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ABSTRACT

Many galaxies, including our own, harbor supermassive black holes with masses of order

106 − 109M⊙ in their centers. Some of these galaxies fall into the category of active galaxies

with high outputs of energy from their centers, while some galactic nuclei appear quiet. It

is believed today that the activity in a galactic nucleus results from infalling gas onto the

black hole via a sub-parsec scale accretion disk. Under certain circumstances accretion disks

feeding the central black holes might deviate from planar geometry and become warped.

This modification to the shape of the disk has consequences onhow the accretion process

takes place and might also effect other phenomena related tonuclear activity in galaxies.

Quiet galaxies also harbor warped disks in their centers albeit at somewhat larger distances

to the black hole, and might be populated by stars as observedfrom the center of our Galaxy.

Therefore the study of warped nuclear disks not only gives information on the accretion

process but also poses constraints on the physical conditions that lead to the formation of

stars in the close vicinity of black holes, which is a highly debated topic in astrophysics.

In this thesis we investigated self-gravitating warped disks around supermassive black

holes. We showed that there exist equilibrium solutions forsuch disks where the disk pre-

cesses as a single unit. We derived a scaling relation relating the normalized precession fre-

quency of the disk to the disk-to-black hole mass fraction. This relation makes the warp

model applicable to various systems where the disk’s self-gravity is non-negligible. We

analyzed the stability of the obtained equilibrium solutions and found that highly inclined,

steadily precessing stable disk configurations are possible.

In a related but separate study, we applied our self-gravitating warped disk model to the

clockwise rotating warped stellar disk at the Galactic Center. We argued that a past accretion

disk at the Galactic Center might have been warped due to radiation pressure or due to the spin

of the central black hole, and that star formation might havetaken place after disk warping.

We simulated the time evolution of the warped stellar disk for various parameters, and showed
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that disks for which the disk-to-black hole mass ratio exceeds0.001 break into two separately

precessing pieces, while the ones with less mass precess without breaking up. We also made

a comparison of our models with the observations, and saw that a non-breaking light disk

model agrees well with the observations of the clockwise stellar disk.



ZUSAMMENFASSUNG

Viele Galaxien, einschließlich unserer eigenen, beherbergen supermassereiche Schwarze

Löcher mit Massen106 − 109M⊙ in ihren Zentren. Manche dieser Galaxien bezeichnet man

als aktive Galaxien, weil sie viel Energie aus ihrem Zentrumausstossen, andere Kerne bleiben

inaktiv. Man ist heute der Ansicht, dass einströmende Materie, über die Bildung einer Akkre-

tionsscheibe auf sub-pc Skalen, für die Aktivität verantwortlich ist. Unter bestimmten Bedin-

gungen können sich die Akkretionsscheiben, die die Schwarzen Löcher füttern, krümmen

(engl. warp). DiesëAnderung in der Geometrie der Akkretionsscheibe hat Folgenfür den

Akkretionsprozess und möglicherweise auch Auswirkungenauf andere Phänomene, die mit

der nuklearen Aktivität von Galaxien in Zusammenhang stehen. Inaktive Galaxien beherber-

gen auch gekrümmte Scheiben in ihren Zentren, obgleich in etwas größeren Abständen vom

schwarzen Loch, die auf ähnliche Weise von Sternen bevölkert werden, wie im Zentrum der

Milchstraße. Deshalb liefert das Studium von gekrümmten Scheiben nicht nur Informationen

über die Akkretionprozesse, sondern es erlaubt auch die physikalischen Bedingungen einzu-

grenzen unter denen sich Sterne in der Nähe von Schwarzen L¨ochern bilden – ein gegenwärtig

stark diskutiertes Thema in der Astrophysik.

In dieser Arbeit haben wir selbst-gravitierende gekrümmte Scheiben um supermassere-

iche Schwarze Löcher studiert. Wir haben gezeigt, dass es Gleichgewichtslösungen für solche

Scheiben gibt, bei denen die Scheibe als Ganzes präzediert. Wir haben eine Skalenrelation

zwischen der normierten Präzessionsfrequenz der Scheibeund dem Massenanteil der Scheibe

am schwarzen Loch abgeleitet. Diese Relation erlaubt es, das Warp-Modell auf verschiedene

Systeme anzuwenden, in denen die Eigengravitation der Scheibe nicht vernachlässigt werden

kann. Ferner haben wir die Stabilität der Gleichgewichtslösungen analysiert und festgestellt,

dass stark geneigte, stetig präzedierende, stabile Scheibenkonfigurationen möglich sind.

In einer ähnlichen, aber separaten Studie, haben wir unserModell von selbst-gravitierenden,

gekrümmten Scheiben auf die im Uhrzeigersinn rotierende stellare Scheibe im galaktischen
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Zentrum angewendet. Wir haben dargelegt, dass Strahlungsdruck oder der Drehimpuls des

zentralen schwarzen Lochs eine frühere Akkretionscheibeim galaktischen Zentrum hätte

krümmen können und dass sich Sterne nach diesem Prozess bilden konnten. Simulationen

zur zeitlichen Entwicklung von gekrümmten stellaren Scheiben für verschiedene Parameter

haben gezeigt, dass Scheiben, die mehr als0.1% der Masse des Schwarzen Lochs besitzen, in

zwei separat präzedierende Teile aufbrechen, während Scheiben mit weniger Masse als Ein-

heit präzedieren, ohne aufzubrechen. Wir haben unser Modell mit Beobachtungen verglichen

und gesehen, dass eine massearme Scheibe, die nicht aufbricht, gut mit den Beobachtungen

der im Uhrzeigersinn rotierenden stellaren Scheibe übereinstimmt.



ÖZET

Kendi gökadamız da dahil olmak üzere pek çok gökadanın merkezinde106 − 109M⊙ kütleli

karadelikler bulunmaktadır. Bu gökadalardan bir kısmı merkezlerinden salınan yüksek enerji

nedeniyle aktif gökadalar grubuna girerken bazıları ise bu şekilde bir aktivite göstermemek-

tedir. Bugünkü bilgilerimiz gökada merkezlerindeki aktivitenin, parsek altı ölçekli kütle

aktarım disklerinden karadeliğin üzerine düşen gazdan kaynaklığını göstermektedir. Bahsi

geçen kütle aktarım diskleri bazı koşullar altında düzlemsel geometriden saparak eğrilik

kazanabilmektedir. Diskin yapısında oluşan bu değişiklik maddenin karadelik üzerine nasıl

aktarılacağını etkilerken, galaksi merkezindeki nükleer aktivite ile ilişkilendirilebilecek diğer

süreçleri de etkilemesi beklenmektedir. Aktif olmayan gökada merkezlerinde de benzer

eğrilikli disklerin varlığı gözlemlerle tespit edilmiştir. Bu diskler merkezi karadeliklere kütle

aktarım disklerine göre göreceli olarak daha uzakta bulunup, kendi gökadamızın merkezinde

olduğu gibi üzerlerinde yıldızlar grupları bulundurabilmektedirler. Bu nedenlerle, eğrilikli

diskler hakkında yapılan çalışmalar sadece süper kütleli karadeliklerin ne şekilde beslendiği

hakkında bilgi vermekle kalmayıp, karadeliklerin çok yakın komşuluğunda yıldız oluşumu

gibi ilginç astrofizik problemlerin çözümünde de rol oynamaktadır.

Bu tez çalışmasında süper kütleli karadelikler etrafındaki öz çekimsel eğrilikli diskleri

inceledik. Bu disklerin tek bir frekansta presesyon hareketi yapacağı denge durumlarının bu-

lunduğunu gösterdik. Böyle bir denge durumu için, bir referans frekansa normalize edilmiş

presesyon frekansının disk kütlesinin karadeliğe kütlesine oranına bağlılığını gösteren bir

ölçekleme ilişkisi çıkardık. Bu ölçekleme ilişkisi Keplersel olmayan kuvvetin öz çekimden

kaynaklandığı çoğu sisteme uygulanabilmektedir. Bulunan denge durumlarının kararlığını da

inceleyerek, çok yüksek eğrilik derecelerine sahip kararlı disklerin var olabileceğini göster-

dik.

Ana hatlarıyla yukarıda bahsedilen çalışmaya benzeyen diğer bir çalışmamızda eğrilikli

disk modelini gökada merkezinde gözlenen eğrilikli yıldız diskine uyguladık. Sözü geçen
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diskin gökada merkezinde eskiden bulunan ve ışınım basıncı ya da karadeliğin dönmesi

sayesinde eğrilik kazanmış bir kütle aktarım diskiden evrimleşmiş olabileceğini iddia ettik.

Bugün gözlenen yıldızların, disk eğriliğini kazandıktan sonra olutşuğunu savunarak, diskin

zaman evrimini inceledik. Pek çok disk parametresi için tekrar ettiğimiz sayısal benzetim-

lerde kütlesi karadeliğin kütlesinin0.001 katından fazla olan disklerin ikiye bölündüğünü,

kütlesi bu değerden az olan disklerin ise bölünmeden evrimlerine devam ettiklerini gördük.

Modellerimizi gözlemlerle karsılaştırarak, gözlemleri en iyi açıklayan modellerin düşük kütleli,

ve bölünme göstermeyen disklere ait oldugunu saptadık.



CHAPTER 1

INTRODUCTION

1.1 Nuclei of Galaxies

The central few ten parsecs of a galaxy is usually termed as its nucleus. It is believed today

that most galactic nuclei, including our own, host supermassive black holes (SMBHs) with

masses of order106M⊙ to 109M⊙ (Kormendy & Richstone, 1995; Magorrian et al., 1998;

Genzel et al., 2000; Ghez et al., 2005; Gillessen et al., 2009).

From the point of view of energetics, galactic nuclei may be grouped in two main classes;

the active galactic nuclei (AGN) with typical energy energyoutputs of> 108 L⊙, and the qui-

escent nuclei possessing small luminosities. In the current understanding, activity in galactic

nuclei is attributed to the accretion of material onto the supermassive black hole at the center.

’What the is actual mechanism responsible for feeding the black holes?’; ’is there a duty cycle

between the AGN and quiescent modes of galactic nuclei?’; ’how do the active galaxies effect

their small and large scale environments?’ are debated questions in modern astrophysical re-

search, and merit detailed investigation. In the followingsections, we will briefly summarize

the current status of research focused on galactic nuclei.

In order to be able to judge the importance of various processes taking place close to the

central black hole, one has to consider the length and timescales at which these processes

occur. Using the conventionsM8 = Mbh/108M⊙, r1 = r/1 pc, σ100 = σ⋆/100 km/s,

N6 = N⋆/106, andt8 = τp/108 yr, for the mass of the central black hole, distance from it,

velocity dispersion, the number of surrounding stars, and physical time, these scales can be

summarized as follows (Alexander, 2006; Merritt, 2006):

The size of the event horizon (Schwarzschild radius) for a non-rotating black hole is

1



2 CHAPTER 1. INTRODUCTION

defined as:

rs =
2GMbh

c2
= 3 × 1013M8 cm, (1.1)

whereG is the gravitational constant,Mbh is the mass of the black hole andc is the speed of

light. This is the smallest length scale for a givenMbh, since the escape velocity would have

to be greater thanc for a smaller radius.

When a gravitationally bound object (call it a star) approaches the black hole, the com-

petition between its self-gravity and the pull of the black hole determines an other important

scale related to the massive object; the tidal radius. For a star with a radius ofr⋆, and mass

m⋆ the tidal radius is given by:

rt = r⋆

(
Mbh

m⋆

)1/3

∼= 3.25 × 1013M8

(
M⊙

R⊙

)−1/3

cm. (1.2)

A star approaching to a black hole closer than this radius is torn apart.

Within a sphere of influence of radiusrinf , the dynamics of the region is dominated by the

black hole. The radius of influence is defined as:

rinf =
GMbh

σ⋆2
∼= 1.33 × 1020 M8σ

−2
100 cm, (1.3)

whereσ⋆ is the 1D velocity dispersion of the stars far from the black hole. This definition is

not always unique sinceσ⋆ depends on the radius for most density distributions. One ofthe

alternative definitions ofrinf is:

M⋆(r ≤ rinf) = 2Mbh (1.4)

M⋆ being the total mass in stars insiderinf .

For a star orbiting the black hole, the dynamical time scale (circular orbital period), is

defined as:

Torb = 2π

√

r3

GMbh

∼= 9390 M
−1/2
8 r

3/2
1 yr. (1.5)

While the object orbits the black hole, there might be encounters between it and the

other orbiting stars. The time scale on which such encounters cause evolution towards a

Maxwellian velocity distribution is called the relaxationtime scale. For a homogeneous
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system ofN⋆ stars it is given by (Binney & Tremaine, 1987):

Trelax =
N⋆

8 lnN⋆

Torb = 8.45 × 107N6r
3/2
1 M

−1/2
8 yr (1.6)

in terms of the dynamical time.

When the relaxation time by encounters with other stars is shorter than the age of the

system, the orbits of the stars can be significantly altered during their lifetimes. It is often

assumed that the encounters are uncorrelated, i.e. a star does not have a memory of its past

encounter. If the potential in which the orbit evolves is notpurely that of the central point

mass, the orbit of a star experiences precession. The time scale of this precession,τp, is

typically much longer than the orbital time scale, so the orbits remain almost unchanged for

timest < τp. In this case it is more plausible to consider the gravitational interactions be-

tween a system of massive wires, to represent the time averaged stellar orbits, rather than

individual stars. Since the radial and the azimuthal frequencies in a Keplerian potential are

in resonance, the assumption of uncorrelated encounters become invalid since the wires feel

eachother’s torques during the long precession time. Although for a large number of stars

the sum of the torques will sum to zero, due to statistical fluctuations there will be an ex-

cess torque in an unknown direction resulting in exchange ofmomentum. This process,

termed resonant relaxation, results in a re-distribution of the orbits around the black hole

(Rauch & Tremaine, 1996; Gürkan & Hopman, 2007). The time scale for resonant relaxation

is given by (Hopman & Alexander, 2006):

TRR ≃ ARR

N⋆

(
Mbh

m⋆

)2
T 2

orb

τp
= 8.82 × 109N−1

6 t8r1 yr (1.7)

whereARR is a numerical constant of order unity.

Tables (1.1) and (1.2) compare these scales for the nuclear environments of the Galactic

Center, and the well studied Seyferts NGC4258, NGC1068, andCircinus.

1.1.1 The Center of the Galaxy

The center of the Milky Way Galaxy is the closest galactic nucleus to us at a distance of about

8 kpc (Genzel et al., 2000; Eisenhauer et al., 2003, 2005). Given this proximity, observations

of the Galactic Center (GC) are rich in details, and they provide information on the processes

that might be common to many galactic nuclei. The dust in the disk of the Galaxy, where

the Sun is also located, prevents observation of the GC at optical wavelengths. Most studies
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Object Mbh(107 M⊙) rs(AU) rt(AU) rinf(pc) σ⋆(km/s)

Galactic Center 0.4 0.08 0.7 1.1 125
NGC4258 3.9 0.8 1.6 6 167
NGC1068 1.0 0.2 1 1.4 177
Circinus 0.17 0.03 0.6 0.3 167

Table 1.1: Comparison of the relevant length scales for the well documented objects: Galactic
Center, and the Seyfert objects NGC4258, NGC1068, and Circinus. The mass of the Galactic
Center black hole, SgrA*, is adopted fromTrippe et al.(2008). Rest of the masses, and the
assumed stellar velocity dispersions are from from Table (1) of Milosavljević & Loeb(2004).

Object r (pc) Torb(yr) Trelax(107yr) TRR(107yr)

Galactic Center 0.06 690 0.62 0.22
NGC4258 0.16 962 0.9 40
NGC1068 0.6 1.3×104 12.5 538
Circinus 0.11 2627 2.4 0.6

Table 1.2: Comparison of the relevant time scales for the objects listed in Table (1.1). The
listed distances are the inner edges of the maser disks (see section1.3) for the Seyfert nuclei,
and the inner edge of the clockwise rotating stellar disk (see section1.1.1) for the Galactic
Center. The orbital times are calculated at these radii. Forthe calculation of the relaxation
and resonant relaxation time scales,N⋆ = 106 is assumed. For the latter, coefficientARR = 1,
andτp = 108yr is adopted.

therefore are conducted at either lower (X-andγ), or higher (mm-and IR) wavelengths.

At the very center, a supermassive black hole resides with a mass of∼ 4 × 106 M⊙, and

its location coincides with the radio source SgrA* (Balick & Brown, 1974; Eckart & Genzel,

1996; Genzel et al., 2000; Trippe et al., 2008). SgrA* is surrounded by a cluster of old stars,

as well as a system of young stars some of which are arranged ina disk (Krabbe et al.,

1995; Levin & Beloborodov, 2003; Genzel et al., 2003; Lu et al., 2006; Paumard et al., 2006;

Schödel et al., 2007; Bartko et al., 2009; Lu et al., 2009), and by ionized and molecular gas

(Guesten et al., 1987; Jackson et al., 1993; Morris, 1993). The following subsections sum-

marize the current status of the GC research in terms of theseconstituents.
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Stellar Content

A unique opportunity provided by the Galactic Center is thatits stars can individually be ob-

served. This section summarizes the current knowledge on the stellar content of the Galaxy’s

nuclear environment.

At distances smaller than 1” to SgrA* the so-called S-stars are found (1” ∼ 0.04 pc at the

distance of GC). Their orbits are consistent with being isotropic, and the probability distribu-

tion of their orbital eccentricities obeysn(e) ∼ e2.6 (Gillessen et al., 2009). Since the high an-

gular resolution observations of the GC region started, oneof the members of this cluster, S2,

has completed one orbit around SgrA*, in approximately 15 years. Its orbit fits well to being

Keplerian and yields an enclosed mass of4 × 106M⊙ (Schödel et al., 2002; Gillessen et al.,

2009). Like the other members of the cluster, it is a B-type star (Martins et al., 2008). B stars

are massive, short lived stars, which suggests that there must have been an episode of star

formation near SgrA* a few million years ago. In order for a molecular cloud near a SMBH

to fragment into stars, its self-gravity should overcome the tidal field of the black hole. This

requirement for star formation poses a constraint on the minimum cloud densities, of order

ncrit ∼ 1010cm−3 (Morris, 1993), if the S-stars are to be believed as fragments of such a

collapse. However, the situation is such that not only the inner parsec of the Galaxy is devoid

of molecular gas (Jackson et al., 1993), but also the molecular densities reached even at a few

parsecs distance from SgrA* are of order3 × 103−5cm−3 (Guesten et al., 1987). This is the

so-called paradox of youth for GC S-stars (Ghez et al., 2003; Gillessen et al., 2009).

The other group of stars, which also suffers from the youth paradox, are observed at

distances of∼ 0.04−0.5 pc from SgrA*. Their spectra are dominated by He-I emission lines,

and they are consistent with being Wolf-Rayet stars (Genzel et al., 2003; Bartko et al., 2009).

Unlike the S-stars, the orbits of the He-I stars are not randomly oriented (Bartko et al., 2009).

Of the nearly 90 observed stars, 40 populate a disk which is observed to rotate clockwise

(CW) on the plane of sky (Levin & Beloborodov, 2003; Genzel et al., 2003; Paumard et al.,

2006; Lu et al., 2006; Bartko et al., 2009). Of the rest, 19 stars seem to populate a second

disk highly inclined to the CW disk (Genzel et al., 2003; Paumard et al., 2006; Bartko et al.,

2009). This second disk is seen to rotate counter clockwise (CCW)on the sky (but also

seeLu et al. (2006, 2009)). Although the youth issue is less severe for the He-I stars, star

formation is still prohibited at such distances. There havebeen several attempts to explain

the existence of young stars in the GC. The two main scenariostackling the problem are:

Infalling Cluster Scenario:Gerhard(2001) considered a cluster of stars, which form at
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a distance of a few 10 parsecs from SgrA*. Due to dynamical friction between the newly

formed cluster, and the background (nuclear) stars, the cluster sinks inwards to the position

of the observed young stars while loosing its low mass members by tidal stripping until finally

it dissolves. There have been many numerical follow-ups of this scenario. The aim of the

simulations was to define the plausible parameter range for which the cluster reaches the

central parsec in a few million years without dissolving dueto the tidal field of the black

hole. Paumard et al.(2006) argue that the infall time for the cluster exceeds the lifetime of

the observed stars if the cluster is initially not extraordinarily dense. Cluster cores with the

required high stellar densities can be maintained in the presence of an intermediate mass black

hole (IMBH) at the cluster center (Hansen & Milosavljević, 2003). Simulations performed

by Gürkan & Rasio(2005) suggest that IMBHs might result from collisions of stars during

their infall to the center. Recently,Fujii et al. (2007) reported that when the stars stripped

from the cluster are included in the tidal friction description, the inspiral timescale decreases.

One outcome of the infalling cluster scenario is that, when the cluster is on its way to

the central parsec, it should leave trails of stars at any distance. However the published data

contain no stars beyond0.5 pc (Paumard et al., 2006; Bartko et al., 2009; Lu et al., 2009).

In-situ Formation in an Accretion Disk:In this picture, a molecular cloud is captured

by SgA* and forms a gravitationally unstable accretion disk(Levin & Beloborodov, 2003;

Milosavljević & Loeb, 2004; Nayakshin & Cuadra, 2005; Nayakshin et al., 2007). Stars form

at the location where they are observed today. Although typical molecular cloud densities in

the vicinity of SMBHs are not sufficient to overcome the tidalfield of the hole, theoretical

estimates suggest that the fragmentation conditions are met naturally on the accretion disks

which become self-gravitating beyond a few tenth of parsec (Kolykhalov & Syunyaev, 1980;

Gammie, 2001; Goodman, 2003).

