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1 Introduction 

1.1 B lymphocytes and the humoral immune response 

B and T lymphocytes are part of the adaptive immune system. In vertebrates, the adaptive 

immune system has developed in addition to the innate immune system to improve the 

defense mechanisms against invading pathogens. Thus, species with an adaptive immune 

response have large repertoires of T and B cell antigen receptors and antibodies, which 

increase the possibility to recognize any antigen encountered throughout life. The T and B 

cell antigen receptors are products of site-specific somatic recombination, which allows an 

immense repertoire which varies from individual to individual from one species. Additionally, 

B cells are able to modify their antibodies in a secondary diversification pathway during the 

immune response to gain more specificity for a certain antigen.  

1.2 B cell development 

In mammals, B cells develop from hematopoetic stem cells in the bone marrow. They are 

generated via a series of sequential differentiation steps (Rolink et al., 1995), and are released 

in the periphery upon expression of a functional B cell receptor (BCR) (Hesslein and Schatz, 

2001). In the pro-B cells, the earliest B-lineage stage, the rearrangement of the 

immunoglobulin (Ig) heavy chain segments occurs via somatic recombination. DH to JH 

joining at the early pro-B cell stage is followed by VH to DH joining at the late pro-B cell 

stage. These genetic processes depend on two enzymes encoded by the recombination-

activated genes rag-1 and rag-2. The terminal deoxynucleotidyl transferase adds N-

nucleotides at the rearrangement joints, which contributes to the diversity of the B cell 

receptor (Janeway, 2005). The successful rearrangement of the Ig heavy chain leads to the 

surface expression of the pre-BCR complex and the so-called pre-B cell stage. The pre-BCR 

complex consists of the rearranged immunoglobulin heavy chain (IgH) of class μ, a surrogate 

Ig light chain, which is composed of VpreB and λ5, and the two Ig-associated signaling 

molecules Igα (CD79A) and Igβ (CD79B). Pre-BCR signaling promotes the rearrangement of 

the Ig light chain in small pre-B cells. Once a light chain replaces the surrogate light chain to 

form a mature BCR on the cell surface, the cell is defined as an immature B cell (Bossy et al., 

1991). 
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During development in the bone marrow, B cells undergo several selection processes to 

guarantee that only B cells which have gained a functional BCR non reactive for self antigens 

enter the peripheral B cell pool. B cells which fulfill these criteria leave the bone marrow and 

transit to the spleen (so-called transitional B cells), where they undergo further maturation 

steps to become mature B cells (Chung et al., 2003). These mature B cells can be subdivided 

into follicular and marginal zone (MZ) B cells. Follicular B cells represent the major 

population of circulating B cells in adults. They continuously pass the peripheral lymphoid 

tissues through the blood stream. In the follicles of the spleen or the lymph nodes they receive 

survival signals from follicular dendritic cells, which help them to become relatively long-

lived B cells (Kosco and Gray, 1992). MZ B cells do not circulate and are resident at the 

border between the white and the red pulp of the spleen, next to the marginal sinus. MZ B 

cells have a restricted antigen specificity and seem to play a crucial role in humoral immune 

responses against blood-borne pathogens (Martin and Kearney, 2002). 

Follicular and MZ B cells are referred to as B2 cells, in contrast to the B1 cells, which are 

mainly produced in the fetal liver and are the predominant population in the peritoneal cavity. 

They show self-replenishing capacity and are the major source of constitutively expressed 

IgM. Like MZ B cells, B1 cells express a restricted primary antibody repertoire, generally 

respond quickly to antigen and are independent of T cells (Martin et al., 2001).   

1.3 T cell dependent immune response 

B cells are able to elicit T cell-independent (TI) and T cell-dependent (TD) immune 

responses. B cell activation by many antigens, especially monomeric proteins, requires both 

binding of the antigen by the BCR and interaction with antigen-specific T helper cells (TD 

immune response). However, some microbial antigens, such as bacterial polysaccharides, can 

induce antibody production in the absence of helper T cells (TI immune response). In contrast 

to the TD immune response, the TI immune response induces only limited isotype switching 

and does not induce affinity maturation and generation of memory B cells.  

Follicular B cells are the B cells mainly involved in the TD immune response. B cells are 

referred to as naïve B cells until they encounter cognate antigen through their BCR. Cross-

linking of the BCR by a TD antigen leads to the internalization, processing and presentation 

of the antigen through the major histocombatibility (MHC) class-II-antigen-complex on the B 

cell surface. CD4+ T helper cells which have specificity for the same antigen and have been 

previously activated by antigen-presenting cells can recognize the MHC-class-II-molecule 
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and activate the B cells.  This activation is mediated by crosslinking of the CD40 receptor on 

B cells by the CD40 ligand (CD40L) and by the release of cytokines.  The activated B cells 

start to proliferate and take either part in the germinal center reaction or migrate to 

extrafollicular foci, where they differentiate into low affinity antibody-secreting plasma cells, 

providing a prompt, but rather unspecific immune response (reviewed in MacLennan et al., 

2003) (Figure 1.1). 

Germinal center (GC) formation is the signature of a TD immune response, and essential for 

high affinity immune responses. GC are sites were B cell expansion, Ig class switch 

recombination, somatic hypermutation, selection, apoptosis, plasma cell and memory B cell 

formation take place (Wolniak et al., 2004). GC appear within the follicles of secondary 

lymphoid tissues at the border between the B and T cell zone. The integrity of the follicles 

with a proper positioning and retention of B, T and follicular dendritic cells is critical for GC 

formation. In the initial phase of the GC reaction proliferation of B cells takes place. GC B 

cells then undergo class switch recombination (CSR) and somatic hypermutation (SHM) of 

the Ig genes, which lead to secondary diversification of antibodies. In both processes the 

activation-induced cytidine deaminase (AID) plays an essential role (Revy et al., 2000; 

Muramatsu et al., 2000). AID deaminates cytosines on the Ig locus, which lead to 

uracil:guanin mismatches, and a removal of uracil by uracil-N-DNA glycosylase (UNG) or by 

alternative pathways, including base-excision repair and mismatch repair, leading to CSR or 

SHM (de Yebenes and Ramiro, 2006).  

The class switch recombination (CSR) involves the replacement of the µ constant region gene 

with downstream γ, α or ε constant regions. This allows the generation of antibodies with 

different constant regions but the same antigen specificity. The various Ig isotypes mediate 

different effector functions and operate in distinct places. IgM antibodies are produced early 

in immune responses, before CSR and SHM takes place. Thus, IgM antibodies often show 

relative low affinity, but confer high overall avidity because of its pentameric structure, which 

makes it especially effective in activating the complement system. The later humoral immune 

response is dominated by IgG, IgA or IgE antibodies. The main function of IgG is to opsonize 

pathogens for engulfment by phagocytes and to activate the complement system. IgA is the 

principal isotype in secretions and mainly acts as a neutralizing antibody. IgE antibody is 

mainly bound by receptors on mast cells and basophils, and antigen binding triggers them to 

release toxic products and histamine. The type of immune response determines which 

isotypes are generated and at what frequencies. T cells and cytokines released by them are 
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involved in regulation of isotype expression. In vitro, B cells can be triggered to mediate CSR 

by stimulation with lipopolysaccharid (LPS) or CD40L and specific cytokines, which 

determine the isotype of the antibodies. Thus, IL4 induces switching to IgG1 and IgE, γ-

interferon (INF) to IgG2a and TGFβ to IgA (Esser and Radbruch, 1990). In a variety of TD 

immune responses, IgG1 is the dominant isotype, mediated by type 2 T helper cells producing 

mainly IL4.  

The somatic hypermutation process introduces individual point mutations into the V regions 

of the Ig heavy and light chain genes, which increases the BCR diversification and may alter 

the affinity for the antigen (Liu et al., 1997). The point mutations are acquired stepwise as a B 

cell proliferates in the GC, with a rate of 1 to 2 mutations per generation. All in all, V-region 

genes accumulate mutations at a rate of about one base pair change per 103 base pairs per cell 

division, whereas other somatic cells show rates of around one base pair change per 1010 base 

pairs per cell division. The mutations are not completely randomly distributed throughout the 

V region, but there are certain “hotspots”, indicating a preference for characteristic short 

motifs of four to five nucleotides (Janeway, 2005). 

In contrast to CSR, which can also take place in the extrafollicular differentiation, SHM is 

restricted to GC B cells (Jacob et al., 1993; Jacob and Kelsoe, 1992).  Since the nucleic acid 

changes in the Ig genes can also lead to a loss of specificity for the antigen or even a gain of 

self-reactivity, a tight selection process must take place in the GC. Thus, only cells carrying a 

BCR with a high affinity for the specific antigen are positively selected and receive survival 

signals through their BCR and CD40. In contrast, low affinity B cells fail to receive 

maintenance signals, go into apoptosis and are ingested by tangible body macrophages 

(Wolniak et al., 2004).  

High affinity B cells ready to leave the GC either differentiate to antibody producing plasma 

cells or to long-lived memory B cells. GC-derived plasma cells primarily migrate to the bone 

marrow where they persist for long periods producing circulating high affinity antibodies 

(Slifka and Ahmed, 1998). Memory B cells are long-lived B cells, suggested to reside in 

secondary lymphoid tissues in the periphery and are the main effector cells in secondary 

immune responses (McHeyzer-Williams and McHeyzer-Williams, 2005). 
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Figure 1.1. T cell-dependent immune response 

A naïve B cell which encounters cognate antigen (Ag) and interacts with an antigen specific T helper 
cell via the MHC-class II and the CD40 receptor, becomes activated and enters either the 
extrafollicular or germinal center differentiation pathway. In the extrafollicular foci, clonal B cell 
expansion and differentiation into plasma cells takes place. These plasma cells are short lived and 
secrete low affinity antibodies that may be switched or unswitched. In the germinal center reaction 
expansion of B cells, somatic hypermutation (SHM) and class switch recombination (CSR) take place. 
Through CD40 and B cell receptor (BCR) stimulation B cells harboring high affinity receptors are 
provided with survival signals and differentiate either into high affinity plasma or memory B cells. 
During the germinal center reaction B cells gain B cell receptors with a higher affinity through somatic 
hypermutation processes; the affinity maturation is indicated by the color. 
A section of a murine spleen at the peak of germinal center formation after immunization is shown. In 
blue are the peanut agglutinin (PNA) stained GC B cells and in red the naïve IgM+ B cells depicted, 
whereas the unstained region in the follicle reflects the T cell zone. Original magnification, x 50. 
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1.4 Germinal center B cell malignancies 

Most types of human B cell lymphoma derive from GC B cells or their descendents (Kuppers 

et al., 1999; Shaffer et al., 2002; Stevenson et al., 2001). During the GC reaction extensive 

proliferation, hypermutation and recombination processes take place, which all increase the 

risk of malignant transformation. Both CSR and SHM generate DNA breaks, eliciting a 

certain risk for genetic lesions. Thus, several B cell malignancies harbor translocations that 

place proto-oncogenes under control of the Ig heavy or one of the light chain loci, which are 

likely to have occurred as an error of CSR or SHM. The indication that a lymphoma 

originates from a GC B cell is based on the presence of SHM and the gene expression profile. 

Several types of B cell lymphoma express GC signature genes, including follicular 

lymphomas, Burkitt’s lymphomas and a subgroup of diffuse large B cell lymphomas 

(DLBCLs). Some of these even show ongoing SHM. 

The characteristic of Burkitt’s lymphoma (BL) is the chromosomal translocation of c-myc to 

one of the Ig loci, which induces the deregulation of this oncogene. The phenotype of 

Burkitt’s lymphoma cells is remarkable similar to GC centroblasts (CD10+CD77+CD38+), and 

they express somatically mutated V region genes, and sometimes even show ongoing 

hypermutation (Klein et al., 1995; Chapman et al., 1995).  

In Hodgkin’s lymphoma (HL) of the classical type it is not as evident as in BL that the 

malignant cells originate from GC or post-GC B cells. The cellular origin of HL has long 

been unclear, since they do not resemble any normal haematopoietic cell type. Single-cell 

molecular analyses revealed that the malignant cells had rearranged Ig V genes, which also 

were mutated (Kuppers et al., 1994). Interestingly, many of these cells showed nonsense 

mutations or deleterious deletions in their Ig genes (Kanzler et al., 1996). GC B cells that 

acquire so-called “crippled mutations” are normally deleted by apoptosis, since a B cell 

without a functional BCR is not able to survive (Lam et al., 1997). It has been recently shown 

that all HL cases with crippled mutations are Epstein-Barr-virus (EBV) positive, indicating 

that EBV helps these cells to survive and contribute to tumorigenesis (Brauninger et al., 

2006).  

1.5 Epstein-Barr virus 

Epstein-Barr virus (EBV) is a human γ-herpesvirus, which preferentially infects B 

lymphocytes (reviewed in Rickinson and Kieff, 2001). It is an extremely successful virus, 

since more than 90% of the world’s population are infected by it. The viral DNA is usually 
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carried as circular DNA or episomes, and persists a lifetime in resting memory B cells of the 

host. Although persistent EBV infection mostly takes an asymptomatic course, there are 

several malignancies derived from lymphoid and epithelial tissues strongly associated with 

EBV, including Burkitt’s lymphoma, Hodgkin’s lymphoma, post-transplant or immunoblastic 

lymphoma, T and NK cell lymphoma, nasopharyngeal carcinoma and gastric carcinoma 

(Kuppers, 2003; Young and Rickinson, 2004). However, in most cases the mechanisms how 

EBV contributes to tumor development are still elusive.  

The in vitro infection with EBV leads to the transformation of primary B cells. In these so 

called Lymphoblastoid Cell Lines (LCLs) eleven out of about 80 viral genes are expressed 

and referred to as latent genes. These are the six EBV nuclear antigens EBNA 1, -2, -3A, -3B, 

-3C and –LP (Epstein-Barr viral Nuclear Antigens), three membrane proteins LMP1, LMP2A 

and B (Latent Membrane Proteins), two small nonpolyadenylated RNAs EBER1 and –2 

(Epstein-Barr viral encoded RNAs), and highly spliced Bam A  rightward transcripts, or 

BARTs. Beside this so-called latency III or growth program, where all latent genes are 

expressed, other latencies with a more restricted viral gene expression exist. 

Apart from latency 0 in resting cells, EBNA1 is expressed in all EBV-positive proliferating 

cells (Hochberg et al., 2004). EBNA1 is essential for the replication of the circular viral DNA 

before mitosis and for its distribution into progeny cells during cell division.  

EBNA2 together with EBNA-LP are the first viral proteins expressed in EBV infected B 

lymphocytes. EBNA2 is the key regulator of viral gene expression, stimulating transcription 

of all EBNA and LMP genes during latency III. EBNA2 also modulates the transcriptional 

activity of several cellular genes. It interacts with the cellular DNA binding recombination 

signal binding protein J kappa (RBP-Jκ, also referred to as CBF1 and CSL) to modulate gene 

expression (Grossman et al., 1994; Henkel et al., 1994; Zimber-Strobl et al., 1994). Since the 

cellular protein Notch interacts with RBP-Jκ as well, EBNA2 has been considered to be a 

functional equivalent of activated Notch.  

EBNA-LP interacts with EBNA2 and co-activates transcription, whereas the proteins of the 

EBNA3 family repress this transcriptional activation.  

LMP1 and LMP2A are ligand-independent receptors, sharing functional properties with 

CD40 and BCR, respectively. The functional homologies of LMP1 versus CD40 and LMP2A 

versus BCR will be discussed later in detail. 

LMP1, EBNA2, EBNA3A and 3C have been shown to be essential for B cell transformation 

in vitro (Cohen et al., 1989; Kaye et al., 1993; Tomkinson et al., 1993).  
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EBV infection of B cells in vivo occurs by oral transmission and is usually asymptomatic, 

although it can be presented as Infectious Mononucleosis (IM) if primary infection is delayed 

until adolescence. Infected B cells expressing the immunogenic viral proteins are recognized 

and eliminated by cytotoxic T cells. Nevertheless, the virus has been shown to persist in 

memory B cells with restricted or even no gene expression, thus escaping immune 

surveillance (Babcock et al., 1998). It is still a controversial question whether EBV directly 

infects memory B cells and expression of viral genes is then down-regulated upon pressure of 

cytotoxic T cells, or whether naive B cells are infected and proceed to develop via normal B 

cell differentiation processes into memory B cells. 

1.6 EBV and the germinal center reaction 

Thorley-Lawson and colleagues have stated that EBV infected B cells have to pass the 

germinal center to get access to the memory B cell compartment (Thorley-Lawson, 2001; 

Thorley-Lawson and Babcock, 1999). This model is based on EBV gene expression studies in 

tonsillar B cells of healthy persons. They could show that only B cells with a naïve phenotype 

express the genes of the latency III program, whereas B cells with a GC phenotype express 

the more restricted latency II program, where only EBNA1 and the two membrane proteins 

LMP1 and LMP2A can be detected (Babcock et al., 2000; Babcock and Thorley-Lawson, 

2000; Joseph et al., 2000).  It has been proposed that LMP1 and LMP2A provide survival and 

proliferation signals to pass the germinal center without negative selection, and allow the 

EBV-infected B blasts to become resting memory B cells (Thorley-Lawson, 2001). However, 

there are experimental data not compatible with the hypothesis that EBV uses the germinal 

center reaction to establish persistence in memory B cells. Thus, it has been shown that LMP1 

expressed in B cells of transgenic mice blocks GC formation (Uchida et al., 1999). In 

addition, Kurth and colleagues showed that in infectious mononucleosis (IM) EBV directly 

infects both naive and memory B cells, but that most of the EBV infected B cells derived 

from clones harboring somatic mutations (Kurth et al., 2000). They could detect differences 

in morphology and EBV gene expression patterns within members of one EBV+ memory B 

cell clone, implying another mechanism to establish persistence in memory B cells than 

passing through a GC reaction.  

Even though the data on latent EBV infection and GC reaction are still controversial, it is 

evident that EBV positive lymphomas like Burkitt’s Lymphoma (BL) and Hodgkin’s 

Lymphoma (HL) derive from GC B cells or at least show GC like phenotypes. In contrast to 
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immunoblastic lymphomas, which show the latency III expression pattern and occur in 

immunocompromised individuals, the viral gene expression is very much restricted in BL and 

HL. In BL, only EBNA1 and two non-coding viral RNAs are expressed, whereas in HL 

EBNA1, LMP1 and LMP2A are expressed. As already mentioned, the characteristic Reed-

Sternberg (HRS) cells of HL often have highly mutated immunoglobulin genes, which are not 

able to encode a functional BCR (Kanzler et al., 1996). Cells without a functional BCR 

usually undergo negative selection. It is speculated that expression of LMP1 and LMP2A 

provide the pre-tumor or tumor cell with the essential survival signals which inhibit the 

elimination during the GC reaction. The survival signals for GC B cells are physiologically 

provided by the BCR and CD40. These signals might be replaced by the EBV proteins 

LMP2A and LMP1, which are both expressed in EBV positive HL cells (Herbst et al., 1991; 

Pallesen et al., 1991; Niedobitek et al., 1997).    

1.7 LMP1 and CD40 

The viral Latent Membrane Protein 1 (LMP1) and the cellular CD40 receptor are considered 

to be functional homologues. Both the LMP1 and CD40 cytoplasmic domains interact with a 

set of cellular signaling molecules called the tumor necrosis factor receptor-associated factors 

(TRAFs) and activate overlapping signaling pathways, including ERK, JNK, p38/MAPK and 

NFκB (Figure 1.2). Additionally, they bind to the janus family kinase (JAK) 3, which upon 

phosphorylation is able to activate the signal transducer and activator of transcription (STAT). 

Activation of CD40 and expression of LMP1 in B cells exhibits comparable phenotypes, both 

able to rescue B cells from apoptosis and drive their proliferation (Zimber-Strobl et al., 1996). 

However, LMP1 and CD40 do not interact with exactly the same sets of molecules, indicating 

also some differences in their signaling outcome. Thus, both LMP1 and CD40 interact 

directly with TRAFs 1, 2, 3 and 5, but only CD40 and not LMP1 binds directly to TRAF6 

(Ishida et al., 1996; Schultheiss et al., 2001). Conversely, LMP1 but not CD40 binds to the 

tumor necrosis factor receptor associated death domain protein (TRADD) and receptor-

interacting protein (RIP) (Izumi et al., 1999), which is usually associated with death signals. 

In contrast to other cellular tumor necrosis factor receptors (TNF-R) binding to TRADD, 

LMP1 recruits TRADD via the TRADD N-terminus but not the TRADD death domain. 

Consequently, LMP1’s association with TRADD does not induce apoptosis, but seems to be 

crucial for NFκB-activation via recruitment of TRAF2 by the TRADD-binding domain 

(Kieser et al., 1999).  
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Moreover, LMP1 signaling does not induce degradation of TRAF2 and TRAF3 as CD40, 

which might contribute to an enhanced signaling potency of LMP1 (Brown et al., 2001).  

The most striking difference between LMP1 and CD40 is that LMP1 constitutively signals 

independently of ligand, whereas CD40 depends on CD40-ligand for its signaling (Gires et 

al., 1997). The ligand independency of LMP1 is mediated by aggregation through its six 

transmembrane spanning domains. In contrast, the CD40 receptor contains an extracellular 

portion with four cysteine-rich domains which mediate direct ligand binding. The ligand 

CD40L (CD154, gp39) is mainly expressed on activated T helper cells (Bishop and Hostager, 

2003). The biological significance of the CD40-CD40L interaction was first revealed in 

studies of patients with mutations in the genes for CD40L and CD40 (Hyper-IgM syndrome 

(HIGM) 1 and 3, respectively), who show defects in immunoglobulin (Ig) class switch 

recombination (CSR) (Aruffo et al., 1993; Korthauer et al., 1993; DiSanto et al., 1993; Allen 

et al., 1993). The crucial role of the CD40-CD40L interaction in the T-cell dependent immune 

response was further supported by studies of CD40 and CD40L knockout mice, which not 

only show defects in their Ig CSR, but also in their formation of germinal centers (GC), in 

somatic hypermutation (SHM) of their Ig genes, and establishment of B cell memory (Xu et 

al., 1994; Kawabe et al., 1994).  

