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Chapter 1

Introduction

The seminal findings of theoretical physics of the 20th century are the standard model
of particle physics and the general theory of relativity. The standard model of particle
physics describes the world at small length scales and predicts with an impressive accu-
racy how particles such as quarks, electrons and neutrinos interact. On the other hand,
the theory of general relativity provides us with a detailed explanation for astrophysical
observations at very large scales.

The discovery of the standard model was guided by quantum electrodynamics. At-
tempts were made to construct a gauge theory of the weak interaction, and in the mid-
1960s the hypothesized charged intermediate vector bosons (W*) were complemented
with a neutral partner, the Z-boson. The incorporation of the Higgs mechanism into
the electroweak theory solved the problem of having both a gauge theory and massive
mediators of the weak interaction. Completed with the theory of the strong interac-
tion, the standard model of particle physics was born, a theory of three of the four
known fundamental interactions and the elementary particles that take part in these
interactions. Experimentally, the standard model (extended by massive neutrinos) has
been tested to a very high precision and the only missing ingredient to be discovered is
the scalar Higgs particle [1]. However, physicists have little doubt that this discovery
will happen in the LHC experiment.

On the other hand, despite the success of the standard model in all its confrontations
with experimental results, it leaves us with a whole bunch of fundamental theoretical
questions. The most important drawback is that it is not a complete theory of funda-
mental interactions since it does not include gravity. However, the constant progress
of physics towards unification of all interactions is a strong indication that a theory in
which all the forces are treated on the same footing may exist. Another weak point
of the standard model is that it requires a large number of unrelated and arbitrary
numerical parameters put in by hand, mostly related to the ad-hoc introduction of the
Higgs and Yukawa sectors in the theory. And there is the famous hierarchy problem of
the standard model: via the Higgs mechanism all masses of the standard model par-
ticles are proportional to the Higgs mass my, which is expected, from measurements
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of the mass of the W-bosons, to be of order of the electroweak scale, my ~ 100 GeV.
The problem is that m%l receives quantum corrections quadratic in the cutoff scale A
from the virtual effects of every particle that couples, directly or indirectly, to the Higgs
field. If we assume the standard model to be valid up to a scale of order of the Planck
scale, this quantum correction to m? is some 30 orders of magnitude larger than the
experimentally favored value of the Higgs mass. The possibility to fine tune the bare
value of the Higgs mass in order to cancel the quantum corrections except for some
value of the order of the electroweak scale is very unnatural and unsatisfactory. On
the other hand, one could simply assume A to be of the order of the electroweak scale
and replace the standard model by another theory above the energy scale A. However,
not to run into the same fine tuning problems in this new theory, this theory should
explain how a tiny Higgs mass can be protected from quantum corrections quadratic
in the cutoff A’ of the new theory.

A proposal for such a new theory beyond the standard model is to postulate a new
symmetry that relates bosons with fermions - called supersymmetry. In fact, supersym-
metry is the only possible extension of the known space-time symmetries, circumventing
the Coleman and Mandula theorem [2] by allowing anticommuting symmetry gener-
ators [3]. The minimal supersymmetric standard model (MSSM) formulated in 1981
[4] is the simplest supersymmetric extension of the standard model containing the su-
perpartners of all standard model particles. It offers a natural solution to some of the
problems of the standard model. In particular, since there is a relative minus sign
between fermion loop and boson loop corrections to the squared Higgs mass m%, the
radiative corrections quadratic in the cutoff A’ neatly cancel. This allows the Higgs
mass to be of the order of the electroweak scale also in a theory with a higher mass
scale, without the need of some unnatural fine-tuning. Furthermore, the renormaliza-
tion group flow predicts a unification of the electroweak and strong interactions. As
supersymmetry is not directly observed in nature, it must be broken, which, in gen-
eral, leads to a mass split between bosonic and fermionic partners. If this mass split is
roughly of order of the electroweak scale, i.e. mgpiix ~ 100 GeV, the supersymmetric
partners of the standard model particles could be heavy enough not to be observed in
experiments so far. One hopes that the LHC experiment detects some of the superpart-
ners in the TeV region in the foreseeable future, verifying the so far only theoretical
concept of supersymmetry. However, even when such superparticles are detected, it
would still remain to unify the supersymmetric standard model with general relativity.

General relativity, on the other hand, is a classical theory which does not take
into account the quantum mechanical nature of matter as described in the standard
model. Since the Einstein equation relates geometry with matter, we can not treat
matter quantum mechanically without a quantum mechanical theory of gravity. The
construction of a renormalizable quantum field theory that treats gravity quantum
mechanically has not yet been carried out, even though there are several suggestions
(see for instance [5]). This constraints the validity of general relativity to physics,
where quantum mechanical effects are of negligible importance. However, there are
circumstances where a quantum theory of gravity is needed, for instance for the physics



of the very early universe.

Interestingly, string theory provides a natural way of including gravity in a quantum
theory of matter: in string theory one replaces the ordinary point particles with a quan-
tum theory of small one-dimensional extended objects - the strings that can be both
closed or open. These strings have various vibrational modes corresponding to different
particles, whose interaction is described by the splitting or joining of the strings. As
a matter of fact, every consistent such string theory necessarily contains among the
possible vibrating modes a massless spin-two mode which is a natural candidate for
the graviton whose long-distance interactions are described by general relativity. Upon
quantization this provides us with a consistent quantum theory of gravity. Ultra-violet
divergences of graviton scattering amplitudes are evaded, since the extended character
of the string smears out the location of the interaction.

The Planck mass, Mp = 1.2 x 1012GeV, is a natural first guess for a rough estimate
of the fundamental string mass scale m;, '. Thus, the extended structure of the strings
only becomes apparent at the Planck scale, far beyond our abilities to measure in
the laboratory (for comparison, the LHC experiment should reach a collision energy of
14 TeV). At energies far below the Planck scale strings can be accurately approximated
by point-like particles. This low-energy theory is well described by an effective field
theory that describes the massless modes of string theory (the first massive vibrational
modes have masses of order the string scale mg, which we assume to be of the order of
the Planck scale, such that they can be integrated out in an effective theory). However,
the effective theory inherits supersymmetry as well as the massless spin-two graviton
mode from string theory. This limit is called supergravity and is thus a supersymmetric
extension of general relativity, where the nonrenormalizability of the supergravity is
cured by the extended nature of the string.

Let us very briefly sketch how to determine the spectrum of the strings and how
to determine the action for its low-energy supergravity limit. For details we refer the
reader to the literature (see for instance [7, 8, 9, 10, 11]).

A one-dimensional string sweeps out a two-dimensional surface when it propagates
through D-dimensional space-time. We call this surface the world-sheet ¥. In analogy
to the description of a point particle by its world-line X (7), we describe a string
by the embedding of the string world-sheet into space-time, i.e., by a map XM (r,0) :
3 — Mp, where 7 and o parameterize the points on the world-sheet. For a closed
string the variable ¢ is periodic, and its world-sheet describes a tube in space-time,
whereas for an open string o covers a finite interval, and the world-sheet is a surface
with boundaries. To describe the dynamics of the string we need an action, and the
simplest action that comes to mind is the so-called Nambu-Goto action, which is a
straightforward generalization of the relativistic action for a point particle moving in

'Let us mention that in “large extra dimension” scenarios, the string scale can be much lower,
namely at the order of TeV. This is because the four-dimensional Planck mass Mp and the string mass
m are related by the compactification volume [6]. We will not consider these scenarios further in this
thesis and assume the string scale to be of order of the Planck scale.
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D-dimensional Minkowski space-time,

1

where o, 8 = 7,0. Here, T = 1/2md’ is the string tension related with the string mass

scale by my = (o/)~'/2. However, for quantization this action is not very useful as
it contains a square root. Omne thus makes use of a classically equivalent action by

introducing an auxiliary world-sheet metric h,g such that

Sy / dodrvV—=hh*P9,X - 95X . (1.2)
b

4o

This so-called Polyakov action has important symmetries. In addition to the global
Poincaré invariance there are two local symmetries of the action. It is invariant under
reparameterization of the world-sheet coordinates 7, ¢ and under Weyl transformations,
ie. heg — e‘z’(T’”)hag for an arbitrary function ¢(7,0). Using these local symme-
tries to make a convenient gauge choice and taking care of the appropriate boundary
conditions, we end up with the equations of motion for the world-sheet coordinates
XM(7,0). These equations have the structure of a wave equation with a general solu-
tion that contains vibrational modes. For a closed string, the solution is a sum of left-
and right-movers. In the quantization process, the world-sheet coordinates and corre-
spondingly the vibrational modes are promoted to operators satisfying essentially the
algebra of raising and lowering operators of the quantum mechanical harmonic oscilla-
tor. The spectrum is constructed by applying raising operators on the ground state.
Skipping the details, it turns out that the obtained spectrum contains a tachyon but no
states that transform as spinors under the D-dimensional Lorentz group, which could
be interpreted as space-time fermions. However, we can cure this by introducing su-
persymmetry. In the so-called Ramond-Neveu-Schwarz (RNS) approach, we introduce
in a supersymmetric way anti-commuting world-sheet fermions ¢ into the Polyakov
action (1.2). For the fermionic fields, however, the variation of the action allows two
possibilities to satisfy the boundary conditions: it is possible to impose periodic (Ra-
mond) boundary conditions or anti-periodic (Neveu-Schwarz) boundary conditions. For
closed strings, corresponding to the different pairings of the left- and right-movers, we
thus distinguish four different sectors. All the states in these sectors carry quantum
numbers of the D-dimensional Lorentz group, and it turns out that we can interpret
the states in the NS-NS and R-R sector as space-time bosons, while states in the NS-R
and R-NS sector are space-time fermions.

Note that the dimension D of the space-time is not arbitrary. Due to the indef-
inite signature of space-time, the spectrum contains negative norm states, violating
causality and unitarity. On the other hand, one can show that in the particular case
of D = 10 these negative norm states can be decoupled from the physical spectrum.
Nevertheless, there is still a tachyon in the spectrum and the spectrum is not space-
time supersymmetric (the number of fermionic degrees of freedom in not equal to the
number of bosonic degrees of freedom). We can turn the RNS string theory into a



consistent theory by truncating the spectrum in a very specific way that eliminates the
tachyon and leads to a supersymmetric theory in ten-dimensional space-time, known as
the GSO-projection 2. The remaining spectrum consists of a set of massless particles
and an infinite tower of massive excitations with masses quantized in units of the string
scale my. As we assume the string scale to be of order of the Planck mass, these states
are extremely heavy.

It turns out, demanding modular invariance of the one loop partition function and
anomaly cancellation of the gauge symmetries coming from non-Abelian gauge poten-
tials in the spectrum of the string theory, that one can only construct five consistent
string theories in D = 10 Minkowski space-time. These five theories are type I string
theory, consisting of unoriented open and closed strings with a gauge group SO(32),
type ITA and IIB string theory, made of closed strings, and two heteroric string theories
that have closed strings only, one with gauge group SO(32), and one with gauge group
EgxEg. However, these five theories are related by a web of dualities and are nowadays
viewed as different corners of one fundamental theory - referred to as M-theory. Even
though a full description of the theory is yet unknown, the uniqueness of M-theory
makes it a very promising theory.

Let us focus on the massless spectrum of the two type II theories, since the type
II theories will be of particular interest for this thesis. Both theories contain closed
strings only 3, and their massless bosonic spectrum includes from the NS-NS sector a
graviton gprn, a scalar called the dilaton ® and an antisymmetric tensor field By/y. In
addition, each of these theories has its individual bosonic excitations living in the R-R
sector. In the type ITA theory the R-R one- and three-form, in the type IIB theory the
R-R zero-, two- and four-form. In addition we have massless fermions from the NS-R
and R-NS sector. Each of these sectors contains a spin-3/2 gravitino and a spin-1/2
dilatino. In type IIB the two gravitini have the same chirality, whereas in the type
ITA they have opposite chirality. Tt follows that type II string theories have N = 2
supersymmetry.

How does one construct an action for the low-energy limit of string theory, describing
the massless states in the string spectrum? To find a space-time action for these
theories, one can use the constraints implied by the Weyl symmetry of the string action.
Note that so far we only considered strings moving in ten-dimensional Minkowski space-
time. For a more realistic situation, we generalize the Polyakov action by the fields
obtained in the various spectra of the five theories. For instance, for the theories based
on closed strings only (heterotic and type II string theories) this reads for the NS-NS
sector

1

4ol

a

/ZdadT\/—_h [(haBgMN(X) + iﬁaﬂBMN(X)> 0a XM 05X + O/R(I)(X)} ’
(1.3)

2The GSO-projection may appear to be an ad-hoc condition. Actually, it is also possible to derive
it by demanding one-loop and two-loop modular invariance.
3We will see in a moment, how one introduces also open strings in these theories.
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where R is the two-dimensional curvature. The NS-NS fields can be interpreted as
coupling functions in the two-dimensional world-sheet field theory. However, not all
field configurations preserve Weyl symmetry at the quantum level. The Weyl anomaly is
absent if the S-function for each of the couplings vanishes, i.e., 8%, = BﬁN =p*=0.
This leads to a set of equations that take the form of equations of motion for the space-
time fields garn, Bary and ®. The supergravity action - the low-energy limit of string
theory - is the action that reproduces these equations at lowest order . Let us mention
that the same procedure for the fields in the R-R sector is not straightforward in the
RNS-formulation. However, there is an equivalent formulation, the Green-Schwarz
formulation, where the p-form fields of the R-R sector can be included as well.

Compactification and moduli stabilization

As we pointed out, a consistent string theory lives in a ten-dimensional space-time.
The observable world, however, is four-dimensional. To make contact with our four-
dimensional world we need a mechanism to hide the extra six dimensions from ob-
servation - such a mechanism is called dimensional reduction. One way to achieve a
dimensional reduction is by choosing these extra dimensions very small and compact
such that they are too small to be detected in present-day experiments.

In fact, the idea of geometric compactification is very old and goes back to the
1920s. Kaluza [12] and Klein [13, 14] suggested a unification of the gravitational and
electromagnetic interaction by postulating an extra, fifth, dimension of space-time.
Choosing this extra dimension to be topologically S! yields a very simple explanation
for the compactness of the gauge group and hence the quantization of the electric
charge. However, the theory contains one more degree of freedom, the radius R of
the extra-dimensional circle. Since the classical Einstein equations are scale invariant,
there is no preferred value for this radius R and Kaluza and Klein simply postulated a
value for it consistent with experimental bounds.

Even though the motivation has changed, the idea of Kaluza and Klein can be gen-
eralized to the reduction of ten-dimensional string theory from ten to four dimensions.
In the Kaluza-Klein reduction one starts with an ansatz for the background space-time.
The specific ansatz we will use here is that space-time has a product structure of the
following form

MO = MO e M, (1.4)

where M31) is our four-dimensional non-compact space-time and Mg is a six-dimen-
sional compact manifold. If Mg is chosen small enough, these six additional dimensions
are not visible in experiments with present-day accelerators. This type of dimensional
reduction is alternatively called compactification.

4 An alternative way to derive equations of motion for the massless fields is to consider n-point func-
tions in the two-dimensional world-sheet theory using the supersymmetric version of the action (1.3).
The classical scattering amplitudes of the effective space-time action, from which we derive the equa-
tions of motion, should then reproduce these n-point functions.



At this point, however, much of the uniqueness of ten-dimensional string theory (and
ten-dimensional supergravity as its low-energy limit) gets lost, since the compactifica-
tion mechanism yields a very large number of possible four-dimensional solutions with
inequivalent four-dimensional physics. The reason is twofold: first, making any con-
crete Kaluza-Klein reduction requires making a choice for a compactification manifold
with a given topology around which to expand in the Kaluza-Klein reduction, and no
principle suggest that there is a particular preferred manifold. Second, as we will ex-
plain in the following, even having chosen a particular compactification manifold, one
has many free parameters which enter into observable predictions and no particular
values of these parameters appear to be preferred.

The appearance of the free parameters is explained as follows. Just like the classical
Einstein-Maxwell equations, the classical supergravity equations are scale invariant.
Thus, if one finds any solution to the supergravity equations, by rescaling the size R of
the compactification manifold, one obtains a one-parameter family of solutions, differing
only in the value of R. Hence, the choice of R is unconstraint by the equations of motion
and thus appears as a massless neutral scalar field in four dimensions. Depending on
the choice of the internal manifold, the situation is even worse, and there are much
more massless scalars in the theory, corresponding to parameters such as the shape of
the internal manifold. They label the continuous degeneracy of the internal manifold
Mg and are generally not driven to a particular value. One calls these massless scalars
moduli fields.

The emergence of massless scalars is a serious problem for string theory that aspires
to be a fundamental theory predicting the values for the fundamental constants 5. Sup-
pose we want to compute physical predictions by performing a Kaluza-Klein reduction
on a given compactification manifold Mg. The resulting fundamental constants will
depend on the details of the chosen manifold and the values of the moduli fields. Since
the choice of the compactification manifold is not unique and the values for the moduli
fields are completely arbitrary, how do particular values we observe for the fundamental
constants of physics actually emerge from string theory?

Apart from the specific choice of a compactification manifold, the predictivity of

string theory could be improved if one provides a mechanism which induces a potential
for the moduli fields - called moduli stabilization 6. Finding such a potential offers the

°Let us stress that a moduli field does not correspond to a massless Goldstone mode. The origin
of the Goldstone mode in symmetry breaking implies that the physics of any constant configuration of
this field must be the same (since all are related by symmetry). On the other hand, moduli fields can
exist without a symmetry and the physics usually depends on their values.

Tn principle, quantum corrections can already generate masses for the moduli fields. However, in
supersymmetric theories there are non-renormalization theorems excluding corrections to the superpo-
tential to all orders in perturbation theory. In theories that do not admit non-perturbative corrections,
moduli fields are thus natural. After supersymmetry breaking, all scalar fields, including the moduli,
receive mass. However, as an upper bound on these masses, depending on the particular model of
supersymmetry breaking, one finds a moduli mass of the order of 1 TeV. This turns out to be prob-
lematic for phenomenological reasons: light moduli fields would be problematic in the present universe,
as they mediate fifth forces of gravitational strength. In addition, they cause a Polonyi problem: the
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possibility to fix their values in a (possibly metastable) vacuum and make them suffi-
ciently massive such that they can be discarded from the observed spectrum. Indeed,
there are such mechanism to generate a potential for the moduli fields and the most
popular ones are the inclusion of background fluxes, instanton corrections and gaugino
condensates. In this thesis we will focus on the mechanism of including background
fluxes in the extra dimensions, which is referred to as flux compactification. The energy
of such a field depends on the moduli and thus generates a contribution to the effective
potential for the moduli fields.

Let us consider an example. As we have seen, type II string theories contain among
other fields the NS-NS two-form potential Bo. We define its field strength by Hs = d Bs.
Suppose now that we choose a compactification manifold with a non-trivial three-cycle
31. We can consider a flux configuration with a non-zero flux of the field strength,

1
—2/H3:n7é0, (1.5)
ls D)

where n is an integer for proper quantization of the flux and I, = 27/ the string
length scale. Note that by insisting on maximal four-dimensional symmetry, we can only
turn on non-trivial fluxes in the internal dimensions. The key point is that because the
flux is threading the internal cycle 3, changing the internal geometry will cost energy -
in other words, we generate a potential for the geometric moduli. If this potential has
favorable characteristics, we can determine the possible (metastable) vacuum states of
the theory as the local minima of the potential.

However, on a qualitative level, the mechanism works for fairly generic nonzero
choices of quantized flux and one finds a huge number of possible discrete ground states.
At present, there is no known mechanism that would single out one or a subset of these
vacua as the preferred candidates to describe our universe. Any sufficiently long-lived
vacuum which fits all the data of observations would be an equally good candidate to
describe our universe. It seems that the request on string theory as a fundamental
theory of nature to allow only for a single solution explaining all physical phenomena
was too ambitious. However, given our limited understanding of both general principles
of quantum gravity and of its microscopic definition, all has not been said and done.

At present, however, all we can do is comparing possible solutions with observational
data. Let us mention in the following some of the observational requirements we impose
on an acceptable solution:

e Phenomenologically, an N' = 1 matter sector with spontaneously broken super-
symmetry at low energies may be preferred. This offers a natural extension of the
standard model and helps solving the hierarchy problem, offers an explanation of
coupling unification and contains a possible dark matter candidate, the lightest
supersymmetric particle. In addition, as a technical argument, supersymmetry
simplifies the computation of the four-dimensional low-energy effective action.

oscillations of such a field about the minima of their potential, in a cosmological setting, will overclose
the universe [15]. To safely avoid these problems, we should look for physics of moduli stabilization at
energy scales ~ 100 TeV and above.



e As we discussed, we require a large positive mass for all the moduli fields to
fix their vacuum expectation values. In fact, the moduli fields should receive
masses of the order 100 TeV and above to avoid phenomenological problems (see
discussion in footnote 6).

e At low energies, string theory should reproduce the standard model of particle
physics, in particular the standard model gauge group SU(3)xSU(2)xU(1) should
emerge from a viable string theory.

e To fit the present cosmological observations of a spatially flat universe with its
energy density dominated by 74% dark energy behaving very similar to a positive
cosmological constant, we look for a string theory vacuum with small positive
cosmological constant.

e The observed cosmic microwave background (CMB) radiation including its small
density fluctuations could be elegantly explained by an inflation scenario in the
early universe. A viable model should therefore offer the possibility to realize
such an inflation scenario.

Most of the early attempts to construct viable four-dimensional N’ = 1 vacua were
done by compactifications of the Eg x Eg heterotic string theory on Calabi-Yau manifolds
(following the work of [16]), with the intention to break one of the Eg gauge groups to
the standard model or GUT gauge group. In contrast to heterotic SO(32) and EgxEg
and type I theories, both type II string theories do not apriori contain non-Abelian
gauge groups.

However, with the discovery of D-branes as non-perturbative BPS objects in the mid-
dle of the 90’s [17], also the type II theories were found to naturally include non-trivial
gauge theories. More precise, D-branes are extended objects defined as hyperplanes in
the ten-dimensional space-time on which open strings can end. Additionally, they con-
stitute the sources for the higher dimensional R-R p-form fluxes (the NS-NS two-form
Bs couples to the string world-sheet). A U(1) gauge field emerges then from an open
string ending with both ends on the same D-brane. By putting a stack of n D-branes on
top of each other, the gauge group gets enhanced to U(n), modeling at lowest order a
Yang-Mills gauge theory in the low-energy effective action. Compactifications involving
space-time filling D-branes, non-vanishing vacuum expectation values for background
fluxes and non-perturbative effects such as instanton corrections are an attractive setup
for model building in particle physics as well as cosmology (see for instance [18] and
references therein).

Motivation and organization of this thesis

An essential step to further study phenomenological properties of string vacua is to
determine the four-dimensional low-energy effective theory for particular compactifi-
cation models. An important application comprises the viability of these models for
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phenomenological applications. This is in particular an interesting question in type ITA
string theory, since D-brane model building on space-time filling D6-branes made much
progress in the last years [18, 19]. A viable compactification in type ITA, say one that
has solutions with all moduli stabilized and with small positive cosmological constant
as well as an epoch of inflation, would be of extraordinary interest.

In this thesis we will focus on flux compactifications in type ITA and type IIB string
theory with the intention to derive the four-dimensional low-energy effective theory on a
large class of new compactification manifolds (for reviews on flux compactifications and
a more complete list of references, see, e.g., [20, 21, 18]). One aspect that complicates
the derivation of these effective actions is that p-form fluxes generally back-react on the
geometry of the compactification manifold, deforming them away from well understood
classes such as Ricci-flat Calabi-Yau manifolds. The back-reaction can be rather mild,
as, e.g., in type IIB orientifolds with D3/D7-branes [22], where the internal space is still
conformal to a Calabi-Yau manifold. In these comparatively simple models, however,
the fluxes turn out to stabilize only the dilaton and the complex structure moduli,
while the Kahler moduli stabilization requires the use of quantum effects, e.g., along
the lines of [23].

We will instead be interested in a different class of flux compactifications for which
the back-reaction of the fluxes on the geometry is less trivial. Concretely, we will
derive the four-dimensional low-energy effective action for a large class of models, where
Mg is a six-dimensional compact space that is either a nilmanifold or a coset space.
Some of these models allow for an A/ = 1 supersymmetric solutions to AdS,. Being
compactifications to AdSs space-time, these models do not appear realistic as such,
but they can serve as starting points for the construction of more realistic setups or
have other applications. In particular, we will investigate for these models whether
the potential already has meta-stable de Sitter vacua away from the AdS4 vacuum or
whether there are regions suitable for inflation.

Let us mention that one could also think to use these models to study other phe-
nomenological applications, e.g. after the inclusion of an additional uplifting potential
so as to construct meta-stable de Sitter vacua in the spirit of the IIB models discussed
in [23]. In addition, replacing fluxes by branes, the AdS; vacua can be potentially
obtained as near-horizon geometries of intersecting branes [24]. AdS4 flux vacua of
the type we will consider may admit a full non-perturbative definition via a dual three-
dimensional CFT [25]. The above-mentioned brane solutions also correspond to domain
walls that interpolate between different flux vacua. The existence of these domain walls
may correspond to interesting transitions in the landscape of flux vacua.

To render the analysis tractable, we will only consider structures and fluxes which
are constant in the basis of left-invariant one-forms (see chapter 2 and chapter 4 for
an introduction to G-structure manifolds and left-invariant forms, respectively). A
general problem is that an explicit computation of the low-energy theory of a given
compactification requires a suitable choice of expansion basis for the ‘light’ fluctua-
tions. Unfortunately, it is still unclear how to construct such a basis in general. In
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generic flux compactifications, the set of harmonic forms would be unsuitable as ex-
pansion forms, as, e.g., the forms J and Q that define the SU(3)-structure (and which
enter the supergravity expressions for the Kéhler- and superpotential) are no longer
closed (see e.g. [26, 27, 28] for a few proposals). A detailed discussion of the general
constraints on such a basis appeared in [29]. In the special case of nilmanifolds and
coset manifolds, however, the set of left-invariant forms (with the appropriate behaviour
under the orientifold action) readily presents itself as the natural choice and obeys the
requirements of [29] 7.

For the compactifications we study in this thesis, we will introduce D-brane and
orientifold sources. The reason is that, in some of the models we study, the Bianchi
identities cannot be satisfied without orientifold sources. A further reason is that we
are interested in four-dimensional, N' = 1 supersymmetric effective theories, for which
the orientifold sources are necessary 8. In addition, as we discuss further in chapter 2,
the sources potentially allow for a hierarchy of scales between the size of the internal
manifold and the AdS, curvature, thereby providing a possibility to decouple the tower
of Kaluza-Klein modes from the light modes.

A somewhat delicate feature of our models is that the orientifolds have to be smeared.
The reason for this is that the supersymmetry conditions of [31] (for non-vanishing
Romans mass) force the warp factor to be constant. Considering the back-reaction of a
localized orientifold, on the other hand, one would expect a non-constant warp factor,
at least close to the orientifold source ?. A helpful interpretation of the smearing of a
localized source, whose Poincaré dual is given roughly-speaking by a delta-function, is
that it corresponds to Fourier-expanding the delta-function and discarding all but the
zero mode. We will adopt the pragmatic point of view that the smeared orientifolds are
an unavoidable feature of our models that is consistent with a Kaluza-Klein reduction
in the approximation where only the lowest modes are kept. The question of how to
associate orientifold involutions to a smeared source turns out to be somewhat subtle.
We will make the natural assumption that the different orientifolds correspond to the
decomposable (simple) terms in the orientifold current (see further the discussion in
appendix D).

This thesis is organized in three main parts. The aim of the first part is to provide
the formalism and the techniques needed to analyse type II string theory compacti-
fications to four dimensions. We start in chapter 2 with the N' = 1 supersymmetry
compactification ansatz. Demanding that not all supersymmetries are broken in the
four-dimensional effective theory places strong topological constraints on the internal
manifold. For instance, the structure group of the tangent bundle of the internal mani-

"Since the left-invariant forms are constant over the moduli space, this basis satisfies requirements
*7-*9 of [29] rather trivially. Note that left-invariant forms are not in general harmonic: they are
eigenmodes of the Laplacian to eigenvalues of the order of the geometric flux.

8For a discussion of the N/ = 2 theory arising from type ITA theory on nearly-Kéihler manifolds
without orientifolds see [30].

9A possible way around this contradiction is that taking into account a'-corrections might allow
for a non-constant warp factor (see also [32] for an alternative discussion), or one has to consider more
general vacua with SU(3)xSU(3)-structure instead [33].



12 INTRODUCTION

fold is reduced to SU(3) or a subgroup thereof. We further discuss the conditions on su-
persymmetric massive type ITA AdSy solutions with strict SU(3)-structure. As already
mentioned, these conditions force the warp factor and dilaton to be constant. However,
we will provide a generalization of supersymmetric type IIA AdS, compactifications
by allowing for a non-constant warp factor and dilaton, provided that the Romans
mass is set to zero. In chapter 3 we discuss how to obtain the four-dimensional low-
energy effective action for a given compactification manifold. We start by discussing
the direct approach, the Kaluza-Klein reduction. The modern approach, however, is
the effective supergravity approach where one calculates the superpotential and the
Kahler potential by means of geometrical data of the compactification manifold and
the background fluxes. We review the techniques for this approach in the generalized
geometry language and specialize the expressions then to strict SU(3)-structure in type
ITA and static SU(2)-structure in type IIB theory. We end this chapter by a discussion
on how to choose the most general ansatz for the background fluxes to label the discon-
nected bubbles of moduli space. In chapter / we then turn to the description of the two
classes of six-dimensional manifolds we study in this thesis. These are six-dimensional
nilmanifolds and coset spaces. Chapter 5 discusses the phenomenological aspects of
this thesis, in particular the question whether our models are valid candidates to allow
for a de Sitter solution or to realize inflation scenarios (at tree level, without additional
perturbative or non-perturbative quantum effects). In string theory, the moduli fields
of the compactification are natural inflaton candidates. We will thus first review the
important aspects of cosmology and the Hot Big Bang model and give a brief overview
of the necessary conditions for a particular inflation scenario, the so-called slow-roll
inflation. However, for type ITA compactifications at tree level, there exist quite strong
no-go theorems against de Sitter vacua and slow-roll inflation. We will review and
slightly modify these theorems such that we can apply them to our models.

In the second part of this thesis we apply the techniques studied so far to the class
of nilmanifolds. A systematic scan yields exactly two nilmanifolds that satisfy the
necessary and sufficient conditions for (massive) type ITA N' = 1 compactifications to
AdS, discussed in chapter 2. We present these solutions in chapter 6. As a matter
of fact, these solutions are related (for some values of the parameters) by T-duality
along two directions. We also find a type IIB solution with static SU(2)-structure on
a different nilmanifold, which forms the intermediate step after one T-duality. Inter-
estingly, as shown in section 6.4, for the same range of the parameter space for which
the T-dualities above are valid, the solutions admit an interpretation as near-horizon
geometries of intersecting brane configurations, as in [24]. From this point of view, the
nilmanifold vacua in this range are nothing but near-horizon geometries of intersections
of Kaluza-Klein-monopoles with other branes in flat space. One of the main goals of
this part of the thesis is to provide a check on the effective supergravity approach, in
particular on the explicit expressions of the superpotential and Kahler potential given
in the literature. To do so, we perform in chapter 7 an explicit Kaluza-Klein reduction
around the two type ITA solutions of chapter 6 and compute the mass spectrum of the
moduli fields. On the other hand, in chapter 8 we analyse the same two models by
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means of the effective supergravity techniques and compute again the mass spectrum
of the moduli fields around the supersymmetric solution. We find perfect agreement
providing an important consistency check between both approaches. Having performed
this consistency check for these models, we will restrict ourselves to the effective super-
gravity approach in the following.

In the third part of this thesis we focus on coset manifolds, where we first examine
in chapter 9 the geometry of the coset models that are suitable for supersymmetric
compactifications to four dimensions. In the following chapter 10 we present the coset
models that satisfy the necessary and sufficient conditions for an A/ = 1 compactifi-
cation to AdSs. We closely follow in these two chapters [34]. We also comment on a
possible supersymmetric AdS, solution with non-constant warp factor and dilaton. The
main results of this part of the thesis are the following three chapters: in chapter 11 we
compute the four-dimensional type ITA low-energy effective theory for a large class of
coset models. In each case, we compute the superpotential and the Kahler potential for
the most general choice of background fluxes in order to cover the whole moduli space.
For the models with a supersymmetric AdS, vacuum we compute the mass spectrum
around this vacuum and find that for all the coset models, except for one, all moduli are
stabilized at tree level. For some models we comment on how to identify the number
of possible N' = 1 AdS, vacua in a particular bubble of moduli space. In chapter 12
we compute the effective theory for type IIB SU(2)-structure compactifications on the
coset models allowing for a strict SU(2)-structure. Finally, in chapter 13, we discuss
phenomenological applications for the coset models. In particular, we apply the no-go
theorems of chapter 5 to the coset models and we study whether the models we consider
in this thesis are interesting candidates for inflation or have stable de Sitter minima.

Finally, we give some technical details in different appendices. In particular to men-
tion is appendix C, where we give a short introduction to the framework of generalized
geometry.
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Chapter 2

(G-structure manifolds and
supersymmetric vacua

As we discussed in the introduction, the ten-dimensional type ITA/IIB supergravities,
which are low-energy theories of type ITA /IIB string theory, have N' = 2 supersymme-
try in ten dimensions. One way to connect string theory to four-dimensional real-world
physics is to compactify it from ten dimensions to four dimensions using a compact-
ification ansatz as in eq. (1.4), where we choose the internal manifold Mg small and
compact, such that the six additional dimensions are not detectable in present-day
experiments.

The structure of the four-dimensional theory so-obtained strongly depends on the
chosen internal manifold Mg. For instance, the properties of Mg determine the amount
of preserved four-dimensional supersymmetry. In this thesis we will focus on four-
dimensional N/ = 1 effective theories. Let us mention some reasons for this require-
ment. As we discussed in the introduction, supersymmetry suggests natural extensions
of the standard model such as the minimal supersymmetric standard model. Some of
the phenomenologically attractive features of these models are the following: they offer
a possible solution of the hierarchy problem, they can explain the gauge coupling unifi-
cation and they may provide a candidate for dark matter, the lightest supersymmetric
particle. Another reason is that supersymmetry provides a comparatively easy way to
obtain solutions of the full equations of motion, since the supersymmetry conditions
are much easier to solve as the equations of motion. It can be shown that solutions
to the supersymmetry conditions, completed with the Bianchi identities for the form
fields, automatically provide solutions to the full equations of motion. Of course, after
one has constructed a supersymmetric solution to the supergravity equations of motion,
one has to provide additional mechanisms to break supersymmetry spontaneously at
low energies.

As we will discuss in this chapter, demanding that not all supersymmetries are bro-
ken in the four-dimensional effective theory imposes very stringent requirements on
the internal manifold Mg. The existence of four-dimensional supersymmetry parame-
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ters (this is required to obtain a four-dimensional supersymmetric theory) reduces the
structure group of the internal manifold Mg, which is a topological constraint, whereas
the existence of a supersymmetric vacuum of the theory further imposes differential
constraints on the geometry of the internal manifold. See, e.g., [20, 21, 18, 35] for
reviews and more references.

2.1 Supersymmetric effective theories and G-structures

We assume a product structure for the 10-dimensional space-time as follows
M(gzl) — M(391) X MG; (2].)

where Mg is the six-dimensional compact internal manifold. Motivated by phenomenol-
ogy, we consider the four-dimensional space-time MY to admit maximal space-time
symmetry, i.e., flat Minkowski, anti-de Sitter (AdS4) or de Sitter (dS;). These have
Poincaré, SO(1,4) and SO(2,3) invariance, respectively. With this symmetry require-
ment, the most general ansatz for a ten-dimensional metric is given by

ds? = Guv (x)dztdz” + g (y)dy™dy" (2.2)

where the external metric g,, is a Minkowski, dS; or an AdS; metric. More gen-
erally, one can allow for a non-trivial warp factor e24®) that only depends on the
internal coordinates y™, m = 1,...,6, into the ansatz (2.2). This amounts to re-
place g (z) — €?*4Wg,, (2), which is the most general ansatz consistent with four-
dimensional maximal symmetry [36, 37].

The product structure of the space-time background (2.1) implies a decomposition
of the Lorentz group Spin(9,1) D Spin(3,1)x Spin(6) and an associated decomposition
of the spinor representation 16 € Spin(9,1) according to 16 — (2,4) & (2,4). In order
to obtain an N/ = 1 four-dimensional effective theory, which has one four-dimensional
supersymmetry parameter ¢, we make the following ansatz [38] !

a=¢on) +cen,

)

2 2 (2.3)
e=CGond) +Cond,

for ITA/IIB, where (4 are four-dimensional and ﬁ(il’Q) six-dimensional Weyl spinors.

The Majorana conditions for €; 5 imply the four- and six-dimensional reality conditions
* 1,2)\ % 1,2
(¢)* = ¢ and () =2,

Let us first concentrate on the special case where the two internal spinors (1) and n(?)
are parallel everywhere: n(") o n® 7. For the decomposition of the ten-dimensional

'In the concrete models we study in this thesis we introduce orientifold sources. The orientifold
projection forces the four-dimensional supersymmetry generators ¢ to be the same in both lines of the
ansatz (2.3), ruling out an N = 2 ansatz based on independent (s in the two lines. See appendix C for
more details.
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supercurrents as in eq. (2.3) to be possible, we require the existence of a spinor 7 that
is globally defined on the internal manifold Mg. The existence of such a spinor imposes
a non-trivial topological condition on the internal manifold. A globally defined spinor
must be the same in different patches and thus invariant under the transition functions
defining the structure group. The spinor representation is in the 4 of Spin(6) ~ SU(4),
which can be further decomposed in representations of SU(3) as 4 — 3 + 1. There is
therefore an SU(3) singlet in the decomposition, and we conclude that the topological
condition for a globally defined spinor is the requirement that the internal manifold has
reduced SU(3)-structure.

Further reducing the structure group of the internal manifold Mg to a group smaller
than SU(3) results in a larger number of globally defined internal spinors. For instance,
if the structure group is reduced to SU(2) there are two independent globally defined
spinors on Mg such that a general decomposition as in (2.3) is possible. Combining
the terminology of [38] and [39], the following classification can be made:

e strict SU(3)-structure: n(") and 5 are parallel everywhere:
o static SU(2)-structure: (") and 5(?) are orthogonal everywhere;

e intermediate SU(2)-structure: 7n(") and n® are at a fixed angle, but neither a
zero angle nor a right angle;

e dynamic SU(3)xSU(3)-structure: the angle between 5(!) and 5(®) varies, possibly
becoming a zero angle or a right angle at a special locus.

In this thesis we will study compactifications with strict SU(3)-structure and static
SU(2)-structure. In the following sections we give more details on these two cases.
However, there exists a unifying mathematical description of all manifolds having the
structures classified above. This description is obtained by a generalization of ordinary
complex geometry, called generalized geometry. It turns out that the formalism of
generalized geometry is very convenient to calculate quantities such as the induced
metric and the Kahler potential. We therefore give a brief introduction to generalized
geometry in appendix C. In the following two sections we describe the special cases
of strict SU(3)-structure and static SU(2)-structure that we want to consider in this
thesis. More details can be found in the above mentioned appendix.

2.1.1 Strict SU(3)-structure

If the structure group of the internal manifold is SU(3) and can not be further reduced
into a subgroup of SU(3) we call this a manifold with strict SU(3)-structure. For such a
manifold we have one globally defined spinor such that the supersymmetry generators
of (2.3) are proportional

n? = (/) (2.4)
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with |n\")[2 = |af? and |5’

that b/a = ¢’ is just a phase. This condition is actually imposed by supersymmetry in

‘2 )‘2

= [b2. In the following, we will assume |a| = |b| such

compactifications to AdSs 2. Let us define a normalized spinor 7, such that 775_1) =any
(2)

and n}" = bny and moreover we choose the phase of n such that a = b*.

Given an internal manifold with reduced structure group SU(3), we can decompose
other SO(6) representations under SU(3). For a vector we have 6 — 3 + 3, for a two-
form this reads 15 — 8 + 3 + 3 + 1 and for a three-form 20 -6 +6 +3 +3 + 1 + 1.
Thus, there further exists a two-form and a complex three-form both non-vanishing
and globally defined, but no invariant vectors (or equivalently five-forms). These forms
provide us with an equivalent description of a strict SU(3)-structure. Indeed, with the
SU(3)-invariant spinor n we can construct the real non-degenerate two-form J and the
complex decomposable three-form € as follows

Jmn = Z.njr')’mnmr ; Qinnp = 771'7mnp77+ . (2.5)
These forms satisfy the SU(3)-structure conditions

QANJ =0, (2.6a)
* 4 3
QAR =T 0, (2.6b)

since there is no invariant five-form and there is only one invariant six-form (this can also
be shown using Fierz identities). Up to a choice of orientation, a volume normalization
is defined as

X .
S = —%Q AQF = volg. (2.7)

Equivalently, the equations (2.6) and (2.7) completely specify an SU(3)-structure on a
six-dimensional manifold, provided that the associated metric to J and €2 is positive
definite 3.

The existence of a globally defined everywhere non-vanishing spinor is a topological
condition that reduces the structure group to SU(3). As we will explain in section 2.2.1
in more detail, the conditions for a supersymmetric vacuum imposes further differential
constraints on the spinor. In the simplest case, where no background fluxes are turned
on, a supersymmetric solution requires the internal spinor to be covariantly constant
with respect to the Levi-Civita connection, V,,n = 0. From eq. (2.5) we thus obtain

dJ =dQ=0. (2.8)

Such a manifold has SU(3)-holonomy # and is called a Calabi-Yau manifold.

?As a matter of fact, the condition |a| = |b| is also implied by the orientifold projection that we
will impose in our concrete models (see further appendix C).

3In appendix C it is explained in term of generalized geometry how to obtain the metric associated
to J and Q.

