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1 Summary 
 
 
 
The morphology of dendrites is important for neuronal function and for the proper 

connectivity within neuronal circuits. The often very complex shape of dendritic trees is 

brought about by the action of many different genes throughout development. Moreover, 

neuronal activity is often involved in refining synaptic connections and shaping dendrites. 

Aiming at a better understanding of the interplay between genes and neuronal activity 

during dendrite differentiation I was trying to identify suitable neurons in the Drosophila 

central nervous system. Describing the morphology and cytoskeletal organization of a 

group of visual interneurons involved in motion processing I provided evidence that the 

dendrites of these neurons do bear small protrusions that share essential characteristics 

with vertebrate spines. Vertebrate spines received a lot of recent attention because 

neuronal activity can induce lasting changes in their morphology even in the adult. These 

morphological changes are believed to be cellular correlates of learning and memory. The 

observation of similar structures in flies raised the possibility to study structural plasticity 

in a genetically accessible model organism. Experience-dependent alterations in the 

volume of a region in the insect brain, called mushroom body calyx, have been shown. 

The calyx is known to contain the dendrites of olfactory interneurons, Kenyon cells, which 

are known to be required for the retrieval of olfactory memories in flies. I wanted to 

address if morphological rearrangements of the dendrites of these cells could underlie the 

experience-dependent changes in calycal volume. Kenyon cell dendrites and their 

presynaptic partners are known to form synaptic complexes, called microglomeruli, 

throughout the calyx. My results help refining the anatomical description of these 

structures. These findings are important to understand how olfactory experience is 

represented in the fly brain and how olfactory memories might be formed. Moreover, I 

developed a computer algorithm to quantitatively describe the morphology of these 

microglomeruli in an automated manner. Thereby, I found indications for morphological 

rearrangements of calycal microglomeruli during the first days of the adult life of 

Drosophila. I could show that olfactory experience is not required for these morphological 

alterations. My findings provide the basis for ongoing attempts to study the influence of 

neuronal activity on the dendritic morphology of Kenyon cells in more detail.  
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Zusammenfassung 
 
 
 

Die Morphologie von Dendriten spielt eine wichtige Rolle für die Funktion von 

Nervenzellen und die richtige Verknüpfung von neuronalen Schaltkreisen. Die oft sehr 

komplexe Verzweigung von Dendritenbäumen wird durch das Zusammenspiel vieler 

verschiedener Gene während der Entwicklung hervorgerufen. Außerdem ist neuronale 

Aktivität bei der Herausbildung synaptischer Verbindungen und dendritischer 

Morphologie von Bedeutung. Um das komplexe Zusammenwirken von Genen und 

neuronaler Aktivität während der Entwicklung von Dendriten besser zu verstehen, habe 

ich versucht, geeignete Neuronen im zentralen Nervensystem von Drosophila zu 

identifizieren. Dazu habe ich die Morphologie und die Organisation des Zytoskelettes 

einer Gruppe von visuellen Interneuronen beschrieben. Dabei ist es gelungen zu zeigen, 

dass die Dendriten dieser Neuronen kleine Fortsätze tragen, die wesentliche Eigenschaften 

von Spines (kleinen dendritischen Fortsätzen) bei Vertebraten haben. Spines bei 

Vertebraten haben in der jüngeren Vergangenheit viel Aufmerksamkeit auf sich gezogen, 

weil neuronale Aktivität zu lang anhaltenden Veränderungen in ihrer Morphologie führen 

kann. Man geht davon aus, dass diese morphologischen Veränderungen das zelluläre 

Korrelat von Lernen und Gedächtnis sind. Die Beobachtung, dass Fliegen vergleichbare 

Strukturen aufweisen, hat die Hoffnung geweckt, dass strukturelle Plastizität in einem 

genetisch zugänglichen Modellorganismus untersucht werden könnte. 

Erfahrungsabhängige Veränderungen des Volumens einer Region im Insektengehirn, dem 

sogenannten Pilzkörperkalyx, sind bereits gezeigt worden. Zudem ist bekannt, dass der 

Kalyx die Dendriten von olfaktorischen Interneuronen – sogenannter Kenyonzellen – 

enthält. Diese wiederum sind bei der Fliege für das Abrufen olfaktorischer Erinnerungen 

notwendig. Ich wollte herausfinden, ob morphologische Veränderungen der Dendriten 

dieser Zellen den erfahrungsabhängigen Volumenänderungen des Kalyx zugrunde liegen. 

Kenyonzellen und ihre präsynaptischen Partner bilden synaptische Komplexe, die 

Mikroglomeruli genannt werden. Ich habe die anatomische Beschreibung dieser 

Strukturen verfeinert. Meine Ergebnisse helfen die Fragen zu beantworten, wie 

Geruchswahrnehmungen im Fliegengehirn repräsentiert sind und wie olfaktorisches 

Lernen funktioniert. Darüber hinaus habe ich einen Computeralgorithmus entwickelt, der 

es ermöglicht, die Morphologie dieser Mikroglomeruli automatisch zu beschreiben. Auf 

diese Weise habe ich Hinweise darauf gefunden, dass sich die Morphologie der 

Mikroglomeruli im Kalyx während der ersten Tage des Lebens der erwachsenen Fliege 

ändert. Weiterhin konnte ich zeigen, dass olfaktorische Erfahrung für diese 

morphologischen Veränderungen nicht notwendig ist. Meine Ergebnisse sind die 

Grundlage für weitergehende Untersuchungen, die gegenwärtig dem genauen 

Zusammenhang zwischen neuronaler Aktivität und dendritischer Morphologie der 

Kenyonzellen nachgehen.  
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2 Introduction 
 
 
 

2.1 Dendrites 

Neurons are among the morphologically most complex cells and their morphology is closely 

linked to their function. With their long extended axon and elaborate dendritic arbour, 

neurons establish the circuitry that detects, stores, and transmits information in the nervous 

system. Although they come in many shapes and sizes, most neurons have distinct axonal 

and somatodendritic compartments which are radically different in their signalling 

properties, cytoskeletal organization and physiological functions. Dendritic trees are usually 

the morphologically most complex part of neurons and this morphological complexity 

makes them inherently difficult to study. Therefore, our general understanding of the 

molecular mechanisms that regulate dendrite growth and branching notably lags behind 

analogous studies on axon growth and guidance (Baas and Buster, 2004; Dent and Gertler, 

2003; Ghysen, 2003; Grueber and Jan, 2004; Horton and Ehlers, 2003; Jan and Jan, 2003; 

Kim and Chiba, 2004; Libersat, 2005; Libersat and Duch, 2004). 

 

Axonal growth and guidance has been a centre of attention ever since Ramón y Cajal 

discovered its prominent driving structure, the growth cone. Axons are guided along 

specific pathways by attractive and repulsive cues in the extracellular environment. Genetic 

and biochemical studies have led to the identification of highly conserved families of 

guidance molecules, including netrins, Slits, semaphorins, and ephrins. Guidance cues steer 

axons by regulating cytoskeletal dynamics in the growth cone (Dickson, 2002; Schnorrer and 

Dickson, 2004). Similar mechanisms are likely to be important in dendrite growth and 

guidance as well. Dendrites are involved in collecting information and their morphology 

reflects this task (London and Hausser, 2005). Depending on the cell type and on the type 

of input they deal with, dendritic arborization displays a wide range of morphologies, from 

the single axon-like fibre observed in many sensory neurons to the highly intricate, planar 

arborization found in Purkinje cells (Cline, 2001; Libersat, 2005; Libersat and Duch, 2004). 

How are these differences coded for in the developmental program of the neuron? 

Dendrites progress through several stages of morphogenesis before achieving their mature 

form. They initiate growth from one or more sites, from either the soma or a proximal 

segment of the axon. Growing dendrites target a particular receptive territory, within which 

they branch and achieve a type-specific architecture. Eventually, branching dynamics slows 

down and a mature territory and branching complexity is established (Grueber and Jan, 

2004; Grueber et al., 2005; Jan and Jan, 2003; Kim and Chiba, 2004; Parrish et al., 2007). 

Understanding how dendrites accomplish each step of morphogenesis presents an 

enormously complicated problem. Until recently, the small size of Drosophila limited its use 

in this field. However, methodological advances have overcome some of the challenges of 

small size (Venken and Bellen, 2005). These advances include the labelling of neuronal 

populations using the GAL4/UAS system (Brand and Perrimon, 1993) and the visualization 
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and manipulation of individual neurons using the mosaic analysis with a repressible cell 

marker (MARCM) strategy (Lee and Luo, 1999, 2001). By enabling analyses of identified 

neurons in undisturbed environments, these advances have opened the complexity of insect 

dendritic development to combined cellular and genetic analysis (Grueber and Jan, 2004; 

Grueber et al., 2005; Parrish et al., 2007).  

 

 

2.2 Drosophila as a model system for dendritic morphogenesis 

Studies on dendrite development in Drosophila have provided interesting insights in the 

recent past. It has been shown that dendritic targeting, branching patterns, territories, and 

metamorphic remodelling are controlled in specific ways, by intrinsic genetic programs and 

extrinsic cues, with important implications for function (Grueber and Jan, 2004; Parrish et 

al., 2007). It was demonstrated that several cell-surface receptors, previously known as axon 

guidance molecules, are also responsible for the directed outgrowth of dendrites. As known 

for axons, these molecules play important roles in orienting and positioning of dendrites 

within the brain and are involved in determining synaptic connectivity as well as the strength 

of transmission. Such molecules include the ligand-receptor pairs Semaphorin-Neuropilin, 

Netrin-Frazzled and Slit-Robo (Boyle et al., 2006; Dimitrova et al., 2008; Kim and Chiba, 

2004). Many of these studies exploit the experimental advantages of sensory neurons in the 

Drosophila peripheral nervous system (PNS) (Brenman et al., 2001; Dimitrova et al., 2008; 

Gao and Bogert, 2003; Gao et al., 2000; Grueber and Jan, 2004; Grueber et al., 2005; 

Grueber et al., 2007; Jinushi-Nakao et al., 2007; Medina et al., 2008; Moore et al., 2002) 

which have processes that share many essential characteristics with dendrites (Sanchez-

Soriano et al., 2005). Besides many striking similarities between the dendrites of these 

sensory neurons and dendrites in the central nervous system (CNS) there is also a major 

difference: while synaptic connectivity and dendritic computation pose major constraints on 

dendritic morphology in the CNS, the dendrites in the PNS lack synaptic input (Sanchez-

Soriano et al., 2005). It would be highly desirable to have a model system allowing studies 

on dendritic morphogenesis and dendritic function in the CNS – ideally with similar genetic 

accessibility and high resolution imaging as in the periphery. Such a system would allow 

screening for factors involved in dendrite – and possibly spine (see below) – morphogenesis. 

It could reveal genetic mechanisms linking synaptic connectivity and dendritic computation 

with morphology and this possibility represents a major advantage over the PNS dendrites. 

Ideally, it could ultimately allow studies on the consequences of dendritic manipulations on 

their function (relating those to behavioural consequences) or on the relation between 

neuronal activity and dendritic morphology (Chen and Ghosh, 2005; Wong and Ghosh, 

2002). 

 

 

2.3 Candidate neurons for studies on dendrites in the CNS 

Aiming to study dendrite morphogenesis in the CNS of the adult Drosophila I looked for 

suitable model systems. The criteria for the selection of candidate neurons were:  
 

a) Complex but stereotyped dendritic morphology, 



 I n t r o d u c t i o n  16 

 

b) The availability of GAL4 driver lines to allow visualization and manipulation of the 

target cells specifically, 

c) Information on the polarity of the neurons allowing a reliable distinction between 

dendrites and axons and 

d) Information on the function of the neurons.  

 

I will only briefly introduce the pacemaker neurons, the atonal positive neurons and the 

giant fibre neuron. The neurons I chose to focus on, the Lobula Plate Tangential Cells and 

mushroom body intrinsic Kenyon cells, are introduced in more detail afterwards.  

 

The pacemaker neurons (LNVs) have complex processes in the optic lobes and can be 

visualized and manipulated with a very specific GAL4 driver line (Nitabach et al., 2002; 

Renn et al., 1999). They are part of the circuitry that synchronizes the circadian clocks in the 

fly (Helfrich-Forster, 2005). Circadian clocks drive rhythmic physiological processes and 

behaviours in the absence of any rhythmic environmental fluctuations (Hastings et al., 2003; 

Stanewsky, 2003). In the absence of LNV function (upon induced cell death or electrical 

silencing) flies do not maintain the rhythmic circadian locomotor activity under constant 

darkness (Nitabach et al., 2002; Renn et al., 1999).  LNV function can thus be tested very 

easily via behavioural assays – e.g. with available tools to quantify locomotor activity  

(alternatives are eclosion rythms or larval light avoidance) (Mazzoni et al., 2005). Although 

their function has been studied extensively it is not entirely clear whether the projections in 

the optic lobes are dendrites (they might collect input from the rabdomeres to entrain the 

clock) or axons (they might be required to regulate photoreceptor sensitivity in a circadian 

manner). It has been demonstrated that LNVs undergo structural rearrangements at a 

circadian time scale which might allow molecular studies on structural remodelling 

(Fernandez et al., 2008). 

 

The atonal (ato) gene defines a conserved family of genes involved in nervous system 

development and was initially described as proneural gene that is necessary and sufficient 

for the development of the Drosophila chordotonal organs (Jarman et al., 1993; Wang et al., 

2002).  An ato-GAL4 driver was generated and showed specific expression in a cluster of 

few cells in the optic lobes. Indications for dendritodendritic connection suggested that the 

ato-expressing neurons are multipolar (Hassan et al., 2000).  

 

The giant fibre circuit is a comparatively simple circuit in the CNS and mediates a well 

studied behavioural response, the escape jump of the fly (Allen et al., 2006). The giant 

neuron‘s dendrites appear to be sufficiently complex and stereotyped to allow detailed 

morphometric analysis, the polarity is well established and dendritic and axonal processes 

can be distinguished. Two specific GAL4 driver lines (Allen et al., 1998; Phelan et al., 1996; 

Trimarchi et al., 1999) are available and allow specific labelling of a single identifiable 

neuron. The dendrites appear to bear spines and they receive excitatory cholinergic input as 

shown by acetylcholine (ACh) receptor localization (Fayyazuddin et al., 2006). Due to their 

large size the neuron is accessible for electrophysiology (Godenschwege et al., 2002). 
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2.4 Lobula Plate Tangential Cells  

Lobula Plate Tangential Cells (LPTCs) are a group of 6 vertical and 3 horizontal cells and 

their dendrites form a very large and dense dendritic field covering much of the lobula plate 

(Scott et al., 2002). They provide several major advantages for detailed high resolution 

imaging: They are large neurons, facilitating visualization, and there exist driver lines 

allowing cell-specific expression (Joesch et al., 2008; Raghu et al., 2007; Scott et al., 2002). 

The anatomy of the LPTC dendrites has been described at single-cell resolution and it was 

demonstrated that each cell is individually identifiable (Scott et al., 2002; Scott et al., 2003a, 

b). Based on electrophysiological experiments and on the localization of pre- and post-

synaptic markers, a dendritic tree, dedicated to receiving input, and an axon can confidently 

be distinguished (Raghu et al., 2007; Single and Borst, 1998). I considered LPTCs to be the 

most suitable neurons for detailed genetic analysis of dendrite morphogenesis.  

 

 

2.4.1 LPTCs are individually identifiable and their morphology is stereotyped 

The morphology of each of the LPTCs has been described in detail (Scott et al., 2002) by 

MARCM single cell labelling (Lee and Luo, 1999). Position, size and outline of the dendritic 

field are highly consistent between animals and the morphology of the primary dendrites is 

stereotyped enough to allow the individual identification of each neuron. It is also possible 

to identify and trace a single neuron from the entire group of cells and to assemble its 

morphology from multiple confocal sections (Figure 4.2C). 

 

 

2.5 Lobula Plate Tangential Cells and the perception of motion 

LPTCs are essential to the fly‘s perception of motion. To guide a fly in three dimensions, 

flight control crucially relies on optic flow (Frye and Dickinson, 2001). In the fly‘s brain, the 

lobula plate encodes visual motion information in a retinotopic manner and is thought to 

represent a neural control centre for course corrections during flight (Borst and Haag, 

2002). LPTCs integrate the output signals of retinotopically arranged local motion detectors 

(Borst and Egelhaaf, 1992) and connect via descending neurons to the motor neurons in the 

thoracic ganglia. The electrophysiology of LPTCs has been studied extensively in larger flies 

(Borst and Haag, 1996; Farrow et al., 2005; Farrow et al., 2003; Haag and Borst, 2002, 2003; 

Haag et al., 1997; Haag et al., 1999) and recently became accessible in Drosophila as well 

(Joesch et al., 2008).  

 

 

2.6 Dendritic spines 

There have been previous indications of the presence of spine-like processes along the 

dendrites of LPTCs (Scott et al., 2002; Scott et al., 2003a, b). This raised the interesting 

question of whether Drosophila dendrites might bear spines comparable to the ones 

described in vertebrates. Dendritic spines have attracted considerable interest because they 

are suggested to be the cellular effectors of such processes as learning and memory (Yuste 

and Bonhoeffer, 2001). It is widely assumed that the formation of long-term memories 

requires activity-dependent long-lasting morphological alterations in plastic neuronal 
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networks, which might take place in the neuronal spines (Alvarez and Sabatini, 2007; 

Bonhoeffer and Yuste, 2002; Hofer et al., 2006a, b, 2008; Matus, 2005).  

 

This assumption is supported by the findings that spines are motile in hippocampal neurons 

in vitro (Fischer et al., 1998) and that spines are dynamic in acute brain slices, in organotypic 

cultures and in vivo (Dunaevsky et al., 1999; Majewska and Sur, 2003; Nagerl et al., 2004; 

Oray et al., 2004; Trachtenberg et al., 2002). Dynamic properties of spines are driven by 

actin (Dunaevsky et al., 1999; Fischer et al., 1998), which is highly enriched in these 

structures (Fifkova and Delay, 1982; Matus et al., 1982). Regulators of actin dynamics, such 

as profilin or cofilin are in fact involved in the determination of spine morphology 

(Schubert and Dotti, 2007). Although the structure of spines is dynamic, several 

morphological categories have been described around a basic consensus defining them as 

protrusions of up to 3 μm in length. Such categories include mushroom shaped, branched, 

thin and stubby spines  (Harris et al., 1992). 

Due to their morphology, spines represent cellular compartments within which the 

concentration of Ca2+ or the activation of signalling proteins are thought to be 

independently regulated (Bloodgood and Sabatini, 2007; Hayashi and Majewska, 2005; Yuste 

et al., 2000). These characteristics would endow spines with the ability to locally specify the 

effect of single synaptic inputs, a property that could underlie the input-specificity of long-

term plasticity.   

Indeed, the number of spines can be modified in response to long-term potentiation (LTP) 

and long-term depression (LTD) induction (Engert and Bonhoeffer, 1999; Maletic-Savatic 

et al., 1999; Nagerl et al., 2004), in vitro paradigms for learning and memory processes (Bliss 

and Lomo, 1973). More recently, spine number or morphology has been shown to be 

modified by experience in vivo (Holtmaat et al., 2006). Correspondingly, older evidence 

showed that animals exposed to stimulating environments have an increased number of 

spines on cortical neurons in comparison to animals grown in non-stimulating environments 

(Globus et al., 1973). Furthermore, a number of diseases affecting mental function show a 

clear correlation with the formation of abnormal spines (Fiala et al., 2002b). Thus, spines 

represent the cellular site at which at least part of the modifications correlated with plastic 

events happen.  

In spite of this intense research on vertebrate spine morphology, dynamics and physiological 

properties, the molecular analysis of spines (Ethell and Pasquale, 2005; Tada and Sheng, 

2006) would benefit from the introduction of a genetically amenable system. 

 

 

2.7 Drosophila and spines 

Drosophila has been long established as an important model for the study of learning and 

memory, allowing the genetic dissection of these processes (Margulies et al., 2005). More 

recently, genetic analysis of dendrite differentiation in Drosophila started providing major 

contributions to the understanding of dendritogenesis (Parrish et al., 2007). However, a 

comprehensive analysis of the existence and of the characteristics of dendritic spines in 

Drosophila has never been carried out.  
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Nonetheless, there are indications that Drosophila dendrites might bear spines. In addition to 

the indications for small dendritic protrusion on LPTC dendrites,  spine-like processes were 

revealed by electron microscopy in lateral horn neurons (Yasuyama et al., 2003).  

 

Taken together, LPTCs appeared to be very promising candidate neurons to study dendrites 

in the fly CNS because of their advantages for high resolution imaging and the opportunity 

to study dendritic spines. Another type of neurons was chosen from the initially identified 

set of candidates. These were the intrinsic neurons of the mushroom bodies, the Kenyon 

cells.  

 

 

2.8 Kenyon cells 

The morphology of Kenyon cell dendrites is less well-defined and more difficult to study 

than the dendrites of any other candidate neuron mentioned above (Lee and Luo, 1999; Zhu 

et al., 2003). It is at present impossible to reliably identify the same Kenyon cell in different 

animals (Murthy et al., 2008). Despite these severe technical disadvantages, I decided to 

further investigate Kenyon cell anatomy because of the potential to use them for studies on 

structural plasticity. Structural plasticity is an important aspect of dendritic function and is 

critical for the establishment of synaptic contacts during development as well as for 

rearrangements in the adult that are believed to be correlates of learning and memory 

(Lamprecht and LeDoux, 2004; Lippman and Dunaevsky, 2005; Segal, 2005). While the 

LPTCs (as well as the giant fibre neurons) might be part of circuits that require little activity-

dependent tuning, the Kenyon cells are likely candidates for structural remodelling and thus 

appeared well suited to complement studies on spines in LPTCs. The neuropil containing 

the dendrites of Kenyon cells, the mushroom body calyx, was shown to undergo 

experience-dependent volumetric changes in a number of insect species (Barth and 

Heisenberg, 1997; Durst et al., 1994; Seid et al., 2005; Withers et al., 1993). Moreover, 

Kenyon cells are known to be required for the retrieval of olfactory memories and part of 

the well-characterized olfactory circuit (Fahrbach, 2006; Gerber et al., 2004; Heisenberg, 

2003; Keene and Waddell, 2007). These advantages seemed to outbalance the technical 

challenges. A prerequisite for studies on structural plasticity was a detailed anatomical 

description of the connectivity in the calyx. I thus investigated the synaptic organization of 

Kenyon cell dendrites and projection neuron (their presynaptic partners) boutons in 

synaptic complexes, called microglomeruli, present throughout the mushroom body calyx. 

 

While my neuroanatomical work on the LPTCs was aiming at characterizing morphological 

properties of individual neurons the studies on the mushroom body calyx focus almost 

entirely on these microglomerular synaptic complexes. In order to explain the reasons for 

this choice I will first summarize the anatomy of the olfactory system in flies. This will 

illustrate that the input to the calycal microglomeruli is comparatively well understood. I will 

then point out that the opportunities of targeted manipulations in the olfactory circuit 

represent the main advantage of this system to study structural plasticity. Since experiments 

addressing structural plasticity appeared less promising in the visual system calycal 

microglomeruli appeared to nicely complement the analysis of LPTC spines.  Moreover, the 
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anatomy of microglomeruli is also of interest to odour representation in the mushroom 

body and to olfactory memory retrieval. 

 
 
2.9 Anatomy of the Drosophila olfactory system 

Current key questions in neurobiology are how sensory information is represented at higher 

brain centres and how associative memories are established. Central to both questions is the 

understanding of how the underlying neuronal circuits are organized. In contrast to visual or 

auditory inputs, a systematic analysis of odour processing has only begun quite recently, 

revealing a surprising degree of conservation of olfactory circuit design among mammals 

and insects (Hildebrand and Shepherd, 1997). 

 

Olfaction plays crucial roles in insect survival and reproductive success, mediating responses 

to food and mates. Insects possess sensitive chemosensory systems that can detect and 

discriminate among a diverse array of chemicals. The ability to respond to these compounds 

is conferred by odour and taste receptors, which in both insects and mammals are seven-

transmembrane-domain receptors encoded by highly diverse gene families (Hallem and 

Carlson, 2004; Hallem et al., 2006; Hallem et al., 2004).  

 

Olfactory sensory organs 

The fly has two pairs of olfactory organs, the antennae and the maxillary palps. Each 

antenna contains around 1200 olfactory receptors neurons, whereas each maxillary palp 

contains about 120 olfactory receptors neurons (Stocker, 1994). Nearly all of the odour 

receptors expressed in the antenna and maxillary palp have now been characterized, and 

many of these receptors have been mapped to the functional classes of neurons in which 

they are expressed (Couto et al., 2005; Fishilevich and Vosshall, 2005). Most, if not all, 

antennal olfactory receptors neurons express only one functional odour receptor (Hallem et 

al., 2006; Hallem et al., 2004; Vosshall et al., 1999). Olfactory receptors neurons send axons 

to the antennal lobe, whose functional organization is remarkably similar to that of the 

olfactory bulb in vertebrates (Hildebrand and Shepherd, 1997).  

 

Antennal lobes 

In the antennal lobe, olfactory receptors neurons synapse onto second order neurons called 

projection neurons (see Figure 0.1). The antennal lobe can be subdivided into around 50 

spherical units called glomeruli. Individual olfactory receptor neurons send axons to only 

one or a few glomeruli (Stocker, 1994) and individual projection neurons typically innervate 

only a single glomerulus (Jefferis et al., 2001; Marin et al., 2002; Wong et al., 2002). The 

glomeruli also contain the processes of local interneurons that branch in multiple glomeruli 

and that can be either inhibitory (Ng et al., 2002; Stocker, 1994; Stocker et al., 1990; Wilson 

and Laurent, 2005) or excitatory (Shang et al., 2007). Projection neurons, of which there are 

around 200, send their axons to both the mushroom body calyx and the lateral horn (Jefferis 

et al., 2001; Jefferis et al., 2007; Stocker, 1994). Anatomical studies at single cell resolution 

showed that projection neuron axons have stereotypical branching patterns and terminal 

areas according to the glomeruli that their dendrites innervate (Jefferis et al., 2005; Jefferis et 

al., 2001; Jefferis et al., 2002; Jefferis et al., 2007; Jefferis et al., 2004), suggesting that 



 21 I n t r o d u c t i o n  

olfactory information might be spatially represented in the higher centres (Komiyama and 

Luo, 2006) – as also suggested for mice (Zou et al., 2001). 

 

Mushroom bodies 

Besides a variety of other functions (Fahrbach, 2006; Gegear et al., 2008; Hong et al., 2008; 

Joiner et al., 2006; Pitman et al., 2006), Drosophila mushroom bodies have been implicated in 

the generation and retrieval of olfactory associative memories (de Belle and Heisenberg, 

1994; Gerber et al., 2004; Heisenberg, 2003; Heisenberg et al., 1985; Keene and Waddell, 

2007; Zars et al., 2000). Approximately 2000 Kenyon cells constitute the intrinsic neurons of 

the mushroom bodies and receive presynaptic input from projection neurons. Kenyon cells 

comprise at least (Strausfeld et al., 2003) three subsets based on their axonal projections 

(α/β, α‘/β‘ or γ) (Crittenden et al., 1998; Lee et al., 1999). Importantly, these anatomical 

subdivisions correlate with major functional distinctions, such as short-term (γ lobe) and 

intermediate and long term (α/β and α‘/β‘ lobes) olfactory memory (Akalal et al., 2006; 

Krashes et al., 2007; McGuire et al., 2001; McGuire et al., 2003; Pascual and Preat, 2001; 

Zars et al., 2000). Kenyon cell dendritic projections appear stereotyped within a number of 

regions in the calyx (Lin et al., 2007; Strausfeld et al., 2003; Tanaka et al., 2004). This 

suggested that the odour map of the antennal lobe might be retained in a modified form in 

second-order olfactory centres. 

 

 

 

Figure 0.1 | Schematic illustration of the olfactory circuit in Drosophila 

 

 
2.10 Microglomerular complexes in the mushroom body calyx 

In spite of considerable recent progress in our understanding of odour representations at 

the level of the primary olfactory centres, olfactory bulb/antennal lobe, the processing of 

odour information in higher brain centres remains rather elusive and lacks detailed 
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connectivity information (Keene and Waddell, 2007). However, a detailed understanding of 

the connectivity between projection neurons and Kenyon cells will be essential to clarify the 

processing of olfactory input in the mushroom body calyx. Previous electron microscopy 

studies in Drosophila and Apis had provided evidence that projection neuron boutons in the 

adult calyx are surrounded by a number of small post-synaptic profiles including Kenyon 

cells and few inhibitory interneurons forming large synaptic complexes called 

―microglomeruli‖ (Ganeshina and Menzel, 2001; Yasuyama et al., 2002). Labelling with 

phalloidin demonstrates that in the calyces of crickets, honey bees and ants microglomeruli 

are enriched in actin (Frambach et al., 2004; Groh et al., 2004). This led to the suggestion 

that microglomeruli could be sites of structural plasticity. This possibility is supported by 

their number in honey bees being modified in a temperature-dependent fashion during 

pupal development (Groh et al., 2006; Groh et al., 2004) and their size increasing in 

cockroaches as a consequence of olfactory-associative learning (Lent et al., 2007). 

