ΓD9a

(
ch3

(
F+

D9a

)
+ l4s ch1

(
F+

D9a

) c2

(
X
)

24

) ]
.

(7.87)
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Taking into account the explicit expression for the orientifold images, we see that
the couplings fD9∧D0 in the last line of (7.87) vanish. From the remaining terms,
we determine the following mass matrices

fD9a −D0 : M0 D9a = 2ND9a ,

fD9a −DI : M ı̂
D9a =

1

l6s

∫
X

ch1

(
F+

D9a

)
∧
(
σI − σ∗σI

)
, (7.88)

fD9a −DI : MiD9a =
1

l6s

∫
X

(
ch2

(
F+

D9a

)
+ l4s ND9a

c2

(
X
)

24

)
∧
(
ω + σ∗ω

)
i
,

where σ∗σI denotes the image of the basis four-form σI under the holomorphic
involution σ. The Fayet-Iliopoulos terms for the D9-branes are then computed
similarly as in the previous cases using the derivatives (3.23) of the Kähler poten-
tial. Concretely, by employing (7.20) we find

ξD9a ∼ MiD9a

∂K
∂Ti
− iM ı̂

D9a

∂K
∂Gı̂

+M0 D9a

∂K
∂S

∼ − e−
φ
2

V̂ + ξ̂
2

[
ND9a e

3
2
φ
(
V̂ + 2 ξ̂

)
+

1

l6s

∫
X

(
ch2

(
FD9a

)
+ l4s ND9a

c2

(
X
)

24

)
∧ J

]
.

(7.89)

An Observation Concerning the Fayet-Iliopoulos Terms

Let us now take a closer look at (7.89) and recall the definitions introduced in

equations (3.13), (3.14) and (3.22). In particular, using ζ(2)
(2π)2 = 1

24
with ζ(n) the

Riemann ζ-function as well as α′ = l2s/(2π)2, we can rewrite (7.89) in the following
way

ξD9a ∼ −
1

l6s

e−
φ
2

V̂ + ξ̂
2

∫
X

(
ch0

(
FD9a

)
+ ch2

(
FD9a

))
∧ e−J ∧(

1 +
∑
n=2,3

(2πα′)n ζ(n) cn
(
X
))

.

(7.90)

Note that the α′-correction to the Kähler potential encoded in ξ, that is the n = 3
term in the sum above, fits together nicely with the n = 2 term corresponding to
the gravitational contribution to the Chern-Simons action of the D-branes.
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Finally, recalling from equations (7.57) and (7.85) the form of the Fayet-Iliopoulos
term for the D7- respectively D5-branes, we can summarise them in the following
way

ξD3 ∼ 0 ,

ξD5 ∼ −
1
l2s

e−
φ
2

V̂ + ξ̂
2

∫
ΓD5

ch0

(
FD5

)
∧ eJ ,

ξD7 ∼ −
1
l4s

e−
φ
2

V̂ + ξ̂
2

∫
ΓD7

ch1

(
FD7

)
∧ eJ ,

ξD9 ∼ −
1
l6s

e−
φ
2

V̂ + ξ̂
2

∫
ΓD9

(
ch0

(
FD9

)
+ ch2

(
FD9

))
∧ e−J ∧

(
1 +

∑
n=2,3

(2πα′)n ζ(n) cn
(
ΓD9

))
.

(7.91)

Note that given the structure of the D9-brane FI term, one would expect for
instance also c2(ΓD7) corrections to the D7-brane result. In order to derive these,
one has to redo the analysis of [66, 67] by taking into account the Â-terms in the
D-brane Chern-Simons action. However, this program is beyond the scope of this
thesis.

7.4 Summary

In the present chapter and in chapter 4, we have studied and presented some as-
pects of model building constraints relevant for type IIB String Theory compacti-
fications on orientifolds of compact Calabi-Yau manifolds with O3- and O7-planes.

� In particular, in chapter 4 we have given an overview on model building con-
straints relevant for type II orientifold constructions.

� In section 7.1 we have determined in detail the tadpole cancellation conditions
in the context of orientifolds with O3- and O7-planes. We have seen that in the
presence of O7-planes we are forced to introduce D7-branes, possibly endowed
with gauge flux, and a combination of D3-branes and background flux.

Furthermore, for an orientifold projection Ω(−1)FLσ leading to h1,1
− 6= 0, that

is there are two- and four-cycles anti-invariant under the holomorphic in-
volution σ, in general the D5-brane tadpole cancellation conditions lead to
non-trivial constraints. This has already been mentioned in [145], however,
here we have worked out this condition in detail.

� In section 4.2, we have summarised the rules for computing the chiral spectrum
for a configuration of D3- and D7-branes. More concretely, we have seen that
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chiral matter is only possible for D7-branes which are endowed with gauge
flux.

In section 7.2, we have then determined the chiral anomalies for a general
configuration of D7-branes on a smooth Calabi-Yau three-fold, and we have
shown that these anomalies are cancelled via the generalised Green-Schwarz
mechanism. Note that the D7- as well as the D5-brane tadpole conditions
were crucial in order to obtain this cancellation.

� Utilising the computation of the Stückelberg mass terms for the gauge bosons
on the D7-branes, we were also able to determine the form of the Fayet-
Iliopoulos terms for D7-branes. In this way, we verified the supersymmetry
condition (4.6) for D7-branes.

� Finally, in section 7.3, we have generalised the analysis of the preceding sec-
tions of this chapter by including also D9- and D5-branes. More concretely,
we have worked out the tadpole cancellation conditions for this case in de-
tail, and by utilising the requirement that these ensure the vanishing of the
cubic non-abelian anomaly, we were able to determine a general set of rules
for computing the chiral spectrum of the combined system of D9-, D7-, D5-
and D3-branes. These rules have been summarised in table 7.3. We have also
computed the Fayet-Iliopoulos terms for D9- and D5-branes in such a setup,
and observed an interesting structure.
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Chapter 8

Applications of the D-Brane
Instantons Calculus

In this chapter, we are concerned with the second main topic of this thesis, namely
D-brane instantons. After having given an introduction to the D-brane instanton
calculus in chapter 5, we are now going to use this formalism to derive the so-called
Affleck-Dine-Seiberg (ADS) superpotential in the context of String Theory, and
we are going to derive a constraint for moduli stabilisation in type IIB orientifolds
in the presence of an MSSM sector.

8.1 The ADS Superpotential

We begin with Affleck-Dine-Seiberg (ADS) superpotential [150] in order to illus-
trate the instanton calculus presented in chapter 5.

The ADS Superpotential in Field Theory

Let us first discuss the ADS superpotential in the Field Theory context. (For a
nice and short review on this subject, please see [151].) We consider supersymmet-
ric QCD (SQCD) which is a supersymmetric extension of QCD with Nf flavours

of chiral superfields Φf and Nf flavours of chiral anti-superfields Φ̃f . These are
coupled to a SU(Nc) super Yang-Mills theory such that the Φf transform in the

fundamental and the Φ̃f transform in the anti-fundamental respresentation of the
gauge group SU(Nc). Therefore, Φf and Φ̃f can be written as matrix valued fields

Φcf and Φ̃fc where the so-called colour index takes values c = 1, . . . , Nc while for
the flavour index we have f = 1, . . . , Nf .
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Concerning the superpotential, we take W to vanish at the classical level which
then implies, as it can be shown, that the superpotential is zero to all orders
in perturbation theory. Therefore, the only possibility to obtain a non-vanishing
contribution to W is via non-perturbative effects. By employing the symmetries
of the theory, one finds that such a non-perturbative superpotential has to be of
the form

W ∼
(

det
[
Φ̃Φ
])− 1

Nc−Nf . (8.1)

In the case of Nf < Nc − 1, this superpotential is generated by gaugino condensa-
tion, however, in the situation where

Nf = Nc − 1 , (8.2)

the superpotential (8.1) is generated by instantons. This has been shown by Af-
fleck, Dine and Seiberg in the paper [150] and thus the corresponding superpoten-
tial is usually abbreviated by ADS. Introducing then Λ as the scale of the effective
theory, on dimensional grounds the Affleck-Dine-Seiberg superpotential takes the
form

WADS =
Λ2Nc+1

det
[
Φ̃Φ
] . (8.3)

Engineering SQCD in String Theory

In order to derive the ADS superpotential in the context of String Theory, let us
now describe how to (locally) engineer SQCD via D-branes. Since the original
paper [51] on the derivation of the ADS superpotential was formulated in terms
of type IIA String Theory, in this section we switch from type IIB to type IIA,
however, our discussion similarly applies to the type IIB case.

In the type IIA situation, we are considering again an orientifold of a Calabi-
Yau three-fold X but this time introduce space-time filling D6-branes wrapping
three-cycles in the compactification manifold. Since most of the model building
techniques introduced in chapter 4 can straightforwardly be applied to the type
IIA case, we do not present a detailled introduction to model building with D6-
branes but refer to the reviews [34,35]. In any case, here we consider the following
configuration.

� We take a stack of Nc colour D6-branes wrapping a three-cycle Γc in X which
is not invariant under the orientifold projection. In order to just obtain an
N = 1 super Yang-Mills theory on these branes, we assume that the three-
cycle is rigid and preserves supersymmetry [152], that means Γc has to be
special Lagrangian.
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� Next, we consider a stack of Nf flavour D6-branes wrapping a special La-
grangian cycle Γf in X , again not invariant under the orientifold projection.
Since we are interested in SQCD, we do not want chiral but vector-like bi-
fundamental matter between these two stacks of branes.

Therefore, we assume that the intersections of the cycle Γc and Γf are such
that there are precisely two representations Φcf and Φ̃fc transforming as bi-
fundamentals (of opposite chirality) under U(Nc)× U(Nf).

� Furthermore, due to the orientifold projection, we have to introduce the orien-
tifold images of the colour and flavour branes. However, in order to obtain an
SQCD theory, we assume that there are no intersections between the branes
and their orientifold images as well as between the branes and the orientifold
plane. In this way, symmetric or anti-symmetric chiral matter is absent.

� So far, the resulting gauge theory has gauge group U(Nc) × U(Nf). In order
to obtain SQCD, we will first decouple the flavour gauge group by taking the
volume of the cycle Γf to infinity while keeping the volume of Γc finite, that is

Vol (Γf)→∞ , Vol (Γf) = finite . (8.4)

Since g−2
f ∼ Vol (Γf), in this limit the gauge coupling on the flavour branes gf

vanishes and the U(Nf) theory decouples.

Also, generically the subgroup U(1) ⊂ U(Nc) acquires a mass due to the
Green-Schwarz mass terms. (For type IIB orientifolds with O3- and O7-planes,
we have determined these mass terms in section 7.2.2.) Therefore, we are left
with a SU(Nc) gauge theory with 2×Nf flavours.

� After having specified the matter sector of our configuration, let us now turn
to the instanton. In particular, we consider an E2-brane instanton wrapping a
cycle ΓE which is located directly on top of Γc, i.e. the E2-brane instanton is on
top of the colour brane stack. The resulting zero-mode structure of this gauge
instanton as well as the matter content of the configuration is summarised in
figure 8.1.

� Let us finally make a technical remark. In order to obtain the Field Theory
result (8.3) and to neglect higher order instanton corrections, we are also
taking the limit α′ → 0. In this approximation, we can then for instance ignore
the one-loop amplitudes in the instanton correlation function (5.8) which will
simplify our calculations.
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Figure 8.1: Local SQCD brane configuration with resulting zero-modes. The
indices c and f take values c = 1, . . . , Nc respectively f = 1, . . . , Nf . The 4 × Nc

zero-modes b are of bosonic nature while the 2×Nc modes β and the 2×Nf modes
λ are fermionic. Finally, since we assume the instanton to not be invariant under
the orientifold projection, also the τ α̇ zero-modes are present.

