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Chapter 1Introdu
tionThe seminal �ndings of theoreti
al physi
s of the 20th 
entury are the standard modelof parti
le physi
s and the general theory of relativity. The standard model of parti
lephysi
s des
ribes the world at small length s
ales and predi
ts with an impressive a

u-ra
y how parti
les su
h as quarks, ele
trons and neutrinos intera
t. On the other hand,the theory of general relativity provides us with a detailed explanation for astrophysi
alobservations at very large s
ales.The dis
overy of the standard model was guided by quantum ele
trodynami
s. At-tempts were made to 
onstru
t a gauge theory of the weak intera
tion, and in the mid-1960s the hypothesized 
harged intermediate ve
tor bosons (W�) were 
omplementedwith a neutral partner, the Z-boson. The in
orporation of the Higgs me
hanism intothe ele
troweak theory solved the problem of having both a gauge theory and massivemediators of the weak intera
tion. Completed with the theory of the strong intera
-tion, the standard model of parti
le physi
s was born, a theory of three of the fourknown fundamental intera
tions and the elementary parti
les that take part in theseintera
tions. Experimentally, the standard model (extended by massive neutrinos) hasbeen tested to a very high pre
ision and the only missing ingredient to be dis
overed isthe s
alar Higgs parti
le [1℄. However, physi
ists have little doubt that this dis
overywill happen in the LHC experiment.On the other hand, despite the su

ess of the standard model in all its 
onfrontationswith experimental results, it leaves us with a whole bun
h of fundamental theoreti
alquestions. The most important drawba
k is that it is not a 
omplete theory of funda-mental intera
tions sin
e it does not in
lude gravity. However, the 
onstant progressof physi
s towards uni�
ation of all intera
tions is a strong indi
ation that a theory inwhi
h all the for
es are treated on the same footing may exist. Another weak pointof the standard model is that it requires a large number of unrelated and arbitrarynumeri
al parameters put in by hand, mostly related to the ad-ho
 introdu
tion of theHiggs and Yukawa se
tors in the theory. And there is the famous hierar
hy problem ofthe standard model: via the Higgs me
hanism all masses of the standard model par-ti
les are proportional to the Higgs mass mH, whi
h is expe
ted, from measurements



2 INTRODUCTIONof the mass of the W -bosons, to be of order of the ele
troweak s
ale, mH � 100 GeV.The problem is that m2H re
eives quantum 
orre
tions quadrati
 in the 
uto� s
ale �from the virtual e�e
ts of every parti
le that 
ouples, dire
tly or indire
tly, to the Higgs�eld. If we assume the standard model to be valid up to a s
ale of order of the Plan
ks
ale, this quantum 
orre
tion to m2H is some 30 orders of magnitude larger than theexperimentally favored value of the Higgs mass. The possibility to �ne tune the barevalue of the Higgs mass in order to 
an
el the quantum 
orre
tions ex
ept for somevalue of the order of the ele
troweak s
ale is very unnatural and unsatisfa
tory. Onthe other hand, one 
ould simply assume � to be of the order of the ele
troweak s
aleand repla
e the standard model by another theory above the energy s
ale �. However,not to run into the same �ne tuning problems in this new theory, this theory shouldexplain how a tiny Higgs mass 
an be prote
ted from quantum 
orre
tions quadrati
in the 
uto� �0 of the new theory.A proposal for su
h a new theory beyond the standard model is to postulate a newsymmetry that relates bosons with fermions - 
alled supersymmetry. In fa
t, supersym-metry is the only possible extension of the known spa
e-time symmetries, 
ir
umventingthe Coleman and Mandula theorem [2℄ by allowing anti
ommuting symmetry gener-ators [3℄. The minimal supersymmetri
 standard model (MSSM) formulated in 1981[4℄ is the simplest supersymmetri
 extension of the standard model 
ontaining the su-perpartners of all standard model parti
les. It o�ers a natural solution to some of theproblems of the standard model. In parti
ular, sin
e there is a relative minus signbetween fermion loop and boson loop 
orre
tions to the squared Higgs mass m2H, theradiative 
orre
tions quadrati
 in the 
uto� �0 neatly 
an
el. This allows the Higgsmass to be of the order of the ele
troweak s
ale also in a theory with a higher masss
ale, without the need of some unnatural �ne-tuning. Furthermore, the renormaliza-tion group 
ow predi
ts a uni�
ation of the ele
troweak and strong intera
tions. Assupersymmetry is not dire
tly observed in nature, it must be broken, whi
h, in gen-eral, leads to a mass split between bosoni
 and fermioni
 partners. If this mass split isroughly of order of the ele
troweak s
ale, i.e. msplit � 100 GeV, the supersymmetri
partners of the standard model parti
les 
ould be heavy enough not to be observed inexperiments so far. One hopes that the LHC experiment dete
ts some of the superpart-ners in the TeV region in the foreseeable future, verifying the so far only theoreti
al
on
ept of supersymmetry. However, even when su
h superparti
les are dete
ted, itwould still remain to unify the supersymmetri
 standard model with general relativity.General relativity, on the other hand, is a 
lassi
al theory whi
h does not takeinto a

ount the quantum me
hani
al nature of matter as des
ribed in the standardmodel. Sin
e the Einstein equation relates geometry with matter, we 
an not treatmatter quantum me
hani
ally without a quantum me
hani
al theory of gravity. The
onstru
tion of a renormalizable quantum �eld theory that treats gravity quantumme
hani
ally has not yet been 
arried out, even though there are several suggestions(see for instan
e [5℄). This 
onstraints the validity of general relativity to physi
s,where quantum me
hani
al e�e
ts are of negligible importan
e. However, there are
ir
umstan
es where a quantum theory of gravity is needed, for instan
e for the physi
s



3of the very early universe.Interestingly, string theory provides a natural way of in
luding gravity in a quantumtheory of matter: in string theory one repla
es the ordinary point parti
les with a quan-tum theory of small one-dimensional extended obje
ts - the strings that 
an be both
losed or open. These strings have various vibrational modes 
orresponding to di�erentparti
les, whose intera
tion is des
ribed by the splitting or joining of the strings. Asa matter of fa
t, every 
onsistent su
h string theory ne
essarily 
ontains among thepossible vibrating modes a massless spin-two mode whi
h is a natural 
andidate forthe graviton whose long-distan
e intera
tions are des
ribed by general relativity. Uponquantization this provides us with a 
onsistent quantum theory of gravity. Ultra-violetdivergen
es of graviton s
attering amplitudes are evaded, sin
e the extended 
hara
terof the string smears out the lo
ation of the intera
tion.The Plan
k mass, MP = 1:2� 1019GeV, is a natural �rst guess for a rough estimateof the fundamental string mass s
ale ms 1. Thus, the extended stru
ture of the stringsonly be
omes apparent at the Plan
k s
ale, far beyond our abilities to measure inthe laboratory (for 
omparison, the LHC experiment should rea
h a 
ollision energy of14 TeV). At energies far below the Plan
k s
ale strings 
an be a

urately approximatedby point-like parti
les. This low-energy theory is well des
ribed by an e�e
tive �eldtheory that des
ribes the massless modes of string theory (the �rst massive vibrationalmodes have masses of order the string s
ale ms, whi
h we assume to be of the order ofthe Plan
k s
ale, su
h that they 
an be integrated out in an e�e
tive theory). However,the e�e
tive theory inherits supersymmetry as well as the massless spin-two gravitonmode from string theory. This limit is 
alled supergravity and is thus a supersymmetri
extension of general relativity, where the nonrenormalizability of the supergravity is
ured by the extended nature of the string.Let us very brie
y sket
h how to determine the spe
trum of the strings and howto determine the a
tion for its low-energy supergravity limit. For details we refer thereader to the literature (see for instan
e [7, 8, 9, 10, 11℄).A one-dimensional string sweeps out a two-dimensional surfa
e when it propagatesthrough D-dimensional spa
e-time. We 
all this surfa
e the world-sheet �. In analogyto the des
ription of a point parti
le by its world-line XM (�), we des
ribe a stringby the embedding of the string world-sheet into spa
e-time, i.e., by a map XM (�; �) :� ! MD, where � and � parameterize the points on the world-sheet. For a 
losedstring the variable � is periodi
, and its world-sheet des
ribes a tube in spa
e-time,whereas for an open string � 
overs a �nite interval, and the world-sheet is a surfa
ewith boundaries. To des
ribe the dynami
s of the string we need an a
tion, and thesimplest a
tion that 
omes to mind is the so-
alled Nambu-Goto a
tion, whi
h is astraightforward generalization of the relativisti
 a
tion for a point parti
le moving in1Let us mention that in \large extra dimension" s
enarios, the string s
ale 
an be mu
h lower,namely at the order of TeV. This is be
ause the four-dimensional Plan
k mass MP and the string massms are related by the 
ompa
ti�
ation volume [6℄. We will not 
onsider these s
enarios further in thisthesis and assume the string s
ale to be of order of the Plan
k s
ale.



4 INTRODUCTIOND-dimensional Minkowski spa
e-time,SNG = 12��0 Z� d�d�qdet (��MN��XM��XN ) ; (1.1)where �; � = �; �. Here, T = 1=2��0 is the string tension related with the string masss
ale by ms = (�0)�1=2. However, for quantization this a
tion is not very useful asit 
ontains a square root. One thus makes use of a 
lassi
ally equivalent a
tion byintrodu
ing an auxiliary world-sheet metri
 h�� su
h thatS� = 14��0 Z� d�d�p�hh����X � ��X : (1.2)This so-
alled Polyakov a
tion has important symmetries. In addition to the globalPoin
ar�e invarian
e there are two lo
al symmetries of the a
tion. It is invariant underreparameterization of the world-sheet 
oordinates �; � and under Weyl transformations,i.e. h�� ! e�(�;�)h�� for an arbitrary fun
tion �(�; �). Using these lo
al symme-tries to make a 
onvenient gauge 
hoi
e and taking 
are of the appropriate boundary
onditions, we end up with the equations of motion for the world-sheet 
oordinatesXM (�; �). These equations have the stru
ture of a wave equation with a general solu-tion that 
ontains vibrational modes. For a 
losed string, the solution is a sum of left-and right-movers. In the quantization pro
ess, the world-sheet 
oordinates and 
orre-spondingly the vibrational modes are promoted to operators satisfying essentially thealgebra of raising and lowering operators of the quantum me
hani
al harmoni
 os
illa-tor. The spe
trum is 
onstru
ted by applying raising operators on the ground state.Skipping the details, it turns out that the obtained spe
trum 
ontains a ta
hyon but nostates that transform as spinors under the D-dimensional Lorentz group, whi
h 
ouldbe interpreted as spa
e-time fermions. However, we 
an 
ure this by introdu
ing su-persymmetry. In the so-
alled Ramond-Neveu-S
hwarz (RNS) approa
h, we introdu
ein a supersymmetri
 way anti-
ommuting world-sheet fermions  M into the Polyakova
tion (1.2). For the fermioni
 �elds, however, the variation of the a
tion allows twopossibilities to satisfy the boundary 
onditions: it is possible to impose periodi
 (Ra-mond) boundary 
onditions or anti-periodi
 (Neveu-S
hwarz) boundary 
onditions. For
losed strings, 
orresponding to the di�erent pairings of the left- and right-movers, wethus distinguish four di�erent se
tors. All the states in these se
tors 
arry quantumnumbers of the D-dimensional Lorentz group, and it turns out that we 
an interpretthe states in the NS-NS and R-R se
tor as spa
e-time bosons, while states in the NS-Rand R-NS se
tor are spa
e-time fermions.Note that the dimension D of the spa
e-time is not arbitrary. Due to the indef-inite signature of spa
e-time, the spe
trum 
ontains negative norm states, violating
ausality and unitarity. On the other hand, one 
an show that in the parti
ular 
aseof D = 10 these negative norm states 
an be de
oupled from the physi
al spe
trum.Nevertheless, there is still a ta
hyon in the spe
trum and the spe
trum is not spa
e-time supersymmetri
 (the number of fermioni
 degrees of freedom in not equal to thenumber of bosoni
 degrees of freedom). We 
an turn the RNS string theory into a



5
onsistent theory by trun
ating the spe
trum in a very spe
i�
 way that eliminates theta
hyon and leads to a supersymmetri
 theory in ten-dimensional spa
e-time, known asthe GSO-proje
tion 2. The remaining spe
trum 
onsists of a set of massless parti
lesand an in�nite tower of massive ex
itations with masses quantized in units of the strings
ale ms. As we assume the string s
ale to be of order of the Plan
k mass, these statesare extremely heavy.It turns out, demanding modular invarian
e of the one loop partition fun
tion andanomaly 
an
ellation of the gauge symmetries 
oming from non-Abelian gauge poten-tials in the spe
trum of the string theory, that one 
an only 
onstru
t �ve 
onsistentstring theories in D = 10 Minkowski spa
e-time. These �ve theories are type I stringtheory, 
onsisting of unoriented open and 
losed strings with a gauge group SO(32),type IIA and IIB string theory, made of 
losed strings, and two heterori
 string theoriesthat have 
losed strings only, one with gauge group SO(32), and one with gauge groupE8�E8. However, these �ve theories are related by a web of dualities and are nowadaysviewed as di�erent 
orners of one fundamental theory - referred to as M-theory. Eventhough a full des
ription of the theory is yet unknown, the uniqueness of M-theorymakes it a very promising theory.Let us fo
us on the massless spe
trum of the two type II theories, sin
e the typeII theories will be of parti
ular interest for this thesis. Both theories 
ontain 
losedstrings only 3, and their massless bosoni
 spe
trum in
ludes from the NS-NS se
tor agraviton gMN , a s
alar 
alled the dilaton � and an antisymmetri
 tensor �eld BMN . Inaddition, ea
h of these theories has its individual bosoni
 ex
itations living in the R-Rse
tor. In the type IIA theory the R-R one- and three-form, in the type IIB theory theR-R zero-, two- and four-form. In addition we have massless fermions from the NS-Rand R-NS se
tor. Ea
h of these se
tors 
ontains a spin-3/2 gravitino and a spin-1/2dilatino. In type IIB the two gravitini have the same 
hirality, whereas in the typeIIA they have opposite 
hirality. It follows that type II string theories have N = 2supersymmetry.How does one 
onstru
t an a
tion for the low-energy limit of string theory, des
ribingthe massless states in the string spe
trum? To �nd a spa
e-time a
tion for thesetheories, one 
an use the 
onstraints implied by the Weyl symmetry of the string a
tion.Note that so far we only 
onsidered strings moving in ten-dimensional Minkowski spa
e-time. For a more realisti
 situation, we generalize the Polyakov a
tion by the �eldsobtained in the various spe
tra of the �ve theories. For instan
e, for the theories basedon 
losed strings only (heteroti
 and type II string theories) this reads for the NS-NSse
torS� = 14��0 Z� d�d�p�h h�h��gMN (X) + i���BMN (X)� ��XM��XN + �0R�(X)i ;(1.3)2The GSO-proje
tion may appear to be an ad-ho
 
ondition. A
tually, it is also possible to deriveit by demanding one-loop and two-loop modular invarian
e.3We will see in a moment, how one introdu
es also open strings in these theories.



6 INTRODUCTIONwhere R is the two-dimensional 
urvature. The NS-NS �elds 
an be interpreted as
oupling fun
tions in the two-dimensional world-sheet �eld theory. However, not all�eld 
on�gurations preserve Weyl symmetry at the quantum level. The Weyl anomaly isabsent if the �-fun
tion for ea
h of the 
ouplings vanishes, i.e., �gMN = �BMN = �� = 0.This leads to a set of equations that take the form of equations of motion for the spa
e-time �elds gMN , BMN and �. The supergravity a
tion - the low-energy limit of stringtheory - is the a
tion that reprodu
es these equations at lowest order 4. Let us mentionthat the same pro
edure for the �elds in the R-R se
tor is not straightforward in theRNS-formulation. However, there is an equivalent formulation, the Green-S
hwarzformulation, where the p-form �elds of the R-R se
tor 
an be in
luded as well.Compa
ti�
ation and moduli stabilizationAs we pointed out, a 
onsistent string theory lives in a ten-dimensional spa
e-time.The observable world, however, is four-dimensional. To make 
onta
t with our four-dimensional world we need a me
hanism to hide the extra six dimensions from ob-servation - su
h a me
hanism is 
alled dimensional redu
tion. One way to a
hieve adimensional redu
tion is by 
hoosing these extra dimensions very small and 
ompa
tsu
h that they are too small to be dete
ted in present-day experiments.In fa
t, the idea of geometri
 
ompa
ti�
ation is very old and goes ba
k to the1920s. Kaluza [12℄ and Klein [13, 14℄ suggested a uni�
ation of the gravitational andele
tromagneti
 intera
tion by postulating an extra, �fth, dimension of spa
e-time.Choosing this extra dimension to be topologi
ally S1 yields a very simple explanationfor the 
ompa
tness of the gauge group and hen
e the quantization of the ele
tri

harge. However, the theory 
ontains one more degree of freedom, the radius R ofthe extra-dimensional 
ir
le. Sin
e the 
lassi
al Einstein equations are s
ale invariant,there is no preferred value for this radius R and Kaluza and Klein simply postulated avalue for it 
onsistent with experimental bounds.Even though the motivation has 
hanged, the idea of Kaluza and Klein 
an be gen-eralized to the redu
tion of ten-dimensional string theory from ten to four dimensions.In the Kaluza-Klein redu
tion one starts with an ansatz for the ba
kground spa
e-time.The spe
i�
 ansatz we will use here is that spa
e-time has a produ
t stru
ture of thefollowing form M(9;1) =M(3;1) �M6 ; (1.4)where M(3;1) is our four-dimensional non-
ompa
t spa
e-time and M6 is a six-dimen-sional 
ompa
t manifold. IfM6 is 
hosen small enough, these six additional dimensionsare not visible in experiments with present-day a

elerators. This type of dimensionalredu
tion is alternatively 
alled 
ompa
ti�
ation.4An alternative way to derive equations of motion for the massless �elds is to 
onsider n-point fun
-tions in the two-dimensional world-sheet theory using the supersymmetri
 version of the a
tion (1.3).The 
lassi
al s
attering amplitudes of the e�e
tive spa
e-time a
tion, from whi
h we derive the equa-tions of motion, should then reprodu
e these n-point fun
tions.



7At this point, however, mu
h of the uniqueness of ten-dimensional string theory (andten-dimensional supergravity as its low-energy limit) gets lost, sin
e the 
ompa
ti�
a-tion me
hanism yields a very large number of possible four-dimensional solutions withinequivalent four-dimensional physi
s. The reason is twofold: �rst, making any 
on-
rete Kaluza-Klein redu
tion requires making a 
hoi
e for a 
ompa
ti�
ation manifoldwith a given topology around whi
h to expand in the Kaluza-Klein redu
tion, and noprin
iple suggest that there is a parti
ular preferred manifold. Se
ond, as we will ex-plain in the following, even having 
hosen a parti
ular 
ompa
ti�
ation manifold, onehas many free parameters whi
h enter into observable predi
tions and no parti
ularvalues of these parameters appear to be preferred.The appearan
e of the free parameters is explained as follows. Just like the 
lassi
alEinstein-Maxwell equations, the 
lassi
al supergravity equations are s
ale invariant.Thus, if one �nds any solution to the supergravity equations, by res
aling the size R ofthe 
ompa
ti�
ation manifold, one obtains a one-parameter family of solutions, di�eringonly in the value of R. Hen
e, the 
hoi
e of R is un
onstraint by the equations of motionand thus appears as a massless neutral s
alar �eld in four dimensions. Depending onthe 
hoi
e of the internal manifold, the situation is even worse, and there are mu
hmore massless s
alars in the theory, 
orresponding to parameters su
h as the shape ofthe internal manifold. They label the 
ontinuous degenera
y of the internal manifoldM6 and are generally not driven to a parti
ular value. One 
alls these massless s
alarsmoduli �elds.The emergen
e of massless s
alars is a serious problem for string theory that aspiresto be a fundamental theory predi
ting the values for the fundamental 
onstants 5. Sup-pose we want to 
ompute physi
al predi
tions by performing a Kaluza-Klein redu
tionon a given 
ompa
ti�
ation manifold M6. The resulting fundamental 
onstants willdepend on the details of the 
hosen manifold and the values of the moduli �elds. Sin
ethe 
hoi
e of the 
ompa
ti�
ation manifold is not unique and the values for the moduli�elds are 
ompletely arbitrary, how do parti
ular values we observe for the fundamental
onstants of physi
s a
tually emerge from string theory?Apart from the spe
i�
 
hoi
e of a 
ompa
ti�
ation manifold, the predi
tivity ofstring theory 
ould be improved if one provides a me
hanism whi
h indu
es a potentialfor the moduli �elds - 
alled moduli stabilization 6. Finding su
h a potential o�ers the5Let us stress that a moduli �eld does not 
orrespond to a massless Goldstone mode. The originof the Goldstone mode in symmetry breaking implies that the physi
s of any 
onstant 
on�guration ofthis �eld must be the same (sin
e all are related by symmetry). On the other hand, moduli �elds 
anexist without a symmetry and the physi
s usually depends on their values.6In prin
iple, quantum 
orre
tions 
an already generate masses for the moduli �elds. However, insupersymmetri
 theories there are non-renormalization theorems ex
luding 
orre
tions to the superpo-tential to all orders in perturbation theory. In theories that do not admit non-perturbative 
orre
tions,moduli �elds are thus natural. After supersymmetry breaking, all s
alar �elds, in
luding the moduli,re
eive mass. However, as an upper bound on these masses, depending on the parti
ular model ofsupersymmetry breaking, one �nds a moduli mass of the order of 1 TeV. This turns out to be prob-lemati
 for phenomenologi
al reasons: light moduli �elds would be problemati
 in the present universe,as they mediate �fth for
es of gravitational strength. In addition, they 
ause a Polonyi problem: the



8 INTRODUCTIONpossibility to �x their values in a (possibly metastable) va
uum and make them suÆ-
iently massive su
h that they 
an be dis
arded from the observed spe
trum. Indeed,there are su
h me
hanism to generate a potential for the moduli �elds and the mostpopular ones are the in
lusion of ba
kground 
uxes, instanton 
orre
tions and gaugino
ondensates. In this thesis we will fo
us on the me
hanism of in
luding ba
kground
uxes in the extra dimensions, whi
h is referred to as 
ux 
ompa
ti�
ation. The energyof su
h a �eld depends on the moduli and thus generates a 
ontribution to the e�e
tivepotential for the moduli �elds.Let us 
onsider an example. As we have seen, type II string theories 
ontain amongother �elds the NS-NS two-form potential B2. We de�ne its �eld strength by H3 = dB2.Suppose now that we 
hoose a 
ompa
ti�
ation manifold with a non-trivial three-
y
le�. We 
an 
onsider a 
ux 
on�guration with a non-zero 
ux of the �eld strength,1l2s Z�H3 = n 6= 0 ; (1.5)where n is an integer for proper quantization of the 
ux and ls = 2�p�0 the stringlength s
ale. Note that by insisting on maximal four-dimensional symmetry, we 
an onlyturn on non-trivial 
uxes in the internal dimensions. The key point is that be
ause the
ux is threading the internal 
y
le �, 
hanging the internal geometry will 
ost energy -in other words, we generate a potential for the geometri
 moduli. If this potential hasfavorable 
hara
teristi
s, we 
an determine the possible (metastable) va
uum states ofthe theory as the lo
al minima of the potential.However, on a qualitative level, the me
hanism works for fairly generi
 nonzero
hoi
es of quantized 
ux and one �nds a huge number of possible dis
rete ground states.At present, there is no known me
hanism that would single out one or a subset of theseva
ua as the preferred 
andidates to des
ribe our universe. Any suÆ
iently long-livedva
uum whi
h �ts all the data of observations would be an equally good 
andidate todes
ribe our universe. It seems that the request on string theory as a fundamentaltheory of nature to allow only for a single solution explaining all physi
al phenomenawas too ambitious. However, given our limited understanding of both general prin
iplesof quantum gravity and of its mi
ros
opi
 de�nition, all has not been said and done.At present, however, all we 
an do is 
omparing possible solutions with observationaldata. Let us mention in the following some of the observational requirements we imposeon an a

eptable solution:� Phenomenologi
ally, an N = 1 matter se
tor with spontaneously broken super-symmetry at low energies may be preferred. This o�ers a natural extension of thestandard model and helps solving the hierar
hy problem, o�ers an explanation of
oupling uni�
ation and 
ontains a possible dark matter 
andidate, the lightestsupersymmetri
 parti
le. In addition, as a te
hni
al argument, supersymmetrysimpli�es the 
omputation of the four-dimensional low-energy e�e
tive a
tion.os
illations of su
h a �eld about the minima of their potential, in a 
osmologi
al setting, will over
losethe universe [15℄. To safely avoid these problems, we should look for physi
s of moduli stabilization atenergy s
ales � 100 TeV and above.



9� As we dis
ussed, we require a large positive mass for all the moduli �elds to�x their va
uum expe
tation values. In fa
t, the moduli �elds should re
eivemasses of the order 100 TeV and above to avoid phenomenologi
al problems (seedis
ussion in footnote 6).� At low energies, string theory should reprodu
e the standard model of parti
lephysi
s, in parti
ular the standard model gauge group SU(3)�SU(2)�U(1) shouldemerge from a viable string theory.� To �t the present 
osmologi
al observations of a spatially 
at universe with itsenergy density dominated by 74% dark energy behaving very similar to a positive
osmologi
al 
onstant, we look for a string theory va
uum with small positive
osmologi
al 
onstant.� The observed 
osmi
 mi
rowave ba
kground (CMB) radiation in
luding its smalldensity 
u
tuations 
ould be elegantly explained by an in
ation s
enario in theearly universe. A viable model should therefore o�er the possibility to realizesu
h an in
ation s
enario.Most of the early attempts to 
onstru
t viable four-dimensional N = 1 va
ua weredone by 
ompa
ti�
ations of the E8�E8 heteroti
 string theory on Calabi-Yau manifolds(following the work of [16℄), with the intention to break one of the E8 gauge groups tothe standard model or GUT gauge group. In 
ontrast to heteroti
 SO(32) and E8�E8and type I theories, both type II string theories do not apriori 
ontain non-Abeliangauge groups.However, with the dis
overy of D-branes as non-perturbative BPS obje
ts in the mid-dle of the 90's [17℄, also the type II theories were found to naturally in
lude non-trivialgauge theories. More pre
ise, D-branes are extended obje
ts de�ned as hyperplanes inthe ten-dimensional spa
e-time on whi
h open strings 
an end. Additionally, they 
on-stitute the sour
es for the higher dimensional R-R p-form 
uxes (the NS-NS two-formB2 
ouples to the string world-sheet). A U(1) gauge �eld emerges then from an openstring ending with both ends on the same D-brane. By putting a sta
k of n D-branes ontop of ea
h other, the gauge group gets enhan
ed to U(n), modeling at lowest order aYang-Mills gauge theory in the low-energy e�e
tive a
tion. Compa
ti�
ations involvingspa
e-time �lling D-branes, non-vanishing va
uum expe
tation values for ba
kground
uxes and non-perturbative e�e
ts su
h as instanton 
orre
tions are an attra
tive setupfor model building in parti
le physi
s as well as 
osmology (see for instan
e [18℄ andreferen
es therein).Motivation and organization of this thesisAn essential step to further study phenomenologi
al properties of string va
ua is todetermine the four-dimensional low-energy e�e
tive theory for parti
ular 
ompa
ti�-
ation models. An important appli
ation 
omprises the viability of these models for



10 INTRODUCTIONphenomenologi
al appli
ations. This is in parti
ular an interesting question in type IIAstring theory, sin
e D-brane model building on spa
e-time �lling D6-branes made mu
hprogress in the last years [18, 19℄. A viable 
ompa
ti�
ation in type IIA, say one thathas solutions with all moduli stabilized and with small positive 
osmologi
al 
onstantas well as an epo
h of in
ation, would be of extraordinary interest.In this thesis we will fo
us on 
ux 
ompa
ti�
ations in type IIA and type IIB stringtheory with the intention to derive the four-dimensional low-energy e�e
tive theory on alarge 
lass of new 
ompa
ti�
ation manifolds (for reviews on 
ux 
ompa
ti�
ations anda more 
omplete list of referen
es, see, e.g., [20, 21, 18℄). One aspe
t that 
ompli
atesthe derivation of these e�e
tive a
tions is that p-form 
uxes generally ba
k-rea
t on thegeometry of the 
ompa
ti�
ation manifold, deforming them away from well understood
lasses su
h as Ri

i-
at Calabi-Yau manifolds. The ba
k-rea
tion 
an be rather mild,as, e.g., in type IIB orientifolds with D3/D7-branes [22℄, where the internal spa
e is still
onformal to a Calabi-Yau manifold. In these 
omparatively simple models, however,the 
uxes turn out to stabilize only the dilaton and the 
omplex stru
ture moduli,while the K�ahler moduli stabilization requires the use of quantum e�e
ts, e.g., alongthe lines of [23℄.We will instead be interested in a di�erent 
lass of 
ux 
ompa
ti�
ations for whi
hthe ba
k-rea
tion of the 
uxes on the geometry is less trivial. Con
retely, we willderive the four-dimensional low-energy e�e
tive a
tion for a large 
lass of models, whereM6 is a six-dimensional 
ompa
t spa
e that is either a nilmanifold or a 
oset spa
e.Some of these models allow for an N = 1 supersymmetri
 solutions to AdS4. Being
ompa
ti�
ations to AdS4 spa
e-time, these models do not appear realisti
 as su
h,but they 
an serve as starting points for the 
onstru
tion of more realisti
 setups orhave other appli
ations. In parti
ular, we will investigate for these models whetherthe potential already has meta-stable de Sitter va
ua away from the AdS4 va
uum orwhether there are regions suitable for in
ation.Let us mention that one 
ould also think to use these models to study other phe-nomenologi
al appli
ations, e.g. after the in
lusion of an additional uplifting potentialso as to 
onstru
t meta-stable de Sitter va
ua in the spirit of the IIB models dis
ussedin [23℄. In addition, repla
ing 
uxes by branes, the AdS4 va
ua 
an be potentiallyobtained as near-horizon geometries of interse
ting branes [24℄. AdS4 
ux va
ua ofthe type we will 
onsider may admit a full non-perturbative de�nition via a dual three-dimensional CFT [25℄. The above-mentioned brane solutions also 
orrespond to domainwalls that interpolate between di�erent 
ux va
ua. The existen
e of these domain wallsmay 
orrespond to interesting transitions in the lands
ape of 
ux va
ua.To render the analysis tra
table, we will only 
onsider stru
tures and 
uxes whi
hare 
onstant in the basis of left-invariant one-forms (see 
hapter 2 and 
hapter 4 foran introdu
tion to G-stru
ture manifolds and left-invariant forms, respe
tively). Ageneral problem is that an expli
it 
omputation of the low-energy theory of a given
ompa
ti�
ation requires a suitable 
hoi
e of expansion basis for the `light' 
u
tua-tions. Unfortunately, it is still un
lear how to 
onstru
t su
h a basis in general. In
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ux 
ompa
ti�
ations, the set of harmoni
 forms would be unsuitable as ex-pansion forms, as, e.g., the forms J and 
 that de�ne the SU(3)-stru
ture (and whi
henter the supergravity expressions for the K�ahler- and superpotential) are no longer
losed (see e.g. [26, 27, 28℄ for a few proposals). A detailed dis
ussion of the general
onstraints on su
h a basis appeared in [29℄. In the spe
ial 
ase of nilmanifolds and
oset manifolds, however, the set of left-invariant forms (with the appropriate behaviourunder the orientifold a
tion) readily presents itself as the natural 
hoi
e and obeys therequirements of [29℄ 7.For the 
ompa
ti�
ations we study in this thesis, we will introdu
e D-brane andorientifold sour
es. The reason is that, in some of the models we study, the Bian
hiidentities 
annot be satis�ed without orientifold sour
es. A further reason is that weare interested in four-dimensional, N = 1 supersymmetri
 e�e
tive theories, for whi
hthe orientifold sour
es are ne
essary 8. In addition, as we dis
uss further in 
hapter 2,the sour
es potentially allow for a hierar
hy of s
ales between the size of the internalmanifold and the AdS4 
urvature, thereby providing a possibility to de
ouple the towerof Kaluza-Klein modes from the light modes.A somewhat deli
ate feature of our models is that the orientifolds have to be smeared.The reason for this is that the supersymmetry 
onditions of [31℄ (for non-vanishingRomans mass) for
e the warp fa
tor to be 
onstant. Considering the ba
k-rea
tion of alo
alized orientifold, on the other hand, one would expe
t a non-
onstant warp fa
tor,at least 
lose to the orientifold sour
e 9. A helpful interpretation of the smearing of alo
alized sour
e, whose Poin
ar�e dual is given roughly-speaking by a delta-fun
tion, isthat it 
orresponds to Fourier-expanding the delta-fun
tion and dis
arding all but thezero mode. We will adopt the pragmati
 point of view that the smeared orientifolds arean unavoidable feature of our models that is 
onsistent with a Kaluza-Klein redu
tionin the approximation where only the lowest modes are kept. The question of how toasso
iate orientifold involutions to a smeared sour
e turns out to be somewhat subtle.We will make the natural assumption that the di�erent orientifolds 
orrespond to thede
omposable (simple) terms in the orientifold 
urrent (see further the dis
ussion inappendix D).This thesis is organized in three main parts. The aim of the �rst part is to providethe formalism and the te
hniques needed to analyse type II string theory 
ompa
ti-�
ations to four dimensions. We start in 
hapter 2 with the N = 1 supersymmetry
ompa
ti�
ation ansatz. Demanding that not all supersymmetries are broken in thefour-dimensional e�e
tive theory pla
es strong topologi
al 
onstraints on the internalmanifold. For instan
e, the stru
ture group of the tangent bundle of the internal mani-7Sin
e the left-invariant forms are 
onstant over the moduli spa
e, this basis satis�es requirements*7-*9 of [29℄ rather trivially. Note that left-invariant forms are not in general harmoni
: they areeigenmodes of the Lapla
ian to eigenvalues of the order of the geometri
 
ux.8For a dis
ussion of the N = 2 theory arising from type IIA theory on nearly-K�ahler manifoldswithout orientifolds see [30℄.9A possible way around this 
ontradi
tion is that taking into a

ount �0-
orre
tions might allowfor a non-
onstant warp fa
tor (see also [32℄ for an alternative dis
ussion), or one has to 
onsider moregeneral va
ua with SU(3)�SU(3)-stru
ture instead [33℄.



12 INTRODUCTIONfold is redu
ed to SU(3) or a subgroup thereof. We further dis
uss the 
onditions on su-persymmetri
 massive type IIA AdS4 solutions with stri
t SU(3)-stru
ture. As alreadymentioned, these 
onditions for
e the warp fa
tor and dilaton to be 
onstant. However,we will provide a generalization of supersymmetri
 type IIA AdS4 
ompa
ti�
ationsby allowing for a non-
onstant warp fa
tor and dilaton, provided that the Romansmass is set to zero. In 
hapter 3 we dis
uss how to obtain the four-dimensional low-energy e�e
tive a
tion for a given 
ompa
ti�
ation manifold. We start by dis
ussingthe dire
t approa
h, the Kaluza-Klein redu
tion. The modern approa
h, however, isthe e�e
tive supergravity approa
h where one 
al
ulates the superpotential and theK�ahler potential by means of geometri
al data of the 
ompa
ti�
ation manifold andthe ba
kground 
uxes. We review the te
hniques for this approa
h in the generalizedgeometry language and spe
ialize the expressions then to stri
t SU(3)-stru
ture in typeIIA and stati
 SU(2)-stru
ture in type IIB theory. We end this 
hapter by a dis
ussionon how to 
hoose the most general ansatz for the ba
kground 
uxes to label the dis
on-ne
ted bubbles of moduli spa
e. In 
hapter 4 we then turn to the des
ription of the two
lasses of six-dimensional manifolds we study in this thesis. These are six-dimensionalnilmanifolds and 
oset spa
es. Chapter 5 dis
usses the phenomenologi
al aspe
ts ofthis thesis, in parti
ular the question whether our models are valid 
andidates to allowfor a de Sitter solution or to realize in
ation s
enarios (at tree level, without additionalperturbative or non-perturbative quantum e�e
ts). In string theory, the moduli �eldsof the 
ompa
ti�
ation are natural in
aton 
andidates. We will thus �rst review theimportant aspe
ts of 
osmology and the Hot Big Bang model and give a brief overviewof the ne
essary 
onditions for a parti
ular in
ation s
enario, the so-
alled slow-rollin
ation. However, for type IIA 
ompa
ti�
ations at tree level, there exist quite strongno-go theorems against de Sitter va
ua and slow-roll in
ation. We will review andslightly modify these theorems su
h that we 
an apply them to our models.In the se
ond part of this thesis we apply the te
hniques studied so far to the 
lassof nilmanifolds. A systemati
 s
an yields exa
tly two nilmanifolds that satisfy thene
essary and suÆ
ient 
onditions for (massive) type IIA N = 1 
ompa
ti�
ations toAdS4 dis
ussed in 
hapter 2. We present these solutions in 
hapter 6. As a matterof fa
t, these solutions are related (for some values of the parameters) by T-dualityalong two dire
tions. We also �nd a type IIB solution with stati
 SU(2)-stru
ture ona di�erent nilmanifold, whi
h forms the intermediate step after one T-duality. Inter-estingly, as shown in se
tion 6.4, for the same range of the parameter spa
e for whi
hthe T-dualities above are valid, the solutions admit an interpretation as near-horizongeometries of interse
ting brane 
on�gurations, as in [24℄. From this point of view, thenilmanifold va
ua in this range are nothing but near-horizon geometries of interse
tionsof Kaluza-Klein-monopoles with other branes in 
at spa
e. One of the main goals ofthis part of the thesis is to provide a 
he
k on the e�e
tive supergravity approa
h, inparti
ular on the expli
it expressions of the superpotential and K�ahler potential givenin the literature. To do so, we perform in 
hapter 7 an expli
it Kaluza-Klein redu
tionaround the two type IIA solutions of 
hapter 6 and 
ompute the mass spe
trum of themoduli �elds. On the other hand, in 
hapter 8 we analyse the same two models by



13means of the e�e
tive supergravity te
hniques and 
ompute again the mass spe
trumof the moduli �elds around the supersymmetri
 solution. We �nd perfe
t agreementproviding an important 
onsisten
y 
he
k between both approa
hes. Having performedthis 
onsisten
y 
he
k for these models, we will restri
t ourselves to the e�e
tive super-gravity approa
h in the following.In the third part of this thesis we fo
us on 
oset manifolds, where we �rst examinein 
hapter 9 the geometry of the 
oset models that are suitable for supersymmetri

ompa
ti�
ations to four dimensions. In the following 
hapter 10 we present the 
osetmodels that satisfy the ne
essary and suÆ
ient 
onditions for an N = 1 
ompa
ti�-
ation to AdS4. We 
losely follow in these two 
hapters [34℄. We also 
omment on apossible supersymmetri
 AdS4 solution with non-
onstant warp fa
tor and dilaton. Themain results of this part of the thesis are the following three 
hapters: in 
hapter 11 we
ompute the four-dimensional type IIA low-energy e�e
tive theory for a large 
lass of
oset models. In ea
h 
ase, we 
ompute the superpotential and the K�ahler potential forthe most general 
hoi
e of ba
kground 
uxes in order to 
over the whole moduli spa
e.For the models with a supersymmetri
 AdS4 va
uum we 
ompute the mass spe
trumaround this va
uum and �nd that for all the 
oset models, ex
ept for one, all moduli arestabilized at tree level. For some models we 
omment on how to identify the numberof possible N = 1 AdS4 va
ua in a parti
ular bubble of moduli spa
e. In 
hapter 12we 
ompute the e�e
tive theory for type IIB SU(2)-stru
ture 
ompa
ti�
ations on the
oset models allowing for a stri
t SU(2)-stru
ture. Finally, in 
hapter 13, we dis
ussphenomenologi
al appli
ations for the 
oset models. In parti
ular, we apply the no-gotheorems of 
hapter 5 to the 
oset models and we study whether the models we 
onsiderin this thesis are interesting 
andidates for in
ation or have stable de Sitter minima.Finally, we give some te
hni
al details in di�erent appendi
es. In parti
ular to men-tion is appendix C, where we give a short introdu
tion to the framework of generalizedgeometry.
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Chapter 2G-stru
ture manifolds andsupersymmetri
 va
uaAs we dis
ussed in the introdu
tion, the ten-dimensional type IIA/IIB supergravities,whi
h are low-energy theories of type IIA/IIB string theory, have N = 2 supersymme-try in ten dimensions. One way to 
onne
t string theory to four-dimensional real-worldphysi
s is to 
ompa
tify it from ten dimensions to four dimensions using a 
ompa
t-i�
ation ansatz as in eq. (1.4), where we 
hoose the internal manifold M6 small and
ompa
t, su
h that the six additional dimensions are not dete
table in present-dayexperiments.The stru
ture of the four-dimensional theory so-obtained strongly depends on the
hosen internal manifoldM6. For instan
e, the properties ofM6 determine the amountof preserved four-dimensional supersymmetry. In this thesis we will fo
us on four-dimensional N = 1 e�e
tive theories. Let us mention some reasons for this require-ment. As we dis
ussed in the introdu
tion, supersymmetry suggests natural extensionsof the standard model su
h as the minimal supersymmetri
 standard model. Some ofthe phenomenologi
ally attra
tive features of these models are the following: they o�era possible solution of the hierar
hy problem, they 
an explain the gauge 
oupling uni�-
ation and they may provide a 
andidate for dark matter, the lightest supersymmetri
parti
le. Another reason is that supersymmetry provides a 
omparatively easy way toobtain solutions of the full equations of motion, sin
e the supersymmetry 
onditionsare mu
h easier to solve as the equations of motion. It 
an be shown that solutionsto the supersymmetry 
onditions, 
ompleted with the Bian
hi identities for the form�elds, automati
ally provide solutions to the full equations of motion. Of 
ourse, afterone has 
onstru
ted a supersymmetri
 solution to the supergravity equations of motion,one has to provide additional me
hanisms to break supersymmetry spontaneously atlow energies.As we will dis
uss in this 
hapter, demanding that not all supersymmetries are bro-ken in the four-dimensional e�e
tive theory imposes very stringent requirements onthe internal manifoldM6. The existen
e of four-dimensional supersymmetry parame-



18 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUAters (this is required to obtain a four-dimensional supersymmetri
 theory) redu
es thestru
ture group of the internal manifoldM6, whi
h is a topologi
al 
onstraint, whereasthe existen
e of a supersymmetri
 va
uum of the theory further imposes di�erential
onstraints on the geometry of the internal manifold. See, e.g., [20, 21, 18, 35℄ forreviews and more referen
es.2.1 Supersymmetri
 e�e
tive theories and G-stru
turesWe assume a produ
t stru
ture for the 10-dimensional spa
e-time as followsM(9;1) =M(3;1) �M6 ; (2.1)whereM6 is the six-dimensional 
ompa
t internal manifold. Motivated by phenomenol-ogy, we 
onsider the four-dimensional spa
e-time M(3;1) to admit maximal spa
e-timesymmetry, i.e., 
at Minkowski, anti-de Sitter (AdS4) or de Sitter (dS4). These havePoin
ar�e, SO(1,4) and SO(2,3) invarian
e, respe
tively. With this symmetry require-ment, the most general ansatz for a ten-dimensional metri
 is given byds2 = g��(x)dx�dx� + gmn(y)dymdyn ; (2.2)where the external metri
 g�� is a Minkowski, dS4 or an AdS4 metri
. More gen-erally, one 
an allow for a non-trivial warp fa
tor e2A(y) that only depends on theinternal 
oordinates ym, m = 1; : : : ; 6, into the ansatz (2.2). This amounts to re-pla
e g��(x) ! e2A(y)g��(x), whi
h is the most general ansatz 
onsistent with four-dimensional maximal symmetry [36, 37℄.The produ
t stru
ture of the spa
e-time ba
kground (2.1) implies a de
ompositionof the Lorentz group Spin(9,1) � Spin(3,1)� Spin(6) and an asso
iated de
ompositionof the spinor representation 16 2 Spin(9,1) a

ording to 16 ! (2;4)� (�2;�4). In orderto obtain an N = 1 four-dimensional e�e
tive theory, whi
h has one four-dimensionalsupersymmetry parameter �, we make the following ansatz [38℄ 1�1 = �+ 
 �(1)+ + �� 
 �(1)� ;�2 = �+ 
 �(2)� + �� 
 �(2)� ; (2.3)for IIA/IIB, where �� are four-dimensional and �(1;2)� six-dimensional Weyl spinors.The Majorana 
onditions for �1;2 imply the four- and six-dimensional reality 
onditions(�+)� = �� and (�(1;2)+ )� = �(1;2)� .Let us �rst 
on
entrate on the spe
ial 
ase where the two internal spinors �(1) and �(2)are parallel everywhere: �(1) / �(2) / �. For the de
omposition of the ten-dimensional1In the 
on
rete models we study in this thesis we introdu
e orientifold sour
es. The orientifoldproje
tion for
es the four-dimensional supersymmetry generators � to be the same in both lines of theansatz (2.3), ruling out an N = 2 ansatz based on independent �s in the two lines. See appendix C formore details.
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urrents as in eq. (2.3) to be possible, we require the existen
e of a spinor � thatis globally de�ned on the internal manifoldM6. The existen
e of su
h a spinor imposesa non-trivial topologi
al 
ondition on the internal manifold. A globally de�ned spinormust be the same in di�erent pat
hes and thus invariant under the transition fun
tionsde�ning the stru
ture group. The spinor representation is in the 4 of Spin(6) ' SU(4),whi
h 
an be further de
omposed in representations of SU(3) as 4 ! 3 + 1. There istherefore an SU(3) singlet in the de
omposition, and we 
on
lude that the topologi
al
ondition for a globally de�ned spinor is the requirement that the internal manifold hasredu
ed SU(3)-stru
ture.Further redu
ing the stru
ture group of the internal manifoldM6 to a group smallerthan SU(3) results in a larger number of globally de�ned internal spinors. For instan
e,if the stru
ture group is redu
ed to SU(2) there are two independent globally de�nedspinors on M6 su
h that a general de
omposition as in (2.3) is possible. Combiningthe terminology of [38℄ and [39℄, the following 
lassi�
ation 
an be made:� stri
t SU(3)-stru
ture: �(1) and �(2) are parallel everywhere;� stati
 SU(2)-stru
ture: �(1) and �(2) are orthogonal everywhere;� intermediate SU(2)-stru
ture: �(1) and �(2) are at a �xed angle, but neither azero angle nor a right angle;� dynami
 SU(3)�SU(3)-stru
ture: the angle between �(1) and �(2) varies, possiblybe
oming a zero angle or a right angle at a spe
ial lo
us.In this thesis we will study 
ompa
ti�
ations with stri
t SU(3)-stru
ture and stati
SU(2)-stru
ture. In the following se
tions we give more details on these two 
ases.However, there exists a unifying mathemati
al des
ription of all manifolds having thestru
tures 
lassi�ed above. This des
ription is obtained by a generalization of ordinary
omplex geometry, 
alled generalized geometry. It turns out that the formalism ofgeneralized geometry is very 
onvenient to 
al
ulate quantities su
h as the indu
edmetri
 and the K�ahler potential. We therefore give a brief introdu
tion to generalizedgeometry in appendix C. In the following two se
tions we des
ribe the spe
ial 
asesof stri
t SU(3)-stru
ture and stati
 SU(2)-stru
ture that we want to 
onsider in thisthesis. More details 
an be found in the above mentioned appendix.2.1.1 Stri
t SU(3)-stru
tureIf the stru
ture group of the internal manifold is SU(3) and 
an not be further redu
edinto a subgroup of SU(3) we 
all this a manifold with stri
t SU(3)-stru
ture. For su
h amanifold we have one globally de�ned spinor su
h that the supersymmetry generatorsof (2.3) are proportional �(2)+ = (b=a)�(1)+ ; (2.4)



