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Chapter 1Introdution
1.1 The motivation for string theoryThe standard model of partile physis and Einstein's theory of general relativityonstitute the fundament of modern theoretial physis, and they explain almostevery experimental data from partile and astrophysis [1, 2℄. Despite this impressivesuess there are several theoretial drawbaks, whih make us believe that thereexists a more fundamental theory underlying both.First of all, the standard model of partile physis (SM) ontains a salar �eld,the Higgs boson, whih is needed to generate the masses of the SM partiles by themehanism of spontaneous symmetry breaking. Even though it has not been observedso far, it would ome as a great surprise if it will not be disovered in the upomingexperiments at the Large Hadron Collider (LHC) at CERN. But even if one assumesits existene it is well known that the Higgs boson su�ers from the so-alled hierarhyproblem. It states that salar �elds should get masses of the order �2 if the SM isvalid up to an energy sale �. So if � is muh larger than the eletro-weak sale thebare value of the Higgs mass has to be �ne tuned in suh a way that the quantumorretions anel up to some 100 GeV, whih seems quite unsatisfatory. A naturalsolution to the hierarhy problem would be to take � to be of the order of the eletro-weak sale and to replae the SM above that sale by a theory, whih somehow doesnot give rise to quadrati orretions in its own ut-o� �0.But there are also more fundamental questions that do not �nd an answer withinthe SM. As a onsistent quantum �eld theory (QFT) the SM appears to be highlyarbitrary in the sense that there exists no mehanism, whih hooses the observedpartile spetrum, the gauge group or even four-dimensional spae-time. Further-more there are roughly 20 free parameters, whose values have to be determined byexperiment.Another shortoming of the SM is related to the most important problem ofgeneral relativity (GR). In the same way the SM neglets any gravitational e�etsin its usual formulation in at Minkowski spae, GR appears as a lassial theory,



4 Introdutionnegleting any quantum e�ets. Thus, even though modern theoretial physis isbuild upon both theories, they seem to ignore the existene of the respetive other.This issue begs for an explanation within a uni�ed theory of GR and QFT.During the last deades several ideas were proposed to solve the above mentionedproblems with di�erent suess. Supersymmetri QFTs (see [3℄ for an introdutionand further referenes) for example have exatly the properties needed to avoid thehierarhy problem. The symmetry between bosons and fermions leads to a anella-tion of quadrati divergenes suh that the quantum orretions to the Higgs massdepend only logarithmially on �0, whih ould be as large as the Plank mass withoutleading to a �ne tuning problem.An attempt to redue the arbitrariness of the SM is given by the so-alled granduni�ation theories (GUTs). The idea here is the embedding of the SM gauge groupSU(3) � SU(2) � U(1) into a simple gauge group suh as SU(5), SO(10) or E6. Inthis senario there is only one gauge group fator at some high energy sale, whihthen redues to the SM gauge group by some generalized Higgs mehanism. It turnsout that only in a supersymmetri extension of the SM the gauge ouplings anonsistently be uni�ed. One may view this as another motivation for supersymmetry.In order to ahieve a uni�ation of GR and the SM, the famous idea of Kaluzaand Klein [4℄ was to assume more than four spae-time dimensions. In order to makeontat with observation the extra dimensions should be small enough to esapedetetion by todays aelerators. The isometry group of the internal spae gives riseto gauge �elds in four dimensions even if the higher dimensional theory only involvesgravity. To make this more preise let us onsider a �ve-dimensional metri gmn witha irle as internal spae. Regarded as four-dimensional �eld, it ontains the four-dimensional metri g��, a vetor �eld g�5 and a salar g55. The vetor turns out toobey the Maxwell equations in a urved bakground. In this way one has a uni�ed afour-dimensional theory of gravitation and eletromagnetism into a �ve-dimensionaltheory of pure gravity. The value of the gauge oupling is related to the radius of theinternal irle and thus gets a deeper geometrial origin. But already in this simpletoy model there is a problem that persists to muh more advaned realizations of theKaluza-Klein (KK) idea. The radius R is related to the salar �eld orresponding tothe g55-omponent of the metri, and the problem is that it turns out to be massless.Hene, nothing �xes the value of the gauge oupling, i.e. the radius R. Unhargedmassless salar �elds are alled moduli and the problem of generating masses for suh�elds goes under the name of moduli stabilization whih plays an important role inthis thesis.To overome the lassial nature of GR, the most obvious idea would be to justquantize it as one does with ordinary lassial �eld theories. But it turns out that thisquantization leads to ultraviolet divergenes whih appear to be non-renormalizable(see however [5℄).Most of the di�erent approahes to extend or unify the SM and GR merge natu-rally in string theory (see [6℄ for an introdution). The basi point of string theory is



1.1 The motivation for string theory 5to replae point partiles by strings, i.e. one-dimensional objets. Upon quantizationthe string spetrum, i.e. the vibrational modes of the string, ontains partiles as theyour in the SM and a spin two partile, the graviton, whih turns string theory intoa viable andidate for the uni�ation of the SM with GR. But even better, roughlyspeaking, the extended nature of the strings smears out the loation of interations ina way that removes the ultraviolet divergenes enountered in the onventional QFTapproah towards quantum gravity. Although this is a great ahievement, string the-ory has not fully solved the problem of quantizing gravity sine it onsiders strings ina given bakground spae-time. The gravitons in the string spetrum desribe smallutuations around this vauum and string theory thus provides only a onsistentperturbation theory of utuations around a given bakground.Historially the motivation for the �rst formulation of string theory was rather dif-ferent. In the late 1960s, the bosoni string gave the theoretial bakground to derivethe Veneziano amplitude, whih was proposed as an amplitude for meson satteringbefore the advent of quantum hromodynamis (QCD). After improved experimentaldata ruled out the Veneziano amplitude as a hadroni amplitude, string theory wasreinterpreted as a uni�ed theory of gravity and all other fundamental fores in 1974 [7℄by studying the spetrum of the quantized theory. The presene of a tahyoni �eldand the lak of any fermioni �elds in the bosoni string theory led to the formulationof supersymmetri string theories, alled superstring theories. Thus supersymmetryappears in string theory at a muh more fundamental level than just as an extensionas it does for the SM.It turns out that a QFT of one-dimensional objets is only onsistent in a ten-dimensional spae-time and this immediately brings the KK idea bak into the game.Six of the dimensions have to be ompati�ed in order to obtain our four-dimensionalworld. Another onsequene of onsisteny is, that there are only three possible super-string theories, the type I and the type IIA/IIB string theories. Furthermore there aretwo so-alled heteroti string theories, whih are the result of a hybrid onstrution,ombining type II and bosoni strings. The type II theories seemed to lead to N = 2supersymmetry in four dimensions and too small gauge groups whih made themphenomenologially unattrative. During the so-alled �rst superstring revolution inthe mid 1980s, triggered by [8℄, ompati�ations of the other superstring theories,however, gave rise to quasi-realisti partile spetra and gauge groups large enoughto ontain the SM gauge group, naturally employing the idea of grand uni�ation.But some features of superstring theory remained unlear. Similar to the arbi-trariness of the SM as a QFT, there were now di�erent superstring theories and nomehanism to prefer one over the other. Furthermore string theory was only de�ned asa perturbative expansion, whih ould only be used diretly at weak oupling. In theearly 1990s the situation ould be improved by the disovery of the so-alled D-branes[9℄, whih impliitly were always present in string theories as boundary onditions ofopen strings but now ould be identi�ed with solitoni objets arising in the e�etiveten-dimensional supergravity theories of type II string theory. This made it also pos-



6 Introdutionsible to onstrut quasi-realisti ompati�ations in the type II string theories sineD-branes an lead to larger gauge groups and supersymmetry breaking. Maybe evenmore important they triggered the so-alled seond superstring revolution in the mid1990s in whih it beame lear that all the di�erent superstring theories are relatedto eah other. The entral idea, alled duality, is that the strong oupling limit ofone theory is equivalent to the weak oupling limit of another theory. The ompletepiture is, that all the string theories are di�erent limits of one unifying theory alledM-theory, whose low energy e�etive theory is eleven-dimensional supergravity, theunique supersymmetri theory in the highest possible dimension. In this way stringtheory, or now M-theory, appears to be a unique theory.However, this high degree of uniqueness is spoiled by the the requirement of hoos-ing a bakground around whih to expand the KK redution, leaving many possibil-ities for the resulting four-dimensional theory. And even if one �nds the bakgroundwhih gives exatly the SM spetrum and gauge group, one still has to explain whynature hooses this one. A related problem is that even for a �xed bakground, as wealready saw, the KK redution leads to the problem of massless salar �elds whihin turn leaves physial quantities suh as gauge ouplings undetermined and rendersthe vauum of the theory degenerate. Furthermore massless salar �elds may lead toan unobserved �fth fore. So, all in all, progress in phenomenology has been muhmore limited than had been hoped in the mid 1980s. The origin of the struture ofthe SM is not better understood now than it was then. Advanes in this area havebeen mostly internal and a deisive low-energy test of string theory does not seempossible, sine in any terrestrial experiment, unless the string sale is extremely low,all new signatures suh as supersymmetry or extra dimensions �nd an explanationwithin string theory but they do not prove string theory.This implies that astrophysial observations might beome more and more im-portant in order to �nd any experimental signature of string theory. But for thatone �rst has to know how string theory predits osmologial observables. This is arelatively new area of researh, alled string osmology, and it has a strong relationto the already mentioned problem of moduli stabilization as we will see in this thesis.Reent advanes in observational osmology have brought us loser to a fundamentalunderstanding of the origin of struture in the universe. Observations of variations inthe osmi mirowave bakground (CMB) temperature and of the spatial distributionof galaxies in the sky have yielded a onsistent piture in whih gravitational instabil-ity drives primordial utuations to ondense into large-sale strutures, suh as ourown galaxy. Moreover, quantum �eld theory and GR provide an elegant mirophysialmehanism, ination, for generating these primordial perturbations during an earlyperiod of aelerated expansion. The resulting paradigm of a universe undergoingination [10, 11℄ at early times, and dominated by old dark matter and dark energyat late times, has sometimes been referred to as a standard model for osmology. So,if string theory wants to be the theory of everything it has to explain all these osmo-logial observations. But in fat there exists a mutual relevane of string theory and



1.2 The formulation of string theory 7osmology, beause if one evolves the expansion of the universe bak in time usingthe equations of GR and the SM, one hits a regime in whih both desriptions breakdown and physis beyond the SM and GR is required. In partiular one would need aonsistent desription of quantized gravity, whose best developed andidate seems tobe string theory. This immediately leads to the question whether one an implementthe mehanism of ination in string ompati�ations. As we will review later, thebest developed models of ination are based on a salar �eld, the inaton, moving ina non-trivial potential. This immediately suggests that one of the moduli present instring ompati�ations might play the role of the inaton provided one �nds a wayto generate a potential for it. To �nd expliit examples of ination in string theoryis tehnially quite hallenging beause one needs detailed knowledge of the four-dimensional e�etive theory resulting from string theory for a given ten-dimensionalbakground. We will make this more preise in the next hapter motivating also thetopis of this thesis, but �rst we will briey sketh in the next setion how stringtheory is atually formulated.Finally, let us also mention that, despite the slow phenomenologial progress,string theory has led to many profound results suh as mirror symmetry [12, 13℄,an exat mirosopi alulation of the Bekenstein-Hawking blak hole entropy [14℄and the AdS/CFT orrespondene [15℄, some with deep onnetions to apparentlyunrelated �elds.1.2 The formulation of string theoryIn this setion we will establish the basi onepts to formulate string theory in away that is adapted to the topis of this thesis. For a broad introdution into stringtheory see e.g. [6℄.Let us onsider a string moving in a D-dimensional Minkowski spae-time MDwith oordinates XM . It an be desribed by the embedding of the string world-sheet, i.e. the two-dimensional surfae swept out by the string as it propagates intime, into spae-time. This is a map from a two-dimensional surfae � into MD,XM(�1; �2) : � ! MD, where �a are the oordinates on �. In analogy to the pointpartile, the ation determining the lassial equations of motion for the string is takento be proportional to the area of the world-sheet. This is known as the Nambu-Gotoation whih is lassially equivalent to the Polyakov ationSP = 14��0 Z� d2�phh����XM��XNGMN ; (1.1)where GMN is the ten-dimensional spae-time metri and h�� is the two-dimensionalworld-sheet metri. This ation is usually taken as the starting point for de�ning thequantum theory. The symmetries of the Polyakov ation are D-dimensional Poinar�einvariane, invariane under di�eomorphisms of the world-sheet and two-dimensionalWeyl-invariane. Weyl invariane plays a ruial role in string theory, beause it is



8 Introdutiongenerally anomalous under quantization. In order to obtain a unitary theory one hasto demand Weyl-invariane, whih in turn imposes severe onstraints on the theory.We do not want to go into the details of the quantization of this theory and justfous on the results. The spetrum of the quantum theory onsists of the vibrationalmodes of the string. It turns out that it ontains a tahyon and no fermions. Toremove the tahyon and to get spae-time fermions one introdues fermioni degreesof freedom on the world-sheet. Demanding a vanishing Weyl anomaly then onstrainsthe dimension of the spae-time uniquely to be D = 10, whih we will assume fromnow on. One ends up with spae-time fermions but the tahyon is still present. Itis possible to remove the tahyon by a suitable trunation of the spetrum known asthe GSO projetion. The remaining spetrum onsists of a set of massless states andan in�nite tower of massive exitations whose masses are quantized in units of thestring sale �0�1=2. As one usually assumes this to be of the order of the Plank mass,these states are extremely heavy.Atually there are several possibilities to introdue world-sheet fermions and toperform the GSO projetion. Together with further onsisteny onditions one endsup with only �ve onsistent string theories in D = 10 Minkowski spae-time listed intable 1.1. Type Massless bosoni spetrum Gauge group G NIIA gMN ; BMN ;�; AM ; AMNP U(1) 2IIB gMN ; BMN ;�; A; AMN ; AMNPQ - 2Heteroti E8 � E8 gMN ; BMN ;�; AaM E8 � E8 1Heteroti SO(32) gMN ; BMN ;�; AaM SO(32) 1Type I gMN ;�; AaM ; AMN SO(32) 1Table 1.1: The �ve onsistent string theories in D = 10Every theory ontains a graviton gMN and a salar �eld � alled the dilaton whosevauum expetation value sets the value of the string oupling gs. Furthermore allstring theories exept the type I are based on losed strings and their spetruminludes an antisymmetri tensor gauge �eld BMN whih is alled the NS B-�eld. Be-sides this `universal' part of the spetrum eah string theory has its individual masslessbosoni exitations, onsisting of non-abelian gauge �elds AaM , a = 1; : : : ; dimG, orantisymmetri p-form gauge �elds AM1:::Mp, the so alled RR p-forms. Strings do notarry any harge of the RR p-form �elds. However it was one of the big disoverieswithin string theory that it atually ontains objets whih do arry a harge of theRR �elds. They are alled Dp-branes where p denotes the number of their spatialdimensions.So far we only disussed strings in at bakgrounds. If the spae-time metriis urved, then the Weyl-invariane of the lassial ation is still manifest. But atthe quantum level it beomes non-trivial and imposes restritions on the spae-time



1.2 The formulation of string theory 9metri. The metri an be interpreted as the ouplings of the two-dimensional �eldtheory. One an de�ne a modi�ed beta funtion �, whih measures the violation ofWeyl invariane. In order to preserve Weyl invariane this beta funtion must vanish.It an be omputed perturbatively, order by order in �0. In a target spae with hara-teristi radius Lint the e�etive dimensionless expansion parameter is p�0L�1int. Termswith more than two derivatives in the �-funtion are of higher order in the p�0L�1intexpansion. Thus if p�0L�1int � 1 perturbation theory in the two dimensional theoryis valid and it is possible to trunate the equations of motion at the two derivativelevel. This is known as the regime of low energy e�etive theory. Furthermore in thislimit it is allowed to neglet the heavy string modes and onsider only the masslessspetrum. The leading term of the �-funtion for the metri is given by�GMN = �0RMN : (1.2)Thus, the spae-time bakground has to be Rii-at, i.e. it satis�es the vauumEinstein equation. The ondition imposed on the bakground �eld by Weyl invarianeon the world-sheet is its spae-time equation of motion. This relation between world-sheet and spae-time properties holds for other bakground �elds as well and an beused as an eÆient method to onstrut e�etive ations whose equations of motionjust reprodue the �-funtions.The equations of motion for the massless spae-time �elds an also be derived inan alternative way. One alulates their n-point funtions and the e�etive spae-time ation is determined by demanding that its lassial sattering amplitudes shouldreprodue these n-point funtions. From this e�etive ation one derives the equationsof motion.For both ways it turns out that the leading terms in an �0-expansion, the lowenergy e�etive theories, desribe ten-dimensional supergravities, either type I super-gravity in ase of heteroti and type I string theory or type IIA/IIB supergravity inase of IIA/IIB string theory. For example the ten-dimensional type II supergravityation desribing to lowest order in �0 the low energy e�etive theory of the masslessstates of type II string theory is in string frame given byS = 12�210 Z d10xp�g e�2� "R + 4(��)2 � 12H2 � 14e�2�Xn F 2n# : (1.3)In appendix A we ollet further de�nitions and onventions. To make ontat withobservation, one would like to onsider suh a theory on a bakground of the formX4�M6, where X4 ould in a �rst step be any maximally symmetri four-dimensionalspae, i.e. Minkowski, de Sitter or anti-de Sitter, and M6 is some ompat six-dimensional manifold.



10 Introdution



Chapter 2The topis of this thesisThis thesis studies ompati�ations of type IIA string theory on a bakground ofthe form AdS4 �M6 where M6 is a six-dimensional ompat manifold with SU(3)-struture. In this hapter we want to introdue the basi onepts and give somemotivation for the study of suh ompati�ations. We will �rst review briey thepreeding developments without explaining all the details before we will more arefullyintrodue the topis of this thesis in separate setions.As already mentioned in the introdution, before the disovery of D-branes, om-pati�ations of the heteroti string seemed to be the phenomenologially most promis-ing senarios beause they allowed for large enough gauge groups to inorporate theSM gauge group. In suh ompati�ations, one would like to obtain an N = 1 super-symmetri theory in four dimensions. The reason for that is twofold. First, from thephenomenologial side, e.g. the hierarhy problem, one expets supersymmetry to bebroken at a muh lower sale than the string sale. Another and maybe even strongermotivation omes from the theoretial side. It is pretty hard to �nd non-trivial solu-tions to the ten-dimensional equations of motion, whih are seond order. The �rstorder supersymmetry onditions, on the other hand, are muh easier to solve, andthey often extend to solutions of the full equations of motion. It turned out that inorder to preserve N = 1 supersymmetry in four dimensions the internal spae has tobe a so-alled Calabi-Yau manifold whih we will introdue later.After the disovery of D-branes, the fous shifted to the type II string theoriesbeause now it was also possible in these theories to onstrut large enough gaugegroups to inorporate the SM. However, the ompati�ation of type II string theo-ries on the well studied lass of Calabi-Yau manifolds leads to N = 2 supersymmetrivaua in four dimensions whih seems phenomenologially unattrative sine, e.g.,suh theories do not allow for fermions with hiral gauge interations. Moreover, asa onsequene of the Gauss law, the RR harge arried by the D-branes has to beanelled by some objets arrying opposite RR harge. In priniple this ould beahieved by anti-D-branes but sine they break supersymmetry expliitly one wouldloose its nie phenomenologial properties as well as its omputational ontrol. As



12 The topis of this thesisit turns out, type II string theories inlude objets whih do arry opposite D-braneharge (and tension) and at the same time allow for a ontrolled way of breakingsupersymmetry. These are the so-alled orientifold-planes (O-planes). O-planes arisein type II string theories by modding out world-sheet parity plus a geometri symme-try � of X4 �M6. The O-planes are given by the �xpoint-set of this symmetry. Onthe level of the full string theory this implies that non-orientable string world-sheetsare allowed. Fousing on the e�etive ation, O-planes break part or all of the su-persymmetry of the low-energy theory by trunating the �eld ontent of the N = 2supersymmetri theory to N = 1 or N = 0.But even after the inlusion of O-planes another problem is still present in om-pati�ations on Calabi-Yau manifolds, namely the moduli problem already men-tioned in the introdution. Massless salar �elds orresponding to deformations ofthe internal spae are in onit with experiment and physial quantities suh asgauge ouplings remain arbitrary. This problem ould be addressed in so-alled uxompati�ations. The inlusion of uxes, i.e. non-vanishing bakground values forthe di�erent �eld-strengths present in ten dimensions, allows one to generate a po-tential for the salar �elds. As we will see, uxes arise quite naturally by demandingN = 1 supersymmetry for the vauum of type II ompati�ations. However, inthis thesis we are interested in N = 1 e�etive theories, i.e. utuations around agiven vauum, for whih we will still need O-planes to trunate the spetrum. Ingeneral, these are also needed for harge anellation sine the uxes ontribute tothe integrated Bianhi identities with the same sign as the D-branes do.What makes the inlusion of uxes deliate is that they bakreat in general onthe geometry in suh a way that they deform it away from the well-known lasses ofCalabi-Yau manifolds, as we will explain later. Sine in type IIB ompati�ations,based on the work of [16℄, examples have been onstruted where this deformationis rather mild and the resulting geometry is still onformal to a Calabi-Yau, themain fous in type II ompati�ations was on the type IIB side. In the followingyears it was shown that the moduli problem ould indeed in priniple be solvedin suh ompati�ations. In [17℄ the dilaton and omplex struture moduli, i.e.deformations that roughly orrespond to the shape of the internal manifold, ould bestabilized by uxes, whereas the stabilization of the K�ahler moduli, orrespondingto size deformations, require the inlusion of quantum e�ets along the lines of [18℄.However, a supersymmetri vauum is only possible for a non-positive osmologialonstant and one always has to �nd some mehanism that breaks supersymmetry insuh a way that the resulting vauum has positive osmologial onstant in agreementwith observation. Several proposals have been made for suh an uplift ( see e.g. [19℄,[20℄) whih then fueled a broad study of the phenomenology of suh ompati�ationsonerning the SM as well as osmology.On the type IIA side, the deformation by the uxes away from the Calabi-Yauase is in general muh more severe and this made it diÆult for some time to obtainexpliit examples of type IIA ux ompati�ations. However, the improved mathe-



13matial understanding of, at least, a ertain lass of suh non-Calabi-Yau manifoldsin reent years [21℄ made it possible to study suh ompati�ations in more detail.There are several reasons whih make suh ompati�ations an attrative area ofresearh:� First, as opposed to the type IIB side, in ompati�ations with a four-dimen-sional AdS4 spae-time it is in priniple possible to stabilize all moduli alreadyat tree level in a ontrolled supergravity regime without the use of any quan-tum e�ets. It is then an interesting question whether these ompati�ationsan be of phenomenologial interest, e.g. after the inlusion of an additionaluplifting potential so as to onstrut meta-stable dS minima. But even withoutan expliit uplift potential, one an investigate whether the potential alreadyhas meta-stable dS vaua away from the supersymmetri AdS minimum. Re-lated to that is the question of implementing some inationary senario in suhompati�ations.� Seond, type IIA orientifolds with interseting D6-branes (see e.g. [22, 23℄ for re-views and many more referenes) o�er good prospets for deriving the StandardModel from strings, as was reently demonstrated in [24℄. So, if osmologial as-pets an likewise be modelled, one may study questions suh as, e.g., reheatingmuh more expliitly.� Third, vaua of type IIA string theory with AdS4 spae-time are also interestingin the ontext of the AdS/CFT duality, whih we will introdue later. Expliitexamples have been onstruted reently where the AdS part is given by typeIIA string theory in a bakground of the form AdS4 �M6, where M6 is givenby CP3. These examples involve vaua with N = 1 supersymmetry as well asnon-supersymmetri vaua.In this thesis we will mainly fous on the �rst point whih an be divided intothree steps. First of all one has to �nd an N = 1 supersymmetri vauum of the ten-dimensional type IIA supergravity on a bakground of the form AdS4 �M6. One asolution is found the seond step would be to study small utuations around thatvauum and to write down a four-dimensional e�etive theory for the light utu-ations. In partiular, one would like to hek whether all the moduli have beenstabilized by the uxes. In a third step the phenomenology of the obtained vauumould be studied. Here one would like to know whether it is possible to obtain allthe features of the SM like spetrum, gauge group and so on. However, as alreadyindiated, in this thesis we will onentrate on another phenomenologially importantquestion, namely on how to implement ination or to �nd de Sitter vaua in suhompati�ations. For that we will fous on the salar �elds in the four-dimensionale�etive theory. We will study these questions in detail for di�erent expliit internalspaes M6.



14 The topis of this thesisHowever, in the last hapter we will also onstrut non-supersymmetri vaua forsome of the examples studied in the preeding hapters. These non-supersymmetriAdS4 vaua may serve as a starting point for more realisti models in the same wayas the supersymmetri ones, although they are muh more diÆult to obtain. SineCP3, mentioned in the third point above, is one of our examples, the results of thathapter are also interesting in the ontext of the AdS/CFT orrespondene. A naturalquestion, e.g., ould be how the dual �eld theory onstrution of those vaua lookslike.In the following setions we are going to introdue the di�erent topis of thisthesis in more detail. In setion 2.1 we review the onditions the ten-dimensionalbakground has to satisfy in order to get an N = 1 supersymmetri vauum in fourdimensions and whih role uxes play in this onstrution. We will speialize thisin hapter 3 to the ase of type IIA supergravity with an AdS4 spae-time and amanifold with SU(3)-struture as internal spae. We will present all known expliitexamples of internal manifolds that satisfy those onditions.In setion 2.2 we dwell on the so alled moduli problem whih arises in stringompati�ations and how uxes may solve it by generating a potential for the salar�elds. This will be the topi of hapter 4 and hapter 5, where we will study thelow energy theory of the examples found earlier. These hapters summarize [25℄.In setion 2.3 we introdue the basis of ination that are needed in this thesis.Furthermore we omment on the attempts to realize ination in four-dimensionale�etive low energy theories that have their origin in string theory. We outline theurrent problems in type IIA ompati�ations and how they might be irumvented.This will be the subjet of hapter 6 whih is based on [26℄.In setion 2.4 we will reall why non-supersymmetri vaua are interesting froma phenomenologial point of view. Furthermore, we will very briey give a roughpiture of the AdS/CFT orrespondene with speial emphasis on the AdS4/CFT3ase. We do this beause the non-supersymmetri vaua that we onstrut in hapter7 might be of interest in that ontext. The results of this hapter will appear in [27℄.We give a more detailed outline of this thesis in setion 2.5.2.1 Type II supersymmetri bakgrounds with uxWe want to review the onditions that allow for a four-dimensional N = 1 super-symmetri vauum of type II supergravity given in the �rst referene of [28℄. In orderto �nd a vauum of the ten-dimensional type II e�etive supergravity theory, one hasto solve the equations of motion for the �elds, whih are given by the graviton, thedilaton, the NS B-�eld and the RR p-form �elds as an be seen from (A.2). As we willexplain later in more detail, it turns out that supersymmetry simpli�es these equa-tions in suh a way that it is enough to verify supersymmetry as well as the Bianhiidentities for the form �elds. The Einstein equation, the dilaton equation of motionand the equations of motion for the form �elds are then automatially satis�ed. Here



2.1 Type II supersymmetri bakgrounds with ux 15we will only onsider the supersymmetry onditions and postpone the disussion ofthe Bianhi identities to hapter 3.In order to get a four-dimensional (4d) N = 1 supersymmetri theory, one makesan ansatz for the ten-dimensional (10d) bakground to be of the formM10 =M4�M6,where M6 is some six-dimensional (6d) ompat spae. If one further demands 4dmaximal spae-time symmetry (i.e. Minkowski, anti-de Sitter (AdS) or de Sitter (dS)spae-time) the most general 10d metri is given byds2 = e2A(y)g��dx�dx� + gmndy�dy� ; (2.1)with � = 1; : : : ; 3 ; m = 1; : : : ; 6. A is a funtion of the internal oordinates and it isalled warp fator. For maximal symmetry in four dimensions the vauum expetationvalue of the fermioni �elds has to vanish, whih means the bakground is purelybosoni. Thus, for any fermion �, one should have, in a supersymmetri vauum,< Q�� >=< Æ�� >= 0, where Q is the preserved supersymmetry generator and �is the orresponding supersymmetry parameter. In type II theories, the fermioni�elds are two gravitinos  AM ; A = 1; 2 and two dilatinos �A. The bosoni part of thesupersymmetry transformation for the fermions is given in string frame byÆ 1M = �rM + 14HM� �1 + e�16Xn F(n)�M�(10)�2 ;Æ 2M = �rM � 14HM� �2 � e�16Xn �(F(n))�M�(10)�1 ;Æ�1 = ��� + 12H� �1 + e�16Xn �MF(n)�M�(10)�2 ;Æ�2 = ���� 12H� �2 � e�16Xn �M�(F(n))�M�(10)�1 :
(2.2)

In these equations M = 0; :::; 10,  M stands for the olumn vetor  M = � 1M 2M�ontaining the two Majorana-Weyl spinors of the same hirality in type IIB, and ofopposite hirality in IIA, and similarly for � and �. An underline means a ontrationwith gamma matries in the form Fn = 1n!FP1:::PN�P1:::PN , and HM � 12HMNP�NP .The NS and RR �eld strengths are de�ned as in in (A.2). We are using the demoratiformulation of Ref. [29℄ for the RR �elds, as explained in appendix A. However, thedetails are not so important here.First we want to analyze the impliations of this equation for the internal geometryin the absene of ux, i.e. in the absene of any bakground values for the �eldstrengths H and Fn. To this end one needs to split the two supersymmetry spinorsof type II supergravity into 4d and 6d spinors. As explained later, we will use only



16 The topis of this thesisone internal Weyl spinor to do this deomposition, whih then reads for IIA�1 = �1+ 
 �+ + �1� 
 �� ;�2 = �2+ 
 �+ + �2� 
 �� : (2.3)Inserting the deomposition (2.3) into the internal part of the gravitino variationgiven in (2.2) gives the ondition rm�� = 0 : (2.4)The internal manifold should therefore have a globally de�ned spinor whih is o-variantly onstant with respet to the Levi-Civita onnetion. This is a very strongrequirement from the topologial and di�erential geometrial point of view. A 6dmanifold that has a globally well de�ned non-vanishing spinor has struture groupSU(3) and vie versa. The struture group of a manifold is the group of transforma-tions required to path the orthonormal frame bundle. If this spinor is in additionovariantly onstant the manifold is said to have holonomy group SU(3), or a sub-group thereof. A 6d manifold with SU(3) holonomy is alled a Calabi-Yau manifold.It admits one ovariantly onstant spinor. To have more than one, the holonomygroup should be smaller than SU(3) whih results in a larger number of supersymme-tries preserved. In this thesis we will only onsider manifolds with one globally de�nedspinor, although when turning on uxes it does not have to be ovariantly onstantanymore, as one an antiipate by looking at (2.2). This explains the use of only oneinternal spinor in (2.3). All in all, we see that for one ovariantly onstant internalspinor equation (2.3) tells us that there are two 4d supersymmetry parameters, �1and �2 leading to N = 2 supersymmetry in four dimensions.Turning on uxes has two e�ets in (2.2). First, we see that the two supersym-metry parameters �1 and �2 are not independent anymore and this typially leadsto N = 1 supersymmetry instead of N = 2. Seond, the spinors do not have tobe ovariantly onstant anymore with respet to the Levi-Civita onnetion1, or inother words the di�erential onstraint an be relaxed. In this thesis, we will keep forthe 6d internal manifold the (minimal) topologial assumption of SU(3)-struture,but we will drop the assumption of SU(3) holonomy. On a manifold with SU(3)-struture, the spinor representation in six dimensions, the 4 of SO(6), an be furtherdeomposed into representations of SU(3) as 4! 3+ 1. We see a SU(3) singlet inthe deomposition, whih means that there is a spinor that depends trivially on thetangent bundle of the manifold and is therefore well-de�ned and non-vanishing. Itturns out that there are also singlets in the deomposition of 2-forms and 3-forms.Thus, we also have a non-vanishing globally well de�ned real 2-form and a omplex3-form. They are alled J and 
. One does not �nd any invariant �ve-forms, whih1On manifolds with SU(3)-struture one an always de�ne a onnetion with respet to whihthe spinor is ovariantly onstant.



