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Zusammenfassung

Holographische Theorien beschreiben höherdimensionale physikalische Systeme durch eine
niederdimensionale Theorie oder umgekehrt. In der Stringtheorie sind zwei derartige Situa-
tionen bekannt: Die Anti-de Sitter/Conformal Field Theorie-Korrespondenz (AdS/CFT-
Korrespondenz), welche in Kapitel 2 näher erläutert wird, ermöglicht eine äquivalente Be-
schreibung von Stringtheorie in Räumen mit fünfdimensionaler Anti-de Sitter-Asymptotik
durch Eichtheorien auf dem konformen Rand dieser Räume, insbesondere dem vierdimen-
sionalen Minkowskiraum. Umgekehrt ermöglicht die Korrespondenz die Beschreibung von
Eichtheorien bei starker Kopplung durch zehndimensionale Supergravitation. Andererseits
beschreiben – wie in Kapitel 5 ausgeführt – quantenmechanische Modelle mit matrixwer-
tigen Freiheitsgraden, sogenannte Matrixmodelle, holographisch die elfdimensionale M-
Theorie, eine aus der Stringtheorie folgenden Quantentheorie der elfdimensionalen N = 1
Supergravitation. Diese Dissertation beschäftigt sich mit drei Verallgemeinerungen dieser
beiden holographischen Modelle auf physikalische Systeme mit weniger Symmetrien.

Die AdS/CFT-Korrespondenz wurde, mit Hinblick auf eine zukünftige Anwendbarkeit zur
Beschreibung der Infrarotdynamik von QCD, insbesondere auf Eichtheorien mit fundamen-
taler Materie (Quarks) erweitert. In Kapitel 3 wird eine dieser Erweiterungen, das N = 2
supersymmetrische D3-D7-Modell, in konstanten äußeren elektrischen und magnetischen
Feldern sowie bei endlicher Temperatur analysiert [1], wobei die Lorentzsymmetrie explizit
gebrochen ist. Ich zeige, daß das Magnetfeld spontane chirale Symmetriebrechung indu-
ziert und mesonische Anregungen stabilisiert. Das elektrische Feld hingegen destabilisiert
die Mesonen und induziert einen Metall-Isolator-Phasenübergang bei endlicher Quarkmas-
se.

In Kapitel 4 wird eine neue Deformation des D3-D7-Modells durch einen Fayet-Iliopoulos-
Term vorgestellt [2]. Diese Deformation bricht Supersymmetrie, und erlaubt somit die Be-
schreibung nichtsupersymmetrischer Zustände in der Feldtheorie. Ich beschreibe eine exak-
te Abbildung zwischen nichtsupersymmetrischen Coulomb-Higgs-Zuständen der Feldtheo-
rie, in welchen Teile der Eichsymmetrie spontan gebrochen sind, und nichtkommutativen
Instantonkonfigurationen auf D7-Branen im AdS5 × S5-Hintergrund. Diese verallgemei-
nerte AdS/CFT-Dualität wird verschiedenen Konsistenztests, insbesondere der globalen
Symmetrien sowie der Supersymmetrie, unterworfen.

Kapitel 5 schließlich stellt basierend auf [3] ein aus phänomenologischen Annahmen herge-
leitetes bosonisches U(N) Matrixmodell im räumlich flachen Robertson-Walker-Universum
vor. Die Herleitung erfolgt mit Hilfe der Matrixregularisierungsprozedur der Nambu-Goto-
Wirkung einer bosonischen Membranen und basiert auf einer neuartigen Eichfixierungs-
methode, welche die Lichtkegeleichung ersetzt. Am Ende von Kapitel 5 wird gezeigt, daß
schon kurz nach dem Urknall, d.h. sobald sich das Universum auf die Größe einiger Plan-
cklängen ausgedehnt hat, das Matrixmodell Lösungen besitzt, welche als glatte räumliche
Geometrien interpretiert werden können. Abschnitt 5.3.1 enthält darüber hinaus eine in
sich geschlossene Einführung in die Verbindung zwischen Matrixmodellen, Quantengravi-
tation und M-Theorie.

Eine erweiterte Einführung ist in Kapitel 1, eine ausführliche Diskussion der Resultate in
Kapitel 6 zu finden.





Abstract

Holographic models are theories describing higher-dimensional physics through a lower-
dimensional theory or vice versa. In string theory there exist two such setups: The Anti-
de Sitter/Conformal Field Theory (AdS/CFT correspondence, which will be explained in
chapter 2, yields an equivalent description of string theory in asymptotically Anti-de Sitter
space-times in terms of gauge theories defined on the conformal boundary of these space-
times, in particular four-dimensional Minkowski space. Conversely, the strong coupling
regime of these gauge theories can be described in terms of ten-dimensional supergravity.
On the other hand, quantum mechanical models of matrix valued degrees of freedom, so-
called matrix models, holographically describe M-theory, the proposed quantum theory of
eleven-dimensional supergravity. This dissertation deals with three generalisations of these
two holographic theories to physical scenarios with a smaller amount of symmetries.

With the goal of future applications to the infrared dynamics of QCD in mind, the
AdS/CFT correspondence has been extended to include quark-like degrees of freedom
transforming in the fundamental representation of the gauge group. In chapter 3 one of
these extensions, the N = 2 supersymmetric D3-D7 model, is analysed [1] in constant
external electric and magnetic fields and at finite temperature. These external fields ex-
plicitly break Lorentz invariance. I show that the magnetic field induces spontaneous chiral
symmetry breaking and stabilises mesonic excitations. The electric field on the other hand
destabilises the mesons and induces a metal-insulator phase transition at finite quark mass.

In chapter 4 a new deformation of the D3-D7 model via a Fayet-Iliopoulos term [2] is
presented. This deformation breaks supersymmetry, allowing for the description of non-
supersymmetric states in the strong coupled gauge theory. I describe an exact map between
nonsupersymmetric Coulomb-Higgs states with partially spontaneously broken gauge sym-
metry of the field theory, and noncommutative instanton configurations on the D7 brane
probes in AdS5 × S5. This extended AdS/CFT duality is subjected to several consistency
checks, in particular of global symmetries and supersymmetry on both sides of the corre-
spondence.

Finally, based on several phenomenological assumptions, in chapter 5 a bosonic U(N) ma-
trix model in the spatially flat Robertson-Walker geometry is derived [3]. The derivation
uses the procedure of matrix regularisation of the Nambu-Goto action of a bosonic mem-
brane, and is based on a new kind of gauge fixing procedure replacing light-cone gauge.
At the very end of chapter 5 the existence of solutions of the proposed matrix model ad-
mitting an interpretation of smooth spatial geometries shortly after the universe expanded
to a size of several Planck lengths is shown. Furthermore in section 5.3.1 a self-contained
introduction into the connection between matrix models, quantum gravity and M-theory
is given.

An extended introduction to this thesis can be found in chapter 1, as well as a detailed
discussion of the results in chapter 6.
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Chapter 1. Introduction and Overview 1

Chapter 1

Introduction and Overview

Gleichwohl müßten die Atome zufolge der inneratomischen Elektronenbewegung nicht nur
elektromagnetische, sondern auch Gravitationsenergie ausstrahlen, wenn auch in winzigem
Betrage. Da dies in Wahrheit in der Natur nicht zutreffen dürfte, so scheint es, daß die
Quantentheorie nicht nur die Maxwellsche Elektrodynamik, sondern auch die neue Gravi-
tationstheorie wird modifizieren müssen.

Albert Einstein [4]

In the twentieth century, the description of the fundamental building blocks of the physical
world, which are the known particles and their interactions, has seen remarkable progress.
The current paradigm behind this success is that both matter particles and the four known
fundamental forces between them (electromagnetic, weak, strong and gravitational force)
should be described in terms of quantum field theories [5–7]. The currently accepted
quantum field theory describing all known particles and interactions except of gravity
(which plays a special role explained below) is the standard model of particle physics [8], a
gauge theory based on the gauge group SU(3)×SU(2)×U(1)Y . The SU(3) sector governs
the dynamics of the strong interaction, i.e. of quarks and gluons, while the SU(2)×U(1)Y

sector gives a unified description of the electromagnetic and weak forces [9–11], where
the U(1)Y factor couples to hypercharge. The electroweak symmetry breaking mechanism
[12–15] breaks the SU(2)×U(1)Y gauge symmetry to the electromagnetic U(1)EM group,
leaving only the photon massless and giving the W±/Z bosons their mass. The electroweak
symmetry breaking mechanism also predicts the existence of a massive scalar particle, the
Higgs boson, but it does not predict its mass. To date, the predictions of the standard
model of particle physics are confirmed by experiments with incredible accuracy [16], in
particular in the electroweak sector1 but also in QCD, where e.g. lattice calculations can
determine the proton mass with an accuracy of a few percent [18].

1The prime example is of course the anomalous magnetic moment of the electron, with an experimental
value of (g − 2)/2 = 1159652181.1(7) × 10−12 favoured by the particle data group [16], while one of the
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a) Quantum Gravity, String Theory and Holography

Albeit all successes, the standard model has several shortcomings of more or less severe
nature, some of which lead to the belief that the standard model itself cannot be considered
as a complete description of nature but needs to be embedded in a larger theoretical
framework. The arguably most important shortcoming is that gravity, i.e. Einstein’s
theory of general relativity, cannot simply be incorporated into the standard model as a
perturbatively quantised sector. The underlying problem is our ignorance about how to
quantise gravity, being a perturbatively nonrenormalisable theory, in a consistent fashion.
The usual way of coping with this situation is to either incorporate gravity as a classical
theory which determines the background space-time for the standard model sector (i.e. to
analyse quantum field theories on curved space-times) or to accept the nonrenormalisability
[19–24] and simply use the standard model with perturbatively quantised gravity as an
effective theory which will break down at the Planck scale. Neither of these approaches
are satisfactory: Although the arguments against coupling a classical sector to a quantum
theory are not totally conclusive [25–27], the thought experiments by Eppley and Hannah
[28] indicate that interactions of a classical gravitational field with a quantum system may
violate e.g. the uncertainty principle. Living with nonrenormalisability is neither a good
option, since the theory looses its predictability at the Planck scale due to the necessity to
experimentally fix infinitely many coupling constants for the higher dimension operators
generated by quantum corrections, surely not a wanted feature of a fundamental theory of
nature.

The cosmological constant problem, i.e. the inability of the standard model of particle
physics (or, to date, of any other theory) to explain the small but nonzero measured value
of the cosmological constant of (in Planck units)

Λ = 10−123 ,

is probably the most severe indication that treating the standard model together with
general relativity as an effective field theory is not consistent: In the absence of an addi-
tional mechanism (such as supersymmetry) to cancel loop corrections, loop contributions
from both the standard model particles and from gravitons to the vacuum energy den-
sity generate [29, 30] a cosmological constant of order of the imposed energy cutoff to the
power four. Since from the point of view of the standard model the only natural choice for
the cutoff is the Planck scale, the cosmological constant is predicted by this effective field
theory treatment to be of order one in Planck units, hence one-hundred and twenty-three
magnitudes too large. This is indeed a remarkable failure of our understanding of reality!
Unfortunately this observation does not give many hints which way to pursue towards a
more satisfactory formulation of quantum gravity.

The conclusion which can be drawn from the perturbative nonrenormalisability of the stan-

best current theoretic predictions coming from an eight-loop calculation including hadronic and weak
contributions is 1159652182.79(7.71) × 10−12 [17].
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dard model coupled to general relativity is that there must exist an ultraviolet completion,
i.e. a theory which at high energies may be formulated in terms of fundamentally different
degrees of freedom but which reduces at distances greater than the Planck length to the
standard model plus gravity. There exists at least one consistent candidate theory for such
an ultraviolet completion: String theory (see sec. 2.2 and references therein for more de-
tails) replaces the pointlike nature of particles and the local interactions in quantum field
theory by one-dimensional extended objects, so-called strings, which interact nonlocally
and in this way render scattering amplitudes generically better behaved in the ultraviolet
than in perturbative quantum field theory.2 As will be explained in chapter 2, string theory
includes both gauge theories as open string excitations as well a gravity in the form of closed
string excitations. It provides a framework for calculating low energy effective actions, in
particular the contributions from higher derivative operators. Perturbative string theory
thus provides a well-defined framework for quantising gravity, and the same is believed to
be true at the nonperturbative level.

Concerning the cosmological constant problem, the obvious conclusion is the necessity to
cancel in some way the vacuum fluctuations which generate the huge vacuum energy density
(as well as nonperturbative contributions). To date, this is neither achieved by supergravity
theories nor by string theory [30,31]. Thus the cosmological constant problem seems not to
be tied in an obvious way to the problem of finding a consistent theory of quantum gravity,
which presumably makes it much harder to solve. It is however conceivable that imposing
a yet unknown symmetry principle could protect the volume term in the Einstein-Hilbert
action from quantum corrections [32].

On the other hand, the holographic principle put forward by ’t Hooft and Susskind,
a peculiar property believed to be a necessary feature of any theory of quantum gravity
[33,34], might play a role in a solution of the cosmological constant problem [35–40]. At a
glance, the holographic principle is based on the holographic entropy bound, which states
that the entropy enclosed in a spatial volume cannot scale faster than the enclosing area
of this spatial volume. If it would, the energy carried by the enclosed states would be,
roughly, enough to collapse and form a black hole. For the actual estimate see section 2.1.
On this basis ’t Hooft boldly conjectured that the quantum theory governing the degrees of
freedom inside the volume must be describable in terms of a theory (maybe even a quantum
field theory) living in one dimension less, namely on the bounding surface of the volume.
In particular, the entropy scaling of this holographic theory can not be faster than with
the area of the bounding surface, i.e. the information density should not exceed one bit per
Planck area. This amounts to a huge reduction of the possible number of degrees of freedom
in nature which, if a well-defined calculation in some proposed model of quantum gravity
could be done, would presumably reduce the contribution to the vacuum energy by quite

2Closed string one-loop amplitudes, which includes the gravitational sector, can even be shown to
be finite due to modular invariance. Open string ultraviolet divergences can be reinterpreted as infrared
divergences in closed string exchange channels due to open-closed string duality and do not pose a problem.
See chapter 5 of [31] and references therein for more details.
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an amount, thus either solving or at least lessening the cosmological constant problem. So
far this is all speculation, since despite several attempts [35–40] no convincing calculation
of the cosmological constant in a well-defined holographics setup has been carried out yet.

In string theory there naturally occur at least two intrinsically holographic descriptions
of quantum gravitational physics, both of which play a role in this thesis. These de-
scriptions are the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspon-
dence [41], a holographic duality between string theories on asymptotically Anti-de Sit-
ter space-times and gauge theories defined on the boundary of these space-times, and
the nonperturbative definition of M-theory (the supposed ultraviolet completion of
eleven-dimensional supergravity) via matrix models in general, and in particular for
the flat eleven-dimensional background via the matrix model proposed by Banks, Fis-
chler, Shenker and Susskind (BFSS) [42]. Both descriptions are well-defined setups for
formulating quantum gravitational questions, and in both cases the holographic bound on
information density holds [42,43]. In the AdS/CFT setup, which will be explained in great
detail in chapter 2, the holographic bound holds after regulating the infinite area of the
boundary of AdS space with a ultraviolet cutoff, which translates into an infrared (large
volume) cutoff for the interior of AdS space [43]. The BFSS matrix model fulfills the holo-
graphic bound in a very particular way [42]: The transverse size of a threshold bound state
of N D0 branes (which are the fundamental degrees of freedom described by the matrix

model) grows, for large N , as N
1
9 in eleven-dimensional Planck units, which is an indication

of the incompressibility of the D0 branes in the nine-dimensional transverse space. The
“holographic surface” in the case of the discrete light-cone quantisation (DLCQ) of M-
theory is thus the nine-dimensional space transverse to the light-cone. Although it is surely
too bold to conclude from this that either AdS/CFT or the BFSS matrix model is an in
all aspects satisfying description of quantised gravity, the fulfilled holographic information
bound reassures at least a little bit that we are on the right track.

The main theme of this thesis, as the title suggests, is the application of holography in
the presence of external fields and time-dependent backgrounds. In the following I will
use the AdS/CFT correspondence as a tool to describe the physics of strongly coupled
gauge theories, and in particular extend it in chapters 3 and 4 to situations with a lower
amount of symmetry. The rationale of this approach to gauge theories is the converse of
what was just explained: Instead of trying to define quantum gravity in a bulk region by
a theory on the boundary of this region, which is of course also possible in the AdS/CFT
setup, classical gravitational physics in the bulk is used, in a certain limit, to describe
the dynamics of strong coupled gauge theories. In chapter 5 I will then come back to the
holographic approach to quantum gravity, more precisely to the matrix model approach.
There I will present a bottom-up proposal for a matrix model that could describe quantum
gravitational physics near the big bang singularity in Robertson-Walker geometries.
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b) Confinement and Quantum Chromodynamics

Another fundamental issue which prevails in the standard model even without the gravi-
tational sector is the understanding of the strong coupling dynamics of QCD. This issue
stems from the phenomenon of renormalisation group running of coupling constants in
quantum field theory, i.e. the energy scale dependence of the actual value of e.g. the fine
structure constant or the strong coupling constant. In QED the one-loop corrections of
leptons to the photon propagator lead to a screening of the bare electron charge: The
formally infinite bare charge can only be seen when probing the electron at very high en-
ergies, leading to a divergence of the measured charge at high energies discovered first by
Landau [44]. Strictly speaking this renders the theory ill-defined in the absence of gravity.
However, since the Landau pole is far above the Planck scale, and since all known types
of matter couple to gravity in a universal way, a description of QED physics neglecting
gravity will not be valid any longer at the Planck scale. Hence the problem to address is
not how to embed QED or the electroweak sector3 into an asymptotically free theory, but
how to quantise gravity.

In nonabelian gauge theories the gauge bosons contribute to the renormalisation of their
own propagator in an antiscreening way [47,48]. For large enough gauge groups or a small
enough number of fermions the charges get antiscreened, i.e. the observed charge becomes
smaller if probed at higher energies. This is the case for QCD which is, since the strong
coupling constant αs is the expansion parameter in the perturbative quantisation of the
theory, weakly coupled in the ultraviolet, a feature dubbed asymptotic freedom. On the
other hand, the perturbatively calculated αs grows large in the infrared, and perturbation
theory is not valid any longer below the QCD scale ΛQCD ≈ 200 MeV. The theory is thus
well-defined in the ultraviolet, but hard to solve in the low energy region region that is of
interest to us due to the hardship of solving quantum field theories on the nonperturbative
level. Moreover, QCD is believed to undergo a (de)confinement phase transition at energies
around ΛQCD. More precisely, at low densities the transition is believed to be a rapid
crossover – see e.g. the phase diagram in [49] – which however becomes a first order
transition at large Nc due to a discontinuous change in the free energy from an O(N2

c )
to an O(N0

c ) behaviour [50–53]. In any case, at low energies colour charges are confined
into colourless states like glueballs, mesons and baryons, while at higher energies there
is both theoretical as well as experimental evidence from the RHIC experiment [54] that
new states of matter, at low densities and high temperatures in particular the quark-gluon
plasma, are forming.

3Interestingly, the electroweak sector of the standard model, which is renormalisable [45], is not asymp-
totically free either [46]. The SU(2) part of the gauge group is asymptotically free, but the U(1)Y factor
admits a Landau pole as well. The persistence of the Landau pole problem is another indication that
gravity has to be consistently quantised as well.
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c) The Anti-de Sitter/Conformal Field Theory Correspondence

There exist several methods to analyse QCD (and also other nonabelian gauge theories) at
strong coupling, such as lattice regularisation [55], the large Nc expansion [56], instanton
gases and liquids [57,58] and other models of the QCD vacuum such as bag models [59] and
dual superconductors [60], effective field theory approaches [61–64], or methods based on
truncations of the full set of nonperturbative Schwinger-Dyson equations [65, 66].4 Each
of these approaches led to remarkable insight into QCD dynamics, but each of them is
based on additional assumptions. For example, the lattice is a tractable nonperturbative
regularisation of QCD, but breaks four-dimensional Lorentz invariance. The large Nc

expansion simplifies the theory alot, but not all observables of QCD are insensitive to
a change of the gauge group to Nc > 3. The approach based on the Schwinger-Dyson
equations includes the necessity of a consistent truncation of the infinite set of consistency
equations amongst all n-point functions to a finite subset. Last but not least there is the
idea of the QCD string [67–69], from which string theory originated. Although the original
QCD string theories were abandoned for reasons explained in section 2.2, the idea recently
resurfaced, starting with an observation of Alexander Polyakov [70–73] that the emergence
of the additional scalar Liouville field in the quantisation of noncritical bosonic strings
should properly be interpreted as the emergence of an additional fifth spatial dimension.
The actual description of the QCD string would then be in terms of a string theory in a
curved five-dimensional space-time with a flat four-dimensional boundary. On its own, this
remarkable observation did not lead to a concrete realisation. An analysis of the physics of
nonperturbative objects in ten-dimensional string theory, so-called Dirichlet branes, lead
Juan Maldacena in 1997 to a remarkable proposal for such a dual realisation of gauge
theories in terms of a string in a curved higher-dimensional space-time, called the Anti-de
Sitter/Conformal Field Theory (AdS/CFT) correspondence [41].

As will be explained in detail in chapter 2, the AdS/CFT correspondence actually adds
six additional curved dimensions to the four-dimensional space-time, instead of only one.
One of these six dimensions is an addition radial direction which, together with the four
Minkowski space directions forms five-dimensional Anti-de Sitter space, AdS5, the unique
maximally symmetric five-dimensional space-time with constant negative scalar curvature,
while the other five additional dimensions form a compact space, the five-dimensional
sphere S5. Both spaces are of the same radius R. At a glance, Maldacena’s original
proposal states that the physical state space of ten-dimensional type IIB superstring theory
on the space-time AdS5 × S5 is equivalent to the space of physical states of a certain four-
dimensional supersymmetric conformal field theory, N = 4 supersymmetric Yang-Mills
(SYM) theory with gauge group U(Nc). This superconformal field theory is constructed
from the largest supersymmetry multiplet with a maximal spin of one which can be built
in four dimensions, the N = 4 vector multiplet, and thus is uniquely defined by the gauge
coupling gY M and the rank of the gauge group which is given by Nc.

5 Furthermore there

4The author apologises for possible omissions in this list.
5There is also a θ-angle in N = SYM theory, fixed by the vacuum expectation value of the axion C0
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is strong evidence (reviewed in section 2.3.2) that this gauge theory is ultraviolet finite.
There is a precise mapping between the quantities defining the string theory, which is the
AdS5 radius measured in string R/ℓs and the string coupling gs, in terms of the quantities
defining the N = 4 SYM theory. The map explicitly reads

(
R

ℓs

)4

= 2λ , λ = g2
Y MNc = 2πgsNc . (1.1)

Although it involves the ’t Hooft coupling λ, which is the natural expansion parameter in
the large Nc approach to gauge theories [56], the actual correspondence in its strongest
version is expected to hold for all values of Nc, as well as all values of the Yang-Mills
coupling g2

Y M . However, to date no actual proof of the correspondence on any level of
rigor has been found (although much progress in the determination of the spectra on both
sides of the correspondence [74–78] has been made), but a huge amount of circumstantial
evidence (see e.g. the reviews [79, 80]) in favour of this conjectured duality is known.
Together with the beautiful decoupling argument of Maldacena (see section 2.3.1) this
circumstantial evidence is the reason for at least assuming its validity, which is sufficient
for using the AdS/CFT correspondence as the foundation of chapters 3 and 4 of this thesis.

In the form just stated, the AdS/CFT correspondence is a remarkable and highly nontrivial
statement about the dynamics of two seemingly very different theories, namely a string
theory and a conformal gauge theory. In particular, the idea of the QCD string, which
was connected to the confinement phenomenon, does not apply here. Confining dynamics
as in QCD is always bound to asymptotic freedom at high energies and thus a running
coupling growing strong at some energy scale. Since N = 4 SYM theory is conformal,
i.e. the coupling does not run with the energy scale, it does not show a (de)confinement
phase transition on flat Minkowski space.6 Nevertheless the AdS/CFT correspondence
implies that the dynamics of N = 4 SYM theory has an interpretation in terms of a string
theory, not only in some limiting regime but for all values of the ’t Hooft coupling and
for all ranks of the U(Nc) gauge group. In this respect the AdS/CFT correspondence
is a stronger tool than the other approaches to strongly coupled gauge theory dynamics
discussed above. However, solving full type IIB string theory on AdS5 × S5 is arguably as
hard as solving QCD dynamics analytically. Fortunately the correspondence simplifies and
becomes more tractable in two limits: Taking the ’t Hooft limit, i.e. considering only
the leading behaviour of observables at large Nc while keeping λ fixed, the string coupling
gs becomes small. Since the string coupling governs string loop effects, the analogue of
loop effects in quantum field theory, this reduces the dynamics to semiclassical strings
on AdS5 × S5. Furthermore taking λ ≫ 1 to be large but finite, according to eq. (1.1)
the radius of curvature of AdS5 × S5 grows large compared to the string length, thus

from the Ramond-Ramond sector of type IIB string theory. I however omit it in this discussion, since it
will play no role in this thesis.

6On spaces with different topologies, such as Time×S3, also N = 4 SYM theory shows a (de)confinement
phase transition. In this case the curvature scale introduced by the background breaks conformal invari-
ance. The phase transition is dual to a geometric Hawking-Page phase transition on the gravity side.
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reducing the string dynamics to its point particle limit given by ten-dimensional type IIB
supergravity on the background AdS5 × S5. Since classical supergravity calculations on
this background are much better understood than semiclassical string computations, this
is often the most useful formulation of the AdS/CFT correspondence. In particular, most
of the circumstantial evidence for the correspondence was obtained in the large Nc, large
’t Hooft coupling limit.

The large Nc, large ’t Hooft coupling limit thus is most promising in two ways: Calculations
in supergravity are technically feasible, and the dual gauge theory is strongly coupled,
albeit with a rather simple, namely conformal, dynamics. In this sense the AdS/CFT
correspondence is a strong/weak coupling duality, which makes it promising to search
for generalisations describing the strong coupling dynamics in confining theories such as
QCD. There is good reason to believe that any ten-dimensional gravity background which
asymptotically approaches the metric of AdS5 × S5 defines a gravity dual description for
some (to be determined) gauge theory. In particular, the background could break many of
the symmetries of AdS5 × S5, or even supersymmetry. As long as the background solves
the type IIB supergravity equations of motion, it defines a gauge/gravity duality. This
opens up a road to mimic the dynamics of QCD more closely by gradually constructing and
exploring less symmetric gauge/gravity duals. Pursuing this road, superconformal theories
with less supersymmetry [81,82], nonconformal theories exhibiting confinement and chiral
symmetry breaking [83–88] and theories describing N = 1 supersymmetric Yang-Mills
theory in the infrared [89, 90] have been found. The correspondence can also be extended
to a finite temperature version by replacing the AdS5 space-time by a five-dimensional
black hole solution in Anti-de Sitter space [91]. Although no absolutely satisfactory gravity
dual of QCD has been found yet, the progress made so far has been remarkable (for recent
reviews see [49,92,93]).

d) Holographic Flavour at Finite Temperature

A particularly important step towards a gravity dual of QCD was the introduction of quark-
like degrees of freedom, i.e. fields which transform in the fundamental representation of
the gauge group, into the AdS/CFT correspondence [94,95]. Since the N = 4 SYM theory
and its deformations only feature fields in the adjoint representation of the gauge group,
in order to approach QCD closer it is necessary to extend the correspondence to fields in
the fundamental representation. As explained in more detail in section 2.3.6, string theory
yields a natural way to introduce fundamental fields into a gauge theory by introduction
of branes of higher dimensionality. Karch, Katz and Randall [94, 95] put forward that
for N = 4 SYM theory, which arises as the low energy effective action on a stack of
Nc D3 branes, an additional stack of Nf D7 branes parallel to the D3 branes should be
added. The low energy excitations of strings connecting the two stacks then introduce Nf

hypermultiplets of supersymmetric quarks and antiquarks, i.e. give rise to a flavour sector
with an U(Nf ) flavour symmetry. The gauge theory on the D7 branes then decouples from
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the 3-3 and 3-7 strings and yields an open string sector on the gravity side of the
correspondence. This defines an extended AdS/CFT correspondence in which the type
IIB supergravity fields are dual to the adjoint sector of the resulting N = 2 supersymmetric
field theory, while the fields on a D7 brane embedded into the AdS5 × S5 background
are dual to field theory excitations involving the quark fields. The mass of the quark
hypermultiplets, which can take arbitrary values without breaking N = 2 supersymmetry,
directly corresponds in a certain coordinate system to the transversal distance (divided by
2πα′) between the original stacks of D3 and D7 branes.

Also in this case there occurs a simplification in the large Nc limit: Keeping the number of
flavours Nf fixed and small while the number of colours tends to infinity, loop contributions
from the flavour sector are suppressed. This limit is called the quenched approximation.
On the gravity side this corresponds to neglecting the backreaction of the D7 branes onto
the AdS5 × S5 background, which therefore only probe the space-time, hence the name
probe approximation. In the large Nc, fixed Nf limit, open strings ending on a stack
of Nf D7 branes embedded in AdS5 × S5 are therefore dual to the flavour sector of a
certain N = 2 supersymmetric field theory in the quenched approximation. The flavour
sector itself will be introduced in more detail in section 2.3.6. Additionally, the strong
coupling λ ≫ 1 can be taken to reduce the open string sector to the Dirac-Born-Infeld-
Wess-Zumino action describing the D7 branes in the low energy limit. This extension
enriches the dynamics of the theory considerably.

In particular, the D3-D7 model of holographic flavour allows to study vacuum properties
such as spontaneous chiral symmetry breaking [87] and the dynamics of mesonic
excitations [96]. The latter are dual to excitations of the D7 branes on the gravity side.
The chiral symmetry breaking mechanism is implemented as follows: The N = 2 theory
has a U(1)R symmetry, which is realised on the gravity side of the correspondence as a
rotation symmetry in the directions transverse to the D7 branes. This U(1)R symmetry
acts on the fermions in the quark hypermultiplets as a chiral rotation, and in particular
can be broken if the supersymmetric mass operator of the theory (cf. eq. (2.151)) acquires
a vacuum expectation value (henceforth called “the condensate”). Holographically this
vacuum expectation value corresponds to nontrivially curved embeddings of the D7 branes.
In the pure AdS5 × S5 background however the equations of motion determining the D7
embeddings only have static solutions which correspond to flat embeddings at an arbitrary
distance from the D3 brane stack. This is consistent with the N = 2 supersymmetry
preserved by the field theory, which forbids the development of a condensate.

In order to generate nonvanishing condensates, one thus has to deform the background away
from AdS5 × S5. This situation occurred in the work [87] where AdS5 × S5 was replaced
by the Constable-Myers background [84]. In this case even at zero mass a condensate
was found, indicating that the chiral U(1)R symmetry is spontaneously broken. This is
consistent with the confinement property of the Constable-Myers background [84] – similar
to the case of QCD, confinement and chiral symmetry breaking are linked in this case.7 A

7In fact, the author is not aware of the existence of a general classifications of which backgrounds admit
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particular simpler situation which does not show spontaneous chiral symmetry breaking
but admits condensates at finite quark mass is the finite temperature case, where the D7
branes are embedded into an AdS-Schwarzschild background times a five-sphere. The finite
temperature is responsible for the broken supersymmetry. This case shows an interesting
first order meson melting transition [87, 99], i.e. a transition between a mesonic phase
characterised by (in the large Nc limit) stable mesons, and a molten phase characterised
by spectral functions showing quasiparticle excitations [100–102] which are given by the
quasinormal modes of the AdS black hole. As explained in section 2.3.6, the transition
is holographically realised as a transition between D7 brane embeddings which do not
fall into the black hole, and embeddings which do fall into the horizon. Since at strong
coupling the holographic mesons have large binding energies proportional to the bare quark
mass [96], the transition happens at a certain critical quark mass below which the thermal
fluctuations destabilise the meson. The meson melting transition manifests itself in a jump
of the chiral condensate. Since in the quenched approximation the meson physics at finite
temperature can be thought of as happening in the background of the deconfined N = 4
SYM plasma, the destabilised mesons melt in the hot N = 4 SYM plasma.

e) Chapter 3: Holographic Quarks in External Electric and Magnetic Fields

In view of the general idea of constructing gauge/gravity duals with lower degrees of
symmetry, it is quite natural to try to break Lorentz invariance in the Minkowski space
directions by introducing additional background fields. This approach has for example led
to gravity duals of noncommutative N = 4 SYM theory [103,104]. In chapter 3, I present
an analysis [1] of the D3-D7 model of holographic flavour in the presence of constant
external electric and magnetic fields. The fields are holographically realised as constant
field modes of the Kalb-Ramond field Bµν . In both situations the Lorentz symmetry is
broken to SO(1, 1) × SO(2) by the external field, as is supersymmetry. In both cases, an
interesting phase structure and behaviour of mesons is found.

In particular I analyse the dynamics of chiral symmetry breaking, as well as the meson
spectrum, in a constant magnetic field background at finite temperature. The main result in
this case is that the constant magnetic field catalyses spontaneous chiral symmetry
breaking in the same way as was observed at zero temperature in [105]. This phenomenon
is well-known from both QED and QCD in strong magnetic fields [106–109]. In particular
I show the existence of a critical magnetic field strength (depending on the temperature)
which divides the phase space into two different regions: Above the critical field strength

both confinement and chiral symmetry breaking. In [97] a criterion for chiral symmetry breaking was
given: The D7 brane embeddings in properly chosen coordinates should end for all quark masses before
reaching the singularity which is typically present in nonsupersymmetric deformations of AdS5 × S5. In
this case there does not exist a coordinate transformation which makes this gap vanishing, and the gap
sets the energy scale for chiral symmetry breaking. However, to date no attempt to combine this criterium
with e.g. the classification of singularities by Gubser [98] has been made, which thus is an interesting road
for further study.
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the system is in the mesonic phase for any value of the quark mass, even for massless
quarks. The strong magnetic field in this case overcomes the effect of thermal fluctuations
and stabilises the mesons completely, such that the meson melting transition disappears.
Below the critical field strength, the meson melting transition persists, but it is shifted to
a lower critical quark mass due to the stabilising effect of the magnetic field. While the
critical field strength is approached, the critical quark mass goes smoothly to zero. The
phase below the critical field strength is characterised by a vanishing chiral condensate,
as is the case at finite temperature without magnetic field, while above the critical field
strength spontaneous chiral symmetry breaking occurs. The spectrum of the corresponding
lowest-lying pseudoscalar meson is investigated and is shown, via verification of the Gell-
Mann-Oakes-Renner relation, to include the Goldstone boson of the spontaneously broken
chiral symmetry. The phase diagram for the system is depicted in figure 3.5.

I then proceed in section 3.3 to the analysis of the D3-D7 system in a constant electric
field, both at zero and at finite temperature. The main physical feature in this case
will be that, contrary to the magnetic field, the electric field tends to destabilise quark-
antiquark bound states. Starting from a high enough quark mass, the system is found
to undergo a new kind of first order meson dissociation phase transition at a finite
critical quark mass (depending on the electric field strength). Similarly to the meson
melting transition discussed above, the dissociation transition manifests itself in a jump
of the chiral condensate. The electric field alone also does not induce spontaneous chiral
symmetry breaking.

Above the critical quark mass an analysis of the pseudoscalar mesons shows that there
exist stable mesonic excitations, which are however lighter than in the zero field case. I
furthermore analytically show the existence of a second order (O(E2)) Stark shift of the
meson masses. Below the critical mass the situation is not fully understood yet,8 but the
boundary conditions which have to imposed on the D7 brane fluctuations [110] are partially
transmittive and thus forbid the existence of stable excitations. Another indication for the
dissociating nature of this phase transition is a current which starts to form at the transition
point, which can be interpreted as vacuum pair production of quarks and antiquarks by the
electric field. In this case the vacuum is however not destabilised and the current even is
finite for massless quarks, which is a strong coupling effect still awaiting full understanding.
Because of the generation of a current and thus a conductivity at the transition point, this
new kind of phase transition is similar to metal-insulator transitions in condensed matter
systems.

8It was found in [110] that in the presence of a finite quark number density the spectrum of excitations
of the system changes from well-defined sharp peaks admitting a quasiparticle interpretation to broad
resonances. The first order phase transition is washed out by the finite density to a crossover behaviour,
but the change in the spectrum and in thermodynamic quantities is rather quick for small densities. The
unclear point is the treatment of a special class of D7 brane embeddings which admit conical singularities
– see section 6.1 for a more in-depth discussion of this point.
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f) Chapter 4: Holographic Fayet-Iliopoulos Terms from Kalb-Ramond Fields

While chapter 3 is concerned with the breaking of Lorentz symmetry, chapter 4 puts
forward a holographic construction of Fayet-Iliopoulos couplings in the D3-D7
theory. This construction, which was published in [2], allows a holographic identification of
noncommutative instanton configurations on the D7 probes with nontrivial supersymmetry
breaking states on the Coulomb-Higgs branch of the D3-D7 theory. The Fayet-Iliopoulos
coupling is induced by switching on a constant anti-selfdual Kalb-Ramond B field in the
directions of the D7 brane worldvolume transverse to the boundary of AdS space. Based
on the knowledge of existence of such a coupling in the low energy effective action of the
flat space D3-D7 system in the presence of a anti-selfdual B field, it is argued that the
coupling actually survives the decoupling limit and thus is also present in the holographic
context. On the gravity side the B field induces a noncommutative worldvolume gauge
theory on the D7 stack along the lines of [111].

Without B field, a holographic correspondence between the mixed Coulomb-Higgs vacua
of the D3-D7 theory and instanton configurations on the D7 probe branes embedded in
AdS5 × S5 has been proposed in [112–115]. The mixed Coulomb-Higgs vacua of the N =
2 D3-D7 theory are vacua in which some colour directions (called Higgs directions) of
the gauge group are broken completely (including the Cartan generators) by fundamental
squark vacuum expectation values, while the gauge group is broken down to its Cartan
U(1) generator in other colour directions (called Coulomb directions) by adjoint scalar
vacuum expectation values. In terms of the D3-D7 system in flat space the Higgs directions
correspond to D3 branes being dissolved in the D7 branes to form an instanton in the
additional D7 brane directions, while the Coulomb directions correspond to the usual
breaking of gauge symmetry by separating a D3 brane from the D3 stack (see fig. 4.1 for
an illustration). The gauge symmetry breaking mechanism is thus that separating a D3
brane from the stack first breaks the corresponding colour direction to a U(1) subgroup,
while moving it onto the D7 brane and letting it dissolve corresponds to further even
breaking this particular U(1) subgroup completely. The dissolving induces one unit of
instanton charge for every dissolved D3 brane.

The conjecture put forward and tested in [112–115] relies on a known property of instan-
tons, which can be rewritten as solitons in a higher-dimensional gauge theory (see [116] for
a review). In terms of the low energy effective action of the flat space D3-D7 system [117]
this property manifests itself as a equivalence between the part of the D and F term
equations describing the Higgs directions of the gauge theory vacua and the ADHM equa-
tions [118] which crucially enter the ADHM construction of instantons in four-dimensional
Euclidean Yang-Mills theory: The sizes, positions and gauge orientations of instantons in
the additional directions of the D7 branes are the vacuum expectation values defining the
field theory vacuum. The vacuum expectation values in turn are governed by the D and F
term equations of the field theory. It is known that both sides are deformed in the same
way by the Fayet-Iliopoulos coupling: The D term equations of the gauge theory of course
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acquire the Fayet-Iliopoulos term, but it is also known from the construction of instantons
in noncommutative Euclidean Yang-Mills theories [119] that the ADHM equations are of
the same structure as in the commutative case, plus a constant coupling of Fayet-Iliopoulos
form. Thus even with the deformation induced by the Kalb-Ramond field, the noncommu-
tative ADHM equations are still identical to the vacuum equations for the Higgs branch
of the field theory. This is not surprising since in terms of D brane physics the only effect
of the deformation is to destabilise the Coulomb branch by breaking supersymmetry, i.e.
to create an attractive potential which accelerates the D3 branes towards the D7 branes
until they dissolve therein. The mechanism of dissolving is still the same – the D3 branes
become instantons in the (in this case noncommutative) Euclidean Yang-Mills theory in
the transverse D7 directions.

Based on this equivalence of the Higgs branch vacuum equations and the noncommutative
ADHM equations, I conjecture in chapter 4 that the noncommutative instanton configu-
rations in the D7 worldvolume theory are, after taking Maldacena’s decoupling limit, dual
to Coulomb-Higgs states governed by a Fayet-Iliopoulos deformed set of D and F term
equations. These states break supersymmetry, since the D and F term equations can not
all be simultaneously satisfied. More precisely, the colour directions which belong to the
Coulomb branch, i.e. which in the flat space picture correspond to not yet dissolved D3
branes and which in the gravity dual source the AdS5 × S5 background, do not fulfill the
D term equation with the Fayet-Iliopoulos term. This is the field theory manifestation
of the fact that the whole Coulomb branch of the moduli space is lifted by the deforma-
tion, and only the Higgs vacua in which the gauge group would be completely broken is
supersymmetric. I argue in chapter 5 that the longlivedness of the setup is ensured in
an adiabatic limit in which the Fayet-Iliopoulos parameter is very small. I will give an
argument that even in the probe approximation the decay probability of the holographic
setup is of order of the Fayet-Iliopoulos parameter, i.e. that the decay is not suppressed
in the probe approximation. However, the Fayet-Iliopoulos parameter can be chosen to be
arbitrarily small, and thus the setup can be made arbitrarily stable.

To test this extended AdS/CFT duality, I furthermore show that the global symmetries,
the scaling dimensions and the supersymmetry breaking pattern on both sides of the corre-
spondence match after introduction of the holographic Fayet-Iliopoulos coupling. Also, the
simplest case of one noncommutative U(1) instanton [119] on a single D7 brane embedded
flatly (corresponding to vanishing quark mass) in AdS5×S5 is considered, and in particular
the global symmetries of both the Nekrasov-Schwarz instanton and the corresponding field
theory vacuum configuration are analysed.

g) Chapter 5: A Matrix Model Proposal for the Robertson-Walker Universe

In contrast to the approach to strongly coupled gauge theories via classical gravity used
in chapters 3 and 4, the work presented in chapter 5, which was published in [3], proposes
a bottom-up derivation of a matrix model (eq. (5.71)) in the Robertson-Walker geom-



14

etry. As will be explained in detail in a self-contained introduction to M-theory and
matrix models in section 5.3.1, the dynamics of M2 branes in flat space can be recovered
from the formulation of M-theory in flat space via the Banks-Fischler-Shenker-Susskind
(BFSS) matrix model [42]. This supersymmetric matrix quantum mechanics describes on
a nonperturbatively level the physics of M-theory, the supposed ultraviolet completion of
eleven-dimensional supergravity. What the matrix model actually describes is the physics
of a collection of D0 branes in flat ten-dimensional space-time. As will be laid out in sec-
tion 5.3.1, D0 branes have properties which make them good candidates for the “partons” of
M-theory, from which a state space can be build. There is by now good evidence [120–124]
that the matrix model approach actually gives a nonperturbative definition of M-theory,
and hence of eleven-dimensional quantum gravity.

Conversely, the BFSS matrix model can be recovered by a regularisation procedure of
the worldvolume theory of a supersymmetric membrane [125]. Behind this connection
between the physics of D0 branes and membranes stands the physical requirement that
matrix models, being background dependent formulations of quantum gravity, should be
able to recover the physics of membranes in their spectrum. This means they should include
in their spectrum semiclassical states with an emergent dynamics matching the membrane
dynamics in the background under consideration. This logic can now be turned around
and used for the bottom-up derivation of matrix models in more complicated backgrounds,
such as the Robertson-Walker geometry, in which a top-down derivation from string theory
may be unknown. These matrix models then have a chance to describe aspects of quantum
gravity on these backgrounds. In the Robertson-Walker geometry this means in particular
that they should describe aspects of the big bang singularity.

This is the rationale behind the derivation of the matrix model in chapter 5: Starting from
the bosonic membrane in the Robertson-Walker geometry, I use the matrix regularisation
prescription of [125] to derive the corresponding matrix model. An additional guiding
principle which enters the derivation of the matrix model is that a collection of only a
few D0 branes should be described in a freely falling frame, i.e. in particular the motion
of a single D0 brane should follow the geodesics in the Robertson-Walker geometry. This
approach is a bottom-up one, and a embedding of the matrix model in, or a derivation from
string theory, is surely a point which needs to be addressed in future work (see also the
discussion in section 6.3). Nevertheless even in this bottom-up approach there is a main
technical obstacle which needs to be circumvented before applying matrix regularisation,
namely the necessity to gauge-fix the worldvolume diffeomorphisms of the membrane. In
backgrounds with a lightlike isometry such as eleven-dimensional flat space or lightlike
dilaton backgrounds the worldvolume diffeomorphisms are usually fixed in light-cone gauge
by restricting the dynamics to a fixed value of light-cone momentum. In geometries such
as the Robertson-Walker geometry which lack this symmetry, another approach is needed.
In the course of chapter 5 such an approach is developed which instead fixes an energy
density profile on the membrane worldvolume. This fixes equally well the diffeomorphisms
up to static area preserving ones, and the matrix regularisation can be applied.
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Matrix models derived in a bottom-up approach in general need to be checked a posteriori
for the validity of their physical implications. As a consistency check, I give at the end
of chapter 5 an argument for the emergence of a well-defined, smooth spatial geometry
once the universe described by the Robertson-Walker geometry has expanded to a size
well above the Planck scale. An extensive discussion of the interpretation of the proposed
model is given in section 6.3 of this thesis.

h) Structure of this Thesis

To conclude the above introductory remarks, the present thesis covers two main topics:
Generalisations of the holographic D3-D7 model of AdS/CFT with flavour to situations
where external fields are present, and with holographic descriptions of cosmological back-
grounds via matrix models. For a quick overview over the rest of this work, the structure
of this thesis is summarised below.

• The present chapter 1 includes a general introduction and an overview over this
thesis.

• Chapter 2 introduces in detail the idea of holography and the Anti-de Sitter/Conformal
Field Theory correspondence.

• Chapter 3 is devoted to the study of holographic quarks in external electric and
magnetic fields.

• Chapter 4 presents the construction of holographic Fayet-Iliopoulos terms from Kalb-
Ramond fields.

• In chapter 5 the matrix model proposal for the Robertson-Walker universe of [3] is
presented.

• Chapter 6 contains a more detailed discussion of the results as well as comments on
open questions and possible further developments.
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Chapter 2

The Anti-de Sitter/Conformal Field
Theory Correspondence

One main theme of this thesis is the so-called Anti-de Sitter/Conformal Field Theory
(AdS/CFT) correspondence, which is a new string theoretic duality relation between grav-
ity theories in Anti-de Sitter space and gauge theories on the boundary of this space-time.
The purpose of this chapter is to introduce into this correspondence. Since the AdS/CFT
correspondence provides a realisation of the holographic principle in quantum gravity, this
principle will be introduced in section 2.1. Section 2.2 is devoted to a short introduction to
string theory and D brane physics. Finally, in section 2.3 the AdS/CFT correspondence is
stated and its generalisations to finite temperature as well as the introduction of additional
quark degrees of freedom, i.e. fields in the fundamental representation of the gauge group,
are discussed.

2.1 The Holographic Principle

Holography as a technique of storing the full amplitude and phase information of a wave
front reflected by an object is known since 1948 [126], when the Hungarian physicist Dennis
Gabor, based on Gabriel Lippmann’s color photography, conveyed the idea of storing and
reconstructing the full information content of the light front through interference with
a reference field. He was awarded with the 1971 Nobel Prize, “for his invention and
development of the holographic method” [127].

The holographic principle as a property of quantum theories of gravity was first proposed
by Gerard ’t Hooft [33]. Based on Bekenstein’s insights that black hole horizons need to
carry entropy [128,129] in order for the second law of thermodynamics not to be violated,
and that the entropy of a semiclassical black hole is a quarter of its horizon surface area
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in Planck units,1

SBH =
Ahor

4ℓ2p
, (2.1)

’t Hooft arrives at the conclusion that the dynamics of every quantum field theory which
includes gravity in a spatial volume must be equivalently describable by a model of Boolean
degrees of freedom on the surface bounding this spatial volume. ’t Hooft assumes the
degrees of freedom of this holographic description to be Boolean variables, i.e. variables
which can only take two values (“bits”), for the entropy encoded on the surface’s area to
have an interpretation in terms of microstates of the system.

More precisely, consider a compact region of space with spatial volume V and bounding
area A. If the total entropy in V has an interpretation in terms of the dimension N of the
Hilbert space of microstates of quantum fields inside V , then we can as well represent this
Hilbert space by n Boolean Variables, where the number of “bits” is given by the relation

eS = N = 2n ⇒ n =
S

log 2
. (2.2)

For regions which constitute a black hole the relation with the bounding area is known, its
simply the area law (2.1). Inserting (2.1) into (2.2) yields the result that the black hole
horizon area should be quantised in Planck units,

A

ℓ2p
= 4 log(2)n . (2.3)

Thus any unified quantum theory of matter and gravity which provides discrete black hole
microstates needs to be able to reproduce this quantisation condition in a semiclassical
approximation, including the factor 4 log(2).

’t Hooft then generalises this argument to general closed spacelike surfaces. His premise
is that gravity sets a natural cutoff for the total energy inside V for the state of matter
enclosed in V to be observable: The total energy of the state of matter inside V cannot
exceed the energy of a black hole with horizon area A, as otherwise the state would vanish
behind the horizon of the black hole it creates by its gravitational backreaction onto space-
time. In this way, he argues, the gravitational coupling should, at least qualitatively2,
provide a natural cutoff for physical processes involving the matter only. For simplicity,
I will assume that the region of space under consideration is approximately spherically
symmetric, and that we work in a four-dimensional space-time. In that case, the known
expression for the Schwarzschild radius of a spherically symmetric energy distribution with
total energy E,

RS = 2GNE , (2.4)

1Throughout this thesis, if not useful otherwise, I use natural units ~ = c = kb = 1 = GN = 1. For
example in this section I keep GN = ℓ2P in order to keep track of the powers of the Planck length.

2It has to be said that the ideas presented in [33] are of a qualitative, general nature. He also gives a
realisation in terms of a cellular automaton model, but in principle other physical models might implement
the holographic principle. This has to be, of course, proven model by model.
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can be applied. Assuming that the spatial volume V is in contact with a heat bath of
temperature T , the total energy of Z different fundamental particle species should scale
according to a Stefan-Boltzmann law, i.e.

E = C1ZV
3T 4 , (2.5)

with C1, as well as the other constants Ci appearing in the following, being of order one.
The requirement that the typical linear dimension (assuming three spatial dimensions) of
this energy concentration should be larger than its own Schwarzschild radius,

2GNE <

(
V
4
3
π

) 1
3

, (2.6)

then leads to an upper bound on the temperature applicable to the system,

T <
C2

G
1
4

NZ
1
4V

1
6

. (2.7)

The fact that more particle species press down the bound is easily understood, as increas-
ing the species at fixed temperature increases the number of possible excitations in the
system, but the volume dependence seems counterintuitive at first: One would expect that
increasing the volume would relax the bound on the maximally allowed temperature, as
creating a black hole with larger area needs more energy, and thus a higher temperature.
This reasoning, however, does not take into account the increase in the number of states
in V . This is most easily seen in the case of V being a cubic box of length L with pe-
riodic boundary conditions, and with Z species of bosonic matter. In momentum space,
the standing waves with periodic boundary conditions form a cubic lattice with unit cell
volume 8π3/L3. The phase space volume of all states with energy less or equal to E is
the volume of a three-dimensional ball with radius E in momentum space, and thus the
number of states with energy less or equal to E is

N(E) = Z
4
3
πE3

8π3

L3

= Z
(EL)3

6π2
. (2.8)

The total energy of this system at temperature T is given by

Etot =

∞∫

0

dEN(E)e−
E
T = Z

L3T 4

π2
. (2.9)

As the Schwarzschild radius of the box with this total energy scales cubically with the size
of the box itself, but the box should better have a linear dimension larger than its own
Schwarzschild radius for not becoming a black hole, the temperature thus must be lowered
according to

T <

√
π

(2Z)
1
4G

1
4

NL
1
2

.
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The bound on the maximal temperature (2.7) then also yields an upper bound on the
entropy of the system,

S = C2ZV T
3 < C3

Z
1
4V

1
2

G
3
4

N

= C4Z
1
4

(
A

ℓ2P

) 3
4

(2.10)

This bound is, in the end, independent of the temperature. Thus, if S is interpreted as the
information theoretic entropy of microstates of quantum fields inside the volume V , (2.10)
yields a bound on the number of microstates in terms of the enclosing area A,

n < C5

(
A

ℓ2P

) 3
4

. (2.11)

In deriving (2.11), I assumed the number of species Z to be a small natural number and

thus of order one and absorbed the factor Z
1
4 into C5.

3 As the above reasoning uses results
from classical gravity, such as the relation between the Schwarzschild radius and the mass of
a black hole (2.4), or semiclassical results such as Hawking’s area law (2.1), it is only valid
for large spatial volumes V and bounding areas A, and in particular for black holes with
large mass. Also the thermodynamic quantities energy and entropy and in particular their
scaling behaviors with the volume and temperature is only valid for large thermodynamic
systems. We thus have to work with large black holes, which have large horizon area,
and also with a large spatial volume which will have a large bounding area. Under these
conditions, the maximal entropy of the quantum fields (2.10) will, because of the power
of three quarters in (2.10), always be smaller than the entropy of the corresponding black
hole with horizon area A, eq. (2.1).4 This ensures that for large enough spatial volumes the
formation of a black hole is always thermodynamically favoured as we reach the entropy
bound (2.10) from below. Thus, for the spatial volume we considered, the black hole is,
for high enough energy densities inside V , the state with maximal entropy and thus the
equilibrium state of the system.5

3This assumption is of course not valid any more in models with many species such as the ones proposed
in [130,131], but the bound on quantum field microstates will in this case be even more stringent due to the
number of species entering with a power of one quarter. In fact, the bound gets more and more stringent
the more particle species are present.

4For a perfectly spherical spatial volume V there is an obvious discrepancy between the maximal
number of quantum field states fitting V and the number of states derived from the black hole entropy
formula (2.1). One might hope that taking into account interactions, nonperturbative effects or effects on
quantum fields on curved space-time might affect the crude estimate (2.7) in a way allowing at the end a
scaling linear in the area. What should happen is that free field states which have an energy exceeding the
threshold to form a black hole in some region of space are changed by the above-mentioned effects in such
a way that the energy is reduced. This can for example happen through effects induced by the curvature
of space-time, as it is well-known that even free quantum fields can feature negative energy densities on
curved spaces (for example in the vicinity of black hole horizons, see e.g. [132]).

5Hawking’s area theorem [133], which states that in physical processes like black hole formation or
merger of black holes and under the assumption that the weak energy condition is fulfilled the total
horizon area of all black holes cannot decrease, ensures that the equilibrium state always is one black hole
with total area A, rather than many smaller black holes.



Chapter 2. The Anti-de Sitter/Conformal Field Theory Correspondence 21

The above result is at first sight counterintuitive: One would expect the number of states
of a collection of particles to grow exponentially with the volume rather than with the
area. However, gravity imposes a more rigid cutoff in order for the states inside V to be
observable, namely that the number of states can only grow with the area as in (2.11).
We thus understand that both the number of states of a collection of quantum fields in
a spatial volume V and the number of microstates of a black hole scale with the area
bounding V or the horizon area, respectively. The difference between both situations is
that for large areas the black hole has more microstates than quantum fields enclosed in
the corresponding (approximately spherically symmetric) spatial volume. Based on this
insight, ’t Hooft concluded in a great leap of thought that in both situations the dynamics
of the relevant degrees of freedom, inside the horizon and inside the volume V , should be
describable entirely by a kind of theory6 on the bounding surface, may it be a horizon
or just some closed surface in three-dimensional space. Furthermore, the theory on the
bounding surface has to have the property of being discrete in the sense that the density of
degrees of freedom in the information theoretical sense is bounded by roughly one degree
of freedom per Planck area. To summarise, the holographic principle in quantum
gravity is the following conjecture:

In nature, i.e. in a hypothetical quantum theory of both gravity and matter,
there cannot exist more degrees of freedom in a closed spatial volume V than
the ones which fit onto the bounding area A, quantised in Planck units. The
dynamics of the degrees of freedom inside V are entirely describable by a theory
on the bounding surface of V (or on the horizon, if a black hole has formed),
and this theory should provide the correct upper bound for the density of states
of one state per Planck area.

’t Hooft furthermore argues that by considering infinitely large black holes, one could
define a limiting situation in which the surface becomes uncompactified, and thus that
a two-dimensional hypersurface in three-dimensional space should carry a theory of the
degrees of freedom of matter and gravity in either half of the three-dimensional space. In
ordinary Einstein-Hilbert gravity in four-dimensional space-time, the horizon topology of
a stationary black hole (under the assumption of the dominant energy condition) always
is a sphere ( [134, 135], see also [136]), which is not the same as 2, but the one-point
compactification obtained by adding the point at infinity. Also, taking the infinite mass
limit of the Schwarzschild black hole, the horizon will be shifted to rS → ∞, thus swallowing
up all of space and rendering the idea of such a limit rather doubtful. What one would
need to conjecture a holographic description of the fields in all of space-time would be
extended black objects which also respect the isometries of Minkowski space-time. As
will become clear in section 2.2.3 below, string theory in ten dimensions (or better its

6’t Hooft calls it a “topological quantum field theory”, although it is by no means clear at all that it
must be a quantum field theory. In fact, the cellular automaton model he constructs as a realisation of
the holographic principle [33] is very different from an ordinary quantum field theory.
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low energy effective theory, ten-dimensional supergravity), naturally provides such black
objects: They are the Dirichlet branes of string theory.

2.2 Elements of Superstring Theory in Ten Dimen-

sions

Before explaining the AdS/CFT correspondence as a concrete realisation of the holographic
principle for four-dimensional, infinitely extended Minkowski space-time, I need to intro-
duce two basic notions of supersymmetric string theory, namely the notion of low energy
effective actions and the notion of Dirichlet branes, which are defined as boundary condi-
tions for open strings, but by the peculiar quantum dynamics of string theory actually are
dynamical objects by themselves. The purpose of this section is to give an introduction
into these concepts. The material given here is mostly taken from the available textbooks
on string theory [31,137–147], as well as from the very useful review [148]. In the remainder
of this thesis I will always employ natural units ~ = c = kB = 1, if not stated differently.

2.2.1 Bosonic String Theory

String theory as a theory of one-dimensional extended objects originally arose as dual
resonance models invented to describe QCD scattering amplitudes: After the construc-
tion of an explicitly crossing symmetric scattering amplitude whose pole structure repro-
duced Regge behaviour (which was found several years earlier in QCD data [149, 150])
by Gabriele Veneziano in 1968 [151], Yoichiro Nambu [67], Holger Bech Nielsen [68] and
Leonard Susskind [69] provided a physical interpretation of Venezianos amplitude in terms
of excitations of a one-dimensional extended object connecting the quark-antiquark pair
inside a meson. Dual resonance models were an active area of research until 1973/74,
but were largely abandoned as a theory of strong interactions after the advent of quan-
tum chromodynamics. Nevertheless they were not totally forgotten, and in 1974 John H.
Schwarz together with Joel Scherk [152,153] and independently Tamiaki Yoneya [154,155]
discovered that the massless excitations of a bosonic string contains an excitation of spin
two, which they interpreted as the graviton. This was the birth of what we nowadays call
bosonic string theory. I will not attempt to repeat the full quantisation of the bosonic
string in all its details here, as it can be reviewed in the above-mentioned textbooks, but
a short review shall be allowed for the sake of completeness.

The Classical Bosonic String

In attempting to write down an action for a relativistic one-dimensionally extended object
(a string), Yoichiro Nambu [156] and Tetsuo Goto [157] proposed a very simple action,
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Figure 2.1: Open and closed strings, and Dirichlet branes. (figure taken from [158]).

nowadays named after them. Let TF = 1/(2πα′) be the tension of the string, whereas
α′ is a fundamental constant of dimension length2, which in the dual resonance models
was identified with the slope of the Regge trajectories and had an approximate value of
1GeV −2. In modern string theory, it is kept arbitrary, but one often its square root to be
another (but equivalent) fundamental length scale, the string length, via α′ = ℓ2s. Nambu
and Goto proposed the following minimal area action principle for the relativistic string in
flat D-dimensional Lorentzian space-time,

SNG = −TF

∫

d2ξ

√

− det
a,b

(
∂Xµ(ξ)

∂ξa

∂Xν(ξ)

∂ξb
Gµν(X(ξ))

)

, a, b = 0, 1 . (2.12)

This action defines a two-dimensional field theory on the worldsheet of the string, parame-
trised by coordinates ξa = (ξ1, ξ2) = (τ, σ), where τ ∈ is the world sheet time and σ
parametrises the point on the string. As the string has finite length, σ can run for zero to
some value, in which case we call the string an open string (as depicted in figure 2.1), as
it has a beginning and an end. If it is periodically identified, this theory describes a closed
string. The fields Xµ(ξ) are scalar fields on the worldsheet and encode the embedding of
the string into the D-dimensional space-time manifold which is equipped with a Lorentzian
signature metric Gµν(X), as depicted in figure 2.2. The matrix over which the determinant
is taken is the metric induced from the space-time onto the worldsheet, and is also called
the pull-back of the space-time metric G (via the embedding map Xµ(ξ)), denoted by

P [G]ab(ξ) =
∂Xµ(ξ)

∂ξa

∂Xν(ξ)

∂ξb
Gµν(X(ξ)) . (2.13)

In fact every space-time totally antisymmetric tensor field of rank n ≤ D can be pulled
back onto a sub-manifold of dimension m in the case of n ≤ m ≤ D by a similar formula,

P [T ]a1...am
=
∂Xµ1

∂ξa1
. . .

∂Xµn

∂ξam
T (X(ξ))µ1...µm

, (2.14)

a fact which will be very useful later on when studying D branes in section 2.2.3. The
interpretation of the action (2.12) is that it just computes the total area that the string
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Figure 2.2: The concept of embedding a submanifold into space-time (figure take from
[146]).

sweeps out in space-time as it moves through it, multiplied by minus its tension. It is very
similar to the action of a relativistic point particle moving on a one-dimensional worldline
in space-time,

Spoint particle = −m
∫

dτ

√

−Ẋµ(τ)Ẋν(τ)Gµν(X(τ)) , (2.15)

where τ is now the proper time which the particle (or better a clock carried with it)
registers. This action just measures the total invariant length of the worldline, multiplied
by minus the mass of the point particle. The minus signs in front of both actions, (2.15)
and (2.12), are necessary in order for the physical trajectory to minimise the action. For
the point particle, this is just due to the well-known fact that a timelike geodesic actually
has maximal length rather than minimal length. The Nambu-Goto action needs to have
the same sign in order for the string as an extended object to approximately follow timelike
geodesics in a curved space too. A similar action principle holds for D branes, as we will
see later in section 2.2.3.