20 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUAwith j�(1)+ j2 = jaj2 and j�(2)+ j2 = jbj2. In the following, we will assume jaj = jbj su
hthat b=a = ei� is just a phase. This 
ondition is a
tually imposed by supersymmetry in
ompa
ti�
ations to AdS4 2. Let us de�ne a normalized spinor �+ su
h that �(1)+ = a�+and �(2)+ = b�+ and moreover we 
hoose the phase of � su
h that a = b�.Given an internal manifold with redu
ed stru
ture group SU(3), we 
an de
omposeother SO(6) representations under SU(3). For a ve
tor we have 6 ! 3+ �3, for a two-form this reads 15! 8+ 3+ �3+ 1 and for a three-form 20! 6+ �6+ 3+ �3+ 1+ 1.Thus, there further exists a two-form and a 
omplex three-form both non-vanishingand globally de�ned, but no invariant ve
tors (or equivalently �ve-forms). These formsprovide us with an equivalent des
ription of a stri
t SU(3)-stru
ture. Indeed, with theSU(3)-invariant spinor � we 
an 
onstru
t the real non-degenerate two-form J and the
omplex de
omposable three-form 
 as followsJmn = i�y+
mn�+ ; 
mnp = �y�
mnp�+ : (2.5)These forms satisfy the SU(3)-stru
ture 
onditions
 ^ J = 0 ; (2.6a)
 ^ 
� = 4i3 J3 6= 0 ; (2.6b)sin
e there is no invariant �ve-form and there is only one invariant six-form (this 
an alsobe shown using Fierz identities). Up to a 
hoi
e of orientation, a volume normalizationis de�ned as 16J3 = � i8
 ^
� = vol6 : (2.7)Equivalently, the equations (2.6) and (2.7) 
ompletely spe
ify an SU(3)-stru
ture on asix-dimensional manifold, provided that the asso
iated metri
 to J and 
 is positivede�nite 3.The existen
e of a globally de�ned everywhere non-vanishing spinor is a topologi
al
ondition that redu
es the stru
ture group to SU(3). As we will explain in se
tion 2.2.1in more detail, the 
onditions for a supersymmetri
 va
uum imposes further di�erential
onstraints on the spinor. In the simplest 
ase, where no ba
kground 
uxes are turnedon, a supersymmetri
 solution requires the internal spinor to be 
ovariantly 
onstantwith respe
t to the Levi-Civita 
onne
tion, rm� = 0. From eq. (2.5) we thus obtaindJ = d
 = 0 : (2.8)Su
h a manifold has SU(3)-holonomy 4 and is 
alled a Calabi-Yau manifold.2As a matter of fa
t, the 
ondition jaj = jbj is also implied by the orientifold proje
tion that wewill impose in our 
on
rete models (see further appendix C).3In appendix C it is explained in term of generalized geometry how to obtain the metri
 asso
iatedto J and 
.4The holonomy group is the group generated by transformations indu
ed by parallel transportaround loops. The 
ovariant 
onstant spinor remains the same by parallel transport around a loop.Following the same arguments as above, the holonomy group is redu
ed to SU(3).
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onditions 
hange drasti
ally in the presen
e of 
uxes, where the supersym-metry 
onditions imply that the spinors are not 
ovariantly 
onstant with respe
t tothe Levi-Civita 
onne
tion. The failure of the manifold to be of spe
ial holonomy orequivalently the deviation from 
losure of J and 
 is parameterized by the intrinsi
 tor-sion. To be more pre
ise, on a manifold with SU(3)-stru
ture there is always a metri

ompatible 
onne
tion r0 (i.e., a 
onne
tion with r0mgnp = 0) with or without torsionthat has SU(3)-holonomy, r0m� = 0. In 
ase this 
onne
tion is torsionless, the manifoldis Calabi-Yau. The part of the torsion whi
h is independent of the 
hoi
e of r0 is knownas the intrinsi
 torsion and 
an be used to 
lassify the types of SU(3)-stru
tures. Theintrinsi
 torsion tensor 
an be de
omposed in terms of SU(3) representations as followsTmnp 2 (3� �3)
 (1� 3� �3)= (1� 1)� (8� 8)� (6� �6)� 2(3 � �3)W1 W2 W3 W4 W5 ; (2.9)where the Wi are the torsion 
lasses [40, 41℄. Here, W1 is a s
alar, W2 is a primitive(1,1)-form, W3 is a real primitive (1; 2) + (2; 1)-form, W4 is a real one-form and W5 a
omplex (1,0)-form.It follows that dJ and d
 
an be de
omposed using these torsion 
lasses in thefollowing way dJ = 32Im(W1
�) +W4 ^ J +W3 ;d
 =W1J ^ J +W2 ^ J +W�5 ^
 ; (2.10)A 
lassi�
ation of spe
ial manifolds in terms of vanishing torsion 
lasses is given intable 2.1 [20℄. For example, a manifold is 
omplex if the �rst two torsion 
lasses vanish,W1 = W2 = 0. Indeed, if this is valid, d
 is a (3,1)-form, the only possibility on a
omplex manifolds, sin
e 
 is a (3,0)-form. For a symple
ti
 manifold, the fundamentaltwo-form J has to be 
losed and one has therefore W1 = W3 = W4 = 0. A K�ahlermanifold is 
omplex and symple
ti
, whi
h implies that W5 is the only non-vanishingtorsion 
lass, and J is 
alled the K�ahler form. In this 
ase, the manifold has U(3)-holonomy that is redu
ed to SU(3)-holonomy by further 
hoosing W5 = 0 so that allthe torsion 
lasses vanish and we are left with a Calabi-Yau manifold.Of spe
ial interest for this thesis are manifolds for whi
h only the 
lasses W1 andW2 are non-vanishing and in this 
lass the spe
ial 
ase where also W2 vanishes, the so-
alled nearly-K�ahler manifolds. Further, as we will see in se
tion 2.3, a supersymmetri
solution with non 
onstant warp fa
tor/dilaton implies a manifold with non-vanishing�fth torsion 
lass W5.For later 
onvenien
e, let us also mention that the pure spinors asso
iated to a stri
tSU(3)-stru
ture are given as follows (see also appendix C)	� = �
 ; and 	+ = e�i�eiJ ; (2.11)where J and 
 are de�ned in eq. (2.5).
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lasses Name of manifoldW1 =W2 = 0 ComplexW1 =W3 =W4 = 0 Symple
ti
ImW1 = ImW2 =W4 =W5 = 0 Half-
atW1 =W2 =W4 =W5 = 0 Spe
ial HermiteanW2 =W3 =W4 =W5 = 0 Nearly-K�ahlerW1 =W3 =W4 =W5 = 0 Almost-K�ahlerW1 =W2 =W3 =W4 = 0 K�ahlerW1 =W2 =W3 =W4 =W5 = 0 Calabi-YauW1 =W2 =W3 = 3W4 � 2W5 = 0 \Conformal" Calabi-YauTable 2.1: Classi�
ation of manifolds from vanishing torsion 
lasses.2.1.2 Stati
 SU(2)-stru
tureFurther redu
ing the stru
ture group to SU(2), we have two independent non-vanishing,globally de�ned spinors, �(1;2). In the following we assume that �(1) and �(2) are orthog-onal everywhere su
h that we have a stati
 SU(2)-stru
ture as de�ned in se
tion 2.1.The stati
 SU(2)-stru
ture is a spe
ial 
ase of the more general SU(3)�SU(3)-stru
ture.In appendix C we will give an introdu
tion into the language of generalized geometryand SU(3)�SU(3)-stru
tures. In this se
tion we will dis
uss the main formulas neededto deal with stati
 SU(2)-stru
ture 
ompa
ti�
ations.Having two nowhere vanishing and orthogonal spinors �(1) and �(2), we 
an, just asfor the SU(3)-stru
ture, de�ne the SU(2)-stru
ture in terms of SU(2)-invariant forms.Following [42, 43, 39℄, we 
hoose to parameterize the two orthogonal spinors as follows�(1)+ = a�+ ; (2.12a)�(2)+ = bV i
i�� ; (2.12b)where j�(1)+ j2 = jaj2 and j�(2)+ j2 = jbj2, whi
h imposes jV j2 = 1=2. Again, we 
hoose inthe following jaj = jbj, whi
h is implied by the orientifold proje
tion [43℄ and we 
hoosethe relative phases of the spinors su
h that a = b� and b=a = ei�, where only the phase� is physi
al. We further de�ne a normalized spinor ~�+ = �(2)+ =b, i.e.~�+ = V i
i�� ; (2.13)and one 
onstru
ts the one-form asso
iated to the ve
tor V in terms of the spinors asVk = 12�y�
k~�+ : (2.14)In addition we 
an 
onstru
t from bilinears of the spinor �elds a real two-form !2 and



2.2. SUPERSYMMETRIC SOLUTIONS 23a holomorphi
 two-form 
2 as follows!2 ij = i�y+
ij�+ � i~�y+
ij ~�+ ; (2.15a)
2 ij = ~�y+
ij�+ : (2.15b)These forms are obviously SU(2)-invariant. Using Fierz identities these forms satisfythe following stru
ture 
onditions [42, 39℄!2 ^ !2 = 12
2 ^ 
�2 6= 0 (2.16a)!2 ^ 
2 = 0 ; 
2 ^ 
2 = 0 ; (2.16b)�V 
2 = 0 ; �V !2 = 0 : (2.16
)Equivalently, forms !2, 
2 and V satisfying eq. (2.16) 
ompletely spe
ify a stati
SU(2)-stru
ture, provided that the asso
iated metri
 is positive de�nite. We explainhow to obtain this asso
iated metri
 in appendix C.Note that the SU(2)-stru
ture is naturally embedded in the SU(3)-stru
ture de�nedby �+ in eq. (2.5). We get from the eqs. (2.14) and (2.15)J = !2 � 2iV ^ V � ; 
 = 2V ^ 
2 ; (2.17)and one has the reverse relations!2 = J + 2iV ^ V � ; 
2 = �V �
 : (2.18)We then �nd for the pure spinors asso
iated to a stati
 SU(2)-stru
ture as explainedin appendix C 	+ = �e�i�e2V ^V �
2 ; (2.19a)	� = �2V ^ ei!2 : (2.19b)In the following, it will be 
onvenient to absorb the phase e�i� into 
2.2.2 Supersymmetri
 solutionsDemanding maximal symmetry of a va
uum of the theory, only the bosoni
 �elds 
anhave non-vanishing expe
tation values. Thus, the supersymmetry variations of thebosoni
 �elds that always 
ontain a fermioni
 �eld are automati
ally vanishing. Hen
e,we have just to 
onsider the variation of the fermioni
 �elds. For a supersymmetri
va
uum we require that the va
uum expe
tation value of the supersymmetri
 variationof all fermioni
 �elds � vanish, hÆ�i = 0.As we have seen in the introdu
tion, the fermioni
 �elds in type II theories are twogravitini  1M and  2M and two dilatini �1 and �2. We 
an 
ombine these Majorana-Weyl
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olumn ve
tor  M = � 1M ;  2M�T, and similarly for �. In the supergravityapproximation, the bosoni
 parts of the supersymmetry variation of the gravitini anddilatini read [20℄ (in string frame) 5Æ M = DM � =  rM + 14HMP + e�16Xn Fn�MPn! � ; (2.20a)Æ� =  ��+ 12HP + e�8 Xn (�1)n(5� n)FnPn! � ; (2.20b)respe
tively, where underline denotes the 
ontra
tion with gamma-matri
es as de�nedin eq. (A.18), andIIA : P = �(10) ; IIB : P = ��3; (2.21a)IIA : Pn = (�(10))n2 �1 ; IIB : Pn = �1 �n+ 12 even� ; i�2 �n+ 12 odd� : (2.21b)It is sometimes 
onvenient to use the modi�ed dilatino variation�MÆ M � Æ� = �r� ��+ 14HP� � : (2.22)A type II geometry will preserve supersymmetry if and only if there is at least one� for whi
h all the supersymmetry variations (2.20) vanish. The number of su
h �'sdetermine the number of super
harges and thus the amount of supersymmetry in fourdimensions. As we will see, these 
onditions pla
e strong 
onstraints on the geometry.To preserve maximal four-dimensional symmetry, we are allowed to turn on onlythose 
uxes whi
h have either no leg or four legs along four-dimensional spa
e-time.We require F = F̂ + vol4 ^ e4A ~F ; (2.23)with vol4 the (unwarped) four-dimensional volume form su
h that F̂ and ~F are purelyinternal forms. This allows us to write the supersymmetry variations in terms of internal
uxes only. The Hodge duality (B.1) (here in string frame) then implies the followingrelation ~F = ��(?6F̂ ) ; (2.24)for IIA/IIB, and the operator � reversing the order of the indi
es is de�ned in appendixA. In the following we will drop the hat symbol and hope that the notation is 
lear.5Here we use the demo
rati
 formulation of [44℄. See appendix B for our 
onventions.



2.2. SUPERSYMMETRIC SOLUTIONS 252.2.1 Supersymmetri
 ba
kgrounds without 
uxesFor the simplest 
ase when no 
uxes are present, the gravitino variation (2.20a) re-quires the existen
e of a 
ovariantly 
onstant spinor on the ten-dimensional manifold,rM� = 0. The four-dimensional spa
e-time 
omponent of this 
ondition, r�� = 0,implies, using integrability 
onditions, that the warp fa
tor has to be zero and the four-dimensional manifold 
an only be Minkowski spa
e [20℄. When no 
uxes are present, we
an de
ompose the ten-dimensional supersymmetry generators as follows (we assumehere stri
t SU(3)-stru
ture) �1 = �1+ 
 �+ + �1� 
 �� ;�2 = �2+ 
 �� + �2� 
 �� ; (2.25)for IIA/IIB, where �A� , A = 1; 2 are two four-dimensional Weyl spinors. This 
ompa
t-i�
ation preserve eight super
harges whi
h implies N = 2 in four dimensions.We solve the internal 
omponent of the gravitino variation, rm� = 0, with thede
omposition ansatz (2.25) provided thatrm�� = 0 ; (2.26)whi
h means that the internal manifold has to admit the existen
e of a non-vanishing,globally de�ned six-dimensional spinor that is 
ovariantly 
onstant (with respe
t to theLevi-Civita 
onne
tion). As mentioned earlier, this 
ondition implies that the internalmanifold not only has SU(3)-stru
ture but also SU(3)-holonomy and is a Calabi-Yaumanifold.2.2.2 Supersymmetri
 ba
kgrounds in the presen
e of 
uxesIf we turn on ba
kground 
uxes, the supersymmetry 
onditions (2.20) relate the twosupersymmetry parameters �1 and �2 in (2.25). It turns out that the four-dimensionalsupersymmetry parameters �1 and �2 
annot be 
hosen independently anymore, break-ing four-dimensional supersymmetry to N = 1. Demanding maximal four-dimensionalsymmetry, �1 and �2 should be proportional, and we arrive at the most general ansatzfor N = 1 in four dimensions given in eq. (2.3).In the following, we will spe
ify the ne
essary and suÆ
ient 
onditions for N = 1
ompa
ti�
ations of (massive) type IIA supergravity to AdS4 with the stri
t SU(3)-stru
ture ansatz.Type IIA stri
t SU(3)-stru
ture supersymmetry 
onditionsThe ne
essary and suÆ
ient 
onditions for N = 1 
ompa
ti�
ations of (massive) typeIIA supergravity to AdS4 with the stri
t SU(3)-stru
ture ansatz (2.4) were �rst givenin [31℄. These va
ua require 
onstant warp fa
tor, A, and 
onstant dilaton, �. The



26 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUAsolutions of [31℄ are given by 6:H = 2m5 e�Re
 ; (2.27a)F2 = f9 J + F 02 ; (2.27b)F4 = fvol4 + 3m10 J ^ J ; (2.27
)Wei� = �15e�+Am+ i3e�+Af ; (2.27d)where H is the NSNS three-form, and Fn denote the RR-forms. In the following,we will set the warp fa
tor equal A to zero. Furthermore, f and m are 
onstantsparameterizing the solution: f is the Freund-Rubin parameter, while m is the massof Romans' supergravity [45℄ { whi
h 
an be identi�ed with F0 in the `demo
rati
'formulation [44℄.The 
onstant W is de�ned by the following relation for the AdS4 Killing spinors,��, r��� = 12W
��+ ; (2.28)so that the radius of AdS4 is given by jW j�1. The two-form F 02 is the primitive part ofF2 (i.e. it is in the 8 of SU(3)).The intrinsi
 torsion of the internal manifold is 
onstrained by supersymmetry andthe Bian
hi identities. The only non-zero torsion 
lasses are W1 and W2, and theyare purely imaginary what we indi
ate with a minus supers
ript, i.e., W1;2 = W�1;2 =iImW�1;2. The forms J and 
 thus satisfy (see the de�nition of the torsion 
lasses ineq. (2.10)) dJ = �32 iW�1 Re
 ; (2.29a)d
 =W�1 J ^ J +W�2 ^ J ; (2.29b)where the torsion 
lasses are given by:W�1 = �4i9 e�f ; W�2 = �ie�F 02 : (2.30)From eq. (2.27) and eq. (2.30) we immediately 
on
lude that F 02 is 
onstrained bythe Bian
hi identity for F2 (see eq. (B.9a)):dF 02 = ( 227f2 � 25m2)e�Re
� j6 ; (2.31)6As opposed to [31℄ we do not use superspa
e 
onventions. Furthermore we use here the stringframe and put m = �2mthere; H = �Hthere; J = �Jthere; F2 = �2mthereB0 and F4 = �G.
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e, j6, for D6-branes/O6-planes on the right-hand side. Inaddition, for vanishing sour
es, equation (2.31) yields dW�2 / Re
. It is 
onvenient tode�ne the following proportionality 
onstants 
1 and 
2dJ = �32 iW�1 Re
 = 
1Re
 ; (2.32a)dW�2 = i
2Re
 ; (2.32b)where we show in appendix C 
2 = �18 jW�2 j2 : (2.33)The absolute value of a two-form � is de�ned as j�j2 := ��mn�mn.For the sour
eless 
ase it was proven by analyzing integrability 
onditions that aba
kground that is supersymmetri
 and whose 
uxes satisfy the Bian
hi identities andequations of motion is a solution to the full equations of motion (whenever there areno mixed external-internal 
omponents of the Einstein tensor, whi
h we will assume)[46, 47, 31℄. Turning on sour
es, the Bian
hi identities get modi�ed by these sour
es.Assuming these sour
es to be supersymmetri
 (they must be generalized 
alibrated asin [48℄) it 
an similarly be shown that, under mild assumptions, supersymmetry guar-antees the appropriately sour
e-modi�ed Einstein and dilaton equation of motion to beautomati
ally satis�ed if these sour
e-modi�ed Bian
hi identities and form equationsof motion are satis�ed [43℄.For vanishing sour
e, we �nd from the eqs. (2.31), (2.32) and (2.33) that the fol-lowing bound on (W�1 ;W�2 ) has to be satis�ed for a geometry to be a supersymmetri
ba
kground 165 e2�m2 = 3jW�1 j2 � jW�2 j2 � 0 : (2.34)This is a very restri
tive 
ondition for a manifold to be suitable for a supersymmetri
solution. Let us note that 
ondition (2.34) turns out to be too stringent to be satis�edfor any nilmanifold whose only non-zero torsion 
lasses are W�1;2 [49℄.To relax the this restri
tive 
onstraint (2.34) we may allow for a brane/orientifoldsour
e, j6 6= 0. The simplest sour
e we 
an 
onsider is one proportional to Re
 [50℄:j6 = �25e���Re
 ; (2.35)where � is a dis
rete, real parameter of dimension (mass)2, so that �� is proportional tothe orientifold/D6-brane 
harge (� is positive for net orientifold 
harge and negative fornet D6-brane 
harge) 7. For the 
hoi
e (2.35) the sour
e wraps supersymmetri
 
y
les,7To be more pre
ise, the 
harge of a D6-brane is �6 = (2�)�6�0�7=2, whereas the 
harge of aO6-plane is �2�6. An orientifold plane is not a genuine supergravity obje
t, but de�ned by the string
ompa
ti�
ation, where the orientifold plane is the �xed point lo
us of the involution ��. Thus, fornet D-brane 
harge, � < 0 is an arbitrary, dis
rete parameter (proportional to the number of D6-branes), whereas for net orientifold 
harge, � > 0 is �xed by the 
harge of the orientifold. However,for the expli
it 
al
ulations in this thesis, we take the pragmati
 point of view that we 
an enri
h thesupergravity a
tion by an obje
t with arbitrary negative 
harge [38℄.
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h is easily veri�ed by looking at the 
alibration 
onditions for D6-branes/O6-planes:j6 ^Re
 = 0 ; j6 ^ J = 0 ; (2.36)whi
h are satis�ed for (2.35). The 
onstraint 
oming from (2.31) now readse2�m2 = �+ 516 �3jW�1 j2 � jW�2 j2� � 0 : (2.37)Sin
e we assume that � is arbitrary, the above equation 
an always be satis�ed, andtherefore no longer imposes any 
onstraint on the torsion 
lasses of the manifold. Withorientifolds sour
es there are possible solutions on nilmanifolds as we will demonstratein 
hapter 6.There is a more general 
hoi
e as (2.35) for the sour
e that satis�es the 
alibration
ondition (2.36): j6 = �25e���Re
+ w3 ; (2.38)where w3 has to be a primitive (1,2)+(2,1)-form. For this 
hoi
e we relax the 
onstraintthat dW�2 / Re
 su
h that W�2 = i
2Re
 + ie�w3 : (2.39)The 
ondition (2.34) is still the same, sin
e it involves only the (3,0) and (0,3)-part ofeq. (2.31).As we have mentioned, for some of our models we will study, the in
lusion of smearedorientifold sour
es is required to relax the bound from (2.34) to (2.37) and to allow fora supersymmetri
 AdS4 solution. In appendix D we explain how to asso
iate orientifoldinvolutions to a smeared sour
e. Under ea
h orientifold involution the dilaton, metri
and 
uxes must transform as follows [43℄:Even : ��e� = e� ; ��F0 = F0 ; ��F4 = F4 ;Odd : ��H = �H ; ��F2 = �F2 ; (2.40a)whereas the SU(3)-stru
ture transforms asEven : ��Im
 = Im
 ;Odd : ��Re
 = �Re
 ; ��J = �J : (2.40b)Let us mention that there is no N = 1 AdS4 solution for a 
ompa
ti�
ation in typeIIA with stati
 SU(2)-stru
ture, as was already noted in [42℄. We provide a very simpleproof for this statement in terms of generalized geometry in appendix C. The sametype of argument is also appli
able for the type IIB side, where it is easy to see thatthere is no N = 1 AdS4 solution for type IIB and stri
t SU(3)-stru
ture possible. Wesummarize these results in table 2.2.



2.2. SUPERSYMMETRIC SOLUTIONS 29N = 1 AdS4 solution type IIA type IIBstri
t SU(3) possible not possiblestati
 SU(2) not possible possibleTable 2.2: Possible N = 1 AdS4 solution for type IIA/IIB with stri
t SU(3)-stru
tureor stati
 SU(2)-stru
ture.Hierar
hy of s
alesFor a solution satisfying the type IIA 
onditions given in this se
tion to be a validsupergravity approximation, we have to verify that the string loops 
an be safely ignoredand that we 
an ignore �0-
orre
tions. We thus have to show that we 
an 
onsistentlytake the string 
oupling 
onstant to be small (gs = e� � 1), and that the volume of theinternal manifold is large in string units (Lint=l � 1, where Lint is the 
hara
teristi
length of the internal manifold).As we will show in the following, we 
an always 
hoose the ba
kground 
uxes in away that the supergravity approximation is valid. In the full quantum theory, all the
uxes have to be quantized a

ording to1lp�1 ZCp Fp = np ; (2.41)where l := 2�p�0, Cp is a 
y
le in the internal manifold, and np 2 Z. For the super-symmetri
 solutions we will study in part II and III of this thesis, the NSNS three-formH turns out to be exa
t (in fa
t, sin
e H / Re
 / dJ this follows from the supersym-metry 
onditions in se
tion 2.2.2, see �rst equation in (2.27) and eq. (2.29a)), hen
e itsintegral over any internal three-
y
le vanishes, and it therefore suÆ
es to impose (2.41)for the RR-
uxes.Con
retely, in 
hapter 8 and 11, where we will study the mass spe
trum around thesupersymmetri
 solutions for our models, we 
hoose 
onventions su
h thatJ � L2int ; 
 � L3int : (2.42)We immediately 
on
lude from (2.27), (2.29) and (2.31) the following s
alings 8Fp � 1gsLintLpint ; jWij2 � L�2int : (2.43)We thus de�ne fp=(gsLint) as the norm of the 
ux density Fp, where fp is some numberdepending on the geometry. The quantization 
ondition (2.41) then impliesfpg�1s Lp�1int = lp�1np ; (2.44)8In our 
onventions, the stru
ture 
onstants are dimensionless su
h that the derivative does notin
uen
e the s
aling.
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h one easily derives the following equationsgs = (f30 f4) 14 (n30n4)� 14 ; Lintl = �f0f4� 14 �n4n0� 14 ;n2pn0n4 = f2pf0f4 ; n0n6n2n4 = f0f6f2f4 : (2.45)Given a solution fnpg to the quantization 
onditions (2.44), there are several di�erentpossible s
alings np ! N�pnp, for N;�p 2 N, whi
h leave the fp's invariant and, at thesame time, ensure that gs is parametri
ally small while Lint=l is parametri
ally large(with large parameter N). For instan
e, assume the res
alingn0 ! N4n0 ; n2 ! N6n2 ; n4 ! N8n4 ; n6 ! N10n6 ; (2.46)and it is easy to verify that the fp's are invariant whereas gs / N�5 and Lint=l / N .Despite the fa
t that we are allowing for large 
ux quanta, it 
an be shown that higher-order 
ux 
orre
tions 
an also be negle
ted. Indeed it is not diÆ
ult to see that theparameter jgsFpj2, whi
h 
ontrols the size of these 
orre
tions, s
ales with a negativepower of the large parameter N [51℄.De
oupling of Kaluza-Klein modesA further 
onsisten
y requirement is that the Kaluza-Klein tower 
an be de
oupled, i.e.,we have to establish that the lightest ex
itations above the Breitenlohner-Freedmanbound with mass squares m2LM are mu
h lighter than the Kaluza-Klein ex
itationswith mass square m2KK. This is the problem of separation of s
ales. One 
an takethe point of view that this problem should not be dis
ussed until the model is upliftedto a phenomenologi
ally viable model with a small, positive 
osmologi
al 
onstant - apro
edure that also 
hanges the mass spe
trum of the lightest modes su
h that it isne
essary to re-address the separation of s
ales.However, in the following we will study the 
onditions for the separation of s
aleseven before the uplifting. It will a
tually turn out that the separation of s
ales isdiÆ
ult to establish and will not be possible for most of the models we study in thisthesis su
h that one may hope that after an uplift pro
edure the s
ales are properlyseparated. Nevertheless, let us study the 
onditions for de
oupling the Kaluza-Kleinmodes.As we will dis
uss in se
tion 3.1, the mass squares of the lightest ex
itations abovethe Breitenlohner-Freedman bound are of order jW j2 whereas the massive states of theKaluza-Klein tower have mass squares of the order L�2int . The ne
essary 
ondition tohave a hierar
hy between the lightest ex
itations and the Kaluza-Klein tower 
an thusbe rewritten as follows jW j2L2int � 1 : (2.47)



2.2. SUPERSYMMETRIC SOLUTIONS 31Using (2.27d) we �nd that to de
ouple the Kaluza-Klein s
ale we must imposejW j2L2int = 125(gs)2m2L2int + 19(gs)2f2L2int � 1 ; (2.48)whi
h means that ea
h of the two terms on the right-hand side of the equal sign mustbe separately mu
h smaller than one.Let us �rst 
onsider the se
ond square in the 
ondition for a de
oupling of the Kaluza-Klein s
ale (2.48). This requires (gs)2f2L2int � 1. From eq. (2.30) this 
onditions readsjW�1 jLint � 1 ; (2.49)whi
h requires manifolds for whi
h W�1 vanishes (and only W�2 is possibly non-zero).Su
h manifolds are 
alled `nearly Calabi-Yau' (NCY), see e.g. [52℄. Hen
e, for thede
oupling of the Kaluza-Klein s
ales, the internal manifold must admit an SU(3)-stru
ture whi
h is suÆ
iently 
lose to the NCY limit.The �rst square of 
ondition (2.48) yields the 
ondition (gs)2m2L2int � 1. Usingeq. (2.37) this 
ondition is equivalent to�L2int + 516 �3jW�1 j2 � jW�2 j2�L2int � 1 : (2.50)Note that without sour
e terms it is not possible to satisfy this 
ondition (unless3jW�1 j2 � jW�2 j2 � L�2int). However, with sour
e terms we just need to show thatwe 
an 
hoose � so that it is 
lose to its bound to satisfy (2.50). The dis
rete parame-ter �, whi
h is, for � < 0, proportional to the net number of D6-branes nD6, s
ales as(up to numeri
al fa
tors of order one)� � �nD6gslL�3int ; (2.51)as 
an be seen from the quantization 
ondition for F2, and the Bian
hi identity for F2(B.9a). With eq. (2.43) we 
an rewrite this equation s
hemati
ally as follows:�nD6gs� lLint�+ a� 1 ; (2.52)where a is a number of order one. Sin
e gs � lLint�� 1, we 
an then satisfy this bound,provided that a is positive, by 
hoosing some large integer nD6.On
e a solution for nD6 is obtained in this way, we are free to res
ale nD6 ! N qnD6leaving (2.52) invariant, provided we take: q = (�0+�4)=2 2 N. For the example (2.46)we add nD6 ! N6nD6 whi
h leaves eq. (2.52) and all the fp's in eq. (2.45) invariantand ensures that gs is parametri
ally small while Lint=l is parametri
ally large (withlarge parameter N).On the other hand, when a turns out to be stri
tly negative, we 
an not a

omplish(2.52) with �nD6 ! nO6, whi
h 
orresponds to net orientifold 
harge, sin
e the numberof orientifolds is not freely adjustable (see also footnote 7). It depends thus on the modelwe study, whether the Kaluza-Klein modes 
an be de
oupled or not.
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 type IIA solution with non-
onstantwarp fa
tor and dilatonThe (massive) type IIA supersymmetry 
onditions forN = 1 
ompa
ti�
ations to AdS4given in se
tion 2.2.2 assumed 
onstant warp fa
tor A and 
onstant dilaton �. The
ondition of 
onstant warp fa
tor/dilaton follows from the supersymmetry equationsand the Bian
hi identity for F0. However, we 
an allow for non-
onstant warp fa
-tor/dilaton provided that we set the Romans mass m to zero 9. To analyse this in moredetail, we rederive the type IIA supersymmetry 
onditions given in se
tion 2.2.2. Itwill be 
onvenient for the analysis to use the language of generalized geometry, whi
hwe review in appendix C, where the 
onditions for a supersymmetri
 solution take avery 
on
ise form.Let us start by �rst 
ombining eq. (C.43b) and (C.43
) to givedH �e3A��	2� = 2We2A��Re	1 ; (2.53)where we used the fa
t that W is a 
onstant. The se
ond equation whi
h we have tosolve in
ludes the RR-
uxes (
olle
tively summarized in the polyform ~F ) and is givenin eq. (C.43a). It readsdH �e4A��Im	1� = 3e3A��Im(W �	2) + e4A ~F ; (2.54)where ~F is de�ned in eq. (2.24).For a stri
t SU(3)-stru
ture the pure spinors are given in eq. (2.11), where for typeIIA 	1 = 	� and 	2 = 	+. We �rst solve eq. (2.53) whi
h imposes 
onstraints on thegeometry. It 
onsists of a one-, three- and �ve-form part. The one-form part readsd(e3A��e�i�) = d(e3A��W �e�i�) = 0 ; (2.55)where we used in the se
ond equation that W is 
onstant. In the following it will be
onvenient to in
lude the phase of W into the angle �0 as followsW �e�i� = jW je�i�0 : (2.56)The 
onditions resulting from eq. (2.55) are thusd�0 = 0 ; (2.57a)3dA� d� = 0 : (2.57b)The three-form part of eq. (2.53) is rewritten with eq. (2.57) as followsidJ +H = �2e�AjW je�i�0Re
 ; (2.58)9Re
ently, this was also emphasized in [53℄ and in [54, 33℄ su
h N = 2 type IIA solutions are
onstru
ted from M-theory ba
kgrounds on seven dimensional Sasaki-Einstein manifolds redu
ed totype IIA.
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h that we get dJ = �2e�AjW j sin �0Re
 = 
1Re
 ; (2.59a)H = �2e�AjW j 
os �0Re
 ; (2.59b)where we introdu
ed the proportionality 
onstant 
1 as in eq. (2.32). Note thateq. (2.59a) implies the vanishing of the torsion 
lasses W3 and W4 and 
onstrainsthe �rst torsion 
lass to be purely imaginary,W�1 = �4i3 e�AjW j sin �0 : (2.60)The �ve-form part of eq. (2.53) is very easy, it reads using the result (2.57),d��12J ^ J�+ iH ^ J = 0 ; (2.61)and is automati
ally satis�ed as 
an easily be seen from eq. (2.59) and the 
ompatibility
onditions for a stri
t SU(3)-stru
ture (2.6).Let us now analyse the se
ond 
ondition (2.54) involving the RR-�elds. It 
onsists ofa zero-, two-, four- and six-form part. We �rst analyse the zero-, two- and six-form partof this equation and analyse the two-form part later. The 
onditions read, respe
tively,~F0 = 3e��e�AjW j sin �0 ;~F2 = �3e��e�AjW j 
os �0J~F6 = 3e��e�AjW j 
os �0vol6 � e��H ^ Im
 ; (2.62)where we de�ned the volume vol6 in eq. (2.7). Using eq. (2.24) 10, these equationstranslate into F0 = m;F4 = 3m10 J ^ J ;F6 = �fvol6 ; (2.63)where we de�ned m = �5e��e�AjW j 
os �0 ;f = 3e��e�AjW j sin �0 : (2.64)So far we obtained exa
tly the 
onditions given in se
tion 2.2.2, whi
h were �rstderived in [31℄. The 
ru
ial point is that the Bian
hi identity for F0 (see eq. (B.9a))reads dF0 = d(�5e��e�AjW j 
os �0) = 0 ; (2.65)10Note that we drop the hat on F in the following.



34 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUAwhi
h is equivalent, using eq. (2.57a), tod� + dA = 0 : (2.66)Together with eq. (2.57b), this implies that the warp fa
tor A and the dilaton � haveto be 
onstant. If, on the other hand, the Romans mass m is vanishing, we do nothave this 
ondition from the Bian
hi of F0 and the warp fa
tor A and the dilaton �are not 
onstant anymore but still satisfy eq. (2.57b). Hen
e we 
hoose in the following�0 = ��2 su
h that 11 m = 0 and f = �3e��e�AjW j : (2.67)This has now 
onsequen
es for the geometry, as 
an be seen as follows. Fromeq. (2.59a) we obtain 0 = d2J = d(�2e�AjW jRe
) ; (2.68)su
h that dRe
 = dA ^Re
 : (2.69)Comparing this with the de�nitions of the torsion 
lasses in eq. (2.10), we have anon-vanishing �fth torsion 
lass W5, for whi
h the real part is given byReW5 = dA 6= 0 ; (2.70)whereas ReW1 = ReW2 = 0. This implies for Im
 the followingdIm
 = �iW�1 J ^ J � iW�2 ^ J + dA ^ Im
 : (2.71)We are now ready to analyse the missing four-form part of eq. (2.54). This equationreads then ~F4 = �32e��e�AjW jJ ^ J + e�A��d(eAIm
) ; (2.72)whi
h translates, using eq. (2.24) and eq. (2.71), inF2 = f9J + F 02 + 2e�� ?6 (dA ^ Im
) ; (2.73)where we de�ned F 02 = ie��W�2 : (2.74)Let us in the following brie
y summarize the results of this analysis. Putting the Ro-mans mass m to zero, there are solutions to the stri
t SU(3)-stru
ture supersymmetry11In the following, we will 
hoose the plus sign in eq. (2.67).
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onditions with non-
onstant warp fa
tor and dilaton and the following non-vanishingtorsion 
lasses W�1 = �4i9 e��f ;W�2 = �ie�F 02 ;ReW5 = dA : (2.75)The ba
kground 
uxes are given byH = 0 ;F0 = 0 ;F2 = f9 J + F 02 � 2e�� ?6 (dA ^ Im
) ;F4 = 0 ;F6 = �fvol6 : (2.76)
Let us stress again that this time, f is not a 
onstant but f = 3e��e�AjW j. The warpfa
tor A and the dilaton � are related by eq. (2.57b).





Chapter 3Low-energy four-dimensionalphysi
sAs we mentioned in the introdu
tion, the idea of geometri
 
ompa
ti�
ation is veryold. Kaluza [12℄ and Klein [13, 14℄ suggested a uni�
ation of the gravitational andele
tromagneti
 intera
tion by postulating an extra 
ompa
t dimension of spa
e-time.As we will explain in this 
hapter, the 
ompa
ti�
ation of extra dimensions into a smallinternal manifold results in an in�nite tower of s
alar, ve
tor and tensor modes withmasses quantized in units of the inverse radius of the internal manifold. In the earlydays of Kaluza and Klein, however, it was far from 
lear how to interpret these massiveparti
les, sin
e with the ele
tri
 
harge set equal to its experimentally observed valuethese masses turned out to be very heavy. The a

eptan
e of extra dimensions wastherefore very low.The dis
overy of string theory provided another way of introdu
ing higher dimen-sions into physi
s. String theory requires a ten-dimensional spa
e-time to be a 
on-sistent theory. To make 
onta
t with our observed four-dimensional world we need ame
hanism to hide six of these ten dimensions from present-day experiments and theidea of Kaluza and Klein gained immediately new interest. Hen
e, we 
hoose thesesix extra dimensions to be small and 
ompa
t su
h that they are not dete
table inpresent-day experiments. For a given ba
kground, the ten-dimensional theory 
an thenbe redu
ed to four dimensions by a Kaluza-Klein redu
tion, resulting in an in�nitetower of Kaluza-Klein modes. Choosing the internal manifold small enough not to beobserved, the higher modes of the Kaluza-Klein tower be
ome very heavy and 
an beintegrated out. We end up with an e�e
tive four-dimensional theory for the lightestKaluza-Klein modes. As we mentioned in the introdu
tion, the s
alars in this lightspe
trum 
orrespond to the moduli �elds. If there are no ba
kground 
uxes or metri

uxes present, these moduli will be massless and unstabilized.For supersymmetri
 theories, on the other hand, one 
an 
ompute the four-dimen-sional e�e
tive theory in a more elaborate approa
h that relies on supersymmetry. Wewill refer to this approa
h as the e�e
tive supergravity approa
h. Con
retely, for an



38 3. LOW-ENERGY FOUR-DIMENSIONAL PHYSICSN = 1 supergravity, one determines the K�ahler potential K and the superpotential Win terms of geometri
al data of the internal manifold and the ba
kground 
uxes 1. Bymeans of these expressions we 
an straightforwardly 
onstru
t the e�e
tive a
tion, aswe will review in the following. We will use the expressions for the K�ahler potentialand the superpotential derived in [55, 27, 56, 57, 58, 59℄. However, we will not blindlyadopt these expressions without 
he
king them 
arefully. We will perform this 
he
k by
al
ulating the mass spe
trum for two of our expli
it models we study in this thesis, bothby a dire
t Kaluza-Klein redu
tion as well as in the e�e
tive supergravity approa
h.We obtain exa
tly the same results in both 
ases su
h that we will restri
t ourselves tothe e�e
tive supergravity approa
h for the other manifolds we study.In this 
hapter we �rst give a short survey of the Kaluza-Klein re
ipe, for a detailedreview see e.g. [60℄. Next we turn to the des
ription of the e�e
tive supergravityapproa
h and 
omment on the possible 
hoi
es of ba
kground 
uxes.3.1 Kaluza-Klein redu
tionIn the Kaluza-Klein redu
tion for a D = (4 + d)-dimensional spa
e MD to our ob-served four-dimensional non-
ompa
t spa
e-timeM(3;1), one assumes a (warped) prod-u
t stru
ture for the manifoldMDMD =M(3;1) �Md ; (3.1)where Md represents the d-dimensional 
ompa
t internal manifold. Let x and y bespa
e-time and internal-manifold 
oordinates, respe
tively. The most general ansatzfor the ba
kground metri
 is given in eq. (2.2) and readsds2 = e2Â(y)ĝ��(x)dx�dx� + ĝmn(y)dymdyn ; (3.2)where hatted �elds denote a va
uum, i.e. a parti
ular solution of the equations ofmotion of ten-dimensional supergravity. The requirement of maximal symmetry forthe four-dimensional spa
e-time M(3;1) restri
ts us to spa
es of 
onstant 
urvature,i.e. to a de Sitter (dS) spa
e for positive 
urvature, Minkowski for 
at spa
e-time andanti de Sitter (AdS) for negative 
urvature. Maximal spa
e-time symmetry allows the`warped-produ
t' ansatz in
luding the a warp fa
tor A(y) in eq. (3.2).Moreover, we denote by 	̂(x; y) a `va
uum' for the di�erent matter �elds su
h as thedilaton, the NSNS two-form B2 potential or the di�erent RR p-form potentials. TheKaluza-Klein redu
tion 
onsists in expanding all ten-dimensional �elds gMN (x; y) and	(x; y) in `small' 
u
tuations around the va
uum:gMN (x; y) = ĝMN (x; y) + ÆgMN (x; y) ; (3.3a)	(x; y) = 	̂(x; y) + Æ	(x; y) : (3.3b)1In our 
on
rete models, there are no ve
tor multiplets su
h that we will not 
onsider D-terms.



3.1. KALUZA-KLEIN REDUCTION 39To determine the spe
trum of the four-dimensional theory we substitute this expan-sion in the equations of motion keeping only terms up to linear order in ÆgMN (x; y)and Æ	(x; y) (
orresponding to at most quadrati
 terms in the Lagrangian). Ea
h
u
tuation, 
olle
tively denoted by Æ�(x; y), is de
omposed as a sum of terms of theform Æ�(x; y) =Xn �n(x)!n(y) ; (3.4)where �n(x) are four-dimensional spa
e-time �elds and the !n(y)'s form a basis ofeigenforms of the Lapla
ian operator 2 �d = ddy + dyd in the internal d-dimensionalspa
e Md, �d!n(y) = m2n!n(y) : (3.5)From the four-dimensional point of view this results in an e�e
tive four-dimensionaltheory with an in�nite tower of massive states with masses mn quantized as 1=Lintwhere Lint is the `radius' of internal manifold su
h that its volume is of order Ldint. Forsmall internal manifolds these masses will be
ome very heavy and 
an be integratedout.In the following we will trun
ate all the higher Kaluza-Klein modes in the harmoni
expansion (3.4) and keep only those !n(y)'s in (3.4) that are left-invariant onMd. Theresulting modes are not in general harmoni
, but 
an be 
ombined into eigenve
tors ofthe Lapla
ian whose eigenvalues are of order of the geometri
 
uxes.Plugging the ansatz (3.3)-(3.4) into the ten-dimensional equations of motion andkeeping at most linear-order terms in the 
u
tuations, one 
an read o� the masses ofthe spa
e-time �elds, i.e. the `spe
trum'. In the present 
ase, this is a

omplished by
omparing with the equations of motion for non-intera
ting �elds propagating in AdS4.Let M and � be the mass of the �eld and the 
osmologi
al 
onstant of the AdS spa
e,respe
tively, su
h thatS
alar : ��+�M2 + 23��� = 0 ; (3.6a)Ve
tor : ��� +r�r��� +M2�� = 0 ; (3.6b)Metri
 : �Lh�� + 2r(�r�h�)� �r(�r�)h�� + (M2 � 2�)h�� = 0 ; (3.6
)where �L is the Li
hnerowi
z operator de�ned by:�Lh�� = �r2h�� � 2R����h�� + 2R(��h�)� : (3.7)The de�nition of mass as in eq. (3.6) is su
h that the massless state,M = 0, 
orrespondsto a gauge �eld with only two degrees of freedom for the metri
 and ve
tors and s
alarspropagating on the light 
one [61, 60℄.2See appendix A for our 
onventions.



40 3. LOW-ENERGY FOUR-DIMENSIONAL PHYSICSWith the above de�nitions, the Breitenlohner-Freedman bound [61℄ is simplyM2 � 0 ; (3.8)for the metri
 and the ve
tors. For the s
alars, however, a negative mass-squared isallowed: M2 � �12 = �jW j24 ; (3.9)where W was de�ned in eq. (2.28). A
tually, we will present the results for the massspe
trum of the s
alars in terms of ~M2 =M2 + 23� ; (3.10)for whi
h the Breitenlohner-Freedman bound reads~M2 � �9jW j24 : (3.11)We will take ~M = 0 as the de�nition of an unstabilized modulus sin
e from (3.6a) wesee that then, if it were not for the boundary 
onditions of AdS4, a 
onstant shift of �would be a solution to the equations of motion. Therefore a 
onstant shift of � leadsto a new va
uum solution.To determine the spe
trum of the four-dimensional theory, we plug the expansionansatz (3.3) in the equations of motion, where the NSNS- and RR-�eld strength appear.We would thus like to express the 
u
tuations of the RR-�eld strengths ÆF in terms ofthe 
u
tuations of the potentials ÆC in su
h a way that the Bian
hi identity dHF = �jis automati
ally satis�ed. How this 
an be done is explained in the next se
tion.3.1.1 Bian
hi identitiesThe re
ipe for the Kaluza-Klein redu
tion tells us to expand all the �elds in `small'
u
tuations around the va
uum. The Bian
hi identities for the gauge 
ux have to besatis�ed for the ba
kground as well as for the ba
kground plus 
u
tuation, i.e.,(d + Ĥ)F̂ = �j ; (3.12a)(d + Ĥ + ÆH)(F̂ + ÆF ) = �j ; (3.12b)where we assumed that the sour
e does not 
u
tuate, sin
e it is asso
iated to smearedorientifolds.The integrability equations read (d + Ĥ)j = 0 ; (3.13a)(d + Ĥ + ÆH)j = 0 ; (3.13b)
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h follows ÆH ^ j = 0 : (3.14)From eq. (3.14) and the integrability 
onditions (3.13a) we show that(d + Ĥ)(eÆB ^ j) = 0 ; (3.15)so that, subtra
ting (3.13a), we 
an de�ne (lo
ally)�(eÆB � 1) ^ j = (d + Ĥ)Æ! : (3.16)Now, for orientifold sour
es the left hand side of this equation always vanishes. Thisfollows be
ause the pull-ba
k of ÆB to the orientifold, ÆBj�, must be zero, whi
h impliesusing (D.2): ÆB ^ j = 0 ; (3.17)and the same for all powers of ÆB. This implies that we 
an also 
hoose Æ! = 0.The di�eren
e between (3.12a) and (3.12b) gives the Bian
hi identity for the 
u
tu-ations �d + Ĥ + ÆH� ÆF + ÆH ^ F̂ = 0 : (3.18)This equation 
an be rewritten as�d + Ĥ��eÆBÆF�+ ÆH ^ eÆB F̂ = 0 : (3.19)We now introdu
e the potentials ÆC to solve this equation. The solution readseÆBÆF = (d + Ĥ)ÆC � (eÆB � 1)F̂ + Æ! ; (3.20)where we 
an set Æ! = 0.Expanding this expression, we obtain for type IIA the 
u
tuationsÆF0 = 0 ;ÆF2 = dÆC1 �mÆB ;ÆF4 = dÆC3 + Ĥ ^ ÆC1 � ÆB ^ (F̂2 + ÆF2)� 12m(ÆB)2 ;ÆF6 = dÆC5 + Ĥ ^ ÆC3 � ÆB ^ (F̂4 + ÆF4)� 12(ÆB)2 ^ (F̂2 + ÆF2)� 13!m(ÆB)3 ;(3.21)and for type IIBÆF1 = dÆC0 ;ÆF3 = dÆC2 + Ĥ ^ ÆC0 � ÆB ^ (F̂1 + ÆF1) ;ÆF5 = dÆC4 + Ĥ ^ ÆC2 � ÆB ^ (F̂3 + ÆF3)� 12(ÆB)2 ^ (F̂1 + ÆF1) : (3.22)



42 3. LOW-ENERGY FOUR-DIMENSIONAL PHYSICSFor the Kaluza-Klein redu
tion we will only need the terms linear in the 
u
tuationswhile for an analysis of �nite 
u
tuations using the K�ahler potential and superpotentialwe need higher orders too.For the NSNS-
ux we 
an just writeH = Ĥ + ÆH = Ĥ + dÆB : (3.23)3.2 E�e
tive supergravityAs already mentioned in the introdu
tion of this 
hapter, the N = 1 e�e
tive four-dimensional a
tion 3 
an be obtained from the superpotential W and the K�ahler po-tential K. The part of the e�e
tive four-dimensional a
tion 
ontaining the graviton andthe s
alars readsS = Z d4xp�g4�M2P2 R�M2PKi�|���i�� ���| � V (�; ��)� ; (3.24)where MP is the four-dimensional Plan
k mass. The s
alar potential is given in termsof the superpotential viaV (�; ��) =M�2P eK �Ki�|DiWED�|W�E � 3jWEj2� ; (3.25)where DiWE � �iWE + (�iK)WE.The superpotential and K�ahler potential of the e�e
tive N = 1 supergravity havebeen derived in various ways. This is done most generally in terms of pure spinors in theframework of generalized geometry 4. Here we will present the results of these deriva-tions and then spe
ialize the expressions to stri
t SU(3)- and stati
 SU(2)-stru
ture.As we mentioned, we will verify these expressions by performing a 
onsisten
y 
he
kbetween this e�e
tive supergravity approa
h and the dire
t Kaluza-Klein approa
h thatdoes not rely on supersymmetry. This is done by 
al
ulating the mass spe
trum forsome of our models, both by dire
t Kaluza-Klein redu
tion (
hapter 7) as well as inthe e�e
tive supergravity approa
h (
hapter 8), obtaining exa
tly the same results inboth 
ases (see also [62℄ for related work).In [27, 56℄ (based on earlier work of [55℄) the superpotential has been 
omputed atthe level of the fermioni
 e�e
tive a
tion. One uses the fa
t that the superpotentialWappears linearly in a four-dimensional N = 1 supergravity theory as the mass term ofthe gravitino  �, S / Z d4xp�geK=2 �W � ����� � � + 
.
.� : (3.26)Thus, fo
using on the mass terms of  � in the expli
it redu
tion of the fermioni
part of the ten-dimensional e�e
tive a
tion provides us with an expli
it expression for3In our 
on
rete models, there are no ve
tor �elds in the spe
trum su
h that we will not 
onsidergauge kineti
 
ouplings and D-terms.4See appendix C for details on pure spinors and generalized geometry.



3.2. EFFECTIVE SUPERGRAVITY 43the superpotential W. We skip here the details of the 
al
ulation and just quote theresult in eq. (3.27). However, let us mention that the expression for the superpotentialobtained in this way agrees with the expression obtained in [57℄, where the authorsderive the superpotential using a Gukov-Vafa-Witten type argument involving domainwalls, whi
h was also used in [63℄ in the spe
i�
 
ase of Calabi-Yau 
ompa
ti�
ations.The argument relies on the tension of a BPS domain wall. From the four-dimensionalpoint of view, the domain wall separates two supersymmetri
 
ux 
on�gurations. Byenergy 
onservation one gets a relation between the tension of the domain wall andthe di�eren
e of the superpotential on both sides of the domain wall, TDW / j�Wj.On the other hand, the tension of the domain wall is obtained as the integral of the
alibration over the internal generalized 
y
le whi
h the domain wall wraps. By furtherdemanding holomorphi
ity, the authors of [57℄ proposed an expli
it expression for thesuperpotential.In both approa
hes one arrives at the following expressions for the superpotential inEinstein frame WE = �i4�210 ZM h	2; F + idH(e��Im	1)i ; (3.27)where h�; �i indi
ates the Mukai pairing (C.10) and 	1 and 	2 are the pure spinorsdes
ribing the geometry. Using the expansion in ba
kground and 
u
tuations of theeqs. (3.21)-(3.23) we 
an rewrite the superpotential as followsWE = �i4�210 ZM h	2eÆB ; F̂ + idĤ(eÆBe��Im	1 � iÆC)i ; (3.28)where we used the property (C.11) of the Mukai pairing. This shows how the �eldsorganize in 
omplex multiplets 	2eÆB and e��Im	1 � iÆC, whi
h will be 
learer in
on
rete examples.The K�ahler potential reads 5K = � ln iZM h	2; �	2i � 2 ln iZM ht; �ti+ 3 ln(8�210M2P ) ; (3.29)where we de�ned t = e��	1. As we dis
uss in appendix C in more detail, the realpart of a pure spinor is a
tually a fun
tion of its imaginary part. For instan
e, Re tis obtained from Imt via the Hit
hin pro
edure. To take this relation properly intoa

ount we use the fa
t that the K�ahler potential for the t-se
tor may be written as(see eq. (C.15)) Kt = �2 ln 4ZM H(Imt) ; (3.30)where H(Imt) is the Hit
hin fun
tional. More details on how to 
ompute the Hit
hinfun
tional are given in appendix C.5The 
onstant last term makes eK dimensionless.