Disc Amplitudes and Supersymmetry Conditions

After having explained the matter content and the instanton zero-mode struc-
ture of our configuration, let us now illustrate how the instanton zero-modes are
absorbed in disc diagrams. Since the matter fields and (most of) the instanton
zero-modes are described by boundary changing vertex operators, the disc dia-
grams to be evaluated correspond to closed loops in the quiver diagram 8.1. More
concretely, the following contribution of disc diagrams will be relevant in the sequel

βc Φ̃cf λ̃f + λf Φfc β̃c , (8.5)

1

2
bc

(
Φcf Φfc′ + Φ̃cf Φ̃fc′

)
bc′ +

1

2
b̃c

(
Φcf Φfc′ + Φ̃cf Φ̃fc′

)
b̃c′ , (8.6)

τ 1
(
β̃c bc + βc b̃c

)
+ τ 2

(
β̃c b̃c − βc bc

)
, (8.7)

where a sum over repeated indices is always understood. In addition to the disc
amplitudes, there are D- and F-term constraints for the instanton to be supersym-
metric which lead to the following expressions

Nc∑
c=1

[
bc b̃c + bc b̃c

]
= 0 ,

Nc∑
c=1

[
bc b̃c − bc b̃c

]
= 0 ,

Nc∑
c=1

[
bc bc − b̃c b̃c

]
= 0 . (8.8)

Note that after integrating over τ , equation (8.7) gives rise to the fermionic ADHM
constraints for a gauge instanton, and equation (8.8) states the bosonic ADHM
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constraints [117]. We finally mention that the D-term constraint on the Nc colour
branes leads to

Φ = Φ̃ , Φ̃ = Φ . (8.9)

Integration over Instanton Zero-Modes

Given the expressions for the disc amplitudes from the previous paragraph, we can
now compute correlation functions in the instanton background via the formalism
presented in chapter 5. Out of these correlators, we construct the superpotential
terms generated by the instanton. More concretely, in the Field Theory limit
α′ → 0 mentioned before, in the present case we find

SW ∼
∫
d4x d2Θ

Nc∏
c=1

d4bc d
2βc

Nf∏
f=1

d2λf δ
(
ADHM

)
×

× exp
(
SE2

)
exp

(
β Φ̃ λ̃+ λΦ β̃ + bΦΦ̃ b+ b̃ΦΦ̃ b̃

)
,

(8.10)

where the constraint (8.9) has already been employed and matrix products are
understood. Furthermore, the integration over the τ zero-modes has been per-
formed leading, together with (8.8), to the ADHM constraints implemented by
the δ-function.

Now, performing the integration over the fermionic instanton zero-modes β and λ
gives the condition

Nf = Nc − 1 (8.11)

in order for (8.10) to be non-vanishing. In this way, we recover the well-known
constraint of [150] mentioned in (8.2). The explicit computation for the fermionic
zero-mode integration in (8.10) can be found in the original work [51] and leads to

Iferm.

(
Φ, Φ̃, b, b̃

)
=

Nc∑
p,q=1

(−1)p+q
(
bp bq + b̃p b̃q

)
det
[
ΦΦ̃
∣∣
q,p

]
, (8.12)

where the symbol A|q,p denotes the matrix obtained from A by deleting the q’th
row and p’th column. The integration over the bosonic instanton zero-modes
b schematically gives a factor of (det[ΦΦ̃])−2 due to the Gaussian form of the
integrand. Concretely, one finds

Ibos.

(
Φ, Φ̃

)
=

1

det
[
Φ̃Φ
] . (8.13)
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Taking then into account the exponential of the instanton action, one arrives at

SW =
2π2

l3s

∫
d4x d2Θ

1

det
[
Φ̃Φ
] exp

(
− 8π2

g2
c (Ms)

)
, (8.14)

where gc(Ms) denotes the gauge coupling of the colour branes at the string scale
Ms. Transforming then to canonically normalised fields via Φ → (2πα′)1/2Φ re-

spectively Φ̃→ (2πα′)1/2Φ̃, introducing the dynamically generated scale Λ as(
Λ

µ

)3Nc−Nf

= exp

(
− 8π2

g2
c (Ms)

)
, (8.15)

(where µ denotes the renormalisation group scale) and absorbing numerical prefac-
tors into Λ, we can extract from (8.14) the ADS superpotential stated in equation
(8.3)

W =
Λ2Nc+1

det
[
Φ̃ Φ
] . (8.16)

Summary

We conclude this section with a brief summary.

� The final result (8.16) of our calculation in this section shows that indeed the
ADS superpotential from Field Theory can be reproduced in String Theory.
However, especially in view of absorbing instanton zero-modes, we have seen
that we had to make a number of assumptions. In case these are not satisfied, a
more detailled analysis is surely necessary. This implies in particular that one
cannot simply add the ADS superpotential to String Theory configurations
such as moduli stabilisation scenarios.

� Since for our configuration the ADS superpotential (8.16) is expected from
Field Theory considerations, the computation outlined in this section is a
non-trivial check of the instanton calculus developed in [54] and presented in
section 5.2.

� Furthermore, in our calculation we have taken a Field Theory limit in which for
instance all massive states in the one-loop amplitudes disappear. In fact, when
considering α′-corrections, the computation becomes much more involved as
then also matter field insertion for the loop amplitudes become relevant.

� Finally, we mention that a similar analysis can be performed for orthogonal
and symplectic gauge groups reproducing again the known results from Field
Theory [51].
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8.2 A Chiral Zero-Mode Constraint

After having discussed the ADS superpotential in the context of String Theory,
thereby verifying the D-brane instanton calculus presented in chapter 5, we now
turn to a constraint important for moduli stabilisation. Note that here we focus
again on type IIB orientifolds with O3- and O7-planes but our discussion equally
applies to other type II configurations.

Starting Point

In section 5.2, we have outlined the D-brane instanton calculus for type II orien-
tifolds. In particular, in this prescription one has to integrate over the instanton
zero-modes which have to be properly absorbed in disc and one-loop diagrams
in order to give non-vanishing contributions. In the present section, we will be
concerned with the chiral charged zero-modes and assume that the remaining in-
stanton zero-modes have been taken care of.

More concretely, chiral charged instanton zero-modes in the context of type IIB
orientifolds with D3- and D7-branes can originate from E3-brane instantons which
is related to the fact that chiral matter is possible between D7-branes. We as-
sume that such E3-instantons wrap supersymmetric rigid four-cycles ΓE in the
compactification manifold X which are invariant under the orientifold projection
Ω(−1)FLσ, that is

ΓE = mi
Eγi ∈ H4+(X ,Z) , F+

E ∈ H1,1

∂−

(
ΓE
)
, (8.17)

where mi
E ∈ Z are the wrapping numbers of the cycle ΓE in the basis {γi} ∈

H4+(X ,Z) introduced in table 2.1. Note that in general we are allowed to turn
on “gauge flux” on the instanton provided that F+

E is invariant under the full
orientifold projection. Therefore, in the single instanton case we are considering,

� the unwanted universal zero-modes τ α̂ are absent since the instanton wraps
a cycle invariant under the orientifold projection (and we assume that the
would-be gauge group is O(1)).

� The moduli instanton zero-modes are absent since we assume that the cycle
wrapped by the instanton to be rigid.

� We also assume that all vector-like charged instanton zero-modes are absent,
or can be properly absorbed such that their contribution to the correlation
function (5.8) is non-vanishing. We are thus left only with the chiral charged
instanton zero-modes.
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Chiral Charged Instanton Zero-Modes

We now turn to the chiral charged instanton zero-modes in more detail. If there
are D7-branes present in the setup, such modes are counted by the index (5.7). In
order to study this expression, we define the matrices

Ma I =
1

l6s

∫
X

ch1

(
ϕ∗F

+

a

)
∧
[
ΓD7a

]
∧ ωI ,

ME I =
1

l6s

∫
X

ch1

(
ϕ∗F

+

E
)
∧
[
ΓE
]
∧ ωI ,

(8.18)

where {ωI} ∈ H1,1

∂
(X ) denotes the basis of (1, 1)-forms introduced in table 2.1. Us-

ing this definition, with mI
a the wrapping numbers of a D7-brane and a summation

over repeated indices understood, we can express the index (5.7) as

Za E =Ma i m
i
E −ME I m

I
a . (8.19)

Let us now collect some more information about this expression. In particular, let
us assume we have intersecting D7-branes in our setup which give rise to chiral
matter. Expressing the index (4.3) counting chiral matter between D7-branes in
terms of the matrices (8.18), we find

Iab =
Ma I

ND7a

mI
b −
Mb I

ND7b

mI
a 6= 0 (8.20)

for some D7-branes a and b. From (8.20) it then follows that the rank of the matrix
M has to be non-vanishing, that is

rk
(
Ma I

)
6= 0 . (8.21)

Taking into Account an MSSM Sector

Let us furthermore assume that in our setup the MSSM (or some extension of it)
is realised via intersecting D7-branes with gauge flux. For simplicity, we focus on
the case h1,1

− = 0 while the more subtle situation with h1,1
− 6= 0 is discussed in

appendix E.

In view of moduli stabilisation of Kähler moduli discussed in chapter 6, let us
consider a setup with h1,1

+ E3-instantons of type O(1) wrapping cycles ΓEΛ with
Λ = 1, . . . , h1,1

+ which are all linearly independent. For instance, usually one takes
ΓEΛ = γi δiΛ with {γi} the basis for H4+(X ,Z) introduced in table 2.1 so that all
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Kähler moduli appear in the superpotential via non-perturbative effects. Next,
because h1,1

− = 0, we see from (8.17) that we cannot turn on flux F+

E on the
instantons which for the matrix ME I defined in equation (8.18) implies that

ME I = 0 . (8.22)

With these assumptions and observations, we are now ready to present our main
line of arguments.

� One of the important features of the Standard Model respectively the MSSM
is chirality. In the present case this means that, as mentioned in (8.20),
Iab 6= 0 for some D7-branes a and b implying equation (8.21), that is rk(Ma I)
is non-vanishing.

� Therefore, from (8.19) together with (8.22) we see that rk(Ma I) of the h1,1

linearly independent E3-instantons will have chiral charged instanton zero-
modes with the MSSM D7-branes.

� In applying the formalism from section 5.2, we see that if these instanton zero-
modes can be absorbed in disc or one-loop diagrams leading to a non-vanishing
contribution to the superpotential, it has to be of the form

W ∼
∏
i

ΦMSSM
i eSEp

(8.23)

for a string instanton. The reason for the appearance of the MSSM fields is
illustrated in figure 8.2. In particular, since the chiral instanton zero-modes
correspond to boundary changing vertex operators, the disc has to involve
bi-fundamental MSSM matter fields.

� Finally, in order to not break the gauge symmetries, the MSSM fields ΦMSSM
i

have to acquire a vanishing VEV〈
ΦMSSM
i

〉
= 0 , (8.24)

implying that (8.23) has to vanish. Thus, at least rk(Ma I) of the h1,1 linearly
independent E3-instantons will not appear in the non-perturbative superpo-
tential.

� Therefore, in the context of Kähler moduli stabilisation for type IIB orien-
tifolds with O3- and O7-planes, at least rk(Ma I) (linear combinations of)
Kähler moduli do not appear in the non-perturbative superpotential and will
not be stabilised via non-perturbative effects.

Clearly, in view of phenomenology this is a severe problem since, as we mentioned
in the introduction to this work, moduli fields are not in agreement with experi-
ment. However, we will provide a solution to this issue in chapter 9.
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λ λ̃

ΦMSSM
ab ΦMSSM

cd

. . .

a

b c

d

E

Figure 8.2: Illustration for the absorption of chiral MSSM charged instanton zero-
modes. In particular, the MSSM branes are labelled by a, b, . . . , c, d and at least one
of the ΦMSSM has to correspond to a boundary changing operator.