2.1 Type II supersymmetri bakgrounds with ux 17means J ^
 = 0. J and 
 an be expressed in terms of the internal spinor, and theydetermine a metri as we demonstrate in appendix B2.For a Calaby-Yau spae it turns out that J and 
 are both losed. One anparameterize the deviation of a 6d manifold with SU(3)-struture from the Calabi-Yau ase by �ve torsion lasses W1; : : : ;W5 whih appear in the exterior derivativeof J and 
 as follows dJ = 32Im(W1
�) +W4 ^ J +W3 ;d
 =W1J ^ J +W2 ^ J +W�5 ^ 
 ; (2.5)whereW1 is a salar,W2 is a primitive (1,1)-form,W3 is a real primitive (1; 2)+(2; 1)-form, W4 is a real one-form and W5 a omplex (1,0)-form. This deviation from theCalabi-Yau ase, i.e. the non-vanishing torsion lasses, is sometimes alled geometriux. Geometri ux is not a terribly well-de�ned onept and for us the internalmanifold will have geometri ux if the Rii salar R is non-zero. This is onsistentwith the above desription sine Calabi-Yau manifolds are Rii at.Let us now ome to the di�erential ondition in the presene of uxes. As alreadymentioned uxes relate the two spinors �1 and �2 and in partiular the two externalspinors �1 and �2 to eah other. Demanding maximal 4d symmetry only allows atrivial relation between �1 and �2, namely they should be proportional. The omplexonstant of proportionality an atually be a funtion of the internal spae, whihan be inluded in the de�nition of the 6d spinors. We will therefore write�1 = �1+ 
 a�+ + �1� 
 �a�� ;�2 = �2+ 
 b�+ + �2� 
 �b�� : (2.6)N = 1 supersymmetry links a and b, and how they are related tells us how the N = 1vauum sits in the underlying N = 2 e�etive 4d e�etive theory.When (2.3) is inserted in the supersymmetry variations (2.2), the 4d piee anbe fatored out, and one is left with equations involving only the 6d parts of thespinors. In this way, one obtains relations between the non-vanishing uxes and theinternal geometry, desribed by the spinors. Sine the SU(3)-struture (J;
) anbe onstruted out of the internal spinors this leads to a relation between the non-vanishing uxes and the torsion lasses introdued in (2.5). We will postpone theresult of this alulation for the speial ase of type IIA AdS4 ompati�ations tohapter 3, where we will also have to impose the Bianhi identities for the form �elds.Furthermore, we will have to larify, how to deal with soures suh as D-branes andO-planes in those equations. We present all known solutions on internal manifolds for2In appendix B we will use the language of generalized geometry, whih in fat onstitutes ageneralization of the SU(3)-struture ase to the ase with two di�erent internal spinors. However,sine it allows for a very elegant formulation of the supersymmetry onditions, we will use thislanguage in that appendix and speialize it to the SU(3)-struture ase.



18 The topis of this thesiswhih one an expliitly �nd a vauum of the 10d theory in the speial ase of typeIIA AdS4 ompati�ations. These manifolds are so-alled nilmanifolds and osetspaes introdued in appendix C. The key feature of suh manifolds is that theyallow for left-invariant (globally de�ned) one-forms and that the exterior derivativeof those one-forms, when expanded in two-forms, only has onstant oeÆients. Aswe will see, this makes it possible to perform expliit alulations for those manifolds.2.2 Flux ompati�ations and the moduli prob-lemIn this setion, we want to sketh the problem of moduli stabilization that plaguedstring ompati�ations for a long time and how it an be resolved by uxes. In thelast setion we saw that uxes arise in the breaking of the N = 2 supersymmetryof the vauum down to N = 1. Another, but related, nie feature of the inlusionof bakground uxes is the possibility of generating masses for the 4d salar �eldswhih in uxless bakgrounds would stay massless. This is also the key advanein implementing ination in string theory, and it goes under the name of modulistabilization (see [28℄ for the urrent status and more referenes). Let us see how thisworks.To obtain the 4d e�etive theory for a given bakground, one should perform aKK redution of the 10d type II supergravity on a ompat internal manifold, andkeep only some �nite set of light �elds. Take for example a salar �(x; y) ful�llingthe 10d Laplae equation of motion �10� = 0 in the 10d spae of the form (2.1).The KK redution onsists of onsidering small utuations of the 10d �elds arounda given vauum leading to the equation �10(�(x; y)+Æ�(x; y)) = 0. The 10d Laplaeoperator splits as �10 = �4 +�6 and we may apply the fat that �6 on a ompatspae has a disrete spetrum. The utuations Æ�(x; y) are then expanded intoeigenfuntions of the internal Laplae operator �6. The oeÆients arising in thisexpansion are �elds depending only on the external oordinates. From a 4d point ofview, the term �6Æ� thus appears as a mass term. One ends up with an in�nite towerof massive states with masses quantized in terms of 1=R, where R is the radius of theinternal manifold. Choosing the internal manifold to be small enough the massiveKK states beome heavy and an be integrated out. However, this way of deouplingthe KK tower only works in the simplest examples and we will have to ome bak tothis issue. As we will see, the O-planes present in our onstrutions might help here.The resulting e�etive theory enodes the dynamis of the 4d �elds assoiated withthe massless KK modes satisfying �6�(x; y) = 0 : (2.7)This proedure an be generalized to all �elds present in 10d supergravity theoriesinluding the metri. The ansatz (2.1) spei�es the 10d bakground metri and a



2.2 Flux ompati�ations and the moduli problem 19gravity theory is given by utuations around this bakground. In the external di-retions these orrespond to the 4d graviton and the e�etive ation redues to thestandard Einstein-Hilbert term for the metri in 4d. In the ompat diretions theutuations of the metri suh as hanges of the size and shape of the internal mani-fold orrespond to massless salar �elds in the 4d e�etive theory. Sine for manifoldswith SU(3)-struture the metri is ompletely determined by the real two-form J andthe omplex three-form 
, one an divide the salar �elds orresponding to metrideformations into K�ahler moduli, orresponding to deformations of J , and omplexstruture moduli, orresponding to deformations of 
. In order to write the resulting4d theory in a manifest supersymmetri form, one has to omplexify these real salar�elds with the salar �elds desending from the redution of the 10d p-form poten-tials. Sine in Calabi-Yau ompati�ations without uxes there is no potential forthe salar �elds, they are not driven to any partiular value whih is problemati fordi�erent reasons. First of all massless salar �elds typially (though not always) leadto modi�ations to the gravitational fore law, whih are not observed. Furthermorethe parameters suh as, e.g., the gauge kineti funtion depend on these salars andthus physis depends on their value. In this way one �nds a parameterized familyof physially distint vaua, the moduli spae, onneted by simply varying massless�elds. This is in ontrast to the well known Goldstone bosons arising in the proessof symmetry breaking, where the physis of any onstant on�guration of this �eldis the same. A �rst idea to solve the problem of massless salar �elds appearingat some early stage of the analysis would be to inorporate higher order orretionsto the potential at some later stage. Indeed, in non-supersymmetri theories thereis no reason the e�etive potential should not depend on all of the �elds. But forsupersymmetri QFTs there exist quite powerful non-renormalization theorems, suhthat moduli spaes often persist to all orders in perturbation theory or even beyond.However, in the end we will have to break supersymmetry and so they might getmasses of the order of the supersymmetry breaking sale. But in the ase of lowsale supersymmetry breaking, whih seems phenomenologially desirable, this willbe a very small mass leading to the so-alled Polonyi problem [30℄, wherein the lightmoduli �elds arry too muh energy in the early universe, leading to overlosure.Therefore one needs to �nd a mehanism in string theory whih indues a potentialleading to larger masses for the moduli. This mehanism is given by bakgrounduxes. To see this qualitatively, take as an example a tensor �eld B2. If its �eldstrength H3 = dB2 admits a bakground ux Hflux3 = hdBflux2 i, the kineti term ofB2 yields a ontribution ZM10 Hflux3 ^ ?Hflux3 ; (2.8)whih via the Hodge-? ouples to the metri and its deformations. In this way anon-trivial potential for the size and shape deformations of the internal manifold isindued.



20 The topis of this thesisThe light modes of the e�etive theory all appear as form-�eld zero modes of theLaplae operator on the given manifold. For Calabi-Yau manifolds suh harmoniforms are in one-to-one orrespondene with non-trivial elements of the ohomologygroups of the Calabi-Yau, whih means that they are losed. The interations ofthe low energy Lagrangian are given by the KK redution of the ten-dimensionalLagrangian. This low energy theory is found to be a 4d N = 2 supergravity oupledto vetor- and hypermultiplets.One way to deal with bakground uxes in string ompati�ations is the so alledCalabi-Yau with uxes approximation. If the typial energy sale of the uxes is muhlower than the KK sale, one an assume that the spetrum is the same as in theuxless ase, exept that some of the massless modes aquire a mass due to uxes.This allows one still to use the powerful Calaby-Yau mahinery to extrat the 4de�etive theory, or in other words, one still uses the basis of harmoni forms on theCalabi-Yau in whih one expands the 10d �elds.But, as already explained in the last setion, the uxes bakreat through thesupersymmetry variations (2.2) on the geometry deforming it away from the well-understood lass of Calabi-Yau manifolds to the more general ase of manifolds withSU(3)-struture or even beyond that. By looking at (2.5) we see that in generalone now has to use non-losed forms in the KK redution. Unfortunately, it is stillunlear how to onstrut a suitable basis of expansion forms for this ase in general.A detailed disussion of the general onstraints on suh a basis appeared in [31℄ (seealso [32, 33℄ for related work). However, as already mentioned in the last setion,on the manifolds studied in this thesis, namely nilmanifolds and oset spaes (seeappendix C), a natural set of expansion forms, namely left-invariant forms, exists.These forms are not neessarily losed anymore, whih somehow reets the fatthat we are going beyond ordinary Calabi-Yau manifolds. This makes it possible toonstrut the e�etive ation for these examples expliitly.Interestingly for supersymmetri theories there exists an alternative, althoughless diret, approah to derive the low energy e�etive ation, whih we will alle�etive supergravity. The salar potential of any 4d N = 1 supersymmetri theoryis ompletely spei�ed by a K�ahler potential K and a holomorphi superpotentialW.For theories desending from string ompati�ations there exist general expressionsfor these quantities in terms of the internal geometry and the uxes [34, 33, 35, 36℄.For more work see also [37, 38, 39℄. Using these expressions, one only has to plug inthe values of the bakground uxes, the expansion of the geometri quantities J and
 that de�ne the SU(3)-struture and the expansion of the form �eld potentials toobtain the whole salar potential.In this thesis we will make use of both the e�etive supergravity approah as wellas the KK redution. The omputation of the salar masses of the 4d low energye�etive ation resulting from a KK redution of the nilmanifold examples will be thetopi of hapter 4. The result will serve as a hek on the potential obtained by thee�etive supergravity approah used in hapter 5. Having established onsisteny of



2.3 Ination in string theory 21both we will stik to the latter and ompute the salar potential for the oset spaeexamples. We are then able to hek whether it is indeed possible to stabilize all themoduli at tree level. Furthermore the knowledge of the full potential opens up thepossibility to look for osmologial appliations.2.3 Ination in string theoryIn this setion we want to introdue the onept of ination and how it may berealized in string ompati�ations. By far the most important property of inationis that it an generate irregularities in the universe, whih may lead to the formationof struture. The general properties of the spetrum of inationary inhomogeneitieswere predited long ago ([40℄) and are in beautiful agreement with reent observationsby WMAP ([41℄). However, the historial motivation for ination was rather di�erent.It has originally been formulated to solve the so alled atness-, horizon- and defetproblem. The �rst problem onerns the spatial atness of the present-day universe,whih is suggested by observations of the temperature utuations in the CMB. Theseond problem asks why the initial universe is so very homogeneous. In partiular,the temperature utuations of the CMB only arise at the level of 1 part in 105, andthe question is why this temperature should be so inredibly uniform aross the sky.A third problem, alled the defet problem3, an arise if one extrapolates the BigBang bak to times muh earlier than the epoh of Big Bang Nuleosynthesis. Itpredits a muh larger abundane of magneti monopoles than observed.As an illustration we will just sketh the �rst problem and how ination may solveit. The most general spae-time metri onsistent with homogeneity and isotropyof our three-dimensional spae is given by the Friedmann-Robertson-Walker (FRW)metri ds2 = �dt2 + a2(t) � dr21� kr2 + r2(d� + sin2 �d�2)� ; (2.9)where k an take the values 1; 0 � 1 and a(t) is the time-dependent sale fator ofthree-dimensional spae. If one now assumes the perfet uid form for the energy-momentum tensor of osmologial matter and applies the Einstein equation to theFRW metri one resulting equation is the Friedman equation
� 1 = kH2a2 ; (2.10)where 
 is the total energy density of the universe and the Hubble parameter H isde�ned by H � _aa ; (2.11)3Sometimes also known as the monopole problem.



22 The topis of this thesiswhere an overdot denotes a derivative with respet to time. We know observationallythat at at present time 
 is not hugely di�erent from unity. On the other hand aH isa dereasing funtion of time during radiation or matter domination so that the righthand side of (2.10) inreases. This means that at muh earlier times, e.g. at the timeof nuleosynthesis, 
 must be yet loser to 1. The atness problem states that suh�nely tuned initial onditions seem extremely unlikely.The fundamental idea of ination is that the universe undergoes a period of ael-erated expansion, de�ned as a period when �a > 0, at early times. The e�et of thisaeleration is to quikly expand a small region of spae to a huge size, diminishingspatial urvature in this proess, making the universe extremely lose to at. By fur-ther examining the Einstein equation applied to the FRW metri and a perfet uidenergy-momentum tensor, one an show that in order to get �a > 0 one needs a mate-rial with the unusual property of a negative pressure. Suh material may be given bysalar �elds. In the last setion, we saw how uxes helped us to obtain masses, i.e. apotential, for the salar �elds of string ompati�ations. Here we learn that salar�elds might also provide a mehanism to realize ination in the low energy theory.As we will demonstrate this is only possible if there exists a non-vanishing potentialfor the salar �elds. So, the non-vanishing salar potential indued by the inlusionof bakground uxes does not only allow for a solution to the moduli problem but italso provides a way to realize ination in string theory. Let us see how salars �eldsan realize ination.For simpliity we will speialize to the homogeneous ase, in whih all quantitiesdepend only on osmologial time and set k = 1. The equation of motion for a salar�eld is given by ��+ 3 _aa _�+ dVd� = 0 ; (2.12)whih an be thought of the usual equation of motion for a salar �eld in Minkowskispae, but with a frition term due to the expansion of the universe. The Friedmannequation with the salar �eld as the only energy soure is given by� _aa�2 = 13M2P �12 _�2 + V (�)� : (2.13)If _�2 � V (�) we get from this equationa(t) / epV (�) ; (2.14)so that the resulting expansion is ertainly aelerating. In a loose sense the negligeneof the kineti energy is equivalent to the �eld slowly rolling down its potential whihwe will now make more preise.Tehnially, the slow-roll approximation for ination involves negleting the ��term in (2.12) and the kineti energy of � ompared to the potential energy in (2.10).



2.3 Ination in string theory 23The salar �eld equation of motion (2.12) and the Friedmann equation (2.13) thenbeome H2 ' V (�)3M2P ; 3H _� ' �V 0(�) ; (2.15)where a prime denotes a derivative with respet to �. These onditions will hold ifthe two slow-roll onditions are satis�ed. They are given by�� 1 and j�j � 1 ; (2.16)where the slow-roll parameters are de�ned as� � M2P2 �V 0V �2 and � �M2P V 00V : (2.17)It is easy to see that the slow-roll onditions yield ination. If one di�erentiatesthe de�nition of the Hubble-parameter with respet to time, one gets�aaH2 = _HH2 + 1 : (2.18)This should be larger than one to get ination whih means_HH2 > �1 : (2.19)But in slow-roll one has _HH2 ' � ; (2.20)whih will be small. Smallness of the �-parameter helps to ensure that ination willlast long enough.As already mentioned in the introdution one may also hope to test string theoryby osmology. However, a diret test seems diÆult beause any signal that arisesin string theory an also arise in a suitable low-energy e�etive QFT, as it is thease for any earth based experiment. But if one is extremely luky, some high-energyphenomenon does not deouple at low energies. An example is given by osmistrings and their detetion would ertainly be one of the greatest disoveries evermade. A more onservative approah would be to hek for signals, whih are generiin string-derived e�etive Lagrangians, but are highly unnatural from a onventional�eld-theory viewpoint. For example in many string based inationary models theprimordial tensor signal is very small. Hene, an observation would eliminate themajority of presently known models of ination implemented in string theory.Let us briey sketh how inationary models in string theory have been on-struted so far. For the urrent status of ination in string theory see [42℄. Some



24 The topis of this thesisearlier developments in string osmology relied on the hope that whatever mehanismeventually stabilizes the moduli it would not have important side e�ets for models ofination whih resulted in the two step strategy of �rst �xing all the moduli and theadding some additional ingredient to realize ination. Over the last years it turnedout that this hope is often violated so that the problem of moduli stabilization andination in string theory are ultimatively linked together in a wide lass of models.The most prominent and detailed examples of inationary models in string theorywere obtained in type IIB ux ompati�ations with orientifolds and D3/D7-branes.As already mentioned, in these models the bakreation of the uxes on the geom-etry is rather mild, and the internal manifold turns out to be still onformal to aCalabi-Yau manifold. This allows one to still use the whole mahinery of Calabi-Yauompati�ations and makes it possible to obtain the 4d e�etive potential for thesalar �elds. However, in these models the uxes turn out to stabilize only the dilatonand the omplex struture moduli [17℄, while the K�ahler moduli stabilization requiresthe use of quantum e�ets, e.g. along the lines of KKLT [18℄. In addition one stillneeds a mehanism to uplift the resulting AdS4 minimum to a dS vauum. In [18℄this is done by the inlusion of an D3-brane, whih breaks supersymmetry expliitly.The role of the inaton is played by the open string modulus orresponding to theseparation of a D3/D3. Another uplift mehanism is given in [20℄ where one switheson some ux on a D7-brane, breaking supersymmetry only spontaneously. The ina-ton is this time given by the separation of the D3-brane from a D7-brane. There alsoexist models in whih the inaton is played by some losed string moduli, e.g. in thelarge volume ompati�ations of [43℄.In ontrast to type IIB string theory, omparatively little is known about inationin type IIA string theory. In [44℄ an example was given in whih all moduli werestabilized. This example only made use of 3-form NSNS-ux, RR-uxes, D6-branesand O6-planes. In addition to these ingredients [45, 46, 47℄ also inluded geometriuxes. The advantage of suh models is their expliitness and the possibility tostabilize the moduli at tree level in a well-ontrolled regime (orresponding to largevolume and small string oupling) with power law parametri ontrol (instead oflogarithmi as in type IIB onstrutions along the lines of [18℄). Possible osmologialappliations were subsequently explored in a number of papers, with surprisinglylittle suess. In [48℄, for instane, a simple F-term uplift to a meta-stable de Sittervauum based on an e�etive O'Raifeartaigh setor was found to be impossible. Usingsimilar arguments, the authors of [49, 50℄ ould also formulate a no-go theorem againstslow-roll ination and de Sitter vaua for general type IIA models with only 3-formNSNS-ux, RR-uxes, D6-branes and O6-planes. As additional ingredients that anirumvent this no-go theorem, the authors of [50℄ identi�ed geometri uxes, NS5-branes and/or the more exoti non-geometri uxes.4Sine the expliit examples of string ompati�ations, given in this thesis, ontaingeometri uxes, i.e. they deviate from the Calabi-Yau ase, they irumvent the4Reent progress obtaining ination with these ingredients appeared in [51℄.



2.4 Non-supersymmetri vaua 25above mentioned no-go theorem and thus might allow for dS vaua or ination. Wewill deal with this question in hapter 6.2.4 Non-supersymmetri vauaMost string ompati�ations to four spae-time dimensions built so far preserve atleast N = 1 supersymmetry. The main reason to fous on supersymmetri stringvaua is two-fold. First, supersymmetri vaua are relatively easy to onstrut. Theunderlying supersymmetry equations are �rst-order di�erential equations, whose so-lutions are known in several instanes. Seond, from the phenomenologial point ofview, supersymmetri vaua are a good starting point, sine a promising senario isto assume that spae-time supersymmetry is broken at the TeV sale, muh below astring sale or a ompati�ation sale not far from the Plank mass.On the other hand we know that supersymmetry is eventually broken in na-ture. Hene, a stringy realization of our observed world should involve, in somesense, a non-supersymmetri string vauum. It is a hallenging task to �nd suhnon-supersymmetri vaua diretly beause one has to solve the full string equationsof motion. Even in the supergravity approximation, this implies solving generiallyumbersome seond order di�erential equations whose solutions are ompliated andto a large extent unknown. In pratie, however, one may still hope to break super-symmetry in a ontrolled way, by modifying a ertain supersymmetri bakground.One may then try to add some additional struture to uplift these vaua to dS in thesame way as one does for the supersymmetri vaua.Another strong motivation for the study of AdS4 vaua, independent of the amountof preserved supersymmetry, is related to the AdS/CFT orrespondene [52℄. We onlywant to give a rough piture of where the results obtained in this thesis might �nd anappliation in that orrespondene. We already mentioned in the introdution thatthere exist some remarkable dualities relating the di�erent string theories or M-theoryto eah other. However, with the AdS/CFT orrespondene an entirely new lass ofdualities has been onjetured. It relates onventional (non-gravitational) quantum�eld theories to string theories and M-theory. The AdS/CFT orrespondenes aredualities in the usual sense: when one desription is weakly oupled, the dual de-sription is strongly oupled. Thus, assuming that the onjeture is orret, it allowsthe use of weak-oupling perturbative methods in one theory to learn non-trivial fatsabout the strongly oupled dual theory.The basi idea of the AdS/CFT duality and its generalizations is that string theoryor M-theory in the near-horizon geometry of a olletion of oinident D-branes orM-branes is equivalent to the low-energy world-volume theory of the orrespondingbranes. To make this more preise onsider for example type IIB string theory. Itslow energy e�etive ation is given by the type IIB supergravity theory given in(1.3). Dp-branes arise as solitoni solutions to the equations of motion resultingfrom this ation. Beause it is the ase that is best understood, let us take as an



26 The topis of this thesisexample D3-branes. They �ll the four spae-time dimensions and have six transversediretions. The resulting metri desribes asymptotially a at Minkowski spae,but taking the near-horizon limit leads to a spae of the form AdS4 � S5. Theorrespondene now states that type IIB string theory on this near-horizon spae isdual to the D3-brane world-volume theory, whih is given by N = 4 super Yang-Millstheory. The string theory bakground orresponds to the ground state of the gaugetheory, and exitations and interations in one desription orrespond to exitationsand interations in the dual desription. In this spei� ase, for example, one mighthope to get insight into the strong oupling limit of a 4d gauge theory suh as QCD bystudying the weakly oupled string theory. Of ourse, realisti models of QCD shouldbe able to explain on�nement and hiral symmetry-breaking, properties whih arenot present in N = 4 super Yang-Mills theories due to the large amount of unbrokensupersymmetry. However, there is a variety of ways to break these symmetries so asto get riher models.During the last years another example attrated more and more attention, namelythat of M2-branes arising as solitoni objets in eleven-dimensional supergravity, thelow-energy theory of M-theory. A non-perturbative understanding of M-theory is ofgreat interest from the theoretial side sine M-theory is believed to be the unifyingtheory of all string theories. The near-horizon geometry is given by AdS4�S7 and onlyvery reently there was progress in the understanding of the world-volume theory ofoinident M2-branes [53, 54℄. Again one an hope to learn something about the �eldtheory side from the gravity side. Three dimensional onformal �eld theories ouldfor example desribe interesting onformal �x points in ondensed matter systems.But also the other diretion seems now interesting. The AdS4/CFT3 orrespondeneopens up the possibility to study some portion of the landsape of 4d bakgrounds ofstring theory with negative osmologial onstant.In [54℄ a three-dimensional Chern-Simons-matter theory with gauge group U(N)k�U(N)�k, where k denotes the level of the Chern-Simons theory, were onstrutedwhih expliitly realized N = 6 superonformal symmetry. It was argued that thistheory at level k desribes the low energy limit of N M2-branes probing a C4=Zksingularity. At large N this theory is then dual to M-theory on AdS4 � S7=Zk. Thisdesription is weakly urved for N � k5, while for larger values of k a irle inthe M-theory desription beomes small, and the more appropriate desriptions is interms of type IIA string theory on AdS4�CP3. These gravity duals are old solutions[55, 56℄ that, of ourse, also have N = 6 supersymmetry and only involve uxes forF2 and F6, so in partiular no ux for F0.In [57℄ it was realized that by allowing for di�erent levels k1 and k2 for eah U(N)fator in the gauge groups of the Chern-Simons theory it was possible to relate thedi�erene of both to the F0 ux: F0 = k1�k2, leading to a �eld theory interpretationof the F0 ux on the gravity side. And in fat in [58, 59℄ solutions of type IIA stringtheory with non-vanishing F0 have been onstruted on a spae whose topology isCP3. These solutions have only N = 1 supersymmetry but they happen to have



2.5 Outline of this thesis 27a parameter spae that, although disretized by ux quantization, gets arbitrarilylose to the N = 6 solutions of [55, 56℄. Exploiting this fat, Chern-Simons theorieshave been onstruted in [57℄ whih are, in a sense, small deformations of the originalN = 6 Chern-Simons theory. Four di�erent ways of deforming this theory havebeen identi�ed, leading to N = 0; 1; 2; 3 supersymmetri Chern-Simons theories. Thegravity duals of the N = 2; 3 ases have been onstruted in [60℄ but they will notplay any role in this thesis. The gravity duals for the N = 0; 1 ases have beenidenti�ed already in [57℄. As antiipated, the N = 1 ase orresponds to the solutionof [58, 59℄, whereas the N = 0 solution was onstruted in [57, 61℄. It is here werethe results of this thesis might �nd their appliation. Among others we will onsiderompati�ations of type IIA string theory on a spae that is topologially equivalenttoCP3. In hapter 3 we will reprodue the solution found in [58, 59℄. In hapter 7 wewill then try to �nd non-supersymmetri vaua (N = 0) for this partiular ase. Wewill �nd the N = 0 solution of [57℄ as well as some other known non-supersymmetrisolutions given in [62, 63℄ and [64℄. But we will also �nd new non-supersymmetrisolutions not disussed in the literature before.2.5 Outline of this thesisAfter the general introdution into string theory in hapter 1 and the somewhatmore detailed rash-ourse on ux ompati�ations and their relation to ination inhapter 2, we now make things onrete for the ase of type IIA string theory.In hapter 3 we solve the equations of motion for the ten-dimensional �elds forthe ase in whih the 10d bakground spae takes the form (2.1) with the externalpart being 4d AdS spae-time and the internal manifold has SU(3)-struture. To doso we will have to solve the supersymmetry variations (2.2) and to impose the Bianhiidentities for the form �elds. Furthermore, we will omment on the introdution ofsoures suh as D-branes and O-planes in our equations. The result will be a set ofonditions whih have to be satis�ed by the internal manifold in order to allow fora supersymmetri vauum of type IIA supergravity. Finally we will have to makesure that our onstrution is self-onsistent, i.e. that we are in a parameter regimein whih the supergravity desription is valid. We will present solutions on a lassof manifolds, namely nilmanifolds and oset spaes introdued in appendix C, whihare tratable enough to �nd suh vaua expliitly. This onsists of two steps. First,we will have to make sure that a given manifold admits an SU(3)-struture at all,and, seond, this manifold has to meet the derived onditions for a supersymmetrivauum. We will see that this leaves only a few examples. This hapter is mostlybased on [59℄ while some results appeared in [25℄. Based on this hapter, we willpursue three diretions in this thesis, whih all an be studied independently.First of all, having found suh expliit vauum solutions, we will perform in hap-ter 4 for the nilmanifolds the KK redution of the 10d utuations around the vauumand ompute the masses for the 4d salar �elds. In hapter 5 we will �rst use the



28 The topis of this thesise�etive supergravity approah to ompute the salar potential for the nilmanifoldsand ompare the resulting masses of the two approahes. The onsisteny with theKK redution will provide a non-trivial hek on the e�etive supergravity approah.Having on�rmed its appliability we will use it to ompute the salar potential forthe oset spaes. This hapter is entirely based on [25℄.Seondly, we want to study the question of implementing ination in the obtainedlow energy e�etive theories. This amounts to analyze the salar potentials and theirappliability for slow-roll ination. In the �rst part of hapter 6 we are able toprove in most ases the impossibility of implementing ination. For that we only usethe geometry of the internal manifold whih makes this part independent from thepreeding hapters. In a seond part we will study the only ase for whih we werenot able to exlude ination and in this ase we need the potential omputed before.This hapter is based on [26℄.Finally, in hapter 7 we will onstrut non-supersymmetri vaua for some spe-i� osets of the preeding hapters. These examples play a prominent role in theAdS4/CFT3 orrespondene, and our results should be of interest in that ontext.The results of this hapter will appear in [27℄.We will summarize and onlude in hapter 8. De�nitions and onventions,theoretial bakground material and omputational details are delegated to the ap-pendies. In appendix A we derive the equations of motion for type II supergravity.In appendix B we briey review generalized geometry whih allows for a very el-egant formulation of the N = 1 supersymmetry onditions for type II theories. Inappendix C we introdue the manifolds that we study in this thesis. Finally, inappendix D we omment on a omputational subtlety that we will enounter later.



Chapter 3Supersymmetri type IIA AdS4ompati�ationsIn this hapter we review the onditions that lead to a supersymmetriN = 1 vauumof type IIA supergravity, i.e. a solution of the equations of motion, with an AdS4spae-time and an SU(3)-struture manifold as internal spae. Let us mention thatup to now all the known expliit ten-dimensional examples of N = 1 supersymmetriompati�ations to AdS4 fall within the lass of type IIA SU(3)-struture ompat-i�ations and T-duals thereof. By analyzing integrability onditions, it was provedin [65, 66℄ that, in the ontext of type II supergravity, a bakground that is super-symmetri and whose uxes satisfy Bianhi identities and the equations of motionis a solution to the full equations of motion (whenever there are no mixed external-internal omponents of the Einstein tensor, whih will be our ase). We also disusshow to obtain a ontrolled parameter regime in whih the string oupling is small andsupergravity is valid suh that these vaua of supergravity lift to true vaua of stringtheory. Finally, we give the list of all known manifolds for whih it is possible to �ndexpliit solutions. These manifolds are nilmanifolds and oset spaes whose propertieswe review in appendix C. For additional bakground material and a summary of ouronventions the reader is referred to appendies A and B.3.1 Conditions for a supersymmetri vauumAs skethed in the last hapter for an N = 1 ansatz, the supersymmetry variations(2.2) of the fermioni �elds relate the internal geometry to the uxes. By diretinspetion of the these variations, the most general form of N = 1 ompati�ationsof IIA supergravity to AdS4 with SU(3)-struture was given in [66℄. There existsa framework for IIA/IIB supergravities, alled generalized geometry, whih allowsfor a very elegant and ompat desription of the supersymmetry onditions for boththeories leading to the same result. Sine we do not really need and use this frameworkin this thesis, we will only mention it at some plaes an refer to appendix B for more



30 Supersymmetri type IIA AdS4 ompati�ationsdetails. We review the derivation of the results of [66℄ using generalized geometry inappendix B.1 and just state here the result. It turns out that the vaua must haveonstant warp fator and onstant dilaton1, �. Setting the warp fator to one, thesolutions of [66℄ are given by: H = 2m5 e�Re
 ; (3.1a)F2 = f9J + F 02 ; (3.1b)F4 = fvol4 + 3m10 J ^ J ; (3.1)Wei� = �15e�m+ i3e�f ; (3.1d)where H is the NSNS three-form, and Fn denote the RR n-forms. Furthermore, (J ,
) is the SU(3)-struture (de�ning a metri, see appendix B.2 for de�nitions andfurther details) of the internal six-manifold , i.e. J is a real two-form, and 
 is adeomposable omplex three form suh that:
 ^ J = 0 ; (3.2a)
 ^ 
� = 4i3 J3 6= 0 : (3.2b)f , m are onstants parameterizing the solution: f is the Freund-Rubin parameter,while m is the mass of Romans' supergravity [67℄ { whih an be identi�ed with F0in the `demorati' formulation [29℄. ei� is the onstant of proportionality betweenthe internal supersymmetry generators: �(2)+ = ei��(1)+ . This reets the fat that weare dealing with an SU(3)-struture whih arises as a speial ase of the more generalSU(3)�SU(3)-struture as explained in appendix B. The onstant W is de�ned bythe following relation for the AdS4 Killing spinors, ��,r��� = 12W��+ ; (3.3)so that the radius of AdS4 is given by jW j�1. The two-form F 02 is the primitive partof F2 (i.e. it is in the 8 of SU(3)).Furthermore, for the above solutions most of the torsion lasses have to vanishW+1 =W+2 =W3 =W4 =W5 = 0 ; (3.4)where the plus sign denotes the real part. The only non-zero torsion lasses of theinternal manifold are W�1 = �4i9 e�f ; W�2 = �ie�F 02 ; (3.5)1For the ase of vanishing Romans mass non-onstant warp fator and dilaton are possible. Wewill not disuss this in this thesis.