Mushroom bodies have also been studied in a number of other insects and indications for 

morphological subdivisions have been described (Fahrbach, 2006; Farris, 2005; Farris et al., 

2004; Ganeshina et al., 2006; Gronenberg, 2001; Larsson et al., 2004; Schurmann et al., 

2000; Sinakevitch et al., 2001; Sjoholm et al., 2005; Strausfeld, 2002; Strausfeld et al., 1998).  

 

 

2.11 Microglomeruli and structural plasticity 

These earlier findings suggested that calycal microglomeruli in Drosophila might undergo 

experience-dependent alterations. Taken together with the detailed information on the 

olfactory circuit in flies and its accessibility to genetic manipulation, morphometric analysis 

of microglomeruli could allow studying the relation between structural rearrangements and 

the functional alterations they result in. Moreover, the genetic tools available in flies would 

allow detailed investigations on the genetic basis of structural plasticity. Aiming at ultimately 

exploiting these advantages, I tried to establish an experimental paradigm to study structural 

plasticity in the Drosophila olfactory circuit.  

 

 

2.12 Structural plasticity and learning and memory 

It is widely accepted that, during learning, reversible physiological changes in synaptic 

transmission take place in the nervous system, and that these changes must be stabilized or 

consolidated in order for memory to persist (Dudai, 1996; Keene and Waddell, 2007). The 

temporary, reversible changes are referred to as short-term memory and the persistent 

changes as long-term memory. The idea that the creation of stable, persistent long term 

memory traces requires gene expression and the resultant synthesis of new proteins is 

supported by much evidence (Kandel, 2001; Keleman et al., 2007; Krashes et al., 2007). 

However, molecular changes are transient and so, on their own, are insufficient to explain 

long term memory. It is therefore generally believed that structural changes in synaptic 

morphology, occurring either consequent to protein synthesis or in parallel with it, are also 

necessary (Lamprecht and LeDoux, 2004; Lippman and Dunaevsky, 2005; Segal, 2005). 

 

Early studies showed alterations in synaptic architecture (such as changes in size or shape) 

and in the number of synapses after non-associative learning and long-term facilitation in 



 23 I n t r o d u c t i o n  

Aplysia (Bailey et al., 1992) and in the mammalian hippocampus in response to injury, 

stimulation or induction of LTP. Similar changes were observed in the neocortex in 

response to environmental enrichment. Most excitatory synapses in the brain terminate on 

dendritic spines, which have been the focus of recent work in the mammalian brain 

(Bonhoeffer and Yuste, 2002; Segal, 2005; Yuste and Bonhoeffer, 2004) (see part 2.6). 

Modulation of the number of dendritic spines and/or their morphology has been proposed 

to contribute to alterations in excitatory synaptic transmission during learning (Lippman and 

Dunaevsky, 2005). Indeed, there is evidence that induction of synaptic plasticity (LTP 

induction or memory formation) leads to changes in the number or shape of spines (Yuste 

and Bonhoeffer, 2001). 

 

 

2.13 Advantages of Drosophila for studies on structural plasticity 

Although there is much recent progress towards a better understanding of the relation 

between structural rearrangements and learning and memory, most of the studies remain 

correlative. The following assumptions nicely fit together: a) alterations in the sensory 

environment affect neuronal activity, b) neuronal activity can induce structural alterations, 

and c) structural alterations represent a correlate of learning and memory. However, it 

remains very challenging to demonstrate the interdependence of these steps in the same 

circuit. Such an experiment requires a detailed understanding of how the relevant sensory 

stimuli are represented in the neuronal population undergoing structural modifications. The 

relation between sensory stimuli and neuronal activity is a focus of current research in the 

fly olfactory system (Hallem and Carlson, 2004; Hallem et al., 2004; Olsen and Wilson, 2008; 

Stopfer, 2005; Wilson and Laurent, 2005; Wilson and Mainen, 2006; Wilson et al., 2004). It 

is believed that olfactory memories are formed just a few synapses away from the sensory 

organ and it appears conceivable to understand how odours are represented in the 

mushroom bodies in the near future. Studies on structural plasticity in the calyx could thus 

ultimately contribute to a better understanding of how morphological rearrangements of a 

neuron change the information processing it is involved in.  

 

 

2.14 Olfactory coding in Drosophila 

The olfactory receptor neurons of the antennae and maxillary palps generate action 

potentials in response to odour stimulation. The odour responses of many of these olfactory 

receptor neurons have been characterized through extracellular single-unit recordings from 

individual olfactory sensilla (de Bruyne et al., 2001). These recordings have revealed that 

different odorants elicit responses from different subsets of olfactory receptor neurons, and 

also that olfactory receptor neurons exhibit a remarkable diversity of response properties: 

responses can be either excitatory or inhibitory and can vary in both intensity and temporal 

dynamics, depending on the odorant and the olfactory receptor neurons (de Bruyne et al., 

2001). Similar olfactory receptor neuron response properties have been described in other 

insects  (Hallem and Carlson, 2004). 

 

Different odorants activate distinct but overlapping subsets of glomeruli in the antennal 

lobe and the number of activated glomeruli increases with increasing odorant concentration, 
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as revealed by optical imaging (Fiala et al., 2002a; Ng et al., 2002; Wang et al., 2003). Odour 

coding in the antennal lobe thus appears to involve a spatial map of odorant receptor 

activation. An electrophysiological analysis of projection neurons similarly revealed that 

different odorants activate different populations of projection neurons (Broome et al., 2006; 

Brown et al., 2005; Stopfer et al., 2003; Wilson et al., 2004). In addition, like olfactory 

receptor neuron responses, projection neuron responses were found to differ in breadth of 

tuning, signalling mode and response dynamics (Hallem et al., 2006; Olsen and Wilson, 

2008; Wilson et al., 2004).  

Odour representations in the antennal lobe in flies are thus very similar to odour 

representations in the mammalian olfactory bulb: Each glomerulus is the site of 

convergence for axons of olfactory receptor neurons expressing a specific seven-

transmembrane-span olfactory receptor. Odorants typically bind multiple olfactory 

receptors, so the representation of olfactory stimuli is believed to be combinatorial: the 

activation of distinct groups of glomeruli signifies the presence in the external world of 

different odorants (Axel, 1995; Buck, 2000; Wilson and Mainen, 2006). 

 

The organization of the circuitry at secondary centres, in both mice and flies, is not well 

understood. Work in Drosophila and locust suggests that, in contrast to the broad odour 

response tuning of projection neurons, the responses of Kenyon cells to the same odours 

are usually rare and selective, and electrophysiological studies suggest a model in which 

Kenyon cells act as coincidence detectors of odour input from projection neurons (Assisi et 

al., 2007; Ito et al., 2008; Laurent, 2002; Laurent and Naraghi, 1994; Perez-Orive et al., 2002; 

Stopfer, 2005; Turner et al., 2008; Wilson et al., 2004). Individual odours could be 

represented as sparse labelled lines in the mushroom bodies and this belief is central to 

current models of odour memory (Heisenberg, 2003; Keene and Waddell, 2007). However, 

it is worth noting that although odours may evoke activity in a sparse array of mushroom 

body cell bodies, and perhaps dendrites, it is not clear how the information is represented in 

the mushroom body lobes because the extent of interconnection by gap junctions and/or 

chemical synapses is unknown (Keene and Waddell 2007).  

 

Despite these severe gaps in our understanding of olfactory perception in the fly, the relative 

simplicity of the circuit and the accessibility to experimental manipulation represent major 

advantages over other sensory systems and other organisms.  

 

 

2.15 Indications for structural plasticity in insects 

It has been demonstrated that the volume of the mushroom body calyx is sensitive to 

rearing conditions and visual experience in flies, bees and ants (Durst et al., 1994; Farris and 

Strausfeld, 2003; Groh et al., 2006; Groh et al., 2004; Ismail et al., 2006; Kuhn-Buhlmann 

and Wehner, 2006; Seid et al., 2005; Withers et al., 1993). This suggests that at least one of 

the neuronal (or glial) populations in the mushroom body rearrange upon sensory 

manipulations. Kenyon cells are the intrinsic neurons of the mushroom bodies and it has 

been observed that spine density in Kenyon cells is affected by sensory experience in Apis 

(Farris et al., 2001). Mutants impaired in olfactory associative learning have been shown to 
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be defective in experience-dependent volume expansion of the calyx in Drosophila (Barth and 

Heisenberg, 1997; Hitier et al., 1998). Calycal morphology is modified upon olfactory 

associative learning in cockroaches (Lent et al., 2007).  Taken together, these observations 

encouraged me to investigate if Kenyon cells in Drosophila undergo experience-dependent 

structural rearrangements.  

 

 

2.16 Genetic analysis of dendrite and spine morphogenesis 

The main reason to use Drosophila to characterize dendrites and spines and to aim at 

establishing a model system allowing investigations on structural plasticity is to ultimately 

explore the unique opportunities for genetic analysis in the fly. The Drosophila PNS has been 

extremely useful for the genetic analysis of dendrite morphogenesis (Grueber and Jan, 2004; 

Grueber et al., 2005; Jan and Jan, 2003; Parrish et al., 2007). However, the sensory neurons 

in the periphery do not receive synaptic input and they thus lack an essential property of 

dendrites. I asked if the anatomical information obtained for LPTCs and Kenyon cells could 

be used for genetic analysis of dendrite and spine morphogenesis and allow circumventing 

the constraints of PNS dendrites. I aimed at establishing experimental conditions allowing 

genetic manipulations of LPTCs and Kenyon cells using UAS constructs for RNAi 

mediated knockdown of candidate genes and developed computer based tools for 

automated morphometric analysis.   

 

 

2.17 Genetic screens 

Geneticists have traditionally sought to gain insight into complex biological processes 

through forward genetic screens (Jorgensen and Mango, 2002; Nusslein-Volhard and 

Wieschaus, 1980; Page and Grossniklaus, 2002; St Johnston, 2002). Mutations are generated 

at random, phenotypes of interest are scored, and the mutated gene is subsequently 

identified. This approach has been remarkably successful, particularly in Drosophila. 

Traditional forward screens, such as the Nobel-prize-winning screen for embryonic-

patterning mutants (Nusslein-Volhard and Wieschaus, 1980), require labour-intensive 

mapping of randomly generated mutations. To circumvent these limitations a number of 

alternative means of mutagenesis have been developed. These include gene disruption with 

transposable element (Spradling et al., 1999) or chromosomes containing large deletions or 

gain of function approaches such as enhancer-promoter (EP)-induced overexpression of 

random loci. Alternatively, the GAL4/UAS system (Brand and Perrimon, 1993) can be used 

to restrict genetic manipulations to a particular cellular population and to a particular time in 

development in Drosophila. It is thus possible to circumvent lethality resulting from an 

essential function of the target gene at an earlier developmental time point or in another 

tissue. A large number of UAS constructs allowing cell specific manipulation of target genes 

is available. These include dominant-negative, constitutively active or overexpression UAS 

constructs. Moreover, UAS constructs for RNAi mediated gene knockdown have been 

generated for >80% of the genome (Dietzl et al., 2007).   
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2.18 Genetic analysis of dendrite and spine morphogenesis  

These tools are critical for genetic analysis of dendrite and spine morphogenesis because 

they allow genetic manipulations of target genes in selected neurons developing in their 

endogenous context: the intact brain. Since the morphological characterization of dendrites 

requires high-resolution imaging and sophisticated morphometric analysis the efficacy and 

specificity of the genetic manipulation are important – especially if large sets of candidate 

genes should be tested.  

 

 

I briefly summarized my reasons to consider studies on dendrites important and Drosophila a 

good model organism in this context. The candidate neurons I choose to focus on, Lobula 

Plate Tangential Cells and Kenyon cells, were introduced with a focus on the aspects of 

dendritic function they may help to illuminate. LPTCs appear well suited for studies on 

dendritic morphogenesis because they allow high-resolution imaging of uniquely identifiable 

dendrites. Since LPTCs bear structures that closely resemble vertebrate spines these small 

dendritic protrusions received special attention. Spines are considered to be targets of 

structural remodelling processes associated with learning and memory. Kenyon cells were 

introduced with an emphasis on the olfactory system they are part of because the detailed 

knowledge about this circuit and the genetic tools to manipulate it constitute main 

advantages for studies on structural plasticity. Finally, the advantages of genetic screens were 

outlined because the prospects of a genetic screen on dendritogenesis in the Drosophila CNS 

were tested.   
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3 Material and Methods 
 

 

 
3.1 Buffers 

 

 
 

 

3.2 Fly stocks 

The following list of fly stocks only summarizes frequently used and important stocks; 

composite stocks of the elements listed below are not included. In addition, a number of 

stocks were used to manipulate candidate genes in the LPTCs, in the mushroom bodies or 

both. These include mutants and UAS constructs (overexpression, dominant negative and 

constitutively active variants) as well as UAS RNAi lines. Most of those lines were 

obtained from the Bloomington stock centre (Bloomington, USA) or the VDRC stock 

centre for RNAi lines (Vienna, Austria) and are not listed below (see parts 4.37 and 4.38). 

Only lines of potential interest for future studies that were obtained from other labs are 

included. 

 
 
 
 
 
 
 

Name  Ingredients  

PBS (10x) 
 
 
 
 

100mM Na2HPO4; pH 7.4  

20mM KH2PO4 

1.37 M NaCl  

27mM KCl  

PBT 
Blocking buffer for antibody staining 
PFA (4%) 

0.05% Triton X-100 in 1x PBS 
10% fetal calf serum in PBT 

4% Paraformaldehyde in 1x PBT 

Fly food (1 L) yeast 15 g  
agar 11.7 g  
molasses 80 g  
corn flour 60 g  
methylparaben 2.4 g  
propionic acid 6.3 ml  

Fly water 0.8% CH3COOH in dd H2O 



 M a t e r i a l  a n d  M e t h o d s  28 

 

 
 

  

 
 
 
 
 
 
 

Name  Source  

db331-GAL4 
3A-GAL4 
ok107-GAL4 
c739-GAL4 
1471-GAL4 
17d-GAL4 
201y-GAL4 
c305a-GAL4 
gh146-GAL4 
mz19-GAL4 
np3529-GAL4 
gad1-GAL4 
repo-GAL4 
ato-GAL4 
pdf-GAL4 
ok307-GAL4 
mb247-Dalpha7-GFP 
mb247-abp-KO 
mb247-actin-GFP 
mb247-actin-KO 
mb247-dsRed 
UAS-actin-GFP 
UAS-abp-KO 
UAS-tubulin-GFP 
UAS-mCD8-GFP 
UAS-RFP 
UAS-myrmRFP 
UAS-synaptobrevin-GFP 
UAS-mCD8-cherry 
UAS-D3-strawberry 
UAS-Dalpha7-GFP 
UAS-dicer2 
UAS-GMA 
UAS-CaMKII.T287A 
UAS-CaMKII.T287AD 
UAS-CaMKII-eYFP 
UAS-CaMKII-eYFP 3‘UTR 
UAS-Nut3-eYFP 
UAS-Rdl-HA 
UAS-sra.RNAi 
UAS-mef2(EP) 
UAS-appl.RNAi 

Alexander Borst (Germany) 
Alexander Borst (Germany) 
Bloomington Stock Centre (USA) 
Bloomington Stock Centre (USA) 
Bloomington Stock Centre (USA) 
Scott Waddell (USA) 
Bloomington Stock Centre (USA) 
Scott Waddell (USA) 
Thomas Hummel (Germany) 
Thomas Hummel (Germany) 
Thomas Hummel (Germany) 
Ron Davis (USA) 
Bloomington Stock Centre (USA) 
Bloomington Stock Centre (USA) 
Bloomington Stock Centre (USA) 
Bloomington Stock Centre (USA) 
Stephan Sigrist (Germany) 
Julia Negele, Jana Lindner (Tavosanis lab) 
Jana Lindner (Tavosanis lab) 
Jana Lindner (Tavosanis lab) 
André Fiala (Germany) 
Hiroki Oda (Japan)  
Julia Negele, Jana Lindner (Tavosanis lab) 
Nicole Grieder (Switzerland) 
Bloomington Stock Center (USA) 
Jana Lindner (Tavosanis lab) 
Bloomington Stock Center (USA) 
Bloomington Stock Center (USA) 
Takashi Suzuki (Germany) 
Stephan Sigrist (Germany) 
Stephan Sigrist (Germany) 
Barry Dickson (Austria) 
Daniel Kienhart (USA)  
Leslie Griffith (USA) 
Leslie Griffith (USA) 
Sam Kunes (USA) 
Sam Kunes (USA) 
Sam Kunes (USA) 
Alexander Borst (Germany) 
Christian Klämbt (Germany) 
Justin Blau (USA) 
Bassem Hassan (Belgium) 
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3.3 Antibodies and probes 

 

 
 
 
3.4 Fly genetics 

Flies were raised at 25°C with 70% relative humidity on standard cornmeal agar medium. 

The db331-GAL4, UAS-actin-GFP (Verkhusha et al., 1999),  UAS-GMA (Edwards et al., 

1997)  UAS-tubulin-GFP (Grieder et al., 2000) and UAS-Dicer-2 (Dietzl et al., 2007) lines 

were obtained from A. Borst, H. Oda, D. Kiehart, N. Grieder and B. Dickson, 

respectively. The 17d-GAL4, c305a-GAL4 and UAS-eag lines were kindly provided by S. 

Waddell (University of Massachusetts Medical School, Worcester, MA, USA), UAS-actin-

GFP by H. Oda (JT Biohistory Research Hall, Osaka, Japan), gh146-GAL4, np3529-GAL4 

and mz19-GAL4 by T. Hummel (Universität Münster, Münster, Germany) and gad1-

GAL4 by R. Davis (Baylor College of Medicine, Houston, TX, USA). The UAS-mCD8-

GFP (Lee and Luo, 1999), UAS-myr-mRFP, UAS-rac1.N17, UAS-rac1.L (Luo et al., 1994) 

1471-GAL4, repo-GAL4, UAS-mCD8-GFP, ok107-GAL4, c739-GAL4, 201y-GAL4, UAS-

myr-mRFP, UAS-shi and UAS-dORK lines were obtained from the Bloomington Stock 

centre.  

 

For RNAi knockdown of rac1, either line #49247 obtained from the VDRC or UAS-

mRed as a control were crossed to db331-UAS-mCD8-GFP; UAS-dicer2. The progeny was 

raised at 27°C throughout development. MARCM experiments were performed as 

described previously (Lee and Luo, 1999) and using the following genotype: hsFLP, 

elavGAL4, UAS-mCD8-GFP/ +; FRT42D, tubGAL80/FRT42D. Late third instar larvae 

were heat-shocked for 40 min at 38˚C.  

 

To allow GAL4/UAS independent labelling of the mushroom bodies, transgenic flies 

carrying several genes under the control of the mushroom body specific mb247 enhancer 

(obtained from Andreas Thum, Fribourg, Switzerland) were generated. mb247-actin-GFP 

and mb247-actin-KO and mb247-abp-KO as well as UAS-actin-KO and UAS-abp-KO were 

Name  Source  

nc82 (mouse; 1:20) 
Dalpha7 (rat; 1:2000) 
mCD8 (rat; 1:100) 
GFP (rabbit; 1:1000) 
vGAT (rabbit; 1:1000) 
ChAT (mouse; 1:100) 
Synaptotagmin (rabbit; 1:25) 
anti-mouse Rhodamin X (goat; 1:100) 
anti-rabbit Rhodamin X (goat; 1:100) 
anti-mouse Alexa 488 (goat; 1:100) 
anti-mouse Cy3 (donkey; 1:100) 
anti-GFP (rabbit; 1:1000) 
phalloidin Alexa 568 

Thomas Hummel (Germany) 
Hugo Bellen (USA) 
Caltag Laboratories (USA) 
Invitrogen (Germany) 
Dick Nässel (Sweden) 
DSHB (USA) 
Hugo Bellen (USA) 
Jackson Laboratories (USA) 
Jackson Laboratories (USA) 
Invitrogen (Germany) 
Jackson Laboratories (USA) 
Living colors (USA) 
Invitrogen (Germany) 
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generated together with Jana Lindner and Julia Negele. The mb247-Dalpha7-GFP line was 

generated by Frauke Christiansen-Engelhardt in the Stephan Sigrist laboratory.  

 

For genetic analysis of dendrite and spine morphogenesis a stock containing db331-GAL4 

and ok107-GAL4 and UAS-actin-GFP (Verkhusha et al., 1999) as a reporter was generated. 

The actin-GFP reporter was chosen because actin specifically localizes to spines in the 

LPTCs and to claw-like endings in Kenyon Cells and thus highlights small dendritic 

structures facilitating screening for subtle morphological alterations. All three constructs in 

the stock were homozygous and female progeny from virgins crossed to males carrying 

UAS constructs to manipulate candidate genes could thus be screened (carrying all four 

constructs in heterozygous condition regardless of the insertion site of the UAS 

construct). Since only males were required from the UAS lines the genetic preparations 

were trivial and could easily be handled on a large scale. Since the efficacy of RNAi 

downregulation was reported to be increased upon overexpression of Dicer2 an adequate 

variant of the stock (db331-GAL4; UAS-actin-GFP; UAS-dicer2; ok107-GAL4) was 

assembled. To allow investigating either the LPTCs of the Kenyon cells alone the 

following stocks were prepared: db331-GAL4 UAS-mCD8GFP; UAS-dicer2 and db331-

GAL4; UAS-actin-GFP; UAS-dicer2 and db331-GAL4 UAS-GMA; UAS-dicer2 and UAS-

actin-GFP; ok107-GAL4 and UAS-actin-GFP; UAS-dicer2; ok107-GAL4 and mb247-Dα7-

GFP.   

 

 
3.5 Immunohistochemistry and confocal imaging 

Brains were dissected in phosphate buffered saline (PBS), fixed for 40 minutes (larval 

brains for 15 minutes) in 4% formaldehyde in PBS and rinsed in PBS (Wu and Luo, 2006). 

They were then whole-mounted in VectaShield (Vector Laboratories, Burlingame, USA) 

on a slide and covered by a coverslip using double-sided tape as spacer. Brains were 

mostly oriented to lay with their antennal lobes down and calyces up to obtain the plane of 

imaging illustrated in Figure 4.9A. For immunohistochemistry brains were blocked in 10% 

fetal calf serum (FCS) in PBT (0.1% Triton X-100 in PBS) for 30 minutes unless otherwise 

stated. All confocal fluorescence microscopy was done with a Leica TCS SP2 confocal 

microscope (Leica Microsystems, Wetzlar, Germany) using a 63x/1.4 oil-immersion 

objective. 

 

Brains from db331-GAL4/+; UASmCD8/+ or w db331-GAL4; UAS-actin-GFP/+ adult 

females (4-8 days old) were stained as reported previously (Wong et al., 2002) using the 

following primary antibodies: mouse anti-Bruchpilot (nc82, 1:20, kindly provided by T. 

Hummel), rabbit anti-synaptotagmin (1:25, kindly provided by H. Bellen). To detect the 

endogenous localization of the Dα7 acetylcholine receptor subunit brains were fixed in 4% 

formaldehyde for 5 minutes at room temperature (S. Raghu, personal communication). 

Primary antibodies were anti-Dα7 (a kind gift of H. Bellen, 1:2000) and anti-GFP (Living 

colours, 1:1000) diluted in blocking solution (10% FCS and 0.3% Triton X-100 in PBS).  
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For immunohistochemistry in the mushroom bodies I used the following probes: 1:25 

Alexa Fluor 568 phalloidin to visualize filamentous actin (Invitrogen, Karlsruhe, Germany) 

for 4 h at room temperature, 1:25 α-synaptotagmin raised in rabbit (Littleton et al., 1993) 

(pre-absorbed with Drosophila embryos, kindly provided by H. Bellen, Howard Hughes 

Medical Institute, Houston, USA) or 1:100 ChAT4B1 (DSHB, Iowa, IA, USA) overnight 

at 4˚C. For nc82 labelling (Wagh et al., 2006) (1:50; kindly provided by T. Hummel, 

Universität Münster, Germany) I used PBT with 0.3% Triton throughout the procedure 

and incubated for 2 d. After washing with PBT the following secondary antibodies were 

used: 1:100 goat α-rabbit conjugated with Rhodamine Red X or 1:100 donkey α-mouse 

conjugated with Cy3 (both Jackson Laboratories, Suffolk, England). I did not obtain 

similar labelling with secondary antibodies alone.  

 

For genetic analysis of dendrite and spine morphogenesis a visual screening procedure was 

developed. The goal was to identify potentially interesting genes without any detailed 

investigation. Since this step had to be done routinely it was optimized for speed and 

efficacy at the expense of possibly significant numbers of false negatives and false 

positives. As I aimed at the rapid identification of candidate genes rather than a conclusive 

characterization of any set of genes I considered false negatives acceptable and 

unavoidable. False positives could be identified in more careful secondary investigations.  

5-10 female progeny per genotype were dissected and fixed 2-4 days after eclosion and 

mounted onto coverslips (Wu and Luo, 2006). No immunolabelling was required. Visual 

investigation at the confocal microscope to assess general morphology of the LPTCs and 

mushroom bodies was done within a couple of seconds per brain. High magnification 

images of the medial VS1 region and the calyx were only obtained when needed and 

compared to control images. Spine densities of selected promising candidates (rac1, sra1, 

fmr1) were quantitatively analyzed as described below. No quantitative measurements on 

calycal phenotypes were done but could easily be obtained with the recently developed 

automated image analysis tools.  

 

 

3.6 Manual quantitative morphological analysis 

Images were processed using Adobe Photoshop CS2 and illustrations were assembled 

using Adobe Illustrator CS2 (Adobe, San Jose, USA). 3D reconstructions were generated 

with Amira (Visage Imaging, Berlin, Germany). Quantitative measurements were done 

with Amira, ImageJ (http://rsb.info.nih.gov/ij/index.html), ScionImage (Scion 

Corporation, Frederick, USA) or Definiens (Definiens, Munich, Germany) as indicated. 

Statistical analysis was done with Excel (Microsoft, Redmont, USA) or MatLab 

(MathWorks, Natick, USA). 

 

Quantification of LPTC spine density and length was done for the following genotypes: 

db331-GAL4 UAS-mCD8-GFP/+; UAS-myr-mRFP/+, db331-GAL4/+; UAS-actin-

GFP/+; UAS-myr-mRFP/+, db331-GAL4/+; UAS-GMA/+; UAS-myr-mRFP/+, db331-

GAL4 UAS-GMA/+; UAS-myr-mRFP or UAS-rac1.L or UAS-rac1.N17/+. Image stacks 

of small dendritic branchlets of VS1 were taken with a Leica SP2 confocal microscope. 

Branchlet length and spine length were measured with ImageJ on projections of confocal 

http://rsb.info.nih.gov/ij/index.html
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stacks. Spine numbers were counted on 3D reconstructions generated in Amira. All 

protrusions between 0.2 and 3 µm length were considered as spines. Spine density and 

length were calculated for individual flies. Five animals were analyzed and averaged per 

data point. Images of 5-10 dendritic branchlets were quantified for each animal. Data for 

the branchlets or individual spines was averaged to obtain the value per animal for spine 

density and length. Analysis of spine morphology classes was also done on the middle 

region of VS1 neurons of db331-GAL4/+; UAS-GMA/+; UAS-myr-mRFP/+ or db331-

GAL4 UAS-mCD8-GFP/+ female flies. Projections from z stacks of confocal images 

were processed in ImageJ. First, the total number of spines present on a restricted 

fragment of VS1 was counted and labelled. Then, spines were assigned to one out of four 

classes following the criteria described in the text. Spine category distribution was 

determined based on more than 100 spines per animal and then averaged for the five 

animals analyzed. The presented data were processes by volume rendering (using Amira, 

Figure 4.4B). 

To quantify actin or tubulin enrichment in dendritic spines, the brightness level of 15-200 

sample areas of same size in dendrites or in spines was measured in 4 or 5 representative 

images using ImageJ. The average ratio of the measured brightness for the green channel 

(actin-GFP or tubulin-GFP) and for the red channel (cytoplasmic mRFP) in spines and 

dendrite for each image is shown in Supplemental Figure 6.2.  