A More Detailled Analysis

In the last paragraph, we have presented our main line of arguments for the impli-
cation of an MSSM sector for instanton contributions to the superpotential. Let
us now discuss this reasoning in some more detail.

� As mentioned before, the case with h1,1
− 6= 0 is somewhat more subtle and is

discussed in appendix E.

� Next, there are MSSM fields, namely the Higgs doublets, which do acquire
non-vanishing vacuum expectation values. However, in this case a mass term
of the generic order of the string scale will be generated via the D-term po-
tential (3.5). Since the MSSM gauge symmetry breaking and mass generation
should occur as usual at the low scale in the process of supersymmetry break-
ing, also the Higgs should acquire a vanishing VEV in our discussion.

� In the last paragraph, we have discussed the contribution of a string instanton
to the superpotential. In the case of a gauge instanton, as we have seen in
section 8.1, the generated terms in the superpotential are of the schematic
form

W ∼ 1∏
i Φ

MSSM
i

eSEp . (8.25)

As one can see, having a vanishing VEV for the MSSM fields is problematic.
Therefore, such an instanton should not appear in the superpotential and thus
the corresponding Kähler modulus will not be stabilised.

� As mentioned in section 8.1, very similar to the gauge instantons are gaugino
condensates [153] which lead to a contribution of the same form as (8.25).
However, gauge theories with gaugino condensation are not allowed to have
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chiral matter and therefore such a configuration cannot be part of the MSSM.
In this way, we arrive at the same conclusion as for the instantons.

� Next, let us be more precise about the matter fields. There are in principle
three types.

– There are chiral MSSM fields ΦMSSM transforming under the MSSM
gauge group, or some extension thereof, such as G = U(5) × U(1),
G = U(4)× U(2)× U(2) or G = U(3)× U(2)× U(1)× U(1).

– But, there can be additional chiral fields which arise from the same set
of intersecting D7-branes leading to so-called exotic matter fields Φexo

transforming in non-trivial representation of the non-abelian part of the
MSSM gauge group.

– In addition, in type II D-brane models one generically obtains extra U(1)
factors and so there can be fields Φabel which are not charged under the
MSSM gauge group SU(3)×SU(2)×U(1)Y but carry non-trivial charges
with respect to U(1)s orthogonal to U(1)Y .

Therefore, the instanton generated terms in the superpotential originating
from string instantons in general take the following schematic form

W ∼
∏
i

ΦMSSM
i

∏
j

Φexo
j

∏
k

Φabel
k eSEp . (8.26)

Now, as we have explained, in order not to break the gauge symmetries at
the string scale we require 〈ΦMSSM

i 〉 = 〈Φexo
j 〉 = 0. Of course, in a complete

model one would like to stabilise these matter fields in a dynamical way via
soft supersymmetry breaking terms, perturbative and non-perturbative con-
tributions to the superpotential as well as via D-terms at vanishing VEV. If
such a mechanism is at work, since they appear in the same open string sec-
tor, it is likely that also the fields Φabel

k are fixed at zero vacuum expectation
value. Therefore, with this assumption our general conclusion from the last
paragraph is not changed.

� So far, we have focused on the MSSM sector of a D-brane configuration. In
general, there exists a hidden sector possibly with further matter fields whose
D- and F-terms however do not mix with the Standard Model sector. This
sector can be important for instance for supersymmetry breaking, but it does
not play a role in our discussion here.
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8.3 Summary

To conclude our discussion about instantons, let us briefly summarise the results
obtained in chapter 5 and in the present chapter.

� In section 5.1, we have introduced our notation for the study of D-brane
instantons and we have analysed the instanton action as well as its relation
to closed string moduli fields. In particular, the action of a supersymmetric
E3-brane instanton wrapped on a basis cycle γi ∈ H4+(X ,Z) contains the
Kähler modulus Ti. Therefore, E3-brane instanton contributions to the non-
perturbative superpotential depend on the Kähler moduli.

Furthermore, we have discussed instanton zero-modes and how these are
counted.

� Next, in section 5.2 we have explained the instanton calculus developed in [54]
and employed in [51]. In particular, we stated a formalism for the computation
of correlation functions in the instanton background relevant for the superpo-
tential, and we have discussed the absorption of instanton zero-modes as well
as the schematic form of the resulting expressions.

� In section 8.1 of the present chapter, we have discussed an example for the
instanton calculus being the ADS superpotential. In particular, we have given
a setup locally realising SQCD, we have introduced an instanton, determined
its zero-modes and applied the formalism from section 5.2. As expected, we
obtained the ADS superpotential via a String Theory calculation [51], which
provides a non-trivial check of the calculus given in [54].

� Finally, in section 8.2 we have analysed how instanton generated terms in type
II String Theories are affected in the presence of an MSSM sector engineered
by D-branes. In particular, we have argued on general grounds that

If the MSSM is realised by D-branes with gauge flux, then at most
def (Ma I) linearly independent E3-brane instantons give a non-
vanishing contribution to the superpotential.

Here, we focused on the MSSM sector and the case h1,1
− = 0, and def (Ma I)

denotes the defect of the matrix Ma I defined in (8.18). This constraint has
important implications for the usual mechanisms to stabilise closed string
moduli discussed in chapter 6. In the next chapter, we are going to analyse
this point in detail.



Chapter 9

The LARGE Volume Scenario
with MSSM Sector

We now come to one of the main results in this work which is the combination
of the moduli stabilisation scenarios discussed in chapter 6 with an open string
sector realising the MSSM. As we have seen in section 8.2, in the presence of the
latter the contributions of D-brane instantons to the superpotential is restricted
and thus, contrary to the common opinion, not all of the Kähler moduli can be
stabilised in the usual way.

In this chapter, we are going to provide an approach of how to resolve this issue and
we discuss an explicit example in the context of the LARGE Volume Scenario [52].
Note that although we will focus on the LVS, our reasoning equally applies to the
KKLT scenario.

9.1 General Analysis

Starting Point

Before we actually begin, let us make clear our setup. In order to realise a LARGE
Volume Scenario, we consider a manifold which

� admits a swiss-cheese structure of the form stated in equation (6.22), that
is, we assume the overall volume of the compactification manifold X to be
expressible in terms of the four-cycle volumes τI in the following way

V = ηb

(
τb

) 3
2 −

h1,1∑
ı̃=2

ηı̃
(
τı̃
) 3

2 , ηb, ηı̃ ∈ R+ . (9.1)
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� Furthermore, we assume the manifold X to have a strictly negative Euler
characteristic in order to satisfy the second requirement for an LVS

χ(X ) < 0 , (9.2)

� and we assume that an orientifold projection can be chosen such that h1,1
− = 0

implying the absence of the Gı̂-moduli defined in equation (2.16).

� Finally, we now take into account an open string sector, more concretely inter-
secting D7-branes with gauge flux, which realises the MSSM or some extension
thereof. As we have seen in section 8.2, this implies that at least one of the
Kähler moduli will not appear in the superpotential via non-perturbative ef-
fects. Therefore, in order to stabilise moduli via the LARGE Volume Scenario,
we need at least one large Kähler modulus Tb and at least one small Kähler
modulus supporting an instanton. We therefore have the constraint 1

h1,1 ≥ 3 . (9.3)

With these assumptions, by the general reasoning presented in section 6.2, we
expect that a LARGE Volume Scenario can be realised. This implies in particular,
since V̂ � 1, we can perform an expansion of the scalar potential in powers of 1/V̂ .

Next, similar as in section 6.2, we assume that by a suitable choice of background
fluxes F 3 and H3 all complex structure moduli U and the axio-dilaton S can be
fixed at leading order in 1/V̂ via the Gukov-Vafa-Witten superpotential (6.1) in a
supersymmetric way. The corresponding F-term potential is displayed in (6.28),
and minimising this expression leads to

FU = 0 , FS = 0 . (9.4)

We finish this paragraph with one remark. As we have explained in section 4.5,
when turning on background flux H3 and considering D-branes, one has to worry
about the Freed-Witten anomaly. Therefore, we assume the D7-branes to wrap
rigid four-cycles ΓD7 in the compactification manifold X for which the pull-back of
any three-form from the ambient space X onto the four-cycle ΓD7 vanishes. This
implies that the Freed-Witten anomaly is always cancelled, and in this way we
also do not need to worry about open string moduli.

1For the KKLT scenario, the constraint reads h1,1
+ ≥ 2 since in this case no big Kähler modulus

is needed.
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Taking Into Account the MSSM

As we have just mentioned, in contrast to our discussion in chapter 6, we now
assume that the MSSM or some extension thereof is realised via intersecting D7-
branes with gauge flux. In particular, we introduce D7-branes wrapping four-cycles

ΓD7a = mI
a γI , (9.5)

in the internal manifold X where a labels the MSSM branes and {γI} is again the
basis of four-cycles introduced in table 2.1. Note that for ease of our discussion,
we only introduce MSSM D7-branes, but in general also hidden sector branes can
be present.

Next, we recall the constraint developed in section 8.2. We introduce h1,1 = h1,1
+

supersymmetric E3-brane instantons of type O(1) wrapping linearly independent
four-cycles

ΓEΛ = mI
Λ γI , (9.6)

where Λ = 1, . . . , h1,1 labels the different instantons. Now, as we explained, there
will be (at least) rk (Ma I) of these instantons which have chiral charged zero-
modes with the MSSM branes and thus their contribution to the superpotential,
if non-vanishing, is of the form

W ∼
∏
i

ΦMSSM
i e−2πTΛ , TΛ = mI

Λ TI . (9.7)

Since the MSSM fields ΦMSSM
i should acquire a vanishing VEV, in general rk (Ma I)

(linear combinations of) Kähler moduli will not appear in the superpotential. With
the assumptions from the beginning of this section, we then expect the following
situation:

� due to the large volume V � 1 and the swiss-cheese structure, the contri-
bution of the big Kähler modulus to the non-perturbative superpotential can
be neglected, but τb ↔ V2/3 will be stabilised perturbatively via the LVS
mechanism.

� The def (Ma I)− 1 Kähler moduli which do appear in the superpotential via
non-perturbative effects will be stabilised as in the usual LARGE Volume
Scenario.

� The rk (Ma I) Kähler moduli which have charged instanton zero-modes with
the MSSM branes will not appear in the non-perturbative superpotential and
are thus not stabilised via non-perturbative effects.
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The D-Term Potential

As we have emphasised several times, moduli which are not stabilised are problem-
atic for phenomenology since this situation is not in agreement with experiment.
Therefore, also the rk (Ma I) Kähler moduli mentioned in the last item of the list
above have to be fixed. One way to do so is the following.

In the presence of additional gauge symmetries realised by D-branes, generically
the D-term potential (3.5) is non-vanishing. More concretely, for diagonal gauge
kinetic functions, canonically normalised matter fields and U(1) gauge symmetry,
the D-term potential reads (3.7)

VD =
∑
a

1

2 Re
(
fa
) (∑

m

Qm
a

∣∣Φm

∣∣2 − ξa)2

. (9.8)

Specialising then to D7-branes and utilising the definition of the matrixMa I from
equation (8.18), we can express the Fayet-Iliopoulos term ξa shown in equation
(7.57) as

ξa ∼ −
1

l42

e−
φ
2

V̂ + ξ̂
2

∫
ΓD7a

ch1

(
Fa
)
∧ J = − 1

V̂ + ξ̂
2

Ma I t̂
I , (9.9)

where a summation over repeated indices is again understood. Now, if the D7-
branes under consideration realise the MSSM, the fields Φm appearing in the D-
term potential (9.8) are MSSM matter fields ΦMSSM

m which have to acquire a van-
ishing vacuum expectation value in order to preserve the MSSM gauge symmetries.