3.1 Conditions for a supersymmetri vauum 31where we have de�ned W�1;2 = iImW1;2. Thus (2.5) reads (see also (B.19))dJ = �32 iW�1 Re
 ; (3.6a)d
 =W�1 J ^ J +W�2 ^ J : (3.6b)The only extra ondition that follows from the Bianhi identities and equations ofmotion of the form �elds is given by:dF 02 = ( 227f 2 � 25m2)e�Re
� j6 ; (3.7)where we allow for a non-vanishing soure-term, j6, for D6-branes/O6-planes on theright-hand side. A somewhat deliate feature of our models is that the soures haveto be smeared. The reason for this is that the supersymmetry onditions of [66℄ (foronstant Romans mass) fore the warp fator to be onstant. Considering the bak-reation of a loalized orientifold, on the other hand, one would expet a non-onstantwarp fator, at least lose to the orientifold soure. A possible way around thisontradition is that taking into aount �0-orretions might allow for a non-onstantwarp fator (see also [68℄ for an alternative disussion). A helpful interpretation ofthe smearing of a loalized soure, whose Poinar�e dual is given, roughly-speaking, bya delta-funtion, is that it orresponds to Fourier-expanding the delta-funtion anddisarding all but the zero mode. In this thesis, we will adopt the pragmati point ofview that the smeared orientifolds are an unavoidable feature of our models that isonsistent with a Kaluza-Klein redution in the approximation where only the lowestmodes are kept.As already mentioned in the introdution the inlusion of soures is motivated byseveral reasons. First, we will �nd examples, whih do not allow for an N = 1 vauumwithout soures. Seond, as we will see in the next hapter, in whih we ompute thee�etive theories of these vaua, they might provide a mehanism to deouple the KKtower. Finally, we are interested in 4d, N = 1 supersymmetri low energy e�etivetheories, for whih O-planes are neessary. The question of how to assoiate orientifoldinvolutions to a smeared soure turns out to be somewhat subtle. We will make thenatural assumption that the di�erent orientifolds orrespond to the deomposable(simple) terms in the orientifold urrent. The rationale and details behind this areexplained in appendix B.3. The general properties of supersymmetri soures andtheir onsequenes for the integrability of the supersymmetry equations were reentlydisussed in [69℄ within the framework of generalized geometry. It was shown in thisreferene that, under ertain mild assumptions, supersymmetry guarantees that theappropriately soure-modi�ed Einstein equation and dilaton equation of motion areautomatially satis�ed if the soure-modi�ed Bianhi identities are satis�ed. For thisto work the soure must be supersymmetri, whih means it must be generalizedalibrated as in [70℄.



32 Supersymmetri type IIA AdS4 ompati�ationsBut for the moment let us imagine the ase j6 = 0. For a given geometry toorrespond to a vauum without orientifold soures, we �nd from plugging (3.7) into(3.5) and using (B.22) together with the result below (B.24) that the following boundon (W�1 ;W�2 ) has to be satis�ed165 e2�m2 = 3jW�1 j2 � jW�2 j2 � 0 ; (3.8)where we have de�ned j�j2 := ��mn�mn, for any two-form �.Still assuming j6 = 0 we get from (3.5) and (3.7)dW�2 / Re
 : (3.9)So in the absene of soures the neessary and suÆient onditions for N = 1ompati�ation of type IIA supergravity to four-dimensional anti-de Sitter spae onmanifolds with SU(3)-struture are the onditions (3.4), (3.8) and (3.9) on the torsionlasses of the internal six-dimensional manifold. The uxes are then given by (3.5)and (3.1). De�ning � as the intrinsi torsion these onditions are summarized in table3.1. � 2 W�1 �W�23jW�1 j2 � jW�2 j2dW�2 / Re
Table 3.1: Neessary and suÆient onditions on the internal six-dimensional SU(3)-struture manifold for N = 1 ompati�ation to four-dimensional anti-de Sitterspae, in the absene of soures.However, the seond onstraint (3.8) an be relaxed by allowing for an orientifoldsoure, j6 6= 0. As a partiular example, let us onsider:j6 = �25e���Re
 ; (3.10)where � is a disrete, real parameter of dimension (mass)2, so that �� is proportionalto the orientifold/D6-brane harge (� is positive for net orientifold harge and negativefor net D6-brane harge). In this thesis we will make the assumption that we antune this parameter by adding orientifolds or D-branes. For D-branes this shouldnot be a problem sine they are physial objets whose number we may vary. Fororientifolds, however, this seems problemati sine they arise as �xpoint loi of ageometri symmetry. In a true string ompati�ation their harge is a �xed number.In our supergravity approximation we will onsider them as harged objets in thesame way as the D-branes and it remains an open question, whih values for theharge are possible from string theory. The addition of the soure term in (3.10) was



3.1 Conditions for a supersymmetri vauum 33�rst onsidered in [71℄. Eq. (3.10) above guarantees that the alibration onditions,whih for D6-branes/O6-planes readj6 ^ Re
 = 0 ; j6 ^ J = 0 ; (3.11)are satis�ed and thus the soure wraps supersymmetri yles. The bound (3.8)hanges to e2�m2 = �+ 516 �3jW�1 j2 � jW�2 j2� � 0 : (3.12)Sine � is arbitrary, the above equation an always be satis�ed, and therefore nolonger imposes any onstraint on the torsion lasses of the manifold. For this form ofthe soure-term, the third ondition in table 3.1, (3.9), still applies.Furthermore it is also possible to relax this ondition by the inlusion of moregeneral supersymmetri orientifold six-plane soures that do not satisfy eq. (3.10).Requiring this soure to satisfy the alibration onditions (3.11), we �nd that it isnow of the following form: j6 = �25e���Re
 + w3 ; (3.13)with w3 a primitive (2,1)+(1,2)-form. From the Bianhi identity (3.7) we �ndw3 = �ie��dW�2 ���(2;1)+(1;2) ; (3.14)and (3.12) still unhanged.In appendix B.3 we will explain how to assoiate orientifold involutions to asmeared soure. Under eah orientifold involution the dilaton, metri and uxesmust transform as follows [69℄:Even : ��e� = e� ; ��F0 = F0 ; ��F4 = F4 ;Odd : ��H = �H ; ��F2 = �F2 ; (3.15a)whereas the SU(3)-struture transforms asEven : ��Im
 = Im
 ;Odd : ��Re
 = �Re
 ; ��J = �J : (3.15b)So if one allows for soures of the type desribed above the only non-trivial on-dition for an N = 1 vauum of type IIA supergravity on a given manifold withSU(3)-struture is the �rst one in table 3.1, whih is (3.4). The uxes then followfrom (3.5) and (3.1). The Bianhi identity (3.7) tells us if we need soures and whetherthey are of the form (3.10) or even (3.13). The soure parameter � is bounded frombelow by (3.12).



34 Supersymmetri type IIA AdS4 ompati�ations3.2 Hierarhy of salesTo promote a given supergravity vauum to a trustworthy approximation of a stringtheory vauum we need to show that we an onsistently take the string ouplingonstant to be small (gs = e� � 1), so that string loops an be safely ignored, andthat the volume of the internal manifold is large in string units (Lint=l � 1, whereLint is the harateristi length of the internal manifold), so that �0-orretions an benegleted. This an be seen by essentially employing the following saling argument:In the full quantum theory, all uxes have to be quantized aording to1lp�1 ZCp Fp = np ; (3.16)where l := 2�p�0, Cp is a yle in the internal manifold, and np 2 Z. By ombiningthe �rst equation in (3.1) with (3.6a) we see that the NSNS three-form turns outto be exat in our models, hene its integral over any internal three-yle vanishes;it therefore suÆes to impose (3.16) for the RR uxes. The issue of quantization isstudied in more detail in [58℄. Let fp=(gsLint) be the norm of the ux density Fp, forsome numbers fp depending on the internal geometry (but not on the overall saleLint). The quantization onditions (3.16) imply:gs = (f 30 f4) 14 (n30n4)� 14 ; Lintl = �f0f4� 14 �n4n0� 14 ; (3.17)together with n2pn0n4 = f2pf0f4 ; n0n6n2n4 = f0f6f2f4 : (3.18)It an then be easily veri�ed that, given a solution fnpg to the quantization ondi-tions (3:16), there are several di�erent possible salings np ! N�pnp, for N; �p 2 N ,whih leave the fp's invariant and at the same time ensure that gs is parametriallysmall while Lint=l is parametrially large (with large parameter N). This shematiargument an be made preise, by taking into aount the spei�s of the geometryof eah internal manifold, as in [58℄. Despite the fat that we are allowing for largeux quanta, it an be shown that higher-order ux orretions an also be negleted.Indeed it is not diÆult to see that the parameter jgsFpj2, whih ontrols the size ofthese orretions, sales with a negative power of the large parameter N .3.3 Solutions on nilmanifoldsIn the next two setions we want to use the manifolds introdued in appendix C toonstrut expliit examples of the type of ompati�ations reviewed in setion 3.1.



3.3 Solutions on nilmanifolds 35By trying to solve the ondition for a supersymmetri vauum, one would like to �ndmanifolds on whih one an expliitly ompute the exterior derivatives appearing in(3.6). Examples for suh manifolds are given by nilmanifolds and oset spaes withthe restrition to left-invariant forms, as explained in appendix C. Sine one obtainsa global desription of these manifolds it beomes quite easy to expliitly solve thesupersymmetry onditions (3.1). We review the results of [25℄ and [59℄ where thesolutions for nilmanifolds and oset spaes have been presented, respetively.As follows from the disussion of setion 3.1, it suÆes to look for all possible six-dimensional nilmanifolds whose only non-zero torsion lasses are W�1;2. A systematisan yields exatly two possibilities in type IIA, namely the six-torus and the nilman-ifold 4.7 of Table 4 of [72℄ (also known as the Iwasawa manifold), whih (for somevalues of the parameters) turn out to be related by T-duality along two diretions2.Let us note that ondition (3.8) turns out to be too stringent to be satis�ed for anynilmanifold whose only non-zero torsion lasses are W�1;2. This implies that withoutorientifolds there are no solutions on nilmanifolds. To obtain a solution the mostgeneral ansatz for (J , 
) would involve all 15 two-forms and 20 three-forms. It turnsout that some omponents of J and 
 are related by oordinate transformations,whih have to be ompatible with the struture onstants. This allows one to reduethe number of forms appearing in 
, and it is always possible to bring J into theform J = ae1 ^ e2 + be3 ^ e4 + e5 ^ e6 .With this ansatz we impose the SU(3)-struture onditions (3.2) (or (B.17)) andwe have to demand that the resulting metri (B.28) impliitly de�ned by (J , 
) ispositive de�nite. Next we impose the onditions (3.4) on the torsion lasses. Whenthere is a solution, we an read of the uxes by using (3.5) in (3.1). Finally, we readof the form of the soure term from (3.7), where (3.12) puts a lower bound on thesoure parameter �. One an then hek that the resulting orientifold projetion isonsistent with the resulting bakground. In this way one obtains the following twosolutions.3.3.1 The T6 solutionOur �rst IIA solution is obtained by taking the internal manifold to be a six-dimensionaltorus. Let us de�ne a left-invariant basis feig suh that:dei = 0; i = 1; : : : ; 6 : (3.19)On the torus we an just hoose ei = dyi, where yi are the internal oordinates. TheSU(3)-struture is given byJ = e12 + e34 + e56 ;
 = (ie1 + e2) ^ (ie3 + e4) ^ (ie5 + e6) ; (3.20)2We also found a type IIB solution with stati SU(2)-struture on the nilmanifold 5.1, whihforms the intermediate step after one T-duality.



36 Supersymmetri type IIA AdS4 ompati�ationsIt readily follows that all torsion lasses vanishW�1 = 0 ; W�2 = 0 : (3.21)Note, however, that there are non-vanishing H and F4 �elds given by (3.1)H = 25e�m �e246 � e136 � e145 � e235� ;F4 = 35m �e1234 + e1256 + e3456� : (3.22)From (3.7) we �nd that there is an orientifold soure of the type (3.10) with � =e2�m2, whih orresponds to smeared orientifolds along (1; 3; 5), (2; 4; 5), (2; 3; 6) and(1; 4; 6). The orresponding orientifold involutions areO6 : e2 ! �e2 ; e4 ! �e4 ; e6 ! �e6 ;O6 : e1 ! �e1 ; e3 ! �e3 ; e6 ! �e6 ;O6 : e1 ! �e1 ; e4 ! �e4 ; e5 ! �e5 ;O6 : e2 ! �e2 ; e3 ! �e3 ; e5 ! �e5 : (3.23)
3.3.2 The Iwasawa solutionThe seond IIA solution is obtained by taking the internal manifold to be the Iwasawamanifold. The left-invariant basis is de�ned by:dea = 0; a = 1; : : : ; 4 ;de5 = e13 � e24 ;de6 = e14 + e23 ; (3.24)and is usually denoted by (0; 0; 0; 0; 13 � 24; 14 + 23). Up to basis transformationsthere is a unique SU(3)-struture satisfying the supersymmetry onditions of setion3.1: J = e12 + e34 + �2e65 ;
 = � (ie5 � e6) ^ (ie1 + e2) ^ (ie3 + e4) ; (3.25)In the left-invariant basis, the metri is given by g = diag(1; 1; 1; 1; �2; �2), and thenon-vanishing torsion lasses are given byW�1 = �2i3 � ;W�2 = �4i3 � �e12 + e34 + 2 �2 e56� : (3.26)



3.4 Solutions on oset spaes 37By using (3.5) the uxes follow from (3.1). Furthermore we ompute from (3.26)jW�1 j2 = 49�2 ; jW�2 j2 = 643 �2 : (3.27)We therefore �nd from (3.12) a non-zero net orientifold six-plane harge� � 254 �2 : (3.28)Finally one an verify that dW�2 is proportional to Re
:dW�2 = �8i3 �2Re
 ; (3.29)whih means we have a soure of the form (3.10), and the orientifold involution is thesame as in (3.23).The solution (3.25) has one ontinuous parameter, �, orresponding essentiallyto the �rst torsion lass W�1 . An additional seond parameter an be introduedby noting that the de�ning SU(3)-struture equations (B.17) are invariant under theresaling J ! 2J ; 
! 3
 : (3.30)The additional salar  is related to the volume modulus via vol6 = �6�2e1:::6, asan be seen from eq. (B.18).For the ase m = 0, for whih the bound (3.28) is saturated, the above examplean also be obtained by performing two T-dualities on the torus solution of setion3.3.1, as an be heked expliitly by using the T-duality rules of [73℄. We �nd thenthat � = 25mT e� where mT is the mass parameter of the dual torus solution.3.4 Solutions on oset spaesWe will now present the IIA solutions of the type desribed in setion 3.1 where the in-ternal manifold is a oset,M6 = G=H, equipped with a left-invariant SU(3)-struture,introdued in appendix C. They an be found in [59℄, whih also inorporates so-lutions that were already known [55, 74, 75, 76, 58, 77, 78℄ into the single unifyingframework of left-invariant SU(3)-strutures on oset spaes. In [58℄ an alternativedesription in terms of twistor bundles is used for the osets of setions 3.4.2 and 3.4.3.Although this desription does not allow to desribe the omplete parameter spaeon the oset SU(3)�U(1)SU(2) , it is more aurate for the nearly Calabi-Yau limit in whih,as we will see, the shape parameters take negative values and the oset desription isnot valid anymore.We will proeed in the same way as for the nilmanifolds, although for most ofthe osets we do not need to gauge away some of the possible forms appearing in the



38 Supersymmetri type IIA AdS4 ompati�ationsansatz for (J , 
), beause the set of leftinvariant forms is very restrited right fromthe start. We will see this in the examples.So we start by imposing the SU(3)-struture onditions (3.2) (or (B.17)) for themost general ansatz for (J , 
). The resulting metri (B.28), impliitly de�ned by(J , 
), has to be positive de�nite. Next we impose (3.4). In ase of a solution, theuxes are given by (3.1) where we have to use (3.5). The soure term follows from(3.7), where (3.12) puts a lower bound on the soure parameter �. Again we have toshow that the resulting bakground is onsistent with the orientifold projetion. Thismeans in partiular that the struture onstant tensor following from (C.20) has tobe even under the orientifold involution in order to ensure that the exterior derivativeis even.For the oset spaes, we will �nd solutions that admit � � 0, i.e. solutions withzero orientifold or even with net D6-brane harge. However, we will always assumethat there are orientifolds present in our onstrution, whose harge may then bebalaned by an appropriate number of D6-branes. In this way we will always end upwith an N = 1 theory. We obtain the following �ve solutions.3.4.1 The G2SU(3) solutionThe G2 struture onstants an be written as:f 163 = f 145 = f 253 = f 264 = 1p3 ;f 736 = f 745 = f 853 = f 846 = f 956 = f 934 = f 1016 = f 1052= f 1151 = f 1162 = f 1241 = f 1232 = f 1331 = f 1324 = 12 ;f 1443 = f 1456 = 12p3 ; f 1421 = 1p3 ;f i+6j+6;k+6 = fGMijk ;
(3.31)

where fGMijk are the Gell-Mann struture onstants.The G-invariant two-forms and three-forms are spanned byfe12 � e34 + e56g ; (3.32)f� = e245 + e135 + e146 � e236; �̂ = �e235 � e246 + e145 � e136g ; (3.33)respetively3, and there are no invariant one-forms.3�̂ an be found by lowering one index of the purely Ki-part of the struture onstant tensorwith the Cartan-Killing metri, and � is its Hodge dual, so they are both left-invariant. Moreover,sine the struture onstant tensor should be even under all orientifold involutions and the Hodgedual is odd, we �nd that �̂ is even and � odd. We an immediately onlude that they shouldbe proportional to Im
 and Re
 respetively. Of ourse a priori there ould have been moreleft-invariant three-forms.



3.4 Solutions on oset spaes 39The most general solution is then given byJ = a(e12 � e34 + e56) ;
 = d �(e245 + e146 + e135 � e236) + i(e145 � e246 � e235 � e136)� ; (3.34)with d2 = a3 ; normalization of 
 ;a > 0 ; metri positivity ; (3.35)suh that a, the overall sale, is the only free parameter. For the non-vanishingtorsion lasses (3.5) we �ndW�1 = �i 2ap3d ; W�2 = 0 : (3.36)Thus, the only possibility for this oset is the nearly-K�ahler geometry. It will beonvenient to isolate the sale a and introdue the redued ux parameters~m � a1=2e�m ; ~f � a1=2e�f ; ~� � a� ; (3.37)in terms of whih the bakground uxes in (3.1) take the form:H = 2 ~m5 a(e245 + e135 + e146 � e236) ;e�F2 = a1=22p3 �e12 � e34 + e56� ;e�F4 = a�1=2 ~fvol4 � 35 ~ma3=2 �e1234 � e1256 + e3456� : (3.38)Furthermore, we ompute for the soure term (3.7)e�j6 = �25a1=2~�(e245 + e135 + e146 � e236) ; (3.39)whih shows that j is of the form (3.10), as was already lear from (3.36) or the fatthat we only have one odd three-form. The bound (3.12) gives~m2 � ~� = 5a34d2 (3.40)As mentioned before, ~� > 0 (, � > 0) orresponds to net orientifold harge. Solu-tions with � � 0 | i.e. with net D-brane harge | are possible, but in that ase westill assume that smeared orientifolds are present, whih then should be ompensatedby introduing enough smeared D-branes. It an be easily read o� from j6 that theorientifolds are along the diretions (1; 3; 6); (2; 4; 6); (2; 3; 5) and (1; 4; 5), leading tofour orientifold involutions. One an hek that all �elds and the SU(3)-struturetransform as in (3.15) under eah of the orientifold involutions. Also, the strutureonstant tensor is even.



40 Supersymmetri type IIA AdS4 ompati�ations3.4.2 The Sp(2)S(U(2)�U(1)) solutionThe struture onstants are totally antisymmetri. The non-zero ones are given by:f 541 = f 532 = f 613 = f 642 = 12 ; f 756 = f 1089 = �1 ;f 721 = f 743 = f 814 = f 832 = f 913 = f 924 = f 1034 = f 1021 = 12 ; (3.41)orresponding to the nonmaximal embedding. The G-invariant two-forms and three-forms are spanned byfe12 + e34; e56g ; (3.42)f� = e245 � e135 � e146 � e236; �̂ = e235 + e246 + e145 � e136g ; (3.43)respetively, and there are no invariant one-forms. Again the soure (if present) mustbe proportional to Re
. The most general solution is then given byJ = a(e12 + e34)� e56 ;
 = d �(e245 � e236 � e146 � e135) + i(e246 + e235 + e145 � e136)� ; (3.44)with a > 0 ;  > 0; metri positivity ;d2 = a2 ; normalization of 
 ; (3.45)suh that a and  are the free parameters. For the non-vanishing torsion lasses(3.5) we �nd W�1 = i2a + 3d ;W�2 = � 2i3d �a(a� )(e12 + e34) + 2(a� )e56� ;jW�2 j2 = 163a2(a� )2 : (3.46)
The nearly-K�ahler limit orresponds to setting a = . The two parameters orrespondto the overall sale a and a parameter � � =a that measures the deviation from thenearly-K�ahler limit, and we an make ontat with the results of [58℄ as in [59℄.



3.4 Solutions on oset spaes 41For the bakground uxes and soure we �nd in terms of the redued ux param-eters (3.37): H = 2 ~m5 a�1=2(e245 � e135 � e146 � e236) ;e�F2 = a1=24 ��1=2 �(2� 3�)(e12 + e34) + (6� � 5�2)e56� ;e�F4 = a�1=2 ~fvol4 + 35a3=2 ~m �e1234 � �e1256 � �e3456� : (3.47)
Furthermore, we ompute for the soure term (3.7)e�j6 = �25a1=2~��1=2(e245 � e135 � e146 � e236) ; (3.48)whih shows that j is again of the form (3.10). The bound (3.12) gives~m2 � ~� = 516a ��4a2 � 52 + 12a� : (3.49)We introdue the same orientifold involutions as in setion 3.4.1 and hek thatall �elds and the struture onstants transform appropriately.3.4.3 The SU(3)U(1)�U(1) solutionWe hoose a basis suh that the struture onstants of SU(3) are given byf 154 = f 136 = f 246 = f 235 = f 347 = f 576 = 12 ;f 127 = 1 ; f 348 = f 568 = p32 ; and all yli : (3.50)The G-invariant two-forms and three-forms are spanned byfe12; e34; e56g ; (3.51)f� = e245 + e135 + e146 � e236; �̂ = e235 + e136 + e246 � e145g ; (3.52)respetively, and there are no invariant one-forms. The soure (if present) must againbe proportional to Re
.The most general solution is then given byJ = �ae12 + be34 � e56 ;
 = d �(e245 + e135 + e146 � e236) + i(e235 + e136 + e246 � e145)� ; (3.53)



42 Supersymmetri type IIA AdS4 ompati�ations
a > 0; b > 0;  > 0 ; metri positivity ;d2 = ab; normalization of 
 ; (3.54)with a; b and  three free parameters.For the non-vanishing torsion lasses (3.5) we �ndW�1 = �ia + b+ 3d ;W�2 = � 2i3d �a(2a� b� )e12 + b(a� 2b + )e34 + (�a� b + 2)e56� ;jW�2 j2 = 163ab �a2 + b2 + 2 � (ab + a+ b)� : (3.55)

Putting a = b we end up with a model that is very similar to the one of setion 3.4.2,while further putting a = b =  orresponds to the nearly-K�ahler limit. Next to theoverall sale a, we have this time two shape parameters � � b=a and � � =a. Fora omparison with the results of [58℄ see [59℄. Introduing again the redued uxparameters (3.37) we �nd for the uxes and soureH = 2 ~m5 a(��)1=2(e245 + e135 + e146 � e236) ;e�F2 = a1=24 (��)�1=2 �(5� 3�� 3�)e12 + (3�� 5�2 + 3��)e34 + (�3� � 3�� + 5�2)e56� ;e�F4 = a�1=2 ~fvol4 � 35a3=2 ~m ��e1234 � �e1256 + ��e3456� : (3.56)Furthermore, we ompute for the soure term (3.7)e�j6 = �25a1=2~�(��)1=2(e135 + e146 + e245 � e236) ; (3.57)whih veri�es that j is again of the form (3.10). The bound (3.12) gives~m2 � ~� = 516ab ��5(a2 + b2 + 2) + 6(ab + a+ b)� ; (3.58)while the orientifold involutions are still as in setion 3.4.1.3.4.4 The SU(2)�SU(2) solutionThe struture onstants in this ase aref 123 = f 456 = 1 ; and yli : (3.59)



3.4 Solutions on oset spaes 43This time, the oset struture does not eliminate any forms so one might think, thatwe would have to introdue some orientifolds before we an proeed. In partiular thistime we have all the six one-forms available. As we will see the resulting orientifoldwill projet them all out. What makes the analysis tratable again is the fat thatit was shown in [79℄ that there is always a hange of basis preserving the form of thestruture onstants whih brings J to the formJ = ae14 + be25 + e36 : (3.60)With this result the most general solution to eqs. (3.4), (3.5),(3.7), (3.12) and (3.13)is then given byJ = ae14 + be25 + e36 ;
 = d(a(e234 � e156) + b(e246 � e135) + (e126 � e345)� ihh� 2 ab(e123 + e456) + a(b2 + 2 � a2)(e234 + e156) + b(a2 + 2 � b2)(e153 + e426)+ (a2 + b2 � 2)(e345 + e126)i) ; (3.61)with h � p2 a2b2 + 2 b22 + 2 a22 � a4 � b4 � 4 ;and thus 0 < 2 a2b2 + 2 b22 + 2 a22 � a4 � b4 � 4 :Again a; b and  are free parameters withab > 0 ; metri positivity ;d2 = 2abh ; normalization of 
 : (3.62)For the non-vanishing torsion lasses (3.5) we �ndW�1 = � 2i3d ;W�2 = � 2i3hr2abh "(b2 � 2)2 + a2(�2a2 + b2 + 2)b e14 + (2 � a2)2 + b2(�2b2 + 2 + a2)a e25+ (a2 � b2)2 + 2(�22 + a2 + b2)ab e36# : (3.63)



44 Supersymmetri type IIA AdS4 ompati�ationsBy a suitable hange of basis we an always arrange for a > 0; b > 0 and  > 0, whihwe will assume from now on. In terms of the redued ux parameters (3.37), to whihwe add ~h = a�2h ; ~d = a�1=2d ; (3.64)we �nd for the uxesH = �2 ~m5 ~d �(e156 � e234) + �(e135 � e246) + �(e345 � e126)� ;F2 = � a1=22 ~d~h2n �3(�4 + �4)� 5 + 2(�2 + �2)� 6�2�2� e14 (3.65)+ � �3(1 + �4)� 5�4 + 2�2(1 + �2)� 6�2� e25+ � �3(1 + �4)� 5�4 + 2�2(1 + �2)� 6�2� e36o ;F4 = a�1=2 ~fvol4 � a3=2 3 ~m5 (�e1245 + �e1346 + ��e2356) :This time we ompute for the soure (3.7)e�j = �idW�2 + � 227f 2 � 25m2� e2�Re
 ;= j1(e234 � e156) + j2(e246 � e135) + j3(e126 � e345) : (3.66)with j1; j2 and j3 some ompliated fators depending on a; b and  whose exatform does not matter for the moment. It ontains the same terms as Re
 but withdi�erent oeÆients. In fat, one an hek that j6 is not proportional to Re
 unlessjaj = jbj = jj, whih redues the solution to a nearly-K�ahler geometry. This timeit is not immediately obvious how to hoose the orientifold projetion. Choosingthem naively along the six terms leads to the �elds and struture onstants havingthe wrong transformation properties. In appendix B.3 we outline how to �nd theorientifold involutions assoiated to a smeared soure in general and then apply theproedure to the ase at hand. In order to present the resulting involutions, it isonvenient to de�ne omplex one-forms as followsez1 = � e i3�4 d2pb(2b� h) �[2b� h+ i(a2 � b2 � 2)℄e1 + [a2 � b2 � 2 + i(2b� h)℄e4	 ;ez2 = � e i3�4 d2pa(2a� h) �[2a� h+ i(b2 � a2 � 2)℄e2 + [b2 � a2 � 2 + i(2a� h)℄e5	 ;ez3 = � e i�4 d2pab(2ab� h) �[2ab� h+ i(2 � a2 � b2)℄e3 + [2 � a2 � b2 + i(2ab� h)℄e6	 ;(3.67)



3.4 Solutions on oset spaes 45where the signs must be hosen suh that 
 = ez1z2z2. De�ning further the assoiatedx and y one-forms ezi = exi � ieyi , the orientifold involutions are given as in (B.38).3.4.5 The SU(3)�U(1)SU(2) solutionWe onstrut the algebra by takingEi = Gi+3; i = 1; : : : ; 5; E6 =M ;E7 = G1; E8 = G2; E9 = G3 ; (3.68)where the Gi's are the Gell-Mann matries generating su(3), M generates a u(1),and the su(2) subalgebra is generated by E7; E8 and E9. It follows that the SU(2)subgroup is embedded entirely inside the SU(3), so that the total spae is given bySU(3)SU(2) � U(1) ' S5 � S1. The struture onstants aref 789 = 1; f 714 = f 732 = f 813 = f 824 = f 912 = f 943 = 1=2 ;f 512 = f 534 = p32 ; all yli : (3.69)Invariant one-forms are generated by fe5; e6g, and, like in the last example, the re-sulting orientifold will projet them out. The invariant two- and three-forms are givenby fe12 + e34; e13 � e24; e14 + e23; e56g ; (3.70)fe145 + e235; e135 � e245; e126 + e346; e146 + e236; e136 � e246; e125 + e345g : (3.71)The most general solution is then given byJ = �a(e13 � e24) + b(e14 + e23) + e56 ;
 = dn �2a(e145 + e235) + 2b(e135 � e245) + (e126 + e346)�� ipa2 + b2 �a(e146 + e236) + b(e136 � e246)� 2(a2 + b2)(e125 + e345)�o ; (3.72)with  > 0 ; a2 + b2 6= 0 ; metri positivity ;d2 = 12pa2 + b2; normalization of 
 ; (3.73)and a; b and  three free parameters. For the non-vanishing torsion lasses (3.5) we�nd W�1 = � ip3d ;W�2 = � i d2p3pa2 + b2 ��a(e13 � e24) + b(e14 + e23)� 2e56� : (3.74)



46 Supersymmetri type IIA AdS4 ompati�ationsBy a suitable hange of basis we an always arrange for a > 0 and b > 0, whih we willassume from now on. Note that dW�2 is not proportional to Re
, hene the soureis not of the form (3.10). Interestingly, if we take the part of the soure along Re
to be zero, i.e. j6 ^ Im
 = 0, we �nd from the last equation in (3.73) that m = 0.This would amount to a ombination of smeared D6-branes and O6-planes suh thatthe total tension is zero. Allowing for negative total tension (more orientifolds), weould have m > 0. For an arbitrary m we �nd the bakgroundH = p3 ~m ~d5 a �2(e145 + e235) + 2�(e135 � e245) + �(e126 + e346)� ;e�F2 = �a1=22 ~d �(e13 � e24)� �(e14 + e23) + �e56� ; (3.75)e�F4 = a�1=2 ~fvol4 + 35a3=2 ~m �(1 + �2)e1234 � �(e1356 � e2456) + ��(e1456 + e2356)� ;where we de�ned � = b=a and � = =a and used again (3.37). From (3.7) we omputefor the souree�jO6 = p3 ~d10 a1=2 � 5~d2 � 4 ~m2��e145 + e235 + �(e135 � e245)�� p3 ~d20 a1=2�� 5~d2 + 4 ~m2��e126 + e346� : (3.76)One an hek that for the bakground the soure satis�es the alibration onditions(3.11). If we make the following oordinate transformatione10 = e1 ; e20 = e2 ; e30 = e3 + ��1e4 ; e40 = e3 � �e4 ; e50 = e5 ; e60 = e6 ; (3.77)we see learly that j is a sum of four deomposable termse�j6 = �p310 ~da1=2 � 5~d2 � 4 ~m2� (e103050 � e204050)p1 + �2+ p3 ~d20 a1=2�� 5~d2 + 4 ~m2��e102060 + e304060� ; (3.78)to whih we an assoiate four orientifold involutions.