The Nambu-Goto action (2.12) is, however, not the one normally used to quantise the
bosonic string. The reason is that it is highly nonlinear because of its square root structure,
and thus attempts to quantise it will be plagued with operator ordering ambiguities or, in
the path integral approach, by the absence of a well-defined distinction between free field
propagation and interaction part. The Nambu-Goto model can, however, be transformed
into a two-dimensional nonlinear sigma model by introducing an auxiliary symmetric
two-tensor field hab on the worldsheet which serves as the two-dimensional world sheet
metric. The resulting action was first found by Deser and Zumino [159] and independently
by Brink, Di Vecchia and Howe [160] but is commonly denoted after Alexander Polyakov
as the “Polyakov action” and reads

SP = −TF

2

∫

d2ξ
√

|h|habGµν(X)∂aX
µ∂bX

ν , (2.16)
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where the dependence of X on ξ is implicit. The equation of motion for hab, which is
nothing but the condition of vanishing world sheet energy-momentum tensor,

0 = Tab =
2

√

|h|
δSP

δhab
= −TFGµν(X)

[

∂aX
µ∂bX

ν − 1

2
habh

cd∂cX
µ∂dX

ν

]

, (2.17)

can be used to classically eliminate the world sheet metric from (2.16) and recover (2.12)
by inserting the formula

√

|h| =
2
√

− detP [G]

hcdGµν(X)∂cXµ∂dXν

back into (2.16).

Classical and Quantum Scale Invariance and Critical Dimensions

The theory defined by (2.16) can be solved more easily classically and also quantised in a
very straightforward way. In this course, its large amount of symmetries are of great help.
Eq. (2.16) is invariant both under worldsheet diffeomorphisms

ξa = ξa(ζ) , hab(ξ(ζ))
∂ξa

∂ζc

∂ξb

∂ζd
= hcd(ζ) , (2.18)

local Weyl transformations of the worldsheet metric

hab(ξ) 7→ e2σ(ξ)hab(ξ) , (2.19)

as well as diffeomorphisms of the space-time manifold

Xµ = Xµ(Y ) , Gµν(X(Y ))
∂Xµ

∂Y ρ

∂Xν

∂Y σ
= Gρσ(Y ) . (2.20)

Exploiting worldsheet diffeomorphisms and a local Weyl transformation, the metric hab

can locally always be brought into flat form,

hab = ηab or δab , (2.21)

depending on the signature of the world sheet manifold. This gauge choice is called con-
formal gauge. Of course, after fixing a gauge for a gauge symmetry, the corresponding
constraints have to be imposed by hand. In the case of worldsheet diffeomorphism sym-
metry it is the vanishing of the energy-momentum tensor (2.17) which has to be imposed
on the classical solutions as well as on the quantum mechanical state space. As the clas-
sical equivalence between the actions (2.12) (which is more transparent from the physical
point of view because of its interpretation in terms of a minimal worldsheet area principle)
and (2.16) (which is less nonlinear) depended on the vanishing of the worldsheet energy-
momentum tensor, one actually needs to impose (2.17) also on the quantum level in order
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to at least have a chance for the quantisation of (2.16) to have any connection to any direct
quantisation of (2.12). Now, as we also used a Weyl transformation to fix conformal gauge,
we also need to impose the constraint arising from this local symmetry quantum mechani-
cally. The generator for Weyl transformations is the trace of the energy-momentum tensor
(2.17), habTab. Classically, as the worldsheet is two-dimensional, (2.17) automatically im-
plies the constraint habTab = 0. On the quantum level the situation is different. If one
understands the action (2.16) for a flat space-time Gµν = ηµν as a two-dimensional field
theory of D bosonic fields Xµ , µ = 0, . . . , D− 1 coupled to a two-dimensional background
metric field h, the conformal anomaly (the calculation is most easily done in Euclidean
signature, see e.g. [161]) induces a vacuum expectation value of the trace of the worldsheet
energy-momentum tensor proportional to the worldsheet curvature,

〈Ta
a〉 = hab〈Tab〉 =

D − 26

24π
R[h] . (2.22)

Here the contribution proportional to the dimension of space-time comes from the D scalar
fields, and the negative contribution comes from integrating out the Faddeev-Popov ghosts
arising from gauge fixing. Thus, if we want to carry over the equivalence between (2.12)
and (2.16) to the quantum level, the bosonic string needs to live in the critical dimension

Dbos.
crit = 26 . (2.23)

This connection between the conformal anomaly and the critical dimension of space-time
was first noticed by Alexander M. Polyakov in his seminal work on the path-integral quanti-
sation of closed bosonic strings [70]. A similar calculation for a N = (1, 1) supersymmetric
closed string in a flat (and otherwise free of any additional vacuum expectation values)
target space-time yields the critical dimension of superstring theory [162],

Dsusy
crit = 10 . (2.24)

First Quantised Closed Strings: Particles and Fields and Field Theories

Of course, for general metricGµν(X) (2.16) still defines a field theory highly nonlinear in the
fields Xµ. As already mentioned above, for a flat ten-dimensional Minkowski background,
Gµν = ηµν = diag(−1, 1, ...1), the theory reduces to a collection of ten free bosonic fields
Xµ. It is this case for which (2.16) was first quantised and the spectrum of string excitations
was found. Probably the easiest way to quantise the string is in light-cone gauge, which
means the choice of the conformal gauge hab = ηab (eq. (2.21)) plus light cone coordinates
on the world sheet

σ± = τ ± σ . (2.25)

The action (2.16) reduces upon gauge fixing to

Sg.f.
P =

TF

2

∫

dτdσ
(

ẊµẊµ −X ′µX ′µ

)

, (2.26)
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Figure 2.3: Left- and right moving excitations of a closed string (figure taken from [163]).

where the dot denotes a derivative w.r.t τ and the prime denotes the derivative w.r.t. σ.
One then proceeds as follows: First, one needs to consider the boundary conditions for the
fields Xµ. For a closed string, this is very simple. As a closed string is a closed loop, it has
no boundary and thus only a periodic identification

Xµ(τ, σ) = Xµ(τ, σ + 2πn) , n ∈ (2.27)

is required. The light-cone gauge fixed equations of motion for the string embedding fields
Xµ the simply read

0 = ηab∂a∂bX
µ =

(
∂2

∂σ2
− ∂2

∂τ 2

)

Xµ =
∂2

∂σ+σ−
Xµ(σ±) . (2.28)

This wave equation is solved by a superposition of left-moving (only depending on σ+)
and right-moving excitations (which only depend on σ−),

Xµ(σ, τ) = Xµ
L(τ + σ) +Xµ

R(τ − σ) . (2.29)

The left and right movers (which are depicted in figure 2.3) can now be expanded in a
Fourier series on the circle, s.t. the closed string boundary conditions (2.27) is automati-
cally fulfilled, yielding

Xµ
L =

1

2
xµ +

ℓ2s
2
pµσ+ +

i

2
ℓs

∑

n∈ , n6=0

1

n
α̃µ

ne
−inσ+

, (2.30)

Xµ
R =

1

2
xµ +

ℓ2s
2
pµσ− +

i

2
ℓs

∑

n∈ , n6=0

1

n
αµ

ne
−inσ−

. (2.31)

Here the possible constant term xµ in the solution to (2.28) has been distributed equally
amongst the left- and rightmoving part, and the powers of ℓs have been introduced such that
the integration constant pµ has dimension of energy, and the oscillation mode coefficients
αµ

n , α̃
µ
n are dimensionless. This is natural as (in natural units) ℓs is the only dimensionful

parameter in the theory defined by (2.16). Introducing different pµ
L/R, which would be
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possible a priori, is forbidden by the periodicity condition (2.27). The integration constant
xµ serves as the center-of-mass position of the string (i.e. its embedding into space-time
is just a constant if the other integration constants pµ = αµ

n = α̃µ
n = 0 all vanish). The

second integration constant pµ is interpreted as the center-of-mass momentum of the string
moving through space-time.

The bosonic string can now be canonically quantised just like an ordinary (two-dimensional)
quantum field theory by promoting the fields Xµ to operators and postulating canonical
commutation relations between Xµ and the canonical momentum

P µ(τ, σ) =
δSg.f.

P

δẊµ

= TF Ẋ
µ , (2.32)

at equal world-sheet times,

[Xµ(τ, σ), P ν(τ, σ′)] = iηµνδ(σ − σ′) [Xµ, Xν ] = [P µ, P ν ] = 0 . (2.33)

For the closed string, this yields commutators for the center-of-mass modes and the oscil-
lators reading (all other commutators are vanishing)

[xµ, pν ] = iηµν , [αµ
m, α

ν
n] = [α̃µ

m, α̃
ν
n] = mηµνδm+n,0 . (2.34)

Note that the center-of-mass modes form the expected Heisenberg algebra. This means that
the center-of-mass movement of quantised closed strings in flat space-time and without any
additional background fields is equivalent to the quantum movement of a point particle in
ordinary, commutative space-time. We will see later in chapter 4 that different background
fields can make open strings see space-time rather as a noncommutative one.

The commutation relations of the oscillators (2.34) are, up to a rescaling (similar for the
left movers α̃)

aµ
m =

1√
m
αµ

m , aµ
m
† =

1√
m
αµ
−m for m > 0 ,

just two infinite sets of quantum mechanical harmonic oscillators

[aµ
m, a

ν
n
†] = [ãµ

m, ã
ν
n
†] = ηµνδm,n for m,n > 0 . (2.35)

The kinematical Hilbert space of the first quantised closed bosonic string thus simply
consists of an infinite direct sum of two copies (one for the left movers and one for the
right movers) of the harmonic oscillator Hilbert space. The ground state in each sector is
annihilated by the lowering operators, for example for the right movers by aµ

m for m > 0,

aµ
m|0〉 = 0 , m > 0 .

One can now construct

The so-constructed state space however has a severe problem: On first sight, as the com-
mutators of the time components of the oscillator modes have the wrong sign,

[a0
m, a

0
m
†] = −1 ,
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it seems to contain negative norm states. However, on the quantum level, one now still
needs to implement the Virasoro constraint (2.17). Without attempting to prove this here,
it turns out that after imposing these constraints on the quantum level, the bosonic string
is free of negative norm states provided we choose the dimension to be the critical one,
eq. (2.23).7 For a proof of this statement, see e.g. chapter 2.4 of [146]. The quantum
version of (2.17) also provides a mass operator for the states, which for the closed bosonic
string reads

M2 = −p̂µp̂
µ =

2

α′

( ∞∑

n=1

n
(
aµ

n
†an,µ + ãµ

n
†ãn,µ

)
− 2

)

. (2.36)

Thus the mass squared of a closed string state is basically given by the number of excitations
of left- and right movers, weighted with the level n. Note however that the mass squared
computed by (2.36) can be negative, which is a sign of an (unwanted) tachyonic excitation.
As we will see later in section 2.66, superstring theory has a consistent way of doing away
with the tachyonic modes.

To understand the spectrum of the bosonic closed string, we furthermore need two more
pieces of information. First, from the two-dimensional field theoretic point of view it is clear
that the mass operator (2.36) is nothing but a (normal ordered version of) the generator
of worldsheet time translations. For closed strings, it turns out that there is another
symmetry, namely translations in the worldsheet space direction (i.e. the σ direction),
which needs to be implemented as a symmetry on the quantum mechanical state space.
This second constraint yields the so-called “level-matching” condition, i.e. the requirement
that the number of left- and right-moving excitations are equivalent,

N |phys〉 = Ñ |phys〉 , N =
∞∑

n=1

αµ
−nαn,µ , Ñ =

∞∑

n=1

α̃µ
−nα̃n,µ . (2.37)

This condition can be understood to prevent an overall unbalanced energy-momentum
distribution on the string being created by the excitations rotating left- and rightwards
along the string with the speed of light. It is clear intuitively that for example a single
left-moving excitation would break the σ-translation invariance of the string worldsheet
theory.

The second piece of information we need is the fact that the operator pµ actually commutes
with all the raising and lowering operators (see (2.34)) and also (without proof) with the
quantum version of the Virasoro generators (2.17). Thus, every state in the Hilbert space
of the bosonic string is labeled by the excitation numbers of the left- and right movers as
well as by a continuous center of mass momentum kµ. We are now ready to understand the
spectrum of the bosonic closed string, whose lowest lying levels are summarised in table 2.1:

7It turns out that the Virasoro constraints also allow different critical dimensions, provided that a
certain string excitation, the dilaton, acquires a vacuum expectation value which depends linearly on the
spatial coordinates. These kinds of vacua are called linear dilaton vacua.
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State N = Ñ Space-Time Interpretation α′M2

|0, k〉 0 Tachyon T (x) -4

[α̃
(µ
−1α

ν)
−1 − ηµνα̃−1 · α−1/26]|0, k〉 1 Graviton Gµν 0

α̃
[µ
−1α

ν]
−1|0, k〉 1 Antisymmetric Tensor Bµν 0

ηµν/26α̃−1 · α−1|0, k〉 1 Dilaton Φ 0

Table 2.1: Lowest lying modes of the closed bosonic string.

The vacuum, which is defined as the state annihilated by all annihilation operators

0 = αµ
n|0, k〉 = α̃µ

n|0, k〉 , n > 0 , (2.38)

is the state of lowest mass squared M2 = −4/α′. This negative mass squared indicates a
tachyonic mode in the theory, which destabilises the vacuum. At this stage closed bosonic
string theory thus looks quite sick but, as mentioned above, superstring theory allows to
project out the tachyon from the spectrum in a consistent way.

The next state in the spectrum would be the one with one left- and one right-moving
excitation at level one each,

α̃µ
−1α

ν
−1|0, k〉 , (2.39)

which according to (2.36) is a massless state, M2 = 0. Being massless, these states will
for sure be important for low energy physics, and the natural question arises how the well-
known massless fields like the graviton or the photon arise from these string excitations.
The answer lies in the fact that we can build even more general states with nontrivial
momentum profiles from (2.38) and (2.39) by including a momentum-dependent profile
function t(k) for the tachyon and a polarisation tensor ζµν(k) for the massless states,

|T 〉 =

∫

d10k t(k)|0, k〉 , |ζ〉 =

∫

d10k ζµν(k)α̃
µ
−1α

ν
−1|0, k〉 . (2.40)

Since the center-of-mass position and momentum operator form a Heisenberg algebra
(2.34), we could have as well diagonalised the center-of-mass position operator xµ by in-
troducing a vacuum |0, x〉. As the center-of-mass movement is that of a quantum particle
in all space-time directions, the corresponding transition element between these two bases
must be a plane wave,

〈0, x|0, k〉 = eikµxµ = eik·x . (2.41)

From this it follows that the position space wave functions are given by transition elements
between these two bases

〈0, x|T 〉 =

∫

d10k t(k)eik·x =: t(x) , (2.42)

〈0, x|αν
1α̃

µ
1 |ζ〉 =

∫

d10k ζρσ(k)〈0, x|αν
1α̃

µ
1 α̃

ρ
−1α

σ
−1|0, k〉 ,

= ηµρηνσ

∫

d10k ζρσ(k)〈0, x|0, k〉 = ζµν(x) . (2.43)
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where in the second and third line the definition of the vacuum (2.38) and the commutation
relations (2.34) were used. Note that in calculating ζµν(x) it is necessary to take the overlap
with the fundamental state α̃µ

−1α
ν
−1|0, x〉 and not just with the oscillator vacuum |0, x〉 in

order to be able to extract the polarisation tensor. We thus find that the position space
wave functions of the string states, which are functions of the eigenvalue of the center-of-
mass position operator x̂µ|0, x〉 = xµ|0, x〉, may be interpreted as fields on space-time. The
center-of-mass eigenvalues xµ themselves serve as the coordinates of space-time, and the
spin of the corresponding space-time fields is given, through the polarisation tensors which
are needed to define general states similar to (2.40), by the index structure of the string
of creation operators αµ1

−n1
. . . αµk

−nk
α̃ν1
−ml

. . . α̃νk
−ml

which acts on the vacuum to create the
state under consideration. We now can reduce the polarisation tensor ζµν of the massless
closed string state in terms of irreducible two-tensor representations of the 26-dimensional
Lorentz group SO(1,25) which are, respectively, the symmetric traceless, antisymmetric
and trace part of ζµν ,

hµν(x) =
1

2
(ζµν + ζνµ) − 1

26
ηµνη

ρσζρσ , (2.44)

bµν(x) =
1

2
(ζµν − ζνµ) , (2.45)

ϕ(x) =
1

26
ηµνη

ρσζρσ . (2.46)

The interpretation of this decomposition is that hµν , bµν and ϕ respectively describe a 26-
dimensional graviton, an antisymmetric tensor excitation called the Kalb-Ramond
field [164] and a real scalar called the dilaton. Note that these string states are inter-
pretated only as linearised excitations of the full nonlinear fields, which can be deduced
e.g. from the tracelessness of h. The interpretation as particle excitations also becomes
clear if considering a plane wave eipx as spatial profile: In that case the momentum space
profiles just become a delta function, e.g. for the dilaton tp(k) = δ10(k − p) and thus the
corresponding momentum representation state is just a fundamental string excitation such
as (2.38) or (2.39) with momentum p. Also, in this special case the dispersion relations
are the correct 26-dimensional relativistic dispersion relations, as the mass operator (2.36)
is nothing but the relativistic dispersion relation M2 = −kµk

µ. Furthermore let us note
without proof that also the relativistic wave equations governing the free evolution of these
fields can be deduced from the quantum Virasoro constraints (2.17). For completeness, the
closed bosonic string states of negative or zero mass squared are summarised in table 2.1.

Clearly, if the strings we consider have a string length comparable to the known four-
dimensional Planck Length ℓs ≈ ℓP = 1.6 · 10−35m, all modes with higher occupation
numbers and thus with positive mass squared will have masses well above the Planck
mass. If one is only interested in the physics at low energy scales, well below the Planck
scale, these modes thus can be integrated out, giving rise to operators of dimension greater
than 26 in the low energy effective field theory. These operators will be suppressed by
inverse powers of the Planck mass and thus come with positive powers of α′. Generically,
it is thus possible to define a point particle limit of the low energy effective action
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of the massless string modes by taking the limit α′ → 0 while keeping all relevant energy
scales in the problem fixed in terms of the string length. This limit focuses on the physics
of the massless modes, decoupling the massive string excitations. As we will see later, such
a scaling limit also lies at the heart of the AdS/CFT correspondence.

Quantum Open Strings: A First Look at Dirichlet Branes

The main difference between open and closed strings is that the open string has a beginning
and an end, whereas the closed string is just a closed loop propagating in space and time.
For open strings, the world sheet thus has a spacelike boundary, restricting the coordinate
σ for example to lie in the interval [0, π]. The action (2.16) thus will yield boundary terms
upon variation w.r.t. Xµ and thus needs to be supplemented by appropriate boundary
conditions which make the boundary terms vanish. Variation of the gauge fixed Polyakov
action (2.26) yields

δSg.f.
P = −TF

∫

dτdσ δXµ
(

Ẍµ −X ′′µ

)

+ TF

π∫

0

dσ
[

(δXµẊµ)τ=∞ − (δXµẊµ)τ=−∞
]

+TF

∞∫

−∞

dτ
[
(δXµX ′µ)σ=π − (δXµX ′µ)σ=0

]
. (2.47)

As always, we require the field variation to vanish for initial and final configurations,
δXµ|τ=−∞ = δXµ

τ=∞ = 0, but the second boundary term leaves us with two choices for
each of the string endpoints, namely

δXµ(σ = 0 or π, τ) = 0 ⇒ Xµ(σ = 0 or π, τ) = xµ
0(τ) , (Dirichlet) (2.48)

∂σX
µ(σ = 0 or π, τ) = 0 . (Neumann) (2.49)

Note that a string can be given different boundary conditions separately at its two ends,
σ = 0, π. Starting with a general mode expansion

Xµ = Xµ
L(σ+) +Xµ

R(σ−) , (2.50)

Xµ
L =

xµ
L

2
+
ℓ2s
2
pµ

L(τ + σ) +
i

2
ℓs

∑

n∈ , n6=0

1

n
α̃µ

ne
−in(τ+σ) , (2.51)

Xµ
R =

xµ
R

2
+
ℓ2s
2
pµ

R(τ − σ) +
i

2
ℓs

∑

n∈ , n6=0

1

n
αµ

ne
−in(τ−σ) , (2.52)

Neumann boundary conditions on both ends imply

pµ
L = pµ

R , α̃µ
n = αµ

n ∀n ∈ , n 6= 0 . (2.53)

Thus the left- and right-movers are coupled in a very simple way: For each level n a left-
moving excitation gets reflected into a right-moving one once it reaches a boundary and
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State N Space-Time Interpretation α′M2

Spacefilling D25 Brane
|0, kµ〉 0 Tachyon -1

αµ
−1|0, kµ〉 1 Vector Boson Aµ 0

Parallel Dq-Dp Branes (q < p) with Separation |∆x| = 2πα′m
Dq-Dq Strings

αi
−1|0, ki〉 1 Dq Brane Vector Boson Aq,i , i = 0, . . . , q 0
αa
−1|0, ki〉 1 Dq “Relatively” Transverse Scalar Xa

q , I = q + 1, . . . , p 0
αI
−1|0, ki〉 1 Dq Totally Transverse Scalar XI

q , I = p+ 1, . . . , 25 0

Dq-Dp Strings
|0, ki〉 0 Massive vacuum state α′m2

Dp-Dp Strings
αi
−1|0, ki∪a〉 1 Dp Brane Vector Boson Ap,i∪a , i ∪ a = 0, . . . , p 0
αI
−1|0, ki∪a〉 1 Dp Totally Transverse Scalar XI

p , I = p+ 1, . . . , 25 0

Table 2.2: Lowest lying modes of the open bosonic string with different boundary condi-
tions. Only modes with finite mass squared in the point particle limit α′ → 0 are listed.

vice-versa. The quantisation however proceeds the same way as for closed strings, and the
mass formula for a Neumann-Neumann (NN) string is found to be

M2
NN =

1

α′

( ∞∑

n=1

naµ
n
†an,µ − 1

)

. (2.54)

The spectrum of the NN string thus consists again of a tachyonic vacuum |0, k〉NN

with M2 = −1/α′ and of a massless vector boson αµ
−1|0, k〉NN . This is a very remarkable

observation: Open string excitations naturally give rise to vector bosons such as photons
and gauge bosons. The gauge symmetry in that case is also a property of the physical state
space which is obtained from the naive state space built up with the creation operators aµ

n
†

by imposing the quantum Virasoro constraints: It turns out that some states which can
be built up by acting with part of the Virasoro constraints on the vacuum are “spurious”
in the sense that they are orthogonal to any physical state. They thus can be added to
physical states without changing the transition amplitudes between physical states. It
turns out that this addition actually corresponds to a gauge transformation of the space-
time field associated with our vector boson, and thus string theory naturally includes gauge
symmetries.8 How the nonabelian nature of gauge bosons arises in string theory will be
explained in the following.

The Neumann boundary conditions restricted the derivative of the fields Xµ normal to
the worldsheet boundary to vanish. On the other hand Dirichlet boundary conditions
(2.48) are restricting the positions of the string endpoints themselves. If for example

8The same mechanism is at work in implementing the diffeomorphism symmetry in the closed string
sector.
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the 25-direction of the string is given a Dirichlet-Dirichlet (DD) condition (and the other
directions are still NN directions)

X25(0, τ) = 0 , X25(π, τ) = x25 ,

then the string is suspended between these two points on the 25-axis but free to move
in all the other directions including time. The string is thus restricted to move between
two hypersurfaces in our 26-dimensional space-time, and such hypersurfaces are commonly
called Dirichlet p branes or just shortly Dp branes, where p counts the number of
spatial dimensions the string is equipped with Neumann boundary conditions, i.e. the
number of spatial directions the string is allowed to move in. An open bosonic string
without any Dirichlet direction would thus move on a spacefilling D25 brane, while the
above example would correspond to a string suspended between two parallel but separated
D24 branes.

Dp branes are thus by definition hypersurfaces on which open strings end and
on which they can move around freely.

Later we will see that Dp branes are also dynamical objects which for example couple
to gravity and curve space and time. This dual interpretation of Dp branes, on the one
hand as the objects in string theory on which open strings end and which thus carry
supersymmetric gauge theories on their worldvolume and on the other hand as sources for
the gravitational field, will lead us then to conjecture a duality between a four-dimensional
supersymmetric gauge theory called N = 4 supersymmetric Yang-Mills theory, and type
IIB string theory on the space-time AdS5 × S5.

The effect of Dirichlet-Dirichlet (DD) boundary conditions is also easily deduced.
Let us first consider DD boundary conditions which fix both ends of the string to one
and the same particular position in 25 − p directions, e.g. XI(σ = 0, π, τ) = xI , I =
25 − (p− 1), . . . , 25. This imposes on the mode expansion in I-directions (2.50)

xI
L + xI

R

2
= xI , pI

L = pI
R = 0 , α̃I

n = −αI
n . (2.55)

The center-of-mass coordinate is thus fixed to xI in each Dirichlet direction, the total
center-of-mass momentum 2pI = pI

L + pI
R is fixed to zero, and again the left- and right-

moving oscillations are coupled, but now with a different sign compared to the NN case.
It is exactly this sign which yields a factor sin(nσ) in the sum in (2.50), which is what is
needed to fulfill the DD conditions. Because of pI vanishing, the spectrum for DD directions
is now given by a mass operator which represents the momentum in the remaining p + 1
directions (along the Dp brane),

M2
DD =

p
∑

i=0

pipi =
1

α′

( ∞∑

n=1

[
p
∑

i=0

αi
−nαn,i +

25∑

I=p+1

αI
−nαn,I

]

− 1

)

. (2.56)
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Thus we find that if we exchange several NN directions by DD directions, the mass formula
basically stays the same, but the oscillator terms split into two groups labeled by the space-
time index µ = 0, . . . , 25 which is split up into two groups i = 0, . . . p and I = p+1, . . . , 25.
However, the oscillators belonging to both groups still contribute to the mass squared
in the same way as for the pure NN case, eq. (2.54). The physical difference between
the pure NN and mixed NN/DD case is rather that the mass squared is now the mass
squared with respect to a lower-dimensional space-time, namely the worldvolume of the
Dp brane. The fields we build up out of αi

−n (along the Dp brane) and αI
−n (transversal

to it) will thus be localised on the hypersurface the Dp brane is in the 26-dimensional
space-time. The open string spectrum of a single Dp brane then consists out of the
same tachyonic vacuum |0, ki〉 as before (but with the momentum now only running in
the p+1 worldvolume directions of the brane), of a massless gauge field Ai associated with
the state αi

−1|0, ki〉 and of massless scalars XI associated with the state αI
−1|0, ki〉, which

describe the fluctuations of the strings transverse to the brane. It will become clear later in
section 2.3.6 that the corresponding space-time fields also can be interpreted as describing
the embedding of the brane into space-time, as well as small fluctuations around these
embeddings. Thus Dp branes are not only static, put-in-by-hand hypersurfaces on which
open strings have to end, but they will turn out to be dynamical objects which for example
curve themselves differently according to the geometry of the surrounding space-time.

We just saw that a Dp brane naturally carries a gauge field, but this was an abelian one,
with gauge group U(1). String theory however also provides nonabelian gauge bosons:
One can attach nondynamical matrix degrees of freedom to the ends of open strings without
spoiling space-time Poincaré invariance or world-sheet conformal invariance through the
so-called “Chan-Paton” factors [165], which were originally an attempt to invent a
Veneziano like amplitude including isospin degrees of freedom. The idea is simple: Just
add a U(N) matrix sector to the open string Hilbert space via

|k; a〉 =
N∑

i,j=1

|k, ij〉λa
ij . (2.57)

The indices i and j are transforming in the N and N̄ representation of U(N) and are
interpreted as belonging, respectively, to the endpoint and the starting point of the oriented
open string. Endpoints of oriented open strings are thus transforming in the fundamental
of the (by now still global) U(N) symmetry group, while starting points transform in the
antifundamental. The space-time interpretation of this construction is that the open string
under consideration ends not only on one Dp brane, but on a stack of N Dp branes which
lie right on top of each other. The Dp branes are indistinguishable objects, and the U(N)
symmetry group effects the indistinguishability by permuting the Dp branes amongst each
other. However, as it turns out, also the “spurious states” which were responsible for
the gauge transformation of the Aµ field, become equipped with the Chan-Paton factors
and through the same mechanism as before the global U(N) symmetry is promoted to a
gauged U(N) symmetry. Similarly, the transverse scalars XI become promoted to fields
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transforming in the adjoint representation of the U(N) gauge group. We thus arrive at the
conclusion that

Open oriented strings ending on one stack of N Dp branes include nonabelian
U(N) gauge fields and massless scalars transforming in the adjoint representa-
tion of U(N) in their spectrum.

As we will see later in section 2.3.2, the natural guess then actually is the correct one: For
oriented open strings, the worldvolume of a stack of N Dp branes supports a (supersym-
metric) nonabelian Yang-Mills theory coupled to the adjoint transverse scalars.

Until now we only considered D branes sitting at the same position in space. But what
happens if strings are suspended between different stacks of branes? If oriented
strings stretch between two stacks of Dp branes of the same dimensionality (we will consider
directions with mixed Neumann-Dirichlet boundary conditions shortly), e.g. between N1

and N2 Dp branes, then the oriented strings running from the former to the latter will have
their starting point transforming in the antifundamental of U(N1) and the endpoint in the
antifundamental of U(N2), and vice-versa for the string running in the other direction.
Oriented strings between two stacks of D branes will thus give rise to bifundamental fields,
and orientation actually matters here: Each orientation will give rise to its own field or,
in the case of supersymmetric strings, to its own multiplet. However, separating the two
stacks of branes a distance L away from each other will give the fields a mass, because
the string acquires a minimal energy given by its tension times the distance between the
branes. The whole spectrum thus will be shifted by that amount. Let for example the
first stack of branes sit at xI

0, and the second stack at xI
π. The constraints on the mode

expansion are now generalised from (2.55) to

xI
0 =

xI
L + xI

R

2
, pI

L = −pI
R =

xI
π − xI

0

πα′
, α̃I

n = −αI
n . (2.58)

The mode expansion thus becomes

XI(τ, σ) = xI
0 +

xI
π − xI

0

π
σ −

√
α′

2

∑

n6=0

e−inτ

n
αI

n sin(nσ) , (2.59)

clearly describing a string running from the point xI
0 to the point xI

π. For a brane con-
figuration with only NN and DD directions (i.e. for a Dq-Dq system) the mass formula
reads

M2 = −pipi = m2 +
1

α′

( ∞∑

n=1

αi
−nαn,i + αI

−nαn,I − 1

)

, (∆x)2 = (xI
π − xI

0)
2 = 4π2α′2m2 .

(2.60)
Thus the spectrum now consists of a vacuum which for fixed m2 and small enough α′ always
is tachyonic, and gauge bosons and transverse scalars of mass m2. This mass generating
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mechanism for gauge bosons is just the string theoretic version of the Higgs effect:
As noted above, the transverse scalar fields encode informations about the fluctuations of
the open strings in the directions transverse to the D branes. Furthermore, these string
states are corresponding to small, linearised excitations of the corresponding fields, as we
saw from the example of the graviton. Eq. (2.60) tells us that the linearised excitations
of the transverse scalars XI as well as of some gauge bosons Ai have mass m. However,
if we would set out to calculate the vacuum expectation value of the transverse scalars,
we would find that they are nonzero and proportional to the mass m. We would thus
conclude that the separation of the D branes, may it be by a choice of a nontrivial point
in the moduli space of the corresponding gauge theory or by an external potential which
for example could be generated by a nontrivial gravitational background, is encoded in
the vacuum expectation values of the transverse scalar fields, which in turn describe the
minimum length a string stretching between these two stacks of D branes can have. We
would furthermore identify the massive gauge bosons with the broken generators of the
gauge group in the case when both stacks of D branes were coincident. Thus in the example
considered here, we would conclude that the gauge group of the theory on the N1 +N2 Dp
branes was broken according to the pattern

U(N1 +N2) → U(N1) × U(N2) . (2.61)

We still have to consider one last choice of boundary conditions to complete our classifi-
cation of possible open strings: There can exist strings which stretch between D branes of
different dimensionality, e.g. Dp and Dq branes. In this case there are directions (so-called
ND directions) in which the embedding functions satisfy Dirichlet boundary conditions
on the one end and Neumann boundary conditions on the other end. For definiteness, let
q < p, and let the Dq branes sit at a point xa

q , a = q+1, . . . , p in the space made up by the
ND directions. Dirichlet boundary conditions at σ = 0 and Neumann boundary conditions
at σ = π (i.e. for a string running from the Dq branes to the Dp branes) then imply

xa
q =

xa
L +Xa

R

2
, pa

L = pa
R = 0 , α̃a

n = −αa
n , n ∈ +

1

2
. (2.62)

The constraint for strings running the other way, i.e. from the Dp branes to the Dq branes,
are

xa
q =

xa
L +Xa

R

2
, pa

L = pa
R = 0 , α̃a

n = αa
n , n ∈ +

1

2
. (2.63)

The new feature here is that the ND strings need to have half-integer modes in order to
fulfill the ND boundary conditions. Intuitively this can be understood as the fact that
on a Neumann boundary a standing wave does not experience any phase shift, but on a
Dirichlet boundary the phase of the wave will be shifted by π. Thus for a NN or DD wave
the phase shift is trivial (zero or 2π ∼ 0), but for a ND wave the phase shift will be π.
Note furthermore that the modulus xa

q is the center-of-mass position of the string in the
“relatively” transverse directions a = q + 1, . . . , p. The ND directions yield an additional
oscillator contribution to the mass squared, but because of the half-integer moding it
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Boson Fermion
Periodic − 1

24
+ 1

24

Antiperiodic 1
48

− 1
48

Table 2.3: Zero point energy contributions from bosons and fermions of different periodicity.

contributes differently to the zero point energy. The zero point energy contributions (see
e.g. [143,166]) of one periodic (i.e. integer moded) or antiperiodic (i.e. half-integer moded)
boson and fermion are summarised in table 2.3. For the bosonic Dq-Dp system with p > q
there are ν = p − q ND directions, and 26 − ν NN and DD directions. Except of two
directions whose contributions are cancelled by the diffeomorphism ghosts, the NN and
DD direction contribute all as periodic bosons, since they are integer moded. The ND
directions contribute as antiperiodic bosons. The total zero point energy for the bosonic
Dq-Dp system in 26 dimensions thus is

(24 − ν)

(

− 1

24

)

+
ν

48
=

3ν

48
− 1 .

The full mass formula for the p-q strings in the bosonic Dp-Dq system at spatial separation
|∆x| = 2πα′m thus is

M2 = −pipi = m2 +
1

α′





∞∑

n=1

αi
−nαn,i + αI

−nαn,I +
∞∑

n= 1
2

αa
−nαn,a +

3ν

48
− 1



 . (2.64)

Except for the case of no ND directions (ν = 0), this mass formula does not give rise to any
states other than the vacuum with finite mass in the limit α′ → 0. This is the point where
the analogy of the bosonic with the supersymmetric string ends. As is explained in the
next section 2.2.2. The ND strings of bosonic Dq-Dp intersections thus do not yield any
additional fields. Interactions between the Dq-Dq strings and the Dp-Dp strings could be
induced by integrating out massive ND modes, but these interactions vanish in the α′ → 0
limit.

The full massless spectrum of the open bosonic Dq-Dp string is summarised in table 2.2.
I omitted the different vacua of the three kinds of strings, as they will be absent for the
supersymmetric brane configurations in the superstring. To summarise, the conclusion to
draw from this analysis of open bosonic parallel D brane intersections is

1. Each stack of branes carries its own gauge theory, coupled to the corresponding
transverse scalars which transform in the adjoint representation of the respective
gauge groups. These transverse scalars encode the position of the branes in transverse
space and, if acquiring a vacuum expectation value, lead to spontaneous breaking of
the corresponding gauge symmetries.

2. The totally transverse adjoint scalars on both brane stacks are not redundant. Sim-
ply speaking, they can be redefined into fields encoding the relative position of the
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stacks (the difference of XI
q and XI

p ) and fields encoding the overall “center-of-mass
position” of the brane intersection (the sum of the fields). The latter can, of course,
always be set to zero by a space-time Poincaré shift.

3. The “relatively” transverse adjoint scalars encode the position of the Dq’s inside the
Dp’s.

4. The spectrum of open bosonic q-p strings does not contain fields surviving the low
energy limit α′ → 0. This is due to the noncancellation of the zero point energies of
NN, DD and ND bosonic strings. In section 2.3 we will see that the superstring in
ten dimensions is much better behaved in this respect. It will turn out that for the
number of ND directions p− q being a multiple of four, supersymmetry is preserved
and the ND directions give rise to additional bifundamental fields which play the
roles of supersymmetric quarks in the field theory on the smaller Dq brane.

2.2.2 Ten-Dimensional Type II Superstrings and Supergravities

As the major tools of the AdS/CFT correspondence to describe strongly coupled gauge
theories is the use of ten-dimensional type II superstring theories and their low energy
effective actions, ten-dimensional N = 2 supergravities, this section will serve as a short
summary of the most important facts needed in the course of this thesis. As the reader
will understand, the presentation of this material has, due to to the increasing complexity
of the material, to be more condensed and less self-contained than in the previous section.

The starting point for the description of ten-dimensional superstrings is a supersymmetrised
version of the action (2.16), with the superpartners of the Xµ’s being world-sheet fermions
ψµ(σ, τ) and with a two-dimensional supergravity multiplet consisting of the worldsheet
metric and a corresponding gravitino. I refrain of giving here the rather complicated
fully supersymmetrised version of (2.16), just mentioning that it is possible to chose a
generalisation of the above-used conformal gauge, the so-called superconformal gauge in
which the bosons and fermions each just show up with a kinetic term,

SII =
TF

2

∫

dτdσηµν

(
∂aX

µ∂aXν − iψ̄µγa∂aψ
ν
)
. (2.65)

Here γa are two-dimensional Dirac “gamma” matrices. In order to have on-shell super-
symmetry, the numbers of bosonic and fermionic on-shell degrees of freedom should match.
In two space-time dimensions it is in principle possible to impose both a Majorana and
a Weyl condition on spinors, reducing the number of real degrees of freedom from four
(Dirac spinor) to two (Majorana or Weyl) and then to one (Majorana-Weyl). On-shell the
Majorana-Weyl spinor thus only contains one half degree of freedom, which corresponds
to either a left- or a right mover, as can be seen by writing the Dirac equation in the light
cone frame (using e.g. the gamma matrices (A.7) from appendix A): Naming the left- and
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right-handed spinor components ψµ = (ψµ
+, ψ

µ
−)T , one obtains

0 = γa∂aψ
µ = γa∂a

(
ψµ

+

ψµ
−

)

=
√

2

(
∂+ψ

µ
−

∂−ψ
µ
+

)

.

The left-handed fermions are thus also left movers, ψµ
+(τ + σ), and the right-handed ones

are right movers, ψµ
−(τ − σ). For closed strings, where the left- and right moving parts

of Xµ are independent of each other, we thus must add two Majorana-Weyl fermions of
opposite chirality9 for each space-time boson. As noted before in eq. (2.24), the requirement
of quantum conformal symmetry restricts the number of space-time dimensions to be ten.
The theory, if formulated for closed strings, has thus N = (1, 1) world sheet superconformal
symmetry in two dimensions and, after a suitable truncation called (after Gliozzi, Scherk
and Olive [167]) the GSO Projection, N = 2 target space supersymmetry in ten dimensions.

Working out the spectrum of the theory (2.65), one now finds an ambiguity even for the
closed string: The left- and right moving parts of the fermions can separately fulfill either
periodic or antiperiodic boundary conditions around the string, giving rise to different
mode expansions and thus different sectors. The periodic boundary conditions are called
Ramond (R) boundary conditions, and the antiperiodic ones are named after Neveu and
Schwarz (NS) boundary conditions. As the left- and right movers are independent, the
closed superstring described by (2.65) has four sectors, summarised in table 2.4. It turns
out that in the Ramond sector the fermions have integer-labeled mode expansions, while
in the Neveu-Schwarz sector, the modes are half-integers, giving rise to different algebras
of creation and annihilation operators, namely

NS: {bµr , bνs} = ηµνδr+s,0 , r, s ∈ +
1

2
, (2.66)

R: {dµ
m, d

ν
n} = ηµνδm+n,0 , m, n ∈ . (2.67)

As we are dealing with worldsheet fermions, we need to impose anticommutation relations
rather than commutation relations. As the moding in the NS sector is half integer, r = s
never yields a nonvanishing right hand side in eq. (2.66), making a unique separation of
the operators bµr into pairs of creators and annihilators and thus a definition of a unique
nondegenerate ground state possible, which in turn can be identified with a bosonic spin
zero state. The Fock space build upon the NS ground state will thus contain space-time
bosons. For the R sector however the dµ

0 operators fulfill a Clifford algebra,

Γµ =
√

2dµ
0 ⇒ {Γµ,Γν} = 2ηµν , (2.68)

Furthermore it turns out that the dµ
0 commute with the fermionic part of the M2 operator,

and thus the vacuum of the R sector and all excited states have to furnish irreducible
9One could also try to set one of the fermionic modes (left or right movers) to zero, but then one needs

to also set the corresponding scalar mode to zero to preserve supersymmetry. For the closed string this
leads to a trivial theory, as the number of left- and right moving excitations have to equal by worldsheet
conformal symmetry. Adding more chiral fermions is equivalent to increasing the space-time dimensionality
and thus does not solve the problem.
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H
H

H
H

H
H

R
L

NS R

NS Space-Time Bosons Space-Time Fermions
R Space-Time Fermions Space-Time Bosons

Table 2.4: Sectors of the closed type II superstring.

representation of the ten-dimensional Clifford algebra (2.68). We thus see that the states
in the R sector are space-time fermions. The closed type II superstring Fock space is a
tensor product of the two sectors for both the left- and right movers. As the tensor product
of two bosonic (tensorial) representations of the Lorentz group SO(1, 9) as well as of two
fermionic (spinorial) representations both only include tensor representations of SO(1, 9),
while the tensor product of a tensorial and a spinorial representation decomposes into
spinorial ones, the pattern of table 2.4 arises.

The Fock space constructed from eqs. (2.66) and (2.67) however suffers from tachyonic
ground states very much in the same way as the bosonic string sector did (which is of
course also present in the full type II superstring Fock space). There is however a way to
consistently truncate the Fock space, found by Gliozzi, Scherk and Olive [167], by imposing
the already mentioned GSO Projection: One introduces a fermion number operator F
counting the number of creators b/d acting on the respective ground state. To project out
the bosonic but tachyonic vacuum in the NS sector but keep the (without proof) massless
vector bµ− 1

2

|0〉NS, one has to project out states with even number of fermionic creators,

which is achieved by the projection operator

PGSO
NS =

1

2

(
1 − (−1)FNS

)
, FNS =

∑

r>0

bµ−rbr,µ . (2.69)

The vacuum, which has no bµ acting on it, is projected out, rendering the NS sector tachyon
free. The massless vector bµ− 1

2

|0, k〉NS on the other hand is kept.

In the R sector one uses the same projector, but there are now two choices in the definition
of the (−1)F operator,

PGSO
R,± =

1

2

(

1 − (−1)F±
R

)

, (−1)F±
R = ±Γ11

∑

m≥1

dµ
−mdm,µ , (2.70)

with Γ11 being the analogue of the chirality projection matrix Γ5 in four-dimensional
physics. PGSO

R,± will thus project out respectively the left-handed (upper sign) or right-
handed (lower sign) chirality part of the (spinorial) Ramond vacuum10 |a〉R. It turns out
that in the Ramond sector the vacuum already is the massless state (i.e. the normal order-
ing constant in the mass formula vanishes for the Ramond sector). Since in ten dimensions

10The index a here is a ten-dimensional spinor index. We define a ten-dimensional left-handed spinor to
have positive eigenvalue under Γ11, Γ11ΨL = +ΨL, and a right-handed chirality spinor to have negative
Γ11-eigenvalue.
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the superpartner of a massless vector field (i.e. transforming in the 8v representation of
the massless little group SO(8) of SO(1, 9)) is a Majorana-Weyl fermion, it should not sur-
prise the reader that the chirality components of the Ramond vacuum exactly correspond
to Majorana-Weyl spinors of different chirality. Only in this way, the number of bosonic
and fermionic on-shell degrees of freedom match: The massless vector has eight propagat-
ing degrees of freedom in ten dimensions, as has the Majorana-Weyl spinor after imposing
its equation of motion. We thus find that the massless modes of the supersymmetric string
arrange themselves into supersymmetry multiplets in ten dimensions.11

The attentive reader will have noticed that the meaning of the freedom of choice to project
out either the left- or the right-handed chirality part of the Ramond vacuum still needs
to be explained. The interpretation is as follows: Either choice defines a separate theory,
as it defines a physically distinct ground state on which the superstring Fock space can
be built. As for the closed superstring, we will have two copies of each the Ramond and
Neveu-Schwarz sector, one for the left movers and one for the right movers, we can either
choose the vacuum in both Ramond sectors to have the same chirality, or to have opposite
chiralities. The former choice leads to a string theory called the type IIB superstring,
while the latter leads to type IIA string theory. In this light it will not surprise the
reader that the IIB theory is chiral (i.e. all the fermions have the same chirality, while
the IIA theory is nonchiral. In particular, the two space-time supercharges of type IIB
have the same chirality (and thus the theory strictly speaking is N = (2, 0) space-time
supersymmetric), while the supercharges of IIA have opposite chirality (and thus it is
N = (1, 1) supersymmetric).

With these pieces of knowledge, the massless spectrum of both type II string theories
is now easily found. Remember that the massless mode in each NS sector is a vector
corresponding to the states bµ− 1

2

|0R〉NS and b̃µ− 1
2

|0L〉NS. Both fields transform in the eight-

dimensional vector representation 8v of the SO(8) little group of SO(1, 9). As both the
left- and right-moving NS sector are tensored together in the full string Fock space, one
can reduce this tensorial representation into irreducible representations of SO(8), yielding
the pattern given in table 2.5. The 35 is the representation of a traceless symmetric two-
tensor of SO(8), which is identified with the ten-dimensional graviton similar as in the
bosonic string case before. The 28 yields an antisymmetric two-tensor also called the Kalb-
Ramond field [164] (as in the bosonic string), and the 1 is the dilaton. The NS-R and
R-NS sectors each yield the spin-3

2
gravitino fields Ψµ ,Ψ

′
µ (of either the same or opposite

chirality), and the superpartners of the dilaton, the dilatini λ , λ′. The corresponding
representations can be obtained by reducing the tensor product of the NS sector 8v and

11It might surprise at first that the massless spectrum of the type II superstring comes from the fermionic
ψ fields in (2.65) alone. It seems the bosonic sector is not necessary. This would however be a wrong
conclusion: On the one hand side, the algebra of generators of the superconformal worldsheet symmetries
closes onto the Virasoro constraints, and on the other hand the bosonic fields Xµ contribute to the zero
point energies (the normal ordering constants in the mass formulas) in a crucial way. That there are no
bosonic modes showing up in the massless spectrum is due to the GSO projection - it projects out all
states in which the NS sector is in its vacuum state, no matter how highly excited the bosonic sector is.



Chapter 2. The Anti-de Sitter/Conformal Field Theory Correspondence 43

the eight-dimensional12 Majorana-Weyl representation 8s of SO(8) (coming from the R
sector) as given in the table. The Ramond-Ramond sector is a little more interesting, as
it is different for type IIA and IIB: Again the massless states in the RR sector lie in the
decomposition of the corresponding tensor products of spinor representations, but now the
choices are different in IIA and IIB theory. For IIA the product to decompose is that
of a left- handed Majorana-Weyl (which is the 8s in our convention) representation with
a right-handed one (which is the conjugate spinor representation to 8s, called 8c). The
decomposition then yields

8s ⊗ 8c = [0] ⊕ [2] ⊕ [4] , (2.71)

where [n] denotes the irreducible antisymmetric n-tensor representation of SO(8). The
RR sector thus gives rise to fields which are completely antisymmetric ten-dimensional
space-time tensors of rank n, or short form fields. Eq. (2.72) shows that the IIA theory
includes zero-, two- and four-forms. Note that these fields are field strengths of
corresponding p-form potentials with one rank less, much in the same spirit as the gauge
field is the 1-form potential of the two-form field strength, F = dA. In type IIB both
Ramond sectors have the same chirality, lets say 8s, and thus the decomposition

8s ⊗ 8s = [1] ⊕ [3] ⊕ [5]+ (2.72)

yields one-, three and five-form fields. The five-form field strength is special, as it
has to be self-dual with respect to the ten-dimensional Hodge star operator. As will be
explained later in section 2.2.3, the existence of these form fields, which again admit a
generalisation of the gauge principle for form fields, is closely related to the existence of
stable D Branes in the type II theories, as the world-volume of these extended objects
naturally couples to the gauge potentials. The D Branes of type II theory will thus turn
out to be the objects which carry Ramond-Ramond charges. In conclusion, since there
are two independent copies of Ramond and Neveu-Schwarz sectors for the left- and right
movers, the massless modes arrange for the closed type II superstring in ten-dimensional
N = 2 supergravity multiplets, as summarised in table 2.5. For the Ramond-Ramond
sector, I listed the corresponding p-form potentials. Note that they are not all independent,
but are connected by the Poincaré duality

F (p+1) = dC(p) = ∗F (9−p) = ∗dC(8−p) . (2.73)

Thus the forms C(p) ≃ C(8−p) are dual to each other. Note that for a p-form electrody-
namics, this duality corresponds to exchanging the analogue of Maxwells equation with
the analogue of the Bianchi identity, i.e. to electric-magnetic duality.13

12Note that eight is the dimensionality of the Majorana-Weyl representation after imposing the Dirac
equation, i.e. the number of independent dynamically propagating degrees of freedom. As the Dirac
equation is one of the supersymmetric Virasoro constraints, the 8s denotes the representation after imposing
the dynamics of the theory. Before doing this, the representation itself is sixteen-dimensional.

13Note that, since no “minus-one forms” exist, the notation C−1 in table 2.5 is just abstract for the
existence of a ten-form field strength F10 and a corresponding nine-form potential C9.
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Sector Statistics SO(8) Representation Massless Fields

NS–NS Bosonic 8v ⊗ 8v = 35 ⊕ 28 ⊕ 1 gµν , Bµν , Φ
NS–R Fermionic 8v ⊗ 8s = 8s ⊕ 56s Ψµ , λ
R–NS Fermionic 8s ⊗ 8v = 8s ⊕ 56s Ψ′µ , λ

′

IIA R–R
Bosonic

8s ⊗ 8c = [0] ⊕ [2] ⊕ [4]
p-form potentials

C−1 ≃ C9 , C1 ≃ C7 , C3 ≃ C5

IIB R–R 8s ⊗ 8s = [1] ⊕ [3] ⊕ [5]+
p-form potentials

C0 ≃ C8 , C2 ≃ C6 , C4 ≃ C4

Table 2.5: Spectrum of the closed type II superstring (slightly modified table of [148]).

Figure 2.4: A scattering process involving closed strings.

Low Energy Effective Actions: Generalities and Type IIB Supergravity

Since the massless excitations of the type II superstring already come in ten-dimensional
N = 2 supergravity multiplets, it is a short way to conjecture that the low energy ef-
fective action governing the dynamics of these fields are the two ten-dimensional N = 2
supergravity theories built around these multiplets, which there are type IIA [168–170]
and IIB supergravity [171–174].14 Since the type IIA theory is a nonchiral one, its two
Majorana-Weyl supersymmetry generators of opposite chirality can be combined into one
Majorana spinor, which can then be interpreted as the supersymmetry generator of the
unique supergravity theory in eleven dimensions [176]. It is thus not surprising that type
IIA supergravity has first been constructed by dimensional reduction of eleven-dimensional
supergravity, while the type IIB theory had to be constructed from scratch by finding su-
persymmetric equations of motion for the fields in the supergravity multiplet.

In this thesis mostly the IIB theory coupled to low energy effective actions of D branes
will play a role, in particular in chapters 3 and 4. But before introducing the features
of this theory, it needs to be explained what is meant by a “low energy effective action”
of string theory. Generically, strings are interacting objects, which can scatter on each

14Type IIA supergravity is the common name of the ten-dimensional supergravity theory which does
not include the C9 potential. Including it leads to a massive version of type IIA supergravity [175], which
will, however, not play a role in this thesis.
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other as depicted for a closed string in figure 2.4. If the coupling strength between the
strings is small, one can define an asymptotic in and out Fock space just by taking two
copies of the (super)string Fock space just constructed. The ingoing and outgoing strings
now are each in a definite state, lets say a graviton state with certain polarisation, and
one can calculate analytically the scattering amplitudes for each string diagram using
conformal field theory methods. In the kinematic regions of interest one can now try to
find scaling limits α′ → 0, in order to find the scattering amplitudes of the corresponding
point particles (e.g. graviton-graviton scattering). Physically speaking it is required that
for the known fields, e.g. the graviton or the gauge bosons, that this point particle limit
should reproduce the known interactions of these fields. But for new, intrinsically “stringy”
particles, one could in this way at least in principle obtain the scattering amplitudes, and
then, in a last step, try to write down an effective field theory action which reproduces
these amplitudes. This would be the straigthforward way of obtaining a low energy effective
action.

The direct calculation of scattering amplitudes and the finding of an appropriate effective
action is, however, a quite complicated procedure. Fortunately, there is a simpler way to
obtain the string equations of motion at least for the gravitational sector (the metric, Kalb-
Ramond field and dilaton), which can be described by a nonlinear sigma model similar to
(2.16),

Sσ−Model =
TF

2

∫

d2σ
√
−h
[(
habGµν(X) + iεabBµν(X)

)
∂aX

µ∂bX
ν + α′RΦ(X) .

]
(2.74)

Eq. (2.74) can be seen as an attempt to describe bosonic strings moving in a nontrivial
background with metric Gµν(X), Kalb-Ramond field Bµν(X) and dilaton vacuum expec-
tation value Φ(X). Note that R is the Ricci scalar of the worldsheet, depending on the
worldsheet metric hab. A priori it seems that this action does not know anything about
the equations of motion governing these background fields. It just describes an interacting
two-dimensional quantum field theory for the fields Xµ, but the interactions are governed
by the background fields. One can, however, expand the fields Xµ = xµ

0 +Y µ around some
classical solution to the equations of motion xµ

0 , and, using the well-known background field
method, quantise the small fluctuations of the string around this background [177–180].
Since the background fields Gµν , Bµν and Φ govern the interactions, one can think of them
as being the “coupling constants” of the sigma model, and calculate how loop corrections
renormalise them. The “beta functionals” for the background fields can then be related to
the trace of the world-volume energy momentum tensor via

Ta
a = − 1

2α′
βG

µν∂aX
µ∂aXν − i

2α′
βB

µνε
ab∂aX

µ∂bX
ν − 1

2
βΦR . (2.75)

If we now want to retain conformal invariance on the quantum level also for strings in
these nontrivial backgrounds, Ta

a needs to vanish, which means that the beta functions
should vanish. They can be calculated on the linearised level (i.e. for a slightly nonflat
background for example) and then generalised to the full nonlinear level, yielding to lowest
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order in α′ for the action (2.74)

0 = βG
µν = α′Rµν + 2α′∇µ∇νΦ − α′

4
HµλωHν

λω + O(α′2) , (2.76)

0 = βB
µν = −α

′

2
∇ωHωµν + α′∇ωΦHωµν + O(α′2) , (2.77)

0 = βΦ =
D −Dcrit

6
− α′

2
∇2Φ + α′∇ωΦ∇ωΦ − α′

24
HµνλH

µνλ . (2.78)

The first equation resembles Einstein’s equation with source terms from the antisymmetric
tensor field and the dilaton, while the second equation is a Maxwell-like equation for the
field strength

H = dB (2.79)

of the Kalb-Ramond field. The last equation is an equation of motion for a scalar field
coupled to H ∧ ∗H. Generalisations of Einstein’s equations coupled to other fields thus
arise from the requirement of the nonlinear sigma model to be conformally invariant.

The term (D − Dcrit)/6 in eq. (2.78) is (up to factors) the conformal anomaly of the
bosonic string (with Dcrit = 26), see eq. (2.22). The reason for this is that the bosonic
nonlinear sigma model (2.74) is only the generalisation of the bosonic part of (2.65). There
however exists a generalisation of (2.74) [162,181] for the sector of the IIB string consisting
of G,B,Φ plus its superpartners but without the Ramond-Ramond form fields15, which
indeed reproduces the equations (2.76)-(2.78) (withDcrit = 10 of course) plus the equations
of motion for the superpartners.

In attempting to write down a general covariant action for type IIB supergravity, another
obstacle occurs: The five-form field strength

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B ∧ F5 , F5 = dC4 (2.80)

is Hodge self-dual in ten dimensions,

∗ F̃5 = F̃5 , (2.81)

a constraint whose integration into an action principle for gauge theories is unknown.16

One can however write down an action which yields the equations of motion and by hand
impose the self-duality constraint (2.81). This yields the bosonic part17 of the type IIB

15The coupling of the superstring to the form fields cannot be described in terms of a two-dimensional
sigma model, since this would require the existence of an antisymmetric tensor analogous to εab with more
than two indices. They can be incorporated in different descriptions of type II superstrings, namely the
Green-Schwarz formalism [182,183] or the pure spinor formulation [184].

16An attempt to formulate an action principle incorporating this constraint can be found in [185,186].
17I refrain from writing down the fermionic completion of this action, as it will be rather complicated

and is not needed in this thesis.
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supergravity action in the string frame

SIIB =
1

2κ2

∫

d10x
√
−G

[

e−2Φ

(

R + 4∇µΦ∇µΦ − 1

2
|H3|2

)

− 1

2

(

|F1|2 + |F̃3|2 +
1

2
|F̃5|2

)]

− 1

4κ2

∫

M10

C4 ∧H3 ∧ F3 . (2.82)

Here
2κ2 = 16πG10 = (2π)7g2

sℓ
8
s (2.83)

is the ten-dimensional gravitational coupling, F̃5 is defined in eq. (2.80), and the conventions
are as in [141], namely

F̃3 = F3 − C0 ∧H3 , (2.84)

Fp = dCp−1 p = 1, 3, 4 , |Fp|2 =
1

p!
Fµ1...µp

F µ1...µp . (2.85)

In conclusion, the action (2.82) is the low energy effective action of type IIB closed string
theory.

2.2.3 The Interesting Double Life of Dirichlet Branes

In the last section it was already mentioned that the existence of the p-form fields Cp hints
towards the existence of charges which are extended objects. On the other hand we already
know such extended objects, namely the D branes from section 2.2.1. And indeed, since a
Dp brane has a p + 1-dimensional worldvolume, one can pull back (see eq. (2.14) for the
definition of the pull-back of forms onto submanifolds) a p+ 1-form onto its worldvolume
and integrate over it, ∫

Mp+1 .

P [Cp+1] (2.86)

A Dp brane thus naturally couples to the Ramond-Ramond p + 1-form. Since the IIA
superstring only admits odd-rank form fields, it only includes Dp branes with p even, while
the IIB string only includes Dp branes with p odd.18 In fact, Joseph Polchinski showed
in his seminal paper [189] that the D branes in type II superstring theory are necessary
objects for consistency of the interaction between the open and closed superstring sector,
and furthermore that only the Dp branes which are able to couple to the respective RR
form fields can give rise to consistent open-closed string interactions. The possible Dp
branes in both theories are listed in table 2.6. Note that the D(-1) brane is special, since it

18The other branes actually can also be described in string theory, but are unstable unless put on an
orbifold [187]. The unstable configurations in flat ten-dimensional Minkowski space are believed to undergo
tachyon condensation [188].
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Possible Branes
IIA D0, D2, D4, D6, D8
IIB D(-1), D1, D3, D5, D7, D9

Table 2.6: Possible Dp branes in type IIA/IIB string theory.

also imposes Dirichlet boundary conditions in the time direction X0, i.e. it is a pointlike
object in space and time, and strings are fixed to that point in all directions. It is the string
theoretic analogue of an instanton, and thus often called a “D-instanton”. Similar to the
relativistic point particle (2.15), the D0 brane of IIA has a one-dimensional worldvolume,
and thus is called a “D-particle”. The D1 brane has the same dimensionality as a
fundamental string, and thus is often called a “D-string”. The D8 brane is a “domain
wall” in ten-dimensional space-time, dividing the nine-dimensional spatial volume into
two halfves. The D9 brane in IIB theory on the other hand is a space-time filling brane,
but there is no corresponding Ramond-Ramond ten-form potential which it could couple
to. Nevertheless it is required to exist as the T-dual partner of the D8 brane in IIA.19

The D3 brane of type IIB is also special in the following way: All the other Dp branes
couple electrically, i.e. through the coupling (2.86), to Cp+1. However, because of the
duality (2.73) (which exchanges the Maxwell equation d ∗F = 0 with the Bianchi identity
dF = 0), this coupling can also be thought of as a magnetic coupling to C7−p. Thus,
the exchange of electric and magnetic field strengths Fp+2 ↔ F8−p will be an electric-
magnetic duality symmetry of the theory if, at the same time, the corresponding electric
and magnetic charges, i.e. the D branes are interchanged via

Dp ↔ D(6 − p) . (2.87)

In this sense the D3 brane is self-dual under this electric-magnetic duality: It is both the
electric and magnetic source of the five-form field strength (which in turn has to be Hodge
self-dual).

Dirichlet Branes as Dynamical Objects

Since we saw in section 2.2.1 that Dirichlet branes are by definition hypersurfaces onto
which the movement of open string endpoints are restricted to, it would seem that the
branes would be just rigidly defined hypersurfaces in space-time. An absolutely rigid
object can however not exist in a theory respecting the laws of special relativity, since
perturbations can propagate at most with the speed of light. In the case of D branes
the perturbations themselves are open string excitations, and thus D branes should be

19It is, however, unprotected by any BPS bound (since the corresponding C9 form field is nondynamical)
and thus unstable in type II string theory. It is however an existing stable brane (and in fact necessary
for consistency) in the type I string theory obtained from type IIB by gauging the orientifold projection
Ω : σ 7→ −σ, i.e. in a theory of unoriented superstrings in ten dimensions [146].
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Figure 2.5: Scattering of a closed string on a Dirichlet brane.

dynamical objects whose dynamics is at low energies governed by the massless excitations
of the open (super)strings ending on them.