Therefore, employing equation (3.33) for the gauge kinetic function of a D7-brane,
the D-term potential above simplifies to

VD '
∑
a

1

2 τ̂a

1

V̂2

(
Ma I t̂

I
)2

, (9.10)

where τ̂a = mI
a τ̂I denotes the volume of the four-cycle wrapped by the D7-brane a

(in Einstein frame). From this expression, we see that besides the F-term potential
also the D-term potential depends on the Kähler moduli, however, only implicitly
via tI = tI(TJ).

Discussion

Let us now discuss the how in the presence of an MSSM sector, the D-term poten-
tial (9.10) may change the moduli stabilisation procedure in the LARGE Volume
Scenario.
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� Recalling the D-term potential (9.10) where the matter fields have vanishing
vacuum expectation value, we see that VD is minimised by V̂ → ∞ and τ̂a →
∞ which corresponds to the decompactification limit we are not interested in.
However, (9.10) is also minimised by

0 =Ma I t̂
I , (9.11)

which fixes those tI /∈ ker (Ma I) at tI = 0. Unfortunately, generically this
implies that the tI are stabilised at the boundary of the Kähler cone meaning
that some two- respectively four-cycle volumina of the compactification man-
ifold X may vanish. In this situation, the supergravity approximation we are
employing is no longer applicable and thus genuine String Theory effects such
as world-sheet instantons have to be taken into account. The latter are then
expected to fix the tI /∈ ker (Ma I) at a small but finite value.

Furthermore, in the situation where some of the matter fields Φm in the D-
term potential acquire a non-vanishing VEV, for instance when the fields Φabel

introduced on page 123 are present, one obtains a relation between these fields
and the tI implying that the boundary of the Kähler cone can be avoided in
the stabilisation procedure.

� We also observe that the D-term potential (9.10) is of order 1/V̂2. Therefore,
since (9.10) is positive definite, the combined scalar F- and D-term potential
at order O(V̂−2) is given by the sum of (6.28) and (9.10). This expression is
minimised by vanishing F-terms for the complex structure moduli U as well
as the axio-dilaton S, and for a vanishing Fayet-Iliopoulos parameter.

� Note that the Kähler moduli TI appear in the D-term potential only implicitly
via tI = tI(TJ). A priori it is not clear whether exactly those TI “missing” in
the F-term potential contribute to the D-term potential, but further informa-
tion about the compactification manifold is necessary.

� To summarise, in the case of an MSSM sector realised by D-branes, only those
(linear combinations of) small Kähler moduli

TΛ = mı̃
ΛTı̃ with mı̃

Λ ∈ ker
(
Ma I

)
(9.12)

(for fixed Λ) can appear in the non-perturbative superpotential and are sta-
bilised via the LVS. However, since rk (Ma I) 6= 0, there is a non-trivial contri-
bution to the D-term potential (9.10) and Kähler moduli TI appear implicitly
in VD. We thus find the following situation
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Number Moduli Stabilisation

1 Kähler modulus Re (Tb) stabilised perturbatively via LVS

def (Ma I)− 1 small Kähler moduli stabilised non-perturbatively via LVS

rk (Ma I) small Kähler moduli may be stabilised perturbatively via VD

Therefore, in principle we can stabilise all Kähler moduli via the combination
of the F- and D-term potential. (For the stabilisation of Im (Tb), please see
the comment on page 78.)

9.2 An Example: The P[1,3,3,3,5][15] Calabi-Yau

In this section, we are going to discuss a concrete example where the ideas outline
in the previous section are realised. This example is the swiss-cheese manifold
P[1,3,3,3,5][15] which has been studied in [52].

9.2.1 Geometry and Topology

Let us first describe the geometry and topology of the compactification manifold
P[1,3,3,3,5][15]. Further details, especially the toric resolution and the computation
of co-homology groups, can be found in the original paper [52]. Here, we only
summarise the information needed in the following.

Hodge Numbers and Euler Characteristic

As it turns out, the non-trivial Hodge numbers of the manifold P[1,3,3,3,5][15] are
(h1,1, h2,1) = (3, 75) and therefore the Euler characteristic of this Calabi-Yau man-
ifold is found as 2

χ(X ) = 2
(
h1,1 − h2,1

)
= −144 . (9.13)

Since this number is negative, one of the requirements in (6.36) for a LARGE
Volume Scenario is satisfied. Assuming furthermore that an orientifold projection
can be chosen such that h1,1

+ = h1,1 = 3, we see that there are three Kähler moduli
present in our setup.

2The Euler number of a real n-dimensional manifold is computed in terms of the Betti numbers
bp as χ =

∑n
p=0(−1)pbp. In case the manifold is complex, the Betti numbers bp are related to

the Hodge numbers hp,q as bp =
∑
r+s=p h

r,s.
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Triple Intersection Numbers and Four-Cycle Volumes

Next, let us denote a basis of divisors on X , that is holomorphic four-cycles, as
{Γ1,Γ2,Γ3}. In this basis, as it turns out, the triple intersection numbers kIJK
defined in (3.9) take the following form

k111 = 9 , k112 = −15 , k113 = 0 ,
k122 = 25 , k123 = 0 , k133 = 0 ,
k222 = −40 , k223 = −5 , k233 = 15 ,
k333 = −40 .

(9.14)

With the help of these numbers, we can compute the four-cycle volumes τI defined
in equation (3.12). In particular, expanding the Kähler form J as

J =
3∑
I=1

tI
[
ΓI
]
, (9.15)

where [ΓI ] denotes the Poincaré dual of ΓI in X , we find for the τI that

τ1 =
1

2

(
3 t1 − 5 t2

)2

,

τ2 =
5

6

[(
3 t3 − t2

)2

−
(

5 t2 − 3 t1
)2
]
,

τ3 = −5

2

(
t2 − 4 t3

)(
t2 − 2 t3

)
.

(9.16)

Kähler Cone Constraint

Now we are going to determine the Kähler cone which is defined by the condition
that the volumes of all so-called effective curves C in X are positive. The first step
is to compute the cone of all effective curves, which is called the Mori cone, and
then deduce from this the Kähler cone by the condition

∫
C J > 0. The resulting

constraints describing the Kähler cone are

t2 − 2 t3 > 0 , t1 − 2 t2 + t3 > 0 , −3 t1 + 5 t2 > 0 . (9.17)

These conditions also ensure hat the overall volume V is positive, that all volumes
of effective divisors are positive and, by construction, that all volumes of effective
holomorphic curves are positive.
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Swiss-Cheese Structure

Let us next determine the overall volume V of the compactification manifold X .
In the definition (3.13), V is expressed in terms of the expansion coefficients tI of
the Kähler form (9.15). However, for our study of the LARGE Volume Scenario
we need to express the overall volume in terms of the four-cycle volumes τI . Since
τI ∼ (tI)2, in general this is a non-trivial task.

In our particular example, employing (9.16) and (9.17), one finds that the overall
volume of the compactification manifold can be written as

V =

√
2

45

((
5τ1 + 3τ2 + τ3

)3/2 − 1
3

(
5τ1 + 3τ2

)3/2 −
√

5
3

(
τ1

)3/2
)
. (9.18)

This expression shows that the manifold we are considering indeed admits a swiss-
cheese structure since we can make τ3 large so that V becomes large while keeping
the other four-cycles small. On the latter, the MSSM will be realised.

Rigid Divisors

Since we are going to consider D-brane instantons wrapping four-cycles in the
internal manifold X , it is useful to know the rigid divisors in P[1,3,3,3,5][15]. In
particular, wrapping E3-instantons on such rigid four-cycles, the moduli instanton
zero-modes are absent allowing the instanton to contribute to the superpotential
more easily.

Since determining whether a cycle is rigid amounts to the computation of the co-
homology groups H i(Γ,OΓ) for i = 1, 2, we would have to introduce additional
techniques which is beyond the scope of this thesis. We therefore simply state the
rigid divisors in our setup and refer to the paper [52] for the detailled calculations.
The rigid divisors of P[1,3,3,3,5][15] are

Γ1 , Γ1 + Γ2 , 2 Γ1 + Γ2 , 2 Γ1 + 2 Γ2 . (9.19)

Diagonal Basis

Finally, in order to simplify our following discussion, let us introduce a diagonal
basis in which the overall volume V as well as the triple intersection numbers take
a particularly simple form. Guided by (9.18), we define

Γa = 5 Γ1 + 3 Γ2 + Γ3 , Γb = 5 Γ1 + 3 Γ2 , Γc = Γ1 , (9.20)
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for which the triple intersection numbers kIJK diagonalise. More concretely, the
only non-vanishing numbers are

kaaa = 5 , kbbb = 45 , kccc = 9 . (9.21)

The overall volume of the compactification manifold in terms of the divisor volumes
τa, τb and τc is then found as

V =

√
2

45

(
τ 3/2
a − 1

3
τ

3/2
b −

√
5

3
τ 3/2
c

)
. (9.22)

Expanding also the Kähler form in this diagonal basis as

J = ta
[
Γa
]
− tb

[
Γb
]
− tc

[
Γc
]
, (9.23)

with the relation between {ta, tb, tc} and {t1, t2, t3} inferred from (9.20) as

t1 = 5 ta − 5 tb − tc , t2 = 3 ta − 3 tb , t3 = ta , (9.24)

we find that the Kähler cone conditions (9.17) take the very simple form

1

3
ta > tb > tc > 0 . (9.25)

9.2.2 Constructing the Open String Sector

After having summarised the geometry and topology of our compactification man-
ifold P[1,3,3,3,5][15], we are now going to address the question of how to construct
the open string sector for our model.

Ansatz for the MSSM Branes and the Instantons

As we can see from equation (9.20), the large cycle in the diagonal basis is Γa
since it is the only one containing Γ3. Therefore, in order to have realistic gauge
couplings on the D7-branes as well as significant E3-brane instanton contributions
to the superpotential, we make the following ansatz

ΓD7 = nb Γb + nc Γc , ΓE3 = mb Γb +mc Γc , (9.26)

where now the wrapping numbers n and m need not be integer. They are related
to the wrapping numbers ni in the {Γ1,Γ2,Γ3} basis as

nb =
1

3
n2 , nc = n1 −

5

3
n2 . (9.27)
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Next, in order to keep our discussion simple, we are not attempting to actually
construct the MSSM or some extension thereof but only consider a toy model
with two stacks of D7-branes labelled by A and B, where only on the first one a
non-vanishing gauge flux FA is turned on.

