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Chapter 1IntrodutionThe seminal �ndings of theoretial physis of the 20th entury are the standard modelof partile physis and the general theory of relativity. The standard model of partilephysis desribes the world at small length sales and predits with an impressive au-ray how partiles suh as quarks, eletrons and neutrinos interat. On the other hand,the theory of general relativity provides us with a detailed explanation for astrophysialobservations at very large sales.The disovery of the standard model was guided by quantum eletrodynamis. At-tempts were made to onstrut a gauge theory of the weak interation, and in the mid-1960s the hypothesized harged intermediate vetor bosons (W�) were omplementedwith a neutral partner, the Z-boson. The inorporation of the Higgs mehanism intothe eletroweak theory solved the problem of having both a gauge theory and massivemediators of the weak interation. Completed with the theory of the strong intera-tion, the standard model of partile physis was born, a theory of three of the fourknown fundamental interations and the elementary partiles that take part in theseinterations. Experimentally, the standard model (extended by massive neutrinos) hasbeen tested to a very high preision and the only missing ingredient to be disovered isthe salar Higgs partile [1℄. However, physiists have little doubt that this disoverywill happen in the LHC experiment.On the other hand, despite the suess of the standard model in all its onfrontationswith experimental results, it leaves us with a whole bunh of fundamental theoretialquestions. The most important drawbak is that it is not a omplete theory of funda-mental interations sine it does not inlude gravity. However, the onstant progressof physis towards uni�ation of all interations is a strong indiation that a theory inwhih all the fores are treated on the same footing may exist. Another weak pointof the standard model is that it requires a large number of unrelated and arbitrarynumerial parameters put in by hand, mostly related to the ad-ho introdution of theHiggs and Yukawa setors in the theory. And there is the famous hierarhy problem ofthe standard model: via the Higgs mehanism all masses of the standard model par-tiles are proportional to the Higgs mass mH, whih is expeted, from measurements



2 INTRODUCTIONof the mass of the W -bosons, to be of order of the eletroweak sale, mH � 100 GeV.The problem is that m2H reeives quantum orretions quadrati in the uto� sale �from the virtual e�ets of every partile that ouples, diretly or indiretly, to the Higgs�eld. If we assume the standard model to be valid up to a sale of order of the Planksale, this quantum orretion to m2H is some 30 orders of magnitude larger than theexperimentally favored value of the Higgs mass. The possibility to �ne tune the barevalue of the Higgs mass in order to anel the quantum orretions exept for somevalue of the order of the eletroweak sale is very unnatural and unsatisfatory. Onthe other hand, one ould simply assume � to be of the order of the eletroweak saleand replae the standard model by another theory above the energy sale �. However,not to run into the same �ne tuning problems in this new theory, this theory shouldexplain how a tiny Higgs mass an be proteted from quantum orretions quadratiin the uto� �0 of the new theory.A proposal for suh a new theory beyond the standard model is to postulate a newsymmetry that relates bosons with fermions - alled supersymmetry. In fat, supersym-metry is the only possible extension of the known spae-time symmetries, irumventingthe Coleman and Mandula theorem [2℄ by allowing antiommuting symmetry gener-ators [3℄. The minimal supersymmetri standard model (MSSM) formulated in 1981[4℄ is the simplest supersymmetri extension of the standard model ontaining the su-perpartners of all standard model partiles. It o�ers a natural solution to some of theproblems of the standard model. In partiular, sine there is a relative minus signbetween fermion loop and boson loop orretions to the squared Higgs mass m2H, theradiative orretions quadrati in the uto� �0 neatly anel. This allows the Higgsmass to be of the order of the eletroweak sale also in a theory with a higher masssale, without the need of some unnatural �ne-tuning. Furthermore, the renormaliza-tion group ow predits a uni�ation of the eletroweak and strong interations. Assupersymmetry is not diretly observed in nature, it must be broken, whih, in gen-eral, leads to a mass split between bosoni and fermioni partners. If this mass split isroughly of order of the eletroweak sale, i.e. msplit � 100 GeV, the supersymmetripartners of the standard model partiles ould be heavy enough not to be observed inexperiments so far. One hopes that the LHC experiment detets some of the superpart-ners in the TeV region in the foreseeable future, verifying the so far only theoretialonept of supersymmetry. However, even when suh superpartiles are deteted, itwould still remain to unify the supersymmetri standard model with general relativity.General relativity, on the other hand, is a lassial theory whih does not takeinto aount the quantum mehanial nature of matter as desribed in the standardmodel. Sine the Einstein equation relates geometry with matter, we an not treatmatter quantum mehanially without a quantum mehanial theory of gravity. Theonstrution of a renormalizable quantum �eld theory that treats gravity quantummehanially has not yet been arried out, even though there are several suggestions(see for instane [5℄). This onstraints the validity of general relativity to physis,where quantum mehanial e�ets are of negligible importane. However, there areirumstanes where a quantum theory of gravity is needed, for instane for the physis



3of the very early universe.Interestingly, string theory provides a natural way of inluding gravity in a quantumtheory of matter: in string theory one replaes the ordinary point partiles with a quan-tum theory of small one-dimensional extended objets - the strings that an be bothlosed or open. These strings have various vibrational modes orresponding to di�erentpartiles, whose interation is desribed by the splitting or joining of the strings. Asa matter of fat, every onsistent suh string theory neessarily ontains among thepossible vibrating modes a massless spin-two mode whih is a natural andidate forthe graviton whose long-distane interations are desribed by general relativity. Uponquantization this provides us with a onsistent quantum theory of gravity. Ultra-violetdivergenes of graviton sattering amplitudes are evaded, sine the extended haraterof the string smears out the loation of the interation.The Plank mass, MP = 1:2� 1019GeV, is a natural �rst guess for a rough estimateof the fundamental string mass sale ms 1. Thus, the extended struture of the stringsonly beomes apparent at the Plank sale, far beyond our abilities to measure inthe laboratory (for omparison, the LHC experiment should reah a ollision energy of14 TeV). At energies far below the Plank sale strings an be aurately approximatedby point-like partiles. This low-energy theory is well desribed by an e�etive �eldtheory that desribes the massless modes of string theory (the �rst massive vibrationalmodes have masses of order the string sale ms, whih we assume to be of the order ofthe Plank sale, suh that they an be integrated out in an e�etive theory). However,the e�etive theory inherits supersymmetry as well as the massless spin-two gravitonmode from string theory. This limit is alled supergravity and is thus a supersymmetriextension of general relativity, where the nonrenormalizability of the supergravity isured by the extended nature of the string.Let us very briey sketh how to determine the spetrum of the strings and howto determine the ation for its low-energy supergravity limit. For details we refer thereader to the literature (see for instane [7, 8, 9, 10, 11℄).A one-dimensional string sweeps out a two-dimensional surfae when it propagatesthrough D-dimensional spae-time. We all this surfae the world-sheet �. In analogyto the desription of a point partile by its world-line XM (�), we desribe a stringby the embedding of the string world-sheet into spae-time, i.e., by a map XM (�; �) :� ! MD, where � and � parameterize the points on the world-sheet. For a losedstring the variable � is periodi, and its world-sheet desribes a tube in spae-time,whereas for an open string � overs a �nite interval, and the world-sheet is a surfaewith boundaries. To desribe the dynamis of the string we need an ation, and thesimplest ation that omes to mind is the so-alled Nambu-Goto ation, whih is astraightforward generalization of the relativisti ation for a point partile moving in1Let us mention that in \large extra dimension" senarios, the string sale an be muh lower,namely at the order of TeV. This is beause the four-dimensional Plank mass MP and the string massms are related by the ompati�ation volume [6℄. We will not onsider these senarios further in thisthesis and assume the string sale to be of order of the Plank sale.



4 INTRODUCTIOND-dimensional Minkowski spae-time,SNG = 12��0 Z� d�d�qdet (��MN��XM��XN ) ; (1.1)where �; � = �; �. Here, T = 1=2��0 is the string tension related with the string masssale by ms = (�0)�1=2. However, for quantization this ation is not very useful asit ontains a square root. One thus makes use of a lassially equivalent ation byintroduing an auxiliary world-sheet metri h�� suh thatS� = 14��0 Z� d�d�p�hh����X � ��X : (1.2)This so-alled Polyakov ation has important symmetries. In addition to the globalPoinar�e invariane there are two loal symmetries of the ation. It is invariant underreparameterization of the world-sheet oordinates �; � and under Weyl transformations,i.e. h�� ! e�(�;�)h�� for an arbitrary funtion �(�; �). Using these loal symme-tries to make a onvenient gauge hoie and taking are of the appropriate boundaryonditions, we end up with the equations of motion for the world-sheet oordinatesXM (�; �). These equations have the struture of a wave equation with a general solu-tion that ontains vibrational modes. For a losed string, the solution is a sum of left-and right-movers. In the quantization proess, the world-sheet oordinates and orre-spondingly the vibrational modes are promoted to operators satisfying essentially thealgebra of raising and lowering operators of the quantum mehanial harmoni osilla-tor. The spetrum is onstruted by applying raising operators on the ground state.Skipping the details, it turns out that the obtained spetrum ontains a tahyon but nostates that transform as spinors under the D-dimensional Lorentz group, whih ouldbe interpreted as spae-time fermions. However, we an ure this by introduing su-persymmetry. In the so-alled Ramond-Neveu-Shwarz (RNS) approah, we introduein a supersymmetri way anti-ommuting world-sheet fermions  M into the Polyakovation (1.2). For the fermioni �elds, however, the variation of the ation allows twopossibilities to satisfy the boundary onditions: it is possible to impose periodi (Ra-mond) boundary onditions or anti-periodi (Neveu-Shwarz) boundary onditions. Forlosed strings, orresponding to the di�erent pairings of the left- and right-movers, wethus distinguish four di�erent setors. All the states in these setors arry quantumnumbers of the D-dimensional Lorentz group, and it turns out that we an interpretthe states in the NS-NS and R-R setor as spae-time bosons, while states in the NS-Rand R-NS setor are spae-time fermions.Note that the dimension D of the spae-time is not arbitrary. Due to the indef-inite signature of spae-time, the spetrum ontains negative norm states, violatingausality and unitarity. On the other hand, one an show that in the partiular aseof D = 10 these negative norm states an be deoupled from the physial spetrum.Nevertheless, there is still a tahyon in the spetrum and the spetrum is not spae-time supersymmetri (the number of fermioni degrees of freedom in not equal to thenumber of bosoni degrees of freedom). We an turn the RNS string theory into a



5onsistent theory by trunating the spetrum in a very spei� way that eliminates thetahyon and leads to a supersymmetri theory in ten-dimensional spae-time, known asthe GSO-projetion 2. The remaining spetrum onsists of a set of massless partilesand an in�nite tower of massive exitations with masses quantized in units of the stringsale ms. As we assume the string sale to be of order of the Plank mass, these statesare extremely heavy.It turns out, demanding modular invariane of the one loop partition funtion andanomaly anellation of the gauge symmetries oming from non-Abelian gauge poten-tials in the spetrum of the string theory, that one an only onstrut �ve onsistentstring theories in D = 10 Minkowski spae-time. These �ve theories are type I stringtheory, onsisting of unoriented open and losed strings with a gauge group SO(32),type IIA and IIB string theory, made of losed strings, and two heterori string theoriesthat have losed strings only, one with gauge group SO(32), and one with gauge groupE8�E8. However, these �ve theories are related by a web of dualities and are nowadaysviewed as di�erent orners of one fundamental theory - referred to as M-theory. Eventhough a full desription of the theory is yet unknown, the uniqueness of M-theorymakes it a very promising theory.Let us fous on the massless spetrum of the two type II theories, sine the typeII theories will be of partiular interest for this thesis. Both theories ontain losedstrings only 3, and their massless bosoni spetrum inludes from the NS-NS setor agraviton gMN , a salar alled the dilaton � and an antisymmetri tensor �eld BMN . Inaddition, eah of these theories has its individual bosoni exitations living in the R-Rsetor. In the type IIA theory the R-R one- and three-form, in the type IIB theory theR-R zero-, two- and four-form. In addition we have massless fermions from the NS-Rand R-NS setor. Eah of these setors ontains a spin-3/2 gravitino and a spin-1/2dilatino. In type IIB the two gravitini have the same hirality, whereas in the typeIIA they have opposite hirality. It follows that type II string theories have N = 2supersymmetry.How does one onstrut an ation for the low-energy limit of string theory, desribingthe massless states in the string spetrum? To �nd a spae-time ation for thesetheories, one an use the onstraints implied by the Weyl symmetry of the string ation.Note that so far we only onsidered strings moving in ten-dimensional Minkowski spae-time. For a more realisti situation, we generalize the Polyakov ation by the �eldsobtained in the various spetra of the �ve theories. For instane, for the theories basedon losed strings only (heteroti and type II string theories) this reads for the NS-NSsetorS� = 14��0 Z� d�d�p�h h�h��gMN (X) + i���BMN (X)� ��XM��XN + �0R�(X)i ;(1.3)2The GSO-projetion may appear to be an ad-ho ondition. Atually, it is also possible to deriveit by demanding one-loop and two-loop modular invariane.3We will see in a moment, how one introdues also open strings in these theories.



6 INTRODUCTIONwhere R is the two-dimensional urvature. The NS-NS �elds an be interpreted asoupling funtions in the two-dimensional world-sheet �eld theory. However, not all�eld on�gurations preserve Weyl symmetry at the quantum level. The Weyl anomaly isabsent if the �-funtion for eah of the ouplings vanishes, i.e., �gMN = �BMN = �� = 0.This leads to a set of equations that take the form of equations of motion for the spae-time �elds gMN , BMN and �. The supergravity ation - the low-energy limit of stringtheory - is the ation that reprodues these equations at lowest order 4. Let us mentionthat the same proedure for the �elds in the R-R setor is not straightforward in theRNS-formulation. However, there is an equivalent formulation, the Green-Shwarzformulation, where the p-form �elds of the R-R setor an be inluded as well.Compati�ation and moduli stabilizationAs we pointed out, a onsistent string theory lives in a ten-dimensional spae-time.The observable world, however, is four-dimensional. To make ontat with our four-dimensional world we need a mehanism to hide the extra six dimensions from ob-servation - suh a mehanism is alled dimensional redution. One way to ahieve adimensional redution is by hoosing these extra dimensions very small and ompatsuh that they are too small to be deteted in present-day experiments.In fat, the idea of geometri ompati�ation is very old and goes bak to the1920s. Kaluza [12℄ and Klein [13, 14℄ suggested a uni�ation of the gravitational andeletromagneti interation by postulating an extra, �fth, dimension of spae-time.Choosing this extra dimension to be topologially S1 yields a very simple explanationfor the ompatness of the gauge group and hene the quantization of the eletriharge. However, the theory ontains one more degree of freedom, the radius R ofthe extra-dimensional irle. Sine the lassial Einstein equations are sale invariant,there is no preferred value for this radius R and Kaluza and Klein simply postulated avalue for it onsistent with experimental bounds.Even though the motivation has hanged, the idea of Kaluza and Klein an be gen-eralized to the redution of ten-dimensional string theory from ten to four dimensions.In the Kaluza-Klein redution one starts with an ansatz for the bakground spae-time.The spei� ansatz we will use here is that spae-time has a produt struture of thefollowing form M(9;1) =M(3;1) �M6 ; (1.4)where M(3;1) is our four-dimensional non-ompat spae-time and M6 is a six-dimen-sional ompat manifold. IfM6 is hosen small enough, these six additional dimensionsare not visible in experiments with present-day aelerators. This type of dimensionalredution is alternatively alled ompati�ation.4An alternative way to derive equations of motion for the massless �elds is to onsider n-point fun-tions in the two-dimensional world-sheet theory using the supersymmetri version of the ation (1.3).The lassial sattering amplitudes of the e�etive spae-time ation, from whih we derive the equa-tions of motion, should then reprodue these n-point funtions.



7At this point, however, muh of the uniqueness of ten-dimensional string theory (andten-dimensional supergravity as its low-energy limit) gets lost, sine the ompati�a-tion mehanism yields a very large number of possible four-dimensional solutions withinequivalent four-dimensional physis. The reason is twofold: �rst, making any on-rete Kaluza-Klein redution requires making a hoie for a ompati�ation manifoldwith a given topology around whih to expand in the Kaluza-Klein redution, and nopriniple suggest that there is a partiular preferred manifold. Seond, as we will ex-plain in the following, even having hosen a partiular ompati�ation manifold, onehas many free parameters whih enter into observable preditions and no partiularvalues of these parameters appear to be preferred.The appearane of the free parameters is explained as follows. Just like the lassialEinstein-Maxwell equations, the lassial supergravity equations are sale invariant.Thus, if one �nds any solution to the supergravity equations, by resaling the size R ofthe ompati�ation manifold, one obtains a one-parameter family of solutions, di�eringonly in the value of R. Hene, the hoie of R is unonstraint by the equations of motionand thus appears as a massless neutral salar �eld in four dimensions. Depending onthe hoie of the internal manifold, the situation is even worse, and there are muhmore massless salars in the theory, orresponding to parameters suh as the shape ofthe internal manifold. They label the ontinuous degeneray of the internal manifoldM6 and are generally not driven to a partiular value. One alls these massless salarsmoduli �elds.The emergene of massless salars is a serious problem for string theory that aspiresto be a fundamental theory prediting the values for the fundamental onstants 5. Sup-pose we want to ompute physial preditions by performing a Kaluza-Klein redutionon a given ompati�ation manifold M6. The resulting fundamental onstants willdepend on the details of the hosen manifold and the values of the moduli �elds. Sinethe hoie of the ompati�ation manifold is not unique and the values for the moduli�elds are ompletely arbitrary, how do partiular values we observe for the fundamentalonstants of physis atually emerge from string theory?Apart from the spei� hoie of a ompati�ation manifold, the preditivity ofstring theory ould be improved if one provides a mehanism whih indues a potentialfor the moduli �elds - alled moduli stabilization 6. Finding suh a potential o�ers the5Let us stress that a moduli �eld does not orrespond to a massless Goldstone mode. The originof the Goldstone mode in symmetry breaking implies that the physis of any onstant on�guration ofthis �eld must be the same (sine all are related by symmetry). On the other hand, moduli �elds anexist without a symmetry and the physis usually depends on their values.6In priniple, quantum orretions an already generate masses for the moduli �elds. However, insupersymmetri theories there are non-renormalization theorems exluding orretions to the superpo-tential to all orders in perturbation theory. In theories that do not admit non-perturbative orretions,moduli �elds are thus natural. After supersymmetry breaking, all salar �elds, inluding the moduli,reeive mass. However, as an upper bound on these masses, depending on the partiular model ofsupersymmetry breaking, one �nds a moduli mass of the order of 1 TeV. This turns out to be prob-lemati for phenomenologial reasons: light moduli �elds would be problemati in the present universe,as they mediate �fth fores of gravitational strength. In addition, they ause a Polonyi problem: the



8 INTRODUCTIONpossibility to �x their values in a (possibly metastable) vauum and make them suÆ-iently massive suh that they an be disarded from the observed spetrum. Indeed,there are suh mehanism to generate a potential for the moduli �elds and the mostpopular ones are the inlusion of bakground uxes, instanton orretions and gauginoondensates. In this thesis we will fous on the mehanism of inluding bakgrounduxes in the extra dimensions, whih is referred to as ux ompati�ation. The energyof suh a �eld depends on the moduli and thus generates a ontribution to the e�etivepotential for the moduli �elds.Let us onsider an example. As we have seen, type II string theories ontain amongother �elds the NS-NS two-form potential B2. We de�ne its �eld strength by H3 = dB2.Suppose now that we hoose a ompati�ation manifold with a non-trivial three-yle�. We an onsider a ux on�guration with a non-zero ux of the �eld strength,1l2s Z�H3 = n 6= 0 ; (1.5)where n is an integer for proper quantization of the ux and ls = 2�p�0 the stringlength sale. Note that by insisting on maximal four-dimensional symmetry, we an onlyturn on non-trivial uxes in the internal dimensions. The key point is that beause theux is threading the internal yle �, hanging the internal geometry will ost energy -in other words, we generate a potential for the geometri moduli. If this potential hasfavorable harateristis, we an determine the possible (metastable) vauum states ofthe theory as the loal minima of the potential.However, on a qualitative level, the mehanism works for fairly generi nonzerohoies of quantized ux and one �nds a huge number of possible disrete ground states.At present, there is no known mehanism that would single out one or a subset of thesevaua as the preferred andidates to desribe our universe. Any suÆiently long-livedvauum whih �ts all the data of observations would be an equally good andidate todesribe our universe. It seems that the request on string theory as a fundamentaltheory of nature to allow only for a single solution explaining all physial phenomenawas too ambitious. However, given our limited understanding of both general priniplesof quantum gravity and of its mirosopi de�nition, all has not been said and done.At present, however, all we an do is omparing possible solutions with observationaldata. Let us mention in the following some of the observational requirements we imposeon an aeptable solution:� Phenomenologially, an N = 1 matter setor with spontaneously broken super-symmetry at low energies may be preferred. This o�ers a natural extension of thestandard model and helps solving the hierarhy problem, o�ers an explanation ofoupling uni�ation and ontains a possible dark matter andidate, the lightestsupersymmetri partile. In addition, as a tehnial argument, supersymmetrysimpli�es the omputation of the four-dimensional low-energy e�etive ation.osillations of suh a �eld about the minima of their potential, in a osmologial setting, will overlosethe universe [15℄. To safely avoid these problems, we should look for physis of moduli stabilization atenergy sales � 100 TeV and above.



9� As we disussed, we require a large positive mass for all the moduli �elds to�x their vauum expetation values. In fat, the moduli �elds should reeivemasses of the order 100 TeV and above to avoid phenomenologial problems (seedisussion in footnote 6).� At low energies, string theory should reprodue the standard model of partilephysis, in partiular the standard model gauge group SU(3)�SU(2)�U(1) shouldemerge from a viable string theory.� To �t the present osmologial observations of a spatially at universe with itsenergy density dominated by 74% dark energy behaving very similar to a positiveosmologial onstant, we look for a string theory vauum with small positiveosmologial onstant.� The observed osmi mirowave bakground (CMB) radiation inluding its smalldensity utuations ould be elegantly explained by an ination senario in theearly universe. A viable model should therefore o�er the possibility to realizesuh an ination senario.Most of the early attempts to onstrut viable four-dimensional N = 1 vaua weredone by ompati�ations of the E8�E8 heteroti string theory on Calabi-Yau manifolds(following the work of [16℄), with the intention to break one of the E8 gauge groups tothe standard model or GUT gauge group. In ontrast to heteroti SO(32) and E8�E8and type I theories, both type II string theories do not apriori ontain non-Abeliangauge groups.However, with the disovery of D-branes as non-perturbative BPS objets in the mid-dle of the 90's [17℄, also the type II theories were found to naturally inlude non-trivialgauge theories. More preise, D-branes are extended objets de�ned as hyperplanes inthe ten-dimensional spae-time on whih open strings an end. Additionally, they on-stitute the soures for the higher dimensional R-R p-form uxes (the NS-NS two-formB2 ouples to the string world-sheet). A U(1) gauge �eld emerges then from an openstring ending with both ends on the same D-brane. By putting a stak of n D-branes ontop of eah other, the gauge group gets enhaned to U(n), modeling at lowest order aYang-Mills gauge theory in the low-energy e�etive ation. Compati�ations involvingspae-time �lling D-branes, non-vanishing vauum expetation values for bakgrounduxes and non-perturbative e�ets suh as instanton orretions are an attrative setupfor model building in partile physis as well as osmology (see for instane [18℄ andreferenes therein).Motivation and organization of this thesisAn essential step to further study phenomenologial properties of string vaua is todetermine the four-dimensional low-energy e�etive theory for partiular ompati�-ation models. An important appliation omprises the viability of these models for



10 INTRODUCTIONphenomenologial appliations. This is in partiular an interesting question in type IIAstring theory, sine D-brane model building on spae-time �lling D6-branes made muhprogress in the last years [18, 19℄. A viable ompati�ation in type IIA, say one thathas solutions with all moduli stabilized and with small positive osmologial onstantas well as an epoh of ination, would be of extraordinary interest.In this thesis we will fous on ux ompati�ations in type IIA and type IIB stringtheory with the intention to derive the four-dimensional low-energy e�etive theory on alarge lass of new ompati�ation manifolds (for reviews on ux ompati�ations anda more omplete list of referenes, see, e.g., [20, 21, 18℄). One aspet that ompliatesthe derivation of these e�etive ations is that p-form uxes generally bak-reat on thegeometry of the ompati�ation manifold, deforming them away from well understoodlasses suh as Rii-at Calabi-Yau manifolds. The bak-reation an be rather mild,as, e.g., in type IIB orientifolds with D3/D7-branes [22℄, where the internal spae is stillonformal to a Calabi-Yau manifold. In these omparatively simple models, however,the uxes turn out to stabilize only the dilaton and the omplex struture moduli,while the K�ahler moduli stabilization requires the use of quantum e�ets, e.g., alongthe lines of [23℄.We will instead be interested in a di�erent lass of ux ompati�ations for whihthe bak-reation of the uxes on the geometry is less trivial. Conretely, we willderive the four-dimensional low-energy e�etive ation for a large lass of models, whereM6 is a six-dimensional ompat spae that is either a nilmanifold or a oset spae.Some of these models allow for an N = 1 supersymmetri solutions to AdS4. Beingompati�ations to AdS4 spae-time, these models do not appear realisti as suh,but they an serve as starting points for the onstrution of more realisti setups orhave other appliations. In partiular, we will investigate for these models whetherthe potential already has meta-stable de Sitter vaua away from the AdS4 vauum orwhether there are regions suitable for ination.Let us mention that one ould also think to use these models to study other phe-nomenologial appliations, e.g. after the inlusion of an additional uplifting potentialso as to onstrut meta-stable de Sitter vaua in the spirit of the IIB models disussedin [23℄. In addition, replaing uxes by branes, the AdS4 vaua an be potentiallyobtained as near-horizon geometries of interseting branes [24℄. AdS4 ux vaua ofthe type we will onsider may admit a full non-perturbative de�nition via a dual three-dimensional CFT [25℄. The above-mentioned brane solutions also orrespond to domainwalls that interpolate between di�erent ux vaua. The existene of these domain wallsmay orrespond to interesting transitions in the landsape of ux vaua.To render the analysis tratable, we will only onsider strutures and uxes whihare onstant in the basis of left-invariant one-forms (see hapter 2 and hapter 4 foran introdution to G-struture manifolds and left-invariant forms, respetively). Ageneral problem is that an expliit omputation of the low-energy theory of a givenompati�ation requires a suitable hoie of expansion basis for the `light' utua-tions. Unfortunately, it is still unlear how to onstrut suh a basis in general. In



11generi ux ompati�ations, the set of harmoni forms would be unsuitable as ex-pansion forms, as, e.g., the forms J and 
 that de�ne the SU(3)-struture (and whihenter the supergravity expressions for the K�ahler- and superpotential) are no longerlosed (see e.g. [26, 27, 28℄ for a few proposals). A detailed disussion of the generalonstraints on suh a basis appeared in [29℄. In the speial ase of nilmanifolds andoset manifolds, however, the set of left-invariant forms (with the appropriate behaviourunder the orientifold ation) readily presents itself as the natural hoie and obeys therequirements of [29℄ 7.For the ompati�ations we study in this thesis, we will introdue D-brane andorientifold soures. The reason is that, in some of the models we study, the Bianhiidentities annot be satis�ed without orientifold soures. A further reason is that weare interested in four-dimensional, N = 1 supersymmetri e�etive theories, for whihthe orientifold soures are neessary 8. In addition, as we disuss further in hapter 2,the soures potentially allow for a hierarhy of sales between the size of the internalmanifold and the AdS4 urvature, thereby providing a possibility to deouple the towerof Kaluza-Klein modes from the light modes.A somewhat deliate feature of our models is that the orientifolds have to be smeared.The reason for this is that the supersymmetry onditions of [31℄ (for non-vanishingRomans mass) fore the warp fator to be onstant. Considering the bak-reation of aloalized orientifold, on the other hand, one would expet a non-onstant warp fator,at least lose to the orientifold soure 9. A helpful interpretation of the smearing of aloalized soure, whose Poinar�e dual is given roughly-speaking by a delta-funtion, isthat it orresponds to Fourier-expanding the delta-funtion and disarding all but thezero mode. We will adopt the pragmati point of view that the smeared orientifolds arean unavoidable feature of our models that is onsistent with a Kaluza-Klein redutionin the approximation where only the lowest modes are kept. The question of how toassoiate orientifold involutions to a smeared soure turns out to be somewhat subtle.We will make the natural assumption that the di�erent orientifolds orrespond to thedeomposable (simple) terms in the orientifold urrent (see further the disussion inappendix D).This thesis is organized in three main parts. The aim of the �rst part is to providethe formalism and the tehniques needed to analyse type II string theory ompati-�ations to four dimensions. We start in hapter 2 with the N = 1 supersymmetryompati�ation ansatz. Demanding that not all supersymmetries are broken in thefour-dimensional e�etive theory plaes strong topologial onstraints on the internalmanifold. For instane, the struture group of the tangent bundle of the internal mani-7Sine the left-invariant forms are onstant over the moduli spae, this basis satis�es requirements*7-*9 of [29℄ rather trivially. Note that left-invariant forms are not in general harmoni: they areeigenmodes of the Laplaian to eigenvalues of the order of the geometri ux.8For a disussion of the N = 2 theory arising from type IIA theory on nearly-K�ahler manifoldswithout orientifolds see [30℄.9A possible way around this ontradition is that taking into aount �0-orretions might allowfor a non-onstant warp fator (see also [32℄ for an alternative disussion), or one has to onsider moregeneral vaua with SU(3)�SU(3)-struture instead [33℄.



12 INTRODUCTIONfold is redued to SU(3) or a subgroup thereof. We further disuss the onditions on su-persymmetri massive type IIA AdS4 solutions with strit SU(3)-struture. As alreadymentioned, these onditions fore the warp fator and dilaton to be onstant. However,we will provide a generalization of supersymmetri type IIA AdS4 ompati�ationsby allowing for a non-onstant warp fator and dilaton, provided that the Romansmass is set to zero. In hapter 3 we disuss how to obtain the four-dimensional low-energy e�etive ation for a given ompati�ation manifold. We start by disussingthe diret approah, the Kaluza-Klein redution. The modern approah, however, isthe e�etive supergravity approah where one alulates the superpotential and theK�ahler potential by means of geometrial data of the ompati�ation manifold andthe bakground uxes. We review the tehniques for this approah in the generalizedgeometry language and speialize the expressions then to strit SU(3)-struture in typeIIA and stati SU(2)-struture in type IIB theory. We end this hapter by a disussionon how to hoose the most general ansatz for the bakground uxes to label the dison-neted bubbles of moduli spae. In hapter 4 we then turn to the desription of the twolasses of six-dimensional manifolds we study in this thesis. These are six-dimensionalnilmanifolds and oset spaes. Chapter 5 disusses the phenomenologial aspets ofthis thesis, in partiular the question whether our models are valid andidates to allowfor a de Sitter solution or to realize ination senarios (at tree level, without additionalperturbative or non-perturbative quantum e�ets). In string theory, the moduli �eldsof the ompati�ation are natural inaton andidates. We will thus �rst review theimportant aspets of osmology and the Hot Big Bang model and give a brief overviewof the neessary onditions for a partiular ination senario, the so-alled slow-rollination. However, for type IIA ompati�ations at tree level, there exist quite strongno-go theorems against de Sitter vaua and slow-roll ination. We will review andslightly modify these theorems suh that we an apply them to our models.In the seond part of this thesis we apply the tehniques studied so far to the lassof nilmanifolds. A systemati san yields exatly two nilmanifolds that satisfy theneessary and suÆient onditions for (massive) type IIA N = 1 ompati�ations toAdS4 disussed in hapter 2. We present these solutions in hapter 6. As a matterof fat, these solutions are related (for some values of the parameters) by T-dualityalong two diretions. We also �nd a type IIB solution with stati SU(2)-struture ona di�erent nilmanifold, whih forms the intermediate step after one T-duality. Inter-estingly, as shown in setion 6.4, for the same range of the parameter spae for whihthe T-dualities above are valid, the solutions admit an interpretation as near-horizongeometries of interseting brane on�gurations, as in [24℄. From this point of view, thenilmanifold vaua in this range are nothing but near-horizon geometries of intersetionsof Kaluza-Klein-monopoles with other branes in at spae. One of the main goals ofthis part of the thesis is to provide a hek on the e�etive supergravity approah, inpartiular on the expliit expressions of the superpotential and K�ahler potential givenin the literature. To do so, we perform in hapter 7 an expliit Kaluza-Klein redutionaround the two type IIA solutions of hapter 6 and ompute the mass spetrum of themoduli �elds. On the other hand, in hapter 8 we analyse the same two models by



13means of the e�etive supergravity tehniques and ompute again the mass spetrumof the moduli �elds around the supersymmetri solution. We �nd perfet agreementproviding an important onsisteny hek between both approahes. Having performedthis onsisteny hek for these models, we will restrit ourselves to the e�etive super-gravity approah in the following.In the third part of this thesis we fous on oset manifolds, where we �rst examinein hapter 9 the geometry of the oset models that are suitable for supersymmetriompati�ations to four dimensions. In the following hapter 10 we present the osetmodels that satisfy the neessary and suÆient onditions for an N = 1 ompati�-ation to AdS4. We losely follow in these two hapters [34℄. We also omment on apossible supersymmetri AdS4 solution with non-onstant warp fator and dilaton. Themain results of this part of the thesis are the following three hapters: in hapter 11 weompute the four-dimensional type IIA low-energy e�etive theory for a large lass ofoset models. In eah ase, we ompute the superpotential and the K�ahler potential forthe most general hoie of bakground uxes in order to over the whole moduli spae.For the models with a supersymmetri AdS4 vauum we ompute the mass spetrumaround this vauum and �nd that for all the oset models, exept for one, all moduli arestabilized at tree level. For some models we omment on how to identify the numberof possible N = 1 AdS4 vaua in a partiular bubble of moduli spae. In hapter 12we ompute the e�etive theory for type IIB SU(2)-struture ompati�ations on theoset models allowing for a strit SU(2)-struture. Finally, in hapter 13, we disussphenomenologial appliations for the oset models. In partiular, we apply the no-gotheorems of hapter 5 to the oset models and we study whether the models we onsiderin this thesis are interesting andidates for ination or have stable de Sitter minima.Finally, we give some tehnial details in di�erent appendies. In partiular to men-tion is appendix C, where we give a short introdution to the framework of generalizedgeometry.
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Chapter 2G-struture manifolds andsupersymmetri vauaAs we disussed in the introdution, the ten-dimensional type IIA/IIB supergravities,whih are low-energy theories of type IIA/IIB string theory, have N = 2 supersymme-try in ten dimensions. One way to onnet string theory to four-dimensional real-worldphysis is to ompatify it from ten dimensions to four dimensions using a ompat-i�ation ansatz as in eq. (1.4), where we hoose the internal manifold M6 small andompat, suh that the six additional dimensions are not detetable in present-dayexperiments.The struture of the four-dimensional theory so-obtained strongly depends on thehosen internal manifoldM6. For instane, the properties ofM6 determine the amountof preserved four-dimensional supersymmetry. In this thesis we will fous on four-dimensional N = 1 e�etive theories. Let us mention some reasons for this require-ment. As we disussed in the introdution, supersymmetry suggests natural extensionsof the standard model suh as the minimal supersymmetri standard model. Some ofthe phenomenologially attrative features of these models are the following: they o�era possible solution of the hierarhy problem, they an explain the gauge oupling uni�-ation and they may provide a andidate for dark matter, the lightest supersymmetripartile. Another reason is that supersymmetry provides a omparatively easy way toobtain solutions of the full equations of motion, sine the supersymmetry onditionsare muh easier to solve as the equations of motion. It an be shown that solutionsto the supersymmetry onditions, ompleted with the Bianhi identities for the form�elds, automatially provide solutions to the full equations of motion. Of ourse, afterone has onstruted a supersymmetri solution to the supergravity equations of motion,one has to provide additional mehanisms to break supersymmetry spontaneously atlow energies.As we will disuss in this hapter, demanding that not all supersymmetries are bro-ken in the four-dimensional e�etive theory imposes very stringent requirements onthe internal manifoldM6. The existene of four-dimensional supersymmetry parame-



18 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUAters (this is required to obtain a four-dimensional supersymmetri theory) redues thestruture group of the internal manifoldM6, whih is a topologial onstraint, whereasthe existene of a supersymmetri vauum of the theory further imposes di�erentialonstraints on the geometry of the internal manifold. See, e.g., [20, 21, 18, 35℄ forreviews and more referenes.2.1 Supersymmetri e�etive theories and G-struturesWe assume a produt struture for the 10-dimensional spae-time as followsM(9;1) =M(3;1) �M6 ; (2.1)whereM6 is the six-dimensional ompat internal manifold. Motivated by phenomenol-ogy, we onsider the four-dimensional spae-time M(3;1) to admit maximal spae-timesymmetry, i.e., at Minkowski, anti-de Sitter (AdS4) or de Sitter (dS4). These havePoinar�e, SO(1,4) and SO(2,3) invariane, respetively. With this symmetry require-ment, the most general ansatz for a ten-dimensional metri is given byds2 = g��(x)dx�dx� + gmn(y)dymdyn ; (2.2)where the external metri g�� is a Minkowski, dS4 or an AdS4 metri. More gen-erally, one an allow for a non-trivial warp fator e2A(y) that only depends on theinternal oordinates ym, m = 1; : : : ; 6, into the ansatz (2.2). This amounts to re-plae g��(x) ! e2A(y)g��(x), whih is the most general ansatz onsistent with four-dimensional maximal symmetry [36, 37℄.The produt struture of the spae-time bakground (2.1) implies a deompositionof the Lorentz group Spin(9,1) � Spin(3,1)� Spin(6) and an assoiated deompositionof the spinor representation 16 2 Spin(9,1) aording to 16 ! (2;4)� (�2;�4). In orderto obtain an N = 1 four-dimensional e�etive theory, whih has one four-dimensionalsupersymmetry parameter �, we make the following ansatz [38℄ 1�1 = �+ 
 �(1)+ + �� 
 �(1)� ;�2 = �+ 
 �(2)� + �� 
 �(2)� ; (2.3)for IIA/IIB, where �� are four-dimensional and �(1;2)� six-dimensional Weyl spinors.The Majorana onditions for �1;2 imply the four- and six-dimensional reality onditions(�+)� = �� and (�(1;2)+ )� = �(1;2)� .Let us �rst onentrate on the speial ase where the two internal spinors �(1) and �(2)are parallel everywhere: �(1) / �(2) / �. For the deomposition of the ten-dimensional1In the onrete models we study in this thesis we introdue orientifold soures. The orientifoldprojetion fores the four-dimensional supersymmetry generators � to be the same in both lines of theansatz (2.3), ruling out an N = 2 ansatz based on independent �s in the two lines. See appendix C formore details.



2.1. SUPERSYMMETRIC EFFECTIVE THEORIES AND G-STRUCTURES 19superurrents as in eq. (2.3) to be possible, we require the existene of a spinor � thatis globally de�ned on the internal manifoldM6. The existene of suh a spinor imposesa non-trivial topologial ondition on the internal manifold. A globally de�ned spinormust be the same in di�erent pathes and thus invariant under the transition funtionsde�ning the struture group. The spinor representation is in the 4 of Spin(6) ' SU(4),whih an be further deomposed in representations of SU(3) as 4 ! 3 + 1. There istherefore an SU(3) singlet in the deomposition, and we onlude that the topologialondition for a globally de�ned spinor is the requirement that the internal manifold hasredued SU(3)-struture.Further reduing the struture group of the internal manifoldM6 to a group smallerthan SU(3) results in a larger number of globally de�ned internal spinors. For instane,if the struture group is redued to SU(2) there are two independent globally de�nedspinors on M6 suh that a general deomposition as in (2.3) is possible. Combiningthe terminology of [38℄ and [39℄, the following lassi�ation an be made:� strit SU(3)-struture: �(1) and �(2) are parallel everywhere;� stati SU(2)-struture: �(1) and �(2) are orthogonal everywhere;� intermediate SU(2)-struture: �(1) and �(2) are at a �xed angle, but neither azero angle nor a right angle;� dynami SU(3)�SU(3)-struture: the angle between �(1) and �(2) varies, possiblybeoming a zero angle or a right angle at a speial lous.In this thesis we will study ompati�ations with strit SU(3)-struture and statiSU(2)-struture. In the following setions we give more details on these two ases.However, there exists a unifying mathematial desription of all manifolds having thestrutures lassi�ed above. This desription is obtained by a generalization of ordinaryomplex geometry, alled generalized geometry. It turns out that the formalism ofgeneralized geometry is very onvenient to alulate quantities suh as the induedmetri and the K�ahler potential. We therefore give a brief introdution to generalizedgeometry in appendix C. In the following two setions we desribe the speial asesof strit SU(3)-struture and stati SU(2)-struture that we want to onsider in thisthesis. More details an be found in the above mentioned appendix.2.1.1 Strit SU(3)-strutureIf the struture group of the internal manifold is SU(3) and an not be further reduedinto a subgroup of SU(3) we all this a manifold with strit SU(3)-struture. For suh amanifold we have one globally de�ned spinor suh that the supersymmetry generatorsof (2.3) are proportional �(2)+ = (b=a)�(1)+ ; (2.4)



20 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUAwith j�(1)+ j2 = jaj2 and j�(2)+ j2 = jbj2. In the following, we will assume jaj = jbj suhthat b=a = ei� is just a phase. This ondition is atually imposed by supersymmetry inompati�ations to AdS4 2. Let us de�ne a normalized spinor �+ suh that �(1)+ = a�+and �(2)+ = b�+ and moreover we hoose the phase of � suh that a = b�.Given an internal manifold with redued struture group SU(3), we an deomposeother SO(6) representations under SU(3). For a vetor we have 6 ! 3+ �3, for a two-form this reads 15! 8+ 3+ �3+ 1 and for a three-form 20! 6+ �6+ 3+ �3+ 1+ 1.Thus, there further exists a two-form and a omplex three-form both non-vanishingand globally de�ned, but no invariant vetors (or equivalently �ve-forms). These formsprovide us with an equivalent desription of a strit SU(3)-struture. Indeed, with theSU(3)-invariant spinor � we an onstrut the real non-degenerate two-form J and theomplex deomposable three-form 
 as followsJmn = i�y+mn�+ ; 
mnp = �y�mnp�+ : (2.5)These forms satisfy the SU(3)-struture onditions
 ^ J = 0 ; (2.6a)
 ^ 
� = 4i3 J3 6= 0 ; (2.6b)sine there is no invariant �ve-form and there is only one invariant six-form (this an alsobe shown using Fierz identities). Up to a hoie of orientation, a volume normalizationis de�ned as 16J3 = � i8
 ^
� = vol6 : (2.7)Equivalently, the equations (2.6) and (2.7) ompletely speify an SU(3)-struture on asix-dimensional manifold, provided that the assoiated metri to J and 
 is positivede�nite 3.The existene of a globally de�ned everywhere non-vanishing spinor is a topologialondition that redues the struture group to SU(3). As we will explain in setion 2.2.1in more detail, the onditions for a supersymmetri vauum imposes further di�erentialonstraints on the spinor. In the simplest ase, where no bakground uxes are turnedon, a supersymmetri solution requires the internal spinor to be ovariantly onstantwith respet to the Levi-Civita onnetion, rm� = 0. From eq. (2.5) we thus obtaindJ = d
 = 0 : (2.8)Suh a manifold has SU(3)-holonomy 4 and is alled a Calabi-Yau manifold.2As a matter of fat, the ondition jaj = jbj is also implied by the orientifold projetion that wewill impose in our onrete models (see further appendix C).3In appendix C it is explained in term of generalized geometry how to obtain the metri assoiatedto J and 
.4The holonomy group is the group generated by transformations indued by parallel transportaround loops. The ovariant onstant spinor remains the same by parallel transport around a loop.Following the same arguments as above, the holonomy group is redued to SU(3).



2.1. SUPERSYMMETRIC EFFECTIVE THEORIES AND G-STRUCTURES 21These onditions hange drastially in the presene of uxes, where the supersym-metry onditions imply that the spinors are not ovariantly onstant with respet tothe Levi-Civita onnetion. The failure of the manifold to be of speial holonomy orequivalently the deviation from losure of J and 
 is parameterized by the intrinsi tor-sion. To be more preise, on a manifold with SU(3)-struture there is always a metriompatible onnetion r0 (i.e., a onnetion with r0mgnp = 0) with or without torsionthat has SU(3)-holonomy, r0m� = 0. In ase this onnetion is torsionless, the manifoldis Calabi-Yau. The part of the torsion whih is independent of the hoie of r0 is knownas the intrinsi torsion and an be used to lassify the types of SU(3)-strutures. Theintrinsi torsion tensor an be deomposed in terms of SU(3) representations as followsTmnp 2 (3� �3)
 (1� 3� �3)= (1� 1)� (8� 8)� (6� �6)� 2(3 � �3)W1 W2 W3 W4 W5 ; (2.9)where the Wi are the torsion lasses [40, 41℄. Here, W1 is a salar, W2 is a primitive(1,1)-form, W3 is a real primitive (1; 2) + (2; 1)-form, W4 is a real one-form and W5 aomplex (1,0)-form.It follows that dJ and d
 an be deomposed using these torsion lasses in thefollowing way dJ = 32Im(W1
�) +W4 ^ J +W3 ;d
 =W1J ^ J +W2 ^ J +W�5 ^
 ; (2.10)A lassi�ation of speial manifolds in terms of vanishing torsion lasses is given intable 2.1 [20℄. For example, a manifold is omplex if the �rst two torsion lasses vanish,W1 = W2 = 0. Indeed, if this is valid, d
 is a (3,1)-form, the only possibility on aomplex manifolds, sine 
 is a (3,0)-form. For a sympleti manifold, the fundamentaltwo-form J has to be losed and one has therefore W1 = W3 = W4 = 0. A K�ahlermanifold is omplex and sympleti, whih implies that W5 is the only non-vanishingtorsion lass, and J is alled the K�ahler form. In this ase, the manifold has U(3)-holonomy that is redued to SU(3)-holonomy by further hoosing W5 = 0 so that allthe torsion lasses vanish and we are left with a Calabi-Yau manifold.Of speial interest for this thesis are manifolds for whih only the lasses W1 andW2 are non-vanishing and in this lass the speial ase where also W2 vanishes, the so-alled nearly-K�ahler manifolds. Further, as we will see in setion 2.3, a supersymmetrisolution with non onstant warp fator/dilaton implies a manifold with non-vanishing�fth torsion lass W5.For later onveniene, let us also mention that the pure spinors assoiated to a stritSU(3)-struture are given as follows (see also appendix C)	� = �
 ; and 	+ = e�i�eiJ ; (2.11)where J and 
 are de�ned in eq. (2.5).