44 3. LOW-ENERGY FOUR-DIMENSIONAL PHYSICSNote that we have the freedom of a K�ahler transformationW 0E = f�3WE ; K0 = K + 3 ln f + 3 ln f� ; (3.31)where f = f(�) is an arbitrary holomorphi
 fun
tion.We will later 
ompare the results of an expli
it Kaluza-Klein redu
tion on some ofour models with the results obtained from the e�e
tive supergravity approa
h explainedin this 
hapter. To do that, we also have to take into a

ount that the results fromthe Kaluza-Klein redu
tion were in the ten-dimensional Einstein frame (B.2), whereasusing the te
hniques of this se
tion we get the result in the four-dimensional Einsteinframe (3.24). To 
ompute the relation between the masses 
omputed in these twoframes we note the following relationgE4M2P2 = e2A2�210 gE10VolE ; (3.32)whi
h we get from (B.2) by integration over the internal manifold and 
omparing thiswith (3.24). Thus we havem2E4 = gE10gE4 m2E10 = �210M2P e�2AVol�1E m2E10 : (3.33)In the following we spe
ialize the expressions obtained in the generalized geometrylanguage to the spe
i�
 
ases of a stri
t SU(3)-stru
ture and a stati
 SU(2)-stru
ture.Type IIA, stri
t SU(3)-stru
tureSpe
ializing to the type IIA SU(3) 
ase with pure spinors (2.11), the superpotentialtakes the formWE = �ie�i�4�210 ZM hei(J�iÆB); F̂ � idĤ �eÆBe��Im
 + iÆC3�i ; (3.34)and the K�ahler potential is given byK = � lnZM 43J3 � 2 lnZM 2 e��Im
 ^ e��Re
 + 3 ln(8�210M2P ) ; (3.35)where e��Re
 should be seen as a fun
tion of e��Im
. On the 
u
tuations we mustimpose the orientifold proje
tions (2.40). It turns out that for all the 
on
rete modelswe will study ÆB ^ Im
 = 0 ; (3.36)sin
e there are no odd �ve-forms 6. By expanding in a suitable basis of even and oddexpansion forms (whi
h have to be identi�ed separately for ea
h 
ase), we �nd that the6In fa
t, for some of the models we will 
hoose the orientifold proje
tions appropriately to proje
tout the one- and �ve-forms. This is to automati
ally satisfy the 
ompatibility 
ondition (2.6a) of thestri
t SU(3)-stru
ture also for the 
u
tuations.
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u
tuations organize naturally in 
omplex s
alarsJ
 = J � iÆB = (ki � ibi)Y (2�)i = tiY (2�)i ; (3.37a)e��Im
 + iÆC3 = (ui + i
i)Y (3+)i = ziY (3+)i : (3.37b)Type IIB, stati
 SU(2)-stru
tureSpe
ializing to the 
ase of type IIB stati
 SU(2)-stru
ture with pure spinors (2.19), thesuperpotential be
omesWE = i4�210 ZM h2V ^ ei(!2�iÆB); F̂ � idĤ �eÆBe��Im(e2V ^ �V ^ 
2) + iÆC�i ; (3.38)and the K�ahler potentialK = � ln��2iZM 2V ^ 2 �V ^ !22�� 2 lnZM 2 hRe t; Imti+ 3 ln(8�210M2P ) ; (3.39)where again Ret should be 
onsidered as a fun
tion of Imt = �Im �e��e2V ^ �V 
2�.As dis
ussed in appendix C, we 
an obtain the a
tion of the orientifold involutionon the SU(2)-stru
ture quantities from the a
tion of the orientifold on the pure spinors.We �nd from (C.40) the followingO5 : ��V = �V ; ��!2 = �!2 ; ��
2 = �
�2 ; ��ÆB = �ÆB ;O7 : ��V = V ; ��!2 = �!2 ; ��
2 = 
�2 ; ��ÆB = �ÆB ; (3.40)and for the RR-se
tor [43℄O5 : ��ÆC2 = ÆC2 ; ��ÆC4 = �ÆC4 ;O7 : ��ÆC2 = �ÆC2 ; ��ÆC4 = ÆC4 : (3.41)Again we �nd that the 
u
tuations organize naturally in 
omplex s
alars!
 = !2 � iÆB = (ki � ibi)Y (2��)i = tiY (2��)i ; (3.42a)e��Im
2 + iÆC2 = (ui + i
i)Y (2+�)i = ziY (2+�)i ; (3.42b)�ie��2V ^ �V ^Re
2 + iÆC4 = (vi + ihi)Y (4�+)i = wiY (4�+)i ; (3.42
)2V = C(iY (1�+)1 � �Y (1�+)2 ) ; (3.42d)where we de�ne � = x+ iy, and ea
h time the �rst/se
ond sign of the Yi indi
ates thebehavior under the O5/O7-involution. Note that C is a 
omplex overall fa
tor that isnot a degree of freedom. As we will see in the 
on
rete examples, we 
an eliminate Cby performing a K�ahler transformation (3.31).
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e of ba
kground 
uxes and bubbles of modulispa
eTo evaluate the expressions for the superpotential for type IIA stri
t SU(3)-stru
ture ortype IIB stati
 SU(2)-stru
ture, (3.34) or (3.38) respe
tively, we have to make a 
hoi
efor the ba
kground 
uxes Ĥ and F̂ . However, sin
e we 
u
tuate the gauge �elds, two
hoi
es of ba
kground 
uxes may be equivalent if they are related by a 
u
tuationof the moduli �elds. To 
lassify distin
t 
hoi
es we have to �nd 
on�gurations thatare not related by pure 
u
tuations of the moduli �elds. We label these di�erent
on�gurations as dis
onne
ted bubbles of the moduli spa
e, i.e. these bubbles are su
hthat it is not possible to rea
h another bubble by �nite 
u
tuations of the moduli�elds. In the following we will 
lassify these di�erent bubbles for type IIA and typeIIB, respe
tively.Type IIAClassifying the di�erent bubbles in terms of 
uxes amounts to �nding 
on�gurationsthat solve the Bian
hi identities dĤ = 0 ; (3.43a)dF̂0 = 0 ; (3.43b)dF̂2 +mĤ = �j3 ; (3.43
)dF̂4 + Ĥ ^ F̂2 = 0 ; (3.43d)while two 
on�gurations are 
onsidered equivalent if they are related by a 
u
tuationof the moduli �elds, whi
h after imposing the orientifold proje
tion (and assuming itremoves one-forms) is given by (see se
tion 3.1.1)ÆH = dÆB ; (3.44a)ÆF0 = 0 ; (3.44b)ÆF2 = �mÆB ; (3.44
)ÆF4 = dÆC3 � ÆB ^ (F̂2 + ÆF2)� 12m(ÆB)2 ; (3.44d)ÆF6 = Ĥ ^ ÆC3 � ÆB ^ (F̂4 + ÆF4)� 12(ÆB)2 ^ (F̂2 + ÆF2)� 13!m(ÆB)3 : (3.44e)In other words, we want to �nd representatives of the 
ohomology of the Bian
hi iden-tities (3.43) modulo pure 
u
tuations of the potentials (3.44).Let us �rst 
onsider the 
ase F̂0 6= 0. From eqs. (3.43a), (3.43b), (3.44a) and (3.44b)follows immediately that Ĥ 2 H3(M;R) and F̂0 
onstant. This determines ÆB onlyup to a 
losed form, we 
all it ÆB
. It 
an be used to analyse (3.43
) and (3.44
): the
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losed part of F2 is pure 
u
tuation, so that we 
hoose F̂2 as the most general non-
losed odd two-form, whi
h then determines the sour
e j3. At this point, we 
ompletelyspe
i�ed ÆB. Moving on to F̂4, we �nd that in eq. (3.43d) Ĥ^F̂2 = 0, sin
e we assumedthere were no even �ve-forms under all the orientifold involutions. Moreover, with the
u
tuations ÆC3 we 
an remove the exa
t part of F̂4 so that F̂4 2 H4(M;R). This,however, leaves the 
losed part of ÆC3 undetermined, whi
h we 
all ÆC
3. If we have
hosen Ĥ non-trivial, we 
an then use the 
losed part of ÆC
3 in (3.44e) to put F̂6 = 0,provided that ÆC
3 ^ Ĥ / vol6. This is not possible for Ĥ trivial and we have to 
hoosea non-zero F̂6 proportional to the volume form.For the 
ase F̂0 = 0 we 
hoose for F̂2 the most general two-form sin
e there areno 
u
tuations left in eq. (3.44
). Ĥ is still in H3(M;R) and F̂0 
onstant. We thusstill have the 
losed part of ÆB at disposal for F̂4 in (3.44d) su
h that we 
an 
hooseF̂4 2 H4(M;R) and put to zero the part proportional to ÆB
 ^ F̂2. Similar for F̂6: we
an put it to zero if ÆC
3 ^ Ĥ / vol6 for non-trivial Ĥ or if ÆB
 is not �xed 
ompletelyup to now and ÆB
 ^ F̂4 / vol6.Type IIBThe analysis in type IIB is quite similar to the analysis in type IIA. In the following wewill be interested in models with O5/O7 orientifolds su
h that we assume here theseorientifold proje
tions. From the 
u
tuations in (3.22) this then implies (sin
e a s
alaris always even under O5/O7 but ÆC0 should be odd/even, there is no ÆC0)ÆF1 = 0 ; (3.45)and we 
hoose the most general one-form for F̂1, whi
h then determines the sour
e jO7.We will assume that dĤ = 0 su
h that 7ÆH = dÆB : (3.46)This allows to 
hoose Ĥ 2 H3��(M;R) and �xes ÆB up to 
losed forms. Let us �rstassume that there is no 
losed part in ÆB (whi
h is a
tually the 
ase in our 
on
retemodels). This then implies for F3 from (3.22)ÆF3 = dÆC2 ; (3.47)su
h that we 
hoose F̂3 up to exa
t forms, whi
h determines the sour
e jO5. This �xesÆC2 up to 
losed forms. For F5, whi
h has to be 
losed (the volume-form is even/evenunder O5/O7), we are left withÆF5 = dÆC4 + Ĥ ^ ÆC
2 ; (3.48)7For the models we study in 
hapter 12 there is room for dĤ = jNS5 6= 0, but we will set to zerothis 
ontribution sin
e we do not know whether the proposed expression for the superpotential (3.38)takes the NS5-sour
e properly into a

ount.
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e we 
hoose F̂5 2 H5�+(M;R) and we 
an put to zero the part of F̂5 that isproportional to Ĥ ^ ÆC
2.If there is a part of ÆB that is 
losed, we have to take into a

ount thatÆF3 = dÆC2 � ÆB
 ^ F̂1 ; (3.49a)ÆF5 = dÆC4 + Ĥ ^ ÆC
2 � ÆB
 ^ (F̂3 + ÆF3)� 12(ÆB
)2 ^ F̂1 ; (3.49b)su
h that we 
an put to zero the part in F̂3 that is proportional to ÆB
 ^ F̂1, and,if this does not �x ÆB
 
ompletely, we 
an also put to zero the parts in F̂5 that areproportional to the last two terms in eq. (3.49b) where ÆB
 is the part not �xed byÆF3.



Chapter 4Nilmanifolds and 
oset spa
esThere are few expli
it examples of six-dimensional manifolds suitable for 
ompa
ti�-
ations to four dimensions. In [64℄ a systemati
 sear
h for N = 1 Minkowski va
ua oftype II string theories on 
ompa
t six-dimensional nil- and solvmanifolds was performedyielding very few examples. These solutions require the presen
e of orientifold planes,typi
ally smeared, due to a no-go theorem [36, 37℄ that rules out va
ua in whi
h thefour-dimensional spa
e is Minkowski and the internal 
ompa
t manifold has non-zeroba
kground 
uxes and no sour
es. This no-go theorem 
an be 
ir
umvented for N = 1
ompa
ti�
ations to four-dimensional AdS spa
e-time.The oldest 
onstru
tions of N = 1 AdS4 
ompa
ti�
ations arise by 
onsidering theHopf redu
tions of eleven-dimensional supergravity 
onsidered by Nilsson and Pope [65℄that lead to supersymmetri
 type IIA 
ompa
ti�
ations with a non-vanishing se
ondtorsion 
lass W2 [66, 67, 68℄ without the need of sour
es. As these solutions 
ome fromthe redu
tion of eleven-dimensional supergravity, they have vanishing Romans mass.On the other hand, another simple type IIA 
onstru
tion with no need of orientifolds
onsiders manifolds that are nearly-K�ahler, su
h that the deviation from the Calabi-Yau metri
 is expressed by a non-vanishing �rst torsion 
lass W1 [69℄. These manifoldsare also Einstein, where the s
alar 
urvature is proportional to jW1j2. In [51℄ the
ompa
ti�
ations were 
onstru
ted that interpolate between the vanishing Romansmass solutions and the nearly-K�ahler solutions on two spe
ial 
oset manifolds, whi
h
an be des
ribed using twistor spa
e te
hniques.However, there are also type IIA 
onstru
tions involving sour
es. First examples of
ompa
ti�
ations to N = 1 in type IIA with all moduli stabilized and in whi
h possible
orre
tions are parametri
ally under 
ontrol were 
onstru
ted in [70, 62, 71, 72℄ usingorientifold planes and Calabi-Yau manifolds. From a purely ten-dimensional perspe
tivethese va
ua are interpreted as a low-energy approximation in whi
h the orientifolds aree�e
tively smeared [50℄.A systemati
 sear
h for more type IIA examples of N = 1 AdS4 
ompa
ti�
ationson six-dimensional 
oset spa
es with a stri
t SU(3)-stru
ture ansatz was performed in[34℄. The authors identify four 
oset spa
es that satisfy the ne
essary and suÆ
ient
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onditions for N = 1 
ompa
ti�
ations to AdS4 in the absen
e of sour
es, whereas inthe presen
e of smeared brane/orientifold sour
es there is one possibility more. We will
ome ba
k to these solutions in part III of this thesis, where we derive the 
orrespondinge�e
tive a
tions for these 
ompa
ti�
ations.Allowing for smeared sour
es, the 
onditions for type IIA N = 1 AdS4 va
ua 
ana
tually be solved for some nilmanifolds [49℄ (as we pointed out in se
tion 2.2.2, this isnot possible without a sour
e term for the nilmanifolds). There are two nilmanifolds,the torus and the Iwasawa manifold, that solve the type IIA equations. In addition,there is a further type IIB stati
 SU(2)-stru
ture solution on a di�erent nilmanifold.In this 
hapter we give a brief review of the spa
es we 
onsider in this thesis. We�rst begin with some well-known fa
ts about group manifolds to set up the notation.We then introdu
e the 
oset spa
e 
onstru
tion with spe
ial emphasis on the materialthat we will need in the following. For the interested reader, there are many goodreviews [73, 74, 75℄. In the end of this 
hapter, we will des
ribe the six-dimensionalnilmanifolds, whi
h are spe
ial 
ases of group manifolds.4.1 Group manifoldsIn order to �x our notation and ideas, let us start with a group manifold, i.e., with aLie group G of dimension d = dim(G) viewed as a manifold. We denote the generatorsof the Lie group G as Ta with a = 1; : : : ; d and they obey the algebra[Ta; Tb℄ = f 
abT
 ; (4.1)with f 
ab the stru
ture 
onstants of the group G. Let us mention that the stru
ture
onstants are often referred to as geometri
 
uxes in the 
ontext of 
ux 
ompa
ti�
a-tions.Let U 2 G be an arbitrary element of the group manifold G that we parameterizein terms of 
oordinates ym, where m = 1; : : : ; d. We de�ne d left-invariant one-formsea on G by U(y)�1dU(y) = ea(y)Ta : (4.2)The left-invarian
e of ea is easily seen: under U ! AU , where A 2 G is 
onstant,the one-forms ea de�ned in eq. (4.2) do not 
hange. Taking the exterior derivative ofeq. (4.2) we seede
T
 = �U�1dU ^ U�1dU = �eaTa ^ ebTb = �12ea ^ eb[Ta; Tb℄ ; (4.3)su
h that with the stru
ture 
onstants (4.1) we obtain the Maurer-Cartan equationde
 = �12f 
abea ^ eb : (4.4)
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obi identity for the stru
ture 
onstants of a Lie algebra, f 
a[bfade℄ = 0, assuresthat d2e
 = 0. The Maurer-Cartan equation (4.4) turns out to be very useful for our
al
ulations sin
e di�erential equations are redu
ed to algebrai
 ones. As the duals ofthe left-invariant one-forms we get left-invariant ve
tor �elds La = Lam�=�ym de�nedvia hea; Lbi = Æab ; (4.5)whi
h satisfy [La; Lb℄ = f 
abL
 : (4.6)We 
an 
lassify Lie algebras a

ording to Levi's theorem: an arbitrary Lie algebra gis a semidire
t sum of a semi-simple algebra and of a solvable algebra. The de�nitionof a solvable algebra g is as follows. Consider the series de�ned re
ursively byg(0) = g ; g(1) = [g; g℄ ; g(i) = [g(i�1); g(i�1)℄ : (4.7)If this series be
omes zero after a �nite number of steps, the Lie algebra is said to besolvable. There is an equivalent 
riterion for a Lie algebra to be solvable or semi-simple:a Lie-algebra is semi-simple if and only if the Killing metri
 is nondegenerate, whereasit is solvable if and only if the Killing metri
 is identi
ally zero. A spe
ial 
lass ofsolvable Lie algebras are nilpotent algebras that are de�ned as follows. The re
ursivelyde�ned series g0 = g ; g1 = [g; g℄ ; gi = [g; gi�1℄ : (4.8)
onverges after a �nite number of steps to zero. The number of steps is 
alled thenilpoten
y degree of the manifold. Comparing the de�nition (4.8) to the de�nition ofa solvable algebra (4.7) we see that the series (4.8) de
reases more slowly as the seriesfor a solvable algebra (4.7) and may not rea
h zero even if the solvable algebra did, i.e.every nilpotent algebra is a solvable algebra but the 
onverse is not true.In this thesis, we will 
onsider two di�erent 
lasses of six-dimensional 
ompa
ti-�
ation manifolds: nilmanifolds and 
oset manifolds based on semi-simple and U(1)groups. They are somehow opposite due to Levi's de
omposition. The reason to 
on-sider nilmanifolds is that the mathemati
s is better known, in parti
ular the 
riteria for
ompa
tness, and there is a 
omplete 
lassi�
ation of all six-dimensional nilmanifolds[76℄. However, for the 
oset spa
es we 
onsider semi-simple groups. Here, the 
lassi�-
ation of [34℄ tells us whi
h groups are needed to end up with a six-dimensional 
osetspa
e and these groups are well known in the literature.



52 4. NILMANIFOLDS AND COSET SPACES4.2 Geometry of 
oset spa
esWe de�ne 
oset spa
es as the quotient G=H, where G is a Lie-group 1 and H is a
ompa
t Lie subgroup of G. The elements of G=H are equivalen
e 
lasses of the formgH for left 
osets, whi
h we will 
onsider in the following. The a
tion of G on the
oset is transitive, i.e., any point of G=H 
an be transformed to any other point by aG-transformation.To des
ribe 
oset spa
es of the form G=H we may pro
eed as we did for groupmanifolds. To do so, we divide the generators of the group G, Gi 2 g, in two sets: aset of generators of the group H and a set of generators of the 
omplement of H insideG, denoted by K. We label the 
orresponding elements of the Lie algebras h and k(su
h that g = k � h) as follows: fHag, where a = 1; : : : ;dim(H), and fKig, wherei = 1; : : : ;dim(G)� dim(H), respe
tively.The stru
ture 
onstants are then de�ned as[Ha;Hb℄ = f 
abH
 ;[Ha;Ki℄ = f jaiKj + f baiHb ;[Ki;Kj ℄ = fkijKk + faijHa : (4.9)For H 
ompa
t, or 
onne
ted and semi-simple, one 
an 
hoose the subspa
e k of g su
hthat hkh�1 � k ; 8h 2 H ; (4.10)i.e., [H;K℄ � K and therefore the stru
ture 
onstants f bai vanish. Su
h a 
oset is 
alledredu
tive. Sin
e we will need H � SU(3), i.e. 
ompa
tness, this will always be the
ase in our examples.We label the 
oordinates on G=H as ym, m = 1; : : : ;dim(G) � dim(H). Let L(y)be a representative element of ea
h H-equivalen
e 
lass. This leads to a 
orrespondingde
omposition of the one-forms� � L(y)�1dL(y) = ei(y)Ki + !a(y)Ha : (4.11)The ei(y) de�nes in this way a 
oframe on the 
oset G=H. It is easily shown thatd� = dL(y)�1dL(y) = �� ^�= �12 �ei ^ ej [Ki;Kj ℄ + 2!a ^ ei[Ha;Ki℄ + !a ^ !b[Ha;Hb℄� ; (4.12)su
h that using the de�nition of the stru
ture 
onstants (4.9) we derive the exteriorderivative a
ting on the one-formsdei = �12f ijkej ^ ek � f iaj!a ^ ej ; (4.13a)1In this se
tion, G is an arbitrary Lie-group. We thus 
an generalize some results of this se
tion tothe nilmanifolds in the next se
tion. For our 
on
rete examples of 
oset spa
es we will later restri
t Gto be a produ
t of semi-simple and U(1)-groups.
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!b ^ !
 � 12faijei ^ ej : (4.13b)For our appli
ations we will just need the exterior derivative on the ei one-forms.Consider the left a
tion g 2 G on a 
oset representative L(y). This will give anotherelement z 2 G, whi
h in general will belong to a di�erent equivalen
e 
lass, whoserepresentative we denote by L(z). Sin
e z = L(z)h for some h 2 H this 
an beexpressed as gL(y) = L(z)h(g; y) ; where g 2 G ; h 2 H : (4.14)This equation determines both z and h as a fun
tion of y and g. To determine how the
oframe ei transforms under the left a
tion of G on G=H we derive from eq. (4.11) and(4.14) L(z)�1dL(z) = ei(z)Ki + !a(z)Ha= hL(y)�1dL(y)h�1 + hdh�1= ei(y)hKih�1 + !a(y)hHah�1 + hdh�1 : (4.15)Sin
e we assume that we have a redu
tive 
oset spa
e (H is 
ompa
t in our examples)we know the relation (4.10) and 
an de�nehKih�1 = Dij(h�1)Kj ; (4.16)su
h that eq. (4.14) leads to the transformation rule for the 
oframeej(z) = ei(y)Dij(h�1) : (4.17)With the transformation rule for the 
oframe we 
an write down the 
ondition for G-invarian
e for any tensor. As an example, for any metri
 on G=H that 
an lo
ally bewritten in terms of the 
oset frame asg = gijei 
 ej ; (4.18)the 
ondition for G-invarian
e amounts to gij = 
onstant andgij = gklDik(h)Dj l(h) ; 8h 2 H : (4.19)For an in�nitesimal version of eq. (4.19) we note from eq. (4.16) and the de�nitionof the stru
ture 
onstants (4.9) thatDij(h)Kj = (Æij � taf jai)Kj ; (4.20)where we de�ned h = etaHa . The in�nitesimal version for a G-invariant metri
 on the
oset spa
e G=H then reads f ja(lgk)j = 0 : (4.21)



54 4. NILMANIFOLDS AND COSET SPACESFor an arbitrary p-form � = 1p!�i1:::ipei1 ^ : : : ^ eip ; (4.22)we show similarly that the 
ondition for G-invarian
e is that the 
omponents �i1:::ipare 
onstant and f ja[i1�i2:::ip℄j = 0 : (4.23)Let us give an intuitive explanation for the 
ondition (4.23). From eq. (4.13a) we seethat, taking the exterior derivative on an arbitrary p-form, we obtain 
ontributionsin
luding !a forms. Condition (4.23) ensures that the part 
oming from the se
ondterm in (4.13a) drops out, and we get again a G-invariant form.The Maurer-Cartan equations are very useful to 
al
ulate various quantities relevantto 
hara
terize the geometry of the manifold, su
h as the 
onne
tion and the 
urvature.The Levi-Civita 
onne
tion one-forms !ij of a metri
 are uniquely determined by twoequations dgij � !kigkj � !kjgik = 0 ; (metri
 
ompatibility) ; (4.24a)dei + !ij ^ ej = 0 ; (vanishing torsion) : (4.24b)For a G-invariant metri
, the metri
 
ompatibility in (4.24a) is the 
ondition!ij � gik!kj = �!ji : (4.25)Choosing ei to be the 
oset frame given in (4.11) and using the stru
ture 
onstantsde�ned in (4.13a), the solution of (4.24) is given by [77℄!ij = f iaj!a +Dikjek ; (4.26)where Dikj = gim�12f lmjglk + f lk[jgm℄l� : (4.27)We now have all the data we need to 
al
ulate the 
urvature R = d! + ! ^ !, whi
his done in [75℄. We only display here the Ri

i s
alar, whi
h we �nd by 
ontra
tingindi
es: R = �gijfkaifakj � 12gijfklif lkj � 14gijgklgmnf ikmf jln : (4.28)In 
hapter 2 we have seen that the requirement of four-dimensional supersymmetryimposes a 
ondition on the six-dimensional internal manifold, namely that the stru
-ture group is redu
ed to SU(3) or a subgroup thereof. This requirement imposes a
onstraint on the possible 
hoi
es of 
oset spa
es of the form G=H that are suitable forsupersymmetri
 
ompa
ti�
ations. As is shown in [34℄, a ne
essary requirement that
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oset spa
e G=H has redu
ed stru
ture group SU(3) translates into the require-ment that the group H should be 
ontained in SU(3), and all possible six-dimensionalmanifolds M = G=H of this type 2 are listed in table 4.1, taken from [34℄.In our 
on
rete models of 
ompa
ti�
ations on 
oset spa
es (see part III of thethesis), we will allow for orientifold sour
es. If we introdu
e orientifolds, the stru
ture
onstant tensorf = 12f ijkVi 
 ej ^ ek + f iajVi 
 !a ^ ej + 12faijUa 
 ei ^ ej + 12fab
Ua 
 !b ^ !
 ;(4.29)where the Vi; Ua are dual to the ei; !a de�ned as in eq. (4.5), has to be even under theorientifold involution (for some suitable extension of the involution to the !a) in orderto ensure that the exterior derivative is even.G HG2 SU(3)SU(3)�SU(2)2 SU(3)Sp(2) S(U(2)�U(1))SU(3)�U(1)2 S(U(2)�U(1))SU(2)3�U(1) S(U(2)�U(1))SU(3) U(1)�U(1)SU(2)2�U(1)2 U(1)�U(1)SU(3)�U(1) SU(2)SU(2)3 SU(2)SU(2)2�U(1) U(1)SU(2)2 1Table 4.1: All six-dimensional manifolds of the typeM = G=H, where H is a subgroupof SU(3) and G and H are both produ
ts of semi-simple and U(1)-groups. To bepre
ise, this list should be 
ompleted with the 
osets obtained by repla
ing any numberof SU(2) fa
tors in G by U(1)3.
4.3 Geometry of nilmanifoldsThe se
ond 
lass of manifolds we will 
onsider in this thesis are nilmanifolds. A nilmani-fold is a quotient of a nilpotent Lie group G by a dis
rete subgroup �,M = G=�. In [79℄it is shown that all six-dimensional nilmanifolds admit generalized 
omplex stru
tures,making them interesting for our purposes.2These 
oset spa
es were already 
onsidered in the 
onstru
tion of heteroti
 string 
ompa
ti�
ationsin [78℄.



56 4. NILMANIFOLDS AND COSET SPACESAs a spe
ial 
ase of a group manifold, G has a set of globally de�ned one-forms eisatisfying the Maurer-Cartan equations (4.4). For an illustration, let us dis
uss thesimple and often 
ited example for a nilpotent algebra: the Heisenberg algebra withthe only non-vanishing stru
ture 
onstant f312 = �n. From eq. (4.4) we getde1 = 0 ; de2 = 0 ; de3 = ne1 ^ e2 : (4.30)We will use in the following the notation (0; 0; n 12) to spe
ify the stru
ture 
on-stants. We 
an 
hoose a gauge for the 
oordinates whi
h satis�es the algebra (4.30) asfollows e1 = dy1 ; e2 = dy2 ; e3 = dy3 + ny1e2 : (4.31)To 
ompa
tify G, we 
an make the identi�
ations (y1; y2; y3) ' (y1; y2 + 1; y3) '(y1; y2; y3 + 1), but we need to twist the identi�
ation for y1, (y1; y2; y3) ' (y1 +1; y2; y3 � ny2), to render e3 single-valued. Hen
e, the spa
e M = G=� is topologi
allydistin
t from a three-torus T 3, namely an S1 �bration over T 2 whose �rst Chern 
lassis 
1 = n. Su
h a manifold M is 
alled a nilmanifold and a general nilmanifold isalways an iteration of torus �brations. Nilmanifolds are often 
alled twisted tori in thephysi
al literature, and the stru
ture 
onstants are referred to as metri
 or geometri

uxes.Let us note that there are in�nitely many algebras of the form (4.30), sin
e n is afree parameter. However, these algebras are all isomorphi
 via a res
aling of e3. Whenwe talk about nilmanifolds in the following, we mean a
tually isomorphism 
lasses ofnilmanifolds. However, sin
e we work with a basis of left-invariant forms, the 
hoi
e ofthe representant of the isomorphism 
lass does not matter for the analysis.The nilpotent Lie groups up to dimension 7 have been 
lassi�ed and the list of six-dimensional nilpotent Lie groups is �nite [76℄. The 
omplete list of the 34 isomorphism
lasses of simply-
onne
ted six-dimensional nilpotent Lie groups is given in table 4.7of [64℄, where the authors s
anned all these nilmanifolds to �nd N = 1 Minkowskisolutions. We will use this list to s
an for AdS4 solutions in part II of this thesis.The question arises whether all of these six-dimensional Lie groups 
an be 
ompa
ti-�ed by modding out a dis
rete 
ompa
t subgroup � as in the example of the Heisenbergalgebra above. A ne
essary 
ondition on the stru
ture 
onstants is f jij = 0. The rea-son is simple: if f jij 6= 0, the volume form vol6 = e1 ^ : : : ^ e6 would be exa
t, sin
efor the left-invariant �ve-form � = �i1:::i6�i1ei2 ^ : : : ^ ei6 , with �i1 
onstant, we haved� = (f jij�i)vol6. Hen
e, there is no top-form non-trivial in 
ohomology whi
h isof 
ourse required for a 
ompa
t manifold G=�. One 
an also show that this 
ondi-tion is suÆ
ient, provided that the stru
ture 
onstants are rational in some basis [80℄.Sin
e these 
onditions are satis�ed for the stru
ture 
onstants of all the 34 
lassi�edsix-dimensional nilpotent Lie groups, they all admit a dis
rete subgroup � su
h thatM = G=� is 
ompa
t.The Ri

i s
alar for a nilmanifold is a spe
ial 
ase of the metri
 of the 
oset spa
ein that the �rst term in eq. (4.28) obviously vanishes, as well as the se
ond term whi
h
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 (for a nilpotent algebra, the Killing metri
 vanishes). We are leftwith R = �14gijgklgmnf ikmf jln ; (4.32)whi
h is always negative. Nilmanifolds are thus non Ri

i-
at and therefore suitablefor 
ompa
ti�
ations in the presen
e of 
uxes.





Chapter 5Cosmology and in
ationOne of the legitimate 
riti
ism on string theory, whi
h aspires to be a fundamentaltheory of quantum gravity, are the very restri
ted possibilities to 
onfront the theorywith observations. Assuming the string s
ale to be of the order of the Plan
k s
ale, itis very unlikely that we 
an ever 
onstru
t a high energy a

elerator providing enoughpower in order to test the Plan
k s
ale predi
tions of the theory. At low energies, of
ourse, string theory has to reveal the standard model of parti
le physi
s. Nevertheless,there is a possibility to observe physi
s at very high energies, even if this physi
shappened billions of years before our time: the earliest moments of our universe involvedsu
h extreme energies, and the �ngerprints of its birth are revealed today by pre
isionmeasurements of the 
osmi
 mi
rowave ba
kground (CMB) and the large-s
ale stru
tureof the universe. The ability of string theory to reprodu
e the observed 
osmology thusprovides us with a highly non-trivial test of string theory.That this is possible is due to the astrophysi
al measurements over the re
ent years,whi
h provide us with fas
inating data about the large s
ale stru
ture of our universe.In parti
ular, the universe is found to be spatially 
at, j
�1j � 1, and the latest CMBdata from WMAP5 agree with an almost s
ale-invariant spe
trum with s
alar spe
tralindex ns = 0:96 � 0:013 [81℄. As we will dis
uss in the following, an epo
h of 
osmi
in
ation in the early universe is the dominant paradigm to explain these data [82, 83℄.For string theory to be a valid theory of quantum gravity, it should be able to realizein
ation.Another important 
osmologi
al observation of the past de
ade is that the presentuniverse is in a state of a

elerated expansion [84℄, apparently driven by a non-vanishingva
uum energy with an equation of state very 
lose to that of a small and positive 
os-mologi
al 
onstant �. In an e�e
tive �eld theory setup, an asymptoti
 de Sitter phaseindu
ed by a 
onstant va
uum energy would 
orrespond to a positive lo
al minimumof the potential.The moduli �elds of string theory 
ompa
ti�
ations provide us with natural in
aton
andidates. These models 
an roughly be divided into 
losed string in
ation models, inwhi
h the string is a 
losed string modulus [85℄, and open string (or brane-) in
ation
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alar des
ribing some relative brane distan
e or orientation playsthe role of the in
aton [86℄. Mixtures of open and 
losed string moduli have also been
onsidered as in
aton 
andidates, e.g., in some variations of D3/D7-brane in
ation [87℄.Let us mention that there are also other possibilities in
luding [88℄.There has been remarkable progress 
onstru
ting various plausible models of in-
ation in string theory, mostly within type IIB string theory (following the work of[22, 23, 89℄). Turning on only p-form 
uxes in the type IIB theory, one 
an not stabi-lize all the moduli �elds (the K�ahler moduli are not �xed by the 
uxes) [22℄. In [23℄,a solution to this diÆ
ulty was proposed by turning on non-perturbative e�e
ts su
has gluino 
ondensation and instantons, yielding a supersymmetri
 AdS4 va
ua. Thein
lusion of a small number of anti-D3 branes breaks supersymmetry and allows one touplift the AdS4 minimum and make it a metastable de Sitter ground state. Startingfrom this model, the authors of [89℄ tried to 
onstru
t, using brane moduli, an in
ationmodel.However, these and related models in type IIB share a 
ommon property: they arenot entirely expli
it 
onstru
tions as they involve, besides the 
lassi
al e�e
ts in thepotential (whi
h are easily 
omputed by supergravity te
hniques as we dis
ussed inse
tion 3.2), also quantum e�e
ts, whose existen
e is well established, but for whi
hpre
ise 
al
ulations are often diÆ
ult. On the other hand, in type IIA 
ompa
ti�
ations,all geometri
al moduli 
an be already stabilized at the 
lassi
al level by 
uxes in a well-
ontrolled regime (
orresponding to large volume and small string 
oupling, su
h thatquantum 
orre
tions are small) with power law parametri
 
ontrol. This expli
itnessof type IIA 
ompa
ti�
ations makes these models very interesting for phenomenology.Let us further mention that type IIA orientifolds with interse
ting D6-branes o�ergood prospe
ts for deriving the standard model form string theory [18, 19, 90℄. If
osmologi
al aspe
ts 
an likewise be modeled in type IIA, one may study questionssu
h as reheating mu
h more expli
itly.In this thesis, we will derive the expli
it four-dimensional low-energy e�e
tive poten-tial for a large 
lass of type IIA 
ompa
ti�
ations. To render these models interestingfor phenomenologi
al appli
ations we would like to examine whether these models sup-port in
ation. However, there are a number of simple but very strong no-go theoremsagainst in
ation in type IIA string theory at tree level [91, 92℄. These theorems alreadyex
lude most of the expli
itly known 
ompa
ti�
ation models for type IIA, in parti
ularmodels where only the standard NSNS H3-
ux and RR-
uxes Fp, (p = 0; 2; 4; 6) as wellas 
ontributions from O6/D6 sour
es are turned on. As we will review in this 
hapter,the minimal requirements for an in
ation model in 
lassi
al type IIA 
ompa
ti�
ationsare non-vanishing Romans mass and non-vanishing geometri
 
uxes.Let us mention that in type IIB, where F1 
ux 
an be turned on, the above men-tioned no-go theorems do not apply. In fa
t, we will also examine some type IIB
ompa
ti�
ations with stati
 SU(2)-stru
ture. However, as we will see in 
hapter 12,most of our models are related by T-duality to type IIA models we study in 
hapter11, and we 
an then apply the type IIA no-go theorems to these models.
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tion, we give a brief introdu
tion to in
ation. Of 
ourse this 
an notbe done in its full 
ompleteness. For the interested reader, we refer to the extensiveliterature, see e.g., [82, 83, 93℄. We will then review the relevant no-go theorems againstan epo
h of slow-roll in
ation that turn out to be very useful for analysing our parti
ular
ompa
ti�
ation manifolds that we will des
ribe in part III of this thesis.5.1 In
ationThe 
urrent understanding of 
osmology is des
ribed by the Hot Big Bang model,whi
h starts as a hot soup of elementary parti
les, whose temperature was on
e atleast 10 billion degrees. The history of the universe then des
ribes the 
ooling of thisinitial state as the universe expands. However, this model 
an not explain the 
urrentobservations if there were not very spe
ial initial 
onditions. An epo
h of in
ation- a period with exponential expansion of the universe even before the Hot Big Bangmodel starts - may provide exa
tly these initial 
onditions. In this 
hapter, we will �rststart with a des
ription of the geometry of spa
e-time on whi
h the Hot Big Bang andan in
ation model relies. In the following, we will show that a period of exponentialexpansion 
an be driven by a s
alar �eld '. As we will explain, for su
h a regime towork, suÆ
ient 
onditions on the s
alar �eld potential (but not ne
essary ones, thereare other possibilities to drive in
ation) are the so-
alled slow-roll 
onditions on thepotential of the in
aton.5.1.1 Cosmology and Hot Big Bang modelBased on large s
ale observations of the distribution of matter and radiation withinthe universe we see around us, we 
an assume the universe to be homogeneous andisotropi
 at large distan
e s
ales. For instan
e, the observed temperature 
u
tuationsof the CMB are of order ÆT=T � 10�5. This motivates to 
onsider the most generalfour-dimensional geometry whi
h is 
onsistent with isotropy and homogeneity of itsspatial sli
es. Su
h a geometry is des
ribed by a Friedmann-Robertson-Walker (FRW)geometry with a metri
 given byds2 = �dt2 + a2(t)� dr21� �r2 + r2d�2 + r2 sin2 �d�2� ; (5.1)where � = 1; 0;�1 des
ribes a spheri
al, 
at or hyperboli
 universe, respe
tively. Thefa
tor a(t) is 
alled the s
ale fa
tor and we de�ne the Hubble parameterH(t) = _a(t)a(t) ; (5.2)where the dot denotes derivation with respe
t to time. The time evolution of the s
alefa
tor a(t) is obtained from the Einstein equationR�� � 12Rg�� = 8�GT�� ; (5.3)
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ialized to the FRW-metri
 (5.1). We obtain two equations, the Friedmann equation� _aa�2 + �a2 = �3M2P ; where M�2P = 8�G ; (5.4)and the Ray
haudhuri equation �aa = � 16M2P (�+ 3p) : (5.5)Here we assumed the most general form for the energy-momentum stress tensor T�� ofthe universe's matter 
ontent 
onsistent with homogeneity and isotropyT�� = � � 00 pgij � ; (5.6)where i; j run over the spatial 
oordinates. It turns out to be useful to derive a �rstorder equation from the eqs. (5.4) and (5.5) that expresses energy 
onservation,3 (�+ p) _aa + _� = 0 , ddt ��a3� = �p ddta3 : (5.7)How the s
ale fa
tor a(t) evolves with time depends on what kind of matter theuniverse 
ontains. Present observations give eviden
e that there are the following kindsof 
osmi
 
uids, ea
h 
oming with a di�erent equation of states:� Radiation: The 
ontribution from relativisti
 parti
les in the universe, namelyphotons and 
osmi
 reli
 neutrinos (whose masses are small enough to be 
onsid-ered as relativisti
 parti
les), satisfying the equation of state of a weakly inter-a
ting gas prad = 13�rad : (5.8)� Baryons and dark matter: Ordinary matter (ele
trons, nu
lei, atoms) that isnon-relativisti
 su
h that the rest mass dominates over the average kineti
 energy(whi
h 
orresponds to its pressure), implying p � 0. Observations infer further thepresen
e of a large amount of non-observed (at least not by its ele
tromagneti
radiation), non-relativisti
 matter whi
h gravitates just like ordinary baryonsdo. This so-
alled dark matter has the same equation of state as the baryons.Together these two 
ontributions form the non-relativisti
 matter 
ontent of theuniverse with equation of state pm � 0 : (5.9)� Dark energy: Observations further motivate the existen
e of yet another typeof invisible \matter". Main eviden
e is that the overall expansion rate of theuniverse seems to be in
reasing at present time. From eq. (5.5) it is 
lear that



5.1. INFLATION 63in order to obtain an a

elerating universe, i.e. �a > 0, matter with suÆ
ientlynegative pressure, p < ��=3, is required. Sin
e this is not true for radiation norfor non-relativisti
 matter, we need something whose pressure is negative and atpresent time dominates that of the other forms of matter - the so-
alled darkenergy - whi
h behaves very similarly to a positive 
osmologi
al 
onstant andwhose equation of states is predi
ted to bepDE � ��DE : (5.10)Note that ea
h of these equations of state implies the time-independent ratio wi =pi=�i, and we easily integrate eq. (5.7), obtaining�i = �i0 �a0a �3(1+wi) : (5.11)Given an initial density �0 and the initial fra
tion of the di�erent 
ontributions fi =�i0=�0, we obtain �(a) = �0�fDE + fm �a0a �3 + frad �a0a �4� ; (5.12)whi
h implies that the energy 
ontent of the universe was �rst dominated by a radiationepo
h, followed by an epo
h of matter domination and then by dark energy, explainingthe presently observed a

elerated expansion of the universe.Even though the Hot Big Bang model is very su

essful, it leaves many importantquestions unanswered. To mention the most important, the Hot Big Bang model 
annot explain the 
urrently observed 
atness of our universe (observations indi
ate thatthe quantity �=a2 is at present 
onsistent with zero) and the homogeneity of our universe(the temperature 
u
tuations of the CMB only arise at the level of one part in 105, nomatter from whi
h dire
tion we re
eive this radiation), unless we start the universe o�with a very spe
ial kind of initial 
onditions.The �rst problem is 
alled the 
atness problem. To see why this is a problem, let us�rst divide the Friedmann equation (5.4) by H2 to obtain1 + �(aH)2 = 8�G�3H2 � 
(a) : (5.13)Observations indi
ate that, at present, 
 = 
0 is equal to unity up to 4%. But sin
ethe produ
t aH de
reases with time for both matter and radiation domination, the
urvature term in eq. (5.13) be
omes more and more important as time passes. Exa
t
al
ulations show that at the epo
h of Big Bang Nu
leosynthesis, 
 has to be unitywith an a

ura
y of roughly one part in 1018 in order to reprodu
e the value 
0 � 1seen today. We thus have to explain this very spe
ial initial 
ondition.The se
ond problem is 
alled the horizon problem. To explain the homogeneousdistribution of temperature of the CMB (up to one part in 105), the whole universehad to be 
ausality 
onne
ted at the time of re
ombination - the epo
h in whi
h the
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ame transparent for photons, whi
h is the origin of the CMB. However,assuming a matter dominated universe, a(t) = a0(t=t0)1=2, one shows that the properdistan
e that a light signal 
an travel by the time of re
ombination - the physi
alhorizon size - is Lre
 = H�1re
 = H�10 (are
=a0)3=2. When we look at the CMB, we areobserving the universe at a s
ale fa
tor a0=are
 � 1100, whi
h is at a proper distan
e ofapproximately D0 = 2H�10 (1�pare
=a0) � 2H�10 . At the time of last s
attering, thiswas in a distan
e of Dre
 = (are
=a0)D0. Hen
e, if we observe two parts of the CMBseparated by more than an angle � � Lre
=Dre
 � 1Æ, they will have non-overlappinghorizons and were 
ausally dis
onne
ted at re
ombination.In
ationary 
osmology provides a solution to the 
atness and horizon problem. Theidea is to assume that there was a period in the very early universe during whi
h thes
ale fa
tor was a

elerating, i.e. �a > 0, whi
h requires an equation of states p < ��=3.The simplest models of in
ation assumep � �� ; (5.14)and we see from eq. (5.7), for the 
ase p = ��, that � = �? has to be 
onstant. Byintegration of the Friedmann eq. (5.4) (negle
ting the 
urvature term) we obtain anexponential expansion a(t) = a0er �?3M2P (t�t0) ; (5.15)and a 
onstant Hubble lengthH�1 = a(t)_a(t) =s3M2P�? = H�1? : (5.16)With this assumption, aH grows exponentially su
h that it does not take long forany initial 
urvature �=(aH)2 to be diluted to extremely small values - providing asolution to the 
atness problem. For a phase of exponential expansion of the s
alefa
tor, the horizon size, Lhor(t) = a(t)rhor, grows more qui
kly than the Hubble lengthH�1? . Modes whi
h were at the beginning of in
ation shorter than the Hubble lengthmay be stret
hed to be larger than the Hubble length, and homogeneity over a verysmall pat
h is enough to solve the horizon problem. Quantum 
u
tuations make itimpossible for in
ation to smooth out the universe with perfe
t pre
ision, explaining theobserved approximately s
ale free spe
trum of primordial density perturbations. On
ethese primordial density 
u
tuations have been ampli�ed, they seed the formation ofgalaxies through gravitational 
ollapse. Measurements of galaxy distributions provideus thus with pre
ise experimental data to test the di�erent in
ation models.5.1.2 Slow-roll in
ationWe have seen that, in order to have the right initial 
onditions to start with the HotBig Bang model, we need a phase of a

elerated expansion, i.e. we look for an equation



5.1. INFLATION 65of states that satis�es eq. (5.14). This is possible for a s
alar �eld whose equationof motion satis�es some spe
ial 
onditions. The dynami
s of a s
alar �eld ' with
anoni
ally normalized kineti
 term and potential V (') moving in an FRW-universe isdes
ribed by the a
tion S = Z d4xp�g�12��'��'� V (')� ; (5.17)where the metri
 is given by eq. (5.1). From the a
tion (5.17), we 
al
ulate the equationof motion for ' as �'+ 3H _' = �V 0(') ; (5.18)where V 0(') = dV=d'. The variation of (5.17) with respe
t to Æg�� and the de�nition(5.6) gives us the expression for the energy density and the pressure as follows� = 12 _'2 + V (') ; (5.19a)p = 12 _'2 � V (') : (5.19b)We thus 
an obtain the regime of interest (5.14) when the kineti
 energy of ' is negli-gible 
ompared with its potential energy (the �eld ' has to roll slowly)12 _'2 � V (') ; (5.20)su
h that p � �V � �� and, from (5.16),H2 � V3M2P ; (5.21)would be approximately 
onstant. The slow-roll 
ondition (5.20) remains a good ap-proximation for an appre
iable time provided _' 
hanges slowly, su
h that we demand�'� H _'. This allows us to negle
t the �'-term in eq. (5.18) su
h that_' � � V 03H : (5.22)Using the slow-roll 
ondition (5.20), we 
on
lude that V must satisfy V 02=9H2V � 1and with eq. (5.21) � � 12 �MPV 0V �2 � 1 : (5.23)To justify the slow-roll approximation in eq. (5.20) throughout the in
ation period,we require �' to remain small. Di�erentiating eq. (5.22) with respe
t to time, we get(using that H is approximately 
onstant) �' � V 00 _'=3H, whi
h has to be mu
h smaller
ompared with 3H _'. This gives (in absolute values) ��V 00=(3H)2��� 1, orj�j � 1 ; where � = M2PV 00V : (5.24)
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onditions (5.23) and (5.24) are 
alled the �rst and se
ond 
atness 
ondition,respe
tively. They are suÆ
ient 
onditions to have a region of exponential expansion.However, the models we will study in this thesis are mu
h more 
ompli
ate than theone �eld model we just studied. The generi
 kind of s
alar dynami
s for the real s
alar�elds 'a whi
h emerge in the low-energy limit of string theory is (in Einstein frame)S = Z d4xp�g�M2P2 R� 12gab(')��'a��'b � V (')� ; (5.25)where gab(') is the K�ahler metri
 in real 
oordinates (see se
tion 3.2). We thus gener-alize the expressions for � and p of eq. (5.19) to� = 12gab(') _'a _'b + V (') ; (5.26a)p = 12gab(') _'a _'b � V (') : (5.26b)As before, a suÆ
ient 
ondition for in
ation is 12gab _'a _'b � V and by similar argu-ments as for the single �eld 
ase we obtain the 
onditions for slow-roll in
ation�� 1 where � = M2P gab�'aV �'bV2V 2 = Ki�j��iV ����jVV 2 ; (5.27)where we passed in the last equation from real 
oordinates to 
omplex 
oordinates, andj�j � 1 where � = min eigenvalue M2Pra�'bVV ! ; (5.28)where we take the 
ovariant derivative with respe
t to the K�ahler metri
 gab.These are the 
onditions we have to satisfy for a period of in
ation. However, thereare strong no-go theorems that results in an upper bound for �, thus ex
luding an epo
hof slow-roll in
ation. In the following se
tions, we review some of the no-go theoremsthat we will use in 
hapter 13 to study our models.5.2 No-go theorem in the volume-dilaton planeThe �rst no-go theorem we want to study was 
onstru
ted in [91℄ extending earlierwork of [94℄. This no-go theorem ex
ludes slow-roll in
ation and de Sitter va
ua forthe simplest 
ompa
ti�
ations of massive type IIA supergravity with p-form 
uxesand D6/O6-sour
es. The no-go theorem relies on the s
aling behavior with respe
t tothe overall volume modulus, � = (Vol)1=3, and the four-dimensional dilaton modulus,� = e��pVol, of the di�erent 
ontributions of the 
uxes and sour
es to the four-dimensional e�e
tive potential, where the volume is de�ned as (see eq. (2.7))Vol = 16�ab
kakbk
 ; (5.29)



5.2. NO-GO THEOREM IN THE VOLUME-DILATON PLANE 67where �ab
 denotes the triple interse
tion number, given in terms of the odd two-formsY (2�)a as �ab
 = ZM Y (2�)a ^ Y (2�)b ^ Y (2�)
 : (5.30)As we have explained in se
tion 5.1, in
ation requires �� 1, where � is de�ned as� = Ki�j��iV ����jVV 2 = Ki�j ��Re�iV �Re�jV + �Im�iV �Im�jV �4V 2 : (5.31)The expression for the K�ahler metri
 appears in the kineti
 terms for the moduli �eldsT = �Ki�j���i�� ���j= �14 �2K�Re�i�Re�j ���Re�i��Re�j + ��Im�i��Im�j� ; (5.32)and thus Ki�j = 14 �2K�Re�i�Re�j : (5.33)As we will expli
itly see in 
hapter 11, the K�ahler potential for our models is given byKk = � ln�43�ab
kakbk
� = � ln(8�3) ; (5.34a)K
 = �4 ln � ; (5.34b)for the K�ahler se
tor and 
omplex stru
ture se
tor, respe
tively.Sin
e � and � are the real 
omponents of the 
orresponding 
omplex moduli, wederive from eq. (5.33) the following kineti
 terms for � and �T = �� 34�2 (���)2 + 1�2 (���)2 + � � �� ; (5.35)where the dots stand for other manifest positive kineti
 terms for the remaining moduli�elds.Let us mention that this short derivation is not as trivial as we just showed. Asan example, let us 
onsider the K�ahler se
tor, where we de�ne the 
omplex K�ahlermodulus as ti = ki � ibi. The kineti
 energy is given byT = �Ki�j ���ki��kj + ��bi��bj� : (5.36)From eq. (5.34a), we deriveKi�j = 116Vol2 (�iabkakb)(�jabkakb)� 14Vol(�ijaka) : (5.37)



68 5. COSMOLOGY AND INFLATIONWe now make the 
hange of 
oordinates from ka to the overall volume � and a setof angular variables 
a viaka = �
a ; where �ab

a
b

 = 6 : (5.38)The 
onstraint on the angular variables 
a ensures that Vol = 16�ab
kakbk
 = �3.From this 
onstraint it follows that ��(�ab

a
b

) = 0, and hen
e �ab
(��
a)
b

 = 0.With this we easily 
al
ulate the expli
it expression for the kineti
 terms from eq. (5.36)as T = ��3(���)24�4 � 14�ab


��
a��
b + �a
d


d�bef
e
f � 4�ab


16�2 ��ba��bb� :(5.39)We 
on
lude from this more 
areful derivation that there are no 
ross-terms involv-ing �����
a and that we exa
tly get the proposed kineti
 term for � in eq. (5.35).Additionally, ea
h of the three terms in eq. (5.39) has to be positive, sin
e in the physi-
al region the total kineti
 energy must be positive. For the 
omplex stru
ture/dilatonse
tor, the derivation is similar to that in the K�ahler se
tor.With the expli
it kineti
 terms for the moduli � and � in eq. (5.35), we derive for� from eq. (5.31) the following inequality (note that all 
ontributions from the othermoduli to � are positive so that we obtain an inequality)� � 1V 2  13 ���V�� �2 + 14 �� �V�� �2! : (5.40)We now subtra
t the positive quantity 413 ���V�� � 14� �V�� �2 from eq. (5.40) and wearrive at � � 139V 2 ���V�� + 3� �V�� �2 : (5.41)In the following we will spe
ify the ne
essary requirements su
h that the following holdsDV � ��� ��� � 3� ����V � 9V : (5.42)If we now assume that we are in a region where V > 0, whi
h is ne
essary for in
ation,we 
an plug the square of eq. (5.42) in eq. (5.41) su
h that� � 2713 ; whenever V > 0 ; (5.43)whi
h implies that slow-roll in
ation and de Sitter va
ua are ex
luded.Provided that we 
an show the inequality (5.42), we have a no-go theorem againstslow-roll in
ation and de Sitter va
ua. The proof is remarkably simple and uses only thes
aling properties of the s
alar potential with respe
t to the �elds � and � . Con
retely,
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lassi
al four-dimensional s
alar potential may re
eive 
ontributions from the NSNSH3-
ux, the RR-
uxes Fp, where p = 0; 2; 4; 6, the geometri
 
uxes as well as from thesour
es (O6-orientifolds/D6-branes), su
h that, respe
tively,V = V3 +Xp Vp + Vf + VO6/D6 ; (5.44)where V3; Vp � 0 sin
e these 
ontributions 
ome from quadrati
 terms in the ten-dimensional a
tion (B.2) and Vf and VO6/D6 
an have either sign. From the ten-dimensional a
tion (B.2) one easily dedu
es how the di�erent 
ontributions in the po-tential s
ales with respe
t to � and � . As an example, let us examine the s
alingproperties of the NSNS H3-
ux. The energy arising from H3 
omes from the term in(B.2) that is proportional to H23 . From (B.3) it follows that H23 is 
ontra
ted withthree fa
tors of g�� , the inverse internal metri
, whi
h s
ales with as g�1 / ��1. Thisimplies V3 / ��3. Con
erning the s
aling behavior of this term with respe
t to the four-dimensional dilaton � we have to be 
areful to transform 
orre
tly from ten-dimensionalEinstein frame to four-dimensional Einstein frame. Taking further into a

ount the re-lation between the metri
 in string frame and in Einstein frame gE = e��=2gs we arriveat V3 / ��2. Similarly we derive the s
alings for the other terms. Note that the 
on-tribution Vf in the four-dimensional potential V 
omes from the Einstein-Hilbert termin the ten-dimensional a
tion,Vf = �12M4P�210e2�Vol�1R = �12M4P�210��2R ; (5.45)where R is the s
alar 
urvature of the internal manifold (the expli
it expression in givenin eq. (4.28)). We 
on
lude that Vf / ��1��2, sin
e R / g�1 / ��1.In summary, we obtain the general s
aling behavior with respe
t to � and � of thedi�erent 
ontributions in the s
alar potential as follows,V3 / ��3��2; Vp / �3�p��4; VO6=D6 / ��3; Vf / ��1��2 : (5.46)Plugging these s
alings in eq. (5.42) implies for the s
alar potential���V�� � 3� �V�� = 9V + Xp=2;4;6 pVp � 2Vf : (5.47)Hen
e, the ne
essary requirement to satisfy inequality (5.42) is that the 
ontributionfrom the metri
 
uxes is zero or negative (re
all that Vp � 0). This then translates inthe above-mentioned bound � � 2713 ruling out slow-roll in
ation and de Sitter va
ua.We see from eq. (5.47) that one 
an avoid this no-go theorem if Vf > 0 for some regionin the moduli spa
e.As we have seen in eq. (5.45), the 
ontribution from the geometri
 
uxes is propor-tional to the negative s
alar 
urvature of the internal manifold, Vf / �R. Avoidingthe no-go theorem is thus equivalent to demanding that the internal spa
e has negative
urvature for some region in the moduli spa
e.