Chapter 4Low energy physis I: TheKaluza-Klein redutionIn this hapter we want to use the diret KK redution to ompute the mass matriesfor the two nilmanifold examples, i.e. the torus and the Iwasawa manifold1, desribedin the last hapter. The omparison to the result of the e�etive supergravity ap-proah, desribed in the next hapter, will then serve as a non-trivial hek on thelatter in the ase of non Calabi-Yau manifolds. In the �rst setion we will review thegeneral KK proedure for the ase of an AdS4 spae time. We will also show howto express the utuations of the RR �eld strengths in terms of utuations of theirpotentials. In the subsequent setion we omment on the problem of deoupling theKK tower. Finally we will apply the KK redution to the two nilmanifolds of setion3.3 and ompute the mass matries for the light utuations2. This hapter is basedon [25℄.4.1 Kaluza-Klein redutionWe are interested in performing a Kaluza-Klein redution on eah of the AdS4 �M6 solutions desribed in setions 3.3.1 and 3.3.2. Let x and y be 4d spae-timeand internal-manifold oordinates, respetively. Moreover, let �̂(x; y) be a `vauum',i.e. a partiular solution of the equations of motion of ten-dimensional supergravity.The Kaluza-Klein redution (see [80℄ for a review) onsists in expanding all ten-dimensional �elds �(x; y) in `small' utuations around the vauum:�(x; y) = �̂(x; y) + Æ�(x; y) ; (4.1)1More preisely, we will do this for the ase m = 0.2As a general remark, we will not onsider blow-up modes assoiated to the �xed points of theorientifold involutions. Ideally, we would like to argue that the blow-up modes will be stabilizedby ux through the blown-up yle at a size muh smaller than the size of the internal manifold.Unfortunately, suh an analysis is beyond the sope of this thesis. It may be possible, however, toargue for the stabilization of the blow-up modes using a loal analysis of the singularities as in [44℄.



48 Low energy physis I: The Kaluza-Klein redutionkeeping only terms up to linear order in Æ�(x; y) in the equations of motion (or-responding to at most quadrati terms in the Lagrangian). From now on the hatsindiate bakground quantities, and the Æ's denote utuations. The utuations areFourier-expanded in the internal spae:Æ�(x; y) =Xn �n(x)!n(y) ; (4.2)where �n(x) are four-dimensional spae-time �elds, and the !n(y)'s form a basis ofeigenforms of the Laplaian operator � = ddy + dyd in the six-dimensional spae M(the internal part of the vauum solution).In the following, we will trunate all the higher Kaluza-Klein modes in the har-moni expansion (4.2) and keep only those !n(y)'s in (4.2) that are left-invariant onM6. The resulting modes are not in general harmoni, but an be ombined intoeigenvetors of the Laplaian whose eigenvalues are of order of the geometri uxes.One has to make sure that suh a trunation is onsistent. We want to argue in thenext setion that indeed we an tune our parameters in suh a way that the higherKK modes (the KK tower) deouples.Plugging the ansatz (4.1)-(4.2) into the ten-dimensional equations of motion andkeeping at most linear-order terms in the utuations, one an read o� the massesof the spae-time �elds, i.e. the `spetrum'. In the present ase, this is aomplishedby omparing with the equations of motion for non-interating �elds propagating inAdS4. Let M and � be the mass of the �eld and the osmologial onstant of theAdS spae, respetively, suh thatSalar : ��+ �M2 + 23��� = 0 ; (4.3a)Vetor : ��� +r�r��� +M2�� = 0 ; (4.3b)Metri : �Lh�� + 2r(�r�h�)� �r(�r�)h�� + (M2 � 2�)h�� = 0 ; (4.3)where �L is the Lihnerowiz operator de�ned by:�Lh�� = �r2h�� � 2R����h�� + 2R(��h�)� : (4.4)With the above de�nitions, the Breitenlohner-Freedman bound [81℄ is simplyM2 � 0 ; (4.5)for the metri and the vetors. For the salars, however, a negative mass-squared isallowed: M2 � �12 = �jW j24 ; (4.6)



4.1 Kaluza-Klein redution 49where W was de�ned in eq. (3.3). Atually, we will present the results for the massspetrum of the salars in terms of~M2 =M2 + 23� ; (4.7)for whih the Breitenlohner-Freedman bound reads~M2 � �9jW j24 : (4.8)We will take ~M = 0 as the de�nition of an unstabilized modulus sine from (4.3a)we see that then, if it were not for the boundary onditions of AdS4, a onstant shiftof � would be a solution to the equations of motion. Therefore, a onstant shift of �leads to a new vauum solution.We want to apply this strategy to the nilmanifold vaua of setion 3.3. Thebakgrounds for these two vaua are given in setion 3.3.1 and 3.3.2, and by de�nitionthey are solutions to the equations of motion of type IIA supergravity, whih are givenby (A.7a), (A.7b), (A.9b) as well as (A.10), and to the Bianhi identities (A.9a).It is possible to express the utuations of the RR �eld strengths ÆF in terms of theutuations of the potentials ÆC in suh a way that the Bianhi identity dHF = �jis automatially satis�ed. This analysis is ompliated by the presene of a soure.We assume that the soure does not utuate sine it is assoiated to smeared ori-entifolds. For the Bianhi identities of the bakground and the utuation we �ndthen, respetively, (d + Ĥ)F̂ = �j ; (4.9a)(d + Ĥ + ÆH)(F̂ + ÆF ) = �j : (4.9b)The integrability equations read (d + Ĥ)j = 0 ; (4.10a)(d + Ĥ + ÆH)j = 0 ; (4.10b)from whih follows ÆH ^ j = 0 : (4.11)This implies also (d + Ĥ)(eÆB ^ j) = 0 ; (4.12)so that, subtrating (4.9a), we an de�ne (loally)�(eÆB � 1) ^ j = (d + Ĥ)Æ! : (4.13)



50 Low energy physis I: The Kaluza-Klein redutionNow, for orientifold soures the left hand side of this equation always vanishes. Thisfollows beause the pull-bak of ÆB to the orientifold, ÆBj�, must be zero, whihimplies using (B.30): ÆB ^ j = 0 ; (4.14)and the same for all powers of ÆB. Then, we an also hoose Æ! = 0.The di�erene between (4.9a) and (4.9b) gives the Bianhi identity for the utu-ations �d + Ĥ + ÆH� ÆF + ÆH ^ F̂ = 0 ; (4.15)whih an be rewritten as�d + Ĥ� �eÆBÆF �+ ÆH ^ eÆBF̂ = 0 : (4.16)One an easily show that (with ÆF0 = 0) this Bianhi identity an be satis�ed byintroduing potentials ÆC and puttingeÆBÆF = (d + Ĥ)ÆC � (eÆB � 1)F̂ + Æ! : (4.17)where we an set ÆF0 = Æ! = 0 so that we obtaineÆBÆF = (d + Ĥ)ÆC � (eÆB � 1)F̂ : (4.18)Expanding this expression we �nd for the IIA-utuationsÆF0 = 0 ;ÆF2 = dÆC1 �mÆB ;ÆF4 = dÆC3 + Ĥ ^ ÆC1 � ÆB ^ (F̂2 + ÆF2)� 12m(ÆB)2 ; (4.19)ÆF6 = dÆC5 + Ĥ ^ ÆC3 � ÆB ^ (F̂4 + ÆF4)� 12(ÆB)2 ^ (F̂2 + ÆF2)� 13!m(ÆB)3 :For the NSNS ux we an just writeH = Ĥ + ÆH = Ĥ + dÆB : (4.20)For the Kaluza-Klein redution of the equations of motion we will only need theterms linear in the utuations while for an analysis of �nite utuations of the ationone would need higher orders too. Furthermore, in the Kaluza-Klein redution wewill only need utuations of the physial �elds ÆF2; ÆF4 sine the higher-form uxesare removed from the equations of motion using (A.1), while in the superpotentialapproah, whih is formulated in the demorati formalism, we should work with theinternal part of ÆF6 instead of the external part of ÆF4 as we will explain later.



4.2 Deoupling the Kaluza-Klein tower 514.2 Deoupling the Kaluza-Klein towerConsisteny requires that the Kaluza-Klein tower an be deoupled. This means wehave to make sure that the higher Kaluza-Klein �elds are really muh heavier than theones that we kept in our analysis suh that we an neglet them in an e�etive low-energy theory. Sine the Compton wavelength of the lightest exitations above theBreitenlohner-Freedman bound in four dimensions is of the order of the AdS4 radius,we need to show that the Compton wavelength of the Kaluza-Klein exitations (whihis proportional to Lint) satis�es: j�AdSjL2int � 1 ; (4.21)where �AdS is the four-dimensional osmologial onstant. In models without ori-entifolds this is impossible to ahieve, sine the harateristi length of the internalmanifold turns out to be of the same order as the radius of AdS4. This is the problemof separation of sales whih, for example, plagues the ompati�ations of eleven-dimensional supergravity on the seven-sphere. Ultimately, we would like to upliftour models to a de Sitter spae with a small, positive osmologial onstant, and theposition ould be taken that the question of the mass spetra should be re-addressedonly after this uplifting. However, let us now study whether it is possible to tune theorientifold soure suh that there is a hierarhy between the two sales even beforethe uplifting and (4.21) is obeyed.Taking into aount j�AdSj � jW j2 and using (3.1d), we �nd that to deouple theKaluza-Klein sale we must imposejW j2L2int = 125(gs)2m2L2int + 19(gs)2f 2L2int � 1 ; (4.22)whih means that eah of the two terms on the right-hand side of the equal signmust be separately muh smaller than one. Tuning the orientifold harge we anaomplish e2�m2L2int � 1. Indeed, we just need to show that we an hoose � sothat it is lose to its bound (3.12):�L2int + 516 �3jW�1 j2 � jW�2 j2�L2int � 1 : (4.23)In our onventions the disrete parameter �, whih is proportional to the net numberof orientifold planes nO6, is given by (up to numerial fators of order one): � �gsnO6lL�3int. Taking into aount that the torsion lasses are given by (again up tonumerial fators of order one): jW�i j2 � L�2int, we an rewrite the above equationshematially as follows: nO6gs� lLint�+ a� 1 ; (4.24)



52 Low energy physis I: The Kaluza-Klein redutionwhere a is a number of order one. Sine gs � lLint�� 1, we an then satisfy this boundby hoosing some large integer nO6. Note that in the examples where we study thislimit, a turns out to be negative so that we an aomplish this with positive nO6,whih orresponds to net orientifold harge (as opposed to net D-brane harge).However, we must also make sure that the seond square in (4.22) is small, whihmeans that fgsLint / jW�1 jLint is small. Manifolds for whih W�1 vanishes (and onlyW�2 is possibly non-zero) are alled `nearly Calabi-Yau' (NCY) see e.g. [82℄; hene forthe bound (4.21) to be satis�ed, the internal manifold must admit an SU(3)-struturewhih is suÆiently lose to the NCY limit.One a solution for nO6 is obtained in this way, we have to make sure that it isonsistent with the onditions for a small string oupling and large volume found insetion 3.2. It turns out that we do not have any problems with that beause weare free to resale nO6 ! N qnO6 leaving (4.24) invariant, provided we take: q =(�0 + �4)=2 2 N . For example, the reader an verify that the resaling fn0 !N4n0; n2 ! N6n2; n4 ! N8n4; n6 ! N10n6; nO6 ! N6nO6g leave eq. (4.24) and allthe f 0ps in eq. (3.17) invariant, so that:gs � N�5 ; Lintl � N ; j�AdSjL2int = �xed� 1 ; (4.25)where we an take N large.We were only able to identify this way as a possibility to deouple the KK tower,although there might exist another. Unfortunately, as we will see in due ourse,for some models we will have some problems to deouple the KK tower in the waypresented here. However, we believe that the onlusions for these models are nota�eted by this problem. Indeed it was shown in [83℄ that the N = 2 theory ob-tained from a redution of type IIA string theory based on left-invariant forms on thethree oset spaes G2SU(3) , Sp(2)S(U(2)�U(1)) and SU(3)U(1)�U(1) without any soures is a onsistenttrunation, i.e. solutions of the 4d equations of motion lift to solutions of the 10dequations of motion. It seems plausible that the inlusion of smeared left-invariantsoures does not alter this onlusion and that it also holds for redutions based onleft-invariant forms on other spaes. Based on the arguments of [83℄ and referenestherein one expets that the �elds onstituting a onsistent trunation do not oupleto other �elds. This then means that our results will not be altered by the inlusionof more �elds. We will ome bak to this point at the end of the next two hapters.4.3 The nilmanifoldsWith the preparations of the last setion we are now ready to expliitly perform theKK redution of our type IIA supergravity vaua of setion 3.3.1 and 3.3.2.For the Kaluza-Klein redution on T6, we will expand the utuations of the



4.3 The nilmanifolds 53various �elds in the following basis:ÆB(x; y) =bi;~n(x)Y(2)i;~n (y) + bi;~n1 (x)Y(1)i;~n (y) + b~n2 (x)Y(0)~n (y) ; (4.26a)Æ�(x; y) =Æ�~n(x)Y(0)~n (y) ; (4.26b)ÆC(1)(x; y) =(1)i;~n(x)Y(1)i;~n (y) + (1)~n1 (x)Y(0)~n (y) ; (4.26)ÆC(3)(x; y) =(3)i;~n(x)Y(3)i;~n (y) + (3)i;~n1 (x)Y(2)i;~n (y) + (3)i;~n2 (x)Y(1)i;~n (y)+ (3)~n3 (x)Y(0)~n (y) ; (4.26d)Æg(x; y) =hi;~n(x)X (2)i;~n (y) + hi;~n1 (x)Y(1)i;~n (y) + h~n2 (x)Y(0)~n (y) : (4.26e)The funtions Y(l)i;~n(y) are the l-eigenforms of the Laplaian operator and are given byY(l)i;~n(y) = Y (l)i ei~p�~y ; ~p = ~nR ; ~n 2 Z6 : (4.27)For the torus the Y (l)i form a basis of harmoni l-forms. X (2) are symmetritwo-tensors X (2)i;~n (y) = X(2)i ei~p�~y ; ~p = ~nR ; ~n 2 Z6 ; (4.28)Sine we will restrit our analysis to the zero modes (~p = 0), we only keep Y(l)i;~n=0(y) =Y (l)i and X (2)i;~n=0(y) = X(2)i in the expansions above and derivatives only at on theexternal �elds. A basis for the harmoni l-forms Y (l)i is simply given by all exteriorproduts of the form dym1 ^ � � � ^ dyml = em1:::ml , 1 � l � 6. Hene:bl = � 6l � ; (4.29)where bl denotes the real dimension of the lth ohomology group of T6.For the Iwasawa manifold, we will use for the expansion forms Y (l)i left-invariantforms, whih will not neessarily be all harmoni. When exterior derivatives at onthese forms terms will be generated of the order of the geometri uxes.In both ases we must then impose the orientifold projetion whih means thatsuitable expansion forms must be even or odd under all the orientifold involutions.For both, the torus and the Iwasawa, this involution is given by (3.23) whih leads tothe following forms type basis nameodd 2-form e12; e34; e56 Y (2�)ieven 3-form e135; e146; e236; e245 Y (3+)iodd 3-form e136; e145; e235; e246 Y (3�)ieven 4-form e1234; e1256; e3456 Y (4+)ieven symmetri 2-tensor e1 
 e1; e2 
 e2; : : : ; e6 
 e6 X(2)i



54 Low energy physis I: The Kaluza-Klein redutionUnder the orientifold projetion, we �nd from (3.15) that �; g; F0; C3 are even,while B;C1 are odd. This simpli�es the expansion (4.26) onsiderablyÆB(x; y) = bi(x)Y (2�)i ; (4.30a)Æ�(x; y) = �(x) ; (4.30b)ÆC(3)(x; y) = (3)i(x)Y (3+)i + (3)3 (x) ; (4.30)Æg(x; y) = hi(x)X(2)i + h2(x) : (4.30d)Note in partiular that the orientifold projetion removes all four-dimensional gauge�elds, whih in fat holds for all type IIA models for whih the orientifolds projetout all one-forms and even two-forms. So far the disussion for the torus and theIwasawa went parallel. Now we have to use the bakgrounds of setions 3.3.1 and3.3.2 to get the respetive utuations of the �eld strengths given in (4.19). For thetorus we �nd ÆF2 = �mÆB ; (4.31a)ÆF4 = dÆC3 : (4.31b)while for the Iwasawa we getÆF2 = 0 ; (4.32a)ÆF4 = dÆC3 � ÆB ^ F̂2 : (4.32b)So we �rst have to ompute the variation of all the equations of motion (A.7a),(A.7b), (A.9b) and (A.10) to �rst order. Remember that we should use (A.1) toremove the redundant RR-�elds so that the only RR-utuations are the ones above.For the torus we have to plug in the bakground of setion 3.3.1 plus the utuations(4.30) and (4.31a), while for the Iwasawa we will have to use the bakground of setion3.3.2 and the utuations (4.32a). We will disuss the two ases separately in thenext two subsetions.4.3.1 Kaluza-Klein redution of the torusSine we are only onsidering the internal zero modes we use that for the torusderivatives only at on the external �elds. It turns out that the RR-�elds togetherwith H do not mix with the metri and the dilaton, so we an disuss their equationsof motion separately.



4.3 The nilmanifolds 55RR and NS B-�led setorApplying the steps desribed above we get from the equation of motion for H (A.10)the following equation, whih has (external, internal) index struture (0; 2):0 = �(biY (2�)i )� ?(F̂4 ^ d(3)3 )�m ? (?F̂4 ^ biY (2�)i ) +m2biY (2�)i : (4.33)From the variation of the equation of motion of F4 (A.9b) we get a (0; 3)-equationand a (1; 6)-equation0 = �((3)iY (3+)i )� ?(Ĥ ^ d(3)3 ) ; (4.34a)0 = d ? d(3)3 + dbi ^ Y (2�)i ^ F̂4 + Ĥ ^ d(3)i ^ Y (3+)i ; (4.34b)and from F2 a (4; 5)- and (3; 6)-equation0 = Ĥ ^ ? hhiX(2)i � F̂4i ; (4.35a)0 = Ĥ ^ ?(d(3)i ^ Y (3+)i ) ; (4.35b)where the dot is de�ned in (A.3). Furthermore, we used in the upper equation thevariation of the ? given by(Æ?)Fl = �12gMNÆgMN� ? Fl � ?[Æg � Fl℄ ; (4.36)where we de�ned [Æg � Fl℄M1:::Ml � l � Æg[M1jAgABFBjM2:::Ml℄ : (4.37)The equations (4.35) are automatially satis�ed using the orientifold projetion. In-deed, the right-hand sides should have ontained an even internal �ve-form respe-tively six-form under all orientifold involutions, whih do not exist, so they mustvanish.Next, we integrate (4.34b) and put the integration onstant to zero beause itwould orrespond to hanging the bakground value of f . The result an the be usedto eliminate d(3)3 in (4.33) and (4.34a). This proedure orresponds to dualizing (3)3as explained in [37, 34℄. For more details see appendix D.To proeed, we make a hoie of expansion basis for the even three-formsY (3+)0 = Im
 ; (4.38a)Y (3+)i ; i = 1; 2; 3 : 3 real (2,1)+(1,2) forms ; (4.38b)and the odd two-formsY (2�)0 = J ; (4.39a)Y (2�)i ; i = 1; 2 : 2 primitive real 2-forms ; (4.39b)



56 Low energy physis I: The Kaluza-Klein redutionwhere a primitive two-form is de�ned in (B.20).Using these in (4.33) and (4.34a) gives the equations of motion for the 4d salar�elds. Diagonalizing the mass matrix we obtain the following result for the eigenvalues~M2 =M2 + 2=3�: mass eigenmode mass (in units m2=25)bi; i = 1; 2 10i; i = 1; 2; 3 0b0 � 4(3)0 103b0 + (3)0 88Dilaton and metri setorWith the same proedure as above, we get from the dilaton equation of motion (A.7a)0 = (� + 67m225 )Æ� + 7m225 6Xi=1 hi ; (4.40)and from the internal part of the Einstein equation (A.7b)0 = �hi + 8m225 hi + 7m250 giiÆ� + m250 gii 6Xj=1 hj + 2m25 giihi�(�1)i : (4.41)The result of diagonalizing the mass matrix ismass eigenmode mass (in units m2=25)�h1 � h2 + h3 + h4 18�h1 � h2 + h5 + h6 18�3 Æ� + 7Phi 187 Æ� +P hi 70�h1 + h2 �2�h3 + h4 �2�h5 + h6 �2The external part of the Einstein equation on the other hand beomes12�Lh�� +r(�r�h�)� � 12r(�r�)hPP + 325m2h�� � 320m2g��X hi � 21100m2g��Æ� = 0 :(4.42)At this point we have to take into aount that so far we worked in the ten-dimensional Einstein frame. As we will show in (5.16) the onversion to the four-dimensional Einstein frame is given bygE�� = pg6 g�� ; (4.43)



4.3 The nilmanifolds 57where the onstant fator  =M�2P ��210 Vs does not matter here, so that�1hE�� = pg6 h�� + 12pg6 g��Xi hi : (4.44)Plugging this into (4.42) and using (4.41), we �nd for hE�� exatly equation (4.3)with M2 = 0 so that hE�� indeed desribes a massless graviton.4.3.2 Kaluza-Klein redution of the IwasawaAgain it turns out that the equations of motion for the RR-�elds and the H �eld donot mix with the Einstein equation and the equation of motion for the dilaton, so wean disuss them separately.RR and NS B-�led setorExpanding the equation of motion for H (A.10) around the Iwasawa solution, weobtain0 =�bi Y (2�)i + bi �?6d ?6 dY (2�)i �� (3)i ?6 (?6dY 3+i ^ F̂2)+ bi ?6 h?6 �Y (2�)i ^ F̂2� ^ F̂2i+ f(3)i ?6 dY 3+i � bif ?6 �Y (2�)i ^ F̂2� ; (4.45)while the equation of motion for F4 (A.9b) splits in (1; 6) and (4; 3) index strutures0 = d ?4 d(3)3 + 12fd (Æg�� � Ægmm � Æ�) ; (4.46a)0 = �(3)i Y (3+)i + (3)i �?6d ?6 dY (3+)i � + fbi ?6 dY (2�)i � bi ?6 d ?6 �Y (2�)i ^ F̂2� :(4.46b)In a similar way as in the torus ase, we integrate (4.46a), put the integration onstantto zero and plug the result for d(3)3 in the other equations.As expansion forms we take the same three-forms as in eq. (4.38), while for thetwo-forms we take this time Y (2�)0 = �2e56 ; (4.47a)Y (2�)1 = e12 + e34 ; (4.47b)Y (2�)2 = e12 � e34 : (4.47)Note that this time Y (3+)0 and Y (2�)0 are not losed. Introduing mT suh that � =25e�mT (this is of ourse the Romans mass of the T-dual torus solution), we get thefollowing masses:



58 Low energy physis I: The Kaluza-Klein redutionmass eigenmode mass (in units m2T =25)i; i = 1; 2; 3 0b0 + b1 10b2 108(3)0 + 5b0 + 3b1 10(3)0 � b0 + 2b1 88Due to T-duality the mass eigenvalues are the same as for the torus solution.Dilaton and metri setorThe equation for the variation of the dilaton equation (A.7a) reads0 = (� + 27m2T25 )Æ�� 9m2T25 6Xi=5 hi + 3m2T25 4Xi=1 hi : (4.48)For the Einstein equation (A.7b) we �nd for i = 5; 6:0 = �hi + 49m2T50 hi + 53m2T50 hi�(�1)i � 11m2T50 4Xj=1 hj � 33m2T50 Æ� ; (4.49)and for i = 1; 2; 3; 4:0 = �hi + 8m2T25 hi + 2m2T5 hi�(�1)i � 3m2T10 6Xj=5 hj + m2T10 4Xj=1 hj + 3m2T10 Æ� : (4.50)Here we used thatÆRmn = 12�LÆgmn +r(mrP Ægn)P � 12rmrnÆgQQ ; (4.51)where �L is the Lihnerowiz operator de�ned in (4.4) and all ovariant derivativesand ontrations are with respet to the bakground metri. In (4.51) the last twoterms are vanishing.Diagonalizing the mass matrix we �nd the following eigenmodes:mass eigenmode mass (in units m2T=25)�h1 � h2 + h3 + h4 1811(h1 + h2) + 5(h5 + h6) 185Æ�� 3(h1 + h2) 183Æ�� 3(h5 + h6) + (h1 + h2 + h3 + h4) 70�h1 + h2 �2�h3 + h4 �2�h5 + h6 �2One again, we �nd the same masses as in the torus example.



4.3 The nilmanifolds 594.3.3 SummaryThe diret omputation of the Kaluza-Klein redution on the six-torus solution ofsetion 3.3.1 and the Iwasawa solution of setion 3.3.2 yields in both ases exatly thesame mass spetrum. This is of ourse the expeted result, sine the two solutionsare related by T-duality. We obtain the following mass eigenvalues ~M2=jW j2 for thesalar �elds:3 Complex struture �2, �2, �2K�ahler & dilaton 70, 18, 18, 18Three axions of ÆC3 0, 0, 0ÆB & one more axion 88, 10, 10, 10We see that all three axions orrespond to massless moduli. This is a feature thatis also disussed in [47℄. It is argued there that, when one introdues D6-branes,these axions an provide St�ukelberg masses to some of the U(1) gauge �elds onthe D-brane. We further notie that some masses are tahyoni, whih is allowedbeause they are still above the Breitenlohner-Freedman bound (4.8). Salars thatare in the same supermultiplet, suh as the omplex struture moduli and the threeorresponding axions, the dilaton and the remaining axion, the K�ahler moduli and theB-�eld moduli have di�erent masses. This is in fat a subtlety of the supersymmetryalgebra of AdS4 that no longer allows a de�nition for the mass as an invariant Casimiroperator.We an deouple the tower of Kaluza-Klein masses (see the disussion below(4.21)) when we take m2(e2�L2int)� 1 for the torus or �Lint � 1 for the Iwasawa.

3The alulations in setion 4.3.1 were made in the ten-dimensional Einstein frame, while thee�etive supergravity approah followed in later setions will lead to a result in the four-dimensionalEinstein frame. By dividing out with jW j2 we avoid onversion problems, sine ~M2 and jW j2transform in the same way under hange of frame.
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Chapter 5Low energy physis II: E�etivesupergravityIn this hapter we ompute the salar potential of the 4d low energy e�etive theoryfor all the examples of setion 3.3 and 3.4. As already mentioned in setion 2.2,the easiest and most popular approah to do this is to use the more or less indirettehniques of N = 1 supergravity, where the salar potential is entirely determinedin terms of a K�ahler potential and a superpotential1. For the Calabi Yau ase, theirgeneral form is given in [84, 34℄, whereas a generalization to SU(3)-struture manifoldsor even beyond is given in [33, 35, 36℄. We will use this approah to ompute thewhole salar potential for all our expliit N = 1 AdS4 vaua. From this potentialwe will ompute the salar masses and hek the stability of those vaua. For thenilmanifolds we will reprodue the results of the last hapter where we used the diretKK redution on these bakgrounds. Having on�rmed that both tehniques yieldthe same results we will then ontinue with the e�etive supergravity approah andstudy the Iwasawa solution withm 6= 0 as well as the oset models in the next setion.This hapter is based on [25℄.5.1 E�etive supergravityThe superpotential and K�ahler potential of the e�etive N = 1 supergravity havebeen derived in various ways in [33, 35, 36℄ (based on earlier work of [84, 34℄). Herewe summarize the main formul� whih will be used in the following. More details onthe derivation an be found in appendix B.4.The part of the e�etive four-dimensional ation ontaining the graviton and thesalars reads: S = Z d4xp�g4 �M2P2 R�M2PKi�|���i�� ���| � V (�; ��)� ; (5.1)1We do not onsider any D-terms in this thesis



62 Low energy physis II: E�etive supergravitywhereMP is the four-dimensional Plank mass. The salar potential is given in termsof the superpotential via:2V (�; ��) =M�2P eK �Ki�|DiWED�|W�E � 3jWEj2� ; (5.2)where the superpotential in the Einstein frame WE reads (see equation (B.65))WE = �ie�i�4�210 ZMhei(J�iÆB); F̂ � idĤ �eÆBe��Im
 + iÆC3�i ; (5.3)and h�; �i indiates the Mukai pairing (B.4). The K�ahler potential is given by (seeequation (B.66)) K = Kk +K + 3 ln(8�210M2P ) ; (5.4)where Kk and K are the parts ontaining, respetively, the K�ahler and omplexstruture/dilaton moduli. They are given byKk =� lnZM 43J3 ; (5.5a)K =� 2 lnZM 2 e��Im
 ^ e��Re
 ; (5.5b)where e��Re
 should be seen as a funtion of e��Im
 (see appendix B).On the utuations we must impose the orientifold projetions (3.15). It turnsout that for all our examples: ÆB ^ Im
 = 0 ; (5.6)sine there are no odd �ve-forms. By expanding in a suitable basis of even and oddexpansion forms (whih have to be identi�ed separately for eah ase), we �nd thatthe utuations organize naturally in omplex salarsJ = J � iÆB = (ki � ibi)Y (2�)i = tiY (2�)i ; (5.7a)e��Im
 + iÆC3 = (ui + ii)e��̂Y (3+)i = zie��̂Y (3+)i ; (5.7b)where we took out the bakground e��̂ from the de�nition of zi for further onve-niene. We have de�ned the geometrial salars ki and ui slightly di�erently fromthe axioni salars bi and i in the sense that the geometrial salars ontain thebakground whereas the axioni salars are pure utuation. In other words the su-persymmetri vauum we started with orresponds to the values ki = ui = 1 and2In [38℄ the salar potential was for general type II SU(3)�SU(3) ompati�ations diretlyderived from dimensional redution of the ation.