Several numerical simulations have been performed aiming at modeling the fragmentation

of a nuclear/accretion disk for parameters relevant to the Galactic Center. These simulations

were run either bya priori assuming a gravitationally unstable accretion disk already in

place (Nayakshin et al., 2006; Alexander et al., 2008), or by trying to account also for the

formation of the disk itself (Bonnell & Rice, 2008). Mapelli et al.(2008) simulated the infall

of a turbulent cloud from a distance of a few 10 parsecs. They found that at aroundt ∼
5 − 6 × 105 yr most of the cloud material is depleted, and forms stars. The disk extends

radially between0.06 to 0.5 parsecs which is close to the observed range, but they do not

see a second disk forming. In order to circumvent this last point, Wardle & Yusef-Zadeh

(2008) built up a scenario where they considered the passage of a giant molecular cloud
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(GMC) past SgrA*. Since a typical-size GMC would engulf the GC while passing it there

might be cancellation of angular momentum due to interaction of opposite sides of the cloud,

and the authors argue qualitatively that this might be a way of forming two inclined stellar

disks. Making use of a similar idea,Hobbs & Nayakshin(2009) simulated the collision of

two GMCs with sizes of one to a few parsecs at the outer edge of the central parsec. Their

simulations can produce the formation of two inclined star forming disks/rings, however the

authors note that their results depend largely only the initial conditions regarding the location

where the collision takes place, and the cooling prescription for star formation.

Today it looks like for suitably chosen parameters a star forming disk at the GC can be

simulated. On the other hand, apart from the problem of youth, an other issue still to be

addressed is their orbital distribution. It is reasonable to expect that a planar accretion disk

leaves behind a planar distribution of stars when it fragments. While the clockwise rotating

40 stars seem to lie on a well defined disk, the counter clockwise rotating 19 stars have orbits

which are highly inclined to the former (Paumard et al., 2006; Bartko et al., 2009). Moreover

there is an evidence of a warp in the CW disk with an amplitude of about60◦ (Bartko et al.,

2009). A recent publication byLu et al. (2009) points out that even though the stars might

have formed in-situ, their current orbital distribution suggests a more sophisticated origin

than a simple thin accretion disk. Simulations performed byCuadra et al.(2008) are in line

with this idea showing that once the stars form on a thin, i.e.cold, accretion disk it is not

possible to perturb these stars to high inclinations.

An other stellar population at the GC is the dynamically relaxed, evolved, old stars with

ages of several Gyr. Their orbits are isotropically distributed, and their spectra are dominated

by CO absorption lines (Trippe et al., 2008). Theoretical models of galactic nuclei predict

existence of density cups around SMBHs. Depending on the assumptions, such as the stellar

mass diversity of the nuclear cluster, or the age of the stellar cluster in comparison to the

relaxation time scale, models predict the cusps to be power-laws with indices between−3/2,

and−5/2 (Schödel et al., 2007). In this respect, observations of the GC old stellar population

provide an interesting test of the cusp theories. Observations byGenzel et al.(2003) indicate

the existence of a cusp with an exponent of 1.3-1.4 between 0”.15-0.”2.

Gaseous Content

We have seen in the previous subsection that the presence of the young stars in the close

vicinity of SgA* is a debated issue. In order to better understand the star formation process,

it is useful to have a knowledge on the gaseous content of the region. We will summarize the
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results regarding such observations and models in this subsection.

The observations carried out byLo & Claussen(1983) revealed a structure of ionized gas

in the inner 1.5 of the GC. The ionized gas is broken into several arms, which in projection

look like a spiral, hence the name minispiral. The brightestof these arms are the North-

ern Arm, The Eastern Arm, and The Western Arc, and they lie in different planes which

might have arisen due to tidal stretching of the gas streamers while falling into the center

(Vollmer & Duschl, 2000).

The minispiral is surrounded by a disk-like structure of neutral and molecular gas called

the circumnuclear disk (CND). It was discovered byBecklin et al.(1982) in the FIR contin-

uum of dust. These authors found that the dust density decreases in the central3 pc, and that

the minimum of dust emission is located at the position of SgrA*. The emission peaks have

a double-lobed structure at a radius of1.7 pc from the center, which is the inner edge of the

CND. Genzel et al.(1985) observed the GC in FIR C+ and O0 fine structure lines and con-

firmed the existence of a neutral gas ring of10 pc diameter with a mass of several104 M⊙.

The CND is inclined by∼ 69◦ to the line-of-sight(LOS) and∼ 20◦ to the plane of the

Galaxy. Between the inner and outer edges, the CND consists of several clumps which have

sizes0.1 − 0.5 pc (Genzel et al., 1985; Gatley et al., 1986). This clumpy nature lets the UV

radiation from the central star cluster penetrate into the disk and heat the clumps. The CND

rotates around the center with a velocity of∼ 100km/s corresponding to an enclosed mass of

∼ 4.6 × 106 M⊙ at the inner edge of the disk, and its plane is warped (Jackson et al., 1993).

The CND has also been observed through line transitions ofNH3 (Coil & Ho, 1999, 2000;

McGary et al., 2001). The aim of these observations was to investigate the possible relations

between the CND and the GMCs near the Galactic Center. At a projected distance of 10 pc

from SgrA*, the 20 km/s cloud (M-0.13.008) appears to be feeding the CND through the

’southern streamer’. The other GMC, the 50 km/s cloud (M-0.02-0.07), seems to be related

to the 20 km/s cloud where these clouds are connected by a molecular ridge.

On the basis of sticky particle calculations,Sanders(1998) modeled the CND as disrup-

tion of a gas cloud on a low angular momentum orbit. Moving in the potential of a central

mass ofMbh = 2.5 × 106 M⊙ plus a spherically symmetric stellar distribution the cloud falls

into the Galactic Center. The infall of the cloud could have been due to a collision of two

oppositely moving clouds. After two or three orbital times,(≈ 5 × 105 yr at a distance of

3.5 pc from the center), the cloud settles into an asymmetric disk with a central cavity. One

interesting aspect of the simulation is that the highly elongated and intersecting orbits form

strong shocks at the intersection points with velocities high enough to overcome the Roche
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limit for star formation, and provide a possible mechanism for the formation of young stars

at the Galactic Center. Following this work,Vollmer & Duschl (2001a,b, 2002) constructed

analytic models to explain the dynamics of the CND. In their models, gas of several104 M⊙

falls into the Galactic Center from distances smaller than 10 pc. An important parameter in

their models is the UV radiation field from the central stellar cluster which determines the

radius of the infalling clouds. At a critical distance from the center, the clouds with high

enough densities to overcome the tidal effects either collapse, or fragment into clumps. This

critical radius is found to be∼ 2 pc, which is the value for the inner edge of the CND pro-

posed by several observations. Taking also into account theeffects of rotation and magnetic

field stabilizes the clouds against gravity. Contrary to theprevious works, they found that the

CND disk is a longer lived structure with a lifetime of107 yr. Coker et al.(2003) performed

3D hydrodynamical simulations in order to explain the formation of the CND from multiple

self-gravitating infalling clouds. They took into accountthe potential of a central point mass

of 2.6 × 106 M⊙ plus an extended stellar distribution. As the clouds on different trajectories

fall into the center, they collide and form the clumpy structure. Small mass clouds are dis-

rupted before reaching the inner edge of the disk, where larger mass clouds loose their outer

parts by tidal stripping. The result emerging from their simulations is that, a single cloud is

not sufficient to maintain the current structure of the CND, but collisions of multiple clouds

is necessary, and in order for the CND to be a stable structure, it has to be continuously fed

by the GMCs nearby.

1.1.2 Nearby Galactic Nuclei

Thanks to the recent advances in astronomical instrumentation it is now possible to observe

the nuclei of nearby galaxies at high resolution. The nuclear regions of galaxies host various

structures each of which contribute to the total potential of the nucleus. Nuclear star clus-

ters, stellar, gas and dust rings, are the most prominent features at relatively large scales of

about a few hundred down to a few ten parsecs (Carollo et al., 1998; Schinnerer et al., 2006;

Böker et al., 2008; Hicks et al., 2009). At smaller scales, in the very vicinity of the SMBHs,

our knowledge is mostly restricted to that obtained from theoretical models and simulations,

apart for a handful of objects. Most of the effort in observing galactic nuclei is directed to-

wards determining the masses of the central black holes which are thought to reside in most,

if not all, galactic nuclei, and linking the nuclear phenomena to the large scale evolution of

galaxies. In this subsection we will summarize the current status of research of nearby nuclei
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in the light of the recent observational results.

From the point of view of stellar kinematics, the most well received result that emerged

in the last decade is the discovery of an empirical correlation between the mass of the central

black hole and the stellar velocity dispersion of the host bulge: the so-calledMbh−σ⋆ relation

(Ferrarese & Merritt, 2000; Gebhardt et al., 2000; Tremaine et al., 2002).

Ferrarese & Ford(2005) give:

Mbh

108M⊙

= (1.66 ± 0.24)

(
σ⋆

200km/s

)4.68±0.43

. (1.8)

This relation is of importance not only in the studies of galactic nuclei, but also in studies ad-

dressing the galaxy evolution as a whole since its slope, normalization, scatter and evolution

constrains models considering mergers of galaxies which are thought to lead to the formation

of the SMBHs themselves.

The motion of gas in galactic nuclei can also be used to determine black hole masses,

as well as to study phenomena related to nuclear activity in galaxies. Probably the most

robust determination of black hole masses is provided by theobservations of maser sources

in the pc/sub-pc vicinity of the black holes. Most of the observed masers trace the orbital

motion of the underlying accretions disks, hence are usefulprobes of the nuclear dynamics

(in the nucleus of Circinus, some of the observed spots tracean outflow (Greenhill et al.,

2003)). Moreover, the conditions required for maser activity, i.e. temperature, density etc.,

give constraints on the physical conditions in the masing parts of the accretion disks.

Maser emission from galactic nuclei is preferentially detected when the disk is observed

edge-on. The spots lying in the LOS to the observer appear at the systemic velocity,vsys, of

the galaxy in the spectrum while the spots along the diameterperpendicular to the LOS are

observed atvsys ±
√

GMbh/r for receding, (-) sign, and approaching, (+) sign, parts of the

disk (Kondratko, 2007).

NGC4258 is the first galaxy with a maser detection from its center (Claussen et al., 1984).

The VLBI imaging of the maser spots provided the first firm evidence of an underlying disk

structure (Miyoshi et al., 1995). The disk extends radially between 0.13-0.26 pc, and exhibits

a warp in its shape (Herrnstein et al., 1996). Figure (1.1) shows the locations of the ob-

served masers superimposed on a warped disk, together with their fitted rotation curve (from

Herrnstein et al.(1999)). The Keplerian rotation curve traced by the masers implies a central

black hole mass of3.9×107 M⊙. Moreover, after assuming a suitable disk model, the proper

motions and the LOS accelerations of the maser spots providea very precise measurement of
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Figure 1.1: Warped nuclear disk of NGC 4258. The upper panel shows the best fit to the
observed maser spots shown by the triangles. The lower panelis the VLBA total power
spectrum. The inset shows the maser data superposed on a Keplerian rotation profile. Taken
from Herrnstein et al.(1999).

the distance to the galaxy,D = 7.2 ± 0.3 Mpc.

Another well monitored nearby nucleus with a maser detection from the center is that of

the Circinus galaxy.Gardner & Whiteoak(1982) identifiedH2O masers from the center of

Circinus. Later,Greenhill et al.(2003) showed that the maser spots trace a warped nuclear

disk between0.11 − 0.4 pc. Between∼ 0.11 − 1 pc a number of more spots are identified

which trace a wide-angle outflow from the center. The supportfor the existence of a warped

disk comes from:1) the S-shape formed by the maser spots,2) the highest red and blue-

shifted emission bracketing the systemic velocity,3) the antisymmetric distribution of the red

and the blue shifted features along the S-shape with a velocity declining as∼ b−0.5 where

b is the position along the major axis of the distribution (the impact parameter), and4) the

orientation of the inner disk being roughly perpendicular to the axis of the observed radio

lobes. When the innermost red and blue-shifted spots are assumed to share a common orbit

(with observed velocity, and radius), the mass contained within the innermost radius can be

calculated to be1.7 ±×106M⊙. The rotation curve delineated by the masers is very close to

Keplerian. If one assumes that the steepening of the rotation curve due to disk warping (both

in position and inclination angles) is compensated by the effect of the disk mass, an upper
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limit can be set for the disk mass asMd < 4 × 105M⊙.

Maser emission is detected also from the center of NGC1068, another nearby nucleus.

The masers in this object trace a disk with an inner edge at0.65 pc and an outer edge at

1.11 pc (Greenhill & Gwinn, 1997). The enclosed mass within 0.65 pc is∼ 1.7 × 107M⊙

(Greenhill & Gwinn, 1997).

The examples of maser nuclei we have listed so far share the common property that their

disks are warped. The discussion of the cause of the warps in nuclear disks is deferred

to section (1.3.1) where we will summarize the warping mechanisms for nucleardisks in

general. Before moving on to the next section, we should notethat today, more than 70

galaxies are known with maser emission detected from their centers, and for 27 of these,

there is good evidence for a disk origin (Water Maser Cosmology Project;WMCP (2009)).

Future observations will give us more detailed informationon the geometry of their disks.

1.1.3 Active Galactic Nuclei

The innermost central regions of some galaxies output largeamounts of energy, typically

L > 108L⊙. These objects are classified as active galactic nuclei (AGN). The cause of

activity is believed to be the accretion of material onto theblack hole at the center. In this

section we list some main properties of AGN.

Properties common to most AGN are: high luminosities, variability on time-scales of

days to years, and ability to produce highly collimated jets(Tadhunter, 2007).

Local AGN are divided into two main classes depending on their optical spectra. Seyfert

1 type spectra are dominated by broad (≥ 5000 km/s) and narrow (∼ 1000 km/s) emission

lines. Seyfert 2’s on the other hand produce only narrow lines.

At high redshifts, quasars are the more luminous counterparts of Seyferts. Radio loudness

is also a criteria in defining AGN types. The class of radio objects includes radio loud quasars,

Blazars, and Faranoff Riley objects of type 1 and 2.

The maser nucleus NGC1068 briefly mentioned in the previous section has particular im-

portance in AGN studies. Although it is classified as a Seyfert 2 nucleus,Antonucci & Miller

(1985) observed a broad component in the polarized emission from its nucleus. They sug-

gested that Seyfert 2 nuclei contain hidden broad line regions (BLRs) obscured by a dense

dusty torus surrounding the black hole. This idea was the basis of unification of AGN classes.

The unification theories try to group AGN depending on their appearance to the observer. In

the very center, the SMBH is fed by the accretion disk. The accretion disk is surrounded by
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some toroidal material of dust and gas (torus). When the observer’s LOS passes through the

toroidal structure, BLRs can not be observed, hence the nucleus appears as that of a Seyfert

2 galaxy. AGN viewed directly from above avoiding the obscuring media appear as Seyfert 1

nuclei. Figure (1.2) depicts schematically the AGN classes when viewed from different lines

of sight.

e   scattering

log(    )r
pc

Radio Galaxy
Narrow Line

Quasar 2

Seyfert 2

Core Dominated
Radio Loud
Quasar

Lobe Dominated
Radio Loud
Quasar

Radio Galaxy
Broad Line

reddened Quasar 1
Seyfert 1.5

Quasar 1
Seyfert 1

Broad emission
Line Region

Line Region
Narrow emission

−
Region

0

1

2

3

−5

−4

−3

−2

−1

Jet

−2−3−4−5 −1 0 1 2

Disk

Torus

pcz
lo

g(
   

 )

Figure 1.2: Classification of AGN according to viewing direction (schematic). Taken from
Zier & Biermann(2002).

1.2 Accretion Disks

In the previous sections, we have briefly discussed the studies on nearby galactic nuclei based

on their observations. In this section we describe the basics of theory of accretion onto

compact central objects (black holes hereafter) based on the enlightening reviews byPringle

(1981); Papaloizou & Lin(1995); Lodato(2008), and on the dedicated book byFrank et al.

(2002).

First consider a spherically symmetric steady flow towards the center. Equilibrium for a

flow element consisting of electrons and protons is defined such that, the outward directed

radiative force resulting from the Thomson scattering of electrons is balanced by the inward

directed gravitational force acting on the electron- proton plasma. Neglecting the relatively

small mass of the electrons in comparison to the protons one can write (Frank et al., 2002):
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GMbhmp

r2
=

σTL

4πr2c
. (1.9)

Here,mp is the proton mass, andσT is the Thomson cross section. This relation sets the

Eddington luminosity limitLedd for the flow, which has the value:

Ledd = 4πGMbhmpc/σT

∼= 1.3 × 1038(Mbh/M⊙) erg s−1. (1.10)

The Eddington luminosity can be converted into a mass accretion rate,ṀEdd, via:

LEdd = ǫ ṀEddc
2, (1.11)

whereǫ is the radiative efficiency.

Now consider the flow confined to an axisymmetric disk in differential rotation around

the black hole. In this case neighboring fluid elements generate a viscous stress when they

pass each other [see figure (1.3)].
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Figure 1.3: Schematic representation of the motion of a fluidelement in an accretion disk
under viscous torques.

The viscous torque exerted by the outer ring of gas on the adjacent inner ring of gas is

given by:

G(r) = 2πνΣr3dΩ(r)

dr
. (1.12)

Here,Σ is the surface density of the disk at locationr, ν is the viscosity coefficient, and

Ω(r) is the angular velocity. The motion of a fluid element on its orbit around the black hole

under the effects of viscous torques can be described by two velocity components: the orbital
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motion, which can often be taken as Keplerian, has the velocity:

vφ = rΩ(r), (1.13)

with Ω(r) =
√

GMbh/r3. The second component of the velocity of the disk element can

be predicted from equation (1.12) which implies that for a rotation law where the angular

velocity decreases with increasing radius, the inner partsof the disk lose angular momentum

leading to spiraling of disk material towards the black holewith velocityvr, while being fed

by the outer parts. The temporal evolution of the disk arising from this flow is studied by

considering the local conservation equations for mass (i.e. continuity equation), and angular

momentum. The former is written as:

∂Σ

∂t
+

1

r

∂

∂r
(rΣvr) = 0. (1.14)

The equation for the angular momentum conservation followsfrom considering the net

viscous torque on the disk element, and is given by:

∂

∂t
(Σr2Ω) +

1

r

∂

∂r
(Σvrr

3Ω) =
1

2πr

∂G

∂r
. (1.15)

The drift velocityvr can be obtained from the above equations, and for Keplerian rotation

it is given by:

vr = − 3

Σ
√
r

∂

∂r
(νΣ

√
r). (1.16)

From equation (1.16) we see that it is crucial to know the magnitude of viscosityν to study

the accretion process. However, although the consequencesof viscous evolution of accretion

disks have been studied widely (Lynden-Bell & Pringle, 1974; Papaloizou & Pringle, 1983;

Pringle, 1992; Shafee et al., 2008) its origin remains debated. In recent years, the magneto-

rotational instability (MRI) has been suggested as the cause of turbulence (Balbus & Hawley,

1991). Consider the two neighboring elements, A and B withrA > rB. When the disk is

weakly magnetized, there is a magnetic tension between these elements. In a differentially

rotating disk, whereΩA < ΩB, the motion of element A is accelerated by element B, while

element B is retarded by A. In time, the separation between A and B increases, hence the

tension between them. This process goes until the disk exhibits the MR instability1.

1As an alternative to MRI, gravitational instabilities in self-gravitating disks as the driving mechanism of
mass flow is starting to gain favor due to numerical convergence problems faced by many MRI simulations. See
Lodato & Rice(2004, 2005) and references therein.
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In studying accretion disks one usually makes use of the standardα-prescription intro-

duced byShakura & Syunyaev(1973). The viscosity is written as:

ν = αcsH, (1.17)

wherecs is the local sound speed, andH is the disk scale length. In this representation, all

the unknowns of the accretion process, i.e. by which mechanism it is driven, is collected in

the parameterα. Adopting parameters relevant to galactic nuclei,Frank et al.(2002) give an

estimate of the viscosity as:

ν = 1.8 × 1018α4/5

(

Ṁ

1026

)3/10(
Mbh

108

)−1/4 ( r

1014

)3/4

f 6/5 cm2s−1, (1.18)

wheref = 1 − (6GMbh/rc
2)1/2. The time scale by which the disk material is transported

onto the black hole, the viscous time scale, is given bytvis ∼ 2r2/ν. Assuming a constant

surface density profile, and constant viscosity through thedisk, and using equations (1.16),

and (1.18) the drift velocity of accreting material, and the viscous time can be estimated to

bevr = −562 cm/s, andvvis = 5× 107 yr respectively at a distance ofr = 0.1 pc, for typical

parameters ofMbh = 108M⊙, Ṁ = 1026gcm−2, andα = 0.1.

1.3 Warps in Astrophysics

In the previous sections, we presented a brief overview of galactic nuclei. Both in discussing

the Galactic Center (1.1.1), and the nearby nuclei (1.1.2), we encountered examples of nu-

clear disks with non-planar geometries. In the remaining parts of this introduction, we will

summarize the studies of warps in astrophysics to give a morecomplete outlook to the main

theme of this thesis.

Warped disks where the inclination of the disk with respect to a preferred plane changes

with radius have been known to astronomers since decades. The early studies of warps were

dedicated to explain the observed bending of the outer partsof galaxies. Observations showed

that although the warps manifest themselves mostly in the HIlayers of galaxies, warped

stellar disks are also not rare (van der Kruit, 1979; Innanen et al., 1982; Reshetnikov et al.,

2002). At a first glance, this suggests gravity as the cause of the warp, since it influences both

the gaseous and the stellar components in a galaxy.

Hunter & Toomre(1969) studied the case of a self-gravitating, isolated, thin disk, where
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the warp was represented by linear bending waves. They showed that such a disk does not

permit any long-lasting modes when realistically smooth-edged density profiles are consid-

ered. Interaction of the galaxy with a nearby object as a cause of the warp was considered

by many authors until observations showed that many warped galaxies lacked companions,

or the companions were not massive enough. Later, as the evidence for dark matter halos

around galaxies became stronger, modelers developed scenarios in which the disk assumes

the shape of a normal mode in the potential of a flattened dark halo (Sparke, 1984; Kuijken,

1991). However, subsequent work showed that these modes are damped quickly when the

internal dynamical response of the halo is taken into account (Nelson & Tremaine, 1995;

Binney et al., 1998). Today, it seems most plausible that galactic warps resultfrom interac-

tions and from accretion of material with misaligned angular momentum (Jiang & Binney,

1999).