To estimate the percentage of spines that contain ectopically expressed ACh-receptor the 

following genotype was analyzed: db331-GAL4/+; UAS-Dα7-GFP/+; UAS-myr-mRFP/+. 

Spines were identified morphologically using the myr-mRFP signal and were assigned as 

ACh receptor positive or negative based on the Dα7-GFP signal. >280 spines from 5 

animals were classified; percentages were determined per animal and then averaged.  

Spine density upon ACh receptor overexpression (db331-GAL4/+; UAS-Dα7-GFP/+; 

UAS-myr-mRFP/+) was compared to db331-GAL4/+; UAS-GMA/+; UAS-myr-mRFP/+. 

The myr-mRFP signal was used in both cases to count the spine number. Due to 

limitations in image quality projections through confocal stacks were used instead of 3D 

reconstructions as described above. >260 spines from five animals of each genotype were 

analyzed. The statistical analysis was done as described above.   

Juxtaposition (<0.1 μm) of a presynaptic (nc82) staining to spines or ectopically expressed 

ACh receptor (db331-GAL4/+; UAS-Dα7-GFP/+) was evaluated using 3D 

reconstructions generated with Amira from confocal sections. Spines or receptor patches 

were classified as juxtaposed or non-juxtaposed to presynaptic staining upon rotation of 

the 3D reconstruction. Random distribution of presynaptic labelling was estimated by 

rotating the nc82 channel by 90˚ relative to the Dα7-GFP channel (Supplemental Figure 

6.4). >1300 receptor patches and >250 spines, respectively, from 5 animals were analyzed. 

The statistical analysis was done as described above.   

 

To analyze the anatomy of the mushroom bodies I acquired confocal z stacks in 0.12 µm 

slices and used Amira software to generate 3D models, sagittal and coronal planes. The 

single Kenyon cell clones in FigureC and Figure 4.10C are 3D representations projected 

onto a relevant single confocal section showing phalloidin or synaptotagmin labelling, 

respectively. 



 33 M a t e r i a l  a n d  M e t h o d s  

Synapse distribution was quantified on 225 μm2 large medial fractions of single confocal 

sections taken at a medial calycal section (Figure 4.8). Synapses within the centres of 

microglomeruli were identified by the lack of overlap between presynaptic (nc82) labelling 

and postsynaptically expressed actin-GFP (very similar labelling were obtained with the 

anti-synaptotagmin antibody). A total of 2950 presynaptic puncta was analyzed. Random 

distribution of presynaptic labelling was estimated by rotating the nc82 or the 

synaptotagmin channel by 90˚ relative to the actin-GFP channel (Lang et al., 2007). 12 

optical sections were quantified in each case. 

3D models were used to estimate the number of GABAergic cell bodies in the proximity 

of the calyx and to reveal that glial processes do not enwrap subcompartments of the 

calyx. They appear to form a meshwork-like structure instead. 

Confocal z stacks were imported into ImageJ to measure and count microglomeruli. By 

constantly moving through the z stack, I tried to identify the plane of maximal extension 

(in xy) of each microglomerulus and marked it to avoid double counting. Complete 

labelling of microglomeruli was technically difficult to achieve; I estimate from several 

counts that 20% of all microglomeruli were systematically missed in the routine counts or 

too small to be easily identifiable. I counted 786 ± 73 microglomeruli (n=3 calyces, error is 

standard deviation, STDV) from 24 hours old animals, therefore estimating the total 

number to be around 1000. Similarly, I counted the microglomeruli of three calyces of 14 

d old flies (577 ±19) and estimate the total number at that age to be around 750. 

To quantify the percentage of microglomeruli that contain gad1-positive processes, γ-, α‘β‘- 

or αβ-neurons I used genetic labelling with mCD8GFP (driven by the gad1-GAL4 driver) 

or actin-GFP (driven by the 1471-GAL4, c305a-GAL4 or c739-GAL4 drivers, 

respectively). I co-labelled with phalloidin and counted actin-GFP positive versus actin-

GFP negative microglomeruli (Figure 4.15) as described earlier. Since the visualization of 

the total population thus relied on phalloidin labelling instead of genetic labelling image 

quality was not as high as in the earlier counts. Moreover, the analysis was complicated by 

the necessity to assign microglomeruli into actin-GFP positive or negative categories while 

using GAL4 drivers that differed in expression intensity. I thus looked at >5 brains to 

estimate the percentages and to ensure that the examples were representative and then 

counted >500 microglomeruli from only one brain per genotype to confirm the estimate. 

For each identified microglomerulus I allocated a position in the xy (optical) plane using 

ImageJ and plotted this positional information while neglecting the different positions in z 

to obtain the illustrations in Figure 4.15D-F. 

For the quantification of the inner microglomerular surface, medial confocal sections of 

the mushroom body calyx were obtained. The 25 biggest and best defined microglomeruli 

were visually identified and their inner surfaces were traced using Adobe Photoshop. 

Images were converted into binary images and imported into ScionImage to determine the 

surface of the traced entities. Average values of five animals were used to obtain the 

specified data points. The following genotypes were analyzed: UAS-actin-GFP/+; myr-

mRFP/ +; ok107-GAL4/+ or actin-GFP/+; UAS-dORK1.ΔC1/+; ok107-GAL4/ + or 

actin-GFP/eag.Δ932; ok107-GAL4/ +, UAS-actin-GFP/ +; ok107-GAL4/ +. All 

quantitative analysis was done blind.  
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3.7 Automated quantitative morphological analysis 

mb247-Da7-GFP females and males were imaged for all experiments quantified with 

automated image analysis. Costaining with nc82 was used to label presynaptic sites. 

Confocal stacks of 50 images (512x512 pixels) and spanning the calyx in steps of 0.3-0.6 

um were taken (Leica SP2; 63x objective) and used to determine calycal volume and 

microglomerular morphology. Neuropil volume was determined from confocal stacks 

spanning the brain in 50 steps of 1.5-2.5 um (512x512 pixels; 20x objective). 

 

Description of the algorithm 

ImageJ was used for pre-processing of images. Images were filtered with an anisotropic 

filter (Dalpha7 channel) to enhance ring-like structures and with a Gaussian filter (nc82 

channel) to enhance presynaptic puncta. Contrast was enhanced. Filtered images were only 

used for object recognition (both postsynaptic rings and presynaptic puncta); all actual 

measurements were done on the original images. Definiens image analysis software was 

used for all quantitative measurements. Images were imported as multilayered files 

containing original images and filtered images (both receptor and nc82 channels, 

respectively). Candidate objects (comprising multiple pixels) for microglomerular rings 

were generated based on similar intensity values of both original Dalpha7 image and pre-

processed image and subsequently selected using the contrast to neighbour objects, shape 

and size of objects (Figure 3.1). Microglomerular lumen candidate objects were generated 

accordingly, microglomerular structures were defined as microglomerular rings contacting 

microglomerular lumens. To determine the exact shape of postsynaptic rings each 

microglomerular lumen was surrounded by a ring of two pixels width. The average 

intensity of the Dalpha7 signal was computed for each of these rings individually and 

adjacent candidate pixels were included only if their intensity was at least 90% of the rings 

average intensity. Presynaptic puncta were identified independently of microglomerular 

rings using similar strategies as described above.  

Calycal outlines on each section were detected as the outer border of Dα7-GFP 

fluorescence and pixels assigned as calyx were added over all sections and multiplied with 

the voxel volume to determine calycal volume. Neuropil volumes were similarly 

determined from the number of pixels assigned as neuropil in all sections. Neuropil 

outlines were detected as the outer border of nc82 signal; optical lobes were excluded 

from the analysis because their volume was shown to depend on rearing conditions (Barth 

and Heisenberg, 1997).   

 

Comparison of automatic image analysis with visual evaluation 

To evaluate the quality of the automated image analysis it would be desirable to compare 

the results of the analysis with the results obtained with independent manual analysis. 

Unfortunately, this approach was complicated by the observation that manual analysis did 

not provide a stable and conclusive reference point because the manual results were 

different for different persons or even different time points for the same person (around 

30% mismatch). Because of these shortcomings of manual analysis I do not consider it an 

appropriate reference point for automated image analysis. It should be pointed out that 

given the large size of the data set consistency of the analysis appears to be more Kremer. 
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Figure 3.1 | Automated images analysis of microglomerular complexes 

Illustration of the Definiens algorithm used for fully automatic detection of 
microglomerular complexes. (A) Single calycal section as used for automatic image analysis. 
Microglomerular rings were labelled using Dα7-GFP expressed in Kenyon cells (mb247-Dα7-
GFP, green), Bruchpilot immunohistochemistry was used to label presynaptic sites (nc82, 
red). (B) Result obtained with automated image analysis of A. The calyx was detected based 
on the Dα7-GFP signal and is labelled in green while background is represented in gray. 
Microglomerular rings and lumens are highlighted in light blue and red, respectively. The 
detection strategy is illustrated for the boxed region in C-K. (C) Only the green channel is 
shown as microglomerular detection was solely based on Dα7-GFP signal. (D) The original 
image was filtered with an anisotropic filter and contrast was enhanced. (E) Pixels were 
grouped into objects (outlined in green) subsuming pixels with similar intensity values in 
both original and filtered images (C and D). (F) The contrast of each of these objects to 
adjacent objects was computed and is represented by the brightness of the objects. Bright 
objects are relatively brighter than their surroundings. (G) A threshold was used to assign 
the brightest objects of this contrast map (F) as candidate objects for microglomerular rings 
(light blue). (H) Similarly, a second threshold was used to assign the darkest objects as 
candidate objects lumen (red). Objects of intermediate contrast were classified as calyx 
(green). The idea behind this strategy is that centres of microglomerular rings are always 
darker than their close proximity and rings are always brighter than their close proximity. 
The absolute brightness of bright lumens, however, could resemble the brightness of dark 
rings. (I) A number of criteria was used to exclude some of the candidate objects for both 
ring and lumen. These criteria included size and shape criteria as well as the constraint that 
lumen objects need to share a border with ring objects and vice versa. The remaining lumen 
objects were enclosed by rings of two pixels width (dark blue). The average brightness of 
each of these rings was determined and adjacent pixels assigned as candidate ring were 
included into the ring as long as their brightness did not differ from the average brightness 
of the ring by more than 10%. This step thus allowed determining the outer border of 
microglomerular rings using local thresholds. It is important to note that each of the lumens 
and their surrounding rings were independent objects. The size and shape of all of these 
objects was determined. (K) Finally each lumen and its surrounding ring were combined 
into a single object, a microglomerulus (purple). On the example image, four independent 
microglomeruli are shown. Parameters such as size, shape and relative lumen area (the 
fraction of the total area occupied by ring) were determined. Similar strategies were used to 
detect presynaptic sites based on the nc82 signal. Since this information was ultimately not 
used to draw conclusions it is not included here.  
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Figure 3.2 | Overview of automated image analysis of brain volume 

A 3D reconstruction (Amira) of the brain (left). Confocal stacks of 50 sections spanning the 
brain were used for morphometric analysis. 3 such sections are illustrated and representative 
original images (nc82 immunolabelling, red) are shown in (middle panels). All images were 
analyzed fully automatically using Definiens software (right panels). Neuropil volume was 
calculated as the sum of pixels assigned as neuropil (red) from all sections. Optic lobes 
(blue) were excluded because their volume was reported to depend on rearing conditions. 
Their outlines were identified based on their proximity to the image borders and the gap in 
nc82 staining between optic lobes and central brain. Scale bar: 100 μm. 

 

important than accuracy. However, I did visually check the results of the automated image 

analysis and estimate to obtain 10% false positives and 20% false negatives. Recent 

improvements of the methodology (see parts 4.31 and 5.17) allow a more accurate 

description of the algorithm. Suitable quantifications are currently carried out by Malte 

Kremer.  

 

Evaluation of the algorithm 

To test if the algorithm can detect changes in microglomerular size or is biased towards a 

certain range of microglomerular sizes a set of images was rescaled from 512x512 to 

550x550 pixels. Since the algorithm determines pixel numbers of objects to measure size 

this should lead to larger objects. It was noted that the objects detected on the images of 

different scales were often not identical. Average microglomerular size was increased 

although not to the expected extent. I concluded that the algorithm can detect changes in 

size but seems to systematically underestimate these.  

Contrast and brightness of images from a test set were independently manipulated using 

Photoshop to simulate images of lower quality. The detection of microglomeruli was 
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compared on original and manipulated images to estimate the sensitivity of the algorithm 

to changes of image quality. I concluded that image quality is certainly critical for reliable 

automated analysis.  

 

However, the differences in image quality seen in the real data set appeared not to 

preclude meaningful analysis – especially because there is no reason to expect systematical 

differences between experimental groups. Finally, different versions of the algorithm using 

different object recognition strategies were systematically compared and showed similar 

results.  

 

Shortcomings of the method and technical comments: 

All objects (microglomerular rings and lumens, presynaptic sites) were detected and 

measured in 2D; sizes are thus represented as areas and not as volumes. Objects were 

measured multiple times on subsequent sections. Size measurements are thus 

systematically smaller than the average maximal extension in 3D and counts are 

systematically too high because of oversampling. Therefore, I only comment on relative 

differences in the area of objects between experimental groups and did not analyze 

numbers of objects.  

Brains were oriented similarly on the coverslip but the plane of imaging is likely not 

identical for all brains. Since there is no reason to expect systematic differences in 

orientation between experimental groups I did not try to correct this problem (this would 

have required mapping all data sets onto a standard brain). Moreover, microglomeruli are 

globular (although often irregularly globular) structures and I have no reason to expect 

their average appearance in 2D to depend on the imaging axis. 

Values obtained for calycal volumes were systematically too small (70% of the actual 

value) because the genetic labelling with the mb247 enhancer does not include all Kenyon 

cells. Using ok107-GAL4, a driver labelling most or all Kenyon cells, I obtain calycal 

volumes similar to what has been published previously (Heisenberg, 1995).  

I arbitrarily decided to take 50 optical sections per calyx (and per brain for brain volume 

measurements) to limit imaging time and bleaching. For five example brains I compared 

the results of the analysis of 200 optical sections for calyces and brain with the results 

obtained from analyzing only 50 of these sections. Since average size parameters in both 

cases were virtually identical I conclude that 50 sections are sufficient to obtain 

representative data. 

 

Data normalization: 

Since repeated imaging of the same brain was impossible microglomerular morphology 

had to be compared between different brains. (Time lapse imaging might be possible with 

two-photon microscopy but was not tested.) Neuropil and calyx volumes were determined 

to compensate for size differences between animals. These measurements revealed that fly 

brains vary considerably in volume (0.006 ± 0.003 mm3) even between progeny from the 

same vial. Similar results have been obtained for other insects (Mares et al., 2005; Withers 

et al., 2008). Calycal volume measurements appeared to be more consistent over the entire 

data set and were chosen for normalization purposes. This may be due to a higher 

consistency of genetic Dα7-GFP labelling versus nc82 immunohistochemistry. No 
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significant differences in calyx volume/neuropil volume ratios were detected between 

experimental groups. However, conclusive statements on calycal volume require higher 

numbers of animals due to significant variation and I thus do not want to overemphasize 

this observation.    

 

 

 
Figure 3.3 | Illustration of relative volumes of calyx and brain 
 
3D reconstructions (Amira) of the brain (left panels, red) and calyx (right panels, green) 
illustrating their relative proportions. The volumes of the central brain (excluding the optic 
lobes) and of the calyx were determined. Calycal volumes were used for normalization 
purposes because of a higher consistency of the measurements throughout the data set. 
Scale bars: 100 μm (left) and 10 μm (right).  
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4 Results 
 

 

 
4.1 Model systems for dendrites in the fly CNS 

Aiming at studying dendrite morphogenesis in the CNS of the adult Drosophila I looked for 

suitable model systems. Specific GAL4 drivers (pdf-GAL4, ato-GAL4, db331-GAL4 and 

ok107-GAL4, respectively) were used to express mCD8-GFP in candidate neurons to 

investigate their morphology (Figure 4.1). The GAL4 driver lines for pacemaker neurons 

(pdf-GAL4) (Renn et al., 1999) and LPTCs (db331-GAL4) (Raghu et al., 2007) appeared 

very specific and allowed the visualization of very few neurons with good expression levels 

and low background. High resolution imaging of atonal-positive neurons (ato-GAL4) 

(Hassan et al., 2000) was also possible but more challenging. ok107-GAL4 (Yang et al., 

1995) was strongly and specifically expressed in the vast majority of Kenyon cells but none 

of the available GAL4 lines allowed the visualization of single Kenyon cells. While 

published information on LPTCs and Kenyon cells allowed a reliable distinction between 

axons and dendrites the polarity of the processes in atonal-positive neurons and 

pacemaker cells was less well-defined. The presynaptic marker Synaptobrevin-GFP was 

expressed in both cell types. Synaptobrevin-GFP was not clearly restricted to distinct 

processes suggesting axonal or bipolar character of the processes of pacemaker cells and 

atonal-positive neurons. I therefore decided to restrict my analysis to the LPTCs and 

Kenyon cells.  

 

The LPTCs appeared to be promising candidates to study dendritogenesis genetically and 

the characterization of their anatomy and cytoskeletal organization will be presented in the 

next paragraphs. Small processes along their dendrites were found to share characteristics 

with vertebrate spines and a systematic evaluation of these structures will be the focus of 

the anatomical work on the LPTCs. Kenyon cells were chosen because of their implication 

in learning and memory and the better prospects to study structural rearrangements; their 

anatomy and the attempts to study structural plasticity will be presented subsequently. In 

retrospect both systems seem to be fortunate choices. A recent publication (Fayyazuddin 

et al., 2006) and own observations (the dendrites bear spine-like protrusions that are actin-

enriched; Ewa Koper and F.L.) suggest that large cells of the giant fibre system could be 

an interesting supplement to the LPTCs.  

 

 

4.2 Lobula Plate Tangential Cells  

The dendrites of the LPTCs form a very large and dense dendritic field covering much of 

the lobula plate. Position, size and outline of the dendritic field are highly consistent 

between animals and the morphology of the primary dendrites is stereotyped enough to 

allow the individual identification of each neuron. It is also possible to identify and trace a  
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Figure 4.1 | Different dendrite model systems 

Representative images of the mushroom body calyx, the Lobula Plate Tangential 
Cells, the atonal-positive neurons and the pacemaker cells (from left to right). The 
ok107-GAL4, db331-GAL4, ato-GAL4 and pdf-GAL4 drivers were used, 
respectively, to drive actin-GFP (left image only) or mCD8-GFP. Scale bars: 10 μm 
(left) or 50 μm.   

 

single neuron from the entire group of cells and to assemble its morphology from multiple 

confocal sections. This allows assessing single cell morphology as previously described by 

MARCM single cell labelling (Scott et al., 2002; Lee and Luo, 1999) (Figure 4.2C). 

The most distal of the vertical neurons, VS1 is easiest to identify and there is minimal 

overlap with other LPTC dendrites at a medial position of the dendritic tree. I thus 

decided to focus on the medial part of VS1 for all quantitative analysis of fine dendritic 

branches and spines to minimize variation. Secondary branches from the VS1 primary 

dendrite only branch off distally and often bifurcate. Their exact position and length 

shows some variation but the finest branches always give rise to an oval outline of the 

entire dendritic field. The small branches emerging from the VS1 primary dendrite are 

covered with small spine-like protrusions that I will call spines for simplicity from now on. 

Spine density and morphology within the selected region of VS1 are roughly consistent 

between animals. The high degree of stereotypy and the possibility to restrict the analysis 

to a single identifiable neuron is a major strength of the system and a prerequisite for 

molecular studies on morphogenesis of dendrites and spines. 

 

To analyze in detail the morphology of LPTC dendrites animals expressing mCD8-GFP 

(Lee and Luo, 1999) (Figure 4.3A-E) and cytoplasmic mRFP (monomeric Red Fluorescent 

Protein; (Campbell et al., 2002) (Figure 4.3A, C, E) under the control of db331-GAL4 were 

generated. Spines could be detected on the dendrites of both horizontal and vertical cells 

(Figure 4.3A, B) similarly to what was reported by Scott et al. (Scott et al., 2002; Scott et 

al., 2003a, b). These spines were present on all dendrite orders, with 5-10% being located 

on the primary dendritic branches, but their density was highest on fine branchlets (third 

order dendrites and higher; Figure 4.3C, D, arrows).  
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Figure 4.2 | LPTC overview 
(A) Single confocal section through the entire brain illustrating the localization of LPTCs in the 
optic lobes (boxed region, magnified in B). (B) Projection through a confocal stack spanning the 
LPTC dendritic field. (C, left) A single LPTC (VS1) visualized with MARCM (taken from (Scott 
et al., 2002) or assembled from various confocal sections (C, right). (D, E) 3D reconstructions 
of the boxed regions in B and D, respectively. Scale bars: 150 μm (A), 50 μm (B), 10 μm (C) 
and 5 μm (E).   
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4.3 LPTC dendrites bear spine-like processes 

The length and density of spines was quantified in projections of confocal stacks and an 

average length of the processes of 1.1 μm (± 0.1 μm) was obtained.  

Spine numbers were counted on volume-rendered 3D reconstructions of confocal 

microscope optical section series of dendritic branches, which allowed observing even 

short processes with high resolution. An average density of 1.2 spines/μm (± 0.1 

spines/μm; Supplemental Figure 6.1H, and see below) was calculated, which is about twice 

as high as previously reported for single cell clones (Scott et al., 2002; Scott et al., 2003b). 

This is most likely due to the use of 3D reconstructions, since similar values were obtained 

as in (Scott et al., 2002) when counting from projection images (0.6 spines/μm in db331-

GAL4; UAS- mCD8-GFP flies).  

Intrigued by the morphological resemblance of these protrusions to dendritic spines it was 

decided to address whether they bear additional characteristics of dendritic spines, such as 

actin enrichment and the ability to establish excitatory synaptic contacts.  

 

 

4.4 LPTC spines are enriched in actin 

To examine the cytoskeletal organization of LPTC neurons in adult animals GFP-tagged  

actin (Verkhusha et al., 1999) (Figure 4.3F-I and Supplemental Figure 6.1E) or tubulin 

(Grieder et al., 2000) (Figure 4.3K-N) were expressed using db331-GAL4 and compared to 

the localization of membrane-tagged GFP (mCD8-GFP; Figure 4.3A-D).  In all cases 

cytoplasmic mRFP was coexpressed (red in Figure 4.3A, C, E, F, H, J, K, M, O). Actin 

strongly accumulated in the spines, showing a clear enrichment in comparison to the 

dendritic branches (Figure 4.3H, I, arrows). The actin-GFP signal was quantified in spines 

and dendrites, normalized to the cytoplasmic mRFP (Figure 4.3E, J, O), and determined to 

be 2.5 to 8 times higher in spines than in dendrites (Supplemental Figure 6.2). A similar 

localization was observed upon overexpression of GMA (Supplemental Figure 6.1F), a 

GFP-tagged version of the actin-binding fragment of moesin (Edwards et al., 1997), which 

is a faithful reporter of actin organization (Dutta et al., 2002). In contrast, tubulin was 

mainly localized in the primary and secondary branches, and proportionally less abundant 

in high order branches (Figure 4.3K-N). In fact, the tubulin-GFP signal intensity, 

normalized to the cytoplasmic mRFP, was 3.6 to 8 times lower in spines than in the 

dendrite shaft (Figure 4.3M-O, Supplemental Figure 6.2).  

To rule out an effect of actin or GMA overexpression in these neurons on spine 

morphology and density, spines of LPTCs overexpressing actin-GFP (Supplemental 

Figure 6.1E) or GMA (Supplemental Figure 6.1F) were compared with spines of LPTCs 

overexpressing mCD8-GFP (Supplemental Figure 6.1D). In each case a membrane-tagged 

RFP, myr-mRFP (Supplemental Figure 6.1A-C) was coexpressed, to visualize spines 

appropriately and to quantify both spine length (Supplemental Figure 6.1G) and density 

(Supplemental Figure 6.1H) in the red channel (myr-mRFP). The density or the length of 

dendrite spines were not modified upon overexpression of actin-GFP or GMA in these 

neurons (Supplemental Figure 6.1G, H). Therefore, LPTCs possess spines that are 

enriched in actin and devoid of tubulin. 
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Figure 4.3 | Drosophila Lobula Plate Tangential Cells have spines that are enriched  
       in actin 

 
LPTCs expressing membrane tagged GFP (mCD8-GFP, A-D, green in A and C), actin-GFP 
(F-I, green in F and H) or tubulin-GFP (K-N, green in K and M) under the control of the 
db331-GAL4 driver, together with cytoplasmic mRFP to visualize the morphology of the 
neurons (E, J, O and red in A, C, F, H, K and M). The colour panels show a merge of the 
mRFP signal (red) and the respective GFP-tagged construct (green). Note the spines 
(arrows in C-E, H-J and M-O), the high enrichment of actin in spines (arrows H-J), and the 
absence of detectable tubulin in those structures (arrows in M-O).  Scale bars: 20 μm (A, B, 
F, G, K, L) or 10 μm (C-E, H-J, M-O). 
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4.5 LPTC spines fall into four morphological categories 

Although spines can modify their morphology even in the adult brain (Lendvai et al., 2000; 

Majewska and Sur, 2003), they have been traditionally divided in morphological categories 

that seem to reflect their level of maturation and of activity (Fiala and Harris, 2001; Nagerl 

et al., 2004; Noguchi et al., 2005). The morphology of the LPTC spines is also quite varied 

Figure 4.4A, B). In projections of optical section stacks the vast majority of LPTC spines 

were found to fall into four categories (Figure 4.4C). These are: stubby spines (44.4 ± 

4.7%), if the diameter of the neck is similar to or greater than the total length of the spine; 

thin spines (24.9 ± 3.9%), if the length is greater than the neck diameter, and the diameters 

of the head and the neck are similar; branched spines (16.1 ± 3.1%), spines with up to three 

heads from a single neck; and mushroom spines (14.5 ± 3.9%), if the diameter of the head is 

greater than the diameter of the neck. A small proportion of protrusions (approx. 10% of 

all protrusions regardless of their length) was longer than 3μm. These structures were 

classified as filopodia. 

Thus, LPTC spines fall into previously described spine categories. Similarly to what has 

been reported in other systems (Harris et al., 1992), the percentage of the possibly mature, 

mushroom spines is approximately 15% of the total number of spines.  

 

 

4.6 LPTC spines represent sites of synaptic input 

Mature dendritic spines are sites of synaptic input (Nagerl et al., 2004). To address whether 

the observed processes are functional homologues of vertebrate spines it was investigated 

whether they also are sites of synaptic input. Immunohistochemistry on in toto brains of 

adult flies expressing actin-GFP specifically in LPTCs was performed using nc82 

antibodies against the pre-synaptic marker Bruchpilot  (Kittel et al., 2006; Wagh et al., 

2006), followed by confocal microscopy optical sectioning (Figure 4.5). A punctate 

staining restricted to the neuropils was obtained (Figure 4.5A), which was absent in the 

negative controls (secondary antibody only, data not shown). Puncta representing pre-

synaptic sites were present both along the length of primary and secondary branches 

(Figure 4.5B) and juxtaposed to the spines (single optical sections in Fig. 3C arrowheads). 

To estimate the subset of spines in contact with a pre-synaptic terminal, the number of 

sites of close proximity (<0.1μm) between mCD8-GFP and the nc82-positive puncta in 

single confocal sections (Figure 4.5C) was counted. Additionally, 3D reconstructions of 

dendrite tree fragments were generated and rotated: only the contact sites that were 

maintained at all angles of rotation were counted. Based on these data it was observed that 

88% (± 5%) of the spines were juxtaposed to nc82-positive puncta (Supplemental Figure 

6.3D, F). Thus, most LPTC dendritic spines appear to receive synaptic input. 
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Figure 4.4 | Classification of dendritic spines of LPTCs  

(A) A representative small dendritic branchlet of the medial region of VS1 showing the 
different types of dendritic spines. UAS-mCD8-GFP is expressed in LPTCs under the 
control of db331-GAL4. (B) Surface-rendered 3D reconstruction (Amira) of the same 
fragment. Selected spines are marked with arrowheads and magnified in the subsequent C 
panels. (C) Four categories of spines are detected: stubby, thin, branched, and mushroom, 
based on the spine length as well as the ratio between their maximum head and minimum 
neck diameter, as described in the text. The numbers in C represent the percentage of each 
spine category. >600 spines from 5 animals were analyzed. Scale bar: 2 μm.   
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Figure 4.5 | LPTC spines receive synaptic input 

(A) Single optical section through the LPTC dendritic field visualized by db331-GAL4 
driven expression of mCD8-GFP (green) and stained with anti-Bruchpilot antibody (nc82, 
red). Presynaptic puncta are highly abundant in the region containing the LPTC high order 
dendritic branches. The lobula plate is indicated. Scale bar: 50μm. (B) Single optical section 
through a representative fragment of VS1 (as indicated in A). Scale bar: 10μm. (C) Single 
channel images of a small dendritic fragment illustrating juxtaposition between spines and 
nc82 puncta. 88% of spines were in immediate proximity (<0.1 um) to presynaptic nc82 
puncta as determined using 3D reconstructions. 