5.2 The nilmanifolds 63bi = i = 0. To ompute now the potential we only have to use the expansion (5.7)and plug it together with the bakground values of the �elds given in setion 3.3 and3.4 into the superpotential (5.3) and the K�ahler potential (5.4), whih we then haveto use in (5.2) to obtain the full potential. From there we ompute the mass matrixand hek the stability of our solution.5.2 The nilmanifoldsNow we want to use the e�etive supergravity approah desribed in the last setionto ompute the potential of the nilmanifold solutions of setion 3.3.5.2.1 The torus potentialFor onveniene we hoose a slightly di�erent expansion basis as in setion 4.3.1:Y (2�) : e12; e34; e56 ;Y (3+) : �e135; e146; e236; e245 : (5.8)Using this basis in (5.7) and plugging the result together with the bakground ofsetion 3.3.1 into (5.3), we obtain the superpotentialWE;Torus = e�i�4�210Vsm ��t1t2t3 + 35(t1 + t2 + t3)� 25(z1 + z2 + z3 + z4)� ; (5.9)where Vs is a standard volume Vs = R e1:::6, whih does not depend on the moduli.By the same proedure we get from (5.4) the K�ahler potentialK = Kk +K + 3 ln(8�210M2PV �1s e4�̂=3) ; (5.10a)where Kk = � ln 3Yi=1(ti + �ti)! (5.10b)is the K�ahler potential in the K�ahler-moduli setor, andK = � ln 4 4Yi=1 �zi + �zi�! (5.10)is the K�ahler potential in the omplex struture moduli setor.Using the expressions for the superpotential and the K�ahler potential, it is straight-forward to alulate the masses for the salar �elds from the quadrati terms in thepotential (5.2). Before we omment on the results, let us �rst do the same alulationfor the Iwasawa manifold.



64 Low energy physis II: E�etive supergravity5.2.2 The Iwasawa potentialWe hoose the following expansion basis:Y (2�) : �2e65; e12; e34 ;Y (3+) : ��e135;��e146;��e236; �e245 : (5.11)This implies that dY (3+)i = ��e1234 for all i = 1; : : : ; 4. Using this basis in (5.7) andplugging the result together with the bakground of setion 3.3.2 into (5.3), we obtainthe superpotentialWE;Iwasawa = �ie�i�4�210 mTVs �35 � 25t1(z1 + z2 + z3 + z4) + 35(t1t2 + t1t3)� t2t3� ;(5.12)where Vs = R ��2e1:::6 is again a standard volume, and mT � 52e��̂� the Romansmass of the T-dual torus solution. We note here the following relationWE;Iwasawa = �it1WE;Torus(t1 ! 1t1 ) ; (5.13)whih follows from T-duality. Repeating this proedure, we get from (5.4) the sameK�ahler potential (5.10) as for the torus.Again the masses for the salar �elds follow from the quadrati terms in thepotential (5.2), where we have to use the above results for the K�ahler potential andsuperpotential.5.2.3 SummaryFrom the four-dimensional Einstein-frame ation (B.54) we ompute the equation ofmotion for the salar �elds ��k +M�2P (K̂�1M̂)ki�i = 0 ; (5.14)where M̂ij = 12 �2V��i��j jbakground is the mass matrix and K̂ij is the K�ahler metri in realoordinates in the bakground. Therefore, to ompare the results for the masses inthe analysis with the superpotential and the K�ahler potential with the results fromthe Kaluza-Klein redution, we need to diagonalize the matrix M�2P K̂�1M̂ . We alsohave to take into aount that the results from the Kaluza-Klein redution were in theten-dimensional Einstein frame, while here we get the result in the four-dimensionalEinstein frame: gs = e�2 gE10 ;gs =M2PN�1gE4 ; (5.15)



5.2 The nilmanifolds 65where N is de�ned below (B.46), and thusgE10 =M2P e��=2N�1gE4 =M2P�210e�2AVol�1E gE4 ; (5.16)where in the last expression we assumed A and � onstant over the internal spae.The onversion for the mass ism2E = �210M2P e�2AVol�1E m2E10 : (5.17)Upon noting that in the Kaluza-Klein analysis we set the bakground values forthe warp fator and the dilaton equal to zero and Vol = Vs, we �nd for the torusand the Iwasawa exatly the same result as we did in setion 4.3.1 and 4.3.2 byperforming a diret KK redution. This provides a onsisteny hek on the ability ofthe superpotential/K�ahler potential approah to handle geometri uxes. After thisnon-trivial test we believe in the orretness of the e�etive supergravity approahand ompute in the next setion the potentials for the oset spaes.But before we will do so, let us briey omment on the Iwasawa solution for thease m 6= 0. Turning on m, one gets extra terms in the superpotential that lookexatly like the torus superpotential, so we �nd:WE;Iwasawa;m6=0 =WE;Iwasawa(mT ) +WE;Torus(m) ; (5.18)where WE;Torus(m) is the superpotential of the torus obtained and WE;Iwasawa(mT )is the superpotential for the Iwasawa manifold that one obtains by T-dualizing thetorus solution. The mass spetrum is the same upon replaing m2T ! m2 + m2T .Also, this time it is possible to deouple the Kaluza-Klein tower: in the limit (m2 +m2T )(e2�L2int)� 1.This ends the use of nilmanifolds in this thesis. We have mainly used them tojustify the use of the easier e�etive supergravity approah to ompute the salarpotential for the oset spaes in the next setion. From a phenomenologial point ofview they do not seem very promising, beause, as we saw, three axions orrespond tomassless moduli, whih one would have to stabilize before turning to phenomenology.This problem might be solved by the St�ukelberg mehanism to generate masses forsome of the U(1) gauge �elds living on the D6-branes, as it is argued in [47℄. Butas we will see later in the osmologial appliations, our torus potential falls undera lass of potentials whose suitability for slow roll ination is ruled out by a no gotheorem formulated in [50℄. The same is then true for the Iwasawa manifold beauseof T-duality. So let us instead turn to the more promising oset spaes, sine there wewill �nd examples in the next setion, whih do not have any massless salar �elds.Furthermore, in the next hapter we will also see how they evade the no go theoremof [50℄.



66 Low energy physis II: E�etive supergravity5.3 The oset spaesIn this setion, we ompute the salar potential for the oset spae vaua of setion3.4. We will do this by using the e�etive supergravity approah of setion 5.1. Wewill proeed for eah oset in the same way as we did for the nilmanifolds. First, wewill have to hoose an expansion basis whih to use in (5.7). To ompute the K�ahlerpotential and superpotential, we then plug the result together with the respetivebakground from setion 3.4 into (5.3) and (5.4). The potential is given by (5.2) fromwhere we obtain the mass matrix.5.3.1 The G2SU(3) potentialWe hoose the expansion forms in (5.7) as follows:Y (2�) : a(e12 � e34 + e56) ;Y (3+) : a3=2(�e235 � e246 + e145 � e136) ; (5.19)and the standard volume Vs = � R a3 e123456.The superpotential reads:WE = ie�i�e��̂4�210 Vsa�1=2 �3p32 + 8 ~mi5 z0 � 9 ~mi5 t1 + 4p3z0t1 � p32 (t1)2 + i ~m(t1)3! ;(5.20)whereas the K�ahler potential isK = � ln �(t1 + �t1)3�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s e4�̂=3) : (5.21)If we plot ~M2=jW j2, the overall sale a drops out, and the only parameter is theredued orientifold tension ~�: see Figure 5.1, where the dashed and solid red linerepresent the Breitenlohner-Freedman bound (4.8) and the bound (3.8) for ~�, respe-tively. We see that all four moduli masses are above the Breitenlohner-Freedmanbound. Moreover, all masses are positive for ~� > �0:82. For ~� ! 1 the massesasymptote to ~M2=jW j2 = (10; 18; 70; 88), whih are the same as for the torus in se-tion 4.3.1 (exept there are no omplex struture moduli and orresponding axions).In fat, this asymptoti behavior is universal for all models we studied. Indeed, for~� ! 1 we �nd from (3.12) that m ! 1 regardless of the details W�1 ;W�2 of themodel and exatly those terms in the superpotential beome relevant that also appearin the superpotential of the torus..In setion 3.2, we have seen that jW�1 jLint � 1 is one way to obtain a separation ofsales between the light masses and the Kaluza-Klein masses even before the uplifting.However, as an be seen from eq. (3.38), this is impossible to ahieve for this oset.
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(b) Behavior for large ~�Figure 5.1: Mass spetrum of G2SU(3) .5.3.2 The Sp(2)S(U(2)�U(1)) potentialWe hoose the expansion forms in (5.7) as follows:Y (2�) : a(e12 + e34);�ae56 ;Y (3+) : a3=2(e235 + e246 + e145 � e136) ; (5.22)and the standard volume Vs = � R a3 e123456. We �nd the following superpotentialWE = ie�i�e��̂4�210 Vsa�1=2 �� ~f� + 8 ~mi5 �1=2z0 � 3 ~mi5 (2�t1 + t2)� 2(2t1 + t2)z0+ i ~m(t1)2t2 + �1=2�32 � 54�� (t1)2 � ���1=2 � 32�1=2� t1t2� ; (5.23)and K�ahler potentialK = � ln �(t1 + �t1)2(t2 + �t2)�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s e4�̂=3) : (5.24)This time the solution has next to the overall sale a two free parameters: the \shape"� = =a and the orientifold tension ~�. In Figure 5.2 we display plots for several valuesof �: � = 1 is the nearly-K�ahler point while for � = 2=5 and � = 2 the lower boundfor ~� from (3.12) is exatly zero. These were extreme points in [58℄, sine outsidethe interval [2=5; 2℄ the lower bound is above zero and solutions without orientifoldsare no longer possible. Moreover, for ~� = 0 also m = 0, and these solutions an belifted to M-theory. We also display a plot for large �, here � = 13. We see that thelower bound for ~� is indeed positive so that there must be net orientifold harge. The
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(d) � = 13Figure 5.2: Mass spetrum of Sp(2)S(U(2)�U(1)) .behavior is however already like the universal behavior for ~�!1. Again we see thatin all ases all masses are above the Breitenlohner-Freedman bound and by hoosing~� large enough they are all positive.Again we would like to get jW�1 jLint � 1 to deouple the Kaluza-Klein modes.From eq. (3.46) we see that this an be formally obtained by putting � ! �2, i.e. weneed to analytially ontinue to negative values for �. From [82℄ we learn that � < 0 isindeed possible, but the model annot be desribed as a left-invariant SU(3)-strutureon the oset Sp(2)S(U(2)�U(1)) anymore. Rather it is a twistor bundle on a four-dimensionalhyperboli spae. The preise agreement between the results of [58℄ (whih is basedon [82℄) and [59℄ (wherever they overlap) suggests that the analyti ontinuation ispossible. Stritly speaking, however, one should hek that also the mass spetruman be analytially ontinued to negative values for �. Although this seems plausible,verifying it diretly would require using entirely di�erent tehnology, and lies beyond
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(a) � = �2Figure 5.3: Mass spetrum of the ontinuation of Sp(2)S(U(2)�U(1)) to negative �.the sope of this thesis. In deriving the plot of Figure 5.3 for � = �2, we have assumedthat suh analyti ontinuation of the mass spetrum is possible. We see that twomass eigenvalues stay light, while the others blow up ifW�1 ! 0 and join the Kaluza-Klein masses. In this limit the light modes have ~M2=jW j2 = (�38=49; 130=49).5.3.3 The SU(3)U(1)�U(1) potentialIn this ase we hoose the expansion forms in (5.7) as follows:Y (2�) : �ae12; ae34;�ae56 ;Y (3+) : a3=2(e235 + e246 + e136 � e145) ; (5.25)and the standard volume Vs = R a3 e123456.Using the expression (B.65) for the superpotential and the expansion given in(5.7), we derive the superpotentialWE =� ie�i�e��̂4�210 Vsa�1=2 ~f�� � 8 ~mi5 (��)1=2z0 + 3 ~mi5 (��t1 + �t2 + �t3)+ 14(��)�1=2�(3� + 3�� � 5�2)t1t2 + (3�� 5�2 + 3��)t1t3 + (�5 + 3�+ 3�)t2t3�� 2z0(t1 + t2 + t3)� i ~mt1t2t3! : (5.26)The K�ahler potential (5.4) beomesK = � ln 3Yi=1(ti + �ti)!� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s e4�̂=3) : (5.27)
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(b) � = 1 and � = 25 .Figure 5.4: Mass spetrum of SU(3)U(1)�U(1) .The model has this time two shape parameters: � = b=a and � = =a. We displaythe mass spetrum for a number of seleted values of these parameters in Figure5.4. There is a symmetry under permuting (a; b; ) whih translates into a symmetryunder � $ � and (�; �; ~�) $ (�=�; 1=�; �~�). Applying these symmetries leads toidential mass spetra. Moreover, the mass spetra for � = 1 are, apart from twomore eigenvalues, idential to the mass spetra of Sp(2)S(U(2)�U(1)) . We also display anexample with �; � 6= 1.In the plots of Figure 5.5 we have analytially ontinued to � < 0; � < 0 in orderto approah the NCY limit, whih we obtain for �+ � = �1. Again, two eigenvaluesstay light with ~M2=jW j2 = (�38=49; 130=49) in the limit while the other eigenvaluesblow up to the Kaluza-Klein sale.5.3.4 The SU(2)�SU(2) potentialThe expansion forms are given byY 2�1 = ae14 ; Y 2�2 = be25 ; Y 2�3 = e36 ; (5.28)Y 3+1 = ex1x2y3 = �h41(a+ b + )(e123 + e456 + e126 + e345 + e315 + e264 + e156 + e234) ;Y 3+2 = ex1y2x3 = h41(�a + b+ )(e123 + e456 � e126 � e345 � e315 � e264 + e156 + e234) ;Y 3+3 = ey1x2x3 = �h41(a� b + )(�e123 � e456 + e126 + e345 � e315 � e264 + e156 + e234) ;Y 3+4 = �ey1y2y3 = h41(a+ b� )(e123 + e456 + e126 + e345 � e315 � e264 � e156 � e234) ;
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(b) � = � 34 and � = � 14 .Figure 5.5: Mass spetrum of SU(3)U(1)�U(1) for negative � and �.and the standard volume Vs = � RM ab e1:::6. One �nds for the superpotential:W = ie�i�e��̂4�210 Vsa�1=2(32~1 + i ~m�t1t2t3 � 35(t1 + t2 + t3)� 25(z1 + z2 + z3 + z4)�+ 32~1(t1t2 + t2t3 + t1t3)+ ~1~h2n4 �t2t3(1� �2 � �2) + t1t3�2(�1 + �2 � �2) + t1t2�2(�1� �2 + �2)�+ �t1(�1 + �2 + �2) + t2�2(1� �2 + �2) + t3�2(1 + �2 � �2)� (z1 + z2 + z3 + z4)+ �� ��2t1 + t2(1 + �2 � �2) + t3(1� �2 + �2)� (z1 + z2 � z3 � z4)+ � �t1(1 + �2 � �2)� 2�2t2 + t3(�1 + �2 + �2)� (z1 � z2 + z3 � z4)+ � �t1(1� �2 + �2) + t2(�1 + �2 + �2)� 2�2t3� (z1 � z2 � z3 + z4)o) : (5.29)The K�ahler potential reads:K = � ln 3Yi=1(ti + �ti)!� ln 4 4Yi=1 �zi + �zi�!+ 3 ln(8�210M2PV �1s e4�̂=3) : (5.30)There are again two shape parameters � = b=a and � = =a, and the samesymmetries �$ �, (�; �; ~�)$ (�=�; 1=�; �~�) as in the previous model. In Figure 5.6,we display the mass spetrum for some values of the parameters. This time there willalways be one unstabilized massless axion ( ~M2=0) and a orresponding tahyoniomplex struture modulus with ~M2=jW j2 = �2.
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(b) � = 1 and � = 25 .Figure 5.6: Mass spetrum of SU(2)�SU(2).In the limitW�1 ! 0, W�2 blows up just as the lower bound for ~�. So in priniplewe ould deouple the Kaluza-Klein modes this way, however it is quite diÆult tostudy this singular limit.5.3.5 The SU(3)�U(1)SU(2) potentialWe display the general results here and refer the reader for the speial ase 521 �4e2�m2 = 0 to [25℄. We hoose the expansion forms in (5.7) as follows:Y (2�) : �a[(e13 � e24)� �(e14 + e23)℄; ae56 ;Y (3+) : a3=2[(e13 � e24) + ��1(e14 + e23)℄ ^ e6; a3=2(e125 + e345) ; (5.31)and the standard volume Vs = R a3(1 + �2)e123456. The superpotential and K�ahlerpotential read:WE = � ie�i�e��̂4�210 Vsa�1=2 � ~f� + 3i ~m5 �(2t1 + 1� t2)+r32(1 + �2)� 14 ��t1t2 + �2 (t1)2�� i ~m(t1)2t2 (5.32)�4p2i ~m5� (1 + �2) 14 z1 + 2p2i ~m5 �(1 + �2)� 34 z2 + 2p3� z1t1 �p3(1 + �2)�1t2z2! ;
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(b) � = 12 and � = 2.Figure 5.7: Mass spetrum of SU(3)�U(1)SU(2) .and K =� ln �(t1 + �t1)2(t2 + �t2)�� ln�4 1�2(1 + �2)(z1 + �z1)2(z2 + �z2)2�+ 3 ln(8�210M2PV �1s e4�̂=3) : (5.33)This model has two shape parameters � = b=a and � = =a, and a symmetryunder (�; �; ~�)$ (1=�; �=�; �~�). In Figure 5.7, we show the mass spetrum for somevalues of the parameters. The mass spetrum at � = 0 turns out to be independentof the parameters �; �. There always seem to be two negative ~M2 eigenvalues.5.3.6 SummaryIn this setion we derived the salar potential for type IIA SU(3)-struture ompati�-ations on nilmanifolds and osets, whih are tratable enough to allow for an expliitalulation. In partiular, we alulated the mass spetrum of the light salar modes,using N = 1 supergravity tehniques. In the oset models, exept for SU(2)�SU(2),all moduli are stabilized.It would be interesting to study the uplifting of these models to de Sitter spae-times. This might be aomplished by inorporating a suitable additional upliftingterm in the potential along the lines of, e.g, [18℄. Although a negative mass squaredfor a light �eld in AdS does not neessarily signal an instability, after the uplift all�elds should have positive mass squared. Unless the uplifting potential an hangethe sign of the squared masses, it is thus desirable that they are all positive evenbefore the uplifting. We �nd that this an be arranged in the oset models G2SU(3) ,Sp(2)S(U(2)�U(1)) and SU(3)U(1)�U(1) for suitable values of the orientifold harge.An alternative approah towards obtaining meta-stable de Sitter vaua ould alsobe to searh for non-trivial de Sitter minima in the original ux potential away from



74 Low energy physis II: E�etive supergravitythe AdS vauum. In suh a ase, one would have to re-investigate the spetrum ofthe light �elds and the issue of the Kaluza-Klein deoupling. We will ome to thisquestion in the next hapter.We disussed the Kaluza-Klein deoupling for the original AdS vaua and foundthat it requires going to the nearly-Calabi Yau limit, whih seems to be somewhathard to do. Indeed, we found that for Sp(2)S(U(2)�U(1)) and SU(3)U(1)�U(1) one has to make aontinuation to negative values of the \shape" parameters. Stritly speaking, this anno longer be desribed as a left-invariant SU(3)-struture on a oset anymore, but itan still be desribed in terms of a twistor bundle over a four-dimensional hyperbolispae. However, as explained in setion 4.2, even if we are not able to deouple theKK tower our results should not be altered by the inlusion of other �elds beausethe latter should not ouple to �elds onstituting a onsistent trunation.



Chapter 6CosmologyIn this hapter we want to study whether the salar potentials obtained in the lasthapter might be suitable for some phenomenologial appliation. The only thing thatwe know so far is that they posses a supersymmetri AdS4 minimum. To make ontatwith observation, one possibility would be to try to modify the whole onstrution ina way that breaks supersymmetry and results in a 4d de Sitter minimum. But this isnot what we want to do here. Instead we want to investigate whether the potentialsomputed in the last hapter allow for dS minima somewhere away from the originalsupersymmetri minimum. But as we will explain, we an answer this question byasking an even more general question, namely, whether there are regions somewherein the potential that allow for slow-roll ination.The main problem of implementing ination in type IIA ompati�ations is thatthere exist already quite strong no-go theorems against dS vaua and slow-roll in-ation: extending the earlier work [49℄, the authors of [50℄ prove a no-go theoremagainst small � in type IIA ompati�ations on Calabi-Yau manifolds with standardRR and NSNS-uxes, D6-branes and O6-planes at large volume and with small stringoupling. This no-go theorem uses the partiular funtional dependene of the orre-sponding salar potentials on the volume modulus � and the 4d dilaton � . Using onlythis (�; �)-dependene, they ould derive a no-go theorem in the absene of metriuxes that puts a lower bound on the �rst slow-roll parameter,� � gij�iV �jV2V 2 � 2713 ; whenever V > 0; (6.1)where gij denotes the inverse of gij appearing in front of the kineti energy terms,and the indies i; j run over all moduli �elds. This then not only exludes slow-rollination but also dS vaua (orresponding to � = 0).As was already emphasized in [50℄, however, the inlusion of other ingredientssuh as NS5-branes, geometri uxes and/or non-geometri uxes evade the assump-tions that underly this no-go theorem. In [85℄, a ombination of geometri uxes,KK5-branes and more ingredients was indeed argued to allow for dS minima. These



76 Cosmologyingredients were used in [51℄ to onstrut large �eld inationary models with veryinteresting experimental preditions. As already mentioned in ?? the above no-gotheorem diretly rules out the torus example. Sine the Iwasawa example is T-dualto the torus this manifold is also ruled out even though it has geometri ux.In the reent work [86℄, F0 ux (i.e. non-vanishing Romans mass) and geometriux were identi�ed as \minimal" additional ingredients in order to irumvent the no-go theorem of [50℄. We want to disuss the question to what extent the type IIAN = 1AdS4 vaua with SU(3)-struture an be used for ination or dS vaua. In partiular,the oset models with SU(3)-struture ould be andidates for irumventing the no-go theorem of [50℄, as they all have geometri uxes and allow for non-vanishingRomans mass. Spei�ally, we investigate whether the salar potentials in the losedstring moduli setor an be at enough in order to allow for ination by one of thelosed string moduli. For this to be the ase the parameter � must be small enough insome region of the positive salar potential for the losed string moduli. In addition,this analysis is also relevant for open string ination in these IIA vaua, sine in thisase we have to �nd losed string minima of the salar potential, i.e. � = 0 somewherein the losed string moduli spae. Having a point with � = 0 would also be a neessaryondition for a dS vauum somewhere in moduli spae.In the next setion we will �rst review the no-go theorems of [50℄ and [86℄ tosee how our oset models evade them. After that we introdue yet another no-gotheorem, �rst formulated in [87℄, whih also inludes geometri uxes. We will thenapply a slight modi�ation of this no-go theorem to rule out all but one oset modelsto allow for dS minima or ination. We will study the remaining oset and somefurther generalizations in the following setions.6.1 A no-go theorem without geometri uxesWe start by reviewing previously derived no-go theorems [50℄ (see also [85, 86℄) thatexlude slow-roll ination and dS vaua in the simplest ompati�ations of massivetype IIA supergravity, fousing in partiular on the role played by the urvature ofthe internal spae. In [50℄ the authors studied the dependene of this salar potentialon the volume modulus and the four-dimensional dilaton de�ned by� � (Vol)1=3 ; � � e��pVol : (6.2)The formulation of the no-go theorem then onsists of two steps. First, they derivea general expression for the slow roll parameter �, valid for any N = 1 supergravitytheory. It is the sum of a positive term plus the gradient in the (�; �)-plane. Theseond step onsists of �nding a lower bound for the gradient in the (�; �)-plane,forbidding � to beome arbitrarily small.Beause we use similar arguments in the next setions let us review their on-strution here and start with the �rst step. A basi ingredient in the formulation of



6.1 A no-go theorem without geometri uxes 77any 4d N = 1 supergravity theory is the K�ahler potential (see (5.4))K = Kk +K + 3 ln(8�210M2P ) ; (6.3)where Kk and K are the parts ontaining, respetively, the K�ahler and omplexstruture/dilaton moduli.Let us now fous on the K�ahler moduli, whose K�ahler potential is given by (see(5.5a)) Kk =� lnZM 43J3 = � lnZM 8 dvol6 ; (6.4a)where we have used J3 = 6 dvol6 in the seond equality. Sine RM dvol6 = Vol wean use this to relate the volume modulus � de�ned in (6.2) to the K�ahler moduli kiappearing in the expansion of J . Namely, using the usual expansion of J given byJ = kiY (2�)i ; (i = 1; : : : ; h2�) (6.5)and de�ning the triple intersetion numbers �ijk as�ijk = ZM Y (2�)i ^ Y (2�)j ^ Y (2�)k ; (6.6)we get from (6.4a) �ijkkikjkk = 6�3 ; (6.7)So we an relate � to the ki if we writeki = �i ; (6.8)and impose the onstraint �ijkijk = 6 : (6.9)Now we obtain an important piee of information by looking at the kineti energy forthe K�ahler and omplex struture moduli ti and zi given byT = Tk + T = �Ki�j��ti��t�j � Ki�j��zi��z�j : (6.10)Let us fous again on the K�ahler setor. Turning to real oordinates ti = ki � ibi weget Tk = �14 �2Kk�ki�kj ���ki��kj + ��bi��bj� : (6.11)



78 CosmologyPlugging in (6.8) and using ��(�ijkijk) = 0, we obtain:Tk = �"3(���)24�2 � 14�ijkk��i��j + �iklkl�jmnmn � 4�ijkk16 �2 ��bi��bj# (6.12)We see that � does not have anonial kineti energy, but we an de�ne a �̂, whihdoes: �̂ �r32 ln � : (6.13)By swithing from � to �̂, we an read o� the kineti energy for �̂. The remainingkineti energy terms for i and bi are blok diagonal (there are no ross terms involving��� ��a et), and this has an important onsequene: We know that in the physialregion the total kineti energy must be positive, so eah of the above 3 terms mustbe positive. Hene, Tk = �(���̂)2=2 + positive: (6.14)For the omplex struture/dilaton setor, the proedure is similar, although moresubtle. Without going through the details here we, just give the result. Again, onepulls out the � dependene by ui = � ~ui, where the ~ui are no longer independentanymore. One then has to de�ne a anonially normalized �eld�̂ � p2 ln � (6.15)to obtain for the kineti energyT = �(��̂ )2=2 + positive: (6.16)The kineti energy is again blok diagonal. In fat we know this must be true fromthe 10-dimensional point of view; the dilaton modulus is inherited diretly from 10dimensions, and so annot possibly give rise to mixed kineti terms with the omplexstruture moduli in four dimensions.So all in all we know that the metri appearing in (6.1) is blok diagonal in �̂; �̂and the remaining moduli, whih allows us to write� = M2p2V 2 (V�̂V�̂ + V�̂V�̂ + positive terms) : (6.17)Thus we get for � the following estimate derived in [50℄ :� � M2p2 "��lnV��̂ �2 + ��lnV��̂ �2# : (6.18)



6.1 A no-go theorem without geometri uxes 79Writing this in terms of � and � we get� � M2pV 2 "13 ���V�� �2 + 14 �� �V�� �2# : (6.19)This an be written as� � M2p39V 2 ����V�� � 3� �V�� �2 + M2p13V 2 �2��V�� � 12� �V�� �2 ; (6.20)from whih we get � � M2p39V 2 ����V�� � 3� �V�� �2 : (6.21)It is now surprisingly simple to derive a lower bound for the right hand side of(6.21). Classially, the four-dimensional salar potentials of suh ompati�ationsmay reeive ontributions from the NSNS H3-ux, geometri uxes, O6/D6-branesand the RR-uxes Fp; p = 0; 2; 4; 6 leading to, respetively, the following terms:V = V3 + Vf + VO6=D6 + V0 + V2 + V4 + V6; (6.22)where V3; V0; V2; V4; V6 � 0, and Vf and VO6=D6 an a priori have either sign. Vf followsfrom the redution of the Einstein Hilbert term in (A.2), and it is expliitly given byVf = �12M4P�210e2�Vol�1R = �12M4P�210��2R ; (6.23)where R is the Rii salar of the internal manifold. By looking at (A.2) and (A.4),it is not diÆult to obtain the general saling behavior of these terms with respet to� and � ,V3 / ��3��2; Vp / �3�p��4; VO6=D6 / ��3; Vf / ��1��2 : (6.24)These salings an also be found by analyzing the potential (5.2) arising in the e�etivesupergravity approah. Using these salings we get from (6.22)���V�� � 3� �V�� = 9V + Xp=2;4;6 pVp � 2Vf : (6.25)Hene, whenever the ontribution from the metri uxes Vf is zero or negative thisgives ���V�� � 3� �V�� � 9V : (6.26)



80 CosmologyAssuming a regime where V > 0, whih is neessary for ination, we an plug thisinto (6.21) to get � � 2713 ; (6.27)as it has been derived in [50℄. This diretly rules out the torus example of setion 5.2as well as the T-dual Iwasawa example.Avoiding this no-go theorem without introduing any new ingredients would thusrequire Vf > 0. Sine Vf / �R, where R denotes the internal salar urvature, thisis equivalent to demanding that the internal spae has negative urvature. Sine allterms in V sale with a negative power of � we see from (6.22) and (6.24) that wethen also need VO6=D6 < 0 to avoid a runaway, whih reets the old result of [88℄.Following a related argument in [86℄, one an identify another ombination ofderivatives with respet to � and � that sets a bound for �:�3��V�� � 3� �V�� = 9V + 6V3 � 6V0 + 6V4 + 12V6 � 9V � 6V0: (6.28)In the ase of vanishing mass parameter, we have V0 = 0, and (6.28) implies � � 97 .Therefore, we need to have Vf > 0; VO6=D6 < 0 and V0 6= 0 in order to avoid the aboveno-go theorems. Note that the only real restrition here is that we have to have aompat spae with negative urvature sine in our examples we are always free toturn on F0-ux and to do an orientifold projetion. By omputing the Rii salar(C.35) from the struture onstants of the osets and the metri, whih depends onthe geometri moduli, we will see that some of the osets admit a negative urvaturein a ertain regime of the moduli spae and are thus not a�eted by the no-go theoremof [50℄.6.2 A modi�ed no-go theorem for SU(3)-strutureUnfortunately, in [87℄ yet another no-go theorem has been derived, this time alsoapplying to ertain lasses of ompati�ations with negative salar urvature. Wewill review it in this setion.The oset examples of SU(3)-struture manifolds have speial intersetion numbersthat allow a split of the index i of the K�ahler moduli into f0; ag; a = 1; : : : ; (h2��1),suh that the only non-vanishing intersetion numbers are�0ab � Xab : (6.29)We now introdue a variable similar to � in (6.8) by de�ningka = ��a ; (6.30)



6.2 A modi�ed no-go theorem for SU(3)-struture 81where � is the overall sale of (h2� � 1) K�ahler moduli, and the �a are onstrainedby Xab�a�b = 2. The volume an now simply be written as Vol = k0�2. Now onedoes the same kind of omputations as we did in the last hapter. Instead of (6.12)we get this time for the kineti energyTk = �"(���)22�2 � ���k02k0 �2 + 14Xab���a���b � 14Kab��bi��bj# ; (6.31)where we used ��(Xab�a�b) = 0. This time the anonially normalized �eld is givenby �̂ � ln� ; (6.32)whih gives Tk = �(���̂)2=2 + positive: (6.33)The kineti energy for �̂ is still the same as in (6.16) so that we get the same boundas in (6.18), but now for � instead of �:� � 12 "��lnV��̂ �2 + ��lnV��̂ �2# : (6.34)Writing this in terms of � and � we get� � 12V 2 "���V�� �2 + 12 �� �V�� �2# : (6.35)This an be written as� � 118V 2 ���V�� + 2� �V�� �2 + 136V 2 �4��V�� � � �V�� �2 : (6.36)from whih we get � � 118V 2 ����V�� � 2� �V�� �2 : (6.37)Again it is possible to derive a lower bound for the right hand side of (6.37). Withoutthe geometri uxes the salings of the potentials in (6.22) beome for the speialintersetion numbers (6.29)V3 / (k0�2)�3� 2 ; V0 / (k0�2)3� 4 ; V6 / (k0�2)�3� 4 ; VO6=D6 / 1� 3 ; (6.38)V2 / (�4 + (k0)2�2)(k0�2)1� 4 ; V4 / (�2 + (k0)2)(k0�2)1� 4 ; (6.39)



82 Cosmologyas it has been expliitly derived in [25℄.De�ning DV � (���� � 2��� )V ; (6.40)we obtain from (6.38) DV3 =6V3 ;DVO6 =6VO6 ;DV0 =6V0 ;DV2 =6V2 + positive term ;DV4 =8V4 + positive term ;DV6 =10V6 : (6.41)
In [87℄ it was shown that if one de�nes a matrix riI bydY 2�i = riIY (3�)I ; (6.42)desribing the geometri ux of J whih is expanded in odd two-forms, the extraondition raI = 0 or r0I = 0 leads to DVf = 6Vf . Plugging this and (6.41) into (6.37)one would get � � 2 ; whenever V > 0 : (6.43)However, in the oset examples that we want to disuss, one always has raI 6= 0,and r0I 6= 0 so the no-go theorem of [87℄ is not diretly appliable. But one still anexpliitly hek for eah ase separately whether DVf � 6Vf is satis�ed or not. Inorder to do so, it is onvenient to writeVf = 12� 2VolU ; (6.44)so that DVf = 6Vf + 12� 2VolDU = 6Vf + 12� 2Vol(����)U; (6.45)and the no-go theorem applies if we an show that����U = �ka�kaU � 0 : (6.46)



6.3 Cosmology of osets 83Furthermore, if the inequality (6.46) is stritly valid, Minkowski vaua are ruled outas well. This an be seen as follows. Using (6.41) and (6.45), we obtainDV = 6V + 2V4 + 4V6 + 12� 2Vol(����)U + positive terms ; (6.47)so that for a vauum, DV = 0, we �nd with (6.46)V = �16 �2V4 + 4V6 + 12� 2Vol(����)U + positive terms� � 0 : (6.48)So, if the inequality (6.46) holds stritly, also (6.48) holds stritly as well, andMinkowski vaua are ruled out.Indeed, one an hek that the oset models disussed in this thesis do not allowfor supersymmetri Minkowski vaua with left-invariant SU(3)-struture. Strangelyenough, this inludes the ase SU(2)�SU(2) for whih eq. (6.46) an be violated.This model may still allow for a non-supersymmetri Minkowski vauum. In the nextsetion we will expliitly ompute (6.46) for eah oset.6.3 Cosmology of osetsIn the previous setion, we desribed a no-go theorem that rules out dS vaua andslow-roll ination for type IIA ompati�ations on ertain types of SU(3)-struturemanifolds, namely those for whih one oordinate in the triple intersetion number�ijk an be separated as in eq. (6.29), and the geometri uxes indue the relation(6.46). While these seem to be quite strong assumptions, it turns out that almost allthe osets do fall into this ategory, as we will show in this setion. For that we willevaluate (6.46) for eah oset expliitly. By looking at (6.44) and (6.23), we see thatwe �rst have to ompute the Rii salar for eah oset. It is given in (C.35) in termsof the struture onstants and the metri.6.3.1 The G2SU(3) no-goFor this ase, one �nds for the funtion U of (6.44):U / �(k1)2 ; (6.49)whih is manifestly negative. This implies that Vf itself is manifestly negative sothat the no-go theorem of [50℄, reviewed in setion 6.1, already rules out this ase.All other oset models allow for values of the moduli suh that Vf > 0 and thereforerequire a more areful analysis using the re�ned no-go theorem of setion 6.2.