22 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUATorsion lasses Name of manifoldW1 =W2 = 0 ComplexW1 =W3 =W4 = 0 SympletiImW1 = ImW2 =W4 =W5 = 0 Half-atW1 =W2 =W4 =W5 = 0 Speial HermiteanW2 =W3 =W4 =W5 = 0 Nearly-K�ahlerW1 =W3 =W4 =W5 = 0 Almost-K�ahlerW1 =W2 =W3 =W4 = 0 K�ahlerW1 =W2 =W3 =W4 =W5 = 0 Calabi-YauW1 =W2 =W3 = 3W4 � 2W5 = 0 \Conformal" Calabi-YauTable 2.1: Classi�ation of manifolds from vanishing torsion lasses.2.1.2 Stati SU(2)-strutureFurther reduing the struture group to SU(2), we have two independent non-vanishing,globally de�ned spinors, �(1;2). In the following we assume that �(1) and �(2) are orthog-onal everywhere suh that we have a stati SU(2)-struture as de�ned in setion 2.1.The stati SU(2)-struture is a speial ase of the more general SU(3)�SU(3)-struture.In appendix C we will give an introdution into the language of generalized geometryand SU(3)�SU(3)-strutures. In this setion we will disuss the main formulas neededto deal with stati SU(2)-struture ompati�ations.Having two nowhere vanishing and orthogonal spinors �(1) and �(2), we an, just asfor the SU(3)-struture, de�ne the SU(2)-struture in terms of SU(2)-invariant forms.Following [42, 43, 39℄, we hoose to parameterize the two orthogonal spinors as follows�(1)+ = a�+ ; (2.12a)�(2)+ = bV ii�� ; (2.12b)where j�(1)+ j2 = jaj2 and j�(2)+ j2 = jbj2, whih imposes jV j2 = 1=2. Again, we hoose inthe following jaj = jbj, whih is implied by the orientifold projetion [43℄ and we hoosethe relative phases of the spinors suh that a = b� and b=a = ei�, where only the phase� is physial. We further de�ne a normalized spinor ~�+ = �(2)+ =b, i.e.~�+ = V ii�� ; (2.13)and one onstruts the one-form assoiated to the vetor V in terms of the spinors asVk = 12�y�k~�+ : (2.14)In addition we an onstrut from bilinears of the spinor �elds a real two-form !2 and



2.2. SUPERSYMMETRIC SOLUTIONS 23a holomorphi two-form 
2 as follows!2 ij = i�y+ij�+ � i~�y+ij ~�+ ; (2.15a)
2 ij = ~�y+ij�+ : (2.15b)These forms are obviously SU(2)-invariant. Using Fierz identities these forms satisfythe following struture onditions [42, 39℄!2 ^ !2 = 12
2 ^ 
�2 6= 0 (2.16a)!2 ^ 
2 = 0 ; 
2 ^ 
2 = 0 ; (2.16b)�V 
2 = 0 ; �V !2 = 0 : (2.16)Equivalently, forms !2, 
2 and V satisfying eq. (2.16) ompletely speify a statiSU(2)-struture, provided that the assoiated metri is positive de�nite. We explainhow to obtain this assoiated metri in appendix C.Note that the SU(2)-struture is naturally embedded in the SU(3)-struture de�nedby �+ in eq. (2.5). We get from the eqs. (2.14) and (2.15)J = !2 � 2iV ^ V � ; 
 = 2V ^ 
2 ; (2.17)and one has the reverse relations!2 = J + 2iV ^ V � ; 
2 = �V �
 : (2.18)We then �nd for the pure spinors assoiated to a stati SU(2)-struture as explainedin appendix C 	+ = �e�i�e2V ^V �
2 ; (2.19a)	� = �2V ^ ei!2 : (2.19b)In the following, it will be onvenient to absorb the phase e�i� into 
2.2.2 Supersymmetri solutionsDemanding maximal symmetry of a vauum of the theory, only the bosoni �elds anhave non-vanishing expetation values. Thus, the supersymmetry variations of thebosoni �elds that always ontain a fermioni �eld are automatially vanishing. Hene,we have just to onsider the variation of the fermioni �elds. For a supersymmetrivauum we require that the vauum expetation value of the supersymmetri variationof all fermioni �elds � vanish, hÆ�i = 0.As we have seen in the introdution, the fermioni �elds in type II theories are twogravitini  1M and  2M and two dilatini �1 and �2. We an ombine these Majorana-Weyl



24 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUAspinors in a olumn vetor  M = � 1M ;  2M�T, and similarly for �. In the supergravityapproximation, the bosoni parts of the supersymmetry variation of the gravitini anddilatini read [20℄ (in string frame) 5Æ M = DM � =  rM + 14HMP + e�16Xn Fn�MPn! � ; (2.20a)Æ� =  ��+ 12HP + e�8 Xn (�1)n(5� n)FnPn! � ; (2.20b)respetively, where underline denotes the ontration with gamma-matries as de�nedin eq. (A.18), andIIA : P = �(10) ; IIB : P = ��3; (2.21a)IIA : Pn = (�(10))n2 �1 ; IIB : Pn = �1 �n+ 12 even� ; i�2 �n+ 12 odd� : (2.21b)It is sometimes onvenient to use the modi�ed dilatino variation�MÆ M � Æ� = �r� ��+ 14HP� � : (2.22)A type II geometry will preserve supersymmetry if and only if there is at least one� for whih all the supersymmetry variations (2.20) vanish. The number of suh �'sdetermine the number of superharges and thus the amount of supersymmetry in fourdimensions. As we will see, these onditions plae strong onstraints on the geometry.To preserve maximal four-dimensional symmetry, we are allowed to turn on onlythose uxes whih have either no leg or four legs along four-dimensional spae-time.We require F = F̂ + vol4 ^ e4A ~F ; (2.23)with vol4 the (unwarped) four-dimensional volume form suh that F̂ and ~F are purelyinternal forms. This allows us to write the supersymmetry variations in terms of internaluxes only. The Hodge duality (B.1) (here in string frame) then implies the followingrelation ~F = ��(?6F̂ ) ; (2.24)for IIA/IIB, and the operator � reversing the order of the indies is de�ned in appendixA. In the following we will drop the hat symbol and hope that the notation is lear.5Here we use the demorati formulation of [44℄. See appendix B for our onventions.



2.2. SUPERSYMMETRIC SOLUTIONS 252.2.1 Supersymmetri bakgrounds without uxesFor the simplest ase when no uxes are present, the gravitino variation (2.20a) re-quires the existene of a ovariantly onstant spinor on the ten-dimensional manifold,rM� = 0. The four-dimensional spae-time omponent of this ondition, r�� = 0,implies, using integrability onditions, that the warp fator has to be zero and the four-dimensional manifold an only be Minkowski spae [20℄. When no uxes are present, wean deompose the ten-dimensional supersymmetry generators as follows (we assumehere strit SU(3)-struture) �1 = �1+ 
 �+ + �1� 
 �� ;�2 = �2+ 
 �� + �2� 
 �� ; (2.25)for IIA/IIB, where �A� , A = 1; 2 are two four-dimensional Weyl spinors. This ompat-i�ation preserve eight superharges whih implies N = 2 in four dimensions.We solve the internal omponent of the gravitino variation, rm� = 0, with thedeomposition ansatz (2.25) provided thatrm�� = 0 ; (2.26)whih means that the internal manifold has to admit the existene of a non-vanishing,globally de�ned six-dimensional spinor that is ovariantly onstant (with respet to theLevi-Civita onnetion). As mentioned earlier, this ondition implies that the internalmanifold not only has SU(3)-struture but also SU(3)-holonomy and is a Calabi-Yaumanifold.2.2.2 Supersymmetri bakgrounds in the presene of uxesIf we turn on bakground uxes, the supersymmetry onditions (2.20) relate the twosupersymmetry parameters �1 and �2 in (2.25). It turns out that the four-dimensionalsupersymmetry parameters �1 and �2 annot be hosen independently anymore, break-ing four-dimensional supersymmetry to N = 1. Demanding maximal four-dimensionalsymmetry, �1 and �2 should be proportional, and we arrive at the most general ansatzfor N = 1 in four dimensions given in eq. (2.3).In the following, we will speify the neessary and suÆient onditions for N = 1ompati�ations of (massive) type IIA supergravity to AdS4 with the strit SU(3)-struture ansatz.Type IIA strit SU(3)-struture supersymmetry onditionsThe neessary and suÆient onditions for N = 1 ompati�ations of (massive) typeIIA supergravity to AdS4 with the strit SU(3)-struture ansatz (2.4) were �rst givenin [31℄. These vaua require onstant warp fator, A, and onstant dilaton, �. The



26 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUAsolutions of [31℄ are given by 6:H = 2m5 e�Re
 ; (2.27a)F2 = f9 J + F 02 ; (2.27b)F4 = fvol4 + 3m10 J ^ J ; (2.27)Wei� = �15e�+Am+ i3e�+Af ; (2.27d)where H is the NSNS three-form, and Fn denote the RR-forms. In the following,we will set the warp fator equal A to zero. Furthermore, f and m are onstantsparameterizing the solution: f is the Freund-Rubin parameter, while m is the massof Romans' supergravity [45℄ { whih an be identi�ed with F0 in the `demorati'formulation [44℄.The onstant W is de�ned by the following relation for the AdS4 Killing spinors,��, r��� = 12W��+ ; (2.28)so that the radius of AdS4 is given by jW j�1. The two-form F 02 is the primitive part ofF2 (i.e. it is in the 8 of SU(3)).The intrinsi torsion of the internal manifold is onstrained by supersymmetry andthe Bianhi identities. The only non-zero torsion lasses are W1 and W2, and theyare purely imaginary what we indiate with a minus supersript, i.e., W1;2 = W�1;2 =iImW�1;2. The forms J and 
 thus satisfy (see the de�nition of the torsion lasses ineq. (2.10)) dJ = �32 iW�1 Re
 ; (2.29a)d
 =W�1 J ^ J +W�2 ^ J ; (2.29b)where the torsion lasses are given by:W�1 = �4i9 e�f ; W�2 = �ie�F 02 : (2.30)From eq. (2.27) and eq. (2.30) we immediately onlude that F 02 is onstrained bythe Bianhi identity for F2 (see eq. (B.9a)):dF 02 = ( 227f2 � 25m2)e�Re
� j6 ; (2.31)6As opposed to [31℄ we do not use superspae onventions. Furthermore we use here the stringframe and put m = �2mthere; H = �Hthere; J = �Jthere; F2 = �2mthereB0 and F4 = �G.



2.2. SUPERSYMMETRIC SOLUTIONS 27where we have added a soure, j6, for D6-branes/O6-planes on the right-hand side. Inaddition, for vanishing soures, equation (2.31) yields dW�2 / Re
. It is onvenient tode�ne the following proportionality onstants 1 and 2dJ = �32 iW�1 Re
 = 1Re
 ; (2.32a)dW�2 = i2Re
 ; (2.32b)where we show in appendix C 2 = �18 jW�2 j2 : (2.33)The absolute value of a two-form � is de�ned as j�j2 := ��mn�mn.For the soureless ase it was proven by analyzing integrability onditions that abakground that is supersymmetri and whose uxes satisfy the Bianhi identities andequations of motion is a solution to the full equations of motion (whenever there areno mixed external-internal omponents of the Einstein tensor, whih we will assume)[46, 47, 31℄. Turning on soures, the Bianhi identities get modi�ed by these soures.Assuming these soures to be supersymmetri (they must be generalized alibrated asin [48℄) it an similarly be shown that, under mild assumptions, supersymmetry guar-antees the appropriately soure-modi�ed Einstein and dilaton equation of motion to beautomatially satis�ed if these soure-modi�ed Bianhi identities and form equationsof motion are satis�ed [43℄.For vanishing soure, we �nd from the eqs. (2.31), (2.32) and (2.33) that the fol-lowing bound on (W�1 ;W�2 ) has to be satis�ed for a geometry to be a supersymmetribakground 165 e2�m2 = 3jW�1 j2 � jW�2 j2 � 0 : (2.34)This is a very restritive ondition for a manifold to be suitable for a supersymmetrisolution. Let us note that ondition (2.34) turns out to be too stringent to be satis�edfor any nilmanifold whose only non-zero torsion lasses are W�1;2 [49℄.To relax the this restritive onstraint (2.34) we may allow for a brane/orientifoldsoure, j6 6= 0. The simplest soure we an onsider is one proportional to Re
 [50℄:j6 = �25e���Re
 ; (2.35)where � is a disrete, real parameter of dimension (mass)2, so that �� is proportional tothe orientifold/D6-brane harge (� is positive for net orientifold harge and negative fornet D6-brane harge) 7. For the hoie (2.35) the soure wraps supersymmetri yles,7To be more preise, the harge of a D6-brane is �6 = (2�)�6�0�7=2, whereas the harge of aO6-plane is �2�6. An orientifold plane is not a genuine supergravity objet, but de�ned by the stringompati�ation, where the orientifold plane is the �xed point lous of the involution ��. Thus, fornet D-brane harge, � < 0 is an arbitrary, disrete parameter (proportional to the number of D6-branes), whereas for net orientifold harge, � > 0 is �xed by the harge of the orientifold. However,for the expliit alulations in this thesis, we take the pragmati point of view that we an enrih thesupergravity ation by an objet with arbitrary negative harge [38℄.



28 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUAwhih is easily veri�ed by looking at the alibration onditions for D6-branes/O6-planes:j6 ^Re
 = 0 ; j6 ^ J = 0 ; (2.36)whih are satis�ed for (2.35). The onstraint oming from (2.31) now readse2�m2 = �+ 516 �3jW�1 j2 � jW�2 j2� � 0 : (2.37)Sine we assume that � is arbitrary, the above equation an always be satis�ed, andtherefore no longer imposes any onstraint on the torsion lasses of the manifold. Withorientifolds soures there are possible solutions on nilmanifolds as we will demonstratein hapter 6.There is a more general hoie as (2.35) for the soure that satis�es the alibrationondition (2.36): j6 = �25e���Re
+ w3 ; (2.38)where w3 has to be a primitive (1,2)+(2,1)-form. For this hoie we relax the onstraintthat dW�2 / Re
 suh that W�2 = i2Re
 + ie�w3 : (2.39)The ondition (2.34) is still the same, sine it involves only the (3,0) and (0,3)-part ofeq. (2.31).As we have mentioned, for some of our models we will study, the inlusion of smearedorientifold soures is required to relax the bound from (2.34) to (2.37) and to allow fora supersymmetri AdS4 solution. In appendix D we explain how to assoiate orientifoldinvolutions to a smeared soure. Under eah orientifold involution the dilaton, metriand uxes must transform as follows [43℄:Even : ��e� = e� ; ��F0 = F0 ; ��F4 = F4 ;Odd : ��H = �H ; ��F2 = �F2 ; (2.40a)whereas the SU(3)-struture transforms asEven : ��Im
 = Im
 ;Odd : ��Re
 = �Re
 ; ��J = �J : (2.40b)Let us mention that there is no N = 1 AdS4 solution for a ompati�ation in typeIIA with stati SU(2)-struture, as was already noted in [42℄. We provide a very simpleproof for this statement in terms of generalized geometry in appendix C. The sametype of argument is also appliable for the type IIB side, where it is easy to see thatthere is no N = 1 AdS4 solution for type IIB and strit SU(3)-struture possible. Wesummarize these results in table 2.2.



2.2. SUPERSYMMETRIC SOLUTIONS 29N = 1 AdS4 solution type IIA type IIBstrit SU(3) possible not possiblestati SU(2) not possible possibleTable 2.2: Possible N = 1 AdS4 solution for type IIA/IIB with strit SU(3)-strutureor stati SU(2)-struture.Hierarhy of salesFor a solution satisfying the type IIA onditions given in this setion to be a validsupergravity approximation, we have to verify that the string loops an be safely ignoredand that we an ignore �0-orretions. We thus have to show that we an onsistentlytake the string oupling onstant to be small (gs = e� � 1), and that the volume of theinternal manifold is large in string units (Lint=l � 1, where Lint is the harateristilength of the internal manifold).As we will show in the following, we an always hoose the bakground uxes in away that the supergravity approximation is valid. In the full quantum theory, all theuxes have to be quantized aording to1lp�1 ZCp Fp = np ; (2.41)where l := 2�p�0, Cp is a yle in the internal manifold, and np 2 Z. For the super-symmetri solutions we will study in part II and III of this thesis, the NSNS three-formH turns out to be exat (in fat, sine H / Re
 / dJ this follows from the supersym-metry onditions in setion 2.2.2, see �rst equation in (2.27) and eq. (2.29a)), hene itsintegral over any internal three-yle vanishes, and it therefore suÆes to impose (2.41)for the RR-uxes.Conretely, in hapter 8 and 11, where we will study the mass spetrum around thesupersymmetri solutions for our models, we hoose onventions suh thatJ � L2int ; 
 � L3int : (2.42)We immediately onlude from (2.27), (2.29) and (2.31) the following salings 8Fp � 1gsLintLpint ; jWij2 � L�2int : (2.43)We thus de�ne fp=(gsLint) as the norm of the ux density Fp, where fp is some numberdepending on the geometry. The quantization ondition (2.41) then impliesfpg�1s Lp�1int = lp�1np ; (2.44)8In our onventions, the struture onstants are dimensionless suh that the derivative does notinuene the saling.



30 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUAfrom whih one easily derives the following equationsgs = (f30 f4) 14 (n30n4)� 14 ; Lintl = �f0f4� 14 �n4n0� 14 ;n2pn0n4 = f2pf0f4 ; n0n6n2n4 = f0f6f2f4 : (2.45)Given a solution fnpg to the quantization onditions (2.44), there are several di�erentpossible salings np ! N�pnp, for N;�p 2 N, whih leave the fp's invariant and, at thesame time, ensure that gs is parametrially small while Lint=l is parametrially large(with large parameter N). For instane, assume the resalingn0 ! N4n0 ; n2 ! N6n2 ; n4 ! N8n4 ; n6 ! N10n6 ; (2.46)and it is easy to verify that the fp's are invariant whereas gs / N�5 and Lint=l / N .Despite the fat that we are allowing for large ux quanta, it an be shown that higher-order ux orretions an also be negleted. Indeed it is not diÆult to see that theparameter jgsFpj2, whih ontrols the size of these orretions, sales with a negativepower of the large parameter N [51℄.Deoupling of Kaluza-Klein modesA further onsisteny requirement is that the Kaluza-Klein tower an be deoupled, i.e.,we have to establish that the lightest exitations above the Breitenlohner-Freedmanbound with mass squares m2LM are muh lighter than the Kaluza-Klein exitationswith mass square m2KK. This is the problem of separation of sales. One an takethe point of view that this problem should not be disussed until the model is upliftedto a phenomenologially viable model with a small, positive osmologial onstant - aproedure that also hanges the mass spetrum of the lightest modes suh that it isneessary to re-address the separation of sales.However, in the following we will study the onditions for the separation of saleseven before the uplifting. It will atually turn out that the separation of sales isdiÆult to establish and will not be possible for most of the models we study in thisthesis suh that one may hope that after an uplift proedure the sales are properlyseparated. Nevertheless, let us study the onditions for deoupling the Kaluza-Kleinmodes.As we will disuss in setion 3.1, the mass squares of the lightest exitations abovethe Breitenlohner-Freedman bound are of order jW j2 whereas the massive states of theKaluza-Klein tower have mass squares of the order L�2int . The neessary ondition tohave a hierarhy between the lightest exitations and the Kaluza-Klein tower an thusbe rewritten as follows jW j2L2int � 1 : (2.47)



2.2. SUPERSYMMETRIC SOLUTIONS 31Using (2.27d) we �nd that to deouple the Kaluza-Klein sale we must imposejW j2L2int = 125(gs)2m2L2int + 19(gs)2f2L2int � 1 ; (2.48)whih means that eah of the two terms on the right-hand side of the equal sign mustbe separately muh smaller than one.Let us �rst onsider the seond square in the ondition for a deoupling of the Kaluza-Klein sale (2.48). This requires (gs)2f2L2int � 1. From eq. (2.30) this onditions readsjW�1 jLint � 1 ; (2.49)whih requires manifolds for whih W�1 vanishes (and only W�2 is possibly non-zero).Suh manifolds are alled `nearly Calabi-Yau' (NCY), see e.g. [52℄. Hene, for thedeoupling of the Kaluza-Klein sales, the internal manifold must admit an SU(3)-struture whih is suÆiently lose to the NCY limit.The �rst square of ondition (2.48) yields the ondition (gs)2m2L2int � 1. Usingeq. (2.37) this ondition is equivalent to�L2int + 516 �3jW�1 j2 � jW�2 j2�L2int � 1 : (2.50)Note that without soure terms it is not possible to satisfy this ondition (unless3jW�1 j2 � jW�2 j2 � L�2int). However, with soure terms we just need to show thatwe an hoose � so that it is lose to its bound to satisfy (2.50). The disrete parame-ter �, whih is, for � < 0, proportional to the net number of D6-branes nD6, sales as(up to numerial fators of order one)� � �nD6gslL�3int ; (2.51)as an be seen from the quantization ondition for F2, and the Bianhi identity for F2(B.9a). With eq. (2.43) we an rewrite this equation shematially as follows:�nD6gs� lLint�+ a� 1 ; (2.52)where a is a number of order one. Sine gs � lLint�� 1, we an then satisfy this bound,provided that a is positive, by hoosing some large integer nD6.One a solution for nD6 is obtained in this way, we are free to resale nD6 ! N qnD6leaving (2.52) invariant, provided we take: q = (�0+�4)=2 2 N. For the example (2.46)we add nD6 ! N6nD6 whih leaves eq. (2.52) and all the fp's in eq. (2.45) invariantand ensures that gs is parametrially small while Lint=l is parametrially large (withlarge parameter N).On the other hand, when a turns out to be stritly negative, we an not aomplish(2.52) with �nD6 ! nO6, whih orresponds to net orientifold harge, sine the numberof orientifolds is not freely adjustable (see also footnote 7). It depends thus on the modelwe study, whether the Kaluza-Klein modes an be deoupled or not.



32 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUA2.3 Supersymmetri type IIA solution with non-onstantwarp fator and dilatonThe (massive) type IIA supersymmetry onditions forN = 1 ompati�ations to AdS4given in setion 2.2.2 assumed onstant warp fator A and onstant dilaton �. Theondition of onstant warp fator/dilaton follows from the supersymmetry equationsand the Bianhi identity for F0. However, we an allow for non-onstant warp fa-tor/dilaton provided that we set the Romans mass m to zero 9. To analyse this in moredetail, we rederive the type IIA supersymmetry onditions given in setion 2.2.2. Itwill be onvenient for the analysis to use the language of generalized geometry, whihwe review in appendix C, where the onditions for a supersymmetri solution take avery onise form.Let us start by �rst ombining eq. (C.43b) and (C.43) to givedH �e3A��	2� = 2We2A��Re	1 ; (2.53)where we used the fat that W is a onstant. The seond equation whih we have tosolve inludes the RR-uxes (olletively summarized in the polyform ~F ) and is givenin eq. (C.43a). It readsdH �e4A��Im	1� = 3e3A��Im(W �	2) + e4A ~F ; (2.54)where ~F is de�ned in eq. (2.24).For a strit SU(3)-struture the pure spinors are given in eq. (2.11), where for typeIIA 	1 = 	� and 	2 = 	+. We �rst solve eq. (2.53) whih imposes onstraints on thegeometry. It onsists of a one-, three- and �ve-form part. The one-form part readsd(e3A��e�i�) = d(e3A��W �e�i�) = 0 ; (2.55)where we used in the seond equation that W is onstant. In the following it will beonvenient to inlude the phase of W into the angle �0 as followsW �e�i� = jW je�i�0 : (2.56)The onditions resulting from eq. (2.55) are thusd�0 = 0 ; (2.57a)3dA� d� = 0 : (2.57b)The three-form part of eq. (2.53) is rewritten with eq. (2.57) as followsidJ +H = �2e�AjW je�i�0Re
 ; (2.58)9Reently, this was also emphasized in [53℄ and in [54, 33℄ suh N = 2 type IIA solutions areonstruted from M-theory bakgrounds on seven dimensional Sasaki-Einstein manifolds redued totype IIA.



2.3. SOLUTION WITH NON-CONSTANT WARP FACTOR AND DILATON 33suh that we get dJ = �2e�AjW j sin �0Re
 = 1Re
 ; (2.59a)H = �2e�AjW j os �0Re
 ; (2.59b)where we introdued the proportionality onstant 1 as in eq. (2.32). Note thateq. (2.59a) implies the vanishing of the torsion lasses W3 and W4 and onstrainsthe �rst torsion lass to be purely imaginary,W�1 = �4i3 e�AjW j sin �0 : (2.60)The �ve-form part of eq. (2.53) is very easy, it reads using the result (2.57),d��12J ^ J�+ iH ^ J = 0 ; (2.61)and is automatially satis�ed as an easily be seen from eq. (2.59) and the ompatibilityonditions for a strit SU(3)-struture (2.6).Let us now analyse the seond ondition (2.54) involving the RR-�elds. It onsists ofa zero-, two-, four- and six-form part. We �rst analyse the zero-, two- and six-form partof this equation and analyse the two-form part later. The onditions read, respetively,~F0 = 3e��e�AjW j sin �0 ;~F2 = �3e��e�AjW j os �0J~F6 = 3e��e�AjW j os �0vol6 � e��H ^ Im
 ; (2.62)where we de�ned the volume vol6 in eq. (2.7). Using eq. (2.24) 10, these equationstranslate into F0 = m;F4 = 3m10 J ^ J ;F6 = �fvol6 ; (2.63)where we de�ned m = �5e��e�AjW j os �0 ;f = 3e��e�AjW j sin �0 : (2.64)So far we obtained exatly the onditions given in setion 2.2.2, whih were �rstderived in [31℄. The ruial point is that the Bianhi identity for F0 (see eq. (B.9a))reads dF0 = d(�5e��e�AjW j os �0) = 0 ; (2.65)10Note that we drop the hat on F in the following.



34 2. G-STRUCTURE MANIFOLDS AND SUPERSYMMETRIC VACUAwhih is equivalent, using eq. (2.57a), tod� + dA = 0 : (2.66)Together with eq. (2.57b), this implies that the warp fator A and the dilaton � haveto be onstant. If, on the other hand, the Romans mass m is vanishing, we do nothave this ondition from the Bianhi of F0 and the warp fator A and the dilaton �are not onstant anymore but still satisfy eq. (2.57b). Hene we hoose in the following�0 = ��2 suh that 11 m = 0 and f = �3e��e�AjW j : (2.67)This has now onsequenes for the geometry, as an be seen as follows. Fromeq. (2.59a) we obtain 0 = d2J = d(�2e�AjW jRe
) ; (2.68)suh that dRe
 = dA ^Re
 : (2.69)Comparing this with the de�nitions of the torsion lasses in eq. (2.10), we have anon-vanishing �fth torsion lass W5, for whih the real part is given byReW5 = dA 6= 0 ; (2.70)whereas ReW1 = ReW2 = 0. This implies for Im
 the followingdIm
 = �iW�1 J ^ J � iW�2 ^ J + dA ^ Im
 : (2.71)We are now ready to analyse the missing four-form part of eq. (2.54). This equationreads then ~F4 = �32e��e�AjW jJ ^ J + e�A��d(eAIm
) ; (2.72)whih translates, using eq. (2.24) and eq. (2.71), inF2 = f9J + F 02 + 2e�� ?6 (dA ^ Im
) ; (2.73)where we de�ned F 02 = ie��W�2 : (2.74)Let us in the following briey summarize the results of this analysis. Putting the Ro-mans mass m to zero, there are solutions to the strit SU(3)-struture supersymmetry11In the following, we will hoose the plus sign in eq. (2.67).



2.3. SOLUTION WITH NON-CONSTANT WARP FACTOR AND DILATON 35onditions with non-onstant warp fator and dilaton and the following non-vanishingtorsion lasses W�1 = �4i9 e��f ;W�2 = �ie�F 02 ;ReW5 = dA : (2.75)The bakground uxes are given byH = 0 ;F0 = 0 ;F2 = f9 J + F 02 � 2e�� ?6 (dA ^ Im
) ;F4 = 0 ;F6 = �fvol6 : (2.76)
Let us stress again that this time, f is not a onstant but f = 3e��e�AjW j. The warpfator A and the dilaton � are related by eq. (2.57b).





Chapter 3Low-energy four-dimensionalphysisAs we mentioned in the introdution, the idea of geometri ompati�ation is veryold. Kaluza [12℄ and Klein [13, 14℄ suggested a uni�ation of the gravitational andeletromagneti interation by postulating an extra ompat dimension of spae-time.As we will explain in this hapter, the ompati�ation of extra dimensions into a smallinternal manifold results in an in�nite tower of salar, vetor and tensor modes withmasses quantized in units of the inverse radius of the internal manifold. In the earlydays of Kaluza and Klein, however, it was far from lear how to interpret these massivepartiles, sine with the eletri harge set equal to its experimentally observed valuethese masses turned out to be very heavy. The aeptane of extra dimensions wastherefore very low.The disovery of string theory provided another way of introduing higher dimen-sions into physis. String theory requires a ten-dimensional spae-time to be a on-sistent theory. To make ontat with our observed four-dimensional world we need amehanism to hide six of these ten dimensions from present-day experiments and theidea of Kaluza and Klein gained immediately new interest. Hene, we hoose thesesix extra dimensions to be small and ompat suh that they are not detetable inpresent-day experiments. For a given bakground, the ten-dimensional theory an thenbe redued to four dimensions by a Kaluza-Klein redution, resulting in an in�nitetower of Kaluza-Klein modes. Choosing the internal manifold small enough not to beobserved, the higher modes of the Kaluza-Klein tower beome very heavy and an beintegrated out. We end up with an e�etive four-dimensional theory for the lightestKaluza-Klein modes. As we mentioned in the introdution, the salars in this lightspetrum orrespond to the moduli �elds. If there are no bakground uxes or metriuxes present, these moduli will be massless and unstabilized.For supersymmetri theories, on the other hand, one an ompute the four-dimen-sional e�etive theory in a more elaborate approah that relies on supersymmetry. Wewill refer to this approah as the e�etive supergravity approah. Conretely, for an



38 3. LOW-ENERGY FOUR-DIMENSIONAL PHYSICSN = 1 supergravity, one determines the K�ahler potential K and the superpotential Win terms of geometrial data of the internal manifold and the bakground uxes 1. Bymeans of these expressions we an straightforwardly onstrut the e�etive ation, aswe will review in the following. We will use the expressions for the K�ahler potentialand the superpotential derived in [55, 27, 56, 57, 58, 59℄. However, we will not blindlyadopt these expressions without heking them arefully. We will perform this hek byalulating the mass spetrum for two of our expliit models we study in this thesis, bothby a diret Kaluza-Klein redution as well as in the e�etive supergravity approah.We obtain exatly the same results in both ases suh that we will restrit ourselves tothe e�etive supergravity approah for the other manifolds we study.In this hapter we �rst give a short survey of the Kaluza-Klein reipe, for a detailedreview see e.g. [60℄. Next we turn to the desription of the e�etive supergravityapproah and omment on the possible hoies of bakground uxes.3.1 Kaluza-Klein redutionIn the Kaluza-Klein redution for a D = (4 + d)-dimensional spae MD to our ob-served four-dimensional non-ompat spae-timeM(3;1), one assumes a (warped) prod-ut struture for the manifoldMDMD =M(3;1) �Md ; (3.1)where Md represents the d-dimensional ompat internal manifold. Let x and y bespae-time and internal-manifold oordinates, respetively. The most general ansatzfor the bakground metri is given in eq. (2.2) and readsds2 = e2Â(y)ĝ��(x)dx�dx� + ĝmn(y)dymdyn ; (3.2)where hatted �elds denote a vauum, i.e. a partiular solution of the equations ofmotion of ten-dimensional supergravity. The requirement of maximal symmetry forthe four-dimensional spae-time M(3;1) restrits us to spaes of onstant urvature,i.e. to a de Sitter (dS) spae for positive urvature, Minkowski for at spae-time andanti de Sitter (AdS) for negative urvature. Maximal spae-time symmetry allows the`warped-produt' ansatz inluding the a warp fator A(y) in eq. (3.2).Moreover, we denote by 	̂(x; y) a `vauum' for the di�erent matter �elds suh as thedilaton, the NSNS two-form B2 potential or the di�erent RR p-form potentials. TheKaluza-Klein redution onsists in expanding all ten-dimensional �elds gMN (x; y) and	(x; y) in `small' utuations around the vauum:gMN (x; y) = ĝMN (x; y) + ÆgMN (x; y) ; (3.3a)	(x; y) = 	̂(x; y) + Æ	(x; y) : (3.3b)1In our onrete models, there are no vetor multiplets suh that we will not onsider D-terms.



3.1. KALUZA-KLEIN REDUCTION 39To determine the spetrum of the four-dimensional theory we substitute this expan-sion in the equations of motion keeping only terms up to linear order in ÆgMN (x; y)and Æ	(x; y) (orresponding to at most quadrati terms in the Lagrangian). Eahutuation, olletively denoted by Æ�(x; y), is deomposed as a sum of terms of theform Æ�(x; y) =Xn �n(x)!n(y) ; (3.4)where �n(x) are four-dimensional spae-time �elds and the !n(y)'s form a basis ofeigenforms of the Laplaian operator 2 �d = ddy + dyd in the internal d-dimensionalspae Md, �d!n(y) = m2n!n(y) : (3.5)From the four-dimensional point of view this results in an e�etive four-dimensionaltheory with an in�nite tower of massive states with masses mn quantized as 1=Lintwhere Lint is the `radius' of internal manifold suh that its volume is of order Ldint. Forsmall internal manifolds these masses will beome very heavy and an be integratedout.In the following we will trunate all the higher Kaluza-Klein modes in the harmoniexpansion (3.4) and keep only those !n(y)'s in (3.4) that are left-invariant onMd. Theresulting modes are not in general harmoni, but an be ombined into eigenvetors ofthe Laplaian whose eigenvalues are of order of the geometri uxes.Plugging the ansatz (3.3)-(3.4) into the ten-dimensional equations of motion andkeeping at most linear-order terms in the utuations, one an read o� the masses ofthe spae-time �elds, i.e. the `spetrum'. In the present ase, this is aomplished byomparing with the equations of motion for non-interating �elds propagating in AdS4.Let M and � be the mass of the �eld and the osmologial onstant of the AdS spae,respetively, suh thatSalar : ��+�M2 + 23��� = 0 ; (3.6a)Vetor : ��� +r�r��� +M2�� = 0 ; (3.6b)Metri : �Lh�� + 2r(�r�h�)� �r(�r�)h�� + (M2 � 2�)h�� = 0 ; (3.6)where �L is the Lihnerowiz operator de�ned by:�Lh�� = �r2h�� � 2R����h�� + 2R(��h�)� : (3.7)The de�nition of mass as in eq. (3.6) is suh that the massless state,M = 0, orrespondsto a gauge �eld with only two degrees of freedom for the metri and vetors and salarspropagating on the light one [61, 60℄.2See appendix A for our onventions.



40 3. LOW-ENERGY FOUR-DIMENSIONAL PHYSICSWith the above de�nitions, the Breitenlohner-Freedman bound [61℄ is simplyM2 � 0 ; (3.8)for the metri and the vetors. For the salars, however, a negative mass-squared isallowed: M2 � �12 = �jW j24 ; (3.9)where W was de�ned in eq. (2.28). Atually, we will present the results for the massspetrum of the salars in terms of ~M2 =M2 + 23� ; (3.10)for whih the Breitenlohner-Freedman bound reads~M2 � �9jW j24 : (3.11)We will take ~M = 0 as the de�nition of an unstabilized modulus sine from (3.6a) wesee that then, if it were not for the boundary onditions of AdS4, a onstant shift of �would be a solution to the equations of motion. Therefore a onstant shift of � leadsto a new vauum solution.To determine the spetrum of the four-dimensional theory, we plug the expansionansatz (3.3) in the equations of motion, where the NSNS- and RR-�eld strength appear.We would thus like to express the utuations of the RR-�eld strengths ÆF in terms ofthe utuations of the potentials ÆC in suh a way that the Bianhi identity dHF = �jis automatially satis�ed. How this an be done is explained in the next setion.3.1.1 Bianhi identitiesThe reipe for the Kaluza-Klein redution tells us to expand all the �elds in `small'utuations around the vauum. The Bianhi identities for the gauge ux have to besatis�ed for the bakground as well as for the bakground plus utuation, i.e.,(d + Ĥ)F̂ = �j ; (3.12a)(d + Ĥ + ÆH)(F̂ + ÆF ) = �j ; (3.12b)where we assumed that the soure does not utuate, sine it is assoiated to smearedorientifolds.The integrability equations read (d + Ĥ)j = 0 ; (3.13a)(d + Ĥ + ÆH)j = 0 ; (3.13b)



3.1. KALUZA-KLEIN REDUCTION 41from whih follows ÆH ^ j = 0 : (3.14)From eq. (3.14) and the integrability onditions (3.13a) we show that(d + Ĥ)(eÆB ^ j) = 0 ; (3.15)so that, subtrating (3.13a), we an de�ne (loally)�(eÆB � 1) ^ j = (d + Ĥ)Æ! : (3.16)Now, for orientifold soures the left hand side of this equation always vanishes. Thisfollows beause the pull-bak of ÆB to the orientifold, ÆBj�, must be zero, whih impliesusing (D.2): ÆB ^ j = 0 ; (3.17)and the same for all powers of ÆB. This implies that we an also hoose Æ! = 0.The di�erene between (3.12a) and (3.12b) gives the Bianhi identity for the utu-ations �d + Ĥ + ÆH� ÆF + ÆH ^ F̂ = 0 : (3.18)This equation an be rewritten as�d + Ĥ��eÆBÆF�+ ÆH ^ eÆB F̂ = 0 : (3.19)We now introdue the potentials ÆC to solve this equation. The solution readseÆBÆF = (d + Ĥ)ÆC � (eÆB � 1)F̂ + Æ! ; (3.20)where we an set Æ! = 0.Expanding this expression, we obtain for type IIA the utuationsÆF0 = 0 ;ÆF2 = dÆC1 �mÆB ;ÆF4 = dÆC3 + Ĥ ^ ÆC1 � ÆB ^ (F̂2 + ÆF2)� 12m(ÆB)2 ;ÆF6 = dÆC5 + Ĥ ^ ÆC3 � ÆB ^ (F̂4 + ÆF4)� 12(ÆB)2 ^ (F̂2 + ÆF2)� 13!m(ÆB)3 ;(3.21)and for type IIBÆF1 = dÆC0 ;ÆF3 = dÆC2 + Ĥ ^ ÆC0 � ÆB ^ (F̂1 + ÆF1) ;ÆF5 = dÆC4 + Ĥ ^ ÆC2 � ÆB ^ (F̂3 + ÆF3)� 12(ÆB)2 ^ (F̂1 + ÆF1) : (3.22)



42 3. LOW-ENERGY FOUR-DIMENSIONAL PHYSICSFor the Kaluza-Klein redution we will only need the terms linear in the utuationswhile for an analysis of �nite utuations using the K�ahler potential and superpotentialwe need higher orders too.For the NSNS-ux we an just writeH = Ĥ + ÆH = Ĥ + dÆB : (3.23)3.2 E�etive supergravityAs already mentioned in the introdution of this hapter, the N = 1 e�etive four-dimensional ation 3 an be obtained from the superpotential W and the K�ahler po-tential K. The part of the e�etive four-dimensional ation ontaining the graviton andthe salars readsS = Z d4xp�g4�M2P2 R�M2PKi�|���i�� ���| � V (�; ��)� ; (3.24)where MP is the four-dimensional Plank mass. The salar potential is given in termsof the superpotential viaV (�; ��) =M�2P eK �Ki�|DiWED�|W�E � 3jWEj2� ; (3.25)where DiWE � �iWE + (�iK)WE.The superpotential and K�ahler potential of the e�etive N = 1 supergravity havebeen derived in various ways. This is done most generally in terms of pure spinors in theframework of generalized geometry 4. Here we will present the results of these deriva-tions and then speialize the expressions to strit SU(3)- and stati SU(2)-struture.As we mentioned, we will verify these expressions by performing a onsisteny hekbetween this e�etive supergravity approah and the diret Kaluza-Klein approah thatdoes not rely on supersymmetry. This is done by alulating the mass spetrum forsome of our models, both by diret Kaluza-Klein redution (hapter 7) as well as inthe e�etive supergravity approah (hapter 8), obtaining exatly the same results inboth ases (see also [62℄ for related work).In [27, 56℄ (based on earlier work of [55℄) the superpotential has been omputed atthe level of the fermioni e�etive ation. One uses the fat that the superpotentialWappears linearly in a four-dimensional N = 1 supergravity theory as the mass term ofthe gravitino  �, S / Z d4xp�geK=2 �W � ����� � � + ..� : (3.26)Thus, fousing on the mass terms of  � in the expliit redution of the fermionipart of the ten-dimensional e�etive ation provides us with an expliit expression for3In our onrete models, there are no vetor �elds in the spetrum suh that we will not onsidergauge kineti ouplings and D-terms.4See appendix C for details on pure spinors and generalized geometry.



3.2. EFFECTIVE SUPERGRAVITY 43the superpotential W. We skip here the details of the alulation and just quote theresult in eq. (3.27). However, let us mention that the expression for the superpotentialobtained in this way agrees with the expression obtained in [57℄, where the authorsderive the superpotential using a Gukov-Vafa-Witten type argument involving domainwalls, whih was also used in [63℄ in the spei� ase of Calabi-Yau ompati�ations.The argument relies on the tension of a BPS domain wall. From the four-dimensionalpoint of view, the domain wall separates two supersymmetri ux on�gurations. Byenergy onservation one gets a relation between the tension of the domain wall andthe di�erene of the superpotential on both sides of the domain wall, TDW / j�Wj.On the other hand, the tension of the domain wall is obtained as the integral of thealibration over the internal generalized yle whih the domain wall wraps. By furtherdemanding holomorphiity, the authors of [57℄ proposed an expliit expression for thesuperpotential.In both approahes one arrives at the following expressions for the superpotential inEinstein frame WE = �i4�210 ZM h	2; F + idH(e��Im	1)i ; (3.27)where h�; �i indiates the Mukai pairing (C.10) and 	1 and 	2 are the pure spinorsdesribing the geometry. Using the expansion in bakground and utuations of theeqs. (3.21)-(3.23) we an rewrite the superpotential as followsWE = �i4�210 ZM h	2eÆB ; F̂ + idĤ(eÆBe��Im	1 � iÆC)i ; (3.28)where we used the property (C.11) of the Mukai pairing. This shows how the �eldsorganize in omplex multiplets 	2eÆB and e��Im	1 � iÆC, whih will be learer inonrete examples.The K�ahler potential reads 5K = � ln iZM h	2; �	2i � 2 ln iZM ht; �ti+ 3 ln(8�210M2P ) ; (3.29)where we de�ned t = e��	1. As we disuss in appendix C in more detail, the realpart of a pure spinor is atually a funtion of its imaginary part. For instane, Re tis obtained from Imt via the Hithin proedure. To take this relation properly intoaount we use the fat that the K�ahler potential for the t-setor may be written as(see eq. (C.15)) Kt = �2 ln 4ZM H(Imt) ; (3.30)where H(Imt) is the Hithin funtional. More details on how to ompute the Hithinfuntional are given in appendix C.5The onstant last term makes eK dimensionless.



44 3. LOW-ENERGY FOUR-DIMENSIONAL PHYSICSNote that we have the freedom of a K�ahler transformationW 0E = f�3WE ; K0 = K + 3 ln f + 3 ln f� ; (3.31)where f = f(�) is an arbitrary holomorphi funtion.We will later ompare the results of an expliit Kaluza-Klein redution on some ofour models with the results obtained from the e�etive supergravity approah explainedin this hapter. To do that, we also have to take into aount that the results fromthe Kaluza-Klein redution were in the ten-dimensional Einstein frame (B.2), whereasusing the tehniques of this setion we get the result in the four-dimensional Einsteinframe (3.24). To ompute the relation between the masses omputed in these twoframes we note the following relationgE4M2P2 = e2A2�210 gE10VolE ; (3.32)whih we get from (B.2) by integration over the internal manifold and omparing thiswith (3.24). Thus we havem2E4 = gE10gE4 m2E10 = �210M2P e�2AVol�1E m2E10 : (3.33)In the following we speialize the expressions obtained in the generalized geometrylanguage to the spei� ases of a strit SU(3)-struture and a stati SU(2)-struture.Type IIA, strit SU(3)-strutureSpeializing to the type IIA SU(3) ase with pure spinors (2.11), the superpotentialtakes the formWE = �ie�i�4�210 ZM hei(J�iÆB); F̂ � idĤ �eÆBe��Im
 + iÆC3�i ; (3.34)and the K�ahler potential is given byK = � lnZM 43J3 � 2 lnZM 2 e��Im
 ^ e��Re
 + 3 ln(8�210M2P ) ; (3.35)where e��Re
 should be seen as a funtion of e��Im
. On the utuations we mustimpose the orientifold projetions (2.40). It turns out that for all the onrete modelswe will study ÆB ^ Im
 = 0 ; (3.36)sine there are no odd �ve-forms 6. By expanding in a suitable basis of even and oddexpansion forms (whih have to be identi�ed separately for eah ase), we �nd that the6In fat, for some of the models we will hoose the orientifold projetions appropriately to projetout the one- and �ve-forms. This is to automatially satisfy the ompatibility ondition (2.6a) of thestrit SU(3)-struture also for the utuations.