In vitro, LMP1 was shown to mimic CD40 in several ways. However, in transgenic mice B 

cell-specific expression of LMP1 only partially reconstituted the CD40 deficiency (Uchida et 

al., 1999). LMP1 expression in CD40-/- mice could restore antibody class switching to IgG1 

after immunization with T cell dependent antigens, but neither GC formation nor the 

production of high affinity antibodies. LMP1 expression even blocked GC formation in the 

presence of the endogenous CD40 receptor, suggesting that LMP1 expression is not 

compatible with the GC reaction.  Recently, it has been shown that the fusion protein of the 

transmembrane domain of LMP1 and the signaling domain of CD40 (LMP1/CD40), which 

provides a constitutive active CD40 signal, also blocks the GC reaction (Panagopoulos et al., 

2004) (Hömig, 2005). Further it could be shown that a constitutive active CD40 signaling in 

B cells leads to a splenomegaly with strong accumulation of follicular and marginal zone B 

cells (Hömig, 2005). These B cells display an activated phenotype, but are impaired in TD 

immune responses. LMP1/CD40-expressing mice develop lymphoma at high incidence, as do 

LMP1 transgenic mice (Kulwichit et al., 1998). Thus, it seems that the constitutive activation 

of B cells by either LMP1 or CD40 leads to a differentiation block which prevents GC 

formation and ultimately leads to lymphomagenesis in mice. The oncogenic potential of 
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constitutive LMP1 and CD40 signals was further shown by rodent fibroblast transformation 

assays (Wang et al., 1985; Hatzivassiliou et al., 2006).   

LMP1 is essential for EBV-induced B cell transformation in vitro (Kaye et al., 1993), and is 

expressed in several EBV associated human malignancies, like HL, posttransplant lymphoma 

and nasopharyngeal carcinoma.  

Recently, it has been claimed that even the LMP1 cytoplasmic domain itself regulated by the 

CD40L (CD40/LMP1) harbors pathogenic features, inducing hyperactivation of B 

lymphocytes and disordered lymphoid architecture in mice (Stunz et al., 2004). However, in 

that study CD40/LMP1 was not expressed exclusively in B cells, the site of normal EBV 

latent infection, but in all antigen presenting cells. Thus, those mice show elevated serum-IL6 

most likely responsible for many of observed abnormalities, which seem to be secreted by 

activated macrophages. Therefore it remained unclear what would be the influence of the 

LMP1 signaling domain exclusively expressed in B cells. 
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Figure 1.2. LMP1 as a functional homologue of CD40 
Both LMP1 and CD40 bind to tumor necrosis factor receptor-associated factors (TRAFs) and activate 
overlapping signaling pathways, including ERK, JNK, p38/MAPK and NF-κB, which leads to 
activation, proliferation and survival of B cells. 
LMP1, latent membrane protein 1; TRAF, tumor necrosis factor receptor-associated factors; TRADD, 
tumor necrosis factor receptor associated death domain protein; RIP, receptor interacting protein; JAK, 
janus kinase; NF-κB, nuclear factor κB; MAPK, mitogen activated protein kinase; JNK, c-jun N-
terminal kinase; ERK, extracellular signal-regulated kinase; STAT, signal transducer and activator of 
transcription; PxQxT, protein binding motif. 
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1.8 LMP2A and the B cell receptor 

Both the B cell receptor (BCR) and LMP2A contain functional immunoreceptor tyrosine-

based activation motifs (ITAMs) (Figure 1.3).  

The BCR complex consists of two immunoglobulin heavy chains (IgH) and two 

immunoglobulin light chains (IgL) associated with the signaling molecules Igα (CD79A) and 

Igβ (CD79B). IgH and IgL have a variable and a constant region. The variable regions 

determine antigen specificity of the BCR. Since IgH and IgL lack signaling domains, Igα and 

Igβ are crucial for BCR signaling. Igα and Igβ are transmembrane molecules, which harbor 

the ITAMs in their cytoplasmic tails. Through these motifs the interaction with intracellular 

protein tyrosine kinases, such as Lyn and Syk, and the initiation of several signaling cascades 

is mediated. In the absence of antigen stimulation, the BCR provides the cell with a tonic 

signal that has been shown to be essential for the survival of B cells (Lam et al., 1997).  

LMP2A is a transmembrane protein which harbors 12 transmembrane spanning domains, 

through which it is able to self-aggregate and mediate constitutive signaling independent of 

ligand, as described for LMP1. The amino-terminal cytoplasmic domain of LMP2A contains 

several tyrosine residues, two of them containing a conserved ITAM motif. The recruitment 

of Lyn and Syk by LMP2A results in the constitutive phosphorylation of these kinases. 

LMP2A is able to block signaling after BCR-cross-linking by recruiting Lyn and Syk 

(Fruehling and Longnecker, 1997). However, LMP2A expression in transgenic mice allows 

the release of Ig negative B cell in the periphery, indicating that it can mimic BCR signals 

required for positive selection of B cells in the bone marrow (Caldwell et al., 1998).  Further, 

it helps mature B cells to survive without a BCR and to initiate GC reactions in gut-associated 

lymphoid tissue (Casola et al., 2004).  

LMP2A expression is not essential for EBV-induced B cell transformation in vitro 

(Longnecker et al., 1992). However, its implication in EBV associated tumors has been 

suggested. Thus, LMP2A can transform epithelial cells in vitro (Scholle et al., 2000) and it is 

consistently expressed in nasopharyngeal carcinoma (Niedobitek et al., 1992; Brooks et al., 

1992). Further, it is expressed in post-transplant and EBV associated Hodgkin’s lymphoma. 

In HL, LMP2A may contribute to lymphomagenesis by providing pre-apoptotic Ig crippled 

cells with BCR-like survival signals. This is in accordance with the observation that only 

EBV associated HL cells harbor crippled mutations. Additionally, it has been recently shown 

by three independent groups that EBV can rescue crippled GC B cells from apoptosis in vitro 

(Mancao et al., 2005; Bechtel et al., 2005; Chaganti et al., 2005).  
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Figure 1.3. LMP2A mimics the B cell receptor 
Both LMP2A and BCR interact with intracellular protein tyrosine kinases, such as Lyn and Syk, and 
initiate several signaling cascades. 
BCR, B cell receptor; LMP2A, latent membrane protein 2A; Igα/β, immunoglobulin-associated 
signaling molecule α and β respectively; Yp; phosphorylated tyrosines of the ITAMs (immunoreceptor 
tyrosine-based activation motifs).  
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2 Aim of the project 
 

The Epstein-Barr viral proteins LMP1 and LMP2A share functional properties with the 

cellular receptors CD40 and BCR, respectively, and therefore elicit unique features to 

interfere in normal B cell differentiation processes. However, it is still elusive if and how 

EBV uses B cell differentiation pathways to establish persistence in memory B cells. The 

current popular hypothesis of Thorley-Lawson and colleagues, which states that EBV infected 

B cells have to pass a germinal center (GC) reaction to become EBV-positive resting memory 

B cells, is contrary to the observation that LMP1 expression in B cells of transgenic mice 

interferes with GC formation. To work out the mechanism how EBV establishes persistence is 

a prerequisite to understand its role in B cell lymphomagenesis. 

The aim of the present PhD thesis is to examine the interplay of EBV and the GC reaction, 

focusing on the influence of LMP1 and LMP2A.  

In the first part, the signaling properties of CD40 and LMP1 should be analyzed and 

compared in vivo. Therefore, transgenic mice should be established, which conditionally 

express the fusion protein of the extracellular domain of the CD40 receptor and the signaling 

domain of LMP1 (CD40/LMP1). The influence of the LMP1 signaling domain exclusively 

expressed in B cells should be elucidated. In CD40 deficient mice it should be analyzed if 

LMP1 signaling is able to substitute the CD40 signal in the T cell dependent immune 

response, including class switch recombination, germinal center formation and affinity 

maturation. 

In the second part, another mouse line expressing conditionally a fusion protein of the 

transmembrane domain of LMP1 and the signaling domain of CD40 (LMP1/CD40), therefore 

providing constitutive active CD40 signals, should be analyzed. These mice expressing 

LMP1/CD40 in B cells have previously been shown to be deficient in GC formation, but 

show an expansion of B cells which ultimately leads to lymphoma development (Hömig, 

2005). In the present work, the effect of a constitutive active CD40 signal should be analyzed 

especially on activated and germinal center B cells. By crossing the LMP1/CD40flSTOP strain 

to the Cγ1-cre strain, LMP1/CD40 expression will be induced in germinal center B cells. 

Offspring should be analyzed for germinal center formation upon T cell dependent 

immunization, and for lymphoma development to study the impact of constitutive CD40 

signaling on germinal center B cells and the murine immune system. 
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In the third and last part, a human B cell system should be established to study the impact of 

different EBV proteins on the B cell phenotype in vitro. To this end, the EBV proteins 

EBNA1, LMP1 and LMP2A should be expressed either alone or in combination in a naïve 

human B cell line to analyze their properties to induce germinal center like differentiation and 

immortalization processes.  
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3  Results 

3.1 Comparison of LMP1 and CD40 signaling in B cells in vivo 

Based on several in vitro studies the Epstein-Barr-viral protein LMP1 and the cellular CD40 

receptor are considered to be functional homologues. However, B cell specific expression of 

LMP1 in transgenic mice was not able to substitute for CD40 in the TD immune response and 

even blocked GC formation in the presence of endogenous CD40 (Uchida et al., 1999). 

Recently, it has been shown that the fusion protein of the transmembrane domain of LMP1 

and the signaling domain of CD40 (LMP1/CD40), which provides a constitutive active CD40 

signal, also blocked the GC reaction (Panagopoulos et al., 2004) (Hömig, 2005). Thus, it 

seems that the constitutive activation of B cells by either LMP1 or CD40 leads to a 

differentiation block which prevents GC formation. In the present work, we wanted to 

investigate whether the LMP1 signaling domain itself is able to mimic CD40 in vivo. 

3.1.1 Generation of a transgenic mouse line expressing a conditional CD40/LMP1 

transgene 

To study LMP1 signaling in vivo, we generated a transgenic mouse strain conditionally 

expressing LMP1 signaling of the ligand-binding and transmembrane domain of CD40 

(amino acids (aa) 1-215) and the signaling domain of LMP1 (aa 186-386) (CD40/LMP1) 

(Figure 3.1A). A single copy of the CD40/LMP1 chimeric gene was inserted into the murine 

rosa26-genomic locus by homologous recombination in BALB/c-derived embryonic stem 

(ES) cells (Figure 3.1B). To restrict expression of CD40/LMP1 to specific cell types and to 

pre-determined stages of B cell development, a loxP-flanked transcription and translation 

termination site (stop-cassette) upstream of the CD40/LMP1 coding sequence was inserted. 

After excision of the stop-cassette by the recombinase Cre, the CD40/LMP1 transgene is 

placed under the transcriptional control of the ubiquitously active rosa26-promoter. Correctly 

targeted ES cell clones were identified by Southern blot analysis (Figure 3.1C) and used to 

establish the CD40/LMP1flSTOP inducible mouse strain on the BALB/c genetic background. 

The generation of the transgenic ES cell clones was described in detail in my diploma thesis 

(University of Vienna, 2003).  
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Figure 3.1. Generation of a transgenic mouse line conditionally expressing CD40/LMP1 
(A) Schematic representation of the chimeric protein CD40/LMP1. The N-terminal 215 amino acids 
(aa) of CD40 (receptor binding and transmembrane domain) were fused to the COOH-terminal 200 aa 
of LMP1 (cytoplasmic domain). 
(B) Targeting strategy for the insertion of a conditional CD40/LMP1 allele (CD40/LMP1flSTOP) into 
the mouse rosa26-locus. The figure shows (1) the wild type rosa26-locus with its 3 exons and the Xba 
I restriction site in the first intron where the transgene was inserted; (2) the rosa26-locus after 
homologous recombination of the targeting construct (CD40/LMP1flSTOP); and (3) the rosa26-locus 
after homologous recombination and deletion of the stop cassette upon Cre-mediated recombination, 
which leads to the expression of CD40/LMP1 under transcriptional control of the endogenous rosa26-
promoter.  
The EcoRI recognition sites and the location of the probe for the Southern blot analysis are shown. 
The expected fragments after EcoRI digestion and hybridization with the labeled probe are indicated. 
Abbreviations: Cre – Cre recombinase; SAS – splice acceptor site; loxP- locus of crossing over in 
bacteriophage P1.  
(C) Southern blot analysis showing the different alleles after targeting and Cre-mediated 
recombination of the stop cassette in ES cells. The DNA was digested by EcoRI and hybridized with 
the labeled probe specific for the rosa26-locus as shown in (B). Lane 1, wild-type ES cells; lanes 2 – 5, 
ES cell clones showing correct targeting; lane 6, ES cell clone with correct targeting after Cre-
mediated deletion of the stop cassette. 
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3.1.2 B cell specific expression of the CD40/LMP1 transgene in a CD40-/- background 

Since EBV latent infection is restricted to B cells, the influence of CD40L-regulated LMP1 

signaling was specifically investigated in B cells. Therefore, the CD40/LMP1flSTOP mice were 

crossed to the CD19-Cre mouse strain to activate expression of the chimeric protein from the 

pro-pre B cell stage on (Rickert et al., 1997). Un-immunized and immunized CD40/LMP1 

expressing mice on a CD40+/+ background were analyzed and did not show any differences 

to wild type mice (data not shown). Thus, CD40/LMP1 expression in B cells did not have any 

negative influence on the murine immune system and did not interfere with GC formation. To 

analyze the properties of LMP1 to mimic CD40 in vivo, mice were bred to CD40-/- mice to 

express CD40/LMP1 on a CD40-deficient background (CD40/LMP1+//CD40-/-).  
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Figure 3.2. B cell specific expression of CD40/LMP1 
(A) Cells of bone marrow (BM), spleen (SP) and lymph nodes (LN) were analyzed for the expression 
of CD40 by flow cytometry. Cells were stained for the mouse CD40 extracellular domain and B220, a 
B cell marker.  
(B) Overlay of the CD40 expression levels in CD40-/- (black line), CD40+/+ (green line) and 
CD40/LMP1+//CD40-/- (red line) B cells, analyzed by flow cytometry. CD40/LMP1+//CD40-/- B 
cells show approximately a 2 fold increase in CD40 expression compared to CD40+/+ B cells.  
(C) CD40/LMP1 protein expression. Western blots were prepared from lysates of B cells of CD40+/+ 
(wt), CD40-/- and CD40/LMP1+//CD40-/- (CL+) mice isolated by CD19 MACS separation. The 75 
kDa CD40/LMP1 chimeric protein was detected by an anti-LMP1 antibody, and the endogenous 45 
kDa CD40 protein by an anti-CD40 antibody. n.s., non specific band, used as a loading control. 
 

FACS analyses of bone marrow and peripheral lymphoid organ cells showed that around 17% 

of B220+ B cells in the bone marrow (BM) and more than 95% of B220+ B cells in the 

periphery of CD40/LMP1+//CD40-/- mice stained positive for CD40 and therefore expressed 
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the transgene (Figure 3.2A). CD40/LMP1 expression already became detectable in B220low 

pre and immature B cells, whereas the endogenous CD40 is known to be expressed at very 

low levels in pre-B cells and increases during B cell maturation (Grandien et al., 1996). 

An overlay of the FACS staining with the anti-CD40 antibody showed that the CD40/LMP1 

expression on B cells was approximately twice the level of CD40 expressed on wild type B 

cells (Figure 3.2B). Western blot analyses of MACS purified CD19+ splenic B cells showed a 

specific band for the 75 kDa CD40/LMP1 protein only in samples of CD40/LMP1 expressing 

mice, and the 45 kDa CD40 protein only in the CD40+/+ wild type control (Figure 3.2C).  

To show that the transgene is not expressed in dendritic cells (DC), BM cells were isolated 

from CD40/LMP1+//CD40-/- and control mice (CD40-/- and CD40+/+) and cultivated in the 

presence of Granulocyte/Macrophage colony stimulating factor (GM-CSF) to select for DC. 

After seven days, the cells were further stimulated with Lipopolysaccharid (LPS) for 12 hours 

to induce surface expression of activation markers like CD40, CD80 and MHCclassII on DC. 

Whereas in both CD40+/+ DC and CD40/LMP1+//CD40-/- DC CD80 expression could be 

detected after LPS-stimulation, only CD40+/+ DC up-regulated CD40 (Figure 3.3A and B). 

This indicates that CD40/LMP1 expression is not activated in DC by CD19-Cre. However, 

around 1% of B220- BM cells showed expression of CD40/LMP1, which were positive for 

Gr-1, indicating a myeloid origin of these cells (Figure 3.3C).  
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Figure 3.3. CD40/LMP1 expression in non-B cells 
(A) Dendritic cells (DC) were enriched from the bone marrow by culturing for 7 days in the presence 
of GM-CFS. To induce CD40 expression, cells were activated by LPS 12 hours prior to FACS 
analysis. Cells were gated for living cells (PI negative) and stained for CD11c and CD40.  
(B) FACS staining for CD40 and CD80 of CD11c+ BM-derived DC after LPS- or without (w/o) 
stimulation.  
(C) Gr1, CD40 co-staining of BM cells gated on B220- and PI-. In BM of CD40/LMP1+//CD40-/- 
mice around 1% of B220- cells expressed CD40/LMP1. 
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3.1.3 Lymphoid compartment characterization of CD40/LMP1+//CD40-/- mice 

The lymphoid compartments of 8 to 16 weeks old CD40/LMP1+//CD40-/- mice were 

analyzed and compared to age-matched wt CD40+/+ and CD40-/- control mice (Figure 3.4 

and 3.5). The spleens (SP) as well as the inguinal lymph nodes (LN) in CD40/LMP1+//CD40-

/- mice showed normal size and weight (Figure 3.4A and data not shown). Total numbers and 

percentages of B220+ B cells and CD5high T cells in spleen and inguinal lymph nodes were 

comparable in all three groups of mice analyzed (Figure 3.4B and C). 
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Figure 3.4. B and T cell distributions in the spleen and inguinal lymph nodes are normal in 
CD40/LMP1+//CD40-/- mice 
(A) Splenic weight in milligrams of 4 to 5 wild type (wt CD40+/+), CD40-/- and 
CD40/LMP1+//CD40-/- mice. 
(B) Total numbers and percentages of B220+ B cells and CD5+ T cells in the spleen (SP). 
(C) Total numbers and percentages of B220+ B cells and CD5+ T cells in both inguinal lymph nodes 
(iLN).   
Data presented in (B) and (C) are means of four to five mice per group tested in independent 
experiments. 
(D) Immunohistochemical analyses of the splenic structures. Cryosections were stained with anti-IgM 
specific for B cells (red) and anti-CD3 specific for T cells (blue). Original magnification, x 50. 
 

 

 



Results 

 28

Immunohistochemical analyses of the spleen revealed that the structure of the follicles with 

the B and T cell zone was normal in CD40/LMP1+//CD40-/- mice (Figure 3.4D). FACS 

analyses showed that the CD40/LMP1+//CD40-/- mice had normal percentages of mature 

IgM+ IgD+ B cells in all lymphoid organs and normal percentages of CD21+CD23+ follicular 

(FO) and CD21highCD23low marginal zone B (MZB) cells in the spleen (Figure 3.5A and B). 

Although CD40/LMP1 started to be expressed earlier than the endogenous CD40 in the BM 

(Figure 3.2A), CD40/LMP1+//CD40-/- mice showed a normal B cell development as revealed 

by staining against B220 and IgM to distinguish pre/pro (B220lowIgM-), immature 

(B220lowIgM+) and recirculating mature B cells (B220high, IgM+) (Figure 3.5C). 
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Figure 3.5. CD40/LMP1+//CD40-/- mice show normal B cell subset distributions in the spleen 
and bone marrow 
(A) Lymphocytes of spleens (SP) were analyzed for the expression of IgM and IgD by flow 
cytometry. Numbers indicate percentages of gated populations, follicular (FO) B cells (IgM+IgD+), 
marginal zone (MZB) and transitional (T) B cells (IgMhighIgDlow). 
(B) Flow cytometric analysis of follicular B cells (FO) (CD21intCD23+) and marginal zone B cells 
(MZB) (CD21highCD23low) in the spleen. Numbers indicate percentages of B220+ B cells displaying a 
MZB or FO B cell phenotype. 
(C) Flow cytometry of bone marrow (BM) cells to distinguish pre/pro (B220lowIgM-), immature 
(B220lowIgM+) and recirculating mature B cells (B220highIgM+). 
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3.1.4 CD40/LMP1 restores normal serum immunoglobulin titers in CD40-/- mice 

CD40-/- mice show defects in immunoglobulin (Ig) class switching upon T cell-dependent 

immunization (Kawabe et al., 1994), resulting in decreased IgG1, IgG2a and IgG2b isotype 

levels and a slight increase in IgM in their total serum Ig titers. To study whether 

CD40/LMP1 can substitute for CD40 in Ig class switch recombination, total serum Ig titers of 

un-immunized CD40+/+, CD40-/- and CD40/LMP1//CD40-/- mice were analyzed by 

Enzyme-linked immunosorbent assay (ELISA) (Figure 3.6). Whereas CD40-/- mice had 

decreased levels of IgG1, IgG2a and IgG2b in the serum, CD40/LMP1//CD40-/- mice had 

similar or even higher titers of these isotypes compared to wild type mice. IgM levels were 

slightly elevated in the CD40-/- mice, but not in the CD40/LMP1//CD40-/- mice. These 

results show that CD40/LMP1 can rescue the CD40 deficiency in class switch recombination.  