Furthermore, since D branes are charged under closed string fields (e.g. under Ramond-
Ramond fields, as argued above), open and closed strings have to be able to interact,
which they indeed do: In figure 2.5 the scattering process of a closed string on a D brane is
depicted. In this process the closed string opens up through a open-closed string coupling,
the open string propagates for some time on the D brane and then closes again through
the same process. D branes should thus, if they are dynamical, couple to gravity and
thus curve space-time by themselves and also be able to react to the closed string fields
in the background space-time, e.g. to the curvature of the background space-time. The
low energy effective action describing the dynamics of open strings should include all these
couplings between the massless open string excitations (gauge fields and transverse scalars)
and the massless closed string excitations. And indeed, the low energy effective action
at least for a single Dp brane20 is known exactly (see [194] for a discussion of the
evidence of its uniqueness), with its bosonic part reading

SDp = SDBI + SWZ (2.88)

SDBI = −µp

∫

Mp+1

dp+1ξ e−Φ
√

− det
ab

(P [G+B]ab + 2πα′Fab) , a, b = 0, . . . , p(2.89)

SWZ = ±µp

gs

∑

p

∫

Mp+1

P [Cp] ∧ eP [B]+2πα′F . (2.90)

20For stacks of coincident Dp branes the low energy effective action is not known exactly yet, basically
because the correct prescription for taking the trace over the Chan-Paton indices is not known to all orders
in Fab. Tseytlin gave a prescription for the trace [190] several years ago, which is however known to be
incorrect at order F 5 [191]. At this order Tseytlins symmetric trace prescription excludes terms which are
present in the open string tree level amplitudes. See also [192, 193] for a discussion of the status of the
nonabelian DBI action at that time.
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The constant µp,

µp =
1

(2π)pα′
p+1

2

, (2.91)

renders the action (2.88) dimensionless. I included in eq. (2.88) the dilaton contribution
e−Φ for generality. If the dilaton is constant, the string coupling constant gs = eΦconst. can
be included in the pre-factor to yield the Dp brane tension

Tp =
µp

gs

=
1

(2π)pα′
p+1

2 gs

. (2.92)

If the dilaton is not constant but the space-time under consideration has a well-defined
asymptotic region with constant dilaton (for example an otherwise asymptotically flat
region), one might shift the dilaton Φ → Φ+Φ∞ to extract its asymptotic value and define
the string coupling as g∞s = eΦ∞ .

The action (2.88) consists of two parts, the Dirac-Born-Infeld (DBI) part and the Wess-
Zumino (WZ) part. As mentioned earlier, the DBI part is a generalisation of the “minimal
area action” which was already implemented in the Nambu-Goto action for strings (2.12).
It is also valid for Dp branes in bosonic string theory. It includes the coupling to the NS-NS
closed string fields G,B,Φ. The embedding fields Xµ(ξ), which describe how the D brane
is embedded into the target space, are hidden here in the pull-back P [...] (see eq. (2.14)).
Fab is the field strength of the U(1) gauge field Aa living on the brane.

For small field strengths 2πα′Fab ≪ 1 and constant dilaton, the DBI action (2.89) reduces
to a Maxwell type action in p + 1 dimensions (plus a volume term), as can be seen most
easily by assuming the Kalb-Ramond field Bµν to vanish:

SDBI = − 1

(2π)p(α′)
p+1

2 gs

∫

dp+1ξ
√

− det (gab + 2πα′Fab) (gab = P [G]ab)

= − 1

(2π)p(α′)
p+1

2 gs

∫

dp+1ξ
√

− det(g) det (δa
b + 2πα′gacFcb)

= − 1

(2π)p(α′)
p+1

2 gs

∫

dp+1ξ
√

− det(g)
√

1 + 2π2α′2FabF ab + O(F 4)

= − 1

(2π)p(α′)
p+1

2 gs

∫

dp+1ξ
√

− det(g) − 1

2pπp−2(α′)
p−3

2 gs

∫

dp+1ξ
√−gFabF

ab + O(F 4) .

In the third step, the expansion formula (C.2) for the determinant was used. Comparing
to the canonically normalised Maxwell term in curved space,

− 1

4g2
Y M,p

√−gFabF
ab ,

we find a relation between the parameters of our string theory and the Yang-Mills coupling
in p+ 1 dimensions,

g2
Y M,p = (2π)p−2(α′)

p−3

2 gs . (2.93)
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As expected, this has the correct dimensions of a Yang-Mills coupling in p+ 1 dimensions,
namely (length)p−3. In particular, it is dimensionless for a D3 brane. If the Kalb-Ramond
field does not vanish, odd powers of the field strength will be retained. Such a situation
will be encountered in chapters 3 and 4.

The Wess-Zumino part describes the coupling to the Ramond-Ramond sector, as well as
to the Kalb-Ramond field. The notation is such that the sum over p runs over the allowed
values for type IIA/IIB string theory. The exponentials are meant to be exponentials with
respect to the wedge product,

eP [B]+2πα′F =
∞∑

n=0

1

n!
(P [B] + 2πα′F ) ∧ · · · ∧ (P [B] + 2πα′F )
︸ ︷︷ ︸

n times

. (2.94)

The integral is then to be taken over all terms in this expansion which are a p + 1-form.
In this way the expansion collapses to a finite number of terms.

Obviously, SWZ includes the already-mentioned coupling (2.86), but it also shows that Dp
branes can couple to RR form fields with a rank lower than p+1 if either the Kalb-Ramond
field or the brane-intrinsic gauge field acquires a nontrivial vacuum expectation value. In
this case, when the Dp brane carries lower-dimensional brane charge as well, one speaks
of “branes dissolved within branes”. We will encounter such a situation in chapter 4.
Note that there is a sign choice for the Wess-Zumino action which distinguishes a Dp
brane (one with Cp+1-charge ∝ µp, corresponding to the upper sign in (2.90)) from an
anti Dp brane (with negative charge, corresponding to the lower sign in (2.90)). The fact
that the Dp branes of table 2.6 are BPS objects of type IIA/IIB superstring theory, i.e.
that their mass is related to their charge, could also be guessed already from eq. (2.88): The
tension of the Dp brane (2.92), which is the equivalent of “mass” for extended objects, is
for a brane related to its charge via (2.92). The proportionality factor, the string coupling
constant gs, is understood to be due to the fact that the coupling of the Dp brane as an
open string object to the closed string Ramond-Ramond sector is mediated by an open-
closed string interaction (see fig. 2.5). Note however that the relation (2.92) only includes
the absolute value of the Dp brane charge, but is insensitive of its sign. Thus it is not
possible to guess from eq. (2.92) alone that the corresponding antibranes are not BPS
objects. It is also not possible from this observation to conclude that Dp branes preserve
one half of the supersymmetries of the background, i.e. that they are in fact 1

2
BPS objects

of type II string theory. In conclusion,

Dirichlet (anti-)branes are dynamical objects which react through the shape of
their embedding in the ten-dimensional background and through the value of
the brane gauge field. Both the embeddings and the gauge field are governed
by the equations of motion derived from eq. (2.88). For gauge field strengths
small compared to the string length (2πα′F ≪ 1), the low energy effective
action (2.88) reproduces the well-known U(1) gauge theories. Furthermore,
Dirichlet branes are the charge carriers for the Ramond-Ramond form fields.
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Branes with positive charge are 1
2
BPS objects of type II string theory, i.e. break

one half of the supersymmetries. Antibranes, which have negative charge, are
nonsupersymmetric objects, i.e. break all of the supersymmetries.

Dirichlet Branes as Solitonic Solutions to Type II Supergravity

Since Dirichlet branes couple through open-closed string interactions to the type II su-
pergravity theories, one might expect that they curve space and time in a certain way.
Furthermore, since they are 1

2
BPS objects in the corresponding string theories, it is natu-

ral to search for half-supersymmetric solutions of type II supergravity theories which have
the same charges as the Dp branes and obey a similar relation between (ADM) mass den-
sity and charge as (2.92). Horowitz and Strominger [195] did so for Dp branes in flat space.
In fact they set out not to search for the extremal 1

2
BPS solutions directly but, in order to

be able to trust the supergravity approximation to string theory, they searched for nonex-
tremal solutions, i.e. black holes charged under the p-form fields which are asymptotically
flat and obey an isometry 1,9 ×SO(9−p) (p+1-dimensional translations along the black
brane, and rotations in the transverse space, i.e. the black brane is a point in transverse
space and surrounded by a spherically symmetric horizon),21 but whose masses are larger
than the corresponding charges. The extremal limit of their solutions (in which always only
one form field is excited, i.e. these branes do not carry lower-dimensional brane charge)
can be written in the form

ds2 = H
− 1

2
p ηµνdx

µdxν +H
1
2
p δijdy

idyj , µ, ν = 0, . . . , p , i, j = p+ 1, . . . , 9 (2.95)

e2Φ = g2
sH

3−p
2

p , Cp+1 =

(

1 − 1

Hp

)

dx0 ∧ · · · ∧ dxp , (2.96)

Hp = 1 +

(
Rp

r

)7−p

, r2 =
9∑

i=p+1

yi2 , Rp = (4π)
5−p
2 Γ

(
7 − p

2

)

gsN(α′)
7−p
2 .(2.97)

Here N denotes the total p + 1-form charge (i.e. Dp brane charge, i.e. the number of Dp
branes which sourced this solution) measured at infinity via the formula22

∫

S8−p

∗Fp+2 = N , (2.98)

with S8−p being the 8-p-sphere surrounding the pointlike brane charge in the 9 − p-
dimensional transverse space. Note that the supergravity equations of motion force the
function Hp(y

i) to be a harmonic function with respect to the Laplacian in transverse

21A flat extremal Dp brane breaks the Poincaré group 1,9×SO(1, 9) down to 1,p×SO(1, p)×SO(9−p),
but a nonextremal black brane does not admit the SO(1, p) part.

22In the case of the D3 brane, in order to fulfill the self-duality constraint, one needs to define the
five-form field strength as F5 = 1

2
(dC4 + ∗dC4).
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9− p-dimensional Euclidean space, and that the integration constant in Hp is chosen such
that the metric is asymptotically flat far away from the brane, i.e. at r → ∞.

Since the solution (2.95) to the type II supergravity equations preserves the same amount of
supersymmetries (namely 32 real supercharges, corresponding to N = 1 in ten dimensions)
as a stack of N coinciding Dp branes in type II string theory, has the same charge (2.98)
and since its isometry group is identical with the remainder of ten-dimensional Poincaré
symmetry in the presence of a Dp brane (namely 1,p × SO(1, p)× SO(9− p)), one might
inquire about the exact nature of the relationship between Dp branes in flat space which
carry the supersymmetrised version of the gauge theory (2.88) and the solitonic solution
(2.95). In view of the fact that various string dualities, in particular T and S dualities,
require the existence of Dp branes both in the regimes of weak and strong string coupling,
the most natural interpretation (put forward by Polchinski in [189]) is that Dp branes are
intrinsic objects of type II string theories if one includes open superstrings as well.They can
be thought of as nonperturbative (in the string coupling gs) states of these string theories.
The fact that the Dp brane tension (2.92) scales with the inverse of the string coupling
supports this idea. The solitonic solutions (2.95) then should be identified with the Dp
branes in the full type II string theory, which also explains the quantisation of the charge
in (2.98). All this is similar to the nature of field theoretic solitons (as for example in the
Sine-Gordon model [196]), but one question remains: If Dp branes are nonperturbative
excitations, and if they are the same as the gravitational solitons (2.95), then what are the
fundamental particle-like excitations they are made of? Are they open strings, as suggested
by the fact that they carry gauge theories, or are the fundamental pieces they are made
of closed strings, as suggested by the solitonic picture? Note that the solitonic solutions
(2.95) are solutions of type II supergravity, i.e. the low energy effective action of closed
strings only. A priori, this gravity theory thus does not have any coupling to a gauge sector
or to some extended object. Nevertheless it includes these nonperturbative states which
are charged under the Ramond-Ramond gauge fields. If they are the equivalent realisations
of the type II string theory D branes in the low energy effective actions, and since D branes
in type II string theory require the existence of an open string sector, then where are the
open strings and their field theory in this purely gravitational picture?23

It turns out that this situation receives a partial resolution by decoupling the physics
of open and closed strings in the presence of D branes, which leads to a (conjectured)
new duality between the gauge theory living on the D brane (the open string sector) and
the gravitational (i.e. closed string) excitations propagating in the near-horizon limiting
geometry of the gravitational background (2.95). This new duality, which is known under
the name of the Anti-de Sitter/Conformal Field Theory Correspondence, is the

23Note that this question is similar to the question which kind of energy-momentum tensor sources the
vacuum Schwarzschild (or Kerr, or Reissner-Nordstroem) solution. Of course, these are vacuum solutions
of general relativity, but since Einstein’s equations do break down at the singularity, one might ask what
kind of energy-momentum tensor, which would have to be of distributional nature at the singularity and
zero away from it, could generate this singularity and the surrounding vacuum solution (see e.g. [197–199]).
It could be interesting to investigate similar aspects also for the black branes (2.95).
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main tool of this thesis and will be introduced in the next section.

2.3 The Anti-de Sitter/Conformal Field Theory Cor-

respondence

In this section the basics of the Anti-de Sitter/Conformal Field Theory Correspondence
are introduced. The material presented here can be found in more detail in the review
articles [79,80,200,201] or the cited original works.

2.3.1 Maldacena’s Conjecture

A partial resolution24 of the confusing situation described in the last section was proposed
by Juan Maldacena in the seminal paper [41]. It relies on an argument suggesting a
full equivalence on the dynamical level between the low energy effective field theory of
a stack of Nc D3 branes in type IIB string theory, four-dimensional U(Nc) N = 4
supersymmetric Yang-Mills theory,25 and type IIB string theory formulated on the
near-horizon geometry of the solitonic solution (2.95) for Nc D3 branes. This near-horizon
geometry is the space-time AdS5×S5 with Nc units of five-form flux through the S5.
“Full equivalence on the dynamical level” means roughly that a one-to-one map between
the full spectrum of gauge invariant operators of the supersymmetric Yang-Mills theory and
the spectrum of type IIB closed superstrings in this particular geometry has to be given.26

But before describing the field theory and this very particular space-time in more detail, I
want to sketch the very general argument leading to this conjecture, which is remarkable
since the supersymmetric Yang-Mills theory, which a priori is a low energy effective action
of the open string sector of type IIB in the presence of D3 branes, is conjectured to include
the full information of a string theory, namely the theory of closed strings on AdS5 × S5.

The argument given by Maldacena proceeds in two steps, corresponding to the two different
perspectives one can take, namely the open string perspective of D branes in a otherwise
flat spatial background, and the closed string (or supergravity) perspective of the solitonic
solution. First, one considers the Newton constant dependence of the full low energy
effective action of type IIB open and closed string theory in the presence of the D3 branes.
The ten-dimensional Newton constant in this case is related to the string theory parameters

24Since the AdS/CFT correspondence is still an unproven conjecture, it can only be seen as a partial
explanation of how the apparently different descriptions of D branes fit together.

25This rather long name will often be abbreviated by N = 4 Super-Yang-Mills theory or even just N = 4
SYM theory in this thesis.

26There exists a whole army of physicists trying to exploit integrable structures both in the string theory
as well as in the N = 4 Super-Yang-Mills theory to establish this map in all details, a very interesting
topic which will however not be touched in this thesis. For a good overview see e.g. [74–78].
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by the relation (2.83). The general low energy effective action of open strings on D3 branes
coupled to closed strings in a flat space consists of three parts: First, there is the type IIB
supergravity action (2.82) describing the closed strings in flat space and their interactions.
Secondly, the supersymmetrised version of the D3 brane action for Nc coincident branes,
which is similar to the action (2.88), describes the interactions of open superstrings on the
D3 branes. For slowly varying fields the D3 brane action yields the N = 4 SYM theory.
Thirdly, there are additional interactions between the open and closed string sectors which
differ from the usual minimal coupling of gravity to matter fields. The type IIB supergravity
action (2.82) scales like κ−2, i.e. with a negative power of the gravitational coupling κ. The
D brane effective action also scales with a negative power, namely κ−1 = (gsℓ

4
s)
−1. Since

the minimal interaction between the D brane theory and type IIB supergravity is already
given by the dependence of eq. (2.88) on the closed string background fields, one might
think that no other interaction terms are present. This is, however, not true if the string
scale ℓs is finite since in this case one has to integrate out all the higher string excitations,
which will lead to additional interactions suppressed by positive powers of the gravitational
coupling (corresponding to negative powers of the Planck mass). Only in the strict limit
low energy limit ℓs → 0, in which κ → 0 (if gs and Nc are fixed), these interactions will
vanish. We can thus summarise the κ-dependence of the full low energy effective action as

SLEEA = SIIB SUGRA
︸ ︷︷ ︸

1

2κ2

∫
d10x

√−gR+...

+ SD3
︸︷︷︸

∼ 1
κ

+ Sint
︸︷︷︸

∼κ#>0

. (2.99)

Since gravity in dimensions greater than three is an a priori nonrenormalisable interaction
([κ2] = (mass)−8), processes involving the gravitational coupling must have an energy
dependence ω4κ and thus vanish in the infrared limit ω → 0. Thus gravity is said to be
“infrared free”, which can be reexpressed in a running of the gravitational coupling to zero
in the far infrared. We should thus take an infrared limit, focusing exclusively on processes
with very low energies compared to the string scale which in this setting sets the strength of
the gravitational interaction (assuming gs to be fixed). This limit is obviously equivalent to
the point particle limit ℓs → 0 with all other energy scales in the problem fixed. Note that
in this limit also the backreaction of the otherwise infinitely heavy brane, since it is ∼ κ, is
negligible. In the low energy limit considered here the space-time away from the D3 branes
thus stays flat. In this way the open-closed string interactions summarised in Sint and
even interactions between the IIB fields themselves (which are ∼ κ) vanish, and thus the
full low energy effective theory (2.99) should reduce to two independent sectors, namely
free type IIB supergravity on flat space and four-dimensional N = 4 U(Nc)
supersymmetric Yang-Mills theory. That the actual low energy effective action on
the D3 branes in this limit is the N = 4 SYM theory and no higher derivative corrections
is due to the fact that the low energy limit can be taken as the limit α′ → 0 with all other
dimensionless parameters kept fixed. In this limit also the higher derivative corrections in
the effective field theory on the D3 branes vanish.

On the other hand, we can consider type IIB string theory (or supergravity as its low energy
effective action) on the solitonic background (2.95). Since these gravitational solitons are
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asymptotically flat, it is natural to consider the observer with respect to this asymptotically
flat region. The typical experiment of such an observer (if such an “observer” exists at
all in the absence of matter and gauge theories) is the classical scattering of gravitational
waves and other type IIB supergravity excitations on the D3 brane stack. These processes
were analysed by Igor Klebanov in [202] for massless scalars (and also in later works for
other supergravity fields), where the typical behaviour of the cross section was found to be

σD3 ∼ ω3R8 , R4
3 = 4πgsNcα

′2 . (2.100)

Thus in the low energy limit ω2α′ → 0 with gs and Nc fixed, the D3 branes do not
interact with the supergravity excitations thrown onto them from the asymptotic region.
This means that in the infrared, the asymptotic region decouples from the “bulk” of the
solitonic solution (2.95), and by the same “infrared freedom” argument as above, type
IIB supergravity in the asymptotically flat region becomes free. These free gravitational
excitations are however not the only excitations seen in the asymptotic region. Since the
D3 brane soliton

ds2 = H
− 1

2

3 ηµνdx
µdxν +H

1
2

3 δijdy
idyj , µ, ν = 0, . . . , 3 , i, j = 4, . . . , 9 (2.101)

e2Φ = g2
s = const. , C4 =

(

1 − 1

H3

)

dx0 ∧ · · · ∧ dx3 , (2.102)

H3 = 1 +

(
R

r

)4

, r2 =
9∑

i=4

yi2 , R4 = 4πgsNcα
′2 (2.103)

admits a Killing horizon for the timelike Killing vector ∂
∂x0 at r = 0, excitations starting

very close from the horizon and traveling to the asymptotic observer will be strongly
redshifted. Infinitesimally close to the horizon all excitations, even the massive string
modes, will be redshifted to very small energies when traveling towards the flat region.
The asymptotic observer will thus be able to see the full type IIB closed string spectrum
coming from the near-horizon region, redshifted to very small energies! He (or she of
course) thus notices in low energy experiments (ω ≪ ℓ−1

s ) two sectors of excitations: The
free type IIB supergravity excitations surrounding him and the redshifted type IIB
closed string spectrum from the near horizon region. The near horizon region of the
geometry (2.101) naively is obtained by taking the limit r → 0. We however need to take
into account the redshift of modes, which gets stronger and stronger near the horizon. Thus
the correct near horizon limit is the limit α′ → 0 while keeping the energy scale u = r/α′

(and gs as well as Nc) fixed. Introducing spherical coordinates dyi2 = dr2 + r2dΩ2
5, this

limit yields27

ds2

α′
=

u2

ℓ2
dxµ2 +

ℓ2

u2
du2 + ℓ2dΩ2

5 , (2.104)

α′2C4 =
ℓ4

u4
dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (2.105)

27Also in this equation the interpretation is that of a proper length and a four-form being measured in
string units.
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Bulk/Asymptotic Region Brane/Near Horizon Region
Flat Space D3 Branes Free IIB Supergravity N = 4 SYM
Solitonic D3 Branes Free IIB Supergravity IIB String on AdS5 × S5

Table 2.7: Maldacena’s conjecture: Identifying the different sectors.

which is the direct product of five-dimensional Anti-de Sitter space (AdS5) of radius ℓ =

(4πgsNc)
1
4 with a five-dimensional sphere of the same radius. Solutions of this type, AdSp×

Sq, to type II supergravity and eleven-dimensional supergravity have been found long ago
in [203]. Anti-de Sitter space in any dimension is the unique maximally symmetric space
of constant negative curvature. d+1-dimensional Anti-de Sitter space of radius ℓ and with
Minkowskian signature can be defined as a hyperboloid in a flat space with one additional
dimension and with signature diag(−,+, . . . ,+,−) via the equation

− x02

+ ~x2 − x(d+1)2 = −ℓ2 , (2.106)

where ~x is a d-dimensional vector. In particular it is clear from this embedding that AdSd+1

admits the SO(2, d) isometry group of the embedding space. AdSd+1 with Euclidean
signature is defined in a similar way via

x02

+ ~x2 − x(d+1)2 = −ℓ2 , (2.107)

admitting an SO(1, d + 1) isometry symmetry group. For a nice and very clear account
of the geometrical properties of Anti-de Sitter spaces (e.g. the geodesics in Minkowskian
AdSd+1) see e.g. [204]. Note also that the C4 potential induces Nc units of five-form flux
on the S5, which are calculated again by the formula (2.98).

If we now assume that the D3 branes in flat space-time are the solitonic three branes of type
IIB supergravity, and we identify the two sectors of free type IIB supergravity excitations
(the yellow ones in table 2.7) with each other, then it is natural to identify the other two
sectors (the orange ones in table 2.7) as well. This leads to the conjecture of the

Anti-de Sitter/Conformal Field Theory (AdS/CFT) Correspondence

U(Nc) N = 4 four-dimensional supersymmetric Yang-Mills theory should be
fully equivalent on the level of dynamics to ten-dimensional type IIB super-
gravity on the maximally symmetric space AdS5 × S5 with Nc units of F5 flux
on the five-sphere.
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Field N = 1 Multiplet N = 2 Multiplet
Gauge Boson Aµ Vector V

Vector
Gaugino (Weyl) λ4

-Scalar φ3 = X8 + iX9

Chiral Φ3Weyl-Fermion λ3

-Scalar φ1 = X4 + iX5

Chiral Φ1

Hyper
Weyl-Fermion λ1

-Scalar φ2 = X6 + iX7

Chiral Φ2Weyl-Fermion λ2

Table 2.8: Field content and symmetry representations of the N = 4 vector multiplet in
four dimensions.

2.3.2 Four-Dimensional Maximally Supersymmetric Yang-Mills
Theory

Before proceeding with the discussion of this remarkable conjecture, it is necessary to
discuss some aspects of the field theory involved, N = 4 supersymmetric Yang-Mills theory
in four dimensions with gauge group U(Nc). As usual in the construction of supersymmetric
multiplets28, the higher the wanted amount of supersymmetry is, the larger the spanned
range of helicities in the multiplet is. If one wants to construct supersymmetric theories of
gauge and matter fields but without including gravity, one should not exceed the helicity
of the gauge fields. This sets a restriction for the maximal amount of supersymmetry a
supersymmetric gauge theory without gravity can have, which in four dimensions turns
out to be N = 4 (16 real Poincaré supercharges).

The N = 4 vector multiplet in four dimensions has the following field content, summarised
in table 2.8: A vector field Aµ in the adjoint of the U(Nc) gauge group, four left-handed
Weyl fermions29 λαA transforming in the 4 representation of the SU(4)R symmetry and
six real scalars X i transforming in the 6 representation30 of SU(4)R. Since the gauge
field transforms in the adjoint representation of the gauge group and all other fields in the
multiplet are related to it by supersymmetry transformations, all fields do have to transform
in the adjoint representation. The N = 4 vector multiplet furthermore decomposes into an
N = 2 vector multiplet containing the gauge fields, one gaugino, one complex scalar which
we choose to be the one corresponding to the transverse 8-9-plane and his superpartner, and
an N = 2 hypermultiplet containing the complex scalars corresponding to the movements

28For reviews about supersymmetric gauge and gravity theories, see e.g. the book by Wess and Bagger
[205].

29α = 1, 2 is the spinor index and A = 1, . . . , 4 is the SU(4)R index.
30The six real scalars can be combined to three complex scalars plus their complex conjugates as in

table 2.8. The 6 of SU(4) is a rank two antisymmetric tensor representation, which is equivalent to
the real vector representation of the geometrically realised SO(6) acting on the Xi’s directly under the
isomorphism SO(6) ≃ SU(4).
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of D3 branes in the space transverse to the 8-9-plane (plus their superpartners). Later in
section 2.3.6, when we will introduce additional quark-like degrees of freedom transforming
in the fundamental representation of the gauge group, these decompositions into smaller
supersymmetry multiplets will be useful. The choice of this multiplet thus fixes the field
content of the maximally supersymmetric Yang-Mills theory completely, leaving only the
value of some continuous parameters like the Yang-Mills coupling and the theta angle or
the choice of vacuum expectation values (i.e. the choice of the vacuum) unfixed.

It turns out [206] that the requirement of maximal supersymmetry, and in particular the
implied large R-symmetry, are extremely restrictive and constrain the action of N = 4
SYM theory to be

SN=4 =

∫

d4x tr

{

− 1

2g2
Y M

F 2
µν +

ΘI

8π2
FµνF̃

µν − i
4∑

A=1

λ̄Aσ̄µDµλA −
6∑

i=1

DµX
iDµX i

+
g2

Y M

2

∑

i,j

[X i, Xj]2 + gY M

∑

A,B,i

(
CAB

i λA[X i, λB] + h.c.
)

}

=

∫

d4xℑ
[

τ

∫

d4θ tr
(
Φ̄Ie

V ΦIe
−V
)
+

+τ

(∫

d2θ tr (WαW
α + ǫIJKΦIΦJΦK) + h.c.

)]

, (2.108)

with τ =
ΘI

2π
+ i

4π

g2
Y M

, Wα = −1

4
(D̄)2

(
e−VDαe

V
)
.

Here τ is the usual complex coupling known in four-dimensional gauge theories, and Wα is
the chiral spinor superfield constructed out of the gauge superfield V . The constants CAB

i

are the Dirac matrices for SO(6)R spinors, since the 4 of SU(4) is the Weyl representation
of spinors in six-dimensional Euclidean space. The second form of the action (2.108) is
written in N = 1 superspace, with θα being the Grassmanian superspace coordinates.
Apart from the usual kinetic terms, one recognises in the component field version of the
action a quartic (commutator squared) potential as well as Yukawa couplings. In the
superfield version all these interactions are hidden in the ǫIJKΦIΦJΦK superpotential,
and turn up again after integrating over superspace and solving for the D and F term
constraints.

The fact that eq. (2.108) is the unique theory with this amount of supersymmetries in four
dimensions actually makes its identification with the low energy effective action of Nc D3
branes straightforward: Recalling that the D3 branes break the ten-dimensional N = (2, 0)
supersymmetry of type IIB supergravity (corresponding to 32 real Poincaré supercharges)
to N = (1, 0) (corresponding to 16 real supercharges) and that one Majorana-Weyl spinor
in ten dimensions reduces to four Weyl spinors in four dimensions, one readily sees that
the low energy effective action of a stack of D3 branes must have four-dimensional N = 4
supersymmetry. Invoking the uniqueness argument of N = 4 SYM, the searched-for low
energy effective action must be the theory defined by (2.108).
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Before proceeding with the discussion of the AdS/CFT correspondence, let us first collect
several important facts about N = 4 SYM which will turn out important later on:

• The theory is classically scale invariant, since there are no dimensionful couplings
involved. Poincaré invariance and scale invariance thus combine to the larger confor-
mal symmetry group SO(2, 4) ≃ SU(2, 2). Note that this is just the isometry group
of AdS5, as shown in the previous section. Furthermore, the N = 4 Poincaré super-
symmetry and this conformal invariance combine to the classical superconformal
symmetry SU(2, 2|4).

• The theory admits an SU(4)R symmetry,31 which rotates the fieldsX i into each other.
On the gravity side, there also exists an SO(6) symmetry, namely the isometry group
of the S5. It is thus natural to identify the two groups with each other. We thus
find that the global symmetries of N = 4 SYM match with the isometries of the
AdS5 × S5 background. This matching of symmetries is one of the most powerful
checks of the correspondence, and will play an important role in the later chapters.

• The scalar fields X i are the transverse scalars in the open string spectrum32 and
describe the transverse position of the brane in flat space. Since the transverse space
is 6, it is clear that the SO(6) rotating in this space is nothing but the SU(4)R
symmetry just described. Due to the gauge group U(Nc) being compact, it’s Cartan-
Killing form is positive semi-definite and thus each term in the sum

−
∑

i,j

tr
[
X i, Xj

]2
(2.109)

is either positive or zero. The N = 4 supersymmetric ground states of the zero
have vanishing potential and thus are described by the requirement of vanishing
commutators,

[
X i, Xj

]
= 0 , i, j = 1, . . . , 6 . (2.110)

There are two classes of solutions to (2.110), namely

1. The superconformal phase, in which the vacuum expectation values 〈X i〉 = 0
vanish for all i = 1, . . . , 6. In this phase the gauge group U(Nc) is unbroken, as
is the superconformal symmetry SU(2, 2|4). This phase corresponds to all the
Nc D3 branes sitting on top of each other.

31The N = 4 supersymmetry algebra a priori also has a U(1)R automorphism, multiplying the super-
charges with a phase. The action (2.108) however does not allow a consistent assignment of U(1)R charges
such that the action is invariant, and thus the U(1)R part is not present in the N = 4 SYM theory.

32For simplicity I omit the distinction between a scalar field in field theory and a transverse scalar in
string theory. They are connected by factors of 2πα′, such that the scalar field in four dimensions has
mass dimension one and the transverse scalar has length dimension one, i.e. Xi

string = 2πα′Xi
field.
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2. The Coulomb phases, for which 〈X i〉 6= 0 for at least one i. The unbro-
ken part of the gauge group depends on the detailed structure of the vac-
uum expectation value, but generically the gauge group is broken completely,
U(Nc) → U(1)Rank(U(Nc))=Nc . Superconformal symmetry is also broken by the
scale set by the vacuum expectation value. These vacua correspond to separated
D3 branes. In the generic case, every D3 brane is separated from all the others
in the transverse directions (see e.g. figure 4.1(a)).

• Upon perturbative quantisation, N = 4 SYM theory exhibits no ultraviolet diver-
gences in the correlation functions of its canonical fields. Since instanton corrections
only lead to finite contributions [80], the theory is believed to be ultraviolet finite.
Perturbative corrections are forbidden by N = 4 supersymmetry: For the complex
gauge coupling to run perturbatively, one needs to generate logarithmic corrections

of the form log
(

µ
〈O〉

)

, where the vacuum expectation value 〈O〉 of some N = 4 oper-

ator sets the energy scale for the renormalisation group running. Since the operator
spectrum of N = 4 SYM theory does not include nontrivial operators preserving
the SU(4)R symmetry [80], giving a vacuum expectation value to any operator will
necessarily break N = 4 supersymmetry.33 Thus there is no need to renormalise the
theory perturbatively (up to possible finite shifts of the gauge coupling) and the beta
function for the Yang-Mills coupling vanishes exactly and to all orders in perturba-
tion theory. The theory is thus exactly scale invariant even on the quantum level
(unless scale invariance is broken by some other mechanism, as for example in the
Coulomb phases), and in particular the superconformal invariance group SU(2, 2|4)
is an exact quantum symmetry. The property of UV finiteness does match the be-
haviour of superstring theories, which are (at least on flat ten-dimensional Minkowski
space) also UV finite.

• As an aside, N = 4 was conjectured by Montonen, Olive and others [207–209] to be
invariant under the S-duality group SL(2, ), which acts on the complex coupling τ
as

τ 7→ aτ + b

cτ + d
, ad− bc = 1 , a, b, c, d ∈ . (2.111)

In particular for ΘI = 0 this includes a strong-weak coupling duality, sending gY M 7→
g−1

Y M . This field theoretic S-duality is believed to be the equivalent of the type IIB
S-duality symmetry [210,211].

• The theta angle term has a dual supergravity interpretation as the charge of smeared
D-Instantons (D(-1) branes) carried by the field C0. It arises from the Wess-Zumino
coupling

∫

M4

P [C0]tr (F ∧ F ) = P [C0]

∫

M4

tr (F ∧ F ) . (2.112)

33The author thanks Xi Yin for this argument.
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The D-Instantons are smeared here over the world-volume of the D3 branes in the
sense that C0 is a constant in the D3 brane worldvolume directions. The above
observation adds more evidence to the interpretation of D(-1) branes as field theory
instantons in the low energy effective theory. In chapter 4 it will be explained why
this interpretation actually holds.

2.3.3 AdS/CFT: Forte, Mezzo & Piano

The AdS/CFT conjecture is of course a bold statement, since it states that an “ordinary”
field theory can describe the full string theoretic dynamics of the type IIB superstring on
the space (2.104), and one would like to test this conjecture by explicit calculations, if
not even prove it. In its strongest form the AdS/CFT correspondence should hold for
arbitrary numbers of D3 branes Nc,

34 and arbitrary string coupling gs. However, since even
for the maximally symmetric space AdS5 × S5 our knowledge of how to quantise type IIB
superstrings on this curved background is rather restricted35, it is useful to take additional
limits in which the type IIB superstring theory simplifies.

The first limit which one can take is the limit of many D3 branes, Nc → ∞, while holding
λ = g2

Y MNc fixed. This limit was first proposed by Gerard ’t Hooft [56] as a limit in which
QCD might simplify and admit an expansion in terms of the new coupling parameter λ,
which is named after the inventor as the “’t Hooft coupling”. The limit is called “’t
Hooft limit”. From the field-theoretic point of view, in this limit all Feynman diagrams
which are nonplanar (in the sense that they cannot be drawn on a sphere because some
of their internal virtual particle lines cross each other without an interaction vertex) are
suppressed by inverse powers of Nc, and gauge theories actually do simplify very much.
In the context of the AdS/CFT correspondence, since g2

Y M = 2πgs for D3 branes, the
string coupling has to vanish in this limit as gs ∝ N−1

c . In the strict Nc → ∞ limit the
type IIB superstring theory on AdS5 × S5 is thus reduced to a theory of free (so-called
semiclassical) strings on AdS5 × S5, since string splitting/merging interactions and thus
string loop corrections are suppressed. As long as α′ is finite, the theory will however still
know about “stringy effects”, i.e. effects coming from the finite extension of strings. This
large-Nc limit is thus not a point particle limit yet.

The point particle limit, which makes the supergravity approximation to type IIB string
theory on AdS5 × S5 valid by suppressing stringy (i.e. α′) corrections is now equivalent to
taking the limit of large ’t Hooft coupling. This can be seen from the relation

(
R

ℓs

)4

= 2λ≫ 1 , (2.113)

34For a discussion of the U(1) factor of the gauge group, which is of course particularly important in
the case Nc = 1, see chapter 4.

35For recent progress in this direction see e.g. [74–78].
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which states that the typical curvature radius of both AdS5 and S5 is much larger than one
in string units. This is exactly what is needed for a point particle limit: The background
has no features which are so strongly curved that stringy effects like higher string modes or
winding modes can be excited. Thus if the ’t Hooft coupling is very large but fixed, λ≫ 1,
the supergravity approximation to the semiclassical string theory is valid and stringy effects
are small. There is no need to take a strict λ→ ∞ limit.

In conclusion, the weakest version of the AdS/CFT correspondence reached by
taking both the large-Nc and the strong coupling limit, can be stated as the

Full dynamical equivalence of classical type IIB supergravity on the ten-dimensional
background AdS5 × S5 and the four-dimensional maximally supersymmetric
Yang-Mills theory, which is U(Nc) N = 4 supersymmetric Yang-Mills theory,
at large Nc and in the strong ’t Hooft coupling region λ≫ 1.

This version of the AdS/CFT conjecture is the one which is easiest to use and to check,
since the type IIB supergravity approximation to type IIB string theory is known. It is
also the version of the correspondence exclusively used in this thesis. The most interesting
aspect of the large ’t Hooft coupling limit is that this weakest version of the correspondence
yields a way to describe strongly coupled N = 4 supersymmetric Yang-Mills theory
in terms of a weakly coupled gravity theory. This opens up a new window to strongly
coupled gauge theories in general, as long as one is able to find a corresponding dual gravity
background. These methods are complementary to e.g. lattice gauge theory calculations at
strong coupling, which have their own restrictions in dealing e.g. with chemical potentials
or real-time processes. The gravity side of the correspondence is weakly coupled in the
following sense: In the next section it will become clear that it is necessary to reduce the
full type IIB supergravity theory of AdS5 × S5 through a Kaluza-Klein reduction on the
five-sphere.36 Since we are reducing on the S5, the effective five-dimensional gravitational
coupling is given by

G5 =
G10

Vol(S5
R)

=
8π6α′4g2

s

Vol(S5
R)

=
πR3

2N2
c

, (2.114)

where in the last step the volume of a five-sphere of radius R, π3R5, was inserted. The
gravity theory thus is already weakly coupled in the large-Nc limit, even before taking the
strong ’t Hooft coupling limit. In this case however the type IIB action will receive stringy
corrections, and thus one better takes the λ≫ 1 limit to have a treatable setup at hand.

36This reduction is necessary since the higher spherical harmonic modes of the ten-dimensional fields do
couple separately to operators with larger scaling dimensions in the N = 4 theory.
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2.3.4 Operator-Field Dictionary, Witten’s Generating Functional
Formula and Correlation Functions

We have already seen in section 2.3.2 that the global symmetries of the N = 4 SYM
theory match the isometries of the AdS5 × S5 background. This is an important check
for the correspondence. It also gives a hint how to further concretise the statement of
the correspondence: In the N = 4 SYM theory, operators fall into multiplets of the
full SU(2, 2|4) superconformal group. These multiplets can be short multiplets or long
multiplets, depending on whether they preserve some supersymmetry of the theory or
not. Of most interest for checking the AdS/CFT correspondence are short multiplets, in
particular the 1

2
BPS ones, as it turns out that they are protected by supersymmetry and

their correlators do not renormalise. In particular, their correlators are independent of
the ’t Hooft coupling λ [212],37 which makes an extrapolation possible from weak ’t Hooft
coupling (where the correlator can be calculated in the field theory) to strong ’t Hooft
coupling, where we can trust the supergravity calculations on the AdS5 × S5 background.
But how are they identified on the gravity side of the correspondence? There must exist a
map between local38 gauge invariant operators on the field theory side and the excitations
of type IIB supergravity on AdS5×S5 on the field theory side. Since the latter also falls into
multiplets of the corresponding global symmetries, in particular of the SU(4)R symmetry
if one Kaluza-Klein reduces the IIB supergravity on the S5 [217, 218], one needs to show
that there is a one-to-one mapping between the representations showing up in the field
theory and the representations showing up in the Kaluza-Klein tower of IIB supergravity
states. This would then establish an operator-field dictionary. And indeed this is the
case, as described nicely e.g. in chapter 5.6 of [80], see also the references cited there. I
will not try to reproduce the full spectrum here, it should suffice to say that one needs
to expand the ten-dimensional supergravity fields of different spin in spherical harmonics
on the five-sphere which are labeled by (amongst other quantum numbers) the scaling
dimension ∆, which describes the scaling of the corresponding field theory operator under
dilatations x 7→ λx. The resulting five-dimensional fields will eventually become massive
(just as when reducing a theory on a circle), and these masses are in correspondence with
the scaling dimensions via the following mapping (for AdSd+1):

scalars and massive spin two fields R2m2 = ∆(∆ − d) ,

massless spin two fields R2m2 = 0 , ∆ = d ,

spin 1/2 and 3/2 R|m| = ∆ − d

2
, (2.115)

p-form fields R2m2 = (∆ − p)(∆ + p− d) .

Note that it is the linearised fields (i.e. gravitons, dilatons etc.) which are reduced on the
five-sphere to yield these representations. Upon reduces the full nonlinear theory, also the

37Nonrenormalisation properties of 1
4
BPS operators are also known [213–215].

38Nonlocal operators can of course also be described holographically, see e.g. [216] and references therein.
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interactions between these modes are obtained. We will see later in this section that these
interactions are important in holographic calculations of correlation functions.

The above mapping on the basis of symmetry arguments is partly a kinematical feature of
the correspondence, since the symmetries are strong enough in this case to protect the field
theory from most or probably all quantum corrections. To establish a full correspondence it
is however also necessary to explain how each field mode exactly encodes the information
about the corresponding operator and also a possible vacuum expectation value. This
explanation was given by Edward Witten in another seminal paper [219] which laid the
foundations of the AdS/CFT correspondence. It is remarkable simple: For every field
mode ϕ obtained after Kaluza-Klein reduction, consider the Laplace-Beltrami equation on
the Euclidean version of AdS5 space (in Poincaré coordinates)

ds2 = R2 dxi2 + dz2

z2
, i = 0, 1, 2, 3 , z =

R2

r
, (2.116)

where a new radial coordinate z was introduced. The reason for doing this calculation
in Euclidean AdS is two-fold: Historically this route was taken in e.g. [220, 221], and one
does not need to worry about boundary conditions too much, since the metric (2.116) has
a boundary of topology 4 at z = 0 (henceforth called “the boundary”), plus a single
point in the “interior” of Anti-de Sitter space at z = ∞. In Minkowskian signature the
boundary would be four-dimensional Minkowski space, while z = ∞ will become a Killing
horizon. In the Euclidean case one can just impose regularity as the boundary condition
at z = ∞, but in the Minkowskian case different boundary conditions (e.g. regularity for
spacelike momenta and infalling wave boundary conditions for timelike momenta) have to
be imposed, complicating the situation. It is however enough to consider the Euclidean
case for extracting the wanted information.

What is important for establishing the exact dictionary between the behaviour of the
supergravity modes and the field theory operators is the behaviour of the solutions to the
Laplace-Beltrami equation at the boundary of AdS5, which is at z = 0. We thus need to
solve

0 = 2AdS5
ϕ(xµ, z) (2.117)

and extract the behaviour of the solution as z → 0. It turns out [219] that any solution
of eq. (2.117) in an asymptotically Anti-de Sitter space-time (i.e. a space-time which is of
the form (2.116) for z → 0) has a leading and a subleading behaviour. For e.g. a scalar
excitation ϕ on AdS5 the asymptotic behaviour is

ϕ(xi, z)m2=∆(∆−4) ≃ z4−∆JO(x) + z∆〈O(x)〉 , (2.118)

where the leading term is interpreted as a source for the operator O corresponding
to this field (which has mass m2 = ∆(∆ − 4)), and the subleading term is identified
with the expectation value (the condensate) of this operator. Note that this is only
the asymptotic behaviour of the eq. (2.117) and no boundary conditions in the interior



66 The Anti-de Sitter/Conformal Field Theory Correspondence

have been imposed so far, so the source and the expectation value are actually the two
integration constants of eq. (2.117). Imposing a boundary condition in the interior would
then relate the expectation value with the source, enabling one to calculate the vacuum
expectation value 〈O〉|JO=0.

This interpretation of classical gravity solutions also yields a correspondence between the
ultraviolet and infrared physics of the field theory, and the different regions of
Anti-de Sitter space-time. In terms of renormalisation group flows, the procedure is
normally such that one defines a theory through an action in the ultraviolet, and studies its
behaviour under the renormalisation group flow, i.e. when integrating out high-energetic
degrees of freedom in the Wilsonian sense [222]. The theory then can flow to an infrared
fixed point (this is believed to happen for QCD), or it can be already at a fixed point
(this is what happens e.g. for conformal theories like N = 4 SYM). For the latter case
of theories, it is then the interesting to perturb the theory by adding additional operators
with corresponding coefficients (the sources which can for example be mass matrices or
additional couplings), and investigate whether this creates a new renormalisation group
flow [223]. If the system is driven by this deformation to a new fixed point, the deformed
Lagrangian serves as the ultraviolet definition of a new theory with a nontrivial RG flow.
This theory can then flow to another fixed point in the infrared, but the important point
here is that the deformation with its nontrivial sources for certain operators was added
in the ultraviolet description of the theory. Since we know that sources in the AdS/CFT
context are encoded in the nonnormalisable modes of supergravity fields, i.e. that they
die off slowest towards z = 0, it is natural to identify the z = 0 region of the Anti-de
Sitter space as the region encoding the ultraviolet physics of the dual field theory. On
the other hand, the interior part of Anti-de Sitter space, in particular the point z = ∞,
should correspond to the infrared physics in the field theory since for example condensates,
which in the field theory are often governed by infrared effects, are calculated after giving
boundary conditions at z = ∞. Later on in section 2.3.6 we will see an example of this
mechanism. In conclusion, we thus identify the region z → 0 with ultraviolet effects in the
dual field theory, and the region z → ∞ with infrared effects. A renormalisation group flow
of some observable from the ultraviolet to the infrared is encoded in the full z dependence
of the corresponding dual supergravity field.

One might wonder why the mass squares in eq. (2.115) are not bounded by zero from
below. The reason for this is a peculiar property of fields in Anti-de Sitter space-time
found by Peter Breitenlohner and Daniel Z. Freedman [224,225] (see also [226]): Since the
metric (2.116) of AdSd+1 diverges as one approaches the boundary at z = 0, less restrictive
fall-off conditions at spatial infinity are necessary for fields to have positive energy, and
thus tachyonic (i.e. negative) mass squares are allowed if they are not too negative. For
scalars39 one finds

R2m2 ≥ −d
2

4
. (2.119)

39The Breitenlohner-Freedman bound for fields other than scalars can readily be deduced from the
unitarity bound ∆ ≥ 0 by using eqs. (2.115).
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This restriction is called the Breitenlohner-Freedman bound. There is actually a nice
correspondence between the (ir)relevance of operators and the masses of the corresponding
supergravity fields (see. ch. 9.1 of [80] or [219]), which I will describe for scalars: In
general, deforming the field theory by a certain operator corresponds to searching for a
new supergravity background with the corresponding field excited on the nonlinear level,
i.e. solving the coupled equations of the new field together with the equations of motion
of the old theory. In particular, scalar fields can have quite complicated potentials in the
gauged supergravity theories which arise from the reduction on the five-sphere (or other
internal spaces). Scalar operators withm2 < 0 then correspond to relevant deformations
of the field theory, creating a RG flow towards a different infrared fixed point. Massless
scalars correspond to marginal deformations, which might or might not create a RG
flow, depending on whether they are marginally relevant, irrelevant or exactly marginal.
Finally, scalar operators with positive mass squared (i.e. ∆ > 4) correspond to irrelevant
deformations of the dual CFT, describing a renormalisation group flow to N = 4 SYM
in the infrared from some other unknown theory in the UV. The way to describe these
RG flows holographically is via domain wall solutions of truncated gauged supergravities
interpolating between different asymptotically Anti-de Sitter spaces (see e.g. ch. 9 of [80]).

We have seen that free supergravity fields encode in their boundary behaviour both ul-
traviolet physics (the sources) and infrared physics (the vacuum expectation values). For
giving a detailed description of the correspondence we also need to give a recipe of how
to calculate correlation functions. This was given again by Witten in [219] (and inde-
pendently in [220]), by stating the following equivalence between the supergravity
on-shell action and the generating functional of the dual field theory. Let Oi be
a set of operators of N = 4 SYM theory, then, according to [219], the generating functional
of Euclidean field theory correlators is identified with the on-shell type IIB supergravity
action, where the solutions for the linearised fields ϕi dual to the correlators Oi are subject
to the boundary behaviour as in (2.118). In a formula,

〈

exp



−
∫

4

J iOi





〉

CM

= exp
(
−SIIB

[
ϕi(J i, 〈Oi(J

i)〉)
])
. (2.120)

Here the chosen vacuum expectation values 〈Oi〉|Ji=0 on the right-hand side define the
vacuum in which the generating functional on the left-hand side is taken, while the non-
normaliseable mode of the linearised fields (2.118) provides the dependence on the source
J . Possible additional boundary conditions imposed on the linearised field equations relate
the normaliseable behaviour, i.e. the expectation value, with the source for the operator.
The action on the right-hand side is the type IIB supergravity action after Kaluza-Klein
reduction on the S5. The correct definition of the on-shell action still needs the addition
of surface terms, such that the theory admits a well-defined semi-classical approximation,
a process called “holographic renormalisation”. I will not dwell on this at this point, but
come back to it in the appropriate places in the next chapters. See however [227] for a
good review of this extensive topic and [228,229] for a systematic treatment of the simpler
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(a) (b) (c) (d) (e)

  AdS

boundary AdS

Figure 2.6: Several Witten diagrams describing a) the vacuum, b,c) two- and three-point
functions and d,e) contributions to a four-point function (figure taken from [80]).

and thus more transparent situation in 1+1 dimensions. In any case the formula (2.120)
now allows to calculate Euclidean correlators by differentiating with respect to the sources
as usual. Note that the on-shell type IIB supergravity action on the right-hand side is the
full action, including interaction terms between the linearised fields. These interactions
are important, since they encode the nontrivial information about the field theory inter-
actions between the operators. Since, as explained in section 2.3.3, the five-dimensional
gravitational coupling (i.e. the relevant gravitational coupling after reduction on the S5)
κ2

5 ∼ N−2
c is small in the large Nc limit, it is possible to set up a perturbation theory scheme

on the gravity side by expanding the supergravity action in κ5. The on-shell supergravity
action can then be evaluated in perturbation theory to the required order by the following
prescription: Connect the sources J i located at the boundary of Euclidean AdS with the
interior by “bulk-to-boundary propagators”, and connect the end points of the bulk-to-
boundary propagators with “bulk-to-bulk” propagators. If necessary, loops in the interior
of Euclidean AdS can be build up by bulk-to-bulk propagators. Include integrations over
Euclidean AdS space for each internal interaction point. At the end, do a summation over
all diagrams to the wanted order in κ5. These diagrams are called “Witten diagrams”,
depicted in figure 2.6. I will however not dwell longer on the actual calculation of corre-
lators, since in this thesis we will mostly work with one-point functions. The interested
reader is referred to the reviews [79,80,200,201] or the classics [212,219–221,230–237]. The
classical checks of the AdS/CFT correspondence via the calculation of correlators of 1

2
BPS

operators which are protected by supersymmetry and thus do not depend on the ’t Hooft
coupling can also be found in these references.

Some additional words have to be said about the relation between Minkowskian and Eu-
clidean signature in the AdS/CFT correspondence. It has been observed by Dam T. Son
and Andrei Starinets in [238] that Witten’s formula for the generating functional (2.120)
does not apply to the case of Minkowskian signature. In particular, it would yield real
boundary propagators for timelike momenta, while e.g. the retarded/advanced propaga-
tors are complex. Son and Starinets proposed a recipe which correctly provides the right
boundary propagators by imposing corresponding boundary conditions at the z = ∞ hori-
zon of the Poincaré patch of AdS5. However, since their approach is ad hoc and does not
generalise eq. (2.120), it cannot be applied to higher n-point functions. A step forward
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to such a generalisation was made in [239], where it was shown that holographically im-
plementing the Schwinger-Keldysh formalism with its doubling of the degrees of freedom
on the contour needs the full global Anti-de Sitter manifold rather than just the Poincaré
patch (which covers only half of the manifold, see e.g. [204]). Physically speaking, the
second copy of N = 4 in the Schwinger-Keldysh formalism lives on the other boundary
of Anti-de Sitter space which bounds the second Poincaré patch. In this way [239] it was
possible to obtain the Schwinger-Keldysh propagator by functional variation of a corre-
sponding boundary action. The upshot is that the relevant on-shell gravity action is a
sum over action functionals, one with Minkowskian signature for each real-time segment
of the contour, and a Wick-rotated one for each imaginary-time segment. Recently Kostas
Skenderis and Balt C. van Rees gave an in-depth analysis of this procedure for general
contours [240,241], including holographic renormalisation and several examples.

In conclusion, we have seen that and how the AdS/CFT correspondence can be formulated
on the levels of operators and fields, correlation functions and generating functionals. It is
possible to incorporate vacua with nontrivial expectation values and to describe different
field theory perturbations and holographic renormalisation group flows. This is already
a rather concrete framework which can be used to analyse the dynamics of N = 4 su-
persymmetric Yang-Mills theory at strong coupling. In the remaining two sections of this
chapter I will describe two generalisations of the AdS/CFT correspondence to include fi-
nite temperature as well as matter fields in the fundamental representation of the gauge
group (recall that all fields in N = 4 SYM where adjoints). These two generalisations will
be most important for the understanding of the research work of the author presented in
chapters 3 and 4.

2.3.5 Finite Temperature AdS/CFT and Black Holes

The generalisation of the AdS/CFT correspondence to put the N = 4 SYM theory at finite
temperature is remarkably simple and again was given by Witten in [91,219] (see also [242]):
Instead of taking the near-horizon limit of the extremal D3 soliton (2.101) to arrive at the
AdS geometry (2.104), one should take the decoupling limit in the nonextremal black D3
brane geometry [195], which reads

ds2 = H
− 1

2

3

(

−f(r)dt2 + dxi2
)

+H
1
2

3

(
dr2

f(r)
+ r2dΩ2

5

)

,

H3(r) = 1 +
R4

r4

[√

1 +
r8
h

4r8
− r4

h

2r4

]

, f(r) = 1 − r4
h

r4
, (2.121)

C4 =

(

1 − 1

H3

)

dx0 ∧ dx1 ∧ dx2 ∧ dx3 , e2Φ = g2
s , R4 = 4πgsNcα

′2 .
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Maldacena’s decoupling argument is still valid, since the only difference is now the nonex-
tremality of the D3 brane40 on the field theory side, and the presence of the Killing horizon
at finite r = rH on the gravity side. In particular, the modes infinitesimally close to the
horizon still receive an infinite redshift, and an asymptotic observer sees the full type IIB
string theory spectrum on the near horizon geometry. The near horizon limit is now taken
holding fixed the horizon temperature

T =
rH

πR2
=

uh

πℓ2
, (2.122)

i.e. holding fixed both u = r
α′ and uH = rH

α′ . Holding the temperature fixed in this case
corresponds to holding the energy density above extremality fixed, since the extremal D3
brane solution has zero horizon temperature. This scaling limit yields the metric of a
Schwarzschild black hole in the Poincaré patch of Anti-de Sitter space [242],

ds2

α′
=

u2

ℓ2
(
−f(u)dt2 + d~x2

)
+
ℓ2

u2

du2

f(u)
+ ℓ2dΩ2

5 ,

f(u) = 1 − u4
H

u4
, uH =

rH

α′
, ℓ4 = 4πgsNc . (2.123)

The four-form potential C4 is unchanged compared to the zero temperature case. This
kind of black hole is flat, i.e. the horizon topology is instead of S3, times the usual S5

of radius ℓ. Its ADM mass [247]41 is, using eq. (2.114), readily computed to be

M =
3πr4

H

8G5R2
=

3

4

N2
c

ℓ5
u4

Hℓ
3
s . (2.124)

Though the appearance of the factor ℓ3s may surprise here, it just means that what is
kept fixed in the decoupling limit is actually the energy density rather than the mass
itself. From dimensional analysis of eq. (2.124) one finds that the energy density ε = M

ℓ3s
must be a density with respect to three dimensions, i.e. it can be interpreted as the
three-dimensional spatial energy density on the boundary of AdS5. One can now combine
eqs. (2.122) and (2.124) to the following Stephan-Boltzmann law,

ε =
3π4ℓ3N2

c

4
T 4 . (2.125)

The appearance of this T 4 behaviour already yields a hint that the boundary field theory
is in a finite temperature state. Since the metric (2.123) asymptotically returns to AdS
space, the AdS/CFT correspondence as described in the previous sections is affected by
this replacement of AdS by AdS-Schwarzschild only by the choice of boundary conditions
at the horizon. In particular, the operator-field mapping is the same as before.

40The string theoretic description of certain near-extremal black holes in four-dimensional N = 8 super-
gravity has been studied in [243,244], and the Bekenstein-Hawking entropy was reproduced. For work on
near-extremal five branes see [245,246].

41The mass definition by Arnowitt, Deser and Misner is the most applicable definition of masses in
asymptotically flat black hole space-times. It in particular reproduces the mass of the Schwarzschild black
hole correctly.
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V=0
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F

Figure 2.7: Penrose diagram of the AdS-Schwarzschild space-time (figure taken from [239]).

The metric (2.123) is written in Poincaré coordinates and thus only describes half of the
full manifold, which is depicted as a Penrose diagram in figure 2.7. The global metric of
AdS-Schwarzschild (omitting the five-sphere) is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3 , f(r) = 1 +
r2

R2
− r4

0

R2r2
. (2.126)

Here r0 sets the mass of the space-time, but the horizon will not be any longer exactly at
r0, but the horizon is at

r2
H =

√

R4

4
+ r4

0 −
R2

2
, (2.127)

with a Hawking temperature of

T =
2r2

H +R2

2πR2rH

. (2.128)

Note that the boundary of this space-time at r = ∞ is ×S3
R rather than 4. Calculating

the holographic vacuum expectation value in this space-time yields the result (see e.g.
ch. 18 of [143] for the details on holographic renormalisation etc.)

Ttt =
3

8πG5

(
1

8R
+

1r4
0

2R5

)

+ O(r−1) , (2.129)

Tij =
1

8πG5

(
1

8R
+

r4
0

2R5

)

gij + O(r−1) , (2.130)

where gij is the metric in the angular directions of (2.126). In the r → ∞ limit, the
first term in the brackets describes the Casimir energy of N = 4 SYM theory on S3

R, and
vanishes in the R → ∞ limit. The second term is the contribution to the energy density
and pressure above extremality. The second term (and actually also the Casimir energy
term) fulfill the equation of state ε = 3p, which is the equation of state for radiation. We
thus find that the dual field theory is in a thermal state with temperature T , and the
equation of state is that of a gas of massless particles, as expected for N = 4 SYM.
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Note that the energy density (2.125) scales with N2
c , which is consistent with the interpre-

tation of the N = 4 SYM theory being in a deconfined phase, i.e. a phase with gluons
and their superpartners as the fundamental degrees of freedom. Only at zero temperature
T = 0, there is no such scaling (since ε = 0 there). Thus the theory can possibly confine
only at zero temperature, meaning that the Poincaré patch by itself is not sufficient to
show the confinement-deconfinement phase transition known from N = 4 SYM theory.
The reason for this is the lack of a second dimensionful parameter in flat Minkowski space
which could together with the temperature yield a dimensionless ration governing the phase
transition. It is however possible to describe the (de)confinement phase transition also
in the Poincaré patch by introducing an infrared cutoff for the coordinate u ≥ ΛIR [248].
In this case ΛIR serves as the dimensionful parameter. There is however a much more
elegant description of the (de)confinement phase transition [91,249] in terms of the global
coordinate system (2.126): The thermodynamics of black holes in AdS space [250] admits a
phase transition found by Stephen Hawking and Don Page between the Euclideanised
version of (2.126) and “thermal Anti-de Sitter space”. The latter space is Euclidean
Anti-de Sitter space in global coordinates (i.e. eq. (2.126) with r0 = 0) with the Euclidean
time being periodically identified, τ ∼ τ + 1

β
. Here β = T−1 is the inverse Hawking tem-

perature in units in which the Boltzmann constant kB = 1. The transition between both
phases is of purely thermodynamic nature: Comparing the free energies of both metrics,
which is identified with the on-shell five-dimensional Euclidean Einstein-Hilbert action plus
a negative cosmological constant (plus appropriate boundary terms), yields a difference

FBH − Fthermal =
π2r3

H(R2 − r2
H)

4G5(2r2
H +R2)

. (2.131)

The phase transition thus occurs at rH = R, i.e. when the Schwarzschild radius of the
global AdS black hole exceeds the curvature radius R of the background AdS space. For
rH > R the black hole has smaller free energy, while for rH < R the thermal AdS is
thermodynamically preferred. Comparing with the Hawking temperature (2.128) we find
that the transition happens at

Tdeconf =
3

2πR
. (2.132)

This is expected since N = 4 SYM as a conformal theory has no intrinsic scale and
thus the transition temperature must be inversely proportional of the radius of the spatial
S3. Note that this phase transition is a first order transition. It also has a topological
interpretation: Since the boundary of both thermal AdS space and the AdS black hole
in global coordinates has topology S1

β × S3
R, but the full spaces are topologically distinct

(B2×S3 for the AdS black hole and S1×B4 for thermal AdS), the transition is between two
topologically distinct saddle points of the type IIB supergravity path integral. Another,
though a bit different, phase transition of a topological nature will show up in section 2.3.6
when introducing quarks into the theory via probe branes.

The limit which reduces the global AdS-Schwarzschild black hole to the flat Poincaré patch
form must send the transition temperature to zero, which is achieved by sending R → ∞,
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i.e. for small AdS curvature. It is not obvious from the forms of the metrics (2.123) and
(2.126) that this is the correct limit to take, since both metrics are written in different
coordinates. However, since the horizon topology of the global AdS black hole is S3 while
the topology of the Poincaré patch black hole is 3 a suitable limit which decompactifies
the horizon might be the right choice.42 By separating one polar angle and expanding for
small angle around one pole (e.g. the north pole) one can write the standard metric on S3

as
dΩ2

3 = dθ2 + sin2 θdΩ2
2 ≃ dθ2 + θ2dΩ2

2 . (2.133)

This expansion needs θ ≪ 1. If θ would be related to some radial variable, then (2.133)
would be a multiple of the three-dimensional metric d~x2 = dρ2 + ρ2dΩ2

2 in spherical coor-
dinates. This can be achieved while keeping θ small via

θ =
ρ

R
. (2.134)

In this way, if sending R → ∞, one can allow for larger and larger values of the radial
coordinate ρ without spoiling θ ≪ 1, which achieves the decompactification of the horizon.
This brings the metric into the form

ds2 = −
(

1 +
r2

R2

(

1 − r4
0

r4

))

dt2 +
dr2

(

1 + r2

R2

(

1 − r4
0

r4

)) +
r2

R2

(
dρ2 + ρ2dΩ2

2

)
.