Increasing spatial resolution of observations has provided evidence that warps are not only

common in galactic disks, but appear also in other astrophysical contexts at much smaller

scales. One of the best studied examples of such a warped diskis surrounding the neu-

tron star Her X-1. Besides an orbital period of 1.7 days, and apulsation period of 1.24

seconds, it shows on-and-off states with a periodicity of 35days (Tananbaum et al., 1972;

Giacconi et al., 1973; Gerend & Boynton, 1976). This long periodicity in the X-ray light

curve of Her X-1 is best explained by the existence of a warp occulting the central star as the

disk precesses (Wijers & Pringle, 1999).

Yet an other class of objects where warps are pronounced are the nuclear disks surround-

ing the SMBHs of galactic nuclei. Examples of such disks havebeen presented in sections

(1.1.1), and (1.1.2) in the discussions of the GC, and nearby nuclei. We summarize the theo-

retical models of warped nuclear disks in the following section.

1.3.1 Warped Nuclear/Accretion Disks

Nuclear disks in galaxies are subject to various torques in the environments they are embed-

ded in. Under certain circumstances, an initially planar disk might become unstable against

warping due to these torques.

The theoretical studies of nuclear warped disks focus on their viscous evolution in order

to connect to the process of accretion. In this case, the equations governing the flat accretion

disks have to be modified. For planar disks, considering a cylindrical symmetry, viscosity as

parameterized byν arises due to ther − φ stress between the disk elements. In a warped
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disk, there is also a component of stress in ther − z direction which tries to damp the warp.

Papaloizou & Pringle(1983) proposed anα-like description for such disks. They found that

in the small tilt regime, the radial (ν1), and vertical (ν2) coefficients of viscosity obey:

ν2

ν1

=
1

2α2
. (1.19)

Ogilvie (1999) considered the nonlinear corrections to the above approach. He showed

that for small amplitude warps:

ν2

ν1

=
1

2α2

4(1 + 7α2)

4 + α
, (1.20)

and he also gave higher order correction terms for high amplitude warps. For highly inclined

warps, the ratio of the two viscosities become close to unity(Caproni et al., 2006a).

Pringle(1992) devised a set of equations describing the viscous evolution of warped ac-

cretion disks. In a warped geometry, the drift velocity is given by:

vr =
(∂/∂r)(ν1Σr

3(dΩ/dr)) − 1
2
ν2Σr

3Ω|∂l/∂r|2
rΣ(∂/∂r)(r2Ω)

. (1.21)

Herel is the unit vector at locationr in the disk. When inserted into the mass conservation

equation, and assuming Keplerian rotation one arrives at:

∂Σ

∂t
=

3

r

∂

∂r

[

r1/2 ∂

∂r
(ν1Σr

1/2)

]

+
1

r

∂

∂r

[

ν2Σr
2

∣
∣
∣
∣

∂l

∂r

∣
∣
∣
∣

2
]

. (1.22)

This equation describes the viscous evolution of the surface density of a warped disk. Simi-

larly, the evolution of angular momentum,L, of the disk elements under viscous torques can

be written as:

∂L

∂t
=

3

r

∂

∂r

[
r1/2

Σ

∂

∂r
(ν1Σr

1/2)L

]

+
1

r

∂

∂r

[(

ν2r
1/2

∣
∣
∣
∣

∂l

∂r

∣
∣
∣
∣

2

− 3

2
ν1

)

L

]

+
1

r

∂

∂r

(
1

2

∂

∂r
ν2r|L|

∂l

∂r

)

. (1.23)

In equations (1.22), and (1.23), the terms involving the coefficientν1 arise due to the

radial drift of the disk material towards the black hole. On the other hand, the terms involving
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the coefficientν2 are related to the motion of the disk elements in the verticaldirection. In

the case of flat disks where∂l/∂r = 0, the only non-vanishing terms in equations (1.22),

and (1.23) are the terms involvingν1, and the equations reduce to the equations described

in section (1.2). We see that the surface density evolution of a warped disk depends on

the amplitude of the warp only to second order, i.e. for smallamplitude warps for which

|∂l/∂r|2 can be neglected, the evolution is similar to that of a flat disk. However, the local

angular momentum has a contribution given by the disk tilt even for small amplitude warps.

In the case of high amplitude warps, where the second order derivatives of the unit vector can

not be neglected, both the surface density, and the angular momentum evolve differently in

comparison to a flat disk.

Equations (1.22) and (1.23) assume that the disk evolves only the under the effects of

the viscous torques. If one wants to account for other possible torques acting on the disk,

i.e. from a central radiation source, from a spinning black hole, or from the disk self-gravity,

a term responsible for these torques has to be added to equation (1.23), and the evolution

equations have to be solved self-consistently to account for the desired physics.

1.3.2 Warping Mechanisms for Nuclear/Accretion Disks

In the following, we summarize the most favorable warping mechanisms discussed so far in

the literature.

Bardeen-Petterson Effect: An accretion disk close enough to a rotating black hole is

subject to relativistic frame dragging if its angular momentum is misaligned with that of the

black hole (Lense & Thirring, 1918). Frame dragging causes a differential precession of the

disk with a rate given by (Kumar & Pringle, 1985):

φ̇ =
2G

c2
Jbh
r3
, (1.24)

whereJbh = aGMbh
2/c is the angular momentum of the black hole, anda is the black hole

spin parameter taking values between 0 (for non-rotating black holes), and 1 (for maximally

rotating black holes). Internal (viscous) torques try to align the disk angular momentumJd

with the black hole angular momentum. As we have seen, the viscous time scale increases

with radius, hence the inner parts of the disk are forced to align with the black hole on time

scales much shorter than those for the outer parts. Consequently, the disk develops a shape

which for r < RBP is aligned with the black hole, i.e. is flat, and forr ≥ RBP its angular

momentum direction changes gradually from radius to radius. This is called the Bardeen-
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Petterson effect (Bardeen & Petterson, 1975). The critical radius for Bardeen-Petterson warp-

ing, assuming that the radial and vertical viscosities are equal, can be written as:

RBP =
6aG2M2

bhΣǫ

cL
(1.25)

In the limit where the misalignment of angular momenta of thedisk and the black hole is

small,Scheuer & Feiler(1996) calculated analytically the rate at which they become aligned.

Assuming that the disk viscosity is constant throughout thedisk, they showed that the align-

ment timescale is given by:

t =
3ν1

Ṁ

(
acMbh

ν2G

)1/2

. (1.26)

Natarajan & Armitage(1999) generalized this analytic solution to more strongly warped

disks, considering a power-law radial dependence of viscous coefficientsν1, andν2. Their

simulations showed that for black holes with masses of order108 M⊙, and accretion rates

close to the Eddington limit, the alignment time scale is short (t ≤ 106) yr. King et al.(2005)

showed that for systems satisfying the conditionθ > π/2, andJd < 2Jbh, the disk and the

hole counter align fort < tvis, and eventually align whent > tvis, whereθ is the mutual

inclination betweenJd, andJbh.

Caproni et al.(2006a) applied the Bardeen-Petterson effect to the inferred warped disk of

NGC1068. They found that the Bardeen-Petterson radius for this object is between10−5 and

10−6 pc, which is well below the observed radius of the maser spots. The authors conducted a

similar analysis to study the warped disk of NGC4258, and found that also for this galaxy, the

warp radius lies below the inner radius of the maser disk (Caproni et al., 2007). Martin (2008)

considered the same object allowing a more realistic surface density profile, and concluded

that although the observations can be fit well, to reach a steady state the disk must be very

long-lived.

Radiation Driven Warping: The effect of a central radiation source on the dynamics

of a non-planar disk is known since the 1970s (Petterson, 1977). When a warped disk is

exposed to radiation from a central source, or from its own inner portions, it is not illuminated

isotropically. If it is also optically thick, the emission received at each position and re-radiated

perpendicular to the local disk plane induces a torque on thedisk, and the warp is modified.

(Pringle, 1996) showed that perturbations to planar disks can cause radiation driven warping

when:

L ≥ 12π2ν2Σ(r)vφc. (1.27)
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Definingη = ν2/ν1, and assuming the disk is in steady state, equation (1.27) can be expressed

as a critical radius in terms of the Schwarzschild radius (Pringle, 1996):

r

rs
≥
(

2
√

2πη

ǫ

)2

. (1.28)

Assumingǫ ∼ 10−2, η ∼ 1, and a black hole mass of108M⊙, equation (1.28) implies that

the disk becomes warped beyondr ≥ 0.1 pc. Maloney et al.(1996) studied the stable and

unstable modes of radiatively excited linear warps. They showed that the inferred warps in

NGC4258, Her-X1, and SS 433 might be explained by this mechanism as long as the radiative

efficiency is high, butCaproni et al.(2006a) analyzing several AGN disks find that these are

stable against radiation warping.Pringle(1997) considered the evolution of radiation driven

warps with high amplitudes. Taking into account the self-shadowing of the disk, he showed

that characteristic time scale for a disk orbiting a108M⊙ black hole ist ∼ 2 × 106α−1.

Magnetically Driven Warps: When an accretion disk rotates around a magnetic star, the

inner portions of the disk are subject to torques resulting from the interaction between the

horizontal magnetic field of the star and induced electric currents on the surface of the disk.

The warping and precession arising from such interactions was first studied byLai (1999).

In the linear regime, magnetic torque was modeled as an external torque acting on the disk.

Pfeiffer & Lai (2004) carried this scenario to the nonlinear regime, and found that magneti-

cally driven disks can develop highly inclined, steadily precessing warped configurations.Lai

(2003) suggested a new mechanism, where the magnetic field was not external to the disk,

but produced by outflows/jets, hence the scenario might wellapply to AGN disks.

Gravity Driven Warps: A disk under the gravitational influence of its self-gravityand/or

that of an other nearby object exists in a variety of astrophysical systems. For such disks, the

quadrupole moment of the nearby object, when present, induces a differential precession of

the disk, while self-gravity usually acts to prevent differential precession of its elements, such

that the disk shape stays intact. Warps generated by gravitational interactions are studied in

detail in numerous works on galactic disks (Hunter & Toomre, 1969; Toomre, 1983; Sparke,

1986; Arnaboldi & Sparke, 1994; Kuijken, 1991), and in the context of rings around planets

(Borderies et al., 1983; Goldreich & Tremaine, 1979). On the nuclear/accretion disk scales,

Papaloizou et al.(1998) studied the evolution of a thin self-gravitating viscous disk, with

application to NGC4258. They found that when the density wave crossing time is much

smaller than the dynamical time scale, the disk precesses rigidly. They concluded that the
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warp in the maser disk of NGC4258 might have been excited by a binary companion having

a mass comparable to or higher than that of the maser disk. Their model also suggests a

small twist (i.e. varying line-of-nodes) due to viscosity.Nayakshin(2005) considered the

case of a light non-self-gravitating disk perturbed by a massive ring. He modeled the disk as

a collection of many rings. Employing the gravitational torques in the linear regime, he found

that the rate of precession induced by the interaction of tworings with radiir andr1 is:

φ̇→ − 3M1

4Mbh
cosβ

r3

r13
Ω for r ≪ r1, (1.29)

and

φ̇→ − 3M1

4Mbh

cosβ
r1

2

r2
Ω for r ≫ r1. (1.30)

Here,M1 is the mass of the ring, andβ is the mutual inclination between the rings. Already

in this linear regime,Nayakshin(2005) argued that very high inclination are possible for

nuclear disks in galaxies, and revisiting the idea ofPhinney(1989), he suggested that such

warps might be an ingredient in AGN unification theories. Theimportance of self-gravity

can readily be seen from equations (1.29), and (1.30). When it is absent, the rings making up

the disk precess differentially, tending to destroy the disk structure. Numerical simulations

dedicated to Galactic Center stellar disks discussed in section (1.1.1) showed that, it is pos-

sible to constrain the masses of the disks in the warped disk scenario. The model disks with

Md > 0.005Mbh lead to too much warping of the disk, i.e.β in equations (1.29)-(1.30), and

do not explain the data.

1.4 Outline of the Thesis

This thesis is organized as follows:

In Chapter2, a nonlinear model for steadily precessing, self-gravitating warped disks

around nuclear black holes is introduced. The model considers the disk as a collection of

circular rings inclined with respect to eachother, and which are in mutual gravitational in-

teraction. Starting from the steady state equations of motion, a scaling relation is derived

relating the global precession frequency of the disk to the disk mass in proportion to the

black hole mass. Steadily precessing equilibrium solutions are evaluated for 2, 3, and many

ring systems for various disk surface density profiles, massfractions, radial extents, and pre-

cession frequencies. The linear theory of self-gravitating warped disks is revisited in order
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to highlight the major differences resulting from both approaches. Using perturbation theory,

the stability of the non-linear warps is studied, and checked by integration of the equations of

motion for a few examples.

Chapter3 proposes a new scenario for the formation mutually inclinedwarped disks

around nuclear black holes in application to the Galactic Center. Assuming a radiation or

Bardeen-Petterson warping origin, the time evolution of warped stellar disks with parameters

relevant to the Galactic Center is followed. A qualitative comparison of the simulations to

the observations is presented at the end of the chapter.

In Chapter4, the outcomes of this thesis are summarized, and an outlook is presented.





CHAPTER 2

SELF-GRAVITATING WARPED DISKS

AROUND

SUPERMASSIVEBLACK HOLES ∗

Abstract
We consider warped equilibrium configurations for stellar and gaseous disks in the Ke-

plerian force-field of a supermassive black hole, assuming that the self-gravity of the disk

provides the only acting torques. Modeling the disk as a collection of concentric circular

rings, and computing the torques in the non-linear regime, we show that stable, strongly

warped precessing equilibria are possible. These solutions exist for a wide range of disk-to-

black hole mass ratiosMd/Mbh, can span large warp angles of up to± ∼ 120◦, have inner

and outer boundaries, and extend over a radial range of a factor of typically two to four.

These equilibrium configurations obey a scaling relation such that in good approximation

φ̇/Ω ∝ Md/Mbh whereφ̇ is the (retrograde) precession frequency andΩ is a characteristic

orbital frequency in the disk. Stability was determined using linear perturbation theory and,

in a few cases, confirmed by numerical integration of the equations of motion. Most of the

precessing equilibria are found to be stable, but some are unstable. The main result of this

study is that highly warped disks near black holes can persist for long times without any

persistent forcing other than by their self-gravity. The possible relevance of this to galactic

nuclei is briefly discussed.

∗Part of this chapter has been accepted for publication in MNRAS, and is in press. Only in section (2.4)
there are some additional results not included in the submitted work.
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2.1 Introduction

The increasing power and spatial resolution of modern observations has provided evidence

that warps are not unique to galactic disks, but appear also on much smaller scales. These

include nuclear and accretion disks surrounding supermassive black holes in galactic nuclei

(nuclear disks hereafter). The pioneering example is the maser disk of NGC4258. The high

velocity masers mapped byMiyoshi et al. (1995) are best explained by the existence of a

mildly warped disk extending from 0.13 to 0.26 pc (Herrnstein et al., 1996). The nearby

Seyfert galaxies NGC1068 and Circinus also harbor warped disks in their centers, again

traced by the maser emission (Greenhill et al., 2003; Gallimore et al., 2004). Of the∼ 100

massive young stars in the center of our Galaxy about half form a well-defined, warped disk,

and some of the others are on a counter-rotating structure which may be a dissolving disk

(Genzel et al., 2003; Paumard et al., 2006; Lu et al., 2009; Bartko et al., 2009).

Nuclear disks can develop a warped shape through several mechanisms. Very close

to the center, the dragging of inertial frames by a rotating black hole (Lense & Thirring,

1918) causes precession of a planar disk, if it is inclined to the plane perpendicular to the

black hole’s spin. Internal viscous torques try to align thedisk angular momentum with the

black hole angular momentum. Beyond a transition radius, the disk does not feel the effect

of the black hole and remains at its initial inclination, while inside this radius the align-

ment proceeds. Hence the disk becomes warped [theBardeen & Petterson(1975) effect].

Natarajan & Armitage(1999) showed that for black holes with masses of order108 M⊙ and

accretion rates close to the Eddington limit the alignment time scale is short(t ≤ 106yr).

Application of this effect to the warped disks of NGC4258 andNGC1068 shows that the

alignment radius lies well inside the observed positions ofthe maser spots, and models can

be constructed that fit the observed warps rather well (Caproni et al., 2007; Martin, 2008).

When a warped disk is exposed to radiation from a central source, or from its own in-

ner portions, it is not illuminated isotropically. If it is also optically thick, the emission re-

ceived at each position and re-radiated perpendicular to the local disk plane induces a torque

on the disk, and the warp is modified (Petterson, 1977). Perturbations to planar disks can

therefore cause radiation driven warping (Pringle, 1996). Assuming a radiative efficiency

ǫ ∼ 10−2, and a black hole mass of108 M⊙, an initially flat disk is prone to warping be-

yondr ≥ 0.1 pc, when the vertical and radial viscosity coefficients are comparable (Pringle,

1997). Maloney et al.(1996) studied the stable and unstable modes of radiatively excited

linear warps and found that the warp in NGC4258 may be explained by this mechanism only
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if the radiative efficiency is high.

Warps generated by gravitational interactions have been investigated mainly in the galac-

tic context.Hunter & Toomre(1969) studied the linear bending waves of a self-gravitating,

isolated, thin disk. They showed that such a disk permits long-lasting bending modes only

when its surface density near the outer radius is truncated sufficiently fast, but not when

realistic smooth edges are considered. This suggested interactions with nearby companion

galaxies as a likely cause of warp excitation. Later, as the evidence for dark matter halos

around galaxies became stronger, modelers developed scenarios in which the disk assumes

the shape of a normal mode in the potential of a flattened dark halo (Sparke, 1984; Kuijken,

1991). However, subsequent work showed that these modes are damped quickly when the

internal dynamical response of the halo is taken into account (Nelson & Tremaine, 1995;

Binney et al., 1998). Today, it seems most plausible that galactic warps resultfrom interac-

tions and from accretion of material with misaligned angular momentum (Jiang & Binney,

1999).

On nuclear disk scales,Papaloizou et al.(1998) studied in linear theory the evolution of a

thin self-gravitating viscous disk interacting with a massive object orbiting the central mass,

with application to NGC4258. They concluded that the warp inthe maser disk of NGC4258

might have been excited by a binary companion with a mass comparable to or higher than that

of the maser disk. Their model also suggests a small twist (i.e. varying line-of-nodes) due

to viscosity. Nayakshin(2005) considered the case of a non-self-gravitating disk perturbed

by a massive ring. Employing the gravitational torques in the linear regime, he evaluated the

precession induced by the ring on the disk elements. When theself-gravity of the disk is not

taken into account, the rings precess differentially, which tends to destroy the disk structure.

Can models of warped nuclear disks be generalized to the fully non-linear regime? And

assuming that the observed warps in galactic nuclei have been excited by one of the mech-

anisms discussed above, can the disk self-gravity maintainthe warp even after the exciting

torque has ceased to exist? As a first step towards answering these questions, the goal of

the present paper is to investigate the possibility of steadily precessing, stable, non-linearly

warped self-gravitating disks in the (Keplerian) gravitational potential of a massive black

hole. In the following sections, we use a simple circular orbit ring model to find stable

warped equilibria for systems with 2, 3, and many rings, assuming that the self-gravity of the

rings provides the only acting torques.
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2.2 Steadily Precessing Warped Disks and Their Scaling Re-

lation

2.2.1 Cold Disk Model and Equations of Motion

We consider a cold disk in which stars or gas are assumed to move on very nearly circular

orbits. Following similar analysis of galactic warps (e.g., Toomre 1983, Sparke 1984, Kuijken

1991) we model such a disk as a collection of concentric circular rings. The orbital motion

in the disk is maintained by the central black hole, and the self-gravity of the disk causes the

rings to precess around the total angular momentum direction. Each ring may represent a set

of stars or gas elements uniformly spread around their circular orbit. Moreover, when the

precession frequency arising from the self-gravity of the disk is small compared to the orbital

frequency of motion, the orbital parameters of single starschange only slowly and so one can

average over the orbital motion. In this case, also the forceexerted by a single star or mass

element on the rest of the disk can be replaced by the force dueto a ring of material spread

over the orbit (Goldreich, 1966).

Any of the rings is characterized by its massmi, radiusri, inclination angleθi with respect

to the reference plane, and azimuthal angleφi where the line-of-nodes cuts this plane. Later

we will identify the reference plane as the plane perpendicular to the total angular momentum

vector. The LagrangianLi of ring i is given by (Goldstein et al., 2002):

Li =
mir

2
i

4
(θ̇2
i + φ̇2

i sin2 θi) +
mir

2
i

2
(ψ̇ + φ̇i cos θi)

2

− V (ri, θi, φi). (2.1)

The first two terms in equation (2.1) represent the kinetic energy of the motionTi, V (ri, θi, φi)

represents the gravitational potential energy, the Lagrangian isLi = Ti−Vi, and the energy of

a ring isEi = Ti + Vi . ψ is the position of a point on the ring, measured from the ascending

node; (θ, φ, ψ) are Euler angles. The angular momentum of the motion along the ring

pψi
= mir

2
iΩ(ri) = mir

2
i (ψ̇ + φ̇i cos θi) (2.2)

is conserved sinceLi does not depend on the coordinateψ. The other momenta are thepφi
,

the angular momentum around thez−direction, andpθi
, the angular momentum around the
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line of nodes. The equations of motion are:

pθi
=
mir

2
i

2
θ̇i, (2.3)

pφi
=
mir

2
i

2
φ̇i sin

2 θi + pψi
cos θi (2.4)

ṗθi
=
mir

2
i

2
φ̇i

2
sin θi cos θi − φ̇ipψi

sin θi −
∂V (ri, θi, φi)

∂θi
(2.5a)

= −∂V (ri, θi, φi)

∂θ
− 2

(pφi
− pψi

cos θi)(pψi
− pφi

cos θi)

mir2
i sin3 θi

(2.5b)

ṗφi
= −∂V (ri, θi, φi)

∂φi
(2.6)

and the Hamiltonian is:

Hi =
p2
θi

mir
2
i

+
1

2

p2
ψi

mir
2
i

+
(pφi

− pψi
cos θi)

2

mir2
i sin2 θi

+ V (ri, θi, φi). (2.7)

2.2.2 Components ofV (r, θ, φ), and Evaluation of the Torques

The gravitational potential energy,V (r, θ, φ), has two components. One arises due to the

central black hole, and is simply

Vbh = −GmiMbh

ri
. (2.8)

at the position of the ring. The other component is the potential termVm arising from the

interaction of the ring under consideration with all other rings. We follow the description

of Arnaboldi & Sparke(1994), using the derivation ofBinney & Tremaine(1987) (Section

2.6.2), to evaluate the torque arising from the ring interactions.