1

10

100

1000

10000

IgAIgG3

1

10

100

1000

10000

IgG2b

1

10

100

1000

10000

IgG2a

1

10

100

1000

10000

IgG1

1

10

100

1000

10000

IgM

1

10

100

1000

10000

μg
/m

l

CD40LMP1+//CD40-/-

wt CD40+/+
CD40-/-

 
Figure 3.6. CD40/LMP1 can rescue the class switch recombination deficiency in CD40-/- mice 
Non-immunized mice were analyzed for total serum immunoglobulin concentrations of the indicated 
isotypes. Serum of 5 mice per group between the age of 8 and 16 weeks was analyzed. 
 

3.1.5 CD40/LMP1 substitutes CD40 in germinal center formation  

To investigate whether CD40/LMP1 could provide the B cells with the essential signals for 

germinal center (GC) formation, isotype switching and affinity maturation in the absence of 

CD40, we immunized CD40/LMP1+//CD40-/- and control mice with the hapten 

nitrophenylacetyl conjugated to chicken-gammaglobulin (NP-CGG). The presence of GC was 

revealed 0, 7, 14, 21 and 28 days after immunization by flow cytometric and 

immunohistochemical analyses after staining with peanut agglutinin (PNA), which is specific 

for germinal center B cells (Rose et al., 1980). PNA stained cells could be observed in 



Results 

 30

immunized wt CD40+/+ and CD40/LMP1+//CD40-/- mice, but not in immunized CD40-/- 

mice, nor in un-immunized mice including CD40/LMP1+//CD40-/- mice (Figure 3.7). The 

immunohistochemical analyses revealed that CD40/LMP1+//CD40-/- mice showed a normal 

architecture of the follicles with the GC and mantle zone. This result indicates that 

CD40/LMP1 expression in B cells can rescue optimal GC formation upon TD-immunization 

in CD40 deficient mice, but does not induce spontaneous GC formation. Compared to wt 

CD40+/+ controls, CD40/LMP1+//CD40-/- mice showed a higher percentage of GC B as well 

as plasma cells after immunization (Figure 3.8).  
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Figure 3.7. CD40/LMP1 is able to substitute for CD40 in germinal center formation 
(A) Flow cytometry to identify germinal center B cells (CD95+PNAhigh) in the spleens of CD40+/+ and 
CD40/LMP1+//CD40-/- mice. Cells were isolated and analyzed at day 0, 7, 14, 21 and 28 after 
immunization with 100 µg NP-CGG. Cells are gated on B220+, numbers indicate mean percentages of 
B cells displaying a germinal center phenotype of 2 to 5 mice analyzed per group. 
(B) Histological analyses of germinal centers in the spleen 14 days after immunization with 100 µg 
NP-CGG. Cryosections were stained with anti-IgM specific for B cells (red) and PNA specific for 
germinal center B cells (blue). Original magnification, x 50. 
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Figure 3.8. CD40/LMP1+//CD40-/- mice show a higher percentage of germinal center B and 
plasma cells upon immunization 
(A) The graph shows the percentages of germinal center B cells in CD40+/+ and CD40/LMP1//CD40-
/- mice at day 0, 7, 14, 21 and 28 after immunization with 100 µg NP-CGG. 2 to 11 mice were 
analyzed per group and time point. At day 14, CD40/LMP1+//CD40-/- mice in average showed a 2 
fold increase of germinal center B cells compared to CD40+/+ controls. 
(B) Flow cytometry to identify plasma cells (CD138+B220low) in the spleens of CD40+/+ and 
CD40/LMP1//CD40-/- mice 14 days after immunization. Cells are gated on living cells (PI negative). 
The graph shows the percentages of plasma cells in immunized mice of 4 independent experiments. 
CD40/LMP1//CD40-/- mice showed a 2 to 4 fold increase in plasma cell percentages compared to 
CD40+/+ controls. 
 

3.1.6 CD40/LMP1 substitutes CD40 in the production of high affinity antibodies 

The ability to produce class switched NP specific antibodies was analyzed by ELISA. 

CD40/LMP1+//CD40-/- mice were able to produce NP specific antibodies of all isotypes 

analysed (Figure 3.9A). In comparison to CD40+/+ controls, CD40/LMP1+//CD40-/- mice 

showed an increase of all class switched NP-specific antibodies. Most obvious was the 

increase of IgG2b and IgA antibodies.  
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An important feature of a proper germinal center reaction is the development of high affinity 

antibodies. By ELISA, NP specific antibodies can be tested to show high or low affinity for 

NP by binding to low-density hapten and high-density hapten, respectively. To analyze Ig 

affinity maturation in immunized CD40/LMP1+//CD40-/- and CD40+/+ mice, the 

concentrations of NP-specific IgG1 antibodies were analyzed 7, 14, 21 and 28 days after 

immunization. The ratio of anti-NP3/anti-NP17 binding of the antibodies increased with time, 

showing that CD40/LMP1 can substitute for CD40 in the generation of high affinity 

antibodies (Figure 3.9B). 
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Figure 3.9. CD40/LMP1 substitutes CD40 in the production of class switched and high affinity 

antibodies 

 (A) NP-specific antibody response 14 days after immunization with 100µg NP-CGG. NP-specific 
immunoglobulin concentrations for the indicated isotypes are shown for 5 mice from each group. 
CD40/LMP1+//CD40-/- mice showed a relative increase of all class switched isotypes analyzed 
compared to CD40+/+ controls. 
(B) Affinity maturation of NP specific IgG1 antibodies at day 7, 14, 21 and 28. The ratio of antibody 
binding to low-density hapten (NP3-BSA) versus high-density hapten (NP17-BSA) is plotted for 2 to 
5 mice per group.   

3.1.7 CD40/LMP1+//CD40-/- mice somatically mutate their Ig genes comparable to 

wild type 

Since CD40/LMP1//CD40-/- mice showed affinity maturation of antibodies, we expected the 

Ig genes to be somatically mutated. To determine adequately if CD40/LMP1 could induce 

somatic hypermutation to the same extend as CD40, we analyzed the sequences of the JH4 

region of the Ig genes of GC and non-GC B cells of 2 sets of immunized 

CD40/LMP1+//CD40-/- and CD40+/+ control mice.  Whereas non-GC B cells of neither 

CD40/LMP1+ nor CD40+/+ mice showed SHM, GC B cells of both groups showed 

approximately the same frequencies of SHM (0,53% versus 0,52%, respectively) (Table 3.1). 
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This indicates that the LMP1 signaling domain is as efficient as CD40 to induce factors 

necessary for SHM, and does not lead to uncontrolled mutational activity.  

 

Table 3.1. Frequency and range of mutations in a 500 bp-long region in the intron downstream 
of the rearranged VHDHJH4 joints of splenic GC B cells of two independent experiments 
 
Genotype     No. clones   No. mutated clones   Range, mutations/clone   No. mutations/no. bp (%) 

CD40/LMP1+//CD40-/-         44                           38                               1-11                         130/22000 (0,59%)     

CD40+/+                                 43                           37                               1-11                         146/21500 (0,68%) 

CD40/LMP1+//CD40-/-         41                           35                               1-6                             97/20500 (0,47%) 

CD40+/+                                 41                           29                               1-6                             74/20500 (0,36%) 

 
Splenic GC and naïve B cells were isolated 14 days after immunization with NP-CGG. PCR was 
performed from 40000 cell equivalents with primers annealing in the framework 3 region of most J558 
V genes and in the intron downstream of the JH4 gene segment. 
Naïve CD40/LMP1+//CD40-/- B cells had a 0,05% and 0,09% mutation frequency; and naïve 
CD40+/+ B cells a 0,06% and 0,07% mutation frequency, respectively. 
 

3.1.8 The higher percentage of germinal center B cells in immunized 

CD40/LMP1+//CD40-/- mice is not a result of a higher proliferation rate 

The higher percentages of GC B cells in CD40/LMP1+//CD40-/- mice could be either due to 

a higher proliferation rate, due to a better survival of CD40/LMP1 expressing GC B cells, or 

due to a higher recruitment of B cells into the GC.  

To analyze the proliferation capacity of GC B cells in CD40/LMP1+//CD40-/- and control 

mice, we performed BrdU assays in vivo.  BrdU, an analogue of thymidine, is incorporated 

into the DNA of proliferating cells and can be visualized with an anti-BrdU antibody by 

intracellular staining. Mice were injected intraperitoneally with 150 µl BrdU solution (10 

mg/ml) at the peak of GC formation 14 days post-immunization, and sacrificed 2 or 6 hours 

later.  Splenic cells were stained with PNA, anti-CD95 and anti-BrdU and analyzed by flow 

cytometry. CD40/LMP1+//CD40-/- mice did not show more BrdU positive GC B cells than 

CD40+/+ mice, indicating that their GC B cells did not proliferate faster than wild type B 

cells (Figure 3.10). 
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Figure 3.10. CD40/LMP1+//CD40-/- B cells do not show a higher proliferation rate in the 
germinal center 
14 days after immunization with NP-CGG, mice were injected with 150 µl BrdU solution (10 mg/ml) 
and sacrificed 2 or 6 hours later. The incorporation of BrdU into the DNA was analyzed in germinal 
center B cells. Cells were stained for CD95 and PNA, fixated and permeabilized to stain intracellular 
for BrdU incorporation. 
The germinal center B cell staining (CD95+PNA+) and histograms of the BrdU staining of these cells 
gated on R1 are shown. Numbers indicate the percentages of germinal center B cells and BrdU 
positive germinal center B cells, respectively. 
 

3.1.9 CD40/LMP1+//CD40-/- mice do not show signs of autoimmunity 

It was previously reported that transgenic mice expressing CD40/LMP1 under control of the 

MHC class II promoter show signs of autoimmune reactivity, as chronic lymphocyte 

activation, splenomegaly, lymphadenopathy, elevated serum IL-6, spontaneous GC, and anti-

ds DNA and anti-phospholipid antibodies in the serum (Stunz et al., 2004). 

CD40/LMP1+//CD40-/- mice did not show any evidence for autoimmune disease, 

nevertheless we tested 2-12 months old mice for the presence of anti-phospholipid antibodies 

by an anti-cardiolipin ELISA. All samples of CD40/LMP1+//CD40-/- and control mice were 

clearly negative for anti-cardiolipin antibodies (Figure 3.11). 

  
 
Figure 3.11. CD40/LMP1+//CD40-/- mice do not have 
anti-cardiolipin antibodies 
Serum from un-immunized 2-12 months old mice (7-15 
per group) were screened for anti-cardiolipin antibodies by 
ELISA. Data are means of duplicate wells; all values                         
shown are sera tested together in one assay. The OD of the 
negative control serum was set two times to define 
positive and negative tests, according to manufacturer’s 
protocol.  
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3.1.10 LMP1 signaling induces cytokine-independent class switch recombination 

Since we observed an increase of class switched antibodies in CD40/LMP1//CD40-/- 

compared to CD40+/+ mice, we wished to determine whether this could be due to signaling 

outcome differences of LMP1 and CD40. It has been reported previously that LMP1 is able to 

induce class switch recombination in a Burkitt-Lymphoma cell line in vitro (He et al., 2003).  

To test whether the LMP1 signaling domain is able to induce class switch recombination 

independent of cytokines in primary B cells, isolated splenic B cells were labeled with CFSE 

and cultured in the presence of agonistic CD40 antibody (anti-CD40), IL-4, anti-CD40 plus 

IL-4, or without any stimuli, and stained for surface IgG1 at day 5 (Figure 3.12A). In cultures 

of CD40/LMP1+//CD40-/- B cells, a distinct fraction of IgG1 class-switched cells could 

already be detected upon stimulation with anti-CD40 only. The latter subset was absent in 

cultures of anti-CD40 stimulated wild type B cells and appeared only after co-stimulation 

with anti-CD40 and IL-4. The CFSE labeling showed that CSR in CD40/LMP1+//CD40-/- B 

cells did not correlate with a higher proliferation rate of these cells. Staining with anti-CD40 

antibody indicated that the endogenous CD40 in wt B cells was expressed at similar levels as 

CD40/LMP1 upon activation (Figure 3.12B). The ability to induce cytokine-independet CSR 

was restricted to IgG1, since no IgA, IgG2a and IgG2b positive cells could be detected after 

anti-CD40 stimulation (data not shown).  

By mixed B cell culture experiments we further elucidated whether the CSR of anti-CD40 

stimulated CD40/LMP1+ B cells was mediated by an intrinsic effect of LMP1 signaling or by 

an autocrine mechanism of elevated cytokine release by these cells. Wild type CD40+/+ B 

cells expressing the Ly5.1 leukocyte marker were cultured together with 

CD40/LMP1+//CD40-/- B cells expressing Ly5.2 instead of Ly5.1, therefore distinguishable 

by a specific anti-Ly5.2 antibody. Stimulation with anti-CD40 antibody induced CSR in 

CD40/LMP1+//CD40-/- but not in CD40+/+ B cells, indicating a unique feature of the LMP1 

signaling domain to induce cytokine-independent CSR. 
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Figure 3.12. LMP1 signaling induces cytokine-independent class switch recombination to IgG1 
(A) CD43- and IgG1-depleted splenic B cells were labeled with CFSE and cultured in the presence of 
the indicated stimuli for five days. CD40/LMP1+//CD40-/- B cells showed CSR to IgG1 after 
stimulation with agonistic anti-CD40 antibody (a-CD40) only, whereas in wt CD40+/+ B cells CSR 
was dependent on CD40 and IL4. CD40-/- B cells were added in the study as a negative control. Cells 
are gated on living (PI-) cells. Numbers indicate means of percentages of IgG1+ cells of three 
independent experiments. 
(B) After 5 days of culture in the presence of anti-CD40 antibody (a-CD40), CD40/LMP1+//CD40-/- 
(red line) but not wt CD40+/+ B cells (black line) showed a certain fraction of IgG1 positive cells, 
although they had comparable division rates (visualized by CFSE labeling), and CD40 or CD40/LMP1 
expression levels, respectively.  
(C) Mixed B cell cultures of CD40+/+ B cells expressing the leukocyte marker Ly5.1 with Ly5.2-
positive CD40/LMP1+//CD40-/- and CD40+/+ B cells, respectively. After 5 days of culture with anti-
CD40 antibody, Ly5.2+ CD40/LMP1+//CD40-/- , but not Ly5.1+ CD40+/+ B cells showed CSR to 
IgG1. This indicates that CSR of CD40/LMP1+//CD40-/- B cells reflects an intrinsic effect of the 
LMP1 signaling domain and is not mediated by an increased release of cytokines. Numbers indicate 
means of percentages of IgG1+ cells of two independent experiments. 
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3.2 The influence of constitutive active CD40 signaling on germinal center B 

cells in vivo 

We could show that CD40L regulated LMP1 signaling could substitute for CD40 in GC 

formation, whereas constitutive CD40 signaling triggered by the transmembrane domain of 

LMP1 (LMP1/CD40) blocked germinal center formation in mice as it has been shown for 

LMP1 (Panagopoulos et al., 2004; Rose et al., 1980; Uchida et al., 1999) (Hömig, 2005). 

However, LMP1 expression could be detected in GC B cells of healthy human EBV carriers 

(Babcock et al., 2000). Therefore, it was tempting to speculate that the constitutive activity of 

either LMP1 or CD40 inhibited the cells to enter the GC, but that it did not interfere with 

already established GC and even help the cells to survive there. To test this hypothesis, we 

crossed LMP1/CD40flSTOP mice to Cγ1-cre mice to induce LMP1/CD40 expression in GC B 

cells (Figure 3.13). The LMP1/CD40flSTOP mouse strain was generated with the same 

targeting strategy like the CD40/LMP1flSTOP mouse strain and described elsewhere (see Figure 

1; Hömig, 2005). 
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Figure 3.13. LMP1/CD40//Cγ1-Cre mice 
(A) Schematic representation of the chimeric protein LMP1/CD40. The N-terminal 187 amino acids 
(aa) of LMP1 (transmembrane domain) were fused to the C-terminal 57 aa of CD40 (cytoplasmic 
domain). 
(B) Insertion of the cre-gene with a downstream internal ribosome entry site (IRES) into the Cγ1 
locus. The figure shows the wild type immunoglobulin (Ig) heavy chain locus with the I exons and its 
promoters (I), the switch sequences (S) and the constant regions (C) of the indicated Ig isotypes. The 
IRES-cre DNA cassette was inserted into the 3’ region of the Cγ1 locus between the last membrane-
coding exon and its polyadenylation site. Upon cytokine stimulation in vitro (LPS+IL4) or 
immunization in vivo, the bicistronic mRNA consisting of the Cγ1 and the cre transcript is expressed 
from the Cγ1 locus under control of the Iγ1 promoter. 
 

Cγ1-cre mice were generated by inserting the cre-gene with a downstream internal ribosome 

entry site (IRES) into the Cγ1 locus (Casola et al., 2006). Thus, expression of the Cre 

recombinase is induced by onset of germline Cγ1 transcription. Germline Cγ1 transcription 
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precedes class switch recombination, which is induced in activated B cells in response to 

cytokine stimulation and cross-linking of the CD40 receptor. Since this process mainly takes 

place in the GC, Cγ1-Cre mice predominantly show Cre-recombinase activity in GC B cells. 

3.2.1 Constitutive CD40 signaling is not compatible with the GC reaction 

To induce LMP1/CD40 expression in GC B cells we immunized LMP1/CD40//Cγ1-Cre mice 

with NP-CGG. Neither 7 nor 14 days after immunization GC could be detected in 

LMP1/CD40//Cγ1-Cre mice, whereas the wild type controls with only the Cγ1-Cre allele 

inserted (wt//Cγ1-Cre) showed GC formation (data not shown). 
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Figure 3.14. Constitutive CD40 signaling is not compatible with the GC reaction 
(A) Flow cytometry to identify germinal center B cells (CD95+PNAhigh) in the spleens of wildtype 
(wt//Cγ1-cre) and LMP1/CD40//Cγ1-cre mice. Splenic cells were isolated and analyzed at day 4 and 7 
after immunization with 2x108 sheep red blood cells (SRBC). Cells are gated on B220+. Results are 
representative for 2 mice analyzed per group. LMP1/CD40//Cγ1-cre mice did not show CD95+PNA+ 
GC B cells, but a certain fraction of CD95+PNA- B cells, most likely reflecting the LMP1/CD40 
expressing B cells. 
(B) Histological analysis of germinal centers in the spleen after immunization with 2x108 sheep red 
blood cells (SRBC). Cryosections were stained with anti-IgM specific for B cells (red) and PNA 
specific for germinal center B cells (blue). Original magnification, x 50. 
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Next we immunized the mice with sheep red blood cells (SRBC), which are known to induce 

a stronger and faster response than NP-CGG. Mice were injected i.p. with 2 x 108 SRBC and 

analyzed for GC formation after 4 and 7 days (Figure 3.14). Unlike in controls, the fraction of 

PNA-binding GC B cells detected by FACS was very low in LMP1/CD40//Cγ1-cre mice. 

However, by immunohistochemistry some lightly stained PNA positive areas could be 

visualized in the spleen, suggesting that GC had been formed in LMP1/CD40//Cγ1-cre mice 

by undeleted cells, but were disrupted as soon as LMP1/CD40 was expressed. By FACS, an 

aberrant population of CD95+ B cells could be detected in the immunized LMP1/CD40//Cγ1-

cre mice, which are very likely the LMP1/ CD40 expressing cells, since CD95 expression has 

been shown to be a hallmark of LMP1/CD40 expressing B cells in LMP1/CD40//CD19-cre 

mice (Hömig, 2005).  

These data indicate that constitutive CD40 signaling is not compatible with the GC reaction. 

However, since in Cγ1-Cre mice the Cre-recombinase is induced very early during the GC 

reaction or even already in activated B blasts, we cannot exclude that LMP1/CD40 expression 

has opposite effects if activated later during the GC reaction. 