 

 

4.7 Ultrastructure of LPTC spines 

To provide additional lines of evidence that spines are sites of synaptic input, Ewa Koper 

analyzed the ultrastructure of spines in immuno-electronmicroscopy experiments that 

allowed unambiguously identifying the LPTCs in brain sections (Supplemental Figure 6.3, 

dark precipitate along the LPTC membrane). LPTC spines were identified in serial brain 

sections: only the processes of up to 3μm in length that were included within 6 sections 

(50nm/section) were considered as spines.  It was analyzed whether the spine would bear 

synaptic contacts. Indeed in all cases examined (n=5) T-bars (Prokop and Meinertzhagen, 

2006), indicators of synaptic zones (Kittel et al., 2006; Wagh et al., 2006; Zhai and Bellen, 

2004), were present immediately next to the spines (Supplemental Figure 6.3B, C, D, 

arrowheads).  The T-bars were localized on the spine head in 4 examples (Supplemental 

Figure 6.3B, C, D, arrowheads), but they were also found on the neck and on the shaft of 

spines. In one example there were multiple T-bars on one spine. In two instances the 

presence of synaptic vesicles at a T-bar pre- synaptic to a spine could clearly be observed 

(Supplemental Figure 6.3B, star in the inset). These findings indicate that spines present on 

LPTCs can form active synapses.  

 



 47 R e s u l t s  

4.8 LPTC spines represent sites of excitatory synaptic input 

Input onto vertebrate dendritic spines is mainly of excitatory nature (Gray, 1959). Previous 

immunohistochemical work demonstrated that LPTCs are likely to receive cholinergic 

synaptic input and acetylcholine is known to be the major excitatory neurotransmitter in 

the fly CNS (Brotz et al., 1995; Brotz et al., 2001). It was asked whether LPTC dendritic 

spines receive cholinergic input. To this aim, GFP-tagged versions of the acetylcholine 

receptor subunit Dα7 (Grauso et al., 2002) were generated. Upon coexpression of this 

construct and a membrane-tagged red fluorescent protein (myr-mRFP) under the control 

of db331-GAL4, the puncta were found to be primarily localized to dendritic spines 

(Figure 4.6A). It was determined that the vast majority of spines (97.7%, STDV 2.7%, 

>250 spines from 5 animals counted) contain Dα7-GFP puncta. Furthermore, 70% of 

Dα7-GFP puncta localized to spines (STDV 5%, >500 Dα7-GFP puncta counted), 

indicating that spines represent a preferential localization for Dα7-GFP. Importantly, the 

expression of this construct does not alter spine density (1.09 spines/μm versus 1.15 

spines/μm in the control, ttest 0.3), indicating that it does not induce the formation of 

ectopic spines. Additionally, the Dα7-GFP puncta are significantly more often juxtaposed 

to presynaptic puncta positive for the nc82 antibody than expected for random 

distribution (Supplemental Figure 6.4), suggesting that at least a subset of those represent 

sites of synaptic connectivity. To address if the ectopically expressed Dα7-GFP reflects the 

localization of the endogenous protein, anti-Dα7 antibodies were used in 

immunohistochemistry and a strikingly similar distribution of Dα7-positve puncta was 

obtained (Figure 4.6C; Supplemental Figure 6.5). Taken together, the localization of Dα7 

indicates that at least a vast majority of the synaptic input onto LPTC spines is excitatory.  

In conclusion, the spines observed on LPTCs are morphologically similar to vertebrate 

spines; they are enriched in actin, devoid of tubulin and are sites of synaptic input, which is 

mostly excitatory. I thus conclude that these processes indeed represent spines. 

 

 

4.9 dRac1 overexpression alters LPTC spine density and morphology 

To test whether dendritic spines could be genetically modifiable in this system, the level of 

a factor known to affect spine morphology and density in vertebrates were manipulated. 

dRac1 was chosen because the effects of Rac1 on spines in vertebrates are particularly well 

characterized (Govek et al., 2005). Full length dRac1 (FL: rac1.L; (Luo et al., 1996; 

Nakayama et al., 2000) as well as dominant negative (DN: rac1.N17; (Luo et al., 1994) and 

constitutively active (CA: rac1.V12; (Luo et al., 1994) versions of dRac1 were expressed 

specifically in the LPTCs under the control of db331-GAL4, and coexpressed GMA was 

used to visualize the dendritic trees. Since overexpression of CA dRac1 led to lethality at 

pupal stages only the effects of full length and dominant negative dRac1 over-expression 

could be analyzed (Figure 4.7). The overall dendritic architecture in both genotypes 

appeared to be similar to the wild type condition: neither position nor branching patterns 

of primary and secondary order dendrites were obviously affected. This is consistent with 

previous evidence that alteration of Rac activity does not affect the dendrite structure of 

pyramidal neurons or of cerebellar Purkinje neurons (Luo et al., 1996; Nakayama et al., 

2000). However, a difference in spine morphology and an increase in spine density was 
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noticed (compare Figure 4.7B and Figure 4.7A). To quantify these observations spine 

density analysis was quantified as described above (Figure 4.7G). Spine density was found 

to be increased by around 30% upon overexpression of either full length dRac1 (Figure 

4.7G; 1.54 spines/μm; n= 5; p= 0.0064 by t-test) or dominant negative dRac1 (1.51 

spines/μm; n=5; p= 0.0051), in comparison to the control expressing myr-mRFP (1.15 

spines/μm; n=5). Moreover, spines appeared shorter and less well defined. Although 

opposite effects might be in principle expected upon overexpression of full length and 

dominant negative proteins, both genotypes appeared indistinguishable and yielded similar 

results in the quantification (see Discussion). Next, it was addressed whether the processes 

present upon Rac1 over-expression share characteristics of spines as described above. 

Actin and Dα7 distribution were therefore analyzed (Figure 4.7B, C, E, F). Actin was 

found to be enriched in the Rac1-induced spines 2–7 times more than in the dendrite shaft 

in comparison to cytoplasmic mRFP (VS1 fragments from 5 animals quantified; Figure 

4.7B, E; Supplemental Figure 6.2). Dα7-GFP was also present on these processes (Figure 

4.7F). Because of low signal level in these experiments, reliable quantifications could not 

be done. Rac1-induced spines seem thus to share two distinct characteristics of LPTC 

spines.  

 

 
Figure 4.6 | Dα7 is localized at dendritic spines  

(A) Projection of a confocal stack (spanning approx. 3 μm) through a representative 

fragment of VS1 expressing myr-mRFP (red) and Dα7-GFP (green) under the control of 

db331-GAL4. (B) Magnified view of the branchlet boxed in A, showing the single channels 

and the merge, as indicated. >90% of all spines contain the ectopically expressed ACh-

receptor subunit Dα7-GFP. Note also the specificity of localization to the spines: 70% of 

the Da7-GFP positive puncta localize to spines. (C) View of a branchlet of VS1, expressing 

mCD8-GFP under the control of db331-GAL4 and immunolabelled with anti-Dα7 

antibodies. The single channels and the merge are shown. Arrows point to single spines. 

Scale bars: 10 μm. 
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Figure 4.7 | Spine density is modulated by Rac1  

(A-F) Similar dendritic fragments of VS1 are shown for animals carrying db331-GAL4 and 
that were heterozygous for UAS-GMA (used for imaging) and either UAS-myr-mRFP 
(control, A) or UAS-rac1.L (D); UAS-actin-GFP and UAS-mRed with (E) or without (B) 
UAS-rac1.L or UAS-Dα7-GFP and UAS-mCD8-cherry with (F) or without (C) UAS-rac1.L 
respectively. (G) Quantification of spine density. >500 spines from 5 animals (as shown in 
A and G) were analyzed per data point. T-test p< 0.007. Scale bars: 5 μm. 
 

 

 

Taken together, alterations of Rac1 levels appear to be capable of modulating spine density 

in Drosophila as previously reported for vertebrates. 

 

In summary, Ewa Koper and I characterized the morphology and cytoskeletal 

organization of Lobula Plate Tangential cell (LPTC) dendrites and demonstrate that they 

bear small protrusions that closely resemble dendritic spines of vertebrates. LPTCs were 

considered to be an interesting model system to study dendrite and spine morphogenesis 

genetically. The first step towards this goal was the identification of Rac1 as a modulator 

of spine morphology in flies as previously described for vertebrates. Rac1 was identified as 

an interesting candidate molecule in initial attempts to screen for factors involved in 

dendritogenesis. These experiments will be introduced in more detail after the presentation 

of anatomical work describing Kenyon cell dendrites and their synaptic partners because 

the attempts to identify genes involved in dendrite morphogenesis were based on the 

anatomical knowledge of both LPTCs and Kenyon cells.  

 

 
4.10 Microglomerular complexes in the mushroom body calyx 

Kenyon cells are no ideal cellular system to study dendritic morphology because of their 

poorly defined morphology and the lack of a GAL4 line allowing the labelling of 

individual Kenyon cells. The morphology of single Kenyon cells can only be studied using 

MARCM (Lee and Luo, 1999). Kenyon cell dendrites form several branches throughout 

* 
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the calyx which often end with characteristic claw-like structures. Because of the high 

number of Kenyon cells (around 2000 per hemisphere) and the lack of specific markers it 

is an open question if they have an individually stereotyped morphology – but 

electrophysiology combined with theoretic considerations suggest that this might not be 

the case (Murthy et al., 2008). Although Kenyon cell dendrites seem to share some 

common features they are not very stereotyped between different cells. These constraints 

make cellular studies with the resolution presented for the LPTCs impossible. A number 

of advantages seemed to outweigh these technical shortcomings. First, Kenyon cells are 

known to play an important role in learning and memory. Second, Kenyon cells dendrites 

are the intrinsic elements of the mushroom body calyx and it has been shown that the 

volume of the calyx is sensitive to alterations of sensory environment in a number of 

insect species including the fly. Third, they are part of the well-characterized olfactory 

system. It is possible to manipulate the activity of the presynaptic partners of Kenyon cells 

with both odour stimulation and molecular tools. While the first two points make it 

plausible that Kenyon cell dendrites might undergo morphological rearrangements in an 

activity-dependent manner the third opens interesting opportunities for ultimately 

investigating the relation between neuronal activity and structural plasticity. For these 

reasons I decided to investigate if the mushroom body calyx (with the Kenyon cells as the 

intrinsic elements) could be a suitable model system for structural plasticity in the fly. I will 

describe the anatomy of microglomerular complexes in the mushroom body calyx before 

presenting my attempts to exploit this anatomical information for studies on structural 

plasticity.  

 

 

4.11 Actin-rich microglomerular structures are present throughout the calyx 

Since neuronal plasticity might require actin-dependent changes in dendrite morphology I 

looked for subcellular sites of actin accumulation in the adult calyx (a comparison between 

the mushroom body organization of larva and adult is provided Supplemental Figure 6.6). 

I expressed actin-GFP (Verkhusha et al., 1999) in most Kenyon cells using the ok107-

GAL4 driver (Connolly et al., 1996) and found ring-like calycal structures highly 

reminiscent of microglomeruli previously described in other insects based on phalloidin 

labelling (Frambach et al., 2004; Groh et al., 2004). In single confocal sections, 

microglomeruli were identified by a ring of actin-GFP fluorescence (diameter 1.75µm ± 

0.30µm, n>200) surrounding a centre which was devoid of signal (diameter 0.66µm ± 

0.14µm, n>200). To demonstrate the actin-enrichment in the ring-like structures I 

coexpressed actin-GFP and cytoplasmic mRFP using the ok107-GAL4 driver (Figure 

4.8B). Whereas mRFP was predominantly seen in the cell bodies, actin-GFP was 

specifically localized in the ring-like structures and was barely detectable in the cell bodies. 

Similarly to what has been reported in other insects, microglomeruli can also be visualized 

with phalloidin (Figure 4.8C). I conclude that actin is selectively enriched postsynaptically 

within microglomerular structures in the calyx. 
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Figure 4.8 | Mushroom body overview 

 
Single confocal section illustrating the position of the mushroom body calyx (upper panel, 
arrow). A 3D reconstruction of the right side of the mushroom body is included to illustrate the 
3D orientation; magnified and rotated versions are presented in medial panels. Single confocal 
sections of the Kenyon cell body area, the medial calyx (bottom left panels), αβ, α‘β‘- and γ-

lobes (bottom right panels).Scale bars: 150 µm (upper panel) or 10 µm. 
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4.12 Claw-like endings from different Kenyon cells constitute microglomeruli 

Microglomeruli appear very similar upon phalloidin labelling (Figure 4.9C) or ectopic 

expression of actin-GFP in Kenyon cells (Figure 4.9B) suggesting a dominant contribution 

from Kenyon cells to the actin-enriched structures. To reveal the contribution of 

individual Kenyon cells I used the MARCM technique (Lee and Luo, 1999). Most Kenyon 

cells form few dendritic branches which usually do not bear many higher order branches 

and terminate with claw-like endings (Lee et al., 1999; Zhu et al., 2005) or similar 

structures (Strausfeld et al., 2003). Since I did not attempt to resolve the subtle 

morphological differences between the dendritic endings of Kenyon cells previously 

described using Golgi impregnations (Strausfeld et al., 2003) I decided for simplicity to 

subsume the Kenyon cell dendritic endings with the term ‗claw-like endings‘ for the 

purpose of this study. 

 

I obtained high-magnification images of dendrites of single Kenyon cells expressing 

mCD8-GFP (Lee and Luo, 1999) and identified small processes protruding from the claw-

like endings and from the dendrite branches (Figure 4.9C, D arrowheads), which were 

between 0.3 and 1 µm long (occasionally longer along the dendrite branches). These 

processes often resembled vertebrate spines in their morphology (e.g. mushroom shaped 

spines with a spine head diameter exceeding the spine neck diameter, see Figure 4.9D 

arrowheads), while some resembled filopodia or were of irregular shape. In contrast to the 

specific enrichment of actin in dendritic spines reported in vertebrates and in Drosophila 

(see above) actin appeared to be enriched in the entire claw-like ending, including the small 

spine-like protrusions, as shown in single confocal sections (Figure 4.9E-G). While claw-

like endings displayed many spine-like protrusions (Figure 4.9D) these were found only 

sporadically along the dendritic branches (Figure 4.9C, arrowhead). Due to the 

morphological resemblance and similar dimensions of microglomeruli and claw-like 

endings of Kenyon cell dendrites I suspected each microglomerulus to be constituted by 

claw-like endings from several Kenyon cells. Indeed, claw-like endings of single cell 

MARCM clones co-localized with phalloidin labelled microglomeruli (n=5) (Figure 4.9E-

G). A single claw-like ending never entirely covered an actin-rich ring: I thus conclude that 

several claw-like endings from different Kenyon cells (see below) collectively form a 

microglomerulus. Each Kenyon cell has several claw-like endings and thus contributes to 

several microglomeruli (Figure 4.9C). 
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Figure 4.9 | Actin-enriched microglomeruli in the mushroom body calyx are constituted  
           by claw-like endings from Kenyon cell dendrites  

 
A) Scheme of the fly head to illustrate plane and orientation of all subsequent images. B) Single 
confocal section through the mushroom body calyx expressing actin-GFP (red) and cytoplasmic 
mRFP (green) in Kenyon cells, driven by ok107-GAL4. In contrast to mRFP, actin is selectively 
enriched in microglomerular substructures in the calyx as compared to the cell bodies. Scale bar: 
10µm. C) Kenyon cell MARCM clone, labelled with mCD8-GFP (green) and shown as a 3D 
reconstruction projected onto a single plane of phalloidin labelled microglomeruli (red). Claw-
like endings of Kenyon cell dendrites are indicated by arrows, the cell body by an asterisk. Scale 
bar: 10µm. D) Claw-like ending similar to the boxed region in C). Scale bar 1 μm. Spine-like 
protrusions are marked with arrowheads. E-G) Magnification of the boxed region in C) 
demonstrating that microglomeruli contain Kenyon cell claw-like endings. Scale bar: 1µm. 
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4.13 Microglomeruli are sites of synaptic contact 

To investigate the location of synapses relative to the actin-enriched rings formed by the 

Kenyon cell claw-like endings I labelled synapses with the presynaptic markers 

synaptotagmin or Bruchpilot (nc82) while visualizing the microglomeruli using actin-GFP 

driven by ok107-GAL4 (Figure 4.10A, B). I found most presynaptic puncta to be located 

within the actin-devoid centres of microglomeruli; often outlining their inner edges (Figure 

4.10B). Since there were many presynaptic puncta in the calyx, I wondered whether this 

localization would just be due to random distribution, but the percentage of puncta within 

the microglomerular centres turned out to be significantly higher (52±11%, 2950 puncta 

counted; ttest <4 x 10-8) than expected for random distribution (22±5%). In single cell 

MARCM clones I could identify multiple presynaptic puncta outlining the inner edge of 

claw-like structures on single optical sections (Figure 4.10C-F) demonstrating 

juxtaposition. Projection neurons represent the only cholinergic neurons in the mushroom 

body calyx (Yasuyama et al., 2002). Using anti-ChAT labelling I confirm that the majority 

of the presynaptic boutons within microglomeruli are cholinergic (Figure 4.10G, H) and 

thus likely represent projection neuron boutons.  

 

 

4.14 Projection neurons constitute the centres of microglomeruli 

Olfactory projection neurons send their axons from the antennal lobes to the mushroom 

body calyces where they form synapses with Kenyon cell dendrites (Stocker et al., 1990). 

Studies in other insects have demonstrated that dye-filled projection neurons constitute 

the centres of actin-rich microglomeruli (Frambach et al., 2004; Groh et al., 2004), 

suggesting a similar organization also in Drosophila. I labelled projection neurons genetically 

using the gh146-GAL4 driver (Stocker et al., 1997) and the reporters mCD8-GFP (data not 

shown) or synaptobrevin-GFP (Ito et al., 1998) (Figure 4.10I, J), a presynaptic marker. Co-

labelling with phalloidin revealed that the centres of the actin-rich microglomeruli are 

indeed defined by projection neuron presynaptic specializations (Figure 4.10I, J). Spheroid 

projection neuron boutons could be identified throughout the calyx and their dimensions 

matched those of the actin-devoid centres of microglomeruli, suggesting that a single 

projection neuron bouton constitutes the centre of a microglomerulus. In single confocal 

sections synaptobrevin-GFP-labelled projection neuron boutons appeared as ring-like 

structures (as also previously shown by (Ashraf et al., 2006)) similar to but slightly smaller 

than the actin-rich rings formed by the Kenyon cell dendrite endings. Single projection 

neuron boutons were surrounded by phalloidin labelled rings and outlined their inner edge 

and thus were highly reminiscent of the anti-ChAT labelling (compare Figure 4.10I, J and 

Figure 4.10G, H). 
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Figure 4.10 | Synaptic organization of calycal microglomeruli 

A) Single confocal section through the mushroom body calyx expressing actin-GFP 
(red) in Kenyon cells; nc82 (green) labelling reveals presynaptic sites. Scale bar: 10µm. 
B) Magnification of the boxed region in A); presynaptic sites are outlining the inner 
rim of microglomeruli. C) Kenyon cell MARCM clone, labelled with mCD8-GFP 
(red), co-labelled with α-synaptotagmin (green). Scale bar: 5 µm. D-F) Magnification of 
the boxed region in C). A single optical section is shown. G) Single confocal section 
through the mushroom body calyx expressing actin-GFP (red) in Kenyon cells; α-
ChAT (green) labelling reveals presynaptic cholinergic sites. Scale bar: 10 µm. H) 
Magnification of the boxed region in G). I) Single confocal section through the 
mushroom body calyx expressing synaptobrevin-GFP (green) in projection neurons; 
microglomeruli are colabelled with phalloidin (red). Synaptobrevin-GFP reveals 
spheroid presynaptic specializations of projection neurons. J) Magnification of the 
boxed region in I); projection neuron presynaptic boutons constitute the centres of 
microglomeruli and contact surrounding Kenyon cell dendrites.  
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Figure 4.11 | Acetylcholine receptors in Kenyon cells  

Medial, single confocal section of the mushroom body calyx expressing Dα7-GFP using the 
ok107-GAL4 driver (green). Presynaptic sites are labelled with nc82 immunohistochemistry 
(red). The boxed region is magnified and individual channels are shown (right panels). Dα7-
GFP localizes specifically to ring-like structures and often is in close proximity of 
presynaptic sites. Scale bar: 10 μm. 

 

 
4.15 Acetylcholine receptors in Kenyon cells 

Since actin-rich protrusions from Kenyon cells surround cholinergic projection neuron 

boutons I asked if they bear acetylcholine receptors. I expressed a GFP version of the 

Dα7 subunit of the receptor and found a striking localization at the inner rim of the actin-

rich rings. Costaining with nc82 revealed that Dα7 receptor patches are often in very close 

proximity of presynaptic staining. As the projection neuron to Kenyon cell synapses are 

the only known cholinergic synapses in the calyx the Dα7 receptor and the complementary 

ChAT staining appear well suited to specifically visualize this type of synaptic connection. 

 
 

4.16 Microglomeruli are innervated by GABAergic interneurons 

The mushroom body calyx in Drosophila as in other insects is innervated by GABAergic 

interneurons that form synapses with both Kenyon cells and projection neurons within 

microglomeruli (Ganeshina and Menzel, 2001; Yasuyama et al., 2002). To analyze how 

many microglomeruli receive GABAergic processes I expressed mCD8-GFP using the 

gad1-GAL4 driver that labels GABAergic neurons (Ng et al., 2002). It is important to note 

that among the neurons labelled by the gad1-GAL4 driver in the adult brain some non-

GABAergic neurons and few Kenyon cells are also apparently included (based on position 

and size of the cell bodies). I found gad1-positive profiles to densely innervate the calyx 

and used co-labelling with phalloidin to count the percentage of microglomeruli with  
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Figure 4.12 | GABAergic interneurons and glial cells are present in the calyx  
 
A) Single confocal section through the mushroom body calyx expressing mCD8-GFP 
(green) in GABAergic interneurons (driven by gad1-GAL4); microglomeruli are co-labelled 
with phalloidin in this and subsequent panels (red). Scale bar in all panels: 10 µm. B) 
Magnification of the boxed region in A); processes from GABAergic neurons are extending 
essentially throughout the entire calyx. C) Single confocal section through the mushroom 
body calyx expressing synaptobrevin-GFP (green) in GABAergic interneurons (driven by 
gad1-GAL4). D) Magnification of the boxed region in C); discrete synaptobrevin-GFP 
puncta can be observed in many microglomeruli (arrows). Some microglomeruli seem 
completely labelled (arrowheads). E) Single confocal section through the mushroom body 
calyx expressing mCD8-GFP (green) in glia cells (driven by repo-GAL4). F) Magnification of 
the boxed region in E); glial processes appear not to contact all microglomeruli and seem 
not to define calycal subcompartments.  
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contribution from gad1-positive processes. I thus estimate that >90% of all microglomeruli 

contain gad1-positive processes (98%, STDV 1, n=3 brains; Figure 4.12A, B). 

To identify possible sites of synaptic connectivity, I expressed Synaptobrevin-GFP using 

the gad1-GAL4 driver and observed small Synaptobrevin-GFP dots often at or close to the 

inner rim of the actin-rich ring throughout the calyx (Figure 4.12C, D arrows) without any 

obvious regionalization. Since Kenyon cells are believed to be exclusively postsynaptic 

throughout the calyx this suggests that at least a significant proportion of the gad1-positive 

processes are presynaptic processes from GABAergic interneurons. In few 

microglomeruli, though, the Synaptobrevin-GFP signal seemed to line the entire actin-rich 

ring (Figure 4.12D, arrowhead) either corresponding to large GABAergic terminals 

identified by electron microscopy (Yasuyama et al., 2002) or representing a subset of 

microglomeruli in which GABAergic innervation is very abundant. 

 

 

4.17 Glial processes are protruding into the calyx 

Since glial processes enwrap the glomeruli in the antennal lobe I asked if the calyx is also 

subdivided by glia. Using the repo-GAL4 driver (Sepp et al., 2001) to restrict the expression 

of mCD8-GFP to glia cells, I found the calyx (Figure 4.12E), pedunculus and lobes to be 

enwrapped by glial processes. I also noticed glial processes throughout the calyx (Figure 

4.12F). Using 3D reconstructions I revealed that these do not enwrap individual 

microglomeruli (as opposed to locust (Schurmann, 1974), but similar to bees (Ganeshina 

and Menzel, 2001)) or distinct groups of microglomeruli and do not obviously reflect the 

quadripartite developmental origin of the calyx. Instead, they seem to form a rather loose 

meshwork throughout the calyx. I cannot exclude at this point that more subtle 

subdivisions exist. The overall organization of microglomeruli, as emerging from the 

above data, is schematized in Figure 4.13.. 

 

 

4.18 Around 1000 microglomeruli are found in the calyx 

To address whether the microglomeruli identified by the actin-rich rings are distributed 

evenly throughout the calyx or may cluster in morphologically distinct subdomains I 

obtained serial confocal sections spanning the calyx of flies expressing actin-GFP driven 

by ok107-GAL4 and generated three-dimensional models. I identified microglomeruli at all 

sections through the calyx, marked individual ones at the plane of their maximal (xy) 

extension in a confocal z stack and determined their positions in x and y.  Plotting this 

positional information of all microglomeruli of an animal did not reveal obvious clusters 

of preferred microglomerular position. Rather, the microglomeruli seemed to be randomly 

distributed throughout the calyx (as in Figure 4.15D-F). I determined the number of 

microglomeruli for 24-h old wild-type flies and obtained an average value of 786 ±73 

(mean ± STDV, n= 3 calyces) per calyx. Because of limitations of the quantification 

method. I expect the actual number to be slightly higher (200 projection neurons x 5 

boutons per projection neuron giving about 1000 microglomeruli per calyx).  
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Figure 4.13 | Schematic illustration of a microglomerulus  
 
A) Claw-like endings from several Kenyon cells (shades of green) enwrap and form synapses 
(red puncta: presynaptic sites) with a projection neuron presynaptic bouton (light red). B) 
Actin (yellow) is mainly localized to claw-like endings. C) Processes from GABAergic 
neurons (blue) contribute to and form presynaptic specializations (red) within 
microglomeruli.  The precise localization of synapses is inferred from the literature 
(Yasuyama, 2002).  

 

 

4.19 Microglomeruli have distinct presynaptic contributions 

Projection neurons innervate specific antennal lobe glomeruli and thus carry distinct 

olfactory information. I have shown that microglomeruli receive excitatory cholinergic 

input from projection neuron boutons (Figure 4.10) and they can thus be classified 

according to the projection neurons that innervate them. To illustrate this I expressed 

mCD8GFP under the control of the mz19-GAL4 (Ito et al., 1998) or np3529-GAL4 

drivers which label the projection neurons sending their dendrites to the antennal lobe 

glomeruli DA1, VA1d and DC3 or DL1 (Tanaka et al., 2004), respectively (Figure 4.14A, 

B). Consistent with recent observations (Lin et al., 2007) I found that each of these two 

projection neuron subsets reproducibly projects to a defined region in the calyx. 

Microglomeruli can thus be classified according to the projection neuron input they 

receive and hence possibly process distinct olfactory information. 

 

 

4.20 Microglomeruli have distinct postsynaptic contributions 

I then asked if microglomeruli can also be subdivided according to the Kenyon cell 

subtypes that constitute them. It has been suggested that the mushroom body lobes have 

distinct functions in learning and memory (Akalal et al., 2006; Krashes et al., 2007; 

McGuire et al., 2001; McGuire et al., 2003; Pascual and Preat, 2001; Zars et al., 2000). To 

restrict the expression of actin-GFP to different  subsets I used the following Gal4-driver 

lines: 1471-GAL4 (Isabel et al., 2004), which drives expression in a large subset of γ-

neurons and shows no expression in the vertical lobes; 201y-GAL4, expressing in a large γ-

subset and in some αβ-core neurons; c739-GAL4, which is specific for a large subset of 

αβ-neurons and 17d-GAL4, specific for a smaller subset of αβ-neurons only (Yang et al., 

1995). The total population of microglomeruli was labelled with phalloidin. I found the 

actin-GFP labelling to be restricted to distinct subpopulations of phalloidin-labelled 
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microglomeruli in all four genotypes (Figure 4.15 and Supplemental Figure 6.8). In 

agreement with earlier reports (Strausfeld et al., 2003; Tanaka et al., 2004) I found 

predominantly γ-neuron dendrites in the centre (Figure 4.15G; Supplemental Figure 6.8A-

D) and dendrites of αβ-neurons mostly in the periphery of the calyx (Figure 4.15A, H, I; 

Supplemental Figure 6.8E-H). Importantly, I found three different populations of 

microglomeruli in all three genotypes: microglomeruli without, with partial or dominant 

(Figure 4.15B) contribution of the genetically labelled subset.  