The gravitational potential due to a circular ring of massmi and radiusri in the (x̃, ỹ)

plane is

Φ(x̃, ỹ, z̃) = −2Gmi

π

K(k)
√

(1 − k2/2)
√

(r2 + r2
i )

, (2.9)

where

k2 =
4Rri

(r2 + r2
i + 2Rri)

. (2.10)
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HereK(k) is the complete elliptic integral of the first kind, andR is the cylindrical radius

R2 = x̃2 + ỹ2, so thatR2 = r2− z̃2. A second ring of radiusrj at an angleαij to the first ring

follows a curvez̃ = rj sinαij sinψ, whereψ runs between0 and2π. The mutual potential

energy is

Vij(αij) = − Gmimj

π2(r2
i + r2

j )
1/2

∫ 2π

0

K(k)
√

1 − k2/2 dψ (2.11)

wheremj is the mass of the second ring, andk depends onri/rj , sinαij andψ. The angle

αij between the two rings is given by

cosαij = cos θi cos θj + sin θi sin θj cos(φi − φj), (2.12)

which reduces tocosαij = cos(θi − θj) when the line-of-nodes are aligned (φi = φj). The

torque between the two rings(i, j) is

∂Vij
∂αij

=
Gmimjrirj sin 2αij

(r2
i + r2

j )
3/2

Iij(αij, ri/rj), (2.13a)

Iij ≡ 4

π2

∫ π/2

0

[
E(k)(1 − k2/2)

(1 − k2)
−K(k)

]

×(1 − k2/2)3/2

k2

sin2 ψ dψ
√

1 − sin2 αij sin2 ψ
. (2.13b)

We use the numerical program ofArnaboldi & Sparke(1994) for evaluating the integrals

in this expression. The torques with respect to the angles(θi, φi) follow from multiplying

equation (2.13a) by∂αij/∂θi or∂αij/∂φi. In the following, we will writeVm,i ≡
∑

j 6=i Vij for

the potential energy of ringi due to the other rings, so that itstotalpotential energy becomes

V (ri, θi, φi) = Vbh(ri) + Vm,i. For further reference we also defineMij ≡ −∂Vij/∂θi, and

MG,i ≡ −∂Vm,i/∂θi for the total gravitational torque on ringi around its line-of-nodes.

Figure2.1 shows the torque between two rings with radii in the ratioν ≡ rout/rin as

a function of their mutual inclinationα. The maximum of the torque occurs at very small

angles, as noted previously by Kuijken (1991) who gives the approximationαmax ≃ 1.2|ν −
1|. Only forα < αmax can the mutual torque be approximated as a linear function ofα. Thus

solutionsθ(r) for the warp shape in linear theory can be scaled by a constantmultiplicative

factor only so long as the local gradientdθ/dr < 1.2/r. Otherwise the local self-gravity

torques of the disk are no longer able to maintain the linear theory warp shape, the non-linear
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Figure 2.1: The mutual torque between two neighboring concentric rings, whose radiirout

andrin are in the ratioν as specified on the plot. The linear regime is limited to the left of the
peak amplitude in these curves.

equations must be used, and the shape of the warp must change.

2.2.3 Steadily Precessing Equilibria

A configuration of inclined rings precessing as a rigid body with constantφ̇will in the follow-

ing be denoted as a steadily precessing equilibrium, or equilibrium for short. In earlier works

by Hunter & Toomre(1969); Sparke(1984), andSparke & Casertano(1988) it was found

that the eigenfrequencies of linear m=1 warp modes are purely real.Papaloizou et al.(1998)

showed that this is a consequence of the self-adjointness ofthe operator in the tilt equation

when there are no viscous or non-conservative forces. Then the eigenvectors are also real and

thus the warp has a straight line-of-nodes and no spirality1. In the light of these linear theory

results our effort will also be to find equilibria where all the rings have the same azimuthφ.

The condition that all rings maintain constant inclination, θ̇ = 0, implies alsoṗθ = 0, and

for a given precession ratėφ, the simultaneous solution of this equation for each of the rings

determines the inclination angles, i.e. the equilibrium shape corresponding to this value of

φ̇. We note that forφ̇ = 0 equations (2.5a) admit a trivial tilt solutionθi = const. but will

1The line-of-nodes for a set of orbits is here defined as the union of points where all inclined orbits (θi 6= 0)
with respect to the reference plane intersect this plane.



32 CHAPTER 2. SELF-GRAVITATING NUCLEAR WARPED DISKS

assumeφ̇ 6= 0 in what follows.

From equations (2.5a) and (3.23) we can solve for the precession rate of ringi:

φ̇i =
Ωi

cos θi
±

√
√
√
√

Ω2
i

cos2 θi
+

2

mir2
i cos θi sin θi

∑

j

∂Vij
∂θi

(2.14)

whenθi 6= 0. HereΩi =
√

GMbh/r3
i is the angular velocity of particles on the ring around

the black hole, and the term
∑

j ∂Vij/∂θi is the torque on ringi caused by all other ringsj.

The precession rate can therefore be fast or slow, corresponding to the plus and minus signs in

this expression. When the interaction potentialVij increases away from the planeθ = 0, the

second term in the square root is positive, so that the slow precession is retrograde (φ̇ < 0).

In the remainder of this paper we focus on such slow retrograde precession.

The components of angular momentum along the original(x, y, z) axes for a single ring

read:

lxi
= pθi

cosφi +
sin φi(pψi

− pφi
cos θi)

sin θi
, (2.15)

lyi
= pθi

sinφi −
cosφi(pψi

− pφi
cos θi)

sin θi
, (2.16)

lzi
= pφi

. (2.17)

Let us assume that we have found a precessing equilibrium from solving equations (3.21-

3.24), with pθi
= 0, ṗθi

= 0, andpφi
= const., φ̇ = const., φi = φ. Inserting equations (2.5a)

and (3.22) into the expression forlxi
, simplifying and summing over all rings gives the total

angular momentum

lx =
∑

i

lxi
= −sin φ

φ̇

∑

i6=j

∂

∂θi
Vij = 0 (2.18)

which sums to zero because for each pair of rings with interaction potentialVij the torques

are equal and opposite. Similarly, the totally = 0. Thus the total angular momentum of such

a precessing equilibrium configuration is parallel to thez-axis. By construction, the angular

momentum of the precession alone is also along thez-axis, i.e., the disk precesses around

the total angular momentum vector axis.

For a uniformly precessing configuration, additional insight may be obtained by moving

to a coordinate system which rotates around the angular momentum axis with the disk’s

precession frequencẏφ (Kuijken 1991). In this reference frame the shape of the precessing
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disk is stationary, but the particles in the different ringsstill spin about their rings’ symmetry

axes. If the particles in ringi rotate with velocityΩ(ri)ri in the positive sense, they experience

a Coriolis force in the rotating system which, integrated over the ring, results in a Coriolis

torque on ringi along thepθ-axis (line-of-nodes), given by

MC,i = −mir
2
iΩ(ri)φ̇ sin θi. (2.19)

For 0 < θ < π/2 and negativeφ̇ this torque is along the positivepθ-axis, i.e., is trying

to retard the ring relative to the rotating frame. Because the retrograde precession speeds

are small, we can neglect the centrifugal force terms. In this case, a stationary precessing

configuration is obtained when the forward gravity torques and the retarding Coriolis torque

balance in the rotating frame.

2.2.4 2-Ring and 3-Ring Cases

The argument just described suggests that there should exist steadily precessing 2-ring con-

figurations in which one ring is tilted above the planeθ = 0 and a second ring is tilted below

this plane. Both rings are pulled towardsθ = 0 by the gravitational force from the other ring.

The resulting gravity torques cause the angular momentum vectors of the two rings to precess

in the same sense, and are balanced by the Coriolis torques inthe precessing frame. To find

such configurations we need to solveṗθ = 0 using eq. (2.5a) for both rings simultaneously.

Assumingφ̇ ≪ Ω, we can neglect terms of orderφ̇2; then using eq. (3.23) the equation for

the inner ring atr1 becomes

sin θ1 ≃ −∂V12

∂θ1
/m1r

2
1Ω(r1)φ̇ (2.20)

and the ratio of the two equations is

sin θ1/ sin θ2 ≃ −m2r
2
2Ω(r2)/m1r

2
1Ω(r1), (2.21)

wherem1, m2 are the two ring masses,r1, r2 their radii, θ1, θ2 their inclinations, andV12

the interaction potential. Given the ring masses and radii and θ1, say, we can determine from

these equationsθ2, the interaction potential, and thus finally the precessionrate φ̇ required

for steady precession.

Using the expression in (2.13a) for the torque between the rings, equation (2.20) can be
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Figure 2.2: Relative inclination of two rings precessing together around a central massMbh,
as a function of the square root of the ratio of their radii. The combined mass of the two rings
is 0.5% of the central mass, approximately as in the Galactic center. The different curves
are for various values of the precession frequency of the two-ring system, in units of the
Keplerian frequency atr1.

cast into a more useful form:

φ̇

Ω1

= −sin 2α I12(α, ν)

sin θ1

νµ

(1 + ν2)3/2

m1

Mbh
, (2.22)

where the angleα = θ1 − θ2, ν ≡ r2/r1, µ = m2/m1, andI12 denotes the integral expression

of equation (2.13b).

Figure2.2 shows the differenceθ1 − θ2 between the inclination angles of the two rings

versus the square root of the ratio of their radii,r1/r2, for different precession frequencies,

expressed in units of the Keplerian frequency atr1. The combined mass of the two rings is

chosen to be0.5% of the central mass, approximately as inferred for the system of two stellar

rings in the Galactic center (Genzel et al., 2003). θ1−θ2 increases with decreasing precession

speed when the mass ratio is fixed. Eq. (2.22) shows that the same precessing equilibrium

configuration can be obtained by changingφ̇ ∝ Md = m1 + m2 and leaving all other pa-

rameters unchanged. More massive rings must precess fasterfor the same inclinations. Thus

the sequence of curves in Fig.2.2 can also be interpreted as a sequence of fixed precession

frequency but with mass ratioMd/Mbh increasing from bottom right to upper left.

Next consider three rings. In this case, each of the rings precesses in the potential of
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Figure 2.3: 3D view of a 3-ring system. The middle ring lies close to the equator, while the
others are distributed almost symmetrically around it.

the other two rings, and the reference frame is defined by the common plane of precession

perpendicular to the total angular momentum vector. Againṗθ [eq. (2.5a)] should be zero at

equilibrium for each of the rings. We can sum these three equations:

3∑

i

ṗθi
=

3∑

i=1

(
mir

2
i

2
φ̇2 sin θi cos θi − φ̇pψi

sin θi

)

−
3∑

i=1

∑

j 6=i

∂Vij
∂θi

= 0. (2.23)

TheVij terms cancel since∂Vij/∂θi = −∂Vij/∂θj . The remaining terms can be rewritten as

φ̇

(
3∑

i=1

mir
2
i sin θi

[

−Ω(ri) +
1

2
φ̇ cos θi

])

= 0, (2.24)

making use of eq. (3.23). This shows that, apart from the no-precession solution, asteadily

precessing equilibrium is possible only when at least one ofthe rings lies on the opposite

side of the equator with respect to the others, i.e., hasθi < 0. Likewise the two rings of a

precessing two-ring system must lie on opposite sides of theequator. Figure2.3shows as an

example the 3D view of a 3-ring system with massMd = 0.05Mbh andφ̇ = −0.0021Ω(r2).
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2.2.5 Approximation of A Disk With n-Rings

We now consider a disk represented as a collection ofn concentric rings. To find a precessing

equilibrium, we solveṗθ = 0 (eqs.2.5a) for all rings simultaneously, summing over the

torques from all other rings (eqs.2.13a). These aren equations for n+1 unknowns, the n

inclinationsθi andφ̇, which we solve keepinġφ fixed (Arnaboldi & Sparke, 1994)2. Figure

2.4shows a sequence of equilibria obtained for a constant surface density disk consisting of

35 rings. On each curve, the extent of the disk(i.e.∆r = rout − rin) is fixed at2.2 units, and

the precession rate iṡφ/Ω(rref) = −0.0021 whereΩ(rref) is the circular frequency on the

middle (reference) ring. The disk mass fractionMd/Mbh varies from0.16% to 21%. As the

mass of the disk increases, the degree of warping increases dramatically so that the Coriolis

torques can keep the balance of the gravity torques. The basic shape of the disk is similar to

that of the system of three rings in Fig.2.3. The middle rings lie closest to the equator, while

the inner and outer rings are almost symmetrically distributed around it.

Obviously, the larger the number of rings the better the approximation to a continuous

disk. Figure2.5shows the convergence of the total torques (upper panel), and of the inclina-

2Note that this does not work in linear theory because the linear solution can be scaled arbitrarily, i.e., one
of theθi can be eliminated.
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Figure 2.5: Convergence of the total torques (upper panel),and inclinations (lower panel), for
the innermost (solid lines) and outermost rings (dot-dashed lines), when the number of rings
to represent the disk is increased but the extent and the massof the disk are kept fixed.

tion angles obtained in steadily precessing equilibrium (lower panel), for the innermost and

outermost rings, when the number of rings to represent the disk is increased but the extent

and the mass of the disk are kept fixed. One sees that quite a number of rings are needed

before the torques converge. The inclination of the outer and inner rings have approximately

converged whenn ∼> 30.

2.2.6 Scaling the Solutions

Now we go back to the equilibria themselves, in particular tothe question of their scaling

properties. When the torque on ringi from all other rings is decomposed as

MG,i = −
∑

j

∂Vij
∂θi

= −
∑

j

∂Vij
∂αij

∂αij
∂θi

, (2.25)

the mass- and radius-dependent part is the first derivative on the r.h.s. The second factor in

each term of this sum depends from equation (2.12) only on the two sets of anglesθi, φi,

θj , φj. For equilibria with a common precessing line-of-nodes,αij = (θi− θj), so the deriva-
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tive is always unity. For the potential derivative terms, weuse equation (2.13a) and express

all ring masses and radii in terms of the mass and radius of a reference ring, i.e., we write

µi ≡ mi/mref , νi ≡ ri/rref , and similar forj. Then (2.25) takes the form:

MG,i = −Gm
2
ref

rref

[
∑

j

µiµjνiνj sinαij
(ν2
i + ν2

j )
3/2

Iij(αij, νi, νj)

]

︸ ︷︷ ︸

(2.26)

where we denote the expression over the brace asDi/2. For each precessing equilibrium disk

configuration as in Fig.2.4Di is a constant, and the torques on all rings scale as∝ m2
ref/rref .

If we now go back to equation (2.14), insert equation (2.26), and normalize the precession

rate with the circular frequency at the reference radius,Ωref ≡ (GMbh/r
3
ref)

1/2, we find

φ̇i
Ωref

=
1

ν
3/2
i cos θi

(

1 ±
√

1 +
νi cos θi
µi sin θi

Di
mref

Mbh

)

. (2.27)

For negativeφ̇ and after a Taylor expansion of the term in the square root, appropriate for

slow retrograde precession, equation (2.27) becomes

φ̇i
Ωref

≃ − Di

2µiν
1/2
i sin θi

mref

Mbh
≡ − Di

2Ai

mref

Mbh
. (2.28)

A precessing equilibrium is one for which all rings precess with the same common frequency,

φ̇i = φ̇. Equation (2.28) thus shows that for a fixed precessing disk mass configuration (i.e.,

fixed ring masses, radii, and inclinations, hence fixedDi/2Ai), the precession ratėφ scales

proportional to the Keplerian frequency at some reference radius in the disk and proportional

to the disk-to-black hole mass ratio. Vice versa, equation (2.28) can be interpreted as a scaling

relation which says that a precessing equilibrium solutionremains unchanged in shape (θi)

under changes of the disk mass, disk radius, black hole mass,and precession rate, provided

the ratio(φ̇/Ωref)/(Md/Mbh) is held constant.

Figure2.6 depicts the values of−Di/2Ai for a system of5 rings. The radii of the rings

are calculated such thatri = κi−1 × r1, with i = 1, 2, ..n, κ = 1.07, r1 = 5.75, and

n = 5, so if the third ring is the reference ring,νi = κi−3. The ring masses are assumed

to all have the same value,0.5516, so µi = 1, the black hole has a mass of 51.16, and

Md/Mbh = 0.054. On each curve in Fig.2.6, the precession ratėφ increases with steps of

−5× 10−5 (∆φ̇/Ω(r3) = −1.18× 10−4) starting from a value of−1× 10−4 (i.e., φ̇/Ω(r3) =
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−2.4 × 10−4) at the top. We checked the accuracy of the scaling and of our calculations

by computing−Di/2Ai values for different parameter pairs of the system that should give

the same−Di/2Ai according to equation (2.28). We overlay the results for the first ring

and precession speedφ̇/Ω(r3) = −0.0021, in the lower panel of Fig.2.6, zooming into the

parameter region−2.3 < D1/2A1 < −1.9 where the different curves deviate from each

other the most. In the worst case, due to the scaling of the ring radii, the deviations of theθi’s

from their values for the original 5 ring system are still less than1◦. Changes in radii cause

the largest deviations from the scaling relation because ofthe way in which they enter in the

quantityDi (equation2.27). The scaling results for the other rings are similar.

2.2.7 Stability

In this section we investigate the stability of the precessing equilibrium solutions found

above. Hunter & Toomre(1969) proved that isolated thin self-gravitating disks are stable

to allm = 1 warp perturbations and this carries over to disks embedded in spherical or oblate

potentials (e.g.Sparke & Casertano, 1988). We show here that the non-linearly warped pre-

cessing disks can be both stable and unstable to general ring-like perturbations. We describe

small perturbations of the precessing disk solutions by thelinearized equations of motion

around equilibrium:

∆θ̇i =
∂2Ti
∂p2

θi

∆pθi
,

∆φ̇i =
∂2Ti
∂pφi

∂θi
∆θi +

∂2Ti
∂p2

φi

∆pφi
,

∆ṗθi
= − ∂2Ti

∂θi∂pφi

∆pφi
− ∂2Ti

∂θ2
i

∆θi −
∂2Vm,i
∂θ2

i

∆θi

−∂2Vm,i
∂θi∂φi

∆φi −
∑

j

∂2Vm,i
∂θi∂φj

∆φj −
∑

j

∂2Vm,i
∂θi∂θj

∆θj ,

∆ṗφi
= −∂2Vm,i

∂φi∂θi
∆θi −

∂2Vm,i
∂φ2

i

∆φi

−
∑

j

∂2Vm,i
∂φi∂θj

∆θj −
∑

j

∂2Vm,i
∂φi∂φj

∆φj. (2.29)

HereTi andVm,i are the kinetic and potential energy terms in the Hamiltonian (2.7) for ring

i, respectively, and the partial derivatives are evaluated at the equilibrium solution(θi, φi =

const., ṗθi
= 0, ṗφi

= 0). The kinetic terms in equation (2.29) can be found in the Appendix
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B. These linear equations have solutions of the formeλt∆θ0, . . . etc., whereλ = λR ± iλIm

with its real and imaginary parts. The (constant) coefficients of the∆ terms in equation

(2.29) form a matrix H which carries the information on stability.When the real parts of the

eigenvalues of the matrix H,λR = 0, the imaginary parts of the eigenvalues,λIm, constitute

a rotation matrix through which the solutions oscillate around the precessing equilibrium

with frequenciesλIm, and the equilibrium is said to be stable. WhenλR < 0, the solutions

spiral towards the unperturbed equilibrium positions, leading to asymptotic stability of the

equilibrium. If, however, any of the eigenvalues have a nonzero real part,λR > 0, the system

moves away from equilibrium exponentially, and is unstable.

For determining the stability of any of our precessingn-ring solutions, we compute the

4n × 4n stability matrixH, using the equilibrium(θi, φi=const., ṗθi
=0, ṗφi

=0). We then

evaluate the eigenvalues of the matrix H, using routine F02EBF of the Numerical Algorithms

Group (NAG). This routine is suitable for computing eigenvalues and optionally eigenvectors

of real matrices.

First, we briefly discuss one example for the convergence of the linear stability results. In

Section2.2.5we had already discussed the convergence of the gravitational torques, and of

the inclination angles obtained for the precessing equilibrium solutions, as a function of the

number of rings used to represent the disk (see Fig.2.5). Figure2.7shows how the shape of a
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solution near the lower stable boundary of Fig.2.4and its stability changes with the number

of rings used to represent the disk. The transition from unstable to stable occurs at a disk

mass fraction ofMd/Mbh = 0.0018, 0.0013, 0.0011, 0.0011 for n = 15, 25, 45, 75 rings. This

shows that the transition has approximately converged whenn ≃ 45.

Next, we consider the issue of scaling. We have already seen that the equilibrium solu-

tions can be scaled in radius, mass, and precession speed according to the approximate (but

accurate) scaling relation (2.28): the anglesθi for all rings in the disk remain unchanged

if the precession speed expressed in units of the angular frequency scales linearly with the

disk-to-black hole mass fraction. Figure2.8 shows disks withMd/Mbh = 0.05 consisting

of equal mass rings with constant ratios of all ring radii relative to each other. Keeping the

ratio φ̇
√

r3
ref constant, we have moved the midpoints of these disks to various radii. All these

configurations are stable, and actually represent a similarwarped disk (i.e. innermost and

outermost inclinations being the same) at different distances from the black hole.

Figure2.9 illustrates the stability properties for these disks when the disk mass and pre-

cession speed are changed simultaneously. The boundaries of the stable solutions obtained

for a fixed disk mass configuration, i.e., a configuration withconstant ratios of all ring masses
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Figure 2.9: Schematic representation of stable warped disksolutions in theMd/Mbh versus
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dashed line corresponds to the maximum (minimum) stable precession frequency at fixed
disk-to-black hole mass ratio. This diagram is for disks with the same surface density profile
and inner and outer boundariesrin, rout.

and radii relative to each other, are shown by the two dashed lines in the figure. All stable

solutions lie between the two lines. These dashed lines are nearly straight, indicating that the

minimum and maximuṁφ/Ωref solutions at different mass fractions can be essentially scaled

to eachother - if the same (scaled) equilibrium solution wasthe stability boundary for all mass

ratios, the lines would reflect the scaling relation of eq. (2.27) resp. eq. (2.28) precisely.