3.2.2 LMP1/CD40//Cγ1-cre mice show an age dependent increase of splenic weight and 

accumulation of aberrant B cells  

Since LMP1/CD40//CD19-cre mice in which LMP1/CD40 is expressed in all B cells from a 

pre/pro B cell stage on showed a splenomegaly and an increase of B and T cells at an age of 8 

weeks, we wanted to investigate whether LMP1/CD40//Cγ1-cre mice also accumulate 

lymphocytes within time. Therefore, we immunized 8 weeks old LMP1/CD40//Cγ1-cre and 

wt//Cγ1-Cre mice with NP-CGG and analyzed these and un-immunized control mice of both 

groups after 8 and 16 weeks. 16 weeks old LMP1/CD40//Cγ1-cre mice had in average the 

same splenic weight like the wt//Cγ1-Cre controls, whereas 24 weeks old LMP1/CD40//Cγ1-

cre mice showed already a 2-4 fold increase in splenic weight compared to the wt//Cγ1-Cre 

controls. 10 and 12 months old LMP1/CD40//Cγ1-cre mice showed a further increase of 

splenic weight (Figure 3.15A). FACS analyses revealed the accumulation of aberrant B cells 

in the spleens of LMP1/CD40//Cγ1-cre mice. Although shortly after immunization a fraction 

of CD95+ B cells appeared in LMP1/CD40//Cγ1-cre mice, the aberrant B cell population in 

older mice did not express CD95 (data not shown), but showed a distinct surface expression 

pattern of B220low CD5+ CD43+ CD23- CD21low IgDlow and IgM+ (Figure 3.15B and data not 

shown). This expression pattern is reminiscent of B1 cells. However, we cannot distinguish 
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whether these accumulated B cells are really B1 cells, or activated B2 cells which have 

changed their phenotype upon LMP1/CD40 expression.  
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Figure 3.15. LMP1/CD40//Cγ1-cre mice show an increase of splenic weight and an accumulation 
of an aberrant B cell population with age  
(A) Spleen weights in milligrams of wild type (wt) and LMP1/CD40//Cγ1-cre mice of the indicated 
ages, and of 11-16 weeks old LMP1/CD40//CD19-cre mice are plotted in the graph. 
LMP1/CD40//Cγ1-cre mice developed a splenomegaly, which increased with age. Compared to wild 
type mice, 24 weeks old LMP1/CD40//Cγ1-cre mice showed the same 2-4 fold increase of splenic 
weight as 11-16 weeks old LMP1/CD40//CD19-cre mice, which express the transgene from an early B 
cell developmental stage on. 
(B) Flow cytometric analyses for CD5 and B220 expression on lymphocyte gated splenic cells, and 
CD21 and CD23 expression on B220+ gated splenic B cells. Numbers indicate the percentages of 
CD5+B220low cells. Representative blots of wild type (wt), LMP1/CD40//Cγ1-cre mice of indicated 
ages and LMP1/CD40//CD19-cre mice, 10 weeks and 12 months old, the latter one bearing 
lymphoma, are shown. 
(C) Absolute numbers of B220lowCD5+ and B220+CD5- B cells and the residual B220- cells in the 
spleens of LMP1/CD40//Cγ1-cre mice and age matched wild type controls (wt). Asterisks indicate 
preceding immunization at an age of 8 weeks. 
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Strikingly, the B cell expansion in LMP1/CD40//Cγ1-cre mice was independent of preceding 

immunization. Since the mice were not kept in totally pathogen-free conditions, they were 

most likely exposed to natural pathogens, leading to the induction of LMP1/CD40 expression 

upon immune responses. 

3.2.3 The B cell accumulation in the spleens of LMP1/CD40//Cγ1-cre mice can be 

classified as B cell lymphoma by histology 

LMP1/CD40//CD19-cre mice between an age of 12 and 19 months developed lymphoma with 

a very high incidence. Interestingly, the malignant B cells in those mice showed a different 

cell surface expression phenotype than the accumulated population in the LMP1/CD40//Cγ1-

cre mice. Thus, lymphoma cells in LMP1/CD40//CD19-cre mice were CD5-, showed either 

high or no B220 expression, and a total loss of CD21 and CD23 expression (Figure 3.15B).  

To investigate whether the expansion of the B220lowCD5+ B cell population in 

LMP1/CD40//Cγ1-cre mice could be classified as B cell lymphoma, histopathological 

analyses were performed by the pathologist Dr. Quintanilla-Martinez (Institute of Pathology, 

GSF Neuherberg). Parts of the spleens were fixed in formalin and embedded in paraffin to 

perform hematoxylin and eosin (H/E) and immunohistochemical staining. The spleens of 

LMP1/CD40//Cγ1-cre mice showed a subtle nodular infiltrate, where the follicles were almost 

back to back with reduced red pulp in between (Figure 3.16A). The cellular component was 

relatively homogenous and composed by small mature-looking lymphoid cells.  The cells 

within the nodules were B220 positive (Figure 3.16B). As already observed by FACS 

analysis, the vast majority of the cells was weak B220 positive. Moreover, cells of this 

population were larger than normal reactive B cells and seemed to have abundant cytoplasm. 

The second population was composed of small lymphocytes with a strong, crisp staining for 

B220, which seemed to correspond to the normal residual B cell population. 

Immunohistochemistry with CD3 showed that the normal T cell zone was disrupted (Figure 

3.16C).  

Splenic sections of seven LMP1/CD40//Cγ1-cre mice (five of them 24 weeks, one 10 and one 

12 months old) were analyzed and all cases showed the same signs of neoplastic disease in 

morphology and immunophenotype, although the older mice showed a more advanced stage. 

Based on these histological data it is very likely that these mice developed lymphomas.  

The surface expression phenotype of the aberrant B cell population in the LMP1/CD40//Cγ1-

cre mice corresponded to the phenotype described for mantle cell lymphoma in humans 
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(Bertoni et al., 2004). A hallmark of mantle cell lymphoma is the t(11;14)(q13;q32) 

translocation, which juxtaposes the cyclin D1 gene to the immunoglobulin heavy chain 

junctional region, resulting in the overexpression of cyclin D1. Therefore, we analyzed 

whether LMP1/CD40 expression induced an upregulation of cyclin D1 in these B cells. 

However, an anti-cyclin D1 antibody did not stain B cells in splenic sections of 

LMP1/CD40//Cγ1-cre mice (Figure 3.16D). 

 
Figure 3.16. Representative histological analyses of one 24 weeks old LMP1/CD40//Cγ1-cre and 
one wild type control mouse 
(A) Low magnification of hematoxylin and eosin (H/E) stained spleens. The LMP1/CD40//Cγ1-cre 
spleen shows nodular infiltrates, with the follicles almost back to back replacing the red pulp in 
between.  
(B) Immunohistochemistry using an antibody specific for B220 (brown) to detect B cells. In the 
wildtype, the B cell follicles are brightly stained for B220 and separated by the red pulp, whereas in 
the LMP1/CD40//Cγ1-cre, the red pulp is infiltrated by B220+ cells. The higher magnifications show 
the characteristic double positivity for B220 in the LMP1/CD40//Cγ1-cre spleen, with the vast 
majority of cells showing a weak staining for B220.   
(C) Immunohistochemistry using an antibody specific for CD3 (brown) to detect T cells. In the wild 
type, organized T cell areas surround the central arterioles of follicles, whereas in the 
LMP1/CD40//Cγ1-cre, T cells are dispersed within the infiltrate.  
(D) Immunohistochemistry using an antibody specific for cyclin D1 (brown). B cells in the 
LMP1/CD40//Cγ1-cre mice are negative for cyclin D1; the positively stained cells are endothelial cells 
and histiocytes.  
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3.2.4 The Ig genes in the aberrant B cell population are not somatically mutated 

To analyze whether the aberrant B cell population originated from GC B cells, the 

CD5+B220low and the CD5-B220+ populations of one LMP1/CD40//Cγ1-cre mouse showing 

signs of disease (12 months old) were analyzed for SHM in their Ig genes. Cells were sorted 

by FACS to isolate DNA and to amplify the JH4 region of the Ig genes by PCR. 23 clones of 

each population were sequenced and analyzed for SHM, but none of them showed mutated 

sequences in the JH4 genes (data not shown). This indicates that the cells did not originate 

from GC B cells, and is in line with our data showing impaired GC formation in these mice. 

However, since SHM starts not earlier than 8 days after immunization (Jacob et al., 1993), it 

is still possible that the aberrant B cell population in LMP1/CD40//Cγ1-cre mice originated 

from early GC B cells.  

Analyzes of the Ig rearrangements revealed that four clones were preferentially amplified (up 

to five times in 23 sequences), indicating an oligoclonal origin of the expanded B cell 

population. 

 

 

3.3 Modeling of EBV and the germinal center reaction in vitro 

The observation that LMP1 blocks GC formation in transgenic mice is in contrast to the 

proposed model of Thorley-Lawson and colleagues that EBV infected B cells have to pass the 

GC reaction to establish latency in memory B cells. Since we could show that LMP1 

signaling not only has properties to activate B cells, but is able to initiate differentiation 

processes like CSR, we wanted to test whether EBV by itself is able to convert a naïve B cell 

into a B cell with a memory B cell like phenotype. Moreover, we analyzed the influence of 

LMP1, LMP2A and EBNA1 independent of EBNA2 on a human B cell line, recapitulating 

the proposed EBV expression program in GC B cells.  

We made use of the EREB2-5 cell line, which is a conditional LCL, where the EBV program 

can be switched on and off via an estrogen regulated EBNA2 (Kempkes et al., 1995b). Upon 

estrogen withdrawal, EBNA2 is retained in the cytoplasm and not able to transactivate the 

other EBV genes, leading to cell cycle arrest and death of the cells within six days.   
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Figure 3.17. Schematic representation of the generation of lymphoblastoid cell lines (LCLs) and 
the EREB2-5 cell system  
(A) The transfection with wildtype EBV leads to the transformation and immortalisation of primary B 
cells. These lymphoblastoid cell lines (LCLs) express the so called latency III program, where all nine 
latent EBV proteins EBNA1, EBNA2, EBNA3A-C, EBNA-LP, LMP1, LMP2A and B are expressed. 
(B) The conditionally transformed cell line EREB2-5 was established by co-infection with two virions, 
the so-called P3HR1 virus genome, which has a deletion removing the EBNA2 gene and a mini-EBV 
plasmid carrying a EBNA2 gene fused to the hormone binding domain of the estrogen receptor gene 
(ER-EBNA2). In the presence of estrogen the chimeric ER-EBNA2 protein substitutes for the wild-
type EBNA2, leading to the transactivation of the latent EBV genes and to the immortalization of B 
cells. Upon withdrawal of estrogen, EBNA2 function is inactivated and consequently immortalized B 
cells stop to proliferate and adopt a phenotype similar to EBV-negative, resting B cells, and die within 
6 days. 
(C) The EREB2-5 cell line was transfected with vectors coding for EBNA1, LMP1 and LMP2A to 
express these proteins independent of the EBV latency III program. 
 

3.3.1 EREB2-5 cells gain a memory B cell phenotype upon EBNA2 inactivation 

The EREB2-5 cell line was established by infecting B cells isolated from umbilical cord 

blood cells, therefore originating from a naïve B cell (Kempkes et al., 1995b). In line with 

this, EREB2-5 cells appeared to be negative for the memory B cell surface marker CD27 and 

positive for IgM. However, upon estrogen withdrawal, EREB2-5 cells up-regulated CD27 

(Figure 3.18). To rule out that the EREB2-5 cell line did not originate from naïve but from 

memory B cells, the VH region of the immunoglobulin locus was amplified and sequenced. 

The sequence clearly showed a clonal origin without any sign of somatic hypermutation, 

indicating that the EREB2-5 cell line originated from a naïve, but not a memory B cell (data 

not shown).  
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Next, the cells were tested for their ability to gain other memory B cell specific fates upon 

EBNA2 inactivation. Since memory B cells mainly show isotype switched immunoglobulin, 

the cells were tested for CSR by RT-PCR for the mature Ig transcripts. EREB2-5 cells 

without EBNA2 activity showed an increase of mature IgA transcripts (Figure 3.22).  

These data suggest that the EBV latency III program keeps the cells in an activated status, and 

as soon as EBNA2 is down-regulated by a mechanism still unknown, the cells gain the 

phenotype of resting memory B cells (CD27+). Since EBNA2 transactivates all the other 

latent EBV genes, its inactivation should consequently lead to a down-regulation of the other 

viral proteins. Nevertheless, some viral proteins may stay stable for a certain time and act 

EBNA2 independent on a cell. To study the influence of LMP1, LMP2A and EBNA1 

independent from EBNA2 and other EBV proteins, we transfected EREB2-5 cells with 

expression vectors coding for EBNA1, LMP1 and/or LMP2A (Figure 3.17C).  
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Figure 3.18. EREB2-5 cells up-regulate the memory B cell marker CD27 upon EBNA2 
inactivation 
Cells were washed three times with estrogen free medium and then cultured in the absence of estrogen 
for several hours and analyzed for the expression of CD27 by flow cytometry. The cells were gated on 
PI- living cells and co-stained for CD21 as a marker for EBNA2 activity. Cells cultured in the 
presence of estrogen (+E) showed CD21, but no CD27 surface expression. Upon estrogen withdrawal, 
cells became CD21low and positive for the memory B cell marker CD27. 
 

3.3.2 Generation of the expression vectors coding for LMP1, LMP2A and EBNA1 

The coding sequences from LMP1 and LMP2A were cloned into the expression vector pRT-1 

at each site of a tetracycline dependent bidirectional promoter (Ptetbi-1), which allows 

simultaneous expression of both genes (Bornkamm et al., 2005). The pRT-1-vector contains 

the EBNA1 coding sequence and the EBV origin of replication (oriP) for episomal 

maintenance of the plasmid in the cell.  

Beside the vector coding for LMP1 and LMP2A, three other expression vectors were 

generated as controls, coding for: (a) LMP1 and the enhanced green fluorescent protein 

(EGFP) (Figure 3.19B); (b) LMP2A and the truncated form of the nerval growth factor 
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receptor without cytoplasmic tail (NGFR) (Figure 3.19C); and (c) NGFR and the luciferase 

gene (luc) (Figure 3.19D). EGFP and NGFR could be used as markers to detect LMP1 and 

LMP2A expression, respectively. 
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Figure 3.19. pRT-1 expression vectors 
(A) The coding sequences from LMP1 and LMP2A were cloned at each site of the tetracycline 
dependent bidirectional promoter (Ptetbi-1) of the pRT-1 vector. EREB2-5 cells were transfected with 
this vector to generate the EREB-LMP1/2A cell line, which is able to express LMP1 and LMP2A 
independent from EBNA2. 
(B) LMP1 and the EGFP coding sequence were cloned at each site of the Ptetbi-1 promoter. EREB2-5 
cells were transfected with this vector to generate the EREB-LMP1 cell line, which is able to express 
LMP1 independent from EBNA2. 
(C) LMP2A and the truncated form of the nerval growth factor receptor without cytoplasmic tail 
(NGFR) were cloned at each site of the Ptetbi-1 promoter. EREB2-5 cells were transfected with this 
vector to generate the EREB-LMP2A cell line, which is able to express LMP2A independent from 
EBNA2. 
(D) As a control without LMP1 and LMP2A, the sequences for the truncated NGFR and the luciferase 
gene (luc) were cloned at each site of the Ptetbi-1 promoter. EREB2-5 cells were transfected with this 
vector to generate the EREB-control cell line. 
Ptetbi-1, tetracycline dependent bidirectional promoter; rtTA2s-M2, reverse tetracycline controlled 
transcriptional activator (doxycycline sensitive), transcribed from a promoter/enhancer consisting of 
the mouse heavy chain intron enhancer (Eµ) and the chicken β-actin promoter (CAGp); hyg, the 
hygromycin phosphotransferase gene; SVp, the SV40 early promoter; ori, the bacterial origin of 
replication; bla, β-lactamase; oriP, EBV-episomal origin of replication; pA, polyadenylation site; bps, 
base pairs. 
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All vectors were transfected into EREB2-5 cells to generate four different cell lines, 

expressing either EBNA1 alone or in combination with LMP1, LMP2A or both LMP1 and 

LMP2A, called EREB-control, EREB-LMP1, EREB-LMP2A and EREB-LMP1/2A, 

respectively.  

3.3.3 EBNA2 independent expression of LMP1 and LMP2A in a human B cell line 

After stable transfection of the expression plasmids into EREB2-5 cells, they were examined 

for the expression of LMP1 and LMP2A. For the EREB-LMP1/2A cell line a Northern blot 

analysis was performed (Figure 3.20A). The cells were washed three times in estrogen free 

medium and then cultured for three days in the presence and absence of estrogen and 

doxycycline (a derivate of tetracycline to induce expression of LMP1 and LMP2A). The 

treatment with doxycycline induced a very strong expression of LMP1 and LMP2A mRNA 

expression in EREB-LMP1/2A cells, independent of the presence of estrogen. Cells cultured 

with neither estrogen nor doxycycline showed LMP1 and LMP2A mRNA expression as well. 

This was not surprising since the expression vector did not contain the silencer of the 

tetracycline dependent promoter, and a certain leakiness of the promoter in the absence of 

tetracycline or doxycycline was already known (Bornkamm et al., 2005). Western blot 

analyses approved the estrogen and doxycycline independent expression of LMP1 in EREB-

LMP1/2A cells (Figure 3.20B). Whereas in the EREB-control cell line 5 days after estrogen 

withdrawal no LMP1 protein was detectable, it was clearly detectable in EREB-LMP1/2A 

cells grown without estrogen and even without doxycycline. EREB-LMP1/2A and EREB-

control cells grown in the presence of estrogen showed approximately the same LMP1 protein 

levels. Since we observed that EREB-LMP1/2A cells survived better without than in the 

presence of doxycycline (Figure 3.24A), we concluded that the induced levels of LMP1 and 

LMP2A were too high and therefore toxic for the cells. Hence, we decided to continue the 

studies without adding doxycycline to the culture medium. 

In the EREB-LMP1 and EREB-LMP2A cell lines the expression of LMP1 and LMP2A was 

examined by Western blot and light cycler analyses, respectively (Figure 3.20C and D). 
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Figure 3.20. Estrogen independent expression of LMP1 and LMP2A 
(A) Northern blot analysis to examine the mRNA expression of LMP1 and LMP2A in the EREB-
LMP1/2A cell line. Lanes 1-4, EREB-LMP1/2A cell line cultured for three days in the presence and 
absence of estrogen and doxycycline (dox) as indicated; lanes 5-6, EREB-control cell line in the 
presence of estrogen with and without doxycycline as a negative control for the exogenous LMP1 and 
LMP2A expression from the vector. The mRNA of vector and endogenous LMP1 can be distinguished 
by size. n.s., non specific band. As a loading control, the ethidium bromide (EtBr) stained agarose gel 
is shown.  
(B) Western blot analysis for LMP1 protein expression in the EREB-LMP1/2A and EREB-control cell 
lines. Cells were cultured in the presence of estrogen (+E) or without estrogen (-E) for 5, 10 and 18 
days. A conventional LCL served as a positive and the 293 cell line as a negative control. To detect 
the 63 kDa LMP1 protein, the anti-LMP1 antibody CS1-4 was used. Equal protein loading was 
verified with an anti-actin antibody. 
(C) Western blot analysis to compare the LMP1 protein expression levels in the different EREB-cell 
lines 5 days after estrogen withdrawal.  
(D) Light Cycler analysis for LMP2A expression in the different EREB cell lines. The relative copy 
numbers of LMP2A mRNA normalized to c-abl are plotted. The graph shows the LMP2A mRNA 
expression in the presence of estrogen (+E) and 5 days after withdrawal of estrogen (-E 5d).   no 
product detected. 
  

* *

*



Results 

 49

3.3.4 EBNA2 independent LMP1 and LMP2A expression induces a GC B cell 

phenotype in vitro  

The model of Thorley-Lawson, which states that EBV positive cells have to pass the germinal 

center to get access to the memory B cell compartment, is based on EBV gene expression 

studies in tonsillar B cells of healthy persons (Babcock et al., 2000). They showed that only B 

cells with a naïve phenotype (IgD+CD10-) express the genes of the latency III program, 

whereas B cells with a GC phenotype of centroblasts (CD10+CD77+) and centrocytes 

(CD10+CD77-) express the more restricted latency II program, where only EBNA1 and the 

two membrane proteins LMP1 and LMP2A can be detected. We wanted to elucidate whether 

it could also be the vice versa effect, that not GC B cells express LMP1 and LMP2A, but that 

LMP1 and LMP2A expression in any B cell induces a GC B cell like phenotype. To this end 

we analyzed the EREB-LMP1/2A cell line cultured without estrogen for the expression of 

specific GC surface marker by flow cytometry. Five days after estrogen withdrawal, neither 

EREB-control nor EREB-LMP1/2A cells showed any GC surface marker expression. 

However, 15 days after EBNA2 inactivation, the GC B cell surface marker CD10, CD77 and 

CD38 were all up-regulated in comparison to EREB-control and EREB-LMP1/2A cells 

cultured in the presence of estrogen (Figure 3.21). EREB-LMP1/2A cells also showed an 

increase of cell size, reminiscent of blasts in the GC. Gating on large cells in the forward 

scatter histogram visualized an even pronounced up-regulation of GC B cell surface marker 

on these cells. EREB-control cells cultured without estrogen could not be included in this 

analysis since these cells did not survive more than six days, but did not show an increase of 

GC markers at any time point after estrogen withdrawal (data not shown).This indicates that 

LMP1 and LMP2A expression is able to induce a GC B cell surface marker phenotype in 

vitro. 
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Figure 3.21. CD10, CD77 and CD38 expression in EREB-LMP1/2A cells 
(A) and (B) EREB-LMP1/2A cells were washed three times with estrogen free medium and then 
cultured in the absence of estrogen for (A) 5 and (B) 15 days to perform flow cytometry. Cells size 
(forward scatter), CD77, CD38 and CD10 surface expression was analyzed and compared to EREB-
control and EREB-LMP1/2A cells cultured in the presence of estrogen. 5 days after estrogen 
withdrawal, EREB-LMP1/2A cells did not show any change in cell size or CD77 and CD38 
expression levels. After 15 days, an increase in size as well as in CD10, CD77 and CD38 expression 
could be observed. Cells gated on R1 to include only large cells showed a pronounced increase of GC 
marker. All cells were gated on PI- living cells. EREB-control cells cultured without estrogen where 
not included since they did not survive more than 6 days. 
(C) Human tonsils were prepared to analyze primary GC B cells for CD77, CD38 and CD10 
expression. Cells are gated on CD19+.  