*The holonomy group is the group generated by transformations induced by parallel transport
around loops. The covariant constant spinor remains the same by parallel transport around a loop.
Following the same arguments as above, the holonomy group is reduced to SU(3).
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These conditions change drastically in the presence of fluxes, where the supersym-
metry conditions imply that the spinors are not covariantly constant with respect to
the Levi-Civita connection. The failure of the manifold to be of special holonomy or
equivalently the deviation from closure of J and € is parameterized by the intrinsic tor-
sion. To be more precise, on a manifold with SU(3)-structure there is always a metric
compatible connection V' (i.e., a connection with V} g,, = 0) with or without torsion
that has SU(3)-holonomy, V! n = 0. In case this connection is torsionless, the manifold
is Calabi-Yau. The part of the torsion which is independent of the choice of V' is known
as the intrinsic torsion and can be used to classify the types of SU(3)-structures. The
intrinsic torsion tensor can be decomposed in terms of SU(3) representations as follows

TP €(303) @ (1®3®3)
=(1®1)d(8®8)d(6D6)D2(3d3) (2.9)
Wy Wo Ws Wi Ws,

where the W; are the torsion classes [40, 41]. Here, W; is a scalar, W, is a primitive
(1,1)-form, Wjs is a real primitive (1,2) + (2, 1)-form, W; is a real one-form and W5 a
complex (1,0)-form.

It follows that dJ and d€2 can be decomposed using these torsion classes in the
following way

dJ = gIm(Wlﬁ*) +WiNJT+Ws,
2 (2.10)

dQ=WiJANT+Woe ANJ+W; ANQ,

A classification of special manifolds in terms of vanishing torsion classes is given in
table 2.1 [20]. For example, a manifold is complez if the first two torsion classes vanish,
Wi = Wy = 0. Indeed, if this is valid, dQ is a (3,1)-form, the only possibility on a
complex manifolds, since Q is a (3,0)-form. For a symplectic manifold, the fundamental
two-form J has to be closed and one has therefore Wy = W5 = W, = 0. A Kahler
manifold is complex and symplectic, which implies that W5 is the only non-vanishing
torsion class, and J is called the Kéahler form. In this case, the manifold has U(3)-
holonomy that is reduced to SU(3)-holonomy by further choosing W5 = 0 so that all
the torsion classes vanish and we are left with a Calabi- Yau manifold.

Of special interest for this thesis are manifolds for which only the classes WW; and
W, are non-vanishing and in this class the special case where also W, vanishes, the so-
called nearly-Kahler manifolds. Further, as we will see in section 2.3, a supersymmetric
solution with non constant warp factor/dilaton implies a manifold with non-vanishing
fifth torsion class Ws.

For later convenience, let us also mention that the pure spinors associated to a strict
SU(3)-structure are given as follows (see also appendix C)

V_=-Q, and T, =e el (2.11)
where J and 2 are defined in eq. (2.5).
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Torsion classes Name of manifold
W1 = WQ =0 Complex
Wy =Ws3=W, =0 Symplectic
Im W1 =Im WQ = W4 = W5 =0 Half-flat
Wi=Wo=W,=W5=0 Special Hermitean
Wo=W3=Ws=W5=0 Nearly-Kahler
Wi =W3=Wy;=W5=0 Almost-Kéhler
Wi =Wy=W3=W,=0 Kahler
W1 == W2 = W3 = W4 = W5 =0 Calabi-Yau
Wi =Wy =Wy =3Wy —2W5 =0 | “Conformal” Calabi-Yau

Table 2.1: Classification of manifolds from vanishing torsion classes.

2.1.2 Static SU(2)-structure

Further reducing the structure group to SU(2), we have two independent non-vanishing,
globally defined spinors, 77(1’2>
onal everywhere such that we have a static SU(2)-structure as defined in section 2.1.
The static SU(2)-structure is a special case of the more general SU(3)xSU(3)-structure.
In appendix C we will give an introduction into the language of generalized geometry
and SU(3)xSU(3)-structures. In this section we will discuss the main formulas needed
to deal with static SU(2)-structure compactifications.

. In the following we assume that (") and n® are orthog-

Having two nowhere vanishing and orthogonal spinors n(!) and 1(?, we can, just as
for the SU(3)-structure, define the SU(2)-structure in terms of SU(2)-invariant forms.
Following [42, 43, 39], we choose to parameterize the two orthogonal spinors as follows

1
) = an., (2.12a)
) _ pyin,
ny = 0Vivin_, (2.12b)
where \n(j)\? = |a/? and \nf)\Q = [b|?, which imposes |[V|? = 1/2. Again, we choose in

the following |a| = |b|, which is implied by the orientifold projection [43] and we choose
the relative phases of the spinors such that a = b* and b/a = €, where only the phase
0 is physical. We further define a normalized spinor 7, = nf)/b, ie.

e = V'yin-, (2.13)
and one constructs the one-form associated to the vector V' in terms of the spinors as

1 .
Vi = EnT_wu : (2.14)

In addition we can construct from bilinears of the spinor fields a real two-form wy and
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a holomorphic two-form €9 as follows
waij = il Yigne — iy vigily (2.15a)
Qo ij = ] Yigs - (2.15b)

These forms are obviously SU(2)-invariant. Using Fierz identities these forms satisfy
the following structure conditions [42, 39]

1
wo N\ wo = 592 A Q; ;é 0 (216&)
(AJQ/\QQZO, QQ/\QQZO, (216b)
Lvﬁg = 0, Llywy = 0. (2.16(})

Equivalently, forms wy, Q9 and V satisfying eq. (2.16) completely specify a static
SU(2)-structure, provided that the associated metric is positive definite. We explain
how to obtain this associated metric in appendix C.

Note that the SU(2)-structure is naturally embedded in the SU(3)-structure defined
by 74 in eq. (2.5). We get from the egs. (2.14) and (2.15)

J=wy — 2V ANV*, Q=2VAQy, (2.17)
and one has the reverse relations
wo=J+2VAV", Qo =1+ (2.18)

We then find for the pure spinors associated to a static SU(2)-structure as explained
in appendix C

U, = —e 0e2VAVQ,, (2.19a)
U_ = -2V Ae2, (2.19b)

In the following, it will be convenient to absorb the phase e~ into .

2.2 Supersymmetric solutions

Demanding maximal symmetry of a vacuum of the theory, only the bosonic fields can
have non-vanishing expectation values. Thus, the supersymmetry variations of the
bosonic fields that always contain a fermionic field are automatically vanishing. Hence,
we have just to consider the variation of the fermionic fields. For a supersymmetric
vacuum we require that the vacuum expectation value of the supersymmetric variation
of all fermionic fields x vanish, (0x) = 0.

As we have seen in the introduction, the fermionic fields in type II theories are two
gravitini ¢}, and 2, and two dilatini \' and A?. We can combine these Majorana-Weyl
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spinors in a column vector ¥, = (1/111\4, 1/112\4)T, and similarly for X. In the supergravity
approximation, the bosonic parts of the supersymmetry variation of the gravitini and
dilatini read [20] (in string frame) °

1 e®
SA = a<1>+1H7>+£Z(—1)"(5— )VE, P (2.20b)
=10 5 3 4 n)nPn | €, .

respectively, where underline denotes the contraction with gamma-matrices as defined
in eq. (A.18), and

IIA: P =Ty, IIB: P=—o3, (2.21a)

n 1 1
A : P, = (Tao)or, TB: P, =0 (”; even>  ioy (%odd) . (2.21b)
It is sometimes convenient to use the modified dilatino variation

TM§ypp — o) = <Z_Q@+iﬁp> €. (2.22)

A type IT geometry will preserve supersymmetry if and only if there is at least one
e for which all the supersymmetry variations (2.20) vanish. The number of such €’s
determine the number of supercharges and thus the amount of supersymmetry in four
dimensions. As we will see, these conditions place strong constraints on the geometry.

To preserve maximal four-dimensional symmetry, we are allowed to turn on only
those fluxes which have either no leg or four legs along four-dimensional space-time.
We require

F =F+voly A" F (2.23)

with voly the (unwarped) four-dimensional volume form such that F and F are purely
internal forms. This allows us to write the supersymmetry variations in terms of internal
fluxes only. The Hodge duality (B.1) (here in string frame) then implies the following
relation

~ A

F = Fa(xF), (2.24)

for ITA/IIB, and the operator « reversing the order of the indices is defined in appendix
A. In the following we will drop the hat symbol and hope that the notation is clear.

"Here we use the democratic formulation of [44]. See appendix B for our conventions.
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2.2.1 Supersymmetric backgrounds without fluxes

For the simplest case when no fluxes are present, the gravitino variation (2.20a) re-
quires the existence of a covariantly constant spinor on the ten-dimensional manifold,
Vue = 0. The four-dimensional space-time component of this condition, Ve = 0,
implies, using integrability conditions, that the warp factor has to be zero and the four-
dimensional manifold can only be Minkowski space [20]. When no fluxes are present, we
can decompose the ten-dimensional supersymmetry generators as follows (we assume
here strict SU(3)-structure)

a=0Goen +den,

2 2 (2.25)
€2=C+®7I¢ + C®nt,

for ITA /TIB, where Cﬁ, A = 1,2 are two four-dimensional Weyl spinors. This compact-
ification preserve eight supercharges which implies N' = 2 in four dimensions.

We solve the internal component of the gravitino variation, V,,e = 0, with the
decomposition ansatz (2.25) provided that

Vmne =0, (2.26)

which means that the internal manifold has to admit the existence of a non-vanishing,
globally defined six-dimensional spinor that is covariantly constant (with respect to the
Levi-Civita connection). As mentioned earlier, this condition implies that the internal
manifold not only has SU(3)-structure but also SU(3)-holonomy and is a Calabi-Yau
manifold.

2.2.2 Supersymmetric backgrounds in the presence of fluxes

If we turn on background fluxes, the supersymmetry conditions (2.20) relate the two
supersymmetry parameters €; and €y in (2.25). It turns out that the four-dimensional
supersymmetry parameters (' and ¢? cannot be chosen independently anymore, break-
ing four-dimensional supersymmetry to N’ = 1. Demanding maximal four-dimensional
symmetry, ¢! and ¢? should be proportional, and we arrive at the most general ansatz
for N'=1 in four dimensions given in eq. (2.3).

In the following, we will specify the necessary and sufficient conditions for N = 1
compactifications of (massive) type ITA supergravity to AdS, with the strict SU(3)-
structure ansatz.

Type ITA strict SU(3)-structure supersymmetry conditions

The necessary and sufficient conditions for ' = 1 compactifications of (massive) type
ITA supergravity to AdSs with the strict SU(3)-structure ansatz (2.4) were first given
in [31]. These vacua require constant warp factor, A, and constant dilaton, ®. The
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solutions of [31] are given by ©:

2
H= ?meq)ReQ, (2.27a)
F = fJ F 2.27b
2= + g, (2.27b)
3m
F4 = fV014 + 1—0J A J, (227C)
We = —%eq)"'Am + %eq)""Af, (2.27d)

where H is the NSNS three-form, and F, denote the RR-forms. In the following,
we will set the warp factor equal A to zero. Furthermore, f and m are constants
parameterizing the solution: f is the Freund-Rubin parameter, while m is the mass
of Romans’ supergravity [45] — which can be identified with Fj in the ‘democratic’
formulation [44].

The constant W is defined by the following relation for the AdS, Killing spinors,
Gt

1
V(- = §W7uC+, (2.28)

so that the radius of AdS, is given by |W| 1. The two-form F} is the primitive part of
F, (i.e. it is in the 8 of SU(3)).

The intrinsic torsion of the internal manifold is constrained by supersymmetry and
the Bianchi identities. The only non-zero torsion classes are W; and Ws, and they
are purely imaginary what we indicate with a minus superscript, i.e., Wi o =W, , =
ilmW; 5. The forms J and €2 thus satisfy (see the definition of the torsion classes in
eq. (2.10))

dJ = —gz’WfReQ, (2.29a)
AQ =W, JAJ+Wy AJ, (2.29D)

where the torsion classes are given by:

4
Wy = —ée‘l’f, Wy = —ie®F}. (2.30)

From eq. (2.27) and eq. (2.30) we immediately conclude that F is constrained by
the Bianchi identity for Fy (see eq. (B.9a)):

2 2
2= Zm?)e®ReQ — 45, (2.31)

’— _
dF2_(27 5

5As opposed to [31] we do not use superspace conventions. Furthermore we use here the string
frame and put m = _thhere; H = _cherey J = _Jtherey Fy, = _thhereB, and Fy = —G.
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where we have added a source, j%, for D6-branes/O6-planes on the right-hand side. In
addition, for vanishing sources, equation (2.31) yields dW,; o Re€. It is convenient to
define the following proportionality constants ¢; and ¢y

dJ = —gi W, ReQ = c1Re(2, (2.32a)

dWy = ico Re, (2.32b)

where we show in appendix C
1,
2 = =3IV, 2. (2.33)

The absolute value of a two-form © is defined as |©% := O}, ©™".

For the sourceless case it was proven by analyzing integrability conditions that a
background that is supersymmetric and whose fluxes satisfy the Bianchi identities and
equations of motion is a solution to the full equations of motion (whenever there are
no mixed external-internal components of the Einstein tensor, which we will assume)
[46, 47, 31]. Turning on sources, the Bianchi identities get modified by these sources.
Assuming these sources to be supersymmetric (they must be generalized calibrated as
in [48]) it can similarly be shown that, under mild assumptions, supersymmetry guar-
antees the appropriately source-modified Einstein and dilaton equation of motion to be
automatically satisfied if these source-modified Bianchi identities and form equations
of motion are satisfied [43].

For vanishing source, we find from the egs. (2.31), (2.32) and (2.33) that the fol-
lowing bound on (W, ,W, ) has to be satisfied for a geometry to be a supersymmetric
background
16
Eenm? =3Wr |2 - W5 2>0. (2.34)
This is a very restrictive condition for a manifold to be suitable for a supersymmetric
solution. Let us note that condition (2.34) turns out to be too stringent to be satisfied
for any nilmanifold whose only non-zero torsion classes are W , [49].

To relax the this restrictive constraint (2.34) we may allow for a brane/orientifold
source, j% # 0. The simplest source we can consider is one proportional to ReQ [50]:

2
35 = —ge_q’,uReQ, (2.35)

where p is a discrete, real parameter of dimension (mass)?, so that —p is proportional to
the orientifold /D6-brane charge (i is positive for net orientifold charge and negative for
net D6-brane charge) 7. For the choice (2.35) the source wraps supersymmetric cycles,

"To be more precise, the charge of a D6-brane is pus = (271')’60/77/2, whereas the charge of a

O6-plane is —2ug. An orientifold plane is not a genuine supergravity object, but defined by the string
compactification, where the orientifold plane is the fixed point locus of the involution ¢*. Thus, for
net D-brane charge, 4 < 0 is an arbitrary, discrete parameter (proportional to the number of D6-
branes), whereas for net orientifold charge, p > 0 is fixed by the charge of the orientifold. However,
for the explicit calculations in this thesis, we take the pragmatic point of view that we can enrich the
supergravity action by an object with arbitrary negative charge [38].
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which is easily verified by looking at the calibration conditions for D6-branes/O6-planes:
S AReQ =0, SAnT=0, (2.36)

which are satisfied for (2.35). The constraint coming from (2.31) now reads
) _ _
e*m? =+ 6 3wy | =Wy ?) > 0. (2.37)

Since we assume that p is arbitrary, the above equation can always be satisfied, and
therefore no longer imposes any constraint on the torsion classes of the manifold. With
orientifolds sources there are possible solutions on nilmanifolds as we will demonstrate
in chapter 6.

There is a more general choice as (2.35) for the source that satisfies the calibration
condition (2.36):

2
38 = —ge_q),uReQ + ws , (2.38)

where w3 has to be a primitive (1,2)+(2,1)-form. For this choice we relax the constraint
that dW, oc Re() such that

Wy =icsReQ +ie®w;. (2.39)

The condition (2.34) is still the same, since it involves only the (3,0) and (0,3)-part of
eq. (2.31).

As we have mentioned, for some of our models we will study, the inclusion of smeared
orientifold sources is required to relax the bound from (2.34) to (2.37) and to allow for
a supersymmetric AdSy solution. In appendix D we explain how to associate orientifold
involutions to a smeared source. Under each orientifold involution the dilaton, metric
and fluxes must transform as follows [43]:

Even : ofe® =e?, o*Fy = Fy, oc*Fy = Fy,
(2.40a)
Odd : O'*HZ—H, O'*FQZ—FQ,
whereas the SU(3)-structure transforms as
Even : o ImQ =ImQ,
(2.40b)
Odd : o*Ref) = —Re 2, o*J=—-J.

Let us mention that there is no N'= 1 AdS, solution for a compactification in type
ITA with static SU(2)-structure, as was already noted in [42]. We provide a very simple
proof for this statement in terms of generalized geometry in appendix C. The same
type of argument is also applicable for the type IIB side, where it is easy to see that
there is no N' = 1 AdSy solution for type IIB and strict SU(3)-structure possible. We
summarize these results in table 2.2.
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‘ N =1 AdS, solution ‘ type TTA type 11B
strict SU(3) possible not possible

static SU(2) not possible possible

Table 2.2: Possible N' =1 AdSy solution for type ITA/IIB with strict SU(3)-structure
or static SU(2)-structure.

Hierarchy of scales

For a solution satisfying the type IIA conditions given in this section to be a valid
supergravity approximation, we have to verify that the string loops can be safely ignored
and that we can ignore o’'-corrections. We thus have to show that we can consistently
take the string coupling constant to be small (g, = e® < 1), and that the volume of the
internal manifold is large in string units (Lin/l > 1, where Ljy is the characteristic
length of the internal manifold).

As we will show in the following, we can always choose the background fluxes in a
way that the supergravity approximation is valid. In the full quantum theory, all the
fluxes have to be quantized according to

1
lp—l/c Fp = ’I’Lp, (241)
P

where [ := 2mvV/d/, Cp is a cycle in the internal manifold, and n, € Z. For the super-
symmetric solutions we will study in part IT and IIT of this thesis, the NSNS three-form
H turns out to be exact (in fact, since H o<« ReQ o dJ this follows from the supersym-
metry conditions in section 2.2.2, see first equation in (2.27) and eq. (2.29a)), hence its
integral over any internal three-cycle vanishes, and it therefore suffices to impose (2.41)
for the RR-fluxes.

Concretely, in chapter 8 and 11, where we will study the mass spectrum around the
supersymmetric solutions for our models, we choose conventions such that

J ~ LiQnt ;o e~ L?nt : (2.42)
We immediately conclude from (2.27), (2.29) and (2.31) the following scalings
1 _
By thes DO~ Ly (2.43)

We thus define f,/(gsLint) as the norm of the flux density F),, where f, is some number
depending on the geometry. The quantization condition (2.41) then implies

fpgsTlLP_l = lpil”pa (2.44)

int

8In our conventions, the structure constants are dimensionless such that the derivative does not
influence the scaling.
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from which one easily derives the following equations

=
=

9s = (f3F0) (ndny) "7, L}m _ (%)

ng [ none _ fofe

Viong  Nfofs mona fofs’

Given a solution {n,} to the quantization conditions (2.44), there are several different
possible scalings n, — N)‘Pnp, for N, )\, € N, which leave the f,’s invariant and, at the

()

(2.45)

same time, ensure that gs is parametrically small while Ly /I is parametrically large
(with large parameter N). For instance, assume the rescaling

ng — N4ng s ng — N6n2 s ng — N8n4 s neg — Nmnﬁ s (2.46)

and it is easy to verify that the f,’s are invariant whereas g5 oc N “5 and Lin/l < N.
Despite the fact that we are allowing for large flux quanta, it can be shown that higher-
order flux corrections can also be neglected. Indeed it is not difficult to see that the
parameter \gSFp|2, which controls the size of these corrections, scales with a negative
power of the large parameter N [51].

Decoupling of Kaluza-Klein modes

A further consistency requirement is that the Kaluza-Klein tower can be decoupled, i.e.,
we have to establish that the lightest excitations above the Breitenlohner-Freedman
bound with mass squares m%M are much lighter than the Kaluza-Klein excitations
with mass square m%(K This is the problem of separation of scales. One can take
the point of view that this problem should not be discussed until the model is uplifted
to a phenomenologically viable model with a small, positive cosmological constant - a
procedure that also changes the mass spectrum of the lightest modes such that it is
necessary to re-address the separation of scales.

However, in the following we will study the conditions for the separation of scales
even before the uplifting. It will actually turn out that the separation of scales is
difficult to establish and will not be possible for most of the models we study in this
thesis such that one may hope that after an uplift procedure the scales are properly
separated. Nevertheless, let us study the conditions for decoupling the Kaluza-Klein
modes.

As we will discuss in section 3.1, the mass squares of the lightest excitations above
the Breitenlohner-Freedman bound are of order |WW|? whereas the massive states of the
Kaluza-Klein tower have mass squares of the order Li;?. The necessary condition to
have a hierarchy between the lightest excitations and the Kaluza-Klein tower can thus
be rewritten as follows

WL, < 1. (2.47)



2.2. SUPERSYMMETRIC SOLUTIONS 31

Using (2.27d) we find that to decouple the Kaluza-Klein scale we must impose

1 1
WPLE, = 52 (9P m* L + 5 (9012 Liy < 1, (2.49)
which means that each of the two terms on the right-hand side of the equal sign must
be separately much smaller than one.

Let us first consider the second square in the condition for a decoupling of the Kaluza-
Klein scale (2.48). This requires (g5)2f2L2, < 1. From eq. (2.30) this conditions reads

int
W | Ling < 1, (2.49)

which requires manifolds for which W, vanishes (and only W, is possibly non-zero).
Such manifolds are called ‘nearly Calabi-Yau’ (NCY), see e.g. [52]. Hence, for the
decoupling of the Kaluza-Klein scales, the internal manifold must admit an SU(3)-
structure which is sufficiently close to the NCY limit.

The first square of condition (2.48) yields the condition (gs)?>m?L?, < 1. Using
eq. (2.37) this condition is equivalent to
) _ _
L + 75 GBIV = WV, ) L < 1, (2.50)

Note that without source terms it is not possible to satisfy this condition (unless
3IW, 12— W, |2 < L2). However, with source terms we just need to show that
we can choose p so that it is close to its bound to satisfy (2.50). The discrete parame-
ter p, which is, for ;4 < 0, proportional to the net number of D6-branes npg, scales as

(up to numerical factors of order one)
i~ —npegsl L2 (2.51)

as can be seen from the quantization condition for Fy, and the Bianchi identity for Fj
(B.9a). With eq. (2.43) we can rewrite this equation schematically as follows:

l
—ND6Ys <—L~ t) t+ta<1, (2.52)
m

int
provided that a is positive, by choosing some large integer npg.

where ¢ is a number of order one. Since g; (%) < 1, we can then satisfy this bound,

Once a solution for npg is obtained in this way, we are free to rescale npg — N9npg
leaving (2.52) invariant, provided we take: ¢ = (Ag+A4)/2 € N. For the example (2.46)
we add npe — N°npg which leaves eq. (2.52) and all the f,’s in eq. (2.45) invariant
and ensures that gs is parametrically small while Ly /I is parametrically large (with
large parameter N).

On the other hand, when a turns out to be strictly negative, we can not accomplish
(2.52) with —npg — nog, which corresponds to net orientifold charge, since the number
of orientifolds is not freely adjustable (see also footnote 7). It depends thus on the model
we study, whether the Kaluza-Klein modes can be decoupled or not.
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2.3 Supersymmetric type ITA solution with non-constant
warp factor and dilaton

The (massive) type ITA supersymmetry conditions for N = 1 compactifications to AdSy
given in section 2.2.2 assumed constant warp factor A and constant dilaton ®. The
condition of constant warp factor/dilaton follows from the supersymmetry equations
and the Bianchi identity for Fy. However, we can allow for non-constant warp fac-
tor/dilaton provided that we set the Romans mass m to zero ?. To analyse this in more
detail, we rederive the type ITA supersymmetry conditions given in section 2.2.2. It
will be convenient for the analysis to use the language of generalized geometry, which
we review in appendix C, where the conditions for a supersymmetric solution take a
very concise form.

Let us start by first combining eq. (C.43b) and (C.43c) to give
di [37%T,] = 2We? A PRe Ty, (2.53)

where we used the fact that W is a constant. The second equation which we have to
solve includes the RR-fluxes (collectively summarized in the polyform F') and is given
in eq. (C.43a). It reads

dg (e 2Im¥y) = 3¢ PIm (W*0y) + M F, (2.54)

where F is defined in eq. (2.24).

For a strict SU(3)-structure the pure spinors are given in eq. (2.11), where for type
ITA Uy = ¥_ and ¥y = ¥,. We first solve eq. (2.53) which imposes constraints on the
geometry. It consists of a one-, three- and five-form part. The one-form part reads

d(3A=Pe=1%) = (AP WHe=) = 0, (2.55)

where we used in the second equation that W is constant. In the following it will be
convenient to include the phase of W into the angle €' as follows

W™ = |Wle ¥ . (2.56)
The conditions resulting from eq. (2.55) are thus
d0' =0, (2.57a)
3dA — d® = 0. (2.57b)
The three-form part of eq. (2.53) is rewritten with eq. (2.57) as follows

idJ + H = —2¢ 4|[Wle " ReQ, (2.58)

“Recently, this was also emphasized in [53] and in [54, 33] such N/ = 2 type ITA solutions are
constructed from M-theory backgrounds on seven dimensional Sasaki-Einstein manifolds reduced to
type ITA.
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such that we get
dJ = —2¢ 4|W|sin0'ReQ = ¢;Re, (2.59a)
H = —2e4W|cos'Re 2, (2.59b)

where we introduced the proportionality constant ¢; as in eq. (2.32). Note that
eq. (2.59a) implies the vanishing of the torsion classes W3 and W, and constrains
the first torsion class to be purely imaginary,

43

Wy = —ge*A|W| sinf’ . (2.60)

The five-form part of eq. (2.53) is very easy, it reads using the result (2.57),
1
d<—§J/\J>+7JH/\J=O, (2.61)

and is automatically satisfied as can easily be seen from eq. (2.59) and the compatibility
conditions for a strict SU(3)-structure (2.6).

Let us now analyse the second condition (2.54) involving the RR-fields. It consists of
a zero-, two-, four- and six-form part. We first analyse the zero-, two- and six-form part
of this equation and analyse the two-form part later. The conditions read, respectively,

Fy = 3e P |W|siné’,

&
I

—3e e W |cos 0T (2.62)
Fy = 3e~®e W] cos0'volg — e P H ATmQ,

where we defined the volume volg in eq. (2.7). Using eq. (2.24) !0, these equations
translate into

Fo=m,
Fy = 3—mJ AT, (2.63)
10
Fs = —fvols,
where we defined
m = —5e Te AW|cos ',

(2.64)
f=3e" e Y W|sinf' .

So far we obtained exactly the conditions given in section 2.2.2, which were first
derived in [31]. The crucial point is that the Bianchi identity for Fj (see eq. (B.9a))
reads

dFy = d(—=5e~®e |W|cosb') =0, (2.65)

ONote that we drop the hat on F in the following.
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which is equivalent, using eq. (2.57a), to
d®+dA=0. (2.66)

Together with eq. (2.57b), this implies that the warp factor A and the dilaton ® have
to be constant. If, on the other hand, the Romans mass m is vanishing, we do not
have this condition from the Bianchi of Fy and the warp factor A and the dilaton ®
are not constant anymore but still satisfy eq. (2.57b). Hence we choose in the following
¢’ = +Z such that !

m=0 and f==43e"%e 4 W|. (2.67)

This has now consequences for the geometry, as can be seen as follows. From
eq. (2.59a) we obtain

0=d%J = d(—2¢e 4 |W|Re), (2.68)
such that

dRe2 = dA AReQ. (2.69)

Comparing this with the definitions of the torsion classes in eq. (2.10), we have a
non-vanishing fifth torsion class Ws, for which the real part is given by

ReWs =dA #0, (2.70)
whereas ReW; = ReW, = 0. This implies for Im{2 the following

dImQ = —i W JAJ —iW; AJ+dAATmQ. (2.71)

We are now ready to analyse the missing four-form part of eq. (2.54). This equation
reads then

P = _ge*%*ﬂwu AT +e A (e m), (2.72)

which translates, using eq. (2.24) and eq. (2.71), in

f

Fy=gJ+ Fy 4 2e~% %6 (AAAImQ) , (2.73)

where we defined
Fy =ie”®Ws . (2.74)

Let us in the following briefly summarize the results of this analysis. Putting the Ro-
mans mass m to zero, there are solutions to the strict SU(3)-structure supersymmetry

"1n the following, we will choose the plus sign in eq. (2.67).
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conditions with non-constant warp factor and dilaton and the following non-vanishing
torsion classes

Wr=-ge s,
Wy = —ie®F) (2.75)
ReWs =dA.
The background fluxes are given by
H=0,
Fy =0,
F, = gJ + Fy— 2 % 46 (AAAImQ), (2.76)
Fy, =0,
Fs = —fvolg.

Let us stress again that this time, f is not a constant but f = 3e~®e~4(W/|. The warp
factor A and the dilaton ® are related by eq. (2.57b).






Chapter 3

Low-energy four-dimensional
physics

As we mentioned in the introduction, the idea of geometric compactification is very
old. Kaluza [12] and Klein [13, 14] suggested a unification of the gravitational and
electromagnetic interaction by postulating an extra compact dimension of space-time.
As we will explain in this chapter, the compactification of extra dimensions into a small
internal manifold results in an infinite tower of scalar, vector and tensor modes with
masses quantized in units of the inverse radius of the internal manifold. In the early
days of Kaluza and Klein, however, it was far from clear how to interpret these massive
particles, since with the electric charge set equal to its experimentally observed value
these masses turned out to be very heavy. The acceptance of extra dimensions was
therefore very low.

The discovery of string theory provided another way of introducing higher dimen-
sions into physics. String theory requires a ten-dimensional space-time to be a con-
sistent theory. To make contact with our observed four-dimensional world we need a
mechanism to hide six of these ten dimensions from present-day experiments and the
idea of Kaluza and Klein gained immediately new interest. Hence, we choose these
six extra dimensions to be small and compact such that they are not detectable in
present-day experiments. For a given background, the ten-dimensional theory can then
be reduced to four dimensions by a Kaluza-Klein reduction, resulting in an infinite
tower of Kaluza-Klein modes. Choosing the internal manifold small enough not to be
observed, the higher modes of the Kaluza-Klein tower become very heavy and can be
integrated out. We end up with an effective four-dimensional theory for the lightest
Kaluza-Klein modes. As we mentioned in the introduction, the scalars in this light
spectrum correspond to the moduli fields. If there are no background fluxes or metric
fluxes present, these moduli will be massless and unstabilized.

For supersymmetric theories, on the other hand, one can compute the four-dimen-
sional effective theory in a more elaborate approach that relies on supersymmetry. We
will refer to this approach as the effective supergravity approach. Concretely, for an
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N = 1 supergravity, one determines the Kahler potential X and the superpotential WW
in terms of geometrical data of the internal manifold and the background fluxes !. By
means of these expressions we can straightforwardly construct the effective action, as
we will review in the following. We will use the expressions for the Kahler potential
and the superpotential derived in [55, 27, 56, 57, 58, 59]. However, we will not blindly
adopt these expressions without checking them carefully. We will perform this check by
calculating the mass spectrum for two of our explicit models we study in this thesis, both
by a direct Kaluza-Klein reduction as well as in the effective supergravity approach.
We obtain exactly the same results in both cases such that we will restrict ourselves to
the effective supergravity approach for the other manifolds we study.

In this chapter we first give a short survey of the Kaluza-Klein recipe, for a detailed
review see e.g. [60]. Next we turn to the description of the effective supergravity
approach and comment on the possible choices of background fluxes.

3.1 Kaluza-Klein reduction

In the Kaluza-Klein reduction for a D = (4 + d)-dimensional space Mp to our ob-
served four-dimensional non-compact space-time M®:1) | one assumes a (warped) prod-
uct structure for the manifold Mp

Mp = MBY x My, (3.1)

where M, represents the d-dimensional compact internal manifold. Let z and y be
space-time and internal-manifold coordinates, respectively. The most general ansatz
for the background metric is given in eq. (2.2) and reads

ds? = e2AW) g, (2) Az dz” + G (y)dy™dy" (3.2)

where hatted fields denote a vacuum, i.e. a particular solution of the equations of
motion of ten-dimensional supergravity. The requirement of maximal symmetry for
the four-dimensional space-time M1 restricts us to spaces of constant curvature,
i.e. to a de Sitter (dS) space for positive curvature, Minkowski for flat space-time and
anti de Sitter (AdS) for negative curvature. Maximal space-time symmetry allows the
‘warped-product’ ansatz including the a warp factor A(y) in eq. (3.2).

Moreover, we denote by \i!(x, y) a ‘vacuum’ for the different matter fields such as the
dilaton, the NSNS two-form Bs potential or the different RR p-form potentials. The
Kaluza-Klein reduction consists in expanding all ten-dimensional fields gy (z,y) and
U(z,y) in ‘small’ fluctuations around the vacuum:

gun(z,y) = gun(z,y) + dgun (2,y), (3.3a)
U(z,y) = U(z,y) + 6 (z,y). (3.3b)

'Tn our concrete models, there are no vector multiplets such that we will not consider D-terms.
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To determine the spectrum of the four-dimensional theory we substitute this expan-
sion in the equations of motion keeping only terms up to linear order in dgyn(z,y)
and 0¥ (x,y) (corresponding to at most quadratic terms in the Lagrangian). Each
fluctuation, collectively denoted by 6®(z,y), is decomposed as a sum of terms of the
form

60(z,y) = Z bn(T)wn(y) (3.4)

where ¢, (z) are four-dimensional space-time fields and the w,(y)’s form a basis of
eigenforms of the Laplacian operator > Ay = dd! + dfd in the internal d-dimensional
space My,

Agwn(y) = mpwn(y) - (3.5)

From the four-dimensional point of view this results in an effective four-dimensional
theory with an infinite tower of massive states with masses m, quantized as 1/Lin;
where Lj,; is the ‘radius’ of internal manifold such that its volume is of order Lflnt. For
small internal manifolds these masses will become very heavy and can be integrated
out.

In the following we will truncate all the higher Kaluza-Klein modes in the harmonic
expansion (3.4) and keep only those wy,(y)’s in (3.4) that are left-invariant on M . The
resulting modes are not in general harmonic, but can be combined into eigenvectors of
the Laplacian whose eigenvalues are of order of the geometric fluxes.

Plugging the ansatz (3.3)-(3.4) into the ten-dimensional equations of motion and
keeping at most linear-order terms in the fluctuations, one can read off the masses of
the space-time fields, i.e. the ‘spectrum’. In the present case, this is accomplished by
comparing with the equations of motion for non-interacting fields propagating in AdSy.
Let M and A be the mass of the field and the cosmological constant of the AdS space,
respectively, such that

2
Scalar : A¢+ <M2 + §A> =0, (3.6a)
Vector :  A¢, + V, V¢, + M?*¢, =0, (3.6b)
Metric:  Aphu, + 2V, V?hy,), = V(, Vi) h? ), + (M? = 2A)hy, =0, (3.6¢)

where Ay, is the Lichnerowicz operator defined by:

Aphuy = =V?hu — 2Ryupeh?” + 2R, hyy), . (3.7)

The definition of mass as in eq. (3.6) is such that the massless state, M = 0, corresponds
to a gauge field with only two degrees of freedom for the metric and vectors and scalars
propagating on the light cone [61, 60].

2See appendix A for our conventions.
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With the above definitions, the Breitenlohner-Freedman bound [61] is simply

M?>0, (3.8)
for the metric and the vectors. For the scalars, however, a negative mass-squared is
allowed:

A W
M? > — =— 3.9
> L= L (39)

where W was defined in eq. (2.28). Actually, we will present the results for the mass
spectrum of the scalars in terms of

. 2
M? = M? + A (3.10)

for which the Breitenlohner-Freedman bound reads

M? > ——9|W|2.

(3.11)

We will take M = 0 as the definition of an unstabilized modulus since from (3.6a) we
see that then, if it were not for the boundary conditions of AdSy4, a constant shift of ¢
would be a solution to the equations of motion. Therefore a constant shift of ¢ leads
to a new vacuum solution.

To determine the spectrum of the four-dimensional theory, we plug the expansion
ansatz (3.3) in the equations of motion, where the NSNS- and RR-field strength appear.
We would thus like to express the fluctuations of the RR-field strengths 6 F' in terms of
the fluctuations of the potentials 4C in such a way that the Bianchi identity dgy F' = —j
is automatically satisfied. How this can be done is explained in the next section.

3.1.1 Bianchi identities

The recipe for the Kaluza-Klein reduction tells us to expand all the fields in ‘small’
fluctuations around the vacuum. The Bianchi identities for the gauge flux have to be
satisfied for the background as well as for the background plus fluctuation, i.e.,

(d+H)F =—j, (3.12a)
(d+ H 4 6H)(F + 6F) = -7, (3.12b)

where we assumed that the source does not fluctuate, since it is associated to smeared
orientifolds.

The integrability equations read
(d+H)j =0, (3.13a)

(d+H+6H)j =0, (3.13b)
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from which follows
SHAj=0. (3.14)
From eq. (3.14) and the integrability conditions (3.13a) we show that
(d+ H)(BAj) =0, (3.15)
so that, subtracting (3.13a), we can define (locally)
—(B—1)Aj=(d+ H)dw. (3.16)

Now, for orientifold sources the left hand side of this equation always vanishes. This
follows because the pull-back of 6 B to the orientifold, d B|x,, must be zero, which implies
using (D.2):

SBAj=0, (3.17)

and the same for all powers of 0 B. This implies that we can also choose dw = 0.

The difference between (3.12a) and (3.12b) gives the Bianchi identity for the fluctu-
ations

(d+ﬁ1+5ﬂ)5F+5HAF:o. (3.18)

This equation can be rewritten as
(d+H) <e5BéF) +6HAPEF =0. (3.19)
We now introduce the potentials §C' to solve this equation. The solution reads
eOB§F = (d+ H)0C — (e — 1)F + dw, (3.20)

where we can set dw = 0.

Expanding this expression, we obtain for type ITA the fluctuations
0Fy =0,
(5F2 = d501 - m5B,

5 . 1
0F, = déCs + HASC, — 0B A (Fy + 6Fy) — im(éB)Q ,

§F5 = ddCs + H A 6C5 — 0B A (Fy + 0F) — %(53)2 A(Fy +0F) — %m(éB)3 ,
(3.21)
and for type 1B
§F), = déCy,
0Fy = d0Cy + H A 3Cy — 6B A (Fy + 0FY), (3.22)

§F5 = d6Cy + H AN 6Cy — 0B A (F3 4 6F3) — = (6B)2 A (FL + 6F).

1
2
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For the Kaluza-Klein reduction we will only need the terms linear in the fluctuations
while for an analysis of finite fluctuations using the Kahler potential and superpotential
we need higher orders too.

For the NSNS-flux we can just write

H=H+6H=H+diB. (3.23)

3.2 Effective supergravity

As already mentioned in the introduction of this chapter, the N/ = 1 effective four-
dimensional action 3 can be obtained from the superpotential W and the Kihler po-
tential K. The part of the effective four-dimensional action containing the graviton and
the scalars reads

5= [dev=a (% M g MKy 0 V6.9) . (3.24)

where Mp is the four-dimensional Planck mass. The scalar potential is given in terms
of the superpotential via

Vg, §) = MpZe™ (KVD;WeDWi — 3Ws?) | (3.25)

where DWWy = ;Wi + (0;K)Wk.

The superpotential and Kahler potential of the effective N' = 1 supergravity have
been derived in various ways. This is done most generally in terms of pure spinors in the
framework of generalized geometry 4. Here we will present the results of these deriva-
tions and then specialize the expressions to strict SU(3)- and static SU(2)-structure.
As we mentioned, we will verify these expressions by performing a consistency check
between this effective supergravity approach and the direct Kaluza-Klein approach that
does not rely on supersymmetry. This is done by calculating the mass spectrum for
some of our models, both by direct Kaluza-Klein reduction (chapter 7) as well as in
the effective supergravity approach (chapter 8), obtaining exactly the same results in
both cases (see also [62] for related work).

In [27, 56] (based on earlier work of [55]) the superpotential has been computed at
the level of the fermionic effective action. One uses the fact that the superpotential W
appears linearly in a four-dimensional N' = 1 supergravity theory as the mass term of
the gravitino 1,

S /d4x\/—_gelc/2 (W, 6" 4y, + c.c.) . (3.26)

Thus, focusing on the mass terms of ¢, in the explicit reduction of the fermionic
part of the ten-dimensional effective action provides us with an explicit expression for

3In our concrete models, there are no vector fields in the spectrum such that we will not consider
gauge kinetic couplings and D-terms.
*See appendix C for details on pure spinors and generalized geometry.
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the superpotential W. We skip here the details of the calculation and just quote the
result in eq. (3.27). However, let us mention that the expression for the superpotential
obtained in this way agrees with the expression obtained in [57], where the authors
derive the superpotential using a Gukov-Vafa-Witten type argument involving domain
walls, which was also used in [63] in the specific case of Calabi-Yau compactifications.
The argument relies on the tension of a BPS domain wall. From the four-dimensional
point of view, the domain wall separates two supersymmetric flux configurations. By
energy conservation one gets a relation between the tension of the domain wall and
the difference of the superpotential on both sides of the domain wall, Thw o |[AW].
On the other hand, the tension of the domain wall is obtained as the integral of the
calibration over the internal generalized cycle which the domain wall wraps. By further
demanding holomorphicity, the authors of [57] proposed an explicit expression for the
superpotential.

In both approaches one arrives at the following expressions for the superpotential in
Einstein frame

—1

Wg = —5—
" 4,%%0

/ (Uy, F +idy(e ®ImWy)) , (3.27)
M

where (-,-) indicates the Mukai pairing (C.10) and ¥y and U5 are the pure spinors
describing the geometry. Using the expansion in background and fluctuations of the
eqs. (3.21)-(3.23) we can rewrite the superpotential as follows

—1
= .2
4K7,

We / (WeeP F 4+ idy (e Pe ®Im ¥y —i60)) , (3.28)
M

where we used the property (C.11) of the Mukai pairing. This shows how the fields

organize in complex multiplets U9e’® and e ®Im¥; — i6C, which will be clearer in

concrete examples.

The Kihler potential reads °
K= —lni/ (Ug, Uy) — 21m'/ (t,T) + 3In(8x3, M3), (3.29)
M M

where we defined ¢t = e"®¥;. As we discuss in appendix C in more detail, the real
part of a pure spinor is actually a function of its imaginary part. For instance, Ret
is obtained from Imt via the Hitchin procedure. To take this relation properly into
account we use the fact that the Kahler potential for the ¢-sector may be written as
(see eq. (C.15))

K, = —21n4/ H(Imt), (3.30)
M

where H(Imt) is the Hitchin functional. More details on how to compute the Hitchin
functional are given in appendix C.