84 Cosmology6.3.2 The Sp(2)S(U(2)�U(1)) no-goFor this ase, one has U / (k2)2 � 4(k1)2 � 12k1k2 ; (6.50)and the only non-vanishing intersetion number is �112 and permutations thereof, sothat k2 plays the role of k0, and we haveDU = �k1�k1U / 8(k1)2 + 12k1k2 > 0 ; (6.51)so that with ki > 0 (beause of metri positivity) the inequality (6.46) is stritlysatis�ed and this model is ruled out.6.3.3 The SU(3)U(1)�U(1) no-goFor this oset spae, we haveU / (k1)2 + (k2)2 + (k3)2 � 6k1k2 � 6k2k3 � 6k1k3 ; (6.52)and the non-vanishing intersetion numbers are of the type �123 so that we an hooseany one of the three k's as k0. We will hoose k0 to be the biggest and assume withoutloss of generality that this is k1, i.e. that k1 � k2; k3. We then �nd thatDU = (�k2�k2 � k3�k3)U / (6k1 � 2k2)k2 + (6k1 � 2k3)k3 + 12k2k3 > 0; (6.53)so that with ki > 0 (beause of metri positivity) this oset spae is also ruled out bythe no-go theorem (6.46).6.3.4 The SU(3)�U(1)SU(2) no-goFor this model, the funtion U depends on an extra positive onstant � related to thehoie of orientifolds. The funtion U turns out to beU / (k2)2(u2)2�� 8k1k2ju1u2j(1 + �2) ; (6.54)and the non-vanishing intersetion numbers are of the form �112. Thus k2 plays therole of k0, and we �nd thatDU = �k1�k1U / 8k1k2ju1u2j(1 + �2) > 0; (6.55)so that with ki > 0 (beause of metri positivity) this ase is also ruled out.



6.4 The SU(2)�SU(2) oset 856.3.5 No SU(2) � SU(2) no-goThus far, we have found that � � 2 for all other ases. For the remaining oset spaeSU(2)�SU(2), one �ndsU / 3Xi=1 (ki)2 4XI=1(uI)2!� 4k2k3(ju1u2j+ ju3u4j)� 4k1k2(ju1u4j+ ju2u3j)� 4k1k3 �ju1u3j+ ju2u4j� ; (6.56)and the non-vanishing intersetion numbers are of the form �123 so that we ouldhoose any one of the k's as k0. However, it is not possible to apply the no-gotheorem. This an be easily seen if we take for example u1 � u2; u3; u4. Then wehave shematially U / ~k2(u1)2 and DU / �kaka(u1)2 < 0. In [87℄ further no-gotheorems have been derived but none of those apply to this ase either. We will studythis ase in more detail in the next hapter.6.4 The SU(2)�SU(2) osetIn the last setion we have seen that the known no-go theorems annot be used torule out small � for ompati�ation on SU(2)�SU(2) even though in a numerialanalysis we did not �nd small �.We will argue in this hapter that from a 4d e�etive supergravity perspetivethere are, in a sense we will have to speify, di�erent inequivalent values for the uxespossible, whih lead to inequivalent superpotentials. The superpotentials we foundfor the osets in hapter 5 by plugging in the supersymmetri bakground values forthe �elds given in hapter 3 are just one possibility. They are haraterized by the fatthat they allow by onstrution for a supersymmetri vauum. In the next setion wewill make preise what we mean by inequivalent superpotentials. It turns out thatthere are values for the uxes leading to superpotentials whih do not allow for asupersymmetri minimum in the potential. Exatly for suh a non-supersymmetrisuperpotential we will �nd that for SU(2)�SU(2) it is possible to get � � 0 and thereare dS extrema. In priniple one ould to do suh a lassi�ation of inequivalentpotentials for all the oset spaes in order to study the full moduli spae. Note,however, that for all the osets in whih we were able to prove a no-go theoremagainst ination, this onlusion is not altered, beause we only used the geometrialinformation, namely the geometrial ux potential for eah oset, in this proof1. Inorder to �nd small � this leaves as the only possibility out of the osets studied sofar the SU(2)�SU(2) model, although numerially we did not �nd small �. From theviewpoint of this hapter, we should make this more preise by saying that there is no1We are only onsidering the ase of O6-planes. Allowing for other O-planes ould hange thisonlusion



86 Cosmologysmall � in \bubbles", i.e. inequivalent hoies of the bakground uxes, whih allowfor a supersymmetri AdS4 minimum. Indeed we will �nd on�gurations with � � 0and V > 0 in bubbles that do not allow for supersymmetri AdS vaua.Taking this 4d point of view it is also possible to study potentials resulting fromosets whih do not allow for a supersymmetri vauum at all. By still restritingfor simpliity to osets whih allow for an SU(3)-struture, we will see that there aretwo more andidates in table C.1. In analyzing the whole moduli spae there is oneompliation, namely the hoie of ompatible orientifolds. In our supersymmetrianalysis they were obtained as a result of the solutions to the Bianhi identities ofthe uxes, whih were in turn �xed in terms of the geometry by the supersymmetryequations. This is no longer the ase for the non-supersymmetri ases, and we willstik in our analysis to the ase of O6-planes.6.4.1 Classifying inequivalent potentialsIn this setion, we want to lassify the di�erent inequivalent superpotentials andthe resulting potentials. In what follows, we will all a given set of ux parametersa \bubble". In a given bubble the potential is �xed, and one an reah di�erentpoints of it by utuations of the �elds. A natural idea would be to all two bubblesinequivalent when it is not possible to go from one bubble to the other by �niteutuations of the moduli �elds. From the 4d e�etive supergravity point of view onewould then have to lassify all inequivalent bubbles and study the potential for eahbubble in order to analyze the full moduli spae. In this way, we will �nd bubbles,whih do not possess a supersymmetri AdS4 vauum and are thus not overed byour analysis so far. We follow here the standard approah of lassifying the di�erentbubbles by ux quanta, whih is however ompliated by the presene of Romansmass, H-�eld and O6-plane soure. Classifying the di�erent bubbles in terms ofuxes amounts to �nding on�gurations that solve the Bianhi identitiesdH = 0 ; (6.57a)dF0 = 0 ; (6.57b)dF2 +mH = �j3 ; (6.57)dF4 +H ^ F2 = 0 ; (6.57d)while two on�gurations are onsidered equivalent if they are related by a utuationof the moduli �elds, whih after imposing the orientifold projetion (and assuming itremoves one-forms) is given by (4.19)ÆH = dÆB ; (6.58a)ÆF0 = 0 ; (6.58b)ÆF2 = �mÆB ; (6.58)



6.4 The SU(2)�SU(2) oset 87ÆF4 = dÆC3 � ÆB ^ (F2 + ÆF2)� 12m(ÆB)2 ; (6.58d)ÆF6 = H ^ ÆC3 � ÆB ^ (F4 + ÆF4)� 12(ÆB)2 ^ (F2 + ÆF2)� 13!m(ÆB)3 : (6.58e)In other words, we want to �nd representatives of the ohomology of the Bianhiidentities (6.57) modulo pure utuations of the potentials (6.58).From eqs. (6.58b) we get immediately that F0 is onstant. Using the non-losedpart of ÆB in (6.58a), we an remove the exat part of H and set H 2 H3(M;R) in(6.57a). To analyze (6.57) and (6.58), we take the point of view that we hoose theux F2, whih then determines the soure j3. From here on, one has to disuss thease F0 6= 0 and F0 = 0 separately.If F0 6= 0, the losed part of F2 an be set to zero by hoosing the losed partof ÆB in (6.58). Thus F2 is the most general non-losed two form. Moving on toF4, we �nd that in eq. (6.57d) H ^ F2 = 0, sine we assumed there were no even�ve-forms under all the orientifold involutions. Moreover, with the utuations ÆC3,we an remove the exat part of F4 so that F4 2 H4(M;R). This however, leaves thelosed part of ÆC3 undetermined, whih, if we have hosen H non-trivial, an be usedto put2 F6 = 0 . Otherwise we should allow for F6 = fdvol.If F0 = 0, there is no ÆF2 and F2 is just the most general two form. Againwith ÆC3 we an remove the exat part of F4 so that F4 2 H4(M;R), whih we anfurther simplify by using the freedom of hoosing the losed part of ÆB. And also thelosed part of ÆC3 an, if we have hosen H non-trivial, be used again to put F6 = 0.Otherwise we should allow for F6 = fdvol.To illustrate the proedure, we an study the G2SU(3) oset of setion 3.4.1. For thease F0 6= 0, we obtain the following most general form of the uxesF̂0 = m ; F̂2 = �(e12 � e34 + e56) ;F̂4 = 0 ; F̂6 = fdvol ; Ĥ = 0 ; (6.59)where m; f and � are free parameters. If we use the expansionJ = t1(e12 � e34 + e56) ; (6.60)Im
 = z1(�e235 � e246 + e145 � e136) (6.61)in (5.3) and (5.4), we obtain the same K�ahler potential as in (5.21), and the super-potential is given by W = f + im(t1)2 + 4p3t1z1 � 3�(t1)2 ; (6.62)whih already looks a bit nier than (5.20). Now we an ompute the potential asusual with (5.2).2If there is non-trivial H there is always a ÆC3 to put F0 = 0.



88 Cosmology6.4.2 Small � for SU(2)� SU(2)Now we ome to the study of the SU(2)�SU(2) oset spae for ux parameters whihdo not allow for a supersymmetri vauum. In order to eliminate the one- and�ve-forms, we must introdue at least three mutually supersymmetri orientifolds,ompatible with the struture onstants. We an then always perform a basis trans-formation so that the odd two-forms and odd/even three-forms are the same as insetion 5.3.4 and read expliitlyY (2�)1 =e14; Y (2�)2 = e25; Y (2�)3 = e36;Y (3�)1 =14 �e156 � e234 � e246 + e135 + e345 � e126 + e123 � e456� ;Y (3�)2 =14 �e156 � e234 + e246 � e135 � e345 + e126 + e123 � e456� ;Y (3�)3 =14 �e156 � e234 + e246 � e135 + e345 � e126 � e123 + e456� ;Y (3�)4 =14 ��e156 + e234 + e246 � e135 + e345 � e126 + e123 � e456� ;Y (3+)1 =12 �e156 + e234 � e246 � e135 + e345 + e126 + e123 + e456� ;Y (3+)2 =12 �e156 + e234 + e246 + e135 � e345 � e126 + e123 + e456� ;Y (3+)3 =12 �e156 + e234 + e246 + e135 + e345 + e126 � e123 � e456� ;Y (3+)4 =12 ��e156 � e234 + e246 + e135 + e345 + e126 + e123 + e456� ;
(6.63)

where the e� (� = 1; : : : ; 6) are a basis of left-invariant 1-forms. The e� satisfyde� = �12f��e� ^ e ; (6.64)where the struture onstants for SU(2) � SU(2) are f 123 = f 456 = 1, yli. Fromthis we �nd dY (2�)i = riIY (3�)I ; with r = 0� 1 1 1 �11 �1 �1 �11 �1 1 1 1A : (6.65)In terms of the above expansion forms, we an again de�ne the omplex moduli as in(5.7). The positivity of the metri demandsu1u2 < 0 ; u3u4 < 0 ; u1u4 < 0 : (6.66)



6.4 The SU(2)�SU(2) oset 89Next we turn to the hoie of bakground uxes as explained in setion 6.4.We already now from hapter 6.1 that we need a non-vanishing F0 to get a small�. Furthermore our numerial studies did not give small � for the ase of vanishing Hux, whih one ould hoose in the potential of setion 5.3.4. For the ase where H isnon-trivial in ohomology, p 6= 0 (see below), the most general form of the bakgrounduxes is F0 =m; (6.67a)F2 =miY (2�)i ; (6.67b)F4 =0; (6.67)F6 =0; (6.67d)H =p�Y (3�)1 + Y (3�)2 � Y (3�)3 + Y (3�)4 � : (6.67e)Plugging in these bakground values for the uxes together with the expansion (5.7)in terms of the basis (6.63), we �nd for the superpotential (5.3)W = Vs(4�210)�1�m1t2t3 +m2t1t3 +m3t1t2 � imt1t2t3 � ip(z1 + z2 � z3 + z4) + riItizI� ;(6.68)and the K�ahler potential (5.4) readsK = � ln 3Yi=1 �ti + �ti�� ln 4YI=1 �zI + �zI�+ 3 ln �V �1s �210M2P �+ ln 32 ; (6.69)where Vs = � RM e123456. Note that the superpotential depends on all the moduli sothere are no at diretions in this model.It is straightforward to alulate the salar potential (5.2) and the slow-roll pa-rameter � (6.1) from the K�ahler and superpotential. Although we annot analytiallyminimize �, we heked numerially that there is a solution with numerially vanishing�, whih means that in this ase there is no lower bound for �. To obtain a trustworthysupergravity solution, we would have to make sure that the internal spae is largeompared to the string length and that the string oupling is small. Furthermore, inthe full string theory, the uxes have to be properly quantized. Although we do notthink that this would prevent small �, we did not try to �nd suh a solution beauseall the solutions with vanishing � we found have a more serious problem, namely that� . �2:4. The eigenvalues of the mass matrix turn out to be generially all positiveexept for one, with the one tahyoni diretion being a mixture of all the light �elds,in partiular the axions. This means that we have a saddle point rather than a dSminimum. A similar instability was found in related models in [87℄.



90 CosmologyIn [89℄, a no-go theorem preventing dS vaua and slow-roll ination was derivedby studying the eigenvalues of the mass matrix. Allowing for an arbitrary tuning ofthe superpotential, it was shown that for ertain K�ahler potentials the `sGoldstino'mass is always negative. For the examples we found, this mass is always positive sothat the no-go theorem of [89℄ does not apply. Aording to [89℄ this means thatallowing for an arbitrary superpotential it should be possible to remove the tahyonidiretion. In our ase, however, the superpotential is of ourse not arbitrary.Sine the no-go theorems against slow-roll ination do not apply and we havefound solutions with vanishing �, we heked whether our solutions allow for small� in the viinity of the dS extrema. Unfortunately, this is not the ase. In fat, wefound that � does not hange muh in the viinity of our solutions where � is stillsmall.It would be very interesting to study the SU(2) � SU(2) model further to hekwhether one an prove that there is always at least one tahyoni diretion or whetherit allows for metastable dS vaua after all. Understanding this tahyoni diretionbetter should also allow to deide whether there are points in the moduli spae thatallow for slow-roll ination in this model.6.5 SU(3)-struture osets without supersymme-tri vauumIn this setion, we study the only two oset spaes of the list given in table C.1that do allow for an SU(3)-struture but not for a supersymmetri AdS4 vauum.To keep the analysis tratable we will restrit to perpendiular O6-planes, whih arealigned along or perpendiular to the one-forms e1 : : : e6, although we already sawwith SU(2)�SU(2) an example where the O-planes are not perpendiular (3.66). Asit turns out, it is again possible to apply the no-go theorem of setion 6.2 to theseases, whih only needs the potential part of the geometri uxes. Thus, there is noneed to ompute the full potential.6.5.1 SU(2)2U(1) �U(1)It was shown in [59℄ that if the U(1) fator in the denominator does not sit ompletelyin the SU(2)2, the resulting oset is equivalent to SU(2)�SU(2), so we exlude thispossibility here, as the above notation already suggests. The internal manifold is thenin fat equivalent to T 1;1�U(1). We hoose the struture onstants as follows (this isa = 1, b = 0 ompared to [59℄)f 123 = f 745 = 1; yli;f 345 = f 217 = f 172 = 1: (6.70)



6.5 SU(3)-struture osets without supersymmetri vauum 91The possible orientifolds that are perpendiular to the oordinate frame and ompat-ible with these struture onstants are alonge123 ; e345; e256 ; e146 ; e246 ; e156 : (6.71)In order to remove one-forms and �ve-forms, it turns out that we have to introduetwo orientifolds, in partiular one of f123; 345g and one of f256; 146; 246; 156g. Itdoes not matter for the analysis whih partiular hoie is made, but for de�nitenesslet us hoose 345 and 256. We arrive then at the following expansion formsodd 2-forms: (e15 + e24) ; e36 ;even 3-forms: e123 ; (e256 � e146) ; e345 (6.72)for (5.7).There is always a hange of basis suh that we an assume ki > 0. The onditionsfor metri positivity then beomeu1u2 > 0 ; u1u3 > 0 : (6.73)U beomes U / �4k1k2u2(u1 + u3) + (k2)2 [(u1)2 + (u3)2℄2pu1u3ju2j : (6.74)The non-vanishing intersetion number is �112 so that k2 plays the role of k0, and weget for (6.46): DU = �k1�k1U / 2k1k2u2(u1 + u3)pu1u3ju2j > 0 ; (6.75)whih is positive using the onditions (6.73). Hene, this ase is ruled out as well.6.5.2 SU(2)�U(1)3In this ase there are ten possible orientifold planes perpendiular to the oordinateframe and ompatible with the struture onstants. It turns out that in order toremove the one- and �ve-forms, we have to hoose at least three mutually super-symmetri orientifolds and that it does not matter for the analysis whih ones wehoose. For de�niteness, let us takee123 ; e356; e246 : (6.76)With these orientifolds, we get the following expansion forms to be used in (5.7)odd 2-forms: e16 ; e25 ; e34 ;even 3-forms: e123 ; e356 ; e264 ; e145 : (6.77)



92 CosmologyAgain there is always a hange of basis suh that we an assume ki > 0. The positivityof the metri demands thatu1u2 > 0 ; u1u3 > 0 ; u1u4 > 0 : (6.78)For the quantity U as de�ned in (6.44) we getU / (k1u4)2 + (k2u3)2 + (k3u2)2 � 2k1u4k2u3 � 2k1u4k3u2 � 2k2u3k3u22pu1u2u3u4 : (6.79)The non-vanishing intersetion number is �123 so that eah ki an play the role of k0.Without loss of generality we an assume k1u4 � k2u3 > 0, k1u4 � k3u2 > 0 andhoose k0 to be k1. Thus we then �ndDU = (�k2�k2 � k3�k3)U / �(k2u3 � k3u2)2 + k1u4(k2u3 + k3u2)pu1u2u3u4 > 0 ; (6.80)so that we an also rule out this model.6.6 A omment on extra ingredientsSome ingredients that are not taken into aount in the original no-go theorem of[50℄, see setion 6.1, nor in the no-go theorems of [87℄, see setion 6.2, are KK-monopoles, NS5-branes, D4-branes and D8-branes. Some of these ingredients wereused in onstruting simple dS-vaua in [85℄. KK-monopoles would drastially hangethe topology and geometry of the internal manifold so that their introdution makesit diÆult to obtain a lear ten-dimensional piture, hene we will not disuss thispossibility further. NS5-branes, D4-branes and D8-branes would ontribute throughtheir respetive urrents jNS5, jD4 and jD8 as follows to the Bianhi identitiesdH = �jNS5 ;dF4 +H ^ F2 = �jD4 ;dF0 = �jD8 : (6.81)SineH and F2 should be odd, and F0 and F4 even under all the orientifold involutions,we �nd that jNS5 is an odd four-form, jD4 an even �ve-form and jD8 an even one-form.In the approximation of left-invariant SU(3)-struture to be used in the next setion,one should also impose these brane-urrents to be left-invariant (making the branesitself smeared branes). For the onrete models studied in this thesis there are nosuh urrents jNS5, jD4 or jD8 with the appropriate properties under all orientifoldinvolutions, implying that NS5-branes, D4- and D8-branes annot be used in thesemodels.



6.7 Summary 93Let us briey mention that an F-term uplifting along the lines of O'KKLT [48, 90℄by ombining the oset models with the quantum orreted O'Raifeartaigh modelwill not be a promising possibility either. The O'Raifeartaigh model is given byWO = ��2S and KO = S �S � (S �S)2�2 . The model has a dS minimum for S = 0 whereVO � �4. We ombine the two models as follows (the subsript IIA refers to thepreviously disussed ux and brane ontributions)W =WIIA +WO ; K = KIIA +KO : (6.82)In lowest order in S the total potential is then given byV � VIIA + eKIIAVO + : : : : (6.83)Note that we an then inlude the ontribution of Vup = eKIIAVO in the no-go theorems,beause the uplift potential Vup sales like F6,Vup = Aup� 4 Vol : (6.84)Sine we assume a positive uplift potential, Vup > 0, the fat that Vup sales like F6tells us that adding this uplift potential does not help in irumventing the no-gotheorems of setion 6.1 or setion 6.2.6.7 SummaryThe main result of this hapter is that we an apply, for all but one oset spae, are�ned no-go theorem of [87℄ that does not just use the volume modulus and thedilaton, but also some of the other K�ahler moduli.3 These would not have beenruled out by the no-go theorem of [50℄ (exept for the example of positive urvaturein 6.3.1) whih already ruled out the nilmanifolds. Just as in [50℄, it is the epsilonparameter, i.e., �rst derivatives of the potential that annot be made small. Ourresults in partiular show that it is important to make sure that the potential has aritial point (or small �rst derivative) in all diretions in moduli spae. Moreover,the re�ned no-go theorem, just as the one of [50℄, is of a di�erent nature than theno-go theorems developed in [89℄, whih assume a vanishing (or small) �rst derivativeand then show that, under ertain onditions, the eta parameter de�ned in (2.17)annot be made small enough.The oset model we do not rule out by a no-go theorem orresponds to the groupmanifold SU(2)�SU(2)even though we ould not �nd small � by numerial analysisfor the form of the superpotential given in setion 5.3.4. However, generalizing theallowed uxes as in setion 6.4.1, we were indeed able to �nd ritial points (orre-sponding to numerially vanishing �) with positive energy density, but only at the prie3Problems with �eld diretions orthogonal to the (�, �)-plane were also disussed in [86℄, whereattempts were made to onstrut dS vaua on manifolds that are produts of ertain three-manifolds.



94 Cosmologyof a tahyoni diretion, orresponding to a large negative eta-parameter, � . �2:4.Interestingly, this tahyoni diretion does not orrespond to the one used in the dif-ferent types of no-go theorems of [89℄. As our numerial searh was not exhaustive,however, we annot ompletely rule out the existene of dS vaua or inating regionsfor this ase. Sine this ase also does not allow for a supersymmetri Minkowskivauum as mentioned below (6.48), our disussion overs all SU(3)-struture om-pati�ations on semi-simple and U(1) osets that have a supersymmetri vauum.Furthermore, we also studied the remaining two oset spaes of table C.1 thatdo admit an SU(3)-struture but no supersymmetri AdS vauum. Choosing forsimpliity the O-planes suh that one-forms are projeted out and restriting to O-planes perpendiular to the oordinate frame, we ould again use the re�ned no-gotheorem of setion 6.2 to rule out dS vaua and slow-roll ination for both of theseases as well. At the end we briey exluded some of the most important extraingredients that one an think of to modify the models in suh a way as to allow forsmall �.Again we believe that our results are valid even if we are not able to deouple theKK tower for the same reasons as the ones given in setion 5.3.6.



Chapter 7
Non-supersymmetri vaua
In this hapter, we want to study non-supersymmetri vaua on the three osets spaesG2SU(3) , Sp(2)S(U(2)�U(1)) and SU(3)U(1)�U(1) whose supersymmetri vaua we have analyzed in thepreeding hapters. In partiular, we will be interested in the oset spae Sp(2)S(U(2)�U(1))whih is topologially equivalent to C P3. The latter has played an important role inthe reently onjetured AdS4/CFT3 orrespondene [54℄, as already explained in se-tion 2.4. To study this orrespondene further, the non-supersymmetri vaua on thisspae are as important as the supersymmetri ones. We will not onsider any souresin this hapter. The supersymmetri vauum for C P3 was �rst onstruted in [58℄and, allowing for soures, in [59℄. As we will review, a non-supersymmetri vauumwas onstruted in [57, 64℄. Moreover, there exist already some general mehanisms[62, 63℄ to produe non-supersymmetri vaua starting from a supersymmetri one.But with our ansatz, whih is somehow trimmed to the expliit oset examples, wewill �nd non-supersymmetri vaua that have not appeared in the literature so far.As an be seen in hapter 3.4 the G2SU(3) and the Sp(2)S(U(2)�U(1)) oset spaes are, insome sense, speial ases of the SU(3)U(1)�U(1) oset and our analysis will be presentedin a form whih is adapted to the latter, but an then be easily speialized to theother two oset spaes. In the next setion we will present our strategy to �nd non-supersymmetri vaua, namely to solve the equations of motion, before we will analyzethe resulting equations for eah of the three osets separately, starting with G2SU(3) whihis the simplest. Of ourse, as already mentioned in setion 2.4, for phenomenologialappliations these non-supersymmetri vaua are also of interest and one should studythem in the same way as we studied the supersymmetri ones. In partiular, onewould have to hek the stability of those vaua sine, as opposed to supersymmetrivaua, they may have tahyoni diretions. So stritly speaking, we will onstrutnon-supersymmetri extrema and it remains to be heked whether they are truevaua of the theory.