70 5. COSMOLOGY AND INFLATIONLet us mention that we also require VO6/D6 < 0. The reason is that we want toavoid a runaway of the potential in � -dire
tion. As all terms in eq. (5.46) s
ale withnegative power of � , for VO6/D6 � 0 all terms would have positive 
oeÆ
ients (sin
e wealso required Vf > 0), leading to a runaway dire
tion.Let us further mention that for any va
uum we have �V=�� = �V=�� = 0 su
h thatthe right hand side of eq. (5.47) vanishes. For vanishing geometri
 
uxes Vf = 0 andassuming Vp > 0 for at least one p = 2; 4; 6 this implies V = �(P pVp)=9, thus rulingout Minkowski va
ua as well.Let us summarize this result:� � 2713 whenever V > 0 and Vf � 0 : (5.48)With the s
aling properties of the di�erent terms in eq. (5.46), we 
an �nd other
ombinations of derivatives with respe
t to � and � that sets a bound for �, e.g.���V�� � � �V�� = 3V + 2V3 � 2V0 + 2V4 + 4V6 � 3V � 2V0 : (5.49)This 
ombination is interesting for the 
ase of vanishing mass parameter, m = 0, sin
efor this 
ase we have V0 / m = 0. If we subtra
t the positive quantity 184 �4��V�� � 3� �V�� �2from the right hand side in eq. (5.40), we obtain� � 17V 2 ���V�� + � �V�� �2 � 97 ; (5.50)where the se
ond inequality 
omes from eq. (5.49) assuming vanishing Romans mass.This is a no-go against in
ation for the 
ase of vanishing Romans mass 1.We learned in this se
tion that the minimal ingredients for slow-roll in
ation or deSitter va
ua areVf > 0 ;m 6= 0 ; (Ne
essary 
onditions for slow-roll in
ation or de Sitter va
ua) ;VO6/D6 < 0 ; (Condition to avoid a runaway dire
tion) : (5.51)Stri
tly speaking, the only real restri
tion is that we have an internal manifold withnegative 
urvature sin
e we 
an always turn on F0 
ux and do an orientifold proje
tion.The nilmanifolds, whi
h always have negative s
alar 
urvature (see se
tion 4.3) and,apart from the torus example, non-vanishing geometri
 
uxes, avoid these no-go theo-rems. As we will further show in part III of this thesis, some of the 
oset models wewill study also have regions in moduli spa
e with negative s
alar 
urvature avoidingthese no-go theorems. This makes these models interesting 
andidates for in
ation andde Sitter va
ua (without additional perturbative or non-perturbative quantum e�e
tsas in type IIB). However, one 
an formulate a stronger no-go theorem to further studythe 
oset models. These rede�ned no-go theorems were proposed in [92℄, and we willreview them in the next se
tion. As we will see, we have slightly to adjust the proposedno-go theorems for the 
oset models [96℄.1A di�erent derivation for this no-go was re
ently given in [95℄.



5.3. REFINED NO-GO THEOREMS IN THE (� , �)-PLANE 715.3 Re�ned no-go theorems in the (� , �)-planeThe models we want to study in this thesis all have spe
ial interse
tion numbers: thevolume (5.29) depends only linearly on at least one of the K�ahler moduli ka. In thefollowing, we denote this linear fa
tor in the volume as k0. Models with this propertyhave interse
tion numbers that split into f0; ag, where a runs over the remaining K�ahlermoduli, su
h that the only non-vanishing interse
tion numbers are�0ab � �ab : (5.52)The re�ned no-go theorem of [92℄, whi
h is quite similar to the no-go theorem of se
tion5.2, makes use of these spe
ial interse
tion numbers.For the no-go theorem in the previous se
tion 5.2, we split the K�ahler moduli intoan overall volume variable � and a set of angular variables 
a. In the 
ase where thevolume fa
torizes, it turns out that it is useful to keep k0 and then split the remainingK�ahler moduli by ka = ��a ; (5.53)where the angular variables are 
onstrained by�ab�a�b = 2 ; (5.54)to ensure that the volume of the internal spa
e is Vol = k0�2. From eq. (5.37) weobtain the K�ahler metri
 adapted to the spe
ial interse
tion numbers (5.52) asKi�j =  14(k0)2 00 14�2 ��a
�
�bd�d � �ab� ! : (5.55)With this K�ahler metri
 we 
al
ulate the kineti
 terms (again using ��(�ab�a�b) = 0from whi
h follows that there are no mixed terms of the form ������a),T = �� 14(k0)2 (��k0)2 + 12�2 (���)2 + 14 ��a
�
�bd�d � �ab� ���a���b + � � �� ;(5.56)where the dots stand for additional manifestly positive kineti
 terms for the othermoduli �elds. We now plug the kineti
 term for � in the de�nition for � (5.31) andobtain the inequality � � 1V 2  12 ���V�� �2 + 14 �� �V�� �2! ; (5.57)where the � dependen
e is as in eq. (5.40). We again 
an subtra
t a positive quantityfrom the right hand side of eq. (5.57),12 ���V�� �2 + 14 �� �V�� �2 � 136 �4��V�� � � �V�� �2 = 118 ���V�� + 2� �V�� �2 ; (5.58)



72 5. COSMOLOGY AND INFLATIONand obtain for � the inequality� � 118V 2 ���V�� + 2� �V�� �2 : (5.59)If we 
an show that DV � ��� ��� � 2� ����V � 6V; (5.60)we would get for V > 0 the following bound on �� � 2 ; whenever V > 0 ; (5.61)and slow-roll and de Sitter va
ua are ex
luded.Similar to the proof of the no-go theorem in se
tion 5.2, we study the s
aling proper-ties with respe
t to � and � of the di�erent 
ontributions to the s
alar potential. Theses
alings are 
omputed in [55, 92℄ and 
an be summarized as followsV3 / ��2��2; V0 / �2��4; V6 / ��2��4; VO6=D6 / ��3 ; (5.62)whereas V2 and V4 
ontain two terms, respe
tively,V2 = C1�2��4 + C2��4 ; V4 = C3��2��4 + C4��4 ; (5.63)where the 
oeÆ
ients Ci, i = 1; : : : ; 4 depend on the 
uxes and the other moduli andone 
an show that the two terms in V2 and the two terms in V4 are all separatelypositive 2.From these s
alings we 
omputeDV3 = 6V3 ;DVO6/D6 = 6VO6/D6 ;DV0 = 6V0 ;DV2 = 6V2 + positive terms ;DV4 = 8V4 + positive terms ;DV6 = 10V6 : (5.64)
This implies that whenever we 
an show that DVf � 6Vf , the no-go theorem (5.60),and hen
e � � 2, is appli
able, whi
h rules out slow-roll in
ation and de Sitter va
ua.In [92℄, a 
ondition was given su
h that DVf = 6Vf is satis�ed automati
ally ex-
luding slow-roll in
ation and de Sitter va
ua. Let us de�ne the matri
es riI as follows[97℄ dY (2�)i = riIY (3�)I : (5.65)2We refer the reader to [92℄ for the expli
it form of these 
oeÆ
ients.



5.3. REFINED NO-GO THEOREMS IN THE (� , �)-PLANE 73where Y (2�)i are the odd two-forms de�ned in eq. (3.37) and Y (3�)I is a basis of oddthree-forms, su
h that R Y (3�)I ^ Y (3+)J = ÆIJ . The authors of [92℄ showed that theextra 
ondition riI = 0 would ensure that DVf = 6Vf , implying the no-go theorem. Inthe 
oset examples we will dis
uss in part III of the thesis, however, one has raI 6= 0.Therefore, we will expli
itly 
he
k for ea
h 
ase separately whether DVf � 6Vf issatis�ed or not.To this end, it is 
onvenient to de�ne the variable U as followsVf = 12�2VolU ; (5.66)so that DVf = 6Vf + 12�2VolDU = 6Vf + 12�2Vol(����)U ; (5.67)and the no-go theorem applies if we 
an show that���U�� = �ka �U�ka � 0 : (5.68)Furthermore, if the inequality (5.68) is stri
tly valid, Minkowski va
ua are ruled out aswell. This 
an be seen as follows. Using the eqs. (5.64) and (5.67), we obtainDV = 6V + 2V4 + 4V6 + 12�2Vol(����)U + positive terms ; (5.69)so that for a va
uum, DV = 0, we �nd with eq. (5.68)V = �16 �2V4 + 4V6 + 12�2Vol(����)U + positive terms� � 0 : (5.70)So, if the inequality (5.68) stri
tly holds, (5.70) stri
tly holds as well and Minkowskiva
ua are ruled out.With the help of the no-go theorems dis
ussed in this and the last se
tion we willexamine in 
hapter 13 whether the 
oset models 
onstru
ted in part III of this thesisare valuable 
andidates for slow-roll in
ation and de Sitter minima. All of the 
osetspa
es have non-vanishing geometri
 
uxes and non-vanishing Romans mass. We thushave to 
he
k if the s
alar 
urvature of the 
oset models is negative, and, if this is the
ase, if ����U � 0. The nilmanifolds on the other hand always have negative s
alar
urvature and we 
an turn on non-vanishing Romans mass, thus 
ir
umventing theno-go theorem of se
tion 5.2. However, in [92℄ no-go theorems like the one des
ribed inthis se
tion were applied to the 
lass of twisted tori. The authors showed that for allthese twisted tori the epsilon parameter is bounded from below by numbers of orderunity ruling out slow-roll in
ation and de Sitter minima for these models. Sin
e thenilmanifolds 
an be identi�ed with twisted tori, they are not valuable 
andidates forin
ation and de Sitter va
ua, and we will thus only study for the 
oset models of partIII whether they allow slow-roll in
ation or de Sitter solutions.



74 5. COSMOLOGY AND INFLATION5.3.1 A 
omment on extra ingredientsSome ingredients that are not taken into a

ount in the original no-go theorem of[91℄, nor in the no-go theorems of se
tion 5.3 [92℄ are KK-monopoles, NS5-branes, D4-branes and D8-branes. Some of these ingredients were used in 
onstru
ting simplede Sitter-va
ua in [98, 99℄. KK-monopoles would drasti
ally 
hange the topology andgeometry of the internal manifold so that their introdu
tion makes it diÆ
ult to obtaina 
lear ten-dimensional pi
ture, hen
e we will not dis
uss this possibility further in thisthesis. NS5-branes, D4-branes and D8-branes would 
ontribute through their respe
tive
urrents jNS5, jD4 and jD8 as follows to the Bian
hi identitiesdH = �jNS5 ;dF4 +H ^ F2 = �jD4 ;dF0 = �jD8 : (5.71)Sin
e H and F2 should be odd, and F0 and F4 even under all the orientifold involutions,we �nd that jNS5 is an odd four-form, jD4 an even �ve-form and jD8 an even one-form.In the approximation of left-invariant SU(3)-stru
ture whi
h we use in this thesis,one should also impose these brane-
urrents to be left-invariant (making the branesitself smeared branes). For the 
on
rete type IIA models of 
hapter 11 there are nosu
h 
urrents jNS5, jD4 or jD8 with the appropriate properties under all orientifoldinvolutions, implying that NS5-branes, D4- and D8-branes 
annot be used in thesemodels.Let us brie
y mention that an F-term uplifting along the lines of O'KKLT [100, 101℄by 
ombining the 
oset models with the quantum 
orre
ted O'Raifeartaigh model willnot be a promising possibility either. The O'Raifeartaigh model is given byWO = ��2SandKO = S �S� (S �S)2�2 . The model has a de Sitter minimum for S = 0 where VO � �4. We
ombine the two models as follows (the subs
ript IIA refers to the previously dis
ussed
ux and brane 
ontributions)W =WIIA +WO ; K = KIIA +KO : (5.72)In lowest order in S the total potential is then given byV � VIIA + eKIIAVO + : : : : (5.73)Vup = Aup�4Vol : (5.74)Sin
e we assume a positive uplift potential, Vup > 0, the fa
t that Vup s
ales like F6 tellsus that adding this uplift potential does not help in 
ir
umventing the no-go theoremsof se
tion 5.2 or se
tion 5.3.



Part IIAppli
ation to Nilmanifolds





SummaryFor many phenomenologi
al appli
ations the exa
t knowledge of the full four-dimen-sional low-energy e�e
tive potential is required. For instan
e, one 
an sear
h for phe-nomenologi
ally interesting stable de Sitter solutions (the stability is 
he
ked by 
al
u-lating the mass spe
trum around the solution) or 
he
k whether the potential satis�esthe ne
essary 
onditions for an in
ationary epo
h (this amounts to �nding regions inmoduli spa
e with small values for � and � as des
ribed in 
hapter 5). If the model ad-mits a supersymmetri
 AdS4 solution, one 
an expli
itly 
al
ulate the mass spe
trum ofthe moduli �elds around the supersymmetri
 solution. To 
onstru
t phenomenologi
alattra
tive models, one 
an try to uplift su
h an AdS4 solution by adding uplifting-termsto the potential, e.g. along the lines of the KKLT s
enario [23℄.One of the main motivations of this thesis is to provide the te
hniques to derive thefour-dimensional low-energy e�e
tive �eld theory for a given 
ompa
ti�
ation manifold.In the �rst part of this thesis we dis
ussed the formal premises for su
h a proje
t and it isnow time for applying the developed te
hniques to 
on
rete 
ompa
ti�
ation manifolds.We �rst want to 
onsider a large 
lass of possible six-dimensional 
ompa
t manifolds,the nilmanifolds whi
h we des
ribed in se
tion 4.2. As we dis
ussed there, there are34 isomorphism 
lasses of six-dimensional nilmanifolds. In the following, we refer tothese 34 isomorphism 
lasses simply as \the nilmanifolds". The 
omplete list of thesenilmanifolds 
an be found in table 4 of [64℄ and we will adopt their numbering.We �rst want to 
onstru
t type IIA AdS4 N = 1 solutions on these nilmanifolds.In se
tion 2.2.2 we dis
ussed the ne
essary and suÆ
ient 
onditions for su
h supersym-metri
 va
ua. We �rst have to s
an for nilmanifolds whose only non-vanishing torsion
lasses are W�1;2. If we do not turn on sour
e terms, we have to satisfy 
ondition (2.34),whi
h follows from the Bian
hi identities. This 
ondition turns out to be too restri
-tive for all the 34 nilmanifolds. We thus have to allow for D-brane/orientifold smearedsour
es. The Bian
hi 
ondition is then relaxed to 
ondition (2.37), whi
h indeed 
anbe satis�ed. Additionally, we have to 
he
k the positivity of the metri
 indu
ed by Jand 
.As a matter of fa
t, there are (only) two nilmanifolds among the 34 nilmanifolds thatsatisfy all the ne
essary and suÆ
ient 
onditions [49℄, the six-torus and the nilmanifold4.7 of table 4 of [64℄. The nilmanifold 4.7 is also known under the name of the Iwasawamanifold. Essentially, the Iwasawa solution is the twisted torus T 6=(Z2�Z2) example



78examined in [70, 62, 72℄ 3.We will des
ribe these solutions in 
hapter 6. As we will see, the torus and theIwasawa solution are related by T-duality along two dire
tions (at least for some valuesof the parameters). Interestingly, as the intermediate step after one T-duality, there isa type IIB solution with stati
 SU(2)-stru
ture on the nilmanifold 5.1 of table 4 in [64℄.Remarkably, for the same range of the parameter spa
e for whi
h the T-dualitiesabove are valid, the solutions admit an interpretation as near-horizon geometries ofinterse
ting brane 
on�gurations, [24℄. From this point of view, the nilmanifold va
uain this range are nothing but near-horizon geometries of interse
tions of KK-monopoleswith other branes in 
at spa
e. This ni
e feature of the `brane pi
ture' is summarizedin table 6.1. Ea
h solution in this table is related to the one in the 
olumn next to itby a T-duality. For the three nilmanifolds that provide a solution to N = 1 AdS4 weIIA IIB IIAT6 nilmanifold 5.1 IwasawaD4/D8/NS5 D3/D5/D7/NS5/KK D2/D6/KKTable 6.1: Brane pi
turenext study in detail the four-dimensional low-energy e�e
tive �eld theory. The usualapproa
h to 
onstru
t the four-dimensional e�e
tive a
tion is by using four-dimensionale�e
tive supergravity te
hniques whi
h rely on supersymmetry. As we reviewed inse
tion 3.2, this boils down to 
al
ulate the K�ahler potential and the superpotential.However, the dire
t approa
h to derive the four-dimensional e�e
tive a
tion is byperforming a Kaluza-Klein redu
tion. We reviewed the Kaluza-Klein re
ipe in se
tion3.1. The main result of this part of the thesis is a 
omparison of the results obtainedby the dire
t Kaluza-Klein redu
tion with the results obtained via the e�e
tive super-gravity approa
h. This provides us with an important 
onsisten
y 
he
k between thetwo approa
hes.To do so, we will �rst expli
itly perform, in 
hapter 7, a Kaluza-Klein redu
tion onthe torus and the Iwasawa manifold around the supersymmetri
 solution of 
hapter 6and derive the mass spe
trum for all the moduli �elds.In the following 
hapter 8, we derive the e�e
tive low-energy potential by means ofthe supergravity te
hniques and again derive the mass spe
trum for the moduli �eldsaround the supersymmetri
 solution. Comparing these results with the masses obtainedfrom the dire
t Kaluza-Klein analysis, we �nd perfe
t agreement - showing that we 
anrely on the e�e
tive supergravity te
hniques also in the presen
e of metri
 
uxes.Note that the results of this part of the thesis are published in [49℄.3In the Iwasawa model there are four orientifolds. These 
an be equivalently des
ribed as a singleorientifold supplemented with its images under a 
ertain geometri
 Z2�Z2 group a
ting on the internalmanifold.



Chapter 6AdS4 solutions on nilmanifoldsBy taking the internal six-dimensional manifold to be a nilmanifold, we 
an 
onstru
texpli
it examples of type IIA N = 1 
ompa
ti�
ations to AdS4 des
ribed in se
tion2.2.2. A systemati
 s
an yields exa
tly two possibilities in type IIA satisfying thene
essary and suÆ
ient 
onditions: the torus T6 and the Iwasawa manifold 4.7 of table4 of [64℄, whi
h (for some values of the parameters) are related by T-duality along twodire
tions. We also �nd a type IIB solution with stati
 SU(2)-stru
ture whi
h formsthe intermediate step after one T-duality 1. In this 
hapter we des
ribe these solutions.6.1 Type IIA solution on the T6Our �rst type IIA solution is obtained by taking the internal manifold to be a six-dimensional torus. Let us de�ne a left-invariant basis feig su
h that:dei = 0; i = 1; : : : ; 6 : (6.1)On the torus we 
an just 
hoose ei = dyi, where yi are the internal 
oordinates. TheSU(3)-stru
ture is given byJ = e12 + e34 + e56 ;
 = (ie1 + e2) ^ (ie3 + e4) ^ (ie5 + e6) ;whi
h 
an indeed be seen to satisfy eqs. (2.6), (2.7) and (2.1) for f = 0, puttingvol6 = e1:::6. It readily follows that all torsion 
lasses vanish in this 
ase. Note,however, that there are non-vanishing H and F4 �elds given by eq. (2.27)H = 25e�m �e246 � e136 � e145 � e235� ;F4 = 35m �e1234 + e1256 + e3456� : (6.2)1In the 
ase of type IIB, we did not make a 
omplete s
an so there might be more solutions of thistype.



80 6. ADS4 SOLUTIONS ON NILMANIFOLDSFrom the Bian
hi identity in eq. (B.9a) we 
ompute for the sour
e termj6 = �25e�m2(e246 � e136 � e145 � e235) ; (6.3)su
h that, from eq. (2.37), we �nd that there is an orientifold sour
e of the type (2.35)with � = e2�m2. This sour
e term 
orresponds to smeared orientifolds along (1; 3; 5),(2; 4; 5), (2; 3; 6) and (1; 4; 6) (see also the dis
ussion in appendix D). The 
orrespondingorientifold involutions are 2O6 : e2 ! �e2 ; e4 ! �e4 ; e6 ! �e6 ;O6 : e1 ! �e1 ; e3 ! �e3 ; e6 ! �e6 ;O6 : e1 ! �e1 ; e4 ! �e4 ; e5 ! �e5 ;O6 : e2 ! �e2 ; e3 ! �e3 ; e5 ! �e5 : (6.4)For the torus, sin
e we have vanishing torsion 
lasses, we 
an de
ouple the tower ofKaluza-Klein masses (see dis
ussion in se
tion 2.2.2) when we take m2(e2�L2int)� 1.6.2 Type IIA solution on the Iwasawa manifoldThe se
ond type IIA solution is obtained by taking the internal manifold to be theIwasawa manifold. The left-invariant basis is de�ned by:dea = 0; a = 1; : : : ; 4 ;de5 = e13 � e24 ;de6 = e14 + e23 ; (6.5)and is usually denoted by (0; 0; 0; 0; 13�24; 14+23). Up to basis transformations thereis a unique SU(3)-stru
ture satisfying the supersymmetry 
onditions of se
tion 2.2.2:J = e12 + e34 + �2e65 ;
 = � (ie5 � e6) ^ (ie1 + e2) ^ (ie3 + e4) : (6.6)In the left-invariant basis, the metri
 is given by g = diag(1; 1; 1; 1; �2 ; �2), and thetorsion 
lasses 
an be read o� from dJ , d
, taking eq. (2.1) into a

ount:W�1 = �2i3 � ;W�2 = �4i3 � �e12 + e34 + 2�2 e56� ; (6.7)2Ea
h orientifold 
an be represented as 
p�, where 
p a
ts as a re
e
tion on the world-sheet and� is a purely geometri
al operation a
ting on the target spa
e. The 
omposition of two six-orientifolda
tions 
p�1 and 
p�2 is purely geometri
al, given by �1 Æ �2, sin
e 
2p = 1. Similarly, the a
tion ofany number of orientifolds 
an be thought of equivalently as being generated by a single orientifoldtogether with a purely geometri
al a
tion of a dis
rete group. In the 
ase at hand, the four orientifoldsix-planes 
an be equivalently thought of as a single orientifold together with an orbifolding of theinternal manifold by Z2�Z2.



6.3. TYPE IIB SOLUTION ON THE NILMANIFOLD 5.1 81while all other torsion 
lasses vanish. The 
uxes 
an be read o� from eq. (2.27) byplugging in f = 32e���, while we 
an �nd m from eq. (2.37). We 
an verify that dW�2is proportional to Re
: dW�2 = �8i3 �2Re
 : (6.8)From the se
ond line of eq. (6.7) we 
an read o�: jW�2 j2 = 64�2=3. Comparing witheq. (2.37), taking jW�1 j2 = 4�2=9 into a

ount { as follows from the �rst line of (6.7) {we therefore �nd a non-zero net orientifold six-plane 
harge:� � 254 �2 : (6.9)The solution (6.6) has one 
ontinuous parameter, �, 
orresponding essentially to the�rst torsion 
lass W�1 . An additional se
ond parameter 
an be introdu
ed by notingthat the de�ning SU(3)-stru
ture equations (2.6) are invariant under the res
alingJ ! 
2J ; 
! 
3
 : (6.10)The additional s
alar 
 is related to the volume modulus via vol6 = �
6�2e1:::6, as 
anbe seen from eq. (2.7).For the 
ase m = 0, for whi
h the bound (6.9) is saturated, the above example 
analso be obtained by performing two T-dualities on the torus solution of se
tion 6.1,as 
an be 
he
ked expli
itly. We �nd then that � = 25mT e� where mT is the massparameter of the dual torus solution. The limit of de
oupling the Kaluza-Klein tower
orresponds to taking �Lint � 1.6.3 Type IIB solution on the nilmanifold 5.1This solution is related, via a single T-duality, to both T6 and the Iwasawa manifold.Indeed, let us perform a T-duality on the six-torus example of se
tion 6.1 using theT-duality rules of e.g. [102℄ (see also [103℄ for a dis
ussion of the a
tion of T-dualityon the pure spinors of a SU(3)�SU(3)-stru
ture) 3. After res
aling and relabeling theleft-invariant forms we �nd the nilmanifold 5.1 des
ribed by (0,0,0,0,0,12+34). For theSU(2)-stru
ture quantities des
ribed in se
tion 2.1.2 we obtainei�V = 12 ��e6 + ie5� ;!2 = e13 � e24 ;
2 = �iei�(ie1 + e3) ^ (ie4 + e2) : (6.11)3Note that it does not matter along whi
h dire
tion one performs the T-duality sin
e all six perpen-di
ular dire
tions are equivalent. For the se
ond T-duality (from whi
h we obtain the Iwasawa solutionof the previous se
tion), only one dire
tion leading to a geometri
 ba
kground is possible.



82 6. ADS4 SOLUTIONS ON NILMANIFOLDSThe metri
 is given by g = diag(1; 1; 1; 1; 1; �2), and for the 
uxes we haveH = �� �e235 + e145� ;e�F1 = 52 �2e6 ;e�F3 = 32 � �e135 � e245� ;e�F5 = 32 �2e12346 : (6.12)
Again we �nd that � is related to the mass parameter of the torus example via � =25mT e�.6.4 The brane pi
tureFollowing [24℄, it is possible to interpret the solutions presented in se
tions 6.1-6.3, fromthe perspe
tive of interse
ting branes. Namely, we would like to re
over these solutionsas near-horizon limits of domain walls in four non-
ompa
t dimensions, 
orrespondingto systems of (orthogonally) interse
ting branes (we will hen
eforth use the term `brane'to refer to either a Dp-brane, an NS5-brane, or a KK-monopole).More spe
i�
ally, we will impose the following requirements on our brane 
on�gu-rations:1. All 
on�gurations should 
onsist of branes in ten-dimensional 
at spa
e, of whi
hfour dire
tions are non-
ompa
t and six dire
tions form a six-torus.2. All branes should have exa
tly the same two spatial dire
tions along the non-
ompa
t spa
e.3. All branes should interse
t orthogonally, and we do not 
onsider world-volumegauge �elds.4. The resulting 
on�guration should preserve N = 1 supersymmetry in D=3,and should admit a regular near-horizon geometry with an AdS4 fa
tor.5. Ea
h 
on�guration should in
lude the maximum number of branes 
ompatiblewith requirements 1-4.Before we 
ome to the des
ription of expli
it 
on�gurations satisfying the above re-quirements, let us note that, as we will see in the following, only brane 
on�gurationsthat lead to stri
t SU(3)-stru
ture (as well as their T-dual 
on�gurations leading tostati
 SU(2)-stru
tures) arise in this way; this is the same 
lass of ba
kgrounds 
onsid-ered in 
hapter 2. The easiest way to arrive at this 
on
lusion is to �rst determine whi
htypes of SU(3)�SU(3)-stru
ture 4 are 
ompatible with ea
h brane separately. Indeed,4See appendix C for a brief introdu
tion to the language of generalized geometry and SU(3)�SU(3)-stru
ture 
ompa
ti�
ations.



6.4. THE BRANE PICTURE 83using their 
orresponding �-symmetry proje
tors, it is straightforward to analyse whatrelations between the internal supersymmetry generators �(1) and �(2) of eq. (2.3) arepossible, whi
h leads to the following table of branes and their 
orresponding 
ompat-ible types of stru
ture: 5 Brane Stru
ture typeD2 stri
t SU(3)D3 stati
 SU(2)D4 SU(3)�SU(3)D5 SU(3)�SU(3)D6 SU(3)�SU(3)D7 stati
 SU(2)D8 stri
t SU(3)NS5 SU(3)�SU(3)KK SU(3)�SU(3)See se
tion 2.1 for the terminology. It turns out, that the 
on�guration always needsto have D-branes to get a regular near-horizon AdS4 limit. From the above table itfollows, that if one of these D-branes is a D2, D3, D7 or D8 we already �nd stri
tSU(3)- or stati
 SU(2)-stru
ture. If not, let us 
onsider the SU(3)-stru
ture asso
iatedto �(1) as in eq. (2.5). Let us also de�ne the 
omplex 
oordinates zi asso
iated withthis SU(3)-stru
ture as well as their real and imaginary parts: zi = xi + iyi. Be
auseall the branes de�ning this SU(3)-stru
ture interse
t orthogonally (requirement 3), forea
h brane the xi and yi dire
tions will be either along or perpendi
ular to the brane,i.e., there are no angles other than right angles. Now the relation between �(1) and �(2),whi
h we 
an get from the �-symmetry 
onditions of one of the D-branes, will 
ontaingamma-matri
es for dire
tions that are also parallel or orthogonal to the xi and yidire
tions. Exhausting then all possibilities for the resulting stru
ture shows that it
an only be stri
t SU(3)- or stati
 SU(2)-stru
ture. It follows that if one is interested in
onstru
ting a 
on�guration with general SU(3)�SU(3)-stru
ture, one should restri
tto D4, D6, D5, NS5 and KK-branes and put these branes at non-orthogonal angles.Let us make a few 
omments 
on
erning the requirements 1-5 above. The �rst oneanti
ipates the fa
t that, as it will turn out, the internal nilmanifolds in the solutionsof se
tion 6.2-6.3 
an be thought of as interse
tions of KK-monopoles in 
at spa
e. Ittherefore suÆ
es to 
onsider branes in 
at spa
e. The se
ond requirement is of 
oursejust the requirement that the 
on�guration should 
orrespond to a domain wall in fourspa
e-time dimensions. The requirement of orthogonality was imposed for simpli
ity.It would be interesting to 
onsider branes/monopoles interse
ting at angles, but itwould be quite diÆ
ult to 
onstru
t the 
orresponding geometry be
ause one 
ouldno longer use the harmoni
 superposition rules for branes [104℄. The �rst part of the5We also refer to table 1 of [43℄ whi
h represents the allowed types of stru
ture too, but nowfor spa
e-�lling orientifolds. Orientifolds have the same supersymmetry properties as D-branes withvanishing world-volume gauge �eld, however the di�eren
e of spa
e-�lling versus domain wall basi
allyshifts the table.



84 6. ADS4 SOLUTIONS ON NILMANIFOLDSfourth requirement is equivalent to demanding that the domain wall, viewed from thepoint of view of four-dimensional spa
e-time, should be supersymmetri
. Indeed, theminimal supersymmetry a domain wall in four dimensions 
an preserve, is one-half ofN = 1 in D = 4. This is equal to two real super
harges, i.e. N = 1 in D = 3. Notethat this implies that exa
tly one-sixteenth of the original supersymmetry of type IIsupergravity in D = 10 should be preserved. As ea
h brane breaks supersymmetry by(at most) one-half, there will be (at least) four branes in the 
on�guration. The �nalrequirement is imposed be
ause a 
on�guration that does not in
lude the maximumnumber of branes 
ompatible with requirements 1-4, turns out not to have a regularAdS4 near-horizon limit.The rules for supersymmetri
, orthogonally-interse
ting branes were formulatedsome time ago [104, 105℄. For the type of 
on�gurations we are 
onsidering, they
an be summarized as follows:interse
ting branes # of relative transverse dire
tionsDp/Dq 0 mod 4NS5/NS5 0 mod 4Dp/NS5 7� p or 11� pDp/KK 5� p or 9� pKK/KK 0 mod 4NS5/KK 4 or 8The requirements 1-5 listed above severely restri
t the set of admissible interse
ting-brane 
on�gurations. It is in fa
t straightforward to show that all possible su
h 
on�g-urations are related to ea
h other by T-dualities. The brane 
on�gurations 
omprisingthe `nodes' of this T-duality web, listed in table 6.1, are analyzed in the following 6.
D4/D8/NS5This is the type IIA solution given in [24℄ and 
orresponds to the following system ofinterse
ting D4/NS5/D8-branes:

6Without the se
ond part of the fourth requirement there are three more 
on�gurations 
onne
tedto ea
h other by T-duality: D5/NS5, D6/D4/NS5/KK and D5/KK. Be
ause they do not admit aregular near-horizon limit with AdS4 fa
tor, they are not of interest to us here, and we do not 
onsiderthem.



6.4. THE BRANE PICTURE 85x0 x1 x2 x3 y1 y2 y3 y4 y5 y6D4 N N N N ND40 N N N N ND400 N N N N NNS5 N N N N N NNS50 N N N N N NNS500 N N N N N NNS5000 N N N N N ND8 N N N N N N N N NThe full solution of [24℄ pat
hes two asymptoti
 regions: a near-horizon AdS4�T6region and a 
at region at in�nity. Here we will 
on
entrate on the near-horizon limitof the solution where the brane system above is repla
ed by 
uxes. After res
aling ofthe 
oordinates, it 
an be written as:ds210 = ds2AdS4 + 6Xi=1(dyi)2; � = 
onst: ;Hy2y4y6 = Hy2y5y3 = Hy1y6y3 = Hy1y5y4 = a ;Fy3y4y5y6 = Fy1y2y5y6 = Fy1y2y3y4 = 32e��a ; F0 = 52e��a ; (6.13)
where a and e� are given in terms of the brane quanta in [24℄, and the SU(3)-stru
tureis given by: J = dy1 ^ dy2 + dy3 ^ dy4 + dy5 ^ dy6 ;
 = �idy1 + dy2� ^ �idy3 + dy4� ^ �idy5 + dy6� : (6.14)We 
an readily see that, in the language of se
tion 2.2.2, the present solution 
orre-sponds to setting F 02 = 0, f = 0 and m = a with a sour
e term:jO6 = �2a25 e��Re
 : (6.15)So while the original brane 
on�guration has disappeared in the near-horizon limit, wehave to introdu
e a set of smeared orientifold sour
es in order to satisfy the tadpole
onditions: x0 x1 x2 x3 y1 y2 y3 y4 y5 y6O6 N N N N N N NO60 N N N N N N NO600 N N N N N N NO6000 N N N N N N N



86 6. ADS4 SOLUTIONS ON NILMANIFOLDSIndeed, as follows from eq. (2.30), in this limit, all torsion 
lasses of the internalmanifold vanish, as they should for T6. Moreover, this is exa
tly the solution of se
tion6.1.D3/D5/D7/NS5/KKBy applying a T-duality on the solution of the previous subse
tion, we obtain thefollowing 
on�guration (we do not display the non-
ompa
t dire
tions anymore, but letus keep in mind that they form domain walls):y1 y2 y3 y4 y5 y6D7 N N N N ND3 ND50 N N ND500 N N NNS5 N N NNS50 N N NKK00 � N N NKK000 � N N NWithout loss of generality, we have taken the T-duality to be along y1. Let us onlydes
ribe the salient features of this model.First of all, an analysis of the �-symmetry 
onditions of the D-branes reveals thatfor this 
on�guration the internal spinors satisfy�(2)+ = �e�i�
1�(1)� ; (6.16)where e�i� is a phase des
ribing the supersymmetry preserved by the domain wall in fourdimensions, or, after taking the near-horizon limit, the phase of the superpotential Wof AdS. So we see that we have stati
 SU(2)-stru
ture, whi
h is also the only possibilityfor type IIB as mentioned in se
tion 2.2.2 and explained in more detail in appendix C.Se
ondly, when one goes to the near-horizon limit, the e�e
t of the KK-monopolesis to twist the S1 of dire
tion 1 over the T4 
orresponding to the dire
tions (3; 4; 5; 6),whi
h is indi
ated with a bullet in the tables. This means that we �nd for the metri
,after res
aling, ds210 = ds2AdS4 + 6Xi=1(ei)2 ; (6.17)with e1 := dy1 + a(y6dy3 + y5dy4) ;ei := dyi ; i = 2; : : : ; 6 ; (6.18)



6.4. THE BRANE PICTURE 87where a is the same parameter as in the T-dual. This means we havede1 = a(e63 + e54) ;dei = 0 ; (6.19)whi
h, in fa
t, is equivalent to nilmanifold 5.1. So we see that just like the other branesthe KK-monopoles disappear in the near-horizon limit and are repla
ed by 
ux, in this
ase the geometri
 
ux a.It turns out that in addition to the 
uxes we have O5/O7 orientifold planes alongthe following dire
tions:x0 x1 x2 x3 y1 y2 y3 y4 y5 y6O5 N N N N N NO50 N N N N N NO7 N N N N N N N NO70 N N N N N N N NAfter appropriate res
aling and relabeling, this solution 
orresponds to the solution onthe nilmanifold 5.1 of se
tion 6.3.D2/D6/KKStarting from the type IIB 
on�guration above, there is exa
tly one possibility left fora T-duality, i.e. along y2. This is be
ause T-dualizing along a dire
tion perpendi
ularto a KK-monopole would result in a non-geometri
 ba
kground.y1 y2 y3 y4 y5 y6D6 N N N ND2D60 N N N ND600 N N N NKK N � N NKK0 N � N NKK00 � N N NKK000 � N N NAn analysis of the �-symmetry 
onditions of the branes reveals that this model hasagain stri
t SU(3)-stru
ture. The four KK-monopoles result in a near-horizon geometryfor whi
h the T2 along the dire
tions (1; 2) is twisted over the base T4 along (3; 4; 5; 6).The metri
 reads ds210 = ds2AdS4 + 6Xi=1(ei)2 ; (6.20)



88 6. ADS4 SOLUTIONS ON NILMANIFOLDSwhere we have de�ned e1 := dy1 + a(y6dy3 + y5dy4) ;e2 := dy2 + a(y5dy3 � y6dy4) ;ei := dyi ; i = 3; : : : ; 6 ; (6.21)su
h that de1 = a(e63 + e54) ;de2 = a(e53 + e46) ;dei := dyi ; i = 3; : : : ; 6 : (6.22)After res
aling and relabeling we �nd the solution of se
tion 6.2 for m = 0. For m 6= 0the latter solution does not have a dual brane pi
ture.Finally note that in order to satisfy the tadpole 
onditions we have again O6-planesalong the following dire
tions:x0 x1 x2 x3 y1 y2 y3 y4 y5 y6O6 N N N N N N NO60 N N N N N N NO600 N N N N N N NO6000 N N N N N N NThis 
ompletes the overview of brane 
on�gurations of table 6.1.



Chapter 7Kaluza-Klein redu
tionIn this 
hapter, we will expli
itly perform a Kaluza-Klein redu
tion des
ribed in se
tion3.1 on the torus solution of se
tion 6.1 and the Iwasawa solution with m = 0 of se
tion6.2 and 
al
ulate the mass spe
trum of the moduli �elds around the supersymmetri
va
uum. In the next 
hapter we will again derive the mass spe
trum using e�e
tivesupergravity te
hniques and 
ompare the results. If we �nd agreement, this providesan important 
onsisten
y 
he
k between the to approa
hes.7.1 Expansion of the �eldsFor the Kaluza-Klein redu
tion on T6 and the Iwasawa manifold, we will expand the
u
tuations of the various �elds in the following basis:ÆB(x; y) =bi;~n(x)Y(2)i;~n (y) + bi;~n1 (x)Y(1)i;~n (y) + b~n2 (x)Y(0)~n (y) ; (7.1a)Æ�(x; y) =Æ�~n(x)Y(0)~n (y) ; (7.1b)ÆC(1)(x; y) =
(1)i;~n(x)Y(1)i;~n (y) + 
(1)~n1 (x)Y(0)~n (y) ; (7.1
)ÆC(3)(x; y) =
(3)i;~n(x)Y(3)i;~n (y) + 
(3)i;~n1 (x)Y(2)i;~n (y) + 
(3)i;~n2 (x)Y(1)i;~n (y)+ 
(3)~n3 (x)Y(0)~n (y) ; (7.1d)Æg(x; y) =hi;~n(x)X (2)i;~n (y) + hi;~n1 (x)Y(1)i;~n (y) + h~n2 (x)Y(0)~n (y) : (7.1e)The fun
tions Y(l)i;~n(y) are the l-eigenforms of the Lapla
ian operator and are given byY(l)i;~n(y) = Y (l)i ei~p�~y ; ~p = ~nLint ; ~n 2 Z6 ; (7.2)where the Y (l)i form a basis of harmoni
 l-forms on T6. X (2) are symmetri
 two-tensorsX (2)i;~n (y) = X(2)i ei~p�~y ; ~p = ~nLint ; ~n 2 Z6 ; (7.3)



90 7. KALUZA-KLEIN REDUCTIONSin
e we will restri
t our analysis to the zero modes (~p = 0), we only keep Y(l)i;~n=0(y) =Y (l)i and X (2)i;~n=0(y) = X(2)i in the expansions above and derivatives only a
t on theexternal �elds. For the Iwasawa manifold, we will use for the expansion forms Y (l)i left-invariant forms, whi
h will not ne
essarily be all harmoni
. When exterior derivativesa
t on these forms terms will be generated of the order of the geometri
 
uxes.7.2 Kaluza-Klein expansion on AdS4�T6On the torus we 
an just 
hoose ei = dyi, where yi are the internal 
oordinates, dueto eq. (6.1). The harmoni
 l-forms in whi
h we will expand the �elds a

ording toeq. (7.1) are thus of the form em1 :::ml = dym1 ^ � � � dyml , l = 1; : : : ; 6. Sin
e there is anorientifold proje
tion present in our 
ompa
ti�
ation, suitable expansion forms must beeven or odd under all the orientifold involutions. The set of even/odd forms of di�erentdegree under all the orientifold involutions given in eq. (6.4) istype basis nameodd 2-form e12; e34; e56 Y (2�)ieven 3-form e135; e146; e236; e245 Y (3+)iodd 3-form e136; e145; e235; e246 Y (3�)ieven 4-form e1234; e1256; e3456 Y (4+)ieven symmetri
 2-tensor e1 
 e1; e2 
 e2; : : : ; e6 
 e6 X(2)iTable 7.1: List of invariant forms for the torus solutionIn parti
ular, we �nd that there are no one- and �ve-forms nor even two-form. Allexternal �elds are even under the orientifold involutions (the orientifolds span the wholefour-dimensional spa
e-time). We �nd from eqs. (2.40a) and (2.40b) that �; g; F0; C3are even, and B;C1 are odd. The allowed terms of the expansion (7.1) are thereforeÆB(x; y) = bi(x)Y (2�)i ; (7.4a)Æ�(x; y) = �(x) ; (7.4b)ÆC(3)(x; y) = 
(3)i(x)Y (3+)i + 
(3)3 (x) ; (7.4
)Æg(x; y) = hi(x)X(2)i + h2(x) : (7.4d)From eq. (3.21) we �nd the linear 
u
tuations of the �eld strengths (remember for thetorus that F̂2 = 0) ÆF2 = �mÆB ; (7.5a)ÆF4 = dÆC3 ; (7.5b)



7.2. KALUZA-KLEIN EXPANSION ON ADS4�T6 91and ÆH = dÆB : (7.6)We want to derive the mass matrix for the four-dimensional �elds. To a
hieve this, we
ompute the equations of motion for the four-dimensional 
u
tuations, whi
h have tobe of the form (3.6a) for the s
alar �elds bi(x);�(x); 
(3)i(x) and hi(x), whereas for theexternal metri
 
u
tuation h2(x) it will be of the form (3.6
). We thus �rst 
omputethe variation of all the equations of motion (B.7a),(B.7b),(B.9b) and (B.10) to �rstorder. In these equations we plug in the ba
kground values and the expansion of the�elds (7.4), whi
h gives us the equations of motion for the 
u
tuations.The 
al
ulation is straightforward but rather lengthy. The variation of the Hodgestar ? 
ompli
ates the 
al
ulation, sin
e the metri
 appears in the Hodge star 1. We
an derive an expression for its variation(Æ?)Fl = �12gMNÆgMN� ? Fl � ?[Æg � Fl℄ ; (7.7)where [Æg � Fl℄M1:::Ml = l � Æg[M1jAgABFBjM2:::Ml℄ : (7.8)Let us look at one of the equations in more detail to explain the important steps in the
al
ulation. The variation of the equation of motion for H, eq. (B.10), takes the form0 = d ? dÆB � (dÆ�) ^ ?Ĥ + d h(Æ?)Ĥi+ F̂4 ^ ÆF4 � (?F̂4) ^ ÆF2 �m ? ÆF2 ; (7.9)where we used the freedom to set e��̂ = 1 in the torus solution, eq. (B.1) to removethe redundant RR-�elds 
oming from the demo
rati
 formulation and that F̂2 = 0,d(?Ĥ) = 0 and  n ^ �(j)j8 = 0 in the torus solution. Terms like the se
ond one ineq. (7.9) vanish sin
e ?Ĥ = vol4 ^ ?6Ĥ and dÆ�(x) ^ vol4 = 0. Remember that we areonly 
onsidering the zero internal modes and hen
e that the torus derivatives only a
ton the external �elds. For the third term in eq. (7.9) we use eq. (7.7). Plugging the
u
tuations (7.5) in eq. (7.9) and applying a Hodge star operation, we arrive at thefollowing equation for the s
alars bi, whi
h has [external/internal℄ index stru
ture [0,2℄:0 = �biY (2�)i � ?(F̂4 ^ d
(3)3 )�m ? (?F̂4 ^ biY (2�)i ) +m2biY (2�)i : (7.10)Here we used, following the 
onventions summarized in appendix A 2,?4d ?4 d = �� : (7.11)1See appendix A for our 
onventions for the Hodge star. Further note that in this 
hapter, ? denotesthe ten-dimensional Hodge star, whereas the four- and six-dimensional Hodge star are indi
ated as ?4and ?6, respe
tively.2Note that dybi(x) = ?4d ?4 bi(x) = 0 for bi(x) an external s
alar �eld.