3.2. EFFECTIVE SUPERGRAVITY 45utuations organize naturally in omplex salarsJ = J � iÆB = (ki � ibi)Y (2�)i = tiY (2�)i ; (3.37a)e��Im
 + iÆC3 = (ui + ii)Y (3+)i = ziY (3+)i : (3.37b)Type IIB, stati SU(2)-strutureSpeializing to the ase of type IIB stati SU(2)-struture with pure spinors (2.19), thesuperpotential beomesWE = i4�210 ZM h2V ^ ei(!2�iÆB); F̂ � idĤ �eÆBe��Im(e2V ^ �V ^ 
2) + iÆC�i ; (3.38)and the K�ahler potentialK = � ln��2iZM 2V ^ 2 �V ^ !22�� 2 lnZM 2 hRe t; Imti+ 3 ln(8�210M2P ) ; (3.39)where again Ret should be onsidered as a funtion of Imt = �Im �e��e2V ^ �V 
2�.As disussed in appendix C, we an obtain the ation of the orientifold involutionon the SU(2)-struture quantities from the ation of the orientifold on the pure spinors.We �nd from (C.40) the followingO5 : ��V = �V ; ��!2 = �!2 ; ��
2 = �
�2 ; ��ÆB = �ÆB ;O7 : ��V = V ; ��!2 = �!2 ; ��
2 = 
�2 ; ��ÆB = �ÆB ; (3.40)and for the RR-setor [43℄O5 : ��ÆC2 = ÆC2 ; ��ÆC4 = �ÆC4 ;O7 : ��ÆC2 = �ÆC2 ; ��ÆC4 = ÆC4 : (3.41)Again we �nd that the utuations organize naturally in omplex salars! = !2 � iÆB = (ki � ibi)Y (2��)i = tiY (2��)i ; (3.42a)e��Im
2 + iÆC2 = (ui + ii)Y (2+�)i = ziY (2+�)i ; (3.42b)�ie��2V ^ �V ^Re
2 + iÆC4 = (vi + ihi)Y (4�+)i = wiY (4�+)i ; (3.42)2V = C(iY (1�+)1 � �Y (1�+)2 ) ; (3.42d)where we de�ne � = x+ iy, and eah time the �rst/seond sign of the Yi indiates thebehavior under the O5/O7-involution. Note that C is a omplex overall fator that isnot a degree of freedom. As we will see in the onrete examples, we an eliminate Cby performing a K�ahler transformation (3.31).



46 3. LOW-ENERGY FOUR-DIMENSIONAL PHYSICS3.3 Choie of bakground uxes and bubbles of modulispaeTo evaluate the expressions for the superpotential for type IIA strit SU(3)-struture ortype IIB stati SU(2)-struture, (3.34) or (3.38) respetively, we have to make a hoiefor the bakground uxes Ĥ and F̂ . However, sine we utuate the gauge �elds, twohoies of bakground uxes may be equivalent if they are related by a utuationof the moduli �elds. To lassify distint hoies we have to �nd on�gurations thatare not related by pure utuations of the moduli �elds. We label these di�erenton�gurations as disonneted bubbles of the moduli spae, i.e. these bubbles are suhthat it is not possible to reah another bubble by �nite utuations of the moduli�elds. In the following we will lassify these di�erent bubbles for type IIA and typeIIB, respetively.Type IIAClassifying the di�erent bubbles in terms of uxes amounts to �nding on�gurationsthat solve the Bianhi identities dĤ = 0 ; (3.43a)dF̂0 = 0 ; (3.43b)dF̂2 +mĤ = �j3 ; (3.43)dF̂4 + Ĥ ^ F̂2 = 0 ; (3.43d)while two on�gurations are onsidered equivalent if they are related by a utuationof the moduli �elds, whih after imposing the orientifold projetion (and assuming itremoves one-forms) is given by (see setion 3.1.1)ÆH = dÆB ; (3.44a)ÆF0 = 0 ; (3.44b)ÆF2 = �mÆB ; (3.44)ÆF4 = dÆC3 � ÆB ^ (F̂2 + ÆF2)� 12m(ÆB)2 ; (3.44d)ÆF6 = Ĥ ^ ÆC3 � ÆB ^ (F̂4 + ÆF4)� 12(ÆB)2 ^ (F̂2 + ÆF2)� 13!m(ÆB)3 : (3.44e)In other words, we want to �nd representatives of the ohomology of the Bianhi iden-tities (3.43) modulo pure utuations of the potentials (3.44).Let us �rst onsider the ase F̂0 6= 0. From eqs. (3.43a), (3.43b), (3.44a) and (3.44b)follows immediately that Ĥ 2 H3(M;R) and F̂0 onstant. This determines ÆB onlyup to a losed form, we all it ÆB. It an be used to analyse (3.43) and (3.44): the



3.3. BACKGROUND FLUXES AND BUBBLES OF MODULI SPACE 47losed part of F2 is pure utuation, so that we hoose F̂2 as the most general non-losed odd two-form, whih then determines the soure j3. At this point, we ompletelyspei�ed ÆB. Moving on to F̂4, we �nd that in eq. (3.43d) Ĥ^F̂2 = 0, sine we assumedthere were no even �ve-forms under all the orientifold involutions. Moreover, with theutuations ÆC3 we an remove the exat part of F̂4 so that F̂4 2 H4(M;R). This,however, leaves the losed part of ÆC3 undetermined, whih we all ÆC3. If we havehosen Ĥ non-trivial, we an then use the losed part of ÆC3 in (3.44e) to put F̂6 = 0,provided that ÆC3 ^ Ĥ / vol6. This is not possible for Ĥ trivial and we have to hoosea non-zero F̂6 proportional to the volume form.For the ase F̂0 = 0 we hoose for F̂2 the most general two-form sine there areno utuations left in eq. (3.44). Ĥ is still in H3(M;R) and F̂0 onstant. We thusstill have the losed part of ÆB at disposal for F̂4 in (3.44d) suh that we an hooseF̂4 2 H4(M;R) and put to zero the part proportional to ÆB ^ F̂2. Similar for F̂6: wean put it to zero if ÆC3 ^ Ĥ / vol6 for non-trivial Ĥ or if ÆB is not �xed ompletelyup to now and ÆB ^ F̂4 / vol6.Type IIBThe analysis in type IIB is quite similar to the analysis in type IIA. In the following wewill be interested in models with O5/O7 orientifolds suh that we assume here theseorientifold projetions. From the utuations in (3.22) this then implies (sine a salaris always even under O5/O7 but ÆC0 should be odd/even, there is no ÆC0)ÆF1 = 0 ; (3.45)and we hoose the most general one-form for F̂1, whih then determines the soure jO7.We will assume that dĤ = 0 suh that 7ÆH = dÆB : (3.46)This allows to hoose Ĥ 2 H3��(M;R) and �xes ÆB up to losed forms. Let us �rstassume that there is no losed part in ÆB (whih is atually the ase in our onretemodels). This then implies for F3 from (3.22)ÆF3 = dÆC2 ; (3.47)suh that we hoose F̂3 up to exat forms, whih determines the soure jO5. This �xesÆC2 up to losed forms. For F5, whih has to be losed (the volume-form is even/evenunder O5/O7), we are left withÆF5 = dÆC4 + Ĥ ^ ÆC2 ; (3.48)7For the models we study in hapter 12 there is room for dĤ = jNS5 6= 0, but we will set to zerothis ontribution sine we do not know whether the proposed expression for the superpotential (3.38)takes the NS5-soure properly into aount.



48 3. LOW-ENERGY FOUR-DIMENSIONAL PHYSICShene we hoose F̂5 2 H5�+(M;R) and we an put to zero the part of F̂5 that isproportional to Ĥ ^ ÆC2.If there is a part of ÆB that is losed, we have to take into aount thatÆF3 = dÆC2 � ÆB ^ F̂1 ; (3.49a)ÆF5 = dÆC4 + Ĥ ^ ÆC2 � ÆB ^ (F̂3 + ÆF3)� 12(ÆB)2 ^ F̂1 ; (3.49b)suh that we an put to zero the part in F̂3 that is proportional to ÆB ^ F̂1, and,if this does not �x ÆB ompletely, we an also put to zero the parts in F̂5 that areproportional to the last two terms in eq. (3.49b) where ÆB is the part not �xed byÆF3.



Chapter 4Nilmanifolds and oset spaesThere are few expliit examples of six-dimensional manifolds suitable for ompati�-ations to four dimensions. In [64℄ a systemati searh for N = 1 Minkowski vaua oftype II string theories on ompat six-dimensional nil- and solvmanifolds was performedyielding very few examples. These solutions require the presene of orientifold planes,typially smeared, due to a no-go theorem [36, 37℄ that rules out vaua in whih thefour-dimensional spae is Minkowski and the internal ompat manifold has non-zerobakground uxes and no soures. This no-go theorem an be irumvented for N = 1ompati�ations to four-dimensional AdS spae-time.The oldest onstrutions of N = 1 AdS4 ompati�ations arise by onsidering theHopf redutions of eleven-dimensional supergravity onsidered by Nilsson and Pope [65℄that lead to supersymmetri type IIA ompati�ations with a non-vanishing seondtorsion lass W2 [66, 67, 68℄ without the need of soures. As these solutions ome fromthe redution of eleven-dimensional supergravity, they have vanishing Romans mass.On the other hand, another simple type IIA onstrution with no need of orientifoldsonsiders manifolds that are nearly-K�ahler, suh that the deviation from the Calabi-Yau metri is expressed by a non-vanishing �rst torsion lass W1 [69℄. These manifoldsare also Einstein, where the salar urvature is proportional to jW1j2. In [51℄ theompati�ations were onstruted that interpolate between the vanishing Romansmass solutions and the nearly-K�ahler solutions on two speial oset manifolds, whihan be desribed using twistor spae tehniques.However, there are also type IIA onstrutions involving soures. First examples ofompati�ations to N = 1 in type IIA with all moduli stabilized and in whih possibleorretions are parametrially under ontrol were onstruted in [70, 62, 71, 72℄ usingorientifold planes and Calabi-Yau manifolds. From a purely ten-dimensional perspetivethese vaua are interpreted as a low-energy approximation in whih the orientifolds aree�etively smeared [50℄.A systemati searh for more type IIA examples of N = 1 AdS4 ompati�ationson six-dimensional oset spaes with a strit SU(3)-struture ansatz was performed in[34℄. The authors identify four oset spaes that satisfy the neessary and suÆient



50 4. NILMANIFOLDS AND COSET SPACESonditions for N = 1 ompati�ations to AdS4 in the absene of soures, whereas inthe presene of smeared brane/orientifold soures there is one possibility more. We willome bak to these solutions in part III of this thesis, where we derive the orrespondinge�etive ations for these ompati�ations.Allowing for smeared soures, the onditions for type IIA N = 1 AdS4 vaua anatually be solved for some nilmanifolds [49℄ (as we pointed out in setion 2.2.2, this isnot possible without a soure term for the nilmanifolds). There are two nilmanifolds,the torus and the Iwasawa manifold, that solve the type IIA equations. In addition,there is a further type IIB stati SU(2)-struture solution on a di�erent nilmanifold.In this hapter we give a brief review of the spaes we onsider in this thesis. We�rst begin with some well-known fats about group manifolds to set up the notation.We then introdue the oset spae onstrution with speial emphasis on the materialthat we will need in the following. For the interested reader, there are many goodreviews [73, 74, 75℄. In the end of this hapter, we will desribe the six-dimensionalnilmanifolds, whih are speial ases of group manifolds.4.1 Group manifoldsIn order to �x our notation and ideas, let us start with a group manifold, i.e., with aLie group G of dimension d = dim(G) viewed as a manifold. We denote the generatorsof the Lie group G as Ta with a = 1; : : : ; d and they obey the algebra[Ta; Tb℄ = f abT ; (4.1)with f ab the struture onstants of the group G. Let us mention that the strutureonstants are often referred to as geometri uxes in the ontext of ux ompati�a-tions.Let U 2 G be an arbitrary element of the group manifold G that we parameterizein terms of oordinates ym, where m = 1; : : : ; d. We de�ne d left-invariant one-formsea on G by U(y)�1dU(y) = ea(y)Ta : (4.2)The left-invariane of ea is easily seen: under U ! AU , where A 2 G is onstant,the one-forms ea de�ned in eq. (4.2) do not hange. Taking the exterior derivative ofeq. (4.2) we seedeT = �U�1dU ^ U�1dU = �eaTa ^ ebTb = �12ea ^ eb[Ta; Tb℄ ; (4.3)suh that with the struture onstants (4.1) we obtain the Maurer-Cartan equationde = �12f abea ^ eb : (4.4)



4.1. GROUP MANIFOLDS 51The Jaobi identity for the struture onstants of a Lie algebra, f a[bfade℄ = 0, assuresthat d2e = 0. The Maurer-Cartan equation (4.4) turns out to be very useful for ouralulations sine di�erential equations are redued to algebrai ones. As the duals ofthe left-invariant one-forms we get left-invariant vetor �elds La = Lam�=�ym de�nedvia hea; Lbi = Æab ; (4.5)whih satisfy [La; Lb℄ = f abL : (4.6)We an lassify Lie algebras aording to Levi's theorem: an arbitrary Lie algebra gis a semidiret sum of a semi-simple algebra and of a solvable algebra. The de�nitionof a solvable algebra g is as follows. Consider the series de�ned reursively byg(0) = g ; g(1) = [g; g℄ ; g(i) = [g(i�1); g(i�1)℄ : (4.7)If this series beomes zero after a �nite number of steps, the Lie algebra is said to besolvable. There is an equivalent riterion for a Lie algebra to be solvable or semi-simple:a Lie-algebra is semi-simple if and only if the Killing metri is nondegenerate, whereasit is solvable if and only if the Killing metri is identially zero. A speial lass ofsolvable Lie algebras are nilpotent algebras that are de�ned as follows. The reursivelyde�ned series g0 = g ; g1 = [g; g℄ ; gi = [g; gi�1℄ : (4.8)onverges after a �nite number of steps to zero. The number of steps is alled thenilpoteny degree of the manifold. Comparing the de�nition (4.8) to the de�nition ofa solvable algebra (4.7) we see that the series (4.8) dereases more slowly as the seriesfor a solvable algebra (4.7) and may not reah zero even if the solvable algebra did, i.e.every nilpotent algebra is a solvable algebra but the onverse is not true.In this thesis, we will onsider two di�erent lasses of six-dimensional ompati-�ation manifolds: nilmanifolds and oset manifolds based on semi-simple and U(1)groups. They are somehow opposite due to Levi's deomposition. The reason to on-sider nilmanifolds is that the mathematis is better known, in partiular the riteria forompatness, and there is a omplete lassi�ation of all six-dimensional nilmanifolds[76℄. However, for the oset spaes we onsider semi-simple groups. Here, the lassi�-ation of [34℄ tells us whih groups are needed to end up with a six-dimensional osetspae and these groups are well known in the literature.



52 4. NILMANIFOLDS AND COSET SPACES4.2 Geometry of oset spaesWe de�ne oset spaes as the quotient G=H, where G is a Lie-group 1 and H is aompat Lie subgroup of G. The elements of G=H are equivalene lasses of the formgH for left osets, whih we will onsider in the following. The ation of G on theoset is transitive, i.e., any point of G=H an be transformed to any other point by aG-transformation.To desribe oset spaes of the form G=H we may proeed as we did for groupmanifolds. To do so, we divide the generators of the group G, Gi 2 g, in two sets: aset of generators of the group H and a set of generators of the omplement of H insideG, denoted by K. We label the orresponding elements of the Lie algebras h and k(suh that g = k � h) as follows: fHag, where a = 1; : : : ;dim(H), and fKig, wherei = 1; : : : ;dim(G)� dim(H), respetively.The struture onstants are then de�ned as[Ha;Hb℄ = f abH ;[Ha;Ki℄ = f jaiKj + f baiHb ;[Ki;Kj ℄ = fkijKk + faijHa : (4.9)For H ompat, or onneted and semi-simple, one an hoose the subspae k of g suhthat hkh�1 � k ; 8h 2 H ; (4.10)i.e., [H;K℄ � K and therefore the struture onstants f bai vanish. Suh a oset is alledredutive. Sine we will need H � SU(3), i.e. ompatness, this will always be thease in our examples.We label the oordinates on G=H as ym, m = 1; : : : ;dim(G) � dim(H). Let L(y)be a representative element of eah H-equivalene lass. This leads to a orrespondingdeomposition of the one-forms� � L(y)�1dL(y) = ei(y)Ki + !a(y)Ha : (4.11)The ei(y) de�nes in this way a oframe on the oset G=H. It is easily shown thatd� = dL(y)�1dL(y) = �� ^�= �12 �ei ^ ej [Ki;Kj ℄ + 2!a ^ ei[Ha;Ki℄ + !a ^ !b[Ha;Hb℄� ; (4.12)suh that using the de�nition of the struture onstants (4.9) we derive the exteriorderivative ating on the one-formsdei = �12f ijkej ^ ek � f iaj!a ^ ej ; (4.13a)1In this setion, G is an arbitrary Lie-group. We thus an generalize some results of this setion tothe nilmanifolds in the next setion. For our onrete examples of oset spaes we will later restrit Gto be a produt of semi-simple and U(1)-groups.



4.2. GEOMETRY OF COSET SPACES 53d!a = �12fab!b ^ ! � 12faijei ^ ej : (4.13b)For our appliations we will just need the exterior derivative on the ei one-forms.Consider the left ation g 2 G on a oset representative L(y). This will give anotherelement z 2 G, whih in general will belong to a di�erent equivalene lass, whoserepresentative we denote by L(z). Sine z = L(z)h for some h 2 H this an beexpressed as gL(y) = L(z)h(g; y) ; where g 2 G ; h 2 H : (4.14)This equation determines both z and h as a funtion of y and g. To determine how theoframe ei transforms under the left ation of G on G=H we derive from eq. (4.11) and(4.14) L(z)�1dL(z) = ei(z)Ki + !a(z)Ha= hL(y)�1dL(y)h�1 + hdh�1= ei(y)hKih�1 + !a(y)hHah�1 + hdh�1 : (4.15)Sine we assume that we have a redutive oset spae (H is ompat in our examples)we know the relation (4.10) and an de�nehKih�1 = Dij(h�1)Kj ; (4.16)suh that eq. (4.14) leads to the transformation rule for the oframeej(z) = ei(y)Dij(h�1) : (4.17)With the transformation rule for the oframe we an write down the ondition for G-invariane for any tensor. As an example, for any metri on G=H that an loally bewritten in terms of the oset frame asg = gijei 
 ej ; (4.18)the ondition for G-invariane amounts to gij = onstant andgij = gklDik(h)Dj l(h) ; 8h 2 H : (4.19)For an in�nitesimal version of eq. (4.19) we note from eq. (4.16) and the de�nitionof the struture onstants (4.9) thatDij(h)Kj = (Æij � taf jai)Kj ; (4.20)where we de�ned h = etaHa . The in�nitesimal version for a G-invariant metri on theoset spae G=H then reads f ja(lgk)j = 0 : (4.21)



54 4. NILMANIFOLDS AND COSET SPACESFor an arbitrary p-form � = 1p!�i1:::ipei1 ^ : : : ^ eip ; (4.22)we show similarly that the ondition for G-invariane is that the omponents �i1:::ipare onstant and f ja[i1�i2:::ip℄j = 0 : (4.23)Let us give an intuitive explanation for the ondition (4.23). From eq. (4.13a) we seethat, taking the exterior derivative on an arbitrary p-form, we obtain ontributionsinluding !a forms. Condition (4.23) ensures that the part oming from the seondterm in (4.13a) drops out, and we get again a G-invariant form.The Maurer-Cartan equations are very useful to alulate various quantities relevantto haraterize the geometry of the manifold, suh as the onnetion and the urvature.The Levi-Civita onnetion one-forms !ij of a metri are uniquely determined by twoequations dgij � !kigkj � !kjgik = 0 ; (metri ompatibility) ; (4.24a)dei + !ij ^ ej = 0 ; (vanishing torsion) : (4.24b)For a G-invariant metri, the metri ompatibility in (4.24a) is the ondition!ij � gik!kj = �!ji : (4.25)Choosing ei to be the oset frame given in (4.11) and using the struture onstantsde�ned in (4.13a), the solution of (4.24) is given by [77℄!ij = f iaj!a +Dikjek ; (4.26)where Dikj = gim�12f lmjglk + f lk[jgm℄l� : (4.27)We now have all the data we need to alulate the urvature R = d! + ! ^ !, whihis done in [75℄. We only display here the Rii salar, whih we �nd by ontratingindies: R = �gijfkaifakj � 12gijfklif lkj � 14gijgklgmnf ikmf jln : (4.28)In hapter 2 we have seen that the requirement of four-dimensional supersymmetryimposes a ondition on the six-dimensional internal manifold, namely that the stru-ture group is redued to SU(3) or a subgroup thereof. This requirement imposes aonstraint on the possible hoies of oset spaes of the form G=H that are suitable forsupersymmetri ompati�ations. As is shown in [34℄, a neessary requirement that



4.3. GEOMETRY OF NILMANIFOLDS 55the oset spae G=H has redued struture group SU(3) translates into the require-ment that the group H should be ontained in SU(3), and all possible six-dimensionalmanifolds M = G=H of this type 2 are listed in table 4.1, taken from [34℄.In our onrete models of ompati�ations on oset spaes (see part III of thethesis), we will allow for orientifold soures. If we introdue orientifolds, the strutureonstant tensorf = 12f ijkVi 
 ej ^ ek + f iajVi 
 !a ^ ej + 12faijUa 
 ei ^ ej + 12fabUa 
 !b ^ ! ;(4.29)where the Vi; Ua are dual to the ei; !a de�ned as in eq. (4.5), has to be even under theorientifold involution (for some suitable extension of the involution to the !a) in orderto ensure that the exterior derivative is even.G HG2 SU(3)SU(3)�SU(2)2 SU(3)Sp(2) S(U(2)�U(1))SU(3)�U(1)2 S(U(2)�U(1))SU(2)3�U(1) S(U(2)�U(1))SU(3) U(1)�U(1)SU(2)2�U(1)2 U(1)�U(1)SU(3)�U(1) SU(2)SU(2)3 SU(2)SU(2)2�U(1) U(1)SU(2)2 1Table 4.1: All six-dimensional manifolds of the typeM = G=H, where H is a subgroupof SU(3) and G and H are both produts of semi-simple and U(1)-groups. To bepreise, this list should be ompleted with the osets obtained by replaing any numberof SU(2) fators in G by U(1)3.
4.3 Geometry of nilmanifoldsThe seond lass of manifolds we will onsider in this thesis are nilmanifolds. A nilmani-fold is a quotient of a nilpotent Lie group G by a disrete subgroup �,M = G=�. In [79℄it is shown that all six-dimensional nilmanifolds admit generalized omplex strutures,making them interesting for our purposes.2These oset spaes were already onsidered in the onstrution of heteroti string ompati�ationsin [78℄.



56 4. NILMANIFOLDS AND COSET SPACESAs a speial ase of a group manifold, G has a set of globally de�ned one-forms eisatisfying the Maurer-Cartan equations (4.4). For an illustration, let us disuss thesimple and often ited example for a nilpotent algebra: the Heisenberg algebra withthe only non-vanishing struture onstant f312 = �n. From eq. (4.4) we getde1 = 0 ; de2 = 0 ; de3 = ne1 ^ e2 : (4.30)We will use in the following the notation (0; 0; n 12) to speify the struture on-stants. We an hoose a gauge for the oordinates whih satis�es the algebra (4.30) asfollows e1 = dy1 ; e2 = dy2 ; e3 = dy3 + ny1e2 : (4.31)To ompatify G, we an make the identi�ations (y1; y2; y3) ' (y1; y2 + 1; y3) '(y1; y2; y3 + 1), but we need to twist the identi�ation for y1, (y1; y2; y3) ' (y1 +1; y2; y3 � ny2), to render e3 single-valued. Hene, the spae M = G=� is topologiallydistint from a three-torus T 3, namely an S1 �bration over T 2 whose �rst Chern lassis 1 = n. Suh a manifold M is alled a nilmanifold and a general nilmanifold isalways an iteration of torus �brations. Nilmanifolds are often alled twisted tori in thephysial literature, and the struture onstants are referred to as metri or geometriuxes.Let us note that there are in�nitely many algebras of the form (4.30), sine n is afree parameter. However, these algebras are all isomorphi via a resaling of e3. Whenwe talk about nilmanifolds in the following, we mean atually isomorphism lasses ofnilmanifolds. However, sine we work with a basis of left-invariant forms, the hoie ofthe representant of the isomorphism lass does not matter for the analysis.The nilpotent Lie groups up to dimension 7 have been lassi�ed and the list of six-dimensional nilpotent Lie groups is �nite [76℄. The omplete list of the 34 isomorphismlasses of simply-onneted six-dimensional nilpotent Lie groups is given in table 4.7of [64℄, where the authors sanned all these nilmanifolds to �nd N = 1 Minkowskisolutions. We will use this list to san for AdS4 solutions in part II of this thesis.The question arises whether all of these six-dimensional Lie groups an be ompati-�ed by modding out a disrete ompat subgroup � as in the example of the Heisenbergalgebra above. A neessary ondition on the struture onstants is f jij = 0. The rea-son is simple: if f jij 6= 0, the volume form vol6 = e1 ^ : : : ^ e6 would be exat, sinefor the left-invariant �ve-form � = �i1:::i6�i1ei2 ^ : : : ^ ei6 , with �i1 onstant, we haved� = (f jij�i)vol6. Hene, there is no top-form non-trivial in ohomology whih isof ourse required for a ompat manifold G=�. One an also show that this ondi-tion is suÆient, provided that the struture onstants are rational in some basis [80℄.Sine these onditions are satis�ed for the struture onstants of all the 34 lassi�edsix-dimensional nilpotent Lie groups, they all admit a disrete subgroup � suh thatM = G=� is ompat.The Rii salar for a nilmanifold is a speial ase of the metri of the oset spaein that the �rst term in eq. (4.28) obviously vanishes, as well as the seond term whih



4.3. GEOMETRY OF NILMANIFOLDS 57is the Killing metri (for a nilpotent algebra, the Killing metri vanishes). We are leftwith R = �14gijgklgmnf ikmf jln ; (4.32)whih is always negative. Nilmanifolds are thus non Rii-at and therefore suitablefor ompati�ations in the presene of uxes.





Chapter 5Cosmology and inationOne of the legitimate ritiism on string theory, whih aspires to be a fundamentaltheory of quantum gravity, are the very restrited possibilities to onfront the theorywith observations. Assuming the string sale to be of the order of the Plank sale, itis very unlikely that we an ever onstrut a high energy aelerator providing enoughpower in order to test the Plank sale preditions of the theory. At low energies, ofourse, string theory has to reveal the standard model of partile physis. Nevertheless,there is a possibility to observe physis at very high energies, even if this physishappened billions of years before our time: the earliest moments of our universe involvedsuh extreme energies, and the �ngerprints of its birth are revealed today by preisionmeasurements of the osmi mirowave bakground (CMB) and the large-sale strutureof the universe. The ability of string theory to reprodue the observed osmology thusprovides us with a highly non-trivial test of string theory.That this is possible is due to the astrophysial measurements over the reent years,whih provide us with fasinating data about the large sale struture of our universe.In partiular, the universe is found to be spatially at, j
�1j � 1, and the latest CMBdata from WMAP5 agree with an almost sale-invariant spetrum with salar spetralindex ns = 0:96 � 0:013 [81℄. As we will disuss in the following, an epoh of osmiination in the early universe is the dominant paradigm to explain these data [82, 83℄.For string theory to be a valid theory of quantum gravity, it should be able to realizeination.Another important osmologial observation of the past deade is that the presentuniverse is in a state of aelerated expansion [84℄, apparently driven by a non-vanishingvauum energy with an equation of state very lose to that of a small and positive os-mologial onstant �. In an e�etive �eld theory setup, an asymptoti de Sitter phaseindued by a onstant vauum energy would orrespond to a positive loal minimumof the potential.The moduli �elds of string theory ompati�ations provide us with natural inatonandidates. These models an roughly be divided into losed string ination models, inwhih the string is a losed string modulus [85℄, and open string (or brane-) ination



60 5. COSMOLOGY AND INFLATIONmodels, where a salar desribing some relative brane distane or orientation playsthe role of the inaton [86℄. Mixtures of open and losed string moduli have also beenonsidered as inaton andidates, e.g., in some variations of D3/D7-brane ination [87℄.Let us mention that there are also other possibilities inluding [88℄.There has been remarkable progress onstruting various plausible models of in-ation in string theory, mostly within type IIB string theory (following the work of[22, 23, 89℄). Turning on only p-form uxes in the type IIB theory, one an not stabi-lize all the moduli �elds (the K�ahler moduli are not �xed by the uxes) [22℄. In [23℄,a solution to this diÆulty was proposed by turning on non-perturbative e�ets suhas gluino ondensation and instantons, yielding a supersymmetri AdS4 vaua. Theinlusion of a small number of anti-D3 branes breaks supersymmetry and allows one touplift the AdS4 minimum and make it a metastable de Sitter ground state. Startingfrom this model, the authors of [89℄ tried to onstrut, using brane moduli, an inationmodel.However, these and related models in type IIB share a ommon property: they arenot entirely expliit onstrutions as they involve, besides the lassial e�ets in thepotential (whih are easily omputed by supergravity tehniques as we disussed insetion 3.2), also quantum e�ets, whose existene is well established, but for whihpreise alulations are often diÆult. On the other hand, in type IIA ompati�ations,all geometrial moduli an be already stabilized at the lassial level by uxes in a well-ontrolled regime (orresponding to large volume and small string oupling, suh thatquantum orretions are small) with power law parametri ontrol. This expliitnessof type IIA ompati�ations makes these models very interesting for phenomenology.Let us further mention that type IIA orientifolds with interseting D6-branes o�ergood prospets for deriving the standard model form string theory [18, 19, 90℄. Ifosmologial aspets an likewise be modeled in type IIA, one may study questionssuh as reheating muh more expliitly.In this thesis, we will derive the expliit four-dimensional low-energy e�etive poten-tial for a large lass of type IIA ompati�ations. To render these models interestingfor phenomenologial appliations we would like to examine whether these models sup-port ination. However, there are a number of simple but very strong no-go theoremsagainst ination in type IIA string theory at tree level [91, 92℄. These theorems alreadyexlude most of the expliitly known ompati�ation models for type IIA, in partiularmodels where only the standard NSNS H3-ux and RR-uxes Fp, (p = 0; 2; 4; 6) as wellas ontributions from O6/D6 soures are turned on. As we will review in this hapter,the minimal requirements for an ination model in lassial type IIA ompati�ationsare non-vanishing Romans mass and non-vanishing geometri uxes.Let us mention that in type IIB, where F1 ux an be turned on, the above men-tioned no-go theorems do not apply. In fat, we will also examine some type IIBompati�ations with stati SU(2)-struture. However, as we will see in hapter 12,most of our models are related by T-duality to type IIA models we study in hapter11, and we an then apply the type IIA no-go theorems to these models.



5.1. INFLATION 61In the next setion, we give a brief introdution to ination. Of ourse this an notbe done in its full ompleteness. For the interested reader, we refer to the extensiveliterature, see e.g., [82, 83, 93℄. We will then review the relevant no-go theorems againstan epoh of slow-roll ination that turn out to be very useful for analysing our partiularompati�ation manifolds that we will desribe in part III of this thesis.5.1 InationThe urrent understanding of osmology is desribed by the Hot Big Bang model,whih starts as a hot soup of elementary partiles, whose temperature was one atleast 10 billion degrees. The history of the universe then desribes the ooling of thisinitial state as the universe expands. However, this model an not explain the urrentobservations if there were not very speial initial onditions. An epoh of ination- a period with exponential expansion of the universe even before the Hot Big Bangmodel starts - may provide exatly these initial onditions. In this hapter, we will �rststart with a desription of the geometry of spae-time on whih the Hot Big Bang andan ination model relies. In the following, we will show that a period of exponentialexpansion an be driven by a salar �eld '. As we will explain, for suh a regime towork, suÆient onditions on the salar �eld potential (but not neessary ones, thereare other possibilities to drive ination) are the so-alled slow-roll onditions on thepotential of the inaton.5.1.1 Cosmology and Hot Big Bang modelBased on large sale observations of the distribution of matter and radiation withinthe universe we see around us, we an assume the universe to be homogeneous andisotropi at large distane sales. For instane, the observed temperature utuationsof the CMB are of order ÆT=T � 10�5. This motivates to onsider the most generalfour-dimensional geometry whih is onsistent with isotropy and homogeneity of itsspatial slies. Suh a geometry is desribed by a Friedmann-Robertson-Walker (FRW)geometry with a metri given byds2 = �dt2 + a2(t)� dr21� �r2 + r2d�2 + r2 sin2 �d�2� ; (5.1)where � = 1; 0;�1 desribes a spherial, at or hyperboli universe, respetively. Thefator a(t) is alled the sale fator and we de�ne the Hubble parameterH(t) = _a(t)a(t) ; (5.2)where the dot denotes derivation with respet to time. The time evolution of the salefator a(t) is obtained from the Einstein equationR�� � 12Rg�� = 8�GT�� ; (5.3)



62 5. COSMOLOGY AND INFLATIONspeialized to the FRW-metri (5.1). We obtain two equations, the Friedmann equation� _aa�2 + �a2 = �3M2P ; where M�2P = 8�G ; (5.4)and the Rayhaudhuri equation �aa = � 16M2P (�+ 3p) : (5.5)Here we assumed the most general form for the energy-momentum stress tensor T�� ofthe universe's matter ontent onsistent with homogeneity and isotropyT�� = � � 00 pgij � ; (5.6)where i; j run over the spatial oordinates. It turns out to be useful to derive a �rstorder equation from the eqs. (5.4) and (5.5) that expresses energy onservation,3 (�+ p) _aa + _� = 0 , ddt ��a3� = �p ddta3 : (5.7)How the sale fator a(t) evolves with time depends on what kind of matter theuniverse ontains. Present observations give evidene that there are the following kindsof osmi uids, eah oming with a di�erent equation of states:� Radiation: The ontribution from relativisti partiles in the universe, namelyphotons and osmi reli neutrinos (whose masses are small enough to be onsid-ered as relativisti partiles), satisfying the equation of state of a weakly inter-ating gas prad = 13�rad : (5.8)� Baryons and dark matter: Ordinary matter (eletrons, nulei, atoms) that isnon-relativisti suh that the rest mass dominates over the average kineti energy(whih orresponds to its pressure), implying p � 0. Observations infer further thepresene of a large amount of non-observed (at least not by its eletromagnetiradiation), non-relativisti matter whih gravitates just like ordinary baryonsdo. This so-alled dark matter has the same equation of state as the baryons.Together these two ontributions form the non-relativisti matter ontent of theuniverse with equation of state pm � 0 : (5.9)� Dark energy: Observations further motivate the existene of yet another typeof invisible \matter". Main evidene is that the overall expansion rate of theuniverse seems to be inreasing at present time. From eq. (5.5) it is lear that



5.1. INFLATION 63in order to obtain an aelerating universe, i.e. �a > 0, matter with suÆientlynegative pressure, p < ��=3, is required. Sine this is not true for radiation norfor non-relativisti matter, we need something whose pressure is negative and atpresent time dominates that of the other forms of matter - the so-alled darkenergy - whih behaves very similarly to a positive osmologial onstant andwhose equation of states is predited to bepDE � ��DE : (5.10)Note that eah of these equations of state implies the time-independent ratio wi =pi=�i, and we easily integrate eq. (5.7), obtaining�i = �i0 �a0a �3(1+wi) : (5.11)Given an initial density �0 and the initial fration of the di�erent ontributions fi =�i0=�0, we obtain �(a) = �0�fDE + fm �a0a �3 + frad �a0a �4� ; (5.12)whih implies that the energy ontent of the universe was �rst dominated by a radiationepoh, followed by an epoh of matter domination and then by dark energy, explainingthe presently observed aelerated expansion of the universe.Even though the Hot Big Bang model is very suessful, it leaves many importantquestions unanswered. To mention the most important, the Hot Big Bang model annot explain the urrently observed atness of our universe (observations indiate thatthe quantity �=a2 is at present onsistent with zero) and the homogeneity of our universe(the temperature utuations of the CMB only arise at the level of one part in 105, nomatter from whih diretion we reeive this radiation), unless we start the universe o�with a very speial kind of initial onditions.The �rst problem is alled the atness problem. To see why this is a problem, let us�rst divide the Friedmann equation (5.4) by H2 to obtain1 + �(aH)2 = 8�G�3H2 � 
(a) : (5.13)Observations indiate that, at present, 
 = 
0 is equal to unity up to 4%. But sinethe produt aH dereases with time for both matter and radiation domination, theurvature term in eq. (5.13) beomes more and more important as time passes. Exatalulations show that at the epoh of Big Bang Nuleosynthesis, 
 has to be unitywith an auray of roughly one part in 1018 in order to reprodue the value 
0 � 1seen today. We thus have to explain this very speial initial ondition.The seond problem is alled the horizon problem. To explain the homogeneousdistribution of temperature of the CMB (up to one part in 105), the whole universehad to be ausality onneted at the time of reombination - the epoh in whih the



64 5. COSMOLOGY AND INFLATIONuniverse �rst beame transparent for photons, whih is the origin of the CMB. However,assuming a matter dominated universe, a(t) = a0(t=t0)1=2, one shows that the properdistane that a light signal an travel by the time of reombination - the physialhorizon size - is Lre = H�1re = H�10 (are=a0)3=2. When we look at the CMB, we areobserving the universe at a sale fator a0=are � 1100, whih is at a proper distane ofapproximately D0 = 2H�10 (1�pare=a0) � 2H�10 . At the time of last sattering, thiswas in a distane of Dre = (are=a0)D0. Hene, if we observe two parts of the CMBseparated by more than an angle � � Lre=Dre � 1Æ, they will have non-overlappinghorizons and were ausally disonneted at reombination.Inationary osmology provides a solution to the atness and horizon problem. Theidea is to assume that there was a period in the very early universe during whih thesale fator was aelerating, i.e. �a > 0, whih requires an equation of states p < ��=3.The simplest models of ination assumep � �� ; (5.14)and we see from eq. (5.7), for the ase p = ��, that � = �? has to be onstant. Byintegration of the Friedmann eq. (5.4) (negleting the urvature term) we obtain anexponential expansion a(t) = a0er �?3M2P (t�t0) ; (5.15)and a onstant Hubble lengthH�1 = a(t)_a(t) =s3M2P�? = H�1? : (5.16)With this assumption, aH grows exponentially suh that it does not take long forany initial urvature �=(aH)2 to be diluted to extremely small values - providing asolution to the atness problem. For a phase of exponential expansion of the salefator, the horizon size, Lhor(t) = a(t)rhor, grows more quikly than the Hubble lengthH�1? . Modes whih were at the beginning of ination shorter than the Hubble lengthmay be strethed to be larger than the Hubble length, and homogeneity over a verysmall path is enough to solve the horizon problem. Quantum utuations make itimpossible for ination to smooth out the universe with perfet preision, explaining theobserved approximately sale free spetrum of primordial density perturbations. Onethese primordial density utuations have been ampli�ed, they seed the formation ofgalaxies through gravitational ollapse. Measurements of galaxy distributions provideus thus with preise experimental data to test the di�erent ination models.5.1.2 Slow-roll inationWe have seen that, in order to have the right initial onditions to start with the HotBig Bang model, we need a phase of aelerated expansion, i.e. we look for an equation



5.1. INFLATION 65of states that satis�es eq. (5.14). This is possible for a salar �eld whose equationof motion satis�es some speial onditions. The dynamis of a salar �eld ' withanonially normalized kineti term and potential V (') moving in an FRW-universe isdesribed by the ation S = Z d4xp�g�12��'��'� V (')� ; (5.17)where the metri is given by eq. (5.1). From the ation (5.17), we alulate the equationof motion for ' as �'+ 3H _' = �V 0(') ; (5.18)where V 0(') = dV=d'. The variation of (5.17) with respet to Æg�� and the de�nition(5.6) gives us the expression for the energy density and the pressure as follows� = 12 _'2 + V (') ; (5.19a)p = 12 _'2 � V (') : (5.19b)We thus an obtain the regime of interest (5.14) when the kineti energy of ' is negli-gible ompared with its potential energy (the �eld ' has to roll slowly)12 _'2 � V (') ; (5.20)suh that p � �V � �� and, from (5.16),H2 � V3M2P ; (5.21)would be approximately onstant. The slow-roll ondition (5.20) remains a good ap-proximation for an appreiable time provided _' hanges slowly, suh that we demand�'� H _'. This allows us to neglet the �'-term in eq. (5.18) suh that_' � � V 03H : (5.22)Using the slow-roll ondition (5.20), we onlude that V must satisfy V 02=9H2V � 1and with eq. (5.21) � � 12 �MPV 0V �2 � 1 : (5.23)To justify the slow-roll approximation in eq. (5.20) throughout the ination period,we require �' to remain small. Di�erentiating eq. (5.22) with respet to time, we get(using that H is approximately onstant) �' � V 00 _'=3H, whih has to be muh smallerompared with 3H _'. This gives (in absolute values) ��V 00=(3H)2��� 1, orj�j � 1 ; where � = M2PV 00V : (5.24)



66 5. COSMOLOGY AND INFLATIONThe onditions (5.23) and (5.24) are alled the �rst and seond atness ondition,respetively. They are suÆient onditions to have a region of exponential expansion.However, the models we will study in this thesis are muh more ompliate than theone �eld model we just studied. The generi kind of salar dynamis for the real salar�elds 'a whih emerge in the low-energy limit of string theory is (in Einstein frame)S = Z d4xp�g�M2P2 R� 12gab(')��'a��'b � V (')� ; (5.25)where gab(') is the K�ahler metri in real oordinates (see setion 3.2). We thus gener-alize the expressions for � and p of eq. (5.19) to� = 12gab(') _'a _'b + V (') ; (5.26a)p = 12gab(') _'a _'b � V (') : (5.26b)As before, a suÆient ondition for ination is 12gab _'a _'b � V and by similar argu-ments as for the single �eld ase we obtain the onditions for slow-roll ination�� 1 where � = M2P gab�'aV �'bV2V 2 = Ki�j��iV ����jVV 2 ; (5.27)where we passed in the last equation from real oordinates to omplex oordinates, andj�j � 1 where � = min eigenvalue M2Pra�'bVV ! ; (5.28)where we take the ovariant derivative with respet to the K�ahler metri gab.These are the onditions we have to satisfy for a period of ination. However, thereare strong no-go theorems that results in an upper bound for �, thus exluding an epohof slow-roll ination. In the following setions, we review some of the no-go theoremsthat we will use in hapter 13 to study our models.5.2 No-go theorem in the volume-dilaton planeThe �rst no-go theorem we want to study was onstruted in [91℄ extending earlierwork of [94℄. This no-go theorem exludes slow-roll ination and de Sitter vaua forthe simplest ompati�ations of massive type IIA supergravity with p-form uxesand D6/O6-soures. The no-go theorem relies on the saling behavior with respet tothe overall volume modulus, � = (Vol)1=3, and the four-dimensional dilaton modulus,� = e��pVol, of the di�erent ontributions of the uxes and soures to the four-dimensional e�etive potential, where the volume is de�ned as (see eq. (2.7))Vol = 16�abkakbk ; (5.29)



5.2. NO-GO THEOREM IN THE VOLUME-DILATON PLANE 67where �ab denotes the triple intersetion number, given in terms of the odd two-formsY (2�)a as �ab = ZM Y (2�)a ^ Y (2�)b ^ Y (2�) : (5.30)As we have explained in setion 5.1, ination requires �� 1, where � is de�ned as� = Ki�j��iV ����jVV 2 = Ki�j ��Re�iV �Re�jV + �Im�iV �Im�jV �4V 2 : (5.31)The expression for the K�ahler metri appears in the kineti terms for the moduli �eldsT = �Ki�j���i�� ���j= �14 �2K�Re�i�Re�j ���Re�i��Re�j + ��Im�i��Im�j� ; (5.32)and thus Ki�j = 14 �2K�Re�i�Re�j : (5.33)As we will expliitly see in hapter 11, the K�ahler potential for our models is given byKk = � ln�43�abkakbk� = � ln(8�3) ; (5.34a)K = �4 ln � ; (5.34b)for the K�ahler setor and omplex struture setor, respetively.Sine � and � are the real omponents of the orresponding omplex moduli, wederive from eq. (5.33) the following kineti terms for � and �T = �� 34�2 (���)2 + 1�2 (���)2 + � � �� ; (5.35)where the dots stand for other manifest positive kineti terms for the remaining moduli�elds.Let us mention that this short derivation is not as trivial as we just showed. Asan example, let us onsider the K�ahler setor, where we de�ne the omplex K�ahlermodulus as ti = ki � ibi. The kineti energy is given byT = �Ki�j ���ki��kj + ��bi��bj� : (5.36)From eq. (5.34a), we deriveKi�j = 116Vol2 (�iabkakb)(�jabkakb)� 14Vol(�ijaka) : (5.37)



68 5. COSMOLOGY AND INFLATIONWe now make the hange of oordinates from ka to the overall volume � and a setof angular variables a viaka = �a ; where �abab = 6 : (5.38)The onstraint on the angular variables a ensures that Vol = 16�abkakbk = �3.From this onstraint it follows that ��(�abab) = 0, and hene �ab(��a)b = 0.With this we easily alulate the expliit expression for the kineti terms from eq. (5.36)as T = ��3(���)24�4 � 14�ab��a��b + �add�befef � 4�ab16�2 ��ba��bb� :(5.39)We onlude from this more areful derivation that there are no ross-terms involv-ing �����a and that we exatly get the proposed kineti term for � in eq. (5.35).Additionally, eah of the three terms in eq. (5.39) has to be positive, sine in the physi-al region the total kineti energy must be positive. For the omplex struture/dilatonsetor, the derivation is similar to that in the K�ahler setor.With the expliit kineti terms for the moduli � and � in eq. (5.35), we derive for� from eq. (5.31) the following inequality (note that all ontributions from the othermoduli to � are positive so that we obtain an inequality)� � 1V 2  13 ���V�� �2 + 14 �� �V�� �2! : (5.40)We now subtrat the positive quantity 413 ���V�� � 14� �V�� �2 from eq. (5.40) and wearrive at � � 139V 2 ���V�� + 3� �V�� �2 : (5.41)In the following we will speify the neessary requirements suh that the following holdsDV � ��� ��� � 3� ����V � 9V : (5.42)If we now assume that we are in a region where V > 0, whih is neessary for ination,we an plug the square of eq. (5.42) in eq. (5.41) suh that� � 2713 ; whenever V > 0 ; (5.43)whih implies that slow-roll ination and de Sitter vaua are exluded.Provided that we an show the inequality (5.42), we have a no-go theorem againstslow-roll ination and de Sitter vaua. The proof is remarkably simple and uses only thesaling properties of the salar potential with respet to the �elds � and � . Conretely,



5.2. NO-GO THEOREM IN THE VOLUME-DILATON PLANE 69the lassial four-dimensional salar potential may reeive ontributions from the NSNSH3-ux, the RR-uxes Fp, where p = 0; 2; 4; 6, the geometri uxes as well as from thesoures (O6-orientifolds/D6-branes), suh that, respetively,V = V3 +Xp Vp + Vf + VO6/D6 ; (5.44)where V3; Vp � 0 sine these ontributions ome from quadrati terms in the ten-dimensional ation (B.2) and Vf and VO6/D6 an have either sign. From the ten-dimensional ation (B.2) one easily dedues how the di�erent ontributions in the po-tential sales with respet to � and � . As an example, let us examine the salingproperties of the NSNS H3-ux. The energy arising from H3 omes from the term in(B.2) that is proportional to H23 . From (B.3) it follows that H23 is ontrated withthree fators of g�� , the inverse internal metri, whih sales with as g�1 / ��1. Thisimplies V3 / ��3. Conerning the saling behavior of this term with respet to the four-dimensional dilaton � we have to be areful to transform orretly from ten-dimensionalEinstein frame to four-dimensional Einstein frame. Taking further into aount the re-lation between the metri in string frame and in Einstein frame gE = e��=2gs we arriveat V3 / ��2. Similarly we derive the salings for the other terms. Note that the on-tribution Vf in the four-dimensional potential V omes from the Einstein-Hilbert termin the ten-dimensional ation,Vf = �12M4P�210e2�Vol�1R = �12M4P�210��2R ; (5.45)where R is the salar urvature of the internal manifold (the expliit expression in givenin eq. (4.28)). We onlude that Vf / ��1��2, sine R / g�1 / ��1.In summary, we obtain the general saling behavior with respet to � and � of thedi�erent ontributions in the salar potential as follows,V3 / ��3��2; Vp / �3�p��4; VO6=D6 / ��3; Vf / ��1��2 : (5.46)Plugging these salings in eq. (5.42) implies for the salar potential���V�� � 3� �V�� = 9V + Xp=2;4;6 pVp � 2Vf : (5.47)Hene, the neessary requirement to satisfy inequality (5.42) is that the ontributionfrom the metri uxes is zero or negative (reall that Vp � 0). This then translates inthe above-mentioned bound � � 2713 ruling out slow-roll ination and de Sitter vaua.We see from eq. (5.47) that one an avoid this no-go theorem if Vf > 0 for some regionin the moduli spae.As we have seen in eq. (5.45), the ontribution from the geometri uxes is propor-tional to the negative salar urvature of the internal manifold, Vf / �R. Avoidingthe no-go theorem is thus equivalent to demanding that the internal spae has negativeurvature for some region in the moduli spae.