3.3.5 LMP1 induces expression of mature IgG transcripts, which is abrogated by co-

expression of LMP2A 

Since we could show that primary CD40/LMP1 expressing murine B cells induced cytokine-

independent CSR, we assessed the ability of EREB-LMP1, EREB-LMP1/2A, EREB-LMP2A 

and EREB-control cell lines to induce class switching. The EREB cell lines in the presence of 

estrogen did not show any detectable mature IgG transcripts. Therefore, the cells were washed 

three times with estrogen free medium and cultured in the absence of estrogen to shut off the 

EBV program. On several days after estrogen withdrawal, cells were harvested, their RNA 

isolated for cDNA synthesis and RT-PCR for the mature Ig transcripts performed. In contrast 



Results 

 51

to EREB-control and EREB-LMP2A cells, EREB-LMP1 cells showed mature transcripts of 

all IgG and IgA isotypes (Figure 3.22 and Table 3.2). Strikingly, the transcription of mature 

class switched Ig declined again in EREB-cells co-expressing LMP1 and LMP2A, indicating 

that LMP2A counter-regulates the unique ability of LMP1 to induce CSR.  
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Figure 3.22. RT-PCR for mature IgG1 and IgA1 transcripts in EREB cells 
EREB cell lines were cultured in the presence or absence of estrogen and examined for expression of 
the mature (A) IgG1 and (B) IgA transcripts using a 5’ primer in the FR3 region of the variable 
domain and a 3’ primer in the constant domain of the respective Ig isotype. The RT-PCR for mature 
IgM transcripts was plotted as a positive control.  
(A) RT-PCR with 30 amplification cycles for the mature IgG1 transcript. Only EREB-LMP1 cells 
cultured without estrogen showed a product, indicated by asterisks.  
(B) RT-PCR with 40 amplification cycles for the mature IgA1 transcript. Products could be detected in 
EREB-control and EREB-LMP1 cells, which amount increased upon estrogen withdrawal, but not in 
EREB-LMP2A and only slightly in EREB-LMP1/2A cells.  
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Table 3.2. RT-PCR for mature Ig transcripts 

EREB2-5 +E

EREB2-5 w/o E

pEBNA-LMP1 +E

pEBNA-LMP1 w/o E

pEBNA-LMP2A +E

pEBNA-LMP2A w/o E

pEBNA-LMP1+2A +E

pEBNA-LMP1+2A w/o E

IgA IgG1       IgG2       IgG3

+/- - - -

++              - - -

+/- +/- - -

++             ++           +           ++

- - - -

- - - -

- - - -

+/- - - -

 
EREB cell lines were cultured in the presence or absence of estrogen (5 days) and examined for 
expression of the mature IgA, IgG1, IgG2 and IgG3 transcripts by RT-PCR with 30 amplification 
cycles using a 5’ primer in the FR3 region of the variable domain and a 3’ primer in the constant 
domain of the respective Ig isotype. -, no PCR product detected; +/-, PCR product as a slight band 
detectable; +/+, PCR product as a strong band detectable;  

3.3.6 LMP2A down modulates AID protein expression  

AID is the key player in the processes of SHM and CSR. Therefore, we analyzed the EREB-

cell lines for AID protein expression by Western blotting. In the presence of estrogen, all cell 

lines showed the same levels of AID expression (Figure 3.23A). Five days after estrogen 

withdrawal, the EREB-LMP1 cell line showed an increase of AID expression, reflecting the 

ability of LMP1 to induce AID expression (He et al., 2003). Strikingly, this effect was 

abrogated by co-expression of LMP2A in the EREB-LMP1/2A cell line. It has been shown 

previously that EBNA2 mediates AID down-regulation, thus leading to an AID up-regulation 

in EREB2-5 cells upon estrogen withdrawal (Tobollik et al., 2006). We show now that not 

only EBNA2 but also LMP2A down-modulates AID expression (Figure 3.23B), suggesting 

that LMP2A counter-regulates AID expression induced by LMP1. Thus, the abrogation of 

LMP1 induced mature IgG transcription by LMP2A co-expression could be the result of the 

AID down regulation by LMP2A. 
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Figure 3.23. AID protein expression 
(A) Western blot analyses to examine AID protein levels in EREB cell lines cultured in the presence 
and absence of estrogen. AID protein levels were standardized to tubulin, numbers indicate x-fold 
induction of AID protein level in EREB-control cells +E, which was set to 1. In the absence of 
estrogen, EREB-LMP1 cells show an up-regulation of AID; this is not observed in the EREB-
LMP1/2A cell line.  
(B) EREB-control cells show an up-regulation of AID protein expression upon estrogen withdrawal, 
reflecting the EBNA2 inhibitory effect on AID expression in the presence of estrogen. EREB-LMP2A 
cells do not up-regulate AID upon estrogen withdrawal, indicating an inhibitory effect of LMP2A as 
well. A classical LCL serves as a positive control, the human 293 kidney fibroblast cell line as a 
negative control. AID protein levels were standardized to actin, numbers indicate x-fold induction of 
AID protein level in EREB-control or EREB-LMP2A cells +E, respectively, which was set to 1. 

3.4 Does EBNA2 independent expression of LMP1, LMP2A and EBNA1 elicit 

transforming capacity in human B cells? 

EBV-positive Hodgkin’s lymphoma (HL) cells express the EBV proteins LMP1, LMP2A and 

EBNA1, which are suspected to play a role in tumorigenesis. We made use of the different 

EREB cell lines to test the ability of these EBV proteins expressed either alone or in 

combination to induce proliferation and survival.  

3.4.1 Co-expression of LMP1 and LMP2A prolongs B cell survival in vitro 

The survival ability of the cell lines EREB-control, EREB-LMP1, EREB-LMP2A and EREB-

LMP1/2A was tested after estrogen withdrawal from the culture medium. Cells were washed 

three times with estrogen free medium and cultured without estrogen for several days. Cell 

numbers were determined by counting every day and the percentages of living cells were 

analyzed by staining with propidium iodide (PI) and flow cytometry (Figure 20). As expected, 

numbers of living EREB-control cells dropped dramatically in between 5 days. EREB-

LMP2A cells did not survive for more than 6 days either. In contrast, EREB-LMP1 and 

EREB-LMP1/2A cells survived significantly better, showing 8 days after estrogen withdrawal 

around 10 and 30% living cells, respectively.  

1,09   1   1   1,06   3   1,6                          0,66    0      1     2,49        0,14     0      1      0,08     
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Figure 3.24. Co-expression of LMP1 and LMP2A prolongs B cell survival after EBNA2 
inactivation 
The cells were washed three times with estrogen free medium and then cultured in the absence of 
estrogen with or without doxycycline (dox) as indicated.  
(A) Numbers of viable cells examined daily by counting. EREB-LMP1/2A cells cultured without 
doxycycline showed a better survival, indicating that the doxycyline induced LMP1 and LMP2A 
levels are too high and toxic for the cells. 
(B) The percentages of living cells (PI negative) determined on the indicated days after estrogen 
withdrawal by flow cytometry. 

3.4.2 Co-expression of LMP1 and LMP2A in EREB cells cultured without estrogen 

prolongs proliferation in vitro 

To test the ability of the EREB cell lines to proliferate in the absence of estrogen, cell cycle 

analyses were performed. At day 2, 3, 5 and 9 after estrogen withdrawal the cells were treated 

with BrdU for 4 hours and then harvested for intracellular staining of the incorporated BrdU. 

In parallel, the DNA content was determined by a 7-AAD staining to distinguish cells in 

G0/1, S and G2 phase of the cell cycle (Figure 3.25). In the presence of estrogen, all cell lines 
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Figure 3.25. Co-expression of LMP1 and LMP2A sustains proliferation upon EBNA2 
inactivation 
Cell cycle analyses of the EREB-control, EREB-LMP1, EREB-LMP2A and EREB-LMP1/2A cell 
lines in the presence and absence of estrogen (E). 
At the indicated days after estrogen withdrawal, 106 cells were cultured in the presence of BrdU for 4 
hours and then harvested for intracellular staining of BrdU and the DNA content (7-AAD). 
Resting cells in G0/G1-phase (BrdU-, 7-AAD-), replicating cells in S-phase (BrdU+) and cells in G2-
phase with a duplicated DNA content (7-AAD+) are shown. Numbers indicate the percentages of cells 
in G0/G1, S and G2 phase. 
 

showed approximately the same percentages of cells in the different cell cycle phases, with 

around 30% in the S phase. The percentages of cells in the S phase dropped in all four cell 

lines to approximately 10% at day 2 of estrogen withdrawal. However, whereas EREB-

control cells hardly showed any proliferation at day 3, the percentages of EREB-LMP1/2A 

cells in S phase stayed more or less stable up to 9 days. EREB-LMP1 cells also showed a 

certain percentage of cells in S phase 9 days after estrogen withdrawal, but it was less than in 
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EREB-LMP1/2A cells. None of the cell lines showed a significant arrest in the G0/1 or G2 

phase. 

The survival and proliferation data indicate that LMP1 expression alone helps B cells to 

survive and proliferate, but that co-expression of LMP1 and LMP2A is more potent to sustain 

proliferation independent from the EBV latency III program.   

3.4.3 LMP1 and LMP2A co-expression is not sufficient to maintain immortalization of 

B cells in vitro 

In contrast to EREB-control cells, EREB-LMP1 and EREB-LMP1/2A cells cultured without 

estrogen continued to form LCL-typical tight clumps and did not change their morphology 

and cell surface marker protein expression (CD23+CD21+IgMlow) for several days (data not 

shown). During this time, particularly the EREB-LMP1/2A cells showed a high metabolism 

rate indicated by the yellow discoloration of the culturing medium. After approximately 15 

days, cells started to change their morphology, became big and round and showed a reduced 

metabolism (Figure 3.26). After approximately 30 days, cells were all dead. This shows that 

co-expression of LMP1 and LMP2A improves the survival and proliferation capacity of B 

cells, but is not able to transform and immortalize B cells in vitro. 

 

EREB-LMP1/2A
w/o E

EREB-LMP1/2A
+E

B

A
16d w/o E

20d w/o E

 
Figure 3.26. Morphology of EREB-LMP1/2A cells in the absence of estrogen 
(A) Immunofluorescent staining for LMP1 (in red) on EREB-LMP1/2A cells cultured with and 
without estrogen for 16 days, shown with the same magnification. 
(B) Light microscopy of EREB-LMP1/2A cells cultured with and without estrogen for 20 days, shown 
with the same magnification. 
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4 Discussion 
 
So far many properties of EBV have been studied extensively thanks to its ability to 

immortalize primary B cells in culture. Nevertheless, it is still elusive how EBV establishes 

persistence in vivo and how it contributes to tumorigenesis - two features which might be 

linked. It has been proposed that EBV uses the normal germinal center (GC) differentiation 

pathway during its latent infection cycle to gain access to the memory B cell compartment, 

and indeed, many of the EBV associated lymphomas seem to originate from GC B cells. 

However, many of the data regarding EBV and the GC reaction are contradictory, querying 

whether EBV really has to pass the GC to establish viral persistence. 

Studying EBV persistence is restricted to the human being, since EBV does not infect rodents. 

However, one approach to study immuno-modulatory functions of EBV genes is to use 

transgenic mouse model systems where single EBV gene products are introduced into the 

murine genome. In the present work, in vivo studies in transgenic mice and in vitro studies 

using a conditional EBV immortalized human cell line were combined to examine the 

interplay of EBV and GC B cell differentiation, with a special focus on the EBV proteins 

LMP1 and LMP2A. 

4.1 The influence of a CD40 ligand regulated LMP1 signaling on B cells in vivo 

The Epstein-Barr viral protein LMP1 and the cellular receptor CD40 are considered to be 

functional homologues. Evidence for similar effects on B cell biology was mainly based on 

cell culture experiments, although recently several transgenic mice expressing LMP1 and 

fusion proteins of LMP1 and CD40 were reported (Panagopoulos et al., 2004; Stunz et al., 

2004; Uchida et al., 1999) (Hömig, 2005). However, the present report is the first to show that 

LMP1 signaling in B cells perfectly mimics CD40 function in vivo. In normal conditions, 

EBV latent infection is restricted to B cells, thus our goal was to investigate the effects of the 

chimeric CD40/LMP1 protein expression exclusively in B cells. Expression of CD40/LMP1 

was induced upon deletion of the upstream stop-cassette by Cre-recombinase, which was 

expressed under control of the CD19 promoter, which is specifically active in B cells from the 

pro-B cell stage on. We could show that more than 95% of B cells in the periphery expressed 

CD40/LMP1, whereas only 1% of B220- cells expressed the transgene, which could reflect 

rare myeloid populations which either express CD19 or originate from CD19+ progenitor cells 

(Munn et al., 2004; Montecino-Rodriguez et al., 2001). We could not detect CD40/LMP1 

expression in bone marrow derived dendritic cells. 
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The lymphoid compartment of CD40/LMP1 expressing mice was absolutely normal showing 

comparable B and T cell numbers and ratios, B cell subset percentages and lymphoid organ 

architecture to wt mice. Un-immunized, they did not show any spontaneous GC formation, 

nor did they show signs of autoimmunity, since there was no expansion or hyper-activation of 

immune cells and no auto-antibodies in the serum detectable. These data indicate that most of 

the abnormalities of the previously reported CD40/LMP1 expressing mice are due to 

CD40/LMP1-expression in non-B cells (Stunz et al., 2004). In that study, the transgene was 

set under control of the MHC class II Eα promoter, allowing expression of CD40/LMP1 not 

only in B lymphocytes but in all antigen presenting cells, including macrophages and bone-

marrow derived dendritic cells. Those mice showed a splenomegaly and lymphadenopathy, 

spontaneous germinal center formation, disordered lymphoid architecture and elevated IL6 

and auto-antibodies in the serum. In contrast, a CD40L regulated LMP1 signal restricted to 

the B cell compartment did not induce any abnormality of the murine immune system.  

Unlike CD40/LMP1, B cell specific LMP1 and LMP1/CD40 expression have been shown to 

induce pathologic phenotypes in mice, suggesting that the constitutive activity of LMP1 

harbors a certain risk for disease development, and that in the normal infection cycle of EBV 

LMP1 has to be tightly regulated not to cause any malignancies in the host. Nevertheless, the 

rate of EBV-associated tumors expressing LMP1 is rather low taking into account that more 

than 95% of the world population is infected by EBV. Many so-called tumor viruses encode 

products that are homologous to cellular proteins, which allow them to interfere in cellular 

pathways, and eventually promote tumorigenic processes. Our data indicate a striking 

functional homology of the LMP1 and CD40 signaling domains, since upon TD 

immunization LMP1 signaling could provide the B cells with all essential signals for GC 

formation, isotype switching, SHM and affinity maturation in the absence of CD40, and 

showed an optimal organization of the follicles with GC and mantle zone. The only slight 

difference we could observe in CD40/LMP1+//CD40-/- mice was an approximately two fold 

increase in the percentages of GC B and plasma cells and elevated Ig titers after TD 

immunization compared to CD40+/+ wt controls. We could exclude that CD40/LMP1 

expressing GC B cells proliferate faster or show a better survival rate by in vivo BrdU assays 

and SHM analyses, respectively. We expected GC B cells with a survival advantage to 

undergo more division rounds and therefore showing higher rates of SHM in their Ig genes, 

which was not the case for CD40/LMP1 expressing GC B cells. Additionally, CD40/LMP1 

expressing B cells did not show a better survival than wt B cells ex vivo. Therefore, the 

increase of GC B cell percentages in CD40/LMP1+//CD40-/- mice is most likely due to an 
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increased recruitment of B cells into the GC. The reason for this could be either a specific 

effect of the LMP1 signaling domain, or the higher expression level of CD40/LMP1 

compared to the endogenous CD40 in wt, which could facilitate the entry into the GC. The 

high CD40/LMP1 expression however did not seem to have any other influence on B cells, 

since GC did not form spontaneously nor was the GC reaction prolonged, and the 

CD40/LMP1 receptor molecule did not induce spontaneous signaling by self aggregation, 

since un-stimulated CD40/LMP1 expressing B cells showed the same properties as CD40+/+ 

B cells in regard to NFκB activity, survival, proliferation and class switch recombination after 

ex vivo isolation (data not shown). 

Beside its ability to perfectly mimic CD40 in vivo, the LMP1 signaling domain seems to 

contain unique features that stimulate cytokine independent class switch recombination 

(CSR). Thus, a fraction of CD40/LMP1 expressing B cells stimulated in vitro with agonistic 

anti-CD40 antibody mediated CSR to IgG1, whereas CD40+/+ control B cells were 

dependent on co-stimulation with IL4. Co-culture experiments of CD40/LMP1+ and wt 

CD40+/+ B cells indicated that this was a LMP1-intrinsic effect, since a release of cytokines 

or other CSR-promoting factors of CD40/LMP1+ B cells would have induced CSR in both 

cell types and not only in CD40/LMP1+ B cells. It was previously reported that EBV infected 

primary B cells and Burkitt’s Lymphoma (BL) cell lines transfected with LMP1 switch to 

several isotypes (He et al., 2003). Since EBV infected B cells and BL cell lines are known to 

secrete several cytokines (Klein et al., 1996), it could not be excluded that LMP1 acts in 

cooperation with these cytokines in those systems. We could show now that the LMP1 

signaling domain on its own is able to induce CSR in primary B cells. Thus, LMP1 not only 

mimics CD40 receptor stimulation by CD40L in B cells, but additional effects physiologically 

mediated by T helper cells. It will be interesting to elucidate the unique mechanism of LMP1 

to induce CSR, since we could exclude that LMP1 signaling induces an increase of STAT6 

phosphorylation (data not shown), which has been shown to be essential for IL4 mediated 

CSR to IgG1 (Linehan et al., 1998).   

The superior ability of LMP1 in contrast to CD40 to induce cytokine-independent class switch 

recombination is in line with the observation that in CD40-deficient mice LMP1 can rescue 

CSR to IgG1 (Uchida et al., 1999), whereas the LMP1/CD40 chimeric protein mediating 

constitutive active CD40 signals can not (Hömig, 2005). This suggests that the constitutive 

activity of both molecules not only blocks the GC but also the extrafollicular differentiation. 

Thus, the CSR observed in LMP1 expressing mice most likely reflects the ability of LMP1 to 
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induce cytokine- and T cell independent CSR rather than the rescue of a normal 

extrafollicular differentiation process. 

4.2 The influence of constitutive active CD40 signaling on germinal center B 

cells in vivo 

Constitutive CD40 signaling blocks GC formation as it has been shown for LMP1. Thus, it is 

evident that not the LMP1 signaling per se but its constitutive activity interferes with GC 

formation. In the present work we intended to investigate the influence of constitutive CD40 

signaling on already established GC. To this end, the conditional LMP1/CD40 transgenic 

mouse line was crossed to Cγ1-cre mice to induce LMP1/CD40 expression mainly in GC B 

cells. Immunized LMP1/CD40/Cγ1-cre mice did not show GC formation. However, by 

immunohistochemical analyses of spleen sections some lightly PNA-stained areas could be 

detected, suggesting that GC had been formed by undeleted B cells, but were dissolved as 

soon as LMP1/CD40 was expressed. In Cγ1-cre mice Cre expression is induced upon 

induction of Cγ1 transcription, implying that the stop cassette is deleted very early during the 

GC reaction or even in activated B cells. Since LMP1/CD40 interfered with the progression of 

the GC reaction, we were not able to analyze the effects of constitutive CD40 signaling in 

later stages of the GC reaction. CD40 has been shown to be involved in selection processes of 

late GC B cells, the so-called centrocytes. In addition, LMP1 has been found to be expressed 

in these cells, where it may contribute to the pathogenesis of Hodgkin’s lymphoma by 

enhancing proliferation and survival. Thus, it will be interesting to study the effect of a 

constitutive CD40 signaling in these cells. However, this requires another Cre-mouse strain 

which induces Cre recombinase activity in later stages of GC B cell differentiation, which 

unfortunately is not available yet.  

LMP1/CD40//Cγ1-cre mice showed an age-dependent accumulation of an aberrant B cell 

population with a B1 cell phenotype. This was striking, since we expected to induce 

LMP1/CD40 expression mainly in activated B2 cells undergoing class switch recombination. 

B1 cells are the main producers of IgM antibodies and usually do not participate in GC 

reactions. It remains elusive whether the aberrant B cell population originates from real B1 

cells or from B2 cells acquiring a B1-like phenotype upon transformation. LMP1/CD40 

expression in B1 cells could be theoretically possible, since by using a GFP-reporter it was 

shown that in Cγ1-cre mice Cre-recombinase is active in around 1% of peritoneal cavity B1 
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cells (Casola et al., 2006). This would however assume that B1 cells selectively expand and 

that B2 cells are negatively selected upon LMP1/CD40 expression.  

It cannot be excluded that the aberrant population originated from activated B2 and/or early 

GC B cells, although they neither showed a GC B cell phenotype nor mutations in their Ig 

genes. LMP1/CD40 has been shown to down-regulate bcl6 – a key molecule in the GC 

reaction – making it likely that the cells have lost their GC B cell properties upon 

LMP1/CD40 expression. In addition, early GC B cells are not expected to show signs of 

SHM, since this process is known to start not earlier than 8 days after immunization (Jacob 

1993). 

Interestingly, most of mouse B cell malignancies have been reported to be positive for the B1 

cell marker CD5 (Morse et al., 2002). The histological analyses indicated that the B cell 

expansions in LMP1/CD40//Cγ1-cre mice are malignant lymphomas, showing a disruption of 

the overall follicular structure with nodular infiltrates mainly composed of B220low B cells. 

Lymphomas are characterized by their mono- or oligoclonal origin, and although we did not 

perform Southern Blot analyses to test this issue, the sequence analysis of the IgH 

rearrangements of one case indicated an oligoclonal origin of the expanded B cell population. 