5The constant last term makes e dimensionless.
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Note that we have the freedom of a Kahler transformation
WL = f 3 Wy, K'=K+3Inf+3Inf*, (3.31)

where f = f(¢) is an arbitrary holomorphic function.

We will later compare the results of an explicit Kaluza-Klein reduction on some of
our models with the results obtained from the effective supergravity approach explained
in this chapter. To do that, we also have to take into account that the results from
the Kaluza-Klein reduction were in the ten-dimensional Einstein frame (B.2), whereas
using the techniques of this section we get the result in the four-dimensional Einstein
frame (3.24). To compute the relation between the masses computed in these two
frames we note the following relation

M2 €2A
G4 TP = %QEMJVOIE ; (3.32)

which we get from (B.2) by integration over the internal manifold and comparing this
with (3.24). Thus we have

2 _ Y92 _ 2 272 —2Ay;q9-1_ 2
mg, = mg,, = kjoMpe ““Volg " mg, . (3.33)
B4

In the following we specialize the expressions obtained in the generalized geometry
language to the specific cases of a strict SU(3)-structure and a static SU(2)-structure.

Type IIA, strict SU(3)-structure

Specializing to the type ITA SU(3) case with pure spinors (2.11), the superpotential
takes the form

—je 10 I .
We= g [ (@7 F —idy (Pt v isca)), (339
Ko Jm

and the Kahler potential is given by
4
K=-In /M gJ?’ —2In /M 2¢ *ImQ A e ®ReQ + 31In(8k%, M3), (3.35)

where e"®Re ) should be seen as a function of e 2Im€. On the fluctuations we must
impose the orientifold projections (2.40). It turns out that for all the concrete models
we will study

B ATmQ =0, (3.36)

since there are no odd five-forms ®. By expanding in a suitable basis of even and odd
expansion forms (which have to be identified separately for each case), we find that the

STn fact, for some of the models we will choose the orientifold projections appropriately to project
out the one- and five-forms. This is to automatically satisfy the compatibility condition (2.6a) of the
strict SU(3)-structure also for the fluctuations.
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fluctuations organize naturally in complex scalars

Jo=J—i6B = (k' —ib")Y,* ) = ¢y, (3.37a)

1

e ImQ +i6Cs = (u +ic) VP = 2y 3T (3.37b)

)

Type IIB, static SU(2)-structure

Specializing to the case of type IIB static SU(2)-structure with pure spinors (2.19), the
superpotential becomes
1

Wy =
Tkl

/ (2V A il 0B) fr_gd (ewe*‘l’Im(eWW A Qo) + z‘éC)) . (3.38)
M
and the Kahler potential

K=—-In <—2i/ 2V A2V A w§> — 21n/ 2 (Ret,Tmt) + 31In(8x%, M3),  (3.39)
M M

where again Ret should be considered as a function of Im¢ = —Im (e*q)eQV/\VSb).

As discussed in appendix C, we can obtain the action of the orientifold involution
on the SU(2)-structure quantities from the action of the orientifold on the pure spinors.
We find from (C.40) the following

05 : o'V=-V, ofwy = —wo, 0"Qy = -5, c*0B = —B,
(3.40)
o7 : oV=V, o*wy = —wa, 0" Q9 = Q5 oc*0B = —B,
and for the RR-sector [43]
05 . 0'*502 = (502, 0'*504 = —504,
(3.41)
or: 0"6Cy = —0Cy , c*6Cy = 0Cy .
Again we find that the fluctuations organize naturally in complex scalars
we =wy — 6B = (k' —ib")Y;*" ) =iy ) (3.42a)
e *ImQ, +i6Cy = (u + i) Y,*T) = 2y (3.42b)
—ie P2V AV AReQy +i6Cy = (v' + ik )Y = wiy, ) (3.42¢)
oV = C(y P — vy, (3.42d)

where we define 7 = x + iy, and each time the first/second sign of the Y; indicates the
behavior under the O5/O7-involution. Note that C is a complex overall factor that is
not a degree of freedom. As we will see in the concrete examples, we can eliminate C'
by performing a Kéahler transformation (3.31).
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3.3 Choice of background fluxes and bubbles of moduli
space

To evaluate the expressions for the superpotential for type ITA strict SU(3)-structure or
type IIB static SU(2)-structure, (3.34) or (3.38) respectively, we have to make a choice
for the background fluxes H and F'. However, since we fluctuate the gauge fields, two
choices of background fluxes may be equivalent if they are related by a fluctuation
of the moduli fields. To classify distinct choices we have to find configurations that
are not related by pure fluctuations of the moduli fields. We label these different
configurations as disconnected bubbles of the moduli space, i.e. these bubbles are such
that it is not possible to reach another bubble by finite fluctuations of the moduli
fields. In the following we will classify these different bubbles for type ITA and type
IIB, respectively.

Type ITA

Classifying the different bubbles in terms of fluxes amounts to finding configurations
that solve the Bianchi identities

dH =0, (3.43a)

dFy =0, (3.43b)

dFy +mH = —j3 (3.43¢)
dFy+ HAFy =0, (3.43d)

while two configurations are considered equivalent if they are related by a fluctuation
of the moduli fields, which after imposing the orientifold projection (and assuming it
removes one-forms) is given by (see section 3.1.1)

6H = déB, (3.44a)

6Fy =0, (3.44b)

(5F2 = —méB, (3.44C)
. 1

0F, = ddC3 — 6B A (Fy + 0F,) — 5m((SB)2 , (3.44d)

- 1
(6B)? A (Fy + 0 Fy) — 5m(aB)3 . (3.44e)
In other words, we want to find representatives of the cohomology of the Bianchi iden-
tities (3.43) modulo pure fluctuations of the potentials (3.44).

Let us first consider the case Fy # 0. From egs. (3.43a), (3.43b), (3.44a) and (3.44b)
follows immediately that H € H?(M,R) and Fy constant. This determines §B only
up to a closed form, we call it §B¢. Tt can be used to analyse (3.43c) and (3.44c): the

. ) 1
0Fy = H N0Cs — 0B A (Fy+ 6Fy) — 5
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closed part of Fy is pure fluctuation, so that we choose Fy as the most general non-
closed odd two-form, which then determines the source j3. At this point, we completely
specified 0B. Moving on to Fj, we find that in eq. (3.43d) HAF, = 0, since we assumed
there were no even five-forms under all the orientifold involutions. Moreover, with the
fluctuations 0C5 we can remove the exact part of Fy so that Fy € H*(M,R). This,
however, leaves the closed part of §C3 undetermined, which we call 60C§. If we have
chosen H mnon-trivial, we can then use the closed part of dC% in (3.44e) to put Fy=0,
provided that 0C§ A H o volg. This is not possible for H trivial and we have to choose
a non-zero Fg proportional to the volume form.

For the case Fo = 0 we choose for FQ the most general two-form since there are
no fluctuations left in eq. (3.44c). H is still in H3(M,R) and F, constant. We thus
still have the closed part of 6B at disposal for Fy in (3.44d) such that we can choose
Ey e H*(M,R) and put to zero the part proportlonal to 6B A Fy. Similar for Fyg: we
can put it to zero if 66’3 A H o volg for non-trivial H or if § B¢ is not fixed completely
up to now and §B° A Fy o vols.

Type IIB

The analysis in type IIB is quite similar to the analysis in type ITA. In the following we
will be interested in models with O5/07 orientifolds such that we assume here these
orientifold projections. From the fluctuations in (3.22) this then implies (since a scalar
is always even under O5/07 but §Cj should be odd/even, there is no §Cj)

§Fy =0, (3.45)

and we choose the most general one-form for ﬁ’l, which then determines the source jo7.
We will assume that dH = 0 such that *

§H = doB. (3.46)

This allows to choose H € H3 ~(M,R) and fixes §B up to closed forms. Let us first
assume that there is no closed part in 6B (which is actually the case in our concrete
models). This then implies for F3 from (3.22)

§Fy = d5Cy, (3.47)

such that we choose Fj up to exact forms, which determines the source jos. This fixes
dC5 up to closed forms. For Fj, which has to be closed (the volume-form is even/even
under O5/07), we are left with

6Fs = déCy + H A 6CS, (3.48)

"For the models we study in chapter 12 there is room for dH = jnss # 0, but we will set to zero
this contribution since we do not know whether the proposed expression for the superpotential (3.38)
takes the NSh-source properly into account.
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hence we choose Fy € H5~+(M,R) and we can put to zero the part of Fy that is
proportional to H A §C%.

If there is a part of §B that is closed, we have to take into account that

§F3 = d6Cy — 6B A Fy (3.49a)
. A 1 A
6F5 = doCy + H A 6CS — 6BE A (Fy + 6F3) — 5(530)2 A Fy, (3.49b)

such that we can put to zero the part in Fj that is proportional to 6B¢ A Fy, and,
if this does not fix §B¢ completely, we can also put to zero the parts in Fj that are
proportional to the last two terms in eq. (3.49b) where dB¢ is the part not fixed by
0F;3.



Chapter 4

Nilmanifolds and coset spaces

There are few explicit examples of six-dimensional manifolds suitable for compactifi-
cations to four dimensions. In [64] a systematic search for ' =1 Minkowski vacua of
type II string theories on compact six-dimensional nil- and solvmanifolds was performed
yielding very few examples. These solutions require the presence of orientifold planes,
typically smeared, due to a no-go theorem [36, 37] that rules out vacua in which the
four-dimensional space is Minkowski and the internal compact manifold has non-zero
background fluxes and no sources. This no-go theorem can be circumvented for N’ = 1
compactifications to four-dimensional AdS space-time.

The oldest constructions of N'=1 AdS, compactifications arise by considering the
Hopf reductions of eleven-dimensional supergravity considered by Nilsson and Pope [65]
that lead to supersymmetric type ITA compactifications with a non-vanishing second
torsion class Wy [66, 67, 68] without the need of sources. As these solutions come from
the reduction of eleven-dimensional supergravity, they have vanishing Romans mass.
On the other hand, another simple type ITA construction with no need of orientifolds
considers manifolds that are nearly-Kéhler, such that the deviation from the Calabi-
Yau metric is expressed by a non-vanishing first torsion class WW; [69]. These manifolds
are also Einstein, where the scalar curvature is proportional to |Wi|2. In [51] the
compactifications were constructed that interpolate between the vanishing Romans
mass solutions and the nearly-Kéahler solutions on two special coset manifolds, which
can be described using twistor space techniques.

However, there are also type ITA constructions involving sources. First examples of
compactifications to N’ = 1 in type IIA with all moduli stabilized and in which possible
corrections are parametrically under control were constructed in [70, 62, 71, 72] using
orientifold planes and Calabi-Yau manifolds. From a purely ten-dimensional perspective
these vacua are interpreted as a low-energy approximation in which the orientifolds are
effectively smeared [50].

A systematic search for more type ITA examples of N' = 1 AdS,; compactifications
on six-dimensional coset spaces with a strict SU(3)-structure ansatz was performed in
[34]. The authors identify four coset spaces that satisfy the necessary and sufficient
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conditions for A' = 1 compactifications to AdS, in the absence of sources, whereas in
the presence of smeared brane/orientifold sources there is one possibility more. We will
come back to these solutions in part III of this thesis, where we derive the corresponding
effective actions for these compactifications.

Allowing for smeared sources, the conditions for type ITA N’ = 1 AdS4 vacua can
actually be solved for some nilmanifolds [49] (as we pointed out in section 2.2.2, this is
not possible without a source term for the nilmanifolds). There are two nilmanifolds,
the torus and the Iwasawa manifold, that solve the type ITA equations. In addition,
there is a further type IIB static SU(2)-structure solution on a different nilmanifold.

In this chapter we give a brief review of the spaces we consider in this thesis. We
first begin with some well-known facts about group manifolds to set up the notation.
We then introduce the coset space construction with special emphasis on the material
that we will need in the following. For the interested reader, there are many good
reviews [73, 74, 75]. In the end of this chapter, we will describe the six-dimensional
nilmanifolds, which are special cases of group manifolds.

4.1 Group manifolds

In order to fix our notation and ideas, let us start with a group manifold, i.e., with a
Lie group G of dimension d = dim(G) viewed as a manifold. We denote the generators
of the Lie group G as T, with a = 1,... ,d and they obey the algebra

[Taa Tb] = fcach ) (4-1)

with f¢, the structure constants of the group G. Let us mention that the structure
constants are often referred to as geometric fluxes in the context of flux compactifica-
tions.

Let U € G be an arbitrary element of the group manifold G that we parameterize
in terms of coordinates y", where m = 1,...,d. We define d left-invariant one-forms
e” on G by

Uly)~'dU(y) = ¢ (y)Ta - (4.2)
The left-invariance of e® is easily seen: under U — AU, where A € G is constant,
the one-forms e® defined in eq. (4.2) do not change. Taking the exterior derivative of
eq. (4.2) we see
1
de‘T, = —U 'dU AU AU = —e*T, A "T), = —5€" A [T, Ty, (4.3)

such that with the structure constants (4.1) we obtain the Maurer-Cartan equation

1
de‘ = —§fcabea Aeb. (4.4)
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The Jacobi identity for the structure constants of a Lie algebra, [, f“4, = 0, assures
that d?e® = 0. The Maurer-Cartan equation (4.4) turns out to be very useful for our
calculations since differential equations are reduced to algebraic ones. As the duals of
the left-invariant one-forms we get left-invariant vector fields L, = L,™9/0y™ defined
via

(", Lp) = 0%, (4.5)
which satisfy

[La, Lp] = fapLec - (4.6)

We can classify Lie algebras according to Levi’s theorem: an arbitrary Lie algebra g
is a semidirect sum of a semi-simple algebra and of a solvable algebra. The definition
of a solvable algebra g is as follows. Consider the series defined recursively by

0¥ =g, ¢V =lgg, g =[N "] (4.7)

If this series becomes zero after a finite number of steps, the Lie algebra is said to be
solvable. There is an equivalent criterion for a Lie algebra to be solvable or semi-simple:
a Lie-algebra is semi-simple if and only if the Killing metric is nondegenerate, whereas
it is solvable if and only if the Killing metric is identically zero. A special class of
solvable Lie algebras are nilpotent algebras that are defined as follows. The recursively
defined series

=g, o' =[ga, o=[od"]. (4.8)

converges after a finite number of steps to zero. The number of steps is called the
nilpotency degree of the manifold. Comparing the definition (4.8) to the definition of
a solvable algebra (4.7) we see that the series (4.8) decreases more slowly as the series
for a solvable algebra (4.7) and may not reach zero even if the solvable algebra did, i.e.
every nilpotent algebra is a solvable algebra but the converse is not true.

In this thesis, we will consider two different classes of six-dimensional compacti-
fication manifolds: nilmanifolds and coset manifolds based on semi-simple and U(1)
groups. They are somehow opposite due to Levi’s decomposition. The reason to con-
sider nilmanifolds is that the mathematics is better known, in particular the criteria for
compactness, and there is a complete classification of all six-dimensional nilmanifolds
[76]. However, for the coset spaces we consider semi-simple groups. Here, the classifi-
cation of [34] tells us which groups are needed to end up with a six-dimensional coset,
space and these groups are well known in the literature.



52 4. NILMANIFOLDS AND COSET SPACES

4.2 Geometry of coset spaces

We define coset spaces as the quotient G/H, where G is a Lie-group ! and H is a
compact Lie subgroup of G. The elements of G/H are equivalence classes of the form
gH for left cosets, which we will consider in the following. The action of G on the
coset is transitive, i.e., any point of G/H can be transformed to any other point by a
G-transformation.

To describe coset spaces of the form G/H we may proceed as we did for group
manifolds. To do so, we divide the generators of the group G, G; € g, in two sets: a
set of generators of the group H and a set of generators of the complement of H inside
G, denoted by K. We label the corresponding elements of the Lie algebras h and &
(such that g = ¢ @ h) as follows: {H,}, where a = 1,... ,dim(H), and {K;}, where
i=1,...,dim(G) — dim(H), respectively.

The structure constants are then defined as

[Haa Hb] = fcabHc 3
[Haa K:z] = fjaiICj + fbaiHb 3 (49)
(K Kj] = fF3ilCh + % Ha -

For H compact, or connected and semi-simple, one can choose the subspace ¢ of g such
that

heh~'ct, VheH, (4.10)

i.e., [H,K] C K and therefore the structure constants f,; vanish. Such a coset is called
reductive. Since we will need H C SU(3), i.e. compactness, this will always be the
case in our examples.

We label the coordinates on G/H as y™, m = 1,... ,dim(G) — dim(H). Let L(y)
be a representative element of each H-equivalence class. This leads to a corresponding
decomposition of the one-forms

0 = L(y)~'dL(y) = €' (y)Ki + w*(y)Ha - (4.11)
The e’(y) defines in this way a coframe on the coset G/H. Tt is easily shown that

d® = dL(y) 'dL(y) = -© A O
R NN T, a i , a b (4.12)
=3 (e eI K, K] + 208 A € [Ha, Ki] + w Aw [Ha,Hb]) ,

such that using the definition of the structure constants (4.9) we derive the exterior
derivative acting on the one-forms

. 1. 4 .
de’ = —2 fhjre’ A eF — flojw Ael, (4.13)

'In this section, G is an arbitrary Lie-group. We thus can generalize some results of this section to
the nilmanifolds in the next section. For our concrete examples of coset spaces we will later restrict G
to be a product of semi-simple and U(1)-groups.
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1 Lo i
Q= gt = Lprene (4.130)

For our applications we will just need the exterior derivative on the e’ one-forms.

Consider the left action g € G on a coset representative L(y). This will give another
element z € G, which in general will belong to a different equivalence class, whose
representative we denote by L(z). Since z = L(z)h for some h € H this can be
expressed as

gL(y) = L(z)h(g,y), where g€ G,heH. (4.14)

This equation determines both z and A as a function of y and g. To determine how the
coframe e’ transforms under the left action of G on G/H we derive from eq. (4.11) and
(4.14)

L(2)7'dL(z) = €' (2)K;i + w(2)H,
= hL(y) 'dL(y)h ' + hdh ! (4.15)
= ¢ (Y)hKCih™" + w®(y)hHoh ™" + hdh ™"

Since we assume that we have a reductive coset space (H is compact in our examples)
we know the relation (4.10) and can define

hCih~t = DI (h YK, (4.16)
such that eq. (4.14) leads to the transformation rule for the coframe
el (z) = €' (y) D/ (h1). (4.17)

With the transformation rule for the coframe we can write down the condition for G-
invariance for any tensor. As an example, for any metric on G/H that can locally be
written in terms of the coset frame as

g9 =gije' ®e, (4.18)
the condition for G-invariance amounts to g;; = constant and

gij = guDi* (W) D' (h), Vh e H. (4.19)

For an infinitesimal version of eq. (4.19) we note from eq. (4.16) and the definition
of the structure constants (4.9) that

DI(WK; = (57 — 1 Fui)K; (4.20)

where we defined h = e!“*a. The infinitesimal version for a G-invariant metric on the

coset space G/H then reads

Faqgr); =0. (4.21)
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For an arbitrary p-form

1 . 4
o= Eail,_ipe“ Ao Ne?, (4.22)

we show similarly that the condition for G-invariance is that the components Qi .,
are constant and

fja[ilai}_iph =0. (423)

Let us give an intuitive explanation for the condition (4.23). From eq. (4.13a) we see
that, taking the exterior derivative on an arbitrary p-form, we obtain contributions
including w” forms. Condition (4.23) ensures that the part coming from the second
term in (4.13a) drops out, and we get again a G-invariant form.

The Maurer-Cartan equations are very useful to calculate various quantities relevant
to characterize the geometry of the manifold, such as the connection and the curvature.
The Levi-Civita connection one-forms w® ; of a metric are uniquely determined by two
equations

dgij — wkigkj - wkjgik =0, (metric compatibility), (4.24a)
de’ + w'; Ael =0, (vanishing torsion) . (4.24b)

For a G-invariant metric, the metric compatibility in (4.24a) is the condition
wij = ginw"; = —wji. (4.25)

Choosing €’ to be the coset frame given in (4.11) and using the structure constants
defined in (4.13a), the solution of (4.24) is given by [77]

w'j = flojw” + Dje* (4.26)
where
i im (1 0 z
Dypj=g §f miGik + I k[iGm)l | - (4.27)

We now have all the data we need to calculate the curvature R = dw + w A w, which
is done in [75]. We only display here the Ricci scalar, which we find by contracting
indices:

g 1. 1 o
R=—g"f*if"%; - 59”szz'f;lgj - Zgijgklgmnfzkmf]ln- (4.28)

In chapter 2 we have seen that the requirement of four-dimensional supersymmetry
imposes a condition on the six-dimensional internal manifold, namely that the struc-
ture group is reduced to SU(3) or a subgroup thereof. This requirement imposes a
constraint on the possible choices of coset spaces of the form G/H that are suitable for
supersymmetric compactifications. As is shown in [34], a necessary requirement that
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the coset space G/H has reduced structure group SU(3) translates into the require-
ment that the group H should be contained in SU(3), and all possible six-dimensional
manifolds M = G/H of this type ? are listed in table 4.1, taken from [34].

In our concrete models of compactifications on coset spaces (see part IIT of the
thesis), we will allow for orientifold sources. If we introduce orientifolds, the structure
constant tensor

1 . . ~ 1 - |
f= §fljkVZ~ RN+ floViow' Aed + §f‘2-jUa Qe Nel + Efa”“U” Q@ w’ Aw’,
(4.29)
where the V;, U, are dual to the e’,w® defined as in eq. (4.5), has to be even under the

orientifold involution (for some suitable extension of the involution to the w®) in order
to ensure that the exterior derivative is even.

| G | A7 ]
Go SU(3)
SU(3)xSU(2)2 SU(3)
Sp(2) S(U(2)xU(1))
SU(3)xU(1)? | S(U(2)xU(1))
SU(2)3xU(1) | S(U(2)xU(1))
SU(3) U(1)xU(1)
SU(2)2xU(1)? | U(1)xU(1)
SU(3)xU(1) SU(2)
SU(2)? SU(2)
| SU(2)’xU(1) | U(1) |
| SU@? | 1 |

Table 4.1: All six-dimensional manifolds of the type M = G/H, where H is a subgroup
of SU(3) and G and H are both products of semi-simple and U(1)-groups. To be

precise, this list should be completed with the cosets obtained by replacing any number
of SU(2) factors in G by U(1)3.

4.3 Geometry of nilmanifolds

The second class of manifolds we will consider in this thesis are nilmanifolds. A nilmani-
fold is a quotient of a nilpotent Lie group G by a discrete subgroup I', M = G/I". In [79]
it is shown that all six-dimensional nilmanifolds admit generalized complex structures,
making them interesting for our purposes.

2These coset spaces were already considered in the construction of heterotic string compactifications
in [78].
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As a special case of a group manifold, G has a set of globally defined one-forms e’
satisfying the Maurer-Cartan equations (4.4). For an illustration, let us discuss the
simple and often cited example for a nilpotent algebra: the Heisenberg algebra with
the only non-vanishing structure constant f3;5 = —n. From eq. (4.4) we get

de! =0; de? =0; de®* =net Ne?. (4.30)

We will use in the following the notation (0,0,712) to specify the structure con-
stants. We can choose a gauge for the coordinates which satisfies the algebra (4.30) as
follows

el =dyt: e =dy?; e =dy® +nyte?. (4.31)

To compactify G, we can make the identifications (y',y%, %) ~ (y',9% + 1,9%) ~
(y',y?,9% + 1), but we need to twist the identification for y', (y',y?,9%) ~ (y' +
1,92, y3 — ny?), to render €3 single-valued. Hence, the space M = G/T is topologically
distinct from a three-torus 7%, namely an S' fibration over T? whose first Chern class
is ¢ = m. Such a manifold M is called a nilmanifold and a general nilmanifold is
always an iteration of torus fibrations. Nilmanifolds are often called twisted tori in the
physical literature, and the structure constants are referred to as metric or geometric
fluxes.

Let us note that there are infinitely many algebras of the form (4.30), since n is a
free parameter. However, these algebras are all isomorphic via a rescaling of e?. When
we talk about nilmanifolds in the following, we mean actually isomorphism classes of
nilmanifolds. However, since we work with a basis of left-invariant forms, the choice of
the representant of the isomorphism class does not matter for the analysis.

The nilpotent Lie groups up to dimension 7 have been classified and the list of six-
dimensional nilpotent Lie groups is finite [76]. The complete list of the 34 isomorphism
classes of simply-connected six-dimensional nilpotent Lie groups is given in table 4.7
of [64], where the authors scanned all these nilmanifolds to find N' = 1 Minkowski
solutions. We will use this list to scan for AdS4 solutions in part IT of this thesis.

The question arises whether all of these six-dimensional Lie groups can be compacti-
fied by modding out a discrete compact subgroup I' as in the example of the Heisenberg
algebra above. A necessary condition on the structure constants is fjij = 0. The rea-
son is simple: if f7;; # 0, the volume form volg = e! A ... A ¢® would be exact, since
for the left-invariant five-form o = €;, a'e’ A ... A e, with o/ constant, we have
da = (f7;ja)volg. Hence, there is no top-form non-trivial in cohomology which is
of course required for a compact manifold G/T. One can also show that this condi-
tion is sufficient, provided that the structure constants are rational in some basis [80].
Since these conditions are satisfied for the structure constants of all the 34 classified
six-dimensional nilpotent Lie groups, they all admit a discrete subgroup I' such that
M = G/T" is compact.

The Ricci scalar for a nilmanifold is a special case of the metric of the coset space
in that the first term in eq. (4.28) obviously vanishes, as well as the second term which
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is the Killing metric (for a nilpotent algebra, the Killing metric vanishes). We are left
with

1 S
R = _Zgijgklgmnflkmf]ln . (4.32)

which is always negative. Nilmanifolds are thus non Ricci-flat and therefore suitable
for compactifications in the presence of fluxes.






Chapter 5

Cosmology and inflation

One of the legitimate criticism on string theory, which aspires to be a fundamental
theory of quantum gravity, are the very restricted possibilities to confront the theory
with observations. Assuming the string scale to be of the order of the Planck scale, it
is very unlikely that we can ever construct a high energy accelerator providing enough
power in order to test the Planck scale predictions of the theory. At low energies, of
course, string theory has to reveal the standard model of particle physics. Nevertheless,
there is a possibility to observe physics at very high energies, even if this physics
happened billions of years before our time: the earliest moments of our universe involved
such extreme energies, and the fingerprints of its birth are revealed today by precision
measurements of the cosmic microwave background (CMB) and the large-scale structure
of the universe. The ability of string theory to reproduce the observed cosmology thus
provides us with a highly non-trivial test of string theory.

That this is possible is due to the astrophysical measurements over the recent years,
which provide us with fascinating data about the large scale structure of our universe.
In particular, the universe is found to be spatially flat, |2 — 1| < 1, and the latest CMB
data from WMAPSH agree with an almost scale-invariant spectrum with scalar spectral
index ny = 0.96 &+ 0.013 [81]. As we will discuss in the following, an epoch of cosmic
inflation in the early universe is the dominant paradigm to explain these data [82, 83].
For string theory to be a valid theory of quantum gravity, it should be able to realize
inflation.

Another important cosmological observation of the past decade is that the present
universe is in a state of accelerated expansion [84], apparently driven by a non-vanishing
vacuum energy with an equation of state very close to that of a small and positive cos-
mological constant A. In an effective field theory setup, an asymptotic de Sitter phase
induced by a constant vacuum energy would correspond to a positive local minimum
of the potential.

The moduli fields of string theory compactifications provide us with natural inflaton
candidates. These models can roughly be divided into closed string inflation models, in
which the string is a closed string modulus [85], and open string (or brane-) inflation
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models, where a scalar describing some relative brane distance or orientation plays
the role of the inflaton [86]. Mixtures of open and closed string moduli have also been
considered as inflaton candidates, e.g., in some variations of D3/D7-brane inflation [87].
Let us mention that there are also other possibilities including [88].

There has been remarkable progress constructing various plausible models of in-
flation in string theory, mostly within type IIB string theory (following the work of
[22, 23, 89]). Turning on only p-form fluxes in the type IIB theory, one can not stabi-
lize all the moduli fields (the Kahler moduli are not fixed by the fluxes) [22]. In [23],
a solution to this difficulty was proposed by turning on non-perturbative effects such
as gluino condensation and instantons, yielding a supersymmetric AdSy vacua. The
inclusion of a small number of anti-D3 branes breaks supersymmetry and allows one to
uplift the AdS; minimum and make it a metastable de Sitter ground state. Starting
from this model, the authors of [89] tried to construct, using brane moduli, an inflation
model.

However, these and related models in type IIB share a common property: they are
not entirely explicit constructions as they involve, besides the classical effects in the
potential (which are easily computed by supergravity techniques as we discussed in
section 3.2), also quantum effects, whose existence is well established, but for which
precise calculations are often difficult. On the other hand, in type ITA compactifications,
all geometrical moduli can be already stabilized at the classical level by fluxes in a well-
controlled regime (corresponding to large volume and small string coupling, such that
quantum corrections are small) with power law parametric control. This explicitness
of type ITA compactifications makes these models very interesting for phenomenology.
Let us further mention that type IIA orientifolds with intersecting D6-branes offer
good prospects for deriving the standard model form string theory [18, 19, 90]. If
cosmological aspects can likewise be modeled in type ITA, one may study questions
such as reheating much more explicitly.

In this thesis, we will derive the explicit four-dimensional low-energy effective poten-
tial for a large class of type ITA compactifications. To render these models interesting
for phenomenological applications we would like to examine whether these models sup-
port inflation. However, there are a number of simple but very strong no-go theorems
against inflation in type ITA string theory at tree level [91, 92]. These theorems already
exclude most of the explicitly known compactification models for type ITA, in particular
models where only the standard NSNS H3-flux and RR-fluxes Fj,, (p = 0,2,4,6) as well
as contributions from O6/D6 sources are turned on. As we will review in this chapter,
the minimal requirements for an inflation model in classical type ITA compactifications
are non-vanishing Romans mass and non-vanishing geometric fluxes.

Let us mention that in type IIB, where F; flux can be turned on, the above men-
tioned no-go theorems do not apply. In fact, we will also examine some type IIB
compactifications with static SU(2)-structure. However, as we will see in chapter 12,
most of our models are related by T-duality to type IIA models we study in chapter
11, and we can then apply the type ITA no-go theorems to these models.
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In the next section, we give a brief introduction to inflation. Of course this can not
be done in its full completeness. For the interested reader, we refer to the extensive
literature, see e.g., [82, 83, 93]. We will then review the relevant no-go theorems against
an epoch of slow-roll inflation that turn out to be very useful for analysing our particular
compactification manifolds that we will describe in part IIT of this thesis.

5.1 Inflation

The current understanding of cosmology is described by the Hot Big Bang model,
which starts as a hot soup of elementary particles, whose temperature was once at
least 10 billion degrees. The history of the universe then describes the cooling of this
initial state as the universe expands. However, this model can not explain the current
observations if there were not very special initial conditions. An epoch of inflation
- a period with exponential expansion of the universe even before the Hot Big Bang
model starts - may provide exactly these initial conditions. In this chapter, we will first
start with a description of the geometry of space-time on which the Hot Big Bang and
an inflation model relies. In the following, we will show that a period of exponential
expansion can be driven by a scalar field ¢. As we will explain, for such a regime to
work, sufficient conditions on the scalar field potential (but not necessary ones, there
are other possibilities to drive inflation) are the so-called slow-roll conditions on the
potential of the inflaton.

5.1.1 Cosmology and Hot Big Bang model

Based on large scale observations of the distribution of matter and radiation within
the universe we see around us, we can assume the universe to be homogeneous and
isotropic at large distance scales. For instance, the observed temperature fluctuations
of the CMB are of order 67/T ~ 1075, This motivates to consider the most general
four-dimensional geometry which is consistent with isotropy and homogeneity of its
spatial slices. Such a geometry is described by a Friedmann-Robertson-Walker (FRW)
geometry with a metric given by

dr?
1 — Kkr2

ds? = —dt® + d(t) < + r2d#? + 72 sin? 9d¢2> , (5.1)

where kK = 1,0, —1 describes a spherical, flat or hyperbolic universe, respectively. The
factor a(t) is called the scale factor and we define the Hubble parameter

H = O (5.2)

where the dot denotes derivation with respect to time. The time evolution of the scale
factor a(t) is obtained from the Einstein equation

1
Ruy = 5 Rgu = 871G T, (5.3)
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specialized to the FRW-metric (5.1). We obtain two equations, the Friedmann equation

SN\ 2
a K 1Y —2
<a> ta Tmg e Mem e Y

and the Raychaudhuri equation

a 1
—=——=(p+3p) . 5.5
PV E) (p+ 3p) (5.5)
Here we assumed the most general form for the energy-momentum stress tensor 7}, of
the universe’s matter content consistent with homogeneity and isotropy

=0 o) (5.6)

0 pgij

where 4,7 run over the spatial coordinates. It turns out to be useful to derive a first
order equation from the egs. (5.4) and (5.5) that expresses energy conservation,

a d d
3 —+p=0 & —(pa’)=-p—=a’. 5.7
(p+p)—+p 3 (pa’) = —pa (5.7)
How the scale factor a(t) evolves with time depends on what kind of matter the
universe contains. Present observations give evidence that there are the following kinds
of cosmic fluids, each coming with a different equation of states:

e Radiation: The contribution from relativistic particles in the universe, namely
photons and cosmic relic neutrinos (whose masses are small enough to be consid-
ered as relativistic particles), satisfying the equation of state of a weakly inter-
acting gas

1
Prad = gprad . (58)

e Baryons and dark matter: Ordinary matter (electrons, nuclei, atoms) that is
non-relativistic such that the rest mass dominates over the average kinetic energy
(which corresponds to its pressure), implying p &~ 0. Observations infer further the
presence of a large amount of non-observed (at least not by its electromagnetic
radiation), non-relativistic matter which gravitates just like ordinary baryons
do. This so-called dark matter has the same equation of state as the baryons.
Together these two contributions form the non-relativistic matter content of the
universe with equation of state

Pm ~ 0. (5.9)

e Dark energy: Observations further motivate the existence of yet another type
of invisible “matter”. Main evidence is that the overall expansion rate of the
universe seems to be increasing at present time. From eq. (5.5) it is clear that
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in order to obtain an accelerating universe, i.e. ¢ > 0, matter with sufficiently
negative pressure, p < —p/3, is required. Since this is not true for radiation nor
for non-relativistic matter, we need something whose pressure is negative and at
present time dominates that of the other forms of matter - the so-called dark
energy - which behaves very similarly to a positive cosmological constant and
whose equation of states is predicted to be

PDE =~ —pPDE - (5.10)

Note that each of these equations of state implies the time-independent ratio w; =
pi/pi, and we easily integrate eq. (5.7), obtaining

3(1+wi)
““) . (5.11)

Pi = pio (—

a
Given an initial density pg and the initial fraction of the different contributions f; =
pio/ po, we obtain

ap\? ap\*
pla) = po <fDE + fm (;) + frad (;) > ; (5.12)
which implies that the energy content of the universe was first dominated by a radiation
epoch, followed by an epoch of matter domination and then by dark energy, explaining
the presently observed accelerated expansion of the universe.

Even though the Hot Big Bang model is very successful, it leaves many important
questions unanswered. To mention the most important, the Hot Big Bang model can
not explain the currently observed flatness of our universe (observations indicate that
the quantity x/a? is at present consistent with zero) and the homogeneity of our universe
(the temperature fluctuations of the CMB only arise at the level of one part in 10°, no
matter from which direction we receive this radiation), unless we start the universe off
with a very special kind of initial conditions.

The first problem is called the flatness problem. To see why this is a problem, let us
first divide the Friedmann equation (5.4) by H? to obtain
k  8nGp _

1+ i) = 3m = Q(a). (5.13)

Observations indicate that, at present, Q = g is equal to unity up to 4%. But since
the product aH decreases with time for both matter and radiation domination, the
curvature term in eq. (5.13) becomes more and more important as time passes. Exact
calculations show that at the epoch of Big Bang Nucleosynthesis, 2 has to be unity
with an accuracy of roughly one part in 10'® in order to reproduce the value Qg ~ 1
seen today. We thus have to explain this very special initial condition.

The second problem is called the horizon problem. To explain the homogeneous
distribution of temperature of the CMB (up to one part in 10°), the whole universe
had to be causality connected at the time of recombination - the epoch in which the
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universe first became transparent for photons, which is the origin of the CMB. However,
assuming a matter dominated universe, a(t) = aq(t/t)"/?, one shows that the proper
distance that a light signal can travel by the time of recombination - the physical
horizon size - is Lyec = Hygl = H(;l(arec/ao)w?. When we look at the CMB, we are
observing the universe at a scale factor ag/arec & 1100, which is at a proper distance of
approximately Dy = 2H0_1(1 — Varec/ag) = 2H0_1. At the time of last scattering, this
was in a distance of Dyec = (arec/a0)Dy. Hence, if we observe two parts of the CMB
separated by more than an angle 0 ~ Lo/ Dyec = 1°, they will have non-overlapping

horizons and were causally disconnected at recombination.

Inflationary cosmology provides a solution to the flatness and horizon problem. The
idea is to assume that there was a period in the very early universe during which the
scale factor was accelerating, i.e. @ > 0, which requires an equation of states p < —p/3.
The simplest models of inflation assume

PR —p, (5.14)

and we see from eq. (5.7), for the case p = —p, that p = p, has to be constant. By
integration of the Friedmann eq. (5.4) (neglecting the curvature term) we obtain an
exponential expansion

Lxs(t—to)
a(t) = agpe WM , (5.15)
and a constant Hubble length
¢ 3M?
H!'= ﬂ = P —Hg'. (5.16)
al(t) P

With this assumption, aH grows exponentially such that it does not take long for
any initial curvature x/(aH)? to be diluted to extremely small values - providing a
solution to the flatness problem. For a phase of exponential expansion of the scale
factor, the horizon size, Lyo.(t) = a(t)rhor, grows more quickly than the Hubble length
H,_'. Modes which were at the beginning of inflation shorter than the Hubble length
may be stretched to be larger than the Hubble length, and homogeneity over a very
small patch is enough to solve the horizon problem. Quantum fluctuations make it
impossible for inflation to smooth out the universe with perfect precision, explaining the
observed approximately scale free spectrum of primordial density perturbations. Once
these primordial density fluctuations have been amplified, they seed the formation of
galaxies through gravitational collapse. Measurements of galaxy distributions provide
us thus with precise experimental data to test the different inflation models.

5.1.2 Slow-roll inflation

We have seen that, in order to have the right initial conditions to start with the Hot
Big Bang model, we need a phase of accelerated expansion, i.e. we look for an equation
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of states that satisfies eq. (5.14). This is possible for a scalar field whose equation
of motion satisfies some special conditions. The dynamics of a scalar field ¢ with
canonically normalized kinetic term and potential V' (¢) moving in an FRW-universe is
described by the action

sz/h%wcg<%y@w¢—vw0, (5.17)

where the metric is given by eq. (5.1). From the action (5.17), we calculate the equation
of motion for ¢ as

+3Hp=-V'(p), (5.18)

where V() = dV/dg. The variation of (5.17) with respect to dg"” and the definition
(5.6) gives us the expression for the energy density and the pressure as follows

p= 5P+ V(p), (5.19)
pzéﬂ_va (5.19b)

We thus can obtain the regime of interest (5.14) when the kinetic energy of ¢ is negli-
gible compared with its potential energy (the field ¢ has to roll slowly)

1

25 < V(). (5.20)
such that p ~ -V ~ —p and, from (5.16),

o~ (5.21)

3M2’

would be approximately constant. The slow-roll condition (5.20) remains a good ap-

proximation for an appreciable time provided ¢ changes slowly, such that we demand

¢ < H¢. This allows us to neglect the ¢g-term in eq. (5.18) such that
VI

Y

Using the slow-roll condition (5.20), we conclude that V must satisfy V'*/9H2V < 1

and with eq. (5.21)

o ~ (5.22)

1/ MpV'\?
= — 1. 2
€= < v > < (5.23)

To justify the slow-roll approximation in eq. (5.20) throughout the inflation period,
we require ¢ to remain small. Differentiating eq. (5.22) with respect to time, we get
(using that H is approximately constant) ¢ ~ V"¢ /3H, which has to be much smaller
compared with 3H¢. This gives (in absolute values) |V"/(3H)?| < 1, or

MRV
ot

n| <1, where n= (5.24)
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The conditions (5.23) and (5.24) are called the first and second flatness condition,
respectively. They are sufficient conditions to have a region of exponential expansion.
However, the models we will study in this thesis are much more complicate than the
one field model we just studied. The generic kind of scalar dynamics for the real scalar
fields ¢® which emerge in the low-energy limit of string theory is (in Einstein frame)

M?2 1
S = /d4w\/—g (TPR - §9ab(s0)3us0a3”<pb - V(w)) , (5.25)

where gq,(¢) is the Kiahler metric in real coordinates (see section 3.2). We thus gener-
alize the expressions for p and p of eq. (5.19) to

1 -

p=59a(9)9" " + V(). (5.26a)
1 .

P =59a(0)3"¢" = V(g). (5.26b)

As before, a sufficient condition for inflation is % Jap ¢’ < V and by similar argu-
ments as for the single field case we obtain the conditions for slow-roll inflation
M3g®0,VOouV K0V V

e 1l where €= 5172 = v , (5.27)

where we passed in the last equation from real coordinates to complex coordinates, and

MV 0pV Va@@”) 6.29)

In|l < 1 where 7 = min eigenvalue < v

where we take the covariant derivative with respect to the Kahler metric ggp.

These are the conditions we have to satisfy for a period of inflation. However, there
are strong no-go theorems that results in an upper bound for €, thus excluding an epoch
of slow-roll inflation. In the following sections, we review some of the no-go theorems
that we will use in chapter 13 to study our models.