Figure2.9shows that for each ratio of disk mass to black hole mass, there is a minimum

and maximum stable precession speedφ̇/Ω, and vice-versa. (see Fig.2.4 and Section2.3.1

below). The minimum (maximum) stable mass for givenφ̇/Ω is stable for all precession

speeds lower (higher) than the originalφ̇/Ω, until the other boundary curve is reached. For

other disk mass configurations, the range of stable mass ratios and the corresponding bound-

ary lines change, but the qualitative behavior remains the same.
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Figure 2.10: Inclination of a disk of 35 rings at different radii for Md/Mbh = 0.0016. On
each curve the precession frequencyφ̇ has a different value, given on the figure in terms of
the orbital frequency at the position of the middle ring. Theupper and lower curves show the
boundaries of stable solutions. See Section2.2.7and Fig.2.9.

2.3 Steadily Precessing, Non-linearly Warped Keplerian

Disks: Results

2.3.1 Warp Shapes and Warp Angles of Stable Precessing Disks

We have already seen in the discussion of three-ring and n-ring systems in Section2.2 that

self-gravitating precessing disks in a Keplerian potential can be strongly warped. In fact,

some of the disks shown in Fig.2.4 are so strongly warped that they would obscure the

central black hole from most lines-of-sight.

In this section we discuss these results in more detail. Figure2.10shows the warped stable

equilibrium solutions obtained for a sequence of disks withvarying precession frequency.

These disks have constant surface density between fixed inner and outer radii, and a total

disk-to-black hole mass ratio ofMd = 0.0016Mbh. The solutions shown in Fig.2.10 are

all linearly stable, according to the analysis described inSection2.2.7. Outside the range of

models bounded by the upper and lower curves one can find further equilibria, but these are

unstable.

By construction, these disks have a fixed line-of-nodes at all radii, and their shapes are
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Figure 2.11: Variation with disk-to-black hole mass ratio of the inclinations of the outermost
(θ > 0) and innermost(θ < 0) rings of a 35-ring warped disk withrout/rin = 1.44, for two
different values of the precession frequency. The figure shows how the warping increases
with increasing disk mass fraction and with decreasing precession speed, and also illustrates
the scaling relation of equation (2.28). Up to numerical errors, the minimum and maximum
values ofθ are the same on all two curves.

given in terms of the inclination angleθ relative to the plane defined by the total angular

momentum vector. In all cases there is a middle section of thedisk which lies approximately

in this plane, whereas the inner and outer parts warp away from this plane in opposite direc-

tions. For the most strongly warped stable solution in Fig.2.10the inner warp is by∼ 180◦

and the outer warp by∼ 120◦. This is obtained for the lowest stable pattern speed, in accor-

dance with the balance between gravitational and Coriolis torques [see Fig.2.1and equation

(2.19)]: the torques are weakest for the large inclinations. Thiscan be seen already in the

two-ring problem [see equations (2.20) and (2.22)]. The least strongly warped disk solution

in this example has inner and outer warps∼ 25 − 30◦.

The variation of the maximum inner and outer warp angles withdisk mass fraction is

shown in Figure2.11for fixed precession frequency and radial extent of the disk.The curves

with θ > 0 represent the outermost ring inclinations, and those withθ < 0 show the innermost

ring inclinations for different precession speeds. As we have already seen in Figs.2.4, 2.10,

these inclinations increase with increasing disk mass fraction and with decreasing precession

speed. Fig.2.11also illustrates the scaling relation of equation (2.28). Up to numerical errors,

the different curves can be scaled on top of each other.
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Some three-dimensional illustrations of warped disks fromthis family are shown in Figure

2.12. From top to bottom, these plots shows warped disks with increasing amplitude of the

warp, such that the disk in the bottom panel of Fig.2.12completely encloses the central black

hole.

Figure 2.12: Three-dimensional views of several 15-ring disks similar to those shown in
Fig. 2.4, with mass ratios given on the plots. The degree of warping increases with the disk
mass fraction until (for disk mass fraction greater than2 percent) the central black hole is
completely hidden behind the warped disk.
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2.4 Comparison with Linear Theory Solutions

Previous work on warped and twisted disks around black holeshas often made use of the lin-

ear approximation, in which the inclination angles of all parts of the warped disk are assumed

to be small. It is therefore interesting to briefly consider the linear limit of our analysis above.

For small warping anglesαij , the self-gravity torques simplify considerably. Becausethe

leading term in equation (2.13a) is alreadyO(αij), only theO(1) part of theIij terms in

this equation need to be included, while the next order,O(α2
ij), can be neglected. Thus in

computingIij thek2 term for ringj in equation (2.10) can be approximated as:

k2
ij ≈

4rirj
(ri + rj)2

(2.30)

and theIij term can be integrated to give

Iij ≈
1

π

[
E(kij)(1 − k2

ij/2)

1 − k2
ij

−K(kij)

]
(1 − k2

ij/2)3/2

k2
ij

. (2.31)

The mutual torque on ringi from ring j becomes, to first order inαij ,

∂Vij
∂θi

=
∂Vij
∂αij

∂αij
∂θi

≈ 2GmimjrirjIijαij
(ri + rj)3/2

∂αij
∂θi

. (2.32)

For a precessing equilibrium whenφi = φj, αij = θi − θj , the equatioṅpθi
= 0 becomes to

O(θ):

˙pθi
= φ̇2mir

2
i

2
θi − φ̇pψi

θi −
n∑

j=1

2GmimjrirjIij(θi − θj)

(r2
i + r2

j )
3/2

= 0. (2.33)

Equation (2.33) is a quadratic eigenvalue problem for the precession frequencies with the

following form:

Q(λ) = (λ2M + λC +K)x = 0. (2.34)

In order to solve equations like (2.34), one first makes a linearization. This can be done

by substitutingu = λx, in which case equation (2.34) becomesλMu + λC +Kx = 0, and

can be written as the generalized eigenvalue problem (GEP) (Tisseur & Meerbergen, 2001):
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[

uI − λxI

−Kx− Cu− λMu

]

=

[

0 I

−K −C

] [

x

u

]

− λ

[

I 0

0 M

] [

x

u

]

= 0. (2.35)

Here, I is then × n unitary matrix,n being the number of rings, and the matrices M, C

and K follow from equation (2.33). As can be seen from the matrix equation (2.35), the

transformation doubles the size of the original matrix. The2n eigenvalues correspond to the

precession frequencies, and their associated eigenvectors [θi, φ̇θi] give the shape of the warp.

We use the NAG routine F02BJF to find the eigenvalues and eigenvectors of equation

(2.35).

The2n eigenvalues constitute two distinct families in the frequency spectrum of the disk;

the fast prograde, and the slow retrograde frequencies (Hunter & Toomre, 1969). In fig-

ure (2.13) we show the full spectrum of precession frequencies for a disk of 35 rings with

Md/Mbh = 0.005, androut/rin = 1.44. The frequencies are normalized to the orbital fre-

quency at the position of the reference (middle) ring. The dashed line separates the prograde

and retrograde families.
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Figure 2.13: Full spectrum of precession frequencies for a disk withMd/Mbh = 0.005, and
rout/rin = 1.44. The precession frequencies are normalized to the orbital frequency at the
position of the reference (middle) ring. The dashed line separates the prograde and retrograde
families.

To our interest are the disks precessing retrograde with respect to the direction of the

orbital motion. Figure (2.14) shows a zoom into this region of the spectrum.
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Figure 2.14: Normalized retrograde precession frequencies sorted in decreasing order for a
disk consisting of 35 rings withMd/Mbh = 0.005, androut/rin = 1.44. First few frequencies
are shown with different symbols. They correspond toN = 0 (triangle),N = 1 (filled circle),
N = 2 (star), andN = 3 (square) modes of the disk.

When sorted in decreasing order, the first retrograde frequency shown by the triangle

symbol has a value of zero, and its associated eigenvector represents a rigid tilt of the whole

disk by a constant angle, i.e.θi = constant. This is the so-called rigid tilt mode of the disk.

The next eigenvalue corresponds to the warp shapes we have discussed so far, where the disk

has one radial node, i.e.N = 1 (Hunter & Toomre, 1969; Sparke, 1984; Sparke & Casertano,

1988). This is shown with the filled circle in figure (2.14), while the star and the square

symbols correspond to theN = 2, andN = 3 modes respectively. In figure (2.15) we

show these mode shapes for the same disk parameters. In the following, we restrict our

discussion to linear warp shapes of the kindN = 1. In Figure2.16we show the modified

tilt mode in linear theory of a disk withMd/Mbh = 0.005, rin = 5 androut = 7.2 for 40

rings. This is obtained by solving equation (2.33) and is shown with the dashed line. We note

that in linear theory the warp shape can be arbitrarily scaled as long as the local gradient of

the tilt satisfiesdθ/dR < 1.2/R (see Section (2.2.2); if this condition is violated, the linear

approximation to the self-gravity torques breaks down. Therefore in Fig.2.16the linear mode

is scaled to its maximum possible amplitude such that the condition is everywhere satisfied.

As mentioned above, the precession frequency of this mode isthe first nontrivial eigenvalue

in the retrograde family, and here it has a value ofφ̇/Ωref = −0.0103 when normalized to the

rotation frequency of the reference ring. For this frequency, we then solve equation (2.5a) to
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Figure 2.15: Different mode shapes for a disk of 35 rings withMd/Mbh = 0.005, and
rout/rin = 1.44. TheN = 0 mode shown by with the triangle symbol is a simple tilt of
the disk where all the rings have are at the same inclination.N = 1 mode shown with the
filled circle contains a single node in the radial direction.Higher order shapes are depicted
with the star and the square symbols forN = 2, andN = 3 respectively.

obtain the nonlinear warp shape shown by the solid line in Figure2.16. The larger curvature

of the non-linear warp near the inner and outer boundaries ofthe disk, with respect to the

scaled linear mode, shows that the linear approximation overestimates the torques in these

parts of the disk.

However, the main difference between linear modes and non-linear warps is that, for

a given mass distribution of the disk (surface density profile, inner and outer boundaries),

the precession frequency and shape of the modified tilt mode in linear theory is uniquely

determined, whereas non-linear equilibrium warp solutions may exist for a range of pre-

cession frequencies and warp shapes or, e.g., for extended disks, may not exist at all. For

the case shown in Fig.2.16, non-linear warped equilibria are found for precession frequen-

cies in the rangėφ/Ωref = −8.87 × 10−5 → −1.16 × 10−2 and are stable in the range

φ̇/Ωref = −9.24× 10−5 → −9.63× 10−3. The particular non-linear warp shape obtained for

the frequency of the linear mode and shown in Fig.2.16is unstable.

Alternatively, the warp shape may be parameterized by the inclination of the outermost

ring, say,θn. Linear theory warps can in the previous example be considered valid up to

θn ≃ 10◦, and have all the same precession frequency. Non-linear warp modes are found in

the rangeθn = 19.1◦ → 130◦, and are stable in the rangeθn = 20.9◦ → 129◦. They are
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Figure 2.16: Warp shapes for a disk withMd/Mbh = 0.005 as obtained in the linear (dashed
line), and nonlinear (solid line) torques regimes, for the same precession speed. The linear
mode is scaled to the maximal amplitude for which the linear approximation to the grav-
itational torques can be used. The non-linear disk shape is determined for the precession
frequency given by the eigenvalue of the linear mode; it is unstable. Stable non-linear warps
for this mass configuration have lower precession speeds andare more strongly warped than
the solution shown.

disjunct inθn from the linear modes, and their precession speed decreaseswith θn according

to the balance of gravitational and Coriolis torques.

2.4.1 Dependence on Surface Density Profile and Radial Extent

The warped disks presented in Figs.2.4, 2.11 have constant surface density. For compar-

ison, Figure2.17 shows the warping of an exponential disk, with surface density Σ(r) =

Σ0 exp(−r/rd) whereΣ0 denotes the central density andrd is the scale length, chosen to

be 2.5 units in this example. The other parameters (relativering radii, precession speed) are

identical to those used in Fig.2.4. The basic warp shapes are similar as for constant sur-

face density, but the maximum outer warp angles are slightlylarger. The range of stable

disk masses is also comparable to that for the constant surface density disk (for the same

precession speed); see the curves showing the boundaries ofstability in Figs.2.4, 2.17.

Because the condition for a warped equilibrium is that the Coriolis and gravitational

torques balance, clearly not only the mass fraction and massdistribution, but also the ra-

dial extent of the disk must be important for determining thewarp shape and its stability. To
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investigate this we compiled a set of precessing equilibriawith varying radius scaling factor

κ, as follows (see also Section2.2.5). After fixing the radius of the middle ring of the disk,

rmid, we determine the remaining ring radii such that

ri = rmidκ
j







j = i− n+1
2

n odd

j = i− n
2

n even
i = 1, 2, . . . , n (2.36)

wheren is the number of rings. For illustration, we consider a family of disk models with

the same disk-to-black hole mass fractionMd = 0.01Mbh, each with its own constant surface

density given byMd andκ. All disks are made ofn = 35 rings, and the middle ring radius is

set tormid = 6 units.

Figure2.18 shows precessing equilibria for such disks for differentκ. The upper and

lower curves show the two disk shapes that bound the stable range of solutions in terms of

theκ-factor. In the case where the rings have minimum possible separation from each other,

the inner ring has a radius ofr1 = 5.7 units, and the outer ring hasrn = 6.3 units. On the

other hand, for the most extended stable disk in this family,r1 = 3.9, andrn = 9.1. When

the extent of the disk is increased, a slight decrease in the warping is observed in Fig.2.18.
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This is due to the fact that the torque from a ring of constant mass decreases with distance to

the ring, cf. equation (2.13a).

Figure2.19shows the radial extent of the diskrout/rin for which stable warped equilibria

can be found, for different surface density profiles and as a function of disk-to-black hole

mass ratio. The most important result of these calculationsis that stable non-linear warps can

be maintained only for disks with inner and outer boundaries, for whichrout/rin ≃ 2-4. This

is reminiscent of the result ofHunter & Toomre(1969) that in linear theory only truncated

disks permit long-lasting bending modes.

2.4.2 Time-Evolution of Ring Systems

In this section we consider the explicit time-evolution of aprecessing system of self-gravitating

rings in a massive black hole potential. By integrating the equations of motion, equations (3.21)-

(3.24), starting from initial conditions corresponding to one ofthe precessing disk solutions

found earlier, we can check the stability of this solution directly and compare with the linear

stability analysis.

In these integrations, we use disks of 20 equal mass rings, equally spaced in radius. The

ratio of the outermost ring radius to that of the innermost ring is 1.44. The initial θi are

obtained from precessing equilibrium solutions; all ringshave the same line-of-nodes, i.e.,

the same initialφi. The equilibrium precession speed is given byφ̇/Ωref = −0.0021.

In the following figures, symbols starting from the outer circle show the variation of

inclination θ with ring radius, where the ring radii are shown as distancesfrom the center

of the plot, with scale shown on the lower right. The symbols starting from the inner circle

show how the azimuthal angleφ changes with the ring radius; for this part of the plot, the

ring radii are scaled down to the half of their values to make the figure more easily readable.

The elapsed time of the integration is shown on top of the figures, in terms of the number of

orbital periods at the position of the outermost ringn whereφ̇/Ωn = −0.0027.

Figure2.20shows the time evolution of a disk of 20 rings withMd = 0.05Mbh. The disk

stays in equilibrium for12 orbital periods, consistent with its linear stability. Figure 2.21

shows the evolution of disk of 20 rings withMd = 0.1Mbh. This disk precesses as a unit

for 8 orbital periods, but then it starts to break into parts,hence the disk is unstable, as also

predicted by linear stability analysis.

To strengthen the agreement between linear stability and time evolution results, we inte-

grate two of these ring systems for longer. Figures2.22and2.23show the time evolution of
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Figure 2.20: Time-evolution of a disk of 20 rings with total massMd = 0.05Mbh. The disk
is stable.
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Figure 2.21: Time evolution of a disk of 20 rings with total massMd = 0.1Mbh. The disk
precesses as a unit for nearly 8 orbital periods, but then it starts to break up, so is unstable.
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Figure 2.22: Time-evolution of a disk of 15 rings with mass fractionMd/Mbh = 0.005. The
disk is followed for50 orbital periods and is stable.

two disks with massesMd = 0.005Mbh andMd = 0.02Mbh, with 15 logarithmically spaced

rings according to equation (2.36), over 50 orbital periods. In both cases the disks are stable,

as expected from the linear stability analysis.

2.5 Discussion

2.5.1 Theoretical Issues

In this work we have considered warped disks around black holes for which the only acting

force is gravity and the disk is approximated as a nested sequence of circular rings. We have

focussed on non-linearly warped, steadily precessing diskconfigurations, contrary to most

previous work in which small amplitude warps were considered, often of a transient nature.

We have found that stable, steadily precessing, highly warped disks can be constructed, albeit

only over a limited radial range, such that the typical ratioof the outer to the inner boundary

radius is∼ 2-4.

In one illustrative case, we have compared with a linear theory warped disk. For a given

disk mass configuration, the precession frequency of the linear, modified tilt mode is given

as an eigenvalue, and the shape can be scaled up to the amplitude where the validity of the

linear approximation to the gravitational torques breaks down. The corresponding non-linear

warp with the same precession frequency is unstable. Stablenon-linear warps for the same

mass configuration exist for a disjunct range of precession speeds which are all slower than
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Figure 2.23: Time-evolution of a disk of 15 rings with mass fraction ofMd/Mbh = 0.02. The
evolution is followed for50 orbital periods and the disk is stable.

that of the linear mode. Their warp angles increase with decreasing precession speed, and the

non-linear solutions are more strongly warped than the linear mode at the maximum scaling.

These warped disks obey a scaling relation in the sense that (i) they can be scaled to an

arbitrary radiusr, provided the precession speed is scaled to the circular frequencyΩ(r), and

(ii) they can be scaled in mass, provided the ratio of precession frequency toΩ(r) keeps in

line with the ratio of disk mass to black hole mass.

In constructing these solutions, we have neglected the background potential generated

by the surrounding nuclear star cluster, whose quadruple moment will often be important

on scales of∼ 0.1 pc. Figure2.24shows steadily precessing warped disk inclinations for

one case including the background potential. For the parameters chosen, the solutions are

qualitatively similar to those discussed earlier.

Stability was tested with respect to perturbations of the ring parameters, that is, the orbits

of gas and stars were assumed to remain circular. We did not investigate instabilities by

which the disk would become eccentric or lop-sided. Answering the question whether such

instabilities are relevant for the warped disks consideredhere requires different techniques

and must remain for future work (see, e.g.,Touma, 2002).

Neglecting gas pressure and viscosity for our warped disk solutions is justified if the disks

are cold and the viscous time-scale is much longer than the precession time-scale.Pringle

(1992) has devised a system of equations for the evolution of the surface density and local

angular momentum vector of a non-linearly warped, viscous disk. A logical next step is

to add the gravitational torques to these equations and study the evolution of viscous, self-
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Figure 2.24: Inclination of a disk of constant surface density at different radii, under the self-
gravity torques and the quadrupole torques of a surroundingstar cluster. This is parameterized
by the ratioηM∗/Md, whereη measures the flattening of the potential (equation (2) ofSparke
1986) andM∗/Md is the ratio of the mass of the star cluster to the mass of the disk, inside
the outermost ring radius.

gravitating, non-linearly warped disks; this is work in progress.

2.5.2 Origin of Warped Disks

An important question is whether, and if so how, the warped nuclear disks we have consid-

ered can be set up in nature. Infall of gas clouds on inclined orbits has been discussed in

the context of observations of the Galactic center (see nextsection) as a possible model for

generating a warped disk in the central parsec (Hobbs & Nayakshin, 2009). If the potential

of the nuclear star cluster is important, accretion of gas onto a plane inclined relative to its

principal plane may lead to a warped disk. The combined quadrupole moment of the gas

disk itself and of the background cluster potential would cause the orbits to precess and the

disk to become warped. In both cases, the accreting gaseous material with misaligned an-

gular momenta will not directly end up in a warped disk with the right density structure for

steady state precession. However, the disk may settle into awarp mode if the energy asso-

ciated with the transient response can be transported outwards by bending waves (Toomre,

1983; Hofner & Sparke, 1994), or in the case of gaseous disks, if it can be dissipated (see

discussion inPapaloizou et al., 1998); this remains to be investigated.
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Caproni et al.(2006b) discuss four warping mechanisms for extragalactic accretion disks:

tidal, irradiative, magnetic, and Bardeen-Petterson. If aplanar disk has become warped by

the radiation pressure instability discussed byPetterson(1977); Pringle (1996) or through

magnetic instabilities (Lai, 2003), the gravitational torques might start to dominate once the

source of the initial warping disappears. Highly warped disks have been reported before by

Pringle(1997) in the context of the radiation pressure instability. We have done some simple

time evolution calculations to show that initially highly warped disks often do not dissolve

through self-gravity precession; the torques then cause wobbling but not break-up of the disk.

The role of self-gravity in such models would be to ensure thelong term persistence of the

warp. Future work along the lines discussed at the end of the last subsection may be able to

clarify whether this is feasible.