70 5. COSMOLOGY AND INFLATIONLet us mention that we also require VO6/D6 < 0. The reason is that we want toavoid a runaway of the potential in � -diretion. As all terms in eq. (5.46) sale withnegative power of � , for VO6/D6 � 0 all terms would have positive oeÆients (sine wealso required Vf > 0), leading to a runaway diretion.Let us further mention that for any vauum we have �V=�� = �V=�� = 0 suh thatthe right hand side of eq. (5.47) vanishes. For vanishing geometri uxes Vf = 0 andassuming Vp > 0 for at least one p = 2; 4; 6 this implies V = �(P pVp)=9, thus rulingout Minkowski vaua as well.Let us summarize this result:� � 2713 whenever V > 0 and Vf � 0 : (5.48)With the saling properties of the di�erent terms in eq. (5.46), we an �nd otherombinations of derivatives with respet to � and � that sets a bound for �, e.g.���V�� � � �V�� = 3V + 2V3 � 2V0 + 2V4 + 4V6 � 3V � 2V0 : (5.49)This ombination is interesting for the ase of vanishing mass parameter, m = 0, sinefor this ase we have V0 / m = 0. If we subtrat the positive quantity 184 �4��V�� � 3� �V�� �2from the right hand side in eq. (5.40), we obtain� � 17V 2 ���V�� + � �V�� �2 � 97 ; (5.50)where the seond inequality omes from eq. (5.49) assuming vanishing Romans mass.This is a no-go against ination for the ase of vanishing Romans mass 1.We learned in this setion that the minimal ingredients for slow-roll ination or deSitter vaua areVf > 0 ;m 6= 0 ; (Neessary onditions for slow-roll ination or de Sitter vaua) ;VO6/D6 < 0 ; (Condition to avoid a runaway diretion) : (5.51)Stritly speaking, the only real restrition is that we have an internal manifold withnegative urvature sine we an always turn on F0 ux and do an orientifold projetion.The nilmanifolds, whih always have negative salar urvature (see setion 4.3) and,apart from the torus example, non-vanishing geometri uxes, avoid these no-go theo-rems. As we will further show in part III of this thesis, some of the oset models wewill study also have regions in moduli spae with negative salar urvature avoidingthese no-go theorems. This makes these models interesting andidates for ination andde Sitter vaua (without additional perturbative or non-perturbative quantum e�etsas in type IIB). However, one an formulate a stronger no-go theorem to further studythe oset models. These rede�ned no-go theorems were proposed in [92℄, and we willreview them in the next setion. As we will see, we have slightly to adjust the proposedno-go theorems for the oset models [96℄.1A di�erent derivation for this no-go was reently given in [95℄.



5.3. REFINED NO-GO THEOREMS IN THE (� , �)-PLANE 715.3 Re�ned no-go theorems in the (� , �)-planeThe models we want to study in this thesis all have speial intersetion numbers: thevolume (5.29) depends only linearly on at least one of the K�ahler moduli ka. In thefollowing, we denote this linear fator in the volume as k0. Models with this propertyhave intersetion numbers that split into f0; ag, where a runs over the remaining K�ahlermoduli, suh that the only non-vanishing intersetion numbers are�0ab � �ab : (5.52)The re�ned no-go theorem of [92℄, whih is quite similar to the no-go theorem of setion5.2, makes use of these speial intersetion numbers.For the no-go theorem in the previous setion 5.2, we split the K�ahler moduli intoan overall volume variable � and a set of angular variables a. In the ase where thevolume fatorizes, it turns out that it is useful to keep k0 and then split the remainingK�ahler moduli by ka = ��a ; (5.53)where the angular variables are onstrained by�ab�a�b = 2 ; (5.54)to ensure that the volume of the internal spae is Vol = k0�2. From eq. (5.37) weobtain the K�ahler metri adapted to the speial intersetion numbers (5.52) asKi�j =  14(k0)2 00 14�2 ��a��bd�d � �ab� ! : (5.55)With this K�ahler metri we alulate the kineti terms (again using ��(�ab�a�b) = 0from whih follows that there are no mixed terms of the form ������a),T = �� 14(k0)2 (��k0)2 + 12�2 (���)2 + 14 ��a��bd�d � �ab� ���a���b + � � �� ;(5.56)where the dots stand for additional manifestly positive kineti terms for the othermoduli �elds. We now plug the kineti term for � in the de�nition for � (5.31) andobtain the inequality � � 1V 2  12 ���V�� �2 + 14 �� �V�� �2! ; (5.57)where the � dependene is as in eq. (5.40). We again an subtrat a positive quantityfrom the right hand side of eq. (5.57),12 ���V�� �2 + 14 �� �V�� �2 � 136 �4��V�� � � �V�� �2 = 118 ���V�� + 2� �V�� �2 ; (5.58)



72 5. COSMOLOGY AND INFLATIONand obtain for � the inequality� � 118V 2 ���V�� + 2� �V�� �2 : (5.59)If we an show that DV � ��� ��� � 2� ����V � 6V; (5.60)we would get for V > 0 the following bound on �� � 2 ; whenever V > 0 ; (5.61)and slow-roll and de Sitter vaua are exluded.Similar to the proof of the no-go theorem in setion 5.2, we study the saling proper-ties with respet to � and � of the di�erent ontributions to the salar potential. Thesesalings are omputed in [55, 92℄ and an be summarized as followsV3 / ��2��2; V0 / �2��4; V6 / ��2��4; VO6=D6 / ��3 ; (5.62)whereas V2 and V4 ontain two terms, respetively,V2 = C1�2��4 + C2��4 ; V4 = C3��2��4 + C4��4 ; (5.63)where the oeÆients Ci, i = 1; : : : ; 4 depend on the uxes and the other moduli andone an show that the two terms in V2 and the two terms in V4 are all separatelypositive 2.From these salings we omputeDV3 = 6V3 ;DVO6/D6 = 6VO6/D6 ;DV0 = 6V0 ;DV2 = 6V2 + positive terms ;DV4 = 8V4 + positive terms ;DV6 = 10V6 : (5.64)
This implies that whenever we an show that DVf � 6Vf , the no-go theorem (5.60),and hene � � 2, is appliable, whih rules out slow-roll ination and de Sitter vaua.In [92℄, a ondition was given suh that DVf = 6Vf is satis�ed automatially ex-luding slow-roll ination and de Sitter vaua. Let us de�ne the matries riI as follows[97℄ dY (2�)i = riIY (3�)I : (5.65)2We refer the reader to [92℄ for the expliit form of these oeÆients.



5.3. REFINED NO-GO THEOREMS IN THE (� , �)-PLANE 73where Y (2�)i are the odd two-forms de�ned in eq. (3.37) and Y (3�)I is a basis of oddthree-forms, suh that R Y (3�)I ^ Y (3+)J = ÆIJ . The authors of [92℄ showed that theextra ondition riI = 0 would ensure that DVf = 6Vf , implying the no-go theorem. Inthe oset examples we will disuss in part III of the thesis, however, one has raI 6= 0.Therefore, we will expliitly hek for eah ase separately whether DVf � 6Vf issatis�ed or not.To this end, it is onvenient to de�ne the variable U as followsVf = 12�2VolU ; (5.66)so that DVf = 6Vf + 12�2VolDU = 6Vf + 12�2Vol(����)U ; (5.67)and the no-go theorem applies if we an show that���U�� = �ka �U�ka � 0 : (5.68)Furthermore, if the inequality (5.68) is stritly valid, Minkowski vaua are ruled out aswell. This an be seen as follows. Using the eqs. (5.64) and (5.67), we obtainDV = 6V + 2V4 + 4V6 + 12�2Vol(����)U + positive terms ; (5.69)so that for a vauum, DV = 0, we �nd with eq. (5.68)V = �16 �2V4 + 4V6 + 12�2Vol(����)U + positive terms� � 0 : (5.70)So, if the inequality (5.68) stritly holds, (5.70) stritly holds as well and Minkowskivaua are ruled out.With the help of the no-go theorems disussed in this and the last setion we willexamine in hapter 13 whether the oset models onstruted in part III of this thesisare valuable andidates for slow-roll ination and de Sitter minima. All of the osetspaes have non-vanishing geometri uxes and non-vanishing Romans mass. We thushave to hek if the salar urvature of the oset models is negative, and, if this is thease, if ����U � 0. The nilmanifolds on the other hand always have negative salarurvature and we an turn on non-vanishing Romans mass, thus irumventing theno-go theorem of setion 5.2. However, in [92℄ no-go theorems like the one desribed inthis setion were applied to the lass of twisted tori. The authors showed that for allthese twisted tori the epsilon parameter is bounded from below by numbers of orderunity ruling out slow-roll ination and de Sitter minima for these models. Sine thenilmanifolds an be identi�ed with twisted tori, they are not valuable andidates forination and de Sitter vaua, and we will thus only study for the oset models of partIII whether they allow slow-roll ination or de Sitter solutions.



74 5. COSMOLOGY AND INFLATION5.3.1 A omment on extra ingredientsSome ingredients that are not taken into aount in the original no-go theorem of[91℄, nor in the no-go theorems of setion 5.3 [92℄ are KK-monopoles, NS5-branes, D4-branes and D8-branes. Some of these ingredients were used in onstruting simplede Sitter-vaua in [98, 99℄. KK-monopoles would drastially hange the topology andgeometry of the internal manifold so that their introdution makes it diÆult to obtaina lear ten-dimensional piture, hene we will not disuss this possibility further in thisthesis. NS5-branes, D4-branes and D8-branes would ontribute through their respetiveurrents jNS5, jD4 and jD8 as follows to the Bianhi identitiesdH = �jNS5 ;dF4 +H ^ F2 = �jD4 ;dF0 = �jD8 : (5.71)Sine H and F2 should be odd, and F0 and F4 even under all the orientifold involutions,we �nd that jNS5 is an odd four-form, jD4 an even �ve-form and jD8 an even one-form.In the approximation of left-invariant SU(3)-struture whih we use in this thesis,one should also impose these brane-urrents to be left-invariant (making the branesitself smeared branes). For the onrete type IIA models of hapter 11 there are nosuh urrents jNS5, jD4 or jD8 with the appropriate properties under all orientifoldinvolutions, implying that NS5-branes, D4- and D8-branes annot be used in thesemodels.Let us briey mention that an F-term uplifting along the lines of O'KKLT [100, 101℄by ombining the oset models with the quantum orreted O'Raifeartaigh model willnot be a promising possibility either. The O'Raifeartaigh model is given byWO = ��2SandKO = S �S� (S �S)2�2 . The model has a de Sitter minimum for S = 0 where VO � �4. Weombine the two models as follows (the subsript IIA refers to the previously disussedux and brane ontributions)W =WIIA +WO ; K = KIIA +KO : (5.72)In lowest order in S the total potential is then given byV � VIIA + eKIIAVO + : : : : (5.73)Vup = Aup�4Vol : (5.74)Sine we assume a positive uplift potential, Vup > 0, the fat that Vup sales like F6 tellsus that adding this uplift potential does not help in irumventing the no-go theoremsof setion 5.2 or setion 5.3.



Part IIAppliation to Nilmanifolds





SummaryFor many phenomenologial appliations the exat knowledge of the full four-dimen-sional low-energy e�etive potential is required. For instane, one an searh for phe-nomenologially interesting stable de Sitter solutions (the stability is heked by alu-lating the mass spetrum around the solution) or hek whether the potential satis�esthe neessary onditions for an inationary epoh (this amounts to �nding regions inmoduli spae with small values for � and � as desribed in hapter 5). If the model ad-mits a supersymmetri AdS4 solution, one an expliitly alulate the mass spetrum ofthe moduli �elds around the supersymmetri solution. To onstrut phenomenologialattrative models, one an try to uplift suh an AdS4 solution by adding uplifting-termsto the potential, e.g. along the lines of the KKLT senario [23℄.One of the main motivations of this thesis is to provide the tehniques to derive thefour-dimensional low-energy e�etive �eld theory for a given ompati�ation manifold.In the �rst part of this thesis we disussed the formal premises for suh a projet and it isnow time for applying the developed tehniques to onrete ompati�ation manifolds.We �rst want to onsider a large lass of possible six-dimensional ompat manifolds,the nilmanifolds whih we desribed in setion 4.2. As we disussed there, there are34 isomorphism lasses of six-dimensional nilmanifolds. In the following, we refer tothese 34 isomorphism lasses simply as \the nilmanifolds". The omplete list of thesenilmanifolds an be found in table 4 of [64℄ and we will adopt their numbering.We �rst want to onstrut type IIA AdS4 N = 1 solutions on these nilmanifolds.In setion 2.2.2 we disussed the neessary and suÆient onditions for suh supersym-metri vaua. We �rst have to san for nilmanifolds whose only non-vanishing torsionlasses are W�1;2. If we do not turn on soure terms, we have to satisfy ondition (2.34),whih follows from the Bianhi identities. This ondition turns out to be too restri-tive for all the 34 nilmanifolds. We thus have to allow for D-brane/orientifold smearedsoures. The Bianhi ondition is then relaxed to ondition (2.37), whih indeed anbe satis�ed. Additionally, we have to hek the positivity of the metri indued by Jand 
.As a matter of fat, there are (only) two nilmanifolds among the 34 nilmanifolds thatsatisfy all the neessary and suÆient onditions [49℄, the six-torus and the nilmanifold4.7 of table 4 of [64℄. The nilmanifold 4.7 is also known under the name of the Iwasawamanifold. Essentially, the Iwasawa solution is the twisted torus T 6=(Z2�Z2) example



78examined in [70, 62, 72℄ 3.We will desribe these solutions in hapter 6. As we will see, the torus and theIwasawa solution are related by T-duality along two diretions (at least for some valuesof the parameters). Interestingly, as the intermediate step after one T-duality, there isa type IIB solution with stati SU(2)-struture on the nilmanifold 5.1 of table 4 in [64℄.Remarkably, for the same range of the parameter spae for whih the T-dualitiesabove are valid, the solutions admit an interpretation as near-horizon geometries ofinterseting brane on�gurations, [24℄. From this point of view, the nilmanifold vauain this range are nothing but near-horizon geometries of intersetions of KK-monopoleswith other branes in at spae. This nie feature of the `brane piture' is summarizedin table 6.1. Eah solution in this table is related to the one in the olumn next to itby a T-duality. For the three nilmanifolds that provide a solution to N = 1 AdS4 weIIA IIB IIAT6 nilmanifold 5.1 IwasawaD4/D8/NS5 D3/D5/D7/NS5/KK D2/D6/KKTable 6.1: Brane piturenext study in detail the four-dimensional low-energy e�etive �eld theory. The usualapproah to onstrut the four-dimensional e�etive ation is by using four-dimensionale�etive supergravity tehniques whih rely on supersymmetry. As we reviewed insetion 3.2, this boils down to alulate the K�ahler potential and the superpotential.However, the diret approah to derive the four-dimensional e�etive ation is byperforming a Kaluza-Klein redution. We reviewed the Kaluza-Klein reipe in setion3.1. The main result of this part of the thesis is a omparison of the results obtainedby the diret Kaluza-Klein redution with the results obtained via the e�etive super-gravity approah. This provides us with an important onsisteny hek between thetwo approahes.To do so, we will �rst expliitly perform, in hapter 7, a Kaluza-Klein redution onthe torus and the Iwasawa manifold around the supersymmetri solution of hapter 6and derive the mass spetrum for all the moduli �elds.In the following hapter 8, we derive the e�etive low-energy potential by means ofthe supergravity tehniques and again derive the mass spetrum for the moduli �eldsaround the supersymmetri solution. Comparing these results with the masses obtainedfrom the diret Kaluza-Klein analysis, we �nd perfet agreement - showing that we anrely on the e�etive supergravity tehniques also in the presene of metri uxes.Note that the results of this part of the thesis are published in [49℄.3In the Iwasawa model there are four orientifolds. These an be equivalently desribed as a singleorientifold supplemented with its images under a ertain geometri Z2�Z2 group ating on the internalmanifold.



Chapter 6AdS4 solutions on nilmanifoldsBy taking the internal six-dimensional manifold to be a nilmanifold, we an onstrutexpliit examples of type IIA N = 1 ompati�ations to AdS4 desribed in setion2.2.2. A systemati san yields exatly two possibilities in type IIA satisfying theneessary and suÆient onditions: the torus T6 and the Iwasawa manifold 4.7 of table4 of [64℄, whih (for some values of the parameters) are related by T-duality along twodiretions. We also �nd a type IIB solution with stati SU(2)-struture whih formsthe intermediate step after one T-duality 1. In this hapter we desribe these solutions.6.1 Type IIA solution on the T6Our �rst type IIA solution is obtained by taking the internal manifold to be a six-dimensional torus. Let us de�ne a left-invariant basis feig suh that:dei = 0; i = 1; : : : ; 6 : (6.1)On the torus we an just hoose ei = dyi, where yi are the internal oordinates. TheSU(3)-struture is given byJ = e12 + e34 + e56 ;
 = (ie1 + e2) ^ (ie3 + e4) ^ (ie5 + e6) ;whih an indeed be seen to satisfy eqs. (2.6), (2.7) and (2.1) for f = 0, puttingvol6 = e1:::6. It readily follows that all torsion lasses vanish in this ase. Note,however, that there are non-vanishing H and F4 �elds given by eq. (2.27)H = 25e�m �e246 � e136 � e145 � e235� ;F4 = 35m �e1234 + e1256 + e3456� : (6.2)1In the ase of type IIB, we did not make a omplete san so there might be more solutions of thistype.



80 6. ADS4 SOLUTIONS ON NILMANIFOLDSFrom the Bianhi identity in eq. (B.9a) we ompute for the soure termj6 = �25e�m2(e246 � e136 � e145 � e235) ; (6.3)suh that, from eq. (2.37), we �nd that there is an orientifold soure of the type (2.35)with � = e2�m2. This soure term orresponds to smeared orientifolds along (1; 3; 5),(2; 4; 5), (2; 3; 6) and (1; 4; 6) (see also the disussion in appendix D). The orrespondingorientifold involutions are 2O6 : e2 ! �e2 ; e4 ! �e4 ; e6 ! �e6 ;O6 : e1 ! �e1 ; e3 ! �e3 ; e6 ! �e6 ;O6 : e1 ! �e1 ; e4 ! �e4 ; e5 ! �e5 ;O6 : e2 ! �e2 ; e3 ! �e3 ; e5 ! �e5 : (6.4)For the torus, sine we have vanishing torsion lasses, we an deouple the tower ofKaluza-Klein masses (see disussion in setion 2.2.2) when we take m2(e2�L2int)� 1.6.2 Type IIA solution on the Iwasawa manifoldThe seond type IIA solution is obtained by taking the internal manifold to be theIwasawa manifold. The left-invariant basis is de�ned by:dea = 0; a = 1; : : : ; 4 ;de5 = e13 � e24 ;de6 = e14 + e23 ; (6.5)and is usually denoted by (0; 0; 0; 0; 13�24; 14+23). Up to basis transformations thereis a unique SU(3)-struture satisfying the supersymmetry onditions of setion 2.2.2:J = e12 + e34 + �2e65 ;
 = � (ie5 � e6) ^ (ie1 + e2) ^ (ie3 + e4) : (6.6)In the left-invariant basis, the metri is given by g = diag(1; 1; 1; 1; �2 ; �2), and thetorsion lasses an be read o� from dJ , d
, taking eq. (2.1) into aount:W�1 = �2i3 � ;W�2 = �4i3 � �e12 + e34 + 2�2 e56� ; (6.7)2Eah orientifold an be represented as 
p�, where 
p ats as a reetion on the world-sheet and� is a purely geometrial operation ating on the target spae. The omposition of two six-orientifoldations 
p�1 and 
p�2 is purely geometrial, given by �1 Æ �2, sine 
2p = 1. Similarly, the ation ofany number of orientifolds an be thought of equivalently as being generated by a single orientifoldtogether with a purely geometrial ation of a disrete group. In the ase at hand, the four orientifoldsix-planes an be equivalently thought of as a single orientifold together with an orbifolding of theinternal manifold by Z2�Z2.



6.3. TYPE IIB SOLUTION ON THE NILMANIFOLD 5.1 81while all other torsion lasses vanish. The uxes an be read o� from eq. (2.27) byplugging in f = 32e���, while we an �nd m from eq. (2.37). We an verify that dW�2is proportional to Re
: dW�2 = �8i3 �2Re
 : (6.8)From the seond line of eq. (6.7) we an read o�: jW�2 j2 = 64�2=3. Comparing witheq. (2.37), taking jW�1 j2 = 4�2=9 into aount { as follows from the �rst line of (6.7) {we therefore �nd a non-zero net orientifold six-plane harge:� � 254 �2 : (6.9)The solution (6.6) has one ontinuous parameter, �, orresponding essentially to the�rst torsion lass W�1 . An additional seond parameter an be introdued by notingthat the de�ning SU(3)-struture equations (2.6) are invariant under the resalingJ ! 2J ; 
! 3
 : (6.10)The additional salar  is related to the volume modulus via vol6 = �6�2e1:::6, as anbe seen from eq. (2.7).For the ase m = 0, for whih the bound (6.9) is saturated, the above example analso be obtained by performing two T-dualities on the torus solution of setion 6.1,as an be heked expliitly. We �nd then that � = 25mT e� where mT is the massparameter of the dual torus solution. The limit of deoupling the Kaluza-Klein towerorresponds to taking �Lint � 1.6.3 Type IIB solution on the nilmanifold 5.1This solution is related, via a single T-duality, to both T6 and the Iwasawa manifold.Indeed, let us perform a T-duality on the six-torus example of setion 6.1 using theT-duality rules of e.g. [102℄ (see also [103℄ for a disussion of the ation of T-dualityon the pure spinors of a SU(3)�SU(3)-struture) 3. After resaling and relabeling theleft-invariant forms we �nd the nilmanifold 5.1 desribed by (0,0,0,0,0,12+34). For theSU(2)-struture quantities desribed in setion 2.1.2 we obtainei�V = 12 ��e6 + ie5� ;!2 = e13 � e24 ;
2 = �iei�(ie1 + e3) ^ (ie4 + e2) : (6.11)3Note that it does not matter along whih diretion one performs the T-duality sine all six perpen-diular diretions are equivalent. For the seond T-duality (from whih we obtain the Iwasawa solutionof the previous setion), only one diretion leading to a geometri bakground is possible.



82 6. ADS4 SOLUTIONS ON NILMANIFOLDSThe metri is given by g = diag(1; 1; 1; 1; 1; �2), and for the uxes we haveH = �� �e235 + e145� ;e�F1 = 52 �2e6 ;e�F3 = 32 � �e135 � e245� ;e�F5 = 32 �2e12346 : (6.12)
Again we �nd that � is related to the mass parameter of the torus example via � =25mT e�.6.4 The brane pitureFollowing [24℄, it is possible to interpret the solutions presented in setions 6.1-6.3, fromthe perspetive of interseting branes. Namely, we would like to reover these solutionsas near-horizon limits of domain walls in four non-ompat dimensions, orrespondingto systems of (orthogonally) interseting branes (we will heneforth use the term `brane'to refer to either a Dp-brane, an NS5-brane, or a KK-monopole).More spei�ally, we will impose the following requirements on our brane on�gu-rations:1. All on�gurations should onsist of branes in ten-dimensional at spae, of whihfour diretions are non-ompat and six diretions form a six-torus.2. All branes should have exatly the same two spatial diretions along the non-ompat spae.3. All branes should interset orthogonally, and we do not onsider world-volumegauge �elds.4. The resulting on�guration should preserve N = 1 supersymmetry in D=3,and should admit a regular near-horizon geometry with an AdS4 fator.5. Eah on�guration should inlude the maximum number of branes ompatiblewith requirements 1-4.Before we ome to the desription of expliit on�gurations satisfying the above re-quirements, let us note that, as we will see in the following, only brane on�gurationsthat lead to strit SU(3)-struture (as well as their T-dual on�gurations leading tostati SU(2)-strutures) arise in this way; this is the same lass of bakgrounds onsid-ered in hapter 2. The easiest way to arrive at this onlusion is to �rst determine whihtypes of SU(3)�SU(3)-struture 4 are ompatible with eah brane separately. Indeed,4See appendix C for a brief introdution to the language of generalized geometry and SU(3)�SU(3)-struture ompati�ations.



6.4. THE BRANE PICTURE 83using their orresponding �-symmetry projetors, it is straightforward to analyse whatrelations between the internal supersymmetry generators �(1) and �(2) of eq. (2.3) arepossible, whih leads to the following table of branes and their orresponding ompat-ible types of struture: 5 Brane Struture typeD2 strit SU(3)D3 stati SU(2)D4 SU(3)�SU(3)D5 SU(3)�SU(3)D6 SU(3)�SU(3)D7 stati SU(2)D8 strit SU(3)NS5 SU(3)�SU(3)KK SU(3)�SU(3)See setion 2.1 for the terminology. It turns out, that the on�guration always needsto have D-branes to get a regular near-horizon AdS4 limit. From the above table itfollows, that if one of these D-branes is a D2, D3, D7 or D8 we already �nd stritSU(3)- or stati SU(2)-struture. If not, let us onsider the SU(3)-struture assoiatedto �(1) as in eq. (2.5). Let us also de�ne the omplex oordinates zi assoiated withthis SU(3)-struture as well as their real and imaginary parts: zi = xi + iyi. Beauseall the branes de�ning this SU(3)-struture interset orthogonally (requirement 3), foreah brane the xi and yi diretions will be either along or perpendiular to the brane,i.e., there are no angles other than right angles. Now the relation between �(1) and �(2),whih we an get from the �-symmetry onditions of one of the D-branes, will ontaingamma-matries for diretions that are also parallel or orthogonal to the xi and yidiretions. Exhausting then all possibilities for the resulting struture shows that itan only be strit SU(3)- or stati SU(2)-struture. It follows that if one is interested inonstruting a on�guration with general SU(3)�SU(3)-struture, one should restritto D4, D6, D5, NS5 and KK-branes and put these branes at non-orthogonal angles.Let us make a few omments onerning the requirements 1-5 above. The �rst oneantiipates the fat that, as it will turn out, the internal nilmanifolds in the solutionsof setion 6.2-6.3 an be thought of as intersetions of KK-monopoles in at spae. Ittherefore suÆes to onsider branes in at spae. The seond requirement is of oursejust the requirement that the on�guration should orrespond to a domain wall in fourspae-time dimensions. The requirement of orthogonality was imposed for simpliity.It would be interesting to onsider branes/monopoles interseting at angles, but itwould be quite diÆult to onstrut the orresponding geometry beause one ouldno longer use the harmoni superposition rules for branes [104℄. The �rst part of the5We also refer to table 1 of [43℄ whih represents the allowed types of struture too, but nowfor spae-�lling orientifolds. Orientifolds have the same supersymmetry properties as D-branes withvanishing world-volume gauge �eld, however the di�erene of spae-�lling versus domain wall basiallyshifts the table.



84 6. ADS4 SOLUTIONS ON NILMANIFOLDSfourth requirement is equivalent to demanding that the domain wall, viewed from thepoint of view of four-dimensional spae-time, should be supersymmetri. Indeed, theminimal supersymmetry a domain wall in four dimensions an preserve, is one-half ofN = 1 in D = 4. This is equal to two real superharges, i.e. N = 1 in D = 3. Notethat this implies that exatly one-sixteenth of the original supersymmetry of type IIsupergravity in D = 10 should be preserved. As eah brane breaks supersymmetry by(at most) one-half, there will be (at least) four branes in the on�guration. The �nalrequirement is imposed beause a on�guration that does not inlude the maximumnumber of branes ompatible with requirements 1-4, turns out not to have a regularAdS4 near-horizon limit.The rules for supersymmetri, orthogonally-interseting branes were formulatedsome time ago [104, 105℄. For the type of on�gurations we are onsidering, theyan be summarized as follows:interseting branes # of relative transverse diretionsDp/Dq 0 mod 4NS5/NS5 0 mod 4Dp/NS5 7� p or 11� pDp/KK 5� p or 9� pKK/KK 0 mod 4NS5/KK 4 or 8The requirements 1-5 listed above severely restrit the set of admissible interseting-brane on�gurations. It is in fat straightforward to show that all possible suh on�g-urations are related to eah other by T-dualities. The brane on�gurations omprisingthe `nodes' of this T-duality web, listed in table 6.1, are analyzed in the following 6.
D4/D8/NS5This is the type IIA solution given in [24℄ and orresponds to the following system ofinterseting D4/NS5/D8-branes:

6Without the seond part of the fourth requirement there are three more on�gurations onnetedto eah other by T-duality: D5/NS5, D6/D4/NS5/KK and D5/KK. Beause they do not admit aregular near-horizon limit with AdS4 fator, they are not of interest to us here, and we do not onsiderthem.



6.4. THE BRANE PICTURE 85x0 x1 x2 x3 y1 y2 y3 y4 y5 y6D4 N N N N ND40 N N N N ND400 N N N N NNS5 N N N N N NNS50 N N N N N NNS500 N N N N N NNS5000 N N N N N ND8 N N N N N N N N NThe full solution of [24℄ pathes two asymptoti regions: a near-horizon AdS4�T6region and a at region at in�nity. Here we will onentrate on the near-horizon limitof the solution where the brane system above is replaed by uxes. After resaling ofthe oordinates, it an be written as:ds210 = ds2AdS4 + 6Xi=1(dyi)2; � = onst: ;Hy2y4y6 = Hy2y5y3 = Hy1y6y3 = Hy1y5y4 = a ;Fy3y4y5y6 = Fy1y2y5y6 = Fy1y2y3y4 = 32e��a ; F0 = 52e��a ; (6.13)
where a and e� are given in terms of the brane quanta in [24℄, and the SU(3)-strutureis given by: J = dy1 ^ dy2 + dy3 ^ dy4 + dy5 ^ dy6 ;
 = �idy1 + dy2� ^ �idy3 + dy4� ^ �idy5 + dy6� : (6.14)We an readily see that, in the language of setion 2.2.2, the present solution orre-sponds to setting F 02 = 0, f = 0 and m = a with a soure term:jO6 = �2a25 e��Re
 : (6.15)So while the original brane on�guration has disappeared in the near-horizon limit, wehave to introdue a set of smeared orientifold soures in order to satisfy the tadpoleonditions: x0 x1 x2 x3 y1 y2 y3 y4 y5 y6O6 N N N N N N NO60 N N N N N N NO600 N N N N N N NO6000 N N N N N N N



86 6. ADS4 SOLUTIONS ON NILMANIFOLDSIndeed, as follows from eq. (2.30), in this limit, all torsion lasses of the internalmanifold vanish, as they should for T6. Moreover, this is exatly the solution of setion6.1.D3/D5/D7/NS5/KKBy applying a T-duality on the solution of the previous subsetion, we obtain thefollowing on�guration (we do not display the non-ompat diretions anymore, but letus keep in mind that they form domain walls):y1 y2 y3 y4 y5 y6D7 N N N N ND3 ND50 N N ND500 N N NNS5 N N NNS50 N N NKK00 � N N NKK000 � N N NWithout loss of generality, we have taken the T-duality to be along y1. Let us onlydesribe the salient features of this model.First of all, an analysis of the �-symmetry onditions of the D-branes reveals thatfor this on�guration the internal spinors satisfy�(2)+ = �e�i�1�(1)� ; (6.16)where e�i� is a phase desribing the supersymmetry preserved by the domain wall in fourdimensions, or, after taking the near-horizon limit, the phase of the superpotential Wof AdS. So we see that we have stati SU(2)-struture, whih is also the only possibilityfor type IIB as mentioned in setion 2.2.2 and explained in more detail in appendix C.Seondly, when one goes to the near-horizon limit, the e�et of the KK-monopolesis to twist the S1 of diretion 1 over the T4 orresponding to the diretions (3; 4; 5; 6),whih is indiated with a bullet in the tables. This means that we �nd for the metri,after resaling, ds210 = ds2AdS4 + 6Xi=1(ei)2 ; (6.17)with e1 := dy1 + a(y6dy3 + y5dy4) ;ei := dyi ; i = 2; : : : ; 6 ; (6.18)



6.4. THE BRANE PICTURE 87where a is the same parameter as in the T-dual. This means we havede1 = a(e63 + e54) ;dei = 0 ; (6.19)whih, in fat, is equivalent to nilmanifold 5.1. So we see that just like the other branesthe KK-monopoles disappear in the near-horizon limit and are replaed by ux, in thisase the geometri ux a.It turns out that in addition to the uxes we have O5/O7 orientifold planes alongthe following diretions:x0 x1 x2 x3 y1 y2 y3 y4 y5 y6O5 N N N N N NO50 N N N N N NO7 N N N N N N N NO70 N N N N N N N NAfter appropriate resaling and relabeling, this solution orresponds to the solution onthe nilmanifold 5.1 of setion 6.3.D2/D6/KKStarting from the type IIB on�guration above, there is exatly one possibility left fora T-duality, i.e. along y2. This is beause T-dualizing along a diretion perpendiularto a KK-monopole would result in a non-geometri bakground.y1 y2 y3 y4 y5 y6D6 N N N ND2D60 N N N ND600 N N N NKK N � N NKK0 N � N NKK00 � N N NKK000 � N N NAn analysis of the �-symmetry onditions of the branes reveals that this model hasagain strit SU(3)-struture. The four KK-monopoles result in a near-horizon geometryfor whih the T2 along the diretions (1; 2) is twisted over the base T4 along (3; 4; 5; 6).The metri reads ds210 = ds2AdS4 + 6Xi=1(ei)2 ; (6.20)



88 6. ADS4 SOLUTIONS ON NILMANIFOLDSwhere we have de�ned e1 := dy1 + a(y6dy3 + y5dy4) ;e2 := dy2 + a(y5dy3 � y6dy4) ;ei := dyi ; i = 3; : : : ; 6 ; (6.21)suh that de1 = a(e63 + e54) ;de2 = a(e53 + e46) ;dei := dyi ; i = 3; : : : ; 6 : (6.22)After resaling and relabeling we �nd the solution of setion 6.2 for m = 0. For m 6= 0the latter solution does not have a dual brane piture.Finally note that in order to satisfy the tadpole onditions we have again O6-planesalong the following diretions:x0 x1 x2 x3 y1 y2 y3 y4 y5 y6O6 N N N N N N NO60 N N N N N N NO600 N N N N N N NO6000 N N N N N N NThis ompletes the overview of brane on�gurations of table 6.1.



Chapter 7Kaluza-Klein redutionIn this hapter, we will expliitly perform a Kaluza-Klein redution desribed in setion3.1 on the torus solution of setion 6.1 and the Iwasawa solution with m = 0 of setion6.2 and alulate the mass spetrum of the moduli �elds around the supersymmetrivauum. In the next hapter we will again derive the mass spetrum using e�etivesupergravity tehniques and ompare the results. If we �nd agreement, this providesan important onsisteny hek between the to approahes.7.1 Expansion of the �eldsFor the Kaluza-Klein redution on T6 and the Iwasawa manifold, we will expand theutuations of the various �elds in the following basis:ÆB(x; y) =bi;~n(x)Y(2)i;~n (y) + bi;~n1 (x)Y(1)i;~n (y) + b~n2 (x)Y(0)~n (y) ; (7.1a)Æ�(x; y) =Æ�~n(x)Y(0)~n (y) ; (7.1b)ÆC(1)(x; y) =(1)i;~n(x)Y(1)i;~n (y) + (1)~n1 (x)Y(0)~n (y) ; (7.1)ÆC(3)(x; y) =(3)i;~n(x)Y(3)i;~n (y) + (3)i;~n1 (x)Y(2)i;~n (y) + (3)i;~n2 (x)Y(1)i;~n (y)+ (3)~n3 (x)Y(0)~n (y) ; (7.1d)Æg(x; y) =hi;~n(x)X (2)i;~n (y) + hi;~n1 (x)Y(1)i;~n (y) + h~n2 (x)Y(0)~n (y) : (7.1e)The funtions Y(l)i;~n(y) are the l-eigenforms of the Laplaian operator and are given byY(l)i;~n(y) = Y (l)i ei~p�~y ; ~p = ~nLint ; ~n 2 Z6 ; (7.2)where the Y (l)i form a basis of harmoni l-forms on T6. X (2) are symmetri two-tensorsX (2)i;~n (y) = X(2)i ei~p�~y ; ~p = ~nLint ; ~n 2 Z6 ; (7.3)



90 7. KALUZA-KLEIN REDUCTIONSine we will restrit our analysis to the zero modes (~p = 0), we only keep Y(l)i;~n=0(y) =Y (l)i and X (2)i;~n=0(y) = X(2)i in the expansions above and derivatives only at on theexternal �elds. For the Iwasawa manifold, we will use for the expansion forms Y (l)i left-invariant forms, whih will not neessarily be all harmoni. When exterior derivativesat on these forms terms will be generated of the order of the geometri uxes.7.2 Kaluza-Klein expansion on AdS4�T6On the torus we an just hoose ei = dyi, where yi are the internal oordinates, dueto eq. (6.1). The harmoni l-forms in whih we will expand the �elds aording toeq. (7.1) are thus of the form em1 :::ml = dym1 ^ � � � dyml , l = 1; : : : ; 6. Sine there is anorientifold projetion present in our ompati�ation, suitable expansion forms must beeven or odd under all the orientifold involutions. The set of even/odd forms of di�erentdegree under all the orientifold involutions given in eq. (6.4) istype basis nameodd 2-form e12; e34; e56 Y (2�)ieven 3-form e135; e146; e236; e245 Y (3+)iodd 3-form e136; e145; e235; e246 Y (3�)ieven 4-form e1234; e1256; e3456 Y (4+)ieven symmetri 2-tensor e1 
 e1; e2 
 e2; : : : ; e6 
 e6 X(2)iTable 7.1: List of invariant forms for the torus solutionIn partiular, we �nd that there are no one- and �ve-forms nor even two-form. Allexternal �elds are even under the orientifold involutions (the orientifolds span the wholefour-dimensional spae-time). We �nd from eqs. (2.40a) and (2.40b) that �; g; F0; C3are even, and B;C1 are odd. The allowed terms of the expansion (7.1) are thereforeÆB(x; y) = bi(x)Y (2�)i ; (7.4a)Æ�(x; y) = �(x) ; (7.4b)ÆC(3)(x; y) = (3)i(x)Y (3+)i + (3)3 (x) ; (7.4)Æg(x; y) = hi(x)X(2)i + h2(x) : (7.4d)From eq. (3.21) we �nd the linear utuations of the �eld strengths (remember for thetorus that F̂2 = 0) ÆF2 = �mÆB ; (7.5a)ÆF4 = dÆC3 ; (7.5b)



7.2. KALUZA-KLEIN EXPANSION ON ADS4�T6 91and ÆH = dÆB : (7.6)We want to derive the mass matrix for the four-dimensional �elds. To ahieve this, weompute the equations of motion for the four-dimensional utuations, whih have tobe of the form (3.6a) for the salar �elds bi(x);�(x); (3)i(x) and hi(x), whereas for theexternal metri utuation h2(x) it will be of the form (3.6). We thus �rst omputethe variation of all the equations of motion (B.7a),(B.7b),(B.9b) and (B.10) to �rstorder. In these equations we plug in the bakground values and the expansion of the�elds (7.4), whih gives us the equations of motion for the utuations.The alulation is straightforward but rather lengthy. The variation of the Hodgestar ? ompliates the alulation, sine the metri appears in the Hodge star 1. Wean derive an expression for its variation(Æ?)Fl = �12gMNÆgMN� ? Fl � ?[Æg � Fl℄ ; (7.7)where [Æg � Fl℄M1:::Ml = l � Æg[M1jAgABFBjM2:::Ml℄ : (7.8)Let us look at one of the equations in more detail to explain the important steps in thealulation. The variation of the equation of motion for H, eq. (B.10), takes the form0 = d ? dÆB � (dÆ�) ^ ?Ĥ + d h(Æ?)Ĥi+ F̂4 ^ ÆF4 � (?F̂4) ^ ÆF2 �m ? ÆF2 ; (7.9)where we used the freedom to set e��̂ = 1 in the torus solution, eq. (B.1) to removethe redundant RR-�elds oming from the demorati formulation and that F̂2 = 0,d(?Ĥ) = 0 and  n ^ �(j)j8 = 0 in the torus solution. Terms like the seond one ineq. (7.9) vanish sine ?Ĥ = vol4 ^ ?6Ĥ and dÆ�(x) ^ vol4 = 0. Remember that we areonly onsidering the zero internal modes and hene that the torus derivatives only aton the external �elds. For the third term in eq. (7.9) we use eq. (7.7). Plugging theutuations (7.5) in eq. (7.9) and applying a Hodge star operation, we arrive at thefollowing equation for the salars bi, whih has [external/internal℄ index struture [0,2℄:0 = �biY (2�)i � ?(F̂4 ^ d(3)3 )�m ? (?F̂4 ^ biY (2�)i ) +m2biY (2�)i : (7.10)Here we used, following the onventions summarized in appendix A 2,?4d ?4 d = �� : (7.11)1See appendix A for our onventions for the Hodge star. Further note that in this hapter, ? denotesthe ten-dimensional Hodge star, whereas the four- and six-dimensional Hodge star are indiated as ?4and ?6, respetively.2Note that dybi(x) = ?4d ?4 bi(x) = 0 for bi(x) an external salar �eld.