96 Non-supersymmetri vaua7.1 Generalizing the supersymmetri solutionTo onstrut non-supersymmetri vaua our strategy is to start from the supersymme-tri solutions given in setion 3.4. We will then keep the geometry, namely the SU(3)-struture (J;
) and the torsion lasses W�1;2 given in setions 3.4.1, 3.4.2 and 3.4.3,of the supersymmetri vaua unhanged, but write down the most general ansatz forthe uxes on these oset spaes. As we saw in setion 3.4 for all three osets thereis always only one losed left-invariant three-form to expand H in and there are atmost three linear independent two-forms leading to the following general ansatz forthe uxes: F0 = 0F2 = 4J + i5W�2 + 8PF4 = 1J ^ J + i6J ^W�2 + 7J ^ P (7.1)F6 = 2dvol6H = 3Re
 ;where the i are real parameters and the dilaton and warp fator have been put tozero. We have onverted the external part of F4 into an internal part of F6 andexpressed everything in terms of the torsion lasses. For SU(3)U(1)�U(1) there are threelinear independent two forms. Two of them are given by J andW�2 . One then �nds athird linear independent losed primitive (1; 1)-form P with the following properties:P ^ 
 = 0 ; W�2 � P = 0P ^ J ^W�2 = 0 ; ?P = �P ^ J (7.2)Furthermore, by the same arguments as forW�2 in (B.24) one an show the followingrelation: P ^ P ^ J = �jP j22 vol6 (7.3)and we an normalize P suh that jP j2 = jW�2 j2 : (7.4)This susy solution is reovered by setting5 = 1 ; 6 = 0 ; 7 = 0 ; 8 = 0 ;0 = m ; 1 = 310m ; 2 = �94 iW�1 ; 3 = 25m ; 4 = i4W�1 : (7.5)



7.1 Generalizing the supersymmetri solution 97and using the relation m2 = 1516 jW�1 j2 � 516 jW�2 j2 : (7.6)The susy solution solves the full equations of motion and Bianhi identities of typeIIA supergravity without the need of any soures given in appendix A. Now we wantto use our ansatz (7.1) in those equations of motion and study the solutions to them.Without soures and vanishing dilaton they read0 = 12H2 � 18Xn (5� n)F 2n ; (7.7)0 = RMN + gMN  18H2 + 132Xn (n� 1)F 2n!� 12HM �HN � 14Xn FnM � FnN ;(7.8)0 = d (?Fn)�H ^ ?F(n+2) ; (7.9)0 = dF +H ^ F ; (7.10)0 = d ?H � 12Xn ?Fn ^ F(n�2) : (7.11)The equation of motion for F2 and the Bianhi for F4 are trivially satis�ed for ouransatz (7.1). From the Bianhi identity of F2, the equation of motion for F4 and thedilaton equation of motion we obtain0 = 830 � 12iW�1 4 + 5jW�2 j2 ; (7.12)0 = 832 + 24i1W�1 + 6jW�2 j2 ; (7.13)0 = 1623 � 1020 � 1824 � 2421 + 222 � (26 + 325 + 27 + 328)jW�2 j2 : (7.14)The equation of motion for the H �eld (7.11) gives0 = �� i3W�1 � 1240 � 214 � 21�J ^ J+ �� 3 + 50 � 215 + 46 � 26�iW�2 ^ J (7.15)+ �80 � 218 + 74 � 27�J ^ P + �i5W�2 + 8P� ^ �i6W�2 + 7P�Sine we know that there are at most three independent four-forms this leads to threeindependent equations, whih we obtain by wedging this equation with J , W�2 andP , respetively. The result an be simpli�ed by using the primitivity of W�2 and P



98 Non-supersymmetri vauaas well as (7.3). Furthermore, we de�neX1vol6 � W ^W ^W = P ^ P ^W ;X2vol6 � W ^W ^ P = P ^ P ^ P ; (7.16)where the last equality follows from the properties (7.2) and (7.4) of P . With theabove relations the three resulting equations that one obtains by wedging (7.15) withJ , W�2 and P , respetively, are given by0 = 12 �21 + 214 + i3W�1 �+ 640 + (56 + 87)jW�2 j2 ; (7.17)0 = jW�2 j2 (05 � 3 � 215 + 46 � 26) + 2i(56 � 78)X1 + 2(57 + 68)X2 ;0 = (08 � 27 + 74 � 218) jW�2 j2 + 2(56 � 78)X2 � 2i(57 + 68)X1 :Sine AdS4 is Einstein, the whole information of the external part of the 10dEinstein equation (7.8) is in it's trae whih is given by8R4 = 220 � 1623 � 624 � 7221 � 1022 � (25 + 326 + 28 + 327)jW�2 j2 : (7.18)We split the internal part of (7.8) into the trae and the traeless part de�ned byR0mn � Rmn � 16gmnR : (7.19)The Rii salar for manifolds with SU(3)-struture is given by [91℄R = 14(30jW�1 j2 � jW�2 j2) : (7.20)Using this formula we obtain from the trae of (7.8)0 =120jW�1 j2 � 4823 � 620 � 3024 � 1822 � 16821 � jW�2 j2(525 + 726 + 528 + 727 + 4) ;(7.21)where the trae of the external part drops out beause of (7.18). For the traelesspart we obtain R0mn = 12F2m � F2n + 12F4m � F4n � 16gmn �F 22 + 2F 24 � : (7.22)Plugging in our ansatz (7.1) and subtrating the supersymmetri solution we get0 = (25 � 26 � 1)�W� x2m W�2xn � 16gmnjW�2 j2� (7.23)� (28 � 27)�P xm Pxn + 16gmnjW�2 j2�� i(58 � 67)W� x2(mPxn)� J x(mW�2xn)�2i16 + i45 + 14W�1 �� J x(mPxn) (84 + 217) ;



7.2 Non-supersymmetri vaua on G2SU(3) 99
where the symmetrization is with weight one and only a�ets unontrated indies.As for the equation of motion for H there are again three independent parts ofthe Einstein equation. One is given by the trae part, whih is obtained by theontration with the inverse metri gmn = �JmxJ nx . The other two parts are obtainedby ontrating (7.23) with J (mxW� n)2x and J (mxP n)x . It is possible to express theresulting traes in terms of X1, X2 and jW�2xnj2. This results in0 = (25 � 26 + 27 � 28 � 1)X1 � 2i(58 � 67)X2 + 2(2i16 + i45 + 14W�1 )jW�2 j2 ;0 = (25 � 26 + 27 � 28 � 1)X2 � 2i(58 � 67)X1 � 2(84 + 217)jW�2 j2 : (7.24)So, in order to �nd a vauum of type IIA supergravity for uxes of the form (7.1) onehas to solve the nine equations (7.13), (7.17), (7.21) and (7.24). in terms of the ninevariables i. The equation (7.18) then determines the external salar urvature. Fora given solution to the above equations one an always produe three more by thefollowing sign hanges whih eah leave those equations invariant:� keep 3 and hange all other signs ;� hange 3 together with 0; 1; 6; 7 and keep the rest : (7.25)Thus, solutions to these equations will always ome in quadruples. We will try tosolve these equations for our three oset models in the next setions.7.2 Non-supersymmetri vaua on G2SU(3)For the oset spae G2SU(3) there is only one two-form, whih is given by J . Thus thereis no room for a seond torsion lass W�2 or an additional two-form P and we have5 = 6 = 7 = 8 = 0. This simpli�es the equations to a huge extent. Plugging inthe result for W�1 from setion 3.4.1, given byW�1 = � 2ip3a ; (7.26)and de�ning Ci � pai (i = 1 : : : 4), we obtain from (7.13), (7.17) and (7.21)0 = C3C0 �p3C4 ;0 = 2p3C1 + C3C2 ;0 = 16C23 � 10C20 � 18C24 � 24C21 + 2C22 ; (7.27)0 = 4C3 +p3(C4C0 + 4C1C4 + 2C2C1) ;0 = 160� (48C23 + 6C20 + 30C24 + 168C21 + 48C22) :



100 Non-supersymmetri vauaThe equation (7.18) for the external urvature beomes8R4 = 2C20 � 16C23 � 6C24 � 72C21 � 10C22 : (7.28)Up to the sign hangings (7.25) there are only three solutions to (7.27), whih aregiven byC0 =r53 ; C1 = 0 ; C2 = 5p3 ; C3 = 0 ; C4 = 0 ;C0 = 1 ; C1 = �12 ; C2 = p3 ; C3 = 1 ; C4 = 1p3 ; (7.29)C0 = �p52 ; C1 = � 34p5 ; C2 = �3p32 ; C3 = � 1p5 ; C4 = 12p3 ;The last solution orresponds to the supersymmetri solution of setion 3.4.1, whereasthe other two solutions as well as the sign hangings (7.25) of all the above solutionsgive rise to non-supersymmetri solutions. The above solutions are all of the typealready found in [61℄, where non-supersymmetri vaua for Nearly-K�ahler manifolds(W�2 = 0) have been onstruted.7.3 Non-supersymmetri vaua on Sp(2)S(U(2)�U(1))For the oset spae Sp(2)S(U(2)�U(1)) there are two linear independent two-forms, whih wehoose to be J and W�2 . Thus there is no room for the two-form P and we have7 = 8 = 0. This still simpli�es the equations onsiderably. The expliit values forX1 and jW�2 j2 follow from the solution in setion 3.4.2 and are given byW�1 = i3 2 + �p ; jW�2 j2 = 16(1� �)23 ; X1 = �32i(1� �)393=2 ; (7.30)where we have used the shape parameter �, de�ned in setion 3.45, whih measuresthe deviation from the nearly-K�ahler limit.De�ning Ci � pi for i = 1 : : : 4, we get from (7.13), (7.17), (7.21) and (7.24):0 = 6C3C0 + 3(2 + �)C4 + 45(1� �)2 ;0 = 3C1(2 + �)� 2C6(1� �)2 � 3C3C2 ;0 = 48C23 � 30C20 � 54C24 � 72C21 + 6C22 � 16(1� �)2(325 + 26) ;0 = 6C3(2 + �)� 9C4C0 � 36C1C4 � 18C2C1 � 856(1� �)2 ; (7.31)0 = 3(1� �)2(5C0 � C3 � 2C1C5 + C46 � C26) + 456(1� �)3 ;0 = 20(2 + �)2 � 8(525 + 726 + 4)(1� �)2 � 9C20 � 45C24 � 252C21 � 27C22 � 72C23 ;0 = (25 � 26 � 1)(1� �)3 � (1� �2)(24C16 + 12C45 + (2 + �)) ;



7.3 Non-supersymmetri vaua on Sp(2)S(U(2)�U(1)) 101The equation (7.18) for the external urvature beomes8R4 = 2C20 � 16C23 � 6C24 � 72C21 � 10C22 � (25 + 326)16(1� �)23 : (7.32)7.3.1 Reproduing known resultsIn the last setion we saw that our ansatz did not lead to any new results for theosets spae G2SU(3) . This spae is a Nearly-K�ahler manifold, i.e. W�2 = 0, and itsnon-supersymmetri vaua all fall into the lass desribed in [61℄. The osets spaeSp(2)S(U(2)�U(1)) , however, is in general not a Nearly-K�ahler manifold. The shape of thisoset is parameterized by � and for speial values of this parameter there exist alreadysome results in the literature. Here, we want to reprodue these results before we willstudy the new vaua on this spae.Non-supersymmetri vaua on Nearly-K�ahler manifoldsIn [61℄ non-supersymmetri vaua for Nearly-K�ahler manifolds were onstruted. Theoset Sp(2)S(U(2)�U(1)) beomes Nearly-K�ahler only for the speial value � = 1. 5 and 6are not determined in this ase, beause W�2 = 0. However, we ould still modify ouruxes by a seond two-form di�erent fromW�2 . This was di�erent for the G2SU(3) osetbeause in that ase there is no other two-form than J . This kind of deformationneeds a separate treatment. We get the following solutions to (7.31):C0 = p32 ; C1 = �p34 ; C2 = 32 ; C3 = �p32 ; C4 = 12 ;C0 = p52 ; C1 = 0 ; C2 = 52 ; C3 = 0 ; C4 = 0 ; (7.33)C0 = p154 ; C1 = 38r35 ; C2 = 94 ; C3 =r 320 ; C4 = �14 :This was expeted, sine for � = 1 the oset spae Sp(2)S(U(2)�U(1)) looks like G2SU(3) andthe above solutions orrespond to the ones found in (7.29) whih already appeared in[61℄.Non-supersymmetri vaua from M-theoryIn [62, 63, 80℄ non-supersymmetri solutions in M-theory are disussed. Reduingthese solutions to type IIA string theory implies solutions where one starts from asupersymmetri solution with only F2 and F6 non-vanishing (in partiular F0 = 0whih fores us to put � = 2 or � = 2=5 to reprodue their results) and obtains a



102 Non-supersymmetri vauanon-supersymmetri solution with the same F2, a modi�ed F6 and non-vanishing Has well as F4. For � = 2 these vaua are given by the following solutions to (7.31):Susy : C0 = 0; C1 = 0; C2 = 3; C3 = 0; C4 = �13 ; 5 = 1; 6 = 0 ; (7.34)Non-Susy : C0 = 0; C1 = 12 ; C2 = �2; C3 = �1; C4 = �13 ; 5 = 1; 6 = 0 ;while for � = 2=5 they are given bySusy : C0 = 0; C1 = 0; C2 = 95 ; C3 = 0; C4 = �15 ; 5 = 1; 6 = 0 ; (7.35)Non-Susy : C0 = 0; C1 = 310 ; C2 = �65 ; C3 = �35 ; C4 = �15 ; 5 = 1; 6 = 0 :We also get solutions orresponding to the sign hangings (7.25) of the above solutions.We see exatly the expeted behavior. F2, spei�ed by C4 and 5, stays the same whileF6 (C2) gets modi�ed. This is somehow ompensated by turning on H (C3) and F4(C2).Non-supersymmetri vaua on Einstein manifoldsIn [64℄ and [57℄ solutions on Einstein manifolds are disussed where one starts from asupersymmetri solution with 0 = m = 0 and H = 0 and gets a non-supersymmetrisolution with 0 6= 0 keeping H = 0. Our oset beomes an Einstein manifold onlyfor the speial value � = 2. Their ansatz for the uxes is given byH = 0 ; F0 = � ; F2 = � ~J ; F4 = 12 ~J2 ; F6 = 16Æ ~J3 ; (7.36)where ~J is the K�ahler form, i.e. it is losed. For the speial ase we are disussinghere it is given by ~J = 13J � ipW�2 (7.37). Sine in our ansatz (7.1) for the uxes the J is not the K�ahlerform this �xes ourparameters 5 and 6 in terms of 4 and 1:5 = �3p4 ; 6 = 6p1 : (7.38)Putting 3 = 0 our ansatz (7.1) then readsH = 0 ; F0 = 0 ; F2 = 34 ~J ; F4 = �31 ~J2 ; F6 = �162 ~J3 ; (7.39)



7.3 Non-supersymmetri vaua on Sp(2)S(U(2)�U(1)) 103whih gives the following relation between our parameters i and the parameters(7.36) appearing in [64℄ and [57℄:0 = � ; ; 2 = �Æ ; 34 = � ; �61 =  : (7.40)Plugging these values into (7.31) only the third, fourth and sixth equation are non-trivial and read 0 = �� + 2� + Æ ;0 = 15�2 + 27�2 + 92 � 3Æ2 ; (7.41)16R = 6�2 + 30�2 + 422 + 18Æ2 :The other equations are trivially satis�ed due to the losure of ~J . Furthermore fromthe external Einstein equation (7.18) we get�12R4 = �3�2 + 9�2 + 272 + 15Æ2 : (7.42)These equations are equivalent to the equations (3.11), (3.12), (3.14) and (3.15) of[64℄ and we obtain exatly their solutions.7.3.2 New non-supersymmetri vaua on Sp(2)S(U(2)�U(1))Here we will give a preliminary analysis of the solutions to the equations (7.31) forall values of �. To get a qualitative piture we plot in �gure 7.1 the possible solutionsfor C3, parameterizing H, against �. The plots for the other variables Ci look verysimilar. The plot is symmetri under C3 ! �C3 due to the sign hangings (7.25).Red points indiate the already known non-supersymmetri solutions from M-theoryfor the speial values � = 2=5 and � = 2 as well as the supersymmetri solution,disussed in 7.3.1. We see that both solutions an be varied ontinuously between� = 2=5 and � = 2. Interestingly the non-supersymmetri solution also exists fora ertain range beyond � = 2. Green dots indiate the known solutions for Nearly-K�ahler manifolds (� = 1) also disussed in 7.3.1. We will have to leave a further studyof the new non-supersymmetri vaua for future work [27℄. A �rst step would be toanalyze the stability of those vaua, i.e. to hek whether they exhibit any tahyonidiretions below the Breitenlohner-Friedman bound.
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7.4 Non-supersymmetri vaua on SU(3)U(1)�U(1) 105Plugging this into (7.13), (7.17), (7.21) and (7.24) one obtains the equations for thisoset. However, we do not study this ase any further here but leave this for futurework. In priniple, one would have to study the variations away from � = 1, sine forthat speial value this oset looks like the Sp(2)S(U(2)�U(1)) model and we expet the sameresults.
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Chapter 8ConlusionsIn this thesis, we studied a number of type IIA SU(3)-struture ompati�ationswith O6-planes on nilmanifolds and osets, whih are tratable enough to allow foran expliit derivation of the low energy e�etive theory. In partiular, in hapter 5we alulated the mass spetrum of the light salar modes, using N = 1 supergravitytehniques. For the torus and the Iwasawa solution, we have also performed an expliitKaluza-Klein redution in hapter 4, whih led to the same result, supporting thevalidity of the e�etive supergravity approah, with superpotential (5.3) and K�ahlerpotential (5.4), also in the presene of geometri uxes. For the nilmanifold exampleswe have found that there are always three unstabilized moduli orresponding to axionsin the RR setor. On the other hand, in the oset models, exept for SU(2)�SU(2),all moduli are stabilized.We disussed the Kaluza-Klein deoupling in setion 4.2 for the supersymmetriAdS vaua and found that it requires going to the Nearly-Calabi Yau limit. Forour nilmanifolds, this an be arranged by tuning the parameters, while for our osetmodels it is somewhat harder. Indeed, we found that for Sp(2)S(U(2)�U(1)) and SU(3)U(1)�U(1) onehas to make a ontinuation to negative values of the \shape" parameters. Stritlyspeaking, this an no longer be desribed as a left-invariant SU(3)-struture on aoset anymore, but it an still be desribed in terms of a twistor bundle over a four-dimensional hyperboli spae. It would be interesting to study these models in moredetail, as there are more examples of this type. Another lass of vaua may beobtained by quotienting out the internal manifold by a disrete group �, where � isa subgroup of SU(3). This possibility may be of interest for model-building. Theresults of hapter 4 and 5 all appeared in [25℄.It would be interesting to study the uplifting of these models to de Sitter spae-times. This might be aomplished by inorporating a suitable additional upliftingterm in the potential along the lines of, e.g, [18℄. Although a negative mass squaredfor a light �eld in AdS does not neessarily signal an instability, after the uplift all�elds should have positive mass squared. Unless the uplifting potential an hangethe sign of the squared masses, it is thus desirable that they are all positive even



108 Conlusionsbefore the uplifting. We �nd that this an be arranged in the oset models G2SU(3) ,Sp(2)S(U(2)�U(1)) and SU(3)U(1)�U(1) for suitable values of the orientifold harge.However, in hapter 6, we foused on an alternative approah towards obtainingmeta-stable de Sitter vaua, namely we searhed for non-trivial de Sitter minima inthe original ux potential away from the AdS vauum. This was motivated by thefat that the oset spaes allow for a negative salar urvature irumventing reentlyproven no-go theorems for manifolds without urvature [50℄1. Using the 4D e�etiveation worked out in hapter 5, we ould rule out dS (as well as Minkowski) vauaand slow-roll ination elsewhere in moduli spae for four of the oset spaes by usinga re�ned no-go theorem that probes the salar potential also along a K�ahler modulusdi�erent from the overall volume modulus (see also [87℄). Just as the no-go theoremof [50℄, this no-go theorem works by establishing a ertain lower bound on the �rstderivatives of the potential, and hene the epsilon parameter, for V � 0. It is thusdi�erent in spirit from the no-go theorems given in [89℄, whih assume a small �rstderivative and onsider onsequenes for the seond derivatives, i.e. the eta parameter.The only oset spae that allows for supersymmetri vaua and that is not diretlyruled out by any known no-go theorem is then the group manifold SU(2)�SU(2). Forthis ase, we were indeed able to �nd ritial points (orresponding to numeriallyvanishing �) with positive energy density, but only at the prie of a tahyoni dire-tion, orresponding to a large negative eta-parameter, � . �2:4. Interestingly, thistahyoni diretion does not orrespond to the one used in the di�erent types of no-gotheorems of [89℄. As our numerial searh was not exhaustive, however, we annotompletely rule out the existene of dS vaua or inating regions for this ase. Sinethis ase also does not allow for a supersymmetri Minkowski vauum as mentionedat the end of setion 6.2, our disussion overs all SU(3)-struture ompati�ationson semi-simple and U(1) osets that have a supersymmetri vauum.Furthermore, we also studied the remaining two oset spaes of table C.1 thatdo admit an SU(3)-struture but no supersymmetri AdS vauum. Choosing forsimpliity the O-planes suh that one-forms are projeted out and restriting to O-planes perpendiular to the oordinate frame, we ould again use the re�ned no-gotheorem of setion 6.2 to rule out dS vaua and slow-roll ination for both of theseases as well. The results of hapter 6 are published in [26℄.Our results show that a negative salar urvature and a non-vanishing F0 is ingeneral not enough to ensure dS vaua or ination (as also noted in [86℄), and wegive a geometri riterion that allows one to separate interesting SU(3)-strutureompati�ations from non-realisti ones.Finally, in hapter 7, we foused on a family of three oset spaes and onstrutednon-supersymmetri vaua on them. For the G2SU(3) oset we reprodued already knownresults and did not �nd any new vaua. For the Sp(2)S(U(2)�U(1)) model, however, we found1Sine the Iwasawa manifold is T-dual to the torus dS vaua and slow-roll ination are ruledout already by [50℄.



109new non-supersymmetri vaua that did not appear in the literature so far. Thisase is of speial interest sine it is topologially equivalent to CP3 whih played aprominent role in the reently onjetured AdS4/CFT3 orrespondene. We did notanalyze the oset SU(3)U(1)�U(1) , although we were able to write down a set of equationsthat one has to solve in order to �nd the vaua of this spae. The results of hapter7 as well as their further analysis will appear in [27℄.The next step for these non-supersymmetri vaua would be to hek whether theyexhibit any tahyoni diretions below the Breitenlohner-Friedman bound. If thereare no suh tahyons, there are basially two diretions for further researh. First, itwould be interesting to study the phenomenology of those vaua in a similar way aswe did for the supersymmetri vaua in this thesis. Seond, regarding the AdS/CFTorrespondene, it would be very interesting to identify on the dual �eld theory sidethe mehanism, that we used in this thesis to onstrut these vaua.Our analysis of the low energy theory of string ompati�ations in hapter 4, 5and 6 ould be extended in several diretions. For one thing, it would be extremelyinteresting to �nd expliit SU(3)-struture manifolds that do not fall under the lass ofoset spaes we have disussed here and to investigate their usefulness for osmologialappliations along the lines of this thesis. The most obvious lass of manifolds to studysystematially would be the nil- and solvmanifolds. Another interesting diretionmight be the study of ompati�ations on manifolds with N = 1 spinor ans�atzemore general than the SU(3)-struture ase [92℄. Conerning the SU(2)�SU(2) modeldisussed in setion 6.4, one might try to either �nd a working dS minimum, or ruleit out based on another no-go theorem, perhaps by using methods similar in spirit to[89℄, although a diret appliation of their results to this ase does not seem possible.Following [85, 51℄ or [93, 94℄, one ould also try to inorporate additional struturessuh as NS5-branes or quantum orretions of various types. In setion 6.6, however,we found that at least for our models, the following additional ingredients annot beadded or do not work: NS5-, D4- and D8-branes as well as an F-term uplift alongthe lines of O'KKLT [90, 48℄. Perhaps also methods similar to the ones in [61℄ fornon-supersymmetri Minkowski or AdS vaua might be useful for the diret 10Donstrution of dS ompati�ations. There is ertainly a lot to improve about ourunderstanding of osmologially realisti ompati�ations of the type IIA string!
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Appendix AType II supergravityThe bosoni ontent of type II supergravity onsists of a metri g, a dilaton �, anNSNS 3-form H and RR-�elds Fn. In the demorati formalism of [29℄, where thenumber of RR-�elds is doubled, n runs over 0; 2; 4; 6; 8; 10 in IIA and over 1; 3; 5; 7; 9in type IIB. We write n to denote the dimension of the RR-�elds; for example (�1)nstands for +1 in type IIA and �1 in type IIB. After deriving the equations of motionfrom the ation, the redundant RR-�elds are to be removed by hand by means of theduality ondition: Fn = (�1) (n�1)(n�2)2 en�52 � ?10 F(10�n) ; (A.1)given here in the Einstein frame. We will often olletively denote the RR-�elds, andthe orresponding potentials, with polyforms F =Pn Fn and C =Pn C(n�1), so thatF = dHC.The onformal transformation gsMN = e�2 gEMN brings the string frame ation(1.3) to the Einstein frame ationSbulk = 12�210 Z d10xp�g "R� 12(��)2 � 12e��H2 � 14Xn e 5�n2 �F 2n# ; (A.2)where for an l-form A we de�neA2 = A � A = 1l! AM1:::MlAN1:::NlgM1N1 � � � gMlNl : (A.3)Sine (A.1) needs to be imposed by hand this is stritly-speaking only a pseudoation.Note that the doubling of the RR-�elds leads to fators of 1=4 in their kineti terms.The ontribution from the alibrated (supersymmetri) soures an be written as:Ssoure = Z hC; ji �Xn en4� Z h	n; ji ; (A.4)



112 Type II supergravitywith 	n = eAdt ^ e��(n� 1)!�̂1T �1 �̂1TM1:::Mn�1 �̂2 dXM1 ^ : : : ^ dXMn�1 ; (A.5)with �̂1;2 nine-dimensional internal supersymmetry parameters. For spae-�lling souresin ompati�ations to AdS4 this beomes [95℄	n = vol4 ^ e4A��Im	1E��n�4 ; (A.6)with 	1E the pure spinor 	1 in the Einstein frame.The dilaton equation of motion and the Einstein equation read0 = r2� + 12e��H2 � 18Xn (5� n)e 5�n2 �F 2n + �2102 Xn (n� 4)en4� ?h	n; ji ; (A.7a)0 = RMN + gMN  18e��H2 + 132Xn (n� 1)e 5�n2 �F 2n! (A.7b)� 12�M��N�� 12e��HM �HN � 14Xn e 5�n2 �FnM � FnN� 2�210Xn en4� ?h�� 116ngMN + 12gP (MdxP 
 �N)�	n; ji ;where we de�ned for an l-form AAM � AN = 1(l � 1)!AMM2:::MlANN2:::NlgM2N2 � � � gMlNl : (A.8)The Bianhi identities and the equations of motion for the RR-�elds, inluding theontribution from the `Chern-Simons' terms of the soures, take the form0 = dF +H ^ F + 2�210 j ; (A.9a)0 = d�e 5�n2 � ? Fn�� e 3�n2 �H ^ ?F(n+2) � 2�210 �(j) : (A.9b)Finally, for the equation of motion for H we have:0 = d(e�� ?H)� 12Xn e 5�n2 � ? Fn ^ F(n�2) + 2�210Xn en4�	n ^ �(j)�����8 : (A.10)In the above equations we an rede�ne j in order to absorb the fator of 2�210,(2�210)j ! j ; (A.11)whih we do in this thesis.The equations of motion resulting from Sbulk + Ssoure were given in this form(in the string frame) in [69℄, where it was shown that, under ertain mild assump-tions, imposing the supersymmetry equations together with the Bianhi identities forthe forms, is enough to guarantee that the dilaton and Einstein equations are alsosatis�ed.



Appendix BGeneralized geometryIn this thesis we have assumed the following N = 1 ompati�ation ansatz for theten-dimensional supersymmetry parameters [92℄�1 = �+ 
 �(1)+ + �� 
 �(1)� ;�2 = �+ 
 �(2)� + �� 
 �(2)� ; (B.1)for IIA/IIB, where �� are four-dimensional and �(1;2)� six-dimensional Weyl spinors.The Majorana onditions for �1;2 imply the four- and six-dimensional reality onditions(�+)� = �� and (�(1;2)+ )� = �(1;2)� . This redues the struture of the generalized tangentbundle to SU(3)�SU(3) [96℄. The struture group of the tangent bundle itself, onthe other hand, is a subgroup of SU(3), sine there is at least one invariant internalspinor. The preise form of this subgroup depends on the relation between �(1) and�(2). Combining the terminology of [92℄ and [97℄, the following lassi�ation an bemade:� strit SU(3)-struture: �(1) and �(2) are parallel everywhere;� stati SU(2)-struture: �(1) and �(2) are orthogonal everywhere;� intermediate SU(2)-struture: �(1) and �(2) at a �xed angle, but neither a zeroangle nor a right angle;� dynami SU(3)�SU(3)-struture: the angle between �(1) and �(2) varies, possi-bly beoming a zero angle or a right angle at a speial lous.Sine for stati and intermediate SU(2)-struture there are two independent inter-nal spinors, the struture of the tangent bundle redues to SU(2), while for dynamiSU(3)�SU(3)-struture no extra onstraints beyond SU(3) are imposed on the topol-ogy of the tangent bundle, sine the two internal spinors �(1) and �(2) might not beeverywhere independent.



114 Generalized geometryIn [36℄ it was realized that, in type IIB supergravity, strit SU(3) ompati�ationsto N = 1 AdS4 are impossible1. Conversely it was shown in [65℄ that type IIAstati SU(2) ompati�ations to AdS4 are impossible. This was extended in [25℄to intermediate SU(2)-struture AdS4 vaua with left-invariant pure spinors for bothtype IIA and type IIB. The way out of this no-go theorem is that in type IIA wemust allow e2A���(2)y+ �(1)+ to vary along the internal manifold, while in type IIB weneed a genuine dynami SU(3)�SU(3)-struture that hanges type to stati SU(2)on a non-zero lous. So the most interesting but also the most ompliated ase,the dynami SU(3)�SU(3)-struture is still possible, but we will not onsider thatase here. Note that in [69, 97℄ examples of onstant intermediate SU(2)-struture onMinkowski ompati�ations were provided. In this thesis, we fous on strit SU(3)N = 1 AdS4vaua in type IIA. In the �rst setion of this appendix, we will reviewthe formulation of the supersymmetry onditions for type II supergravity using thelanguage of generalized geometry, speializing in the end to the SU(3)-struture ase.Then we will reall the basi de�nitions of an SU(3)-struture independent of itsformulation in terms of generalized geometry. Furthermore, we will larify the role ofthe O-planes present in our onstrutions before we �nally review the formulation ofthe 4d salar potential in the language of generalized geometry.B.1 N = 1 AdS4 susy equationsIn the generalized geometry formalism the supersymmetry generators �(1) and �(2)from (B.1) are olleted into two spinor bilinears, whih using the Cli�ord map, anbe assoiated with two polyforms of de�nite degree	+ = 8jajjbj�(1)+ 
 �(2)y+ ; 	� = 8jajjbj�(1)+ 
 �(2)y� : (B.2)It an be shown that these are assoiated to pure spinors of SO(6; 6) and that theysatisfy the normalization h	+;	�+i = h	�;	��i 6= 0 ; (B.3)with the Mukai pairing h�; �i given byh�1; �2i = �1 ^ �(�2)jtop : (B.4)The operator � ats by inverting the order of indies on forms. The Mukai pairinghas the following useful property:heb�1; eb�2i = h�1; �2i ; (B.5)1That is at a pure lassial level. Taking non-perturbative orretions into aount the authorsof [18℄ indeed onstruted an AdS4 vauum with SU(3)-struture. See also [36℄ for a disussion.