5.2 No-go theorem in the volume-dilaton plane

The first no-go theorem we want to study was constructed in [91] extending earlier
work of [94]. This no-go theorem excludes slow-roll inflation and de Sitter vacua for
the simplest compactifications of massive type ITA supergravity with p-form fluxes
and D6/06-sources. The no-go theorem relies on the scaling behavior with respect to
the overall volume modulus, p = (Vol)!/?, and the four-dimensional dilaton modulus,
7 = e~®V/Vol, of the different contributions of the fluxes and sources to the four-
dimensional effective potential, where the volume is defined as (see eq. (2.7))

1
Vol = Enabckakbkc, (5.29)
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where k4. denotes the triple intersection number, given in terms of the odd two-forms
2-)
Ya( as

oo = / Y AY2) A Y2 (5.30)
M

As we have explained in section 5.1, inflation requires ¢ < 1, where € is defined as

= /Ci33¢iV3<135V _ K7 (OregVOress V + Oimg VOimei V)
V2 4V2

€

. (5.31)
The expression for the Kahler metric appears in the kinetic terms for the moduli fields

T = —K;50,4'0" ¢

1 92K . . 4 . (5.32)
duRed'0'Red’ + 9,Im¢' 0" Im¢’) |

" 4 0RediORe (
and thus

1 9*K

i = 1 0RegioReq (5.33)

As we will explicitly see in chapter 11, the Kahler potential for our models is given by

4
Kr=—1In (gﬁabckakbkc> = —1In(8p%), (5.34a)
K,=—4InT, (5.34b)

for the Kéhler sector and complex structure sector, respectively.

Since p and 7 are the real components of the corresponding complex moduli, we
derive from eq. (5.33) the following kinetic terms for p and 7

3 1
7 - (0 + O+ ) (5.39
where the dots stand for other manifest positive kinetic terms for the remaining moduli

fields.

Let us mention that this short derivation is not as trivial as we just showed. As
an example, let us consider the Kéahler sector, where we define the complex Kéahler
modulus as #* = k' — ib’. The kinetic energy is given by

T = K (0,k'0"k + 9,b'0"V) . (5.36)

From eq. (5.34a), we derive

1
Ki; = m(ﬁiabkakb)(ﬁjabkakb) -

1

m(l‘ii]’aka) . (537)
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We now make the change of coordinates from k* to the overall volume p and a set
of angular variables v* via

a

k* = py*, where  Kapey® Py = 6. (5.38)

The constraint on the angular variables v* ensures that Vol = %nabck“kbkc = p3.
From this constraint it follows that 9, (kabey?y’Y¢) = 0, and hence ape(9,7?)¥ ¢ = 0.
With this we easily calculate the explicit expression for the kinetic terms from eq. (5.36)
as

i 0" +

_ 3(81“0)2 1 ’facd’)’clyd'%bef’ye’yf — 4k apey© aaurb
T=- " b0 ) .
P

(5.39)

We conclude from this more careful derivation that there are no cross-terms involv-
ing 0,p0y* and that we exactly get the proposed kinetic term for p in eq. (5.35).
Additionally, each of the three terms in eq. (5.39) has to be positive, since in the physi-
cal region the total kinetic energy must be positive. For the complex structure/dilaton
sector, the derivation is similar to that in the Kahler sector.

With the explicit kinetic terms for the moduli p and 7 in eq. (5.35), we derive for
e from eq. (5.31) the following inequality (note that all contributions from the other
moduli to € are positive so that we obtain an inequality)

1 (17 0V\? 1/ ov\?
> — | = [ p=— = . .
€273 <3<p8p> +4<7—87>> (5.40)

2
We now subtract the positive quantity % (p%—‘; — %T%—Z) from eq. (5.40) and we

arrive at
1 ) av\?
> —— | p—+3r— | . 5.41
6_39V2<pap+ T&) (5.41)
In the following we will specify the necessary requirements such that the following holds
0 0
DV=|-p——-3r— |V >9V. 5.42
( Pop T&) = (5.42)

If we now assume that we are in a region where V' > 0, which is necessary for inflation,
we can plug the square of eq. (5.42) in eq. (5.41) such that
27
€> EL whenever V >0, (5.43)
which implies that slow-roll inflation and de Sitter vacua are excluded.

Provided that we can show the inequality (5.42), we have a no-go theorem against
slow-roll inflation and de Sitter vacua. The proof is remarkably simple and uses only the
scaling properties of the scalar potential with respect to the fields p and 7. Concretely,
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the classical four-dimensional scalar potential may receive contributions from the NSNS
Hs-flux, the RR-fluxes F),, where p = 0,2, 4,6, the geometric fluxes as well as from the
sources (O6-orientifolds/D6-branes), such that, respectively,

V=Vs+Y Vp+Vs+ Vosms, (5.44)
p

where V3,V,, > 0 since these contributions come from quadratic terms in the ten-
dimensional action (B.2) and V; and Voe/pe can have either sign. From the ten-
dimensional action (B.2) one easily deduces how the different contributions in the po-
tential scales with respect to p and 7. As an example, let us examine the scaling
properties of the NSNS Hs-flux. The energy arising from Hs comes from the term in
(B.2) that is proportional to HZ. From (B.3) it follows that H2 is contracted with
three factors of g"”, the inverse internal metric, which scales with as g~' oc p~'. This
implies V3 o< p~ 2. Concerning the scaling behavior of this term with respect to the four-
dimensional dilaton 7 we have to be careful to transform correctly from ten-dimensional
Einstein frame to four-dimensional Einstein frame. Taking further into account the re-

lation between the metric in string frame and in Einstein frame g = e~ ®/2

gs We arrive
at V3 oc 772, Similarly we derive the scalings for the other terms. Note that the con-
tribution V; in the four-dimensional potential V' comes from the Einstein-Hilbert term

in the ten-dimensional action,
1 1
Vi = —iMjﬁﬁ%Oe”VorlR = —EM;H%OT—QR, (5.45)

where R is the scalar curvature of the internal manifold (the explicit expression in given
in eq. (4.28)). We conclude that Vy oc p~1772, since Rox g~ ! ox p~ 1.

In summary, we obtain the general scaling behavior with respect to p and 7 of the
different contributions in the scalar potential as follows,

Vi o p 3172, Vp pP P4, Voe/ D6 X 773, Vi pir 2. (5.46)

Plugging these scalings in eq. (5.42) implies for the scalar potential

ov ov
p=2,4,6

Hence, the necessary requirement to satisfy inequality (5.42) is that the contribution
from the metric fluxes is zero or negative (recall that V,, > 0). This then translates in
the above-mentioned bound € > % ruling out slow-roll inflation and de Sitter vacua.
We see from eq. (5.47) that one can avoid this no-go theorem if Vy > 0 for some region

in the moduli space.

As we have seen in eq. (5.45), the contribution from the geometric fluxes is propor-
tional to the negative scalar curvature of the internal manifold, V; oc —R. Avoiding
the no-go theorem is thus equivalent to demanding that the internal space has negative
curvature for some region in the moduli space.
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Let us mention that we also require Vpg/pg < 0. The reason is that we want to
avoid a runaway of the potential in 7-direction. As all terms in eq. (5.46) scale with
negative power of 7, for Vg /pg > 0 all terms would have positive coefficients (since we
also required V; > 0), leading to a runaway direction.

Let us further mention that for any vacuum we have 0V/dp = 0V/91 = 0 such that
the right hand side of eq. (5.47) vanishes. For vanishing geometric fluxes Vy = 0 and
assuming V}, > 0 for at least one p = 2,4, 6 this implies V' = —(3_pV,)/9, thus ruling
out Minkowski vacua as well.

Let us summarize this result:

27
€ > R whenever V' >0 and Vy <0. (5.48)

With the scaling properties of the different terms in eq. (5.46), we can find other
combinations of derivatives with respect to p and 7 that sets a bound for ¢, e.g.

ov ov
—p— — 17— =3V +2V3 — 2V + 2V, + 4V > 3V — 2V1}. (5.49)
dp or
This combination is interesting for the case of vanishing mass parameter, m = 0, since
2
for this case we have Vj o« m = 0. If we subtract the positive quantity 8%1 <4p%—‘; — 37%)

from the right hand side in eq. (5.40), we obtain

1 oV av\?_ 9
>—— (p—4+717—] >= .
e_7v2(pap+TaT> >, (5.50)

where the second inequality comes from eq. (5.49) assuming vanishing Romans mass.

This is a no-go against inflation for the case of vanishing Romans mass .

We learned in this section that the minimal ingredients for slow-roll inflation or de
Sitter vacua are

Vi >0,m#0, (Necessary conditions for slow-roll inflation or de Sitter vacua),

Vos/pe < 0, (Condition to avoid a runaway direction) .
(5.51)

Strictly speaking, the only real restriction is that we have an internal manifold with
negative curvature since we can always turn on Fy flux and do an orientifold projection.

The nilmanifolds, which always have negative scalar curvature (see section 4.3) and,
apart from the torus example, non-vanishing geometric fluxes, avoid these no-go theo-
rems. As we will further show in part III of this thesis, some of the coset models we
will study also have regions in moduli space with negative scalar curvature avoiding
these no-go theorems. This makes these models interesting candidates for inflation and
de Sitter vacua (without additional perturbative or non-perturbative quantum effects
as in type IIB). However, one can formulate a stronger no-go theorem to further study
the coset models. These redefined no-go theorems were proposed in [92], and we will
review them in the next section. As we will see, we have slightly to adjust the proposed
no-go theorems for the coset models [96].

'A different derivation for this no-go was recently given in [95].
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5.3 Refined no-go theorems in the (7, o)-plane

The models we want to study in this thesis all have special intersection numbers: the
volume (5.29) depends only linearly on at least one of the Kahler moduli £%. In the
following, we denote this linear factor in the volume as k°. Models with this property
have intersection numbers that split into {0, a}, where a runs over the remaining Kéhler
moduli, such that the only non-vanishing intersection numbers are

Roab = >\ab . (552)

The refined no-go theorem of [92], which is quite similar to the no-go theorem of section
5.2, makes use of these special intersection numbers.

For the no-go theorem in the previous section 5.2, we split the Kahler moduli into
an overall volume variable p and a set of angular variables v*. In the case where the
volume factorizes, it turns out that it is useful to keep k° and then split the remaining
Kahler moduli by

kE* = ox, (5.53)
where the angular variables are constrained by
AaXx" =2, (5-54)

to ensure that the volume of the internal space is Vol = k02, From eq. (5.37) we
obtain the Kahler metric adapted to the special intersection numbers (5.52) as

L 0
K= [ 07 | (5.55)
/ ( 0 75 (Maex“Asax® — Aap)

With this Kiihler metric we calculate the kinetic terms (again using 9, (Awpx®x?) = 0

from which follows that there are no mixed terms of the form d,00"x“),

1 0\2 1 2 1 c d a b
T=- <4(k0)2 (aﬂk ) + 252 (6#0') + Z (AaCX AbdX - Aab) aﬂX 8MX + e )
(5.56)

where the dots stand for additional manifestly positive kinetic terms for the other
moduli fields. We now plug the kinetic term for o in the definition for e (5.31) and

obtain the inequality
1 (1 av\* 1/[ av\?
> [ (o022 (== .
€2 73 (2(080> +4<T67_>), (5.57)

where the 7 dependence is as in eq. (5.40). We again can subtract a positive quantity
from the right hand side of eq. (5.57),

L(OVN? LV LoV VN LoV v
2\ 0o 4\ or 36 pap or) 18\ Oo or )’ ’
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and obtain for e the inequality

1 oV v\ 2
> — 27— ) .
“= 18V2 <080 + T87'> (5:59)
If we can show that
DV = —a3 - 2T£ V >6V, (5.60)
Jdo or

we would get for V' > 0 the following bound on €
€>2, whenever V >0, (5.61)

and slow-roll and de Sitter vacua are excluded.

Similar to the proof of the no-go theorem in section 5.2, we study the scaling proper-
ties with respect to o and 7 of the different contributions to the scalar potential. These
scalings are computed in [55, 92] and can be summarized as follows

2, -2

T 7, Vgoca2

2

V3oxo™ 4, Vo x o274, Vos/pe 73, (5.62)

whereas Vo and Vy contain two terms, respectively,
Vo =Cro?r  + Cor™,  Vy=Cso 2t Oyt (5.63)

where the coefficients C;, 2 = 1,... ,4 depend on the fluxes and the other moduli and

one can show that the two terms in V5 and the two terms in V, are all separately

positive 2.

From these scalings we compute
DV =6V3,

DVos/me = 6Vos /D6 »

DVy =6V,
(5.64)
DVy = 6V5 + positive terms,

DV, = 8Vy + positive terms,

DV =10Vs.

This implies that whenever we can show that DV > 6V}, the no-go theorem (5.60),
and hence € > 2, is applicable, which rules out slow-roll inflation and de Sitter vacua.

In [92], a condition was given such that DV; = 6V} is satisfied automatically ex-
cluding slow-roll inflation and de Sitter vacua. Let us define the matrices r;; as follows
[97]

dy;?) = 5y 6T (5.65)

7

*We refer the reader to [92] for the explicit form of these coefficients.
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where Yi(Q_) are the odd two-forms defined in eq. (3.37) and Y ) is a basis of odd
three-forms, such that [Y 37 A YJ(3+) = ¢/, The authors of [92] showed that the
extra condition r;; = 0 would ensure that DV, = 6V}, implying the no-go theorem. In
the coset examples we will discuss in part IIT of the thesis, however, one has r,; # 0.
Therefore, we will explicitly check for each case separately whether DV > 6V} is
satisfied or not.

To this end, it is convenient to define the variable U as follows

vy = ﬁU, (5.66)
so that
DV =6Vy + %DU =6Vy + %(—JBU)U, (5.67)
T74Vol 272Vol
and the no-go theorem applies if we can show that
—ag—g - —kagkUa > 0. (5.68)

Furthermore, if the inequality (5.68) is strictly valid, Minkowski vacua are ruled out as
well. This can be seen as follows. Using the egs. (5.64) and (5.67), we obtain

DV =6V + 2V, + 4V + (—00,)U + positive terms, (5.69)

1
272Vol
so that for a vacuum, DV = 0, we find with eq. (5.68)

1
V= 5 (2V4 +4Vs + (—00,)U + positive terms> <0. (5.70)

1
272Vol
So, if the inequality (5.68) strictly holds, (5.70) strictly holds as well and Minkowski
vacua are ruled out.

With the help of the no-go theorems discussed in this and the last section we will
examine in chapter 13 whether the coset models constructed in part III of this thesis
are valuable candidates for slow-roll inflation and de Sitter minima. All of the coset
spaces have non-vanishing geometric fluxes and non-vanishing Romans mass. We thus
have to check if the scalar curvature of the coset models is negative, and, if this is the
case, if —00,U > 0. The nilmanifolds on the other hand always have negative scalar
curvature and we can turn on non-vanishing Romans mass, thus circumventing the
no-go theorem of section 5.2. However, in [92] no-go theorems like the one described in
this section were applied to the class of twisted tori. The authors showed that for all
these twisted tori the epsilon parameter is bounded from below by numbers of order
unity ruling out slow-roll inflation and de Sitter minima for these models. Since the
nilmanifolds can be identified with twisted tori, they are not valuable candidates for
inflation and de Sitter vacua, and we will thus only study for the coset models of part
IIT whether they allow slow-roll inflation or de Sitter solutions.
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5.3.1 A comment on extra ingredients

Some ingredients that are not taken into account in the original no-go theorem of
[91], nor in the no-go theorems of section 5.3 [92] are KK-monopoles, NS5-branes, D4-
branes and D8-branes. Some of these ingredients were used in constructing simple
de Sitter-vacua in [98, 99]. KK-monopoles would drastically change the topology and
geometry of the internal manifold so that their introduction makes it difficult to obtain
a clear ten-dimensional picture, hence we will not discuss this possibility further in this
thesis. NS5-branes, D4-branes and D8-branes would contribute through their respective
currents jnss, jp4 and jpg as follows to the Bianchi identities

dH = _jNS57
dFy +HANFy = —jp4, (5.71)
dFp = —jps -

Since H and F5 should be odd, and Fj and F, even under all the orientifold involutions,
we find that jxgs is an odd four-form, jp4 an even five-form and jpg an even one-form.
In the approximation of left-invariant SU(3)-structure which we use in this thesis,
one should also impose these brane-currents to be left-invariant (making the branes
itself smeared branes). For the concrete type ITA models of chapter 11 there are no
such currents jnss, jp4 Or jps with the appropriate properties under all orientifold
involutions, implying that NS5-branes, D4- and D8-branes cannot be used in these
models.

Let us briefly mention that an F-term uplifting along the lines of O’KKLT [100, 101]
by combining the coset models with the quantum corrected O’Raifeartaigh model will
not be a promising possibility either. The O’Raifeartaigh model is given by Wo = —u2S
and Ko = SS— (SASQ)2 . The model has a de Sitter minimum for S = 0 where Vo ~ ,u4. We
combine the two models as follows (the subscript ITA refers to the previously discussed

flux and brane contributions)
W =W + Wo , K =Knua+Ko. (5.72)

In lowest order in S the total potential is then given by

Vo Vipa + €Aty 4. (5.73)
Aup
Vp 74 Vol (5.74)

Since we assume a positive uplift potential, V;,, > 0, the fact that V,,, scales like Fg tells
us that adding this uplift potential does not help in circumventing the no-go theorems
of section 5.2 or section 5.3.
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Application to Nilmanifolds






Summary

For many phenomenological applications the exact knowledge of the full four-dimen-
sional low-energy effective potential is required. For instance, one can search for phe-
nomenologically interesting stable de Sitter solutions (the stability is checked by calcu-
lating the mass spectrum around the solution) or check whether the potential satisfies
the necessary conditions for an inflationary epoch (this amounts to finding regions in
moduli space with small values for € and 7 as described in chapter 5). If the model ad-
mits a supersymmetric AdSy solution, one can explicitly calculate the mass spectrum of
the moduli fields around the supersymmetric solution. To construct phenomenological
attractive models, one can try to uplift such an AdSy solution by adding uplifting-terms
to the potential, e.g. along the lines of the KKLT scenario [23].

One of the main motivations of this thesis is to provide the techniques to derive the
four-dimensional low-energy effective field theory for a given compactification manifold.
In the first part of this thesis we discussed the formal premises for such a project and it is
now time for applying the developed techniques to concrete compactification manifolds.
We first want to consider a large class of possible six-dimensional compact manifolds,
the nilmanifolds which we described in section 4.2. As we discussed there, there are
34 isomorphism classes of six-dimensional nilmanifolds. In the following, we refer to
these 34 isomorphism classes simply as “the nilmanifolds”. The complete list of these
nilmanifolds can be found in table 4 of [64] and we will adopt their numbering.

We first want to construct type ITA AdS; N = 1 solutions on these nilmanifolds.
In section 2.2.2 we discussed the necessary and sufficient conditions for such supersym-
metric vacua. We first have to scan for nilmanifolds whose only non-vanishing torsion
classes are W, ,. If we do not turn on source terms, we have to satisfy condition (2.34),
which follows from the Bianchi identities. This condition turns out to be too restric-
tive for all the 34 nilmanifolds. We thus have to allow for D-brane/orientifold smeared
sources. The Bianchi condition is then relaxed to condition (2.37), which indeed can
be satisfied. Additionally, we have to check the positivity of the metric induced by J
and €.

As a matter of fact, there are (only) two nilmanifolds among the 34 nilmanifolds that
satisfy all the necessary and sufficient conditions [49], the six-torus and the nilmanifold
4.7 of table 4 of [64]. The nilmanifold 4.7 is also known under the name of the Iwasawa
manifold. Essentially, the Twasawa solution is the twisted torus T%/(Zy x Z5) example
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examined in [70, 62, 72] 3.

We will describe these solutions in chapter 6. As we will see, the torus and the
Iwasawa solution are related by T-duality along two directions (at least for some values
of the parameters). Interestingly, as the intermediate step after one T-duality, there is
a type 1IB solution with static SU(2)-structure on the nilmanifold 5.1 of table 4 in [64].

Remarkably, for the same range of the parameter space for which the T-dualities
above are valid, the solutions admit an interpretation as near-horizon geometries of
intersecting brane configurations, [24]. From this point of view, the nilmanifold vacua
in this range are nothing but near-horizon geometries of intersections of KK-monopoles
with other branes in flat space. This nice feature of the ‘brane picture’ is summarized
in table 6.1. Each solution in this table is related to the one in the column next to it
by a T-duality. For the three nilmanifolds that provide a solution to A" = 1 AdS; we

ITA 1IB IIA
T nilmanifold 5.1 Iwasawa
D4/D8/NS5 | D3/D5/D7/NS5/KK | D2/D6/KK

Table 6.1: Brane picture

next study in detail the four-dimensional low-energy effective field theory. The usual
approach to construct the four-dimensional effective action is by using four-dimensional
effective supergravity techniques which rely on supersymmetry. As we reviewed in
section 3.2, this boils down to calculate the Kahler potential and the superpotential.

However, the direct approach to derive the four-dimensional effective action is by
performing a Kaluza-Klein reduction. We reviewed the Kaluza-Klein recipe in section
3.1. The main result of this part of the thesis is a comparison of the results obtained
by the direct Kaluza-Klein reduction with the results obtained via the effective super-
gravity approach. This provides us with an important consistency check between the
two approaches.

To do so, we will first explicitly perform, in chapter 7, a Kaluza-Klein reduction on
the torus and the Iwasawa manifold around the supersymmetric solution of chapter 6
and derive the mass spectrum for all the moduli fields.

In the following chapter 8, we derive the effective low-energy potential by means of
the supergravity techniques and again derive the mass spectrum for the moduli fields
around the supersymmetric solution. Comparing these results with the masses obtained
from the direct Kaluza-Klein analysis, we find perfect agreement - showing that we can
rely on the effective supergravity techniques also in the presence of metric fluxes.

Note that the results of this part of the thesis are published in [49].

3In the Iwasawa model there are four orientifolds. These can be equivalently described as a single
orientifold supplemented with its images under a certain geometric Z» x Z» group acting on the internal
manifold.



Chapter 6

AdS, solutions on nilmanifolds

By taking the internal six-dimensional manifold to be a nilmanifold, we can construct
explicit examples of type ITA N' = 1 compactifications to AdS; described in section
2.2.2. A systematic scan yields exactly two possibilities in type ITA satisfying the
necessary and sufficient conditions: the torus T® and the Iwasawa manifold 4.7 of table
4 of [64], which (for some values of the parameters) are related by T-duality along two
directions. We also find a type IIB solution with static SU(2)-structure which forms
the intermediate step after one T-duality '. In this chapter we describe these solutions.

6.1 Type IIA solution on the T

Our first type ITA solution is obtained by taking the internal manifold to be a six-
dimensional torus. Let us define a left-invariant basis {e’} such that:

de’ =0, i=1,...,6. (6.1)

On the torus we can just choose e’ = dy’, where ¢’ are the internal coordinates. The
SU(3)-structure is given by

J=e'? 4 e¥ 4 &%
Q= (ie!' +e*) A (ie® +e) A (ie® + €°) |

which can indeed be seen to satisfy eqs. (2.6), (2.7) and (2.1) for f = 0, putting

1...6

volg = e It readily follows that all torsion classes vanish in this case. Note,

however, that there are non-vanishing H and Fy fields given by eq. (2.27)

2
H= getbm (6246 _ o136 _ 145 _ 6235) ’

Py = %m (1234 4 1256 | 3456)

'Tn the case of type IIB, we did not make a complete scan so there might be more solutions of this
type.

(6.2)
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From the Bianchi identity in eq. (B.9a) we compute for the source term

6 = _§e<1>m2(6246 o136 _ 15 _ 235y (6.3)
such that, from eq. (2.37), we find that there is an orientifold source of the type (2.35)
with 1 = e*®m?. This source term corresponds to smeared orientifolds along (1,3,5),
(2,4,5), (2,3,6) and (1,4, 6) (see also the discussion in appendix D). The corresponding

orientifold involutions are 2
06 : 25 —e?, et o —et, 8o —ef,
06 : el > —et, o e, o —eb
(6.4)
06 : el 5 —el, et o —et, o —€°,
06 : 25—, o e, o -6,

For the torus, since we have vanishing torsion classes, we can decouple the tower of
Kaluza-Klein masses (see discussion in section 2.2.2) when we take m?(e?®*L2,) < 1.

6.2 Type ITA solution on the Iwasawa manifold

The second type ITA solution is obtained by taking the internal manifold to be the
Iwasawa manifold. The left-invariant basis is defined by:

de* =0, a=1,...,4,
de® = e!? — e, (6.5)
deb = el + 2,

and is usually denoted by (0,0,0,0, 13 —24, 14+ 23). Up to basis transformations there
is a unique SU(3)-structure satisfying the supersymmetry conditions of section 2.2.2:
J=e'2 4 &3 4 5255
(6.6)
Q=B (ie® — %) A (ie! + ) A (ie® +et).

In the left-invariant basis, the metric is given by ¢ = diag(1,1,1,1, 8%, 3?), and the
torsion classes can be read off from dJ, dQ, taking eq. (2.1) into account:

_ 24
Wl :_EIB’
A (6.7)
Wy = —51/3 (e'2 + 3 + 2% %) |

2Each orientifold can be represented as Q,0, where Q, acts as a reflection on the world-sheet and
o is a purely geometrical operation acting on the target space. The composition of two six-orientifold
actions 2,01 and 02 is purely geometrical, given by o1 o o2, since Q; = 1. Similarly, the action of
any number of orientifolds can be thought of equivalently as being generated by a single orientifold
together with a purely geometrical action of a discrete group. In the case at hand, the four orientifold
six-planes can be equivalently thought of as a single orientifold together with an orbifolding of the
internal manifold by Zo X Zo.



6.3. TYPE IIB SOLUTION ON THE NILMANIFOLD 5.1 81

while all other torsion classes vanish. The fluxes can be read off from eq. (2.27) by
plugging in f = %e’q’ﬁ, while we can find m from eq. (2.37). We can verify that dW,
is proportional to Re{:

dw; = —%ﬂQReQ : (6.8)

From the second line of eq. (6.7) we can read off: |[W, |? = 643?/3. Comparing with
eq. (2.37), taking |W; |2 = 482 /9 into account — as follows from the first line of (6.7) —
we therefore find a non-zero net orientifold six-plane charge:

p> g2, (6.9)

The solution (6.6) has one continuous parameter, 3, corresponding essentially to the
first torsion class W, . An additional second parameter can be introduced by noting
that the defining SU(3)-structure equations (2.6) are invariant under the rescaling

J =920 Q=40 (6.10)

The additional scalar v is related to the volume modulus via volg = —v53%e!, as can
be seen from eq. (2.7).

For the case m = 0, for which the bound (6.9) is saturated, the above example can
also be obtained by performing two T-dualities on the torus solution of section 6.1,
as can be checked explicitly. We find then that g = %mTe<I> where mr is the mass
parameter of the dual torus solution. The limit of decoupling the Kaluza-Klein tower
corresponds to taking SLin < 1.

6.3 Type IIB solution on the nilmanifold 5.1

This solution is related, via a single T-duality, to both T® and the Iwasawa manifold.
Indeed, let us perform a T-duality on the six-torus example of section 6.1 using the
T-duality rules of e.g. [102] (see also [103] for a discussion of the action of T-duality
on the pure spinors of a SU(3) xSU(3)-structure) 3. After rescaling and relabeling the
left-invariant forms we find the nilmanifold 5.1 described by (0,0,0,0,0,12+34). For the
SU(2)-structure quantities described in section 2.1.2 we obtain

; 1
ey = 5 (Be® +ie) ,
wy = €13 — 2t (6.11)

Qy = —ie (ie! +e?) A (e 4 €2).

3Note that it does not matter along which direction one performs the T-duality since all six perpen-
dicular directions are equivalent. For the second T-duality (from which we obtain the Iwasawa solution
of the previous section), only one direction leading to a geometric background is possible.
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The metric is given by ¢ = diag(1,1,1,1,1,3?), and for the fluxes we have
H = _B (6235 +€145) ’

(6.12)

W N Ot

PRy = 55 (1% — 245) |

6¢F5 — 2,32612346 )

Again we find that g is related to the mass parameter of the torus example via =

%mTe‘I).

6.4 The brane picture

Following [24], it is possible to interpret the solutions presented in sections 6.1-6.3, from
the perspective of intersecting branes. Namely, we would like to recover these solutions
as near-horizon limits of domain walls in four non-compact dimensions, corresponding
to systems of (orthogonally) intersecting branes (we will henceforth use the term ‘brane’
to refer to either a Dp-brane, an NS5-brane, or a KK-monopole).

More specifically, we will impose the following requirements on our brane configu-
rations:

1. All configurations should consist of branes in ten-dimensional flat space, of which
four directions are non-compact and six directions form a six-torus.

2. All branes should have exactly the same two spatial directions along the non-
compact space.

3. All branes should intersect orthogonally, and we do not consider world-volume
gauge fields.

4. The resulting configuration should preserve N' = 1 supersymmetry in D=3,
and should admit a regular near-horizon geometry with an AdS, factor.

5. Each configuration should include the maximum number of branes compatible
with requirements 1-4.

Before we come to the description of explicit configurations satisfying the above re-
quirements, let us note that, as we will see in the following, only brane configurations
that lead to strict SU(3)-structure (as well as their T-dual configurations leading to
static SU(2)-structures) arise in this way; this is the same class of backgrounds consid-
ered in chapter 2. The easiest way to arrive at this conclusion is to first determine which
types of SU(3)xSU(3)-structure * are compatible with each brane separately. Indeed,

*See appendix C for a brief introduction to the language of generalized geometry and SU(3)xSU(3)-
structure compactifications.
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using their corresponding k-symmetry projectors, it is straightforward to analyse what
relations between the internal supersymmetry generators n(*) and n® of eq. (2.3) are
possible, which leads to the following table of branes and their corresponding compat-

ible types of structure: °

‘ Brane ‘ Structure type ‘

D2 strict SU(3)
D3 static SU(2)
D4 SU(3)><SU(3)
D5 SU(3)xSU(3)
D6 SU(3)xSU(3)
D7 static SU(2)

D8 strlct SU(3)
NS5 | SU(3)xSU(3)
KK | SU(3)xSU(3)

See section 2.1 for the terminology. It turns out, that the configuration always needs
to have D-branes to get a regular near-horizon AdS, limit. From the above table it
follows, that if one of these D-branes is a D2, D3, D7 or D8 we already find strict
SU(3)- or static SU(2)-structure. If not, let us consider the SU(3)-structure associated
to (1) as in eq. (2.5). Let us also define the complex coordinates z* associated with
this SU(3)-structure as well as their real and imaginary parts: 2! = z¢ 4 iy’. Because
all the branes defining this SU(3)-structure intersect orthogonally (requirement 3), for
each brane the 2’ and y’ directions will be either along or perpendicular to the brane,
i.e., there are no angles other than right angles. Now the relation between n(") and n(?,
which we can get from the k-symmetry conditions of one of the D-branes, will contain
gamma-matrices for directions that are also parallel or orthogonal to the z' and g’
directions. Exhausting then all possibilities for the resulting structure shows that it
can only be strict SU(3)- or static SU(2)-structure. It follows that if one is interested in
constructing a configuration with general SU(3)xSU(3)-structure, one should restrict
to D4, D6, D5, NS5 and KK-branes and put these branes at non-orthogonal angles.

Let us make a few comments concerning the requirements 1-5 above. The first one
anticipates the fact that, as it will turn out, the internal nilmanifolds in the solutions
of section 6.2-6.3 can be thought of as intersections of KK-monopoles in flat space. It
therefore suffices to consider branes in flat space. The second requirement is of course
just the requirement that the configuration should correspond to a domain wall in four
space-time dimensions. The requirement of orthogonality was imposed for simplicity.
It would be interesting to consider branes/monopoles intersecting at angles, but it
would be quite difficult to construct the corresponding geometry because one could
no longer use the harmonic superposition rules for branes [104]. The first part of the

"We also refer to table 1 of [43] which represents the allowed types of structure too, but now
for space-filling orientifolds. Orientifolds have the same supersymmetry properties as D-branes with
vanishing world-volume gauge field, however the difference of space-filling versus domain wall basically
shifts the table.
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fourth requirement is equivalent to demanding that the domain wall, viewed from the
point of view of four-dimensional space-time, should be supersymmetric. Indeed, the
minimal supersymmetry a domain wall in four dimensions can preserve, is one-half of
N =1in D = 4. This is equal to two real supercharges, i.e. N' = 1in D = 3. Note
that this implies that exactly one-sixteenth of the original supersymmetry of type II
supergravity in D = 10 should be preserved. As each brane breaks supersymmetry by
(at most) one-half, there will be (at least) four branes in the configuration. The final
requirement is imposed because a configuration that does not include the maximum
number of branes compatible with requirements 1-4, turns out not to have a regular
AdS, near-horizon limit.

The rules for supersymmetric, orthogonally-intersecting branes were formulated
some time ago [104, 105]. For the type of configurations we are considering, they
can be summarized as follows:

‘ intersecting branes ‘ # of relative transverse directions

Dp/Dq 0 mod 4
NS5/NS5 0 mod 4
Dp/NS5 T—porll—p
Dp/KK 5—por9—p
KK/KK 0 mod 4
NS5/KK 4or8

The requirements 1-5 listed above severely restrict the set of admissible intersecting-
brane configurations. It is in fact straightforward to show that all possible such config-
urations are related to each other by T-dualities. The brane configurations comprising
the ‘nodes’ of this T-duality web, listed in table 6.1, are analyzed in the following 6.

D4/D8/NS5

This is the type ITA solution given in [24] and corresponds to the following system of
intersecting D4/NS5/D8-branes:

SWithout the second part of the fourth requirement there are three more configurations connected
to each other by T-duality: D5/NS5, D6/D4/NS5/KK and D5/KK. Because they do not admit a
regular near-horizon limit with AdS4 factor, they are not of interest to us here, and we do not consider
them.
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D4
D4/
D4II
NS5
NS5
NS5”
NS5III

D8
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The full solution of [24] patches two asymptotic regions: a near-horizon AdS,xT®
region and a flat region at infinity. Here we will concentrate on the near-horizon limit
of the solution where the brane system above is replaced by fluxes. After rescaling of
the coordinates, it can be written as:

6
dsty = dsigs, + Z(dyi)g; ® = const. ;

i=1
(6.13)
Hy2y4y6 = Hy2y5y3 = Hy1y6y3 = Hy1y5y4 =a,
3 5
— . — . 2 —® _ Y -
Fy3y4y5y6 = FylyzySyB = Fy1y2y3y4 = 26 a, Fy = 2@ a,

where a and e® are given in terms of the brane quanta in [24], and the SU(3)-structure
is given by:

J = dy' Ady? + dy® Ady* + dy® A dy®,
(6.14)
Q = (idy" + dy?) A (idy® + dy*) A (idy® + dy®) .

We can readily see that, in the language of section 2.2.2; the present solution corre-
sponds to setting Fy =0, f = 0 and m = a with a source term:

) 2a?

906:-—7;e_¢ReQ. (6.15)
So while the original brane configuration has disappeared in the near-horizon limit, we
have to introduce a set of smeared orientifold sources in order to satisfy the tadpole
conditions:

| L2 Tat Ja® [a® [y [o° [9° [y [0 [ o]
06 | @I ® XK | X X X
06 | @ 1 QIR |R X X
06" | @ | ® | ® | & X XX
06" | @ 1 Q| ® | R R &
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Indeed, as follows from eq. (2.30), in this limit, all torsion classes of the internal
manifold vanish, as they should for T®. Moreover, this is exactly the solution of section
6.1.

D3/D5/D7/NS5/KK

By applying a T-duality on the solution of the previous subsection, we obtain the
following configuration (we do not display the non-compact directions anymore, but let
us keep in mind that they form domain walls):

| [y [ [ [y [y 10
D7 RV IR IRV R
D3 ®
D5 | ® XX
D" | & R X
NS5 | ® Q Q
NS | @ Q Q
KK'" | o« | ® R X
KK”/ ° ® ® ®

Without loss of generality, we have taken the T-duality to be along y'. Let us only
describe the salient features of this model.

First of all, an analysis of the k-symmetry conditions of the D-branes reveals that
for this configuration the internal spinors satisfy

() _

nf —e*m*ylnm , (6.16)

where e~
dimensions, or, after taking the near-horizon limit, the phase of the superpotential W
of AdS. So we see that we have static SU(2)-structure, which is also the only possibility

for type IIB as mentioned in section 2.2.2 and explained in more detail in appendix C.

is a phase describing the supersymmetry preserved by the domain wall in four

Secondly, when one goes to the near-horizon limit, the effect of the KK-monopoles
is to twist the S of direction 1 over the T* corresponding to the directions (3,4, 5, 6),
which is indicated with a bullet in the tables. This means that we find for the metric,
after rescaling,

6
dsfy = dshag, + > _(¢)?, (6.17)
i=1
with
el i=dy' +a(y’dy’ +y°dy"),
. . (6.18)
e=dy'; i=2,...,6,
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where ¢ is the same parameter as in the T-dual. This means we have

de' = a(e® + €7,
. (6.19)
de' =0,

which, in fact, is equivalent to nilmanifold 5.1. So we see that just like the other branes
the KK-monopoles disappear in the near-horizon limit and are replaced by flux, in this
case the geometric flux a.

It turns out that in addition to the fluxes we have O5/07 orientifold planes along
the following directions:

L e Tat [a? [a® [y [ [ 08 [ [ [4°]
05 | @1 Q|1 |X X X
05 | QI Q| QR X X
071 QIR IR IR IR R
o7 QI IR IR IRV IR K X

After appropriate rescaling and relabeling, this solution corresponds to the solution on
the nilmanifold 5.1 of section 6.3.

D2/D6/KK

Starting from the type IIB configuration above, there is exactly one possibility left for
a T-duality, i.e. along y2. This is because T-dualizing along a direction perpendicular
to a KK-monopole would result in a non-geometric background.

| [y [ [P [yt [y 10
b6 I QR
D2
D6 1 QI Q| X R
D6’ | Q| ® XX
KK | Q| | Q& X
KK' | Q| e X X
KK'" | ¢ | ® R X

KKIII ° ® ® ®

An analysis of the k-symmetry conditions of the branes reveals that this model has
again strict SU(3)-structure. The four KK-monopoles result in a near-horizon geometry
for which the T? along the directions (1,2) is twisted over the base T* along (3,4, 5, 6).
The metric reads

6
dsty = dshas, + 2(62)2 ; (6.20)
i—1
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where we have defined
e :=dy' +a(y’dy’ +5°dy?),
e = dy? + a(y®dy® — y0dy?), (6.21)
e’ :=dyi; 1=3,....,6,
such that
de! = a(e® + &%),
de? = a(e? + ¢'%), (6.22)
de! :=dy'; i=3,...,6.

After rescaling and relabeling we find the solution of section 6.2 for m = 0. For m # 0
the latter solution does not have a dual brane picture.

Finally note that in order to satisfy the tadpole conditions we have again O6-planes
along the following directions:

| L2 lat Ja? [a® [y [o? [o° [y [0 [ o]
06 1 @ 1 Q| ® | & XX X
06 | QI Q| K| ® X X 3
06" | QI QI R® QIR XX
06" | QI QI ® QR X 3

This completes the overview of brane configurations of table 6.1.




Chapter 7

Kaluza-Klein reduction

In this chapter, we will explicitly perform a Kaluza-Klein reduction described in section
3.1 on the torus solution of section 6.1 and the Iwasawa solution with m = 0 of section
6.2 and calculate the mass spectrum of the moduli fields around the supersymmetric
vacuum. In the next chapter we will again derive the mass spectrum using effective
supergravity techniques and compare the results. If we find agreement, this provides
an important consistency check between the to approaches.

7.1 Expansion of the fields

For the Kaluza-Klein reduction on T% and the Iwasawa manifold, we will expand the
fluctuations of the various fields in the following basis:

OB(z,y) =b"(2) Y2 (y) + by (@) V5 () + (@)Y (3). (7.1a)

d(x,y) =0¢" ()Y (y) (7.1b)

M (z,y) =cVi ()Y (1) + V7 (@)Y (), (7.1¢)
80O (z,) =< (1) Y1) () + ¢ (2) V2 () + & (@)D ()

+ 7 @)y ), (7.1d)

dg(@.y) =h" (@) X2 (y) + By (@)Y (y) + () VS (y).- (7.1e)

The functions yz(l%(y) are the [-eigenforms of the Laplacian operator and are given by

—

V) =vVerd  y= " ez, (7.2)

b Z .
int

where the Yi(l) form a basis of harmonic [-forms on T%. X are symmetric two-tensors

@,y _ v@ iFd L7 L6
X2 (y) = X7 eV, D= ., nmez’, (7.3)

l? v .
int
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Since we will restrict our analysis to the zero modes (p = 0), we only keep J)Z.(gzo(y) =
Yi(l) and Xi@ﬁ):o(y) = Xi(Q) in the expansions above and derivatives only act on the

external fields. For the Iwasawa manifold, we will use for the expansion forms Yi(l) left-
invariant forms, which will not necessarily be all harmonic. When exterior derivatives
act on these forms terms will be generated of the order of the geometric fluxes.

7.2 Kaluza-Klein expansion on AdS,xT®

On the torus we can just choose ¢’ = dy’, where ' are the internal coordinates, due
to eq. (6.1). The harmonic [-forms in which we will expand the fields according to
eq. (7.1) are thus of the form ™™ = dy™ A-..dy™, 1 =1,...,6. Since there is an
orientifold projection present in our compactification, suitable expansion forms must be
even or odd under all the orientifold involutions. The set of even/odd forms of different
degree under all the orientifold involutions given in eq. (6.4) is

type basis ‘ name ‘
odd 2-form el2, ¢34 (56 Yi(%)
even 3-form el35 ¢ld6 (236 o245 Yi(3+)
odd 3-form el36 o145 235 o246 Yi(3_)
even 4-form el234 1256 3456 Y;(4+)
even symmetric 2-tensor | e! ® e!,e? @ e?,... ,e8 @ F XZ.(Q)

Table 7.1: List of invariant forms for the torus solution

In particular, we find that there are no one- and five-forms nor even two-form. All
external fields are even under the orientifold involutions (the orientifolds span the whole
four-dimensional space-time). We find from eqgs. (2.40a) and (2.40b) that @, g, Fo, C3
are even, and B, Cy are odd. The allowed terms of the expansion (7.1) are therefore

B(z,y) = b (z2)Y,*7) (7.4a)
30 (z,y) = (z) (7.4b)
5C®) (z,y) = Pi(@)vF 4 (), (7.4c)
Sg(z,y) = hi(z) X + hy(z) . (7.4d)

From eq. (3.21) we find the linear fluctuations of the field strengths (remember for the
torus that Fy = 0)

6F, = —mdB, (7.5a)
§Fy = dsCs, (7.5b)
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and
0H =diB. (7.6)

We want to derive the mass matrix for the four-dimensional fields. To achieve this, we
compute the equations of motion for the four-dimensional fluctuations, which have to
be of the form (3.6a) for the scalar fields b (z), ®(x), ¢®)(x) and h(z), whereas for the
external metric fluctuation hy(z) it will be of the form (3.6¢). We thus first compute
the variation of all the equations of motion (B.7a),(B.7b),(B.9b) and (B.10) to first
order. In these equations we plug in the background values and the expansion of the
fields (7.4), which gives us the equations of motion for the fluctuations.