These observations suggest that microglomeruli are not always formed by a single, defined 

type of Kenyon cell. Since I could not differentially co-label distinct Kenyon cell 

populations, I indirectly addressed this possibility by estimating the percentages of 

microglomeruli that different Kenyon cell subtypes contribute to. I estimate the 1471-

GAL4 positive (γ) Kenyon cells to contribute to 70-90% of all microglomeruli, the c739-

positive (αβ) to 30-60% and the c305a-positive  (α‘β‘) to 20-40% (see Figure 4.15D-F for 

illustrations). 

 

 

Figure 4.14 | Microglomeruli differ in their presynaptic constituents  

Subsets of microglomeruli can be highlighted via mCD8-GFP labelling (green) of genetically 
defined subsets of presynaptic projection neurons as exemplified using the mz19-GAL4 (A) 
or np3529-GAL4 (B) drivers. Single confocal sections taken from a similar medial position 
are shown. Many more boutons were present on different sections in both cases. Phalloidin 
(red) reveals the total population of microglomeruli. Scale bars: 10µm. C) Scheme illustrating 
the differences in presynaptic constituents of microglomeruli. 
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Figure 4.15 | Microglomeruli differ in their postsynaptic constituents  

Subsets of microglomeruli were highlighted via actin-GFP (green) expression in γ-Kenyon 
cells (G, J-L, S; using 1471-GAL4), αβ-Kenyon cell (A-C, H, M-O, T; using c739-GAL4) or 
α‘β‘-Kenyon cells (I, P-R, U; using c305a-GAL4), the entire population of microglomeruli 
was labelled by phalloidin (red). Microglomeruli without, with partial and with dominant 
contribution from the genetically labelled subset were identified in all three genotypes as 
exemplified in B). D-F) Illustrations of microglomerular distributions as categorized in B) 
using 1471-GAL4 (D), c739-GAL4 (E) or c305a-GAL4 (F) drivers. Many microglomeruli in 
the central calycal area appear to be dominated by dendritic endings from γ-neurons (light 
grey in D-F), while most microglomeruli in the medial periphery seem to be dominated by 
αβ-neurons (dark grey in D-F). There were microglomeruli with partial contribution from γ-
neurons in the αβ/α‘β‘ -dominated region (J-L) and vice versa (M-R). J-R) Magnifications of 
selected microglomeruli in the boxed regions in G-I. S-U) 3D reconstructions of actin-GFP 
expression in the mushroom body lobes using 1471-GAL4 (S), c739-GAL4 (T) or c305a-
GAL4 (U) drivers. Scale bars: 10µm.  
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Since these drivers define non-overlapping Kenyon cell subsets (Figure 4.15S-U) this 

suggests that at least 20% of all microglomeruli receive contributions from different 

Kenyon cell populations. To further strengthen this observation I searched for 1471-

positive (γ) microglomeruli within the main αβ-region (Figure 4.15J-L) or c305a-positive 

(α‘β‘) or c739-positive (αβ) microglomeruli within the main γ-region (Figure 4.15M-R, F). I 

found many such glomeruli and suggest that they are prevalently composed of αβ-neurons, 

with a minor γ contribution or of γ-neurons with a minor αβ/α‘β‘ contribution, 

respectively. My data suggest that distinct classes of microglomeruli exist that are formed 

by the dendritic claw-like endings of either a single Kenyon cell population or of different 

Kenyon cell populations.  

 

 

4.21 Structural plasticity 

I have characterized anatomical details of the connectivity between projection neurons and 

Kenyon cells in microglomerular structures. These synaptic complexes represent a 

repeated structural unit throughout the calyx and I asked if their morphological 

description allowed studying whether microglomeruli undergo experience-dependent 

alterations. Volumetric changes in the insect calyx have been reported upon alterations of 

sensory environment (Durst et al., 1994; Heisenberg et al., 1995; Withers et al., 1993). I 

asked if the structural plasticity demonstrated for the calyx could be partially due to 

rearrangements of the organization of the actin-rich calycal microglomeruli (Groh et al., 

2006; Lent et al., 2007). To address this it would be ideal to study single Kenyon cells and 

their individual protrusions. Unfortunately, such an approach is hampered by the poorly 

stereotyped morphology of Kenyon cells. The morphology of microglomeruli, however, is 

roughly consistent between animals and thus ideal for addressing changes at a calyx-wide 

but cellular scale. In the following sections I will present my attempts to exploit the 

insights into the anatomy of calycal microglomeruli for studies on structural plasticity.  

 

 

4.22 Technical challenges of studies on structural plasticity 

Aiming at studying structural plasticity in the mushroom body calyx I had to meet a 

number of technical challenges. First, I had to develop reliable and precise tools for 

morphometric analysis. After using a manual approach initially I developed tools for 

automated image analysis to allow higher accuracy and consistency. Second, I had to 

generate genetic tools allowing the reliable visualization of microglomerular morphology in 

a GAL4/UAS independent way. Third, I needed a way to conclusively compare results 

obtained from animals of different size. I could then describe microglomerular 

morphology in the wild type and test the effects of a number of sensory manipulations. 

Finally, genetic tools allowing manipulating neuronal activities in defined ways were 

required to relate structural rearrangements with neuronal activity.  
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4.23 Manual quantifications of microglomerular morphology 

I first measured the surface included within the actin-rich ring of the 25 largest 

microglomeruli (visualized using actin-GFP driven by ok107-GAL4) on single confocal 

sections cutting the calyx through the middle of the z axial extension. To address whether 

microglomerular morphology might be plastic I compared the average inner 

microglomerular surface of young animals (24 hours) to mature flies (14 d). I detected a 

significant (ttest <0.00035) increase in inner microglomerular diameter with age, from 0.29 

μm2 (±0.065, n=5) at 24 hours to 0.47 μm2 (±0.1, n=5) at 14 d (Fig. 7) while the number 

of microglomeruli decreased by around 25% to approximately 750. These findings 

demonstrate that calycal circuitry undergoes morphological alterations during adult life. It 

seemed possible that the onset of sensory experience plays a crucial role in this context. 

To start addressing this possibility I deprived UAS-actin-GFP/+; ok107-GAL4/+ flies of 

their olfactory afferents by cutting their third antennal segments and maxillary palps less 

than 12 hours after eclosion. While this was reported to kill the olfactory receptor neurons 

(Berdnik et al., 2006) projection neuron morphology appears unaffected (Berdnik et al., 

2006; Tanaka et al., 2004). I analyzed microglomerular morphology as before and did not 

find significant alterations in inner microglomerular area upon sensory deprivation after 14 

d (0.47 μm2 ±0.1, n=5, in control animals; 0.51 μm2 ±0.15, n=5, in deprived animals; 

ttest 0.44). However, the manual quantifications used in this set of experiments were not 

satisfactory and the results were thus considered inconclusive. The procedure to count 

microglomeruli suffered from the subjectivity of the criteria used for the identification of 

microglomeruli. Different criteria (such as shape and size) could yield significantly 

different numbers. The procedure to measure microglomerular area  was not only very 

laborious but also had the following shortcomings: a) one calycal section does not allow 

accounting for intra-calycal variation and the position of the single section was not 

reproducible enough to allow conclusions on a specific region of the calyx; b) the total 

number of microglomeruli measured manually was possibly insufficient to be 

representative for the entire population; c) the criteria to choose the best-defined 

microglomeruli were subjective, non-explicit and not stable over time. 

 

 
Figure 4.16 | Microglomeruli rearrange during early adult life  
 
Medial calycal sections from one day (A) or 14 days (B) old animals expressing actin-GFP 
using the ok107-GAL4 driver. Single confocal sections are shown. (C) The area of 
microglomerular centres was manually determined and significantly increased with age. Scale 
bars: 10 μm.  
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4.24 Automated image analysis 

I therefore decided to develop software tools to automatically analyze images. Automated 

image analysis allowed increasing the number of calycal sections to get a realistic 

impression of the entire population of microglomeruli. The criteria used to detect 

microglomeruli were used consistently for the entire data set and were explicitly defined in 

the algorithm used for image analysis. Definiens software was used to develop a suitable 

algorithm allowing the detection of microglomerular rings and centres in a fully automated 

manner. A fully automated procedure was required to handle the large amount of data and 

to avoid subjective judgments during image processing.  

 

 

4.25 Genetic tools used for imaging 

Although published alterations in calycal volume upon manipulations of the sensory 

environment of flies suggested some degree of plasticity it was entirely unclear how these 

manipulations would affect microglomerular morphology (if at all) and to what extent. It 

 

 

 

Figure 4.17 | Overview of automated image analysis of the calyx 

A 3D reconstruction (Amira) of the calyx illustrating its shape and the high abundance of 
microglomerular structures (A). Confocal stacks of 50 sections spanning the calyx were used 
for morphometric analysis. Three such sections are illustrated and representative original 
images (mb247-Dα7-GFP, green; nc82 immunolabelling, red) are shown in (B). All images 
were analyzed fully automatically using Definiens software (C). Calycal volume was 
calculated as the sum of pixels assigned as calyx from all sections, microglomerular 
parameters were calculated as mean values from all objects identified per calyx.  
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was thus crucial to develop tools to reliably measure as many different parameters of 

microglomerular morphology as possible and to aim at a precision that would allow 

detecting even subtle changes. At the same time image acquisition needed to be fast and 

consistent to allow taking large numbers of images. From all genetic labelling used for the 

anatomical description of the calycal connectivity the expression of Dα7-GFP in Kenyon 

cells appeared most suitable to meet these requirements. Automatic image analysis (see 

below) was facilitated by the facts that microglomerular rings were better defined than 

with actin-GFP and that the cell bodies were almost devoid of signal. Moreover, the 

localization of the ACh receptor could potentially reveal subtle alterations in synaptic 

organization that would be impossible to detect morphologically. To include information 

on the presynaptic components in the calyx the genetic labelling with Dα7-GFP labelling 

was combined with staining against the presynaptic marker Bruchpilot (nc82). 

 

 

4.26 GAL4/UAS independent genetic labelling 

Since I was aiming at genetic manipulations of neuronal activities exploiting available 

GAL4 driver lines to express molecular markers and tools in defined neuronal populations 

of the olfactory circuit I needed GAL4/UAS independent ways to label microglomerular 

morphology. The enhancer fragment of the mb247-GAL4 driver, which includes a large 

number of (mostly αβ- and γ-neurons) Kenyon cells, was obtained from Dr. Andreas 

Thum and used to generate transgenic flies expressing either Dα7-GFP, actin-GFP, actin-

KO or abp-KO in a large fraction of the Kenyon cells from direct fusion (GAL4/UAS 

independent) expression constructs.  

 

 

4.27 Parameters determined with automated image analysis 

The areas of microglomerular ring and lumen as well as shape parameters of both types of 

object were determined for every microglomerulus to quantitatively describe its 

morphology. Microglomerular rings were detected based on Dα7-GFP localization and 

microglomerular lumens (likely corresponding to presynaptic boutons) were detected as 

globular structures surrounded by Dα7-GFP signal.  

Presynaptic puncta were detected and their area and average brightness were determined. 

Numbers of all object types were determined but were not used for analysis because the 

methodology was not considered adequate for precise counts. Calycal outlines were 

detected based on the borders of the Dα7-GFP signal and calycal volumes were 

determined. All these parameters were obtained from confocal stacks spanning the 

mushroom body calyx in 50 sections at a z resolution of around 0.25 μm. The volume of 

the central brain was determined from an independent set of 50 confocal images spanning 

the brain at a z resolution of around 2 μm. 

 

 

4.28 Data normalization 

Microglomerular morphology was determined from confocal images spanning the entire 

calyx and the physical sizes of objects were calculated based on the size of the pixels in 
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each image. Unfortunately, insects vary considerably in body size, brain weight and brain 

volume. Since I could not track morphological changes upon sensory manipulations within 

the same brain – because I needed to dissect the brain for imaging – I needed means to 

compare animals within different experimental groups with each other. Absolute physical 

sizes of objects are not necessarily very good parameters for such a comparison if the size 

of the animals varies considerably. Previous studies have either underestimated this 

problem or used large numbers of animals per experimental group to deal with the 

amount of variation. In those studies, however, only relatively simple morphological 

parameters such as calycal volume have been assessed and it appeared unrealistic to 

determine parameters of microglomerular morphology on more than 50 brains per 

experimental group because determining these parameters requires many more images of 

higher quality. 

For these reasons I decided to determine brain volumes and calycal volumes and tested if 

these parameters could be used to normalize size parameters of microglomeruli to account 

for differences in the size of the animals. Measurements of calycal volume appeared more 

accurate and consistent and were consequently chosen for normalization purposes.  

 

 

4.29 Analysis of microglomerular morphology in the wild type 

Using these tools I tried to quantitatively describe microglomerular morphology in the 

wild type. I obtained images from mb247-Dα7-GFP animals dissected within 2 hours after 

eclosion or aged for 2, 7 or 14 days. 7-15 animals per group and both calyces of all animals 

were analyzed. Differences of microglomerular size between different time points were 

detected but considered inconclusive due to considerable variation in brain volume of 

different animals. I normalized microglomerular size with calycal volume to compensate 

for size differences between animals. The ratio of average lumen (or ring) area/total calyx 

area rapidly increased within the first two days after eclosion and continued to increase at 

slower pace until 7 days before slightly decreasing again. This could either be due to an 

increase in microglomerular size or a decrease in calycal volume. Comparing calycal 

volumes to brain volumes (excluding optical lobes) I did not find any indication for 

decreasing calycal volumes. However, limitations in the methodology preclude precise 

statements on relative calycal volumes (calyx volume/brain volume). 

The numbers of microglomeruli that were detected using automated image analysis 

increased with age. However, earlier manual analysis (see above) of the images suggested 

that the detection rate rather than the total number of microglomeruli increased. Visual 

investigation of the images indeed suggested that microglomerular rings were getting larger 

and better defined. They appeared more distinct and more clearly separated from each 

other and could be identified with less ambiguity. This likely resulted in higher recognition 

rates at older ages suggesting morphological refinement of microglomeruli.  

I conclude that microglomerular complexes in the calyx undergo morphological 

rearrangements within the first days after eclosion. 
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Figure 4.18 | Microglomeruli rearrange during early adult life  

Results obtained with automated image analysis of calycal sections from both control 
animals (left) and from flies which had their antennae and maxillary palps removed within 2 
hours after eclosion (right) are shown. Four different time points (0, 2, 7 and 14 days after 
eclosion) were obtained. The first data point in both cases is identical. The area of 
microglomerular rings (blue) and lumens (red) were determined and normalized with total 
calycal area (the summed calycal area from all sections). The normalized areas of ring and 
lumen increase with age before slightly decreasing again in the second week after eclosion. 
Similar results were obtained for both control and experimental (bilateral olfactory 
deprivation) groups. >5 animals were analyzed per data point, >1000 microglomeruli (in 
2D, a single microglomerulus could be present on several sections) were identified and 
analyzed per animal.  
 
 

 

4.30 Manipulations of sensory experience 

Calycal volume has been reported to depend on rearing conditions, e.g. population density 

and sex of the partner fly (Heisenberg et al., 1995; Hitier et al., 1998). Rearing conditions 

also affect Kenyon Cell axonal branching pattern (Charles Tessier, personal 

communication). Moreover, manipulations of visual input demonstrated a dependence of 

calycal volume on vision (Barth and Heisenberg, 1997). I aimed at partially reproducing 

these published manipulations to explore if any of those reliably affects microglomerular 

morphology. Moreover, I decided to also include and to focus on olfactory deprivation 

because of the abundance of neuroanatomical knowledge on how odour molecules elicit 
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neuronal responses in the olfactory pathway including the calyx. Moreover, it represents a 

single sensory modality (in contrast to e.g. social isolation). 

To manipulate the flies‘ sensory environment the following paradigms were used: For 

bilateral or unilateral olfactory deprivation I surgically removed third antennal segments 

and maxillary palps on both or one side within 2 hours after eclosion; for bilateral visual 

deprivation flies were kept in vials wrapped in aluminium foil; unilateral visual deprivation 

was obtained by painting one eye with a black and the other with a transparent paint; for 

social isolation, flies were isolated as pupae and raised in eppendorf tubes; for starvation, 

flies were kept in vials supplying water but no food and sleep deprivation was done via 

mechanical agitation with a computer-controlled vortexer. All these manipulations of 

sensory environment were done starting within two hours after eclosion until flies were 

dissected at 48 h after eclosion (with the exception of starvation: flies were kept on vials 

with food for 24 hours and transferred to vials with water only for the remaining 24 hours 

before dissection). As for the wild type control I analyzed 7-15 animals per group and 

both calyces of all animals.  

Alterations of microglomerular morphology were detected but remained difficult to 

interpret due to their rather subtle nature, limitations of the methodology and the relatively 

low number of animals. I decided to analyze olfactory deprivation in more detail and 

obtained additional data points at 7 and 14 days to increase the number of animals 

available for comparison with the control.  

The analysis of these data confirmed the rearrangements of microglomerular morphology 

during early adult life as described for the control and did not yield obvious differences. I 

conclude that the rearrangements during early adult life are large compared to possible 

alterations resulting from olfactory deprivation. 

 

 

4.31 Genetic manipulations to alter activity in relevant neuronal populations 

The experiments described above suffer from difficulties in relating morphological 

parameters of different animals with each other. To circumvent these problems it would 

be desirable to be able to compare two distinct populations of microglomeruli within the 

same brain. If one of these populations could be considered an internal control this would 

also improve comparisons between animals. I demonstrated that distinct populations of 

microglomeruli can be labelled genetically using GAL4 drivers for projection neuron 

subsets (part 4.19). Since I developed GAL4/UAS independent tools to visualize 

microglomerular complexes (part 4.26) I can independently label Kenyon cells and 

projection neurons. I use the mz19-GAL4 driver to express a cherry-labelled fragment of 

the Bruchpilot protein (D3-cherry, obtained from Frauke Christiansen-Engelhard and 

Stephan Sigrist, Freie Universität Berlin, Germany) to visualize presynaptic sites of the 

mz19 positive projection neuron subpopulation. Simultaneous expression of Dα7-GFP in 

Kenyon cells (mb247-Dα7-GFP) allows distinguishing two populations of microglomeruli: 

the subset receiving presynaptic input from mz19 positive projection neurons and the 

remaining microglomeruli receiving different input. Moreover, it is possible to coexpress 

genetic tools allowing manipulations of the electrophysiological properties of the mz19-

GAL4 projection neurons specifically.  
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Figure 4.19 | Genetic labelling of selected projection neuron presynaptic sites    

Single confocal section through the medial calyx expressing Dα7-GFP using the mb247 
enhancer (green) and a Bruchpilot fragment (D3-cherry) using the mz19-GAL4 driver (red). 
Scale bars: 10 μm (left) and 5 μm. 
 

 

4.32 Electrophysiology of mz19 positive projection neurons 

Aiming at genetically modifying the electrophysiological properties of mz19-GAL4 

projection neurons to specifically investigate possibly resulting morphological alterations 

in affected microglomeruli it was important to determine their electrophysiological 

properties to establish that the intended genetic manipulations were effective. I used the 

dORK (Nitabach et al., 2002), a truncated potassium channel, to electrically silence mz19-

GAL4 projection neurons. Moritz Paehler and Peter Kloppenburg (University of Cologne, 

Germany) confirmed with electrophysiological recordings that coexpression of dORK in 

mCD8-GFP labelled mz19-GAL4¸projection neurons effectively prevents the firing of 

action potentials Supplemental Figure 6.11.  

 

 

4.33 Effects of odour stimulation on microglomerular morphology 

It is possible to specifically label microglomeruli that receive presynaptic input from mz19 

positive projection neurons. There are 10-13 mz19 positive projection neurons and their 

dendrites are restricted to three glomeruli in the antennal lobe; the DA1, VA1d and DC3 

glomeruli. The DA1 glomerulus also contains the axons of the olfactory receptor neurons 

expressing the olfactory receptor Or67d, which is known to specifically mediate a response 

to cVA (cis-vaccenyl acetate), a male-specific pheromone. In males, activation of Or67d 

neurons by cVA inhibits courtship of other males, whereas in females their activation 

promotes receptivity to males (Kurtovic et al., 2007). Malte Kremer chronically exposed 

flies to cVA and compared the morphology of mz19 positive and negative microglomeruli. 

The ratio of the sizes of mz19 positive/mz19 negative microglomeruli is independent of 

calycal volume and was found to be much more consistent between animals than 

measurements requiring normalization with calycal volume (see above). I thus believe that 
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this experiment is better suited to reveal subtle morphological alterations. However, no 

morphological difference was observed after 7 days. 

In summary, I developed tools for reliable genetic labelling of microglomerular complexes 

and for their quantitative morphological characterization using automated image analysis. 

Although methodological limitations remain I provide evidence for morphological 

rearrangements of these synaptic complexes during early adult life. Recent refinements of 

the method will allow genetic manipulation of the synaptic input to a distinct population 

of microglomeruli and the comparison of their morphology to unaffected neighbouring 

microglomeruli. Initial experiments using chronic exposure to cVA failed to detect 

morphological modifications of microglomerular populations downstream of cVA 

detecting olfactory receptor neurons.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 | No morphological alterations were detected upon chronic exposure 
to cVA     

A subpopulation of microglomeruli was labelled genetically (mz19-GAL4/mb247-Dα7-
GFP; UAS-D3-cherry) and compared to the unlabeled microglomeruli in flies that were 
chronically exposed to cVA for a week and a control group. A subset of mz19 positive 
projection neurons is postsynaptic to cVA sensitive olfactory receptor neurons. (A) 
Microglomerular size was determined using automated image analysis and is represented 
as the ratio of mz19 positive/mz19 negative microglomeruli. The mz19 positive 
microglomeruli were on average slightly bigger than the average of the remaining 
population (control mz19+/mz19- : 1.07 ± 0.047) and chronic exposure to cVA did not 
lead to significant alterations (cVA exposure mz19+/mz19- : 1.04 ± 0.037). (B) The 
relative area occupied by ring (Dα7-GFP signal) of each microglomerulus was determined 
(area ring/total area microglomerulus) and averaged for all mz19 positive or negative 
microglomeruli. The ratio mz19+/mz19- of this measure is represented. The average 
receptor density of mz19 positive microglomeruli was slightly lower than the average of 
the remaining population (control mz19+/mz19- : 0.98 ± 0.017) and chronic exposure to 
cVA did not lead to significant alterations (cVA exposure mz19+/mz19- : 0.98 ± 0.012). 5 
animals/data point and >1000 microglomeruli/animal were analyzed.   
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4.34 Genetic analysis of dendrite and spine morphogenesis 

The experiments addressing structural plasticity were based on the morphological 

description of microglomerular complexes in the mushroom body calyx. This anatomical 

information could also be used for studies aiming at the identification of genetic factors 

contributing to dendrite morphogenesis. The opportunities of fly genetics in this regard 

were an important reason to start characterizing dendrites in the Drosophila CNS and the 

detailed anatomical description of both LPTCs and Kenyon cells provide a good starting 

point to investigate the feasibility of genetic approaches to dendrite differentiation in both 

systems. It is desirable to establish a system in the CNS that can be used to characterize 

dendritic development, to identify and characterize molecular players involved in the 

various aspects of this process because this would allow circumventing some of the 

limitations of similar approaches in the PNS. The Drosophila PNS has successfully been 

used to screen for genes involved in dendritogenesis but since the PNS dendrites do not 

receive synaptic input, an important aspect of neuronal development in the CNS, the 

establishment of synaptic contacts, cannot be studied in this system. In the following 

sections I will summarize my attempts to set up an experimental system to allow large 

scale genetic analysis of dendrite morphogenesis in the CNS.  

 

 

4.35 LPTCs as an assay system for a genetic screen 

The morphology of the LPTC dendritic field appears well suited to screen for genes 

involved in dendrite morphogenesis. Genes involved in dendritic branching and path 

finding might well be identified based on distorted morphology of LPTC dendrite field 

size, shape, organization or the localization and shape or individual primary dendrites. 

Finer morphological parameters such as the distribution and branching pattern of smaller 

dendritic branches, spine density and morphology can be obtained from high 

magnification images of the medial region of VS1. All of these parameters can be assessed 

by visual investigation within a couple of seconds at the confocal microscope (but 

quantitative investigations are challenging, see below). The main advantages of the system 

are the possibility to reliably look at a small group of individually identifiable neurons, their 

complex but stereotyped morphology and the presence of spines.  

 

  

4.36 Calycal microglomeruli as an assay system for a genetic screen 

The morphology of individual Kenyon cells is not very useful for genetic analysis of 

dendritogenesis due to the lack of stereotypy and GAL4 drivers with cellular resolution, 

but the morphology of calycal microglomeruli is roughly consistent between animals. 

Genetic labelling of microglomeruli allows looking at a population of around 2000 

Kenyon cells which need to form dendritic branches with claw-like endings and form 

contacts with their presynaptic partners to establish the stereotyped appearance of 

microglomerular complexes. A problem in dendrite differentiation or synapse formation 

upon genetic manipulation could possibly be identified based on morphologically obvious 

alterations of microglomerular morphology.  
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4.37 GAL4/UAS based genetic manipulations 

The investigation of candidate lines required dissection and visual screening at the 

confocal microscope and were thus relatively time-consuming. I therefore decided to apply 

cell specific manipulations of selected target genes using the GAL4/UAS system in order 

to increase the specificity and (hopefully) prevalence of effects (alternative approaches 

such as EMS or transposon mediated mutagenesis require screening of larger number of 

candidate lines). For a number of genes dominant-negative, constitutively active or 

overexpression UAS constructs are available and RNAi constructs under UAS control 

have been generated for >80% of the genome (Dietzl et al., 2007). The GAL4 drivers to 

specifically visualize the LPTCs and mushroom bodies, db331-GAL4 (obtained from A. 

Borst) and ok107-GAL4 (Connolly et al., 1996), respectively, can be used for genetic 

screens individually but they can also be combined to allow simultaneous visualization of 

both neuronal populations (see upper panels of Figure 4.2  and Figure 4.8). Most of the 

screening was done using the following stocks db331-GAL4; UAS-actin-GFP; ok107-GAL4 

or db331-GAL4; UAS-actin-GFP; UAS-dicer2; ok107-GAL4 (see Material and Methods for 

details and alternative stocks). 

 

 

4.38 Pilot screen I 

To evaluate the feasibility of the approach and to optimize the screening procedure a pilot 

screen was done using a small set of available UAS constructs (including overexpression 

(OE), constitutively active (CA) and dominant negative (DN) variants) to manipulate a few 

candidate genes selected based on the literature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

From this set of experiments rac1 was identified as a potential modulator of spine density 

and morphology and it was decided to characterize this gene in more detail (part 4.9). 

Overexpression of Diaphanous as well as manipulation of Cdc42 appeared to induce 

alterations in dendritic morphology, most notably of the primary dendrites. Manipulations 

of Rac1 and CaMKII led to morphological distortions of the mushroom body calyx. The 

following lines induced lethality prior to eclosion: UAS-rac1.V12 (CA), UAS-rho1.N19 

(DN).  

Name    Source 

fmr1.OE 
sra1.DN/sra1.RNAi 

CaMKII.CA/CaMKII.DN/ala.OE 
cdc42.CA/cdc42.DN 

rac1.OE/rac1.CA/rac1.DN 
rho1.CA/rho1.DN 

trioGEF.CA 
dia.OE 

dia.RNAi 
creb.OE 

Kendal Broadie, USA   
Christian Klämbt, Germany 
Leslie Griffith, USA 
Bloomington stock centre 
Bloomington stock centre 
Bloomington stock centre 
Bloomington stock centre 
Jana Lindner, Tavosanis lab 
Bloomington stock centre 
Bloomington stock centre 
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It was concluded that the screening procedure was suitable to detect interesting candidate 

genes for further analysis (at least Rac1) and to screen reasonably large numbers of UAS 

lines (up to 100 lines per month).  