Thus, although the final proof is still missing, the histological analyses indicated lymphoma 

development in LMP1/CD40//Cγ1-cre mice with an incidence of 100%. The surface marker 

expression of the aberrant B cells resemble that of mantle cell lymphoma cells in humans 

(Bertoni et al., 2006), but however lack the over-expression of Cyclin D1, a hallmark of 

mantle cell lymphoma. Recently, cases of mantle cell lymphoma were described which do not 

express Cyclin D1, but Cyclin D2 or Cyclin D3 (Fu et al., 2005). Thus, it will be interesting 

to analyze the expression pattern of the aberrant B cell population in LMP1/CD40//Cγ1-cre 

mice in more detail.  

LMP1/CD40//CD19-cre mice, expressing the transgene in all B cells from a pro/pre B cell 

stage on, develop lymphoma as well (Hömig, 2005). Those mice show a pre-malignant 

expansion of activated B2 cells, which lead to lymphoma development in 60% of the cases. 

Although the splenic architecture of lymphoma-bearing mice look quite similar to 

LMP1/CD40//Cγ1-cre mice, the surface marker expression of expanded B cell populations 

differs strikingly in the two mouse strains. Lymphoma cells in LMP1/CD40//CD19-cre mice 

express CD43, but are devoid of CD5 or any other B1 cell marker, and either show a strong or 

no B220 expression, a high CD95 expression and a total loss of CD21 expression. In contrast, 

the expanded B cells in LMP1/CD40//Cγ1-cre mice always showed a characteristic 

expression pattern of B220lowCD5+CD43+CD21lowCD95-. The different phenotypes of the 
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expanded B cell populations in the two mouse strains are most likely due to the different onset 

of LMP1/CD40 expression. Thus, LMP1/CD40//CD19-cre mice express the transgene in all 

naïve B cells, which leads to their activation and to a block of further differentiation. The 

enhanced proliferation and survival of these B cells increase the risk for malignant 

transformation. The late onset between an age of 12 and 19 months and the incidence of about 

60% indicate that LMP1/CD40 expressing B cells have to acquire secondary mutations to 

develop malignant lymphomas. 

In contrast, LMP1/CD40//Cγ1-cre mice show a lymphoma incidence of 100%. In these mice, 

B cells are activated by antigen and T helper cells before LMP1/CD40 starts to be expressed. 

This suggests a high risk of pre-activated B cells to become transformed upon acquiring one 

single oncogenic event, and might reflect the superior number of GC derived B cell 

malignancies in humans. A role for CD40 signaling in the pathogenesis of human B cell 

lymphomas and carcinomas has previously been suggested. Co-expression of CD40 and 

CD40L has been found in several malignancies like Chronic Lymphocytic Leukemia, Mantle 

cell Lymphoma, Follicular Lymphoma, Burkitt’s Lymphoma and breast cancer (Challa et al., 

2002; Clodi et al., 1998; Furman et al., 2000; Pham et al., 2002; Baxendale et al., 2005). In 

Non-Hodgkin Lymphomas, disruption of the receptor-ligand interaction by antibodies against 

CD40 or CD40L was shown to result in growth arrest (Pham et al., 2002), providing evidence 

that the auto-activation of the CD40-signaling pathway by co-expression of CD40 and CD40L 

on tumor cells can lead to a growth advantage of malignant cells. In normal conditions, 

CD40L expression is tightly regulated and the co-expression with CD40 is only observed in a 

small subset of germinal center B cells (Grammer et al., 1999). However, disruption of this 

tight regulation could bear a substantial risk for cellular transformation.  

4.3 Modeling of EBV latent infection in vitro 

It has been suggested that in vivo freshly EBV-infected B cells start to express the latency III 

program, reflecting LCLs in culture. The expression of the latent EBV genes drives the cells 

to proliferate and enlarges the EBV infected B cell pool. However, the viral key transactivator 

EBNA2 and its viral target genes have to be shut off to guarantee survival of EBV infected 

cells. Otherwise, EBV infected B cells expressing the immunogenic viral proteins would be 

recognized and killed by cytotoxic T cells. The virus finally persists silently without any viral 

gene expression in resting memory B cells. The mechanisms how the EBV gene expression is 

shut off and how EBV establishes persistence in memory B cells are still elusive. 
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We used the conditional EREB cell line, in which the EBV program can be shut on and off by 

estrogen, to recapitulate the EBNA2 down-regulation of EBV-infected B cells in vitro. 

Upon EBNA2 inactivation, EREB cells lose their LCL properties and go into a resting state. 

Strikingly, although the cell line originated from naïve umbilical cord blood cells, we could 

observe an up-regulation of the memory B cell marker CD27. To rule out any cell culture 

contamination, the IgH gene of the EREB cell line was sequenced and analyzed. The lack of 

somatic mutations and the unique rearrangement revealed that it originated from one naïve 

cell clone. CD27 is the accepted memory B cell marker so far, although its expression is not 

restricted to memory B cells. Thus, CD27 is expressed on GC B cells, plasma cells and T 

cells, but not on naïve B cells (Borst et al., 2005). Several B cell malignancies are also 

positive for CD27 (van Oers et al., 1993), and LCLs are either CD27+ or CD27-, since they 

can originate from both memory and naïve B cells, which are infected equally by EBV in 

vitro (Ehlin-Henriksson et al., 2003). CD27 belongs to the TNF-R family and binds to its 

ligand CD70, which is expressed on activated B, T and dendritic cells. The definitive function 

of CD27, especially on memory B cells, is not known so far. CD27 was speculated to play a 

role in apoptosis through binding to Siva, a pro-apoptotic protein (Prasad et al., 1997). In our 

assay we could rule out that the up-regulation of CD27 was a side effect of cells undergoing 

apoptosis upon EBNA2 inactivation, since the CD27+ cells did not co-stain for AnnexinV 

(data not shown).  

Another, even more unique characteristic of memory B cells is class switched Ig. We could 

find an increase of mature IgA transcripts in EREB cells after EBNA2 inactivation. However, 

we cannot rule out that this effect reflects the regulation of the IgH transcription rather than 

CSR, since EBNA2 has been shown to down-regulate the IgH (Jochner et al., 1996). 

Nevertheless, it is very likely that LMP1 induces CSR in the EREB cell system. Previously, 

LMP1 has been shown to induce CSR in a BL cell line (He et al., 2003). In the present work 

we give further evidence for this, since we could show that in primary murine B cells the 

LMP1 signaling domain was able to induce cytokine-independent CSR to IgG1. However, in 

the EREB cell system LMP1 induced mature Ig gene transcription of all IgG and IgA 

isotypes. This discrepancy most likely reflects the different cytokine availabilty in the various 

cell culture conditions. Thus, EBV has been shown to induce secretion of several cytokines in 

B cells (Klein et al., 1996), which might facilitate CSR towards further isotypes in the EREB 

cell line.  

It has been shown that in vivo EBV persists in human memory B cells, characterized by 

surface marker expression and class switched Ig (Babcock et al., 1998). However, it has not 
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been shown so far whether EBV harboring cells in healthy individuals are real memory B 

cells carrying somatic mutations in their Ig genes. Here we show now that naïve EBV infected 

B cells gain a surface marker expression reminiscent of memory B cells as soon as EBNA2 is 

down-regulated. The additional ability of LMP1 to induce CSR suggests a unique feature of 

EBV to imitate memory B cell differentiation.  These results inquire whether EBV infected B 

cells really have to pass the GC reaction to enter the memory B cell compartment, since 

several recent data contradict this model. Thus, LMP1 and LMP1/CD40 expression are not 

compatible with the GC reaction. Nevertheless, LMP1 and LMP2A expression has been 

detected in B cells of healthy EBV carriers resembling GC B cells by surface marker 

expression (Babcock et al., 2000). Since it is known that EBV gene expression modulates the 

cellular gene expression pattern in B cells, we speculated whether EBNA2-independent 

LMP1 and LMP2A expression could induce a GC B cell surface marker phenotype in B cells, 

therefore only imitating GC B cells. To this end we generated the EREB-LMP1/2A cell line 

from the parental EREB2-5 cell line expressing LMP1, LMP2A and EBNA1 independent 

from EBNA2. Indeed, the EBV latency II expression pattern induced a GC B cell surface 

marker phenotype, leading to an up-regulation of CD10, CD77 and CD38. Moreover, these 

cells showed an increase in size, reflecting the immunoblastic morphology of GC B cells. 

Thus, different phases of EBV latent infection mimic normal B cell differentiation pathways 

independent of a classical GC reaction, implying a phase of activation (EBV latency III) and a 

phase of differentiation including CSR (EBV latency II and LMP1 expression alone) to finally 

become a resting memory like B cell (EBV latency 0). 

Strikingly, the LMP1 induced CSR processes were abrogated upon co-expression of LMP2A. 

It has been shown that cross-linking of surface Ig delays CD40 ligand- and IL-4-induced B 

cell Ig class switching (Rush et al., 2002). Thus, it could be that LMP2A, as a functional 

homologue of the BCR, has the same influence on LMP1 induced CSR. Whereas LMP1 

induces up-regulation of AID (He et al., 2003), we now provide evidence that LMP2A 

mediates the down-modulation of AID protein expression, which could be the mechanism of 

abrogating CSR. 

So far it is not clear how the EBNA2 independent LMP1 and LMP2A expression is mediated 

in vivo. It could be that these proteins either stay stable for a certain time after EBNA2 down-

regulation, or are re-induced by cellular stimuli. In vitro studies revealed that LMP1 

expression can be induced by cytokines, like IL10, and also by an auto-regulatory mechanism 

(Kis et al., 2006; Goormachtigh et al., 2006). In addition, LMP1 and LMP2A expression have 

been shown to be induced by the cellular EBNA2 homologue Notch, which however elicits a 
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higher potential to induce LMP2A (Hofelmayr et al., 1999). So far, gene expression studies of 

B cells in healthy EBV carriers have been done by RT-PCR, where both LMP1 and LMP2A 

transcripts could be detected in the bulk of GC marker expressing B cells. However, no co-

staining of LMP1 and LMP2A protein expression in tissues were performed so far, remaining 

it elusive whether in the normal EBV infection cycle latencies exist where only one of the 

latent membrane proteins is expressed. Since we could show that the LMP1 induced CSR is 

down-modulated by LMP2A, we propose a certain phase of EBV infection where LMP1 is 

expressed independent of EBNA2 and LMP2A. Nevertheless, LMP2A could play an essential 

role in the control of LMP1 signaling outcomes in EBV infected cells, since up-regulation of 

AID and CSR induction harbor a certain risk for cells to become mutated and negatively 

selected by apoptosis. Therefore, if LMP1 and LMP2A are ever expressed in real GC B cells, 

LMP2A might inhibit further SHM and CSR, but improves survival and proliferation of EBV 

infected B cells, which could be a pre-requisite for lymphomagenesis. It is believed that the 

viral proteins LMP1 and LMP2A play an important role in the pathogenesis of Hodgkin’s 

lymphoma, but their contribution to the initiation or maintenance of the tumor is not well 

understood. We therefore analyzed the different EREB cell lines expressing LMP1, LMP2A 

and EBNA1 either alone or in combination for their potential to maintain the immortalization 

after inactivation of EBNA2. The EREB-LMP1/2A cell line expressing all three proteins 

showed the best capacity to maintain proliferation and survival. These cells survived up to 30 

days after EBNA2 inactivation, whereas control cells expressing EBNA1 only died within six 

days. This indicates that the co-expression of LMP1, LMP2A and EBNA1 provides B cells 

with survival and proliferation inducing signals, which may play a tumor promoting role in 

vivo. However, LMP1, LMP2A and EBNA1 co-expression in our system was not sufficient to 

maintain the immortalization of B cells in vitro. Around day 14 after EBNA2 inactivation, 

cells changed their morphology, became large and round, most likely entering a senescent 

stage, which they were not able to overcome by themselves. Interestingly, it is also very 

difficult to establish stable cell lines from Hodgkin’s lymphoma. A characteristic of 

Hodgkin’s lymphoma is that the malignant cells contribute to only 1-2% of the tumor mass, 

which is infiltrated by T lymphocytes, histiocytes, eosinophil granulocytes and plasma cells. 

Thus, it is suggested that the tumor cells are highly dependent on this special 

microenvironment, and not able to survive on their own in normal cell culture conditions. The 

EREB-LMP1/2A cell line reflecting the EBV expression pattern of Hodgkin lymphoma cells 

was not able to immortalize B cells in vitro, but may exhibit unique properties to survive and 

initiate tumorigenic processes in vivo. This cell line therefore can serve as a tool to study the 
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transforming capability of LMP1, LMP2A and EBNA1 in vivo. The injection of LCLs 

transformed with wild type EBV in immunodeficient mice of the severe combined 

immunodeficiency (SCID) genotype induces lymphoma development within four weeks with 

characteristics of lymphoproliferative disorders in humans (Rowe et al., 1991). It will be 

interesting to investigate if injection of the human EREB cell line co-expressing EBNA1, 

LMP1 and LMP2A independent of other EBV genes can lead to tumor development in mice, 

and whether the tumors resemble Hodgkin’s lymphomas in humans. 

4.4 A new scenario of EBV latent infection 

The data of the LMP1 and LMP1/CD40 transgenic mice indicate that constitutive LMP1 

signaling is not compatible with the GC reaction. In contrast, the LMP1 signaling domain 

regulated by CD40L perfectly mimics CD40 in vivo in regards of GC formation, CSR and 

affinity maturation of antibodies. Beside this, the LMP1 signaling domain seems to contain 

unique features that stimulate cytokine independent class switch recombination. Thus, LMP1 

signaling has not only properties to activate B cells, but is able to initiate differentiation 

processes like CSR independent of T cell help. In the EREB cell line we could show that 

naïve B cells, infected by EBV, do not return to a naïve B cell status upon switching off the 

EBV program, but seem to be converted to a memory like B cell. Moreover, EBNA2 

independent expression of LMP1 and LMP2A induced a GC B cell like phenotype. 

Taking into account these results, we propose a new scenario to explain how EBV establishes 

persistent infection (Figure 4.1). We assume that naïve EBV infected B cells do not have to 

undergo a classical GC reaction to enter the memory B cell pool, but that EBV by itself is able 

to convert a naïve B cell into a B cell with a memory B cell like phenotype by imitating 

several cellular signaling pathways involved in the GC reaction. This EBV induced 

differentiation process is independent from any T cell help, guaranteeing immune surveillance 

of EBV infected B cells. 

However, several EBV associated tumors seem to originate from GC B cells, implicating that 

EBV infected B cells can be involved in the GC reaction. Indeed, we cannot exclude that B 

cells co-expressing LMP1 and LMP2A can take part in the GC reaction. Taking into 

consideration our results that LMP2A down-modulates some LMP1 induced effects, it still 

could be that it abrogates the GC inhibitory effect of LMP1. 

Alternatively, EBV infected B cells may enter a GC reaction after they have undergone the 

GC independent EBV induced differentiation process. Thus, a resting EBV positive memory 

like B cell devoid of any EBV gene expression eventually enters a GC upon activation by 
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cognate antigen. Subsequently, the cytokine milieu and interaction with other immune cells 

during the GC reaction could re-induce LMP1 and LMP2A expression in this cell. This event 

may not happen very often, since in healthy EBV-infected individuals only 1 in 104 to 1 in 106 

of peripheral blood cells carries EBV. However, our data showing that LMP1/CD40 

expression in pre-activated compared to naïve B cells increases the lymphoma incidence from 

60 to 100% provide evidence that LMP1 harbors a dramatic oncogenic potential in activated 

and GC B cells. This suggests that the risk of malignant transformation increases immense 

ones an EBV infected B cell enters the GC. This hypothesis could also explain the substantial 

increase of EBV-associated malignancies in areas prevalent of other infectious diseases, like 

malaria in regions of the so called “lymphoma belt” in Africa (Magrath et al., 1992).  

Taken together our results we propose that EBV establishes persistence in B cells independent 

of a GC reaction. This mechanism might have evolved to be beneficial for both the virus and 

the host, since virus-infected B cells not only evade immune surveillance, but also extrinsic 

activation, which limits the risk of malignant transformation. 
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Figure 4.1. A new scenario of EBV latent infection 
EBV latent infection mimics normal B cell differentiation processes. EBV infected B cells expressing 
the EBV latency III program become activated and proliferate like B cells stimulated through cognate 
antigen (Ag) and T cell help. EBNA2 down-regulation and the subsequent EBV latency II program 
induces a GC B cell like surface marker phenotype. LMP1 induces T cell independent class switch 
recombination. Finally, EBV infected B cells shut off EBV gene expression and gain a B cell memory 
like phenotype, expressing CD27 and class switched Ig on the surface. The activation of these cells by 
cognate antigen can lead to the recruitment of EBV infected cells into the GC reaction. There, the 
cytokine milieu and various cell to cell interactions can induce EBNA2 independent LMP1 and 
LMP2A expression, leading to an increased risk of GC B cell transformation. 
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5 Summary 
 
Epstein-Barr virus (EBV) is a γ-herpes virus which preferentially infects human B 

lymphocytes. It is highly adapted to persist in B cells since it encodes for proteins which 

mimic several cellular proteins playing an important role in B cell biology. Thus, the viral 

Latent Membrane Proteins (LMP) 1 and 2A are considered to be functional homologues of 

the CD40 receptor and the B cell receptor, respectively. It has been postulated that EBV uses 

the normal T cell dependent immune response B cell differentiation pathway (the so-called 

germinal center reaction) for its infection cycle to gain access to the long living memory B 

cell compartment. LMP1 and LMP2A are suggested to play an important role during this 

process, since they are able to provide B cells with survival and proliferation signals, and may 

help the EBV-infected B cells to evade negative selection during the germinal center reaction. 

LMP1 and LMP2A are also expressed in germinal center B cell derived EBV-associated 

malignancies, suggesting a contribution of these viral proteins to tumor development. 

However, the data concerning the role of the germinal center reaction in the latent EBV 

infection circle is controversial, remaining it elusive (i) if EBV-infected B cells have to pass 

the germinal center to establish persistence, and (ii) if LMP1 signaling has any influence on 

germinal center B cells.  

In the present work, the interplay of EBV and the germinal center reaction was examined, 

focusing on the roles of LMP1 and LMP2A in normal B cell biology and lymphomagenesis.  

LMP1 was shown to mimic a constitutive active CD40 receptor in vitro, but in vivo LMP1 

only partially restored the CD40-deficiency in transgenic mice; it even blocked germinal 

center formation in the presence of CD40. This could be due to differences in the signaling 

mediated by LMP1 and CD40, or to the constitutive activity of LMP1. To compare CD40 and 

LMP1 signaling in vivo, we generated a transgenic mouse line which conditionally expresses 

a CD40-ligand regulated LMP1 protein (CD40/LMP1). We show that LMP1 signaling in B 

cells perfectly mimics CD40 function in vivo, leading to normal B cell development, B cell 

activation, and T cell dependent immune responses in CD40 deficient mice.  

Thus, we conclude that not the LMP1 signaling domain but its constitutive activity interferes 

with the germinal center reaction. This is in accordance with a previous study of our group, 

showing that ligand-independent constitutive active CD40 signaling (LMP1/CD40) blocks 

germinal center initiation like LMP1. However, the influence of a constitutive active CD40 

signaling directly on germinal center B cells remained open. In the present study, 

LMP1/CD40 expression was specifically induced in germinal center B cells. We show that a 
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constitutive active CD40 signaling also interferes with early germinal centers, but leads to 

lymphoproliferation, which most likely reflects malignant lymphoma. The incidence of 100% 

suggests a substantial risk of pre-activated B cells to become transformed upon deregulation 

of CD40 signaling or LMP1 expression.  

Since constitutive LMP1 and CD40 signals are not compatible with the germinal center B cell 

differentiation process, and LMP1 expression however has been detected in B cells 

resembling a germinal center phenotype of healthy EBV-carriers, we questioned whether 

these are real germinal center B cells. We studied the influence of EBV protein expression on 

the phenotype of human B cells in vitro, and indeed could show that EBNA2-independent 

LMP1 and LMP2A expression induces a germinal center cell like phenotype in B cells. 

Further, the inactivation of EBNA2, the key transactivator of EBV gene expression, does not 

lead to the original naïve phenotype of a B cell, but induces up-regulation of the memory B 

cell marker CD27. Beyond, we show that in CD40/LMP1-expressing B cells of the transgenic 

mice as well as in the human cell lines, LMP1 signaling induces class switch recombination 

independent from cytokines. This implies a unique feature of the LMP1 signaling domain to 

initiate differentiation processes beside its ability to activate B cells.  

Taking these data into account, we suggest that EBV infected B cells do not have to undergo a 

classical germinal center reaction to enter the memory B cell pool, but that with the help of 

EBV proteins they are able to induce processes imitating memory B cell differentiation 

independent from T cells, thus escaping immune surveillance. These EBV-infected quiescent 

memory-like B cells eventually enter the germinal center reaction upon antigen-dependent 

activation. There, re-induction of LMP1 might harbor a substantial risk of malignant 

transformation.  
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6 Zusammenfassung 
 
Das Epstein-Barr Virus (EBV) ist ein Gamma-Herpesvirus, welches vor allem humane B-

Lymphozyten infiziert. Einige virale Proteine weisen funktionelle Homologien zu zellulären 

Proteinen auf, die eine wichtige Rolle in der normalen B-Zell-Biologie spielen. So ahmen die 

latenten Membranproteine (LMP) 1 und 2A den CD40- beziehungsweise B-Zell-Rezeptor 

nach. Es wurde postuliert, dass EBV-infizierte B-Zellen den normalen 

Differenzierungsprozess einer T-Zell-abhängigen Immunantwort (der so genannten 

Keimzentrumsreaktion) durchlaufen, um Persistenz in den langlebigen Gedächtnis-B-Zellen 

zu erlangen. LMP1 and LMP2A wird dabei eine wichtige Rolle zugeschrieben, da sie B-

Zellen mit Wachstums- und Überlebenssignalen versorgen, und somit die negative Selektion 

EBV-infizierter B-Zellen während der Keimzentrumsreaktion verhindern könnten. LMP1 und 

LMP2A werden außerdem in von Keimzentrums-B-Zellen abstammenden EBV-assoziierten 

Lymphomen exprimiert, und es wird vermutet, dass die viralen Proteine zur Tumorentstehung 

beitragen. 