D-Term and Chiral Zero-Mode Constraint

As we have explained in section 9.1, in order to minimise the combined scalar
potential, the D-term potential VD has to vanish. Assuming that the vacuum
expectation values of the MSSM fields originating from the branes A and B vanish,
we see from (9.10) that the Fayet-Iliopoulos terms ξA and ξB have to be zero. Since
we do not turn on flux on the D7-branes B (and employing h1,1

− = 0), it follows
that ξB is trivially vanishing. However, for ξA we find from (7.57) the D-term
constraint

0 =
1

l6s

∫
X

ch1

(
ϕ∗FA

)
∧
[
ΓA
]
∧ J . (9.28)

Let us also consider the chiral zero-mode constraint developed in section 8.2 for an
E3-instanton. In particular, using the explicit form of the index given in (8.19),
the only non-trivial requirement originates from the D7-branes A and reads

0 =
1

l6s

∫
X

ch1

(
ϕ∗FA

)
∧
[
ΓA
]
∧
[
ΓE3

]
. (9.29)

Now, using our ansatz (9.26) for the E3-brane instanton cycle in the diagonal basis,
we find that the only suitable solution to the two equations above is

J = ta
[
Γa
]
− α t

[
ΓE3

]
, (9.30)

where t ∈ R and α > 0 is some constant. From equation (9.23) together with
(9.26), we see that this solution implies

tb = αmb t , tc = αmc t . (9.31)

Comparing with the Kähler cone constraint tb > tc > 0 shown in equation (9.25)
and going back to the basis {Γ1,Γ2,Γ3} via (9.27), we deduce that only wrapping
numbers satisfying

2m2 > m1 >
5
3
m2 (9.32)

are possible. Finally, from equation (9.19) we then see that this condition is not
met by any of the rigid divisors in our configuration. Therefore, in our example
it is not possible to simultaneously satisfy the D-term constraint (9.28), the chiral
zero-mode constraint (9.29) and the Kähler cone constraint (9.32).
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D-Brane and Instanton Configuration

However, relaxing the requirement of being strictly inside the Kähler cone, we see
that wrapping the E3-instanton on the divisor 2 Γ1 + Γ2 leads to a solution at the
boundary of the Kähler cone. Therefore, transforming into the diagonal basis, we
observe that the E3-brane instanton suitable for our purpose is given by

ΓE3 =
1

3

(
Γb + Γc

)
. (9.33)

Of course, we cannot choose instantons at will but have to take all of them into
account. But we can arrange our setup in such a way that only a rigid instanton
along the cycle (9.33) will contribute to the non-perturbative superpotential.

We now turn to the D7-branes. In particular, we choose the stacks of branes to
wrap the following rigid four-cycles

ΓA = Γ1 + Γ2 =
1

3

(
Γb − 2 Γc

)
, ΓB = Γ1 = Γc , (9.34)

with abelian gauge flux specified by

ch1

(
ϕ∗FA

)
=
NA

3

(
2 Γb + 5 Γc

)
, ch1

(
ϕ∗FB

)
= 0 , (9.35)

where NA denotes the number of D7-branes in the stack A. With this choice,
there are no chiral charged instanton zero-modes between the D7-branes and the
E3-instanton (9.33). Indeed, evaluating (9.29) for the branes A we find

1

l6s

∫
X

ch1

(
ϕ∗FA

)
∧
[
ΓA
]
∧
[
ΓE3

]
=

1

l6s

∫
X

NA

3

(
2
[
Γb
]

+ 5
[
Γc
])
∧ 1

3

([
Γb
]
− 2

[
Γc
])
∧ 1

3

([
Γb
]

+
[
Γc
])

=
1

l6s

NA

27

∫
X

(
2
[
Γb
]3 − 10

[
Γc
]3)

=
NA

27

(
2 · 45− 10 · 9

)
= 0

(9.36)

where we employed the explicit expression for the D-brane and instanton cycles as
well as the triple intersection numbers (9.21) in the diagonal basis. Since we do
not turn on gauge flux for the D7-branes B, we see that equation (9.29) is trivially
satisfied, and so there are no chiral charged instanton zero-modes.

However, in general there are also vector-like zero-modes present. One way to
remove these would be to turn on discrete Wilson lines on the D7-brane respectively
the E3-instanton. From now on, we simply assume that such non-chiral zero-modes
can be made massive and that indeed the E3-instanton given by (9.33) contributes
to the superpotential.
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Other Rigid E3-Brane Instantons

To conclude this subsection, let us now check that indeed the E3-brane instanton
wrapping the cycle (9.33) is the only rigid instanton satisfying the chiral zero-mode
constraint (9.29). In particular, following the same steps as in the computation
(9.36), we find that the chiral zero-mode constraint reads

0 = 10NA

(
mb −mc

)
= 10NA

(
2m2 −m1

)
. (9.37)

By comparing with (9.19), we see that this condition is indeed only solved by the
instanton we are considering while the others always have chiral charged instanton
zero-modes.

9.2.3 Moduli Stabilisation

After having motivated how to engineer the open string sector consisting of the
matter D7-branes as well as an E3-brane instanton for our model, we now turn to
the stabilisation of the Kähler moduli of the background manifold P[1,3,3,3,5][15].

D-Term Potential

As we have mentioned before, at order 1/V̂2 the combined scalar potential is
minimised by vanishing F-term and D-term potentials. Since we assume zero
vacuum expectation values for the matter fields, the vanishing of VD corresponds
to vanishing Fayet-Iliopoulos terms. Let us therefore evaluate equation (9.28)
for our example specified by (9.34) and (9.35). Employing the triple intersection
numbers (9.21) in the diagonal basis, we compute

0 =
1

l6s

∫
X

ch1

(
ϕ∗FA

)
∧
[
ΓA
]
∧ J

=
1

l6s

∫
X

NA

3

(
2
[
Γb
]

+ 5
[
Γc
])
∧ 1

3

([
Γb
]
− 2

[
Γc
])
∧
(
ta
[
Γa
]
− tb

[
Γb
]
− tc

[
Γc
])

=
1

l6s

NA

9

∫
X

(
−2 tb

[
Γb
]3

+ 10 tc
[
Γc
]3)

= −10NA

(
tb − tc

)
, (9.38)

which reproduces the solution already given in equation (9.30), namely

tb = tc =: t . (9.39)
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Going then back to the basis {Γ1,Γ2,Γ3} by using the relations given in (9.24), we
see from equations (9.16) that (9.39) implies

τ1 =
9

2

(
tc
)2 (9.39)−−−−→ 9

2

(
t
)2
,

τ2 =
15

2

((
tb
)2 −

(
tc
)2
)

(9.39)−−−−→ 0 ,

τ3 =
5

2

((
ta
)2 − 9

(
tb
)2
)

(9.39)−−−−→ 5

2

((
ta
)2 − 9 (t)2

)
.

(9.40)

Therefore, the D-term constraint always fixes the moduli such that the four-cycle
Γ2 shrinks to zero size while the cycle Γ1 as well as the large cycle Γ3 stay finite.
Please note that our MSSM branes do both involve Γ1 and so their volume and
hence gauge coupling is always non-zero and finite, respectively.

F-Term Potential

After having discussed the D-term constraint at order 1/V̂2 in the large volume
expansion, let us now turn to the F-term potential at order 1/V̂3. In particular,
assuming that the complex structure moduli U as well as the axio-dilaton S are
stabilised via background flux by FU = FS = 0, from equation (6.31) we recall the
formula for scalar F-term potential an specialise to the single instanton case

VF =
gs
2
%

[
− 4

V̂
V̂ol
(
ΓE3 ∩ ΓE3

)
a2

E3

∣∣AE3

∣∣2 e−2aE3τ̂E3

+
2

V̂2
τ̂E3 aE3

(
AE3e

−aE3TE3 W 0 + c.c.
)

+
3

4

ξ̂

V̂3

∣∣W0

∣∣2 ]
+O

(
V̂−4

)
.

(9.41)

Next, we stabilise the axion Im (TE3) similarly as explained in section 6.2, and we
compute using the results developed above

Vol
(
ΓE3 ∩ ΓE3

)
=

1

l6s

∫
X

[
ΓE3

]
∧
[
ΓE3

]
∧ J

= − 1

9

1
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∫
X

(
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[
Γb
]3

+ tc
[
Γc
]3)

= − 1

9

(
45 tb + 9 tc

)
= −5 tb − tc = −

√
2

9

(√
5 τb +

√
τc

)
,

(9.42)
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where we utilised that tb =
√

2/9
√
τb/5 as well as that tc =

√
2/9
√
τc. Using then

the D-term constraint from equation (9.39), we see that this expression becomes

Vol
(
ΓE3 ∩ ΓE3

) (9.39)−−−−→ −2
√
τE3 . (9.43)

Employing now this result in the formula for the F-term potential above, we arrive
at

VF '
gs
2
%

[
8 a2

E3

∣∣AE3

∣∣2 √τ̂E3

V̂
e−2aE3τ̂E3 − 4 aE3
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∣∣ ∣∣W0

∣∣ τ̂E3

V̂2
e−aE3τ̂E3

+
3

4

ξ̂

V̂3

∣∣W0

∣∣2 ]
.

(9.44)

By comparing with equation (6.42) from section 6.2, we see that the potential
(9.44) is precisely of this form with

λ = 8 . (9.45)

Therefore, utilising formulas (6.46), we see that the F-term potential (9.44) has a
minimum at

τ̂E3

∣∣
min.
'

(
3 ξ̂

2

)2/3

, V̂
∣∣
min.
'
∣∣W0

∣∣√τ̂E3

2 aE3

∣∣AE3

∣∣ eaE3τ̂E3 . (9.46)

Numerical analysis

In order to explicitly verify the large volume minimum of the full scalar potential,
let us choose some specific values for the parameters in our model. In particular,
in the following we will use

aE3 = 2π ,
∣∣AE3

∣∣ = 1 ,
∣∣W0

∣∣ = 5 , % = 1 . (9.47)

Employing then also the result for the Euler characteristic (9.13), we compute with
the help of (3.22)

ξ ' 0.3489 , (9.48)
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so that the full scalar potential, before the D-term constraint (9.39) has been used,
reads

VF+D

(
V , τb, τc

)
= + 37.2 g2

s

√
5τb +

√
τc

V
e−

4π
3gs

(τb+τc)

− 20.9 g3
s

τb + τc
V2

e−
2π
3gs

(τb+τc)

+ 3.3 g4
s

1

V3

+ 166.7 g3
s

(√
τb −
√

5τc
)2

τb − 2τc

1

V2

(9.49)

where all quantities have been expressed in string frame and where for the D-term
potential we have chosen the number of branes in the stack A as NA = 5. Note
that we have not yet fixed the value of gs which is determined by the VEV of
the dilaton. We have assumed that it is stabilised by fluxes and since we did not
perform an explicit analysis of this mechanism, we choose this parameter as

gs =
1

10
. (9.50)

Coming back to the potential above, we observe that the dominant part of (9.49)
is given by the D-term potential fixing the combination τb = 5τc. On top of that
direction, we find a minimum of the potential in the variables V and τb. In figures
9.1 and 9.2, we have plotted two sections through the parameter space showing the
potential in the vicinity of the minimum. The numerical values (in string units)
in the minimum are

V
∣∣
min.
' 1.6× 1016 , τb

∣∣
min.
' 1.65 , τc

∣∣
min.
' 0.33 . (9.51)

For the volume of the Standard Model cycles we find

τA
∣∣
min.

= τB
∣∣
min.
' 0.33 , (9.52)

and the value of the scalar potential in the minimum is

Vmin. ' −8.8× 10−55M4
Pl . (9.53)

9.2.4 Discussion

To conclude this section about the LARGE Volume Scenario for the Calabi-Yau
manifold P[1,3,3,3,5][15], let us briefly discuss and summarise our model.
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VF + VD

τb

τb − 5τc

Figure 9.1: The potential V (V, τb, τc) for V = 1.6× 1016.

VF + VD

V

τb

Figure 9.2: The potential V (V, τb, τc) for τc = 0.33.
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� First, we have seen that via the combined D- and F-term potential indeed all
Kähler moduli can been stabilised. The reason for considering also the D-term
potential was that we explicitly engineered an open string sector in terms of
D7-branes with gauge flux, which gave rise to the chiral zero-mode constraint
presented in section 8.2 as well as to a generically non-vanishing D-term.

The model presented here serves as an explicit example for the interplay be-
tween the open and the closed string sector in the context of moduli stabili-
sation.

� The next step in the discussion of our model would be to introduce an ori-
entifold projection and to solve the tadpole cancellation conditions. This
program has been carried out in the original paper [52] to which we refer for
further details.