92 7. KALUZA-KLEIN REDUCTIONSimilarly, we derive from the variation of the equation of motion of F4 a [0,3℄-equationand a [1,6℄-equation, respe
tively,0 = �
(3)iY (3+)i � ?(Ĥ ^ d
(3)3 ) ; (7.12a)0 = d ? d
(3)3 + dbi ^ Y (2�)i ^ F̂4 + Ĥ ^ d
(3)i ^ Y (3+)i ; (7.12b)and from the variation of the equation of motion of F2 a [4; 5℄- and [3; 6℄-equation0 = Ĥ ^ ? hhiX(2)i � F̂4i ; (7.13a)0 = Ĥ ^ ?(d
(3)i ^ Y (3+)i ) : (7.13b)Note that the equations for the RR-�elds and H do not mix with the dilaton andthe metri
. The equations (7.13) are automati
ally satis�ed using the orientifold pro-je
tion. Indeed, the right-hand sides should have 
ontained an even internal �ve-formrespe
tively six-form under all orientifold involutions, whi
h do not exists, so they mustvanish.To solve the eqs. (7.12), we integrate eq. (7.12b) and put the integration 
onstantto zero (this would 
orrespond to 
hanging the ba
kground value of f). Taking theHodge star of the integrated equation we get an expression for d
(3)3 that we 
an putin eq. (7.12a) and also in eq. (7.10). This pro
edure 
orresponds to dualizing 
(3)3 , asexplained in [106, 55℄. Indeed, one may wonder why the three-form part 
(3)3 of ÆC(3)appears in the equations of motion for the s
alars but is easily integrated out. Thereason is that we de�ned d
(3)3 to des
ribe the variation of the external part of ÆF4. Bymeans of the duality (B.1), F6 = e 12� ? F4 ; (7.14)we 
an equivalently des
ribe the external part of F4 by the internal part of F6. Thevariation of eq. (7.14) readsÆF6;int = 12e 12�f (Æg�� � Ægmm � Æ�) ^ vol6 + e 12� ? d
(3)3 : (7.15)If we now plug in the general variation of the equation of motion of F4,e 12� ?4 d
(3)3 ^ vol6 =+ 12e 12�f (Æg�� � Ægmm � Æ�) ^ vol6+ 
(3)iĤ ^ Y (3+)i � bi ^ Y (2�)i ^ F̂4 + Æf ; (7.16)we �nd ÆF6;int = 
(3)iĤ ^ Y (3+)i � bi ^ Y (2�)i ^ F̂4 ; (7.17)whi
h exa
tly 
orresponds to the part of ÆF6 in eq. (3.21) that is �rst order in the
u
tuations.



7.2. KALUZA-KLEIN EXPANSION ON ADS4�T6 93We are now ready to put in the expansion forms given in table 7.1 and solve the equa-tions for the 
u
tuations of the RR-�elds and H. To display the results it is 
onvenientto make an appropriate 
hoi
e of the expansion forms as followsY (3+)0 = Im
 ; (7.18a)Y (3+)i ; i = 1; 2; 3 : 3 real (2,1)+(1,2) forms ; (7.18b)and the odd two-formsY (2�)0 = J ; (7.19a)Y (2�)i ; i = 1; 2 : 2 primitive real 2-forms ; (7.19b)where a primitive two-form is de�ned in (C.31). As explained in se
tion 3.1, we displaythe result for the eigenvalues of the mass-matrix ~M2 =M2 + 2=3�:mass eigenmode mass (in units m2=25)bi; i = 1; 2 10
i; i = 1; 2; 3 0b0 � 4
(3)0 103b0 + 
(3)0 88We now 
ome to the dilaton and the Einstein equation. Let us �rst look at thedilaton equation (B.7a). The tri
ky part is the variation of the sour
e term,?h	n; ji ; (7.20)where, a

ording to eq. (B.6), 	7 = �vol4 ^ e��Im
. The variation of Im
 
an bedone by looking at the variation of the vielbeins,
nmp = eanebme
p
ab
 ; (7.21)where the underlined indi
es are 
at indi
es. We 
an use the following relationÆean = 12Ægnmgmpeap ; (7.22)and we obtain ÆIm
 = 12[Æg � Im
℄ : (7.23)The rest of the 
al
ulation is straightforward and we arrive at0 = (� + 67m225 )Æ� + 7m225 6Xi=1 hi : (7.24)



94 7. KALUZA-KLEIN REDUCTIONTo 
ompute the variation of the internal Einstein equation around the va
uum, we usethe same methods as des
ribed above resulting inÆRmn = 12�LÆgmn +r(mrP Ægn)P � 12rmrnÆgQQ ; (7.25)where �L is the Li
hnerowi
z operator de�ned in eq. (3.7), and all 
ovariant derivativesand 
ontra
tions are with respe
t to the ba
kground metri
. For the 
at torus va
uumthis is easy evaluated to give ÆRmn = 12�Ægmn ; (7.26)and the variation of the internal Einstein equation reads0 = �hi + 8m225 hi + 7m250 giiÆ�+ m250 gii 6Xj=1 hj + 2m25 giihi�(�1)i : (7.27)The result of diagonalizing the mass matrix ismass eigenmode mass (in units m2=25)�hz1�z1 + hz2�z2 = �h1 � h2 + h3 + h4 18�hz1�z1 + hz3�z3 = �h1 � h2 + h5 + h6 18�3 Æ� + 7P hi 187 Æ� +Phi 70Rehz1z1 = �h1 + h2 �2Rehz2z2 = �h3 + h4 �2Rehz3z3 = �h5 + h6 �2The external 
ontribution of the variation of the metri
, h��(x) in eq. (7.4d), isexpe
ted to des
ribe a massless graviton . To verify this, we 
al
ulate the variation ofthe external Einstein equation. This results in12�Lh�� +r(�r�h�)� � 12r(�r�)hP P + 3m225 h�� � 3m220 g��X hi � 21m2100 g��Æ� = 0 :(7.28)At this point we have to take into a

ount that so far we worked in the ten-dimensionalEinstein frame. From eq. (3.32) we �nd that the 
onversion to the four-dimensionalEinstein frame is as follows gE�� = 
pg6 g�� ; (7.29)where the 
onstant fa
tor 
 =M�2P ��210 Vs does not matter here, so that
�1hE�� = pg6 h�� + 12pg6 g��Xi hi : (7.30)Plugging this into eq. (7.28) and using eq. (7.27) we �nd for hE�� exa
tly equation(4.28) with M2 = 0 so that hE�� indeed des
ribes a massless graviton.



7.3. KALUZA-KLEIN EXPANSION ON THE IWASAWA MANIFOLD 957.3 Kaluza-Klein expansion on the Iwasawa manifoldThe ba
kground for the Iwasawa manifold with m = 0, around whi
h we expandthe �elds, is given in se
tion 6.2. In 
ontrast to the torus, some elements of a basisof left-invariant forms are no longer 
losed. We thus expand the �elds not only inharmoni
 forms. This 
ompli
ates the Kaluza-Klein 
omputation sin
e the derivativesnot only a
t on the external �elds but also on the internal zero-modes Y (l) of the left-invariant basis. When exterior derivatives a
t on these non-harmoni
 forms, terms willbe generated of the order of the geometri
 
uxes.The basis for these left-invariant forms that are even or odd under the orientifoldinvolution turns out to be the same as for the torus, but now in the left-invariant basisappropriate to the Iwasawa manifold. This basis is given in table 7.1. Again �; g; F0; C3are even, while B;C1 are odd, resulting in the same expansion (7.4) as for the torus.From eq. (3.21) we get for the linear 
u
tuations of the �eld strengthsÆF2 = 0 ; (7.31a)ÆF4 = dÆC3 � ÆB ^ F̂2 : (7.31b)Expanding the equation of motion for H around the Iwasawa solution, we obtain0 =�bi Y (2�)i + bi �?6d ?6 dY (2�)i �� 
(3)i ?6 (?6dY 3+i ^ F̂2)+ bi ?6 h?6 �Y (2�)i ^ F̂2� ^ F̂2i+ f
(3)i ?6 dY 3+i � bif ?6 �Y (2�)i ^ F̂2� ; (7.32)while the equation of motion for F4 splits in [1; 6℄- and [4; 3℄-index stru
ture0 = d ?4 d
(3)3 + 12fd (Æg�� � Ægmm � Æ�) ; (7.33a)0 = �
(3)i Y (3+)i + 
(3)i �?6d ?6 dY (3+)i �+ fbi ?6 dY (2�)i � bi ?6 d ?6 �Y (2�)i ^ F̂2� :(7.33b)The equation for 
(3)3 mixes this time with the dilaton and the metri
. Just as in thetorus 
ase, we integrate eq. (7.33a), put the integration 
onstant to zero and plug theresult for d
(3)3 into the equations for the dilaton and the metri
 whi
h we derive below.We pro
eed by 
hoosing the expansion forms. We take the same three-forms as ineq. (7.18), while for the two-forms we 
hooseY (2�)0 = �2e56 ; (7.34a)Y (2�)1 = e12 + e34 ; (7.34b)Y (2�)2 = e12 � e34 : (7.34
)As already mentioned, this time Y (3+)0 and Y (2�)0 are not 
losed. De�ning mT su
hthat � = 25e�mT (this is of 
ourse the Romans mass of the T-dual torus solution), weget the following masses:



96 7. KALUZA-KLEIN REDUCTIONmass eigenmode mass (in units m2T=25)
i; i = 1; 2; 3 0b0 + b1 10b2 108
(3)0 + 5b0 + 3b1 10
(3)0 � b0 + 2b1 88Due to T-duality the mass eigenvalues are the same as for the torus solution.The equation for the variation of the dilaton around the ba
kground readsr2Æ�� 99m2T100 Æ�� 3m2T100 4Xi=1 hi + 9m2T20 6Xi=5 hi � 9m2T100 Æg�� � f2 d
(3)3 � vol4 : (7.35)We now plug in the result of integrating eq. (7.33a) and arrive at the following equationfor the variation of the dilaton0 = (� + 27m2T25 )Æ� � 9m2T25 6Xi=5 hi + 3m2T25 4Xi=1 hi : (7.36)For the Einstein equation, we use again the variation of the Ri

i tensor givenin eq. (7.25). This time, however, we have non-trivial spin 
onne
tions so that the
al
ulation is not as simple as in the 
at torus 
ase. By expli
itly deriving the spin
onne
tions one 
an show that the last two terms in eq. (7.25) vanish, whereas theLi
hnerowitz operator (3.7) gets non-trivial 
ontributions. The �nal result for thevariation of the Einstein equation around the va
uum reads0 = �hi + 49m2T50 hi + 53m2T50 hi�(�1)i � 11m2T50 4Xj=1 hj � 33m2T50 Æ� for i = 5; 6 ;(7.37a)and, for i = 1; : : : ; 4;0 = �hi + 8m2T25 hi + 2m2T5 hi�(�1)i � 3m2T10 6Xj=5 hj + m2T10 4Xj=1 hj + 3m2T10 Æ� :(7.37b)Diagonalizing the mass matrix we �nd the following eigenmodes with 
orrespondingmasses: mass eigenmode mass (in units m2T =25)�hz1�z1 + hz2�z2 = �h1 � h2 + h3 + h4 1811hz1�z1 + 5hz3�z3 = 11(h1 + h2) + 5(h5 + h6) 185Æ�� 3(h1 + h2) 183Æ�� 3(h5 + h6) + (h1 + h2 + h3 + h4) 70Rehz1z1 = �h1 + h2 �2Rehz2z2 = �h3 + h4 �2Rehz3z3 = �h5 + h6 �2



7.3. KALUZA-KLEIN EXPANSION ON THE IWASAWA MANIFOLD 97On
e again, we �nd the same masses as in the torus example.Let us summarize the results of the Kaluza-Klein redu
tion on the six-torus and theIwasawa manifold. In both 
ases we obtain the following mass eigenvalues (in unitsm2T =25) for the s
alar �eldsComplex stru
ture �2, �2, �2K�ahler & dilaton 70, 18, 18, 18Three axions of ÆC3 0, 0, 0ÆB & one more axion 88, 10, 10, 10That we obtain exa
tly the same mass spe
trum for both manifolds is the expe
tedresult, sin
e the two solutions are related by T-duality. An interesting observation isthat all three axions 
orrespond to massless moduli, a feature that is also dis
ussed in[72℄. It is argued there that, when one introdu
es D6-branes, these axions 
an provideSt�u
kelberg masses to some of the U(1) gauge �elds on the D-brane. In any 
ase, wewill see later that most of the 
oset examples we will study in the third part of thisthesis do have all moduli stabilized. We also noti
e that some masses are ta
hyoni
,whi
h is allowed be
ause they are still above the Breitenlohner-Freedman bound (3.11).





Chapter 8E�e
tive supergravityIn 
hapter 7 we derived the masses of the s
alar �elds by means of an expli
it Kaluza-Klein redu
tion for the torus and the Iwasawa solution. The widely-used approa
h toderive the four-dimensional e�e
tive a
tion is by using N = 1 e�e
tive supergravityte
hniques based on the superpotential and K�ahler potential. We reviewed the super-gravity te
hniques in se
tion 3.2. In this se
tion we will use this approa
h and againderive the masses of the s
alar �elds around the supersymmetri
 solution. Compar-ing these results with the results obtained with the dire
t Kaluza-Klein redu
tion weperform an important 
ross-
he
k for the expressions for the superpotential and theK�ahler potential to handle geometri
 
uxes.8.1 Type IIA on T6Given the orientifold proje
tion (6.4) we 
hoose the following basis of odd two-formsand even three-forms Y (2�)i : e12; e34; e56 ;Y (3+)i : �e135; e146; e236; e245 ; (8.1)as expansion forms in eq. (3.37) su
h thatJ
 = t1e12 + t2e34 + t3e56 ;e�Im
 + iÆC3 = e��̂(�z1e135 + z2e146 + z3e236 + z4e245) ; (8.2)where we took out the ba
kground e��̂ from the de�nition of zi for further 
onvenien
e.Using the expression (3.34) and the ba
kground 
uxes in eq. (6.2) to derive thesuperpotential, we immediately �ndWE;Torus = e�i�4�210Vsm ��t1t2t3 + 35(t1 + t2 + t3)� 25(z1 + z2 + z3 + z4)� ; (8.3)



100 8. EFFECTIVE SUPERGRAVITYwhere Vs is a standard volume Vs = R e1:::6, whi
h does not depend on the moduli.Moreover, with eq. (3.35) and the Hit
hin pro
edure explained in appendix C, theK�ahler potential reads:K = Kk +K
 + 3 ln(8�210M2PV �1s e4�̂=3) ; (8.4a)where Kk = � ln 3Yi=1(ti + �ti)! ; (8.4b)is the K�ahler potential in the K�ahler-moduli se
tor andK
 = � ln 4 4Yi=1 �zi + �zi�! ; (8.4
)is the K�ahler potential in the 
omplex stru
ture moduli se
tor.We are now ready to 
al
ulate the mass spe
trum of the s
alar �elds around thesupersymmetri
 solution. Using the expressions for the superpotential (8.3) and theK�ahler potential (8.4), it is straightforward to 
al
ulate the four-dimensional Einstein-frame a
tion (3.25). From this a
tion we 
ompute the equation of motion for the s
alar�elds ��k +M�2P (K̂�1M̂)ki�i = 0 ; (8.5)where M̂ij = 12 �2V��i��j jba
kground is the mass matrix and K̂ij is the K�ahler metri
 in real
oordinates in the ba
kground. Therefore, to 
ompare the results for the masses inthe analysis with the superpotential and the K�ahler potential with the results from theKaluza-Klein redu
tion we need to diagonalize the matrixM�2P K̂�1M̂ . Remember thatthe results from the Kaluza-Klein redu
tion were in the ten-dimensional Einstein frame,whereas using the e�e
tive supergravity approa
h of this se
tion we get the results infour-dimensional Einstein frame su
h that we have to use eq. (3.33) to 
ompare theresults of both approa
hes. Upon noting that in the Kaluza-Klein analysis we set theba
kground values for the warp fa
tor and the dilaton equal to zero and Vol = Vs, we�nd exa
tly the same result for the mass spe
trum as in se
tion 7.2.8.2 Type IIA on the Iwasawa manifoldFor 
onvenien
e we 
hoose this time the following expansion basis:Y (2�) : e12; e34;��2e56;Y (3+) : ��e135;��e146;��e236; �e245 : (8.6)



8.3. TYPE IIB ON NILMANIFOLD 5.1 101This implies that dY (3+)i = ��e1234 for all i = 1; : : : ; 4.We �nd the superpotentialWE;Iwasawa = �ie�i�4�210 mTVs �35 � 25 t3(z1 + z2 + z3 + z4) + 35(t1t3 + t2t3)� t1t2� ;(8.7)where Vs = R ��2e1:::6 is again a standard volume and mT = 52e��̂� the Romans massof the T-dual torus solution. We note here the following relationWE;Iwasawa = �it3WE;Torus(t3 ! 1t3 ) ; (8.8)whi
h follows from T-duality 1. The K�ahler potential for the Iwasawa manifold is thesame as in eq. (8.4).In the end, we �nd exa
tly the same masses as on the torus, as expe
ted from T-duality, and thus also the same masses as in the Kaluza-Klein approa
h for the Iwasawamanifold. Let us stress again that this provides an important 
onsisten
y 
he
k on theability of the superpotential/K�ahler potential approa
h to handle geometri
 
uxes.If we now turn on m 6= 0 in the Iwasawa solution, we get extra terms in the super-potential that look exa
tly like the torus superpotential, so we �nd:WE;Iwasawa;m6=0 =WE;Iwasawa(mT ) +WE;Torus(m) : (8.9)The mass spe
trum is the same upon repla
ing m2T ! m2 +m2T .8.3 Type IIB on nilmanifold 5.1For our analysis we will need expansion forms with the following behaviour under O5and O7-planes type under O5/O7 basis nameodd/even 1-form e5;��e6 Y (1�+)ieven/odd 2-form e14; e23 Y (2+�)iodd/odd 2-form e13;�e24 Y (2��)iodd/even 4-form �e1256; �e3456 Y (4�+)iand 
hoose the standard volume Vs = R �e123456.The superpotential is given by 2:WE;nil = �mTVsC4�210 �35 � 25�(z1 + z2 + w1 + w2) + 35�(t1 + t2)� t1t2� ; (8.10)1Note that in order to keep the form of the K�ahler potential, we transform the superpotential asW ! tW.2Here, it turns out to be 
onvenient to take out the ba
kground e��̂ from the de�nition of zi andwi, i.e., we expand as follows e��Im
2 + iÆC2 = zie��̂Y (2+�)i and �ie��2V ^ �V ^ Re
2 + iÆC4 =wie��̂Y (4�+)i .



102 8. EFFECTIVE SUPERGRAVITYwhere Vs = R �e123456 is the standard volume. The K�ahler potential reads:K =� ln (� + ��) 2Yi=1(ti + �ti)!� ln 4 2Yi=1(zi + �zi) 2Yi=1(wi + �wi)!+ 3 ln(8�10M2PV �1s e4�̂=3)� ln jCj2 : (8.11)We 
an eliminate the 
omplex s
alar C by performing a K�ahler transformation (3.31).Again, by T-duality, we expe
t the same mass spe
trum as for the torus and theIwasawa manifold, whi
h indeed turns out to be the 
ase. This implies that the proposedexpressions for the 
omplex s
alars and the superpotential and K�ahler potential for thestati
 SU(2)-stru
ture proposed in se
tion 3.2 yield sensible results.



Part IIIAppli
ation to Coset Spa
es





SummaryThe se
ond 
lass of 
ompa
ti�
ation manifolds we want to 
onsider in this thesis are thesix-dimensional 
oset spa
es whi
h we des
ribed in 
hapter 4. Examples of 
ompa
ti-�
ations on 
oset spa
es in other 
ontexts have already appeared in [65, 78℄, whereasparti
ular N = 1 AdS4 solutions on type IIA string theory appeared in [107, 69, 108℄.A systemati
 sear
h for type IIA solutions on 
oset spa
es was performed re
ently in[34℄.The aim in this part of the thesis is to 
ompute the four-dimensional low-energye�e
tive theory for 
ompa
ti�
ations on 
oset spa
es. We dis
ussed the ne
essary pro-
edure for this in 
hapter 3. After having established the 
onsisten
y between thedire
t Kaluza-Klein redu
tion and the e�e
tive supergravity te
hniques for the exam-ple of nilmanifolds, we will rely in this part of the thesis on the supergravity te
hniquesto derive the e�e
tive theory.In the �rst two 
hapters of this part, we will, following [34℄, dis
uss the geometry onthe di�erent 
oset spa
es of table 4.1 and identify the 
oset spa
es that allow to de�nea stri
t SU(3)-stru
ture. Furthermore, we will review the N = 1 AdS4 solutions on the
oset spa
es and 
omment on a possible solution with non-
onstant warp fa
tor anddilaton.In the following 
hapter we then 
ome to the derivation of the four-dimensionale�e
tive a
tion for the 
oset spa
es in question. In parti
ular, we will derive the super-potential and the K�ahler potential for the most general 
hoi
e of ba
kground 
uxes.As an appli
ation of the e�e
tive a
tion, we 
ompute the mass spe
trum of the mod-uli �elds around the supersymmetri
 AdS4 solution (if the 
oset allows for a solution)and 
omment for two models on how to identify the number of supersymmetri
 solu-tions in a given bubble of the moduli spa
e. The subsequent 
hapter studies type IIB
ompa
ti�
ations with stati
 SU(2)-stru
ture on the 
oset models. Most of these 
om-pa
ti�
ations turn out to be related by a T-duality to type IIA stri
t SU(3)-stru
ture
ompa
ti�
ations that we already studied. However, one model is new sin
e it is relatedby T-duality to a type IIA stri
t SU(3)-stru
ture 
ompa
ti�
ation with non-geometri

uxes.Finally, in 
hapter 13, we study the phenomenologi
al aspe
ts of the 
ompa
ti�
a-tions on the 
oset models. As we dis
ussed in 
hapter 5 there are in 
lassi
al type IIAstrong no-go theorems against slow-roll in
ation and de Sitter va
ua. We will thus



106systemati
ally analyse whether the 
oset 
ompa
ti�
ations are able to avoid the no-gotheorems. In fa
t, there are two 
oset 
ompa
ti�
ations that are not dire
tly ruledout by any known no-go theorem (one of them is the type IIB 
ompa
ti�
ation withnon-geometri
 T-dual). For these models a numeri
al analysis is ne
essary.As a general remark, we note that none of our models 
ontain light bulk gauge �eldsin the spe
trum.In the following two tables we summarize some of the important results. Table8.1 summarizes type IIA stri
t SU(3)-stru
ture 
ompa
ti�
ations, whereas table 8.2summarizes type IIB stati
 SU(2)-stru
ture 
ompa
ti�
ations.Coset spa
e Moduli �elds AdS4 solution Unstabilized moduli Avoids no-goG2SU(3) 4 yes 0 noSp(2)S(U(2)�U(1)) 6 yes 0 noSU(3)U(1)�U(1) 8 yes 0 noSU(3)�U(1)SU(2) 8 yes 0 noSU(2)� SU(2) 14 yes 1 yesSU(2)2U(1) �U(1) 10 no - noSU(2)�U(1)3 14 no - noTable 8.1: Results for type IIA stri
t SU(3)-stru
ture 
ompa
ti�
ations on 
oset models.Indi
ated are the number of moduli �elds, whether the 
ompa
ti�
ation allows anN = 1 AdS4 solution and if so, the number of unstabilized moduli in this solution.In addition indi
ated is whether the 
oset model avoids the no-go theorems againstin
ation and de Sitter va
ua.Coset spa
e Moduli �elds Type IIA T-dual Avoids no-goSU(3)�U(1)SU(2) 8 yes noSU(2)2U(1) �U(1) 10 yes noSU(2)� SU(2) 14 no yesSU(2)�U(1)3 14 yes noTable 8.2: Results for type IIB stati
 SU(2)-stru
ture 
ompa
ti�
ations on 
oset mod-els. Indi
ated are the number of moduli �elds and whether the 
ompa
ti�
ation isrelated by T-duality to a type IIA stri
t SU(3)-stru
ture 
ompa
ti�
ation of table 8.1.In addition indi
ated is whether the 
oset model avoids the no-go theorems againstin
ation and de Sitter va
ua.Note that the results of this part of the thesis are published in parts in [49, 96℄. Inparti
ular, some of the results of 
hapter 11 
an be found in [49℄, whereas the resultsof 
hapter 13 are published in [96℄.



Chapter 9Geometry of 
oset spa
es thatadmit a stri
t SU(3)-stru
tureIn this 
hapter, we des
ribe the six-dimensional 
oset spa
es based on semi-simple andU(1)-groups that are suitable for supersymmetri
 
ompa
ti�
ations to four spa
e-timedimensions. We dis
ussed in 
hapter 2 the ne
essary 
ondition for a six-dimensional
ompa
t manifold to allow for a supersymmetri
 four-dimensional e�e
tive theory,namely that the stru
ture group of the manifold is redu
ed to SU(3) 1. As the au-thors of [34℄ showed, this 
ondition translates into the ne
essary requirement that thegroup H of a 
oset spa
e M = G=H should be 
ontained in SU(3). The list of allsix-dimensional 
oset spa
es based on semi-simple and U(1)-groups of this type wasgiven in that paper and is summarized in table 4.1.To de
ide whether a 
oset spa
e satisfying the ne
essary 
ondition H � SU(3)a
tually admits a left-invariant stri
t SU(3)-stru
ture we will pro
eed as follows: asexplained in se
tion 4.2, we spe
ify the stru
ture 
onstants by examining the 
orre-sponding Lie-algebras of G and H. Next we 
ompute the set of G-invariant formsusing 
ondition (4.23). With these forms, we 
an write down the most general ansatzfor J and 
 and 
he
k whether it is possible to satisfy the 
onditions for a stri
t SU(3)-stru
ture (2.6), to obtain a well de�ned Hit
hin fun
tional and whether the indu
edmetri
 
an be 
hosen to be positive de�nite. The 
oset spa
es satisfying these 
onditionsare summarized in table 9.1.In this and the next 
hapter, we will 
losely follow [34℄, where the authors presentedN = 1 supersymmetri
 AdS4 solutions on the 
oset spa
es with left-invariant stri
tSU(3)-stru
ture. Supersymmetri
 AdS4 solutions are possible on the �rst �ve 
osetspresented in table 9.1. However, the last two 
oset spa
es in table 9.1 were not expli
itlypointed out as possible 
andidates admitting a left-invariant SU(3)-stru
ture, sin
e theydo not allow for a supersymmetri
 AdS4 solution.In the following we will assume that the algebra g of G is generated by the set of1We will dis
uss 
ompa
ti�
ations on 
oset models with stati
 SU(2)-stru
ture in 
hapter 12.



108 9. COSET SPACES THAT ADMIT A STRICT SU(3)-STRUCTURECoset spa
e admit SU(3)-stru
ture AdS4 solutionG2SU(3) yes yesSp(2)S(U(2)�U(1)) yes yesSU(3)U(1)�U(1) yes yesSU(3)�U(1)SU(2) yes yesSU(2)� SU(2) yes yesSU(2)2U(1) �U(1) yes noSU(2)�U(1)3 yes noTable 9.1: List of 
oset models with SU(3)-stru
ture. Further indi
ated are the 
osetmodels that allow for an N = 1 AdS4 solution.generators EA, A = 1; : : : dim(G), where[EA; EB ℄ = fCABEC : (9.1)We 
hoose the generators su
h that the EA with A = 1; : : : ; 6 
orrespond to the Kiand the EA with A = 7 : : : ; 6 + dim(H), 
orrespond to the Ha (see also the dis
ussionin se
tion 4.2).The 
oset G2SU(3)The stru
ture 
onstants for the group G2 are given by [109, 78℄:f163 = f145 = f253 = f264 = 1p3 ;f736 = f745 = f853 = f846 = f956 = f934 = f1016 = f1052= f1151 = f1162 = f1241 = f1232 = f1331 = f1324 = 12 ;f1443 = f1456 = 12p3 ; f1421 = 1p3 ;f i+6j+6;k+6 = ~fijk ;
(9.2)

where E7; : : : ; E14 generate the su(3) subalgebra and ~fijk are the 
orresponding Gell-Mann stru
ture 
onstants. The G-invariant forms satisfying 
ondition (4.23) are 2two-forms : fe12 � e34 + e56g ;three-forms : f� = e245 + e135 + e146 � e236; �̂ = �e235 � e246 + e145 � e136g ; (9.3)2We only display G-invariant one-, two-, and three-forms sin
e the G-invariant forms of higherdegree 
an be obtained by duality.



109and there are no G-invariant one-forms. With the stru
ture 
onstants and eq. (4.4), itis straightforward to derive the Betti numbers of this manifold:b1 = b2 = b3 = 0 : (9.4)In the following we will impose an orientifold proje
tion. Note that there are onlytwo invariant three-forms, so that one has to be even and one odd under the orientifoldproje
tion. The requirement that the stru
ture 
onstant tensor (4.29) be even underthe orientifold proje
tion only allows one 
hoi
e: that �̂ is even and � is odd. Sin
ethere is only one odd three-form there is no room for a sour
e not proportional to Re
.The Sp(2)S(U(2)�U(1)) 
osetAs shown in [34℄, the maximal embedding of su(2)�su(1) in sp(2) leads to a 
osetspa
e that does not allow any G-invariant one- or three-form. We have to ex
lude thispossibility for an SU(3)-stru
ture solution.The non-maximal embedding is given by embedding su(2)�su(1) into an so(4) sub-group of sp(2). The stru
ture 
onstants are totally antisymmetri
, and the non-zeroones are given by f541 = f532 = f613 = f642 = 12 ; f756 = f1089 = �1 ;f721 = f743 = f814 = f832 = f913 = f924 = f1034 = f1021 = 12 : (9.5)This spa
e is topologi
ally equivalent to C P3 and 
an also be viewed as the twistorspa
e Tw(S4) [51℄.The G-invariant forms are spanned bytwo-forms : fe12 + e34; e56g ;three-forms : f� = e245 � e135 � e146 � e236; �̂ = e235 + e246 + e145 � e136g ; (9.6)and there are no G-invariant one-forms. Again, the sour
e (if present) must be propor-tional to Re
.The Betti numbers of this 
oset spa
e areb1 = 0 ; b2 = 1 ; b3 = 0 : (9.7)



110 9. COSET SPACES THAT ADMIT A STRICT SU(3)-STRUCTUREThe SU(3)U(1)�U(1) 
osetUsing the permutation (12456738) of the Gell-Mann stru
ture 
onstants ~fijk, the stru
-ture 
onstants of SU(3) are given byf154 = f136 = f246 = f235 = f347 = f576 = 12 ;f127 = 1 ; f348 = f568 = p32 ; all 
y
li
: (9.8)The U(1)�U(1) is then generated by E7 and E8. This spa
e is also known as the 
agmanifold F(1; 2 : 3) or the twistor spa
e Tw(C P2) [51℄.This time, the G-invariant two- and three-forms are given bytwo-forms : fe12; e34; e56g ;three-forms : f� = e245 + e135 + e146 � e236; �̂ = e235 + e136 + e246 � e145g ; (9.9)respe
tively. The 
ondition (4.23) ex
ludes the existen
e of G-invariant one-forms.With the given three-forms, there is no possibility for a sour
e (if present) not propor-tional to Re
.The Betti numbers of SU(3)U(1)�U(1) are easily 
al
ulated and readb1 = 0 ; b2 = 2 ; b3 = 0 : (9.10)The SU(3)�U(1)SU(2) 
osetThe most general 
ase 
orresponds to takingEi = Gi+3; i = 1; : : : ; 5; E6 =M ;E7 = G1; E8 = G2; E9 = G3 ; (9.11)where the Gi's are the Gell-Mann matri
es generating su(3). M generates a u(1)and the su(2) subalgebra is generated by E7; E8 and E9. It follows that the SU(2)subgroup is embedded entirely inside the SU(3), so that the total spa
e is given bySU(3)SU(2) �U(1) ' S5 � S1.We �nd the following 
y
li
 stru
ture 
onstantsf789 = 1; f714 = f732 = f813 = f824 = f912 = f943 = 1=2 ;f512 = f534 = p32 ; all 
y
li
 : (9.12)This time, the 
oset spa
e allows for G-invariant one-forms given byone-forms : fe5; e6g ; (9.13)



111and the following two- and three-forms, respe
tively,two-forms : fe12 + e34; e13 � e24; e14 + e23; e56g ;three-forms : fe145 + e235; e135 � e245; e126 + e346;e146 + e236; e136 � e246; e125 + e345g ; (9.14)The Betti numbers of this 
oset areb1 = 1 ; b2 = 0 ; b3 = 0 : (9.15)The SU(2)� SU(2) 
osetEven though SU(2) � SU(2) is not a 
oset spa
e, it will be 
onvenient to hen
eforthrefer to it as a 
oset spa
e; it is a trivial 
oset spa
e. The stru
ture 
onstants in this
ase are f123 = f456 = 1 ; 
y
li
 : (9.16)On SU(2) � SU(2) all the left-invariant forms of di�erent degree are trivially G-invariant. The Betti numbers of this 
oset spa
e areb1 = 0 ; b2 = 0 ; b3 = 2 : (9.17)The SU(2)2U(1) �U(1) 
osetIt was shown in [34℄ that if the U(1) fa
tor does not sit 
ompletely in the SU(2)2,the resulting 
oset is equivalent (with its SU(3)-stru
ture) to SU(2) � SU(2), so weex
lude this possibility here, as the above notation already suggests. The resulting
oset spa
e in then equivalent to T1;1� U(1) [110℄. In this 
ase one 
an 
hoose thefollowing generatorsEi = Li ; i = 1; 2; 3 ; Ei+3 = L0i ; i = 1; 2; E6 =M ;E7 = L03 � aL3 ; (9.18)where we denote the generators of the two su(2) algebras as fLig and fL0ig and Mgenerates a u(1) and a 2 R. The stru
ture 
onstants then readf123 = f745 = 1; 
y
li
;f345 = f217 = f172 = a: (9.19)As a matter of fa
t, it turns out that only for a = 1 there exists a well de�ned SU(3)-stru
ture. For another 
hoi
e of a, the Hit
hin fun
tional turns out to be imaginary.



112 9. COSET SPACES THAT ADMIT A STRICT SU(3)-STRUCTUREThe G-invariant forms on SU(2)2U(1) �U(1) are then given byone-forms : fe3; e6g ;two-forms : fe12; e36; e45; e25 � e14; e15 + e24g ;three-forms : fe123; e126; e345; e456; e235 � e134;e135 + e234; e256 � e146; e156 + e246g ; (9.20)
The Betti numbers of this 
oset readb1 = 1 ; b2 = 1 ; b3 = 2 : (9.21)The SU(2) �U(1)3 
osetThis spa
e is again a trivial 
oset spa
e. The stru
ture 
onstants in this 
ase aref123 = 1 ; 
y
li
 : (9.22)All the forms are G-invariant. The Betti numbers of this 
oset areb1 = 3 ; b2 = 3 ; b3 = 2 : (9.23)The other 
oset spa
esLet us shortly mention why there is no well-de�ned stri
t SU(3)-stru
ture possible onthe other 
oset models of table 4.1. For the expli
it stru
ture 
onstants of the modelssee [34℄.For the 
oset model SU(3)�U(1)2SU(2)�U(1) , it turns out that with the set of G-invariant three-forms it is not possible to de�ne Im
 su
h that the Hit
hin fun
tional is not vanishing,ex
luding this model for our analysis.Similar for the 
oset models SU(2)2�U(1)2U(1)2 and SU(2)�U(1)4U(1) . For these models, theHit
hin fun
tional turns out to be imaginary.The 
oset spa
es SU(2)3SU(2) (where the SU(2) is embedded in the last two SU(2) fa
tors)and the 
oset spa
e SU(2)3�U(1)SU(2)�U(1) only allow for G-invariant two-forms whi
h 
an notsatisfy the normalisation 
ondition (2.6b).The last two possibilities in table 4.1 are SU(2)3SU(2) (where the SU(2) is diagonallyembedded in SU(2)3) and SU(3)�SU(2)2SU(3) . These two possibilities are shown in [34℄ to beequivalent to the SU(2)�SU(2) model su
h that we will also ex
lude these models fromour analysis.



Chapter 10Type IIA AdS4 N = 1 solutionsWe des
ribed in 
hapter 9 the six-dimensional 
oset spa
es that allow to de�ne a left-invariant stri
t SU(3)-stru
ture. For some of these 
oset spa
es one 
an a
tually solvethe 
onditions for an AdS4 N = 1 solution des
ribed in se
tion 2.2.2. These solutionswere systemati
ally analyzed in [34℄ and also in
orporate some solutions that werealready known [65, 69, 108, 51℄. In this se
tion we review the 
oset solutions listedin [34℄.In the subsequent 
hapter 11, we will derive the four-dimensional e�e
tive theoryof 
ompa
ti�
ations on the 
oset models analyzed in 
hapter 9. As an interestingappli
ation of this e�e
tive theory we will 
ompute for ea
h of the supersymmetri
 AdS4solutions of this 
hapter the mass spe
trum of the s
alars around the supersymmetri
solution. As we will see, in all models ex
ept SU(2)� SU(2), all moduli are stabilized.As explained in se
tion 2.2.2, the only non-vanishing torsion 
lasses for a super-symmetri
 AdS4 solution are W�1 and W�2 . With the given stru
ture 
onstants andeq. (4.13a), one derives dJ and d
, where one assume the most general ansatz for Jand 
 
ompatible with the set of G-invariant forms. If eq. (2.29) 
an be satis�ed, weread o� the torsion 
lasses W�1 and W�2 . The Bian
hi identity (2.31) determines ifthere is a sour
e to be present for a solution. It then remains to 
he
k whether themetri
 is positive de�nite.10.1 The G2SU(3) solutionWith the given set of G-invariant forms (9.3), the most general ansatz for J and 
 isJ = a(e12 � e34 + e56) ;
 = d �(e245 + e146 + e135 � e236) + i(e145 � e246 � e235 � e136)� ; (10.1)with a, the overall s
ale, the only free parameter. The 
onditions for a SU(3)-stru
ture(2.6), metri
 positivity and the supersymmetry 
onditions (2.29) and (2.31) are solved



114 10. TYPE IIA ADS4 N = 1 SOLUTIONSfor a > 0 ; metri
 positivity ;d2 = a3; normalization of 
 ;
1 := �3i2W�1 = �23e�f = �p3ad ;W�2 = 0 ;e2�m2 � � = 512
21 : (10.2)
Sin
e the se
ond torsion 
lass is vanishing, the only possibility for this 
oset is thenearly-K�ahler geometry.With the help of eq. (2.27) we now easily obtain the ba
kground 
uxes in terms ofthe geometri
 data (10.2). It will be 
onvenient to isolate the s
ale a and introdu
e theredu
ed 
ux parameters~m = a1=2e�m; ~f = a1=2e�f ; ~� = a� : ~
1 = a1=2
1 : (10.3)In terms of these rede�nitions the ba
kground 
uxes and the sour
e take the formH = 2 ~m5 a(e245 + e135 + e146 � e236) ;e�F2 = a1=22p3 �e12 � e34 + e56� ;e�F4 = a�1=2 ~fvol4 � 35 ~ma3=2 �e1234 � e1256 + e3456� ;e�j6 = �25a1=2~�(e245 + e135 + e146 � e236) : (10.4)

As mentioned before, � > 0 
orresponds to net orientifold 
harge. Solutions with� � 0 | i.e. with net D-brane 
harge | are possible, but in that 
ase we still assumethat smeared orientifolds are present, whi
h then should be 
ompensated by introdu
ingenough smeared D-branes. It 
an be easily read o� from j6 that the orientifolds arealong the dire
tions (1; 3; 6); (2; 4; 6); (2; 3; 5) and (1; 4; 5), leading to four orientifoldinvolutions (see also the dis
ussion in appendix D)O6 : e2 ! �e2 ; e4 ! �e4 ; e5 ! �e5 ;O6 : e1 ! �e1 ; e3 ! �e3 ; e5 ! �e5 ;O6 : e1 ! �e1 ; e4 ! �e4 ; e6 ! �e6 ;O6 : e2 ! �e2 ; e3 ! �e3 ; e6 ! �e6 : (10.5)One easily 
he
ks that all �elds and the SU(3)-stru
ture transform as in (2.40) underea
h of the orientifold involutions. Also, the stru
ture 
onstant tensor (4.29) is even.



10.2. THE SP(2)S(U(2)�U(1)) SOLUTION 11510.2 The Sp(2)S(U(2)�U(1)) solutionThe most general ansatz for J and 
 with the given G-invariant forms (9.6) isJ = a(e12 + e34)� 
e56 ;
 = d �(e245 � e236 � e146 � e135) + i(e246 + e235 + e145 � e136)� ; (10.6)with a and 
 two free parameters. We 
ompute the following 
onditions for the geometrya > 0 ; 
 > 0; metri
 positivity ;d2 = a2
; normalization of 
 ;
1 := �3i2W�1 = �23e�f = 2a+ 
2d ;W�2 = � 2i3d �a(a� 
)(e12 + e34) + 2
(a� 
)e56� ;
2 := �18 jW�2 j2 = � 23a2
(a� 
)2 ;25(e2�m2 � �) = 
2 + 16
21 = 18a2
 ��4a2 � 5
2 + 12a
� :
(10.7)

The nearly-K�ahler limit 
orresponds to setting a = 
. The two parameters 
orre-spond to the overall s
ale a and a parameter � � 
=a that measures the deviation fromthe nearly-K�ahler limit 1.For the ba
kground 
uxes and sour
es, we �nd from eq. (2.27) in terms of theredu
ed 
ux parameters (10.3):H = 2 ~m5 a�1=2(e245 � e135 � e146 � e236) ;e�F2 = a1=24 ��1=2 �(2� 3�)(e12 + e34) + (6� � 5�2)e56� ;e�F4 = a�1=2 ~fvol4 + 35a3=2 ~m �e1234 � �e1256 � �e3456� ;e�j6 = �25a1=2~��1=2(e245 � e135 � e146 � e236) : (10.8)
Let us stress that the parameters a and � are not moduli �elds sin
e they also appearin the expressions for the ba
kground 
uxes and are thus quantized.From the sour
e, we read o� the same orientifold involutions as in eq. (10.5) and
he
k that all �elds and the stru
ture 
onstants transform as expe
ted.1Let us mention that this solution was also presented in [51℄ using an alternative des
ription interms of twistor bundles. The relation of the solution given here with the results of [51℄ is given in [34℄.



116 10. TYPE IIA ADS4 N = 1 SOLUTIONS10.3 The SU(3)U(1)�U(1) solutionThe set of G-invariant forms allows the following general ansatz for J and 
J = �ae12 + be34 � 
e56 ;
 = d �(e245 + e135 + e146 � e236) + i(e235 + e136 + e246 � e145)� ; (10.9)with a; b and 
 three free parameters anda > 0; b > 0; 
 > 0 ; metri
 positivity ;d2 = ab
; normalization of 
 ;
1 := �3i2W�1 = �23e�f = �a+ b+ 
2d ;W�2 = � 2i3d �a(2a� b� 
)e12 + b(a� 2b+ 
)e34 + 
(�a� b+ 2
)e56� ;
2 := �18 jW�2 j2 = � 23ab
 �a2 + b2 + 
2 � (ab+ a
+ b
)� ;25(e2�m2 � �) = 
2 + 16
21 = 18ab
 ��5(a2 + b2 + 
2) + 6(ab+ a
+ b
)� : (10.10)Putting a = b we end up with a model that is very similar to the one of se
tion 10.2,while further putting a = b = 
 
orresponds to the nearly-K�ahler limit. Next to theoverall s
ale a we have this time two shape parameters � � b=a and � � 
=a 2.Introdu
ing again the redu
ed 
ux parameters (10.3), we �nd for the 
uxes and thesour
eH = 2 ~m5 ap��(e245 + e135 + e146 � e236) ;e�F2 = a1=24p�� �(5� 3�� 3�)e12 + (3� � 5�2 + 3��)e34 + (�3� � 3�� + 5�2)e56� ;e�F4 = a�1=2 ~fvol4 � 35a3=2 ~m ��e1234 � �e1256 + ��e3456� ;e�j6 = �25a1=2~�p��(e135 + e146 + e245 � e236) ; (10.11)while the orientifold involutions are still as in eq. (10.5), su
h that all �elds and stru
ture
onstants transform as is expe
ted.2Also this spa
e has an alternative des
ription in terms of twistor bundles, see [51℄. However, thatdes
ription does not allow to des
ribe the 
omplete parameter spa
e.