Now, since u = r
α′ is a coordinate with dimension of mass rather than length, we must

rescale
r = R2u , r0 = R2u0 , (2.135)

which finally allows us to drop the one in f(r) and brings the metric into the form

ds2 = ℓ2α′



u2

(

−
(

1 − u4
0

u4

)

dt2 + d~x2

)

+ u2 du2

(

1 − u4
0

u4

)



 ,

which up to a rescaling of the coordinate u 7→ u
ℓ2

(which does not change the dimension
of u) is the Poincaré black hole (2.123). Since in this limit the confinement temperature
(2.132), the dual gauge theory “gluons” as always deconfined in the Poincaré patch, except
at zero temperature. The Poincaré patch AdS black hole thus describes the N = 4 SYM
theory at high-temperatures, i.e. when the ratio T/Tdeconf ≫ 1. We thus cannot expect to
describe exactly phenomena associated with the phase transition itself just by looking at
the Poincaré patch.

To summarise, the AdS/CFT correspondence at finite temperature can be stated as follows:

In the large-Nc, large ’t Hooft coupling limit, four-dimensional U(Nc) N = 4
supersymmetric Yang-Mills theory on a space-time × S3

R and a temperature

42The author thanks Andrew O’Bannon for suggesting this argument.
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T given by eqs. (2.128) and (2.127) is holographically dual to the S5-reduction
of type IIB supergravity on the space-time AdS-BH×S5

R, where the Anti-de
Sitter black hole geometry is given by eq. (2.126). In the limit in which the
spherical black hole horizon decompactifies, the N = 4 SYM theory lives on
four-dimensional Minkowski space 1,3, while the gravity dual is given by the
S5 reduction of type IIB supergravity on eq. (2.123).

Note that in this thesis we will exclusively work with the Poincaré patch version of the
finite temperature correspondence.

2.3.6 Quarks with Flavour and Probe Branes in Anti-de Sitter
Space

So far we have extended the gauge-gravity duality to finite temperature, but for a theory of
adjoint fields only, namely N = 4 SYM theory. In chapters 3 and 4 we however will make
use of an even extended gauge-gravity duality, which includes fields in the fundamental
representation of the gauge group, i.e. supersymmetric versions of quarks and antiquarks.
They can be added in the quenched approximation43 by considering probe branes in the
corresponding gravity dual background, an idea which was proposed by Andreas Karch,
Emanuel Katz and Lisa Randall in [94,95] (see also [251,252]). This construction basically
adds an open string sector to the gravity dual through the additional fields in the low energy
effective action on the probe branes (or excited open strings for higher spin fields). For the
purposes needed in the following two chapters it will be sufficient to describe the gravity
dual of N = 4 SYM coupled to a number Nf of N = 2 quark hypermultiplets, which is
constructed by embedding D7 probe branes into the geometries already described. This
model is known as the D3-D7 model of AdS/CFT with flavour, and my description
will mostly follow the review [253]. Alternative models with fundamental flavour degrees
of freedom were proposed in [88,254,255].

The field theory under consideration is a N = 2 supersymmetric D3-D7 intersection in
type IIB string theory, depicted in figure 2.8. It consists of a stack of Nc = N D3 branes
and another stack of Nf D7 branes, oriented parallel to each other in the 0123 directions
(henceforth called xµ) of flat Minkowski space 1,9. The D7 branes also fill the 4567
directions (henceforth called ym), and there are two totally transverse directions zi, i = 8, 9.
The embedding profile of the D7 branes will be described by the embedding functions
zi(xµ, ym). To describe fundamental quarks with mass mq, the D7 branes have to be

43The ’t Hooft limit for gauge theories with fundamental fields organises in a series expansion in powers
of N−1

c . In a deconfined phase, the leading order N−
c 2 is given by planar gluon diagrams, while the

fundamental degrees of freedom show up at order
Nf

Nc
. Truncating the expansion to this order (which

requires Nf/Nc → 0, i.e. Nf fixed in the large-Nc limit) corresponds to truncating the theory to planar
diagrams with only gluons running in loops, while fundamental fields are allowed as external particles.
This is called the “quenched approximation”.
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Coordinates
0 1 2 3 4 5 6 7 8 9
Nc D3 branes

Nf D7 branes

xµ ym

ρ S3 zi

1,3 × SO(1, 3) SO(4)4567 ≡ SU(2)Φ × SU(2)R SO(2)89 ≡ U(1)R

Table 2.9: Embedding of a stack of Nf flavour D7 branes.
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D7s

7−7

3−3

3−7
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Figure 2.8: The D3-D7 model of AdS/CFT with flavour.
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a distance apart from the D3 branes, specified by
√

(z8)2 + (z9)2 = 2πα′mq. Since the
setup is invariant under a SO(2) symmetry rotating the 8-9 plane, one can always choose
z8 = 2πα′mq and z9 = 0. The fundamental fields then arise from the excitations of the
3-7 and 7-3 superstrings44, and group themselves into N = 2 hypermultiplets. The full
geometric symmetry of the setup is

SO(1, 3)0123 × SO(4)4567 × SO(2)89 . (2.136)

In addition to the fundamentals, there is of course a full N = 4 SYM sector coming from
the 3-3 strings, as well as an eight-dimensional DBI theory on the D7 branes with gauge
group U(Nf ). However, since the different gauge couplings (2.93) scale differently with α′,
the D7 brane gauge coupling vanishes if the D3 brane gauge coupling is kept fixed in the
α′ → 0 limit,

g2
Y M,7 = (2π)4α′2g2

Y M , (2.137)

and thus the U(Nf ) gauge symmetry becomes a global (ungauged symmetry) in this limit.
Furthermore, since the interactions of the 3-7 strings with the 7-7 modes are all ∝ g2

Y M,7,
the whole section of 3-3 and 3-7 fields decouples from the 7-7 sector. The formerly bifun-
damental 3-7/7-3 modes become fundamental fields in the U(Nc) gauge group, while the
U(Nf ) index just becomes a global index.

It is now possible to set up a decoupling limit similar to the one presented in section 2.3.1.
In the open string picture (i.e. branes in flat space), the decoupling is again achieved
because of the κ-dependence of the effective action which now consists of (2.99) plus the
D7 brane action (2.88) and a piece for the 3-7/7-3 interactions. From the point of view of
gravity, the D7 brane tension scales like

T7 ∼
1

gsℓ8s
∼ gs

κ2
, (2.138)

and thus the whole D3-D7 system will decouple from the bulk IIB supergravity (which
again becomes free) in the limit α′ → 0. We need, however, also to decouple the D7 brane
from the 3-3 and 3-7 parts of the action. Since both of these parts of the low energy
effective action scale like g−2

Y M , a fact which will become clear in a minute when writing
down the corresponding action, the α′ → 0 limit would automatically also decouple the D7
fields from the rest of the D brane construction. However, we still need to make sure that
the D7 brane does not backreact onto the flat space background, i.e. that its coupling to
gravity vanishes. This is called the probe limit, i.e. the D7 brane acts as a probe which
gets acted upon by the background, but which itself is a negligible source of gravitational
fields. This is achieved by the large-Nc, fixed Nf limit which in the field theory corresponds
to the quenched approximation, as becomes clear when comparing the Nc behaviour of the

44In fact only their ND directions yield massless modes.
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different low energy effective actions,45

S =
1

2g2
sα
′4

︸ ︷︷ ︸

∼ N2
c

λ2α′4

∫

LIIB +
Nf

(2π)5gsα′4
︸ ︷︷ ︸

∼Nf Nc

λα′4

∫

LD7 . (2.139)

The D7 contribution to the energy-momentum tensor is thus suppressed by a factor λ
Nf

Nc

compared to the leading order behaviour of the IIB supergravity action. In the strict
Nc → ∞,

Nf

Nc
fixed limit one can thus naively neglect the D7 brane contribution to the

energy-momentum tensor, and solve for the D7 equations of motion separately from solving
for the D3 brane solitonic solution. This yields, on the gravity side of the correspondence,
the usual type IIB supergravity sector, plus an additional sector of open string fields
summarised in the D7 brane effective action (2.88). The open string fields will then couple
holographically to operators built out of the 3-7/7-3 fields.

The new field content introduced by the 3-7/7-3 sector is a hypermultiplet of (anti)funda-
mentals, which consists of one chiral multiplet Qi, i = 1, . . . , Nf , which comes from the 3-7
strings and transforms in the (N̄c, Nf ) representation of the gauge and flavour groups, and
another chiral multiplet Q̃i coming from the 7-3 strings and transforming in the (Nc, N̄f ).
Since both chiral multiplets form a hypermultiplet, there will be an U(2)R symmetry
rotating them into each other. The Lagrangian describing this theory in N = 1 superspace
language is given by the N = 4 SYM piece, usual additional kinetic terms for the two
chiral multiplets plus an additional superpotential term. Altogether it reads46

SD3D7 =

∫

d4xℑ
[

τ

∫

d4θ
(

tr
(
Φ̄Ie

V ΦIe
−V
)

+Q†ie
VQi + Q̃ie

−V Q̃†i
)

+τ

(∫

d2θ tr (WαW
α + ǫIJKΦIΦJΦK) + Q̃i(mq + Φ3)Q

i + h.c.

)]

,(2.140)

with all the other definitions as in eq. (2.108). The interesting and new part is the coupling
between the transverse scalar Φ3 and the chiral multiplets, and the mass deformation
given by the “quark masses” mq, which corresponds to separating the D7 brane stack
from the D3 branes in the transverse 8-9 direction. The above action not only has N =
2 supersymmetry, but is also classically conformal for mq = 0, as there are no other
dimensionful parameters, so in the massless case the N = 2 supersymmetry enhances to

45This argument only requires the contribution of the nonabelian D7 brane action to the energy-
momentum tensor to be finite, i.e. not to diverge. This is always fulfilled, ensured by correct holographic
renormalisation. I however assumed here additionally that the contribution of Nf D7 branes to the energy-
momentum tensor scales like Nf , which is surely obvious for the decoupled U(1) ⊂ U(Nf ) part of the DBI
action.

46In this thesis the convention is employed that a fundamental gauge index is a column index, while an
antifundamental gauge index is a row index. Contrary to this, the flavour indices are defined upstairs for
the fundamental of U(Nf ), and downstairs for the antifundamental representation. In the literature the
conventions often differ.
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N = 2 components spin SU(2)Φ × SU(2)R U(1)R ∆ U(Nf ) U(1)q

(Φ1,Φ2) X4, X5, X6, X7 0 (1
2
, 1

2
) 0 1 1 0

hyper λ1, λ2
1
2

(1
2
, 0) −1 3

2
1 0

(Φ3, Wα) XA
V = (X8, X9) 0 (0, 0) +2 1 1 0

vector λ3, λ4
1
2

(0, 1
2
) +1 3

2
1 0

vµ 1 (0, 0) 0 1 1 0

(Q, Q̃†) qm = (q, ¯̃q) 0 (0, 1
2
) 0 1 Nf +1

fund. hyper ψi = (ψ, ψ̃†) 1
2

(0, 0) ±1 3
2

Nf +1

Table 2.10: Fields of the D3/D7 low energy effective field theory and their quantum num-
bers under the global symmetries (table taken from [253]). Note that U(1)q ⊂ U(Nf ).

a superconformal symmetry.47 In fact, requiring N = 2 supersymmetry by requiring an
unbroken SU(2)R symmetry and unbroken U(Nf ) flavour symmetry uniquely determines
eq. (2.140). Note that the U(1)R symmetry is broken by a finite quark mass. As we will see
below, this has a geometric interpretation in the embeddings of D7 probes in AdS5 × S5.

The action (2.140) has several global symmetries which match the geometric symmetries
of the D brane constructions: There is of course Lorentz symmetry SO(1, 3). The rota-
tion symmetry SO(4)4567 in the “relatively transverse” directions shows up again as the
SU(2)Φ×SU(2)R symmetry, with the first part of which being a global symmetry rotating
Φ1 and Φ2 into each other, while the second part is the nonabelian R-symmetry of the
theory. The SO(2)89 rotations translate into the U(1)R symmetry. The quantum numbers
of the fields are summarised in table 2.10. From the flat space D brane construction we now
understand that a finite quark mass, which breaks U(1)R, breaks the rotational symmetry
in the totally transverse 8-9 plane.

In order to holographically describe this theory, we need to find an embedding of the
D7 brane which preserves these geometric symmetries as well. I will only describe the
embedding in the Poincaré coordinate system here, as it suffices for the purpose of this
thesis. For the situation in global AdS space see [257]. Once can rewrite the Poincaré
patch of AdS5 × S5 (2.104) as a warped product of 1,3 and 6,

ds2 =
~y2 + ~z2

R2
dxµ2

+
R2

~y2 + ~z2

(
d~y2 + d~z2

)
. (2.141)

In this form the several geometric symmetries are already evident. Since we do not want
to break Lorentz symmetry, the embedding functions should not depend on xµ, and since
we do not want to break the rotations in 4567 direction, the embedding can only depend

47The conformal symmetry is also preserved at the quantum level in ’t Hooft limit since the β function

for the ’t Hooft coupling β(λ) = 1
2π

(
λ
4π

)2 Nf

Nc
vanishes in the strict Nc → ∞ limit with Nf fixed [256].

Note however that there is a restriction on Nf coming from global issues with a deficit angle in the fully
backreacted D3-D7 solution (see sec. 4.1.2 of [253] for a discussion).
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on the radial coordinate ρ in that space. Introducing polar coordinates in transverse space
via

z8 = L cosφ , z9 = L sinφ , (2.142)

one finds that the U(1)R symmetry acts by shifts of the angle Φ. Introducing a mass
corresponds to breaking this shift symmetry. But even if the shift symmetry is broken,
one can always set Φ = 0 by a U(1)R rotation. Thus the relevant embedding coordinate
is just L(ρ), the radial distance in totally transverse space. The induced metric on the D7
worldvolume P [G] then reads

ds2 =
ρ2 + L(ρ)2

R2
dxµ2

+
R2

ρ2 + L(ρ)2

(
(1 + L′(ρ)2)dρ2 + ρ2dΩ2

3

)
. (2.143)

Employing Hopf coordinates for the S3,

dΩ2
3 = dψ2 + cos2 ψdβ2 + sin2 ψdγ2 , (2.144)

the DBI action for the center-of-mass embedding of Nf D7 branes, which is described by
the U(1) ⊂ U(Nf ) part of the gauge group, reduces to48

SD7 = −2π2Vol( 4)Nf

(2π)7(α′)4gs

∞∫

0

dρρ3
√

1 + L′(ρ)2 , (2.145)

where the 2π2 is just the volume of the unit radius three sphere coming from the angular
integrations,

Vol(S3) =

2π∫

0

dβ

2π∫

0

dγ

π/2∫

0

dψ sinψ cosψ = 2π2 . (2.146)

The action is formally divergent because of the volume of Minkowski space appearing, so
this infinite factor should be divided off and one should work with the action density only.
This procedure is understood to be applied in the rest of this thesis whenever applicable.
Note that there is no contribution from the Wess-Zumino term, since there is neither a Bµν

field in the background nor a Fµν on the brane excited. Excitation of either of them would
break some of the global symmetries. We will see examples of this symmetry breaking
mechanism in chapters 3 an 4.

The Euler-Lagrange equation for L(ρ) derived from eq. (2.145),

0 =

(
ρ3L′(ρ)√

1 + L′

)′
, (2.147)

48The U(1) ⊂ U(Nf ) sector of the DBI dynamics describes the center-of-mass fluctuations of a stack of
D7 branes, i.e. the collective fluctuations of all D7 branes together. Embeddings which excite different
branes differently are also useful, for example in the study of isospin chemical potentials.
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which is readily integrated once to yield

0 =
ρ3L′(ρ)√

1 + L′
= c ⇒ L′(ρ)2 =

c2

ρ2 − c2
. (2.148)

L′ has a pole at some finite value of ρ, unless c = 0. Since L′ diverges as ρ−3 there, L
will diverge like ρ−2. There are several reasons why c 6= 0 is unphysical: First, this pole
in L would correspond to a D7 brane generating a throat with finite “mouth” diameter49,
a situation which is surely not wanted. Since the D7 branes in the flat space D brane
construction were parallel to the D3 branes. In particular the AdS5 ×S5 background space
cannot create this effect, since it has no special features like curvature singularities at
ρ6 = c2, and it has no additional free parameter which could correspond to the integration
constant c. There is also a holographic reason for such divergences to be unphysical: Since
we want to identify r2 = ρ2 +L2(ρ) as an energy scale in the dual field theory, r2(ρ) should
monotonically increase with ρ. This is not the case if L(ρ) diverges for small ρ, and thus
such embeddings do not admit a valid renormalisation group flow interpretation. We thus
set c = 0, and conclude that the valid embeddings must be flat,

L = 2πα′mq , (2.149)

where the second constant of integration was interpreted as the quark mass times the
inverse string tension. This interpretation can be understood as coming from the operator-
field dictionary (similar to eq. (2.118)): From (2.148) one finds that for large ρ the embed-
ding behaves as a constant plus a ρ−2 fall-off,

L = 2πα′mq +
c

ρ2
. (2.150)

In the light of the operator-field mapping (2.118) we interpret the constant as the quark
mass, and c as the corresponding operator vacuum expectation value.50 Since the quark
mass should be the source for the operator, it is easily identified from (2.140) [260,261]. It
is the supersymmetric completion of the quark mass term51 52

− NfNc

λ

c

(2πα′)3
= Omq

=
δSD3D7

δmq

= ψ̃ψ + q̃
(

mq +
√

2φ3

)

q̃† + q
(

mq +
√

2φ3

)

q† + h.c. .

(2.151)

49Such solutions correspond to a D7 brane and an Anti-D7 brane joining up to form a throat [258].
Without a baryon chemical potential they are indeed thermodynamically disfavoured w.r.t. the constant
embeddings, but at finite chemical potential they become important in the region µ < mq [259].

50The full spectrum of operators and their mapping to supergravity fields was worked out in [96]. Not
surprisingly, the operators fall into N = 2 supersymmetric multiplets.

51Eliminating the factor of α′ via α′−2 = 2λ (i.e. R4 = 1) sets 〈Omq
〉 = −

√
2λ

4π3 NfNcc . This is a
convention often used in the literature, meaning that lengths are measured in terms of the AdS radius R
instead of the string scale

√
α′.

52We use the superspace conventions of [205], which are also used in the review [80].
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The factor (2πα′)−3 in the identification of c with Omq
is necessary for dimensional reasons.

The other factors and the minus sign come from careful holographic renormalisation, see
e.g. the appendix of [261] for an example of the calculation. According to the quantum
numbers of table 2.10, Omq

has U(1)R charge +2, and a vacuum expectation value will
thus break the U(1)R ≡ SO(2)89 symmetry. This is consistent with the picture of D7
branes being separated from the D3s in flat space.

The U(1)R symmetry is acting with the same quantum numbers on the left-handed Weyl
fermion ψ and the right-handed Weyl fermion ψ̃, and thus has the properties of a chiral
U(1) symmetry. The spontaneous breaking of this symmetry by a vacuum expectation
value 〈Omq

〉 is thus the analogue of the field-theoretic chiral symmetry breaking mech-
anism53 in this supersymmetric toy model. As we have seen above by holographic means,
the condensate c vanishes in the theory (2.140), i.e. such a spontaneous chiral symme-
try breaking cannot occur in that theory. In fact, unbroken supersymmetry forbids the
generation of such a condensate: Since it originates from an F term, giving it a vacuum
expectation value would break supersymmetry. Accordingly, this phenomenon was first
found in [87] by studying D7 probe branes in the nonsupersymmetric Constable-Myers [84]
background. In chapter 3 I will show that switching on an external magnetic background
field produces such a condensate and thus induces chiral symmetry breaking. It turns
out that it is also possible to holographically calculate the spectrum mesons in the theory
(2.140) by solving the linearised field equations for the embedding functions L and φ (and
for the D7 brane gauge field Aa) after imposing appropriate boundary conditions. For
the supersymmetric embedding here this was first done in [96]. The technicalities of this
calculation will be presented in chapter 3, but it will turn out that the natural candidate
for the Goldstone boson of chiral symmetry breaking, i.e. the analogue of the pions,
is given by the operator dual to the angular coordinate φ. This is not surprising since it
is exactly the shift in the φ angle, i.e. rotations in the 8-9 plane, which is broken by a
spontaneous generation of a nontrivial profile for the radial coordinate L(ρ).

At finite temperature, the quarks undergo another first order phase transition, the meson
melting transition [87,99]. As the Hawking-Page transition encountered in section 2.3.5,
this transition is also of geometrical nature: It is the transition between branes which do
not touch the horizon of the black hole, and those which have an induced horizon on
the world volume. The details of this transition will be explained in section 3.2.2, so I
will just summarise the results here: Working in the Poincaré patch and with a slightly
different coordinate system than (2.123), one can integrate the analogue of eq. (2.147) only
analytically.54 The result is shown in figure 2.10. It turns out that the physics is governed in
this case by the dimensionless ration mq/T , and thus in this figure the black hole horizon
radius has been scaled to one. Technically, one fixes the quark mass at a large value
of ρ together with the requirement that the first derivative of L vanishes at that value,

53Chiral symmetry breaking in field theories is reviewed in sec. 6.1 of [253].
54Analytic expressions for the embeddings can be found in the limits of very small or very large tem-

perature.
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Figure 2.9: A sketch of the possible embeddings of a probe D7 brane into Poincaré AdS-
Schwarzschild (figure taken from [262]).

and integrates the embedding equation numerically towards ρ = 0. One finds the two
classes of embeddings: The “Minkowski embeddings” (depicted in blue) which reach
ρ = 0 smoothly,55, and “black hole embeddings” (depicted in green) which reach the
horizon.Although not obvious from figure 2.10, there is no mass gap between the Minkowski
and the black hole embeddings. Note that figure 2.10 only shows the physical embeddings
for each value of mq/T , i.e. the one with smallest free energy F = −TSD7|onshell. There is
also a critical embedding which just touches the horizon, shown in the sketch figure 2.9.
Once can now fit these curves with the formula (2.150) to obtain the value of the “quark
condensate” 〈Omq

〉(mq/T ). It turns out that this condensate is not a continuous function of
mq for any fixed temperature, but jumps exactly at the point where the physical Minkowski
embeddings cease to exist and the black hole embeddings start, namely

(mq

T

)

crit.
≈ 1.332 . (2.152)

The condensate is thus an order parameter for the phase transition happening at this point.
Note that it is not an order parameter in the usual sense that it is zero in one phase and
nonzero in another, and the phase transition is connected with a change in symmetry of the
system. The condensate is nonvanishing on both sides of the transition, it just has a jump.
Also, in this case it is rather a change in topology than in symmetry: The Euclideanised
embeddings would wrap a cycle S1 × S3, where the S1 is the Euclidean time circle, while
the S3 is the sphere wrapped by the D7 embedding. It turns out that for the Minkowski
embeddings the S3 shrinks to zero size while the Euclidean time circle stays finite, while for
the black hole embeddings the (induced) Euclidean time circle shrinks to zero size since the
brane reaches the horizon, but the S3 stays finite. For the critical embedding, both cycles
shrink to zero size. All these statements will be proven in chapter 3. That the transition
is of first order is obvious from the relation of the free energy and the condensate: Since

55They have to reach this point with zero derivative L′(0) = 0 in order to prevent a conical singularity
in the induced metric. This will be shown explicitly later in chapter 3.
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the free energy is proportional to minus the properly holographically renormalised on-shell
D7 brane action, the condensate is

〈Omq
〉 = − 1

T

∂F (mq, T )

∂mq

, (2.153)

i.e., up to a factor involving the temperature, the first derivative of the free energy. If the
condensate has a discontinuity, the transition is thus of first order. That it is a meson
melting transition can be seen by the following qualitative argument: For the Minkowski
embeddings a small fluctuation propagating towards ρ = 0 has to be reflected there, since
the coordinate ρ is a radial coordinate. This is one boundary condition. At infinity, the
fluctuation has to fulfill another boundary condition, namely it has to be normaliseable in
order to be dual to a field theory state (which in this case is a meson) [263,264]. These two
conditions for a second order ODE on a half with oscillatory solutions line yield a discrete
spectrum for the oscillation frequencies, which are the meson masses M2 = −kµk

µ.56

For the black hole embeddings one still searches for normaliseable modes, but now the
fluctuation can fall into the black hole and excite it. The allowed spectrum will thus be
given by the oscillation frequencies of the black hole, which are quasinormal modes (see
e.g. the nice book [267]), which in general have an imaginary part and thus correspond
to unstable excitations. The mesonic excitations thus will decay in the high temperature
or black hole phase. Since the gluons of N = 4 SYM theory are already in a deconfined
phase in the Poincaré patch, the transition is thus a transition between stable mesons in a
deconfined N = 4 plasma and unstable quasiparticle excitations in the same plasma. At
the phase transition the mesons thus “melt” in the hot N = 4 plasma.

So far we have already extended the AdS/CFT correspondence quite far, to include tem-
perature, quark like degrees of freedom and to describe phase transitions for example, but
we have not broken Lorentz invariance explicitly (except at finite temperature). In the next
chapter I will show how to introduce background electric and magnetic fields which break
Lorentz invariance explicitly, and investigate their effects on the supersymmetric quarks.

56More exactly, in the ’t Hooft limit the decay width of these particles is suppressed width N−1
c and thus

zero in the strict Nc → ∞ limit. It can however receive contributions nonanalytically in
√
λ via worldsheet

instantons [265,266].
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Figure 2.10: D7 probe embeddings into the Poincaré AdS black hole.
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Chapter 3

Holographic Quarks in External
Electric and Magnetic Fields

3.1 Introduction and Summary

In the last chapter, two extensions of the original AdS/CFT correspondence were presented:
Considering type IIB supergravity on an AdS-Schwarzschild black hole space-time rather
than AdS5 ×S5 corresponded to a dual field theory at finite temperature; and the addition
of fundamental matter using probe branes and the breaking of supersymmetry due to finite
temperature has allowed a study of QCD-like theories and many measurable quantities and
interesting phenomena such as an analogue of chiral symmetry breaking.1 As an example, I
explicitly discussed the embedding of probe D7 branes [95] into both the zero and finite tem-
perature background. In particular, the gravity dual constructions describing spontaneous
chiral symmetry breaking have been found in [87, 88, 254, 268]. In principle these results
may be tested against results from the light-quark sector of QCD, and qualitative agree-
ment has been reached e.g. in the details of the chiral symmetry breaking dynamics: The
Goldstone modes found holographically fulfill the Gell-Mann-Oakes-Renner relation [87]
and the chiral Lagrangian can be computed [268]. Furthermore, meson mass ratios were
found to match, the order of magnitude of the energy densities of the N = 4 plasma and
matches values from lattice QCD, and the magnitude of the shear viscosity to entropy
density ratio of the quark gluon plasma measured at RHIC was predicted from a gravity
calculation [269] even before it was measured – see the reviews [49, 158, 253, 270, 271] for
a guide to the literature. In particular the evidence suggests that the quark-gluon plasma
of QCD is in many respects very similar to the N = 4 plasma, which is believed to be
due to universal features of strongly coupled field theories. The exploration of the phase
structure of this sector is ongoing [87,99,101,257,259,262,272–279].

1In this chapter the term “chiral symmetry breaking” is referring to the breaking of the U(1)R symmetry
by developing a vacuum expectation value for the operator Omq

, see eq. (2.151).
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In this chapter I consider the effect of an external Kalb-Ramond Bµν field for D7 branes
embedded in the dual gravity background. My motivation to look at such configurations
originates from the investigations in [280, 281], where D7 brane probes were embedded
into the Polchinski-Strassler background [85]. In this background, a Kalb-Ramond field
of quite complicated structure, depending on the radial coordinate of the dual space, is
turned on in all six directions perpendicular to the boundary. In the original work of
Polchinski and Strassler [85] this has been shown to correspond to mass terms for the
adjoint chiral multiplets in the dual gauge theory. For the theory with added flavour, this
implies a repulsion of the D7 branes by the shell forming in the background due to the
Myers effect [282]. This leads to a shift of the meson spectrum induced by the adjoint
masses, which was worked out to second order in the adjoint masses in [280].

It is also quite natural to try to break Lorentz invariance in a further generalisation of
the AdS/CFT correspondence by introducing additional background fields. In contrast to
the work of Polchinski and Strassler, in [105] such an attempt was made by turning on a
pure-gauge magnetic Kalb-Ramond field in two spatial directions of the D3 brane world-
volume, parallel to the boundary. This was found to induce chiral symmetry breaking and
a Zeeman splitting of the meson states. This setup was investigated further in [283]. A
related approach using both external magnetic and electric fields was used in [284–286] to
calculate conductivities and to study the holographic Hall effect (for related work in 2+1
dimensions see also [287]).

In the present chapter, I consider both external magnetic and electric fields separately.
In the electric case, the Kalb-Ramond field extends into the temporal direction and one
spatial direction parallel to the boundary. I begin by considering the magnetic field of [105]
in the AdS-Schwarzschild background dual to a finite-temperature field theory, and study
the phase structure of chiral symmetry breaking for one fundamental hypermultiplet in this
background by embedding a probe D7 brane in it. I find two competing mechanisms at
work: As first discussed in [87], the black hole attracts the D7 brane which bends towards
it. For very large values of the quark mass in units of the temperature, as determined
by the UV boundary value of the D7 embedding, this leads to a very small value of the
quark condensate. Moreover, for brane probes ending on the black hole, there is a phase
in which mesons are unstable and melt in the N = 4 plasma. As argued in the last
section, the melting transition for the mesons occurs when the D7 brane probe reaches
the black hole horizon. On the other hand, as discussed in [105], the magnetic Kalb-
Ramond field leads to spontaneous chiral symmetry breaking, since the quark condensate
is large even at zero quark mass. This is essentially due to the fact that the magnetic
field has the effect of repelling the D7 probe from the origin. I will argue below that
for sufficiently large magnetic field, the second mechanism is stronger than the first one
and find spontaneous chiral symmetry breaking even in the black hole background. A
critical line in the temperature-field phase diagram illustrates the interplay between the
two effects: The magnetic field acts by repelling the embeddings from the horizon. Above a
critical value for the field strength (at a fixed temperature) this repulsion is so strong that
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no embedding, not even the embedding corresponding to massless quarks, can flow into
the black hole any more - all embeddings are Minkowski embeddings for which the meson
spectrum is discrete. For fixed mass and varying temperature, this is equivalent to stating
that for increasing magnetic field the critical temperature for the melting phase transition
increases. I also investigate the meson spectrum for this scenario and find that a Goldstone
mode occurs above the critical magnetic field value, in agreement with spontaneous chiral
symmetry breaking.

In section 3.3, I consider the case where the Kalb-Ramond field is turned on in spatio-
temporal directions, corresponding to an external electric field in the gauge theory. In
this case, there is a singular region with topology S5 (henceforth often denoted “singular
shell”) where the Dirac-Born-Infeld action for the D7 brane has a zero and becomes complex
inside this region. It is necessary to turn on a gauge field on the brane in order to ensure
a regular action beyond the shell where the brane action vanishes, similar to [284]. The
singular shell of vanishing brane action has an attracting effect on the D7 brane probes, as
opposed to the repulsion observed in the magnetic case. This may be interpreted as the
holographic incarnation of an ionisation effect. I provide evidence that the singular shell
acts similarly to a black hole horizon: Between Minkowski embeddings which do not reach
the singular shell, and embeddings which flow into it, a phase transition characterised by
the jump of the vacuum expectation value 〈Omq

〉 occurs. I will also give evidence that the
branes flowing into the singular shell can not support stable excitations, and interpret this
as the dissociation of mesonic bound states in the electric field. The phase transition is
thus a meson dissociation transition.

Far away from this region, i.e. in the weak field limit at zero temperature, I investigate a
particular branch of the pseudoscalar meson spectrum both analytically and numerically
and find a mass shift for the pseudoscalar mesons δM ∼ B2. This is very similar to the
second-order Stark effect for atoms in electric fields, where the energy levels of s-orbitals
are shifted by an amount proportional to the square of the applied field strength. For
the analytical calculation, I perform a perturbative analysis in the external field to lowest
order.

However, I also consider the case of a general, not necessarily small, electric field strength.
After obtaining a regular action as in [284] by introducing gauge fields on the brane, I find
that both at zero and finite temperature, regular embeddings exist which pass through the
shell of vanishing action. The employed ansatz for the world volume gauge field corresponds
to quark number densities and currents in the dual gauge theory, and I am considering the
canonical ensemble in which the quark number density is fixed. Minkowski embeddings
can only exist if the quark density vanishes [262], and this is the situation I will be mostly
interested in. The physics at finite quark number densities is largely unknown, but I will
comment on it in chapter 6. Besides Minkowski embeddings, I find two different classes
of embeddings at zero temperature: Embeddings that reach all the way to the extremal
horizon of AdS space, and, at quark masses between the Minkowski embeddings and the
ones ending at the extremal AdS horizon, embeddings which end in a conical singularity,
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the latter of which were first noticed in [288]. The meaning and fate of these conical
singularities is discussed in chapter 6.

At finite temperature and for vanishing quark densities we find, in order of decreasing
asymptotic quark mass, Minkowski embeddings, conically singular embeddings and those
that fall into the black hole. The physical meaning of the conically singular embeddings,
in particular their stability and role in this phase transition, remains to be investigated.
Nevertheless they are important since they cover a finite range of quark masses, and also,
as can be seen from figure 3 of [288], the first order phase transition is a transition between
a Minkowski embedding and a conically singular one.

At finite quark number density and temperature, black hole embeddings exist covering
the whole range of asymptotic quark mass. As Minkowski embeddings are inconsistent in
that case, the dissociation phase transition should then occur between different black hole
embeddings, similar to the situation in the canonical ensemble without electric field [262].

This chapter is organised as follows: Section 3.2 is devoted to the magnetic field and
some review of well-known facts from the literature. I begin by considering the general
ansatz for both magnetic and electric fields in section 3.2.1, and comment on some aspects
of the magnetic case at zero temperature in particular. In section 3.2.2 I consider the
magnetic case at finite temperature and show that spontaneous chiral symmetry breaking
occurs even at finite temperature above a critical value of the magnetic field strength. In
section 3.3 I consider the electric case. In particular, I derive the meson mass shift which
corresponds to the Stark effect. Moreover, I discuss the behaviour of the embeddings for
general, not necessarily small, values of the Kalb-Ramond field. I conclude briefly with a
discussion of the instability which potentially occurs for the electric Kalb-Ramond field,
and differences between the canonical and grand canonical ensemble in the electric case.
Some calculational details are relegated to the appendices B.1 and B.2.

The material presented in this chapter was obtained in collaboration with and published
in a paper together with Johanna Erdmenger and Jonathan P. Shock [1]. In particular the
numerical calculations were carried out by Jonathan P. Shock.

3.2 Fundamental Matter in Constant External Mag-

netic Fields

3.2.1 Constant External Magnetic Fields and Zero Temperature

In [105] a pure gauge magnetic Kalb-Ramond field was added to the AdS5 × S5 geometry
and quenched fundamental matter was included using a D7 brane probe. The D7 brane
embeddings were calculated and it was found that chiral symmetry is spontaneously bro-
ken, as indicated by a nonzero quark condensate at vanishing quark mass. The spectrum



Chapter 3. Holographic Quarks in External Electric and Magnetic Fields 89

of mesons was also calculated both for small and large magnetic field strength and the
Goldstone mode was found to satisfy the Gell-Mann-Oakes-Renner relation [289].

In this section I first review the main results of [105]. Moreover, I simultaneously consider
a new ansatz for the Kalb-Ramond field, corresponding to an electric field.

General ansatz

In this section I deal in parallel with the magnetic and electric ansätze for the Kalb-Ramond
field.

The background of interest is the pure AdS geometry in the Poincaré patch, given by

ds2 =
ω2

R2

(
dx2

0 + d~x2
)

+
R2

ω2

(
dρ2 + ρ2dΩ2

3 + dL2 + L2dΦ2
)
. (3.1)

Here the AdS radial coordinate is given by ω2 = ρ2 + L2. As before, for the S3 I use Hopf
coordinates

dΩ2
3 = dψ2 + cos2 ψdβ2 + sin2 ψdγ2 . (3.2)

In addition, the background involves the usual four-form and constant dilaton

C(4) =
ω4

R4
dx0 ∧ dx1 ∧ dx2 ∧ dx3 , eφ = gs , R4 = 4πgsNα

′2 . (3.3)

There are two obvious choices of a pure gauge ansatz for the Kalb-Ramond fields2,

Bmag = Bdx2 ∧ dx3, Bel = Bdx0 ∧ dx1. (3.4)

I will call these Ansätze the magnetic and electric ansatz respectively, since, after embed-
ding a D7 brane in the background and trading the constant B field for the U(1)F gauge
field on the brane via a Ramond-Ramond gauge transformation to obtain Fµν = − Bµν

2πα′ ,
the two choices correspond to constant electric and magnetic field strengths. Provided
that C2 = 0, which ensures the absence of a boundary term d(C2 ∧ B), both these pure-
gauge ansätze are solutions to the IIB supergravity equation of motion (see eg. [85]), since
B only enters the supergravity equations of motion through the three-form field strength
H = dB = 0, which is vanishing. The B field thus does not deform the AdS5 × S5.

The additional fields introduced in this way a priori couple to the U(1)q ⊂ U(Nf ) quark
number symmetry, see table 2.10. But is their effect equivalent to an actual constant
electric or magnetic background field? To answer this question one first needs to identify a

2A third choice, as pointed out to the author by P. Aschieri, would be a lightlike B field. It has
the advantage that for spacelike (i.e. magnetic) or lightlike B, there is a decoupling limit leading to a
noncommutative field theory [111, 290], while in the electric or timelike case the best one can do is to
decouple the closed string modes [291–293]. This then leads to so-called noncommutative open string
theory.
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proper U(1) factor in the gauge group of the N = 2 theory. The obvious choice is the trivial
U(1) ⊂ U(Nc) factor which is not described by supergravity fields in AdS5 × S5 but by
singleton degrees of freedom living directly at the boundary and which does decouple from
the nonabelian sector in the N = 4 theory [294, 295]. However, from table 2.10 one can
see that the chiral multiplets Q and Q̃ have respective U(1)q charge ±1. From eq. (2.140)
one finds that Q and Q̃ have respective U(1) ⊂ U(Nc) charge ±1, too. The so-introduced
background fields thus couple to quark number as real electric or magnetic background
fields would couple to the electromagnetic U(1) charge and one can thus expect the effects
to be equivalent. This will be confirmed by the results described in the following.

In this chapter, I will always choose static gauge ξa = (xµ, ρ, ψ, β, γ), for the D7 brane, and
parametrise its embedding by an ansatz L = L(ρ), Φ = 0, thus preserving the rotational
symmetry of the S3 wrapped by the D7 brane. The rotational symmetry perpendicular to
the D7 brane will be broken for nonzero embeddings L. In the background (3.1) and for
the two B fields (3.4), the DBI action is given by

Lm,e = −2π2µ7

gs

ρ3
√

1 + L′2

√

1 ± R4B2

(ρ2 + L2)2 , (3.5)

where the positive (negative) sign corresponds to the magnetic (electric) ansatz. Note that
the angle ψ from the Hopf fibration (3.2) disappeared after integration over the wrapped
S3, which yields the three-sphere volume 2π2. The Wess-Zumino part of the D7 action
does not contribute, as P [C4] ∧B(2)m,e = 0. The magnetic dual of C4 [105]

C̃4 = R4 2ρ2 + L2

(ρ2 + L2)2
L2 sinψ cosψdψ ∧ dβ ∧ dγ ∧ dφ (3.6)

gives rise to a pull-back

P [C̃4] = R4 2ρ2 + L(ρ)2

(ρ2 + L(ρ)2)2
L(ρ)2 sinψ cosψ(∂µφ)dψ ∧ dβ ∧ dγ ∧ dxµ , (3.7)

which thus vanishes for embeddings with constant 8-9 plane angle φ. It is however exactly
this contribution which gives rise to couplings of φ-fluctuations and brane gauge fields in
the calculation of the meson spectra, as will become clear later on.

The D7 brane embedding is found by solving the Euler-Lagrange equation for L(ρ),

0 = ∂ρ





ρ3L′
√

1 ± B2R4

(ρ2+L2)2√
1 + L′2



± 2B2R4ρ3L
√

1 + L′2

(ρ2 + L2)3
√

1 ± B2R4

(ρ2+L2)2

, (3.8)

which is a scalar from the point of view of the world volume field theory. In both the
magnetic and electric cases, the UV (i.e. large ρ) behaviour of the embeddings is given by

L(ρ) ∼ m+
c

ρ2
, (3.9)
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i.e. the embeddings asymptote to the pure AdS5 × S5 solution L = m for ρ → ∞. The
quantity m is proportional to the quark mass, mq = m/2πα′, while c is related to the
chiral condensate via 〈Omq

〉 = c/(2πα′)3. As discussed in [105], supersymmetry is broken
on the brane, though, by virtue of the probe limit, not in the background: On the brane, the
magnetic B field breaks the Lorentz symmetry from SO(1, 3) to SO(1, 1)×SO(2) and thus
also breaks supersymmetry. A priori there might be a possibility that some supersymmetry
is preserved though.3 We will see in the next section that there is no room for this: The
embedding of a D7 brane at zero temperature in the presence of the magnetic field shows
spontaneous chiral symmetry breaking and thus has to be nonsupersymmetric. At finite
temperature there can exist a flat embedding for mq = 0 if the magnetic field is sufficiently
small (see below), but in this case already the temperature breaks the supersymmetry.
For the electric field, which does not induce spontaneous chiral symmetry breaking, i.e.
the embedding is flat for zero quark mass. In this case a calculation of the κ-symmetry
along the lines of [297] shows the absence of supersymmetry [298]. The nonflatness of the
embeddings we find numerically at finite quark mass, i.e. the nonvanishing condensate,
shows the supersymmetry breaking for mq > 0. Since through the Wess-Zumino coupling

µ7

∫

B ∧ C6 ,

D1 brane charge is sourced by the D7 brane, and the C6 field could break the supersym-
metry of the AdS5 × S5 background. This is however a backreaction effect of the brane
sourcing background fields, and thus is suppressed in the large-Nc, fixed Nf limit. However,
since we are mostly interested in the brane physics, the breaking of supersymmetry on the
brane is of relevance here. The induced C6 shows this in both the electric and magnetic
case, since the D1-D3 system is known to be nonsupersymmetric.

Magnetic Kalb-Ramond field at zero temperature

I now review the results of [105] for the magnetic case at zero temperature. Some examples
for the embedding in the magnetic case with varying IR boundary are shown in figure 3.1.
For completeness I have also shown solutions with negative quark mass as fixed by the UV
asymptotic behaviour. For small quark mass the embeddings intersect the ρ axis, in some
cases several times. I will show that these solutions describe a well-behaved renormalisation
group flow, in contrast to the argument in [105]. Nevertheless these solutions are ruled out
by an energy argument which shows that they are not the lowest-energy configurations.
Although the D7 brane does cross the ρ axis multiple times for small quark masses, it
does not indicate a multiple intersection with the D3 brane stack. The distance of the D7
brane from the origin of the (ρ, L) plane, which is given by

√

ρ2 + L(ρ)2, is monotonically
decreasing as the solution flows towards the IR. This can be seen in the right hand graph
of figure 3.1.

3Usual no-go theorems against partial breaking of global supersymmetry [296] may not apply here,
since Lorentz invariance is broken.
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Figure 3.1: D7 brane embeddings in AdS5 × S5 with external magnetic field.

In the normalisation of [105], for which I perform a rescaling ρ → R
√
Bρ, L → R

√
BL,

the equation of motion is given by

0 = ∂ρ





ρ3L′
√

1 + 1
(ρ2+L2)2√

1 + L′2



+
2ρ3L

√
1 + L′2

(ρ2 + L2)3
√

1 + 1
(ρ2+L2)2

. (3.10)

The UV asymptotics of the solutions is

L̃(ρ̃) = m̃+
c̃

ρ̃2
, m̃ =

2πα′mq

R
√
B

, −c̃ =
〈
Omq

〉 λ

NfNc

(2πα′)3

R3B
3
2

. (3.11)

The extra factor of B in the normalisation is convenient in the zero temperature case. Note
that B is, as the metric G, dimensionless. Using (3.11), one can extract the rescaled mass
and condensate from the numerically determined D7 embeddings. It was found in [105]
that c̃(m̃) shows a discrete self-similar spiral behaviour near the zero mass embedding,
which was further investigated in [283, 299]. This indicates that for a given quark mass,
there may be more than one solution. It is thus important to find the physical embeddings,
which will be done by an energy argument in the following.

It was stated in [105] that the inner arms of the spiral intersect with the D3 branes multiple
times, and thus only the outer portion of the spiral in the lower right quadrant of figure
3.2 is physical. I now show that this conclusion may be found through simple energy
considerations. In order to determine which of the degenerate solutions is the physical one,
I calculate the energy of each solution. The energy of each one has a UV divergence which
must be removed by an appropriate normalisation. Since I am interested in only comparing
the energies and not, for example, in thermodynamics of these branes, it is sufficient for
this argument to impose a cutoff Λ, which is sent to infinity at the end, and subtract a
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Figure 3.2: Reduced condensate versus reduced mass −c̃(m̃) for the magnetic ansatz at
zero temperature.

reference solution 4,

Enorm =

∫ Λ

ρ0

dρρ3
√

1 + L′0(ρ)
2

√

1 ± B2R4

(ρ2 + L0(ρ)2)2 − Eref , (3.12)

where

Eref =

∫ Λ

ρ0

dρρ3
√

1 + L′ref (ρ)
2

√

1 ± B2R4

(ρ2 + Lref (ρ)2)2 . (3.13)

Here L0 is the classical solution to the embedding equation of motion. The lower integration
limit ρ0 is zero for the magnetic case at zero temperature, as in that case the D7 brane
fills the whole range 0 ≤ ρ < ∞. We are using the physical m = 0 solution as a reference
solution. This is just a convenient choice, as a shift of the normalised energy does not
change the relative energies between physical and unphysical embeddings.

The −c̃(m̃) spiral in figure 3.2 cuts the m̃ = 0 axis an infinite number of times, dividing the
spiral in different branches in each quadrant of the (m̃, c̃)-plane. The physical embeddings
are those which have the lowest energy according to (3.12). Figure 3.3 shows the −c̃(m̃)-
spiral (green line) along with the corresponding normalised energy Enorm(m̃) (blue line).
The dashed lines link m̃ = 0 points on the condensate curve which correspond to massless

4As the energy for our static D7 brane configuration is just the negative of the action, I drop here
all volume factors arising from integration over (xµ, ψ, β, γ). Note that here I am not considering a
holographic renormalisation and regularisation which is necessary for the correct calculation of the free
energy and thermodynamic quantities [300]. In the coordinate system used in this work, no counterterms
including m or c are necessary to cancel the large volume divergence ∝ Λ4, which is achieved by our
subtraction method as well.
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embeddings, with the corresponding points on the normalised energy curve. The numbers
next to the dashed lines are the values of the normalised energies for these massless embed-
dings. We find that the lowest energy configuration for zero quark mass is the one where
the lowest branch of the condensate curve in the bottom right quadrant of figure 3.3 inter-
sects the −c̃-axis. The corresponding normalised energy is Enorm = −0.007773. It is also
clear from figure 3.3 that the energy for the embeddings on this branch is indeed smaller
than for all the other branches.5 The lowest lying branch in the bottom right quadrant
of figure 3.3 thus corresponds to the physical embeddings, while the other branches have
to be considered unphysical. As this physical branch admits a nonzero quark condensate
−c̃(0) at zero quark mass, spontaneous breaking of the U(1) chiral symmetry is possible
in the presence of the magnetic Kalb-Ramond field.

-0.007773

-0.000381
-2.´10-6

m
�

H-c
�
,EL

Figure 3.3: Reduced condensate versus reduced mass −c̃(m̃) (green line) for the magnetic
ansatz and normalised energy Enorm(m̃) (blue line). The numbers correspond to energies,
and the dashed lines link corresponding points on the two curves (see text). Note that the
origin of the c̃ axis does not coincide with the origin of the Enorm axis.

5From the figure 3.3 it might appear that the big “loop” the blue curve is making has lower energy at
its bottom than Enorm = −0.007773. As we checked, this is not the case. In any case, this loop would
correspond to negative masses, which would correspond to D7 branes sitting on the other side of the D3
branes and thus could not be observed in the Poincaré patch.
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3.2.2 Constant External Magnetic Fields and Finite Tempera-
ture

The embedding of D7 brane probes into the AdS-Schwarzschild black hole background,
dual to a finite-temperature field theory, was first studied in [87]. It was found that in the
black hole background no spontaneous chiral symmetry breaking by a quark condensate
occurs, i.e. the vacuum expectation value 〈Omq

〉 vanishes for zero quark mass. On the other
hand, there is an interesting first order phase transition [99] when the embedded D7 brane
reaches the horizon. This has been studied in further detail by many authors [257,272–274],
including the effect of a quark chemical potential and of a finite quark number density
[259,276–278]. The embeddings which terminate before reaching the horizon do so because
the S3 which they wrap shrinks to zero size, as discussed in [95]. The phase transition
corresponds to the transition from the mesonic to the molten phase [101]. As discussed
in section 2.3.6 in detail, in the former phase there is a discrete meson spectrum with a
mass gap, whereas in the latter the spectrum becomes continuous. The mesons melt at
this phase transition due to the interaction with the hot N = 4 plasma. Subsequently, I
will refer to D7 embeddings reaching the black hole horizon as black hole embeddings or as
“in a molten phase”, while those which do not are named “mesonic phase” or Minkowski
ones.

I now consider the effects of the Kalb-Ramond field (3.4) in the Poincaré patch of the AdS-
Schwarzschild background that is dual to a finite temperature field theory. The metric in
Minkowski signature is given by (ω2 = ρ2 + L2)

ds2 =
ω2

2R2

(

d~x2 (b4 + ω4)

ω4
− dt2 (ω4 − b4)

2

ω4 (b4 + ω4)

)

+
R2

ω2

(
dL2 + dρ2 + dΦ2L2 + ρ2dΩ2

3

)
. (3.14)

Here a slightly different radial coordinate

|~y| = ω = r

(

1 +

√

1 − r4
H

r4

) 1
2

, b4 = r4
H (3.15)

was used compared to (2.123). The dilaton is constant for the black (i.e. nonextremal) D3
brane solution, whose near-horizon geometry is just (3.14) [91]. The horizon of the black
hole (3.14) is now located at

ω2
H = ρ2

H + L2
H = b2 .

The temperature of the dual field theory is given by the Hawking temperature of the black
hole horizon

T =
b

πR2
. (3.16)

With the same static gauge as before, the DBI Lagrangian for a D7 brane probe in this
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background reads for the magnetic (upper sign) and electric (lower sign) ansatz

L = − 2π2µ7

gs

ρ̃3
(

(L̃2 + ρ̃2)2 ± 1
)

4(L̃2 + ρ̃2)4
×

×
√
((

1 ∓ (L̃2 + ρ̃2)2
)2

∓ B̃2(L̃2 + ρ̃2)2

)

(L̃′2 + 1) . (3.17)

Here I have introduced rescaled dimensionless quantities

(L, ρ,B) = (bL̃, bρ̃,
B̃b2

2R2
) , (3.18)

such that the horizon is at ρ̃2 + L̃2 = 1.

Let us now turn to the magnetic field case. We numerically solve the Euler-Lagrange
equation for L̃(ρ̃) obtained from the Lagrangian (3.17). For this purpose it is convenient

to introduce another rescaling for the B field (the physical magnetic field strength is | ~B| =
B/(2πα′) – it has dimension mass2)

B̂ =
Bλ

2π2R2m2
q

=
| ~B|

√
λ√

2πm2
q

, (3.19)

as well as an appropriate dimensionless quark mass and condensate

mq =
1

2

√
λTm̃ , T̃ =

1

m̃
,

〈
Omq

〉
= −1

8

√
λNcT

3c̃ . (3.20)

Here λ = gsNc is the ’t Hooft coupling. Note that the factor of T 3 comes from the rescaling
(3.18).

The numerical results are plotted in figure 3.4 for increasing values of the magnetic field at
a fixed temperature (or equivalently fixed Schwarzschild radius). We see that the increasing
external magnetic field repels the branes from the horizon further and further, until there
are no black hole solutions any more. This is exactly the point where the molten phase
disappears, at a critical value

B̃crit =
2

3
2√
λ

| ~B|crit

T 2
≈ 16 , (3.21)

where I introduced the physical value of the magnetic field | ~B| = B/(2πα′). Above this
critical value, there is spontaneous chiral symmetry breaking, since the lowest-energy so-
lution at quark mass m̃ = 0 is a mesonic one and has a condensate c̃ > 0. On the other
hand, in the case where the zero quark mass solution reaches the horizon and therefore
corresponds to molten mesons, this solution is given by L(ρ) = 0 and thus no condensate
develops and no spontaneous chiral symmetry breaking occurs.
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Figure 3.4: The D7 brane embeddings for increasing values of B̃ show the repulsive nature
of the magnetic Kalb-Ramond field. The reduced temperature has been fixed to one. For
large enough B̃, the molten phase is never reached. In this regime the chiral symmetry is
spontaneously broken.
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Figure 3.5: Phase diagram in the (m̃, B̃) and (T̃ , B̃) planes for the magnetic field case.
The left graph shows the largest quark mass for a given B̃ for which the embedding still
reaches the black hole. In the right graph, the critical line reaching a constant B̃ at large
temperature corresponds to a quadratic dependence | ~B|crit ∼

√
λT 2 at large temperature.

The phase diagram is depicted in figure 3.5. On the left hand side I plot the largest quark
mass m̃ for given B̃ for which the embedding still reaches the horizon. The temperature is
fixed. Above the critical value B̃crit ≈ 16, there are no more black hole embeddings reaching
the black hole horizon. On the right hand side of figure 3.5, I consider the same phase
diagram for fixed mq while varying T . We see that for large T̃ , the critical value B̃crit tends
to a constant value around 16. Because B̃ is explicitly a function of T , the appropriate
dimensionless quantities to plot on the (T,B) phase diagram are (T̃ , B̂). Because B̃crit

becomes constant for large T̃ , we see that B̂crit behaves as T̃ 2 for large T̃ , corresponding
to large temperature at fixed quark mass.

The condensate as a function of the mass for different B̃ is shown in figure 3.6: The blue
part of the curve corresponds to the mesonic phase, while the green part at small quark
masses corresponds to the molten phase. Increasing the magnetic field strength lowers the
critical quark mass at which the first order phase transition occurs, until zero quark mass
is reached at the critical value B̃crit. At this point there is no molten phase any more, but
a nonzero condensate at zero quark mass indicates spontaneous chiral symmetry breaking
in the dual gauge theory. It should be noted that for a given quark mass there may be
several possible embeddings. Just as in the case of pure finite temperature or pure magnetic
field, the physical solutions can be found by energy considerations or, as done explicitly
in [105], by careful holographic renormalisation and calculation of the free energy F =
−TSren,onshell. Although not clearly recognisable in figure 3.6, the joining point of the two
different embedding branches there occurs a multivaluedness of the condensate versus the
quark mass for all values of the magnetic field, indicating that below the critical magnetic
field strength the meson melting transition is present as in the pure finite temperature
case.

Yet another graph showing clearly the onset of spontaneous chiral symmetry breaking at
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the critical value of the magnetic Kalb-Ramond field is figure 3.7, in which the condensate
at zero quark mass is plotted versus the external magnetic field. We observe that the phase
transition is first order, as there is a jump in the order parameter c̃.
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Figure 3.7: Condensate for the lowest-energy embedding at zero quark mass c̃(0) as a func-
tion of the magnetic field B̃. There is a first-order phase transition at which spontaneous
chiral symmetry breaking occurs.

Pseudoscalar Meson Spectrum

We also calculated the masses of some of the mesons for the Minkowski embeddings in
the magnetic finite temperature background by solving the eigenvalue problem for the Φ-
fluctuations. Since the angle Φ is the angle of the polar coordinate system introduced in the
X8-X9 directions, it is odd under a parity transformation in that plane. The fluctuation of
the field Φ thus corresponds to pseudoscalar mesons, and I restrict myself to states with zero
S5 angular momentum for simplicity. These mesons are particularly interesting as the field
Φ is the Goldstone mode of the chiral symmetry breaking in our model, i.e. it is the shift
symmetry in Φ (the rotation symmetry in the 8-9 plane) which is spontaneously broken by
a vacuum expectation value 〈Omq

〉. This calculation was performed at zero temperature
in [105], where it was found that it is possible to decouple the gauge field fluctuations on
the brane and from the fluctuations of the embedding coordinate φ (i.e. to consistently set
the gauge field fluctuations to zero), if the latter depends only on the coordinates (x2, x3).
The problematic coupling is the Wess-Zumino coupling to the magnetic dual C̃4 (which is
unchanged in the finite temperature case and still given by eq. (3.7)) of C4 (after integrating
over the S3 coordinates {ψ, β, γ})

µ7

gs

∫

P [C̃4] ∧B ∧ (2πα′F ) =
4π3α′BR4

(2π)7α′4gs

∫
2ρ2 + L2

(ρ2 + L2)2
L2(∂µφ)dxµ ∧ dx2 ∧ dx3 ∧ F .
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Figure 3.8: Mass of the Goldstone boson for B̃ = 16. The solid line is the fitted curve
M̃ = 5

√
m̃ , showing the typical Gell-Mann-Oakes-Renner behaviour.

This term thus couples A0,1 with φ (and also L), unless ∂0φ = ∂1φ = 0. The modes
considered here can thus be thought of as a meson moving in the Euclidean (x2, x3)-
plane [105]. This will suffice for showing the main features of the meson dynamics of our
interest in this chapter, namely spontaneous chiral symmetry breaking and the existence
of the corresponding Nambu-Goldstone mode. We thus followed the same strategy as [105]
and used the ansatz

φ(ρ, x2, x3) = h(ρ)e−ik2x2−ik3x3 . (3.22)

The effective Lagrangian for the fluctuations obtained after integration over the S3 reads

L = −π2µ7

gs

ρ3

√

g4
ρρg

3
x1x1gtt

(
B2

g2
x1x1

+ 1

)

(L′2 + 1)×

×gφφ

(

gx1x1 ((∂2φ(ρ, x2, x3))2 + (∂3φ(ρ, x2, x3))2)
(
B2 + g2

x1x1

) +
(∂ρφ(ρ, x2, x3))2

gρρ (L′2 + 1)

)

, (3.23)

where the metric is given by (3.14).

The meson masses are obtained from

M2 = −k2
2 − k2

3 . (3.24)

As first noticed in [105], the magnetic field actually induces a Zeeman-like splitting of the
pseudoscalar spectrum. The half of the pseudoscalar meson spectrum for fixed temperature
and different B field values which gets heavier is plotted in figure 3.9, where the dashed
lines are the pure AdS result [96],

M̃ = 2m̃
√

(n+ 1)(n+ 2) , n = 0, 1, 2, . . .
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i.e. the meson masses for this excitation at zero temperature and no additional fields calcu-
lated in the Poincaré patch of AdS5 × S5. n is a radial quantum number. There is another
branch of the spectrum depicted in figure 16 of [300] which can only be seen if considering
the full system of coupled A − φ fluctuations. With the ansatz k0 = k1 = 0 considered
here these modes decouple, but the features of the upper branch of the pseudoscalar states
suffices for my discussion of the induced spontaneous chiral symmetry breaking and its ef-
fects. The mesons in this upper branch are heavier than their pure AdS counterparts. The
situation is intuitively comparable to the hydrogen atom: Put into a magnetic field along
e.g. the z-axis, the degeneracy between modes of different spin orientation ms = −s, . . . , s
split up in a way such that positive m states get shifted to higher energies due to the
coupling6 µB

~BgS
~S = µBBgSSz, while modes with negative Sz-eigenvalue mS get shifted

to lower energies. This analogy might not carry too far, since a string spinning in a mag-
netic field is not exactly a hydrogen atom. For example the quark-antiquark pair potential
in the simplest case of a single flavour is not purely coulombic, but is linear at small
separations and coulombic at large distances (see fig. 1 of [301] and fig. 3 of [96] for the
meson spectrum). We can however at least conclude that the magnetic B field induces a
Zeeman-like splitting of the pseudoscalar meson spectrum while it catalyses spontaneous
chiral symmetry breaking.7

Furthermore we found that above the critical magnetic field strength B̃crit ≈ 16, the lowest-
lying pseudoscalar state becomes massless for zero quark mass and thus is the Goldstone
mode of chiral symmetry breaking. Figure 3.8 zooms into the zero mass region for
this state, calculated for B̃ = 16. The solid curve, M̃ = 5

√
m̃, is obtained by fitting to

the data points, and shows that our identification of this state with the Goldstone mode
of chiral symmetry breaking is correct, as it satisfies the Gell-Mann-Oakes-Renner
relation [289]. The deviation of the data point for the lowest reduced quark mass m̃ is
due to numerical artefacts. Note however that a full independent test of the Gell-Mann-
Oakes-Renner relation

M2
π = −2〈Omq

〉
f 2

π

mq (3.25)

would need an independent calculation of the pion decay constant. This was recently
achieved in [299] by calculating the effective chiral action from the probe brane dynamics.

6µB = e~

2me
is the Bohr magneton, gL = 1 the gyromagnetic ratio for angular momentum and gS ≈

2.0023192 the anomalous gyromagnetic ratio for spin.
7The situation was more closely analysed in [301] for mesons with large total angular momentum J.

In the region 1 ≪ J ≪
√
λ it was found for strings with equally opposite charged endpoints that the

lowest-order mass splitting is ∝ B2. However, since we are considering the DBI theory here, the angular
momentum is small in this case and thus the results of [301] do not apply. The Zeeman effect found in [105]
is linear in the magnetic field.
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Figure 3.9: Pseudoscalar meson masses for the AdS-Schwarzschild black hole background
for different magnetic field strengths. The dashed lines are the pure AdS result M̃ =
2m̃
√

(n+ 1)(n+ 2), cf. [96]. Above the critical field strength B̃crit ≈ 16 the lowest meson
state becomes massless at zero quark mass and thus is identified with the Goldstone boson
of chiral symmetry breaking.
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3.3 Fundamental Matter in Constant External Elec-

tric Fields

3.3.1 Constant External Electric Fields and Zero Temperature

I now turn to the case where the Kalb-Ramond B field is switched on in the spatio-temporal
directions, corresponding to an external electric field. There is a subtle but important
difference between the Lagrangians for the magnetic and electric ansatz (3.5): In the case
of the electric field, there is a zero of the action at

ω2 = ρ2 + L2 = BR2 . (3.26)

I will call the five-sphere defined by this equation the singular shell in the following.
Even worse, inside the singular shell the action (3.5) becomes imaginary in the electric
case. Without further modifications this setup thus seems to be inconsistent, since the
embedding field L has to be real, but the equation of motion derived from (3.5) for L
becomes complex inside the singular shell. Qualitatively we will see that in contrast to
the magnetic case where the external field has a repulsive effect, now the singular shell is
attracting the D7 solutions, in a sense similar to the black hole metric.