The calculation is straightforward but rather lengthy. The variation of the Hodge
star « complicates the calculation, since the metric appears in the Hodge star !. We
can derive an expression for its variation

1
(54 = (§gMNagMN) *Fy—x{og - F], (r.7)
where

g - Fl]Ml...Ml =1- 59[M1\A9ABFB\M2...Ml} . (7.8)

Let us look at one of the equations in more detail to explain the important steps in the
calculation. The variation of the equation of motion for H, eq. (B.10), takes the form

0=dxdéB — (d6®) AxH + d [(5*)161} By AGFy — (xEy) A6Fy —m 6F,,  (7.9)

where we used the freedom to set e=® = 1 in the torus solution, eq. (B.1) to remove
the redundant RR-fields coming from the democratic formulation and that 5 = 0,
d(xH) = 0 and 1, A a(j)|g = 0 in the torus solution. Terms like the second one in
eq. (7.9) vanish since *H = voly A +gH and dé®(z) A voly = 0. Remember that we are
only considering the zero internal modes and hence that the torus derivatives only act
on the external fields. For the third term in eq. (7.9) we use eq. (7.7). Plugging the
fluctuations (7.5) in eq. (7.9) and applying a Hodge star operation, we arrive at the

following equation for the scalars b?, which has [external/internal] index structure [0,2]:
0= AV —w(By AdeS)) — mox (xFy ABYED) + m2b Y, (7.10)
Here we used, following the conventions summarized in appendix A 2,

kpdkg d = —A. (7.11)

!See appendix A for our conventions for the Hodge star. Further note that in this chapter, x denotes
the ten-dimensional Hodge star, whereas the four- and siz-dimensional Hodge star are indicated as x4
and %g, respectively.

*Note that dTb’(z) = %4d %4 b’ (x) = 0 for b'(z) an external scalar field.
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Similarly, we derive from the variation of the equation of motion of Fj a [0,3]-equation
and a [1,6]-equation, respectively,

0= Ac(?’)iYi(H) —x(H A dcgg)) , (7.12a)
0=dxdc’ +d' AV A By + H A de®i Ay ED (7.12b)
and from the variation of the equation of motion of Fy a [4,5]- and [3, 6]-equation
0=HAx[ix? Ry, (7.13a)
0= H Ax(dc®i A yEH) (7.13b)

Note that the equations for the RR-fields and H do not mix with the dilaton and
the metric. The equations (7.13) are automatically satisfied using the orientifold pro-
jection. Indeed, the right-hand sides should have contained an even internal five-form
respectively six-form under all orientifold involutions, which do not exists, so they must
vanish.

To solve the eqs. (7.12), we integrate eq. (7.12b) and put the integration constant
to zero (this would correspond to changing the background value of f). Taking the
(3)

Hodge star of the integrated equation we get an expression for decy’ that we can put
in eq. (7.12a) and also in eq. (7.10). This procedure corresponds to dualizing c§3), as
explained in [106, 55]. Indeed, one may wonder why the three-form part cgg) of 6C3)
appears in the equations of motion for the scalars but is easily integrated out. The
reason is that we defined dc?) to describe the variation of the external part of §Fy. By

means of the duality (B.1),
Fy=er?xFy, (7.14)

we can equivalently describe the external part of Fy by the internal part of Fgz. The
variation of eq. (7.14) reads

1
0F6int = Ee%q)f (0g" ;= 69" m — 6®) A volg + ez® *dch) ) (7.15)
If we now plug in the general variation of the equation of motion of Fjy,

1
ez ® *4 dcg?’) Avolg =+ —e%q)f (09", — 69" m — 6®) A volg
2 (7.16)
+BEAYEY b AV AR 4 6f

we find
0Fgins = ¢V HAYPY 5 AV A By, (7.17)

which exactly corresponds to the part of §Fgs in eq. (3.21) that is first order in the
fluctuations.
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We are now ready to put in the expansion forms given in table 7.1 and solve the equa-
tions for the fluctuations of the RR-fields and H. To display the results it is convenient
to make an appropriate choice of the expansion forms as follows

Y = mQ, (7.18a)
y (34

(1) =123 3real (2,1)+(1,2) forms, (7.18b)
and the odd two-forms

v\ =17, (7.19a)
vy , 4=1,2: 2 primitive real 2-forms, (7.19b)

where a primitive two-form is defined in (C.31). As explained in section 3.1, we display
the result for the eigenvalues of the mass-matrix M2 = M2 + 2/3A:

mass eigenmode ‘ mass (in units m?/25) ‘

b, i=1,2 10
¢, i=1,2,3 0
b0 — 4600 10
360 4 ((3)0 88

We now come to the dilaton and the Einstein equation. Let us first look at the
dilaton equation (B.7a). The tricky part is the variation of the source term,

*(Up, 7)), (7.20)

where, according to eq. (B.6), U7 = —voly A e ®ImQ. The variation of ImQ can be
done by looking at the variation of the vielbeins,

Qpmp = egnebmegpﬁﬂ, (7.21)
where the underlined indices are flat indices. We can use the following relation
dey, = %(5gnmgmpegp, (7.22)
and we obtain
STmQ = %[59 TmQ). (7.23)

The rest of the calculation is straightforward and we arrive at

67m? 7m? ;
0=(A+——)%+ Zh. (7.24)
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To compute the variation of the internal Einstein equation around the vacuum, we use
the same methods as described above resulting in

1 1
ORmn = EALégmn + v(mvpégn)P - EvmvnégQQ ) (725)

where Aj, is the Lichnerowicz operator defined in eq. (3.7), and all covariant derivatives
and contractions are with respect to the background metric. For the flat torus vacuum
this is easy evaluated to give

1
0Rmn = §Aégmn, (7.26)
and the variation of the internal Einstein equation reads

8m 7m2
) Ot 44 E : j alit i—(— )

The result of diagonalizing the mass matrix is

mass eigenmode ‘ mass (in units m?/25) ‘
—his1 +hyose = —h' —h? + % + A? 18
—hzlzl + hzzzz = —hl — p? + hP + h8 18
30D+ 7> h; 18
760 4+ > hy 70
Rehzlzl = —hp! + h? -2
Reh,2,2 = —h3 + ht -2
Reh,s,s = —h°> + Kb —2

The external contribution of the variation of the metric, hy,,(z) in eq. (7.4d), is
expected to describe a massless graviton . To verify this, we calculate the variation of
the external Einstein equation. This results in

1 1 P 3m? 3m? 21m?
ALl + Y (VP by = 5V (Vi h' o+ S by = o0 D hi = S5

5% ———guwd® =0.

(7.28)

At this point we have to take into account that so far we worked in the ten-dimensional
Einstein frame. From eq. (3.32) we find that the conversion to the four-dimensional
Einstein frame is as follows

Jepy = C\/g_Gg;w ) (7'29)

where the constant factor ¢ = M;Q/-el_OQVS does not matter here, so that
_ 1
c 1hEuu = \/Q_ﬁhuu + 5\/ 96 Guv Z hi . (7'30)
i

Plugging this into eq. (7.28) and using eq. (7.27) we find for hg,, exactly equation
(4.28) with M? = 0 so that hg, indeed describes a massless graviton.
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7.3 Kaluza-Klein expansion on the Iwasawa manifold

The background for the Iwasawa manifold with m = 0, around which we expand
the fields, is given in section 6.2. In contrast to the torus, some elements of a basis
of left-invariant forms are no longer closed. We thus expand the fields not only in
harmonic forms. This complicates the Kaluza-Klein computation since the derivatives
not only act on the external fields but also on the internal zero-modes Y () of the left-
invariant basis. When exterior derivatives act on these non-harmonic forms, terms will
be generated of the order of the geometric fluxes.

The basis for these left-invariant forms that are even or odd under the orientifold
involution turns out to be the same as for the torus, but now in the left-invariant basis
appropriate to the Iwasawa manifold. This basis is given in table 7.1. Again @, g, Fy, Cs
are even, while B, C; are odd, resulting in the same expansion (7.4) as for the torus.
From eq. (3.21) we get for the linear fluctuations of the field strengths

0Fy, =0, (7.31a)
§Fy = déCs — 0B A F, . (7.31b)
Expanding the equation of motion for H around the Iwasawa solution, we obtain

0 =AK YD 41 (xedws 4Y,% ) = el 1V A B)

(7.32)
+ bz *6 |:*6 <Y;(27) A Fg) A F2i| + fC(3)i *6 de+ — bzf *6 <Y;(27) A FQ) s
while the equation of motion for Fy splits in [1,6]- and [4, 3]-index structure
1
0=dxsdel? + 509" = 0g™m = 59) . (7.33a)

0= A Y D (g wg V) 4 b Y0 — b kg d g (V) AR
(7.33b)
3)

The equation for ¢y’ mixes this time with the dilaton and the metric. Just as in the
torus case, we integrate eq. (7.33a), put the integration constant to zero and plug the

result for dcgg) into the equations for the dilaton and the metric which we derive below.

We proceed by choosing the expansion forms. We take the same three-forms as in
eq. (7.18), while for the two-forms we choose

YU(%) = %, (7.34a)
V) = el2 4 63 (7.34b)
V) =2 - o3t (7.34¢)

As already mentioned, this time YU(3+) and Yo(%) are not closed. Defining mp such
that 8 = 2e®my (this is of course the Romans mass of the T-dual torus solution), we
get the following masses:
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mass eigenmode ‘ mass (in units m%./25) ‘

¢, i=1,2,3 0
b0 + ! 10

b? 10

8¢c(3)0 4+ 5p0 4 3p! 10
B30 _p0 4 2p! 88

Due to T-duality the mass eigenvalues are the same as for the torus solution.

The equation for the variation of the dilaton around the background reads

4
99 3 9 9
Viae - 16%5@ a 1:')10T th mT th 173(?5 = gdcé?’) ~voly. (7.35)

We now plug in the result of integrating eq. (7.33&) and arrive at the following equation
for the variation of the dilaton

27 9 3
0=(A+ mT )3 — mTZhZ mTZhl (7.36)

For the Einstein equation, we use again the variation of the Ricci tensor given
in eq. (7.25). This time, however, we have non-trivial spin connections so that the
calculation is not as simple as in the flat torus case. By explicitly deriving the spin
connections one can show that the last two terms in eq. (7.25) vanish, whereas the
Lichnerowitz operator (3.7) gets non-trivial contributions. The final result for the
variation of the Einstein equation around the vacuum reads

. 4 2 2 i 11 !
0= Ahi 4 2T i 53T iy mTZ - 33mT5¢ for i=5,6,

50 50
(7.37a)
and, fors=1,... ,4,
. 8m2. . 2mZ . Po3mE s mE o 3m2
— AR T i 2T i (1) 2T N g T NT g ST s
0 + 25 + 5 10 ]2:: + 10 ]z:; + 10 ¢
(7.37b)
Diagonalizing the mass matrix we find the following eigenmodes with corresponding
masses:
mass eigenmode ‘ mass (in units m?2./25) ‘
—h,iz1 4+ hyos = —h' — B>+ R34+ p? 18
11h,151 + bh,szs = 11(A! + h2?) + 5(h° + A°) 18
50® — 3(h' + h?) 18
30® — 3(h° + h®) + (h' + A% + B3 + h?) 70
Reh,i,1 = —h' + h? -2
Reh,2,2 = —h3 + ht -2
Reh,a,s = —h® + hO -2
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Once again, we find the same masses as in the torus example.

Let us summarize the results of the Kaluza-Klein reduction on the six-torus and the
Iwasawa manifold. In both cases we obtain the following mass eigenvalues (in units
m%/25) for the scalar fields

Complex structure -2, =2, =2

Kahler & dilaton 70, 18, 18, 18
Three axions of §C5 0,0,0
0B & one more axion | 88, 10, 10, 10

That we obtain exactly the same mass spectrum for both manifolds is the expected
result, since the two solutions are related by T-duality. An interesting observation is
that all three axions correspond to massless moduli, a feature that is also discussed in
[72]. Tt is argued there that, when one introduces D6-branes, these axions can provide
Stiickelberg masses to some of the U(1) gauge fields on the D-brane. In any case, we
will see later that most of the coset examples we will study in the third part of this
thesis do have all moduli stabilized. We also notice that some masses are tachyonic,
which is allowed because they are still above the Breitenlohner-Freedman bound (3.11).






Chapter 8

Effective supergravity

In chapter 7 we derived the masses of the scalar fields by means of an explicit Kaluza-
Klein reduction for the torus and the Iwasawa solution. The widely-used approach to
derive the four-dimensional effective action is by using N/ = 1 effective supergravity
techniques based on the superpotential and Kahler potential. We reviewed the super-
gravity techniques in section 3.2. In this section we will use this approach and again
derive the masses of the scalar fields around the supersymmetric solution. Compar-
ing these results with the results obtained with the direct Kaluza-Klein reduction we
perform an important cross-check for the expressions for the superpotential and the
Kahler potential to handle geometric fluxes.

8.1 Type ITIA on TS

Given the orientifold projection (6.4) we choose the following basis of odd two-forms
and even three-forms

Yi(%) 12 3 56
\ (8.1)
+
Yi( ) : _6135’ 1467623676245 :
as expansion forms in eq. (3.37) such that
T, = t'el? 4 1263 4 3¢5
(8.2)

e(bImQ + 2(503 — e—tb(_216135 + 226146 + 236236 + 246245),

where we took out the background ¢~ ® from the definition of 27 for further convenience.

Using the expression (3.34) and the background fluxes in eq. (6.2) to derive the
superpotential, we immediately find

671'0

WE,Torus = 2
drK1g

3 2
Vem | —t't%3 + g(t1 +t24+43) — g(z1 + 24+ 242, (8.3)
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where V; is a standard volume V; = fel“'ﬁ, which does not depend on the moduli.
Moreover, with eq. (3.35) and the Hitchin procedure explained in appendix C, the
Kahler potential reads:

K = K + Ko + 31In(8k2, M2V, 11/3) (8.4a)

where

3
Kr=—1In (H(ti +P‘)> : (8.4b)

=1

is the Kahler potential in the Kahler-moduli sector and

4
K.=—In <4H (2" + zi)> : (8.4c)
i=1

is the Kahler potential in the complex structure moduli sector.

We are now ready to calculate the mass spectrum of the scalar fields around the
supersymmetric solution. Using the expressions for the superpotential (8.3) and the
Kahler potential (8.4), it is straightforward to calculate the four-dimensional Einstein-
frame action (3.25). From this action we compute the equation of motion for the scalar
fields

A¢F+ Mp2(K M)kt =0, (8.5)
where Mij = %%%ackground is the mass matrix and IACij is the Kahler metric in real
coordinates in the background. Therefore, to compare the results for the masses in
the analysis with the superpotential and the Kahler potential with the results from the
Kaluza-Klein reduction we need to diagonalize the matrix M 2K-1M. Remember that
the results from the Kaluza-Klein reduction were in the ten-dimensional Einstein frame,
whereas using the effective supergravity approach of this section we get the results in
four-dimensional Einstein frame such that we have to use eq. (3.33) to compare the
results of both approaches. Upon noting that in the Kaluza-Klein analysis we set the
background values for the warp factor and the dilaton equal to zero and Vol = Vs, we
find exactly the same result for the mass spectrum as in section 7.2.

8.2 Type ITA on the Iwasawa manifold

For convenience we choose this time the following expansion basis:

y(2-) . el2 ¢34 _ g2c56
(8.6)
y(3+) . — B35 _Beld6 _Re236 o245
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This implies that dY;®™) = —8e123 for all i = 1,... 4.
We find the superpotential
60

WE,Iwasawa =

—ie 3 2 3
T maVe |2 - S8+ 2 4 B ) + (B 288 — 12
42, 5 5 5

(8.7)

where V; = [ —f3%e!6 is again a standard volume and mq = ge_‘i’ﬁ the Romans mass
of the T-dual torus solution. We note here the following relation
13 3 1
WE,Iwasawa = —it WE,Torus(t — t_3)a (88)
which follows from T-duality '. The Kihler potential for the Iwasawa manifold is the
same as in eq. (8.4).

In the end, we find exactly the same masses as on the torus, as expected from T-
duality, and thus also the same masses as in the Kaluza-Klein approach for the Iwasawa
manifold. Let us stress again that this provides an important consistency check on the
ability of the superpotential/Kahler potential approach to handle geometric fluxes.

If we now turn on m # 0 in the Iwasawa solution, we get extra terms in the super-
potential that look exactly like the torus superpotential, so we find:

WE,Iwasawa,m;éO = WE,Iwasawa (mT) + WE,Torus(m) - (8-9)

The mass spectrum is the same upon replacing m% - m?+ m%

8.3 Type IIB on nilmanifold 5.1

For our analysis we will need expansion forms with the following behaviour under O5
and O7-planes

‘ type under O5/07 ‘ basis ‘ name ‘

odd/even 1-form e, —peb Yi(l_ﬂ

even/odd 2-form et e?3 Yi(2+7)

odd/odd 2-form | e - |y

odd/even 4-form | Be!2%6, Be3456 Yi(4_+)

and choose the standard volume Vy = [ ge!23456,
The superpotential is given by 2:
mrVsC (3 2 3
Wil = — " <— — 1+ 22w +w?) + St + 1) — t1t2> . (8.10)

42, \5 b 5

!Note that in order to keep the form of the Kihler potential, we transform the superpotential as

W — tW.

2Here, it turns out to be convenient to take out the ‘background e~ ® from the definition of 2 and
w', i.e., we expand as follows e 2ImQy + i0C, = zle”I)Yi(H_) and —ie "2V AV A ReQy + i0Cs =

wie—éYl(4*+) .
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where V; = f,66123456 is the standard volume. The Kéahler potential reads:

K=- (T—i—rﬁ ) 1n<4f[z+zf[lw+w>

i—1 (8.11)

+3In(8k1oMEV, e ®/3) —1n|CP2.

We can eliminate the complex scalar C' by performing a Kahler transformation (3.31).
Again, by T-duality, we expect the same mass spectrum as for the torus and the
Iwasawa manifold, which indeed turns out to be the case. This implies that the proposed
expressions for the complex scalars and the superpotential and Kahler potential for the
static SU(2)-structure proposed in section 3.2 yield sensible results.
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Application to Coset Spaces






Summary

The second class of compactification manifolds we want to consider in this thesis are the
six-dimensional coset spaces which we described in chapter 4. Examples of compacti-
fications on coset spaces in other contexts have already appeared in [65, 78], whereas
particular N’ =1 AdS, solutions on type ITA string theory appeared in [107, 69, 108].
A systematic search for type IIA solutions on coset spaces was performed recently in
[34].

The aim in this part of the thesis is to compute the four-dimensional low-energy
effective theory for compactifications on coset spaces. We discussed the necessary pro-
cedure for this in chapter 3. After having established the consistency between the
direct Kaluza-Klein reduction and the effective supergravity techniques for the exam-
ple of nilmanifolds, we will rely in this part of the thesis on the supergravity techniques
to derive the effective theory.

In the first two chapters of this part, we will, following [34], discuss the geometry on
the different coset spaces of table 4.1 and identify the coset spaces that allow to define
a strict SU(3)-structure. Furthermore, we will review the N =1 AdS, solutions on the
coset spaces and comment on a possible solution with non-constant warp factor and
dilaton.

In the following chapter we then come to the derivation of the four-dimensional
effective action for the coset spaces in question. In particular, we will derive the super-
potential and the Kéhler potential for the most general choice of background fluxes.
As an application of the effective action, we compute the mass spectrum of the mod-
uli fields around the supersymmetric AdSy solution (if the coset allows for a solution)
and comment for two models on how to identify the number of supersymmetric solu-
tions in a given bubble of the moduli space. The subsequent chapter studies type 11B
compactifications with static SU(2)-structure on the coset models. Most of these com-
pactifications turn out to be related by a T-duality to type IIA strict SU(3)-structure
compactifications that we already studied. However, one model is new since it is related
by T-duality to a type ITA strict SU(3)-structure compactification with non-geometric
fluxes.

Finally, in chapter 13, we study the phenomenological aspects of the compactifica-

tions on the coset models. As we discussed in chapter 5 there are in classical type ITA
strong no-go theorems against slow-roll inflation and de Sitter vacua. We will thus
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systematically analyse whether the coset compactifications are able to avoid the no-go
theorems. In fact, there are two coset compactifications that are not directly ruled
out by any known no-go theorem (one of them is the type IIB compactification with
non-geometric T-dual). For these models a numerical analysis is necessary.

As a general remark, we note that none of our models contain light bulk gauge fields
in the spectrum.

In the following two tables we summarize some of the important results. Table
8.1 summarizes type ITA strict SU(3)-structure compactifications, whereas table 8.2
summarizes type 1B static SU(2)-structure compactifications.

Coset space | Moduli fields ‘ AdSy solution | Unstabilized moduli | Avoids no-go

55(23) 4 yes 0 no

Sp(2
S(U(2I))§<I)J(1)) 6 yes 0 no

SU(3
WU)(U 8 yes 0 no
%ﬁ;(l) 8 yes 0 no
SU(2) x SU(2) 14 yes 1 yes

§ 2

Tk < U(1) 10 no - no
SU(2) x U(1)? 14 no - no

Table 8.1: Results for type ITA strict SU(3)-structure compactifications on coset models.
Indicated are the number of moduli fields, whether the compactification allows an
N =1 AdS, solution and if so, the number of unstabilized moduli in this solution.
In addition indicated is whether the coset model avoids the no-go theorems against
inflation and de Sitter vacua.

‘ Coset space ‘ Moduli fields | Type ITA T-dual | Avoids no-go

7SU(S;%(XQI)J(1) 8 yes no
Sggg x U(1) 10 yes no
SU(2) x SU(2) 14 no yes
SU(2) x U(1)? 14 yes no

Table 8.2: Results for type IIB static SU(2)-structure compactifications on coset mod-
els. Indicated are the number of moduli fields and whether the compactification is
related by T-duality to a type IIA strict SU(3)-structure compactification of table 8.1.
In addition indicated is whether the coset model avoids the no-go theorems against
inflation and de Sitter vacua.

Note that the results of this part of the thesis are published in parts in [49, 96]. In
particular, some of the results of chapter 11 can be found in [49], whereas the results
of chapter 13 are published in [96].



Chapter 9

Geometry of coset spaces that
admit a strict SU(3)-structure

In this chapter, we describe the six-dimensional coset spaces based on semi-simple and
U(1)-groups that are suitable for supersymmetric compactifications to four space-time
dimensions. We discussed in chapter 2 the necessary condition for a six-dimensional
compact manifold to allow for a supersymmetric four-dimensional effective theory,
namely that the structure group of the manifold is reduced to SU(3) !. As the au-
thors of [34] showed, this condition translates into the necessary requirement that the
group H of a coset space M = G/H should be contained in SU(3). The list of all
six-dimensional coset spaces based on semi-simple and U(1)-groups of this type was
given in that paper and is summarized in table 4.1.

To decide whether a coset space satisfying the necessary condition H C SU(3)
actually admits a left-invariant strict SU(3)-structure we will proceed as follows: as
explained in section 4.2, we specify the structure constants by examining the corre-
sponding Lie-algebras of G and H. Next we compute the set of G-invariant forms
using condition (4.23). With these forms, we can write down the most general ansatz
for J and Q and check whether it is possible to satisfy the conditions for a strict SU(3)-
structure (2.6), to obtain a well defined Hitchin functional and whether the induced
metric can be chosen to be positive definite. The coset spaces satisfying these conditions
are summarized in table 9.1.

In this and the next chapter, we will closely follow [34], where the authors presented
N = 1 supersymmetric AdS, solutions on the coset spaces with left-invariant strict
SU(3)-structure. Supersymmetric AdS, solutions are possible on the first five cosets
presented in table 9.1. However, the last two coset spaces in table 9.1 were not explicitly
pointed out as possible candidates admitting a left-invariant SU(3)-structure, since they
do not allow for a supersymmetric AdS4 solution.

In the following we will assume that the algebra g of G is generated by the set of

'"We will discuss compactifications on coset models with static SU(2)-structure in chapter 12.
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Coset space | admit SU(3)-structure | AdS, solution
58(23) yes yes
Sp(2)
S(UR)xU(1) yes yes
SU(3)
U xU1) yes yes
SUEELIO)
5003) yes yes
SU(2) x SU(2) yes yes
88852 x U(1) yes no
SU(2) x U(1)?3 yes no

Table 9.1: List of coset models with SU(3)-structure. Further indicated are the coset
models that allow for an N’ =1 AdS, solution.

generators E4, A =1,...dim(G), where
[Ea, Eg] = fCanBc. (9.1)

We choose the generators such that the £y with A = 1,... ,6 correspond to the K;

and the E4 with A =7 ... ,6+dim(H), correspond to the H, (see also the discussion
in section 4.2).

The coset SS(Z’S)

The structure constants for the group Go are given by [109, 78]:

1
fles=flus = 253 = f261 = 7
a6 =fTas = 33 = 6 = P56 = P34 = %16 = [0
1
= =Moo = P = P = P = P = 3 (9.2)
1 1
o4 _ u oL

[ a3 %= 575 [ 7

F 6 kve = fijk
where E7,... | E' generate the su(3) subalgebra and fijk are the corresponding Gell-

Mann structure constants. The G-invariant forms satisfying condition (4.23) are 2
two-forms :  {e'? — 3t 4 €56}

(9.3)
three-forms :  {p = €215 4 135 4 o116 _ (236 5 (235 26 145 136}

*We only display G-invariant one-, two-, and three-forms since the G-invariant forms of higher
degree can be obtained by duality.
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and there are no G-invariant one-forms. With the structure constants and eq. (4.4), it
is straightforward to derive the Betti numbers of this manifold:

by =by=1b3=0. (9.4)

In the following we will impose an orientifold projection. Note that there are only
two invariant three-forms, so that one has to be even and one odd under the orientifold
projection. The requirement that the structure constant tensor (4.29) be even under
the orientifold projection only allows one choice: that p is even and p is odd. Since
there is only one odd three-form there is no room for a source not proportional to Re(2.

Sp(2
The W(H)J(I)) coset

As shown in [34], the maximal embedding of su(2)®su(l) in sp(2) leads to a coset
space that does not allow any G-invariant one- or three-form. We have to exclude this
possibility for an SU(3)-structure solution.

The non-maximal embedding is given by embedding su(2)®su(1) into an so(4) sub-
group of sp(2). The structure constants are totally antisymmetric, and the non-zero
ones are given by

1
f541=f532=f613=f642=§, Fls6 = f'0%9 = —1,
(9.5)

1
f721=f743=f814=f832=f913=f924=f1034=f102125-

This space is topologically equivalent to CP? and can also be viewed as the twistor
space Tw(S?*) [51].

The G-invariant forms are spanned by

two-forms :  {e'? + ¢3!, €%},

(9.6)
three-forms :  {p = Q25 135 L6 236 5 (235 | 246 | 145 e136)

and there are no G-invariant one-forms. Again, the source (if present) must be propor-
tional to Re{2.

The Betti numbers of this coset space are

by =0, by=1, b3=0. (9.7)
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SU(3
The W(U)(l) coset

Using the permutation (12456738) of the Gell-Mann structure constants fijk, the struc-
ture constants of SU(3) are given by

f154=f136=f246:f235:f347:f576=%a
(9.9)

flar =1, f3s = fo6s = ?, all cyclic.

The U(1)xU(1) is then generated by E7 and E®. This space is also known as the flag
manifold F(1,2 : 3) or the twistor space Tw(CP?) [51].

This time, the G-invariant two- and three-forms are given by

two-forms :  {e!'?, ¢34, €%},

(9.9)

245 + 6135 + 6146 _ 6236, A — 6235 + 6136 + 6246 _ 6145},

three-forms: {p=e p

respectively. The condition (4.23) excludes the existence of G-invariant one-forms.
With the given three-forms, there is no possibility for a source (if present) not propor-
tional to Re (.

The Betti numbers of U(fU(?’)

T <0 are easily calculated and read

by =0, by=2, b3=0. (9.10)

The %&J(l) coset

The most general case corresponds to taking

El‘:Gi+3, ’i=1,...,5; EGZM;
(9.11)
E; =Gi; Egz=Gy; FEg=Gs,

where the G;’s are the Gell-Mann matrices generating su(3). M generates a u(1)
and the su(2) subalgebra is generated by F;, Eg and Eg. It follows that the SU(2)
subgroup is embedded entirely inside the SU(3), so that the total space is given by
ST} x U(1) ~ 8% x S,

We find the following cyclic structure constants

fleo=1, flia=fla=f3=rfu=fn=r4s=1/2,
9.12)

3
fPi2=fP = %, all cyclic.

This time, the coset space allows for G-invariant one-forms given by

one-forms:  {e®,e®}, (9.13)
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and the following two- and three-forms, respectively,
two-forms :  {e'? + ¢3!, e!? — %, e 4 23,65},
three-forms :  {e!1® 4 €235 135 — 215 (126 | (346 (9.14)

6146 + 6236,6136 _ 6246,6125 + 6345},

The Betti numbers of this coset are

bi=1, by=0, b3=0. (9.15)

The SU(2) x SU(2) coset

Even though SU(2) x SU(2) is not a coset space, it will be convenient to henceforth
refer to it as a coset space; it is a trivial coset space. The structure constants in this
case are

flas=flss =1, cyclic. (9.16)

On SU(2) x SU(2) all the left-invariant forms of different degree are trivially G-
invariant. The Betti numbers of this coset space are

by =0, by=0, by=2. (9.17)

SU(2)?
The =557~ x U(1) coset
It was shown in [34] that if the U(1) factor does not sit completely in the SU(2)?,
the resulting coset is equivalent (with its SU(3)-structure) to SU(2) x SU(2), so we
exclude this possibility here, as the above notation already suggests. The resulting
coset space in then equivalent to T''x U(1) [110]. In this case one can choose the
following generators

Ei=1L;, i=123; Ey3=1IL;

70

1=1,2;, Fg= M;
(9.18)
E;=L5—aL;,

where we denote the generators of the two su(2) algebras as {L;} and {L}} and M
generates a u(1l) and a € R. The structure constants then read

flos = flus =1, cyclic,
5 e (9.19)
fPfas=frr=frn=a

As a matter of fact, it turns out that only for a = 1 there exists a well defined SU(3)-
structure. For another choice of a, the Hitchin functional turns out to be imaginary.
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The G-invariant forms on Sggff x U(1) are then given by

one-forms :  {e?,e%},
two-forms :  {e'2,e30, e €% — !t el® 4 21},
o 4 ) (9.20)
three-forms :  {e!?3, 126,345 496 235 _ o134,
Q135 4 (234 (256 146 156 | 2461
The Betti numbers of this coset read
by=1, by=1, by=2. (9.21)

The SU(2) x U(1)? coset

This space is again a trivial coset space. The structure constants in this case are
flas=1, cyclic . (9.22)

All the forms are G-invariant. The Betti numbers of this coset are

by=3, by=3, b3=2. (9.23)

The other coset spaces

Let us shortly mention why there is no well-defined strict SU(3)-structure possible on
the other coset models of table 4.1. For the explicit structure constants of the models

see [34].
For the coset model %a

forms it is not possible to define Im €2 such that the Hitchin functional is not vanishing,

excluding this model for our analysis.

Similar for the coset models % and w For these models, the

Hitchin functional turns out to be imaginary.

The coset spaces % (where the SU(2) is embedded in the last two SU(2) factors)
and the coset space %

satisfy the normalisation condition (2.6b).

it turns out that with the set of G-invariant three-

only allow for G-invariant two-forms which can not

The last two possibilities in table 4.1 are SS[[]J((22))3 (where the SU(2) is diagonally

embedded in SU(2)3) and W These two possibilities are shown in [34] to be
equivalent to the SU(2) x SU(2) model such that we will also exclude these models from

our analysis.



Chapter 10

Type ITA AdS; N =1 solutions

We described in chapter 9 the six-dimensional coset spaces that allow to define a left-
invariant strict SU(3)-structure. For some of these coset spaces one can actually solve
the conditions for an AdS; A = 1 solution described in section 2.2.2. These solutions
were systematically analyzed in [34] and also incorporate some solutions that were
already known [65, 69, 108, 51]. In this section we review the coset solutions listed
in [34].

In the subsequent chapter 11, we will derive the four-dimensional effective theory
of compactifications on the coset models analyzed in chapter 9. As an interesting
application of this effective theory we will compute for each of the supersymmetric AdSy
solutions of this chapter the mass spectrum of the scalars around the supersymmetric
solution. As we will see, in all models except SU(2) x SU(2), all moduli are stabilized.

As explained in section 2.2.2, the only non-vanishing torsion classes for a super-
symmetric AdSs solution are YW, and W, . With the given structure constants and
eq. (4.13a), one derives dJ and df2, where one assume the most general ansatz for J
and Q compatible with the set of G-invariant forms. If eq. (2.29) can be satisfied, we
read off the torsion classes W, and W, . The Bianchi identity (2.31) determines if
there is a source to be present for a solution. It then remains to check whether the
metric is positive definite.

10.1 The 5353) solution

With the given set of G-invariant forms (9.3), the most general ansatz for J and Q is

J=a(e'? — & 1 &Y,

Q=d [(6245 gelE | o135 p236) 4 pld5 246 (285 e1%)] | (10.1)

with a, the overall scale, the only free parameter. The conditions for a SU(3)-structure
(2.6), metric positivity and the supersymmetry conditions (2.29) and (2.31) are solved
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for
a>0, metric positivity,
d* = a’, normalization of €2,
3, 2 5 V3a
ci=—5Wp =—ge f= g (10.2)
W, =0,
5
e?Pm? — = ﬁc% .

Since the second torsion class is vanishing, the only possibility for this coset is the
nearly-Kahler geometry.

With the help of eq. (2.27) we now easily obtain the background fluxes in terms of
the geometric data (10.2). Tt will be convenient to isolate the scale a and introduce the
reduced flux parameters

m=a'?e®m, f=al%®f, = af. & =a'?e . (10.3)

In terms of these redefinitions the background fluxes and the source take the form

H = ?a(ems) 4 el 4 QM6 _ p236)
1/2
a
PRy = (612 ey 656) :

23 (10.4)

PF, = a‘l/vaoLl _ %ma3/2 (61234 _ 1256 4 e3456) :
20 = _§a1/2ﬂ(6245 4 el3s g plds _ p236)

As mentioned before, u > 0 corresponds to net orientifold charge. Solutions with
1 < 0 — i.e. with net D-brane charge — are possible, but in that case we still assume
that smeared orientifolds are present, which then should be compensated by introducing
enough smeared D-branes. It can be easily read off from j® that the orientifolds are
along the directions (1,3,6),(2,4,6),(2,3,5) and (1,4,5), leading to four orientifold
involutions (see also the discussion in appendix D)

06 : 2 5 —e?, et o —et, &5 =€,
06 : el = —et, o e, o -6
(10.5)
06 : el 5 —e', et o —et, 5o —ef,
06 : 2o —e?, o e, o -6,

One easily checks that all fields and the SU(3)-structure transform as in (2.40) under
each of the orientifold involutions. Also, the structure constant tensor (4.29) is even.



SP(2
10.2. THE Wx%(l)) SOLUTION 115

Sp(2 )
10.2 The W(XI)J(U) solution

The most general ansatz for J and  with the given G-invariant forms (9.6) is
J=a(e? +e3) — e,
(10.6)
O = d [(e25 — 36 — M6 _ g135) 4 (216 | (235 4 (145 _ ,136)]

with a and ¢ two free parameters. We compute the following conditions for the geometry

a>0, c>0, metric positivity,

d? = d’c, normalization of €2,
3. 2 % 2a +c

01.——5W1——§€ f— 2d
2i 10.7

W = —3—; la(a —c)(e'? + e*) + 2¢(a — c)e’®] , (10.7)

1., 9 2 9

2= — Wy "= —g5-(a =),

—_

2 1
g(ewm2 —p) =co+ gcf = Sute (—4a® — 5¢% + 12ac) .

The nearly-Kahler limit corresponds to setting a = ¢. The two parameters corre-
spond to the overall scale a and a parameter 0 = ¢/a that measures the deviation from
the nearly-Kihler limit .

For the background fluxes and sources, we find from eq. (2.27) in terms of the
reduced flux parameters (10.3):

H 2m 1/2(6245 — el35 _ o146 _ 236

= ——ao

5

1/2
e Fy = aTo’l/Q [(2 = 30)(e"? + €*) + (60 — 50%)e™] |

’

(10.8)

_1/2 7 3 N
e Fy = a2 fvoly + ga?’/Qm (61234 _ gel256 _063456) ’

. 2 ~
6 = —501/2M01/2(€245 _ o135 _ 146 _ 236

Let us stress that the parameters a and o are not moduli fields since they also appear
in the expressions for the background fluxes and are thus quantized.

From the source, we read off the same orientifold involutions as in eq. (10.5) and
check that all fields and the structure constants transform as expected.

"Let us mention that this solution was also presented in [51] using an alternative description in
terms of twistor bundles. The relation of the solution given here with the results of [51] is given in [34].
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SU(3 .
10.3 The W(U)(l) solution

The set of G-invariant forms allows the following general ansatz for J and €2
J = —ae'? + be3t — e

(10.9)
Q= d [(€25 + 135 4 16 _ ¢236) 4 (235 4 o130 4 26 _ o145)]

with a,b and c¢ three free parameters and

a>0,b>0,¢>0, metric positivity,
d? = abe, normalization of €2,
Ji . 2 a+b+c
M E e E
Y
Wy = —é [a(2a —b—c)e' +b(a — 2b + c)e* + ¢(—a — b + 2c)e™®] |
cg = _E‘W—|2 __ 2 (a* +b* + ¢® — (ab + ac + be))
gl 2 3abe '
g(ewm2 —pu)=co+ l62 S [—5(a® +b* + ¢*) + 6(ab + ac + bc)]
5 276" Babe '

(10.10)

Putting a = b we end up with a model that is very similar to the one of section 10.2,
while further putting a = b = ¢ corresponds to the nearly-Kahler limit. Next to the
overall scale a we have this time two shape parameters p = b/a and ¢ = c/a .

Introducing again the reduced flux parameters (10.3), we find for the fluxes and the

source

H= ?a 55 (€215 4 135 4 116 _ ;236)

" Fy = [(5 = 3p—30)e'® + (3p — 5p” + 3p0)e + (=30 — 3po +50%)e™]
P Fy = a2 fvol, — ga?’/QﬁL (p61234 _ 5el256 p063456) ’

2
e<I>j6 gal/2~ /—po_(6135 6146 6245 6236) ’
(10.11)

while the orientifold involutions are still as in eq. (10.5), such that all fields and structure
constants transform as is expected.

% Also this space has an alternative description in terms of twistor bundles, see [51]. However, that
description does not allow to describe the complete parameter space.
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10.4 The %&J(l) solution

Let us first note that, as we have seen in eq. (9.13), this coset space allows G-invariant
one- and five-forms. The strict SU(3)-structure condition (2.6a) is therefore not auto-
matically satisfied. However, one can nevertheless find a solution satisfying the strict
SU(3)-structure conditions (2.6) as follows [34]

J = —a(e® — ) + b(e! + 23) + ce°

V3

Q=-—-"
201

{ [2a(e5 + €23%) 4 2b(e!3 — £245) 4 (¢! 4 £346)] (10.12)

1
Vet

with a, b and ¢ three free parameters and

[ac(el46 +6236) + bC(6136 _ 6246) _ 2(&2 +b2)(€125 + 6345)] }’

c>0, a’+b>+0, metric positivity,
(01)2 = ;m, normalization of €2,
cl = —%Wf = —%eq)f,
Wy = m [—a(e™ —e*) + (e + e**) — 2ce™] ,
AWy = _201 z';/f—i_ - [a(el45 + 6235) + b(el35 _ 6245) _ 0(6126 + 6346)] :

3WI P =Wy |2 =0.
(10.13)

By a suitable change of basis we can always arrange for a > 0 and b > 0, which we
will assume from now on. Note that dW, is not proportional to Re(2, hence the source
is not of the form (2.35). Interestingly, if we take the part of the source along Re to
be zero, i.e. 1 AImQ = 0, we find from the last equation in (10.13) that m = 0. This
would amount to a combination of smeared D6-branes and O6-planes such that the
total tension is zero. Allowing for negative total tension (more orientifolds), we could
have m > 0.

For an arbitrary m we find the background
V3
—a

5C1

H=— [2(6145 + 6235) + 2/)(6135 _ 6245) + 0(6126 + 6346)] ’
L 4.
e<I>F2 _ 5“1/201 [(613 - 624) B ,0(614 + 823) +O’€56] ’

; 3
e<I>F4 — a71/2fvol4 + g613/2,’% [(1 +p2)61234 _ 0'(61356 _ 62456) —|—p0’(61456 +€2356)] ’

(10.14)
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where we defined the shape parameters p = b/a and o = ¢/a and used again eq. (10.3).

From eq. (2.31) we compute for the source

3
etbjG — _1\0/; a1/2 (56% _ 4m2) [6145 + 6235 + p(€135 _ 6245)]
1

n £a1/20(55% 1 4m?) (€12 4 €¥6) |
2001

(10.15)

One can check that for the background the source satisfies the calibration conditions
(2.36). However, this time it is not immediately obvious how to choose the orientifold
projection. Choosing them naively along the six terms in the source (10.15) leads to the
fields and structure constants having the wrong transformation properties. In appendix
D we outline how to find the orientifold involutions associated to a smeared source in
general. As explained in that appendix in detail, the procedure boils down to find an
appropriate coordinate transformation compatible with the structure constants (i.e.,
the structure constants read the same in the new basis) for which the source contains
at most four decomposable three-forms which we then identify with the orientifold invo-
lutions. For the case at hand, we make the following coordinate transformation which
is compatible with the structure constants 3

el —el, 2 =2, & =¢, & =,
, 1 , 1 (10.16)
e = ———(p +et), et = ——(—e*+pet),
1+ p? 1+ p?
and we see that 7 is a sum of four decomposable terms
3 rqlet Al !
e¢j6=—1\g~_a1/2(55%—47h2) /—1+p2(6135_6245>
C1
(10.17)

3 1ol al Al @l
I (a1/20(55§+4m2) <6126 +6346) ’
2061

to which we can associate four orientifold involutions. Note that this model does not
allow for a type ITA solution without orientifold sources.