2.5.3 Warped Disks in Galactic Nuclei

Warped disks around central black holes have been inferred through observations of water

maser emission in several nearby active galaxies such as NGC4258, NGC 1068, and the

Circinus galaxy. The maser disks in these galaxies extend radially between0.16 − 0.28

pc (Herrnstein et al., 1999), 0.65 − 0.11 pc (Greenhill & Gwinn, 1997), and0.11 − 0.4 pc

(Greenhill et al., 2003), respectively. The most widely studied of these maser disks is in

NGC 4258, where from the near-Keplerian rotation curve of the high-velocity masers the

black hole mass is deduced to be3.8 × 107M⊙, and the dynamical upper limit to the mass of

the disk is< 106M⊙ (Herrnstein et al., 2005). Stationary, power-law accretion disk models

constrained by theory and observations have mass fractions10−4 − 10−3 of the central black

hole, in which case the gravitational and viscous torques are comparable (Caproni et al.,

2007; Martin, 2008). Several explanations have been suggested for the observed warp in

the disk (Caproni et al., 2006b). In one model the warp is caused by a binary companion

orbiting outside the disk (Papaloizou et al., 1998); this would need a mass comparable to

that of the disk. A second possibility is radiation pressurefrom the central source (Pringle,

1996; Maloney et al., 1996), butCaproni et al.(2006b) analyzing several AGN disks find that

these are stable against radiation warping. The most favored explanation for the warp is the

Bardeen-Petterson effect (Caproni et al., 2007; Martin, 2008) but to reach a steady state the

disk must be very long-lived. Gravitational torques have sofar been mostly neglected; our

results suggest that it may be worthwhile to consider modelsincluding both the gravity from

the disk and possibly the quadrupole moment of the stellar cusp.
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In the Galactic center, NIR observations have identified oneor possibly two disks of

young stars at a distance of∼ 0.04 to 0.4 pc from the central black hole SgrA* (Genzel et al.,

2003; Paumard et al., 2006; Lu et al., 2009; Bartko et al., 2009). These stellar disks are highly

inclined both with respect to the Galactic plane, and with respect to each other. The total mass

in the disks, as inferred from stellar number counts, is around104 M⊙ (Paumard et al., 2006).

This is a non-negligible fraction of the mass of SgrA*,Mbh ∼ 4 × 106 M⊙ (Genzel et al.,

2000; Ghez et al., 2005). The recent analysis ofBartko et al.(2009) shows that the clockwise

rotating disk is warped, with angular momentum direction slewing over∼ 60◦ from the

inner to the outer stars. We consider the precession of the warped disk in the Galactic center

elsewhere.

Warped disks could also have important implications for theunification of AGN (Phinney,

1989). The unification theories rely on the obscuration along some lines-of-sight of the ra-

diation from the central source by intervening matter. While this obscuring matter is usually

depicted as a doughnut-like torus, an alternative possibility is that it could have the shape of

a flared or warped disk. The highly warped solutions discussed above in principle provide

the geometry to obscure the central engine from most lines-of-sight. The obscuring medium

required for these unification scenarios must be clumpy (Nenkova et al., 2002), perhaps sug-

gesting fragmentation of the disk (Goodman, 2003). Nayakshin(2005) studied the evolution

of a highly inclined warped disk, where he showed that the disk indeed can conceal the central

object for most of its lifetime. In the nonlinear regime, warped disks can obscure a significant

part of the solid angle of the source (see Figure2.12in Section3.4above). Recently,Wu et al.

(2008) showed that because the outer parts of a warped disk receivea larger fraction of the

central emission, the line ratios of the reprocessed Balmeremission lines can be successfully

predicted by a warped disk model.

2.6 Summary and Conclusions

In this paper we have investigated non-linearly warped disksolutions around black holes for

which the only acting force is gravity. We used a simple modelin which the disk is approxi-

mated as a nested sequence of circular rings. We have shown that with these approximations

stable, steadily precessing, highly warped disks can be constructed.

These disks have a common line-of-nodes for all rings. In allcases there is a middle

section of the disk which lies approximately in this plane, whereas the inner and outer parts

warp away from this plane in opposite directions. The warp angles of these solutions can be
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very large, up to∼ ±120◦, but they extend only over a limited radial range, such that the

typical ratio of the outer to the inner boundary radius is∼ 2-4. Such precessing equilibria

exist for a wide range of disk-to-black hole mass ratiosMd/Mbh, including quite massive

disks.

The stability of these precessing disks was determined using linear perturbation theory

and, in a few cases, confirmed by numerical integration of theequations of motion. We found

that over most of the parameter range investigated, the precessing equilibria are stable, but

some are unstable.

These disks obey a scaling relation: they can be scaled to arbitrary radii r, provided the

precession speed is scaled to the circular frequencyΩ(r), and they can be scaled in mass,

provided the ratio of precession frequency toΩ(r) is changed, in good approximation, pro-

portionally to the ratio of disk mass to black hole mass.

The main result of this study is that persistent forcing of the disk other than by its own

self-gravity is not necessarily required for maintaining anon-linearly warped disk in a Keple-

rian potential. Further work combining self-gravity with gas physics etc. will show whether

these self-gravitating warped disk solutions help to understand the observed warped disks in

galactic nuclei.



CHAPTER 3

ON THE ORIGIN OF WARPED STELLAR

DISKS AT THE GALACTIC CENTER

The Galactic Center hosts population of young stars which orbit SgrA* on clockwise and

counter clockwise orbits on the plane of the sky. The clockwise orbits form a well defined

disk, and a secondary disk of the counter clockwise stars is also becoming pronounced in

some of the recent observations. While the formation of stars in the close proximity of the

massive black hole is already problematic, their orbital configuration makes the situation

even more bizarre.

We present a possible warped disk origin scenario for these stars, which assumes an

initially flat accretion disk becoming warped due to a central radiation source via Pringle

instability, or due to a spinning black hole via Bardeen-Petterson effect. The young stars

form after the disk becomes warped. The warped disk of stars then evolves in the combined

potential of the black hole, and the disk self-gravity. We show that the disks with a mass ratio

Md/Mbh > 0.001 break into two pieces, while below this this limit they remain intact. Com-

parison of our models with the observations suggest that theconfiguration of the clockwise

disk can be explained by a non-breaking disk, and that the counter rotating disk probably has

a different origin.

3.1 Introduction

The center of our Galaxy hosts a supermassive black hole (SMBH), SgrA*, with a mass of

3.95±0.06×106 M⊙ (Genzel et al., 2000; Ghez et al., 2005; Trippe et al., 2008; Gillessen et al.,

63



64 CHAPTER 3. WARPED STELLAR DISKS AT THE GALACTIC CENTER

2009). SgrA* is surrounded by a cluster of old (Schödel et al., 2007; Trippe et al., 2008), as

well as a group of young stars (Krabbe et al., 1995; Genzel et al., 2003; Levin & Beloborodov,

2003; Paumard et al., 2006; Lu et al., 2006, 2009; Bartko et al., 2009).

Of the nearly 90 young stars observed at distances∼ 0.05 pc to∼ 0.5 pc, 40 populate a

disk (Genzel et al., 2003; Levin & Beloborodov, 2003; Paumard et al., 2006; Lu et al., 2006,

2009; Bartko et al., 2009) which is observed to rotate clockwise (CW) on the plane of sky. Of

the rest, 19 stars seem to populate an other disk highly inclined to the CW disk (Genzel et al.,

2003; Paumard et al., 2006; Bartko et al., 2009). This second disk is seen to rotate counter

clockwise (CCW) on the sky (but also seeLu et al. (2006)). Ages of these young stars are

consistent with being a few Myr, suggesting that there has been a star formation episode in

the Galactic Center (GC) a few million years ago.

In order for a molecular cloud near a SMBH to fragment into stars, its self-gravity should

overcome the tidal field of the black hole. This requirement for star formation poses a con-

straint on the minimum cloud densities, which are orders of magnitude higher than the ob-

served cloud densities near the GC. However theoretical estimates suggest that the fragmen-

tation conditions are met naturally on the accretion disks which become self-gravitating be-

yond a few tenth of parsec (Kolykhalov & Syunyaev, 1980; Gammie, 2001; Goodman, 2003).

Therefore several numerical simulations have been performed aiming at modeling the in-situ

fragmentation of a nuclear/accretion disk for parameters relevant to the GC. The simula-

tions were run either assuminga priori a gravitationally unstable accretion disk already in

place (Nayakshin et al., 2006; Alexander et al., 2008), or trying to account also for the for-

mation of the disk itself through infall of molecular cloudsinto the vicinity of the black hole

(Bonnell & Rice, 2008; Mapelli et al., 2008; Hobbs & Nayakshin, 2009).

Today it looks like a star forming disk at the GC can be simulated, albeit perhaps for a

somewhat fine-tuned parameter range. On the other hand, apart from the problem of youth,

another issue still to be addressed is the distribution of the inclinations of the stars. It is

reasonable to expect that a planar accretion disk leaves behind a planar distribution of stars

when it fragments, but the recent data published byBartko et al.(2009) provide evidence for

a warp in the CW disk with an amplitude of about60◦ (Bartko et al., 2009). Lu et al.(2009)

point out that even though the stars might have formed in-situ, their current orbital distribution

suggests a more sophisticated origin than a simple thin accretion disk. Simulations performed

by Cuadra et al.(2008) are in line with this idea showing that once the stars form ona cold

accretion disk it is not possible to perturb these stars to the high inclinations at which they

are observed.
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Warped disks, although monitored only through maser emission from gas disks, ex-

ist on similar scales in other nearby galactic nuclei such asNGC4258 (Herrnstein et al.,

1996), NGC1068 (Greenhill & Gwinn, 1997), and Circinus (Greenhill et al., 2003). An ini-

tially planar accretion disk could become warped when torqued by a spinning black hole

(Bardeen & Petterson, 1975; Armitage & Natarajan, 1999; Lodato & Pringle, 2007; Martin,

2008), or when exposed to radiation from a central source (Petterson, 1977; Pringle, 1996,

1997). Milosavljević & Loeb(2004) pointed out that the maser nuclei, and the Galactic Cen-

ter might represent different epochs of a cycle during the lifetime of a typical spiral galaxy.

In this chapter, we develop an alternative scenario for the formation of a star-forming,

warped disk at the Galactic Center. According to this scenario, a flat accretion disk forms

around SgrA*, extending out to the location of the young stars observed today. During a

supposed period of active accretion, the disk is illuminated by the central source, or torqued

by a spinning black hole, and becomes warped due to the Pringle instability or the Bardeen-

Petterson effect, respectively. When the AGN activity subsides, the disk cools and forms

stars. Afterwards, the stellar disk evolves in the gravitational field of the black hole, and its

own self-gravity. We investigate under which conditions this scenario could work, and show

that with a low mass such as inferred today the remnant warpedstellar disk survives for the

life-time of the observed young stars, but with significantly higher mass it often breaks into

two coherent pieces.

In Section3.2 we work out the conditions for which the disk would become warped

due to the mechanisms mentioned above, and then fragment into stars. In Section3.3 we

describe our model and the numerical scheme for studying thesubsequent time evolution of

the warped stellar disk. The results of our calculations evolution are presented in Section3.4,

and in Section3.5we compare these models with the observations. The results of this chapter

are discussed in Section3.6, and finally in Section3.7we list our conclusions.

Before moving on, we list in Table3.1 some parameters of the Galactic Center and the

above mentioned disks. Throughout this chapter, we will assume a mass ofMbh = 4×106M⊙

for SgrA*, rin = 0.06 pc, androut = 0.4 pc for the inner and outer edges of the disk whenever

needed.

3.2 Warping the Galactic Center Disk

In this section, we discuss a plausible scenario of how a diskof young stars in the Galactic

Center might have acquired its warped shape. For now we only consider a single disk, refer-
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Parameter Value References

Mbh ∼ 4 × 106 M⊙ Trippe et al.(2008); Gillessen et al.(2009)
L/Ledd ∼ 10−9 ergs−1 Narayan(2002); Baganoff et al.(2003)
rin 0.06 pc Paumard et al.(2006); Bartko et al.(2009)
rout 0.4 pc Paumard et al.(2006); Bartko et al.(2009)
Pin ∼ 690 yr
Pout ∼ 1.19 × 104 yr
Md|CW < 1 × 104 M⊙ Nayakshin(2005)
Md|CCW < 5 × 103 M⊙ Nayakshin(2005)

Table 3.1: Parameters of the nuclear region of the Galaxy andof the stellar disks.rin, and
rout are the innermost and outermost radii of the stellar disk, and Pin, andPout are the corre-
sponding orbital periods respectively.

ring to the clockwise rotating disk whose warped shape is described inBartko et al.(2009).

We start with the assumption that an accretion disk builds up, leading to an active phase of

sub-Eddington accretion onto the Galactic Center black hole. We then investigate two pos-

sible mechanisms: radiation pressure instability (Petterson, 1977; Pringle, 1996, 1997) and

Bardeen Petterson effect (Bardeen & Petterson, 1975) for warping the accretion disk, which

have both been extensively discussed in the context of the maser disks in nearby Seyfert

galaxies (Maloney et al., 1996; Scheuer & Feiler, 1996; Pringle, 1997; Armitage & Natarajan,

1999; Lodato & Pringle, 2007; Martin, 2008). We further assume that after some time the ac-

cretion and energy production is reduced, following which the warped disk can cool and form

stars. Thereafter the stellar disk is only subject to gravity, precessing under the influence of

the gravitational torques from the disk itself.

In Section3.2.1, we constrain the surface density of the disk prior to fragmentation from

the observed number density of young stars. In the followingsubsections3.2.2and3.2.3,

we consider in turn warping by the radiation pressure instability and the Bardeen-Petterson

effect. In Section3.2.4, we compare the radiation, viscous, and gravitational torques on the

disk, and in Section3.2.5we consider fragmentation and star formation.

3.2.1 Surface Density of the Disk Prior to Fragmentation

The warping mechanisms we will shortly be considering in sections (3.2.2) and (3.2.3) are

generally studied within the framework of viscous, steady-state accretion disks. As such they

make use of a number of parameters which from the observations of the stellar disks can not

be tested or constrained. For these, we will mostly refer to the canonical values for AGN
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disks when needed. Still, there is one parameter, the surface density of the supposed gaseous

disk which may be determined by the observations. To do so we make use of the stellar

number counts on the Galactic Center (GC) disks. The total number of starsN⋆ in a stellar

population can be calculated by writing:

N⋆ =

∫ M2

M1

ξ(M)dM, (3.1)

whereξ(M) is the initial mass function, IMF, andM1 andM2 are the lowest and highest stel-

lar masses assumed to exist in this population. The IMF describes how the mass is distributed

in stars in a newly born population. For a given IMF, the totalmass in stars,Ms, is calculated

from:

Ms =

∫ M2

M1

Mξ(M)dM. (3.2)

Paumard et al.(2006) deduce from the K-band luminosity function of the observedearly

type stars an IMFξ(M) = ξ0M
−0.85 for the GC disks. TheBartko et al.(2009) sample

includes 40 stars in the clockwise (CW) disk, and 19 stars in the counter clockwise (CCW)

disk. Using equations (3.1) and (3.2), and assuming a lower mass end of1M⊙, and an upper

mass end of120M⊙, the current total stellar mass in the disks can be found to beMs|CW +

Ms|CCW = Ms ∼ 4000M⊙, whereMs|CW , andMs|CCW are the masses of the CW and CCW

rotating disks respectively. The total stellar mass inferred today is a fraction of the mass of

the original gaseous disk since presumably not all the gas was converted to stars. Assuming a

star formation efficiencyǫSF the total mass of the seed disk can be calculated. Since the radial

extent of the disks is observationally constrained, this mass can be converted into a surface

densityΣ of the proposed gas disk. The observations of the stellar disks suggest that the mass

density decreases nearly as1/r2 (Paumard et al., 2006; Bartko et al., 2009), so we write for

the massMd and surface densityΣd of the gaseous disk:

Md = 4000µ4000ǫ
−1
SFM⊙, (3.3)

whereµ4000 = (Ms/4000M⊙) and forΣd(r) = Σ0.1r̂
−2 we find:

Σ0.1 = 3.356 × 104µ4000ǫ
−1
SF

M⊙

pc2
= 7.013µ4000ǫ

−1
SF

g

cm2
. (3.4)

with r̂ ≡ r/0.1pc. In Figure3.1 we show for two star formation efficiencies the surface

density of the disk obtained as described above. The solid line assumesǫSF = 0.01, and the
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dotted line assumesǫSF = 1.
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Figure 3.1: Surface density of the supposed GC gaseous disk for star formation efficiencies
of 0.01 (solid line), and1 (dotted line).

3.2.2 Radiation Driven Warping and the Galactic Center Disk

Radiation warping of accretion disks is studied in detail bymany authors (Pringle, 1996;

Maloney et al., 1996; Pringle, 1997; Ogilvie & Dubus, 2001). When an optically thick is

exposed to central radiation, and it re-emits the absorbed incident photons parallel to the disk

local normal, an inward directed force is experienced by each side of the disk. If the disk

is slightly distorted, a net torque is induced which resultsin a modification of the warp, and

precession of the disk around the total angular momentum direction. Whether the disk will

acquire a pronounced warp or not, depends on the competitionbetween the net torque, and

the component of the stress in ther − z direction in cylindrical symmetry, present in warped

disks. The latter forces the disk to settle onto a plane on an alignment time-scale. The

alignment time scale at distancer from the black hole is associated with ther− z stress, and

can be written astν2 = 2r2/ν2, whereν2 is the vertical viscosity coefficient. The condition

that the warp growth time scale,twarp, be smaller than the viscous time scale,tν2 is written as

(Pringle, 1997):
12πΣr3Ωc

L
≤ 2r2

ν2

, (3.5)
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where, L is the luminosity of the central source, c is the speed of light, andα is the Shakura-

Sunyaev parameter (Shakura & Syunyaev, 1973). Equation (3.5) assumes an accretion disk

which is in steady state. For such disks, the luminosity of the disk L is related to the radia-

tive efficiencyǫ ≡ L/Ṁc2, whereṀ is the mass accretion given bẏM = 3πΣν1, andν1

is the radial viscosity coefficient. In order to evaluate thewarping criterion given in (3.5)

one has to estimate the magnitude of the vertical viscosityν2. Previous studies of linear hy-

drodynamic warps and magnetized shearing box simulations of accretion disks showed that

ην = ν2/ν1 = 1/2α2 (Papaloizou & Pringle, 1983; Ogilvie, 1999; Torkelsson et al., 2000).

Lodato & Pringle(2007) find with SPH simulations of small and large-amplitude warps that

the vertical viscosity saturates for smallα such thatην < 3.5α. Using these, the warp damp-

ing time scale becomes:

tν2 =
2r2

ν2

≃
( α

3.5

) 2r2

ν1

≈ 2 × 105αµ4000ǫ

ǫSFηedd

yr, (3.6)

whereηedd ≡ L/Ledd. Equation3.5 can now be rearranged to give the radiation warping

critical radius:

Rrad >
2η2

ν

γ2
critǫ

2

2GM

c2
, (3.7)

whereγcrit ≃ 0.32 (Pringle, 1997). One way to obtain a stronger torque is if the irradiation of

the disk is driving an outflow (Schandl & Meyer, 1994). In this case, the torque is determined

by the outflow momentum or pressure at the sonic point, which is basically∝ L, but also

depends on the detailed disk structure in a complicated way.The enhancement of the torque

could be significant, as the ratio of momentum to energy for particles may be much larger than

for photons. Although a gross over simplification, we may parameterize this by an additional

(not constant) multiplicative factorFwind on the radiation torque, so that the warping criterion

become:

Rrad >
2η2

ν

γ2
critǫ

2F 2
wind

2GM

c2
= 9.1 × 10−3α−2ǫ−2

0.1F
−2
wind pc (3.8)

where for the numerical value we have usedγcrit ≃ 0.32, ǫ = 0.1ǫ0.1 and ην ≃ 3.5/α

(Lodato & Pringle, 2007). Thus warping the disk in the radial range of the Galactic Center

(0.06-0.4pc) requiresα ∼ 0.3, or α ∼ 0.1 and radiatively efficient accretion by a rotating

black hole or modest enhancement of the torque by a disk wind.
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3.2.3 Bardeen Petterson Effect and the Galactic Center Stellar Disk

In this section, we show under which conditions the GalacticCenter disk might have been

warped due to Bardeen Petterson effect.

An accretion disk forming around a rotating (Kerr) black hole might initially have a total

angular momentum misaligned with that of the black hole. Inner portions of the disk close

to the black hole experience general relativistic frame dragging which causes a differential

precession, the so-called Lense-Thirring precession (Lense & Thirring, 1918). As we have

seen in the previous section, the viscous time scale increases with radius, hence the inner parts

of the disk are forced to align with the black hole on time scales much shorter than those for

the outer parts. Consequently, the disk develops a shape which for r < RBP is aligned with

the black hole, i.e. is flat, and forr ≥ RBP its angular momentum direction changes gradually

from radius to radius (Bardeen & Petterson, 1975). Like the radiation pressure warping, the

Bardeen Petterson effect also is a competition between the vertical viscous time scale, and the

precession time scale (Armitage & Natarajan, 1999). The precession induced by the Bardeen

Petterson effect is given by (Kumar & Pringle, 1985):

φ̇ = 2ac

(
GMbh

c2

)2
1

r3
, (3.9)

wherea is the black hole spin parameter which can take values between 0 and1 for stationary,

and maximally rotating black holes respectively. The precession time scaleτBP = 2π/φ̇ is:

τBP =
πc3r3

aG2M2
bh

. (3.10)

The critical radius, where the vertical viscous time scale equals the precession time scale is

then obtained writing:

πr3c3

aG2M2
bh

=
2r2

ν2

→ RBP =
2aG2M2

bh

πc3ν2

. (3.11)

Using the steady state relations introduced in the previoussection equation (3.11) becomes:

RBP =
6aG2M2

bhǫΣ(RBP)

ηνcL
. (3.12)

In order to estimate the Bardeen Petterson radius for the GC,we need to solve equation (3.12)
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for RBP. Writing Σ(RBP) = Σ0/r̂
−2 we obtain:

RBP = 8.9 × 10−4

(
aǫαµ4000

ηeddǫSF

)1/3

pc. (3.13)

This estimate shows that the Bardeen Petterson radius for the GC is quite small, i.e. much

below the inner edge of the observed disks. We should remind that the alignment time scale

tν2 for the assumed surface density profile is independent of radius, and is short. This means

that the disk can be warped out to large distances since bothRBP andtν2 depend on the disk

parameters only weakly.