For values of the radius ω inside the singular shell, the DBI Lagrangian (3.5) becomes imag-
inary, which indicates a tachyonic instability [302–305]. We stabilise the D7 configuration
by switching on a compensating gauge field on the D7 brane near and inside the singular
shell, along the lines of [284, 285]: We switch on components of the gauge field’s Faraday
tensor which correspond holographically to a finite quark number density nq, i.e. switching
on Ftρ, and a quark number current expectation value 〈Jx〉, i.e. through switching on Fxρ.
Demanding the DBI action to be real throughout ten-dimensional space-time then yields
a regularity constraint relating number density and current.8 Intuitively this should cure
the sickness in our setup, since we were trying to put the system into a constant electric
field without allowing for a current flow to develop.

Using the ansatz of [284],

Ax = −f(ρ)

2πα′
, At = − g(ρ)

2πα′
, (3.27)

the action for the D7 brane in the external electric B field takes the form

SD7 = −N
∞∫

0

dρρ3

√

f ′(ρ)2 − g′(ρ)2 +

(

1 − B2R4

(ρ2 + L2(ρ))2

)

(1 + L′2) . (3.28)

8In fact, for the reality of the DBI action it is enough to introduce the magnetic component Fρx. We
however also consider the electric component Fρt, which corresponds to introducing a chemical potential
and a finite quark number density on the brane. This seems to be complicating the situation at first, but
it might be interesting in future studies at finite chemical potential.
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The factor N is defined by N = 2π2 µ7

gs
, where the factor of 2π2 is again the volume of a unit

radius S3. For the Ramond-Ramond four-form potential (3.3), the Chern-Simons part of the
D7 brane action only contributes through the gauge field strength components Fâb̂ , {â, b̂} ∈
{ρ, ψ, β, γ} . The coupling to the magnetic dual four-form C̃4 vanishes because P [C̃4] = 0
for our choice of the embedding, as seen before in the magnetic case. Furthermore, I am
suppressing here the customary factor of 2πα′ in front of the Faraday tensor which can
easily be restored. As the action depends on the ρ-derivatives of Ax and At only through
the field strength [284], the Euler-Lagrange equations for At and Ax demand the existence
of two conserved quantities,

δAt : D =
Nρ3g′(ρ)

√

f ′(ρ)2 − g′(ρ)2 +
(

1 − B2R4

(ρ2+L2(ρ))2

)

(1 + L′2)

, (3.29)

δAx : B = − Nρ3f ′(ρ)
√

f ′(ρ)2 − g′(ρ)2 +
(

1 − B2R4

(ρ2+L2(ρ))2

)

(1 + L′2)

. (3.30)

The field theory interpretation of these quantities is given in [284]: D corresponds to a
finite quark number density 〈Jt〉 = nq, and B to a current in x-direction 〈Jx〉, both of
which are defined through the asymptotic behaviour for large ρ [284]

At ≃ µ− D

2N (2πα′)2ρ2
= µ− (2πα′)2λ

NfNc

nq

ρ2
, (3.31)

Ax ≃ b+
B

2N (2πα′)2ρ2
= b+

(2πα′)2λ

NfNc

〈Jx〉
ρ2

. (3.32)

We thus find that both integration constants are directly identified with the operator
vacuum expectation values,

D = 〈Jt〉 = nq , B = 〈Jx〉 . (3.33)

Inverting (3.29) and (3.30) yields

f ′(ρ) = −B
√

1 + L′2(ρ)
√

1 − B2R4

(ρ2+L2(ρ))2

√

N 2ρ6 +D2 − B2
, (3.34)

g′(ρ) = +D

√

1 + L′2(ρ)
√

1 − B2R4

(ρ2+L2(ρ))2

√

N 2ρ6 +D2 − B2
. (3.35)

Using these solutions, as in [284] we now perform a Legendre transform eliminating f and
g completely from the action and replacing them by the conserved quantities B and D,

S̄D7 = SD7 −
∫

dρ

(

g′(ρ)
δSD7

δg′(ρ)
+ f ′(ρ)

δSD7

δf ′(ρ)

)

= −
∫

dρ

√

(N 2ρ6 +D2 − B2)(1 + L′2)

(

1 − B2R4

(ρ2 + L2(ρ))2

)

. (3.36)
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It is thus possible to obtain an action which is real everywhere by demanding that at the
point ρ2

IR + L(ρIR)2 = BR2, where the last bracket in the square root of (3.36) changes
sign, the first bracket therein should also change sign. This implies a relation between the
two conserved quantities and the position ρIR where the brane hits the singular shell,

B2 = N 2ρ6
IR +D2 . (3.37)

Reinserting this relation into (3.36), one finds

S̄ ′D7 = −N
∫

dρ

√

(ρ6 − ρ6
IR)(1 + L′2)

(

1 − B2R4

(ρ2 + L2(ρ))2

)

. (3.38)

In the finite temperature AdS-Schwarzschild background (3.14) the corresponding expres-
sions read (LIR = L(ρIR))

ω2
IR = ρ2

IR + L2
IR =

BR2

2
+

1

2

√
4b4 +B2R4 , (3.39)

B2 =
(ω4

IR − b4)2

(ω4
IR + b4)2

D2 +
N 2B2R4(ω4

IR + b4)ρ6
IR

ω8
IR

, (3.40)

S̄ ′D7 = −
∫

dρ

√

a

(

N 2

(

ρ6 − bIRcIR

bc
ρ6

IR

)

+D2
b− bIR

bc

)

,

with

a = (1 + L′2)

(

1 +
b4

ω4

)2
((

1 − b4

ω4

)2

− B2R4

ω4

)

,

b =

(

1 − b4

ω4

)2(

1 +
b4

ω4

)

, c =

(

1 +
b4

ω4

)3

. (3.41)

At finite temperature the singular shell always resides outside the horizon at ω2
hor = b2.

There is an important difference between the cases of finite and zero temperature: While
(3.41) does, after Legendre transformation, explicitly depend on D, the zero temperature
action (3.38) does not. Both are, however, real, over the whole range ρ ∈ [0,∞) per
constructionem. The embeddings in the zero temperature case thus will not depend on
the quark number density, but the finite temperature embeddings will: The choice of D at
finite temperature influences the asymptotic values of the quark masses for the D7 branes
falling into the horizon, i.e. sets an energy scale.

Embeddings

Let us begin with a study of the D7 brane embeddings at zero temperature and with D = 0,
which are depicted in figure 3.10. For Minkowski embeddings (depicted in blue), which do
not reach the singular shell but flow all the way to ρIR = 0, the gauge field can be turned
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off consistently (Ax = At = 0) and one can work with the original DBI action. There are
also embeddings which do intersect the singular shell (depicted in green): Some of these
flow towards the origin L = ρ = 0, i.e. the location of the AdS horizon, while others end
in a conical singularity at ρ = 0 and finite L(0). The presumable nature of this conical
singularity is discussed in section 6.1. For the singular shell embeddings, the infrared value
ρIR is given by ρ2

IR + L2
IR = BR2, where LIR is the value of L at which they intersect the

singular shell. Similar to the black hole case, there is one critical embedding which is just
touching the singular shell.

The action (3.38) is real everywhere, and reduces to (3.5) with the lower sign for ρIR = 0, i.e.
for the Minkowski embeddings and the critical embedding. The Euler-Lagrange equation
for L(ρ) as derived from (3.38) reads

∂ρ





√

ρ6 − ρ6
IRL

′
√

1 − B2R4

(ρ2+L2)2√
1 + L′2



− 2B2R4L
√

ρ6 − ρ6
IR

√
1 + L′2

(ρ2 + L2)3
√

1 − B2R4

(ρ2+L2)2

= 0 . (3.42)

In practice we obtain the Minkowski embeddings numerically by shooting out from the
L-axis to infinity, while the singular shell embeddings are obtained by shooting inwards
and outwards starting from the shell. The boundary condition can be obtained by an
expansion of the embedding equation (3.42) near the singular shell as follows:9 Introducing
rescaled dimensionless coordinates ρ =

√
BRρ̃, L =

√
BRL̃, one first needs to expand the

embedding near ρ̃IR,
L̃ =

√

1 − ρ̃IR + L̃′IR(ρ̃− ρ̃IR) . (3.43)

The value of L̃ is restricted by the circle equation to L̃IR =
√

1 − ρ̃IR. The embedding
equation (3.42) then reads (using ρ̃2 − ρ̃2

IR = −2ρ̃2
IR + 2ρ̃ρ̃IR + O((ρ̃− ρ̃IR)2))





√

ρ̃6 − ρ̃6
IRL̃

′
IR

√

1 − (1 − 2ρ̃2
IR + 2ρ̃ρ̃IR + 2L̃′IR

√

1 − ρ̃2
IR(ρ̃− ρ̃IR))−2

√

1 + L̃′IR
2





′

=

2
(
√

1 − ρ̃2
IR) + L̃′IR(ρ̃− ρ̃IR)

√

ρ̃6 − ρ̃6
IR

√

1 + L̃′IR
2

(1 − 2ρ̃2
IR + 2ρ̃ρ̃IR + 2L̃′IR

√

1 − ρ̃2
IR(ρ̃− ρ̃IR))3

×
(

1 − (1 − 2ρ̃2
IR + 2ρ̃ρ̃IR + 2L̃′IR

√

1 − ρ̃2
IR(ρ̃− ρ̃IR))−2

)− 1
2

(3.44)

Taylor expanding near ρ̃IR ∈ [0, 1] and picking the constant piece near ρ̃IR ∈ [0, 1] yields

0 =

√

6ρ̃5
IR

(

2L̃′IRρ̃IR −
√

1 − ρ̃2
IR(1 − L̃′IR

2)
)

√

1 + L̃′IR
2

√

ρ̃IR + L̃′IR

√

1 − ρ̃2
IR

,

9In fact we checked numerically that different crossing angles affect the UV and IR behaviour only
minimally.
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which has two solutions

L̃′IR,1 =

√
1 − ρ̃IR√
1 + ρ̃IR

, L̃′IR,2 = −
√

1 + ρ̃IR
√

1 − ρ̃2
IR

. (3.45)

The second solution can be discarded as unphysically, as the zero mass solution to (3.42) is
L = 0, but L′IR,2 diverges at ρ̃IR = 1. We thus conclude that L′IR,1 is the correct boundary
condition.

-1 1 2 3 4 5 6
Ρ
�

-1.0

-0.5

0.5

1.0

1.5

2.0

L
�

Figure 3.10: D7 brane embeddings for the electric field at zero temperature. The blue
curves are Minkowski embeddings, while the green ones reach the singular shell. The
singular shell attracts the D7 brane probes similar to the attractive force exerted on the
D7 brane by a black hole horizon, and bends them towards the origin.

We extract the UV asymptotic values of m̃ for each flow according to (3.11). In figure 3.11
I plot the condensate c̃ as a function of the reduced quark mass m̃. The blue curve again
corresponds to the Minkowski embeddings, while the green curve is for the embeddings
flowing into the shell of vanishing action. There are three different kinds of the latter ones:
There is one unique critical embedding which just touches the singular shell, then (for
decreasing quark mass) there follow the already-mentioned conically singular embeddings
and furthermore, down to zero quark mass, embeddings reaching to the AdS horizon at
ρ2 +L2 = 0. There is a first order phase transition at the point where both curves join.
This region is shown in detail in figure 3.12, where we find a three-fold degeneracy of the
function c̃(m̃) for a range of masses between m̃ = 1.316 and m̃ = 1.319, in exact analogy
to the finite temperature case [273], where m̃ is defined as in (3.11). The exact point of
the phase transition can be found by the equal area method:10 As c̃(m̃) in the holographic

10Strictly speaking the energy and momentum of the D7 branes are not conserved in this situation due
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Figure 3.11: Reduced condensate versus reduced mass c̃(m̃) for the embeddings in the
electric zero temperature case. The blue line corresponds to the Minkowski solutions, and
the green line to those reaching the singular shell.

context is proportional to the first derivative of the free energy, the area below this curve
is proportional to the free energy itself. In a region with several possible embeddings, the
phase transition then occurs where the difference of the free energies of the two phases
vanishes, i.e. where the areas below the c̃(m̃) curves are equal below both phases. We

find that in the region below a reduced quark mass of (| ~E| = B/(2πα′) is the physical,
dimensionful electric field strength)

m̃crit =
2

1
4π

1
2

λ
1
4

(

mq

| ~E| 12

)

crit

= 1.31775 , (3.46)

the solutions flowing into the shell of vanishing action become energetically favoured. The
electric field however does not induce spontaneous chiral symmetry breaking, since c̃(0) = 0.

to the presence of the constant electric field [306]. The work done by the electric field on the flavour charge
carriers pumps energy into the system at a constant rate, which is then dissipated into the N = 4 plasma.
The dissipation mechanism works, once the mesons are dissociated into quarks and antiquarks, via the
formation of a diffusion wake [307, 308]. The drag force at finite quark baryon number densities in the
regime in which the probe limit holds is independent of the number density [284], and hence the energy
dissipation must be, although the notions of particles might not apply at strong coupling and conformality,
due to interactions of the quarks with the N = 4 gluons. The D7 brane alone is thus out of equilibrium and
the usual laws of equilibrium thermodynamics and also the equal area law may not apply in this situation.
Nevertheless the application of the equal area law localises the transition in exactly the small region with
multivalued condensate, where it is expected from previous experience (see also references [254, 300] for
the application of the equal area law to such situations). This treatment can thus not be totally wrong,
but it should be justified by a correct treatment of the thermodynamics in future work. The author thanks
Andy O’Bannon for guidance on the energy loss mechanism.
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Figure 3.12: Reduced condensate versus reduced mass c̃(m̃) for embeddings in the region
1.317 ≤ m̃ ≤ 1.322. The “S”-shaped bend indicates a first order phase transition at
m̃ ≈ 1.31775, found by the “equal area law” (see text).

This is to be contrasted with the magnetic field case, where spontaneous chiral symme-
try breaking is observed. Nevertheless the condensate as a function of the quark mass
shows an interesting structure near the (unphysical) critical embedding: There is a double-
logarithmic spiral behaviour in c(m) at that point. A similar structure also appears in the
AdS-Schwarzschild case [275], as well as in the case of R-charged black holes [309]. The
scaling exponents characterising the logarithmic spiral turn out in both cases to be univer-
sal in the sense that they only depend on the dimension of the internal Sn wrapped in a
more general Dp-Dq intersection, but neither on the magnitude of temperature, chemical
potential or electric field. However, it was found in [310] that the scaling exponents are
the same for the electric field and R-charged black hole case (and also universal in the
above sense), but are different from the finite temperature AdS-Schwarzschild case. It was
thus conjectured in [310] that the two phase transitions are in different universality classes.
Note that it is not surprising that the scaling behaviour of the electric field and R-charged
(i.e. rotating) black hole case are the same, since both backgrounds are connected by T
duality. It is more surprising that the thermal phase transition is, albeit with similarities,
different in some respects from the dissociation transition.11

11The recent work [110] offers a hint towards explaining this difference: The boundary conditions for
fluctuations at the singular shell were found there to be different from simple incoming wave boundary
conditions, although they reduce to the incoming wave conditions in the limit of vanishing electric field.
However the connection to the spiral behaviour for the critical embedding, which is after all thermodynam-
ically unstable, is still to be understood. Furthermore, the spiral structure for the case with magnetic field
has been analysed in [299]. The critical exponents are different both from the electric case as well as the
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Figure 3.13: Induced quark number current over reduced quark mass for zero temperature
and quark density.

In figure 3.10 we assumed a vanishing quark number density D. The induced quark num-
ber current 〈Jx〉 = B, which is shown in figure 3.13, shows an interesting behaviour too:
For a fixed value of the electric field it decreases with growing quark mass until the phase
transition point is reached, where the Minkowski embeddings, which have zero induced
current, take over. Note that this plot also includes the singular shell embeddings, whose
physical fate still needs to be decided, cf. section 6.1. This is consistent with an inter-
pretation of the phase transition as dissociation phase transition of mesons: If an
external electric field is applied to a bound state of charge carries (e.g. a hydrogen atom),
the additional linear part of the electric potential destabilises the system, but a threshold
for the induced current at zero temperature and quark density is expected, since it simply
takes a certain electric field to bend the potential sufficiently in order to destabilise the
ground state. Once the potential is sufficiently bent such that not even a ground state can
exist, the charge carries are unbounded and free to move with the electric field, and thus a
current (of quarks in this case) starts to flow. The transition is thus between the insulating
mesonic phase to the conducting phase described by the singular shell embeddings, and
can thus be characterised as an insulator-metal transition [288].

Pseudoscalar Meson Spectrum

Let us now turn to the calculation of the meson spectrum in the presence of the electric
Kalb-Ramond field at zero temperature. Up to small modifications, the calculation is very

finite temperature case. This is to be expected since the chiral symmetry breaking mechanism is present
already at zero temperature and electric field, and also in no obvious way connected to those situations
by dualities like T-duality.
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similar to the one performed for the magnetic case in [105]. For the fluctuations I use the
ansatz

L(ρ) = L0(ρ) , Φ = φ = h(ρ)eik0t−ik1x1Yl(S
3) , (3.47)

for which I show the decoupling from the L- and gauge field fluctuations on Minkowski
embeddings in appendix B.2. Here L0 is the embedding obtained from the equation of
motion (3.42) by numerical integration. Note that in (3.47) we now consider a meson in the
(t, x1) plane, as opposed to the magnetic case (3.22) where the meson was in the (x2, x3)
plane, which decouples the φ fluctuations from the gauge field fluctuations consistently,
much in the same way as explained before eq. (3.22). Linearising the D7 brane action in
an analogous way to the calculation performed in [105], we obtain the equation of motion
for the excitations φ,

1

g
∂ρ

(
gL2

0∂ρh(ρ)

1 + L′0
2

)

− L2
0l(l + 2)

ρ2
h(ρ) +

R4L2
0M

2
01

(ρ2 + L2
0)

2 −R4B2
h(ρ) = 0 . (3.48)

Here M2
01 = k2

0 − k2
1 is the meson mass and

g = ρ3

√

1 + L′0
2

√

1 − B2R4

(ρ2 + L2
0)

2 .

We consider only s-wave fluctuations, corresponding to pseudoscalar mesons (l = 0), and
calculate the spectrum for Minkowski embeddings. The results for BR2 = 1 are displayed
in Figure 3.14. The dashed lines in figure 3.14 again show the analytic AdS solutions,

M̃ = 2m̃
√

(n+ 1)(n+ 2) .

The behaviour shown in figure 3.14 is consistent with intuitive expectations: For large
reduced quark mass m̃ the D branes do not feel the forces exerted by the singular shell (see
figure 3.10) and thus are approximately flat, as dictated by supersymmetry of the pure
AdS setting [95].

Note that in contrast to the effect of a magnetic Kalb-Ramond field, the mesons in the
presence of the electric field are lighter than without applied field. The critical value of
the electric field being proportional to the bare quark mass (see eq. (3.46)) is consistent
with the fact that the binding energy of these holographic mesons itself is proportional to
the bare quark mass [96]. Since the electric field needs to be sufficiently large to overcome
the binding energy, the critical electric field must then be proportional to the bare quark
mass mq, too.

In the light of the above interpretation of this phase transition as a dissociation transition
one expects the meson excitations to destabilise for embeddings ending inside the shell
via a mechanism similar to ionisation, in analogy to the finite temperature meson melting
transition. It would be highly interesting to investigate whether the singular shell embed-
dings support quasiparticle excitations similar to the black hole embeddings in the pure
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Figure 3.14: First five pseudoscalar meson states in the electric field for the Minkowski
embeddings. The reduced meson and quark masses are defined as M̃ = R√
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finite temperature case along the lines of [311, 312]. In the recent work [110] this analysis
has been partially carried out for the D7 brane gauge field fluctuations transverse to the
electric field, which comprise a subset of fluctuations decoupling from the others. Their
spectral function at small quark number density was shown to have well-defined peaks
admitting a quasi-particle interpretation, while near the phase transition, which was found
to be a crossover rather than a first order transition for finite quark density, the spectrum
rapidly changes to having wide oscillations which do not admit such an interpretation any
longer (see figure 11 of [110]). However, this analysis is not complete yet, and comes with
several caveats discussed in section 6.1.

Stark effect

For weak external electric fields at zero temperature, I now analytically calculate the
meson mass shift of the n = l = 0 state, which in the corresponding region of large mass
is the lightest meson in figure 3.14, and thus the ground state.12 For this purpose, I use
a technique similar to first order perturbation theory familiar from quantum mechanics,
which in this context was suggested to us by Derek Teaney and which was subsequently

12Strictly speaking it is unclear whether the meson masses of the higher levels cross the ground state for
m̃→ m̃crit, and also whether the meson masses stay positive in that limit at all. For large m̃ the ordering
of the levels is however fixed and well-defined.
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used in [313,314].

I start by looking at the perturbation exerted by the electric field on a Minkowski embed-
ding, i.e. an embedding that has high enough quark mass such that it does not reach the
singular shell. Its fluctuation spectrum is then discrete, and the meson masses are well-
defined. To expand the equation for the Φ fluctuations (3.48) to lowest nontrivial order in
the electric field, which in fact is O(B2), I use the following perturbative solution for the
brane embedding to O(B2),

L = m− B2R4

4m(ρ2 +m2)
. (3.49)

This result is easily obtained by expanding the embedding equation (3.42) up to second
order in B. The O(B) term would not satisfy the Minkowski embedding boundary condi-
tion L′(0) = 0 and thus has to vanish. By comparing (3.49) with (3.9) we find that the
condensate at small field strength or equivalently large quark mass is

c(m) = −B
2R4

4m
. (3.50)

Figure 3.15 shows the quark condensate as a function of B2R4

m
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Figure 3.15: The condensate as a function of B2R4/m, both numerically (dark curve) and
in the weak field approximation (green curve).

to numerical data, while the light green curve is the weak field result (3.50). Both curves
coincide to high precision, and both have a slope of minus four, thus validating (3.50).
The slight mismatch near the origin, i.e. in the small B or large m region where the
approximation should hold very well, is due to numerical instabilities.

Using (3.49) as well as the identities (B.1)-(B.3) in appendix B.1, the equation for the
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Φ-fluctuations (3.48) up to second order in B reads

ρ−3∂ρ

(
ρ3h′(ρ)

)
+

(M2
0 + δ(M2))R4h(ρ)

(ρ2 +m2)2
=

B2R4

2m2

[

−M
2
0R

4(3m2 − ρ2)h(ρ)

(ρ2 +m2)4
− 4ρm2h′(ρ)

(ρ2 +m2)3
+ρ−3∂ρ

(
ρ3h′(ρ)

ρ2 +m2

)]

. (3.51)

Here I split the exact mass of the ground state M2 = M2
0 + δ(M2) into the unperturbed

AdS piece M2
0 = 8m2/R4 and a lowest order correction. It is convenient to introduce

dimensionless quantities13 ρ̃ = ρ/m, M̃2 = R4M2/m2 and B̃2 = B2R4/(2m4). In these
units and after multiplying by ρ̃3m2, eq. (3.51) becomes

∂ρ̃

(
ρ̃3h′(ρ̃)

)
+W (ρ̃)(M̃2

0 + δ(M̃2))h(ρ̃) =

B̃2

[

−M̃
2
0W (ρ̃)(3 − ρ̃2)h(ρ̃)

(ρ̃2 + 1)2
− 4ρ̃W (ρ̃)h′(ρ̃)

ρ̃2 + 1
+ ∂ρ̃

(
W (ρ̃)h′(ρ̃)(ρ̃2 + 1)

)

]

, (3.52)

where I defined the weight function W (ρ̃) = ρ̃3

(1+ρ̃2)2
. One finds that the lowest order shift in

masses will be proportional to B̃2. I now use a strategy similar to first order perturbation
theory in quantum mechanics: The fluctuation equation for the pure AdS5 × S5 case

∂ρ̃

(
ρ̃3h′(ρ̃)

)
+W (ρ̃)M̃2

nh(ρ̃) = 0 ,

is a Sturm-Liouville problem. This implies [315] that its normalisable eigenfunctions

hn(ρ̃) = cn(1 + ρ̃2)−(n+1)
2F1(−(n+ 1),−n, 2,−ρ̃2) , M̃2

n = 4(n+ 1)(n+ 2) , (3.53)

which have been found in [96], can be used to define an orthonormal basis of functions
fn(ρ̃) on the interval ρ̃ ∈ [0,∞) w.r.t to the inner product

(f, g) =

∞∫

0

dρ̃W (ρ̃)f(ρ̃)g(ρ̃) . (3.54)

Here 2F1(a, b, c, z) is the Gauss hypergeometric function. Let {fn, n = 0, 1, ...} be such a
set satisfying the orthonormality relation

(fn, fm) = δnm , (3.55)

and let us normalise the ground state wave function h0(ρ̃) by choosing the coefficient
c0 =

√
12 such that f0 = h0. In what follows I will only need the explicit form of this

ground state wave function14

f0(ρ̃) =

√
12

1 + ρ̃2
, (3.56)

13Note m = mq/(2πα
′) has dimension length.

14Note that 2F1(−1, 0, 2,−ρ̃2) = 1.
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and the fact that the above orthonormal basis exists [315]. The main point is that the
normalised ground state wave function f0 only gets perturbed by a small amount, which
is encoded in the ansatz h(ρ̃) = a0f0 +

∑

n>0

anfnρ, where a0 = 1 + O(B̃4) and an = O(B̃2)

for all n > 0. Plugging this ansatz into (3.52), keeping only terms O(B̃2) and using that
the fn satisfy the equation15

∂ρ̃

(
ρ̃3fn

)
= −M̃ ′2

n fnW ,

we find

∑

n>0

anfn(M̃ ′2
n − M̃2

0 )W + δ(M̃2)Wf0 =

B̃2

[

−M̃
2
0Wf0(3 − ρ̃2)

(1 + ρ̃2)2
− 4Wρ̃f ′0

1 + ρ̃2
+ ∂ρ̃

(
W (ρ̃)f ′0(ρ̃)(ρ̃

2 + 1)
)

]

. (3.57)

Multiplying with f0 and integrating over ρ̃ yields then, after making use of the orthonor-
mality relation (3.55), an expression for the mass shift

δ(M̃2) = B̃2
[

−M̃2
0

(

f0, f0
3 − ρ̃2

(1 + ρ̃2)2

)

︸ ︷︷ ︸

I1

−4

(

f0,
ρ̃f ′0

1 + ρ̃2

)

︸ ︷︷ ︸

I2

+

(
f0

W
,∂ρ

(
W (ρ̃)f ′0(ρ̃)(ρ̃

2 + 1)
)
)

︸ ︷︷ ︸

I3

]

. (3.58)

The individual contributions are (M̃2
0 = 8)

I1 = −96

∞∫

0

dρ
ρ3(3 − ρ2)

(1 + ρ2)6
= −28

5
,

I2 = −48

∞∫

0

dρ
ρ4

(1 + ρ2)4

(
1

(1 + ρ2)

)′
= 96

∞∫

0

dρ
ρ5

(1 + ρ2)6
=

8

5
,

I3 = −24

∞∫

0

dρ

(1 + ρ2)

(
ρ4

(1 + ρ2)3

)′
= −48

∞∫

0

dρ
ρ3(2 − ρ2)

(1 + ρ2)5
= −2 .

In dimensionless units, the mass of the ground state is thus shifted by

δ(M̃2) = −6B̃2 = −3
B2R4

m4
. (3.59)

15Note that M̃ ′2
n 6= M̃2

n in general, but M̃ ′2
0 = M̃2

0 because of our choice f0 = h0.
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Reinstating physical units yields

δM = − 3

4
√

2

B2R2

m3
= − 3

16
√

2π5/2

B2
√
λ

α′2m3
q

≈ −0.00758
B2

√
λ

α′2m3
q

. (3.60)

There are several points to mention for this result: First, it has the expected B2 behaviour
of the second order Stark effect. Secondly, it has the correct sign, i.e. the mass of the
ground state is lowered compared to the pure AdS case (c.f. figure 3.14). Furthermore, by
introducing physical units for the B field B̄ = B/2πα′, which is of dimension mass squared,
the result becomes independent of α′ and is thus finite in the α′ → 0 limit,

δM ≈ −0.00758
B̄2

mq
3

4π2
√
λ . (3.61)

Level n cn αn

0 0.54 3.0
1 1.80 3.1
2 3.62 3.2
3 7.85 3.4
4 8.85 3.4

Table 3.1: Coefficients of the Stark shift, fitted using the formula δMn = − cnB2R2

mαn
.

The dependence on the ’t Hooft coupling λ is also easily understood: As the meson masses
themselves are proportional to 1/

√
λ [96] (c.f. e.g. (3.53) and note R2 =

√
4πλα′), the

combination B̄2/m3
q must scale like λ−1, i.e. must be small in the ’t Hooft limit N → ∞

with λ = gsN = const.≫ 1. This means just that the small B̃ expansion is valid if either
the physical B field B̄ is small or the quark mass mq is large.

Let us now compare this analytical calculation of the Stark effect with the numerical data
displayed in figure 3.14. In the limit of large quark mass m̃, we studied the difference
between the AdS meson spectrum and the value of M̃ . Numerically we find16

δM̃ = M̃ − M̃AdS = −0.54R2

m̃3
. (3.62)

Performing the appropriate rescaling of M̃ and m̃ to reintroduce B we find

δM = −0.54B2R2

m3
. (3.63)

16Note that in the units of figure 3.14, B is scaled to B = 1.
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From equation (3.60) we find

δM = −0.53B2R2

m3
, (3.64)

which is in very good agreement with the numerical calculation. The discrepancy is likely
to come from both numerical errors and higher order corrections in the expansion around
small B (large m). Table 3.1 shows the coefficients cn and αn in the mass shift

δM = −cn
B2R2

mαn
(3.65)

as obtained by fitting (3.65) to the numerical result for the meson masses displayed in
figure 3.14, also for the higher modes n ≥ 1. Keeping in mind that according to our
experience, the numerical errors get larger for higher states (although I can not specify the
error quantitatively), there is a chance that αn is n-independent with a value of three, as
can be expected on dimensional grounds by requiring the mass shift to be proportional to
the dimensionful Kalb-Ramond field B̄2 and simultaneously independent of α′.

3.3.2 Constant External Electric Fields and Finite Temperature

I conclude this chapter by commenting on the embeddings in the finite temperature AdS-
Schwarzschild background with electric field, which we obtain numerically from the action
(3.41). Since we are introducing quark number density through the D7 brane gauge field, we
have to distinguish between embeddings for zero and finite density, as smooth Minkowski
embeddings are only consistent for vanishing density [262]. The reason for this is the
following: A nonvanishing quark number density, i.e. a nonvanishing brane gauge field
configuration, is a sign of strings ending on the D7 probe and stretching towards the black
hole horizon. These strings will try to minimise their length, i.e. in cases where they
are parallel to the L-axis they tend to attach to the probe brane at ρ = 0.17 The string
tension will have to be balanced by the D7 brane tension, which creates either a cusp
at ρ = 0 or, if force balance is not achievable, the brane is dragged into the black hole.
Since the Minkowski embeddings do not show such a behaviour but close off smoothly with
L′(0) = 0 they can not be physical in the presence of a finite quark number density. Note
that considering finite densities is the more general case: For ensuring a regular DBI action
at the singular shell, D = 0 would suffice to satisfy equation (3.40).

Figure 3.16 shows embeddings calculated for different strengths of the electric field, and
vanishing quark number densityD = 0. At zero quark number density both Minkowski and
singular shell embeddings are consistent (cf. figure 3.10). A well-defined zero temperature
limit in the canonical ensemble reproducing figure 3.10, i.e. reproducing the Minkowski
embeddings, is possible for D = 0 only. Note however that in the grand canonical ensemble

17With a finite electric field a more plausible configuration might be a string stretching downwards in
the L− ρ diagram while trailing in the x-axis too, its other endpoint being dragged by the electric field.
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at zero temperature considered in [259], new kinds of throat-like embeddings appear for
chemical potentials smaller than the quark mass. These embeddings, which correspond to
D7−D7 configurations, have already been discussed in section 2.3.6, cf. footnote 49 there.

As can be seen from figure 3.16, in contrast to finite quark number density, the black hole
embeddings cover only a finite range of asymptotic quark mass up to a maximal value.
Above this mass, whose B field dependence we fitted numerically to be

m̃ = (1.27 ± 0.03)

√

BR2 +
√

4b4 +B2R4/
√

2 ,

Minkowski embeddings take over. This now allows for a well-defined zero temperature
limit. Lowering the temperature, the black hole horizon shrinks to the extremal AdS
horizon at ρ = L = 0, where the black hole embeddings then end. The corresponding
chiral condensate, in particular its dependence on the field strength, on the temperature
and on the quark mass, was calculated in [288].

Figures 3.17 and 3.18 show black hole embeddings calculated for a quark number density of
D = 10 and D = 20, respectively. For comparison we also included Minkowski embeddings
which, however, can only coexist with black hole embeddings at finite quark number density
in a grand canonical ensemble [275], where the quark chemical potential is fixed instead of
the number density. The reason for this is that in the grandcanonical ensemble the number
density can vary and actually drop to zero for a finite quark mass, above which Minkowski
embeddings can then take over without having strings end on them. In the grandcanonical
ensemble a meson melting phase transition between black hole and Minkowski embeddings
is thus possible [316], in contrast to the canonical ensemble [262] where the transition
happens between two black hole embeddings. Recent work published in [110] indicates
that in the presence of the electric field the phase transition is washed out to a crossover,
at least at not too small densities. The authors of [110] however verified that the phase
transition is still present at small but nonzero densities, i.e. the line of phase transitions
of [262] is shortened, but not immediately destabilised by the electric field [317].

The black hole embeddings on the other hand pass through the shell of vanishing action
smoothly and reach the black hole horizon. We observe that black hole embeddings at
finite quark number density can cover the whole range of asymptotic quark masses, a fact
already noted without external electric fields in [262]. Comparing the two figures 3.17 and
3.18, we find the effect of changing the number density D as given by (3.29): In both
figures, the Minkowski and black hole embeddings were calculated for the same values of
the infrared boundary condition L(ρIR) = LIR. The black hole embeddings (drawn in green
colour) are sensitive to the value of D: For a given infrared boundary condition, they reach
larger asymptotic quark masses L(∞) for larger D. Thus the scaling of D corresponds to
a dilation of the energy scale. Note that this scaling effect is also present for black hole
embeddings in the canonical ensemble at zero external electric field, c.f. e.g. figure 4 in [262].
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Figure 3.17: Minkowski (b = B = R = 1, D = 0) and black hole embeddings for the
electric case at finite temperature (b = B = R = 1, D = 10). Note that both types os
embeddings can only exist simultaneously in the grand canonical ensemble [275].



122 Fundamental Matter in Constant External Electric Fields

2 4 6 8 10
Ρ
�

-2

2

4

6

8

10

L
�

Figure 3.18: Minkowski (b = B = R = 1, D = 0) and black hole embeddings for the
electric case at finite temperature (b = B = R = 1, D = 20). Note that both types of
embeddings can only exist simultaneously in the grand canonical ensemble [275].
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Chapter 4

Holographic Fayet-Iliopoulos Terms
from Kalb-Ramond Fields

4.1 Introduction and Summary

In view of making further progress towards generalizing the AdS/CFT correspondence
[41, 219, 220] to physically relevant phenomena, it is useful to study the gravity duals of
quantum field theories with nontrivial moduli spaces. This applies in particular to theories
with flavour added by virtue of probe D7 branes wrapping a subspace of AdS5 × S5 which
is asymptotically AdS5 ×S3 [95]. It has been shown in [112–115] that the mixed Coulomb-
Higgs branch of the N = 2 theory with two flavours is dual to instanton configurations
in the supergravity theory. These are instanton solutions for the SU(2) gauge field in the
four directions of a probe of two D7 branes perpendicular to the AdS boundary.1 These
solutions arise since the Dirac-Born-Infeld and Wess-Zumino contributions to the D7 probe
brane action combine in such a way as to give an action containing only the anti-selfdual
part of the field strength tensor. The instantons are selfdual with respect to the flat four-
dimensional metric. This is due to the fact that the metric dependence of the D7 brane
action is limited to an overall factor which only depends on the AdS radial coordinate.
Moreover, it was shown that the Higgs vacuum squark expectation value is dual to the
size of the instanton in the supergravity theory. In [115] the vector meson spectrum of
fluctuations about this instanton background was computed as a function of the instanton
size, and it was shown that the spectra at zero and infinite instanton size are related by a
singular gauge transformation. In [320] the instanton analysis was extended to all orders
in α′, with special emphasis on the small instanton behaviour.

In this chapter I present the results of the work [2], in which the construction of a gravity

1This is based on the fact that Yang-Mills instantons can be described by Dp branes dissolved inside
the worldvolume of D(p+4) branes [318,319] – for a review see [116].
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dual of a quantum field theory in which Fayet-Iliopoulos terms are present was proposed.
For this purpose I consider a constant Kalb-Ramond B field in the four directions perpen-
dicular to the AdS boundary, but parallel to the D7 brane probe. The B field generates
noncommutativity of the coordinates in these directions [111]. We found in [2] that for
a D7 brane probe in a selfdual B field background, a no-force condition is satisfied, and
there is no Fayet-Iliopoulos term present. On the other hand, for a D7 brane probe in an
anti-selfdual B field background a no-force condition does not exist and the supersymmetry
breaking is parametrized by a Fayet-Iliopoulos term. In this case, the B field is dual to an
N = 2 Fayet-Iliopoulos term, coupling to the triplet (D,F1, F2) of real fields in the dual
field theory. We showed that the quantum numbers of the B field and the Fayet-Iliopoulos
term coincide. The analysis of [117] for the D3-D(-1)-system in flat space also supports this
claim: The anti-selfdual part of the B field is shown there to induce the Fayet-Iliopoulos
term in the effective action via string disk diagrams.

In the case of an anti-selfdual B field background, the D3/D7 brane intersection in flat
space-time, which consists of Nc D3 branes generating the AdS5×S5 space-time in the near-
horizon limit and Nf (coincident) D7 branes, is not static. A no-force condition does not
exist and the D3 and D7 branes attract each other. The attractive force is parametrically
small when the Fayet-Iliopoulos term is small. If the distance of the D3 and D7 branes
is below a critical value, tachyons appear in the spectrum of 3-7 strings. Consider one of
the D3 branes at a distance below the critical value: After tachyon condensation, it will
be dissolved in the D7 brane and can be described by instanton configurations on the D7
brane. The low energy effective field theory description is that the dissolved D3 brane
manifests itself through a squark vacuum expectation value for the direction in colour
space associated to it. The colour direction described by this particular D3 brane will then
be broken, and the field theory will be in a vacuum state on the mixed Coulomb-Higgs
branch of the moduli space of vacua. If all D3 branes are dissolved in the Nf D7 branes,
the configuration will be static. I will show that this configuration is supersymmetric,
which can also be understood from the gauge theory point of view. However, the probe
approximation in AdS/CFT is not applicable for the D7 any longer, if infinitely many D3
branes are dissolved in the D7 brane.

Therefore I assume in this chapter that k D3 branes are dissolved in the D7 brane with
k ≪ Nc, giving rise to an instanton configuration with charge k, and that the remaining
Nc − k D3 branes are separated from the D7 branes and generate the AdS5 × S5 space. If
k and Nf are small, the probe limit applies but is not sufficient for ensuring the stability
of the setup: The configuration is not supersymmetric and thus in general will decay into
the supersymmetric ground state, which is the pure Higgs vacuum with Nc instantons
on the D7 stack. It however can be rendered arbitrarily longlived if the Fayet-Iliopoulos
parameter ζ is tuned to a very small value: Although the decay process, which involves a
quantum of five-form flux to be transferred from the S5 onto the D7 stack and to manifest
itself on the D7 branes as an instanton (while at the same time the radius of AdS5 and

S5 shrinks by one unit) is a backreaction effect and hence suppressed by
Nf

Nc
, there are Nc



Chapter 4. Holographic Fayet-Iliopoulos Terms from Kalb-Ramond Fields 125

identical quanta of five-form flux which could jump over. This means that the total decay
probability is of order

Nf

Nc
Nc = Nf , and thus in general not negligible. However, since for

vanishing Fayet-Iliopoulos parameter the setup is supersymmetric and therefore stable, the
decay probability must be, at least for small ζ, proportional to ζ itself,

Pdecay ∝ ζ
Nf

Nc

Nc = ζαNf ,

and hence can be tuned to an arbitrarily small number. Therefore the setup can be rendered
arbitrarily longlived by tuning ζ to be very small. It is therefore safe to let the Nc − k
D3 branes for large Nc generate the AdS5 × S5 metric and the selfdual five-form flux, and
embed the D7 stack with instantons in the usual way. This approach can be viewed as
an adiabatic approximation, since the decay time will be proportional to (Nfζ)

−1, i.e. the
system will not decay except at very late times if ζ is very small.

Another indication for the decay of this setup being suppressed is that the D3 brane
charge induced on the D7 by the B field can not leave the D7 through the on-shell process
of condensing first to a zero-size anti-instanton which then detaches from the D7 as a D3.
The reason is that the small instanton limit is no longer available if a Fayet-Iliopoulos term
is present in the ADHM equations, such that the D3 would need to go off-shell to condense
outside the D7. This process might only be possible through a tunneling process, being
exponentially suppressed.2

I show that although from the geometric point of view supersymmetry is broken in the
presence of an anti-selfdual B field, the modified ADHM equations for the noncommutative
instantons on the D7 probes can still be identified with the D and F term equations for
the Higgs part of mixed Coulomb-Higgs states in the dual gauge theory on the boundary
of AdS. In these D and F term equations a Fayet-Iliopoulos term is present. By Higgs part
of a Coulomb-Higgs state I mean the colour directions for which the squark fields acquire
a vacuum expectation value. The other colour directions, in which the adjoint scalars
acquire a vacuum expectation value, comprise the Coulomb part of the state. In the
scenario presented, supersymmetry is then broken on the Coulomb part of the Coulomb-
Higgs branch, but the D and F term equations (i.e. the ADHM equations) for the Higgs
part of the Coulomb-Higgs branch can still be satisfied simultaneously.

According to Nekrasov and Schwarz [119], there is a noncommutative U(1) instanton3

solution to the modified ADHM equations. In analogy to the case without B field [112,115],
I argue that the flat space Nekrasov-Schwarz instanton solution remains a solution of the
equations of motion for a D7 probe brane embedded in AdS5×S5. Note that the instanton

2The author thanks Luca Martucci for this argument.
3In this chapter instantons are selfdual. Originally, Nekrasov and Schwarz constructed anti-selfdual in-

stantons in flat space-time with selfdual noncommutativity, but call them instantons (see footnote 2 in [321]
to avoid future confusion). In this chapter I consider selfdual instantons in backgrounds with anti-selfdual
B field (and therefore anti-selfdual noncommutativity) which can be obtained from the original Nekrasov-
Schwarz solution by a parity transformation. This instanton is also called Nekrasov-Schwarz instanton in
this chapter.
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is selfdual with respect to the flat metric in the respective directions. Still, it is a solution
of the gauge theory on the D7 brane.

To summarise, the picture which emerges is the following: In the presence of an anti-
selfdual B field, a Fayet-Iliopoulos term is generated for the gauge theory on the boundary.
This is supported by the matching quantum numbers for the B field in the bulk and the
auxiliary fields in the boundary field theory in section 4.4.1. The Fayet-Iliopoulos term
is associated with the U(1) factor of the U(Nc) gauge group. In fact, the presence of
the D7 brane probe is essential for our construction, since it ensures that the constant
background B field may no longer be gauged away by means of a Ramond-Ramond gauge
transformation. This implies that the dual field theory at the boundary has U(N) gauge
symmetry instead of SU(N), as is necessary for a Fayet-Iliopoulos term to be present. The
U(1) factor corresponds to singleton degrees of freedom [294, 295]. It will be broken by
instanton solutions in the dual gravity theory.

On the gravity side, there are noncommutative U(1)f -instantons on a single D7 brane,
which we conjectured in [2] to be dual to a particular mixed Coulomb-Higgs state in the
dual gauge theory determined by the instanton charge. These states do not correspond to
supersymmetric vacua of the theory, as the D and F term equations for the Coulomb part
cannot be satisfied in the presence of the Fayet-Iliopoulos term. Rather, they are excited
states with an excitation energy set by the Fayet-Iliopoulos parameter. Hence, throughout
this chapter I refer to them as “states” rather than “vacua”, except in section 4.2, where
the Coulomb-Higgs vacua are actual true vacua of the theory. The size moduli of the
instanton configurations are identified with the squark Higgs vacuum expectation values
on the gauge theory side. For the selfdual Nekrasov-Schwarz instanton on a single D7
brane we obtained as a nontrivial prediction the existence of this new Higgs state in the
gauge theory with a single flavour. The Higgs vacuum squark expectation value q is shown
to be given by the square root of the Fayet-Iliopoulos parameter ζ, q =

√
ζ whereas the

anti-squark vacuum expectation value q̃ vanishes, q̃ = 0.

In order to test the conjectured equivalence between Coulomb-Higgs states of the field
theory and noncommutative instantons on the D7 probe brane, we investigated the break-
ing of global symmetries by the anti-selfdual B field which generates the Fayet-Iliopoulos
term and then also in the special case of one noncommutative U(1)f instanton. We found
that an anti-selfdual B field breaks the SU(2)L × SU(2)R × U(1)89 of the D7 brane con-
figuration to SU(2)L × U(1)R × U(1)89. This corresponds to the symmetries which re-
main on the field theory side. We also conjectured that switching on the selfdual non-
commutative U(1)f instanton on the D7 brane further breaks these symmetries down to
SU(2)L × diag(U(1)R × U(1)f ) × U(1)89. I will argue in favour of this conjecture in sec-
tion 4.5, and also discuss the possible reasons for the missing proof of it. I will also show
that the squark vacuum expectation values q =

√
ζ, q̃ = 0 in this case break the flavor

and U(1)R symmetries to the diagonal subgroup diag(U(1)R ×U(1)f ). Furthermore, these
relations break the U(1) factor of the gauge group U(Nc).
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Our construction is also similar to models studied within cosmology, in the context of
inflation. D3/D7 systems with B field [322] or on the resolved conifold [323–325] have
been investigated, and D term generation has been studied in [325, 326]. Our analysis
of D3 branes dissolving into D7 branes bears similarities with the inflationary models
of [327–329]. It will be interesting to generalize the gauge/gravity construction presented
here, in particular by using a suitable stabilisation mechanism, to investigate these relations
further. Also, in AdS/CFT with flavour the impact of internal B fields on the meson
spectrum has been investigated for the Polchinski-Strassler [85] and Maldacena-Lunin [330]
backgrounds [280,331], for a review and further references see [253].

This chapter is organized as follows: In section 4.2 I review the description of the Higgs
branch of the dual theories using instanton configurations on these probe branes. In sec-
tion 4.3 some prerequisites concerning noncommutative field theories, the noncommutative
ADHM equations and their string theoretic origin are reviewed. In section 4.4 I show how
the noncommutativity induced by the B field in the internal directions of the probe brane
translates into the Fayet-Iliopoulos term on the dual gauge theory side. In section 4.5
I investigate the effect of switching on a noncommutative instanton in this internal non-
commutative field theory. A conclusion with discussions of the results and possible further
developments can be found in chapter 6, section 6.2. The material presented in this chapter
was obtained in collaboration together with Martin Ammon, Johanna Erdmenger, Stephan
Höhne and Dieter Lüst, and published in the paper [2]. In particular the κ-symmetry cal-
culation in section 4.4.3 was worked out by Martin Ammon.

4.2 Commutative Instantons on Flavour Branes

This section is intended to review the work of [115, 320], in which it was shown that
instantons on D7 brane probes describe the mixed Coulomb-Higgs branch of N = 4 U(Nc)
Super-Yang-Mills theory coupled to Nf N = 2 fundamental quark hypermultiplets. For
selfcontainedness of this chapter I will first review some basic facts about D7 brane probes
in AdS/CFT, which were introduced in detail in section 2.3.6.

In the standard AdS/CFT correspondence, the N = 4 U(Nc) Super-Yang-Mills theory is
realized as the near horizon limit of Nc D3 branes. The type IIB supergravity background
is given by

ds2 = H
−1/2
3 ηµν dx

µdxν +H
1/2
3

(
dymdym + dzidzi

)
, (4.1)

C(4) = H−1
3 dx0 ∧ · · · ∧ dx3, (4.2)

eφ = gs = const., (4.3)

where r2 = ymym + zizi and

H3(r) =
R4

r4
, R4 = 4πgSNcα

′2. (4.4)
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Here the Minkowski coordinates are xµ , µ = 0, . . . , 3, while the internal coordinates are
split into two sets, ym , m = 4, . . . , 7 and zi , i = 8, 9. To couple the dual U(Nc) N = 4
Super-Yang-Mills theory to fundamental matter fields, I follow [95] and embed Nf D7
branes into this background in the way given by table 2.9. The D7 branes fill the xµ-
and ym-directions, while their profile is parametrized by the two transversal directions
zi(xµ, ym). To describe fundamental matter with mass m, the embedding of the D7 brane
is specified by z8 = 2πα′m and z9 = 0. In the stringy picture, i.e. before replacing the D3
branes by their near-horizon geometry, the matter hypermultiplets arise as the massless
excitations of strings stretching between the D3 and D7 branes. Since I consider Nf to
be small, in the limit of large Nc at large (but fixed) ’t Hooft coupling λ we can ignore
the backreaction of the D7 branes to the background. This corresponds to the quenched
approximation.

The dual field theory is an N = 2 supersymmetric U(Nc) gauge theory, which has Nf

hypermultiplets in the fundamental representation of the gauge group, coupled to the
N = 4 vector multiplet in the adjoint representation. The scalar components Φ1,2,3 of the
latter encode the positions X4,5,6,7,8 of the D3 branes in the transverse six directions,

2πα′Φ1 = X4 + iX5 , 2πα′Φ2 = X6 + iX7 , 2πα′Φ3 = X8 + iX9 . (4.5)

Note that in this chapter the scalar components of these chiral superfields are denoted
with the same letter as the superfields themself. The action, written in N = 1 superspace
formalism, is given by eq. (2.140),

SD3D7 =

∫

d4xℑ
[

τ

∫

d4θ
(

tr
(
Φ̄Ie

V ΦIe
−V
)

+Q†ie
VQi + Q̃ie

−V Q̃†i
)

+τ

(∫

d2θ tr (WαW
α + ǫIJKΦIΦJΦK) + Q̃i(m+ Φ3)Q

i + h.c.

)]

, (4.6)

where the last two terms comprise the superpotential W ,

W = tr (ǫIJKΦIΦJΦK) + Q̃i (m+ Φ3)Q
i . (4.7)

Here m denotes the mass of the quarks, which I choose to be equal for all flavours. This
theory has a number of global symmetries: For massless quarks (m = 0), it has a SO(4, 2)×
SU(2)Φ×SU(2)R×U(1)R global symmetry, of which the first factor is the conformal group
in four dimensions.4 In the massive case, the SO(4, 2) gets broken to the Lorentz group
SO(3, 1), and the U(1)R factor is broken by the mass term in the superpotential. In
both cases, the second SU(2) factor is a N = 2 R-symmetry, SU(2)R, while the first
SU(2) is an additional global SU(2)Φ symmetry, rotating the chiral superfields Φ1 and
Φ2. Additionally, there is a U(Nf ) flavour symmetry, the obvious U(1)f factor of which
is a quark number symmetry [253]. The different component fields and their quantum

4The β function vanishes for the ’t Hooft coupling vanishes in the strict Nc → ∞ limit with Nf

fixed [256].
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numbers are given in table 4.1, where I also listed the quantum numbers of the auxiliary
fields (D,F1, F2) of the N = 2 U(Nc) vector multiplet (Wα,Φ3), as their U(1) part can
couple to a Fayet-Iliopoulos term, which will become important later on.

The identification of symmetries between the gravity description and the gauge theory
is now straightforward: The Lorentz-group SO(3, 1) (or the conformal group SO(4, 2) if
only massless fundamental hypermultiplets are considered) corresponds to isometries of the
induced metric on the embedded D7 brane derived from the AdS5 part of AdS5 × S5. The
internal SO(4)4567 ≃ SU(2)L × SU(2)R, which rotates the coordinates ym into each other,
is identified with SU(2)Φ ×SU(2)R for a D7 brane. The rotations acting on ~z, U(1)89, are
identified with the U(1)R-symmetry on the field theory side.

(N = 2) components spin SU(2)Φ × SU(2)R U(1)R ∆ U(Nf ) U(1)f

Φ1,Φ2 X4, X5, X6, X7 0 (1
2
, 1

2
) 0 1 1 0

λ1, λ2
1
2

(1
2
, 0) −1 3

2
1 0

Φ3, Wα XA
V = (X8, X9) 0 (0, 0) +2 1 1 0

λ3, λ4
1
2

(0, 1
2
) +1 3

2
1 0

vµ 1 (0, 0) 0 1 1 0
(D,F1, F2) 0 (0, 1) 0 2 1 0

Q, Q̃ qm = (q, ¯̃q) 0 (0, 1
2
) 0 1 Nf +1

ψi = (ψ, ψ̃†) 1
2

(0, 0) ±1 3
2

Nf +1

Table 4.1: Field content and quantum numbers of the N = 2 theory including the auxiliary
fields from the N = 2 vector multiplet

The supersymmetric field theory (4.6) with superpotential (4.7) has Coulomb- and Higgs
vacua, i.e. vacua with nonvanishing expectation value for the adjoint scalars Φi, or for the
fundamental scalars qi and q̃i, respectively. For a mixed choice of color space components
of these fields, i.e. for nonzero vacuum expectation values for the adjoints in some color
directions and the fundamentals in other colour directions, the corresponding vacua are
called mixed Coulomb-Higgs vacua, meaning that some generators of the gauge group
are broken down to its respective Cartan subalgebra generators, yielding U(1) factors on
the Coulomb branch, while other parts of the gauge group are broken completely - this is
the Higgs part of the mixed vacuum.

The vacua are solutions of the F and D term equations

0 = (m+ Φ3)q
i = q̃i(m+ Φ3) (4.8)

0 = [Φ1,Φ3] = [Φ2,Φ3] (4.9)

0 = qiq̃i + [Φ1,Φ2] (4.10)

0 = |qi|2 − |q̃i|2 + [Φ1,Φ
†
1] + [Φ2,Φ

†
2] . (4.11)

Here q, q̃ are the squark fields, while ΦI are the scalar components of the adjoint transverse
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scalar superfields. The mixed Coulomb-Higgs branch is accessed by solutions of (4.8) with

Φ3 =












m̃1

. . .

m̃N−k

−m
. . .

−m












, qi =












0
...
0
qi
1
...
qi
k












, (4.12)

q̃i =
(
0 · · · 0, q̃1

i · · · , q̃k
I

)
. (4.13)

The m̃ are the masses of the first Nc − k colour components of the fundamental hypermul-
tiplet. The remaining equations (4.9), (4.10) and (4.11) then reduce to

0 = (m̃b − m̃a)(Φ1)ab = (m̃b − m̃a)(Φ2)ab , a, b = 1, . . . , N − k (4.14)

0 = qi
aq̃bi + [Φ1,Φ2]ab , a, b = 1, . . . , k (4.15)

0 = |qi|2ab − |q̃i|2ab + [Φ1,Φ
†
1]ab + [Φ2,Φ

†
2]ab . (4.16)

Equation (4.14) can be solved either by setting the masses m̃ equal, or by switching off some
off-diagonal elements of Φ1,2 in the corresponding gauge directions where m̃b − m̃a 6= 0. In
any case, the first N − k diagonal elements of Φ1,2 may be chosen freely. The off-diagonal
(lower-left and upper-right) k × (N − k) blocks of Φ1,2 are not constrained by (4.14). The
lower k × k block is constrained by the last two equations (4.15) and (4.16).

With the identification (the factor 2πα′ must be included for dimensional reasons)

{(I)a
i, (J)j

b, (B0)ab, (B1)ab} ≡ 2πα′{qi
a, q̃

b
J , (Φ1)ab, (Φ2)ab} , a, b = 1, . . . , k , i, j = 1, . . . , Nf ,

(4.17)
equations (4.15) and (4.16) are just the ADHM equations [118] for the moduli of k gauge
instantons in a SU(Nf ) Yang-Mills theory,

0 = µr = [B0, B
†
0] + [B1, B

†
1] + II† − J†J , (4.18)

0 = µc = [B0, B1] + IJ , (4.19)

from which all instanton solutions can, in principle, be constructed in the following way
[119]: Once the k × k matrices B0 and B1 and the k × Nf and Nf × k matrices I and
J are known from equations (4.18)-(4.19), one complexifies the 4 ≃ 2 via (z0, z1) =
(y4 + iy5, y6 + iy7) and constructs an operator D†z : k ⊕ k ⊕ Nf → k ⊕ k via5

D†z =

(
τz
σ†z

)

, (4.20)

τz = (B0 − z̄0 k×k, z1 k×k −B1, I) , (4.21)

σz =





B1 − z1 k×k

B0 − z̄0 k×k

J



 . (4.22)

5This is the definition for a selfdual configuration. It differs from the definitions in [119] by the exchange
z0 ↔ z̄0.
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The zero modes of the operator D†z are matrices ψ : Nf → k ⊕ k ⊕ Nf fulfilling the
zero mode condition and a normalisation condition

D†zψ = 0 , ψ†ψ = Nf×Nf
. (4.23)

They can now be used to construct the instanton gauge potential via

A = ψ†dψ . (4.24)

The claim of [118] is now that this construction yields all instanton configurations in four-
dimensional Euclidean space, where the field strength is given by

F = ψ†
(

dDz
1

D†zDz

dD†z
)

ψ . (4.25)

For the proofs of uniqueness and self-duality of the so-constructed gauge field configura-
tions, see e.g. the extensive review [116] and references therein or the shorter explanations
in [119].

The moduli space of k U(Nf ) instantons is thus given by the solutions of the ADHM
equations (4.18)-(4.19), i.e. it is the space

Mk = (µ−1
r (0) ∩ µ−1

c (0))/U(k) . (4.26)

Here U(k) are unitary rotations acting on the indices a, b of eqs. (4.18)-(4.19). Both ADHM
equations are invariant under such rotations, and thus solutions differing by such a rotation
have to be identified. This moduli space turns out to have dimension

dim (Mk) = 4Nfk , (4.27)

and it is a singular space. The singularities are fixed points of the U(k) action, i.e. special
solutions to the ADHM equations for which subgroups of U(k) act trivially on the k × k
matrices B0, B1, II

†, J†J . They exactly occur if some of the generically nonzero eigenvalues
of the matrices II† and J†J vanish. Since the matrices I, J encode the “sizes” of the
instantons while B0, B1 encode the positions of the instanton centers, the singularities
correspond to the zero size limits of instanton solutions. As will be seen later, this is exactly
the limit in which the instantons on higher-dimensional D branes have interpretations as
dissolved lower-dimensional branes which detach from the higher-dimensional one.

We thus just rediscovered the well-known fact [116, 318, 319, 332] that in a system of Nc

Dp and Nf D(p+4) branes the ADHM equations of k SU(Nf ) (anti)instantons in the
four transverse directions of the D(p+4) brane field theory are exactly the D and F term
equations of the intersection SU(Nc) theory.6 The D and F term equations parametrise
the mixed Coulomb-Higgs vacua, namely the vacuum in which k generators of the Cartan

6Without noncommutativity, the U(1) factor of the gauge group decouples and is of no importance for
this construction.
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N D3s
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k D3s

(a) Pure Coulomb branch

D7s
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L

(b) Mixed Coulomb-Higgs
branch

Figure 4.1: Different supersymmetric vacua in the D3–D7 model of AdS/CFT with flavour.

subalgebra of SU(Nc) are broken (cf. equation (4.16)). Through the identification (4.17)
and the fact that there are no U(1) instanton solutions to the ADHM equations [333], we
find that for only one quark flavour the theory (4.6) does not posses Higgs vacua, as there
are no nontrivial U(1) instantons in commutative space-time. This changes, as we will see
in section 4.4 once the directions transversal to the Dp branes become noncommutative
through the introduction of a constant internal Kalb-Ramond field.

Flat Space D Brane Picture

From the geometric point of view of strings and D branes in flat space, this appearance of
instantons as supersymmetric Higgs vacua can be understood as either lower dimensional
branes dissolving into the higher dimensional ones [332], or equivalently higher dimensional
branes acquiring an induced charge associated with lower Ramond-Ramond p-forms. Both
Coulomb and Higgs type breaking of gauge symmetries have D brane analogues. In fig-
ure 4.1 the Nc colour D3 branes are located at the origin of the six-dimensional transverse
space, while the Nf flavour D7 branes are put parallel to the D3 branes, but at a perpen-

dicular separation |~z| =
√
X82 +X92 = L = 2πα′m. Coulomb vacua – cf. figure 4.1(a)

– are configurations with some of the lower-dimensional branes separated from the stack
of Nc Dp branes. The transverse scalars (4.5) acquire vacuum expectation values, as they
encode the positions of the D3 branes in transverse space. The point in moduli space at
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which the k separated colour branes coincide with the Nf flavour branes thus also lies on
the Coulomb branch. This is only possible as coinciding D3 and D7 branes form a marginal
bound state [334], since the Dp-D(p+4) intersection preserves one quarter (i.e. eight real
supercharges) of the full thirty-two supercharges of ten-dimensional type IIB supergravity.

If some of the D3 branes coincide with the D7 branes, the D3 can dissolve into the D7.
This is understood in terms of the low energy effective action on the D7 brane, which
includes a coupling to the Ramond-Ramond four form potential C4 via

−µ7

gs

(2πα′)2

∫

M

P [C4] ∧ Tr(F ∧ F ) .

The Pontryagin density of the flavour gauge field on the D7 brane

Tr(F ∧ F )

is a source term for C4.Thus field configurations on the D7 stack with nontrivial Pontryagin
number in the ~y-directions, i.e. instantons, behave as D3 branes [332], at least concerning
their charges. Reversely, starting with a dissolved D3 brane (an instanton) on the D7 brane,
one can reach the pure Coulomb branch by sending the size moduli (the vacuum expectation
values for the squarks) of the instanton to zero. In this way, the D3 branes sitting on top of
the D7 which formerly had a Φ3 vacuum expectation value −m (cf. equation (4.12)), can
move away from the D7 brane (changing Φ3 to some other value). Thus in the zero size
limit of the instantons on the D7 brane, the dissolved D3 branes separate themselves
from the D7 and can move away from them. The point in moduli space where some or all
of the D3 branes lie on top of the D7 branes thus connects the Coulomb- and Higgs parts
of the mixed Coulomb-Higgs branch.