 

 

4.39 Pilot screen II 

Since RNAi mediated knockdown of candidate genes via UAS lines seemed most 

promising for a large-scale screen after a large library of transgenic flies carrying RNAi 

silencing constructs under UAS control became publicly available 

(http://stockcenter.vdrc.at) a second pilot screen was carried together with Malte Kremer 

to evaluate the potency of RNAi in the experimental system used. Based on the literature 

(Ethell and Pasquale, 2005; Gao and Bogert, 2003; Guan et al., 2005; Tada and Sheng, 

2006) the following lines were selected and screened. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CG number    Name 

1004 

1258 

1536 

2248 

3064 

3263 

3936 

4843 

6203 

7507 

8440 

8556 

8556 

8637 

9533 

10751 

11861 

11865 

13521 

13572 

13752 

14268 

15112 

18069 

32045 

74379 
 

rho1, veinlet  

pav, pavarotti 

sn, singed 

Rac1  

Futsch 

PKA  

dNotch  

tropomyosin, Tm1  

dfmr1  

Dhc  

Lis1 

Rac2, Rac1b, RacB  

Rac2 

trc, tricornerd  

rut, rutabaga 

robl, roadblock  

dCul3  

flamingo, stan, starry night  

robo, roundabout  

sns, sticks and stones 

sns, sticks and stones  

dnc, dunce  

ena  

CaMKII 

fry, furry,   

PKA  
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A few lines with morphological alterations in the mushroom body calyx or the lobes were 

identified. starry night (stan) and roundabout (robo) showed a decrease in microglomerular size 

and Kenyon cell number appeared to be reduced in robo, as suggested by a smaller volume 

of both calyx and lobes. Upon downregulation of CaMKII (as well as upon 

overexpression of a dominant negative construct, see above) the shape of the calyx was 

altered. All Kenyon cells originate from four neuroblasts and it has been shown that the 

progeny of each of these neuroblasts form clonal units in the calyx, dividing the calyx into 

four parts. While these subdivisions can easily be seen with genetic labelling they are 

morphologically not obvious in the wild type. The CaMKII phenotype suggests that the 

progenies from these four different neuroblasts are not properly integrated into one 

coherent morphological structure. stan, pavarotti (pav) and sticks and stones (sns) showed 

morphological alterations in the mushroom body lobes. The medial lobes were fused in 

upon downregulation of stan. The α‘β‘ lobes were absent and the αβ lobes were reduced in 

volume in pav which might suggest a problem in later divisions of the Kenyon cell 

neuroblasts. sns showed an unusual separation of the tips of the vertical lobes. 

Microglomerular size was increased upon downregulation of mef2 or the expression of a 

dominant negative construct (obtained from Justin Blau, USA). The medial mushroom 

body lobes were fused. Since the number of animals was low in each case (5-10), the 

penetrance was not 100% and no quantitative measurements were done these results are 

suggestive but preliminary. 

 

From the results of the RNAi pilot screen I concluded that RNAi mediated knockdown is 

possible in the mushroom bodies using the ok107-GAL4 driver as also reported previously 

(Kobayashi et al., 2006). Unfortunately, I did not find any obvious examples of RNAi 

induced phenotypes in the LPTCs. Since it appears unlikely that none of the tested 

candidate genes plays any crucial role in LPTC dendritogenesis this suggests that RNAi is 

not similarly effective using the db331-GAL4 driver. Aiming at increasing the efficacy of 

RNAi downregulation Irina Hein partially rescreened the lines with the following 

alterations: Flies were raised at 27°C (instead of 25°C) because it is known that the 

expression levels obtained with the GAL4/UAS system are temperature dependent and 

male flies were investigated because efficacy of RNAi might be higher than in females 

(Frank Schnorrer, personal communication). Irina found alterations in LPTC primary 

dendrite diameter upon downregulation of futsch. While this suggests that RNAi mediated 

gene knockdown can induce morphological alterations in the LPTCs the efficacy appears 

to be low as futsch remains the only example. 
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Figure 4.21 | Mushroom body phenotypes can be induced using RNAi 

Actin-GFP was expressed using the ok107-GAL4 driver. Single confocal section of the 
calyx (left panels) or projection of confocal stacks spanning the mushroom body lobes 
(right) are shown. See text for descriptions of the phenotypes. Scale bars: 10 μm and 50 
μm. 
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4.40 Tools to quantitatively describe alterations in dendritic morphology 

Visual investigation of both LPTC and microglomerular morphology was used to screen 

candidate lines and allowed to detect possibly interesting candidate lines (see part 3.6 for 

details). To confirm and further characterize possible phenotypes I needed to develop 

reliable quantitative measurements. A method to manually determine LPTC spine density 

from 3D reconstructions of VS1 fragments was developed and a manual method to 

quantify microglomerular inner area was tested (part 4.23). While the manual 

quantification of spine density was useful for the anatomical description of LPTCs it 

appeared desirable to develop faster and better standardized methods for screening 

purposes. Manual analysis of microglomerular morphology was unsatisfactory for both 

descriptive and screening purposes. Since reliable quantitative measurements of 

microglomerular morphology were critical for the attempts to study structural plasticity in 

the mushroom bodies a description of the software tools allowing automated image 

analysis are included elsewhere (see 4.24). However, these tools could similarly be used to 

determine microglomerular morphology upon genetic manipulations. The accuracy, speed 

and relative ease of quantitative measurements in the mushroom body calyx with 

automated image analysis represents major strengths of the system for genetic analysis of 

dendrite morphogenesis.  

 

 

4.41 Automated or semi-automated analysis of LPTC morphology 

Although more efforts were directed towards the development of automated image 

analysis of microglomerular morphology initial attempts to automatically analyze 

important parameters of LPTC morphology were carried out. Both automated and semi-

automated approaches were tested.  

For fully automated image analysis projection images from confocal stacks spanning small 

fragments of VS1 dendrites were chosen. Different approaches to automatically trace the 

dendrite, to determine branching orders, to detect spines and quantify spine morphology 

and density were tested. It was demonstrated that such an approach might be generally 

feasible. However, significant additional work would be required to allow such an 

algorithm to deal with variations in morphology and image quality.  

Automatic tracing tools are currently being developed by Friedrich Foerstner (Axel Borst 

lab, Germany) and Hermann Cuntz (Michael Haeusser lab, UK) and might represent a 

valuable alternative in the near future. A semi-automatic approach based on Amira 

software developed by Felix Evers (Mike Bate lab, UK) was tested and could yield 

satisfactory results. However, the amount of manual work required likely precludes any 

application in a genetic screen (see 5.21).  

 

Taken together, I tested approaches to specifically manipulate target genes in the LPTCs 

or Kenyon cells and developed tools to quantitatively describe resulting morphological 

alterations. A critical evaluation of the methodology will be presented after a summary of 

my findings and a discussion of the anatomical characterization of the LPTCs and the 

calycal microglomeruli. 
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Figure 4.22 | Automated tracing of LPTC dendrites 

A projection image through a confocal stack spanning a medial dendritic branch from a VS1 
neuron (upper panel) was used to test automated image analysis using Definiens software. A 
fully automatic algorithm was programmed allowing identification of the primary dendrite 
(grey), tracing of the dendritic branchlet and assigning branching orders (second, third, 
fourth and fifth dendritic order are indicated in orange, light blue, dark blue and yellow, 
respectively (middle panel). Moreover, branching points (red) and terminal protrusions 
(spines, yellow) were detected. Scale bars: 10 μm. 
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5 Discussion 
 

 

 

The morphology of dendrites is important to dendritic function and the proper 

connectivity within neuronal circuits. The factors defining the architecture of dendritic 

trees include genetic factors as well as neuronal activity. In the recent past, the Drosophila 

PNS has provided valuable insights into the genetic processes underlying dendrite 

formation. Since the dendrites of the PNS do not receive synaptic input they cannot be 

used to study essential dendritic properties such as their contribution to synaptogenesis or 

the relation between morphology and information processing. I was looking for suitable 

dendrites in the CNS to extend genetic analysis of dendrites in these important regards 

and to open the possibility to address if experience-dependent structural rearrangements 

of dendrites do occur in Drosophila. In order to identify suitable neurons in the CNS I 

tested a number of candidates and concluded that Lobula Plate Tangential Cells (LPTCs) 

and Kenyon cells would best suit the desired purposes.  

 

Together with Ewa Koper, I characterized the morphology of LPTC dendrites in order to 

investigate if these cells could be used for genetic analysis of dendrite development. Their 

complex yet stereotyped dendritic trees as well as the availability of specific GAL4 drivers 

offer great experimental advantages. Moreover, a high abundance of small dendritic 

protrusions along the higher order branches of LPTC dendrites was noticed. Small 

dendritic protrusions in flies have been referred to as spines on largely intuitive grounds. It 

was systematically investigated if Drosophila spines share essential characteristics of 

vertebrate spines. I conclude that LPTC spines morphologically resemble vertebrate 

spines, are actin-enriched and sites of synaptic contacts. These synaptic contacts are likely 

excitatory and spine density is altered upon manipulations of the dRac1 levels. I suggest 

that LPTCs can be used for genetic analysis of dendrite and spine morphogenesis. 

 
Since it appeared unlikely that LPTCs, as part of the circuitry required for wide-field 

motion detection, might undergo experience-dependent remodelling I also characterized 

the anatomical properties of Kenyon cell dendrites. Although the poorly-defined 

morphology of individual Kenyon cells did not encourage studies on structural plasticity I 

found their dendrites to contribute to microglomerular structures throughout the calyx 

and the morphology of these microglomeruli was more consistent between animals.  Using 

high-resolution confocal microscopy I analyzed the morphology and connectivity of 

Kenyon cells, projection neurons and GABAergic interneurons in the mushroom body 

calyx of Drosophila in detail. I showed that each microglomerulus contains a projection 

neuron bouton and is enveloped by actin-enriched claw-like endings of several Kenyon 

cells. My data suggest that the Kenyon cell populations contributing to a single 

microglomerulus can be diverse. Since a better understanding of the synaptic organization 

in the mushroom body calyx is crucially required to interpret odour representations in this 

neuropil and consequently also the formation of olfactory associative memories my 

findings are also of interest to these subjects.   
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However, the anatomical description of the calyx was aiming at providing the basis for my 

attempts to address structural plasticity in the fly. It is widely assumed that the formation 

of long-term memories requires activity-dependent long-lasting morphological alterations 

in plastic neuronal networks, which might take place in the neuronal spines (Bonhoeffer 

and Yuste, 2002; Matus, 2005).  Drosophila mushroom bodies have been implicated in the 

generation and retrieval of olfactory associative memories (de Belle and Heisenberg, 1994; 

Heisenberg et al., 1985; Zars et al., 2000). However, the degree to which these plastic 

processes are associated with structural modifications at the cellular level is not yet 

resolved.  A high enrichment of actin is observed in the microglomeruli (Frambach et al., 

2004; Groh et al., 2004) and I could observe a number of small spine-like dendritic 

protrusions lining the inner rim of the Kenyon cell claw-like ending, thus suggesting these 

might be potential sites of remodelling. I developed computer-based tools to automatically 

quantify microglomerular morphology and found indications for rearrangements during 

the first days after eclosion in the control. I surgically removed third antennal segments 

and maxillary palps from newly eclosed flies and compared the morphology of their 

microglomeruli to the wild type. While I cannot exclude very subtle modifications resulting 

from olfactory deprivation these would be small compared to the developmental 

rearrangements. Recent improvements of the methodology will allow addressing structural 

plasticity in more detail in the near future.  

 
Finally, I tried to exploit the anatomical information on LPTC and Kenyon cell dendrites 

for genetic analysis of dendrites. I identify an experimental setup allowing fast and efficient 

screening for genes involved in dendrite and spine morphogenesis. I decided to use cell-

specific genetic manipulations with the GAL4/UAS system and investigated if the large 

number of available RNAi lines could be used for genetic manipulations. I carried out two 

small-scale pilot screens to identify a suitable screening procedure and identified Rac1 as a 

potential modulator of spine density in the LPTCs and CaMKII and Mef2 as interesting 

candidate genes involved in dendritogenesis in the calyx. Malte Kremer, Irina Hein and I 

determined that the potency of RNAi mediated knockdown is likely too low in the LPTCs 

(using db331-GAL4) to reliably induce phenotypes and conclude that a large-scale genetic 

screen is not feasible using the tested experimental conditions. However, genetic analysis 

of candidate genes possibly involved in dendritogenesis or structural plasticity in the calyx 

appears promising.  

 

In the following I will discuss several important aspects of my findings. I will first compare 

the small dendritic protrusions observed on LPTC dendrites to vertebrate spines. 

Afterwards, I will comment on the implications of the anatomical description of the 

mushroom body calyx and about the attempts to use microglomerular complexes in the 

calyx to study structural plasticity. Finally, I will discuss advantages and disadvantages of 

using the LPTCs and Kenyon cells for an RNAi based screen aiming at the identification 

of genetic factors involved in dendritogenesis. 
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5.1 Spines in Drosophila 

The presence of processes with spine morphology on dendrites of different types of 

neurons has been previously described in several types of insects, including cricket and bee 

(Farris et al., 2001; Hausen et al., 1980 ; Pierantoni, 1976). Manduca motor neurons, for 

instance, appear to have spine-like protrusions (Weeks and Truman, 1985). Moreover, in 

cricket‘s mushroom bodies the presence of synapses on processes that are suggested to 

resemble spines has been shown by electron microscopy (Frambach et al., 2004). This 

encouraged Ewa and me to look for spines in Drosophila. Compared to other insects as well 

as to classic systems for spine studies such as vertebrate primary neuronal cultures and 

slice preparations the merits of Drosophila genetics seemed to outweigh the technical 

limitations due to the small neuronal size. In addition, the existence of tools such as the 

Gal4/UAS system (Brand and Perrimon, 1993) combined with appropriate reporters allow 

reaching high levels of imaging resolution with minimal invasiveness. 

 

In Drosophila, the presence of spines was suggested by several recent studies, identifying 

spine-like processes in LPTCs (Reuter et al., 2003; Scott et al., 2002; Scott et al., 2003a) 

and the presence of synaptic contacts onto small spine-like protrusions in lateral horn 

neurons (Yasuyama et al., 2003). Nevertheless, none of these studies demonstrated that 

the observed structures possessed all of the essential characteristics of spines.  

 

A systematic analysis of dendritic spines in LPTCs of Drosophila was performed. It was 

shown that these neurons bear dendritic protrusions that morphologically resemble spines 

and fall into previously described morphological classes, are actin-enriched and devoid of 

tubulin and, most importantly, they are sites of synaptic input, which is mostly excitatory. 

Moreover, they are sensitive to the levels of the actin regulator dRac1, suggesting 

conserved mechanisms of formation and maintenance.  

Taken together, these findings led to the conclusion that Drosophila has dendritic spines 

and can thus be used for genetic studies of spines.  

 

 

5.2 Spine morphology and cytoskeletal organization 

In recent years, it has emerged that spines are dynamic processes in culture, in brain slices 

and in vivo (Bonhoeffer and Yuste, 2002; Konur and Yuste, 2004; Oray et al., 2006). 

Indeed, spines are highly enriched in actin, which is important for their dynamic properties 

since actin depolymerization blocks spine dynamics (Fischer et al., 1998). Not surprisingly, 

thus, several of the molecules that are relevant for the regulation of dendrite shape are 

regulators of actin (Schubert and Dotti, 2007). Profilin, a promoter of actin 

polymerization, is recruited to spines upon NMDA receptor activation and promotes 

spine growth (Ackermann and Matus, 2003). Conversely, the severing factor cofilin is 

inhibited upon LTP induction (Chen et al., 2007) and environment exploration (Fedulov 

et al., 2007). 

Small GTPases of the Rho family have been extensively involved in the regulation of 

spines through the control of the actin cytoskeleton. In particular, Rac1 is a prominent 

regulator of spine morphology and density (Luo et al., 1996; Nakayama et al., 2000; 

Tashiro and Yuste, 2004). Overexpression of a constitutively active version of Rac1 in 
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murine cerebellar Purkinje cells (Luo et al., 1996) and in rat pyramidal neurons (Nakayama 

et al., 2000) leads to an increase in spine density and a reduction of the spine length (Luo 

et al., 1996). In contrast, overexpression of dominant negative Rac1 in rat pyramidal 

neurons (Nakayama et al., 2000) or hippocampal neurons (Zhang and Macara, 2006) 

results in progressive elimination of dendritic spines. 

 

 

5.3 Spines in Drosophila can be modified genetically 

To test the hypothesis that similar genes might be important in controlling spines in both 

vertebrates and insects the effect of the small GTPase Rac1 on spine density was 

investigated. In my experiments with Drosophila spines the overexpression of wild-type full 

length dRac1 led to an increase in the number of the spines. Thus, altered levels of Rac1 

can modulate the morphology of spines, suggesting that Rac1 might control similar 

pathways in LPTC spines as in rodent neurons. 

While it might appear surprising that overexpression of a dominant negative version of 

Rac1 leads to the same effect as Rac1 over-expression, this could be explained by the fact 

that the dominant negative construct can sequester rate-limiting GEFs for other small 

GTPases, and thus lead to an unspecific effect (Wang and Zheng, 2007). It is worth noting 

that in Drosophila the same axon guidance phenotype was obtained upon overexpression of 

dominant negative and constitutively active Rac (Luo et al., 1994). Initial attempts to carry 

out RNAi-mediated knock down of Rac1 in standard conditions did not produce 

alterations (data not shown). Thus, a detailed analysis of the endogenous role of rac in 

LPTC spine regulation awaits more directed experiments.  

 

Taken together, the presented data make the important point that LPTC spines can be 

modified with genetic tools. Based on the presented characterization, it is now feasible to 

screen for genetic factors involved in the establishment or in the maintenance of spine 

morphology, similarly to what has been already done for axon and dendrite morphology in 

mushroom body neurons (Reuter et al., 2003) and for axonal connectivity in the visual 

system (Newsome et al., 2000).  

 

 

5.4 Synaptic contacts onto spines 

The major role of spines is to make synaptic contact with their pre-synaptic partners. For 

this reason it was investigated in detail whether LPTC spines are also sites of synaptic 

input. In hippocampal CA1 neurons only a fraction of the spines has a mushroom shape 

which is supposed to represent a mature spine (30%; (Fiala and Harris, 2001). Although it 

was not possible to make a correlation between maturity of physiological properties and 

shape of the spine a comparable fraction of mushroom shaped spines on LPTCs (15%), 

which could also represent mature spines, was observed. By confocal and by serial electron 

microscopy Ewa observed the presence of synaptic contacts, marked by T-bars, on 

mushroom shaped spines, but also on spines with different shapes: Supplemental Figure 

6.3A (inset) shows an example of a thin spine bearing an active synaptic contact as 

revealed by the presence of a T-bar and vesicles on the pre-synaptic side. It is therefore 
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likely that, just as it emerges from vertebrate data (Bourne and Harris, 2008) mushroom-

shaped spines are not the only spines that are actively receiving synaptic input.  

In agreement with this, by immunohistochemistry I found that almost 90% of the spines 

examined bear a juxtaposed pre-synaptic marker. In addition, almost all spines contain 

post-synaptic receptors, as indicated by the localization of the Dα7 subunit of the 

acetylcholine receptor, revealed both by immunohistochemistry and using a fluorescently-

tagged construct. Finally, I have shown that not only pre-synaptic terminals are juxtaposed 

to actin-rich spines, but I also identified almost 100% juxtaposition of post-synaptic 

receptors (Dα7) expressed specifically in LPTCs to pre-synaptic labelling (Supplemental 

Figure 6.4). Taken together, these data indicate that a high proportion of spines represent 

sites of synaptic connectivity.  

 

It is well established that spines are sites of excitatory synaptic input (Gray, 1959). 

Immunohistochemical and pharmacological experiments performed in Calliphora show 

that LPTC dendrites receive two types of synaptic input: cholinergic excitatory and 

GABAergic inhibitory (Brotz et al., 1995; Brotz et al., 2001). The Rdl GABA receptor 

subunit has been previously reported to be localized on the finer dendrite branches of 

LPTCs (Raghu et al., 2007). It was therefore important to establish the localization of 

excitatory synapses. The excitatory cholinergic input to LPTCs could be mediated by 

nicotinic acetylcholine receptors (Brotz et al., 1995). Based on the specific localization of 

the Dα7 subunit of the acetylcholine receptor, my data strongly suggest that spines receive 

excitatory synapses. From the non-quantitative electron microscopy analysis it appears that 

in most cases spines receive a single synaptic input (four cases out of five). Thus, it is 

conceivable that spines receive mainly excitatory input in these neurons, suggesting that 

excitatory and inhibitory input could be segregated on the dendrites of LPTCs. 

 

 

5.5 Functional considerations 

What is the function of LPTC spines? Altogether, there is plenty of evidence for plastic 

processes in the central nervous system of insects (Fahrbach, 2006), such as the 

morphological changes in the MB of worker honeybees after leaving the hive for their first 

foraging flight (Durst et al., 1994; Fahrbach et al., 2003; Ismail et al., 2006; Withers et al., 

1993) or the volumetric changes in the visual system of Drosophila upon different 

light/dark cycles (Barth et al., 1997). As LPTC spines are highly enriched in actin (Scott et 

al., 2003b); and the present work) it is possible that LPTC spines are dynamic. Are LPTC 

spines plastic structures? It has been reported that neither raising flies in the dark, nor 

eliminating the photoreceptors during development alter the density of these processes on 

LPTCs (Scott et al., 2003a), suggesting that their formation is independent of sensory 

input. It is thus possible that the LPTC morphology, which is not affected in these 

conditions, is under strict genetic regulation. On the other hand, it is conceivable that the 

direct upstream partner of LPTCs, possibly T4 and T5 neurons (Strausfeld and Lee, 1991), 

will need to be silenced to completely stop synaptic input to LPTCs (Mizrahi and Libersat, 

2002). From own unpublished experiments and from previous work there appear to be 

many examples of ―spiny‖ neurons in the fly CNS (e.g. (Consoulas et al., 2002; 
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Fayyazuddin et al., 2006). Though no such analysis as the one presented here has been 

carried out so far it is plausible that dendritic spines are rather widespread in the fly CNS.  

 

Finally, the detailed and quantitative description of the localization of excitatory input 

onto LPTC dendrites might be interesting for ongoing attempts to understand the 

information processing underlying motion detection on the computational level (e.g. Borst 

and Haag, 1996; Farrow et al., 2005; Farrow et al., 2003; Haag and Borst, 2002, 2003; Haag 

et al., 1997; Haag et al., 1999; Joesch et al., 2008; Raghu et al., 2007).  

 

Based on the data presented here, I consider the LPTCs a very valuable system for detailed 

analysis of dendritogenesis and spinogenesis. In order to exploit the experimental 

advantages of LPTCs I tested experimental approaches for efficient genetic analysis of 

dendrite and spine morphogenesis using cell specific RNAi downregulation of candidate 

genes. Before discussing these findings, I will turn to the anatomical description of 

Kenyon cell dendrites and their contributions to microglomerular complexes in the 

mushroom body calyx and the implications these anatomical findings have. Afterwards I 

will explain how these findings could be used to study plastic processes at the cellular level 

before discussing the genetic approaches to dendritogenesis that build on both the 

anatomical work on the LPTCs and the mushroom body calyx.  

 

 

5.6 Kenyon cells and calycal microglomeruli 

Calycal microglomeruli were identified by electron microscopy in several insect species, 

including Drosophila, and were described to contain a single large presynaptic projection 

neuron bouton surrounded by numerous small post-synaptic profiles putatively from 

Kenyon cells and by few GABAergic profiles (Ganeshina and Menzel, 2001; Yasuyama et 

al., 2002). With the current work I introduce important additions to these early data. I 

demonstrate first that those small post-synaptic profiles are formed by the claw-like 

endings of Kenyon cell dendrites and by small spine-like structures protruding from them 

(Figure 4.9). Second, I show that each claw-like ending enwraps a single projection neuron 

bouton (Figure 4.10). Third, I identify each microglomerulus as a discrete unit, the 

boundaries of which are defined by the actin-enriched rim formed by the claw-like endings 

of several Kenyon cells contacting the projection neuron bouton. The implications of each 

of these findings are discussed below.  

It is important to note that the microglomerular organization of the adult calyx, as 

described here, appears different than what reported for the larval mushroom body calyx 

(Masuda-Nakagawa et al., 2005; Ramaekers et al., 2005). In fact, unpublished observations 

(Supplemental Figure 6.6) suggest that each of the glomeruli in the larva comprises several 

microglomeruli and thus that the glomeruli in the larval calyx are a different structure than 

the microglomeruli in the adult calyx. 
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5.7 Functional considerations 

Electrophysiological recordings in several insect species have shown that the responses of 

Kenyon cells to odours are sparse, leading to the suggestion that Kenyon cells function as 

coincidence detectors, responding to coordinate input from projection neurons (Laurent, 

2002; Perez-Orive et al., 2002; Szyszka et al., 2005). My morphological and connectivity 

data are consistent with this possibility.  

Around 150-200 projection neurons provide olfactory input to the calyx (Stocker et al., 

1990) forming an average of 5 boutons each (Marin et al., 2002).  I counted around 1000 

microglomeruli in 24 hours old flies. Given technical limitations in my counting methods 

these counts are approximate. Nevertheless, they are not inconsistent with the previous 

data, assuming that each microglomerulus contains one, and only one, projection neuron 

bouton, as our confocal microscopy data indicate. Importantly, they are also supported by 

3D reconstructions of calycal microglomeruli obtained from serial-section electron 

microscopy. This data was obtained by Nancy Butcher and Claudia Groh in Ian 

Meinertzhagens laboratory as part of a collaboration and is presented in the supplemental 

information (Supplemental Figure 6.9 and Supplemental Figure 6.10).  

A Kenyon cell has an average of five to seven claw-like endings (Lee et al., 1999; Zhu et 

al., 2003; F.L and G.T unpublished). Here, it is demonstrated that each of the claw-like 

endings contacts a single projection neuron bouton. Although additional input sites cannot 

be excluded, the data indicate that each Kenyon cell thus receives major input from a very 

limited number of projection neuron boutons, namely one per claw-like ending. If these 

boutons originate from different projection neurons, the morphology and connectivity of 

the Kenyon cells that were described would predict that they could act as detectors of 

coincident activity in several of their presynaptic partners, and that the number of their 

presynaptic partners is small compared with the locust (Jortner et al., 2007). Alternatively, 

all boutons presynaptic to a Kenyon cell could originate from a single projection neuron 

or from a functionally related set of projection neurons. In that case the functional task of 

Kenyon cells might be to improve the signal-to-noise ratio in the system.  

The synaptic input from projection neurons to any one Kenyon cell is, as suggested from 

electron microscopy observations, provided at twenty or more active zones. If these sites 

of synaptic input were distributed evenly among 5-7 claw-shaped endings, each ending 

would receive three to six sites from any one projection neuron bouton.  This number is 

possibly only what is sufficient to guarantee a reliable postsynaptic response to each 

incoming presynaptic potential. Based on the anatomical data it can be assumed that each 

clawed-shaped Kenyon cell ending contacts a different bouton. Thus, an average Kenyon 

cell could receive input from 5-7 projection neurons, assuming that all of these boutons 

were from different projection neurons. This estimate matches estimations of the PN:KC 

convergence ratio based on electrophysiological recordings (Turner et al., 2008). On the 

other hand, the widespread GABAergic input to a large fraction of microglomeruli 

revealed by my data (Figure 4.12) and by electron microscopy (Yasuyama et al., 2002, 

Supplemental Figure 6.9 and Supplemental Figure 6.10) could represent an instrument to 

keep the single claws silenced until inhibition is relieved. Laurent speculates that a short 

temporal integration window of Kenyon cells is critical to their specificity and thus to the 

sparseness of odour representations in the mushroom bodies. He suggests that 

GABAergic interneurons may provide a periodic reset, preventing temporal integration 
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over successive oscillation cycles of projection neuron activity (Laurent, 2006). I believe 

that the widespread abundance of GABAergic presynaptic profiles supports these 

considerations. In honey bee, recurrent GABAergic interneurons innervating the lobes 

and the calyx (Mobbs, 1982) were suggested to be involved in olfactory memory formation 

(Grunewald, 1999). It is thus possible that GABAergic neurons in Drosophila also have 

important functions in odour coding and memory formation (Laurent and Naraghi, 1994; 

Yamazaki et al., 1998). Additional studies will be required to resolve the role of this 

GABAergic innervation into the calyx and must await more detailed reports on these 

pathways and further analysis of the physiology of the Kenyon cells and of their dendritic 

compartments.  