� As we just mentioned, in principle it is possible to stabilise all Kähler moduli
via the combined D- and F-term potential. However, to be more precise, let
us recall that

– Re (Tb) ↔ V2/3 is stabilised via perturbative effects in the F-term po-
tential, but Im (Tb) may be stabilised for instance via non-perturbative
effects on the large cycle.

– One linear combination of moduli tI ↔ τI is stabilised through the D-
term potential, while the corresponding axionic partner acquires a mass
via the Green-Schwarz mechanism. In particular, as it has been explained
in section 7.2.4, the mass matrix (7.55) for the U(1) gauge fields in the
present case is proportional to Ma I and so the linear combination of
Im (TI) /∈ ker (Ma I) becomes massive.

– The linear combination of moduli τE3 has been stabilised via non-per-
turbative effects in the F-term potential together with the corresponding
axion.

� In case not all small Kähler moduli can be fixed by non-perturbative effects
and D-terms, there also exists the possibility that they are frozen similar to V
by perturbative corrections to the F-term potential [89, 92]. Arguments have
been given in [154] that this should occur for the QCD axion.

� As we conjectured in section 9.1, one Kähler modulus has been fixed at the
boundary of the Kähler cone implying that the four-cycle Γ2 has vanishing
volume. To resolve this issue, let us note that near the boundary of the
Kähler cone String Theory effects such as world-sheet instantons corrections
become important which may change this result. Another possibility would
be to have a non-vanishing VEV for the fields Φabel introduced on page 123
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which fixes the Fayet-Iliopoulos term at a non-zero value.

� Furthermore, in our model we have computed the chiral charged instanton
zero-modes. In addition, one also has to determine the vector-like modes and
ensure that the instanton indeed contributes to the non-perturbative super-
potential.

� Recalling (9.51), we see that the moduli τb and τc have been fixed at very small
values. This situation is clearly not acceptable since in this regime genuine
String Theory effects are important and the supergravity approximation we
are employing is not applicable.

Let us investigate this point further. From equation (9.46) and (3.22) we can
determine the approximate value of the stabilised four-cycle volume τE3 (in
string frame) as

τE3

∣∣
min.
'
(

3

2

ζ(3)

2(2π)3

)2/3 (
−χ(X )

)2/3

' 2.4 · 10−2
(
−χ(X )

)2/3

. (9.54)

Therefore, using χ(X ) = −144 for our situation, we see that the small value
for τE3 is due to the small Euler number. Taking different manifolds with
larger Euler characteristic would lead to larger values for the τI .

� Let us finally mention that due to the modified stabilisation procedure in our
model, some of the phenomenological results for the original LARGE Volume
Scenario [134,155,57,156,143] no longer hold but have to be adjusted.

9.3 Summary

To conclude our discussion about moduli stabilisation in type IIB orientifolds with
O3- and O7-planes, let us now summarise our findings from chapter 6 and from
the study in the present chapter.

� In section 6.1, we have presented the so-called KKLT scenario [55] and we
studied this approach to moduli stabilisation on general grounds as well as in
a specific example. In particular,

– in a first step the complex structure moduli U and the axio-dilaton S are
stabilised via vanishing F-terms FU = FS = 0 in a supersymmetric way.

– In a second step, now taking into account non-perturbative contribu-
tions to the superpotential involving the Kähler moduli T , the latter are
stabilised again in a supersymmetric way via vanishing F-terms FT = 0.



9.3 Summary 143

– Finally, using for instance anti-D3-branes in a Klebanov-Strassler warped
throat, the supersymmetric AdS minimum can be uplifted to a non-super-
symmetric dS minimum.

However, although the KKLT construction is a crucial step towards the stabil-
isation of all moduli, this scenario features certain drawbacks. Some of these,
as mentioned at the end of section 6.1, are the following

– The two-step procedure of first stabilising U and S by ignoring non-
perturbative effects, and in a second step stabilising the Kähler moduli
via the latter is ambiguous.

– In order to work in the supergravity approximation, the value of the flux
superpotential W0 in the minimum has to be fine-tuned.

– Furthermore, α′-corrections to the Kähler potential have been neglected
leading to a no-scale structure of the F-term potential. Taking into ac-
count those corrections, the no-scale property is lost and the stabilisation
procedure becomes more involved.

� In order to resolve some of the issues of the KKLT Scenario, in section 6.2 we
have considered the LARGE Volume Scenario [56, 57]. In this approach, the
compactification manifold is assumed to be of swiss-cheese type, α′-corrections
are taken into account explicitly and the stabilised volume V is assumed to
be very large.

– These assumptions allow one to perform and 1/V expansion of the F-
term potential. At leading order, this potential is again minimised by
vanishing F-terms FU = FS = 0 originating from the Gukov-Vafa-Witten
superpotential.

– At subleading order in 1/V , the complex structure moduli U and the axio-
dilaton S are treated as fixed and the Kähler moduli T are stabilised via
non-perturbative effects.

More concretely, due to the swiss-cheese structure, the big modulus cor-
responding to the overall volume V is stabilised via perturbative effects
at an exponentially large value while the small Kähler moduli are fixed
via non-perturbative contributions to the superpotential. Note that since
no vanishing of the F-terms FT is imposed, the resulting AdS minimum
in general is non-supersymmetric.

Now, in the LARGE Volume Scenario some issues of the KKLT construction
are avoided. For instance,
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– due to the large volume expansion in powers of 1/V , it is possible to first
stabilise the complex structure moduli and the axio-dilaton via the flux
superpotential, and then stabilise the Kähler moduli via non-perturbative
effects in a controlled way.

– Next, the value of the flux superpotential in the minimum W0 does not
need to be fine-tuned. In fact, in our example we have chosen W0 to be
of order one.

– Also, we have taken into account α′-corrections to the superpotential
explicitly which were crucial for the moduli stabilisation procedure. In
this way, the LVS is stable against such corrections.

Furthermore, in [91,92] it has been shown that the LARGE Volume Sce-
nario is also stable against string-loop corrections to the Kähler potential
due to a second no-scale structure.

Finally, the LARGE Volume Scenario has very appealing features in view of
phenomenology. We have only touched upon this point at the end of section
6.2 since this part of this work is more concerned with the stabilisation of
moduli. For further details in this direction we would like to refer to [134,155,
57,156,143].

� We now turn to the results obtained in the present chapter. In particular,
in the analysis just summarised we have not taken into account D-branes
realising the MSSM or some extension thereof. However, as we have explained
in detail in section 8.2, such a sector severely restricts the appearing terms in
the non-perturbative superpotential. More concretely, assuming the MSSM
to be realised by D7-branes,

– in the non-perturbative superpotential only those (linear combinations)
of Kähler moduli can appear which are in the kernel of the matrix defined
in (8.18). Since in the presence of chiral MSSM matter this matrix is non-
trivial, not all Kähler moduli can appear in the superpotential and are
thus not stabilised in the usual way.

This is clearly a problem for phenomenology since additional massless
fields in the low energy theory are not in agreement with experiment.

– However, in the presence of D-branes generically also the D-term po-
tential is non-vanishing. In particular, although a detailled analysis is
necessary, the vanishing of the Fayet-Iliopoulos term in the D-term po-
tential allows to fix the remaining Kähler moduli.

Therefore, also in the presence of an MSSM sector in general all moduli can
be stabilised. But, the moduli stabilisation procedure is different from the
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usual philosophy since now a combination of the D- and F-term potential has
to be employed.

In section 9.2 of the present chapter, we have presented a concrete example
for a LARGE Volume Scenario where this program has been shown to be
possible. In particular,

– we have analysed the specific swiss-cheese manifold P[1,3,3,3,5][15] with
three Kähler moduli,

– we have illustrated how to satisfy the chiral zero-mode constraint as well
as the vanishing of the D-term via a specific combination of D7-branes
with gauge flux,

– we have investigated the resulting F-term potential and argued that a
large volume minimum can be obtained,

– and we verified the stabilisation procedure numerically for the combined
D- and F-term potential.

The example we have presented shows that indeed all Kähler moduli can be
stabilised, but we have also seen that there is an complex interplay between
the open and closed string sector which modifies the usual moduli stabilisation
scenarios.
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Chapter 10

Summary and Outlook

Let us finish this thesis with a summary of the topics discussed in this work as well
as with an outlook on further directions of research. However, since at the end of
each of the chapters in part III we have already provided a detailled summary of
the three individual topics

� Model Building Constraints for Type IIB Orientifolds with O3- and O7-Planes,

� D-Brane Instantons and

� Moduli Stabilisation in the LARGE Volume Scenario,

we will not repeat these summaries again but rather emphasise the interplay of
the three subjects. To do so, we will employ the illustration shown on page 21 in
the introduction.

10.1 Summary

In particular, in figure 10.1 we have recalled the illustration from section 1.3 which
we now want to discuss in some detail using the results obtained in this work.

� Let us start with chapter 3 and corresponding appendix B, where we have
studied the Kähler potential for compactifications of type IIB supergravity
on Calabi-Yau three-folds together with the resulting Kähler metric. In this
chapter, we have also introduced and motivated the Gukov-Vafa-Witten su-
perpotential describing flux compactifications.

We turn to figure 10.1.

À Consider first the arrow marked by À. In section 7.2.4, we have seen
that the Kähler potential K (or rather its first derivative with respect
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À
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È

Type IIB Sugra

� Kähler potential
� Kähler metric
� Moduli fields
� Flux superpotential

Model Building

� Supersymmetry conditions
� Chiral spectrum
� Tadpole cancellation
� Green-Schwarz mechanism

D-Brane Instantons

� Instanton calculus
� Instanton zero-modes
� Chiral zero-mode constraint

Moduli Stabilisation

� KKLT
� LVS
� Implications of includ-

ing an MSSM sector

Figure 10.1: Overview on the interplay between the topics discussed in this work.

to the moduli fields) is used for the computation of the Fayet-Iliopoulos
parameter. In the absence of matter fields with non-zero vacuum expec-
tation value, the vanishing of the FI term then resembles (part of) the
supersymmetry conditions for D-branes.

Á Next, turning to arrows Á, in chapters 6 and 9 we have seen that the
Gukov-Vafa-Witten superpotential introduced in section 3.2.3 is crucial
for the stabilisation of the complex structure moduli U and the axio-
dilaton S. In particular, for a general choice of background flux, this
superpotential generically allows to stabilise all moduli U and S.

Â Furthermore, in order to discuss moduli stabilisation, the form of the
Kähler metric is important. For the KKLT scenario introduced in sec-
tion 6.1 we have deduced a no-scale property using the explicit form of
equation (3.25) derived in chapter 3. In addition, the α′-corrections to
the Kähler metric explicitly computed in appendix B where crucial to
realise the LARGE Volume Scenario as explained in section 6.2.

� Next, we turn to chapters 4 and 7 where we have discussed model building
constraints for type IIB orientifolds with O3- and O7-planes. In particular,
we have investigated the rules for computing the chiral spectrum, we have
explained the supersymmetry conditions for D7-branes with gauge flux as
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well as the Freed-Witten anomaly cancellation condition and the K-theory
constraints. We have also determined the tadpole cancellation conditions –
including the general case with h1,1

− 6= 0 – and we have studied in detail the
generalised Green-Schwarz mechanism.

We turn again to figure 10.1.

Ã The supersymmetry conditions explained in section 4.4 are not only im-
portant for D7-brane configurations but are also crucial for the D-brane
instanton calculus developed in section 5.2. In particular, similar condi-
tions as for the D7-branes apply to E3-brane instantons in order to be
supersymmetric.

Ä Furthermore, the rules for computing the (chiral) spectrum introduced
in section 4.2 are also applicable when determining the instanton zero-
modes. The latter are again a crucial point in the D-brane instanton
calculus.