The angular momentum of the disk atr is∝ 2πΣrdr
√
GMbhr ∝ r−1/2dr and varies only

slowly with r. The ratio of the disk to black hole angular momenta can thus be estimated as:

Jd
Jbh

≃ Md

√
GMbhrd

aGM2
bh/c

=
1

a

Md

Mbh

√
2rd
rs

∼ 0.7ǫ−1
SFa

−1, (3.14)

whererd ∼ 0.1pc. This suggests that by the time the disk is significantly warped atrd ∼
0.1pc, the black hole spin should be significantly aligned: the alignment time-scale found

by Lodato & Pringle(2006) under similar circumstances is∼ 0.3tν1 ∼ 0.3(3.5/α)tν2 ∼
α−1tν2 . These arguments suggests that if the Galactic Center disk was first warped through

the Bardeen-Petterson effect, and then fragmented to form the observed surface density of

young stars, the star formation efficiency had to be high,ǫSF < 1, to prevent the disk from

dominating the angular momentum, andα < 0.1 to give the disk time to warp before it is

accreted and will align the black hole spin.

3.2.4 Comparison of Gravitational, Viscous and Radiation Torques

In section (3.2.2) we have discussed the conditions for radiation warping. While equation

(3.5) has to be satisfied for warping, it is also useful to compare the magnitude of radiation

and gravitational torques acting on the disk.

The magnitude of the radiation torque on a ring of radiusr with radial widthdr can be

approximated as (Ogilvie & Dubus, 2001):

2πrdrTΓ ≃ L

6cr
rdr, (3.15)

thusTΓ = Σr2Ω/tΓ (more details on the radiation torque can be found in Appendix C). On

the other hand the viscous torque on the ring, which tries to damp the warp in the case of
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Figure 3.2: Normalized gravitational torque for the Galactic Center disk when the warp spans
a range of−12◦ → 8◦ in inclination.

radiation pressure warping, and which sets up the warped density distribution in the Bardeen-

Petterson mechanism, is given by:

2πrdrTν2 =
Σr2Ω2πrdr

2r2/ν2

=
ηνLΩrdr

3ǫc2
. (3.16)

The gravitational torque of the disk on the same ring can be determined by integrating

over the disk:

2πrdrTgrav ≃ GMdΣ(r)2πrdr

r
J, (3.17)

whereJ ≡ Tgrav/(GmiMd/ri) is a dimensionless integral depending onr/r1, r/r2:

J =

∫ r2

r1

2πr′dr′Σ(r′)

Md

r2r′

(r′2 + r2)3/2
sin(2β) I(β, r/r′)

∂β

∂θ
, (3.18)

and whereβ(r, r′) is the angle between the normals of the two rings atr and r′, θ is the

inclination of the ring atr, so∂β/∂θ = O(1) [see eq. 2.14in Chapter2], andI(β, r/r′) is

the integral in equation (2.13b) in the same chapter. We show in Figure3.2 the values of the

J-terms at different distances from the black hole when the warp spans a range of−12◦ → 8◦

in inclination. For larger warps, the gravitational torques are weaker. Also if we include the

part of the disk outside[rin, rout] the productMdJ decreases as the torques are dominated by

the nearby parts of the disk. Using the surface density profile above, the ratio of the radiation
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and gravity torques is:

TΓ

Tgrav

=
L

6cr

r

2πGMGCDΣ(r)J
= 123

ηeddǫ
2
SF

µ2
4000

r̂2

J
, (3.19)

and the ratio of the viscous torque to the gravitational torque is:

Tν2
Tgrav

=
ηνLΩ

3ǫc2
r

2πGMGCDΣ(r)J
= 11.9

ηeddǫ
2
SF

µ2
4000αǫ0.1

r̂3/2

J
. (3.20)

We see from Figure3.2 that the J-terms for the Galactic Center disk surface density profile

are typically O(0.1). Thus atr = 0.1 pc TΓ ≫ Tgrav if ǫSF < 1, but not if ǫSF ≪ 1. For

a high central luminosityηedd and/or high star formationǫSF the viscous torque on the disk

dominates over its self-gravity. We have also seen for the case of the Bardeen Petterson effect

thatǫSF < 1. This shows that it is justified to neglect the effects of the gravitational torques

on the evolution of the disk in its active phase.

3.2.5 The Warped Stellar Disk After Fragmentation

In sections (3.2.2) and (3.2.3) we have seen that for a range of assumed accretion disk pa-

rameters, the disk at the Galactic Center could have been warped in the accretion phase. The

evolution of the disk is likely to be governed by the viscous or radiation torques during this

phase.

We now assume that after some time the disk has become warped,the active phase of

the Galactic Center ends. Sinceηedd and the accretion rate will then be highly reduced the

disk will receive much smaller energy input and it is reasonable to assume that it can now

cool rapidly. If the cooling time is short, fragmentation and star formation can occur an a

dynamical time scale (Gammie, 2001). The gas content of the disk could then be converted

into stars with efficiencyǫSF and the rest of the gas will be lost.

Subsequently, the now stellar disk would evolve purely gravitationally. We have seen in

Chapter2 that the rate of the precession induced by the self-gravity of the disk depends on the

disk-to-black mass ratio approximately asφ̇ ≡ C(θ)ΩMd/Mbh, so we expect more massive

disks for the otherwise set of identical parameters precessfaster.
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3.3 Warp Model for the Galactic Center Disk

In the previous sections we have argued that for a range of parameters, a flat disk around

SgrA* could become warped before forming stars, after whichthe disk evolves gravitation-

ally. In this section, we will introduce the model we have used to to follow the time evolution

of the warped stellar disk.

3.3.1 The Equations of Motion

As in Chapter (2), we model a warped disk as a collection of concentric circular rings which

are tilted with respect to each other, and which are are in gravitational interaction with each

other. They are characterized by their massesmi, and radiiri. The fast orbital motion around

the SMBH of massMbh is thereby time-averaged. The geometry of the rings is defined by the

Euler angles(ψ, θ, φ). For a system ofn rings, the equations of motion for any of the ringsi

are given by:

pθi
=
mir

2
i

2
θ̇i, (3.21)

pφi
=
mir

2
i

2
φ̇i sin

2 θi + pψi
cos θi, (3.22)

˙pθi
=
mir

2
i

2
φ̇2
i sin θi cos θi − φ̇ipψi

sin θi −
∂Vi
∂θi

, (3.23)

ṗφi = −∂Vi
∂φi

. (3.24)

Herepψi
= mir

2
iΩi is the orbital angular momentum,φ̇i and θ̇i are the rates of precession

and nutation caused by the torques∂Vi/∂θi and∂Vi/∂φi respectively whereVi is the potential

energy of ringi in the field of the other rings.

The numerical approach we use to study the time evolution of the disk is similar to the

one presented in Chapter2. There, we integrated the equations of motion for the rings after

evaluating the steadily precessing equilibria for the given parameters to test the stability of

those configurations. For parameters relevant to the GC diskwe do not find such steadily

precessing equilibria. Here we adopt as the initial warp shapes, the disk configurations which

are likely to be imposed by the warping mechanisms discussedin the previous sections.
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Figure 3.3: Approximate initial warp shape as imposed by radiation instability. Adopted from
Pringle(1997).

3.3.2 Numerical Setup and Initial Conditions

In the simulations we have performed, we distribute the rings equally in radius between

rin = 0.06 pc, androut = 0.4 pc. The initial conditions, i.e. the inclination, and azimuth

of the rings are chosen to mimic a radiation or Bardeen Petterson warping.

For the radial structure of a radiation warped disk, we adoptthe approximate nonlinear

warp shape obtained byPringle (1997) which we show in Figure3.3. Keeping the shape

of the warp similar to those presented byPringle(1997), we scale its amplitude to simulate

disks with various degrees of warping. These nonlinear warpshapes are such that the inner

rings share a common plane in inclination, then beyond a radiusr in the disk the inclination

changes gradually. The outer parts of the disk are again coplanar which comes about because

of the assumption that the disk becomes optically thick to radiation and warping does not

proceed there.

The initial conditions for the Bardeen Petterson effect areadopted fromLodato & Pringle

(2007) such that:

θi =







−0.5 for r < r1,

0.5 sin(C(θ)) for r1 ≤ r ≤ r2,

0.5 for r > r1,

(3.25)

φi = 0,



76 CHAPTER 3. WARPED STELLAR DISKS AT THE GALACTIC CENTER

-30

-20

-10

 0

 10

 20

 30

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

in
cl

in
at

io
n 

(d
eg

re
es

)

radius (pc)

Figure 3.4: Approximate initial warp shape as imposed by Bardeen Petterson effect (adopted
from Lodato & Pringle(2007)).

whereC(θ) = π(r − r0)/(r2 − r1), r0 = (r1 + r2)/2, and we setr1 = 0.1 pc, andr2 = 0.35

pc. Figure3.4 shows the inclination of the disk at different radii for the Bardeen Petterson

initial conditions.

We consider two cases for the surface density one of which is constant with radius, and

the second one decreases as1/r2. Table (3.2) summarizes the parameters of the runs that we

will discuss in the next section.

3.4 Results

In this section we show examples of simulations following the time evolution of the remnant

stellar disk in which the disk mass takes different fractions of the black hole mass around

which it rotates.

We first consider the evolution of a light disk withMd/Mbh = 0.001, and a surface

density profile decreasing as1/r2. This is our model M1. The adopted disk mass implies the

assumption that the star formation efficiency wasǫSF = 1. We choose an initial warp shape

which mimics a radiation pressure origin. At the start of thesimulation, i.e. att = 0, the

disk spans a range of∆θmax = 58◦ in inclination, and the azimuthal angles form a spiral.

The disk is initially given a constant precession frequency. We followed the evolution of this

system for 1000 orbital periods. In Figure3.5we show the 3-dimensional shape of the disk

at various stages of the simulation. We see immediately thatdue to the long precession time
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Model Md/Mbh Σ shape|i ∆θmax

M1 1 × 10−3 1/r2 R 58◦

M2 1 × 10−3 1/r2 R 218◦

M3 1 × 10−3 const. R 110◦

M4 1 × 10−3 const. R 110◦

M5 3 × 10−3 1/r2 BP 58◦

M6 6 × 10−3 1/r2 BP 58◦

M7 1 × 10−2 1/r2 BP 58◦

M8 1 × 10−2 1/r2 BP 58◦

Table 3.2: Parameters of the simulations performed. The first column is the name associated
with the simulation. The second column is the disk mass expressed in terms of the black hole
mass, and the third column is the surface density profile where const. stands for constant.
The fourth column is the assumed initial shape of the warp. The abbreviationsR,BP stand
for radiation warping and, Bardeen-Petterson warping respectively. The fifth column is the
magnitude of the initial inclination of the warp such that∆θmax = |θin − θout|.

scale induced by the self-gravity torques, the disk doesn’tchange its appearance noticeable.

The initially adopted inclinations also do not vary in time,and although they can not be

treated as the equilibrium solutions presented in Chapter2, they remain constant.

In order to see whether initially more inclined warps exhibit a different behavior, we next

consider a disk which has an inclination of∆θmax = 218◦ in our model M2. It is also for a

disk with a mass fraction ofMd/Mbh = 0.001, and a surface density profile1/r2. In Figure

3.6 we show the 3d views of the disk at different times. Although the initial warp shape is

noticeably different from the previous example, the evolution of the disk proceeds in a similar

way to the previous example in that the appearance of the diskremains almost unaltered. This

comparison leads to the conclusion that for a mass ratio10−3 the initial inclination of the disk

does not affect its evolution in the pure self-gravity regime.

The next thing we would like to investigate is the possible effect of a change of distribution

of mass in the disk. We therefore adopt a constant surface density profile for the same total

mass in model M3. This model is followed for 1000 orbital periods. We see in Figure3.7that

the result is similar to M1 in that the disk doesn’t exhibit a noticeable change in its shape. The

rings precess slowly under the mutual gravity torques whiletheir inclinations do not deviate

from their initial values.

The last example we would to discuss for the same mass fraction differs from previous

one in that initially, the azimuthal angles of the rings forma spiral line of nodes. We there-

fore aim at exploring whether the gravity torques in such a case will destroy the coherence
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Figure 3.5: 3d views of the M1 disk at different stages of its evolution. The disk has a mass
of Md/Mbh = 0.001, and a1/r2 surface density profile. The initially imposed warp has an
amplitude of∆θmax = 58◦.
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Figure 3.6: 3d views of the M2 disk at different stages of its evolution. The disk has a mass
of Md/Mbh = 0.001, and a1/r2 surface density profile. The initially imposed warp has an
amplitude of∆θmax = 218◦.
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Figure 3.7: 3d views of the M3 disk at different stages of its evolution. The disk has a mass
of Md/Mbh = 0.001, and a constant surface density profile. The initially imposed warp has
an amplitude of∆θmax = 110◦.
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of the disk. This initial warp shape is accounted for in the time integration such that the term

∂Vm(αij)/∂φij is not zero at the start of the run. The evolution of the disk isdepicted in

Figure3.8. We observe in this case again that the disk doesn’t show a substantial amount

of variation in its shape. Examples discussed so far show that regardless of the initial warp

shape, and surface density profile, the disks for the adoptedtotal mass remain almost un-

altered during their evolution. As we have seen in Chapter2, the precession frequency of

self gravitating warped disks depends on the mass of the diskin proportion the black hole

mass. For the same warp shape, more massive disks precess faster, so one might expect see

to changes in the disk structure much faster for such disks. Hence in the following, we discuss

a few examples where more massive warped disks have been considered.

In model M5, we consider a disk with a mass fraction ofMd/Mbh = 0.003. The initial

warp shape is such that it spans a range of∆θmax = 58◦ in inclination, and the azimuthal

angles form a spiral. These initial conditions are chosen tomimic a Bardeen Petterson warp-

ing origin although the shape of the warp is similar to that inmodel M1. The steps of the

evolution are show in Figure3.9. Compared to the lower mass examples, the evolution of this

disk is becoming more apparent. At the end of the simulation,the flattening of both the inner

and outer parts of the disk can be observed.

Yet a higher disk mass is adopted in M6 whereMd/Mbh = 0.006. Initially, the disk is

given a differential precession rate. The evolutionary steps are shown in Figure3.10. We see

in this example that as the disk evolves, the middle rings start to separate from each other in

inclination giving the disk a ”broken” shape. In Figure3.11we show how the inclination of

the rings change in time. Any vertical cut along the curves corresponds to the ring inclina-

tions at that particular time. The negative inclinations are of the inner rings, while the outer

rings are at positive inclinations. At the end of the simulation at about6 × 105 yr, the outer

parts of the disk form a disk-like structure with a warp of about 25◦, while the inner parts

cluster more closely to each other leaving behind a warped disk with an amplitude of∼ 10◦.

The separation between the two increases slowly in time and reaches30◦ at the end of the

simulation.

Simulations so far discussed shows that the main parameter controlling the evolution of

the disk is its mass. Although slight changes in the evolutionary steps can be expected for

varying initial conditions, the behavior is similar in all these models. To strengthen this idea,

we next discuss the highest mass models we have in our simulations.

M7 is the time evolution of a disk with a mass fraction ofMd/Mbh = 0.01. The initial

warp shape and surface density profile imposed to the model are similar to M6. The evolution
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Figure 3.8: 3d views of the M4 disk at different stages of its evolution. The disk has a mass
of Md/Mbh = 0.001, and a constant surface density profile. The initially imposed warp has
an amplitude of∆θmax = 110◦.
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Figure 3.9: 3d views of the M5 disk at different stages of its evolution. The disk has a mass
of Md/Mbh = 0.003, and a1/r2 surface density profile. The initially imposed warp has an
amplitude of∆θmax =∼ 58◦.
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Figure 3.10: 3d views of the M6 disk at different stages of itsevolution. The disk has a mass
of Md/Mbh = 0.006, and a1/r2 surface density profile. The initially imposed warp has an
amplitude of∼ 58◦.
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Figure 3.11: The change of ring inclinations in time for model M6.

of the disk is followed for 5800 orbital periods. Figure3.12shows the evolution in steps of

1000 orbital periods. We see that at already 1000 orbital periods, the disk can be recognized

as two disks broken out of a single one.

In the literature simulations aiming to explain the orbitalconfiguration of the GC stellar

disks often start with initial conditions such that there are already two mutually inclined

disks/rings in place (Nayakshin et al., 2006; Löckmann & Baumgardt, 2009). The evolution

of these disks is then followed depending on the ingredientsof the model, and it is often

found that differential precession destroys the coherenceof the two disks in about a million

years. In these simulations, self-gravity of the disk is mostly neglected, or accounted for in the

simplified linear torques regime. To compare our models to the previous studies, we evolved

our model M7 for nearly3.5 × 106 yr. The comparison to previous studies becomes more

relevant after our single disk breaks into two disks, i.e. after 1000 orbital periods. We see

that even though the initial precessing disk breaks into twopieces, the broken disks continue

precessing without further deformation. Figure3.13shows for this model the evolution of the

ring inclinations. After about1×106 yr, the rings are arranged such that inner and outer ones

form two relatively flat disks. The inner disk at negative inclinations has on average a warp

with about10◦, while the outer one is warped by only a few degrees. The mutual inclination

between the two disk is about55◦ at the end of the simulation. In Figure3.14we show how

the azimuthal angles evolve for the same model. Again the azimuth for each ring corresponds

to vertical cuts through the plots.

The last example we discuss is again for a disk with a mass fraction ofMd/Mbh = 0.01.
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Figure 3.12: 3d views of the M7 disk at different stages of itsevolution. The disk has a mass
of Md/Mbh = 0.01, and a1/r2 surface density profile. The initially imposed warp has an
amplitude of∆θmax = 58◦.
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Figure 3.13: The change of ring inclinations in time for model M7.

This is our model M8. In comparison to M7, the disk is initially given a differential precession

frequency. We aim to explore whether for massive disks this initial condition would lead to

a dissolving disk structure. In Figure3.15we show the evolutionary steps in warp shape for

this model. In comparison to model M7, model M8 shows only a very slight difference in the

shape of the outer disk after 5000 orbital periods. The outerdisk of M8 is warped by a few

degrees more than that of M7, but apart from this difference,the evolution of both disks is

very similar. Hence we can conclude that also for massive disks the initial conditions prior to

self-gravitating evolution does not change the overall behavior.

Simulations we have presented suggest that an initially warped single disk of stars at the

Galactic Center is prone to breaking into two pieces if the mass of the disk exceeds0.001Mbh.

The time when the disk can be recognized as two separate disksdepends on the total mass of

the disk. Since the disk determines the global precession frequency of the disk, we can expect

to see a correlation between the mutual inclination of the broken disks and the precession

frequency, and hence precession time scale for a given model. In Figure3.16we see indeed

that there is such a correlation. The points in the plot correspond to maximum separation

angles of the models we have discussed at different stages ofthe evolution. The precession

time scale shown on the horizontal axis is calculated as follows: for each model the mean
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Figure 3.14: Time evolution of azimuth for model M7.

precession time scale is calculated at the end of the run suchthat:

τprec =
2π

φ̇mean

=
2πn
n∑

i

φ̇i

(3.26)

where φ̇i are the precession frequencies of the rings attained at the end of the particular

integration. In determining the maximum separation between the broken disks, we read in

the difference in inclinations where the separation starts. The points lying at the bottom left

corner are those of the small mass models, where the horizontal branch of points to the right

correspond to high mass models. We see that when the gravity torques are low, i.e. for small

mass, the maximum separation in the broken disk increases linearly in precession time, until

about 35 precessions. For models corresponding to higher precession rates, the separation

angle saturates at about 45 degrees, and the two broken diskscontinue precessing without

further deformation with their own mean rates.

3.5 Comparison With the Observations

In this section, we would like to make a comparison of our timeevolution models and the

observations of the Galactic Center disks. In doing so, we will mostly make use of the results

of Bartko et al.(2009).

After application of proper selection criteria,Bartko et al.(2009) sample includes a to-
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Figure 3.15: 3d views of the M8 disk at different stages of itsevolution. The disk has a mass
of Md/Mbh = 0.01, and a1/r2 surface density profile. The initially imposed warp has an
amplitude of∆θmax = 58◦.
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Figure 3.16: Maximum separation of the disk versus mean precession time at the end of each
run.

tal of 90 stars on clockwise and counterclockwise rotating orbits. Out of these 90, 27 are

new identifications, and the rest have reduced proper motionuncertainties. These stars have

measuredx, y, andz space positions (withz coordinate being the less well defined), and the

respective space velocitiesvx, vy, andvz.

The number density of stars in the disks,Σnr(r), scales as1/r2 (Bartko et al., 2009;

Paumard et al., 2006). Herer is the 3-dimensional distance to SgrA*, corresponding to the

radiusr of our rings. The total number of stars on a ring is then2πr∆rΣnr(r). If we assume

that the total number of stars in the disk isNt we can write:

n∑

1

2πr∆rΣnr(r) = Nt, (3.27)

wheren is the number of rings making up the disk. We writeΣnr(r) = Σ0/r
2. The normal-

izationΣ0, i.e the number of stars on the innermost ring, is then obtained by writing:

Σ0 =
Nt

2π∆r

n∑

1

1

r

. (3.28)

Figure3.17shows the expected number of stars on each ring whenNt = 1000 for a disk of

25 rings.
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Figure 3.17: Radial distribution of 1000 stars on a disk consisting of 25 rings.

The coordinates of a star on a ring is given by:

x = cosφ cosψ − cos θ sin φ sinψ,

y = sinφ cosψ + cos θ cosφ sinψ,

z = sin θ sinψ. (3.29)

Here,θ is the inclination of the ring to the plane perpendicular to the total angular momentum

direction,φ is the azimuthal angle, andψ is the position of the star on its ring. We distribute

the stars randomly inψ on the rings. Figure3.18shows, for four of our models, the random

distribution of a total of 1000 stars on the disks. The modelsare M5 (top left), M6 (top right),

M7 (bottom left), and M4 (bottom right). Model M7 is depictedat 5000 orbital periods of its

evolution where the other models are shown at their 1000 orbital periods stage.

As can be seen from Figure3.18the model M5, for a disk of massMd/Mbh = 0.001, pre-

cesses as a single disk without deformation. Its initially imposed warping angle is conserved

through its evolution. The model disk M6 is a slightly more massive one withMd/Mbh =

0.006, and it has already started to break. The model disk M7 is one of the most massive

examples we considered in our simulations havingMd/Mbh = 0.01, and after 5000 orbital

periods, it settled down to a well-defined two-disk system. Finally, M4 is again for a light

non-breaking disk withMd/Mbh = 0.001, but with an initial warp amplitude much higher

than that of M5.
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Figure 3.18: Random distribution of stars on model disks M5 (top left), M6 (top right), M7
(bottom left), and M4 (bottom right).