Commutative Instantons on D7 Branes in AdS5 × S5

In [115] instantonic configurations on the internal directions of D7 brane probes in AdS5×S5

were considered.7 It was shown that the Dirac-Born-Infeld and Wess-Zumino parts of the
action for Nf D7 branes in AdS5×S5 (cf. equation (4.2)) combine8 to give to order (2πα′)2

SD7 =
(2πα′)2µ7

2gs

∫

d8ξ
√
gTr(FαβF

αβ) − (2πα′)2µ7

2gs

∫

M7

P [C4] ∧ F ∧ F

=
(2πα′)2µ7

2gs

∫

d4x d4y
(~y2 +m2)2

R4
F 2
− . (4.28)

7See [335] for a more detailed account of the work on instantonic configurations on D7 branes.
8This restriction is necessary since the full nonabelian DBI action is not known exactly. The existence

of instanton solutions when including higher derivative terms however puts constraints on the unknown
higher order terms [112,114].
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In the Yang-Mills term in the first line indices are raised with the pull-back of the AdS5×S5

metric (4.1) using the embedding ξα = (xµ, ym), |~zi| = 2πα′m = const.. The (anti)selfdual
part of the field strength used in the second line is taken with respect to the flat metric,
and is defined as

(F±)αβ =
1

2

(

Fαβ ± 1

2
ǫαβγδFγδ

)

, (4.29)

with ǫαβγδ being the Euclidean signature four-dimensional totally antisymmetric tensor
defined by ǫ4567 = +1. The idea of deriving (4.29) is to first solve the leading order in α′

part of the D7 brane action to find the embedding |~z| = 2πα′m at vanishing field strengths.
Equation (4.28) then holds for these general constant embeddings |~z| = 2πα′m, which are
the only solutions to the embedding equations of a D7 brane in AdS5 × S5 consistent with
supersymmetry [96]. Every instanton configuration

F− = 0 (4.30)

then minimizes the D7 action to order α′2 and thus solves the equations of motion for
the gauge field on the probe brane. As the instanton-probe brane system has an on-shell
energy (which is just minus the action since the configuration is static) independent of the
quark mass m (i.e. the separation from the Nc D3 branes which sourced the AdS5 × S5

background), it was concluded in [115] that the instanton-probe brane system in AdS5×S5

preserves supersymmetry, since the dual field theory (4.6) also preserves N = 2 supersym-
metry independently of the choice of m. 9

In [320], this argument was pushed further to all orders in α′, which is believed to be
possible for instantonic configurations, as the radicant of the square root of the DBI action
turns out to be a complete square, hence the series expansion in α′ terminates. This belief
is supported by the work10 [336]: There it was shown that the Born-Infeld electrodynamics
solution in flat space and with otherwise vanishing dilaton and Kalb-Ramond field describ-
ing a fundamental string ending perpendicular on a Dp brane is actually an exact solution
to the theory of open strings on a Dp brane. In particular all higher-order derivative terms
to the gauge fields beta function βµ

A vanish. Considering the case p = 3 this D3-F1 system
is connected to the D0-D4 system which describes instantonic configurations in N = 4
SYM theory by first S-dualising to the D3-D1 configuration and then T-dualising along
the D1 brane world volume direction which, by construction, is perpendicular to the D3
brane. In this way one ends up with the well-known D4-D0 system in flat space. However,
this line of argument and the calculations in [336] are only valid for the abelian theory.
However, much less is known in the nonabelian case. What is known is that instantons
solve the low energy effective action for N D3 branes to order α′3 [337]. A full proof along
the lines of [336] is however still missing. In any case, a similar situation will occur in
section 4.4.3 below when I consider the system in the constant Kalb-Ramond field.

9In general a static and supersymmetric state of two or more BPS objects (such as D branes) is again
a BPS object, as its mass is determined only by some charge. The latter is, by charge conservation,
determined by the charges of the two constituent BPS objects (see e.g. ch. 13.3 of [141]).

10The author thanks Paul Koerber for bringing this reference to his attention.
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The authors of [115] went on in analyzing the symmetries of the instanton-probe brane
configuration for two flavours, i.e. Nf = 2, and the Belavin-Polyakov-Shvarts-Tyupkin
(BPST) instanton [338],

Aµ = 0 , Am =
2Λ2σ̄nmyn

~y2(~y2 + Λ2)
with σ̄mn =

1

2
σ̄[mσn] , σm = (i~τ , 12×2) , σ̄m = σ†m , (4.31)

where Λ is the instanton size modulus. In the case of the BPST instanton (Nf = 2,
k = 1) the 4Nfk = 8 moduli consist of four position moduli for the instanton core (which
are set to zero in (4.31) and correspond to the vacuum expectation value of Φ1,2 via
the identification (4.17)), three global SU(2) gauge rotations (which generate an orbit of
solutions when applied to (4.31) and correspond to a choice of the SU(2)R orientation of
the vacuum expectation values on the field theory side), and the size of the instanton core
Λ. The authors of [115] found that the instanton (in singular gauge) breaks the geometric
symmetries of the D7 brane in AdS5 × S5 down to

SU(2)L × SU(2)R × SU(2)f → SU(2)L × diag(SU(2)R × SU(2)f )

by the necessary identification of the space-time SO(3) at infinity with the internal gauge
symmetry SU(2)f which is induced by the form of the instanton field configuration (4.31).11

This lead the authors of [115] to conclude that the right AdS/CFT identification for the
size modulus of this one-instanton solution with the squark vacuum expectation values of
the field theory vacuum must be

qiα =
Λ

2πα′
εiα . (4.32)

The factor of 2πα′ is necessary for dimensional reasons, since Λ has dimension length, while
the scalar field q has dimension mass. The SU(2)f index is i = 1, 2, while the SU(2)R
index is denoted by α = 1, 2. This is exactly the identification (4.17) for k = 1 and Nf = 2,
if one keeps in mind that the squarks transform as a doublet under the SU(2)R symmetry
(see table 4.1).

4.3 Noncommutativity and Instantons in Flat Space

This section is devoted to collect the necessary prerequisites for setting up the duality
conjecture between noncommutative instantons on noncommutative D7 probes and the

11The instanton configurations in an SU(2) gauge theory are classified by continuous maps from the
sphere at infinity S3

∞ to the group manifold SU(2) ≃ S3. The instanton number π3(SU(2)) = , which is
the winding number of the S3

∞ 7→ SU(2) maps, is measured by the Chern-Pontryagin index ∝
∫

d4xTrF∧F .
Once a representative such as the BPST instanton (4.31) with fixed winding number is chosen and the
position and size moduli are fixed, the instanton solution eq. (4.31) is only invariant under a combined
SU(2)f and SU(2)R ⊂ SO(4) rotation, due to the intertwining effect of the σ̄mn = −ηamnτ

a on the two
groups. The ηa

mn here are the selfdual ’t Hooft symbols, which intertwine the selfdual representation (1, 0)
of SU(2)L × SU(2)R ≃ SO(4) with the adjoint representation of SU(2).
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Fayet-Iliopoulos term deformed vacuum moduli space of the field theory in section 4.4.
Section 4.3.1 reviews how noncommutative field theories arise as the low energy effective
actions of D branes in constant Kalb-Ramond fields. Section 4.3.2 briefly reviews the
noncommutative ADHM equations and how the Fayet-Iliopoulos term enters them, as well
as the work [117], in which the low energy effective action of the D3-D(-1) intersection was
calculated and shown to give rise to the noncommutative ADHM equations, including the
supersymmetry breaking Fayet-Iliopoulos term.

4.3.1 Kalb-Ramond Field Induced Noncommutativity in String
Theory

Let us review how noncommutative field theories arise when D branes are embedded into a
flat space with constant Kalb-Ramond B field background. Seiberg and Witten showed in
[111] that a constant B field Bij in the Euclidean directions12 of a D brane embedded flatly
(i.e. with constant embedding functions in a Cartesian coordinate system) in flat space-
time with constant metric gij induces a noncommutative behaviour for the endpoints of
open strings ending on the brane. It turns out that with these restrictions the string theory
with Dirichlet boundary conditions can still be quantised exactly, and the two-dimensional
propagator can be calculated (see eq. (2.4) of [111]). Restricted to the boundary of the
string world sheet, the propagator for one brane (i.e. without Chan-Paton factors) reads

〈X i(τ, σ)Xj(τ ′, σ)〉
∣
∣
σ=0,π

= −α′Gij log(τ − τ ′) +
i

2
θijǫ(τ − τ ′) , (4.33)

with Gij being the open string metric (defined in eq. (4.36)), θij the noncommutativity
parameter (defined in eq. (4.35)) and

ǫ(x) =







+1 x > 0 ,
0 x = 0 ,
−1 x < 0

the sign function. Calculating the expectation value of the anticommutator of X i and Xj,
the open string metric drops out. Thus open strings in the Dirichlet directions in which
the Kalb-Ramond field is switched on have noncommuting endpoint coordinates,

〈[X i(τ, σ), Xj(τ, σ =)]〉
∣
∣
σ=0,π

= iθij . (4.34)

The noncommutativity parameter is related, in an obvious matrix notation, with the closed
string metric g and the B field through (in an obvious matrix notation)

θ = −(2πα′)2 1

g + 2πα′B
B

1

g − 2πα′B
. (4.35)

12This restriction is necessary since switching on the B field in spatio-temporal directions leads to insta-
bilities due to string pair production [302,304]. When attempting to write down unitary noncommutative
field theories these instabilities translate into problems of defining a time ordering which preserves unitarity,
as well as when defining the notion of a Wick rotation.
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Note that because of the additional factor 2πα′, B has dimension of length−2. Although
the X i are scalar fields from the point of view of the two-dimensional sigma model, i.e.
they are dimensionless, they have to have dimension of length from a space-time point of
view. Thus when interpreting eq. (4.34) as a relation which holds in a low energy effective
field theory, i.e. in a field theory on noncommutative space-time, the noncommutativity
parameter must have dimension length2 (as is obvious from (4.35)) and thus the dimensions
in (4.34) work out.

The result (4.34) can be obtained without a double scaling limit. However, to show that
correlators of vertex operators only differ from the zero B field correlators by the well
known noncommutative phase factors [339] e−

i
2
piθ

ijkj and do not receive contributions from
anomalous dimensions (which would depend on G), the zero slope limit α′ → 0 has to
be taken while θ and the open string metric G

G−1 =
1

g + 2πα′B
g

1

g − 2πα′B
, (4.36)

are kept fixed. As shown in [111] this implies scaling α′ ∼ √
ε and g ∼ ε (i.e. the metric

has to scale twice as fast as the string length) while keeping B fixed. In this limit the
noncommutativity parameter and open string metric simplify to

θ = B−1 , G−1 = − 1

(2πα′)2
B−1gB−1 , (4.37)

Clearly θ and G are fixed in this scaling limit.

For slowly varying fields (compared to the string scale α′) the low energy effective theory
on the Dp brane in the directions in which the B field is nonvanishing then reduces to the
well-known noncommutative Yang-Mills theory13 [111]

SNCYM =
(α′)

3−p
2

4(2π)p−2Gs

∫ √
detGGijGklTr(F̂ik ∗ F̂jl) . (4.38)

Here the open string coupling constant is

Gs = gsdet
1
2

(
(g + 2πα′B)g−1

)
,

and the star product is defined as

(f ∗ g)(x) = f(x)e
i
2

←−
∂x

i θij
−→
∂y

j g(y)
∣
∣
∣
x=y

. (4.39)

13See [340, 341] for two concise reviews of the vast topic of noncommutative field theory. Note that for
nonabelian theories, the trace runs over the Hilbert space the operators are realized on, as well as over
colour space, and that this formula can only be true for the B field extending in all directions of the Dp
brane for the dimensions to match (

∫
Tr has dimension lengthp+1). If the B field extends only in some

directions, there is a commutative gauge theory sector as well as a noncommutative one.
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With this definition, the star commutator of two noncommutative coordinates

[xi, xj]∗ = xi ∗ xj − xj ∗ xi = iθij (4.40)

reproduces the algebra (4.34). The noncommutative gauge field strength for both the
abelian and nonabelian case reads

F̂ij = ∂iÂj − ∂jÂi + i
(

Âi ∗ Âj − Âj ∗ Âi ,
)

(4.41)

and thus also includes a star product. In the nonabelian case the Hilbert space on which
the operators are acting is a tensor product of a representation of the algebra (4.40) times
the usual gauge group representation by matrices. Gauge transformations act on the gauge
field as

δεÂi = ∂iε+ i[Âi, ε] (4.42)

In the α′ → 0 limit, (4.38) becomes exact in describing the dynamics of open strings [111].

4.3.2 Noncommutative Instantons and the Modified ADHM Con-
struction

In this subsection I briefly review the noncommutative ADHM construction and the under-
lying noncommutative ADHM equations constraining the instanton moduli, as explained
in e.g. [342, 343]. As shown by Nekrasov and Schwarz [119], noncommutative instantons
on R

4 can be constructed from the moduli obtained by solving the noncommutative
ADHM equations

2(θ45 − θ67) = ζ = [B0, B
†
0] + [B1, B

†
1] + II† − J†J , (4.43)

0 = [B0, B1] + IJ . (4.44)

These equations are very similar in form to the commutative ADHM equations (4.18)-
(4.19), except of the constant term on the left-hand side of (4.43). It is however exactly
this term which actually forces the underlying space-time to be noncommutative: Using
the operators τz, σz as defined in (4.21)-(4.22), the ADHM equations can be reexpressed as

0 = τzτ
†
z − σ†zσz = [B0, B

†
0] + [B1, B

†
1] + II† − J†J − [z0, z̄0] + [z1, z̄1] ,

0 = τzσz = [B0, B1] + IJ + [z̄0, z1] .

It is clear that one wants to keep this structure of the ADHM equations, since it lies at
the heart of the whole construction. The constant term on the left-hand side of (4.43)
can then only be reproduced if space-time is noncommutative, i.e. if the coordinates fulfill
commutation relations of the form

[ŷm, ŷn] = iθmn = i







0 θ45 0 0
−θ45 0 0 0

0 0 0 θ67

0 0 −θ67 0






, m, n = 4, 5, 6, 7 , (4.45)
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On purpose I denote here the transversal coordinates in the D brane setup (4.1) with the
same symbol as the coordinate operators. Since the noncommutativity parameter θmn is a
antisymmetric matrix in the four-dimensional Euclidean space spanned by the ym, it can
always be brought into block diagonal form by an appropriate SO(4)4567 rotation. From
now on, I omit the hats on operators and leave it to the reader to distinguish between
operators and c-numbers where necessary.

The noncommutative ADHM construction then exactly proceeds the same way as described
in section 4.2. As can be seen from (4.43), the Fayet-Iliopoulos term ζ appearing in the
ADHM construction for instantons vanishes for selfdual noncommutativity parameter, i.e.
for the upper sign of the definition

θmn = ±1

2
ǫmnopθop ⇔ θ45 = ±θ67 .

In order to arrive at anti-instantons (which were actually considered by the authors of [119])
one needs to exchange z0 ↔ z̄0. This generates a right-hand side of (4.43) of −2(θ45 + θ67),
which vanishes for an anti-selfdual noncommutativity parameter. It is in these two spe-
cial cases, i.e. (anti)-instantons on an (anti)-selfdual noncommutative Euclidean space,
in which the small instanton singularities in the moduli space are not regulated, i.e. in
which the equation (4.43) has solutions with some components of the size moduli I, J
vanishing. The noncommutative instantons thus have a zero size limit exactly when the
Fayet-Iliopoulos parameter ζ vanishes. These are exactly the cases in which N = 2 su-
persymmetry is preserved in the flat space D brane configuration [322, 344]. We will see
in section 4.4 that these are exactly the cases where a) a κ-symmetry calculation for an
(anti)-D7 brane in AdS5 × S5 with (anti)-selfdual B field confirms the preservation of su-
persymmetry, and b) a no-force condition for the D7 brane in the background of D3 branes
holds, which is another indication of preserved supersymmetry.

As elaborated in section 4.2, without the B field, the D term and F term equations reduced
to the Higgs part of a mixed Coulomb-Higgs vacuum of the field theory on the D3 brane are
just the ADHM equations for k U(Nf ) instantons on the D7 worldvolume transversal to
the D3 branes. This statement was checked by direct calculation of the effective action for
D3-D(-1) in [345], which included the derivation of the correct ADHM measure, i.e. the low
energy effective action was shown to reproduce the supersymmetric version of the ADHM
equations which show up in the analysis of instantons in Euclidean N = 4 supersymmetric
Yang-Mills theory. In the D3-D(-1) system the N = 4 theory lives on the stack of N D3
branes, while the instantons are represented by the k D(-1) branes. The effective action
then contains three pieces: First there is the Euclideanised N = 4 piece (eq. (3.11) in [345]),
encoding the interactions of the 3-3 strings. Then there is the low energy effective action
for the (-1)-(-1) strings, which are part of the ADHM moduli fields and their superpartners.
That action can be obtained by reducing ten-dimensional N = 1 supersymmetric Yang-
Mills theory to zero dimensions. Since the D(-1) brane has no world volume, the “fields”
in that case are just matrices and Grassmann numbers. The interaction terms coming
from the 3-(-1) and (-1)-3 strings then yields the remaining ADHM moduli. This piece is
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also a zero-dimensional matrix action, similar to fact that the interaction terms coming
from the 3-7 strings in (2.140) are four-dimensional. The (-1)-(-1) and 3-(-1) pieces of the
effective action then can be rewritten to include a triplet of bosonic auxiliary fields Dc

(with c being a SU(2)R symmetry index) which multiply the bosonic ADHM constraints,
and other auxiliary fields generating the rest of the supersymmetric ADHM constraints.
The effective action just described could actually be obtained by dimensional reduction of
the low energy effective action of N D7 and k D3 branes. From this point of view it is not
surprising that the triplet Dc turns out to be the triplet of auxiliary fields of the N = 2
vector multiplet in the intersection theory, and that it is exactly the D term equation for
the N = 1 vector field (4.11) and the F term equation (4.10) which on the Higgs branch
reduces to the ADHM equations (4.18)-(4.19).

In [117] this was extended to the case with constant B field on the D3 brane. It turned
out that the relevant couplings generating the ADHM measure exist also in this case.
Furthermore, a disk diagram with D(−1) boundary conditions containing an insertion of
the auxiliary Dc fields of the N = 2 vector multiplet and a closed string vertex operator for
the Kalb-Ramond B field generates the correct Fayet-Iliopoulos term (cf. eq. (6.3) in [117]),

〈VDVB〉 ∝
1

g2
(−1)

Dcη̄
c
mnθ

mn . (4.46)

As noted above, the Lagrange multiplier Dc also multiplies the bosonic ADHM constraint.
It is consistent with the vanishing of ζ in (4.43) for a self-dual noncommutativity parameter
that for a configuration of a D instanton (and not an anti-D instanton) bound to a D3
brane, the Fayet-Iliopoulos term only depends on the anti-selfdual part of B. The selfdual
part gets projected out by the anti-selfdual ’t Hooft symbol η̄. If we now think about
the effective theory on the D3-D7 intersection with B field as connected to the effective
action of the D3-D(-1)-System via dimensional reduction, Dc corresponds to the triplet
(D,F1, F2) of auxiliary fields in the N = 2 vector multiplet, with quantum numbers listed
in table 4.1. The index c thus transforms in the fundamental representation SU(2)R-
symmetry, and the triplet of fields is in the adjoint representation of the gauge group U(Nc).
Furthermore, the gauge coupling on the D instanton g(−1) after dimensional oxidation
becomes the gauge coupling on the D3 branes of the D3-D7 system. Note that the B field in
[117] is dimensionless, while in this work it has dimension of energy2. After an appropriate
SU(2)R transformation which maps (D,F1, F2) 7→ (D, 0, 0), where D is considered the “z
component” in the three-dimensional field space on which SU(2)R ≃ SO(3) acts, I thus
conclude that the low energy effective action on a D3-D7 intersection in flat space-time
with a constant B field in the directions on the D7 brane which are transversal to the D3
brane contains an additional Fayet-Iliopoulos term

η̄3
mnθ

mn

4g2
Y M

∫

d4x d2θ d2θ̄ trV . (4.47)

Note that the normalisation is the correct one to generate the right hand side of equa-
tion (4.43), namely

ζ = η̄3
mnθ

mn = 2(θ45 − θ67) ,
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where I used the standard form of the third anti-selfdual ’t Hooft symbol (A.8). Of course
also the field theory in the D7 directions transverse to the D3 brane becomes noncommuta-
tive via the mechanism explained in section 4.3.1, but the N = 4 theory on the D3 branes
stays a commutative field theory.

The authors of [117] also discussed the different possible point particle limits in the D3 −
D(−1) system. In particular, there is a limit in which g(−1) is held fixed while α′ → 0, which
necessarily decouples the D3 brane degrees of freedom by sending the gauge coupling g3 to
zero. Before dimensional reduction, i.e. in the D3-D7 setup, this corresponds to the limit
in which the gauge coupling on the Nc D3 branes, gYM, is held fixed, which then implies
that 7-7 string degrees of freedom, i.e. the ones on the flavour brane, decouple from the
3-3 and 3-7 strings. This is exactly the open string sector decoupling limit described in
section 2.3.6.

To summarise, I conclude that from the point of view of the flat space D3-D7 intersection
theory with a constant anti-selfdual B field along the 4567 directions of the D7 brane
induces a Fayet-Iliopoulos term in the N = 2 theory (2.140). This term will survive
the decoupling limit necessary to set up the AdS/CFT correspondence with the open
string sector, and thus the field theory side of the correspondence will include this Fayet-
Iliopoulos term. On the gravity side of the correspondence the decoupling limit also works
as explained in section 2.3, with the exception that now also the energy scale B = B̃/(2πα′)
has to be held fixed in addition to the radial energy scale u = r/(α′). These observations
motivate an extended AdS/CFT conjecture which includes the pure gauge B field in AdS5×
S5 plus noncommutative instantons on the embedded D7 probe branes. This setup is
conjectured to be dual to the N = 2 flavour theory (2.140) with the additional Fayet-
Iliopoulos term (4.47). The remaining two sections of this chapter elaborate on the precise
statement and several tests of this conjecture.

4.4 Holographic Fayet-Iliopoulos Term from Internal

Noncommutativity

In the last section we saw evidence for an extended AdS/CFT correspondence including a
Fayet-Iliopoulos term in the N = 2 field theory with flavour and a constant Kalb-Ramond
field on the D7 probes. In this section I thus turn to the analysis of Nf D7 brane probes
in the near horizon limit of Nc D3 branes with a B field switched on, in order to find
evidence for this conjecture. The Nf D7 probe branes are embedded according to table
2.9. Replacing the Nc D3 branes by the near horizon limit yields the background (4.1)-
(4.3). Additionally, a constant Kalb-Ramond B field is switched on in the ~y-directions.
Due to H = dB = 0 and a vanishing C2 field, the supergravity solution (4.1)-(4.3) is not
perturbed. In the following I use the skew-diagonalized form

B = b1dy
4 ∧ dy5 + b2dy

6 ∧ dy7 . (4.48)
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This form can always be reached by an SO(4) rotation on ~y, and may be specialized
further to the selfdual case b1 = b2 = b or to the anti-selfdual case b1 = −b2 = b.
The former (latter) case yields upon usage of the relation (4.37) a selfdual (anti-selfdual)
noncommutativity parameter θ. In this background probe D7 branes are embedded by
specifying z8(ym) and z9(ym), such that the equations of motion of the D7 brane action
SD7,

SD7 = SDBI + SWZ , (4.49)

SDBI = −µ7

gs

∫

D7

d8ξ STr
√

− det (P [G+B] + 2πα′F ) , (4.50)

SWZ =
µ7

gs

∫

D7

STrP [C(4)] ∧ eP[B]+2πα′F , (4.51)

are fulfilled. The pull-back of the background metric gµν and Kalb-Ramond field Bµν is
denoted by P . STr is the symmetrised trace prescription of Tseytlin [190]. This prescription
is known in general to be correct only for the lowest several orders of α′, but for special
BPS configurations the series will terminate and is believed to be correct to all orders in
α′. Also, since both C4 and B are in the directions of the D7 world volume, there is no
Myers polarisation effect [282] to be expected in this configuration.

For one D7 brane (Nf = 1) one can readily show that in the presence of a B field the usual
embedding z8 = 2πα′m, z9 = 0 is no longer a solution of the equations of motion of the
D7 brane action, unless m = 0. Therefore I will only study massless embeddings of the D7
probe branes, i.e.

z8 = z9 = 0 . (4.52)

The case of one D7 brane will be of major interest in the following, since noncommutative
instantons do not have commutative counterparts for a U(1) gauge group. Also, the non-
commutative instanton solutions are best understood and simplest for gauge group U(1).
Since there is no polarisation effect happening in the setup considered here, once can also
expect the flat embedding to be a valid solution of the nonabelian embedding equations
by diagonalising the hermitian Nf ×Nf matrices Z8,9 and solving the equations of motion
for each eigenvalue.

Due to the analysis of the flat space D3-D7 system of section 3.2, the Fayet-Iliopoulos term
(4.47) is expected to survive the decoupling limit of AdS/CFT, and thus a description of
the mixed Coulomb-Higgs branch of the dual field theory in terms of noncommutative
instantons on probe branes is possible along the lines of [112–115, 320, 346–348]. This is
supported by the fact that the deformation induced on the instanton moduli space by the
Fayet-Iliopoulos term is rather mild, as only the small instanton limit is affected. The
map between instantons on the probe branes and the Coulomb-Higgs branch on the field
theory is therefore expected to carry over to the holographic setting, in analogy to the case
without B field [112,115].
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4.4.1 Global Symmetries

Let us first analyse the geometric symmetries of one D7 brane embedded in the background
with the B field (4.48). As can be seen from (4.1), the (~y, ~z)-directions perpendicular to
the boundary of AdS5 × S5 are flat up to the warp factor. The components of the B
field in the (~y, ~z)-directions can then be written as an antisymmetric 6 × 6-matrix Bij =
−Bji, transforming in the antisymmetric tensor representation [1, 0, 1] = 15 of the six-
dimensional rotation group SO(6). To find the possible representations compatible with
the symmetry breaking induced by the probe brane, I decompose this representation of
SO(6) into irreducible representations of the symmetry group which is preserved by the
flavour D7 brane, SU(2)L × SU(2)R × U(1)89. The branching rule for 15 of SO(6) into
SU(2)L × SU(2)R × U(1)89 is, according to table 58 of [349],

15 = (0, 0)0 ⊕ (1, 0)0 ⊕ (0, 1)0 ⊕ (
1

2
,
1

2
)2 ⊕ (

1

2
,
1

2
)−2 . (4.53)

Since I switch on a B field in the ~y-directions only, the U(1)89 charge is zero, which leaves
only the first three terms on the right hand side of (4.53). The first term corresponds to
a B field in the ~z-directions, which I do not want to consider here. The second and third
terms in the decomposition are, respectively, the selfdual and anti-selfdual parts of the B
field in the ~y directions (cf. e.g. [333]). These are the field configurations we are interested
in. These B field contributions are inert under the SO(1, 3) Lorentz group and thus dual to
scalar operators in the dual field theory. They are however not inert under the conformal
group SO(2, 4), and so the operators will have definite conformal scaling properties.

A general B field in the ~y-directions transforms both under SU(2)L × SU(2)R in the re-
spective vector representation and thus breaks the SU(2)L × SU(2)R ≃ SO(4) rotation
invariance down to U(1)L × U(1)R. The selfdual case b1 = b2 = b preserves the SU(2)R,
while the anti-selfdual case preserves the SU(2)L, which is obvious from the represen-
tations (1, 0)0 and (0, 1)0. As we have seen from the analysis of the D3-D(-1) system,
there is no Fayet-Iliopoulos term in the dual gauge theory in the case of self-dual B field
since the self-dual part of the noncommutativity parameter gets projected out by the
η̄3 in eq. (4.47). However, for an anti-selfdual B field transforming in the (0, 1)0 of the
SU(2)L × SU(2)R × U(1)89, there is a Fayet-Iliopoulos term present: The anti-selfdual B
field in the representation (0, 1)0 of SU(2)L × SU(2)R × U(1)89 has the right quantum
numbers to couple to the auxiliary field triplet (D,F1, F2), which transforms under (0, 1)0

of SU(2)L × SU(2)R × U(1) (see section 4.2). This is consistent both with the brane pic-
ture in which the Fayet-Iliopoulos term (4.47) in the D3-D(-1) system only depends on
the anti-selfdual part of the B field, as well as with the analysis of the noncommutative
ADHM construction [342]. For instantons, the small instanton singularity is only resolved if
the noncommutativity parameter is not purely selfdual, and vice-versa for anti-instantons.
The global symmetries on the gravity side are thus consistent with the existence of a holo-
graphic coupling of the form (4.47), in the standard holographic sense, of the B field to
the auxiliary field triplet (D,F1, F2).
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4.4.2 Scaling Dimensions

Since the operator dual to the (0, 1)0 part of the internal B field is not inert under the
SO(4, 2) symmetry, it has to transform nontrivially under conformal transformations. Since
the representations of the conformal group are labeled by the usual Lorentz quantum
numbers (s+, s−) plus the scaling dimension ∆ and we already found out that the operator
dual to (0, 1)0 must be a Lorentz scalar, we only need to know the scaling dimension
to characterise the operator completely. The other global symmetry quantum numbers
SU(2)Φ×SU(2)R×U(1)R are of course just given by the representation (0, 1)0 of SU(2)L×
SU(2)R × U(1)89.

The scaling dimensions for such a holographic coupling work out as follows: The operator
dual to the Fayet-Iliopoulos term, i.e. the triplet (D,F1, F2), has scaling dimension ∆ = 2.
This can also be deduced as follows. The chiral primary operator of the N = 2 gauge
multiplet is given by the scalar component of Φ3 and hence has scaling dimension one. By
applying the supersymmetry generators on the chiral primary twice, we obtain the Fayet-
Iliopoulos triplet of auxiliary fields of the N = 2 vector multiplet (D,F1, F2).

14 Therefore,
the scaling dimension of the operator dual to the Fayet-Iliopoulos term is

∆ = 1 + 2 · 1

2
= 2 , (4.54)

which is consistent with the coupling (4.47).

The quantum numbers of the N = 2 vector multiplet imply that the auxiliary fields
(D,F1, F2) transform in the (0, 1)0 representation of SU(2)L × SU(2)R × U(1)89, as can
be seen from the second line in table 4.1. Their scaling dimension is ∆ = 2 and they
are uncharged under U(1)f . Thus the coupling (4.47) has the right scaling dimensions, as
well as the correct quantum numbers under the global symmetries, to be interpreted as
the holographic version of the coupling (4.47) of the noncommutativity parameter to the
triplet (D,F1, F2).

4.4.3 Supersymmetry and No-Force Conditions

Another consistency check of the proposed AdS/CFT duality between the anti-selfdual B
field in AdS5 × S5 and the Fayet-Iliopoulos term (4.47) is matching of the supersymmetry
breaking pattern derived from the Dp-D(p+4) system in flat space [111, 117] with the
pattern derived from no-force conditions of probe branes in AdS5 × S5, as well as with the
κ-symmetry of the D7 brane embedding.

In flat space, a Dp-D(p+4) system is N = 2 supersymmetric if and only if B is selfdual. The
lower-dimensional brane can then be viewed as an instanton in the four additional directions

14The N = 2 vector multiplet in four dimensions splits up into the N = 1 vector multiplet V with
auxiliary field D and into an N = 1 chiral multiplet Φ3 with complex auxiliary field F = F1 + iF2.
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of the D(p+4) brane. Equivalently, Dp-D(p+4) or Dp − D(p+4) are supersymmetric if B
is anti-selfdual. This configuration corresponds to an anti-instanton. In the cases where B
has the selfduality properties which do not lead to a no-force condition, a Fayet-Iliopoulos
term is expected to be generated which parametrises the supersymmetry breaking.

To calculate the unbroken supersymmetry of the D3-D7 system, I embed a D7 probe
brane into the background given by (4.1)-(4.3) and (4.48). Following [322], I present a κ-
symmetry calculation for one probe D7 brane. I choose (xµ, ym) as the set of worldvolume
coordinates and consider only massless embeddings, i.e. z8 = z9 = 0. To describe dissolved
D3 branes in the D7 probe brane, a U(1) field strength Fab is switched on the worldvolume
of the D7 brane in the directions ym. This D7 probe brane preserves some supersymmetries
if there are nontrivial spinor solutions to the equation [350]

Γκǫ = ǫ , (4.55)

where ǫ is a Killing spinor of the AdS5 × S5 background and the κ-symmetry projector Γκ

for a D7 probe brane in this background is given by [351]

Γκ = e−a (iσ2) ⊗ Γ01234567 , (4.56)

where a is a function of Yik, which depends on Fij = P [B]ij + 2πα′Fij in a nonlinear way,

a =
1

2
√
H3

Yjkσ3 ⊗ Γjk . (4.57)

The gamma matrices used here fulfill the flat space Clifford algebra

Γµ,Γν = 2ηµν .

Using the identity

ΓmnΓ4567 = −1

2
ǫmnopΓop

for m,n, o, p running from 4 to 7, one can rewrite Γκǫ = ǫ in the form

exp

(

− 1

4
√
H3

σ3 ⊗ Γmn
[
Y +

mn (1 − Γ4567) + Y −mn (1 + Γ4567)
]
)

(iσ2) ⊗ Γ01234567ǫ = ǫ (4.58)

with Y ±mn = 1
2
(Ymn ± (⋆Y )mn) . The dual two-form ⋆Y is calculated with respect to the flat

metric δmn in the 4567-directions.

Let us first consider selfdual field strengths on the D7 brane, i.e. instantons. This
implies that only F+

mn will depend on the worldvolume coordinates of the D7 brane, and
F−mn = 0. For selfdual B field B−mn = 0 then also Y −mn = 0, but Y +

mn is unconstrained and
can depend on the worldvolume coordinates ym. Since the spinor ǫ in (4.58) is a constant
spinor fulfilling the kappa projection condition of a stack of D3 branes along the 0123
directions of flat space,

(iσ2) ⊗ Γ0123)ǫ = ǫ , (4.59)
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equation (4.58) can be fulfilled only if

(1 − Γ4567)ǫ = 0 .

Since the matrices [(iσ2) ⊗ Γ0123]
2 = Γ2

4567 = both square to unity, these two conditions
are projection conditions on the spinor ǫ, each projecting out half of its components. They
are compatible with each other since

[Γ0123,Γ4567] = 0 ,

and thus the setup with an instanton and a self-dual B field preserves one quarter of the
32 real supercharges of ten-dimensional space-time, i.e. N = 2 supersymmetry in four
dimensions. Note that these two conditions are exactly the same conditions for a probe
D7 brane in AdS5 × S5 with zero B field.

In the case of an anti-selfdual B field Y −mn = Bmn is no longer zero. Due to the factor

H
−1/2
3 in the exponent of (4.58), which also depends on the worldvolume coordinates of

the D7 brane, we additionally have to satisfy

(1 + Γ4567) ǫ = 0 .

Thus, the spinor ǫ has to satisfy both conditions (1 ± Γ4567) ǫ = 0. Since Γ4567 squares to
one it can only have eigenvalues plus or minus one, and thus imposing both conditions
sets the full spinor ǫ = 0. Therefore supersymmetry is completely broken, which is in
agreement with the above field-theoretical considerations. Note that in globally supersym-
metric theories a partial breaking of supersymmetry (i.e. from N = 2 to N = 1) is not
possible [296]. For an anti-D7 brane the sign of the right-hand side of (4.58) changes to
a minus sign, and thus one needs to impose (note Γ01234567 = Γ0123Γ4567) the background
projection condition (4.59), Γ4567ǫ = −ǫ and thus Y +

mn = 0 for preserving N = 2 super-
symmetry. Anti-D7 branes in AdS5 × S5 will preserve N = 2 supersymmetry if and only
if the B field is anti-selfdual and they carry anti-selfdual gauge field flux, i.e. if they carry
anti-instantons.

This supersymmetry pattern for instantons can be confirmed by no-force conditions for
Nf D7 probe branes. An expansion of (4.50) up to O(α′2) yields for selfdual B (b1 = b2 = b)

SDBI + SCS = −µ7

gs

∫

d4x

∫

d4y

(

1 +
1

2

(2πα′)2

H3 + b2
trF−F−

)

, (4.60)

where F− is defined in (4.29). The trace runs over SU(Nf ) indices. For calculational
details see Appendix C.1. The crucial feature in the calculation is that contributions of
O(α′) coming from mixed terms including B and F cancel between the DBI-part and the
Wess-Zumino part of the brane action. Thus, despite the presence of the B field, the
conclusion from this calculation is as in the case without B field, described in section 4.2:
There is no force exerted on probe branes if both the B field and the field strength on the
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branes are selfdual, and instantonic solutions still solve the gauge theory living on the D7
branes, at least to O(α′2). For an anti-D7 brane in an anti-selfdual B field one would find
that anti-instantons are force-free.

Assuming that the full DBI nonabelian action (4.50) holds for instantonic configurations
and that the diagonal embedding Zi = zi

Nf×Nf
= 0 solves the nonabelian embedding

equations (and not specifying the actual trace prescription), the no-force condition (4.60)
can also be obtained in a different way, following [320]: Rewrite the DBI action as

SDBI = −µ7

gs

∫

d4xd4y
√

− det (P [G] + F) (4.61)

= −µ7

gs

∫

d4xd4y

√

− det
(

ηµν/
√

H3

)
√

det
(√

H3δij + Fij

)

(4.62)

= −µ7

gs

∫

d4xd4y
√

det (δij +Mij) . (4.63)

Here I defined the Levi-Civita symbol ǫ̃01234567 = +1 and the volume element through
d4xd4y = 1

8!
ǫ̃µ1...µ8

dxµ1∧· · ·∧dxµ8 . Now one can use the following identity for antisymmetric
four by four matrices M with definite duality properties (∗M)ij = 1

2
ǫijklMkl = ±Mij,

det(1 +M) = 1 +
1

2
M2 +

1

16
(∗MM)2 =

(

1 +
M2

4

)2

. (4.64)

Here M2 = MijMij. Thus, for (anti)selfdual F = B + 2πα′F ,

∗ (B + 2πα′F ) = ±(B + 2πα′F ) , (4.65)

the DBI action acquires a simpler square-root free form,

SDBI = −µ7

gs

∫

d4xd4y

(

1 +
M2

4

)

. (4.66)

The Chern-Simons action can be evaluated in a similar way, yielding

SCS = ±µ7

gs

∫

d4xd4y
M2

4
, (4.67)

where the sign depends on the duality properties of M . Thus the D7 brane action reads

SD7 = SDBI + SCS = −µ7

gs

∫

d4xd4y

(

1 +
M2

4
(1 ∓ 1)

)

, (4.68)

Therefore, as found in the κ-symmetry calculation before, B + 2πα′F has to be selfdual
for a D7 brane in order to have a force-free situation. For an anti D7 brane, the opposite
holds. If B and F have different selfduality properties, supersymmetry will be broken
and a Fayet-Iliopoulos-term will be created. Table 4.2 lists the different possibilities for
(non)supersymmetric configurations.
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∗B = +B ∗B = −B
D3-D7 N = 2 SUSY if ∗F = +F no SUSY, FI

D3-D7 no SUSY, FI N = 2 SUSY if ∗F = −F

Table 4.2: Supersymmetry conditions

4.4.4 Duality Conjecture: Fayet-Iliopoulos Terms from Kalb-
Ramond Fields

To summarise, the above elaborations showed the following:

1. The global symmetries of the AdS5×S5 background with the flatly (zi = 0) embedded
D7 probe brane and an anti-selfdual B field, which are SU(2)L × U(1)R × U(1)89,
match the field theory symmetries of the N = 2 theory (2.140) with the additional
Fayet-Iliopoulos term coupling (4.47), namely SU(2)Φ×U(1)×U(1)R, where the first
U(1)R factor is the Cartan subgroup of SU(2)R. The presence of the Fayet-Iliopoulos
coupling (4.47) will thus break the SU(2)R symmetry.

2. The scaling dimension of the operator dual to the Fayet-Iliopoulos term, ∆ = 2,
matches the scaling dimensions of the triplet (D,F1, F2) of auxiliary fields of the
N = 2 vector multiplet.

3. The supersymmetry breaking pattern summarised in table 4.2 obtained from cal-
culating the preserved supersymmetries of a D7 brane with (anti)-selfdual gauge
field flux embedded in either selfdual or anti-selfdual B field backgrounds matches
the appearance of a Fayet-Iliopoulos term in the noncommutative ADHM equations
(4.43)-(4.44).

Based on this evidence, I thus propose the following extended AdS/CFT conjecture:

The degrees of freedom of Nf D7 brane probes with k units of instanton charge
on its worldvolume, embedded flatly into AdS5×S5 with a constant anti-selfdual
B field in the ~y-directions, are dual, in the standard holographic sense, to the
N = 2 field theory (2.140) for massless quarks at strong coupling, with the
additional Fayet-Iliopoulos coupling (4.47).

In particular, the F term equations are given by (4.8)-(4.10) with m = 0, and the D term
equation is modified by the Fayet-Iliopoulos term to

ζ Nc×Nc
= |qi|2 − |q̃i|2 + [Φ1,Φ

†
1] + [Φ2,Φ

†
2] . (4.69)

Note that in the AdS/CFT correspondence, a gravity dual does not only describe a dual
field theory, but also fixes a particular state (which does not necessarily need to be a vac-
uum state), in which relevant quantities are computed [240]. I thus propose that the D7
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probe with instanton charge k describes nonsupersymmetric Coulomb-Higgs states of the
dual field theory, which are however not vacua of the theory. This can be seen from equa-
tion (4.69), which cannot be strictly fulfilled by a Coulomb branch ansatz with nonvanishing
Φ1,2 expectation value but vanishing squark vacuum expectation values. The supersymme-
try breaking via the Fayet-Iliopoulos term thus strictly lifts the Coulomb branch, which is
the holographic manifestation of the fact that D3 branes sitting outside of the D7 branes
in the flat space construction will be attracted towards it and finally dissolve in the D7
brane. In the holographic setup this instability is somewhat hidden, since we neglect the
backreaction of the D7 probe onto the AdS5×S5 background. I will comment in section 6.2
on how this instability could show up again in the holographic setup.

The field theory on the D7 brane in the 4567 direction is expected to become equivalent to
a kind of a noncommutative U(Nf ) Yang-Mills theory, in the sense that there is a Seiberg-
Witten map [111], a field redefinition of the commutative DBI fields to a noncommutative
Yang-Mills theory (4.38). However, since the background space AdS5 × S5 is curved, the
induced geometry of the 4567 directions will only be flat Euclidean space up to a warp
factor depending on |~y|2. Not much is known about noncommutative gauge theories on
curved space-times and even less is known about the instanton solutions of such theories.
However I have argued that there is good evidence that many aspects of the physics of
flat space D3-D7 intersections with B field carry over to the holographic setting. I will
thus assume in the following that the noncommutative ADHM construction for instantons
is applicable also in the case of the unknown noncommutative gauge theory on the D7
brane. Since in flat space the noncommutative ADHM equations coincide with the Fayet-
Iliopoulos deformed D and F term equations, and since the operator |~̂y| is also well-defined
in the flat space noncommutative setup, there is a chance to gain more evidence for the
above conjecture by considering a noncommutative gauge theory in flat space. In any
case, finding the actual form of the induced noncommutative field theory on the D7 brane
would be an extremely nontrivial research project of its own, on which I will comment in
section 6.2.

In the next section I will thus study noncommutative instantons in flat space satisfying
the noncommutative ADHM equations on the supergravity side. An explicit example will
be the Nekrasov-Schwarz instanton for a U(1) gauge theory [119], for which the geometric
symmetry breaking will be calculated and compared to the field theory symmetries of the
nontrivial Coulomb-Higgs state.

4.5 Field Theory Implications of Noncommutative In-

stantons

In this section I study some predictions of the proposed correspondence in the explicit
example of a noncommutative U(1) instanton. I consider U(1) instantons since they do
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not have a commutative counterpart and thus should give rise to new phenomena in the
dual gauge theory which may be easily identified. Furthermore, the technical complications
of dealing with solutions to noncommutative field theories are smallest in the case of the
simplest charge one noncommutative U(1) instanton.

4.5.1 The U(1) Nekrasov-Schwarz Instanton

In this section the instanton constructed by Nekrasov and Schwarz is reviewed. Following
[119], I introduce complex coordinates z0 = y4 + iy5, z1 = y6 + iy7, with commutators

[z0, z̄0] = 2θ45 , [z1, z̄1] = 2θ67 , [z0, z1] = 0 . (4.70)

Hence θmn is given in a skew-diagonalized form (4.45), which can be achieved by an appro-
priate SO(4) rotation. This basis has the advantage that the complex coordinate operators
can be mapped onto two copies of standard bosonic Fock space generators. For θ45 and
θ67 both negative,15 the map is

a = z̄0/
√

2|θ45| = (a†)† , b = z̄1/
√

2|θ67| = (b†)† .

If one or both of the components of θ change sign, the roles of creation and annihilation
operators are interchanged. Again, θ45 = ±θ67 respectively correspond to a purely selfdual
or anti-selfdual noncommutative space. In this section I consider an anti-selfdual θ.

The solution constructed in [119] is an anti-selfdual one, i.e. an anti-instanton. Within
the framework of the D3-D7 system with a Fayet-Iliopoulos term, we need to consider
an instanton instead. By a parity transformation y5 7→ −y5,16 amounting to the exchange
z0 ↔ z̄0 already encountered in the ADHM construction in section 4.2, the solution of [119]
is straightforwardly changed to be selfdual,

A =
1

d
(
d+ ζ

2

) [z0dz̄0 + z̄1dz1] , (4.71)

F =
ζ

(d− ζ/2)d(d+ ζ/2)
[f3(dz0dz̄0 + dz1dz̄1) + f+dz0dz1 + f−dz̄1dz̄0] , (4.72)

with
f3 = z1z̄1 − z̄0z0 , f+ = 2z̄0z̄1 , f− = 2z1z0 .

Although the radial distance operator

d =
7∑

i=4

(yi)2

15By this choice, I follow the conventions of [119].
16Since the Pontryagin density is a pseudoscalar, parity changes the sign of the instanton number

∫
TrF ∧ F .
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is invariant under parity, its form in complex coordinates changes, compared to [119], to

d = z̄0z0 + z̄1z1 . (4.73)

Note that the parameter ζ = θ45/4 = −θ67/4 is negative in our conventions (which are
those of [119]). Clearly equation (4.72) fulfills the complexified selfduality equations

Fz0z̄0
= Fz1z̄1

, Fz̄0z1
= Fz0z̄1

= 0 , Fz0z1
dz0 ∧ dz1 = (Fz̄0z̄1

dz̄0 ∧ dz̄1)
† . (4.74)

It is easy to show that this solution has instanton number plus one by first noticing that
anti-selfduality F+ = 0 changes into selfduality F− = 0 under parity, and then realizing
that the Lagrange density given in [119],

L = − 1

8π2
FmnFmn =

ζ2

4π2

1

d2 (d− ζ
2
) (d+ ζ

2
)
Π , (4.75)

is invariant under z0 7→ z̄0. The reason is that this only amounts to exchanging the
annihilators and creators in the z0 Fock space. The projector Π = − |0, 0〉〈0, 0| = − :
e−a†a−b†b : is normal ordered [352] and thus invariant. The integral-trace over the Lagrange
density stays positive under parity, while the relation between the latter and the instanton
number changes sign, and thus the solution (4.72) needs to have Pontryagin number +1,
since the anti-instanton of [119] has −1.

The Nekrasov-Schwarz solution (4.72) does not have a freely selectable size modulus, in
contrary to the BPST instanton [338]. This is expected since the dimensionality of the
instanton moduli space is 4Nfk. The Nf = 1 one-instanton solution thus has a four-
dimensional moduli space, which is a copy of R

4 encoding the instanton position, but it
has no size modulus. Note however that a size of the instanton can still be defined by
the squark expectation value (cf. equation (4.87)) q =

√
ζ =

√

2|θ45 − θ67|. It is fixed
by the Fayet-Iliopoulos term. This also is exactly the minimal separation above which a
Dp-D(p+4) system in flat space does not have a tachyon [322]. Exactly at this separation
one of the 3-7 string modes becomes tachyonic, and the system ends up in the state
with an instanton on D(p+4) after tachyon condensation [321]. The squark expectation
value sets the instanton size as expected, as was argued in section 4.3 for the equivalence
between D and F term equations on the Higgs branch and ADHM equations also in the
noncommutative setup. The Fayet-Iliopoulos deformation of the D and F term equations
thus removes the connecting point between the Coulomb- and Higgs branch of the moduli
space of field theory vacua, which amounts to regularising the small instanton singularity.

Now let us assume the Nekrasov-Schwarz instanton solves the equations of motion of the
yet to be known noncommutative field theory on the 4567-directions of the D7 brane. The
instanton background further breaks the remaining symmetries. Using as a basis of
rotations in R

4 the rotations in the plane of two directions, e.g. the 4 − 5-plane, one can
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parametrize an infinitesimal SU(2)L × U(1)R rotation of the coordinate operators by

z′0 = (1 + i(c+ d))z0 + (a+ ib)z̄1 , (4.76)

z̄′0 = (1 − i(c+ d))z̄0 + (a− ib)z1 , (4.77)

z′1 = (1 + i(c− d))z1 − (a+ ib)z̄0 , (4.78)

z̄′1 = (1 − i(c− d))z̄1 − (a− ib)z0 . (4.79)

Here a, b, c generate SU(2)L-transformations (c generates U(1)L), while d generates U(1)R

rotations. By evaluating the transformation law for (operator-valued) one-forms

A′i(z
′)dz′i = Ai(z)dz

i (4.80)

to first order in the rotation parameters, one can show that the U(1) one-instanton solution
(4.71) leaves the full

SU(2)L × U(1)R (4.81)

symmetry invariant.

4.5.2 Implications for the Dual Gauge Theory

The dual field theory of a probe D7 brane embedded in AdS5 × S5 as in (4.52) is a N = 2
supersymmetric U(Nc) gauge theory, which has one massless hypermultiplet in the fun-
damental representation of the gauge group, coupled to the N = 4 vector multiplet in
the adjoint representation. As was argued in section 4.4, switching on a constant anti-
selfdual B field on the gravity side is dual to Fayet-Iliopoulos terms for the auxiliary fields
(D,F1, F2) of the N = 2 U(1) ⊂ U(Nc) vector multiplet.

Due to the special form (4.48) of the B field (with b1 = −b2), only the Fayet-Iliopoulos
term for the auxiliary D field is present. The global symmetries of the gauge theory (which
were discussed in section 4.2) which coincide with the symmetries of gravity side setup are

SO(1, 3) × SU(2)Φ × U(1) × U(1)R × U(1)f , (4.82)

with U(1) being the remaining unbroken part of the SU(2)R, unbroken U(1)R symmetry
(corresponding to rotations of the zi), and global flavour symmetry U(1)f . Note that
the conformal symmetry SO(2, 4) is broken by the B field (which is dimensionful) to the
Lorentz group.

Consider the equations of the proposed dual gauge theory which determine the supersym-
metric vacua. These are the F and D term equations

0 = Φ3q = q̃Φ3 , (4.83)

0 = [Φ1,Φ3] = [Φ2,Φ3] , (4.84)

0 = qq̃ + [Φ1,Φ2] , (4.85)

ζ Nc×Nc
= |q|2 − |q̃|2 + [Φ1,Φ

†
1] + [Φ2,Φ

†
2] . (4.86)
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First let us consider the case in which all squark vacuum expectation values q̃ and q vanish.
Since U(1) factors drop out of the commutator terms in (4.86), and since the ζ Nc×Nc

term
is in the U(1) ⊂ U(Nc), it is impossible to solve (4.86). Therefore, a pure Coulomb state is
not supersymmetric, as expected from the flat space brane picture. The Fayet-Iliopoulos
term lifts the whole Coulomb branch of vacua.

Now we are interested in the mixed Coulomb-Higgs state which is dual to the Nekrasov-
Schwarz solution with instanton charge k = 1. Since on the gravity side the gauge group
was chosen to be the U(1)f residing on the single D7 brane, there is only one flavour present
in the field theory. The number of nonvanishing squark components qa is related to the
instanton charge, and thus only one colour component of the squark fields q and q̃ in the
dual gauge theory is nonvanishing. I choose the colour direction to be the first one, and
the respective component will be called q1 and q̃1. Due to the ansatz (4.12) and (4.13) for
the mixed Coulomb-Higgs branch equation (4.83) is trivially satisfied. Using this ansatz
the F term equation (4.84) gives the constraint (4.14). Furthermore the equations (4.85)
and (4.86) reduce to

0 = q1q̃1 = |q1|2 − |q̃1|2 − ζ . (4.87)

As already discussed, the other D term equations involving qa and q̃a for a = 2, . . . , Nc

cannot be satisfied, which reflects the instability of the Coulomb part of the Coulomb-Higgs
branch.

Solving (4.87), we find that the gauge theory with only one flavour has a unique state with
squark vacuum expectation value at strong ’t Hooft coupling, with the expectation value
given by

q1 =
√

ζ , q̃1 = 0 . (4.88)

We recognize that the squark vacuum expectation value is in one-to-one correspondence
with the size of the U(1) noncommutative instanton on the gravity side, as elaborated
in section 4.5.1. This is in agreement with the fact that except of the position moduli,
noncommutative U(1) instantons do not have additional moduli and their size modulus is
given by the noncommutativity parameter of the underlying space-time [321].

Due to the squark vacuum expectation values q1 =
√
ζ and q̃1 = 0, the flavour symmetry

U(1)f , the R-symmetry U(1) ⊂ SU(2)R and the U(1) part of the U(Nc) gauge group are
broken. Since the squark vacuum expectation values (q, q̃) transform under U(1)f as

q → eiαf q, q̃ → e−iαf q̃ (4.89)

the U(1)f rotation can be undone by an appropriate U(1) ⊂ SU(2)R transformation of the
form

q → eiαRq, q̃ → eiαR q̃. (4.90)

Therefore, the diagonal subgroup diag(U(1) × U(1)f ) defined by

αf = −αR
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Object Coordinates

xµ ym

ρ S3 zi

AdS5 × S5 SO(2, 4) SO(6) ≃ SU(4)

D7 SO(2, 4) SU(2)L × SU(2)R U(1)89

∗B = −B SO(1, 3) SU(2)L × U(1)R U(1)89

Eq. (4.71) SO(1, 3) SU(2)L × diag(U(1)R × U(1)f ) U(1)89

Table 4.3: The symmetry breaking pattern (see text for an explanation of the colour
coding).

is preserved by the squark vacuum expectation value. Note that this further breaking of the
symmetries is not seen in the symmetry calculation of the previous section 4.5.1. Possible
reasons for resolving this mismatch are discussed in section 6.2. In short, it might be that
the rather simple symmetry calculation of the previous section neglects the fact that space-
time and gauge symmetries do mix in noncommutative field theories, i.e. that the U(1) ⊂
SU(2)R ⊂ SO(4)4567 rotations actually change the gauge choice underlying the Nekrasov-
Schwarz solution and thus might not all be independently preserved. The symmetry
breaking pattern is summarised in table 4.3. The colour coding is as follows: Red,
yellow and blue indicate the range of coordinates which are acted upon by the respective
groups given there. The mixed-color orange and green fields indicate coordinates which
are acted upon by both of the two adjacent symmetry transformations. In the last line I
included the field theory symmetries rather than the geometric symmetries of the AdS side
since, although the situation is not fully understood yet, I find this result more trustworthy.

Finally, for completeness let us consider the case of the Higgs vacuum, for which all D3
branes are dissolved in the D7, and for which an AdS/CFT dual is not describable in the
probe limit. The Higgs vacuum is given by Φ3 = 0 and |qa| =

√
ζ, q̃a = 0 for a = 1, . . . , Nc.

Furthermore, all commutators involving Φ1,Φ2 and Φ3 vanish. It is easy to verify that
the F and D term equations are simultaneously satisfied. The Higgs vacuum is therefore
supersymmetric. This vacuum corresponds to a charge Nc noncommutative U(1) instanton
on the D7 brane which, since the on-shell action of instantons is proportional to their
charge, violates the probe approximation.
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Chapter 5

A Matrix Model Proposal for the
Robertson-Walker Universe

5.1 Introduction and Summary

In the last two chapters, different generalisations of the AdS/CFT correspondence, a real-
isation of the holographic idea arising from string theory, were presented. In this chapter
I turn to another form of holographic description of gravitational theories in terms of
nongravitational ones, namely the description of quantum gravity (and in particular in
eleven dimensions of M-theory) by quantum mechanical models of hermitian matrices,
so-called matrix models. The main result of this chapter will be the proposal of a matrix
model which ought to describe the physics in a well-known cosmological background, the
Robertson-Walker geometry. This chapter thus is concerned with holographic descriptions
of cosmology and in particular of the big bang singularity.

Recent astronomical data, in particular the WMAP three-year data of the cosmic mi-
crowave background fluctuations [353], shows that the current universe is very well de-
scribed by the spatially flat Robertson-Walker geometry. This indicates that the universe
has evolved from a big bang singularity, near which quantum effects of matter and gravity
are expected to have played an equally important role. This expectation is based on one
hand on the phenomenon of coupling constant unification observed in the standard model
of particle physics: Due to the renormalisation group running of the coupling constants
in the standard model, the coupling strength of all four fundamental interactions (grav-
ity, electroweak and strong interaction) grows large (of order one) at energies of around
1015GeV. On the other hand, per definition the Planck mass is the mass scale at which
the Compton wavelength of a particle is roughly equal to the Schwarzschild radius of a
Schwarzschild black hole of the same mass. Since the Compton wavelength λ = h/(Mc)
is a purely quantum mechanical quantity while the Schwarzschild radius (2.4) is a purely
gravitational quantity, the Planck mass is the energy scale at which gravitational effects
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such as black hole formation and quantum effects such as the energy-time uncertainty are
equally strong. In particular, quantum fluctuations in the local energy density are strong
enough to create “virtual black holes”1. Thus the physics at the Planck scale cannot be de-
scribed any more as quantum field theory on a curved but otherwise classical background,
but must be described by a fully quantised description of both matter and gravity.

While a completely satisfactory quantum gravitational description of the big bang sin-
gularity has not been achieved yet, string theory and M-theory, its eleven-dimensional
origin, is believed to be a candidate for a consistent theory of quantum gravity. In par-
ticular M-theory, since it is the strong-coupling completion of ten-dimensional type IIA
string theory, is believed to be applicable to realistic cosmological singularites at which
the coupling strengths in both the matter and gravity sectors, as set by the string cou-
pling gs in string theory, equally grow large. Although a fully satisfactory formulation of
M-theory has not been found yet either, there is evidence based on the work of Banks,
Fischler, Shenker and Susskind [42] that certain models of supersymmetric matrix quan-
tum mechanics capture the full nonperturbative physics of M-theory. As will be explained
in section 5.3.1, this remarkable conjecture relies on properties of D0 branes, which in a
specific sense behave similar to free particles and thus can be used to build a state space
for M-theory similar to the Fock space in ordinary quantum field theory.

Although originally formulated in eleven-dimensional flat space, matrix model and 1+1-
dimensional supersymmetric Yang-Mills descriptions2 of M-theory on time dependent
backgrounds have lead to a number of insights [361, 362] (see [360] for a review). The
main focus of these studies so far has been on supersymmetry-preserving orbifold, plane
wave or linear dilaton backgrounds, but not on the physically more relevant (supersymme-
try breaking) Robertson-Walker geometry. Nevertheless it has been for example possible to
show in the 1+1-dimensional supersymmetric Yang-Mills description of M-theory on the
linear dilaton background that interactions give rise to a one-loop effective potential [363]
which falls off sufficiently fast at late times and for large brane separations. This implies
that the D1 branes behave as distinct free test particles probing a smooth nine-dimensional
transverse space. This phenomenon is interpreted as the emergence of a classical space-
time3 out of the quantum evolution around the singularity, since if separated branes (in

1Though it is barely understood how to describe virtual black holes in higher-dimensional proposals
for quantum gravity, it is possible to give a precise meaning to this term in two-dimensional dilaton
gravity theories coupled to bosonic and fermionic matter [354–359]. In these theories effective vertices
for gravitational interactions between matter fields can be calculated by integrating out the gravitational
sector of the theory. Those effective vertices can be given an interpretation as a continuous sum (i.e.
integration) over virtual black hole geometries.

2These two-dimensional supersymmetric Yang-Mills theories are related to the IIA BFSS matrix model,
which is the low energy effective descriptions of D0 branes in type IIA theory in the infinite momentum
frame as follows: Discrete Light-Cone Quantisation of M-Theory on 1,8 × S1

R9
× S1

Rs
leads to IIA string

theory on 1,8 × S1
R9

. In this procedure, as will be explained in detail later, the string length ℓs → ∞
has to be taken to infinity, and thus the physics is best described after a T-duality along the S1

R9
, which

decompactifies in this way. This yields 1+1-dimensional SYM theory on flat 1,9 [360].
3Strictly speaking time does not so easily emerge in matrix models since it is used as the evolution pa-
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a vacuum in which the transverse scalar matrix fields commute with each other) do not
interact their coordinates can be interpreted as the “points” of the underlying manifold.
In other, more symmetric models, the resolution of the singularity has been made precise
too. In general, singularity resolution in string theory is connected to the breakdown of
the effective field theory description in terms of gravity due to the appearance of some
light states near the singularity. These states can be perturbative or nonperturbative, i.e.
strings or branes. They become massless as the singularity is approached and thus should
be included in a good effective description at the singularity rather than being integrated
out. These additional degrees of freedom, whose emergence may be interpreted in specific
circumstances in terms of an enhancement of symmetries, resolve the singularity via an
essentially nonsingular dynamics, in the sense that by including these new light modes in
calculations it is possible to obtain well-defined and most importantly finite answers for
observables which were ill-defined in the effective theory [360]. In the context of matrix
models this happens very naturally, since off-diagonal modes of the matrices become light
if the D0 branes come close together at the singularity. The matrix model itself is then the
valid effective description including the light modes, and meaningful observables have to
be identified and investigated in order to learn about how certain singularities are resolved.