10.4. THE SU(3)�U(1)SU(2) SOLUTION 11710.4 The SU(3)�U(1)SU(2) solutionLet us �rst note that, as we have seen in eq. (9.13), this 
oset spa
e allows G-invariantone- and �ve-forms. The stri
t SU(3)-stru
ture 
ondition (2.6a) is therefore not auto-mati
ally satis�ed. However, one 
an nevertheless �nd a solution satisfying the stri
tSU(3)-stru
ture 
onditions (2.6) as follows [34℄J = �a(e13 � e24) + b(e14 + e23) + 
e56 ;
 = �p32
1n �2a(e145 + e235) + 2b(e135 � e245) + 
(e126 + e346)�� ipa2 + b2 �a
(e146 + e236) + b
(e136 � e246)� 2(a2 + b2)(e125 + e345)� o ; (10.12)with a; b and 
 three free parameters and
 > 0 ; a2 + b2 6= 0 ; metri
 positivity ;1(
1)2 = 23pa2 + b2; normalization of 
 ;
1 := �3i2W�1 = �23e�f ;W�2 = i2 
1pa2 + b2 ��a(e13 � e24) + b(e14 + e23)� 2
e56� ;dW�2 = � ip32 
1pa2 + b2 �a(e145 + e235) + b(e135 � e245)� 
(e126 + e346)� ;3jW�1 j2 � jW�2 j2 = 0 : (10.13)By a suitable 
hange of basis we 
an always arrange for a > 0 and b > 0, whi
h wewill assume from now on. Note that dW�2 is not proportional to Re
, hen
e the sour
eis not of the form (2.35). Interestingly, if we take the part of the sour
e along Re
 tobe zero, i.e. j6 ^ Im
 = 0, we �nd from the last equation in (10.13) that m = 0. Thiswould amount to a 
ombination of smeared D6-branes and O6-planes su
h that thetotal tension is zero. Allowing for negative total tension (more orientifolds), we 
ouldhave m > 0.For an arbitrary m we �nd the ba
kgroundH = �p3 ~m5~
1 a �2(e145 + e235) + 2�(e135 � e245) + �(e126 + e346)� ;e�F2 = 12a1=2~
1 �(e13 � e24)� �(e14 + e23) + �e56� ;e�F4 = a�1=2 ~fvol4 + 35a3=2 ~m �(1 + �2)e1234 � �(e1356 � e2456) + ��(e1456 + e2356)� ;(10.14)



118 10. TYPE IIA ADS4 N = 1 SOLUTIONSwhere we de�ned the shape parameters � = b=a and � = 
=a and used again eq. (10.3).From eq. (2.31) we 
ompute for the sour
ee�j6 = � p310~
1 a1=2 �5~
21 � 4 ~m2� �e145 + e235 + �(e135 � e245)�+ p320~
1 a1=2� �5~
21 + 4 ~m2� �e126 + e346� : (10.15)One 
an 
he
k that for the ba
kground the sour
e satis�es the 
alibration 
onditions(2.36). However, this time it is not immediately obvious how to 
hoose the orientifoldproje
tion. Choosing them naively along the six terms in the sour
e (10.15) leads to the�elds and stru
ture 
onstants having the wrong transformation properties. In appendixD we outline how to �nd the orientifold involutions asso
iated to a smeared sour
e ingeneral. As explained in that appendix in detail, the pro
edure boils down to �nd anappropriate 
oordinate transformation 
ompatible with the stru
ture 
onstants (i.e.,the stru
ture 
onstants read the same in the new basis) for whi
h the sour
e 
ontainsat most four de
omposable three-forms whi
h we then identify with the orientifold invo-lutions. For the 
ase at hand, we make the following 
oordinate transformation whi
his 
ompatible with the stru
ture 
onstants 3e10 = e1 ; e20 = e2 ; e50 = e5 ; e60 = e6 ;e30 = 1p1 + �2 (�e3 + e4) ; e40 = 1p1 + �2 (�e3 + �e4) ; (10.16)and we see that j6 is a sum of four de
omposable termse�j6 = � p310~
1 a1=2 �5~
21 � 4 ~m2�p1 + �2 �e103050 � e204050�+ p320~
1 a1=2� �5~
21 + 4 ~m2� �e102060 + e304060� ; (10.17)to whi
h we 
an asso
iate four orientifold involutions. Note that this model does notallow for a type IIA solution without orientifold sour
es.10.5 The SU(2) � SU(2) solutionSin
e all the left-invariant forms ei are G-invariant on this spa
e (SU(2) � SU(2) is atrivial 
oset su
h that eq. (4.23) is satis�ed for every form), the most general ansatz3Note that in order to obtain a 
oordinate transformation 
ompatible with the stru
ture 
onstants(9.12), we also need the following transformations: e70 = 1p1+�2 (�e7�e8) ; e80 = 1p1+�2 (e7+�e8) ; e90 =e9 .
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onsist of a sum of 15 two-forms. However, it was shown in [111℄ that dueto the symmetry of the stru
ture 
onstants (9.16) there always exists a 
hange of basispreserving the form of the stru
ture 
onstants that brings J in diagonal formJ = ae14 + be25 + 
e36 : (10.18)Using this observation, the most general solution to the 
onditions in se
tion 2.2.2was given in [34℄ and readsJ = ae14 + be25 + 
e36 ;
 = � 1
1(a(e234 � e156) + b(e246 � e135) + 
(e126 � e345)� ihh� 2 ab
(e123 + e456) + a(b2 + 
2 � a2)(e234 + e156) + b(a2 + 
2 � b2)(e153 + e426)+ 
(a2 + b2 � 
2)(e345 + e126)i) ; (10.19)with a; b and 
 three free parameters andab
 > 0 ; metri
 positivity ;h =p2 a2b2 + 2 b2
2 + 2 a2
2 � a4 � b4 � 
4 ;and thus 2 a2b2 + 2 b2
2 + 2 a2
2 � a4 � b4 � 
4 > 0 ;
21 = 49e2�f2 = h2ab
 ;W�2 = � 2i3h
1 "(b2 � 
2)2 + a2(�2a2 + b2 + 
2)b
 e14+ (
2 � a2)2 + b2(�2b2 + 
2 + a2)a
 e25 + (a2 � b2)2 + 
2(�2
2 + a2 + b2)ab e36# :(10.20)By a suitable 
hange of basis we 
an always arrange for a > 0; b > 0 and 
 > 0, whi
hwe will assume in the following. In terms of the redu
ed 
ux parameters (10.3), towhi
h we add ~h = a�2h ; (10.21)



120 10. TYPE IIA ADS4 N = 1 SOLUTIONSwe �nd for the 
uxes from eq. (2.27)H = 2 ~m5~
1 a �(e156 � e234) + �(e135 � e246) + �(e345 � e126)� ;e�F2 = ~
1a1=22~h2 n �3(�4 + �4)� 5 + 2(�2 + �2)� 6�2�2� e14+ � �3(1 + �4)� 5�4 + 2�2(1 + �2)� 6�2� e25+ � �3(1 + �4)� 5�4 + 2�2(1 + �2)� 6�2� e36o ;e�F4 = a�1=2 ~fvol4 � a3=2 3 ~m5 (�e1245 + �e1346 + ��e2356) :
(10.22)

From eq. (2.31) we derive j6,e�j6 = �idW�2 +� 227f2 � 25m2� e2�Re
= j1(e234 � e156) + j2(e246 � e135) + j3(e126 � e345) ; (10.23)where j1; j2 and j3 are some 
ompli
ated fa
tors depending on a; b and 
 whose exa
tform does not matter for the moment. It 
ontains the same terms as Re
 but withdi�erent 
oeÆ
ients. In fa
t, one 
an 
he
k that j6 is not proportional to Re
 unlessa = b = 
, whi
h redu
es the solution to a nearly-K�ahler geometry.Also for this model, the sour
e (10.23) 
ontains six three-form terms. Following thepro
edure des
ribed in appendix D, we �nd the orientifold involutions asso
iated tothis smeared sour
e. In order to present the resulting involutions, it is 
onvenient tode�ne 
omplex one-forms as followsez1 = � e i3�42
1pb
(2b
� h) �[2b
� h+ i(a2 � b2 � 
2)℄e1 + [a2 � b2 � 
2 + i(2b
 � h)℄e4	 ;ez2 = � e i3�42
1pa
(2a
 � h) �[2a
 � h+ i(b2 � a2 � 
2)℄e2 + [b2 � a2 � 
2 + i(2a
 � h)℄e5	 ;ez3 = � e i�42
1pab(2ab� h) �[2ab� h+ i(
2 � a2 � b2)℄e3 + [
2 � a2 � b2 + i(2ab � h)℄e6	 ;(10.24)where the signs must be 
hosen su
h that 
 = ez1z2z2 . De�ning further the asso
iatedx and y one-forms ezi = exi� ieyi , the orientifold involutions are given as in eq. (D.10).
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omments on solutions with non-
onstant warpfa
tor and dilatonThe solutions on the 
oset spa
es we analyzed so far in this 
hapter all assumed 
onstantwarp fa
tor and dilaton. However, in se
tion 2.3 we analyzed the 
onditions for asupersymmetri
 N = 1 solution with non-
onstant warp fa
tor/dilaton. We have seenthat su
h a solution is indeed possible, provided that the Romans mass m is 
hosen tobe zero.In the literature there are already a few sour
elessN = 2 solutions with non-
onstantwarp fa
tor/dilaton, based on M-theory redu
tions of seven-dimensional Sasaki-Einsteinmanifolds to type IIA (see for instan
e [54, 33℄). As an appli
ation of the analysis ofse
tion 2.3, we want to study in this se
tion whether one of the 
oset solutions of this
hapter 
an be deformed into a new sour
eless solution with non-
onstant warp fa
-tor/dilaton. To this end, we will try to �nd an in�nitesimal 
u
tuation around thesupersymmetri
 solution turning on an in�nitesimal non-
onstant warp fa
tor/dilaton.For this to work, however, we have to leave the 
onvenient notion of left-invariantforms, sin
e the left-invariant ansatz drops the expli
it 
oordinate dependen
e that isne
essary to des
ribe a non-trivial warp fa
tor/dilaton. This makes the analysis rather
ompli
ated. However, we 
an make use of the observation that one 
an des
ribe one ofour 
oset spa
es, namely Sp(2)S(U(2)�U(1)) = C P3, as a foliation with transversal 
oordinate�, with the leaves taking the form of a �ve-dimensional 
oset spa
e [112℄. In this way,we have an expli
it 
oordinate � at our disposal for the ansatz for a non-
onstant warpfa
tor/dilaton, but 
an still apply the 
onvenient te
hniques of 
oset spa
es for theother �ve 
oordinates.10.6.1 Adapted 
oordinates for the ba
kgroundAs the ba
kground around we want to deform, we 
hoose the sour
eless solution onSp(2)S(U(2)�U(1)) = C P3 for � = 
=a = 2, implying vanishing Romans mass m, as 
an easilybe seen from the last equation in eq. (10.7). This is the N = 6 solution with thestandard Fubini-Study metri
 
oming from the N = 8 M-theory ba
kground AdS4�S7redu
ed to type IIA, as it was 
onstru
ted a long time ago in [65℄.We use the observation that one 
an 
onsider C P3 lo
ally as a foliation where theleaves take the form of the �ve-dimensional 
oset manifold [112℄N 1;�1 = SO(4)U(1) : (10.25)Following [53℄, an intuitive way to see this foliation is the following. The splittingC 4 = R8 = R4 � R4 allows one to realize S7 as a �bration of S3 � S3 = SO(4) on asegment. We parameterize the two S3 with the 
oordinates (�i; �i;  i), i = 1; 2, andthe segment as an angle 0 � � � �=2. The metri
 for the S7 readsds2S7 = d�2 + sin2 �ds2S31 + 
os2 �ds2S32 ; (10.26)



122 10. TYPE IIA ADS4 N = 1 SOLUTIONSwhere the radii of the two S3s are sin � and 
os �. Corresponding to this des
ription,appropriate 
oordinates for C 4 n f0g are thusZ1 = t sin � 
os �12 exp i2 ( 1 + �1) ;Z2 = t sin � sin �12 exp i2 ( 1 � �1) ;Z3 = t 
os � 
os �22 exp i2 (� 2 + �2) ;Z4 = t 
os � sin �22 exp i2 (� 2 � �2) ; (10.27)
where t > 0 is the overall radius and 0 � �1;2 < �, 0 � �1;2 < 2�, 0 �  1;2 < 2� are thespheri
al 
oordinates for the two S3s. We 
an now rearrange  1 =  +� and  2 =  ��,and redu
e on the angle  . In this way, for ea
h value � = �0, the SO(4) gets redu
edto the 
oset (10.25). The fa
tor tei=2� in ea
h of the Zi of (10.27) 
orresponds to � inthe identi�
ation(Z1; Z2; Z3; Z4) �= �(Z1; Z2; Z3; Z4) ; where � 2 C n f0g : (10.28)for the homogeneous 
oordinates on C P3. Thus, we have realized C P3 as a foliationwhere the leaves take the form of the 
oset N 1;�1, and the homogeneous 
oordinatesare Z1 = sin � 
os �12 exp i2 ( + �1) ; Z2 = sin � sin �12 exp i2 ( � �1) ;Z3 = 
os � 
os �22 exp i2 (� + �2) ; Z4 = 
os � sin �22 exp i2 (� � �2) : (10.29)In [113℄, the properties of the �ve-dimensional 
oset N 1;�1 are worked out in detailand we here just 
ite the results we need for our analysis. The stru
ture 
onstants aregiven byf512 = f612 = 1 ; f534 = �f634 = �1 ; f125 = f251 = 12 ; f345 = f453 = �12 ;f126 = f261 = 12 ; f346 = f463 = 12 ; (10.30)and one 
an 
hoose the following 
oordinate representation for the one-forms (ei; !a)e1 = � sin d�1 + sin �1 
os d�1 ;e2 = 
os d�1 + sin �1 sin d�1 ;e3 = � sin d�2 � sin �2 
os d�2 ;e4 = � 
os d�2 + sin �2 sin d�2 ;e5 = � [2 d + 
os �1 d�1 � 
os �2 d�2℄ ;!1 = � [
os �1 d�1 + 
os �2 d�2℄ ; (10.31)



10.6. COMMENTS ON A NON-CONSTANT WARP FACTOR AND DILATON 123where (�1;2; �1;2) are the remaining spheri
al 
oordinates on the S3s and  des
ribesthe U(1). The set of the relevant left-invariant forms, obtained by the 
ondition (4.23),are spanned by one-forms : e5 ;two-forms : e12; e34; e14 � e23; e13 + e24 ;three-forms : e125; e345; e145 � e235; e135 + e245 : (10.32)In these 
oordinates, the Fubini-Study metri
, whi
h reads in homogeneous 
oordi-nates ds2 = dZad �Z�bPa jZaj2 �Æa�b � �Z�aZbPa jZaj2� ; (10.33)be
omesa�1ds2 = d�2 + sin2 �4 �(d�1)2 + sin2 �1(d�1)2�+ 
os2 �4 �(d�2)2 + sin2 �2(d�2)2�+ sin2 � 
os2 � �d + 12 
os �1d�1 � 12 
os �2d�2�2 ;= d�2 + sin2 �4 (e1 
 e1 + e2 
 e2) + 
os2 �4 (e3 
 e3 + e4 
 e4)+ sin2 � 
os2 �4 e5 
 e5 ; (10.34)where a > 0 is an overall s
ale, and the transversal 
oordinate � is 
hosen su
h thatg�� = a is 
onstant. At this point the metri
 in these new 
oordinates seems to beirregular for the points � ! 0 and � ! �=2, where one of the two S3s shrink to zero.For instan
e, in the limit � ! 0, the problemati
 terms reada�1ds2 = d�2 + �24 �(d�1)2 + sin2 �1(d�1)2 + (2d + 
os �1d�1 � 
os �2d�2)2�+ : : : :(10.35)However, one 
an show that for (�; �2; �2) 
onstant the se
ond term is the standardmetri
 for an S3 with radius � and volume 4�2�2 su
h that the terms in the metri
(10.35) approa
h 
at R4 as � tends to zero, des
ribed in spheri
al 
oordinates [114℄.The same argument shows the regularity at � ! �=2. The regularity of the metri
 ofthe deformed solution will be of parti
ular interest in the following.Sin
e we know the metri
 (10.34) expli
itly, one easily derives the 
orrespondingSU(3)-stru
ture quantities J and 
 in these new 
oordinates. This is done by 
onsider-ing the most general ansatz for J and Re
 expanded in the 
orresponding left-invariant



124 10. TYPE IIA ADS4 N = 1 SOLUTIONSforms (10.32) and the extra left-invariant one-form d�. Solving the ne
essary 
onditionsfor a supersymmetri
 va
uum of se
tion 2.2.2, the result is [113℄a�1J =� sin2 � 
os 2 �4 e12 + 
os2 � 
os 2 �4 e34 + sin 2 �4 d� ^ e5+ sin2 2 �8 �
os � �e13 + e24�+ sin � �e14 � e23�� ;a�3=2
 =�d� � i4 sin 2 � e5� ^ 12 h
os2 � (ie3 + e4)� sin2 � e�i�(e1 � ie2)i^ 14 sin 2� hiei� �e1 + ie2�+ e3 + ie4i ; (10.36)
where � is 
onstant and a free parameter of the solution. In the following we will 
hoosethe gauge � = 0. We �nd from eq. (2.32) that
1 = 4pa and 
2 = �16(
1)2 : (10.37)The se
ond torsion 
lass reads in these 
oordinatesW�2 = ipa6 �sin2 �(
os 2� � 3)e12 � 
os2 �(
os 2� + 3)e34+2 sin 2�d� ^ e5 � 2 
os2 � sin2 �(e13 + e24)� : (10.38)10.6.2 First order perturbationWe now 
ome to a small deformation of the ba
kground of the previous se
tion. Theaim is to turn on a non-
onstant warp fa
tor and dilaton. For this we �rst need tospe
ify the deformations J ! J + ÆJ and 
 ! 
 + Æ
 that still satisfy the stri
tSU(3)-stru
ture 
onditions (2.6) 4. Given these 
onstraints we make the followingansatz [27℄ Æ
 =M(2;1) � 4v(1;0) ^ J + �
 ;ÆJ = K(1;1) + �v(1;0)
+ �v(0;1) �
 + 23Re�J ; (10.39)where K(1;1), M(2;1) and v(1;0) are arbitrary left-invariant forms su
h that K(1;1) is aprimitive real (1; 1)-form, M(2;1) is a primitive (2; 1)-form (i.e. M(2;1) ^ J = 0) andv(1;0) is a (1; 0)-ve
tor. � is a 
omplex fun
tion. These 
u
tuations guarantee that
+ Æ
 is de
omposable and it is easy to verify that the 
ompatibility 
onditions (2.6)are automati
ally satis�ed.4In this se
tion, we denote the 
u
tuation of e.g. J with ÆJ , whereas the ba
kground is denotedby J .



10.6. COMMENTS ON A NON-CONSTANT WARP FACTOR AND DILATON 125We parameterize the most general left-invariant forms des
ribed above as follows:M(2;1) = (u1(�) + iu2(�)) a3=28 sin2� �(1� 
os 2�)d� ^ e12 � (1 + 
os 2�)d� ^ e34+ 
os 2�d� ^ (e13 + e24)� id� ^ (e14 � e23) + i8 �(2 sin 2� � sin 4�)e125�(2 sin 2� + sin 4�)e345 + sin 4�(e13 + e24) ^ e5 � 2i sin 2�(e14 � e23) ^ e5��+ (u3(�) + iu4(�)) ia3=22 �sin2 �dr ^ e12 + 
os2 � ^ e34� i4 sin 2�(sin2 �e125 + 
os2 �e345)� ; (10.40)K(1;1) = a (u5(�) + u6(�)) sin 2� �d� ^ e5 � 14 sin 2�(e13 + e24)�+ a �sin2 �(
os2 �u6(�)� sin2 �u5(�))e12 + 
os2 �(sin2 �u6(�)� 
os2 �u5(�))e34� ;(10.41)v(1;0) = pa (u7(�) + iu8(�)) (d� � i4 sin 2�e5) ; (10.42)� = u9(�) + iu10(�) ; (10.43)where ui(�), i = 1; : : : ; 10, are arbitrary real fun
tions of �. For the 
u
tuation of these
ond torsion 
lass we take the most general ansatz for a left-invariant two-form witharbitrary fun
tions wi(�), i = 1; : : : ; 5,ÆW�2 = i �w1(�)e12 + w2(�)e34 + w3(�)d� ^ e5 +w4(�)(e14 � e23) + w5(�)(e13 + e24)� :(10.44)The 
ru
ial point is that we now allow for a non-
onstant warp fa
tor, i.e. ÆA = ÆA(�).Sin
e the warp fa
tor always appears in the 
ombination e�AjW j, it is 
onvenient tointrodu
e a new variable fW as followsfW � e�AjW j ; (10.45)and, a

ording to eq. (2.59a), 
1 = �2fW : (10.46)For the 
u
tuation away from the ba
kground 
1 be
omes � dependent su
h that wemake the ansatz Æ
1 = 
(�) ; (10.47)
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(�) is an arbitrary real fun
tion of �. This 
hoi
e implies e�AjW j = fW = �12
1su
h that ÆfW = �ÆAfW + e�AÆjW j anddÆA = �dÆfWfW = �dÆ
1
1 ; (10.48)sin
e we assume that the ba
kground values A and fW are 
onstants (re
all that wealso assume jW j and ÆjW j to be 
onstants).The 
onditions we have to solve for the fun
tions ui(�), i = 1; : : : ; 10, wi(�),i = 1; : : : ; 5 and 
(�) are the variations of the eqs. (2.59a), (2.69) and (2.71). Thesevariations read, using eq. (10.48), respe
tively 5dÆJ = Æ
1Re
 + 
1ÆRe
 ; (10.49a)dÆRe
 = �dÆ
1
1 ^Re
 ; (10.49b)dÆIm
 = 23Æ
1J ^ J + 43
1ÆJ ^ J � iÆW�2 ^ J � iW�2 ^ ÆJ � dÆ
1
1 ^ Im
 : (10.49
)Further we have to solve the Bian
hi identity for the variation of F2 in eq. (2.73).To derive the variation of F2 we make use of the relation between the warp fa
tor andthe dilaton from eq. (2.57b). This implies dÆ� = �3dÆ
1
1 su
h thatÆ� = �3Æ
1
1 +K ; (10.50)where K is an integration 
onstant. We arrive atÆF2 = e����23Æ
1J � 16
1ÆJ + 3iÆ
1
1 W�2 + iÆW�2 � 2 ?6 �dÆ
1
1 ^ Im
��K(�16
1J + iW�2 )� : (10.51)Note that the last term in eq. (10.51) with the integration 
onstant K is nothing elsethan the ba
kground F2 and hen
e does not 
ontribute the the Bian
hi identity for ÆF2,sin
e dF2 = 0 for the sour
eless ba
kground. Plugging all the ans�atze for ÆJ , Æ
, ÆW�2and Æ
1 in eq. (10.51), we look for a solution of the sour
eless Bian
hi identitydÆF2 = 0 : (10.52)10.6.3 Solving the 
onditionsWe �rst want to solve 
ondition (10.49a). As it turns out, this 
ondition is relativelyeasy to solve and already spe
i�es most of the unknown fun
tions ui(�) and 
(�) in5Note that we also assume Æm = 0 su
h that we do not turn on m or H-
ux with the 
u
tuation.This is the 
ase for Æ�0 = 0 (as 
an easily be seen from eq. (2.64)) whi
h we will assume in the following.
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tions, u5(�), u6(�), u8(�) and u9(�) and derivativesthereof. The expli
it solution readsu1(�) = 124 �2 
ot 2� ��24 
ot 2�(u5(�) + 2u6(�)) + 3u05(�) + 9u06(�) + u09(�)�+3u005(�) + 3u006(�)� u009(�)� ;u2(�) = 
ot 2�u8(�)� 12u08(�) ;u3(�) = 0 ;u4(�) = (tan � � 
ot �)u5(�) + 112 ��48 
ot 2�u6(�)� 6u06(�) + u09(�)� ;u7(�) = 
ot 2�(u5(�) + 2u6(�)) + 14(u05(�) + u06(�))� 112u09(�) ;u10(�) = �3 
ot 2�u8(�)� 12u08(�) ;
(�) = 16pa � 24sin2 2� (u6(�) + 
os 4�(2u5(�) + 3u6(�))� 8u9(�)+6 
ot 2� �5u05(�) + 7u06(�)� u09(�)�+ 3u005(�) + 3u006(�)� u009(�)� ;
(10.53)

where prime denotes the derivative with respe
t to �. Note that the fun
tion u8(�)
orresponds to 
hoosing another gauge for � in eq. (10.36) and none of the equations(10.49) puts a 
onstraint on u8(�).With this solution we automati
ally solve the se
ond 
ondition (10.49b). We 
an usethe 
ondition (10.49
) to �x the unknown fun
tions wi(�), i = 1; : : : ; 5 of the variationof the se
ond torsion 
lass (10.44). The solution is not diÆ
ult but rather lengthy su
hthat we will not display it here. Let us mention that all the unknown fun
tions wi(�),i = 1; : : : ; 5 are fun
tions of u5(�), u6(�), u8(�) and u9(�) and derivatives thereof. Notethat the solution for ÆW�2 also satis�es the following 
onditions0 = ÆW�2 ^
+W�2 ^ Æ
 ;0 = ÆW�2 ^ J ^ J + 2W�2 ^ ÆJ ^ J ; (10.54)whi
h follow from the 
ondition that W�2 is a primitive (1; 1)-form (see eq. (C.31)).Next we turn to the solution of the Bian
hi identity for ÆF2 (10.52). First we notethat this 
ondition gives us two independent equations for the three unknown fun
tionsu5(�); u6(�); u9(�) and derivatives thereof. We try to solve these equations with the



128 10. TYPE IIA ADS4 N = 1 SOLUTIONSfollowing ansatz u5(�) = 112 �6 
ot 2� l(�) + l0(�)�+ g(�) ;u6(�) = 112 (�6 
ot 2� l(�)) + l0(�) + h(�) ;u9(�) = 12 �6 
ot 2� l(�) + l0(�)� ; (10.55)where l(�), g(�) and h(�) are arbitrary fun
tions. This ansatz is motivated by theobservation that we have the freedom to reparameterize � ! l(�), whi
h also 
orre-sponds to a 
u
tuation, and it turns out that this 
u
tuation is given by eq. (10.55)with vanishing g(�) and h(�). This ansatz simpli�es the two independent equations
oming from eq. (10.52) 
onsiderably and we are left with a pair of 
oupled di�erentialequations for g(�) and h(�),0 = 32(13 + 3 
os 8�)g(�) + 32(17 + 12 
os 4� + 3 
os 8�)h(�)� 2 sin 2� �4(�11 
os 2� + 7 
os 6�)g0(�)� 4(
os 2� � 5 
os 6�)h0(�)+2 sin 2� �4(3 + 2 
os 4�)g00(�) + 4(4 + 3 
os 4�)h00(�) + sin 4�(g000(�) + h000(�))	� ;(10.56a)0 = 16(
os 2� + 2 
os 6�)g0(�)� 2 sin 2� ��64g(�) + 64h(�) + 10g00(�)+2 
os 4�(96(g(�) + h(�)) + g00(�)) + 8 sin2 2�h00(�) + sin 4�(56h0(�) + g000(�))� :(10.56b)These di�erential equations are a
tually not so easy to solve but, with some patien
e,we obtain the solution for g(�)g(�) = 3C116 � C22 + C112 
os 2� + �5C1 + 24C2 � 6C348 sin2 � � C38 
os2 � + C4 ; (10.57)and h(�)h(�) = 124 sin4 � ��9C3 � 12C4 + (48C4 � 8C2) 
os2 �+3(C1 + 4C2 � 8C4) 
os4 � � 3C1 
os6 � + 12C6
os2 � + 24C5
os4 �� ; (10.58)where Ci, i = 1; : : : ; 6 denote integration 
onstants. Plugging these expressions intoeq. (10.55) and eq. (10.53), we 
he
ked expli
itly that this is a solution for all the
onditions (10.49) and the Bian
hi identity (10.52). For instan
e, the solution forÆ
1(�) = 
(�) readsÆ
1(�) = 16pa �9C1 � 24C2 + 48C4 + C1 
os 2� + �5C1 + 24C2 � 6C3sin2 � � 6C3
os2 ��= � 4paÆA(�) � 2e�AÆjW j ; (10.59)
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ond equation 
omes from the de�nition of Æ
1 = �2fW and eq. (10.37).We indeed have a non-
onstant warp fa
tor.However, we still have to 
he
k whether our solution leads to regular expressionsat the spe
ial points � = 0 and � = �=2, where respe
tively the �rst and the se
ondS3 
ollapse. Let us �rst 
onsider the solution for 
(�) in eq. (10.59), whi
h 
ontainsthe non-
onstant warp fa
tor. From this expression we immediately see that it is notregular at � = 0 nor at � = �=2. However, we 
an �x this by 
hoosing appropriateboundary 
onditions as follows C2 = 5C124 ; C3 = 0 : (10.60)Unfortunately, the regularity of the metri
 is problemati
. For instan
e, let us 
onsiderthe 
omponents g33 and g55 of the solution for the metri
 (with the 
onstraint (10.60)).The �rst terms in the expansion around � = 0 readg33 = a7C1 � 72C4 � 144C5144�4 +O(�0) ; g55 = �aC1 � 12C4 + 6C624�4 +O(�0) :(10.61)Choosing C1 = 36(4C5 + C6) C4 = 12(�24C5 � 7C6) ; (10.62)we 
an make these and the other terms of the metri
 regular at � = 0. However, forthe regularity at � = �=2 we get for the expansion of g33 and g55g33 = �a C5(� � �2 )2 +O((� � �2 )0) ; g55 = a C64(� � �2 )2 +O((� � �2 )0) ; (10.63)whi
h for
es C5 = 0 and C6 = 0 for regularity. This, however, implies with the
onditions (10.60) and (10.62) that regularity demands the vanishing of all integration
onstants. Let us stress that we 
an satisfy the regularity for a non-trivial solution onboth sides, � ! 0 and � ! �=2, independently but not at the same time.We thus have to report that (at least in this setup) there is no �rst order deformationaround the 
onstant warp fa
tor/dilaton solution of se
tion 10.2 whi
h allows to turnon a non-
onstant warp fa
tor/dilaton for the sour
eless 
ase. However, the observationthat this only fails due to spe
ial boundary 
onditions strongly suggest that one 
ouldresolve this problem by the introdu
tion of lo
alized sour
e terms of the formdF2 = �j = K1Æ(� � �0)d� ^ e12 +K2Æ(� � �0)d� ^ e34 +K3Æ(� � �0)d� ^ (e13 + e24) :(10.64)Note that this are partially lo
alized sour
e terms at some point � = �0 but still smearedalong the other dire
tions. Due to the delta distributions in the sour
e term, thedi�erential equations (10.57) and (10.58) would be 
ompleted with expressions involvingdelta distributions on the right hand side, and we thus would expe
t for the solutions of



130 10. TYPE IIA ADS4 N = 1 SOLUTIONSthe di�erential equations to 
ontain integration 
onstants with di�erent values on bothsides of the sour
e 6. This o�ers the possibility to solve the boundary 
onditions fordi�erent integration 
onstants for � = 0 and � = �=2, providing potentially a regularsolution. To work out the expli
it form of these integration 
onstants and 
he
k whetherthis indeed resolves the problem of regularity would be very interesting, as it may beseen as a step towards the in
lusion of lo
alized sour
es.

6The di�eren
e of the integration 
onstants on both sides of the sour
e depends on the lo
ation �0of the sour
e and the 
hosen 
onstants Ki, i = 1; 2; 3, in (10.64).



Chapter 11E�e
tive type IIA a
tion on 
osetspa
esIn se
tion 3.2, we dis
ussed the pro
edure to derive the four-dimensional low-energye�e
tive theory for a given 
ompa
ti�
ation manifold. We now apply this pro
edureto derive the superpotential and the K�ahler potential for 
ompa
ti�
ations on all the
oset spa
es whi
h allow for a left-invariant stri
t SU(3)-stru
ture. These 
oset modelsare given in table 9.1. As explained in se
tion 3.3, we 
hoose the 
uxes as general aspossible to 
over the whole moduli spa
e. For the �rst �ve models in table 9.1, wealready know that there is a bubble that 
ontains at least one supersymmetri
 AdS4solution.There will be bubbles in the moduli spa
e that do not 
ontain any supersymmetri
AdS4 solution, whereas other bubbles 
ontain one or more. We show for two modelshow to identify the number of supersymmetri
 AdS4 solutions for a parti
ular 
hoi
eof bubble parameters. Note that in the full string theory the bubble parameters arequantized.We will study the mass spe
trum of the moduli �elds around these supersymmetri
AdS4 solutions. In se
tion 2.2.2 we dis
ussed the problem of the separation of s
alesfor an N = 1 AdS4 solution, even before the uplifting. We have seen that requiring themanifold to be nearly Calabi-Yau (i.e., vanishing W�1 ) and the possibility to 
hoose �so that it is 
lose to its bound is one way to obtain a separation of s
ales between thelight masses and the Kaluza-Klein s
ale. However, as we will see in the following, forthe N = 1 AdS4 solutions on the 
oset models this is not possible su
h that we 
an notprove the separation of s
ales for these solutions. In any 
ase, as already mentioned,the position one 
an take is that this kind of question should be asked only after theuplifting.Sin
e the de
oupling of the light Kaluza-Klein modes turns out to be diÆ
ult, we
an not be sure that there are no other light Kaluza-Klein modes joining the lightmoduli �elds based on the left-invariant expansion ansatz. However, a trun
ation tothe set of left-invariant forms is believed to provide a 
onsistent trun
ation [115, 60℄.



132 11. EFFECTIVE TYPE IIA ACTION ON COSET SPACESIndeed, in [116℄ the authors established the 
onsisten
y of the left-invariant trun
ationansatz by means of expli
it examples based on the 
oset models G2SU(3) , Sp(2)S(U(2)�U(1))and SU(3)U(1)�U(1) for the sour
eless 
ase. It seems very plausible that their argument alsoapplies for the other 
oset models we study in this thesis in the presen
e of smearedleft-invariant sour
e terms. We thus have 
on�den
e that solutions to the e�e
tivefour-dimensional theories we derive in this 
hapter lift to 
onsistent solutions of the ten-dimensional equations of motion and that there is no 
oupling between the preservedleft-invariant modes and the trun
ated non-invariant modes. This also implies thatthe mass spe
trum we 
ompute for the left-invariant modes is not in
uen
ed by thepotentially light non-invariant Kaluza-Klein modes.A ne
essary 
ondition for a stri
t SU(3)-stru
ture is the 
ompatibility 
onditionJ ^ 
 = 0 (see eq. (2.6)). This 
ondition is automati
ally satis�ed if there are no G-invariant �ve-forms. On the other hand, if there are su
h �ve-forms, the 
ompatibilityis not automati
ally satis�ed, and the 
ondition �xes the parameters for J and 
 in theN = 1 solution (see for instan
e the parameters a, b and 
 in the solution (10.12)). Ifwe now turn on 
u
tuations around su
h a va
uum solution, 
u
tuations are possiblethat violate the 
ompatibility 
ondition. One approa
h to still satisfy the 
ompatibility
ondition is to impose some 
onstraints on the 
u
tuations. However, a more natu-ral approa
h is to impose from the beginning an orientifold proje
tion that proje
tsout the one- and �ve-forms. With this pro
edure, we again automati
ally satisfy the
ompatibility 
ondition for all the 
u
tuations.Let us stress that 
onsisten
y requires that the sour
e term whi
h follows from theBian
hi identities is then 
onsistent with the orientifold involutions we imposed. In this
hapter, we will follow the se
ond approa
h and impose an orientifold proje
tion whenthe models allow for G-invariant one- and �ve-forms. We will make the simpli�
ationthat the orientifold planes are perpendi
ular to the 
oordinate frame 1, ex
ept forSU(3)�U(1)SU(2) , where we will demonstrate a pro
edure how to �nd more general orientifoldplanes and for SU(2)�SU(2), whi
h does not allow for perpendi
ular orientifold planes.11.1 E�e
tive type IIA a
tion on G2SU(3)With the given set of G-invariant forms (9.3), we 
hoose the expansion forms as followsY (2�) : (e12 � e34 + e56) ;Y (3+) : (e145 � e246 � e235 � e136) ; (11.1)and the standard volume Vs = � R e123456. We expand a

ording to eq. (3.37)J
 = J � iÆB = t1Y (2�) ;

 = e�Im
 + iÆC3 = z0Y (3+) ; (11.2)1To be pre
ise, here we mean orientifold involutions whi
h a
t as ei ! �ei on the left-invariantone-forms.



11.1. EFFECTIVE TYPE IIA ACTION ON G2SU(3) 133where we denote by t1 = k1 � ib1 the 
omplex modulus in the K�ahler se
tor and byz0 = u0 + i
0 the 
omplex modulus in the 
omplex stru
ture/dilaton se
tor. Note thatsin
e there is only one even three-form, this 
oset spa
e has no 
omplex stru
ture andthe real part of z0 en
odes the dilaton. There are no G-invariant one- or �ve-formsin this model, hen
e the 
ompatibility 
ondition (2.6a) is automati
ally satis�ed forthe basis (11.1) and thus for all 
hoi
es of the moduli t1 and z0. The metri
 is easilyevaluated via the Hit
hin pro
edure explained in appendix C and readsg = diag(k1; k1; k1; k1; k1; k1) ; (11.3)su
h that k1 > 0 ensures metri
 positivity. The Betti numbers of G2SU(3) are given ineq. (9.4). As was explained in se
tion 3.3 we 
hoose a

ordingly the ba
kground 
uxesto be Ĥ = 0 ;F̂0 = m;F̂2 = nY (2�) ;F̂4 = 0 ;F̂6 = f 0e123456 ; (11.4)
The quantized parameters m, n and f 0 spe
ify the bubble of moduli spa
e. Remem-ber that is is not possible to rea
h another bubble by �nite 
u
tuations of the moduli�elds.With this data, the superpotential, whose derivation is explained in se
tion 3.2,reads WE = � ie�i�4�210 Vs �f 0 + 3n(t1)2 � 4p3t1z0 � im(t1)3� ; (11.5)and for the K�ahler potential, we derive from eq. (3.35)K = � ln �(t1 + �t1)3�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s ) : (11.6)11.1.1 Mass spe
trum around the supersymmetri
 va
uumWe have seen in se
tion 10.1 that this 
oset spa
e admits a supersymmetri
N = 1 AdS4va
uum. An appli
ation of the e�e
tive theory developed in this 
hapter is to 
omputethe mass spe
trum around the va
uum. By means of the expli
it mass spe
trum we
an for instan
e identify the number of ta
hyoni
 masses and the number of masslessmoduli. However, sin
e the va
uum solution is in AdS4 spa
e, it is not enough to�nd a ta
hyoni
 �eld for an instability to be present. Ta
hyoni
 �elds whose negativemass-squared are above the Breitenlohner-Freedman bound (3.11) do not generate aninstability [61℄. However, after an uplift pro
edure these ta
hyoni
 modes be
omeeventually unstable, and one has to re
onsider the stability of the solution.



134 11. EFFECTIVE TYPE IIA ACTION ON COSET SPACESTo derive the masses of the s
alar �elds around the supersymmetri
 va
uum, it is
onvenient to 
hoose the ba
kground 
uxes, whi
h we plug in the expression for thesuperpotential, to be the 
uxes of the solution (10.4). With this 
hoi
e we automati
allyare in the bubble of moduli spa
e 
ontaining the supersymmetri
 solution. For the
al
ulation we 
hoose this time expansion forms adapted to the solution,Y (2�) : a(e12 � e34 + e56) ;Y (3+) : a3=2(�e235 � e246 + e145 � e136) ; (11.7)and the standard volume Vs = � R a3 e123456. It is further 
onvenient to take out theba
kground dilaton, e��̂, from the de�nition of zi in eq. (3.37b), i.e., we 
hoose theexpansion as follows e��Im
 + iÆC3 = zie��̂Y (3+)i : (11.8)The supersymmetri
 solution then 
orresponds to the values of the moduli �elds t1 = 1and z0 = 1.With these assumptions and the ba
kground �elds in eq. (10.4) we get the followingsuperpotentialWE = ie�i�e��̂4�210 Vsa�1=2 �3p32 + 8 ~mi5 z0 � 9 ~mi5 t1 + 4p3z0t1 � p32 (t1)2 + i ~m(t1)3! ;(11.9)whereas the K�ahler potential is given byK = � ln �(t1 + �t1)3�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s e4�̂=3) : (11.10)Indeed, one easily veri�es that the F-terms DiWE � �iWE + (�iK)WE, vanish forthe values of the moduli �elds k1 = 1, b1 = 0, u0 = 1 and 
0 = 0.By means of eq. (3.25), we now easily 
al
ulate the e�e
tive potential V and the massmatrix a

ording to eq. (8.5). The resulting mass spe
trum is plotted in �gure 11.1.We plot ~M2=jW j2 su
h that the overall s
ale a drops out and the only parameter is theredu
ed orientifold tension ~�. The dashed and solid red line represent the Breitenlohner-Freedman bound (3.11) and the bound (2.34) for ~�, respe
tively. We see that all fourmoduli masses are above the Breitenlohner-Freedman bound as is expe
ted. Moreover,all masses are positive for ~� > �0:82.In se
tion 2.2.2 we have seen that jW�1 jLint � 1 is one way to obtain a separation ofs
ales between the light masses and the Kaluza-Klein masses even before the uplifting.However, as 
an be seen from eq. (10.2), this is impossible to a
hieve for this 
oset.11.1.2 Number of supersymmetri
 solutionsWe explained in se
tion 3.3 that for di�erent 
hoi
es of the 
ux parameters m;n andf 0 in eq. (11.4) we are in di�erent bubbles of the moduli spa
e that are not 
onne
tedby 
u
tuations of the moduli �elds.



11.1. EFFECTIVE TYPE IIA ACTION ON G2SU(3) 135

2 4 6 8 10

5

10

15

20

25

PSfrag repla
ements ~�
~M2=jW j2

(a) Behaviour for small ~� 20 40 60 80 100

20

40

60

80

PSfrag repla
ements ~�
~M2=jW j2

(b) Behaviour for large ~�Figure 11.1: Mass spe
trum of G2SU(3) .An interesting question is whether ea
h of these di�erent bubbles of the moduli spa
e
hara
terized through the bubble parameters m, n and f 0 has a supersymmetri
 N = 1AdS4 solution and if, how many di�erent solutions there are. To answer this questionwe may pro
eed ba
kwards: Given a supersymmetri
 va
uum 
hara
terised through thesupersymmetri
 solution parameters a, � and e�, we derive the 
orresponding bubbleparameters m; n; f 0 in fun
tion of a, ~� = a� and e�. Inverting these equations oneobtains the values for the bubble parameters that 
ontain supersymmetri
 solutions.From the supersymmetri
 solution for G2SU(3) in eq. (10.2), the Bian
hi identities andthe 
u
tuations of the 
uxes in eq. (3.44) we arrive at the following equationsm = s1 e��a�1=2r54 + ~� ;n = � 1p3s2 a1=2e�� 25 ~� ;f 0 = �s2 e��a5=2 4(20 + ~�)(25 + 2~�)375p3 ; (11.11)
where s1 = �1 and s2 = �1 are two signs further spe
ifying the supersymmetri
solution. Note that in the spe
ial 
ase without sour
e, ~� = 0, we �nd n = 0, and we
an always �nd a supersymmetri
 va
uum by solvingm = s1 e��a�1=2p52 ;f 0 = �s2 e��a5=2 163p3 ; (11.12)for e� and a. This results ina =  3p1532 ����f 0m ����!1=3 ; e� = p52 jmj  3p1532 ����f 0m ����!�1=6 ; (11.13)



136 11. EFFECTIVE TYPE IIA ACTION ON COSET SPACESsu
h that, for arbitrary 
hoi
e of the bubble parameters m and f 0, we �nd a supersym-metri
 solution 
hara
terized by a and e�.For ~� 6= 0, we 
an eliminate e� and a by 
al
ulatingh = f 0m2�03 = (5 + 4~�)(20 + ~�)(25 + 2~�)8p3~�3 ; (11.14)whi
h 
an be rewritten as(8� 8h) ~�3 + 270~�2 + 2325~� + 2500 = 0 : (11.15)For the values h < 0 and h > 1, this equation has exa
tly one solution satisfyingfurther the bound 
oming from the �rst equation in (11.11): 5=4 + ~� > 0 (note thatwe assumed m 6= 0). We 
on
lude that there is no supersymmetri
 solution for the
hoi
e of bubble parameters satisfying 0 � f 0m2n3 � 1. Otherwise there is exa
tly onesupersymmetri
 solution.11.2 E�e
tive type IIA a
tion on Sp(2)S(U(2)�U(1))From the given set of G-invariant forms (9.6), we de�ne the expansion forms as followsY (2�)i : (e12 + e34);�e56 ;Y (3+) : (e235 + e246 + e145 � e136) ; (11.16)and the standard volume Vs = R e123456. A

ording to eq. (3.37), we expand theSU(3)-stru
ture as followsJ
 = J � iÆB = t1(e12 + e34)� t2e56 ;

 = e�Im
 + iÆC3 = z0(e235 + e246 + e145 � e136) ; (11.17)whi
h yields the metri
 g = diag(k1; k1; k1; k1; k2; k2) ; (11.18)su
h that ki > 0, i = 1; 2, ensures metri
 positivity. A

ording to the Betti numbers(9.7), there is a 
losed two-form and we thus have only one non-
losed two-form for F̂2.Sin
e F̂4 2 H4(M;R), we 
hoose as ba
kground 
uxes the followingĤ = 0 ;F̂0 = m;F̂2 = ne56 ;F̂4 = !e1234 ;F̂6 = �f 0e123456 : (11.19)



11.2. EFFECTIVE TYPE IIA ACTION ON SP(2)S(U(2)�U(1)) 137The superpotential readsWE = � ie�i�4�210 Vs �f 0 � i!t2 + n(t1)2 + im(t1)2t2 � 2z0(t2 + 2t1)� ; (11.20)whereas the K�ahler potential is given byK = � ln �(t1 + �t1)2(t2 + �t2)�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s ) : (11.21)11.2.1 Mass spe
trum around the supersymmetri
 va
uumWe 
hoose the expansion forms suitable for the solution in se
tion 10.2 as follows:Y (2�) : a(e12 + e34);�ae56 ;Y (3+) : a3=2(e235 + e246 + e145 � e136) ; (11.22)and the standard volume Vs = � R a3 e123456. We �nd the following superpotential(where we use the rede�nition of eq. (11.8))WE = ie�i�e��̂4�210 Vsa�1=2�� ~f� + 8 ~mi5 �1=2z0 � 3 ~mi5 (2�t1 + t2)� 2(2t1 + t2)z0+i ~m(t1)2t2 + �1=2�32 � 54�� (t1)2 ����1=2 � 32�1=2� t1t2� ; (11.23)and K�ahler potentialK = � ln �(t1 + �t1)2(t2 + �t2)�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s e4�̂=3) : (11.24)This time the solution has next to the overall s
ale a two free parameters: the \shape"� = 
=a and the orientifold tension ~�. In �gure 11.2 we display plots for the massspe
trum for several values of �: � = 1 is the nearly-K�ahler point, while for � = 2=5and � = 2 the lower bound for ~� from (2.37) is exa
tly zero. These were extreme pointsin [51℄ sin
e outside the interval [2=5; 2℄ the lower bound is above zero and solutionswithout orientifolds are no longer possible. Moreover, for ~� = 0 also m = 0, and thesesolutions 
an be lifted to M-theory. We also display a plot for large �, here � = 13. Wesee that the lower bound for ~� is indeed positive so that there must be net orientifold
harge. Again we see that in all 
ases all masses are above the Breitenlohner-Freedmanbound and by 
hoosing ~� large enough, they are all positive.Again we would like to have jW�1 jLint � 1 in order to de
ouple the Kaluza-Kleinmodes. From eq. (10.7) we see that this is not possible sin
e this would imply putting� ! �2, whi
h should be positive. We thus 
an not prove the de
oupling of theKaluza-Klein modes for this model.
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11.2. EFFECTIVE TYPE IIA ACTION ON SP(2)S(U(2)�U(1)) 13911.2.2 Number of supersymmetri
 solutionsWith the same pro
edure we proposed in se
tion 11.1.2 we 
an identify for this modelthe number of supersymmetri
 AdS4 solutions for ea
h 
hoi
e of bubble parameters m,n, ! and f 0. Starting from a supersymmetri
 solution spe
i�ed by four parameters a,� = 
=a, e� and ~� = a� we �nd for this modelm = s1e��a�1=2r 516� (�4� 5�2 + 12�) + ~� ;n = �s2 45e��a1=2~�p� ;w = �s1e�� 4a3=2(� � 1)(�(10 + 3~�)� 5)5p60�2 + 16~��2 � 20� � 25�3 ;f 0 = �s2e�� 8a5=2�1=2 �150 + 40~�� 425� � 6~��(35 + 4~�) + 15�2(10 + ~�)�25 (60� + 16~�� � 20� 25�2) : (11.25)
We 
an solve these equations for ~� and � by 
al
ulating4mwn2 = �5(� � 1)(�(10 + 3~�)� 5)4~�2�2 � h1 ;�8f 0m2n3 = �50(15 + 4~�) + 5�(425 + 6~�(35 + 4~�))� 75�2(10 + ~�)16~�3�2 � h2 : (11.26)with the solution for ~�0 = (�256h1h2 + 256h21 + 64h22)~�6+ (�690h2 + 1920h21 � 690h1h2 + 1920h1)~�5+ (�5900h2 + 19000h1 + 3600 + 3600h21)~�4+ (44250 + 53250h1 � 4500h2)~�3 + (169375 + 34375h1)~�2+ 206250~� + 78125 ; (11.27)
and the solution for �� = 5 (750 + ~� [775 + 8~�(15 � 2h2~�+ h1(15 + 4~�))℄)10000 + ~� f13500 + ~� [4125 � 24~�(2h2(5 + ~�)� 15) + 4h1(6~�(35 + 4~�) + 425)℄g :(11.28)In �gure 11.3 we show the values for h1 = 4mwn2 and h2 = �8f 0m2n3 for whi
h eq. (11.27)has one or two solutions that are real and respe
t the bounds 516� ��4� 5�2 + 12��+~� > 0 and � > 0. Hen
e, there are bubbles with zero, one or two supersymmetri
solutions.
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e in whi
h there are one/two super-symmetri
 solutions (red/yellow) for Sp(2)S(U(2)�U(1)) . On the x-axis (y-axis) is the valueh1 = 4mwn2 (h2 = �8f 0m2n3 ).11.3 E�e
tive type IIA a
tion on SU(3)U(1)�U(1)From the given set of G-invariant forms (9.9), we de�ne the expansion forms as followsY (2�)i : �e12; e34;�e56 ;Y (3+) : (e235 + e136 + e246 � e145) ; (11.29)and the standard volume Vs = R e123456. For this 
hoi
e the metri
 readsg = diag(k1; k1; k2; k2; k3; k3) ; (11.30)su
h that ki > 0 ensures metri
 positivity. A

ording to the Betti numbers (9.10), we
hoose a simple non-
losed two-form F̂2 and F̂4 2 H4(M;R) as ba
kground 
uxes asfollows Ĥ = 0 ;F̂0 = m;F̂2 = ne12 ;F̂4 = !1e1234 + !2e1256 ;F̂6 = �f 0e123456 : (11.31)
The superpotential readsWE = � ie�i�4�210 Vs �f 0 � i(!1t3 � !2t2)� nt2t3 � imt1t2t3 � 2z0(t1 + t2 + t3)� ; (11.32)



11.4. EFFECTIVE TYPE IIA ACTION ON SU(3)�U(1)SU(2) 141whereas the K�ahler potential is given byK = � ln �(t1 + �t1)(t2 + �t2)(t3 + �t3)�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s ) : (11.33)11.3.1 Mass spe
trum around the supersymmetri
 va
uumIn this 
ase we 
hoose the expansion forms in (3.37) as follows:Y (2�) : �ae12; ae34;�ae56 ;Y (3+) : a3=2(e235 + e246 + e136 � e145) ; (11.34)and the standard volume Vs = R a3 e123456.Using the expression (3.34) for the superpotential in the SU(3)-stru
ture 
ase andthe expansion given in (3.37), we derive the superpotential (again using the rede�nitionof z as in eq. (11.8))WE =� ie�i�e��̂4�210 Vsa�1=2 ~f�� � 8 ~mi5 p��z + 3 ~mi5 (��t1 + �t2 + �t3)+ 14p���(3� + 3�� � 5�2)t1t2 + (3�� 5�2 + 3��)t1t3 + (�5 + 3�+ 3�)t2t3�� 2z(t1 + t2 + t3)� i ~mt1t2t3! : (11.35)The K�ahler potential isK = � ln 3Yi=1(ti + �ti)!� ln �4(z + �z)4�+ 3 ln(8�210M2PV �1s e4�̂=3) : (11.36)The model has this time two shape parameters: � = b=a and � = 
=a. We displaythe mass spe
trum for a number of sele
ted values of these parameters in �gure 11.4.There is a symmetry under permuting (a; b; 
) whi
h translates into a symmetry under� $ � and (�; �; ~�) $ (�=�; 1=�; �~�). Applying these symmetries leads to identi
almass spe
tra. Moreover, the mass spe
tra for � = 1 are apart from two more eigenvaluesidenti
al to the mass spe
tra of Sp(2)S(U(2)�U(1)) . We also display an example with �; � 6= 1.For this model, we have to 
hoose � + � = �1 in order to approa
h the nearlyCalabi-Yau limit to de
ouple the Kaluza- Klein modes, whi
h is again not possible.11.4 E�e
tive type IIA a
tion on SU(3)�U(1)SU(2)Sin
e this 
oset spa
e 
ontains G-invariant one-forms, e5 and e6, one has to be 
are-ful satisfying the 
ompatibility 
onditions for an SU(3)-stru
ture given in eq. (2.6a).
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11.4. EFFECTIVE TYPE IIA ACTION ON SU(3)�U(1)SU(2) 143One way to guarantee the 
ompatibility 
onditions for the 
u
tuations is to imposean orientifold proje
tion that removes the left-invariant one- and �ve-forms. To �ndappropriate orientifold planes, let us therefore start with the most general, non-
losedtwo-form as an ansatz for F̂2,F̂2 = a1(e13 � e24) + a2(e14 + e23) + a3e56 ; (11.37)where we assume non-vanishing 
oeÆ
ients ai, i = 1; 2; 3. With this 
hoi
e of F̂2 weget via the Bian
hi identity (B.9a) the sour
e term (note that sin
e b3 = 0 we 
hooseĤ = 0 su
h that there is no 
ontribution to the Bian
hi from Ĥ)j6 = p3��a1(e145 + e235) + a2(e135 � e245) + a32 (e126 + e346)� ; (11.38)that 
an be written by a 
oordinate transformation 
onsistent with the stru
ture 
on-stants similar to (10.16) 2e10 = e1 ; e20 = e2 ; e50 = e5 ; e60 = e6 ;e30 = 1p(a1)2 + (a2)2 ��a2e3 + a1e4� ; e40 = 1p(a1)2 + (a2)2 ��a1e3 � a2e4� ;(11.39)as a sum of four de
omposable terms to whi
h we 
an asso
iate four orientifold involu-tions (see also the dis
ussion in appendix D),j6 = p3�p(a1)2 + (a2)2(e204050 � e103050) + a32 (e102060 + e304060)� : (11.40)Under these orientifold involutions there are no one- and �ve-forms surviving, andwe easy obtain the set of invariant two- and three-forms. By transforming ba
k tothe original 
oordinates, we get the following set of left-invariant (odd/even) two- andthree-forms Y (2�)i : ��(e13 � e24)� a2a1 (e14 + e23)� ; e56 ;Y (3+)i : �(e146 + e236)� a2a1 (e136 + e246)� ; e125 + e345 ; (11.41)where the quantity a2a1 � � is a
tually related to the 
hoi
e of the orientifolds. We nowpro
eed as usual: with this 
hoi
e of expansion forms the metri
 is positive for ki > 0,i = 1; 2, and u1u2 < 0 and is then given byg = diagp1 + �2�k1; k1; k1; k1; k21 + �2 ����u2u1 ���� ; k2 ����u1u2 ����� : (11.42)2Without loss of generality we assumed here a1 > 0.