Å The rules for computing the chiral spectrum have been employed in sec-
tion 7.2.1 for determining the chiral anomalies; and the tadpole cancel-
lation conditions, an important constraint for D-brane model building,
have been derived in section 7.1. The latter are crucial for the cancella-
tion of chiral anomalies via the generalised Green-Schwarz mechanism,
and we have explicitly verified this mechanism for type IIB orientifolds
with O3- and O7-planes in section 7.2.

� In chapter 5, we have introduced the D-brane instanton calculus, and in chap-
ter 8 we have used this formalism to derive the Affleck-Dine-Seiberg superpo-
tential in the context of String Theory as well as to derive a “chiral zero-mode
constraint” in the presence of an MSSM sector.

Æ As explained in detail in chapter 5, D-brane instantons can contribute to
the non-perturbative superpotential. In particular, in the context of type
IIB orientifolds with O3- and O7-planes, E3-brane instantons give rise to
an exponential dependence of the superpotential on the Kähler moduli
T . In the KKLT and LARGE Volume Scenario discussed in section 6.1
and 6.2 respectively, such terms are crucial to stabilise the moduli T .

Ç Also, the knowledge about instanton zero-modes presented in section
5.1 has been employed in section 8.2 in the development of the “chiral
zero-mode constraint”. This constraint restricts the appearing terms in
the non-perturbative superpotential when an MSSM sector realised by
D-branes is taken into account.

È Finally, as an important result of this thesis, in chapter 9 the chiral zero-
mode constraint has been applied to the LARGE Volume Scenario im-



152 10. Summary and Outlook

plying that not all Kähler moduli can be stabilised via non-perturbative
effects if an MSSM sector is incorporated. However, as explained in de-
tail in section 9.1, the D-term potential provides additional terms in the
scalar potential which generically allow to stabilise the remaining Kähler
moduli.

� To finish our discussion of figure 10.1, we recall that in chapter 6 we have
explained moduli stabilisation in the KKLT and LARGE Volume Scenario.
Furthermore, in chapter 9 we have taken into account the chiral zero-mode
constraint and have constructed a large volume model realising this constraint
as well as the stabilisation of Kähler moduli via the D-term potential.

To conclude, we have seen that there is an complex interplay with many inter-
relations between the three main topics discussed in this work. In order uncover
these connections, a detailled study of each of the individual subjects was neces-
sary and a combination thereof allowed us to obtain new results such as the chiral
zero-mode constraint.

10.2 Outlook

Let us also recall some points which we observed during the course of this work
which may be worth to study in the future.

� In the context of model building with type IIB orientifolds, we have seen that
the D3-brane tadpole cancellation condition is closely related to a constraint in
F-theory. In general, type IIB orientifolds with O3- and O7-planes allow for a
study via F-theory where the latter provides additional information about non-
perturbative effects usually not captured in the type II description. Therefore,
a more detailled study of F-theory models in view of D-brane model building
can give us new insight for the type IIB constructions.

� At some instances, we have already mentioned that the common analysis
concerning moduli in type IIB orientifolds with O3- and O7-planes does not
take into account the Â-terms in the Chern-Simons action (7.4) which encode
gravitational corrections. These are expected to have implications on the D-
brane instanton calculus and may suggest that the also the Dirac-Born-Infeld
action for D-branes should include gravitational corrections.

Very much related to this point is our observation made in equation (7.91)
about the structure of α′-corrections to the Fayet-Iliopoulos terms for D3-,
D5-, D7- and D9-branes. In particular, for the D9-brane FI term the cor-
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rections to the Kähler potential fit nicely with Â-term of the Chern-Simons
action, and we expect a similar structure also for the lower-dimensional branes.

� In view of moduli stabilisation, it would be interesting to further investigate
the case h1,1

− 6= 0 in which the Gı̂-moduli are present. Since instanton cor-
rections to the superpotential involving Gı̂ are restricted, the stabilisation of
these moduli is different from the mechanism employed for the Kähler moduli.

� Finally, as we have seen in chapter 9, when stabilising Kähler moduli via the D-
term potential, generically these are fixed at the boundary of the Kähler cone.
This situation changes for instance the computation of soft supersymmetry
breaking terms and thus it is necessary to reconsider these calculations.
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Part V

Appendices





Appendix A

Topological Quantities

In this appendix, we provide the definition of the quantities used in the Chern-
Simons actions (2.31) for D-branes and O-planes, and give some details of the
calculation leading to the expressions in (7.5).

Definitions

We start with the definitions (for more details see for instance [59]). The Chern
character of a complex vector bundle F is defined in the following way

ch
(
F
)

=
∞∑
n=0

chn
(
F
)
, chn

(
F
)

=
1

n!
tr

[(
iF

2π

)n]
, (A.1)

where the trace is over the fundamental representation. The Chern character
satisfies

ch
(
E ⊕ F

)
= ch

(
E
)

+ ch
(
F
)
. (A.2)

The Â-genus and the Hirzebruch L-polynomial can be expressed in terms of the
Pontrjagin classes pi as

Â
(
F
)

= 1− 1

24
p1+

1

5760

(
7p2

1 − 4p2

)
+ . . . ,

L
(
F
)

= 1+
1

3
p1+

1

45

(
−p2

1 + 7p2

)
+ . . . ,

(A.3)

and satisfy

Â
(
E ⊕ F

)
= Â

(
E
)
∧ Â

(
F
)
, L

(
E ⊕ F

)
= L

(
E
)
∧ L
(
F
)
. (A.4)
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For the following, we will only need the definition of the first Pontrjagin class of a
real vector bundle which reads

p1

(
F
)

= − 1

2
tr

[(
F

2π

)2
]
, (A.5)

where the trace is again over the fundamental representation. If the real 2k-
dimensional bundle FR can be written as a complex k-dimensional bundle FC, we
have the relation

p1

(
FR
)

=
[
c1

(
FC
)]2 − 2 c2

(
FC
)
, (A.6)

where c1 and c2 denote the first and second Chern class expressed as

c1

(
F
)

= ch1

(
F
)
, c2

(
F
)

=
1

2

[
ch1

(
F
)]2

− ch2

(
F
)
. (A.7)

Calculation leading to (7.5)

After stating these definitions and relations, let us concentrate on a complex two-
dimensional holomorphic submanifold Γ of a complex three-dimensional Calabi-
Yau manifold X . Since the first Chern class of a Calabi-Yau manifold vanishes,
we find

0 = c1

(
TX
)

= ch1

(
TΓ ⊕NΓ

)
= ch1

(
TΓ

)
+ ch1

(
NΓ

)
= c1

(
TΓ

)
+ c1

(
NΓ

)
, (A.8)

where T denotes the tangential bundle and N the normal bundle. Noting then
that the second Chern class of a line bundle such as NΓ vanishes, we calculate
using (A.6) and (A.8)

p1

(
TΓ

)
− p1

(
NΓ

)
=
[
c1

(
TΓ

)]2

− 2 c2

(
TΓ

)
−
[
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(
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+ 2 c2

(
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)
= −2 c2

(
TΓ

)
(A.9)

where we interpreted the real vector bundles as complex ones. This computation
allows us now to write the Â-terms in the Chern-Simons action more feasible.
The square root as well as the inverse of the Â-genus are understood as a series
expansion and using (A.4), we find√

Â(RT )

Â(RN)
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√
Â(R(4)) ∧

√√√√Â(R(6)
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Â(R(6)
N )

=

(
1− 1

48
p1

(
R(4)

)
+ . . .

)
∧
(

1− 1

48
p1

(
R(6)
T

)
+

1

48
p1

(
R(6)
N

)
+ . . .

)
=

(
1 +

1

96

(
l2s
2π

)2

tr
(
R2
)

+ . . .

)
∧

(
1 +

l4s
24

c2

(
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)
,

(A.10)
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where (4) denotes the four-dimensional and (6) the internal part ofR. In going from
the second to the third line, we employed our definition (2.28) and we adjusted
our notation as

p1

(
R(6)
T

)
= l4s p1

(
RT

)
= l4s p1

(
TΓ

)
, c2

(
TΓ

)
= c2

(
Γ
)
,

p1

(
R(6)
N

)
= l4s p1

(
RN

)
= l4s p1

(
NΓ

)
.

(A.11)

Along the same lines, we obtain for the Hirzebruch L-polynomial the following
result√
L(RT/4)

L(RN/4)
=

(
1− 1
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l2s
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)
. (A.12)
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Appendix B

Details on the Kähler Metric

In this appendix, we present some details of the computation of the Kähler metric
involving Ti and S derived from the Kähler potential (3.19). Let us recall this
expression for convenience

K = − log
(
S + S

)
− 2 log

(
V̂ +

ξ̂

2

)
− log

(
− i

l6s

∫
X

Ω3 ∧ Ω3

)
. (B.1)

Note furthermore, we assume h1,1
− = 0 so that V does not depend on Gı̂ or S.

Prerequisites

� First, let us recall and refine the definitions given in equations (2.14) – (2.16).
Using ρi = 1

l4s

∫
γi
C4, in the present case we can write

Ti = τ̂i + iρi , S = e−φ − iC0 . (B.2)

� We furthermore recall that J = tiωi as well as the definition of the overall
volume of X and the four-cycle volumes of the internal space

V =
1

6
kijkt

itjtk , τi =
1

2
kijkt

jtk . (B.3)

� With -1 denoting the matrix inverse, three useful relations read as follows

kijkt
k =

1

2

(
∂2V
∂τi∂τj

)−1

,
ti

2
=
∂V
∂τi

, τi t
i = 3V . (B.4)
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� With gs = eφ the string-coupling and χ(X ) the Euler number of the internal
space, the α′-correction takes the following form

ξ̂ =
ξ

g
3/2
s

= ξ

(
S + S

2

) 3
2

, ξ = − ζ(3) χ(X )

2 (2π)3
. (B.5)

Kähler Vectors

The first derivatives of the Kähler potential (B.1) with respect to Ti and S read

Ki =
∂K
∂Ti

= − 1

2

t̂i

V̂ + ξ̂
2

, KS =
∂K
∂S

= − 1

S + S
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V̂ + ξ̂
2

. (B.6)

Kähler Metric

The Kähler metric computed from (B.1) reads

Gij =
∂2K

∂Ti ∂T j
= − 1

4
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GiS =
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)2

4 V̂2 + V̂ ξ̂ + 4 ξ̂2(
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)2 .

(B.7)

Inverse Kähler Metric

The inverse Kähler metric can be determined to be of the following form

Gij = −4
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2

)
kijk t̂
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(B.8)
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Note that by employing (B.4), the inverse Kähler metric for the Kähler moduli
can be written as

Gij = −2

(
V̂ +

ξ̂

2

)(
∂2V̂
∂τ̂i∂τ̂j

)−1

+ τ̂i τ̂j
4 V̂ − ξ̂
V̂ − ξ̂

. (B.9)

F-Term Potential

We finally present the explicit result for the F-term potential when only Kähler
moduli are considered. With i = 1, . . . , h1,1

+ labelling the Kähler moduli Ti,
-1

denoting the matrix inverse and a sum over repeated indices understood, we find
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Appendix C

The Gukov-Vafa-Witten
Superpotential

In this appendix, we are going to motivate the expression for the Gukov-Vafa-
Witten superpotential stated in equation (3.27). In particular, we explain how the
effective four-dimensional type IIB action is modified when considering background
fluxes, and we show that (3.27) indeed reproduces these terms. (For more details,
see for instance the appendices of [58] or [60].)