10.5 The SU(2) x SU(2) solution

Since all the left-invariant forms e’ are G-invariant on this space (SU(2) x SU(2) is a
trivial coset such that eq. (4.23) is satisfied for every form), the most general ansatz

3Note that in order to obtain a coordinate transformation compatible with the structure constants

(9.12), we also need the following transformations: e’ = 11+p2 (pe” —e®), et = \/11?(674-/)68) e =

e .
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for J would consist of a sum of 15 two-forms. However, it was shown in [111] that due
to the symmetry of the structure constants (9.16) there always exists a change of basis
preserving the form of the structure constants that brings J in diagonal form

J = ae' + be? 4 ce®0 . (10.18)

Using this observation, the most general solution to the conditions in section 2.2.2
was given in [34] and reads

J = aett +be? + ce3F

Q0= —i{a(e%‘l _e198) 4 p(e216  o135) 4 o(e!26 _ (315)
4]

_ %[_ 2abc(6123 + 6456) —|—a(b2 +02 _ a2)(6234 +€156) + b(a2 +02 _ b2)(6153 + 6426)

+ cla® + b = ) (3 + 6126)} } ,
(10.19)
with a, b and ¢ three free parameters and

abc > 0, metric positivity,

h:\/2a2b2+2b202+2a202—a4—b4—c4,

and thus 2a?b” +2b°¢® + 20’ —a* = b* —¢* > 0,

9 ~ 2abe’

2 (PP =P +d’ (=27 + D+ )
3hey be ¢

4 h
2 2202

W, =

N (¢ —a?)? + b*(—2b% + ® + a?) e (a? = b%)? + 2(—2c2 + a® + b2)636
ac ab

(10.20)

By a suitable change of basis we can always arrange for ¢ > 0,0 > 0 and ¢ > 0, which
we will assume in the following. In terms of the reduced flux parameters (10.3), to
which we add

h=a2h, (10.21)
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we find for the fluxes from eq. (2.27)

2m
H = = [(6156 — B 4 p(e!® = 216) 4 (3 — 6126)] ’
1
® éra'l? 4 4 2 2 2 91 14
e Fy = 572 {[3(,0 +0%) = 5+2(p° +0°) —6p°c°]e

+p [3(1+ %) = 5p* +2p*(1 + 0?) — 60%] *° (10.22)

+0 [3(1+ pY) = 50t + 20%(1 + p2) — 657 636} :

3/23M

- 61245 —|—O’61346

P F, = a_l/vaoLl —a 2356) .

(p + poe

From eq. (2.31) we derive 55,

e? 50 = —1dWy + 3]"2 — 2m2 e*®ReQ
215 (10.23)

:j1(6234 _ 6156) -I-j2(€246 _ 6135) +j3(€126 _ 6345),

where j1, 7o and j3 are some complicated factors depending on a, b and ¢ whose exact
form does not matter for the moment. It contains the same terms as Re{) but with
different coefficients. In fact, one can check that 5% is not proportional to Re) unless
a = b = ¢, which reduces the solution to a nearly-Kahler geometry.

Also for this model, the source (10.23) contains six three-form terms. Following the
procedure described in appendix D, we find the orientifold involutions associated to
this smeared source. In order to present the resulting involutions, it is convenient to
define complex one-forms as follows

i3m
1 e
e’ ==+ 2bc — h+i(a? = b> — A)]e' + [a? = b? — & +i(2bc — h)]e*) ,
2¢14/be(2bc — h) {l ( ) | ( IS
37
e? =+ ¢’ {[2ac — h +i(b* — a® — ?)]e* + [b* — a® — ¢ +i(2ac — h)]e" } ,
2¢1\/ac(2ac — h)
e ¢’ {[2ab — h +i(c* — a® — b*)]e® + [¢* — a® — b® +i(2ab — h)]e"} |

=+
2¢14/ab(2ab — h)

(10.24)

where the signs must be chosen such that 2 = e?' 2%, Defining further the associated
z and y one-forms e*" = e* —ie¥", the orientifold involutions are given as in eq. (D.10).
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10.6 Some comments on solutions with non-constant warp
factor and dilaton

The solutions on the coset spaces we analyzed so far in this chapter all assumed constant
warp factor and dilaton. However, in section 2.3 we analyzed the conditions for a
supersymmetric ' = 1 solution with non-constant warp factor/dilaton. We have seen
that such a solution is indeed possible, provided that the Romans mass m is chosen to
be zero.

In the literature there are already a few sourceless N' = 2 solutions with non-constant
warp factor/dilaton, based on M-theory reductions of seven-dimensional Sasaki-Einstein
manifolds to type ITA (see for instance [54, 33]). As an application of the analysis of
section 2.3, we want to study in this section whether one of the coset solutions of this
chapter can be deformed into a new sourceless solution with non-constant warp fac-
tor/dilaton. To this end, we will try to find an infinitesimal fluctuation around the
supersymmetric solution turning on an infinitesimal non-constant warp factor/dilaton.

For this to work, however, we have to leave the convenient notion of left-invariant
forms, since the left-invariant ansatz drops the explicit coordinate dependence that is
necessary to describe a non-trivial warp factor/dilaton. This makes the analysis rather
complicated. However, we can make use of the observation that one can describe one of
our coset spaces, namely W%(l)) = CP3, as a foliation with transversal coordinate
&, with the leaves taking the form of a five-dimensional coset space [112]. In this way,
we have an explicit coordinate ¢ at our disposal for the ansatz for a non-constant warp
factor/dilaton, but can still apply the convenient techniques of coset spaces for the

other five coordinates.

10.6.1 Adapted coordinates for the background

As the background around we want to deform, we choose the sourceless solution on
Sp(2)
S(U(2)xU(1))
be seen from the last equation in eq. (10.7). This is the N' = 6 solution with the

standard Fubini-Study metric coming from the N = 8 M-theory background AdS,xS”
reduced to type ITA, as it was constructed a long time ago in [65].

= CP? for 0 = ¢/a = 2, implying vanishing Romans mass m, as can easily

We use the observation that one can consider CP? locally as a foliation where the

leaves take the form of the five-dimensional coset manifold [112]
SO(4)
N =2 10.25

Following [53], an intuitive way to see this foliation is the following. The splitting
C' = R® = R* x R* allows one to realize S” as a fibration of S x $3 = SO(4) on a
segment. We parameterize the two S? with the coordinates (6;, ¢;,%;), i = 1,2, and
the segment as an angle 0 < ¢ < 7/2. The metric for the S” reads

d3257 = d¢? + sin? fdsgf, + cos? fdsgg , (10.26)
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where the radii of the two S3s are sin¢ and cos¢. Corresponding to this description,
appropriate coordinates for C* \ {0} are thus

0,
Z! —tsmﬁcosEeXp (¢1+¢1),

72 _t51n§sm%exp (1 — 1)
(10.27)

0
A —tcosﬁcosgexp (=12 + ¢2) ,

74 —tcos£s1n%exp (=12 — ¢2) ,

where ¢ > 0 is the overall radius and 0 < ;5 < 7, 0 < ¢y 2 < 2m, 0 < 1Py < 27 are the
spherical coordinates for the two S3s. We can now rearrange ¢; = 1)+ and 1y = 1) — A,
and reduce on the angle 1. In this way, for each value £ = £, the SO(4) gets reduced
to the coset (10.25). The factor te*/?* in each of the Z? of (10.27) corresponds to « in
the identification

(z', 2%, 73, 724 = (2", 2%, 2%, ZY),  where a€C)\{0}. (10.28)

for the homogeneous coordinates on CP3. Thus, we have realized CP? as a foliation
where the leaves take the form of the coset A/1:—!
are

61 61
Z1—51n£c055exp (Y + ¢1) Z2—sm£smgexp (Y — 1),

, and the homogeneous coordinates

(10.29)
3 92 4 _ 02
Z COS£COSEGXP ( v+ o), Z cos£s1nEexp ( p — ¢2) .

In [113], the properties of the five-dimensional coset N ! are worked out in detail
and we here just cite the results we need for our analysis. The structure constants are
given by

1 1
FPro=Fr=1, fau=-fu=-1, f125:f251:§a f345=f453:_§,

1 1
f126=f261=§: f346:f463:§:

(10.30)
and one can choose the following coordinate representation for the one-forms (e’,w®)

el = —sine df; + sinf; cosp dg, ,
e = cos ) df; + sinf; siny de ,
e3 = —siny dfy — sinby cos 1 des |

(10.31)
e' = —costp dfy + sin By sineh dgy
e’ = — [2dep 4 cos By dgy — cos By dgo] |

w' = — [cos 01 Ay + cos by dea] |
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where ()2, ¢1,2) are the remaining spherical coordinates on the S3s and ¢ describes
the U(1). The set of the relevant left-invariant forms, obtained by the condition (4.23),
are spanned by

one-forms :  €°,
two-forms : €', e, et — 2 P 4 e, (10.32)
three-forms : 27,345, 115 — 235 (135 4 245

In these coordinates, the Fubini-Study metric, which reads in homogeneous coordi-

nates
dzedzb AVA:
ds? = =————— <5a— — 7> , (10.33)
Yo lZeP U S 12
becomes
sin? & cos® ¢

a lds? = de? + 0 [(d61)? + sin? 01 (d¢1)?] + [(d62)? + sin? o (d¢2)?]

4
1 1 2
+ sin? € cos? & <d¢ + 5 cos 01dgpy — 5 cos 02d¢2> ,

2
COSs
(el®el+62®62)+—4 5( Sed+elt@et)

)
sin” ¢
=dez 4+ 225
&+ 1
‘2 2
sin £4cos £e5®e5,

(10.34)

where a > 0 is an overall scale, and the transversal coordinate £ is chosen such that
gee = a is constant. At this point the metric in these new coordinates seems to be
irregular for the points ¢ — 0 and ¢ — 7/2, where one of the two S3s shrink to zero.
For instance, in the limit ¢ — 0, the problematic terms read

2
a~'ds? = d¢? + T [(d6:1)? + sin? 01 (dg1)? + (2dyp + cos O1d¢y — cos Badpa)?] + ... .

(10.35)

However, one can show that for (&, 69, ¢2) constant the second term is the standard
metric for an S3 with radius ¢ and volume 47%¢2 such that the terms in the metric
(10.35) approach flat R* as ¢ tends to zero, described in spherical coordinates [114].
The same argument shows the regularity at £ — 7/2. The regularity of the metric of
the deformed solution will be of particular interest in the following.

Since we know the metric (10.34) explicitly, one easily derives the corresponding
SU(3)-structure quantities J and €2 in these new coordinates. This is done by consider-
ing the most general ansatz for J and Re {2 expanded in the corresponding left-invariant
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forms (10.32) and the extra left-invariant one-form d¢. Solving the necessary conditions
for a supersymmetric vacuum of section 2.2.2, the result is [113]

.9 2 .
_ sin fcos2§el2 cos {cos2§e34+s1n2§
4 4 4
2
sin“ 2
| sin’2¢

a lJ = dene’

[cos 0 (613 + 624) + sinf (614 — 623)] ,
. (10.36)
a 3?0 = <d§ — %sin2§e5> A % [cos2 ¢ (ie® + ) — sin? e (el — ie?)

1 .
A 1 sin 2¢ [iezo (e1 + ieQ) + e+ ieﬂ ,

where 6 is constant and a free parameter of the solution. In the following we will choose
the gauge # = 0. We find from eq. (2.32) that

4 1
o=z and ¢ = —6(61)2. (10.37)
The second torsion class reads in these coordinates
Wy = i\/—a (sin” £(cos 2¢ — 3)e'? — cos? £(cos 2¢ + 3)e™
6 (10.38)

+25in26d€ A e” — 2cos? Esin® (e + €?1)) .

10.6.2 First order perturbation

We now come to a small deformation of the background of the previous section. The
aim is to turn on a non-constant warp factor and dilaton. For this we first need to
specify the deformations J — J + 0J and Q© — Q + §Q that still satisfy the strict
SU(3)-structure conditions (2.6) *. Given these constraints we make the following
ansatz [27]

00 = Mgy — 400 AT+ 20,
_ 9 (10.39)
0J = K(Ll) + LU(I,O)Q + L,U(o,1)Q + gRe)\J,

where Ky 1), M3 ) and v(19) are arbitrary left-invariant forms such that Ky isa
primitive real (1,1)-form, My is a primitive (2, 1)-form (i.e. M) A J = 0) and

10) is a (1,0)-vector. A is a complex function. These fluctuations guarantee that

(
v
Q + 6Q is decomposable and it is easy to verify that the compatibility conditions (2.6)

are automatically satisfied.

*In this section, we denote the fluctuation of e.g. .J with §.J, whereas the background is denoted
by J.
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We parameterize the most general left-invariant forms described above as follows:
43/2
M.1) = (w1 (€) + iua()) —g—sin 2 [(1 — cos 2¢)d¢ A e'? — (1 + cos 26)dé A e

+ cos 26dE A (e'3 + ) —ide A (e — e?) + é ((25in2¢ — sin 4¢)e'?

—(25sin2¢ + sin4€)e® +sindé (e + ') A e — 2isin2¢(e'! — e®) A €®)]

: 3/

+ (u3(8) + iua(€)) >

[sin2 ¢dr Ae'? + cos? € A e
—% sin 2¢ (sin® £e'?° + cos? 56345)] ’
(10.40)
) 1
Koy =a (us(&) + up(€)) sin2¢ [d§ Ae — i Sln2§(el3 + 624)

+a [sin2 é“(cos2 Eug(&) — sin’ §U5(§))612 + cos? §(sim2 Eug(&) — cos® §U5(§))e34] ,

(10.41)

000 = V/a (ur (€) + iug(€)) (d€ — 7 sin2¢e”), (10.42)

A =ug(§) +iuig(§), (10.43)

where u;(£), 7 = 1,...,10, are arbitrary real functions of £. For the fluctuation of the

second torsion class we take the most general ansatz for a left-invariant two-form with
arbitrary functions w;(§),i=1,...,5,

Wy =i [ (€)e!? + wa(€)e™ +ws()AE A e +wa(€) (M = ) + ws(€) (e + €]
(10.44)

The crucial point is that we now allow for a non-constant warp factor, i.e. J4 = dA(§).
Since the warp factor always appears in the combination e=|W|, it is convenient to
introduce a new variable W as follows

W=e YW, (10.45)
and, according to eq. (2.59a),
¢ = —2W. (10.46)

For the fluctuation away from the background ¢; becomes ¢ dependent such that we
make the ansatz

der = c(&), (10.47)
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where c(¢) is an arbitrary real function of £&. This choice implies e=4|W| = W = —1c
such that W = —6 AW + e~ 4§|W| and

o4 = —dW __doer (10.48)

w C1

since we assume that the background values A and W are constants (recall that we
also assume |W| and §|W| to be constants).

The conditions we have to solve for the functions u;(§), i = 1,...,10, w;(£),
i=1,...,5 and ¢(¢) are the variations of the egs. (2.59a), (2.69) and (2.71). These
variations read, using eq. (10.48), respectively °

d6.J = dc;Re€) + ¢10ReQ, (10.492)
dé
d6ReQ = — ccl AReQ, (10.49b)
1
2 4 . _ . _ d501
déIm ) = §5clJ/\ J+ 561&] NI —i0Wy NJ —iWy N6J — o AImQ. (10.49c)
1

Further we have to solve the Bianchi identity for the variation of F5 in eq. (2.73).
To derive the variation of F5 we make use of the relation between the warp factor and
the dilaton from eq. (2.57b). This implies dJ® = —39% such that

(501

5= -3+ K, (10.50)
4]

where K is an integration constant. We arrive at

2 | 5 ds
0Fy = e (=210 — =100 + 3t Wy +i0Wy — 25 [ —t ATmQ)
3 6 4] C1
(10.51)

1
~K(~ger + iW;)) .

Note that the last term in eq. (10.51) with the integration constant K is nothing else
than the background Fy and hence does not contribute the the Bianchi identity for § F5,
since dF, = 0 for the sourceless background. Plugging all the ansatze for §J, 6€2, oW,
and dcy in eq. (10.51), we look for a solution of the sourceless Bianchi identity

d0F, = 0. (10.52)

10.6.3 Solving the conditions

We first want to solve condition (10.49a). As it turns out, this condition is relatively
easy to solve and already specifies most of the unknown functions u;(£) and ¢(¢) in

®Note that we also assume dm = 0 such that we do not turn on m or H-flux with the fluctuation.
This is the case for §6' = 0 (as can easily be seen from eq. (2.64)) which we will assume in the following.
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terms of only four remaining functions, us(§), ug(€), ug(§) and ug(§) and derivatives
thereof. The explicit solution reads

ui(§) = i [2 cot 2¢ (—24 cot 26 (us (€) + 2ug(€)) + 3us (&) + ug (&) + uh(€))
+3ug(€) + 3ug (€) — ug ()]

us(€) = cot 2eus(€) — 504 (6).

us(§) =0,
uy(§) = (tan ¢ — cot &)us(§) + 11_2 (_48 cot 28ug(§) — GU’G(f) + Uf@(é)) ) (10.53)
ur(€) = con 26 us(€) + 2u6(€)) + 3 (5(6) + vh(6)) — 5uh(©),

win(€) = 3 cot 2us(€) ~ Zuh(e)

1 24
" 6y/a |sin?2¢
+6 cot 2 (5uf(€) + Tug (&) — ug(€)) + 3us (€) + 3ug () — ug(€)] |

c(§) (ug (&) + cos 4€(2us(€) + 3ug(€)) — Bug(€)

where prime denotes the derivative with respect to £&. Note that the function ug(&)
corresponds to choosing another gauge for 6 in eq. (10.36) and none of the equations
(10.49) puts a constraint on ug(&).

With this solution we automatically solve the second condition (10.49b). We can use
the condition (10.49¢c) to fix the unknown functions w;(¢), i = 1,... ,5 of the variation
of the second torsion class (10.44). The solution is not difficult but rather lengthy such
that we will not display it here. Let us mention that all the unknown functions w; (&),
i=1,...,5 are functions of us(§), ug(¢), us(€) and ug(€) and derivatives thereof. Note
that the solution for 6W, also satisfies the following conditions

0=6W; AQ+W; AsQ,
(10.54)
0=6Wy AJAJ+2W, AGTAJ,

which follow from the condition that W, is a primitive (1, 1)-form (see eq. (C.31)).

Next we turn to the solution of the Bianchi identity for 6F, (10.52). First we note
that this condition gives us two independent equations for the three unknown functions
us (&), ug(€),ug (&) and derivatives thereof. We try to solve these equations with the
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following ansatz

us(€) = 5 (6ot 261(E) + 1)) +(6).
up(€) = 1 (~6cot 26 1(E)) + I'(€) + A, (10.55)

up(€) = & (6ot 261(6) +1'(€)) .

where [(£), g(¢) and h() are arbitrary functions. This ansatz is motivated by the
observation that we have the freedom to reparameterize & — [(¢), which also corre-
sponds to a fluctuation, and it turns out that this fluctuation is given by eq. (10.55)
with vanishing ¢g(¢) and h(¢). This ansatz simplifies the two independent equations
coming from eq. (10.52) considerably and we are left with a pair of coupled differential
equations for g(¢) and h(§),

0 = 32(13 + 3 cos 86)g(€) + 32(17 + 12 cos 4€ + 3 cos 8¢)h(€)
— 2sin2¢ [4(—11cos 2§ + 7cos 6¢)g' (€) — 4(cos 26 — 5 cos 6£)h' (€)

+2sin2¢ {4(3 + 2cos4€)g" (€) 4+ 4(4 4 3cos 4E)h" (€) + sin4é (g™ (&) + K" (€))}] .
(10.56a)

0 = 16(cos 2€ + 2 cos 6¢)g' (€) — 2sin 2¢ [—64g(€) + 64h(€) + 104" (€)

+2c0s 4€(96(g(€) + h(€)) + ¢" (&) + 8sin® 26" (€) + sin 4E(56R' (€) + ¢ (€))] -
(10.56b)

These differential equations are actually not so easy to solve but, with some patience,
we obtain the solution for g(¢)

3C, Cy 4 —5C +24C5 — 6C5 Cs
=g 5 tyycos2 - C 10.57
9@) 16 2 T ot 48sin? ¢ 8 cos? ¢ e ( )
and h(§)
1
h() = —— [—903 — 1204 + (48Cy — 8Cy) cos? &
24 sin” £
12Cs  24C (10.58)
+3(C) +4C, — 8Cy) cos € —3C) cos® ¢ + —2 4 21
cos?¢  costé
where C;, 1 = 1,...,6 denote integration constants. Plugging these expressions into

eq. (10.55) and eq. (10.53), we checked explicitly that this is a solution for all the
conditions (10.49) and the Bianchi identity (10.52). For instance, the solution for
der (&) = ¢(€) reads

1 —5Cy +24C5 — 6C5  6C
der(€) = 6/ (901 — 24C; + 48Cy + C4 cos 26 + —— — ; S COS; 5)
4
— " GA(¢) —2eA
7 (&) —2e~ "W,

(10.59)
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where the second equation comes from the definition of 6¢; = —2W and eq. (10.37).
We indeed have a non-constant warp factor.

However, we still have to check whether our solution leads to regular expressions
at the special points ¢ = 0 and £ = 7/2, where respectively the first and the second
S3 collapse. Let us first consider the solution for ¢(¢) in eq. (10.59), which contains
the non-constant warp factor. From this expression we immediately see that it is not
regular at £ = 0 nor at £ = 7/2. However, we can fix this by choosing appropriate
boundary conditions as follows

Co="2L C3=0. (10.60)

Unfortunately, the regularity of the metric is problematic. For instance, let us consider
the components gs3 and gs5 of the solution for the metric (with the constraint (10.60)).
The first terms in the expansion around ¢ = 0 read

7CT — 72C4 — 144C5 C, —12C4 + 6C5

—_ 0 _ 0
g3z = a 14454 +O(§ )’ gs5 = —a 2454 +O(§ )
(10.61)
Choosing
1
C1 = 36(4C5 + Cs) Cy = 5(_2405 —7Cs), (10.62)

we can make these and the other terms of the metric regular at ¢ = 0. However, for
the regularity at £ = m/2 we get for the expansion of g33 and gs5

T Cs o
g3 =0 —5 +O0((E=3)°), g =ar 775 +O(E-3)Y),  (10.63)
(£ —3)? 2 4 - 3)? 2
which forces C5 = 0 and Cg = 0 for regularity. This, however, implies with the
conditions (10.60) and (10.62) that regularity demands the vanishing of all integration
constants. Let us stress that we can satisfy the regularity for a non-trivial solution on
both sides, £ — 0 and £ — 7/2, independently but not at the same time.

We thus have to report that (at least in this setup) there is no first order deformation
around the constant warp factor/dilaton solution of section 10.2 which allows to turn
on a non-constant warp factor/dilaton for the sourceless case. However, the observation
that this only fails due to special boundary conditions strongly suggest that one could
resolve this problem by the introduction of localized source terms of the form

dFy = —j = K10(¢ — &0)dé A e'? + Kad(€ — €o)dé A e + K38(€ — &o)dE A (e + ™).
(10.64)

Note that this are partially localized source terms at some point £ = £y but still smeared
along the other directions. Due to the delta distributions in the source term, the
differential equations (10.57) and (10.58) would be completed with expressions involving
delta distributions on the right hand side, and we thus would expect for the solutions of
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the differential equations to contain integration constants with different values on both

6. This offers the possibility to solve the boundary conditions for

sides of the source
different integration constants for £ = 0 and ¢ = /2, providing potentially a regular
solution. To work out the explicit form of these integration constants and check whether
this indeed resolves the problem of regularity would be very interesting, as it may be

seen as a step towards the inclusion of localized sources.

5The difference of the integration constants on both sides of the source depends on the location &
of the source and the chosen constants K;, ¢ = 1,2,3, in (10.64).



Chapter 11

Effective type IIA action on coset
spaces

In section 3.2, we discussed the procedure to derive the four-dimensional low-energy
effective theory for a given compactification manifold. We now apply this procedure
to derive the superpotential and the Kahler potential for compactifications on all the
coset spaces which allow for a left-invariant strict SU(3)-structure. These coset models
are given in table 9.1. As explained in section 3.3, we choose the fluxes as general as
possible to cover the whole moduli space. For the first five models in table 9.1, we
already know that there is a bubble that contains at least one supersymmetric AdSy
solution.

There will be bubbles in the moduli space that do not contain any supersymmetric
AdS, solution, whereas other bubbles contain one or more. We show for two models
how to identify the number of supersymmetric AdS, solutions for a particular choice
of bubble parameters. Note that in the full string theory the bubble parameters are
quantized.

We will study the mass spectrum of the moduli fields around these supersymmetric
AdS, solutions. In section 2.2.2 we discussed the problem of the separation of scales
for an N' = 1 AdS, solution, even before the uplifting. We have seen that requiring the
manifold to be nearly Calabi-Yau (i.e., vanishing W, ) and the possibility to choose
so that it is close to its bound is one way to obtain a separation of scales between the
light masses and the Kaluza-Klein scale. However, as we will see in the following, for
the N/ =1 AdS, solutions on the coset models this is not possible such that we can not
prove the separation of scales for these solutions. In any case, as already mentioned,
the position one can take is that this kind of question should be asked only after the
uplifting.

Since the decoupling of the light Kaluza-Klein modes turns out to be difficult, we
can not be sure that there are no other light Kaluza-Klein modes joining the light
moduli fields based on the left-invariant expansion ansatz. However, a truncation to
the set of left-invariant forms is believed to provide a consistent truncation [115, 60].



132 11. EFFECTIVE TYPE IIA ACTION ON COSET SPACES

Indeed, in [116] the authors established the consistency of the left-invariant truncation
Sp(2)
’ S(U(QI))XU(l))

for the sourceless case. It seems very plausible that their argument also

ansatz by means of explicit examples based on the coset models 88(23)

SU(3)
TOxUD)
applies for the other coset models we study in this thesis in the presence of smeared

left-invariant source terms. We thus have confidence that solutions to the effective
four-dimensional theories we derive in this chapter lift to consistent solutions of the ten-

and

dimensional equations of motion and that there is no coupling between the preserved
left-invariant modes and the truncated non-invariant modes. This also implies that
the mass spectrum we compute for the left-invariant modes is not influenced by the
potentially light non-invariant Kaluza-Klein modes.

A necessary condition for a strict SU(3)-structure is the compatibility condition
JAQ =0 (see eq. (2.6)). This condition is automatically satisfied if there are no G-
invariant five-forms. On the other hand, if there are such five-forms, the compatibility
is not automatically satisfied, and the condition fixes the parameters for J and €2 in the
N =1 solution (see for instance the parameters a, b and ¢ in the solution (10.12)). If
we now turn on fluctuations around such a vacuum solution, fluctuations are possible
that violate the compatibility condition. One approach to still satisfy the compatibility
condition is to impose some constraints on the fluctuations. However, a more natu-
ral approach is to impose from the beginning an orientifold projection that projects
out the one- and five-forms. With this procedure, we again automatically satisfy the
compatibility condition for all the fluctuations.

Let us stress that consistency requires that the source term which follows from the
Bianchi identities is then consistent with the orientifold involutions we imposed. In this
chapter, we will follow the second approach and impose an orientifold projection when
the models allow for G-invariant one- and five-forms. We will make the simplification

that the orientifold planes are perpendicular to the coordinate frame !

SU(3)x U(1)
SU(2)

planes and for SU(2) x SU(2), which does not allow for perpendicular orientifold planes.

, except for
, where we will demonstrate a procedure how to find more general orientifold

11.1 Effective type ITA action on Sg’é)

With the given set of G-invariant forms (9.3), we choose the expansion forms as follows

y(2-) . (€12 — &3 4 &%)
(11.1)
yB+) . (8145 _ o246 _ ;235 6136)’
and the standard volume V; = — [ 123456 - We expand according to eq. (3.37)
J.=J—i6B=t'v?),
(11.2)

Q. = e®ImQ + 605 = 'Y B

'To be precise, here we mean orientifold involutions which act as e! — e’ on the left-invariant
one-forms.
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where we denote by t' = k' — ib' the complex modulus in the Kihler sector and by
2% = 1 +ic? the complex modulus in the complex structure/dilaton sector. Note that
since there is only one even three-form, this coset space has no complex structure and
the real part of 20 encodes the dilaton. There are no G-invariant one- or five-forms
in this model, hence the compatibility condition (2.6a) is automatically satisfied for
the basis (11.1) and thus for all choices of the moduli ¢! and 2z°. The metric is easily

evaluated via the Hitchin procedure explained in appendix C and reads

g = diag(k', kY kL B EL EY) (11.3)
Go
SU(3)

eq. (9.4). As was explained in section 3.3 we choose accordingly the background fluxes

to be

such that k' > 0 ensures metric positivity. The Betti numbers of are given in

H=0,
Fy=m,
By =ny ) (11.4)
Fy,=0,

- 1 123456
F6=f€ 3

The quantized parameters m, n and f’ specify the bubble of moduli space. Remem-
ber that is is not possible to reach another bubble by finite fluctuations of the moduli
fields.

With this data, the superpotential, whose derivation is explained in section 3.2,
reads
ie—iﬂ

We = =2V, (- 30(t)? - 4V30 — im(t)?) | (11.5)
4K,

and for the Kéhler potential, we derive from eq. (3.35)

K=-In((t"+)%) —1In (4(z° + 2°)*) + 3In(8k3, MAV, ). (11.6)

11.1.1 Mass spectrum around the supersymmetric vacuum

We have seen in section 10.1 that this coset space admits a supersymmetric N' = 1 AdS,
vacuum. An application of the effective theory developed in this chapter is to compute
the mass spectrum around the vacuum. By means of the explicit mass spectrum we
can for instance identify the number of tachyonic masses and the number of massless
moduli. However, since the vacuum solution is in AdSs space, it is not enough to
find a tachyonic field for an instability to be present. Tachyonic fields whose negative
mass-squared are above the Breitenlohner-Freedman bound (3.11) do not generate an
instability [61]. However, after an uplift procedure these tachyonic modes become
eventually unstable, and one has to reconsider the stability of the solution.
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To derive the masses of the scalar fields around the supersymmetric vacuum, it is
convenient to choose the background fluxes, which we plug in the expression for the
superpotential, to be the fluxes of the solution (10.4). With this choice we automatically
are in the bubble of moduli space containing the supersymmetric solution. For the
calculation we choose this time expansion forms adapted to the solution,

y(2-) . a(el? — A1 €5 ;
(11.7)
y 3+ . a3/2(—6235 _ o246y 145 £136)

’

— fa3 el23456 Tt ig further convenient to take out the

and the standard volume V =

background dilaton, e~®, from the definition of 2’ in eq. (3.37b), i.e., we choose the
expansion as follows

e~ ImQ +i0Cs = e~y (11.8)

The supersymmetric solution then corresponds to the values of the moduli fields ¢! = 1
and 2° = 1.

With these assumptions and the background fields in eq. (10.4) we get the following
superpotential

il ,—® s oy
3V3 | 8 9 3
Wi = Ve~V (— ;f + 0 T a3 - —\é_(tl)g + im(tl)?’) :

453, 5 5
(11.9)
whereas the Kahler potential is given by
K=—1n((t" + %) —In (4(2° + 2°)%) + 31In(8k2, MBV, Let®/3) . (11.10)

Indeed, one easily verifies that the F-terms D;Wy = 0;Wsg + (9;K)Wg, vanish for
the values of the moduli fields k' =1, b' =0, «* =1 and ¢ = 0.

By means of eq. (3.25), we now easily calculate the effective potential V' and the mass
matrix according to eq. (8.5). The resulting mass spectrum is plotted in figure 11.1.
We plot M?/|W|? such that the overall scale a drops out and the only parameter is the
reduced orientifold tension ji. The dashed and solid red line represent the Breitenlohner-
Freedman bound (3.11) and the bound (2.34) for fi, respectively. We see that all four
moduli masses are above the Breitenlohner-Freedman bound as is expected. Moreover,
all masses are positive for g > —0.82.

In section 2.2.2 we have seen that W, |Lin; < 1 is one way to obtain a separation of
scales between the light masses and the Kaluza-Klein masses even before the uplifting.
However, as can be seen from eq. (10.2), this is impossible to achieve for this coset.

11.1.2 Number of supersymmetric solutions

We explained in section 3.3 that for different choices of the flux parameters m,n and
/" in eq. (11.4) we are in different bubbles of the moduli space that are not connected
by fluctuations of the moduli fields.
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(a) Behaviour for small (b) Behaviour for large j
Figure 11.1: Mass spectrum of %(23)

An interesting question is whether each of these different bubbles of the moduli space
characterized through the bubble parameters m, n and f’ has a supersymmetric A' = 1
AdS4 solution and if, how many different solutions there are. To answer this question
we may proceed backwards: Given a supersymmetric vacuum characterised through the
supersymmetric solution parameters a, ;1 and e®, we derive the corresponding bubble
parameters m, n, f' in function of a, i = ap and e®. Inverting these equations one

obtains the values for the bubble parameters that contain supersymmetric solutions.
From the supersymmetric solution for %(23) in eq. (10.2), the Bianchi identities and
the fluctuations of the fluxes in eq. (3.44) we arrive at the following equations

)
mzsle_q)a_l/QUZ-l-ﬁ,

1 12, -02 -

=—-—— — 11.11
n \/gSQCl e i, ( )
f e g A0 )25 4 27)
375V/3
where s; = +1 and so = +1 are two signs further specifying the supersymmetric

solution. Note that in the special case without source, i = 0, we find n = 0, and we
can always find a supersymmetric vacuum by solving
5
m = S e_‘ba_l/Q% ,
(11.12)

for ¢® and a. This results in

(3\/E 7!
ae (315 S

B

32 |m

32 |m

1/3 L\ /6
) , e? = > (ﬁ f) , (11.13)
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such that, for arbitrary choice of the bubble parameters m and f’, we find a supersym-
metric solution characterized by a and e®.

For fi # 0, we can eliminate e® and a by calculating

flm? (5 + 4/1)(20 + 1) (25 + 2/i)

h= ik e , (11.14)
which can be rewritten as
(8 — 8h) i* + 27072 + 2325/ + 2500 = 0. (11.15)

For the values h < 0 and h > 1, this equation has exactly one solution satisfying
further the bound coming from the first equation in (11.11): 5/4 + 2 > 0 (note that
we assumed m # 0). We conclude that there is no supersymmetric solution for the

choice of bubble parameters satisfying 0 < ! ,:312 < 1. Otherwise there is exactly one
supersymmetric solution.

11.2 Effective type ITA action on W%(l))

From the given set of G-invariant forms (9.6), we define the expansion forms as follows

y(2-) . (€12 4 e34), —¢56

2

11.16
y 4 . (€235 4 216 | 145 _ (136) ( )

and the standard volume Vi = [ e!23456 - According to eq. (3.37), we expand the
SU(3)-structure as follows

J,=J—i6B = t*(e'? + ) — 12,
(11.17)
Q, = e TmQ + i6C5 = 20 (e 4 216 4 115 — (136)

which yields the metric
g = diag(k', kY kL KL B2 R, (11.18)

such that k; > 0, 7 = 1,2, ensures metric positivity. According to the Betti numbers
(9.7), there is a closed two-form and we thus have only one non-closed two-form for Fb.
Since Fy € H*(M,R), we choose as background fluxes the following

H=0,

Fy=m,

Fy =ne (11.19)
By = wel?4

By = — fle!23456
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(U(2)xU(1))
The superpotential reads
ie—iﬂ
We ==V, (f —iwt® +n(t")? +im(t)** — 22°(¢% + 2t)) (11.20)
K10
whereas the Kahler potential is given by
K=—In((t"+)%# +#)) —In (4(2° + 2%) + 318k, MEV, ). (11.21)

11.2.1 Mass spectrum around the supersymmetric vacuum

We choose the expansion forms suitable for the solution in section 10.2 as follows:

y(2-) . a(e'? + &), —ae ;
(11.22)
y(3+) . a3/2(6235 4+ 246 4 o145 _ 6136)’
and the standard volume Vy = — [ a®e!23%6  We find the following superpotential

(where we use the redefinition of eq. (11.8))

. _if _$ B 8 ~ . 3 ~ .
We =" Va2 (—fo I G172,0 O 9 4t g2y g9pt 4 42),0
4K7, 5 5

+im(t")2 + o'/? 3.3, t")? = (o712 - 3,102 412 ,
2 4 2
(11.23)
and Kéahler potential
K=—In((t' +)2(2 +2)) — In (4(z° + 2°)%) + 3In(8k2, MBV, 1e!®/3) . (11.24)

This time the solution has next to the overall scale a two free parameters: the “shape”
o = c/a and the orientifold tension f. In figure 11.2 we display plots for the mass
spectrum for several values of o0: o = 1 is the nearly-Kéhler point, while for o = 2/5
and o = 2 the lower bound for /i from (2.37) is exactly zero. These were extreme points
in [51] since outside the interval [2/5,2] the lower bound is above zero and solutions
without orientifolds are no longer possible. Moreover, for i = 0 also m = 0, and these
solutions can be lifted to M-theory. We also display a plot for large o, here 0 = 13. We
see that the lower bound for £ is indeed positive so that there must be net orientifold
charge. Again we see that in all cases all masses are above the Breitenlohner-Freedman
bound and by choosing /i large enough, they are all positive.

Again we would like to have W, |Lint < 1 in order to decouple the Kaluza-Klein
modes. From eq. (10.7) we see that this is not possible since this would imply putting
o — —2, which should be positive. We thus can not prove the decoupling of the
Kaluza-Klein modes for this model.
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11.2.2 Number of supersymmetric solutions

With the same procedure we proposed in section 11.1.2 we can identify for this model
the number of supersymmetric AdSy solutions for each choice of bubble parameters m,
n, w and f’. Starting from a supersymmetric solution specified by four parameters a,
o =c/a, e® and fi = ap we find for this model

5
m = sle_q)a_l/Q\/— (=4 —b50% 4+ 120) + [,
160

4
n= —32567©a1/2/}\/g,

e A0 )10+ 30)  5) (11.25)
" 5/6007 1 16102 — 200 — 2503
o _8a%/201/2 (150 + 40/ — 4250 — 6/10(35 + 4f1) + 1502 (10 + fi))
- 25 (600 + 16ji0 — 20 — 2502) '
We can solve these equations for ji and o by calculating
dmw 5(c —1)(e(10+3pa) —5)
= — = f— hl 3
n? 4fi20?
(11.26)
C8f'm? _ —50(15 + 4f1) + 50(425 + 6/i(35 + 4/1)) — 750 (10 + i) _ h
n 16302 -
with the solution for f
0 = (—256h hy + 256h3 + 64h3) S
+ (=690hy + 1920h2 — 690h; ho + 1920hy )i
+ (—=5900hy + 19000%; + 3600 + 3600h7) (11.27)
+ (44250 4 53250h; — 4500h9) > + (169375 + 34375hy ) ji>

+ 206250/ + 78125,

and the solution for o

o 5(750 + 1 [775 + 8fi(15 — 2haji + hi (15 + 4j1))])
~ 10000 + /1 {13500 + /i [4125 — 24i(2ha(5 + i) — 15) + 4h1 (6(35 + 471) + 425)]}
(11.28)

In figure 11.3 we show the values for h; = 4’;;;“ and hy = —Sfr;’;” for which eq. (11.27)
has one or two solutions that are real and respect the bounds % (—4 — 50?2 + 120) +
i > 0 and o > 0. Hence, there are bubbles with zero, one or two supersymmetric
solutions.
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Figure 11.3: Regions in bubble parameter space in which there are one/two super-

symmetric solutions (red/yellow) for W%(l))' On the x-axis (y-axis) is the value
hl _ dmw (hg — _8f1m2)‘

— n? n3

11.3 Effective type ITA action on %

From the given set of G-invariant forms (9.9), we define the expansion forms as follows

Y(Q*) : _el2 31 _ 56
Z (11.29)
y B+ . (6235 + 136 4 o246 _ 6145)’
and the standard volume Vi = f 123456 For this choice the metric reads
g = diag(k', k', k?, k?, K*, k), (11.30)

such that &' > 0 ensures metric positivity. According to the Betti numbers (9.10), we
choose a simple non-closed two-form Fy and Fy € H*(M,R) as background fluxes as

follows
H=0,
Fy=m,
By =ne'?, (11.31)
By = wie' 2 1 el
Fy = — f1e123456

The superpotential reads

Wy = —@Vs (f —i(wit® — wot?) — nt* > —imt'$243 — 22004 + 42 +43)) , (11.32)

4K7,
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whereas the Kahler potential is given by

K=—In((t'+ ) + )& +°) —In (4(z° + 2°)Y) + 3In(8k3,MAEV, ). (11.33)

11.3.1 Mass spectrum around the supersymmetric vacuum

In this case we choose the expansion forms in (3.37) as follows:

Y-, —aeu,a634, —ae56;

11.34
y(B+) . a3/2(6235 4+ 246 4 o136 _ 6145) ( )

3

and the standard volume Vy = fa3 123456

Using the expression (3.34) for the superpotential in the SU(3)-structure case and
the expansion given in (3.37), we derive the superpotential (again using the redefinition
of z as in eq. (11.8))

~ie~ ;  8nmi 3

& -
Wg = — %Vsa*l/2 fpo — ——/poz + — (pot' + at* + pt*)
4rK7 o o

—+

1 o 2\4142 k2 1,3 _ 2,3
1 po((3a+3pa 509)t 7 + (3p — 5p” + 3po)t t° + ( 5+3,0-I-3a)tt)

— 2t + 2+ 1) - imt1t2t3> .

(11.35)
The Kahler potential is
3 . . A
K=—In <H(t2 + fﬁ)) —In (4(2 + 2)%) + 3In(8k2, M3V, Let®/3). (11.36)
=1

The model has this time two shape parameters: p = b/a and 0 = ¢/a. We display
the mass spectrum for a number of selected values of these parameters in figure 11.4.
There is a symmetry under permuting (a, b, ¢) which translates into a symmetry under
p < o and (p,o,1) < (p/o,1/o,0f). Applying these symmetries leads to identical
mass spectra. Moreover, the mass spectra for p = 1 are apart from two more eigenvalues

identical to the mass spectra of W%(l))' We also display an example with o, p # 1.

For this model, we have to choose p + ¢ = —1 in order to approach the nearly
Calabi-Yau limit to decouple the Kaluza- Klein modes, which is again not possible.