 

 

5.8 Implications for olfactory representations 

Recent evidence indicated that olfactory projection neurons have stereotyped axonal 

projections in the mushroom body calyx (Jefferis et al., 2007; Lin et al., 2007). Similarly, 

Kenyon cell dendritic projections appear stereotyped within a number of regions in the 

calyx (Lin et al., 2007). Thus, a linear processing of olfactory information seemed to be 

plausible also in the adult mushroom body calyx. These studies, though, rely on 

registration of projections of neuronal populations in a standard brain model. I 

concentrated on the microglomerular synaptic complexes and confirm that dendrites of 

Kenyon cell subpopulations are reliably found at defined positions in the calyx (Strausfeld 

et al., 2003; Tanaka et al., 2004), where they form distinct populations of microglomeruli 

(Figure 4.15). Importantly, though, I find that the separation of Kenyon cell subclasses is 

neither sharp nor complete, consistently with previous results (Tanaka et al., 2004). In fact, 

different, non-overlapping Kenyon cell subsets contribute to largely overlapping 

populations of microglomeruli strongly suggesting that an individual projection neuron 

can contact different classes of Kenyon cells. Since I show that each microglomerulus only 

contains a single projection neuron bouton this reveals that an individual projection 

neuron can contact different classes of Kenyon cells. These findings are relevant for an 

understanding of odour representation because distinct functional roles have been 

suggested for the different Kenyon cell subsets, such that γ-neurons are involved in short- 

and α‘β‘-neurons in long-term memory (Akalal et al., 2006; Krashes et al., 2007; McGuire 

et al., 2001; McGuire et al., 2003; Pascual and Preat, 2001; Zars et al., 2000).  

 

 

5.9 Towards a computational model of the olfactory circuit 

Since the olfactory pathway is a relatively simple and well understood circuit it might be 

accessible to modelling approaches. It would be highly desirable to simulate the network 

properties to gain further insights into olfactory coding and the formation of lasting 

memories. The experimental advantages offered by the genetic accessibility of the pathway 

could then be used to test predictions obtained from the model (Huerta et al., 2004; 

Jortner et al., 2007; Laurent, 2002; Nowotny and Huerta, 2003; Nowotny et al., 2005; 

Smith et al., 2008). 

A detailed model of the olfactory pathway would require quantitative anatomical 

information (Jan Wessnitzer, personal communication). In particular the following 
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questions would be relevant (answers as suggested from the presented work and available 

literature are indicated in brackets): How many boutons does a projection neuron form on 

average? (Five to seven.) How many claw-like endings does a Kenyon cell form on 

average? (Five to seven.) Is the average number of claw-like endings per Kenyon cell 

similar for all Kenyon cell subpopulations? How many claw-like endings converge per 

microglomerulus? (Five to fifteen.) Does each microglomerulus contain only a single 

projection neuron bouton? (Yes.) How many synaptic contacts are there per projection 

neuron bouton and per Kenyon cell claw-like ending? (Fifty, five to six, respectively.) Are 

there synaptic contacts between projection neurons and Kenyon cells outside 

microglomerular complexes? How many GABAergic cells innervate the calyx? Do they 

represent a homogeneous population or are there functionally distinct subpopulations? 

Are GABAergic interneurons restricted to the calyx or do they also innervate other brain 

regions such as the mushroom body lobes or the lateral horn? How many inhibitory 

neurons contribute to each microglomerulus and how many synapses do they form? 

While some of these questions can currently not be answered precisely my work provides 

an initial framework to conceive suitable experiments to address them more systematically 

in the future. 

 

 

5.10 GABAergic interneuron electrophysiology 

I demonstrate that processes from gad1 positive neurons contribute to the vast majority of 

microglomeruli. My data suggests that these processes are often presynaptic. 

Immunohistochemistry against the vesicular GABA transporter vGAT suggest that 

GABAergic presynaptic sites are abundant in the calyx (data not shown, and (Enell et al., 

2007; Liu et al., 2007; Yasuyama et al., 2002). Interestingly, I identified a cluster of large 

gad1 positive cell bodies in close medial proximity to the calyx that appeared to send 

processes into the calyx. Colabelling of the mushroom bodies using the GAL4 

independent mb247-DsRed construct allows the reliable identification of this cluster of 

neurons based on their genetic labelling (using gad1-GAL4 and UAS-mCD8-GFP) and the 

proximity to the calyx. The large size of the cells likely allows electrophysiological 

recordings (Moritz Paehler, personal communication) and backfills could be used to 

investigate if these neurons indeed innervate the calyx. These findings open the exciting 

opportunity for an electrophysiological and anatomical characterization of GABAergic 

interneurons in the calyx. Inhibitory and, more recently, excitatory (Ng et al., 2002; Olsen 

and Wilson, 2008; Shang et al., 2007; Wilson and Laurent, 2005; Wilson and Mainen, 2006; 

Wilson et al., 2004) interneurons in the antennal lobe received a lot of attention and have 

proven to be important for early steps of olfactory information processing. It appears 

likely that inhibitory interneurons play similarly essential roles for the information 

processing in the calyx but this possibility has not been addressed to my knowledge.  

 

 

5.11 Similarities between the mushroom bodies and the mammalian cerebellum 

My observations extend previously noted similarities between the circuitry of the 

mushroom body calyx and the mammalian cerebellum (Schurmann, 1974; Yasuyama et al., 

2002). Both the cerebellum and the mushroom body contain large (compared to the entire 
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number of neurons in the mammalian or insect brain) numbers of densely packed 

neurons, granule cells and Kenyon cells. The axons of both neuronal types run in parallel 

and form separate structures, the parallel fibres and mushroom body lobes. The dendrites 

of both neuronal types have an average of five branches and end with characteristic claw-

like structures. These claw-like structures are sites of excitatory input from afferent 

pathways, the mossy fibres or projection neurons. GABAergic interneurons (Golgi cells in 

the cerebellum) inhibit both granule cells and Kenyon cells. Interestingly, both the 

cerebellum and the mushroom bodies are important for learning and memory (motor 

learning and olfactory learning, respectively) and the excitatory input to granule cells 

(mossy fibres) or Kenyon cells (projection neurons) carries the information about the 

conditioned stimulus. Both granule cells and Kenyon cells appear to code sparsely and 

were suggested to function as coincidence detectors (Ito, 2006; Laurent, 2002; Nieus et al., 

2006; Ramnani, 2006; Wall, 2005; Xu-Friedman and Regehr, 2003).  

In addition, a brain structure in octopus called vertical lobe also shares characteristics with 

the cerebellum and the mushroom bodies and is also important for learning and memory 

(Hochner et al., 2006; Shomrat et al., 2008). These similarities raise the possibility that the 

mammalian cerebellum, the insect mushroom bodies and the vertical lobes in octopus are 

homologous or analogous structures. It would be very interesting to understand if the 

computations provided by these similarly organized neuronal networks resemble each 

other at any level.   

 

The description I provide here will form an important basis for the study of functional 

properties of the olfactory pathway, including the formation of associative olfactory 

memory traces. My results provide morphological and connectivity support for 

physiological data indicating that the response of Kenyon cells to olfactory input is sparse. 

They furthermore suggest that a proportion of projection neuron boutons contacts more 

than one type of Kenyon cell, arguing against a linear representation of olfactory 

information at the level of the mushroom body. 

The anatomical information is essential for present and future attempts to study structural 

plasticity in the mushroom body calyx as will be discussed in the following sections.  

 

 

5.12 Structural plasticity and calycal volume changes 

It is well established that actin-based plasticity in dendritic spines, dendritic protein 

synthesis, synaptic plasticity and long-term memory are intricately correlated in vertebrates 

(Cingolani and Goda, 2008; Lamprecht and LeDoux, 2004; Losonczy et al., 2008; Matus, 

2000; Segal, 2005; Sutton and Schuman, 2006). Since I found Kenyon cell dendrites in the 

mushroom body calyx to form claw-like endings (Lee et al., 1999; Strausfeld et al., 2003) 

that bear small dendritic protrusions and are actin-rich, I wondered if these structures 

could undergo experience-dependent morphological alterations. This hypothesis was 

encouraged by the role of Kenyon cells in the retrieval of olfactory memories (Gerber et 

al., 2004; Heisenberg, 2003; Keene and Waddell, 2007) and indications that the volume of 

the mushroom body calyx is sensitive to the sensory environment in a number of insect 

species. Calycal volume was shown to increase upon onset of foraging flight in honeybees 

(Durst et al., 1994; Withers et al., 1993) and it was subsequently demonstrated that this 
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increase in volume has developmental and experience-dependent components (Fahrbach 

et al., 2003; Ismail et al., 2006) and that it is correlated with alterations in spine density of 

Kenyon cells (Farris et al., 2001). Age-dependent and task-related changes in calycal 

volume were also reported in desert ants (Kuhn-Buhlmann and Wehner, 2006). In flies, 

calycal volume was shown to depend on rearing conditions (Barth and Heisenberg, 1997; 

Heisenberg et al., 1995). Other indications for structural plasticity in flies are experience-

dependent alterations in the antennal lobe (Sachse et al., 2007) – as previously shown in 

bees (Sigg et al., 1997) – and circadian remodelling of pacemaker neurons (Fernandez et 

al., 2008) and L2 visual interneurons (Gorska-Andrzejak et al., 2005). Altogether, this 

suggested that insect brains do exhibit structural remodelling and that the mushroom body 

calyx in flies might be a promising structure to look for such changes. I considered the 

actin-rich microglomerular complexes to be possible candidates for remodelling processes 

in flies.  

 

 

5.13 Microglomerular rearrangements in other insects 

It has been reported that the projection neuron boutons in the calyx of ants increase in 

volume during aging while their number decreases (Seid et al., 2005) and similar 

conclusions are emerging in bees (Thomas Münzberger and Claudia Groh, personal 

communication). Microglomerular structures in bees were reported to be sensitive to 

brood temperature in worker bees (Groh et al., 2004) and experience in queens (Groh et 

al., 2006). Furthermore, the microglomerular size increases upon olfactory/visual 

associative training in cockroaches (Lent et al., 2007). Seid et al. (2005) relate 

morphological changes in projection neuron bouton size and number with the expansion 

of the behavioural repertoire during the maturation of a worker ant but these observations 

remain correlative. 

 

 

5.14 Evaluation of the methodology 

I was aiming at describing microglomerular morphology with a particular emphasis on the 

postsynaptic side because I hoped to identify dendritic rearrangements upon modifications 

of the sensory environment. I expressed a GFP-tagged subunit of the Dα7 subunit of the 

acetylcholine receptor in Kenyon cells to visualize the postsynaptic side of projection 

neuron to Kenyon cell connections specifically. While this allowed labelling of 

microglomerular complexes most reliably and consistently, microglomeruli in Drosophila 

remain much less well-defined than in larger insects. Microglomerular morphology was 

much more comparable between animals than the morphology of single Kenyon cells, but 

the identification and demarcation of microglomeruli was very difficult and involved 

subjective judgments.  

In order to avoid subjective judgments I developed tools for fully automated analysis of 

microglomerular morphology. I believe that the impartiality and consistency of the 

computer algorithm are critical for the intended analysis. Automated image analysis also 

allowed examination of large data sets which represents another essential prerequisite for 

reliable investigations on microglomerular morphology. 
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The most severe problem for algorithm development and evaluation was the absence of a 

reliable reference point due to the shortcomings of visual analysis. 

While my algorithm appears to represent a major progress compared to previous attempts 

(Krofczik et al., 2008) severe limitations remain. Most notably, the automatic detection is 

not entirely satisfactory as the rates of both false negatives and false positives are 

considerable. Moreover, the detection rate depends on the image quality and possibly 

differs between experimental groups (in particular detection rates seem to be increased at 

older ages). Finally, all size parameters and numbers were obtained in 2D and 

systematically deviate from the actual 3D situation. 

Due to these limitations I consider most of my results suggestive rather than strictly 

conclusive. Recent improvements (part 5.3.7) allow circumventing most of the limitations 

and suitable experiments are currently conducted together with Malte Kremer.   

 

 

5.15 Improvement of automated image analysis 

Future improvements of the Definiens based automatic image analysis could evade some 

of the current constraints. In particular it would be highly desirable to allow the detection 

and measurement of microglomeruli in three dimensions. This could likely improve 

detection accuracy (reduce both false-positives and false-negatives) because it should be 

more reliable to detect globular structures in 3D instead of ring-like structures in 2D. This 

would also allow measurements of 3D parameters (bouton volumes instead of areas) and 

reliable counts. With recent improvements of the Definiens software (XD version) these 

modifications appear possible but require the development of a new algorithm.  

I believe that Definiens software (particularly the new version) allows programming very 

powerful and sophisticated algorithms. I consider the opportunities offered by automated 

image analysis to be very valuable (Dragunow, 2008). With the advent of automated 

microscopes and large scale image acquisition methods (Briggman and Denk, 2006; Huang 

et al., 2008; Kerr and Denk, 2008; Micheva and Smith, 2007) these approaches will likely 

gain importance in the future.  

 

 

5.16 Rearrangements of microglomerular morphology during early adult life 

I found indications for alterations in microglomerular morphology during the first days of 

adult life using both manual measurements and automated image analysis. The area of 

microglomerular lumens was found to significantly increase from eclosion to day 14 using 

visual classification and manual tracing. A comparable increase in the ratio of lumen area 

to total calycal area was obtained with automated image analysis and measurements of 

brain volume suggested that this change might result from a size increase of 

microglomeruli (rather than a decrease in total calycal area).  

Upon visual investigation, microglomerular morphology appeared to be less ambiguous at 

later time points facilitating identification and demarcation. This is consistent with higher 

numbers of microglomeruli detected at later time points with automated image analysis. 

While it is possible that microglomerular numbers do change over time manual counts 

suggested a decrease rather than an increase.  
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Taken together these observations demonstrate alterations of microglomerular 

morphology during the first days of adult life. These alterations were independently found 

in control conditions and upon olfactory deprivation using an impartial computer 

algorithm. Due to limitations of the method it is difficult to unambiguously identify the 

nature of these morphological rearrangements. My data are most consistent with the 

assumption that microglomeruli are increasing in size during the first days of adult life 

while becoming easier to recognize and are possibly more clearly separated. However, I 

cannot exclude alternative explanations such as changes in microglomerular number.  

 

 

5.17 Specific manipulations of microglomerular subpopulations 

The aim of this set of experiments is to investigate if the morphology of calycal 

microglomeruli is affected by alterations in neuronal activity. Since I was able to detect 

morphological rearrangements during aging in the control the method generally appears 

suitable for this aim. However, major limitations result from the need to normalize for 

calycal volume to allow compensating for size differences between animals. Recent 

improvements of the method help circumventing these problems. Genetic labelling of a 

subset of microglomeruli (via expression of the Bruchpilot fragment D3 using the mz19-

GAL4 driver) allows the comparison between two microglomerular populations within 

the calyx (mz19 positive versus mz19 negative microglomeruli). The ratio of the sizes of 

these two populations is independent of calycal volume and consequently much more 

consistent between animals than absolute physical sizes. Initial experiments using cVA 

exposure (see below) demonstrated that the accuracy obtained with this approach is 

significantly increased as compared to earlier measurements described above (the standard 

deviation dropped from around 20% to around 5%). These improvements are essential 

because it appears possible that the morphological rearrangements during the first days of 

adult life have a strong developmental component. It appears possible that sensory 

experience modulates these genetically controlled alterations only subtly.  

 

 

5.18 Chronic exposure to cVA 

In order to manipulate the neuronal input to mz19 positive microglomeruli specifically, 

flies were exposed to cVA (cis-vaccenyl acetate) for 7 days (these experiments were done 

together with Malte Kremer). cVA is a male-specific pheromone and regulates a variety of 

behaviours including aggregation, mate recognition, and sexual behaviour. While it inhibits 

courtship in males it promotes mating behaviour in females (Kurtovic et al., 2007). cVA is 

predominantly detected by Or67d olfactory receptor neurons (Couto et al., 2005; Kurtovic 

et al., 2007; Xu et al., 2005). The axons of these sensory neurons converge on the DA1 

glomerulus in the antennal lobe (Couto et al., 2005; Fishilevich and Vosshall, 2005). Some 

of the mz19 positive projection neurons innervate the DA1 glomerulus and further project 

into the mushroom body calyx. Since some mz19 positive projection neurons also 

innervate the VA1d and DC3 glomeruli in the antennal lobe not all projection neurons of 

this genetically labelled subpopulation are expected to change their activity in response to 

cVA. Moreover, the Or67d appears to be the receptor neurons responding most 

sensitively to cVA but other populations might also be activated by cVA at higher 
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concentrations (Xu et al., 2005). cVA is thus expected to modulate the activity of mz19 

positive projection neurons but neither are all mz19 positive projection neurons affected 

nor are cVA related activity changes necessary restricted to these projection neurons. 

Nevertheless, cVA likely exerts a much stronger average influence on the activity of mz19 

positive projection neurons than on average mz19 negative ones. Since morphological 

parameters of microglomerular population with or without contributions from mz19 

projection neurons can systematically be compared it is possible to address morphological 

consequences of sustained cVA exposure. In an initial set of experiments male flies were 

chronically exposed to cVA throughout the first week after eclosion. No changes in 

microglomerular size were detected.  

While this might suggest that microglomerular morphology is not sensitive to alterations in 

neuronal activity alternative explanations are possible. It is possible that chronic cVA 

application does not lead to sustained alterations in the activity of mz19 positive projection 

neurons due to adaptation. The response properties of Or67d olfactory receptor neurons 

or the computations in the antennal lobe might be such that DA1 projection neurons 

(which receive input from Or67d neurons) do only acutely change their activity in 

response to alterations of cVA concentration but do not generate lasting responses to 

chronic exposure. This possibility will be addressed in experiments replacing chronic cVA 

exposure with frequent application of cVA puffs.  

 

 

5.19 Advantages and disadvantages of cVA 

A second possibility to explain the lack of morphological effects of cVA exposure is that 

morphological alterations might result from the formation of long-lasting memories but 

not from sensory experience without any consequences. It might be necessary to associate 

the sensory stimulus with a strong unconditioned stimulus – e.g. a sugar reward or an 

electric shock. Experiments along these lines would first require testing if flies are capable 

of forming olfactory memories with cVA. Since cVA is a pheromone it is possible that 

cVA is differently perceived and represented than other odours. Should flies be capable of 

forming long-term memories of the association between cVA and a sugar reward, this 

might lead to morphological modifications specifically depending on learning.  

Since peculiarities could result from the fact that cVA is a pheromone (Kurtovic et al., 

2007) it would be desirable to conduct similar experiments with a conventional odour. I 

tried to identify a suitable GAL4 driver allowing the specific labelling of projection 

neurons with known odour specificity. Unfortunately, I did not identify a fully satisfactory 

GAL4 driver although some candidates have been identified (np3529-GAL4 and np5103-

GAL4). 

On the other hand the fact that cVA is a pheromone also offers experimental advantages. 

First, the specificity of Or67d olfactory receptor neurons to cVA is much higher than the 

specificity of other olfactory receptor neurons (Kurtovic et al., 2007). Conventional 

odours are likely to bind to multiple olfactory receptors and thus elicit complex activity 

pattern in projection neurons. Second, exquisite experimental tools are available for 

manipulations of the Or67d receptor neurons. An Or67d-GAL4 driver allows specific 

manipulations of this population (Kurtovic et al., 2007). Or83b, an essential co-receptor of 

olfactory receptors, could be restored in Or67d sensory neurons in Or83b mutants. This 
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would yield flies with Or67d as their only functional olfactory receptor neurons. Reversely, 

lush mutant flies lack an essential adaptor protein required specifically for cVA detection or 

Or67d mutants could be used to study flies specifically lacking the capacity to detect cVA 

(at least via Or67d neurons) (Jin et al., 2008; Laughlin et al., 2008; Xu et al., 2005). 

Kurtovic et al. even generated flies with Or67d olfactory receptor neurons artificially tuned 

to a moth pheromone instead of cVA (Kurtovic et al., 2007). Finally, the role of cVA in 

courtship allows behavioural test of courtship behaviour and raises the interesting 

possibility of sex-specific anatomical differences. It has been shown that DA1 projection 

neurons have different projection pattern in the lateral horn in males and females (Datta et 

al., 2008). It would be interesting to investigate if similar differences can be found in the 

calyx.   

  

 

5.20 Genetic manipulations of neuronal activity 

In the experiments described above a GAL4 driver (mz19-GAL4) was used to label a 

subpopulation of projection neurons and GAL4 independent genetic labelling (mb247-

Dα7-GFP) to visualize the Kenyon cells. This experimental setup also allows expressing 

transgenic tools modifying electrophysiological properties in the projection neurons 

specifically. A variety of such tools is available in Drosophila, including effectors allowing 

total (tetanus toxin) or temporal (shibirets) blockage of synaptic transmission, electrical 

silencing (dOrk) or hyperactivation (eag), light (Channelrhodopsin) or temperature (trpA) 

controlled depolarization (Baines et al., 1999; Broughton et al., 2004; Kitamoto, 2001; 

Marek and Davis, 2003; Nitabach et al., 2002; Thum et al., 2006; Zhang et al., 2007). These 

tools offer great experimental opportunities to address the relation between neuronal 

activity in projection neurons and structural rearrangements in Kenyon cells. Since the 

electrophysiological properties of projection neurons and their role in olfactory coding are 

increasingly well-understood it appears possible to relate genetic manipulations of 

projection neuron activity to the consequences of odour stimulation as described above.  

Moritz Paehler and Peter Kloppenburg demonstrated that expression of the truncated 

potassium channel dOrk in mz19 positive projection neurons effectively prevents action 

potential firing. Experiments to address possible alterations in microglomerular 

morphology as a consequence are currently carried out by Malte Kremer and Frauke 

Christiansen-Engelhardt. Automatic image analysis can be done as described above for the 

cVA experiments.  

 

Building on the morphological description of microglomerular complexes in the 

mushroom body calyx I demonstrate that the morphology of these structures rearranges 

during the first days after eclosion. I developed software tools for automated image 

analysis allowing the unbiased evaluation of large data sets. Combined with genetic 

labelling allowing the comparison of two distinct populations of microglomeruli it 

becomes possible to address the effects of neuronal activity on morphology at the cellular 

level. Malte Kremer and I will use genetic manipulations of projection neuron activity and 

specific manipulations of the olfactory environment to investigate if activity-dependent 

structural rearrangements in the Drosophila calyx do occur. Moreover, these tools allow 

studying possible effects on microglomerular morphology resulting from RNAi mediated 
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downregulation of target genes and could thus help to identify genes involved in 

dendritogenesis as will be discussed in the following.  

 

 

5.21 Genetic analysis of dendrite and spine morphogenesis 

I was aiming at using the anatomical information on both LPTC and Kenyon cell 

dendrites for a genetic screen for factors involved in dendritogenesis. I tried to identify an 

experimental setup combining the virtues of LPTCs and Kenyon cells and allowing fast 

and efficient screening for genes involved in dendrite and spine morphogenesis. I decided 

to use cell-specific genetic manipulations with the GAL4/UAS system and investigated if 

the large number of available RNAi lines could be used for genetic manipulations. I 

carried out two small-scale pilot screens to identify a suitable screening procedure and 

identified Rac1 as a potential modulator of spine density in the LPTCs and CaMKII and 

Mef2 as interesting candidate genes involved in dendritogenesis in the calyx. Malte 

Kremer, Irina Hein and I determined that the potency of RNAi mediated knockdown is 

likely too low in the LPTCs (using db331-GAL4) to reliably induce phenotypes and 

conclude that a large-scale genetic screen is not feasible using the tested experimental 

conditions. However, genetic analysis of candidate genes possibly involved in 

dendritogenesis or structural plasticity in the calyx appears promising.  

 

 

5.22 Genetic analysis of dendrite and spine morphogenesis - LPTCs 

Looking for suitable neurons to study dendrite morphogenesis in the Drosophila CNS I 

considered the LPTCs excellent candidates for a number of reasons: a) specific GAL4 

driver lines allow high-resolution imaging and genetic manipulations, b) LPTCs are 

individually identifiable and their dendrites are morphologically complex but stereotyped, 

c) the abundance of published information allows distinguishing reliably between dendritic 

and axonal compartments and ultimately relating morphological alterations to neuronal 

function and d) the presence of spine-like structures suggested that factors required for 

spine morphogenesis could be identified as well as genes involved in dendrite formation.  

In order to use LPTC dendrites for genetic analysis I needed methods to efficiently 

identify candidate genes, to confirm and further characterize interesting phenotypes and to 

describe them quantitatively. The challenges of each of these steps will be discussed 

consecutively.  

 

 

5.23 An efficient screening procedure to identify candidate genes 

The main advantage of studying dendrite and spine morphogenesis in Drosophila is the 

possibility to identify genes involved in these processes at a much faster pace than in most 

other systems. Large and unbiased genetic screens as well as systematic tests of long lists 

of candidate genes appear feasible in flies and this possibility represents the major 

motivation in developing a dendrite model in the fly CNS. However, assessing the 

morphology of complex dendritic trees requires high-resolution imaging at the confocal 

microscope and the amount of work for sample preparation and investigation is 
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considerable. Two pilot screens to establish and test a screening protocol were carried out 

(the second together with Malte Kremer). I estimate that 100 candidate lines could be 

analyzed per month if 5-10 brains per line are prepared and visually investigated for a 

couple of seconds to minutes each. LPTC dendrites appear to be sufficiently stereotyped 

to allow indentifying genes affecting dendritic branching or guidance as well as spine 

morphology or density – unless the effect is rather subtle or penetrance is low. Subtle 

phenotypes will be in the range of normal inter-animal variation and thus be very difficult 

to detect. I identified Rac1 as a possible modulator of spine density illustrating that it is 

possible to find interesting genes using fast visual investigation under screening conditions. 

However, I believe that only phenotypes similarly strong as (or stronger than) the Rac1 

phenotype can be identified and consider the amount of false negatives to be likely 

considerable. While this clearly represents a major constraint, more careful investigation of 

possible phenotypes would require the acquisition and quantitative evaluation of 

representative images. The former is time-consuming and the latter technically very 

challenging on a large scale (see below).  

 

 

5.24 Cell-specific genetic manipulations are required for efficient genetic analysis 

A variety of means to induce mutations or to manipulate genes has been used in Drosophila 

(St Johnston, 2002). I decided to use cell specific genetic manipulations of target genes 

based on the GAL4/UAS system (Brand and Perrimon, 1993) for two reasons. First, the 

efficacy of genetic manipulations appeared higher than with other means and second, the 

restriction of the manipulation of target genes to few cells allowed circumventing lethality 

due to essential functions of candidate genes in other tissues and increased the probability 

to identify genes with cell-autonomous functions.  

Alternative approaches such as random mutagenesis with EMS or transposon-mediated 

gene disruption (Spradling et al., 1999) would likely yield interesting mutations at too low 

rates given the laborious screening procedure and the probably high rate of false negatives. 

A number of constitutive active or dominant negative variants of interesting candidate 

genes were available under UAS control and tested in a first pilot screen. I concluded that 

it is possible to genetically manipulate LPTCs using suitable UAS constructs and to 

identify resulting phenotypes. For genetic analysis on a larger scale the recently established 

library of UAS based RNAi constructs appeared most promising because it allows the 

individual and cell-specific downregulation of around 80% genes of the Drosophila genome 

(Dietzl et al., 2007).  

 

 

5.25 Low efficacy of RNAi mediated gene knockdown in the LPTCs 

Malte Kremer and I tested the potency of RNAi mediated gene knockdown in the LPTCs 

using the db331-GAL4 driver and a list of around 30 candidate RNAi lines selected based 

on published functions in dendrite formation. Most candidate lines were tested both with 

and without coexpression of Dicer2 which is commonly used to increase the efficacy of 

RNAi knockdown. No obvious phenotype was detected. Irina Hein partially rescreened 

the lines at higher temperature (27 °C instead of 25 °C) and looked at males instead of 

females in order to improve the efficacy of RNAi knockdown (Frank Schnorrer, Germany, 
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personal communication). Irina identified a subtle phenotype of primary dendrite diameter 

upon futsch downregulation. Since this was the only effect obtained with an RNAi line and 

since it appeared unlikely that no other gene of the candidate set is involved in LPTC 

dendrite formation I concluded that the potency of RNAi mediated gene downregulation 

is likely too low in LPTCs to reliably induce phenotypes. This conclusion may be 

supported by the failure to downregulate the expression of mCD8GFP via coexpression 

of two different RNAi lines targeting GFP. My observations with rac1 could not be 

reproduced using RNAi. A suitable line to confirm the published effect of cdc42 on LPTC 

dendrites was unfortunately not available. 

The RNAi library has been used by several labs and generally appears to work reliably and 

for the majority of genes (Dietzl et al., 2007). The low efficacy in the LPTCs might result 

from fairly late onset of strong db331-GAL4 expression. Although db331-GAL4 can be 

used to visualize LPTCs throughout the second half of pupal development (Ewa Koper, 

personal communication) expression levels are weak and only increase shortly prior to 

eclosion. Dendrites and spines have almost reached their adult morphology at that time 

and might no longer be susceptible to genetic manipulation.   