Implication of Background Fluxes for the Effective Type IIB Action

As we just mentioned, we begin by discussing how the background fluxes (2.17)
modify the effective four-dimensional theory. In particular, by replacing H3 →
H3 +H3 and F3 → F3 +F 3, one finds that (the orientifold projection of) the type
IIB action (2.11) contains the additional terms

− 1

4κ2
10

∫ [
e−2φH3 ∧ ?H3 + F̃ 3 ∧ ?F̃ 3

]
, (C.1)

where F̃ 3 = F 3 − C0H3. Recalling then from equation (2.14) that τ = C0 + i e−φ

and defining the so-called G3-flux as

G3 = F 3 − τ H3 , (C.2)

we can write the expression given in equation (C.1) in the following way

− 1

4κ2
10

∫
G3 ∧ ?G3 . (C.3)
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Note that here, by abuse of notation, G3 denotes the complex conjugate of G3

while F 3 and H3 stand for the real fluxes originating from the field strengths F3

and H3. Defining finally

G±3 =
1

2

(
G3 ± i ?6 G3

)
, ?6G

±
3 = ∓i G±3 , (C.4)

where ?6 is the Hodge-?-operator for the compactification manifold X , we can
write equation (C.3) as

− 1

4κ2
10

∫
R3,1

?41

∫
X

(
2G+

3 ∧ ?6G
+

3 − i G3 ∧G3

)
, (C.5)

with ?41 denoting the volume element for the four-dimensional space R3,1.

The Four-Dimensional Scalar Potential

The second term of (C.5) involving G3 ∧ G3 is topological and is cancelled by
means of the D3-brane tadpole cancellation condition studied in section 7.1. Let
us therefore focus on the first term and go from string to Einstein frame via

gstring
MN = eφ/2gEinstein

MN , M,N = 0, . . . , 9 , (C.6)

where φ denotes the dilaton. Carefully working out the factors of eφ/2 and perform-
ing a Weyl rescaling gµν → V̂ gµν of the four-dimensional metric, we can identify
the four-dimensional potential as

Vflux =
1

2 l6s

1

V̂2
eφ
∫
X
G+

3 ∧ ?6G
+

3 . (C.7)

Re-Writing Equation (C.7)

Let us now rewrite equation (C.7). To do so, we observe that since H3 and F 3 are
odd under the holomorphic involution σ, we can expand G+

3 in a basis of H3
−(X ).

We furthermore note that

?6G
+
3 = −i G+

3 , ?6Ω3 = −iΩ3 , ?6χκ̂ = −i χκ̂ , (C.8)

where {χκ̂} is a basis of H1,2

∂−(X ) defined around equation (3.15), which allows us

to expand G+
3 in the basis(

Ω3, χκ̂
)
∈ H3,0

∂−(X )⊕H1,2

∂−(X ) . (C.9)
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Observing then that
∫
X Ω3 ∧ G+

3 =
∫
X Ω3 ∧ G3 as well as that

∫
X χκ̂ ∧ G

+
3 =∫

X χκ̂ ∧G3, we can express G+
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X

Ω3 ∧G3 −GU κ̂U
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X
χκ̂ ∧G3

)
, (C.10)

where GU κ̂U
λ̂

denotes the inverse of the Kähler metric for the complex structure
moduli defined in equation (3.26). With Mκ̂λ̂ denoting the inverse of (3.18), we
compute

Vflux =
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2 l6s

1
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eφ
∫
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∣∣2
1
l6s
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X Ω3 ∧ Ω3

]
.

(C.11)

F-Term Potential via the Gukov-Vafa-Witten Superpotential

Let us now determine the F-term potential for type IIB orientifold compactifica-
tions originating from the Gukov-Vafa-Witten superpotential

WGVW =
1

l6s

∫
X

Ω3 ∧G3 . (C.12)

More concretely, we restrict ourselves to the case of vanishing α′-corrections, i.e.
ξ = 0, and use (3.25) to compute

VF = eK
(
GUUFUFU +GSSFSF S

)
. (C.13)

Utilising the explicit form of the Kähler potential (3.19) and the expression for the
Kähler metrics (3.26), we find

FU κ̂ =
1

l6s

∫
X
χκ̂ ∧G3 , GU κ̂U λ̂ = − 1

l6s
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X
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1

l6s
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X

Ω3 ∧G3 , GSS = (S + S)2 ,
(C.14)

whereMκ̂λ̂ denotes the inverse of the matrix defined in equation (3.18). Employing
these expressions in (C.13), we arrive at

VF = − i

2 l12
s

eφ

V̂2

[(∫
X
χκ̂ ∧G3

)
Mκ̂λ̂

(∫
X
χκ̂ ∧G3

)
−
∣∣∫
X Ω3 ∧G3
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1
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By comparing with the potential (C.11) obtained from a dimensional reduction
of the type IIB action in the presence of background flux, we see that indeed
the Gukov-Vafa-Witten superpotential (C.12) captures these effects in terms of a
four-dimensional N = 1 supergravity description.



Appendix D

Chiral Anomalies for Gauge
Groups SO(2N) and Sp(2N)

In this appendix, we comment on the generalised Green-Schwarz mechanism for
the case of gauge groups SO(2N) and Sp(2N). Since both Lie groups are simple,
there are no cubic abelian or mixed abelian-gravitational anomalies for these cases.
For the cubic non-abelian anomaly, let us note that the anomaly is proportional
to

Aabc(r) =
1

2
A(r) dabc (D.1)

where dabc is the unique symmetric invariant. This invariant only exists for SU(N)
and SO(6) (which has the same Lie algebra as SU(4)) and so there is no cubic
non-abelian anomaly to be studied in the present case.

For the mixed abelian-non-abelian anomaly, let us note that the dimension and
the index for the fundamental representation of both SO(2N) and Sp(2N) are
found to be

dim
(
F
)

= 2N , C
(
F
)

= 1 . (D.2)

The anomaly coefficient is then computed as

AU(1)a−Sp/SO(2ND7b
)2 =

∑
F

Qa

(
F
)
Cb
(
F
)

= −ND7a

(
Iab − Ia′b

)
, (D.3)

which is, up to a factor of 1
2
, the same as in (7.31). For the calculation of the

Green-Schwarz diagrams, we note that C(F ) = 1 by definition means

tr
(
TA TB

)
= δAB , (D.4)
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which differs from the result for SU(N) by a factor of 1
2
. Using this observation

and following the same steps as in the computation for SU(N), one finds that
the Green-Schwarz diagrams are precisely of the form (D.3) (up to a common
prefactor). Therefore, also for SO(2N) and Sp(2N) the mixed abelian-non-abelian
anomalies are cancelled via the generalised Green-Schwarz mechanism.



Appendix E

The Chiral Zero-Mode Constraint
for h

1,1
− 6= 0

In this appendix, we are going to discuss the chiral zero-mode constraint from
section 8.2 for the case of type IIB orientifolds with O3- and O7-planes where
h1,1
− 6= 0.

E1-Instanton Action

In order to do so, we start by collecting some facts about E1-instantons. Let
us consider an E1-instanton without “gauge flux” wrapped on a basis two-cycle
Σı̂ ∈ H2−(X ,Z) which is odd under the holomorphic involution σ. Taking into
account the calibration condition for a supersymmetric E1-instanton [71]

d2ξ

√
det

((
ϕ∗g(6)

)
ij

+
iF ij
2π

)
= e−iθ

(
J − F

2π

)
, (E.1)

with θ = −π
2

and choosing κ1 = −1, we find from (5.2) and (5.3) that

SE1 = −2πiGı̂ , (E.2)

where the moduli Gı̂ had been defined in equation (2.16). As we already know, in
the case h1,1

− 6= 0 in addition to the Kähler moduli also the Gı̂-moduli are present,
however, here we see that the latter are in relation with E1-instantons on cycles
Σı̂.
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Chiral Charged Instanton Zero-Modes

We now reconsider our arguments from section 8.2. We assume again that inter-
secting D7-branes with gauge flux give rise to chiral matter, that is

Iab =
Ma I

ND7a

mI
b −
Mb I

ND7b

mI
a 6= 0 , (E.3)

for some D-branes a and b. As before, the chiral charged zero-modes between an
E3-instanton of type O(1) without gauge flux and a D7-brane are counted by

ZD7a E3 =Ma i m
i
E3 , (E.4)

where i = 1, . . . , h1,1
+ and a summation over repeated indices is understood. There-

fore, if we take h1,1
+ E3-instantons wrapping linearly independent four-cycles with-

out gauge flux,

rk
(
Ma i

)
, i = 1, . . . , h1,1

+ , (E.5)

of these will have chiral charged zero-modes. Note that there is a slight difference to
our discussion from section 8.2. In particular, by arranging (E.5) to vanish, none
of the E3-instantons will have chiral charged zero-modes, but it is nevertheless
possible to obtain chiral matter between D7-branes via

Iab =
Ma ı̂

ND7a

mı̂
b −
Mb ı̂

ND7b

mı̂
a 6= 0 (E.6)

with ı̂ = 1, . . . , h1,1
− . This would clearly change our conclusions for section 8.2.

However, as we mentioned, in the case h1,1
− 6= 0 not only Kähler moduli are present

but also Gı̂-moduli which are in relation with E1-instantons. Let us therefore
consider h1,1

− E1-instantons without gauge flux wrapping linearly independent two-
cycles

ΓE1Λ
= mE1Λ ı̂ Σ

ı̂ ∈ H2−
(
X ,Z

)
, (E.7)

where a summation over repeated indices is again understood. From equation
(7.78) we can infer a formula for counting chiral charged instanton zero-modes
between D7-branes and E1-instantons as

ZD7a E1Λ
= ND7a

∫
X

[
ΓD7a

]
∧
[
ΓE1Λ

]
= ND7a m

ı̂
D7a mE1Λ ı̂ . (E.8)

Therefore, interpreting mı̂
D7a

as a matrix, rk (mı̂
D7a

) of the linearly independent

h1,1
− E1-instantons will have chiral charged zero-modes with the D7-branes.
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Conclusions

We summarise our finding of this appendix and comment on the implication for
moduli stabilisation.

� As we have seen in chapter 6, one needs h1,1
+ linearly independent E3-brane

instanton contributions to the non-perturbative superpotential in order to
stabilise all Kähler moduli via non-perturbative effects. (Of course, for the
LARGE Volume Scenario this statement is slightly modified.) In the presence
of an MSSM sector, requiring a vanishing VEV for the corresponding fields,
in general only

def
(
MD7a i

)
, i = 1, . . . , h1,1

+ , (E.9)

E3-instantons will appear in the superpotential stabilising the Ti. (Here,
def (A) denotes again the defect of the matrix A.) However, in the case
h1,1
− 6= 0 this expression can be equal to the number of Kähler moduli h1,1

+

even if chiral MSSM matter is realised.

Thus, even in the presence of an MSSM sector, all Kähler moduli can be
stabilised via non-perturbative effects.

� On the other hand, in the situation h1,1
− 6= 0 also the Gı̂-moduli will be present.

When considering the corresponding h1,1
− linearly independent E1-instantons,

we have seen that only

def
(
mı̂

D7a

)
, ı̂ = 1, . . . , h1,1

− , (E.10)

of them will have no chiral charged zero-modes where mı̂
D7a

is interpreted as
a matrix.

However, the question how such instantons contribute to the superpotential
and if they can be used to stabilise the Gı̂-moduli is somewhat subtle (see for
instance [65]) and will not be discussed here.

� Let us finally summarise that when the MSSM is realised by D7-branes with
gauge flux, in general we have the situation that

def
(
MD7a i

)
+ def

(
mı̂

D7a

)
< h1,1 (E.11)

meaning that at least one of the E3- or E1-instantons has chiral charged
instanton zero-modes with the MSSM branes.
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[110] R. Blumenhagen, M. Cvetič, S. Kachru, and T. Weigand, “D-brane
Instantons in Type II String Theory,” arXiv:0902.3251 [hep-th].
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