11.4 Effective type ITA action on —SUS?J?;)J(I)

Since this coset space contains G-invariant one-forms, e’ and €%, one has to be care-
ful satisfying the compatibility conditions for an SU(3)-structure given in eq. (2.6a).
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One way to guarantee the compatibility conditions for the fluctuations is to impose
an orientifold projection that removes the left-invariant one- and five-forms. To find
appropriate orientifold planes, let us therefore start with the most general, non-closed
two-form as an ansatz for FQ,

A

By =a'(e"? — ) +a?(e" + e?) +a?e™ (11.37)

where we assume non-vanishing coefficients af, i = 1,2,3. With this choice of Ey we
get via the Bianchi identity (B.9a) the source term (note that since bs = 0 we choose
H = 0 such that there is no contribution to the Bianchi from H)

3
. a
j6 — \/g (—a1(€145 +6235) +a2(el35 o 6245) + 7(6126 +6346)> ’ (1138)

that can be written by a coordinate transformation consistent with the structure con-
stants similar to (10.16) 2

(11.39)

as a sum of four decomposable terms to which we can associate four orientifold involu-
tions (see also the discussion in appendix D),

3
i =v3 ( (a1)2 + (a2)2(e? % — 3% ¢ %(el 26 4 36 )) . (11.40)
Under these orientifold involutions there are no one- and five-forms surviving, and
we easy obtain the set of invariant two- and three-forms. By transforming back to
the original coordinates, we get the following set of left-invariant (odd/even) two- and
three-forms

(2-) . 1324y a_2 14 23 56
Y, (e e) | (e +e)| , e,
(3+) 146 236 a’ 136 246 125 345 -
Yy, [(e +e™?) = (e +e )],e + e,
a

where the quantity Z—f = ) is actually related to the choice of the orientifolds. We now
proceed as usual: with this choice of expansion forms the metric is positive for k& > 0,
i =1,2, and u'u? < 0 and is then given by

k?
g = diagV/1 + X2 <k1, A

14 )2

2

U 1

2 Uu

3

o - ) . (11.42)

Without loss of generality we assumed here a* > 0.
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From the Betti numbers (9.15) and the set of G-invariant forms (9.14) we thus get

-0,
Fy=m,
By =n' (e — e + A(e! + e?®)] +n%e’, (11.43)
=0,

Fﬁ — _fl(l + )\2)6123456 .

Putting everything together we arrive at the superpotential

(11.44)

where we defined a standard volume as Vs = [ (1 + A?)e!?34%. The Kiihler potential is
given by

4
1+ X2

= = (¢ 020+ ) —In (6! 4 22 22 + 3l MV,

(11.45)

11.4.1 Mass spectrum around the supersymmetric vacuum

We choose the expansion forms suitable for the supersymmetric solution of section 10.4
as follows:

Y(Qf) . —a[(€13 - 824) - p(€14 + 623)], ae56;
(11.46)
Y(3+) . a3/2[(613 _ 624) +p71(614 + 623)] /\66, a3/2(6125 +6345),

and the standard volume Vi = [a3(1 + p?)e'?3156. The superpotential and Kéhler
potential read (using the redefinition (11.8)):

—iee—é

ie ~1/2 ( 3im 1, 1o
. —0o(2t" + —t
Wrg pp Vsa <fa+ 3 o2t + - )
3
+ \[5(1 +p)h (—t1t2 + %(t1)2> — i ()2
4/ 241 24/ 24 2v3
B \/5_zm(1+p2)}121+ \/;2m0(1+p2)_222+ \/_zltl—\/§(1+p2)_1t222) ’
P P

(11.47)
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and
I 1
K=-In (@t +)**+7) —In <4ﬁ(21 +2')2 (2" + z2)2>
Athre (11.48)

+3 ln(SR%UMI%I/;le@/:i) .

This model has two shape parameters p = b/a and 0 = ¢/a, and a symmetry under
(p,o,f1) <> (1/p,0/p,pit). In figure 11.5, we show the mass spectrum for some values
of the parameters. The mass spectrum at y = 0 turns out to be independent of the
parameters p,o. There always seem to be two negative M? eigenvalues. Note that
there is no choice of parameters for this solution to obtain a NCY-limit, which was our
proposal to decouple the Kaluza-Klein modes. This can be seen from eq. (10.13).

11.5 Effective type ITA action on SU(2) x SU(2)

Since SU(2) x SU(2) is a trivial coset space, all the left-invariant forms e’ are G-
invariant. As we suggested in the introduction of this section, in order to satisfy the
condition (2.6a) automatically, we must eliminate the one- and five-forms. We do so by
introducing at least three mutually supersymmetric orientifolds, compatible with the
structure constants. This model does not allow for O6-planes that are perpendicular
to the coordinate frame. However, in section 10.5 and appendix D we explained how to
perform a suitable basis transformation in order to identify the orientifold involutions
such that the fields and structure constants have the right transformation properties.
The result of that analysis are the following expansion forms (see also eq. (D.19))
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Y(3—)4

Y1(3+)

y )

y )

S
w
=

|
N = M= N = N = B = B = B = ] =

Il
)
—
~
D
N
L
N
o
S
N
pL
w0
=3

3

(6156 L 234246 4 135 4 345 126 4 123 6456)
(6156 L 234 246 135 345 4 126 4 123 e456)

3

(6156 _ o234y o246 _ 135 | 345 126 _ 123 6456)

3

(_6156 L2344 246 _ 135 | 345 _ 126 4 123 6456) ’
(6156 L2310 246 185 | 345 4 126 4 123 | 6456) ’
(6156 L2344 246 4 135 345 126 123 | 6456) ’

(6156 + 6234 + 6246 + 6135 + 6345 + 6126 _ 6123 _ 6456) ’

o156 234 246 4 135 | 345 | 126 4 123 | 6456) _

—~

(11.49)

To simplify notation, it is convenient to define a matrix r;; as in eq. (5.65) and we
find with (11.49) the following matrix

11 1 -1
r=[1 -1 -1 -1
1 -1 1 1

(11.50)

For SU(2) x SU(2), we calculated the third Betti numbers in (9.17) to be by = 2.
One of the two three-forms in H3(M,R) is odd and we thus make the most general
ansatz for the background fields as follows

H = p <Y1(3—) + Y2(3_) _ Y3(3_) + Y4(3—)) ’

Fo=m,
ngmiyi(?—),
F, =0,
Fy=0.

(11.51)

Plugging these background fluxes in the expression for the superpotential, we find

WE:

7:6—10

——
drK1g

Vi (m'% + m* ' + mP % — imt 28 — ip(2 + 22 = 23+ 2 it

(11.52)
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and the Kahler potential

3 4
K=-W[](#+#) —n16 [] (= +2") + 3In 87, MpV; ) , (11.53)
i=1 =1
where Vs = —f€123456. Note that for p # 0 the superpotential depends on all the

moduli so there are no flat directions in this model.

11.5.1 Mass spectrum around the supersymmetric vacuum

For the analysis of the mass spectrum around the supersymmetric solution, we choose
the following suitable basis for the expansion forms

Y1(2—) — qet, YQ(Q—) — be? | Y3(2—) — e
—h
Y1(3+) _ (€123 4 456 | o126 | (345 4 (315 | (264 | (156 4 (234)
dei(a+b+c)

(34) h 123 | 456 _ 126 _ 345 _ 315 _ 264 , _156 , 234
Y, 401(—a+b+c)(e +e e e e e + e + e, (11.54)
Y3(3+) —h (—el23 _ gi56 4 o126 | o345 _ ;315 _ 264 4 (156 4 234)

deqi(a—b+c)

y (3+) h (6123 4 456 | o126 | (345 (315 (264 (156 _ ,234)

Y dej(a+b—c)

and the standard volume V; = — [ abe e'8. One finds with eq. (10.22) the superpo-
tential (with the redefinition (11.8)):

ie*iﬂefQ
We = 42
4K7y

3 3 2
Vsa_1/2{§61 + irh <t1t2t3 — g(t1 + 12+ 1) — g(z1 + 22+ 23 + z4)>

+ SE (H 2 )

o N w

i3

+ (—1+p2+02)+t2p2(1—p2+02)+t302(1+p2—02)] (Zl+22+23+24)
+po [-2t' + (1 +p* — o) + (1 — p* +07)] (2! + 22— 2 — 24

Fo [t (14 p? = 0?) =202 + 3(~1+ p? + 0] (2! = 22 4+ 2% — &)

+p [t (1 = p* +0%) + (=1 + p* + 0?) — 20%t%] (2} — 2% = 2° +z4)}} ,

(11.55)
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Figure 11.6: Mass spectrum of SU(2)xSU(2).

and the Kahler potential

3
K=—In (H(ti + ti)) —1In (4

4
=1 =

(2" + zi)> +3In(8k2 MAV, LMY . (11.56)

=1

There are again two shape parameters p = b/a and 0 = ¢/a and the symmetries
p < o, (pyo, i) < (p/o,1/o,0). In figure 11.6 we display the mass spectrum for
some values of the parameters. This time there will always be one unstabilized mass-
less axion 3 (M 2=0) and a corresponding tachyonic complex structure modulus with
M?)|W|? = -2.

In the limit W, — 0, W5 blows up just as the lower bound for ji. Hence, we
cannot satisfy (2.52) for negative a and the decoupling of the Kaluza-Klein modes is
not guaranteed.

11.6 Effective type ITA action on sg((lz))‘z x U(1)

This coset space has no supersymmetric AdSy solution. Nevertheless, one can define
an SU(3)-structure on it. In order to eliminate the one- and five-forms, we introduce
a set of suitable orientifolds. The possible orientifolds that are perpendicular to the
coordinate frame and compatible with the structure constants are along 4

123, 345, 256, 146, 246,  156. (11.57)

30One may wonder why there is a flat axionic direction around the supersymmetric solution whereas
we claimed that for p # 0 there are no flat directions arising with the superpotential (11.52). The
reason is that the bubble containing the supersymmetric solution has bubble parameter p = 0 (see
eq. (11.51)), since the background flux for the supersymmetric solution H x ReQ o dJ is always exact
and thus pure fluctuation.

“To be precise, e.g. 123 means for the orientifold involution e' — e', e? — €2, €3 — €3, &' = —e*,
e — —e®, b — —ef.
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In order to remove one- and five-forms, it turns out that we have to introduce at least
two orientifolds, in particular one of {123,345} and one of {256, 146,246, 156}. It does
not matter for the analysis which particular choice is made, but for definiteness let us
choose the following set

L l1][2]3
06 ®
06 ®
06 | ®
06| Q@ 1 ®| X

| 6]

5
X
X

4
X

X
X X

From the set of G-invariant forms given in eq. (9.20) the following forms survive the
orientifold projection

odd 2-forms:  (e'® +e*!), €3°,
even 3-forms:  e!? | (290 — elM6) 315 (11.58)

odd 3-forms: %6, (23 —e!3), 1%

which we then plug in eq. (3.37). There is always a change of basis such that we can
assume k* > 0, i = 1,2. The conditions for metric positivity then become

uw'u? >0, u'u? > 0. (11.59)

With the reduced set of forms (11.58) the Betti-numbers are b; = 0 and b; = 1.
The most general background fluxes are thus chosen to be

A

H=p (6126 _ 6456) ’

Fy=m,
Fy = ne’f + ng(e15 + 624) . (11.60)
F,=0,
5 =0,

where we used the closed part of C5 to put FEy to zero as explained in section 3.3.

Note that one easily verifies that this choice of background fluxes reproduces with
the Bianchi identity dFy + mH = —j% exactly the expected source terms from our

choice of the orientifold involutions. We find for the superpotential
ie—iﬂ

2
4K,

Wy = — Vi (n1(82)? + 2not't? —imt! (1) + ip(z' — 2°) — t1 (2" + 2°) — 2t%27) |

(11.61)
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and the Kahler potential

K=—In(t"+t")(*+*)?) —In(4(z"' + 2") (2> + 22)*(2* + 2%)) + 3In (8K, MPV, ") ,
(11.62)

Let us mention that we also can consider the choice H = 0 in eq. (11.60), which

then implies that we have to choose Fy = — f'e!23456  For this choice the superpotential
reads
’l.€7w
Wy = Vs (f' +n1(82)2 4 2not'#? —imt' (%)% — ' (2" + 2%) — 2t22%) | (11.63)

——
4K1y

whereas the Kahler potential is not changed. Note that with this choice of the back-
ground fluxes, we have an axionic flat direction in the model, since the combination
(2! — 23) drops out.

11.7 Effective type IIA action on SU(2) x U(1)?

Again, for this trivial coset space all the left-invariant forms are G-invariant. There are
ten possible orientifold planes perpendicular to the coordinate frame and compatible
with the structure constants. It turns out that in order to remove the one- and five-
forms we have to choose at least three mutually supersymmetric orientifolds and that
it does not matter for the analysis which ones we choose. For definiteness, let us take
the following choice

L 1 [2[8]4][5][6]
6R[®[®

06 ®] [®[®
06| ® ®®

06 X X X

With these orientifolds, we get the following expansion forms to be used in eq. (3.37)

odd 2-forms: e'6, ¥, ¥,
(11.64)

even 3-forms: e, e, —e 7, e

Again there is always a change of basis such that we can assume k* > 0, i = 1,2. The
positivity of the metric demands that

vl >0, wld® >0, wlu?>o0. (11.65)
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The Betti-numbers are this time b, = 0 and b; = 1 such that the most general
background fluxes are

H = pe'

Fy=m,

Fy = n1e'® 4+ noe®® + nge®t, (11.66)
By =0,

Fs=0.

Again one easily shows that the Bianchi identity reproduces the expected source
term coming from our choice of orientifold involutions. The superpotential for this

model reads
,l'ef’iﬂ
—4—2VS (n1£23 + not't? + nat't? — imt' 2 —ip2' — 't — 223 — 1322)
Ko

(11.67)

WEz

whereas the Kéhler potential is

3 4
K=—-1In <H(ti + ti)) —In <4 [1¢ + zl)) +31In (8k3, MRV, 1) . (11.68)
i=1

i=1

Again, one could choose H = 0 and instead Fyz = —f'e!23456 i eq. (11.66). The
superpotential for this choice reads

je 10 .
——V; (f' + mt? 4+ not't® + ngt't? —imt 2P — 120 — 223 —1327) |

We = 4rt
(11.69)

whereas the Kahler potential does not change. Note that we obtain again a flat direction
by turning off H since the superpotential (11.69) does not depend on z'.






Chapter 12

Coset models with static
SU(2)-structure

Within the class of coset geometries we can also try to find suitable coset spaces for
compactifications with more general G-structures than strict SU(3)-structure. Let us
focus in the following on compactifications with static SU(2)-structure. As we have seen
in chapter 6, for the nilmanifolds there exists a type IIB AdS4; N = 1 solution with
static SU(2)-structure which turned out to be related via a T-duality to both, the torus
solution and the Iwasawa solution (at least for some values of the parameters). This
motivates to look in type ITB for possible compactifications with static SU(2)-structure
on the coset spaces. Indeed, in [34] it was mentioned that there is a static SU(2) type
IIB N = 1 compactification to AdS4 on %(X;;(l) that is T-dual to the strict SU(3)
type ITA solution on the same coset (the solution of section 10.4) and a further static

SU(2) type 1IB A = 1 AdS; solution on Z x U(1) which is T-dual to the SU(3)

type ITA solution on SU(2) x SU(2) of section 10.5 (see also [117]).

Here we do not only want to study type IIB N' = 1 compactifications to AdS,, but
follow our approach and compute the effective four-dimensional theory for all coset mod-

els that allow for a static SU(2)-structure. We thus derive the set of G-invariant forms
for these models and expand the static SU(2)-structure quantities given in eq. (3.42)
in the appropriate forms. The SU(2)-structure conditions (2.16) impose non-trivial
conditions on these fluctuations. An elegant way to solve these compatibility condi-
tions for the fluctuations is to introduce (smeared) O5/07 orientifolds. In eq. (3.40)
the transformation properties of the SU(2)-structure quantities are given such that we
can expand these quantities in the G-invariant forms transforming correspondingly. It
turns out that the compatibility conditions are then automatically satisfied for all the
fluctuations. Note that this is similar to the approach we followed for the strict SU(3)-
structure compactifications of chapter 11, where we removed one- and five-forms by
choosing appropriate O6 orientifold involutions.

In the following we will study the six-dimensional coset spaces G/H of table 4.1
that have structure group SU(2). A necessary condition on H is that H C SU(2) [34],
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which restricts the possible coset candidates to the last four entries in table 4.1. We
immediately can exclude the coset model % as can be seen as follows !. When
SU(2) is embedded diagonally in SU(2)3, the coset space admits no G-invariant one-
forms (which are needed for a static SU(2)-structure), and if SU(2) is embedded in the

last two SU(2) factors, the given set of G-invariant one- and two-forms is

one-forms : el e?, ed,
(12.1)
two-forms : e'?,e!3 23
with which we can not satisfy condition (2.16a).
In the following we will study the remaining possible coset spaces, that are %ﬁ;m,

Sgggz x U(1), SU(2) x SU(2) and SU(2) x U(1)3. We will restrict ourselves to O5/07
2

orientifold planes that are perpendicular to the coordinate frame <.

. . SU(3)xU(1)

12.1 Effective type IIB action on O

We first derive all possible O5/07 orientifold planes that are perpendicular to the coor-
dinate frame and compatible with the structure constants (i.e. the structure constant
tensor (4.29) is even under the orientifold involutions), and we obtain the following list
of possible orientifold involutions

O5: 13,14,23,24, 56,
(12.2)
O7: 1256, 3456.

Choosing the O5 orientifold along 56, we would end up with even G-invariant one-
forms e and e under this O5 orientifold, which is not appropriate to expand the
SU(2)-structure quantity V' in eq. (3.42), since the one-forms have to be odd under O5-
orientifolds, see eq. (3.40). We thus exclude the orientifold along 56. Which compatible
combination of the remaining O5-planes we choose does not matter for the following
analysis, so let us choose for definiteness the following orientifold planes:

L !
05| ® ®
®

05
or

o7 IR IR

From the set of G-invariant forms for this model (9.14), we obtain the following
basis of forms transforming as indicated under the O5/07 orientifold planes:

'For the details on the structure constants of this coset space we refer the reader to [34].
*Contrary to O6-planes, SU(2) x SU(2) allows for perpendicular O5/O7-planes.
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SU(2)
‘ type under O5/07 ‘ basis ‘ name ‘
odd/even 1-form e, el (1-+

odd/odd 2-form el — e
1256 1 3456

Y;
even/odd 2-form el +e2 Y
Y
Y

odd/even 4-form

Putting these expansion forms in (3.42) we end up with four complex moduli fields
T =gx+idy, t' = k' —ib', 2! = u' +ic' and w' = v' +ih'. The SU(2)-structure
quantities are expanded as follows

Wy = k1(613 _ 624),

e ?ImQy = ul (e + €2%),
i (12.3)
_Z'e—2¢'2v A V A ReQQ — ’1)1(61256 _|_ 63456),

2V = C(ie® — 7%,

and one can easily check that the SU(2)-structure compatibility conditions (2.16) are
automatically satisfied for all the fluctuations. Necessary conditions for metric positiv-
ity are z > 0, k' > 0 and u'v!' < 0.

Note also that there are no vector fields arising in the spectrum. For instance, for the
metric or the B-field, we would get a gauge field from the metric for every even/even
one-form and a gauge field from the B-field for every odd/odd one-form under O5/07.
However, these one-forms do not appear after the orientifold projection. Similarly, one
easily shows that there are no gauge fields arising from the RR-sector. The same applies
for the other models in this section.

Next we come to the choice of background fluxes. As explained in section 3.3 we
choose for this model the following background fluxes

H=0,

F1 = m1€5 + m2€6 s

) (12.4)
Py = f3(6136 _ 6246),

o 12345
-F5_f56 3

where F} is the most general one-form which is odd/even under the 05/07 orientifolds,
H € H?> = (M,R) (this fixes for this model 0B in eq. (3.46) completely), F3, which is
even/odd under O5/07, is chosen up to exact forms and F5 € H>~ (M, R).

Note that there is also a non-closed G-invariant three-form that is odd/odd under
the O5/07 planes, %6 4 €236, This means that whenever we turn on this H flux we
automatically have NS5-branes, dH = jngs # 0. However, in the following we will put
this contribution to zero since we do not know if the expression we have given for the
superpotential in eq. (3.38) takes the contribution from the NS5-brane properly into
account.
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The Bianchi identities for Fl and Fg read

~ ) 3
dFy = —jor = —777”01(612 + 634) ) (12.5)

AdFy + By A H = —jos = V3 f3(e!45 + ¢2346)

as it is expected from our choice of the orientifolds. Plugging these expansions and
the choice for the background fluxes in the expression for the superpotential (3.38), we
arrive at
.C
Wy = _41_21/; (f5T +2fsth —my (1) — ima(t)” + 2v/3Bt 2 T — \/§w1) . (12.6)
Ko
where we defined a standard volume Vy = f€123456. For the Kahler potential we obtain

from (3.39)

K=-In(r+7) " +7)?) —In(4(z" + 2")*(w' + w')?)
(12.7)
+ 3In(8kI, MAV, ) —In|C?.

We can eliminate the complex scalar C' appearing in the superpotential and the Kahler
potential by performing a Kéahler transformation (3.31).

Let us now perform a T-duality on this solution along the direction 6. Following
[102], T-duality acts on the RR-fields by adding/dropping the index we T-dualize on.
From the choice of background fluxes in eq. (12.4) we infer that ms turns into the
bubble parameter for Fj (i.e. the Romans mass) on the type ITA side, m; and f3 turn
accordingly into bubble parameters for F5 and f5 into the parameter for Fgz. Indeed,
using T-duality on the level of the superpotential (see also eq. (8.8))

1
Weaia = 7We, 1B <T - ;) : (12.8)
we arrive at the T-dual type IIA superpotential

LQVS <f5 + 2fyrt! — ml(tl)2 - imgT(tl)2 +2V3t' 2! — \/§T’LU1> . (12.9)

We A = —
4kig

With the identification 7 — t2, f5 = f', f3 = —n1, m1 — —ng, my — m, w' — 2% and
the choice A = 0 (which reflects our simple choice of perpendicular orientifolds in this
analysis) this is exactly the superpotential for the same coset on type ITA with strict
SU(3)-structure that we obtained in eq. (11.44) with the expected scaling of the RR-
fluxes with the moduli fields. This is also expected by looking at the structure constants
of this model (see eq. (9.12)): since there is no structure constant with lower or upper
index 6, we can T-dualize along 6 without changing the structure constants and we end
up (for trivial I:I) with the same model in type ITA. Thus, these two compactifications
are related by T-duality, as was already suggested in [34] on the level of AdSy N =1
vacua.
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12.2 Effective type IIB action on Sg((lz))2 x U(1)

For this model we choose the following O5/07 planes which are perpendicular to the
coordinate frame and compatible with the structure constants (the choice is again
unique up to relabeling of the coordinates):

| [t]2]3[4[5]6]
05| ® ®
05 ® ®

07 Q1 QX X

o7 IR IRI|X

and we obtain the following basis of G-invariant forms transforming as indicated under
the O5/07 orientifold planes:

‘ type under O5/07 ‘ basis name
odd/even 1-form e3, eb Y'Z.(l_+)
even/odd 2-form e 42t | yEt)
odd/odd 2-form e —elt [ yE—)

(A=)

61236

odd/even 4-form , 3456 1y,

This expansion basis gives rise to five complex moduli fields expanded as in eq. (3.42)
with 7 = z + iy, t' = k' —db', 2! = u! +ic!, w' =o' + k! and w? = v? + ih%. One
can easily check that the SU(2)-structure compatibility conditions (2.16) are satisfied
for all the fluctuations. Necessary conditions for metric positivity are z > 0, k' > 0,
v'w? >0 and u'v' > 0.

For this model, we choose according to the discussion in section 3.3 the background
fluxes as follows

H=0,

Fl = m1€3 + m2€6 s

R (12.10)
By = f3(e¥5 — 146)

By = fyel2345

Let us mention that there is again room for an NS5-brane source since there is a
non-closed G-invariant three-form, e!° +¢246, transforming exactly as the H-flux under
the O5/07 planes. However, we will put to zero this contribution.

The Bianchi identities for | and Fj read
dFl = —j07 = —m1(€12 + 845)

S (12.11)
dFs + Py A H = —jos = f3(e! + e¥1%)
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as it is expected. For the superpotential, we derive from eq. (3.38) the expression
iC .
Wy = —%VS (fs7 + 2fstt —mi(t1)2r —ima(th)? — (w' + w?) — 2t1z17') . (12.12)
where the standard volume is V; = f6123456. For the Kahler potential we obtain from

eq. (3.39)
K=—In((r+7) " +#)?) —In(4(z" + 2")2(w' + w")(w? + w?))

o (12.13)
+3In(8kj,MpV, ") —In|C|*.

We can eliminate the complex scalar C' by performing a Kahler transformation (3.31).

Let us now perform a T-duality along the 6 direction. The same considerations as in
the previous section leads, using the T-duality rule (12.8), to the type ITA superpotential

i .
Vi (Fs 25t —ma (1) — imor(t)” — (0! +w?) - 2421

Wenia = ~1
K1o

(12.14)

Under the identification 7 — ¢!, ¢! — #2, w' — 2!, w? = 23, 2! — 22 for the moduli
fields and f5 — f’, f3 — m9, m1 — —nq and ms — m for the bubble parameters, we
obtain the same superpotential as we obtained for the same coset with strict SU(3)-
structure in eq. (11.63). Hence, these two compactifications on the same coset are again
related by a T-duality (which is also expected since the structure constants have no
lower or upper 6 index, see eq. (9.19)). Note that we have an axionic flat direction in
this model.

12.3 Effective type IIB action on SU(2) x SU(2)

For this model we choose the following perpendicular O5/O7-planes (again unique up
to relabeling of the coordinates)

Lt
05| ® ®
®

05
or

o7 IRV X

such that we obtain the following basis of left-invariant forms transforming as indicated
under the O5/07 orientifolds

‘ type under O5/07 ‘ basis ‘ name ‘
odd/even 1-form e3, ef Yé(l*ﬂ
even/odd 2-form el €2 YZ.(H_)
odd/odd 2-form | e & |Y* )
odd/even 4-form | 1236, 3156 | y(1-+)
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We thus have 7 complex moduli fields which we expand as indicated in eq. (3.42).
Again, one easily can verify that the compatibility conditions for the SU(2)-structure
(2.16) are satisfied for all the fluctuations. Necessary conditions for metric positivity
are z >0, k' >0, k> > 0 and v'v? > 0, v'u? < 0 and u?v? < 0.

The background fluxes are chosen according to our discussion in section 3.3 as follows

H=0,
Fl = m163 + m266 s
) (12.15)
By = f1(e' 4 216) 4 fo(e!50 4 ¢,
Fy=0.
Note that there again exist non-closed invariant three-forms, (e'3* —e2°6) and (e'*6 —

e?3%), which transform the same way as H does under the orientifold involutions. Hence,

we could have NS5-branes by turning on these fluxes. However, we will again put to
zero these fluxes since the superpotential (3.38) may not be correct in the presence of
NS5-branes.

The superpotential reads for this choice

C
_4Z Vs (fl(t1 +it27) + fo(t? + ittt) — mit't? T — imot't?
"o (12.16)

+itlz? —it?2 — 2t 4+ 222 — il — w2) ,

WE:

where we defined V; = [ 123456 The Kihler potential reads

K=—In((r+7)" +)(* +7°) —In (4" +2)(z* + 2°)(w' + @")(w® + @7))

+ 3In(8x3, MAV, ) —In|C|*.
(12.17)

Again, we can eliminate the complex scalar C' by performing a Kahler transformation
(3.31).

This superpotential is not T-dual to a type IIA model with geometric fluzes only.
This can for example be seen by performing a T-duality along the 6 direction as in the
previous sections, ending up with a type ITA superpotential

4%% (112 + fot') + Fit' T + fol>r — mat £ — imgt'£27
1o (12.18)

—t'2 1222 —iw' — wPr +it' 22 — itQZlT) ,

We A = —

where the terms in the first line come from Fy, Fy and Fj fluxes, respectively. The first
four terms in the second line come from geometric fluxes but the last two terms are
non-geometric @-fluxes (note the combination of two Kéhler moduli and one complex
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structure moduli in those terms). Such non-geometric fluxes will also arise for a T-
duality along any other direction than 6, since the structure constants have all six
directions as lower and upper indices. Thus, a T-duality, which acts on geometric fluxes
by raising/lowering the index we T-dualize on [118] (for a review on non-geometrical
backgrounds see, e.g., [119])

. ST ..
Hije —5 fip —5 QY (12.19)

results in a type IIA background with non-geometric fluxes (). Hence, this is in fact a
new model we did not study so far on the type IIA side.

12.4 Effective type IIB action on SU(2) x U(1)?

The analysis of this model is quite similar to the analysis of the model SU(2) x SU(2), as
one only turns off the structure constant f456 = (. Therefore, one can choose without
loss of generality the same O5/O7-planes as in section 12.3 and the same expansion
forms. The only difference is in the choice of background fluxes, since the cohomology
changes, and we choose

H=0,
Fl = m163 + m266 s
. (12.20)
F3 — f1€156 + f2€246,
Fy = fsel234
such that the superpotential reads
.C
Wi = —Z—QVS (f57 + fit? + fot' — mit" 2 —imot't? — w? — t'2r + 2277 |
K10
(12.21)

and the Kéhler potential is as in eq. (12.17). Note that there is an axionic flat direction

since the superpotential does not depend on w'.

Again, it is not difficult to find the identifications to show that this model is T-
dual (along the direction 6) to the model on the same coset in type ITA with strict
SU(3)-structure, see eq. (11.69).

Let us briefly summarize the result of this chapter. By turning on O5/07 orientifold
planes in order to satisfy the compatibility conditions (2.16), we computed the type
IIB effective theory for all coset models that allow for a static SU(2)-structure (these
are the last four entries in table 4.1). However, we noticed that for all except one of
these models there is a T-duality relating the model to a type ITA strict SU(3)-structure
compactification that we already analyzed in chapter 11. One model, however, is T-
dual to a type IIA strict SU(3)-structure compactification with non-geometric fluxes
and may thus be interesting for the phenomenological applications we study in the next
chapter.



Chapter 13

On the cosmology of the coset
models

We discussed in chapter 5 that an epoch of cosmic inflation in the early universe is
the dominant lore to explain the fascinating data of recent astronomical observations,
for instance the flatness and homogeneity of our universe. The inflationary phase took
place even before the phase of the radiation dominated universe, as the universe had
temperatures of at least 10 billions degrees. At extremely high energies quantum effects
of gravity are expected to become important. String theory is believed to be a promising
candidate to describe this physics appropriately - and as such should be able to realize
inflation. We have seen that inflation can be driven by a scalar field, and the moduli
fields of string theory provide us with natural candidates for an inflaton. Sufficient
conditions to realize inflation within string theory are the so-called slow-roll conditions
on the potential of the moduli fields. We reviewed these conditions in section 5.1.2.

Another important cosmological observation is that at present the universe is in a
state of accelerated expansion. We thus want to look for a string theory vacuum with
small positive cosmological constant, i.e. a de Sitter solution.

Of course we are now interested in the question, whether the models we consider in
this thesis, for which we explicitly constructed the four-dimensional effective potential,
are interesting candidates for inflation scenarios or have de Sitter solutions with small
positive cosmological constant. As we mentioned already in the introduction, this would
render these type ITA models extremely interesting, since type ITA orientifolds with
intersecting D6-branes offer good prospects for deriving standard model-like sectors
from strings.

However, the main problem to realize inflation or de Sitter vacua in the classical
regime in type ITA is that there exist quite strong no-go theorems against slow-roll
inflation and de Sitter vacua. These no-go theorems were discussed in section 5.2 and
5.3 and focus in particular on the role played by the curvature of the internal manifold.
Let us briefly summarize the necessary conditions to avoid these no-go theorems:
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Vi >0, orequivalently, R <0, (13.1a)
m#0, (13.1b)
ou oU
DU =—-0—=—k" 13.1
U . k 9%d <0, (13.1¢)

where V; is the contribution of the geometric fluxes to the scalar potential, R is the
scalar curvature of the internal manifold (the expression for R is given in eq. (4.28)), m
is the Roman mass and the expression for o and the function U are given in egs. (5.53)
and (5.66), respectively. We further mentioned in section 5.2 that to avoid a runaway
in 7-direction we need Vog/pg < 0.

We are always free to turn on a non-vanishing Romans mass m, such that condition
(13.1b) is easy to satisfy. From the definition of U in eq. (5.66) and eq. (5.45), we get
the relation between the scalar curvature and U

U

R x — Vol (13.2)
such that the first condition in (13.1a) translates into the requirement that U is positive.
It suffices therefore to derive for all coset models the function U. If U is negative for
all values in the moduli space, the no-go theorem of section 5.2 applies, implying the
bound on the slow-roll parameter € > 27/13, thus ruling out slow-roll inflation and de
Sitter vacua. If it turns out that U can be positive for some region in the moduli space,
we check the third condition (13.1c). If it turns out that DU > 0 the no-go theorem
of section 5.3 applies and slow-roll inflation and de Sitter vacua are excluded for the
corresponding model, since € > 2.

In the following we derive for each coset model of chapter 11 the scalar curvature
R with eq. (4.28) and the metric g;; induced by J and Q. From eq. (5.66) we then
calculate the function U.

In chapter 12 we identified type TIB static SU(2)-structure compactifications on the
coset models. However, we showed for all but one model that there is a T-duality
relating these models to type IIA strict SU(3)-structure compactifications which we
already analyzed in chapter 11. Hence, for these models nothing new is expected.
However, there is one type IIB model with a T-dual on type ITA involving non-geometric
fluxes. Thus, the no-go theorems do not apply and the model could be interesting for
inflation or de Sitter vacua.

13.1 Type ITA coset compactifications with a no-go theo-
rem

In this section, we go through the list of coset models that admit a strict SU(3)-structure
(see chapter 11). Unfortunately, as we will see in the following, we have to exclude all
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but one of the coset models for slow-roll inflation as well as de Sitter vacua, since we
can apply one of the no-go theorems of chapter 5.

SU(3)

For this model we find for the function U (see eq. (5.66)):
U x —(kH?, (13.3)

which is manifestly negative. This implies that V} itself is manifestly negative so that
the no-go theorem of [91], which we reviewed in section 5.2, already rules out this coset
model [49].

Sp(2)
S(U(2)xU(1))

For this coset model we calculate for the function U the following
U x (k*)% — 4(k"? — 12k %2, (13.4)

which is not negative on the whole moduli space (as one can see by choosing k? small
and k' large). The no-go theorem (5.48) is thus not applicable and we therefore perform
a more careful analysis using the refined no-go theorem of section 5.3. The only non-
vanishing intersection number is x11o and permutations thereof, so that k? plays the
role of k£, and we have

DU = —k'9uU x 8(k')% + 12k'%2 > 0, (13.5)

so that with & > 0 (because of metric positivity) the inequality (5.68) is strictly
satisfied and this model is ruled out.

SU(3)
U(1)xU(1)

For this coset space, we obtain
U o ()2 + (k2)? 4+ (k%)% — 6k'k2 — 6k%K® — 6K K3, (13.6)

which can be positive for some values of £*. The non-vanishing intersection numbers
are of the type ko3 so that we can choose any one of the three k’'s as k°. We will
choose k° to be the biggest and assume without loss of generality that this is k!, i.e.
that k' > k2, k3. We then find that

DU = (—k?02 — E30,3)U o (6k' — 2k2)k? + (6k' — 2k3) k> + 12K%K3 > 0, (13.7)

so that with £ > 0 (because of metric positivity) this coset space is also ruled out by
the no-go theorem (5.68).
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SU(3)xU(1)
—Ssu@)

For this model, the function U depends on an extra constant A related to the choice of
orientifolds, see section 11.4. The function U turns out to be

U o (%)2(u?)? — 8k'k?|u'u?|(1 + \?), (13.8)

and the non-vanishing intersection numbers are of the form x119. Thus k? plays the
role of k°, and we find that

DU = —k'0, U o 8E'E*|ulu?|(1 4+ 2?) > 0, (13.9)

so that with & > 0 (because of metric positivity) this case is also ruled out.

Sg((f; x U(1)

The function U becomes for this coset model
—4E K2 u? (ut 4 u?) + (k?)? [(ul)2 + (u3)2]

U x
2V ulu?|u?|

(13.10)

which can be positive for certain values of the Kahler moduli. The non-vanishing
intersection number is k119 so that k2 plays the role of k0, and we get for (5.68):

2k K202 (u! + u?)

DU = —k'91U
& Vulud|u?|

>0, (13.11)

which is positive using the conditions (11.59). Hence, this case is ruled out as well.

SU(2) x U(1)3
For the quantity U we get this time

(E'u?)? + (K2u?)? + (B3u?)? — 2k w*k?u® — 2k'u k3u? — 2820 k3

U x
2V ulu?udul

., (13.12)

which can be positive. The non-vanishing intersection number is k193 so that each k'
can play the role of k°. Without loss of generality we can assume k'u? > k?u3 > 0,
Elu* > k3u? > 0 and choose k° to be k'. Thus we then find

—(K?u? — k3u?)? + Elut (K?u? + k3u?)

_ (1259 . _ 13

>0, (13.13)

so that we can also rule out this model.
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SU(2) x SU(2)

Thus far, we have found that ¢ > 2 for all other cases. For the remaining coset space
SU(2) x SU(2), one finds

3 4
Uy (k) <Z(u1)2> — 4k K3 (Jutu?| + Judut])

i=1 =1 (13.14)

— 4K B (Julut] + [u?u?]) - 4kTED (Ju'ud) + [uPa?))

and the non-vanishing intersection numbers are of the form x93 so that we could choose
any one of the k’s as k. However, it is not possible to apply the no-go theorem. This
can be easily seen if we take for example u' > u?, u?,u*. Then we have schematically
U x k2(u')? and DU o —k%k%(u')? < 0. In [92] further no-go theorems have been
derived but none of those apply to this case either. We therefore study this coset space

in more detail in section 13.2.

To summarize, by means of the classical no-go theorems of chapter 5, we could rule
out all but one coset model to allow for inflation or de Sitter vacua. To be precise, the
lower bound on € > 2 implies that there are, for V' > 0, directions in the field space that
are too steep to realize inflation or a de Sitter minimum. Further, as we discussed in
section 5.3.1, for the models in this section, the following additional ingredients cannot
be added: NS5-, D4- and D8-branes, since there are no corresponding currents with the
appropriate properties under all orientifold involutions. Also, an F-term uplift along
the lines of O’KKLT [100, 101] does not work.

Note that we can not be sure that there are no other light Kaluza-Klein modes joining
the light fields based on the left-invariant expansion ansatz, since a separation of scales
turned out to be difficult. However, as we already mentioned, a truncation to the set of
left-invariant forms is believed to provide a consistent truncation [115, 60, 116] and that
there is no coupling between the set of preserved left-invariant fields and the truncated
non-invariant fields. Hence, even if light fields from the Kaluza-Klein spectrum would
eventually join the truncated effective theory, inflation and de Sitter vacua would still
be excluded by the no-go theorems, since there are already in the truncated theory
directions, that are too steep to allow for inflation and de Sitter vacua.

13.2 Numerical analysis for the SU(2) x SU(2) compacti-
fication on type ITA and on type IIB

In section 11.5 we derived the type ITA strict SU(3)-structure superpotential and Kéhler
potential for a compactification on this coset space. By means of eq. (3.25) it is straight-
forward to calculate the scalar potential and the slow-roll parameter € as in eq. (5.31).
However, the expression for € is quite complicated so that we cannot minimize it an-
alytically. On the other hand, we can minimize it numerically and it turns out that
one indeed finds solutions with numerically vanishing e (and we can conclude that in
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this case there is no undiscovered no-go theorem against small €). For instance, such a
solution is given by

m'=m?>=m3=1L, m=2L"", p=3L2%,

E'=k? =k~ 8974 2, bl =1 = b3 ~ —.8167 L,
(13.15)
ul ~ 2.496 L3, uw? = —ud = ut ~ —.05667 L3,

et~ —2574 13, A =—c=c"~ 39357,

where L is an arbitrary length. While we can use L to scale up our solution with respect
to the string length [, we stress that this does not correspond to a massless modulus,
as it also changes the fluxes.

To obtain a trustworthy supergravity solution we would have to make sure that the
internal space is large compared to the string length and that the string coupling is
small (for which we could use our freedom in L). Furthermore, in the full string theory
the fluxes have to be properly quantized. Although it is unlikely that this would prevent
small €, we will not try to find such a solution, because all the solutions with vanishing
e we found have a more serious problem, namely that n < —2.4. The eigenvalues of
the mass matrix turn out to be generically all positive except for one, with the one
tachyonic direction being a mixture of all the light fields, in particular the axions.
This means that we have a saddle point rather than a de Sitter minimum. A similar
instability was found in related models in [92].

In [120], a no-go theorem preventing de Sitter vacua and slow-roll inflation of general
four-dimensional supergravity theories was derived by studying the eigenvalues of the
mass matrix. Allowing for an arbitrary tuning of the superpotential it was shown that
for certain Kahler potentials the Goldstino mass is always negative. For the examples
we found, this mass is always positive so that the no-go theorem of [120] does not
apply. This means that allowing for an arbitrary superpotential it should be possible
to remove the tachyonic direction. In our case, however, the superpotential is of course
not arbitrary.

Since the no-go theorems against slow-roll inflation do not apply and we have found
solutions with vanishing e, we checked whether our solutions allow for small 7 in the
vicinity of the de Sitter extrema. Unfortunately, this is not the case. In fact, we found
that n does not change much in the vicinity of our solutions where € is still small.
However, let us stress that our numerical search is possibly not exhaustive and we
cannot completely rule out the existence of de Sitter vacua or inflating regions for this
case.

On the other hand, on the same coset a type IIB static SU(2)-structure compacti-
fication is possible. In section 12.3 we derived the explicit superpotential and Kahler
potential for this compactification. Further we showed that the type 1B compactifica-
tion is not T-dual to a type IIA compactification with geometric fluzes only. Hence, it
is not possible to apply the no-go theorems of section 5.2 and 5.3, and the model may
still be interesting for phenomenological applications.
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Again it is straightforward to derive the scalar potential from eq. (3.25) and the
slow-roll parameter e. Although we cannot analytically minimize e, we will again do
it numerically. However, this time the numerical analysis seems to give a lower bound
for epsilon: € 2 9/7. This numerical analysis strongly suggest the existence of a so far
undiscovered no-go theorem for type IIB compactifications (or, from the T-dual type
ITA perspective, also in the presence of non-geometric fluxes) and it would be very
interesting to further explore this possibility.