144 11. EFFECTIVE TYPE IIA ACTION ON COSET SPACESFrom the Betti numbers (9.15) and the set of G-invariant forms (9.14) we thus getĤ = 0 ;F̂0 = m;F̂2 = n1 �(e13 � e24) + �(e14 + e23)�+ n2e56 ;F̂4 = 0 ;F̂6 = �f 0(1 + �2)e123456 : (11.43)
Putting everything together we arrive at the superpotentialWE = � ie�i�4�210 Vs f 0 � 2n1t1t2 + n2(t1)2 � im(t1)2t2 + 2p3t1z1 � p31 + �2 t2z2! ;(11.44)where we de�ned a standard volume as Vs = R (1 + �2)e123456. The K�ahler potential isgiven byK = � ln �(t1 + �t1)2(t2 + �t2)�� ln� 41 + �2 (z1 + �z1)2(z2 + �z2)2�+ 3 ln(8�210M2PV �1s ) :(11.45)11.4.1 Mass spe
trum around the supersymmetri
 va
uumWe 
hoose the expansion forms suitable for the supersymmetri
 solution of se
tion 10.4as follows:Y (2�) : �a[(e13 � e24)� �(e14 + e23)℄; ae56 ;Y (3+) : a3=2[(e13 � e24) + ��1(e14 + e23)℄ ^ e6; a3=2(e125 + e345) ; (11.46)and the standard volume Vs = R a3(1 + �2)e123456. The superpotential and K�ahlerpotential read (using the rede�nition (11.8)):WE = � ie�i�e��̂4�210 Vsa�1=2� ~f� + 3i ~m5 �(2t1 + 1� t2)+r32(1 + �2)� 14 ��t1t2 + �2 (t1)2�� i ~m(t1)2t2�4p2i ~m5� (1 + �2) 14 z1 + 2p2i ~m5 �(1 + �2)� 34 z2 + 2p3� z1t1 �p3(1 + �2)�1t2z2! ;(11.47)



11.5. EFFECTIVE TYPE IIA ACTION ON SU(2)� SU(2) 145

2 4 6 8 10

5

10

15

20

25

30

PSfrag repla
ements ~�
~M2=jW j2

m2 (a) � = � = 1. 2 4 6 8 10

5

10

15

20

25

30

PSfrag repla
ements ~�
~M2=jW j2

(b) � = 12 and � = 2.Figure 11.5: Mass spe
trum of SU(3)�U(1)SU(2) .and K =� ln �(t1 + �t1)2(t2 + �t2)�� ln�4 1�2(1 + �2)(z1 + �z1)2(z2 + �z2)2�+ 3 ln(8�210M2PV �1s e4�̂=3) : (11.48)This model has two shape parameters � = b=a and � = 
=a, and a symmetry under(�; �; ~�) $ (1=�; �=�; �~�). In �gure 11.5, we show the mass spe
trum for some valuesof the parameters. The mass spe
trum at � = 0 turns out to be independent of theparameters �; �. There always seem to be two negative ~M2 eigenvalues. Note thatthere is no 
hoi
e of parameters for this solution to obtain a NCY-limit, whi
h was ourproposal to de
ouple the Kaluza-Klein modes. This 
an be seen from eq. (10.13).11.5 E�e
tive type IIA a
tion on SU(2)� SU(2)Sin
e SU(2) � SU(2) is a trivial 
oset spa
e, all the left-invariant forms ei are G-invariant. As we suggested in the introdu
tion of this se
tion, in order to satisfy the
ondition (2.6a) automati
ally, we must eliminate the one- and �ve-forms. We do so byintrodu
ing at least three mutually supersymmetri
 orientifolds, 
ompatible with thestru
ture 
onstants. This model does not allow for O6-planes that are perpendi
ularto the 
oordinate frame. However, in se
tion 10.5 and appendix D we explained how toperform a suitable basis transformation in order to identify the orientifold involutionssu
h that the �elds and stru
ture 
onstants have the right transformation properties.The result of that analysis are the following expansion forms (see also eq. (D.19))
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Y (2�)1 =e14; Y (2�)2 = e25; Y (2�)3 = e36;Y (3�)1 =14 �e156 � e234 � e246 + e135 + e345 � e126 + e123 � e456� ;Y (3�)2 =14 �e156 � e234 + e246 � e135 � e345 + e126 + e123 � e456� ;Y (3�)3 =14 �e156 � e234 + e246 � e135 + e345 � e126 � e123 + e456� ;Y (3�)4 =14 ��e156 + e234 + e246 � e135 + e345 � e126 + e123 � e456� ;Y (3+)1 =12 �e156 + e234 � e246 � e135 + e345 + e126 + e123 + e456� ;Y (3+)2 =12 �e156 + e234 + e246 + e135 � e345 � e126 + e123 + e456� ;Y (3+)3 =12 �e156 + e234 + e246 + e135 + e345 + e126 � e123 � e456� ;Y (3+)4 =12 ��e156 � e234 + e246 + e135 + e345 + e126 + e123 + e456� :

(11.49)
To simplify notation, it is 
onvenient to de�ne a matrix riI as in eq. (5.65) and we�nd with (11.49) the following matrixr = 0� 1 1 1 �11 �1 �1 �11 �1 1 1 1A : (11.50)For SU(2) � SU(2), we 
al
ulated the third Betti numbers in (9.17) to be b3 = 2.One of the two three-forms in H3(M;R) is odd and we thus make the most generalansatz for the ba
kground �elds as followsĤ = p�Y (3�)1 + Y (3�)2 � Y (3�)3 + Y (3�)4 � ;F̂0 = m;F̂2 = miY (2�)i ;F̂4 = 0 ;F̂6 = 0 : (11.51)

Plugging these ba
kground 
uxes in the expression for the superpotential, we �ndWE = � ie�i�4�210 Vs �m1t2t3 +m2t1t3 +m3t1t2 � imt1t2t3 � ip(z1 + z2 � z3 + z4) + riItizI� ;(11.52)
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and the K�ahler potentialK = � ln 3Yi=1 �ti + �ti�� ln 16 4YI=1 �zI + �zI�+ 3 ln �8�210M2PV �1s � ; (11.53)where Vs = � R e123456. Note that for p 6= 0 the superpotential depends on all themoduli so there are no 
at dire
tions in this model.11.5.1 Mass spe
trum around the supersymmetri
 va
uumFor the analysis of the mass spe
trum around the supersymmetri
 solution, we 
hoosethe following suitable basis for the expansion formsY (2�)1 = ae14 ; Y (2�)2 = be25 ; Y (2�)3 = 
e36 ;Y (3+)1 = �h4
1(a+ b+ 
) (e123 + e456 + e126 + e345 + e315 + e264 + e156 + e234) ;Y (3+)2 h4
1(�a+ b+ 
) (e123 + e456 � e126 � e345 � e315 � e264 + e156 + e234) ;Y (3+)3 �h4
1(a� b+ 
) (�e123 � e456 + e126 + e345 � e315 � e264 + e156 + e234) ;Y (3+)4 h4
1(a+ b� 
) (e123 + e456 + e126 + e345 � e315 � e264 � e156 � e234) ;

(11.54)
and the standard volume Vs = � R ab
 e1:::6. One �nds with eq. (10.22) the superpo-tential (with the rede�nition (11.8)):WE = ie�i�e��̂4�210 Vsa�1=2(32~
1 + i ~m�t1t2t3 � 35(t1 + t2 + t3)� 25(z1 + z2 + z3 + z4)�+ 32~
1(t1t2 + t2t3 + t1t3)+ ~
1~h2n4 �t2t3(1� �2 � �2) + t1t3�2(�1 + �2 � �2) + t1t2�2(�1� �2 + �2)�+ �t1(�1 + �2 + �2) + t2�2(1� �2 + �2) + t3�2(1 + �2 � �2)� (z1 + z2 + z3 + z4)+ �� ��2t1 + t2(1 + �2 � �2) + t3(1� �2 + �2)� (z1 + z2 � z3 � z4)+ � �t1(1 + �2 � �2)� 2�2t2 + t3(�1 + �2 + �2)� (z1 � z2 + z3 � z4)+ � �t1(1� �2 + �2) + t2(�1 + �2 + �2)� 2�2t3� (z1 � z2 � z3 + z4)o) ; (11.55)
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(b) � = 1 and � = 25 .Figure 11.6: Mass spe
trum of SU(2)�SU(2).and the K�ahler potentialK = � ln 3Yi=1(ti + �ti)!� ln 4 4Yi=1 �zi + �zi�!+ 3 ln(8�210M2PV �1s e4�̂=3) : (11.56)There are again two shape parameters � = b=a and � = 
=a and the symmetries� $ �, (�; �; ~�) $ (�=�; 1=�; �~�). In �gure 11.6 we display the mass spe
trum forsome values of the parameters. This time there will always be one unstabilized mass-less axion 3 ( ~M2=0) and a 
orresponding ta
hyoni
 
omplex stru
ture modulus with~M2=jW j2 = �2.In the limit W�1 ! 0, W�2 blows up just as the lower bound for ~�. Hen
e, we
annot satisfy (2.52) for negative a and the de
oupling of the Kaluza-Klein modes isnot guaranteed.11.6 E�e
tive type IIA a
tion on SU(2)2U(1) �U(1)This 
oset spa
e has no supersymmetri
 AdS4 solution. Nevertheless, one 
an de�nean SU(3)-stru
ture on it. In order to eliminate the one- and �ve-forms, we introdu
ea set of suitable orientifolds. The possible orientifolds that are perpendi
ular to the
oordinate frame and 
ompatible with the stru
ture 
onstants are along 4123 ; 345; 256 ; 146 ; 246 ; 156 : (11.57)3One may wonder why there is a 
at axioni
 dire
tion around the supersymmetri
 solution whereaswe 
laimed that for p 6= 0 there are no 
at dire
tions arising with the superpotential (11.52). Thereason is that the bubble 
ontaining the supersymmetri
 solution has bubble parameter p = 0 (seeeq. (11.51)), sin
e the ba
kground 
ux for the supersymmetri
 solution Ĥ / Re
 / dJ is always exa
tand thus pure 
u
tuation.4To be pre
ise, e.g. 123 means for the orientifold involution e1 ! e1, e2 ! e2, e3 ! e3, e4 ! �e4,e5 ! �e5, e6 ! �e6.



11.6. EFFECTIVE TYPE IIA ACTION ON SU(2)2U(1) �U(1) 149In order to remove one- and �ve-forms, it turns out that we have to introdu
e at leasttwo orientifolds, in parti
ular one of f123; 345g and one of f256; 146; 246; 156g. It doesnot matter for the analysis whi
h parti
ular 
hoi
e is made, but for de�niteness let us
hoose the following set 1 2 3 4 5 6O6 N N NO6 N N NO6 N N NO6 N N NFrom the set of G-invariant forms given in eq. (9.20) the following forms survive theorientifold proje
tionodd 2-forms: (e15 + e24) ; e36 ;even 3-forms: e123 ; (e256 � e146) ; e345 ;odd 3-forms: e126 ; (e235 � e134) ; e456 ; (11.58)whi
h we then plug in eq. (3.37). There is always a 
hange of basis su
h that we 
anassume ki > 0, i = 1; 2. The 
onditions for metri
 positivity then be
omeu1u2 > 0 ; u1u3 > 0 : (11.59)With the redu
ed set of forms (11.58) the Betti-numbers are b�2 = 0 and b�3 = 1.The most general ba
kground 
uxes are thus 
hosen to beĤ = p �e126 � e456� ;F̂0 = m;F̂2 = n1e36 + n2(e15 + e24) ;F̂4 = 0 ;F̂6 = 0 ; (11.60)
where we used the 
losed part of ÆC3 to put F̂6 to zero as explained in se
tion 3.3.Note that one easily veri�es that this 
hoi
e of ba
kground 
uxes reprodu
es withthe Bian
hi identity dF̂2 + mĤ = �j6 exa
tly the expe
ted sour
e terms from our
hoi
e of the orientifold involutions. We �nd for the superpotentialWE = � ie�i�4�210 Vs �n1(t2)2 + 2n2t1t2 � imt1(t2)2 + ip(z1 � z3)� t1(z1 + z3)� 2t2z2� ;(11.61)



150 11. EFFECTIVE TYPE IIA ACTION ON COSET SPACESand the K�ahler potentialK = � ln �(t1 + �t1)(t2 + �t2)2�� ln �4(z1 + �z1)(z2 + �z2)2(z3 + �z3)�+ 3 ln �8�210M2PV �1s � ;(11.62)Let us mention that we also 
an 
onsider the 
hoi
e Ĥ = 0 in eq. (11.60), whi
hthen implies that we have to 
hoose F̂6 = �f 0e123456. For this 
hoi
e the superpotentialreadsWE = � ie�i�4�210 Vs �f 0 + n1(t2)2 + 2n2t1t2 � imt1(t2)2 � t1(z1 + z3)� 2t2z2� ; (11.63)whereas the K�ahler potential is not 
hanged. Note that with this 
hoi
e of the ba
k-ground 
uxes, we have an axioni
 
at dire
tion in the model, sin
e the 
ombination(z1 � z3) drops out.11.7 E�e
tive type IIA a
tion on SU(2)�U(1)3Again, for this trivial 
oset spa
e all the left-invariant forms are G-invariant. There areten possible orientifold planes perpendi
ular to the 
oordinate frame and 
ompatiblewith the stru
ture 
onstants. It turns out that in order to remove the one- and �ve-forms we have to 
hoose at least three mutually supersymmetri
 orientifolds and thatit does not matter for the analysis whi
h ones we 
hoose. For de�niteness, let us takethe following 
hoi
e 1 2 3 4 5 6O6 N N NO6 N N NO6 N N NO6 N N NWith these orientifolds, we get the following expansion forms to be used in eq. (3.37)odd 2-forms: e16 ; e25 ; e34 ;even 3-forms: e123 ; e356 ; �e246 ; e145 : (11.64)Again there is always a 
hange of basis su
h that we 
an assume ki > 0, i = 1; 2. Thepositivity of the metri
 demands thatu1u2 > 0 ; u1u3 > 0 ; u1u4 > 0 : (11.65)



11.7. EFFECTIVE TYPE IIA ACTION ON SU(2)�U(1)3 151The Betti-numbers are this time b�2 = 0 and b�3 = 1 su
h that the most generalba
kground 
uxes are Ĥ = pe456 ;F̂0 = m;F̂2 = n1e16 + n2e25 + n3e34 ;F̂4 = 0 ;F̂6 = 0 : (11.66)
Again one easily shows that the Bian
hi identity reprodu
es the expe
ted sour
eterm 
oming from our 
hoi
e of orientifold involutions. The superpotential for thismodel readsWE = � ie�i�4�210 Vs �n1t2t3 + n2t1t3 + n3t1t2 � imt1t2t3 � ipz1 � t1z4 � t2z3 � t3z2� ;(11.67)whereas the K�ahler potential isK = � ln 3Yi=1(ti + �ti)!� ln 4 4Yi=1(zi + �zi)!+ 3 ln �8�210M2PV �1s � : (11.68)Again, one 
ould 
hoose Ĥ = 0 and instead F̂6 = �f 0e123456 in eq. (11.66). Thesuperpotential for this 
hoi
e readsWE = � ie�i�4�210 Vs �f 0 + n1t2t3 + n2t1t3 + n3t1t2 � imt1t2t3 � t1z4 � t2z3 � t3z2� ;(11.69)whereas the K�ahler potential does not 
hange. Note that we obtain again a 
at dire
tionby turning o� Ĥ sin
e the superpotential (11.69) does not depend on z1.





Chapter 12Coset models with stati
SU(2)-stru
tureWithin the 
lass of 
oset geometries we 
an also try to �nd suitable 
oset spa
es for
ompa
ti�
ations with more general G-stru
tures than stri
t SU(3)-stru
ture. Let usfo
us in the following on 
ompa
ti�
ations with stati
 SU(2)-stru
ture. As we have seenin 
hapter 6, for the nilmanifolds there exists a type IIB AdS4 N = 1 solution withstati
 SU(2)-stru
ture whi
h turned out to be related via a T-duality to both, the torussolution and the Iwasawa solution (at least for some values of the parameters). Thismotivates to look in type IIB for possible 
ompa
ti�
ations with stati
 SU(2)-stru
tureon the 
oset spa
es. Indeed, in [34℄ it was mentioned that there is a stati
 SU(2) typeIIB N = 1 
ompa
ti�
ation to AdS4 on SU(3)�U(1)SU(2) that is T-dual to the stri
t SU(3)type IIA solution on the same 
oset (the solution of se
tion 10.4) and a further stati
SU(2) type IIB N = 1 AdS4 solution on SU(2)2U(1) � U(1) whi
h is T-dual to the SU(3)type IIA solution on SU(2)� SU(2) of se
tion 10.5 (see also [117℄).Here we do not only want to study type IIB N = 1 
ompa
ti�
ations to AdS4, butfollow our approa
h and 
ompute the e�e
tive four-dimensional theory for all 
oset mod-els that allow for a stati
 SU(2)-stru
ture. We thus derive the set of G-invariant formsfor these models and expand the stati
 SU(2)-stru
ture quantities given in eq. (3.42)in the appropriate forms. The SU(2)-stru
ture 
onditions (2.16) impose non-trivial
onditions on these 
u
tuations. An elegant way to solve these 
ompatibility 
ondi-tions for the 
u
tuations is to introdu
e (smeared) O5/O7 orientifolds. In eq. (3.40)the transformation properties of the SU(2)-stru
ture quantities are given su
h that we
an expand these quantities in the G-invariant forms transforming 
orrespondingly. Itturns out that the 
ompatibility 
onditions are then automati
ally satis�ed for all the
u
tuations. Note that this is similar to the approa
h we followed for the stri
t SU(3)-stru
ture 
ompa
ti�
ations of 
hapter 11, where we removed one- and �ve-forms by
hoosing appropriate O6 orientifold involutions.In the following we will study the six-dimensional 
oset spa
es G=H of table 4.1that have stru
ture group SU(2). A ne
essary 
ondition on H is that H � SU(2) [34℄,
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h restri
ts the possible 
oset 
andidates to the last four entries in table 4.1. Weimmediately 
an ex
lude the 
oset model SU(2)3SU(2) as 
an be seen as follows 1. WhenSU(2) is embedded diagonally in SU(2)3, the 
oset spa
e admits no G-invariant one-forms (whi
h are needed for a stati
 SU(2)-stru
ture), and if SU(2) is embedded in thelast two SU(2) fa
tors, the given set of G-invariant one- and two-forms isone-forms : e1; e2; e3 ;two-forms : e12; e13; e23 ; (12.1)with whi
h we 
an not satisfy 
ondition (2.16a).In the following we will study the remaining possible 
oset spa
es, that are SU(3)�U(1)SU(2) ,SU(2)2U(1) �U(1), SU(2)� SU(2) and SU(2)�U(1)3. We will restri
t ourselves to O5/O7orientifold planes that are perpendi
ular to the 
oordinate frame 2.12.1 E�e
tive type IIB a
tion on SU(3)�U(1)SU(2)We �rst derive all possible O5/O7 orientifold planes that are perpendi
ular to the 
oor-dinate frame and 
ompatible with the stru
ture 
onstants (i.e. the stru
ture 
onstanttensor (4.29) is even under the orientifold involutions), and we obtain the following listof possible orientifold involutionsO5: 13; 14; 23; 24; 56 ;O7: 1256; 3456 : (12.2)Choosing the O5 orientifold along 56, we would end up with even G-invariant one-forms e5 and e6 under this O5 orientifold, whi
h is not appropriate to expand theSU(2)-stru
ture quantity V in eq. (3.42), sin
e the one-forms have to be odd under O5-orientifolds, see eq. (3.40). We thus ex
lude the orientifold along 56. Whi
h 
ompatible
ombination of the remaining O5-planes we 
hoose does not matter for the followinganalysis, so let us 
hoose for de�niteness the following orientifold planes:1 2 3 4 5 6O5 N NO5 N NO7 N N N NO7 N N N NFrom the set of G-invariant forms for this model (9.14), we obtain the followingbasis of forms transforming as indi
ated under the O5/O7 orientifold planes:1For the details on the stru
ture 
onstants of this 
oset spa
e we refer the reader to [34℄.2Contrary to O6-planes, SU(2)� SU(2) allows for perpendi
ular O5/O7-planes.



12.1. EFFECTIVE TYPE IIB ACTION ON SU(3)�U(1)SU(2) 155type under O5/O7 basis nameodd/even 1-form e5; e6 Y (1�+)ieven/odd 2-form e14 + e23 Y (2+�)odd/odd 2-form e13 � e24 Y (2��)odd/even 4-form e1256 + e3456 Y (4�+)Putting these expansion forms in (3.42) we end up with four 
omplex moduli �elds� = x + iy, t1 = k1 � ib1, z1 = u1 + i
1 and w1 = v1 + ih1. The SU(2)-stru
turequantities are expanded as follows !2 = k1(e13 � e24) ;e��Im
2 = u1(e14 + e23) ;�ie�2�2V ^ �V ^Re
2 = v1(e1256 + e3456) ;2V = C(ie5 � �e6) ; (12.3)and one 
an easily 
he
k that the SU(2)-stru
ture 
ompatibility 
onditions (2.16) areautomati
ally satis�ed for all the 
u
tuations. Ne
essary 
onditions for metri
 positiv-ity are x > 0, k1 > 0 and u1v1 < 0.Note also that there are no ve
tor �elds arising in the spe
trum. For instan
e, for themetri
 or the B-�eld, we would get a gauge �eld from the metri
 for every even/evenone-form and a gauge �eld from the B-�eld for every odd/odd one-form under O5/O7.However, these one-forms do not appear after the orientifold proje
tion. Similarly, oneeasily shows that there are no gauge �elds arising from the RR-se
tor. The same appliesfor the other models in this se
tion.Next we 
ome to the 
hoi
e of ba
kground 
uxes. As explained in se
tion 3.3 we
hoose for this model the following ba
kground 
uxesĤ = 0 ;F̂1 = m1e5 +m2e6 ;F̂3 = f3(e136 � e246) ;F̂5 = f5e12345 ; (12.4)where F̂1 is the most general one-form whi
h is odd/even under the O5/O7 orientifolds,Ĥ 2 H3��(M;R) (this �xes for this model ÆB in eq. (3.46) 
ompletely), F̂3, whi
h iseven/odd under O5/O7, is 
hosen up to exa
t forms and F̂5 2 H5�+(M;R).Note that there is also a non-
losed G-invariant three-form that is odd/odd underthe O5/O7 planes, e146 + e236. This means that whenever we turn on this Ĥ 
ux weautomati
ally have NS5-branes, dĤ = jNS5 6= 0. However, in the following we will putthis 
ontribution to zero sin
e we do not know if the expression we have given for thesuperpotential in eq. (3.38) takes the 
ontribution from the NS5-brane properly intoa

ount.



156 12. COSET MODELS WITH STATIC SU(2)-STRUCTUREThe Bian
hi identities for F̂1 and F̂3 readdF̂1 = �jO7 = �p32 m1(e12 + e34) ;dF̂3 + F̂1 ^ Ĥ = �jO5 = p3f3(e1456 + e2346) ; (12.5)as it is expe
ted from our 
hoi
e of the orientifolds. Plugging these expansions andthe 
hoi
e for the ba
kground 
uxes in the expression for the superpotential (3.38), wearrive atWE = � iC4�210 Vs �f5� + 2f3t1 �m1(t1)2� � im2(t1)2 + 2p3t1z1� �p3w1� ; (12.6)where we de�ned a standard volume Vs = R e123456. For the K�ahler potential we obtainfrom (3.39) K =� ln �(� + ��)(t1 + �t1)2�� ln �4(z1 + �z1)2(w1 + �w1)2�+ 3 ln(8�210M2PV �1s )� ln jCj2 : (12.7)We 
an eliminate the 
omplex s
alar C appearing in the superpotential and the K�ahlerpotential by performing a K�ahler transformation (3.31).Let us now perform a T-duality on this solution along the dire
tion 6. Following[102℄, T-duality a
ts on the RR-�elds by adding/dropping the index we T-dualize on.From the 
hoi
e of ba
kground 
uxes in eq. (12.4) we infer that m2 turns into thebubble parameter for F0 (i.e. the Romans mass) on the type IIA side, m1 and f3 turna

ordingly into bubble parameters for F2 and f5 into the parameter for F6. Indeed,using T-duality on the level of the superpotential (see also eq. (8.8))WE;IIA ! �WE;IIB�� ! 1�� ; (12.8)we arrive at the T-dual type IIA superpotentialWE;IIA = � i4�210Vs �f5 + 2f3�t1 �m1(t1)2 � im2�(t1)2 + 2p3t1z1 �p3�w1� : (12.9)With the identi�
ation � ! t2, f5 ! f 0, f3 ! �n1, m1 ! �n2, m2 ! m, w1 ! z2 andthe 
hoi
e � = 0 (whi
h re
e
ts our simple 
hoi
e of perpendi
ular orientifolds in thisanalysis) this is exa
tly the superpotential for the same 
oset on type IIA with stri
tSU(3)-stru
ture that we obtained in eq. (11.44) with the expe
ted s
aling of the RR-
uxes with the moduli �elds. This is also expe
ted by looking at the stru
ture 
onstantsof this model (see eq. (9.12)): sin
e there is no stru
ture 
onstant with lower or upperindex 6, we 
an T-dualize along 6 without 
hanging the stru
ture 
onstants and we endup (for trivial Ĥ) with the same model in type IIA. Thus, these two 
ompa
ti�
ationsare related by T-duality, as was already suggested in [34℄ on the level of AdS4 N = 1va
ua.
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tive type IIB a
tion on SU(2)2U(1) �U(1)For this model we 
hoose the following O5/O7 planes whi
h are perpendi
ular to the
oordinate frame and 
ompatible with the stru
ture 
onstants (the 
hoi
e is againunique up to relabeling of the 
oordinates):1 2 3 4 5 6O5 N NO5 N NO7 N N N NO7 N N N Nand we obtain the following basis of G-invariant forms transforming as indi
ated underthe O5/O7 orientifold planes:type under O5/O7 basis nameodd/even 1-form e3; e6 Y (1�+)ieven/odd 2-form e15 + e24 Y (2+�)odd/odd 2-form e25 � e14 Y (2��)odd/even 4-form e1236 , e3456 Y (4�+)iThis expansion basis gives rise to �ve 
omplex moduli �elds expanded as in eq. (3.42)with � = x + iy, t1 = k1 � ib1, z1 = u1 + i
1, w1 = v1 + ih1 and w2 = v2 + ih2. One
an easily 
he
k that the SU(2)-stru
ture 
ompatibility 
onditions (2.16) are satis�edfor all the 
u
tuations. Ne
essary 
onditions for metri
 positivity are x > 0, k1 > 0,v1v2 > 0 and u1v1 > 0.For this model, we 
hoose a

ording to the dis
ussion in se
tion 3.3 the ba
kground
uxes as follows Ĥ = 0 ;F̂1 = m1e3 +m2e6 ;F̂3 = f3(e256 � e146) ;F̂5 = f5e12345 : (12.10)
Let us mention that there is again room for an NS5-brane sour
e sin
e there is anon-
losed G-invariant three-form, e156+e246, transforming exa
tly as the H-
ux underthe O5/O7 planes. However, we will put to zero this 
ontribution.The Bian
hi identities for F̂1 and F̂3 readdF̂1 = �jO7 = �m1(e12 + e45)dF̂3 + F̂1 ^ Ĥ = �jO5 = f3(e1356 + e2346) (12.11)



158 12. COSET MODELS WITH STATIC SU(2)-STRUCTUREas it is expe
ted. For the superpotential, we derive from eq. (3.38) the expressionWE = � iC4�210Vs �f5� + 2f3t1 �m1(t1)2� � im2(t1)2 � (w1 + w2)� 2t1z1�� ; (12.12)where the standard volume is Vs = R e123456. For the K�ahler potential we obtain fromeq. (3.39)K =� ln �(� + ��)(t1 + �t1)2�� ln �4(z1 + �z1)2(w1 + �w1)(w2 + �w2)�+ 3 ln(8�210M2PV �1s )� ln jCj2 : (12.13)We 
an eliminate the 
omplex s
alar C by performing a K�ahler transformation (3.31).Let us now perform a T-duality along the 6 dire
tion. The same 
onsiderations as inthe previous se
tion leads, using the T-duality rule (12.8), to the type IIA superpotentialWE;IIA = � i4�210Vs �f5 + 2f3�t1 �m1(t1)2 � im2�(t1)2 � �(w1 + w2)� 2t1z1� :(12.14)Under the identi�
ation � ! t1, t1 ! t2, w1 ! z1, w2 ! z3, z1 ! z2 for the moduli�elds and f5 ! f 0, f3 ! n2, m1 ! �n1 and m2 ! m for the bubble parameters, weobtain the same superpotential as we obtained for the same 
oset with stri
t SU(3)-stru
ture in eq. (11.63). Hen
e, these two 
ompa
ti�
ations on the same 
oset are againrelated by a T-duality (whi
h is also expe
ted sin
e the stru
ture 
onstants have nolower or upper 6 index, see eq. (9.19)). Note that we have an axioni
 
at dire
tion inthis model.12.3 E�e
tive type IIB a
tion on SU(2)� SU(2)For this model we 
hoose the following perpendi
ular O5/O7-planes (again unique upto relabeling of the 
oordinates) 1 2 3 4 5 6O5 N NO5 N NO7 N N N NO7 N N N Nsu
h that we obtain the following basis of left-invariant forms transforming as indi
atedunder the O5/O7 orientifoldstype under O5/O7 basis nameodd/even 1-form e3; e6 Y (1�+)ieven/odd 2-form e14, e25 Y (2+�)iodd/odd 2-form e15, e24 Y (2��)iodd/even 4-form e1236, e3456 Y (4�+)
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omplex moduli �elds whi
h we expand as indi
ated in eq. (3.42).Again, one easily 
an verify that the 
ompatibility 
onditions for the SU(2)-stru
ture(2.16) are satis�ed for all the 
u
tuations. Ne
essary 
onditions for metri
 positivityare x > 0, k1 > 0, k2 > 0 and v1v2 > 0, u1u2 < 0 and u2v2 < 0.The ba
kground 
uxes are 
hosen a

ording to our dis
ussion in se
tion 3.3 as followsĤ = 0 ;F̂1 = m1e3 +m2e6 ;F̂3 = f1(e135 + e246) + f2(e156 + e234) ;F̂5 = 0 : (12.15)
Note that there again exist non-
losed invariant three-forms, (e134�e256) and (e146�e235), whi
h transform the same way as Ĥ does under the orientifold involutions. Hen
e,we 
ould have NS5-branes by turning on these 
uxes. However, we will again put tozero these 
uxes sin
e the superpotential (3.38) may not be 
orre
t in the presen
e ofNS5-branes.The superpotential reads for this 
hoi
eWE = � iC4�210Vs �f1(t1 + it2�) + f2(t2 + it1�)�m1t1t2� � im2t1t2+it1z2 � it2z1 � t1z1� + t2z2� � iw1� � w2� ; (12.16)where we de�ned Vs = R e123456. The K�ahler potential readsK = � ln �(� + ��)(t1 + �t1)(t2 + �t2)�� ln ��4(z1 + �z1)(z2 + �z2)(w1 + �w1)(w2 + �w2)�+ 3 ln(8�210M2PV �1s )� ln jCj2 : (12.17)Again, we 
an eliminate the 
omplex s
alar C by performing a K�ahler transformation(3.31).This superpotential is not T-dual to a type IIA model with geometri
 
uxes only.This 
an for example be seen by performing a T-duality along the 6 dire
tion as in theprevious se
tions, ending up with a type IIA superpotentialWE;IIA = � i4�210 Vs �i(f1t2 + f2t1) + f1t1� + f2t2� �m1t1t2 � im2t1t2��t1z1 + t2z2 � iw1 � w2� + it1z2� � it2z1�� ; (12.18)where the terms in the �rst line 
ome from F4, F2 and F0 
uxes, respe
tively. The �rstfour terms in the se
ond line 
ome from geometri
 
uxes but the last two terms arenon-geometri
 Q-
uxes (note the 
ombination of two K�ahler moduli and one 
omplex
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ture moduli in those terms). Su
h non-geometri
 
uxes will also arise for a T-duality along any other dire
tion than 6, sin
e the stru
ture 
onstants have all sixdire
tions as lower and upper indi
es. Thus, a T-duality, whi
h a
ts on geometri
 
uxesby raising/lowering the index we T-dualize on [118℄ (for a review on non-geometri
alba
kgrounds see, e.g., [119℄) Hijk Ti�! f ijk Tj�! Qijk ; (12.19)results in a type IIA ba
kground with non-geometri
 
uxes Q. Hen
e, this is in fa
t anew model we did not study so far on the type IIA side.12.4 E�e
tive type IIB a
tion on SU(2)�U(1)3The analysis of this model is quite similar to the analysis of the model SU(2)�SU(2), asone only turns o� the stru
ture 
onstant f456 = 0. Therefore, one 
an 
hoose withoutloss of generality the same O5/O7-planes as in se
tion 12.3 and the same expansionforms. The only di�eren
e is in the 
hoi
e of ba
kground 
uxes, sin
e the 
ohomology
hanges, and we 
hoose Ĥ = 0 ;F̂1 = m1e3 +m2e6 ;F̂3 = f1e156 + f2e246 ;F̂5 = f5e12345 ; (12.20)su
h that the superpotential readsWE = � iC4�210 Vs �f5� + f1t2 + f2t1 �m1t1t2� � im2t1t2 � w2 � t1z1� + t2z2�� ;(12.21)and the K�ahler potential is as in eq. (12.17). Note that there is an axioni
 
at dire
tionsin
e the superpotential does not depend on w1.Again, it is not diÆ
ult to �nd the identi�
ations to show that this model is T-dual (along the dire
tion 6) to the model on the same 
oset in type IIA with stri
tSU(3)-stru
ture, see eq. (11.69).Let us brie
y summarize the result of this 
hapter. By turning on O5/O7 orientifoldplanes in order to satisfy the 
ompatibility 
onditions (2.16), we 
omputed the typeIIB e�e
tive theory for all 
oset models that allow for a stati
 SU(2)-stru
ture (theseare the last four entries in table 4.1). However, we noti
ed that for all ex
ept one ofthese models there is a T-duality relating the model to a type IIA stri
t SU(3)-stru
ture
ompa
ti�
ation that we already analyzed in 
hapter 11. One model, however, is T-dual to a type IIA stri
t SU(3)-stru
ture 
ompa
ti�
ation with non-geometri
 
uxesand may thus be interesting for the phenomenologi
al appli
ations we study in the next
hapter.



Chapter 13On the 
osmology of the 
osetmodelsWe dis
ussed in 
hapter 5 that an epo
h of 
osmi
 in
ation in the early universe isthe dominant lore to explain the fas
inating data of re
ent astronomi
al observations,for instan
e the 
atness and homogeneity of our universe. The in
ationary phase tookpla
e even before the phase of the radiation dominated universe, as the universe hadtemperatures of at least 10 billions degrees. At extremely high energies quantum e�e
tsof gravity are expe
ted to be
ome important. String theory is believed to be a promising
andidate to des
ribe this physi
s appropriately - and as su
h should be able to realizein
ation. We have seen that in
ation 
an be driven by a s
alar �eld, and the moduli�elds of string theory provide us with natural 
andidates for an in
aton. SuÆ
ient
onditions to realize in
ation within string theory are the so-
alled slow-roll 
onditionson the potential of the moduli �elds. We reviewed these 
onditions in se
tion 5.1.2.Another important 
osmologi
al observation is that at present the universe is in astate of a

elerated expansion. We thus want to look for a string theory va
uum withsmall positive 
osmologi
al 
onstant, i.e. a de Sitter solution.Of 
ourse we are now interested in the question, whether the models we 
onsider inthis thesis, for whi
h we expli
itly 
onstru
ted the four-dimensional e�e
tive potential,are interesting 
andidates for in
ation s
enarios or have de Sitter solutions with smallpositive 
osmologi
al 
onstant. As we mentioned already in the introdu
tion, this wouldrender these type IIA models extremely interesting, sin
e type IIA orientifolds withinterse
ting D6-branes o�er good prospe
ts for deriving standard model-like se
torsfrom strings.However, the main problem to realize in
ation or de Sitter va
ua in the 
lassi
alregime in type IIA is that there exist quite strong no-go theorems against slow-rollin
ation and de Sitter va
ua. These no-go theorems were dis
ussed in se
tion 5.2 and5.3 and fo
us in parti
ular on the role played by the 
urvature of the internal manifold.Let us brie
y summarize the ne
essary 
onditions to avoid these no-go theorems:
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Vf > 0 ; or equivalently ; R < 0 ; (13.1a)m 6= 0 ; (13.1b)DU � ���U�� = �ka �U�ka < 0 ; (13.1
)where Vf is the 
ontribution of the geometri
 
uxes to the s
alar potential, R is thes
alar 
urvature of the internal manifold (the expression for R is given in eq. (4.28)), mis the Roman mass and the expression for � and the fun
tion U are given in eqs. (5.53)and (5.66), respe
tively. We further mentioned in se
tion 5.2 that to avoid a runawayin � -dire
tion we need VO6/D6 < 0.We are always free to turn on a non-vanishing Romans mass m, su
h that 
ondition(13.1b) is easy to satisfy. From the de�nition of U in eq. (5.66) and eq. (5.45), we getthe relation between the s
alar 
urvature and UR / � UVol ; (13.2)su
h that the �rst 
ondition in (13.1a) translates into the requirement that U is positive.It suÆ
es therefore to derive for all 
oset models the fun
tion U . If U is negative forall values in the moduli spa
e, the no-go theorem of se
tion 5.2 applies, implying thebound on the slow-roll parameter � � 27=13, thus ruling out slow-roll in
ation and deSitter va
ua. If it turns out that U 
an be positive for some region in the moduli spa
e,we 
he
k the third 
ondition (13.1
). If it turns out that DU � 0 the no-go theoremof se
tion 5.3 applies and slow-roll in
ation and de Sitter va
ua are ex
luded for the
orresponding model, sin
e � � 2.In the following we derive for ea
h 
oset model of 
hapter 11 the s
alar 
urvatureR with eq. (4.28) and the metri
 gij indu
ed by J and 
. From eq. (5.66) we then
al
ulate the fun
tion U .In 
hapter 12 we identi�ed type IIB stati
 SU(2)-stru
ture 
ompa
ti�
ations on the
oset models. However, we showed for all but one model that there is a T-dualityrelating these models to type IIA stri
t SU(3)-stru
ture 
ompa
ti�
ations whi
h wealready analyzed in 
hapter 11. Hen
e, for these models nothing new is expe
ted.However, there is one type IIB model with a T-dual on type IIA involving non-geometri

uxes. Thus, the no-go theorems do not apply and the model 
ould be interesting forin
ation or de Sitter va
ua.13.1 Type IIA 
oset 
ompa
ti�
ations with a no-go theo-remIn this se
tion, we go through the list of 
oset models that admit a stri
t SU(3)-stru
ture(see 
hapter 11). Unfortunately, as we will see in the following, we have to ex
lude all
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oset models for slow-roll in
ation as well as de Sitter va
ua, sin
e we
an apply one of the no-go theorems of 
hapter 5.G2SU(3)For this model we �nd for the fun
tion U (see eq. (5.66)):U / �(k1)2 ; (13.3)whi
h is manifestly negative. This implies that Vf itself is manifestly negative so thatthe no-go theorem of [91℄, whi
h we reviewed in se
tion 5.2, already rules out this 
osetmodel [49℄.Sp(2)S(U(2)�U(1))For this 
oset model we 
al
ulate for the fun
tion U the followingU / (k2)2 � 4(k1)2 � 12k1k2 ; (13.4)whi
h is not negative on the whole moduli spa
e (as one 
an see by 
hoosing k2 smalland k1 large). The no-go theorem (5.48) is thus not appli
able and we therefore performa more 
areful analysis using the re�ned no-go theorem of se
tion 5.3. The only non-vanishing interse
tion number is �112 and permutations thereof, so that k2 plays therole of k0, and we haveDU = �k1�k1U / 8(k1)2 + 12k1k2 > 0 ; (13.5)so that with ki > 0 (be
ause of metri
 positivity) the inequality (5.68) is stri
tlysatis�ed and this model is ruled out.SU(3)U(1)�U(1)For this 
oset spa
e, we obtainU / (k1)2 + (k2)2 + (k3)2 � 6k1k2 � 6k2k3 � 6k1k3 ; (13.6)whi
h 
an be positive for some values of ka. The non-vanishing interse
tion numbersare of the type �123 so that we 
an 
hoose any one of the three k's as k0. We will
hoose k0 to be the biggest and assume without loss of generality that this is k1, i.e.that k1 � k2; k3. We then �nd thatDU = (�k2�k2 � k3�k3)U / (6k1 � 2k2)k2 + (6k1 � 2k3)k3 + 12k2k3 > 0; (13.7)so that with ki > 0 (be
ause of metri
 positivity) this 
oset spa
e is also ruled out bythe no-go theorem (5.68).



164 13. ON THE COSMOLOGY OF THE COSET MODELSSU(3)�U(1)SU(2)For this model, the fun
tion U depends on an extra 
onstant � related to the 
hoi
e oforientifolds, see se
tion 11.4. The fun
tion U turns out to beU / (k2)2(u2)2 � 8k1k2ju1u2j(1 + �2) ; (13.8)and the non-vanishing interse
tion numbers are of the form �112. Thus k2 plays therole of k0, and we �nd thatDU = �k1�k1U / 8k1k2ju1u2j(1 + �2) > 0; (13.9)so that with ki > 0 (be
ause of metri
 positivity) this 
ase is also ruled out.SU(2)2U(1) �U(1)The fun
tion U be
omes for this 
oset modelU / �4k1k2u2(u1 + u3) + (k2)2 �(u1)2 + (u3)2�2pu1u3ju2j : (13.10)whi
h 
an be positive for 
ertain values of the K�ahler moduli. The non-vanishinginterse
tion number is �112 so that k2 plays the role of k0, and we get for (5.68):DU = �k1�k1U / 2k1k2u2(u1 + u3)pu1u3ju2j > 0 ; (13.11)whi
h is positive using the 
onditions (11.59). Hen
e, this 
ase is ruled out as well.SU(2)�U(1)3For the quantity U we get this timeU / (k1u4)2 + (k2u3)2 + (k3u2)2 � 2k1u4k2u3 � 2k1u4k3u2 � 2k2u3k3u22pu1u2u3u4 ; (13.12)whi
h 
an be positive. The non-vanishing interse
tion number is �123 so that ea
h ki
an play the role of k0. Without loss of generality we 
an assume k1u4 � k2u3 > 0,k1u4 � k3u2 > 0 and 
hoose k0 to be k1. Thus we then �ndDU = (�k2�k2 � k3�k3)U / �(k2u3 � k3u2)2 + k1u4(k2u3 + k3u2)pu1u2u3u4 > 0 ; (13.13)so that we 
an also rule out this model.



13.2. NUMERICAL ANALYSIS FOR THE SU(2)� SU(2) COSET 165SU(2)� SU(2)Thus far, we have found that � � 2 for all other 
ases. For the remaining 
oset spa
eSU(2)� SU(2), one �ndsU / 3Xi=1(ki)2 4XI=1(uI)2!� 4k2k3(ju1u2j+ ju3u4j)� 4k1k2(ju1u4j+ ju2u3j)� 4k1k3 �ju1u3j+ ju2u4j� ; (13.14)and the non-vanishing interse
tion numbers are of the form �123 so that we 
ould 
hooseany one of the k's as k0. However, it is not possible to apply the no-go theorem. This
an be easily seen if we take for example u1 � u2; u3; u4. Then we have s
hemati
allyU / ~k2(u1)2 and DU / �kaka(u1)2 < 0. In [92℄ further no-go theorems have beenderived but none of those apply to this 
ase either. We therefore study this 
oset spa
ein more detail in se
tion 13.2.To summarize, by means of the 
lassi
al no-go theorems of 
hapter 5, we 
ould ruleout all but one 
oset model to allow for in
ation or de Sitter va
ua. To be pre
ise, thelower bound on � � 2 implies that there are, for V > 0, dire
tions in the �eld spa
e thatare too steep to realize in
ation or a de Sitter minimum. Further, as we dis
ussed inse
tion 5.3.1, for the models in this se
tion, the following additional ingredients 
annotbe added: NS5-, D4- and D8-branes, sin
e there are no 
orresponding 
urrents with theappropriate properties under all orientifold involutions. Also, an F-term uplift alongthe lines of O'KKLT [100, 101℄ does not work.Note that we 
an not be sure that there are no other light Kaluza-Klein modes joiningthe light �elds based on the left-invariant expansion ansatz, sin
e a separation of s
alesturned out to be diÆ
ult. However, as we already mentioned, a trun
ation to the set ofleft-invariant forms is believed to provide a 
onsistent trun
ation [115, 60, 116℄ and thatthere is no 
oupling between the set of preserved left-invariant �elds and the trun
atednon-invariant �elds. Hen
e, even if light �elds from the Kaluza-Klein spe
trum wouldeventually join the trun
ated e�e
tive theory, in
ation and de Sitter va
ua would stillbe ex
luded by the no-go theorems, sin
e there are already in the trun
ated theorydire
tions, that are too steep to allow for in
ation and de Sitter va
ua.13.2 Numeri
al analysis for the SU(2)� SU(2) 
ompa
ti-�
ation on type IIA and on type IIBIn se
tion 11.5 we derived the type IIA stri
t SU(3)-stru
ture superpotential and K�ahlerpotential for a 
ompa
ti�
ation on this 
oset spa
e. By means of eq. (3.25) it is straight-forward to 
al
ulate the s
alar potential and the slow-roll parameter � as in eq. (5.31).However, the expression for � is quite 
ompli
ated so that we 
annot minimize it an-alyti
ally. On the other hand, we 
an minimize it numeri
ally and it turns out thatone indeed �nds solutions with numeri
ally vanishing � (and we 
an 
on
lude that in



166 13. ON THE COSMOLOGY OF THE COSET MODELSthis 
ase there is no undis
overed no-go theorem against small �). For instan
e, su
h asolution is given bym1 = m2 = m3 = L ; m = 2L�1 ; p = 3L2 ;k1 = k2 = k3 � :8974L2 ; b1 = b2 = b3 � �:8167L2 ;u1 � 2:496L3; u2 = �u3 = u4 � �:05667L3 ;
1 � �2:574L3 ; 
2 = �
3 = 
4 � :3935L3 ; (13.15)where L is an arbitrary length. While we 
an use L to s
ale up our solution with respe
tto the string length ls, we stress that this does not 
orrespond to a massless modulus,as it also 
hanges the 
uxes.To obtain a trustworthy supergravity solution we would have to make sure that theinternal spa
e is large 
ompared to the string length and that the string 
oupling issmall (for whi
h we 
ould use our freedom in L). Furthermore, in the full string theorythe 
uxes have to be properly quantized. Although it is unlikely that this would preventsmall �, we will not try to �nd su
h a solution, be
ause all the solutions with vanishing� we found have a more serious problem, namely that � . �2:4. The eigenvalues ofthe mass matrix turn out to be generi
ally all positive ex
ept for one, with the oneta
hyoni
 dire
tion being a mixture of all the light �elds, in parti
ular the axions.This means that we have a saddle point rather than a de Sitter minimum. A similarinstability was found in related models in [92℄.In [120℄, a no-go theorem preventing de Sitter va
ua and slow-roll in
ation of generalfour-dimensional supergravity theories was derived by studying the eigenvalues of themass matrix. Allowing for an arbitrary tuning of the superpotential it was shown thatfor 
ertain K�ahler potentials the Goldstino mass is always negative. For the exampleswe found, this mass is always positive so that the no-go theorem of [120℄ does notapply. This means that allowing for an arbitrary superpotential it should be possibleto remove the ta
hyoni
 dire
tion. In our 
ase, however, the superpotential is of 
oursenot arbitrary.Sin
e the no-go theorems against slow-roll in
ation do not apply and we have foundsolutions with vanishing �, we 
he
ked whether our solutions allow for small � in thevi
inity of the de Sitter extrema. Unfortunately, this is not the 
ase. In fa
t, we foundthat � does not 
hange mu
h in the vi
inity of our solutions where � is still small.However, let us stress that our numeri
al sear
h is possibly not exhaustive and we
annot 
ompletely rule out the existen
e of de Sitter va
ua or in
ating regions for this
ase.On the other hand, on the same 
oset a type IIB stati
 SU(2)-stru
ture 
ompa
ti-�
ation is possible. In se
tion 12.3 we derived the expli
it superpotential and K�ahlerpotential for this 
ompa
ti�
ation. Further we showed that the type IIB 
ompa
ti�
a-tion is not T-dual to a type IIA 
ompa
ti�
ation with geometri
 
uxes only. Hen
e, itis not possible to apply the no-go theorems of se
tion 5.2 and 5.3, and the model maystill be interesting for phenomenologi
al appli
ations.
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alar potential from eq. (3.25) and theslow-roll parameter �. Although we 
annot analyti
ally minimize �, we will again doit numeri
ally. However, this time the numeri
al analysis seems to give a lower boundfor epsilon: � & 9=7. This numeri
al analysis strongly suggest the existen
e of a so farundis
overed no-go theorem for type IIB 
ompa
ti�
ations (or, from the T-dual typeIIA perspe
tive, also in the presen
e of non-geometri
 
uxes) and it would be veryinteresting to further explore this possibility.