B.1 N = 1 AdS4 susy equations 115for an arbitrary two-form b. Sine there are two ompatible invariant pure spinors thestruture of the generalized tangent bundle is redued to SU(3)�SU(3). In order toobtain similar equations in IIA and IIB, one rede�nes	1 = 	� ; 	2 = 	� ; (B.6)with upper/lower sign for IIA/IIB. We ollet all the RR-�elds of the demoratiformalism into one polyform and make the following ompati�ation ansatzF = F̂ + vol4 ^ ~F ; (B.7)with vol4 the four-dimensional (AdS4) volume form. In fat, in this thesis we willdrop the hat and hope that it is lear from the ontext whether we mean the full For only the internal part.With these de�nitions the supersymmetry onditions (in string frame) take thefollowing onise form in both IIB and IIA [92℄dH �e4A��Im	1� = 3e3A��Im(W �	2) + e4A ~F ; (B.8a)dH �e3A��Re(W �	2)� = 2jW j2e2A��Re	1 ; (B.8b)dH �e3A��Im(W �	2)� = 0 ; (B.8)where we used jaj2 = jbj2 / eA. From the above, the equations of motion for Ffollow as integrability onditions, as well as the following equation:dH �e2A��Re	1� = 0 : (B.9)Here W is de�ned in terms of the AdS Killing spinorsr��� = �12W��+ ; (B.10)for IIA/IIB.These equations should be supplemented with the Bianhi identities for the RR-uxes (A.9a) where the (loalized or smeared) soures j have to be alibratedhRe	1; ji = 0 ; (B.11a)h	2;X � ji = 0 ; 8X 2 �(TM � T ?M) : (B.11b)An easy way to solve these alibration onditions is to hoosej = �kRe	1 ; (B.12)for some funtion k, whih is positive for net D-brane harge and negative for netorientifold harge. Applying an exterior derivative on (B.8a), taking (B.8b), (A.9a),(B.7) into aount, it an be shown that�dH �� �?dH �e3A��Im	1��	 = �e4Aj � 6jW j2eA��Re	1 ; (B.13)



116 Generalized geometryfor IIA/IIB.When the internal supersymmetry generators of (B.1) are proportional,�(2)+ = (b=a)�(1)+ ; (B.14)with j�(1)j2 = jaj2; j�(2)j2 = jbj2, they de�ne an SU(3)-struture whose properties wewill review in the next setion. First let us de�ne a normalized spinor �+ suh that�(1)+ = a�+ and �(2)+ = b�+ and moreover we hoose the phase of � suh that a = b�.Note that in ompati�ations to AdS4 the supersymmetry imposes jaj2 = jbj2 suhthat b=a = ei� is just a phase. Now we an de�ne J and 
 as followsJmn = i�y+mn�+ ; 
mnp = �y�mnp�+ : (B.15)Plugging in (B.14) into (B.2) and using the above de�nition we get	� = �
 ; 	+ = e�i�eiJ : (B.16)By using (B.6) for IIA we an insert this into (B.8) and arrive at (3.1) as well as (3.4)and(3.5).B.2 SU(3)-strutureA real non-degenerate two-form J and a omplex deomposable three-form 
 om-pletely speify an SU(3)-struture on the six-dimensional manifoldM i�:
 ^ J = 0 ; (B.17a)
 ^ 
� = 4i3 J3 6= 0 ; (B.17b)and the assoiated metri (B.28) is positive de�nite. Up to a hoie of orientation,the volume normalization an be taken suh that16J3 = � i8
 ^ 
� = vol6 : (B.18)The intrinsi torsion ofM deomposes into �ve modules (torsion lasses)W1; : : : ;W5.These also appear in the SU(3) deomposition of the exterior derivative of J , 
. In-tuitively, this is beause the intrinsi torsion parameterizes the failure of the manifoldto be of speial holonomy, whih an also be thought of as the deviation from losureof J , 
. More spei�ally we have:dJ = 32Im(W1
�) +W4 ^ J +W3 ;d
 =W1J ^ J +W2 ^ J +W�5 ^ 
 ; (B.19)



B.2 SU(3)-struture 117whereW1 is a salar,W2 is a primitive (1,1)-form,W3 is a real primitive (1; 2)+(2; 1)-form, W4 is a real one-form and W5 a omplex (1,0)-form. For the vaua of interestto us only the lasses W1, W2 are non-vanishing and they are purely imaginary,whih we will indiate with a minus supersript. Indeed, we an readily see thateq. (3.6a) follows from eq. (B.19) above, upon setting W3;4;5 to zero and imposingW1;2 =W�1;2 = iImW�1;2.Note that by de�nition W2 is primitive, whih meansW2 ^ J ^ J = 0 : (B.20)One interesting property of a primitive (1,1)-form is? (W2 ^ J) = �W2 ; (B.21)whih an be shown using JmnW2mn = 0 (whih follows from the primitivity) andJmnJpqWnq =Wmp (whih follows from the fat that W2 is of type (1,1)).Let us now alulate the part of dW�2 proportional to Re
:dW�2 = �Re
 + (2; 1) + (1; 2) ; (B.22)for some �. Taking the exterior derivative of 
 ^ W�2 = 0 and using (B.22) as wellas the eqs. (B.17b), (2.5), we arrive at:W�2 ^W�2 ^ J = 2i3 �J3 : (B.23)We an now use (B.21) to showW�2 ^W�2 ^ J = 12 jW�2 j2vol6 ; (B.24)from whih we obtain � = �ijW2j2=8.From the SU(3)-struture (B.17b), we an read o� the metri as follows [98℄.From Re
 alone we an onstrut an almost omplex struture. First we de�ne~I lk = �"lm1:::m5(Re
)km1m2(Re
)m3m4m5 ; (B.25)where "m1:::m6 = �1 is the totally antisymmetri symbol in six dimensions, and thenproperly normalize it I = ~Iq�tr 16 ~I2 ; (B.26)so that I2 = �1. Note that H(Re
) = tr 16 ~I2 (B.27)is alled the Hithin funtional. The metri an then be onstruted from I and Jvia: gmn = ImlJln : (B.28)



118 Generalized geometryB.3 How to dress smeared soures with orientifoldinvolutionsSuppose we are given a form j representing the Poinar�e dual of smeared orientifolds.How do we deide what the orientifold involutions should be? Let us �rst give anexample for a loalized orientifold in at spae. If we have an orientifold along thediretions � = (x1; x2; x3) then the orresponding soure isj = TOp j� = �TOp Æ(x4; x5; x6) dx4 ^ dx5 ^ dx6 ; (B.29)where TOp < 0 for an orientifold and j is the Poinar�e dual of � satisfyingZ� � = ZMh�; j�i = � ZM � ^ j� ; (B.30)for an arbitrary form � 2. In this ase the orientifold involution is of ourseO6 : x4 ! �x4 ; x5 ! �x5 ; x6 ! �x6 : (B.31)Suppose we now introdue many orientifolds and ompletely smear them in the di-retions (x1; x2; x3) obtainingj = �TOp  dx4 ^ dx5 ^ dx6 ; (B.32)where  is a onstant representing the orientifold density. We have now lost infor-mation about the exat loation but we would still like to assoiate the orientifoldinvolution O6 : dx4 ! �dx4 ; dx5 ! �dx5 ; dx6 ! �dx6 : (B.33)An important observation is that dx4 ^ dx5 ^ dx6 is not just any form, it is adeomposable form, i.e. it an be written as a wedge produt of three one-forms.These one-forms span the annihilator spae of T�, the tangent spae of �. So if weare given a smeared orientifold urrent j we should write it as a sum of deomposableforms and then assoiate to eah term an orientifold involution as above.Let us now study more formally how we ould write j as a sum of deomposableforms and whether the deomposition is unique. First, let us introdue a basis offorms ei 2 V? that span (loally) TM. Indeed, for the ase of group manifolds wehave suh a basis, whih is even de�ned globally. For the osets left-invariant formsin this basis are also globally de�ned.Now, let V be a d-dimensional vetor spae and V? its dual. A (real/omplex)p-form j 2 �pV? is alled simple or deomposable if it an be written as a wedge2The de�nition with the Mukai pairing is the one appropriate for generalizing to D-branes withworld-volume gauge ux as explained in [99℄. Here it will just give an extra minus sign



B.3 How to dress smeared soures with orientifold involutions 119produt of p one-forms.3 What we are interested in is that there is a one-to-oneorrespondene between (d� p)-planes (our orientifold planes) and deomposable p-forms (up to a proportionality fator). This isomorphism is alled the Pl�uker map.A disussion of the riteria for having a simple form an be found in e.g. [100℄ pp.209-211. We will use here the riterion based onj? = fX 2 V : �Xj = 0g � V ; (B.34)and W = Ann(j?) � V? : (B.35)In [100℄ it is shown that j is simple if and only if dimW = p. Using this the followingalternative riterion is shown:Theorem: A p-form j 2 �pV? is simple if and only if for every (p� 1)-polyvetor� 2 �p�1V, ��j ^ j = 0 ; (B.36)where ��j is the one-form ontration of j with �.Now for the speial ase of three-forms in six dimensions there is another usefultheorem due to Hithin [98℄.Theorem: Consider a real three-form j 2 �3V? and alulate its Hithin funtionalH(j) de�ned in (B.27). Then� H(j) > 0 if and only if j = j1 + j2 where j1; j2 are unique (up to ordering) realdeomposable three-forms and j1 ^ j2 6= 0;� H(j) < 0 if and only if j = �+�� where � is a unique (up to omplex onjugation)omplex deomposable three-form and � ^ �� 6= 0.Now we have two base-independent haraterizations of j: the Hithin funtionalH(j) and dimW . Using these two haraterizations the possible j's and their deom-position in simple terms are lassi�ed in [25℄. Here we will fous on the ase H(j) < 0whih is always the ase for the examples in this thesis. From the above it followsthat if H(j) < 0 then j is a sum of exatly two (onjugate) omplex simple termsand thus of exatly four real simple terms.An important remark is in order: while the Hithin theorem states that the twoomplex forms in the deomposition of j are unique (up to omplex onjugation), thehoie of one-forms out of whih these forms are made is not unique. One still has thefreedom of hoosing a basis of omplex one-forms belonging to a omplex struture,3Note that a (real/omplex) form of �xed dimension is a pure spinor if and only if it is simple.In fat, we ould regard the notion of pure spinor as a generalization of the notion of deomposableforms to polyforms.



120 Generalized geometrywhih is SL(3,C ). As a onsequene the hoie of the four real forms in whih j isdeomposed is not unique. Indeed, suppose we hoose one basis of omplex one-formsand assoiated x and y oordinates: ezi = exi � ieyi . Then j an be written as thesum of the following four terms:j = Re(ez1z2z3) = ex1x2x3 � ex1y2y3 � ey1x2y3 � ey1y2x3 ; (B.37)whih leads to the following orientifold involutions:O6 : ex1 ! �ex1 ; ex2 ! �ex2 ; ex3 ! �ex3 ;O6 : ex1 ! �ex1 ; ey2 ! �ey2 ; ey3 ! �ey3 ;O6 : ey1 ! �ey1 ; ex2 ! �ex2 ; ey3 ! �ey3 ;O6 : ey1 ! �ey1 ; ey2 ! �ey2 ; ex3 ! �ex3 : (B.38)
If we perform a SL(3,C ) transformation, j takes exatly the same form, but nowin the new basis. So alternatively we ould have hosen four orientifold involutionstaking the same form as the old ones, but now in the new basis, whih is rotated.This means that our hoie of orientifold involutions is not unique. We must thenfurther hoose them suh that the struture onstant tensor of the group or oset iseven, and Re
 and J are odd.Appliation to SU(2)�SU(2)Let us now apply the above proedure to the model of setion 3.4.4. Calulating theHithin funtional H(j6) of (3.66) we �nd that it is negative so that it ontains fourorientifold involutions. We must now �x the freedom of hoosing them suh that Re
and J are odd, and the struture onstant tensor f is even. Some reetion shouldmake lear that if Re
 is to be odd, it should be a sum of the same four terms as j6,but with di�erent oeÆients. In fat, we ould reverse the proedure and hoose aomplex basis ezi in whih 
 and J take their standard form:
 = ez1z2z3 ; J = � i2Xi ezi�zi : (B.39)Then Re
 and J are automatially odd under the assoiated orientifold involutions(B.38). However, this should of ourse also be the orientifold involutions that followfrom j6. This will be the ase if and only if j6 has the same terms as Re
 (but withdi�erent oeÆients). One an show that this is the ase if j6 is of the formj6 = Re �0ez1z2z3 + 11e�z1z2z3 + 22ez1�z2z3 + 33ez1z2�z3� ; (B.40)



B.3 How to dress smeared soures with orientifold involutions 121with all oeÆients  real. To bring j to this form we still have the freedom to makea base transformation suh that 
 and J invariant, i.e. an SU(3)-transformation. Apriori, j6 is an arbitrary three-form whih transforms under SU(3) as20 = 1 + �1 + 3 + �3 + 6 + �6 : (B.41)However, we know that j6 has to satisfy the alibration onditions (3.11), whihremove the 3 + �3 representation and only leave the form proportional to Re
 outof 1 + �1. Here the 6 is the (3 � 3)S i.e. the symmetri produt of two fundamentalrepresentations of SU(3). It follows that the most general j6 satisfying the alibrationonditions looks likej6 = 0Re
 + Re �kig(kj�|d�z�| ^ �zi)
�= 0Re
 + Reh11e�z1z2z3 + 22ez1�z2z3 + 33ez1z2�z3+ 12 �e�z2z2z3 + ez1�z1z3� + 13 �e�z3z2z3 + ez1z2�z1� + 23 �ez1�z3z3 + ez1z2�z2� i ; (B.42)with 0 real and the entries of the oeÆient matrixC = 0� 11 12 1321 22 2331 32 33 1A ; (B.43)omplex. Now we have to �nd an SU(3)-transformation to put j6 in the form (B.40).0 does not transform but is lukily already of the right form, while the oeÆientmatrix transforms as C ! UCUT : (B.44)From (B.40) we see that we want to transform C to a diagonal real matrix. In fat,sine the above transformation annot hange the determinant this is only possible ifdetC 2 R : (B.45)This is a ondition we have to add to the alibration onditions. For the j6 of (3.66),one an hek that it is indeed satis�ed and it is possible to �nd the omplex oordi-nates with the required properties. Also, under the assoiated orientifold involutionthe struture onstant tensor f is even as required. Note that alternatively, as weatually did in (3.67), we an also onstrut a omplex basis assoiated to 
 suhthat f is even. This then automatially implies that j is odd and that it is a sum ofthe same four terms as Re
.



122 Generalized geometryB.4 E�etive supergravityThe superpotential for SU(3)� SU(3)-struture was derived in various ways in [33, 35,36℄ (based on [84, 34℄). Here we will follow the approah of [36℄, whih alulated thesuperpotential and the (onformal) K�ahler potential in the superonformal formalismof [101℄.The bosoni part of the e�etive four-dimensional superonformal ation takes thefollowing formS = Z d4xp�g4�12NR+ 3NI �J g��D�XID�X� �J + 13WI �N�1�I �JW��J + � � �� ;(B.46)where the vetor multiplet setor, inluding D-terms, has been omitted. Here theXI are the n + 1 salars and D�XI = ��XI � 13 iA�XI , where A� is the gauge �eldassoiated to the U(1)-transformations, generated by � (see (B.49)), in the omplexWeyl transformation. From dimensional redution of the ten-dimensional supergrav-ity ation the onformal K�ahler potential N and the superpotential W were foundand read (here we reinstate dimensionful oupling onstants)N = 1�210 ZM d6ypdet h e2A�2� = 18�210�i ZM e�4AhZ; �Zi�1=3�i ZM e2Aht; �ti�2=3 ;(B.47a)W = 14�210 ZMhZ; F + i dH(ReT )i : (B.47b)Here Z, ReT and t are de�ned throughZ = �ie3A��	2 ; (B.48a)t = e��	1 ; (B.48b)ReT = Imt = e��Im	1 : (B.48)The dimensionally redued ation is naturally invariant under the following om-plex Weyl symmetryA! A + � ; g! e�2�g ; Z ! e3�+i�Z ; N ! e2�N : (B.49)Sine the salars XI transform asXI ! e�+ i3�XI ; (B.50)we �nd that Z must be homogeneous of degree 3 in the XI . To go to the usualEinstein frame, we must gauge-�x the Weyl symmetry. We �rst expliitly isolate theunphysial degree of freedom, whih is alled the onformon, as followsXI = Y xI(�i) ; Z = Y 3Z(�i) N = jY j2e�K=3; W = Y 3M�3P WE(�i) ;(B.51)



B.4 E�etive supergravity 123where Y is the onformon, �i are the n salar degrees of freedom in the Einsteinframe and MP the four-dimensional Plank mass. K and WE will turn out to be theK�ahler potential and the Einstein-frame superpotential after gauge-�xing. Indeed, inthe new oordinates the ation (B.46) beomesS =Z d4xp�g4 �12 jY j2e�K=3R� jY j2e�K=3Ki�| g�� ���i�� ���| + � � ��M�6P jY j4eK=3 �Ki�|DiWED�|W�E � 3jWEj2�+ � � � � ; (B.52)where for the kineti term of the salars we omitted piees that will vanish after thegauge-�xing.We then impose the following gaugeN = jY j2e�K=3 =M2P ; (B.53)whih obviously gives us the usual Einstein-frame ationS = Z d4xp�g4 �M2P2 R�M2PKi�|���i�� ���| � V (�; ��)� ; (B.54)and also leads to the standard expression for the potentialV (�; ��) =M�2P eK �Ki�|DiWED�|W�E � 3jWEj2� : (B.55)The U(1)-symmetry must also be gauged, but for more details on this we refer to[101℄.The K�ahler potential readsK = � ln i ZM e�4AhZ; �Zi � 2 ln i ZM e2Aht; �ti+ 3 ln(8�210jY j2) : (B.56)Note that in [102℄ it is shown that Imt is a funtion of Ret so that t an be seen as(non-holomorphially) dependent on T . To take this relation properly into aountwe use the fat that the K�ahler potential for the t-setor may be written asKt = �2 ln 4 ZM e2AH(Imt) ; (B.57)where H(Imt) is the Hithin funtional [98, 102, 33℄. For stable pure spinors ofSO(6; 6) it is de�ned as followsH(Imt) =r� 112J ��J �� : (B.58)where J�� = hImt;���Imti is a generalized omplex struture and �;� = 1; : : : ; 12.The generalized SO(6; 6) gamma matries �� at on forms as�� = �m for m = � = 1; : : : ; 6 and �� = em ^ for m + 6 = � = 7; : : : ; 12 :(B.59)



124 Generalized geometryIn the ase of SU(3)-struture Imt = �Im
, and the Hithin funtional redues to(B.27).Note that if we make an expansion of the warp fator A in harmoni modesA = A0 +X~n 6=0 A~nY(0)~n (y) = A0 + ~A; (B.60)the Weyl transformation (B.49) only ats on A0 sine � is onstant in the internaloordinates (while of ourse it an depend on the four-dimensional oordinates). Sup-pose A and � are onstant over the internal spae (so ~A=0). A good hoie of Y in(B.51) would be Y = eA��=3MP ; (B.61)where the MP is introdued for onveniene as it allows K to be dimensionless uponimposing the Einstein gauge (B.53). With this hoie we �nd for the superpotentialand the K�ahler potentialK = � ln i ZMh	2; �	2i � 2 ln i ZMht; �ti+ 3 ln(8�210M2P ) ; (B.62a)WE = �i4�210 ZMh	2; F + i dH(ReT )i : (B.62b)Note that another hoie Y 0 = fY would amount to a K�ahler transformationW 0E = f�3WE ; K0 = K + 3 ln f + 3 ln f � : (B.63)Using the expansion in bakground and utuations of (4.18) and (4.20) we anrewrite the superpotential asWE = �i4�210 ZMh	2eÆB ; F̂ + i dĤ(eÆBReT � iÆC)i ; (B.64)where we used property (B.5). This shows how the �elds organize in omplex multi-plets 	2eÆB and ReT � iÆC, whih will be learer in onrete examples.Speializing to the SU(3) ase with pure spinors (B.16) and the identi�ation (B.6)for type IIA, the superpotential takes the formWE = �ie�i�4�210 ZMhei(J�iÆB); F̂ � idĤ �eÆBe��Im
 + iÆC3�i ; (B.65)and the K�ahler potential is given byK = � lnZM 43J3 � 2 lnZM 2 e��Im
 ^ e��Re
 + 3 ln(8�210M2P ) ; (B.66)where e��Re
 should be seen as a funtion of e��Im
.



Appendix CTen-dimensional geometriesIn this appendix we introdue the ten-dimensional geometries that we want to use asthe internal 6d ompat manifolds with SU(3)-struture. These are so-alled nilman-ifolds and osets spaes and they are totally haraterized by the struture onstantsof the assoiated Lie algebra. We do not want to go into the details here but justwant to ollet the results appearing in the literature that we will need in this thesis.The key feature of suh manifolds is that they allow for left-invariant (globally de-�ned) one-forms and that the exterior derivative of those one-forms, when expandedin two-forms, only has onstant oeÆients. For later use we will also ompute thesalar urvature of suh spaes. Furthermore we need to make sure that we an makethe non-ompat examples ompat by moding out a disrete symmetry. We willstart with reviewing group-manifolds before we disuss nilmanifolds and oset spaes.Good reviews are given in [103℄ while an introdution into the topi an be found in[104℄.C.1 Group-manifoldsA Lie group G is a manifold and group at the same time. Let ym, m = 1; : : : ; dim(G),be loal oordinates on G and let L(y) be an element of G. The left ation is de�nedas a map from G to G: gL(y) = L(y0) ; (g 2 G) (C.1)It indues a map between the tangent spaes at di�erent points. Vetor �elds invariantunder this map are alled left-invariant and they de�ne the Lie algebra G of G.Sine any left-invariant vetor �eld is uniquely determined by its value at e, theidentity element of G, G an be identi�ed with Te(G). If we denote the basis of Te(G)as TA with A = 1 : : : dim(G) one has[TA; TB℄ = fCABTC ; (C.2)



126 Ten-dimensional geometrieswhere the fCAB are onstants sine the left hand side is left-invariant.The left-invariant one-forms eA are de�ned through the Lie-algebra valued one-form E(y) � L�1(y)dL(y) = eA(y)TA ; (C.3)whih we expanded in generators of G. This one-form is left-invariant and by de�ni-tion it obeys the so alled Maurer-Cartan equationsdE = �E ^ E : (C.4)Plugging in (C.3) and using (C.2), one getsdeA = �12fABCeB ^ eC : (C.5)The Jaobi-identity for the struture onstants ensures that taking another exteriorderivative gives zero. If the Lie group G is non-ompat one needs to make sure thatone an make it ompat by moding out a disrete subgroup � yielding M = G=�.We ome to that point in the next setions.So we see that for a Lie group the exterior derivative of the globally de�ned one-forms involves the struture onstants of the Lie algebra. One an also show the otherdiretion. A manifoldM with dim(M) globally de�ned linear independent one-formsis alled parallelizable. One an then of ourse always expand dei in the two-formbasis ei ^ ej, but not neessarily with onstant oeÆients. If they are onstant,the manifold is alled homogeneous. Imposing further d2ei = 0 fores the onstantoeÆients to satisfy the Jaobi identities, thus we an assoiate a Lie group G tothem. If it is non-ompat this means M = G=� sine we want M to be ompat.One possible metri on group manifolds is the so alled Cartan-Killing metride�ned by �AB = fYAXfXBY ; (C.6)whih has the property fCA[BgD℄C = 0 : (C.7)The Levi-Civita onnetion one-form !AB of a metri g is uniquely determined bythe two equations 0 = dgAB � !CAgCB � !CBgAC ; (C.8)0 = deA + !AB ^ eB : (C.9)For a left-invariant metri the seond equation beomes!AB � gAC!CB = �!BA (C.10)



C.2 Nilmanifolds 127Using (C.2) in (C.8), one an show that the solution of (C.8) and (C.10) is given by!AB = gAC �12fECBgED + fED[BgC℄E� eD : (C.11)Now it is straight forward to ompute the urvature two-formRAB = 12RABCDeC ^ eD � d!AB + !AC ^ !CB : (C.12)Using (C.2) and ontrating indies we �nd for the Rii salarR = �12gABfCDAfDCB � 14gABgCDgEFfACEfBDF ; (C.13)where the �rst term is the ontration of the killing metri.In the next two setions we will introdue the expliit Lie algebras that we want tostudy. Levi's theorem tells us that any Lie-algebra A an be written as the semi-diretsum of a solvable and a semisimple Lie algebra. We will look at examples whih fallinto the two extreme lasses, namely either A is solvable or A is semisimple. SolvableLie algebras are de�ned by a reursive series. If we set A0 = A and de�ne theseries As � [As�1; As�1℄, then A is alled solvable if this series beomes zero aftera �nite number of steps. A partiular sublass of solvable Lie algebras is given bynilpotent Lie algebras. They are de�ned in a similar way by demanding that theseries As � [As�1; A℄ beomes zero after a �nite number of steps. A speial propertyof nilpotent algebras is that the Killing form (Killing metri) is identially zero. Asexplained in [72℄ they admit a generalized omplex struture, whih makes them goodandidates to look for type II supergravity solutions. For Semisimple Lie algebras onthe other hand, the Killing form is non-degenerate. There already exist some examplesof type IIA solutions in the literature [58, 76℄, whih gives hope that there might bemore.C.2 NilmanifoldsLet us start with the nilpotent algebras. For these manifolds the onstrution of theleftinvariant one-forms and the ation of the exterior derivative works exatly as inthe last setion. The question that arises is whether one an make them ompat.If yes, the assoiated manifold M = G=� is alled a nilmanifold. Let's take as anexample the Heisenberg algebra, whih is nilpotent. The only non-vanishing strutureonstant is f 312 leading tode1 = 0 ; de2 = 0 ; de3 = Ne1 ^ e2 : (C.14)A ompat notation for that is (0; 0; N12). Let us hoose a gauge wheree1 = dx1 ; e2 = dx2 ; de3 = dx3 +Nx1e2 : (C.15)



128 Ten-dimensional geometriesWe an ompatify this by making the identi�ation (x1; x2; x3) ' (x1; x2 + a; x3) '(x1; x2; x3 + b) with a,b integer but we an not do the same for x1 beause e3 wouldnot be single-valued. For that we need to twist the identi�ation by (x1; x2; x3) '(x1 + ; x2; x3 � Nx2). The resulting nilmanifold G=� is an S1 �bration over T 2,whih is topologially distint from T 3. More loosely, nilmanifolds are often alledtwisted tori and the struture onstants are referred to as metri uxes. A generalnilmanifold is always an iteration of torus �brations.It is possible to perform a systemati san for solutions on nilmanifolds beausethe nilpotent Lie algebras up to dimension seven have been lassi�ed and six is thehighest dimension where there are �nitely many. There are 34 isomorphism lasses ofsimply-onneted 6d nilpotent Lie groups. A list of them an be found in [72℄. Thelassi�ation, however, does not take into aount whether it is possible to produea ompat manifold by modding out a disrete subgroup �. We only want to makesure that one � exists but do not are about whether there are more. By looking at(C.14), we see that already in three dimensions there are in�nitely many nilmanifolds.However, they are all isomorphi via a resaling of e3. The information lost in thisresaling is whih subgroup is being modded out. This hoie does not matter for usbeause we only work with left-invariant forms, whih have to have onstant oeÆ-ients. It turns out that the neessary ondition is fABA = 0. This ondition beomessuÆient for struture onstants that are rational in some basis. It is easy to see thatthis ondition is neessary. If fABA 6= 0, the top form dvol � e1 ^ : : : ^ e6 would beexat, but a ompat manifold needs a top-form non-trivial in ohomology. Indeed, if� � �A1:::An�A1eA2 ^ : : : ^ eAn with �A1 onstant, one has d� = (fABA�A)dvol show-ing that the volume would be exat. This argument leaves open the possibility thatdvol = fe1 ^ : : : ^ e6 with some funtion f . This would not be left-invariant and ingeneral it is not lear that omputing the ohomology using left-invariant forms givesthe same as using all forms. However, it turns out that this is true for nilmanifoldsafter taking the quotient. This shows that fABA = 0 is a neessary ondition and anie feature of nilmanifolds is that it is automatially satis�ed.The Rii salar (C.13) simpli�es for nilmanifolds due to the vanishing of theKilling-form to R = �14gABgCDgEFfACEfBDF ; (C.16)whih is never positive.C.3 Coset spaesLet us now disuss the semisimple Lie algebras. To do so we will have to generalizethe above de�nitions to the so alled oset spaes M = G=H, where H is a subgroupof g whih we divide out. We will only onsider ompat Lie groups.



C.3 Coset spaes 129Let ym, m = 1; : : : ; dim(G)�dim(H), be loal oordinates on G=H and let L(y)be a oset representative. The left ation of G on G=H is now de�ned as:gL(y) = L(y0)h ; (g 2 G; h 2 H) ; (C.17)beause by ating with g from the left on a oset representative L(y), we will ingeneral get an element belonging to a di�erent oset whose representative we allL(y0). To bring L(y0) to that element we need an extra h transformation. It induesa map between the tangent spaes at di�erent points. Vetor �elds invariant underthis map are alled left-invariant and they de�ne the Lie algebra of G=H.Let Ha be a basis of generators of the algebra H, and let Ki be a basis of theomplement K of H inside G, i.e. a = 1; : : : ; dim(H) and i = 1; : : : ; dim(G)�dim(H).We de�ne the struture onstants as follows:[Ha;Hb℄ = f abH ;[Ha;Ki℄ = f jaiKj ;[Ki;Kj℄ = fkijKk + faijHa ; (C.18)where we have used that for ompat H one an always �nd a basis of generatorsfKig suh that the struture onstants f bai vanish [103℄. In other words: [H;K℄ � K,and in this ase the oset G=H is alled redutive.Let ym, m = 1; : : : ; dim(G)�dim(H), be loal oordinates on G=H and let L(y)be a oset representative. The deomposition of the Lie-algebra valued one-form Eis not left-invariant anymore, and it an be deomposed asE(y) � L�1(y)dL(y) = ei(y)Ki + !a(y)Ha : (C.19)It still solves the Maurer Cartan equation (C.4) and by plugging its expansion into itand using (C.18), one arrives atdei = �12f ijkej ^ ek � f iaj!a ^ ej ; (C.20)d!a = �12faijei ^ ej � 12fab!b ^ ! : (C.21)Furthermore plugging (C.19) into (C.17) yieldsei(y0)Ki + !a(y0)Ha = ei(y)hKih�1 + !a(y)hHah�1 + hdh�1 : (C.22)Sine G=H is ompat we know that hKh�1 � K and we an de�neD ij (h�1)Ki � hKIh�1 : (C.23)This gives the transformation rule for the oframe ei on G=H:ei(y0) = ej(y)D ij (h�1) : (C.24)



130 Ten-dimensional geometriesWe are interested in expanding in forms that are left-invariant under the ation of Gon G=H. Any ovariant form B on G=H an be written asB = 1n!Bi1:::inei1 ^ : : : ^ ein (C.25)and by using (C.24) left invariane of B then amounts toBi1:::in = Bj1:::jnD j1i1 (h) : : :D jnin (h) (C.26)due to the ation of H and Bi1:::in = onstant (C.27)due to homogeneity. The in�nitesimal version of (C.26) isf ja[i1Bi2:::ip℄j = 0 ; (C.28)where we have used the de�nition (C.23) and (C.18). If one now takes the exteriorderivative dB this equation ensures that the part oming from the seond term in(C.20) drops out and we get again a left-invariant form. Atually, one an reverse thisproedure to obtain all the left-invariant forms on a oset spae. One just omputesfor all possible forms the exterior derivative using (C.20) and keeps only those forwhih the seond term drops out. This gives all left-invariant forms.Similarly, a metri g = gijei 
 ej is left-invariant if and only if its omponents gijare onstants and fka(igj)k = 0 : (C.29)Again we ompute the Levi-Civita onnetion one-form !ij from0 = dgij � !kigkj � !kjgik ; (C.30)0 = dei + !ij ^ ej : (C.31)Choosing ei to be the oframe given in (C.19) the seond equation beomes for aleft-invariant metri !ij � gik!kj = �!ji (C.32)Using (C.20) in (C.30) this time the solution of (C.30) and (C.32) is given by!ij = f iaj!a + gim�12f lmjglk + f lk[jgm℄l� ek ; (C.33)whih now has an extra term ompared to (C.11). The urvature two-form isRi j = 12Ri jklek ^ el � d!ij + !ik ^ !kj ; (C.34)



C.3 Coset spaes 131and using (C.20) and ontrating indies we �nd for the Rii salar:R = �gijfkaifakj � 12gijfklif lkj � 14gijgklgmnf ikmf jln ; (C.35)whih also has an extra term ompared to (C.13)As was explained in [59℄, in order for a oset spae G=H to allow for an SU(3)-struture, the group H should be ontained in SU(3). The list of suh six-dimensionalosets and the orresponding struture onstants were given in and are summarizedin table C.1. Out of these only �ve lead to N = 1 AdS4 solutions [59℄, as we haveindiated in the table. We also indiated whether the oset admits an SU(3)-strutureat all, whih would be the �rst requirement.G H SU(3)-struture N = 1 AdS4G2 SU(3) p pSU(3)�SU(2)2 SU(3)Sp(2) S(U(2)�U(1)) p pSU(3)�U(1)2 S(U(2)�U(1))SU(2)3�U(1) S(U(2)�U(1))SU(3) U(1)�U(1) p pSU(2)2�U(1)2 U(1)�U(1)SU(3)�U(1) SU(2) p pSU(2)3 SU(2)SU(2)2�U(1) U(1) pSU(2)2 1 p pSU(2)�U(1)3 1 pTable C.1: All six-dimensional manifolds of the type M = G=H, where H is asubgroup of SU(3) and G and H are both produts of semisimple and U(1)-groups.To be preise this list should be ompleted with the osets obtained by replaing anynumber of SU(2) fators in G by U(1)3.
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Appendix DA note on integrating out d(3)3Both in the torus and in the Iwasawa analysis we integrated out d(3)3 . In general onegets from the part of the equation of motion of F4 with (1; 6) index struturee 12� ?4 d(3)3 ^ vol6 =+ 12e 12�f (Æg�� � Ægmm � Æ�) ^ vol6+ (3)iĤ ^ Y (3+)i � bi ^ Y (2�)i ^ F̂4 + Æf ; (D.1)where the integration onstant Æf orresponds to a variation of the bakground uxf , whih we put to zero.This desribes the external part of F4, whih equivalently an be desribed by theinternal part of F6. Indeed, from varyingF6 = e 12� ? F4 ; (D.2)whih we got from (A.1), followsÆF6;int = 12e 12�f (Æg�� � Ægmm � Æ�) ^ vol6 + e 12� ? d(3)3 ; (D.3)so that plugging in (D.1) we �ndÆF6;int = (3)iĤ ^ Y (3+)i � bi ^ Y (2�)i ^ F̂4 : (D.4)This orresponds to the part of ÆF6 in (4.19) that is �rst order in the utuations.We onlude that instead of introduing d(3)3 , the external part of F4, we might aswell have worked with the internal part of F6. That is exatly what we will do in thesuperpotential analysis.
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