Chapter 14

Conclusions

In this thesis we analyzed a large number of type ITA strict SU(3)-structure compact-
ifications with fluxes and O6/D6-sources, as well as type IIB static SU(2)-structure
compactifications with fluxes and O5/0O7-sources. Restricting to structures and fluxes
that are constant in the basis of left-invariant one-forms, these models are tractable
enough to allow for an explicit derivation of the four-dimensional low-energy effective
theory.

The six-dimensional compact manifolds we studied in this thesis are nilmanifolds
based on nilpotent Lie-algebras, and, on the other hand, coset spaces based on semi-
simple and U(1)-groups, which admit a left-invariant strict SU(3)- or static SU(2)-
structure. In particular, from the set of 34 distinct nilmanifolds we identified two
nilmanifolds, the torus and the Iwasawa manifold, that allow for an AdS,;, NV = 1
type ITA strict SU(3)-structure solution and one nilmanifold allowing for an AdS,,
N =1 type IIB static SU(2)-structure solution. From the set of all the possible six-
dimensional coset spaces given in table 4.1, we identified seven coset spaces suitable
for strict SU(3)-structure compactifications, four of which also allow for a static SU(2)-
structure compactification. For all these models, we calculated the four-dimensional
low-energy effective theory using NV = 1 supergravity techniques. In order to write down
the most general four-dimensional effective action, we also studied how to classify the
different disconnected “bubbles” in moduli space.

Some of the coset spaces allow for four-dimensional (massive) type ITA N =1 AdS,
solutions. For these coset models and the three nilmanifold models, we calculated
the mass spectrum of the moduli fields around the supersymmetric solution. For the
nilmanifold examples we have found that there are always three unstabilized moduli
corresponding to axions in the RR-sector. On the other hand, the N' = 1 solutions on
the coset models, except for SU(2) x SU(2), have all moduli stabilized. For the torus
and the Iwasawa solution, we also performed an explicit Kaluza-Klein reduction, which
led to the same result as the analysis with supergravity techniques, supporting the
validity of the effective supergravity approach also in the presence of geometric fluxes.
Furthermore, we have demonstrated that this superpotential and Kahler potential lead
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to sensible results in type IIB string theory with static SU(2)-structure.

The necessary and sufficient conditions for N' = 1 compactifications of type IIA
supergravity to AdS; with the strict SU(3)-structure ansatz force, for non-vanishing
Romans mass, the warp factor and the dilaton to be constant. On the other hand,
provided that we set the Romans mass to zero, nothing prevents the warp factor and
the dilaton to be non-constant. We analyzed the necessary and sufficient conditions
for an AdS4 N = 1 compactification of this type in section 2.3. However, to find
explicit solutions of this type turns out to be difficult. One reason is that one has to
leave the convenient notion of left-invariant forms that drops the explicit coordinate
dependence. In addition, as we inferred from the analysis in section 10.6, where we
turned on a small non-constant deformation for the warp factor, a non-constant warp
factor seems in general to require the presence of localized sources.

Two of the coset models of table 4.1 do admit a strict SU(3)-structure, but no type
ITA N =1 AdS4 vacuum. Choosing for simplicity the O-planes such that the one- and
five-forms are projected out and restricting to O-planes that are perpendicular to the
coordinate frame, we could compute the four-dimensional low-energy effective action.
In the same spirit, including appropriate O5/O7-planes, we computed the effective
action for the four type IIB static SU(2)-structure compactifications on coset spaces.
However, for three of these type IIB models we found a T-duality relating them to type
ITA models with strict SU(3)-structure that we already studied. On the other hand,
one model is new, since it is T-dual to a type ITA model with non-geometric fluxes.

Once the effective potential is known, one can study many interesting questions. For
instance, we discussed for some models how to identify the bubbles in moduli space
that contain one or more N’ = 1 AdS, solutions. Ultimately, we would like to uplift the
AdS4 solutions to a de Sitter space-time with a small, positive cosmological constant.
This might be accomplished by incorporating a suitable additional uplifting term in
the potential along the lines of, e.g, [23]. Although a negative mass squared for a
light field in AdS, does not necessarily signal an instability, after the uplift all fields
should have positive mass squared. Unless the uplifting potential can change the sign

of the squared masses, it is thus desirable that they are all positive even before the
Sp(2)
» S(U(2)xU(1))

uplifting. We found that this can be arranged for the coset models 58(23)

and % for suitable values of the orientifold charge.

An alternative approach towards obtaining meta-stable de Sitter vacua could also
be to search for non-trivial de Sitter minima in the original flux potential away from
the AdS4 vacuum. This approach is also appropriate for the models without an A" = 1
AdS, solution. However, there exist strong no-go theorems against slow-roll inflation
and de Sitter minima in type IIA string theory at tree level. We discussed the neces-
sary conditions to circumvent these no-go theorems. For instance, the dilaton-volume
dependence in type ITA SU(3)-structure compactifications forbids de Sitter vacua or
slow-roll inflation unless the compact space has negative scalar curvature induced by
the geometric fluxes (or other more complex ingredients are introduced). Regions in
moduli space with negative scalar curvature are indeed possible for most of the coset
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models we studied. To study these models further we adapted a refined no-go theo-
rem [92] and identified a geometrical criterion that allows one to separate interesting
SU(3)-structure compactifications from non-realistic ones.

As a matter of fact, after this analysis, only two of the coset models are not di-
rectly ruled out by any known no-go theorem and remain interesting candidates to
realize slow-roll inflation or stable de Sitter minima (without the inclusion of other
ingredients). These are the type ITA strict SU(3)- and type IIB static SU(2)-structure
compactifications on the model SU(2) x SU(2). For the former compactification, a nu-
merical analysis indeed reveals critical points (corresponding to numerically vanishing
€) with positive energy density, but only at the price of a tachyonic direction, corre-
sponding to a large negative eta-parameter, n < —2.4. Interestingly, this tachyonic
direction does not correspond to the one used in the different types of no-go theorems
of [120]. As our numerical search is possibly not exhaustive, we cannot completely rule
out the existence of de Sitter vacua or inflating regions for this case. One may try
to rule out this case by means of another no-go theorem, perhaps by using methods
similar in spirit to [120], although a direct application of their results to this case does
not seem possible.

On the other hand, the numerical analysis for the type IIB static SU(2)-structure
compactification reveals a lower bound on the first slow-roll parameter, € 22 9/7, which
strongly suggest the existence of a so far undiscovered no-go theorem for type 1B
compactifications (or, from the T-dual type ITA perspective, also in the presence of
non-geometric fluxes). To extend our study in this direction would be very interesting.
Following [98, 99] or [121, 122, 123], one could also try to incorporate additional struc-
tures such as NS5-branes or quantum corrections of various types. In section 5.3.1,
however, we found that at least for our type ITA models, the following additional in-
gredients cannot be added or do not work: NS5-, D4- and D8-branes as well as an
F-term uplift along the lines of O’KKLT [100, 101]. Perhaps also methods similar to
the ones in [124] for non-supersymmetric Minkowski or AdSs vacua might be useful for
the direct ten-dimensional construction of de Sitter compactifications.
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Appendix A

Conventions

We define an [-form as

1
A= l—!AMdex‘“ Ao Adgft,

and the exterior product of a p-form A and a ¢g-form B as

(p+q)!

(AN B) = P

141 - ptq (11 tip P lip g1 hiptq] 0

where the antisymmetrization is understood with factors,
4

] = l—'(Am___M + antisymmetric permutations) .

The exterior derivative is d = dz*0,, and given by

dAM1---uz+1 = (I + 1)6[M1AM2---M1+1} :

The contraction of an [-form A with with a vector v = v’ 8’; is defined by

1 ,
mU]AjN2~~~ﬂldx#2 /\ e /\ da:”’ .

The operator « acts on forms by reversing the order of their indices, i.e.,

Ly A =

1
O[(A) = l_'Aul...yldxul Ao Adght,

Note that this results for an /-form in

The Hodge dual tensor of an [-form A and a given metric g is given by

1
(*A)ltl---#D—l - nv |g‘EIJI---IJD—lVl---VlgUIpl "'gulplAﬂl---ﬂl )

(A1)

(A.2)

(A.8)
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where ¢ is the totally antisymmetric tensor such that ey p = 1. With this definition

we obtain
*xx A= (=1)PDgign(g)A. (A.9)
It follows for the kinetic terms for the RR-fields
1 1 —1)n(P=n)
_§/de |g‘aFM1...unF#1m#n = _%/Fn /\*Fn- (A.lO)

The volume form is defined as

*1 = vol. (A.11)

We often use the 10 — 4 + 6 split which induces forms of the type a, A 3,, where
oy is an external p-form and 3, an internal ¢-form. We can use

*10(ap A Bg) = (=1)P x4 cp A *6f3q (A.12)

which implies the useful relations

x103 = voly A %603, *10(voly A B) = — %6 3,
(A.13)
*10V014 = —VOlG s *10V016 = V014 .
We define an inner product on forms as follows
(@.6) = (1) [ansp. (A.14)

where [ is the dimension of both @ and . Further we define the adjoint d of the
exterior derivative as follows

(der, ) = (o, d"B) (A.15)

We find using eq. (A.14)

i dx for D even
df = sign(g) Al
{ (—1)"*1'sign(g) xdx for D odd (4.16)
The Laplacian is defined as follows
A =dld+dd'. (A.17)

For the contraction of a (poly-)form with gamma matrices we introduce the following
notation

1
A = A = Z l—!AulmulﬂyﬂlmlJl , (A18)
l

where we use the underline if the slash makes the expression unreadable.
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Type IIA supergravity

The bosonic content of type Il supergravity consists of a metric g, a dilaton ®, an
NSNS three-form H and RR-fields F,,. In the democratic formalism of [44], where the
number of RR-fields is doubled, n runs over 0,2,4,6,8,10 in ITA and over 1,3,5,7,9
in type IIB. We write n to denote the dimension of the RR-fields; for example (—1)"
stands for +1 in type ITA and —1 in type IIB. After deriving the equations of motion
from the action, the redundant RR-fields are to be removed by hand by means of the
duality condition:

(n=1)(n=2) n-5
(n=D)n=2) n_5g

F, =(-1) e 2 " x10 Flio—n) (B.1)

given here in the Einstein frame. We will often collectively denote the RR-fields, and
the corresponding potentials, with polyforms F' =" F, and C =) C(n-1) so that:
F=dyC.

In the Einstein frame, the bosonic part of the bulk action reads:

1 10 1 9 1 .9 1 5-ng 9
Shulk = 2 A'zy/=g |R— 5 (09)* - Je "H* - 1;6 P2 (B.2)
where for an [-form A we define
1
A2 - AA= —AMl...MlANl...ngMlNI "'ngNl . (B3)

!

Since (B.1) needs to be imposed by hand this is strictly-speaking only a pseudoaction.
Note that the doubling of the RR-fields leads to factors of 1/4 in their kinetic terms.

The contribution from the calibrated (supersymmetric) sources can be written as:

Sumee = [1C.1) - >t [, (B.4)

with
%

~ T ~ M My, —
—_— dX AL AdX B.5
(TL _ ].)!élTEl €1 FYMl---Mn—lEQ I ( )

U, = e dt A
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with é; o nine-dimensional internal supersymmetry generators. For space-filling sources
in compactifications to AdS, this becomes [125]

Uy = voly A e~ Im 0| (B.6)

—4

with ¥y the pure spinor ¥y in the Einstein frame.

The dilaton equation of motion and the Einstein equation read

1 1 n .
0=V + §e—¢H2 -3 > (- n)e T PF2 4+ 10 Z n—4)eT®x(V,,5), (B.7a)

n

1 1 n
0= Run + gun (—e—‘I’H2 += ) (n- 1)657‘1)1?,3) (B.7b)

1 1 _ 1 5—n
— 3O PIND — e ‘PHM-HN—ZE e *Foa-Foun
n

1 .
- 2% Z ei® <__n9MN + 29P(Md36 ® LN)) Un,j)

where we defined for an [-form A

1 M3yN>

Ay - An = mAMM2...MlANN2...N19 - gMiN (B.8)

The Bianchi identities and the equations of motion for the RR-fields, including the
contribution from the ‘Chern-Simons’ terms of the sources, take the form

0=dF + HAF +2r3,7, (B.9a)
0=d (eS_an> * Fn> — TV H A% F ) — 263 a(j) (B.9b)

Finally, for the equation of motion for H we have:

1 _n .
0=d(e™+H) - 53 e T % Fy A Flpgy + 2630 Y ef%T, Aa(f)] . (B.10)

n n 8

In the above equations we can redefine j in order to absorb the factor of 22,
(2630)7 — 4+ (B.11)

which we do in this thesis.



Appendix C

Basics of generalized geometry

In this appendix, we summarize the most important concepts of generalized geometry
that will be of importance for this thesis. This treatment of generalized geometry is
not complete, and we refer the interested reader to the literature. Very valuable lecture
notes can be found in [35] and a brief introduction in [38]. A complete treatment of
generalized geometry is presented in [126, 127].

C.1 Generalized complex structures and pure spinors

Generalized geometry is a generalization of ordinary geometry. In fact, it is a unification
and generalization of the language of complex and symplectic geometry, which seems to
be natural to describe supersymmetric compactifications of supergravity with fluxes. As
we will see, the language of generalized geometry allows one to rewrite the equations for
a supersymmetric solution in a very concise form making the analysis more tractable.

The main idea is to replace the ordinary tangent bundle T'M of a d-dimensional
manifold M by a sum of the tangent bundle and the cotangent bundle TM & T*M,
which we denote in the following as the generalized tangent bundle. A generalized
vector X living on this generalized tangent bundle is the sum of an ordinary vector
X € I'(TM) and a one-form ¢ € I'(T*M), such that X = X + &. On the generalized
tangent bundle, there is a canonical metric £, defined for X = X +¢ and Y =Y + 9 as

LX,Y) =&(Y) +n(X). (C.1)

This metric is maximally indefinite, i.e., it has signature (d,d), and thus it already
reduces the structure group to O(d,d). In analogy to ordinary geometry we define a
generalized almost complex structure as a map

T TM&T*M —»TM&T*M, (C.2)

that squares to minus one, J? = —144, and is hermitian with respect to the canonical
metric £

L(TX,TY) = L(X,Y). (C.3)
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A generalized almost complex structure further reduces the structure group from O(d, d)
to U(d/2,d/2) !.

As an example, we can construct from an ordinary complex structure Z, 7? = —1,
or an ordinary symplectic structure J, the following generalized complex structures,

- 0 0o J!
j1=< 0 IT>’ ‘72:<_J 0 >, (C.4)

This demonstrates that both essential parts of an SU(3)-structure, namely the complex
structure and the symplectic structure, are described in the language of generalized

respectively,

geometry in a completely uniform way.

In generalized geometry, pure spinors are described by polyforms ¥ € A°*T*M.
Indeed, a section X = (X, £) of the generalized tangent bundle acts on such a polyform
¥ in a natural way as follows

XU =1xU+EAT, (C.5)
and it is easy to show that
{X, YV} -0 =L(X,Y)U. (C.6)

This is nothing else than the spin representation of Spin(d, d) and therefore polyforms
U can be thought of as spinors for Spin(d,d). The generalized gamma-matrices on
Spin(d, d) are vectors X (acting by contraction, tx) and one-forms ¢ (acting by &£A).
We choose in the following a basis for the generalized gamma-matrices as follows

I's=t, for m=%X=1,....,d,
(C.7)
I'y=e"AN for m+d=S=d+1,...,2d.

We can further decompose the set of polyforms W into the spaces of even and odd
forms: positive or negative parity spinors correspond to polyforms with all dimensions
even or odd, respectively, which we denote by ¥, and ¥ _.

From the action (C.5) we can define the annihilator space Ly of a spinor as follows
Ly ={XeTMaT*M :X-¥ =0}, (C.8)

which is isotropic 2, since L(X,Y)¥ = (X - Y+ VY -X)-¥ =0 for all X,Y € Ly. If
Ly is maximally isotropic, i.e., if its rank is d, ¥ is a pure spinor. This somewhat
mathematical concept of pure spinors works actually for the more familiar spinors

'Let us mention that the concept of integrability for a generalized almost complex structure has a
natural generalization from ordinary geometry by replacing the Lie bracket with the Courant bracket.
We refer the reader to the literature for the proper definition of an integrable generalized complex
structure (see, e.g., [35]). In the following we drop the “almost”.

%A subbundle L is isotropic if £(X,Y) =0 for all X,Y € L.
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of Spin(d), d even, in exactly the same way, i.e. a spinor is pure if the number of
independent gamma-matrices which annihilate the spinor is d/2. As a matter of fact,
in d < 6 every Weyl spinor is pure.

In ordinary geometry there is a one-to-one correspondence between a complex struc-
ture and a Weyl spinor (see for instance eq. (2.5)). An analogous property holds between
a generalized complex structure and a pure spinor, where the latter are described by
polyforms. Let us first define a fundamental two-form as follows

Jny = (Im¥, TypIm ¥) , (C.9)

where T1, 3 = 1,... , 2d and the generalized gamma matrices I'y; are given in eq. (C.7).
We can use the canonical metric £ to raise one index forming J"s which generally
defines a generalized complex structure . The Mukai pairing (-,-) in eq. (C.9) is given
by

(U1, W9) = Uy A a(T2)]top (C.10)

where the operator a acts by inverting the order of indices on forms (see eq. (A.6)) and
“top” indicates that we project on the top-form part, i.e., the part that is proportional
to the volume form. The Mukai pairing has the following useful property:

(eBUy, eBUy) = (T, 0y), (C.11)

for an arbitrary two-form B.

Gualtieri established in [127] that every generalized complex structure is associated
to a pure spinor that can be written as

T =Qp AeW TP (C.12)

where w, B are real two-forms and §2; a complex decomposable k-form, i.e. it can
(locally) be written as the wedge product of one-forms, such that (¥, ¥) # 0. k is
called the type of the pure spinor.

The construction of a pure spinor of the form (C.12) is not straightforward. In
particular, for a pure spinor of type k > 1 the condition that it is decomposable is
quite cumbersome. As showed by Hitchin [128, 126] and reviewed in [27] the complex
pure spinor can be constructed as a function of a real spinor. This Hitchin construction
also guarantees that a pure spinor of type & > 1 is decomposable.

The procedure works as follows. Let us assume that we are given a real form y which
we want to consider as the imaginary part of the pure spinor ¥ to be constructed, x =
Im¥. Using the correspondence (C.9), we define the associated generalized complex
structure 7. The problem is the proper normalization such that 77\ 7%y = -0y,

3Note that the correspondence actually involves the imaginary part of the pure spinor. As we will
discuss in the following, the imaginary part of the pure spinor completely determines the pure spinor.
This will also affect the proper normalization of 7.
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since the normalization of x is not fixed due to (x, x) = 0. Hitchin proposed to define
a quartic function of y = Im ¥ given by

H(x) =/ —11—2JH272H : (C.13)

This function is called the Hitchin functional. The proper normalization for J is then
the condition that H(x) = 1. A necessary condition on the real form x to define a
generalized complex structure via (C.9) is that s 7% < 0. Real forms satisfying this
condition are called stable real forms, and these are sufficient to define a SU(d/2,d/2)-
structure.

Via the Hitchin procedure we can construct the real part x that correspond to x
such that the complex decomposable pure spinor is given by ¥ = y + iy as follows

1
6H (x)

X = T Tisx . (C.14)

and the Hitchin functional can be rewritten using (C.9) as [27]

H(X) = 5 (00 = 110, 9). (©15)

We use this expression to evaluate the Kihler potential given in eq. (3.30) and eq. (3.39),
where we need to evaluate [(¢,¢) with ¢ = e 0.

C.2 SU(d/2)xSU(d/2)-structures from pure spinor pairs

As we have seen, the existence of a generalized complex structure reduces the struc-
ture group of TM & T*M from O(d,d) to U(d/2,d/2). If it is possible to define two
generalized complex structures, J; and Jo, that commute, [J1,J2] = 0, and such that
the generalized metric G = —LJ1J> is positive definite, the structure group is further
reduced to its maximal compact subgroup, U(d/2)xU(d/2).

An U(d/2)xU(d/2)-structure, or equivalently two compatible generalized complex
structures (J1, J2), provide automatically a generalized metric (g, B), where g is an
ordinary metric and B a two-form on T M. This works as follows. Let us define the
product

G=-0Ts. (C.16)

Since Ji,J2 commute and square to —1, G squares to 1. Taking into account the
hermiticity of J; and J5 (see eq. (C.3)) it follows GT £ = LG and it turns out that the
most general form of G is given by

| 1
=g, 250 2L ) (c.17)
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from which we easily read off the metric ¢ on T'M that is positive definite since we
required that LG is positive definite.

Two such generalized complex structures defining a U(d/2)xU(d/2)-structure are
said to be compatible. The condition that J; and J5 commute is equivalent to the
structure conditions (these conditions are sometimes called compatibility conditions)
for a given structure. It can be shown that in terms of the associated pure spinors we
can reexpress the compatibility condition as

(U, X-Uy) = (¥, X-Wy) =0 VXeETM®T*M. (C.18)
Applied for the special cases of strict SU(3)-structure and static SU(2)-structure this

is equivalent to eq. (2.6a) and eq. (2.16), respectively.

A U(d/2)xU(d/2)-structure defines two compatible pure spinors only up to an over-
all scalar function. We can further reduce the structure group to SU(d/2)xSU(d/2)-
structure by removing the ambiguity of rescaling the pure spinors requiring globally
defined pure spinors such that (¥, ;) # 0 and (¥y, U3) # 0. We can then normalize

the pure spinors as follows
(W, W) = (g, Wy) #0. (C.19)

The SU(d/2)xSU(d/2)-structure is actually associated to two spinors (") and n(®)
of Spin(d) defined on M. Given two Spin(d) spinors n") and 7(?) that are in gen-
eral independent (and define two in general independent SU(d/2)-structures) we can
construct two compatible pure spinors W via the familiar Clifford map as follows

8 21 8 21
‘1’+=Wn(+)®n(+) : ‘I’—=wni)®n(_) : (C.20)

where the Clifford map is given by the isomorphism
TeoP=>" ;—!\I/il..m““'“ : (C.21)
!
We can use the following useful Fierz identity
M = § 3 a0 (©22)

to derive

I 1
Vi = Wﬁi”’m...imi) . (C.23)

Let us now consider six-dimesional space. Following the conventions of [38], we can
define the most general relation between two spinors as follows
1
Ugr) = any,
, ‘ (C.24)
0 = b(kyny + kL V'yin-),
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where 2|V|? = |k >+ kL[> = 1 and |a| = |b|. With these definitions and the definitions
of wy and Qs in eq. (2.15) we can express the most general pure spinors from eq. (C.23)
as follows
U, = 67i062V/\V* (kHein _ kJ_QQ),
. (C.25)
U_=-2VA (k”QQ + kye*?),

Using the terminology of [38, 39] we may consider the following interesting cases:

o strict SU(3)-structure: k = 1, k; = 0. The spinors 7 and 5 are parallel
everywhere. The types of the pure spinors (¥, ¥_) are (0,3);

e static SU(2)-structure: k=0, kL = 1. The spinors n™ and n® are orthogonal
everywhere. The types of the pure spinors (¥, ¥_) are (2,1);

o intermediate SU(2)-structure: k| # 0, k. # 0. The spinors 7 and 7 are at
a fixed angle, but neither a zero angle nor a right angle. The types of the pure
spinors (U, ¥_) are (0,1);

¢ dynamic SU(3)xSU(3)-structure: k| # 0, k; # 0. The angle between n) and
n?) varies, possibly becoming a zero angle, type (0,3), or a right angle, type (2,1),
at a special locus.

In this thesis we will only consider strict SU(3)-structure and static SU(2)-structure
compactifications, so let us in the following look at these cases in more detail.

C.3 Strict SU(3)-structure and static SU(2)-structure

Let us first consider the case of strict SU(3)-structure and specialize the expressions
obtained so far in terms of generalized geometry to this case. The two spinors n(!) and
77(2) are proportional

2 1
1y = o/am!. (C.26)
with \n(j)\? = |a|?, |nf)|2 = |b|2. In the following, we will assume |a| = |b| such that

b/a = '’ is just a phase. We will see in the following that this condition is implied
by the orientifold projection [43]. From eq. (C.23) (or from eq. (C.25) with k| = 1,
k1 = 0) we get the pure spinors for the strict SU(3)-structure as follows

U_=-Q, U, =e Well (C.27)

where J and 2 are defined in eq. (2.5).

The derivation of the metric also simplifies for a strict SU(3)-structure: from eq. (C.4)
and the generalized metric (C.17) we immediately conclude (for B = 0)

Imn = ImlJln ) (C.28)
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where we can construct the complex structure Z from ImQ as follows
T = ™5 (Tm Q) ks (M Q) g (C.29)

This follows from eq. (C.9) and J; in eq. (C.4). We then properly normalize it with
the Hitchin functional, which for strict SU(3)-structure simplifies to the expression in
the denominator of the following equation,

IT=— (C.30)

so that 72 = —1.

It is a simple exercise to show that the compatibility condition (2.6a) and the nor-
malization condition (2.6b) for J and © follow from eq. (C.18) and eq. (C.19) for the
pure spinors (C.27).

The decomposition of the intrinsic torsion in terms of the five torsion classes is given
in eq. (2.10). Note that by definition Wj is primitive, which means

WoANJANJT=0. (C.31)
One interesting property of a primitive (1,1)-form is
*Wa AJ) =Wy, (C.32)

which can be shown using J™Ws,,,, = 0 (which follows from the primitivity) and
I Jy"Wpq = Wiy (which follows from the fact that W, is of type (1.1)).

Let us calculate the part of dW, proportional to Re{2:
dW, =aReQ+ (2,1) +(1,2) , (C.33)

for some a. Taking the exterior derivative of & A W5 = 0 and using eq. (C.33) as well
as egs. (2.6b) and (2.10), we arrive at

Y
Wy AWy AJ = gaﬁ . (C.34)
We can now use eq. (C.32) to show
1
Wy, AWy AJ = §|W;|2v016, (C.35)

from which we obtain o = —i|Ws|?/8, in accordance with (2.33).

(1)

For the static SU(2)-structure case we have two everywhere orthogonal spinors 7.

and nf) and we can define a vector V' as in section 2.1.2,

0\ = an., (C.36a)



186 C. BASICS OF GENERALIZED GEOMETRY

0 = bVinin_ (C.36b)

where \775_1)\2 = |a|?, \775_2)\2 = |b|? and |a| = |b]. Only the relative phase @ in b/a = €'
is physical. With these definitions we obtain from eq. (C.23) (or from eq. (C.25) with
ky=0,k = 1) the pure spinors as follows

T, =—e 2V Q, (C.37a)

T_ = -2V Ael?, (C.37Db)

where Q9 and wy are defined in eq. (2.18). In the following it will be convenient to
absorb the phase e~
the compatibility conditions (2.16) from condition (C.18) and the pure spinors (C.37).
However, in [39] it is shown that the conditions (C.18) are indeed vanishing provided

in 9. This time it is not a completely trivial exercise to show

one imposes the conditions (2.16).

To calculate the induced metric for a static SU(2)-structure we compute, with
eq. (C.9), the corresponding generalized complex structures J; o for the pure spinors
(C.37), and from eq. (C.17) we can read off the metric g.

Orientifolds

Following [43], we can identify the action of a supersymmetric orientifold on the pure
spinors W.. An orientifold projection consists of modding out the theory by an op-
erator O = Q,0 for 05/09- and O6-orientifold projections and O = Q,(—1)"to for
03/07- and 04/08-orientifold projections 4. Here, €, is a reflection on the world-
sheet exchanging the left-movers with the right-movers, ¢ is an internal involution
(02 = 1) which acts only on the internal manifold and leaves the external space-time
untouched and (—1)¥%, where Fy, is the fermion number of the left-movers, is used in
some cases to ensure that @2 = 1. Under a supersymmetric orientifold projection, the
total ten-dimensional supersymmetry parameter e/ + X has to be invariant. Since the
world-sheet reflection €2, exchanges left- and right-movers, we end up with the action
of the involution on the ten-dimensional supersymmetry generators

05/09, 06 : o€l = €9, o'ea = €1, (C.38a)
03/07,04/08 : o¥e1 = —e9, o€y =€ . (C.38b)

If we now plug the N' = 2 ansatz (2.25) into these equations we immediately see (since
o only acts on the internal spinors) that the two external supersymmetry generators
¢! and ¢? can not be chosen independent and should be proportional. Since we can
absorb the proportionality factors in the definition of the internal spinors, we will put
¢! =(¢? = ¢, and we end up with an ' = 1 theory with the ansatz (2.3) ®. Further

“We take here the conventions of [43].
An ansatz for N > 1 is then only possible if there are more invariant internal spinors.
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reducing eq. (C.38) to the internal spinors ng) with the ansatz (2.3), we find for the
cases we are interested in:

05 o*ni) =, ont) =), (C.39)
06 : J*ng) = 775,:2) , 0*775:2) = 772;1) , (C.39b)
07: o) = -, ont) =), (C.390)
and, since we define \n(j)\? = |al?, \nf)\Q = |b|?, it follows from o2 = 1 that |a| = |b].

Plugging eq. (C.39) into the definition of the pure spinors (C.20), we get [43] (see also
156, 38))

05 : oy =a(ly), oV = —a(¥_), (C.40a)
06 : o'V =a(Py), oFV_=a(¥_), (C.40b)
o7 : oy = —a(V,), oV =l ), (C.40c)

Applying this to the explicit pure spinors for a strict SU(3)-structure (C.27) and a
static SU(2)-structure (C.37) we arrive at eq. (2.40b) and eq. (3.40), respectively.

C.4 Supersymmetry conditions in generalized geometry
language

Generalized geometry allows one to rewrite the N' = 1 supersymmetry conditions (2.20)
with the ansatz for the spinors (2.3) in a very concise form. In order to obtain similar
equations in type IIA and type IIB, we define

Uy =T,  Uy=Uy, (C.41)

with upper/lower sign for IIA /IIB. We collect all the RR-fields of the democratic for-
malism into one polyform and make the following compactification ansatz

F=F+voly A F, (C.42)

with voly the four-dimensional (AdS,) volume form 6.

With these definitions the supersymmetry conditions (in string frame) take the fol-
lowing form in both type ITA and type IIB [38]

dg (e*2Im¥y) = 3¢ PIm (W*0y) + M F, (C.43a)
dir [e347PRe(W*Uy)]| = 2|W|2e*' " PRe ¥y, (C.43b)

5Tn this thesis we will drop the hat on the purely internal part of the RR-flux F' and hope that it
is clear from the context whether we mean the full F' or only the internal part. Instead, we use the hat
to denote background values of the fields.
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dy [347PIm (W T,)] =0, (C.43c)

where we used |a|? = |b|? o e, Here W is defined in terms of the AdS Killing spinors
1
VG- = i§W7uC+ ) (C.44)

for ITA/IIB. These equations should be supplemented with the Bianchi identities for
the RR-fluxes (B.9a) where the (localized or smeared) sources j have to be calibrated

(ReUy,j5) =0, (C.45a)
(15, X-§) =0, VXel(Tya®Ty). (C.45b)

Analogously to the strict SU(3)-case, an easy way to solve these calibration conditions
is to choose

j=—-kRe¥y, (C.46)
for some function k.

An advantage of this formulation is that we only need to know how the exterior
derivative d acts on the left-invariant forms in which we expand the pure spinors. For
the nilmanifolds and the coset spaces we consider in this thesis, the action of the exterior
derivative d is given by the Maurer-Cartan equation (4.4) and the structure constants.

Inserting the pure spinors for a strict SU(3)-structure (C.27) in the equations (C.43)
for an N' = 1 supersymmetric solution and considering the type ITA case (where ¥; =
U_ and Uy = U,), we arrive at eqs. (2.27) and (2.30) (these equations were first
derived in [31] using the language of SU(3)-structures). However, these solutions assume

constant warp factor e”

and dilaton @, which is required for non-vanishing Romans
mass. As we showed in section 2.3, choosing the Romans mass to be zero, we can derive

a solution with non-constant warp factor and dilaton.

On the other hand, for the type IIB case (for which we exchange the role of ¥, and
U_) there is no AdS, solution possible, as already noted in [129]. The reason is that
for this case the left-hand-side of eq. (C.43b) is a four-form, which would put the zero-
and two-form part of ¥, = e™¢?/ to zero, making (C.19) impossible to be satisfied.
A way out is to put W = 0 implying the vanishing of the AdS, curvature. We conclude
that there are no N'=1 AdS, vacua for type IIB and strict SU(3)-structure.

On the other hand, plugging the ansatz (2.19) for a static SU(2)-structure in the
supersymmetry conditions (C.43), one finds the necessary equations for the SU(2)-
structure quantities V', wy and €29. However, these equations are quite complicated and
it turns out that it is less complicated to try to solve these equations directly in terms
of pure spinors.

Similar to the argument that excludes N' = 1 AdS, vacua for type IIB and strict
SU(3)-structure, we conclude from (C.43b) and the ansatz (C.37) that there are no
N =1 AdS, vacua for type ITA and static SU(2)-structure, as was already noted in
[42]. Indeed, the left-hand-side of eq. (C.43b) is a three- and five-form which implies on
the right-hand-side that V' = 0. This makes it impossible to satisfy eq. (C.19). Once
again, putting W = 0 resolves the problem. We summarize these results in table 2.2.



Appendix D

Smeared sources and orientifold
involutions

In this appendix we propose a procedure to identify the orientifold involutions associ-
ated to a given source term j representing the Poincaré dual of smeared orientifolds.
As we will see, the Hitchin functional defined in appendix C provides a useful criterion
to classify the possible source terms j.

Orientifold involutions from decomposable forms

Let us first give an example for a localized orientifold in flat space. If we have an

orientifold along the directions ¥ = (', 22, 2%) then the corresponding source is

j=Topjs = —Topd(z*, 25 2%) dz* Adz® A dab, (D.1)

where T, < 0 for an orientifold and j is the Poincaré dual of ¥ satisfying

/¢ /¢jz /qwz, (D.2)

for an arbitrary form ¢ '. In this case the orientifold involution is of course
06 : et = —gt, 25— —a®, 2f o —af, (D.3)

Suppose we now introduce many orientifolds and completely smear them in the direc-

tions (z*, 2°, %) obtaining

j = —Topcdz* Adz® A da, D.4
P

where ¢ is a constant representing the orientifold density. We have now lost information
about the exact location but we would still like to associate the orientifold involution
06 : dzt — —dz*, d2° — —dz®, dz% —» —dab. (D.5)

'The definition with the Mukai pairing is the one appropriate for generalizing to D-branes with
world-volume gauge flux as explained in [130]. Here it will just give an extra minus sign.
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An important observation is that dz* A daz® A dz® is not just any form, it is a
decomposable form, i.e. it can be written as a wedge product of three one-forms. These
one-forms span the annihilator space of Ty, the tangent space of . So if we are given
a smeared orientifold current j we should write it as a sum of decomposable forms and
then associate to each term an orientifold involution as above.

It is not straightforward to decide whether a given form is decomposable or not
and how we could write 7 as a sum of decomposable forms in a unique way. Let us
first give a mathematical definition of a decomposable form. Let V be a d-dimensional
vector space and V* its dual 2. A (real/complex) p-form j € APV* is called simple or

decomposable if it can be written as a wedge product of p one-forms 3.
In [131] a criterion for a simple form is given as follows. Be
jP={XeV:ixj=0}CV, (D.6)
and
W = Ann(j+) C V*. (D.7)

The form 7 is simple if and only if dimW = p. Using this the following alternative
criterion is shown:

Theorem: A p-form j € APV* is simple if and only if for every (p — 1)-polyvector
¢ € APy,

i Nj=0, (D.8)

where 1¢j is the one-form contraction of j with .
For us of importance is the special case of three-forms in six dimensions. For this
case there is another useful theorem due to Hitchin [128].

Theorem: Consider a real three-form j € A3V* and calculate its Hitchin functional
H(j) defined in (C.13). Then

e H(j) > 0if and only if j = j; + jo where ji, jo are unique (up to ordering) real
decomposable three-forms and j; A jo # 0,

e H(j) <0ifand only if j = a+a& where « is a unique (up to complex conjugation)
complex decomposable three-form and o A @ # 0.

Now we have two base-independent characterizations of j: the Hitchin functional
H(j) and dim W. Using these two characterizations we can classify the possible j and
decompose it in simple terms:

2For nilmanifolds and coset spaces that we consider in this thesis we always have a basis of globally
defined left-invariant one-forms.

*Note that a (real/complex) form of fixed dimension is a pure spinor if and only if it is simple. In
fact, we could regard the notion of pure spinor as a generalization of the notion of decomposable forms
to polyforms.



191

e if H(j) > 0 it follows immediately that j is a sum of exactly two real simple
terms,

e if H(j) < 0 then j is a sum of exactly two (conjugate) complex simple terms and
thus of exactly four real simple terms,

e if H(j) = 0 we have three cases. Either (D.8) is satisfied (equivalently dim W = 3)
and j is simple, either dim W = 5 and then j will be a sum of two simple terms
j1 and j9 such that j; Ajo =0, or dimW = 6 and j will be a sum of three simple
terms. All this is easy to prove by looking at possible types of sums of two and
three simple terms.

An important remark is in order: while the Hitchin theorem states that for H(j) #
0 the two real/complex forms in the decomposition of j are unique (up to order-
ing/complex conjugation), the choice of one-forms out of which these forms are made
is not unique. In the case of H(j) < 0 it is the freedom of choosing a basis of complex
one-forms belonging to a complex structure, which is SL(3,C). As a consequence the
choice of the four real forms in which j is decomposed is not unique. Indeed, sup-
pose we choose one basis of complex one-forms and associated x and y coordinates:
e*" = e —ieY'. Then j can be written as the sum of the following four terms:
j _ Re(ezlz2z3) _ e$1$2m3 . e$1y2y3 _ ey1x2y3 _ €y1y2m3 ’ (Dg)
which leads to the following orientifold involutions:

1 1 2 2 3 3

06 : e’ — —e” e’ — —e” e’ — —e”
2 2 2
1 1 2 2 3 3
06 : et - —e", eV - —e¥, ¥ - —¢e¥,
Yl y! 22 22 Y3 y? (D.10)
06 : e/ - —-ev, e = -, & = —el,
1 1 2 2 3 3
06 : e = —e¥, e =5 -, e - —e".

If we perform a SL(3,C) transformation, j takes exactly the same form, but now in the
new basis. So alternatively we could have chosen four orientifold involutions taking the
same form as the old ones, but now in the new basis, which is rotated. This means that
our choice of orientifold involutions is not unique. We must then further choose them
such that the structure constant tensor of the group or coset is even, and Re{2 and J
are odd.

In the case of H(j) > 0 the argument does not apply because the remaining freedom
GL(3,R)xGL(3,R) leaves the two terms of the decomposition separately invariant and
the choice of orientifold involutions is unique.

Application to SU(2)xSU(2)

Let us now apply the above procedure to the model of section 10.5. Calculating the
Hitchin functional H(5%) of (10.23) we find that it is negative so that it contains four
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orientifold involutions. We must now fix the freedom of choosing them such that Re2
and J are odd, and the structure constant tensor f is even. Some reflection should
make clear that if Re is to be odd it should be a sum of the same four terms as 5%,
but with different coefficients. In fact, we could reverse the procedure and choose a
complex basis e*' in which Q and J take their standard form:

Q=¢' = Iy e (D.11)

Then Re(2 and J are automatically odd under the associated orientifold involutions
(D.10). However, this should of course also be the orientifold involutions that follow
from j®. This will be the case if and only if % has the same terms as ReQ (but with
different coefficients) or equivalently 56 should take the form

2 51,2

i 1,2,3 2.3
jGZRe (cUezzz +Cllezzz

2

+0226z12‘ 23 +c336z122‘3) ’ (D.12)

with all coefficients ¢ real. To accomplish this we still have the freedom to make a base
transformation such that Q and .J invariant, i.e. an SU(3)-transformation. A priori, 5%
is an arbitrary three-form which transforms under SU(3) as

20=141+3+3+6+6. (D.13)

However, we know that j° has to satisfy the calibration conditions (2.36), which remove
the 3+ 3 representation and only leave the form proportional to Re{ out of 1+ 1. Here
the 6 is the (3 x 3)g i.e. the symmetric product of two fundamental representations of
SU(3). It follows that the most general j® satisfying the calibration conditions looks
like

j6 = cgRe + Re [Ckig(k‘jdij A Lzz‘)Qi|

2,3

= cgReQ 4+ Re [cllezlz‘ 2

12 722223 21zl 23 13 732223 212231 23 212323 212232
+c (e +e +c”le +e +c (e +e ,

152,3 2
CQQez z°z

1,253
+c33ez 2%z

(D.14)
with ¢g real and the entries of the coefficient matrix
Al pl2 13
C=|[ " 2 B |, (D.15)
31 .32 33

complex. Now we have to find an SU(3)-transformation to put 5 in the form (D.12). ¢q
does not transform but is luckily already of the right form, while the coefficient matrix
transforms as

C-UcuT. (D.16)
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From (D.12) we see that we want to transform C to a diagonal real matrix. In fact,
since the above transformation cannot change the determinant this is only possible if

det C € R. (D.17)

This is a condition we have to add to the calibration conditions. For the 5 of (10.23) one
can check that it is indeed satisfied and it is possible to find the complex coordinates
with the required properties. Also, under the associated orientifold involution the
structure constant tensor f is even as required. The complex coordinates are given in
(10.24). Defining the associated complex one-forms e = e — eV we arrive at the
transformation

_ 2 _ )2 2 _ 2
exlz a +(b C) +h(el+e4)’ eylza (b+C) +h(el—e4)’

2¢14/2bc(2bc — h) 2¢14/2bc(2bc — h)

2 b+ (@—c)?+h b —(a+c)?+h

_ 2 5 y? 2 5
et = e"+e’), e = e”—e’), D.18
2¢1v/2ac(2ac — h) ( ) 2¢14/2ac(2ac — h) ( ) ( )
—c? b2 —h - —(a—b)>+h
613 _ c+ (a’+ ) (63 —66), ey3 _ c (a’ ) + (63 -|-€6),

2¢1+/2ab(2ab — h) 2c1+/2ab(2ab — h)

and the orientifold involutions given in eq. (D.10). The odd two-forms and even three-
forms under the involutions are then given by

3

9 1,1 2,2 3
Y( ): exy’effy’exy’

)

(D.19)

xlz2y3 :rly2x3
, €

v .

1.,.2,3 1,2,3
r-x
f eY L —eV vy

(&

With the transformation (D.18) we obtain the invariant forms in the old basis ¢’ which
we display in eq. (11.54).
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