92 7. KALUZA-KLEIN REDUCTIONSimilarly, we derive from the variation of the equation of motion of F4 a [0,3℄-equationand a [1,6℄-equation, respetively,0 = �(3)iY (3+)i � ?(Ĥ ^ d(3)3 ) ; (7.12a)0 = d ? d(3)3 + dbi ^ Y (2�)i ^ F̂4 + Ĥ ^ d(3)i ^ Y (3+)i ; (7.12b)and from the variation of the equation of motion of F2 a [4; 5℄- and [3; 6℄-equation0 = Ĥ ^ ? hhiX(2)i � F̂4i ; (7.13a)0 = Ĥ ^ ?(d(3)i ^ Y (3+)i ) : (7.13b)Note that the equations for the RR-�elds and H do not mix with the dilaton andthe metri. The equations (7.13) are automatially satis�ed using the orientifold pro-jetion. Indeed, the right-hand sides should have ontained an even internal �ve-formrespetively six-form under all orientifold involutions, whih do not exists, so they mustvanish.To solve the eqs. (7.12), we integrate eq. (7.12b) and put the integration onstantto zero (this would orrespond to hanging the bakground value of f). Taking theHodge star of the integrated equation we get an expression for d(3)3 that we an putin eq. (7.12a) and also in eq. (7.10). This proedure orresponds to dualizing (3)3 , asexplained in [106, 55℄. Indeed, one may wonder why the three-form part (3)3 of ÆC(3)appears in the equations of motion for the salars but is easily integrated out. Thereason is that we de�ned d(3)3 to desribe the variation of the external part of ÆF4. Bymeans of the duality (B.1), F6 = e 12� ? F4 ; (7.14)we an equivalently desribe the external part of F4 by the internal part of F6. Thevariation of eq. (7.14) readsÆF6;int = 12e 12�f (Æg�� � Ægmm � Æ�) ^ vol6 + e 12� ? d(3)3 : (7.15)If we now plug in the general variation of the equation of motion of F4,e 12� ?4 d(3)3 ^ vol6 =+ 12e 12�f (Æg�� � Ægmm � Æ�) ^ vol6+ (3)iĤ ^ Y (3+)i � bi ^ Y (2�)i ^ F̂4 + Æf ; (7.16)we �nd ÆF6;int = (3)iĤ ^ Y (3+)i � bi ^ Y (2�)i ^ F̂4 ; (7.17)whih exatly orresponds to the part of ÆF6 in eq. (3.21) that is �rst order in theutuations.



7.2. KALUZA-KLEIN EXPANSION ON ADS4�T6 93We are now ready to put in the expansion forms given in table 7.1 and solve the equa-tions for the utuations of the RR-�elds and H. To display the results it is onvenientto make an appropriate hoie of the expansion forms as followsY (3+)0 = Im
 ; (7.18a)Y (3+)i ; i = 1; 2; 3 : 3 real (2,1)+(1,2) forms ; (7.18b)and the odd two-formsY (2�)0 = J ; (7.19a)Y (2�)i ; i = 1; 2 : 2 primitive real 2-forms ; (7.19b)where a primitive two-form is de�ned in (C.31). As explained in setion 3.1, we displaythe result for the eigenvalues of the mass-matrix ~M2 =M2 + 2=3�:mass eigenmode mass (in units m2=25)bi; i = 1; 2 10i; i = 1; 2; 3 0b0 � 4(3)0 103b0 + (3)0 88We now ome to the dilaton and the Einstein equation. Let us �rst look at thedilaton equation (B.7a). The triky part is the variation of the soure term,?h	n; ji ; (7.20)where, aording to eq. (B.6), 	7 = �vol4 ^ e��Im
. The variation of Im
 an bedone by looking at the variation of the vielbeins,
nmp = eanebmep
ab ; (7.21)where the underlined indies are at indies. We an use the following relationÆean = 12Ægnmgmpeap ; (7.22)and we obtain ÆIm
 = 12[Æg � Im
℄ : (7.23)The rest of the alulation is straightforward and we arrive at0 = (� + 67m225 )Æ� + 7m225 6Xi=1 hi : (7.24)



94 7. KALUZA-KLEIN REDUCTIONTo ompute the variation of the internal Einstein equation around the vauum, we usethe same methods as desribed above resulting inÆRmn = 12�LÆgmn +r(mrP Ægn)P � 12rmrnÆgQQ ; (7.25)where �L is the Lihnerowiz operator de�ned in eq. (3.7), and all ovariant derivativesand ontrations are with respet to the bakground metri. For the at torus vauumthis is easy evaluated to give ÆRmn = 12�Ægmn ; (7.26)and the variation of the internal Einstein equation reads0 = �hi + 8m225 hi + 7m250 giiÆ�+ m250 gii 6Xj=1 hj + 2m25 giihi�(�1)i : (7.27)The result of diagonalizing the mass matrix ismass eigenmode mass (in units m2=25)�hz1�z1 + hz2�z2 = �h1 � h2 + h3 + h4 18�hz1�z1 + hz3�z3 = �h1 � h2 + h5 + h6 18�3 Æ� + 7P hi 187 Æ� +Phi 70Rehz1z1 = �h1 + h2 �2Rehz2z2 = �h3 + h4 �2Rehz3z3 = �h5 + h6 �2The external ontribution of the variation of the metri, h��(x) in eq. (7.4d), isexpeted to desribe a massless graviton . To verify this, we alulate the variation ofthe external Einstein equation. This results in12�Lh�� +r(�r�h�)� � 12r(�r�)hP P + 3m225 h�� � 3m220 g��X hi � 21m2100 g��Æ� = 0 :(7.28)At this point we have to take into aount that so far we worked in the ten-dimensionalEinstein frame. From eq. (3.32) we �nd that the onversion to the four-dimensionalEinstein frame is as follows gE�� = pg6 g�� ; (7.29)where the onstant fator  =M�2P ��210 Vs does not matter here, so that�1hE�� = pg6 h�� + 12pg6 g��Xi hi : (7.30)Plugging this into eq. (7.28) and using eq. (7.27) we �nd for hE�� exatly equation(4.28) with M2 = 0 so that hE�� indeed desribes a massless graviton.



7.3. KALUZA-KLEIN EXPANSION ON THE IWASAWA MANIFOLD 957.3 Kaluza-Klein expansion on the Iwasawa manifoldThe bakground for the Iwasawa manifold with m = 0, around whih we expandthe �elds, is given in setion 6.2. In ontrast to the torus, some elements of a basisof left-invariant forms are no longer losed. We thus expand the �elds not only inharmoni forms. This ompliates the Kaluza-Klein omputation sine the derivativesnot only at on the external �elds but also on the internal zero-modes Y (l) of the left-invariant basis. When exterior derivatives at on these non-harmoni forms, terms willbe generated of the order of the geometri uxes.The basis for these left-invariant forms that are even or odd under the orientifoldinvolution turns out to be the same as for the torus, but now in the left-invariant basisappropriate to the Iwasawa manifold. This basis is given in table 7.1. Again �; g; F0; C3are even, while B;C1 are odd, resulting in the same expansion (7.4) as for the torus.From eq. (3.21) we get for the linear utuations of the �eld strengthsÆF2 = 0 ; (7.31a)ÆF4 = dÆC3 � ÆB ^ F̂2 : (7.31b)Expanding the equation of motion for H around the Iwasawa solution, we obtain0 =�bi Y (2�)i + bi �?6d ?6 dY (2�)i �� (3)i ?6 (?6dY 3+i ^ F̂2)+ bi ?6 h?6 �Y (2�)i ^ F̂2� ^ F̂2i+ f(3)i ?6 dY 3+i � bif ?6 �Y (2�)i ^ F̂2� ; (7.32)while the equation of motion for F4 splits in [1; 6℄- and [4; 3℄-index struture0 = d ?4 d(3)3 + 12fd (Æg�� � Ægmm � Æ�) ; (7.33a)0 = �(3)i Y (3+)i + (3)i �?6d ?6 dY (3+)i �+ fbi ?6 dY (2�)i � bi ?6 d ?6 �Y (2�)i ^ F̂2� :(7.33b)The equation for (3)3 mixes this time with the dilaton and the metri. Just as in thetorus ase, we integrate eq. (7.33a), put the integration onstant to zero and plug theresult for d(3)3 into the equations for the dilaton and the metri whih we derive below.We proeed by hoosing the expansion forms. We take the same three-forms as ineq. (7.18), while for the two-forms we hooseY (2�)0 = �2e56 ; (7.34a)Y (2�)1 = e12 + e34 ; (7.34b)Y (2�)2 = e12 � e34 : (7.34)As already mentioned, this time Y (3+)0 and Y (2�)0 are not losed. De�ning mT suhthat � = 25e�mT (this is of ourse the Romans mass of the T-dual torus solution), weget the following masses:



96 7. KALUZA-KLEIN REDUCTIONmass eigenmode mass (in units m2T=25)i; i = 1; 2; 3 0b0 + b1 10b2 108(3)0 + 5b0 + 3b1 10(3)0 � b0 + 2b1 88Due to T-duality the mass eigenvalues are the same as for the torus solution.The equation for the variation of the dilaton around the bakground readsr2Æ�� 99m2T100 Æ�� 3m2T100 4Xi=1 hi + 9m2T20 6Xi=5 hi � 9m2T100 Æg�� � f2 d(3)3 � vol4 : (7.35)We now plug in the result of integrating eq. (7.33a) and arrive at the following equationfor the variation of the dilaton0 = (� + 27m2T25 )Æ� � 9m2T25 6Xi=5 hi + 3m2T25 4Xi=1 hi : (7.36)For the Einstein equation, we use again the variation of the Rii tensor givenin eq. (7.25). This time, however, we have non-trivial spin onnetions so that thealulation is not as simple as in the at torus ase. By expliitly deriving the spinonnetions one an show that the last two terms in eq. (7.25) vanish, whereas theLihnerowitz operator (3.7) gets non-trivial ontributions. The �nal result for thevariation of the Einstein equation around the vauum reads0 = �hi + 49m2T50 hi + 53m2T50 hi�(�1)i � 11m2T50 4Xj=1 hj � 33m2T50 Æ� for i = 5; 6 ;(7.37a)and, for i = 1; : : : ; 4;0 = �hi + 8m2T25 hi + 2m2T5 hi�(�1)i � 3m2T10 6Xj=5 hj + m2T10 4Xj=1 hj + 3m2T10 Æ� :(7.37b)Diagonalizing the mass matrix we �nd the following eigenmodes with orrespondingmasses: mass eigenmode mass (in units m2T =25)�hz1�z1 + hz2�z2 = �h1 � h2 + h3 + h4 1811hz1�z1 + 5hz3�z3 = 11(h1 + h2) + 5(h5 + h6) 185Æ�� 3(h1 + h2) 183Æ�� 3(h5 + h6) + (h1 + h2 + h3 + h4) 70Rehz1z1 = �h1 + h2 �2Rehz2z2 = �h3 + h4 �2Rehz3z3 = �h5 + h6 �2



7.3. KALUZA-KLEIN EXPANSION ON THE IWASAWA MANIFOLD 97One again, we �nd the same masses as in the torus example.Let us summarize the results of the Kaluza-Klein redution on the six-torus and theIwasawa manifold. In both ases we obtain the following mass eigenvalues (in unitsm2T =25) for the salar �eldsComplex struture �2, �2, �2K�ahler & dilaton 70, 18, 18, 18Three axions of ÆC3 0, 0, 0ÆB & one more axion 88, 10, 10, 10That we obtain exatly the same mass spetrum for both manifolds is the expetedresult, sine the two solutions are related by T-duality. An interesting observation isthat all three axions orrespond to massless moduli, a feature that is also disussed in[72℄. It is argued there that, when one introdues D6-branes, these axions an provideSt�ukelberg masses to some of the U(1) gauge �elds on the D-brane. In any ase, wewill see later that most of the oset examples we will study in the third part of thisthesis do have all moduli stabilized. We also notie that some masses are tahyoni,whih is allowed beause they are still above the Breitenlohner-Freedman bound (3.11).





Chapter 8E�etive supergravityIn hapter 7 we derived the masses of the salar �elds by means of an expliit Kaluza-Klein redution for the torus and the Iwasawa solution. The widely-used approah toderive the four-dimensional e�etive ation is by using N = 1 e�etive supergravitytehniques based on the superpotential and K�ahler potential. We reviewed the super-gravity tehniques in setion 3.2. In this setion we will use this approah and againderive the masses of the salar �elds around the supersymmetri solution. Compar-ing these results with the results obtained with the diret Kaluza-Klein redution weperform an important ross-hek for the expressions for the superpotential and theK�ahler potential to handle geometri uxes.8.1 Type IIA on T6Given the orientifold projetion (6.4) we hoose the following basis of odd two-formsand even three-forms Y (2�)i : e12; e34; e56 ;Y (3+)i : �e135; e146; e236; e245 ; (8.1)as expansion forms in eq. (3.37) suh thatJ = t1e12 + t2e34 + t3e56 ;e�Im
 + iÆC3 = e��̂(�z1e135 + z2e146 + z3e236 + z4e245) ; (8.2)where we took out the bakground e��̂ from the de�nition of zi for further onveniene.Using the expression (3.34) and the bakground uxes in eq. (6.2) to derive thesuperpotential, we immediately �ndWE;Torus = e�i�4�210Vsm ��t1t2t3 + 35(t1 + t2 + t3)� 25(z1 + z2 + z3 + z4)� ; (8.3)



100 8. EFFECTIVE SUPERGRAVITYwhere Vs is a standard volume Vs = R e1:::6, whih does not depend on the moduli.Moreover, with eq. (3.35) and the Hithin proedure explained in appendix C, theK�ahler potential reads:K = Kk +K + 3 ln(8�210M2PV �1s e4�̂=3) ; (8.4a)where Kk = � ln 3Yi=1(ti + �ti)! ; (8.4b)is the K�ahler potential in the K�ahler-moduli setor andK = � ln 4 4Yi=1 �zi + �zi�! ; (8.4)is the K�ahler potential in the omplex struture moduli setor.We are now ready to alulate the mass spetrum of the salar �elds around thesupersymmetri solution. Using the expressions for the superpotential (8.3) and theK�ahler potential (8.4), it is straightforward to alulate the four-dimensional Einstein-frame ation (3.25). From this ation we ompute the equation of motion for the salar�elds ��k +M�2P (K̂�1M̂)ki�i = 0 ; (8.5)where M̂ij = 12 �2V��i��j jbakground is the mass matrix and K̂ij is the K�ahler metri in realoordinates in the bakground. Therefore, to ompare the results for the masses inthe analysis with the superpotential and the K�ahler potential with the results from theKaluza-Klein redution we need to diagonalize the matrixM�2P K̂�1M̂ . Remember thatthe results from the Kaluza-Klein redution were in the ten-dimensional Einstein frame,whereas using the e�etive supergravity approah of this setion we get the results infour-dimensional Einstein frame suh that we have to use eq. (3.33) to ompare theresults of both approahes. Upon noting that in the Kaluza-Klein analysis we set thebakground values for the warp fator and the dilaton equal to zero and Vol = Vs, we�nd exatly the same result for the mass spetrum as in setion 7.2.8.2 Type IIA on the Iwasawa manifoldFor onveniene we hoose this time the following expansion basis:Y (2�) : e12; e34;��2e56;Y (3+) : ��e135;��e146;��e236; �e245 : (8.6)



8.3. TYPE IIB ON NILMANIFOLD 5.1 101This implies that dY (3+)i = ��e1234 for all i = 1; : : : ; 4.We �nd the superpotentialWE;Iwasawa = �ie�i�4�210 mTVs �35 � 25 t3(z1 + z2 + z3 + z4) + 35(t1t3 + t2t3)� t1t2� ;(8.7)where Vs = R ��2e1:::6 is again a standard volume and mT = 52e��̂� the Romans massof the T-dual torus solution. We note here the following relationWE;Iwasawa = �it3WE;Torus(t3 ! 1t3 ) ; (8.8)whih follows from T-duality 1. The K�ahler potential for the Iwasawa manifold is thesame as in eq. (8.4).In the end, we �nd exatly the same masses as on the torus, as expeted from T-duality, and thus also the same masses as in the Kaluza-Klein approah for the Iwasawamanifold. Let us stress again that this provides an important onsisteny hek on theability of the superpotential/K�ahler potential approah to handle geometri uxes.If we now turn on m 6= 0 in the Iwasawa solution, we get extra terms in the super-potential that look exatly like the torus superpotential, so we �nd:WE;Iwasawa;m6=0 =WE;Iwasawa(mT ) +WE;Torus(m) : (8.9)The mass spetrum is the same upon replaing m2T ! m2 +m2T .8.3 Type IIB on nilmanifold 5.1For our analysis we will need expansion forms with the following behaviour under O5and O7-planes type under O5/O7 basis nameodd/even 1-form e5;��e6 Y (1�+)ieven/odd 2-form e14; e23 Y (2+�)iodd/odd 2-form e13;�e24 Y (2��)iodd/even 4-form �e1256; �e3456 Y (4�+)iand hoose the standard volume Vs = R �e123456.The superpotential is given by 2:WE;nil = �mTVsC4�210 �35 � 25�(z1 + z2 + w1 + w2) + 35�(t1 + t2)� t1t2� ; (8.10)1Note that in order to keep the form of the K�ahler potential, we transform the superpotential asW ! tW.2Here, it turns out to be onvenient to take out the bakground e��̂ from the de�nition of zi andwi, i.e., we expand as follows e��Im
2 + iÆC2 = zie��̂Y (2+�)i and �ie��2V ^ �V ^ Re
2 + iÆC4 =wie��̂Y (4�+)i .



102 8. EFFECTIVE SUPERGRAVITYwhere Vs = R �e123456 is the standard volume. The K�ahler potential reads:K =� ln (� + ��) 2Yi=1(ti + �ti)!� ln 4 2Yi=1(zi + �zi) 2Yi=1(wi + �wi)!+ 3 ln(8�10M2PV �1s e4�̂=3)� ln jCj2 : (8.11)We an eliminate the omplex salar C by performing a K�ahler transformation (3.31).Again, by T-duality, we expet the same mass spetrum as for the torus and theIwasawa manifold, whih indeed turns out to be the ase. This implies that the proposedexpressions for the omplex salars and the superpotential and K�ahler potential for thestati SU(2)-struture proposed in setion 3.2 yield sensible results.



Part IIIAppliation to Coset Spaes





SummaryThe seond lass of ompati�ation manifolds we want to onsider in this thesis are thesix-dimensional oset spaes whih we desribed in hapter 4. Examples of ompati-�ations on oset spaes in other ontexts have already appeared in [65, 78℄, whereaspartiular N = 1 AdS4 solutions on type IIA string theory appeared in [107, 69, 108℄.A systemati searh for type IIA solutions on oset spaes was performed reently in[34℄.The aim in this part of the thesis is to ompute the four-dimensional low-energye�etive theory for ompati�ations on oset spaes. We disussed the neessary pro-edure for this in hapter 3. After having established the onsisteny between thediret Kaluza-Klein redution and the e�etive supergravity tehniques for the exam-ple of nilmanifolds, we will rely in this part of the thesis on the supergravity tehniquesto derive the e�etive theory.In the �rst two hapters of this part, we will, following [34℄, disuss the geometry onthe di�erent oset spaes of table 4.1 and identify the oset spaes that allow to de�nea strit SU(3)-struture. Furthermore, we will review the N = 1 AdS4 solutions on theoset spaes and omment on a possible solution with non-onstant warp fator anddilaton.In the following hapter we then ome to the derivation of the four-dimensionale�etive ation for the oset spaes in question. In partiular, we will derive the super-potential and the K�ahler potential for the most general hoie of bakground uxes.As an appliation of the e�etive ation, we ompute the mass spetrum of the mod-uli �elds around the supersymmetri AdS4 solution (if the oset allows for a solution)and omment for two models on how to identify the number of supersymmetri solu-tions in a given bubble of the moduli spae. The subsequent hapter studies type IIBompati�ations with stati SU(2)-struture on the oset models. Most of these om-pati�ations turn out to be related by a T-duality to type IIA strit SU(3)-strutureompati�ations that we already studied. However, one model is new sine it is relatedby T-duality to a type IIA strit SU(3)-struture ompati�ation with non-geometriuxes.Finally, in hapter 13, we study the phenomenologial aspets of the ompati�a-tions on the oset models. As we disussed in hapter 5 there are in lassial type IIAstrong no-go theorems against slow-roll ination and de Sitter vaua. We will thus



106systematially analyse whether the oset ompati�ations are able to avoid the no-gotheorems. In fat, there are two oset ompati�ations that are not diretly ruledout by any known no-go theorem (one of them is the type IIB ompati�ation withnon-geometri T-dual). For these models a numerial analysis is neessary.As a general remark, we note that none of our models ontain light bulk gauge �eldsin the spetrum.In the following two tables we summarize some of the important results. Table8.1 summarizes type IIA strit SU(3)-struture ompati�ations, whereas table 8.2summarizes type IIB stati SU(2)-struture ompati�ations.Coset spae Moduli �elds AdS4 solution Unstabilized moduli Avoids no-goG2SU(3) 4 yes 0 noSp(2)S(U(2)�U(1)) 6 yes 0 noSU(3)U(1)�U(1) 8 yes 0 noSU(3)�U(1)SU(2) 8 yes 0 noSU(2)� SU(2) 14 yes 1 yesSU(2)2U(1) �U(1) 10 no - noSU(2)�U(1)3 14 no - noTable 8.1: Results for type IIA strit SU(3)-struture ompati�ations on oset models.Indiated are the number of moduli �elds, whether the ompati�ation allows anN = 1 AdS4 solution and if so, the number of unstabilized moduli in this solution.In addition indiated is whether the oset model avoids the no-go theorems againstination and de Sitter vaua.Coset spae Moduli �elds Type IIA T-dual Avoids no-goSU(3)�U(1)SU(2) 8 yes noSU(2)2U(1) �U(1) 10 yes noSU(2)� SU(2) 14 no yesSU(2)�U(1)3 14 yes noTable 8.2: Results for type IIB stati SU(2)-struture ompati�ations on oset mod-els. Indiated are the number of moduli �elds and whether the ompati�ation isrelated by T-duality to a type IIA strit SU(3)-struture ompati�ation of table 8.1.In addition indiated is whether the oset model avoids the no-go theorems againstination and de Sitter vaua.Note that the results of this part of the thesis are published in parts in [49, 96℄. Inpartiular, some of the results of hapter 11 an be found in [49℄, whereas the resultsof hapter 13 are published in [96℄.



Chapter 9Geometry of oset spaes thatadmit a strit SU(3)-strutureIn this hapter, we desribe the six-dimensional oset spaes based on semi-simple andU(1)-groups that are suitable for supersymmetri ompati�ations to four spae-timedimensions. We disussed in hapter 2 the neessary ondition for a six-dimensionalompat manifold to allow for a supersymmetri four-dimensional e�etive theory,namely that the struture group of the manifold is redued to SU(3) 1. As the au-thors of [34℄ showed, this ondition translates into the neessary requirement that thegroup H of a oset spae M = G=H should be ontained in SU(3). The list of allsix-dimensional oset spaes based on semi-simple and U(1)-groups of this type wasgiven in that paper and is summarized in table 4.1.To deide whether a oset spae satisfying the neessary ondition H � SU(3)atually admits a left-invariant strit SU(3)-struture we will proeed as follows: asexplained in setion 4.2, we speify the struture onstants by examining the orre-sponding Lie-algebras of G and H. Next we ompute the set of G-invariant formsusing ondition (4.23). With these forms, we an write down the most general ansatzfor J and 
 and hek whether it is possible to satisfy the onditions for a strit SU(3)-struture (2.6), to obtain a well de�ned Hithin funtional and whether the induedmetri an be hosen to be positive de�nite. The oset spaes satisfying these onditionsare summarized in table 9.1.In this and the next hapter, we will losely follow [34℄, where the authors presentedN = 1 supersymmetri AdS4 solutions on the oset spaes with left-invariant stritSU(3)-struture. Supersymmetri AdS4 solutions are possible on the �rst �ve osetspresented in table 9.1. However, the last two oset spaes in table 9.1 were not expliitlypointed out as possible andidates admitting a left-invariant SU(3)-struture, sine theydo not allow for a supersymmetri AdS4 solution.In the following we will assume that the algebra g of G is generated by the set of1We will disuss ompati�ations on oset models with stati SU(2)-struture in hapter 12.



108 9. COSET SPACES THAT ADMIT A STRICT SU(3)-STRUCTURECoset spae admit SU(3)-struture AdS4 solutionG2SU(3) yes yesSp(2)S(U(2)�U(1)) yes yesSU(3)U(1)�U(1) yes yesSU(3)�U(1)SU(2) yes yesSU(2)� SU(2) yes yesSU(2)2U(1) �U(1) yes noSU(2)�U(1)3 yes noTable 9.1: List of oset models with SU(3)-struture. Further indiated are the osetmodels that allow for an N = 1 AdS4 solution.generators EA, A = 1; : : : dim(G), where[EA; EB ℄ = fCABEC : (9.1)We hoose the generators suh that the EA with A = 1; : : : ; 6 orrespond to the Kiand the EA with A = 7 : : : ; 6 + dim(H), orrespond to the Ha (see also the disussionin setion 4.2).The oset G2SU(3)The struture onstants for the group G2 are given by [109, 78℄:f163 = f145 = f253 = f264 = 1p3 ;f736 = f745 = f853 = f846 = f956 = f934 = f1016 = f1052= f1151 = f1162 = f1241 = f1232 = f1331 = f1324 = 12 ;f1443 = f1456 = 12p3 ; f1421 = 1p3 ;f i+6j+6;k+6 = ~fijk ;
(9.2)

where E7; : : : ; E14 generate the su(3) subalgebra and ~fijk are the orresponding Gell-Mann struture onstants. The G-invariant forms satisfying ondition (4.23) are 2two-forms : fe12 � e34 + e56g ;three-forms : f� = e245 + e135 + e146 � e236; �̂ = �e235 � e246 + e145 � e136g ; (9.3)2We only display G-invariant one-, two-, and three-forms sine the G-invariant forms of higherdegree an be obtained by duality.



109and there are no G-invariant one-forms. With the struture onstants and eq. (4.4), itis straightforward to derive the Betti numbers of this manifold:b1 = b2 = b3 = 0 : (9.4)In the following we will impose an orientifold projetion. Note that there are onlytwo invariant three-forms, so that one has to be even and one odd under the orientifoldprojetion. The requirement that the struture onstant tensor (4.29) be even underthe orientifold projetion only allows one hoie: that �̂ is even and � is odd. Sinethere is only one odd three-form there is no room for a soure not proportional to Re
.The Sp(2)S(U(2)�U(1)) osetAs shown in [34℄, the maximal embedding of su(2)�su(1) in sp(2) leads to a osetspae that does not allow any G-invariant one- or three-form. We have to exlude thispossibility for an SU(3)-struture solution.The non-maximal embedding is given by embedding su(2)�su(1) into an so(4) sub-group of sp(2). The struture onstants are totally antisymmetri, and the non-zeroones are given by f541 = f532 = f613 = f642 = 12 ; f756 = f1089 = �1 ;f721 = f743 = f814 = f832 = f913 = f924 = f1034 = f1021 = 12 : (9.5)This spae is topologially equivalent to C P3 and an also be viewed as the twistorspae Tw(S4) [51℄.The G-invariant forms are spanned bytwo-forms : fe12 + e34; e56g ;three-forms : f� = e245 � e135 � e146 � e236; �̂ = e235 + e246 + e145 � e136g ; (9.6)and there are no G-invariant one-forms. Again, the soure (if present) must be propor-tional to Re
.The Betti numbers of this oset spae areb1 = 0 ; b2 = 1 ; b3 = 0 : (9.7)



110 9. COSET SPACES THAT ADMIT A STRICT SU(3)-STRUCTUREThe SU(3)U(1)�U(1) osetUsing the permutation (12456738) of the Gell-Mann struture onstants ~fijk, the stru-ture onstants of SU(3) are given byf154 = f136 = f246 = f235 = f347 = f576 = 12 ;f127 = 1 ; f348 = f568 = p32 ; all yli: (9.8)The U(1)�U(1) is then generated by E7 and E8. This spae is also known as the agmanifold F(1; 2 : 3) or the twistor spae Tw(C P2) [51℄.This time, the G-invariant two- and three-forms are given bytwo-forms : fe12; e34; e56g ;three-forms : f� = e245 + e135 + e146 � e236; �̂ = e235 + e136 + e246 � e145g ; (9.9)respetively. The ondition (4.23) exludes the existene of G-invariant one-forms.With the given three-forms, there is no possibility for a soure (if present) not propor-tional to Re
.The Betti numbers of SU(3)U(1)�U(1) are easily alulated and readb1 = 0 ; b2 = 2 ; b3 = 0 : (9.10)The SU(3)�U(1)SU(2) osetThe most general ase orresponds to takingEi = Gi+3; i = 1; : : : ; 5; E6 =M ;E7 = G1; E8 = G2; E9 = G3 ; (9.11)where the Gi's are the Gell-Mann matries generating su(3). M generates a u(1)and the su(2) subalgebra is generated by E7; E8 and E9. It follows that the SU(2)subgroup is embedded entirely inside the SU(3), so that the total spae is given bySU(3)SU(2) �U(1) ' S5 � S1.We �nd the following yli struture onstantsf789 = 1; f714 = f732 = f813 = f824 = f912 = f943 = 1=2 ;f512 = f534 = p32 ; all yli : (9.12)This time, the oset spae allows for G-invariant one-forms given byone-forms : fe5; e6g ; (9.13)



111and the following two- and three-forms, respetively,two-forms : fe12 + e34; e13 � e24; e14 + e23; e56g ;three-forms : fe145 + e235; e135 � e245; e126 + e346;e146 + e236; e136 � e246; e125 + e345g ; (9.14)The Betti numbers of this oset areb1 = 1 ; b2 = 0 ; b3 = 0 : (9.15)The SU(2)� SU(2) osetEven though SU(2) � SU(2) is not a oset spae, it will be onvenient to heneforthrefer to it as a oset spae; it is a trivial oset spae. The struture onstants in thisase are f123 = f456 = 1 ; yli : (9.16)On SU(2) � SU(2) all the left-invariant forms of di�erent degree are trivially G-invariant. The Betti numbers of this oset spae areb1 = 0 ; b2 = 0 ; b3 = 2 : (9.17)The SU(2)2U(1) �U(1) osetIt was shown in [34℄ that if the U(1) fator does not sit ompletely in the SU(2)2,the resulting oset is equivalent (with its SU(3)-struture) to SU(2) � SU(2), so weexlude this possibility here, as the above notation already suggests. The resultingoset spae in then equivalent to T1;1� U(1) [110℄. In this ase one an hoose thefollowing generatorsEi = Li ; i = 1; 2; 3 ; Ei+3 = L0i ; i = 1; 2; E6 =M ;E7 = L03 � aL3 ; (9.18)where we denote the generators of the two su(2) algebras as fLig and fL0ig and Mgenerates a u(1) and a 2 R. The struture onstants then readf123 = f745 = 1; yli;f345 = f217 = f172 = a: (9.19)As a matter of fat, it turns out that only for a = 1 there exists a well de�ned SU(3)-struture. For another hoie of a, the Hithin funtional turns out to be imaginary.



112 9. COSET SPACES THAT ADMIT A STRICT SU(3)-STRUCTUREThe G-invariant forms on SU(2)2U(1) �U(1) are then given byone-forms : fe3; e6g ;two-forms : fe12; e36; e45; e25 � e14; e15 + e24g ;three-forms : fe123; e126; e345; e456; e235 � e134;e135 + e234; e256 � e146; e156 + e246g ; (9.20)
The Betti numbers of this oset readb1 = 1 ; b2 = 1 ; b3 = 2 : (9.21)The SU(2) �U(1)3 osetThis spae is again a trivial oset spae. The struture onstants in this ase aref123 = 1 ; yli : (9.22)All the forms are G-invariant. The Betti numbers of this oset areb1 = 3 ; b2 = 3 ; b3 = 2 : (9.23)The other oset spaesLet us shortly mention why there is no well-de�ned strit SU(3)-struture possible onthe other oset models of table 4.1. For the expliit struture onstants of the modelssee [34℄.For the oset model SU(3)�U(1)2SU(2)�U(1) , it turns out that with the set of G-invariant three-forms it is not possible to de�ne Im
 suh that the Hithin funtional is not vanishing,exluding this model for our analysis.Similar for the oset models SU(2)2�U(1)2U(1)2 and SU(2)�U(1)4U(1) . For these models, theHithin funtional turns out to be imaginary.The oset spaes SU(2)3SU(2) (where the SU(2) is embedded in the last two SU(2) fators)and the oset spae SU(2)3�U(1)SU(2)�U(1) only allow for G-invariant two-forms whih an notsatisfy the normalisation ondition (2.6b).The last two possibilities in table 4.1 are SU(2)3SU(2) (where the SU(2) is diagonallyembedded in SU(2)3) and SU(3)�SU(2)2SU(3) . These two possibilities are shown in [34℄ to beequivalent to the SU(2)�SU(2) model suh that we will also exlude these models fromour analysis.



Chapter 10Type IIA AdS4 N = 1 solutionsWe desribed in hapter 9 the six-dimensional oset spaes that allow to de�ne a left-invariant strit SU(3)-struture. For some of these oset spaes one an atually solvethe onditions for an AdS4 N = 1 solution desribed in setion 2.2.2. These solutionswere systematially analyzed in [34℄ and also inorporate some solutions that werealready known [65, 69, 108, 51℄. In this setion we review the oset solutions listedin [34℄.In the subsequent hapter 11, we will derive the four-dimensional e�etive theoryof ompati�ations on the oset models analyzed in hapter 9. As an interestingappliation of this e�etive theory we will ompute for eah of the supersymmetri AdS4solutions of this hapter the mass spetrum of the salars around the supersymmetrisolution. As we will see, in all models exept SU(2)� SU(2), all moduli are stabilized.As explained in setion 2.2.2, the only non-vanishing torsion lasses for a super-symmetri AdS4 solution are W�1 and W�2 . With the given struture onstants andeq. (4.13a), one derives dJ and d
, where one assume the most general ansatz for Jand 
 ompatible with the set of G-invariant forms. If eq. (2.29) an be satis�ed, weread o� the torsion lasses W�1 and W�2 . The Bianhi identity (2.31) determines ifthere is a soure to be present for a solution. It then remains to hek whether themetri is positive de�nite.10.1 The G2SU(3) solutionWith the given set of G-invariant forms (9.3), the most general ansatz for J and 
 isJ = a(e12 � e34 + e56) ;
 = d �(e245 + e146 + e135 � e236) + i(e145 � e246 � e235 � e136)� ; (10.1)with a, the overall sale, the only free parameter. The onditions for a SU(3)-struture(2.6), metri positivity and the supersymmetry onditions (2.29) and (2.31) are solved



114 10. TYPE IIA ADS4 N = 1 SOLUTIONSfor a > 0 ; metri positivity ;d2 = a3; normalization of 
 ;1 := �3i2W�1 = �23e�f = �p3ad ;W�2 = 0 ;e2�m2 � � = 51221 : (10.2)
Sine the seond torsion lass is vanishing, the only possibility for this oset is thenearly-K�ahler geometry.With the help of eq. (2.27) we now easily obtain the bakground uxes in terms ofthe geometri data (10.2). It will be onvenient to isolate the sale a and introdue theredued ux parameters~m = a1=2e�m; ~f = a1=2e�f ; ~� = a� : ~1 = a1=21 : (10.3)In terms of these rede�nitions the bakground uxes and the soure take the formH = 2 ~m5 a(e245 + e135 + e146 � e236) ;e�F2 = a1=22p3 �e12 � e34 + e56� ;e�F4 = a�1=2 ~fvol4 � 35 ~ma3=2 �e1234 � e1256 + e3456� ;e�j6 = �25a1=2~�(e245 + e135 + e146 � e236) : (10.4)

As mentioned before, � > 0 orresponds to net orientifold harge. Solutions with� � 0 | i.e. with net D-brane harge | are possible, but in that ase we still assumethat smeared orientifolds are present, whih then should be ompensated by introduingenough smeared D-branes. It an be easily read o� from j6 that the orientifolds arealong the diretions (1; 3; 6); (2; 4; 6); (2; 3; 5) and (1; 4; 5), leading to four orientifoldinvolutions (see also the disussion in appendix D)O6 : e2 ! �e2 ; e4 ! �e4 ; e5 ! �e5 ;O6 : e1 ! �e1 ; e3 ! �e3 ; e5 ! �e5 ;O6 : e1 ! �e1 ; e4 ! �e4 ; e6 ! �e6 ;O6 : e2 ! �e2 ; e3 ! �e3 ; e6 ! �e6 : (10.5)One easily heks that all �elds and the SU(3)-struture transform as in (2.40) undereah of the orientifold involutions. Also, the struture onstant tensor (4.29) is even.



10.2. THE SP(2)S(U(2)�U(1)) SOLUTION 11510.2 The Sp(2)S(U(2)�U(1)) solutionThe most general ansatz for J and 
 with the given G-invariant forms (9.6) isJ = a(e12 + e34)� e56 ;
 = d �(e245 � e236 � e146 � e135) + i(e246 + e235 + e145 � e136)� ; (10.6)with a and  two free parameters. We ompute the following onditions for the geometrya > 0 ;  > 0; metri positivity ;d2 = a2; normalization of 
 ;1 := �3i2W�1 = �23e�f = 2a+ 2d ;W�2 = � 2i3d �a(a� )(e12 + e34) + 2(a� )e56� ;2 := �18 jW�2 j2 = � 23a2(a� )2 ;25(e2�m2 � �) = 2 + 1621 = 18a2 ��4a2 � 52 + 12a� :
(10.7)

The nearly-K�ahler limit orresponds to setting a = . The two parameters orre-spond to the overall sale a and a parameter � � =a that measures the deviation fromthe nearly-K�ahler limit 1.For the bakground uxes and soures, we �nd from eq. (2.27) in terms of theredued ux parameters (10.3):H = 2 ~m5 a�1=2(e245 � e135 � e146 � e236) ;e�F2 = a1=24 ��1=2 �(2� 3�)(e12 + e34) + (6� � 5�2)e56� ;e�F4 = a�1=2 ~fvol4 + 35a3=2 ~m �e1234 � �e1256 � �e3456� ;e�j6 = �25a1=2~��1=2(e245 � e135 � e146 � e236) : (10.8)
Let us stress that the parameters a and � are not moduli �elds sine they also appearin the expressions for the bakground uxes and are thus quantized.From the soure, we read o� the same orientifold involutions as in eq. (10.5) andhek that all �elds and the struture onstants transform as expeted.1Let us mention that this solution was also presented in [51℄ using an alternative desription interms of twistor bundles. The relation of the solution given here with the results of [51℄ is given in [34℄.



116 10. TYPE IIA ADS4 N = 1 SOLUTIONS10.3 The SU(3)U(1)�U(1) solutionThe set of G-invariant forms allows the following general ansatz for J and 
J = �ae12 + be34 � e56 ;
 = d �(e245 + e135 + e146 � e236) + i(e235 + e136 + e246 � e145)� ; (10.9)with a; b and  three free parameters anda > 0; b > 0;  > 0 ; metri positivity ;d2 = ab; normalization of 
 ;1 := �3i2W�1 = �23e�f = �a+ b+ 2d ;W�2 = � 2i3d �a(2a� b� )e12 + b(a� 2b+ )e34 + (�a� b+ 2)e56� ;2 := �18 jW�2 j2 = � 23ab �a2 + b2 + 2 � (ab+ a+ b)� ;25(e2�m2 � �) = 2 + 1621 = 18ab ��5(a2 + b2 + 2) + 6(ab+ a+ b)� : (10.10)Putting a = b we end up with a model that is very similar to the one of setion 10.2,while further putting a = b =  orresponds to the nearly-K�ahler limit. Next to theoverall sale a we have this time two shape parameters � � b=a and � � =a 2.Introduing again the redued ux parameters (10.3), we �nd for the uxes and thesoureH = 2 ~m5 ap��(e245 + e135 + e146 � e236) ;e�F2 = a1=24p�� �(5� 3�� 3�)e12 + (3� � 5�2 + 3��)e34 + (�3� � 3�� + 5�2)e56� ;e�F4 = a�1=2 ~fvol4 � 35a3=2 ~m ��e1234 � �e1256 + ��e3456� ;e�j6 = �25a1=2~�p��(e135 + e146 + e245 � e236) ; (10.11)while the orientifold involutions are still as in eq. (10.5), suh that all �elds and strutureonstants transform as is expeted.2Also this spae has an alternative desription in terms of twistor bundles, see [51℄. However, thatdesription does not allow to desribe the omplete parameter spae.



10.4. THE SU(3)�U(1)SU(2) SOLUTION 11710.4 The SU(3)�U(1)SU(2) solutionLet us �rst note that, as we have seen in eq. (9.13), this oset spae allows G-invariantone- and �ve-forms. The strit SU(3)-struture ondition (2.6a) is therefore not auto-matially satis�ed. However, one an nevertheless �nd a solution satisfying the stritSU(3)-struture onditions (2.6) as follows [34℄J = �a(e13 � e24) + b(e14 + e23) + e56 ;
 = �p321n �2a(e145 + e235) + 2b(e135 � e245) + (e126 + e346)�� ipa2 + b2 �a(e146 + e236) + b(e136 � e246)� 2(a2 + b2)(e125 + e345)� o ; (10.12)with a; b and  three free parameters and > 0 ; a2 + b2 6= 0 ; metri positivity ;1(1)2 = 23pa2 + b2; normalization of 
 ;1 := �3i2W�1 = �23e�f ;W�2 = i2 1pa2 + b2 ��a(e13 � e24) + b(e14 + e23)� 2e56� ;dW�2 = � ip32 1pa2 + b2 �a(e145 + e235) + b(e135 � e245)� (e126 + e346)� ;3jW�1 j2 � jW�2 j2 = 0 : (10.13)By a suitable hange of basis we an always arrange for a > 0 and b > 0, whih wewill assume from now on. Note that dW�2 is not proportional to Re
, hene the soureis not of the form (2.35). Interestingly, if we take the part of the soure along Re
 tobe zero, i.e. j6 ^ Im
 = 0, we �nd from the last equation in (10.13) that m = 0. Thiswould amount to a ombination of smeared D6-branes and O6-planes suh that thetotal tension is zero. Allowing for negative total tension (more orientifolds), we ouldhave m > 0.For an arbitrary m we �nd the bakgroundH = �p3 ~m5~1 a �2(e145 + e235) + 2�(e135 � e245) + �(e126 + e346)� ;e�F2 = 12a1=2~1 �(e13 � e24)� �(e14 + e23) + �e56� ;e�F4 = a�1=2 ~fvol4 + 35a3=2 ~m �(1 + �2)e1234 � �(e1356 � e2456) + ��(e1456 + e2356)� ;(10.14)



118 10. TYPE IIA ADS4 N = 1 SOLUTIONSwhere we de�ned the shape parameters � = b=a and � = =a and used again eq. (10.3).From eq. (2.31) we ompute for the souree�j6 = � p310~1 a1=2 �5~21 � 4 ~m2� �e145 + e235 + �(e135 � e245)�+ p320~1 a1=2� �5~21 + 4 ~m2� �e126 + e346� : (10.15)One an hek that for the bakground the soure satis�es the alibration onditions(2.36). However, this time it is not immediately obvious how to hoose the orientifoldprojetion. Choosing them naively along the six terms in the soure (10.15) leads to the�elds and struture onstants having the wrong transformation properties. In appendixD we outline how to �nd the orientifold involutions assoiated to a smeared soure ingeneral. As explained in that appendix in detail, the proedure boils down to �nd anappropriate oordinate transformation ompatible with the struture onstants (i.e.,the struture onstants read the same in the new basis) for whih the soure ontainsat most four deomposable three-forms whih we then identify with the orientifold invo-lutions. For the ase at hand, we make the following oordinate transformation whihis ompatible with the struture onstants 3e10 = e1 ; e20 = e2 ; e50 = e5 ; e60 = e6 ;e30 = 1p1 + �2 (�e3 + e4) ; e40 = 1p1 + �2 (�e3 + �e4) ; (10.16)and we see that j6 is a sum of four deomposable termse�j6 = � p310~1 a1=2 �5~21 � 4 ~m2�p1 + �2 �e103050 � e204050�+ p320~1 a1=2� �5~21 + 4 ~m2� �e102060 + e304060� ; (10.17)to whih we an assoiate four orientifold involutions. Note that this model does notallow for a type IIA solution without orientifold soures.10.5 The SU(2) � SU(2) solutionSine all the left-invariant forms ei are G-invariant on this spae (SU(2) � SU(2) is atrivial oset suh that eq. (4.23) is satis�ed for every form), the most general ansatz3Note that in order to obtain a oordinate transformation ompatible with the struture onstants(9.12), we also need the following transformations: e70 = 1p1+�2 (�e7�e8) ; e80 = 1p1+�2 (e7+�e8) ; e90 =e9 .