Chapter 14Con
lusionsIn this thesis we analyzed a large number of type IIA stri
t SU(3)-stru
ture 
ompa
t-i�
ations with 
uxes and O6/D6-sour
es, as well as type IIB stati
 SU(2)-stru
ture
ompa
ti�
ations with 
uxes and O5/O7-sour
es. Restri
ting to stru
tures and 
uxesthat are 
onstant in the basis of left-invariant one-forms, these models are tra
tableenough to allow for an expli
it derivation of the four-dimensional low-energy e�e
tivetheory.The six-dimensional 
ompa
t manifolds we studied in this thesis are nilmanifoldsbased on nilpotent Lie-algebras, and, on the other hand, 
oset spa
es based on semi-simple and U(1)-groups, whi
h admit a left-invariant stri
t SU(3)- or stati
 SU(2)-stru
ture. In parti
ular, from the set of 34 distin
t nilmanifolds we identi�ed twonilmanifolds, the torus and the Iwasawa manifold, that allow for an AdS4, N = 1type IIA stri
t SU(3)-stru
ture solution and one nilmanifold allowing for an AdS4,N = 1 type IIB stati
 SU(2)-stru
ture solution. From the set of all the possible six-dimensional 
oset spa
es given in table 4.1, we identi�ed seven 
oset spa
es suitablefor stri
t SU(3)-stru
ture 
ompa
ti�
ations, four of whi
h also allow for a stati
 SU(2)-stru
ture 
ompa
ti�
ation. For all these models, we 
al
ulated the four-dimensionallow-energy e�e
tive theory usingN = 1 supergravity te
hniques. In order to write downthe most general four-dimensional e�e
tive a
tion, we also studied how to 
lassify thedi�erent dis
onne
ted \bubbles" in moduli spa
e.Some of the 
oset spa
es allow for four-dimensional (massive) type IIA N = 1 AdS4solutions. For these 
oset models and the three nilmanifold models, we 
al
ulatedthe mass spe
trum of the moduli �elds around the supersymmetri
 solution. For thenilmanifold examples we have found that there are always three unstabilized moduli
orresponding to axions in the RR-se
tor. On the other hand, the N = 1 solutions onthe 
oset models, ex
ept for SU(2) � SU(2), have all moduli stabilized. For the torusand the Iwasawa solution, we also performed an expli
it Kaluza-Klein redu
tion, whi
hled to the same result as the analysis with supergravity te
hniques, supporting thevalidity of the e�e
tive supergravity approa
h also in the presen
e of geometri
 
uxes.Furthermore, we have demonstrated that this superpotential and K�ahler potential lead



170 14. CONCLUSIONSto sensible results in type IIB string theory with stati
 SU(2)-stru
ture.The ne
essary and suÆ
ient 
onditions for N = 1 
ompa
ti�
ations of type IIAsupergravity to AdS4 with the stri
t SU(3)-stru
ture ansatz for
e, for non-vanishingRomans mass, the warp fa
tor and the dilaton to be 
onstant. On the other hand,provided that we set the Romans mass to zero, nothing prevents the warp fa
tor andthe dilaton to be non-
onstant. We analyzed the ne
essary and suÆ
ient 
onditionsfor an AdS4 N = 1 
ompa
ti�
ation of this type in se
tion 2.3. However, to �ndexpli
it solutions of this type turns out to be diÆ
ult. One reason is that one has toleave the 
onvenient notion of left-invariant forms that drops the expli
it 
oordinatedependen
e. In addition, as we inferred from the analysis in se
tion 10.6, where weturned on a small non-
onstant deformation for the warp fa
tor, a non-
onstant warpfa
tor seems in general to require the presen
e of lo
alized sour
es.Two of the 
oset models of table 4.1 do admit a stri
t SU(3)-stru
ture, but no typeIIA N = 1 AdS4 va
uum. Choosing for simpli
ity the O-planes su
h that the one- and�ve-forms are proje
ted out and restri
ting to O-planes that are perpendi
ular to the
oordinate frame, we 
ould 
ompute the four-dimensional low-energy e�e
tive a
tion.In the same spirit, in
luding appropriate O5/O7-planes, we 
omputed the e�e
tivea
tion for the four type IIB stati
 SU(2)-stru
ture 
ompa
ti�
ations on 
oset spa
es.However, for three of these type IIB models we found a T-duality relating them to typeIIA models with stri
t SU(3)-stru
ture that we already studied. On the other hand,one model is new, sin
e it is T-dual to a type IIA model with non-geometri
 
uxes.On
e the e�e
tive potential is known, one 
an study many interesting questions. Forinstan
e, we dis
ussed for some models how to identify the bubbles in moduli spa
ethat 
ontain one or more N = 1 AdS4 solutions. Ultimately, we would like to uplift theAdS4 solutions to a de Sitter spa
e-time with a small, positive 
osmologi
al 
onstant.This might be a

omplished by in
orporating a suitable additional uplifting term inthe potential along the lines of, e.g, [23℄. Although a negative mass squared for alight �eld in AdS4 does not ne
essarily signal an instability, after the uplift all �eldsshould have positive mass squared. Unless the uplifting potential 
an 
hange the signof the squared masses, it is thus desirable that they are all positive even before theuplifting. We found that this 
an be arranged for the 
oset models G2SU(3) , Sp(2)S(U(2)�U(1))and SU(3)U(1)�U(1) for suitable values of the orientifold 
harge.An alternative approa
h towards obtaining meta-stable de Sitter va
ua 
ould alsobe to sear
h for non-trivial de Sitter minima in the original 
ux potential away fromthe AdS4 va
uum. This approa
h is also appropriate for the models without an N = 1AdS4 solution. However, there exist strong no-go theorems against slow-roll in
ationand de Sitter minima in type IIA string theory at tree level. We dis
ussed the ne
es-sary 
onditions to 
ir
umvent these no-go theorems. For instan
e, the dilaton-volumedependen
e in type IIA SU(3)-stru
ture 
ompa
ti�
ations forbids de Sitter va
ua orslow-roll in
ation unless the 
ompa
t spa
e has negative s
alar 
urvature indu
ed bythe geometri
 
uxes (or other more 
omplex ingredients are introdu
ed). Regions inmoduli spa
e with negative s
alar 
urvature are indeed possible for most of the 
oset



171models we studied. To study these models further we adapted a re�ned no-go theo-rem [92℄ and identi�ed a geometri
al 
riterion that allows one to separate interestingSU(3)-stru
ture 
ompa
ti�
ations from non-realisti
 ones.As a matter of fa
t, after this analysis, only two of the 
oset models are not di-re
tly ruled out by any known no-go theorem and remain interesting 
andidates torealize slow-roll in
ation or stable de Sitter minima (without the in
lusion of otheringredients). These are the type IIA stri
t SU(3)- and type IIB stati
 SU(2)-stru
ture
ompa
ti�
ations on the model SU(2)� SU(2). For the former 
ompa
ti�
ation, a nu-meri
al analysis indeed reveals 
riti
al points (
orresponding to numeri
ally vanishing�) with positive energy density, but only at the pri
e of a ta
hyoni
 dire
tion, 
orre-sponding to a large negative eta-parameter, � . �2:4. Interestingly, this ta
hyoni
dire
tion does not 
orrespond to the one used in the di�erent types of no-go theoremsof [120℄. As our numeri
al sear
h is possibly not exhaustive, we 
annot 
ompletely ruleout the existen
e of de Sitter va
ua or in
ating regions for this 
ase. One may tryto rule out this 
ase by means of another no-go theorem, perhaps by using methodssimilar in spirit to [120℄, although a dire
t appli
ation of their results to this 
ase doesnot seem possible.On the other hand, the numeri
al analysis for the type IIB stati
 SU(2)-stru
ture
ompa
ti�
ation reveals a lower bound on the �rst slow-roll parameter, � & 9=7, whi
hstrongly suggest the existen
e of a so far undis
overed no-go theorem for type IIB
ompa
ti�
ations (or, from the T-dual type IIA perspe
tive, also in the presen
e ofnon-geometri
 
uxes). To extend our study in this dire
tion would be very interesting.Following [98, 99℄ or [121, 122, 123℄, one 
ould also try to in
orporate additional stru
-tures su
h as NS5-branes or quantum 
orre
tions of various types. In se
tion 5.3.1,however, we found that at least for our type IIA models, the following additional in-gredients 
annot be added or do not work: NS5-, D4- and D8-branes as well as anF-term uplift along the lines of O'KKLT [100, 101℄. Perhaps also methods similar tothe ones in [124℄ for non-supersymmetri
 Minkowski or AdS4 va
ua might be useful forthe dire
t ten-dimensional 
onstru
tion of de Sitter 
ompa
ti�
ations.
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Appendix AConventionsWe de�ne an l-form as A = 1l!A�1:::�ldx�1 ^ � � � ^ dx�l ; (A.1)and the exterior produ
t of a p-form A and a q-form B as(A ^B)�1:::�p+q = (p+ q)!p!q! A[�1:::�pB�p+1:::�p+q ℄ ; (A.2)where the antisymmetrization is understood with fa
tors,A[�1:::�l℄ = 1l! (A�1:::�l + antisymmetri
 permutations) : (A.3)The exterior derivative is d = dx��� and given bydA�1:::�l+1 = (l + 1)�[�1A�2 :::�l+1℄ : (A.4)The 
ontra
tion of an l-form A with with a ve
tor v = vi ��xi is de�ned by�vA = 1(l � 1)!vjAj�2:::�ldx�2 ^ � � � ^ dx�l : (A.5)The operator � a
ts on forms by reversing the order of their indi
es, i.e.,�(A) = 1l!A�1:::�ldx�l ^ � � � ^ dx�1 : (A.6)Note that this results for an l-form in�(A) = (�1) l(l�1)2 A : (A.7)The Hodge dual tensor of an l-form A and a given metri
 g is given by(?A)�1:::�D�l = 1l!pjgj��1:::�D�l�1:::�lg�1�1 � � � g�l�lA�1:::�l ; (A.8)



176 A. CONVENTIONSwhere � is the totally antisymmetri
 tensor su
h that �01:::D = 1. With this de�nitionwe obtain ? ? A = (�1)l(D�l)sign(g)A : (A.9)It follows for the kineti
 terms for the RR-�elds�12 Z dDxpjgj 1n!F�1:::�nF �1:::�n = �(�1)n(D�n)2 Z Fn ^ ?Fn : (A.10)The volume form is de�ned as ?1 = vol : (A.11)We often use the 10 ! 4 + 6 split whi
h indu
es forms of the type �p ^ �q, where�p is an external p-form and �q an internal q-form. We 
an use?10(�p ^ �q) = (�1)pq ?4 �p ^ ?6�q ; (A.12)whi
h implies the useful relations?10� = vol4 ^ ?6� ; ?10(vol4 ^ �) = � ?6 � ;?10vol4 = �vol6 ; ?10vol6 = vol4 : (A.13)We de�ne an inner produ
t on forms as follows(�; �) = (�1)l(D�l) Z � ^ ?� ; (A.14)where l is the dimension of both � and �. Further we de�ne the adjoint dy of theexterior derivative as follows (d�; �) = (�;dy�) : (A.15)We �nd using eq. (A.14)dy = � sign(g) ? d? for D even(�1)l+1sign(g) ? d? for D odd : (A.16)The Lapla
ian is de�ned as follows� = dyd + ddy : (A.17)For the 
ontra
tion of a (poly-)form with gamma matri
es we introdu
e the followingnotation A = /A =Xl 1l!A�1:::�l
�1:::�l ; (A.18)where we use the underline if the slash makes the expression unreadable.



Appendix BType IIA supergravityThe bosoni
 
ontent of type II supergravity 
onsists of a metri
 g, a dilaton �, anNSNS three-form H and RR-�elds Fn. In the demo
rati
 formalism of [44℄, where thenumber of RR-�elds is doubled, n runs over 0; 2; 4; 6; 8; 10 in IIA and over 1; 3; 5; 7; 9in type IIB. We write n to denote the dimension of the RR-�elds; for example (�1)nstands for +1 in type IIA and �1 in type IIB. After deriving the equations of motionfrom the a
tion, the redundant RR-�elds are to be removed by hand by means of theduality 
ondition: Fn = (�1) (n�1)(n�2)2 en�52 � ?10 F(10�n) ; (B.1)given here in the Einstein frame. We will often 
olle
tively denote the RR-�elds, andthe 
orresponding potentials, with polyforms F =Pn Fn and C =PnC(n�1), so that:F = dHC.In the Einstein frame, the bosoni
 part of the bulk a
tion reads:Sbulk = 12�210 Z d10xp�g "R� 12(��)2 � 12e��H2 � 14Xn e 5�n2 �F 2n# ; (B.2)where for an l-form A we de�neA2 = A �A = 1l! AM1:::MlAN1:::NlgM1N1 � � � gMlNl : (B.3)Sin
e (B.1) needs to be imposed by hand this is stri
tly-speaking only a pseudoa
tion.Note that the doubling of the RR-�elds leads to fa
tors of 1=4 in their kineti
 terms.The 
ontribution from the 
alibrated (supersymmetri
) sour
es 
an be written as:Ssour
e = Z hC; ji �Xn en4� Z h	n; ji ; (B.4)with 	n = eAdt ^ e��(n� 1)!�̂1T �1 �̂1T 
M1:::Mn�1 �̂2 dXM1 ^ : : : ^ dXMn�1 ; (B.5)



178 B. TYPE IIA SUPERGRAVITYwith �̂1;2 nine-dimensional internal supersymmetry generators. For spa
e-�lling sour
esin 
ompa
ti�
ations to AdS4 this be
omes [125℄	n = vol4 ^ e4A��Im	1E��n�4 ; (B.6)with 	1E the pure spinor 	1 in the Einstein frame.The dilaton equation of motion and the Einstein equation read0 = r2�+ 12e��H2 � 18Xn (5� n)e 5�n2 �F 2n + �2102 Xn (n� 4)en4� ?h	n; ji ; (B.7a)0 = RMN + gMN  18e��H2 + 132Xn (n� 1)e 5�n2 �F 2n! (B.7b)� 12�M��N�� 12e��HM �HN � 14Xn e 5�n2 �FnM � FnN� 2�210Xn en4� ?h�� 116ngMN + 12gP (MdxP 
 �N)�	n; ji ;where we de�ned for an l-form AAM � AN = 1(l � 1)!AMM2:::MlANN2:::NlgM2N2 � � � gMlNl : (B.8)The Bian
hi identities and the equations of motion for the RR-�elds, in
luding the
ontribution from the `Chern-Simons' terms of the sour
es, take the form0 = dF +H ^ F + 2�210 j ; (B.9a)0 = d�e 5�n2 � ? Fn�� e 3�n2 �H ^ ?F(n+2) � 2�210 �(j) : (B.9b)Finally, for the equation of motion for H we have:0 = d(e�� ?H)� 12Xn e 5�n2 � ? Fn ^ F(n�2) + 2�210Xn en4�	n ^ �(j)�����8 : (B.10)In the above equations we 
an rede�ne j in order to absorb the fa
tor of 2�210,(2�210)j ! j ; (B.11)whi
h we do in this thesis.



Appendix CBasi
s of generalized geometryIn this appendix, we summarize the most important 
on
epts of generalized geometrythat will be of importan
e for this thesis. This treatment of generalized geometry isnot 
omplete, and we refer the interested reader to the literature. Very valuable le
turenotes 
an be found in [35℄ and a brief introdu
tion in [38℄. A 
omplete treatment ofgeneralized geometry is presented in [126, 127℄.C.1 Generalized 
omplex stru
tures and pure spinorsGeneralized geometry is a generalization of ordinary geometry. In fa
t, it is a uni�
ationand generalization of the language of 
omplex and symple
ti
 geometry, whi
h seems tobe natural to des
ribe supersymmetri
 
ompa
ti�
ations of supergravity with 
uxes. Aswe will see, the language of generalized geometry allows one to rewrite the equations fora supersymmetri
 solution in a very 
on
ise form making the analysis more tra
table.The main idea is to repla
e the ordinary tangent bundle TM of a d-dimensionalmanifold M by a sum of the tangent bundle and the 
otangent bundle TM � T ?M ,whi
h we denote in the following as the generalized tangent bundle. A generalizedve
tor X living on this generalized tangent bundle is the sum of an ordinary ve
torX 2 �(TM) and a one-form � 2 �(T ?M), su
h that X = X + �. On the generalizedtangent bundle, there is a 
anoni
al metri
 L, de�ned for X = X + � and Y = Y + � asL(X;Y) = �(Y ) + �(X) : (C.1)This metri
 is maximally inde�nite, i.e., it has signature (d; d), and thus it alreadyredu
es the stru
ture group to O(d; d). In analogy to ordinary geometry we de�ne ageneralized almost 
omplex stru
ture as a mapJ : TM � T ?M ! TM � T ?M ; (C.2)that squares to minus one, J 2 = �12d, and is hermitian with respe
t to the 
anoni
almetri
 L L(JX;JY) = L(X;Y) : (C.3)



180 C. BASICS OF GENERALIZED GEOMETRYA generalized almost 
omplex stru
ture further redu
es the stru
ture group from O(d; d)to U(d=2; d=2) 1.As an example, we 
an 
onstru
t from an ordinary 
omplex stru
ture I, I2 = �1,or an ordinary symple
ti
 stru
ture J , the following generalized 
omplex stru
tures,respe
tively, J1 = � �I 00 IT � ; J2 = � 0 J�1�J 0 � ; (C.4)This demonstrates that both essential parts of an SU(3)-stru
ture, namely the 
omplexstru
ture and the symple
ti
 stru
ture, are des
ribed in the language of generalizedgeometry in a 
ompletely uniform way.In generalized geometry, pure spinors are des
ribed by polyforms 	 2 ��T ?M .Indeed, a se
tion X = (X; �) of the generalized tangent bundle a
ts on su
h a polyform	 in a natural way as follows X �	 = �X	+ � ^	 ; (C.5)and it is easy to show that fX;Yg �	 = L(X;Y)	 : (C.6)This is nothing else than the spin representation of Spin(d; d) and therefore polyforms	 
an be thought of as spinors for Spin(d; d). The generalized gamma-matri
es onSpin(d; d) are ve
tors X (a
ting by 
ontra
tion, �X) and one-forms � (a
ting by �^).We 
hoose in the following a basis for the generalized gamma-matri
es as follows�� = �m for m = � = 1; : : : ; d ;�� = em ^ for m+ d = � = d+ 1; : : : ; 2d : (C.7)We 
an further de
ompose the set of polyforms 	 into the spa
es of even and oddforms: positive or negative parity spinors 
orrespond to polyforms with all dimensionseven or odd, respe
tively, whi
h we denote by 	+ and 	�.From the a
tion (C.5) we 
an de�ne the annihilator spa
e L	 of a spinor as followsL	 = fX 2 TM � T ?M : X �	 = 0g ; (C.8)whi
h is isotropi
 2, sin
e L(X;Y)	 = (X � Y + Y � X) � 	 = 0 for all X;Y 2 L	. IfL	 is maximally isotropi
, i.e., if its rank is d, 	 is a pure spinor. This somewhatmathemati
al 
on
ept of pure spinors works a
tually for the more familiar spinors1Let us mention that the 
on
ept of integrability for a generalized almost 
omplex stru
ture has anatural generalization from ordinary geometry by repla
ing the Lie bra
ket with the Courant bra
ket.We refer the reader to the literature for the proper de�nition of an integrable generalized 
omplexstru
ture (see, e.g., [35℄). In the following we drop the \almost".2A subbundle L is isotropi
 if L(X;Y) = 0 for all X;Y 2 L.



C.1. GENERALIZED COMPLEX STRUCTURES AND PURE SPINORS 181of Spin(d), d even, in exa
tly the same way, i.e. a spinor is pure if the number ofindependent gamma-matri
es whi
h annihilate the spinor is d=2. As a matter of fa
t,in d � 6 every Weyl spinor is pure.In ordinary geometry there is a one-to-one 
orresponden
e between a 
omplex stru
-ture and a Weyl spinor (see for instan
e eq. (2.5)). An analogous property holds betweena generalized 
omplex stru
ture and a pure spinor, where the latter are des
ribed bypolyforms. Let us �rst de�ne a fundamental two-form as followsJ�� = hIm	;���Im	i ; (C.9)where �;� = 1; : : : ; 2d and the generalized gamma matri
es �� are given in eq. (C.7).We 
an use the 
anoni
al metri
 L to raise one index forming J �� whi
h generallyde�nes a generalized 
omplex stru
ture 3. The Mukai pairing h�; �i in eq. (C.9) is givenby h	1;	2i = 	1 ^ �(	2)jtop ; (C.10)where the operator � a
ts by inverting the order of indi
es on forms (see eq. (A.6)) and\top" indi
ates that we proje
t on the top-form part, i.e., the part that is proportionalto the volume form. The Mukai pairing has the following useful property:heB	1; eB	2i = h	1;	2i ; (C.11)for an arbitrary two-form B.Gualtieri established in [127℄ that every generalized 
omplex stru
ture is asso
iatedto a pure spinor that 
an be written as	 = 
k ^ ei!+B ; (C.12)where !;B are real two-forms and 
k a 
omplex de
omposable k-form, i.e. it 
an(lo
ally) be written as the wedge produ
t of one-forms, su
h that h	; �	i 6= 0. k is
alled the type of the pure spinor.The 
onstru
tion of a pure spinor of the form (C.12) is not straightforward. Inparti
ular, for a pure spinor of type k > 1 the 
ondition that it is de
omposable isquite 
umbersome. As showed by Hit
hin [128, 126℄ and reviewed in [27℄ the 
omplexpure spinor 
an be 
onstru
ted as a fun
tion of a real spinor. This Hit
hin 
onstru
tionalso guarantees that a pure spinor of type k > 1 is de
omposable.The pro
edure works as follows. Let us assume that we are given a real form � whi
hwe want to 
onsider as the imaginary part of the pure spinor 	 to be 
onstru
ted, � =Im	. Using the 
orresponden
e (C.9), we de�ne the asso
iated generalized 
omplexstru
ture J . The problem is the proper normalization su
h that J ��J �� = �Æ��,3Note that the 
orresponden
e a
tually involves the imaginary part of the pure spinor. As we willdis
uss in the following, the imaginary part of the pure spinor 
ompletely determines the pure spinor.This will also a�e
t the proper normalization of J .



182 C. BASICS OF GENERALIZED GEOMETRYsin
e the normalization of � is not �xed due to h�; �i = 0. Hit
hin proposed to de�nea quarti
 fun
tion of � = Im	 given byH(�) =r� 112J ��J �� : (C.13)This fun
tion is 
alled the Hit
hin fun
tional. The proper normalization for J is thenthe 
ondition that H(�) = 1. A ne
essary 
ondition on the real form � to de�ne ageneralized 
omplex stru
ture via (C.9) is that J ��J �� < 0. Real forms satisfying this
ondition are 
alled stable real forms, and these are suÆ
ient to de�ne a SU(d=2; d=2)-stru
ture.Via the Hit
hin pro
edure we 
an 
onstru
t the real part �̂ that 
orrespond to �su
h that the 
omplex de
omposable pure spinor is given by 	 = �̂+ i� as follows�̂ = � 16H(�)J ������ : (C.14)and the Hit
hin fun
tional 
an be rewritten using (C.9) as [27℄H(�) = 12h�̂; �i = i4h	; �	i : (C.15)We use this expression to evaluate the K�ahler potential given in eq. (3.30) and eq. (3.39),where we need to evaluate R ht; �ti with t = e��	1.C.2 SU(d=2)�SU(d=2)-stru
tures from pure spinor pairsAs we have seen, the existen
e of a generalized 
omplex stru
ture redu
es the stru
-ture group of TM � T ?M from O(d,d) to U(d=2,d=2). If it is possible to de�ne twogeneralized 
omplex stru
tures, J1 and J2, that 
ommute, [J1,J2℄ = 0, and su
h thatthe generalized metri
 G = �LJ1J2 is positive de�nite, the stru
ture group is furtherredu
ed to its maximal 
ompa
t subgroup, U(d=2)�U(d=2).An U(d=2)�U(d=2)-stru
ture, or equivalently two 
ompatible generalized 
omplexstru
tures (J1;J2), provide automati
ally a generalized metri
 (g;B), where g is anordinary metri
 and B a two-form on TM . This works as follows. Let us de�ne theprodu
t G = �J1J2 : (C.16)Sin
e J1;J2 
ommute and square to �1, G squares to 1. Taking into a

ount thehermiti
ity of J1 and J2 (see eq. (C.3)) it follows GTL = LG and it turns out that themost general form of G is given byG = �J1J2 = � �g�1B g�1g �Bg�1B Bg�1 � ; (C.17)



C.2. SU(D=2)�SU(D=2)-STRUCTURES FROM PURE SPINOR PAIRS 183from whi
h we easily read o� the metri
 g on TM that is positive de�nite sin
e werequired that LG is positive de�nite.Two su
h generalized 
omplex stru
tures de�ning a U(d=2)�U(d=2)-stru
ture aresaid to be 
ompatible. The 
ondition that J1 and J2 
ommute is equivalent to thestru
ture 
onditions (these 
onditions are sometimes 
alled 
ompatibility 
onditions)for a given stru
ture. It 
an be shown that in terms of the asso
iated pure spinors we
an reexpress the 
ompatibility 
ondition ash	1;X �	2i = h	1;X � �	2i = 0 8X 2 TM � T ?M : (C.18)Applied for the spe
ial 
ases of stri
t SU(3)-stru
ture and stati
 SU(2)-stru
ture thisis equivalent to eq. (2.6a) and eq. (2.16), respe
tively.A U(d=2)�U(d=2)-stru
ture de�nes two 
ompatible pure spinors only up to an over-all s
alar fun
tion. We 
an further redu
e the stru
ture group to SU(d=2)�SU(d=2)-stru
ture by removing the ambiguity of res
aling the pure spinors requiring globallyde�ned pure spinors su
h that h	1; �	1i 6= 0 and h	2; �	2i 6= 0. We 
an then normalizethe pure spinors as follows h	1; �	1i = h	2; �	2i 6= 0 : (C.19)The SU(d=2)�SU(d=2)-stru
ture is a
tually asso
iated to two spinors �(1) and �(2)of Spin(d) de�ned on M . Given two Spin(d) spinors �(1) and �(2) that are in gen-eral independent (and de�ne two in general independent SU(d=2)-stru
tures) we 
an
onstru
t two 
ompatible pure spinors 	� via the familiar Cli�ord map as follows/	+ = 8jajjbj�(1)+ 
 �(2)y+ ; /	� = 8jajjbj�(1)+ 
 �(2)y� ; (C.20)where the Cli�ord map is given by the isomorphism	$ /	 =Xl 1l!	i1:::il
i1:::il : (C.21)We 
an use the following useful Fierz identityM = 18Xl 1l!Tr(
i1:::ilM)
il:::i1 ; (C.22)to derive 	� i1:::il = 1jajjbj�(2)y� 
il:::i1�(1)+ : (C.23)Let us now 
onsider six-dimesional spa
e. Following the 
onventions of [38℄, we 
ande�ne the most general relation between two spinors as follows�(1)+ = a�+ ;�(2)+ = b(kk�+ + k?V i
i��) ; (C.24)



184 C. BASICS OF GENERALIZED GEOMETRYwhere 2jV j2 = jkkj2+ jk?j2 = 1 and jaj = jbj. With these de�nitions and the de�nitionsof !2 and 
2 in eq. (2.15) we 
an express the most general pure spinors from eq. (C.23)as follows 	+ = e�i�e2V ^V �(kkei!2 � k?
2) ;	� = �2V ^ (kk
2 + k?ei!2) ; (C.25)Using the terminology of [38, 39℄ we may 
onsider the following interesting 
ases:� stri
t SU(3)-stru
ture: kk = 1, k? = 0. The spinors �(1) and �(2) are paralleleverywhere. The types of the pure spinors (	+;	�) are (0,3);� stati
 SU(2)-stru
ture: kk = 0, k? = 1. The spinors �(1) and �(2) are orthogonaleverywhere. The types of the pure spinors (	+;	�) are (2,1);� intermediate SU(2)-stru
ture: kk 6= 0, k? 6= 0. The spinors �(1) and �(2) are ata �xed angle, but neither a zero angle nor a right angle. The types of the purespinors (	+;	�) are (0,1);� dynami
 SU(3)�SU(3)-stru
ture: kk 6= 0, k? 6= 0. The angle between �(1) and�(2) varies, possibly be
oming a zero angle, type (0,3), or a right angle, type (2,1),at a spe
ial lo
us.In this thesis we will only 
onsider stri
t SU(3)-stru
ture and stati
 SU(2)-stru
ture
ompa
ti�
ations, so let us in the following look at these 
ases in more detail.C.3 Stri
t SU(3)-stru
ture and stati
 SU(2)-stru
tureLet us �rst 
onsider the 
ase of stri
t SU(3)-stru
ture and spe
ialize the expressionsobtained so far in terms of generalized geometry to this 
ase. The two spinors �(1) and�(2) are proportional �(2)+ = (b=a)�(1)+ ; (C.26)with j�(1)+ j2 = jaj2; j�(2)+ j2 = jbj2. In the following, we will assume jaj = jbj su
h thatb=a = ei� is just a phase. We will see in the following that this 
ondition is impliedby the orientifold proje
tion [43℄. From eq. (C.23) (or from eq. (C.25) with kk = 1,k? = 0) we get the pure spinors for the stri
t SU(3)-stru
ture as follows	� = �
 ; 	+ = e�i�eiJ ; (C.27)where J and 
 are de�ned in eq. (2.5).The derivation of the metri
 also simpli�es for a stri
t SU(3)-stru
ture: from eq. (C.4)and the generalized metri
 (C.17) we immediately 
on
lude (for B = 0)gmn = ImlJln ; (C.28)



C.3. STRICT SU(3)-STRUCTURE AND STATIC SU(2)-STRUCTURE 185where we 
an 
onstru
t the 
omplex stru
ture I from Im
 as follows~I lk = "lm1:::m5(Im
)km1m2(Im
)m3m4m5 ; (C.29)This follows from eq. (C.9) and J1 in eq. (C.4). We then properly normalize it withthe Hit
hin fun
tional, whi
h for stri
t SU(3)-stru
ture simpli�es to the expression inthe denominator of the following equation,I = ~Iq�tr 16 ~I2 ; (C.30)so that I2 = �1.It is a simple exer
ise to show that the 
ompatibility 
ondition (2.6a) and the nor-malization 
ondition (2.6b) for J and 
 follow from eq. (C.18) and eq. (C.19) for thepure spinors (C.27).The de
omposition of the intrinsi
 torsion in terms of the �ve torsion 
lasses is givenin eq. (2.10). Note that by de�nition W2 is primitive, whi
h meansW2 ^ J ^ J = 0 : (C.31)One interesting property of a primitive (1,1)-form is? (W2 ^ J) = �W2 ; (C.32)whi
h 
an be shown using JmnW2mn = 0 (whi
h follows from the primitivity) andJmnJpqWnq =Wmp (whi
h follows from the fa
t that W2 is of type (1,1)).Let us 
al
ulate the part of dW�2 proportional to Re
:dW�2 = �Re
+ (2; 1) + (1; 2) ; (C.33)for some �. Taking the exterior derivative of 
 ^W�2 = 0 and using eq. (C.33) as wellas eqs. (2.6b) and (2.10), we arrive atW�2 ^W�2 ^ J = 2i3 �J3 : (C.34)We 
an now use eq. (C.32) to showW�2 ^W�2 ^ J = 12 jW�2 j2vol6 ; (C.35)from whi
h we obtain � = �ijW2j2=8, in a

ordan
e with (2.33).For the stati
 SU(2)-stru
ture 
ase we have two everywhere orthogonal spinors �(1)+and �(2)+ and we 
an de�ne a ve
tor V as in se
tion 2.1.2,�(1)+ = a�+ ; (C.36a)



186 C. BASICS OF GENERALIZED GEOMETRY�(2)+ = bV i
i�� ; (C.36b)where j�(1)+ j2 = jaj2, j�(2)+ j2 = jbj2 and jaj = jbj. Only the relative phase � in b=a = ei�is physi
al. With these de�nitions we obtain from eq. (C.23) (or from eq. (C.25) withkk = 0, k? = 1) the pure spinors as follows	+ = �e�i�e2V ^V �
2 ; (C.37a)	� = �2V ^ ei!2 ; (C.37b)where 
2 and !2 are de�ned in eq. (2.18). In the following it will be 
onvenient toabsorb the phase e�i� in 
2. This time it is not a 
ompletely trivial exer
ise to showthe 
ompatibility 
onditions (2.16) from 
ondition (C.18) and the pure spinors (C.37).However, in [39℄ it is shown that the 
onditions (C.18) are indeed vanishing providedone imposes the 
onditions (2.16).To 
al
ulate the indu
ed metri
 for a stati
 SU(2)-stru
ture we 
ompute, witheq. (C.9), the 
orresponding generalized 
omplex stru
tures J1;2 for the pure spinors(C.37), and from eq. (C.17) we 
an read o� the metri
 g.OrientifoldsFollowing [43℄, we 
an identify the a
tion of a supersymmetri
 orientifold on the purespinors 	�. An orientifold proje
tion 
onsists of modding out the theory by an op-erator O = 
p� for O5/O9- and O6-orientifold proje
tions and O = 
p(�1)FL� forO3/O7- and O4/O8-orientifold proje
tions 4. Here, 
p is a re
e
tion on the world-sheet ex
hanging the left-movers with the right-movers, � is an internal involution(�2 = 1) whi
h a
ts only on the internal manifold and leaves the external spa
e-timeuntou
hed and (�1)FL , where FL is the fermion number of the left-movers, is used insome 
ases to ensure that O2 = 1. Under a supersymmetri
 orientifold proje
tion, thetotal ten-dimensional supersymmetry parameter �L1 + �R2 has to be invariant. Sin
e theworld-sheet re
e
tion 
p ex
hanges left- and right-movers, we end up with the a
tionof the involution on the ten-dimensional supersymmetry generatorsO5=O9;O6 : ���1 = �2 ; ���2 = �1 ; (C.38a)O3=O7;O4=O8 : ���1 = ��2 ; ���2 = �1 : (C.38b)If we now plug the N = 2 ansatz (2.25) into these equations we immediately see (sin
e� only a
ts on the internal spinors) that the two external supersymmetry generators�1 and �2 
an not be 
hosen independent and should be proportional. Sin
e we 
anabsorb the proportionality fa
tors in the de�nition of the internal spinors, we will put�1 = �2 = �, and we end up with an N = 1 theory with the ansatz (2.3) 5. Further4We take here the 
onventions of [43℄.5An ansatz for N > 1 is then only possible if there are more invariant internal spinors.



C.4. SUPERSYMMETRY CONDITIONS IN GENERALIZED GEOMETRY 187redu
ing eq. (C.38) to the internal spinors �(i)� with the ansatz (2.3), we �nd for the
ases we are interested in:O5 : ���(1)� = �(2)� ; ���(2)� = �(1)� ; (C.39a)O6 : ���(1)� = �(2)� ; ���(2)� = �(1)� ; (C.39b)O7 : ���(1)� = ��(2)� ; ���(2)� = �(1)� ; (C.39
)and, sin
e we de�ne j�(1)+ j2 = jaj2, j�(2)+ j2 = jbj2, it follows from �2 = 1 that jaj = jbj.Plugging eq. (C.39) into the de�nition of the pure spinors (C.20), we get [43℄ (see also[56, 38℄) O5 : ��	+ = �( �	+) ; ��	� = ��(	�) ; (C.40a)O6 : ��	+ = �(	+) ; ��	� = �( �	�) ; (C.40b)O7 : ��	+ = ��( �	+) ; ��	� = �(	�) ; (C.40
)Applying this to the expli
it pure spinors for a stri
t SU(3)-stru
ture (C.27) and astati
 SU(2)-stru
ture (C.37) we arrive at eq. (2.40b) and eq. (3.40), respe
tively.C.4 Supersymmetry 
onditions in generalized geometrylanguageGeneralized geometry allows one to rewrite the N = 1 supersymmetry 
onditions (2.20)with the ansatz for the spinors (2.3) in a very 
on
ise form. In order to obtain similarequations in type IIA and type IIB, we de�ne	1 = 	� ; 	2 = 	� ; (C.41)with upper/lower sign for IIA/IIB. We 
olle
t all the RR-�elds of the demo
rati
 for-malism into one polyform and make the following 
ompa
ti�
ation ansatzF = F̂ + vol4 ^ ~F ; (C.42)with vol4 the four-dimensional (AdS4) volume form 6.With these de�nitions the supersymmetry 
onditions (in string frame) take the fol-lowing form in both type IIA and type IIB [38℄dH �e4A��Im	1� = 3e3A��Im(W �	2) + e4A ~F ; (C.43a)dH �e3A��Re(W �	2)� = 2jW j2e2A��Re	1 ; (C.43b)6In this thesis we will drop the hat on the purely internal part of the RR-
ux F and hope that itis 
lear from the 
ontext whether we mean the full F or only the internal part. Instead, we use the hatto denote ba
kground values of the �elds.



188 C. BASICS OF GENERALIZED GEOMETRYdH �e3A��Im(W �	2)� = 0 ; (C.43
)where we used jaj2 = jbj2 / eA. Here W is de�ned in terms of the AdS Killing spinorsr��� = �12W
��+ ; (C.44)for IIA/IIB. These equations should be supplemented with the Bian
hi identities forthe RR-
uxes (B.9a) where the (lo
alized or smeared) sour
es j have to be 
alibratedhRe	1; ji = 0 ; (C.45a)h	2;X � ji = 0 ; 8X 2 �(TM � T ?M ) : (C.45b)Analogously to the stri
t SU(3)-
ase, an easy way to solve these 
alibration 
onditionsis to 
hoose j = �kRe	1 ; (C.46)for some fun
tion k.An advantage of this formulation is that we only need to know how the exteriorderivative d a
ts on the left-invariant forms in whi
h we expand the pure spinors. Forthe nilmanifolds and the 
oset spa
es we 
onsider in this thesis, the a
tion of the exteriorderivative d is given by the Maurer-Cartan equation (4.4) and the stru
ture 
onstants.Inserting the pure spinors for a stri
t SU(3)-stru
ture (C.27) in the equations (C.43)for an N = 1 supersymmetri
 solution and 
onsidering the type IIA 
ase (where 	1 =	� and 	2 = 	+), we arrive at eqs. (2.27) and (2.30) (these equations were �rstderived in [31℄ using the language of SU(3)-stru
tures). However, these solutions assume
onstant warp fa
tor eA and dilaton �, whi
h is required for non-vanishing Romansmass. As we showed in se
tion 2.3, 
hoosing the Romans mass to be zero, we 
an derivea solution with non-
onstant warp fa
tor and dilaton.On the other hand, for the type IIB 
ase (for whi
h we ex
hange the role of 	+ and	�) there is no AdS4 solution possible, as already noted in [129℄. The reason is thatfor this 
ase the left-hand-side of eq. (C.43b) is a four-form, whi
h would put the zero-and two-form part of 	+ = e�i�eiJ to zero, making (C.19) impossible to be satis�ed.A way out is to putW = 0 implying the vanishing of the AdS4 
urvature. We 
on
ludethat there are no N = 1 AdS4 va
ua for type IIB and stri
t SU(3)-stru
ture.On the other hand, plugging the ansatz (2.19) for a stati
 SU(2)-stru
ture in thesupersymmetry 
onditions (C.43), one �nds the ne
essary equations for the SU(2)-stru
ture quantities V , !2 and 
2. However, these equations are quite 
ompli
ated andit turns out that it is less 
ompli
ated to try to solve these equations dire
tly in termsof pure spinors.Similar to the argument that ex
ludes N = 1 AdS4 va
ua for type IIB and stri
tSU(3)-stru
ture, we 
on
lude from (C.43b) and the ansatz (C.37) that there are noN = 1 AdS4 va
ua for type IIA and stati
 SU(2)-stru
ture, as was already noted in[42℄. Indeed, the left-hand-side of eq. (C.43b) is a three- and �ve-form whi
h implies onthe right-hand-side that V = 0. This makes it impossible to satisfy eq. (C.19). On
eagain, putting W = 0 resolves the problem. We summarize these results in table 2.2.



Appendix DSmeared sour
es and orientifoldinvolutionsIn this appendix we propose a pro
edure to identify the orientifold involutions asso
i-ated to a given sour
e term j representing the Poin
ar�e dual of smeared orientifolds.As we will see, the Hit
hin fun
tional de�ned in appendix C provides a useful 
riterionto 
lassify the possible sour
e terms j.Orientifold involutions from de
omposable formsLet us �rst give an example for a lo
alized orientifold in 
at spa
e. If we have anorientifold along the dire
tions � = (x1; x2; x3) then the 
orresponding sour
e isj = TOp j� = �TOp Æ(x4; x5; x6) dx4 ^ dx5 ^ dx6 ; (D.1)where TOp < 0 for an orientifold and j is the Poin
ar�e dual of � satisfyingZ� � = ZMh�; j�i = �ZM � ^ j� ; (D.2)for an arbitrary form � 1. In this 
ase the orientifold involution is of 
ourseO6 : x4 ! �x4 ; x5 ! �x5 ; x6 ! �x6 : (D.3)Suppose we now introdu
e many orientifolds and 
ompletely smear them in the dire
-tions (x4; x5; x6) obtaining j = �TOp 
dx4 ^ dx5 ^ dx6 ; (D.4)where 
 is a 
onstant representing the orientifold density. We have now lost informationabout the exa
t lo
ation but we would still like to asso
iate the orientifold involutionO6 : dx4 ! �dx4 ; dx5 ! �dx5 ; dx6 ! �dx6 : (D.5)1The de�nition with the Mukai pairing is the one appropriate for generalizing to D-branes withworld-volume gauge 
ux as explained in [130℄. Here it will just give an extra minus sign.



190 D. SMEARED SOURCES AND ORIENTIFOLD INVOLUTIONSAn important observation is that dx4 ^ dx5 ^ dx6 is not just any form, it is ade
omposable form, i.e. it 
an be written as a wedge produ
t of three one-forms. Theseone-forms span the annihilator spa
e of T�, the tangent spa
e of �. So if we are givena smeared orientifold 
urrent j we should write it as a sum of de
omposable forms andthen asso
iate to ea
h term an orientifold involution as above.It is not straightforward to de
ide whether a given form is de
omposable or notand how we 
ould write j as a sum of de
omposable forms in a unique way. Let us�rst give a mathemati
al de�nition of a de
omposable form. Let V be a d-dimensionalve
tor spa
e and V? its dual 2. A (real/
omplex) p-form j 2 �pV? is 
alled simple orde
omposable if it 
an be written as a wedge produ
t of p one-forms 3.In [131℄ a 
riterion for a simple form is given as follows. Bej? = fX 2 V : �Xj = 0g � V ; (D.6)and W = Ann(j?) � V? : (D.7)The form j is simple if and only if dimW = p. Using this the following alternative
riterion is shown:Theorem: A p-form j 2 �pV? is simple if and only if for every (p � 1)-polyve
tor� 2 �p�1V, ��j ^ j = 0 ; (D.8)where ��j is the one-form 
ontra
tion of j with �.For us of importan
e is the spe
ial 
ase of three-forms in six dimensions. For this
ase there is another useful theorem due to Hit
hin [128℄.Theorem: Consider a real three-form j 2 �3V? and 
al
ulate its Hit
hin fun
tionalH(j) de�ned in (C.13). Then� H(j) > 0 if and only if j = j1 + j2 where j1; j2 are unique (up to ordering) realde
omposable three-forms and j1 ^ j2 6= 0,� H(j) < 0 if and only if j = �+�� where � is a unique (up to 
omplex 
onjugation)
omplex de
omposable three-form and � ^ �� 6= 0.Now we have two base-independent 
hara
terizations of j: the Hit
hin fun
tionalH(j) and dimW . Using these two 
hara
terizations we 
an 
lassify the possible j andde
ompose it in simple terms:2For nilmanifolds and 
oset spa
es that we 
onsider in this thesis we always have a basis of globallyde�ned left-invariant one-forms.3Note that a (real/
omplex) form of �xed dimension is a pure spinor if and only if it is simple. Infa
t, we 
ould regard the notion of pure spinor as a generalization of the notion of de
omposable formsto polyforms.



191� if H(j) > 0 it follows immediately that j is a sum of exa
tly two real simpleterms,� if H(j) < 0 then j is a sum of exa
tly two (
onjugate) 
omplex simple terms andthus of exa
tly four real simple terms,� ifH(j) = 0 we have three 
ases. Either (D.8) is satis�ed (equivalently dimW = 3)and j is simple, either dimW = 5 and then j will be a sum of two simple termsj1 and j2 su
h that j1 ^ j2 = 0, or dimW = 6 and j will be a sum of three simpleterms. All this is easy to prove by looking at possible types of sums of two andthree simple terms.An important remark is in order: while the Hit
hin theorem states that for H(j) 6=0 the two real/
omplex forms in the de
omposition of j are unique (up to order-ing/
omplex 
onjugation), the 
hoi
e of one-forms out of whi
h these forms are madeis not unique. In the 
ase of H(j) < 0 it is the freedom of 
hoosing a basis of 
omplexone-forms belonging to a 
omplex stru
ture, whi
h is SL(3,C ). As a 
onsequen
e the
hoi
e of the four real forms in whi
h j is de
omposed is not unique. Indeed, sup-pose we 
hoose one basis of 
omplex one-forms and asso
iated x and y 
oordinates:ezi = exi � ieyi . Then j 
an be written as the sum of the following four terms:j = Re(ez1z2z3) = ex1x2x3 � ex1y2y3 � ey1x2y3 � ey1y2x3 ; (D.9)whi
h leads to the following orientifold involutions:O6 : ex1 ! �ex1 ; ex2 ! �ex2 ; ex3 ! �ex3 ;O6 : ex1 ! �ex1 ; ey2 ! �ey2 ; ey3 ! �ey3 ;O6 : ey1 ! �ey1 ; ex2 ! �ex2 ; ey3 ! �ey3 ;O6 : ey1 ! �ey1 ; ey2 ! �ey2 ; ex3 ! �ex3 : (D.10)If we perform a SL(3,C ) transformation, j takes exa
tly the same form, but now in thenew basis. So alternatively we 
ould have 
hosen four orientifold involutions taking thesame form as the old ones, but now in the new basis, whi
h is rotated. This means thatour 
hoi
e of orientifold involutions is not unique. We must then further 
hoose themsu
h that the stru
ture 
onstant tensor of the group or 
oset is even, and Re
 and Jare odd.In the 
ase of H(j) > 0 the argument does not apply be
ause the remaining freedomGL(3,R)�GL(3,R) leaves the two terms of the de
omposition separately invariant andthe 
hoi
e of orientifold involutions is unique.Appli
ation to SU(2)�SU(2)Let us now apply the above pro
edure to the model of se
tion 10.5. Cal
ulating theHit
hin fun
tional H(j6) of (10.23) we �nd that it is negative so that it 
ontains four



192 D. SMEARED SOURCES AND ORIENTIFOLD INVOLUTIONSorientifold involutions. We must now �x the freedom of 
hoosing them su
h that Re
and J are odd, and the stru
ture 
onstant tensor f is even. Some re
e
tion shouldmake 
lear that if Re
 is to be odd it should be a sum of the same four terms as j6,but with di�erent 
oeÆ
ients. In fa
t, we 
ould reverse the pro
edure and 
hoose a
omplex basis ezi in whi
h 
 and J take their standard form:
 = ez1z2z3 ; J = � i2Xi ezi�zi : (D.11)Then Re
 and J are automati
ally odd under the asso
iated orientifold involutions(D.10). However, this should of 
ourse also be the orientifold involutions that followfrom j6. This will be the 
ase if and only if j6 has the same terms as Re
 (but withdi�erent 
oeÆ
ients) or equivalently j6 should take the formj6 = Re �
0ez1z2z3 + 
11e�z1z2z3 + 
22ez1�z2z3 + 
33ez1z2�z3� ; (D.12)with all 
oeÆ
ients 
 real. To a

omplish this we still have the freedom to make a basetransformation su
h that 
 and J invariant, i.e. an SU(3)-transformation. A priori, j6is an arbitrary three-form whi
h transforms under SU(3) as20 = 1 + �1 + 3 + �3 + 6 + �6 : (D.13)However, we know that j6 has to satisfy the 
alibration 
onditions (2.36), whi
h removethe 3+�3 representation and only leave the form proportional to Re
 out of 1+�1. Herethe 6 is the (3� 3)S i.e. the symmetri
 produ
t of two fundamental representations ofSU(3). It follows that the most general j6 satisfying the 
alibration 
onditions lookslike j6 = 
0Re
 + Re h
kig(kj�|d�z�| ^ �zi)
i= 
0Re
 + Reh
11e�z1z2z3 + 
22ez1�z2z3 + 
33ez1z2�z3+ 
12 �e�z2z2z3 + ez1�z1z3�+ 
13 �e�z3z2z3 + ez1z2�z1�+ 
23 �ez1�z3z3 + ez1z2�z2� i ;(D.14)with 
0 real and the entries of the 
oeÆ
ient matrixC = 0� 
11 
12 
13
21 
22 
23
31 
32 
33 1A ; (D.15)
omplex. Now we have to �nd an SU(3)-transformation to put j6 in the form (D.12). 
0does not transform but is lu
kily already of the right form, while the 
oeÆ
ient matrixtransforms as C ! UCUT : (D.16)



193From (D.12) we see that we want to transform C to a diagonal real matrix. In fa
t,sin
e the above transformation 
annot 
hange the determinant this is only possible ifdetC 2 R : (D.17)This is a 
ondition we have to add to the 
alibration 
onditions. For the j6 of (10.23) one
an 
he
k that it is indeed satis�ed and it is possible to �nd the 
omplex 
oordinateswith the required properties. Also, under the asso
iated orientifold involution thestru
ture 
onstant tensor f is even as required. The 
omplex 
oordinates are given in(10.24). De�ning the asso
iated 
omplex one-forms ezi = exi � ieyi we arrive at thetransformationex1 = �a2 + (b� 
)2 + h2
1p2b
(2b
 � h) (e1 + e4) ; ey1 = a2 � (b+ 
)2 + h2
1p2b
(2b
 � h) (e1 � e4) ;ex2 = �b2 + (a� 
)2 + h2
1p2a
(2a
 � h) (e2 + e5) ; ey2 = b2 � (a+ 
)2 + h2
1p2a
(2a
 � h) (e2 � e5) ;ex3 = �
2 + (a+ b)2 � h2
1p2ab(2ab� h) (e3 � e6) ; ey3 = �
2 � (a� b)2 + h2
1p2ab(2ab� h) (e3 + e6) ; (D.18)
and the orientifold involutions given in eq. (D.10). The odd two-forms and even three-forms under the involutions are then given byY (2�)i : ex1y1 ; ex2y2 ; ex3y3 ;Y (3+)i : ex1x2y3 ; ex1y2x3 ; ey1x2x3 ;�ey1y2y3 : (D.19)With the transformation (D.18) we obtain the invariant forms in the old basis ei whi
hwe display in eq. (11.54).
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