However, since the concordance model of cosmology is based on the Robertson-Walker
geometry and describes our universe very accurately, one of the most important tasks
for string/M-theory as a theory of quantum gravity thus is to provide a resolution of
the big bang singularity in the same controlled fashion as just described. In particular,
it would be highly interesting to find matrix models, either from a bottom-up approach
or derived from string theory, which reproduce certain aspects of the physics near the big
bang singularity. One technical obstacle posed by the Robertson-Walker geometry is, aside
from its nonsupersymmetric nature, the lack of a null isometry. Hence the conventional
light-cone quantisation of the M2 brane is not applicable and a new approach is required.

In this chapter I present work obtained in collaboration with Johanna Erdmenger and
Jeong-Hyuck Park and published in [3], which provides such an approach. The character-
istic feature of this formalism is the presence of a Hamiltonian constraint, which replaces
the gauge-fixing constraints in the light-cone approach to membrane quantisation. This
will lead to a proposal for a matrix model which includes in its spectrum semiclassical
states describing bosonic membranes in the Robertson-Walker geometry. The existence
of such states is ensured per constructionem through deriving the matrix model from the
Nambu-Goto action for a bosonic membrane, which is the bosonic part of the world-volume
action of an M2 brane. The underlying rationale is, as explained in detail later, that a
quantisation of the spatial world volume of a membrane leads directly to a description of its
dynamics in terms of “bits”, which are, via our experience with the flat eleven-dimensional

rameter for the quantum evolution of the model. Nevertheless I will often speak of “space-time emergence”
in this chapter, since this is the commonly used term in the literature. In light-like dilaton backgrounds,
the coupling decreases from infinity to zero as time passes from the past to the future, in this sense time
is emergent in these models.
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situation, identified with D0 branes in type IIA string theory (or at least the bosonic part
of their effective action). The quantisation of the spatial membrane world volume is a
deformation quantisation which introduces noncommutativity for the spatial world volume
coordinates. In this approach to derive matrix models it is important to fix the membrane
world volume diffeomorphisms up to static area preserving ones, since these are exactly the
automorphisms of the two-dimensional noncommutative algebra [σi, σj] = iǫij. In the ap-
proach presented here, this gauge fixing is not achieved by fixing the light-cone momentum,
but by fixing the Hamiltonian density to a particular world volume profile. In this way it
becomes possible to construct a tree-level matrix model for the realistic Robertson-Walker
geometry and demonstrate the emergence of classical space-time from an originally fuzzy
geometry.

This chapter is organised as follows: I begin with an analysis of the geodesic motion of
a single point particle, i.e. by analysing the dynamics of geodesics, in the Robertson-
Walker geometry in section 5.2. In particular, I propose a classical mechanical model with
a particular global so(1, 2) symmetry and I show that for two different parameter regimes
and different choices of one-dimensional diffeomorphism gauge, this mechanical system de-
scribes either the geodesic motion of a point particle in the spatially flat Robertson-Walker
background, or homogeneous metric fluctuations around the Robertson-Walker geometry
in Einstein-Hilbert gravity with a positive cosmological constant. More precisely, in each
case a conserved quantity can be found such that any sector with fixed value of the quan-
tity is described by the conformal mechanics. In section 5.3, I first review in some detail
the connection between string theory, M-theory and matrix models in section 5.3.1. In
section 5.3.2 I present the main result of this chapter, namely the derivation of a matrix
model from the action of the bosonic membrane in the Robertson-Walker background. I
furthermore show that imposing the Hamiltonian constraint in the matrix model ensures
the emergence of space-time. Emergence here means that the Hermitian matrices in the
matrix model, whose eigenvalues encode the positions of D-particles probing the underlying
space-time geometry, become simultaneously diagonalisable once the size of the universe
grows significantly larger than the Planck length. Once the matrices are simultaneously
diagonalisable, the D0 brane positions can be simultaneously measured and thus the un-
derlying space-time geometry they probe is a smooth manifold structure, and geometric
quantities become classically well-defined [362]. A further summary and discussion of the
results as well as possible further developments can be found in section 6.3.

5.2 A Classical Mechanical Model with Dynamical

Conformal Symmetry

In this section I first introduce a general classical mechanical model which depends on two
parameters c1 and c2 and has a dynamical so(1, 2) symmetry, i.e. a symmetry with algebra
so(1, 2) but acting on the degrees of freedom in a special way different from conformal
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transformations of the time direction. I then proceed to show that two different aspects
of the physics of the Friedmann-Robertson-Walker (FRW) universe are described by this
model for two different choices of c1 and c2. The first aspect is the geodesic motion of a
point particle in the FRW background after fixing certain constants of motion, while the
second aspect is the dynamics of homogeneous (i.e. space-independent) metric fluctuations
around that background, again in a subsector with fixed constants of motion. The geodesic
motion dynamics will be the basis for the derivation of the matrix model in section 5.3.

5.2.1 The Conformal Mechanical Model

The conformal mechanics (henceforth abbreviated “CM”) which I show in the following to
be closely related to the spatially flat FRW universe, is of the general form

SCM =

∫

dt

[

1
2
ηϕ̇2 + 1

2
η−1

(
c1
ϕ2

+ c2

)]

. (5.1)

Here c1, c2 are dimensionless constants, ϕ(t) is the only dynamical variable and η(t) is the
inverse of an einbein density, the analogue of

√−g. ϕ(t) is dimensionless, but the einbein
has the same dimension as the time, i.e. dimension of length.

Integrating out the auxiliary variable η by use of its nondynamical equation of motion
reduces the action to

S =

∫

dt |ϕ̇|
√

c1ϕ−2 + c2 ,

where the sign of the square root was chosen to be positive in order to have a positive semi-
definite action. The action (5.1) is thus the “Polyakov form” of this square root action, in
the sense of the usual treatment of the Nambu-Goto action in string theory.

Both ϕ and η transform under one-dimensional diffeomorphisms t→ s(t) as (ϕ(t), η(t)) →
(ϕ(s), η(s)/ṡ), i.e. η transforms as a scalar density with weight −1. Fixing the gauge
symmetry with an arbitrary function of time, η ≡ η̂(t), the mechanical system (5.1) essen-
tially corresponds to a conformal mechanics proposed in [364]. The gauge fixed action is
invariant under the transformation

δϕ = η̂(fϕ̇− 1
2
ḟϕ) , (5.2)

where f(t) is given by a solution of

d

dt

[

η̂
d

dt
(η̂ḟ)

]

= 0 . (5.3)

This third order differential equation has three solutions forming the symmetry algebra
so(1, 2): With the definitions

β(t) :=

t∫
dt̃

η̂(t̃)
, γ(t) =

t∫
dt̃

η̂(t̃)
β(t̃) ,
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and
pϕ= η̂ϕ̇ , (5.4)

the three solutions are

f0 = 1√
2

(
1 + 1

2
β(t)2

)
, f1 = β(t) , f2 = 1√

2

(
1 − 1

2
β(t)2

)
.

The corresponding Noether charges

Qf = 1
2
f
(
p2

ϕ − c1ϕ
−2
)
− 1

2
η̂ḟϕpϕ +

1

4
η̂ϕ2 d

dt
(η̂ḟ) (5.5)

generate the transformation (5.2) via the usual Poisson bracket,

{ϕ,Qf}PB = δfϕ . (5.6)

They form an so(1, 2) Lie algebra,

{Q1, Q2}PB = −Q0 , {Q2, Q0}PB = Q1 , {Q0, Q1}PB = Q2 . (5.7)

After the redefinition

D = −Q2 , P = Q0 −Q2 , K = Q0 +Q2 , (5.8)

this is the same Lie algebra as the conformal symmetry algebra in 0 + 1 dimensions,

{D,P}PB = −P , {D,K}PB = K , {P,K}PB = 2D . (5.9)

The Hamiltonian corresponding to the gauge fixed Lagrangian reads, with the canonical
momentum (5.4),

HCM =
1

2η̂(t)

(

p2
ϕ − c1

ϕ2
− c2

)

. (5.10)

The physical states must lie on the surface of vanishing energy

HCM ≡ 0

in phase space, as implied by the gauge fixing of diffeomorphism invariance.4

Note that this so(1, 2) symmetry is an additional symmetry of the system, not connected
in an obvious way to the conformal symmetry in 0+1 dimensions (time shifts, dilatations
and special conformal transformations). This can be understood from the fact that since
our model is invariant under diffeomorphisms of t, the conformal transformations of the
time are actually embedded in the diffeomorphism group of the real line as a subgroup.

4Throughout this chapter, ‘≡’ denotes gauge fixings or on-shell relations, depending on the context in
which this symbol is used. The double meaning appearing here comes from the fact that in this chapter
certain diffeomorphism symmetries are gauged by demanding certain diffeomorphism noninvariant objects
such as Lagrangians to take fixed on-shell values in sectors defined by conserved quantities.
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Gauge fixing with a general function η̂(t) breaks all the diffeomorphisms including time
shifts. Also no gauging with time shifts t′(t) = t + ǫ, dilatations t′(t) = λt and special
conformal transformations t′(t) = t − ǫt2 all together as residual gauge freedom can be
chosen: time shifts would restrict η̂ to a constant, dilatations to the form const × t, and
special transformations to const×et2 . The symmetry must thus be an accidental additional
global symmetry of the gauge-fixed action which is realised on the dynamical variable ϕ(t)
by the Noether charges (5.5). It may however be very useful in solving the system (5.1)
and, as explained in section 6.3, may also play a role in the dynamics of the matrix model
presented in this chapter.

5.2.2 Conformal Mechanics from Point Particle Dynamics

In D-dimensional space-time, requiring both homogeneity and isotropy of the D−1 spatial
dimensions, the metric is constrained to the Robertson-Walker (RW) geometry [365]

ds2 = −dt2 + a2(t)
[
dx2 + κ(x · dx)2/(1 − κx2)

]
, (5.11)

where κ = +1, 0,−1 is a constant, and a(t) is the only undetermined function, called
the scale factor, which depends on the cosmic time t. The spatial part of this metric
is constrained by isotropy and homogeneity to maximally symmetric three-dimensional
Euclidean spaces, which there are the three-sphere S3, flat Euclidean plane E3 or the hy-
perbolic plane H3. They have constant positive, zero and negative curvature, respectively.
Detailed measurement [353] of the fluctuation spectrum in the cosmic microwave back-
ground are consistent with a universe that is spatially flat (κ = 0) and otherwise described
by the RW metric (5.11). These are the assumptions which enter the so called ΛCDM
model which assumes that the structure formation of the universe is governed by quantum
fluctuations in an inflationary model based on a simple cosmological constant Λ, as well as
by the dynamics of cold dark matter, i.e. dark matter with velocities in the nonrelativistic
regime v ≪ c. It is the simplest model which fits with all observations of the cosmic mi-
crowave background and with the large-scale distribution of matter and galaxies. Fitting
the input parameters of the ΛCDM model to the data yields values for the equation of
state parameter w and the spatial curvature

w =
p

ρ
= −0.926+0.051

−0.075 , κ = −0.010+0.014
−0.012 , (5.12)

with p = wρ being the equation of state for the energy and matter in the universe on large
scales. These numbers are consistent with a pure cosmological constant w = −1 and a
spatially flat universe κ = 0. Note however that when fitting to models with a time varying
equation of state parameter w(t) (e.g. Quintessence models), the data seems to slightly
favour a universe with negative spatial curvature (see figure 17 in [353]).

Before analysing the motion of point particles along geodesics in the RW metric, let us
analyse a generic mechanical system satisfying the following two conditions:
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1. The Hamiltonian is given by the inverse of the Lagrangian

HL = −m2 , (5.13)

where m is a constant parameter with unit of mass.

This always holds for a relativistic point particle Lagrangian of the form

L = −m
√

1 − gij(t, x)ẋiẋj ,

after choice of the gauge τ = t for the world line time and furthermore g00 = g0i = 0.

2. There exists a conserved quantity with on-shell value ν such that for a sector with
fixed ν the Lagrangian is completely fixed on-shell as a time- and ν-dependent func-
tion,

L ≡ eν(t) . (5.14)

The requirement here is thus the existence of at least one conserved quantity, since the
on-shell Lagrangian always is a function of the on-shell values of conserved quantities
and of time.

Then the square-root free Lagrangian

Lν :=
L2

2eν(t)
− m2

eν(t)
+
eν(t)

2
(5.15)

together with the Hamiltonian constraint which has to be imposed after fixing the world-
line reparametrisation invariance equivalently describes the sector of fixed ν. Notice the
similarity between (5.15) and the “Polyakov action” LPolyakov = 1

2
(e−1L2 + e). The trick at

work here is thus similar to the Deser-Zumino-Brink-Di Vecchia-Howe method [159,160] for
rewriting the Nambu-Goto to obtain the Polyakov action. The truth of the above statement
can be seen by observing that all the canonical momenta of (5.15) take the same values
after imposing the constraint (5.14) (which is equivalent to fixing time diffeomorphisms)
as those of the original Lagrangian L. Explicitly, for every pair of conjugate coordinates q
and momenta p, pν , the following identity holds:

pν =
∂Lν

∂q̇

(5.15)
=

L
eν

∂L
∂q̇

(5.14)≡ ∂L
∂q̇

= p .

The Hamiltonian corresponding to Lν can be derived from (5.13) and (5.15), reading

Hν =
(
L2 − e2ν

)
/(2eν). (5.16)

Imposing the Hamiltonian constraintHν ≡ 0 then is equivalent to (5.14) (up to an irrelevant
choice of sign L = ±eν(t)). This procedure has been applied in [366] to the relativistic



Chapter 5. A Matrix Model Proposal for the Robertson-Walker Universe 163

point particle dynamics of noncritical type 0A string theory black holes and linear dilaton
backgrounds in order to derive matrix model descriptions of these backgrounds.

I now turn to the dynamics of a relativistic particle in the four-dimensional Robertson-
Walker background (5.11) and apply the method described above to this system. In spher-
ical coordinates the metric (5.11) reads

ds2 = −dt2 + a2(t)
[

dρ2 + r2(ρ)
(
dθ2 + sin2θ dφ2

) ]

,

where r(ρ) =
√

x2 is given by

r(ρ) =







sin(
√
κρ) /

√
κ κ = +1

ρ κ = 0
sinh

(√−κρ
)
/
√−κ κ = −1 .

(5.17)

Note that at this stage the scale factor a(t) is left undetermined, since we do not want to
restrict to any particular matter content of the underlying theory.

After identifying the world line affine parameter with cosmic time, τ = t, the point particle
Lagrangian in the Robertson-Walker background becomes

L = −m
√

1 − a2(t)
(

ρ̇2 + r2(ρ)θ̇2 + r2(ρ) sin2θ φ̇2
)

. (5.18)

Note that since the DBI action is also of square-root form, this action also governs the
motion of a D0 brane or D-particle in the background (5.11), if the mass m = T0 is
identified with the tension of the D0 brane and if no further background fields are present.5

A possible homogeneous dilaton factor can be absorbed into the Robertson-Walker metric
via a redefinition of ‘frame’, i.e. by a conformal transformation and a redefinition of time,
through which of course the functional form of a(t) will change.

The canonical momenta for ρ, θ and φ derived from (5.18) are

pρ = M(t)ρ̇ , pθ = M(t)r2(ρ)θ̇ , pφ = M(t)r2(ρ) sin2θ φ̇ , (5.19)

where I introduced the compact notation

M(t) := −m2a2(t)/L .

The corresponding Hamiltonian

H =
√

m2 + a−2(t)
[
p2

ρ + r−2(ρ)
(
p2

θ + p2
φ/ sin2θ

)]

5In superstring theories there will arise a problem with setting the fermionic excitations of the D0 brane
consistently to zero, since the background (5.11) does not preserve supersymmetry. However, since gravity
is always attractive in classical general relativity, the presence of additional matter will only change the
detailed functional form of a(t), and not the existence of a singularity.
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satisfies the requirement (5.13).

In spite of the arbitrariness of the scale factor a(t), the dynamics of (5.18) is integrable, as
there exist three mutually Poisson-bracket commuting conserved quantities

pφ ≡ constant , (5.20)

J2 := p2
θ + p2

φ/ sin2θ ≡ j(j + 1) , (5.21)

p2
ρ + J2/r2(ρ) ≡ (νm)2 . (5.22)

The constant j plays the role of a classical so(3) angular momentum. Note that ν itself is
not a measure of the energy of the system, as the energy is not conserved due to the time
dependence introduced by a(t), but it is a measure for the initial energy the system starts
with at a time t0. Indeed, at this time, the Hamiltonian has a value

√

m2 + (νm)2/a2(t0).
Interestingly, this set of conserved quantities is time-independent, although the Hamilto-
nian itself is time-dependent. Introducing a time-dependent mass as the on-shell value of
M(t),

mν(t) := ma(t)
√

a2(t) + ν2 ≡M(t) , (5.23)

both the Hamiltonian and the Lagrangian assume the on-shell values, H = −m2/L ≡
mν(t)/a

2(t).

The square-root free Lagrangian (5.15) now explicitly reads

Lν =
mν(t)

2

(

ρ̇2 + r2(ρ)θ̇2 + r2(ρ) sin2θ φ̇2
)

+
(νm)2

2mν(t)
. (5.24)

Again, all the canonical momenta of (5.24) match with the on-shell ones of (5.18). Fur-
thermore, the corresponding Hamiltonian

Hν =
1

2mν(t)

(

p2
ρ +

J2

r2(ρ)
− (νm)2

)

(5.25)

exhibits the same mutually commuting conserved quantities as (5.20)-(5.22). Thus the
surface of the vanishing energy Hν ≡ 0 in the phase space of the dynamical system (5.25)
describes precisely the relativistic point particle in the Robertson-Walker background for
a sector of fixed ν.

Since there are two other conserved quantities, total angular momentum and momentum
in the φ direction, the dynamics can further be reduced. The subsector of fixed angular
momentum is reached by setting

J2≡j(j+1) ,

which reduces (5.25) to the mechanical system (5.10). In this way, the following conclusion
is reached:

The conformal mechanics (5.10) with the choice

ϕ= ρ , η̂= mν(t) , c1 =−j(j+1) ≤ 0 , c2 = (νm)2 ≥ 0
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describes the geodesic motion of a relativistic particle with respect to cosmic
time in the spatially flat Robertson-Walker universe, as well as with fixed con-
served quantities ν, j.

Note that, since c1 ≤ 0, c2 ≥ 0, the classical energy (5.25) of the system is positive for
large enough j or small enough ν.

5.2.3 Conformal Mechanics from Homogeneous Gravity

In the last section I showed that in a sector of fixed initial energy and fixed total angu-
lar momentum, the dynamical system governing the geodesic motion in the spatially flat
Robertson-Walker geometry reduces to a dynamical system described by the conformal
mechanics (5.1). In this section I present a similar reduction for the nonperturbative but
homogeneous modes in Einstein-Hilbert gravity with positive cosmological constant, which
also is the theory giving rise to the solution (5.11).

Pioline and Waldron observed in [367] that for a solely time-dependent, genericD-dimensional
metric in longitudinal gauge (g0i = 0),

ds2 = −e2̺−2dt2 + ̺2/(D−1)ĝijdx
idxj , det ĝ = 1 , (5.26)

the Einstein-Hilbert action with cosmological constant reduces to a mechanical system for
a relativistic “fictitious” point particle,

−
∫

dDx
√−g (R−2Λ)=V

∫

dt

[

1

e

(
D−2

D−1

)

˙̺2 − 2e

(

Ĉ

̺2
− Λ

)]

(5.27)

Here V is the D−1-dimensional spatial volume which needs to be dropped in the reduction,
and

Ĉ :=
1

8
e−2̺4tr(ĝ−1 ˙̂gĝ−1 ˙̂g) ,

which contains a nonlinear σ-model metric for the coset

SL(D − 1)

SO(D − 1)

via
tr(ĝ−1 ˙̂gĝ−1 ˙̂g) = hab(θ)θ̇

aθ̇b .

In terms of the momenta

p̺ = ω ˙̺/(4e) , pa = −1
2
̺2e−1habθ̇

b ,

the conserved quantity Ĉ can be identified as

Ĉ = 1
2
hab(θ)papb ,



166 A Matrix Model for the Robertson-Walker Singularity

the kinetic energy on the coset space. The Hamiltonian of the system reads

HE.H. =
2e

ω

(

p2
̺ −

ωĈ

̺2
− ωΛ

)

, ω := 8

(
D−2

D−1

)

. (5.28)

Ĉ is conserved [367] and positive semi-definite 6.

The original motivation of [367] to consider the homogeneous modes only was based on
the observation in [368] that near cosmological singularities inhomogeneous modes gener-
ically decouple and thus the physics of cosmological singularities should be describable by
the homogeneous modes alone. On the basis of the above reduction I make the further
observation that since the spatially flat Robertson-Walker geometry (5.11) is a special case
of (5.26) with e = ̺ = aD−1, ĝij = δij, and hence (5.26) is the most general homogeneous
and nonperturbative fluctuation around the Robertson-Walker metric. In the cosmic time
gauge e = ̺, comparing eq. (5.28) and eq. (5.10) the following conclusion is reached:

The mechanical system (5.10) with the choice (for D > 1)

ϕ= ̺ , η̂=
1

4
ωa1−D , c1 ≡ ωĈ ≥ 0 , c2 = ωΛ ≥ 0

describes the homogeneous metric fluctuations of the spatially flat Robertson-
Walker universe with respect to cosmic time and in a sector with fixed value of
kinetic energy on the coset space.

Note that in the spatial flat case κ = 0 the cosmological constant has to be positive
(yielding an expanding de Sitter universe) or zero (yielding a steady state universe) [365],
in order for the spatially flat Robertson-Walker geometry to solve eq. (5.27). The new
observation thus is the so(1, 2) symmetry which is also present in this system. Since we
found in this and the last section that both the dynamics of matter (point particles) and
of gravitational fluctuations (modes of the metric) are described by the same mechanical
system (5.1) in different parameter ranges, the situation is reminiscent of the AdS/CFT
correspondence between open and closed string excitations. I comment in section 6.3 on
whether this reminiscence could have a deeper meaning as a new form of matter/gravity
duality.

5.3 A Matrix Model for the Robertson-Walker Sin-

gularity

In section 5.2.2, I presented a reduction of the dynamics of geodesic motion in the Robertson-

6With the diagonalisation ĝ = oλot, oot = 1, λ > 0, tr
(

ĝ−1 ˙̂gĝ−1 ˙̂g
)

=

2
∑

i>j

[

(
√

λi/λj −
√

λj/λi )(otȯ)ij

]2

+
∑

i(λ̇i/λi)
2 ≥ 0.
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Walker background to a subsector that can be described by the conformal mechanical
system (5.1). Based on this I now turn to the description of many point particles in the
spatially flat Robertson-Walker universe. Since the relativistic point particle action is, in
the absence of NS-NS and R-R background fields, just the DBI action for a D0 brane (or
D-particle), this study will be useful in describing the physics of many D0 branes in the
presence of the big bang singularity. Using several general arguments I propose a matrix
model which encodes the bosonic part of the open string dynamics in the presence of many
D-particles.

5.3.1 A Short Review of the M-Theory – Matrix Model Con-
nection

Before presenting the actual proposal, it is however necessary to review the way of ar-
guments that lead to the conjecture that the dynamics of D0 branes, encoded in certain
matrix models, actually could capture the full dynamics of M-theory, which is defined
as the ultraviolet completion of eleven-dimensional supergravity, and thus is theory of
quantum gravity.

The Strong Coupling Limit of Type IIA String Theory

The description of the bosonic sector of open strings in the presence of many D0 branes is
generically given by a Yang-Mills quantum mechanics [334], i.e. by a dynamical system of
hermitean matrices with a U(N) gauge symmetry. This idea stems from the observation
that a D0 brane only carries a nondynamical 0+1-dimensional gauge field A0, and all the
other components of the gauge field in the ten-dimensional N = 1 vector multiplet AI ,
I = 1, . . . , 9, become transverse scalars XI upon dimensional reduction to 0+1 dimensions.
Since the resulting low energy theory has no spatial but only a time direction, it is a
quantum mechanical model describing the dynamics of D0 branes. Furthermore, since
one D0 brane carries a U(1) gauge symmetry, and for N coincident D0 branes the gauge
symmetry gets promoted to U(N), the transverse scalarsXI become matrices in the adjoint
representation of U(N). Hence the quantum mechanics we are searching for is a Yang-Mills
type of quantum mechanics with a U(N) gauge symmetry.

In flat ten-dimensional space, a background of type IIA closed string theory which preserves
the maximal amount of thirty-two supercharges, the dynamics of N D0 branes can be
obtained from the dimensional reduction of the action for ten-dimensional U(N) N = 1
supersymmetric Yang-Mills theory [146],

S10D =
1

g2
10

∫

d10xTr

(
1

2
F 2

µν − iΨ̄ΓµDµΨ

)

, (5.29)

with Ψ being a ten-dimensional Majorana-Weyl spinor of either chirality in the adjoint
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representation of the gauge group, and g10 the ten-dimensional Yang-Mills coupling. The
Γµ are ten-dimensional Dirac matrices, and I follow here the definitions of [146]

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] , Dµ · · · = ∂µ · · · + [Aµ, . . . ] .

The generators of the adjoint representation TA are normalised such that TrTATB =
−δAB/2. The dimensional reduction to 0+1 dimensions is now effected by requesting
all fields to solely depend on time t, relabeling the nine spatial components of the gauge
field Ai = X i and using the following identities

F0i = ∂tXi + [A0, Xi] , Fij = [Xi, Xj] , (5.30)

DtΨ = ∂tΨ + [A0,Ψ] , DiΨ = [Xi,Ψ] . (5.31)

With these relations, eq. (5.29) reduces to the matrix model

S =
1

g2
1

∫

dtTr

(

−(DtX
i)2 +

1

2
[X i, Xj]2 − i

2
Ψ̄ΓtDtΨ − i

2
Ψ̄Γi[Xi,Ψ]

)

. (5.32)

This action describes the low energy physics of the strings stretched between N D0 branes
on flat ten-dimensional space-time in the limit α′ → 0. It is an N = 16 supersymmetric
Yang-Mills quantum mechanics. The 0+1-dimensional Yang-Mills coupling is related to
the ten-dimensional one via g2

1 = g2
10ℓ
−9
s , where the volume of nine-dimensional Euclidean

space makes up for the difference in the dimensions of the two coupling constants.7 Possible
higher-derivative corrections to the ten-dimensional theory (5.29) will of course also be
present after dimensional reduction.

So far nothing remarkable happened. We simply derived the low energy effective action
for N D0 branes. The remarkable connection to quantum gravity as described by M-
theory comes via the works of Banks, Fischler, Shenker and Susskind [42] and Witten
[210, 334]. In [210] Witten analysed the spectrum of supersymmetric states in type IIA
supergravity which are charged under the Ramond-Ramond one-form field C1, i.e. the
spectrum of states with D0 brane charge.8 Ten-dimensional type IIA theory has two
Majorana-Weyl supercharges of opposite chirality, Qα and Q̃α̇. Witten argued that since
the charge QD0 appears as a central charge in the ten-dimensional supersymmetry algebra,
which schematically reads9

{Qα, Qβ} ∼
9∑

M=0

σM
αβPM ,

{

Q̃α̇, Q̃β̇

}

∼
9∑

M=0

σM
α̇β̇
PM ,

{

Qα, Q̃α̇

}

∼ δαα̇QD0 ,

7More precisely I redefined the volume of infinite space
∫

d9x = ℓ9s
∫

d9x̃ in a dimensionless way and
then rescaled the action S by this dimensionless infinity. In this way the action is kept dimensionless, and
the Yang-Mills coupling constants acquire their correct dimensions.

8At the time of publication of [210], the identification of D0 branes with the corresponding solitonic
solutions of IIA supergravity [189] was still unclear, so Witten argued from the point of view of the solitonic
zero branes. In [334] he the used the insight of [189] to recognise that the bound states of D0 branes follow
the same pattern.

9σM are the ten-dimensional analogues to the four-dimensional matrices σµ = ( , τ i) which generate
the Clifford algebra acting on spinors of definite chirality.
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supersymmetric states charged under QD0 must combine into short (1
2
BPS) multiplets of

the ten-dimensional N = 2 algebra, and their mass (in the string frame) is thus bound
from below by their charge via a BPS relation

M ≥ c

ℓsgs

|QD0| . (5.33)

Here c is a mere constant, not depending on any additional parameters. The string coupling
is given by the expectation value of the dilaton, gs = 〈eφ〉, and the charge QD0 must be
quantised in integer units (a fact which only becomes clear after the identification of Dp
branes with solitonic p branes) and also independent of the string coupling gs in order to
guarantee the validity of charge conservation for QD0. At small coupling these states are
thus heavy, while they become light at large gs. On this basis, Witten argued that these
states correspond to bound states of the solitonic zero branes in type IIA supergravity, and
thus, since these arguments based on supersymmetry are valid both in the point particle
limit and when including α′ corrections, to supersymmetric bound states of D0 branes in
the full type IIA string theory. He observed that the spectrum (5.33) resembles that of a
Kaluza-Klein spectrum of eleven-dimensional N = 1 supergravity (which is the unique
supergravity theory in eleven dimensions), compactified on a spacelike circle of radius

R11 = ℓsgs , (5.34)

henceforth called the “M-theory circle”. From this observation he concluded that the
strong coupling dynamics of type IIA supergravity is given by the dynamics of eleven-
dimensional supergravity compactified on a circle with large radius. The Ramond-Ramond
field CM is part of the eleven-dimensional metric, as is obvious from the decomposition

ds2
11 = g10

MNdxMdxN + e
4
3
φ(dx11 − CMdxM)2 .

Since the eleven-dimensional excitations are massless, the mass of the ten-dimensional
excitation then just becomes the momentum along the M-theory circle,

M2
11 = −pMp

M − p2
11 = 0 ⇒M2

10 = −pMp
M = p2

11 =

(
N

R11

)2

, N ∈ ,

where the momentum p11 is quantised due to the compactness of the M-theory circle.
Thus, the perturbative regime of IIA supergravity with small gS corresponds to the limit
R11 → 0, while in the strong coupling region the radius R11 goes to infinity, and thus the
M-theory circle decompactifies.

This correspondence between strongly coupled type IIA supergravity and eleven-dimensional
supergravity is a new form of duality, which seems to be forced upon us by the uniqueness
of eleven-dimensional supergravity and by supersymmetry. Since the low energy limit of
type IIA superstring theory in ten dimensions is IIA supergravity, and eleven-dimensional
supergravity as a perturbatively nonrenormaliseable theory is also only valid at low ener-
gies, the question arises whether there is a dual theory in eleven dimensions which, upon
Kaluza-Klein reduction, describes full type IIA string theory at strong coupling. This the-
ory would be the ultraviolet completion of eleven-dimensional supergravity and was given
the name M-Theory.
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The BFSS Matrix Model: M-Theory on Flat Space-Time

A proposal for a concrete formulation of M-theory in terms of a matrix model was made by
Banks, Fischler, Shenker and Susskind (BFSS) in [42]. It is based on the fact that
the type IIA D0 brane bound states (i.e. the above-described states with fixed D0 brane
charge) are marginal bound states [334], i.e. have vanishing binding energy. This means
that for example a bound state with N D0 branes can be separated into two bound states
with N1 and N2 D-particles which are infinitely far from each other at no cost of energy,
as long as the charge conservation law N = N1 + N2 is fulfilled. The D0 brane bound
states thus behave very similar to the in-states and out-states of free particles in ordinary
quantum field theory, and may be used to build up a space of fundamental states for
M-theory. For this reason the D0 bound states are called “supergravitons”. Interactions
between supergravitons are then generated by loop corrections arising from integrating out
massive modes in the BFSS matrix model.

The central idea of [42] is to use the idea of discrete light-cone quantisation (DLCQ),
which has been successfully applied to QCD before [369, 370]. DLCQ is a quantisation
method where time is taken to be one light cone direction, while restricting the dynamics
to a subsector of fixed light-cone momentum p+. This is clearly possible in a theory on a
possibly curved background which admits a lightlike isometry generated by a Killing vector
∝ ∂

∂x− . Taking the lightlike direction to be a circle of radius R, the light-cone momentum

p+ =
N

R
(5.35)

is quantised in integer units, as in the case of the Kaluza-Klein reduction on a spacelike
circle discussed above. The advantage of taking the light-cone direction to be time is
that this generically yields nonrelativistic dynamics. This can be seen already in the
simple example of a massless real scalar field φ on flat d+2-dimensional space-time, which
recently resurfaced in an attempt to find holographic duals with Schrödinger symmetry
[371,372]. Call the coordinates of the d+2-dimensional space-time (t, xi, xd+1), i = 1, . . . , d.
Introducing light-cone coordinates x± = (t± xd+1)/

√
2, the Klein-Gordon equation reads

(

−2
∂

∂x+

∂

∂x−
+

d∑

i=1

∂2
i

)

φ = 0 .

Since the system is Poincaré invariant, P− = P+ is a constant of motion. Restricting to a
fixed light-cone momentum P+ = P− = 1

i
∂

∂x− = −m < 0, the dynamics in this subsector
is given by the free Schrödinger equation (with ~ = 1) in d spatial dimensions,

i∂+φ = − 1

2m

d∑

i=1

∂2
i φ ,

with x+ playing the role of time. This relation of nonrelativistic dynamics in the transverse
directions and fully relativistic dynamics is generally true in DLCQ. Obviously, DLCQ is
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a noncovariant quantisation method, i.e. if carried out in flat space it breaks Lorentz
invariance. Galileian invariance in transverse space is however preserved.

Returning to the physics of M-theory in eleven dimensions and of D0 branes in type IIA
theory, I now argue that D0 brane dynamics in DLCQ is described by the gauged matrix
model (5.32). I follow the discussion in [42] and in chapter 14.1 of [31]. The starting point is
M-theory compactified on a spacelike circle x10 with radius Rs, i.e. with the identification

(
x10, t

)
∼
(
x10 −Rs, t

)
. (5.36)

We know that this is per definition equivalent to type IIA string theory with the identifi-
cations

Rs = gsℓs , ℓ311 = gsℓ
3
s , (5.37)

where ℓ11 is the eleven-dimensional Planck length. Now introduce a length scale R (which
becomes the radius of the lightlike circle at the end), and boost the system with a velocity

v =
1

√

1 + 2R2
s

R2

Rs
R
≪1

≈ 1 − R2
s

R2
+ O(R4

s/R
4)

close to the speed of light c = 1 in the x10 direction. After the boost, the identification
(5.38) becomes

(
x10, t

)
∼
(

x10 − R√
2
, t+

R√
2

)

+ O(R2
s/R

2) . (5.38)

Thus x− ∼ x− + R becomes a lightlike circle of radius R in the strict Rs → 0 limit (with
R held fixed), and the associated momentum p+ is quantised as in (5.35). This boosted
frame is known as the infinite momentum frame. What happens to the energy and
momentum of a collection of N D0 branes in this limit? Let the energy of this collection
and the momentum in the M-theory circle direction be

E =
N

Rs

+ ∆E , P =
N

Rs

⇔ P− =
E − P√

2
=

∆E√
2
, P+ =

E + P√
2

=
√

2
N

Rs

.

∆E includes possible excitations of the D0 branes above their ground state energy N/Rs

(which is dictated by supersymmetry). P− thus encodes excitations and therefore plays
the role of a “light-cone Hamiltonian”, while P+ is still quantised. The Lorentz boost acts
as

P̃− =

√

1 + v

1 − v
P− ≈ R

Rs

∆E , P̃+ =

√

1 − v

1 + v
P+ ≈ N

R
,

We thus observe that in the lightlike limit

Rs → 0 , ℓ11 fixed ⇒ gs → 0 , ℓs → ∞ (5.39)

the light-cone momentum of N D0 branes P+ is consistent with a compactification of M-
theory on a lightlike circle with radius R. The spacelike compactification, which through
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the connection with type IIA string theory gave the original definition of of M theory, and
the lightlike compactification of DLCQ are thus smoothly related by the infinite boost,
hinting towards a possible definition of M-theory via the effective action of D0 branes in
the infinite momentum frame. At first the lightlike limit (5.39), which is the tensionless
limit of type IIA string theory, seems very complicated, since the whole tower of string
states seems to become massless in this limit. However, any fluctuation energy measured
in terms of the string scale

∆E

Ms

∼ Rs

R
P−ℓs =

√

Rsℓ311
R

P− → 0

vanishes in the lightlike limit. Here P− = −i ∂
∂x+ , the light-cone Hamiltonian in the effec-

tive nonrelativistic Schrödinger equation we are aiming at, is kept fixed in the limit, since
otherwise we would focus only on the sector of zero energy states of M-theory. In partic-
ular, any fluctuation of the D0 brane bound state which could be strong enough to excite
higher derivative (i.e. α′) corrections in the effective D0 brane action is suppressed, which
is more than welcome since our knowledge of higher-order corrections to the nonabelian
DBI action is not complete. It thus suffices to consider the lowest order in derivatives,
which is the Yang-Mills quantum mechanics (5.32).

The lightlike limit (5.39) has to be taken with some care in order to not get confused about
dimensions. From the form of the D0 brane coupling (2.92) we know that the Yang-Mills
coupling in the low energy effective action is given by (2.93), i.e. g2

1 ∼ gsℓ
−3
s , which does

not seem to have the right ℓs dependence to be kept fixed in the lightlike limit.10 In string

units however, i.e. after rescaling t 7→ ℓst, A0 7→ ℓ−1
s A0, X

i 7→ ℓ−1
s X i and Ψ 7→ ℓ

− 3
2

s Ψ,
the action is simply multiplied by the inverse string coupling which, in string units, just
becomes the eleven-dimensional Planck length ℓ311 = gsℓ

3
s which we kept fixed in the light-

like limit. In the next section we will see that the ℓ11 dependence is just right to reproduce
the BFSS matrix model (5.32) from a quantisation of the M2 brane in eleven-dimensional
supergravity. To summarise, based on the arguments presented above, the authors of [42]
proposed that

The discrete light-cone quantisation of M-theory on eleven-dimensional flat
Minkowski space-time in each sector with fixed but not necessarily large light-
cone momentum P+ = N/R is described by the U(N) matrix model (5.32),
which is the low energy effective action of N D0 branes, in the limit (5.39).

This proposal provides a nonperturbative formulation of M-theory in terms of the physics
of D0 branes, which has passed many nontrivial tests such as the calculation of the correct

10Note the change in notation compared to chapter 2: The D0 brane gauge coupling there was denoted
gY M,0, while here it is g1.
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eleven-dimensional graviton scattering amplitude from the matrix model or the existence
of membrane-like solutions of (5.32) [42].11 It is nonperturbative in the sense that in the
above arguments no assumption on the coupling strength in eleven dimensions was made.
The only eleven-dimensional scale which enters is the Planck scale ℓ11, which sets the
tension of the M2 brane in M-theory

T2 =
1

(2π)2gsℓ3s
=

1

(2π)2ℓ311
. (5.40)

The appearance of the M2 brane tension in this context already gives a hint that an-
other set of fundamental degrees of freedom of M-theory might be M2 branes (often also
simply called “membranes”). Recent progress in formulating a world-volume theory of
coincident M2 branes at 4/ k singularities [373–379] and setting up a corresponding
holographic (AdS4/CFT3) duality [380] between certain three-dimensional superconformal
Chern-Simons-Matter theories and eleven-dimensional supergravity on AdS3 × S7/ k sup-
ports this claim. In the following we will see that there is also an inverted connection
between membranes and D0 branes: A quantisation of the world volume theory of a single
membrane will yield the matrix model (5.32). This will be the guideline for the proposal
of a matrix model on the Robertson-Walker background, presented in section 5.3.2.

The Membrane – Matrix Model Connection

Interestingly, the matrix model (5.32) can also be obtained by a regularisation and sub-
sequent quantisation of the world volume theory of a supersymmetric M2 brane. For
simplicity I will consider the bosonic part of the M2 brane world volume theory only.
The full supersymmetric case is treatable in a similar way [125]. In this presentation I
follow [31,124].

Consider the Nambu-Goto action for the bosonic membrane in flat space-time gµν = ηµν

and with eleven-dimensional three-form field vanishing,

SM2 = −T2

∫

d3ξ
√

− det
α,β

(∂αXµ∂βXνηµν) . (5.41)

The world volume coordinates are denoted ξα = (τ, σ1, σ2). The membrane tension is
given by (5.40). Introducing world volume gravity with a metric γαβ, it can be recast in
“Polyakov form”,

S̃M2 = −T2

2

∫

d3ξ
√−γ

(
γαβηµν∂αX

µ∂βX
ν − 1

)
. (5.42)

In the gauge
γ0i = 0 , γ00 = − det

α,β
(∂αX

µ∂βXµ) , (5.43)

11For an overview of the vast topic of M-theory and matrix models see also the reviews [120–124].
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the action (5.42) can be rewritten as

S̃M2 = −T2

2

∫

d3ξ

[

−ẊµẊµ − 1

2
{Xµ, Xν}PB{Xµ, Xν}PB

]

, (5.44)

where the Poisson bracket (often also called “Nambu bracket”, although this term originally
refers to a totally antisymmetric three-bracket structure) if defined in terms of the spatial
world-sheet derivatives as

{F,G}PB ≡ εij∂iF∂jG = ∂1F∂2G− ∂2F∂1G . (5.45)

For obtaining (5.44) from (5.42) the simple identity

det
i,j

(∂iX
µ∂jXµ) =

1

2
{Xµ, Xν}PB{Xµ, Xν}PB (5.46)

is useful. Since we already fixed a world volume diffeomorphism gauge, this action has to
be supplemented by the constraints

ẊµẊµ +
1

2
{Xµ, Xν}PB{Xµ, Xν}PB = 0 , Ẋµ∂iXµ = 0 . (5.47)

The second constraint implies another one,

0 = {Ẋµ, Xµ}PB = ∂1(Ẋ
µ∂2Xµ) − ∂2(Ẋ

µ∂1Xµ) , (5.48)

which will turn out to be the Gauß constraint after regularising the matrix. So far no
target space diffeomorphism gauge has been chosen yet. Doing so by choosing light-cone
coordinates X± = (X0 ±X10)/

√
2 and restricting to light-cone gauge

X+(τ, σ1, σ2) = τ ,

the constraints can be solved for X− in a way analogous to string theory in light-cone
gauge, yielding

Ẋ− =
1

2
Ẋ iẊi +

1

4
{X i, Xj}PB{Xi, Xj}PB , ∂iX

− = Ẋj∂iXj , (5.49)

with Xj being the transverse directions to the light cone, i.e. j = 1, . . . , 9. Since the
underlying flat eleven-dimensional space-time has a lightlike isometry, the conserved total
momentum conjugate to X− reads

P+ =

∫

d2σ
δL̃M2

δẊ−
= T2

∫

d2σẊ+ = V2T2 , (5.50)

where V2 denotes the volume of the spatial part of the membrane’s world volume, which is
2 in this case. In particular, one deduces immediately from the conservedness of P+ that

in the gauge (5.43) the world volume diffeomorphisms are broken to static area preserving
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ones, i.e. diffeomorphisms with τ ′ = τ and spatial coordinate redefinitions σ′i(σ) with unit
Jacobian | det(∂iσ

′j)| = 1. The corresponding light-cone Hamiltonian of the membrane is
then given by

HM2 =
T2

2

∫

d2σ

(

Ẋ iẊ i +
1

2
{X i, Xj}PB{Xi, Xj}PB

)

. (5.51)

We thus arrive in light-cone gauge at a nonrelativistic system for the nine transverse
coordinates X i.

So far, every step has been a manipulation of the classical field theory. To quantise this
system a regularisation has to be used. The proposal of [125] is to discretise the two-
dimensional spatial world-volume by deforming the classical Riemannian manifold through
a kind of deformation quantisation which is effected by replacing the spatial coordinates
σi by hermitian N ×N matrices σ̂i satisfying in the case of σi ∈ 2 an algebra

[σ̂i, σ̂j] = iεij , (5.52)

i.e. which parametrise a noncommutative space. The transverse coordinates X i(τ, σi)
become time-dependent hermitian matrices X i(τ), and the Poisson bracket as well as the
integral are replaced as

{., .}PB → −i[., .] , 1

V2

∫

d2σ → 1

N
Tr , V2 → N . (5.53)

This procedure is called matrix regularisation and, after dropping the overall factor of
N , gives rise to the light-cone Hamiltonian

H =
T2

2
Tr

[

Ẋ iẊ i − 1

2
[X i, Xj]2

]

. (5.54)

Note that this Hamiltonian still is a classical one, no quantisation of the fields X i has
been carried out yet. The deformation quantisation of the membrane world volume has
to be understood as a mere regularisation of the infinitely many degrees of freedom. The
Hamiltonian (5.54) still has to be supplemented by the matrix version of the constraint
(5.48),

[Ẋ i, X i] = 0 , (5.55)

which is the Gauß constraint of the BFSS matrix model (5.32) in the gauge A0 = 0.
This constraint has to be imposed by hand for the following reason: After imposing light-
cone gauge the membrane action (5.44) does not depend on ∂jX

−, and thus the solution
∂jX

− = Ẋ i∂jXi (5.49) to the second constraint in (5.47) gets lost during the procedure of
solving the first equation in (5.47). It can however be recovered from the identity (5.48),
which is an integrability condition for the one-form a = (Ẋj∂iX

j)dσi, i.e.

da = 0 ⇒ a = df = (∂if)dσi ,
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IIA String
KK-Decompactification−→ M2 Brane

Quanti- ↓ sation Quanti- ↓ sation

Type IIA String Theory M-Theory
Low Energy↓Limit Low Energy↓Limit

IIA Supergravity
−→

KK-Decompactification 11D Supergravity

Table 5.1: Strings, Membranes and M-Theory.

which is possibly globally on 2. If ∂if is now identified with ∂iX
− in (5.49), the “lost

constraint” (the second equation in (5.49)) is recovered.12

The matrix regularised bosonic membrane in light-cone gauge is thus equivalent to the
bosonic part of the BFSS matrix model in temporal (A0 = 0) gauge. For the superme-
mbrane one has to additionally project out half of the fermionic degrees of freedom by
imposing Γ+Ψ = 0, such that the remaining degrees of freedom form a Majorana spinor of
SO(9). In that case the BFSS model describes the light-cone gauge dynamics of the fully
supersymmetric M2 brane [125]. Conversely it was shown in [42] that the BFSS matrix
model includes supermembranes as semiclassical states for large N . This is additional evi-
dence for the underlying conjecture that D0 branes comprise a space of fundamental states
for M-theory.

This connection between the proposed description of M-theory via the matrix model and
membrane physics is not totally unexpected. Consider an M2 brane wrapping the M-
theory circle. The effective tension of the two-dimensional (i.e. string-like) object in ten
dimensions is

2πRs T2 =
2πgsℓs

(2π)2gsℓ3s
=

1

2πα′
= TF1 , (5.56)

the tension of the fundamental string. The Kaluza-Klein compactification of the M2 brane
is thus the fundamental type IIA string. Since we defined M-theory as the ultraviolet
completion of the strong coupling limit (i.e. the Kaluza-Klein decompactification) of type
IIA supergravity, and since type IIA supergravity arises from the quantisation of the type
IIA string via a low energy limit, it is natural to expect that M-theory should be connected
to a quantisation of the M2 brane, yielding an effective theory which in its low energy
limit gives eleven-dimensional supergravity. The circle of relations between M-theory, M2
branes and the matrix model (5.32) thus closes via the above derivation of the matrix
model from the M2 brane world volume theory. The situation is summarised in table 5.1.

5.3.2 D0 Brane Dynamics in the Robertson-Walker Universe

In the last section it was shown that the BFSS matrix model can be recovered from
the M2 brane action in light-cone gauge. The guiding principle of this section will be

12The author thanks Elias Kiritsis for explaining this subtle point.
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to turn this logic around and, since any matrix model description of M-theory should
reproduce large semiclassical membranes, to derive the bosonic part of a matrix model for
the spatially flat Robertson-Walker background from the dynamics of a bosonic membrane
in this background. In this course I will use the ideas of section 5.2.2 and reduce the
dynamics of the membrane by fixing the world volume diffeomorphisms through a gauge
fixing constraint which involves the Hamiltonian density of the theory. The dynamics in
this subsector will then be described by a square root free Lagrangian whose potential can
be expressed in terms of the Poisson bracket and thus admits a matrix regularisation. This
step then leads to the proposed matrix model. From the time dependence of the coefficient
of the commutator-squared potential it is then possible to deduce statements about the
emergence of the classical geometry close to the big bang singularity.

In a flat background, the coupling of the Yang-Mills potential [X i, Xj]2 in the matrix
model can be freely scaled by a rescaling of the fields and of time, and its actual magnitude
therefore is irrelevant for the dynamics of the system. However, in the Robertson-Walker
background the coupling coefficient should encode the time dependence of the scale factor
a(t) and cannot be simply deduced from the one-particle action (5.24) due to the missing
commutator-squared potential in the one-particle action. I determine this time-dependent
coupling by deriving the tree-level matrix model from the bosonic membrane action in the
spatially flat Robertson-Walker background. The dynamics of a bosonic membrane with
tension T2 embedded in a D-dimensional target space-time is governed by the Nambu-Goto
action (5.41) with the flat metric ηµν replaced by the target space metric gµν ,

SM2 = −T2

∫

d3ξ

√

− det
(

∂α̂xµ∂β̂x
νgµν(x)

)

. (5.57)

The three-dimensional world volume of the membrane is parameterised by coordinates ξα̂,
α̂ = 0, 1, 2, and the embedding functions are given by xµ(ξ), µ = 0, 1, · · · , D−1.

As in the flat space case described before, a certain partial gauge fixing is needed in order to
derive the matrix model. Since the Robertson-Walker background (5.11) does not admit a
lightlike isometry, light-cone gauge is not useful in this setup. We thus have to proceed in a
different way to fix all the world volume diffeomorphisms until only static area preserving
ones are left over. The static area preserving diffeomorphisms are the ones compatible
with the deformation (5.52), since they keep the symplectic structure ǫij invariant and
thus, after fixing all but these diffeomorphisms, the matrix regularisation procedure can
be applied.13 Demanding cosmic gauge

t = x0 = ξ0 (5.58)

as well as the longitudinal gauge

∂tx
µ∂αx

νgµν = 0 , α = 1, 2 , (5.59)

13Since the spatial part of the world volume becomes a two-dimensional phase space with symplectic
structure after this deformation, the static area preserving diffeomorphisms are the only ones allowed by
Liouville’s theorem of classical mechanics. The author thanks Corneliu Sochichiu for pointing out this
connection.
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the remaining world volume diffeomorphisms are, at this stage, the static ones t′ = t and
σi′ = σi′(σ).14 A proof that longitudinal gauge can always be chosen is presented e.g.
in [381].

The Nambu-Goto Lagrangian in the spatially flat Robertson-Walker background then re-
duces to

LM2 = −T2 a
2(t)
√

(1 − a2(t)ẋ2) detG , (5.60)

where the determinant

detG = det(∂αx
i∂βxi) , α, β = 1, 2 (5.61)

is taken over spatial membrane coordinates only. Since we work with the spatially flat
Robertson-Walker background, spatial indices i, j are contracted with the flat metric δij,
i.e. e.g. ẋ2:= ẋiẋjδij. With the momenta

pi = T2 a
4ẋi

√

detG/(1 − a2ẋ2) , (5.62)

the Hamiltonian equations of motion derived from (5.60) read

ṗi ≡ ∂α

[

T2 a
2
√

(1 − a2ẋ2) detG G−1αβ∂βxi

]

, (5.63)

and the longitudinal gauge condition becomes

ẋi∂αx
i = 0 ⇐⇒ pi∂αx

i = 0 . (5.64)

In terms of the Poisson bracket {x, y}
PB

:= ǫαβ∂αx∂βy (with ǫ12 = 1, ǫαβ = −ǫβα), the
determinant can again be expressed as

detG = 1
2

{
xi, xj

}

PB
{xi, xj}PB

.

Furthermore the longitudinal gauge condition (5.64) implies the identities

∂t(p
2) + T 2

2 a
6 ∂tdetG ≡ 0 , {pi , x

i}
PB

= 0 , (5.65)

the second of which becomes the Gauß law constraint in the matrix model.

Consider the sector of solution space with fixed on-shell value of the Hamiltonian density

HM2 = a−1
√

p2 + T 2
2 a

6 detG ≡ Ω(ξ) . (5.66)

Since Ω transforms as a scalar density, imposing (5.66) finally breaks the remaining static
diffeomorphisms down to the static area preserving ones.

14Note the slight change in notation compared to the previous section: Here spatial world-volume indices
are denoted by α, β in order to distinguish them from the spatial indices xi of the target space coordinates.
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By the same argument as presented in section 5.2.2, the dynamics after gauge-fixing is
then equally described by a square root free Lagrangian

LΩ := 1
2

(
Ωa2 ẋiẋi − Ω−1T 2

2 a
4 detG + Ω

)
. (5.67)

Again the canonical momenta as well as the equations of motion are, after imposing the
gauge condition (5.66), identical to those of (5.60), namely eq. (5.62) and eq. (5.63), re-
spectively. Similarly to the one-particle case in section 5.2.2, the Hamiltonian constraint
for LΩ matches with (5.66) as

HΩ =
(
p2 + T 2

2 a
6 detG − a2Ω2

)
/
(
2a2Ω

) (5.66)≡ 0 . (5.68)

Having fixed all the world volume diffeomorphisms and derived the nonrelativistic action
(5.67), the matrix regularisation procedure can now be applied. The prescription is, as be-
fore, to replace the dynamical fields xi(t, ξα) by time-dependent N×N Hermitian matrices
X i(t), the Nambu bracket {xi, xj}

PB
by a matrix commutator −i[X i, Xj] [125], and the

world volume coordinates σα by nondynamical matrices σ̂α satisfying the noncommutative
relation [σ̂α, σ̂β] = iǫαβ. The determinant detG then yields the Yang-Mills potential and
the resulting matrix model reads

L̂M2 = Tr

[

Ω̂a2

2

(
DtX

i
)2

+
T 2

2

4

a4

Ω̂

[
X i, Xj

]2
+

Ω̂

2

]

, (5.69)

where Ω̂(t) := Ω(t, ξ̂α). The covariant time derivative DtX
i = Ẋ i − i[A0, X

i] involves a
nondynamical gauge fieldA0, such that the matrix model admits a U(N) gauge symmetry.
With the canonical momenta

P i = 1
2
a2(Ω̂DtX

i +DtX
iΩ̂) ,

the equation of motion for A0 gives the Gauß constraint

[P i, Xi] = 0 ,

which is the quantum analogue of the second equation in (5.65) and which has to be
implemented on physical states.

The matrix model (5.69) is the first main result of this chapter. It is still, however, far
too general, since it contains the arbitrary matrix function Ω̂(t) which was used for gauge
fixing. For example it is hard to say anything about the static (DtX

i = 0) solutions (the
vacua) of the theory, since the arbitrary matrix function Ω̂ shows up in the static equation
of motion

0 = [Xj, [X i, Xj]Ω̂−1(t)] .

What is needed is a physical guiding principle to fix a convenient gauge in which the
function Ω̂ simplifies considerably. Choosing a time-independent Ω̂ would allow to learn
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about the time-dependent effects induced by the expansion or contraction of the universe
encoded in a(t), without the additional time-dependent effects from the gauge choice.
However this restriction is too strong, since it does not reproduce the correct motion of a
single D0 brane (the case N = 1): Note that we already derived part of the coefficient of
the commutator-squared potential, namely the a4(t) dependence, by matrix regularising
the bosonic membrane in the RW background. We thus already ensured the existence
of semiclassical (i.e. large N) states that describe bosonic membrane dynamics in the
RW background, at least away from any singularity a(t∗) = 0. The matrix model should
however also give the correct description of the RW background in the case of only a few
D0 branes or, in the limiting case, only one D0 brane, probing the space-time. It is thus
reasonable to fix a gauge such that the U(1) part of Ω̂, which describes the center-of-mass
motion of the D-particles, coincides with the motion of one D-particle (or relativistic point
particle) in the case N = 1. Comparing the result for one D-particle from section 5.2.2
(with κ = 0) with the matrix model (5.69) lead then to the identifications

Ω̂(t) =
mν(t)

a2(t)ℓ211
, η̂ = mν(t) , (5.70)

with mν(t) defined in (5.23). The eleven-dimensional Planck length is necessary for di-
mensional reasons, since Ω̂ has dimension mass3. Note that this is the simplest possible
choice, setting the SU(N) part of Ω̂ to zero. It is surely not the unique choice which
reproduces the D-particle dynamics for N = 1, but it suffices for the purposes in the rest
of this chapter, and I thus leave the analysis of more complicated choices for future work.
The matrix model (5.69) for N D-particles in the flat Robertson-Walker background with
this choice of Ω̂ is thus described (in temporal gauge A0 = 0) by the Hamiltonian

ĤM2 =
1

2η̂(t)
Tr

[

P 2
i − T 2

2

2
a6(t)

[
X i, Xj

]2−m2(a2 + ν2)

ℓ411

]

. (5.71)

This matrix model Hamiltonian (5.71), and in particular the above derivation of the coef-
ficients of the different terms, is the second main result of this chapter.

Emergent Classical Geometry

The Hamiltonian (5.71), if imposed as the constraint ĤM2≡ 0 gives rise to an explicit
realisation of space-time emergence: Since the Yang-Mills potential

−Tr[X i, Xj]2 = Tr[X i, Xj][Xi, Xj]
† ≥ 0 (5.72)

is multiplied by the high power of the scale factor a6(t), it must decrease on-shell as the
scale factor a(t) increases in order for the Hamiltonian constraint to be satisfied: First
note that from (5.65) ∂t(a

4/Ω2) ≡ 6aȧp2/Ω4 > 0 and thus for all Ω̂ the coefficient of the
Yang-Mills potential term is monotonically increasing with time. One might worry about
the time-dependency of the last term in (5.71). Two facts ensure that the second term
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dominates the third for fixed values of m and ν: Since a(t) measures the spatial volume in
the metric (5.11) in Planck units, once the scale factor a(t) exceeds the Planck scale, i.e.
the value of one, a6 grows much faster than a2. Furthermore, the second term comes with
a factor ℓ−6

11 , while the last term only has ℓ−4
11 . For small eleven-dimensional Planck lengths

this yields a further enhancement of the second term compared to the third one. The first
term in (5.71) is always positive and thus leads to an even faster decrease of the squared
commutator. We thus find that very shortly after the universe described by (5.11) started
to expand, once it reached the size of several Planck lengths, the commutator between the
matrices

[X i(t), Xj(t)] ≈ 0

must have vanished up to small corrections. This means that the matrices are approxi-
mately simultaneously diagonalisable, and thus the positions of the D0 branes probing the
space-time are sharp and well-defined. This is interpreted as the emergence of the smooth
geometry of the underlying space-time, while the system evolves from the “quantum geo-
metrical phase” at the big bang into a well-defined smooth manifold structure.

On the other hand, near the singularity there is no obvious reason why the X i should
commute, since the Yang-Mills coupling vanishes and thus the potential for the off-diagonal
modes of the matrices which normally accounts for their masses vanishes, too. Physically
this means that the D0 branes come closer together near the singularity, and thus their
off-diagonal modes become light. Therefore, generically a magnitude for all components of
the matrices X i of order one in Planck units, in particular also for the off-diagonal modes,
can be expected. Explicit solutions to the equations of motion will be needed in order to
check under which special circumstances (e.g. for which choices of a(t)) space-time does
not become fuzzy near the big bang, since also the P 2 term can balance the last term in
(5.71), with the Yang-Mills potential still vanishing. If the commutator of the X i is of order
one, the particle positions are fuzzy of order one (in Planck units) and hence the space-
time geometry they probe cannot be described any more in geometrical terms. This is
the deeply quantum gravitational regime at the big bang singularity. The above argument
showing that the Yang-Mills potential term has to become considerably small once the
universe reaches a size of several Planck lengths together with the maximal fuzzyness of
space-time geometry at distances below a Planck length leads to the expectation that the
transition from the quantum to the semiclassical regime predicted from this matrix model
is actually very fast. It will be interesting to study this aspect further in future work. I
will also comment on additional directions of generalisation and application of the matrix
model (5.71) in the discussion in section 6.3.
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Chapter 6

Conclusions and Possible Further
Developments

The common theme of the work presented in chapters 3, 4 and 5 of this thesis is the
generalisation of holographic theories to situations in which additional external fields and
nontrivial backgrounds are present, i.e. to situations with a lower degree of symmetry. In
chapter 3, by employing the AdS/CFT correspondence the physics of a strongly coupled
N = 2 supersymmetric gauge theory with quark-like degrees of freedom in external electric
and magnetic fields, i.e. in a setup with broken Lorentz symmetry, was analysed. In
chapter 4, the AdS/CFT description of the same N = 2 supersymmetric gauge theory was
deformed by a Fayet-Iliopoulos coupling in order to describe nontrivial supersymmetry-
breaking vacua, which correspond to instanton configurations on D7 probe branes on the
gravity side of the correspondence. Chapter 5 dealt with another holographic description1

of a gravitational system, namely a proposal for a matrix model which should capture part
of the bosonic dynamics of M-theory (the conjectured ultraviolet completion of eleven-
dimensional supergravity) in the Robertson-Walker metric. The final chapter of this thesis
is devoted to a summary and discussion of the results, and a description of possible further
directions of research. The sections 6.1, 6.2 and 6.3 are respectively devoted to chapters 3,
4 and 5.

1The BFSS matrix model satisfies the holographic bound on the number of states (2.11) in a very
particular way [42]: The transverse size of a threshold bound state of N D0 branes grows, for large N

in a mean-field approximation, as N
1

9 in eleven-dimensional Planck units, which is interpreted as the
incompressibility of the D0 branes in the nine-dimensional transverse space. The “holographic screen” in
the case of the discrete light-cone quantisation (DLCQ) of M-theory is in this case the nine-dimensional
space transverse to the light-cone.
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6.1 Holographic Quarks in External Electric and Mag-

netic Fields

The first generalisation of the AdS/CFT correspondence presented in chapter 3 of this
thesis was concerned with the introduction of external electric and magnetic fields [1] into
the N = 2 supersymmetric D3-D7 model of AdS/CFT with additional flavour degrees
of freedom. In this model, which was explained in detail in section 2.3.6, the N = 2
quark hypermultiplets originate in the flat space picture from strings stretching between
the D3 and D7 branes. These hypermultiplets each consist of two d = 4 N = 1 chiral
multiplets, with one chiral multiplet originating from strings running from the D3 to the
D7 branes, and the other from the strings oriented in the opposite way. Assigning appro-
priate quantum numbers, the two chiral multiplets are respectively interpreted as quarks
(i.e. degrees of freedom in the fundamental representation of the gauge group), and the
corresponding antiquarks. The (anti)quarks are the fermions in each chiral multiplet, the
corresponding scalar superpartners are interpreted as (anti)squarks. Furthermore, quarks
in different, say Nf flavours, are constructed by considering a stack of Nf coincident D7
branes. In this case the system exhibits a global U(Nf ) flavour symmetry, which arises
from the U(Nf ) gauge symmetry on the D7 stack. The overall U(1)q ⊂ U(Nf ) factor is a
“quark number symmetry”, i.e. a symmetry under which the (s)quarks have charge plus
one, while the anti(s)quarks have charge minus one. For a single flavour2 (Nf = 1) the
quark number assignment thus coincides with the assignment of electric charges between
quarks and antiquarks under an electromagnetic U(1) gauge symmetry. As usual in the
AdS/CFT correspondence, global symmetries on the field theory side correspond to gauge
symmetries on the gravity side. In this case the U(1)q number symmetry is identified with
the overall U(1) gauge symmetry of a stack of probe D7 branes embedded into AdS5 × S5.
Introducing constant background U(1)q gauge fields on the worldvolume of the D7 brane
will therefore generate effects equivalent to actual constant background fields in the actual
gauge symmetries, which are more difficult to model in the AdS/CFT correspondence.3

The starting point of chapter 3 was thus to consider D7 probe branes in constant electric
and magnetic Kalb-Ramond background fields (see eq. (3.4)).4 The analysis of their prop-

2Assigning different charges to different flavours is also possible by introducing constant nonabelian
brane gauge fields. For example, for two flavours the combined effect from F 3

µντ3 of the SU(2)f field
strength together with the U(1)q field strength will add up for one flavour, and subtract for the other
flavour.