Da es jedoch widersprüchliche Daten über die Rolle der Keimzentrumsreaktion im latenten 

Infektionszyklus von EBV gibt, bleibt es unbekannt, ob (1) EBV-infizierte B-Zellen die 

Keimzentrumsreaktion durchlaufen müssen, um Persistenz zu erlangen, und (2) welchen 

Einfluss die Expression von LMP1 in Keimzentrums-B-Zellen hat.  

Im Rahmen dieser Arbeit wurde das Zusammenspiel von EBV und der Keimzentrumsreaktion 

untersucht, wobei ein besonderer Schwerpunkt auf die Rolle von LMP1 und LMP2A in der 

normalen B-Zell-Biologie und der Lymphomentstehung gelegt wurde. 

In früheren Zellkulturstudien wurde gezeigt, dass die Stimulierung des CD40-Rezeptors und 

die Expression von LMP1 dieselben Effekte auf B-Zellen ausüben. In transgenen Mäusen 

jedoch konnte LMP1 den CD40-Rezeptor nur partiell ersetzen, und LMP1 blockierte sogar 

die Keimzentrumsreaktion. Dies könnte entweder auf unterschiedliche 

Signaltransduktionsfähigkeiten der beiden Moleküle, oder auf die konstitutive Aktivität von 

LMP1 zurückgeführt werden. Um die Funktion der LMP1- and CD40-Signaldomänen in vivo 

zu vergleichen, wurde in dieser Arbeit ein trangener Mausstamm generiert, der ein CD40-

Ligand abhängiges LMP1-Protein (CD40/LMP1) konditional exprimiert. Wir zeigen, dass die 

LMP1-Signaldomäne fähig ist, die CD40-Funktion in B-Zellen perfekt nachzuahmen. In 

CD40-defizienten Mäusen führt die Expression von CD40/LMP1 zu einer normalen B-Zell-

Entwicklung, B-Zell-Aktivierung, und T-Zell-abhängigen Immunantwort mit 

Immunglobulinklassenwechsel und Keimzentrumsreaktion. Daraus schließen wir, dass nicht 
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die Signaldomäne, sondern die konstitutive Aktivität von LMP1 zur Keimzentrumsblockade 

führt. Dies wird durch frühere Studien unserer Arbeitsgruppe gestützt, die zeigen, dass ein 

Liganden-unabhängiges, konstitutiv aktives CD40-Signal (LMP1/CD40) genauso wie LMP1 

den Eintritt von B-Zellen ins Keimzentrum verhindern kann. Es blieb jedoch offen, welchen 

Einfluss ein konstitutives CD40-Signal auf Keimzentrums-B-Zellen  ausübt. In der 

vorliegenden Arbeit wurde die Expression von LMP1/CD40 speziell in Keimzentrums-B-

Zellen aktiviert. Wir zeigen, dass ein konstitutives CD40-Signal auch mit bereits etablierten 

frühen Keimzentren interferiert, und zu einer Lymphoproliferation führt, welche mit hoher 

Wahrscheinlichkeit eine maligne Transformation darstellt. Die Inzidenz von 100% suggeriert 

das besonders hohe Risiko von pre-aktivierten B-Zellen durch deregulierte CD40- und LMP1-

Signale transformiert zu werden.  

Da die konstitutive Aktivität von CD40 and LMP1 mit der Keimzentrumsdifferenzierung von 

B-Zellen nicht kompatibel sind, LMP1 jedoch in B-Zellen mit Keimzentrumsphenotyp EBV-

infizierter Individuen nachgewiesen werden konnte, hinterfragten wir, ob es sich in diesem 

Fall um echte Keimzentrums-B-Zellen handelte. Wir untersuchten den Einfluss von EBV-

Proteinen auf den Phänotyp humaner B-Zellen in Zellkultur und zeigen, dass die Expression 

von LMP1 und LMP2A zu einem Keimzentrums-Phänotyp der B-Zellen führt. Das 

Abschalten von EBNA2 und daraus folgend aller EBV-Gene führt nicht zu dem 

ursprünglichen Phänotyp naiver B-Zellen, sondern zur Expression des Gedächtnis-B-Zell-

Markers CD27. Außerdem konnten wir sowohl in den CD40/LMP1-exprimierenden B-Zellen 

der transgenen Mäuse als auch in den humanen Zelllinien zeigen, dass LMP1 im Gegensatz 

zu CD40 zu einem Zytokin-unabhängigen Immunglobulinklassenwechsel fähig ist. Dies 

deutet darauf hin, dass das LMP1-Signal nicht nur B-Zellen aktivieren, sondern auch 

Differenzierungsprozesse initiieren kann.  

Aufgrund dieser Daten postulieren wir, dass EBV-infizierte B-Zellen keine klassische 

Keimzentrumsreaktion durchlaufen müssen, sondern mit Hilfe von EBV-kodierten Proteinen 

die Differenzierung zu Gedächtnis-B-Zellen imitieren können. Dieser Prozess verläuft T-Zell-

unabhängig, könnte daher EBV-infizierte B-Zellen vor einer immunologischen 

Abwehrreaktion bewahren, und dem Virus erlauben, in langlebigen Gedächtnis-B-Zell-

ähnlichen Zellen zu persistieren. Diese Zellen könnten in seltenen Fällen durch 

Antigenkontakt in eine Keimzentrumsreaktion eintreten, wo die Expression von LMP1 zu 

einem besonderen Risiko der malignen Entartung führen könnte. 
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7 Material 

7.1 Plasmids 

pTVRosa26 LMP1  

Bluescript-vector encoding the CD40/LMP1 chimeric gene inserted in a targeting cassette, 

allowing the homologous recombination into the murine rosa26-locus via a short (1kb) and 

long arm (4kb) of homology (pRosa26-1, Phillipe Soriano, Seattle). Upstream of the 

transgene a stop-cassette flanked by loxP sites was introduced, containing a transcription and 

translation termination site (Lasko), the gene encoding the red fluorescent protein (not 

expressed in this context), and a neomycin-resistance gene flanked by frt sites.  Outside the 

targeting cassette, the vector encodes for diphtheria toxin (DTA) under control of the 

phospho-glycerate kinase (PGK) promoter for negative selection of non-homologous 

integrations.  

 

pGK-cre-bpA (Kurt Fellenberg, Institute of Genetics, Köln) 

Vector expressing the Cre-recombinase under control of the phospho-glycerate kinase (PGK) 

promoter.  

 

pRT-1 (Bornkamm et al., 2005) 

Tet-On expression plasmid with a tetracycline dependent bidirectional promoter (Ptetbi-1) and 

a reverse tetracycline controlled transcriptional activator (rtTA2s-M2), transcribed from a 

promoter/enhancer consisting of the mouse heavy chain intron enhancer (Eµ) and the chicken 

β-actin promoter (CAGp). The plasmid lacks the silencer of the tetracycline dependent 

promoter, and therefore shows a certain leakiness of the promoter in the absence of 

tetracycline.  

The EBNA1 coding sequence and the origin of replication (oriP) guarantee the episomal 

maintenance of the plasmid in the cell.   

 

pGEM-T easy vector (Promega) 

Vector system with 3’-T overhangs at the insertion site to clone PCR products. 
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7.2 Bacteria 

DH5α 

Escherichia coli-Stamm; 

Genotyp: F-, φdlacZ Δ M15, endA1, recA1, hsdR17 (rk
-, mk

-), supE44, thi-1, gyrA96, relA1, 

Δ(lacZYA-argF)U169, λ-  

7.3 Cell lines 

EREB2-5 (Kempkes et al., 1995b) 

EREB2-5 is a conditionally immortalized lymphoblastoid cell line established from primary 

naïve B cells isolated from human umbilical cord blood. Cells were co-infected with two 

virions, the so-called P3HR1 virus genome, which has a deletion removing the ebna2 gene, 

and a mini-EBV plasmid carrying a chimeric EBNA2 fused to the hormone binding domain 

of the estrogen receptor gene (ER-EBNA2). Although ER-EBNA2 is constitutively expressed, 

its function depends on the presence of estrogen. In the absence of estrogen, heat-shock 

protein 90 binds to the estrogen receptor, leading to incorrect folding of the EBNA2 protein 

(Briegel et al., 1996) and prevention of nuclear translocation (Francis et al., 1995). In the 

presence of estrogen, the chimeric ER-EBNA2 protein substitutes for the wild-type EBNA2, 

leading to the transactivation of the latent EBV genes and to the immortalization of B cells.  

 

Balb/c embryonal stem cells (ES) (B. Ledermann und K. Bürki, Basel) 

Used for the generation of the CD40/LMP1flSTOP mouse strain. 

7.4 Mouse strains 

Balb/c  

Used to cross the chimeras generated from injection of ES cells into blastocytes to establish 

the CD40/LMP1flSTOP mouse strain on a pure Balb/c background.  

 

CD40-/-  

Balb/c mice deficient for CD40 by an insertion of a neomycin cassette into the CD40 locus. 

Used to establish the CD40/LMP1flSTOP mouse strain on a CD40 deficient background. 
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CD19-Cre (Rickert et al., 1997) 

C57BL/6 mouse strain with a homologous recombination of the cre-recombinase gene into 

the CD19-locus. Crossed to CD40/LMP1flSTOP mice to induce the transgene in B cells. 

 

LMP1/CD40flSTOP (Hömig, 2005) 

Balb/c mouse strain with a homologous recombination of the chimeric LMP1/CD40 gene 

with a loxP-sites flanked STOP-cassette upstream into the rosa26-locus. 

 

Cγ1-Cre (Casola et al., 2006) 

C57BL/6 mouse strain with a homologous recombination of the cre-recombinase gene into 

the Cγ1-locus. Crossed to LMP1/CD40flSTOP mice to induce the transgene in germinal center 

B cells. 

 

B6.SJL-Ptprca Pepcb/BoyJ (Charles River Laboratories) 

C57BL/6 mouse strain expressing the leukocyte marker Ly5.1 instead of Ly5.2.  

7.5 Primer 

Mouse genotyping 

CD40/LMP1  

CD40se: 5´-TTGGCTCTTCTGATCTCGC -3´  

LMP1: 5´-CATCACTGTGTCGTTGTCCA-3´ 

LMP1/CD40 

Ex1Fw1 LMP1: 5´- AGG AGC CCT CCT TGT CCT CTA -3´ 

CD40 PCR3: 5´- CTG AGA TGC GAC TCT CTT TGC CAT -3´ 

CD40-/- 

neo rev : 5´-AGG TGA GAT GAC AGG AGA TC-3´ 

CD40wt rev1: 5´-GAG ATG AGA AGG AAG AAT GGG AAA AC-3´ 

CD40wt fw1: 5´-GGC AGT AAG ACG ATG TGA CAA CAG AG-3´ 

CD19-Cre 

Cre7: 5´- TCA GCT ACA CCA GAG ACG G -3´ 

CD19c: 5´- AAC CAG TCA ACA CCC TTC C -3´ 

CD19d: 5´- CCA GAC TAG ATA CAG ACC AG -3´ 

Cg1-Cre 

IgG1 KpnI fw: 5´-TGT TGG GAC AAA CGA GCA ATC-3´ 
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Cre 13:  5´-GGT GGC TGG ACC AAT GTA AAT A-3´ 

IgG1 rev3: 5´-GTC ATG GCA ATG CCA AGG TCG CTA G-3´ 

 

Somatic hypermutation analysis (mouse) 

J558Fr3: 5´-CAG CCT GAC ATC TGA GGA CTC TGC-3´ 

JHCHint: 5´-CTC CAC CAG ACC TCT CTA GAC AGC-3´ 

 

VDJ EREB2-5 

VH3se: 5´-GGG GTC CCT GAG ACT CTC CTG TGC AG-3´ 

JH1,2,4,5as: 5´-ACC TGA GGA GAC GGT GAC CAG GGT-3´ 

JH3as: 5´-ACC TGA AGA GAC GGT GAC CAT TGT-3´ 

JH6as: 5´-ACC TGA GGA GAC GGT GAC CGT GGT-3´ 

 

Mature Ig transcripts human 

V-FR3-se: 5´-GAG GAC ACA GCC GTG TAT TAC TG -3´as 

Cµ-as: 5´-CCG AAT TCA GAC GAG GGG GAA AAG GGT T-3´ 

Cγ1-as: 5´-GTT TTG TCA CAA GAT TTG GGC TC-3´ 

Cγ2-as: 5´-GTGGGCACTCGACACAACATTTGCG-3´ 

Cγ3-as: 5´-TTGTGTCACCAAGTGGGGTTTTGAGC-3´ 

Cα-as: 5´-GGGTGGCGGTTAGCGGGGTCTTGG-3´ 

 

Light Cycler  

LMP2A 

LMP2A-RTse: 5´-ATG ACT CAT CTC AAC ACA TA-3´ 

LMP2A-RTas: 5´-CAT GTT AGG CAA ATT GCA AA-3´ 

c-abl 

c-abl 1: 5´-GGC CGT GAA GAC CTT GAA GGA G-3´ 

c-abl 2: 5´-ACC TGC TCA GGC CAA AAT CAG C-3´ 

7.6 DNA probes 

rosa26-probe 

A 550 bp fragment was isolated from pRosa26-5-pBS KS (Phillipe Soriano, Seattle) using the 

enzymes EcoRI and Pac1.  
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LMP1-probe 

A 495 bp fragment was isolated from pBS-AscI-LMP1 (kindly provided by Cornelia Hömig, 

GSF) using the enzyme NcoI. 

LMP2A-probe 

A 372 bp fragment was isolated from pSP64TP1 (kindly provided by Gerhard Laux, GSF) 

using the enzyme XhoI. 

7.7 Antibodies 

ELISA 

Ig specific rat anti-mouse antibodies (IgM, II/41; IgG1, A85-3;  IgG2a, R11-8;  IgG2b, R9-

91;  IgG3, R2-38; IgA, C11-3;)  and biotin-conjugated secondary antibodies specific for the 

different isotypes (IgM, R6-60.2; IgG1, A85-1; IgG2a, R19-15; IgG2b, R12-3; IgG3, R40-82; 

IgA, C10-1;) were purchased from BD Bioscience. 

 

Flow cytometry 

Antibodies against murine B220 (RA3-6B2), CD5 (53-7.3), CD21 (7G6), CD23 (B3B4), 

CD40 (3/23) , CD43 (S7), CD80 (16-10A1), CD95 (Jo2), CD138 (281-2), Gr1 (RB6-8C5), 

IgD (11-26c.2a), IgG1 (A85-1) and IgM (R6-60.2) were purchased from BD Biosciences; 

PNA from Vector Laboratories; anti-CD11c from Miltenyi-Biotech; anti-IgA, anti-IgG2a and 

anti-IgG2b from Southern Biotech. Biotin conjugates were visualized with PE-streptavidin 

(BD Biosciences).  

Antibodies against human CD10, CD27 (M-T271), CD77 (5B5), CD38 (HIT2) and IgM 

(G20-127) were purchased from BD Biosciences, anti-human CD21 (IOb1a) from 

Immunotech. 

Anti-BrdU antibody (3D4) was purchased from BD Biosciences. 

 

Immunohistochemistry 

Cryosections 

peroxidase conjugated anti-mouse IgM (Sigma) 

rat anti-mouse CD3 (kindly provided by E. Kremmer, GSF Munich) 

biotin conjugated PNA (Vector Laboratories) 

biotin conjugated mouse anti-rat IgG1 (Jackson Laboratories) 

Paraffinsections 

anti-mouse B220 (BD Pharmingen) 



Material  

 78

anti-mouse CD3 (DakoCytomation) 

 

Immunofluorescence 

mouse anti-LMP1 CS1-4 (Dako) 

Cy3 conjugated anti-mouse IgG  

 

Western blotting 

Primary antibodies 

α-CD40 human  rabbit 1:500 Santa Cruz Biotechnologies 

α−LMP1 CS1-4 mouse 1:400 Dako 

α−AID 5G9 rat 1:5 Elisabeth Kremmer, GSF 

α−actin mouse 1:1000 Santa Cruz Biotechnologies 

α−tubulin mouse 1:20000 Promega 

Secondary antibodies 

α−rabbit-IgG-HRP goat 1:5000 Santa Cruz Biotechnologies 

α−mouse-IgG-HRP goat 1:5000 Promega 

α−rat-IgG-HRP goat 1:10000 Jackson Immuno   Research 

 

7.8 Software 

Adobe Photoshop 

Adobe Illustrator 

CELLQuest Becton Dickinson   

Clone Manager 6 

DNAPLOT  

Mac Vector 

Microsoft Internet Explorer  

Microsoft Excel 2000  

Microsoft Powerpoint  

Microsoft Word XP  

OpenLab Improvision 

SeqMan 

TINA Bas 



Methods  

 79

8 Methods  
 
All standard methods not described in detail were performed according to (Sambrook and 

Russel, 2001) or the manufacture’s protocols.  

8.1 Mice 

8.1.1 Generation of the transgenic mouse line CD40/LMP1  

The CD40/LMP1 chimeric gene was generated by fusing the murine CD40 cDNA encoding 

for the first 215 aminoacids (aa) (amplified by RT-PCR from murine splenic cell RNA) to the 

cDNA of LMP1 encoding for the terminal 200 aa. To insert the CD40/LMP1 fusion gene into 

the rosa26-locus the vector pRosa26-1 was used (Soriano, 1999). Before introducing 

CD40/LMP1, pRosa26-1 was modified by introducing a loxP-flanked region, consisting of a 

stop cassette containing a transcription and translation termination site (Lakso et al., 1992), 

the gene encoding the red fluorescent protein (not expressed in this context), and a neomycin-

resistance gene flanked by frt sites. The CD40/LMP1 fusion gene was cloned downstream of 

the stop cassette. The final targeting vector was sequenced, linearized and electroporated into 

BALB/c-derived embryonic stem (ES) cells. The targeted ES cells were screened for 

homologous recombination by Southern-blot analysis and a subset was transfected with a Cre-

expression vector (pGK-cre-bpA, kindly provided by Kurt Fellenberg) to test Cre-loxP 

mediated deletion of the stop cassette. The DNA was digested with EcoRI and hybridized 

with a specific radioactive labeled rosa26-probe (Soriano, 1999). Recombinant ES cells 

containing the loxP flanked region were injected into C57BL/6 blastocysts, which were then 

transferred into foster mothers to obtain chimeric mice. 

8.1.2 Mice crossings 

Mice carrying the CD40/LMP1flSTOP allele were crossed to the CD19-Cre mouse strain 

(C57BL/6 background) to generate mice expressing the transgene in early B cell stages in the 

bone marrow. Offspring of this crossing were bred to CD40-/- mice (Balb/c background) to 

generate CD40/LMP1 expressing mice on a CD40-deficient background 

(CD40/LMP1+//CD40-/-).  

Mice carrying the LMP1/CD40flSTOP allele (Balb/c background) were crossed to the Cγ1-Cre 

mouse strain (C57BL/6 background) to generate mice expressing the transgene in early 

germinal center B cells. 
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All mice were bred and maintained in specific pathogen-free conditions and the experiments 

were performed in compliance with the German animal welfare law and have been approved 

by the institutional committee on animal experimentation. 

Mice were analyzed at 8-16 weeks of age unless stated otherwise.  

8.1.3 Mouse immunizations 

NP-CGG 

8-12 week old mice were immunized intraperitoneally with 100 μg alum-precipitated 

nitrophenylacetyl chicken gamma globulin (NP-CGG) (Biosearch Technologies). For 

precipitation, one volume of antigen was mixed with one volume of 10% (w/v) KAl(SO4)2 

and pH was adjusted to pH 6.5 with 1 N NaOH. After 30 min. incubation on ice, the antigen 

was centrifuged for 10 min. at 4.200 rpm (Minifuge Sigma) and washed three times in sterile 

PBS. Finally, antigen was resuspended in 200 µl sterile PBS and injected intraperitoneally 

(i.p.). 

Sheep red blood cells (SRBC) 

Defibrinated sheep blood (Oxoid) was washed three times in sterile PBS and diluted in PBS to 

a final concentration of 109 cells/ml. 2x108 red blood cells in 200 µl PBS were injected i.p. To 

purchase around 1010 cells, 3 ml blood was washed in 50ml PBS. 

8.1.4 Preparation of primary lymphocytes from mice 

Mice were euthanized by CO2 gassing for 2 min. and subsequently dissected. Spleen and 

lymph nodes were taken out as entire organs and maintained in medium (1x RPMI 1640 

(Gibco), containing 5% (v/v) FCS, 1% (v/v) Penicillin-Streptomycin, 1% (v/v) sodium 

pyruvate, 1% (v/v) L-Glutamin (all purchased from Gibco)). Tissues were passed through a 

capillary cell strainer (Becton Dickinson) to receive single cell suspensions. To isolate cells 

from the bone marrow, leg bones were dissected, cut, and rinsed with medium. Spleen and 

bone marrow cells were depleted of erythrocytes by lysis (3 min. incubation with a fresh 1:9 

mixture of 170 mM Tris/HCl, pH 7.65, and 155 mM NH4Cl).  