10.5. THE SU(2)� SU(2) SOLUTION 119for J would onsist of a sum of 15 two-forms. However, it was shown in [111℄ that dueto the symmetry of the struture onstants (9.16) there always exists a hange of basispreserving the form of the struture onstants that brings J in diagonal formJ = ae14 + be25 + e36 : (10.18)Using this observation, the most general solution to the onditions in setion 2.2.2was given in [34℄ and readsJ = ae14 + be25 + e36 ;
 = � 11(a(e234 � e156) + b(e246 � e135) + (e126 � e345)� ihh� 2 ab(e123 + e456) + a(b2 + 2 � a2)(e234 + e156) + b(a2 + 2 � b2)(e153 + e426)+ (a2 + b2 � 2)(e345 + e126)i) ; (10.19)with a; b and  three free parameters andab > 0 ; metri positivity ;h =p2 a2b2 + 2 b22 + 2 a22 � a4 � b4 � 4 ;and thus 2 a2b2 + 2 b22 + 2 a22 � a4 � b4 � 4 > 0 ;21 = 49e2�f2 = h2ab ;W�2 = � 2i3h1 "(b2 � 2)2 + a2(�2a2 + b2 + 2)b e14+ (2 � a2)2 + b2(�2b2 + 2 + a2)a e25 + (a2 � b2)2 + 2(�22 + a2 + b2)ab e36# :(10.20)By a suitable hange of basis we an always arrange for a > 0; b > 0 and  > 0, whihwe will assume in the following. In terms of the redued ux parameters (10.3), towhih we add ~h = a�2h ; (10.21)



120 10. TYPE IIA ADS4 N = 1 SOLUTIONSwe �nd for the uxes from eq. (2.27)H = 2 ~m5~1 a �(e156 � e234) + �(e135 � e246) + �(e345 � e126)� ;e�F2 = ~1a1=22~h2 n �3(�4 + �4)� 5 + 2(�2 + �2)� 6�2�2� e14+ � �3(1 + �4)� 5�4 + 2�2(1 + �2)� 6�2� e25+ � �3(1 + �4)� 5�4 + 2�2(1 + �2)� 6�2� e36o ;e�F4 = a�1=2 ~fvol4 � a3=2 3 ~m5 (�e1245 + �e1346 + ��e2356) :
(10.22)

From eq. (2.31) we derive j6,e�j6 = �idW�2 +� 227f2 � 25m2� e2�Re
= j1(e234 � e156) + j2(e246 � e135) + j3(e126 � e345) ; (10.23)where j1; j2 and j3 are some ompliated fators depending on a; b and  whose exatform does not matter for the moment. It ontains the same terms as Re
 but withdi�erent oeÆients. In fat, one an hek that j6 is not proportional to Re
 unlessa = b = , whih redues the solution to a nearly-K�ahler geometry.Also for this model, the soure (10.23) ontains six three-form terms. Following theproedure desribed in appendix D, we �nd the orientifold involutions assoiated tothis smeared soure. In order to present the resulting involutions, it is onvenient tode�ne omplex one-forms as followsez1 = � e i3�421pb(2b� h) �[2b� h+ i(a2 � b2 � 2)℄e1 + [a2 � b2 � 2 + i(2b � h)℄e4	 ;ez2 = � e i3�421pa(2a � h) �[2a � h+ i(b2 � a2 � 2)℄e2 + [b2 � a2 � 2 + i(2a � h)℄e5	 ;ez3 = � e i�421pab(2ab� h) �[2ab� h+ i(2 � a2 � b2)℄e3 + [2 � a2 � b2 + i(2ab � h)℄e6	 ;(10.24)where the signs must be hosen suh that 
 = ez1z2z2 . De�ning further the assoiatedx and y one-forms ezi = exi� ieyi , the orientifold involutions are given as in eq. (D.10).



10.6. COMMENTS ON A NON-CONSTANT WARP FACTOR AND DILATON 12110.6 Some omments on solutions with non-onstant warpfator and dilatonThe solutions on the oset spaes we analyzed so far in this hapter all assumed onstantwarp fator and dilaton. However, in setion 2.3 we analyzed the onditions for asupersymmetri N = 1 solution with non-onstant warp fator/dilaton. We have seenthat suh a solution is indeed possible, provided that the Romans mass m is hosen tobe zero.In the literature there are already a few sourelessN = 2 solutions with non-onstantwarp fator/dilaton, based on M-theory redutions of seven-dimensional Sasaki-Einsteinmanifolds to type IIA (see for instane [54, 33℄). As an appliation of the analysis ofsetion 2.3, we want to study in this setion whether one of the oset solutions of thishapter an be deformed into a new soureless solution with non-onstant warp fa-tor/dilaton. To this end, we will try to �nd an in�nitesimal utuation around thesupersymmetri solution turning on an in�nitesimal non-onstant warp fator/dilaton.For this to work, however, we have to leave the onvenient notion of left-invariantforms, sine the left-invariant ansatz drops the expliit oordinate dependene that isneessary to desribe a non-trivial warp fator/dilaton. This makes the analysis ratherompliated. However, we an make use of the observation that one an desribe one ofour oset spaes, namely Sp(2)S(U(2)�U(1)) = C P3, as a foliation with transversal oordinate�, with the leaves taking the form of a �ve-dimensional oset spae [112℄. In this way,we have an expliit oordinate � at our disposal for the ansatz for a non-onstant warpfator/dilaton, but an still apply the onvenient tehniques of oset spaes for theother �ve oordinates.10.6.1 Adapted oordinates for the bakgroundAs the bakground around we want to deform, we hoose the soureless solution onSp(2)S(U(2)�U(1)) = C P3 for � = =a = 2, implying vanishing Romans mass m, as an easilybe seen from the last equation in eq. (10.7). This is the N = 6 solution with thestandard Fubini-Study metri oming from the N = 8 M-theory bakground AdS4�S7redued to type IIA, as it was onstruted a long time ago in [65℄.We use the observation that one an onsider C P3 loally as a foliation where theleaves take the form of the �ve-dimensional oset manifold [112℄N 1;�1 = SO(4)U(1) : (10.25)Following [53℄, an intuitive way to see this foliation is the following. The splittingC 4 = R8 = R4 � R4 allows one to realize S7 as a �bration of S3 � S3 = SO(4) on asegment. We parameterize the two S3 with the oordinates (�i; �i;  i), i = 1; 2, andthe segment as an angle 0 � � � �=2. The metri for the S7 readsds2S7 = d�2 + sin2 �ds2S31 + os2 �ds2S32 ; (10.26)



122 10. TYPE IIA ADS4 N = 1 SOLUTIONSwhere the radii of the two S3s are sin � and os �. Corresponding to this desription,appropriate oordinates for C 4 n f0g are thusZ1 = t sin � os �12 exp i2 ( 1 + �1) ;Z2 = t sin � sin �12 exp i2 ( 1 � �1) ;Z3 = t os � os �22 exp i2 (� 2 + �2) ;Z4 = t os � sin �22 exp i2 (� 2 � �2) ; (10.27)
where t > 0 is the overall radius and 0 � �1;2 < �, 0 � �1;2 < 2�, 0 �  1;2 < 2� are thespherial oordinates for the two S3s. We an now rearrange  1 =  +� and  2 =  ��,and redue on the angle  . In this way, for eah value � = �0, the SO(4) gets reduedto the oset (10.25). The fator tei=2� in eah of the Zi of (10.27) orresponds to � inthe identi�ation(Z1; Z2; Z3; Z4) �= �(Z1; Z2; Z3; Z4) ; where � 2 C n f0g : (10.28)for the homogeneous oordinates on C P3. Thus, we have realized C P3 as a foliationwhere the leaves take the form of the oset N 1;�1, and the homogeneous oordinatesare Z1 = sin � os �12 exp i2 ( + �1) ; Z2 = sin � sin �12 exp i2 ( � �1) ;Z3 = os � os �22 exp i2 (� + �2) ; Z4 = os � sin �22 exp i2 (� � �2) : (10.29)In [113℄, the properties of the �ve-dimensional oset N 1;�1 are worked out in detailand we here just ite the results we need for our analysis. The struture onstants aregiven byf512 = f612 = 1 ; f534 = �f634 = �1 ; f125 = f251 = 12 ; f345 = f453 = �12 ;f126 = f261 = 12 ; f346 = f463 = 12 ; (10.30)and one an hoose the following oordinate representation for the one-forms (ei; !a)e1 = � sin d�1 + sin �1 os d�1 ;e2 = os d�1 + sin �1 sin d�1 ;e3 = � sin d�2 � sin �2 os d�2 ;e4 = � os d�2 + sin �2 sin d�2 ;e5 = � [2 d + os �1 d�1 � os �2 d�2℄ ;!1 = � [os �1 d�1 + os �2 d�2℄ ; (10.31)



10.6. COMMENTS ON A NON-CONSTANT WARP FACTOR AND DILATON 123where (�1;2; �1;2) are the remaining spherial oordinates on the S3s and  desribesthe U(1). The set of the relevant left-invariant forms, obtained by the ondition (4.23),are spanned by one-forms : e5 ;two-forms : e12; e34; e14 � e23; e13 + e24 ;three-forms : e125; e345; e145 � e235; e135 + e245 : (10.32)In these oordinates, the Fubini-Study metri, whih reads in homogeneous oordi-nates ds2 = dZad �Z�bPa jZaj2 �Æa�b � �Z�aZbPa jZaj2� ; (10.33)beomesa�1ds2 = d�2 + sin2 �4 �(d�1)2 + sin2 �1(d�1)2�+ os2 �4 �(d�2)2 + sin2 �2(d�2)2�+ sin2 � os2 � �d + 12 os �1d�1 � 12 os �2d�2�2 ;= d�2 + sin2 �4 (e1 
 e1 + e2 
 e2) + os2 �4 (e3 
 e3 + e4 
 e4)+ sin2 � os2 �4 e5 
 e5 ; (10.34)where a > 0 is an overall sale, and the transversal oordinate � is hosen suh thatg�� = a is onstant. At this point the metri in these new oordinates seems to beirregular for the points � ! 0 and � ! �=2, where one of the two S3s shrink to zero.For instane, in the limit � ! 0, the problemati terms reada�1ds2 = d�2 + �24 �(d�1)2 + sin2 �1(d�1)2 + (2d + os �1d�1 � os �2d�2)2�+ : : : :(10.35)However, one an show that for (�; �2; �2) onstant the seond term is the standardmetri for an S3 with radius � and volume 4�2�2 suh that the terms in the metri(10.35) approah at R4 as � tends to zero, desribed in spherial oordinates [114℄.The same argument shows the regularity at � ! �=2. The regularity of the metri ofthe deformed solution will be of partiular interest in the following.Sine we know the metri (10.34) expliitly, one easily derives the orrespondingSU(3)-struture quantities J and 
 in these new oordinates. This is done by onsider-ing the most general ansatz for J and Re
 expanded in the orresponding left-invariant



124 10. TYPE IIA ADS4 N = 1 SOLUTIONSforms (10.32) and the extra left-invariant one-form d�. Solving the neessary onditionsfor a supersymmetri vauum of setion 2.2.2, the result is [113℄a�1J =� sin2 � os 2 �4 e12 + os2 � os 2 �4 e34 + sin 2 �4 d� ^ e5+ sin2 2 �8 �os � �e13 + e24�+ sin � �e14 � e23�� ;a�3=2
 =�d� � i4 sin 2 � e5� ^ 12 hos2 � (ie3 + e4)� sin2 � e�i�(e1 � ie2)i^ 14 sin 2� hiei� �e1 + ie2�+ e3 + ie4i ; (10.36)
where � is onstant and a free parameter of the solution. In the following we will hoosethe gauge � = 0. We �nd from eq. (2.32) that1 = 4pa and 2 = �16(1)2 : (10.37)The seond torsion lass reads in these oordinatesW�2 = ipa6 �sin2 �(os 2� � 3)e12 � os2 �(os 2� + 3)e34+2 sin 2�d� ^ e5 � 2 os2 � sin2 �(e13 + e24)� : (10.38)10.6.2 First order perturbationWe now ome to a small deformation of the bakground of the previous setion. Theaim is to turn on a non-onstant warp fator and dilaton. For this we �rst need tospeify the deformations J ! J + ÆJ and 
 ! 
 + Æ
 that still satisfy the stritSU(3)-struture onditions (2.6) 4. Given these onstraints we make the followingansatz [27℄ Æ
 =M(2;1) � 4v(1;0) ^ J + �
 ;ÆJ = K(1;1) + �v(1;0)
+ �v(0;1) �
 + 23Re�J ; (10.39)where K(1;1), M(2;1) and v(1;0) are arbitrary left-invariant forms suh that K(1;1) is aprimitive real (1; 1)-form, M(2;1) is a primitive (2; 1)-form (i.e. M(2;1) ^ J = 0) andv(1;0) is a (1; 0)-vetor. � is a omplex funtion. These utuations guarantee that
+ Æ
 is deomposable and it is easy to verify that the ompatibility onditions (2.6)are automatially satis�ed.4In this setion, we denote the utuation of e.g. J with ÆJ , whereas the bakground is denotedby J .



10.6. COMMENTS ON A NON-CONSTANT WARP FACTOR AND DILATON 125We parameterize the most general left-invariant forms desribed above as follows:M(2;1) = (u1(�) + iu2(�)) a3=28 sin2� �(1� os 2�)d� ^ e12 � (1 + os 2�)d� ^ e34+ os 2�d� ^ (e13 + e24)� id� ^ (e14 � e23) + i8 �(2 sin 2� � sin 4�)e125�(2 sin 2� + sin 4�)e345 + sin 4�(e13 + e24) ^ e5 � 2i sin 2�(e14 � e23) ^ e5��+ (u3(�) + iu4(�)) ia3=22 �sin2 �dr ^ e12 + os2 � ^ e34� i4 sin 2�(sin2 �e125 + os2 �e345)� ; (10.40)K(1;1) = a (u5(�) + u6(�)) sin 2� �d� ^ e5 � 14 sin 2�(e13 + e24)�+ a �sin2 �(os2 �u6(�)� sin2 �u5(�))e12 + os2 �(sin2 �u6(�)� os2 �u5(�))e34� ;(10.41)v(1;0) = pa (u7(�) + iu8(�)) (d� � i4 sin 2�e5) ; (10.42)� = u9(�) + iu10(�) ; (10.43)where ui(�), i = 1; : : : ; 10, are arbitrary real funtions of �. For the utuation of theseond torsion lass we take the most general ansatz for a left-invariant two-form witharbitrary funtions wi(�), i = 1; : : : ; 5,ÆW�2 = i �w1(�)e12 + w2(�)e34 + w3(�)d� ^ e5 +w4(�)(e14 � e23) + w5(�)(e13 + e24)� :(10.44)The ruial point is that we now allow for a non-onstant warp fator, i.e. ÆA = ÆA(�).Sine the warp fator always appears in the ombination e�AjW j, it is onvenient tointrodue a new variable fW as followsfW � e�AjW j ; (10.45)and, aording to eq. (2.59a), 1 = �2fW : (10.46)For the utuation away from the bakground 1 beomes � dependent suh that wemake the ansatz Æ1 = (�) ; (10.47)



126 10. TYPE IIA ADS4 N = 1 SOLUTIONSwhere (�) is an arbitrary real funtion of �. This hoie implies e�AjW j = fW = �121suh that ÆfW = �ÆAfW + e�AÆjW j anddÆA = �dÆfWfW = �dÆ11 ; (10.48)sine we assume that the bakground values A and fW are onstants (reall that wealso assume jW j and ÆjW j to be onstants).The onditions we have to solve for the funtions ui(�), i = 1; : : : ; 10, wi(�),i = 1; : : : ; 5 and (�) are the variations of the eqs. (2.59a), (2.69) and (2.71). Thesevariations read, using eq. (10.48), respetively 5dÆJ = Æ1Re
 + 1ÆRe
 ; (10.49a)dÆRe
 = �dÆ11 ^Re
 ; (10.49b)dÆIm
 = 23Æ1J ^ J + 431ÆJ ^ J � iÆW�2 ^ J � iW�2 ^ ÆJ � dÆ11 ^ Im
 : (10.49)Further we have to solve the Bianhi identity for the variation of F2 in eq. (2.73).To derive the variation of F2 we make use of the relation between the warp fator andthe dilaton from eq. (2.57b). This implies dÆ� = �3dÆ11 suh thatÆ� = �3Æ11 +K ; (10.50)where K is an integration onstant. We arrive atÆF2 = e����23Æ1J � 161ÆJ + 3iÆ11 W�2 + iÆW�2 � 2 ?6 �dÆ11 ^ Im
��K(�161J + iW�2 )� : (10.51)Note that the last term in eq. (10.51) with the integration onstant K is nothing elsethan the bakground F2 and hene does not ontribute the the Bianhi identity for ÆF2,sine dF2 = 0 for the soureless bakground. Plugging all the ans�atze for ÆJ , Æ
, ÆW�2and Æ1 in eq. (10.51), we look for a solution of the soureless Bianhi identitydÆF2 = 0 : (10.52)10.6.3 Solving the onditionsWe �rst want to solve ondition (10.49a). As it turns out, this ondition is relativelyeasy to solve and already spei�es most of the unknown funtions ui(�) and (�) in5Note that we also assume Æm = 0 suh that we do not turn on m or H-ux with the utuation.This is the ase for Æ�0 = 0 (as an easily be seen from eq. (2.64)) whih we will assume in the following.



10.6. COMMENTS ON A NON-CONSTANT WARP FACTOR AND DILATON 127terms of only four remaining funtions, u5(�), u6(�), u8(�) and u9(�) and derivativesthereof. The expliit solution readsu1(�) = 124 �2 ot 2� ��24 ot 2�(u5(�) + 2u6(�)) + 3u05(�) + 9u06(�) + u09(�)�+3u005(�) + 3u006(�)� u009(�)� ;u2(�) = ot 2�u8(�)� 12u08(�) ;u3(�) = 0 ;u4(�) = (tan � � ot �)u5(�) + 112 ��48 ot 2�u6(�)� 6u06(�) + u09(�)� ;u7(�) = ot 2�(u5(�) + 2u6(�)) + 14(u05(�) + u06(�))� 112u09(�) ;u10(�) = �3 ot 2�u8(�)� 12u08(�) ;(�) = 16pa � 24sin2 2� (u6(�) + os 4�(2u5(�) + 3u6(�))� 8u9(�)+6 ot 2� �5u05(�) + 7u06(�)� u09(�)�+ 3u005(�) + 3u006(�)� u009(�)� ;
(10.53)

where prime denotes the derivative with respet to �. Note that the funtion u8(�)orresponds to hoosing another gauge for � in eq. (10.36) and none of the equations(10.49) puts a onstraint on u8(�).With this solution we automatially solve the seond ondition (10.49b). We an usethe ondition (10.49) to �x the unknown funtions wi(�), i = 1; : : : ; 5 of the variationof the seond torsion lass (10.44). The solution is not diÆult but rather lengthy suhthat we will not display it here. Let us mention that all the unknown funtions wi(�),i = 1; : : : ; 5 are funtions of u5(�), u6(�), u8(�) and u9(�) and derivatives thereof. Notethat the solution for ÆW�2 also satis�es the following onditions0 = ÆW�2 ^
+W�2 ^ Æ
 ;0 = ÆW�2 ^ J ^ J + 2W�2 ^ ÆJ ^ J ; (10.54)whih follow from the ondition that W�2 is a primitive (1; 1)-form (see eq. (C.31)).Next we turn to the solution of the Bianhi identity for ÆF2 (10.52). First we notethat this ondition gives us two independent equations for the three unknown funtionsu5(�); u6(�); u9(�) and derivatives thereof. We try to solve these equations with the



128 10. TYPE IIA ADS4 N = 1 SOLUTIONSfollowing ansatz u5(�) = 112 �6 ot 2� l(�) + l0(�)�+ g(�) ;u6(�) = 112 (�6 ot 2� l(�)) + l0(�) + h(�) ;u9(�) = 12 �6 ot 2� l(�) + l0(�)� ; (10.55)where l(�), g(�) and h(�) are arbitrary funtions. This ansatz is motivated by theobservation that we have the freedom to reparameterize � ! l(�), whih also orre-sponds to a utuation, and it turns out that this utuation is given by eq. (10.55)with vanishing g(�) and h(�). This ansatz simpli�es the two independent equationsoming from eq. (10.52) onsiderably and we are left with a pair of oupled di�erentialequations for g(�) and h(�),0 = 32(13 + 3 os 8�)g(�) + 32(17 + 12 os 4� + 3 os 8�)h(�)� 2 sin 2� �4(�11 os 2� + 7 os 6�)g0(�)� 4(os 2� � 5 os 6�)h0(�)+2 sin 2� �4(3 + 2 os 4�)g00(�) + 4(4 + 3 os 4�)h00(�) + sin 4�(g000(�) + h000(�))	� ;(10.56a)0 = 16(os 2� + 2 os 6�)g0(�)� 2 sin 2� ��64g(�) + 64h(�) + 10g00(�)+2 os 4�(96(g(�) + h(�)) + g00(�)) + 8 sin2 2�h00(�) + sin 4�(56h0(�) + g000(�))� :(10.56b)These di�erential equations are atually not so easy to solve but, with some patiene,we obtain the solution for g(�)g(�) = 3C116 � C22 + C112 os 2� + �5C1 + 24C2 � 6C348 sin2 � � C38 os2 � + C4 ; (10.57)and h(�)h(�) = 124 sin4 � ��9C3 � 12C4 + (48C4 � 8C2) os2 �+3(C1 + 4C2 � 8C4) os4 � � 3C1 os6 � + 12C6os2 � + 24C5os4 �� ; (10.58)where Ci, i = 1; : : : ; 6 denote integration onstants. Plugging these expressions intoeq. (10.55) and eq. (10.53), we heked expliitly that this is a solution for all theonditions (10.49) and the Bianhi identity (10.52). For instane, the solution forÆ1(�) = (�) readsÆ1(�) = 16pa �9C1 � 24C2 + 48C4 + C1 os 2� + �5C1 + 24C2 � 6C3sin2 � � 6C3os2 ��= � 4paÆA(�) � 2e�AÆjW j ; (10.59)



10.6. COMMENTS ON A NON-CONSTANT WARP FACTOR AND DILATON 129where the seond equation omes from the de�nition of Æ1 = �2fW and eq. (10.37).We indeed have a non-onstant warp fator.However, we still have to hek whether our solution leads to regular expressionsat the speial points � = 0 and � = �=2, where respetively the �rst and the seondS3 ollapse. Let us �rst onsider the solution for (�) in eq. (10.59), whih ontainsthe non-onstant warp fator. From this expression we immediately see that it is notregular at � = 0 nor at � = �=2. However, we an �x this by hoosing appropriateboundary onditions as follows C2 = 5C124 ; C3 = 0 : (10.60)Unfortunately, the regularity of the metri is problemati. For instane, let us onsiderthe omponents g33 and g55 of the solution for the metri (with the onstraint (10.60)).The �rst terms in the expansion around � = 0 readg33 = a7C1 � 72C4 � 144C5144�4 +O(�0) ; g55 = �aC1 � 12C4 + 6C624�4 +O(�0) :(10.61)Choosing C1 = 36(4C5 + C6) C4 = 12(�24C5 � 7C6) ; (10.62)we an make these and the other terms of the metri regular at � = 0. However, forthe regularity at � = �=2 we get for the expansion of g33 and g55g33 = �a C5(� � �2 )2 +O((� � �2 )0) ; g55 = a C64(� � �2 )2 +O((� � �2 )0) ; (10.63)whih fores C5 = 0 and C6 = 0 for regularity. This, however, implies with theonditions (10.60) and (10.62) that regularity demands the vanishing of all integrationonstants. Let us stress that we an satisfy the regularity for a non-trivial solution onboth sides, � ! 0 and � ! �=2, independently but not at the same time.We thus have to report that (at least in this setup) there is no �rst order deformationaround the onstant warp fator/dilaton solution of setion 10.2 whih allows to turnon a non-onstant warp fator/dilaton for the soureless ase. However, the observationthat this only fails due to speial boundary onditions strongly suggest that one ouldresolve this problem by the introdution of loalized soure terms of the formdF2 = �j = K1Æ(� � �0)d� ^ e12 +K2Æ(� � �0)d� ^ e34 +K3Æ(� � �0)d� ^ (e13 + e24) :(10.64)Note that this are partially loalized soure terms at some point � = �0 but still smearedalong the other diretions. Due to the delta distributions in the soure term, thedi�erential equations (10.57) and (10.58) would be ompleted with expressions involvingdelta distributions on the right hand side, and we thus would expet for the solutions of



130 10. TYPE IIA ADS4 N = 1 SOLUTIONSthe di�erential equations to ontain integration onstants with di�erent values on bothsides of the soure 6. This o�ers the possibility to solve the boundary onditions fordi�erent integration onstants for � = 0 and � = �=2, providing potentially a regularsolution. To work out the expliit form of these integration onstants and hek whetherthis indeed resolves the problem of regularity would be very interesting, as it may beseen as a step towards the inlusion of loalized soures.

6The di�erene of the integration onstants on both sides of the soure depends on the loation �0of the soure and the hosen onstants Ki, i = 1; 2; 3, in (10.64).



Chapter 11E�etive type IIA ation on osetspaesIn setion 3.2, we disussed the proedure to derive the four-dimensional low-energye�etive theory for a given ompati�ation manifold. We now apply this proedureto derive the superpotential and the K�ahler potential for ompati�ations on all theoset spaes whih allow for a left-invariant strit SU(3)-struture. These oset modelsare given in table 9.1. As explained in setion 3.3, we hoose the uxes as general aspossible to over the whole moduli spae. For the �rst �ve models in table 9.1, wealready know that there is a bubble that ontains at least one supersymmetri AdS4solution.There will be bubbles in the moduli spae that do not ontain any supersymmetriAdS4 solution, whereas other bubbles ontain one or more. We show for two modelshow to identify the number of supersymmetri AdS4 solutions for a partiular hoieof bubble parameters. Note that in the full string theory the bubble parameters arequantized.We will study the mass spetrum of the moduli �elds around these supersymmetriAdS4 solutions. In setion 2.2.2 we disussed the problem of the separation of salesfor an N = 1 AdS4 solution, even before the uplifting. We have seen that requiring themanifold to be nearly Calabi-Yau (i.e., vanishing W�1 ) and the possibility to hoose �so that it is lose to its bound is one way to obtain a separation of sales between thelight masses and the Kaluza-Klein sale. However, as we will see in the following, forthe N = 1 AdS4 solutions on the oset models this is not possible suh that we an notprove the separation of sales for these solutions. In any ase, as already mentioned,the position one an take is that this kind of question should be asked only after theuplifting.Sine the deoupling of the light Kaluza-Klein modes turns out to be diÆult, wean not be sure that there are no other light Kaluza-Klein modes joining the lightmoduli �elds based on the left-invariant expansion ansatz. However, a trunation tothe set of left-invariant forms is believed to provide a onsistent trunation [115, 60℄.



132 11. EFFECTIVE TYPE IIA ACTION ON COSET SPACESIndeed, in [116℄ the authors established the onsisteny of the left-invariant trunationansatz by means of expliit examples based on the oset models G2SU(3) , Sp(2)S(U(2)�U(1))and SU(3)U(1)�U(1) for the soureless ase. It seems very plausible that their argument alsoapplies for the other oset models we study in this thesis in the presene of smearedleft-invariant soure terms. We thus have on�dene that solutions to the e�etivefour-dimensional theories we derive in this hapter lift to onsistent solutions of the ten-dimensional equations of motion and that there is no oupling between the preservedleft-invariant modes and the trunated non-invariant modes. This also implies thatthe mass spetrum we ompute for the left-invariant modes is not inuened by thepotentially light non-invariant Kaluza-Klein modes.A neessary ondition for a strit SU(3)-struture is the ompatibility onditionJ ^ 
 = 0 (see eq. (2.6)). This ondition is automatially satis�ed if there are no G-invariant �ve-forms. On the other hand, if there are suh �ve-forms, the ompatibilityis not automatially satis�ed, and the ondition �xes the parameters for J and 
 in theN = 1 solution (see for instane the parameters a, b and  in the solution (10.12)). Ifwe now turn on utuations around suh a vauum solution, utuations are possiblethat violate the ompatibility ondition. One approah to still satisfy the ompatibilityondition is to impose some onstraints on the utuations. However, a more natu-ral approah is to impose from the beginning an orientifold projetion that projetsout the one- and �ve-forms. With this proedure, we again automatially satisfy theompatibility ondition for all the utuations.Let us stress that onsisteny requires that the soure term whih follows from theBianhi identities is then onsistent with the orientifold involutions we imposed. In thishapter, we will follow the seond approah and impose an orientifold projetion whenthe models allow for G-invariant one- and �ve-forms. We will make the simpli�ationthat the orientifold planes are perpendiular to the oordinate frame 1, exept forSU(3)�U(1)SU(2) , where we will demonstrate a proedure how to �nd more general orientifoldplanes and for SU(2)�SU(2), whih does not allow for perpendiular orientifold planes.11.1 E�etive type IIA ation on G2SU(3)With the given set of G-invariant forms (9.3), we hoose the expansion forms as followsY (2�) : (e12 � e34 + e56) ;Y (3+) : (e145 � e246 � e235 � e136) ; (11.1)and the standard volume Vs = � R e123456. We expand aording to eq. (3.37)J = J � iÆB = t1Y (2�) ;
 = e�Im
 + iÆC3 = z0Y (3+) ; (11.2)1To be preise, here we mean orientifold involutions whih at as ei ! �ei on the left-invariantone-forms.



11.1. EFFECTIVE TYPE IIA ACTION ON G2SU(3) 133where we denote by t1 = k1 � ib1 the omplex modulus in the K�ahler setor and byz0 = u0 + i0 the omplex modulus in the omplex struture/dilaton setor. Note thatsine there is only one even three-form, this oset spae has no omplex struture andthe real part of z0 enodes the dilaton. There are no G-invariant one- or �ve-formsin this model, hene the ompatibility ondition (2.6a) is automatially satis�ed forthe basis (11.1) and thus for all hoies of the moduli t1 and z0. The metri is easilyevaluated via the Hithin proedure explained in appendix C and readsg = diag(k1; k1; k1; k1; k1; k1) ; (11.3)suh that k1 > 0 ensures metri positivity. The Betti numbers of G2SU(3) are given ineq. (9.4). As was explained in setion 3.3 we hoose aordingly the bakground uxesto be Ĥ = 0 ;F̂0 = m;F̂2 = nY (2�) ;F̂4 = 0 ;F̂6 = f 0e123456 ; (11.4)
The quantized parameters m, n and f 0 speify the bubble of moduli spae. Remem-ber that is is not possible to reah another bubble by �nite utuations of the moduli�elds.With this data, the superpotential, whose derivation is explained in setion 3.2,reads WE = � ie�i�4�210 Vs �f 0 + 3n(t1)2 � 4p3t1z0 � im(t1)3� ; (11.5)and for the K�ahler potential, we derive from eq. (3.35)K = � ln �(t1 + �t1)3�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s ) : (11.6)11.1.1 Mass spetrum around the supersymmetri vauumWe have seen in setion 10.1 that this oset spae admits a supersymmetriN = 1 AdS4vauum. An appliation of the e�etive theory developed in this hapter is to omputethe mass spetrum around the vauum. By means of the expliit mass spetrum wean for instane identify the number of tahyoni masses and the number of masslessmoduli. However, sine the vauum solution is in AdS4 spae, it is not enough to�nd a tahyoni �eld for an instability to be present. Tahyoni �elds whose negativemass-squared are above the Breitenlohner-Freedman bound (3.11) do not generate aninstability [61℄. However, after an uplift proedure these tahyoni modes beomeeventually unstable, and one has to reonsider the stability of the solution.



134 11. EFFECTIVE TYPE IIA ACTION ON COSET SPACESTo derive the masses of the salar �elds around the supersymmetri vauum, it isonvenient to hoose the bakground uxes, whih we plug in the expression for thesuperpotential, to be the uxes of the solution (10.4). With this hoie we automatiallyare in the bubble of moduli spae ontaining the supersymmetri solution. For thealulation we hoose this time expansion forms adapted to the solution,Y (2�) : a(e12 � e34 + e56) ;Y (3+) : a3=2(�e235 � e246 + e145 � e136) ; (11.7)and the standard volume Vs = � R a3 e123456. It is further onvenient to take out thebakground dilaton, e��̂, from the de�nition of zi in eq. (3.37b), i.e., we hoose theexpansion as follows e��Im
 + iÆC3 = zie��̂Y (3+)i : (11.8)The supersymmetri solution then orresponds to the values of the moduli �elds t1 = 1and z0 = 1.With these assumptions and the bakground �elds in eq. (10.4) we get the followingsuperpotentialWE = ie�i�e��̂4�210 Vsa�1=2 �3p32 + 8 ~mi5 z0 � 9 ~mi5 t1 + 4p3z0t1 � p32 (t1)2 + i ~m(t1)3! ;(11.9)whereas the K�ahler potential is given byK = � ln �(t1 + �t1)3�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s e4�̂=3) : (11.10)Indeed, one easily veri�es that the F-terms DiWE � �iWE + (�iK)WE, vanish forthe values of the moduli �elds k1 = 1, b1 = 0, u0 = 1 and 0 = 0.By means of eq. (3.25), we now easily alulate the e�etive potential V and the massmatrix aording to eq. (8.5). The resulting mass spetrum is plotted in �gure 11.1.We plot ~M2=jW j2 suh that the overall sale a drops out and the only parameter is theredued orientifold tension ~�. The dashed and solid red line represent the Breitenlohner-Freedman bound (3.11) and the bound (2.34) for ~�, respetively. We see that all fourmoduli masses are above the Breitenlohner-Freedman bound as is expeted. Moreover,all masses are positive for ~� > �0:82.In setion 2.2.2 we have seen that jW�1 jLint � 1 is one way to obtain a separation ofsales between the light masses and the Kaluza-Klein masses even before the uplifting.However, as an be seen from eq. (10.2), this is impossible to ahieve for this oset.11.1.2 Number of supersymmetri solutionsWe explained in setion 3.3 that for di�erent hoies of the ux parameters m;n andf 0 in eq. (11.4) we are in di�erent bubbles of the moduli spae that are not onnetedby utuations of the moduli �elds.
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(b) Behaviour for large ~�Figure 11.1: Mass spetrum of G2SU(3) .An interesting question is whether eah of these di�erent bubbles of the moduli spaeharaterized through the bubble parameters m, n and f 0 has a supersymmetri N = 1AdS4 solution and if, how many di�erent solutions there are. To answer this questionwe may proeed bakwards: Given a supersymmetri vauum haraterised through thesupersymmetri solution parameters a, � and e�, we derive the orresponding bubbleparameters m; n; f 0 in funtion of a, ~� = a� and e�. Inverting these equations oneobtains the values for the bubble parameters that ontain supersymmetri solutions.From the supersymmetri solution for G2SU(3) in eq. (10.2), the Bianhi identities andthe utuations of the uxes in eq. (3.44) we arrive at the following equationsm = s1 e��a�1=2r54 + ~� ;n = � 1p3s2 a1=2e�� 25 ~� ;f 0 = �s2 e��a5=2 4(20 + ~�)(25 + 2~�)375p3 ; (11.11)
where s1 = �1 and s2 = �1 are two signs further speifying the supersymmetrisolution. Note that in the speial ase without soure, ~� = 0, we �nd n = 0, and wean always �nd a supersymmetri vauum by solvingm = s1 e��a�1=2p52 ;f 0 = �s2 e��a5=2 163p3 ; (11.12)for e� and a. This results ina =  3p1532 ����f 0m ����!1=3 ; e� = p52 jmj  3p1532 ����f 0m ����!�1=6 ; (11.13)



136 11. EFFECTIVE TYPE IIA ACTION ON COSET SPACESsuh that, for arbitrary hoie of the bubble parameters m and f 0, we �nd a supersym-metri solution haraterized by a and e�.For ~� 6= 0, we an eliminate e� and a by alulatingh = f 0m2�03 = (5 + 4~�)(20 + ~�)(25 + 2~�)8p3~�3 ; (11.14)whih an be rewritten as(8� 8h) ~�3 + 270~�2 + 2325~� + 2500 = 0 : (11.15)For the values h < 0 and h > 1, this equation has exatly one solution satisfyingfurther the bound oming from the �rst equation in (11.11): 5=4 + ~� > 0 (note thatwe assumed m 6= 0). We onlude that there is no supersymmetri solution for thehoie of bubble parameters satisfying 0 � f 0m2n3 � 1. Otherwise there is exatly onesupersymmetri solution.11.2 E�etive type IIA ation on Sp(2)S(U(2)�U(1))From the given set of G-invariant forms (9.6), we de�ne the expansion forms as followsY (2�)i : (e12 + e34);�e56 ;Y (3+) : (e235 + e246 + e145 � e136) ; (11.16)and the standard volume Vs = R e123456. Aording to eq. (3.37), we expand theSU(3)-struture as followsJ = J � iÆB = t1(e12 + e34)� t2e56 ;
 = e�Im
 + iÆC3 = z0(e235 + e246 + e145 � e136) ; (11.17)whih yields the metri g = diag(k1; k1; k1; k1; k2; k2) ; (11.18)suh that ki > 0, i = 1; 2, ensures metri positivity. Aording to the Betti numbers(9.7), there is a losed two-form and we thus have only one non-losed two-form for F̂2.Sine F̂4 2 H4(M;R), we hoose as bakground uxes the followingĤ = 0 ;F̂0 = m;F̂2 = ne56 ;F̂4 = !e1234 ;F̂6 = �f 0e123456 : (11.19)



11.2. EFFECTIVE TYPE IIA ACTION ON SP(2)S(U(2)�U(1)) 137The superpotential readsWE = � ie�i�4�210 Vs �f 0 � i!t2 + n(t1)2 + im(t1)2t2 � 2z0(t2 + 2t1)� ; (11.20)whereas the K�ahler potential is given byK = � ln �(t1 + �t1)2(t2 + �t2)�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s ) : (11.21)11.2.1 Mass spetrum around the supersymmetri vauumWe hoose the expansion forms suitable for the solution in setion 10.2 as follows:Y (2�) : a(e12 + e34);�ae56 ;Y (3+) : a3=2(e235 + e246 + e145 � e136) ; (11.22)and the standard volume Vs = � R a3 e123456. We �nd the following superpotential(where we use the rede�nition of eq. (11.8))WE = ie�i�e��̂4�210 Vsa�1=2�� ~f� + 8 ~mi5 �1=2z0 � 3 ~mi5 (2�t1 + t2)� 2(2t1 + t2)z0+i ~m(t1)2t2 + �1=2�32 � 54�� (t1)2 ����1=2 � 32�1=2� t1t2� ; (11.23)and K�ahler potentialK = � ln �(t1 + �t1)2(t2 + �t2)�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s e4�̂=3) : (11.24)This time the solution has next to the overall sale a two free parameters: the \shape"� = =a and the orientifold tension ~�. In �gure 11.2 we display plots for the massspetrum for several values of �: � = 1 is the nearly-K�ahler point, while for � = 2=5and � = 2 the lower bound for ~� from (2.37) is exatly zero. These were extreme pointsin [51℄ sine outside the interval [2=5; 2℄ the lower bound is above zero and solutionswithout orientifolds are no longer possible. Moreover, for ~� = 0 also m = 0, and thesesolutions an be lifted to M-theory. We also display a plot for large �, here � = 13. Wesee that the lower bound for ~� is indeed positive so that there must be net orientifoldharge. Again we see that in all ases all masses are above the Breitenlohner-Freedmanbound and by hoosing ~� large enough, they are all positive.Again we would like to have jW�1 jLint � 1 in order to deouple the Kaluza-Kleinmodes. From eq. (10.7) we see that this is not possible sine this would imply putting� ! �2, whih should be positive. We thus an not prove the deoupling of theKaluza-Klein modes for this model.
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(d) � = 13Figure 11.2: Mass spetrum of Sp(2)S(U(2)�U(1)) .



11.2. EFFECTIVE TYPE IIA ACTION ON SP(2)S(U(2)�U(1)) 13911.2.2 Number of supersymmetri solutionsWith the same proedure we proposed in setion 11.1.2 we an identify for this modelthe number of supersymmetri AdS4 solutions for eah hoie of bubble parameters m,n, ! and f 0. Starting from a supersymmetri solution spei�ed by four parameters a,� = =a, e� and ~� = a� we �nd for this modelm = s1e��a�1=2r 516� (�4� 5�2 + 12�) + ~� ;n = �s2 45e��a1=2~�p� ;w = �s1e�� 4a3=2(� � 1)(�(10 + 3~�)� 5)5p60�2 + 16~��2 � 20� � 25�3 ;f 0 = �s2e�� 8a5=2�1=2 �150 + 40~�� 425� � 6~��(35 + 4~�) + 15�2(10 + ~�)�25 (60� + 16~�� � 20� 25�2) : (11.25)
We an solve these equations for ~� and � by alulating4mwn2 = �5(� � 1)(�(10 + 3~�)� 5)4~�2�2 � h1 ;�8f 0m2n3 = �50(15 + 4~�) + 5�(425 + 6~�(35 + 4~�))� 75�2(10 + ~�)16~�3�2 � h2 : (11.26)with the solution for ~�0 = (�256h1h2 + 256h21 + 64h22)~�6+ (�690h2 + 1920h21 � 690h1h2 + 1920h1)~�5+ (�5900h2 + 19000h1 + 3600 + 3600h21)~�4+ (44250 + 53250h1 � 4500h2)~�3 + (169375 + 34375h1)~�2+ 206250~� + 78125 ; (11.27)
and the solution for �� = 5 (750 + ~� [775 + 8~�(15 � 2h2~�+ h1(15 + 4~�))℄)10000 + ~� f13500 + ~� [4125 � 24~�(2h2(5 + ~�)� 15) + 4h1(6~�(35 + 4~�) + 425)℄g :(11.28)In �gure 11.3 we show the values for h1 = 4mwn2 and h2 = �8f 0m2n3 for whih eq. (11.27)has one or two solutions that are real and respet the bounds 516� ��4� 5�2 + 12��+~� > 0 and � > 0. Hene, there are bubbles with zero, one or two supersymmetrisolutions.
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Figure 11.3: Regions in bubble parameter spae in whih there are one/two super-symmetri solutions (red/yellow) for Sp(2)S(U(2)�U(1)) . On the x-axis (y-axis) is the valueh1 = 4mwn2 (h2 = �8f 0m2n3 ).11.3 E�etive type IIA ation on SU(3)U(1)�U(1)From the given set of G-invariant forms (9.9), we de�ne the expansion forms as followsY (2�)i : �e12; e34;�e56 ;Y (3+) : (e235 + e136 + e246 � e145) ; (11.29)and the standard volume Vs = R e123456. For this hoie the metri readsg = diag(k1; k1; k2; k2; k3; k3) ; (11.30)suh that ki > 0 ensures metri positivity. Aording to the Betti numbers (9.10), wehoose a simple non-losed two-form F̂2 and F̂4 2 H4(M;R) as bakground uxes asfollows Ĥ = 0 ;F̂0 = m;F̂2 = ne12 ;F̂4 = !1e1234 + !2e1256 ;F̂6 = �f 0e123456 : (11.31)
The superpotential readsWE = � ie�i�4�210 Vs �f 0 � i(!1t3 � !2t2)� nt2t3 � imt1t2t3 � 2z0(t1 + t2 + t3)� ; (11.32)



11.4. EFFECTIVE TYPE IIA ACTION ON SU(3)�U(1)SU(2) 141whereas the K�ahler potential is given byK = � ln �(t1 + �t1)(t2 + �t2)(t3 + �t3)�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s ) : (11.33)11.3.1 Mass spetrum around the supersymmetri vauumIn this ase we hoose the expansion forms in (3.37) as follows:Y (2�) : �ae12; ae34;�ae56 ;Y (3+) : a3=2(e235 + e246 + e136 � e145) ; (11.34)and the standard volume Vs = R a3 e123456.Using the expression (3.34) for the superpotential in the SU(3)-struture ase andthe expansion given in (3.37), we derive the superpotential (again using the rede�nitionof z as in eq. (11.8))WE =� ie�i�e��̂4�210 Vsa�1=2 ~f�� � 8 ~mi5 p��z + 3 ~mi5 (��t1 + �t2 + �t3)+ 14p���(3� + 3�� � 5�2)t1t2 + (3�� 5�2 + 3��)t1t3 + (�5 + 3�+ 3�)t2t3�� 2z(t1 + t2 + t3)� i ~mt1t2t3! : (11.35)The K�ahler potential isK = � ln 3Yi=1(ti + �ti)!� ln �4(z + �z)4�+ 3 ln(8�210M2PV �1s e4�̂=3) : (11.36)The model has this time two shape parameters: � = b=a and � = =a. We displaythe mass spetrum for a number of seleted values of these parameters in �gure 11.4.There is a symmetry under permuting (a; b; ) whih translates into a symmetry under� $ � and (�; �; ~�) $ (�=�; 1=�; �~�). Applying these symmetries leads to identialmass spetra. Moreover, the mass spetra for � = 1 are apart from two more eigenvaluesidential to the mass spetra of Sp(2)S(U(2)�U(1)) . We also display an example with �; � 6= 1.For this model, we have to hoose � + � = �1 in order to approah the nearlyCalabi-Yau limit to deouple the Kaluza- Klein modes, whih is again not possible.11.4 E�etive type IIA ation on SU(3)�U(1)SU(2)Sine this oset spae ontains G-invariant one-forms, e5 and e6, one has to be are-ful satisfying the ompatibility onditions for an SU(3)-struture given in eq. (2.6a).
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(d) � = 52 and � = 12 .Figure 11.4: Mass spetrum of SU(3)U(1)�U(1) .



11.4. EFFECTIVE TYPE IIA ACTION ON SU(3)�U(1)SU(2) 143One way to guarantee the ompatibility onditions for the utuations is to imposean orientifold projetion that removes the left-invariant one- and �ve-forms. To �ndappropriate orientifold planes, let us therefore start with the most general, non-losedtwo-form as an ansatz for F̂2,F̂2 = a1(e13 � e24) + a2(e14 + e23) + a3e56 ; (11.37)where we assume non-vanishing oeÆients ai, i = 1; 2; 3. With this hoie of F̂2 weget via the Bianhi identity (B.9a) the soure term (note that sine b3 = 0 we hooseĤ = 0 suh that there is no ontribution to the Bianhi from Ĥ)j6 = p3��a1(e145 + e235) + a2(e135 � e245) + a32 (e126 + e346)� ; (11.38)that an be written by a oordinate transformation onsistent with the struture on-stants similar to (10.16) 2e10 = e1 ; e20 = e2 ; e50 = e5 ; e60 = e6 ;e30 = 1p(a1)2 + (a2)2 ��a2e3 + a1e4� ; e40 = 1p(a1)2 + (a2)2 ��a1e3 � a2e4� ;(11.39)as a sum of four deomposable terms to whih we an assoiate four orientifold involu-tions (see also the disussion in appendix D),j6 = p3�p(a1)2 + (a2)2(e204050 � e103050) + a32 (e102060 + e304060)� : (11.40)Under these orientifold involutions there are no one- and �ve-forms surviving, andwe easy obtain the set of invariant two- and three-forms. By transforming bak tothe original oordinates, we get the following set of left-invariant (odd/even) two- andthree-forms Y (2�)i : ��(e13 � e24)� a2a1 (e14 + e23)� ; e56 ;Y (3+)i : �(e146 + e236)� a2a1 (e136 + e246)� ; e125 + e345 ; (11.41)where the quantity a2a1 � � is atually related to the hoie of the orientifolds. We nowproeed as usual: with this hoie of expansion forms the metri is positive for ki > 0,i = 1; 2, and u1u2 < 0 and is then given byg = diagp1 + �2�k1; k1; k1; k1; k21 + �2 ����u2u1 ���� ; k2 ����u1u2 ����� : (11.42)2Without loss of generality we assumed here a1 > 0.