3The difficulty at first sight is that the gravity dual description of gauge theories at strong couplings can
only describe gauge-invariant objects. There is however an exception for the U(1) ⊂ U(Nc) factor of the
gauge group [294,295], which is not described by the local type IIB supergravity excitations but by a sector
of boundary degrees of freedoms, so-called “singletons”. Simply speaking the boundary term

∫
d(B ∧C2)

of the supergravity action directly induces the corresponding U(1) gauge sector on the boundary. It will
be interesting to study this phenomenon in the setup used here in future work, which may involve a
calculation of the backreaction of the D7 branes with B field onto the AdS5 × S5 background, inducing a
C2 ≃ C6 potential in the background.

4These closed string fields do not couple directly to the U(1)q number, but can be exchanged with a
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erties was carried out both at zero and finite temperature, i.e. in the AdS5 × S5 and AdS
black hole backgrounds. The magnetic (spatial-spatial) and electric (temporal-spatial) ex-
ternal B fields are switched on in the directions parallel to the boundary, which has quite
different effects on D7 probe brane embeddings and on the physics of quarks in the dual
gauge theory.

In the magnetic case considered in section 3.2, it was found that the external field induces
a repulsion of the D7 brane from the black hole. This repulsive effect competes with the
attraction of the D7 brane probe by the black hole, such that for strong enough magnetic
fields spontaneous chiral symmetry breaking occurs in the dual field theory even at finite
temperature. The exact expression for the critical magnetic field strength as a function of
temperature and ’t Hooft coupling is given in eq. (3.21). Above the critical field strength
spontaneous chiral symmetry breaking occurs, i.e. the operator (2.151) dual to the quark
mass acquires a vacuum expectation value. An analysis of the spectrum of lowest-lying
(i.e. with vanishing orbital angular momentum) pseudoscalar mesons, which are dual to
fluctuations of the polar angle in the plane transverse to the D7 brane, confirmed this pic-
ture of induced chiral symmetry breaking: The lightest pseudoscalar meson was identified
as the Goldstone boson of the broken symmetry by showing that its mass satisfies the Gell-
Mann-Oakes-Renner relation (3.25). From the form of the D7 probe brane embeddings at
finite temperature (fig. 3.4) it is immediately clear what happens when the magnetic field
exceeds its critical value at finite temperature: Even the embedding corresponding to zero
quark mass cannot fall into the black hole horizon any more. The boundary conditions
which have to be imposed on the fluctuations around this brane embedding then force the
meson spectra to be discrete, such that the mesons are stable at leading order in Nc.

5 Fur-
thermore, the first order meson melting transition present for subcritical magnetic fields
disappears above the critical field strength (see the phase diagram in fig. 3.5). Therefore
the mesons cannot melt any more in the hot N = 4 plasma for strong enough magnetic
fields. The magnetic field thus has a confining effect on the quarks, and the mesonic phase
is characterised by a nonzero chiral condensate, similar to the situation in QCD. Note
however that in QCD the chiral symmetry restoration transition and the deconfinement
phase transition occur at about the same energy scale, while in the D3-D7 model the two
transitions are independent of each other [257]. In particular, in the Poincaré coordinates
of AdS space used in chapter 3 the N = 4 glue is deconfined, but the quarks can still form
stable bound states. The underlying reason is the quenched approximation, i.e. the large
Nc limit with fixed numbers of flavours, which decouples the thermodynamic behaviour of
the N = 4 glue from the physics of the N = 2 matter fields, while at the same time the
conformal glue still determines the physics of the flavour fields themselves.

The catalysation of spontaneous chiral symmetry breaking in strong magnetic fields, i.e. a
dynamical mass generation for fermions, is known both from QED and QCD [106–109], as

D7 brane gauge field by means of a Ramond-Ramond gauge transformation.
5String worldsheet instanton effects [265, 266] yield nonperturbative contributions to the meson. Note

also that the mesons will not be stable in a vacuum with finite quark number densities.
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well as in effective models of QCD dynamics such as the Nambu-Jona-Lasinio model [62,63].
The underlying physical mechanism is the effective reduction of fermionic dynamics from
1+3 to 1+1 dimensions, since a strong magnetic field restricts the dynamics of the fermions
to the lowest Landau level. For this reason, in QCD this mechanism was conjectured to
be universal in the sense that it occurs for any number of flavours and also in a wide
class of effective models of quark dynamics. The results obtained here using holographic
techniques are consistent with these general expectations of the magnetic field acting as
a catalyst of spontaneous chiral symmetry breaking. A more quantitative comparison
between holographic models resembling QCD more closely and the known field theory
results in future work would in my eyes be an extremely interesting enterprise. A good
starting point would for example be the calculation of the dynamically generated masses
which can then be compared to QCD results. However, some effects known from field
theory such as anisotropic confinement are beyond the quenched approximation and thus
will not be visible in the holographic setup.6

While the magnetic field tends to confine the quarks into mesons, a constant electric field,
as considered in section 3.3, tends to destabilise quark-antiquark bound states. It also
induces a new kind of phase transition similar to an insulator-metal transition, during
which the mesons dissociate in the external electric field. This happens at an energy scale
set by the temperature of the system and the mass of the quarks. In particular, lowering
the quark mass at fixed temperature leads from the mesonic phase to the dissociated one.
Although the mesons considered in these theories here are highly relativistic (the binding
energy makes up nearly one hundred percent of the meson mass [96]) and therefore cannot
be described effectively by a nonrelativistic effective potential picture, it is known [96] that
the binding energy of the holographic mesons is proportional to the quark mass itself. In
this way it becomes intuitively clear why lowering the quark mass leads to a dissociation
of the bound states at fixed electric field: The binding energy linearly decreases with the
quark mass, until it can be overcome by the electric field.

Holographically this phase transition manifests itself in the following way: In the six direc-
tions of AdS5 × S5 transverse to the boundary, the electric field induces a five-dimensional
spherical locus at which the DBI action vanishes. This locus was dubbed “singular shell”
or “vanishing locus” in the literature. Inside the shell, the DBI action becomes imaginary,
indicating an instability of the open strings in the electric background field. This instability
can be cured by switching on gauge fields on the D7 brane which correspond to vacuum
expectation values for a current in the direction of the electric field, as well as for a nonvan-
ishing charge density (which in this case is the quark number density). The requirement of
the DBI action with these additional fields to be real inside the vanishing locus then yields
a relation between the electric field, the charge density and the induced current. Physically

6An attempt to compare the induced condensates in the Constable-Myers background [84] with Nambu-
Jona-Lasinio and chiral perturbation theory results has been recently made in [382]. However, chiral
perturbation theory captures only effects of order Nf/Nc, while the leading order matter effect in the
quenched approximation is of order NfNc. It is therefore not surprising that the holographic results differ
from chiral perturbation theory.
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speaking the instability corresponds to an electric field trying to accelerate charge carriers
while forbidding a current to form, while exciting the additional brane gauge fields renders
the situation consistent by introducing the operators corresponding to the induced current
in the field theory. In this consistent setup, both the embedding of the D7 brane as well
as the meson spectrum can be calculated.

The study of the embeddings at zero temperature (and zero quark number density) then al-
ready shows the holographic manifestation of the dissociation transition: The embeddings,
depicted in fig. 3.10, come into two distinct classes, namely “Minkowski embeddings” which
do not reach the singular shell, and “singular embeddings” which do. The shell has an
overall attractive effect on the embeddings. The transition between these two classes of em-
beddings occurs at a certain critical quark mass, at which the chiral condensate (fig. 3.12)
jumps by a finite amount, indicating that the phase transition is of first order. The sim-
ilarity to the finite temperature case reviewed in section 2.3.6 then led to the conjecture
that this geometric transition is to be interpreted as a meson dissociation transition. Note
that in the electric field no chiral condensate is created at zero quark mass, and that the
dissociation transition happens at a finite quark mass. An indication for the interpretation
of the transition as a metal-insulator transition is that the current induced by the electric
field (fig. 3.13) drops to zero exactly at the point where the quark mass is high enough to
allow for stable quark-antiquark bound states in the presence of the electric field. This is
interpreted as the impossibility of quark-antiquark pair creation out of the vacuum for high
enough quark masses. This latter interpretation coincides with the result of [284] that the
quark number conductivity is finite even in the limit of vanishing temperature and den-
sity.The phase transition is thus between an insulating mesonic phase and a conducting
quarkonic phase.

A calculation of the masses of the lowest-lying pseudoscalar mesons (fig. 3.14) confirms that
the mesons are lighter in the electric field than without, i.e. the lowering of the binding
energy. Furthermore an analytic calculation in section 3.3.1 showed that a second order
Stark shift of the meson masses occurs for the pseudoscalar sector in weak electric fields.
The calculation of the meson spectrum presented in [1] was, due to our ignorance about
the correct boundary conditions at the singular shell, restricted to the mesonic phase,
i.e. to embeddings which do not touch the vanishing locus. This restriction was recently
overcome in [110], where the correct boundary conditions at the singular shell for gauge field
fluctuations were derived. Only one set of boundary conditions consistent with the zero
field limit, i.e. with infalling wave boundary conditions at the finite temperature black hole
horizon, was found. Building on this the spectral functions for current-current correlators
could be calculated numerically, clearly showing a fast change of the quasiparticle spectrum
encoded in the spectral function from well-defined, sharp peaks to resonances with broad
widths at the dissociation transition. It was also found in that work that at finite quark
number density the first order dissociation transition gets smoothed out to a crossover. In
summary, the evidence presented in the works [1,110] is in favour for the interpretation of
the geometric brane embedding transition in the electric field as a dissociation or metal-
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insulator transition.

In order to interpret the results of chapter 3 correctly, a comment on the question of the
thermodynamical ensemble considered in the electric case is in order. As shown in [262],
switching on a gauge field At corresponds to including quark number density and a quark
chemical potential into the thermodynamics of the dual gauge theory. The canonical en-
semble is then characterized by a fixed number density and a varying chemical potential,
while in the grand canonical ensemble the chemical potential is held fixed [316]. Minkowski
embeddings which close off smoothly at ρ = 0 are only consistent for vanishing quark num-
ber density: A nonvanishing quark number density would correspond to strings creating
a cusp at ρ = 0 on the brane while stretching down to the black hole horizon [262], or
to the AdS horizon in the zero temperature limit. Thus, as we choose to fix the number
density D as in [284] while varying the quark mass and thus the induced current, we are
naturally considering the system in the canonical ensemble. Fixing the density to zero as
in section 3.3 then ensures the existence of the Minkowski embeddings in figure 3.10. As
mentioned above, finite densities in the canonical ensemble were considered in [110].

From the above, I conclude that an interesting future task is to explore the phase diagram
for finite external electric field in the grand canonical ensemble. I expect that Minkowski
embeddings will play a role for the dissociation transition at finite temperature similar to
the situation described in [316], and that the dissociation of the mesons at high tempera-
tures, or equivalently at small quark masses, will lead to nonzero quark number densities
due to the fixed chemical potential. Note however that for finite electric field the appli-
cation of equilibrium thermodynamics is justified only in the strict large Nc-limit with
Nf/Nc → 0, for the following reason: The charge carriers accelerated by the electric field
do lose energy to the N = 4 plasma by a diffusion wake [307, 308] created due to their
movement. This is the strong coupling analogue of heavy quark energy loss in the quark-
gluon plasma at weak coupling, where the dominant processes are two-body collisions and
gluon bremsstrahlung [383]. If Nc is large but finite, the energy pumped into the glue,
which grows linearly in time, will not be negligible any longer for time scales of the order
Nc/Nf , in which case the glue will react to the movement of the quarks and start to develop
a flow by itself. At large but finite Nc the situation is thus at most quasistatic. In the strict
Nc → ∞ limit the relevant time scale however diverges, and in this case the N = 4 plasma
can absorb an infinite amount of energy from the N = 2 quark number charge carriers
without being accelerated itself (see the conclusions of [284] for details). The situation is
thus static only in the strict Nc → ∞ limit.

The results for the electric Kalb-Ramond field presented in chapter 3 come with an open
question which needs to be answered in future work: It remains to analyse whether the
conically singular embeddings, whose presence was noticed first in [288] and which are also
seen in our results are physical or not. These embeddings occur both at zero and finite
temperature. At zero temperature they are easily spotted (see fig. 3.10): The exist in
the intermediate quark mass range between the embeddings which reach the origin of the
diagram and the Minkowski embeddings which do not reach the singular shell. At finite
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temperature they exist between the black hole and Minkowski embeddings. Since a conical
singularity has diverging curvature, what is the status of these solutions to the DBI action?
It is clear that they cannot be just discarded, since they exist in a finite interval of quark
masses, which is outside the phase transition region [288]. Discarding them would mean
to discard a finite interval of quark masses, and it is not even clear what is the physical
meaning of excluding a region in the space of external parameters for a thermodynamical
system. It is thus reasonable to assume that they play a part in the physics of this system.
They could for instance describe a new intermediary phase of matter in the presence of
an external U(1) field. In this case the presence of the conical singularity needs to be
explained, presumably by some object pulling the brane at this point, such that a force-
balanced (i.e. static) state is possible. What could this object be – a string, another brane?
For vanishing electric field but with finite density and temperature a similar situation was
analysed in [262] (around eq. (2.40) there), with the result that static configurations of a
string pulling the D7 brane to create a cusp do not exist. In that case the D7 branes must
always end on the horizon, being pulled into by the tension of a bundle of fundamental
strings attached to it. The calculation in [262] shows that in the region ρ ≈ 0 the D7
brane action reduces to an action for a density nq of Nambu-Goto strings smeared in
the Minkowski directions and stretching along the L-axis from the black hole horizon to
the cusp. With electric field, an analogous calculation approximates the D7 brane action
eq. (3.41) as7

L̄′D7 ≃ nq

√

(gtt(r) − gtt(rIR))

(

1 − B2

gtt(r)gxx(r)

)

(gρρ(r) + gθθ(r)(∂rθ)2) . (6.1)

Without the B2 term and the gtt(rIR) contribution in the square root, this would reduce
to a Nambu-Goto type action for strings smeared in the Minkowski directions with density
nq. It is thus unclear what is the actual object creating this conical singularity.8 It is
however conceivable that the strings get dragged along in the x-direction by the electric
field, and thus a trailing string dragged through the plasma (i.e. a more complicated
string embedding) reproducing eq. (6.1) could be attached at the cusp. Also, stringy α′-
corrections to the DBI action [384] could resolve the conical singularity in the embedding.
In any case, this question should be addressed in future work.

Generically, also from the field theory perspective, an instability is expected in the electric
case, since turning on an external electric Kalb-Ramond field requires the presence of a

7Note the change of coordinates L = r cos θ, ρ = r sin θ.
8Ref. [110] used a workaround to this problem by numerically integrating the embeddings not to ρ = 0

but to ρ = ǫ. In this way the otherwise conically singular solutions extend down to the horizon by
being “reflected” at the L axis everytime they come close to it. Extrapolating this treatment to ǫ = 0
yields selfintersecting D7 branes. Nevertheless, this procedure seems to give physically reasonable results.
However, if this would be the correct way to embed the D7 branes at these particular quark masses,
α′-corrections could remove the conical singularities, and the embedding could relax into a black hole
embedding reaching smoothly from the singular shell to the horizon. I thus doubt that this is the final
answer to this problem.
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non-zero gauge field background corresponding to a non-vanishing quark number density
and quark chemical potential µ. It is known for supersymmetric theories, which involve
scalars, that this leads to an upside-down potential of the form [385]

V (φ) = −µ2|φ|2 , (6.2)

which will, in the end, lead to Bose-Einstein condensation of the scalars. For an isospin
chemical potential, this instability was reproduced in the holographic context in [346].
Also in the study of quark chemical potentials, thermodynamical instabilities of D7 brane
embeddings at which tachyonic meson modes appear have been found [262, 275]. These
latter instabilities are of a more intricate structure, since they are confined to particular
regions of the phase diagram. The detailed structure of the phase diagram for the electric
external field is thus very subtle. It will be interesting to study it further, in particular in
the light of the work [259,316].

Several additional directions of future research work are:

• The ansatz for a constant electric field (4.48) (as well as the ansatz of a constant
quark chemical potential) is plagued by the fact that constant spatio-temporal dif-
ferential forms on Lorentzian manifolds are generically ill-defined at Killing horizons
unless they vanish there [386]. A possible way out would be to allow for a radial
dependence in (4.48), and attempt to solve the IIB supergravity equations of mo-
tion with nontrivial H flux to find a generalisation of the D3 soliton with electric
field in the wanted directions. To the author’s knowledge no such attempt has been
undertaken so far.9

• In the electric case at finite temperature it is conceivable that besides the dissociation
phase transition there is a second phase transition (or a crossover) when the conically
singular solutions reach the black hole horizon. In the work [110] this seems to be
explicitly excluded by the workaround described in footnote 8 of this chapter. Thus
as long as the status of the conically singular embeddings and their exact treatment
is not settled, such details of the dissociation phase transition remain unclear and
require further study.

• As noted already in chapter 1, the quark-antiquark pair production rate in the electric
field is finite even for vanishing bare quark mass. This fact is even more puzzling
since the chiral condensate also vanishes in the limit of zero bare quark mass, i.e.
there is no dynamical mass generated at zero bare quark mass. The finiteness of the
pair production rate at zero quark mass thus seems to be due to a genuine strong
coupling effect which deserves further investigation.

9The recent paper [387] used a null Melvin twist in order to derive D3 soliton solutions with C1 switched
on, i.e. with D0 brane charge. This form field is however part of the Ramond-Ramond sector and not of
the NS-NS sector, and furthermore the solutions presented do not even admit a limit in which the two-form
field strength dC1 becomes constant far away from the D3 branes.
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• Since the Lorentz symmetry is broken in the presence of the electromagnetic back-
ground fields, a detailed analysis of the holographic dictionary in this situation of
reduced symmetry along the lines of [297] will be interesting.

• As was noted in footnote 10 of chapter 3, the ad hoc application of the equal area law
to the dissociation phase transition seems to yield correct results, but the thermo-
dynamical treatment in the presence of persisting currents and in particular a proof
of the equal area law still needs to be worked out. The underlying problem is that a
component of a current is not a conserved quantity, and thus no chemical potential
conjugate to it can be defined in the usual way. Nevertheless it is a static situation,
and therefore not too different from thermal equilibrium.

• It might be instructive to embed D7 probes into global AdS-Schwarzschild space-
times in the presence of electric and in particular magnetic fields. In this way new
insights into the interplay of the (de)confinement and meson melting transitions in
this toy model of strongly interacting quantum field theories may be gained.

6.2 Holographic Fayet-Iliopoulos Terms from Kalb-

Ramond Fields

In the last section, the work presented in chapter 3 on the breaking of the Lorentz symmetry
of the dual field theory by external electric and magnetic fields was summarised. As a
further step of generalising the AdS/CFT correspondence to situations with less symmetry,
chapter 4 presented a holographic construction [2] of nontrivial supersymmetry breaking
Coulomb-Higgs states in a deformation of the N = 2 supersymmetric gauge theory with
flavour. The original theory, which was described in section 2.3.6, is deformed by the Fayet-
Iliopoulos coupling (4.47). Fayet-Iliopoulos couplings in supersymmetric gauge theories
(see e.g. chapter VIII of [205]) generically break either just supersymmetry (if the matter
fields are sufficiently massive), or both supersymmetry and the U(1) gauge symmetry to
which the Fayet-Iliopoulos term couples (if the mass squares are light compared to the
Fayet-Iliopoulos parameter). Due to technical restrictions that will be explained below,
only the massless case was considered in chapter 4, and hence both the U(1) ⊂ U(Nc)
gauge symmetry as well as supersymmetry is broken.

The holographic construction of chapter 4 was to a large extend inspired by known facts
about the D3-D7 brane intersection in flat space. The Fayet-Iliopoulos deformation is
induced in the D3-D7 system by switching on the constant Kalb-Ramond field given in
eq. (4.48) in the directions of the D7 brane world volume perpendicular to the D3 brane.
The Fayet-Iliopoulos coupling (4.47) only depends on the anti-selfdual part of the B field,
i.e. on b1 − b2 in the notation of eq. (4.48). The self-dual part cannot be gauged away by
Ramond-Ramond gauge transformation due to the presence of the D7 brane, but it does not
influence the physics of open strings ending on the D7 probe. It can be shown from direct
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calculations of string disk amplitudes [117] that the low-energy effective action includes
the correct Fayet-Iliopoulos coupling (4.47). As argued in section 4.3, the derivation of the
AdS/CFT duality with fundamental flavour fields via the decoupling argument explained
in section 2.3.6 is also valid in the Fayet-Iliopoulos deformed theory. Thus the Fayet-
Iliopoulos deformed N = 2 theory is conjectured to be holographically dual to type IIB
supergravity on AdS5 × S5 with Nf probe D7 branes and with the constant Kalb-Ramond
field in the directions of the D7 branes perpendicular to the AdS boundary. This is the
first main result of chapter 4.

Several nontrivial checks described in section 4.4 confirm this conjecture. In section 4.4.1
it was shown that the anti-selfdual part of the B field (4.48) has the correct transformation
behaviour under the SU(2)Φ×SU(2)R×U(1)R global symmetry of the undeformed N = 2
field theory (see section 2.3.6 for more details) in order to couple to the SU(2)R triplet
of auxiliary fields in the N = 2 vector multiplet. Also, if only the auxiliary D field
from the N = 1 vector multiplet couples to the B field (which corresponds to a choice
of SU(2)R frame), the global SU(2)R symmetry is broken to its U(1) subgroup, both
in the field theory as well as on the gravity side. For an argument that the operator
corresponding holographically to the anti-selfdual B field has the scaling dimension ∆ = 2
of auxiliary D and F fields, see section 4.4.2. Finally, in section 4.4.3 the supersymmetry
breaking pattern of the embedding of one probe D7 brane in AdS5 × S5 was shown to
match the expectations from the theory of noncommutative instantons. In particular both
a κ-symmetry calculation as well as the existence of no-force conditions confirmed that
supersymmetry is preserved for a D7 brane if the B field is self-dual, while it is broken
if the B field has an anti-selfdual part. In the latter case the supersymmetry breaking is
parametrised by the Fayet-Iliopoulos term in the dual field theory. The supersymmetry
breaking pattern is summarised in table 4.2.

The second main result of chapter 4 is the conjecture of a holographic duality between
mixed Coulomb-Higgs states of the Fayet-Iliopoulos deformed N = 2 theory, and noncom-
mutative instanton solutions in the D7 brane worldvolume directions perpendicular to the
AdS boundary. This conjecture relies on two properties of string theory in the presence of
D branes: First, the presence of a constant Kalb-Ramond field induces noncommutativity
on the worldvolume of a D brane. The open string endpoints on the D brane behave like
coordinates of a noncommutative space [111], and hence the low-energy effective gauge
theory in the worldvolume directions with B field is a noncommutative gauge theory. Sec-
ondly, in the supersymmetric Dp-D(p+4) intersections in type II string theory, the D and
F term equations whose solutions describe the different vacua of the (p+1)-dimensional
gauge theory can be mapped onto the Atiyah-Drinfeld-Hitchin-Manin (ADHM) equations
which classify all possible instanton solutions in the four directions of the D(p+4) brane
transverse to the Dp brane. The underlying physical picture is that instantons in these
transverse directions of the D(p+4) brane can be thought of as “dissolved” Dp branes in
the D(p+4) brane, or equivalently Dp-D(p+4) bound states. In terms of the classification
of vacua in the (p+1)-dimensional field theory, Dp branes which dissolve into the D(p+4)
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branes correspond to colour directions of the U(Nc) gauge group which are broken com-
pletely (i.e. including the corresponding U(1) generator of the Cartan subalgebra) by the
Higgs mechanism. In this case scalar fields in the fundamental representation (squarks)
acquire a vacuum expectation value in the corresponding colour direction. Such vacua
are called “Higgs vacua”. On the other hand, Dp branes which are not bound to the
higher-dimensional branes but separated from the main stack of Dp branes correspond
to “Coulomb vacua” of the gauge theory, i.e. directions in colour space which are bro-
ken by the Higgs mechanism down to the corresponding U(1) Cartan generator. In this
case a scalar field transforming in the adjoint representation of the gauge group acquires
a vacuum expectation value. The general case is that of mixed Coulomb-Higgs vacua, in
which several colour directions are broken completely and others unbroken or only broken
down to the respective U(1) subgroups. The part of the D and F term equations which
describe the Higgs branch, i.e. which describe the vacuum expectation values of funda-
mental and adjoint squark fields in the colour directions with broken Cartan generators,
are then exactly the ADHM equations for instantons in the transverse D(p+4) directions.
In particular the vacuum expectation values of the adjoint and fundamental squark fields
are in one-to-one correspondence with, respectively, the position and size moduli of the
instantons.

In the case of the Fayet-Iliopoulos deformed theory the situation is similar: The D and
F term equations of the field theory are deformed by the Fayet-Iliopoulos term (4.47),
and the ADHM equations of noncommutative instantons are as well deformed by a term
of this type [119]. The full low-energy effective action of the Dp-D(p+4) intersection in
flat space in the presence of a constant Kalb-Ramond field was calculated in [117], where
it was found explicitly that the mapping between vacuum equations in the field theory
and transverse instantons persists also in the deformed case. I conjectured in chapter 4 of
this thesis that this mapping between the D and F term equations for the Higgs part of
the Coulomb-Higgs branch and the noncommutative ADHM equations (4.43)-(4.44) also
persists in the holographic setting, i.e. after taking Maldacena’s decoupling limit. As a
consequence, nontrivial states on the Coulomb-Higgs branch of the field theory at strong
coupling should be described by a collection of Nf D7 probe branes embedded in the
standard way into AdS5 × S5, and with the constant Kalb-Ramond field (4.48) switched
on. This is the second main result of the work [2] presented in chapter 4. More precisely, the
mixed Coulomb-Higgs branch of the field theory with k colour directions broken completely,
i.e. with k fundamental squark fields acquiring a vacuum expectation value, is conjectured
to be dual to a stack of Nf D7 branes in AdS5 × S5 with a charge k noncommutative
instanton in the U(Nf ) noncommutative gauge theory present in the transverse directions
of the D7 brane.

For the analysis presented in chapter 4 it was necessary to work in an adiabatic approxima-
tion, in which the Fayet-Iliopoulos parameter is very small, ζ ≪ 1, corresponding to a large
B field. In this limit, as explained below, the setup is sufficiently stable in order to make
the following construction: Let Nc − k D3 branes generate the AdS5 × S5 geometry, and
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embed a D7 stack into this space, with k D3 branes dissolved as instantons on the brane
probes. Evidently, k must be small for the usual probe approximation to be valid, i.e. for
the backreaction of the D7 probe onto the background to be negligible. The probe approx-
imation alone however is not sufficient for ensuring the stability of this setup: Although
the decay process, which involves a quantum of five-form flux to be transferred from the
S5 onto the D7 stack and to manifest itself on the D7 branes as an instanton (while at
the same time the radius of AdS5 shrinks by one unit) is a backreaction effect and hence

suppressed by
Nf

Nc
, there are Nc identical quanta of five-form flux which could jump over.

This means that the total decay probability is of order
Nf

Nc
Nc = Nf , and thus in general

not negligible. However, since for vanishing Fayet-Iliopoulos parameter the setup is super-
symmetric and therefore stable, the decay probability must be, for small ζ, proportional
to ζ itself,

Pdecay ∝ ζ
Nf

Nc

Nc = ζαNf , (6.3)

and hence can be tuned to an arbitrarily small number. Therefore the setup can be
made arbitrarily longlived by tuning ζ to be very small. In this adiabatic (or quasistatic)
approximation the setup of chapter 4 describes metastable states than stable ones (and
hence I refer to them as “states” and not as “vacua”). However, it is not a potential
barrier that protects the setup from decaying, but only the smallness of the Fayet-Iliopoulos
parameter: Already the flat space D3-D7 intersection is not stable in the anti-selfdual B
field, but it is known from models of D3-D7 inflation [322,327–329] that the supersymmetry
breaking generates a potential between the D3 and D7 branes, pulling the D3 branes
towards the D7 branes until they dissolve to form instantons. The actual stable and
N = 2 supersymmetric state is the one where all Nc D3 branes are dissolved into an
instantonic configuration on the D7 brane. This is consistent with the field theory since
the D term equation with Fayet-Iliopoulos term actually cannot be solved without giving
all the squark fields a vacuum expectation value, which generates a potential for the squark
fields on the Coulomb part of the Coulomb-Higgs branch. The D term contribution to the
scalar potential will thus be nonvanishing, but will directly drive the system to the pure
Higgs vacuum. On the gravity side of the correspondence the flat space process of D3 branes
approaching and finally dissolving into the D7 branes will correspond to a backreaction
effect of the D7 brane onto the background in which five-form flux is be transferred from
the internal S5 onto the D7 brane, manifesting itself as an additional instanton. It is an
interesting question for future work to investigate the dynamics of the actual decay process
involved.

In order to test the proposed duality between Coulomb-Higgs states and noncommutative
instantons, in section 4.5 the symmetry properties of both sides were compared explicitly
in the simplest situation, namely that of a single (k = 1) noncommutative instanton
on a single (Nf = 1) flavour brane embedded flatly into AdS space. In the case of a
single instanton, the squark fields acquire a vacuum expectation value in a single colour
direction. The situation describes one D3 brane dissolved into the D7 brane. Since this
calculation involves finding an analytic expression for the D7 brane embedding in the
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presence of the B field, which is only possible for flat embeddings L = 0, the analysis
was restricted to the case of massless flavour fields. On the gravity side, the Nekrasov-
Schwarz noncommutative U(1) instanton was shown to preserve the full global symmetry
left invariant by the B field ansatz, i.e. SU(2)Φ × (U(1) ⊂ SU(2)R) × U(1)f × U(1)R,
while the squark vacuum expectation value10 calculated from the D and F term equations
of the field theory preserves only SU(2)Φ × diag(U(1) × U(1)f ) × U(1)R. Here U(1)f is
the global flavour symmetry. There is thus an obvious symmetry mismatch which needs
explanation. I believes that the field theory result is the correct one, since in the work [115]
a similar breaking of the R-symmetry and the flavour symmetry has been observed for a
single Belavin-Polyakov-Shvarts-Tyupkin (BPST) instanton [338] on two flavour branes but
without B field. The backdraw of comparing with the commutative SU(2) instanton is of
course that no nontrivial commutative instanton solutions exist for gauge group U(1) [333],
the Nekrasov-Schwarz instanton does not admit a commutative limit. An analysis of the
symmetry properties of the noncommutative version of the SU(2) BPST instanton in
future work could thus resolve the situation. Assuming that the field theory result is the
correct one, there are still several assumptions entering the analysis of section 4.5 which
might be the origin of this mismatch. One basic assumption is that the instanton gauge
potential (4.71) transforms under rotations in noncommutative space-time as an ordinary
vector. Since space-time symmetries mix with gauge symmetries in noncommutative gauge
theories [340], it might be that some of the rotations allowed by the choice of B field
actually are broken by the choice of singular gauge in the Nekrasov-Schwarz solution. This
is possible since even infinitesimal rotations in noncommutative space-time correspond to
large gauge transformations. As in the AdS/CFT context global symmetries in the field
theory do correspond to local symmetries on the gravity side, it is necessary to work
out the noncommutative diffeomorphisms and U(1)f gauge transformations which leave
invariant the asymptotic behaviour Ai ≃ |~y|−3 of the gauge potential (4.71). This is a
rather complicated calculation since it involves complicated nonpolynomial operators in
the Fock space representation of the noncommutative space-time. Preliminary attempts
did not lead to any conclusive results, but I nevertheless assume this to be the true reason
of the symmetry mismatch, and the problem of finding the correct symmetries of the
Nekrasov-Schwarz instanton should surely be addressed again in future work.

Another, more basic assumption entering the analysis of section 4.5 is that although the
induced metric on the D7 brane is not flat, the Nekrasov-Schwarz instanton is a solution
of the actual unknown noncommutative gauge on the D7 brane. I assume this to be
true, since the induced metric on the D7 brane worldvolume for the flat embedding is
actually flat in the internal directions up to a function of the radial coordinate ~y2, which
is rotationally invariant and can easily be represented in terms of Fock space operators

10As can be seen explicitly in this case (see e.g. (4.88)), an important conclusion which can be drawn
from the proposed duality conjecture is that the U(1) factor of the U(Nc) gauge group in the boundary
field theory plays an important role, namely it is broken generically by the solutions to the F and D
term equations since the fundamental squark fields (which are charged under the U(1)) acquire a vacuum
expectation value. It will be interesting to study the singleton mechanism [294,295] involved further.
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(see eq. (4.73)). Although the actual noncommutative deformation of this curved space is
unknown, a modification involving the radial distance will not break any additional rotation
symmetries (which correspond to R symmetries in the field theory). This argument does of
course not exclude exotic modifications of the noncommutative algebra due to the curvature
of this space-time. It may thus be interesting to investigate possible noncommutative
deformations of conformally flat four-dimensional Euclidean space when the conformal
factor depends only on the radius. Since the induced geometry on the D7 brane is AdS5×S3,
which is a quotient manifold, an application of the results of [388] to this case could also
help to deduce the actual form of the noncommutative gauge theory on the D7 brane.

Finally, let me note several possible applications and generalisations of the work presented.
It will be interesting to investigate similar dualities for the more involved case where the
scenario is stabilized, for instance by considering D7 brane probes in a singular geom-
etry such as the conifold. This may allow for constructing gravity dual descriptions of
metastable vacua, which have been discussed for theories without fundamental flavour
degrees of freedom in [389–394]. These models are stabilised by fluxes which lead to
configurations of branes at special points, such as the resolved conifold. It may also be
interesting to study supersymmetry breaking for D7 branes in the warped throat geometry,
for instance based on the results of [323, 324]. The stabilisation issue in the presence of
instantons may also be addressed by considering D7 brane probes in the recently discussed
deformed Sasaki-Einstein geometries of [395]. Finally, as both supersymmetry and gauge
symmetry is broken in this setup, an interesting application of the proposal made in this
work would be to analyse the corresponding Higgs mechanism and find e.g. the Goldstino
in the spectrum of the D7 brane fluctuations. In order for such a project to be feasible it is
necessary to first translate the Nekrasov-Schwarz instanton into an instantonic solution of
the corresponding commutative DBI field theory via the Seiberg-Witten map [111], which
is possible at least in a series expansion if the noncommutativity parameter θij is small.

6.3 A Matrix Model Proposal for the Robertson-Walker

Universe

In the last two sections of this chapter I discussed the work presented in chapters 3 and 4 of
this thesis, which generalised the D3-D7 model of holographic flavour physics to situations
in different external fields, namely to constant electric and magnetic field backgrounds in
chapter 3, and to a Fayet-Iliopoulos deformation in chapter 4. In this section, I will discuss
the results of chapter 5, which was concerned with a different kind of holographic models,
namely with matrix models in the Robertson-Walker geometry.

The main result of the work presented in chapter 5 and published in [3] is the matrix
quantum mechanical model (5.71) and its more general form (5.69). These two models
were derived from the dynamics of a bosonic membrane in the spatially flat Robertson-
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Walker geometry (5.11) (with κ = 0), with so-far unspecified scale factor, by use of a
special regularisation procedure for the worldvolume theory of the membrane known as
matrix regularisation [125]. This regularisation method replaces the embedding functions
of the membrane by N × N matrices transforming in the adjoint representation of the
U(N) gauge group of the matrix model. The underlying logic is to derive the matrix model
such that it captures special features of the background geometry, rather than from string
theoretic considerations in the first place. In this sense it is a bottom-up rather than a top-
down approach, which may be useful in its own right. In a second step it should be checked
whether this matrix model actually captures part of the physics of a collection of D0 branes
near the big bang singularity. In the same step one should also try to derive the model
from string theoretic considerations, which is a very hard problem for nonsupersymmetric
backgrounds such as the Robertson-Walker geometry. Alternatively, it can be fruitful to
perform nontrivial crosschecks with M-theory matrix models on backgrounds including
a Robertson-Walker type singularity by comparing dynamical features of both kinds of
matrix models. I will comment on both approaches below. It should also be noted that the
procedure of matrix regularisation is a purely classical procedure, replacing the infinitely
many degrees of freedom of the membrane field theory by finitely many ones encoded in the
matrix fields. The so-derived matrix models (5.71) and (5.69) are still classical mechanical
models which need to be quantised in a second step. Nevertheless I will refer to them as
“matrix quantum mechanics”, since their physical content is to a large part encoded in
quantum corrections arising from integrating out heavy off-diagonal modes encoded in the
matrix fields.

Technically, the actual derivation of the matrix models went along the following steps:
Starting from the Nambu-Goto action for a membrane in the Robertson-Walker geome-
try, the worldvolume diffeomorphism gauge was fixed by choosing cosmic gauge (5.58) for
the worldvolume time, as well as longitudinal gauge (5.59) for the induced metric on the
membrane, which breaks the worldvolume diffeomorphisms to static ones. The fixing of a
certain energy density profile on the membrane via eq. (5.66) then breaks the static diffeo-
morphisms down to static area preserving ones. This last gauge fixing condition replaces
the fixing of the light-cone momentum known from light-cone quantisation of the mem-
brane, and is thus applicable to the Robertson-Walker background which does not admit
a lightlike isometry. The gauge-fixed Nambu-Goto action is then replaced by a classically
equivalent square-root free mechanical model using a procedure explained in section 5.2.2.
The crucial point here is that the vanishing of the Hamiltonian of the new square-root free
system has to be imposed as a constraint in order to ensure classical equivalence of the two
models. The square-root free action (5.67) is then subjected to the matrix regularisation
procedure. The group of static area preserving two-dimensional diffeomorphisms leaves a
symplectic form on the two-dimensional spatial worldvolume of the membrane invariant.
It is thus the largest group of spatial diffeomorphisms compatible with the matrix regu-
larisation of the spatial worldvolume (5.52), which essentially amounts to a “deformation
quantisation” turning the membrane worldvolume into a noncommutative space, and the
mechanical system (5.67) into the matrix quantum mechanics (5.69). The so-obtained
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matrix model admits a U(N) gauge symmetry, reflecting the indistinguishability of the
“partons” (i.e. D0 branes) which probe the underlying space-time.

The matrix model (5.69) derived in this way depends explicitly on the gauge-fixing function
Ω̂, which encodes the chosen energy density profile of the original membrane. There is a
huge freedom in choosing this function, and this choice influences the structure of solutions
and in particular of the static solutions of the theory. This is not surprising since the whole
procedure of deriving matrix models from membrane dynamics is not only background
dependent but also gauge dependent. On the other hand, the a priori choice of Ω̂ fixes
the total energy of the membrane configuration considered. This raises the question of the
physical meaning of the derived matrix model: Does its spectrum include only membranes
of fixed energy, or is there a way to a posteriori find a continuum of membrane states
with different energies? Even if the former is the case, there might be a mathematically
well-defined mapping between matrix models with different Ω̂, transforming matrix models
with different spectra into each other and corresponding to a change of gauge choice for the
worldvolume diffeomorphisms. In order to answer these questions and thus gain a better
understanding of which sector of M-theory physics the matrix model actually describes,
it will be helpful to investigate in future work the space of static (i.e. DtX

i = 0) solutions
of the matrix model with more general choices of the gauge function Ω̂(t).

In order to derive the second model (5.71), a guiding principle for choosing a suitable
gauge Ω̂ was needed. The principle used in [3] was the requirement that a single D0 brane
(the case N = 1) should behave as a point particle in the Robertson-Walker geometry,
i.e. it should follow the geodesics in that space-time. As explained in section 5.2.2 it
is actually possible to derive a classical mechanical model (see eq. (5.25)) admitting a
certain global so(1, 2) symmetry and describing a subsector of the geodesic motion in
the Robertson-Walker background with fixed initial energy and angular momentum. This
model is a square-root free rewriting of the relativistic point particle action, and it has
striking similarities with the matrix model Lagrangian (5.69), which made it possible to
fix the gauge fixing function Ω̂ by direct comparison of eqs. (5.25) and (5.69) to the values
given in eq. (5.70) and hence arrive at the matrix model (5.71). This choice of gauge
physically corresponds to the requirement that the center-of-mass motion of all the N D0
branes follows certain geodesics in the Robertson-Walker geometry, corresponding to a
membrane with “freely falling” center-of-mass motion. It seems to be the simplest possible
and at the same time physically interesting gauge choice, but surely not the unique one. In
particular switching on SU(N) components of Ω̂ do not change the center-of-mass motion
of the D0 branes, so there is a large degeneracy of choices which satisfy our physical guiding
principle, and their significance should be investigated further in future work. Looking at
eq. (5.72), it is very plausible that gauge choices with nontrivial SU(N) part give rise to
static solutions exhibiting certain polarisation features similar to Myer’s effect [282], i.e.
that the collective behaviour of the D0 branes is such that they form a higher-dimensional
object in target space.11

11Note however that in the case of a 1+1-dimensional universe, i.e. with only one X1 = X present,
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Within this second, more specialised matrix model (5.71) I gave a general argument at
the very end of chapter 5 for the emergence of a smooth geometric structure from the
matrix model dynamics once the universe has expanded to a size few times larger than the
Planck scale. One may argue that the circle of argumentation closes here and that one
simply recovers the Robertson-Walker geometry which was put into the calculation via the
membrane action at the beginning. Though it is true that matrix models derived from
membrane regularisation generally know about the background (and hence are explicitly
background dependent), it is in my eyes a highly nontrivial consistency check for the
procedure of matrix regularisation as well as for the special choice of Ω̂ that the coefficient
of the Yang-Mills-like commutator-square potential in (5.71) goes with a high enough power
of the scale factor such that the emergence of space is obvious at all in (5.71). Other, more
complicated choices of Ω̂ could have made this behaviour more complicated to observe or
not present at all. Another reassuring observation is that similar to the model considered
in [362], with our choice of gauge fixing (5.71) the Yang-Mills coupling constant in front
of the commutator-squared potential becomes small near a singularity and vanishes at
the singularity. The observation of space-time emergence thus gives confidence in the
sometimes rather ad hoc assumptions entering the derivation of (5.71), but on the other
hand demands even stronger for a more in-depth analysis of the role of the choice of Ω̂
in this setting. In any case, the proposal laid out in chapter 5 yields the opportunity for
several directions of future investigations on which I want to briefly comment before closing
this thesis. I also comment on some wilder speculations.

• Presumably the most interesting investigation would be to embed Robertson-Walker
cosmologies in string theory backgrounds with spacelike singularities such as the
ones classified in [399–402], try to derive matrix models from this starting point both
with the gauge fixing method used here as well as with other more conventional
methods such as light-cone gauge fixing, and compare the approaches. If this proves
feasible, nontrivial crosschecks with eleven-dimensional supergravity on backgrounds
with a Robertson-Walker singularity such as the calculation of scattering amplitudes
directly from the matrix model as well as from the supergravity point of view would
be possible. The application of the laid-out method for gauge fixing and subsequent
matrix regularisation to backgrounds with already known matrix model descriptions
such as flat eleven-dimensional space or linear dilaton backgrounds would also be a
good consistency check, and could in particular clarify the physical significance of
the gauge choice encoded in Ω̂.

• Even without embedding the model into string theory, in the bottom-up approach
itself, a case worth considering would be Einstein-Hilbert gravity with a positive
cosmological constant. In this case the de Sitter universe with scale factor a(t) =

eq. (5.72) forces the D0 brane configuration to be diagonal independently of the choice of Ω̂. In this
extremely low-dimensional case the question is rather how much dynamics one would at all expect from
a theory of quantum gravity. There are interesting examples with nontrivial dynamics known in the
literature, see e.g. [396–398] for an overview on two-dimensional toy models of quantum gravity.
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const × eHt is a solution to Einstein’s equations, and induced interactions from a
one-loop calculation in the matrix model could be compared to tree-level scattering
amplitudes in the gravity theory. In any case the matrix regularisation procedure
only yields a classical matrix mechanical model, which needs to be subjected to
quantisation in order to learn about stability properties of the model, in particular of
the ground state. Quantum corrections to our scenario can be calculated in analogy to
[362]. Such a calculation may also shed light on the question whether the holographic
entropy bound holds in the models presented here - the strategy would be to calculate
the one-loop effective action for initial conditions of two well-separated groups of D0
branes and then analyse the scaling behaviour of the typical length scale of a large
cluster of D0 branes along the lines of section VII of [42].

• Also an ad hoc supersymmetrisation of the matrix models (5.69) and (5.71) could be
feasible. The result could be compared to matrix regularisations of supersymmetric
membrane theories on Robertson-Walker like supersymmetric geometries, or to the
supersymmetric matrix model which presumably can be derived by application of the
gauge fixing procedure and matrix regularisation procedure proposed in chapter 5 to
the full supersymmetric M2 brane action [403].

• Already in the work of Banks, Fischler, Shenker and Susskind [42] it has been ob-
served that in order to ensure boost invariance of the eleven-dimensional theory, a
kind of scale invariance must be present in the dynamics of the BFSS matrix model.
It would be interesting to investigate whether the so(1, 2) invariance found in the
analysis of point particle dynamics in section 5.2.2 carries over to the matrix mod-
els (5.69) and (5.71), and whether there is a connection with the mysterious scale
invariance of BFSS.

• Another generalisation would be to use spatially nonflat geometries, i.e. Robertson-
Walker geometries with κ = ±1. The main obstacle in this case is that the spatial
geometry is not flat anymore, and thus the determinant of the pulled-back metric is
not straightforwardly expressed in terms of the Poisson bracket. Most probably either
a modification of the Poisson bracket or the deformation quantisation procedure of
the spatial membrane worldvolume is needed.

• In section 5.2 it was shown that the general conformal mechanical system (5.1) cov-
ers through different choices of the constants c1 and c2 as well as of the gauge fixing
function η̂, not only the point particle dynamics in the Robertson-Walker universe,
but also the dynamics of a subsector of homogeneous gravity modes around the spa-
tially flat Robertson-Walker background with positive cosmological constant (i.e. the
de Sitter universe). In particular, near the big bang singularity a≃ 0, the choice of
small η̂ = ma

√
a2 + ν2 and negative c1 describes the point particle dynamics, while

large η̂= 1
4
ωa1−D and positive c1 describe the gravity fluctuations. It is a wild spec-

ulation to think about a possibly deeper meaning of this apparent coincidence, but
an identification of the two pictures would for example map the volume element
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̺ =
√

det gij in the gravity picture to the radial coordinate ρ of the point particle
trajectory. Singularities in the homogeneous space-times occur when the metric de-
generates (̺ = 0), whereas nothing particular happens to the point particle at the
point ρ = 0 in the spatially flat Robertson-Walker geometry. A similarly wild specu-
lation is that since the conformal mechanics model (5.1) describes both one-particle
motion as well as homogeneous gravity excitations, and since the matrix model (5.71)
is the generalisation of (5.1) to many D-particles and hence should describe inhomo-
geneous quantum fluctuations around the homogeneous Robertson-Walker geometry,
there could either exist a connection between the matrix models derived here and
the quantum mechanics of inhomogeneous modes of Einstein-Hilbert gravity with a
cosmological constant, or a physical picture from which a matrix model description
of Einstein-Hilbert gravity with a cosmological constant can be derived. In either I
dont know how to give a more precise meaning to these interesting speculations.

• Finally, I would like to draw the attention onto another observation concerning the
matrix models (5.69) and (5.71): Assuming that the point particles we are considering
are actually D0 branes, the D0 brane tension m = T0 ∝ (gsℓs)

−1 = 1/Rs explicitly
appears in the matrix model. It seems that a successful embedding of this matrix
model into M-theory would need a very particular background which connects the
scale factor a(t) in such a way with the M-theory circle, in order to give rise to a
constant energy contribution ∝ a2/(R2

sℓ
4
11) as in (5.71). This might be used as a

guiding principle for the search for the correct string/M-theory embedding of these
models.

To conclude this thesis, the overall common theme of the work presented in chapters 3, 4
and 5 was the generalisation of two holographic models arising in string/M-theory to
physical situations with a lower degree of symmetry. In chapters 3 and 4 the D3-D7 model
of AdS/CFT with flavour has been extended to include constant electric and magnetic
background fields which break Lorentz invariance, as well as to a supersymmetry-breaking
Fayet-Iliopoulos deformation. Chapter 5 presented a derivation of a matrix model for
a particular nonsupersymmetric background, the Friedmann-Robertson-Walker geometry.
In all three cases, interesting new physical effects with the potential for many further
developments discussed in this chapter were found. The application of holographic methods
to both the description of strongly coupled gauge theories as well as to quantum gravity
thus seems to be a field with a high potential for interesting future applications. Several
additional research directions which emerged during my PhD studies, such as the study of
boundary effects in two-dimensional quantum dilaton gravity [404] and in the BFSS matrix
model [405], a holographic analysis of the N = 2 gauge theory with flavour in the presence
of a four-dimensional boundary cosmological constant [406] and of black hole formation
as a holographic dual for quark-gluon plasma equilibration [407], as well as a systematic
classification of possible extensions of the ABJM theory [380] to include flavour degrees
of freedom [408] confirm my expectation that the field of gauge/gravity duality has not
reached its limits yet.
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Appendix A

Notational Conventions

Throughout this thesis, if not mentioned otherwise, natural units

~ = c = GN = 1

are employed. Space-time is assumed to be a Lorentzian manifold with signature (−,+, , . . . ,+).
Latin indices a, b are local Lorentz indices, while Greek indices µ, ν refer to the manifold.
However be aware of additional index conventions in the different chapters – it may have
been necessary at some points to introduce for example capital latin letters form ten-
dimensional space-time indices. The totally antisymmetric symbol both in tangent space
and on the manifold is defined by ǫ01...d = ǫ̃01...d = +1. The symbols with upper indices
are defined as usual via raising all indices with the corresponding metric. Light cone
coordinates are defined as

u± =
1√
2
(u0 ± u1) . (A.1)

The components of a p-form are defined via

Ωp =
1

p!
Ωµ1...µp

dxµ1 ∧ · · · ∧ dxµ1 , (A.2)

and the Hodge dual of a p-form (in D dimensions) is defined with the coefficients

∗ Ωp = Ω′D−p =
1

p!(D − p)!
ǫµ1...µD−p

ν1...νpΩν1...νp
dxµ1 ∧ · · · ∧ dxµD−p , (A.3)

with the Levi-Civita tensor ǫµ1...µD
= | det ea

µ|ǫ̃µ1...µD
. For even dimension D and Lorentzian

signature this yields
∗ ∗Ωp = (−1)p+1Ωp (A.4)

and thus
∗ ǫ = 1 , ∗1 = −ǫ (A.5)
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for the Hodge star acting on the volume form ǫ. With these conventions the hermitian
conjugate of the exterior derivative [409] reads

d† = ∗d ∗ . (A.6)

A Dirac fermion in two dimensions has two complex components, χ = (χ0, χ1)
T. Dirac

matrices in two-dimensional Minkowski space are chosen as

γ0 =

(
0 1
1 0

)

γ1 =

(
0 1

−1 0

)

γ+ =

(
0

√
2

0 0

)

γ− =

(
0 0√
2 0

)

.
(A.7)

The analogue of the γ5 matrix is γ∗ = γ0γ1 = diag(+−). They satisfy {γa, γb} = 2ηab and
{γ∗, γa} = 0. For calculations in Euclidean space γ0 is defined as above, but γ1 = diag(+−)
and γ∗ = γ0γ1, thus satisfying {γa, γb} = 2δab. The Dirac matrices in Euclidean space are
thus hermitian, γa = γa†, whereas γ∗ becomes anti-hermitian.

The standard form of the third anti-selfdual ’t Hooft symbol, which is used in chapter 4, is

η̄3
mn =







0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0






. (A.8)
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Appendix B

Appendices of Chapter 3

B.1 Some useful Expansion Formulae

To expand eq. (3.48) while calculating the Stark shift, the following identities which hold
up to O(B2) are useful:

g = ρ3
√

1 + L′2

√

1 − B2R4

(ρ2 + L2)2

≃ ρ3

(

1 − B2R4

2(ρ2 +m2)2
)

)

, (B.1)

g−1 ≃ ρ−3

(

1 +
B2R4

2(ρ2 +m2)2

)

, (B.2)

[
(ρ2 + L2)2 −B2R4

]−1 ≃ (ρ2 +m2)−2

(

1 +
B2R4

(ρ2 +m2)2

)

. (B.3)

B.2 Decoupling of Pseudoscalar Fluctuations

In this appendix we show that for the magnetic and electric Kalb-Ramond field (3.4), both
at finite and zero temperature, the L- and gauge field fluctuations can be decoupled from
the Φ-fluctuations and consistently set to zero by the respective Ansätze (3.22) and (3.47).
For the electric case, as we will show, this holds only for the Minkowski embeddings, which
have both zero baryon number density and current, i.e. for a trivial gauge field background.
For a nontrivial gauge field background, like the one which renders the singular shell
embeddings consistent, this decoupling will only be possible if the Φ-fluctuations do not
depend on the Minkowski coordinates at all, φ = φ(ρ). The calculation follows [105].

To show the decoupling, we have to verify that in the part of the action quadratic in the
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fluctuations no couplings of χ and A to φ appear. We take the embedding fluctuations
to be L = L0(ρ) + χ, Φ = φ, where L0(ρ) is the embedding of the D7 brane into the
appropriate background. For now, let us assume a trivial gauge background F = 0 on the
brane, such that the gauge field A is a pure fluctuation. For a diagonal background metric
GMN(ρ, L) = diag(−Gtt, Gxx, Gyy, Gzz, Gρρ, Gηη, Gξ1ξ1 , Gξ2ξ2 , GLL, GΦΦ) not depending on
Φ and the magnetic ansatz (3.4), the pull-back of metric and B field can be split into an
embedding part, a part linear and a part quadratic in the fluctuations:

Eab = P [G+B]ab = E
(0)
ab + E

(1)
ab + E

(2)
ab , (B.4)

E
(0)
ab = (G−1 + θ)−1

ab , (B.5)

(G−1)ab = diag

(

−G−1
tt , G

−1
xx ,

Gzz

GyyGzz +B2
,

Gyy

GyyGzz +B2
, (Gρρ + L′0

2
GLL)−1,

G−1
ηη , G

−1
ξ1ξ1

, G−1
ξ2ξ2

)
, (B.6)

θ23 = −θ32 = − B

GyyGzz +B2
, others zero , (B.7)

E
(1)
ab = E

(1)
Sab + E

(1)
Aab , (B.8)

E
(1)
Sab = 2L′0GLL(L0)δ

ρ
(a∂ b)χ+ χ∂LGab(L0) + L′0

2
χδρ

aδ
ρ
b∂LGLL(L0) , (B.9)

E
(1)
Aab = 0 , (B.10)

E
(2)
ab = E

(2)
Sab + E

(2)
Aab , (B.11)

E
(2)
Sab = GΦΦ(∂aφ)(∂bφ) +GLL(∂aχ)(∂bχ) + 2δρ

(a (∂ b)χ)χL′0∂LGLL(L0) (B.12)

+
1

2
δρ
aδ

ρ
bL
′
0
2
χ2∂2

LGLL(L0) +
1

2
χ2∂2

LGab , (B.13)

E
(2)
Aab = 0 . (B.14)

Here, we split the inverse of E(0) further into its symmetric (the “open string metric”) G−1

and its antisymmetric part (the “noncommutativity parameter”) θ, as well as the linear
and quadratic fluctuation parts. Note that the antisymmetric parts at linear and quadratic
order vanish.

We now pull out the E(0) from the square root in the DBI action and use the usual
determinant expansion to obtain the fluctuation part of the DBI action, dropping a factor
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−T7/gs,

L(2)
DBI =

1

2

√

− detE(0)
[

Tr(E(0)−1
E(2)) +

1

4
(Tr(E(0)−1

E(1)))2 (B.15)

+
1

4
(Tr(E(0)−1

F ))2 +
1

2
Tr(E(0)−1

E(1))Tr(E(0)−1
F ) (B.16)

−1

2
Tr(E(0)−1

E(1))2 − 1

2
Tr(E(0)−1

F )2 − Tr(E(0)−1
E(1)E(0)−1

F )
]

,(B.17)

√

−|E(0)| =

√
√
√
√
√




∏

M∈{t,x,η,ξ1,ξ2}
GMM



 (GyyGzz +B2)(Gρρ + L′0
2GLL) . (B.18)

Because the antisymmetric parts (B.10) and (B.14) vanish and the Φ-fluctuations only
show up at second order in (B.12), it is seen by checking term by term that (B.15) includes
couplings between F and χ only, but not between F or χ with φ, and thus A = χ = 0
decouples the angular fluctuations. The φ-part of the DBI action thus reads

L(2)
DBI,φ =

1

2

√

− detE(0)GΦΦ(L0)(G−1)ab∂aφ∂bφ ,

which reduces to (3.23) for the AdS-Schwarzschild background. This reasoning, as is easily
checked, also holds for the gauge field background (3.27), which is needed for the electric
case.

The dangerous part, which may couple gauge field and angular fluctuations, is the Wess-
Zumino part of the action to second order in the fluctuations,

∫

M8

1

2
P [C4] ∧ F ∧ F + P [C̃4] ∧ P [B] ∧ F ,

which could in principle introduce couplings of F to ∂tφ, ∂xφ and ∂t∂ρφ or ∂x∂ρφ, as
the magnetic dual of the Ramond-Ramond four-form potential includes Φ-fluctuations,
P [C̃4] ∝ ∂aφ (see eq. (45) in [105]). With the ansatz (3.22), which does not depend on t
or x, these couplings vanish. Thus χ = 0, A = 0 and the ansatz (3.22) yields (3.23).

For the electric case, the Wess-Zumino action does lead to additional couplings for a
nontrivial gauge field background F0. As for the Minkowski embeddings no gauge back-
ground is needed for consistency, the ansatz (3.27) used to calculate the spectrum at
zero temperature is consistent. The new couplings, which spoil the above reasoning
for the singular shell embeddings, are again due to the magnetic dual of C4, namely
∫
P [C̃4]∧F0∧F . As P [C̃4] containts ∂aφdξa, this induces the following couplings (schemat-

ically): (∂yφ)(Fzx+Fzt)+(∂zφ)(Fxy +Fty). These couplings vanish only if φ(ρ) is a function
independent of all Minkowski coordinates, i.e. a zero mode in the Minkowski directions,
(ω, k1, k2, k3) = 0.
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Appendix C

Appendices of Chapter 4

C.1 Expansion of the Determinant in the DBI-Action

For completeness, we write down the most important steps of the expansion of the D7
brane action (4.60) to second order 2πα′ in more detail. In the following discussion we
abbreviate1

Eab = Pab[gµν +Bµν ]. (C.1)

Using the expansion

√

− det(Eab + 2πα′Fab) =
√

− detEab det(δab + 2πα′(E−1F )ab)

=
√

− detEab ·
(

1 +
2πα′

2
TrE−1F +

(2πα′)2

8

(
TrE−1F

)2

−(2πα′)2

4
Tr
(
E−1F

)2
+ . . .

)

,

(C.2)

the action of the D7 brane up to order α′2 is given by

SD7 = S(0) + 2πα′S(1) + (2πα′)
2
S(2) + O(α′ 3) , (C.3)

S(0) = −T7

∫

D7

dxµdym
√

− detEab ±
T7

2

∫

D7

C(4) ∧B ∧B , (C.4)

1In this appendix we suppress the colour traces to avoid confusion between them and traces over
euclidean space indices.
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S(1) = −T7

2

∫

D7

dxµdym
√

− detEabE
abFba ± T7

∫

D7

C(4) ∧B ∧ F , (C.5)

S(2) = −T7

∫

D7

dxµdym
√

− detEab

[
1

8

(
EabFba

)2 − 1

4
EabFbcE

cdFda

]

(C.6)

±T7

2

∫

D7

C(4) ∧ F ∧ F . (C.7)

The inverse matrix of Eab will be denoted by upper indices, i.e. Eab, with

EabEbc = δa
c . (C.8)

Switching on the selfdual, constant B field (4.48), a non-vanishing U(1) field strength in
the directions transversal to the D3 brane, and using the massless embedding of the D7
brane, we obtain

√

− det(Eab) =
H3(r) + b2

H3(r)
= 1 +

b2

H3(r)
,

EabFba = 2 bA (F45 + F67) =
2b

H3(r) + b2
(F45 + F67) ,

1

8

(
EabFba

)2 − 1

4
EabFbcE

cdFda =
1

4(H3(r) + b2)2

(

H3(r)FabFab +
b2

2
ǫklmnFklFmn

)

,

C(4) ∧B ∧B =
2b2

H3(r)
d4x d4y ,

C(4) ∧B ∧ F =
b

H3(r)
(F45 + F67) d

4xd4y ,

C(4) ∧ F ∧ F =
1

4H3(r)
ǫklmnFklFmnd

4xd4y ,

where d4x d4y = dx0 ∧ · · · ∧ dx3 ∧ dy4 ∧ · · · ∧ dy7. Using these results, we have for the D7
brane action SD7 = SDBI + SWZ up to order α′ 2

SD7 = S(0) + 2πα′S(1) + (2πα′)
2
S(2) + O(α′ 3) , (C.9)

S(0) = −T7

∫

dxµ dym 1 , (C.10)

S(1) = 0 , (C.11)

S(2) = −T7

4

∫

dxµ dym 1

H3(y) + b2

(

FabFab −
1

2
ǫklmnFklFmn

)

(C.12)

= −T7

2

∫

dxµ dym 1

H3(y) + b2
F−F− , (C.13)

which is precisely the action (4.60).
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