 

 

5.26 Additional problems for large scale genetic analysis of LPTC dendrites 

The low efficacy of RNAi in the LPTCs suggests that large-scale genetic analysis of 

dendritogenesis is impossible using the tested experimental conditions. Moreover, two 

additional problems pose further constraints on genetic analysis: difficulties in reliable and 

fast quantifications of possible phenotypes and difficulties in confirming effects obtained 

with RNAi via mutant analysis.  

Methods for manual quantification of spine density and length were but more 

standardized and reliable quantification approaches would be desirable for the analysis of 

many candidate lines. These would possibly also allow reducing the number of false 

negatives during screening. Automated approaches to quantify spine density and shape 

have been used in mammals and appear encouraging although not directly applicable 

(Cheng et al., 2007; Shen et al., 2008).  Initial attempts to develop automated image 

analysis approaches based on Definiens software appeared promising but revealed 

significant challenges and were not carried any further. Alternative approaches for 

automatic tracing of dendritic branches are currently developed by Friedrich Foerster 

(Axel Borst lab, Germany) and Hermann Cuntz (Michael Haeusser lab, UK) and might 

represent a valuable tool in the near future. Semi-automatic tracing tools have been 

developed by Felix Evers (Mike Bate lab, UK)(Evers et al., 2006; Evers et al., 2005; 

Schmitt et al., 2004) and were tested but were time-consuming and not suitable for 

application on a large scale. In summary, the difficulties of reliable and fast quantitative 

measurements of dendrite and spine morphology represent substantial challenges for a 

large scale screen. 

Successfully identified candidate genes would have to be characterized further to confirm 

the phenotype and describe it in more detail. This requires the analysis of mutants. It is 

possible to apply MARCM to study the cell-autonomous function of genes in the LPTCs 

specifically. However, the frequency of MARCM clones appears to be very low (Ewa 
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Koper, Irina Hein, Shamprasad Raghu, personal communication) and this precludes fast 

and efficient characterization of candidate genes. 

  

 

5.27 Genetic analysis of dendrite morphogenesis – calycal microglomeruli 

Individual Kenyon cell dendrites appear not well suited for the identification of genes 

involved in dendritogenesis but the morphology of microglomerular complexes is roughly 

stereotyped between animals. Since microglomeruli contain actin-rich claw-like endings 

from several Kenyon cell dendrites and their small dendritic protrusions I considered their 

morphology to be a potentially interesting indicator for structural alterations in large 

populations of Kenyon cells. Since it was possible to combine the db331-GAL4 (LPTCs) 

and ok107-GAL4 (mushroom bodies) drivers I used both systems simultaneously. Visual 

investigation of the mushroom bodies required only a couple of seconds per brain and no 

additional time for sample preparation was needed. The experimental setup was thus 

identical with the setup for LPTC analysis as described above.  

While I only identified one interesting candidate gene, rac1, to affect the LPTCs, the 

number of genes affecting mushroom body morphology was generally higher. 

Importantly, it was possible to induce interesting phenotypes with RNAi using the ok107-

GAL4 driver. I conclude that it is possible to induce and identify possibly interesting 

phenotypes with suitable UAS constructs – including RNAi. The strongest and most 

interesting phenotypes were observed with CaMKII and Mef2. Manipulation of CaMKII 

using either RNAi or a dominant negative construct (obtained from Leslie Griffith, USA) 

disturbed the morphological integrity of the calyx. While the calyx is usually a single, 

compact structure I observed the segregation into four substructures upon manipulations 

of CaMKII function. Since Kenyon cells are known to derive from four neuroblasts this 

might suggest that they fail to integrate into a unified structure. The morphology of 

microglomerular complexes was not obviously affected.  

The strongest effects on microglomerular morphology were observed upon manipulations 

of mef2 using either RNAi or a dominant negative construct (obtained from Justin Blau, 

USA). Microglomerular size appeared to be increased and the morphology of the calyx 

was occasionally affected. The medial mushroom body lobes were fused. The phenotypes 

might be interesting because of the implication of CaMKII and Mef2 in synaptic plasticity 

and structural plasticity, respectively (see below). Specific molecular tools including 

dominant negative and overexpression constructs (Leslie Griffith, USA and Mike Taylor, 

UK) are available and could facilitate future analysis. YFP-tagged CaMKII variants (Sam 

Kunes, USA) have been used in the antennal lobe and appear to localize to microglomeruli 

in the calyx (data not shown). 

 

 

5.28 Further characterization of mushroom body phenotypes 

Since automated image analysis tools have been developed for quantitative description of 

calycal morphology it should be relatively easy to further characterize candidate genes 

affecting calycal morphology – such as camkII and mef2. The possibility to consistently 

analyze large data sets with an unbiased and fast computer algorithm represents a major 

advantage for genetic analysis of dendrites in the calyx. The constraints imposed by the 
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necessity for time-consuming manual analysis of both LPTC and PNS dendrites could 

potentially be circumvented.  

Moreover, mutant analysis in the calyx is much easier than in other systems because the 

frequency of MARCM clones is comparatively high. Since many of the interesting 

candidate genes (fmr1, appl, rut, dnc, see below) are viable, an initial characterization would 

not even require MARCM experiments.  

 

 

5.29 Potentially interesting candidate genes 

Taken together, it appears promising to investigate calycal morphology upon 

manipulations of a number of candidate genes in more detail. camkII, mef2 and some 

prominent learning mutants (dnc, rut, amn) are considered most promising.  

 

Mef2  

In mammals, the MEF2 family of transcription factors is highly expressed in the brain 

when neurons undergo dendritic maturation and synapse formation (Lyons et al., 1995). 

MEF2A is especially abundant in granule neurons of the cerebellar cortex throughout the 

period of synaptogenesis (Lyons et al., 1995) and it has been shown to play a key role in 

the morphogenesis of granule neuron dendritic claws (Shalizi et al., 2006). This is 

particularly interesting because of numerous similarities between granule neurons in the 

mammalian cerebellar cortex and Kenyon cells in insects (see part 5.11). Moreover, it has 

been shown that mammalian MEF2 transcription factors negatively regulate excitatory 

synapse number in an activity-dependent manner during synaptic development in vitro 

(Flavell et al., 2006). In Drosophila (as in vertebrates), Mef2 has been implicated in muscle 

development. It is likely specifically enriched in the mushroom bodies since the 

(mushroom body specific) mb247 enhancer trap is inserted into the Mef2 locus (Hiromu 

Tanimoto, personal communication).  
 

 

CaMKII 

Ca2+/calmodulin-dependent protein kinase II (CaMKII), a multifunctional 

serine/threonine kinase, is enriched at synapses, especially at the postsynaptic density. In 

mice, CaMKII has been shown to be central to the regulation of glutamatergic synapses. 

Several lines of evidence indicate that CaMKII detects Ca2+ elevation and initiates the 

biochemical cascade that potentiates synaptic transmission during LTP. The enzyme might 

be sufficient for persistence of LTP. Mutant mice show strong memory impairments in 

behavioural tests. Moreover, CaMKII appears to regulate the formation of synapses and 

dendritic spines (Colbran and Brown, 2004; Lisman et al., 2002). 

CaMKII homologues have been found in all multicellular organisms that have been 

examined. In Drosophila, it has been shown that CaMKII is required for both behavioural 

plasticity in courtship learning (Mehren and Griffith, 2006)  and for normal synaptic 

function at the neuromuscular junction (Griffith and Budnik, 2006). It also alters structural 

plasticity and cytoskeletal dynamics in flies (Andersen et al., 2005). 
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Given its very prominent role in molecular studies of learning and memory in mammals, 

CaMKII appears to be a very interesting candidate for detailed analysis in the mushroom 

body calyx because it might also be involved in structural plasticity.  

 

 

dFmr1 

Fragile X syndrome is a common form of inherited mental retardation that occurs with a 

frequency of 1 to 4000 in males and 1 to 8000 in females. Pathology in the brain of both 

human patients and fmr1 knockout mice appears to be limited to the presence of abnormal 

dendritic spines reminiscent of a delay in their maturation (Kaytor and Orr, 2001). In 

Drosophila the single homologue of fmr1 was implicated in regulation of synapse growth 

and function on both sides of the synaptic cleft, primarily through its regulation of the 

expression of the microtubule-associated protein Futsch, likely as a translational repressor 

(Kaytor and Orr, 2001; Zhang et al., 2001).  

Pan et al. (Pan et al., 2004) demonstrate that in Kenyon Cells, FMRP (fragile X mental 

retardation protein) bidirectionally regulates multiple levels of structural architecture, 

including process formation from the soma, dendritic elaboration, axonal branching, and 

synaptogenesis. Charles Tessier and Kendal Broadie (Tessier and Broadie, 2008) 

demonstrated that FMRP expression coincides with a transient window of late brain 

development. During this time, FMRP is positively regulated by sensory input activity and 

is required to limit axon growth and for efficient activity-dependent pruning of axon 

branches in the mushroom body. The authors suggest that FMRP has a primary role in 

activity-dependent neural circuit refinement during late brain development (Charles 

Tessier, personal communication). 

Taken together these findings make fmr1 a very interesting candidate to test for 

morphological alterations in Kenyon Cell dendrites throughout development.  

 

dunce, rutabaga, amnesiac 

Mutants defective in olfactory associative learning appear to be good candidates to be 

tested for alterations in microglomerular morphology and plasticity. The first two genes 

identified from unbiased screens for learning and memory defects uncovered two 

components of the cyclic AMP (cAMP) cascade — dunce (dnc), encoding cAMP 

phosphodiesterase, and rutabaga (rut), encoding a type I Ca2+/calmodulin-stimulated 

adenylyl cyclase and both proteins were shown to be selectively enriched in the mushroom 

bodies. Rutabaga has received the most attention in memory studies because it could 

plausibly register coincident activity following both conditioned and unconditioned stimuli 

in specific Kenyon Cells through Ca2+ influx following projection neuron-driven 

depolarization and monoamine binding to G-protein coupled receptors. Selective 

expression of a rut cDNA in the mushroom bodies, even only in adulthood, restores wild-

type memory to rut mutant flies (McGuire et al., 2003; Zars et al., 2000), suggesting that 

rut-dependent plasticity in the mushroom bodies is sufficient for olfactory memory (Keene 

and Waddell, 2007). 

Another well studied learning mutant is amnesiac (amn) which encodes for a putative 

neuropeptide expressed in DPM (dorsal paired medial) neurons. Expressing Amn in DPM 

neurons of a mutant amn fly restores aversive and appetitive olfactory memory, suggesting 
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that DPM neurons are a crucial site of amn action in the brain to stabilize both forms of 

olfactory memory (Keene et al., 2004; Waddell et al., 2000).  

Barth and Heisenberg (Barth and Heisenberg, 1997) found calycal volume to be affected 

by visual experience and demonstrate that this effect depends on both dnc and amn, but 

not on rut. All three mutants were implicated in structural plasticity observed as a 

consequence of different population densities (Barth and Heisenberg, 1997; Hitier et al., 

1998).  

 

Taken together the intended genetic analysis of dendrite and spine morphogenesis in the 

LPTCs appears to be more difficult than anticipated. Onset of strong db331-GAL4 

expression might be too late to reliably induce RNAi mediated gene knockdown. 

Moreover, the evaluation of potential phenotypes relies on tedious and time-consuming 

manual analysis and is more difficult than similar approaches used for PNS dendrites. 

Finally, the low frequency of MARCM clones in the LPTCs precludes the efficient 

characterization of candidate genes in more detail. Using the tested experimental 

conditions a large-scale screen for factors involved in dendrite and spine formation is not 

feasible. However, the experimental advantages of the systems could be used for detailed 

investigations of dendritic development including spine and synapse formation. 

Genetic analysis of dendritogenesis in the calyx appears more promising. Genes involved 

in dendrite formation, in defining microglomerular morphology and structural plasticity 

could be identified. Interesting phenotypes were obtained with RNAi suggesting that the 

large RNAi library could be used. Phenotypes were identified after brief visual 

investigation. Recently developed computer-based quantification could replace visual 

investigation or assist more detailed morphological analysis of selected candidates. Several 

interesting candidate genes were identified and camkII and mef2 appear particularly 

promising. Based on the literature, additional potentially interesting candidates are fmr1, 

dnc, rut and amn. 

 

 

5.30 Conclusion 

The presented data opens a wide variety of possibilities to study dendrites in the Drosophila 

CNS. Lobula Plate Tangential Cells appear particularly suitable to study developmental 

aspects of dendritogenesis. Importantly, the identifications of small protrusions along their 

dendrites that share essential characteristics with vertebrate spines open the opportunity to 

study spine morphogenesis in the fly. Kenyon cell dendrites are of interest because they 

contribute to microglomerular structures present throughout the mushroom body calyx. 

Since the morphology of microglomeruli is roughly consistent between animals and since 

the volume of the mushroom bodies has been shown to depend on experience in a 

number of insect species including the fly it appears plausible that microglomeruli might 

undergo experience-dependent alterations. Although evidence supporting this possibility 

has as yet not been obtained the development of new genetic tools and computer-based 

quantification methods provide an essential basis for ongoing more detailed investigations.  

In order to identify genes involved in dendrite and spine morphogenesis experimental 

approaches suitable for a large-scale genetic screen were tested. While an RNAi based 

downregulation of target genes appears to be difficult with the db331-GAL4 driver in the 
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LPTCs this approach appears very promising in the Kenyon cells. Promising candidates 

affecting Kenyon cell morphology have been identified and raise the prospect of studying 

the genetic basis of dendrite development.  

Besides these opportunities to use the morphological information on LPTCs and Kenyon 

cells to study different aspects of dendrites in the Drosophila CNS the morphology of these 

neurons is also critically relevant to their unique functions. The anatomical findings on the 

LPTCs and Kenyon cells are thus also relevant for attempts to describe the functions of 

wide-field motion detection and of the olfactory circuit, respectively.  
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6 Appendix 
 

 

 
On the following pages I present data obtained from collaborators that are closely related 

to my findings and were obtained aiming at joint publications. Their results were 

mentioned and discussed but not included because I was only indirectly involved in these 

experiments. I will briefly summarize the organization and status of the manuscripts these 

data are part of. Moreover, I provide supportive information for some claims I made. 

Aiming at a concise presentation in the results section I did only mention but not include 

several figures on control experiments. These figures are presented below.  

 

Lobula Plate Tangential cells and dendritic spines 

The data presented in parts 4.2-4.9 was published (Leiss et al., 2009). This project has been 

carried out in close collaboration with Ewa Koper and I present electron microscopy data 

exclusively obtained by her in Supplemental Figure 6.3. Please see the acknowledgements 

for her other contributions. Moreover, I present details on quantifications mentioned in 

the text (Supplemental Figure 6.1, Supplemental Figure 6.2, Supplemental Figure 6.4) and 

additional information on immunohistochemical experiments (Supplemental Figure 6.5). 

 

Kenyon cells and calycal microglomeruli 

The data presented in part 4.10-4.20 has been submitted to several journals and has 

extensively been reviewed by Journal of Neuroscience but was ultimately rejected. I am 

glad that Claudia Groh, Nancy Butcher and Ian Meinertzhagen (Halifax, Canada) decided 

to collaborate with us and that we jointly submitted a revised manuscript (Leiss F, Groh C, 

Butcher N, Meinertzhagen I, Tavosanis G) to Journal of Comparative Neurology and that 

we received very encouraging reviews. Claudia and Nancy provided 3D reconstructions of 

projection neuron boutons based on electron microscopy. These data nicely complement 

my findings and are presented in Supplemental Figure 6.9 and Supplemental Figure 6.10. 

Supplemental Figure 6.6 aims at correcting a potentially misleading interpretation present 

in the literature. Supplemental Figure 6.7 and Supplemental Figure 6.8 support claims 

made in parts 4.16 and 4.20, respectively. 

 

Structural plasticity 

The data presented in parts 4.21-4.30 are currently completed by additional experiments 

carried out by Malte Kremer. We are aiming at submitting a manuscript this year. Malte is 

using genetic tools to manipulate neuronal activity and importantly Moritz Paehler and 

Peter Kloppenburg (Cologne, Germany) demonstrated that one of these effectors, dORK 

is effective by electrophysiological recordings from the neurons used in the imaging 

experiments. These findings are presented in Supplemental Figure 6.11.    

 

 



 A p p e n d i x  102 

 

Kenyon cells have presynaptic sites in the mushroom body calyx 

In addition to the data presented above I contributed to a study carried out by Frauke 

Christiansen-Engelhardt in Stephan Sigrists lab (Berlin, Germany). We are aiming at 

submitting a manuscript this year.  

 

 
 

 

 

Supplemental Figure 6.1 | Spine length and density are not altered upon over- 
     expression of actin or GMA 

 
Similar dendritic fragments of VS1 are shown for three animals (A&D, B&E, C&F) 

heterozygous for UAS-mRFP (shown in A-C) and either UAS-mCD8-GFP (D), 

UAS-actin-GFP (E) or UAS-GMA (F) and carrying db331-GAL4. No differences in 

spine length or density could be detected between these three genotypes. (G) 

Quantification of spine length and (H) of spine density, which were not significantly 

altered upon actin or GMA over-expression. >500 spines from 5 animals were 

analyzed per data point. Scale bars: 2 μm. 

 

 

 

 

 



 103 A p p e n d i x  

 

 

 

 
 

 

  

 
 

Supplemental Figure 6.2 | Actin is enriched in spines and tubulin is largely  
     excluded from spines 

(A) Small dendritic fragment of a VS1 neuron expressing actin-GFP (green) and 

cytoplasmic mRFP (red) under the control of db331-GAL4. (B) Magnification of the 

boxed region in A. (C) Quantification of the brightness of the actin-GFP signal 

(ImageJ), normalized to the brightness of cytoplasmic mRFP. Spines and dendrites of 

five independent VS1 neurons were analyzed. SEM is indicated. (D) Small dendritic 

fragment of a VS1 neuron expressing tubulin-GFP (green) and cytoplasmic mRFP 

(red) under the control of db331-GAL4. (E) Magnification of the boxed region in D. 

Quantification of the brightness of the tubulin-GFP signal (ImageJ), normalized to 

the brightness of cytoplasmic mRFP. Spines and dendrites of four independent VS1 

neurons were analyzed. Small boxes in A, B, D, E exemplify sites of measurements. 

SEM is indicated in C and F. Scale bars: 10 μm. 
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Supplemental Figure 6.3 | Ultrastructure of spines in specifically labelled LPTC  

     Dendrites 

 
(A-C) Serial sections through an LPTC dendrite expressing mCD8-GFP under the 
control of db331-GAL4 and labelled with anti-mCD8 antibody (visualized as the dark 
precipitate along the membrane). The white asterisk and the white flower mark two 
spines through all the sections. The section in A is shown at higher magnification. 
Note the T-bars along the dendrite shaft (white arrows) and on the spines (white 
arrowheads).  Inset in (B): high magnification of a T-bar on the spine marked by the 
flower (arrowhead) with synaptic vesicles around it (white star). (D) Model showing a 
reconstruction of the group of six sections. Mitochondria (m); T-bars (T) surrounded 
by synaptic vesicles (sv). (E) Higher magnification of the mushroom-shaped spine 
labelled with an asterisk in panels A-C. Scale bar: 2 μm. All data presented in this 
figure was obtained by Ewa Koper.  
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Supplemental Figure 6.4 | Ectopically expressed ACh-Receptors are juxtaposed  
     to presynaptic sites 

(A, B) Ectopically expressed ACh-receptor (Dα7-GFP, green) is reliably juxtaposed to 

presynaptic staining (nc82, red). A single confocal section is shown. Scale bars: 50 μm 

(A) and 10 μm (B). (C) 3D reconstruction from a confocal series similar to B and 

spanning 3 μm. Presynaptic staining and postsynaptic ACh-receptor are almost always 

in very close proximity (97.2 ± 0.63%). (D) This tight spatial relation between 

presynaptic staining and postsynaptic ACh-receptor is lost upon rotating the two 

channels from (C) by 90˚ relative to each other (89.4 ± 3.1%, ttest: 0.00059). Yellow 

indicates overlap. 
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Supplemental Figure 6.5 | Dα7 immunohistochemistry 

(A) Single optical section through the LPTC dendritic field visualized by db331-

GAL4 driven expression of mCD8-GFP (red) and stained with anti-Dα7 antibody 

(green). ACh receptors are highly abundant in the region containing the LPTC high 

order dendritic branches. Scale bar: 50 μm. (B) Single optical section through a 

representative fragment of VS1 (as indicated in A). Scale bar: 10μm. (C) Single 

channel images of a small dendritic fragment indicated in B.  
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6.1 Comparison between larval and adult mushroom body calyx 

A stereotyped pattern of calycal glomeruli in Drosophila larvae was recently demonstrated 

(Masuda-Nakagawa et al., 2005; Ramaekers et al., 2005). I think that the described 

‗glomeruli‘ in the larval calyx refer to a different structure than the ‗microglomeruli‘ in the 

adult. While ‗glomerulus‘ seems to be a morphologically distinct domain of the calyx 

‗microglomeruli‘ are units of connectivity that are only obvious at high resolution. Calycal 

glomeruli appear to be absent or not easily detectable in the adult, but were detected in the 

larva. My images suggest that microglomeruli are very likely to be present also in the larva, 

but are subunits of larval glomeruli (Supplemental Figure 6.6).  

 

 

 

 

Supplemental Figure 6.6 | Comparison between the calycal organization in the  
        larva and the adult 

Single confocal sections of an adult (24 hours old) (A) or larval (crawling third 

instar) (C) calyx, respectively, expressing actin-GFP in Kenyon Cells. 

Microglomerular calycal substructures can be seen in both cases (see arrowheads in 

the inset in C) while glomeruli, morphologically obvious subdivisions of the calyx 

(outlined in the inset in C), were only detected in the larva as illustrated in 

schematics of calycal organization in the adult (B) and larva (D). Scale bars: 10µm. 
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Supplemental Figure 6.7 | GABAergic elements in the calyx 

A-C) Processes from putatively GABAergic neurons are labelled with mCD8GFP 

(using the GAD1 driver, green in A, B) and densely innervate the calyx. Co-labelling 

with anti-vGAT (magenta in A, C) suggests a high abundance of GABAergic 

presynaptic sites. D-I) HA-tagged Rdl receptor (magenta in D, F, G, I) ectopically 

expressed in Kenyon Cells (green in D-E) or projection neurons (green in G-I) 

localizes to distinct dots throughout the calyx and possibly indicates GABAergic 

postsynaptic sites. Single confocal sections are shown. Scale bars: 10µm.   
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Supplemental Figure 6.8 | Kenyon Cell dendrites are organized in distinct zones  

     in the calyx  
 

Subsets of microglomeruli are highlighted via actin-GFP (green) expression in γ-

Kenyon Cells (A-D; using either 1471 (A, B) or 201Y (C, D) drivers), αβ-Kenyon 

Cells (E-H; using either c739 (E, F) or 17d (G, H) drivers) or α‘β‘-Kenyon Cells (I, J; 

using c305a), the entire population of microglomeruli is labelled by phalloidin 

(magenta). Scale bars: 10µm. 
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6.2 Electron microscopy 3D reconstructions reveal features of calycal circuits 

 
Claudia Groh, Nancy Butcher and Ian Meinterzhagen made 3D reconstructions from 

serial electron micrographs, of projection neuron boutons (Supplemental Figure 6.9), 

extrinsic neuron terminals (Supplemental Figure 6.10A-D) and their common targets, the 

Kenyon cell dendrites (Supplemental Figure 6.10E-G to examine the features of 

microglomeruli reported above at higher resolution. These structures were all 

polymorphic. Projection neuron terminal boutons were identified by their size, larger than 

other elements, and by the density of their active zones, as previously reported (Yasuyama 

et al., 2002). The projection neuron terminal boutons were packed closely (Supplemental 

Figure 6.9A). The 3D reconstructions revealed that the terminal boutons of a single 

projection neuron axon were arranged either as single or multiple boutons of varying size 

and shape, clustered or strung out along the axon (Supplemental Figure 6.9B-F). This 

suggested that several microglomeruli can form in series along the length of a single 

projection neuron. This possibility is exemplified in Supplemental Figure 6.9E. 

Kenyon cell dendrites were extremely fine and branched extensively in the calyx, making 

them difficult to trace even in electron micrograph series. Individual claw-shaped endings 

were nonetheless reconstructed in their entirety (Supplemental Figure 6.10E), while others 

were probably seen only in part (Supplemental Figure 6.10F, G, C). From these few 

reconstructions it appears that one projection neuron bouton makes about seven synapses 

with a single Kenyon cell. Their appearance in 3D electron micrograph reconstructions 

coincides very well with what is expected from confocal microscopy analysis (Figure 4.9E-

I). Importantly, multiple claws embracing a single projection neuron bouton were 

reconstructed (Supplemental Figure 6.10E-G).  

Extrinsic neurons are identified by their sparsely filled cytoplasm, as previously reported 

(Yasuyama et al., 2002). They may include elements other than those that express a marker 

for GABA, as previously reported (Yasuyama et al. 2002). The extrinsic neurons are long, 

narrow and branched (Supplemental Figure 6.10E-G), and likewise difficult to reconstruct. 

They seem to encircle projection neuron boutons (Supplemental Figure 6.10A), and 

provide input to Kenyon cell dendrites (Yasuyama et al. 2002) but also connect widely 

with each other. At sites of contact with the projection neurons, they occasionally provide 

input to the boutons. 

About half of the synapses formed between projection neuron terminals and Kenyon cell 

dendrites (Supplemental Figure 6.10A-D) had presynaptic T-bar ribbons, while the others 

did not. Kenyon cell dendrites were arranged at most postsynaptic sites, usually as triads, 

but there was also projection neuron input to extrinsic neurons that was not identified in a 

previous report devoted to the synaptology of the Drosophila microglomerulus (Yasuyama 

et al., 2002) but was observed in Apis (Ganeshina and Menzel, 2001), establishing 

reciprocal connections between these two classes of element. Extrinsic neurons, in turn, 

also provided input to Kenyon cell dendrites, but made more frequent contacts with each 

other (Supplemental Figure 6.10C,D) than to these, or to the input they provided back to 

projection neuron boutons (Supplemental Figure 6.10A,B). Unlike projection neurons, 

extrinsic neurons synapses were sparsely distributed and exclusively had presynaptic T-bar 

ribbons. 
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Supplemental Figure 6.9 | 3D reconstructions of projection neuron boutons  

     from serial-section EM. 
 

A field of nine projection neuron boutons (A) and five of its component terminals 

(B-F) reconstructed from 196 serial EM sections. Bouton shape is polymorphic, and 

often bi-lobed (e.g. B) or elongated (e.g. E). Scale bars: A: 2µm, B - F: 1µm. All data 

presented in this figure was obtained by Nancy Butcher and Claudia Groh in Ian 

Meinertzhagens lab.  
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Supplemental Figure 6.10 | 3D reconstructions of Kenyon cell dendrites and  
 extrinsic neurons from serial-section EM. 

 
A - C) Kenyon cell dendrites follow closely the shape of the projection neuron 

boutons, forming in some reconstructions a clearly identifiable claw-shaped ending 

(reconstructed in its entirety in A). D - G) Extrinsic neurons lack clear terminal 

boutons, and their terminals are more slender than those of projection neurons. 

Two of at least three identifiable terminals contact the same PN as shown in D, E. 

F, G) In addition those extrinsic neurons that enter a single microglomerulus also 

form extensive connections between themselves. All panels shown at the same 

magnification; scale bar: 1µm. All data presented in this figure was obtained by 

Nancy Butcher and Claudia Groh in Ian Meinertzhagens lab. 
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Supplemental Figure 6.11 | PN electrophysiology can be modulated genetically  

Comparison of electrophysiological characteristics of mz19 projection neurons (mz19-GAL4 
UAS-mCD8-GFP) upon overexpression of a leaky potassium channel, dOrk-∆C, or a non-
conducting control construct dOrk-∆NC (wild type control, WT). (A) Overexpression of 
dOrk-∆C lead to hyperpolarization (dOrk-∆NC Umem: -59.27 ± 2.75 mV; n=7 versus 
dORK-∆C Umem: -64.24 ± 8.04 mV; n=4) and (B) lower membrane resistance  
(dOrk-∆NC Rmem: 648.99 ± 112.52 MΩ versus dORK-∆C Rmem: 581.8 ± 156.89 MΩ). 
Importantly, mz19 positive projection neurons failed to fire action potentials upon 
overexpression of dOrk-∆C. (C) Backfill of an mz19 positive neuron. The outline of the 
brain and the antennal lobe are highlighted with dotted lines. AL – antennal lobe, Ca – 
calyx, LH – lateral horn, OL – optic lobe, S – soma (marked with an asterisk). Scale bar: 50 
μm. All data presented in this figure was obtained by Moritz Paehler in Peter Kloppenburgs 
lab. 
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