144 11. EFFECTIVE TYPE IIA ACTION ON COSET SPACESFrom the Betti numbers (9.15) and the set of G-invariant forms (9.14) we thus getĤ = 0 ;F̂0 = m;F̂2 = n1 �(e13 � e24) + �(e14 + e23)�+ n2e56 ;F̂4 = 0 ;F̂6 = �f 0(1 + �2)e123456 : (11.43)
Putting everything together we arrive at the superpotentialWE = � ie�i�4�210 Vs f 0 � 2n1t1t2 + n2(t1)2 � im(t1)2t2 + 2p3t1z1 � p31 + �2 t2z2! ;(11.44)where we de�ned a standard volume as Vs = R (1 + �2)e123456. The K�ahler potential isgiven byK = � ln �(t1 + �t1)2(t2 + �t2)�� ln� 41 + �2 (z1 + �z1)2(z2 + �z2)2�+ 3 ln(8�210M2PV �1s ) :(11.45)11.4.1 Mass spetrum around the supersymmetri vauumWe hoose the expansion forms suitable for the supersymmetri solution of setion 10.4as follows:Y (2�) : �a[(e13 � e24)� �(e14 + e23)℄; ae56 ;Y (3+) : a3=2[(e13 � e24) + ��1(e14 + e23)℄ ^ e6; a3=2(e125 + e345) ; (11.46)and the standard volume Vs = R a3(1 + �2)e123456. The superpotential and K�ahlerpotential read (using the rede�nition (11.8)):WE = � ie�i�e��̂4�210 Vsa�1=2� ~f� + 3i ~m5 �(2t1 + 1� t2)+r32(1 + �2)� 14 ��t1t2 + �2 (t1)2�� i ~m(t1)2t2�4p2i ~m5� (1 + �2) 14 z1 + 2p2i ~m5 �(1 + �2)� 34 z2 + 2p3� z1t1 �p3(1 + �2)�1t2z2! ;(11.47)
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(b) � = 12 and � = 2.Figure 11.5: Mass spetrum of SU(3)�U(1)SU(2) .and K =� ln �(t1 + �t1)2(t2 + �t2)�� ln�4 1�2(1 + �2)(z1 + �z1)2(z2 + �z2)2�+ 3 ln(8�210M2PV �1s e4�̂=3) : (11.48)This model has two shape parameters � = b=a and � = =a, and a symmetry under(�; �; ~�) $ (1=�; �=�; �~�). In �gure 11.5, we show the mass spetrum for some valuesof the parameters. The mass spetrum at � = 0 turns out to be independent of theparameters �; �. There always seem to be two negative ~M2 eigenvalues. Note thatthere is no hoie of parameters for this solution to obtain a NCY-limit, whih was ourproposal to deouple the Kaluza-Klein modes. This an be seen from eq. (10.13).11.5 E�etive type IIA ation on SU(2)� SU(2)Sine SU(2) � SU(2) is a trivial oset spae, all the left-invariant forms ei are G-invariant. As we suggested in the introdution of this setion, in order to satisfy theondition (2.6a) automatially, we must eliminate the one- and �ve-forms. We do so byintroduing at least three mutually supersymmetri orientifolds, ompatible with thestruture onstants. This model does not allow for O6-planes that are perpendiularto the oordinate frame. However, in setion 10.5 and appendix D we explained how toperform a suitable basis transformation in order to identify the orientifold involutionssuh that the �elds and struture onstants have the right transformation properties.The result of that analysis are the following expansion forms (see also eq. (D.19))
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Y (2�)1 =e14; Y (2�)2 = e25; Y (2�)3 = e36;Y (3�)1 =14 �e156 � e234 � e246 + e135 + e345 � e126 + e123 � e456� ;Y (3�)2 =14 �e156 � e234 + e246 � e135 � e345 + e126 + e123 � e456� ;Y (3�)3 =14 �e156 � e234 + e246 � e135 + e345 � e126 � e123 + e456� ;Y (3�)4 =14 ��e156 + e234 + e246 � e135 + e345 � e126 + e123 � e456� ;Y (3+)1 =12 �e156 + e234 � e246 � e135 + e345 + e126 + e123 + e456� ;Y (3+)2 =12 �e156 + e234 + e246 + e135 � e345 � e126 + e123 + e456� ;Y (3+)3 =12 �e156 + e234 + e246 + e135 + e345 + e126 � e123 � e456� ;Y (3+)4 =12 ��e156 � e234 + e246 + e135 + e345 + e126 + e123 + e456� :

(11.49)
To simplify notation, it is onvenient to de�ne a matrix riI as in eq. (5.65) and we�nd with (11.49) the following matrixr = 0� 1 1 1 �11 �1 �1 �11 �1 1 1 1A : (11.50)For SU(2) � SU(2), we alulated the third Betti numbers in (9.17) to be b3 = 2.One of the two three-forms in H3(M;R) is odd and we thus make the most generalansatz for the bakground �elds as followsĤ = p�Y (3�)1 + Y (3�)2 � Y (3�)3 + Y (3�)4 � ;F̂0 = m;F̂2 = miY (2�)i ;F̂4 = 0 ;F̂6 = 0 : (11.51)

Plugging these bakground uxes in the expression for the superpotential, we �ndWE = � ie�i�4�210 Vs �m1t2t3 +m2t1t3 +m3t1t2 � imt1t2t3 � ip(z1 + z2 � z3 + z4) + riItizI� ;(11.52)
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and the K�ahler potentialK = � ln 3Yi=1 �ti + �ti�� ln 16 4YI=1 �zI + �zI�+ 3 ln �8�210M2PV �1s � ; (11.53)where Vs = � R e123456. Note that for p 6= 0 the superpotential depends on all themoduli so there are no at diretions in this model.11.5.1 Mass spetrum around the supersymmetri vauumFor the analysis of the mass spetrum around the supersymmetri solution, we hoosethe following suitable basis for the expansion formsY (2�)1 = ae14 ; Y (2�)2 = be25 ; Y (2�)3 = e36 ;Y (3+)1 = �h41(a+ b+ ) (e123 + e456 + e126 + e345 + e315 + e264 + e156 + e234) ;Y (3+)2 h41(�a+ b+ ) (e123 + e456 � e126 � e345 � e315 � e264 + e156 + e234) ;Y (3+)3 �h41(a� b+ ) (�e123 � e456 + e126 + e345 � e315 � e264 + e156 + e234) ;Y (3+)4 h41(a+ b� ) (e123 + e456 + e126 + e345 � e315 � e264 � e156 � e234) ;

(11.54)
and the standard volume Vs = � R ab e1:::6. One �nds with eq. (10.22) the superpo-tential (with the rede�nition (11.8)):WE = ie�i�e��̂4�210 Vsa�1=2(32~1 + i ~m�t1t2t3 � 35(t1 + t2 + t3)� 25(z1 + z2 + z3 + z4)�+ 32~1(t1t2 + t2t3 + t1t3)+ ~1~h2n4 �t2t3(1� �2 � �2) + t1t3�2(�1 + �2 � �2) + t1t2�2(�1� �2 + �2)�+ �t1(�1 + �2 + �2) + t2�2(1� �2 + �2) + t3�2(1 + �2 � �2)� (z1 + z2 + z3 + z4)+ �� ��2t1 + t2(1 + �2 � �2) + t3(1� �2 + �2)� (z1 + z2 � z3 � z4)+ � �t1(1 + �2 � �2)� 2�2t2 + t3(�1 + �2 + �2)� (z1 � z2 + z3 � z4)+ � �t1(1� �2 + �2) + t2(�1 + �2 + �2)� 2�2t3� (z1 � z2 � z3 + z4)o) ; (11.55)
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(b) � = 1 and � = 25 .Figure 11.6: Mass spetrum of SU(2)�SU(2).and the K�ahler potentialK = � ln 3Yi=1(ti + �ti)!� ln 4 4Yi=1 �zi + �zi�!+ 3 ln(8�210M2PV �1s e4�̂=3) : (11.56)There are again two shape parameters � = b=a and � = =a and the symmetries� $ �, (�; �; ~�) $ (�=�; 1=�; �~�). In �gure 11.6 we display the mass spetrum forsome values of the parameters. This time there will always be one unstabilized mass-less axion 3 ( ~M2=0) and a orresponding tahyoni omplex struture modulus with~M2=jW j2 = �2.In the limit W�1 ! 0, W�2 blows up just as the lower bound for ~�. Hene, weannot satisfy (2.52) for negative a and the deoupling of the Kaluza-Klein modes isnot guaranteed.11.6 E�etive type IIA ation on SU(2)2U(1) �U(1)This oset spae has no supersymmetri AdS4 solution. Nevertheless, one an de�nean SU(3)-struture on it. In order to eliminate the one- and �ve-forms, we introduea set of suitable orientifolds. The possible orientifolds that are perpendiular to theoordinate frame and ompatible with the struture onstants are along 4123 ; 345; 256 ; 146 ; 246 ; 156 : (11.57)3One may wonder why there is a at axioni diretion around the supersymmetri solution whereaswe laimed that for p 6= 0 there are no at diretions arising with the superpotential (11.52). Thereason is that the bubble ontaining the supersymmetri solution has bubble parameter p = 0 (seeeq. (11.51)), sine the bakground ux for the supersymmetri solution Ĥ / Re
 / dJ is always exatand thus pure utuation.4To be preise, e.g. 123 means for the orientifold involution e1 ! e1, e2 ! e2, e3 ! e3, e4 ! �e4,e5 ! �e5, e6 ! �e6.



11.6. EFFECTIVE TYPE IIA ACTION ON SU(2)2U(1) �U(1) 149In order to remove one- and �ve-forms, it turns out that we have to introdue at leasttwo orientifolds, in partiular one of f123; 345g and one of f256; 146; 246; 156g. It doesnot matter for the analysis whih partiular hoie is made, but for de�niteness let ushoose the following set 1 2 3 4 5 6O6 N N NO6 N N NO6 N N NO6 N N NFrom the set of G-invariant forms given in eq. (9.20) the following forms survive theorientifold projetionodd 2-forms: (e15 + e24) ; e36 ;even 3-forms: e123 ; (e256 � e146) ; e345 ;odd 3-forms: e126 ; (e235 � e134) ; e456 ; (11.58)whih we then plug in eq. (3.37). There is always a hange of basis suh that we anassume ki > 0, i = 1; 2. The onditions for metri positivity then beomeu1u2 > 0 ; u1u3 > 0 : (11.59)With the redued set of forms (11.58) the Betti-numbers are b�2 = 0 and b�3 = 1.The most general bakground uxes are thus hosen to beĤ = p �e126 � e456� ;F̂0 = m;F̂2 = n1e36 + n2(e15 + e24) ;F̂4 = 0 ;F̂6 = 0 ; (11.60)
where we used the losed part of ÆC3 to put F̂6 to zero as explained in setion 3.3.Note that one easily veri�es that this hoie of bakground uxes reprodues withthe Bianhi identity dF̂2 + mĤ = �j6 exatly the expeted soure terms from ourhoie of the orientifold involutions. We �nd for the superpotentialWE = � ie�i�4�210 Vs �n1(t2)2 + 2n2t1t2 � imt1(t2)2 + ip(z1 � z3)� t1(z1 + z3)� 2t2z2� ;(11.61)



150 11. EFFECTIVE TYPE IIA ACTION ON COSET SPACESand the K�ahler potentialK = � ln �(t1 + �t1)(t2 + �t2)2�� ln �4(z1 + �z1)(z2 + �z2)2(z3 + �z3)�+ 3 ln �8�210M2PV �1s � ;(11.62)Let us mention that we also an onsider the hoie Ĥ = 0 in eq. (11.60), whihthen implies that we have to hoose F̂6 = �f 0e123456. For this hoie the superpotentialreadsWE = � ie�i�4�210 Vs �f 0 + n1(t2)2 + 2n2t1t2 � imt1(t2)2 � t1(z1 + z3)� 2t2z2� ; (11.63)whereas the K�ahler potential is not hanged. Note that with this hoie of the bak-ground uxes, we have an axioni at diretion in the model, sine the ombination(z1 � z3) drops out.11.7 E�etive type IIA ation on SU(2)�U(1)3Again, for this trivial oset spae all the left-invariant forms are G-invariant. There areten possible orientifold planes perpendiular to the oordinate frame and ompatiblewith the struture onstants. It turns out that in order to remove the one- and �ve-forms we have to hoose at least three mutually supersymmetri orientifolds and thatit does not matter for the analysis whih ones we hoose. For de�niteness, let us takethe following hoie 1 2 3 4 5 6O6 N N NO6 N N NO6 N N NO6 N N NWith these orientifolds, we get the following expansion forms to be used in eq. (3.37)odd 2-forms: e16 ; e25 ; e34 ;even 3-forms: e123 ; e356 ; �e246 ; e145 : (11.64)Again there is always a hange of basis suh that we an assume ki > 0, i = 1; 2. Thepositivity of the metri demands thatu1u2 > 0 ; u1u3 > 0 ; u1u4 > 0 : (11.65)



11.7. EFFECTIVE TYPE IIA ACTION ON SU(2)�U(1)3 151The Betti-numbers are this time b�2 = 0 and b�3 = 1 suh that the most generalbakground uxes are Ĥ = pe456 ;F̂0 = m;F̂2 = n1e16 + n2e25 + n3e34 ;F̂4 = 0 ;F̂6 = 0 : (11.66)
Again one easily shows that the Bianhi identity reprodues the expeted soureterm oming from our hoie of orientifold involutions. The superpotential for thismodel readsWE = � ie�i�4�210 Vs �n1t2t3 + n2t1t3 + n3t1t2 � imt1t2t3 � ipz1 � t1z4 � t2z3 � t3z2� ;(11.67)whereas the K�ahler potential isK = � ln 3Yi=1(ti + �ti)!� ln 4 4Yi=1(zi + �zi)!+ 3 ln �8�210M2PV �1s � : (11.68)Again, one ould hoose Ĥ = 0 and instead F̂6 = �f 0e123456 in eq. (11.66). Thesuperpotential for this hoie readsWE = � ie�i�4�210 Vs �f 0 + n1t2t3 + n2t1t3 + n3t1t2 � imt1t2t3 � t1z4 � t2z3 � t3z2� ;(11.69)whereas the K�ahler potential does not hange. Note that we obtain again a at diretionby turning o� Ĥ sine the superpotential (11.69) does not depend on z1.





Chapter 12Coset models with statiSU(2)-strutureWithin the lass of oset geometries we an also try to �nd suitable oset spaes forompati�ations with more general G-strutures than strit SU(3)-struture. Let usfous in the following on ompati�ations with stati SU(2)-struture. As we have seenin hapter 6, for the nilmanifolds there exists a type IIB AdS4 N = 1 solution withstati SU(2)-struture whih turned out to be related via a T-duality to both, the torussolution and the Iwasawa solution (at least for some values of the parameters). Thismotivates to look in type IIB for possible ompati�ations with stati SU(2)-strutureon the oset spaes. Indeed, in [34℄ it was mentioned that there is a stati SU(2) typeIIB N = 1 ompati�ation to AdS4 on SU(3)�U(1)SU(2) that is T-dual to the strit SU(3)type IIA solution on the same oset (the solution of setion 10.4) and a further statiSU(2) type IIB N = 1 AdS4 solution on SU(2)2U(1) � U(1) whih is T-dual to the SU(3)type IIA solution on SU(2)� SU(2) of setion 10.5 (see also [117℄).Here we do not only want to study type IIB N = 1 ompati�ations to AdS4, butfollow our approah and ompute the e�etive four-dimensional theory for all oset mod-els that allow for a stati SU(2)-struture. We thus derive the set of G-invariant formsfor these models and expand the stati SU(2)-struture quantities given in eq. (3.42)in the appropriate forms. The SU(2)-struture onditions (2.16) impose non-trivialonditions on these utuations. An elegant way to solve these ompatibility ondi-tions for the utuations is to introdue (smeared) O5/O7 orientifolds. In eq. (3.40)the transformation properties of the SU(2)-struture quantities are given suh that wean expand these quantities in the G-invariant forms transforming orrespondingly. Itturns out that the ompatibility onditions are then automatially satis�ed for all theutuations. Note that this is similar to the approah we followed for the strit SU(3)-struture ompati�ations of hapter 11, where we removed one- and �ve-forms byhoosing appropriate O6 orientifold involutions.In the following we will study the six-dimensional oset spaes G=H of table 4.1that have struture group SU(2). A neessary ondition on H is that H � SU(2) [34℄,



154 12. COSET MODELS WITH STATIC SU(2)-STRUCTUREwhih restrits the possible oset andidates to the last four entries in table 4.1. Weimmediately an exlude the oset model SU(2)3SU(2) as an be seen as follows 1. WhenSU(2) is embedded diagonally in SU(2)3, the oset spae admits no G-invariant one-forms (whih are needed for a stati SU(2)-struture), and if SU(2) is embedded in thelast two SU(2) fators, the given set of G-invariant one- and two-forms isone-forms : e1; e2; e3 ;two-forms : e12; e13; e23 ; (12.1)with whih we an not satisfy ondition (2.16a).In the following we will study the remaining possible oset spaes, that are SU(3)�U(1)SU(2) ,SU(2)2U(1) �U(1), SU(2)� SU(2) and SU(2)�U(1)3. We will restrit ourselves to O5/O7orientifold planes that are perpendiular to the oordinate frame 2.12.1 E�etive type IIB ation on SU(3)�U(1)SU(2)We �rst derive all possible O5/O7 orientifold planes that are perpendiular to the oor-dinate frame and ompatible with the struture onstants (i.e. the struture onstanttensor (4.29) is even under the orientifold involutions), and we obtain the following listof possible orientifold involutionsO5: 13; 14; 23; 24; 56 ;O7: 1256; 3456 : (12.2)Choosing the O5 orientifold along 56, we would end up with even G-invariant one-forms e5 and e6 under this O5 orientifold, whih is not appropriate to expand theSU(2)-struture quantity V in eq. (3.42), sine the one-forms have to be odd under O5-orientifolds, see eq. (3.40). We thus exlude the orientifold along 56. Whih ompatibleombination of the remaining O5-planes we hoose does not matter for the followinganalysis, so let us hoose for de�niteness the following orientifold planes:1 2 3 4 5 6O5 N NO5 N NO7 N N N NO7 N N N NFrom the set of G-invariant forms for this model (9.14), we obtain the followingbasis of forms transforming as indiated under the O5/O7 orientifold planes:1For the details on the struture onstants of this oset spae we refer the reader to [34℄.2Contrary to O6-planes, SU(2)� SU(2) allows for perpendiular O5/O7-planes.



12.1. EFFECTIVE TYPE IIB ACTION ON SU(3)�U(1)SU(2) 155type under O5/O7 basis nameodd/even 1-form e5; e6 Y (1�+)ieven/odd 2-form e14 + e23 Y (2+�)odd/odd 2-form e13 � e24 Y (2��)odd/even 4-form e1256 + e3456 Y (4�+)Putting these expansion forms in (3.42) we end up with four omplex moduli �elds� = x + iy, t1 = k1 � ib1, z1 = u1 + i1 and w1 = v1 + ih1. The SU(2)-struturequantities are expanded as follows !2 = k1(e13 � e24) ;e��Im
2 = u1(e14 + e23) ;�ie�2�2V ^ �V ^Re
2 = v1(e1256 + e3456) ;2V = C(ie5 � �e6) ; (12.3)and one an easily hek that the SU(2)-struture ompatibility onditions (2.16) areautomatially satis�ed for all the utuations. Neessary onditions for metri positiv-ity are x > 0, k1 > 0 and u1v1 < 0.Note also that there are no vetor �elds arising in the spetrum. For instane, for themetri or the B-�eld, we would get a gauge �eld from the metri for every even/evenone-form and a gauge �eld from the B-�eld for every odd/odd one-form under O5/O7.However, these one-forms do not appear after the orientifold projetion. Similarly, oneeasily shows that there are no gauge �elds arising from the RR-setor. The same appliesfor the other models in this setion.Next we ome to the hoie of bakground uxes. As explained in setion 3.3 wehoose for this model the following bakground uxesĤ = 0 ;F̂1 = m1e5 +m2e6 ;F̂3 = f3(e136 � e246) ;F̂5 = f5e12345 ; (12.4)where F̂1 is the most general one-form whih is odd/even under the O5/O7 orientifolds,Ĥ 2 H3��(M;R) (this �xes for this model ÆB in eq. (3.46) ompletely), F̂3, whih iseven/odd under O5/O7, is hosen up to exat forms and F̂5 2 H5�+(M;R).Note that there is also a non-losed G-invariant three-form that is odd/odd underthe O5/O7 planes, e146 + e236. This means that whenever we turn on this Ĥ ux weautomatially have NS5-branes, dĤ = jNS5 6= 0. However, in the following we will putthis ontribution to zero sine we do not know if the expression we have given for thesuperpotential in eq. (3.38) takes the ontribution from the NS5-brane properly intoaount.



156 12. COSET MODELS WITH STATIC SU(2)-STRUCTUREThe Bianhi identities for F̂1 and F̂3 readdF̂1 = �jO7 = �p32 m1(e12 + e34) ;dF̂3 + F̂1 ^ Ĥ = �jO5 = p3f3(e1456 + e2346) ; (12.5)as it is expeted from our hoie of the orientifolds. Plugging these expansions andthe hoie for the bakground uxes in the expression for the superpotential (3.38), wearrive atWE = � iC4�210 Vs �f5� + 2f3t1 �m1(t1)2� � im2(t1)2 + 2p3t1z1� �p3w1� ; (12.6)where we de�ned a standard volume Vs = R e123456. For the K�ahler potential we obtainfrom (3.39) K =� ln �(� + ��)(t1 + �t1)2�� ln �4(z1 + �z1)2(w1 + �w1)2�+ 3 ln(8�210M2PV �1s )� ln jCj2 : (12.7)We an eliminate the omplex salar C appearing in the superpotential and the K�ahlerpotential by performing a K�ahler transformation (3.31).Let us now perform a T-duality on this solution along the diretion 6. Following[102℄, T-duality ats on the RR-�elds by adding/dropping the index we T-dualize on.From the hoie of bakground uxes in eq. (12.4) we infer that m2 turns into thebubble parameter for F0 (i.e. the Romans mass) on the type IIA side, m1 and f3 turnaordingly into bubble parameters for F2 and f5 into the parameter for F6. Indeed,using T-duality on the level of the superpotential (see also eq. (8.8))WE;IIA ! �WE;IIB�� ! 1�� ; (12.8)we arrive at the T-dual type IIA superpotentialWE;IIA = � i4�210Vs �f5 + 2f3�t1 �m1(t1)2 � im2�(t1)2 + 2p3t1z1 �p3�w1� : (12.9)With the identi�ation � ! t2, f5 ! f 0, f3 ! �n1, m1 ! �n2, m2 ! m, w1 ! z2 andthe hoie � = 0 (whih reets our simple hoie of perpendiular orientifolds in thisanalysis) this is exatly the superpotential for the same oset on type IIA with stritSU(3)-struture that we obtained in eq. (11.44) with the expeted saling of the RR-uxes with the moduli �elds. This is also expeted by looking at the struture onstantsof this model (see eq. (9.12)): sine there is no struture onstant with lower or upperindex 6, we an T-dualize along 6 without hanging the struture onstants and we endup (for trivial Ĥ) with the same model in type IIA. Thus, these two ompati�ationsare related by T-duality, as was already suggested in [34℄ on the level of AdS4 N = 1vaua.



12.2. EFFECTIVE TYPE IIB ACTION ON SU(2)2U(1) �U(1) 15712.2 E�etive type IIB ation on SU(2)2U(1) �U(1)For this model we hoose the following O5/O7 planes whih are perpendiular to theoordinate frame and ompatible with the struture onstants (the hoie is againunique up to relabeling of the oordinates):1 2 3 4 5 6O5 N NO5 N NO7 N N N NO7 N N N Nand we obtain the following basis of G-invariant forms transforming as indiated underthe O5/O7 orientifold planes:type under O5/O7 basis nameodd/even 1-form e3; e6 Y (1�+)ieven/odd 2-form e15 + e24 Y (2+�)odd/odd 2-form e25 � e14 Y (2��)odd/even 4-form e1236 , e3456 Y (4�+)iThis expansion basis gives rise to �ve omplex moduli �elds expanded as in eq. (3.42)with � = x + iy, t1 = k1 � ib1, z1 = u1 + i1, w1 = v1 + ih1 and w2 = v2 + ih2. Onean easily hek that the SU(2)-struture ompatibility onditions (2.16) are satis�edfor all the utuations. Neessary onditions for metri positivity are x > 0, k1 > 0,v1v2 > 0 and u1v1 > 0.For this model, we hoose aording to the disussion in setion 3.3 the bakgrounduxes as follows Ĥ = 0 ;F̂1 = m1e3 +m2e6 ;F̂3 = f3(e256 � e146) ;F̂5 = f5e12345 : (12.10)
Let us mention that there is again room for an NS5-brane soure sine there is anon-losed G-invariant three-form, e156+e246, transforming exatly as the H-ux underthe O5/O7 planes. However, we will put to zero this ontribution.The Bianhi identities for F̂1 and F̂3 readdF̂1 = �jO7 = �m1(e12 + e45)dF̂3 + F̂1 ^ Ĥ = �jO5 = f3(e1356 + e2346) (12.11)



158 12. COSET MODELS WITH STATIC SU(2)-STRUCTUREas it is expeted. For the superpotential, we derive from eq. (3.38) the expressionWE = � iC4�210Vs �f5� + 2f3t1 �m1(t1)2� � im2(t1)2 � (w1 + w2)� 2t1z1�� ; (12.12)where the standard volume is Vs = R e123456. For the K�ahler potential we obtain fromeq. (3.39)K =� ln �(� + ��)(t1 + �t1)2�� ln �4(z1 + �z1)2(w1 + �w1)(w2 + �w2)�+ 3 ln(8�210M2PV �1s )� ln jCj2 : (12.13)We an eliminate the omplex salar C by performing a K�ahler transformation (3.31).Let us now perform a T-duality along the 6 diretion. The same onsiderations as inthe previous setion leads, using the T-duality rule (12.8), to the type IIA superpotentialWE;IIA = � i4�210Vs �f5 + 2f3�t1 �m1(t1)2 � im2�(t1)2 � �(w1 + w2)� 2t1z1� :(12.14)Under the identi�ation � ! t1, t1 ! t2, w1 ! z1, w2 ! z3, z1 ! z2 for the moduli�elds and f5 ! f 0, f3 ! n2, m1 ! �n1 and m2 ! m for the bubble parameters, weobtain the same superpotential as we obtained for the same oset with strit SU(3)-struture in eq. (11.63). Hene, these two ompati�ations on the same oset are againrelated by a T-duality (whih is also expeted sine the struture onstants have nolower or upper 6 index, see eq. (9.19)). Note that we have an axioni at diretion inthis model.12.3 E�etive type IIB ation on SU(2)� SU(2)For this model we hoose the following perpendiular O5/O7-planes (again unique upto relabeling of the oordinates) 1 2 3 4 5 6O5 N NO5 N NO7 N N N NO7 N N N Nsuh that we obtain the following basis of left-invariant forms transforming as indiatedunder the O5/O7 orientifoldstype under O5/O7 basis nameodd/even 1-form e3; e6 Y (1�+)ieven/odd 2-form e14, e25 Y (2+�)iodd/odd 2-form e15, e24 Y (2��)iodd/even 4-form e1236, e3456 Y (4�+)



12.3. EFFECTIVE TYPE IIB ACTION ON SU(2)� SU(2) 159We thus have 7 omplex moduli �elds whih we expand as indiated in eq. (3.42).Again, one easily an verify that the ompatibility onditions for the SU(2)-struture(2.16) are satis�ed for all the utuations. Neessary onditions for metri positivityare x > 0, k1 > 0, k2 > 0 and v1v2 > 0, u1u2 < 0 and u2v2 < 0.The bakground uxes are hosen aording to our disussion in setion 3.3 as followsĤ = 0 ;F̂1 = m1e3 +m2e6 ;F̂3 = f1(e135 + e246) + f2(e156 + e234) ;F̂5 = 0 : (12.15)
Note that there again exist non-losed invariant three-forms, (e134�e256) and (e146�e235), whih transform the same way as Ĥ does under the orientifold involutions. Hene,we ould have NS5-branes by turning on these uxes. However, we will again put tozero these uxes sine the superpotential (3.38) may not be orret in the presene ofNS5-branes.The superpotential reads for this hoieWE = � iC4�210Vs �f1(t1 + it2�) + f2(t2 + it1�)�m1t1t2� � im2t1t2+it1z2 � it2z1 � t1z1� + t2z2� � iw1� � w2� ; (12.16)where we de�ned Vs = R e123456. The K�ahler potential readsK = � ln �(� + ��)(t1 + �t1)(t2 + �t2)�� ln ��4(z1 + �z1)(z2 + �z2)(w1 + �w1)(w2 + �w2)�+ 3 ln(8�210M2PV �1s )� ln jCj2 : (12.17)Again, we an eliminate the omplex salar C by performing a K�ahler transformation(3.31).This superpotential is not T-dual to a type IIA model with geometri uxes only.This an for example be seen by performing a T-duality along the 6 diretion as in theprevious setions, ending up with a type IIA superpotentialWE;IIA = � i4�210 Vs �i(f1t2 + f2t1) + f1t1� + f2t2� �m1t1t2 � im2t1t2��t1z1 + t2z2 � iw1 � w2� + it1z2� � it2z1�� ; (12.18)where the terms in the �rst line ome from F4, F2 and F0 uxes, respetively. The �rstfour terms in the seond line ome from geometri uxes but the last two terms arenon-geometri Q-uxes (note the ombination of two K�ahler moduli and one omplex



160 12. COSET MODELS WITH STATIC SU(2)-STRUCTUREstruture moduli in those terms). Suh non-geometri uxes will also arise for a T-duality along any other diretion than 6, sine the struture onstants have all sixdiretions as lower and upper indies. Thus, a T-duality, whih ats on geometri uxesby raising/lowering the index we T-dualize on [118℄ (for a review on non-geometrialbakgrounds see, e.g., [119℄) Hijk Ti�! f ijk Tj�! Qijk ; (12.19)results in a type IIA bakground with non-geometri uxes Q. Hene, this is in fat anew model we did not study so far on the type IIA side.12.4 E�etive type IIB ation on SU(2)�U(1)3The analysis of this model is quite similar to the analysis of the model SU(2)�SU(2), asone only turns o� the struture onstant f456 = 0. Therefore, one an hoose withoutloss of generality the same O5/O7-planes as in setion 12.3 and the same expansionforms. The only di�erene is in the hoie of bakground uxes, sine the ohomologyhanges, and we hoose Ĥ = 0 ;F̂1 = m1e3 +m2e6 ;F̂3 = f1e156 + f2e246 ;F̂5 = f5e12345 ; (12.20)suh that the superpotential readsWE = � iC4�210 Vs �f5� + f1t2 + f2t1 �m1t1t2� � im2t1t2 � w2 � t1z1� + t2z2�� ;(12.21)and the K�ahler potential is as in eq. (12.17). Note that there is an axioni at diretionsine the superpotential does not depend on w1.Again, it is not diÆult to �nd the identi�ations to show that this model is T-dual (along the diretion 6) to the model on the same oset in type IIA with stritSU(3)-struture, see eq. (11.69).Let us briey summarize the result of this hapter. By turning on O5/O7 orientifoldplanes in order to satisfy the ompatibility onditions (2.16), we omputed the typeIIB e�etive theory for all oset models that allow for a stati SU(2)-struture (theseare the last four entries in table 4.1). However, we notied that for all exept one ofthese models there is a T-duality relating the model to a type IIA strit SU(3)-strutureompati�ation that we already analyzed in hapter 11. One model, however, is T-dual to a type IIA strit SU(3)-struture ompati�ation with non-geometri uxesand may thus be interesting for the phenomenologial appliations we study in the nexthapter.



Chapter 13On the osmology of the osetmodelsWe disussed in hapter 5 that an epoh of osmi ination in the early universe isthe dominant lore to explain the fasinating data of reent astronomial observations,for instane the atness and homogeneity of our universe. The inationary phase tookplae even before the phase of the radiation dominated universe, as the universe hadtemperatures of at least 10 billions degrees. At extremely high energies quantum e�etsof gravity are expeted to beome important. String theory is believed to be a promisingandidate to desribe this physis appropriately - and as suh should be able to realizeination. We have seen that ination an be driven by a salar �eld, and the moduli�elds of string theory provide us with natural andidates for an inaton. SuÆientonditions to realize ination within string theory are the so-alled slow-roll onditionson the potential of the moduli �elds. We reviewed these onditions in setion 5.1.2.Another important osmologial observation is that at present the universe is in astate of aelerated expansion. We thus want to look for a string theory vauum withsmall positive osmologial onstant, i.e. a de Sitter solution.Of ourse we are now interested in the question, whether the models we onsider inthis thesis, for whih we expliitly onstruted the four-dimensional e�etive potential,are interesting andidates for ination senarios or have de Sitter solutions with smallpositive osmologial onstant. As we mentioned already in the introdution, this wouldrender these type IIA models extremely interesting, sine type IIA orientifolds withinterseting D6-branes o�er good prospets for deriving standard model-like setorsfrom strings.However, the main problem to realize ination or de Sitter vaua in the lassialregime in type IIA is that there exist quite strong no-go theorems against slow-rollination and de Sitter vaua. These no-go theorems were disussed in setion 5.2 and5.3 and fous in partiular on the role played by the urvature of the internal manifold.Let us briey summarize the neessary onditions to avoid these no-go theorems:



162 13. ON THE COSMOLOGY OF THE COSET MODELS
Vf > 0 ; or equivalently ; R < 0 ; (13.1a)m 6= 0 ; (13.1b)DU � ���U�� = �ka �U�ka < 0 ; (13.1)where Vf is the ontribution of the geometri uxes to the salar potential, R is thesalar urvature of the internal manifold (the expression for R is given in eq. (4.28)), mis the Roman mass and the expression for � and the funtion U are given in eqs. (5.53)and (5.66), respetively. We further mentioned in setion 5.2 that to avoid a runawayin � -diretion we need VO6/D6 < 0.We are always free to turn on a non-vanishing Romans mass m, suh that ondition(13.1b) is easy to satisfy. From the de�nition of U in eq. (5.66) and eq. (5.45), we getthe relation between the salar urvature and UR / � UVol ; (13.2)suh that the �rst ondition in (13.1a) translates into the requirement that U is positive.It suÆes therefore to derive for all oset models the funtion U . If U is negative forall values in the moduli spae, the no-go theorem of setion 5.2 applies, implying thebound on the slow-roll parameter � � 27=13, thus ruling out slow-roll ination and deSitter vaua. If it turns out that U an be positive for some region in the moduli spae,we hek the third ondition (13.1). If it turns out that DU � 0 the no-go theoremof setion 5.3 applies and slow-roll ination and de Sitter vaua are exluded for theorresponding model, sine � � 2.In the following we derive for eah oset model of hapter 11 the salar urvatureR with eq. (4.28) and the metri gij indued by J and 
. From eq. (5.66) we thenalulate the funtion U .In hapter 12 we identi�ed type IIB stati SU(2)-struture ompati�ations on theoset models. However, we showed for all but one model that there is a T-dualityrelating these models to type IIA strit SU(3)-struture ompati�ations whih wealready analyzed in hapter 11. Hene, for these models nothing new is expeted.However, there is one type IIB model with a T-dual on type IIA involving non-geometriuxes. Thus, the no-go theorems do not apply and the model ould be interesting forination or de Sitter vaua.13.1 Type IIA oset ompati�ations with a no-go theo-remIn this setion, we go through the list of oset models that admit a strit SU(3)-struture(see hapter 11). Unfortunately, as we will see in the following, we have to exlude all



13.1. TYPE IIA COSET COMPACTIFICATIONS WITH A NO-GO THEOREM 163but one of the oset models for slow-roll ination as well as de Sitter vaua, sine wean apply one of the no-go theorems of hapter 5.G2SU(3)For this model we �nd for the funtion U (see eq. (5.66)):U / �(k1)2 ; (13.3)whih is manifestly negative. This implies that Vf itself is manifestly negative so thatthe no-go theorem of [91℄, whih we reviewed in setion 5.2, already rules out this osetmodel [49℄.Sp(2)S(U(2)�U(1))For this oset model we alulate for the funtion U the followingU / (k2)2 � 4(k1)2 � 12k1k2 ; (13.4)whih is not negative on the whole moduli spae (as one an see by hoosing k2 smalland k1 large). The no-go theorem (5.48) is thus not appliable and we therefore performa more areful analysis using the re�ned no-go theorem of setion 5.3. The only non-vanishing intersetion number is �112 and permutations thereof, so that k2 plays therole of k0, and we haveDU = �k1�k1U / 8(k1)2 + 12k1k2 > 0 ; (13.5)so that with ki > 0 (beause of metri positivity) the inequality (5.68) is stritlysatis�ed and this model is ruled out.SU(3)U(1)�U(1)For this oset spae, we obtainU / (k1)2 + (k2)2 + (k3)2 � 6k1k2 � 6k2k3 � 6k1k3 ; (13.6)whih an be positive for some values of ka. The non-vanishing intersetion numbersare of the type �123 so that we an hoose any one of the three k's as k0. We willhoose k0 to be the biggest and assume without loss of generality that this is k1, i.e.that k1 � k2; k3. We then �nd thatDU = (�k2�k2 � k3�k3)U / (6k1 � 2k2)k2 + (6k1 � 2k3)k3 + 12k2k3 > 0; (13.7)so that with ki > 0 (beause of metri positivity) this oset spae is also ruled out bythe no-go theorem (5.68).



164 13. ON THE COSMOLOGY OF THE COSET MODELSSU(3)�U(1)SU(2)For this model, the funtion U depends on an extra onstant � related to the hoie oforientifolds, see setion 11.4. The funtion U turns out to beU / (k2)2(u2)2 � 8k1k2ju1u2j(1 + �2) ; (13.8)and the non-vanishing intersetion numbers are of the form �112. Thus k2 plays therole of k0, and we �nd thatDU = �k1�k1U / 8k1k2ju1u2j(1 + �2) > 0; (13.9)so that with ki > 0 (beause of metri positivity) this ase is also ruled out.SU(2)2U(1) �U(1)The funtion U beomes for this oset modelU / �4k1k2u2(u1 + u3) + (k2)2 �(u1)2 + (u3)2�2pu1u3ju2j : (13.10)whih an be positive for ertain values of the K�ahler moduli. The non-vanishingintersetion number is �112 so that k2 plays the role of k0, and we get for (5.68):DU = �k1�k1U / 2k1k2u2(u1 + u3)pu1u3ju2j > 0 ; (13.11)whih is positive using the onditions (11.59). Hene, this ase is ruled out as well.SU(2)�U(1)3For the quantity U we get this timeU / (k1u4)2 + (k2u3)2 + (k3u2)2 � 2k1u4k2u3 � 2k1u4k3u2 � 2k2u3k3u22pu1u2u3u4 ; (13.12)whih an be positive. The non-vanishing intersetion number is �123 so that eah kian play the role of k0. Without loss of generality we an assume k1u4 � k2u3 > 0,k1u4 � k3u2 > 0 and hoose k0 to be k1. Thus we then �ndDU = (�k2�k2 � k3�k3)U / �(k2u3 � k3u2)2 + k1u4(k2u3 + k3u2)pu1u2u3u4 > 0 ; (13.13)so that we an also rule out this model.



13.2. NUMERICAL ANALYSIS FOR THE SU(2)� SU(2) COSET 165SU(2)� SU(2)Thus far, we have found that � � 2 for all other ases. For the remaining oset spaeSU(2)� SU(2), one �ndsU / 3Xi=1(ki)2 4XI=1(uI)2!� 4k2k3(ju1u2j+ ju3u4j)� 4k1k2(ju1u4j+ ju2u3j)� 4k1k3 �ju1u3j+ ju2u4j� ; (13.14)and the non-vanishing intersetion numbers are of the form �123 so that we ould hooseany one of the k's as k0. However, it is not possible to apply the no-go theorem. Thisan be easily seen if we take for example u1 � u2; u3; u4. Then we have shematiallyU / ~k2(u1)2 and DU / �kaka(u1)2 < 0. In [92℄ further no-go theorems have beenderived but none of those apply to this ase either. We therefore study this oset spaein more detail in setion 13.2.To summarize, by means of the lassial no-go theorems of hapter 5, we ould ruleout all but one oset model to allow for ination or de Sitter vaua. To be preise, thelower bound on � � 2 implies that there are, for V > 0, diretions in the �eld spae thatare too steep to realize ination or a de Sitter minimum. Further, as we disussed insetion 5.3.1, for the models in this setion, the following additional ingredients annotbe added: NS5-, D4- and D8-branes, sine there are no orresponding urrents with theappropriate properties under all orientifold involutions. Also, an F-term uplift alongthe lines of O'KKLT [100, 101℄ does not work.Note that we an not be sure that there are no other light Kaluza-Klein modes joiningthe light �elds based on the left-invariant expansion ansatz, sine a separation of salesturned out to be diÆult. However, as we already mentioned, a trunation to the set ofleft-invariant forms is believed to provide a onsistent trunation [115, 60, 116℄ and thatthere is no oupling between the set of preserved left-invariant �elds and the trunatednon-invariant �elds. Hene, even if light �elds from the Kaluza-Klein spetrum wouldeventually join the trunated e�etive theory, ination and de Sitter vaua would stillbe exluded by the no-go theorems, sine there are already in the trunated theorydiretions, that are too steep to allow for ination and de Sitter vaua.13.2 Numerial analysis for the SU(2)� SU(2) ompati-�ation on type IIA and on type IIBIn setion 11.5 we derived the type IIA strit SU(3)-struture superpotential and K�ahlerpotential for a ompati�ation on this oset spae. By means of eq. (3.25) it is straight-forward to alulate the salar potential and the slow-roll parameter � as in eq. (5.31).However, the expression for � is quite ompliated so that we annot minimize it an-alytially. On the other hand, we an minimize it numerially and it turns out thatone indeed �nds solutions with numerially vanishing � (and we an onlude that in



166 13. ON THE COSMOLOGY OF THE COSET MODELSthis ase there is no undisovered no-go theorem against small �). For instane, suh asolution is given bym1 = m2 = m3 = L ; m = 2L�1 ; p = 3L2 ;k1 = k2 = k3 � :8974L2 ; b1 = b2 = b3 � �:8167L2 ;u1 � 2:496L3; u2 = �u3 = u4 � �:05667L3 ;1 � �2:574L3 ; 2 = �3 = 4 � :3935L3 ; (13.15)where L is an arbitrary length. While we an use L to sale up our solution with respetto the string length ls, we stress that this does not orrespond to a massless modulus,as it also hanges the uxes.To obtain a trustworthy supergravity solution we would have to make sure that theinternal spae is large ompared to the string length and that the string oupling issmall (for whih we ould use our freedom in L). Furthermore, in the full string theorythe uxes have to be properly quantized. Although it is unlikely that this would preventsmall �, we will not try to �nd suh a solution, beause all the solutions with vanishing� we found have a more serious problem, namely that � . �2:4. The eigenvalues ofthe mass matrix turn out to be generially all positive exept for one, with the onetahyoni diretion being a mixture of all the light �elds, in partiular the axions.This means that we have a saddle point rather than a de Sitter minimum. A similarinstability was found in related models in [92℄.In [120℄, a no-go theorem preventing de Sitter vaua and slow-roll ination of generalfour-dimensional supergravity theories was derived by studying the eigenvalues of themass matrix. Allowing for an arbitrary tuning of the superpotential it was shown thatfor ertain K�ahler potentials the Goldstino mass is always negative. For the exampleswe found, this mass is always positive so that the no-go theorem of [120℄ does notapply. This means that allowing for an arbitrary superpotential it should be possibleto remove the tahyoni diretion. In our ase, however, the superpotential is of oursenot arbitrary.Sine the no-go theorems against slow-roll ination do not apply and we have foundsolutions with vanishing �, we heked whether our solutions allow for small � in theviinity of the de Sitter extrema. Unfortunately, this is not the ase. In fat, we foundthat � does not hange muh in the viinity of our solutions where � is still small.However, let us stress that our numerial searh is possibly not exhaustive and weannot ompletely rule out the existene of de Sitter vaua or inating regions for thisase.On the other hand, on the same oset a type IIB stati SU(2)-struture ompati-�ation is possible. In setion 12.3 we derived the expliit superpotential and K�ahlerpotential for this ompati�ation. Further we showed that the type IIB ompati�a-tion is not T-dual to a type IIA ompati�ation with geometri uxes only. Hene, itis not possible to apply the no-go theorems of setion 5.2 and 5.3, and the model maystill be interesting for phenomenologial appliations.



13.2. NUMERICAL ANALYSIS FOR THE SU(2)� SU(2) COSET 167Again it is straightforward to derive the salar potential from eq. (3.25) and theslow-roll parameter �. Although we annot analytially minimize �, we will again doit numerially. However, this time the numerial analysis seems to give a lower boundfor epsilon: � & 9=7. This numerial analysis strongly suggest the existene of a so farundisovered no-go theorem for type IIB ompati�ations (or, from the T-dual typeIIA perspetive, also in the presene of non-geometri uxes) and it would be veryinteresting to further explore this possibility.