Isolation of B cells was performed by Magnetic Cell Separation (MACS) (Miltenyi Biotec) 

according to the manufacture’s protocol, using either anti-CD43-Beads and LD Columns or 

anti-CD19-Beads and LS columns (all Miltenyi Biotec). 



Methods  

 81

8.1.5 In vivo BrdU assay  

14 days post-immunization with 100 μg NP-CGG mice were injected intraperitoneally with 

150 µl BrdU solution (10mg/ml, BD Biosciences) and sacrificed 2 and 6 hours later. 

Splenocytes were purified and stained using the APC BrdU Flow kit (BD Biosciences). 

8.1.6 Isolation of germinal center B cells and analysis of somatic hypermutation 

14 days post-immunization with 100 μg NP-CGG, GC B cells from spleen were purified 

directly following incubation with PNA-FITC, anti-CD95-PE and anti-B220-APC on a 

FACSAria cell sorter (BD Biosciences) and sorted into a naïve fraction (B220+CD95-PNA-PI-

) and a GC fraction (B220+CD95+PNA+PI-). PCR was performed of DNA of 40000 cell 

equivalents using the Expand High fidelity PCR system (Roche) and primer J558Fr3, which 

anneals in the framework 3 region of most VHJ558 genes, and primer JHCHint, which 

hybridizes in the intron 3' of exon JH4 (Jolly et al., 1997). The 600 bp PCR product bearing 

the JH4 segment of the IgH was cloned into pGEM-T Easy vector (Promega) and sequenced. 

A stretch of 500 bp intron sequence immediately downstream of the JH4 element was analyzed 

for somatic mutations using the SeqMan and MacVector software. 

8.2 Cell culture 

8.2.1 Primary murine B cells 

CD43- and IgG1-depleted splenic B cells (Miltenyi-Biotech) were cultured in B cell medium 

(1x RPMI (Gibco), 10% (v/v) FCS (Biochrom KG), 1% (v/v) L-Glutamine, 1% (v/v) sodium 

pyruvate, 1% (v/v) Pen/Strep, 1% (v/v) non-essential amino acids (all purchased from Gibco), 

50mM 2 mercaptoethanol (Sigma)) for 5 days in 96-well plates (5x105/200 µl/well). Stimuli 

added to the cultures included anti-CD40 antibody (2,5 µg/ml, clone 1C10, Biolegends) and 

IL-4 (60ng/ml; R&D Systems). For CFSE labeling, B cells were incubated in serum-free 

RPMI media containing 5-(and 6)-carboxyfluorescein diacetate N-succinimidyl ester (CFDA 

SE = CFSE; final concentration 5 µM; Molecular Probes) for 10 min. at 37°C.  

For mixed B cell cultures, Ly5.1 expressing B cells were cultured 1:1 together with B cells of 

CD40/LMP1+//CD40-/- or CD40+/+ mice expressing Ly5.2. 
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8.2.2 Bone marrow derived dendritic cells from the mouse 

BM-derived cells were depleted of erythrocytes by lysis, and cultured in DC medium (1x 

RPMI (Gibco), 20% (v/v) FCS (Biochrom KG), 1% (v/v) L-Glutamine, 1% (v/v) sodium 

pyruvate, 1% (v/v) Pen/Strep, 1% (v/v) non-essential amino acids (all purchased from Gibco), 

50 mM 2 mercaptoethanol (Sigma), Granulocyte/Macrophage colony stimulating factor (GM-

CSF) (kindly provided by Ralf Mocikat, GSF) for seven days in 6-well plates (1,5x106/3 

ml/well). Every two days, half of the medium was replaced by fresh warm medium (days 2 

and 4) or cells were splitted 1:2 (day 6), respectively.  At day 7, half of the medium was 

replaced, and LPS added (1 µg/ml) to induce maturation of DCs. After 12 hours, un-

stimulated and LPS-stimulated cells were stained for CD11c, CD40 and CD80 to perform 

FACS analysis.  

8.2.3 EREB2-5 cell line 

EREB2-5 cells were cultured in 1x RPMI (Gibco), supplemented with 10% (v/v) FCS 

(Biochrom KG), 1% (v/v) L-Glutamine, 1% (v/v) sodium pyruvate, 1% (v/v) Pen/Strep (all 

purchased from Gibco) and 1µM 1.2-estrogen. In order to remove estrogen, cells were washed 

three times in 1x RPMI, 10% (v/v) FCS. Between the second and third washing step, cells 

were incubated in 1x RPMI, 10% (v/v) FCS for 20 min. at RT, to increase the efficiency of 

the estrogen removal.  

 

Generation of stable transfected EREB2-5 cells 

107 cells, supplied with fresh medium 24 hours prior to transfection, were washed once in 

cold serum-free 1x RPMI, resuspended in 250 µl serum-free 1x RPMI and transferred to a 

4mm electroporation cuvette (Biorad, USA). 20 µg of plasmid DNA was added and 

introduced into the cells by electroporation (1mF, 230V; Gene Pulser, Biorad, USA). After 

electroporation, cells were subsequently supplied with 500 µl ice-cold FCS and 10 min. later 

with 10ml 37°C warm medium to a final concentration of 20% FCS, and transferred to the 

incubator. Selection of cells carrying plasmids was started at day 2 after transfection by 

adding hygromycin B to the culture medium (75 µg/ml; Invitrogen, Germany). Cells were 

cultured for 20 days under hygromycin B selection before they were used for experiments.  

To induce the promoter of the pRT-1 vector, doxycycline was added to the culture medium to 

a concentration of 100 ng/ml. 
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In vitro BrdU assay 

2x106 cells were cultured for 4 hours in 5 ml B cell medium with 5 µl BrdU (10mM). 

Subsequently, cells were washed twice in PBS, resuspended in 300 µl PBS, and 700 µl 

Ethanol (100%) was added drop by drop while gently vortexing to fix and permeabilize the 

cells. Cells were incubated 30 min. on ice or stored at -20°C. Cells were washed twice with 

PBS, and then resuspended in 2M HCl and incubated for 30 min. at 37°C to make the 

incorporated BrdU in the DNA accessible. After three washing steps with PBS, cells were 

blocked with 10% FCS in PBS for 45 min. at RT, and then incubated with anti-BrdU antibody 

for 15 min. at RT. After a final washing step with PBS cells were resuspended in PBS 

containing 7-AAD to stain for DNA content, and FACS analysis was performed. 

8.2.4 Primary human B cells 

Primary human B cells were isolated from fresh adenoids. Adenoids were passed through a 

strainer in 1x RPMI (Gibco), supplemented with 10% (v/v) FCS (Biochrom KG), 1% (v/v) L-

Glutamine, 1% (v/v) sodium pyruvate, 1% (v/v) Pen/Strep (all purchased from Gibco). 

Lymphocytes were isolated by Ficoll gradient, transferred to PBS/Versen (1:5000) and 

washed three times in PBS/Versen. 

In parallel, 10 ml sheep blood was diluted in 40ml PBS/Versen and washed twice by 

centrifugation without brake. Sheep red blood cells (SRBC) in the pellet were used to deplete 

T cells. Lymphocytes were mixed with SRBC, and T cells bound to SRBC via the adhesion 

molecule CD2 could be separated from B cells by Ficoll gradient.    

8.3 Fluorescence-activated cell sorting (FACS) 

Single-cell suspension from various lymphoid organs or cultured cells were washed in FACS 

buffer (PBS, 0,5% (w/v) BSA). Subsequently, 1x106 primary cells or 1x105 cell culture cells 

per sample were labeled with a combination of FITC-, PE-, and APC-conjugated monoclonal 

antibodies, diluted in FACS buffer, for 20 min. on ice in the dark. Labeled cells were washed 

once more in FACS buffer and resuspended in 100 μl FACS buffer containing propidium 

iodide (PI) for analysis. All analyses were performed on a FACSCaliburTM (BD Biosciences) 

and results were analyzed using CELLQuestTM software. 
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8.4 Immunohistochemistry  

Cryosections 

Spleens were embedded in OCT Tissue-Tek (Sakura), frozen on dry ice and cut with 8µm 

thickness. The sections were thawed, air dried, fixed in acetone, incubated with Avidin/Biotin 

blocking kit (Vector), and stained with peroxidase conjugated anti-mouse IgM (Sigma), rat 

anti-mouse CD3 (kindly provided by E. Kremmer, GSF Munich), or biotin conjugated PNA 

(Vector Laboratories). Anti-CD3 antibody was detected using biotin conjugated mouse anti-

rat IgG1 (Jackson Laboratories). Biotinylated reagents were detected using streptavidin 

coupled alkaline phosphatase (Sigma). Enzyme reactions were developed with alkaline 

phosphate or peroxidase substrate kit (Vector). All incubation steps were performed at 22°C 

in humidified chamber, followed by three washing steps with PBS. Slides were analyzed with 

a Zeiss microscope; pictures were obtained with a RS Photometrics digital camera and 

processed with Openlab from Improvision and Adobe Photoshop software.  

 

Paraffinsections 

Immunohistochemical staining of paraffin sections was performed on an automated 

immunostainer (Ventana Medical Systems, Tucson, AZ) according to the company's 

protocols. Antigen retrieval was performed with a microwave pressure cooker in 0.01M 

citrate buffer (pH 6.0). Incubation with the primary antibodies was performed overnight at 

RT. The rest of the procedure was completed on the Ventana immunostainer.  

8.5 Immunofluorescence 

Cells were fixated on microscopy slides using a 1:1 solution of methanol and acetone. Slides 

were incubated in a blocking solution (PBS/10% FCS) for 1 hour at RT, and then incubated 

with the LMP1-specific antibody CS1-4 (Dako, 1:1000 in PBS/10% FCS) overnight at 4°C. 

To detect anti-LMP1, slides were incubated with anti-mouse Cy3-antibody (1:100) for 1 hour 

at RT. All incubation steps were performed in a humidified chamber, followed by three 

washing steps with PBS/4% FCS. 

8.6 Enzyme-linked immunosorbent assay (ELISA)  

To determine Ig isotype concentrations and NP-specific antibodies, microtiter plates (Nunc) 

were coated with Ig specific rat anti-mouse antibodies or with NP3-BSA or NP17-BSA 

(Biosearch Technologies), respectively, in 0.1 M NaHCO3 buffer (pH 9,2) at 4°C overnight. 
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Subsequently, wells were blocked with PBS, 1% (w/v) milk powder solution at RT for 30 

min. Serially diluted serum samples were applied to the wells and incubated for 1 hour at RT, 

then incubated 30 minutes at RT with biotin-conjugated secondary antibodies specific for the 

different isotypes, followed by the incubation with streptavidin coupled alkaline phosphatase 

(SA-AP) at RT for 30 minutes. The amount of bound SA-AP was detected by incubation with 

O- phenyldimine (Sigma) in 0,1 M citric acid buffer containing 0,015% H2O2. Following each 

incubation step, plates were washed three times with PBS. The OD at 405 nm was measured 

with a microplate reader (Photometer Sunrise RC; Tecan), and antibody concentrations were 

determined by comparison with isotype specific standards (IgM, G155-228; IgG1, MOPC-

31C; IgG2a, G155-178; IgG2b, MPC-11; IgG3, A112-3; M18-254;  BD Bioscience). 

 

Anti-Cardiolipin-ELISA 

To detect anti-cardiolipin antibodies in serum from un-immunized mice, an ELISA kit from 

Alpha Diagnostics Int., USA, was used according to the manufacture’s protocol. Serum was 

diluted 1:100 and duplicates of each sample were tested in one experiment. The OD of the 

negative control serum was set two times to define positive and negative tests. 

8.7 RNA isolation and analysis 

Total RNA isolation was performed using TRIzol reagent (Invitrogen), which is a solution of 

phenol and guanidine thiocyanate. Each 1 x 107 cells were resuspended in 1ml TRIzol for 

lysis and incubated for 10 min. at RT. After this step, samples could be shock frozen on dry 

ice and stored at -80 °C for at least one month. For phase separation, the homogenates were 

supplemented with 0.2ml chloroform per 1ml TRIzol, subsequently vortexed for 15 sec., 

incubated at RT for 2 to 15 min. and centrifuged at 12.000 x g for 15 min. at 4 °C. Following 

centrifugation, the mixture separated into a red phenol-chloroform phase at the bottom of the 

tube, a whitish interphase and a colorless aqueous phase in the upper part, which contained 

the RNA. The aqueous phase was carefully transferred to a new tube and RNA was 

precipitated by adding 0.5 ml 100% (v/v) isopropanol per 1 ml used TRIzol. Samples were 

vortexed, incubated for 5 min. at RT, and then centrifuged at 12.000 x g for 8 min. at 4 °C to 

pelletize precipitated RNA. After one washing step of the RNA pellet with 75% (v/v) ethanol, 

it was briefly air-dried and subsequently dissolved in DEPC-H2O by pipetting several times 

and incubating for 15 min. at 55-60 °C. The RNA concentration was determined by 

measuring the absorbance at 260 nm using a Bio-Photometer (Eppendorf, Hamburg). The 

ratio of the readings at 260 nm and 280 nm (OD260/ OD280) provided an estimation of the 
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purity of the RNA preparation, with respect to contaminants that absorb UV, such as proteins. 

Pure RNA has an OD260/OD280 ratio of > 1.95. 

Agarose gel electrophoresis of RNA 
RNA electrophoresis is performed under denaturing conditions in 2.2 M formaldehyde 

according to Maniatis (Maniatis et al., 1982), using the MOPS (4- 

morpholinopropanesulphonic acid) buffer system. RNA samples were heated for 10 min. at 

60 °C to denature secondary structures of the RNA, subsequently cooled on ice for 1 min., 

and loaded on a RNA agarose gel (5% (v/v) formaldehyde, 1% (w/v) agarose, 1x MOPS) to 

electrophoretically separate it. The 18S (~1.9 kb) and the 28S (~4.8 kb) rRNA bands 

visualized by UV irradiation served as a loading and quality control of the RNA.  

 

Northern Blot analysis 

After separation on a RNA agarose gel as described, the gel was incubated for 12 min. in 

1xSSC, 0,05 M NaOH, and subsequently in 10xSSC two times for 20 min. to get rid of the 

formaldehyde. RNA was transferred to a nitrocellulose membrane (Hybond-N, Amersham) in 

10xSSC. After the transfer, the membrane was washed for 5 min. in water and then in 

10xSSC, before it was baked for two hours at 80°C to fix the RNA. Pre-hybridization was 

performed in Churchpuffer (7% (w/v) SDS, 10 mM EDTA pH8.0, 250 mM 

Na2HPO4/NaH2PO4) at 65°C for at least 3 hours. Probes were labeled with 50 µCi α32-dCTP 

applying ´Random Prime Labeling Kit´ (Amersham Bioscience) and the membrane was 

incubated with the radioactive labeled probe for another 16 hours at 65 °C. Afterwards the 

membrane was rinsed in pre-heated 1x SSC, 1% (w/v) SDS at 65 °C. Bands on the membrane 

were visualized by autoradiography, using radiosensitive films (Biomax MS PE Applied 

Biosystems, KODAK).  

 

cDNA synthesis 
1 μg total RNA was reverse transcribed with > 10U of viral AMV Reverse Transkriptase, 

using 1st Strand cDNA Synthesis Kit for RT-PCR [AMV] (Version 3, August 2004, Roche 

Diagnostics) with 0.02 A260 units (0.8 μg) Oligo-p(dT)15 primers according to manufacturer’s 

instructions, whereas each reaction was performed in a final volume of 10 µl. The resulting 

first strand cDNA was stored at –20 °C and was used as a template for RT-PCR. 
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RT-PCR 

RT-PCR of mature Ig transcripts was performed on a T3 Thermocycler (Biometra) using 1 ng 

cDNA per reaction. The amplification cycle number ranged between 30 and 40. Bands were 

visualized on a 1-2% agarose gel. 

Quantitative real-time PCR (qPCR) 
qPCR was performed using LightCycler FastStart DNA Master SYBER Green (Roche 

Diagnostics). cDNA was diluted in a ratio of 1:10 before use and 1 µl was added to 9 µl of 

LightCycler mastermix according to the manufacturer’s protocol. Analyses were performed 

on a LightCycler instrument (Roche Diagnostics). Dilution series (10-3, 10-5, 10-7 and 10-9) of 

former LightCycler amplification products were prepared to generate calibration curves, 

needed for the determination of PCR efficiencies later on. As negative control, template DNA 

was replaced by PCR-grade water. Dilution series and negative control were carried out for 

each run. In order to document the specificity of the desired PCR products, samples were 

electrophoretically separated on a 2% (w/v) agarose gel and analyzed on a UV luminescent 

screen. Additionally, LightCycler melting curve analysis was performed. The copy number of 

analyzed gene products was normalized to c-abl, a gene known to be equally expressed in 

EREB2-5 cells grown under different conditions (personal communication Martin Schlee). 

LightCycler run protocol: 
Starting temperature: 95 °C  10 min. 
Cyclic denaturation: 95 °C  1 sec. 
Cyclic annealing:  54 to 65 °C 10 sec. 
Cyclic elongation: 72 °C  1 sec. per 25 bps 
Melting   70 to 97 °C 10 sec     
Transitionrate   0.1 °C/sec. 
Cooling   40 °C  15 sec. 
Cycle number:  55 
 
 

8.8 Western blot analysis 

For protein extraction, cells were lysed in hot 2x Laemmli sample buffer (2.5% (w/v) SDS, 

20% (v/v) glycerin, 0.12 M Tris pH6.8) containing protease inhibitors (Protease Inhibitor 

Complete Mini Tablets, Roche). Samples were boiled at 100°C for 5 min. and mixed well by 

pipetting. Lysates were subsequently used or frozen at –80°C. Protein concentration was 

quantitated using a Bradford reagent (DC protein assay; Bio-Rad) and a bovine serum 

albumin standard curve. 
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Protein mixtures were separated by discontinuous SDS-PAGE (Laemmli, 1970). 2/10 volume 

of sample buffer (Bromphenol blue solution, 0.5 M DTT) was added to cell lysates and boiled 

for 5 min. at 100°C to denature proteins. Samples were subsequently loaded an a SDS 

polyacrylamide gel, composed of a stacking gel (5% (v/v) acrylamide, 0.625 mM Tris pH6.8, 

0.1% (w/v) SDS, 0.1% (w/v) APS, 0.006% (w/v) TEMED), in which charged proteins are 

focused, and a resolving gel (10% (v/v) acrylamide, 3.75mM Tris pH 6.8, 0.1% (w/v) SDS, 

0.1% (w/v) APS, 0.004% (w/v) TEMED), in which proteins are separated according to 

molecular weight. For size determination of separated proteins, a protein ladder (Pre-Stained 

Protein Ladder; Invitrogen) was used. Electrophoresis was accomplished in Laemmli running 

buffer (25 mM Tris base, 0.2 M glycine, 0.1% SDS) at 100 V, using a Bio-Rad 

electrophoresis chamber. 

After separation, proteins were transferred onto a polyvinylidenfluoride (PVDF) membrane 

(Hybond-P, Amersham)  by “wet transfer” in transfer buffer (25 mM Tris base, 0.2 M 

Glycine, 20% (v/v) methanol, in H2O), utilizing a Bio-Rad-Tank. Proteins were transferred 

for 1.5 h at 100V on a magnetic stirrer. To verify protein transfer, the membrane was stained 

with Ponceau S solution (2% PonceauS, 30% Trichloroacetic acid, 30% Sulfosalicyl acid).  

Membranes were incubated for 1 h in PBS, 5% (w/v) milk powder solution with slight 

shaking to block unspecific reactions. For primary antibody incubation, membranes were 

rolled over night at 4°C with the primary antibody dilution in PBS, 1% (w/v) milk powder 

solution. The membrane was washed three times for 5 min. in PBS, 1% (w/v) milk powder 

solution and subsequently incubated with secondary antibody conjugated to HRP, diluted in 

PBS, 1% (w/v) milk powder solution for 1.5 h at RT. After three washing steps as before, the 

membrane was shortly rinsed with water and proteins were visualized using Enhanced 

Chemiluminescence (ECL)-System (Amersham). Signals were detected by the exposition of 

photosensitive films (Amersham) using a M35 X-OMAT processor (Kodak).  

 

8.9 Southern Blot analysis 

ES cell DNA was digested with EcoRI and separated on a 0.8% agarose gel overnight. Then 

the gel was incubated in 0.25 N HCl for 20 min., shortly rinsed with water and incubated for 

40 min. in alkaline transfer buffer (0.4 M NaOH, 0.6 M NaCl), incubation steps performed on 

a shaker. Subsequently, the DNA was blotted from the gel to a nitrocellulose membrane 

(Hybond-N, Amersham) in transfer buffer overnight. After blotting, the membrane was rinsed 
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in 2xSSC (0.3 M NaCl, 0.03 M NaCitrate; pH6,5) for neutralization. DNA fragments were 

fixed on the membrane by heat (2 h, 80°C). 

To block non-specific binding, the membrane was pre-hybridized in pre-heated hybridization 

solution (1 M NaCl, 50 mM Tris, pH7.5, 10% (w/v) dextran sulfate, 1% (w/v) SDS, 250 µg 

salmon sperm DNA/ml) for at least 3 hours at 64°C. 50-100 ng DNA probe (rosa26-probe 

(Soriano, 1999)) were labeled with 50 µCi α32-dCTP applying ´Random Prime Labeling Kit´ 

(Amersham Bioscience) and the membrane was incubated with the radioactive labeled probe 

for another 16 hours at 65°C. Afterwards the membrane was rinsed in pre-heated 2xSSC, 

0.1% (w/v) SDS at 65°C. Bands on the membrane were visualized by autoradiography, using 

radiosensitive films (Biomax MS PE Applied Biosystems, KODAK).  
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