In order to construct the phase space distributions of the stars populating the disks, we

write the components of the stellar velocities:

vx = r(θ̇ sin θ sinψ sinφ− ψ̇ sinψ cosφ− φ̇ sinφ cosψ − φ̇ cos θ cosφ sinψ,

− ψ̇ cos θ sin φ cosψ)

vy = r(φ̇ cosφ cosψ − φ̇ cos θ sin φ sinψ + ψ̇ cos θ cosφ cosψ

− θ̇ sin θ sinψ cos φ− ψ̇ sinψ sinφ),

vz = r(θ̇ sinψ cos θ + ψ̇ sin θ cosψ). (3.30)
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Since we know the values of (φ̇, θ̇, ψ̇, φ, θ) from our time integration, and we dice theψ

coordinate, we can construct the phase space distribution of stars at each instant of time using

equations (3.29) and (3.30) .

A comparison of the models to the observed disks can be made bycomparing the projec-

tions of the angular momentum directions of the two. In the following we show examples of

such comparisons.

The first set of comparisons considers the cylindrical equal-area projections of the models.

Figures3.19and3.20show for models M4 and M7 respectively the projections of thesky

distributions of the average density of the reconstructed angular momenta obtained with the

Bartko et al.(2009) analysis. The x-axes are theφ angles, and the y-axes are the values of

cos θ in these plots. The color peak points to the angular momentumdirection of the CW

disk, and the black circle shows the position of the observeddisk on the plots. We see that
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Figure 3.19: Sky map for model M4. Provided by Hendrik Bartko.

model M4 produces a small amplitude warp compared to the data, and model M7 produces

a too little twist. Hence we can say that these models are not likely to explain the orbital

configuration of the observed disks.

Another useful way of comparing the models is to construct the components of angular



94 CHAPTER 3. WARPED STELLAR DISKS AT THE GALACTIC CENTER

-3 -2 -1 0 1 2 3-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

250

Figure 3.20: Sky map for model M7. Provided by Hendrik Bartko.

momenta and see how they change with projected radius. Theseare shown in figures3.21,

and3.22 for models M5, and M6, respectively. The figures on the left correspond to the

change of the disk inclination with projected distance fromthe center, while the figures on

the right show the degree of the twist, i.e. varying line-of-nodes. The blue points represent the

data, while the red ones represent the models. We see a good agreement between our model

M5 and the observations of the CW disk in that the inclinationchanges gradually between

the inner and the outer edges of the disk, and that the amplitude of the warp is successfully

produced.

In our simulations we saw that the initially imposed global degree of warping is preserved

during the disk evolution. Even if massive disks break into two pieces with large separation

angles, the difference in inclination between the innermost and outermost radii remain almost

unchanged. The observational analysis presented inBartko et al.(2009) can discriminate

between the broken and unbroken disks as can be seen from the left plots in figures3.21and

3.22. Since the radial change of the inclination of the observed disks is a smooth one, we

can conclude that the massive, breaking disks can be excluded to be representative of the

observations.
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Figure 3.21: Local angular momentum direction for model M5.The x-axis is the average
projected distance from the center in arcseconds, and the y-axis is the inclination (left), and
the twist (right) of the disk. The figure is provided by Hendrik Bartko.
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Figure 3.22: Local angular momentum direction for model M6.The x-axis is the average
projected distance from the center in arcseconds, and the y-axis is the inclination (left), and
the twist (right) of the disk. The figure is provided by Hendrik Bartko.

On the other hand, none of our breaking disk configurations lead to an extra counter-

rotating disk when projected onto the plane of the sky. Such adiscrete structure would appear

at negativecos θ values in figures3.19and3.20[see Figure 10 ofBartko et al.(2009)]. Thus

we can can say that the CWW disk observed at the GC probably hasa different origin than

the CW one.

3.6 Discussion

In this chapter we have proposed a new scenario for the formation of inclined stellar disks

at the Galactic Center. We assumed the past existence of an accretion disk around SgA*
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and we showed that the disk might have been warped by radiation pressure or by Bardeen

Petterson effect. For the parameters making the warping mechanisms plausible, we carried

out simulations following the warped stellar disk in time taking into account the effects of the

disk self-gravity.

In our simulations, we used a simple circular ring model where we neglected the possible

effects of the orbital eccentricities. In a recent publication Madigan et al.(2009) have shown

that an initially eccentric disk embedded in a stellar cusp around a massive black hole is

subject to an instability with a growth time scale of about a precession time. Neglecting

the effects of the disk self-gravity they simulated eccentric disks with parameters relevant to

the GC environment. Their results suggest that the instability becomes inefficient for disks

which are inclined by more than∼ 10◦. Still, it is reasonable to expect that if the torques

from the disk self-gravity are included in such calculations, the eccentricity evolution of the

disk proceeds in a different way, especially for the high disk mass fractions.

To be able to scan a large set of parameters, i.e.Md/Mbh, θinit, φinit, φ̇init, ǫSF, we in-

tegrated our model disks up to 1000 orbital periods, which isshorter than the age of the

system. For the non-breaking disks, we saw that the evolution was slow, and even integrat-

ing the system for longer would not lead to a substantial difference where the disk would

continue precessing as a single disk. Only in a few cases where we observed a very pro-

nounced breaking up of a disk, we followed the time evolutionof the disks longer. Recently,

Löckmann & Baumgardt(2009) addressed the issue of interaction of two mutually inclined

disks in application to the Galactic Center. Their simulations start with two already split up

disks in place, and the gravitational interaction of the twodisks are followed for∼ 5 Myr.

They find that after∼ 5 Myr the outer disk gets disrupted due to differential precession.

Our simulations show that even for very high disk mass fractions of order0.01Mbh, the disk

would need at least a million year to break into two separate disks. Hence, the simulations

considering already in-place two disks should be interpreted at earlier times, otherwise the

integration times will exceed the inferred age of the system.

3.7 Conclusions

In this chapter we have proposed a new scenario for the formation of the warped stellar disks

of stars at the Galactic Center. Our scenario differs from previous works in that star formation

is considered to take place after disk warping. Assuming a radiation warping, or Bardeen-

Petterson warping origin, we carried out simulations of self-gravitating warped disks.
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We have simulated disks with different surface density profiles, initial inclinations, and

azimuthal structure. The initial conditions imposed by different warping mechanisms seem

not to play a significant role in our simulations. We should note however that self-consistent

modeling of the warping processes and thereafter star formation would be required to justify

this result fully. This calls for accounting for the self gravity torques in the standard viscous

warped disk evolution equations.

We saw that the evolution of the disk is mainly controlled by the disk mass. We observed

that the disks withMd/Mbh > 0.001 break into two pieces each of which can be characterized

as mildly warped precessing disks. The time scale by which this break up occurs decreases

with increasing disk mass. The degree of mutual separation increases linearly with precession

time until about 35 precession times, and then it stays constant at around45◦.

The comparison of the models with the observations of the Galactic Center disks show

that the clockwise rotating disk can be explained by a singleprecessing disk, with a mass

fraction of order0.001Mbh.





CHAPTER 4

SUMMARY AND OUTLOOK

The increasing power of astronomical observations has provided evidence for the existence of

warped disks in the parsec scale vicinity of nuclear black holes. These disks are often traced

by maser emission, or for the unique case of the Galactic Center, by individual stellar orbits.

Many theories have been suggested as the cause of warps in nuclear disks. Among them,

radiation instability (Pringle, 1996), and the Bardeen-Petterson Effect (Bardeen & Petterson,

1975) are the most well studied ones. Other possible warping mechanisms include gravita-

tional interaction of a disk with a companion object (Papaloizou et al., 1998), or with sur-

rounding stars (Bregman & Alexander, 2009).

The above mentioned works either neglect the self-gravity of the disk, or make use of

the simplified linearized torques. However, both the observations of the maser nuclei, and

the Galactic Center suggest that nuclear disks might be as massive as∼ 10% of the black

hole, and might be highly warped. Therefore, the key aspect of this thesis has been to model

nonlinearly warped self-gravitating disks around massiveblack holes in galactic centers. In

the following we will summarize the major outcomes of this PhD study, and will give a brief

outlook.

4.1 Summary

4.1.1 Self-Gravitating Nuclear Warped Disks

In Chapter (2) an equilibrium model was developed for steadily precessing purely self-

gravitating warped disks around supermassive black holes.The major advance of the model

is the consideration of the non-linear self-gravity torques acting on the disk elements.
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Using the steady state equations of motion, a scaling relation was derived relating the

global precession frequency (normalized to a reference rotational frequency) to the disk mass

fraction. Hence, a change in distance to the central hole, and/or the disk mass might be

compensated to lead to the same equilibrium warp shape when the precession frequency is

properly scaled. The relation derived is simple, and can be applied to a variety of systems

where the dominant non-Keplerian force is the disk self-gravity. The accuracy of the scaling

relation was tested for different combinations of the disk mass, radial extent, and precession

frequency, and it was found that the model is accurate to∼ 1◦.

Equilibrium configurations of low-to-high mass disks were computed assuming various

surface density profiles, radial extents, and precession frequencies. It was found that the de-

gree of warping increases with increasing disk mass dramatically when the other parameters

are kept unaltered. A striking result emerging from these computations is that for a range of

reasonable parameters highly warped equilibrium configurations where the disk obscures the

central object completely might be constructed.

In order to make a comparison to the previous studies and to highlight the differences,

the linear theory of self-gravitating warped disks has beenrevisited. The main predictions

of the linear theory is reproduced, and used as an initial guess for nonlinear calculations.

It is shown that apart from differences in the equilibrium shapes, the main distinction is

the allowed range of parameters for equilibria. In linear theory, a disk with a certain mass

profile, and radial extent can support only a single(m,n) = (1, 1) mode with a prescribed

precession frequency, and a corresponding fixed (but scalable) warp shape. On the other hand

in the non-linear regime, the same disk can have varying warpshapes for varying precession

frequencies.

Stability of such highly warped steadily precessing disks was studied using perturbation

theory, and for a few cases was checked by time integration ofthe equations of motion. It was

found that stable equilibria exist only for a limited range of rout/rin ratios, typically2 − 4.

For disks with radial extents in this range, the mass fraction for stable equilibria can have

values between∼ 10−3 − 10−1, where the actual limits depend on the details of the model.

4.1.2 The Galactic Center Stellar Disks

In Chapter (3) a new scenario for the formation mutually inclined warped disks was presented.

It was assumed that the observed warp in the stellar disk of the Galactic Center was excited by

either radiation pressure, or by Bardeen-Petterson Effectbefore star formation took place. For
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each of these warping mechanisms, the relevant radial and time scales have been computed

to test their plausibility. It was shown that for the radiation instability to be viable, the past

luminosity of the Galactic Center region had be orders of magnitude higher than its current

value.

Adopting initial values imposed by these mechanisms, the time evolution of a warped

self-gravitating disk of stars was followed. Various models have been compiled which differ

from each other in the assumed origin, i.e. initial warp shape, total disk mass and surface

density profile. It was found that the time evolution of the disk is very much sensitive to the

disk mass, but not to the assumed initial conditions.

An interesting outcome of these calculations is that disks with mass fractions> 0.001

split into two separate disks which precess with their own mean rates, while disks with smaller

mass fractions precess without a change in their initially imposed warping angles.

The splitting of the disk just mentioned occurs on a time scale which depends on the disk

mass. Since more massive disks precess with faster rates, such disks are the ones which break

up at earlier times of their evolution. It is found that the degree of mutual separation between

the two disks increases linearly by time until about 35 precessions, and after that it saturates

at about50◦.

A comparison of these models to the observations of the Galactic Center disks was made.

It was found that the clockwise rotating disk can be explained by a single precessing disk,

with a mass fraction of order0.001Mbh.

4.2 Outlook

There are several possible improvements to the self-gravitating warped nuclear disk models

discussed in this thesis. In the following I mention some of them, and list some of the possible

applications.

4.2.1 Theoretical Improvements

• Self-Gravitating Viscous Warped Disks

The study of warps in the nuclear disks often makes use of the standard accretion disk

formalism as briefly discussed in the introduction of this thesis. This comes about be-

cause the warps are believed to be excited as a result of a competition between the

vertical viscosity in the disk, and the outward net forcing due to an external source.
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The viscous evolution of the disk is mostly studied based on the local conservation

equations as put in a suitable form byPringle(1992). In this scheme various warp-

ing mechanisms are accounted for by inserting the relevant torques to the momentum

conservation equation. Addition of the self-gravity torques to the momentum equa-

tion would be a very natural extension of the pure self-gravity model presented here.

Preliminary calculations where the solution of the continuity equation is obtained for

viscous self-gravitating warped disks suggest that many interesting outcomes can be

expected with this improvement.

• Self-consistent Modeling of Warping Mechanisms and Star Formation

In chapter (3) studying the time evolution of the warped stellar disk at the Galactic

Center, approximate initial conditions were adopted making use of the existing results

in the literature. In doing so, it was assumed that self-gravity provides the dominant

torques. It would be interesting to extend the models such that ceasing of the radiation

torques is computed in a self-consistent way. This would require the viscous evolution

equations to be implemented in the time integration scheme.When done so, the inter-

play between warping and star formation in galaxy centers can be studied in a more

reliable manner.

4.2.2 Possible Applications

• Interaction of the Galactic Center Disk with the Circumnuclar Disk (CND)

In a recent publication,Subr et al.(2008) have proposed the interaction of the Galac-

tic Center stellar disks with the surrounding CND as the cause of the observed orbital

distribution of stars. While the CND and the stellar disks have comparable, and non-

negligible mass, self-gravity of the disks were neglected.A very straightforward ap-

plication of the models presented in chapter (3) could be to implement a massive disk

inclined to the stellar disk and account for the effects of the CND.

• Application To Maser Nuclei - The Case of Circinus

One of the best examples of a warped nuclear disk lies in the center of Circinus Galaxy

(Greenhill et al., 2003). The maser activity observed in the disk constrains the mass, i.e.

surface density, of the disk to assume a large value with an upper limit of ∼ 0.2Mbh.

The degree of warping in the disk reaches to about∼ 30◦. With these parameters,
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Circinus maser disk would be a good candidate to apply our self-gravitating nonlinear

warp model.





APPENDIX A

COMPONENTS OFANGULAR MOMENTUM

FOR RING i

In this section we give the derivation for the components of angular momentum for ring

i in the (x, y, z) axes (equations (2.15), (2.16), and (2.17)). The components of angular

momentum, l, in the space axis are written via the transformation (Goldstein et al., 2002):

l = AIω
′

. (A.1)

HereI is the inertia tensor written as:

I =







mr2/2 0 0

0 mr2/2 0

0 0 mr2







(A.2)

A is a (3 × 3) transformation matrix with elements:

a11 = cosψ cosφ− cos θ sin φ sinψ,

a12 = − sinψ cosφ− cos θ sinφ cosψ,

a13 = sin θ sinφ,

a21 = cosψ sinφ+ cos θ cosφ sinψ,

a22 = − sinψ sinφ+ cos θ cosφ cosψ,

a23 = − sin θ cosφ,
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a31 = sinψ sin θ,

a32 = cosψ sin θ,

a33 = cos θ (A.3)

andω
′

is the angular velocity with respect to body axis, and are written as:

ω
′

x = φ̇ sin θ sinψ + θ̇ cosψ (A.4)

ω
′

y = φ̇ sin θ cosψ − θ̇ sinψ (A.5)

ω
′

z = φ̇ cos θ + ψ̇ (A.6)

Combining these, the components of the angular momentum fora single ring are obtained as:

lx = pθ cosφ+
sinφ(pψ − pφ cos θ)

sin θ
, (A.7)

ly = pθ sinφ− cosφ(pψ − pφ cos θ)

sin θ
, (A.8)

lz = pφ. (A.9)



APPENDIX B

ELEMENTS OF THESTABILITY MATRIX

In section (2.2.7), stability of steadily precessing equilibria was studiedusing perturbation

theory. The explicit forms of the kinetic terms entering thestability matrix are written as:

∂2Ti
∂p2

θi

=
2

mir2
i

(B.1)

∂2Ti
∂θi∂pφi

=
2(pφi

− cos θipψi
)

(mir
2
i sin θ2

i )
(B.2)

∂2Ti
∂p2

φi

=
2

mir2
i sin2 θi

(B.3)

∂2Ti
∂θ2

i

=
2(pφi

− pψi
cos θi)(pψi

cos3 θi + 2pφi
cos2 θi − 4pψi

cos θi + pφi
)

mir2
i sin4 θi

(B.4)
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APPENDIX C

CALCULATION OF THE RADIATION

TORQUE

In Chapter3, the radiation torque acting on the supposed Galactic Center gaseous disk was

compared to the gravitational torque. Here, we give a more detailed calculation of the radia-

tion torque.

The torque on a ring due to radiation pressure is written asτr = 2πTΓrdr, whereTΓ is

the radiation torque density given byOgilvie & Dubus(2001):

TΓ = − L

12πc
f(|ψ|)l × ∂l

∂r
, (C.1)

where,f(|ψ|) is a term which limits the effectiveness of the radiation torque for highly in-

clined warps, and it has the Taylor series:

f(x) = 1 − 3

8
x2 +

15

64
x4 − 175

1024
x6 +O(x8). (C.2)

l is the unit vector and in our notation written as:

lx = sin θ sin φ, ly = − sin θ cosφ lz = cos θ. (C.3)

108



109

The radial derivatives of the unit vectorl then have the components:

∂lx
∂r

= cos θ sin φ
∂θ

∂r
+ sin θ cosφ

∂φ

∂r
(C.4)

∂ly
∂r

= − cos θ cosφ
∂θ

∂θ
+ sin θ sinφ

∂φ

∂r
(C.5)

∂lz
∂r

= − sin θ
∂θ

∂r
. (C.6)

In this case:

l × ∂l

∂r
=

[

cosφ
∂θ

∂r
− cos θ sin θ sinφ

∂φ

∂r

]

êx + (C.7)
[

cos θ sin θ cosφ
∂φ

∂r
+ sinφ

∂θ

∂r

]

êy +

[

sin2 θ
∂φ

∂r

]

êz,

and its magnitude to be cast into equation (C.1) is:

∣
∣
∣
∣
l × ∂l

∂r

∣
∣
∣
∣
=

√
(
∂φ

∂r

)2

sin2 θ +

(
∂θ

∂r

)2

. (C.8)





APPENDIX D

CONSTANTS

Physical Constant

Gravitational constant G = 6.67 × 10−8 cm3 s−2 g−1

Thomson cross section σT = (8π/3)(e2/mec
2)2 (cm2)

Speed of light c = 2.98 × 1010 cm s−1

Proton mass mp = 1.673 × 10−24 g

Astrophysical Unit

Astronomical unit AU = 1.496 × 1013 cm

Parsec pc = 3.09 × 1018 cm

Solar mass M⊙ = 1.99 × 1033 g

Solar radius R⊙ = 6.96 × 1010 cm
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APPENDIX E

ABBREVIATIONS AND SYMBOLS

Abbrevation Meaning

AGN Active Galactic Nucleus

BLR Broad Line Region

CCW Counter clockwise

CW Clockwise

GC Galactic Center

LONs Line of Nodes

LOS Line of Sight

NGC New General Catalogue

SMBH Supermassive Black Hole

Symbol

LEdd Eddington Luminosity

M⊙ Solar mass

R⊙ Solar radius

pc parsec
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Herrnstein, J. R., Greenhill, L. J., & Moran, J. M. 1996, ApJ,468, L17+

Herrnstein, J. R., Moran, J. M., Greenhill, L. J., Diamond, P. J., Inoue, M., Nakai, N.,

Miyoshi, M., Henkel, C., & Riess, A. 1999, Nature, 400, 539

Herrnstein, J. R., Moran, J. M., Greenhill, L. J., & Trotter,A. S. 2005, ApJ, 629, 719

Hicks, E. K. S., Davies, R. I., Malkan, M. A., Genzel, R., Tacconi, L. J., Sánchez, F. M., &

Sternberg, A. 2009, ApJ, 696, 448

Hobbs, A. & Nayakshin, S. 2009, MNRAS, 394, 191

Hofner, P. & Sparke, L. S. 1994, ApJ, 428, 466

Hopman, C. & Alexander, T. 2006, Journal of Physics Conference Series, 54, 321

Hunter, C. & Toomre, A. 1969, ApJ, 155, 747



BIBLIOGRAPHY 119

Innanen, K. A., Kamper, K. W., van den Bergh, S., & Papp, K. A. 1982, ApJ, 254, 515

Jackson, J. M., Geis, N., Genzel, R., Harris, A. I., Madden, S., Poglitsch, A., Stacey, G. J., &

Townes, C. H. 1993, ApJ, 402, 173

Jiang, I.-G. & Binney, J. 1999, MNRAS, 303, L7

King, A. R., Lubow, S. H., Ogilvie, G. I., & Pringle, J. E. 2005, MNRAS, 363, 49

Kolykhalov, P. I. & Syunyaev, R. A. 1980, Soviet Astronomy Letters, 6, 357

Kondratko, P. T. 2007, PhD thesis, Harvard University

Kormendy, J. & Richstone, D. 1995, ARA&A, 33, 581

Krabbe, A., Genzel, R., Eckart, A., Najarro, F., Lutz, D., Cameron, M., Kroker, H., Tacconi-

Garman, L. E., Thatte, N., Weitzel, L., Drapatz, S., Geballe, T., Sternberg, A., & Kudritzki,

R. 1995, ApJ, 447, L95+

Kuijken, K. 1991, ApJ, 376, 467

Kumar, S. & Pringle, J. E. 1985, MNRAS, 213, 435

Lai, D. 1999, ApJ, 524, 1030

—. 2003, ApJ, 591, L119

Lense, J. & Thirring, H. 1918, Physikalische Zeitschrift, 19, 156

Levin, Y. & Beloborodov, A. M. 2003, ApJ, 590, L33

Lo, K. Y. & Claussen, M. J. 1983, Nature, 306, 647
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