Chapter 14ConlusionsIn this thesis we analyzed a large number of type IIA strit SU(3)-struture ompat-i�ations with uxes and O6/D6-soures, as well as type IIB stati SU(2)-strutureompati�ations with uxes and O5/O7-soures. Restriting to strutures and uxesthat are onstant in the basis of left-invariant one-forms, these models are tratableenough to allow for an expliit derivation of the four-dimensional low-energy e�etivetheory.The six-dimensional ompat manifolds we studied in this thesis are nilmanifoldsbased on nilpotent Lie-algebras, and, on the other hand, oset spaes based on semi-simple and U(1)-groups, whih admit a left-invariant strit SU(3)- or stati SU(2)-struture. In partiular, from the set of 34 distint nilmanifolds we identi�ed twonilmanifolds, the torus and the Iwasawa manifold, that allow for an AdS4, N = 1type IIA strit SU(3)-struture solution and one nilmanifold allowing for an AdS4,N = 1 type IIB stati SU(2)-struture solution. From the set of all the possible six-dimensional oset spaes given in table 4.1, we identi�ed seven oset spaes suitablefor strit SU(3)-struture ompati�ations, four of whih also allow for a stati SU(2)-struture ompati�ation. For all these models, we alulated the four-dimensionallow-energy e�etive theory usingN = 1 supergravity tehniques. In order to write downthe most general four-dimensional e�etive ation, we also studied how to lassify thedi�erent disonneted \bubbles" in moduli spae.Some of the oset spaes allow for four-dimensional (massive) type IIA N = 1 AdS4solutions. For these oset models and the three nilmanifold models, we alulatedthe mass spetrum of the moduli �elds around the supersymmetri solution. For thenilmanifold examples we have found that there are always three unstabilized moduliorresponding to axions in the RR-setor. On the other hand, the N = 1 solutions onthe oset models, exept for SU(2) � SU(2), have all moduli stabilized. For the torusand the Iwasawa solution, we also performed an expliit Kaluza-Klein redution, whihled to the same result as the analysis with supergravity tehniques, supporting thevalidity of the e�etive supergravity approah also in the presene of geometri uxes.Furthermore, we have demonstrated that this superpotential and K�ahler potential lead



170 14. CONCLUSIONSto sensible results in type IIB string theory with stati SU(2)-struture.The neessary and suÆient onditions for N = 1 ompati�ations of type IIAsupergravity to AdS4 with the strit SU(3)-struture ansatz fore, for non-vanishingRomans mass, the warp fator and the dilaton to be onstant. On the other hand,provided that we set the Romans mass to zero, nothing prevents the warp fator andthe dilaton to be non-onstant. We analyzed the neessary and suÆient onditionsfor an AdS4 N = 1 ompati�ation of this type in setion 2.3. However, to �ndexpliit solutions of this type turns out to be diÆult. One reason is that one has toleave the onvenient notion of left-invariant forms that drops the expliit oordinatedependene. In addition, as we inferred from the analysis in setion 10.6, where weturned on a small non-onstant deformation for the warp fator, a non-onstant warpfator seems in general to require the presene of loalized soures.Two of the oset models of table 4.1 do admit a strit SU(3)-struture, but no typeIIA N = 1 AdS4 vauum. Choosing for simpliity the O-planes suh that the one- and�ve-forms are projeted out and restriting to O-planes that are perpendiular to theoordinate frame, we ould ompute the four-dimensional low-energy e�etive ation.In the same spirit, inluding appropriate O5/O7-planes, we omputed the e�etiveation for the four type IIB stati SU(2)-struture ompati�ations on oset spaes.However, for three of these type IIB models we found a T-duality relating them to typeIIA models with strit SU(3)-struture that we already studied. On the other hand,one model is new, sine it is T-dual to a type IIA model with non-geometri uxes.One the e�etive potential is known, one an study many interesting questions. Forinstane, we disussed for some models how to identify the bubbles in moduli spaethat ontain one or more N = 1 AdS4 solutions. Ultimately, we would like to uplift theAdS4 solutions to a de Sitter spae-time with a small, positive osmologial onstant.This might be aomplished by inorporating a suitable additional uplifting term inthe potential along the lines of, e.g, [23℄. Although a negative mass squared for alight �eld in AdS4 does not neessarily signal an instability, after the uplift all �eldsshould have positive mass squared. Unless the uplifting potential an hange the signof the squared masses, it is thus desirable that they are all positive even before theuplifting. We found that this an be arranged for the oset models G2SU(3) , Sp(2)S(U(2)�U(1))and SU(3)U(1)�U(1) for suitable values of the orientifold harge.An alternative approah towards obtaining meta-stable de Sitter vaua ould alsobe to searh for non-trivial de Sitter minima in the original ux potential away fromthe AdS4 vauum. This approah is also appropriate for the models without an N = 1AdS4 solution. However, there exist strong no-go theorems against slow-roll inationand de Sitter minima in type IIA string theory at tree level. We disussed the nees-sary onditions to irumvent these no-go theorems. For instane, the dilaton-volumedependene in type IIA SU(3)-struture ompati�ations forbids de Sitter vaua orslow-roll ination unless the ompat spae has negative salar urvature indued bythe geometri uxes (or other more omplex ingredients are introdued). Regions inmoduli spae with negative salar urvature are indeed possible for most of the oset



171models we studied. To study these models further we adapted a re�ned no-go theo-rem [92℄ and identi�ed a geometrial riterion that allows one to separate interestingSU(3)-struture ompati�ations from non-realisti ones.As a matter of fat, after this analysis, only two of the oset models are not di-retly ruled out by any known no-go theorem and remain interesting andidates torealize slow-roll ination or stable de Sitter minima (without the inlusion of otheringredients). These are the type IIA strit SU(3)- and type IIB stati SU(2)-strutureompati�ations on the model SU(2)� SU(2). For the former ompati�ation, a nu-merial analysis indeed reveals ritial points (orresponding to numerially vanishing�) with positive energy density, but only at the prie of a tahyoni diretion, orre-sponding to a large negative eta-parameter, � . �2:4. Interestingly, this tahyonidiretion does not orrespond to the one used in the di�erent types of no-go theoremsof [120℄. As our numerial searh is possibly not exhaustive, we annot ompletely ruleout the existene of de Sitter vaua or inating regions for this ase. One may tryto rule out this ase by means of another no-go theorem, perhaps by using methodssimilar in spirit to [120℄, although a diret appliation of their results to this ase doesnot seem possible.On the other hand, the numerial analysis for the type IIB stati SU(2)-strutureompati�ation reveals a lower bound on the �rst slow-roll parameter, � & 9=7, whihstrongly suggest the existene of a so far undisovered no-go theorem for type IIBompati�ations (or, from the T-dual type IIA perspetive, also in the presene ofnon-geometri uxes). To extend our study in this diretion would be very interesting.Following [98, 99℄ or [121, 122, 123℄, one ould also try to inorporate additional stru-tures suh as NS5-branes or quantum orretions of various types. In setion 5.3.1,however, we found that at least for our type IIA models, the following additional in-gredients annot be added or do not work: NS5-, D4- and D8-branes as well as anF-term uplift along the lines of O'KKLT [100, 101℄. Perhaps also methods similar tothe ones in [124℄ for non-supersymmetri Minkowski or AdS4 vaua might be useful forthe diret ten-dimensional onstrution of de Sitter ompati�ations.
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Appendix AConventionsWe de�ne an l-form as A = 1l!A�1:::�ldx�1 ^ � � � ^ dx�l ; (A.1)and the exterior produt of a p-form A and a q-form B as(A ^B)�1:::�p+q = (p+ q)!p!q! A[�1:::�pB�p+1:::�p+q ℄ ; (A.2)where the antisymmetrization is understood with fators,A[�1:::�l℄ = 1l! (A�1:::�l + antisymmetri permutations) : (A.3)The exterior derivative is d = dx��� and given bydA�1:::�l+1 = (l + 1)�[�1A�2 :::�l+1℄ : (A.4)The ontration of an l-form A with with a vetor v = vi ��xi is de�ned by�vA = 1(l � 1)!vjAj�2:::�ldx�2 ^ � � � ^ dx�l : (A.5)The operator � ats on forms by reversing the order of their indies, i.e.,�(A) = 1l!A�1:::�ldx�l ^ � � � ^ dx�1 : (A.6)Note that this results for an l-form in�(A) = (�1) l(l�1)2 A : (A.7)The Hodge dual tensor of an l-form A and a given metri g is given by(?A)�1:::�D�l = 1l!pjgj��1:::�D�l�1:::�lg�1�1 � � � g�l�lA�1:::�l ; (A.8)



176 A. CONVENTIONSwhere � is the totally antisymmetri tensor suh that �01:::D = 1. With this de�nitionwe obtain ? ? A = (�1)l(D�l)sign(g)A : (A.9)It follows for the kineti terms for the RR-�elds�12 Z dDxpjgj 1n!F�1:::�nF �1:::�n = �(�1)n(D�n)2 Z Fn ^ ?Fn : (A.10)The volume form is de�ned as ?1 = vol : (A.11)We often use the 10 ! 4 + 6 split whih indues forms of the type �p ^ �q, where�p is an external p-form and �q an internal q-form. We an use?10(�p ^ �q) = (�1)pq ?4 �p ^ ?6�q ; (A.12)whih implies the useful relations?10� = vol4 ^ ?6� ; ?10(vol4 ^ �) = � ?6 � ;?10vol4 = �vol6 ; ?10vol6 = vol4 : (A.13)We de�ne an inner produt on forms as follows(�; �) = (�1)l(D�l) Z � ^ ?� ; (A.14)where l is the dimension of both � and �. Further we de�ne the adjoint dy of theexterior derivative as follows (d�; �) = (�;dy�) : (A.15)We �nd using eq. (A.14)dy = � sign(g) ? d? for D even(�1)l+1sign(g) ? d? for D odd : (A.16)The Laplaian is de�ned as follows� = dyd + ddy : (A.17)For the ontration of a (poly-)form with gamma matries we introdue the followingnotation A = /A =Xl 1l!A�1:::�l�1:::�l ; (A.18)where we use the underline if the slash makes the expression unreadable.



Appendix BType IIA supergravityThe bosoni ontent of type II supergravity onsists of a metri g, a dilaton �, anNSNS three-form H and RR-�elds Fn. In the demorati formalism of [44℄, where thenumber of RR-�elds is doubled, n runs over 0; 2; 4; 6; 8; 10 in IIA and over 1; 3; 5; 7; 9in type IIB. We write n to denote the dimension of the RR-�elds; for example (�1)nstands for +1 in type IIA and �1 in type IIB. After deriving the equations of motionfrom the ation, the redundant RR-�elds are to be removed by hand by means of theduality ondition: Fn = (�1) (n�1)(n�2)2 en�52 � ?10 F(10�n) ; (B.1)given here in the Einstein frame. We will often olletively denote the RR-�elds, andthe orresponding potentials, with polyforms F =Pn Fn and C =PnC(n�1), so that:F = dHC.In the Einstein frame, the bosoni part of the bulk ation reads:Sbulk = 12�210 Z d10xp�g "R� 12(��)2 � 12e��H2 � 14Xn e 5�n2 �F 2n# ; (B.2)where for an l-form A we de�neA2 = A �A = 1l! AM1:::MlAN1:::NlgM1N1 � � � gMlNl : (B.3)Sine (B.1) needs to be imposed by hand this is stritly-speaking only a pseudoation.Note that the doubling of the RR-�elds leads to fators of 1=4 in their kineti terms.The ontribution from the alibrated (supersymmetri) soures an be written as:Ssoure = Z hC; ji �Xn en4� Z h	n; ji ; (B.4)with 	n = eAdt ^ e��(n� 1)!�̂1T �1 �̂1T M1:::Mn�1 �̂2 dXM1 ^ : : : ^ dXMn�1 ; (B.5)



178 B. TYPE IIA SUPERGRAVITYwith �̂1;2 nine-dimensional internal supersymmetry generators. For spae-�lling souresin ompati�ations to AdS4 this beomes [125℄	n = vol4 ^ e4A��Im	1E��n�4 ; (B.6)with 	1E the pure spinor 	1 in the Einstein frame.The dilaton equation of motion and the Einstein equation read0 = r2�+ 12e��H2 � 18Xn (5� n)e 5�n2 �F 2n + �2102 Xn (n� 4)en4� ?h	n; ji ; (B.7a)0 = RMN + gMN  18e��H2 + 132Xn (n� 1)e 5�n2 �F 2n! (B.7b)� 12�M��N�� 12e��HM �HN � 14Xn e 5�n2 �FnM � FnN� 2�210Xn en4� ?h�� 116ngMN + 12gP (MdxP 
 �N)�	n; ji ;where we de�ned for an l-form AAM � AN = 1(l � 1)!AMM2:::MlANN2:::NlgM2N2 � � � gMlNl : (B.8)The Bianhi identities and the equations of motion for the RR-�elds, inluding theontribution from the `Chern-Simons' terms of the soures, take the form0 = dF +H ^ F + 2�210 j ; (B.9a)0 = d�e 5�n2 � ? Fn�� e 3�n2 �H ^ ?F(n+2) � 2�210 �(j) : (B.9b)Finally, for the equation of motion for H we have:0 = d(e�� ?H)� 12Xn e 5�n2 � ? Fn ^ F(n�2) + 2�210Xn en4�	n ^ �(j)�����8 : (B.10)In the above equations we an rede�ne j in order to absorb the fator of 2�210,(2�210)j ! j ; (B.11)whih we do in this thesis.



Appendix CBasis of generalized geometryIn this appendix, we summarize the most important onepts of generalized geometrythat will be of importane for this thesis. This treatment of generalized geometry isnot omplete, and we refer the interested reader to the literature. Very valuable leturenotes an be found in [35℄ and a brief introdution in [38℄. A omplete treatment ofgeneralized geometry is presented in [126, 127℄.C.1 Generalized omplex strutures and pure spinorsGeneralized geometry is a generalization of ordinary geometry. In fat, it is a uni�ationand generalization of the language of omplex and sympleti geometry, whih seems tobe natural to desribe supersymmetri ompati�ations of supergravity with uxes. Aswe will see, the language of generalized geometry allows one to rewrite the equations fora supersymmetri solution in a very onise form making the analysis more tratable.The main idea is to replae the ordinary tangent bundle TM of a d-dimensionalmanifold M by a sum of the tangent bundle and the otangent bundle TM � T ?M ,whih we denote in the following as the generalized tangent bundle. A generalizedvetor X living on this generalized tangent bundle is the sum of an ordinary vetorX 2 �(TM) and a one-form � 2 �(T ?M), suh that X = X + �. On the generalizedtangent bundle, there is a anonial metri L, de�ned for X = X + � and Y = Y + � asL(X;Y) = �(Y ) + �(X) : (C.1)This metri is maximally inde�nite, i.e., it has signature (d; d), and thus it alreadyredues the struture group to O(d; d). In analogy to ordinary geometry we de�ne ageneralized almost omplex struture as a mapJ : TM � T ?M ! TM � T ?M ; (C.2)that squares to minus one, J 2 = �12d, and is hermitian with respet to the anonialmetri L L(JX;JY) = L(X;Y) : (C.3)



180 C. BASICS OF GENERALIZED GEOMETRYA generalized almost omplex struture further redues the struture group from O(d; d)to U(d=2; d=2) 1.As an example, we an onstrut from an ordinary omplex struture I, I2 = �1,or an ordinary sympleti struture J , the following generalized omplex strutures,respetively, J1 = � �I 00 IT � ; J2 = � 0 J�1�J 0 � ; (C.4)This demonstrates that both essential parts of an SU(3)-struture, namely the omplexstruture and the sympleti struture, are desribed in the language of generalizedgeometry in a ompletely uniform way.In generalized geometry, pure spinors are desribed by polyforms 	 2 ��T ?M .Indeed, a setion X = (X; �) of the generalized tangent bundle ats on suh a polyform	 in a natural way as follows X �	 = �X	+ � ^	 ; (C.5)and it is easy to show that fX;Yg �	 = L(X;Y)	 : (C.6)This is nothing else than the spin representation of Spin(d; d) and therefore polyforms	 an be thought of as spinors for Spin(d; d). The generalized gamma-matries onSpin(d; d) are vetors X (ating by ontration, �X) and one-forms � (ating by �^).We hoose in the following a basis for the generalized gamma-matries as follows�� = �m for m = � = 1; : : : ; d ;�� = em ^ for m+ d = � = d+ 1; : : : ; 2d : (C.7)We an further deompose the set of polyforms 	 into the spaes of even and oddforms: positive or negative parity spinors orrespond to polyforms with all dimensionseven or odd, respetively, whih we denote by 	+ and 	�.From the ation (C.5) we an de�ne the annihilator spae L	 of a spinor as followsL	 = fX 2 TM � T ?M : X �	 = 0g ; (C.8)whih is isotropi 2, sine L(X;Y)	 = (X � Y + Y � X) � 	 = 0 for all X;Y 2 L	. IfL	 is maximally isotropi, i.e., if its rank is d, 	 is a pure spinor. This somewhatmathematial onept of pure spinors works atually for the more familiar spinors1Let us mention that the onept of integrability for a generalized almost omplex struture has anatural generalization from ordinary geometry by replaing the Lie braket with the Courant braket.We refer the reader to the literature for the proper de�nition of an integrable generalized omplexstruture (see, e.g., [35℄). In the following we drop the \almost".2A subbundle L is isotropi if L(X;Y) = 0 for all X;Y 2 L.



C.1. GENERALIZED COMPLEX STRUCTURES AND PURE SPINORS 181of Spin(d), d even, in exatly the same way, i.e. a spinor is pure if the number ofindependent gamma-matries whih annihilate the spinor is d=2. As a matter of fat,in d � 6 every Weyl spinor is pure.In ordinary geometry there is a one-to-one orrespondene between a omplex stru-ture and a Weyl spinor (see for instane eq. (2.5)). An analogous property holds betweena generalized omplex struture and a pure spinor, where the latter are desribed bypolyforms. Let us �rst de�ne a fundamental two-form as followsJ�� = hIm	;���Im	i ; (C.9)where �;� = 1; : : : ; 2d and the generalized gamma matries �� are given in eq. (C.7).We an use the anonial metri L to raise one index forming J �� whih generallyde�nes a generalized omplex struture 3. The Mukai pairing h�; �i in eq. (C.9) is givenby h	1;	2i = 	1 ^ �(	2)jtop ; (C.10)where the operator � ats by inverting the order of indies on forms (see eq. (A.6)) and\top" indiates that we projet on the top-form part, i.e., the part that is proportionalto the volume form. The Mukai pairing has the following useful property:heB	1; eB	2i = h	1;	2i ; (C.11)for an arbitrary two-form B.Gualtieri established in [127℄ that every generalized omplex struture is assoiatedto a pure spinor that an be written as	 = 
k ^ ei!+B ; (C.12)where !;B are real two-forms and 
k a omplex deomposable k-form, i.e. it an(loally) be written as the wedge produt of one-forms, suh that h	; �	i 6= 0. k isalled the type of the pure spinor.The onstrution of a pure spinor of the form (C.12) is not straightforward. Inpartiular, for a pure spinor of type k > 1 the ondition that it is deomposable isquite umbersome. As showed by Hithin [128, 126℄ and reviewed in [27℄ the omplexpure spinor an be onstruted as a funtion of a real spinor. This Hithin onstrutionalso guarantees that a pure spinor of type k > 1 is deomposable.The proedure works as follows. Let us assume that we are given a real form � whihwe want to onsider as the imaginary part of the pure spinor 	 to be onstruted, � =Im	. Using the orrespondene (C.9), we de�ne the assoiated generalized omplexstruture J . The problem is the proper normalization suh that J ��J �� = �Æ��,3Note that the orrespondene atually involves the imaginary part of the pure spinor. As we willdisuss in the following, the imaginary part of the pure spinor ompletely determines the pure spinor.This will also a�et the proper normalization of J .



182 C. BASICS OF GENERALIZED GEOMETRYsine the normalization of � is not �xed due to h�; �i = 0. Hithin proposed to de�nea quarti funtion of � = Im	 given byH(�) =r� 112J ��J �� : (C.13)This funtion is alled the Hithin funtional. The proper normalization for J is thenthe ondition that H(�) = 1. A neessary ondition on the real form � to de�ne ageneralized omplex struture via (C.9) is that J ��J �� < 0. Real forms satisfying thisondition are alled stable real forms, and these are suÆient to de�ne a SU(d=2; d=2)-struture.Via the Hithin proedure we an onstrut the real part �̂ that orrespond to �suh that the omplex deomposable pure spinor is given by 	 = �̂+ i� as follows�̂ = � 16H(�)J ������ : (C.14)and the Hithin funtional an be rewritten using (C.9) as [27℄H(�) = 12h�̂; �i = i4h	; �	i : (C.15)We use this expression to evaluate the K�ahler potential given in eq. (3.30) and eq. (3.39),where we need to evaluate R ht; �ti with t = e��	1.C.2 SU(d=2)�SU(d=2)-strutures from pure spinor pairsAs we have seen, the existene of a generalized omplex struture redues the stru-ture group of TM � T ?M from O(d,d) to U(d=2,d=2). If it is possible to de�ne twogeneralized omplex strutures, J1 and J2, that ommute, [J1,J2℄ = 0, and suh thatthe generalized metri G = �LJ1J2 is positive de�nite, the struture group is furtherredued to its maximal ompat subgroup, U(d=2)�U(d=2).An U(d=2)�U(d=2)-struture, or equivalently two ompatible generalized omplexstrutures (J1;J2), provide automatially a generalized metri (g;B), where g is anordinary metri and B a two-form on TM . This works as follows. Let us de�ne theprodut G = �J1J2 : (C.16)Sine J1;J2 ommute and square to �1, G squares to 1. Taking into aount thehermitiity of J1 and J2 (see eq. (C.3)) it follows GTL = LG and it turns out that themost general form of G is given byG = �J1J2 = � �g�1B g�1g �Bg�1B Bg�1 � ; (C.17)



C.2. SU(D=2)�SU(D=2)-STRUCTURES FROM PURE SPINOR PAIRS 183from whih we easily read o� the metri g on TM that is positive de�nite sine werequired that LG is positive de�nite.Two suh generalized omplex strutures de�ning a U(d=2)�U(d=2)-struture aresaid to be ompatible. The ondition that J1 and J2 ommute is equivalent to thestruture onditions (these onditions are sometimes alled ompatibility onditions)for a given struture. It an be shown that in terms of the assoiated pure spinors wean reexpress the ompatibility ondition ash	1;X �	2i = h	1;X � �	2i = 0 8X 2 TM � T ?M : (C.18)Applied for the speial ases of strit SU(3)-struture and stati SU(2)-struture thisis equivalent to eq. (2.6a) and eq. (2.16), respetively.A U(d=2)�U(d=2)-struture de�nes two ompatible pure spinors only up to an over-all salar funtion. We an further redue the struture group to SU(d=2)�SU(d=2)-struture by removing the ambiguity of resaling the pure spinors requiring globallyde�ned pure spinors suh that h	1; �	1i 6= 0 and h	2; �	2i 6= 0. We an then normalizethe pure spinors as follows h	1; �	1i = h	2; �	2i 6= 0 : (C.19)The SU(d=2)�SU(d=2)-struture is atually assoiated to two spinors �(1) and �(2)of Spin(d) de�ned on M . Given two Spin(d) spinors �(1) and �(2) that are in gen-eral independent (and de�ne two in general independent SU(d=2)-strutures) we anonstrut two ompatible pure spinors 	� via the familiar Cli�ord map as follows/	+ = 8jajjbj�(1)+ 
 �(2)y+ ; /	� = 8jajjbj�(1)+ 
 �(2)y� ; (C.20)where the Cli�ord map is given by the isomorphism	$ /	 =Xl 1l!	i1:::ili1:::il : (C.21)We an use the following useful Fierz identityM = 18Xl 1l!Tr(i1:::ilM)il:::i1 ; (C.22)to derive 	� i1:::il = 1jajjbj�(2)y� il:::i1�(1)+ : (C.23)Let us now onsider six-dimesional spae. Following the onventions of [38℄, we ande�ne the most general relation between two spinors as follows�(1)+ = a�+ ;�(2)+ = b(kk�+ + k?V ii��) ; (C.24)



184 C. BASICS OF GENERALIZED GEOMETRYwhere 2jV j2 = jkkj2+ jk?j2 = 1 and jaj = jbj. With these de�nitions and the de�nitionsof !2 and 
2 in eq. (2.15) we an express the most general pure spinors from eq. (C.23)as follows 	+ = e�i�e2V ^V �(kkei!2 � k?
2) ;	� = �2V ^ (kk
2 + k?ei!2) ; (C.25)Using the terminology of [38, 39℄ we may onsider the following interesting ases:� strit SU(3)-struture: kk = 1, k? = 0. The spinors �(1) and �(2) are paralleleverywhere. The types of the pure spinors (	+;	�) are (0,3);� stati SU(2)-struture: kk = 0, k? = 1. The spinors �(1) and �(2) are orthogonaleverywhere. The types of the pure spinors (	+;	�) are (2,1);� intermediate SU(2)-struture: kk 6= 0, k? 6= 0. The spinors �(1) and �(2) are ata �xed angle, but neither a zero angle nor a right angle. The types of the purespinors (	+;	�) are (0,1);� dynami SU(3)�SU(3)-struture: kk 6= 0, k? 6= 0. The angle between �(1) and�(2) varies, possibly beoming a zero angle, type (0,3), or a right angle, type (2,1),at a speial lous.In this thesis we will only onsider strit SU(3)-struture and stati SU(2)-strutureompati�ations, so let us in the following look at these ases in more detail.C.3 Strit SU(3)-struture and stati SU(2)-strutureLet us �rst onsider the ase of strit SU(3)-struture and speialize the expressionsobtained so far in terms of generalized geometry to this ase. The two spinors �(1) and�(2) are proportional �(2)+ = (b=a)�(1)+ ; (C.26)with j�(1)+ j2 = jaj2; j�(2)+ j2 = jbj2. In the following, we will assume jaj = jbj suh thatb=a = ei� is just a phase. We will see in the following that this ondition is impliedby the orientifold projetion [43℄. From eq. (C.23) (or from eq. (C.25) with kk = 1,k? = 0) we get the pure spinors for the strit SU(3)-struture as follows	� = �
 ; 	+ = e�i�eiJ ; (C.27)where J and 
 are de�ned in eq. (2.5).The derivation of the metri also simpli�es for a strit SU(3)-struture: from eq. (C.4)and the generalized metri (C.17) we immediately onlude (for B = 0)gmn = ImlJln ; (C.28)



C.3. STRICT SU(3)-STRUCTURE AND STATIC SU(2)-STRUCTURE 185where we an onstrut the omplex struture I from Im
 as follows~I lk = "lm1:::m5(Im
)km1m2(Im
)m3m4m5 ; (C.29)This follows from eq. (C.9) and J1 in eq. (C.4). We then properly normalize it withthe Hithin funtional, whih for strit SU(3)-struture simpli�es to the expression inthe denominator of the following equation,I = ~Iq�tr 16 ~I2 ; (C.30)so that I2 = �1.It is a simple exerise to show that the ompatibility ondition (2.6a) and the nor-malization ondition (2.6b) for J and 
 follow from eq. (C.18) and eq. (C.19) for thepure spinors (C.27).The deomposition of the intrinsi torsion in terms of the �ve torsion lasses is givenin eq. (2.10). Note that by de�nition W2 is primitive, whih meansW2 ^ J ^ J = 0 : (C.31)One interesting property of a primitive (1,1)-form is? (W2 ^ J) = �W2 ; (C.32)whih an be shown using JmnW2mn = 0 (whih follows from the primitivity) andJmnJpqWnq =Wmp (whih follows from the fat that W2 is of type (1,1)).Let us alulate the part of dW�2 proportional to Re
:dW�2 = �Re
+ (2; 1) + (1; 2) ; (C.33)for some �. Taking the exterior derivative of 
 ^W�2 = 0 and using eq. (C.33) as wellas eqs. (2.6b) and (2.10), we arrive atW�2 ^W�2 ^ J = 2i3 �J3 : (C.34)We an now use eq. (C.32) to showW�2 ^W�2 ^ J = 12 jW�2 j2vol6 ; (C.35)from whih we obtain � = �ijW2j2=8, in aordane with (2.33).For the stati SU(2)-struture ase we have two everywhere orthogonal spinors �(1)+and �(2)+ and we an de�ne a vetor V as in setion 2.1.2,�(1)+ = a�+ ; (C.36a)



186 C. BASICS OF GENERALIZED GEOMETRY�(2)+ = bV ii�� ; (C.36b)where j�(1)+ j2 = jaj2, j�(2)+ j2 = jbj2 and jaj = jbj. Only the relative phase � in b=a = ei�is physial. With these de�nitions we obtain from eq. (C.23) (or from eq. (C.25) withkk = 0, k? = 1) the pure spinors as follows	+ = �e�i�e2V ^V �
2 ; (C.37a)	� = �2V ^ ei!2 ; (C.37b)where 
2 and !2 are de�ned in eq. (2.18). In the following it will be onvenient toabsorb the phase e�i� in 
2. This time it is not a ompletely trivial exerise to showthe ompatibility onditions (2.16) from ondition (C.18) and the pure spinors (C.37).However, in [39℄ it is shown that the onditions (C.18) are indeed vanishing providedone imposes the onditions (2.16).To alulate the indued metri for a stati SU(2)-struture we ompute, witheq. (C.9), the orresponding generalized omplex strutures J1;2 for the pure spinors(C.37), and from eq. (C.17) we an read o� the metri g.OrientifoldsFollowing [43℄, we an identify the ation of a supersymmetri orientifold on the purespinors 	�. An orientifold projetion onsists of modding out the theory by an op-erator O = 
p� for O5/O9- and O6-orientifold projetions and O = 
p(�1)FL� forO3/O7- and O4/O8-orientifold projetions 4. Here, 
p is a reetion on the world-sheet exhanging the left-movers with the right-movers, � is an internal involution(�2 = 1) whih ats only on the internal manifold and leaves the external spae-timeuntouhed and (�1)FL , where FL is the fermion number of the left-movers, is used insome ases to ensure that O2 = 1. Under a supersymmetri orientifold projetion, thetotal ten-dimensional supersymmetry parameter �L1 + �R2 has to be invariant. Sine theworld-sheet reetion 
p exhanges left- and right-movers, we end up with the ationof the involution on the ten-dimensional supersymmetry generatorsO5=O9;O6 : ���1 = �2 ; ���2 = �1 ; (C.38a)O3=O7;O4=O8 : ���1 = ��2 ; ���2 = �1 : (C.38b)If we now plug the N = 2 ansatz (2.25) into these equations we immediately see (sine� only ats on the internal spinors) that the two external supersymmetry generators�1 and �2 an not be hosen independent and should be proportional. Sine we anabsorb the proportionality fators in the de�nition of the internal spinors, we will put�1 = �2 = �, and we end up with an N = 1 theory with the ansatz (2.3) 5. Further4We take here the onventions of [43℄.5An ansatz for N > 1 is then only possible if there are more invariant internal spinors.



C.4. SUPERSYMMETRY CONDITIONS IN GENERALIZED GEOMETRY 187reduing eq. (C.38) to the internal spinors �(i)� with the ansatz (2.3), we �nd for theases we are interested in:O5 : ���(1)� = �(2)� ; ���(2)� = �(1)� ; (C.39a)O6 : ���(1)� = �(2)� ; ���(2)� = �(1)� ; (C.39b)O7 : ���(1)� = ��(2)� ; ���(2)� = �(1)� ; (C.39)and, sine we de�ne j�(1)+ j2 = jaj2, j�(2)+ j2 = jbj2, it follows from �2 = 1 that jaj = jbj.Plugging eq. (C.39) into the de�nition of the pure spinors (C.20), we get [43℄ (see also[56, 38℄) O5 : ��	+ = �( �	+) ; ��	� = ��(	�) ; (C.40a)O6 : ��	+ = �(	+) ; ��	� = �( �	�) ; (C.40b)O7 : ��	+ = ��( �	+) ; ��	� = �(	�) ; (C.40)Applying this to the expliit pure spinors for a strit SU(3)-struture (C.27) and astati SU(2)-struture (C.37) we arrive at eq. (2.40b) and eq. (3.40), respetively.C.4 Supersymmetry onditions in generalized geometrylanguageGeneralized geometry allows one to rewrite the N = 1 supersymmetry onditions (2.20)with the ansatz for the spinors (2.3) in a very onise form. In order to obtain similarequations in type IIA and type IIB, we de�ne	1 = 	� ; 	2 = 	� ; (C.41)with upper/lower sign for IIA/IIB. We ollet all the RR-�elds of the demorati for-malism into one polyform and make the following ompati�ation ansatzF = F̂ + vol4 ^ ~F ; (C.42)with vol4 the four-dimensional (AdS4) volume form 6.With these de�nitions the supersymmetry onditions (in string frame) take the fol-lowing form in both type IIA and type IIB [38℄dH �e4A��Im	1� = 3e3A��Im(W �	2) + e4A ~F ; (C.43a)dH �e3A��Re(W �	2)� = 2jW j2e2A��Re	1 ; (C.43b)6In this thesis we will drop the hat on the purely internal part of the RR-ux F and hope that itis lear from the ontext whether we mean the full F or only the internal part. Instead, we use the hatto denote bakground values of the �elds.



188 C. BASICS OF GENERALIZED GEOMETRYdH �e3A��Im(W �	2)� = 0 ; (C.43)where we used jaj2 = jbj2 / eA. Here W is de�ned in terms of the AdS Killing spinorsr��� = �12W��+ ; (C.44)for IIA/IIB. These equations should be supplemented with the Bianhi identities forthe RR-uxes (B.9a) where the (loalized or smeared) soures j have to be alibratedhRe	1; ji = 0 ; (C.45a)h	2;X � ji = 0 ; 8X 2 �(TM � T ?M ) : (C.45b)Analogously to the strit SU(3)-ase, an easy way to solve these alibration onditionsis to hoose j = �kRe	1 ; (C.46)for some funtion k.An advantage of this formulation is that we only need to know how the exteriorderivative d ats on the left-invariant forms in whih we expand the pure spinors. Forthe nilmanifolds and the oset spaes we onsider in this thesis, the ation of the exteriorderivative d is given by the Maurer-Cartan equation (4.4) and the struture onstants.Inserting the pure spinors for a strit SU(3)-struture (C.27) in the equations (C.43)for an N = 1 supersymmetri solution and onsidering the type IIA ase (where 	1 =	� and 	2 = 	+), we arrive at eqs. (2.27) and (2.30) (these equations were �rstderived in [31℄ using the language of SU(3)-strutures). However, these solutions assumeonstant warp fator eA and dilaton �, whih is required for non-vanishing Romansmass. As we showed in setion 2.3, hoosing the Romans mass to be zero, we an derivea solution with non-onstant warp fator and dilaton.On the other hand, for the type IIB ase (for whih we exhange the role of 	+ and	�) there is no AdS4 solution possible, as already noted in [129℄. The reason is thatfor this ase the left-hand-side of eq. (C.43b) is a four-form, whih would put the zero-and two-form part of 	+ = e�i�eiJ to zero, making (C.19) impossible to be satis�ed.A way out is to putW = 0 implying the vanishing of the AdS4 urvature. We onludethat there are no N = 1 AdS4 vaua for type IIB and strit SU(3)-struture.On the other hand, plugging the ansatz (2.19) for a stati SU(2)-struture in thesupersymmetry onditions (C.43), one �nds the neessary equations for the SU(2)-struture quantities V , !2 and 
2. However, these equations are quite ompliated andit turns out that it is less ompliated to try to solve these equations diretly in termsof pure spinors.Similar to the argument that exludes N = 1 AdS4 vaua for type IIB and stritSU(3)-struture, we onlude from (C.43b) and the ansatz (C.37) that there are noN = 1 AdS4 vaua for type IIA and stati SU(2)-struture, as was already noted in[42℄. Indeed, the left-hand-side of eq. (C.43b) is a three- and �ve-form whih implies onthe right-hand-side that V = 0. This makes it impossible to satisfy eq. (C.19). Oneagain, putting W = 0 resolves the problem. We summarize these results in table 2.2.



Appendix DSmeared soures and orientifoldinvolutionsIn this appendix we propose a proedure to identify the orientifold involutions assoi-ated to a given soure term j representing the Poinar�e dual of smeared orientifolds.As we will see, the Hithin funtional de�ned in appendix C provides a useful riterionto lassify the possible soure terms j.Orientifold involutions from deomposable formsLet us �rst give an example for a loalized orientifold in at spae. If we have anorientifold along the diretions � = (x1; x2; x3) then the orresponding soure isj = TOp j� = �TOp Æ(x4; x5; x6) dx4 ^ dx5 ^ dx6 ; (D.1)where TOp < 0 for an orientifold and j is the Poinar�e dual of � satisfyingZ� � = ZMh�; j�i = �ZM � ^ j� ; (D.2)for an arbitrary form � 1. In this ase the orientifold involution is of ourseO6 : x4 ! �x4 ; x5 ! �x5 ; x6 ! �x6 : (D.3)Suppose we now introdue many orientifolds and ompletely smear them in the dire-tions (x4; x5; x6) obtaining j = �TOp dx4 ^ dx5 ^ dx6 ; (D.4)where  is a onstant representing the orientifold density. We have now lost informationabout the exat loation but we would still like to assoiate the orientifold involutionO6 : dx4 ! �dx4 ; dx5 ! �dx5 ; dx6 ! �dx6 : (D.5)1The de�nition with the Mukai pairing is the one appropriate for generalizing to D-branes withworld-volume gauge ux as explained in [130℄. Here it will just give an extra minus sign.



190 D. SMEARED SOURCES AND ORIENTIFOLD INVOLUTIONSAn important observation is that dx4 ^ dx5 ^ dx6 is not just any form, it is adeomposable form, i.e. it an be written as a wedge produt of three one-forms. Theseone-forms span the annihilator spae of T�, the tangent spae of �. So if we are givena smeared orientifold urrent j we should write it as a sum of deomposable forms andthen assoiate to eah term an orientifold involution as above.It is not straightforward to deide whether a given form is deomposable or notand how we ould write j as a sum of deomposable forms in a unique way. Let us�rst give a mathematial de�nition of a deomposable form. Let V be a d-dimensionalvetor spae and V? its dual 2. A (real/omplex) p-form j 2 �pV? is alled simple ordeomposable if it an be written as a wedge produt of p one-forms 3.In [131℄ a riterion for a simple form is given as follows. Bej? = fX 2 V : �Xj = 0g � V ; (D.6)and W = Ann(j?) � V? : (D.7)The form j is simple if and only if dimW = p. Using this the following alternativeriterion is shown:Theorem: A p-form j 2 �pV? is simple if and only if for every (p � 1)-polyvetor� 2 �p�1V, ��j ^ j = 0 ; (D.8)where ��j is the one-form ontration of j with �.For us of importane is the speial ase of three-forms in six dimensions. For thisase there is another useful theorem due to Hithin [128℄.Theorem: Consider a real three-form j 2 �3V? and alulate its Hithin funtionalH(j) de�ned in (C.13). Then� H(j) > 0 if and only if j = j1 + j2 where j1; j2 are unique (up to ordering) realdeomposable three-forms and j1 ^ j2 6= 0,� H(j) < 0 if and only if j = �+�� where � is a unique (up to omplex onjugation)omplex deomposable three-form and � ^ �� 6= 0.Now we have two base-independent haraterizations of j: the Hithin funtionalH(j) and dimW . Using these two haraterizations we an lassify the possible j anddeompose it in simple terms:2For nilmanifolds and oset spaes that we onsider in this thesis we always have a basis of globallyde�ned left-invariant one-forms.3Note that a (real/omplex) form of �xed dimension is a pure spinor if and only if it is simple. Infat, we ould regard the notion of pure spinor as a generalization of the notion of deomposable formsto polyforms.



191� if H(j) > 0 it follows immediately that j is a sum of exatly two real simpleterms,� if H(j) < 0 then j is a sum of exatly two (onjugate) omplex simple terms andthus of exatly four real simple terms,� ifH(j) = 0 we have three ases. Either (D.8) is satis�ed (equivalently dimW = 3)and j is simple, either dimW = 5 and then j will be a sum of two simple termsj1 and j2 suh that j1 ^ j2 = 0, or dimW = 6 and j will be a sum of three simpleterms. All this is easy to prove by looking at possible types of sums of two andthree simple terms.An important remark is in order: while the Hithin theorem states that for H(j) 6=0 the two real/omplex forms in the deomposition of j are unique (up to order-ing/omplex onjugation), the hoie of one-forms out of whih these forms are madeis not unique. In the ase of H(j) < 0 it is the freedom of hoosing a basis of omplexone-forms belonging to a omplex struture, whih is SL(3,C ). As a onsequene thehoie of the four real forms in whih j is deomposed is not unique. Indeed, sup-pose we hoose one basis of omplex one-forms and assoiated x and y oordinates:ezi = exi � ieyi . Then j an be written as the sum of the following four terms:j = Re(ez1z2z3) = ex1x2x3 � ex1y2y3 � ey1x2y3 � ey1y2x3 ; (D.9)whih leads to the following orientifold involutions:O6 : ex1 ! �ex1 ; ex2 ! �ex2 ; ex3 ! �ex3 ;O6 : ex1 ! �ex1 ; ey2 ! �ey2 ; ey3 ! �ey3 ;O6 : ey1 ! �ey1 ; ex2 ! �ex2 ; ey3 ! �ey3 ;O6 : ey1 ! �ey1 ; ey2 ! �ey2 ; ex3 ! �ex3 : (D.10)If we perform a SL(3,C ) transformation, j takes exatly the same form, but now in thenew basis. So alternatively we ould have hosen four orientifold involutions taking thesame form as the old ones, but now in the new basis, whih is rotated. This means thatour hoie of orientifold involutions is not unique. We must then further hoose themsuh that the struture onstant tensor of the group or oset is even, and Re
 and Jare odd.In the ase of H(j) > 0 the argument does not apply beause the remaining freedomGL(3,R)�GL(3,R) leaves the two terms of the deomposition separately invariant andthe hoie of orientifold involutions is unique.Appliation to SU(2)�SU(2)Let us now apply the above proedure to the model of setion 10.5. Calulating theHithin funtional H(j6) of (10.23) we �nd that it is negative so that it ontains four



192 D. SMEARED SOURCES AND ORIENTIFOLD INVOLUTIONSorientifold involutions. We must now �x the freedom of hoosing them suh that Re
and J are odd, and the struture onstant tensor f is even. Some reetion shouldmake lear that if Re
 is to be odd it should be a sum of the same four terms as j6,but with di�erent oeÆients. In fat, we ould reverse the proedure and hoose aomplex basis ezi in whih 
 and J take their standard form:
 = ez1z2z3 ; J = � i2Xi ezi�zi : (D.11)Then Re
 and J are automatially odd under the assoiated orientifold involutions(D.10). However, this should of ourse also be the orientifold involutions that followfrom j6. This will be the ase if and only if j6 has the same terms as Re
 (but withdi�erent oeÆients) or equivalently j6 should take the formj6 = Re �0ez1z2z3 + 11e�z1z2z3 + 22ez1�z2z3 + 33ez1z2�z3� ; (D.12)with all oeÆients  real. To aomplish this we still have the freedom to make a basetransformation suh that 
 and J invariant, i.e. an SU(3)-transformation. A priori, j6is an arbitrary three-form whih transforms under SU(3) as20 = 1 + �1 + 3 + �3 + 6 + �6 : (D.13)However, we know that j6 has to satisfy the alibration onditions (2.36), whih removethe 3+�3 representation and only leave the form proportional to Re
 out of 1+�1. Herethe 6 is the (3� 3)S i.e. the symmetri produt of two fundamental representations ofSU(3). It follows that the most general j6 satisfying the alibration onditions lookslike j6 = 0Re
 + Re hkig(kj�|d�z�| ^ �zi)
i= 0Re
 + Reh11e�z1z2z3 + 22ez1�z2z3 + 33ez1z2�z3+ 12 �e�z2z2z3 + ez1�z1z3�+ 13 �e�z3z2z3 + ez1z2�z1�+ 23 �ez1�z3z3 + ez1z2�z2� i ;(D.14)with 0 real and the entries of the oeÆient matrixC = 0� 11 12 1321 22 2331 32 33 1A ; (D.15)omplex. Now we have to �nd an SU(3)-transformation to put j6 in the form (D.12). 0does not transform but is lukily already of the right form, while the oeÆient matrixtransforms as C ! UCUT : (D.16)



193From (D.12) we see that we want to transform C to a diagonal real matrix. In fat,sine the above transformation annot hange the determinant this is only possible ifdetC 2 R : (D.17)This is a ondition we have to add to the alibration onditions. For the j6 of (10.23) onean hek that it is indeed satis�ed and it is possible to �nd the omplex oordinateswith the required properties. Also, under the assoiated orientifold involution thestruture onstant tensor f is even as required. The omplex oordinates are given in(10.24). De�ning the assoiated omplex one-forms ezi = exi � ieyi we arrive at thetransformationex1 = �a2 + (b� )2 + h21p2b(2b � h) (e1 + e4) ; ey1 = a2 � (b+ )2 + h21p2b(2b � h) (e1 � e4) ;ex2 = �b2 + (a� )2 + h21p2a(2a � h) (e2 + e5) ; ey2 = b2 � (a+ )2 + h21p2a(2a � h) (e2 � e5) ;ex3 = �2 + (a+ b)2 � h21p2ab(2ab� h) (e3 � e6) ; ey3 = �2 � (a� b)2 + h21p2ab(2ab� h) (e3 + e6) ; (D.18)
and the orientifold involutions given in eq. (D.10). The odd two-forms and even three-forms under the involutions are then given byY (2�)i : ex1y1 ; ex2y2 ; ex3y3 ;Y (3+)i : ex1x2y3 ; ex1y2x3 ; ey1x2x3 ;�ey1y2y3 : (D.19)With the transformation (D.18) we obtain the invariant forms in the old basis ei whihwe display in eq. (11.54).
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